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Abstract

In genetic epidemiology, families harboring certain genetic mutations are predis-

posed to successive cancers in their lifetime. This thesis aims to provide reliable

estimates of relative risk and age-dependent cumulative risks (penetrance) associated

with the mutated gene for successive cancers. We develop a statistical framework for

modeling sequential event times arising from family data. A shared frailty model is

employed to incorporate the dependence between the two event times. Because fam-

ilies are ascertained through non-random sampling, an ascertainment-corrected ret-

rospective likelihood approach is proposed to account for the non-ignorable sampling

design. Simulation studies demonstrate that our proposed method provides unbiased

and reliable estimates of disease risks associated with a mutated gene. The frailty

approach is also compared to an independent model that ignores the dependence

between the events. Finally, we illustrate our approach using 12 Lynch syndrome

families and provide penetrance estimates for developing first and second colorectal

cancer.

Keywords: Sequential event times, shared frailty model, penetrance, ascertain-

ment, retrospective likelihood, Lynch syndrome, three-state progressive model.
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Chapter 1

INTRODUCTION

Lynch syndrome, popularly known as hereditary non-polyposis colorectal cancer

(HNPCC), refers to a genetic disorder due to a mutation in the DNA mismatch repair

gene, which is inherited from parents. Individuals with this syndrome are at high risk

of early-onset colorectal cancer (CRC) compared to the general population (Lin et al.,

1998). Mutation carriers are also prone to develop other cancers, such as endometrial,

ovarian, and stomach cancers, as a consequence of the primary cancer (Lynch et al.,

1977). As it is a heritable disease, the families are expected to contain multiple

mutation carriers and require constant surveillance to prevent adverse outcomes. For

instance, of the estimated 21,500 new colorectal cancer cases in Canada in 2008,

cancers due to mutation accounted for 1% - 5% (Lynch et al., 2009; Lynch and Smyrk,

1996). In most genetic disorders, as in the case of Lynch syndrome, the age-of-onset

of disease is highly variable and successive events are often encountered; therefore,

reliable estimation of age-specific risk (penetrance) for successive cancers and relative

risk associated with a mutated gene is essential to decide the appropriate prevention

strategy.

The main goals of this thesis are to develop a general statistical framework for

modeling successive event times based on family-based studies and to provide reli-

able estimates of relative and absolute risks of developing a first and second cancer

associated with a mutated gene. We also aim to model the dependency between the

sequential events and quantify their association. The families selected in our analysis
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have been sampled in a non-random manner, so that an appropriate ascertainment

correction is necessary to make population-based inference.

The rest of this chapter is structured as follows: Section 1.1 provides an intro-

duction to the family-based design and its types and Section 1.2 describes some of

the commonly used ascertainment correction approaches for non-random sampling

of families. Section 1.3 outlines the three-state progressive approach to model two

successive events and Section 1.4 proposes a shared frailty approach for modeling the

dependence between the two event times. The scope and objectives of the thesis are

provided in Sections 1.5 and 1.6, respectively. The chapter concludes with the thesis

outline.

1.1 Family studies

In the study of rare genetic disorders, a simple random sample of unrelated individuals

from a general population may not yield sufficient numbers of mutation carriers or

disease cases and it may result in limited power to study the genetic association. A

statistically powerful alternative to overcome this limitation is the use of a family-

based study (Thomas, 1999; Laird and Lange, 2006). In genetic epidemiology, the

role of certain genetic mutations predisposing individuals to complex diseases has

been well documented with the help of family studies.

In the family-based study design, families are sampled through individuals who

are affected with a particular disease. An affected individual who brings their family

into the study is called a “proband”. The rationale for including the proband’s family

is that, if the proband is affected by a genetic disorder, then the disease causing gene

is more likely to be segregated within the family, whereby such a family would be

more susceptible to the genetic disorder. Family studies are largely used in genetic

epidemiology as family members are considered to have a common genetic background

and are exposed to similar environmental factors, so that they tend to form a more
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homogeneous group. It avoids population stratification issues and obviates the diffi-

culties that may arise in finding a matched control. In what follows, we discuss some

of the commonly used family-based study designs.

1.1.1 Case-control design

In a traditional case-control study, one randomly samples disease cases and healthy

controls from a well defined population and compares the distribution of an exposure

between these two groups. To yield a valid inference, cases and controls must be

drawn from the same population as it is expected that they share similar character-

istics. However, in genetics studies, it may be difficult or even impossible to obtain

controls having similar genetic patterns as the cases. Instead of sampling unrelated

controls, the family-based case-control design (Gauderman et al., 1999) samples the

relatives of the cases as the controls. The controls can be the siblings, cousins, or

parents of the affected case. This design offers the advantage of being robust to

population stratification by sampling relatives who share similar genetic and environ-

mental factors. Kraft and Thomas (2000) used a sibship-based case-control design

for a binary outcome to estimate the disease risk. Hopper et al. (2005) extended this

sibship-based design to the case-control-family design where the case families were

compared to the families of random controls sampled from the same population. This

study design is simple to implement and the relative risks of an exposure on an out-

come can be easily obtained. However, direct estimation of absolute risk of a disease

may not be possible as the number of cases is fixed in the sample and may differ from

that of the general population.

1.1.2 Cohort design

When it is of interest to study multiple end-points, the case-control study design may

not be appropriate. To overcome this limitation, a cohort study may be used where

a group of individuals who possess a particular risk factor, such as a gene mutation,
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and another group free of the risk factor are followed for a well-defined time period to

collect information on disease outcomes. To avoid long follow-up times, a retrospective

cohort study can be used. In the study of rare genetic mutations, a special type

of retrospective cohort design, called the kin-cohort design, has been employed by

Struewing et al. (1997) and Wacholder et al. (1998) to estimate the penetrance of

breast cancer; penetrance is the age-specific cumulative risk of developing a disease

given a person’s carrier status of the mutated gene of interest (Thomas, 2004). In

this design, only the probands are genotyped and their relatives are not. Struewing

et al. (1997) recruited volunteers among Ashkenazi Jews in Washington to undergo

genotyping for BRCA1 and BRCA2 genes and collected the history of breast cancer in

their first-degree relatives. The target population was chosen because the prevalence

of certain genetic mutations is elevated in Ashkenazi Jews. The cumulative risk of

breast cancer by the age of 70 years was calculated by comparing the proportions

of affected relatives between mutation carriers and non-carriers. Gail et al. (1999)

extended the kin-cohort design by genotyping the relatives of the probands. Although

it is relatively easy to implement with smaller sample sizes, the kin-cohort design

suffers from bias if the proband’s intention to participate is influenced by familial

history of disease and if there is an under-reporting of disease history among relatives.

1.1.3 Multistage design

Multistage sampling design (White, 1982b; Whittemore and Halpern, 1997), as the

name suggests, requires successive subsampling through several stages. It proceeds

in a sequential manner until a feasible sample size is reached. For instance, consider

a two stage sampling design where, in the first stage, individuals are randomly sam-

pled from a population and are stratified according to some variable; in the second

stage, a subsample of individuals are selected from each strata using a pre-determined

proportion. The sampling proportion at each stage would depend on the information

available in the previous stage. In the presence of limited resources, such a design
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can be applied to a case-control or a cohort study to make them more efficient by

sampling informative units that are at high risk. Multistage designs are popular in

genetics studies as they reduce costs by genotyping fewer yet informative individuals.

Siegmund et al. (1999) discussed a four-stage sampling approach to sample cases and

controls using prostate cancer data and estimated the parameters using the Horvitz-

Thompson estimator by adjusting for the sampling weights at each stage. By using

a composite likelihood approach, Choi and Briollais (2011) modeled family data ob-

tained from a two-stage sampling design and estimated the genetic relative risk of a

mutated gene in the presence of missing genotypic information of family members.

1.1.4 Population-based and clinic-based study designs

Gong and Whittemore (2003) discussed two types of family-based study designs −

population-based and clinic-based. In the population-based design, families are as-

certained by randomly sampling probands from a population-based disease registry.

The probands do not need to be a carrier of the mutated gene; however, the efficiency

of selecting mutation segregating families increases if carrier probands are selected.

Then, the relatives of the proband are screened for the mutated gene and interviewed

for disease history. This design derived its name from the fact that the probands

are randomly sampled from the diseased population. By genotyping only the case

probands and examining their relatives, the population-based design can apparently

be viewed as an extension of the kin-cohort design. This design with carrier probands

has the merit of providing the most efficient estimates of the penetrance function

(Choi et al., 2008).

In the clinic-based design, families are eligible for study if they satisfy an eli-

gibility criterion of having multiple diseased individuals, in addition to an affected

proband, within the family. This design is called ‘clinic-based’ as the high-risk fam-

ilies are mostly identified through counseling clinics due to an unusual number of

affected individuals in the family. Sampling such high-risk families is largely used in
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gene-characterizing studies to identify the influence of a mutated gene on a partic-

ular disease (Easton et al., 1995). The criteria required to sample such families are

called ascertainment schemes. Well known ascertainment schemes to identify muta-

tion carrying families of colorectal cancer are: Amsterdam criteria (Vasen et al., 1999)

and Bethesda criteria (Umar et al., 2004). It is clear that clinic-based design tends

to sample more diseased individuals than other population-based family designs and

requires an ascertainment correction to make population-based estimates of disease

risks. When the ascertainment correction is properly implemented, this design has

the advantage of yielding unbiased and efficient estimates of both relative and ab-

solute risk of the disease (Choi et al., 2008). However, a limitation is that complex

ascertainment schemes are difficult to model and may require a method that implic-

itly corrects for the ascertainment, such as the retrospective likelihood (Carayol and

Bonäıti-Pellié, 2004). The following section discusses several ascertainment correction

approaches.

1.2 Ascertainment correction

The families for genetics studies are predominantly ascertained (sampled) in a non-

random manner and this necessitates a correction during analysis to facilitate a valid

inference about the parameters of interest (Le Bihan et al., 1995). The correction for

ascertainment depends on the nature of the ascertainment scheme employed. There

are two most commonly used ascertainment schemes − single ascertainment and com-

plete ascertainment (Ewens and Elston, 2012). Under the single ascertainment, the

probability that a family is ascertained is proportional to the number of affected indi-

viduals in the family. Under the complete ascertainment scheme, the ascertainment

probability of a family is independent of the total number of affected individuals.

Apart from these two types, researchers have used other attractive sampling proce-

dures that are effective in identifying mutation segregating families. For instance,
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when the age-of-onset is highly variable (as in the case of genetic mutations), it is

more appropriate to include an age criterion to ascertain probands as well as their

relatives (Le Bihan et al., 1995; Carayol and Bonäıti-Pellié, 2004). Similarly, when

the gene mutation is rare, it is desirable to recruit multiple affected family members

in an ad hoc fashion to identify mutation carriers (Choi et al., 2008).

The concept of ascertainment correction is almost a century old and there is ex-

tensive literature discussing this issue. Weinberg (1912) proposed a simple method

to correct for ascertainment by excluding the proband information from the analysis

with the rationale that the proband is responsible for the inclusion of his/her family.

Recently, Alarcon et al. (2008) extended this idea to time-to-event data arising from

families with at least one affected individual. Using the proband’s phenotype exclu-

sion likelihood, the age-specific penetrance function was estimated from the Weibull

model. They also proposed a non-parametric approach called the “Index Discarding

EuclideAn Likelihood (IDEAL)” as a validating tool to check departures from the

assumed parametric baseline distribution and provided unbiased estimates of pene-

trance along with their confidence bands (Alarcon et al., 2009).

Most of the ascertainment correction procedures discussed in the literature are

likelihood-based approaches pioneered by Fisher (1934). He corrected for single as-

certainment by providing weights to the sampled families based on the number of

affected individuals in the family. Following Fisher, several authors (for example, El-

ston and Sobel, 1979; Bonney, 1998; Clayton, 2003) extended this approach to various

sampling schemes. The likelihood-based approach is an attractive choice to correct

for ascertainment as it is capable of incorporating the baseline hazard distribution

and also adjusting for known risk factors.

Kraft and Thomas (2000) considered three likelihood approaches − prospective,

retrospective, and joint likelihoods - and compared their efficiencies in the estimation

of genetic relative risks for a binary outcome. They used a case-control design with

controls as siblings and assumed conditional independence given their genotypes. The
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prospective likelihood models the conditional probability of phenotypes of all sampled

members on their genotypes and ascertainment process, i.e. P (D|G,A), where D and

G are the vectors of phenotypes and genotypes of sampled individuals, respectively,

and A is the ascertainment process. Difficulty in modeling arises in the presence of a

complex or unknown ascertainment scheme. On the other hand, the retrospective like-

lihood corrects for ascertainment (when the ascertainment is based on disease status

only) by modeling the genotypes of individuals given their phenotypes, i.e. P (G|D).

By conditioning on all observed phenotypes, the retrospective likelihood implicitly

corrects for ascertainment and hence is robust to ascertainment bias. Nevertheless,

there is a loss in statistical efficiency by conditioning on all sampled individuals in-

stead of conditioning only on those responsible for the family’s ascertainment (Kraft

and Thomas, 2000). In order to overcome this limitation, Carayol and Bonäıti-Pellié

(2004) proposed a modified retrospective likelihood approach in which the condi-

tioning was based only on those individuals who were involved in the ascertainment

process. Lastly, the joint likelihood models the joint probability of phenotype and

genotype of the individuals given the ascertainment scheme, P (D,G|A). It has the

weakest condition compared to the other two likelihood approaches and hence is capa-

ble of providing the most efficient risk estimates among these three likelihood-based

approaches. Nevertheless, similar to the prospective likelihood, the joint likelihood

also requires the modeling of the ascertainment process. Choi et al. (2008) broadened

the scope of the above mentioned likelihood approaches to time-to-event data and

evaluated their efficiencies for population- and clinic-based study designs.

For large pedigrees, Chatterjee and Wacholder (2001) proposed a composite like-

lihood approach to circumvent the problem of summing over all possible genotypes of

all family members. In this approach, a pedigree consisting of a proband and his/her

M relatives was broken down into M pairs of the proband and one of the sampled

family members. Assuming independence between the pairs within a pedigree, the

likelihood was constructed as the product of all possible pairs of the family.
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We employ the retrospective likelihood, which is also known as ‘ascertainment-

free-assumption’, to model the ascertainment correction in this thesis. This approach,

although statistically less efficient than others, can model complex or unknown ascer-

tainment schemes and also produce reliable estimates of relative risk of the disease

gene (Choi et al., 2008).

1.3 Modeling sequential events

In the follow-up of complex diseases, several recurrent events can occur as a conse-

quence of a primary event; for example, patients who had a heart attack are often at

risk of subsequent attacks. Analyzing such successive events in their order of occur-

rence can provide valuable insight into the overall disease progression and severity.

The multi-state model (Putter et al., 2007) is a familiar way to model a stochastic

process that progresses through a set of distinct states over time. These states are

determined by the conditions experienced by an individual over the progression of the

disease. A transition occurs when there is a movement between states. There are two

types of states − absorbing and transient states. Absorbing states are states beyond

which there exists no transition and transient states are the possible intermediate

events, experienced prior to attaining an absorbing state. Usually, in a multi-state

model, the states are graphically represented by boxes and the possible transition(s)

are indicated by arrows pointing at the next possible event.

The simplest form of a multi-state model is the two-state model, popularly known

as the mortality model (see Figure 1.1). In the mortality model, there exist two states

− ‘Alive’ and ‘Dead’ - with one possible transition from the former to the latter.

For example, in the context of human immunodeficiency virus (HIV) infection, the

‘Alive’ state corresponds to the event of contracting the HIV virus and the ‘Dead’

state corresponds to the event of death with no chance of recovery. The time taken

to transit from the ‘Alive’ state to the ‘Dead’ state can be modeled using survival
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analysis techniques.

 

                                                                                       

Alive Dead 

Figure 1.1: Mortality model

We can extend this simple two-state model to accommodate three states with a

possible transition from one state to another in a progressive manner with no pos-

sibility of returning to the previous state(s). Such a model is called a three-state

progressive model (Joly and Commenges, 1999). Figure 1.2 depicts a three-state pro-

gressive model with the states − ‘Healthy’, ‘Event 1’, and ‘Event 2’. These models

are popular in the context of cancer and HIV studies due to their ability to model

the effect of an intermediate state on an absorbing state. Meira-Machado et al.

(2009) studied the impact of tumor recurrence on death due to breast cancer using

a three-state progressive model with the states ‘Alive and Disease Free’, ‘Alive With

Recurrence’, and ‘Death’ and adjusted for known prognostic factors in their analysis.

Frydman (1992, 1995) used this method to study disease progression in the treatment

of AIDS using information from hemophilia patients. She constructed a progressive

three state model where an individual initially starts as HIV negative from which

he/she may transit into the HIV positive state and potentially progress to clinically

proven AIDS.

For modeling the times taken to transit from one state to another, Putter et al.

(2007) described two distinct ways: ‘Clock Forward’ and ‘Clock Reset’ approaches. In

the ‘Clock Forward’ approach, the event times are measured continually from the start

of the initial state until the occurrence of the absorbing state. On the other hand, in

the ‘Clock Reset’ approach, the event times are reset to zero after the occurrence of
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                                     t1                                                 t2 
Healthy Event 1 Event 2 

Figure 1.2: Three-state progressive model

an intermediate event. The second approach is highly useful in the study of sequential

events to better understand the role of intermediate state(s) on the absorbing state.

Therefore, we consider the ‘Clock Reset’ approach where we define T1 as the time

spent in the ‘healthy’ state prior to attaining ‘event 1’ and define T2 as the time spent

in the state ‘event 1’ prior to attaining ‘event 2’. The event times T1 and T2 can

also be viewed as the ‘gap times’ (Cook and Lawless, 2010). Thus, we define our

sequential event times T1 and T2 as the time to a first event and the time to a second

event since the first event, respectively.

An important assumption in the multi-state model is the Markov property, which

states that the occurrence of a future event is only dependent on the current event

and independent of the past event(s). This assumption could fail when the event

times are dependent. In such a scenario, we can relax the Markov assumption and

use a Semi-Markov Model, allowing more flexibility compared to the Markov Model

(Janssen and Limnios, 1999).

1.4 Frailty models

In medical research, a primary study outcome is the time to an event of interest,

where the event can be death, occurrence of disease, such as cancer, or a transition

from one state to another like remission to relapse. Survival analysis models time-to-

event data accounting for censored observations (Fleming and Lin, 2000). Censoring

arises if the event time of an individual is unknown or missing and it is only known



12

that he/she has survived until a specific time point. This is called right censoring. It

is predominantly assumed in survival analysis that the censoring time is independent

of the failure time and is called non-informative (random) censoring. It is worth

mentioning that for sequential events, the independent censoring assumption no longer

holds in the presence of a dependence between the event times. For example, consider

two sequential event times, T1 and T2, where T1 is the time to a first event and T2 is

the time to a second event since the first event. If the second event is censored by the

time a, then the censoring time for T2 is given by a− T1. Therefore, when T1 and T2

are dependent, T2 is also dependent on the censoring time of T2, so that, we cannot

assume the independent censoring for T2. In this section, we discuss the shared frailty

model that can effectively model bivariate event times in the presence of dependence.

We begin by introducing the univariate frailty model followed by the shared frailty

model.

Vaupel et al. (1979) first introduced the term ‘frailty’ in demographics to model

heterogeneity among individuals in population mortality data and illustrated that in

the presence of individual heterogeneity, the population mortality rates were largely

underestimated. Successively, several authors studied the impact of population het-

erogeneity using frailty models (Vaupel and Yashin, 1985; Aalen, 1994; Aalen and

Tretli, 1999). In the univariate frailty model, a non-negative random effect (frailty)

variable, Z, is introduced into the proportional hazards (PH) model such that it acts

multiplicatively on the baseline hazard function. The frailty is used in the model to

account for the unobserved heterogeneity in the population. It is assumed to be con-

stant over time and vary across individuals in the population. The univariate frailty

model can be viewed as the survival data analogue of the random effects model.

In addition to their ability to model unobserved heterogeneity in univariate time-

to-event data, the frailty models can also be extended to model the association be-

tween event times in multivariate survival data. Such data are commonly encountered

in the study of recurrent events, such as cancer, or in the study of related individuals
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like twin studies, where the correlation among the event times cannot be ignored in the

analysis. The shared frailty model provides an efficient way to model this correlation

by introducing a non-negative frailty variable, Z, in the PH model. The introduced

frailty is considered to be shared among the members within a cluster to induce the

dependence among them. Here, the cluster can be a group of related individuals or

multiple observations from an individual at different time points. Conditional on the

frailty, the event times within a cluster are assumed to be independent. Thus, the

conditional joint survival distribution of the event times within a cluster given the

frailty can be simply written as the product of their individual conditional survival

functions. Then, the marginal (unconditional) joint survival function can be derived

by integrating the conditional joint distribution over the frailty distribution.

Some popular choices for the frailty distribution include: gamma (Vaupel et al.,

1979), compound poisson (Aalen and Tretli, 1999), inverse gaussian (Hougaard, 1984),

log normal (Vaupel and Yashin, 1983), and positive stable (Hougaard, 1986) distri-

butions. The gamma distribution is generally employed to model frailties due to its

relatively simple expression of the Laplace transform, required to construct the un-

conditional joint distribution. Further, the variance of the frailty distribution serves

as a measure of dependence between the event times in the shared frailty model,

while it serves as a measure of heterogeneity in the population for the univariate

frailty model. The smaller the variance, the smaller the dependence or heterogeneity

and vice versa. Shared frailty modeling approaches were applied to model familial

correlation in penetrance estimation using case-control family design (Chen et al.,

2009) and population-based family design (Choi, 2012). To overcome the distribu-

tional assumptions, Horowitz (1999) proposed a semi-parametric approach to model

the frailty distribution and the baseline hazard function in an univariate PH model.

Alternatively, one can model the dependency between the multivariate event times

using copula models (Nelsen, 2010). In the copula model, the joint distribution func-

tion of the event times is generated as a function of the marginal distributions. The
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function used to join the marginals is called a copula, and it determines the de-

pendence structure between the event times. The marginals can be modeled us-

ing the PH model either by assuming a parametric or a nonparametric form. For

multivariate event time data, He and Lawless (2003) applied both frailty-based and

copula-based approaches to model the dependency among the event times along with

piecewise-constant or spline-approximated baseline hazard functions. Their approach

handled interval censoring and sequential event times. To overcome the limitations

of parametric baseline hazard assumptions, Lawless and Yilmaz (2011) provided a

semi-parametric approach for modeling sequential event times using copula models.

Although the resulting joint survival distributions from the copula model and the

shared frailty model are equivalent for certain choices of baseline and frailty distri-

butions, the derived marginal survival functions using these two methods are unique

and this causes a difference in the interpretation of dependence measures between

these two methods (Goethals et al., 2008).

1.5 Scope of the thesis

In this thesis, we propose a bivariate modeling approach for two sequential event

times based on a shared frailty model. We estimate the disease risks (absolute and

relative) associated with a mutated gene using family data that arise from two types of

family designs − population-based and clinic-based. The families are selected through

affected probands following which their relatives’ disease history and mutation status

are collected retrospectively. We assume the genotype and phenotype information of

all recruited families to be fully observed.

We restrict our attention to right censoring for the two sequential event times,

where the second event time is subject to informative censoring. We adopt paramet-

ric models for the baseline hazard function and frailty. The frailties, that are used

to model the dependence between two successive events experienced by an individual
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are assumed to be time invariant and vary across individuals. Lastly, we assume con-

ditional independence between family members given their genotypes and covariates

(Choi et al., 2008; Kraft and Thomas, 2000; Le Bihan et al., 1995). Our work would

serve as an extension of the existing approach for univariate time-to-event data arising

from family-based designs (Choi et al., 2008).

1.6 Objectives of the thesis

The objectives of the thesis are:

1. Develop a statistical framework to model two sequential survival times arising

from family-based study designs (population- and clinic-based) by

(a) accounting for the dependence between the event times using a shared

frailty model and

(b) incorporating the necessary ascertainment correction using the retrospec-

tive likelihood approach;

2. Establish the robust variance estimators of the age-specific penetrance function

and relative risk of a mutated gene for the sequential events using our proposed

method;

3. Assess the performance of our frailty method in terms of accuracy and precision

in a large sample setting using simulation studies;

4. Illustrate our approach using real data from Newfoundland consisting of 12 large

high-risk Lynch syndrome families.

Objectives 1 and 2 are covered in Chapter 2 and objectives 3 and 4 are addressed in

Chapters 3 and 4, respectively.
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1.7 Outline of the thesis

The remainder of the thesis is structured as follows: Chapter 2 establishes the statis-

tical framework for modeling sequential survival times using a shared frailty model to

estimate the age-specific penetrance function and genetic relative risks using family

data. Chapter 3 presents the simulation studies used to evaluate our proposed model

and Chapter 4 provides an application of our approach to Lynch syndrome families

from Newfoundland. Finally, Chapter 5 concludes the thesis by summarizing the

results and discussing possible future research work.
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Chapter 2

ASCERTAINMENT CORRECTED LIKELIHOOD FOR

SEQUENTIAL EVENTS

This chapter provides a general framework for modeling sequential event times

associated with a mutated disease-causing gene based on the data arising from a

family-based design. In genetic epidemiology, when a disease causing gene has been

identified, one is interested in estimating the relative and absolute risks of developing

diseases associated with the disease gene (Choi et al., 2008; Le Bihan et al., 1995).

Certain complex diseases have the hallmark of several recurrent events following a

primary event. For instance, patients treated for breast cancer are predisposed to

local and/or distant recurrence of cancer.

In this thesis, we consider family data obtained using two types of study de-

signs − population-based design and clinic-based (Gong and Whittemore, 2003). The

population-based design samples families through a single affected proband and the

clinic-based design samples high risk families with multiple affected individuals. Since

the families are sampled in a non-random manner, an ascertainment correction is re-

quired to obtain population-based inference.

We first develop a bivariate distribution based on a shared frailty model (Wienke,

2009) for the dependent sequential event times, then we employ the retrospective

likelihood approach (Carayol and Bonäıti-Pellié, 2004; Kraft and Thomas, 2000) to

correct for the complex ascertainment procedure involved in obtaining the family

data.
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The chapter begins by defining two types of disease risks associated with a mutated

gene that we aim to estimate via our modeling of sequential event times. Section 2.2

provides an introduction to the univariate frailty model and it is later extended to the

bivariate modeling of sequential events using a shared frailty model in Section 2.3.

Section 2.4 discusses the ascertainment corrected retrospective likelihood in detail.

In Section 2.5, we present the robust variance approach to estimate the parameter

variances.

2.1 Measures of disease risks

In the genetic analysis of time-to-event data, the disease risk associated with a mu-

tated gene can be expressed relatively or absolutely. The following are the two mea-

sures of disease risk of interest.

• The relative risk of mutation carriers compared to non-mutation carriers can be

expressed as the hazard ratio of the mutated gene obtained in the proportional

hazards (PH) model, i.e. the ratio of hazard for a mutated gene carrier to the

hazard for a non-carrier, such that

Hazard ratio = exp (βg),

where βg is the regression coefficient of the mutated gene from the PH model.

The hazard ratio obtained from a shared frailty model should be expressed by

conditioning on all risk factors and frailty.

• The absolute risk of the disease can be derived by the penetrance function,

defined as the cumulative risk of developing a disease by age t given observed

covariates, X. This cumulative function can be expressed as the complement of

the survival function (S(t|X)), such as

Penetrance = P (T < t|X) = 1 − S(t|X),
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where X is the vector of measured risk factors including the mutated gene. We

are interested to calculate the penetrance for the first event by 70 years and a

10 year penetrance for the second event, i.e. the cumulative risk of developing

a second event in 10 years after the first event.

2.2 Univariate frailty models

In the analysis of univariate survival data, an individual’s unobserved heterogeneity

can be modeled by introducing a random variable Z, also known as frailty, into the

Cox PH model (Cox, 1972). The frailty Z is a non-negative random variable that

accounts for the heterogeneity among individuals. The conditional hazard function

of the survival time T given the frailty Z is provided by

λ(t|X,Z) = Zλ0(t)eβ
>X ,

where X = (x1, x2, ..., xp) is a vector of p risk factors and β> = (β1, β2, ..., βp) is the

corresponding regression coefficients (log relative risks). The term λ0(t) is the baseline

hazard function, which can be interpreted as the individual’s hazard when all the Xs

equal to zero. The conditional survival function is given by

S(t|X,Z) = e
−

t∫
0

λ(u|X,Z)du
= e−ZΛ0(t)eβ

>X
,

where Λ0(t) represents the cumulative baseline hazard function.

Since the frailty is an unobserved variable, we can obtain the marginal (uncondi-

tional) distribution by integrating out the frailty. The marginal survival function can

be expressed in terms of the Laplace transform of the frailty distribution as follows

S(t|X) = EZ [S(t|X,Z)] = EZ

[
e−ZΛ0(t)eβ

>X
]

= L
(

Λ0(t)eβ
>X
)
, (2.1)

where L (.) is the Laplace transform of the frailty distribution. The corresponding

marginal density and hazard functions can also be derived in terms of the Laplace
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transform of the frailty distribution using the relation, λ(t) = f(t)/S(t), such that

f(t|X) = −λ0(t)eβ
>XL ′(Λ0(t)eβ

>X)

λ(t|X) = −λ0(t)eβ
>XL ′(Λ0(t)eβ

>X)

L (Λ0(t)eβ>X)
,

where L ′(u) is the first order derivative of the Laplace transform with respect to u.

2.3 Shared frailty models

As an extension of the univariate frailty model, the shared frailty model is employed

for modeling the two sequential event times T1 and T2 from a three-state progressive

model with the states − ‘Healthy’, ‘Event 1’, and ‘Event 2’. Let T1 be a non-negative

continuous random variable that measures the time spent in the ‘Healthy’ state prior

to experiencing ‘Event 1’ and let T2 be another non-negative continuous random

variable that measures the time spent in the state ‘Event 1’ prior to experiencing

‘Event 2’, such that T2 represents the gap time between the two events (see Figure 1.2).

We also let Z be a random frailty variable that measures the amount of dependence

between two events experienced by each individual, such that conditional on the

frailty, his/her event times are independent. Therefore, the conditional bivariate

hazard function of (T1, T2) given Z is written as

λ(t1, t2|X1, X2, Z) = Zλ01(t1)λ02(t2)eβ
>
1 X1eβ

>
2 X2 ,

where λ01(t1) and λ02(t2) are the baseline hazard functions for T1 and T2, respectively,

X1 = (x11, x12, ..., x1p) and X2 = (x21, x22, ..., x2p) are the risk factors associated

with events 1 and 2, respectively, and their corresponding regression coefficients are

β>1 = (β11, β12, ..., β1p) and β>2 = (β21, β22, ..., β2p).

We assume the baseline hazard functions for the event times T1 and T2 follow

Weibull distributions, respectively, as

λ01(t1) = ν1ϕ1t1
ϕ1−1; (ν1 > 0, ϕ1 > 0) and

λ02(t2) = ν2ϕ2t2
ϕ2−1; (ν2 > 0, ϕ2 > 0),
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where (ν1, ϕ1) and (ν2, ϕ2) are the scale and shape parameters for T1 and T2, re-

spectively. We also assume a gamma distribution for the frailty with expectation 1

and variance 1/k. The probability density function of this one parameter gamma

distribution is

f(z; k) =
1

Γ(k)
kkzk−1e−kz.

The conditional bivariate survival function for (T1, T2) given frailty Z can be expressed

as

S(t1, t2|X1, X2, Z) = exp
{
−Z

(
Λ01(t1)eβ

>
1 X1 + Λ02(t2)eβ

>
2 X2

)}
,

where Λ01(t1) and Λ02(t2) are the cumulative baseline hazard functions for T1 and T2,

respectively. As mentioned in equation (2.1), the bivariate survival function can be

derived by integrating out the unobserved frailty as follows

S(t1, t2|X1, X2) = EZ [S(t1, t2|X1, X2, Z)]

= EZ

[
exp

{
−Z

(
Λ01(t1)eβ

>
1 X1 + Λ02(t2)eβ

>
2 X2

)}]
= L

(
Λ01(t1)eβ

>
1 X1 + Λ02(t2)eβ

>
2 X2

)
,

Thus, the unconditional bivariate survival function can be expressed by the Laplace

transform of the frailty distribution as a function of the sum of the cumulative baseline

hazards of the event times, T1 and T2. The gamma distribution that possesses a

mathematically simple form of the Laplace transform, given by

L (u) = E
[
e−Tu

]
=
(

1 +
u

k

)−k
,

provides the following joint survival function,

S(t1, t2|X1, X2) =

[
k + ν1t1

ϕ1eβ
>
1 X1 + ν2t2

ϕ2eβ
>
2 X2

k

]−k
. (2.2)
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2.3.1 Likelihood construction for sequential event times

Consider two sequential event times T1 and T2 from an individual. If the age at exami-

nation is a, then the event times can be defined as (t1, t2) = (min(T1, a),min(T2, a−t1))

and their censoring indicators are (δ1, δ2) = (I(T1 = t1), I(T2 = t2)), where I is an

indicator function. We construct the likelihood function for this bivariate event times

based on the unconditional survival function derived in equation (2.2). The likelihood

function derived for the two sequential event times accounts for the following three

event occurrence possibilities:

Case 1 An individual survived both the events, i.e. δ1 = 0 and δ2 = 0;

Case 2 An individual experienced both the events, i.e. δ1 = 1 and δ2 = 1;

Case 3 An individual experienced the first event but has not experienced the second

event, i.e. δ1 = 1 and δ2 = 0.

We do not consider the case where an individual survived the first event but experi-

enced the second event.

For Case 1, an individual has not experienced either events by his/her age at

examination a, so we observe T1 = a and T2 = 0 with the corresponding censoring

indicators δ1 = 0 and δ2 = 0. We model Case 1 using the bivariate survival function

provided in equation (2.2), i.e. S(t1, t2|X1, X2) = P (T1 > t1, T2 > t2|X1, X2).

For Case 2, an individual has experienced both the events by his/her age at ex-

amination, so we observe T1 = t1 and T2 = t2 with the corresponding censoring

indicators δ1 = 1 and δ2 = 1. We model Case 2 using the bivariate density function

f(t1, t2|X1, X2) = P (T1 = t1, T2 = t2|X1, X2), which can be derived as follows
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f(t1, t2|X1, X2) =
∂2

∂t1∂t2
L
[
Λ01(t1)eβ

>
1 X1 + Λ02(t2)eβ

>
2 X2

]
= L ′′

[
Λ01(t1)eβ

>
1 X1 + Λ02(t2)eβ

>
2 X2

]
λ01(t1)eβ

>
1 X1λ02(t2)eβ

>
2 X2

=
k + 1

k

(
ν1ϕ1t1

ϕ1−1eβ
>
1 X1

)(
ν2ϕ2t2

ϕ2−1eβ
>
2 X2

)
×[

k + ν1t1
ϕ1eβ

>
1 X1 + ν2t2

ϕ2eβ
>
2 X2

k

]−(k+2)

,

where L ′′(u) is the second order derivative of the Laplace function.

Lastly, for Case 3, an individual has experienced only the first event at time t1

but not the second event, then T1 = t1 with δ1 = 1 and T2 = a− t1 with δ2 = 0, which

can be modeled as

P (T1 = t1, T2 > t2|X1, X2) =
−∂
∂t1

L
[
Λ01(t1)eβ

>
1 X1 + Λ02(t2)eβ

>
2 X2

]
= −L ′

[
Λ01(t1)eβ

>
1 X1 + Λ02(t2)eβ

>
2 X2

]
λ01(t1)eβ

>
1 X1

=

[
k + ν1t1

ϕ1eβ
>
1 X1 + ν2t2

ϕ2eβ
>
2 X2

k

]−(k+1)

ν1ϕ1t1
ϕ1−1eβ

>
1 X1 ,

where L ′(u) is the first order derivative of the Laplace function of the frailty distri-

bution with respect to u.

Thus, the likelihood function for the bivariate event times can be formulated using

the functions derived as a consequence of the aforementioned three cases. Assuming

the family members are independent given their genotype and other risk factors,

the likelihood contribution of the f th family, f = 1, . . . , n, with nf family members,

i = 1, . . . , nf , can be written as

Lf (θ) =

nf∏
i=1

S(tfi1, tfi2|Xfi1, Xfi2)(1−δfi1)(1−δfi2)f(tfi1, tfi2|Xfi1, Xfi2)δfi1δfi2

P (Tfi1 = tfi1, Tfi2 > tfi2|Xfi1, Xfi2)δfi1(1−δfi2),
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where θ = (ν1, ϕ1, ν2, ϕ2, k, β
>
1 , β

>
2 ). For a shared gamma frailty model with Weibull

baseline hazards, the likelihood can be simplified to

Lf (θ) =

nf∏
i=1

(
k + 1

k

)δfi1δfi2 (k + ν1tfi1
ϕ1eβ

>
1 Xfi1 + ν2tfi2

ϕ2eβ
>
2 Xfi2

k

)−(k+δfi1+δfi2)

(
ν1ϕ1tfi1

ϕ1−1eβ
>
1 Xfi1

)δfi1 (
ν2ϕ2tfi2

ϕ2−1eβ
>
2 Xfi2

)δfi2
.

(2.3)

2.4 Ascertainment corrected likelihood

In the previous section, we derived the likelihood function for bivariate event outcomes

using a shared frailty model, assuming a gamma distribution for the frailties. In what

follows, we discuss an ascertainment correction approach used to account for the non-

random sampling of family data. We consider the data arising from n families (f =

1, . . . , n), where each family consists of nf members, i = 1, . . . , nf , and the families

are selected based on a study design. Then, a general form of the ascertainment

corrected likelihood (Le Bihan et al., 1995) is as follows

L =
n∏
f=1

Lcf =
n∏
f=1

Nf

Af
,

where Lcf is the ascertainment corrected likelihood function of the f th family. The

numerator, Nf , is the contribution of the members of family f to the likelihood and

the denominator, Af , is the probability of family f being ascertained.

We consider the retrospective likelihood approach that models the genotypes of

the pedigree members given their phenotypes. For individual i in family f (f =

1, . . . , nf ; i = 1, . . . , nf ), we observe the following vector: {Yfi = (tfi1, δfi1, tfi2, δfi2), Gfi}

where Yfi is the phenotype containing the event times and censoring indicators for

the first and second event and Gfi is the genotype which is coded as 1 if mutation

carrier and 0 if non-mutation carrier. For simplicity, in this section, we adjust only

for the genetic effect G for the event times T1 and T2. However, the following proce-

dure can easily accommodate other risk factors. We assume the family members are
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independent given their genotypes, i.e. conditional independence. Then, the ascer-

tainment corrected retrospective likelihood (Carayol and Bonäıti-Pellié, 2004; Kraft

and Thomas, 2000) for family f is writen as

Lcf = P (Gf |Yf , Ascf )

=
P (Ascf |Yf , Gf )P (Yf |Gf , )P (Gf )

P (Yf , Ascf )

∝ P (Yf |Gf )P (Gf )∑
ω∈Ω

P (Yf , Ascf |Gfω)P (Gfω)
, (2.4)

where P (Ascf |Yf , Gf ) = 1 if the family satisfies the ascertainment scheme, P (Yf |Gf )

can be expressed as the likelihood function provided in equation (2.3), and the prob-

ability of genotype, P (Gf ), can be obtained as

P (Gf ) =

nf∏
i=1

 P (Gfi), if individual i is a founder,

P (Gfi|Gfd, Gfm), if individual i is a nonfounder.

The probability of genotype, P (Gfi), for a founder is calculated using the Hardy-

Weinberg Equilibrium (HWE), which is based on the prevalence of the mutated gene.

For a non-founder, whose parents are in the sampled pedigree, P (Gfi|Gfd, Gfm) is

obtained by the Mendelian transmission probability using the genotypes of the father

(Gfd) and the mother (Gfm). Details of the derivation of these genotypic probabilities

are provided in Appendix A.1.

The denominator of (2.4) is the ascertainment probability of observing the pheno-

types of the members through whom the family is ascertained into the study (Carayol

and Bonäıti-Pellié, 2004). It can be obtained by the sum of the conditional probabili-

ties, P (Yf , Ascf |Gωf ), over all possible genotypic configurations, Ω, of all ascertained

members. The calculation of this ascertainment probability is further explained in

the following section.



26

2.4.1 Ascertainment probability for different study designs

Depending on the study design, the ascertainment probability can be derived with the

knowledge of underlying ascertainment process used for sampling the families. In our

thesis, we consider two types of family designs − population-based and clinic-based

study designs. For the population-based design, a family is ascertained through an

affected, mutation carrying proband and for the clinic-based study design, a family

is ascertained if at least one of the proband’s parents and at least one of proband’s

sibling are affected, in addition to the proband being an affected carrier.

Population-based design

The ascertainment for the population-based design is only based on the probands,

who are randomly sampled from a diseased population. Therefore, the ascertainment

probability for family f can be obtained simply by calculating the probability that

the proband is affected by the first event prior to his/her age at examination, which

can written as

P (Yf , Ascf |Gf ) = P (T1 < afp|Gfp)

= 1 − S1(afp|Gfp)

= 1 −

[
k + ν1a

ϕ1

fpe
β1Gfp

k

]−k
,

where afp is the age at examination of the proband, Gfp is the genotype of the proband

and S1(t1|Gfp) is the marginal survivor function for T1 obtained from the bivariate

survival function provided in equation (2.2).

Clinic-based design

For the clinic-based design, the ascertainment scheme involves the proband, his/her

parents and siblings. The ascertainment probability for family f is the probability of

observing the disease statuses of those who were involved in the ascertainment process
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at their ages at examination and can be expressed as:

P (Yf , Ascf ) =P (T1 < afp|Gfp)
∑
ω∈Ω

[
P (T1 < afd|Gωfd)

δfd1P (T1 ≥ afd|Gωfd)
1−δfd1×

P (T1 < afm|Gωfm)δfm1P (T1 ≥ afm|Gωfm)1−δfm1P (Gωfd, Gωfm|Gfp)×∏
fs

{
P (T1 < afs|Gωfs)

δfs1P (T1 ≥ afs|Gωfs)
1−δfs1P (Gωfs|Gωfd, Gωfm)

}]
,

where afp,afd,afm, and afs are the ages at examination of the proband, father, mother,

and sibling, respectively. Similarly, Gωfp,Gωfd,Gωfm, and Gωfs are the genotypes of

the proband, father, mother, and sibling belonging to the genotypic configuration, ω,

and δfp1, δfd1, δfm1, and δfs1 are their corresponding censoring indicators for event

1. The ascertainment probability is obtained by summing over possible genotypic

configurations of the father, mother, and sibling. This probability involves the com-

putation of the conditional genotypes for the parents and sibling given the genotype

of the proband. The conditional genotype probabilities are derived in the Appendix

A.2.

Now, putting every pieces together, we write the ascertainment corrected likeli-

hood for the family data arising from n families, each with nf family members as

L(θ) =
n∏
f=1

nf∏
i=1

Nfi

Af
,

where the numerator consists of the contribution of the ith member in f th family and

the denominator is the ascertainment probability of family f . Then the corresponding

log-likelihood is given by

l(θ) =
n∑
f=1

nf∑
i=1

logNfi −
n∑
f=1

logAf . (2.5)

By maximizing the ascertainment corrected log-likelihood in equation (2.5), we can

obtain the maximum likelihood estimates of the parameters θ = (ν1, ϕ1, ν2, ϕ2, k, β
>
1 , β

>
2 )

in the model. The maximum likelihood estimate, θ̂, asymptotically follows a normal
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distribution with mean θ and variance Σ. In the following section, we derive the

robust variance estimators (White, 1982a) for the relative and absolute risk estimates

of the mutated gene in order to handle the model mis-specification for not modeling

the dependence among family members.

2.5 Variance estimation

To incorporate possible residual familial correlation, we first derive the robust variance

estimator for the estimated parameters in the model, following which, we obtain the

robust variance estimators for the estimated penetrance functions.

2.5.1 Robust variance estimator for parameter estimates

Let θ̂ = (ν̂1, ϕ̂1, ν̂2, ϕ̂2, k̂, β̂
>
1 , β̂

>
2 )> denote the maximum likelihood estimate of the

vector of parameters in our shared frailty model. The robust variance estimator

(White, 1982a) for θ̂ is expressed as

V ar(θ̂) = H−1(θ)V (θ)H−1(θ),

where H(θ) is the Fisher information matrix consisting of the second order derivatives

of the log-likelihood function in equation (2.5) with respect to the parameters, θ, and

V (θ) is the variance of the score vector; they have the following forms,

H(θ) = −E
[
∂2l(θ)

∂θ∂θ>

]
= −E

[
n∑
f=1

nf∑
i=1

∂2

∂θ∂θ>
logNfi −

n∑
f=1

∂2

∂θ∂θ>
logAf

]
and

V (θ) = V ar

[
∂l(θ)

∂θ

]

=
∑
f

V ar

[
nf∑
i=1

∂

∂θ
logNfi −

∂

∂θ
logAf

]

=
∑
f

E

{ nf∑
i=1

∂

∂θ
logNfi −

∂

∂θ
logAf

}{
nf∑
i=1

∂

∂θ
logNfi −

∂

∂θ
logAf

}> .
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Then we estimate H(θ) and V (θ) empirically as follows

Ĥ(θ) = − 1

n
l′′(θ)

V̂ (θ) =
1

n

n∑
f=1

lf
′(θ)lf

′(θ)>

where l′′(θ) is the second order derivatives of the log likelihood function with respect

to the parameter θ, and l′f (θ) is the contribution of f th family (f = 1, . . . , n) to the

score function.

Therefore, the robust variance estimate of the estimated parameters is obtained

from the following variance-covariance matrix,

V̂ ar(θ̂) = Ĥ(θ̂)
−1
V̂ (θ̂)Ĥ(θ̂)

−1
. (2.6)

2.5.2 Robust variance estimator for penetrance estimates

The robust variance of the penetrance function is obtained by using the Delta method.

Penetrance is defined as the cumulative probability of failure such that F1(t1; θ) =

1−S1(t1; θ), where S1(t1; θ) is the marginal survival function of the first event at time

t1, given by

S1(t1; θ) =

(
k + ν1t1

ϕ1eβ
>
1 x1

k

)−k
.

We derive the variance of the penetrance function in two steps in order to (log)

transform the skewed distribution of the survival function, as the robust variance

estimator assumes a normal distribution. First, we compute the variance of the

cumulative hazard function, V ar{Λ1(t1; θ)}, using the Delta method where

Λ1(t1; θ) = − logS1(t1; θ) (2.7)

= k log
(
k + ν1t1

ϕ1eβ
>
1 x1
)
− k log k.

Next, using the relation in equation (2.7), we compute the variance of the penetrance

function, V ar{F1(t1; θ̂)}, by using the Delta method again.
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Step 1: The variance estimator of the cumulative hazard function has the form:

V ar{Λ1(t1; θ̂)} = Dθ(t1)>ΣDθ(t1),

where Σ is the robust variance-covariance matrix of the parameters obtained

using equation (2.6) and Dθ(t1) is the vector of partial derivatives of Λ1(t1; θ)

with respect to each parameter, such that

Dθ(t1) =
∂Λ1(t1; θ)

∂θ
=

(
∂Λ1(t1; θ)

∂ν1

,
∂Λ1(t1; θ)

∂ϕ1

,
∂Λ1(t1; θ)

∂k
,
∂Λ1(t1; θ)

∂β1

)>
.

Step 2: The robust variance estimator for the penetrance of developing the first event

by the age t1 can be expressed as

V ar{F1(t1; θ̂)} = V ar{S1(t1; θ̂)}

= V ar{e−Λ1(t1;θ̂)}

=
[
−e−Λ1(t1;θ̂)

]2

V ar{Λ1(t1; θ̂)}

=

{
e−k log (k+ν1t1ϕ1e

β>1 x1 )+k log k

}2

V ar{Λ1(t1; θ̂)}.

Similarly, the robust variance estimator for the penetrance function of event 2 at time

t2, after the first event, can be obtained as

V ar{F2(t2; θ̂)} =

{
e−k log (k+ν2t2ϕ2e

β>2 x2 )+k log k

}2

V ar{Λ2(t2; θ̂)}.

2.6 Summary

Using a shared frailty model, we modeled the bivariate event times to account for the

dependence between two sequential events. For the data that arise from a family-

based study design, we incorporated a retrospective likelihood to account for the

study design in our analysis. The retrospective likelihood possesses the advantage

to implicitly correct for complex ascertainment schemes and is capable of providing
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population-based inference. To account for the familial correlation, the robust vari-

ance estimators of the penetrance functions and the relative risks for the first and

second events were derived using the Delta method.
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Chapter 3

SIMULATION STUDY

A simulation study was conducted to evaluate the performance of our proposed

method in a large sample setting. We compared the precision and accuracy of the

disease risks derived from our frailty model, that accounts for the dependency between

two sequential event times, to those from an independent model that ignores it.

In the following section, we define the different parameter combinations considered

in our simulation studies and their corresponding parameter values. Then, we provide

details about family data generation involving the bivariate event times for each family

member. Finally, we provide the simulation results and conclude the chapter with a

discussion of the results.

3.1 Parameter combinations

For our simulation studies, we considered the families to arise from a population-based

study design, where each family was selected through an affected mutation carrier

proband. These probands were assumed to be randomly sampled from a population-

based disease registry, for example, a provincial cancer registry. We considered the

following models for the two sequential event times T1 and T2,

h1(t1|X1, X2, Z) = Zν1ϕ1(t1 − 20)ϕ1−1eβ1X1+β2X2

h2(t2|X2, Z) = Zν2ϕ2t
ϕ2−1
2 eβ3X2 ,
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where t1 is the age-at-onset of the first event with a minimum age of onset as 20 years,

t2 is the time of occurrence of the second event since the first event (in years), and

Z is the frailty variable following the gamma distribution with mean 1 and variance

1/k. For the first event, we adjusted for a gender effect, X1, and a gene mutation

effect, X2, and for the second event, we adjusted only for the mutation effect, X2. The

parameters involved in our shared frailty model are θ = (ν1, ϕ1, ν2, ϕ2, k, β1, β2, β3),

where (ν1,ϕ1) and (ν2,ϕ2) are the scale and shape parameters of the baseline hazards

for the first and second events, respectively, k is the frailty parameter, and β1, β2, and

β3 are the regression coefficients (log relative risks) of X1, X2, and X2, respectively.

Our parameter combinations involved different genetic models and diverse pene-

trance levels for the mutated gene. In what follows, we explain each of the parameter

combination and how we chose the appropriate parameter values. We also present

all the parameter combinations considered for in simulation study in Figure 3.1. The

simulation study was designed according to the guidelines provided by Burton et al.

(2006).

3.1.1 Genetic models

We considered two genetic models − dominant and recessive models. In the dominant

model, at least one copy (one inherited from each parent) of the mutant allele is

enough for an individual to be at risk for the disease, whereas for the recessive model,

two copies are required to be at risk. We also varied the prevalence of the mutated

gene for each of the genetic models; for the dominant model, we considered a rare

variant with allele frequency, q = 2%, and for the recessive model, we considered a

common variant with, q = 30%. Therefore, we considered these two genetic models:

dominant model with a rare gene and recessive model with a common gene. The allele

frequencies for these two models were set based on the work of Choi et al. (2008).
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3.1.2 Parameter combinations for the first event

For the first event, we fixed the baseline parameters at (ν1 = 5.35×10−6, ϕ1 = 2.33)

and the log-relative risk of the gender effect at β1 = 1.19. These values provided

the penetrances of first event by the age of 70 years to be 15% and 5% for the male

and female non-mutation carriers, respectively (baseline population). On the other

hand, for the mutation carriers, we considered two penetrance levels − high and

low penetrances, with the log-relative risk of mutated gene, β2, set at 2.5 and 1.55,

respectively. When k = 10, the high penetrance model (β2 = 2.5), corresponded

to a penetrance for the first event by the age of 70 years to be 83% and 44% for

the male and female mutation carriers, respectively, and the low penetrance model

(β2 = 1.55), corresponded to 52% and 20% of penetrances for male and female carriers,

respectively. The penetrance values covered when k = 1 and 3 are provided in Figure

3.1. The true values for the log-relative risks were decided based on our analyses of

family data from Newfoundland in Chapter 4.

3.1.3 Parameter combinations for the second event

As for the second event, we investigated two distinct baseline settings − low baseline

(ν2 = 0.00724, ϕ2 = 1.14) and high baseline (ν2 = 0.00324, ϕ2 = 1.84). The corre-

sponding penetrance values for developing a second event in 10 years after the first

event among those baseline populations (non-mutation carriers) were 10% and 23%,

respectively. We used two baselines because the risk of successive cancers following a

primary cancer is predominently low in the general population. However, for Lynch

syndrome families, there exists a very high risk for cancer recurrence. Therefore, in

order to study this diversity in risk, we considered low and high baselines for T2. For

the mutation carriers, in addition to the two baseline settings, we also considered two

penetrance models − high and low penetrance, where their log-relative risks for the

mutated gene (β3) were fixed at 0.75 and 0.3, respectively. Consequently, the fol-
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lowing four scenarios were resulted for the second event penetrance: (i) low baseline

with low penetrance, (ii) low baseline with high penetrance, (iii) high baseline with

low penetrance, and (iv) high baseline with high penetrance. Correspondingly, the

cumulative risks of developing a second event in 10 years after the first event for a

mutation carrier were 13%, 19%, 26%, and 37% for scenarios (i), (ii), (iii), and (iv),

when k = 10.

We decided these penetrance values for the second event based on extensive liter-

ature search on the occurrence of second primary colorectal cancer (CRC). The pen-

etrance values for mutation carriers were determined by considering articles which

estimated the cumulative risk of second CRC using kindred studies. For example,

Aarnio et al. (1995) and Parry et al. (2011) estimated the cumulative risk of second

CRC after 10 years of follow-up for mutation carriers to be close to 16%, Mecklin and

Jarv̈ınen (1986) estimated the penetrance of second CRC to be approximately 40%

for 10 years using 22 Finnish CRC kindreds, and Fitzgibbons Jr. et al. (1987) sam-

pled 10 kindreds and estimated the penetrance to be 40% for 10 years after the first

CRC. For the non-carrier penetrances, Myrhøj et al. (1997) estimated the age-specific

cumulative risks using sporadic cases as 10%.

3.1.4 Dependence levels, family sizes, and simulation runs

Finally, we considered three dependence levels between the successive events − high

dependence (k = 1), moderate dependence (k = 2), and small dependence (k = 10).

We recall that the dependence between the successive events is measured by the

variance of the frailty distribution. For a gamma frailty, the variance is provided by

the inverse of the frailty parameter, var(Z)=1/k. Hence, as the value of k increases,

the dependence between the successive events decreases. The variance of the frailty

distribution, used as a measure of dependence between the event times, can be related

to Kendall’s tau using the relation: τ =
1

1 + 2k
.

We generated the family data for our simulation studies with two varying sample
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sizes − 100 families and 200 families. Under a population-based study design, the

aforementioned sample sizes are readily achievable due to access to large family reg-

istries such as the NCI funded Breast and Colon Cancer Familial Registries (CFR)

(http://www.cfr.epi.uci.edu/).

In total, our simulation studies considered 96 parameter combinations (2 pene-

trance models for first event, 4 penetrance models for second event, 3 dependence

levels, 2 genetic models, and 2 sample sizes) and for each parameter combination, we

performed 500 replications. Figure 3.1 summarizes all the parameter values consid-

ered and their corresponding penetrance values for the first and second event.
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Figure 3.1: Parameter values chosen for our simulation study and the corresponding
penetrance values for the first (T1) and second (T2) event.
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3.2 Pedigree generation

We generated the pedigrees for our simulation studies based on the ideas of Gauder-

man (1995). Each simulated family consists of three generations of family members

- two parents, their offspring (one of whom is a proband) and each offspring has a

spouse and children. The number of siblings in the second generation as well as their

offspring were varied between two and five using a truncated negative binomial distri-

bution. Figure 3.2 illustrates the pedigree structure that we used for our simulation

study.

For each family member, we generated their gender, age at examination, mutation

status, and bivariate event times. We began by simulating family members with

equal probabilities of male and female and their ages at examination using a normal

distribution with the mean age as 45 for the members belonging to the first and second

generations and 20 years for the members of the third generation. The variances were

fixed at 2.5 years for the first two generations and 1 year for the third generation. We

assumed the minimum age-at-onset for the first event as 20 years and the maximum

PROBAND

Figure 3.2: A simulated family with the proband including two parents, two siblings
and each having two children. Males are displayed in rectangles and females in ovals.
Solid and dashed outlines represent mutation carriers and non-carriers, respectively,
and shaded if affected.
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age at examination as 90 years.

In the next step, we generated the genotype of the proband conditioning on his/her

age at examination and gender. We assumed the proband to be affected by the first

event before his/her age at examination and to carry a disease mutation. Conditioning

on the proband’s genotype, the genotypes of other family members were generated

either using Hardy Weinberg equilibrium or Mendelian transmission probabilities.

Now, given the genotype and gender for each family member, we generated their

bivariate event times. Details of generating the bivariate event times are presented in

the following section.

3.2.1 Simulation of bivariate event times

For our simulation studies, we simulated two sequential times using the following

bivariate distribution,

S(t1, t2|X1, X2) =

[
k + ν1(t1 − 20)ϕ1eβ1X1+β2X2 + ν2t2

ϕ2eβ3X2

k

]−k
. (3.1)

We began by generating the age-at-onset for first event from the corresponding

marginal distribution and then generated time to second event from the conditional

distribution of second event time given the value of the first event time. The detailed

procedure of simulating the two sequential event times is as follows:

1. Generate two independent random variables, u and v from the Uniform distri-

bution, U(0, 1), respectively.

2. Using equation (3.1), derive the marginal survival function for the first event,

S1(t1|X1, X2), where X1 and X2 are the gender and genotype of the simulated

family member.

3. Now, set u = S1(t1|X1, X2) and solve for t1 such that

t1 =

[
ku
−1
k − k

ν1eβ1X1+β2X2

] 1
ϕ1

+ 20.
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4. Using the conditional survival distribution for the second event conditioning on

T1 = t1, obtain t2 by setting v = S2(t2|t1, X2), such that

t2 =

[
v
−1
k+1 (k + ν1(t1 − 20)ϕ1eβ1X1+β2X2) − k − ν1(t1 − 20)ϕ1eβ1X1+β2X2

ν2eβ3X2

] 1
ϕ2

5. Thus, (t1, t2) are the bivariate event times generated from the bivariate distri-

bution in equation (3.1).

Finally, the censoring indicators were derived for the first event as δ1 = 1 if t1 < a

and 0, otherwise, where a is the age at examination and for the second event, δ2 = 1

if (t1 + t2) < a and 0, otherwise. We set T1 = t1 if δ1 = 1 and T1 = a if δ1 = 0.

Correspondingly, T2 = t2 if δ2 = 1 and T2 = a − t1 if δ2 = 0. Since the proband was

assumed to be affected by the first event (δ1 = 1), his/her time-to-onset for the first

event was generated to be less than his/her age at examination.

3.3 Evaluation criteria

We compared the estimates of disease risks (penetrance and relative risks) obtained

from our frailty-based approach to those from an independent model, which ignored

the dependence between the events. For the latter, we assumed two independent

Weibull models for the first and second events. We evaluated the accuracy and pre-

cision of the disease risk estimates using the following characteristics:

Median bias

The bias of an estimate was computed as the difference between the estimate and the

true value. The median bias was reported due to the presence of few extreme values

in some settings of our simulation study. In addition, we reported the first and third

quartiles.

Standard error

For each simulation, we computed the model-based robust standard errors (SE) of

the estimates. The median SE estimate from the 500 simulations was reported along
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with their first and third quartiles.

Coverage probability

We also presented the coverage probability (CP) based on the estimated model-

based SE. It was calculated as the proportion of times the 95% confidence inter-

val of the estimates included the true value. Burton et al. (2006) suggests that

the CP for an estimate must approximately lie within the two SEs of the nom-

inal coverage probability. The SE for a 95% nominal CP with 500 simulations

is given by
√

0.95(1−0.95)
500

= 0.0097 and hence the acceptable coverage boundary is

(0.95 − (2 × 0.0097) = 0.93, 0.95 + (2 × 0.0097) = 0.97). Over-coverage (CP > 95%)

may lead to an increase in type II error, whereas an under-coverage (CP < 95%) may

increase the type I error rate.

3.4 Simulation results

We performed the simulation studies using the statistical software, R (R Development

Core Team, 2011). We summarize the simulation results in Tables 3.1 - 3.5 for the

dominant models and Tables 3.6 - 3.10 for the recessive models. In addition, Figures

3.3 - 3.7 graphically display the bias of the estimate and its 95% confidence interval

(CI) for the dominant model and Figures 3.8 - 3.12 display the same for the recessive

model. The 95% CIs were computed using the median model-based SEs obtained from

the simulations. Each Table and Figure also contain the results from the independent

model. In this Chapter, we present the simulation results based on 200 simulated

families. The results from 100 families are presented in Appendix B.

3.4.1 Estimation of log genetic relative risks

Log genetic relative risk for the first event (β2)

The simulation results for the estimation of log genetic relative risk of the first event

(β2) using the dominant and recessive models are presented in Tables 3.1 and 3.6,
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respectively and also graphically displayed in Figures 3.3 and 3.8 in terms of the bias

and its 95% confidence interval (CI). In the presence of the dominant model (see Table

3.1 and Figure 3.3), our frailty based approach produced almost unbiased estimates

with an absolute value of the bias less than 0.062. The biases were predominantly

positive and slightly increased with the value of k, i.e. when the dependency between

the events reduced. But they were not significantly different from zero as their 95%

CIs covered zero. On the other hand, the model-based standard errors (SEs) ranged

between 0.215 and 0.258 over all different combinations of the first and second event

penetrances and they tended to decrease slightly as the value of k increased. We

also noticed that high penetrance yielded higher SEs than low penetrance setting

for both first and second events. The coverage probabilities (CPs) were close to the

prescribed nominal probability of 0.95 in all 24 parametric combinations; therefore,

the type I error rate for testing the null hypothesis, β2 = 0, is under control, i.e.

α = 5%. Similarly, for the recessive model (see Table 3.6 and Figure 3.8), the bias

was also negligible but appeared slightly higher compared to the dominant model in

the presence of the low penetrance for the first event. The SEs and CPs remained

almost same for the dominant and recessive models.

Log genetic relative risk for the second event (β3)

We tabulate the simulation results for the estimation of log relative risk of mutated

gene for the second event (β3) in Tables 3.2 and 3.7 using the dominant and recessive

models, respectively, and also graphically display its bias and the 95% CI in Figures

3.4 and 3.9. In the estimation of β3 using the two genetic models, the bias appeared to

be negligible and ranged between -0.040 and 0.068. The 95% CI for the bias covered

zero in all parameter settings. The model-based SEs for β̂3 ranged between 0.379

and 0.615 and they tended to increase with the value of k in the low baseline (LBL)

setting of the second event but they decreased in most of the high baseline (HBL)

setting. The SEs from the high penetrance for the first event appeared lower than
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those from the low penetrance of the first event and a similar tendency was observed

for the high and low penetrance settings for the second event. The SEs for β̂3 were

twice as large as those obtained for β̂2 due to relatively smaller number of second

events. The CPs were mostly close to the prescribed 95% CP.

We also compared the performance of our frailty approach to that of a model

that ignores the dependence between the events. The genetic relative risk estimates

for different dependence levels (k = 1, 2, and 10) were compared to those from the

independent model. Tables 3.1, 3.2, 3.6, and 3.7 clearly suggested that in the presence

of a high (k = 1) or moderate (k = 2) dependency between the successive events, the

independent model resulted in negative bias in the estimates of log genetic relative

risks for both the first event, β2, as well as for the second event, β3. The median bias

from the independent model can be as large as -0.254 in the estimates of β2 and as

large as -0.215 in the estimates of β3. However, as shown in Figure 3.3, 3.4, 3.8, and

3.9, the 95% CIs for the biases of β̂2 and β̂3 from the independent model included zero

irrespective of the genetic model and the value of k. In spite of that, the CPs for the

independent model were far below the prescribed 95% nominal level for k = 1 and

2, especially for the estimation of β2 under the high penetrance for the first event.

This suggested that the independent model increased the type I error rates in the test

of null hypothesis of the relative risks. Overall, regardless of the genetic model and

parameter combinations, a model which incorrectly assumed independence between

two dependent events resulted in some sinvalid estimates of the genetic relative risks.

3.4.2 Estimation of penetrances

In our simulation studies, we estimated the penetrance of developing a first event by

the age of 70 years, separately for male and female mutation carriers and the pene-

trance of developing a second event in 10 years after the first event among carriers of

the mutated gene.
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Penetrance estimation of first event for male carriers

The simulation results obtained for the penetrance estimation of first event among

male mutation carriers are presented in Tables 3.3 and 3.8 for the dominant and re-

cessive models, respectively. We also graphically display the bias and its 95% CI in

Figures 3.5 and 3.10, using the two genetic models. Regardless of the genetic model,

the biases of the penetrance estimates obtained from our frailty approach estimate

appeared to be negligible as the highest absolute value was only 0.014 and their ro-

bust SEs ranged between 0.037 and 0.053. The resulting 95% CIs of the bias included

zero in all settings. Moreover, there was a very minimal decrease in SEs with value

of k and the values of SE was the smallest when k=10, irrespective of parameter

combinations. The bias and SE of the estimate were somewhat larger in the presence

of the high penetrance model for T1 compared to the low penetrance model. Finally,

the CPs were all close to 95%.

Penetrance estimation of first event for female carriers

As for the penetrance estimation for female mutation carriers, we present the simula-

tion results in Tables 3.4 and 3.9 for the dominant and recessive models, respectively.

We also graphically display the bias of the estimate and its 95% CI in Figures 3.6 and

3.11. For the dominant model, the biases and SEs remained negligible but slightly

smaller compared to those obtained for male carriers. As shown in Table 3.4, the

model-based SEs tended to increase with the value of k and the SEs for the high

penetrance model for T1 were slightly larger (ranged between 0.040 and 0.045) than

those corresponding to the low penetrance model (ranged between 0.032 and 0.036).

The CPs were similar to those obtained for the male counterparts, all close to the

95% nominal level. However, the SEs for the female carriers seemed to be slightly

smaller than those for the male carriers as shown in Figures 3.6 and 3.11. The bias,

SE and CP remained almost same for the dominant and recessive models.

Irrespective of the genetic model, our frailty based approach was less biased com-
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pared to the independent model in the penetrance estimation of the first event. Sur-

prisingly, the independent model yielded almost unbiased estimates in the penetrance

estimation for female mutation carriers (Figures 3.6 and 3.11), in addition to the CPs

close to 95% (Tables 3.4 and 3.9). We investigated the reason behind this peculiar

situation and found that the independent model overestimated the scale parameter

(ν1), which would lead to overestimation of the penetrance but the underestimated

log relative risk of mutated gene (β2) neutralized its effect, so resulting in an unbiased

penetrance estimates for female carrier. We also observed that the robust SEs for the

independent model seemed slightly higher than those obtained from our frailty model

in the estimation of penetrance values for female carries.

Penetrance estimation of second event for mutation carriers

The simulation results for the dominant model in the estimation of penetrance of

developing a second event in 10 years after the first event among mutation carriers

are presented in Table 3.5 and graphically in Figure 3.7. And the recessive model’s

results are presented in Table 3.10 and Figure 3.12. In the estimation of penetrance

for second event, the absolute values of the bias for both the genetic models remained

less than 0.020. As Tables 3.5 and 3.10 show, it is evident that there was no impact of

different genetic models in the estimation of penetrance function as their SEs and CPs

were almost similar. Irrespective of the genetic model, the SEs were larger under the

high baseline for T2 (ranged between 0.034 and 0.085) compared to the corresponding

low baseline (ranged between 0.022 and 0.055). The SEs tended to decrease as the

value of k increased; the SEs of the estimates were the lowest when k = 10, regard-

less of the parameter combinations and genetic models. Lastly, the CPs for the two

genetic models ranged between 0.71 and 0.94, which were far below the 95% nominal

level. This could possibly be due to the limited number of second event occurrences

in these settings. With an idea to improve the CPs, we simulated 500 families (results

not shown) and found the CPs to be better than those obtained using 200 families
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(above 75%), but still slightly less than the considered 95% probability.

The independent model clearly produced biased penetrance estimates compared to

our frailty model which accounted for the dependence between events. The estimates

were upwardly biased in the presence of a high or moderate dependence, i.e. when

k = 1 or 2 (see Figures 3.7 and 3.12) and the biases were significantly different from

zero. This was supported by the presence of very low CP. However, when k = 10,

the penetrance estimates from the independent model were close to those obtained

from our frailty approach as expected and it can also be noted that the SEs from the

independent model were always smaller compared to those from our frailty approach

for any value of k.

3.5 Summary

Using a population-based study design, we demonstrated that our proposed method

provided more consistent and reliable estimates for both relative risk and penetrance

compared to the independent model. The two genetic models − dominant and reces-

sive models, had some impact on the estimation of genetic relative risks of first event

where the recessive model produced slightly larger bias than the dominant model.

However, in the penetrance estimation there was no noticeable difference in our eval-

uation criteria using these two genetic models.

On the other hand, the independent model yielded unreliable estimates in the

presence of high or medium dependence as their CPs often did not achieve the de-

sired coverage level. In the estimation of penetrance for the first event, the estimates

were biased for male carriers, however, the estimates were unbiased for female car-

riers. In the estimation of penetrance for a second event, the estimates were highly

biased from an independent model in the presence of high dependence (k = 1). The

CPs under the independent model were predominantly lower than the prescribed 95%

nominal probability and especially on the estimation of penetrance of second event for
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mutation carriers where the CPs were less than 50% in the presence of high or mod-

erate dependence between the sequential events. Even though the precision from the

independent model seemed to be slightly better (smaller SEs) than our frailty model,

the largely biased estimates produced by the independent model counterbalanced the

benefit, especially in the presence of high dependence between the two events. When

there is low dependence between the event times, the independent model provides

better CP values than our frailty based approach, i.e. closer to the prescribed 95%

nominal probability. This could possibly be due to the additional burden in esti-

mating the frailty parameter (k) using our approach, in the absence of a substantial

dependence between the events. We note that the median model-based SEs of the

estimates were close to the simulation-based SEs. The average censoring rate for the

first event in the simulated families was close to 90% and the censoring rate slightly

increased as the dependence between the event times increased and hence can be

viewed as a possible reason behind the under coverage of the CPs.

We also varied the sample size of our simulation from n = 200 families to n =

100 families (results presented in Appendix B) and found the inferences were similar

to those obtained with 200 samples with the CPs close to the prescribed 95%. Using

the n = 100, the biases appeared slightly greater for the estimation of genetic relative

risks, β2 and β3, but were not statistically significant. It was also expected to see that

the model based SEs with the 100 families were about 1.5 fold larger than those with

200 families on the estimation of genetic relative risks and penetrance functions for

the first and second events.
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Table 3.1: Estimation of log relative genetic risk (β2) of developing the first event
under the dominant genetic model with rare allele frequency (q = 2%) using 200
simulated families.

Parameters Frailty model Independent model

T1 T2 k Bias Q∗1 Q∗3 SE Q
†
1 Q

†
3 CP Bias Q∗1 Q∗3 SE Q

†
1 Q

†
3 CP

1 -0.006 -0.16 0.17 0.242 0.23 0.26 0.97 -0.254 -0.39 -0.12 0.206 0.20 0.22 0.74

LBL 2 0.016 -0.13 0.16 0.232 0.22 0.25 0.95 -0.137 -0.28 0.00 0.205 0.19 0.22 0.87

HP2 10 0.035 -0.11 0.18 0.222 0.20 0.24 0.94 -0.039 -0.17 0.11 0.202 0.19 0.22 0.95

1 0.033 -0.13 0.20 0.239 0.22 0.26 0.94 -0.242 -0.39 -0.08 0.207 0.20 0.22 0.75

HP1 HBL 2 -0.017 -0.15 0.14 0.227 0.21 0.24 0.95 -0.147 -0.27 -0.02 0.203 0.19 0.22 0.88

10 0.014 -0.12 0.18 0.215 0.20 0.23 0.93 -0.032 -0.17 0.12 0.202 0.19 0.21 0.94

1 0.028 -0.13 0.18 0.248 0.23 0.26 0.96 -0.239 -0.38 -0.11 0.209 0.20 0.22 0.76

LBL 2 0.040 -0.14 0.22 0.238 0.22 0.26 0.95 -0.140 -0.29 0.02 0.206 0.19 0.22 0.86

LP2 10 0.042 -0.08 0.18 0.220 0.20 0.24 0.95 -0.021 -0.15 0.11 0.202 0.19 0.21 0.96

1 0.040 -0.13 0.19 0.245 0.23 0.26 0.95 -0.242 -0.38 -0.10 0.209 0.20 0.22 0.76

HBL 2 0.027 -0.13 0.18 0.232 0.22 0.25 0.94 -0.132 -0.27 0.01 0.205 0.19 0.22 0.88

10 0.023 -0.14 0.18 0.215 0.20 0.23 0.92 -0.038 -0.17 0.12 0.199 0.19 0.21 0.92

1 -0.005 -0.16 0.18 0.255 0.23 0.28 0.95 -0.131 -0.26 0.01 0.223 0.21 0.23 0.90

LBL 2 0.033 -0.13 0.20 0.244 0.23 0.27 0.92 -0.048 -0.19 0.09 0.217 0.21 0.23 0.93

HP2 10 0.055 -0.11 0.20 0.239 0.22 0.26 0.92 0.005 -0.17 0.13 0.218 0.21 0.23 0.94

1 0.021 -0.15 0.20 0.253 0.23 0.27 0.94 -0.116 -0.27 0.05 0.223 0.21 0.23 0.91

LP1 HBL 2 0.012 -0.15 0.17 0.240 0.22 0.26 0.95 -0.067 -0.23 0.09 0.220 0.21 0.23 0.93

10 0.040 -0.12 0.20 0.228 0.21 0.25 0.92 -0.009 -0.14 0.15 0.218 0.21 0.23 0.95

1 0.011 -0.15 0.18 0.258 0.24 0.28 0.95 -0.121 -0.26 0.03 0.223 0.21 0.24 0.92

LBL 2 0.045 -0.11 0.21 0.249 0.23 0.28 0.93 -0.036 -0.20 0.11 0.221 0.21 0.23 0.94

LP2 10 0.062 -0.10 0.24 0.242 0.22 0.26 0.91 0.008 -0.14 0.16 0.219 0.21 0.23 0.94

1 0.004 -0.15 0.16 0.256 0.23 0.28 0.96 -0.135 -0.26 0.01 0.223 0.21 0.23 0.93

HBL 2 0.032 -0.13 0.20 0.241 0.22 0.26 0.93 -0.054 -0.20 0.11 0.219 0.21 0.23 0.93

10 0.041 -0.09 0.20 0.233 0.21 0.26 0.93 0.003 -0.14 0.16 0.218 0.21 0.23 0.95

Bias - median bias; SE - robust standard error; CP - coverage probability.

Q∗1 and Q∗3 - First and third quartiles of bias, respectively.

Q†1 and Q†3 - First and third quartiles of robust standard error, respectively.

HP1 and LP1 - high (β2 = 2.5) and low (β2 = 1.55) penetrances for the first event, respectively.

HP2 and LP2 - high (β3 = 0.75) and low (β3 = 0.3) penetrances for the second event, respectively.

LBL and HBL - low (ν2=0.00724,ϕ2=1.14) and high (ν2=0.00324,ϕ2=1.84) baselines for second event, respectively.
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High penetrance for the first event
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Figure 3.3: Bias and its 95% confidence interval in the log genetic relative risk esti-
mation of the first event (β2) from frailty model (left) and independent model (right),
respectively, under high penetrance (top) and low penetrance (bottom) for the first
event using the dominant genetic model with rare allele frequency (2%) with a sample
size of 200 families.
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Table 3.2: Estimation of log relative genetic risk (β3) of developing the second event
under the dominant genetic model with rare allele frequency (q = 2%) using 200
simulated families.

Parameters Frailty model Independent model

T1 T2 k Bias Q∗1 Q∗3 SE Q
†
1 Q

†
3 CP Bias Q∗1 Q∗3 SE Q

†
1 Q

†
3 CP

1 0.028 -0.31 0.44 0.502 0.44 0.59 0.96 -0.151 -0.43 0.25 0.464 0.40 0.56 0.92

LBL 2 0.033 -0.33 0.46 0.546 0.46 0.64 0.95 -0.074 -0.42 0.34 0.519 0.44 0.61 0.94

HP2 10 0.013 -0.33 0.44 0.573 0.49 0.73 0.95 -0.010 -0.37 0.41 0.562 0.48 0.71 0.97

1 -0.002 -0.27 0.36 0.405 0.35 0.47 0.93 -0.215 -0.45 0.07 0.332 0.29 0.39 0.84

HP1 HBL 2 0.001 -0.25 0.30 0.396 0.34 0.45 0.93 -0.143 -0.38 0.12 0.350 0.30 0.40 0.89

10 -0.016 -0.29 0.29 0.387 0.33 0.44 0.90 -0.080 -0.34 0.22 0.367 0.31 0.42 0.91

1 -0.024 -0.36 0.34 0.498 0.44 0.58 0.95 -0.159 -0.44 0.21 0.460 0.40 0.54 0.93

LBL 2 0.029 -0.26 0.46 0.549 0.47 0.65 0.96 -0.046 -0.34 0.39 0.523 0.45 0.62 0.95

LP2 10 0.017 -0.32 0.46 0.585 0.49 0.73 0.92 0.005 -0.35 0.41 0.579 0.49 0.72 0.95

1 0.024 -0.26 0.30 0.396 0.36 0.45 0.92 -0.123 -0.37 0.11 0.336 0.30 0.39 0.89

HBL 2 0.015 -0.26 0.31 0.389 0.35 0.45 0.94 -0.093 -0.32 0.19 0.347 0.31 0.40 0.91

10 0.012 -0.25 0.26 0.386 0.34 0.46 0.94 -0.032 -0.27 0.22 0.364 0.32 0.42 0.95

1 0.046 -0.24 0.43 0.512 0.44 0.59 0.95 -0.047 -0.33 0.30 0.470 0.41 0.55 0.95

LBL 2 0.062 -0.29 0.48 0.541 0.47 0.65 0.93 -0.021 -0.32 0.43 0.517 0.45 0.61 0.95

HP2 10 0.022 -0.32 0.56 0.586 0.49 0.73 0.92 -0.003 -0.34 0.51 0.581 0.49 0.72 0.95

1 -0.023 -0.32 0.25 0.402 0.35 0.46 0.93 -0.157 -0.40 0.12 0.335 0.30 0.39 0.88

LP1 HBL 2 -0.040 -0.29 0.30 0.402 0.35 0.47 0.96 -0.133 -0.36 0.15 0.350 0.31 0.41 0.93

10 0.014 -0.24 0.31 0.399 0.35 0.47 0.92 -0.030 -0.28 0.26 0.372 0.33 0.43 0.94

1 0.002 -0.31 0.36 0.505 0.44 0.57 0.94 -0.040 -0.33 0.29 0.465 0.41 0.54 0.94

LBL 2 0.040 -0.33 0.46 0.545 0.48 0.69 0.94 -0.003 -0.35 0.44 0.528 0.46 0.64 0.95

LP2 10 0.036 -0.32 0.49 0.615 0.52 0.76 0.93 0.016 -0.32 0.45 0.602 0.51 0.74 0.95

1 -0.020 -0.28 0.27 0.401 0.35 0.47 0.94 -0.085 -0.30 0.16 0.348 0.31 0.40 0.93

HBL 2 -0.000 -0.29 0.32 0.405 0.35 0.47 0.93 -0.047 -0.31 0.23 0.360 0.31 0.42 0.92

10 -0.008 -0.29 0.31 0.407 0.35 0.48 0.92 -0.023 -0.31 0.28 0.376 0.33 0.44 0.93

Bias - median bias; SE - robust standard error; CP - coverage probability.

Q∗1 and Q∗3 - First and third quartiles of bias, respectively.

Q†1 and Q†3 - First and third quartiles of robust standard error, respectively.

HP1 and LP1 - high (β2 = 2.5) and low (β2 = 1.55) penetrances for the first event, respectively.

HP2 and LP2 - high (β3 = 0.75) and low (β3 = 0.3) penetrances for the second event, respectively.

LBL and HBL - low (ν2=0.00724,ϕ2=1.14) and high (ν2=0.00324,ϕ2=1.84) baselines for second event, respectively.



51

High penetrance for the first event

−1.0

−0.5

0.0

0.5

1.0

● ● ●
● ● ● ● ● ● ● ● ●

1 2 10
k

B
ia

s

Frailty model

−1.0

−0.5

0.0

0.5

1.0

●
●

● ●
●

●
● ●

●
●

● ●

1 2 10
k

B
ia

s

Independent model

Low penetrance for the first event

−1.0

−0.5

0.0

0.5

1.0

●
● ● ●

●
●

● ● ● ● ● ●

1 2 10
k

B
ia

s

Frailty model

−1.0

−0.5

0.0

0.5

1.0

●
●

● ●
●

●

● ● ● ● ● ●

1 2 10
k

B
ia

s

Independent model

Second event combinations

●

●

●

●

High penetrance, low baseline

High penetrance, high baseline

Low penetrance, low baseline

Low penetrance, high baseline

Figure 3.4: Bias and 95% confidence interval of the bias in the log genetic relative risk
estimation of the second event (β3) from frailty model (left) and independent model
(right), respectively, under high penetrance (top) and low penetrance (bottom) for
the first event using the dominant genetic model with rare allele frequency (2%) with
a sample size of 200 families.
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Table 3.3: Penetrance estimation of male mutation carriers for the first event by the
age of 70 years under the dominant genetic model with rare allele frequency (q = 2%)
using 200 simulated families.

Parameters Pen Frailty model Independent model

T1 T2 k (%) Bias Q∗1 Q∗3 SE Q
†
1 Q

†
3 CP Bias Q∗1 Q∗3 SE Q

†
1 Q

†
3 CP

1 66 0.005 -0.03 0.03 0.046 0.04 0.05 0.94 0.063 0.04 0.10 0.040 0.04 0.04 0.60

LBL 2 74 -0.001 -0.03 0.03 0.044 0.04 0.05 0.93 0.042 0.02 0.07 0.036 0.03 0.04 0.74

HP2 10 83 -0.006 -0.03 0.02 0.039 0.03 0.04 0.94 0.011 -0.01 0.03 0.031 0.03 0.03 0.93

1 66 -0.000 -0.03 0.04 0.044 0.04 0.05 0.94 0.064 0.04 0.09 0.040 0.04 0.04 0.63

HP1 HBL 2 74 0.001 -0.02 0.03 0.042 0.04 0.04 0.93 0.039 0.02 0.07 0.036 0.03 0.04 0.77

10 83 -0.005 -0.03 0.02 0.037 0.03 0.04 0.95 0.007 -0.01 0.03 0.031 0.03 0.03 0.92

1 66 -0.000 -0.03 0.03 0.046 0.04 0.05 0.93 0.061 0.04 0.09 0.040 0.04 0.04 0.64

LBL 2 74 -0.001 -0.03 0.03 0.045 0.04 0.05 0.92 0.039 0.02 0.07 0.036 0.03 0.04 0.76

LP2 10 83 -0.003 -0.02 0.02 0.040 0.03 0.04 0.94 0.013 -0.00 0.03 0.030 0.03 0.03 0.91

1 66 0.002 -0.03 0.03 0.045 0.04 0.05 0.95 0.062 0.04 0.09 0.040 0.04 0.04 0.65

HBL 2 74 0.002 -0.02 0.03 0.043 0.04 0.04 0.94 0.040 0.02 0.07 0.036 0.03 0.04 0.76

10 83 -0.006 -0.03 0.02 0.037 0.03 0.04 0.94 0.011 -0.01 0.03 0.030 0.03 0.03 0.90

1 43 -0.008 -0.04 0.03 0.049 0.05 0.05 0.95 0.025 -0.00 0.06 0.046 0.04 0.05 0.91

LBL 2 47 -0.005 -0.04 0.03 0.050 0.05 0.05 0.94 0.019 -0.01 0.05 0.047 0.04 0.05 0.92

HP2 10 52 -0.014 -0.05 0.02 0.051 0.05 0.06 0.91 0.003 -0.04 0.03 0.047 0.04 0.05 0.91

1 43 -0.002 -0.04 0.03 0.047 0.04 0.05 0.93 0.031 -0.01 0.06 0.046 0.04 0.05 0.88

LP1 HBL 2 47 -0.008 -0.04 0.03 0.049 0.05 0.05 0.94 0.011 -0.01 0.05 0.047 0.04 0.05 0.94

10 52 -0.003 -0.04 0.03 0.049 0.05 0.05 0.92 0.008 -0.03 0.04 0.047 0.04 0.05 0.94

1 43 -0.003 -0.04 0.04 0.049 0.05 0.05 0.94 0.027 -0.00 0.06 0.046 0.04 0.05 0.87

LBL 2 47 -0.002 -0.04 0.04 0.051 0.05 0.06 0.92 0.021 -0.01 0.05 0.047 0.04 0.05 0.92

LP2 10 52 -0.012 -0.05 0.02 0.052 0.05 0.06 0.94 0.001 -0.03 0.03 0.047 0.04 0.05 0.94

1 43 -0.008 -0.04 0.03 0.048 0.05 0.05 0.96 0.024 -0.01 0.06 0.046 0.04 0.05 0.92

HBL 2 47 -0.002 -0.04 0.03 0.049 0.05 0.05 0.93 0.022 -0.01 0.06 0.047 0.04 0.05 0.94

10 52 -0.004 -0.04 0.03 0.049 0.05 0.05 0.92 0.009 -0.03 0.04 0.047 0.04 0.05 0.92

Pen - penetrance; Bias - median bias; SE - robust standard error; CP - coverage probability.

Q∗1 and Q∗3 - First and third quartiles of bias, respectively.

Q†1 and Q†3 - First and third quartiles of robust standard error, respectively.

HP1 and LP1 - high (β2 = 2.5) and low (β2 = 1.55) penetrances for the first event, respectively.

HP2 and LP2 - high (β3 = 0.75) and low (β3 = 0.3) penetrances for the second event, respectively.

LBL and HBL - low (ν2=0.00724,ϕ2=1.14) and high (ν2=0.00324,ϕ2=1.84) baselines for second event, respectively.
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Figure 3.5: Bias and its 95% confidence interval in the first event penetrance es-
timation at age 70 years for male mutation carriers from frailty model (left) and
independent model (right), respectively, under high penetrance (top) and low pene-
trance (bottom) for the first event using the dominant genetic model with rare allele
frequency (2%) with a sample size of 200 families.
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Table 3.4: Penetrance estimation of female mutation carriers for the first event by the
age of 70 years under the dominant genetic model with rare allele frequency (q = 2%)
using 200 simulated families.

Parameters Pen Frailty model Independent model

T1 T2 k (%) Bias Q∗1 Q∗3 SE Q
†
1 Q

†
3 CP Bias Q∗1 Q∗3 SE Q

†
1 Q

†
3 CP

1 37 -0.003 -0.02 0.03 0.040 0.04 0.04 0.95 -0.002 -0.03 0.04 0.044 0.04 0.04 0.95

LBL 2 40 -0.005 -0.02 0.03 0.043 0.04 0.04 0.95 -0.003 -0.02 0.03 0.045 0.04 0.05 0.95

HP2 10 44 -0.005 -0.03 0.03 0.045 0.04 0.05 0.95 -0.006 -0.03 0.03 0.046 0.04 0.05 0.96

1 37 0.003 -0.03 0.03 0.040 0.04 0.04 0.95 0.003 -0.03 0.04 0.044 0.04 0.05 0.95

HP1 HBL 2 40 -0.004 -0.03 0.03 0.043 0.04 0.04 0.92 -0.003 -0.03 0.03 0.045 0.04 0.05 0.92

10 44 -0.003 -0.03 0.02 0.045 0.04 0.05 0.92 -0.003 -0.03 0.02 0.046 0.04 0.05 0.94

1 37 -0.002 -0.03 0.02 0.040 0.04 0.04 0.94 -0.001 -0.02 0.03 0.044 0.04 0.04 0.95

LBL 2 40 -0.002 -0.03 0.03 0.043 0.04 0.04 0.94 -0.001 -0.03 0.03 0.045 0.04 0.05 0.93

LP2 10 44 0.001 -0.03 0.02 0.045 0.04 0.05 0.96 0.002 -0.03 0.02 0.045 0.04 0.05 0.96

1 37 -0.001 -0.03 0.03 0.040 0.04 0.04 0.95 -0.001 -0.03 0.03 0.044 0.04 0.04 0.95

HBL 2 40 -0.000 -0.02 0.03 0.043 0.04 0.04 0.95 -0.000 -0.02 0.03 0.045 0.04 0.05 0.95

10 44 0.003 -0.04 0.03 0.045 0.04 0.05 0.92 0.002 -0.04 0.03 0.045 0.04 0.05 0.93

1 19 -0.002 -0.03 0.01 0.032 0.03 0.04 0.94 -0.003 -0.03 0.01 0.034 0.03 0.04 0.93

LBL 2 19 -0.001 -0.02 0.03 0.034 0.03 0.04 0.94 -0.002 -0.02 0.03 0.035 0.03 0.04 0.93

HP2 10 20 -0.000 -0.02 0.03 0.035 0.03 0.04 0.95 -0.000 -0.02 0.03 0.036 0.03 0.04 0.96

1 19 0.001 -0.03 0.02 0.033 0.03 0.04 0.94 0.001 -0.03 0.02 0.035 0.03 0.04 0.94

LP1 HBL 2 19 -0.004 -0.02 0.03 0.034 0.03 0.04 0.95 -0.006 -0.02 0.03 0.035 0.03 0.04 0.95

10 20 -0.002 -0.02 0.03 0.036 0.03 0.04 0.92 -0.003 -0.02 0.03 0.036 0.03 0.04 0.93

1 19 -0.003 -0.03 0.02 0.033 0.03 0.04 0.94 -0.004 -0.03 0.02 0.034 0.03 0.04 0.94

LBL 2 19 0.001 -0.02 0.03 0.034 0.03 0.04 0.93 0.000 -0.02 0.03 0.035 0.03 0.04 0.93

LP2 10 20 0.000 -0.02 0.03 0.036 0.03 0.04 0.93 -0.001 -0.02 0.03 0.036 0.03 0.04 0.94

1 19 -0.002 -0.03 0.02 0.033 0.03 0.04 0.95 -0.005 -0.03 0.02 0.034 0.03 0.04 0.95

HBL 2 19 0.002 -0.01 0.03 0.034 0.03 0.04 0.95 0.001 -0.02 0.03 0.035 0.03 0.04 0.96

10 20 -0.004 -0.02 0.03 0.036 0.03 0.04 0.91 -0.005 -0.03 0.03 0.036 0.03 0.04 0.92

Pen - penetrance; Bias - median bias; SE - robust standard error; CP - coverage probability.

Q∗1 and Q∗3 - First and third quartiles of bias, respectively.

Q†1 and Q†3 - First and third quartiles of robust standard error, respectively.

HP1 and LP1 - high (β2 = 2.5) and low (β2 = 1.55) penetrances for the first event, respectively.

HP2 and LP2 - high (β3 = 0.75) and low (β3 = 0.3) penetrances for the second event, respectively.

LBL and HBL - low (ν2=0.00724,ϕ2=1.14) and high (ν2=0.00324,ϕ2=1.84) baselines for second event, respectively.
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Figure 3.6: Bias and its 95% confidence interval in the first event penetrance es-
timation at age 70 years for female mutation carriers from frailty model (left) and
independent model (right), respectively, under high penetrance (top) and low pene-
trance (bottom) for the first event using the dominant genetic model with rare allele
frequency (2%) with a sample size of 200 families.
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Table 3.5: Penetrance estimation of mutation carriers for developing the second event
in 10 years after the first event under the dominant genetic model with rare allele
frequency (q = 2%) using 200 simulated families.

Parameters Pen Frailty model Independent model

T1 T2 k (%) Bias Q∗1 Q∗3 SE Q
†
1 Q

†
3 CP Bias Q∗1 Q∗3 SE Q

†
1 Q

†
3 CP

1 17 0.002 -0.02 0.03 0.033 0.03 0.04 0.93 0.105 0.09 0.13 0.025 0.02 0.03 0.01

LBL 2 18 -0.002 -0.02 0.03 0.034 0.03 0.04 0.93 0.057 0.05 0.08 0.024 0.02 0.02 0.28

HP2 10 19 -0.005 -0.03 0.01 0.029 0.02 0.04 0.91 0.011 -0.00 0.02 0.022 0.02 0.02 0.94

1 32 0.001 -0.03 0.04 0.048 0.04 0.06 0.92 0.157 0.14 0.18 0.029 0.03 0.03 0.00

HP1 HBL 2 35 0.003 -0.03 0.04 0.047 0.04 0.05 0.91 0.088 0.07 0.10 0.028 0.03 0.03 0.11

10 37 -0.005 -0.03 0.02 0.041 0.03 0.05 0.94 0.019 0.00 0.04 0.027 0.03 0.03 0.92

1 12 -0.002 -0.02 0.02 0.024 0.02 0.03 0.92 0.077 0.06 0.09 0.022 0.02 0.02 0.04

LBL 2 12 -0.002 -0.01 0.02 0.025 0.02 0.03 0.92 0.043 0.03 0.06 0.020 0.02 0.02 0.44

LP2 10 13 -0.006 -0.02 0.00 0.022 0.02 0.03 0.92 0.009 -0.01 0.02 0.018 0.02 0.02 0.95

1 23 -0.002 -0.03 0.03 0.038 0.03 0.05 0.93 0.125 0.11 0.15 0.028 0.03 0.03 0.00

HBL 2 25 -0.001 -0.03 0.02 0.038 0.03 0.04 0.90 0.070 0.04 0.08 0.026 0.02 0.03 0.26

10 26 -0.004 -0.03 0.01 0.034 0.03 0.04 0.94 0.016 -0.00 0.03 0.024 0.02 0.02 0.91

1 17 -0.002 -0.04 0.07 0.053 0.04 0.08 0.76 0.128 0.11 0.15 0.031 0.03 0.03 0.01

LBL 2 18 -0.003 -0.05 0.05 0.049 0.03 0.07 0.73 0.067 0.05 0.09 0.029 0.03 0.03 0.35

HP2 10 19 -0.020 -0.06 0.01 0.041 0.03 0.06 0.83 0.014 -0.01 0.03 0.026 0.02 0.03 0.93

1 32 0.007 -0.07 0.08 0.081 0.06 0.10 0.80 0.187 0.16 0.21 0.035 0.03 0.04 0.00

LP1 HBL 2 35 -0.006 -0.08 0.07 0.075 0.06 0.10 0.75 0.103 0.08 0.12 0.034 0.03 0.04 0.15

10 37 -0.004 -0.05 0.04 0.058 0.03 0.08 0.87 0.025 0.00 0.05 0.032 0.03 0.03 0.87

1 12 0.001 -0.03 0.05 0.040 0.03 0.06 0.74 0.093 0.07 0.11 0.027 0.03 0.03 0.05

LBL 2 12 0.001 -0.03 0.04 0.034 0.02 0.05 0.72 0.048 0.03 0.07 0.025 0.02 0.03 0.50

LP2 10 13 -0.015 -0.05 0.00 0.028 0.02 0.05 0.84 0.009 -0.01 0.02 0.022 0.02 0.02 0.93

1 23 -0.010 -0.05 0.07 0.066 0.05 0.09 0.82 0.148 0.13 0.17 0.033 0.03 0.04 0.00

HBL 2 25 -0.004 -0.06 0.06 0.058 0.04 0.08 0.72 0.083 0.06 0.10 0.031 0.03 0.03 0.25

10 26 -0.008 -0.06 0.02 0.047 0.03 0.07 0.85 0.017 -0.00 0.04 0.029 0.03 0.03 0.93

Pen - penetrance; Bias - median bias; SE - robust standard error; CP - coverage probability.

Q∗1 and Q∗3 - First and third quartiles of bias, respectively.

Q†1 and Q†3 - First and third quartiles of robust standard error, respectively.

HP1 and LP1 - high (β2 = 2.5) and low (β2 = 1.55) penetrances for the first event, respectively.

HP2 and LP2 - high (β3 = 0.75) and low (β3 = 0.3) penetrances for the second event, respectively.

LBL and HBL - low (ν2=0.00724,ϕ2=1.14) and high (ν2=0.00324,ϕ2=1.84) baselines for second event, respectively.



57

High penetrance for the first event

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

● ● ● ● ● ● ● ● ● ● ● ●

1 2 10
k

B
ia

s

Frailty model

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

●

●

●

●

●

●

●
●

● ● ● ●

1 2 10
k

B
ia

s

Independent model

Low penetrance for the first event

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

● ● ● ● ● ● ● ●
●

● ● ●

1 2 10
k

B
ia

s

Frailty model

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

●

●

●

●

●

●

●

●

● ●
● ●

1 2 10
k

B
ia

s

Independent model

Second event combinations

●

●

●

●

High penetrance, low baseline

High penetrance, high baseline

Low penetrance, low baseline

Low penetrance, high baseline

Figure 3.7: Bias and its 95% confidence interval in the 10-year penetrance estimation
of the second event for mutation carriers from frailty model (left) and independent
model (right), respectively, under high penetrance (top) and low penetrance (bottom)
for the first event using the dominant genetic model with rare allele frequency (2%)
with a sample size of 200 families.
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Table 3.6: Estimation of log relative genetic risk (β2) of developing the first event
under the recessive genetic model with common allele frequency (q = 30%) using 200
simulated families.

Parameters Frailty model Independent model

T1 T2 k Bias Q∗1 Q∗3 SE Q
†
1 Q

†
3 CP Bias Q∗1 Q∗3 SE Q

†
1 Q

†
3 CP

1 0.039 -0.16 0.19 0.241 0.23 0.26 0.95 -0.249 -0.39 -0.10 0.204 0.19 0.22 0.73

LBL 2 0.022 -0.15 0.20 0.232 0.22 0.25 0.93 -0.140 -0.28 0.02 0.203 0.19 0.21 0.86

HP2 10 0.033 -0.11 0.19 0.220 0.20 0.24 0.95 -0.044 -0.16 0.12 0.201 0.19 0.21 0.94

1 0.025 -0.13 0.18 0.240 0.23 0.25 0.94 -0.234 -0.37 -0.09 0.205 0.20 0.22 0.76

HP1 HBL 2 0.017 -0.13 0.16 0.223 0.21 0.24 0.94 -0.146 -0.26 0.00 0.201 0.19 0.21 0.89

10 0.021 -0.11 0.16 0.214 0.20 0.23 0.95 -0.024 -0.15 0.11 0.200 0.19 0.21 0.96

1 0.014 -0.14 0.20 0.247 0.23 0.26 0.96 -0.247 -0.39 -0.10 0.206 0.19 0.22 0.75

LBL 2 0.021 -0.14 0.17 0.233 0.22 0.25 0.96 -0.143 -0.29 -0.01 0.203 0.19 0.21 0.88

LP2 10 0.021 -0.12 0.18 0.221 0.20 0.24 0.92 -0.039 -0.17 0.09 0.200 0.19 0.21 0.94

1 0.002 -0.15 0.19 0.244 0.23 0.26 0.95 -0.240 -0.40 -0.09 0.205 0.19 0.22 0.73

HBL 2 -0.000 -0.13 0.15 0.226 0.21 0.24 0.96 -0.142 -0.28 -0.02 0.201 0.19 0.21 0.88

10 0.019 -0.11 0.16 0.213 0.20 0.23 0.94 -0.045 -0.17 0.10 0.198 0.19 0.21 0.95

1 0.029 -0.13 0.19 0.259 0.24 0.28 0.94 -0.107 -0.24 0.04 0.224 0.21 0.23 0.94

LBL 2 0.021 -0.14 0.18 0.244 0.22 0.27 0.93 -0.062 -0.22 0.07 0.219 0.21 0.23 0.92

HP2 10 0.039 -0.09 0.20 0.237 0.21 0.26 0.91 -0.008 -0.14 0.13 0.216 0.20 0.23 0.95

1 0.047 -0.11 0.20 0.251 0.23 0.27 0.94 -0.088 -0.23 0.06 0.224 0.21 0.23 0.93

LP1 HBL 2 0.008 -0.13 0.16 0.242 0.22 0.26 0.94 -0.081 -0.20 0.06 0.218 0.21 0.23 0.93

10 0.034 -0.12 0.22 0.231 0.21 0.25 0.93 0.002 -0.15 0.15 0.216 0.20 0.23 0.94

1 0.020 -0.16 0.19 0.260 0.23 0.28 0.94 -0.115 -0.24 0.04 0.222 0.21 0.24 0.92

LBL 2 0.039 -0.12 0.20 0.246 0.23 0.27 0.92 -0.053 -0.20 0.11 0.219 0.21 0.23 0.94

LP2 10 0.062 -0.10 0.21 0.240 0.22 0.26 0.94 -0.005 -0.14 0.15 0.217 0.21 0.23 0.96

1 0.013 -0.12 0.18 0.253 0.23 0.28 0.94 -0.119 -0.26 0.03 0.222 0.21 0.23 0.93

HBL 2 0.033 -0.15 0.20 0.241 0.22 0.26 0.94 -0.045 -0.21 0.10 0.219 0.21 0.23 0.94

10 0.014 -0.13 0.19 0.229 0.21 0.25 0.92 -0.026 -0.16 0.13 0.214 0.20 0.23 0.94

Bias - median bias; SE - robust standard error; CP - coverage probability.

Q∗1 and Q∗3 - First and third quartiles of bias, respectively.

Q†1 and Q†3 - First and third quartiles of robust standard error, respectively.

HP1 and LP1 - high (β2 = 2.5) and low (β2 = 1.55) penetrances for the first event, respectively.

HP2 and LP2 - high (β3 = 0.75) and low (β3 = 0.3) penetrances for the second event, respectively.

LBL and HBL - low (ν2=0.00724,ϕ2=1.14) and high (ν2=0.00324,ϕ2=1.84) baselines for second event, respectively.
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Figure 3.8: Bias and its 95% confidence interval in the log genetic relative risk esti-
mation of the first event (β2) from frailty model (left) and independent model (right),
respectively, under high penetrance (top) and low penetrance (bottom) for the first
event using the recessive genetic model with common allele frequency (30%) with a
sample size of 200 families.
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Table 3.7: Estimation of log relative genetic risk (β3) of developing the second event
under the recessive genetic model with common allele frequency (q = 30%) using 200
simulated families.

Parameters Frailty model Independent model

T1 T2 k Bias Q∗1 Q∗3 SE Q
†
1 Q

†
3 CP Bias Q∗1 Q∗3 SE Q

†
1 Q

†
3 CP

1 0.067 -0.26 0.41 0.496 0.43 0.58 0.95 -0.106 -0.40 0.21 0.449 0.40 0.53 0.93

LBL 2 0.068 -0.29 0.46 0.538 0.46 0.65 0.96 -0.033 -0.37 0.34 0.508 0.44 0.61 0.96

HP2 10 0.056 -0.33 0.43 0.555 0.47 0.69 0.93 0.006 -0.37 0.38 0.549 0.47 0.69 0.95

1 -0.003 -0.24 0.33 0.399 0.35 0.45 0.95 -0.211 -0.43 0.06 0.332 0.29 0.38 0.88

HP1 HBL 2 -0.011 -0.27 0.22 0.392 0.34 0.44 0.94 -0.156 -0.40 0.08 0.344 0.29 0.39 0.90

10 -0.013 -0.26 0.26 0.383 0.33 0.45 0.90 -0.050 -0.30 0.21 0.358 0.32 0.42 0.92

1 0.010 -0.29 0.39 0.504 0.44 0.58 0.98 -0.120 -0.41 0.25 0.466 0.40 0.55 0.94

LBL 2 0.052 -0.28 0.42 0.534 0.47 0.62 0.96 -0.013 -0.34 0.32 0.510 0.44 0.59 0.96

LP2 10 0.110 -0.29 0.51 0.580 0.49 0.73 0.94 0.082 -0.30 0.49 0.569 0.48 0.71 0.96

1 -0.018 -0.25 0.29 0.379 0.34 0.44 0.94 -0.157 -0.35 0.09 0.324 0.29 0.38 0.91

HBL 2 0.006 -0.24 0.29 0.390 0.34 0.46 0.93 -0.088 -0.30 0.18 0.352 0.31 0.41 0.91

10 0.005 -0.26 0.28 0.383 0.33 0.45 0.93 -0.019 -0.27 0.23 0.360 0.32 0.42 0.94

1 0.021 -0.31 0.39 0.500 0.43 0.58 0.94 -0.072 -0.37 0.26 0.462 0.40 0.54 0.94

LBL 2 0.009 -0.31 0.43 0.525 0.46 0.62 0.95 -0.043 -0.34 0.36 0.496 0.43 0.60 0.95

HP2 10 0.033 -0.34 0.58 0.576 0.48 0.73 0.88 0.005 -0.35 0.53 0.570 0.48 0.72 0.94

1 0.021 -0.27 0.29 0.401 0.35 0.47 0.94 -0.132 -0.36 0.13 0.335 0.30 0.39 0.90

LP1 HBL 2 -0.001 -0.24 0.28 0.401 0.35 0.45 0.92 -0.093 -0.31 0.17 0.346 0.30 0.39 0.92

10 0.045 -0.26 0.33 0.403 0.34 0.47 0.91 -0.019 -0.29 0.26 0.370 0.32 0.43 0.93

1 -0.018 -0.31 0.36 0.496 0.43 0.59 0.94 -0.054 -0.34 0.29 0.463 0.40 0.54 0.95

LBL 2 -0.012 -0.34 0.41 0.530 0.46 0.62 0.94 -0.031 -0.36 0.36 0.514 0.44 0.60 0.96

LP2 10 0.065 -0.34 0.51 0.590 0.50 0.73 0.95 0.037 -0.35 0.47 0.577 0.49 0.72 0.98

1 -0.013 -0.24 0.29 0.398 0.35 0.45 0.94 -0.057 -0.28 0.18 0.339 0.30 0.38 0.92

HBL 2 -0.004 -0.26 0.28 0.399 0.35 0.46 0.94 -0.032 -0.25 0.22 0.358 0.32 0.40 0.95

10 0.010 -0.27 0.33 0.403 0.35 0.47 0.92 -0.007 -0.28 0.28 0.372 0.33 0.43 0.94

Bias - median bias; SE - robust standard error; CP - coverage probability.

Q∗1 and Q∗3 - First and third quartiles of bias, respectively.

Q†1 and Q†3 - First and third quartiles of robust standard error, respectively.

HP1 and LP1 - high (β2 = 2.5) and low (β2 = 1.55) penetrances for the first event, respectively.

HP2 and LP2 - high (β3 = 0.75) and low (β3 = 0.3) penetrances for the second event, respectively.

LBL and HBL - low (ν2=0.00724,ϕ2=1.14) and high (ν2=0.00324,ϕ2=1.84) baselines for second event, respectively.
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Figure 3.9: Bias and its 95% confidence interval in the log genetic relative risk es-
timation of the second event (β3) from frailty model (left) and independent model
(right), respectively, under high penetrance (top) and low penetrance (bottom) for
the first event using the recessive genetic model with common allele frequency (30%)
with a sample size of 200 families.
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Table 3.8: Penetrance estimation of male mutation carriers for the first event by
the age of 70 years under the recessive genetic model with common allele frequency
(q = 30%) using 200 simulated families.

Parameters Pen Frailty model Independent model

T1 T2 k (%) Bias Q∗1 Q∗3 SE Q
†
1 Q

†
3 CP Bias Q∗1 Q∗3 SE Q

†
1 Q

†
3 CP

1 66 -0.000 -0.03 0.04 0.047 0.04 0.05 0.94 0.067 0.04 0.10 0.041 0.04 0.04 0.60

LBL 2 74 0.001 -0.03 0.03 0.046 0.04 0.05 0.95 0.046 0.02 0.07 0.037 0.03 0.04 0.75

HP2 10 83 -0.008 -0.03 0.02 0.041 0.04 0.04 0.94 0.010 -0.01 0.03 0.031 0.03 0.03 0.93

1 66 0.003 -0.03 0.03 0.045 0.04 0.05 0.93 0.070 0.04 0.10 0.040 0.04 0.04 0.58

HP1 HBL 2 74 -0.001 -0.02 0.04 0.043 0.04 0.05 0.93 0.044 0.02 0.07 0.036 0.03 0.04 0.74

10 83 -0.005 -0.03 0.02 0.038 0.03 0.04 0.94 0.011 -0.01 0.03 0.031 0.03 0.03 0.93

1 66 -0.003 -0.04 0.02 0.048 0.04 0.05 0.97 0.066 0.04 0.09 0.041 0.04 0.04 0.62

LBL 2 74 -0.002 -0.03 0.03 0.047 0.04 0.05 0.94 0.042 0.02 0.07 0.037 0.03 0.04 0.75

LP2 10 83 -0.006 -0.03 0.02 0.042 0.04 0.05 0.94 0.010 -0.01 0.03 0.031 0.03 0.03 0.91

1 66 0.003 -0.03 0.03 0.046 0.04 0.05 0.93 0.067 0.04 0.10 0.040 0.04 0.04 0.62

HBL 2 74 0.003 -0.02 0.03 0.044 0.04 0.05 0.93 0.046 0.02 0.07 0.036 0.03 0.04 0.73

10 83 -0.003 -0.03 0.02 0.038 0.03 0.04 0.94 0.011 -0.01 0.03 0.031 0.03 0.03 0.91

1 43 -0.001 -0.04 0.03 0.051 0.05 0.06 0.94 0.031 0.00 0.06 0.048 0.05 0.05 0.90

LBL 2 47 -0.005 -0.04 0.04 0.052 0.05 0.06 0.92 0.021 -0.01 0.06 0.048 0.05 0.05 0.92

HP2 10 52 -0.012 -0.05 0.02 0.052 0.05 0.06 0.92 0.004 -0.04 0.03 0.047 0.05 0.05 0.95

1 43 0.006 -0.03 0.03 0.049 0.05 0.05 0.94 0.035 0.01 0.07 0.047 0.04 0.05 0.90

LP1 HBL 2 47 -0.010 -0.04 0.02 0.050 0.05 0.05 0.95 0.015 -0.01 0.04 0.048 0.05 0.05 0.94

10 52 -0.006 -0.05 0.02 0.050 0.05 0.05 0.94 0.007 -0.03 0.04 0.048 0.05 0.05 0.93

1 43 -0.006 -0.04 0.03 0.052 0.05 0.06 0.93 0.031 -0.01 0.06 0.047 0.05 0.05 0.90

LBL 2 47 -0.003 -0.03 0.03 0.053 0.05 0.06 0.93 0.023 -0.01 0.05 0.048 0.05 0.05 0.94

LP2 10 52 -0.012 -0.05 0.01 0.054 0.05 0.06 0.94 0.002 -0.03 0.03 0.048 0.05 0.05 0.96

1 43 -0.001 -0.04 0.03 0.050 0.05 0.05 0.93 0.034 0.00 0.06 0.048 0.05 0.05 0.88

HBL 2 47 -0.001 -0.04 0.03 0.051 0.05 0.05 0.94 0.018 -0.02 0.05 0.048 0.05 0.05 0.93

10 52 -0.010 -0.05 0.02 0.051 0.05 0.06 0.94 0.005 -0.03 0.03 0.048 0.05 0.05 0.94

Pen - penetrance; Bias - median bias; SE - robust standard error; CP - coverage probability.

Q∗1 and Q∗3 - First and third quartiles of bias, respectively.

Q†1 and Q†3 - First and third quartiles of robust standard error, respectively.

HP1 and LP1 - high (β2 = 2.5) and low (β2 = 1.55) penetrances for the first event, respectively.

HP2 and LP2 - high (β3 = 0.75) and low (β3 = 0.3) penetrances for the second event, respectively.

LBL and HBL - low (ν2=0.00724,ϕ2=1.14) and high (ν2=0.00324,ϕ2=1.84) baselines for second event, respectively.
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Figure 3.10: Bias and its 95% confidence interval in the first event penetrance es-
timation at age 70 years for male mutation carriers from frailty model (left) and
independent model (right), respectively, under high penetrance (top) and low pene-
trance (bottom) for the first event using the recessive genetic model with common
allele frequency (30%) with a sample size of 200 families.
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Table 3.9: Penetrance estimation of female mutation carriers for the first event by
the age of 70 years under the recessive genetic model with common allele frequency
(q = 30%) using 200 simulated families.

Parameters Pen Frailty model Independent model

T1 T2 k (%) Bias Q∗1 Q∗3 SE Q
†
1 Q

†
3 CP Bias Q∗1 Q∗3 SE Q

†
1 Q

†
3 CP

1 37 0.002 -0.02 0.03 0.041 0.04 0.04 0.97 0.003 -0.02 0.04 0.045 0.04 0.05 0.96

LBL 2 40 -0.001 -0.03 0.03 0.043 0.04 0.04 0.95 0.000 -0.03 0.04 0.046 0.04 0.05 0.95

HP2 10 44 -0.004 -0.03 0.02 0.045 0.04 0.05 0.95 -0.004 -0.03 0.02 0.046 0.04 0.05 0.95

1 37 0.004 -0.02 0.04 0.041 0.04 0.04 0.94 0.007 -0.02 0.04 0.045 0.04 0.05 0.94

HP1 HBL 2 40 -0.002 -0.03 0.03 0.043 0.04 0.04 0.95 -0.001 -0.03 0.04 0.046 0.04 0.05 0.95

10 44 -0.002 -0.04 0.02 0.046 0.04 0.05 0.92 -0.002 -0.04 0.02 0.047 0.04 0.05 0.92

1 37 -0.003 -0.03 0.02 0.041 0.04 0.04 0.97 -0.000 -0.02 0.03 0.045 0.04 0.05 0.98

LBL 2 40 -0.004 -0.03 0.03 0.043 0.04 0.04 0.94 -0.002 -0.03 0.03 0.046 0.04 0.05 0.93

LP2 10 44 -0.002 -0.04 0.03 0.046 0.04 0.05 0.93 -0.003 -0.04 0.03 0.046 0.04 0.05 0.93

1 37 -0.003 -0.02 0.03 0.041 0.04 0.04 0.95 0.001 -0.02 0.04 0.045 0.04 0.05 0.95

HBL 2 40 -0.005 -0.03 0.03 0.043 0.04 0.04 0.96 -0.004 -0.03 0.03 0.045 0.04 0.05 0.95

10 44 -0.003 -0.04 0.03 0.046 0.04 0.05 0.94 -0.003 -0.04 0.03 0.046 0.04 0.05 0.94

1 19 -0.004 -0.03 0.02 0.033 0.03 0.04 0.94 -0.005 -0.03 0.02 0.035 0.03 0.04 0.93

LBL 2 19 0.000 -0.02 0.03 0.035 0.03 0.04 0.95 -0.000 -0.02 0.03 0.036 0.03 0.04 0.95

HP2 10 20 -0.005 -0.03 0.02 0.036 0.03 0.04 0.92 -0.006 -0.03 0.02 0.036 0.03 0.04 0.94

1 19 -0.002 -0.03 0.02 0.034 0.03 0.04 0.93 -0.003 -0.03 0.02 0.035 0.03 0.04 0.92

LP1 HBL 2 19 -0.001 -0.02 0.03 0.035 0.03 0.04 0.95 -0.003 -0.02 0.03 0.036 0.03 0.04 0.94

10 20 -0.000 -0.02 0.03 0.037 0.03 0.04 0.93 -0.001 -0.02 0.03 0.037 0.03 0.04 0.92

1 19 -0.002 -0.02 0.02 0.033 0.03 0.04 0.95 -0.002 -0.03 0.02 0.035 0.03 0.04 0.96

LBL 2 19 -0.002 -0.02 0.03 0.035 0.03 0.04 0.94 -0.002 -0.02 0.03 0.036 0.03 0.04 0.95

LP2 10 20 0.000 -0.02 0.03 0.036 0.03 0.04 0.95 0.000 -0.02 0.03 0.037 0.03 0.04 0.94

1 19 0.001 -0.03 0.02 0.033 0.03 0.04 0.94 -0.001 -0.03 0.02 0.035 0.03 0.04 0.94

HBL 2 19 -0.002 -0.02 0.03 0.035 0.03 0.04 0.93 -0.003 -0.02 0.03 0.036 0.03 0.04 0.94

10 20 -0.004 -0.02 0.03 0.036 0.03 0.04 0.95 -0.005 -0.02 0.03 0.036 0.03 0.04 0.96

Pen - penetrance; Bias - median bias; SE - robust standard error; CP - coverage probability.

Q∗1 and Q∗3 - First and third quartiles of bias, respectively.

Q†1 and Q†3 - First and third quartiles of robust standard error, respectively.

HP1 and LP1 - high (β2 = 2.5) and low (β2 = 1.55) penetrances for the first event, respectively.

HP2 and LP2 - high (β3 = 0.75) and low (β3 = 0.3) penetrances for the second event, respectively.

LBL and HBL - low (ν2=0.00724,ϕ2=1.14) and high (ν2=0.00324,ϕ2=1.84) baselines for second event, respectively.
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Figure 3.11: Bias and its 95% confidence interval in the first event penetrance es-
timation at age 70 years for female mutation carriers from frailty model (left) and
independent model (right), respectively, under high penetrance (top) and low pene-
trance (bottom) for the first event using the recessive genetic model with common
allele frequency (30%) with a sample size of 200 families.
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Table 3.10: Penetrance estimation of mutation carriers for developing the second
event in 10 years after the first event under the recessive genetic model with common
allele frequency (q = 30%) using 200 simulated families.

Parameters Pen Frailty model Independent model

T1 T2 k (%) Bias Q∗1 Q∗3 SE Q
†
1 Q

†
3 CP Bias Q∗1 Q∗3 SE Q

†
1 Q

†
3 CP

1 17 0.002 -0.02 0.03 0.034 0.03 0.04 0.92 0.107 0.10 0.13 0.026 0.02 0.03 0.01

LBL 2 18 -0.001 -0.02 0.03 0.034 0.03 0.04 0.89 0.060 0.05 0.08 0.024 0.02 0.02 0.28

HP2 10 19 -0.009 -0.03 0.01 0.030 0.02 0.04 0.91 0.011 -0.01 0.03 0.022 0.02 0.02 0.92

1 32 0.001 -0.03 0.04 0.050 0.04 0.06 0.94 0.161 0.14 0.18 0.030 0.03 0.03 0.00

HP1 HBL 2 35 0.002 -0.04 0.04 0.048 0.04 0.06 0.91 0.087 0.07 0.10 0.029 0.03 0.03 0.13

10 37 -0.007 -0.04 0.02 0.041 0.03 0.05 0.91 0.018 -0.00 0.04 0.027 0.03 0.03 0.87

1 12 -0.002 -0.02 0.01 0.025 0.02 0.03 0.93 0.079 0.06 0.09 0.023 0.02 0.02 0.05

LBL 2 12 -0.001 -0.02 0.02 0.026 0.02 0.03 0.87 0.043 0.03 0.06 0.021 0.02 0.02 0.47

LP2 10 13 -0.003 -0.02 0.01 0.023 0.02 0.03 0.90 0.010 -0.01 0.02 0.019 0.02 0.02 0.92

1 23 0.002 -0.02 0.04 0.040 0.03 0.05 0.90 0.129 0.11 0.15 0.028 0.03 0.03 0.00

HBL 2 25 0.000 -0.04 0.03 0.040 0.03 0.05 0.89 0.071 0.05 0.08 0.026 0.02 0.03 0.25

10 26 -0.004 -0.03 0.01 0.035 0.03 0.04 0.92 0.016 -0.00 0.03 0.025 0.02 0.03 0.90

1 17 -0.006 -0.04 0.06 0.055 0.04 0.08 0.79 0.125 0.11 0.15 0.031 0.03 0.03 0.02

LBL 2 18 0.007 -0.04 0.06 0.052 0.03 0.08 0.71 0.070 0.06 0.09 0.029 0.03 0.03 0.29

HP2 10 19 -0.017 -0.06 0.01 0.039 0.03 0.06 0.85 0.015 -0.00 0.03 0.027 0.02 0.03 0.92

1 32 0.002 -0.06 0.09 0.085 0.06 0.11 0.82 0.181 0.16 0.21 0.036 0.03 0.04 0.00

LP1 HBL 2 35 -0.011 -0.08 0.07 0.080 0.06 0.10 0.77 0.101 0.08 0.12 0.034 0.03 0.04 0.15

10 37 -0.007 -0.07 0.03 0.060 0.03 0.09 0.87 0.030 0.00 0.05 0.033 0.03 0.03 0.88

1 12 -0.000 -0.03 0.05 0.040 0.03 0.06 0.74 0.092 0.07 0.11 0.027 0.03 0.03 0.06

LBL 2 12 -0.001 -0.03 0.04 0.035 0.02 0.06 0.74 0.050 0.03 0.07 0.025 0.02 0.03 0.49

LP2 10 13 -0.013 -0.05 0.00 0.029 0.02 0.05 0.84 0.010 -0.01 0.02 0.022 0.02 0.02 0.95

1 23 -0.007 -0.05 0.06 0.067 0.05 0.09 0.82 0.150 0.13 0.17 0.034 0.03 0.04 0.00

HBL 2 25 0.007 -0.06 0.06 0.061 0.04 0.08 0.74 0.082 0.06 0.10 0.032 0.03 0.03 0.25

10 26 -0.010 -0.06 0.02 0.048 0.03 0.07 0.85 0.017 -0.01 0.04 0.030 0.03 0.03 0.92

Pen - penetrance; Bias - median bias; SE - robust standard error; CP - coverage probability.

Q∗1 and Q∗3 - First and third quartiles of bias, respectively.

Q†1 and Q†3 - First and third quartiles of robust standard error, respectively.

HP1 and LP1 - high (β2 = 2.5) and low (β2 = 1.55) penetrances for the first event, respectively.

HP2 and LP2 - high (β3 = 0.75) and low (β3 = 0.3) penetrances for the second event, respectively.

LBL and HBL - low (ν2=0.00724,ϕ2=1.14) and high (ν2=0.00324,ϕ2=1.84) baselines for second event, respectively.
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Figure 3.12: Bias and its 95% confidence interval in the 10-year penetrance estimation
of the second event for mutation carriers from frailty model (left) and independent
model (right), respectively, under high penetrance (top) and low penetrance (bottom)
for the first event using the recessive genetic model with common allele frequency
(30%) with a sample size of 200 families.
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Chapter 4

AN APPLICATION TO LYNCH SYNDROME FAMILIES

We applied our proposed frailty model to 12 large Lynch syndrome families sam-

pled from Newfoundland. As discussed in Chapter 1, Lynch syndrome is a genetic

condition that has a high risk of early-onset colorectal cancer (CRC), predominantly

associated with MLH1 and MSH2 genes. Individuals with Lynch syndrome are also

susceptible to successive cancers of the colon, stomach, ovary, endometrium, etc.

(Lynch et al., 1977). The families considered for our analyses share a founder muta-

tion in MSH2 gene and some family members have experienced multiple cancers. The

two sequential event times observed from these Lynch syndrome families are modeled

using our frailty model approach based on the ascertainment corrected retrospective

likelihood. Thus, we provide the age-specific penetrance and genetic relative risks

associated with the mutated gene for both first and second occurrence of colorectal

cancer.

4.1 Data description

The data consist of a cohort of 12 high-risk Lynch syndrome families that were found

to segregate the mutant MSH2 gene. These high-risk families were identified through

affected mutation carrying probands, along with their highly vulnerable relatives

from the Medical Genetics Clinic at Memorial University, St.John’s, Newfoundland,

Canada. Information on the disease history and mutation status among their relatives

was gathered and the data were collected retrospectively (Kopciuk et al., 2009).
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The sampled families consist of 343 individuals spread across two to five gener-

ations. The number of members in each family ranges between 5 and 54. For each

family member, we have information on their age-at-onset of first CRC and time of

second CRC since the first cancer (in years) with their corresponding censoring indi-

cators, i.e. (T1, δ1), (T2, δ2), gender, mutation status, age at examination (in years),

and relationship to the proband. Of the 343 individuals, mutation status was avail-

able for 260 individuals. We excluded individuals with missing observations and used

only complete cases for our analysis.

Figure 4.1 provides a schematic representation of the distribution of events among

the 12 families from Newfoundland. The data contain equal proportions of males

and females and the number of mutation carriers (161) is almost twice that of non-

mutation carriers (99). Among the mutation carriers (79 males and 82 females), 40

males and 28 females experienced a first CRC. Of those mutation carriers, 13 males

and 8 females experienced a second CRC. There were no CRC events among non-

carrier males and females, except one male who had a first CRC. These numbers

clearly exhibit the underlying effect of genetic mutation in the occurrence of CRC

among these Lynch syndrome families. The Kaplan-Meier (K-M) estimates of the

cumulative distribution function for the first and second event times are plotted in

Figures 4.2 and 4.3, respectively. The probands were excluded for these K-M esti-

mates. It can also be noted from these plots that males tended to have a higher risk

than females for both first CRC and second CRC. Similarly, mutation carriers were

largely at risk compared to non-carriers. The PH assumption fails in the cumulative

hazard function of the second event (Figure 4.3) with a p-value for the log rank test as

0.709. Nevertheless, we considered the PH assumption for mathematical simplicity.
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Figure 4.1: Distribution of colorectal cancer occurrences among males and females in
12 Lynch syndrome families from Newfoundland.
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4.2 Modeling sequential events

We considered the sequential event times in the occurrence of first and second CRC

such that we define T1 as the age-at-onset for first CRC and define T2 as the time to

second CRC after the occurrence of first cancer. We fitted a shared frailty model for

the bivariate event times T1 and T2, observed from the 12 high-risk families, based on

the following two hazard functions

λ1(t1|Z,X1, X2) = Zν1ϕ1(t1 − 20)ϕ1−1eβ1X1+β2X2

λ2(t2|Z,X1) = Zν2ϕ2t2
ϕ2−1eβ3X1 ,

where t1 and t2 are the event times for the first and second cancer, respectively, with

the minimum age of onset for first cancer as 20 years and Z is the frailty variable that

follows the gamma distribution with mean 1 and variance 1/k. For the first cancer,

we adjusted for the gender effect, X1, (coded as 1-male, 0-female) and the mutation

effect, X2, (coded as 1-carrier, 0-non-carrier). For the second cancer, we adjusted only

for the gender effect, X1, as the non-mutation carriers remained free from the event

of second CRC. We assumed Weibull distributions for the baseline hazard functions

of T1 and T2. The frailties are considered to be time independent and are shared at

the individual level in order to model the dependence between successive events of

cancer.

The retrospective likelihood was applied to correct for the complex ascertainment

process involved in sampling these high-risk families. The data used in our analyses

arose from a clinic-based study design so that families were ascertained into the study

based on multiple affected family members in addition to the probands. We fixed the

allele frequency of the mutation gene as 2% (Lynch and Smyrk, 1996). We performed

our analyses using the statistical software, R (R Development Core Team, 2011) and

obtained the relative risk and penetrance estimates for the first and second CRC along

with their robust standard errors.
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4.2.1 Relative risks estimation

Given a value of frailty, the log relative risk of the first CRC for males compared to

females was 1.34 (Standard Error, SE = 0.19) and was statistically significant (p-

value < 0.001). The log relative risk of second CRC for males compared to females

was 0.61 (SE = 0.39) and was not statistically significant (p-value = 0.11). Carriers

of the MSH2 gene had a significantly higher risk of first CRC, 3.99 (SE = 0.96)

compared to the non-carriers (p-value < 0.001). The dependence between the first

and second CRCs was measured by the variance of the frailty distribution, i.e. the

inverse of the estimated frailty parameter. From our analysis, we obtained a very high

value for the frailty parameter estimate, 5.38 × 104 with a 95% confidence interval

(2.68× 104, 97.97× 107); therefore, we regard the events to be independent. This was

also substantiated by fitting two separate models for the first and second events and

the estimates from these models were identical to the one obtained using our frailty

approach.

4.2.2 Penetrances estimation

The penetrance estimates (absolute risk) of the first and second CRC were obtained

as a complement of their respective marginal survival functions. The penetrance

(standard error) of first CRC by the age of 70 years among male mutation carriers

was 94.20% (SE = 4%) and among female mutation carriers was 52.43% (SE = 12%).

Figure 4.4 presents the estimated penetrance curves for the event of first CRC by the

gender status and mutation carrier status. The male carriers tended to have higher

risk compared to female carriers. It can also be seen that the life-time risk of first

cancer among non-carriers was very low (less than 5% for both genders). However,

for the mutation carriers, the cumulative risk seemed to increase rapidly between the

ages of 30 and 70 years (especially for males) and gradually stabilized later.

The risks of developing a second CRC in 10 years after the first cancer were 49.15%
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(SE = 11%) for male mutation carriers and 31% (SE = 6%) for female mutation

carriers. Figure 4.5 presents the estimated penetrance curves of second CRC among

males and females. Similar to the penetrance curves of the first cancer, males were

at a higher risk compared to females and the difference in risks between them tended

to widen over time.

4.3 Summary

In this chapter, we illustrated our proposed method using real data from Newfound-

land. Using 12 very large Lynch syndrome families, we estimated the relative risk

and penetrance function of the mutated gene. We considered only complete cases

and excluded individuals with missing genotypes. This could possibly explain the

large estimate obtained for the relative risk of the mutated gene on the first can-

cer. We found that gender and mutation effects were statistically significant on the

occurrence of first CRC. However, the gender effect was observed to be statistically

not significant for the second occurrence of CRC. Finally, we obtained a very large

estimate for the frailty parameter and therefore, we conclude that the occurrence of

first and second CRC is almost independent for this data. We strongly feel that this

might be possibly due to the presence of fewer individuals who experienced a second

event. Overall, we were able to model successive events in the occurrence of colorectal

cancer and obtained the risk estimates.
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Figure 4.4: Estimated age-specific penetrance function of first colorectal cancer using
12 Lynch syndrome families from Newfoundland.
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after the occurrence of first cancer, using 12 Lynch syndrome families from New-
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Chapter 5

DISCUSSION

Early-onset of disease and high chance for multiple events are the hallmarks of

complex genetic mutations like Lynch syndrome. Knowledge of age-specific cumu-

lative risk of disease and relative risk of the disease gene is highly valuable in the

management of genetic diseases. In this thesis, we developed a statistical frame-

work to model two sequential event times arising from two types of family designs

− population- and clinic-based study designs and estimated the relative and abso-

lute risks associated with a mutated gene. We modeled the dependence between the

event times using a shared frailty model and incorporated an ascertainment corrected

retrospective likelihood to account for the non-random sampling of families.

Using simulation studies, we demonstrated that our frailty approach can provide

unbiased estimates of both relative and absolute risks of a mutated gene. Also, our

model is capable of producing a valid estimate of the standard error such that the

desired coverage probability is achievable. We strongly feel that an increase in sample

size would prove helpful to achieve accurate coverage probability using our approach.

We also investigated the effect of ignoring the dependence between the event times

using an independent model. We conclude that the independent model would produce

unreliable risk estimates, especially for the penetrance estimation of a second event

in the presence of a high dependence between two events. The independent model

would also underestimate the standard error, which in turn would result in a coverage

probability far less than 0.95.
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We illustrated our proposed method using a sample of 12 large Lynch syndrome

families from Newfoundland and estimated the relative risk of the mutated gene and

the age-specific penetrance for the occurrence of first and second colorectal cancer.

The difference in sample sizes between our simulation studies (n=100 and 200) and

our real data application (n=12) can be explained by the choice of study design, i.e.

for the former we considered a population-based study design, and for the latter a

clinic-based study design. The population-based design is highly capable of sampling

a large number of families as it conditions only on the disease status of the proband,

whereas the clinic-based design requires multiple affected individuals within a family.

We are currently investigating the performance of our frailty-based approach for a

clinic-based study design using simulation studies.

There were a few potential limitations to our study that are noteworthy. First,

we assumed the conditional independence among family members given their geno-

types with the rationale that the disease causing gene is the only source of familial

correlation. However, most genetic disorders are highly complex and there may be

a second gene or a modifier gene that may be associated with the disease outcome.

Violation of the conditional independence assumption can lead to upwardly biased

estimates (Gail et al., 2001). We did not explicitly model the residual familial correla-

tion, but derived the robust variance estimates using the sandwich-variance estimator

approach. Second, we considered the pedigree data to have complete genotype and

phenotype (outcome) information for all sampled family members. In practice, this

may not be possible because it is common to have missing information at several

stages of data collection. Nevertheless, missing genotypes can be inferred using the

Expectation-Maximization (EM) approach (Choi and Briollais, 2011). In this ap-

proach, the maximum likelihood estimates (MLEs) can be computed in the presence

of missing informations using a two-step iterative procedure. The first step is the

expectation step where the expectation of the log-likelihood for the complete data

is taken with respect to the conditional distribution of missing genotypes given ob-
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served genotype and phenotype information from the family members and current

choice of parameter values. Then, in the maximization step, the parameter estimates

are updated by maximizing the log-likelihood function using the estimate of missing

data in the expectation step. These two steps iterate until convergence to obtain

the maximum likelihood estimates. Third, we assumed independent censoring for the

first event but this may not be true if death can occur due to other cancers. Such

a situation may result in informative censoring for both first and second events and

may alter the probabilities of the event of interest. This could possibly be averted by

including an additional state in our three-state progressive model to account for death

as a competing risk. Fourth, we considered proportional hazards (PH) assumption in

our modeling of bivariate event times. However, if the assumption is violated, then a

stratified PH model can be fit. Finally, we assumed parametric distributions for the

baseline hazard functions and for the frailty. The consequence of misspecification of

these distributions can affect the risk estimates. To obtain more robust estimates,

non-parametric or piecewise constant approaches can be used to specify the base-

line distributions but at the cost of intensive computing in the estimation of baseline

parameters.

In future work, we plan to extend our approach using a nested frailty model. The

nested frailty model (Sastry, 1997) is a popular way to model dependencies in the

presence of multilevel, clustered time-to-event data. Using this model, we consider

two frailty variables, Zf and Zfi where the frailty Zf models the residual familial

correlation among the members of family f (f = 1, . . . , n) that is not explained

by the observed risk factors, and the second frailty Zfj, which is nested under Zf ,

models the dependence between the two sequential event times experienced by an

individual i (i = 1, . . . , nf ). By considering a nested frailty model, we can overcome

the limitations of the aforesaid conditional independence assumption.
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Appendix A

CARRIER PROBABILITY

A.1 Transmission probabilities

The retrospective likelihood provided in equation (2.4) involves the calculation of

individual genotype probabilities. Human beings are considered to be biallelic at an

autosomal loci, and therefore there are three possible genotypic configurations: AA

(homozygous dominant), Aa (heterozygous), and aa (homozygous recessive). If a

dominant model is considered, a person is termed to be a carrier of the mutant gene

if s/he possesses at least one mutant allele at a locus, i.e. belonging to the type AA

or Aa. If a recessive model is considered, then a person must carry the mutant gene

in both the alleles, i.e. AA.

For a founder, i.e. a person whose parents’ genotypes are unknown, the geno-

type probabilities can be derived using the Hardy-Weinberg equilibrium with the

knowledge of population allele frequency of the mutant gene. The Hardy-Weinberg

equilibrium assumes the allele frequency in a population remains constant through

several generations provided assumptions like random mating, no mutation, and large

population size are met. Let the population allele frequency for the mutant allele, A,

be q and the allele frequency for a be 1− q. If the required assumptions are met, then

the genotype frequencies for the types AA,Aa, and aa are q2, 2q(1− q), and (1− q)2,

respectively.

For a non-founder, the genotype probability can be calculated using the Mendelian

transmission probability. The genotype of an offspring at a loci is formed due to the

contribution of an allele from each parent. Therefore, given the parents‘ genotype,
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Table A.1: Offspring’s genotypic probabilities conditional on parent’s genotype -
Mendelian transmission probabilities.

Father’s Mother’s Offspring’s genotype

genotype genotype aa Aa AA

aa aa 1 0 0

Aa 1/2 1/2 0

AA 0 1 0

Aa aa 1/2 1/2 0

Aa 1/4 1/2 1/4

AA 0 1/2 1/2

AA aa 0 1 0

Aa 0 1/2 1/2

AA 0 0 1

the offspring’s probability of carrying a disease allele can be computed. For instance,

if we let the genotype of the father be Aa and the genotype of the mother be Aa then

the offspring has the probabilities 1/4, 1/2, and 1/4 to be homozygous dominant AA,

heterozygous Aa, and homozygous recessive aa, respectively. Table A.1 provides the

transmission probabilities for different combinations of parental genotypes.

A.2 Conditional genotype probabilities for relatives

The genotype probability of the relatives conditional on the proband’s genotype are

summarized in Table A.2 (Thomas, 2004). Using these conditional probabilities, the

conditional carrier probabilities can be derived either for a dominant or recessive

model. For instance, the conditional probability that the mother (M) is a carrier
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given the child (C) is a carrier can be derived for a dominant model as follows:

P [M = 1|C = 1] = P [M = AA or Aa|C = AA or AA]

=
P [C = AA or Aa|M = AA]P [M = AA]

P [C = AA or Aa]

+
P [C = AA or Aa|M = Aa]P [M = Aa]

P [C = AA or Aa]

=
1 + q − q2

2− q

Table A.2: Relative’s genotypic probabilities conditional on proband’s genotype.

Proband’s Relative’s genotype

genotype aa Aa aa

Parents or offspring

aa 1− q q 0

Aa 1−q
2

1
2

q
2

AA 0 1− q q

Sibling

aa 1− q + q2

4
q − q2

2
q2

4

Aa 1
2
− 3q

4
+ q2

4
1
2

+ q
2
− q2

2
q
4

+ q2

4

AA (1−q)2
4

1
2
− q2

2
1
4

+ q
2

+ q2

4

Table A.3 provides the carrier probabilities of the relatives given the carrier status

of the proband for a dominant model. Similarly, Table A.4 provides the conditional

carrier probabilities for the recessive model, where two copies of the mutant allele is

required to cause disease.
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Table A.3: Relative’s carrier probabilities conditional on proband’s carrier status for
a dominant model.

Proband’s Relative’s carrier probabilities

carrier status 1 0

Parents or offspring

1 1+q−q2
2−q

1−2q+q2

2−q

0 q 1− q

Sibling

1 4q+5q2−6q3+q4

4(2q−q2)
4q−9q2+6q3−q4

4(2q−q2)

0 q − q2

4
1− q + q2

4

Table A.4: Relative’s carrier probabilities conditional on proband’s carrier status for
a recessive model.

Proband’s Relative’s carrier probabilities

carrier status 1 0

Parents or offspring

1 q 1− q
0 1− q q

Sibling

1 (1+q)2

4
1− (1+q)2

4

0 3−2q−q2
4

1+2q+q2

4
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Appendix B

SIMULATION RESULTS USING 100 FAMILIES

In Chapter 3, we presented the simulation results obtained using 200 families to

evaluate the performance of our frailty approach to model bivariate event times. Here,

we present the results obtained using 100 families sampled using a population-based

study design. The conclusions arrived at earlier using 200 families still hold for the

sample size of 100 families. Tables B.1 − B.5 present the simulation results obtained

in the presence of the dominant genetic model and Tables B.6 − B.10 provide the

results obtained in the presence of the recessive genetic model.

In the estimation of genetic relative risk of the first and second events, the biases

were slightly greater than those obtained using 200 random families. For instance, in

the estimation of β2 using the dominant model (Table B.1), the highest value of the

absolute bias was 0.084 using 100 families, whereas using 200 families (Table 3.1) the

value was 0.062 . Similarly, in the estimation of β3 (Table B.2), the highest value of

the absolute bias using the dominant model was 0.102 using 100 families compared

to 0.062 using 200 families (Table 3.7). However, in the estimation of penetrance for

both the events, the biases were almost similar among the two sample sizes (Tables

B.3, B.4, B.5, B.8, B.9, and B.10).

The model-based standard errors using 100 families were relatively larger than

(almost 1.5 times) those obtained using 200 families, irrespective of the disease risk

being estimated and the genetic model considered. Nevertheless, the coverage proba-

bilities in the estimation of genetic relative risks and penetrance functions were almost

similar and close to the prescribed 95% probability, except in the estimation of pene-

trance for second event among mutation carriers in the presence of a low penetrance



86

setting for the first event. Lastly, the independent model (model that ignored the

dependence between event times) provided largely biased estimates compared to our

frailty approach in the estimation of both relative and absolute risks. In conclusion,

our frailty approach produced unbiased estimates of the relative risks and penetrance

functions compared to the independent model.
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Table B.1: Estimation of log relative genetic risk (β2) of developing the first event
under the dominant genetic model with a rare allele frequency (q = 2%) using 100
simulated families.

Parameters Frailty model Independent model

T1 T2 k Bias Q∗1 Q∗3 SE Q
†
1 Q

†
3 CP Bias Q∗1 Q∗3 SE Q

†
1 Q

†
3 CP

1 -0.022 -0.24 0.23 0.345 0.31 0.38 0.95 -0.285 -0.46 -0.08 0.289 0.27 0.31 0.80

LBL 2 0.042 -0.17 0.27 0.334 0.30 0.37 0.93 -0.129 -0.33 0.08 0.290 0.27 0.31 0.90

HP2 10 0.062 -0.17 0.27 0.315 0.28 0.36 0.91 -0.010 -0.25 0.20 0.289 0.26 0.32 0.93

1 0.020 -0.20 0.25 0.342 0.31 0.37 0.95 -0.253 -0.46 -0.03 0.291 0.27 0.32 0.81

HP1 HBL 2 0.009 -0.20 0.30 0.328 0.30 0.36 0.94 -0.156 -0.35 0.12 0.288 0.27 0.32 0.92

10 0.060 -0.13 0.28 0.311 0.28 0.35 0.92 -0.010 -0.18 0.21 0.288 0.26 0.31 0.96

1 0.042 -0.17 0.28 0.349 0.32 0.39 0.96 -0.236 -0.43 -0.04 0.294 0.27 0.32 0.84

LBL 2 0.038 -0.15 0.29 0.333 0.30 0.37 0.94 -0.143 -0.32 0.06 0.286 0.27 0.31 0.90

LP2 10 0.050 -0.15 0.27 0.316 0.28 0.36 0.92 -0.022 -0.21 0.17 0.283 0.26 0.31 0.94

1 0.049 -0.18 0.30 0.343 0.32 0.38 0.94 -0.220 -0.43 -0.01 0.291 0.27 0.32 0.84

HBL 2 0.065 -0.21 0.28 0.330 0.30 0.37 0.94 -0.122 -0.32 0.10 0.291 0.27 0.32 0.90

10 0.048 -0.12 0.23 0.310 0.28 0.35 0.95 -0.020 -0.20 0.17 0.285 0.26 0.31 0.97

1 0.048 -0.19 0.30 0.368 0.32 0.41 0.92 -0.103 -0.32 0.12 0.314 0.29 0.34 0.92

LBL 2 0.059 -0.14 0.31 0.348 0.31 0.40 0.95 -0.059 -0.25 0.16 0.311 0.29 0.33 0.96

HP2 10 0.071 -0.13 0.30 0.337 0.30 0.38 0.93 -0.000 -0.20 0.21 0.309 0.29 0.33 0.95

1 0.055 -0.20 0.29 0.359 0.32 0.40 0.94 -0.116 -0.33 0.11 0.317 0.29 0.35 0.93

LP1 HBL 2 0.054 -0.18 0.28 0.342 0.30 0.39 0.93 -0.052 -0.27 0.14 0.312 0.29 0.34 0.94

10 0.074 -0.12 0.32 0.332 0.30 0.38 0.93 0.016 -0.18 0.21 0.309 0.29 0.33 0.98

1 0.052 -0.19 0.31 0.366 0.33 0.42 0.95 -0.092 -0.31 0.12 0.317 0.29 0.34 0.91

LBL 2 0.061 -0.16 0.33 0.356 0.32 0.40 0.93 -0.069 -0.26 0.17 0.315 0.29 0.34 0.95

LP2 10 0.084 -0.12 0.34 0.346 0.30 0.40 0.92 0.005 -0.19 0.21 0.310 0.29 0.34 0.95

1 0.020 -0.21 0.26 0.363 0.32 0.41 0.94 -0.090 -0.33 0.10 0.316 0.29 0.34 0.93

HBL 2 0.038 -0.18 0.26 0.340 0.31 0.39 0.92 -0.054 -0.25 0.13 0.312 0.29 0.34 0.94

10 0.070 -0.14 0.30 0.336 0.30 0.39 0.93 0.015 -0.18 0.21 0.309 0.29 0.33 0.97

Bias - median bias; SE - robust standard error; CP - coverage probability.

Q∗1 and Q∗3 - First and third quartiles of bias, respectively.

Q†1 and Q†3 - First and third quartiles of robust standard error, respectively.

HP1 and LP1 - high (β2 = 2.5) and low (β2 = 1.55) penetrances for the first event, respectively.

HP2 and LP2 - high (β3 = 0.75) and low (β3 = 0.3) penetrances for the second event, respectively.

LBL and HBL - low (ν2=0.00724,ϕ2=1.14) and high (ν2=0.00324,ϕ2=1.84) baselines for second event, respectively.
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Table B.2: Estimation of log relative genetic risk (β3) of developing the second event
under the dominant genetic model with a rare allele frequency (q = 2%) using 100
simulated families.

Parameters Frailty model Independent model

T1 T2 k Bias Q∗1 Q∗3 SE Q
†
1 Q

†
3 CP Bias Q∗1 Q∗3 SE Q

†
1 Q

†
3 CP

1 0.030 -0.42 0.64 0.711 0.58 0.98 0.96 -0.131 -0.56 0.42 0.649 0.53 0.95 0.93

LBL 2 0.102 -0.39 0.89 0.774 0.63 1.06 0.91 -0.003 -0.47 0.75 0.752 0.61 1.04 0.93

HP2 10 0.007 -0.46 0.66 0.816 0.62 1.09 0.87 -0.033 -0.49 0.58 0.847 0.63 1.06 0.94

1 0.042 -0.32 0.40 0.542 0.46 0.66 0.95 -0.212 -0.52 0.14 0.462 0.38 0.56 0.90

HP1 HBL 2 0.051 -0.34 0.44 0.564 0.46 0.71 0.92 -0.102 -0.46 0.22 0.485 0.40 0.63 0.89

10 0.018 -0.33 0.44 0.546 0.45 0.71 0.90 -0.040 -0.37 0.36 0.509 0.42 0.64 0.93

1 0.031 -0.44 0.57 0.725 0.59 0.93 0.95 -0.096 -0.54 0.40 0.672 0.55 0.92 0.94

LBL 2 0.102 -0.48 0.61 0.772 0.64 1.02 0.93 0.012 -0.51 0.50 0.737 0.61 1.01 0.94

LP2 10 0.080 -0.48 0.72 0.801 0.64 1.07 0.85 0.044 -0.52 0.68 0.809 0.66 1.06 0.94

1 0.057 -0.39 0.48 0.554 0.46 0.68 0.92 -0.113 -0.51 0.26 0.459 0.39 0.58 0.88

HBL 2 0.011 -0.36 0.44 0.551 0.45 0.67 0.90 -0.081 -0.44 0.30 0.490 0.40 0.60 0.89

10 0.021 -0.39 0.46 0.544 0.44 0.69 0.89 -0.030 -0.42 0.39 0.505 0.42 0.62 0.91

1 0.055 -0.44 0.61 0.712 0.58 0.91 0.91 -0.052 -0.50 0.50 0.679 0.55 0.90 0.93

LBL 2 -0.008 -0.48 0.66 0.753 0.61 0.98 0.90 -0.073 -0.54 0.56 0.717 0.59 0.99 0.94

HP2 10 0.132 -0.43 0.85 0.859 0.69 1.12 0.85 0.054 -0.46 0.74 0.923 0.68 1.08 0.96

1 0.064 -0.33 0.48 0.561 0.47 0.71 0.93 -0.080 -0.43 0.26 0.469 0.40 0.59 0.92

LP1 HBL 2 0.071 -0.30 0.46 0.578 0.46 0.73 0.90 -0.053 -0.40 0.32 0.507 0.42 0.63 0.92

10 0.034 -0.36 0.52 0.575 0.47 0.73 0.90 -0.028 -0.40 0.41 0.533 0.43 0.64 0.92

1 0.092 -0.43 0.65 0.741 0.60 1.02 0.94 0.020 -0.42 0.55 0.699 0.56 0.97 0.96

LBL 2 0.089 -0.42 0.69 0.800 0.63 1.05 0.92 0.028 -0.46 0.62 0.756 0.61 1.03 0.94

LP2 10 0.144 -0.40 0.79 0.873 0.70 1.11 0.87 0.091 -0.42 0.76 0.917 0.70 1.09 0.97

1 0.006 -0.38 0.45 0.556 0.47 0.69 0.93 -0.055 -0.40 0.29 0.481 0.40 0.58 0.92

HBL 2 0.026 -0.32 0.46 0.562 0.45 0.69 0.91 -0.017 -0.36 0.36 0.489 0.41 0.60 0.92

10 0.021 -0.38 0.48 0.583 0.47 0.74 0.90 -0.029 -0.41 0.41 0.546 0.43 0.66 0.94

Bias - median bias; SE - robust standard error; CP - coverage probability.

Q∗1 and Q∗3 - First and third quartiles of bias, respectively.

Q†1 and Q†3 - First and third quartiles of robust standard error, respectively.

HP1 and LP1 - high (β2 = 2.5) and low (β2 = 1.55) penetrances for the first event, respectively.

HP2 and LP2 - high (β3 = 0.75) and low (β3 = 0.3) penetrances for the second event, respectively.

LBL and HBL - low (ν2=0.00724,ϕ2=1.14) and high (ν2=0.00324,ϕ2=1.84) baselines for second event, respectively.
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Table B.3: Penetrance estimation of male mutation carriers for the first event by
the age of 70 years under the dominant genetic model with a rare allele frequency
(q = 2%) using 100 simulated families.

Parameters Pen Frailty model Independent model

T1 T2 k (%) Bias Q∗1 Q∗3 SE Q
†
1 Q

†
3 CP Bias Q∗1 Q∗3 SE Q

†
1 Q

†
3 CP

1 66 -0.002 -0.04 0.04 0.064 0.06 0.07 0.95 0.063 0.02 0.10 0.057 0.05 0.06 0.80

LBL 2 74 -0.006 -0.04 0.04 0.062 0.06 0.07 0.94 0.037 0.01 0.07 0.051 0.05 0.06 0.87

HP2 10 83 -0.008 -0.04 0.03 0.054 0.04 0.06 0.93 0.012 -0.02 0.04 0.043 0.04 0.05 0.91

1 66 0.002 -0.04 0.05 0.062 0.06 0.07 0.93 0.063 0.02 0.10 0.057 0.05 0.06 0.77

HP1 HBL 2 74 -0.003 -0.04 0.04 0.059 0.05 0.06 0.96 0.040 0.01 0.07 0.051 0.05 0.06 0.84

10 83 -0.000 -0.03 0.03 0.050 0.04 0.06 0.95 0.013 -0.01 0.04 0.042 0.04 0.05 0.89

1 66 0.001 -0.04 0.05 0.064 0.06 0.07 0.94 0.065 0.03 0.10 0.057 0.05 0.06 0.77

LBL 2 74 -0.000 -0.04 0.04 0.063 0.06 0.07 0.93 0.045 0.01 0.08 0.051 0.05 0.06 0.85

LP2 10 83 -0.007 -0.04 0.03 0.055 0.04 0.06 0.93 0.013 -0.02 0.04 0.043 0.04 0.05 0.92

1 66 0.003 -0.04 0.05 0.062 0.06 0.07 0.94 0.063 0.02 0.10 0.056 0.05 0.06 0.77

HBL 2 74 0.003 -0.04 0.04 0.060 0.06 0.07 0.92 0.042 0.01 0.08 0.051 0.05 0.06 0.83

10 83 -0.006 -0.04 0.03 0.052 0.04 0.06 0.94 0.010 -0.02 0.04 0.043 0.04 0.05 0.90

1 43 -0.004 -0.04 0.04 0.068 0.06 0.07 0.92 0.031 -0.01 0.07 0.065 0.06 0.07 0.91

LBL 2 47 -0.007 -0.05 0.05 0.069 0.06 0.08 0.90 0.020 -0.02 0.07 0.066 0.06 0.07 0.90

HP2 10 52 -0.019 -0.07 0.03 0.070 0.06 0.08 0.90 0.002 -0.05 0.04 0.065 0.06 0.07 0.92

1 43 -0.010 -0.05 0.04 0.066 0.06 0.07 0.92 0.025 -0.01 0.07 0.065 0.06 0.07 0.92

LP1 HBL 2 47 -0.006 -0.05 0.04 0.068 0.06 0.07 0.92 0.018 -0.02 0.07 0.066 0.06 0.07 0.92

10 52 -0.014 -0.06 0.03 0.068 0.06 0.07 0.93 0.000 -0.04 0.04 0.065 0.06 0.07 0.95

1 43 -0.004 -0.05 0.04 0.068 0.06 0.07 0.91 0.031 -0.02 0.07 0.065 0.06 0.07 0.93

LBL 2 47 -0.016 -0.06 0.04 0.070 0.06 0.08 0.93 0.011 -0.03 0.07 0.066 0.06 0.07 0.93

LP2 10 52 -0.021 -0.07 0.03 0.071 0.06 0.08 0.92 0.002 -0.05 0.04 0.066 0.06 0.07 0.95

1 43 -0.001 -0.05 0.04 0.066 0.06 0.07 0.92 0.030 -0.02 0.07 0.065 0.06 0.07 0.92

HBL 2 47 -0.009 -0.06 0.04 0.068 0.06 0.07 0.92 0.019 -0.03 0.06 0.066 0.06 0.07 0.92

10 52 -0.013 -0.06 0.03 0.069 0.06 0.08 0.94 0.009 -0.04 0.04 0.066 0.06 0.07 0.96

Pen - penetrance; Bias - median bias; SE - robust standard error; CP - coverage probability.

Q∗1 and Q∗3 - First and third quartiles of bias, respectively.

Q†1 and Q†3 - First and third quartiles of robust standard error, respectively.

HP1 and LP1 - high (β2 = 2.5) and low (β2 = 1.55) penetrances for the first event, respectively.

HP2 and LP2 - high (β3 = 0.75) and low (β3 = 0.3) penetrances for the second event, respectively.

LBL and HBL - low (ν2 = 0.0072, ϕ2 = 1.14) and high (ν2 = 0.0032, ϕ2 = 1.84) baselines for second event, respectively.
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Table B.4: Penetrance estimation of female mutation carriers for the first event by
the age of 70 years under the dominant genetic model with a rare allele frequency
(q = 2%) using 100 simulated families.

Parameters Pen Frailty model Independent model

T1 T2 k (%) Bias Q∗1 Q∗3 SE Q
†
1 Q

†
3 CP Bias Q∗1 Q∗3 SE Q

†
1 Q

†
3 CP

1 37 -0.007 -0.05 0.03 0.056 0.05 0.06 0.96 -0.003 -0.05 0.04 0.061 0.06 0.06 0.95

LBL 2 40 -0.000 -0.04 0.05 0.059 0.06 0.06 0.92 0.000 -0.04 0.05 0.063 0.06 0.07 0.93

HP2 10 44 -0.000 -0.04 0.04 0.063 0.06 0.07 0.94 0.000 -0.04 0.04 0.065 0.06 0.07 0.95

1 37 0.001 -0.04 0.04 0.056 0.05 0.06 0.94 0.004 -0.04 0.05 0.062 0.06 0.06 0.93

HP1 HBL 2 40 -0.005 -0.04 0.04 0.060 0.06 0.06 0.95 -0.005 -0.04 0.04 0.063 0.06 0.07 0.95

10 44 -0.005 -0.05 0.04 0.064 0.06 0.07 0.93 -0.004 -0.05 0.04 0.065 0.06 0.07 0.93

1 37 0.000 -0.03 0.04 0.056 0.05 0.06 0.94 0.003 -0.04 0.05 0.062 0.06 0.06 0.94

LBL 2 40 0.002 -0.03 0.05 0.060 0.06 0.06 0.94 0.004 -0.03 0.06 0.063 0.06 0.07 0.94

LP2 10 44 0.001 -0.05 0.04 0.063 0.06 0.07 0.93 -0.000 -0.05 0.04 0.064 0.06 0.07 0.94

1 37 0.000 -0.04 0.04 0.056 0.05 0.06 0.93 0.005 -0.04 0.05 0.061 0.06 0.06 0.93

HBL 2 40 -0.006 -0.04 0.04 0.060 0.06 0.06 0.94 -0.003 -0.04 0.05 0.063 0.06 0.07 0.94

10 44 -0.004 -0.05 0.04 0.063 0.06 0.07 0.95 -0.004 -0.05 0.04 0.064 0.06 0.07 0.96

1 19 -0.003 -0.03 0.02 0.046 0.04 0.05 0.94 -0.004 -0.04 0.02 0.048 0.04 0.05 0.95

LBL 2 19 -0.003 -0.03 0.04 0.048 0.04 0.05 0.94 -0.004 -0.03 0.04 0.050 0.04 0.05 0.95

HP2 10 20 -0.002 -0.03 0.04 0.050 0.04 0.06 0.93 -0.003 -0.03 0.04 0.051 0.05 0.06 0.93

1 19 -0.006 -0.04 0.02 0.046 0.04 0.05 0.95 -0.006 -0.04 0.03 0.048 0.04 0.05 0.95

LP1 HBL 2 19 -0.004 -0.03 0.04 0.048 0.04 0.05 0.92 -0.004 -0.03 0.04 0.049 0.04 0.05 0.93

10 20 0.000 -0.03 0.04 0.050 0.04 0.06 0.93 -0.000 -0.03 0.04 0.051 0.05 0.06 0.95

1 19 -0.002 -0.04 0.03 0.046 0.04 0.05 0.92 -0.003 -0.04 0.03 0.049 0.04 0.05 0.92

LBL 2 19 -0.003 -0.03 0.03 0.048 0.04 0.05 0.92 -0.003 -0.03 0.03 0.049 0.04 0.05 0.92

LP2 10 20 -0.003 -0.03 0.04 0.049 0.04 0.06 0.91 -0.004 -0.04 0.04 0.051 0.05 0.06 0.92

1 19 -0.002 -0.04 0.03 0.047 0.04 0.05 0.91 -0.003 -0.04 0.03 0.048 0.04 0.05 0.91

HBL 2 19 -0.004 -0.03 0.03 0.048 0.04 0.05 0.93 -0.006 -0.03 0.03 0.049 0.04 0.05 0.94

10 20 -0.001 -0.03 0.04 0.050 0.04 0.06 0.91 -0.002 -0.03 0.04 0.050 0.05 0.06 0.93

Pen - penetrance; Bias - median bias; SE - robust standard error; CP - coverage probability.

Q∗1 and Q∗3 - First and third quartiles of bias, respectively.

Q†1 and Q†3 - First and third quartiles of robust standard error, respectively.

HP1 and LP1 - high (β2 = 2.5) and low (β2 = 1.55) penetrances for the first event, respectively.

HP2 and LP2 - high (β3 = 0.75) and low (β3 = 0.3) penetrances for the second event, respectively.

LBL and HBL - low (ν2 = 0.0072, ϕ2 = 1.14) and high (ν2 = 0.0032, ϕ2 = 1.84) baselines for second event, respectively.
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Table B.5: Penetrance estimation of mutation carriers for developing the second event
in 10 years after the first event under the dominant genetic model with a rare allele
frequency (q = 2%) using 100 simulated families.

Parameters Pen Frailty model Independent model

T1 T2 k (%) Bias Q∗1 Q∗3 SE Q
†
1 Q

†
3 CP Bias Q∗1 Q∗3 SE Q

†
1 Q

†
3 CP

1 17 -0.002 -0.02 0.03 0.044 0.04 0.06 0.89 0.103 0.09 0.13 0.036 0.03 0.04 0.18

LBL 2 18 -0.004 -0.03 0.03 0.041 0.03 0.05 0.83 0.057 0.04 0.08 0.034 0.03 0.04 0.63

HP2 10 19 -0.011 -0.04 0.02 0.036 0.03 0.05 0.91 0.011 -0.01 0.03 0.031 0.03 0.03 0.95

1 32 0.001 -0.04 0.05 0.065 0.06 0.08 0.92 0.159 0.14 0.19 0.042 0.04 0.04 0.04

HP1 HBL 2 35 -0.004 -0.05 0.04 0.061 0.05 0.07 0.90 0.087 0.06 0.12 0.040 0.04 0.04 0.44

10 37 -0.010 -0.05 0.03 0.052 0.04 0.06 0.89 0.021 -0.01 0.05 0.038 0.04 0.04 0.91

1 12 0.001 -0.02 0.02 0.033 0.03 0.04 0.87 0.074 0.06 0.09 0.031 0.03 0.03 0.35

LBL 2 12 -0.003 -0.02 0.03 0.032 0.02 0.04 0.86 0.041 0.02 0.06 0.029 0.03 0.03 0.75

LP2 10 13 -0.008 -0.03 0.01 0.029 0.02 0.04 0.89 0.009 -0.01 0.02 0.027 0.02 0.03 0.93

1 23 0.003 -0.03 0.06 0.052 0.04 0.07 0.88 0.129 0.10 0.16 0.039 0.04 0.04 0.09

HBL 2 25 -0.003 -0.04 0.04 0.050 0.04 0.06 0.89 0.068 0.04 0.09 0.037 0.04 0.04 0.58

10 26 -0.007 -0.04 0.02 0.042 0.04 0.05 0.88 0.015 -0.01 0.04 0.034 0.03 0.04 0.91

1 17 -0.007 -0.05 0.08 0.056 0.04 0.09 0.70 0.121 0.10 0.16 0.043 0.04 0.05 0.23

LBL 2 18 -0.011 -0.06 0.05 0.052 0.04 0.08 0.71 0.067 0.04 0.09 0.040 0.04 0.04 0.67

HP2 10 19 -0.028 -0.08 0.01 0.042 0.04 0.07 0.78 0.012 -0.01 0.04 0.038 0.04 0.04 0.95

1 32 -0.007 -0.08 0.11 0.097 0.07 0.14 0.75 0.182 0.15 0.22 0.050 0.05 0.05 0.06

LP1 HBL 2 35 0.001 -0.10 0.08 0.086 0.05 0.12 0.74 0.103 0.07 0.14 0.048 0.04 0.05 0.43

10 37 -0.023 -0.10 0.03 0.066 0.05 0.10 0.84 0.021 -0.01 0.05 0.046 0.04 0.05 0.92

1 12 -0.006 -0.05 0.05 0.043 0.03 0.07 0.73 0.087 0.06 0.11 0.038 0.04 0.04 0.39

LBL 2 12 -0.011 -0.05 0.04 0.040 0.03 0.07 0.76 0.047 0.02 0.07 0.035 0.03 0.04 0.77

LP2 10 13 -0.024 -0.06 0.00 0.035 0.03 0.06 0.80 0.005 -0.02 0.02 0.031 0.03 0.04 0.94

1 23 0.001 -0.06 0.11 0.072 0.05 0.11 0.71 0.150 0.12 0.18 0.047 0.04 0.05 0.06

HBL 2 25 0.004 -0.08 0.06 0.064 0.04 0.10 0.73 0.082 0.05 0.11 0.044 0.04 0.05 0.56

10 26 -0.019 -0.09 0.02 0.049 0.04 0.08 0.81 0.019 -0.01 0.04 0.042 0.04 0.04 0.95

Pen - penetrance; Bias - median bias; SE - robust standard error; CP - coverage probability.

Q∗1 and Q∗3 - First and third quartiles of bias, respectively.

Q†1 and Q†3 - First and third quartiles of robust standard error, respectively.

HP1 and LP1 - high (β2 = 2.5) and low (β2 = 1.55) penetrances for the first event, respectively.

HP2 and LP2 - high (β3 = 0.75) and low (β3 = 0.3) penetrances for the second event, respectively.

LBL and HBL - low (ν2 = 0.0072, ϕ2 = 1.14) and high (ν2 = 0.0032, ϕ2 = 1.84) baselines for second event, respectively.
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Table B.6: Estimation of log relative genetic risk (β2) of developing the first event
under the recessive genetic model with a common allele frequency (q = 30%) using
100 simulated families.

Parameters Frailty model Independent model

T1 T2 k Bias Q∗1 Q∗3 SE Q
†
1 Q

†
3 CP Bias Q∗1 Q∗3 SE Q

†
1 Q

†
3 CP

1 0.041 -0.16 0.29 0.346 0.32 0.38 0.94 -0.235 -0.44 -0.01 0.290 0.27 0.32 0.85

LBL 2 0.064 -0.15 0.32 0.336 0.31 0.37 0.93 -0.121 -0.30 0.12 0.293 0.27 0.31 0.91

HP2 10 0.085 -0.15 0.30 0.310 0.28 0.35 0.93 -0.018 -0.20 0.21 0.283 0.26 0.31 0.94

1 0.040 -0.20 0.28 0.338 0.31 0.38 0.94 -0.219 -0.42 -0.02 0.292 0.27 0.32 0.85

HP1 HBL 2 0.043 -0.16 0.30 0.322 0.29 0.36 0.94 -0.099 -0.31 0.10 0.286 0.27 0.31 0.92

10 0.067 -0.14 0.26 0.307 0.28 0.34 0.94 -0.007 -0.20 0.18 0.283 0.26 0.31 0.96

1 0.008 -0.19 0.27 0.347 0.32 0.38 0.95 -0.243 -0.44 -0.04 0.288 0.27 0.31 0.84

LBL 2 0.055 -0.20 0.27 0.335 0.30 0.37 0.94 -0.129 -0.31 0.08 0.287 0.26 0.31 0.90

LP2 10 0.078 -0.11 0.30 0.320 0.28 0.36 0.90 0.001 -0.19 0.20 0.285 0.26 0.31 0.96

1 0.042 -0.18 0.27 0.345 0.31 0.38 0.94 -0.219 -0.43 -0.04 0.290 0.27 0.32 0.85

HBL 2 0.039 -0.18 0.29 0.328 0.30 0.37 0.94 -0.123 -0.32 0.10 0.286 0.27 0.31 0.92

10 0.028 -0.16 0.23 0.309 0.28 0.35 0.93 -0.030 -0.22 0.17 0.282 0.26 0.31 0.94

1 0.049 -0.18 0.29 0.362 0.32 0.41 0.94 -0.103 -0.31 0.11 0.315 0.29 0.34 0.94

LBL 2 0.063 -0.18 0.33 0.348 0.31 0.40 0.93 -0.043 -0.25 0.18 0.313 0.29 0.34 0.95

HP2 10 0.071 -0.14 0.32 0.343 0.30 0.39 0.92 0.007 -0.20 0.22 0.307 0.29 0.33 0.95

1 0.039 -0.18 0.31 0.357 0.32 0.40 0.94 -0.087 -0.29 0.13 0.317 0.29 0.34 0.94

LP1 HBL 2 0.043 -0.19 0.28 0.341 0.31 0.39 0.91 -0.068 -0.27 0.17 0.313 0.29 0.34 0.93

10 0.035 -0.22 0.27 0.327 0.30 0.37 0.92 -0.027 -0.24 0.20 0.308 0.29 0.33 0.95

1 0.077 -0.17 0.32 0.372 0.33 0.42 0.94 -0.095 -0.32 0.14 0.317 0.30 0.34 0.95

LBL 2 0.061 -0.17 0.28 0.356 0.32 0.40 0.93 -0.054 -0.26 0.15 0.310 0.29 0.33 0.95

LP2 10 0.068 -0.15 0.29 0.346 0.30 0.39 0.94 -0.024 -0.22 0.19 0.308 0.29 0.34 0.96

1 0.028 -0.24 0.31 0.363 0.32 0.41 0.92 -0.117 -0.36 0.14 0.318 0.29 0.34 0.91

HBL 2 0.023 -0.19 0.31 0.345 0.31 0.39 0.94 -0.065 -0.26 0.18 0.311 0.29 0.34 0.95

10 0.047 -0.18 0.28 0.327 0.29 0.38 0.92 -0.012 -0.24 0.21 0.307 0.29 0.33 0.96

Bias - median bias; SE - robust standard error; CP - coverage probability.

Q∗1 and Q∗3 - First and third quartiles of bias, respectively.

Q†1 and Q†3 - First and third quartiles of robust standard error, respectively.

HP1 and LP1 - high (β2 = 2.5) and low (β2 = 1.55) penetrances for the first event, respectively.

HP2 and LP2 - high (β3 = 0.75) and low (β3 = 0.3) penetrances for the second event, respectively.

LBL and HBL - low (ν2=0.00724,ϕ2=1.14) and high (ν2=0.00324,ϕ2=1.84) baselines for second event, respectively.
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Table B.7: Estimation of log relative genetic risk (β3) of developing the second event
under the recessive genetic model with a common allele frequency (q = 30%) using
100 simulated families.

Parameters Frailty model Independent model

T1 T2 k Bias Q∗1 Q∗3 SE Q
†
1 Q

†
3 CP Bias Q∗1 Q∗3 SE Q

†
1 Q

†
3 CP

1 0.052 -0.34 0.61 0.734 0.60 0.91 0.95 -0.097 -0.48 0.43 0.678 0.55 0.89 0.94

LBL 2 0.050 -0.39 0.68 0.745 0.61 1.03 0.92 -0.042 -0.47 0.56 0.720 0.59 1.01 0.94

HP2 10 0.088 -0.36 0.77 0.810 0.65 1.11 0.88 0.058 -0.40 0.74 0.906 0.66 1.07 0.96

1 0.030 -0.27 0.43 0.533 0.45 0.66 0.93 -0.200 -0.48 0.15 0.445 0.37 0.56 0.88

HP1 HBL 2 0.032 -0.38 0.46 0.550 0.46 0.68 0.92 -0.117 -0.48 0.24 0.478 0.40 0.61 0.90

10 0.021 -0.35 0.47 0.547 0.44 0.68 0.92 -0.039 -0.38 0.37 0.504 0.42 0.61 0.94

1 0.039 -0.45 0.61 0.718 0.58 0.93 0.95 -0.096 -0.52 0.46 0.659 0.54 0.84 0.94

LBL 2 0.002 -0.50 0.55 0.739 0.59 1.02 0.93 -0.085 -0.57 0.45 0.717 0.57 1.01 0.94

LP2 10 0.121 -0.37 0.78 0.845 0.66 1.08 0.87 0.089 -0.40 0.73 0.882 0.68 1.07 0.96

1 0.012 -0.35 0.44 0.540 0.46 0.64 0.92 -0.153 -0.47 0.24 0.459 0.38 0.55 0.90

HBL 2 0.034 -0.37 0.39 0.541 0.45 0.65 0.92 -0.070 -0.40 0.26 0.479 0.40 0.59 0.91

10 -0.026 -0.36 0.39 0.530 0.43 0.67 0.89 -0.078 -0.38 0.34 0.507 0.41 0.62 0.94

1 0.029 -0.40 0.60 0.707 0.59 0.89 0.93 -0.054 -0.44 0.46 0.640 0.55 0.81 0.95

LBL 2 0.128 -0.46 0.66 0.752 0.61 1.05 0.87 0.025 -0.48 0.57 0.725 0.59 1.03 0.94

HP2 10 0.221 -0.35 0.94 0.856 0.67 1.12 0.85 0.161 -0.38 0.88 0.919 0.67 1.09 0.95

1 0.039 -0.36 0.54 0.583 0.48 0.71 0.94 -0.095 -0.47 0.29 0.480 0.40 0.58 0.91

LP1 HBL 2 0.083 -0.36 0.48 0.553 0.47 0.68 0.91 -0.066 -0.42 0.35 0.481 0.41 0.58 0.90

10 0.005 -0.36 0.46 0.558 0.45 0.70 0.89 -0.040 -0.38 0.34 0.521 0.43 0.63 0.93

1 0.182 -0.32 0.89 0.737 0.60 1.06 0.93 0.103 -0.33 0.77 0.696 0.56 1.03 0.96

LBL 2 0.026 -0.48 0.63 0.752 0.62 1.02 0.90 -0.014 -0.49 0.58 0.719 0.59 1.01 0.93

LP2 10 0.109 -0.41 0.91 0.817 0.67 1.11 0.85 0.034 -0.41 0.83 0.823 0.66 1.10 0.95

1 -0.013 -0.43 0.42 0.560 0.47 0.69 0.91 -0.073 -0.42 0.31 0.485 0.40 0.59 0.90

HBL 2 0.058 -0.34 0.49 0.575 0.47 0.71 0.89 -0.002 -0.37 0.38 0.503 0.41 0.61 0.90

10 0.039 -0.38 0.52 0.570 0.46 0.73 0.91 0.004 -0.39 0.46 0.517 0.42 0.66 0.94

Bias - median bias; SE - robust standard error; CP - coverage probability.

Q∗1 and Q∗3 - First and third quartiles of bias, respectively.

Q†1 and Q†3 - First and third quartiles of robust standard error, respectively.

HP1 and LP1 - high (β2 = 2.5) and low (β2 = 1.55) penetrances for the first event, respectively.

HP2 and LP2 - high (β3 = 0.75) and low (β3 = 0.3) penetrances for the second event, respectively.

LBL and HBL - low (ν2=0.00724,ϕ2=1.14) and high (ν2=0.00324,ϕ2=1.84) baselines for second event, respectively.
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Table B.8: Penetrance estimation of male mutation carriers for the first event by the
age of 70 years under the recessive genetic model with a common allele frequency
(q = 30%) using 100 simulated families.

Parameters Pen Frailty model Independent model

T1 T2 k (%) Bias Q∗1 Q∗3 SE Q
†
1 Q

†
3 CP Bias Q∗1 Q∗3 SE Q

†
1 Q

†
3 CP

1 66 0.001 -0.05 0.05 0.065 0.06 0.07 0.93 0.068 0.03 0.11 0.056 0.05 0.06 0.71

LBL 2 74 0.001 -0.04 0.05 0.064 0.06 0.07 0.93 0.045 0.01 0.08 0.052 0.05 0.06 0.81

HP2 10 83 -0.008 -0.04 0.03 0.057 0.05 0.07 0.93 0.012 -0.02 0.04 0.043 0.04 0.05 0.89

1 66 0.006 -0.04 0.05 0.063 0.06 0.07 0.93 0.070 0.04 0.11 0.057 0.05 0.06 0.72

HP1 HBL 2 74 0.001 -0.03 0.04 0.060 0.06 0.07 0.95 0.044 0.01 0.08 0.051 0.05 0.06 0.81

10 83 -0.001 -0.04 0.03 0.052 0.04 0.06 0.96 0.015 -0.02 0.04 0.043 0.04 0.05 0.93

1 66 0.007 -0.05 0.05 0.067 0.06 0.07 0.92 0.076 0.04 0.11 0.057 0.05 0.06 0.72

LBL 2 74 -0.003 -0.04 0.04 0.065 0.06 0.07 0.93 0.043 0.01 0.08 0.052 0.05 0.06 0.85

LP2 10 83 -0.007 -0.04 0.02 0.058 0.05 0.07 0.95 0.015 -0.01 0.04 0.043 0.04 0.05 0.93

1 66 0.005 -0.04 0.05 0.064 0.06 0.07 0.94 0.071 0.03 0.11 0.057 0.05 0.06 0.75

HBL 2 74 0.001 -0.04 0.04 0.062 0.06 0.07 0.94 0.041 0.01 0.08 0.052 0.05 0.06 0.83

10 83 -0.007 -0.04 0.03 0.054 0.04 0.06 0.92 0.009 -0.02 0.04 0.044 0.04 0.05 0.90

1 43 -0.012 -0.06 0.04 0.069 0.06 0.08 0.93 0.027 -0.02 0.08 0.066 0.06 0.07 0.91

LBL 2 47 -0.006 -0.05 0.04 0.071 0.06 0.08 0.91 0.021 -0.02 0.07 0.067 0.06 0.07 0.92

HP2 10 52 -0.019 -0.07 0.03 0.072 0.07 0.08 0.92 0.002 -0.05 0.04 0.067 0.06 0.07 0.93

1 43 -0.006 -0.05 0.04 0.069 0.06 0.07 0.94 0.033 -0.01 0.07 0.067 0.06 0.07 0.92

LP1 HBL 2 47 -0.006 -0.05 0.04 0.069 0.06 0.08 0.92 0.014 -0.02 0.07 0.067 0.06 0.07 0.93

10 52 -0.017 -0.07 0.02 0.069 0.06 0.08 0.93 -0.003 -0.05 0.04 0.067 0.06 0.07 0.96

1 43 -0.010 -0.06 0.04 0.071 0.06 0.08 0.92 0.033 -0.01 0.07 0.067 0.06 0.07 0.93

LBL 2 47 -0.009 -0.06 0.04 0.072 0.06 0.08 0.91 0.022 -0.02 0.07 0.067 0.06 0.07 0.91

LP2 10 52 -0.023 -0.08 0.02 0.073 0.07 0.08 0.91 -0.000 -0.05 0.04 0.067 0.06 0.07 0.94

1 43 -0.006 -0.06 0.04 0.068 0.06 0.08 0.92 0.025 -0.02 0.08 0.066 0.06 0.07 0.93

HBL 2 47 -0.018 -0.06 0.04 0.070 0.06 0.08 0.92 0.012 -0.03 0.06 0.067 0.06 0.07 0.94

10 52 -0.013 -0.07 0.03 0.071 0.06 0.08 0.91 0.002 -0.05 0.04 0.067 0.06 0.07 0.95

Pen - penetrance; Bias - median bias; SE - robust standard error; CP - coverage probability.

Q∗1 and Q∗3 - First and third quartiles of bias, respectively.

Q†1 and Q†3 - First and third quartiles of robust standard error, respectively.

HP1 and LP1 - high (β2 = 2.5) and low (β2 = 1.55) penetrances for the first event, respectively.

HP2 and LP2 - high (β3 = 0.75) and low (β3 = 0.3) penetrances for the second event, respectively.

LBL and HBL - low (ν2 = 0.0072, ϕ2 = 1.14) and high (ν2 = 0.0032, ϕ2 = 1.84) baselines for second event, respectively.
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Table B.9: Penetrance estimation of female mutation carriers for the first event by
the age of 70 years under the recessive genetic model with a common allele frequency
(q = 30%) using 100 simulated families.

Parameters Pen Frailty model Independent model

T1 T2 k (%) Bias Q∗1 Q∗3 SE Q
†
1 Q

†
3 CP Bias Q∗1 Q∗3 SE Q

†
1 Q

†
3 CP

1 37 -0.002 -0.04 0.04 0.057 0.05 0.06 0.92 0.005 -0.04 0.05 0.063 0.06 0.07 0.93

LBL 2 40 -0.004 -0.04 0.04 0.061 0.06 0.06 0.93 -0.003 -0.04 0.05 0.065 0.06 0.07 0.94

HP2 10 44 -0.002 -0.05 0.04 0.064 0.06 0.07 0.91 -0.002 -0.05 0.04 0.066 0.06 0.07 0.93

1 37 0.003 -0.04 0.04 0.057 0.05 0.06 0.95 0.008 -0.04 0.05 0.063 0.06 0.07 0.95

HP1 HBL 2 40 -0.002 -0.04 0.04 0.061 0.06 0.06 0.95 0.000 -0.04 0.05 0.064 0.06 0.07 0.95

10 44 0.002 -0.04 0.04 0.065 0.06 0.07 0.93 0.003 -0.05 0.04 0.065 0.06 0.07 0.93

1 37 -0.003 -0.04 0.04 0.057 0.05 0.06 0.93 -0.001 -0.04 0.05 0.062 0.06 0.07 0.93

LBL 2 40 -0.003 -0.04 0.05 0.061 0.06 0.06 0.94 -0.004 -0.04 0.05 0.064 0.06 0.07 0.94

LP2 10 44 -0.004 -0.05 0.04 0.064 0.06 0.07 0.93 -0.003 -0.05 0.04 0.065 0.06 0.07 0.94

1 37 0.001 -0.04 0.04 0.057 0.05 0.06 0.94 0.003 -0.04 0.05 0.063 0.06 0.07 0.94

HBL 2 40 -0.004 -0.04 0.04 0.061 0.06 0.06 0.92 -0.003 -0.04 0.04 0.064 0.06 0.07 0.91

10 44 -0.008 -0.06 0.04 0.064 0.06 0.07 0.94 -0.008 -0.06 0.04 0.065 0.06 0.07 0.94

1 19 -0.001 -0.04 0.02 0.047 0.04 0.05 0.92 -0.000 -0.04 0.03 0.050 0.04 0.05 0.92

LBL 2 19 -0.002 -0.03 0.03 0.048 0.04 0.05 0.93 -0.003 -0.03 0.03 0.050 0.05 0.06 0.94

HP2 10 20 0.001 -0.03 0.03 0.051 0.05 0.06 0.94 0.001 -0.03 0.03 0.051 0.05 0.06 0.93

1 19 -0.004 -0.04 0.03 0.046 0.04 0.05 0.91 -0.004 -0.04 0.03 0.048 0.04 0.05 0.91

LP1 HBL 2 19 -0.004 -0.03 0.04 0.048 0.04 0.05 0.91 -0.005 -0.04 0.04 0.050 0.04 0.06 0.92

10 20 -0.003 -0.03 0.04 0.050 0.04 0.06 0.91 -0.003 -0.03 0.03 0.051 0.05 0.06 0.91

1 19 -0.000 -0.04 0.03 0.046 0.04 0.05 0.94 0.001 -0.04 0.03 0.049 0.04 0.06 0.94

LBL 2 19 0.000 -0.03 0.04 0.049 0.04 0.06 0.92 0.000 -0.03 0.04 0.051 0.04 0.06 0.92

LP2 10 20 -0.005 -0.03 0.03 0.050 0.04 0.05 0.94 -0.006 -0.03 0.03 0.051 0.05 0.06 0.94

1 19 -0.007 -0.04 0.02 0.047 0.04 0.05 0.93 -0.008 -0.04 0.03 0.049 0.04 0.05 0.92

HBL 2 19 0.001 -0.03 0.03 0.049 0.04 0.05 0.93 0.002 -0.03 0.04 0.050 0.05 0.06 0.93

10 20 -0.003 -0.04 0.04 0.051 0.04 0.06 0.90 -0.005 -0.04 0.04 0.051 0.05 0.06 0.91

Pen - penetrance; Bias - median bias; SE - robust standard error; CP - coverage probability.

Q∗1 and Q∗3 - First and third quartiles of bias, respectively.

Q†1 and Q†3 - First and third quartiles of robust standard error, respectively.

HP1 and LP1 - high (β2 = 2.5) and low (β2 = 1.55) penetrances for the first event, respectively.

HP2 and LP2 - high (β3 = 0.75) and low (β3 = 0.3) penetrances for the second event, respectively.

LBL and HBL - low (ν2 = 0.0072, ϕ2 = 1.14) and high (ν2 = 0.0032, ϕ2 = 1.84) baselines for second event, respectively.
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Table B.10: Penetrance estimation of mutation carriers for developing the second
event in 10 years after the first event under the recessive genetic model with a common
allele frequency (q = 30%) using 100 simulated families.

Parameters Pen Frailty model Independent model

T1 T2 k (%) Bias Q∗1 Q∗3 SE Q
†
1 Q

†
3 CP Bias Q∗1 Q∗3 SE Q

†
1 Q

†
3 CP

1 17 -0.002 -0.02 0.04 0.044 0.04 0.06 0.87 0.109 0.09 0.14 0.037 0.04 0.04 0.18

LBL 2 18 0.006 -0.03 0.04 0.043 0.03 0.06 0.86 0.063 0.04 0.09 0.034 0.03 0.04 0.59

HP2 10 19 -0.012 -0.04 0.01 0.037 0.03 0.05 0.89 0.009 -0.01 0.03 0.032 0.03 0.03 0.93

1 32 0.001 -0.04 0.05 0.066 0.06 0.08 0.88 0.158 0.13 0.19 0.042 0.04 0.04 0.03

HP1 HBL 2 35 -0.007 -0.05 0.05 0.063 0.05 0.07 0.86 0.090 0.06 0.11 0.040 0.04 0.04 0.39

10 37 -0.011 -0.05 0.03 0.053 0.04 0.07 0.91 0.019 -0.01 0.05 0.039 0.04 0.04 0.92

1 12 0.003 -0.02 0.03 0.034 0.03 0.05 0.87 0.080 0.06 0.10 0.032 0.03 0.03 0.33

LBL 2 12 -0.002 -0.02 0.02 0.033 0.03 0.04 0.85 0.040 0.02 0.06 0.029 0.03 0.03 0.76

LP2 10 13 -0.010 -0.04 0.00 0.030 0.02 0.04 0.88 0.005 -0.02 0.02 0.026 0.02 0.03 0.91

1 23 -0.001 -0.03 0.05 0.053 0.04 0.06 0.88 0.127 0.10 0.16 0.039 0.04 0.04 0.11

HBL 2 25 -0.001 -0.04 0.04 0.052 0.04 0.06 0.87 0.070 0.04 0.09 0.037 0.04 0.04 0.54

10 26 -0.007 -0.04 0.02 0.043 0.04 0.06 0.88 0.013 -0.01 0.03 0.035 0.03 0.04 0.93

1 17 -0.008 -0.06 0.08 0.052 0.04 0.09 0.66 0.126 0.10 0.16 0.044 0.04 0.05 0.19

LBL 2 18 -0.005 -0.06 0.06 0.048 0.04 0.08 0.73 0.067 0.04 0.10 0.041 0.04 0.04 0.68

HP2 10 19 -0.026 -0.07 0.01 0.043 0.04 0.07 0.82 0.010 -0.01 0.04 0.038 0.04 0.04 0.94

1 32 0.005 -0.09 0.10 0.097 0.07 0.14 0.76 0.181 0.14 0.22 0.050 0.05 0.05 0.04

LP1 HBL 2 35 0.006 -0.09 0.08 0.090 0.05 0.12 0.74 0.104 0.06 0.14 0.049 0.05 0.05 0.46

10 37 -0.020 -0.09 0.03 0.059 0.05 0.10 0.83 0.020 -0.01 0.05 0.046 0.04 0.05 0.90

1 12 -0.010 -0.04 0.04 0.045 0.03 0.07 0.73 0.093 0.07 0.12 0.039 0.04 0.04 0.36

LBL 2 12 -0.010 -0.04 0.04 0.039 0.03 0.06 0.77 0.048 0.03 0.08 0.035 0.03 0.04 0.74

LP2 10 13 -0.025 -0.06 0.00 0.034 0.03 0.06 0.78 0.007 -0.02 0.02 0.032 0.03 0.04 0.93

1 23 0.001 -0.07 0.10 0.076 0.05 0.10 0.71 0.149 0.12 0.18 0.047 0.04 0.05 0.13

HBL 2 25 -0.001 -0.08 0.06 0.064 0.04 0.10 0.71 0.083 0.05 0.11 0.044 0.04 0.05 0.52

10 26 -0.019 -0.09 0.02 0.049 0.04 0.07 0.80 0.018 -0.01 0.04 0.042 0.04 0.04 0.93

Pen - penetrance; Bias - median bias; SE - robust standard error; CP - coverage probability.

Q∗1 and Q∗3 - First and third quartiles of bias, respectively.

Q†1 and Q†3 - First and third quartiles of robust standard error, respectively.

HP1 and LP1 - high (β2 = 2.5) and low (β2 = 1.55) penetrances for the first event, respectively.

HP2 and LP2 - high (β3 = 0.75) and low (β3 = 0.3) penetrances for the second event, respectively.

LBL and HBL - low (ν2 = 0.0072, ϕ2 = 1.14) and high (ν2 = 0.0032, ϕ2 = 1.84) baselines for second event, respectively.
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