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Abstract 

Introduction: Brain-derived neurotrophic factor (BDNF) facilitates neuronal 

differentiation by activation of the TrkB receptor-tyrosine-kinase. BDNF/TrkB also 

modulates the activity of the excitatory N-methyl-D-aspartate neurotransmitter receptor 

(NMDAR), thereby also regulating neural plasticity and LTP/LTD, two forms of synaptic 

plasticity that contribute to the storage of information inside the brain. How TrkB cross-

talks to modulate NMDAR function is not known, although our working model involves 

the RasGrf1 signaling molecule, a nucleotide exchange factor for Ras/Rac-GTPases, 

which interacts with both receptors. In response to TrkB activation, Ras-Grf1 is tyrosine 

phosphorylated and mediates neurite outgrowth in PC12 cells. RasGrf1 also binds 

constitutively to the NMDAR to stimulate long-term-depression (LTD) in primary 

neurons. We hypothesize that TrkB activation of Ras-Grf1 will increase neuronal 

outgrowth in TrkB expressing PC12 derived cells (TrkB-B5) and BDNF will uncouple 

RasGrf1 from the NMDAR thereby facilitating a decrease in LTD and an increase in 

long-term-potentiation (LTP) in primary neurons.  

Method: PC12 (TrkB-B5) cells were transfected with appropriate plasmids, 

treated with BDNF (1ng/ml) and the percentage of neurite outgrowth was determined. 

Brain tissue slices from P30 mice were stimulated with either BDNF (100 ng/ml), 

NMDA (100 µM) or co-stimulated with both. Slices were then lysed and the protein 

interactions were assayed by immunoprecipitation and western blotting. 
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Results: We found that RasGrf1 expression significantly (P-value <0.05) 

increases neurite outgrowth in cell culture, in response to BDNF, which was dependent 

on the activation of both Ras and Rac. Although Tyr
1048

 and Tyr
1062

 appeared to be 

crucial sites of tyrosine phosphorylation on RasGrf1 for neurotrophin mediated neurite 

outgrowth in cell culture, tyrosine phosphorylation of RasGrf1 could not be detected in 

neural tissue slices in response to BDNF. Furthermore, we found a direct interaction 

between RasGrf1 and TrkB receptor in response to BDNF treatment in slice cultures.  In 

addition, BDNF stimulated the tyrosine phosphorylation of the NR2B subunit of the 

NMDA receptor at residue Tyr
1472

, which facilitates receptor retention at the cell surface, 

and also stimulated a dissociation of RasGrf1 from the NMDA receptor. 

Conclusion: My results strongly suggest that BDNF stimulation changes 

NMDAR signaling via TrkB activation and that this is mediated by RasGrf1. Future 

studies using RasGrf1 knockout mice will further address BDNF dependent changes in 

the activation of individual signalling molecules, and hippocampal culture studies from 

wild-type/RasGrf1 knock-out mice will address whether changes in BDNF-induced 

neuronal dendritic growth and spine formation are dependent on RasGrf1. 

 

Keywords: RasGrf1, NMDA receptor, TrkB, NR2B subunit, neurotrophins, neurite 

outgrowth, BDNF, NMDA, Ras, Rac, LTP, LTD, synaptic plasticity. 
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Chapter 1                

Cross-talk between Trk and NMDA receptors    

1.1 Neurotrophins and the receptors termed tropomyosin-related kinase (Trk) 

Neurotrophins, including nerve growth factor (NGF), brain-derived neurotrophic 

factor (BDNF), neurotrophin 3 (NT3) and neurotrophin 4/5 (NT 4/5), belong to a family 

of closely related growth factors (Meakin, 2000; Reichardt, 2006). Structurally, these 

proteins are homodimers with molecular weights of ~26 kDa and consist of 118-129 

amino acid subunits (McDonald et al., 1991; Robinson et al., 1995; Butte et al., 1998). 

They are derived from a precursor protein so called pre-proneurotrophin, which consists 

of about 250 residues with a signal sequence and a prodomain followed by the mature 

neurotrophin sequence (Lessmann and Brigadski, 2009).  

NGF was discovered in the 1950s as an essential growth factor in the developing 

nervous system (Levi-Montalcini, 1987; Shooter, 2001) while BDNF, as the second 

neurotrophin to be identified, was originally purified from brain lysates and was found to 

have high amino acid sequence homology to NGF (Barde et al., 1982). Subsequently, 

other members of the neurotrophin family were isolated using RT-PCR techniques and 

primer sequences conserved between NGF and BDNF (Barde et al., 1982; Berkemeier et 

al., 1991). The neurotrophins exert their biological activity by binding to and activating a 

low affinity receptor termed, p75, and one or more members of the high affinity 

tropomyosin-related kinase (Trk) family of receptors. trkA was originally identified as a 

transforming oncogene from a human colon tumor as a rearrangement between a gene 

encoding an intracellular tyrosine kinase domain with an extracellular sequence from a 

non-muscle tropomyosin gene and was so called the tropomyosin-related kinase (trk). 
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Subsequently, trkB and trkC were discovered based on high sequence homology to trkA 

(Martin-Zanca et al., 1986; Klein et al., 1989).  

Structurally, Trk receptors contain two cysteine clusters, with three leucine-rich 

motifs in between, followed by two immunoglobulin-like domains in the extracellular 

region (Figure 1.1), a transmembrane region and an intracellular tyrosine kinase domain 

with 5 effective tyrosine residues. All reigons in the extracellular domains are contributed 

directly or indirectly in ligand-Trk binding although the immunoglobulin-like domains 

are the major interfaces in this precess. Besides, from an evolutionary perspective, Trk 

receptors (A, B and C) are highly conserved in both intracellular and extracellular 

domains among vertebrates (Benito-Gutierrez et al., 2006). In comparison, the p75 

receptor contains four cysteine-rich domains on the extracellular side as well as an 

intracellular death domain similar to that first described in tumor necrosis factor receptor 

(NTR) family members (Liepinsh et al., 1997; Chao and Hempstead, 1995; Huang and 

Reichardt., 2003; He and Garcia, 2004). Although p75 shares no sequence homology to 

Trk, the three-dimensional structure of its extracellular domain has been shown to form a 

binding site for the NGF dimer involving all four cysteine-rich repeats (He and Garcia, 

2004).     

The two different receptor classes of p75 and Trk have distinct preferences for the 

two forms of ligands; namely, pro-neurotrophins for p75
NTR

 and mature neurotrophins for 

Trk receptors. In this respect, NGF binds TrkA, BDNF binds TrkB, NT-3 binds TrkC, 

and NT-4/5 binds both TrkB and TrkC. In addition to binding Trk receptors with high 

affinity (nM), all mature neurotrophins can bind with low affinity to p75 (µM). In 
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contrast, all pro-neurotrophins bind with high affinity to p75 (Figure 1.1) (Meakin, 2000; 

Reichardt, 2006; Frade and Barde, 1998).  

A general consequence of Trk receptor tyrosine kinase activation includes cell 

survival, neuronal growth and differentiation, as well as a specific role of TrkB in 

modulating synaptic plasticity in the central nervous system (Meakin, 2000; Reichardt, 

2006). In contrast, neurotrophin-mediated activation of p75
NTR

 initiates signaling 

pathways leading to apoptosis (Lee et al., 2001; Song et al., 2002). However, recent 

studies have also shown some roles for Trk receptor signaling outside the nervous system 

including cardiac development, neovascularization and in the immune system (Donovan 

et al., 2000; Lin et al., 2000; Coppola et al., 2004; Kermani et al., 2005).   
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Figure 1.1. A schematic diagram of the neurotrophin receptor subtypes p75
NTR

 and 

the receptor tyrosine kinase family of Trk receptors. Tropomyosin related kinases 

(Trk), including TrkA, B and C, are receptors for a family of growth factors including 

NGF which binds TrkA, BDNF and NT 4/5 which bind TrkB and NT3 which binds 

TrkC. Moreover, all neurotrophins bind p75 receptor with low affinity while all pro-

neurotrophins bind p75 with high affinity. Structurally, Trks have an extracellular region 

containing 2 cysteine-rich clusters (CC), leucine rich motifs (LRM) and immunoglobin-

like domains (Ig-D), and also an intracellular tyrosine kinase domain (KD) with 5 

tyrosine residues which can be auto-phosphorylated upon binding to the ligand and 

dimerization. These phosphorylation sites on TrkB include Tyr
516

 Tyr
702

, Tyr
706

, Tyr
707

 

and Tyr
817

 which are equivalent to Tyr
499

, Tyr
679

, Tyr
683

, Tyr
684

, and Tyr
794

 on TrkA. In 

addition, the p75
NTR

 consists of four cysteine rich motifs (CRM) as wells as an 

intracellular death domain (DD). 

 

 

 

 

 

 

 

 

 

 



6 

 

1.2 Neurotrophins and Trk expression 

The expression pattern and localization of neurotrophins and their receptors varies 

depending on regions within the peripheral and central nervous systems. Table 1 

summarizes the pattern of neurotrophins and their receptor expression in different tissues 

of the nervous system (Korsching and Thoenen, 1983; Heumann et al., 1984; Davies et 

al., 1987; Heumann et al., 1987; Korsching, 1993; Eide et al., 1993; Avila et al., 1993; 

Ernfors et al., 1992; Knusel et al., 1991; Hyman et al., 1991; Ernfors et al., 1990). Note 

that generally in the hippocampus, TrkB receptors are localized in the axons, nerve 

terminals and dendritic spines of glutamatergic neurons (Drake et al., 1999). In particular, 

although TrkA is not expressed inside the hippocampus, NGF is expressed and secreted 

in the hippocampus to activate TrkA receptors in the termini of cholinergic neurons 

projecting from the basal forebrain (Meakin, 2000). Once action potentials are 

propagated at the nerve terminal, which results in the opening of voltage-gated channels 

on the presynaptic membrane and fusion machinery are activated , secretory vesicles of 

neurotrasmitter are released in either regulative or constitutive pathways. NGF is secreted 

predominately in a constitutive way specifically in hippocampal neurons while BDNF 

transcription and secretion are regulated in an activity-dependent manner (Mowla et al., 

1999; Farhadi et al., 2000; Lessmann et al., 2003; Lu, 2003). Neuronal activity 

remarkably increases BDNF expression in hippocampal neurons, and its release in the 

presynaptic membrane in response to an increase in calcium concentration (Patterson et 

al., 1992; Dragunow et al., 1993; Kuczewski et al., 2009). Activity-dependent secretion 

of BDNF appears to be important for normal hippocampal function as a mutation in 
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BDNF prodomain (Val 
66

 to Met) impairs BDNF trafficking and increases the 

susceptibility to neuropsychiatric disorders (Egan et al., 2003; Hariri et al., 2003). 

 

Table 1.1. Neurotrophin and Trk expression pattern in various areas of the nervous 

system.  

Tissues NGF TrkA BDNF TrkB NT3 TrkC 

Dorsal Root Ganglia  

      (DRG) 
+ + + +  + 

Sympathetic Ganglia  +     

Motor Neurons   ++ +   

Cerebral Cortex   + + + + 

Striatum  +     

Hippocampus +  + + + + 

Cholinergic Neurons  +     

GABAergic Neurons    +   

Dopaminergic Neurons    +   

Cerebellum    + + + 

Hypothalamus    +  + 
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1.3 Neurotrophin-mediated Trk activation 

Neurotrophins initiate their signal transduction through activation of their 

receptors, Trk or p75
NTR

. In case for Trk, once neurotrophins bind, the receptor tyrosine 

kinase is dimerized, which results in tyrosine-autophosphorylation in the intracellular 

kinase domain. The major sites of phosphorylation on rat TrkA include tyrosine residues 

499, 679, 683, 684, and 794. While tyrosine residues 679, 683 and 684 in the kinase 

domain remain in an open conformation in the inactive receptor, these phosphorylation 

sites form a stable activation loop by conformational change upon phosphorylation which 

subsequently, with further phosphorylation of tyrosine 499 and 794, serve as docking 

sites for intermediate signaling (adaptor) molecules leading to activation of distinct 

pathways and diverse physiological responses (Hanks et al., 1988; Ibanez et al., 1993; 

Heldin, 1995; Hubbard, 1997).  

One such adaptor molecule is the Src homology 2 (SH2)-domain containing 

protein Shc (ShcA, B and C) which binds to phosphorylated tyrosine at position Y
499

 by 

its phosphotyrosine binding (PTB) domain, and another adaptor molecule is Fibroblast 

growth factor Receptor Substrate 2 (FRS2) which competes with Shc to bind at this site 

(Liu and Meakin, 2002; Stephens et al., 1994; Meakin et al., 1999). Adaptor proteins are 

intermediate signaling molecules that mediate specific protein-protein interactions 

without intrinsic enzymatic activity. In addition, Pleckstrin homology (PH) or Src 

homology 2 (SH2) domain containing proteins also bind to other tyrosine sites on Trk 

and activate Trk-mediated signaling pathways. Another major signaling protein is 

phospholipase Cγ-1 (PLCγ-1) which binds to phosphorylated tyrosine at position Y
794

, 
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activation of which results in an increase in intracellular Ca
2+ 

concentration (Minichiello, 

2009). 

Through these adaptor molecules, Trk receptors are able to activate three major 

signaling pathways (Figure 1.2) including the Ras-mitogen activated protein kinase (Ras-

MAPK) pathway, the phosphotidylinositol-3 kinase (PI3K)-Akt pathway, and the PLCγ-1 

pathway (Barbacid, 1994; Huang and Reichardt, 2003; Reichardt, 2006; Minichiello, 

2009).  

In the Ras-MAPK pathway, phosphorylated Trk at position 516 of TrkB 

(Kavanaugh and Williams, 1994), or analogous sites on TrkA and TrkC, mediate Shc 

activation and recruitment of the adaptor protein Grb2 (growth factor receptor-bound 

protein 2) and the SOS (son of sevenless) guanine nucleotide exchange factor, leading to 

activation of Ras-GTPase and the kinase c-Raf-1 (English and Sweatt, 1997; Reichardt, 

2006; Minichiello, 2009). Subsequently, associated Mek1/2 kinases are activated 

resulting in a transient activation of Erk1/2 MAP kinases which underlie proliferation and 

cell cycle progression (English and Sweatt, 1997; Reichardt, 2006; Minichiello, 2009). In 

contrast, Trk-mediated FRS2 activation recruits the adaptor protein Crk, the C3G 

nucleotide exchange factor leading to activation of Rap-1 GTPase, and the kinase b-Raf 

which subsequently results in prolonged activation of Erk1/2 MAP kinase underling cell 

cycle arrest and differentiation (Kao et al., 2001; Wu et al., 2001; Egan et al., 1993). 

Through the PI3K-Akt pathway, phosphotidylinositol-3 kinase is activated in 

either Ras-independent or Ras-dependent pathways.  In the Ras-independent pathway, the 

Gab1 (GRB-associated binder-1 adapter) is recruited to TrkB indirectly through Grb2, 

and in turn binds to PI3K. Upon this association, PI3K is able to convert 
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phosphatidylinositol (PtdIns) into phosphatidylinositol 3-phosphate (PI3P), and in the 

presence of PI3P, the 3-phosphatidylinositide-dependent protein kinases (PDPK-1&2) are 

able to activate the Akt protein kinase (or protein kinase B). Akt can prevent cell death or 

apoptosis by phosphorylation (inactivation) of pro-apoptotic proteins and activating 

growth promoting substrates that underlie cell survival (Yuan and Yankner, 2000; Brunet 

et al., 1999; Yuan et al., 2003; Sini et al., 2004; Huang and Reichardt., 2003; Minichiello, 

2009). 

In contrast, in the phospholipase Cγ-1 pathway, Trk-mediated activation of PLCγ-

1 hydrolyses phosphotidylinositol 4,5-biphosphate (PtdIns 4,5-P2 ) to generate inositol 

1,4,5-triphosphate (Ins 1,4,5-P3) and diacylglycerol (DAG). InsP3 promotes the release of 

Ca
2+

 from the endoplasmic reticulum, while DAG stimulates protein kinase C (PKC) 

activation at the cell surface (Zirrgiebel et al., 1995; Roback et al., 1995; Patapoutian and 

Reichardt., 2001; Huang and Reichardt., 2003; Minichiello, 2009). Increases in Ca
2+

 

levels result in the activation of a wide variety of signaling proteins underling synaptic 

plasticity including protein kinase A (PKA) and calcium/calmodulin-dependent kinases 

(CaMKII, CaMKK and CaMKIV) (Huang and Reichardt., 2003; Minichiello, 2009). 

Collectively, it appears that by three different major pathways mentioned above, Trk 

receptors are able to finally activate four different protein kinases upstream of MAP-

kinases, including PKA (cAMP-dependent protein kinases), PKB (PI3K-dependent 

protein kinases), PKC (DAG-dependent protein kinases), and Ca
2+

-dependent protein 

kinases. 
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Figure 1.2. A schematic diagram of three major Trk-mediated signaling pathways. 

1) In Ras-Erk pathway (white color), tyrosine phosphorylation of Trk at position 516 

(Y
499

 on TrkA) activates the Shc adaptor protein which in turn recruit Sos and Grb2, 

leading to activation of Ras and transient activation of Erk1/2 underlying cell 

proliferation. Moreover, FRS2 (blue color) competes with Shc to couple Trk to Rap-1 

which leads to sustained activation of Erk1/2 underlying neural differentiation. 2). PI3K 

pathway (grey color) acts indirectly through Grb2 downstream of TrkB to recruit Gab1 or 

directly through Ras. In response to this association, PI3K activates Akt leading to cell 

survival. 3) In the PLCγ-1 pathway (yellow color), phospholipase Cγ-1 binds to 

phosphorylated tyrosine at position 817 (Y
794

 on TrkA) resulting in an increase in 

intracellular Ca
2+ 

concentration, which in turn results in the activation of a wide variety of 

signaling proteins underling synaptic plasticity. RasGrf1 
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1.4 Trk and clinical disorders 

Several isoforms of TrkA, B and C have been reported in different studies, some 

of which are associated with clinical disorders either due to changes in the expression 

level or a mutation in both receptors and neurotrophins. For instance, a decrease in BDNF 

levels were reported in the postmortem brain of Parkinson’s patients (Nagatsu and 

Sawada, 2007), and in the limbic structure of patients with depression, epilepsy and 

bipolar disorder (Kozisek et al., 2008; Ren and Dubner, 2007). These group of patients 

exhibit atrophy in the hippocampus and prefrontal cortex in which treatment with anti-

depressants increases BDNF expression and its function, resulting in limitation of the 

side effects and atrophy (Monteggia et al., 2007). A mutation in BDNF (V
66

M) increases 

the susceptibility of patients to neuropsychiatric disorders with memory impairment due 

to deficits in BDNF transport and decreases in BDNF secretion levels (Chen et al., 2006; 

Bath and Lee, 2006; Egan et al., 2003). As such, BDNF has been suggested as a potential 

therapeutic agent for neurogolical and psychiatric disorders such as Alzheimer’s, 

Parkinson’s, Huntington’s, Stroke, Spinal cord injury, and also to regulate metabolic 

disorders such as Obesity and Diabetes due to a high expression of BDNF in the 

ventromedial hypothalamus which regulates appetite and food intake (Nagahara and 

Tuszynski, 2011). In addition, TrkB has been suggested as a therapeutic target for several 

types of human cancers such as neuroblastoma, prostate and pancreatic adenocarcinomas, 

and liver metastases (Desmet and Peeper, 2006). Recent studies have also reported a 

correlation between Alzheimer’s disease and impairment in NGF transport from the 

hippocampus and neocortex to cholinergic neurons of the basal forebrain (Schindowski et 

al., 2008) as well as mutations in the trkB gene (Vepsalainen et al., 2005).   
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Moreover, alternative splicing of TrkA generates an isoform with an additional 6 

amino acid residues in the proximal region of the extracellular domain. This isoform 

gains the additional ability to bind NT3 and being predominantly expressed in neuronal 

cells while TrkA lacking this additional amino acid fragment binds specifically to NGF 

(Barker et al., 1993). Truncated TrkB and TrkC isoforms, lacking a functional motif in 

the intracellular domain, have been also described as being able to inhibit full length Trk 

perhaps by forming non-functional heterodimers with full length subunits (Middlemas et 

al., 1991; Tsoulfas et al., 1993; Eide et al., 1996; Palko et al., 1999; Rose et al., 2003). A 

dominant mutation on TrkB in an activation loop tyrosine (Y
722

C) has also been observed 

in patients with severe early onset hyperphagia (excessive appetite) as well as being 

associated with a severe impairment in learning and memory (Yeo et al., 2004). 

Moreover, an alternative splicing isoform of TrkC containing additional 14-39 amino 

acids residues in the intracellular kinase domain has also been reported to reduce the 

ability of the receptor to activate downstream signaling adaptors such as Shc and PLCγ 

(Reichardt, 2006; Barbacid, 1994). Trk receptors have also been shown to co-ordinate 

and co-operate with other receptors including G protein-coupled receptors (GPCR) 

(Weise et al., 2007; Lee and Chao, 2001; Lee et al., 2002a&b; Rajagopal et al., 2004), 

AMPA receptors (Wu et al., 2004; Caldeira et al., 2007) as well as NMDA receptors 

(Kang and Schuman, 2000; Amaral and Pozzo-Miller, 2007; Wu et al., 2004; Xu et al., 

2006).   

1.5 Neurotrophins and Trk regulation 

Several mechanisms regulate neurotrophins and Trk expression, secretion and 

their function. Neurotrophins are regulated by membrane insertion, through intra and 
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extracellular trafficking, and by changes in protease activity (Thoenen and Barde, 1980). 

Since some proteases convert pro-neurotrophins to mature neurotrophins, and pro-

neurotrophins have high affinity binding to p75
NTR

 to activate signaling pathways leading 

to apoptosis (Lee et al., 2001), low protease activity can regulate mature neurotrophin 

levels. In fact, it has been shown that mature BDNF facilitates hippocampal long term 

potentiation (LTP) through TrkB while pro-BDNF promotes long term depression (LTD) 

through p75
NTR

 (Patterson et al., 1996; Minichiello et al., 2002), and several studies 

suggest that enhanced pro-neurotrophin levels following brain injury may increase 

neuronal loss due to binding and activation of p75
NTR

 (Fahnestock et al., 2001; 

Harrington et al., 2004; Pedraza et al., 2005).  

Trk is localized intracellularly inside membranous vesicles in the absence of 

signals. However, signals such as cAMP, electrical activity or calcium increase the 

insertion of Trk into the plasma membrane (Barker et al., 2002; Heerssen and Segal, 

2002). The ligand-activated Trk complex is internalized through clathrin coated pits 

(Valdez et al., 2005) while its extracellular part is bound to ligand and intracellular side 

associated with a number of signaling molecules such as PLCγ, PI3K or Ras-MAP kinase 

(Grimes et al., 1996; Howe et al., 2001). These endosomal vesicles are then transported retrogradely 

to the cell soma where they activate other Trk-dependent substrates (Wu et al., 2001; 

York et al., 2000; Delcroix et al., 2003; Huang et al., 1999; Huang and Reichardt, 2003). 

 

 

 

1.6 NMDA receptor 
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The N-methyl-D-aspartate (NMDA) receptor is an ionotropic channel (Figure 

1.3A) that upon activation by glutamate in vivo or NMDA stimulation in vitro, allows the 

flow of Na
+
, and to a lesser extent Ca

2+
,
 
into the cell as well as K

+ 
out of the cell.  

It is a heterotetrameric complex predominately made up of two obligatory NR1 

subunits which bind to glycine and two modulatory NR2 subunits which bind to 

glutamate and control the electrophysiological properties of the NMDA receptor. 

Recently, growing evidence suggests that there are also glycine-binding NR3 subunits in 

the structure of NMDA receptors. NR1 subunits consist of eight different subtypes 

alternatively spliced from a single gene. NR2 subunits consist of four different A-D 

subtypes while NR3 subunits consist of two different A and B subtypes and together with 

NR2, they are encoded by six separate genes (Kutsuwada et al., 1992; Monyer et al., 

1992; Paoletti, and Neyton, 2007).  

 While NMDA receptors contribute to both LTP and LTD, several studies suggest 

that NR2A subunits of the NMDA receptor promote LTP whereas NR2B subunits 

contribute to LTD (Li et al, 2006; Kollen et al., 2008; Liu et al., 2004; Massey et al., 

2004). 

The cell surface localization of the NMDA receptor is regulated through clathrin-

mediated endocytosis in which the 
1472

YEKL internalization motif on the NR2B subunit 

serves a pivotal role in this process. Phosphorylation of tyrosine 1472 (Tyr
1472

) of the 

YEKL motif by Src family kinases uncouples the NMDA receptor from clathrin-

mediated internalization and increases the retention and activity of the receptor at the cell 

surface (Nakazawa et al., 2001; Prybylowski et al., 2005).  
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Figure 1.3. A schematic diagram of the NMDA receptor and physiological events 

during neurite outgrowth, Long Term Potentiation and Long Term Depression. A) 

The NMDA receptor is an ionotropic channel that upon activation allows the flow of Na
+
 

and small amounts of Ca
2+

 ions into the cell and K
+
 out of the cell. It is a heterotetrameric 

complex made up of two obligatory NR1 and two modulatory NR2 subunits. It has been 

shown that RasGrf1 binds to the NR2B subunit of NMDA receptor (Krapivinsky et al., 

2003). B) The major physiological events that occur during LTP and LTD. In LTP, there 

is an increase in the postsynaptic transmission of ions such as Na
+
, K

+
 and Ca

2+
 rather 

than weakening of postsynaptic transmission during LTD. LTP can be induced with a 

high-frequency stimulation through receptors present on the surface of the postsynaptic 

membrane, rather than a low frequency stimulation that stimulates LTD. LTP is an 

outcome of an increase in the activity of the receptors either by increasing the number of 

receptors on the postsynaptic cell surface or by increasing presynaptic factors, whereas 

LTD is an outcome of a decrease in the activity of these same receptors. Ca
2+

 entry above 

threshold is associated with LTP and low Ca
2+

influx leads to LTD.  
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1.7 Long Term Potentiation (LTP) and long Term Depression (LTD) 

LTP and LTD are two forms of synaptic plasticity that contribute to the storage of 

information during different types of learning and memory inside the brain, particularly 

in the hippocampus area of the brain (Table 2) (Lau and Zukin, 2007; Lu et al., 2008; 

Lynch, 2004). LTP lasts for hours up until days and involves gene expression and new 

protein synthesis, and it is in contrast to Short Term Potentiation (STP) which lasts 

seconds up until minutes involving the interaction between existing proteins and is 

independent of gene expression and protein synthesis (Figure 1.3B) (Lynch, 2004; Lu et 

al., 2008; Minichiello, 2009).  

LTP can be induced with high-frequency stimulation of receptors present on the 

surface of the postsynaptic membrane (Figure 1.3B), which results in an increase in the 

postsynaptic transmission of ions such as Na
+
, K

+
 and Ca

2+
. In contrast, LTD is an 

outcome of low frequency stimulation, a decrease in the activity of the NMDA receptor, 

and weakening of postsynaptic transmission. The outcome of both LTP and LTD are 

changes in intracellular Ca
2+

 concentrations, as Ca
2+ 

entry above a threshold is associated 

with LTP and a modest increase in Ca
2+ 

level leads to LTD (Lu et al., 2008; Minichiello, 

2009). LTP represents improved communication between two neurons and is mediated by 

the excitatory neurotransmitter glutamate in vivo or NMDA in in vitro studies.  

LTP is observed not only in the hippocampus, but also in other neural structures 

including the cerebral cortex, cerebellum or amygdala (Bauer et al., 2002; Nakazawa et 

al., 2006; Minichiello, 2009). In general, LTP can be dependent or independent on 

NMDA receptors. However, the NMDA receptor-dependent is the most widely studied 
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model of LTP in the CA3-CA1 (Cornu Ammonis) area of the hippocampus (Lisman, 

2003).  

Table 1.2. Different types of learning and memory in various areas of the brain.  

Types of learning/memory Brain area involved 

Spatial memory Hippocampus, Parahippocampus, Subiculum, Cortex, 

Temporal cortex, Area 47, Posterior parietal cortex 

Emotional memory Amygdala 

Recognition memory Hippocampus, Temporal lobe 

Working memory Hippocampus, Prefrontal cortex 

Motor skills Striatum, Cerebellum 

Sensory (visual, auditory, 

tactile) 

Various cortical area 

Classical conditioning Cerebellum  

Habituation Basal ganglia 

 

1.8 BDNF-mediated TrkB activation and neural plasticity   

The TrkB receptor is expressed widely inside the brain including the cortex and 

hippocampus and in addition to its well known effects on neuronal outgrowth and 

differentiation, TrkB activation is crucial in various aspect of synaptic plasticity in the 

entire brain including the cortex, hippocampus, cerebellum and amygdala (Carvalho et 

al., 2008; Lu et al., 2008). TrkB receptors have been found on both presynaptic and 

postsynaptic membranes of the nerve terminal and dendritic spines, and BDNF-mediated 

TrkB receptors have been suggested to modulate dendritic branches and spine formation 
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during neural plasticity within cortical, cerebellar and hippocampal synapses (Amaral et 

al., 2007; Minichiello, 2009). 

BDNF plays a role in synaptic transmission on the postsynaptic membrane in 

addition to its well known effects on neuronal outgrowth and differentiation (Tyler et al., 

2002). Although the mechanism by which BDNF regulates NMDA receptor-mediated 

neural plasticity is poorly understood, it appears that by indirectly modulating NMDA 

receptor activity, BDNF helps to regulate two important processes of learning and 

memory, namely LTP and LTD (Xu et al., 2006; Kang et al., 1997; Akaneya et al., 1997; 

Lessmann and Heumann, 1998; Levine et al., 1998; Levine and Kolb, 2000; Li et al., 

1998). The evidence for a role of BDNF-mediated TrkB activation in LTP comes from 

the fact that any deletion in the bdnf or trkB genes, or in vivo blocking of BDNF binding 

to TrkB and pre-treating hippocampal slices with anti-TrkB antiserum, can either impair 

or significantly reduce the induction of LTP (Minichiello, 2009). Further studies have 

also suggested that NMDA receptor activity can increase BDNF expression leading to 

further TrkB-mediated regulation of NMDA receptors during synaptic plasticity 

(Caldeira et al., 2007).  

BDNF activates TrkB receptors, which upon activation in turn modulates the 

tyrosine phosphorylation status of the NR2B subunits of NMDA receptors and increases 

the retention of these receptors on the postsynaptic cell surface (Nakazawa et al., 2001; 

Prybylowski et al., 2005). As a result of prolonged surface retention of the NMDA 

receptor, and the ability to respond to L-glutamate, the intracellular calcium levels 

increase in the postsynaptic neuron (Minichiello, 2009; Lin et al., 1998; Levine et al., 

1998; Levine and Kolb, 2000). Increases in Ca
2+

 influx in postsynaptic neurons finally 
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influences the physiological properties and trafficking of the postsynaptic glutamate 

receptors such as the NMDA receptor through phosphorylation/ dephosphorylation, and 

results in the activation of a number of signaling molecules including PKC, PKA and the 

calcium-sensitive calmodulin-activated kinases (CaMKI, II and IV) (Ghosh and 

Greenberg, 1995; West et al., 2001; Minichiello, 2009), leading to initiation of signaling 

cascades that underlie neuronal growth, development and synaptic plasticity (Li et al., 

2006; Minichiello, 2009). 

Among these kinases, PKA and CaMK have been suggested to phosphorylate the 

alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (AMPA) type of glutamate 

receptor that is involved primarily in the postsynaptic membrane depolarization and the 

maintenance of LTP, and also the NMDA receptor which is implicated in the induction or 

initiation of LTP (Lynch, 2004; Soderling and Derkach, 2000; Song and Huganir, 2002; 

Malenka and Bear, 2004). Furthermore, they activate a Ras-guanine nucleotide releasing 

factor termed RasGrf1 (Farnsworth et al., 1995) through either serine phosphorylation at 

residue 916 (S
916

) on RasGrf1 (Schmitt et al., 2005) or unknown sites of tyrosine-

phosphorylation by the non-receptor tyrosine kinases Src (Kiyono et al., 2000a) and Ack1 

(Kiyono et al., 2000b). 

1.9 RasGrf1 is a common substrate of both TrkB and NMDA receptors 

RasGrfs belong to a family of guanine nucleotide exchange factors (GEFs), other 

members of which include Sos (Simon et al., 1991; Ferrari et al., 1994) and C3G 

(Knudsen et al., 1994; Tanaka et al., 1994). RasGrf is present in two forms. One form is 

RasGrf1 (140 kDa with 1262 amino acids) which is highly expressed in the nervous 

system (Zippel et al., 1997). The other form is RasGrf2 (130 kDa with 1189 amino 



23 

 

acids), which shows a high degree of sequence homology (80%) to RasGrf1, and is 

expressed ubiquitously, but is also present within the mature brain (Fam et al., 1997; 

Anborgh et al., 1999).  

The expression pattern and localization of RasGrf1 has been extensively studied 

in the rat brain. The full length RasGrf1 protein is expressed in mature neurons of the rat 

brain and spinal cord, but not in glial cells. The hippocampus, amygdala, thalamus, 

hypothalamus, cortex, striatum, cerebellum, and retina are the major sites of full length 

RasGrf1 protein expression (Itier et al., 1998; Shou et al., 1992; Wei et al., 1993; Zippel 

et al., 1997; Fernandez-Medarde et al., 2009), and later sub-cellular fractionation studies 

have indicated the presence of RasGrf1 in post-synaptic densities and its localization in 

the dendrites and soma of neuronal cells (Zippel et al., 1997; Sturani et al., 1997). 

Outside the nervous system, RasGrf1 is also expressed in lower levels in pancreatic β-

cells suggesting that it might be involved in normal pancreas development, glucose 

haemostasis and Diabetes (Itier et al., 1998; Font de Mora et al., 2003; Hoffmann and 

Spengler, 2012).  

Mouse RasGrf1 was originally identified (Shou et al., 1992) as a homologue to 

CDC25 (cell division cycle 25), an activator of Ras-GTPase, in the yeast S. cerevisiae, 

and was initially so called CDC25Mm (Martegani et al., 1992; Wei et al., 1992). 

Subsequently, a 140 kDa RasGrf1 was isolated from Rat brain homologous to 

CDC25Mm (Gariboldi et al., 1994), and further study in the mouse brain led to isolation 

of other naturally occurring splice variants of RasGrf1 including a 58 kDa and 20 kDa 

truncated products (Ferrari et al., 1994; Arava et al., 1999; Feig, 2011). The 58 kDa 

isoform is expressed predominantely during embryogenesis while the full length 140kDa-
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RasGrf1 is expressed in the mature mouse brain (Ferrari et al., 1994). The small isoform 

of 20kDa has been identified predominantely in the mouse pancreas (Arava et al., 1999). 

Mouse RasGrf1 is located on chromosome 9 with 26 exons (de la Puente et al., 

2002) while RasGrf2 is located on the long arm of chromosome 13 with 24 exons. 

Human RasGrf1 is largely similar to mouse RasGrf1 with 82.7% sequence homology. An 

extra small fragment of full length hRasGrf1 with 1273 amino acids does not affect the 

function of any conserved domains (Fernandez-Medarde and Santos, 2011). RasGrf1 is 

an imprinted gene (preferentially from the paternal allele) which is expressed only after 

birth in the mouse, rat and human, and its transcription is mostly regulated through 

methylation and alternative splicing mechanisms (Plass et al., 1996; Kaneda et al., 2004; 

Fernandez-Medarde and Santos, 2011). 

Structurally, RasGrf1 is a large multi-domain protein that is recruited by a diverse 

range of signaling molecules (Figure 1.4). These domains include a pleckstrin homology 

(PH) domain in the amino-terminus, a coiled coil (CC) and ilimaquinone (IQ) motif, a 

Db1 homology domain (DH), a Ras exchange motif (REM), a cyclin destruction box 

(CDB) and a cell division cycle 25 (CDC25) domain in the C-terminus (Fernandez-

Medarde and Santos, 2011).  

Among these domains, the PH domain, which is necessary for RasGrf1 

localization in the plasma membrane (Buchsbaum et al., 1996), has been suggested being 

able to bind to phosphoinositides and other types of phospholipids in the membrane 

(Harlan et al., 1994; Lemmon and Ferguson, 2000; Varnai et al., 2002), also acts as 

putative phosphotyrosine binding (PTB) domain (Balla, 2005; Cowburn, 1997). RasGrf1 

can also bind to βγ subunits of G protein-coupled receptors via the PH1 domain (Touhara 
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et al., 1994; Shou et al., 1995; Mattingly and Macara, 1996; Zippel et al., 1996) and has 

also been shown to interact with Trk family receptor tyrosine kinases via their HIKE 

motifs (Robinson et al., 2005). Coiled coil domains play a role in protein-protein 

interactions in cooperation with PH1 and IQ domains (Buchsbaum et al., 1996), but no 

specific function has been reported for this domain.  

The IQ domain is capable of interacting with the protein calmodulin in a Ca
2+

-

independent manner. In response to calcium elevation, RasGrf1 is activated by binding of 

calcium/calmodulin to the IQ motif (Buchsbaum et al., 1996; Farnsworth et al., 1995). 

Moreover, it has been revealed that a point mutation in the IQ domain, which blocks 

calmodulin binding, can in fact prevent calcium-induced Ras activation (Buchsbaum et 

al., 1996). The DH domain binds the Rho family of GTPases, in particular Rac1, and 

promotes guanine nucleotide exchange activity toward Rac1 (Freshney et al., 1997; 

Kiyono et al., 1999; Innocenti et al., 1999). It has been suggested that DH domain might 

contribute to RasGrfs oligomerization (Anborgh et al., 1999), and in association with the 

adjacent PH2 domain, they can mediate interaction with other intracellular compartments 

such as microtubules, microtubule-binding proteins (Forlani et al., 2006; Baldassa et al., 

2007).  

The REM motif plays a role in stabilization of the core CDC25 domain and the 

CDB or PEST domain is a region between the REM and CDC25 domains which is rich in 

proline, glutamic acid, serine and threonine amino acids and constitutes a hypothetical 

target for proteolysis, an additional mechanism to regulate the cellular levels of RasGrf1 

protein (Rogers et al., 1986; Baouz, et al., 1997;; Gnesutta et al., 2001). Lastly, the 
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CDC25 domain facilitates the activation of the Ras-GTPase (Tian and Feig, 2001; Cen et 

al., 1993; Wei et al., 1994). 

A role for GEFs in general, and RasGrfs in particular, is to promote the exchange 

of GDP for GTP on small GTPase proteins such as Ras and Rac which act as molecular 

switches of active GTP-bound and inactive GDP-bound states (Tian et al., 2004; Katoh et 

al., 2000). Initially, a transient GEF-GTPase-GDP complex is formed by binding of GEF 

to GTPase-GDP which promotes a conformational change in the GTPase structure and 

release of GDP. Subsequently release of GDP results in formation of a stable GEF-

GTPase-GTP complex. Finally, the GEF is released and the activated GTPase can in turn 

activate various signaling cascades (Tian and Feig, 2001; Consonni et al., 2003). In 

contrast to GEFs, GTPase Activating Proteins (GAPs) have been suggested to inactivate 

Ras-GTPases by hydrolyzing GTP bound to GDP (Pamonsinlapatham et al., 2009). Small 

GTPase proteins serve pivotal roles in linking external messages from cell surface 

receptors to several downstream signaling cascades underlying a wide variety of cellular 

processes including cell cycle regulation, cytoskeletal reorganization, neurite outgrowth 

and differentiation (Crespo and Leon, 2000; Malumbres and Pellicer, 1998; Huang and 

Reichardt, 2003).  

Although several evidences have documented a correlation between RasGrfs 

action downstream of Trk (MacDonald et al., 1999; Robinson et al., 2005) or G-protein 

coupled receptors to the activation of Ras and Erk-MAP kinases (Baouz et al., 2001; 

Mattingly and Macara, 1996; Shou et al., 1995; Zippel et al., 1996) as well as Rac 

(Kiyono et al., 1999), RasGrfs have also been suggested as a missing link in the 

regulation of synaptic plasticity (Brambilla et al., 1997). They act as a specific calcium 
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sensor to transmit signals from the NMDA receptor to the activation of appropriate 

GTPases and the induction of LTP or LTD (Li et al., 2006). It has been shown that 

RasGrf1 interacts directly with the NR2B subunit of the NMDA receptor (Krapivinsky et 

al., 2003), through which RasGrf1 stimulates p38/MAP kinase activation leading to an 

increase in LTD. In contrast, RasGrf2 interacts with the NR2A subunit of the NMDA 

receptor and activates Erk/MAP kinase leading to an increase in LTP (Li et al., 2006). 

Both interactions are observed in a developmental-dependent manner, in particular after 

postnatal day 20 to 25 in the mouse (Li et al., 2006). It has further been shown that 

RasGrf1 promotes p38 activation by Rac in vitro while RasGrf2 activates Erk-MAP 

kinase by targeting Ras-GTPases (Buchsbaum et al., 2002; Tian et al., 2004).  

Further evidence supporting a role for RasGrf1 in the regulation of synaptic 

plasticity, growth and development comes from studies in RasGrf1 knockout mice 

(Brambilla et al., 1997; Giese et al., 2001; Itier et al., 1998; Font de Mora et al., 2003; 

Clapcott et al., 2003; d'Isa et al., 2011). Although RasGrf1 knockout mice models 

represent various phenotypes depending on which part of the RasGrf1gene is being 

targeted, which isoforms are being blocked, and which region of brain inside the central 

nervous system is being involved (Feig, 2011), it appears that full length RasGrf1 

knockout (-/-) results in a severe deficit in amygdala-dependent synaptic plasticity 

(Brambilla et al., 1997), as well as impairments in hippocampal-dependent plasticity 

observed as failures to perform hippocampal-dependent behavioral tests such as the 

Morris water maze, contextual discrimination and social transmission of food preferences 

(Giese et al., 2001).  
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Figure 1.4. A Schematic diagram of the RasGrf1 protein. Mouse RasGrf1, a 140kDa 

protein with 1262 amino acids consist of several binding domains including a binding 

domain to interact with TrkB (PH1; pleckstrin domain), and binding area with NR2B 

subunit (amino acids 714-913), coiled-coil motif (CC), ilimaquinone (IQ) to bind 

calmodulin, Db1 homology domain (DH) to activate Rac, the second pleckstrin domain 

(PH2), Ras exchange motif (REM), cycline destruction box (CDB), and catalytic domain 

(CDC25) to activate Ras. S
916 

is the site for RasGrf1-phosphorylation by PKA, the W
1056

 

on RasGrf1 has been suggested as binding site for GDP-Ras, and the sequences area of 

amino acids 714-913 have been described as neural domain (ND) which binds NR2B 

subunit of NMDA receptor. The lower panel represents an amino acids sequence of 

mouse RasGrf1 with S
916

 shown in red color. 
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1.10 Rationale (see Figure 1.5) 

1. The ability of RasGrf1 to increase neurite outgrowth has been studied in the 

PC12 cells which express endogenous TrkA (Robinson et al., 2005; Yang and Mattingly, 

2006). Yet the ability of RasGrf1 to induce neurite growth in BDNF-mediated TrkB-

expressing cells, and whether Ras and/or Rac activation is required has not been 

determined. Furthermore, while RasGrf1 is tyrosine phosphorylated in response to 

neurotrophin stimulation in transfected cells in culture, the sites of phosphorylation and 

whether they are essential to RasGrf1 activation has not been determined. 

2. Previous data in our lab suggested that RasGrf1 is tyrosine phosphorylated in 

Human embryonic kidney 293T (HEK293T) and NGF stimulated PC12 cells as well as 

PC12-derived cells over-expressing TrkB. Consequently, the binding sites on both Trk 

and RasGrf1 have been identified, being the HIKE domain located after tyrosine 516 

(amino acids 531-542) on TrkB which binds the N-terminal PH1 domain on RasGrf1 

(Robinson et al., 2005). However, the phosphorylation-dependent interaction of TrkB and 

RasGrf1 has yet to be observed in primary neurons. It was also not determined whether 

TrkB directly interacts with RasGrf1 or if this interaction could be mediated indirectly 

through other scaffolding molecules. Scaffolding proteins are known as crucial regulators 

of many key signaling pathways; they interact or bind to other members of a signaling 

pathway to retain them into their complex. In this regard, post-synaptic density protein 95 

(PSD95) is the intermediate candidate protein. PSD95 is a PDZ (postsynaptic density-95-

discs large-zona occludens-1) domain containing protein that facilitates the 

phosphorylation of NR2B by Src family kinases (Tezuka et al., 1999; Zhang et al., 2008). 

PSD95 co-immunoprecipitates with TrkB and its trafficking to dendrites is facilitated by 
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BDNF (Yoshii and Constantine-Paton, 2007; Ji et al., 2005). Furthermore, RasGrf1 is 

enriched in post-synaptic densities and previously unpublished data in our lab showed 

that PSD95 co-immunoprecipitates with NR2B in response to NMDA treatment. 

3. RasGrf1 has been identified as a novel interactor of both Trk (MacDonald et 

al., 1999), where it facilitates neurite outgrowth in response to low doses of NGF 

stimulation in PC12 cells (Robinson et al., 2005), and the NMDA receptor, where it 

facilitates LTD by activating p38-MAP kinase (Buchsbaum et al., 2002; Li et al., 2006), 

and LTP through Erk-MAP kinase activation (Li et al., 2006). However, the potential of 

RasGrf1, as a downstream signaling molecule, in facilitating a potential cross-talk 

mechanism between the TrkB and NMDA receptors is unknown.  

Thus, the present study has been designed to address the potential of RasGrf1 to 

modulate both TrkB and the NMDA receptors and identify novel cross-talk mechanisms 

by which the biological responses to BDNF are regulated. We have initially determined 

the RasGrf1-induced neurite outgrowth in response to both NGF and BDNF in neuronal-

like cells as an in vitro model for primary neurons. We also examined the domain(s) and 

site(s) of RasGrf1 tyrosine phosphorylation in response to BDNF stimulation in these 

cells. Finally, we determined the interaction between both TrkB and NMDA receptors 

with RasGrf1 in cortical/hippocampal slices, in response to BDNF and NMDA 

stimulation, and provide a potential mechanism of how BDNF activation of TrkB 

facilitates changes in NMDA receptor signaling.   
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Figure 1.5. A schematic diagram to depict the rationales of this study. The question 

marks show signaling molecules or mechanisms involved in the process which remain to 

be investigated in this study. 1) The role of RasGrf1 in neurite outgrowth, the sites of 

tyrosine phosphorylation and its possible downstream Ras and/or Rac-GTPase activation.   

2) Possible interaction of TrkB with RasGrf1. This interaction might be directly or 

indirectly through PSD95. 3) RasGrf1 signaling pathway as a candidate to mediate cross-

talk between TrkB and NMDA receptors during synaptic plasticity, and also RasGrf1-

mediated downstream of Rac/Ras GTPases and p38/Erk MAP kinases activation.  
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1.11 Hypothesis and Objectives 

The general hypothesis of my thesis is that BDNF stimulates the recruitment of 

RasGrf1 to TrkB thereby uncoupling RasGrf1 from the NMDA receptor and decreasing 

the potential of LTD in favour of LTP. Secondly, the ability of RasGrf1 to increase 

BDNF-dependent neuronal/dendritic growth may provide a second mechanism to 

potentiate synaptic connections and facilitate the process of LTP. The specific objectives 

of this project are as follows: 

1. To determine whether the activation of RasGrf1 will increase neurite growth in 

neuronal-like cells in a Ras and/or Rac-dependent manner. 

2. To identify the site(s) of tyrosine phosphorylation on RasGrf1 upon BDNF stimulation.  

3. To determine if BDNF stimulation couples RasGrf1 to TrkB and increases Erk-MAP 

kinase activation. 

4. To determine if BDNF stimulation uncouples RasGrf1 from the NMDA receptor, 

decreases NMDA-induced p38-MAP kinase activation to decrease LTD in favour of 

LTP. 

 

 

 

 

 

 

 

 



35 

 

References     

Akaneya Y., Tsumoto T., Kinoshita S., and Hatanaka H. (1997) Brain-derived neurotrophic factor enhances                               

long-term potentiation in rat visual cortex. J. Neurosci. 17, 6707–6716. 

Amaral M.D., and Pozzo-Miller L. (2007) TRPC3 channels are necessary for brain-derived neurotrophic 

factor to activate a nonselective cationic current and to induce dendritic spine formation. J. 

Neurosci. 27, 5179-89. 

Anborgh P. H., Qian X., Papageorge A. G., Vass W. C., DeClue J. E., and Lowy D. R. (1999) Ras-Specific 

Exchange Factor GRF: Oligomerization through its Dbl Homology Domain and Calcium-

Dependent Activation of Raf. Mol. Cell. Biol. 19, 4611-4622. 

Arava Y., Seger R., and Walker M.D. (1999) GRFbeta, a novel regulator of calcium signaling, is expressed 

in pancreatic beta cells and brain. J. Biol. Chem. 274, 24449–24452. 

Avila M.A., Varela-Nieto I., Romero G., Mato J.M., Giraldez F., Van De Water T.R., and Represa J. 

(1993) Brain-derived neurotrophic factor and neurotrophin-3 support the survival and 

neuritogenesis response of developing cochleovestibular ganglion neurons. Dev Biol. 159, 266-75. 

Baldassa S., Gnesutta N., Fascio U., Sturani E., and Zippel R. (2007) SCLIP, a Microtubule-destabilizing 

Factor, Interacts with RasGRF1 and Inhibits Its Ability to Promote Rac Activation and Neurite 

Outgrowth. J. Biol. Chem. 282, 2333-2345. 

Balla T. (2005) Inositol-lipid binding motifs: signal integrators through protein-lipid and protein-protein 

interactions. J. Cell. Sci. 118, 2093-104.  

Barbacid M. (1994)The Trk family of neurotrophin receptors. J. Neurobiol. 25, 1386-403. 

Barde Y.A., Edgar D., and Thoenen H. (1982) Purification of a new neurotrophic factor from mammalian 

brain. EMBO. J. 1, 549-53. 

Barker P.A., Hussain N.K., and McPherson P.S. (2002) Retrograde signaling by the neurotrophins follows 

a well-worn trk. Trends. Neurosci. 25, 379-81. 

Barker P.A., Lomen-Hoerth C., Gensch E.M., Meakin S.O., Glass D.J., and Shooter E.M. (1993) Tissue-

specific alternative splicing generates two isoforms of the trkA receptor. J. Biol. Chem. 268, 

15150-7. 

Bath K.G., and Lee F.S. (2006) Variant BDNF (Val66Met) impact on brain structure and function. Cogn. 

Affect. Behav. Neurosci. 6, 79-85. 

Baouz S., Jacquet E., Accorsi K., Hountondji C., Balestrini M., Zippel R., Sturani E., and Parmeggiani A. 

(2001) Sites of phosphorylation by protein kinase A in CDC25Mm/GRF1, a guanine nucleotide 

exchange factor for Ras. J. Biol. Chem. 276, 1742-9. 

Baouz S., Jacquet  E., Bernardi A., and Parmeggiani A. (1997) The N-terminal moiety of CDC25Mm, a 

GDP/GTP exchange factor of Ras proteins, controls the activity of the catalytic domain: 

modulation by calmodulin and calpain. J. Biol. Chem. 272, 6671–6676. 

Bauer E.P., Schafe G.E., and LeDoux J.E. (2002) NMDA receptors and L-type voltage-gated calcium 

channels contribute to long-term potentiation and different components of fear memory formation 

in the lateral amygdala. J. Neurosci. 22, 5239-49. 

Benito-Gutiérrez E., Garcia-Fernàndez J., and Comella J.X. (2006) Origin and evolution of the Trk family 

of neurotrophic receptors. Mol. Cell. Neurosci. 31, 179-92.  

Berkemeier L.R., Winslow J.W., Kaplan D.R., Nikolics K., Goeddel D.V., and Rosenthal A. (1991) 

Neurotrophin-5: a novel neurotrophic factor that activates trk and trkB. Neuron. 7, 857-66. 

Brunet A., Bonni A., Zigmond M.J., Lin M.Z., Juo P., Hu L.S., Anderson M.J., Arden K.C., Blenis J., and 

Greenberg M.E. (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead 

transcription factor. Cell. 96, 857-68. 

Buchsbaum R., Telliez J. B., Goonesekera S., and Feig L. A. (1996) The N-Terminal Peckstrin, Coiled-Coil 

and IQ Domains of the Exchange Factor Ras-GRF act cooperatively to Facilitate Activation by 

Calcium. Mol. Cell. Biol. 16, 4888-4896. 

Buchsbaum R. J., Connolly B. A., and Feig L. A. (2002) Interaction of Rac exchange factors Tiam1 and 

RasGrf1 with a scaffold for the p38 mitogen-activated protein kinase cascade. Mol Cell Biol. 22, 

4073-4085. 



36 

 

Brambilla R., Gnesutta N., Minichiello L., White G., Roylance A.J., Herron C.E., Ramsey M., Wolfer D.P., 

Cestari V., Rossi-Arnaud C., Grant S.G., Chapman P.F., Lipp H.P., Sturani E., and Klein R. 

(1997) A role for the Ras signalling pathway in synaptic transmission and long-term memory. 

Nature. 390, 281-6. 

Butte M.J., Hwang P.K., Mobley W.C., and Fletterick R. J. (1998) Crystal structure of neurotrophin-3 

homodimer shows distinct regions are used to bind its receptors. Biochemistry 37, 16 846–52. 

Caldeira M.V., Melo C.V., Pereira D.B., Carvalho R., Correia S.S., Backos D.S., Carvalho A.L., Esteban 

J.A., and Duarte C.B. (2007) Brain-derived neurotrophic factor regulates the expression and 

synaptic delivery of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor 

subunits in hippocampal neurons.J Biol Chem. 282, 12619-28. 

Carvalho A.L., Caldeira M.V., Santos S.D., Duarte C.B. (2008) Role of the brain-derived neurotrophic 

factor at glutamatergic synapses. Br. J. Pharmacol. 153, 310-24. 

Cen H., Papageorge A.G., Vass W.C., Zhang K.E., and Lowy DR. (1993) Regulated and constitutive 

activity by CDC25Mm (GRF), a Ras-specific exchange factor. Mol. Cell. Biol. 13, 7718–7724. 

Chakrabarti K., Lin R., Schiller N. I., Wang Y., Koubi D., Fan Y.-X., Rudkin B. B., Johnson G. R., and 

Schiller M. R. (2005) Critical Role for Kalirin in Nerve Growth Factor Signaling through TrkA. 

Mol. Cell. Biol. 25, 5106-5118. 

Chao M.V., and Hempstead B.L. (1995) p75 and Trk: a two-receptor system. Trends. Neurosci. 1995 18, 

321-6. 

Chen Z.Y., Jing D., Bath K.G., Ieraci A., Khan T., Siao C.J., Herrera D.G., Toth M., Yang C., McEwen 

B.S., Hempstead B.L., and Lee F.S. (2006) Genetic variant BDNF (Val66Met) polymorphism 

alters anxiety-related behavior. Science. 314, 140-3. 

Clapcott S.J., Peters J., Orban P.C., Brambilla R., and Graham C.F. (2003) Two ENU-induced mutations in 

Rasgrf1 and early mouse growth retardation, Mamm. Genome 14, 495–505. 

Consonni R., Arosio I., Recca T., Longhi R., Colombo G., and Vanoni M. (2003) Structure determination 

and dynamics of peptides overlapping the catalytic hairpin of the Ras-specific GEF Cdc25(Mm). 

Biochemistry. 42, 12154-62. 

Coppola V., Barrick C.A., Southon E.A., Celeste A., Wang K., Chen B., Haddad el-B., Yin J., 

Nussenzweig A., Subramaniam A., and Tessarollo L. (2004) Ablation of TrkA function in the 

immune system causes B cell abnormalities. Development. 131, 5185-95. 

Cowburn D. (1997) Peptide recognition by PTB and PDZ domains. Curr. Opin. Struct. Biol. 7, 835-8. 

Crespo P., and Leon J. (2000). Ras proteins in the control of the cell cycle and cell differentiation. Cell. 

Mol. Life Sci. 57, 1613–1636. 

Davies AM, Bandtlow C, Heumann R, Korsching S, Rohrer H, and Thoenen H. (1987) Timing and site of 

nerve growth factor synthesis in developing skin in relation to innervation and expression of the 

receptor. Nature. 326, 353-8. 

de la Puente A., Hall J., Wu Y.Z., Leone G., Peters J., Yoon B.J., Soloway P., and Plass C. (2002) 

Structural characterization of Rasgrf1 and a novel linked imprinted locus. Gene 291, 287–297. 

Delcroix J.D., Valletta J.S., Wu C., Hunt S.J., Kowal A.S., and Mobley W.C. (2003) NGF signaling in 

sensory neurons: evidence that early endosomes carry NGF retrograde signals. Neuron. 39, 69-84. 

Desmet C.J., and Peeper D.S. (2006) The neurotrophic receptor TrkB: a drug target in anti-cancer therapy? 

Cell. Mol. Life. Sci. 63, 755-9. 

d'Isa R., Clapcote S.J., Voikar V., Wolfer D.P., Giese K.P., Brambilla R., and Fasano S. (2011) Mice 

Lacking Ras-GRF1 Show Contextual Fear Conditioning but not Spatial Memory Impairments: 

Convergent Evidence from Two Independently Generated Mouse Mutant Lines. Front. Behav. 

Neurosci. 5, 78.  

Donovan M.J., Lin M.I., Wiegn P., Ringstedt T., Kraemer R., Hahn R., Wang S., Ibañez C.F., Rafii S., and 

Hempstead B.L. (2000) Brain derived neurotrophic factor is an endothelial cell survival factor 

required for intramyocardial vessel stabilization. Development. 127, 4531-40. 

Dragunow M., Beilharz E., Mason B., Lawlor P., Abraham W., and Gluckman P. (1993)  Brain-derived 

neurotrophic factor expression after long-term potentiation. Neurosci. Lett. 160, 232–236.  

Drake C.T., Milner T.A., and Patterson S. L. (1999) Ultrastructural localization of full-length trkB 

immunoreactivity in rat hippocampus suggests multiple roles in modulating activity-dependent 

synaptic plasticity. J. Neurosci. 19, 8009–8026.  



37 

 

Egan S.E., Giddings B.W., Brooks M.W., Buday L., Sizeland A.M., and Weinberg R.A. (1993) Association 

of Sos Ras exchange protein with Grb2 is implicated in tyrosine kinase signal transduction and 

transformation. Nature. 363, 45-51. 

Egan M.F., Kojima M., Callicott J.H., Goldberg T.E., Kolachana B.S., Bertolino A., Zaitsev E., Gold B., 

Goldman D., Dean M., Lu B., and Weinberger D.R. (2003) The BDNF val66met polymorphism 

affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell. 

112, 257-69. 

Eide F.F., Lowenstein D.H., and Reichardt LF. (1993) Neurotrophins and their receptors--current concepts 

and implications for neurologic disease. Exp. Neurol. 121, 200-14.  

Eide F.F., Vining E.R., Eide B.L., Zang K., Wang X.Y., and Reichardt L.F. (1996) Naturally occurring 

truncated trkB receptors have dominant inhibitory effects on brain-derived neurotrophic factor 

signaling. J. Neurosci. 16, 3123-9. 

English J.D., and Sweatt J.D. (1997) A requirement for the mitogen-activated protein kinase cascade in 

hippocampal long term potentiation. J. Biol. Chem. 272, 19103-6. 

Ernfors P., Merlio J.P., and Persson H. (1992) Cells Expressing mRNA for Neurotrophins and their 

Receptors During Embryonic Rat Development. Eur. J. Neurosci. 4, 1140-1158. 

Ernfors P., Ibáñez C.F., Ebendal T., Olson L., and Persson H. (1990) Molecular cloning and neurotrophic 

activities of a protein with structural similarities to nerve growth factor: developmental and 

topographical expression in the brain. Proc. Natl. Acad. Sci. U S A. 87, 5454-8. 

Fahnestock M., Michalski B., Xu B., and Coughlin M.D. (2001) The precursor pro-nerve growth factor is 

the predominant form of nerve growth factor in brain and is increased in Alzheimer's disease. Mol. 

Cell. Neurosci. 18, 210-20. 

Fam N.P., Fan W.T., Wang Z., Zhang L.J., Chen Z., Moran M.F. (1997) Cloning and characterization of 

Ras-GRF2, a novel guanine nucleotide exchange factor for Ras. Mol. Cell. Biol. 17, 1396–1406. 

Farhadi H.F., Mowla S.J., Petrecca K., Morris S.J., Seidah N.G., and Murphy R.A. (2000) Neurotrophin-3 

sorts to the constitutive secretory pathway of hippocampal neurons and is diverted to the regulated 

secretory pathway by coexpression with brain-derived neurotrophic factor. J. Neurosci. 20, 4059-

68. 

Farnsworth C. L., Freshney N. W., Rosen L. B., Ghosh A., Greenberg M. E., and Feig L. A. (1995) 

Calcium activation of Ras mediated by neuronal exchange factor Ras-GRF. Nature. 376, 524-527. 

Feig L.A. (2011) Regulation of Neuronal Function by Ras-GRF Exchange Factors. Genes. Cancer. 2, 306-

19. 
Fernandez-Medarde A., Barhoum R., Riquelme R., Porteros A., Nunez A., de Luis A., de Las Rivas J., de 

la Villa P., Varela-Nieto I., and Santos E. (2009) RasGRF1 disruption causes retinal 

photoreception defects and associated transcriptomic alterations, J. Neurochem. 110, 641–652. 

Fernández-Medarde A, and Santos E. (2011) The RasGrf family of mammalian guanine nucleotide 

exchange factors. Biochim. Biophys. Acta. 1815, 170-88.   

Ferrari C., Zippel R., Martegani E., Gnesutta N., Carrera V., and Sturani E. (1994). Expression of two 

different products of CDC25Mm, a mammalian Ras activator, during development of mouse 

brain. Exp. Cell Res. 210:353–357. 

Font de Mora J., Esteban L.M., Burks D.J., Núñez A., Garcés C., García-Barrado M.J., Iglesias-Osma 

M.C., Moratinos J., Ward J.M., and Santos E. (2003) Ras-GRF1 signaling is required for normal 

beta-cell development and glucose homeostasis. EMBO. J. 22, 3039-49. 

Forlani G., Baldassa S., Lavagni P., Sturani E., and Zippel R. (2006) The guanine nucleotide exchange 

factor RasGRF1 directly binds microtubules via DHPH2-mediated interaction. FEBS. J. 273, 

2127-38. 

Frade J.M., and Barde Y.A. (1998) Nerve growth factor: two receptors, multiple functions. Bioessays 20, 

137–145. 

Freshney N.W., Goonesekera S.D., and Feig L.A. (1997) Activation of the exchange factor Ras-GRF by 

calcium requires an intact Dbl homology domain. FEBS Lett. 407, 111-5. 

Gariboldi M., Sturani E., Canzian F., De Gregorio L., Manenti G., Dragani T.A., and Pierotti M.A. (1994) 

Genetic mapping of the mouse CDC25Mm gene, a ras-specific guanine nucleotide-releasing 

factor, to chromosome 9. Genomics. 21, 451-3. 



38 

 

Ghosh A., and Greenberg M.E. (1995) Calcium signaling in neurons: molecular mechanisms and cellular 

consequences. Science, 268, 239–247. 

Giese K. P., Friedman E., Telliez J. B., Fedorov N. B., Wines M., Feig L. A., and Silva A. J. (2001) 

Hippocampus dependent learning and memory is impaired in mice lacking the Ras guanine 

nucleotide releasing factor 1 (RasGrf1). Neuropharmacology. 41, 791-800. 

Gnesutta N., Ceriani M., Innocenti M., Mauri I., Zippel R., Sturani E., Borgonovo B., Berruti G., and 

Martegani E. (2001) Cloning and characterization of mouse UBPy, a deubiquitinating enzyme that 

interacts with the ras guanine nucleotide exchange factor CDC25(Mm)/Ras-GRF1. J. Biol. Chem. 

276, 39448–39454. 

Grimes M.L., Zhou J., Beattie E.C., Yuen E.C., Hall D.E., Valletta J.S., Topp K.S., LaVail J.H., Bunnett 

N.W., and Mobley W.C. (1996) Endocytosis of activated TrkA: evidence that nerve growth factor 

induces formation of signalling endosomes. J. Neurosci. 16, 7950–7964. 

Hanks S.K., Quinn A.M., and Hunter T. (1988) The protein kinase family: conserved features and deduced 

phylogeny of the catalytic domains. Science. 241, 42-52. 

Hariri A.R., Goldberg T.E., Mattay V.S., Kolachana B.S., Callicott J.H., Egan M.F., and Weinberger D.R. 

(2003)  Brain-derived neurotrophic factor val66met polymorphism affects human memory-related 

hippocampal activity and predicts memory performance. J. Neurosci. 23, 6690-4. 

Harlan J.E., Hajduk P.J., Yoon H.S., and Fesik S.W. (1994) Pleckstrin homology domains bind to 

phosphatidylinositol-4, 5-bisphosphate. Nature. 371, 168–170. 

Harrington A.W., Leiner B., Blechschmitt C., Arevalo J.C., Lee R., Mörl K., Meyer M., Hempstead B.L., 

Yoon S.O., and Giehl K.M. (2004) Secreted proNGF is a pathophysiological death-inducing 

ligand after adult CNS injury. Proc. Natl. Acad. Sci. U S A. 101, 6226-30. 

He X.L., and Garcia K.C. (2004) Structure of nerve growth factor complexed with the shared neurotrophin 

receptor p75. Science. 304, 870-5. 

Heerssen H.M., and Segal R.A. (2002) Location, location, location: a spatial view of neurotrophin signal 

transduction.Trends. Neurosci. 25, 160-5. 

Heldin C.H. (1995) Dimerization of cell surface receptors in signal transduction. Cell. 80, 213-23. 

Heumann R., Lindholm D., Bandtlow C., Meyer M., Radeke M.J., Misko T.P., Shooter E., and Thoenen H. 

(1987) Differential regulation of mRNA encoding nerve growth factor and its receptor in rat 

sciatic nerve during development, degeneration, and regeneration: role of macrophages. Proc. 

Natl. Acad. Sci. U S A. 84, 8735-9. 

Heumann R., Schwab M., Merkl R., and Thoenen H. (1984) Nerve growth factor-mediated induction of 

choline acetyltransferase in PC12 cells: evaluation of the site of action of nerve growth factor and 

the involvement of lysosomal degradation products of nerve growth factor. J. Neurosci. 4, 3039-

50. 

Hoffmann A., and Spengler D. (2012) Transient Neonatal Diabetes Mellitus Gene Zac1 Impairs Insulin 

Secretion in Mice through Rasgrf1. Mol. Cell. Biol. 32, 2549-60. 

Howe C.L., Valletta J.S., Rusnak A.S., and Mobley W.C. (2001) NGF signalling from clathrin-coated 

vesicles. Evidence that signaling endosomes serve as a platform for the Ras-MAPK pathway. 

Neuron. 32, 801–814. 

Huang C.S., Zhou J., Feng A.K., Lynch C.C., Klumperman J., DeArmond S.J., and Mobley W.C. (1999) 

Nerve growth factor signaling in caveolae-like domains at the plasma membrane. J. Biol. Chem. 

274, 36707-14. 

Huang E. J., and Reichardt L. F. (2003) Trk Receptors: Roles in Neuronal Signal Transduction. Annual 

Review of Biochemistry. 72, 609-642. 

Hubbard S.R. (1997) Crystal structure of the activated insulin receptor tyrosine kinase in complex with 

peptide substrate and ATP analog. EMBO. J. 16, 5572-81. 

Hyman C., Hofer M., Barde Y.A., Juhasz M., Yancopoulos G.D., Squinto S.P., Lindsay R.M. (1991) 

BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature. 350, 230-

2. 

Ibanez C.F., Ilag L.L., Murray-Rust J., and Persson H. (1993) An extended surface of binding to Trk 

tyrosine kinase receptors in NGF and BDNF allows the engineering of a multifunctional pan-

neurotrophin. EMBO. J. 12, 2281-93. 



39 

 

Innocenti M., Zippel R., Brambilla R., and Sturani E. (1999) CDC25(Mm)/Ras-GRF1 regulates both Ras 

and Rac signaling pathways. FEBS. Lett. 460, 357–362. 

Itier J.M., Tremp G.L., Leonard J.F., Multon M.C., Ret G., Schweighoffer F., Tocque B., Bluet-Pajot M.T., 

Cormier V., and Dautry F. (1998) Imprinted gene in postnatal growth role. Nature 393, 125–126. 

Ji Y., Pang P.T., Feng L., and Lu B. (2005) Cyclic AMP controls BDNF-induced TrkB phosphorylation 

and dendritic spine formation in mature hippocampal neurons. Nat. Neurosci. 8, 164-72. 

Kaneda M, Okano M., Hata K., Sado T., Tsujimoto N., Li E., and Sasaki H., (2004) Essential role for de 

novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature 429,  900–903. 

Kang H., and Schuman E.M. (2000) Intracellular Ca(2+) signaling is required for neurotrophin-induced 

potentiation in the adult rat hippocampus. Neurosci. Lett. 282, 141-4. 

Kang H., Welcher A.A., Shelton D., and Schuman E.M. (1997) Neurotrophins and time: Different roles for 

TrkB signaling in hippocampal long-term potentiation. Neuron. 19, 653–664. 

Kao S., Jaiswal R. K., Kolch W., and Landreth G. E. (2001) Identification of the Mechanisms Regulating 

the Differential Activation of the MAPK Cascade by Epidermal Growth Factor and Nerve Growth 

Factor in PC12 cells. J. Biol. Chem. 276, 18169-18177. 

Katoh H., Yasui H., Yamaguchi Y., Aoki J., Fujita H., Mori K., and Negishi M. (2000) Small GTPase 

RhoG is a key regulator for neurite outgrowth in PC12 cells. Mol. Cell. Biol. 20, 7378-87. 

Kavanaugh W.M., and Williams L.T. (1994) An alternative to SH2 domains for binding tyrosine-

phosphorylated proteins. Science. 266, 1862–1865.  

Kermani P., Rafii D., Jin D.K., Whitlock P., Schaffer W., Chiang A., Vincent L., Friedrich M., Shido K., 

Hackett N.R., Crystal R.G., Rafii S., and Hempstead B.L. (2005) Neurotrophins promote 

revascularization by local recruitment of TrkB+ endothelial cells and systemic mobilization of 

hematopoietic progenitors. J. Clin. Invest. 115, 653-63. 

Kiyono M., Satoh T., and Kaziro y. (1999) G protein beta gamma subunit-dependent Rac-guanine 

nucleotide exchange activity of Ras-GRF1/CDC25(Mm). Proc. Natl. acad. Sci. U S A. 96, 4826-

31. 

Kiyono M., Kaziro Y., and Satoh T. (2000a) Induction of Rac-Guanine Nucleotide Exchange Activity of 

Ras-GRF1/CDC25Mm following Phosphorylation by the Nonreceptor Tyrosine Kinase Src. J. 

Biol. Chem. 275, 5441-5446. 

Kiyono M., Kato J., Kataoka T., Kaziro Y., and Satoh T. (2000b) Stimulation of Ras Guanine Nucleotide 

Exchange Activity of Ras-GRF1/CDC25Mm upon Tyrosine Phosphorylation by the Cdc42-

regulated Kinase ACK1. J. Biol. Chem. 275, 29788-29793. 

Klein R., Parada L.F., Coulier F., and Barbacid M. (1989) trkB, a novel tyrosine protein kinase receptor 

expressed during mouse neural development. EMBO. J. 8, 3701-9. 

Knudsen B.S., Feller S.M., and Hanafusa H. (1994) Four proline-rich sequences of theguanine-nucleotide 

exchange factor C3G bind with unique specificity to the first Src homology 3 domain of Crk. J. 

Biol. Chem. 269, 32781–32787. 

Knusel B., Winslow J.W., Rosenthal A., Burton L.E., Seid D.P., Nikolics K., and Hefti F. (1991) 

Promotion of central cholinergic and dopaminergic neuron differentiation by brain-derived 

neurotrophic factor but not neurotrophin 3. Proc. Natl. Acad. Sci. U S A. 88, 961-5. 

Kollen M., Dutar P., and Jouvenceau A. (2008) The magnitude of hippocampal long term depression 

depends on the synaptic location of activated NR2-containing N-methyl-D-aspartate receptors. 

Neuroscience. 154, 1308-17.  

Korsching S., and Thoenen H. (1983)  Nerve growth factor in sympathetic ganglia and corresponding target 

organs of the rat: correlation with density of sympathetic innervation. Proc. Natl. Acad. Sci. U S 

A. 80, 3513-6. 

Korsching S. (1993) The neurotrophic factor concept: a reexamination. J Neurosci. 13, 2739-48.  

Kozisek M.E., Middlemas D., and Bylund D.B. (2008) Brain-derived neurotrophic factor and its receptor 

tropomyosin-related kinase B in the mechanism of action of antidepressant therapies. Pharmacol. 

Ther. 117, 30-51. 

Krapivinsky G., Krapivinsky L., Manasian Y., Ivanov A., Tyzio R., Pellegrino C., Ben-Ari Y., Clapham 

D.E., and Medina I. (2003) The NMDA receptor is coupled to the ERK pathway by a direct 

interaction between NR2B and RasGRF1. Neuron 40, 775–784. 



40 

 

Kuczewski N., Porcher C., Lessmann V., Medina I., and Gaiarsa J.L. (2009) Activity-dependent dendritic 

release of BDNF and biological consequences. Mol. Neurobiol.39, 37–49.  

Kutsuwada T., Kashiwabuchi N., Mori H., Sakimura K., Kushiya E., Araki K., Meguro H., Masaki H., 

Kumanishi T., Arakawa M., et al. (1992) Molecular diversity of the NMDA receptor channel. 

Nature. 358, 36-41. 

Lau C.G., and Zukin R.S. (2007) NMDA receptor trafficking in synaptic plasticity and neuropsychiatric 

disorders. Nat. Rev. Neurosci. 8, 413-26.  

Lee F.S., and Chao M.V. (2001) Activation of Trk neurotrophin receptors in the absence of neurotrophins. 

Proc. Natl. Acad. Sci. U S A. 98, 3555-60.  

Lee R., Kermani P., Teng K.K. and Hempstead B.L. (2001) Regulation of cell survival by secreted 

proneurotrophins. Science. 294,1945-8. 

Lee F.S., Rajagopal R., and Chao M.V. (2002a). Distinctive features of Trk neurotrophin receptor 

transactivation by G protein-coupled receptors. Cytokine. Growth. Factor. Rev. 13, 11-7. 

Lee F.S., Rajagopal R., Kim A.H., Chang P.C., and Chao M.V. (2002b) Activation of Trk neurotrophin 

receptor signaling by pituitary adenylate cyclase-activating polypeptides. J. Biol. Chem. 277, 

9096-102. 

Lemmon M.A., and Ferguson K.M. (2000) Signal-dependent membrane targeting by pleckstrin homology 

(PH) domains, Biochem. J. 350, 1–18. 

Lessmann V., and Brigadski T. (2009) Mechanisms, locations, and kinetics of synaptic BDNF secretion: an 

update. Neurosci Res. 65:11-22.   

Lessmann V., and Heumann R. (1998) Modulation of unitary glutamatergic synapses by neurotrophin-4/5 

or brain-derived neurotrophic factor in hippocampal microcultures: presynaptic enhancement 

depends on pre-established paired-pulse facilitation. Neuroscience 86, 399– 413. 

Lessmann V., Gottmann K., and Malcangio M. (2003) Neurotrophin secretion: current facts and future 

prospects. Prog. Neurobiol. 69, 341–374.  

Levi-Montalcini R. (1987) The nerve growth factor 35 years later. Science. 237, 1154-62.  

Levine E.S., and Kolb J.E. (2000) Brain-derived neurotrophic factor increases activity of NR2B- containing 

N-methyl-D-aspartate receptors in excised patches from hippocampal neurons. J. Neurosci. Res. 

62, 357–362. 

Levine E.S., Crozier R.A., Black I.B., and Plummer M.R. (1998) Brain-derived neurotrophic factor 

modulates hippocampal synaptic transmission by increasing N-methyl-D-aspartic acid receptor 

activity. Proc. Natl. Acad. Sci. USA. 95, 10235–10239. 

Li Y.X., Zhang Y., Lester H.A., Schuman E.M., and Davidson N. (1998) Enhancement of neurotransmitter 

release induced by brain-derived neurotrophic factor in cultured hippocampal neurons. J. 

Neurosci. 18, 10231–10240. 

Li S., Tian X., Hartley D.M., and Feig L.A. (2006). Distinct Roles for Ras-Guanine Nucleotide-Releasing 

Factor1 (Ras-GRF1) and Ras-GRF2 in the Induction of Long-Term Potentiation and Long-Term 

Depression. The Journal of Neuroscience. 26, 1721–1729. 

Liepinsh E., Ilag L.L., Otting G., and Ibáñez C.F. (1997) NMR structure of the death domain of the p75 

neurotrophin receptor. EMBO. J. 16, 4999-5005. 

Lin M.I., Das I., Schwartz G.M., Tsoulfas P., Mikawa T., and Hempstead B.L. (2000) Trk C receptor 

signaling regulates cardiac myocyte proliferation during early heart development in vivo. Dev. 

Biol. 226, 180-91. 

Lin S.Y., Wu K., Levine E.S., Mount H.T., Suen P.C., and Black I.B. (1998) BDNF acutely increases 

tyrosine phosphorylation of the NMDA receptor subunit 2B in cortical and hippocampal 

postsynaptic densities. Brain. Res. Mol. Brain Res. 55, 20–27. 

Lisman J. (2003) Long-term potentiation: outstanding questions and attempted synthesis. Philos. Trans. R. 

Soc. Lond. B. Biol. Sci. 358, 829-42. 

Liu H.Y., and Meakin S.O. (2002) ShcB and ShcC activation by the Trk family of receptor tyrosine 

kinases. J. Biol. Chem. 277, 26046-56. 

Liu X.B., Murray K.D., and Jones E.G. (2004) Switching of NMDA receptor 2A and 2B subunits at 

thalamic and cortical synapses during early postnatal development. J. Neurosci. 24, 8885-95. 

Lu B. (2003) BDNF and activity-dependent synaptic modulation. Learn. Mem. 10, 86–98. 



41 

 

Lu Y., Christian K., and Lu B. (2008) BDNF: a key regulator for protein synthesis-dependent LTP and 

long-term memory. Neurobiol. Learn. Mem. 89, 312-23. 

Lynch M.A. (2004) Long-term potentiation and memory. Physiol. Rev. 84, 87-136.  

MacDonald J.I., Verdi J.M., and Meakin S.O. (1999) Activity-dependent interaction of the intracellular 

domain of rat trkA with intermediate filament proteins, the beta-6 proteasomal subunit, Ras-

GRF1, and the p162 subunit of eIF3. J. Mol. Neurosci. 13, 141-58. 

Malenka R.C., and Bear M.F. (2004) LTP and LTD: an embarrassment of riches. Neuron. 44, 5-21. 

Malumbres M., and Pellicer A. (1998) Ras pathways to cell cycle control and cell transformation. Front. 

Biosci. 3, d887–d912. 

Martegani E., Vanoni M., Zippel R., Coccetti P., Brambilla R., Ferrari C., Sturani E., and Alberghina L. 

(1992) Cloning by functional complementation of a mouse cDNA encoding a homologue of 

CDC25, a Saccharomyces cerevisiae RAS activator. EMBO. J. 11, 2151-7.  

Martin-Zanca D., Hughes S.H., and Barbacid M. (1986) A human oncogene formed by the fusion of 

truncated tropomyosin and protein tyrosine kinase sequences. Nature. 319, 743-8. 

Massey P.V., Johnson B.E., Moult P.R., Auberson Y.P., Brown M.W., Molnar E., Collingridge G.L., and 

Bashir Z.I. (2004) Differential roles of NR2A and NR2B-containing NMDA receptors in cortical 

long-term potentiation and long-term depression. J. Neurosci. 24, 7821-8. 

Mattingly M., and Macara I. (1996) Phosphorylation-dependent activation of the Ras-GRF/CDC25Mm 

exchange factor by muscarinic receptors and G-protein beta-gamma subunits. Nature. 382, 268-

272. 

McDonald N.Q., Lapatto R., Murray-Rust J., Gunning J., Wlodawer A., and Blundell T.L. (1991) New 

protein fold revealed by a 2.3-A resolution crystal structure of nerve growth factor. Nature. 354, 

411-4. 

Meakin S. O. (2000) Nerve Growth Factor Receptors and Mechanisms of Intracellular Signal Transduction. 

Recent Research Developments in Neurochemistry. 3, 75-91. 

Meakin S. O., MacDonald J. I. S., Gryz E. A., Kubu C. J., and Verdi J. M. (1999) The Signaling Adapter 

Protein FRS-2 Competes with Shc for binding to TrkA: A Model for Discriminating Proliferation 

and Differentiation. J. Biol. Chem. 274, 9861-9870. 

Middlemas D.S., Lindberg R.A., and Hunter T. (1991) trkB, a neural receptor protein-tyrosine kinase: 

evidence for a full-length and two truncated receptors. Mol. Cell. Biol. 11, 143-53. 

Minichiello L. (2009) TrkB signalling pathways in LTP and learning. Nat. Rev. Neurosci. 10, 850-60. 

Minichiello L., Calella A.M., Medina D.L., Bonhoeffer T., Klein R., and Korte M. (2002) Mechanism of 

TrkB-mediated hippocampal long-term potentiation. Neuron. 36, 121-37. 

Monteggia L.M., Luikart B., Barrot M., Theobold D., Malkovska I., Nef S., Parada L.F., and Nestler E.J. 

(2007) Brain-derived neurotrophic factor conditional knockouts show gender differences in 

depression-related behaviors. Biol. Psychiatry. 61, 187-97. 

Monyer H., Sprengel R., Schoepfer R., Herb A., Higuchi M., Lomeli H., Burnashev N., Sakmann B., and 

Seeburg P.H. (1992) Heteromeric NMDA receptors: molecular and functional distinction of 

subtypes. Science. 256, 1217-21. 

Mowla S.J., Pareek S., Farhadi H.F., Petrecca K., Fawcett J.P., Seidah N.G., Morris S.J., Sossin W.S., and 

Murphy R.A. (1999) Differential sorting of nerve growth factor and brain-derived neurotrophic 

factor in hippocampal neurons. J. Neurosci. 19, 2069-80. 

Nagahara A.H., and Tuszynski M.H. (2011) Potential therapeutic uses of BDNF in neurological and 

psychiatric disorders. Nat. Rev. Drug. Discov. 10, 209-19. 

Nagatsu T., and Sawada M. (2007) Biochemistry of postmortem brains in Parkinson's disease: historical 

overview and future prospects. J. Neural. Transm. Suppl. 113-20. 

Nakazawa T., Komai S., Tezuka T., Hisatsune C., Umemori H., Semba K., Mishina M., Manabe T., and 

Yamamoto T. (2001). Characterization of Fyn-mediated tyrosine phosphorylation sites on GluR _ 

2(NR2B) subunit of the N-methyl-D-aspartate receptor. J. Biol. Chem. 276, 693–699. 

Nakazawa T., Komai S., Watabe A.M., Kiyama Y., Fukaya M., Arima-Yoshida F., Horai R., Sudo K., 

Ebine K., Delawary M., Goto J., Umemori H., Tezuka T., Iwakura Y., Watanabe M., Yamamoto 

T., and Manabe T. (2006) NR2B tyrosine phosphorylation modulates fear learning as well as 

amygdaloid synaptic plasticity. EMBO. J. 25, 2867-77. 



42 

 

Palko M.E., Coppola V., and Tessarollo L. (1999) Evidence for a role of truncated trkC receptor isoforms 

in mouse development. J. Neurosci. 19, 775-82. 

Pamonsinlapatham P., Hadj-Slimane R., Lepelletier Y., Allain B., Toccafondi M., Garbay C., and Raynaud 

F. (2009) P120-Ras GTPase activating protein (RasGAP): a multi-interacting protein in 

downstream signaling. Biochimie. 91, 320-8. 

Paoletti P., and Neyton J. (2007) NMDA receptor subunits: function and pharmacology. Curr. Opin. 

Pharmacol. 7, 39-47. 

Patapoutian A., and Reichardt L.F. (2001) Trk receptor: Mediators of neurotrophin action. Curr. 

Opin.Neurobiol. 11, 272-80. 

Patterson S.L., Abel T., Deuel T.A., Martin K.C., Rose J.C., and Kandel E.R. (1996) Recombinant BDNF 

rescues deficits in basal synaptic transmission and hippocampal LTP in BDNF knockout mice. 

Neuron. 16, 1137-45. 

Patterson S.L., Grover L.M., Schwartzkroin P.A., and Bothwell M. (1992) Neurotrophin expression in rat 

hippocampal slices: a stimulus paradigm inducing LTP in CA1 evokes increases in BDNF and 

NT-3 mRNAs. Neuron. 9, 1081–1088. 

Pedraza C.E., Podlesniy P., Vidal N., Arévalo J.C., Lee R., Hempstead B., Ferrer I., Iglesias M., and 

Espinet C. (2005) Pro-NGF isolated from the human brain affected by Alzheimer's disease induces 

neuronal apoptosis mediated by p75NTR. Am. J. Pathol. 166, 533-43. 

Plass C., Shibata H., Kalcheva I., Mullins L., Kotelevtseva N., Mullins J., Kato R., Sasaki H., Hirotsune S., 

Okazaki Y., Held W.A., Hayashizaki Y., and Chapman V.M. (1996) Identification of Grf1 on 

mouse chromosome 9 as an imprinted gene by RLGS-M. Nat. Genet. 14, 106–109. 

Prybylowski K., Chang K., Sans N., Kan L., Vicini S., and Wenthold R.J. (2005) The synaptic localization 

of NR2B-containing NMDA receptors is controlled by interactions with PDZ proteins and AP-2. 

Neuron. 47, 845– 857. 

Rajagopal R., Chen Z.Y., Lee F.S., and Chao M.V. (2004) Transactivation of Trk neurotrophin receptors by 

G-protein-coupled receptor ligands occurs on intracellular membranes. J. Neurosci. 24, 6650-8. 

Reichardt L. F. (2006) Neurotrophin-regulated signaling pathways. Philos. Trans. R. Soc. Lond. B. Biol. 

Sci. 361, 1545-1564. 

Ren K., and Dubner R.. (2007) Pain facilitation and activity-dependent plasticity in pain modulatory 

circuitry: role of BDNF-TrkB signaling and NMDA receptors. Mol. Neurobiol. 35, 224-35. 

Roback J.D., Marsh H.N., Downen M., Palfrey H.C. and Wainer B.H. (1995) BDNF-activated signal 

transduction in rat cortical glial cells. Eur. J. Neurosci. 7, 849–862. 

Robinson K. N., Manto K., Buchsbaum R. J., MacDonald J. I. S., and Meakin S. O. (2005) Neurotrophin-

dependent Tyrosine Phosphorylation of Ras Guanine-Releasing Factor 1 and Associated Neurite 

Outgrowth is Dependent on the HIKE Domain of TrkA. J. Biol. Chem. 280, 225-235. 

Robinson R.C., Radziejewski C., Stuart D.I., and Jones E.Y. (1995) Structure of the brain-derived 

neurotrophic factor/neurotrophin 3 heterodimer. Biochemistry 34, 4139–4146. 

Rogers S., Wells R., and Rechsteiner M. (1986) Amino acid sequences common to rapidly degraded 

proteins: the PEST hypothesis, Science. 234, 364–368. 

Rose C.R., Blum R., Pichler B., Lepier A., Kafitz K.W., and Konnerth A. (2003) Truncated TrkB-T1 

mediates neurotrophin-evoked calcium signalling in glia cells. Nature. 426, 74-8. 

Schindowski K., Belarbi K., and Buée L. (2008) Neurotrophic factors in Alzheimer's disease: role of axonal 

transport. Genes. Brain. Behav. 7, 43-56. 

Schmitt J.M., Guire E.S., Saneyoshi T., and Soderling T.R. (2005) Calmodulin-Dependent Kinase 

Kinase/Calmodulin Kinase I Activity Gates Extracellular-Regulated Kinase-Dependent Long-

Term Potentiation The Journal of Neuroscience. 25, 1281–1290. 

Shooter E.M. (2001) Early days of the nerve growth factor proteins. Annu. Rev. Neurosci. 24, 601-29. 

Shou C., Farnsworth C.L., Neel B.G., and Feig L.A. (1992) Molecular cloning of cDNAs encoding a 

guanine-nucleotide-releasing factor for Ras p21. Nature 358, 351–354. 

Shou C., Wurmser A., Suen K.L., Barbacid M., Feig L.A., and Ling K. (1995) Differential response of the 

Ras exchange factor, Ras-GRF to tyrosine kinase and G protein mediated signals. Oncogene 10, 

1887–1893. 



43 

 

Simon M.A., Bowtell D.D.L., Dodson G.S., Laverty T.R., and Rubin G.M. (1991) Ras1 and a putative 

guanine nucleotide exchange factor perform crucial steps in signaling by the sevenless protein 

tyrosine kinase. Cell. 67, 701–716. 

Sini P., Cannas A., Koleske A.J., Di Fiore P.P., and Scita G. (2004) Abl-dependent tyrosine 

phosphorylation of Sos-1 mediates growth-factor-induced Rac activation. Nat. Cell. Biol. 6, 268-

74. 

Soderling T.R., and Derkach V.A. (2000) Postsynaptic protein phosphorylation and LTP. Trends. Neurosci. 

23, 75– 80. 

Song I., and Huganir R.L. (2002) Regulation of AMPA receptors during synaptic plasticity. Trends. 

Neurosci. 25, 578 –588. 

Stephens R.M., Loeb D.M., Copeland T.D., Pawson T., Greene L.A., and Kaplan D.R. (1994) Trk receptors 

use redundant signal transduction pathways involving SHC and PLC-gamma 1 to mediate NGF 

responses. Neuron. 12, 691-705. 

Sturani E., Abbondio A., Branduardi P., Ferrari C., Zippel R., Martegani E., Vanoni M., and Denis-Donini 

S. (1997) The Ras Guanine nucleotide Exchange Factor CDC25Mm is present at the synaptic 

junction. Exp. Cell. Res. 235, 117-23. 

Tanaka S., Morishita T., Hashimoto Y., Hattori S., Nakamura S., Shibuya M., Matuoka K., Takenawa T., 

Kurata T., Nagashima K., et al. (1994) C3G, a guanine nucleotide-releasing protein expressed 

ubiquitously, binds to the Src homology 3 domains of CRK and GRB2/ASH proteins. Proc. Natl. 

Acad. Sci. U S A. 91, 3443–3447. 

Tezuka T., Umemori H., Akiyama T., Nakanishi S., and Yamamoto T. (1999) PSD-95 promotes Fyn-

mediated tyrosine phosphorylation of the N-methyl-D-aspartate receptor subunit NR2A. Proc. 

Natl. Acad. Sci. USA. 96, 435– 440. 

Thoenen H., and Barde Y.A. (1980) Physiology of nerve growth factor. Physiol. Rev. 60, 1284-335. 

Tian X., and Feig L.A. (2001) Basis for signaling specificity difference between Sos and Ras-GRF guanine 

nucleotide exchange factors. J. Biol. Chem. 276, 47248-56.  

Tian X., Gotoh T., Tsuji K., Lo EH., Huang S., and Feig L.A. (2004) Developmentally regulated role for 

Ras-GRFs in coupling NMDA glutamate receptors to Ras, Erk, and CREB. EMBO. J. 23, 1567–

1575. 

Touhara K., Inglese J., Pitcher J., Shaw G., and Lefkowitz R.J. (1994) Binding of G protein beta gamma-

subunits to pleckstrin homology domains. J. Biol. Chem. 264, 10217–10220. 

Tsoulfas P., Soppet D., Escandon E., Tessarollo L., Mendoza-Ramirez J.L., Rosenthal A., Nikolics K., and 

Parada L.F. (1993) The rat trkC locus encodes multiple neurogenic receptors that exhibit 

differential response to neurotrophin-3 in PC12 cells. Neuron. 10, 975-90. 

Tyler W.J, Alonso M., Bramham C.R., and Pozzo-Miller L.D. (2002) From acquisition to consolidation: on 

the role of brain-derived neurotrophic factor signaling in hippocampal-dependent learning. Learn. 

Mem. 9, 224-37. 

Valdez G., Akmentin W., Philippidou P., Kuruvilla R., Ginty D.D., and Halegoua S. (2005) Pincher-

mediated macroendocytosis underlies retrograde signaling by neurotrophin receptors. J Neurosci. 

25, 5236-47. 

Varnai P., Lin X., Lee S.B., Tuymetova G., Bondeva T., Spät A., Rhee S.G., Hajnóczky G., and Balla T. 

(2002) Inositol lipid binding and membrane localization of isolated pleckstrin homology (PH) 

domains. Studies on the PH domains of phospholipase C delta 1 and p130. J. Biol. Chem. 277, 

27412-22. 

Vepsalainen S., Castren E., Helisalmi S., Iivonen S., Mannermaa A., Lehtovirta M., Hänninen T., Soininen 

H., and Hiltunen M. (2005) Genetic analysis of BDNF and TrkB gene polymorphisms in 

Alzheimer's disease. J. Neurol. 252, 423-8.  

Wei W., Das B., Park W., and Broek D. (1994) Cloning and analysis of human cDNAs encoding a 140-kDa 

brain guanine nucleotide-exchange factor, Cdc25GEF, which regulates the function of Ras. Gene 

151, 279–284. 

Wei W., Schreiber S.S., Baudry M., Tocco G., and Broek D. (1993) Localization of the cellular expression 

pattern of cdc25NEF and Ras in the juvenile rat brain. Brain Res. Mol. Brain Res. 19, 339–344. 



44 

 

Wei W., Mosteller R.D., Sanyal P., Gonzales E., McKinney D., Dasgupta C., Li P., Liu B.X., and Broek D. 

(1992) Identification of a mammalian gene structurally and functionally related to the CDC25 

gene of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA. 89, 7100–7104. 

West A.E., Chen W.G., Dalva M.B., Dolmetsch R.E., Kornhauser J.M., Shaywitz A.J., Takasu M.A., Tao 

X., and Greenberg M.E. (2001) Calcium regulation of neuronal gene expression. Proc. Natl. Acad. 

Sci. USA 98, 11024-31. 

Wiese S., Jablonka S., Holtmann B., Orel N., Rajagopal R., Chao M.V., and Sendtner M. (2007) Adenosine 

receptor A2A-R contributes to motoneuron survival by transactivating the tyrosine kinase receptor 

TrkB. Proc. Natl. Acad. Sci. U S A. 104, 17210-5. 

Wu C., Lai C.F., and Mobley W.C. (2001) Nerve growth factor activates persistent Rap1 signaling in 

endosomes. J. Neurosci. 21, 5406-16. 

Wu K., Len G.W., McAuliffe G., Ma C., Tai J.P., Xu F., and Black I.B. (2004) Brain-derived neurotrophic 

factor acutely enhances tyrosine phosphorylation of the AMPA receptor subunit GluR1 via 

NMDA receptor-dependent mechanisms. Brain Res. Mol. Brain. Res. 130, 178-86. 

Xu F., Plummer M.R., Len G.W., Nakazawa T., Yamamoto T., Black I.B., and Wu K. (2006) Brain-

derived neurotrophic factor rapidly increases NMDA receptor channel activity through Fyn-

mediated phosphorylation. Brain. Res. 1121, 22-34. 

Yang H., and Mattingly R. R. (2006) The Ras-GRF1 Exchange Factor Coordinates Activation of H-Ras 

and Rac1 to Control Neuronal Morphology. Mol. Biol. Cell. 17, 2177-2189. 

Yeo G.S., Connie Hung C.C., Rochford J., Keogh J., Gray J., Sivaramakrishnan S., O’Rahilly S., and 

Farooqi I.S. (2004) A de novo mutation affecting human TrkB associated with severe obesity and 

developmental delay. Nat. Neurosci. 7, 1187–1189. 

York R.D., Molliver D.C., Grewal S.S., Stenberg P.E., McCleskey E.W., and Stork P.J. (2000) Role of 

phosphoinositide 3-kinase and endocytosis in nerve growth factor-induced extracellular signal-

regulated kinase activation via Ras and Rap1. Mol. Cell. Biol. 20, 8069-83. 

Yoshii A., and Constantine-Paton M. (2007) BDNF induces transport of PSD-95 to dendrites through 

PI3K-AKT signaling after NMDA receptor activation. Nat. Neurosci. 10, 702-11. 

Yuan J., and Yankner B.A. (2000) Apoptosis in the nervous system. Nature. 407, 802-9.  

Yuan J., Lipinski M., and Degterev A. (2003) Diversity in the mechanisms of neuronal cell death. Neuron. 

40, 401-13. 

Zhang S., Edelmann L., Liu J., Crandall J.E., and Morabito M.A. (2008) Cdk5 Regulates the 

Phosphorylation of Tyrosine 1472 NR2B and the Surface Expression of NMDA Receptors. The 

Journal of Neuroscience. 28, 415– 424.  

Zippel R., Orecchia S., Sturani E., and Martegani E. (1996) The brain specific Ras exchange factor CDC25 

Mm: modulation of its activity through Gi-protein-mediated signals. Oncogene. 12, 2697–2703. 

Zippel R., Gnesutta N., Matus-Leibovitch N., Mancinelli E., Saya D., Vogel Z., Sturani E., Renata Z., 

Nerina G., Noa M. L., Enzo M., Daniella S., Zvi V., and Emmapaola S. (1997) Ras-Grf, the 

activator of Ras, is expressed preferentially in mature neurons of the central nervous system. Brain 

Res. Mol. Brain Res. 48, 140-144. 

Zirrgiebel U., Ohga Y., Carter B., Berninger B., Inagaki N., Thoenen H., and Lindholm D. (1995) 

Characterization of TrkB receptor-mediated signaling pathways in rat cerebellar granule neurons: 

involvement of protein kinase C in neuronal survival. J. Neurochem. 65, 2241–2250. 

 

 

 

 

 

 

 

 

 

 



45 

 

Chapter 2 

Ras Guanine nucleotide Releasing Factor 1 (RasGrf1) enhancement of 

Trk Receptor-mediated Neurite Outgrowth requires Activation of both 

H-Ras and Rac 

2.1 Introduction 

The neurotrophin receptor tyrosine kinases, TrkA, B and C, activate diverse signaling 

pathways stimulating distinct cellular responses depending on the cellular context. The 

ligands for the Trk receptors are a family of related proteins termed neurotrophins and 

these include nerve growth factor (NGF) which binds TrkA, brain-derived neurotrophic 

factor (BDNF) which binds TrkB and neurotrophin-3 (NT-3) which binds primarily to 

TrkC (Meakin, 2000; Reichardt, 2006). Upon neurotrophin binding, Trk receptors 

dimerize and undergo a conformational change leading to their activation and subsequent 

trans-phosphorylation on five intracellular tyrosine residues. These sites then recruit 

intracellular signaling molecules essential to signal propagation. Specifically, the 

signaling adaptors Shc and FRS2 competitively bind to Y
499 

while PLCγ1 binds to Y
794

 

(Meakin, 2000; Reichardt, 2006; Meakin et al., 1999). In all cases, receptor bound 

molecules become tyrosine phosphorylated which leads to either changes in intrinsic 

enzymatic activity and/or alters the recruitment/activation of subsequent molecules 

(Meakin et al., 1999).  

Recently, we reported the recruitment of the brain-specific Ras-guanine nucleotide 

releasing factor, RasGrf1, to activated TrkA and demonstrated that this process facilitates 

neuronal process formation in PC12 cells (Robinson et al., 2005), a noradrenergic cell 

line derived from a rat pheochromocytoma used extensively to investigate mechanisms of 
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cell survival and differentiation downstream of growth factors and their receptors 

(Greene and Tischler, 1976; Greene, 1978; Vaudry et al., 2002). Herein, we have 

addressed the mechanism regulating the enhanced neurite outgrowth via small GTPases 

of the Ras and Rho-family (Cdc42, Rac and RhoA) (Ridley et al., 1992; Minden et al., 

1995) which are known to serve roles in neuronal growth and differentiation (Nobes and 

Tolkovsky, 1995). TrkA activation of Rac can be stimulated by one of several 

mechanisms including PI3K (Soltoff et al., 1992; Wennstrom et al., 1994; Rodriguez-

Viciana et al., 1997), Ras and/or guanine nucleotide exchange factors. This leads to 

inactivation of RhoA, and the release of stress fiber formation, thereby permitting the re-

organization of actin that is essential to neurite outgrowth (Huang and Reichardt, 2003). 

The specific guanine exchange factors that link NGF stimulated TrkA to Rac activation 

include Kalirin (Chakrabarti et al., 2005) as well as RasGrf1 (Robinson et al., 2005), a 

neuronal protein that is predominantly expressed in the mature brain and is essential to 

learning and memory (Zippel et al., 1997; Giese et al., 2001). RasGrf1 is activated in 

response to both tyrosine phosphorylation from non-receptor tyrosine kinases (Src, 

Ack1), as well as serine/threonine phosphorylation downstream of protein kinase A 

(Farnsworth et al., 1995; Mattingly and Macara, 1996; Kiyono et al., 2000a; Kiyono et 

al., 2000b). Upon activation, RasGrf1 facilitates the exchange of GDP/GTP on Rac 

through its Dbl homology (DH) domain and/or Ras through its C-terminal Cdc25 

domain. Although the sites of Src-dependent tyrosine phosphorylation on RasGrf1 are not 

known, this results in the activation of Rac (Kiyono et al., 2000a). In contrast, Ack-

dependent tyrosine phosphorylation of RasGrf1 stimulates the activation of Ras (Kiyono 

et al., 2000b).  
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In terms of investigating the signaling properties of RasGrf1, previous research has 

shown that its co-expression with H-Ras in PC12 cells promotes constitutive neurite 

outgrowth and cell soma expansion through the activation of both Ras and Rac (Yang and 

Mattingly, 2006). Similarly Baldassa et al., (2007) reported that over-expression of 

RasGrf1 in PC12 cells also stimulated constitutive neurite outgrowth and they suggested 

that this was due to activation of Rac, not Ras, based on transfection studies in HEK cells 

(Baldassa et al., 2007). In both cases, these studies addressed RasGrf1’s effect on 

constitutive neurite outgrowth. In contrast, we have examined mechanisms of RasGrf1-

induced neurite outgrowth in response to both NGF and BDNF. Herein, we demonstrate 

that neurotrophin-dependent neurite outgrowth in PC12 and TrkB-expressing nnr5 cells 

(TrkB-B5) requires activation of both Ras and Rac. Moreover, we demonstrate that co-

expression of RasGrf1 with H-Ras in both PC12 and TrkB-B5 cells, compensate and 

mask the phenotype of function blocking RasGrf1 mutants. Lastly, we demonstrate that 

the co-expression of Trk and RasGrf1 stimulates Rac activation in HEK cells consistent 

with the data of Baldassa et al., (2007). However, comparable studies performed in PC12 

cells reveals NGF-dependent activation of Ras, not Rac. These studies clarify the 

mechanism by which RasGrf1 facilitates neurite outgrowth in response to neurotrophin 

stimulation and demonstrate that RasGrf1 can stimulate different GTPases depending on 

cell type. 

2.2 Materials and Methods 

2.2.1 Reagents. Antibodies to RasGrf1, Cdc42, GST-HRP, Trk (C-14), H-Ras, K-Ras, 

and N-Ras, were from Santa Cruz. Anti-HA was from Roche. H-89 dihydrochloride 

(B1427), and Mouse monoclonal β-actin antibody was from Sigma. Anti-
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phosphotyrosine (p-tyr-100) and anti-Akt (#9272) were from Cell Signaling. Anti-pan 

Ras and anti-Rac1 antibodies were from Transduction Labs. Rabbit antibodies to the 

carboxyl-terminal 14 residues of TrkA (1478) were prepared and affinity purified using 

standard techniques (Robinson, 2008). HRP-coupled goat anti-mouse and goat anti-rabbit 

secondary antibodies were from The Jackson Laboratories. NGF was from Harlan 

Products for Bioscience and human recombinant BDNF was from R&D Systems. The 

DC Protein Assay Kit was from Bio-Rad. 

2.2.2 Plasmids. The following plasmids have been previously described: full-length 

mouse RasGrf1 under control of the human elongation factor 1a promoter (pEFP-

RasGrf1) (Anborgh et al., 1999); pCMX-rat TrkA (wild-type and kinase-dead (KD) 

[K
547

A]) and rat TrkB (Meakin et al., 1999), TrkA-S10 HIKE domain mutant (Robinson 

et al., 2005). pEGFP was from Clontech. Dominant negative (DN) pcDNA-HA-Rac-N17, 

constitutively active (CA) pcDNA-HA-Rac-G
12

V, pcDNA-HA-Rac, pEYFP-DN-Ras, 

pEYFP-CA-Ras (G
12

V) were gifts of S.G. Ferguson (Robarts Research Institute). 

Dominant-negative pcDNA-Cdc42-T
17

N, CA-Cdc42-Q
61

L and wild type Cdc42 (in 

pcDNA) were gifts from R. Cerione (Cornell University, Ithaca, NewYork). pcDNA-HA-

H-Ras was the gift from J. Keller (Vanderbilt University Medical Center, Nashville, TN). 

pEFP-RasGrf1-W
1056

E was from L. Alberghini (University of Milano, Milan, Italy) and 

the RasGrf1 DH minus mutant (pMT3-PH1-IQ-Cat) was from L. Feig (Tufts University 

School of Medicine, Boston, MA). The RasGrf1 S
916

A mutant was prepared using site-

directed mutagenesis and the mutation verified by DNA sequencing. pGex2T-cRaf-RBD 

was from C. Hermann (Max Planck Institute for Molecular Physiology, Dortmund, 

Germany) and pGex-PAK-CRIB was the gift of G. Pickering (Robarts Research 
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Institute). The si-RNAs against Ras (sense: CCACUAUAGAGGAUUCCUACCGGAA , 

anti-sense: UUCCGGUAGGAAUCCUCUAUAGUGG) and Rac (sense: UUUGACAG 

CACCGAUCUCUUUCGCC , anti-sense: GGCGAAAGAGAUCGGUGCUGUCAAA) 

were from Invitrogen. 

2.2.3 Cell Lines. Human embryonic kidney 293T (HEK 293T) cells were cultured under 

standard conditions in DMEM with 5% supplemented calf serum (SCS) and 5% FBS 

(Hyclone) with 50 µg/ml gentamycin sulfate (Sigma). PC12 rat adrenal 

pheochromocytoma cells were maintained in DMEM with 5% SCS and 5% horse serum 

(Hyclone), while TrkB-B5 (nnR5 cells stably over-expressing HA-tagged TrkB 

receptors) have been described previously (Meakin, 2000; Meakin and MacDonald, 

1998). These were cultured in 5% SCS and 5% horse serum in the presence of 100 µg/ml 

G418 and 50 µg/ml gentamycin sulfate. 

2.2.4 Immunoprecipitations and Western Blots. Transfections were performed 

following standard calcium phosphate (HEK) or Lipofectamine 2000 (PC12 or TrkB-B5 

cells; Invitrogen) techniques using a DNA to Lipofectamine ratio of 1:2. Basically, 1.5 x 

10
6
 cells (100 mm dish) were co-transfected with 0.5-5 µg of each indicated plasmid. 

Lysates were prepared in NP40 lysis buffer (1% Nonidet P-40, 137 mM NaCl, 20 mM 

Tris, 0.5 mM EDTA, pH 8.0) containing 1 mM PMSF, 1 mM sodium orthovanadate 

(NaVO4), 10 µg/ml aprotinin and 10 µg/ml leupeptin and assayed by 

immunoprecipitation. Lysates containing 0.5 to 3.5 mg of protein were 

immunoprecipitated with antibodies (0.5 µg anti-Trk1478, or 1 µg anti-RasGrf1), in 

addition to 5 µl of washed Pansorbin (Calbiochem), at 4 
o
C overnight. After washing, 

bound proteins were resolved on 6 or 12% SDS-PAGE and transferred to polyvinylidene 
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fluoride (PVDF) membranes. Blocking prior to primary antibody incubation was 

performed for 1 h at room temperature in 10 ml of 10% milk powder and Tris buffered 

saline with tween-20 (TBS-T). Westerns were blotted in primary antibody at 4 
o
C for 16 

h and then washed for 1 h in TBS-T. Westerns were then blotted in 10 ml 10% milk 

powder and secondary antibody for 1 h at room temperature. Following washes in TBS-T 

for 1 h, westerns were exposed to enhanced chemiluminescence (ECL) reagents and 

developed.  

Primary antibody dilutions are as follows: anti-RasGrf1 1:10,000; anti-Cdc42 

1:2000; anti-GST-HRP 1:2000; anti-Trk (1478) (1:20,000), anti-pTyr100 (1:10,000); 

anti-pan Ras (1:5000); H-Ras (1:5000); K-Ras ( 1:5000); N-Ras (1:5000) and anti-Rac1 

(1:5000), anti-Akt (1:5000), anti-actin (1:20000), and anti-HA (1:5000). HRP-coupled 

secondary antibodies were used at 1:10,000. 

2.2.5 Neurite Response Assay and Analysis of Cell Morphology. Cells were plated 

onto 50 µg/ml poly-D-lysine (Sigma) coated 30 or 100 mm dishes and transfected with 

pEGFP (0.5 µg) plus Empty plasmid (1 µg), pcDNA-HA-Ras (0.5 µg), pEFP-RasGrf1 (1 

µg), pEFP-RasGrf1-S
916

A (1 µg), pcDNA-RasGrf1-W
1056

E and/or pMT3-PH1-IQ-Cat (1 

µg) with transfection efficiencies of 70 – 90% (Lipofectamine 2000). Fresh media and 

non-saturating levels of NGF or BDNF (1 ng/ml) were added at 24 h intervals on each of 

4 successive days. Inhibitor H89 (50 µM) was added before stimulation when indicated. 

On each day (from day one at 24 h after transfection to day four), the percentage of EGFP 

transfected cells (> 10 randomly selected fields and at least 200 cells) with neurite length 

greater than 2 cell bodies diameter as well as cells that had a flattened, expanded 

morphology with a width greater than 5 cell body lengths were counted using an inverted 
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fluorescent microscope. Three independent neurite outgrowth experiments (n=3) were 

performed and the percentage of EGFP-transfected cells extending neurites, between 

samples, was statistically analyzed by One way-ANOVA with Post-Tukey test and paired 

student t-test. TrkA and RasGrf1 expression and tyrosine phosphorylation was confirmed 

by immunoprecipitation of 500 µg to 3.5 mg of protein, SDS-PAGE and western blotting 

following the counts performed on day four. The relative densities were then statistically 

analysed by paired student t-test for significant differences between samples (n=3). For 

epifluorescence microscopy, cells were visualized for EGFP on inverted microscopes (1 x 

70 [Olympus]; Diaphot 300 [Nikon]) at a magnification of 200X. 

2.2.6 GTPase binding Assays. pGex2T-PAK-CRIB, pGex2T and GST-Raf1-RBD were 

grown in 50 ml Luria broth (LB) with 50 µg/ml ampicillin for 16 h at 37 °C, added to 500 

ml of LB with 50 µg/ml ampicillin and grown to an OD600 of 0.8 to 1.0. Cultures were 

induced with IPTG (0.2 mg/ml) for 2 h at 37 °C, centrifuged at 5000 rpm for 10 min (4 

°C), re-suspended in 10 ml 1X PBS and frozen at -80 °C. Pellets were re-suspended in 20 

ml of re-suspension buffer (25 mM Tris-Cl pH 7.5, 5 mM EDTA pH 8.0, 150 mM NaCl, 

1 mM PMSF, 1 µg/ml leupeptin) and the bacteria lysed by two passages through a pre-

chilled French press at 20,000 psi. Triton X-100 was added to a final concentration of 1% 

and the sample rotated for 30 min at 4 °C. The sample was then centrifuged at 14,000 

rpm for 10 min at 4 °C. Washed glutathione agarose (500 µl) (Sigma) was added to the 

supernatant and the mixtures incubated for 16 h at 4 °C followed by three washes with 10 

ml 1X PBS and re-suspended in 250 µl interaction buffer (20 mM Hepes, 150 mM NaCl, 

0.05% NP40, 10% glycerol, 1 mM PMSF, 1 µg/ml leupeptin). Laemmli sample buffer 

containing 100 mM DTT was added, samples heated at 65 °C for 10 min and then 
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separated by 12% SDS-PAGE along with known quantities of BSA to estimate the 

amount of GST proteins isolated. HEK cells were transiently transfected with 0.5 - 5 µg 

DNA using the calcium phosphate transfection method and PC12 cells were transfected 

with Lipofectamine 2000. Cells were allowed to express protein for 48 h before 

stimulation with NGF or BDNF (100 ng/ml) for 5 min. A control plate that was serum-

starved was washed 3X with 1X PBS 24 hours before stimulation and serum-free media 

added. Before stimulation, all plates were washed 3X with PBS at 1 h time points before 

stimulation and incubated in serum-free media. Following stimulation, cells were 

incubated for 5 min at 37 °C, followed by a wash with 10 ml PBS. Cells were lysed in 

500 µl interaction buffer for 2 min and lysates centrifuged at 10,000 rpm for 10 min at 4 

°C. Protein concentrations were evaluated with the DC Protein Assay Kit (BioRad). GST, 

GST-PAK-CRIB or GSTRaf1- RBD (approximately 30 µg) was added to 500 µg of each 

lysate and incubated at 4 °C for 16 h. Samples were pelleted at 14,000 rpm and washed 

twice with NP-40 buffer. Laemmli sample buffer with100 mM DTT was added and 

samples heated at 70 °C for 10 min. Proteins were analyzed on 12% SDS-PAGE and 

blotted with anti-GST-HRP (1:5000), anti-Ras (1:2000) or anti-Rac (1:2000). 

2.3 Results 

2.3.1 Trk-dependent RasGrf1 activation facilitates GTP exchange of Rac in HEK 

cells.  

As RasGrf1 is a dual specificity guanine exchange factor for both Ras and Rac, we 

examined which GTPase is preferentially activated downstream of Trk and RasGrf1. In 

particular, RasGrf1 has been shown to activate H-Ras through its Cdc25 domain and 

Rac1 through its DH domain. We initially used HEK 293T cells, co-transfected with 
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TrkA and RasGrf1 and stimulated with NGF, due to their ease of high efficiency 

transfection. GST fused to the CRIB domain of p21-activated kinase (PAK) was used to 

pull activated GTP bound Rac1 from transfected lysates (Baldassa et al., 2007; Small et 

al., 2006) while GST fused to the Ras binding domain (RBD) of Raf1 was used to pull 

activated Ras (Arozarena et al., 2000). As shown in Figure 2.1 (A), CA-Rac1 (lane 3) 

was pulled out by GST PAKCRIB, while a DN-Rac1 (lane 2) showed no binding to GST-

PAK-CRIB. GST alone was used as a control and failed to interact with Rac1 (Figure 

2.1A). An additional control of cells grown under serum-free conditions 24 h before 

stimulation with NGF, showed no basal level of Rac activation (lane 1). While RasGrf1, 

with or without the kinase-dead TrkA, stimulates a basal level of Rac1 activation (lanes 6 

and 7), there is an increase in the activation of Rac1 in the presence of wild type, NGF-

stimulated TrkA (lane 8). The TrkA-HIKE domain mutant (HK) has previously been 

shown to not interact with or phosphorylate RasGrf1 (Robinson et al., 2005) and was 

therefore used to test the specificity of this increase in Rac activation. Accordingly, in the 

presence of this mutant there was a decrease in RasGrf1 activation of Rac1 compared to 

cells expressing wild-type TrkA alone (compare lane 9 to lane 6). These data indicate that 

Rac1 is being activated via TrkA and RasGrf1 in HEK cells. As shown in Figure 2.1B, 

RasGrf1 and TrkA are expressed consistently and RasGrf1 is tyrosine phosphorylated 

upon stimulation with NGF by wild-type TrkA but not the HIKE (HK) domain mutant. 

As RasGrf1 is also a guanine exchange factor for Ras, HEK cells transfected with 

TrkA, RasGrf1 and wild-type, CA or DN-H-Ras were also evaluated for activation of Ras 

through interaction with the Raf1-Ras RBD fused to GST which binds only active, GTP-

bound Ras. As shown in Figure 2.1C, CA-Ras fused to yellow fluorescent protein (YFP-
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RAS-CA) bound to Raf1-RBD-GST as expected (Figure 2.1C, lane 3), while a dominant-

negative construct (YFP-RAS-DN) did not (lane 2). No detectable basal level of Ras 

activation was observed in cells that were serum-starved for 24 h prior to stimulation 

(lane 1) or in cells maintained in serum during this period (lane 4). Unexpectedly under 

these conditions, TrkA alone did not show a detectable level of Ras activation in the 

presence of NGF (lane 5). RasGrf1 did however show a high basal ability to activate Ras 

in the absence of activated TrkA (lane 6) and in the presence of kinase-dead TrkA (lane 

7). However, cells transfected with WT-TrkA and RasGrf1 showed a decrease in active 

GTP-bound Ras (lane 8). To determine whether the loss of interaction between TrkA and 

RasGrf1 would abolish this decrease, cells were transfected with the TrkA-HIKE domain 

mutant instead of wild-type TrkA. These cells showed activation of Ras comparable to 

the TrkA-kinase dead and RasGrf1 transfected cells (lane 9). Thus co-transfection of 

TrkA and RasGrf1 leads to a decrease in Ras activation in HEK cells potentially due to a 

switch in activity toward another GTPase, such as Rac (Figure 2.1A) or due to a re-

localization away from H-Ras upon TrkA binding. Evaluation of RasGrf1 

phosphorylation by TrkA is shown in Figure 2.1D, lane 8, and its lack of phosphorylation 

by kinase-dead TrkA (KD) and the TrkA-HIKE (HK) mutants are shown in lanes 7 and 9, 

respectively. 

While RasGrf1 can be activated downstream of the Rho family GTPase Cdc42, via 

the tyrosine kinase ACK1 (Kiyono et al., 2000b), Cdc42 can in turn be activated by DH 

domain containing guanine exchange factors (Baldassa et al., 2007). For these reasons, 

Trk-activated RasGrf1 was also evaluated for the potential activation of Cdc42. However, 

as shown in Figure 2.1E, we detected no endogenous activated Cdc42, the only GTP-
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bound Cdc42 detected being in cells transfected with CA-Cdc42 (lane 3). There appears 

to be no activation downstream of TrkA or RasGrf1 singly or together (lanes 5, 8). GST 

alone did not interact with Cdc42. Expression and phosphorylation of TrkA and RasGrf1 

in the presence of NGF are shown in Figure 2.1F. 

2.3.2 Analysis of RasGrf1 mutants, and H-Ras, in NGF-induced neurite outgrowth 

in PC12 cells.  

We have previously evaluated the response of PC12 cells to NGF-stimulated TrkA 

and RasGrf1 and have found that these cells have enhanced neurite outgrowth in the 

presence of low doses of neurotrophins (Robinson et al., 2005). The enhanced neurite 

outgrowth is likely mediated through a GTPase such as Ras or Rac1, both of which 

regulate differentiation in PC12 cells. In addition, RasGrf1 over-expression has also been 

reported to constitutively stimulate the flattening and enlargement of the cell soma in 

PC12 cells in the presence of co-transfected H-Ras (Yang and Mattingly, 2006). Yang 

and Mattingly (2006) reported that the expanded cell body required RasGrf1 activation of 

Rac1 and that this was dependent on the co-expression and activation of H-Ras. To 

determine if NGF stimulation potentiated similar changes in the cellular morphology of 

the cell soma, we co-transfected cells with RasGrf1 and H-Ras and evaluated changes in 

both neurite outgrowth and soma size in response to NGF. As shown in Figure 2.2A, we 

similarly observed both phenotypes in cells co-transfected with RasGrf1 and H-Ras. 

Quantification of these phenotypes revealed that cells co-transfected with H-Ras and 

RasGrf1 expressed a higher basal neurite outgrowth (21.6%) response that was 

approximately 3-fold higher than cells expressing H-Ras alone (7%) and that addition of 

NGF stimulated a minor additional increase (27.3%) in neurite outgrowth (Figure 2.2B). 
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Figure 2.2C indicates the levels of Trk and RasGrf1 tyrosine phosphorylation and 

expression. With respect to changes in cell soma size, we observed that co-transfection of 

RasGrf1 and H-Ras also increased the number of cells with increased basal soma size to 

nearly 20% of the total population as compared to control cells transfected with GFP 

alone (4%). However, there was no significant increase in the percentage of cells 

showing an enhanced soma size upon stimulation by NGF in either controls or cells co-

expressing H-Ras and RasGrf1. The levels of Trk and RasGrf1 expression and tyrosine 

phosphorylation are shown in Figure 2.2E.  

To determine whether activation of either Ras, Rac or both facilitate NGF-induced 

neurite outgrowth, PC12 cells were transfected with H-Ras and either wild-type RasGrf1, 

a (W
1056

E) RasGrf1 mutant which binds GDP-Ras but does not facilitate exchange to 

GTP on Ras (Vanoni et al., 1999), as well as a RasGrf1 (S
916

A) mutant, the site of protein 

kinase A phosphorylation reported to be required for maximal induction of Ras-

dependent neurite outgrowth in PC12 cells (Yang et al., 2003; Baouz et al., 2001) (Figure 

2.3A). Importantly, the W
1056

E mutant does not affect the ability of RasGrf1 to activate 

Rac (Vanoni et al., 1999). Cells were stimulated with low levels of NGF (1 ng/ml) for 

four days following transfection and then evaluated for neurites longer than two cell 

bodies in length. As observed in Figure 2.3, RasGrf1 transfected cells showed levels of 

basal neurite outgrowth in the presence of co-transfected H-Ras (23.27% ± 0.37) which is 

only somewhat increased in response to NGF (27.1% ± 0.89) (Figure 2.3B). Interestingly, 

we found that expression of the RasGrf1 (S
916

A) mutant did not affect either basal levels 

of neurite outgrowth ( 22.93% ± 2.28) or those stimulated by NGF (25.93% ± 3.08 ) 

(Figure 2.3B). Cells transfected with the RasGrf1 (W
1056

E) mutant exhibited a reduction 
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in neurite outgrowth (17.67% ± 0.65), albeit levels were still higher than cells transfected 

with controls, and we observed a small insignificant increase (20.73% ± 2.3) in neurite 

outgrowth in response to NGF. Analysis of phosphorylation and expression levels 

indicated that wild-type RasGrf1, RasGrf1 (W
1056

E) and the RasGrf1 (S
916

A) mutant 

were expressed and phosphorylated at similar levels by NGF-activated TrkA (Figure 

2.3C). 

To further determine whether PKA facilitates RasGrf1-mediated neurite outgrowth in 

response to NGF, via other phosphorylation sites and/or mechanisms, PC12 cells were 

co-transfected with RasGrf1 and H-Ras and then stimulated with NGF in the presence or 

absence of the PKA inhibitor, H89. As shown in Figure 2.3D, we found that application 

of H89 did not lead to a decrease in NGF/RasGrf1-mediated outgrowth suggesting that 

PKA is not important for TrkA-dependent activation of RasGrf1 or enhanced neurite 

outgrowth in PC12 cells under these conditions. Notably, H89 did not affect tyrosine 

phosphorylation levels of either Trk or RasGrf1 stimulated by NGF (Figure 2.3E).  

Since the Ras/Rac activation assays in HEK cells suggested that TrkA activation of 

RasGrf1 resulted in activation of Rac, we next evaluated the potential that RasGrf1 

activation of Rac is involved in mediating NGF-induced neurite outgrowth in PC12 cells. 

Accordingly, cells were co-transfected with H-Ras and either wild-type RasGrf1 or a 

mutant RasGrf1 protein that consists of the PH1 domain, coiled-coil domain and the IQ 

domain fused directly to the Cdc25 domain (PH1-IQ-Cat). This mutant is missing the 

second PH domain and the Dbl homology domain required for binding and facilitating 

GTP exchange of Rac (Buchsbaum et al., 1996). Importantly, this mutant does not affect 

the activation of H-Ras (Yang and Mattingly, 2006). Cells transfected with EGFP showed 
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very low levels of outgrowth after four days, which was slightly above 5% when 

stimulated with NGF (Figure 2.3F). Cells transfected with the PH1-IQ-Cat RasGrf1 

mutant showed nearly a two-fold increase in the number of cells with neurites in the 

absence of NGF stimulation. Previous studies using the PH1-IQ-Cat mutant revealed that 

it has a slight increase in the basal activity toward Ras, although the reasons for this were 

unclear (Buchsbaum et al., 1996). Interestingly, however, we found that this mutant 

stimulated neurite outgrowth in the presence of NGF and while the levels were decreased 

compared to wild-type RasGrf1, the difference was not statistically different (Figure 

2.3F). The levels of phosphorylation and expression of TrkA, RasGrf1 and PH1-IQ-Cat 

are shown in Figure 2.3G. Taken together, these studies suggest that RasGrf1 mediates 

outgrowth downstream of the Trk receptor through activation of Ras, not Rac1, in 

transfected PC12 cells.  

2.3.3 Trk activation of RasGrf1 facilitates GTP exchange of Ras in PC12 cells.  

The reduction in neurite outgrowth of the RasGrf1 mutant (W
1056

E) (dominant-

negative for Ras activation) suggested that in PC12 cells, RasGrf1 might be an activator 

of Ras instead of Rac. However, this was in contrast to our observations in HEK cells in 

which we observed an increase in Rac activation but a decrease in the activation of Ras 

downstream of TrkA and RasGrf1 (Figure 2.1). Thus, we performed a GTP binding assay 

on lysates from PC12 cells transfected with wild-type H-Ras and RasGrf1. In these 

studies, RasGrf1 transfected cells showed low levels of basal activation of Ras in the 

absence of stimulation (Figure 2.4A, lane 7). This agrees with our observations of neurite 

outgrowth following co-transfection with H-Ras and RasGrf1 (Figure 2.3). However, 

PC12 cells transfected with RasGrf1 and H-Ras, and stimulated with NGF, showed a 
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considerable enhancement of active GTP-bound Ras (Figure 2.4A, lane 8). This 

activation was comparable to that seen in the positive control lane which expressed CA-

Ras (lane 4). This also agrees with our neurite outgrowth studies in PC12 cells, but 

contrasts with the decreased Ras activation observed in HEK cells suggesting that there 

may be different mechanisms of NGF/TrkA and RasGrf1 signaling occur in the two cell 

types. NGF-dependent Trk and RasGrf1 phosphorylation and expression levels of both 

proteins are shown in Figure 2.4B. 

2.3.4 Trk activation of RasGrf1 does not stimulate increased Rac activation in PC12 

cells.  

Yang and Mattingly (2006) indicated that Ras activation by RasGrf1 promotes 

neurite extension in PC12 cells, but also increases RasGrf1 activity toward Rac. Given 

this data and the Rac activation observed in HEK cells, a GTP binding assay for Rac1 

was also performed in PC12 cells. PC12 cells were co-transfected with RasGrf1 plus WT 

Rac1 as well as CA or DN forms of Rac1 as positive and negative controls. As shown in 

Figure 2.4C, the negative control (DN-Rac1) did not interact with GST-PAK-CRIB (lane 

3) while the CA-Rac1 did (lane 4) relative to GST alone. We observed a small increase in 

Rac activation in NGF stimulated, un-transfected cells (lane 6) and a larger increase in 

un-stimulated cells following transfection with RasGrf1 (lane 7) suggesting that RasGrf1 

over-expression can intrinsically activate Rac. However, we found no discernable 

increase in Rac1 activation in RasGrf1 transfected cells following NGF stimulation above 

the effect of RasGrf1 alone (lane 8). Whole cell lysates were evaluated to verify 

expression of Rac1 as well as to verify expression of RasGrf1 and TrkA and their 

tyrosine phosphorylation status upon NGF-stimulation (Figure 2.4D).  
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2.3.5 PC12 and TrkB-B5 cells express endogenous H-Ras.  

Our initial experiments indicated that RasGrf1 stimulates NGF-induced neurite 

outgrowth in PC12 cells via a Ras, but not Rac-dependent mechanism (Figure 2.3), 

consistent with our subsequent observation that NGF stimulates an increase in RasGrf1-

dependent activation of Ras in PC12 cells (Figure 2.4). However, we were puzzled with 

the observation that the dominant negative RasGrf1 mutant (W
1056

E) continued to show 

high basal levels of neurite outgrowth in PC12 cells (Figure 2.3) suggesting that either 

another NGF-dependent pathway was also stimulating neurite outgrowth and/or that the 

over-expression of H-Ras was compensating for a loss of function phenotype. The 

original decision to co-transfect RasGrf1 mutants with H-Ras was based on the 

observation by Yang and Mattingly that PC12 cells don’t express endogenous H-Ras 

(Yang and Mattingly, 2006). However, when testing our PC12 and TrkB-B5 cells, we 

found that they do express endogenous H-Ras, but not K-Ras or N-Ras, to levels 

comparable to those observed in brain (Figure 2.5). Thus, to determine whether H-Ras 

over-expression was overcoming the effect of one or more of the RasGrf1 mutants, all 

mutants were re-tested for their ability to support neurotrophin-induced neurite outgrowth 

in the absence of ectopic H-Ras expression. Since RasGrf1 is primarily expressed in the 

brain and is co-expressed predominantly with TrkB, these studies were addressed (as 

described below) in TrkB-B5 cells. We previously generated this cell line from the PC12-

derived cell line, nnR5, that do not express TrkA (Greene and Tischler, 1976), that we 

engineered to stably over-express TrkB (Meakin and MacDonald, 1998).  
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2.3.6 BDNF activation of TrkB also stimulates RasGrf1-dependent enhancement of 

neurite outgrowth via both Ras and Rac.  

Consistent with our observation that RasGrf1 facilitates NGF-dependent neurite 

outgrowth in PC12 cells, we found that BDNF-dependent TrkB activation of neurite 

outgrowth is also significantly enhanced. As shown in Figure 2.6, RasGrf1 expression 

stimulates an enhancement of BDNF-induced neurite outgrowth compared to un-

stimulated cells and un-transfected cells stimulated with BDNF. We then assayed the 

RasGrf1 mutants for changes in BDNF-induced neurite outgrowth, in the absence of H-

Ras co-expression, and as shown in Figure 2.6, both the W
1056

E and PH-IQ-CAT mutants 

showed a reduction in BDNF-induced neurite outgrowth while the S
916

A mutant still 

appeared to support significant neurite outgrowth. These observations were next 

quantified in triplicate experiments in the absence and presence of exogenous H-Ras 

expression. As shown in Figure 2.7A, we find that wild type RasGrf1 and the S
196

A 

mutant show a basal level of neurite outgrowth (11.13% ± 1.87 and 9.86% ± 0.88 

respectively) in the absence of BDNF and a significant increase in the percentage of cells 

showing neurite outgrowth (20.13% ± 2.48 and 16.67% ± 1.68 respectively) in presence 

of BDNF. Wild type RasGrf1 and S
916

A mutant also showed an approximately 2-fold 

increase in the average neurite length (220 µm and 247 µm) relative to negative control 

of empty plasmid (110 µm) (Figure 2.7B). These results are consistent with our data in 

Figure 2.3 demonstrating that phosphorylation of Ser
916

 is not essential to neurotrophin-

induced activation of RasGrf1. However, we found that both the W
1056

E and PH-IQ-CAT 

RasGrf1 mutants significantly reduced BDNF-induced neurite outgrowth to levels 

comparable to negative controls (Figure 2.7A). Interestingly, when cells were co-
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transfected with H-Ras (Figure 2.7D), we found that only the PH-IQ-CAT RasGrf1 

mutant showed a decrease in BDNF-induced neurite outgrowth relative to WT RasGrf1, 

to the levels were still significantly greater than controls. These observations are 

consistent with the results shown above indicating that over-expression of H-Ras masks 

the phenotype of the RasGrf1 mutations. Levels of RasGrf1 and transfected H-Ras 

expression are shown relative to endogenous Akt or actin as loading controls (Figures 

2.7C, E, F). Collectively, these results indicate that RasGrf1 can also act downstream of 

TrkB receptors to enhance BDNF-induced neurite outgrowth.  

2.3.7 Both Ras and Rac si-RNAs block BDNF-induced neurite outgrowth in TrkB 

cells.  

To further determine whether Ras, Rac or both facilitate BDNF-induced neurite 

outgrowth, TrkB-B5 cells were transfected with wild-type RasGrf1 in presence of si-

RNAs against either Ras or Rac1, and the percentage of neurite outgrowth and the 

expression level of Ras/Rac1 were determined. As shown in Figure 2.8A, while wild type 

RasGrf1 significantly (26%) increased neurite outgrowth compared to the negative 

control of empty plasmid (12%), both si-RNAs against Ras and Rac1 decreased neurite 

outgrowth (3.7% and 4.3% respectively) relative to wild type RasGrf1. RasGrf1 co-

transfection with H-Ras also increased neurite outgrowth significantly as expected. 

However, it was included in this experiment as a positive control for si-Ras plasmid. 

These results further support the notion that the activation of both Ras and Rac are 

required for neurotrophin-induced neurite outgrowth. The expression levels of Ras and 

Rac are shown in Figure 2.8B verifying that the level of Ras and Rac expression are 

reduced by the si-RNAs against Ras and Rac. 
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Figure 2.1. Rac/Ras/Cdc42-GTPase pull down assay in transfected HEK cells. Cells 

were transfected with wild type RasGrf1plus CA, DN or WT GTPases as well as kinase 

dead (KD), HIKE domain mutated (HK) or WT TrkA. Forty-eight hours post-

transfection, cells were serum starved for 1 h, stimulated with 100 ng/ml of NGF for 5 

min, lysed and activated GTPases precipitated with indicated GST fusion proteins. 

Samples were immunoprecipitated (IP) and assayed for phosphorylation assessment by 

Western blotting (IB) (Robinson, 2008) (n=3). A) Rac-GTPase activity. Lane 1 represents 

a negative control plate in which cells were starved 24 h. B) Phosphorylation assessment 

of RasGrf1 and Trk during Rac-GTPase activity. C) Ras-GTPase activity. D) 

Phosphorylation assessment of RasGrf1 and Trk. E) Cdc42-GTPase activity. F) 

Phosphorylation assessment of RasGrf1 and Trk. 
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Figure 2.2. Neurite outgrowth assay of wild type RasGrf1 in PC12 cells. PC12 cells 

were transfected with EGFP plus Empty-plasmid or WT-RasGrf1, in presence of H-Ras, 

treated with either NGF (1 ng/ml) for 4 consecutive days or left unstimulated. The 

percentage of cells with neurite length greater than two cell bodies were counted and 

statistically analyzed. Samples were immunoprecipitated (IP), separated by SDS-PAGE, 

and immunoblotted (IB) with indicated antibodies. Three independent neurite outgrowth 

experiments were performomed (n=3). * indicates statistical significance (P-value<0.05) 

of WT-RasGrf1 relative to the Empty plasmid. A) NGF treated PC12 cells co-transfected 

with WT-RasGrf1 and H-Ras. Both neurite extension (A1) and soma expansion (A2) are 

shown. Scale bar is 10µm. B) PC12 cells were co-transfected with WT RasGrf1 and H-

Ras and neurite extension assessed in -/+ NGF stimulation. C) NGF induces tyrosine 

phosphorylation of both Trk and RasGrf1. RasGrf1 band appeared as expected at 

≈140kDa (Robinson, 2008). D) Percentage of PC12 cells co-expressing WT RasGrf1 and 

H-Ras in -/+ NGF stimulation displaying enhanced soma expansion (with expansion > 5-

cell body) (Robinson, 2008). E) Tyrosine phosphorylation assessment for Trk and 

RasGrf1during soma expansion. RasGrf1 band appeared as expected at ≈140kDa 

(Robinson, 2008). 
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Figure 2.3. Neurite outgrowth assay of RasGrf1-mutants in PC12 cells. PC12 cells 

were transfected with EGFP plus either empty-plasmid or WT-RasGrf1 and RasGrf1-

mutants in the presence of H-Ras. Cells were treated with either NGF (1 ng/ml) for 4 

consecutive days or left unstimulated and the percentage of cells with neurite length 

greater than two cell bodies determined. Samples were immunoprecipitated and analyzed 

by SDS-PAGE/Western blot with the indicated antibodies (n=3). * indicates significant 

increase in neurite outgrowth (P-value<0.05) of indicated construct in the presence of 

NGF relative to Empty plasmid. A) Schematic diagram of RasGrf1. RasGrf1 is a multi-

domain protein including PH1(Pleckstrin homology, 50 amino acids), coiled-coil motif 

(CC, 57 amino acids), CaMK binding site (IQ, 88 amino acids), Db1 homology domain 

(DH, 87 amino acids), pleckstrin homology domain-2 (PH2, 66 amino acids), Ras 

exchange motif (REM, 83 amino acids, cyclin destruction box (CDB) and catalytic 

domain (Cdc25, 75 amino acids). In addition, S
916

A, a PKA phosphorylation site on 

RasGrf1, and the W
1056

E mutation are indicated. B) Percentage of cells with neurites 

greater than two cell bodies in PC12 cells expressing W
1056

E and S
916

A RasGrf1 mutants. 

** indicates significant decrease of W
1056

E relative to WT-RasGrf1. C) Phosphorylation 

assessment for W
1056

E and S
916

A mutants. D) Percentage cells with neurites greater than 

two cell bodies following treatment with H89 (Robinson, 2008). E) Tyrosine 

phosphorylation of RasGrf1 in the presence of H89 (Robinson, 2008). F) PC12 cells were 

co-transfected with the PH1-IQ-CAT RasGrf1 mutant and H-Ras -/+ NGF. Data depicts 

the percentage of cell with neurite length greater than two cell bodies (Robinson, 2008). 

G) Tyrosine phosphorylation of Trk and the PH1-IQ-CAT mutant. The band for this 

mutant appeared as expected under ≈60kDa (Robinson, 2008). 
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Figure 2.4. Ras/Rac-GTPase pull down assay in transfected PC12 cells. Cells were 

transfected with CA, DN, WT Ras or Rac and/or WT-RasGrf1. Forty-eight hours post-

transfection, cells were serum starved for 1 h, stimulated with 100 ng/ml of NGF for 5 

min, lysed and activated GTPases precipitated with the indicated GST fusion proteins. 

Samples were also immunoprecipitated (IP) and western blotted (IB) with the indicated 

antibodies to assess tyrosine phosphorylation (Robinson, 2008) (n=3). A) Ras-GTPase 

activity. The activation of Ras is evident in the presence of RasGrf1 after NGF 

stimulation (lane 8). B) Expression and tyrosine phosphorylation of RasGrf1 and Trk in 

PC12 cells in -/+ NGF stimulation. C) Rac-GTPase activity in transfected PC12 cells. 

The activation of Rac1 is unchanged in the presence of RasGrf1 after NGF stimulation 

(lane 8). D) Expression and tyrosine phosphorylation of RasGrf1 and Trk in transfected 

PC12 cells.  
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Figure 2.5. Evaluation of endogenous Ras expression in PC12 and TrkB-B5 cells. 

Lysates (50 µg) from PC12 and TrkB-B5 cells were immunoblotted (IB) using antibodies 

against H-Ras, N-Ras and K-Ras. Mouse brain tissue lysate was employed as a positive 

control and actin (≈43kDa) served as a loading control (n=3).  
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Figure 2.6. The effect of specific functional mutations on RasGrf1 on neurite 

outgrowth in TrkB expressing PC12-derived cells. TrkB-B5 cells were transfected 

with EGFP and either empty-plasmid, wild type RasGrf1 or the indicated RasGrf1 

mutants, in the absence or presence of co-transfected H-Ras, treated with either BDNF (1 

ng/ml) for 4 days or left un-stimulated (n=3). A) BDNF stimulated TrkB-B5 cells co-

expressing RasGrf1-WT and H-Ras. Scale bar is 10µm. B) The effect of various RasGrf1 

constructs on neurite outgrowth in TrkB-B5 cells in the presence or absence of BDNF 

and without co-expression of H-Ras. Scale bar = 10µm. 
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Figure 2.7. The effect of BDNF on neurite outgrowth in TrkB-B5 cells expressing 

WT and mutant forms of RasGrf1. TrkB-B5 cells were co-transfected with EGFP and 

either empty plasmid, WT-RasGrf1 or the indicated mutants in the absence or presence of 

H-Ras, and -/+ BDNF (1 ng/ml) for 4 consecutive days, and the percentage of cells with 

neurites more than two cell bodies determined. (n=3). * indicates a significant increase in 

neurite outgrowth (P-value<0.05) of indicated construct compared to Empty plasmid. A) 

Expression of WT-RasGrf1 and the S
916

A mutant resulted in a significant increase in 

neurite outgrowth response. Expression of neither the W
1056

E, nor the PH1-IQ-CAT 

mutant influenced neurite outgrowth significantly. ** indicates significant decrease of 

PH1-IQ-CAT or W
1056

E relative to WT-RasGrf1. B) Expression of both RasGrf1 and 

S
916

A mutant significantly increases the average length of neurites relative to controls. C) 

Expression levels of RasGrf1 constructs in transfected TrkB-B5 cells. Each lane 

represents 50 µg of lysate protein. The PH1-IQ-CAT mutant appeared as expected at 

≈60kDa. The blot was re-probed against Akt (≈55kDa) as a loading control. D) The 

percentage of cells with neurites greater than two cell body lengths in TrkB-B5 cells co-

expressing H-Ras and the indicated RasGrf1 constructs in -/+ BDNF stimulation. Under 

the conditions of H-Ras over-expression the W
1056

E and PH1-IQ-CAT mutants showed a 

significant increase in neurite outgrowth. E) Expression levels of RasGrf1constructs in 

TrkB-B5 cells co-transfected with H-Ras. F) Expression of endogenous (≈22kDa) and 

co-transfected HA-tagged H-Ras (HA-tagged; ≈24kDa) was determined by SDS-

PAGE/western blot. The blot was first probed with an antibody to H-Ras, stripped and re-

probed with an antibody against HA. The blot was re-probed against β-actin (≈43kDa) as 

a loading control. 
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Figure 2.8. The effect of BDNF-induced neurite outgrowth in TrkB-B5 cells 

expressing si-RNAs against Ras and Rac. TrkB-B5 cells were co-transfected with 

EGFP and either empty plasmid, or WT-RasGrf1 co-expressing with scrambled-RNA or 

si-RNA against Ras or Rac, treated with BDNF (1 ng/ml) for 4 consecutive days, or left 

un-stimulated and the percentage of cells with neurites length greater than two cell bodies 

diameter were determined (n=3). * indicates a significant increase in neurite outgrowth 

(P-value<0.05) of indicated construct in the presence of BDNF compared to Empty 

plasmid, and ** indicates significant decrease of si-Ras/Rac relative to wild type 

RasGrf1. A) Neurite outgrowth assay in TrkB-B5 cells in presence of Ras/Rac si.RNAs 

in -/+ BDNF stimulation. Both si-RNAs against Ras and Rac reduced neurite outgrowth 

significantly in comparing to RasGrf1 wild type. RasGrf1 co-expressing with H-Ras was 

used as a positive control for BDNF-induced neurite outgrowth. B) Expression levels of 

endogenous Ras and Rac in transfected TrkB-B5 cells only in absence of BDNF. Note 

that the expression level of both Ras and Rac was reduced respectively. Expression of 

endogenous (≈22kDa) of H.Ras and Rac as well as co-transfected HA-tagged H-Ras 

(HA-tagged; ≈24kDa, lane 4) as positive control are evident in this blot. The blot was re-

probed against β-actin (≈43kDa) as a loading control. C) A quantification diagram of the 

relative intensity for endogenous Ras (left) and Rac (right) in transfected TrkB-B5 cells 

only in the absence of BDNF (n=3). The blots were normalized to the level of β-actin 

expression.  
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2.4 Discussion 

In this study, we have addressed whether RasGrf1 activates both Ras and Rac in 

response to TrkA and TrkB receptors and whether one or both are essential to NGF and 

BDNF-mediated neurite outgrowth in PC12 and TrkB-B5 cells. We assayed 

Trk/RasGfr1-mediated activation of Ras and Rac in both HEK cells and PC12 cells and 

observed a TrkA-dependent increase in the activation of Rac in HEK cells, while 

activation of Ras in this context was decreased. In contrast, in RasGrf1-transfected PC12 

cells, we observed the opposite response and found that NGF-induced the activation of 

Ras while Rac activity was constitutive and did not appear to change in response to NGF 

stimulation. By comparison, analysis of RasGrf1 potentiation of neurite outgrowth in 

both PC12 and TrkB-B5 cells, and the analysis of site-directed mutants in RasGrf1, 

revealed an essential role for both Ras and Rac in mediating RasGrf1’s enhancement of 

neurotrophin stimulated neurite outgrowth. Our inability to detect NGF stimulation of 

Rac activity in PC12 cells was surprising given that Rac activity is required for neurite 

outgrowth. This may either reflect the fact that RasGrf1 was co-transfected with H-Ras in 

the GTP binding assay or that the kinetics of NGF-induced activation Rac are different 

than Ras and were not detected at the time point used in assay (5 min). We also found 

that the neurotrophin and RasGrf1-dependent enhancement of neurite outgrowth is not 

affected by the site-directed mutant S
916

A which has been reported as a site of PKA 

phosphorylation and activation of RasGrf1 signaling in PC12 cells (Baouz et al., 2001) as 

well as in neurons of the cerebral cortex (Yang et al., 2003). Moreover, the PKA 

inhibitor, H89, did not affect neurotrophin-induced enhancement of RasGrf1 signaling in 

the neurite outgrowth assays. Altogether, our results show a prominent role for RasGrf1 
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activation of both Ras and Rac downstream of neurotrophin-activated Trk receptors that 

are essential in mediating changes in cellular morphology, specifically, neurite 

outgrowth.   

RasGrf1 has been shown in other studies to be an activator of both Ras and Rac in 

transfected HEK cells. Specifically, in HEK and Cos-7 cells, RasGrf1 activates Ras 

downstream of the non-receptor tyrosine kinase ACK1, cAMP-activated PKA, calcium 

and GPCR activity (Mattingly, 1999; Kiyono et al., 2000b; Yang et al., 2003). 

Conversely, RasGrf1 activates Rac downstream of the non-receptor tyrosine kinase Src 

(Kiyono et al., 2000a). While the specific mechanisms involved in regulating the 

activation of these distinct GTPases in HEK cells have not been determined, it is possible 

that the assembly of scaffolding complexes facilitated by the Trk receptor or its substrates 

may also re-direct the activity of RasGrf1 away from Ras following the initial stimulation 

with NGF. Specifically, RasGrf1 activity toward Rac and p38- MAP kinase, in 

transfected HEK cells, has recently been shown to depend on the assembly of a complex 

involving the scaffolding protein IB2/JIP2 (Buchsbaum et al., 2002). Moreover, RasGrf1 

has also been shown to interact with a microtubule-destabilizing factor SCLIP (SCG10-

like protein) which inhibits its ability to promote Rac activation and neurite outgrowth 

(Baldassa et al., 2007). 

RasGrf1 has also been shown to preferentially activate H-Ras but not N or K-Ras 

(Jones and Jacksonet., 1998). Different Ras subtypes are specific to differentiative or 

proliferative pathways. In particular, H-Ras, but not K-Ras, signaling through the 

Raf/MEK/MAPK pathway requires endocytosis and endocytotic recycling (Porat-Shliom 

et al., 2008). Other Ras types also play specific roles in PC12 differentiation. For 
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example, M-Ras generates sustained activation of Erk and neurite outgrowth in an NGF-

dependent manner (Sun et al., 2006) and RasGrf1 also interacts with M-Ras (Quilliam et 

al., 1999), which is an important protein for the development of dendritic spines in 

primary neuronal cultures (Harvey et al., 2008). RasGrf1 is a neuronal protein and we 

have seen that it alters cellular morphology in response to NGF activated TrkA in PC12 

cells (Zippel et al., 1997; Robinson et al., 2005) as well as BDNF-activated TrkB (this 

study). These studies suggest that within primary neurons, TrkB-activated RasGrf1 will 

serve a role in altering cellular morphology such as branching or dendritic spine density 

through BDNF-dependent activation of RasGrf1 and its subsequent activation of either 

H- or M-Ras.    

The data presented here has noted some important differences in several published 

PC12 studies regarding the importance and expression levels of H-Ras and its effect on 

RasGrf1-mediated differentiation. Yang and Mattingly (2006) did not find detectable 

levels of endogenous H-Ras in their PC12 cell line and did not observe differentiation in 

the absence of over-expression of transfected H-Ras (Baldassa et al., 2007). In contrast, 

in our studies and those by others (Baldassa et al., 2007), we both observed endogenous 

expression of H-Ras and that over-expression of RasGrf1 itself could induce a basal level 

of neurite outgrowth in the absence of NGF. Moreover, we found that co-expression of 

H-Ras with RasGrf1 in PC12 cells stimulated the basal neurite outgrowth response and 

completely eliminated the ability to detect an essential role for Rac in neurotrophin-

induced neurite outgrowth. While Baldassa et al., (2007) observed a specific requirement 

for Rac activation by RasGrf1 in mediating constitutive neurite extension in PC12 cells, 

Yang and Mattingly (2006) observed a requirement for H-Ras co-expression and 
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activation and reported no role for Rac in this process. Instead, they suggested that the 

expansion in soma size in co-transfected cells was dependent on Rac activity (Yang and 

Mattingly, 2006). While we also observed an expansion in soma size in cells co-

transfected with RasGrf1 and H-Ras, this was not observed in either PC12 or TrkB-B5 

cells expressing RasGrf1 alone, in either the absence or presence of neurotrophin 

stimulation. Thus, the expanded 10-fold increase in cell soma size may reflect an artifact 

of H-Ras over-expression. In fact, under conditions of high levels of Ras expression, 

some researchers have reported that Ras is able to directly bind and activate B-Raf and 

small G proteins associated with differentiation (Kao et al., 2001).   

Importantly, our study focused on NGF and BDNF-dependent RasGrf1 enhancement 

of neurite outgrowth. The fact that RasGrf1 specifically alters neuritic growth in response 

to both NGF and BDNF, through the activation of specific Ras family GTPases, suggests 

a potential role for RasGrf1 in mediating Trk-dependent structural changes underlying 

the formation of synapses or dendritic spines in neuronal cells. Such functions would 

further contribute to our understanding of how TrkB and RasGrf1, both essential proteins 

for learning and memory, might be mediating aspects of synaptic plasticity within the 

mature brain. 
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Chapter 3 

A novel site of tyrosine phosphorylation on RasGrf1 guanine nucleotide 

releasing factor 

3.1 Introduction  

Neurotrophins including nerve growth factor (NGF), brain-derived neurotrophic factor 

(BDNF), neurotrophin 3 (NT3) and neurotrophin 4/5 (NT4/5) initiate their biological 

functions in part by binding to the Trk family of receptor tyrosinse kinases (Meakin, 

2000; Reichardt, 2006).  Upon neurotrophin binding, the two receptor subunits dimerize, 

resulting in tyrosine-autophosphorylation in the intracellular kinase domain. The major 

sites of phosphorylation on rat TrkA include tyrosine 499, 679, 683, 684, and 794. 

Tyrosine residues 679, 683 and 684 form part of the activation loop of the kinase while 

tyrosine 499 and 794 serve as docking sites for intermediate signaling (adaptor) 

molecules (Hanks et al., 1988; Ibanez, 1993; Heldin, 1995; Hubbard, 1997), including 

Collagen homology domain (Shc) family proteins and Fibroblast growth factor Receptor 

Substrate 2 (FRS2) both of which compete to bind Tyr
499

 and phospholipase Cγ-1 (PLCγ-

1) which binds to Tyr
794

 (Stephens et al., 1994; Meakin et al., 1999; Minichiello, 2009). 

Through these adaptor molecules, Trk is able to activate three major signaling pathways 

including the Ras-mitogen activated protein kinase (Ras-MAPK) pathway underlying cell 

proliferation and differentiation, the phosphotidylinositol-3 kinase (PI3K)-Akt pathway 

promoting cell survival, and the phospholipase Cγ-1-Ca
2+

 pathway leading to synaptic 

plasticity (Reichardt, 2006; Minichiello, 2009).  

Although several previous studies suggest that Sos exchange factor couples 

tyrosine kinase signaling pathway to the activation of Ras, and brain-specific guanine 



87 

 

nucleotide exchange factor, RasGrf1, couples G-protein signals to the activation of Ras 

(Buday and Downward, 1993; Egan et al., 1993; Shou et al., 1995; Zippel et al., 1996; 

Mattingly and Macara, 1996; Mattingly, 1999), a large body of evidence have indicated 

that Trk can also recruit RasGrf1 to promote neurite outgrowth and differentiation in 

PC12 cells (MacDonald et al., 1999; Ciccarelli et al., 2000; Robinson et al., 2005; Yang 

et al., 2003; Yang and Mattingly, 2006).  

Ras guanine nucleotide exchange factors, namely RasGrfs (Shou et al., 1992), 

previously known as CDC25Mm (Martegani et al., 1992; Wei et al., 1992) belong to a 

family of guanine nucleotide exchange factors (GEFs), and present in two forms of 140 

kDa-RasGrf1 which is highly expressed in the nervous system particularly in the cortex, 

hippocampus and hypothalamus (Zippel et al., 1997; Sturani et al., 1997), and 130 kDa-

RasGrf2 which shows a high sequence homology to RasGrf1 (80%), and is expressed 

ubiquitously, but is also present within mature brain (Fam et al., 1997; Anborgh et al., 

1999).  

Structurally, RasGrf1 is a multi-domain protein (Figure 3.1) including a pleckstrin 

homology (PH) domain in the N-terminus, a coiled coil (CC) and IQ motif, a Db1 

homology domain (DH), a REM motif, a cyclin destruction box (CDB) and a cell 

division cycle 25 (CDC25) domain at the C-terminus. The PH domain is necessary for 

RasGrf1 localization to the plasma membrane (Buchsbaum et al., 1996), and has been 

suggested to bind to phosphoinositides and other types of phospholipids in the membrane 

(Harlan et al., 1994; Lemmon and Ferguson, 2000; Varnai et al., 2002). In addition, the 

PH domain may also serve as a putative phosphotyrosine binding (PTB) domain (Balla, 

2005; Cowburn, 1997), and bind to βγ subunits of G protein-coupled receptors (Touhara 
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et al., 1994; Shou et al., 1995; Mattingly and Macara, 1996; Zippel et al., 1996). This 

domain also interacts with receptor tyrosine kinases through its HIKE motif (Robinson et 

al., 2005). Coiled coil domains play a role in protein-protein interaction in cooperation 

with PH1 and IQ domains. The IQ domain interacts with calmodulin, and in response to 

calcium elevation, RasGrf1 is activated by binding of calcium/calmodulin to the N-

terminal IQ motif (Buchsbaum et al., 1996; Farnsworth et al., 1995). The DH domain 

binds the Rho family of GTPases, in particular Rac1, and promotes guanine nucleotide 

exchange activity toward Rac1 (Freshney et al., 1997; Kiyono et al., 1999; Innocenti et 

al., 1999). The REM motif plays a role in stabilization of the core CDC25 domain, and 

CDB (or PEST) is a region rich in proline, glutamic acid, serine and threonine (PEST) 

amino acids, that constitutes a hypothetical target for proteolysis, an additional 

mechanism to regulate the cellular level of RasGrf1 protein (Rogers et al., 1986; Baouz, 

et al., 1997;; Gnesutta et al., 2001). Lastly, the CDC25 domain facilitates the activation of 

Ras-GTPases (Tian and Feig, 2001; Cen et al., 1993; Wei et al., 1994).  

A role for RasGrf1 is to promote the exchange of GDP for GTP on small GTPases 

such as Ras and Rac, acting as a molecular switch between active GTP-bound and 

inactive GDP-bound states (Tian et al., 2004; Katoh et al., 2000). Small GTPases have a 

crucial role to link external messages from the cell surface to several downstream 

signaling cascades underlying a wide variety of cellular processes including cell cycle 

regulation, cytoskeletal reorganization, neurite outgrowth and differentiation (Crespo and 

Leon, 2000; Malumbres and Pellicer, 1998; Huang and Reichardt, 2003). 

In response to upstream signaling, RasGrf1 not only undergoes serine/threonine 

phosphorylation by protein kinase A (Farnsworth et al., 1995; Schmitt et al., 2005; 
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Mattingly and Macara, 1996), but it has also been documented in several studies that 

RasGrf1 is tyrosine phosphorylated by the non-receptor tyrosine kinase Src, leading to 

the activation of Rac (Kiyono et al., 2000a) and Ack1, resulting in activation of Ras 

(Kiyono et al., 2000b). RasGrf1 has also been shown to be tyrosine phosphorylated by 

the Trk family of receptor tyrosine kinases (Robinson et al., 2005). However, the sites of 

tyrosine phosphorylation, whether they are essential to the enhancement of neurite 

outrgrowth and whether they affect the activation of either Ras or Rac-GTPases have not 

been addressed. 

In this study, we identified novel phosphorylation sites in the CDC25 domain of 

RasGrf1, using site directed mutagenesis, and determined the level of RasGrf1 tyrosine 

phosphorylation by these mutants after either NGF or BDNF stimulation. We also 

examined the ability of these mutants to facilitate NGF-mediated neurite outgrowth in the 

PC12 cell line, a neuronal-like model system widely used to study the mechanisms of cell 

differentiation downstream of TrkA receptor as well as in PC12-derived cells, (namely 

TrkB-B5) over-expressing TrkB receptors.   

3.2 Materials and Methods 

3.2.1 Reagents. Antibodies to RasGrf1(C-20, sc-224), Trk (C-14), anti-H-Ras and anti-

Myc (9E10) were from Santa Cruz. Anti-Rac1 and TrkB antibodies were from BD 

Transduction Laboratories. Mouse monoclonal β-actin antibody was from Sigma. Anti-

phosphotyrosine (p-Tyr-100) was from Cell Signaling. Rabbit antibodies to the carboxyl-

terminal 14 residues of TrkA (1478) were prepared and affinity purified using standard 

techniques (Robinson, 2008). HRP-coupled goat anti-mouse and goat anti-rabbit 

secondary antibodies were from The Jackson Laboratories. NGF was from Harlan 



90 

 

Products for Bioscience and human recombinant BDNF was from R&D Systems. The 

DC Protein Assay Kit was from Bio-Rad. 

3.2.2 Plasmids. The following plasmids have been previously described: full-length 

mouse RasGrf1 under control of the human elongation factor 1a promoter (pEFP-

RasGrf1) (Anborgh et al., 1999); pCMX-rat TrkA (wild-type) and rat TrkB (Meakin et 

al., 1999). pEGFP was from Clontech. pcDNA-HA-H-Ras was the gift from J. Keller 

(Vanderbilt University Medical Center, Nashville, TN).  

3.2.3 Cell Lines. HEK 293T cells were cultured under standard conditions in DMEM 

with 5% supplemented calf serum (SCS), 5% FBS (Hyclone), and 50 µg/ml gentamycin 

sulfate (Sigma). PC12 rat adrenal pheochromocytoma cells were maintained in DMEM 

with 5% SCS and 5% horse serum (Hyclone), while TrkB-B5 (nnR5 cells stably over-

expressing HA-tagged TrkB receptors) have been described previously (Meakin, 2000; 

Meakin and MacDonald, 1998). These were cultured in 5% SCS and 5% horse serum in 

the presence of 100 µg/ml G418 and 50 µg/ml gentamycin sulfate. 

3.2.4 Immunoprecipitations and Western Blots. Transfections were performed 

following standard calcium phosphate (HEK) or Lipofectamine 2000 (PC12 or TrkB-B5 

cells; Invitrogen) techniques using a DNA to Lipofectamine ratio of 1:2. Briefly, 1.5 x 

10
6
 cells per 100 mm dish were co-transfected with 0.5-5 µg of each indicated plasmid. 

Lysates were prepared in NP40 lysis buffer (1% Nonidet P-40, 137 mM NaCl, 20 mM 

Tris, 0.5 mM EDTA, pH 8.0) containing 1 mM PMSF, 1 mM sodium orthovanadate 

(NaVO4), 10 µg/ml aprotinin and 10 µg/ml leupeptin and assayed by 

immunoprecipitation. Lysates containing 0.5 to 3.5 mg of protein were 

immunoprecipitated with antibodies (0.5 µg anti-Trk1478, or 1 µg anti-RasGrf1), in 
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addition to 10 µl of washed 50% slurry Pansorbin (Calbiochem), at 4 
o
C overnight and 

were washed 3 times with fresh NP-40 lysis buffer on the next day. The bound proteins 

from immunoprecipitation or whole cell lysate (WCL) were re-suspended in 25 µl 

Laemmli sample buffer and heated at 65 °C for 10 min. Samples were then resolved on 6-

12% SDS-polyacrylamide gels and transferred (5 volts, 1-2 hours) to polyvinylidene 

flouride membranes (PVDF, Pall Life Sciences). Blocking prior to primary antibody 

incubation was performed for 1 h at room temperature in 10 ml of 10% milk powder and 

Tris buffered saline with tween-20 (TBS-T). Western Blots were incubated with primary 

antibody at 4 
o
C for 16 h, and then washed for 1 h in TBS-T. Westerns were then blotted 

in 10 ml 10% milk powder and secondary antibody for 1 h at room temperature. 

Following washes in TBS-T for 1 h, westerns were exposed to enhanced 

chemiluminescence (ECL) reagents and developed. Primary antibody dilutions are as 

follows: anti-RasGrf1 1:10,000; anti-Trk (1478) (1:20,000), anti-TrkB (BD Transduction 

Laboratories) (1:2000), anti-Myc (1:2000); anti-pTyr100 (1:10,000); anti-H-Ras 

(1:5000); and anti-Rac1 (1:5000), anti-actin (1:20000). HRP-coupled secondary 

antibodies were used at 1:10,000. 

3.2.5 Neurite Response Assay and Analysis of Cell Morphology. PC12 or TrkB-B5 

Cells were plated onto 50 µg/ml poly-D-lysine (Sigma) coated 30 or 100 mm dishes and 

transfected with pEGFP (0.5 µg) plus Empty plasmid (1 µg), pcDNA-HA-Ras (0.5 µg), 

pEFP-RasGrf1 (1 µg) with transfection efficiencies of 70 – 90% (Lipofectamine 2000). 

Fresh media and non-saturating levels of 1 ng/ml NGF or BDNF (NGF for PC12, BDNF 

for TrkB-B5) were added at 24 h intervals on each of 4 successive days. On each day 

(from day one at 24 h after transfection to day four), the percentage of EGFP-expressing 
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cells in >10 randomly selected fields, at least 200 cells pre field, were scored for neurite 

outgrowth using an inverted fluorescent microscope (1 x 70 [Olympus]; Diaphot 300 

[Nikon]) at a magnification of 200X. The percentages of green cells with a length of 

neurite greater than 2 cell bodies in diameter were calculated. Three independent neurite 

outgrowth experiments (n=3) were performed and the percentage of EGFP-transfected 

cells extending neurites, between samples, was statistically analyzed by One way-

ANOVA with Post-Tukey test and paired student t-test. TrkA and RasGrf1 expression 

and tyrosine phosphorylation was confirmed following the counts performed on day four, 

by immunoprecipitation of 500 µg to 3.5 mg of protein or loading whole cell lysate on 

SDS-PAGE gel and western blotting. The relative densities were then statistically 

analysed by paired student t-test for significant differences between samples (n=3). 

3.3 Results 

New sites of RasGrf1 tyrosine phosphorylation were identified in this study using site 

directed mutagenesis in specific RasGrf1 functional domains followed by analysing their 

effect on neurotrophin-induced neurite outgrowth in PC12 cells or PC12-derived cell 

lines over-expressing TrkB receptor.  

3.3.1 Tyrosine residues Y
95

 and Y
233

 in the PH1-IQ domain on RasGrf1 are sites of 

tyrosine phosphorylation.  

Since the PH1 domain of RasGrf1 (Figure 3.1) was determined to interact with 

Trk in vitro (Ciccarelli et al., 2000; Robinson et al., 2005), and the IQ domain is activated 

by calmodulin (Buchsbaum et al., 1996; Farnsworth et al., 1995), the PH1-IQ region of 

RasGrf1 was initially targeted by site directed mutagenesis. Within this region there were 

a total of 7 potential phosphotyrosine acceptor sites (Tyr
23

, Tyr
54

, Tyr
66

, Tyr
95

, Tyr
130

, 
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Tyr
145

, Tyr
233

) (Figure 3.2A) and while some residues were predicted to be more likely 

sites of phosphorylation, a series of combinatorial mutants were generated (Fig 3-2A). 

Myc-tagged RasGrf1 PH1-IQ domain constructs containing alanine substitution 

mutations at these residues were then co-transfected with TrkA into HEK cells and the 

level of tyrosine phosphorylation determined in response to NGF (Robinson, 2008). As 

shown in Figure 3.2, among the various potential sites of tyrosine phosphorylation on 

PH-IQ, it appeared the NGF stimulation increased the phosphorylation of RasGrf1 wild 

type and PHIQ1, but not PHIQ2 and PHIQ3 (Figure 3.2B). Since the only difference 

between PHIQ2 relative to PHIQ1 is the Y
233

A on PHIQ2, Y
233

 is suggested as a major 

site of RasGrf1 tyrosine phosphorylation by NGF-mediated TrkA activation. Moreover, 

these results indicate that residues Y
23

, Y
53 

and Y
145

 are not acceptor sites of tyrosine 

phosphorylation since they were not mutated in the PHIQ2 construct and this construct 

was not phosphorylated. However, residues Y
66, 95, 130

 could still be sites of additional 

tyrosine phosphorylation as these sites were mutated in both the PHIQ2&3 constructs, 

both of which were not phosphorylated. Thus, to ensure whether the level of decrease in 

phosphorylation in PHIQ2 and PHIQ3 are due to only Y
233

 or potentially to other sites at 

Y
66

, Y
95

 and/or Y
130

 , two other mutants were generated in the PH1 domain and tested, 

namely, Y
95

A and Y
130

A (Figure 3.2A). Interestingly, the results of this experiment 

revealed that the Y
95

A mutant in the PH1 domain reduced tyrosine phosphorylation levels 

remarkably, suggesting that Y
95

 is also a target of NGF-dependent phosphorylation of 

RasGrf1 (Figure 3.2C) (Robinson, 2008).  
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3.3.2 Neurite outgrowth is independent of RasGrf1 tyrosine phosphorylation in the 

PH1-IQ domains.  

Given the fact that Y
95

 and Y
233

 are the major sites of tyrosine phosphorylation on 

in the PH1-IQ domains in RasGrf1 in HEK cells, changes in NGF-mediated neurite 

outgrowth were next evaluated for the RasGrf1-Y
95/233

A double mutant (called RasGrf1-

M2) relative to RasGrf1-WT in PC12 cells in the presence of co-transfected H-Ras 

(Robinson, 2008). To ensure that these phosphorylation sites are functionally relevant, 

PC12 cells were transfected with either RasGrf1 wild type or RasGrf1-Y
95/233

A mutant 

and the percentage of cells with neurite outgrowth was assayed after NGF stimulation. As 

shown in Figure 3.3A, the RasGrf1-Y
95/233

A mutant increased neurite outgrowth 

significantly (34%) comparable to RasGrf1 wild type (38%) rather than being reduced 

suggesting that Y
95/233

A sites of tyrosine phosphorylation are not involved in neurite 

outgrowth. The level of RasGrf1 tyrosine phosphorylation of wild type and Y
95/233

A 

mutant in PC12 cells was shown in Figure 3.3B. The RasGrf1-Y
95/233

A mutant appears to 

remain phosphorylated in response to NGF in PC12 cells, comparable to RasGrf1 wild 

type (compare lane 6 to lane 4).   

3.3.3 Tyrosine Y
1048

A and Y
1062

A in CDC25 domain are involved in RasGrf1 

tyrosine phosphorylation and neurite outgrowth.  

Since it is well documented that RasGrf1 activates Ras by its CDC25 domain, we 

next targeted this region for site-directed mutagenesis. In a study by Vanoni et al., (1999), 

W
1056

 on RasGrf1 was suggested as a binding site for GDP-Ras-GTPase complex, 

tempting us to consider that tyrosine residues around this area might be involved in 

RasGrf1-mediated neurite outgrowth downstream of Trk. Thus, tyrosine residues Y
1048
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and Y
1062

 were next targeted by site directed mutagenesis as they were predicted to be 

potential sites of phosphorylation. The prediction has been made based on some criteria 

such as the optimal protein-protein interaction of RasGrf1 and its cognate binding 

proteins, the primary group sequences surrounding these phosphoresidues, and spatial 

configuration for the accessibility of phosphoresidues to be able to predict the location of 

these phosphorylation sites. This new mutant was made from the previous RasGrf1 triple 

mutant (Y
95/130/233

A) that had been shown to contain major sites of RasGrf1 tyrosine 

phosphorylation in the PH1 and IQ domains (Robinson, 2008). Since RasGrf1 is 

expressed primarily in the brain accordingly with TrkB, neurite outgrowth for RasGrf1-

WT and its mutants were further addressed in TrkB-B5 cells. Thus to ensure that these 

phosphorylation sites, and their effect on neurite outgrowth are functionally relevant, 

TrkB-B5 cells were transfected with RasGrf1-WT and the RasGrf1-M3/M5 mutants in 

the absence of co-transfected H-Ras. As mentioned earlier (Chapter 2), the original idea 

of using H-Ras in PC12 cell study was based on the observation by Yang and Mattingly 

(Yang and Mattingly, 2006) that PC12 cells don’t express sufficient endogenous H-Ras. 

However, at the time of the current experiments, we discovered that both our PC12 and 

TrkB-B5 cells do express endogenous H-Ras. As shown in Figure 3.4B, while RasGrf1-

WT and Y
95/130/233

A mutant (RasGrf1-M3) demonstrated significant increase (both 

approximately 16%) in neurite outgrowth in comparison to empty plasmid (4%), the level 

of neurite outgrowth was reduced significantly by the RasGrf1-Y
95/130/233/1048/1062

A mutant 

(RasGrf1-M5) (11%) relative to RasGrf1 wild type, implicating Y
1048

 and Y
1062

 are 

primary sites of tyrosine phosphorylation that are important for neurotrophin-mediated 

neurite outgrowth. However, since the RasGrf1-M5 mutant still demonstrated neurite 
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outgrowth that is still significantly increased relative to the negative control (empty 

plasmid), it is possible that there are potentially additional tyrosine phosphorylation sites, 

within the DH domain, that are involved in neurite outgrowth. The level of RasGrf1 

phosphorylation is shown in Figure 3.4C as well as the relative density in right panel. 

While RasGrf1-WT is phosphorylated in response to BDNF, the level of tyrosine 

phosphorylation is significantly (nearly 2-fold) decreased compared to RasGrf1-WT, but 

still detectable, in the RasGrf1-M5 mutant. 
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Figure 3.1. A schematic diagrams of RasGrf1 protein. Mouse RasGrf1, a 140kDa 

protein with 1262 amino acids consists of several binding domains including a binding 

domain to interact with TrkB (PH1; pleckstrin domain), and a region that binds with the 

NR2B subunit (amino acids 714-913), coiled-coil motif (CC), ilimaquinone (IQ) domain 

to bind calmodulin, Db1 homology domain (DH) to activate Rac, the second pleckstrin 

domain (PH2), Ras exchange motif (REM), cycline destruction box (CDB), and the 

catalytic domain (CDC25) to activate Ras. S
916

 is the site for RasGrf1-phosphorylation by 

PKA, the W
1056

 on RasGrf1 has been suggested as binding site for GDP-Ras, and the 

sequence area encoding amino acids 714-913 have been described as a neural domain 

(ND) which binds the NR2B subunit of NMDA receptor. The lower panel represents an 

amino acids sequence of mouse RasGrf1 with S
916

 shown in red color. 
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Figure 3.2. Tyrosine phosphorylation analysis of RasGrf1-PHIQ domains mutants 

in HEK cells. Tyrosine phosphorylation levels of RasGrf1 after site directed mutagenesis 

of tyrosine (Y) to alanine (A) in the PH1-IQ domain (Robinson, 2008) (n=3). A) A 

schematic diagram of RasGrf1 presenting the tyrosine mapping in PH1-IQ domains and 

different provided mutants. RasGrf1 contains 7 tyrosine sites in PH1 to IQ domains 

including tyrosine 23, 53, 66, 95, 130, 145, and 233. B) The level of tyrosine 

phosphorylation of RasGrf1 wild type (PHIQ-WT) and its point mutants including 

PHIQ1, PHIQ2, and PHIQ3 in HEK cells in respond to NGF. Note that Y
233

 involves in 

RasGrf1 tyrosine phosphorylation. C) The level of tyrosine phosphorylation in PH1-Y
95

A 

and PH1-Y
130

A point mutants. Note that Y
95

 appeared to be a site of tyrosine 

phosphorylation. 
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Figure 3.3. Neurite outgrowth assay of RasGrf1 wild type versus Y95/233A mutant 

in PC12 cells. PC12 cells were transfected with EGFP plus Empty-plasmid or RasGrf1-

WT/M2 mutant, in presence of H-Ras, treated with either NGF (1 ng/ml) for 4 

consecutive days or left un-stimulated. The percentage of cells with neurite length greater 

than two cell bodies in diameter were counted and statistically analyzed. Samples were 

immunoprecipitated (IP), separated by SDS-PAGE, and immunoblotted (IB) with 

indicated antibodies (n=3). * indicates statistical significance (P-value<0.05) of RasGrf1-

WT/M2 in presence of NGF relative to the Empty plasmid (Robinson, 2008). A) NGF-

mediated TrkA neurite outgrowth assay of RasGrf1 wild type (RasGrf1.WT) and the 

RasGrf1-Y
95/233

A mutant in PC12 cells co-transfected with H-Ras. RasGrf1-Y
95/233

A 

mutant did not reduce neurite outgrowth relative to negative control. B) The level of 

tyrosine phosphorylation of RasGrf1 wild type and Y
95/233

A mutant in PC12 cells in 

response to NGF. Note that RasGrf1-M2 appeared to be still phosphorylated. 
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Figure 3.4. Neurite outgrowth assay of RasGrf1 wild type versus RasGrf1-CDC25 

domain mutant in TrkB-B5 cells. TrkB-B5 or HEK cells were transfected with EGFP 

plus Empty-plasmid or RasGrf1-WT/M3/M5 mutants (and TrkB construct for HEK cells 

only), treated with either BDNF (1 ng/ml) for 4 consecutive days or left un-stimulated. 

The percentage of cells with neurite length greater than two cell bodies in diameter were 

counted and statistically analyzed. Samples were immunoprecipitated (IP), separated by 

SDS-PAGE, and immunoblotted (IB) with indicated antibodies (n=3). * indicates 

statistical significance (P-value<0.05) of indicated construct in presence of BDNF 

relative to the Empty plasmid, and ** indicates significant decrease of RasGrf1-M5 

relative to wild type RasGrf1. A) A schematic diagram of RasGrf1 presenting the 

tyrosine mapping in CDC25 domain as well as different provided mutants including 

RasGrf1-Y
95/130/233

A (RasGrf1-M3) mutant in PHIQ domain and RasGrf1-

Y
95/130/233/1048/1062

A mutant (RasGrf1-M5). RasGrf1 contains 10 tyrosine sites in CDC25 

domain including tyrosine 1048, 1062, 1067, 1115, 1178, 1182, 1196, 1225, 1236, and 

1250. B) Neurite outgrowth assay of RasGrf1 wild type (RasGrf1-WT) and various point 

mutants including triple mutant of RasGrf1-M3 and RasGrf1-M5 mutants in TrkB-B5 

cells in respond to BDNF. RasGrf1-M5 mutant reduced neurite outgrowth significantly 

relative to RasGrf1-WT. C) The level of tyrosine phosphorylation in RasGrf1-WT and its 

M3 and M5 mutants in HEK cells. RasGr1-M5 significantly decreased the level of 

RasGrf1 phosphorylation. A quantification diagram of the relative density for the level of 

tyrosine phosphorylation is shown in right panel (n=3). The blots were normalized to the level of 

RasGrf1 protein expression. 
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3.4 Discussion 

In this study we have addressed novel sites of Trk-induced tyrosine 

phosphorylation in RasGrf1. Although some studies have indicated tyrosine 

phosphorylation of RasGrf1 (Kiyono et al., 2000a&b) downstream of Trk (Robinson et 

al., 2005), the specific site(s) of tyrosine phosphorylation on RasGrf1 have not yet been 

determined. The results here provide evidence about the properties of several tyrosine 

phosphorylation sites in different domains of RasGrf1 including the PH, IQ and CDC25 

domains. These domains have been selected based on a previous study, which 

demonstrated that PH and IQ domains are involved in both the interaction between Trk 

and RasGrf1, and in the level of RasGrf1-tyrosine phosphorylation (Robinson et al., 

2005). Furthermore, Ras activation (compared to Rac1) has been suggested as a 

prominent event for neurotrophin-dependent neurite extension downstream of RasGrf1-

CDC25 domain (Yang and Mattingly, 2006; Chapter 2). 

Firstly, while the PH1 domain of RasGrf1 is the major site of interaction between 

Trk and RasGrf1 (Ciccarelli et al., 2000; Robinson et al., 2005) and we find that it is in 

fact tyrosine phosphorylated in response to Trk activation, these sites of phosphorylation 

are not required during NGF-mediated neurite outgrowth in PC12 cells. The IQ domain 

of RasGrf1 also did not appear to be a site of tyrosine phosphorylation of RasGrf1 during 

NGF-mediated neurite outgrowth, although this domain has been indicated to cooperate 

with the PH domain in the interaction between Trk and RasGrf1 (Robinson et al., 2005). 

This result was expected as the IQ domain was suggested to bind calcium/calmodulin 

kinases in response to calcium (Buchsbaum et al., 1996; Farnsworth et al., 1995), by 
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which RasGrf1 undergoes serine phosphorylation at residue 916 (Farnsworth et al., 1995; 

Schmitt et al., 2005). 

Secondly, we demonstrate that specific tyrosine sites in the CDC25 domain are 

critical for tyrosine phosphorylation of RasGrf1 during neurotrophin-mediated neurite 

outgrowth. Specifically, tyrosine 1048 and/or tyrosine 1062 appear to be crucial for 

neurotrophin-dependent RasGrf1 tyrosine phosphorylation as well as enhanced neurite 

outgrowth. Further study is required to understand whether one or both tyrosine sites are 

necessary for RasGrf1 tyrosine phosphorylation. To answer this question, site directed 

mutagenesis of only Y
1048

A or Y
1062

A is recommended for future study. Interestingly, 

both tyrosine sites are located approximately beside Tryptophan 1056 (W
1056

), a site that 

has been indicated to be crucial for binding of RasGrf1 to Ras-GTPase (Vanoni et al., 

1999). It is possible that these phosphorylation sites cooperate with W
1056 

to bind and/or 

activate Ras-GTPases.  

Furthermore, in this study, the level of neurite outgrowth in RasGrf1-M5 still 

appeared to be slightly higher (nearly 2-fold) than negative control, and the level of 

reduction in tyrosine phosphorylation of RasGrf1-M5 is not completed, suggesting that 

other tyrosine residues might be involved in RasGrf1 tyrosine phosphorylation to 

maximize neurotrophin-mediated neurite outgrowth. RasGrf1 is also tyrosine 

phosphorylated by Src, which leads to the activation Rac (Kiyono et al., 2000a), 

suggesting that the DH domain of RasGrf1, the domain for Rac activation, might be a site 

of RasGrf1 tyrosine phosphorylation during neurotrophin-mediated neurite outgrowth. 

Since only the PH, IQ and CDC25 domains were investigated in this study, tyrosine 

phosphorylation sites in the DH domain of RasGrf1 remain to be investigated. In this 
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regard, the DH domain has eight tyrosine sites: Y
259

, Y
308

, Y
337

, Y
346

, Y
367

, Y
384

, Y
392

, 

and Y
415

, two of which (Y
259

 and Y
415

) have been predicted to be sites of tyrosine 

phosphorylation and can be targeted by site directed mutagenesis in future studies. It 

would be also interesting to use this mutant construct to investigate RasGrf1-mediated 

GTPase activity in vitro in PC12 cells and in vivo in primary neuronal cultures to 

understand how tyrosine phosphorylation co-ordinates RasGrf1 toward either Ras or Rac 

activation.  

Collectively, these data suggest a novel site of tyrosine phosphorylation within the 

CDC25 domain of RasGrf1 during neurotrophin-mediated neurite outgrowth, and that 

Y
1048

 and/or Y
1062

 are crucial for neurotrophin-mediated neurite outgrowth through 

RasGrf1 downstream of Trk receptors. 
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Chapter 4 

RasGrf1 cross talks between TrkB and NMDA receptors 

4.1 Introduction 

The high affinity tropomyosin-related kinases (Trk), including TrkA, B and C, are 

receptors for a family of closely related growth factors collectively termed the 

neurotrophins. These neurotrophins include nerve growth factor (NGF) which binds 

TrkA, brain-derived neurotrophic factor (BDNF) and neurotrophin 4 (NT4) which bind 

TrkB, and neurotrophin 3 (NT3) which binds TrkC respectively (Meakin, 2000; 

Reichardt, 2006). The Trk receptor tyrosine kinases function primarily in the regulation 

of pathways involved in neuronal differentiation and survival. Of particular relevance to 

my thesis, TrkB regulates synapse development and plasticity in the central nervous 

system in addition to the mechanoreceptive sensory neurons in the peripheral nervous 

system (Reichardt, 2006; Kaplan and Miller, 2000; Huang and Reichardt, 2001).  

The TrkB receptor is expressed widely on both presynaptic and postsynaptic 

membranes of the nerve terminal and dendritic spines inside the brain including the 

cortex and hippocampus. Accordingly, in addition to its well known effects on neuronal 

outgrowth and differentiation, BDNF-mediated TrkB activation is crucial in various 

aspects of synaptic plasticity and modulates dendritic branches and spine formation in the 

entire brain including the cortex, hippocampus, cerebellum and amygdala (Carvalho et 

al., 2008; Lu et al., 2008; Amaral et al., 2007; Minichiello, 2009). 

By indirectly modulating the N-methyl-D-aspartate (NMDA) receptor, BDNF 

contributes in the regulation of the molecular processes of learning and memory namely 

long-term potentiation (LTP) and long-term depression (LTD) (Wu et al., 2004; Xu et al., 
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2006; Kang et al., 1997; Akaneya et al., 1997; Lessmann and Heumann, 1998; Levine 

and Kolb, 2000; Li et al., 1998). The evidence for a role of BDNF-mediated TrkB 

activation of LTP comes from the fact that any deletion in the Bdnf or trkB genes, in vivo 

blocking of BDNF binding to TrkB and/or pre-treating hippocampal slices with TrkB 

antiserum, has been found to either impair or significantly reduce the induction of LTP 

(Reichardt, 2006; Minichiello, 2009). LTP can be observed in the hippocampus, and also 

in other neural structures including the cerebral cortex, cerebellum and amygdala (Bauer 

et al., 2002; Nakazawa et al., 2006; Minichiello, 2009). Furthermore, LTP is dependent or 

independent of the NMDA receptor. However, the NMDA receptor-dependent model of 

LTP has been widely studied in the hippocampal area (Lisman, 2003).  

The NMDA receptor is an ionotropic channel that upon activation by in vivo 

glutamate or in vitro NMDA, allows the intracellular flow of Na
+
, and to a lesser extent 

Ca
2+

,
 
as well as extracellular flow of K

+
. Structurally, it is a heterotetrameric complex 

made up of two obligatory NR1 subunits, and two modulatory NR2 (A-D) subunits which 

control the electrophysiological properties of the NMDA receptor (Kutsuwada et al., 

1992; Monyer et al., 1992; Paoletti, and Neyton, 2007; Kohr, 2006). Although the 

NMDA receptor contributes to both LTP and LTD, several studies suggest that the NR2A 

subunits of the NMDA receptor contribute to LTP whereas the NR2B subunits promote 

LTD (Li et al, 2006; Kollen et al., 2008; Liu et al., 2004; Massey et al., 2004).  

The cell surface localization of the NMDA receptor is regulated by clathrin-

mediated endocytosis in which the 
1472

YEKL motif on the NR2B subunit serves a critical 

role in this internalization. It has been shown that phosphorylation of tyrosine 1472 

(Tyr
1472

) in the YEKL motif by Src family kinases uncouples the receptor from clathrin-
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mediated endocytosis and increases the cell surface retention and activity of the NMDA 

receptor (Nakazawa et al., 2001; Prybylowski et al., 2005).  

Although the mechanism by which BDNF regulates NMDA receptor-mediated 

neural plasticity is largely unknown, it appears that BDNF activation of TrkB modulates 

the tyrosine phosphorylation of the NR2B subunit of the NMDA receptors through which 

increases the retention of the receptors on the postsynaptic cell surface (Nakazawa et al., 

2001; Prybylowski et al., 2005). As a result of prolonged surface retention of the NMDA 

receptor, and responding to L-glutamate, the intracellular calcium levels increase in the 

postsynaptic neuron (Minichiello, 2009; Lin et al., 1998; Levine et al., 1998; Levine and 

Kolb, 2000). Increases in the Ca
2+

 influx in postsynaptic neurons results in the activation 

of a number of signaling molecules including protein kinase C (PKC), protein kinase A 

(PKA) and calcium calmodulin-activated kinases (CaMKII and IV) (Ghosh and 

Greenberg, 1995; West et al., 2001) leading to the initiation of signaling cascades that 

underlie neuronal development and synaptic plasticity (Li et al., 2006; Minichiello, 

2009).  

Among these kinases, PKA and CaMKII have been suggested to activate a Ras 

Guanine nucleotide exchange factor (RasGrf1)-dependent signaling pathway (Farnsworth 

et al., 1995) through phosphorylation of serine 916 (S
916

) on RasGrf1 (Schmitt et al., 

2005), and tyrosine-phosphorylation, at unknown sites, through non-receptor tyrosine 

kinases such as Src (Kiyono et al., 2000a) or the Cdc42-GTPase-dependent of the kinase 

Ack1 (Kiyono et al., 2000b). 

Ras-Guanine nucleotide Releasing Factors (RasGrfs) consist of two forms: 

RasGrf1 (140 kDa) which is highly expressed in the nervous system (Zippel et al., 1997), 
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and RasGrf2 (130 kDa), which shows a high degree of sequence homology (80%) to 

RasGrf1, and is expressed ubiquitously, but is also present within the mature brain (Fam 

et al., 1997; Anborgh et al., 1999). RasGrfs have been suggested to be a missing link in 

the NMDA receptor regulation of synaptic plasticity. They act as a specific calcium 

sensor to transmit signals from the NMDA receptor to the activation of appropriate 

GTPases and the induction of LTP or LTD (Li et al., 2006).  

It has been suggested that RasGrf1 interacts directly with the NR2B subunit of the 

NMDA receptor (Kraivinsky et al., 2003), through which RasGrf1 stimulates p38/MAP 

kinase activation leading to an increase in LTD. In contrast, RasGrf2 interacts with the 

NR2A subunit of the NMDA receptor and activates Erk/MAP kinase leading to an 

increase in LTP. However, both interactions are observed in a developmental-dependent 

manner, in particular after postnatal day 20 to 25 in the mouse (Li et al., 2006). It has 

been further shown that RasGrf1 promotes p38 activation by Rac in vitro while RasGrf2 

activates Erk-MAP kinase by targeting Ras-GTPases (Buchsbaum et al., 2002; Tian et al., 

2004).  

We have previously identified RasGrf1 as a novel substrate of Trk to facilitate 

neurite outgrowth in response to low doses of NGF stimulation in PC12 cells and BDNF 

stimulation in PC12-derived cells overexpressing TrkB namely TrkB-B5 cells (Robinson 

et al., 2005; Chapter 2). In this study, the potential of RasGrf1 to co-ordinate the 

activation and function of both TrkB and NMDA receptors was addressed using cortical 

and hippocampal slices from postnatal-30 adult mice. Furthermore, the interactions 

between the NR2B subunit and TrkB with RasGrf1 were determined, and the changes in 
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activation of Erk and p38 MAP kinase were characterized in response to BDNF and/or 

NMDA stimulation.  

4.2 Materials and Methods  

4.2.1 Reagents. 

The anti-RasGrf1 (C-20, sc-224), anti-RasGrf2 (sc-7591), anti-Trk (sc-11), anti-NMDA 

NR2B (NMDAε2 sc-1469), anti-NMDA NR2A (NMDAε1 sc-9056), anti-PSD95 (7E3, 

sc-6926), anti-Shc (sc-28883), normal mouse IgG (sc-2343), normal rabbit IgG (sc- 2027 

and normal goat IgG (sc-2028) antibodies were from Santa Cruz. The anti-TrkB mouse 

antibody #1494 was from (BioVision). Mouse anti-TrkB monoclonal antibody (610102), 

anti-ShcC (#610643) and anti-RasGrf2 (#610840) antibodies were from Transduction 

Labs. Rabbit anti-Trk antibodies (Trk1478) to the carboxyl-terminal 14 residues of TrkA 

were prepared and affinity purified using standard techniques (Robinson, 2008). Anti-

phosphotyrosine (p-Tyr-100, #9411S), anti-phospho-p38 MAP Kinase (Thr180/Tyr182, 

#9211S), anti-p38 MAP Kinase (9212), anti-phospho-Erk p44/42 (Thr202/Tyr204, 

#9106S) and anti-Erk p44/42 MAP Kinase (#9102) antibodies were from Cell Signaling. 

HRP-coupled goat anti-mouse, rabbit anti-goat and goat anti-rabbit secondary antibodies 

were from Jackson Laboratories. Human recombinant BDNF was obtained from R & D 

Systems and used at a concentration of 100 ng/ml final. NMDA (M3262) was used at a 

final concentration of 100 µM and was from Sigma. NMDA was used in conjunction 

with 10 mM KCl to promote depolarization.  

4.2.2 Plasmids and Cell Lines. 

The plasmids pEFP-RasGrf1 and pEFP-RasGrf2 (Anborgh et al., 1999), pCMX-rat TrkB 

(wild-type and kinase-dead) have been described previously (Meakin and MacDonald, 
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1998). HEK 293T cells (Graham et al., 1977) were cultured under standard conditions in 

Dulbecco’s modified Eagle media (DMEM) with 5% supplemented calf serum (SCS) and 

5% fetal bovine serum (FBS)(Hyclone) with 50 µg/ml gentamycin sulfate (Sigma). PC12 

rat adrenal pheochromocytoma cells were maintained in DMEM with 5% SCS and 5% 

horse serum (Hyclone). TrkB-B5 [nnR5 cells stably overexpressing HA-tagged TrkB 

receptors (pCMX-HATrkB)] have been described previously (Meakin and MacDonald, 

1998; Meakin, 2000). These cells were cultured in 5% SCS and 5% horse serum in the 

presence of 100 µg/ml G418 and 50 µg/ml gentamycin sulfate. 

4.2.3 Transfections, Immunoprecipitations, Western Blots. 

Transfections were performed following standard calcium phosphate (HEK 293T) or 

lipofectamine 2000 (PC12 cells, Invitrogen) transfection approaches (Jordan et al., 1996). 

Lipofectamine transfection was performed according to manufacturer’s protocol with a 

ratio of DNA to lipofectamine of 1:2. Basically, 1.5 x 10
6
 cells (100 mm dish) were co-

transfected with 0.5-5 µg of each indicated plasmid. Following 48 hrs expression, lysates 

were prepared in NP40 lysis buffer (1% Nonidet P-40, 137 mM NaCl, 20 mM Tris (pH 

8.0), 0.5 mM EDTA) containing 1 mM PMSF, 1 mM sodium orthovanadate (NaVO4), 10 

µg/ml aprotinin and 10 µg/ml leupeptin and assayed by immunoprecipitation. Lysates 

containing 0.5 to 3.5 mg of protein (concentrations determined using the DC Protein 

Assay Kit from Bio-Rad) were immunoprecipitated with 0.5 µg anti-Trk1478, 1 µg 

Trk1494 (BioVision) or 1 µg anti-RasGrf1 as indicated, in addition to 5 µl of washed 

Pansorbin (Calbiochem) or 2 µl γ-bind sepharose (Amersham Pharmacia Biotech) at 4 ºC 

overnight. After washing three times with NP-40 lysis buffer, bound proteins were re-

suspended in 25 µl Laemmli sample buffer and heated at 65 °C for 10 minutes. Samples 
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were then resolved on 6-12% SDS-polyacrylamide gels and transferred (5 volts, 1-2 

hours) to PVDF membranes (Pall Life Sciences). Blocking prior to primary antibody 

incubation was performed for 1 h at room temperature in 10 ml 10% milk powder and 

phosphate buffered saline with tween-20 (TBS-T) or 2% BSA (for phospho-antibodies). 

Westerns were blotted in 10 ml 10% milk powder with primary antibody at 4 ºC for 16 h 

followed by washing in TBS-T for 30 minutes. Westerns were then incubated in 10 ml 

10% milk powder and secondary antibody for 1 h at room temperature. Blots were 

washed for 30 minutes in TBS-T and exposed to enhanced chemiluminescence reagents 

(BioRad) and developed.  

Primary antibody dilutions for western blotting are as follows: anti-RasGrf1 and 

anti-RasGrf2 (Santa Cruz) 1:10,000; anti-RasGrf2 (Transduction Labs) (1:5000), anti- 

Trk(1478) (1:20,000), anti-TrkB 1494 (1:5000), anti-TrkB monoclonal antibody 

(Transduction Labs) (1:2000), anti-NR2B (1:2000), anti-NR2A (1:2000), anti-PSD95 

(1:2000), anti-ShcC (1:2000) and anti-pTyr-100 (1:10,000). anti-phospho-p38 MAP 

Kinase (1:2000), anti-p38 MAP Kinase (1:2000), anti-phospho-Erk p44/42 MAP Kinase 

(1:5000) and anti-Erk p44/42 MAP Kinase (1:5000). HRP coupled goat anti-mouse and 

goat anti-rabbit secondary antibodies were used at 1:10,000 dilution while HRP-coupled 

rabbit anti-goat was used at 1:5000 dilution. 

4.2.4 Neural Slice Analysis. 

Post-natal day 30-35 male CD1 mice were killed with O2/CO2 and their cortices dissected 

into the ice-cold-fresh- 95%O2/5%CO2 saturated Kreb’s Ringer Solution (11.1 mM 

glucose, 1.1 mM MgCl2, 1 mM Na2HPO4, 1.3 mM CaCl2, 25 mM NaHCO3, 120 mM 

NaCl, 4.7 mM KCl). Cortices were then embedded in 2% agarose and 300 µm coronal 
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slices were cut with a vibrotome (frequency 8 Hz, speed 4 Hz). Four slices of cortex (10 

slices of hippocampus) were placed into each well of a 6 well plate and incubated in 2 ml 

Kreb’s Ringer Solution for 1 h at 37° C with 95% O2/5%CO2. Slices were then 

stimulated for 15 minutes at 37 °C with 100 ng/ml BDNF, 100 µM NMDA with 10 mM 

KCl. Slices were removed from Kreb’s Ringer and immediately lysed in lysis buffer A 

(10 mM Tris-HCl pH7.5, 1 mM EDTA, 150 mM NaCl, 1% NP-40, 0.1% SDS, 1 mM 

PMSF, 10 µg/ml aprotinin, 10 µg/ml leupeptin and 1 mM NaVO3). Samples were briefly 

homogenized with a Polytron (2 × 30 second) followed by centrifugation at 1400 rpm for 

10 minutes at 4° C. The supernatant was removed, transferred to microfuge tubes and 

centrifuged again for 20 minutes at 4° C, 14,000 rpm (eppendorf Centrifuge 5417R, 

Hamburg, Germany). A protein assay was performed on each sample using a Bio-Rad Kit 

to determine the protein concentrations in each lysate. For co-immunoprecipitation in 

neural slices, prepared lysates (750 µg to 1.5 mg) were pre-cleared with γ-bind sepharose 

and normal mouse, goat or rabbit IgG (depending on specificity of the primary antibody 

to be used) for one hour. Following centrifugation at 4 °C, 14,000 rpm, supernatants were 

immunoprecipitated with anti- NR2B (1 µg), anti-TrkB (2 µg), anti-NR2A (1 µg) or IgG 

(1 µg) (as a negative control) in LysisA buffer with 2 µl γ- bind sepharose for 16 h at 4 

°C. Immunoprecipitations were washed twice in lysis buffer A, re-suspended in Laemmli 

sample buffer with 100 mM dithiotreitol (DTT) and incubated at 70 °C for 10 minutes. 

Samples were separated by 6% SDS-PAGE and western blotted with indicated 

antibodies. For analysis of phosphorylation of Erk and p38 MAP kinase, Laemmli sample 

buffer with 100 mM DTT was added to whole cell lysates from treated P16 or P30 slices 

and samples incubated at 70 °C for 10 minutes. Samples were separated by 12% SDS-
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PAGE and western blotted as mentioned above. The band intensity was quantified using 

a BioRad imaging system (ChemiDoc
TM

). Relative densities were evaluated compared to 

levels to that in the control lane as indicated in each figure. The means of three separate 

slice preparation were evaluated. Relative densities were then statistically analysed by 

paired student t-test for significant differences between two different stimulation 

conditions. 

4.3 Results 

A coordination of TrkB and NMDA receptors through the downstream signaling 

molecule, RasGrf1, was investigated in this study using post-natal day 30 (P30) acute 

cortical slices after stimulation with either BDNF and/or NMDA. Since several studies 

have suggested that RasGrf1 expression is regulated developmentally in the mouse brain 

(Ferrari et al., 1994; Zippel et al., 1997) with a maximum level being expressed in adult 

mouse cortex (2 months) (Li et al., 2006; Robinson, 2008), this study was performed of 

an age that was optimal for RasGrf1 expression.  

4.3.1 BDNF stimulation disrupts the interaction between NR2B and RasGrf1 in 

neural slices.  

As mentioned earlier, phosphorylation of Tyr
1472

 on the NR2B subunit of the 

NMDA receptor is necessary to retain the receptors on the cell surface (Nakazawa et al., 

2001; Prybylowski et al., 2005; Wu et al., 2007). Moreover, a direct interaction between 

the NR2B subunit of the NMDA receptor and RasGrf1 has been observed in primary cell 

culture (Krapivinsky et al., 2003). Thus, the phosphorylation status of NR2B and changes 

in RasGrf1 binding to NR2B were determined in adult mouse brain slices after 

stimulation with either BDNF and/or NMDA. As shown in Figure 4.1A, while there is a 
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basal level of Tyr
1472

 phosphorylation of NR2B under basal conditions (Figure 4.1A, left 

panel, lane 1), this level of phosphorylation is increased more than 2-fold after BDNF 

stimulation (lane 2). In comparison, co-stimulation with NMDA does not stimulate 

Tyr1472 phosphorylation (Figure 4.1A, lane 3) and, in fact, decreases or prevents the 

levels stimulated by BDNF (Figure 4.1A, left panel, lane 4). The expression level of 

NR2B was verified by blotting with the anti-NR2B antibody (Figure 4.1A, lower panel). 

Quantification of the levels of Tyr
1472

 phosphorylation is shown in the right panel (Figure 

4.1A).  

In addition, a small basal level of interaction between NR2B and RasGrf1 was 

detected in the absence of BDNF/NMDA stimulation (Figure 4.1B, left, lane 1) relative 

to negative control levels obtained with IgG (Figure 4.1B, lane 5), and this interaction 

was significantly increased almost 2-fold in the presence of NMDA (Figure 4.1B, left, lane 

3). However, an interaction between RasGrf1 and NR2B was not observed following 

BDNF stimulation (Figure 4.1B, Lane 2) and the NMDA-induced increase in interaction 

was lost in the presence of BDNF (Figure 4.1B, left, lane 4). This result suggests that 

BDNF-mediated TrkB activation may regulate NMDA receptor signaling by stimulating 

RasGrf1 dissociation from the NR2B subunit. The expression level of NR2B was verified 

using the anti-NR2B antibody (Figure 4.1B, lower panel), and a quantification of the 

levels of NR2B-RasGrf1 interaction, normalized to the level of NR2B, is shown in the 

right panel (Figure 4.1B, right). 

Since NR2A subunit of the NMDA receptor interacts with RasGrf2 (Li et al., 

2006), and the PH domain of RasGrf1 which mediates binding to Trk (Robinson et al., 

2005; Graham et al., 1977) is highly similar to the PH domain of RasGrf2; thus, BDNF-
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dependent changes in the interaction between NR2A and RasGrf2 was also tested. As 

shown in Figure 4.1C, NR2A was co-immunoprecipitated with RasGrf2 in response to 

NMDA (lane 5) stimulation relative to the negative control of IgG alone (Figure 4.1C, 

lanes 1 and 2). However, no loss of NMDA-induced interaction was observed in the 

presence of BDNF (Figure 4.1C, lane 6), which is in contrast to what was observed with 

NR2B and RasGrf1. These data suggest that BDNF stimulation does not change the 

interaction between NR2A and RasGrf2, and that BDNF-TrkB modulation of the NMDA 

receptor is specific to RasGrf1 and NR2B.   

4.3.2 BDNF stimulation increases the association of RasGrf1 towards TrkB.  

A previous study indicated a direct interaction between Trk and RasGrf1 in 

transfected HEK293 cells and consequently, the binding sites on both TrkB and RasGrf1 

have been mapped (Robinson et al., 2005). Thus, the interaction between Trk and 

RasGrf1 was also assessed by co-immunoprecipitation of lysates of P30 cortical slices to 

determine the association of RasGrf1 to TrkB after BDNF stimulation.  

As shown in Figure 4.2A, while there is a basal interaction between RasGrf1 and 

TrkB before stimulation (Figure 4.2A, left, lane 3), relative to negative control of IgG 

(Figure 4.2A, left, lane 7 and 8), this interaction was significantly increased almost 2.5-

fold upon BDNF stimulation (Figure 4.2A, left, lane 4) compared to unstimulated 

condition, indicating that BDNF stimulation increases RasGrf1 association with TrkB. To 

further verify the interaction between TrkB and RasGrf1, an immunoprecipitated sample 

of HEK293 cells, transfected with TrkB and RasGrf1, and stimulated with BDNF was 

also added to this study (Figure 4.2A, left, lane 1 and 2). The level of TrkB expression 

was verified using an antibody against TrkB (Figure 4.2A, left lower panel), and a 
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quantification of the level of interaction is presented in the right panel. Collectively, this 

data as well as the results from the RasGrf1/NR2B dissociation studies suggest that 

BDNF stimulation uncouples RasGrf1 from the NMDA receptor toward the TrkB 

receptor. 

The levels of TrkB and RasGrf1 tyrosine phosphorylation were then analyzed in 

the P30 mouse cortical slices. As shown in Figure 4.2B (left panel), tyrosine 

phosphorylation of TrkB was increased significantly after BDNF stimulation alone (lane 

2), and the site of phosphorylation appeared to be Tyr
516

 on TrkB (Figure 4.2B, middle 

panel), but not Tyr
817 

(Figure 4.2B, middle panel). The immunoprecipitation of TrkB was 

verified in all treatment using an anti-TrkB antibody to detect TrkB expression (Figure 

4.2B, lower panels). While TrkB was tyrosine phosphorylated in response to BDNF in 

cortical slices, weak but insignificant levels of RasGrf1 tyrosine phosphorylation were 

detected in both the presence of BDNF alone or in the presence of BDNF and NMDA 

(Figure 4.2C).  

4.3.3 BDNF stimulation modifies the ShcC adapter downstream of TrkB and PSD-

95 downstream of NR2B receptors.   

In addition to a direct interaction between TrkB and RasGrf1 in response to 

BDNF, Shc has also been shown to be tyrosine phosphorylated (Figure 4.3A), and 

interact with Trk (Figure 4.3B), in the presence of BDNF alone and upon stimulation by 

both BDNF and NMDA in P30 cortical slices (Figure 4.3B, lanes 2 and 4), but not in the 

presence of NMDA alone (lane 3) (Robinson, 2008). Furthermore, since RasGrf1 is 

highly expressed at post-synaptic densities (Zippel et al., 1997) and the post-synaptic 

density protein 95 (PSD-95) is a major regulator of NMDA receptor signalling, that 
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facilitates the phosphorylation of NR2B by Src family kinases (van Zundert et al., 2004). 

Thus, it is likely that NMDA would facilitate an interaction between NR2B and PSD-95. 

As shown in Figure 4.3C (Robinson, 2008), a basal level of interaction was observed 

between NR2B and PSD-95 in absence of any treatment (lane 1), but this interaction was 

remarkably increased in treatment by NMDA alone (lane 3) similar to what observed 

between RasGrf1 and NR2B (Figure 4.1B, lane 3).  

Since we found that the site of BDNF-induced tyrosine phosphorylation on TrkB 

was tyrosine
516

 (Figure 4.2B), the docking site for ShcC (Minichiello, 2009), I addressed 

whether ShcC might also form a complex with RasGrf1 which binds the adjacent HIKE 

domain (His
531

 to Glu
542

) on TrkB and whether RasGrf1 might form part of a signalling 

complex downstream of the NMDA receptors. Thus, I tested for direct interactions 

between RasGrf1 and both PSD-95 and ShcC under basal or stimulated conditions. 

However, no interaction was observed between RasGrf1 and either ShcC or PSD-95 in 

response to either BDNF or NMDA stimulation in this study (Figures 4.3D and 4.3E).  

4.3.4 BDNF stimulation alters NMDA-mediated Erk and p38-Map Kinase 

phosphorylation in an age specific manner. 

A study by Li et al (2006) suggests that NR2B/RasGrf1 interaction increases the 

activation of p38, while NR2A/RasGrf2 interaction enhances the activation of Erk 1 and 

2 (Li et al., 2006). Thus, the phosphorylation levels of the p38 and Erk MAP-kinases 

were evaluated in this study, in response to BDNF and/or NMDA.  

As shown in Figure 4.4A, a basal level of Erk1/2 was observed under basal 

conditions (Figure 4.4A, lane 1). Subsequently, a small but significantly higher level of 

Erk phosphorylation was observed in response to 15 minutes of BDNF stimulation 
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relative to the unstimulated condition (lane 2). While NMDA treatment did not stimulate 

a change in levels of Erk phosphorylation relative to controls, a significant decrease in 

Erk1/2 phosphorylation was observed after treatment with both BDNF/NMDA (Figure 

4.4A, lane 4) relative to that observed with BDNF treatment alone. The levels of Erk 

expression are shown in the lower panel of Figure 4.4A and a quantification of the levels 

of Erk phosphorylation is shown in the right panel. 

With respect to p38, I found basal levels of p38-MAP kinase phosphorylation 

under both basal conditions and following BDNF stimulation (Figure 4.4B, lane 2). In 

contrast, I observed a substantial increase (almost 2-fold) in the levels of p38 

phosphorylation upon NMDA treatment (lane 3). When slices were co-stimulated with 

both BDNF/NMDA, there was a slight decrease, that was not statistically significant, in 

the level of p38-MAP kinase phosphorylation and the levels of phosphorylation were still 

significantly higher than unstimulated controls (lane 4). Quantification of the levels of 

p38 phosphorylation, are shown in the right panel. Collectively, these observations 

suggest that BDNF stimulation modulates the activity of Erk and p38-MAP kinase 

downstream of NMDA receptor. 
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Figure 4.1. The phosphorylation of NR2B and its interaction with RasGrf1 in P30 

brain slices. Cortical slices were lysed after BDNF and/or NMDA stimulation, and 3 mg 

lysates were immunoprecipitated (IP) with the NR2B or NR2A antibodies. Ips or a whole 

cell lysate (WCL; 100 µg) were analyzed by SDS-PAGE, and blotted (IB) with the 

indicated antibodies (n=3). * indicates statistical significance (P-value<0.05) of indicated 

condition relative to unstimulated condition. A) Tyrosine
1472

 phosphorylation assessment 

of NR2B subunit in WCL in response to BDNF and/or NMDA (n=3). The level of 

Tyr
1472

 phosphorylation was increased more than 2-fold in the presence of BDNF relative 

to the unstimulated lane. Relative density of this phosphorylation levels are shown in the 

right panel. The blots were normalized to the level of NR2B expression. B) Interaction 

between NR2B and RasGrf1 upon BDNF and/or NMDA stimulation in P30 slices. NR2B 

interaction with Ras-Grf1 was increased almost 2-fold in response to NMDA relative to 

the unstimulated lane, and BDNF prevents this interaction. Goat immunoglobulin (IgG) 

was used as a negative control. A quantification of the interaction levels are shown in the 

right panel. Blots were normalized to the levels of NR2B expression.  C) The interaction 

between NR2A and RasGrf2. BDNF stimulation does not change the interaction between 

RasGrf2 and NR2A (Robinson, 2008).  
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Figure 4.2. The interaction between Trk and RasGrf1 and the level of Trk/RasGrf1 

phosphorylation in P30 brain slices. Cortical slices were lysed after BDNF and/or 

NMDA stimulation, and 2 mg of lysates immunoprecipitated (IP) with Trk (C-14) or 

RasGrf1 (C-20) antibodies. Ips or a whole cell lysates (WCL; 100 µg) were analyzed by 

SDS-PAGE, and blotted (IB) with the indicated antibodies (n=3). * indicates statistical 

significance (P-value<0.05) of indicated condition relative to unstimulated condition. A) 

Interaction between Trk and RasGrf1 (n=3). An enhanced interaction (almost 3-fold) 

between TrkB and Ras-Grf1 is evident in response to BDNF relative to the unstimulated 

lane,.Co-stimulation with NMDA decreases this interaction. Rabbit immunoglobulin 

(IgG) was used as a negative control for immunoprecipitation. A quantification diagram 

of the interaction between Trk and RasGrf1, normalized to the level of Trk in each lane, 

is shown in the right panel. B) Tyrosine phosphorylation of TrkB. BDNF stimulation 

increases the tyrosine phosphorylation of tyrosine
516

, not tyrosine
817

, on TrkB. C) 

Tyrosine phosphorylation of RasGrf1. A weak-insignificant level of tyrosine 

phosphorylation is detectable in the presence of BDNF and both BDNF/NMDA 

treatment. 
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Figure 4.3. Western blot analysis of complex signaling molecules downstream of 

TrkB and NR2B in P30 mouse brain slices. Cortical slices were lysed after BDNF 

and/or NMDA stimulation, and immunoprecipitated (IP) with the indicated antibodies. 

Ips or whole cell lysates (WCL) were analyzed by SDS-PAGE and blotted (IB) with the 

indicated antibodies (n=3). A) The level of ShcC phosphorylation upon BDNF 

stimulation. ShcC tyrosine phosphorylation is increased in the presence of BDNF 

(Robinson, 2008). B) The interaction between ShcC and TrkB after BDNF and/or NMDA 

stimulation. BDNF stimulation increases Trk-ShcC interaction (Robinson, 2008). C) The 

interaction between PSD-95 and NR2B after BDNF and/or NMDA stimulation. NMDA 

stimulation increases the NR2B-PSD-95 association (Robinson, 2008). D) The 

interaction between ShcC and RasGrf1, as being part of a complex, after BDNF and/or 

NMDA stimulation. No interaction was observed between RasGrf1 and ShcC in any 

condition. E) The interaction between PSD-95 and RasGrf1, as being part of a complex, 

after BDNF and/or NMDA stimulation. No interaction was observed between RasGrf1 

and PSD-95 in any condition. 
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Figure 4.4. The activation of Erk/p38 MAP-kinase activation upon BDNF and/or 

NMDA stimulation. Cortical slices were lysed after BDNF and/or NMDA stimulation, 

and a whole cell lysates (WCL; 100 µg) were analyzed by SDS-PAGE, and blotted (IB) 

with indicated antibodies (n=3). * indicates statistical significance (P-value<0.05) of 

indicated condition relative to unstimulated. A) The phosphorylation of Erk in P30 slices 

after BDNF and/or NMDA stimulation. The level of Erk phosphorylation is increased 

significantly after BDNF stimulation alone relative to the unstimulated lane, and was 

decreased in combination treatment relative to BDNF alone. Quantification of Erk 

phosphorylation, normalized to levels of Erk expression, is shown in the right panel. ** 

indicates significant decrease of combination treatment relative to BDNF alone. B) The 

phosphorylation of p38 in P30 slices after BDNF and/or NMDA stimulation. NMDA 

stimulation alone increased significantly (almost 2-fold) the level of p38 phosphorylation, 

relative to unstimulated cells, and the level of phosphorylation was decreased in 

combination treatment. Quantification of p38 phosphorylation, relative to levels of p38 

expression, is shown in the right panel. 
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Figure 4.5. A schematic diagram depicting the proposed model of RasGrf1-mediated 

cross-talk between TrkB and NMDA receptors. Note that intracellular Ca
2+ 

is a key 

determinant in generating LTD or LTP. In the absence of BDNF (A), RasGrf1 binds to 

the NR2B subunit of the NMDA receptor. Subsequently, p38-MAP kinase is activated 

predominantly through Rac-GTPases. This activation leads to NMDA receptor 

internalization, low Ca
2+

 influx and LTD. In the presence of BDNF (B), TrkB is 

activated, leading to Src-mediated phosphorylation of NMDA receptor on Tyr
1472

. NR2B 

is stabilized on cell surface which blocks LTD, consequently intracellular Ca
2+

 levels are 

increased, result in activation of PKA, and phosphorylation of RasGrf1 at Ser916 with 

the resultant dissociation of RasGrf1 from the NR2B. This dissociation allows for the 

RasGrf1 to directly interact with TrkB and mediate the activation of signaling pathways 

leading to neuritogenesis. Increase in the level of intracellular Ca
2+

 also associate NMDA 

receptor to LTP on receptor level. 
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4.4 Discussion 

LTP and LTD, two molecular processes contributing in learning and memory 

formation, are regulated in part by the NMDA receptor in the hippocampus area of the 

brain, and it has been suggested that BDNF increases both hippocampal presynaptic and 

postsynaptic transmission by regulating the activity of the NMDA-NR2B receptor 

(Levine and Kolb, 2000). Through postsynaptic TrkB receptor activation, BDNF 

increases the NMDAR single-channel-open probability associated with both LTP and/or 

LTD. In fact, it has been shown that blocking the NR2B subunit of the NMDAR inhibits 

LTD with no effect on LTP, while NR2A inhibition prevent LTP induction but not LTD 

(Lu et al., 2008; Liu et al., 2004). In this regard, synaptic plasticity is associated with an 

increase in MAP kinase family members activated downstream of both NMDA receptors 

(Levine and Kolb, 2000), and BDNF-mediated TrkB receptors. While several documents 

have addressed the nature of the cross talk between NMDAR and TrkB, the signalling 

pathways downstream of these receptors are not fully understood. 

Previous results from the Meakin Lab (Robinson, 2008) indicate that RasGrf1 is 

expressed at very low levels in the neonate, and levels rise developmentally with the 

maximum expression predominantly in the mature brain (>P30) which was consistent 

with a previous study (Zippel et al., 1997). Thus, all analyses in this study have been 

addressed in P30 CD1 mice. Moreover, acute cortical slices including cortex and 

hippocampus were used in this study as these areas have been suggested to express 

BDNF and TrkB associated with plasticity, LTP and LTD (Li et al., 2006). Consequently, 

BDNF stimulation appeared to sustain Tyr
1472

 phosphorylation of the NR2B subunit of 

the NMDA receptor similar to what has been observed in other studies (Lin et al., 1998; 
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Levine et al., 1998; Levine and Kolb 2000). As mentioned earlier, the phosphorylation of 

NR2B-Tyr
1472

 is crucial to retain NMDA receptor on cell membrane (Nakazawa et al., 

2001; Prybylowski et al., 2005).  

Moreover, there was a direct interaction between the NR2B subunit of the NMDA 

receptor and RasGrf1 in the presence of NMDA in P30 cortical slices which is in 

agreement with previous studies (Kraivinsky et al., 2003; Li et al., 2006), and the level of 

interaction was reduced remarkably by the addition of BDNF. In vitro studies in TrkB-B5 

cells further verified that NMDA treatment increases the association of NR2B with 

RasGrf1 similar to that observed using brain slices (Robinson, 2008).  

A relevant interaction was also observed between TrkB and RasGrf1 in P30 

cortical slices in response to BDNF stimulation, which is consistent with previous 

observations in HEK293 cells (Robinson et al., 2005). BDNF stimulation increased 

tyrosine phosphorylation of the TrkB receptor at Tyr
516

, equivalent to Tyr
499

 on TrkA, 

which is the docking site for the ShcC adaptor protein (Minichiello, 2009). Since this site 

is close to the HIKE domain (His
507

-Glu
518

) on TrkA, the binding site of RasGrf1, the 

question arose as to whether ShcC might be interacting with RasGrf1. While a direct 

interaction between TrkB and ShcC was observed after BDNF stimulation, no direct 

interaction between ShcC and RasGrf1 was observed. 

Furthermore, an increase in interaction between NR2B and PSD-95 was also 

observed upon NMDA treatment (Robinson, 2008), and a loss of this interaction occurred 

following the addition of BDNF similar to what was observed between NR2B and 

RasGrf1, suggesting that RasGrf1 might be part of a complex with the PSD-95 
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intermediate signalling molecule. However, when interactions between PSD-95 with 

RasGrf1 were examined, no interactions were observed. 

While both NGF and BDNF have been shown to stimulate tyrosine 

phosphorylation of RasGrf1 in transfected cells in culture (Robinson et al., 2005; Chapter 

2), I was unable to detect sufficient levels of RasGrf1 tyrosine phosphorylation in this 

study, even by using 20 mg of lysates (data not shown). This data suggests that RasGrf1 

either is not phosphorylated in vivo, opposite to what we have observed in vitro, or that 

the levels of phosphorylation are stoichiometrically low and can only be detected in other 

conditions such as using higher levels of lysate, specifically examining post synaptic 

density fractions or using a more specific antibody in future studies. 

In this study, the phosphorylation of the Erk/MAP kinase after BDNF treatment 

alone was increased significantly compared to that observed in untreated conditions while 

the level of p38 phosphorylation was increased significantly after NMDA stimulation . In 

fact, this data suggests that interaction between RasGrf1 and TrkB has been associated 

with an increase in Erk-MAP kinase phosphorylation while interaction between RasGrf1 

and NR2B has been associated with an increase in p38-MAP kinase phosphorylation. 

This data is not in agreement to what observed in the study by Krapivinsky et al., (2003) 

in which an interaction between RasGrf1 and NR2B has been associated with increased 

in Erk phosphoryation. In contrast, the results presented here agree with the study by Li 

et al (2006) in which the interaction between RasGrf1 and NR2B specifically activated 

p38 MAP Kinase but not Erk associated with increases in long-term depression, while the 

association of RasGrf2 with NR2A facilitates Erk activation with the result of promoting 

LTP (Li et al., 2006).  
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Furthermore, in terms of regulating the balance between Erk and p38-MAP kinase 

phosphorylation by either BDNF or NMDA, it appears that the NMDA- mediated NR2B 

activation shows a stronger influence than the BDNF-mediated TrkB activation as the 

combination treatments in Erk-MAP kinase phosphorylation, adding NMDA to BDNF 

significantly blocked Erk phosphorylation while in p38-MAP kinase phosphorylation 

assessment, adding BDNF to NMDA only slightly decreased p38 phosphorylation. These 

observations suggest that RasGrf1 might initiate part of a signalling pathway upstream of 

Erk and that some other signalling molecules with distinct consequences rather than 

RasGrf1-mediated neuronal growth might be also involved in Erk phosphorylation. Since 

RasGrf2 associates with NR2A to facilitate the activation of Erk (Li et al., 2006) and 

since the interaction between NR2A and RasGrf2 was unaffected by BDNF, I expected to 

observe a slight increase in the level of Erk activation. While this additive effect was not 

observed under the conditions used, it is possible that it is transitory or may be revealed 

in another time point or by performing more careful analyses of the kinetics of Erk 

activation in slice cultures. Moreover, the distinct role(s) of RasGrf1 and RasGrf2 in 

mediating Erk activation need to be further investigated, and future studies using slices 

from RasGrf1 and RasGrf2 knockout mice could verify distinct roles of each in 

regulating in Erk activation. 

This study presents important data demonstrating that signalling cross-talk occurs 

in response to BDNF and NMDA stimulation within cortical and hippocampal slices of 

the brain (see proposed model in Figure 4.5). While BDNF recruits and couples both 

ShcC and RasGrf1 to the TrkB receptor, the later of which is uncoupled from the NR2B 

subunit of the NMDA receptor, co-stimulation with NMDA uncouples RasGrf1 from 



139 

 

TrkB but does not affect TrkB binding to ShcC. Conversely, while NMDA stimulates 

NR2B binding to PSD-95, co-stimulation with BDNF uncouples this interaction. The 

evaluation of co-ordination between TrkB, NR2B and RasGrf1 in specific regions, such 

as postsynaptic density, may further clarify the nature of this signalling pattern.  

Since RasGrf1 increases neurite outgrowth in PC12 cells upon NGF and BDNF 

stimulation, and given the fact that TrkB regulates dendritic spine density and synapse 

formation, the evaluation of hippocampal neurons from RasGrf1 knockout mice in the 

presence of BDNF may identify a potential role of RasGrf1 and TrkB in neurons to 

modulate potential synaptic morphology. It would be interesting to investigate if BDNF 

and/or NMDA stimulation affects dendritic spine density in wild-type versus RasGrf1 

knockout hippocampal cultures to address whether NR2B activation of p38-MAP kinase 

and LTD are associated with a loss of dendritic spines. Furthermore, RasGrf1-siRNA 

could be used to knock down RasGrf1 expression in hippocampal cell cultures in the 

absence and presence of BDNF and evaluate dendritic spine density.  

Collectively, a novel signalling pathway was identified in this study within the 

mature brain where BDNF-mediated TrkB activation modifies NMDA receptor 

signalling pathway through RasGrf1 to link synaptic plasticity to neuronal differentiation.  
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Chapter 5 

General Discussion and Conclusions  

The mechanism of coordination between TrkB and NMDA receptor through RasGrf1 

has been addressed in this study and the possible signaling molecules downstream of 

RasGrf1 were investigated.  

Initially to understand a role for RasGrf1 in cell differentiation, RasGrf1-mediated 

neurite outgrowth was determined in an in vitro neuronal-like model, PC12 cells and 

TrkB receptor over-expressing cells. It appeared that RasGrf1 activates both Ras and Rac 

during neurotrophin-mediated neurite outgrowth (Chapter 2). By using several 

domain/site- directed mutants of RasGrf1 in a comparison study including NGF-mediated 

neurite outgrowth in PC12 cells versus BDNF-mediated in TrkB-B5 cells, it has been 

revealed that both Ras and Rac-GTPases are essential in neurotrophin-mediated 

enhancement of neurite outgrowth through RasGrf1. This notion is consistent with other 

studies in which RasGrf1 activates Ras in HEK cells downstream of the non-receptor 

tyrosine kinase ACK1, cAMP-activated PKA, calcium and GPCR activity (Mattingly, 

1999; Kiyono et al., 2000b; Yang et al., 2003). Conversely, RasGrf1 activates Rac 

downstream of the non-receptor tyrosine kinase Src (Kiyono et al., 2000a). Furthermore, 

Baldassa et al., (2007) have shown that RasGrf1 interacts with a microtubule-

destabilizing factor SCLIP (SCG10-like protein) which inhibits its ability to promote Rac 

activation and neurite outgrowth (Baldassa et al., 2007). 

It has been denoted in this study to take extreme precaution regarding the expression 

of endogenous H-Ras while using the PC12 cell line, as the level of endogenous H-Ras 

could explain some differences in the results of various studies performed in PC12 cells. 
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For instance, Yang and Mattingly (2006) reported no detectable levels of endogenous H-

Ras expression in their PC12 cell line and they found a requirement for H-Ras co-

expression in order to stimulate neurite extension. Moreover, they reported no role for 

Rac in this process; rather, they have suggested that the expansion in soma size in co-

transfected cells was dependent on Rac activity (Yang and Mattingly, 2006). In contrast, 

in this study and others (Baldassa et al., 2007), the level of endogenous H-Ras was 

detectable and it was sufficient to induce neurite outgrowth in presence of RasGrf1 

expression. Consistently, Baldassa et al., (2007) observed a specific requirement for Rac 

activation by RasGrf1 in mediating constitutive neurite extension in PC12 cells. In 

addition, in this study, I found that the co-expression of H-Ras with RasGrf1 in PC12 

cells highly induced neurite outgrowth, and could completely eliminate the ability to 

detect Rac activity in neurotrophin-induced neurite outgrowth. In fact, some researchers 

have also reported that Ras is able to bind and activate b-Raf and small G proteins 

associated with differentiation under conditions of high levels of Ras expression (Kao et 

al., 2001).   

In addition to the evidence provided here to indicate RasGrf1 regulation of Ras 

family GTPase activation, some essential sites of RasGrf1 tyrosine phosphorylation for 

neurite outgrowth were also evaluated (Chapter 3). Using site directed mutagenesis 

targeting of several domains/sites of RasGrf1, a novel site of tyrosine phosphorylation 

was identified in the CDC25 domain. While 2 sites of Trk-induced tyrosine 

phosphorylation were identified in the PH1 and IQ domains of RasGrf1 (Tyr
95

 and 

Tyr
233

), these were not essential to support NGF-induced neurite outgrowth in PC12 cells. 

In instead, Tyrosine 1048 and/or tyrosine 1062 in the CDC25 domain appeared to be 
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crucial for RasGrf1 phosphorylation and to support neurotrophin-mediated neurite 

outgrowth. Further studies are required to understand whether one or both tyrosine sites 

are necessary for RasGrf1 tyrosine phosphorylation. Further study is also required to test 

other tyrosine sites within CDC25 domain and the Rac activation domain (DH domain) 

which might be involved in RasGrf1 tyrosine phosphorylation for neurotrophin-mediated 

neurite outgrowth. 

Collectively, our study focused on both NGF and BDNF-dependent RasGrf1 

enhancement of neurite outgrowth through specific Ras family GTPases to advance our 

understanding about a potential role for RasGrf1 in mediating Trk-dependent synaptic 

plasticity. Synaptic plasticity is regulated in part by NMDA receptors in the hippocampal 

area of brain, where BDNF-mediated TrkB receptor activation increases both presynaptic 

and postsynaptic transmission and regulates the activity of the NMDA-NR2B receptor 

(Levine and Kolb, 2000) although the mechanism of the coordination between two 

receptors and the downstream signalling pathways have not been fully understood. 

Consistent with the studies suggesting that BDNF increases phosphorylation of 

the NMDA receptor (Lin et al., 1998; Levine et al., 1998; Levine and Kolb, 2000), we 

have provided evidence showing that in cortical slices (Chapter 4), BDNF stimulation 

increases tyrosine
1472

 phosphorylation of the NR2B subunit of NMDA receptor, the site 

of which is crucial to retain NMDA receptors at the cell membrane (Nakazawa et al., 

2001; Prybylowski et al., 2005).  

On one hand, a direct interaction between the NR2B subunit and RasGrf1 has 

been observed in the presence of NMDA in both P30 cortical slices and TrkB-B5 cells 

(Robinson, 2008) which is in agreement with previous studies (Li et al., 2006; Kraivinsky 
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et al., 2003), and the level of interaction was reduced remarkably by addition of BDNF, 

suggesting that NMDA stimulation couples RasGrf1 to the NR2B subunit of the NMDA 

receptor while BDNF stimulation uncouples RasGrf1 from the NR2B subunit. On the 

other hand, a novel interaction was also observed between TrkB and RasGrf1 upon 

BDNF treatment in P30 cortical slices, which is consistent with similar observation in 

HEK293 cells (Robinson et al., 2005). Yet, no discernible detectable level of RasGrf1 

phosphorylation was observed in this interaction, suggesting that RasGrf1 either is not 

phosphorylated in vivo at all, opposite to what we have observed in vitro, or that the level 

of phosphorylation, or its relative stoichiometry, is lower than what we can detect with 

the currently available antibodies. Thus, to provide a more enriched lysate for the 

detection of RasGrf1 tyrosine-phosphorylation, a post synaptic density preparation is 

recommended for future studies. Altogether, these observations suggest that BDNF 

stimulation associates RasGrf1 with the Trk receptor while dissociating it from the NR2B 

subunit. BDNF stimulation increased tyrosine phosphorylation of the TrkB receptor on 

Tyr
516

, the site which is equivalent to Tyr
499

 on TrkA and serves as a docking site for the 

ShcC adaptor protein (Minichiello, 2009). This notion was further verified by a observing 

a direct interaction between TrkB and ShcC after BDNF stimulation with a loss of this 

interaction after NMDA stimulation (Robinson, 2008).  

The interaction between NR2B subunit and PSD-95 was also increased upon 

NMDA treatment (Robinson, 2008), and a loss of this interaction by the addition of 

BDNF was observed, similar to what was observed between the NR2B and RasGrf1, 

suggesting that RasGrf1 might be part of a complex with PSD95 intermediate signalling 

molecule. However, when RasGrf1 co-interaction with PSD95 intermediate signalling 
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proteins was tested, no interaction was detected between RasGrf1 and PSD95 under the 

condition in our study. Although it cannot be ruled out that there might be an interaction 

between RasGrf1 and PSD95 under other conditions such as in post-synaptic density 

preparation, which needs to be further addressed in future studies.  

To evaluate the activation of Erk/p38 MAP kinases downstream of RasGrf1, this 

study revealed that the phosphorylation of Erk MAP kinase was increased after 15 min 

BDNF treatment while NMDA treatment increased the phosphorylation of p38 MAP 

kinase. Although this observation is not in agreement with what was observed in the 

study by Krapivinsky et al., (2003), in which the interaction between RasGrf1-NR2B was 

associated with preferentially increased levels of Erk phosphoryation (Krapivinsky et al., 

2003), this result did agree with the study by Li et al., (2006). They showed that the 

interaction between RasGrf1 and the NR2B predominantely activated p38 MAP Kinase 

resulting in increases in long-term depression while the association of RasGrf2 with 

NR2A facilitates Erk activation with the result of promoting LTP ( Li et al., 2006). 

However, RasGrf1 and RasGrf2 may activate Erk through distinct pathways which need 

to be further investigated in future studies. Application of RasGrf1 and RasGrf2 knockout 

mice for the purpose of slice preparation could verify distinct roles of both RasGrf1 and 

RasGrf2 in the regulation of Erk activation in future studies. 

The coupling of NMDA receptor to Erk in the study by Krapivinsky et al., (2003) 

could be due to several reasons including whether the study had been performed in 

cultures or slices, the age of the mouse, and the specific region of the brain studied, all of 

which have been shown to affect the activation of signalling pathways downstream of the 

NMDA receptor (Tovar and Westbrook, 1999). Collectively this data suggests that 
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NMDA stimulation couples RasGrf1 to the NR2B subunit of the NMDA receptor to 

activate p38 MAP kinases while BDNF stimulation couples RasGrf1 to TrkB to activate 

Erk MAP kinases.  

To further verify RasGrf1-mediated coordination of Trk and NMDA receptors, it 

would be interesting to perform some inhibition experiments in future studies. For 

instance, since elevation in intracellular calcium promotes RasGrf1 activation as an 

intracellular calcium sensor, and it is involved in regulating the prolonged activation of 

the NMDA receptor, brain slices could be treated with an intracellular calcium chelator, 

BAPTA-AM, to determine if BDNF-induced RasGrf1 dissociation from the NR2B 

subunit of the NMDA receptor is affected, as well as whether BDNF/NMDA induces 

changes in Erk and/or p38 MAP kinase activation. Moreover, in this regard, the 

application of the NR2B inhibitor (Ifenprodil), Erk inhibition (by MEK inhibitor; U0126) 

or P38 inhibitor (SB230580) could also further clarify the changes in Erk or p38 MAP 

kinase activation in the RasGrf1-mediated coordination of Trk and NMDA receptor. 

To further address the role of RasGrf1 mediation of neurite outgrowth and neural 

plasticity, one of the most important regulators of RasGrf1 to study is Cyclin-dependent 

kinase 5, Cdk5. Cdk5 is a member of the cyclin-dependent kinase family. It is a proline-

directed serine/threonine kinase and crucial to the proper modulation of neurite formation 

and structure, neurite outgrowth and neuronal migration during brain development as 

well as learning and memory (Zhange et al., 2008). It has been shown that Cdk5 interacts 

with Trk and NMDA receptors as well as with RasGrf1. In fact, Cdk5 has been shown to 

phosphorylate RasGrf1 resulting in RasGrf1 degradation (Kesavapany et al., 2006). TrkB 

also interacts with Cdk5 as a substrate through which BDNF stimulation enhances Cdk5 
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activity resulting in dendritic growth (Cheung et al., 2007). In addition, Cdk5 regulates 

the activity of the NMDA receptor by decreasing NR2B phosphorylation and increasing 

receptor internalization (Zhange et al., 2008). How TrkB and NMDA receptors, as well 

as RasGrf1, may regulate Cdk5 activity and function is another question to be 

investigated in a future study. In this regard, brain slices can be treated with a Cdk5 

inhibitor, Roscovitine, before stimulation with BDNF/NMDA and assay changes in the 

level of RasGrf1 expression, its phosphorylation status, possible interaction with the 

TrkB/NR2B as well as changes in Erk/p38 MAP activities under these conditions. In 

addition, the localization study of RasGrf1 with either TrkB or the NR2B in specific 

regions of brain, such as postsynaptic density, may further clarify the nature of the 

signalling pattern down stream of both receptors.  

Using RasGrf1 knockout mice would also extensively clarify the RasGrf1 

modulation of TrkB-NR2B during neuronal growth and synaptic plasticity. RasGrf1 

knockout (-/-) mice exibit a severe deficit in amygdala-dependent synaptic plasticity with 

high synaptic activity in amygdala and hippocampal neurons (Brambilla et al., 1997), as 

well as impaired hippocampal-dependent plasticity evidenced as failures in performing 

hippocampal-dependent behavioral tests such as the Morris water maze, contextual 

discrimination and social transmission of food preferences (Giese et al., 2001). Thus, it 

would be interesting to perform hippocampal cell cultures from wild-type versus RasGrf1 

knockout mice to clarify whether BDNF-mediated Trk activation affects dendritic spine 

density, and whether NMDA-mediated NR2B activation are associated with a loss of 

dendritic spines. The activation of Rac and/or Ras-GTPases, as well as p38 and/or Erk-

MAP kinases downstream of RasGrf1 can also be compared in both wild type and 
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RasGrf1 knockout mice. This experiment can be examined either in intact cells or cells 

transfected with RasGrf1 plasmids, including RasGrf1-wild type, RasGrf1-DH domain 

mutant lacking binding site for Rac, and RasGrf1-CDC25 domain mutant lacking binding 

site for Ras. In this regard, as Post-natal day 3-5 is the optimum age in which RasGrf1 is 

expressed optimally, post-natal day 3-5 hippocampal cells from RasGrf1 knockout (-/-) 

and wild type mice could be cultured in the presence and absence of BDNF/NMDA, and 

dendrite spines assessed by immunohistochemically (IHC) using the dendritic spine 

marker, microtubule associated protein-2 (MAP-2), tubulin (axon marker), or Drebrin- an 

actin binding protein, and changes in cell morphology, including the length, count, size 

and intensity of dendrites could be determined statistically.  

Furthermore, a study by Li et al (2006) suggested that the interaction between 

RasGrf1 and NR2B specifically activated p38 MAP Kinase, but not Erk with increases in 

LTD while the association of RasGrf2 with NR2A facilitates Erk activation that results in 

the promotion of LTP.  However, RasGrf1 and RasGrf2 may activate Erk through distinct 

pathways which need to be further investigated in a future study. In this respect, slice 

preparations from RasGrf1 knockout mice could aid in verifying a distinct role for both 

RasGrf1 and RasGrf2 in Erk activation. 

Altogether, in this study two novel signalling pathways have been identified. 

First, that RasGrf1 facilitates neurotrophin-dependent neurite outgrowth via both Ras and 

Rac and that this requires tyrosine phosphorylation of RasGrf1 within the Cdc25 domain. 

Secondly, I have identified a mechanism whereby BDNF-mediated activation of TrkB 

may regulate the process of learning and memory. Specifically, within the mature brain I 

demonstrate that BDNF-mediated TrkB activation can modify NMDA receptor signalling 
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by specifically uncoupling RasGrf1 from NR2B while not affecting the association of 

RasGrf2 with NR2A. Since RasGrf1 signaling via NR2B is associated with LTP, this 

provides a potentially important mechanism by which TrkB may be facilitating the 

process of learning and memory. In addition to decreasing the potential of NMDA 

signaling to result in LTD, which may indirectly facilitate a potential increase in LTP, the 

potential for RasGrf1 to facilitate TrkB-mediated dendritic growth and spine formation 

may provide another means by which TrkB signaling may facilitate the process of 

learning and memory (see the proposed model in Figure 4-5). 
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