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ABSTRACT AND KEYWORDS 

Distal Radius Fracture (DRF) is one of the most frequent of all human bone fractures. 

Wrist and/or finger range of motion (ROM) and grip strength are standard outcome 

measures used by clinicians to evaluate recovery after a hand injury. ROM is considered 

to be an important component of joint mobility and relates to measures of functional 

impairment and disability. Impaired wrist and hand ROM are related to a decrease in grip 

strength, grasp ability, fine manipulation, and hand function. The relationship between 

ROM and other physical impairments as they relate to patient-rated outcomes after DRF 

have not been well identified. 

The thesis includes three studies. The first study (Chapter 2) is a systematic review and 

meta analysis of existing literature on the effects of laser irradiation on bone regeneration, 

suggesting that low power laser can enhance biomechanical indicators of bone during 

fracture healing in animal models. The second study (Chapter 3) explores the intra-rater, 

inter-rater, and inter-instrument reliability and construct validity of two digital electro 

goniometers to measure active wrist and active/passive index finger ROM in patients 

with limited wrist and/or hand. The results of this study demonstrate that digital 

goniometry is highly reliable for all measures across occasions, raters and instruments. 

The moderate correlation between individual joint motions and patient-rated self-reported 

function suggests that joint motion impairments contribute to functional disability. The 

third study (Chapter 4) has a specific focus on the relationship between physical 

impairment outcome measures and patient-rated wrist pain and function in early and late 

stages after distal radius fracture. Wrist flexion, extension, supination, pronation, grip 

strength, age and gender, were found to contribute significantly with wrist pain and 

function. Good wrist arc of motions (close to normal) and moderate grip strength must be 

recovered to have optimal wrist functional outcomes after distal radius fracture. The 

thesis concludes with a discussion of the next steps required toward understanding 

effective mechanisms to promote bone healing and earlier function after DRF, which may 

lead to more effective patient-centered treatment protocols. Keywords: Bone Healing, 

Distal Radius Fracture, Physical Impairment, Patient-Rated Wrist Evaluation.                                            
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1.1 Bone Injury and Fracture in Upper Extremity – Distal Radius fracture    

A bone fracture is a complete or incomplete break in the continuity of a bone.1 A fracture 

can be the result of high force impact or stress, or as a result of certain medical conditions 

that weaken the bones, such as osteoporosis or cancer.1 Approximately 5.6 million bone 

fractures occur yearly in the United States.2 Pain, tenderness, bleeding, bruising, tingling, 

numbness, loss of pulse, loss of sensation, weakness, instability, deformity, paralysis and 

loss of function are common signs and symptoms of bone fractures.3 Anatomical 

classifications may discriminate fractures subtypes based on the involved parts of the 

body, such as head or arm fractures, which can be followed with more specific 

localization. There are a number of fracture classifications based on various criteria.1   

In 1814, Abraham Colles described a wrist fracture with a remarkable deformity.4 He 

reported that the fracture caused “considerable lameness”, but eventual “perfect freedom” 

in all its motion.4 The injury was defined as a displaced fracture of the lower end of 

radius within 1.5 inches of wrist joint.5 About 200 years after the initial description by 

Colles, this common fracture is still controversial for its classification, treatment, 

assessment and clinical outcomes. Nonunion in distal radius fracture (DRF) is 

uncommon, but many immediate or late complications may occur following this 

fracture.6 The rate of reported complications after distal radius fracture varies from 6% to 

80%.7-9 These complications may result from the fracture or its treatment. Mckay et al.9 

reviewed the incidence of complications and constructed a checklist for the complications 

following distal radius fracture. The authors identified that patients and physicians 

differently reported the complications rate after distal radius fracture (27% versus 21%) 9, 

since patients focused on symptoms, whereas physicians classified the complications 

based on diagnosis. Immediate complications include nerve and/or skin injury, 

compartment syndrome, associated injury, cast complications, loss of reduction, 

infection, neurologic issues and tendon ruptures. These happen in the early stages of 

distal radius fracture (earlier than 6 weeks) 6, whereas the disorders such as bone, joint, 

nerve, or soft tissue complications may happen in late stages (after 6 weeks). Nerve 

complications, complex regional pain syndrome, arthrosis, delayed or malunion, 

Dupuytren’s disease, and tendon issues are common late complications following distal 
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radius fracture.6,11,12 Although nonunion in distal radius fracture is rare (0.2%)10, these 

fractures can sometime result in permanent pain and impairment, and should not be 

considered as a minor injury.11-14  

1.2 Epidemiology and Prevalence 

Although the descriptive epidemiology is well understood and researchers have actively 

investigated the risk factors, there are relatively little epidemiologic data available for 

upper extremity fractures.15 The data for extremities fracture in industrialized countries 

indicate they occur at the most proximal and the most distal ends of the extremities, with 

the highest incidence being among the elderly.15 Fractures of proximal humerus and 

distal forearm in adults are common in upper extremities, while hip and ankle fractures 

are dominant in lower extremities.15,16 Fractures occur at higher rates in women, 

including upper extremity fractures.15 Blacks of either gender have lower risk for these 

fractures as compared with other ethnicities.17 The risk of fracture correlates well with 

age.18 Different studies reported similar prevalence and incidence rates for upper 

extremity fractures based on age, gender, ethnicity, geographical location, and other 

factors.19,20 For instance, the incidence of childhood fractures in Malmo - Sweden among 

8682 cases between 1950 and 1979 showed that boys in all age groups had higher upper 

extremity fracture rates than girls (62% vs. 38%).21 However, the incidence and gender 

ratio changes with increasing age.18,19,21  

There are many studies published regarding fracture in the forearm.15,22,23 These have the 

highest rate among other types of upper limb fractures.22 The incidence of forearm 

fractures has increased, beginning at ages 40 to 50, but the rate becomes steady around 

age 60. 22 The risk of forearm fracture is generally lower in men, than in women; 

however, the rate increases slightly after midlife.15 Fracture of the proximal shafts of both 

radius and ulna is less common than the distal ones.24 The incidence of small bone 

fracture in the wrist and hand is lower, with approximately equal rates in men and 

women, but significantly lower in Blacks.17 Fracture of distal radius represents 

approximately 16% of all fractures treated by orthopaedic surgeons.25 Distal radius 

fracture is estimated to be more than one-sixth of all fractures treated in the emergency.26 
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The National Hospital Ambulatory Medical Care Survey25 indicated that there were 

approximately 644,985 fractures of the distal radius in 1998 in the United States. The 

epidemiologic studies 27,28 have reported that the incidence of distal radius fracture 

increases in both genders with advancing age which occurs frequently because of falls. 

The distribution of distal radius fracture peaks in three populations: children ages 5-14, 

men under age 50, and women over the age of 40.29 Among patients older than 60, the 

rate of distal radius fracture is seven times higher in women than that in men.30  

Approximately 75% of distal radius fractures occur due to falls from standing height and 

approximately 13% occur during sports activities25, but the pattern of distal radius 

fracture varies with respect to age. Among younger people, this fracture is most likely 

due to fall from a height or sports activity. Older people suffer this fracture because of 

falls from standing height.26  Epidemiologic studies indicate that distal radius fracture in 

younger adults is not strongly related to gender, and occurs approximately equally in both 

genders.28,31 It should be considered that distal radius fracture in this population is often 

related more to high energy accidents than to simple falls.32,33 The risk of distal radius 

fracture rises in both sexes with age, especially in postmenopausal women when 

osteoporosis has developed as a critical risk factor.34-36 Some researchers believe that 

distal radius fracture is the most common fracture when osteoporosis is present.29,37 This 

condition has been linked to estrogen deficiency and reduced mineral density in 

bones.36,38 However, there is controversy over the role of osteoporosis as a risk factor for 

distal radius fracture, since it has been reported that woman with distal radius fracture 

have nearly similar mineral content in bones compared with the age matched controls 

without fracture.39,40 On the contrary, several studies have implicated postural instability 

as an important risk factor for a fracture of distal radius.41-43 Postural instability (fall) has 

been reported to be the most common etiology for distal radius fracture in women older 

than 50.41 In the aging populations, the pattern of distal radius fracture is consistent with 

the falls.42,43 Falls are more commonly seen among late middle-age women; however, 

both genders are equally affected in extreme old age.41  Risk factors for distal radius 

fracture in the elderly have been studied extensively.44,45 Decreased bone mineral density, 

postural instability, gender, ethnicity, heredity, and early menopause have all been 

demonstrated to be risk factors for this injury.44-47 The prevalence of distal radius fracture 
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has recently increased in younger people, since they engage more often in high energy 

sport activities.46,48,49 

1.3 Bone Healing in Upper Extremity after Distal Radius Fracture 

Bone healing after fracture is an important homeostatic process, and depends on 

specialized cell activation and bone immobility during the repair process.50,51 Bone repair 

is an essential process for reconstitution of skeletal integrity after trauma or skeletal 

surgery.50 Fracture reduction and fixation are prerequisites for optimal bone healing; 

however, a variety of other factors, such as age, nutrition, and medical co-morbidities, 

influence the healing process.52,53 In general, fracture healing is initiated by a sequence of 

inflammation followed by repair, and ends up with remodeling, thereby restoring the 

bone to its original state.54,55 Once the damaged cells and matrix have been replaced 

during the repair phase, a prolonged remodeling phase follows.56 Although the 

components of healing are similar in almost all fractures, the amount and quality of bone 

repair may vary based on type of cancellous or cortical bone, the extent of injured soft 

tissue around the fracture, and other factors which will be discussed below.  

 

There are two types of bone healing processes: endochondral ossification and 

intramembraneous bone formation. Endochondral bone formation takes place closest to 

the fracture site where the oxygen tension is low and vascularity is disrupted. On the 

other hand, intramembraneous bone formation occurs distal to the fracture where intact 

vasculature is present.53 Another key factor which affects the progenitor cells at the site 

of fracture is the level of mechanical stability. Intramembraneous ossification is activated 

in stabilized fractures, whereas endochondral ossification is activated in non-stabilized 

fractures and results in production of abundant cartilage at the fracture site.53 The level of 

mechanical instability at the fracture site is the key to the release of cytokines, which 

attract various local progenitor cells into the fracture area.52 A closed clavicle fracture 

without internal fixation is an example of an unstable fracture repair (i.e., endochondral 

ossification), whereas a stabilized fracture of the radius diaphysis (by internal fixation) is 

an example for stable fractures repair (i.e., intramembraneous ossification). 
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1.3.1 Endochondral Bone Ossification 

 

Bone fracture damages cells, blood vessels, matrix, and the surrounding soft tissues, such 

as the periosteum and muscles, leading to hemorrhage and hematoma within the 

medullary canal, between the fracture ends and the elevated periosteum. The hematoma is 

considered as the first step in the repair process, and loss of hematoma leads to impaired 

fracture healing process.57-59 Damage of the bone blood vessels leads to malnutrition and 

death of osteocytes. Severe damage in the periosteum, bone marrow, and the surrounding 

soft tissue may contribute to tissue necrosis at the fracture site. Inflammatory mediators 

released from platelets and injured cells cause blood vessel dilation, which leak plasma 

into the fracture area, and produce acute edema in the fracture site.58,59   

Hematoma, surrounding periosteal and soft tissues that contain blood vessels may 

facilitate the initial stages of repair.58,59 Open fractures and the treatment of fractures by 

open reduction disrupt hematoma formation and may slow down the repair process. The 

reason why hematoma formation affects fracture healing is still unclear; however, it is 

believed that hematoma provides a fibrinous scaffold that facilitates migration of certain 

cells to initiate the repair process. More importantly, growth factors, such as platelet-

derived growth factors (PDGF) and transforming growth factors beta (TGF-β) and other 

proteins, are released by platelets and injured cells in the hematoma. These factors have 

an important role early in the healing process, including cell migration and proliferation, 

and the synthesis of new tissue matrix.58,60  

Vascular proliferation, i.e., angiogenesis, occurs at the fracture site. The invading vessels 

are surrounded by pericytes that are a source for mesenchymal stem cells (MSC).61 The 

most important mediators of this angiogenesis process are fibroblast growth factor (FGF); 

however, the exact nature of stimulation of vascular invasion is still unclear. The fracture 

ends become necrotic and are resorbed together with the injured cells at the fracture site. 

The cells responsible for the resorption are osteoclasts, which originate from a different 

cell line.62,63 They are derived from circulating monocytes in the blood and monocytic 

precursor cells in the bone marrow, whereas osteoblasts originate from the periosteum or 

undifferentiated mesenchymal stem cells. Some of these cells originate from the injured 
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tissues, while others migrate to the fracture site with blood vessels. Angiogenesis 

provides a large source of undifferentiated mesenchymal stem cells which differentiate 

into different cell types. In addition, these undifferentiated mesenchymal stem cells 

produce bone morphogenic protein (BMP), which is an important growth factor for the 

differentiation process.64 Periosteal cells of the cambium layer (i.e., inner layer of 

periosteum) have an especially prominent role in the healing process and form the earliest 

bone material. This role is more visible in children and young people because the 

periosteum is thicker and more cellular. The periosteum becomes thinner with increasing 

age and its contribution to fracture healing becomes less apparent.64 Osteoblasts from the 

endosteal surface also participate in bone formation. Most cells responsible for 

osteogenesis appear in the fracture site within the granulation tissue that replaces the 

fracture hematoma.63,64  

 

Mesenchymal stem cells proliferate, differentiate, and produce the callus that consists of 

fibrous tissue, cartilage, collagen and woven bone. Biological growth factors, such as 

BMPs, stimulate the early differention process.65 The callus covers the fracture parts, and 

provides either the hard (bony) callus or the soft (fibrous) cartilaginous callus. The new 

bone at the fracture site, which is formed by intramembraneous ossification, is the hard 

callus. Soft callus is formed in the central regions, where there is relatively low oxygen 

tension, and consists primarily of cartilage and fibrous tissue. Bone gradually replaces 

this cartilage through the process of endochondral ossification. The process continues 

until the new bone bridges the fracture site and the continuity of bone is established.66 

The composition of the fracture callus matrix changes through the repair process. The 

cells gradually replace the clot with a loose fibrous matrix, containing 

glycosaminoglycans, proteoglycans, and types I and III collagen. The tissue is then 

converted to dense fibrocartilage or hyaline-like cartilage. In the next stages, the new 

woven bone remodels to lamellar bone and the content of collagen and other proteins 

approaches normal levels. Increasing bone mineral content is associated with a rise in the 

stiffness of the callus.66 Clinical bone union occurs when the stability increases, because 

of the internal and external callus formation, and the fracture site becomes stable and 

pain-free. Radiographic healing occurs usually after clinical healing, when plain 
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radiographs show trabecular and cortical bone crossing the fracture site. However, even 

at this stage, healing is not complete yet. The new bone is weaker than normal bone; 

however, it gradually gains strength during the remodeling phase.  

 

Remodeling begins with replacement of the woven bone by lamellar bone, and resorption 

of excessive callus. The new bone tissue at the fracture site moves toward rigid stability 

by progressing through calcified cartilage, woven bone, and finally lamellar bone. The 

important and functional consequence of remodeling is an increase in mechanical 

stability. The remodeling phase may continue for years after clinical and radiographic 

bone union.67 It is notable that the bone density at the fracture site may be decreased 

years after the fracture, even after a successful fracture healing.68,69 The reason for this 

density deficiency unclear but it should be considered that a fracture may cause persistent 

changes in the tissues and function.70  

 

1.3.2 Intramembraneous Bone Ossification 

 

When the fracture site is rigid and stable (by internal or external fixation), fracture 

healing occurs with less callus formation. This type of fracture healing is refered to 

intramembraneous bone ossification or primary bone healing, indicating that the healing 

process occurs without the formation and replacement of callus.71 In the presence of full 

contact between the fracture ends, lamellar bone can form directly across the fracture line 

by generation of new osteons.72 

 

There is a special cone-shaped group of osteoclasts that cuts across the fracture line; 

osteoblasts follow these osteoclasts and deposit new bone, and blood vessels follow the 

osteoblasts at the base of the cone.71 Following the specific cone (called cutting cone), the 

new bone matrix, osteocytes, and blood vessels form new Haversian system through the 

fracture site.71 In the presence of gap between fracture ends, osteoblasts fill the defect 

with woven bone in first step. Then, Haversian remodeling begins and re-establishes 

cortical bone.71-72 Cutting cones move through the woven bone in the fracture gap, 

depositing lamellar bone and providing cortical bone and blood supply across the fracture 
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site without the formation of callus. In many impacted epiphyseal, metaphyseal, and 

vertebral fractures, both cancellous and cortical bone surfaces provide ample stability to 

establish primary bone healing where the bone surfaces are in direct contact.73 Figure 1.1 

represents the stages of bone healing after a fracture.   

 

Figure 1.1: Bone healing after a fracture. (A) The cambium layer of periosteum contains 

progenitor cells that can differentiate into bone and cartilage. (B) Blood supply is 

disrupted and a hematoma is formed. Progenitor cells differentiate into osteoblasts and 

facilitate intramembraneous bone formation where the blood supply is preserved, and 

differentiate into chondrocytes to facilitate endochondral bone formation where the blood 

supply is injured. The numbers show the osteogenic layers with newly mineralized tissue 

(1), in tissues supporting osteogenesis (2), and tissues supporting chondrogenesis (3). (C) 

Intramembraneous and Endochondral bone formation proceed to the fracture site. (D) 

Cartilage tissue continues to mature and forms bone callus in the fracture site. 

Revascularization happens in the callus. Chondrocytes perform terminal differentiation 

and the matrix is mineralized leading to woven bone formation. (E) The remodeling 

process proceeds with osteoclasts and osteoblasts facilitating the conversion of woven 

bone into lamellar bone. The appropriate anatomic shape is reconstructed in this stage.   

© Adapted from American Society for Bone and Mineral Research.73  



10 

 

1.4 Physical Modalities and Bone Healing 

 

Over the past 50 years, researchers have looked into various physical and biologic 

methods to develop new ways of enhancing fracture healing.74 Early work on physical 

agents as mediators of bone healing was performed by Yasuda, Noguchi and Sata who 

studied the electrical stimulation effects on bone healing in the mid 1950s.50,75 In 

subsequent years, other researchers have studied effects of variety of physical modalities 

as potential mediators of bone healing. The physical agents include mechanical 

stimulation76, electromagnetic fields2, capacitive-coupled electrical stimulation77,78, direct 

current50,79, microcurrent80, low intensity pulsed ultrasound81-84, and laser radiation85,86. 

With increasing influence of lasers in different medical specialities in 1970s, the 

researchers focused on potential effectiveness of this new physical agent on bone 

healing.87-89 Although, in recent years, clinicians have recognized the importance of these 

non invasive physical modalities on healing of different connective tissues, there is still 

controversy on the characteristics and effectiveness of these physical agents.84,85,89    

 

1.5 Function, Structure, Activity and Participation after Distal Radius Fracture    

The goal of any type of treatment of the upper extremity is to restore function not only in 

the affected site, but also in the entire upper extremity and the body.90 Performing 

accurate and complete physical examination is the first step of a successful treatment 

plan, regardless of the type of injury. Function is the most important key in the treatment 

plan. An injury in a small finger could severely affect life of a piano player. The upper 

extremity is considered an integrated system that enables the person to do most 

complicated tasks; from throwing a ball to producing a fine work of art.90  

 

In 1980, the World Health Organization (WHO) published a universal framework for 

classifying the consequences of disease.91 This classification system included the domains 

of body function and structure, activities, participation, personal and environmental 

factors.92,93 The method provided an international, comprehensive and psychosocial 

model for the concept of health and delineated the multifaceted nature of health. This 

descriptive method was known as the International Classification of Functioning, 
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Disability and Health (ICF), which led to changes in the measurement of health 

outcomes, specifically the evaluation of disability and handicap.92,94 Complications 

within these domains are called impairment, activity limitation, and participation 

restriction.95 Using this model, researchers have been able to evaluate how well the 

existing outcome measures assess the overall health concept associated with specific 

conditions.94,96-100  

 

Function is a broad concept, beyond physical function and mobility.93 Based on the ICF 

framework, function is an umbrella that covers body functions, structures, activities and 

participations.92 Function is not a fixed state for all individuals. Rather, it must be 

considered as the result of dynamic interaction between health, environment and personal 

characteristics.93 Full function is achieved if there are no health-related complications, 

including any problem with function, structure, activities and participations.92 For 

instance, effective treatment of a patient with distal radius fracture successfully prevents 

structural impairment, decreases pain and stiffness, and enables the person to perform full 

range of activities and participation in social events. Conversely, disability, which is a 

negative concept for function, is achieved if there is structural impairment, pain, stiffness, 

limitations of activities or participation, despite the treatment.92 The relationship between 

impairment, activity limitation and participation restriction is bidirectional and can be 

affected by environmental factors, such as social or healthcare support and other personal 

factors, such as age, gender, weight, height or ethnicity.93,94  

 

Most previous studies have reported that patients with distal radius fracture achieve a 

substantial restoration of function by 6 months after fracture treatment.96,101-104 Reported 

clinical outcomes of distal radius fracture often focus on impairment in anatomical 

structures (i.e., radiographic) or physical impairments (i.e., range of motion, key pinch, 

grip strength, pain, weakness, or level of dexterity). Functional assessment of activity 

limitation and participation restriction can be based on self-administered functional 

assessment methods such as patient-rated wrist evaluation-PRWE, and/or Michigan Hand 

outcome Questionnaire-MHQ). Some researchers have examined broader concepts of 

outcome following distal radius fracture that represent performance in work, household 
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tasks, self-care, recreational, and social activities.103,105,106 Results of these studies suggest 

that despite surgical and rehabilitation treatment care after distal radius fracture, patients 

continue to have difficulty with work, self-care, sports, and leisure activities.103,105,106 

Figure 1.2 represents framework of the ICF which is composed on patient’s function and 

disability and the contextual factors that impact overall health after distal radius fracture.   

 

 

Figure 1.2: Framework of the ICF which is composed of patient’s function and disability 

(based on patient-rated wrist pain and function evaluation) and the contextual factors that 

impact overall health after distal radius fracture. 

 

1.5.1 Measurement of Physical Impairments after Distal Radius Fracture 

 

Traditionally, the measures used to evaluate distal radius fracture have mainly focused on 

wrist and hand impairment, including range of motion, strength, pain or structure like 

radiographic data. However, impairment does not always necessarily reflect activity 

limitation or participation restriction.105,107,108     
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1.5.1.1 Range of Motion: Testing ROM, as a clinical measure for impairment, is an 

accepted method of musculoskeletal assessment, recommended by the American Medical 

Association.109 This method faces some challenges and controversies against the 

relevance of mobility deficits with functional loss. ROM can be measured by traditional 

manual or advanced electro digital goniometers.110,111 (Figure 1.3)  

 

Figure 1.3: Traditional (left) and digital (right) goniometer can be used for range of 

motion measurement. 

1.5.1.2 Grip and Pinch Strength: Grip strength is the force applied by the hand to keep, 

suspend or pull on an object.112 The average values for grip strength can be different 

based on the age, gender, power of muscles, measurement position and types of grip. In 

medicine, grip strength is often used as a specific type of hand strength.112,113 The 

purposes of grip strength in medicine can be to identify loss of muscle functionality, 

evaluate treatment efficacy, document improvement in muscle strength, and provide 

feedback on patient progress.113 The pinch is generally weaker than grip, in which the 

fingers are on one side of an object and the thumb is placed on the other side.112 The 
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pinch strength is used to measure delicate hand function and grabbing something like a 

paper or plate.110,112 Grip or other relevant measure of hand strength can be assessed by a 

dynamometer.112,113 (Figure 1.4).    

 

Figure 1.4: Grip Dynamometer 

1.5.1.3 Pain: Pain can be caused by intense or damaging stimuli.114 The International 

Association for the Study of Pain (IASP) defines pain as: "an unpleasant sensory and 

emotional experience associated with actual or potential tissue damage, or described in 

terms of such damage".115 The IASP classified pain according to specific characteristics: 

(1) region of the body (e.g., stomach, hand), (2) body system which its dysfunction may 

cause the pain (e.g., nervous, skeletal), (3) duration and pattern of pain (e.g., acute, 

chronic) (4) intensity and time since onset (e.g., severe, periodic) and (5) etiology (e.g., 

neuropathic, ischemic, idiopathic).116 A simple effective way to document pain severity is 

the Visual Analogue Scale (VAS), by which patient rates his/her pain from 0 (no pain) to 

10 or 100 (most severe pain) as an illustrated numerical rating scale117 (Figure 1.5). 

Another method of pain measurement is the McGill-Melzack Pain Questionnaire, which 

clarifies symptoms.118 This questionnaire includes 20 groups of words. Patient circles one 
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word in each group that best describes his/her pain and leaves out descriptions that are 

not applicable. Next, patient is asked to go back and circle the three words in groups 1 to 

10 that most likely explain his/her pain response. Then, patient is asked to choose two 

words in groups 11 to 15, and one word in groups 16 to 20. The first 10 groups of words 

are somatic (describing what the pain feels like), groups 11-15 are affective, group 16 is 

evaluative, and groups space 17-20 are miscellaneous.119 Using this method, patient 

provides seven words to describe both the quality and intensity of pain.  

 

 

Figure 1.5: Samples of Visual Analogue Scale (VAS) 

 

1.5.1.4 Radiographic Values: The radiographic images demonstrate the cortical and 

cancellous bone at high resolution, as well as the abnormalities affecting the bone. The 

visualization of bony tissues is due to strong attenuation of the x-ray beam by calcified 

structures. Clinicians can evaluate the bony abnormalities of wrist and hand through 

radiographic imaging.
120,121 Radial shortening and dorsal angulation are common 

radiographic measures after distal radius fracture.
25 Radial shortening greater than 10 mm 

is often associated with symptoms, while shortening of up to 3-5 mm can be associated 

with satisfactory result if there is an accurate articular restoration.
25 Dorsal angulation is 

measured on lateral view, from the angle created between the articular surface of the 

distal radius and a line perpendicular to the long axis of the radius. The normal volar tilt 
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measures between 0 to 22 degrees (mean 11-14.5 degrees). The dorsal tilt greater than 20 

degrees leads to significant transfer load onto the ulna, which will be following with pain 

and limited grip strength.
121  

 

1.5.2 Measurement of Function after Distal Radius Fracture 

Traditionally, distal radius fracture outcomes have concentrated on impairment measures 

that were often called “objective functional measures” to evaluate outcomes following 

injury. However, in recent years, clinicians have recognized the importance of patient-

reported outcome measures to assess functional status and health-related quality of 

life.
122-124 As a result, the number of studies that have evaluated treatment effectiveness 

from the patient’s perspective are progressively increasing.    

1.5.2.1 Patient-Rated Wrist Evaluation (PRWE): This method uses a 15-item 

questionnaire to measure wrist-related pain and disability during functional 

activities.
103,125-129 PRWE allows the patient to rate his/her level of wrist pain and 

disability on an 11-point scale (0–10). On this scale, zero means no pain or complication 

and 10 represents severe pain or disability during a specific task. Pain is scored based on 

five specific questions that about the level of pain when performing an activity, at rest, 

repeated motion, and lifting. This method consists of two categories of specific and usual 

activities. The specific activities rate the amount of difficulty that the patient experiences 

with performing six specific tasks, including turning a doorknob, cutting meat, fastening 

a button, pushing up from a chair, carrying a 10 pound object, and using bathroom tissue 

over the past week.  The usual activities subscale is scored based on the amount of 

difficulty that a patient has with performing four usual tasks including personal care 

(dressing or washing), household chores (such as cleaning), job-related duties, and 

recreational activities over the past week.  The total of combined scales in the PRWE is 

100 (50 from pain, 60/2 from specific, and 40/2 from usual categories). The psychometric 

properties of this scale has been shown to be excellent 103,125-128 and the patterns of 

recovery following a fracture have been described using this scale.103,106 (See Appendix 

A) 
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1.5.2.2 Disabilities of the Arm, Shoulder and Hand (DASH): This questionnaire is a 

self-administered region-specific outcome instrument developed as a measure of self-

rated upper extremity disability and symptoms. The DASH consists mainly of a 30-item 

disability/symptom scale, scored 0 (no disability) to 100 (most severe disability). The 

DASH addresses difficulty in performing various physical activities that require upper 

extremity function (21 items); symptoms of pain, activity-related pain, tingling, weakness 

and stiffness (5 items), or impact of disability and symptoms on social activities, work, 

sleep and psychological issues (4 items). A shorter version called the Quick DASH is also 

available. Both tools are valid, reliable and responsive and can be used for clinical and/or 

research purposes. However, because the full DASH Outcome Measure provides greater 

precision, it may be the best choice for clinicians who wish to monitor arm pain and 

function in individual patients.128,129 (See Appendices B and C) 

 

1.5.2.3 SF-36 Health Survey: The Short Form 36 Health Survey (SF-36) is a self-

assessed functional outcome measure to assess quality of life. The SF-36 is a broad 

health-related outcome measure, which includes eight scales and two summary scores.42-

45 The original SF-36 came out from the Medical Outcome Study (MOS, 

http://www.rand.org/health/surveys_tools/mos/mos_core_36item.html), but scoring of the 

general health and pain are different.130,131 Each scale of SF-36 is directly transformed 

into a 0-100, assuming equal weight for each question. The eight sections represent 

various domains of health including: vitality, physical function, physical role, bodily 

pain, general health perceptions, emotional role, social role, and mental health. The 

physical and mental health summary scores represent two main dimensions of health. 

These scores are calculated in a 3-step process, which involves weighting, transforming 

and aggregating the subscale scores to compute summary scores for a typical US 

population. The SF-36 method of health measures separates physical and mental health, 

providing a more complete concept for overall health. 130-133  

1.5.2.4 Michigan Hand outcome Questionnaire (MHQ): This method is a 

comprehensive and sensitive tool and measures various health status and important 

domains in patients with hand disorders.134 The Michigan hand outcome questionnaire is 

a 57-item, hand-specific outcome questionnaire that contains 6 domains including: 
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function, activities of daily living (ADLs), pain, work performance, aesthetics, and 

patient satisfaction.135 Each domain is scored from 0 to 100, with 0 being the worst score 

and 100 being the best. Conversely, 0 in pain domain indicates no pain and higher scores 

indicate more pain. All domains are assessed for each hand separately (exception of 

work). There is no adjustment scoring for hand dominance. This validated survey may be 

used for overall hand function, activity daily living, pain, work performance, aesthetics, 

and patient satisfaction.134-137  

Difficulties in the ICF domains of activity and participation are able to explain a 

significant portion of physical health.94,96 Post-fracture treatment and outcome 

measurements should extend beyond physical impairment to provide a comprehensive 

effective treatment to patients with distal radius fracture. 

 

1.6 Reliability 

 

A major concern for all clinical measurements is to what extent the data are accurate and 

meaningful. Reliability is the first prerequisite to insure measures are useful for clinical 

decision making. Reliability is the extent to which a measurement is consistent and free 

from errors.138 A reliable measure has two important characteristics: a) it must provide 

consistent values with small errors of measurement, and b) it must be capable of 

differentiating among the subjects to whom the measurements are applied.139 Both 

consistency and ability to differentiate among the objects of measurement are 

prerequisites to a reliable measure.  

 

1.6.1 Measurement Errors 

 

In reality, the measurements can rarely be perfectly reliable. Some degree of 

inconsistency always exists when measures are achieved using instruments that contain 

inherent measurement error whether due to, measurement methods, or inter-observer 

variation. The difference between a true value and the observed value is measurement 

error.140,141 It is necessary to estimate how much of the measurement is attributable to 

error and how much reflects the true score. There are two types of measurement errors: 
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systematic and random. Systematic errors occur consistently in one direction and 

overestimate or underestimate the true scores. Systematic errors are predictable errors of 

measurement.141 These errors can be considered a consistent “bias” in the measurement. 

Incorrect marking of a tape measure is a simple example for systematic errors. Random 

errors occur inconsistently due to chance and affect the true scores in an unpredictable 

way. There is no specific direction for random errors and they can lead to an increase or 

decrease the true scores. Lack of attention, non standardized methods, mechanical 

inaccuracy or simple mistakes are examples of simple reasons for random errors. As 

random errors decrease, the observed scores approach the true scores and the 

measurement is more reliable. Fatigue, learning, instrument limitations can result in 

random errors.  

 

1.6.2 Measurement of Reliability 

The measure of the reliability is often summarized in two methods. Relative and absolute 

reliabilities. 

1.6.2.1 Relative Reliability 

The relative reliability represents a measure’s ability to distinguish among clients.142 The 

relative reliability is defined as the ratio of true variance to observed or total variance 

which includes true variance plus error variance.140 The relative reliability coefficient is 

intraclass correlation coefficient which may vary from 0 to 1, with higher values 

represent higher reliability.   

                                                                 True variance                         
                                                                      Variance                             Between Client          
Relative Reliability Coefficient = ----------------------------------- =   -------------------------- 
                                                        Observed (Total) Variance             Between + Within                  
                                                                                                                  Client Variance                                
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1.6.2.2 Absolute Reliability 

The absolute reliability is the second method to represent reliability. The absolute 

reliability expresses the measurement error in the same units. The standard error of 

measurement (SEM) is used to quantify the absolute reliability of a measure.140 In 

general, statisticians have reported a single score of SEM for a measure. But, some 

researchers believe that the amount of absolute reliability (SEM) varies based on the 

client’s condition and must be reported as the conditional standard error of measurement 

(CSEM).141  

                   .                                     . 

SEM =   √ Within Client Variance 
 

1.6.3 Types of Reliability 

There are three general approaches to reliability measurement: Test-retest reliability, rater 

reliability, and internal consistency.138   

1.6.3.1 Test-Retest Reliability 

Test-retest reliability is based on parallel assessments of clients on different occasions.140 

This type of reliability is used to establish that an instrument is capable to measure a 

variable with consistency.138 In test-retest reliability one variable is subjected to the 

identical test on two different occasions, while all test conditions are kept in a consistent 

situation. The rater must consider that many variables change naturally over time. So, if 

the responses are labile over time, test-retest reliability may not be possible.138 The 

intraclass correlation coefficient (ICC) is the preferred statistical method to measure test-

retest reliability, as it reflects both correlation and agreement.140    

1.6.3.2 Rater Reliability 

Human observers are necessary for many clinical measurements.  The rater involvement 

in clinical measurements can be different; from a subjective observation through the 

measurement process, such as functional assessment or gait analysis, to part of an 
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instrument to measure a variable, such as blood pressure or muscle testing. As a result, 

the individual who performs the rating must be consistent in the application of criteria for 

scoring responses. Data cannot be interpreted with confidence unless the raters who 

collect the data are reliable. The rater reliability should be documented as a part of the 

research protocol; and it is also critical for confidence in clinical decision making in 

practice.138,141   

1.6.3.2.1 Intrarater Reliability 

Intrarater reliability refers to consistency of data recorded by one rater across two or more 

occasions.138 Some researchers assume that the experienced raters can simply perform all 

measurements with high level of reliability. But, it should be considered that expertise 

may not always match with the level of precision which is necessary for the 

measurement. The statistical measurement of reliability strengthens the research 

conclusion, and also prevents critiques about the measurement accuracy.  

The rater bias is considered in intrarater reliability assessment. When assessing this, it 

should be considered that raters can be influenced by their memory from the first 

measurement results. The most effective way to control this type of error is to blind raters 

from the first measurement scores. However, this technique may not work in many cases 

where the clinical measurements are observational. For instance, it is not possible to blind 

a clinician to measure function or gait procedures.138 Measuring range of motion on two 

different occasions by one rater is an example for intrarater reliability.  

1.6.3.2.2 Interrater Reliability  

Interrater reliability refers to consistency of data recorded by two or more raters who 

measure the same group of subjects. The best way to measure interrater reliability is the 

way that all raters are able to measure a response simultaneously and independently. This 

method helps to eliminate the other sources of errors when comparing raters’ scores. 

However, simultaneous measurement is not possible for many variables. For examples, 

either range of motion or muscle testing cannot be measured simultaneously. In these 

cases, the raters have to perform the measurements individually. With these types of 

measures, rater reliability may be affected when the results of first rater affect the second 
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rater’s measurements. For instance, range of motion may stretch the joint structure and 

change the results of the second rater’s measurements. Interrater reliability allows the 

researcher to know that the measurements obtained by one rater represent the true scores, 

and therefore, the results can be interpreted with greater confidence.138,143,144 

Simultaneous (approximate) ROM measuring by two raters is an example for interrater 

reliability.  The statistical method to evaluate intra and interrater reliability is the ICC 

model 2 or 3, depending on whether the raters are representative of other similar raters 

(model 2) or no generalization is considered (model 3).144   

1.6.3.3 Internal Consistency 

Internal consistency reliability is based on parallel assessments of clients at an instant 

time.139 In other words, internal consistency reflects the extent to which items measure 

various aspects of the same characteristic. This form of reliability mostly associates with 

questionnaires, but it is also applied to multi-item performance tests. The most important 

approach to measure internal consistency is correlation among all items in a scale.138 For 

instance, the Short Form 36-item (SF-36) health status measure has eight subscales (See 

1.4.2 Measurement of Function after Distal Radius Fracture). Each of these subscales has 

been evaluated for internal consistency.145 The statistic method mostly used for internal 

consistency is Cronbach’s coefficient alpha.146 The Cronbach’s coefficient alpha 

evaluates homogeneity, suggesting the extent that the items in a scale are measuring the 

same construct.146  

 

1.7 Summary of the Limitations in Knowledge 

Since fracture outcomes remain suboptimal, a number of modalities have been 

investigated as adjunct to accelerate or improve the quality of bone healing.  The 

knowledge base for these physical agents is insufficient.  The outcomes of fractures 

include physical impairments and, amongst these, range of motion is one of the most 

commonly measured. Range of motion measures have been studied for reliability; but 

there are gaps in knowledge. These gaps include knowledge about the reliability of 

different goniometers; including the more recently introduced computerized devices.  
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Further, since the devices are used by an evaluator, it is not clear if torque is consistently 

applied by different raters. Finally, since joint motion and grip strength are key indicators 

of joint status and muscle function following fracture, it is important to know to what 

extent these must be restored to maximize functional outcomes. 

1.8 Thesis Purpose 

The overall purpose of this thesis was to inform our understanding of optimizing 

recovery following fracture; with a focus on distal radius fracture.  

 
The main purpose of this study was followed by the secondary goals:  

1) To perform a systematic review and meta analysis of a physical modality (low level 

laser), which may potentially affect fracture healing.  

2) To estimate reliability and validity of physical impairment (range of motion) measures 

by computerized digital electro goniometers.  

3) To examine the consistency of torque which apply by different raters for physical 

impairment (range of motion) measures.  

4) To clarify relationship between physical impairment outcome measures (range of 

motion, grip strength) and pain and function at different time points in recovery after 

distal radius fracture.  

5) To determine the contribution of physical impairment outcome measures (range of 

motion, grip strength) and demographic variables to pain and function at early and late 

stages after distal radius fracture. 

6) To identify levels of physical impairments (range of motion and grip strength), which 

are necessary to achieve optimal functional outcomes after distal radius fracture.   

7) To identify risk of suboptimal function in patients with good physical impairments 

outcome measures (range of motion and grip strength) after distal radius fracture. 

8) To examine whether the impairment recovery needed for optimal functional outcomes 

may vary in patient population based on age (younger vs. older than 65) and gender. 
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1.9 Overview of Chapters 

 

There were a few studies that focused on bone healing and stimulatory effect of physical 

modalities on the distal radius fracture.82,147-150 Therefore, we decided to broaden our 

search strategy to examine the effects of physical modalities on bone healing in general 

and not specific to the location/type of fracture. We were aware of the fact that bone 

healing process follows a similar pattern in the skeletal system.151 The details of the 

effective methods used to facilitate bone healing are also applicable to distal radius 

fracture.   

 

In chapter 2, we initiated a systematic review and meta-analysis of the newest physical 

modalities, Low Level Laser, which may impact bone healing in fractures of animal 

models, since there were no published data available on human bone healing treated with 

laser irradiation and considering that bone healing process is similar in vertebrates.151 

Although there is still insufficient evidence to establish optimal dosage, the results appear 

to be sufficient evidence of improved bone healing in animal models to warrant clinical 

trials evaluating the role of low-level laser irradiation on human bone healing. Please see 

chapter 2 for details.   

 

Chapter 3 addresses reliability and validity aspects of physical impairment 

measurements, in term of range of motion, in patients with wrist and hand limitations. 

The intrarater, interrater and inter instruments reliability of two digital goniometric 

instruments (NK and J-Tech) were evaluated in this chapter. Moreover, the relationship 

between joint motion impairments obtained by digital goniometry and functional 

disability were studied in this chapter. The quick disability of arm, shoulder and hand 

(quick DASH) and patient-rated wrist evaluation (PRWE) self-reported pain and function 

questionnaires were used to identify functional disability of the patients with wrist and 

hand limitations. Please see chapter 3 for details.   

 

Chapter 4 describes the definition of risk recovery cut-offs in wrist motion for poor 

functional outcomes, and identifies effect of age and gender in function after distal radius 
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fracture. We identified the levels of physical impairments that discriminated the 

functional outcomes at early and late stages of recovery after distal radius fracture. We 

also studied the relationship of physical impairment outcome measures and patient-rated 

wrist pain and function after distal radius fracture. Finally, we identified the levels of 

range of motion and grip strength which were necessary to achieve optimal function after 

distal radius fracture. Please see chapter 4 for details.  

 

The final chapter (Chapter 5) presents a general conclusion and discussion of the above 

studies, including the most important findings, and provides recommendations to be 

considered in future studies. In summary, this thesis attempts to lead the reader through 

evidence-based and clinical approaches to items stimulate healing, examine the reliability 

of range of motion measures by electro goniometers, define the physical impairments and 

their contribution, identify the clinical discriminators of functional outcomes, and identify 

the levels of physical impairment measures required for optimal function after distal 

radius fracture. The findings that form the head of the results in this study are just a 

branch of the research road that must follow to establish the methods to stimulate healing 

process and function after distal radius fracture.  
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2.1 Summary 

 

Purpose: The meta-analysis was performed to identify animal research defining the 

effects of low power laser irradiation on biomechanical indicators of bone regeneration 

and the impact of dosage. 

Methods: We searched five electronic databases (MEDLINE, EMBASE, PubMed, 

CINAHL, and Cochrane Database of Randomised Clinical Trials) for studies in the area 

of laser and bone healing published from 1966 to October 2008. Included studies had to 

investigate fracture healing in any animal model, using any type of low power laser 

irradiation, and use at least one quantitative biomechanical measure of bone strength. 

There were 880 abstracts related to the laser irradiation and bone issues (healing, surgery 

and assessment). Five studies met our inclusion criteria and were critically appraised by 

two raters independently using a structured tool designed for rating the quality of animal 

research studies. After full text review, two articles were deemed ineligible for meta-

analysis because of the type of injury method and biomechanical variables used, leaving 

three studies for meta-analysis. Maximum bone tolerance force before the point of 

fracture during the biomechanical test, 4 weeks after bone deficiency was our main 

biomechanical bone property for the Meta analysis.  

Results: Studies indicate that low power laser irradiation can enhance biomechanical 

properties of bone during fracture healing in animal models. Maximum bone tolerance 

was statistically improved following low level laser irradiation (average random effect 

size 0.726, 95% CI 0.08 - 1.37, p 0.028).  

Conclusion: While conclusions are limited by the low number of studies, there is 

concordance across limited evidence that laser improves the strength of bone tissue 

during the healing process in animal models. 

 

2.2 Introduction 

 

Bone and fracture healing is an important homeostatic process that depends on 

specialized cell activation and bone immobility during injury repair.1,2 Fracture reduction 

and fixation are a prerequisite to healing but a variety of additional factors such as age, 
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nutrition, and medical co-morbidities can influence the healing process.3,4 Different 

methods have been investigated in attempts to accelerate the bone-healing process. Most 

studies have concentrated on drugs, fixation methods or surgical techniques; however, 

there is a potential role for adjunctive modalities that affect the bone-healing process.  

 

Laser is an acronym for “Light Amplification by Stimulated Emission of Radiation”.5 The 

first laser was demonstrated in 1960 and since then it has been used for surgery, 

diagnostics, and therapeutic medical applications.6 The physiological effects of low level 

lasers occur at the cellular level7,8, and can stimulate or inhibit biochemical and 

physiological proliferation activities by altering intercellular communication.9 Early work 

on physical agents as stimulators of bone healing was performed by Yasuda, Noguchi and 

Sata who studied the electrical stimulation effects on bone healing in the mid 1950s.1,10 In 

subsequent years, others repeated this work in humans1,11 and a variety of physical agents 

have been investigated as potential stimulators of bone healing.12-16 With increasing 

availability of lasers in the early 1970s, the potential to investigate its use as a modality to 

affect the healing of different connective tissues became possible17-19. In 1971, a short 

report by Chekurov stated that laser is an effective modality in bone healing 

acceleration.19  

 

Subsequently, other researchers studied bone healing after laser irradiation using 

histological, histochemical, and radiographic measures.18-24 These studies have 

demonstrated mixed results where some observed an acceleration of fracture healing19,21-

24, while others reported delayed fracture healing after low-level laser irradiation.20,25  

 

In 1996, David and his colleagues presented the first biomechanical evaluation of bone 

healing after laser irradiation.25 They did not find any positive changes in biomechanical 

bone properties after laser irradiation, and concluded that low power laser irradiation did 

not help to promote bone healing. David and his colleagues stated that their results were 

more valid than previous studies because they used objective biomechanical outcome 

measures rather than subjective methods such as histology or radiology.25 A single study 

has not definitive results because it cannot address different types of fractures, dosages, 
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or factors that might influence the potential role for low-power laser across different 

constructs. However, this study did define the need for additional biomechanical research 

to identify the role for low-power laser across different fracture constructs and the need 

for definitive biomechanical measures of bone strength in such studies. 

 

The purpose of this study was to conduct a systematic review and meta-analysis of 

animal studies that investigated low-level laser irradiation effects on bone healing. Our 

inclusion criteria required that studies have quantitative biomechanical measures of bone 

strength since this is considered the most reliable and definitive indicator of bone healing 

in animal studies.25,26 

 

2.3 Methods 

 

2.3.1 Study Design 

The study was designed as a systematic review and meta analysis. A systematic search of 

five electronic databases including MEDLINE from 1966 to October 2008; and 

EMBASE, PubMed, CINAHL and Cochrane from 1980 to October 2008 was conducted 

using an iterative strategy. The search was repeated following review of the eligible 

papers to specifically search for the biomechanical outcome measures identified within 

the initial retrieval. The researchers also reviewed the bibliographies of all retrieved 

articles to identify possible additional studies. One researcher (SBT) did a hand search of 

one journal known to publish in the area of interest of study (Osteosynthesis and Trauma 

Care) from September 2002 to December 2003. Two researchers independently checked 

the inclusion criteria in the method sections of each eligible article. The inclusion criteria 

of this systematic search were: 1) live animals subjects; 2) a long bone fracture or 

deficiency model was created; 3) random allocation of treatment; 4) any type of low level 

(power) laser irradiation was provided as an intervention to at least one of the treatment 

groups; 5) a quantitative measure of bone biomechanics was performed; 6) English 

language. Abstracts were reviewed by at least two raters to determine if they met 

eligibility criteria.  
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The most common reasons for excluding articles were lack of data from an animal 

fracture model and in particular measures of bone biomechanics. Histology, radiology, 

and histomorphometry measurement methods were the most commonly methods used to 

monitor bone healing in located articles. Through the abstract review, we excluded 

articles that clearly referred to a surgical laser device or used laser as an outcome 

measurement (Laser Doppler). All remaining abstracts were reviewed as the full paper 

articles. A total of 49 full papers were reviewed as full text to determine eligibility.  

 

 

Figure 2.1: Flow diagram for identification the eligible animal studies evaluating effects 

of low power laser irradiation on bone healing based on bone biomechanical properties. 

 

Of the 49 potential relevant papers only five articles met the inclusion criteria and 

reported on the effects of laser irradiation effect on biomechanical properties of bone 

during a fracture healing model (Figure 2.1). One article (Akai et al)27 that evaluated 

biomechanical properties of bone was excluded at full text review because it did not 

include a fracture model and evaluated bone biomechanical properties after joint 
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immobilization. Another article 28 was also excluded from the meta analysis, since the 

authors (Teng et al) used two different biomechanical bone properties as the outcome 

measurements (the anti-torsion torque and the torsion-breakage moment). As a result, it 

was not possible to match and calculate Teng biomechanical results with data from the 

other articles data in a meta analysis. However, we assessed the quality of Teng article 

base on the QATRS and common quality measurements methods.  

 

Three articles 25,26,29 were entered into meta analysis, since these three had a common 

metric biomechanical measures (maximum force), whereas one28 used another 

biomechanical measures (the anti-torsion torque and the torsion-breakage moment). A 

time point where data was retrievable across all three studies was selected for meta 

analysis. Thus, the maximum bone tolerance force (Maximum force or F-max.) four 

weeks following fracture was defined as main biomechanical bone properties for the meta 

analysis. Figure 1 summarizes the search strategy and keywords review [See Additional 

File 2.1].  

 

Potentially eligible articles were printed, reviewed and critically appraised for quality 

rating by two independent reviewers. Systematic reviews are commonly performed in 

human research but rarely in animal research. Quality rating scales commonly used in 

human research may not be appropriate for the animal studies, since they do not consider 

issues like the appropriateness of the animal model to construct being evaluated. The 

second author (JM) developed a quality rating scale for animal/tissue research scale 

(QATRS) questionnaire to assess the quality of animal studies. The QATRS is a 20-point 

scale evaluation chart that is designed based on randomization, blinding, similarity of 

animal/tissue model with human application, standardization and reliability of 

measurement techniques, the management of study withdrawals, and appropriateness of 

statistical methods [See Additional File 2.2]. 

 

Two raters independently reviewed all four papers using the structured critical appraisal 

tool designed for studies evaluating interventions in animal models (QATRS). We 

arbitrarily classified the quality of the animal studies by defining QATRS cut off scores 
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for quality as excellent (16-20), moderate (11-15), low (6-10) and very low (5 or lesser) 

quality based on their overall score on this scale. We also performed a similar critical 

appraisal using Jadad* and PEDro** methods [See Additional File 2.3, or Appendix D], 

to find how close our quality animal research scale is with the common quality studies 

measurement method (Table 2.1). The Jadad and PEDro quality measurement methods 

are used for human studies 30,31, and were not altered to apply specifically for the animal 

studies. We used these previously published scales to cross validate our quality 

measurement (QATRS) scores. There was complete agreement between the reviewers on 

the score of eligible articles. 

 

Table 2.1: Mean maximum force (SD), effect size and quality score of included studies. 

 

* 8 samples for He-Ne and 8 samples for CO2. (1) F Plan: Vertical (Sagital), (2) T Plan: Horizontal, (a) 2 (J) and (b) 4 

(J) Laser irradiation per session. Maximum force values were measured based on Newton. 

 

2.3.2 Data Extraction  

 

Two researchers independently extracted the data from each eligible article. All authors 

evaluate bone-healing process based on biomechanical bone properties as the objective 

index assessment, but the biomechanical variables were different between the studies. 

The researchers coded all related variables. The coded variables were: a) animal type, b) 

animal race, c) sex, d) age, e) weight, f) evaluation surface, g) evaluation time (week), h) 

type of surgery, i) type of fixation, j) bone type, k) mechanical test, l) speed of test, m) 
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graph type, n) type of laser (independent variable), o) laser output, p) irradiation distance, 

q) irradiation time per day, r) number of treatment sessions, s) irradiated energy per day, 

t) total irradiated energy, u) dependent variables (including: maximum force, callus area, 

stress high yield, extension maximum load, callus stiffness, energy absorbed capacity, 

deformation, ultimate bending strength, force at elastic stage, anti-torsion torque, torsion-

breakage moment) (Table 2.2). 

 

Table 2.2: The biomechanical bone properties (dependent variables) of included studies. 

 

 

2.3.3 Statistical Analysis 

 

The Q statistic was calculated to test the homogeneity of studies. A significant Q statistic 

indicates the presence of between study variance that is not consistent with study 

sampling error.32 A significant p value in homogeneity test would indicate that the studies 

are heterogeneous and are not measuring an effect of the same size.33 On the contrary, if 

the studies are not heterogeneous, the studies’ results are considered similar and therefore 

they can be combined34 (Table 2.3).  

 

Table 2.3: Computed random effect size, CI 95% and Q value (Heterogeneity test). 
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There are two types of statistical models, which can be used for effect size calculation in 

meta analysis; fixed effects model and random effects model.32 The homogeneity of 

effect sizes has been associated with the selection of fixed versus a random effects 

method of analysis.32 Both random and fixed effects models are used to determine the 

statistical differences of the combined results; however, the random effects model is 

advised when there is an evidence of heterogeneity in variance (Hedges & Vevea, 

1998).32 We chose the random effects model because the random model is more 

conservative 33 and it is also advised when the authors want to generalize their findings.32 

Effect sizes for the studies were calculated by using the equation.35 

 

         mt - mc 

d = ------------- 

             s 

 

Where d is the effect size; mt is the mean change of maximum force in the treatment 

group; mc is the mean change of maximum force in the control group; and s is the pooled 

SD between mt and mc. We used this equation to calculate the pooled SD.36 
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Where nt and nc are the sample size of the treatment and control groups; and St and Sc are 

the standard deviations of the treatment and control groups. The effect sizes were 

reported as standardized mean differences and 95% CI and the random effects model 

were run to determine the statistical differences of the results. The effect size (d) values 

of 0.20, 0.50, and 0.80 were considered as the small, medium, and large effect sizes, 

suggested by Cohen authors.32 All data were entered into Comprehensive Meta Analysis 

(CMA) program 37 to provide a Z value and to construct the forest plots to show the 

overall effect size and the related 95% CI.  
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We also evaluated the bias of publication via analysis option by Fail Safe N computation 

in CMA. The Fail Safe N can be calculated by the equation K0 = K (Mean d – d trivial)/d 

trivial, where K0 is the number of needed studies to produce a trivial effect size, K is the 

number of studies in meta analysis, Mean d is the mean effect size from all studies, d trivial 

is the estimate of a trivial effect size.32 

 

Finally, we evaluated to what extent the number of treatment sessions can be considered 

a moderator variable. Therefore, we stratified the articles data based on the number of 

treatment sessions and then compared them by t test and ANOVA measurement methods 

through CMA.37 

 

2.4 Results 

 

2.4.1 Description of studies 

 

Descriptive information of all eligible studies is shown in Tables 4, 5 and 6. Among three 

selected studies for the final analysis, two studies (Luger et al., and Tajali et al.) 

supported the positive effects of low-level laser irradiation on bone healing and one 

researcher (David et al.) 

did not find a significant effect for laser effectiveness on bone healing. Two studies 

(Luger et al. and Tajali et al.) evaluated the bone healing process using only 

biomechanical measurements, while another (David et al.) also used histology and 

radiology measurement methods. 

 

All studies measured the biomechanical bone healing changes four weeks after fracture. 

David measured the bone healing changes 2, 4 and 6 weeks after fracture, Luger checked 

these measurements just 4 weeks after the fracture, and Tajali did the biomechanical 

measurements 2, 3 and 4 weeks after bone deficiencies (Table 2.4). Two authors (Luger 

et al. and Tajali et al.) applied intervention to separate experiment and control groups, 

while the other author (David et al) operated both hind limbs of the animals and 

considered one limb as the experiment and the other limb as the control. This approach 
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may be questionable, as it could not control the systematic effects of low power lasers 

irradiation.38-40  

 

Fixation also varied across the studies; internal fixation (k-wires) was used in two studies 

(David et al. and Luger et al.), while external fixation was used in the other article (Tajali 

et al.). All three eligible studies used the low power He-Ne laser as their independent 

variable. Laser treatment parameters varied markedly across studies. All three studies 

included a treatment of He-Ne laser at a wavelength of 632.8 nm, which would have 

resulted in similar absorption properties in the target area. However, none of the studies 

provided complete descriptions of laser dosage, treatment parameters and application 

techniques. Therefore, it was not possible to compare the amount of laser energy 

delivered in the included studies. David et al (1996) reported the amount total irradiated 

energy, but did not explain the irradiation application technique. In the study performed 

by Tajali et al (2003), a grid technique was used to apply laser irradiation to each square 

centimeter of tissue; however the number of points over which laser was applied was not 

defined. Luger et al (1998) used and applied the laser at a distance of 20 cm from the 

skin, which would have significantly reduced total energy delivered to the target tissue. 

All studies evaluated biomechanical properties of the bone at 4 weeks post fracture. 

David used the laser irradiation every other day during the period of study, and Luger and 

Tajali used laser irradiation on a daily basis. Luger stopped treatment after 14 days 

whereas the other studies continued daily treatments for at least 4 weeks (Table 2.5). 
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Table 2.4: Maximum force (Mean + SD) 2, 3, 4 or 6 weeks after fracture or surgery. 

 

E Experiment, C Control. * Data refers to biomechanical evaluation in vertical plan. ** Data refers to 
biomechanical evaluation in horizontal plan. Maximum force values were measured based Newton.  

 

Table 2.5: Study characteristics of selected articles on effects of He-Ne low power laser 

irradiation on bone healing. 
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Table 2.5: (Continued): Study characteristics of selected articles on effects of He-Ne low 

power laser irradiation on bone healing. 

 

CO = Complete Osteotomy, PO = Partial Osteotomy, IF = Internal Fixation, EF = External Fixation,            
* Independent Variable. 
 

Table 2.5 (Continued): Study characteristics of selected articles on effects of He-Ne low 

power laser irradiation on bone healing 
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2.4.2 Outcomes measures 

 

The eligible studies used different indicators of the biomechanical properties indicating 

bone healing. There were 11 biomechanical bone properties measured. Maximum bone 

force tolerance (Maximum Force) was considered the major dependent variables in three 

studies (out of four). The other biomechanical variables were different from study to 

study. Although David et al (1996) studied just one main biomechanical variable 

(Maximum Force), they also used histological and radiological assessment methods. 

Luger et al (1998) studied callus area, stress high yield, extension maximum load, and 

callus stiffness as the biomechanical variables. Tajali 

et al (2003) studied energy absorbed capacity (EAC), deformation, ultimate bending 

strength (UBS), and force at elastic stage as the biomechanical variables (Table 2.2).  

 

2.4.3 Calculation of effect size  

 

The maximum bone tolerance force before the point of fracture was the most common 

biomechanical variable in all eligible studies and was used to calculate effect size of each 

article in this meta analysis. A total of 234 samples across all three identified studies were 

entered in the meta analysis based on the maximum force. We chose to evaluate the 

biomechanical data 4 weeks following surgery or fracture. We chose this as a clinically 

relevant endpoint, since earlier time may not have demonstrated sufficient healing 25,26,29, 

and also expect that healing would be completed in both the experiment and control 

groups at later time points.26,29 Although the time points for biomechanical evaluation 

was different in each study (Table 2.5), all eligible articles performed a biomechanical 

evaluation at 4 weeks after surgery or fracture allowing us to perform data synthesis on a 

common metric. David et al. 25 measured the force maximum variable changes with two 

different doses of low power He-Ne laser irradiation (2 and 4 Joules per/day), while the 

other researchers (Luger and Tajali) used one dosage for all experiment groups (Table 

2.5). To standardize the doses used in each study, we calculated an average effect size 

between two effect sizes of force maximum changes in David article by CMA program. 

All effect sizes were calculated by SPSS and CMA.37 
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2.4.4 Testing for homogeneity of variance 

 

The Q statistic result showed that the value of Q for the samples in this study (n = 3) was 

not statistically significant (Q 2.652, p 0.196). Therefore, the distribution of the effect 

sizes was homogenous and we could combine study results. The average effect size 

demonstrated a statistically significant effect for laser being beneficial in terms of bone 

strength (n 3, d = 0.73, CI 95% 0.08 - 1.38) (Table 2.3). 

 

2.4.5 Merits of different published studies (variables) 

 

The effect sizes of eligible studies were computed by CMA to evaluate the merits of 

different published studies (Table 2.1). The CI 95% for maximum force F-max includes 

zero, indicating there is no significant difference in terms of force maximum in the study 

by David et al. (1996) (mean 0.072, CI 95% 0.976-1.120, p 0.89). The effect size in 

David article 25 was not statistically significant. The average effect size in David article 

for two different dosage (2 and 4 J/day) 4 week after surgery is equal d = - 0.072 which 

shows the low effect size in this article. On the contrary, the CI 95% for F-max for Luger 

study (mean 0.820, CI 95% 0.087-1.553, p 0.028), and also Tajali study (mean 1.400, CI 

95% 0.137-2.662, p 0.030) showed high effect sizes in these two articles and statistically 

significant differences. 

 

Calculation of pooled standard deviation and average effect size in each article showed 

the lowest effect size for David study.25 This study also had relatively low quality scores 

(QATRS 12/20, Jadad 0/5, PEDro 5/10). On the contrary, Luger and Tajali studies 26,29 

had larger effect sizes (more than high limit of effect size for good articles d > 0.80). The 

quality evaluation results of these articles also showed good quality for Luger and Tajali 

(QATRS 17/20, Jadad 3/5, PEDro 7/10 for Luger et al article, and QATRS 15/20, Jadad 

1/5, PEDro 7/10 for Tajali et al article). 

 

In summary, the effect size calculation of force maximum, 4 week after bone injury in 

eligible articles shows that one article has low value effect size (David et al. d = 0.072), 
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and two articles have excellent value effect size (Luger et al d. = 0.82, Tajali et al. d 

=1.400). The computed random effect size (mean 0.726, 95% CI 0.079 - 1.373, p 0.028) 

suggests main research hypothesis that low power laser irradiation can increase bone-

healing process in animal samples based on an evaluation of biomechanical bone 

properties (Figure 2.2).  

 

Effect of He-Ne Low Level Laser Irradiation on Bone Healing, A Meta Analysis Approach 

 

Figure 2.2: The forest plot of the random effects model based on bone biomechanical 

properties (force maximum) changes four weeks after bone injury. 

 

2.4.6 Fail Safe N and the number of treatment sessions  

 

The results of Fail Safe N calculation showed that 38.28 (= 39) more unpublished articles 

are needed to nullify our results. The d results also showed that it is possible to divide the 

number of treatment sessions to three parts: a) Less than 14 Treatment sessions, b) 

Between 14 to 21 Treatment sessions, and c) 28 Treatment sessions. There was no 

significant difference between experimental and control groups after 14 treatment 

sessions (mean - 0.072, 95% CI - 1.204 - 1.060, ns). On the contrary, low power laser 

irradiation for 14 to 21 sessions significantly improved the bone-healing process in 

animal (mean 0.557, 95% CI 0.079 - 1.035, p 0.022). Finally, 28-session low level laser 

irradiation caused the significant increase on bone healing process in animal (mean 1.400, 

95% CI 0.137 - 2.662, p 0.030) (Table 2.5, Figure 2.2). 
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2.5 Discussion 

 

Three of the four selected articles reported a positive effect of low-level laser therapy on 

bone healing 26,28,29, and one article reported negative results.25 Meta analysis revealed 

that overall positive impact of laser on bone healing. Although there are different kinds of 

low power lasers e.g. Carbon Dioxide (CO2), Helium- Neon (He-Ne), Gallium-

Aluminum-Arsenide (Ga-Al-As), and Infra-Red (IR), all the identified studies used 

continuous wave He-Ne lasers. This may be because He-Ne laser has some support in 

earlier studies on connective tissue healing.18,19,22-24 Teng et al (2006) was the only author 

who compared the He-Ne with CO2 lasers irradiation effects based on the bone 

biomechanical properties and also radiology.28 He reported the composition and 

biomechanical properties were improved over controls following irradiation for 35 days 

with either type of laser. However, these results were excluded from the final meta 

analysis due to non-similarity of biomechanical variables. Nevertheless, it is important to 

note that the conclusions were in agreement with the present study. Incomplete and 

inconsistent information provided about laser treatment protocols prevented an evaluation 

of laser dosimetry. Future studies that compare different wavelengths and amount of laser 

irradiation are needed to define the optimum application strategy. However, these studies 

must provide complete information about the power, time (per point applied and the 

number of points), and area of treatment (beam spot size), so that energy density and total 

energy delivered with each treatment can be calculated. In this way, useful comparisons 

can be made between studies with regards to laser dosimetry. Although randomization 

and the use of internal controls can increase power in studies where the effects are 

localized, the use of two hind limbs of each animal, one as the experiment and the other 

as the control, in the study by David25 might lead to a false negative findings, since low 

level laser therapy has some systemic effects.38-40 Moreover, surgery or fracture of both 

hind limbs in each animal, created excessive limitations in normal mobility for animals in 

David study 25 and may have affected the bone healing process.3 Finally, the use of 

intermedullary nails in some experimental groups may affect the study results41,42, 

especially when the authors had to remove the nails before the biomechanical assessment 

and reaming of fractures 41,42 possibly explaining David’s negative results. Our meta-
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analysis was only able to identify a limited number of studies that have addressed the 

impact of laser on the strength of healed bone in an animal fracture model. Despite these 

limitations, there was a statistically significant impact of laser on the biomechanical 

properties of healed bone-particularly in more than 14 sessions laser application. 

Furthermore, our failsafe n calculation indicates that a large number of contrary studies 

would be required to refute this finding. This would suggest that sufficient animal 

research is available to support experimental use of laser for bone healing in humans. 

 

Findings of improved bone healing in animal models with adjunctive laser therapy are 

consistent with other research on the effects of laser. The cellular reactions such as ATP 

synthesis promotion, electron transport chain stimulation, and cellular pH reduction 

might form the basis for the clinical benefits of low-level laser therapy 43,44, and these 

biochemical and cell membrane changes may increase activities of macrophages, 

fibroblasts, lymphocytes and the other healing cells.45,46 Increase of collagen and DNA 

synthesis, faster removal of necrotic tissue20, increase of Ca deposition 19,21,22, increase of 

periosteum cell function18, increase of osetoblast and osteocyte function18,19, new 

vascularisation 21,22, stimulation of enchondral ossification, earlier differentiation of 

mesenchymal cells, increase of preosteogenic cells23, and stimulation of callus 

formation21,22 are some of the positive effects of low level laser therapy on bone healing 

process which have been reported by former researchers and can explain the bone healing 

stimulation under low level laser therapy. 

 

2.6 Study Limitations 

 

Our study findings must be viewed with caution at this time because of substantial 

limitations. 1) It is possible that we missed some published or unpublished related 

articles. 2) Although the results of random and fix effects models are in favor of laser 

effects on bone healing (fixed effects model, n3, mean 0.727, CI95% 0.184 to 1.269, p 

0.01), the small sample size of selected studies may cause the insignificance result in Q 

statistic. 3) We tried to identify a core outcome measure that would allow comparability 

across studies. Although we ran analysis to check for appropriateness of combining data 



57 

 

from analysis, our results were based on the fractures from two different animal types 

(tibia in rat and rabbit models).33 4) Given the small number of studies, we could not 

formally incorporate quality measurement scores into our synthesis. The results of quality 

measurement methods and power of the selected studies could not be used in our Meta 

analysis. 5) The samples in one study (David) were used as the experimental and control 

at the same time. The data came from this study could not be considered as independent 

data, but they were still independent from the other eligible studies’ data. 6) Although we 

know that the process of fracture healing is consistent 47, variations in tissue type and 

depth may have affected the impact of laser. And finally 7) the actual dosage delivered is 

questionable across the studies given that laser transducer calibration was not mentioned. 

 

2.7 Conclusion 

 

Our meta-analysis identifies that low level laser therapy improves the biomechanical 

properties of bone following fracture healing in animal models. There is still insufficient 

evidence to establish optimal dosage, but low-level laser irradiation for at least 14 to 21 

sessions was required for preferential effects. The results appear to be sufficient evidence 

of improved bone healing in animal models. More studies to identify the effective 

dosage, specifically animals with higher similarities in human bone properties and sizes 

(i.e. sheep, dog)48,49, lead to warrant clinical trials evaluating the role of low-level laser 

irradiation on human bone healing.  

 

2.8 Additional Files 

 

Additional File 2.1: The initial key words for systematic review were selected from 

relevant articles. Mesh and SCOPUS international data lines were used to find more 

related key words with close meanings. The following key words were used in search 

strategy:  

 

"Fracture" or "Fractures" or "Fracture healing" or "Fracture healings" or "Bone healing" 

or "Bone regeneration" or "Fracture regeneration" or "Bone remodeling" or "Fracture 
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remodeling" or "Bone consolidation" or "Fracture consolidation" or "Fracture repair" or 

"Bone repair" or "Osteosynthesis" or "Osteogenesis" or "Osseointegration" or 

"Osteoconduction" AND 

 "Biomechanics" or "Biomechanical properties" or "Bending strength" or "Tensile 

strength" or "Energy absorbed capacity" or "Deformation" or "Callus stiffness" or 

"Maximum force" or "Compressive strength" or "Elasticity" or "Friction" or "Shear 

strength" or "Mechanical stress" or "Torsion" or "Elastic resistance" or "Dissipation of 

energy" or "Breaking strength" AND 

  

"Laser" or "Lasers" or "Laser therapy" or "Low level laser" or "Low power laser" or 

"Photo therapy" or "Light therapy" or "Photon" or "Therapeutic light" or "Therapeutic 

photon" or "Laser biostimulation" or "Photon biostimulation" 

 

Additional File 2.2: The Quality of Animal/Tissue Research Scale. Please see appendix 

D, or click here for file.  

http://www.biomedcentral.com/content/supplementary/1749-799X-5-1-S2.DOC 

 

Additional File 2.3: *The Jadad scale is a three-item questionnaire that scores studies 

from 0 to 5 based on the randomization, double blinding and withdrawals or dropouts.30 

**The PEDro scale is a ten point questionnaire that scores studies from 0 to 10 based on 

the randomization, subject and assessor blinding, validity of outcome measures, 

appropriateness of treatment methods, proper statistical analysis, and withdrawals or 

dropouts management.31  
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3.1 Summary  

 

Study Design: Cross-sectional reliability and validity study. 

Introduction: Measurements of wrist and/or finger range of motion (ROM) are 

frequently performed after wrist or hand disorders. Joint ROM measurements are used to 

assess patients’ status and progress. Goniometric measurements must be reliable because 

the results are used to determine impairment ratings and functional progress. Electro-

goniometer measurements may be a viable alternative for traditional goniometry.  

Purpose: To determine intrarater, interrater and inter instrument reliabilities and validity 

of two digital electro-goniometers (NK and J-Tech) to measure active wrist/finger ROMs 

in patients with limited wrist and/or hand motion, and to determine intrarater and 

interrater reliabilities of digital goniometry (NK) to measure torques of PIP passive 

flexion of the index finger in patients with limited wrist/hand motion. 

Methods: The study was performed in a randomized block design on 44 patients (24 

women, 20 men, 21-68 years old) with limited wrist and/or hand motion. Two 

experienced raters (one physical therapist and one kinesiologist) measured active wrist 

ROMs (flexion & extension, radial & ulnar deviations, pronation & supination), and 

active and passive PIP index flexion using two digital electro-goniometers. The torque of 

passive PIP flexion of the index was measured following passive index flexion using one 

digital goniometer. The raters were blinded to the clinical information. The ROM 

measures were repeated by one rater (physical therapist) 2-5 days after the initial 

measurements. Testing was performed with standardized consistent landmarks taken 

from previous research. The construct validity was determined by correlation coefficients 

between sub measurements of NK, J-Tech scores and patient-rated pain and function 

scores; quick Disabilities of the Arm, Shoulder and Hand (quick DASH) and Patient-

Rated Wrist Evaluation (PRWE). 

Results: Intraclass Correlation Coefficient (ICC) was used to assess reliabilities. The 

intrarater, interrater and inter instrument reliabilities were high in most of the ROM 

measures (ICCs range 0.64-0.97) for both types of electro-goniometers. The 95% limit of 

agreements and Bland and Altman plots did not show progressive changes. There was a 

significant difference in force application between the raters when performing passive 
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ROM measures for PIP index, but the same rater produced consistent force. Most of the 

NK and the J-Tech ROM measures were moderately correlated with the patient-rated 

pain and function scores (r range 0.32-0.63). 

Conclusion: Digital goniometric devices (NK and J-Tech) can be used to reliably 

measure active wrist ROMs and active or passive PIP flexion in patients with limited 

wrist and/or hand motion. The moderate relationship between wrist and hand ROM 

measures (obtained by NK and J-Tech digital goniometers) and quick DASH and PRWE 

self-reported disability suggested that joint motion impairments contributed to functional 

disability. 

Level of Evidence: Not applicable (clinical measurement). 

 

3.2 Introduction  

 

Loss of range of motion (ROM) in the wrist and hand can arise secondary to pain, 

swelling, muscle weakness, or deformity.1 Loss of ROM is related to a decrease in grip 

strength, grasp ability, fine manipulation, and hand function.1 ROM measurement is 

considered an important component of hand joint assessment to measure impairment, as 

well as to evaluate the effects of therapeutic interventions.2 Goniometry is an easy, 

noninvasive, and inexpensive method of measurement3 and is considered a precise 

method to assess movement capability.4  

  

A number of studies have evaluated the reliability of manual goniometry, providing 

support for current use of goniometry. Flowers et al.5 studied intra and interrater 

reliability of passive wrist flexion and extension ROM in the patients of eight clinics 

around the United States. The evaluators (4 therapists in each clinic) randomly measured 

passive wrist flexion/extension ROM of 141 patients with a plastic manual goniometer 

and in a blinded design. The authors (who were not the raters) determined that six of the 

eight clinics had significant differences among the various goniometric techniques. Ellis 

and Bruton6 reported about a 5˚ difference for intrarater reliability and 7˚ to 9˚ difference 

for interrater reliability with 95% confidence interval for finger manual goniometry. 
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Previous studies have provided limited evidence about computerized goniometers. 

Jonsson and Johnson7 compared ROM measurement accuracy between two types of wrist 

goniometers: a biaxial single-transducer and a biaxial two-transducer. The research 

showed that the biaxial single-transducer goniometer had larger errors compared to that 

of the biaxial two-transducer system. However, neither system is commercially available. 

Armstrong et al.8 reported intraclass correlation coefficients (ICCs) and standard errors of 

measurement (SEM) for forearm rotation while reporting intrarater, interrater and inter 

instruments reliability across 5 raters and 3 types of goniometers: a universal standard, an 

NK computerized goniometers, and a mechanical rotation measuring device. The 

reliability of the pronation/supination was moderate to high across different occasions or 

raters. Rotation measurements tended to have larger SEM that did elbow 

flexion/extension measures examined within the same study. However, there was no bias 

between rates or instruments. The researchers also identified that reliable ROM 

measurements of elbow flexion/extension and forearm pronation/supination were 

obtainable regardless of the level of experience when the raters used a standard 

measurement method. The NK Hand assessment system goniometers although reliable 

are no longer supported commercially, so clinicians who wish to adopt this approach 

would need to know the reliability of commercially available devices. Jonsson et al.9 

studied the accuracy and feasibility of using a biaxial electro-goniometer for measuring 

simple thumb movements in healthy subjects. The researchers compared the results of 

eight positions for thumb flexion/extension and abduction/adduction between digital and 

manual goniometers and indicated that the only significant difference was found between 

the goniometers when the thumb was in full flexion. The researchers identified that 

electro goniometric measurement errors were lower than 5˚ for the thumb ROM measures 

in comparison to manual goniometry.  

 

A reliable ROM measurement helps clinicians make a treatment plan based on accurate 

measurement of motion impairments. Although manual goniometers have stable in hand 

therapy practice, the use of computerized tools is expected to increase over time as the 

costs become lower; and as computers become integrated in other aspects of practice. The 

digital electro goniometric devices (such as NK and J-Tech) potentially offer  mechanical 
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precision and reduced rater reading errors; and thus may enhance the accuracy of 

assessment of hand joint ROM, mobility and severity of impairment. The NK device has 

advantages, in that we already know it is precise; while the J-tech has an advantage in 

that is commercially available as part of a complete hand assessment system designed for 

clinical practice. 

 

NK torque-motion goniometer allows assessment of torque applied when a given joint 

motion is measured. Torque values cannot be measured by traditional manual 

goniometers; unless extra instrumentation is applied.  It has been suggested that Torque 

ROM measurements can inform our understanding of the compliance of the soft tissues 

limiting ROM; and thus could contribute to decisions about the need for conservative 

therapy or surgery interventions.10,11 For instance, the decision for tendon transfer surgery 

in patients with flexion contracture after median/ulnar nerve palsy can be made using the 

information derived from torques ROM measurements. In this case, the magnitude of 

stiffness can be evaluated by a series of torque angle curves over time, and when the 

curves do not change and a steep curve is persisted, the patient may need surgery.10 A 

further purpose of torque goniometry is to understand the force applied while assessing 

ROM, since it is assumed that this might contribute to differences in motion estimates 

obtained by different raters. Patients are often measured repeatedly by different therapists 

during the course of their hand therapy program.  Thus, it is important to know how 

comparable these measures are likely to be. The evidence to date on computerized 

hand/wrist goniometry is very limited.  

 

The primary purpose of this study was to determine the intrarater, interrater and inter 

instrument reliability and construct related validity of wrist and PIP index finger ROM 

measures using two digital electro goniometric devices in patients with limited wrist 

and/or hand motion. The secondary purpose was to assess whether  the torque applied 

during ROM measurements varied across different raters; using  PIP passive flexion of 

the PIP index finger as the construct.  
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3.3 Methods 

 

3.3.1 Study Design 

 

The study was designed as a cross-sectional reliability and validity study, so that the 

reliability of two digital electro-goniometry instruments was assessed between two 

occasions, across two raters and between two instruments.   

 

3.3.2 Participants 

 

Patients with limited wrist and/or hand motion who met eligibility criteria and consented 

to participation were enrolled in the study. Participants were included if they were 19 

years of age or older and had limited wrist and/or hand motion 8 to 12 weeks following a 

musculoskeletal disorder. They also must have been able to speak and understand English 

and learn simple instructions. Patients were excluded from the study if they were under 

19 years old or unable to follow study instructions, had an acute infection or open wound, 

a history of neurological or rheumatologic conditions, bilateral hand disorders or 

combined arm/shoulder or multiple disabled joints. 

 

Forty nine patients participated in the study, and a written consent form was obtained 

before measurement. All participants were outpatients of the Hand and Upper Limb 

Center at St. Joseph Hospital in London Ontario. The participants were recruited and 

measured within the initial eight to twenty four weeks of their injury. All participants 

completed a brief survey including demographic data (age, gender, affected side, medical 

history, etc) before data collection. The study was reviewed by the university and hospital 

academic and ethical boards and was approved before starting data collection.   
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3.3.3 Raters and Instruments 

 

Two raters obtained the measurements in two different sessions. One rater was a PhD 

physical therapist and the other was a kinesiologist. Both were experienced in ROM 

assessment.   

 

The raters used the NK Hand Assessment Laboratory joint motion (NK Biotechnical 

Engineering Company, Minneapolis), and the J-Tech digital hand assessment (J-Tech 

Medical, Salt Lake City, UT) goniometers; and their associated software for ROM 

measurements. The NK and J-Tech are two instruments which can be used to assess hand 

joint ROM, mobility and severity of impairment (Figures 3.1). Data collection was 

performed with standard computer software sensitive with a foot switch, so that the 

rater’s hands were free to adjust the goniometric alignment. Active ROM of the wrist 

motion (flexion and extension, radial/ulnar deviation, pronation and supination), and 

active and passive ROM of proximal inter phalangeal (PIP) joint of the index finger 

(flexion) were measured for each participant by both NK and J-Tech Hand electro-

goniometers. There was a self calibrating device in both electronic measurement 

instruments so that the raters could calibrate both instruments prior to the study and 

before each measurement.  The lengths of the arms were equal in NK (2 inches), while 

the lengths of the short and long arms were 7.5 and 10.5 inches in J-Tech. The NK digital 

instrument had a specific gauge and a digital force transducer which could be used to 

measure the amount of passive force applied for the hand ROM measurements. Patients 

were asked if they were relaxed and comfortable before the measurements were taken.  
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Figure 3.1: NK (left) and J-Tech (right) goniometer instruments.  

 

Patient positioning: Three positions were used for different ROM measurements. To 

measure wrist flexion/extension, ulnar/radial deviation, and index finger flexion, each 

participant sat in front of a hand assessment table with their elbow placed on the table. 

The elbow was held in 110o - 120o of flexion for wrist flexion/extension and PIP flexion 

measurements, and was held at 90o flexion for the measurements of radial/ulnar 

deviation. To measure wrist pronation/supination, each participant stood in front of the 

assessment table and kept her/his arm close to the body and the elbow was positioned at 

90o of flexion. The forearm was in neutral position for all measurements.12,13  

 

Landmarks: Established reliable landmarks were used for goniometry.12  

 

Wrist Flexion: The stationary arm was aligned on the dorsal midline of the forearm, the 

movable arm on dorsal surface of third metacarpal, and the center fulcrum over the 

capitates on the dorsal aspect of wrist. Wrist extension: The stationary arm was aligned 

on the palmar midline of forearm, the movable arm over palmar midline surface of third 

metacarpal, and the center fulcrum on the palmar surface of the wrist at the level of the 

capitate.13 

 



73 

 

Radial/Ulnar Deviation: The stationary arm was aligned on midline of the dorsal surface 

of the forearm, the movable arm dorsally over midline of third metacarpal, and the center 

fulcrum on capitate.12 

 

Pronation: The stationary arm was at the dorsal aspect of the wrist paralleled to anterior 

longitudinal midline of humerus, the moveable arm on the widest dorsal area of the wrist 

proximal to the styloid processes of radius and ulna, the center fulcrum on lateral and 

proximal aspect of ulnar styloid process. Supination: The stationary arm was at ventral 

aspect of the wrist parallel to anterior longitudinal midline of humerus, the moveable arm 

on volar surface of the wrist at level of ulnar styloid processes, the center fulcrum on 

volar surface of the wrist in line with ulnar styloid process.12 

 

Index PIP Flexion: The stationary arm was aligned dorsally over proximal and the 

moveable arm over middle phalanxes, the center fulcrum dorsally over PIP joint.12    

Figure 3.2 provides samples of the ROM measures by NK and J-Tech digital 

goniometers.  

                

                         (A)                                                                             (B) 

Figure 3.2: A) NK goniometer placement for active ulnar deviation measure.  

                    B) J-Tech goniometer placement for active wrist flexion measure. 
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Data were collected on 2 separate days with 2-5 days between sessions. The raters used a 

random number generator program to randomize both raters and instruments for each 

participant (random.org). In first day, the ROM measurements were started randomly by 

either rater one or rater two and by NK or J-Tech. After a short period of rest (5 minutes), 

the second rater performed the similar ROM measures for wrist and index finger motions. 

After a longer period of rest (10 minutes), the ROM measurements were repeated in a 

similar way by the other digital goniometer (NK or J-Tech). In next stage, the participants 

were asked to come back to the clinic two to five days later for the second day of the 

measurement. In second day, the first author repeated digital goniometry ROM measures 

with both instruments and with considering randomization for the electro-goniometers.  

Figure 3.3 provides a diagram of the study design.  

 

Study Design

44 men & women, 21-68 yrs

with wrist & hand injury 

leads to limit wrist and/or 

fingers range of motions

Rater 1

NK, J-Tech

Rater 2

NK, J-Tech

Rater 1

NK, J-Tech

Day 1

2-5 days

Day 2

(Intrarater R.)

(In
te

rra
te

r R
.)

 

Figure 3.3: Diagram of the study design. 
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In each measurement session, the participant sat on a comfortable chair in front of the 

digital goniometer and in a relaxed position. The raters asked the participant to actively 

perform a movement using the greatest possible ROM they could perform comfortably. 

The ROM measurements were performed after a brief period of instruction and practicing 

the movement. The raters then asked the participant to repeat the movement as far as 

she/he could for two more times. The mean of three repetitions were taken as data for 

each ROM measure. Following the active ROM measurements, passive ROM of PIP 

index flexion was taken only with the NK instrument. For the torque measurements of 

passive flexion of the PIP index, the raters were manually hold the metacarpophalangeal 

(MCP) joint at neutral position throughout the testing procedure. Then, the raters applied 

a flexion force perpendicular to the middle phalanx at the dorsal surface over the PIP 

index and at the ending range of active flexion of the PIP index. The transducer recorded 

each force measurement and average of three torque measures was considered as torque 

value for passive PIP flexion of index finger in each session.  

 

A Patient-Rated Wrist Evaluation (PRWE) questionnaire and the Disability of the Arm, 

Shoulder and Hand (Quick DASH) questionnaire, were completed by the participant 

before or after the first session of the measurements. Data was recorded by the relevant 

software in each instrument and transferred to a data collection form by the raters. 

 

3.3.4 Statistical Analysis  

 

Data was analyzed by SPSS version 19 (SPSS Inc., Chicago). Descriptive statistics were 

reported based on means + SD. Tests of difference and reliability coefficients were 

calculated to compare the data between different occasions, raters and instruments. 

Repeated measures analyses of variance (RM-ANOVA) were used to determine 

similarity of the ROM results obtained on different occasions or across raters. If the 

results were statistically significant, multiple comparison post hoc Tukey Honestly test 

were performed to determine which means were different from the others. The Tukey 

Honestly post hoc test is one of the most conservative multiple comparison designs.14     

A factorial ANOVA was used to identify the interaction effects among the ROM results 
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(dependent variable) across the raters and the electro-goniometers (fixed variables). This 

analysis informs whether or not these two different measurement techniques can be used 

interchangeably.5  

 

Intraclass correlation coefficients model (2,1) (ICC2,1) and their associated 95% 

confidence interval  (CI) were calculated 15,16 to compare the scores of each measurement 

across occasions in same rater (intrarater reliability), between the raters (interrater 

reliability), and between the instruments for each rater (inter instrument reliability). The 

ICC2,1 was used to represent the scores by two raters or instruments and a single measure 

was taken for each of them.17 We used the mean results of three repetitions for each 

measurement per session. The ICC values of each rater in first day of measurements were 

used for interrater reliability analyses, and the ICC values of rater one in first and second 

days of measurements were used for intrarater reliability analyses. The cut-off values of 

ICC >0.75, 0.40-0.75, and <0,40 were chosen as an indication for high, moderate, and 

low reliability, respectively.18 The Standard Error of Measurement (SEM) was calculated 

to identify absolute reliability of the measures and estimated the measurement error in a 

set of repeated scores.15 The SEM is calculated by the equation SEM= SD × √ 1-r 17,19. 

The Minimum Detectable Change (MDC) was calculated to define the smallest amount 

of change needed to be certain that a real change was occurring beyond a measurement 

error.20 The MDC was calculated with 90% and 95% confidence interval using the 

specific equation (MDC 90, 95 = z (df, α) × SEM × √ 2).13 

 

The agreement parameters show the size of the measurement errors.21 We calculated 95% 

limits of agreement (LoA) and constructed Bland and Altman plots to account for 

potential systematic bias between the raters or instruments. Bland and Altman plots21 are 

commonly seen description that graphically demonstrates the agreement between these 

measures. The LoA was calculated based on the equation LoA= Mean difference + 1.96 

× Standard Deviation (SD). The mean differences describe any systematic difference 

(bias) between measurements. The limits of agreement defines the range in which 

repeated measurements might be expected to vary with 95% confidence.22  
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The association between motion measures and PRWE or DASH was described by 

Pearson‘s r correlation coefficients. Pearson correlation r <0.40, between 0.40-0.75, 

>0.75 were considered as low, moderate and high.23 The alpha was 0.05 and the results 

were considered significant if p < 0.05.   

 

3.4 Results  

 

Three participants were excluded because rheumatologic (one patient) or neurologic-

stroke (two patients) conditions that might affect their wrist and hand motion. Two other 

participants were excluded since they did not come for the second session of the 

measurements. In total, 44 participants completed the study (24 women and 20 men; 55% 

vs. 45%), with an age range between 21 to 68 years old (52.5 + 12.9). Twenty one 

participants (47.7%) had an injury on their dominant hand, while twenty three (52.3%) 

had an injury on their non-dominant hand. A chi-square test of independence showed that 

there were no significant difference between the proportions of dominant and non-

dominant injured sides [x2 (1) 0.72, NS]. The participants’ height and weight were 172 + 

12 cm and 77 + 21 kg. The initial diagnosis of participants were: 32 patients (73%) distal 

radius fracture, 6 (14%) carpal tunnel syndrome, 3 (7%) scaphoid fracture, 2 (4%) finger 

fracture, 1 (2%) metacarpal fracture.  

 

The summary of means + SDs for the occasions and raters in both instruments and 

ANOVA statistical analysis to compare the ROM measures in different occasions were 

not substantially different between the raters for each goniometer. However, the raters did 

not demonstrate consistent use of force when performing passive ROM measures for PIP 

index flexion. The Tukey post hoc test showed that there were significant differences in 

torques across the raters during passive ROM measures for index PIP flexion (F(1, 42)  

44.17, mean difference – 26.61, p<0.01, q 12.60) (Table 3.1). 

 

The factorial ANOVA for main effects (rater and instrument) and interaction effects 

(rater × instrument) showed that there were no interaction effects through the outcome 

measures (Table 3.2). The raters did not affect results of ROM measures; however, type 
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of the instrument affected the results of ROM measures for wrist extension (F(1, 42)  5.09, 

mean difference – 3.25, p<0.02), ulnar deviation (F(1, 42) 5.96, mean difference – 2.22, 

p<0.02), and pronation (F(1, 42) 8.80, mean difference – 2.69, p<0.03) (Tables 3.1 and 3.2).    

 

Table 3.1: Mean of the range of motion measures based on degree in different 

raters/occasions and analysis of variances summary for the digital goniometers. 
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Table 3.1(Continued): Mean of the range of motion measures based on degree in different 

raters/occasions and analysis of variances summary for the digital goniometers. 
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Table 3.2: Factorial analysis of variance for main effects (rater and instrument) and 

interaction effects (rater × instrument) for the range of motion measures. 

 

 

The ICC values for intrarater reliability (test-retest) were excellent for most wrist ROM  

measures (flexion, extension, radial deviation, ulnar deviation, supination), and PIP index 

flexion measures by both instruments (ICC ranges 0.91-0.97). The intrarater reliability 

was also high for wrist pronation measures for both NK (ICC 0.89) and J-Tech (ICC 

0.86). The highest intrarater reliability values were in wrist flexion ROM measures by 

both the NK (ICC 0.97) and J-Tech (ICC 0.95). The lowest intrarater values were 

measured in wrist pronation measures by the NK (ICC 0.89) and also J-Tech (ICC 0.86) 

(Table 3.3).  

 

The ICC values for interrater reliability were high for active and passive ROM measures 

(ICC ranges 0.79-0.93). The highest interrater reliability values were in wrist flexion 

ROM measures by the NK (ICC 0.91) and wrist extension ROM measures by the J-Tech 

(ICC 0.93). The lowest interrater reliability values referred to ulnar deviation ROM 

measures by the NK (ICC 0.82) and pronation ROM measures by the J-Tech (ICC 0.79). 

The ICC values for inter instrument reliability were high in all wrist ROM measures (ICC 

ranges 0.77-0.96), with the exception of radial deviation (ICCs 0.64 and 0.70 for the 

raters one and two, respectively). The reliability coefficients for torques in passive index 
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flexion were moderate in different occasions by rater one (ICC 0.71) and low across the 

raters (ICC 0.16) (Tables 3.4 and 3.5)  

 

Table 3.3: Intrarater (test-retest) reliability values for NK and J-Tech digital goniometers.  
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Table 3.4: Interrater (between raters) reliability values for NK and J-Tech 

electrogoniometers. 
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Table 3.5: Inter instrument reliability values for NK and J-Tech digital goniometers. 

 

 

 

The standard error of measurement (SEM) calculations indicated higher errors when the 

ROM was measured by two raters (interrater SEMs range 1.94-9.83) compared to time 

than when the ROM was measured by one rater on two occasions (intrarater SEMs range 

0.96-7.57). The SEMs 90% (95%) indicated 4.62˚ (5.49˚) variation when the wrist 

flexion ROM was measured by one rater in different occasions, and less than 8.49˚ 

(10.09˚) variation when the wrist flexion ROM was measured by two raters in same 

occasion (NK goniometer). The SEM and MDC scores between instruments were similar 

to that between raters’ measurements (Tables 3.3, 3.4, and 3.5).  
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The highest level of agreement between the raters was found for ulnar and radial 

deviation ROM measures for both instruments (LoA -4.33 to 10.69), while the torque 

measures of passive PIP index ROM flexion by NK goniometer had the widest limits of 

agreement across the raters (LoA -66.32 to 14.54) (Table 3.6). The most precise limits of 

agreement between the instruments was in active PIP index flexion for both raters (LoA -

6.71 to 4.81 for rater one; -7.68 to 8.36 for rater two), while the lowest level of agreement 

between the instruments for rater one was in wrist extension (LoA -12.64 to 5.40), and 

for rater two was in pronation (LoA -11.83 to 7.03) (Table 3.6). The Bland - Altman plots 

and scatter of mean differences between measurements (raters or instruments) did not 

show progressive changes across the range of ROM measures (no heteroscedasticity)24 

(Figures 3.4, 3.5, and 3.6).  

 

The relationship between ROM measures and patient-rated self-reported pain and 

function indicated a low to moderate relationship ranging from 0.32 to 0.63. Both the NK 

and the J-Tech were moderately correlated with self-reported disability (Table 3.7). The 

Pearson’s r correlation coefficient between the functional outcome measures (Quick 

DASH and PRWE) were high (r= 0.94).  

 
Table 3.6: Limit of agreement analysis for the range of motion measures across raters or 

goniometers. 
 

Measure                         LoA (across raters)                        LoA (across instruments)   
                                   NK                      J-Tech                 Rater 1                     Rater 2                  

Wrist Flex.        - 8.18 to 11.66      - 6.32 to 12.22      - 9.92  to 3.40       - 10.04 to 5.96                                                     
Wrist Ext.          - 9.98 to 5.78        - 7.01 to 5.19       - 12.64 to 5.40       - 9.94   to 5.08                                                                                                       
Wrist Radial D. - 5.39 to 5.55        - 6.19 to 6.97        - 8.91  to 7.17        - 9.12  to 8.00                                                         
Wrist Ulnar D.  - 4.33 to 10.69      - 5.29 to 9.17         - 9.37 to 5.65        - 11.35 to 5.15                                                                                                          
Wrist Pron.        - 7.22 to 7.64        - 6.35 to 7.25       - 10.50 to 5.22        - 11.83 to 7.03                                                                                                      
Wrist Sup.         - 6.42 to 10.66      - 6.62 to 11.36      - 8.07  to 4.47         - 9.95  to 7.85                                                                                                      
Act. PIP Flex.    - 7.83 to 6.99        - 6.63 to 8.39        - 6.71 to 4.81         - 7.68  to 8.36                                                                                                      
    (Index) 
Pas. PIP Flex.     - 7.11to 6.37                    --                          --                               --               
    (Index) 
Torque              - 66.32 to 14.54                 --                          --                               -- 
(Pas. PIP Index Flex)                              
                                                          

Note: LOA = 95% Limit of Agreement. 
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Table 3.7: Pearson’s r correlation coefficient between the range of motion measures of 
the digital goniometers (NK, J-Tech), patient-rated wrist evaluation and short version of 

the disability of the arm, shoulder and hand scales. 
 

Measure                  r correlations with PRWE             r correlations with quick DASH    
                                Rater 1                  Rater 2                   Rater 1                  Rater 2      .                                                                                                                 
                           NK       J-Tech       NK       J-Tech       NK       J-Tech       NK       J-Tech                                  

 

Wrist Flex.        -0.44      -0.41        -0.48       -0.44       -0.41       -0.45       -0.45       -0.43                                                     
 
Wrist Ext.         -0.63      -0.55         -0.51       -0.55      -0.48       -0.48        -0.45       -0.44  

                                                     

Wrist Radial D. -0.44      -0.41        -0.48        -0.41      -0.40       -0.47        -0.44       -0.36   

                                                     

Wrist Ulnar D.  -0.39     -0.44         -0.39       -0.35       -0.39       -0.45        -0.32       -0.35 
                                                      
Wrist Pron.       -0.38      -0.25        -0.24        -0.37       -0.34       -0.38       -0.38        -0.46   

                                                    
Wrist Sup.        -0.52      -0.48        -0.46        -0.46       -0.48       -0.46       -0.52        -0.55     
                                                   
Act. PIP Flex.  -0.46      -0.50        -0.47        -0.48        -0.55       -0.50       -0.45        -0.50 

    (Index)                                                     
Pas. PIP Flex.  -0.46         --           -0.42           --           -0.46          --          -0.48           --   
    (Index)                                                    
Torque              0.18         --            0.05          --              0.29           --           0.16           --                            
(Pas. PIP Index Flex)                              
                                                          

Note: PRWE = Patient-Rated Wrist Evaluation; quick DASH = short version of the 
Disability of the Arm, Shoulder and Hand. 
Bold = Significant at P <0.05 
 

 

 

 

 

 

 

 

 



 

                                                                              

                                                                                  
 
Figure 3.4: Bland and Altman plots of mean differences (vertical axis) versus means 
(horizontal axis) of radial deviation ROM measures by two digital goniometers: (A) rater 
one, (B) rater two. The middle line shows the mean difference between measures take

with two digital goniometers (NK

represent range of measurement error with 95% confidence interval (data in degrees).

                                                                              (A) 

                                                                                  (B) 

Figure 3.4: Bland and Altman plots of mean differences (vertical axis) versus means 
(horizontal axis) of radial deviation ROM measures by two digital goniometers: (A) rater 

The middle line shows the mean difference between measures take

with two digital goniometers (NK-JTech). The lines above and below mean difference 

represent range of measurement error with 95% confidence interval (data in degrees).
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Figure 3.4: Bland and Altman plots of mean differences (vertical axis) versus means 
(horizontal axis) of radial deviation ROM measures by two digital goniometers: (A) rater 

The middle line shows the mean difference between measures taken 

JTech). The lines above and below mean difference 

represent range of measurement error with 95% confidence interval (data in degrees). 
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                                                                         (A) 

 

              (B) 

Figure 3.5: Bland and Altman plots of mean differences (vertical axis) versus means 
(horizontal axis) of active ROM measures for PIP index flexion by two raters; (A) NK 
goniometer, (B) J-Tech goniometer. The middle line shows the mean difference between 

measures taken with two raters in each instrument. The lines above and below mean 

difference represent range of measurement error with 95% confidence interval (data in 

degrees). 
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Figure 3.6: Bland and Altman plot of mean differences (vertical axis) versus means 
(horizontal axis) of torques of passive PIP index flexion ROMs by two raters (NK 
instrument). The mean difference between measures taken with two raters is noticeable. 
The lines above and below mean difference represent range of measurement error with 

95% confidence interval (data in degrees). 

 

 

3.5 Discussion  

 

This study demonstrates that reliable measurements of wrist and finger motion are 

obtainable in different occasions and across different raters with two different 

computerized goniometers; despite the fact that different raters do not provide consistent 

pressure when taking passive flexion ROM measurements. As we expected, the ICCs 

were slightly higher when the ROM measures are obtained by the same rater than when 

the ROM measures are obtained by two raters. The fact that raters tend to use more 

consistent force on re-application than occurs between raters, suggests that the 

application force may make a small contribution to lower group-level reliability in PIP 

index finger ROM measures. However, since the reliability was high this did not make 

any important difference to the measurements obtained. This may be because both raters 

were able to achieve end range; and the application of extra force did not make an 

appreciable change. Since the PIPJ is a joint with a hard end feel, it is not clear that this 
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finding will be transferable to other joints with a soft tissue end feel like elbow flexion. 

There are a limited number of studies that measured reliability and validity of wrist and 

finger ROM measurements. These mostly focused on healthy people 6,7,9 or patients with 

normal ROM5 who were measured by different therapists or occasions.  

 

Our findings of high reliability are in agreement with previous studies that use 

electrogoniometer for elbow pronation/supination7 and healthy thumb ROMs measures9, 

and also for manual goniometry for wrist ROM measures.5,6,7 The precision of 

measurement compared favorably with what has been reported for manual goniometry 

suggesting that some small advantages in precision may be obtained by the use of 

computerized goniometry. Potential reduction in error occur with the computerized 

goniometry relate to the use of the footswitch which may reduce error from movement of 

the goniometer arm from the tested position until when it is read since the footswitch 

collects the data at the time of placement. This data collection process also reduces errors 

numbers of the goniometer. Further, plastic goniometers may not be calibrated; and 

markers may vary; whereas computerized goniometers are calibrated for each use.  

Radial deviation ROM measure was the only measure that did not demonstrate high 

reliability. Possible reasons including difficulty in precise landmarking for this 

movement; and the relatively small ROM measures of the radial deviation must be 

considered. The SEM analysis identified that differences of 2˚to 4˚ could be considered 

as measurement error when the ROM measure was repeated by same rater and same 

instrument, while the measurement errors might be higher when the ROMs were 

measured by different raters or different instruments (3˚ to 5˚). Both of these estimates 

were within the 5˚ measurement error, which sometimes used as a rule of thumb in 

measuring joint motion9,17 and so were not considered clinically meaningful.   

 

In this study we only measured finger flexion of one joint. This was because the study 

had substantial response burden; and adding more measures may have contributed to 

fatigue that would have increased error. We cannot be confident that this one finger 

flexion measurement reliability is representative of the reliability of all digits. However, 

there is not substantive reason to expect differences across PIPJ of other fingers. Our 
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analyses indicate differences in application of force between raters when performing 

goniometry.  This was demonstrated by low rater agreement; and the significant 

differences in force application. Since there was only one pair of raters, it is risky to 

generalize the reasons for  differences in force application but since the physical therapist 

had more experience with patients; and the kinesiologist had more experience with 

healthy people this may have affected  how comfortable felt with applying force to joints. 

However, the 2 – 3˚ in difference in force application had relatively small impact on 

reliability measurements, since reliability coefficients were high for both instruments.  

 

The reliability indices and SEMs calculation showed that the errors were higher when the 

ROM was measured by two raters compared to when both measures were done by one 

rater (Tables 1, 2, and 3). The differences was small; but is common when intra and inter 

rater reliability are compared. Difference in positioning, alignment of landmarks and 

force application are thought to contribute to this. This study is was able to verify that 

differences in force application can be quite large between raters, and can explain this 

traditional wisdom that repeated measurements made by different therapists be 

interpreted more conservative.6,8 The Bland and Altman plots across mean differences 

between measurements (raters or instruments) did not show progressive changes when 

the mean changes occurred for all ROM measurements. These plots show that there is no 

heteroscedasticity in ROM measures across the raters or instruments, which means the 

variance of the error terms does not differ across observations.24  

 

The relationship between the DASH and PRWE scores and ROM was moderate across 

the 2 scales. This is consistent with previous findings that motion makes a moderate 

contribution to disability.26 Since no single impairment can be expected to fully explain 

disability; the moderate relationship indicates that ROM makes a substantial contribution 

that is worth measuring in hand therapy practice. Further, since the two measures were 

highly correlated it is not unexpected that the strength of the association was similar. 

ROM was slightly more strongly related to the PRWE compared to Quick DASH; which 

may be related to the fact it is a wrist-specific scale.  
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A few authors have investigated the relationship between impairment and function. 

Karnezis and Fragkiadakis28 reported that grip strength could be considered as a predictor 

for patient-rated pain and function (PRWE), but arcs of wrist flexion/extension and 

forearm rotation did not. Adams et al.26 reported significant relationship between patient-

rated function (DASH and PRWE) and ROMs limitations. MacDermid et al.31 identified 

a correlation between grip strength, ROM, dexterity (objective variables) and patient-

rated pain and function (PRWE) after distal radius fracture, but they also reported these 

outcome measures could not be considered strong predictors for pain and disability.32  

 

3.6 Study Limitations 

 

Although this study used quality procedures like randomization and verification of 

landmarks. However, the study also has limitations. We did not have a  gold standard 

criterion for comparison. Both of our evaluators had experience measuring ROM; but one 

was not a therapist (kinesiologist who had 5 years experience measuring upper extremity 

ROM), and the other had was not a hand therapist. This study was limited to the 

measurements of PIP flexion torque of the index finger. The measurements of active and 

passive ROM torques of the other wrist and hand joints help to have better understanding 

of reliability of the torque measurements in wrist and hand motion.    

 

3.7 Conclusion 

 

Digital goniometric instruments (NK and J-Tech) demonstrated high reliability 

coefficients and tight error margins in active wrist ROM and active or passive PIP index 

flexion in patients with limited wrist and/or hand motion. There was a substantial 

statistical difference in force application between the raters when performing passive 

ROM measures for PIP index, but the same rater produced consistent force. However, 

this difference in force application had relatively small impact on reliability 

measurements, since reliability coefficients were high for both instruments. The 

relationship between individual joint motions obtained by digital goniometric instruments 
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(NK and J-Tech) and patient self-rated pain and function scores (quick DASH and 

PRWE) suggesting that joint motion impairments contributes to functional disability.  
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4.1 Summary  

 

Study Design: Retrospective cohort. 

Introduction: Measurements of wrist and/or finger range of motion (ROM) are standard 

measures used to evaluate outcomes after distal radius fracture (DRF). The relationship 

between ROM and other physical impairments as they related to patient-rated outcomes 

after DRF have not been well identified. 

Purpose: 1. To identify relationship between physical impairment outcome measures, 

pain and function of the wrist after DRF. 2. To determine the contribution of physical 

impairments (ROM and grip) on pain and function of the wrist at early and late stages 

after DRF. 3. To identify thresholds of ROM and grip strength that discriminate between 

good and suboptimal patient-rated functional outcomes after DRF. 4. To identify the risk 

of having suboptimal functional outcomes when the patients have good physical 

impairments (arcs of motion, grip strength) one year after DRF 5. To examine whether 

the relationship between physical impairment and good functional outcomes is different 

in patients more or less than 65 years of age and in women or men.  

Methods: A retrospective cohort of 1360 DRF patients was evaluated for physical 

impairment outcome measures including wrist ROM, arcs of motion, grip strength, pain 

and function at two, three, six, and 12 months after fracture. The proportion of 

injured/uninjured grip strength and arcs of motion were calculated to obtain the 

percentages of normal function. The Patient-Rated Wrist Evaluation (PRWE) scores and 

sub scores (pain, specific and usual activities) were calculated at each session to identify 

wrist pain and function. Receiver operating Characteristic (ROC) curves were constructed 

using wrist pain and function scores and each functional impairment measure as a 

discriminator of good and poor function.  

Results: Most physical impairment outcome measures of the wrist were moderately 

correlated with patient-rated pain and function after the DRF. The ROM measures of 

wrist flexion, extension, supination, pronation, grip strength, age and sex, contribute 

significantly with the patient-rated wrist pain and function score in early and late stages 

after the DRF. For patients to have reported good function (based on PRWE), they must 

have regained 81-94% of the wrist arcs of flexion/extension, radial/ulnar deviations, 
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pronation/supination and 64% of contralateral grip strength.    

Conclusion: The greater wrist ROMs (close to normal) and grip strength must be 

recovered for patients to have good patient-rated wrist functional outcome after DRF.  

Level of Evidence: Diagnosis level 2.       

 

4.2 Introduction  

 

Distal Radius Fracture (DRF) is one of the most frequent of all human bone fractures.1 

Range of motion (ROM) and grip strength are standard outcome measures used by 

clinicians to evaluate recovery after a hand injury.2 ROM is considered to be an important 

component of joint mobility and relates to measures of functional impairment and 

disability.3 Loss of ROM in the wrist and hand can arise due to pain, swelling, muscle 

weakness, or deformity.4 Impaired wrist and hand ROM leads to a decrease in grip 

strength, grasp ability, fine manipulation, and hand function.4  

 

There are few studies that report the contribution of physical impairments on patient-

rated wrist pain and function. Ryu et al.5 reported that 40 degrees of both wrist flexion 

and extension and some complementary forearm rotation were necessary for performing 

most activities of daily living (ADL) in healthy people. Palmer et al.6 identified that 

healthy people needed 30 degrees of wrist extension, 5 degrees of wrist flexion, and 25-

57% of the normal ROM arc to perform 52 ADL tasks.   

 

The relationship between physical impairments and outcomes after DRF has not been 

studied extensively.  Physical impairments are core outcome measures that are typically 

evaluated in studies reporting outcomes of DRF.7-10 Studies that report outcomes 

following DRF tend to focus on motion, grip strength, and self-reported function.8,11-13  

 

A number of additional studies have focused on identifying factors that predict or explain 

the outcomes achieved by following treatment of DRF.7,14 Several previous studies 

focused on outcome measures as the predictors for fracture risk.15, 16 Early prognostic 

studies focused on explaining impairment and radiographic indicators17-19, whereas more 
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recent studies have focused on predicting self-reported function12. Demographic variables 

and radiographic indicators of fracture alignment are the most common predictors across 

prognostic studies.11,17,20  

 

Age is typically considered as a potential predictor in many physical health problems 

including fracture outcomes.11 MacDermid et al.11 reported that neither age and sex, nor 

post reduction radial shortening were predictors, but could potentially affect the strength 

of outcomes. Similarly, age affected the subscale scores on the physical health of the SF-

36 survey.19 Makhni et al.21 reported that secondary displacement of DRF increased with 

increasing age and suggested that results warranted closer monitoring after initial 

reduction of older patients.  

 

Grip strength and arcs of motion are potential determinants of outcome that have been 

studied. Trumbel et al.22 reported an R2 of 0.40 for an injury score can be predicted by 

variation in outcome scores of ROM, grip strength, and pain. Chung et al.12 studied the 

relationship between patient satisfaction and physical impairments three months after 

DRF surgery. He found that patients who were satisfied with their outcomes at three 

months after DRF had regained 65% of their contralateral grip strength, 87% of key grip 

strength, and 95% of normal wrist flexion/extension arc.  

 

Previous research has identified the extent of impairment that discriminates between 

patient satisfaction levels at three months.12 The goal of this study was to further expand 

our understanding of what level of physical impairment discriminates functional 

outcomes at both early and later time points in recovery after DRF. Since previous work 

has established that age and gender effects may mediate this relationship, we also 

considered these as potential effect modifiers. Thus, the specific aims of this study were:  

1. To examine the relationship between physical impairments (ROMs and grip strength) 

and patient-rated pain and function (based on PRWE) at different time points in recovery 

(two, three, six, and 12 months) after DRF. 2. To determine the contribution of physical 

impairments (ROMs, grip strength) and demographic variables to pain and function 

(based on PRWE) at early and late stages after DRF (three and 12 months after fracture). 
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3. To identify the extent that physical impairments (ROMs and grip strength) may 

discriminate between patients who have good versus suboptimal functional outcomes one 

year following DRF. 4. To identify the risk of having suboptimal function (based on 

PRWE) when the patients have lower levels of physical impairments (arcs of motion, grip 

strength) one year after DRF. 5. To examine whether the recovery of ROM/grip strength 

needed for good functional outcomes is different in patients more or less than 65 years of 

age and based on gender. 

  

4.3 METHODS 

 

4.3.1 Study Design 

 

The study was designed as a retrospective cohort study. Patients with distal radius 

fractures who met eligibility criteria and consented to participation were enrolled 

consecutively in a prospective cohort. Standardized data collection by an independent 

research assistant was performed at standardized intervals (baseline, 2, 3, 6, and 12 

months). The study questions were identified after data was collected.    

 

4.3.2 Participants 

 

Participants were included if they were 18 years of age or older and had distal radius 

fractures. Participants attended the Hand and Upper Limb Centre (HULC) at St. Joseph 

Hospital in London Ontario, for primary care from March 1998 to July 2011. Patients 

were excluded from the study if they were under 18 years old; had bilateral, combined 

radial/ulnar, arm/shoulder or multiple fractures; or did not attend the follow up 

assessments.   

 

All patients were assessed initially by a hand or orthopedic surgeons. Fractures were 

treated using a variety of immobilization/fixation approaches at the discretion of the 

treating surgeon. Participants responded to a brief survey including demographic data 

(age, gender, affected side, medical history, et cetera) before entering the study. The 
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study design and protocols were approved by the Ethics Boards of the University of 

Western Ontario. All eligible patients signed an informed consent form for the use of 

their data in the study.  

 

4.3.3 Outcome Measurements 

 

4.3.3.1 Physical Impairments 

 

Wrist ROM (flexion, extension, radial and ulnar deviations, pronation, supination) and 

the grip strength were measured by the NK Hand Assessment joint motion (NK 

Biotechnical Engineering Company, Minneapolis, MN). The ROM testing was performed 

using the NK digital goniometer, which has been shown to have high reliability at wrist 

ROM measurements.23 Data collection was performed with standard computer software 

sensitive with a foot switch, so that the rater’s hands were free to adjust the goniometer 

alignment. The mean of three ROM measurements were taken for each joint movement. 

The arcs of motion were calculated as the combined degrees of flexion and extension, 

radial deviation and ulnar deviation, or pronation and supination. The evaluators used the 

approved landmarks for the ROMs measurements: midline of dorsal and palmar forearm 

and third metacarpal with the fulcrum on dorsal and palmar aspects of capitate for wrist 

flexion and extension24, midline of dorsal surface of forearm and third metacarpal with 

the fulcrum over capitate for wrist radial and ulnar deviations25, and the lateral and 

medial aspects of the distal forearm with the fulcrum on styloid process for wrist 

pronation and supination.26 The intrarater reliability values for active wrist ROM 

measurements by the NK Hand Assessment device were in excellent agreement (ICCs 

0.89 to 0.97).23 

 

The grip strength was tested using the NK Digit Grip device which was calibrated prior 

to each measurement, and has been shown to have high reliability.27 The grip strength for 

each subject was the mean of three measurements according to the recommendations of 

the American Society of Hand Therapists (ASHT) .28 The grip strength for each hand was 

adjusted using the 10% rule for the hand dominance.21 The grip strength score for the 
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injured hand was divided by the score of uninjured hand to obtain a percent of normal 

function for grip strength (injured/uninjured percentage). The grip strength device had a 

self calibrating feature, so that the raters could calibrate instrument before each 

measurement. The reliability values of measurements for grip strength by NK Hand 

Assessment device were in excellent agreement (ICCs 0.96-0.98).27,29 

 

4.3.3.2 Self-reported Pain and Disability 

 

The Patient-Rated Wrist Evaluation (PRWE) form was completed by the participants 

after each measurement. The PRWE is a 15-item questionnaire designed to measure wrist 

related pain and disability in activities of daily living. The PRWE form includes two 

subscales for pain and function (including specific and usual activities). The total PRWE 

score can be calculated based on equal weight for pain and function.
30 

The PRWE helps 

patients to identify levels of wrist pain and disability and has been shown to have high 

reliability.18, 31 The PRWE total scores and sub scores (pain, specific and usual activities) 

were calculated as indicated by the developer where pain and function each contribute 

50% to the total score out of 100.30 [See Appendix A]     

 

4.3.4 Statistical Analysis  

 

Data were analyzed by SPSS version 19 (SPSS Inc., Chicago). Descriptive statistics were 

reported based on means + SD and normal distribution were measured for all physical 

impairments outcome measures. Pearsons correlation coefficient was used to determine 

the association between physical impairment independent variables (ROMs, grip 

strength) and pain and function dependent variables (PRWE scores) at two, three, six, and 

12 months after fracture. Pearson correlation of r <0.30, between 0.30-0.50, and >0.50 

were considered as low, moderate and high values for the relationship between physical 

impairment outcome measures and pain and function.32,33 The alpha was 0.05 and the 

results were considered significant if p < 0.05.   
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A series of models were created to determine which factors explained functional 

outcomes. The PRWE was the dependent variable (outcome measure) in each of these 

models. Stepwise multiple regression technique was used to retain or eliminate variables 

within regression models that maximize contribution/prediction accuracy with the 

smallest number of contributors/predictors.34 The stepwise regression models in this 

study were completed sequentially to evaluate separately the constructs of demographics, 

motion and strength. In the first model, demographic variables (age, gender and 

interaction between age and gender) were entered into the regression using a forward 

regression model. In the second model, demographic variables and ROMs, including the 

six different ROM measures for the wrist were entered to the analysis. Finally in the third 

model, all demographic, ROMs, and grip strength variables were entered to the 

regression. The criterion for entering variables in this analysis was: entering each 

independent variable with the smallest probability of F (the probability of F is lower than 

0.05). The variables were removed if their probability of F was higher than 0.10. We used 

the adjusted R2 values for the analysis to identify the proportion of variance of the 

dependent variable explained by the independent variables.  

 

To meet the third objective, it was necessary to differentiate good from suboptimal 

(moderate/poor) function based on the PRWE score. In previous research, a cutoff score 

of 20 has been used for this distinction on both the DASH and PRWE 35, but was less 

discriminative for the latter. Since the PRWE has higher responsiveness than the 

DASH19, and recovery curves are steeper13, the optimal cut point might be expected to be 

higher on the PRWE. Since there is no gold standard for the optimal cutoff, we 

performed a sensitivity analysis by evaluating whether our results would have changed at 

either 20 or 30 as a cutoff score. We tested cut off scores at 20, 25, and 30 for the PRWE 

total scores to evaluate the result frequencies and relationship to our explanatory 

variables and selected the score of 25 as the cut off score for the PRWE total score. We 

arbitrarily dichotomized the PRWE total scores of equal or lower than 25 as good and 

more than 25 as suboptimal function (failing to reach the expected standard) based on our 

observations of mean scores.34 Then, we used a Receiver Operating Characteristic (ROC) 

curve to determine the optimal cutoff for arcs of motion in each of the three motion 
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planes that best differentiated good from suboptimal functional outcomes. The ROC 

curves were plotted based on the sensitivity and 1 – specificity data.34 The Area Under 

Curve (AUC) was calculated for each ROC curve to describe the overall accuracy in 

discrimination and curves were displayed graphically. We calculated the data at three and 

twelve months after fracture for the ROC analysis, since this data could represent wrist 

function at early and late stages of the treatment after DRF and enable a comparison to 

previous research.12 These analyses were repeated for two age subgroups using 65 as a 

cut-off since this is where we have found an inflection point in previous studies.21These 

analyses were also repeated for gender subgroups. 

 

Finally, the Relative Risk (RR) was calculated to identify the risk of having a suboptimal 

functional outcome with a poor arc of motion and grip strength one year post DRF. The 

Relative Risk (RR) was calculated to provide a clinically interpretable indicator of how 

much risk was associated with cutoffs established through the ROC curve process.34    

 

4.4 Results  

 

One thousands three hundred sixty patients were eligible for the statistical analysis based 

on the inclusion criteria. The sample size for the analysis varied across comparisons 

because patients occasionally did not complete the follow-up visits resulting in some 

missing data. The average age of participants was 54.4 + 39.9 years old (range 18-85), 

including 418 (30.7%) men and 942 (69.3%) women. The patients were treated by either 

closed reduction (729 patients - 72.5%) or surgery (279 patients - 27.5%). The number of 

participants with dominant hand injuries was 584 (47.2%). 

  

There was a low to moderate correlation between impairments in wrist ROM and PRWE 

scores (Total, Pain, Specific Activities, Usual Activities) (range 0.20-0.48). The wrist 

flexion ROM measure was most strongly correlated to function (range 0.24-0.48), while 

wrist pronation was less correlated with patient-rated wrist pain and function through all 

time points measurements (range 0.01-0.27). The grip strength measures had low 

correlation to wrist pain and function through the initial months (range 0.02-0.12), 
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moderate at six months (range 0.28- 0.39), and low (but close to moderate) at one year 

after fracture (range 0.20-0.34) (Table 4.1). 

 
Table 4.1: Pearson’s r correlation coefficient between the ROM measurements and 

patient-rated wrist evaluation scores. 

 

 

The ROMs were measured based on degree and the grip strength was measured based on kg. 
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Table 4.2 summarizes the regression analysis for PRWE total scores by demographic 

variables, ROM values and grip strength at three and 12 months after fracture (early and 

late stages after DRF. The first model that evaluated the importance of demographics 

indicated that age, gender, and age/gender interaction did not significantly contribute to 

pain and function (PRWE scores) at the early stage after DRF, but age significantly 

contributed to the functional outcomes at the late stages of DRF follow-up (Adj R2 0.04, 

Pv<0.04). Age/gender interaction effect on functional outcomes at later stage cannot be 

considered as a significant contribution, but substantially close to significance level (Adj 

R2 0.04, Pv>0.05). The second stepwise regression model that evaluated the additional 

contribution of ROM impairments identified that wrist flexion, extension, and supination 

ROM measures significantly contributed to pain and function at three and 12 months 

after DRF, accounting for 9% to 20% of variance. A significant regression R2 was also 

found for wrist pronation ROM measure at early stage, and for age of participants at late 

stage after DRF (Adj R2 0.21, Pv=0.01; Adj R2 0.13, Pv< 0.01, respectively) (Table 4.2).  

 

The third regression model with additional contribution of grip strength identified that 

grip strength did not contribute in functional status at the three month evaluation, but 

made a substantial contribution at one year follow-up. The grip strength of uninjured side 

could affect patient-rated wrist pain and function at three month after DRF (Adj R2 0.21, 

Pv<0.01). The injured/uninjured percentage of grip strength was the strongest subset of 

contributors for pain and function at late stages of DRF (Adj R2 0.16, Pv<0.01). Age, grip 

strength of injured side and sex also significantly contributed to patient-rated pain and 

function at late stages after DRF (Table 4.2).  
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Table 4.2: Adjusted R2 and regression analysis to identify contributors of patient-rated 
wrist evaluation total scores at three and twelve months after fracture. 

 

 

 
The ROMs were measured based on degree and the grip strength was measured based on kg. 
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Tables 4.3 and 4.4 report ROC analysis results and the area under curve one year after 

fracture. Based on our PRWE cut off score of equal 25, 80.78% of the participants with 

available data (N=458) had good function one year after DRF, whereas 19.22% (N=109) 

did not meet this criterion. The flexion/extension arc was highest arc of motion value at 

differentiating good versus suboptimal functional outcomes (AUC 0.70, 95% CI 0.65-

0.76), which was determined as 105 degrees (81%) of the contra lateral normal hand. The 

pronation/ supination arc had the lowest AUC of 0.62 (95%CI 0.56-0.69) at 

differentiating good versus suboptimal functional outcomes (cut off at 150 degrees at 

94% of the contra lateral normal hand). The cutoff points had the highest sensitivity and 

specificity of 0.67 and 0.62 for flexion/extension arc (Tables 4.3, 4.4, and Figure 4.1). 

The grip strength differentiated function with an AUC of 0.67 (95%CI 0.61-0.70) and a 

cut off at 22 kg (64% of the contra lateral normal hand). This cutoff point had the 

sensitivity of 0.64 and specificity of 0.55 for grip strength. The discriminators’ 

characteristics for wrist pain and function based on proportion of injured/uninjured 

percentages showed better accuracy for all wrist arcs of motion and grip strength (AUCs 

range 0.61-0.74). The injured/uninjured percentage of grip strength calculation identified 

that the participants must have at least 64% of grip strength (compared to uninjured side) 

to provide good function after DRF (Sensitivity/Specificity 0.69/0.71) (Tables 4.3, 4.4, 

and Figure 4.2).  

 

The stratified results of ROC analysis based on the participant’s age (less than 65 or 

equal/over 65 years old) identified that the best cut off points of arcs of motion were 

similar for older and younger participants. The only exception was the best cut off point 

of absolute grip strength was lower for the older participants (16 vs. 23 kg). The wrist 

flexion/extension arc of motion was more discriminative in younger in comparison than 

older participants (AUCs 0.74 vs. 0.62) (Table 4.3). The injured/uninjured percentage of 

the arc of wrist flexion/extension and also grip strength was the strongest discriminator of 

good or suboptimal function for the participants younger than 65 years old, while the 

strongest discriminator for the older participants was the injured/uninjured percentage of 

grip strength (Table 4.4).  

 



109 

 

Table 4.3: The discriminators’ characteristics for wrist pain and function based on injured 
hand physical impairment measures one year after distal radius fracture. 

                       

 

 

The ROMs were measured based on degree and the grip strength values were measured based on kg.  
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Table 4.4: The discriminators’ characteristics for wrist pain and function based on 

physical impairments injured/uninjured percentages one year after distal radius fracture. 

 

 

 The ROMs were measured based on degree and the grip strength values were measured based on kg.  
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Figure 4.1: Receiver operating characteristic curve using arcs of motion to distinguish 

between good and suboptimal functional outcomes one year after distal radius fracture.  

 
 
 

 
 
 
Figure 4.2: Receiver operating characteristic curve using the grip strength of injured hand 
and injured/uninjured percentage to distinguish between good and suboptimal functional 
outcome one year after distal radius fracture. 
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The stratified results of ROC analysis based on the participant’s gender identified that the 

best cut off points of arcs of motion were similar for female and male participants. The 

AUC calculation identified that grip strength was best outcome measure to differentiate 

good versus suboptimal functional outcomes in both women and men (AUCs 0.67 vs 

0.74) (Table 4.3). The strongest discriminators of good or suboptimal function for both 

women and men were the injured/uninjured percentage of wrist flexion/extension arc 

(0.72 vs 0.77) and also grip strength (0.73 vs 0.77) (Table 4.4).  

 
Figure 4.3: Receiver operating characteristic curve using the grip strength of injured hand 
and injured/uninjured percentage to distinguish between good and suboptimal functional 
outcome one year after distal radius fracture.  
 

  
                                
                               (A)                                                                  (B) 
   Participants equal or over 65 years old             Participants less than 65 years old 
     
 

Source of the Curve 

─ Grip strength, injured hand 
─ Grip strength, injured/uninjured hands 
─ Reference line 
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The relative risk calculation showed that the participants with a grip strength of at least 

64% of uninjured hand were three times more likely to report a good functional outcome 

in comparison to those who had <64% grip strength. The older participants with the grip 

strength of 65% of uninjured hand were two times more likely to report good functional 

outcome. This rate for participants younger than 65 with the same grip strength was four 

times compare to those who had lesser amounts of grip strength. Women with the grip 

strength of equal/greater 65% and men with the grip strength of equal/greater 69% of 

uninjured hand were more likely to report good functional outcome after DRF (Tables 

4.3, 4.4, and Figures 4.3, 4.4).    

 

Figure 4.4: Receiver operating characteristic curve using the grip strength of injured hand 
and injured/uninjured percentage to distinguish between good and suboptimal functional 
outcome one year after distal radius fracture. 
 

 

                           (A) Female                                                        (B) Male 

 

Source of the Curve 

─ Grip strength, injured hand 
─ Grip strength, injured/uninjured hands 
─ Reference line 
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4.5 Discussion 

 

This study demonstrates that the objective physical impairments of the wrist (ROMs and 

grip strength) are moderately correlated to functional outcomes as measured by the 

PRWE at two, three, six, and 12 months after the DRF (with the exception of pronation).  

Furthermore, patients require a greater restoration of their normal range of motion to 

report a positive functional outcome in comparison to grip strength; achieving a 

satisfactory level of grip strength recovery was a more discriminating characteristic of 

achieving a good functional outcome. Finally, summary impairment measures like arcs of 

motion and percent recovered grip strength are stronger correlates of function as 

compared to the individual measures that comprise them. 

 

Rating scales for correlation are a controversial case. There is no absolute number guide 

for correlation coefficient that identify two variables have low to high degree of 

relationship; however some statisticians have suggested that r <0.40 could be considered 

as low value for Pearson correlation.36 It is necessary to know that correlation coefficients 

are very sensitive to sample size.34 It means the strength of the association between two 

variables must be interpreted in the context of the problem.37 With considering of our 

large sample size, we did consider Pearson correlation of r <0.30, between 0.30-0.50, and 

>0.50 as low, moderate and high values for the relationship between physical impairment 

measures and patient-rated pain and function.32,33  

 

The low to moderate correlations in our study between physical impairment measures and 

wrist pain and function score were in agreement with previous studies.11,12,38,39 Previous 

studies correlating outcomes and pain and function after the DRF have mostly focused at 

first six months after injury.11, 12 The only study which reported correlation of functional 

outcomes one year after DRF focused on different methods of measurement for pain and 

function (wrist outcome measure, PRWE pain, PRWE specific, PRWE usual, SF-36 

physical health).38  
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The PRWE score is also affected by a series of outcome measures including pain, 

sensation disturbances, ability to do usual activities and ability to do specific activities of 

daily living. Level of education and compensatory status can also affect the functional 

status.11 We did consider the wrist ROM measures and grip strength for wrist function, 

but did not consider the other potential influences might affect the outcome. Low 

correlation between wrist pronation ROM measures and PRWE scores might be 

explained through the fact that pronation was regained most quickly after the DRF.13 

Although pronation is very important in functional activities, most of the usual and 

specific activities on the PRWE do not need absolute raw pronation. The specific 

activities on the PRWE which may need pronation are: turn a door knob and use a 

bathroom tissue with affected hand. Lack of forearm pronation on these specific activities 

can be compensated by patient shoulder abduction, forward flexion and internal 

rotation.40    

 

Our results have strong concordance with findings by Chung et al.12 who reported people 

with DRF needed to regain 95% of the flexion/extension arc of motion to be satisfied 

with their wrist function. Although satisfaction and functional outcome are different 

perspectives, we determined that people with DRF needed 81, 82, 94% of arcs of wrist 

flexion/extension, radial/ulnar deviations, and pronation/supination respectively, to report 

a good functional outcome on the PRWE. The small differences between arcs of motion 

needed for good function and the arcs were needed for satisfaction after DRF may relate 

to patient expectations. People may not be satisfied with minimum arcs of ROM needed 

for function and may expect to regain full motion of their wrist after injury. This 

expectation refers to the healthy people who get a wrist or hand injury and want to come 

back in their normal function. The question arises is what will be the expectation of 

people who have restricted motion before the fracture? Chung measured patients 

satisfaction based on two questions in the satisfaction domain of the Michigan Hand 

Outcomes Questionnaire (MHQ), which consisted  of 37 questions that reflected self 

assessment in the areas of overall hand function, activities daily living, pain, work 

performance, aesthetics, and satisfaction with function.41 The differences between 

measurement methods for wrist function or satisfaction (the PRWE versus the MHQ) 
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might be other possible reason for small differences between arcs of motion needed for 

good versus satisfied wrist function.  

 

All of the arcs of motion and grip strength measures had a moderately high AUC with the 

patient function, indicating that good function and arcs of flexion/extension, radial/ulnar 

deviations, and pronation/supination were positively correlated (negatively related to the 

PRWE scores). The AUC calculation for grip strength in our study was in concordant 

with the Chung results (0.74 vs 0.77), indicating that discriminatory ability of grip 

strength for functional outcome or satisfaction was similar. The discriminating ability of 

the arc of wrist flexion/extension was slightly higher in the study by Chung et al (0.81 vs. 

0.74) indicating the differences between good function and satisfaction concepts.12 

 

We found that percentage of grip strength restored, as indicated by internal comparison 

with the uninjured side, was the physical impairment measure that best distinguished 

between good and suboptimal function after DRF (AUC 0.74). This distinguishing ability 

was not significantly different between younger and older participants (0.74 vs. 0.76) or 

women and men (0.73 vs. 0.77), indicating that age and gender did not affect people 

expectations of grip strength recovery after the DRF. Another physical impairment 

measure which distinguished between good and suboptimal wrist function was the 

percentage of wrist flexion/extension arcs restored. It was slightly higher for the younger 

participants compare to older participants (0.75 vs. 0.70), and men compared to women 

(077 vs. 0.72). These differences might refer to the higher expectations and functional 

demands of males and younger participants.   

 

We found that people need to regain 64% of their contralateral grip strength in order to 

rate themselves has having good wrist function after DRF. Our results confirm 

Sarmiento’s42 estimation of 60% and Chung’s12 estimation of 65% of grip strength 

recovery for good function after DRF. There is an interesting contradiction in our 

findings. Grip strength is more important in differentiating functional outcomes; but does 

not need to achieve the same level of recovery compare to the uninjured hand to perform 

optimal functional outcome.  The reasons for this are unclear.  Perhaps patients require 
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full range of motion to perform routine tasks of daily life and notice small losses of 

motion as being barriers to completion of important tasks, but are able to accommodate 

this.  Patients may be more aware of their motion loss in comparison to their alternative 

side because they have visual feedback about the loss. Conversely, many activities of 

daily life can be performed without maximum grip strength and therefore the loss of 

some strength may not compromise as many tasks of daily life. Since self-report 

measures focus on pain and tasks of daily life, full grip strength may not be necessary to 

achieve success on many of these tasks.  Further investigations that look at the role of 

range of motion and grip strength in higher level performance tasks or return to work 

would be warranted. It should be considered that lower levels of grip strength recovery 

are sufficient in terms of goal setting for hand therapy programs.  

 

4.6 Study Limitations 

 

 

Although our cohort study allowed us to analysis several outcomes, it had a number of 

limitations that should be considered when interpreting our results. The measurement bias 

should be considered, because at least three different raters were used as independent 

evaluators over the measurement time. It is possible this issue induced measurement error 

which would have tended to reduce the significance level of observed correlations. 

However, standardized methods were used to assess physical impairment and function. 

These methods have previously been shown to be reliable.23,24,27,29 Moreover, it was not 

possible to categorize the patients based on their function before the injury, since there 

were no data available for the participants before the fractures. So, the authors could not 

compare the participants function before and after injury.   

 

Therapists need to set long-term functional goals that consider the individual perspectives 

of the patient; and the applications of this and other studies addressing the relative 

importance of motion and strength impairments in functional recovery.  It appears that 

range of motion only moderately correlates to overall functional outcomes but, in order to 

optimize outcomes, therapy should attempt to achieve almost normal range motion in 

comparison to the patient's other side.  Conversely, grip strength is a stronger contributor 
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to functional outcomes; particularly in younger patients.  However, grip strength does not 

need to be as close to the uninjured comparator in order for patients to achieve functional 

outcomes. 

 

4.7 Conclusion 

 

Most physical impairment measures of the wrist are moderately correlated with wrist pain 

and function after the DRF. The ROM measures of wrist flexion, extension, supination, 

pronation, grip strength, age and sex, contribute significantly with the patient-rated wrist 

pain and function score in early and late stages after the DRF. Patients with DRF need to 

regain 81-94% of the wrist arcs of flexion/extension, radial/ulnar deviations, 

pronation/supination and 64% of grip strength.    
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5.1 Overview of Thesis 

The focus of this thesis was to examine how to optimize fracture outcomes; with a focus 

on wrist fractures. This included determining whether physical modalities could stimulate 

fracture healing, as well methods to assess the reliability and accuracy of range of motion 

impairments, and finally the role of the physical impairments as contributors to function 

following distal radius fracture.  

 

This thesis demonstrated that low-power laser therapy improved the biomechanical 

properties of bone following fracture healing in animal models. Although there is still 

insufficient evidence to establish the optimal dosage, the available results suggested that 

low-power laser irradiation improved the strength of healing bones in animal models. In a 

systematic review on humans conducted by these authors (as part of the comprehensive 

process), similar effects were found for ultrasound in humans.1 Thus, the role of physical 

agents as facilitators of bone healing within rehabilitation was supported. 

 

In the next phase of this work, the focus was on physical impairments, in particular joint 

motion. The first issue addressed was the clinical measurement of joint motion. We 

determined that digital goniometry reliably measured range of motion in both wrist and 

(index) finger PIP joints in patients with limited motion. This method was highly reliable 

for all measures across occasions and raters, using various instruments, despite a lack of 

consistent use of force across raters. This study also determined that measured physical 

impairment moderately correlated with rated pain and function in patients with distal 

radius fracture. This suggested that wrist motion was a contributor to function- although 

other factors must also contribute as important additional components.   

 

In the final phase of this thesis, the focus was on the amount of motion and grip strength 

required for optimal functional outcome. Most physical impairment measures of the wrist 

were moderately correlated with wrist pain and function after distal radius fracture. 

Range of motion as measured for wrist flexion, extension, supination, pronation and also 

the levels of grip strength, age and sex contribute significantly with the patient-rated wrist 

pain and function both in early and late stages of distal radius fracture. Patients with 
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distal radius fracture needed to regain near normal (81%-94%) arcs of wrist 

flexion/extension, radial/ulnar deviation, pronation/supination and 64% of grip strength 

to achieve optimal functional outcomes.  

 

5.2 Implications of Thesis Findings on Practice, Policy and Future Research 

 

5.2.1 Low-power Laser Irradiation 

  

In chapter 2, we found that collation of results from the relevant studies using a 

systematic review process and meta analysis revealed low-power laser, effectively 

stimulated bone healing in animal models. Specifically it increased the mechanical 

strength of bone in fracture models. Since this work has only been proven in an animal 

model, it cannot yet move into clinical practice or policy. Rather, the implications are for 

future research needed. In order to establish the effects of low level lasers on bone 

healing, additional studies should be performed using biomechanical measures, which are 

the optimal indicator for bone strength for this question.2,3 Studies that define optimal 

dosage in animal models closer to human should be the next step. Then randomized 

studies are needed to determine if the same bone healing stimulation effects occurring in 

animals may also be seen in human. A low power He-Ne laser has been suggested for a 

trial in a large clinical study, since this type of laser was commonly used in all relevant 

studies on connective tissue healing and seemed to have positive effects on healing 

process.2 Although it is still early to recommend low-power laser therapy in humans, the 

available body of evidence is promising and warrants conducting clinical trials in humans 

to evaluate the effectiveness of this modality in promoting bone healing. Results from 

such clinical trials may be compared with those of placebo and to other noninvasive 

modalities that have been shown to affect bone healing (e.g., ultrasound) and may lead to 

the development of new protocols for the treatment of human bone fractures.  
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5.2.2 Range of Motion Measurement 

 

In chapter 3, we demonstrated that reliable measurement of range of motion in patients 

with wrist and hand limitations can be obtained using different digital instruments across 

different occasions or raters. The results confirmed the reliability and accuracy of the data 

for range of motion derived from digital goniometers. Few studies compared different 

computerized goniometers, included torque assessments or examined both hand and wrist 

movements within the same study. Other studies that examined digital goniometers 

focused on healthy subjects4,5,6, or used subjects with either normal range of motion7, or 

with specific limited wrist movements6,8. Our results support goniometric assessments 

across raters and devices as a method, to determine limitations in wrist and hand joint 

motion. It was evident that raters tend to use more consistent force on re-application 

compared than forces applied by different raters for similar measure. This evidence 

suggests that the application force may make a small contribution to lower inter-rater 

reliability. Until now rater force application during goniometry has been a concern; but 

few studies have addressed this issue quantitatively. We demonstrated that raters tend to 

reproduce similar torque application upon repeated testing; but that different raters were 

significantly different in their force application. Although the ICCs were still high, 

suggesting this did not substantially impair the ability to discriminate between people in a 

group, it undoubtedly contributes to the absolute amount of error in any given score. This 

evidence makes it harder to know whether a patient is different when examined by a 

different person.  

 

There are several options to deal with this issue. One is to include torque calibration in 

training of goniometry. Methods for calibrating force across raters might be included 

when teaching goniometry. There are a variety of ways to calibrate force applied whether 

it is measure quantitatively or done subjectively by joint resistance. Although the torque 

goniometer we used is not routinely available for clinical practice, the cost of producing 

such devices is not that high and may be a direction for development of new commercial 

devices. It is reassuring that despite the differences in torque that range of motion score 

still provides a reliable measure for use in clinical practice. However, our study provided 
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an area where enhanced precision might be pursued. Future reliability studies may be 

conducted to compare the results from digital instruments used for this thesis project with 

data derived from mechanical goniometers in specific groups of patients. 

 

The moderate relationship between individual joint motion measurements, obtained from 

digital goniometers, and data from self-reported pain and function questionnaires 

suggests that joint motion impairments contribute to functional disability. This moderate 

correlations are in concordance with the findings has been found in a variety of other 

musculoskeletal conditions.9,10 This suggests that measurement of motion is an important 

impairment to consider in clinical practice, but should not be the only impairment 

measure used to make clinical decisions. Policies that include loss of joint motion in 

impairment ratings or disability assessment have been supported by this finding. This 

finding contributed to the decision to study the extent of motion needed for function 

carried out in this thesis.   

 

5.2.3 Physical Impairment Outcome Measures, Pain and Function 

 

In chapter 4, we demonstrated that patients needed to regain high level of wrist arcs of 

motion (flexion/extension, radial/ulnar deviations, pronation/supination) to achieve 

optimal functional outcomes after distal radius fracture. Interestingly, a moderate level of 

grip strength (compared to the normal side) was enough for these patients to achieve 

optimal function based on patient-rated pain and function scores. Former studies have 

quantified level of physical impairments for wrist function focused on healthy people11, 

or used the specific functional activities12, or specific limited wrist movements13, or early 

stages after distal radius fracture13.  Our results confirmed the former findings of required 

moderate grip strength for optimal functional outcomes after distal radius fracture.13,14 We 

also agree that a more normal arc of motion is required for function; although in our study 

this was a little lower than the finding of the previous researchers (0.81 vs. 0.95)13 who 

evaluated satisfaction as the outcome of interest. 

These results show that many activities of daily life (based on specific and usual activities 

of the PRWE) may not need maximum grip strength and therefore loss of some grip 
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strength may not affect function. Conversely, high level of wrist arcs of motion is 

necessary to achieve optimal function in these activities of daily life. These findings can 

be also very useful to determine how much therapy would be necessary to achieve 

optimal functional outcome. A study by Michlovitz et al.15 reported that physical 

impairment measures were used much more frequently than functional outcome 

questionnaires in assessing progress during treatment. Therefore, it is important to be able 

to relate these to function. On the other side, patients are clearly more interested in 

having optimal function than improvements in physical impairment. So, the gap between 

measurement of physical impairment measures and functional level is a real concern.15 

The findings of our study can fill this gap and the clinician can compare data from their 

patients with these “benchmarks” to identify the functional impairment and recovery after 

distal radius fracture. The clinicians should aware that their patients may have optimal 

wrist function when they regain high levels of wrist arc of flexion/extension, radial/ulnar 

deviation and pronation/supination, and at least moderate level of grip strength. Our 

further investigation about level of contribution of physical impairments to patient-rated 

pain and function can help the clinicians to know the required physical impairments for 

optimal functional outcomes after distal radius fracture. Our study did not take into 

consideration occupational or personal demands and expectations; so these would be 

considered when applying this evidence to patients.   

Since joint motion is important, fracture rehabilitation must incorporate interventions that 

will maximize ROM. There is evidence for a number of physical therapy interventions 

that can improve joint motion either specifically for fractures, or for stiff joints.16 A 

systematic review of therapy interventions for improving range of motion has shown that 

joint mobilization, a supervised exercise program, and splinting can effectively increase 

joint range of motion.16 Further investigation of therapy practice patterns identified that 

more than 90% of therapists included range of motion exercises, and about 80% included 

mobilization and splinting in their treatment plan through immobilization phase after 

distal radius fracture.15 These rates of preferred practice patterns were decreased to 80% 

for range of motion exercises and less than 40% for mobilization and splinting during the 

immobilization phase.15 These findings suggest the importance of range of motion 

exercise, mobilization and splinting in treatment plan after distal radius fracture. Our 
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results support the focus on regaining motion that is evident in practice analysis. It also 

provides therapists with targets that might help achieve more effective treatment plan to 

regain optimal function for the patients with distal radius fracture.   

 

Taken together these studies suggest that physical therapy programs should consider the 

use of physical agents where there is a concern about the quality of bone healing. Since 

fracture union rates vary by fracture and a variety of clinical circumstances, the need for 

this intervention will be variable. The nonunion rates are low in distal radius fracture, so 

this use may be infrequent in this fracture. Conversely, the thesis suggests that joint 

motion must be restored and therapists should routinely incorporate interventions to 

improve joint motion into rehabilitation programs. This is supported by current practice 

patterns.15 Joint motion should be routinely measured in fracture rehabilitation and efforts 

to be consistent with testing methods including positioning, instruments, landmarks and 

force application should be considered. The thesis findings support the need for physical 

therapy involvement in fracture recovery and provide some direction on how to optimize 

it.  

 

5.3 Limitations    

 

Although this thesis addressed some gaps in the literature, many remain. Further the 

thesis had limitations which affected the extent to which it addressed these gaps. The 

study of laser effectiveness was limited by the small number of available studies and lack 

of clinical data to represent the effects of laser on bone healing in humans. The results of 

animal studies cannot be extrapolated to humans. Further, since we did not perform 

systematic reviews for all potential physical modalities that might be used on fracture 

healing, we do not know if laser is more or less promising than other physical agents. We 

did perform another systematic review and meta analysis on effects of low-intensity 

pulsed ultrasound on human fracture healing1, which also supported that physical agent 

assists bone healing. However, there were other alternative physical agents which might 

have been effective on fracture healing. It would be necessary to perform a 

comprehensive systematic search to find clinical effectiveness of all potential physical 
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agents on fracture healing, and to compare the results (common outcome measures) of 

different modalities at some point in the future to answer this question.  Further since 

nonunion, delayed union and malunion are all adverse outcomes, these aspects of fracture 

healing should all be  addressed. That was not possible in this thesis. 

 

We also had limitations in the manner in which we studied the role of joint motion in 

fracture recovery. Although we studied the reliability and validity of range of motion 

measures in patients with wrist and hand limitation, we did not perform reliability 

measurements specifically for the patients who had distal radius fracture. Although it 

made sense to study reliability in the larger group of patients that might be tested using 

goniometry to make our findings more broadly generalizable, this made them less 

specific to our primary target-distal radius fracture. However, since 73% of the study 

contained patients with distal radius fracture, the results of the reliability study can be 

considered for the range of motion measures after this fracture.  

 

Finally, our cohort study was a retrospective cohort and so we had restrictions on data 

availability. For example we might have been able to ask patients what amount of 

recovery they expected, or required for function to cross reference our Receiver 

Operating Characteristics (ROC) findings if the study had been a prospective cohort 

design. The study was based on self-reported function so we do not know if the amount 

impairment recovery needed to achieve a good PRWE score actually did provide for 

sufficient capability for performance of tasks and roles e.g. return to work. Further, the 

cut-off for optimal functional outcome is not precisely defined and may vary across 

people.   

 

5.4 Recommendations for Future Studies  

 

Studies toward understanding effective mechanisms to promote better healing for human 

bone fractures, using physical agents are currently underway.  We have initiated a 

comprehensive and systematic review of literature to examine the effectiveness of 

electrical stimulation and electromagnetic fields. The effect of low-level laser irradiation 
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on human fracture healing is a novel question that should be examined in human 

randomized trials as the next step of relevant clinical research.  Future studies that 

enhance our ability to understand the contribution of physical impairment outcome 

measures in various musculoskeletal disorders, and the role of self-report functional 

surveys and scales on clinical decision making and outcomes may lead to more effective 

patient-centered treatment protocols.   
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PATIENT RATED WRIST EVALUATION 

 

Name__________________________ 
 Date_________________ 
 
The questions below will help us understand how much difficulty you 
have had with your wrist in the past week.  You will be describing 
your average wrist symptoms over the past week on a scale of 0-
10.  Please provide an answer for ALL questions.  If you did not 
perform an activity, please ESTIMATE the pain or difficulty you 
would expect.  If you have never performed the activity, you may 
leave it blank. 
 
 
1. PAIN 

 
 
 
          Rate the average amount of pain in your wrist over the past week by circling 
the number that best describes your pain on a scale from 0-10.  A zero (0) means that 
you did not have any pain and a ten (10) means that you had the worst pain you have 
ever experienced or that you could not do the activity because of pain. 
 
                    Sample scale �              0    1    2    3    4    5    6    7    8    9    10 
                                                          No Pain                                           Worst Ever 
 

 
RATE YOUR PAIN: 

 
At rest 

 
   0    1    2    3    4    5    6    7    8    9    10 

 
When doing a task with a repeated 
wrist movement 

 
   0    1    2    3    4    5    6    7    8    9    10 

 
When lifting a heavy object 

 
   0    1    2    3    4    5    6    7    8    9    10 

 
When it is at its worst 

 
   0    1    2    3    4    5    6    7    8    9    10 

 
 
 
How often do you have pain?                     0    1    2    3    4    5    6    7    8    9    10 
                                                                Never                                                  Always 
 

Please turn the 
page.......... 
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2.  FUNCTION 

 
 
A.  SPECIFIC ACTIVITIES 
       Rate the amount of difficulty you experienced performing each of the items 
listed below over the past week, by circling the number that describes your difficulty 
on a scale of 0-10.  A zero (0) means you did not experience any difficulty and a ten 
(10) means it was so difficult you were unable to do it at all. 
 
              Sample scale  ����                 0    1    2    3    4    5    6    7    8    9    10 
                                                       No   Difficulty                               Unable To Do 
    

 
Turn a door knob using my affected hand 

 
 0    1    2    3    4    5    6    7    8    9    10 

 
Cut meat using a knife in my affected 
hand 

 
 0    1    2    3    4    5    6    7    8    9    10 

 
Fasten buttons on my shirt 

 
 0    1    2    3    4    5    6    7    8    9    10 

 
Use my affected hand to push up from a 
chair 

 
 0    1    2    3    4    5    6    7    8    9    10  

 
Carry a 10lb object in my affected hand 

 
 0    1    2    3    4    5    6    7    8    9    10 

 
Use bathroom tissue with my affected 
hand 

 
 0    1    2    3    4    5    6    7    8    9    10 

 
 
B. USUAL ACTIVITIES 
      Rate the amount of difficulty you experienced performing your usual activities in 
each of the areas listed below, over the past week, by circling the number that best 
describes your difficulty on a scale of 0-10.  By usual activities, we mean the activities 
you performed before you started having a problem with your wrist.  A zero (0) 
means that you did not experience any difficulty and a ten (10) means it was so 
difficult you were unable to do any of your usual activities. 
 

 
Personal care activities (dressing, 
washing) 

 
  0    1    2    3    4    5    6    7    8    9    10 

 
Household work (cleaning, maintenance) 

 
  0    1    2    3    4    5    6    7    8    9    10 

 
Work (your job or usual everyday work) 

 
  0    1    2    3    4    5    6    7    8    9    10 

 
Recreational activities 

 
  0    1    2    3    4    5    6    7    8    9    10 
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Appendix B 

 

 

The Disabilities of the Arm, Shoulder and Hand 
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Appendix C 

 
 

The Short Version of the Disabilities of the Arm,  

Shoulder and Hand 
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Appendix D 
 

 

 

The Quality of Animal/Tissue Research Scale 
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The Quality of Animal/Tissue Research Scale 
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