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Abstract                                                               
 

Burkholderia phytofirmans strain PsJN consistently enhanced the growth of 

potato plants in vitro. The role of hexokinase1 in glucose phosphorylation was 

investigated in plants with PsJN. Increased hexokinase1 activity only in roots of 

PsJN-treated plants cultivar Kennebec suggests that hexokinase1 is associated with 

plant root and stem growth.     

Plant growth with PsJN was determined when plants were grown with 

different sugars at various concentrations. PsJN-treated plants expressed diverse 

forms of growth promotion. When growth promotion did occur, hexokinase1 activity 

also increased. Growth promotion and hexokinase1 activity appear to be correlated to 

the enzyme to recognize the substrate for catalytic activity. 

Cultivar Yukon Gold showed minimum response to the growth promotion 

typically induced by PsJN in cultivar Kennebec. Hexoinase1 activity in the roots of 

PsJN-treated plants was increased at much later stage than found with cultivar 

Kennebec. This indicates that the mechanism associated with growth promotion by 

PsJN is different in different potato cultivars. 

 

 

 

Keywords: Burkholderia phytofirmans strain PsJN, potato plant, Plant hexokinase 

1, sucrose, glucose, sugar signaling, Hexokinase1 enzyme activity assay, RT-PCR, 

Western blot. 
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Chapter 1: Introduction and literature review 

1.1 Plant growth promoting rhizobacteria 

 The rhizosphere is the region of soil adjacent to the plant root that is 

specifically influenced by chemical constituents produced by the root. The 

microorganisms that inhabit the rhizosphere can influence plant growth and 

development in a beneficial, detrimental or neutral manner. The microorganisms that 

enhance growth are referred to as plant growth-promoting rhizobacteria (PGPR) (20). 

Growth enhancement has been shown to arise through numerous mechanisms, 

including nitrogen fixation (43, 58), phosphate solubilization (59), and the production 

of plant hormones (4, 19, 24, 37, 45). In many cases the growth promotion is indirect 

that the microorganisms act as biological control agents that minimize the impacts of 

plant pests and pathogens (20, 31, 66).  

The microorganisms that reside in the rhizosphere are nourished by carbon 

and nitrogen compounds, such as amino acids, sugars, cell wall material, and 

mucilage released by the root (6). It is these nutrients that support the relatively high 

population of PGPR in comparison to that found in the surrounding bulk soil. PGPR 

may colonize either the rhizoplane, the root itself, or the endosphere (6). Those that 

reside inside the plant tissue are called endophytes and those that reside outside are 

called epiphytes. Endophytes such as Rhizobia are localized in specialized structures 

(58), whereas epiphytes are thought to enhance plant growth by releasing hormonal 

compounds to the plant (4, 19, 37, 45). Epiphytes inhabit zones near the root, on the 

root surface, or in the extracellular spaces of the cortex (20). Some PGPR genera can 

be both endophytes and epiphytes, such as Burkholderia spp. For example, B. cepacia 

acts as an epiphyte to enhance growth of grain plants, while B. tropica can act as a 

biofertilizer, aiding nitrogen fixation in sugarcane and maize (10, 55).   
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Interactions between plants and PGPR are a potentially useful agriculture tool 

in the improvement of crop yield and as an alternative to chemical fertilizers and 

pesticides (33). However, despite the existence of many PGPR with multiple 

beneficial traits, only a few have been exploited for commercial use in agriculture. 

The most widely used genera are Rhizobium and Azospirillum spp., which are sold as 

biofertilizers, and some Bacillus and Pseudomonas spp., which are available as 

biopesticides (69). 

 

1.2 Growth promoting modes of PGPR on plants 

 There are two modes of action by which PGPR exert a beneficial effect on 

plant growth. They may act either directly or indirectly. 

 

1.2.1 Direct mode of action 

1.2.1.1 Biofertilizers  

Nitrogen-fixing bacteria convert nitrogen gas to ammonia which can then be 

used to make amino acids, or other nitrogen containing compounds (58). Three 

rhizobial genera, Rhizobium, Bradyrhizobium, and Azorhizobium produce nodules on 

legume plant roots, such as soybean, pea, peanut, and alfalfa. It is in these nodules 

that nitrogen fixation occurs. To establish a successful relationship with a bacterium, 

plant roots release chemical signaling molecules, such as flavonoids, into the 

rhizosphere that attract the bacterium to the root hairs, where the first interaction 

occurs. The flavonoids also act as a signaling molecule to activate transcription of 

the nitrogen-fixing bacterial nodulation (nod) genes in the bacterium. Secondly, nod-

encoded enzymes from the bacterium release lipo-oligosaccharides in the plant root 

tissue to direct a plant organogenic program that initiates nodule formation (58). This 
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symbiotic relationship benefits both the bacterium and the plant (58). 

Phosphorus is an essential nutrient for plant growth and is usually added as a 

chemical fertilizer to agricultural soils (59). However, in many soil's phosphate is 

often precipitated by metal-cation complexes and in this insoluble form it cannot be 

assimilated by the plant. The bacterial genera Pseudomonas, Bacillus, Burkholderia, 

and Rhizobium release organic acids that solubilize complexes of phosphorus or 

produce acid phosphatases that can solubilize phosphate bound to organic and 

inorganic matter (59). These phosphate-solubilizing bacteria can significantly increase 

crop yields (59). 

 

1.2.1.2 Phytostimulators 

Beneficial bacteria are also capable of producing plant hormones that can 

modulate plant hormone levels and increase plant growth. Hormones commonly 

produced by PGPR include auxin, cytokinin, and gibberellin.  

Biosynthesis of auxin, such as indole-3-acetic acid (IAA), is widespread in 

beneficial bacteria. Five of the six pathways for IAA biosynthesis in bacteria have 

been shown to involve the IAA precursor tryptophan (47). Plants from canola seeds 

treated with Pseudomonas putida strain GR12-2 had 35-50% longer roots than plants 

from untreated seeds or plants treated with an IAA-deficient mutant, suggesting that 

IAA from the bacterium enhanced root growth (31). An IAA-deficient mutant of 

Bradyrhizobium elkanii generated fewer nodules on soybean roots than it did on the 

wild type, also indicating a role for IAA in N2 fixation (19). IAA produced by bacteria 

has numerous effects on plant growth and development. In particular, it has been 

reported to stimulate seed and tuber germination, increase the rate of xylem and root 

development, control vegetative growth, and initiate lateral and adventitious roots (16, 
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79).  

The enzyme responsible for cytokinin synthesis was first described in a 

bacterium, Agrobacterium tumefaciens (34), and it was later found that many 

beneficial bacteria synthesize cytokinin, namely, Azospirillum, Rhizobium, Bacillus, 

and Pseudomonas spp. (20). Cytokinin modulates a wide range of plant physiological 

processes, including root growth, promotion of root branching, accumulation of 

chlorophyll, and leaf expansion (16, 73). When lettuce seeds were inoculated with the 

cytokinin-producing bacteria Bacillus subtilis, the accumulation of cytokinin was 

positively correlated with plant growth (4). Treating Arabidopsis thaliana with B. 

megaterium strain UMCV1, a cytokinin producer, caused a three-fold increase in 

shoot and root fresh weight and more lateral roots compared to uninoculated plants 

six days after inoculation (45).   

Azospirillum brasilense and Rhizobium japonicum were the first bacteria 

shown to be capable of synthesizing gibberellins (75, 78). Gibberellins can influence 

plant cell division, cell elongation, stem elongation, flowering, and can delay 

senescence (16). Similar to cytokinin-producing bacteria, plants treated with 

gibberellin-producing bacteria accumulated higher levels of gibberellins and produced 

much greater biomass (37). 

 

1.2.2 Indirect mode of action: Biological control 

In 2005, the annual worldwide crop loss due to plant diseases was estimated 

to be 220 billion dollars (2). Use of disease-resistant plants has been the most 

successful strategy to control crop loss to disease, but resistance genes are not always 

available for every pathogen. Chemical control with fungicides is widely used but 

pesticides are now becoming increasingly refused by consumers. For these reasons, 
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biological control of plant diseases is now being more seriously considered as a 

means to decrease crop loss (2). Biological control agents protect plants by inducing 

systemic resistance, producing antibiotics, parasitizing pathogens, or competing with 

pathogens (20, 66). Most biological agents used today produce antibiotics. For 

example, P. fluorescens strain 2-79 and P. chlororaphis strain 30-84 reduced diseases 

of spring and winter wheat when applied as seed treatments through the production of 

phenazine-1-carboxylic acid (72). P. fluorescens strains WCS374 and WCS365 

increased potato tuber yield by the production of hydrogen cyanide under field 

conditions (21). B. subtilis strain RB14 suppressed damping off disease in tomato 

caused by Rhizoctonia solani by producing the antibiotic iturin A and surfactin (5).  

 

1.3 Burkholderia phytofirmans strain PsJN 

Burkholderia phytofirmans strain PsJN is a gram-negative bacterium that was 

originally isolated from Glomus vesiculiferum-infected onion roots (17). This 

bacterium is aerobic, rod shaped, non-sporulating, and motile by means of a single 

polar flagellum. PsJN cells range from 0.5-0.8 µm wide and 0.8-1.8 µm long, grow 

well at pH 3-9 and at 4-38°C, and can be grown on the sugars D-fructose, D-xylose, 

and D-glucose (17, 67). The effect of PsJN on plant growth was initially characterized 

using potato (Solanum tuberosum) nodal explants of the cultivar (cv.) Kennebec under 

in vitro conditions (17). PsJN-treated potato plants had greater dry weight, stem 

length, lignin, chlorophyll, starch, as well as more roots and leaf hairs than 

uninoculated plants 28 days after inoculation (17). PsJN-treated plants also had larger, 

more branched root systems with more secondary root structure, taller stems, and 

achieved pubescence earlier than the uninoculated plants. Furthermore, PsJN-treated 

plants remained turgid when they were removed from tissue culture conditions 



 

 

６ 

 

because they had functional stomata that allowed them to regulate water loss, whereas 

uninoculated plants desiccated rapidly. Most of the bacteria were localized in the roots 

and the stem xylem tissue (17). 

PsJN did not induce the same degree of growth enhancement in all potato cv. 

tested. Potato cv. Norchip showed similar growth response to cv. Kennebec, but 

growth was promoted much less in cv. Shepody than in cv. Kennebec. PsJN-treated cv. 

Chaleur, interestingly, had a 50% decrease in root weight compared to uninoculated 

plants. The effect of PsJN thus appears to be cultivar specific with respect to its 

effects on potato. PsJN-treated cv. Kennebec and Norchip plants grown at 10°C, 20°C, 

and 25°C for 3 weeks showed the greatest growth enhancement at 25°C. But after 6 

weeks growth, Kennebec’s optimal temperature was 25°C, whereas growth 

enhancement of Norchip was greatest at 20°C and 25°C (15). This clearly indicates 

that environmental factors can affect the growth enhancement induced by PsJN.  

Plants derived from PsJN-treated potato tubers of the cv. Kennebec grown 

under greenhouse conditions for 23 days had greater root dry weight, more stolons, 

earlier tuberization, and higher tuber yield than plants derived from uninoculated 

tubers (18). However, plants grown from cut or whole seed tubers treated with PsJN 

and grown under field conditions showed responses that were dependent on location. 

At two locations, the fresh weight and number of commercial-sized tubers were 

greater in inoculated plants compared to uninoculated plants by 43.4% and 31.6%, 

respectively, but there was no effect of inoculation at the other location (18). It has 

been suggested that soil factors influence root colonization of PsJN (8). Similar 

results were obtained from field tests carried out in Nova Scotia (28). 

Four different tomato cultivars Scotia, Blazer, Mountain Delight, and 

Celebrity, were inoculated with PsJN and grown under in vitro condition similar to the 
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potato plants described above (51). When compared to uninoculated plants, Scotia 

had the greatest increase in shoot biomass (61%), followed by Blazer (34%). However, 

there was no growth promotion in inoculated Mountain Delight and Celebrity plants 

compared to uninoculated plants of these cultivars (51). The increased shoot biomass 

of PsJN-treated Blazer plants was due to a significant increase in stem height and the 

increase in Scotia was attributed to thicker stems. The work with tomato confirms that 

PsJN can promote the growth of plants other than potato and also that the promotion 

is cultivar specific (17, 51).  

PsJN-treated grapevine plantlets had greater total biomass, shoot mass, leaf 

mass, and root mass than uninoculated plantlets (7). Root biomass in inoculated 

plantlets was as much as 12 times that of uninoculated plantlets. At 4°C, biomass of 

both PsJN-treated and uninoculated plantlets was less than the biomass of 

uninoculated plantlets grown at 26°C, but the biomass and root weight of the PsJN- 

treated plantlet was still greater than that of the uninoculated plantlet. The PsJN- 

treated plantlet at 4°C had secondary vascular structure with wider xylem cells and 

thicker xylem walls than uninoculated plantlets (7).  

It was suggested that resistance to chilling was improved by PsJN. PsJN 

treatments at both temperatures increased proline accumulation in leaves and stems, 

and phenolics in leaves. Plant proline increases in response to environmental stress 

and phenolics, such as flavonoids is the precursor of many antioxidants. PsJN-treated 

grapevines showed enhanced photosynthesis and increased accumulation of starch in 

shoots and leaves but not in roots compared to uninoculated plants (7). The author of 

this study suggested that PsJN initially colonized the root surface, penetrated the 

tissue and colonized the root interior. It was translocated via stem xylem vessels, and 

finally was able to colonize even the leaf tissues endophytically (7).  
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 1.4 Mode of PsJN-induced plant growth promotion 

The mechanism by which PsJN induces plant growth promotion remains 

unknown (17, 36, 71). A study using a mutant of PsJN (H41) that is capable of 

colonizing potato plants but does not promote growth (71) revealed the loss of 

function to be located at the nadC gene encoding quinolinate 

phosphoribosyltransferase which was found inactivated in the mutant. This enzyme 

catalyzes the synthesis of nicotinamide adenine mononucleotide from quinolinic acid, 

in the de novo synthesis of nicotinamide adenine dinucleotide. Since the compound is 

involved in many key regulatory steps of multiple biochemical processes, it is not 

known whether this is a key step in growth promotion or the loss of this function is 

one of many. Adding nicotine acid mononucleotide, nicotinamide, nicotinic acid, and 

nicotinamide mononucleotide to the agar media fully restored the ability of the H41 

mutant to promote growth under in vitro conditions (71). The inhibition of this 

pathway likely affects plant growth indirectly rather than directly because of the 

diverse processes that PsJN may affect. It has also been proposed that 1-

aminocyclopropane-1-carboxylic acid (ACC) deaminase is involved in plant growth 

promotion by PsJN, since PsJN may result in the accumulation of large quantities of 

this enzyme (44). ACC deaminase catalyzes the immediate precursor of ethylene, 

ACC, to ammonia and α-ketobutyrate and thereby decreases ethylene synthesis. Since 

ethylene accumulation may inhibit growth, removal of the precursor allows for better 

plant growth. ACC deaminase thus induces relative growth promotion (24). 

 

1.5 The effect of sugar on the induction of plant growth promotion by PsJN 

Potato plants cv. Kennebec were inoculated with PsJN and then grown in 

vitro for 4 weeks in varied sucrose concentrations, specifically, 0%, 0.1875% (w/v), 
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0.375% (w/v), 0.75% (w/v), 1.5% (w/v), and 3% (w/v) (85). In the absence of sucrose, 

there was no growth promotion in treated plants compared to the uninoculated plants. 

Growth promotion was first detected when PsJN-treated plants were grown in a 

0.1875% sucrose concentration. These plants were taller than uninoculated plants but 

did not have more dry weight. At 0.375% (w/v) sucrose, both height and dry weight 

were greater in the treated plants compared to uninoculated plants (85). PsJN-treated 

plants grown at 1.5% (w/v) sucrose were the tallest in the study and had more dry 

weight than the uninoculated plants. PsJN-treated plants grown at 3% (w/v) sucrose 

had a shorter stem height but a greater dry weight compared to uninoculated plants 

(85). This study suggests that the level of sucrose affects growth promotion differently 

following inoculation with PsJN.  

Sucrose is made as the end product of photosynthesis and, in order to be used 

in subsequent metabolic processes, is transported through the phloem to all cells, 

where it is hydrolyzed into glucose and fructose by invertase and then metabolized to 

support the production of leaves, roots, flowers, fruit, and seeds (60). Generally, lower 

sugar concentrations activate photosynthesis, nutrient mobilization and the export of 

sugar from leaves. Higher sugar concentrations stimulate plant growth by down 

regulation of photosynthesis. This is believed to maintain sugar homeostasis in plants 

and to ensure the most efficient use of this energy resource (60).  

In 1994 (26) and 1997 (27), Dr. Jen Sheen’s research team provided evidence 

that plant seedling development is mediated by specific sugar sensing and signaling 

through plant hexokinase1 (HXK1). 

 

1.6 Glucose sugar sensor plant hexokinase1 

Sugar signaling studies have mainly used the model plant A. thaliana, as its 
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whole genome has been sequenced (60, 77). A study of an A. thaliana variant grown 

on 6% (w/v) glucose media (high concentration of glucose), reveal that A. thaliana 

hexokinase 1 (AtHXK1) is the primary glucose sensor that generates the signals 

involved in plant growth and development (27). On 6% (w/v) glucose media both A. 

thaliana seedlings overexperssing AtHXK1 mutant with constitutive promoter and 

wild-type plants showed severe stunting and inhibition in the development of the 

cotyledons and hypocotyls indicating glucose hypersensitivity. Seedlings of AtHXK1 

knock-out A. thaliana mutant when grown on this medium developed normal 

cotyledons and typical elongation of hypocotyls indicating glucose hyposensitivity. 

These mutants grown in 6% (w/v) mannitol (a sugar alcohol) or 6% (w/v) 3-O-

methylglucose media did not show these effects. Taken together, the results indicated 

that AtHXK1 acts as a glucose sensor (27). Also, the mutant of A. thaliana that shows 

overexpression of AtHXK1 when grown in 6% glucose showed greater repression of 

sugar-repressible target genes coding for the chlorophyll a/b binding protein and 

ribulose-1,5-bisphosphate carboxylase small subunit when compared to a AtHXK1 

knock out mutant (27). This was interpreted as confirmation that AtHXK1 mediates 

sugar dependent gene regulation. Although the HXK2-dependent glucose-sensing 

mechanism is well characterized in the unicellular eukaryotic yeast, Saccaromyces 

cerevisiae (65), it cannot be used to elucidate the role of plant HXK1 as a glucose 

sensor. While overexpression of the yeast HXK2 in A. thaliana seedlings increased the 

glucose phosphorylation activity, the seedlings did not exhibit the expected phenotype 

observed in seedlings overexpressing AtHXK1 in 6% (w/v) glucose. Despite 

increasing HXK1 catalytic activity, yeast HXK2 overexpressor did not allow the 

regulatory function for glucose signaling in the transgenic plants (27). Later studies of 

AtHXK1 showed evidence that it regulates plant growth and development in response 
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to nutrients, light, and plant hormone signaling in plants (41, 84). In addition, HXK1 

of various plants was shown to be localized in nuclei, cytoplasm, and mitochondria 

(14). 

Eukaryotic HXK was first described in yeast by Otto Meyerhof (39) in 1927 

and it was identified as a glycolytic enzyme in yeast and animals in the 1940s (9). 

Saltman (64) first characterized glucose phosphorylation initiated by HXK as an 

important step in glycolysis, the first process of carbohydrate breakdown. The product 

fuels respiration and provides carbon intermediates for anabolic pathways (64).  

Three hexokinases (StHXKs) were identified in potato tubers, but significant 

activity could be detected only for StHXK1 and StHXK2 (57). The enzymes’ 

activities were dependent on the growth stages of the tubers. StHXK1 was most active 

in sprouting tubers, whereas StHXK2 was most active during tuber growth (56). Both 

StHXKs had greater affinity for glucose as their substrate (StHXK1 Km = 41 µM, 

StHXK2 Km = 130 µM), than for fructose (StHXK1 Km = 11 mM, StHXK2 Km = 22 

mM) (57). Interestingly, StHXK1 and StHXK2 may have functions similar to 

AtHXK1 because StHXK1 and StHXK2 were able to complement the AtHXK1 knock 

out mutant grown on 6% glucose to restore glucose-sensitivity from glucose-

insensitivity (70). A similar result was reported when rice HXKs (OsHXK1 and 

OsHXK5) complimented to AtHXK1 mutant (11). Thus, the role of AtHXK1 as a 

glucose sensor could be shared with StHHK1 and StHXK2 in potato plant.  

 

1.7 Involvement of plant hexokinase1 in plant growth promotion by plant growth 

promoting rhizobacteria 

Indication of the involvement of plant HXK1 in plant growth stimulation by 

PGPR was made by Zhang et al. for first time in 2008 (83). This study on the 



 

 

１２ 

 

mechanism of plant growth promotion in A. thaliana following treatment with B. 

subtilis strain GB03 showed that increased photosynthesis and down regulation of 

AtHXK1 in glucose sensing may be involved. Strain GB03 released the volatile 

compounds 2, 3-butanediol and acetoin and these compounds significantly increased 

photosystem II photosynthetic efficiency, chlorophyll content, plant growth, and 

enhanced resistance to the plant pathogen Erwinia carotovora, the bacterium that 

causes soft rot (62, 83). GB03-treated plants grown in media with 4% (w/v) and 6% 

(w/v) glucose had higher level of hexoses and longer seedling hypocotyls than 

uninoculated plants grown in the same medium. These latter results suggest repression 

of AtHXK1 sugar sensing (83). However, AtHXK1 activity, as assessed by glucose 

phosphorylation, was not measured. Bacterial treatment also reduced the levels of the 

biosynthetic transcripts for formation of the plant hormone abscisic acid (ABA) (83). 

Since mutant A. thaliana seedlings deficient in ABA synthesis or signaling also 

showed the same glucose-insensitive phenotype as did the AtHXK1 mutant of knock 

out A. thaliana seedlings on 6% glucose (3), the authors (83) concluded that 

decreased ABA biosynthetic transcripts could indicate decreased AtHXK1 glucose 

sensing in GB03-treated A. thaliana as well. ABA has been considered an inhibitor of 

physiological processes, especially of growth (16). For example, exogenous ABA at 

even low concentration inhibited root elongation in seedlings of bean, garden cress, 

and barley (79). Hence, the ABA level may correlate with AtHXK1 in glucose sensing. 

PsJN may enhance plant growth by a mechanism similar to GB03. The 

altered growth promotion observed when potato node explants were grown on varied 

sucrose concentrations (85) supports this suggestion. An alteration of StHXK1 levels 

in response to PsJN treatment may be involved in the regulation of plant growth 

promotion in potato. If such a mechanism is common to PGPR-dependent growth 



 

 

１３ 

 

promotion, it may be possible to use molecular methods to develop more rapid 

screening methods to identify beneficial bacteria for growth promotion. Having an 

understanding of the molecular mechanism would greatly facilitate evaluating PGPR 

efficacy under field conditions (69). 

 

1.8 Hypothesis and objectives for thesis   

Plant HXK1 is involved in sugar sensing and signaling in plant growth and 

development and has been implicated in growth promotion by a beneficial bacterium, 

GB03 (27, 83). First, it appears that a particular concentration of sucrose is required 

for optimal growth promotion by PsJN (85). Second, plant HXK1 is well 

characterized and is a likely candidate for the glucose sensor in PGPR-mediated A. 

thaliana growth promotion (83). Thus, I will examine StHXK1 activity based on 

glucose phosphorylation, in PsJN-treated plants. 

Hypothesis 1 

PsJN stimulates the growth of potato plants cv. Kennebec and modulates the 

activity of StHXK1. 

To test this hypothesis I will: 

a. Determine if StHXK1 glucose phosphorylation activity is correlated 

with PsJN-induced growth promotion of stems and roots. 

b. Determine if StHXK1 activity is correlated with StHXK1 expression 

level. 

Hypothesis 2 

Growth promotion of plants inoculated with PsJN is modulated by the 

presence of different monosaccharide and disaccharide sugars available in the 

media. 
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To test this hypothesis I will: 

a. Determine if growth promotion induced by PsJN is correlated with 

StHXK1 activity in plants grown in different monosaccharide and 

disaccharide sugars. 

Hypothesis 3 

StHXK1 activity is not altered in a potato cultivar that does not show typical 

growth promotion when treated with PsJN.  

To test this hypothesis I will: 

a. Determine if StHXK1 activity in non-responsive plants is altered in a 

manner that differs from plant showing growth promotion in 

response to PsJN. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

１５ 

 

Chapter 2: Materials and Methods 

2.1 Generation and maintenance of plant materials 

Potato plantlets were grown from nodal explants for five to six weeks on 

growth media (Murashige Skoog basal minimal salt mixture (MS, (Sigma)) 

containing 3% sucrose (w/v)) at pH 6. When the plants had reached the top of the test 

tube (height 15 cm X width 2.5 cm, Sigma) they were cut into nodes under sterile 

conditions. The apical and basal nodes were discarded and the remainders placed into 

Magenta boxes containing growth media. New leaf buds developed within one week 

and these were used for inoculation with PsJN. Plants were grown in a controlled 

environmental chamber (Power Scientific, Inc.), with light intensity of 100 µmol 

photon m
-2

s
-1

, provided by fluorescent bulbs, and a photoperiod of 16 hours daylight. 

The temperatures were set at 24°C: 16°C (light: dark). These growth conditions were 

used for all the experiments unless specified otherwise. The leaf buds generated were 

dipped for 1 minute into PsJN bacterial suspension (prepared as described in section 

2.2). They were then dried in a sterile petri dish, and transferred into test tubes 

containing MS media at pH 6. Sucrose concentration (w/v) in the media was adjusted 

to the desired concentrations for each specific experiment. For control plants, the leaf 

buds were dipped into nutrient broth (NB (DifcoTM)) alone. Plantlet growth was 

measured as required over a 4 week period (71, 85).  

 

2.2 Bacterium strain and growth condition, and plant inoculation 

 B. phytofirmans strain PsJN, was used from the collection of Dr. George 

Lazarovits and was stored with 80% glycerol (Caledon) at -80°C. The bacteria were 

streaked onto NB agar medium and incubated at 30°C for 48 hours. A single colony 

growing in NB agar medium was picked with a sterile micropipette tip, transferred 
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into a test tube (15 cm X 1.5 cm, VWR) containing 5 mL NB medium and incubated 

overnight at 30°C on a shaker. The PsJN bacterial suspension was used to inoculate 

newly grown leaf buds under sterile conditions (71, 85). Plants derived from such 

inoculated buds were used in all studies as described below. The PsJN strain was 

cultured in the same manner for all studies unless specified otherwise. 

 

2.3 Analysis of potato plants physiologies with or without PsJN 

Plants grown for 1, 2, 3, or 4 weeks, with and without PsJN inoculation, were 

gently removed from the 1.5% (w/v) sucrose MS agar media, their roots rinsed with 

sterile water for 1 minute, and then blotted free of water with paper towels. Ten plants 

per treatment at each time point were used to determine total plant fresh biomass, 

stem mass, root mass, stem height, chlorophyll content, and leaf numbers. Plant 

biomass was determined using an analytical balance (Electronic balance model 

FA2004B). Total fresh biomass was measured first, followed by root and stem. Stem 

height was measured with a ruler. Chlorophyll content was determined using a SPAD 

502 chlorophyll meter (Konica, area measured = 2 X 3 mm). The numbers defined by 

the SPAD 502 chlorophyll meter are values that indicate the relative amount of 

chlorophyll present in plant leaves. Three leaves were selected from individual plants 

and random areas of a leaf were taken for chlorophyll determinations. The total 

numbers of leaves formed were counted. All experiments were repeated at least once 

unless otherwise indicated. The same protocol for measurements of plant biomass and 

growth was followed in all experiments with tissue culture using 3% (w/v) sucrose 

MS agar media and repeated once. 

The effect of PsJN on plant growth when grown on MS media containing 

either 1.5% glucose or fructose (w/v), and 3% glucose, fructose, maltose, mannose, or 
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galactose (w/v) at pH 6 was determined at 3 and 5 weeks compared to plant without 

PsJN. The same protocol for measurements of plant biomass and growth was 

followed in all experiments. This experiment was repeated once for all the sugar 

compositions used. 

 

2.4 Determination of hexokinase1 activity 

 Ten cv. Kennebec plants per treatment at each time point were analyzed for 

StHXK1 enzymatic activity using the glucose phosphorylation assay for each set of 

experiment using different sugars and different concentrations as plant tissue culture 

media. Stems were cut below the apical bud and the root was used for protein 

extraction. The tissue from each plant were transferred into a 2 mL microcentrifuge 

tube containing protein extraction buffer (50 mM Tris-HCl at pH 7.6 (Sigma), 5 mM 

MgCl2 (Sigma), 2 mM EDTA (Caledon), 10 mM KCl (Caledon), 10% (v/v) glycerol 

(Caledon), 0.1% (v/v) triton X-100 (Sigma), 5 mM 2-mercaptoethanol (Sigma), 0.1% 

(v/v) protease inhibitor (Sigma)), and 15 to 20 glass beads of 2.5 mm diameter 

(BioSpec products, Inc) (40). The sample mass to extraction buffer ratio was adjusted 

in all cases to 1:10 (w/v). Samples were homogenized at a speed of 6.5 meter for 10 

seconds using FastPrep bead beater (MPbio) and transferred to an ice bath 

immediately. Homogenates were centrifuged at 10,000 g for 10 seconds at 4°C to 

pellet the tissues. The supernatants were transferred into 1.5 mL microcentrifuge tubes 

and re-centrifuged at 10,000 g for 10 minutes at 4°C. Fifty µL of the supernatant 

solution was added to 250 µL of reaction mixture containing 50 mM Tris-HCl at pH 

7.6 (Sigma), 4 mM MgCl2 (Sigma), 1 mM glucose (Fisher), 1 mM ATP (Norgen 

Biotek), 0.2 mM NADP
+
 (Sigma) and 1 unit of glucose-6-phosphate dehydrogenase 

(Sigma) to measure StHXK1 activity. StHXK1 activity was determined 
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spectrophotometrically (SpectraMax Plus 384) at 340 nm in 30°C for 2 minutes for 

glucose phosphorylation measurement (40). This experiment was repeated once. 

 

2.5 Determination of hexokinases RNA transcript levels 

Two week old plants cv. Kennebec 3 per treatment grown in 3% (w/v) MS 

sucrose media were chosen. The mRNA expression of each stem and root sample was 

homogenized in Trizol (ABICON) and each sample RNA was isolated using an RNA 

isolation kit (ABICON) following the manufacturer’s recommendations. Genomic 

DNA contamination was removed using the RNase free DNase kit (Qiagen). cDNA 

was generated from 0.5 µg of total RNA using the QuantiTect®  Reverse transcription 

kit (Qiagen). The following primers were used. Forward 5’gttggagaactcacaaaagc3’ 

and reverse primers 5’ttaccaccagctaatgttcc3’ were used for StHXK1 amplification 

(NCBI accession: X94302.1). Forward 5’tgttgcagaactgacaaaag3’ and reverse 

5’attggttgaatctaccaccag3’ were used for StHXK2 amplification (NCBI accession: 

AF106068). Forward 5’gagctatgagcttcccgatg3’ and reverse 5’gattccacgtgcttccattc3’ 

were used for the internal standard ACTIN (NCBI accession: X55749). RT-PCR was 

performed in 20 µL of total reaction volume for each sample within a 96-well rotary 

plate of a Corbett Rotor-gene
TM

 6000 system using the manufacturer’s 

recommendations. The reaction mixture contained sterile deionized H2O, 

PerfeCta® SYBR®  Green PCR master mix (Quanta Bioscience), gene specific 

primers, and each cDNA template. Three technical replicates were run. RT-PCR was 

carried out with an initial denaturation step at 94°C for 4.5 minutes, followed by 

denaturation (15 seconds at 94 °C), annealing (20 seconds at 58 °C) and extension (40 

seconds at 72 °C). A total of 30 cycles of RT-PCR reaction was performed. A final 

extension was carried out for 15 seconds starting from 72 °C to 95 °C. The threshold 
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cycle (CT values) of the target genes and ACTIN in each sample were obtained after 

RT-PCR. CT refers to the specific cycle number where each sample template started to 

increase exponentially and calculated from the Corbett Rotor-geneTM 6000 system 

software. Negative controls were included to confirm that there was no DNA 

contamination. For each negative control, reverse transcriptase was omitted during 

RNA to cDNA synthesis and subjected to RT-PCR with StXHK1, STHXK2, and 

ACTIN primer. The primer specificities were confirmed by sequencing the RT-PCR 

products. The products were purified using a PCR purification kit (Qiagen) and sent 

to Robarts research institute of Western University (London, Ontario, Canada) for 

sequencing. Relative expression levels of all the samples were calculated and 

analyzed with Corbett Rotor-gene
TM

 6000 system software.  

StHXK1 and StHXK2 CT values were subtracted from ACTIN CT value, 

housekeeping gene, from each PsJN-treated and uninoculated sample. For each 

sample, subtracted CT values were indicated as delta (dCT) value. These numbers were 

known as relative expression to ACTIN and the smaller dCT indicate the higher gene 

expression (32, 35, 42). dCT from StHXK1 and StHXK2 was compared for each 

sample. This experiment was repeated once. 

StHXK1 CT value from PsJN-treated and uninoculated samples were 

subtracted from ACTIN CT value from PSJN-treated and uninoculated samples, 

respectively. dCT from StHXK1 was compared between PsJN-treated and 

uninoculated plants. This experiment was repeated once. 

 

2.6 Determination of potato hexokinase1 protein accumulation 

Three two week old PsJN-treated and uninoculated plants grown on medium 

containing 3% (w/v) sucrose were used for the extraction of total plant protein as 
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previously described in section 2.4. Gels were cast to yield a final acrylamide 

monomer concentration of 10% (w/v) in the separating gel and 4% (w/v) in the 

stacking gel. Fifty µg (determined by BSA standard curve) of protein from each 

sample were incubated at 95°C to denature the proteins and this was then added to the 

stacking gel and the gel run at 120 V for 90 minutes at room temperature. A 

polyvinylidene difluoride (PVDF) membrane was washed with 100% methanol 

(Caledon) for 10 seconds to activate just prior to completion of polyacrylamide gel 

electrophoresis. After gel electrophoresis, the gel was immersed in transfer buffer (25 

mM Tris base, 192 mM glycine, 10% (v/v) methanol) for 15 minutes. The gel was 

placed on top of the PVDF membrane and this was then placed in a Bio-Rad Semi-

Dry transfer Cell. Protein transfer to the PVDF membrane was carried out at 25 V for 

40 minutes. After transfer, the PVDF membrane was incubated in blocking solution 

(Tris-buffered saline, Tween20 (TBS-T) with 5% (w/v) carnation skim milk powder) 

for 1 hour at room temperature. The primary antibody, polyclonal anti-HK lgG, was 

obtained from Dr. Jean Rioval from University of Montreal. Anti-HK lgG solution, 15 

mL, in Tris buffered saline with bovine serum albumin (TBS-BSA) was poured on the 

PVDF membrane and incubated overnight at 4°C. After incubation, the PVDF 

membrane was washed with TBS-T twice and washed again with 0.5% (w/v) blocking 

solution two times. The secondary antibody used was anti-rabbit conjugated to 

horseradish peroxidase, and this was applied with 0.5% (w/v) blocking solution to the 

PVDF membrane and incubated for 1 hour. After incubation the PVDF membrane 

was washed with TBS-T four times for 10 minutes each time. The PVDF membrane 

was transferred to a dark room and enhanced chemiluminescence reagent was poured 

onto the PVDF membrane. After 1 minute, the PVDF membrane was dried on a paper 

towel and then an X-ray film was placed over it and sealed into a cassette. The X-ray 
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film was exposed for 20 minutes and the signal produced by the secondary antibody 

was detected using an X-ray film developer (40). This experiment was repeated once 

and this experiment was carried out in Agriculture and Agri Food Canada, London, 

Ontario station. 

 

2.7 Growth promotion test of different potato plant cultivars with PsJN 

 Nodes of potato plants cv. Yukon Gold, Shepody, and Superior were prepared 

and inoculated with PsJN, as previously described in section 2.1 and 2.2, and grown 

for 6 weeks. Yukon Gold was selected for further study on the potential role of 

StHXK1 activity in growth promotion by PsJN because Yukon Gold had dissimilar 

root growth compared to PsJN-treated cv. Kennebec. This experiment was repeated 

once. 

 

2.8 Potato plant cv. Yukon Gold physiologies with or without PsJN and 

determination of hexokinase1 activity 

Nodes of 6 week old potato of plantlets cv. Yukon Gold grown on the growth 

media were used to generate leaf buds. The plants generated from these were treated 

with PsJN or left uninoculated and grown as previously described in section 2.1 and 

2.2. Ten Yukon Gold plants of both PsJN inoculated and uninoculated were grown in 

medium containing 3% (w/v) sucrose for 3 and 5 weeks. They were analyzed for 

changes in phenotype and tested for StHXK1 activity as previously described in 

section 2.3 and 2.4, respectively. This experiment was repeated once.  

 

2.9 Statistical analysis 

Analysis of variance (One way-ANOVA) was carried out to analyze the date 
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collected between treatments for biomass, stem mass, root mass, stem height, leaf 

number, chlorophyll contents, StHXK1 activity, and StHXK1 and StHXK2 mRNA 

expression. Group statistics were expressed as mean ± standard error of mean (SEM). 

All statistical analysis was performed in Microsoft Excel 2007. The significant 

differences are denoted by asterisk (*) where the difference were significant at P≤0.05. 
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CHAPTER 3: Results 

3.1 The effect of PsJN treatment on the growth of nodal explants of cv. Kennebec 

Once plants were inoculated with PsJN, PsJN-treated and uninoculated plant 

growth was monitored for 1 to 4 weeks. Significant differences in growth promotion 

between PsJN-treated plants and uninoculated plants first became apparent as 

increased root mass and chlorophyll content after 2 weeks of growth on 1.5% (w/v) 

sucrose (Figure 1). At this stage there was a slight increase in formation of secondary 

root structures with PsJN-treated plants compared to uninoculated plants (Figure 2). 

By week 3 growth, total biomass and stem mass was significantly different between 

PsJN-treated and uninoculated plants, and by week 4 stem height also differed (Figure 

1). Plants treated with PsJN and grown for 4 weeks in 1.5% (w/v) sucrose when 

compared to uninoculated plants showed significant increases in total biomass of 32%, 

in stem mass of 32%, root mass of 57%, stem height of 33%, and chlorophyll content 

of 21% (Figure 1). No difference was seen in leaf number between treatments. The 

differences in growth characteristics between PsJN-treated and uninoculated plants 

became even more apparent after 6 weeks inoculation (Figure 3).  

Plants grown in 3% (w/v) sucrose showed significant increases in chlorophyll 

content by week 2, root mass by week 3, and total biomass by week 4 (Figure 4). 

More formations of secondary roots were observed with PsJN-treated plants than 

uninoculated plants within 2 weeks of growth (Figure 2). Yet, lower total root mass 

was found with PsJN-treated plants compared to uninoculated plants after 2 weeks 

perhaps due to generation of more secondary roots rather than root elongation (Figure 

4). PsJN-treated plants grown in 3% (w/v) sucrose showed a significant growth 

increase in total biomass by 16%, in root mass by 49%, and in chlorophyll content by 

29% after 4  
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Figure 1. The effect of B. phytofirmans on the growth and chlorophyll content of 

potato nodal explants cv. Kennebec when grown in medium containing 1.5% sucrose 

for 1 to 4 weeks. 

 

Data are presented as the mean ± SEM, n=20 (n=10/repeat). One way ANOVA was 

used to determine significant differences. 

 

Blue bar: Uninoculated 

Red bar: PsJN-treated 
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Figure 2. The effect of B. phytofirmans on the growth of potato roots cv. Kennebec 

grown in medium containing 1.5 and 3% sucrose for 2 weeks. 
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Figure 3. The effect of B. phytofirmans on the growth of potato nodal explants cv. 

Kennebec when grown in medium containing 1.5 and 3% sucrose for 4 and 6 weeks. 

 

U: Uninoculated 

P: PsJN-treated 
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Figure 4. The effect of B. phytofirmans on the growth and chlorophyll content of 

potato nodal explants cv. Kennebec when grown in medium containing 3% sucrose 

for 1 to 4 weeks. 

 

Data are presented as the mean ± SEM, n=20 (n=10/repeat). One way ANOVA was 

used to determine significant differences. 

 

Blue bar: Uninoculated 

Red bar: PsJN-treated 
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weeks post-inoculation compared to uninoculated plants (Figure 4). No difference in 

stem mass, stem height, and leaf numbers were found between the two treatments. By 

week 4, PsJN-treated plants had slightly shorter stem heights and more enhanced root 

system than the uninoculated plants (Figure 4). The root growth promotion was 

significantly more pronounced than that found with PsJN-treated plants grown in 

1.5% sucrose. At 6 weeks, the height of PsJN-treated plants remained much shorter, 

but these plants had more massive root systems than uninoculated plants (Figure 3).  

PsJN stimulated growth promotion in potato plants, but the type of growth 

promotion that occurred was greatly influenced by the sucrose concentration in the 

medium. A significant increase in chlorophyll content in PsJN-treated plants found at 

week 2 from plants grown on both 1.5 and 3% (w/v) sugar concentrations indicated 

that the altered regulation of chlorophyll accumulation is one of the primary effects 

and a major feature of enhanced growth promotion (Figure 1 and 4).  

 

3.2 The effect of PsJN treatment on potato hexokinse1 activity  

After completing the analysis of growth and chlorophyll levels, the plants 

were immediately used for measurement of StHXK1 activity. StHXK1 activities were 

determined for both PsJN-treated and uninoculated plants in extracts from stems and 

roots of plants grown for 1, 2, 3, and 4 weeks in MS agar medium containing either 

1.5% (w/v) or 3% (w/v) sucrose. Stems of plants grown in 1.5% (w/v) sucrose had 

similar StHXK1 activities to that found in extracts from PsJN-treated and 

uninoculated tissues at all times measured, except at week 2 when PsJN-treated plants 

exhibited a significant increase of 20% in activity (Figure 5). In root samples, 

StHXK1 activity was similar at weeks 1 and 2 between the two treatments. StHXK1 

activities had increased significantly by 54% and 28% in weeks 3 and 4, respectively, 
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in PsJN-treated plants compared to uninoculated plants (Figure 5).  

With plants grown on 3% (w/v) sucrose there was little difference in stem 

StHXK1 activities through weeks 1 to 4, except again at week 2 when PsJN-treated 

plants showed a 19% increase StHXK1 activity, a value that was significant compared 

to uninoculated plants (Figure 6). In roots activity of StHXK1 was similar in PsJN- 

treated and uninoculated plants at week 1 but by week 2 StHXK1 activity in PsJN- 

treated plants had increased significantly by 42% as compared to uninoculated plants 

(Figure 6). At this time the only visible differences between PsJN-treated and 

uninoculated plants were the increased number of secondary roots and the greener 

colour of the PsJN-treated plants (Figure 4). Activity of StHXK1 in roots of PsJN- 

treated plants was found to be significantly lower than those of uninoculated plant 

roots by week 4 (Figure 6). 

 

3.3 Comparison of potato hexokinase1 expression in plants with or without PsJN 

Three 2 week old PsJN-treated and uninoculated plants, grown in 3% (w/v) 

sucrose, were used to determine StHXK1 gene expression. Plants of this age were 

selected because differences in StHXK1 stem and root activities were found at this 

age between PsJN-treated and uninoculated plants grown on 3% (w/v) sucrose 

containing medium. A study on potato tubers showed that StHXK1 is much more 

active in glucose phosphorylation than StHXK2 (57). However, it would be of 

relevance to confirm that this also occurred in this model system. The mRNA 

expression of each StHXK1 and StHXK2 gene was analyzed by RT-PCR. 

 To be sure that the mRNAs for the two enzymes (StHXK1 and StHXK2) 

which share 82% similarity, were differentiated, the specificity of the two pairs 

primers used was tested. Sequenced RT-PCR products of StHXK1 and StHXK2 
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Figure 5. The effect of B. phytofirmans on the hexokinase1 activity of stems and roots 

of potato nodal explants cv. Kennebec when grown in medium containing 1.5% 

sucrose for 1 to 4 weeks.  

  

The data shows amounts of picomoles of glucose converted into glucose-6-phosphate 

in one minute by StHXK1 in PsJN-treated and uninoculated plants. Data are presented 

as the mean ± SEM, n=20 (n=10/repeat). One way ANOVA was used to determine 

significant differences. 

 

Blue line: Uninoculated 

Red line: PsJN-treated 
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Figure 6. The effect of B. phytofirmans on the hexokinase1 activity of stems and roots 

of potato nodal explants cv. Kennebec when grown in medium containing 3% sucrose 

for 1 to 4 weeks.  

  

The data shows amounts of picomoles of glucose converted into glucose-6-phosphate 

in one minute by StHXK1 in PsJN-treated and uninoculated plants. Data are presented 

as the mean ± SEM, n=20 (n=10/repeat). One way ANOVA was used to determine 

significant differences. 

 

Blue line: Uninoculated 

Red line: PsJN-treated 
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directly after RT-PCR, and showed that StHXK1 and StHXK2 primers only amplified 

the target region of StHXK1 and StHXK2 (Figure 7). In addition, the melting curve 

from RT-PCR for each product was also examined to ensure specificity of each 

product (data not shown). 

The relative mRNA expression levels between StHXK1 and StHXK2 was 

compared and showed StHXK1 was expressed in greater levels than StHXK2 in stems 

and roots of 2 week old PsJN-treated and uninoculated plants when grown on 3% 

(w/v) sucrose (Figure 8). This indicates that in the enzyme assays used in this study 

for measuring glucose phosphorylation activity, it is StHXK1 that is most likely being 

measured.  

The relative mRNA expression levels between StHXK1 from PsJN-treated 

and uninoculated plants appears to be no different in the degree of mRNA in treated 

plant stems and roots in 2 weeks old (Figure 9). It suggests that StHXK1 mRNA levels 

can be induced earlier than 2 weeks.  

 

3.4 Comparison of potato hexokinase1 protein accumulation with or without 

PsJN 

 The antibody that was used to quantify StHXK1 was anti-HK lgG (40). This 

anti-HK lgG is a specific anti-hexokinase polyclonal anti-serum that was generated 

from New Zealand white rabbits and the antibody used for a wild relative of the 

cultivated potato Solanum chacoense hexokinase 2 (ScHK2) (40). This ScHK2 amino 

acid sequence shares 76% and 100% similarities to StHXK1 and StHXK2, 

respectively (NCBI). Moisan and Rioval used anti-HK lgGs to quantify StHXK1 after 

purifying StHXK1 from potato tuber using column chromatography and detected one 

distinct band, about 51 kDA, on a western blot (40). Mass spectrometry sequencing 
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Figure 7. Specificity of StHXK1 and StHXK2 primers to targeted StHXK1 and 

StHXK2 region for RT-PCR amplification.  

 

Bolded and underlined letters indicate the region where StHXK1 and StHXK2 primers 

annealed to amplify the selected region for StHXK1 and StHXK2 RT-PCR 

amplification. Matched sequences were highlighted in yellow. 

 

A) Sequences of cDNA of StHXK1 PCR product as compared with targeted region of 

StHXK1. 

B) Sequences of cDNA of StHXK2 PCR product as compared with targeted region of 

StHXK2.  



 

 

３４ 

 

 

 

 

 

 
Figure 8. Relative StHXK1 and StHXK2 mRNA expression in PsJN-treated and 

uninoculated potato nodal explants cv. Kennebec when grown in medium containing 

3% sucrose for 2 weeks. 

 

Data are presented as the mean ± SEM, n=3. One way ANOVA was used to determine 

significant differences. dCT was calculated by subtracting the CT of the StHXK1 and 

StHXK2 from the CT of the ACTIN (the smaller the dCT, the higher the gene 

expression). 
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Figure 9. Relative StHXK1 mRNA expression between PsJN-treated and uninoculated 

potato nodal explants cv. Kennebec when grown in medium containing 3% sucrose 

for 2 weeks. 

 

Data are presented as the mean ± SEM, n=3. One way ANOVA was used to determine 

significant differences. dCT was calculated by subtracting the CT of the StHXK1 from 

the CT of the ACTIN (the smaller the dCT, the higher the gene expression). 
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showed that this band was most likely StHXK1 because it matched the published 

(NCBI) StHXK1 amino acid sequence data base. Therefore, anti-HK lgGs could be 

used for my study to compare StHXK1 expression between PsJN-treated and 

uninoculated plants. 

There were two bands present in my western blot, tentatively identified as 

StHXK1 and StHXK2. The top band with the stronger signal may be the StHXK2, 

since anti-HK lgGs was used for the antibody. In addition, the molecular weight of 

StHXK2 suggested being between 54 to 66 kDA (57, 71). Thus, the band spotted near 

60 kDA is speculated to be StHXK2, even though molecular weight calculator 

predicted 53.73 kDA (Science Gateway). Since the antibody I used was polyclonal 

antibody, it could have been less sensitive to StHXK2 and possibly react with 

hexokinase-like proteins. The weaker band spotted near 50 kDA could be StHXK1 

expression (Figure 10).Although, molecular weight calculator predicted 54.14 kDA 

(Science Gateway), it is close agreement with that I observed for StHXK1 band. 

StHXK1 protein expression in stem and root of 2 week old PsJN-treated and 

uninoculated plants were found to be almost identical using the Western Blot 

procedure (Figure 10). As there was no observable increase in StHXK1 gene 

expression resulting from PsJN treatment it infers that PsJN may influence StHXK1 

activity by posttranslational modification.  

 

3.5 The influence of sugar composition on the growth enhancement by PsJN 

In the second experiment, different monosaccharide and disaccharide sugars 

at 1.5 and 3% (w/v) were used in place of sucrose in the tissue culture media in order 

to reveal how different sugars can influence PsJN-treated plant growth. 
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Figure 10. The effect of B. phytofirmans on the hexokinase1 accumulation of stems 

and roots of potato nodal explants cv. Kennebec when grown in medium containing 

3% sucrose for 2 weeks.  

 

A. Stem StHXK1 and StHXK2 protein levels  

B. Root StHXK1 and StHXK2 protein levels  

 

PS: PsJN-treated plant stem 

US: Uninoculated plant stem 

PR: PsJN-treated plant root 

UR: Uninoculated plant root 
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PsJN-treated plants grown for 3 weeks in MS agar having 1.5% (w/v) glucose showed 

increases in total biomass by 30%, of stem mass by 41%, and in stem height by 33% 

compared to uninoculated plants. After 5 weeks of growth, PsJN-plants showed 

increases in biomass of 56%, in stem mass of 67%, root mass of 28%, stem height of 

58%, and leaf number of 22% compared to uninoculated plants (Figure 11). 

Similarly, PsJN-treated plants grown in 1.5% (w/v) fructose also showed 

significant increases in biomass of 52%, stem mass of 57%, and stem height of 45% 

by week 3, and by 5 weeks increases in biomass of 52% , stem mass of 60% , root 

mass of 23%, stem height of 45%, and leaf numbers of 11% (Figure 12). Growth 

promotion was first evident with PsJN-treated plants on both sugars as stem height 

followed by increased stem mass, root mass, and leaf number. At 6 weeks, PsJN- 

treated plants had much higher shoot heights than uninoculated plants whether they 

were grown in 1.5% (w/v) glucose or fructose (Figure 13).  

Plants inoculated in the presence of mannose and galactose did not grow at all 

and the plants eventually died (data not shown). This indicates that plants are highly 

sensitive to 3% (w/v) mannose and galactose. Therefore, plants may have different 

sensitivity to different sugars and different sugars may affect plant growth differently. 

 PsJN-treated plants grown in MS agar media containing 3% (w/v) glucose 

showed significant increases in biomass of 17%, in stem mass of 22%, root mass of 

38%, and stem height of 50% by 3 weeks of growth compared to uninoculated plants. 

By week 5, even greater increases in growth were found when compared to 

uninoculated plants such that the biomass had increased by 35%, stem mass by 53%, 

root mass by 35%, stem height by 48%, and leaf number by 29% (Figure 14).  

 PsJN-treated plants grown in 3% (w/v) fructose also showed significant 

increases in biomass of 36%, stem mass of 49%, root mass of 24%, and stem height 
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Figure 11. The effect of B. phytofirmans on the growth and chlorophyll contents of 

potato nodal explants cv. Kennebec when grown in medium containing 1.5% glucose 

for 3 and 5 weeks. 

 

Data are presented as the mean ± SEM, n=20 (n=10/repeat). One way ANOVA was 

used to determine significant differences. 

 

Blue bar: Uninoculated 

Red bar: PsJN-treated 
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Figure 12. The effect of B. phytofirmans on the growth and chlorophyll contents of 

potato nodal explants cv. Kennebec when grown in medium containing 1.5% fructose 

for 3 and 5 weeks. 

 

Data are presented as the mean ± SEM, n=20 (n=10/repeat). One way ANOVA was 

used to determine significant differences. 

 

Blue bar: Uninoculated 

Red bar: PsJN-treated 
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Figure 13. The effect B. phytofirmans on the growth of potato nodal explants cv. 

Kennebec when grown in medium containing 1.5% glucose or fructose, and 3% 

glucose, fructose, or maltose for 4 and 6 weeks. 

 

U: Uninoculated 

P: PsJN-treated 
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of 43% after 3 weeks of growth. After 5 weeks, the growth stimulation was expressed 

as 41% increase in biomass, 51% increase in stem mass, 15% increase in root mass, 

44% increase in stem height, and 18% increase in leaf number production (Figure 15). 

In most previous experiments, PsJN-treated plants grown in 3% sucrose did not show 

any growth promotion in stem mass and stem height, and generally shoot height was 

much shorter than found with uninoculated plants (Figure 3). At 6 weeks, PsJN- 

treated plants had taller shoots and more massive root systems as compared to 

uninoculated plants whether they were grown in 3% (w/v) glucose or fructose (Figure 

13). The growth promotion induced by PsJN on plants grown on glucose and fructose 

media was similar to that seen with PsJN-treated Kennebec plants grown in 3% 

sucrose except for the increased heights of stems found with PsJN treatment.  

Interestingly, there was no increase in chlorophyll content as a result of PsJN 

treatment with plants grown in 1.5 or 3% (w/v) glucose and fructose compared to that 

seen with PsJN-treated plants grown on 1.5% and 3% (w/v) sucrose. In the presence 

of glucose and fructose instead of sucrose we observed increases in leaf number 

production (Figure 1, 4, 11, 12, 14, 15). This again confirms that the growth 

promotion induced by PsJN is significantly regulated by the presence of not only the 

concentrations of sugar, but also by nature of sugar used.  

Most surprising was the finding that plants grown in the presence of 3% (w/v) 

maltose grew faster and were taller than plants grown on the other sugars (Figure 13), 

but typical growth promotion was not observed with PsJN-treated plants either at 

week 3 or week 5 (Figure 16). However, root mass was significantly increased in 

PsJN-treated plants and this is because the roots of treated plants were swollen and 

thicker than those found with uninoculated plant roots (data not shown). The presence 

of PsJN in maltose containing medium indicates that maltose is still suitable for 
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Figure 14. The effect of B. phytofirmans on the growth and chlorophyll content of 

potato nodal explants cv. Kennebec when grown in medium containing 3% glucose 

for 3 and 5 weeks. 

 

Data are presented as the mean ± SEM, n=20 (n=10/repeat). One way ANOVA was 

used to determine significant differences. 

  

Blue bar: Uninoculated 

Red bar: PsJN-treated 
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Figure 15. The effect of B. phytofirmans on the growth and chlorophyll content of 

potato nodal explants cv. Kennebec when grown in medium containing 3% fructose 

for 3 and 5 weeks. 

 

Data are presented as the mean ± SEM, n=20 (n=10/repeat). One way ANOVA was 

used to determine significant differences. 

  

Blue bar: Uninoculated 

Red bar: PsJN-treated 

 



 

 

４５ 

 

 

 

 
Figure 16. The effect of B. phytofirmans on the growth and chlorophyll content of 

potato nodal explants cv. Kennebec when grown in medium containing 3% maltose 

for 3 and 5 weeks. 

 

Data are presented as the mean ± SEM, n=20 (n=10/repeat). One way ANOVA was 

used to determine significant differences. 

 

Blue bar: Uninoculated 

Red bar: PsJN-treated 
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PsJN to grow (data not shown). Maltose does not induce PsJN-mediated plant growth 

promotion. 

 

3.6 The effect of PsJN treatment on hexokinse1 activity in potato stems and roots 

of plants grown on various sugars 

Extracts from roots of PsJN-treated plants that were grown in MS agar 

medium containing 1.5% (w/v) glucose had 17% and 37% significantly higher 

glucose phosphorylation activities in their roots than found in roots of uninoculated 

plants after 3 and 5 weeks of growth, respectively (Figure 17). Similarly, roots of 

PsJN-treated plants grown in 1.5% (w/v) fructose also had 26% and 32% significantly 

higher StHXK1 activities than uninoculated plants after 3 and 5 weeks, respectively 

(Figure 17). However, there were no differences in StHXK1 stem activity between 

PsJN-treated and uninoculated plants when grown in 1.5% (w/v) glucose and fructose.  

 PsJN-treated plants grown in MS agar medium containing 3% (w/v) glucose 

had 38% nad 28% significantly higher StHXK1 activities at 3 and 5 weeks of growth, 

respectively (Figure 18). Similarly, PsJN-treated plants grown in media supplemented 

with 3% fructose had 34% and 30% higher StHXK1 root activities by weeks 3 and 5, 

respectively (Figure 18). However, stems activity of StHXK1 was similar for PsJN- 

treated and uninoculated plants grown in the presence of 3% (w/v) glucose and 

fructose. The results again indicate that increases in StHXK1 root activity appear to 

be a good indicator of plant growth promotion.  

PsJN-treated plants grown in MS agar medium having 3% (w/v) maltose did 

not exhibit growth promotion and StHXK1 in stem and root activity was found to be 

similar in PsJN-treated and uninoculated plants after 3 and 5 weeks of growth. In fact, 
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Figure 17. The effect of B. phytofirmans on the hexokinase1 activity of stems and 

roots of potato nodal explants cv. Kennebec when grown in medium containing 1.5% 

glucose or fructose for 3 and 5 weeks.  

  

The data shows amounts of picomoles of glucose converted into glucose-6-phosphate 

in one minute by StHXK1 in PsJN-treated and uninoculated plants. Data are presented 

as the mean ± SEM, n=20 (n=10/repeat). One way ANOVA was used to determine 

significant differences. 

 

Blue bar: Uninoculated 

Red bar: PsJN-treated 

 



 

 

４８ 

 

 
 

Figure 18. The effect of B. phytofirmans on the hexokinase1 activity of stems and 

roots of potato nodal explants cv. Kennebec when grown in medium containing 3% 

glucose, fructose, and maltose for 3 and 5 weeks.  

  

The data shows amounts of picomoles of glucose converted into glucose-6-phosphate 

in one minute by StHXK1 in PsJN-treated and uninoculated plants. Data are presented 

as the mean ± SEM, n=20 (n=10/repeat). One way ANOVA was used to determine 

significant differences. 

 

Blue bar: Uninoculated 

Red bar: PsJN-treated 

 



 

 

４９ 

 

after 5 weeks of growth StHXK1 activity was significantly higher in uninoculated 

plant stems than in stems of PsJN-treated plants (Figure 18). Since uninoculated 

plants exhibited slightly taller stem height and mass than PsJN-treated plants, this 

may due to higher StHXK1 stem activity from uninoculated plants (Figure 13 and 16). 

 

3.7 The effect of PsJN treatment on plant growth promotion of the potato cv. 

Yukon Gold 

Visual monitoring indicated that Shepody and Superior explants showed 

similar growth promotion to that of Kennebec in root development when grown MS 

agar medium containing 3% (w/v) sucrose (Data not shown). However, the cv. Yukon 

Gold showed very minimal root growth when compared to PsJN-treated Kennebec 

and the uninoculated Yukon Gold plant. PsJN-treated Yukon Gold plants, however, 

were slightly taller and had visible greener leaves than their uninoculated counterparts 

on MS agar medium containing 3% (w/v) sucrose (Figure 19). As the growth 

promotion was not what we typically see with PsJN inoculated potato explants, we 

selected Yukon Gold for further study on the potential role of StHXK1 in growth 

promotion. 

Yukon Gold explants inoculated with PsJN showed increases in stem height 

and chlorophyll content of 19% and 23%, respectively after 3 weeks of growth, 

compared to uninoculated plants when grown 3% (w/v) sucrose (Figure 20). Although 

PsJN-treated plants were taller and had greener leaves there were no significant 

differences in total plant biomass, stem mass, root mass, and leaf number production 

compared to uninoculated plants at week 3 (Figure 20). By week 5 however, 

compared to uninoculated plants, PsJN-treated plants did have greater biomass, stem 

mass, stem height, and chlorophyll content of 21%, 28%, 25%, and 40%, respectively.  
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Figure 19. The effect of bacterial treatment with B. phytofirmans on the growth of 

potato nodal explants cv. Kennebec and Yukon Gold when grown in medium 

containing 3% sucrose for 6 weeks. 

 

U: Uninoculated 

P: PsJN-treated 
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With this cultivar however, there was no increase in root mass and leaf number in 

PsJN-treated over uninoculated plants. Rather, the increase in biomass and stem mass 

resulted from the increased stem height seen with PsJN-treated plants (Figure 20) 

after 6 weeks of growth. PsJN-treated plants were taller and greener than uninoculated 

plants (Figure 20). The root mass with PsJN-treated Yukon Gold plants were slightly 

less than that of uninoculated plants at weeks 3 and 5. Previous study showed that 

PsJN-treated potato plant cv. Chaleur also had decreased root mass by 50% compared 

to uninoculated plants (15). This indicated that with some potato cultivars root 

production can be inhibited by PsJN treatment.  

 

3.8 The effect of PsJN treatment on hexokinase1 of potato cv. Yukon Gold  

Activity of StHXK1 in roots of PsJN-treated plants was approximately 16% 

higher than in roots of uninoculated plants, although this was not statistically 

significant in week 3(Figure 21). After 5 weeks of growth, StHXK1 activity of PsJN- 

treated roots was 37% higher than found with roots of uninoculated plants and this 

was statistically significant. The increased StHXK1 activity in roots may be related to 

the increased levels of chlorophyll and stem height found in PsJN-treated Yukon Gold 

plants but since there was no increase in root mass it is unlikely to be involved in the 

activation of root biomass. 
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Figure 20. The effect of B. phytofirmans on the growth and chlorophyll content of 

potato nodal explants cv. Yukon Gold when grown in medium containing 3% sucrose 

for 3 and 5 weeks. 

 

Data are presented as the mean ± SEM, n=20 (n=10/repeat). One way ANOVA was 

used to determine significant differences. 

 

Blue bar: Uninoculated 

Red bar: PsJN-treated 
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Figure 21. The effect B. phytofirmans on the hexokinase1 activity of roots of potato 

nodal explants cv. Yukon Gold when grown in medium containing 3% sucrose for 3 

and 5 weeks.  

 

The data shows amounts of picomoles of glucose converted into glucose-6-phosphate 

in one minute by StHXK1 in PsJN-treated and uninoculated plants. Data are presented 

as the mean ± SEM, n=20 (n=10/repeat). One way ANOVA was used to determine 

significant differences. 

 

Blue bar: Uninoculated 

Red bar: PsJN-treated 
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CHAPTER 4: Discussion 

4.1 Alteration of PsJN-treated plants as correlated to induced growth promotion 

of plants cultured in media containing either 1.5 or 3% sucrose  

Growth promotion of PsJN-treated potato plants compared to uninoculated 

plants was evident after 2 weeks of growth on medium containing both 1.5 and 3% 

(w/v) sucrose concentrations. These plants also showed significant increases in 

chlorophyll content and formation of secondary roots (Figures 1, 2, 4). By week 6 of 

growth the growth characteristics of treated plants differed substantially on the two 

sugar concentrations as previously found by Li (85) (Figure 3). There were, however, 

also similarities in growth stimulation including increases in total fresh biomass, in 

chlorophyll content, and in root mass. In rare cases, PsJN-treated plants grown on 

medium with 3% sucrose were similarly tall as those grown on 1.5% (w/v) sucrose 

but in the most cases they were even shorter than uninoculated plants. The basis for 

such outlier response could not be predicted or explained. Li (85) also found similar 

responses in her work.  

The causes behind the change in the phenotypes of the PsJN-treated plants 

after 6 weeks of growth on different sucrose concentrations remain unknown. At the 

level of 3% (w/v) sucrose, for whatever reason, the plant diverts more resources 

toward the generation of roots whereas, with plants grown on 1.5% (w/v) sucrose, the 

energy resources are used to enhance shoot height. Determination of whether nutrients 

are shunted to increasing shoot height or root growth appear to depend on the 

concentrations of sugar provided to PsJN-treated plants and this obviously has an 

impact on the type of growth that occurs after several weeks of incubation. Sugar 

concentration may trigger different mechanisms of plant growth with PsJN and 

possibly different sugar sensing and signaling (12, 27, 29). These differences could 
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explain in the shift in plant growth from shoot elongation to root mass enlargement.  

 

4.2 Indication of changed potato hexokinase1 in PsJN-treated plant, 

accompanied by growth promotion of plants grown on 1.5 and 3% sucrose 

Li (85) showed that sugar concentration was positively correlated with plant 

growth and that increasing the sucrose concentration not only increased growth of 

uninoculated potato plants but increased the growth of PsJN-treated plants to an even 

greater degree. Hida et al. (82) reported that increasing sugar concentration increased 

cell division in plants. In this study uninoculated plants grown in medium with 3% 

(w/v) sucrose concentration were generally taller than uninoculated plants grown on 

1.5% (w/v) sucrose (Figure 3) validating studies showing that 3% sucrose is an 

optimal concentration for culturing potato plants in vitro (15, 17, 54, 85). Inoculation 

with PsJN produced much faster growth and much higher biomass on media with both 

sucrose concentrations at the early stages. This suggests that PsJN inoculation may be 

enhancing sucrose uptake and perhaps its metabolism thereby affecting the growth of 

stems and roots. The most likely mechanism for this would be the possibility that 

PsJN is either altering or producing some plant hormone that enhance sucrose uptake. 

Such a role has been identified for ABA (63).  

The results from my experiments show that significant increases in StHXK1 

activity were induced in roots of PsJN-treated plants at 2 weeks after inoculation in 

plants grown on 3% (w/v) sucrose and at 3 weeks with roots of plants grown on 1.5% 

(w/v) sucrose as compared to StHXK1 levels found in uninoculated plants cultured on 

the respective sugar concentrations. Although other statistically significant differences 

in StHXK1 activity were also found in the time course measurements in treated roots 

and stems, the differences were relatively minor compared to that in uninoculated 
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plants and hence they likely do not have much biological significance (Figure 5 and 6). 

Since sampling was done on a weekly basis it is not possible ascertain for how long 

elevated levels of StHXK1 persisted in treated plants. As growth promotion was 

induced very early in plant development increased sucrose uptake is likely involved in 

the responses to PsJN. If so, then increased StHXK1 activity would be expected to 

occur since its primary role is phosphorylation of glucose destined for the glycolysis 

pathway (52). Plant glycolysis is required for actively growing plant tissue as sugars, 

primarily glucose and fructose, are used to generate numerous compounds such as 

secondary metabolites, isoprenoids, amino acids, nucleic acids, and fatty acids for 

plant growth (52). The results suggest that the elevated levels of StHXK1 coincide 

with the first signs of growth stimulation. Greater uptake and conversion to energy 

would be required for growth stimulation (52). Also, the presence of greater levels of 

sucrose in plant tissues would be harmful to cells as it would alter homeostasis if 

PsJN increased sucrose uptake. Increases in StHXK1 in root activity can modulate 

sugar concentration and re-establish appropriate osmotic conditions (60). 

The direct role of StHXK1 in inducing growth promotion cannot be assigned 

from this series of experiments. Measurement of StHXK1 activity from PsJN-treated 

plants grown with 0% sucrose, where no growth promotion occurs (85), could have 

added further insight as to the mode of PsJN in sugar uptake (85). Elevated StHXK1 

in root activity found as a result of PsJN treatment may be a consequence of growth 

promotion as there have been numerous physiological changes reported (7, 17, 51)  

RT-PCR was employed to determine if the altered StHXK1 activity in roots 

was due to increased StHXK1 transcripts. RT-PCR revealed that there were no 

detectable differences in StHXK1 expression between PsJN-treated and uninoculated 

plants. This finding is consistent with findings by Zhang et al. (83) that there was no 
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change in AtHXK1 expression in GB03 treated and uninoculated A. thaliana. Western 

blot analysis was carried out to determine if expression of the StHXK1 protein in 

roots differed between PsJN-treated and uninoculated plants. Here again no 

differences in StHXK1 expression were found between these two groups of plants 

(Figure 10).  

Thus, StHXK1 activity in roots may be altered in PsJN-treated plants after the 

enzyme has been synthesized, perhaps by a regulatory activator, such as additional 

sugar. Since I used crude extracts for StHXK1 activity measurement, anything that is 

present in crude extracts could have increase StHXK1 activity in PsJN-treated plants. 

The exact mode of how plant HXK1 can be regulated for glucose phosphorylation 

activity remains to be addressed, but there are effectors that can influence plant HXK1 

activity such as ADP, G6P, glucosamine, N-acetylglucosamine, and mannoheptulose 

(14). These effectors can down-regulate plant HXK1 activity. A study on potato tuber 

StHXK1 showed that StHXK1 activity was dependent on Mg
2+

 and pH (57). Thus, 

possibly amounts of mentioned effectors could have been different in PsJN-treated 

and un-inoculated crude extracts and influence StHXK1 stability and activation. 

Therefore, elevated StHXK1 in root activity found as a result of PsJN treatment may 

be a consequence of growth promotion as a diversity of other changes occur in plants 

treated with PsJN. Also, it is possible that potato plants could have hexokinase-like 

proteins and glucokinase that have detectable glucose phosphorylation activity in my 

assay (60).  

 

4.3 Alteration of PsJN-treated plants as correlated to induced growth promotion 

of plants cultured in media containing different sugar compositions 

A second series of experiments was performed to determine the effects of 
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different sugars on growth promotion by PsJN and possible relationship to StHXK1 

activity. PsJN-treated and uninoculated plants were grown in 1.5% (w/v) glucose and 

fructose, and 3% (w/v) glucose, fructose, maltose, mannose, and galactose. Plant 

HXK1 has a high affinity for glucose, fructose, mannose, and galactose, but not for 

maltose (26, 27). If PsJN increases sugar uptake, plant growth promotion would be 

expected only when the plants were grown with sugars which are metabolized via 

plant StHXK1 activation. Thus results from the experiments with the various diverse 

sugars should provide some clues as to the mechanism of plant growth promotion 

with PsJN and the roles of HXK1.  

Plants placed on medium containing 3% mannose and galactose completely 

failed to grow and eventually died, indicating a hypersensitivity to these sugars (27). 

It is unlikely that these plants died due to a lack of carbon source from these sugars 

because plants could still able to grow in the MS medium without sucrose (85).  

PsJN-treated plants grown in 1.5% (w/v) glucose and fructose were much 

taller than uninoculated plants and plants grown in 3% (w/v) glucose and fructose had 

massive root structures. This was very similar to PsJN-treated plant grown 1.5 and 3% 

(w/v) sucrose. Plants grown in media with these sugars exhibited extremely slow 

growth suggesting that the metabolism of these sugars was not as effective as 3% 

sucrose. It would have been interesting in retrospect to try growing plants on a 

combination of 1.5% of a mixture of the two sugars.  

PsJN-treated plants grown in 1.5 and 3% (w/v) sucrose always produced 

more chlorophyll than uninoculated plants. However, PsJN-treated plants grown in 

1.5 and 3% (w/v) glucose and fructose had more leaves, but they did not produce 

elevated levels of chlorophyll compared to uninoculated plants. Thus, the effect of 

monosaccharides and disaccharides is different in PsJN-treated plants, thereby 
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indicating different roles for sugars in regulation of plant growth (12, 13, 23, 26, 27, 

30, 41, 60, 61, 68, 74, 76, 80).  

The expected typical growth promotion of PsJN-treated plants did not occur 

with plants grown on medium containing 3% (w/v) maltose but maltose did provide 

excellent growth of the plants. There was some limited increase in root mass due to 

the formation of lateral roots but not the massive root structures found with treated 

plants grown on in 3% (w/v) glucose, fructose, or sucrose. PsJN was present on/in the 

maltose medium and associated with treated plants indicating that maltose does not 

inhibit its growth (data not shown). Maltose however, does not appear to be an 

adequate sugar medium in which PsJN can activate plant growth promotion.  

Therefore, PsJN can induce plant growth promotion differently based on different 

sugars used for tissue culture media. 

 

4.4 Indication of changed potato hexokinase1 in PsJN-treated plant, 

accompanied by growth promotion, grown in different sugar composition 

 The very slow growth of plants on glucose and fructose containing media 

precluded StHXK1 assays at week 2 as there was not enough plant biomass for such 

measurements. PsJN-treated plant grown in 1.5 and 3% (w/v) of glucose or fructose 

were found to have significantly increased StHXK1 activity in their roots at 3 and 5 

weeks after inoculation, but not in stem tissues. Glucose and fructose are products of 

the hydrolysis of sucrose (52) and plant HXK1 has a very high affinity for glucose 

and is a confirmed glucose sensor (27). StHXK1 is also likely involved in the 

metabolism of fructose after glucose because fructose is the next preferred sugar (57). 

Supplementing tissue culture medium solely with glucose and fructose should indicate 

whether growth promotion is related to increased metabolism of either sugar or to 
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both in increased root StHXK1 activity. The results obtained however, did not show 

preferential growth promotion on either sugar as the levels of plant development were 

quite similar with both. Although, I used a glucose-based assay for measuring 

StHXK1 activity and most phosphorylated fructose is generated by the activity of 

fructokinase (57), increased StHXK1 in root activity found in PsJN-treated plants 

grown in fructose medium can indicate increased StHXK1 activity in fructose. This is 

because if PsJN increased sugar uptake, fructose could be mostly present in plants 

grown fructose. Plants growing in vitro are considered to be heterotrophic, since the 

sugar for growth is supplied in the medium and often it inhibits photosynthesis (48, 49, 

50).  

Increased levels of StHXK1 activity in the roots of inoculated plants grown in 

media containing these sugars persisted for a much longer period than seen with 

plants grown on sucrose. This may be partly due to the fact that the plants grown on 

these sugars grew much slower than on 1.5 and 3% sucrose. The induction of 

StHXK1 appears to be correlated to induction of growth promotion seen with the 

plants grown on these sugars. 

There was no growth promotion of PsJN-treated plants when grown in 

medium containing 3% (w/v) maltose. There was also no alteration in StHXK1 

activity in PsJN-treated plants grown on this sugar as compared to that found in 

uninoculated plants. It would suggest that for growth promotion to occur following 

bacterial treatment there must be a sugar present that can be metabolized by StHXK1. 

Maltose is a disaccharide that is not acted on by StHXK1 as HXK reacts only with 

hexoses, such as glucose, fructose, galactose, and mannose (27, 57). Maltose could be 

hydrolyzed into glucose by invertase in PsJN-treated plants (60), but may not be 

accumulated sufficiently to increase StHXK1 root activity if increased StHXK1 
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activity was due to sugar accumulation. 

This second experiment showed that where plant growth promotion could 

occur, there was increased root StHXK1 activity. Importantly, growth promotion was 

only achieved when PsJN-treated plants were grown in sugars that StHXK1 can 

recognize as its substrate. Therefore, there appears to be a correlation between 

StHXK1 root activity and the sugar used for PsJN-treated plant growth promotion.   

 

4.5 Alterations of PsJN-treated plants cv. Yukon Gold as correlated to induced 

growth promotion of plants cultured in media containing 3% sucrose  

PsJN’s growth promotion is known to be specific for potato and tomato plant 

cultivars (15, 51). In my third set of experiments I tested a number of potato cultivars 

for their response to inoculation with PsJN when grown in medium with 3% sucrose.  

PsJN-treated cv. Yukon Gold did not show any of the distinct signs of growth 

promotion found with cv. Kennebec. However, when detailed measurements were 

taken the stem length of inoculated Yukon Gold plants were slightly taller and their 

leaves slightly greener than found with uninoculated plants after 3 weeks of growth. 

Measuring the potential role of HXK1 in such plants was expected to provide further 

insight as to how PsJN mediates growth promotion and its influence on StHXK1 

activity.  

 

4.6 Indication of changes in potato hexokinase1 in PsJN-treated plant cv. Yukon 

Gold, accompanied by growth promotion, grown in 3% sucrose 

StHXK1 activity in roots of PsJN-treated cv. Yukon Gold plants was greater 

than in the uninoculated plants at 5 weeks of growth but not at 3 weeks. There was 

only a minor level of growth promotion seen with treated cv. Yukon Gold plants and 
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this may be associated with a delayed induction of StHXK1 activity in roots. This 

suggests that PsJN treatment could influence subtle changes in the plants’ physiology 

through not to the extent seen with the cv. Kennebec. The regulatory factors thought 

to be PsJN-treated cv. Kennebec plants that resulted in increased StHXK1 root 

activity may be missing in cv. Yukon Gold. Differences in the genetic background of 

cultivars and intimacy with bacteria (1, 22, 25, 38, 46, 53, 81) could explain the 

different growth and developmental responses to PsJN. 

 

4.7 Thesis conclusion 

The data generated in this study provide clear evidence that PsJN treatment 

results in increased levels of root StHXK1 activity within at least two weeks after 

inoculation. It is at this time that root enlargement becomes obvious in treated plants. 

Larger root systems would obviously allow plants to increase their sugar uptake from 

the culture media. The excess sugar would then have to be somehow regulated in 

order for the plant to maintain cellular homeostasis. An obvious way to regulate the 

sugar content is to catalyze it by increasing the StHXK1 activity. With the increases in 

energy uptake the plants gain a pool of sugars that feed numerous metabolic processes 

and lead to enhanced plant growth. The results observed however, do not provide any 

new information as to what factors stimulate the increases in root structure. The 

evidence gained suggests more that increases in hexokinase activity1 are a 

consequence of sugar uptake.   

 PsJN induced plant growth promotion was only achieved when plants were 

grown sugar media where StHXK1 was able to recognize and metabolize the specific 

sugar. This does indicate that sugar sensing has a major role in growth promotion and 

perhaps activation of the growth stimulatory activity in PsJN. It will be interesting to 
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determine how PsJN stimulates plant growth. Plant hormone substances are likely 

candidates for initiation of the complex of reactions required to start the process. 

Which hormone however, remains to be discovered? Finding that key biological 

factor that influences the bacteria to activate plant growth promotion will be essential 

if we are to use such agents for improving agricultural production. 

 Yukon Gold did not exhibit the typical growth promotion when inoculated 

with PsJN as observed with the cultivar Kennebec. Increases in stem height and root 

StHXK1 activity were found but were much delayed in time. Nevertheless the 

increased root StHXK1 activity found with Yukon Gold indicates that this enzyme is 

crucial for the steps leading to growth promotion. More research focusing HXK 

activity in plants inoculated with other beneficial bacteria may help to identify 

whether this enzyme is a useful indicator of microorganisms that can act as plant 

beneficial bacteria. 
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