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Abstract 
Cyanobacteria harmful algal blooms (cyanoHABs) pose a threat to water quality and 
human health. The Lake Naivasha, Kenya community expressed concern about these 
events which prompted this study of influences, characteristics and health impacts of 
cyanoHABs. While eutrophication of Lake Naivasha was caused by years of nutrient 
loading from agricultural activities, land use changes and improper sewage treatment, 
results suggest that lake-wide cyanoHAB formation was controlled by shifts from 
drought to flood conditions, followed by relative stability. Particulate concentrations of 
the liver toxin microcystin were less than provisional guidelines; however, our limited 
knowledge on long-term microcystin impacts is limited and future cyanoHABs could 
have higher levels. CyanoHABs may play a role in dissolved oxygen dynamics and in 
turn fish health, but the extent of this is unclear without further study. Better management 
practices of Lake Naivasha’s ecosystem services will lead to enhanced health and well-
being of the lake and community.  
 

Keywords: cyanobacteria harmful algal blooms, cyanotoxins, microcystin, freshwater, 
ecosystem services, Lake Naivasha, Kenya 

Muhtasari 
Cyanobacteria harmful algal blooms (cyanoHABs) (cyanobakteria yenye madhara na 
inayonawiri zaidi) ni tisho kwa usafi na ubora wa maji na afya ya binadamu. Wakaazi wa 
Ziwa Naivasha walielezea wasi wasi yao kutokana na matukio ambayo yalichangia utafiti 
wa kiiini, tabia na adhari za afya za cyanoHABs. Ijapokuwa kumekuwa na mabadiliko 
kwa hali ya maji katika Ziwa Naivasha kuwa yenye madini mengi hali ambayo 
imechangiwa pakubwa na mbolea nyingi kuoshwa kutoka kwenye mashamba ya kukuza 
mimea na kuelekezwa kwenye ziwa, mabadiliko ya utumizi wa ardhi na pia ukosefu wa 
usafishaji bora wa maji taka, matokeo ya utafiti yana onyesha kwamba kusambaa kwa 
cyanoHABs kwa ziwa lote kwa ujumla ina tegemea zaidi mabadiliko kutoka kwa msimu 
wa kiangizi na kuingia kwa msimu wa mvua na mafuriko ikifuatiwa na wakati wa utulivu 
katika Ziwa. Viwango vya sumu ya maini ijulikanayo kama microcystin ndani ya miili ya 
viini vya cyanoHABs ilikuwa ndogo ikilinganishwa na viwango vinavyopendekezwa ili 
kuepuka madhara ya kiafya, lakini kuna upungufu wa maarifa kuhusu adhari ambazo 
zinaweza kutokea baada ya muda mrefu kutokana na viwango hivi vidogo vya 
microcystin na kuna uwezekano kwamba kiwango kidogo bado kinaweza kuadhiri afya. 
CyanoHABs zinaweza kuchangia kwa upungufu wa hewa (oksijeni) ambayo iko majini 
na inayotegemewa na samaki kwa kupumua na hivyo kuadhiri afya ya samaki, lakini 
kiwango cha madhara ambayo yanaweza kutokea hakijadhihirishwa na kwa hivyo, utafiti 
zaidi unahitajika. Usimamizi bora zaidi wa matumizi ya Ziwa Naivasha na huduma 
ambazo Ziwa hili linatekeleza ita sababisha uboreshaji wa afya na mazingira mazuri kwa 
ziwa na wakaazi wa eneo hili wanaotegemea ziwa hili kwa matumizi na maisha yao kwa 
jumla.     
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“I am I plus my surroundings and if I do not preserve the latter I do not preserve myself.” 

 
Jose Ortega y Gasset, Meditations on Quixote, 1914 
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1. INTRODUCTION 

1.1. Cyanobacteria blooms  

Cyanobacteria, previously known as blue-green algae, are microscopic 

photosynthetic prokaryotes known for their ability to survive in a wide range of terrestrial 

and aquatic habitats. Under ideal conditions and low grazing pressure, they can 

proliferate rapidly enough to accumulate and form visible scums known as cyanobacterial 

blooms in freshwater environments (Reynolds and Walsby, 1975).  Compared to blooms 

of other eukaryotic algae (chlorophytes, diatoms, dinoflagellates), cyanobacteria blooms 

are generally the most common and problematic in freshwater systems (Paerl et al., 

2001).   

1.1.1. Characteristics of cyanobacteria 

As prokaryotes, cyanobacteria are structurally similar to bacteria in that they lack 

a nucleus and organelles, yet they can also photosynthesize similar to eukaryotic algae 

(Paerl et al., 2001). They exist in two basic forms: 1) coccoid cells that may be individual 

and free floating or aggregated as colony (example: Microcystis, Merismopedia) or 2) 

filamentous forms that may (Anabaena, Aphanizomenon) or may not (Spirulina, 

Planktothrix) contain heterocysts, which are specialized cells that fix nitrogen.  

Cyanobacteria produce chlorophyll-a (chl-a) as their major light harvesting 

pigment but also contain specific accessory pigments called phycobiliproteins that allow 

them to harvest light at lower wavelengths—which other algae are not capable of 

doing—giving them a high photosynthetic efficiency (Gantt, 1975).  These pigments are 

known as phycocyanin (PC) and phycoerythrin (PE) and are responsible for giving 

cyanobacteria their blue-green or red colours, respectively. Measurements of these algal 

pigments can be used as indicators of overall and group specific biomass (Schagerl, 

2007): chl-a	  represents overall biomass, PC and PE will infer cyanobacteria biomass and 

the accessory chlorophylls—chlorophyll-b (chl-b) and chlorophyll-c (chl-c)—represent 

the biomass of chlorophytes (green algae) and diatoms/dinoflagellates, respectively.  

A special feature of cyanobacteria is the presence of gas vacuoles that allow them 

to regulate their buoyancy in the water column to optimize conditions of light and 

nutrients (Oliver and Ganf, 2000). This gives cyanobacteria a particular advantage when 

the environment is stable, as competing groups of algae (green algae and diatoms) are 
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unable to control their movements in the water column. Furthermore, turbulence or 

mixing can re-cycle nutrients and redistribute all algae giving cyanobacteria less of an 

advantage. Additionally, changes in pressure due to turbulence can disrupt gas vesicles 

causing them to collapse (Oliver and Ganf, 2000). 

Some of the filamentous genera are able to fix nitrogen from the atmosphere to 

use when nitrogen is limited in the water (Paerl et al., 2001). In addition, cyanobacteria 

have efficient phosphorus uptake mechanisms that enable them to obtain and store 

phosphorus when it is available and then utilize it when the nutrient becomes limited in 

the environment (Oliver and Ganf, 2000). Iron requirements are higher in cyanobacteria 

compared to eukaryotic algae because it is needed in greater amounts for photosynthesis 

and it also plays a role in nitrogen fixation (Morton and Lee, 1974; Gress et al., 2004). In 

order to obtain iron for these needs cyanobacteria can produce iron chelators known as 

siderophores that can bind and transport iron to cyanobacteria cells. 

1.1.2. Factors influencing cyanobacterial bloom occurrences  

Specific factors that may play a role in cyanobacterial bloom occurrences include 

physical parameters (temperature, light, turbulence, mixing, and stability), biological 

interactions (grazing), and chemical characteristics (macronutrients (N and P), 

micronutrients (Iron)) (Paerl et al., 2001).  In a natural environment it is rarely just one of 

these factors alone that will lead to bloom production but rather a combination of some or 

all of them.  

The light harvesting features and buoyancy characteristics described above can 

give cyanobacteria an advantage to bloom over other algae in stable and turbid 

environments. Additionally, cyanobacteria can proliferate at higher temperatures than 

diatoms and green algae (Paerl and Paul, 2012), so cyanobacterial blooms tend to occur 

when water temperatures are greater. Cyanobacteria are also grazed less than eukaryotic 

algae for reasons relating to shape, indigestibility, and chemical production and therefore 

are less impacted by top-down controls (Paerl et al., 2001).  

In general, cyanobacteria commonly proliferate in nutrient rich or eutrophic 

systems which are able to support excessive algal growth. Generally, when chl-a 

concentrations are consistently greater than 10 µg/L, a lake is considered eutrophic 

(OECD, 1982). Through anthropogenic or human-induced changes, more lake 
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ecosystems have become eutrophic and there has been an increase in cyanobacterial 

bloom occurrences in recent decades (Smith, 2003). Within these eutrophic systems 

however, there are a number of possible ways that nutrient regimes can lead to a bloom. 

Firstly, if a nutrient is limited (but most other conditions, such as sufficient light and 

temperature are met), cyanobacteria may be able to utilize one of the nutrient acquisition 

mechanisms it has to gain an advantage and bloom. However, different genera and/or 

species of cyanobacteria are capable of those adaptations at different magnitudes. For 

example, Anabaena has the ability to fix nitrogen, whereas Microcystis does not. 

However, Microcystis is better known for its phosphorus uptake mechanisms, as well as 

its buoyancy capabilities, so if nitrogen is not limiting it may be more likely to have the 

advantage and bloom.  

It has also been suggested that low nitrogen to phosphorus ratios may promote 

cyanobacteria dominance and bloom formation over other eukaryotic algae (Paerl et al., 

2001). That being said, for this to be a factor one of the nutrients must be limiting. In 

highly eutrophic systems there may just be more than enough of all the essential nutrients 

(saturation) and when this occurs, ratios and actual comparisons of nutrient 

concentrations must be interpreted properly.  If all nutrients are present in high amounts, 

then the other influences such as grazing, turbidity, light and temperature can still play a 

key role in the proliferation of cyanobacteria.  

1.1.3. Temperate versus tropical ecosystems 

Tropical lakes only make up about 10% of lake ecosystems (Lewis, 1996) which 

is why most literature on cyanobacterial blooms tends to discuss attributes of their 

occurrences in temperate systems. However the dynamics are very different between 

these two types of ecosystems, and therefore generalizations and assumptions must be 

made cautiously when applying temperate climate studies to a tropical climate (Lewis, 

2000). Temperate ecosystems experience seasonal changes in light and temperature, 

which tend to impact their mixing and limit the periods where phytoplankton and 

cyanobacteria can become dominant. In tropical ecosystems light regimes are more 

consistent year long, thereby allowing more energy to be focused on the other essential 

needs for algal production such as nutrients; this feature is why tropical lakes tend to be 

overall more productive than temperate lakes (Lewis, 1996). Seasonality in tropical 
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ecosystems is more defined by rainy and dry seasons (Melack, 1979a), which tend to also 

impact mixing and nutrient input. However, in general, community composition (at least 

to the genus level) has been found to be quite similar in temperate and tropical 

ecosystems as many genera have been found to inhabit a number of lakes in both the 

temperate and tropical zones (Lewis, 1996).  

1.1.4. Shallow versus deep lakes  

Nutrient availability, turbidity, phytoplankton communities and cyanobacterial 

bloom occurrences are also impacted by lake morphometry. There has been much 

discussion as to what defines a shallow lake, but it is more or less accepted that a shallow 

lake is approximately less than 5 m deep and lacks consistent stratification (Pasisak and 

Reynolds, 2003). A key characteristic of deep lakes is that they can stratify and often 

remain that way for long period of time depending on seasonality (Scheffer, 1998). This 

water column stability can be advantageous for cyanobacteria especially if other growth 

requirements are met. Shallow lakes tend to mix frequently due to wave action and this 

mixing creates substantial sediment-water interactions and continuously resuspends and 

redistributes nutrients, phytoplankton and particles throughout the water column 

(Scheffer, 1998). This physical disruption of the sediments by wave action can be further 

aided by benthic fish, or chemical reactions (such as dissolved oxygen depletion). 

 

1.2. Adverse effects of cyanobacterial blooms 

There are a number of adverse effects associated with cyanobacterial blooms 

including the production of nuisance taste and odour compounds, and the formation of a 

thick scum on the surface of the water that can prevent light penetration and therefore 

inhibit plant growth. When an algal bloom decomposes it can cause major changes in 

dissolved oxygen (DO). In particular, cyanobacterial blooms can produce harmful 

cyanotoxins in high amounts.   

1.2.1. What makes a cyanobacterial bloom harmful?  

The term cyanobacteria Harmful Algal Bloom (cyanoHAB) is used very loosely in 

literature. The ‘harmful”  label often comes in reference to the adverse effects that 

blooms have on humans, animals, plants and the environment (Paerl et al., 2001; Backer, 

2002).  Based on that general definition, all blooms could then be considered harmful in 
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some way. However, sometimes the term cyanoHAB will only be used in reference to a 

cyanobacterial bloom that is associated with the production of cyanotoxins. For the 

purpose of this thesis, the same logic will be used: a cyanobacterial bloom is considered a 

cyanoHAB if cyanotoxins are also detected within the bloom.   

1.2.2. Cyanotoxins 

Cyanotoxins are naturally occurring low molecular weight compounds and in 

freshwater they fall into three main groups: 1) hepatotoxic cyclic peptides (microcystins 

and nodularins); 2) alkaloids, both neurotoxic (anatoxin-a, saxitoxin, β-Methylamino-L-

alanine) and cytotoxic/hepatotoxic (cylindrospermopsin); and 3) irritant 

lipopolysaccharides (Sivonen and Jones 1999; Carmichael 2001). 

The most widespread and intensely studied of these toxins is microcystin which is 

a toxin that targets the liver (Sivonen and Jones 1999; Carmichael 2001). Different 

cyanobacteria genera have been found to produce microcystin (Microcystis, Anabaena, 

Oscillatoria, Nostoc), but not all species or strains within these genera are toxic (Neilan 

et al., 1997; Codd et al., 1999; Davis et al., 2009; Rinta-Kanto et al., 2009).  

More than 80 variants of microcystin have been discovered, each with a different 

protein L-amino acid combination (highlighted in blue; Figure 1.1). The most toxic 

microcystins are the ones with more hydrophobic L-amino acids, such as Microcystin-LR 

(Leucine and Arginine), and Microcystin-YR (Tyrosine and Arginine) (Falconer, 2005).  

Another feature of microcystin is what is known as the “ADDA” group (3-amino-9-

methoxy-2,6,8-trimethyl-10-phenyl-4,6-decadienoic acid) (Figure 1.1), which also plays 

a key role in toxicity as it binds the protein phosphatases in the liver (Falconer, 2005). 

This ADDA group is also what is targeted for many of the methods to positively identify 

and quantify for the presence of microcystin.  

 

 

 

 

 

 

 Figure 1.1. Chemical structure of microcystin-LR. The amino acids highlighted in 
blue are what differ amoung the different variants of microcystin.  
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The controls and regulations of microcystin production are still not completely 

understood. It is generally thought that for a single strain of toxin-producing 

cyanobacteria, microcystin content is directly related to growth (cell divisions) (Orr and 

Jones, 1998). Other studies have furthered this concept by showing that in uni-algal 

cultures, where macronutrients (nitrogen and phosphorus) are not limiting growth, high 

rates of microcystin production were observed (Sivonen et al., 1990; Vezie et al 2002). 

The regular production of microcystin under these stress-free conditions, in addition to 

the fact that it is produced from the start of log phase, suggests that microcystin is an 

essential intracellular compound (Orr and Jones, 1998; Kaplan et al., 2012); however the 

essential role that it plays is also not completely understood. Rohrlack and Hyenstrand 

(2007) found that microcystin was not exported from the cell nor broken down within the 

cell, suggesting that it is not produced for extracellular defense mechanism or metabolic 

cellular processes.  

 The key to identifying the essential role for microcystin may come from studying 

the variety of environmental factors that have been found to impact the regular 

production of microcystin. Commonly when a given factor acts to limit growth, a 

response in greater microcystin production is seen. These factors vary widely and include 

low iron concentrations, high iron concentrations, low nitrogen to phosphorus ratio, light, 

temperature, and pH (Kaplan et al., 2012). One difficulty when understanding the roles 

and regulations of microcystin is that relationships often seen in laboratory, strain 

specific experiments are hard to elucidate in natural blooms because toxic and non-toxic 

strains are both generally present and there are usually multiple changes occurring in the 

environment at a given time.  

 This research has been considerably advanced in the last decade due to 

determination of the mcy gene clusters responsible for microcystin biosynthesis which is 

common in the toxin-producing strains of a genus (Nishizawa et al., 1999, 2000; Tillett et 

al., 2000). With this knowledge, phylogenetic studies determined that these genes were 

ancient and common to the last ancestor of cyanobacteria (Rantala et al., 2004) and that 

gene deletions have led to the non-toxic strains of cyanobacteria (Schatz et al., 2005). 

These findings also indicated that microcystin’s main role was not as a feeding deterrent 

to eukaryotic grazers because the production of microcystin in ancient cyanobacteria was 
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long before metazoan ancestry (Rantala et al., 2004). This was further shown when 

Daphnia could not differentiate or select between wild-type (for microcystin production) 

and mutant strains when feeding (Rohrlack et al., 1999).  

 Early studies identifying iron limitation as a condition for increased microcystins 

(Lukac and Aegerter, 1993) led to the suggestion that the toxin may act as an intracellular 

iron chelator (Utkilen and Gjolme, 1995; Humble et al., 1997), storing iron and allowing 

cells to live under iron-stressed conditions. Support of the iron chelation and storage 

hypothesis has been mixed (Saito et al., 2008; Fujii et al., 2011, Alexova et al., 2011) and 

there has yet to be identification of actual microcystin storage molecules in cells. 

Nevertheless, there seems to be more agreement that general iron limitation does increase 

toxin production (Sevilla et al., 2008; Alexova et al., 2011; Kaplan et al., 2012). The 

working hypothesis for this is that ferric uptake regulator (Fur) represses transcription of 

the mcy genes when iron is replete and allows transcription under iron-stressed conditions 

(Martin-Luna et al., 2006; Alexova et al., 2011; Kaplan et al., 2012). Furthermore, iron 

alone may not be the sole control, as nitrogen limitation (and global nitrogen transcription 

regulator NTcA) (Kaebernick et al., 2002; Ginn et al., 2010) and high light irradiance 

(Kabernick et al., 2000) might also impact microcystin production. In fact all three of 

these factors may play a cooperative role in allowing transcription of mcy genes due to 

redox states (Alexova et al., 2011; Kaplan et al., 2012). These types of controls could be 

factors in both initiation and maintenance of a cyanobacterial bloom.   

 Separate to the above hypothesis, there is also some evidence that microcystin 

may play a part in actual colony formation, and therefore potentially help to initiate a 

bloom event. This idea was supported by studies that observed mutant Microcystis strains 

deficient in microcystin that had changes in the extracellular proteins involved in cell-to-

cell contact (Kehr et al., 2006; Zilliges et al., 2008). Finally, increased microcystin 

production may also occur as a response to extracellular microcystin presence (Schatz et 

al., 2007). Results from the study led to the suggestion that when cells that are lysed due 

to any type of stress, they would release microcystin (into the media) which might act as 

an info-chemical signaling increased cell death to the live cells and stimulating 

microcystin production in them (Schatz et al., 2007). 
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1.3. Ecosystem health and cyanoHABs 

1.3.1. Principles of ecosystem health 

Ecosystem Health (often shortened to ecohealth) is centered on the concept that 

one’s interactions with their surrounding ecosystem can impact their overall health and 

well-being (Charron, 2012). We often regard the term ‘environment’ only in reference to 

the surroundings (of an individual or community). An ‘ecosystem’ on the other hand, 

considers the interactions and dynamics within the environment and therefore must 

incorporate the central role that humans play in those relationships. (Forget and Lebel, 

2001; Charron, 2012). Our understanding of the term ‘health’ has also evolved; it is no 

longer just the absence of disease but rather is looked at as physical, mental and social 

well-being (WHO, 1948). Taking this into account within a given ecosystem there can be 

many categories of health determinants—physical, ecological, social, economic, and 

cultural, to name a few.  

On a global scale key issues in ecohealth research include climate change, 

urbanization, food insecurity, and deforestation (Charron, 2012). In any local community 

an unhealthy ecosystem could be defined by many specific and different things such as 

poor sanitation, inadequate water access, and unemployment. What is common on both a 

global and local scale is that there is this dependence on the services (water, food, wood 

etc.) that the environment can provide to humans that in turn impact their quality of life. 

These are collectively referred to as ecosystem or ecological services (Forget and Lebel, 

2001; WHO, 2005). These services can be further divided into 1) provisioning services 

(products obtained from ecosystems such as water, food, wood); 2) Regulating services 

(benefits obtained from regulation of ecosystem process, including water regulation, and 

pollination); 3) cultural services (nonmaterial benefits obtained from ecosystems such as  

aesthetics, recreation, ecotourism); and 4) supporting services (services needed for the 

production of all other ecosystem services  including nutrient cycling and soil formation) 

(WHO, 2005).  

Given all of these different determinants, services and ecosystem relations, it is 

obvious that any study with an ecohealth approach will not be simple. But when faced 

with a specific problem (whether it originates as a health concern or an environmental 

concern, or both) and a new community, you have to start somewhere to build your 
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understanding of the complex relationships. One tool that is often used as a first step to 

examining ecosystem impact is known casually as IPAT and is formally defined as: 

Environmental Impact= Population x Affluence x Technology (Chertow, 2001). The 

IPAT equation was first introduced by Elrich and Holdren in 1971 in order to 

demonstrate how much population was contributing to environmental degradation; but 

since then it has taken on many different variants and been used to address how 

technology can balance out the detrimental impacts of population and affluence 

(Chertow, 2001). On a simpler level, when faced with a specific ecosystem health issue, 

examining the three factors of Population, Affluence (the level of consumption of each 

person in the population) and Technology (how resource intensive the production of 

affluence is) can reveal some of the key issues that must be considered and lead you to 

the most relevant questions to investigate within the complex web of interactions. The 

majority of ecosystem issues will somehow be rooted in this IPAT model.  

The framework of ecosystem health research used in this study and promoted by 

the International Development Research Centre (IDRC) (Charron, 2012) involved six key 

components that have been developed in the literature for a number of years (see Kay and 

Schneider, 1994; Rapport, 1998; Waltner-Toews et al., 2003; Lebel, 2003; Waltner 

Toews and Kay, 2005).  

1) Systems thinking is the process of understanding all the different links and 

interactions that may exist when first beginning an ecohealth study, and then using 

that same approach for each specific question asked or issue studied. The IPAT model 

provides a good base for systems thinking.  

2) In order to have effective systems thinking you need to approach the research in a 

transdisciplinary manner.  Multidisciplinary approaches involve members from 

different disciplines working independently on different aspects of a problem/project 

with individual goals and separate methodologies (Choi and Pak, 2006). 

Interdisciplinary approaches are more interactive and have members from different 

disciplines working together towards a shared goal. The boundaries between 

disciplines are blurred, participants learn about and from each other and use common 

methodologies (Choi and Pak, 2006).  Transdisciplinary approaches work across and 

beyond disciplines and in addition to scientists, involve stakeholders and non-
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academic participants who work together using a shared conceptual framework. 

There is greater integration and collaboration in which the disciplinary boundaries are 

transcended (Choi and Pak, 2006).  

3) One of the most important aspects of systems thinking and transdisciplinary research 

is the participation of the community and stakeholders. The community has to 

recognize that there is a problem and want to work together to address it, and the 

research is then based on community driven objectives. Understanding what the 

community identifies as important to them will then inform the different nodes of 

system thinking and define how the transdisciplinary team creates their conceptual 

framework.  

4) Ecohealth research aims to achieve sustainability whether that is socially or 

ecologically. An ideal outcome will involve ethical, positive and lasting changes that 

are environmentally sound, socially sustainable and culturally appropriate. These 

changes must be owned and implemented by the community to ensure lasting impacts 

beyond the years of a research project/funding.  

5) Throughout all aspects of an ecohealth project there must be gender and social equity.  

Different gender, age, economic and social groups will have different exposures to 

health risks and also various concerns about their well-being; these must be taken into 

account in order to fully research and represent a community.  

6) Utilizing the knowledge gained from research to promote better health and well-being 

is essential in the ecohealth approach. This knowledge to action is an ongoing cycle 

in which changes made will then introduce new knowledge that then promotes new or 

improved changes.   

1.3.2. Freshwater ecosystems, cyanoHABS and human health 

Freshwater ecosystems are a major component to human health (Figure 1.2) and 

essential to consider within the ecosystem health approach.  When all other factors and 

relationships are considered, it really comes down to a matter of water quantity and 

quality, as highlighted in Figure 1.2. Globally, the issue of water scarcity is an important 

one, and water quality issues such as cyanoHABs further limit the available water 

resources. 
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The leading ecohealth concern with regards to cyanoHABs is their potential to 

produce harmful toxins, such as microcystin, which can be present in drinking water 

sources. Both the Environmental Protection Agency (EPA) and the World Health 

Organization (WHO) have recognized this and published thorough reviews on the topic 

(see Chorus and Bartram 1999; Hudnell 2008).  

Microcystin is chemically stable and water soluble, which is why it poses such a 

large threat in freshwater ecosystems. As mentioned previously, microcystin targets the 

liver and specifically inhibits essential protein phosphatases (Falconer, 2005). Acute 

exposure to high concentrations of microcystin can therefore lead to gastrointestinal 

illness, liver hemorrhage, or possibly death (Carmichael, 2001; Backer, 2002).	  It has also 

been suggested that microcystin can result in long term health effects through chronic, 

low level exposure to the toxin, which may be of greater concern than acute exposure 

(Sivonen and Jones, 1999; Hitzfeld et al., 2000; Carmichael, 2001). Specifically, 

microcystin may act as a potential tumor promoter and while more laboratory, 

epidemiological and monitoring data are needed, microcystin has so far been linked to 

liver cancer (Ueno et al., 1996) and colorectal cancer (Zhou et al., 2002) in China. 

Figure 1.2. The links between environmental change and human health. 

 Adapted from: World Health Organization Climate Change and Human Health Program 
http://www.who.int/globalchange/ecosystems/en/ 
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Teratogenic impacts of microcystin have not yet been conclusively determined (Falconer, 

2005). 

 During a cyanoHAB event, microcystin remains within cells (intracellular 

microcystin) and is only released when cells are lysed due to natural cell death and 

senescence or through chemical algaecide treatment. These free or dissolved microcystins 

may then be in very high concentrations if a large biomass of bloom was decomposed all 

at once compared to when cells were intact.  

 It is often hard to pinpoint a cyanoHAB and toxin exposure as a direct cause of 

illness because often the exposure and side effects are not seen until after a bloom has 

dissipated. Side effects of microcystin poisoning are similar to many other gastro-

intestinal illnesses and, only once other potential origins (i.e. virus, pathogens, bacteria) 

are ruled out, does the focus change to whether there is evidence of a cyanoHAB as the 

cause of illness (Sivonen and Jones, 1999). Epidemiology is therefore very important in 

the study of cyanoHAB impacts, as physical and quantitative evidence is not always 

available (Baker, 2002). Currently there are quite a few incidents on record (with varying 

certainty) of human illness or death due to cyanoHABs and microcystin all over the globe 

(see Sivonen and Jones, 1999; Carmichael, 2001; Baker 2002). The most devastating 

occurred in 1996 and was due to contaminated water used intravenously on patients at a 

dialysis clinic in Brazil, resulting in 75 deaths (Carmichael, 2001).  

   Free microcystins can persist in water bodies anywhere from days to weeks after 

cell lysis because the toxins are very stable. They can be naturally deactivated and 

degraded by bacteria or by natural high UV exposure, which can also be aided by the 

phycobiliprotein pigments (Sivonen and Jones, 1999). Normal municipal water treatment 

processes that are shown to be effective in the removal of microcystins include filtration 

with granulated activated carbon and powdered activated carbon as well as specific 

chlorine and ozone oxidizing treatments (Hitzfield et al., 2000; Falconer, 2005). 

Coagulation or cell filtration can also remove intact toxic cells (Carmichael, 2001).   

While the greatest potential for exposure to microcystin is from drinking water 

supplies, other contact to the toxin could still occur by inhalation of airborne particles 

through nasal tissues and mucous membranes (Codd et al., 1999; WHO, 2003; Cheng at 
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al., 2007), or with consumption of fish that have accumulated toxin through food web 

interactions (Sivonen and Jones, 1999). 

The WHO has a provisional guideline value for microcystins in drinking water 

based on an oral 13-week study with mice and a 44-week study with pigs. The Tolerable 

Daily Intake (TDI) (which took into consideration the uncertainty and lack of data in 

some areas) is expressed as 0.04 µg/kg per day. The provisional guideline for maximum 

acceptable concentration (MAC) was then valued to be 1 µg/L of total microcystin-LR 

(intracellular plus dissolved) based on an allocation to water of 80%, and an adult of 60 

kg consuming 2 L/d (WHO 2003). Other countries have established their own MACs 

including Canada (1.5	  µg/L, based upon a 60 kg person consuming 1.5 L/day), Australia 

(1.3 µg/L) and New Zealand (1.0 µg/L and also 0.1 µg/L for tumor promotion factor) 

(Carmichael 2001). Obviously, the guidelines must be interpreted cautiously, as the TDI 

for a child would result in an MAC lower than 1.0 µg/L.  

 Another interesting aspect considering cyanobacterial blooms and cyanoHABs 

from an ecohealth perspective is that they are a global issue, occurring in every continent 

(Fristachi and Sinclair, 2008), in both developed and developing nations. The major 

difference, however, is how water is accessed and how cyanoHABs are addressed and 

monitored. In developed nations, piped water is generally transported to a home after a 

rigorous water treatment process. When a cyanoHAB occurs toxins are routinely 

monitored to assess the risk and there will be warning signs at public places if the risk is 

considered high. In less developed nations or communities where water treatment 

facilities are not present, people will often obtain water directly from a lake or reservoir 

and routine monitoring schemes are often not in place to assess the risk. This is the case 

in Lake Naivasha, Kenya, in which reports of cyanobacterial blooms became common in 

2005 (Harper et al., 2011).  

 
 

1.4. Lake Naivasha, Kenya 

1.4.1. Rift Valley lakes of Kenya 

The Great Rift Valley of Kenya is home to seven lakes including the largest 

alkaline lake in the world (Lake Turkana) and a lake with a 40 cm layer of trona which is 

the second largest supplier of sodium bicarbonate in the world (Lake Magadi). Of the 5 
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lakes in between that are a part of the Central Rift Valley of Kenya, three of them are 

saline lakes that are known for their flamingo populations who feed on the cyanobacteria 

Spirulina (Lakes Elmenteita, Nakuru and Bogoria). Lake Baringo, which is a freshwater 

lake (although not as fresh as Lake Naivasha), has been dominated by cyanobacteria 

blooms since at least 1929 (Rich, 1932) and while it still supports blooms of Microcystis 

the extreme turbidity makes the lake productivity much lower than expected (Odada et 

al., 2005). The land surrounding Lake Baringo is under government ownership allowing 

indigenous communities to live on and use the land (Harper et al., 2011). This is not the 

case in Lake Naivasha, which is the largest freshwater lake in the Kenyan Rift Valley, 

and second largest in Kenya after Lake Victoria. As such, it is an important freshwater 

resource in Kenya and many rely on its ecosystem services.  

1.4.2. Lake Naivasha characteristics 

Lake Naivasha is located about 80 km northwest of Nairobi and lies about 1890 

metres above sea level making it the highest elevated of the Kenyan Rift Valley Lakes 

and because of this its climate is sometimes not regarded as truly tropical (Beadle, 1932).  

The surface area of Naivasha ranges from 100-150 km2 and there is one major river, the 

Malewa River, which contributes the majority of inflow. There are two seasonal rivers—

the Gilgil and Karati—that account for the other 10%. The total catchment area of 

Naivasha is approximately 3376 km2 (Otiang’a-Owiti and Oswe, 2007). There is no 

surface outlet in Naivasha despite its freshwater status, so it has been hypothesized that a 

subterranean outlet keeps the lake fresh (Beadle, 1932).  

Rainfall in the basin is typically on a bimodal cycle that roughly experiences short 

rains from October to December, a hot and dry period from December to February, long 

rains from March to May and finally a relatively cool and calm period from June to 

September (Beadle 1932).  These patterns can be highly variable, especially in more 

recent years. Lake Naivasha has always experienced large lake level fluctuations due to 

these natural cycles of inflow and evaporation. For example from July 1929 to November 

1930, the lake level increased about 1.5 m (Jenkin 1932; Worthington 1932).  

There are 3 separate basins to Lake Naivasha: Lake Oloidien, Main Lake basin 

and Crescent Island basin. In the southwest corner is Lake Oloidien which is a volcanic 

crater once attached to the Main Lake basin but has been separated since 1982 (Harper et 
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al., 2011). Lake Oloidien’s water chemistry and biology had always been different from 

the Main Lake basin even when they were attached (Beadle, 1932), but it now has 

changed to a more alkaline state and supports a Spirulina population and many lesser 

flamingos (Phoenicopterus minor). The Main Lake basin is circular and shallow 

(maximum depth ranges from 3 m to 6 m) and is known for its rough waters and strong 

winds. Finally in the northeast part of the lake is another volcanic crater known as the 

Crescent Island basin, named for the crescent-shaped land mass that used to be an actual 

island when water levels were higher. Although now connected to the mainland on one 

shore, the ‘Crescent Island’ forms the barrier around the basin and when water levels are 

extremely low it extends enough to completely cut this Crescent Island basin off from the 

Main Lake basin. The Crescent Island basin is deeper (approximately 12 m) compared to 

the Main Lake basin. Because it is more isolated and sheltered it does not experience the 

same intensity of wind and turbulence as the Main Lake. However, in both the Main Lake 

basin and Crescent Island basin evidence of daily mixing has been observed due to a 

consistent thermal profile and well oxygenated water at the surface and sediment (Melack 

1979b). This is likely due to any wind action as well as substantial diel nocturnal cooling 

(Melack 1979b).  

1.4.3. Human-induced changes in Lake Naivasha 

Beginning in the late 1970’s and early 1980’s the farming industry, which 

previously was predominately agriculture, started to transition to horticulture due to the 

ideal weather and sunlight conditions, fertile, volcanic soil availability and affordable 

labour (Everard and Harper, 2002). It quickly thrived, and the flower farm industry has 

become a top exporter for Kenya. In Naivasha, this industry success led to rapid 

development in the catchment and a population of approximately 20,000 in the 1970’s 

has grown to more than 400,000 today (Harper et al., 2011).  

The increased industry and population have led to numerous land use changes. 

Many of the agriculture and floriculture farms are situated along the shoreline of the lake; 

therefore areas that used to consist of natural, undisturbed vegetation were destroyed. In 

particular, the fringe of Cyperus papyrus (commonly known as papyrus) was reduced by 

70% from the late 1960’s to 1995 (Boar and Harper, 1999), and now is only 10% of what 

it once was (Morrison and Harper, 2009). This decline came about because of the 
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physical destruction of the plant for more farms and built-up land, but also from the lake 

level declines that coincided with the start of horticulture. When the water levels decline 

they dry out the soil that the papyrus is rooted in and between that and wildlife 

disruption, it cannot regenerate (Morrison and Harper, 2009).  The papyrus around Lake 

Naivasha acts as filter to any contaminants or nutrients entering the system (Gaudet, 

1977; Boar and Harper, 2002). The noticeable reduction of papyrus in what is known as 

the ‘North Swamp’ of the lake  is also important to note as that is the position where the 

Malewa inflows into the lake. In addition to the farming occurring directly around the 

Lake, it also increased the upper catchment specifically along the path of the Malewa and 

so everything entering the river from the upper catchment makes its way into the lake.  

The population increase led to more urban development as formal and informal 

settlements. The informal settlements lack proper structure and sewage treatment, while 

the formal Naivasha Town, which supports the bulk of the population, generally has 

proper building infrastructure. However, the sewage treatment plant responsible for the 

waste from town has not been functioning for a number of years, and was only designed 

to support the former population of 20,000 that the town once was.  

The pressures of the industry and population on the lake are far reaching, and the 

demand for ecosystem services in the basin is profound. While the natural fluctuations in 

Naivasha’s lake levels were always recognized, since about the 1980’s when the 

horticulture industry started expanding, it was found that the decline in water levels was 

no longer due to solely natural causes (Becht and Harper, 2002). All these various 

detriments led to Naivasha being named a RAMSAR site in 1995 by the Kenyan 

Government, which makes it a wetland of international importance (Harper et al., 2011).  

1.4.4. Eutrophication of Lake Naivasha 

According to chl-a concentrations, Lake Naivasha has been considered eutrophic 

since at least the 1970’s, however since the 1980’s eutrophication has increased as 

evidenced by the increase in peak chl-a since that time (Figure 1.3).   The anthropogenic 

influences in the catchment have increased fertilizer and pesticide use, decreased the 

vegetation buffer, and therefore more nutrients were brought into the lake through surface 

run-off and the river inflows. The sediments of Lake Naivasha have always been rich in 

iron (Harper, 1993), and Kitaka et al. (2002) found that they formed a sink for 
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phosphorus as well. So soluble phosphorus and iron may not always be readily available, 

however physical or chemical sediment disruption could release them into the water 

column. Hubble and Harper (2002a) suggest that a major deoxygenation event could 

release those nutrients into the water and potentially double productivity.  

1.4.5. Historical record of phytoplankton dynamics in Lake Naivasha 

The first studies on the phytoplankton community in Lake Naivasha (and other 

East African Lakes) occurred with two expeditions undertaken in 1929 (Jenkin 1932; 

Rich 1932) and in 1930 (Beadle 1932; Worthington 1932). The physical characteristics of 

the lake were very different during this time: the Malewa river clearly fed into the North 

Swamp, Lake Oloidien was still attached to the Main Lake basin (although still had a 

very different water and plankton composition), and Crescent Island was an actual island 

was much more integrated with the Main Lake basin. During both these expeditions a 

mix of diverse phytoplankton was found in Lake Naivasha, but densities were not high, 

especially in comparison to the alkaline lakes and Lake Baringo, which were reported to 

have cyanobacteria ‘water blooms’ but overall not much species diversity. The 

community was generally the same between the Main Lake basin and the Crescent Island 

basin (Beadle 1932). Diatoms were the most dominant in Naivasha, and in particular the 

genus Melosira (which has since been re-classified as Aulacoseira) was abundant at 

times. Cyanobacteria were not dominant, and at certain areas and times not observed at 

all: but some of species that were identified were Microcystis flos-aqua, Aphanocapsa sp. 

and Merismopedia sp. (Beadle 1932; Rich 1932).  A 1960 study of seven lakes in Central 

East Africa found very few algal species in Naivasha and only identified the diatoms 

Melosira nyassensis (Aulacoseira) and Gomphonema lanceolatum (Evans, 1962). 

In more recent studies from the 1970’s to the present, chl-a values were recorded 

in the lake along with some of the community composition. These historical chl-a values 

were compiled into Figure 1.3, and seem to show an increasing trend. What we need to 

keep in mind however, is that most of these studies just represent a snapshot, rather than 

continuous changes. These studies also have each used varied site locations and 

methodologies, and represent both grey and white literature sources. Some also included 

comprehensive species lists (Kalff and Watson, 1986; Hubble and Harper, 2002b; Ballot  
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Figure 1.3. Historical chlorophyll-a levels in Lake Naivasha. Data are compiled from 
all literature sources and various studies of the lake. The star represents the 
approximate point in time when cyanoHABs started to become common in the lake.                       
 

Nov	  1979:	  Following	  
short	  rain	  period	  (chl-‐
a	  =13	  µg/L)	  	  
(Kalff	  and	  Watson,	  1986)	  

March	  1980:	  End	  of	  the	  
principle	  dry	  season	  
(chl-‐a	  =	  48	  µg/L) 
(Kalff	  and	  Watson,	  1986) 

Oct	  1997-‐Feb	  1998	  Heavy	  
Rainfall	  (chl-‐a	  =	  31.32	  µg/L)	  
(Kitaka	  et	  al.,	  2002) 

May	  1998:	  Ceratium	  mass	  at	  
Malewa	  inflow	  (chl-‐a	  =	  122.5µg/L)	  
(Hubble	  and	  Harper,	  2002b) 

Sept	  1998-‐Feb	  1999:	  Normal	  
Rainfall	  (chl-‐a	  =	  11.5	  µg/L)	  
(Kitaka	  et	  al.,	  2002) 

July/Aug	  2001:	  
Aulacoseira	  dominated	  
deteriorating	  bloom	  
(Grey	  and	  Harper,	  2002) 

2006:	  Microcystis	  
bloom	  near	  Elsamere 
(Ballot	  et	  al.,	  2009) 

Sept	  2002:	  Bloom	  of	  
Botryococcus	  terribilis	  
(biomass=56.6	  mg/L) 
(Ballot	  et	  al.,	  2009) 

April	  2004:	  Rainy	  Season	  
(chl-‐a	  =	  3.8-‐16.8	  µg/L) 
(Mironga,	  2006.) 

Sources for data points: Melack, 1979a; Kalff and Watson, 1986 (also Kallquist, 1978, 1979 and 
Njuguna, 1983, as cited in Kalff and Watson, 1986); Harper, 1992; Uku and Mavuti, 1994; 
Kitaka et al., 2002; Hubble and Harper, 2002a; Mavuti and Harper, 2006; Mironga, 2006; Jimoh 
et al., 2007.    
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et al., 2009).  In addition to the chl-a levels, related notes of interest have been added to 

Figure 1.3, corresponding to the date of occurrence.  

Prior to the human-induced changes in 1980, biomass was found to be lower, 

more seasonally variable, and never went much higher than 50 µg/L (Kalff and Watson, 

1986). Melack (1979a) reported dominance by cyanobacteria from 1973 – 1974. From 

October 1979 to July 1980, Kalff and Watson (1986) found a shift between diatom 

dominance (low biomass) to green algae dominance (increasing biomass) to 

cyanobacteria dominance (peak biomass) (Figure 1.4a). The two studies from the 1990’s, 

when eutrophication was said to have increased, were characterized by diatom 

dominance, although there was still a presence of cyanobacteria (Uku and Mavuti 1994; 

Hubble and Harper 2002b). In particular, the later study of community composition and 

succession (Hubble and Harper, 2002b) took place from December 1997 to October 

1998, capturing the period of heavy El Niño rainfall. That study overlapped with the 

work of Kitaka et al. (2002) who measured chl-a and total phosphorus and found that the 

values suggested that the lake became hyper-eutrophic after the heavy rains. Higher chl-a 

and phosphorus loading were found during the heavy rain year, compared to the normal 

rain year, but interestingly there was also a localized area of the lake that had much 

higher biomass for about one month after the rains ended, showing how dynamic the 

biomass could be within a short period due to hydrological patterns and highlighting the 

potential spatial variation of phytoplankton (white dots, Figure 1.3; Kitaka et al., 2002).	   

The community was consistently dominated by the diatom Aulacoseira spp., especially 

from January-February 1998, at the end of the heavy rainfall period, suggesting that the 

rains and corresponding nutrients contributed to the diatom dominance (Figure 1.4b). 

Kitaka et al. (2002) further determined that the phosphorus loading could be explained by 

the increased inflow from the Malewa at the time.  	  

The last study of community composition in the literature took place 

intermittently from June 2001 to May 2004 giving a few time snapshots (Ballot et al., 

2009). While continuous changes could not be assessed, the community was widely 

variable with cyanobacteria dominance (but low biomass) from June to November 2001, 

green algae dominance (moderate biomass) from February to May 2002 and desmid 

dominance (high biomass) in March-May 2004 (Figure 1.4c, Ballot et al., 2009). While  
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Kalff	  and	  Watson,	  1986 

Low	  Biomass	   
October	  to	  December	  1979 

Increasing	  Biomass 
January	  to	  March	  1979 

Peak	  Biomass 
April	  to	  July	  1980	   

December	  1997	  
to 

January	  1998 

March	  1998	  to	   
October	  1998 

January	  to	  February 
1998 

Hubble	  and	  Harper,	  2002b 

June	  to	  November	  2001 
(low	  biomass	  ~5	  mg/L	   

fresh	  weight) 

February	  to	  May	  2002 
	  (biomass	  10	  to	  15	  mg/L	   

fresh	  weight) 

March/May	  2004	   
(biomass	  15	  to	  30	  mg/L	   

fresh	  weight) 
Ballot	  et	  al.,	  2009 

(a) 

(b) 

(c) 

Figure 1.4. Historical phytoplankton community composition in Lake Naivasha. (a) 
Period of seasonal phytoplankton shifts b) Period of diatom (bacillariophyceae) 
dominance after eutrophication c) Snapshots indicating potential seasonality or 
transition state.  Data from each literature source were compiled and graphed in a 
similar manner.  
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there are many gaps in this timeline of community composition, these historical studies 

do indicate that the lake has gone from a state of seasonal community shifts (Kalff and 

Watson, 1986) to diatom dominance due to eutrophication (Hubble and Harper, 2002b) to 

potentially another state of seasonality or transition (Ballot et al., 2009).  

What is evident from the historical community composition is that from the 

1970’s to the present, regardless of what the chl-a levels were, there were periods where 

cyanobacteria were dominant. It was specifically expressed in Hubble and Harper (2001) 

that no cyanobacterial scums were occurring in 2000 and it has only recently been 

acknowledged in the literature that cyanobacterial blooms began occurring in 2005 in the 

lake (Harper et al., 2011).  These blooms are therefore a relatively recent occurrence in 

the lake. The last study of the phytoplankton community described above (Ballot et al., 

2009) also specifically stated that samples were found to contain low biomass of 

Microcystis aeruginosa, but the authors did report the presence of dense blooms of that 

same species in the southwestern part of the lake in 2006 (no details given on the exact 

date), and noted the potential health risk that could exist due to toxins (Ballot et al., 

2009). In fact, a strain of Microcystis aeruginosa (AB2002/40), which was isolated from 

Lake Naivasha in 2002, was one of only 4 isolates from East Africa (24 isolates tested in 

total) to produce microcystins (Haande et al., 2007). The specific variant was found to be 

microcystin desmethyl-YR, and with this confirmation that there is a strain present from 

the lake that produces toxin in culture, it is very important to examine whether toxins are 

substantially produced in the natural population.   

1.4.6. Community concern of cyanoHABs in Lake Naivasha 

In a country where 80% of the land surface is arid or semi-arid (Otiang’a-Owiti 

and Oswe, 2007), ensuring that one of the few freshwater resources remains viable is of 

upmost importance at local and national levels. A small survey of 62 local community 

members indicated that the two top reasons that Lake Naivasha is so important from the 

local community’s perspective is because of fishing and drinking water (Hickley et al., 

2004). CyanoHABs can negatively impact both of these valuable ecosystem services. 

During a stakeholder’s workshop for the Lake Naivasha Sustainability Project one of the 

top concerns expressed by the community was the occurrence of the potentially harmful 

cyanobacterial blooms, and whether they posed a health risk.  
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1.5. Questions, hypothesis, objectives and predictions  

To assess the potential health risk of cyanoHABs, the first question to ask was 

what initiates the formation and maintenance of cyanobacterial blooms in Lake 

Naivasha? From this knowledge I was able to project if cyanobacterial bloom and/or 

cyanoHAB events are likely to occur in the future. Specifically, will they be common?; 

will they be predictable?;  are there points of intervention that could help prevent or 

reduce cyanobacterial bloom formation? Furthermore, is microcystin, a potent liver toxin, 

associated with cyanobacterial bloom events, thereby officially making them 

cyanoHABs? How does the production of this compound relate to the initiation or 

maintenance of the bloom? Finally, are certain areas of the lake more likely to exhibit 

greater cyanobacterial bloom presence or higher microcystin levels?  

Due to the presence of a toxic strain of Microcystis aeruginosa isolated from the 

lake (Haande et al., 2007), in addition to the reports of Microcystis blooms in recent 

literature (Ballot et al., 2009; Harper et al., 2011) it is hypothesized that the production of 

microcystin, corresponding to cyanobacteria blooms, will pose a risk to human health in 

the Lake Naivasha region. To test this hypothesis, two objectives were chosen. The first 

was to conduct a survey of the natural levels of cyanobacterial and algal biomass, the 

physical environment (temperature, rainfall, evaporation, and lake level) and chemical 

characteristics (salinity, pH, dissolved oxygen) to determine the occurrence of bloom 

events and the factors influencing their formation. This will help define the current and 

future situations that might lead to cyanoHABs and ways to mitigate or prevent their 

occurrence. It is predicted that hydrological changes will play a key role in cyanobacteria 

bloom formation due to their ability to cause large nutrient influxes.  

The second objective was to conduct a survey of the natural levels of microcystin 

in correspondence to the survey of cyanobacterial biomass. Toxin levels were compared 

to established guidelines to assess the present risk. It was predicted that the levels of 

particulate microcystins would be higher with bloom presence versus absence and that 

the larger the biomass of cyanobacteria, the greater the concentration of particulate 

microcystin. Additionally particulate toxin level dynamics were examined on a per cell 

basis to identify controls on the production of microcystin, which is useful to know for 

future risk assessment. It was predicted that increased particulate microcystin per cell 
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would be observed in the later stages of the bloom when growth stressors would be 

greater.   

The data from the two objectives will also allow for a comparison between the 

Main Lake basin and the Crescent Island basin of the lake.  It is predicted that the 

Crescent Island basin will be less likely to support a cyanobacterial bloom compared to 

the Main Lake basin due to its more sheltered location, considered to be ‘pristine’, that 

experiences less wind-induced mixing and nutrient influxes from runoff and the Malewa 

inflow.  
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2. MATERIALS AND METHODS 

2.1. Field methodology 

Two field campaigns were completed from August 2010 to March 2011 (Field 

Season 1) and May to August 2011 (Field Season 2).  During Field Season 1, I organized 

and established the sampling routine during August and September. Standardized 

operating protocol was then continued by Canadian and Kenyan colleagues until March 

2011. During Field Season 2, some changes were made to the sampling sites and field 

methodology, and are noted where applicable. During both field seasons samples and 

measurements were typically taken on a weekly basis.  

2.1.1. Sampling Sites 

Sampling sites were selected to cover a range of areas around the lake, including 

well-known sites traditionally sampled by other researchers and the Lake Naivasha 

Riparian Association (LNRA), and other visited sites of interest (Figure 2.1, Table 2.1). 

Criteria for site selection also included locations where the Naivasha community or likely 

to influence the lake water quality or likely to access the water. During Field Season 1, 

more open water locations were visited to represent average, well-mixed lake conditions. 

During Field Season 2, there was a greater focus on the changing water characteristics 

from shoreline to open water.   

2.1.2. Qualitative and quantitative in situ water observations and measurements 

Both in situ qualitative observations and quantitative measurements were 

recorded at each site visited. Qualitative observations included weather notes, the 

presence or absence of floating vegetation and visible water characteristics such as 

colour, turbidity and algal bloom presence.   

Other quantitative in situ water parameters were measured using a multi-

parameter water sonde (YSI 6600V2, Yellow Springs Instruments, Yellow Springs, 

Ohio) (Table 2.2). At each sampling site throughout Field Season 1, the sonde was 

lowered to approximately 1 m below the surface. It was tethered to a wooden pole for 

stabilization, and left to collect measurements for approximately two minutes. During the 

surface in situ characteristics were measured on a discrete water sample. This integrated 

surface water sample was collected with a 1 m polyvinyl chloride (PVC) tube and put  
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Figure 2.1. Lake Naivasha sampling locations. Blue symbols represent sites visited 
during Field Season 1 and 2, grey symbols were only visited during Field Season 1 
and  black symbols were only sampled in Field Season 2.                    
 
Satellite Image credit: ASA/GSFC/METI/Japan Space Systems, and U.S./Japan ASTER Science Team 
(http://asterweb.jpl.nasa.gov/gallery-detail.asp?name=naivasha) Image captured February 2, 2008. 
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Site ID Name/Description 
GPS coordinates 

(WGS 84 37M UTM) 
Easting Northing 

A Middle of Crescent Island basin* 0211814 9915042 
B Sewage Treatment Plant * 0211779 9918769 
C Main Lake Entrance 0209319 9917431 
D Near Malewa River Inflow * 0205876 9919011 
E Near Gil Gil River Inflow 0202903 9919804 
F Bilishaka/Shalimar farms 0200167 9919465 
G Northwest 1 0200257 9918399 
H Korongo Farm 0198097 9917534 
I Northwest 2 0201369 9917005 
J Hippo Point 0201354 9912591 
K Oserian Bay * 0199816 9910628 
L Kamere Public Beach 0202251 9909986 
M Kamere public water collection area 0202553 9909785 
N Offshore from Greenhouses 0205638 9909093 
O Sher Red House * 0206713 9909112 
P Main Lake East 0208082 9916472 
Q Middle of Main Lake basin * 0204977 9914267 

* Sites routinely sampled by the Lake Naivasha Riparian Association in the past.  

In situ Measurement Units 
Depth Metres (m) 

Temperature Degrees Celsius (°C) 
Specific Conductivity Microsiemens  per centimeter (µS/cm) 

Conductivity Millisiemens per centimeter (mS/cm) 
Resistivity Ohm/Metre (Ω/m) 

pH n/a 
Salinity Parts per thousand (ppt) 

Total Dissolved Solids (TDS) Grams per litre (g/L) 
Dissolved Oxygen Saturation Percent (%) 

Dissolved Oxygen Concentration Milligrams per litre (mg/L) 
Chlorophyll Concentration Micrograms per litre (µg/L) 
Chlorophyll Fluorescence Raw Florescence Units (RFU) 

Table 2.2. Water sonde in situ water parameter measurements.  

Table 2.1. Description and GPS coordinates of sampling locations.  
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into a cup designed for the sonde instrument and the measurements for each parameter 

recorded. This water was then used as a sample as described below in Section 2.1.3.  The 

surface measurements from Field Season 1 were stored as data files in the YSI sonde. 

These files were uploaded to a computer weekly using EcoWatch® for Windows® data 

analysis software and exported to Microsoft Excel® to be used for further data analysis.  

2.1.3. Water sample collection  

During Field Season 1, water samples for both microscopic identification (Section 

2.1.5) and Laboratory Analysis (Section 2.2) were collected with a 64 µm mesh plankton 

tow net that was lowered 1 m into the water column and immediately drawn back up. 

During Field Season 2 the plankton net was used to collect the microscope sample (which 

was preserved with a few drops of Lugol’s Solution), and the sample for laboratory 

analysis was taken from the integrated surface water sample that was collected with the 

PVC tube for the in situ parameter measurements. All samples were collected in plastic 

bottles and remained in the dark and on ice until processing at the end of the day.    

2.1.4. Water sample filtration 

A known volume of each water sample was filtered onto a glass fiber filter 

(Whatman, GF/C) using a plastic filter apparatus and manual hand pump. This collected 

all cells within the water onto the GF/C filter, which is a common and standard filter type 

when collecting field samples of phytoplankton for later laboratory analysis (Holm-

Hansen, 1978; Lind, 1985). The filter was folded in half, covered in aluminum foil or 

placed in a cryovial and frozen at -20 °C. The frozen filters were brought back to London, 

ON, Canada for laboratory analysis.   

2.1.5. Microscopy and taxonomic identification 

Taxonomic identification was carried out by examination using a compound 

microscope. A web-based taxonomic key created by The Freshwater Ecology Laboratory 

at Connecticut College was used to assist in identification of the algae to a genus level 

(Shayler and Siver, 2006). Specifically, the three dominant genera were identified along 

with other algae that were present in the sample but not dominant using a similar 

approach to Uku and Mavuti (1994). The dominant rankings were converted to 

proportions (most dominant = 0.5, second most dominant = 0.3, third most dominant = 

0.2) and averaged between all the sites to obtain an estimate of overall community 
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composition for the lake on a given week.  Digital pictures were taken of the 

cyanobacteria and eukaryotic algae that were observed. 
 

2.2. Laboratory methodology 

2.2.1. Filter preparation  

A single filter representing one water sample was used for three different types of 

analyses, and to do so the filter was divided and cut up. The filtration process distributes 

cell material from the water sample uniformly over the filter and since the filters were 

stored while folded in half, they were each divided as depicted in Figure 2.2. Each frozen 

filter was given a lab ID number (from 001 to 428) and one half of the filter was used for 

toxin analysis (Section 2.23), while one quarter of the filter was used for chlorophyll 

quantification and the final quarter of the filter used for phycobiliprotein quantification 

(Section 2.22). Each portion of the filter was weighed on a balance (Sartorius TE1502S) 

so that the appropriate volume of water represented by the algal biomass on the specific 

piece of filter could be determined and used for final calculations. Each filter portion was 

stored in a labeled 1.8 mL cryovial (Nalgene), at -20°C in the dark until analysis.  

2.2.2. Extracted pigment (chlorophyll and phycobiliprotein) analysis 

Measurement of the chlorophylls—chlorophyll a (chl-a), chlorophyll b (chl-b) 

and chlorophyll c (chl-c)—and phycobiliproteins—phycocyanin (PC) and phycoerythrin 

(PE)—was performed as outlined in Figure 2.3.  For each class of pigment, analysis was 

kept as consistent and similar as possible, but the different extraction solvents acetone 

(Strickland and Parsons, 1972; Bowles et al., 1985) and phosphate buffer (Bennett and 

Bogorad, 1973; Otsuki et al., 1994; Lee et al., 1994; Lee et al., 1995; Silveira, 2007; 

Lawrenz et al., 2011) were used to optimize extraction of the chlorophylls and 

phycobiliproteins, respectively. The organic solvent acetone (90%:10% acetone to water) 

(Strickland and Parsons, 1972; Jeffrey and Humphrey, 1975; Bowles et al., 1985; Arar 

and Collins, 1997) was used to extract the non-water soluble chlorophylls, which are 

present within the thylakoid membrane of the chloroplasts.   In contrast, the water soluble 

phycobiliproteins are attached on the surface of the thylakoid membrane (Gantt, 1975; 

Tandeau de Marsac, 2003), and were extracted with the phosphate buffer (0.1M, pH of  

6.0) (Lawrenz et al., 2011). 
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Figure 2.2. Preparation of filter for laboratory analysis.  
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+	  1mL	  90%	  
Acetone 

+1mL	  0.1	  M	  Phosphate	  
Buffer	  pH	  6.0 

Phycocyanin/ 
Phycoerythrin 

Chlorophylls	  
a,	  b,	  and	  c 

Sonication	  (Power	  9-‐10),	  6x	  5	  seconds) 

Run	  absorbance	  wavelength	  scan	  on	  spectrophotometer 

Transfer	  to	  larger	  tube	  and	  bring	  volume	  up	  to	  5	  mL	   

	  	  

	  	  

-‐20°C,	  dark,	  
24	  hours 

+4°C,	  dark,	  
24	  hours 

	  
Filter	  syringe	  to	  remove	  filter	  and	  cell	  debris	   

	  
	  

http://www.emc.maricopa.edu/fac
ulty/farabee/biobk/pigment.gif 

	  

	  

	  

	  

	  

  

Figure 2.3. Steps for extracted pigment analysis. 
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There have been a number of studies done to determine the best solvent (acetone, 

methanol, or ethanol) and methods for chlorophyll extraction, all with varying results 

(Holm-Hansen, 1978; Riemann and Ernst, 1982; Sartory and Grobbelaar, 1984; Bowles 

et al., 1985; Simon and Helliwell, 1998; Wasmund et al., 2006; Schagerl and Kunzl, 

2007). However, spectrophotometric equations for 90% acetone extractions have been 

comprehensively derived (Strickland and Parsons, 1972; Jeffrey and Humphrey, 1975) 

and this solvent is supported and used by the United States Environmental Protection 

Agency (Arar and Collins, 1997). While properties of acetone allow it to easily penetrate 

membranes, burst cells and release chlorophyll—sometimes deemed sufficient for 

extraction (Strickland and Parsons. 1972)—it is more often recommended that some form 

of mechanical cell disruption take place (Holm-Hansen, 1978; Riemann and Ernst, 1982; 

Lind, 1985; Bowles et al., 1985; Wright et al., 1997; Wasmund et al., 2006; Schagerl and 

Kunzl, 2007), especially when dealing with natural samples of mixed phytoplankton, and 

cyanobacteria, which are known for their strong cell walls. Phosphate buffer does not 

easily rupture cells, so mechanical disruption is highly recommended for phycobiliprotein  

analysis (Siegelman and Kycia, 1978; Lee et al., 1994; Lee et al., 1995; Furuki at al., 

2003; Silveira, 2007; Lawrenz et al., 2011; Moraes et al., 2011).  

One mL of extract solvent was added to each cryovial (containing the prepared 

filter as described in Section 2.2.1) and sonicated (VirTis Virsonic 100 Ultrasonic Cell 

Disruptor™) on ice water for 30 seconds (six 5 second pulses). The resulting slurries 

were transferred to larger tubes and the appropriate extract solvent was added to bring the 

volume to 5 mL. The chlorophyll extractions used borosilicate glass tubes and were 

stored at -20°C and the phycobiliprotein extractions were stored in plastic Falcon™ tubes 

at 4°C. All extractions incubated for 24 hours.  After this period, the extract was clarified 

to remove filter pieces and cell debris using a filter syringe. Chlorophyll extracts were 

passed through a 25 mm glass fiber filter (Whatman GF/F grade) and the 

phycobiliprotein extracts were passed through a 25 mm 0.45 µm Acrodisc Supor 

Membrane™ filter (Pall Life Sciences) (Figure 2.3).  

The absorbance of the resulting solutions was measured by performing a 

wavelength scan (400-800 nm) on a spectrophotometer (Beckman-Coulter DU60) in a 4 

mL glass cuvette with a 1 cm path length. The spectrophotometer was blanked with either 
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90% acetone or 10 mM phosphate buffer, depending on which samples were being 

scanned. In order to calculate pigment concentrations from the wavelength scans the 

absorbance at specific wavelengths was used (Appendix 1.1) in the trichromatic 

equations of chl-a, chl-b, chl-c (Jeffrey and Humphrey, 1975) and the equations for PC 

and PE concentration (Lawrenz et al., 2011). 

The equations used to calculate chlorophyll concentrations were as follows 

(Jeffrey and Humphrey, 1975):  

[Chl-a] µg/L = [11.85(A664) – 1.54(A647) – 0.08(A630)]  x       Vacetone        

                  Vsample (d) 
 
 

[Chl-b] µg/L = -5.43(A664) + 21.03(A647) – 2.66(A630)  x       Vacetone        

                  Vsample (d) 
 
 

[Chl-c] µg/L = -1.67(A664) + 7.6(A647) + 24.52 (A630)  x       Vacetone        

                 Vsample (d) 

Where,  

A###  = Absorbance at a given wavelength 

V = Volume in mL 

d = cuvette path length in cm  

The equations used to calculate phycobiliprotein concentrations were (Lawrenz et 

al., 2011): 

[PC] µg/L = A620 (MWPC)  x  Vphosphate buffer   x 106 
      ƐPC	  d           Vsample 

 
 
[PE] µg/L = A545 (MWPE)  x  Vphosphate buffer   x 106 

      ƐPE	  d           Vsample 

Where,  

MW = Molecular weight (PC = 264,000 g/mol, PE = 240,000 g/mol) 

Ɛ = Molar extinction coefficient (PC=1.9 x 106 L mol-1 cm-1, PE=2.41 x 106 L mol-1 cm-1) 
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d = cuvette path length in cm (for this study d = 1 cm) 

V = Volume in mL 

2.2.3. Toxin analysis: sample preparation 

One half of each filter was used to measure the concentration of total intracellular 

microcystin through an Enzyme Linked Immunosorbent Assay (ELISA).  Most studies 

using an ELISA to measure environmental samples perform the assay with natural water 

samples or freeze-dried cells and few describe the ELISA procedure for intracellular 

microcystin with cells on a glass fiber filter. However, extraction protocols used on 

freeze-dried cells were noted to be applicable to cells on a filter (Barco et al., 2005) and a 

number of studies have used HPLC and similar analysis techniques when measuring 

intracellular microcystin from filters (Lawton et al., 1994; Coyle and Lawton, 1996; 

Spoof et al., 2003).  

An additional concern when extracting microcystins for ELISA use, is that some 

of the material may adsorb to plastic polymers (such as microcentrifuge tubes and pipette 

tips), which was shown in Metcalfe et al. (2000). This adsorption was evident when the 

solvent used was less than 25-30% methanol, and each pipette tip action represented an 

approximate 4% decrease in microcystin concentration (Metcalfe et al., 2000; Hyenstrand 

et al., 2001).  However, Hyenstrand et al., (2001) also found no differences in 

microcystin concentrations when methanol ranged from 25-96%, and suggested that 

under the proposed optimal extraction of 75% methanol—recommended by Fastner et al. 

(1998) and used in this study—hydrophobic interactions with plastics should not cause a 

significant loss of microcystins, but the use of plastic equipment should be minimized 

when possible.  

Initial analysis of a few samples indicated that intracellular microcystin 

concentrations were low. In order to gather data effectively for a large amount of 

samples, a protocol was developed to extract and pellet the microcystins in a consistent 

manner. The samples were prepared according to the scheme in Figure 2.4, which drew 

from and adapted a number of protocols from previous studies (Lawton et al., 1994; 

Coyle and Lawton, 1996; Gjolme and Utkilen, 1996; Fastner et al,. 1998; Harada et al., 

1999; Meriluoto et al., 2000; Spoof et al., 2003; Barco et al., 2005).  Where appropriate,  
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Toxin 	  

	  

+	  1.5mL	  75%	  
Methanol 

	  

	  

Transfer	  to	  larger	  tube	  and	  bring	  volume	  up	  to	  3mL;	  incubate	  +4°C,	  dark,	  2	  hours 

	  

Divide	  vial	  solution	  evenly	  into	  two	  microcentrifuge	  tubes,	  
and	  evaporate	  the	  methanol	  using	  a	  Speed-‐vac	  concentrator 

Store	  microcentrifuge	  tubes	  (dried	  with	  pellets)	  at	  	  	  
-‐80°C	  until	  ELISA	  analysis	   

Sonication	  (Power	  9-‐10,	  6x	  5	  seconds) 

Filter	  syringe	  to	  remove	  filter	  and	  cell	  debris	   

	  
	  

Figure 2.4. Microcystin extraction and sample preparation for ELISA kit.  
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this protocol also mirrored the methodology used for the pigment extractions. 

First, 1.5 mL of 75% methanol (75% methanol: 25% water) (Fastner et al., 1998) 

was added to the cryovial containing the filter. The cryovial containing the filter and 75% 

methanol were then sonicated (VirTis Virsonic 100 Ultrasonic Cell Disruptor™) at a 

power of 9-10, for six 5 second intervals while in an ice bath. The resulting slurry was 

then transferred to a larger borosilicate glass tube and the volume brought up to 3 mL. 

The tubes were incubated at 4°C in the dark for 2 hours to allow extraction. After 

incubation, the extract was filter-syringed using a Whatman GF/F grade glass fiber filter 

to remove the sample filter and cell debris. The remaining solution was divided equally 

into two 2 mL microcentrifuge tubes and the 75% methanol solution was evaporated 

from these tubes, using a Savant Speed-Vac™ concentrator. The microcentrifuge tubes 

containing dried pellets of extracted microcystin were stored at -80 °C until analysis with 

the ELISA. 

2.2.4. Microcystins (Adda specific) ELISA  

The Microcystins (Adda specific) ELISA kit (Enzo Life Sciences) allows for the 

congener-independent quantification of microcystins and nodularins as it shows very 

good cross-reactivity with other microcystin variants (Fischer et al., 2001). This test kit 

does not differentiate between the many variants of microcystin, but uses Microcystin-LR 

for calibration and standards; therefore the final concentrations are officially reported as 

Microcystin-LR equivalents. It is one of the most highly regarded methods for rapid and 

sensitive microcystin screening when compared to other procedures available because of 

its low cost, simplicity of use and reliability (Carmichael and An, 1999; Hawkins et al., 

2005) 

The dried samples (Section 2.2.2), were reconstituted with 125-200 µL of 5% 

methanol, which allowed for the measured concentrations to fit within the sensitivity 

range (0.1-5.0 µg/L) of the assay. A 5% methanol solution was used to minimize the 

interference of methanol with the assay as methanol concentrations greater than 20% 

were found to produce false positive in other brands of the ELISA kit (Metcalf et al., 

2000).  

Fifty µL of each standard, sample and control were pipetted in duplicate onto the 

96-well plate which was set up according to the general scheme in Figure 2.5, and the 
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protocol carried out according to manufacturer directions. This ELISA kit utilized the 

principles of indirect antibody competition, in which a non-specific antigen (microcystin-

LR-Bovine Serum Albumin) came pre-coated on a 96-well plate. A monoclonal antibody 

competed with the microcystins present in the sample for the antigen binding sites, and 

then a second antibody was added to bring on a colour change.  

The results of the ELISA were qualitatively observed by colour intensity—which 

is inversely proportional to the concentration of microcystins—and were quantified by 

reading the absorbance at 450 nm using a plate reader (Molecular Devices Versamax™ 

microplate reader). The standards run on the plate were used to create a standard curve 

(Figure 2.6), and the equation of the standard curve was used to infer the concentration of 

microcystin-LR equivalents in the samples. Since the measured samples were 

concentrated from a water sample of known volume, and only reconstituted in 125-200 

µL of solution, the concentrations measured by the ELISA were further adjusted as 

follows:  

Total intracellular microcystins (µg/L of microcystin-LR equivalents) = Cstd curve x V5%methanol 

           V water sample  

Where,  

 C = sample concentration obtained from ELISA standard curve  

V = Volume in mL for the given sample 

 

2.3. Statistical Analysis 

Statistical analysis was performed using SigmaPlot (Systat Software Inc., San 

Jose, CA).	    If data met the assumptions for regressions, linear or non-linear regression 

analysis was performed. Spearman-Rank correlations were performed when analyzing the 

relationship between the pigments as the data were not normally distributed.  Tests were 

performed with an alpha of 0.05 and relationships were deemed significant when p < 

0.05.  
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Figure 2.5. ELISA 96-well plate set-up. Std = Standard (0, 0.15, 0.40, 1.0, 2.0, 5.0 
ppb); PC = positive control (0.75 ppb); NC = Negative control (5% methanol); Sm = 
Sample 

Figure 2.6. A standard curve example generated from an ELISA plate. 
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3. RESULTS 

3.1. Weather data for the Lake Naivasha region 

The Lake Naivasha Water Resource Users Association (LANAWRUA) provided 

raw data for weather related parameters from 1991 to 2012. Data are shown from January 

2009 to December 2011, which encompasses more than a year and a half prior to 

sampling, the sampling period from September 2010 to August 2011 and the four months 

following the study (Figure 3.1 and 3.2).  

The average daily temperature in Naivasha remained fairly consistent over the 

study period. The mean daily maximum temperature was always above 20 °C and was 

highest from January to March and lowest from June to August (Figure 3.1). The average 

radiation had some variation that showed some consistency with maximum temperature 

and evaporation, but overall the levels were high and within a relatively small range 

(Figure 3.1).  Although there was no consistent annual pattern in total evaporation over 

these three years, it was almost always greater than rainfall and constantly fell in the 

approximate range of 120-180 mm.  In 2009 rainfall was generally low except for April 

and May, and correspondingly, the lake level declined steadily throughout the year.  A 

large increase in rainfall and minor decrease in evaporation led to a rapid rise in lake 

level during the first half of 2010. This was followed by a few months of low rainfall and 

a stable lake level from June to August 2010 (Figure 3.2).  

When Field Season 1 began in September 2010, there was characterized by a 

three month period of rain and lake level rise, followed by another three months of low 

rainfall, high evaporation and lake level decline. The remaining six months of the study 

period saw moderate rainfall each month and moderate to high evaporation which led to 

small but steady lake level declines each month (Figure 3.2). During Field Season 2, 

rainfall was moderate and fairly consistent and lake level continued to decline at small 

and steady increments (Figure 3.2). After Field Season 2, rainfall increased, evaporation 

decreased and lake levels began to rise sharply.  
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Figure 3.1. Mean daily maximum and minimum temperatures, average daily 
temperature and average radiation in Lake Naivasha (2009-2011). Raw data provided 
by the Lake Naivasha Water Resource Users Association (LANAWRUA).  
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Figure 3.2. Total monthly rainfall, evaporation, and lake level in Lake Naivasha 
(2009-2011). Raw data provided by the LANAWRUA.  
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3.2. Physical and chemical surface water characteristics in Lake Naivasha 

The general surface water measurements for the middle of the Main Lake and 

Crescent Island basins of Lake Naivasha are summarized for the entire study period in 

Table 3.1.  For many of the parameters (conductivity, salinity, resistivity, total dissolved 

solids, and Secchi depth) overall differences are observed between the Main Lake and 

Crescent Island basins. Some magnitude of variation exists for all parameters, but of 

particular importance is the water temperature, which is quite consistent and high, and the 

pH, dissolved oxygen and Secchi depth.   

 

 

 

 

 

 

 
Middle of the 
 Main Lake  

range (average)  

COV 
(%) 

M.L.* 

Middle of  
Crescent Island  
range (average)  

COV (%) 
C.I.** 

Water Temperature 
(°C) 

20.03-23.83 
(21.13)  4.1 20.24-22.95 

(21.19) 2.9 

Specific 
Conductivity 
(mS/cm) 

0.211-0.301 
(0.249)  9.1 0.328-0.464 

(0.404) 8.2 

Salinity (ppt) 0.10-0.14 (0.12)  9.6 0.16-0.22 (0.19)  7.7 

Resistivity  (Ω/m) 3598.02-5109.10 
(4395.41)  9.4 2339.67-3173.78  

(2697.96)  8.0 

Total Dissolved 
Solids (g/L) 0.14-0.20 (0.16)  9.8 0.21-0.30 (0.26)  8.1 

pH 7.72-9.26 (8.54)  5.0 7.53-8.75 (8.19)  4.4 

Dissolved Oxygen 
(mg/L) 5.71-11.22 (7.59)  15.9 2.15-9.08 (6.27)  24.7 

Secchi depth (m) 0.29-0.55 (0.43) 18.8 0.55-1.05 (0.74) 16.8 

* Main Lake (M.L.) 
**Crescent Island (C.I.) 

Table 3.1. Summary of general surface water parameters and coefficient of variations 
(COV) from September 2010 to August 2011 for the Middle of the Main Lake basin 
and the Middle of the Crescent Island basin of Lake Naivasha.  
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3.3. Cyanobacterial bloom presence in Lake Naivasha 

Field Season 1 was characterized by a lake-wide cyanobacterial bloom which was 

consistently present in the Main Lake basin. The bloom was not evenly distributed from a 

visual perspective across the surface of the lake. Sometimes it would look more uniform 

and homogenous while other times it would be patchy and clumped (Figure 3.3a). In the 

Crescent Island basin a bloom was not visible on the surface until December 2010. No 

lake wide bloom was observed during Field Season 2, however clumps of algae were 

occasionally observed at a few locations along the shoreline of the Main Lake basin. 

During the morning hours of May 19th, 2011, a shoreline bloom in the Crescent Island 

basin was observed and sampled (Figure 3.3b). The qualitative water observations for the 

Main Lake basin and Crescent Island basin are summarized for the entire study period in 

Tables 3.2 and 3.3, respectively.   

 

3.4. Algal community composition 

The algal community in the lake was generally dominated by cyanobacteria and 

diatoms (Figure 3.4) but there was also a presence of green algae and dinoflagellates 

(Tables 3.4 and 3.5).   In the Main Lake basin the proportion of dominant genera 

remained fairly consistent until the beginning of December and was comprised of 

colonies of the cyanobacteria Microcystis—which was what specifically formed the green 

algal clumps visible in the water, the diatom Synedra, and similar amounts of the 

cyanobacteria Anabaena and the diatom Aulacoseira (Figure 3.4a). A large number of 

other genera were observed to be present, but not dominant (Table 3.4). From December 

to March Microcystis still remained the most dominant genus, but was closely followed 

by an increasing Aulacoseira. The dominance of Anabaena considerably decreased, and 

there was also less of Synedra and a greater dominance of some green algae genera 

Figure 3.4a). Additionally, the diatom genus Achnanthes started to be observed in 

November (Table 3.4), and was occasionally noted as a dominant genus until the end of 

the first field season. When sampling was resumed in May 2011, Achnanthes completely 

dominated the algal community (Figure 3.4a), while other cyanobacteria, diatoms and 

green algae were also noted (Table 3.4). Over the next couple of months Microcystis 

became more dominant, but was still not as abundant as Achnanthes (Figure 3.4a).  
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Figure 3.3. Cyanobacterial blooms in Lake Naivasha. (a) Lake-wide bloom present in 
the Main Lake basin from August 2010 to March 2011. (b) Shoreline bloom present in 
the Crescent Island basin in the morning hours of May 19, 2011.  

(a)  

(b)  
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Time Period Water 
 colouration Algal presence or absence Other observations and notes 

1-Sept-2010  
to 

15-Nov-2010 

Murky green 
water 

Visible surface algae or 
bloom at most sites 
-‐ Dense, soupy, foamy, 

foul odours at some sites 
beginning late-October 

Occasional dense water hyacinth 
(Eichhornia crassipes) 

22-Nov-2010  
to 20-Dec-2010 

Murky green 
water  

Visible surface algae or 
bloom at most sites 
-‐ Dense and foamy at 

some sites 

Occasional dense water hyacinth 
cover 

29-Dec-2010  
to 15-Mar-2011 

Murky green or 
brown water 
 

Visible surface algae or 
bloom 
-‐ Dense or foamy at many 

sites 

Regular scattered or dense water 
hyacinth cover 

15-May-2011 to 8-
Jun-2012 

Murky green-
brown water 
Turbid 

No visible surface algae 

Regular scattered hyacinth/ 
salvinia cover in open water, 
occasionally dense and patchy 
-‐ Access to North Shore limited 

because vegetation all 
concentrated in the area.  

Time Period Water 
 colouration Algal presence or absence Other observations and 

notes 

1-Sept-201 to 
4-Oct-2010 

murky green 
 No visible surface algae  

11-Oct-201 to 
22-Nov-2010 

murky dark green 
 No visible surface algae  

29-Nov-2010 to 
13-Dec-2010 

murky green to dark 
green No visible surface algae Dense water hyacinth cover 

on 6-Dec-2010 

20-Dec-2010 to 
15-Mar-2011 murky green 

Visible surface algae 
-‐ Foamy- 25-Jan-11 
-‐ Dense- 31-Jan-11, 1-Mar-

11 to 15-Mar-11 

 

18-May-2011 to 
8-Aug-2011 

 
murky dark green No visible surface algae* 

Water is definitely greener 
and less turbid than the Main 
Lake basin 

*on May 19, 2011 on a shoreline area (not the regular sampling site) of Crescent Island, a bloom was 
briefly present for a few hours in the morning.  The water was fairly clear, but there were dense surface 
algal clumps that were a deep green colour. 

Table 3.2. Qualitative observations for the Main Lake basin of Lake Naivasha.  
Qualitative observations represent a summary of the characteristics at the majority of 
sites around the lake for the time period. 

Table 3.3. Qualitative observations for the Crescent Island basin of Lake Naivasha.  
Qualitative observations represent a summary of the characteristics at the site for the 
time period.  
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Figure 3.4. Community compositions of the dominant genera present over the study 
period. (a) Main Lake basin of Lake Naivasha and (b) Crescent Island basin of Lake 
Naivasha. The gap of white represents a period where no sampling was taking place. 
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Time Period 
Other 

Cyanobacteria 
Genera 

Other 
Bacillariophyceae 
(Diatom) Genera 

Other 
Chlorophyceae 
(Green Algae) 

Genera 

Dinoflagellate 
Genera 

1-Sept-2010 to 
15-Nov-2010 

Anabaena 
Merismopedia 
Anacystis 
 

Aulacoseira 
Synedra  
Diatoma 
Achnanthes Nitzshia 
 

Pediastrum 
Staurastrum 
Scendesmus 
Coelastrum 
Closteriopsis 
Eremophaera 
Chlorococcum 
Actinastrum 
Planktosphaeria 

Ceratium 
 

22-Nov-2010 to  
20-Dec-2010 

Microcystis 
Anabaena 
Meismopedia 
Anacystis  

Aulacoseira 
Diatoma 
Achnanthes Nitzshia 

Pediastrum  
Staurastrum 
Euglena 

Ceratium 

29-Dec-2010 to  
15-Mar-2011 Anabaena  

Synedra  
Diatoma 
Achnanthes 

Pediustrum 
Scenedesmus 
Straurastrum 

Ceratium 

15-May-2011 to 
 8-Aug-2011 

Microcystis 
Aphanocapsa 
Anabaena 
Merismopedia  
Anacystis  

Aulacoseira 
 Synedra 

Pediastrum 
Scenedesmus  

Time Period 
Other 

Cyanobacteria 
Genera 

Other 
Bacillariophyceae 
(Diatom) Genera 

Other 
Chlorophyceae 
(Green Algae) 

Genera 

Dinoflagellate 
Genera 

1-Sept-2010 to 
4-Oct-2010 

Anabaena 
Merismopedia 
Spirulina 

Diatoma  
Aulacoseira 

Coleastrum 
Pediastrum 
Staurastram 

 

11-Oct-2010 to 
22-Nov-2010 Microcystis  

Aulacoseira 
Synedra  
Nitzshia 

Pediastrum 
Actinastrum 
Planktosphaeria 
Chlorococcum 

 

29-Nov-2010 to 
13-Dec-2010 Spirulina    Ceratium 

20-Dec-2010 to 
15-Mar-2011 

Anabaena 
Spirulina   Pediastrum 

Spirogyra Ceratium 

18-May-2011 to 
8-Aug-2011 Microcystis  Aulacoseira 

Synedra Pediastrum   Ceratium 

Table 3.4. Other non-dominant algal genera present for the Main Lake basin of Lake 
Naivasha.   

Table 3.5. Other non-dominant algal genera present for the Crescent Island basin of 
Lake Naivasha. 
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The community composition in the Crescent Island basin of the lake was more 

dynamic than the Main Lake basin. While some genera common in the Main Lake 

sampling sites were dominant (Microcystis, Anabaena, Aulacoseira, Synedra), the 

proportions were different (Figure 3.4b) and variances could also be seen within the non-

dominant genera recorded (Table 3.5). In October and November, there was dominance 

by Ceratium and Anabaena, with the later maintaining a strong presence until January 

(Figure 3.4b). Microcystis had intermittent spikes of dominance up until January (most 

notably on November 29, 2010), and became more consistently dominant after January 

when the presence of Aulacoseira climbed (Figure 3.4b). Anabaena once again 

dominated starting in May 2011 and while Microcystis was present but not dominant for 

most of Field Season 2 (Figure 3.4b; Table 3.5), the shoreline bloom that occurred on 

May 19, 2011 was equally dominated by both Anabaena and Microcystis. Achnanthes 

was also not observed in any capacity in the Crescent Island basin 

Although algae could only be determined to the genus level, microscope images 

suggested that there were different species and/or isolates present of Microcystis (Figure 

3.5) and Anabaena (Figure 3.6) and potentially Aulacoseira (Figure 3.8). Images of 

Synedra (Figure 3.9) and Achnanthes (Figure 3.7) were not as visually diverse. Images of 

some of the other common algae present in Lake Naivasha are displayed in Figure 3.10. 

 

3.5. Levels of algal pigments 

3.5.1. Main Lake basin 

The chlorophyll concentrations at various sites in the main lake basin are 

presented in Figure 3.11.  Chlorophyll-a concentrations varied over the study period and 

during Field Season 1, when there was a lake-wide cyanobacterial bloom, concentrations 

widely ranged from 40-1400 µg/L. There were a few instances where extremely high chl-

a values (>1000 µg/L) were captured in September and in October 2010; however 

overall, the highest concentrations at the majority of sites occurred throughout October 

and November 2010, and generally fell between 300-700 µg/L. An overall shift in chl-a  

concentrations took place around approximately mid-November and on November 22nd, 

there was a noticeable decrease in chl-a concentration at nearly all sites compared to 

previous weeks (Figure 3.11a).  From this point up until the end of Field Season 1in  
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Figure 3.6. Microscope images of Anabaena spp. in Lake Naivasha. Also pictured is 
Coelastrum sp. (top middle).  

Figure 3.7. Microscope images of Achnanthes sp.   

Figure 3.5. Microscope images of Microcystis spp. in Lake Naivasha. Pediastrum sp. 
(top middle) and Aulacoseira sp. (middle right) are also pictured.  
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Figure 3.8. Microscope images of Aulacoseira spp. Also pictured are Diatoma sp. 
(bottom left) and Microcystis sp. (bottom right).   

Figure 3.9. Microscope images of Synedra. Also pictured are Spirulina (top left) and 
Aulacoseira (top middle and right).  

Figure 3.10. Microscope images of other Lake Naivasha algae. Top row (L-R): 
Merismopedia sp., Spirulina sp., Pediastrum sp. Bottom Row (L-R): Scenedesmus sp., 
Ceratium sp., Staurastrum sp  
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Figure 3.11. Extracted pigment levels in the Main basin of Lake Naivasha. Each point 
represents a different sampling site in the lake on that given day (ranging from N=3 to 
N=12). (a) Chlorophyll-a concentrations, (b) Chlorophyll-b concentrations, and (c) 
Chlorophyll-c concentrations. Note the different y-axis scales. Total points on each 
graph = 279) 

 

(b)  

(a)  

(c)  
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March 2011, the chl-a levels remained similar from week-to-week with slight increases 

in the last month of sampling. During May to August 2012, when there was no lake-wide 

cyanobacterial bloom, the chl-a concentrations were overall relatively lower (27-120	  

µg/L) but the maximum concentration generally increased over the time period (Figure 

3.12a, inset). 

In general there was no noticeable trend in chlorophyll-b over both field seasons 

(Figure 3.11b). Most concentrations on a given day generally fell within the same range 

of 5-30 µg/L, with concentrations during Field Season 2 being slightly lower overall. 

During October when chl-a was high, chl-b concentrations were very low, and often 0 at 

many sites (Figure 3.11b).   

Chlorophyll-c was elevated for two weeks in October and remained fairly steady 

with a slight decrease for the remainder of October and November (Figure 3.11c). Chl-c 

concentrations seemed to gradually increase from week to week starting in December, 

which was particularly noticeable trend with the minimum values from each week.  On 

December 6th 2010 the minimum chl-b concentration was 5.87 µg/L, and that minimum 

increased almost every week and was 21 µg/L on March 15, 2011 (Figure 3.11c). There 

was no evident trend in chl-c	   from May to August 2011, although values were more 

elevated during the second last week of sampling and concentrations were lower overall 

compared to Field Season 1 (Figure 3.11c).  

The primary accessory pigment associated with changes in chl-a concentrations 

was phycocyanin. Overall, phycocyanin was elevated during the October and November 

2010, and while there were some instances of extremely high values (> 1500	  µg/L), most 

concentrations ranged from approximately 200-1200 µg/L during this period (Figure 

3.12b).  The highest peak in phycocyanin (2642.72 µg/L) did not correspond with the 

maximum chl-a concentration measured (Figure 3.12a,b). Similar to chl-a, on November 

22nd there was also a major decline in phycocyanin concentrations at nearly all sites. 

Maximum values gradually declined and were usually less than 350 µg/L for the 

remainder of the calendar year. From January to March, phycocyanin concentrations 

remained fairly stable and generally less than 150 µg/L (Figure 3.12b). From May to 

August 2011, overall phycocyanin concentrations were lower than the previous field 

season, but there did seem to be a slight trend of the values increasing over the time   



52 
	  

	  
	  

  

Figure 3.12. Extracted pigment levels in the Main basin of Lake Naivasha. Each point 
represents a different sampling site in the lake on that given day (ranging from N=3 to 
N=12). (a) Chlorophyll-a concentrations (total points on graph = 279), (b) 
Phycocyanin concentrations (total points on graph = 276), and (c) Phycoerythrin 
concentrations (total points on graph = 276). Inset on each graph are the data from 
May to August 2011, displayed on a more defined axis.  

 

(b)  

(a)  

(c)  
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period (Figure 3.12b, inset).  

The overall trend of phycoerythrin was the same as phycocyanin although up until 

January 2011, phycocyanin was generally greater than phycoerythrin (Figure 3.12c). 

Starting in January 2011, the levels of both these pigments were quite similar, and from 

May to August 2011 phycoerythrin seemed to be slightly greater overall in addition to 

also having that small increasing trend also observed with phycocyanin (Figure 3.12c, 

inset). 

3.5.2. Crescent Island basin 

In Crescent Island basin the chlorophyll-a	   concentrations reached a maximum 

(2760– 2830 µg/L) from October 11, 2010 to October 25, 2010 (Figure 3.13a). There was 

a sharp decline in chl-a	  levels at the start of November, although the overall values were 

still considerably high. After a slight increase to 785 µg/L a couple of weeks later, chl-a 

concentrations continued to decrease into January to 126 µg/L and only small variations 

were measured until mid-March which was the end of the first field season (Figure 

3.13a).  From May to August 2011, chl-a was lower and less variable with concentrations 

ranging from 50-65 µg/L (Figure 3.13a).  

Chl-b was generally stable between 10-25 µg/L during Field Season 1, except for 

the period of October 4, 2010 to November 22, 2010, where it and peaked and dipped 

over the weeks (Figure 13.13b). This variable period coincided with the general period 

when chl-a was greatest, indicating a change in algal speciation.   

Chl-c concentrations were generally greater than Chl-b during Field Season 1, and 

similar to chl-a peaked from October 11 to 25 with extreme relative highs from 400-490	  

µg/L (Figure 3.13c). The period of this chl-c increase also coincides with the dominance 

of the dinoflagellate Ceratium in the basin (Figure 3.4b).  During Field Season 2, the 

concentrations of chl-b (3-9 µg/L) were higher than chl-c (0.00-5 µg/L) on weekly basis, 

although both pigments were considerably lower and less variable than during Field 

Season 1 (Figure 3.13 b and c).  

Similar to chl-c and chl-a, phycocyanin was at its highest from October 11 to 25, 

however during these three weeks these high concentrations were more variable, reaching  

an extreme high of 7230 µg/L and a low of ~1900 µg/L (Figure 3.14b). This period of   
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Figure 3.13. Extracted pigment levels in the Crescent Island (C.I.) basin of Lake 
Naivasha. Only one site was sampled in C.I. on a given day, with the exception being 
on May 19, 2011 (represented by the -o- symbol) when a sample from a shoreline 
cyanobacterial bloom was taken. (a) Chlorophyll-a concentrations, (b) Chlorophyll-b 
concentrations, and (c) Chlorophyll-c concentrations. Note the different y-axis scales 
for (b) and (c) which are 6 times smaller than (a). Total points on each graph = 31. 

. 

(a)  

(b)  

(c)  
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elevated phycocyanin occurred at the same time of Anabaena dominance in Crescent 

Island (Figure 3.14b). After the peak phycocyanin period ended on November 1, 

concentrations fluctuated but generally ranged from approximately 100-180  µg/L (Figure 

3.14b).  Phycocyanin concentrations remained fairly stable from May to August 2011 

ranging from approximately 40-55 µg/L for all but one week (Figure 3.14b). The trends 

in phycoerythrin were similar to phycocyanin, with the exception that the phycoerythrin 

concentrations were generally lower, most notably during the peak period (Figure 3.14c). 

  The shoreline bloom that occurred in Crescent Island on May 19, 2011 had an 

elevated chl-a concentration (745 µg/L) compared to the sample from the regular 

sampling location (Figure 3.13a). This increase in biomass, visually evident due to the 

bloom, was microscopically determined to be due to fairly equal proportions of 

Microcystis colonies and Anabaena filaments. A small amount of the Synedra filament 

was also seen. While all pigments were understandably greater in the bloom compared to 

the regular sampling site (Figure 3.13 and 3.14), the largest relative increase was in 

phycocyanin concentration, which increased by a factor of about 21.  

 Compared to the Main Lake basin, overall trends in chl-a were similar in Crescent 

Island from September 2010 to March 2011 (Figure 3.11a and 3.13a). However, during 

May to August 2011, chl-a remained steady in Crescent Island (Figure 3.13a), but was 

more variable and showed a slight increase over time in the Main Lake (Figure 3.11a).  

The trends and peaks in phycocyanin were also similar between the Main Lake and 

Crescent Island except that Crescent Island had a maximum phycocyanin concentration 

that was far greater than the maximum in the Main Lake. Similar to chl-a, from May to 

August 2011, the levels of phycobiliproteins were generally more stable over time 

compared to the slight increases observed in the Main Lake basin (Figures 3.12, 3.14). 

 

3.6. Pigment correlations  

The relationship between chl-a and each of the pigments can demonstrate relative 

dominance of each pigment (and therefore group of algae) as well as show which group 

may be controlling the overall biomass. In the Main Lake basin during Field Season 1, 

when a cyanobacterial bloom was present, chl-a was most strongly correlated to 
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Figure 3.14. Extracted pigment levels in the Crescent Island (C.I.) basin of Lake 
Naivasha. Only one site was sampled in C.I. on a given day, with the exception being 
on May 19, 2011 (represented by the -o- symbol) when a sample from a shoreline 
cyanobacterial bloom was taken (a) Chlorophyll-a concentrations, (b) Phycocyanin 
concentrations (note the break in the y-axis), and (c) Phycoerythrin concentrations. 
Total points on each graph = 31.  

(a)  

(b)  

(c)  
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phycocyanin (Correlation Coefficient (R) = 0.86, p < 0.001, N = 214). Chl-c was weakly 

correlated to chl-a (R = 0.39, P < 0.001, N = 216) and there was no significant 

relationship between chl-b and chl-a.   During Field Season 2, when no cyanobacterial 

bloom was present, there was no significant correlation between chl-a and phycocyanin 

and chl-a and chl-c,  and a weak correlations between chl-a and chl-b (R = 0.39, p < 0.05, 

N = 63). 

In Crescent Island, both phycocyanin (R = 0.83, p < 0.001, N = 21) and chl-c (R = 

0.87, P < 0.001, N = 21) were strongly correlated with chl-a in Field Season 1, and chl-b 

was moderately correlated (R = 0.68, p < 0.001, N = 21). No significant relationships 

were seen between the pigments in Field Season 2.  

 

3.7. Microcystin levels 

3.7.1. Total particulate microcystin-LR equivalents 

Microcystin levels were measureable in the lake indicating that the cyanobacterial 

bloom event was in fact a cyanoHAB. The concentrations of total particulate 

microcystin-LR (MC-LR) equivalents for both the Main Lake and Crescent Island basins 

are presented in Figure 3.15. Of the samples analyzed, the total concentration of 

particulate microcystin-LR equivalents generally decreased over the study period. The 

maximum concentration of intracellular microcystin-LR equivalents measured in the 

Main Lake basin was 0.11	  µg/L (October 25, 2010) (Figure 3.15a). During the period up 

to and including November 15th 2010, (also the period of highest phycocyanin 

concentrations) all MC-LR equivalent concentrations were greater than 0.05 µg/L. A 

noticeable decline does occur on November 22, 2010, (range of MC-LR equivalents 

measured = 0.041 – 0.072 µg/L) but the relative difference in concentration ranges from 

previous weeks is not that substantial. The following weeks are characterized by similar 

or slight increases in MC-LR equivalent concentrations in the Main Lake basin, and 

eventually a gradual decline. From January to March 2011, the maximum MC-LR 

equivalent concentration was approximately 0.05 µg/L in the Main Lake basin. From 

May to August 2011, when no lake-wide bloom was present, all MC-LR equivalent 

concentrations measured were equal to or less than 0.01	  µg/L (Figure 3.15a). 
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Figure 3.15. (a) Intracellular concentrations of microcystin-LR equivalents, and (b) 
Intracellular microcystin-LR equivalents per phycocyanin, in the Main Lake and 
Crescent Island basin of Lake Naivasha. Total points on graph for Main Lake Sites = 
91, Crescent Island Site = 14.  

 

(a)  

(b)  



59 
	  

	  
	  

During Field Season 1, the Crescent Island basin concentrations MC-LR 

equivalent were nearly always lower than the minimum measurement for the Main Lake 

basin (Figure 3.15a). The highest concentration was measured on October 11, 2010, and 

although this was the where the phycocyanin concentration was the highest recorded in 

this study (and nearly 3 times larger than the highest concentration recorded in the main 

lake), the concentration of MC-LR equivalents was 0.07 µg/L (Figure 3.15a). 

Concentrations proceeded to decline from this date, but did spike up for the week of 

November 29, 2010, when there was also an increase in Microcystis dominance (Figures 

3.15a and 3.4b). From May to August 2011 concentrations were low and similar to the 

Main Lake basin. The shoreline bloom sample taken from the Crescent Island basin on 

May 19, 2011 had a MC-LR equivalent concentration of 0.03 µg/L, which was less than 

measurements taken during the previous lake-wide bloom but relatively high compared to 

other samples taken during Field Season 2 (Figure 3.15a). 

3.7.2. Particulate Microcystin-LR equivalents per phycocyanin 

Standardizing the microcystin concentrations to the phycocyanin concentrations 

for each sample emphasizes some other trends on a cellular basis (Figure 3.15b). In the 

Main Lake basin, the amount of particulate MC-LR equivalents per phycocyanin mostly 

remained within a tight range of values (0-0.0002) up until November 15, 2010 (Figure 

3.15b). Starting November 22, 2010, this ratio becomes much more variable between the 

different sites on the Main Lake reaching as high as 0.0014 particulate MC-LR 

equivalents per phycocyanin (Figure 3.15b). The period from November 15 to 22 may 

therefore be characterized by a physiological change.  Keeping in mind that there is only 

one site sampled, Crescent Island does not necessarily show the same pattern as the Main 

Lake basin. Each week, the ratio is relatively low, with the only major difference 

occurring on November 29, 2010 (Figure 3.15b).  

3.7.3. Relationship between particulate microcystin-LR  equivalents and  phycocyanin 

  Figure 3.15b indicated that the relationship between the intracellular 

concentrations of MC-LR equivalents was not necessarily a simple or consistent one. The 

relationship between particulate microcystin and phycocyanin was not linear, and was 

best fitted with a hyperbolic curve (R = 0.72, r2 = 0.5, p < 0.001, N = 91; Figure 3.16). At 

low levels of phycocyanin, particulate microcystin is very variable and increases quickly,  
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Figure 3.16. Particulate microcystin-LR equivalents vs. phycocyanin in the Main Lake 
basin of Lake Naivasha. Data are fitted to a hyperbolic curve, and show with a fairly 
strong and significant regression.  

r2 = 0.52 
p < 0.001 
N = 91 
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but after about 500 µg/L, the particulate microcystins seem to plateau, and specifically 

two there are two branches that plateau (Figure 3.16). Those two branches are primarily 

compromised of data points from the peak bloom period in October and November 2010 

but there is not a clear difference between dates in the upper branch and lower branch 

(Figure 3.17a). Data from Field Season 2, when no bloom was present, can be seen in the 

cluster at the bottom left of the graph; although no bloom was present there was still 

production of microcystins that was much lower than the previous year (Figure 3.17a). 

 Specific sites are highlighted in Figure 3.17b. There was no major difference in 

the data distribution between the open water sites (Hippo Point, Middle of Main Lake 

basin) and the more isolated site (Oserian Bay) where cyanobacterial blooms or toxins 

could potentially accumulate. While phycocyanin was always relatively lower at the site 

near the Malewa inflow, particulate microcystins were widely variable (Figure 3.17b).  

The relationship between particulate Microcystin-LR equivalents and 

phycocyanin in the Crescent Island basin of Lake Naivasha seems to show a similar trend 

inclining and plateau trend as the Main Lake basin (Figure 3.18). The data did not meet 

the assumptions of normality for regression analysis; therefore this trend can just be 

visually described at this point, and the curve is only present to help visualize the 

potential plateau.   
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Figure 3.17. (a) Temporal patterns and (b) spatial patterns of particulate microcystin-
LR equivalents vs. phycocyanin in the Main Lake basin of Lake Naivasha. Specific 
dates or sites are highlighted in the legend, and the white circular symbols represent all 
other data points.  

(a)  

(b)  
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Figure 3.18. Particulate  microcystin-LR equivalents vs. phycocyanin in the 
Crescent Island basin of Lake Naivasha. The curved line does not hold any 
statistical significant as data were not normally distributed and sample size was 
low (N = 14), but is there to show a potentially similar trend to the Main Lake 
basin (Figure 3.17).   

 

 



64 
	  

	  
	  

4. DISCUSSION  

Relative to the decades of anthropogenic change that have occurred in Lake 

Naivasha, cyanobacterial blooms are a recent occurrence, and this is the first study to 

focus on the initiators, characteristics and impacts of cyanobacterial blooms from an 

ecohealth perspective. The lake-wide cyanobacterial bloom studied from 2010 to 2011 

was one of the most extensive to date and due to the detection of microcystin; it will now 

be referred to as a cyanoHAB event. 	  

4.1. Factors influencing the cyanoHAB formation 

Unlike the other lakes in the Rift Valley of Kenya that have supported blooms of 

cyanobacteria since at least 1929 (Beadle, 1932b; Jenkin, 1932; Rich, 1932), Lake 

Naivasha, which was sometimes dominated by cyanobacteria, only began to experience 

actual blooms starting in 2005 (Harper et al., 2011). The industry, population and 

development boom that occurred in the 1980’s was the first large-scale initiator and led to 

increased eutrophication (Harper et al., 2011). Yet, given the timing of the blooms, 

eutrophication alone was obviously not enough to trigger the formation of cyanobacterial 

blooms. What actually led to the start of cyanobacteria blooms in approximately 2005 is 

out of the scope of this thesis, as there were many long-term ecological changes 

experienced in the lake over the past decades that could be responsible; however since 

that point what we do know is that cyanobacterial blooms have not occurred 

continuously.  

Therefore, there must be very specific factors leading to each bloom event , and in 

the case of the lake-wide Microcystis cyanoHAB observed from 2010-2011 in this study, 

those drivers were a combination of primarily weather influences which began in 2009 

with an extended drought in Naivasha (Figure 4.1). Although measurements of nutrient 

levels were not available, after the drought ended at the start of 2010, heavy rains came 

and the lake started to fill back up (Figure 3.2). The runoff from land, increased inflow 

from the Malewa River, and re-suspension of nutrients due to sediment disruption likely 

led to an increasing nutrient availability. After the El Niño rains of 1998 it was found that 

phosphorus loading transformed the lake to hyper-eutrophic for a period of time (Kitaka 

et al., 2002).  While the rains in 2010 were not due to an El Niño period, the intensity of 

them could have led to a similar occurrence as in 1998.  
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Weather	  Influences 

Prolonged	  drought	  
and	  lake	  level	  decline	   
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precipitation	  patterns 

Stable	  environment 

Lake-‐wide	  Cyanobacteria	  
Harmful	  Algal	  Bloom 

Increased	  nutrients	  in	  
catchment	  and	  lake 

• Persistent	  cyanoHAB	  
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• 	  Presence	  of	  Microcystis	  spp.	  

• Low	  [intracellular	  MC]	  detected	  (<	  0.11	  µg/L)	  
• Bloom	  biomass	  not	  always	  indicative	  of	  
relatively	  higher	  [MC]	  

• Could	  be	  present	  and	  future	  risk	  of	  MC	  due	  
to	  limited	  knowledge	  on	  toxicity	  
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Characteristics Impacts 

Figure 4.1. Influences, characteristics and impacts of cyanoHAB in Lake Naivasha. 
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Additionally, in February 2010 after the rains began and just prior to the major 

lake level increase there was a substantial decline in lake DO (also causing the major fish 

kill). Whether this de-oxygenation led to a large release of phosphorus and iron bound in 

the sediment (as predicted by Hubble and Harper (2002b)) cannot be determined without 

more information on productivity and biological oxygen demand; however, considering 

the importance of both iron and phosphorus to cyanobacteria growth, in addition to the 

historical decline of DO minima over time (Creed, unpublished data) this cannot be ruled 

out as an influencing factor to nutrient availability and warrants further study.   

Despite all these potential routes for nutrient elevation, no cyanobacterial bloom 

was observed in May 2010 (Trick pers. comm. 2010); however in August 2010 the bloom 

was present. The key period and final factor occurred throughout June, July and August 

of 2010. After those many months of continuous rainfall and lake level elevation (Figure 

3.2) that brought in essential nutrients to the water column, there was then a three-month 

period of stability and decreased rainfall (Figure 3.2). This is where cyanobacteria would 

have had a competitive advantage due to their buoyancy and advantage in stable 

environments (Paerl et al., 2001). In summary, while increased rainfall and lake level rise 

impacted nutrient availability, cyanoHAB formation was more dependent on the changes 

in those factors which in this instance, led to a stable environment. Unfortunately, in 

Naivasha these weather influences are very unpredictable, and therefore the occurrence of 

large-scale bloom events may be hard to predict.  

 

4.2. Characteristics of cyanoHAB and other algae in Lake Naivasha 

The clumps of algae from the cyanoHAB in the Main Lake basin that could be 

observed with the naked eye were made up of the genus Microcystis (Figure 3.5). The 

strong correlation between chl-a and phycocyanin indicate that the cyanobacteria played 

the largest role in the biomass changes. Despite the presence of the cyanoHAB, there was 

still substantial dominance of the diatom genera Aulacoseira and Synedra (Figures 3.7 

and 3.8), although they had less of a relationship with chl-a changes. Cyanobacteria are 

known for their efficient nutrient uptake mechanisms that can also give them advantages 

in nutrient limited conditions, but diatoms do not have such abilities (Paerl et al., 2001). 

The dominance of both these groups of algae supports the suggestion that all nutrients 
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were elevated in the water column.  Furthermore, Microcystis is generally considered to 

grow poorly in low nutrient conditions compared to other cyanobacteria genera; therefore 

the saturation of nutrients would be favourable for Microcystis proliferation over other 

genera (Finni et al., 2001). 	   

A remarkable feature of the algae during the study period and particularly while 

the cyanoHAB was at its peak, was the levels of pigments measured that were used as 

indicators of biomass (Figures 3.11-3.14). These elevated levels, which are not generally 

seen in temperate lakes, are likely due to the consistently high temperature and radiation 

of the tropics (Figure 3.1).  These levels are similar, however, to some tropical lakes that 

do consistency experience cyanobacterial blooms, such as Lake George, Uganda (Ganf, 

1974). In comparison, the chl-a concentrations in the pristine lakes of the Muskoka 

region of Ontario rarely reach over 10 µg/L (Hutchinson 2012). Given the baseline chl-a 

concentrations seen in Naivasha in the past, the present levels of pigments measured both 

during the cyanoHAB (September 2010 to March 2011) and when there was no 

cyanobacterial bloom (May–August 2011) are consistent with a tropical eutrophic 

system. Chlorophyll values in 2011 as communicated by N. Pacini to Harper et al. (2011) 

were consistent with those measured in this study.   

Once the cyanoHAB established itself in the lake, it persisted for an extended 

period of time. Biomass was highest from September to November, but after that period, 

on a weekly basis there were signs of bloom decomposition that were marked by more 

dense and foamy algae at the surface. The foam is representative of a large amount of 

proteins and organic matter being released and mixed in the water from lysed cells (BC 

Ministry of Environment, 2010), and it is common for more cells to migrate closer to the 

surface during the final stages of a bloom due to increased gas vacuoles and/or the 

decline in light from self-shading (Reynolds and Walsby, 1975). Nevertheless, although 

these signs were seen by the end of November, the bloom was still present up until March 

15 and this persistence can be attributed to 1) the tropical climate and lack of major 

seasonality and 2) the elevated or constant flux of nutrients to support long term algal 

growth and 3) the ability of cyanobacteria to use mechanisms of nutrient uptake and 

storage, which may have been utilized in the final stages of the cyanoHAB, allowing it to 

persist for even longer.  
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Sometime during the period where sampling was not taking place (March 16-May 

13, 2011) the bloom completely dissipated, and come May, the community composition 

was drastically different. We found that it was dominated by the diatom Achnanthes 

(Figure 3.4) which was also identified to the species level as Achnanthes minutissima 

(personally communicated by N. Pacini to Harper et al., 2011). While Achnanthes was 

occasionally present in the water during the bloom period (Table 3.4), it was observed 

more frequently as a non-dominant genus from the beginning of 2011. Achnanthes 

minutissima is a widespread diatom and is generally associated with low or moderate 

nutrients and organic pollution in lakes (Kelly et al., 2005), therefore its dominance 

indicates a change in the state of the lake compared to the previous year.  

 

4.3. Impacts of the cyanoHAB and microcystin levels 

4.3.1. Microcystin exposure from drinking water   

All concentrations of particulate MC-LR equivalents measured in this study were 

at least 10 times lower than the WHO provisional guideline for maximum concentration 

of total microcystins in water (1.0 µg/L) (Figure 3.19a). However, these particulate 

concentrations represent under-estimates, as dissolved microcystin concentrations were 

not measured in this study due to the logistical issues of transporting water samples back 

to Canada. During a natural bloom the majority of microcystins will be found within 

intact cells as the bloom develops, but when a bloom begins to senesce there may be a 

greater amount of free microcystins present due to them being released from lysed cells 

(Sivonen and Jones, 1999). That being said even though Park et al. (1998) observed a 

relatively greater amount of free microcystins at the end of a bloom (>20%), the levels 

were still low compared to intracellular microcystin. So, when large declines in biomass 

are observed, there is a greater concern for high levels of dissolved microcystins being 

released from cells all at once, however free microcystins are also subject to a rapid 

factor of dilution in water especially in well mixed areas that are not enclosed or isolated.  

In this study, the months of September to November 2010, represent a period of high net 

growth in the Main Lake basin and so the intracellular concentrations measured were 

probably quite close to what total concentrations would be. But the biomass decline from 

November 15th to 22nd indicates that there may have been a relatively greater amount of 
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dissolved microcystins that had been released from cells and so this may be a point where 

particulate concentrations were likely underestimates of total microcystins.  

Overall, even if the free microcystins could have been factored in, it is unlikely that 

total microcystin levels would have been much higher than that 1.0 µg/L guideline. This 

is a positive outcome as it indicates that the cyanoHAB occurrence did not pose any short 

or moderate term impacts on health through consumption of drinking water.   

Knowledge on the long-term effects of microcystin is limited at this point. In 

particular, the literature is expanding on the carcinogenic impacts of chronic low-level 

microcystin exposure and studies continue to assess whether microcystin may impact 

more vulnerable populations (such as expectant mothers, children, and those with pre-

existing conditions) in different ways (Kuiper-Goodman at al., 1999). Of certain 

importance is also that some of the symptoms of microcystin poisoning—stomach pain, 

nausea, vomiting, fever and muscle weakness—may present similar to malaria and 

typhoid, which are common ailments in Sub-Saharan Africa and so exposure to the toxin 

may not be fully realized. Due to the fact that cyanobacteria blooms are not continually 

occurring in the lake, impacts of chronic low-level exposure may also be minimal, but 

will be dependent on the occurrence of future potential bloom events.    

4.3.2. Other impacts and routes of exposure to microcystin 

 Microcystin can have effects on various aquatic organisms, further disrupting the 

trophic web interactions and potentially fish health (Paerl et al., 2001; Ibellings et al., 

2005) Cyanotoxins have been shown to cause rapid mortality and impact growth and 

reproduction in zooplankton, and this sensitivity increases with increases in water 

temperature (Paerl et al., 2001). Fish do not generally graze cyanobacteria directly, so the 

risk of intracellular (and therefore high) toxin exposure is minimal, although there is 

evidence that some fish kill events may have been due to microcystin (Penaloza et al., 

1990; Tencalla et al., 1994).  More common is the possibility for detrimental effects 

involving oxidative stress, growth and vital organ damage in juvenile fish due to 

microcystins and growth, deformations, development and oxidative stress impacts on 

developing embryos and larvae (Malbrouck and Kestemont, 2009). These effects have 

also been specifically observed in common carp (Zambrano and Canelo, 1996; Li et al., 

2004; Palikova et al., 2004).  
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 There is also the concern of microcystin exposure through consumption of fish. 

Numerous studies have observed bioaccumulation of microcystin and while accumulation 

most often takes place in the liver, intestine or gut (parts of the fish generally not 

consumed), a number of studies have observed microcystin concentrations in muscle 

tissue above (Freitas de Magalhaes et al., 2001; Xie et al., 2005; Malbrouck, 2009) and 

below (Adamovsky et al., 2007) the WHO limits for human consumption (0.04 µg/kg of 

body weight per day).  

 The low concentrations of microcystin measured in this study may indicate that 

the risk of bioaccumulation in fish is low. Additionally, the benthic and omnivore diet of 

common carp also limits the access of the fish to microcystin, although common carp 

have been shown to accumulate low microcystin (Adamovsky et al., 2007).   

4.3.3. Pattern of microcystin levels  

 Since the levels of particulate microcystin were low, indicating no current risk to 

health, focus could shift to understand the pattern of microcystin levels over the course of 

the bloom, to try to predict what the toxin levels might be like in the future.  In particular 

does microcystin help to initiate the bloom or maintain the bloom?  

 As predicted, the total particulate microcystin was higher during the presence of 

bloom versus absence (Figure 3.16a). Some phycocyanin levels from Field Season 2 

(when no bloom was present), were similar to phycocyanin measurements from Field 

Season 1 when the cyanoHAB was occurring (see PC < 125 µg/L; Figure 3.17). But 

while those cyanobacteria biomass levels may have been similar, the particulate 

microcystin levels were not and there is a gap in the data points from about 0.20-0.35 

µg/L of particulate microcystin. This could potentially represent the role of microcystin 

in helping to physically form large colonies and/or visible clumps of algae, whether that 

is through manipulating extracellular proteins as mentioned in the introduction (Kehr et 

al., 2006; Zilliges et al., 2008), or by some other means. This has implications for bloom 

initiation as there may always need to be a particular baseline of microcystins to allow for 

physical bloom formation.  

 Since phycocyanin is fairly constant between cells, standardizing the particulate 

microcystins to the phycocyanin levels allows examination of the changes in toxins on a 

per cell basis (Figure 3.16b). Particulate microcystin per unit biomass was relatively 
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lower for the period when the bloom was on the incline (up to November 15), but starting 

November 22, the toxin per cell seems to go up on decline of the bloom.  

Although it was predicted that there would be increased microcystin production per cell 

during the later stages of the bloom (decline) due to growth stressors, the data also 

indicate that there could be some process limiting microcystin per cell during the incline 

period, therefore neither of these possibilities cannot be ruled out.  This figure indicated 

that the amount of toxin per cell was not constant or linear over the study period, which 

was against what was predicted and further explored in Figure 3.17.  

 This non-linear relationship between microcystin and phycocyanin is 

characterized by a plateau at the high phycocyanin concentrations (representing the 

incline of the bloom) and also the high concentrations of microcystin are represented by a 

wide range of phycocyanin. Likewise within a tight range of phycocyanin values there is 

a wide range of particulate microcystin levels. These all make it very difficult to be able 

to predict the levels of microcystin based on solely cyanobacteria biomass. 

Distinguishing various dates during peak bloom biomass and certain geographical sites, 

also did not show a clear cluster or pattern (Figure3.18a,b) indicating that temporal or 

spatial characteristics are not the sole influence on the data.  

 We can speculate on some of the processes that could be causing these patterns. 

This includes both ecological and physiological processes that could be acting alone or 

these different influences could be acting in combination to give the response the data 

show. In the natural environment blooms are often made up of toxic and non-toxic strains 

(Sioven and Jones, 1999; Ranita-Kanto and Wilhem, 2006; Hotto and Joung, 2008). 

Given the low concentrations of toxin measured in this study, and the magnitude of the 

bloom, it could be that a non-toxic strain contributed more to the high biomass, and the 

changes in toxin per cell are more due to a shift in the community and proportions of 

non-toxic to toxic strains.  

 From a physiological standpoint, the plateau seen at the high concentrations of 

phycocyanin may be caused by the fact that during that peak biomass phase, cells were 

dividing so quickly that the rate of microcystin production could not keep up with the rate 

of cell division, and therefore microcystins were divided among many more cells and 

look as though they’ve reached a maximum. The relationship between microcystin cell 
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quota and growth rate was modeled and showed a similar plateau when there was no 

corresponding microcystin depletion rate (Jahnichen et al., 2008).  It has been found that 

toxic cyanobacterial cells will always contain a minimum quota of microcystin per cell 

(why we measured low toxin production in cyanobacteria even without an actual bloom), 

but also have a maximum quota under nutrient saturation for a given light and 

temperature condition, which could correspond to the peak biomass plateau observed in 

this study (Long et al., 2001; Wiedner et al., 2003).  

Another reason for the observed plateau that is not often considered in the 

literature is that microcystin could be actively exported from cells when a certain 

threshold is reached. This is not something widely supported as most scientific studies 

have not found any evidence for active release of the toxin: it is generally found that 

microcystins remain within cells until cell lysis. However, a few studies have indicated 

that microcystin can be present in the cell wall of intact cells (Shi et al., 1995), and that it 

may be exported at higher light threshold intensities (Kaebernick et al., 2000). Pearson et 

al., 2004, suggested that an ABC membrane transporter that is encoded by one of the mcy 

genes may in fact actively transport microcystin from cells, and further study is taking 

place.    

 The increased microcystin per cell evident at the decline of the bloom could be 

indicative of increased production for maintenance of the bloom due to nutrient and 

growth stress.  In Lake Naivasha after the period of stability where the bloom established 

itself, it continued to grow in the following months as lake level continued to rise, which 

continually replenishing nutrients to the lake. When this continual lake level rise and 

increased rainfall ended in November, nutrient stores and availability in the lake may not 

have been replenished leading to some limitations, perhaps in iron. Iron limitation 

stimulating microcystin production is widely supported in the literature (Lukac and 

Aegerter, 1993; Utkilen and Gjolme, 1995; Sevilla et al., 2008; Alexova et al., 2011; Fujii 

et al., 2011; Kaplan et al., 2012), and is a hypothesis that should be explored further in 

Naivasha which naturally has iron-rich sediments due to the lateritic volcanic soils 

(Tarras-Wahlberg et al., 2002). Because of this, the nutrient influxes that helped establish 

the bloom could have been characterized by high soluble iron availability, and if over 

time iron became (relatively) less available due to decreased influxes or formation of 
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insoluble hydroxides, this could have led to the increased microcystin production per cell. 

It may be that the natural conditions of the Lake Naivasha region, which allow for 

relatively higher iron availability compared to other lakes, could be what keep 

microcystin concentrations at levels low enough not to pose a health risk—this should be 

a key area for future research on cyanoHABs in Naivasha.    
 

  

4.4. Site specific considerations 

4.4.1. Main Lake basin versus Crescent Island basin 

Chl-a  levels in the Crescent Island basin were high, but almost always lower than 

in the Main Lake basin. The major exception was during an approximate five week 

period from October to November where levels were considerably higher than the Main 

Lake. A similar pattern was observed with phycocyanin levels and chl-c and the sharp 

increases in those pigments were due to dominance of the cyanobacterium Anabaena and 

the dinoflagellate Ceratium, respectively. Despite the large increase in biomass, 

qualitative observations of the surface water indicated no visible algal bloom. The in situ 

chlorophyll fluorescence vertical profile (Appendix B) suggested that the large biomass 

was sitting approximately 1 m below the surface of the water, a depth that could not be 

seen from the surface of the water. Therefore, although it was predicted that the Crescent 

Island basin would be less likely to support a cyanobacterial bloom compared to the Main 

Lake basin, which is not entirely true. While the decreased wind-induced mixing would 

prevent distribution of nutrients, the potential for more stability and vertical stratification 

give some algae—such as the buoyant Anabaena and flagellated Ceratium—a chance to 

optimize their position in the water column and bloom below the surface. This is 

important because the Crescent Island basin is often referred to as an undisturbed and 

pristine area of the lake, but in fact certain water quality issues may be present similar to 

the Main Lake, but just not always directly observable. 

Although not measured in this study, Anabaena is able to produce the neurotoxins 

anatoxin-a (Sivonen and Jones 1999; Carmichael, 2001) and saxitoxin—well known as a 

paralytic shellfish poison (Humpage at al., 1984; Al-Tebrineh at al., 2010)—which can 

also pose health risks. Another feature of this Anabaena is its ability to fix atmospheric 
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nitrogen into usable forms. The dominance of Anabaena at certain times in Crescent 

Island may indicate periods of more limited nitrogen availability (Paerl et al., 2001).  

 Since inflow from the Malewa largely only affects the Main Lake basin, and the majority 

of the Crescent Island basin border is relatively undeveloped, the main source of nutrients 

into the basin may be different from the Main Lake basin. For example there may be a 

greater influence due to re-suspension of nutrients from the swamp area leading to the 

Crescent Island basin that easily dries out. The outflow and waste from the defunct 

sewage treatment in the Northwest corner of the lake, enters into that shallow swampy 

area and may influence nutrients in the Crescent Island basin more than the Main Lake 

basin.  

Particulate microcystin levels in the Crescent Island basin were almost always lower 

than all of the Main Lake sites on a given day (Figure 3.16a), indicating that the health 

risk of drinking water in the Crescent Island basin is even lower than the Main Lake 

basin. However, the potential for increased toxin production due to a Microcystis bloom 

was observed in the shoreline bloom that occurred in the basin on the morning of May 

19, 2011. Compared to the regular sample from the middle of the Crescent Island basin 

the same day, particulate microcystins levels were 60 times greater in that shoreline 

bloom, although the level was still very low at 0.03 µg/L (Figure 3.16a).  

4.4.2. Main Lake basin sites 

A challenge was identified when comparing the various sites of the Main Lake 

basin due to the heterogeneity of the bloom. Although the lake is well mixed, the 

distribution of the bloom was not equal at all the sites, and from week to week there was 

also variability between where the highest biomass was found. This was due to the fact 

that algae move around the lake with wave action, wind and turbulence and it was 

impossible to separate those influences from specific site characteristics that might have 

actually been influencing biomass and toxins in this study. Unfortunately, although more 

detailed and intense sampling sites were added during Field Season 2, the lack of 

cyanobacteria and/or high biomass made it difficult to observe any relationships. 

However, there are a few points to make about two of the sites: 
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Near Malewa River Inflow (Site D) 

This was the only site in the Main Lake basin that was consistently different from 

the others and this difference can be attributed to the constant inflow from the Malewa 

River. The water was generally more brown and turbid due to the loading of dissolved 

and particulate matter, and algal and cyanobacterial biomasses were overall lower. 

Despite the consistently low phycocyanin, particulate microcystin levels were widely 

variable at this site, ranging from 0.02-0.08 µg/L. Therefore the inflow seems to impact 

how well cyanobacteria can establish at this site, but other factors may be impacting the 

microcystin production.  

Kamere public water collection area (Site M) 

This is an area right on the southern shore where community members are often 

found filling up large jugs of water, whether it be for personal use or to sell. This site was 

only directly sampled during Field Season 2, although it is in close proximity to Site L 

(Kamere Beach) that was sampled during both field seasons. Although no cyanobacterial 

bloom was present during Field Season 2 biomass levels and community composition at 

this site were similar to the other sites in the Main Lake and it is recommended that this 

site continue to be monitored.   
 

4.5. Do cyanoHABs pose a present or future health risk to the community? 

Although there are some key areas where further research will enhance our 

understanding of the impacts of these cyanobacterial blooms and cyanoHABs in 

Naivasha, the data suggest that these cyanoHABs do not pose a health risk to the 

community with regards to drinking water toxins. Measured particulate microcystins 

were low in the 2010-2011 cyanoHAB, and while the impacts of chronic low-level 

exposure to microcystin are not well understood, cyanobacterial bloom events are not a 

regular occurrence in the lake. Besides the lake-wide cyanoHAB in 2010-2011 and the 

brief shoreline cyanoHAB in May 2011, our research team has not recorded any other 

cyanobacterial bloom event in the lake.  

This study confirmed the production of microcystin in natural lake samples and 

observed that the controls to its production were not simple or straightforward. The 

dynamic nature of Lake Naivasha means that the potential for more cyanoHAB 

occurrences and increased toxin production might be possible albeit unpredictable.   The 
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climate change forecast for the Naivasha region includes more extreme and unpredictable 

weather events such as drought conditions, followed by intense rainfall, followed by 

drought conditions: these would present the ideal conditions of nutrient influxes and 

stability for further cyanobacterial bloom events in the lake.  

For decades, changes have been proposed for the better management of Lake 

Naivasha, and a number of suggestions in the next section echo similar words to those 

(Everard and Harper, 2002; Becht et al., 2005; Abiya, 2006; Harper et al., 2011)—only 

now the occurrence of cyanobacterial blooms can be added to the long list of the signs of 

Lake Naivasha’s degradation. This continued repetition in the scientific literature just 

shows that the key to fulfilling these actions is within the community and not within the 

pages of limited access journal articles.  
 

4.6. Knowledge-to-action 

4.6.1. Continued monitoring 

Going forward, further research on cyanobacterial blooms and cyanoHABs in 

Naivasha is necessary. In trying to fill knowledge gaps, it will be essential to first 

consider the past and present work being done by the numerous research groups studying 

Lake Naivasha.  It may be that data on nutrient levels were collected during 2010 by 

another research group and so collaborations and sharing of collective knowledge must 

be a priority for all those interested in the well-being of the lake. By doing this, we will 

be better informed to effectively carry out any further research necessary.  

Future cyanoHAB events must be monitored. The dynamic nature of the lake was 

very evident throughout this study, and the drivers and impacts of future bloom events 

may lead to different conclusions. The lake level is currently the highest it has been in 

decades and the lake may have shifted to a different ecological state. This leads to a 

potential roadblock in that although we can continuously monitor lake characteristics, we 

may never find any consistency or predictability with respect to the influences and 

impacts of cyanobacterial blooms and cyanoHABs. In this study, for example, it would 

have been near impossible at the time to have predicted that those precise weather 

patterns would have occurred and caused a bloom. The next bloom event may be driven 

by similar or different factors. While this unpredictability may seem like a drawback, it 

should be used as motivation to implement long-term sustainable solutions to completely 
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eliminate the potential for cyanoHABs. If we were able to predict each bloom event, it 

may lead to a cycle of just utilizing short-vision solutions (artificial mixing techniques, 

use of algaecides) to deal with each occurrence as it came while the overarching causes 

remained unaddressed.  

4.6.2. Prevention of cyanoHABs, implementing change, and sustainability 

Sustainability is one of the main principles of ecohealth and in the case of Lake 

Naivasha, a sustainable lake will be one that can provide the community the necessary 

ecosystem services for many generations into the future. When examining the influences 

to cyanobacterial bloom production in Lake Naivasha (Figure 4.1), it is clear that there 

are some things that cannot necessarily be reversed, such as the pressures from the 

population increase or industry presence. Additionally, the unpredictable weather factors 

that led to the cyanoHAB in this study cannot be controlled at the community level. The 

key areas of intervention impacting eutrophication and cyanoHABs are actually areas that 

impact other ecological issues such as organic loading and persistent organic pollutants 

and metal contamination.  

I. Restoration of  papyrus fringe. The contribution of the loss of papyrus to 

eutrophication has been recognized in the literature (Harper and Mavuti, 2004). 

Various interventions to reestablish the papyrus swamp in the north part of the 

lake have been proposed and are in stages of implementation (Morrison and 

Harper 2009). It is thought that the major trophic changes in Naivasha are due to 

the influence of the wider catchment along the inflowing rivers (and not just the 

immediate lake surroundings) (Kiataka et al. 2002) and so restoring the papyrus in 

that North swamp would moderate the nutrient transfer into the lake that allows 

for the higher biomass, particularly in the Main Lake basin.  

II. Regulation of catchment-wide farming practices. The increased use of fertilizers 

and pesticides in the entire catchment needs to be regulated to ensure that runoff 

from farms contains minimal contaminants. More advanced and sustainable 

irrigation and pest control practices should be implemented to ensure that 

nutrients cannot enter the lake through runoff channels.  

III. Functioning urban sewage treatment. The extent of the impact of human waste, 

from the growing Naivasha town , that enters the lake through the non-functional 
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sewage treatment plant has not been quantified, but it may substantially impact 

nutrient influxes to the Crescent Island basin and Main Lake basin. The status of 

the sewage treatment plant upgrade and repairs is still unclear, and therefore it 

could continue to play a role in future bloom or cyanoHAB events.  

4.6.3. Education, engagement, and empowerment 

A challenge faced in understanding cyanoHABs in the lake is that we are limited to 

what we have been able to observe. We were able to learn a lot about cyanoHAB 

dynamics through this study of one major event in 2010-2011, but we cannot say for sure 

whether these drivers and impacts will be the same every time. The Ontario Ministry of 

the Environment has a program in which citizens can report the occurrence of algal 

blooms and the Environmental Monitoring and Reporting Branch will collect and process 

samples and the information is compiled into a database representing all lakes and reports 

(Winter et al. 2011). The collection of all this information has led to the understanding of 

important trends in bloom timing and distribution in Ontario.  Implementing a similar 

system in Naivasha may prove to be worthwhile, as it could bring about more 

information on cyanobacterial blooms in the lake, and potentially help in our 

understanding of the patterns and extent of their occurrences. The fishermen who work 

out on Lake Naivasha 8 months out of every year could be valuable contributors to a 

program like this.  

Key groups to target in knowledge translation are children and youth. They will 

be the next generation of people capable of implementing the necessary changes in 

Naivasha, but unfortunately they also do not know what their water resource was like 

before development and increased eutrophication. This concept of environmental amnesia 

(in this case across generations) comes from the simple fact that the baseline that the 

younger generations have to compare Naivasha’s health to is not the pristine lake that it 

once was, but rather a lake that, to them, began as a polluted and degraded ecosystem.  

 Overall, the major steps to promoting change is making sure that the community 

members are aware of the different environmental concerns around the lake and are 

properly informed of anything that might impact them, including cyanoHAB occurrences. 

Social media can play a huge role in this because although internet access may not be 

something regularly available for everyone, one thing that has massively expanded in 



79 
	  

	  
	  

East Africa is cell phone usage, and mass communications (often through free or 

affordable text messaging services) are widely used and available. Using social media to 

promote greater awareness and understanding about water quality will foster greater 

empowerment, and by engaging the community in this way, it may provide the 

motivation needed for positive change to occur in Naivasha.  

 

5. CONCLUSIONS 

o A lake wide cyanoHAB bloom occurred in 2010. The bloom was made up of the 

cyanobacterium Microcystis but there was still a large presence of diatoms 

(Aulacoseira and Synedra) in the lake indicating that this was an instance where all 

nutrients were relatively high to support communities of both algae.  

o Factors that influenced bloom initiation included the 1) overall eutrophication of 

Lake Naivasha; 2) prolonged drought (2009) followed by increased rains and lake 

level, and physical sediment disruption (Jan to May 2010) and; 3) stability from June-

Aug 2010, providing conditions ideal for cyanobacterial dominance.  

o Particulate microcystins were detected in the lake, and concentrations were lower 

than the World Health Organization Provisional Guideline of 1µg/L indicating no 

immediate health threat from drinking water.  

o Factors controlling microcystin production are not straightforward, but indicate that 

physiological processes related to nutrients and stressors to growth may need to be 

considered more fully.   

o The substantial presence of Anabaena is something that should be monitored as this 

genus is known for its neurotoxin production including anatoxin-a and saxitoxin.  

o With erratic and unpredictable weather and climate events predicted, there is 

potential for increased occurrences of major cyanoHABs in the future. 

o Since certain factors are unpredictable (weather conditions) or difficult to reverse 

(population increase, industry presence), interventions need to focus on the causes of 

eutrophication that can be controlled at the community/government level which 

include restoring the papyrus fringe, ensuring proper sewage and waste 

treatment, and decreasing pesticide and fertilizer use in the entire basin. 
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o Knowledge translation, community education, engagement and empowerment 

will be necessary in implementing these better management practices of Lake 

Naivasha's ecosystem services, and will ultimately contribute to enhanced health and 

well-being of the lake and community.  
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7. APPENDICES 
 

7.1. Supplements to pigment determination methodology 

Phycocyanin extraction efficiency 

Extracting chlorophyll pigments from glass fiber filter is a well-established 

method known to be efficient; however extraction of phycobiliproteins with this method 

is less common. To ensure that the extraction and analysis from a GF/C filter provided 

accurate values for phycocyanin, a cyanobacteria culture of Microcystis strain 299 was 

used to test that efficiency. Varying volumes of culture were used to represent a 

concentration gradient of 100%, 50%, 25% and 12.5% of phycobiliproteins. The 

representative volume was centrifuged (10 min. 5000g) down to a pellet and also filtered 

onto a GF/C filter. The filter was prepared as described in Section 2.21 and both the filter 

and pellet were extracted according to the methods outlined in Section 2.22. A 

comparison of the phycocyanin concentrations measured from the pellet and the filter are 

below (Figure 7.1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1. Phycocyanin extraction of Microcystis strain 299 from a pellet and filter.   
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Wavelength (nm) Importance 

750 Turbidity of sample 

664 Absorbance peak for chl a 

647 Absorbance peak for chl b 

630 Absorbance peak for chl c 

620 Absorbance peak for PC 

545 Absorbance peak for PE 

Table 7.1. Absorbance wavelengths for determination of pigment concentration. 
Absorbance values were corrected for turbidity/light scattering by subtracting the 
background absorbance at 750 nm. 

Figure 7.2. Absorbance scans for the (a) Chlorophylls and (b) Phycobiliproteins.   

(a) 

(b) 
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7.2  Secchi depth, in situ fluorescence and vertical profile data  

In addition to the methodology described in Section 2.0, additional Secchi depth, 

in situ fluorescence and vertical profile data were collected throughout the study. These 

parameters are important in understanding water turbidity, overall algal biomass and their 

distribution throughout the water column. Due to specific characteristics of Lake 

Naivasha that impact the accuracy of the measurements, such as its shallow nature and 

frequent mixing, these parameters could not be utilized for specific comparisons to 

extracted pigments and microcystin production. Nevertheless, they were still valuable in 

interpreting some of the conditions in Naivasha at the time and therefore the results are 

described below.   

Visibility was quantitatively inferred by measuring the degree of transparency of 

the water with a Secchi disk—a black and white circular weighted plate that is 20 cm in 

diameter. The disk was lowered into the water column, on the shady side of the boat, and 

the average of two depths was taken: the depth where the disk was longer visible upon 

descent and then by lowering the disk even further and slowly ascending, the depth where 

it reappeared again (Lind, 1979; Wetzel and Likens, 1991). The Secchi depth was 

generally measured in the same consistent manner between the hours of 10:00 and 15:00 

to minimize variability due to non-biological factors (Lind, 1979). In productive lakes, 

the Secchi depth can also help estimate the density of phytoplankton (Wetzel, 2001); 

however, turbidity can also be present due to factors other than algal biomass (Lind, 

1986), so other observations and measurements are important in understanding and 

analyzing changes in the Secchi depth. 

 In situ fluorescence of surface waters was measured with the YSI multi-parameter 

water-sonde as described in the methods section of the thesis. In addition, during Field 

Season 1, vertical profiles were taken at Site A (Middle of Crescent Island basin) and J 

(Hippo Point off shore). The sonde was slowly lowered down the water column and it 

recorded measurements at the various depths while it descended. During Field Season 2, 

a vertical profile was taken at each site visited.  
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Results and discussion 

Secchi depth and in situ fluorescence 

Secchi depth measurements for both the Main Lake and Crescent Island basin are 

displayed in Figure 7.3. The Secchi depths overall are shallow in Lake Naivasha, never 

reaching greater than 0.7 m in the Main Lake basin and 1.1 m in the Crescent Island basin 

(Figure 7.3a). The Secchi depth was always deeper in the Crescent Island basin compared 

to the Main Lake basin, and on any given day, the range of values measured in the Main 

Lake basin never overlapped with measurements in the Crescent Island basin. 

In general, for both basins, the Secchi depth was shallower during the period of 

September to mid-November when chl-a/biomass was greater, and was relatively deeper 

in December (Figure 7.3a). After December the Secchi depth remained fairly stable in the 

Main Lake, and yet became shallower, even though algal biomass decreased over that 

time. In the Crescent Island basin the Secchi depth fluctuated, although chl-a remained 

stable, but generally remained deeper than when algal biomass peaked (Figure 7.3a).    

During Field Season 2, more shoreline sites were visited (these sites could have 

greater sediment disturbance that would impact the Secchi depth), and therefore sites that 

were only sampled during this period are displayed in a different colour in Figure B-1a. 

Although no algal bloom was present and algal biomass was less than Field Season 1, the 

Secchi depths in both the Main Lake and Crescent Island basins were generally shallower 

than the previous months of sampling, and were actually more comparable to when algal 

biomass was highest in Sept-Nov 2010 (Figure 7.3a). This is evident even if only the sites 

sampled consistently throughout both field seasons are considered. Qualitative 

observations also indicated more turbid waters during Field Season 2 (Table 3.2) 

therefore other processes besides algal biomass may be impacting the Secchi. 

The surface in situ chlorophyll fluorescence measurements (represented as a 

concentration of chlorophyll in µg/L) also indicate that some other processes or features 

of the lake may be affecting the penetration of light through the lake water (Figure 7.3b). 

While it is known that the absolute measurements of in situ chlorophyll will not 

accurately represent extracted chlorophyll-a biomass, the trend in in situ chlorophyll from 

October to December generally decreased which was also observed with the extracted 

pigments. However, beginning in December 2010, the in situ fluorescence started to       
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Figure 7.3 (a) Secchi depths in the Main Lake and Crescent Island basin of Lake 
Naivasha. In the Main Lake basin each point represents a different sampling site on a 
given day (ranging from N=3 to N=15). Note the reversed y-axis to better represent 
lake depth. (b) In situ chlorophyll concentrations (determined with fluorescent probe) 
in the Main Lake and Crescent Island basin of Lake Naivasha. Each Main Lake point 
represents a different sampling site on a given day (with N = 9 or greater). 

 

(a)	  	  

(b)	  	  
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gradually increase each week and also become more variable at the different sites around 

the lake (Figure 7.3b), despite this being the time of decreased chl-a concentrations and 

ranges (Figure 3.11a). This was also a period where there was an increase in chl-c (Figure 

3.11c) and dominance of Aulocoseira (Figure 3.4a) and lake level decline (Figure 3.1).  

From May to August 2011, the in situ fluorescence ranged even more than in 

February and March 2011 on a weekly basis (Figure B-1b). It should be noted that by just 

focusing on the sites consistently sampled in both Field Season 1 and 2, less variability is 

observed, however overall the ranges of in situ chlorophyll measured are still large and 

values are high considering no bloom was present and the extracted chl-a concentrations 

were relatively lower than the previous year (Figure 7.3b).   
 

Vertical Profiles of in situ  fluorescence 

Although the accuracy of the surface water measurements of in situ chlorophyll 

fluorescence may not be reliable or completely indicative of the algal biomass in this 

lake, the vertical profiles of in situ fluorescence can identify where there is a relatively 

greater amount of algae throughout the water column.  

At the Hippo Point site in the Main Lake basin, the in situ fluorescence generally 

remained very stable throughout the water column, indicative of a well-mixed system, 

although near the sediment there was almost always an increase in fluorescence due to 

the accumulation of detrital algal cells (Figure 7.4).    

In the Crescent Island basin, which is a much deeper location than any spot on the 

Main Lake, there were some instances where in situ fluorescence was greater in certain 

areas of the water column (Figure 7.5). In particular, October 11, 2010 was when 

chlorophyll-a and phycocyanin concentrations were extremely high in Crescent Island 

(Figure 3.14 a, b). Although no surface observations gave indication of this elevated 

biomass, the vertical profile indicates that there may have been a relatively larger amount 

of algae approximately 1 m down the water column. Given that the Secchi depth was 

shallow at 0.65 m, this mass of algae dominated with Anabaena and Ceratium (Figure 

3.4b), may not have been visible from the surface waters. Additionally, compared to the 

Main Lake basin, surface in situ fluorescence measurements tended to be more stable 

(Figure 7.3b) and so the shift/decrease seen November 8-22 in the vertical profiles 

(Figure 7.5) may be indicative of the changes in biomass in Crescent Island.  
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Figure 7.4. Vertical profiles of in situ chlorophyll fluorescence at Hippo Point of the 
Main Lake basin of Lake Naivasha. Note that all axes scales up to December 20, 2010 
are identical, but the in situ chlorophyll fluorescence scale changes from Jan-March.   
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Figure 7.5. Vertical profiles of in situ chlorophyll fluorescence in the Crescent Island 
basin of Lake Naivasha. Note that all axes scales within the figure are identical, but 
they differ from Figure 7.4.  
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7.3 Algal blooms, dissolved oxygen and pH 

The presence of the cyanobacterial bloom studied in this thesis and the 

corresponding high biomass of all algae (represented by chlorophyll-a levels) allowed the 

opportunity to assess how the bloom impacted the dissolved oxygen dynamics in Lake 

Naivasha.  In situ DO, pH and extracted chl-a data from Field Season 1 (September 2010 

to March 2011) was examined to determine whether any relationships existed.   

Introduction: Algal blooms and Dissolved Oxygen (DO) changes 

Decomposition of an algal bloom often causes declines in the DO concentration 

of the water due to an increase in the organic material the senesced algae provide for 

bacteria to rapidly consume (Reynolds and Walsby, 1975; Paerl et al., 2001). This rapid 

breakdown of organics causes substantial consumption of oxygen through bacterial 

respiration, and with no considerable photosynthesis occurring since the bloom has died, 

DO may remain low for a prolonged period of time until it can be replenished from the 

atmosphere or from an increase in productivity. This can have considerable effects on 

aquatic organisms, in particular large fish, which have the greatest demand for oxygen. A 

general guideline is that DO levels from 2-4 mg/L can cause fish distress, so when levels 

like this are widespread in a lake for an extended time, a fish kill event could occur 

(Francis-Floyd, 1992). Fish kill events are commonly reported within tropical lakes that 

support cyanobacterial blooms, for example, Lake Victoria (Ochumba, 1990).  

DO changes in water from algal or cyanobacterial bloom decomposition 

obviously do not impact drinking water and human health directly; however the indirect 

consequences are important to consider because DO changes impact fisheries. For many 

communities living near lake ecosystems, especially those in developing countries, fish 

represents a major source of food and protein (Otiang’a-Owiti and Oswe, 2007). The 

nutritional benefits of fish for both children and adults is very important and if access to 

that source of food is diminished due to a fish kill there may not be an affordable or 

suitable alternative available. In communities that are very dependent on that economic 

resource, fish kills could have major repercussions not only for the industry and 

economic gains of a region as a whole, but also for the individuals whose employment 

and livelihood are reliant on being able to perform their job (Otiang’a-Owiti and Oswe, 

2007).   
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Results  

Main Lake basin 

When data for the dissolved oxygen (DO) from the 10 Main Lake basin sites were 

compared, it was clear that they fell into two groups: a group where dissolved oxygen 

was generally higher and less variable (6 sites; Figure 7.6) and a group where the 

dissolved oxygen was generally lower and had large fluctuations (4 sites; Figure 7.7). 

These groups of “High DO sites” and “Low DO sites” are distinguished in the results.  

There was only one point within the High DO group, in wich DO was less than 4 

mg/L (Figure 7.6). This occurred at site K (Oserian Bay) on November 8, 2010, when 

that area of the lake was densely covered with water hyacinth. This macrophyte cover 

was substantial enough to inhibit light pentration and therefore decrease photsynthesis 

and dissolved oxygen. This point was still included in all subsequent analyses.  

 Figure 7.8a shows that the low DO sites only rarely represent the highest biomass 

concentration(s) measured on a given day. Dissolved oxygen varies around the lake on a 

given day and from September to December the difference from the maximum to 

minimum was usually around 2 mg/L (Figure 7.8b). During this same period dissolved 

oxygen concentrations remained fairly stable between 6-8 mg/L.   

 A decline in chl-a concentrations occurred on approximately November 22, but 

there was no major corresponding decline in dissolved oxygen on that date which could 

be because biomass levels were still relatively high, and there was still presence of the 

cyanobacterial bloom on the lake (Figure 3.24a, Table 3.2). However after this point in 

time a clear change in the variability of dissolved oxygen levels was observed. An intense 

storm and heavy rains occurred on November 30, 2010, and while chl-a concentrations 

remained relatively stable at both the High and Low DO sites (when compared to 

previous months), a major difference was seen between these sites in terms of dissolved 

oxygen concentrations (Figure 7.8a,b). The High DO sites remained high, within a small 

range and even increased, whereas the Low DO sites started to diverge, the range of 

concentrations increased and overall concentrations slightly declined (Figure 7.8b). Some 

Low DO sites on a given day were comparable to the High DO group of sites, but there 

were usually measurements of 4 mg/L or less at multiple sites from December 2010 to 

March 2011 (Figure 7.8b). 
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Figure 7.6. High DO sites.  
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Figure 7.7. Low DO sites  
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Figure 7.8. (a) Chlorophyll-a, (b) Dissolved Oxygen, and (c) pH from September 
2010 to March 2011 in the Main Lake basin of Lake Naivasha. For each graph the 
darker symbols represent the group of high DO sites and the white symbols represent 
the low DO sites.  

(a)	  	  

(b)	  	  

(c)	  	  
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 pH can be used to infer photosynthesis—higher pH can indicate greater 

photosynthesis—as this process utilizes CO2, thereby limiting the formation of carbonic 

acid and hydrogen ions in the water, which decreases pH.  pH measurements were lowest 

when chl-a was highest in October and November 2010 (Figure 7.8c). pH steadily 

increased weekly starting in December 2010 until March 2011. In general throughout the  

entire study period, the range of pH at most sites on a given day was a relatively stable 

0.5 pH units. Each day there was always about 2-3 sites with a much lower pH compared 

to most of the other sites and these were often from the Low DO group (Figure 7.8).  

While Figure 7.8 looked at the overall changes over the study period, the 

variables were plotted against each other to determine if there were any strong 

relationships (Figure 7.9). No linear relationships could be statistically determined for 

DO vs. chl-a and pH vs. chl-a (Figure 7.9a,b).  There seemed to be a relationship 

between pH and DO, where, as pH increased so did DO, although with all points 

considered the relationship was not statistically linear (Figure 7.9c). The subset of the 

data representing the peak bloom period up until Nov. 15, 2010 did show a statistically 

linear relationship albeit not very strong (R = 0.69, r2 = 0.48, p < 0.001, N = 112), and is 

highlighted by the white symbols in Figure 7.9c).  

Crescent Island basin 

In the Crescent Island basin, the highest chlorophyll-a concentrations, and therefore 

phytoplankton biomass were observed for three weeks in October 2010. On November 8, 

after 2 weeks of declining phytoplankton biomass, a very large drop in both dissolved 

oxygen and pH was observed (Figure 7.10a,b,c), marking the lowest surface DO 

measured in Crescent Island during this study. Separate to this major instance of a 

biomass change however, there does not seem to be any overall relationship between 

chlorophyll-a levels and DO, which is also evident in the lack of significant relationship 

between the two variables in Figure 7.11a. Furthermore no significant correlation was 

seen between chlorophyll-a and pH (Figure 7.10b), but it is clear that the DO does 

fluctuate a lot from week to week in the Crescent Island basin (Figure 7.10b).  Some of 

these fluctuations do tend to correspond to the changes in pH (Figure 7.10 b,c), which 

translated  to a weak regression between DO and pH in the data measured (Figure 7.11c; 

R = 0.62, r2 = 0.39, p < 0.001, N = 30). 
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Figure 7.9. (a) DO vs. chl-a (N = 213), (b) pH vs. chl-a (N = 213) and (c) DO vs. pH 
(N = 290) from September 2010 to March 2011 in the Main Lake basin of Lake 
Naivasha.  
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Figure 7.10. (a) Chlorophyll-a, (b) Dissolved Oxygen, and (c) pH from September 
2010 to March 2011 in the Crescent Island basin of Lake Naivasha.  

(b)	  	  

(c)	  	  

(a)	  	  
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Discussion  

In Crescent Island there was a clear decline in both DO and pH when the algal 

biomass decreased in November indicating a strong association between increased 

biomass decomposition following photosynthesis and potential fish kills (Figure 7.10).  

In the Main Lake basin there was not a clear decline in dissolved oxygen when 

the biomass decreased. However what is clear is that when bloom biomass was highest, 

there was less variability in dissolved oxygen concentrations at all sites, and levels were 

fairly high, indicating that the bloom was tightly controlling the photosynthesis and 

respiration changes (Figure 7.8b).  However when the bloom became less dominant, there 

was a change in dissolved oxygen variability: some sites (the ‘high DO sites’) still 

remained high, while the ‘low DO sites’ largely fluctuated and there were multiple 

instances where it was lower than 5 mg/L. It cannot be determined whether this was 

solely due to the change in bloom dominance because a major storm event also occurred 

on November 30 and it likely could have been a combination of both. The storm could 

have been what prevented the bloom from recovering, and the changes in DO show 

which areas of the lake may be more susceptible to organic loading and unable to recover 

from productivity changes. One reason why we perhaps did not see a sharp decline in DO 

as expected was because this bloom persisted. There were periods where the biomass did 

decline, but it was not an instance of total bloom collapse within a short period of time.   

Additionally, it’s interesting to note the stronger relationship between DO and pH, 

but the weak relationships between DO and chl-a and pH and chl-a (Figure 7.9). When 

the biomass was highest, the pH was not high, indicating a potential disconnect between 

growth (and respiration) and the amount of photosynthesis (Figure 7.8). This suggests 

that there was may have been more than enough CO2 in the water to satisfy algal needs 

and also maintain that relatively lower pH. The buoyant cyanobacteria may have also 

been utilizing atmospheric CO2 just as it was diffusing into the water as a carbon source 

rather than any of the dissolved inorganic carbon presenting the water column (Paerl and 

Paul, 2012). 

In summary, algal blooms do seem to impact the dissolved oxygen dynamics, and 

as further analysis on other controls to dissolved oxygen in the lake are completed, a 

better understanding of the magnitude and role that algal blooms play will be clarified.  
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7.4 Climate Change, cyanoHABs and Lake Naivasha 

There has been a growing body of literature focusing on the impacts of regional 

and global climate change on the proliferation of cyanoHABs in eutrophic systems (Paerl 

and Huisman, 2009; Paerl et al., 2011; El-Shehawy, 2012; O’Neil et al., 2012; Pearl and 

Paul, 2012). While there are many complex interactions for each of the key issues, they 

will briefly be discussed here in the context of Lake Naivasha.  

Temperature 

 Increased water temperatures favour the growth of cyanobacteria over eukaryotic 

algae (Paerl and Husiman, 2011). Whereas diatoms cannot withstand temperatures 

greater than 25 °C, the growth rates of cyanobacteria are maximal at temperatures from 

25-35 °C. The water temperature during this study was fairly consistent between 20-23 

°C and we saw that both cyanobacteria and diatoms were able to thrive in Lake Naivasha. 

If these temperatures rise, this could further benefit the growth and dominance of 

cyanobacteria such as Microcystis, but then also prevent greater dominance of the 

diatoms which have always been a major component of the phytoplankton in the lake. If 

this occurs, the issue of cyanoHABs will be of even greater concern in Lake Naivasha.  

Vertical Stratification 

 The density of water declines as temperatures increase and therefore the warming 

of surface water will promote greater stratification. This should not impact the shallow 

Main Lake basin of Naivasha in which wind patterns are strong enough to influence 

frequent mixing. However, the deeper Crescent Island basin—which currently only 

stratifies occasionally—may see increased stratification that will allow for greater 

proliferation of cyanobacteria, particularly the genus Anabaena which is already 

dominant in the basin and is known for its potential to produce neurotoxins. 

Carbon Dioxide and pH 

 Cyanobacteria and all algae have a high demand for CO2, therefore dissolved 

inorganic carbon can be limiting for photosynthesis and growth (Paerl et al., 2011). 

Increased CO2 in freshwater (due to increased atmospheric CO2 and its subsequent 

dissolution) could then be advantageous for all algal growth and its rapid utilization could 

increase pH. However in these more alkaline and dissolved CO2-limited scenarios, 

cyanobacteria would then have an advantage because of their ability to use bicarbonate as 
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their carbon source (Kaplan et al. 1991), and because their buoyant properties allow them 

to also utilize atmospheric CO2 as it is diffusing into the water. Therefore overall, 

atmospheric CO2 increases may favour cyanoHAB proliferation over other algal bloom 

species. The carbon dynamics of Lake Naivasha need to be further examined as this is 

potentially another avenue that could lead to greater cyanoHAB production.  

Hydrologic Changes 

 While Naivasha has already experienced dynamic weather patterns of drought and 

heavy rains, these changing patterns are expected to continue and potentially become 

more intense. Given what we have learned about the drivers to the cyanoHAB event in 

this study, the potential for dramatic fluctuations in precipitation and drought should be 

concerning for the future of Lake Naivasha with respect to cyanobacteria. 
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