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Abstract  

Implant loosening following joint replacement surgery is a health-care concern.  The role 

of implant-cement debonding on the propensity of loosening has received limited 

attention.  This thesis examines changes in strains within the cement mantle and bone 

surrounding distal ulnar implants, as a function of cement-stem interface bonding. 

A method to embed strain gauges within the cement mantle of the restrictive distal 

ulnar canal was developed.  This technique was applied in 8 cadaveric distal ulnae, 

where strains were quantified at 2 internal and 5 external (i.e., bone surface) locations 

under torsion and bending loads with bonded and de-bonded cement-stem interfaces.  

For a bonded stem, the distal-most external strains increased under all loading 

scenarios, while proximal internal strains increased only under torsional loading 

(p<0.05).  A finite element model of the testing scenarios with bending loads gave 

similar results.  This work will contribute to the future optimization of distal ulnar 

implants.   

 

Keywords: distal radioulnar joint, distal ulnar implant, bone cement, cement-stem 

interface conditions, implant debonding, strain gauge embedment 
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Chapter 1 -  Introduction 

 

OVERVIEW: Distal ulnar implants are one of the options available to 

surgeons in the treatment of painful and debilitating disorders of the 

distal radioulnar joint.  As with many implant designs, loosening of the 

prosthesis and resorption of the surrounding bone are potential 

complications that would lead to the need for revision surgery.  The 

ultimate goal of this thesis’ work is to improve the current understanding 

of the stress/strain distribution in the cement and bone surrounding a 

distal ulnar implant with fixed versus debonded interface conditions.  This 

is done using experimental and finite element modeling techniques.  This 

chapter presents the anatomy, disorders, and treatment options of the 

distal radioulnar joint, as well as the necessary background information 

for both the experimental and finite element methods used throughout 

this study.  The chapter concludes with the study rationale, objectives and 

hypothesis.  Definitions of medical terminology for those readers who 

may be unfamiliar are available in Appendix 1. 
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1.1 The Distal Radioulnar Joint (DRUJ) 

1.1.1 Joint Anatomy and Motion 

The forearm is comprised of two bones, the radius and the ulna, which articulate in two 

distinct locations (Figure 1.1).  The synovial joints at the elbow (i.e., proximal radioulnar 

joint, PRUJ) and the wrist (i.e., distal radioulnar joint, DRUJ) allow for rotation of the 

hand about the long axis of the forearm.  In supination, the ulna is located medially and 

the two bones are parallel.  As the forearm rotates into the pronated position, the distal 

radius rotates about the ulna through an arc of approximately 130-1800, with the 

midpoint defined as the neutral position (Darcus and Salter, 1953; Salter and Darcus, 

1953; Shaaban et al., 2008).  Load distribution between the radius and ulna varies 

throughout forearm rotation, with less radial and greater ulnar load in pronation 

(Ekenstam et al., 1984).  On average, 80% of loads applied to the hand travel through 

radius and the remaining 20% through the ulna (Plamer and Werner, 1983). 

The DRUJ behaves as a pivot, with the ulnar head rotating within the sigmoid notch of 

the distal radius.  Though previously this rotation was attributed to the movement of 

the radius about a stationary ulna, this assessment of the joint dynamics is incomplete.  

In actuality, radial-ulnar movement incorporates both rotation and sliding components 

due to the curvature of the sigmoid notch being 4-7 mm larger than that of the ulnar 

head (Ekenstam and Hagert, 1985; Ekenstam, 1992).   
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Figure 1.1: Left forearm in supinated position   
An anterior view of the left forearm in supination is depicted.  
The forearm is comprised of two bones, the radius and ulna, 
which articulate at the distal and proximal radioulnar joints.  

  

Radius  Ulna  

Proximal 
Radioulnar Joint  

Distal Radioulnar 
Joint  
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The ulnar head glides from a posterior-distal to an anterior-proximal position as the 

forearm moves from pronation to supination (Plamer and Werner, 1983).  Furthermore, 

the ulna moves slightly laterally while the radius travels medially into pronation, and the 

reverse is true for supination (Patrick, 1946; Ray et al., 1951). 

There has been one reported study that used an instrumented ulna to experimentally 

determine the loading of the distal radial ulnar joint in a cadaver forearm.  This study, 

conducted by Gorden et al. (2006), found torsional loads up to 0.13 Nm in the distal 

radioulnar joint during unrestrained forearm rotation.  They also determined that during 

unresisted motion, loads across the DRUJ were highly variable ranging from 2 N to a 

maximum of 26 N. 

1.1.2 DRUJ Injuries and Disorders 

There are multiple sources of injury to the DRUJ, from chronic conditions including 

congenital disorders and arthritis, to traumatic injuries such as fractures, ligament tears, 

and dislocations (Cooney, 1993; Chidgey, 1995).  In particular, the wrist is affected in 

50% of rheumatoid arthritis patients in the first two years, increasing to >90% after 10 

years (Trieb, 2008).  Rheumatoid arthritis has been shown to directly impact the DRUJ in 

approximately 30% of patients (Weiler and Bogoch, 1995), and the second most 

common complication from Colles’ (i.e., wrist) fractures is arthritis of the DRUJ (Cooney 

et al., 1980; Roysam, 1993).  These disorders are commonly associated with pain, 

instability, and restrictions in forearm rotation and grip strength (Bell et al., 1985).  Since 

use of the hand and wrist are required for most routine activities, these symptoms can 

severely impact the functionality and enjoyment of life for many patients.  As a result, 
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the aim of DRUJ treatments is to reduce pain and restore functionality to the joint 

(Peterson et al., 1995).  

1.2 Surgical Treatment Options for DRUJ Disorders 

Current surgical treatment options for DRUJ disorders include ulnar head resection 

(Darrach’s procedure), ulnar shortening osteotomy, Sauve-Kapandji procedure, and 

distal ulnar arthroplasty (Figure 1.2).   

Ulnar head resection is utilized in the treatment of severely unstable or arthritic joints.  

Though the origin of this procedure dates back to the 1980’s (Sauerbier, 2002), William 

Darrach is usually associated with the surgery for his work performed in the early 1900’s 

(Darrach, 1913).  In this procedure the distal ulnar head is removed and the patient’s 

arm immobilized until fully healed (Figure 1.2A).  However, despite the initial success of 

the surgery, it is associated with multiple complications.  Post-surgery impairments to 

forearm motion, grip strength, wrist circumduction, and the hand’s lifting capabilities 

have been observed (Garcia-Elias, 2002).  Aside from the functional loss, clicking of the 

wrist during forearm rotation, and ulnar migration of the carpus resulting in hand and 

wrist deformity have also been reported (Goncalves, 1974; Bell et al., 1985).  Moreover, 

the shortened ulna, resulting from the procedure, often impinges on the radius causing 

persistent pain, which is known as Ulnar Impingement Syndrome.  The poor results 

associated with Darrach’s procedure are a direct result of the removal of the ulnar head 

which is not a vestigial bone, but rather essential to joint functionality (Bell et al., 1985; 

Garcia-Elias, 2002; Sauerbier, 2002).   
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Figure 1.2: Surgical techniques for repair of the DRUJ 
Several surgical techniques are available for repair of the DRUJ 
including: (A) Darrach’s procedure, post ulnar head resection; 
(B) Sauve-Kapandji procedure, with full distal union of the ulna 
and radius; (C) Ulnar shortening, the resected ulna stabilized 
with a surgical plate; and (D) Distal ulnar arthroplasty, implant 
fixated through the use of bone cement. 
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 Multiple alternatives to Darrach’s procedure have been proposed to attempt and 

alleviate DRUJ discomfort while minimizing surgical complications.  The Sauve-Kapandji 

procedure involves the resection of a segment of the ulna just proximal to the ulnar 

head and the fusing of the remaining distal ulna to the radius (Figure 1.2B).  The results 

of this procedure are consistently better than those obtained through ulnar head 

resection (Nakamura et al., 1992; Vincent et al., 1993; George et al., 2004).  However, 

though the procedure does produce satisfactory results, there are still multiple 

complications.  Following the procedure, pain, loss of grip strength, joint instability and 

clicking sounds during wrist and forearm movement have all been noted.  As well, Ulnar 

Impingement Syndrome remains a problem, as the shortened ulna may still impinge on 

the radius (Nakamura et al., 1992; Carter and Stuart, 2000). 

Another alternative to Darrach’s procedure is ulnar shortening, in which 1-3 mm of the 

distal ulna is removed and a surgical plate applied to unite the shortened bone while 

enhancing post-surgical stability (Figure 1.2C).  Though this procedure has been 

successful in treating early post-traumatic osteoarthritis and ulnar impaction syndrome, 

its applications are very limited (Chun, 1993; Scheker and Severo, 2001).  Ulnar 

shortening is unsuitable for severely arthritic patients or those with damage to the ulnar 

head (Loh et al., 1999).  The procedure has also been associated with joint instability, 

and patient complaints of plate irritation, necessitating its removal through additional 

surgeries (Scheker and Severo, 2001; Gaebler and McQueen, 2003). 

Though there are multiple resection surgeries in use to treat DRUJ patients, none are 

able to fully restore the joint to its original functioning condition.  Complications due to 
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pain and instability can impinge on quality of life and leave patients dissatisfied with the 

procedure (Goncalves, 1974; Carter and Stuart, 2000; Scheker and Severo, 2001; 

Sauerbier, 2002).  This is particularly evident in young or active individuals where 

complications are more prevalent (Ozer and Scheker, 2006), and has given rise to the 

use of joint replacement surgery, or arthroplasty.   

1.3 Distal Ulnar Arthroplasty 

Distal ulnar arthroplasty is preferable to resection as it preserves the anatomical 

relationship of the joint by replacing the ulnar head with a mechanical implant (Figure 

1.2D).  As such, the diseased or damaged ulnar head is resected and implant inserted 

into the intramedullary canal.   Depending on the needs of the patient and the quality of 

the surrounding bone, the implant may be inserted directly into the host bone canal 

(using press-fitting techniques), or the canal enlarged and filled with bone cement prior 

to implantation, with the bone cement acting as a viscous fixative securing the implant 

in the desired location (DiMaio, 2002).  With either technique, the prosthesis is then 

capable of load-bearing and maintaining distal articulation, thereby preserving the 

mobility of the joint and restoring forearm functionality.  In addition, a correctly 

inserted implant will preserve the cosmetic appearance of the wrist. 

The first reported use of a distal ulnar prosthesis was in 1972 by Dr. Alfred Swanson 

(Berg, 1976).  He developed a heat-molded silicone rubber implant with a domed head 

to shield the rough edges of the residual distal ulna, and tapered stem to secure the 

prosthesis in the intramedullary canal (Sagerman et al., 1992).  Though early reports 
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appeared promising (Swanson, 1973; Berg, 1976), the implant was associated with 

multiple long-term complications.  In particular, implant fracture, tilting, dislocation, 

bone resorption, and silicone synovitis have plagued this prosthesis design (Jolly et al., 

1992; Sagerman et al., 1992; Stanley and Herbert, 1992; Masaoka et al., 2002).  As a 

result of these complications, the Swanson implant is no longer in use. 

Overcoming the challenges encountered by the Swanson prosthesis, several innovative 

new prosthetic designs have been introduced onto the market.  There are currently 

three designs available: the Herbert ulnar head, Advanta uHead, and Wright E-centrix 

(Figure 1.3). The Herbert ulnar head prosthesis is comprised of a ceramic head and 

titanium stem with a porous surface designed for a ‘contact fit’ with the ulna (KLS 

Martin Group, 2007).  The UHead prosthesis is entirely comprised of cobalt chrome with 

suture holes on the head to allow soft tissue attachment (Small Bone Innovations Inc, 

2006).  Wright’s E-centrix prosthesis is designed with an offset cobalt chrome prosthetic 

head to improve wear properties and cosmesis, as well as, a roughened portion of the 

head surface to encourage soft tissue attachment.  The implant stem is comprised of 

biocompatible titanium (King, 2007).  As well, both the UHead and E-centrix implants 

are designed with fluted and tapered stems to enhance rotational stability.  Both of the 

UHead and E-centrix implants were designed for use with bone cement, whereas, 

originally the Herbert prosthetic was designed solely for uncemented implantation.   All 

three prosthetic designs are available with interchangeable head and stem sizes to 

account for variations in patient physiology, as well as, optional stem collars to adapt 

the implant for greater degrees of revision. 
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At this point, early results have been obtained for all three implant designs and midterm 

results are available for the Herbert ulnar head implant.  Early clinical results for all 

three implants show positive correlations with pain reduction and improved stability 

(Van Schoonhoven et al., 2000; Roidis et al., 2007; Willis et al., 2007).  Midterm results 

for the Herbert implant were also satisfactory; however observations of ectopic 

calcification of the surrounding soft tissues, and cases of implant loosening requiring 

cementing and revision surgery have occurred (Garcia-Elias, 2007; Herbert and van 

Schoonhoven, 2007).  The short term results for the Advanta uHead were likewise 

promising; however, instances of implant loosening have been reported, requiring 

revision surgery to cement the implant thereby ensuring stronger fixation (Cooney III 

and Berger, 2005).  Due to the limited availability of clinical data and long-term studies it 

is not yet known how the designs of these three implants will relate to their acceptance; 

however, it appears that distal ulnar arthroplasty is likely to become the future standard 

of care (Ozer and Scheker, 2006). 

1.3.1 Bone Cement 

Bone cement has a long history of use in arthroplasty to ensure proper implant fixation.  

Dating back to 1891, Dr. Gluck was the first surgeon to experiment with copper, 

amalgam, plaster of paris, and stone kit bone cements (Ritt et al., 1994).  In the 1950’s, 

Smith progressed from Gluck’s original work, initiating the use of poly(methyl 

methacrylate) (PMMA) for use in arthroplasty.  By the 1960’s, Charnley was using 

PMMA in the fixation of prostheses to the femoral shaft during hip replacement surgery 

(Charnley, 1960; DiMaio, 2002).   
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Figure 1.3: Commercially available distal ulnar head 
implants 
There are currently three distal ulnar head implants 
commercially available:  (A) Herbert ulnar head implant by 
KLS Martin (www.klsmartin.com); (B) Advanta uHead 
prosthesis (www.totalsmallbone.com); and (C) Wright E-
centrix implant (www.wmt.com). 

 

  

(C) (A) (B) 



12 
 

 

As a result of this initial work, poly(methyl methacrylate) has now become established 

as the most common method of fixation in joint replacement surgeries (Lewis, 1997; 

Sugino et al., 2008).   

PMMA is comprised of two components, a base powder containing poly(methyl 

methacrylate), and a liquid containing methylmethacrylate (MMA) monomer.  Upon 

combining the components, an exothermic reaction occurs creating a viscous mixture 

that cures to produce homologous chains of repeating methylmethacrylate subunits 

(DiMaio, 2002).  In surgery, the fluidity of the cement enables it to be injected into the 

intramedullary canal prior to implant insertion, such that when cured it forms a non-

resorbable cement mantle that stabilizes and secures the implant.  

The cement fluidity is critical to proper mantle development; however, this property is 

influenced by multiple factors.  The powder to liquid ratio is carefully formulated such 

that under ideal conditions (23oC ± 1oC, 50% ± 10% relative humidity)  all brands of bone 

cement have a maximum dough time of 5 min, and settling time between 5 and 15 min 

(Ginebra et al., 2002).  Throughout the working period the cement viscosity is not 

constant, with a pronounced increase in viscosity over time as the polymerization 

reaction progresses.  However, due to the pseudoplastic nature of PMMA, the viscosity 

of the mixture may be temporarily decreased with an increase in shear rate (e.g. using a 

syringe to quickly inject the cement) (Lewis, 1997).   

The handling period of bone cement is also highly susceptible to variations in 

temperature and mixing method.  Decreasing the temperature of the liquid and powder 

components prior to mixing, through chilling of the cement to approximately 4oC, will 
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slow the polymerization reaction and extend the workability period (Lidgren et al., 

1987).  Likewise, vacuum mixing has been shown to increase the workability period by 

up to one minute (Lidgren et al., 1987; Ginebra et al., 2002).  The polymerization 

reaction of the cement is also susceptible to changes in environmental temperature and 

humidity, where increasing either factor will shorten the working period (Haas et al., 

1975).  Due to the influence of all such factors on the viscosity of PMMA bone cement, it 

is not possible to establish a fixed timeframe during which the material will remain 

viscous; however, according to Lewis (1997), the typical working period is 3-6 min from 

the start of mixing. 

There are approximately 70 commercial bone cements currently marketed to the 

medical community.  The primary difference between formulations is the molecular 

weight of the pre-polymer PMMA, the ratio of PMMA to MMA, or the inclusion of 

additives.  Additives are often inserted to increase the polymerization reaction rate, act 

as a radiopacifier, or provide colorant to simplify in vivo identification.  Antibiotics or 

antimicrobial agents may also be added to reduce incidence of postoperative infection 

(Sanjukta, 2008).  With or without the inclusion of these additives, all bone cements 

must meet ASTM biocompatibility and physical performance standards before receiving 

approval for commercial use (ASTM, 2010a, 2010b).   

1.3.2 Implant Loosening and Debonding 

There is clear literary evidence that cemented implants perform satisfactory for elderly 

patients or those with reduced activity levels (Levy et al., 2000; Ranawat et al., 2004; 

Rasquinha and Ranawat, 2004).  In patients with higher activity levels, concerns have 
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been raised regarding aseptic loosening and debonding of cemented implants.  Implant 

loosening is defined as motion, beginning on the microscopic scale, of the implant 

relative to the surrounding cement and/or bone.  Implant debonding is believed to 

occur with the deterioration of the intermolecular interactions (specific adhesion) 

between the cement and implant, which some believe occurs in all prosthesis (Ahmed et 

al., 1984).  When this adhesive bond is broken (i.e., debonding) the effect on implant 

load transfer and the progression of loosening is currently unknown; however, both 

implant loosening and debonding have been associated with implant failure (Mann et 

al., 1991; Verdonschot and Huiskes, 1996; Garcia-Elias, 2002; Nuño and Avanzolini, 

2002; Lennon, 2003; Cooney III and Berger, 2005; Willis et al., 2007).   

The exact cause of implant loosening is not well known; however, based on implant 

retrievals, several hypotheses have been developed (McGee et al., 2000; Sundfeldt et 

al., 2006).  Loosening has been associated with implant malpositioning, the selection of 

an undersized implant, or over reaming of the intramedullary canal (Herbert and van 

Schoonhoven, 2007).  For the cemented stems, it has also been hypothesized that 

failure of the implant-cement bond (Verdonschot and Huiskes, 1996) or mechanical 

failure of the cement due to crack propagation initiating at the cement-stem interface 

may be the causative factor (Jasty et al., 1991).  Stems may also loosen if the 

surrounding bone is removed, by the phenomenon known as “stress shielding”. 

1.3.3 Stress Shielding 

Stress shielding is the reduction in bone density surrounding an orthopaedic implant 

due to the removal of anatomical joint loading (i.e., load is borne by the implant, and 
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thus bone loading is reduced). This ultimately acts as a causative factor in the loosening 

of the implant (Maloney et al., 1989).  This reduction in force is a result of the implant 

stiffness being greater than that of the surrounding bone, thereby altering the load 

distribution to the bone.  However, it is unclear how the level of bonding at the cement-

implant interface may affect the stress shielding phenomenon. That is, how the 

magnitude and type of load reaching the bone may be influenced by debonding of the 

implant from its cement mantle, which some argue occurs for all cemented implants 

within their lifespan (Verdonschot and Huiskes, 1998).   

1.4 Post Arthroplasty Strain Measurement 

Changes in stress distribution to the structures surrounding cemented implants are 

thought to occur as a result of debonding and implant loosening.   Since it is not possible 

to directly measure stress, strain gauges applied to both the cement and bone 

surrounding the implant provide one quantitative method for determining alterations in 

stress/strain patterns.      

1.4.1 Piezoresistive foil gauge overview 

Piezoresistive foil gauges or strain gauges are comprised of a grid of aluminum or 

stainless steel wires encapsulated between two sheets of polyamide or epoxy film 

(Figure 1.4).  The wire grid is oriented in a single direction such that applied strain will 

stretch the grid along its length.  As the wire deforms, a change in resistance occurs in 

accordance with Equation 1. 
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Figure 1.4: Uniaxial strain gauge  
Commercially available gauges are comprised of two thin 
layers of polyamide or epoxy film surrounding a metal 
wire.   Displayed are the (A) isometric and (B) assembly 
views of a uniaxial strain gauge. 
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Equation 1 

Where: ρresistivity = Resistivity of the wire 
L = Length of the conductor 
A = Cross-sectional area of the wire 

 

As the wire stretches, its length (L) increases and cross-sectional area (A) decreases, 

resulting in an increase in resistance (R) that is proportional to the change in strain.  

Strain gauges are also sensitive to changes in temperature and pressure, as such they 

are not recommended for applications where these variables change during the desired 

measurement period. 

Uniaxial or multiaxial strain gauges are commercially available.  Uniaxial gauges allow 

for one directional strain measurement; however, in studies involving axial and shear 

strain, or requiring the calculation of the principal strain, triaxial gauges are preferred.  

Standard triaxial rosettes are composed of three wire grids oriented in a 0-45-90o 

pattern.  Using strain obtained from a triaxial gauge as displayed in Figure 1.5, and the 

formulae provided in Equation 2 and Equation 3, the respective maximum (      and 

minimum        principal strains may be determined for a given location as: 
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Figure 1.5: Triaxial gauge orientation  
Standard triaxial rosettes are composed of three uniaxial 
strain gauges oriented in a 0-45-90o pattern.  Utilizing the 
strain response of all three gauges principal strain may be 
calculated. 

 

 

 

 

 

ԑA 

ԑB 

ԑC 



19 
 

 

1.4.2 Wheatstone Bridges 

Wheatstone bridges are used in conjunction with strain gauges to isolate and amplify 

the desired signal while reducing any undesirable components.  Each Wheatstone 

bridge is comprised of four arms, with a resistor on each arm, and allows for both the 

application of an input voltage (Vin) and measurement of an output voltage (Vout) (Figure 

1.6).  When the resistances are equal and the bridge balanced, an output voltage of zero 

will be recorded.  Strain gauges may be substituted for one, two or four of the 

Wheatstone bridge’s resistors.  When the gauges are incorporated into the circuit, 

changes in resistance that result from the change in the length of the wire in the gauge 

will impact the output voltage; therefore, in this scenario voltage changes are 

proportional to changes in strain.    

1.4.3 Strain Gauge Embedment  

While applying a strain gauge to an external surface is a well-known and relatively 

straight-forward procedure, challenges can arise when attempting to embed them 

within a material.  Embedded strain gauges have been utilized since the early 1960’s to 

measure the strains within artificial solids.  The original technique was pioneered by 

Brasier and Dove for the insertion of gauges without altering the strain pattern within 

the material (Brasier and Dove, 1961; Dove et al., 1962).  The validity of this method in 

measuring both static and dynamic strains was established by Serdengecti et al. and its 

functionality in measuring strains in both bending and tension was confirmed by Epelle 

(Serdengecti et al., 1962; Epelle, 1975).   
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Figure 1.6: Wheatstone bridge circuit 
Wheatstone bridges are frequently used in conjunction with 
strain gauges to accentuate desired signals and attenuate those 
that are undesired.  They are comprised of four arms, with a 
resistor or gauge inserted in each arm.  The circuit allows for 
both the application of an input (or excitation) voltage (Vin) and 
measurement of an output voltage (Vout) (which is related to 
the measured strain).    
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Since then, multiple methods of technique optimization and error reduction have been 

reported in the literature (Little, 1982; Little et al., 1990; Ajovalasit, 2005). 

Two primary methods of strain gauge embedment have emerged.  The first method 

uses a three-dimensional multi-gauge construct to measure all load components in a 

given space.  This technique was pioneered by Babut and Brant, who developed a linked 

nine-gauge device utilizing vibrating-wire strain gauges, and tested their apparatus 

within a cement construct (Babut and Brandt, 1977).  Little and O’Keefe along with 

Baker and Dove offered an alternative designs, by creating three dimensional strain 

rosettes, comprised of three gauges mounted on a carrier (Baker and Dove, 1963; Little, 

1984; Little and O’Keefe, 1989).  Both sensors were determined to have a high degree of 

accuracy; however, they are limited in application due to the large sensor size and are 

rarely used in medical applications (Babut and Brandt, 1977; Little and O’Keefe, 1989). 

1.4.3.1 Methods of Embedment in Bone Cement 

The application of gauge embedment techniques to examine strains in bone cement has 

been limited.  Initial embedment techniques affixed a strain gauge onto a PMMA wafer 

that was then inserted into a bone cement cantilever beam.  This technique showed a 

positive experimental to theoretical agreement of greater than 89%, but was not 

representative of the geometric conditions found in a cement mantle (Draganich et al., 

1982).  Due to these positive results, the technique was further developed for use in 

comparing the strains within the cement mantle of a femoral implant during dynamic 

and static loading (Davey et al., 1993; O’Connor et al., 1996; Estok et al., 1997).  Though 

the results appeared viable, in the experimental procedure the gauges were grouped 



22 
 

 

into a cluster at the superior end of the cement mantle and aligned vertically along the 

medial and lateral mantle segments with the embedded lead wires bound together.  

This close vertical gauge alignment and method for handling wires within the region 

under study has been shown to cause local reinforcement in the cement and reduced 

strain response (Ajovalasit, 2005). 

Fisher et al. modified this method of gauge embedment, rather than affixing the gauge 

on a wafer, the implant stem was coated with a thin layer of bone cement and the 

gauges fixed to known locations.  The instrumented stem was then implanted into 

composite femoral replicas for testing.  Strong correlations between experimental and 

theoretical strains were determined for the gauges in PMMA cantilever beams; 

however, validation of the final testing method was not conducted (Fisher et al., 1997).  

Cristofolini and Viceconti cemented 10 localized areas on the proximal portion of 12 hip 

stems and instrumented each area with a triaxial gauge prior to implanting the gauged 

stems into composite femurs. During testing, all gauge wires were embedded into 

groves along the implant stem, which were then filled with putty and smoothed to 

maintain stem geometry.  The reproducibility and robustness of this application was 

validated through the repetitive application of loads simulating the heel-strike phase of 

gait (Cristofolini and Viceconti, 2000).  Cristofolini et al. also utilized this procedure in 

the testing of stress shielding in epiphyseal hip prostheses (Cristofolini et al., 2009).  

However, in both studies, the gauge wires were embedded within the implant stem 

potentially impacting the stem-cement interface, thereby altering the load transfer from 

the stem to the cement in the affected areas.   



23 
 

 

Despite the limitations inherent in strain gauge embedment, the aforementioned 

studies have validated its use in measuring strains within the cement mantle for femoral 

implants.  However, further research is needed to determine the optimal method of 

triaxial gauge embedment and test its applicability to upper limb implants, in which the 

smaller size of the host bone increases the challenge. 

1.5 Finite Element Analysis (FEA) 

The Finite Element Method was developed in the 1940’s (Logan, 2002), and was 

introduced to the field of orthopedic biomechanics by Brekelmans et al. in 1972. From 

its humble beginnings as an analysis program using a lattice of one-dimensional 

elements to solve for stresses in continuous solids (McHenry, 1943), it has grown into a 

powerful tool through which complex biomechanical problems may be addressed.  The 

suitability of FEA for use in biomechanical problems may be attributed to its 

functionality in analyzing complex shapes, materials and loading patterns to determine 

the resultant stresses and strains (Huiskes and Chao, 1983).  Such data may be 

determined not only at discrete points, as can be accomplished experimentally, but also 

throughout the specimen.  As well, a single FEA model may be examined under multiple 

loading conditions or in a variety of scenarios, a situation that would be experimentally 

impractical due to cost constraints, restrictions in cadaver availability, and time.   

Of the commercially available modeling softwares, the Abaqus® program (Simulia, 

Providence, Rhode Island, USA) is one of the most commonly used for biomedical 

applications.  This software was originally developed in 1978 by David Hibbitt and Bengt 
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Karlsson to study mechanical restraints in nuclear reactor cores (Webb, 2009).  It has 

since developed into a robust software package capable of integrating geometry based 

and imported meshes, and modeling linear and nonlinear materials and contact 

properties (Simulia, 2012). 

1.5.1 Finite Element Components  

Finite element analysis is used to determine mechanical stresses of a loaded object in 

complex scenarios where it would not be feasible to complete the calculations manually 

using theoretical equations.  Such scenarios include instances where the object has 

complex material properties or geometry, indeterminate structures, large deformations, 

or in when complex loads are applied.   

The premise behind the method is to decentralize the part into smaller segments called 

finite elements, with each element linked at nodes, boundary lines, or shared interfaces.  

Simple equations (Equation 4) may then be used to describe the relationship of force vs. 

deformation for each element, normally at the node locations: 

 

      Equation 4 

Where: F = Applied forces 
k = Element stiffness matrix 
u = Nodal displacements 

 

Elements are fit to the object’s surface to form a mesh, with the quality of the resultant 

mesh highly dependent on the element selection, with regards to size and type.  

Elements used to model 3-D solids are generally based on tetrahedral or hexahedral 

structures, which may be further divided into linear or quadratic forms (Figure 1.7).  
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Quadratic elements (with mid-edge nodes) are able to model curved surfaces and 

generate a more accurate result, but also require greater computer power.  Despite the 

computational restrictions, quadratic elements are recommended for utilization in 

biomechanical modeling of complex skeletal components, as linear elements have been 

associated with poor performance and failure to adequately predict stress in regions 

with large gradients (Polgar et al., 2001).  Previous studies have also shown that 

quadratic tetrahedral elements are capable of producing accurate results when 

modeling biological structures (Au et al., 2005; Ramos and Simões, 2006). 

1.5.2 Model Parameters 

To develop a finite element model, the geometry of the object being analyzed must first 

be defined. For complex anatomical subjects, such as a biological specimen, three 

dimensional imaging data is often used (Taddei et al., 2007; Yosibash et al., 2007).  A 

subject specific finite element model may be developed by taking a computer 

tomography (CT) scan of the specimen.  Once the scan is obtained, the bone to be 

analysed is isolated from the extraneous imaging data through alteration of the image’s 

attenuation levels, where different materials (with their associated properties) may be 

identified in different attenuation ranges.  Once complete, a mesh is applied (Section 

1.5.1).    
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Figure 1.7: Elements options with associated nodes 
Linear and quadratic tetrahedral and hexahedral elements 
utilized in finite element analysis are displayed with their 
respective nodal numbers. 
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The accuracy of the model is dependent on the valid representation of not only the 

geometry but also the material properties of the specimen.  As such, the properties of 

known materials (i.e., titanium) may be obtained from the literature; however, 

inhomogeneous material properties are unique to the specimen and, therefore, cannot 

be determined in this manner.  As with specimen geometry, CT images may be utilized 

to determine material properties, since the Hounsfield units displayed on the CT are 

linearly correlated to the density of skeletal tissue (Taddei et al., 2004).  As the density 

of bone is related to its elastic modulus, material property-density relationships may be 

applied to the CT scans in order to assign inhomogeneous material properties to the 

bone model (Austman et al., 2009). 

A fully developed finite element model may be tested in a variety of scenarios and 

relevant strain data acquired post-processing.  This may be accomplished through the 

selection and application of appropriate load and constraint data, such that the forces 

being applied are anatomically relevant.  During processing, the resultant FEA will solve 

for nodal displacement and calculate the element stress based on these values.  

However, before any finite element results may be used, they must first be validated 

against experimentally obtained measures (e.g. strain gauges).  Without validation, use 

of any model must be questioned.    
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1.6 Study Rationale 

Surgical advancements have enabled the treatment of severely damaged or diseased 

distal ulnar joints through the removal of the damaged bone and insertion of a joint 

replacement component.  However, the long-term functionality of these implants is 

currently unknown, and the potential for implant loosening must be considered.  In the 

case of cemented implants, failure due to implant loosening may be instigated by 

excessive strain resulting in mechanical failure of the cement (Jasty et al., 1991), or as a 

result of stress shielding (Maloney et al., 1989).  However, it is currently unknown how 

the level of bonding at the cement-implant interface may affect the onset of loosening 

or the stress shielding phenomenon.  The purpose of the proposed research is to 

examine torsional and bending strains within the cement mantle, as well as in the 

surrounding bone, following distal ulnar arthroplasty as a function of bonded versus 

debonded interface conditions.  Furthermore, a finite element model capable of 

analyzing bending strain with a variety of implant-cement interface conditions is 

developed.  The ultimate goal of this research is to enhance the understanding of the 

role of the implant-cement interface conditions on strains in the cement mantle and 

their impact on stress shielding.  The desire is that the information garnered through 

this research may then be used to optimize the design of distal ulnar implants, thereby 

reducing the need for replacement through costly and painful revision surgeries.  
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1.7 Objectives and Hypotheses 

The objectives of this thesis are as follows: 

1. to develop a strain gauge embedment methodology that will not compromise 

gauge functionality within the confines of the distal ulna,  

2. to experimentally investigate the effect of distal ulnar implant-cement debonding 

on cortical bone strains and strains within the cement mantle as a function of 

loading conditions; and, 

3. to expand the validation of a previously developed finite element model of the 

distal ulna to include cement strains, and determine if the debonded cement-

implant interface may be modeled via a Coulomb frictional interaction.   

 

The corresponding hypotheses were: 

1. Bonded strain gauge embedment will be more functional than wafer embedment 

methods. 

2. Debonding at the implant-cement interface will result in an increase in both cement 

and bone strains surrounding the implant compared to a bonded interface, while 

strains proximal to the implant will not change. 

3. FEA results will agree with the experimental measurements of strain both within the 

cement mantle and on the surrounding bone surface, thereby indicating that 

cement-stem debonding may be accurately represented with a Coulomb frictional 

interaction. 
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1.8 Thesis Outline 

This thesis was written in the integrated article format.  With each of the previously 

mentioned objectives and hypotheses (Section 1.7) corresponding to a chapter in the 

thesis.  Where, Chapter 2 describes a strain gauge embedment methodology that allows 

the measurement of strains within the constrained cement mantle surrounding an 

implant stem, without the use of an adhesive.  Chapter 3 outlines an experimental study 

which examined the effect of implant-cement debonding on strains both within the 

cement mantle and on the cortical bone surface.  Chapter 4 investigates the expansion 

of a previously developed finite element model of distal ulnar arthroplasty, to include 

cement strains and multiple cement-stem interface conditions.  Chapter 5 summarizes 

the conclusions of this thesis, its overall significance, as well as potential future work 

related to these studies. 
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Chapter 2 -  Development and Validation of a Strain 
Gauge Embedment Methodology for Use 
with PMMA Bone Cement 

 

OVERVIEW: It has been suggested that cement-stem debonding alters the 

transfer of load from an orthopaedic implant stem to the surrounding 

bone and thereby plays a role in stress shielding.  The study outlined in 

this chapter aims to develop a strain gauge embedment technique 

capable of measuring strains within the cement mantle surrounding the 

implant stem, without compromising the integrity of the structure.  The 

developed methodology will be used in subsequent studies to determine 

the impact of cement-stem debonding on load transfer patterns following 

distal ulnar arthroplasty.  

 

2.1 Introduction 

The lifelong functionality of upper-limb orthopedic implants is dependent upon the 

quality of implant fixation to the surrounding bone.  For cemented implants, this linkage 

is achieved via a cement mantle; however, there are long-term complications associated 

with this method of fixation.  Currently, the primary reasons for revision surgery and 

replacement of these devices is due to loosening or failure within the cement 

(Verdonschot and Huiskes, 1997a; McGee et al., 2000; Lennon, 2003). 
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To better understand the potential causes of implant failure, it would be advantageous 

to determine the forces acting within the cement mantle itself.  However, the 

mechanical measurement of forces acting within a solid body is quite challenging.  The 

complexity of measuring the state of stress-strain within the mantle is exacerbated due 

to the limitations in measurement techniques available for this purpose.  Most 

procedures are capable of accurately measuring strain on a free surface; however, for 

this application, embedment of the sensor (i.e., strain gauge) within the cement is 

necessary.  As such, it is important to qualify the functionality of the gauge under the 

adverse loading conditions present within cement, including increased temperature, 

moisture, pressure, and constrictive geometry. 

Several strain gauge embedment procedures have previously been described in the 

literature, employing either a gauge carrier or bonding process to fixate the gauge 

within the cement mantle (Draganich et al., 1982; Davey et al., 1993; O’Connor et al., 

1996; Estok et al., 1997; Fisher et al., 1997; Wheeler et al., 1997; Cristofolini and 

Viceconti, 2000; Ajovalasit, 2005; Cristofolini et al., 2009).  Gauge carrier studies use an 

adhesive to affix the strain gauge onto an isolated bone cement wafer prior to insertion 

into the canal, thereby providing a larger surface and easier access to properly orient 

the gauge (Davey et al., 1993; O’Connor et al., 1996; Estok et al., 1997).  In contrast, 

previous studies that have employed a bonding approach have utilized a two stage 

cementing process to affix the gauges within the mantle.  First, a cement layer of known 

thickness is formed on the implant’s surface and allowed to dry.  Then the gauges are 

adhered to this layer using an adhesive (Fisher et al., 1997; Wheeler et al., 1997; 
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Cristofolini and Viceconti, 2000; Cristofolini et al., 2009).  The inclusion of an adhesive in 

both these techniques forms multiple interfaces adjacent to the gauge and 

discontinuities in the cement mantle.  As well, neither methodology has been trialed 

within the tightly constrained mantle of an ulnar implant.  Thus, the purpose of this 

study was to develop a gauge embedment technique that limited the number of 

interfaces around the gauge and was suitable for use within this restrictive region.    

Both the gauge carrier and bonding approaches were examined; however, due to early 

failures in generating a viable gauge carrier (Appendix 2) the research focus was 

directed towards developing a bonded gauge methodology that did not require the use 

of an adhesive.   

2.2 Materials and Methods 

Simplex P® bone cement (Stryker, Michigan, US) was mixed in an Optivac® Vacuum 

Mixing System (Biomet Inc, Warsaw, Indiana USA).  When the Optivac® system is used, 

the powder and liquid cement components are combined in a cartridge, the cartridge is 

closed, and a 15-20 mmHg vacuum applied.  The cement constituents are rapidly mixed, 

using the built-in plunger, for one minute, whereupon the cartridge is opened and 

cement poured into a syringe for dispensing. (A detailed description of the cementing 

technique is provided in Appendix 3.)  Immediately following the mixing period, the 

cement is of a thick liquid consistency, but quickly becomes more viscous, hardening 

into a solid within 3-6 minutes at room temperature (Lewis, 1997).  As it changes from 

liquid to solid, it passes through a “doughy phase” in which the cement exhibits 

adhesive properties (i.e., it becomes tacky).  
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While the cement was still in its liquid state, it was applied to the surface of a smooth 

stainless steel stemmed implant (diameter of 5.8 mm).  The location and thickness of 

application were controlled using a 0.5 mm template, which maintained a constant 

depth and area, ensuring localized cement application.  As the cement moved into the 

doughy phase and reached the desired consistency, the mold was removed and a triaxial 

strain gauge (SGD-2/350-RY53, Omega Environmental, Quebec, Canada) was pressed 

onto the surface of the cement layer.  (NOTE:  A more detailed description of the 

gauging technique is outlined in Appendix 4.)  After a period of approximately 20 

minutes, the cement had dried sufficiently to proceed with implantation.  This involved 

the feeding of the strain gauge wires through the bone canal, and exiting through a hole 

that had been drilled approximately 8 cm from the distal end of the bone.  Cementing of 

the gauged implant into a Sawbone® third generation long bone (Pacific Research 

Laboratories Inc, Washington, USA) required a second package of vacuum mixed 

Simplex P®.  Vacuum mixing is an important step in reducing the formation and limiting 

the presence of voids within the cement.  The cement was then forced into the bone 

canal using a syringe, and the implant was carefully lowered into the canal.  The gauge 

was wired into a Wheatstone bridge (quarter-bridge configuration).  This configuration 

was obtained by connecting the wires to a data acquisition system (PXI-1050, National 

Instruments, Austin, TX, USA) through a strain gauge module (module SCXI-1314 and 

terminal block SCXI-1520). 

After an eight hour curing period, the quarter bridge channels were calibrated and the 

unloaded strain output recorded at 1 Hz over a ten hour interval using a custom-written 
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LabVIEW® (National Instruments, Austin, TX) program. (Program details are provided in 

Appendix 5.)  The cement was then left to cure for the remainder of the 24h period 

recommended by G. Lewis (1997). This choice of a prolonged curing period was selected 

since bone cement is susceptible to aftercure, where following the initial polymerization 

reaction, residual monomer gradually polymerizes over time altering the material 

properties of the cement (Lee et al., 2002). 

Post cure, the bone-cement-implant construct was positioned in a materials testing 

machine (Instron 8872, Canton, MA, USA) equipped with a 1,000 N load cell.  Six 

different bending loads (5-30 N) were applied to the distal tip of the implant, held for 30 

sec, and the load application repeated a total of three times.  Load and displacement 

data from the Instron were simultaneously captured in LabVIEW®, along with the strain 

gauge output.  Due to the variations in the mechanical behavior of bone cement over 

time (Lewis, 1997; Lee et al., 2002), bending trials were repeated 48h and 7 days post 

embedment. 

The strain response for each loading scenario was converted to principal strain using the 

equations listed in Section 1.4.1, after the unloaded sensor data was nulled to eliminate 

gauge offset.  By analyzing the strain response throughout the initial ten hour unloaded 

period, the drift present in the system was monitored.  The linearity of the strain 

response was verified, and for the 20 N load, Coefficients of Variation (CoVs) utilized to 

determine the repeatability within session, as well as, within and between days. Less 

than 5% variance was considered excellent and anything above 10% considered poor.  

Hysteresis was quantified by increasing and subsequently decreasing the bending load 
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between zero and 30 N over 15 second period.   At 5 N intervals, the deviation between 

the loading and unloading curves was recorded, and the maximum deviation taken as 

the measure of the gauge’s hysteresis.   

Upon completion of testing, the specimen was disassembled and visually examined for 

the presence of voids or inconsistencies between the initial layer of cement applied to 

the stem (i.e., gauge adhesion cement) and the Simplex P® forming the remainder of the 

canal. The area surrounding the gauge was also examined for voids, both around the 

gauge itself and between the gauge and Sawbone® canal wall.     

2.3 Results 

The signal from the embedded gauge was relatively stable after an initial settling period 

of approximately 2 hours.  Prior to settling, fluctuations resulted in a drift of the 

principal strain of 49.6 µԑ (standard deviation 8.2 µԑ).  Over the remaining 8 hour 

recording period, further drift was limited to 8.7 µԑ (standard deviation 3.9 µԑ) (Figure 

2.1).   

The strain gauge provided quality linear signals throughout the multiday testing 

protocol.  The strain varied linearly with load (R2 ≥ 0.99) for all testing days, with 

marginally higher linearity during the first two testing days (Figure 2.2).  The within 

session repeatability was acceptable with coefficients of variation between 7.8% and 

8.7%. Within day and between day repeatability was excellent with 1.0% and 3.0% CoV, 

respectively (Table 2.1), and a minimal average hysteresis of 1.62 µԑ was recorded.  A 

compilation of all experimental principal strain data is available in Appendix 6.      
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Figure 2.1: Drift of an embedded strain gauge 
Principal strain of a triaxial rosette embedded in bone cement 
recorded over a ten hour period with a drift of 49.6 µԑ (standard 
deviation 8.2 µԑ) over the first 2h and 8.7 µԑ (standard deviation 
3.9 µԑ) over the remaining 8h.  
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Figure 2.2: Linearity of strain response  
Strain response from within the cement mantle in response to 
the application of 5-30 N bending loads (A) 24 h, (B) 48 h, and 
(C) 7 days post implantation in a Sawbone® model.  Within day 
error bars are included on the 24 h graph (A); however, due to 
the small standard deviation, they are difficult to visualize. 
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Table 2.1: Coefficients of variation within session, within 
day and between days 
Coefficients of variation were calculated within session, within 
day and between days at 20 N applied bending loads. 
 

Within Session Repeatability 

Session 
Mean Strain  

(µε) 
Standard 

Deviation (µε) 
Coefficients of 
Variation (%) 

1 40.4 3.3 8.3 

2 39.6 3.4 8.6 

3 39.5 3.4 8.6 

Day 2 39.2 3.4 8.7 

Day 7 42.5 3.3 7.8 

Within Day Repeatability 

 
39.8 0.4 1.0 

Between Day Repeatability 

 
40.2 1.2 3.0 
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Upon disassembly of the specimen, the cement used in gauging and implanting was 

examined and found to be successfully bonded.  The area surrounding the gauge was 

inspected and no voids and cracks between boundaries were visually apparent.   

2.4 Discussion 

A reliable method of strain gauge embedment has been developed that limits the 

number of interfaces around the gauge and is suitable for use within constrained 

cement mantles. Despite the reduced mantle size and gauge inclusion 0.5 mm off the 

surface of the stem, the presence of gauges during implantation did not induce void 

formation.   

Previously developed gauge embedment methodologies utilize an adhesive to bond the 

gauge to a fully cured section of PMMA bone cement prior to implantation (Fisher et al., 

1997; Wheeler et al., 1997; Cristofolini and Viceconti, 2000; Cristofolini et al., 2009).  

However, using the technique developed in this chapter, the strain gauge is bonded 

directly to the cement, excluding the use of adhesives and reducing the number of 

boundary layers within the mantle.  The removal of a bonding adhesive eliminates the 

presence of sections of inconsistent material properties in the cement, which could 

potentially impact or alter strain transmission. 

When a strain sensor is embedded in PMMA bone cement, the heat dispersion is 

reduced relative to the same sensor applied topically and exposed to air (e.g., a gauge 

applied to the external bone surface).  Therefore, time must be allotted to allow the 

sensor to reach thermal equilibrium owing to the heat generated by the sensor grid.  
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Due to the rapid and large drift two hours after gauge activation (49.6 µԑ, std dev 8.2 

µԑ), as compared to the desired strain response during testing (Figure 2.2), experimental 

analyses performed during this period may not be accurate.  Thermal equilibrium and 

sensor stability was reached two hours after gauge initialization; this finding is 

consistent with those found in literature (Cristofolini and Viceconti, 2000).  Drift 

recorded after the initial two hour period was significantly reduced to 8.7 µԑ (std dev 3.9 

µԑ) over a ten hour interval.  Though reduced, gauge readings taken at multiple 

instances over this period could be offset by drift; therefore, sensor calibration between 

trials is required to eliminate this offset.   

Simplex P® bone cement is susceptible to diametral shrinkage, which over time could 

theoretically interfere with the cement-gauge bond (Davies and Harris, 1995).  However, 

acceptable coefficients of variation were obtained within all sessions, indicating proper 

functioning of the strain gauges throughout the testing period.  Bone cement is also 

susceptible to aftercure, where the gradual polymerization of residual monomer may 

affect the material properties of the cement (Lee et al., 2002).  As such, testing was 

repeated 24 h, 48 h and 7 days post mixing, and excellent between day coefficient of 

variation found.  Based on these results, this methodology is acceptable for application 

in multiday testing protocols. 

In summation, this experimental method provides a functional embedment technique 

capable of fixating strain gauges without the use of adhesives. This methodology will 

prove useful in the measurement of strains within the constrained mantle of an ulnar 

implant.  In particular, gauge embedment is essential in determining the transfer of 
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strain from the area of load application on the implant head, to the cement mantle and 

distal bone; thus, enabling the measurement of changes in strain under different loading 

and cement-stem interface scenarios.   
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Chapter 3 -  Experimental Examination of the Effect 
of Implant Debonding on Load Transfer 

 

OVERVIEW: Fixation of distal ulnar implants can impact load transfer 

through both the surrounding cement and bone.  This study compares a 

bonded and debonded implant-cement interface in bending, torsion and 

combined loading, using strain gauges both within the cement mantle 

and on the exterior surface of the bone in cadaveric specimens.  The 

results could have future implications for implant design. 

 

3.1 Introduction 

Damaged or severely arthritic distal radial ulnar joints may be treated using various 

surgical procedures (Darrach, 1913; Vincent et al., 1993; Bain et al., 1995; Ozer and 

Scheker, 2006).  Of the existing options, only distal ulnar head arthroplasty preserves 

the anatomic relationship of the joint by replacing the ulnar head with a stemmed 

mechanical implant (Van Schoonhoven et al., 2000; Sauerbier, 2002; KLS Martin Group, 

2007).  However, the long-term functionality of these prosthesis can be impacted by 

aseptic loosening, which is treated through complicated and costly revision surgery.    

Debonding at the cement-stem interface has been hypothesized to contribute to early 

implant failure and has been shown to impact load transfer in multiple experimental 

and finite element studies of hip prosthesis (Crowninshield and Tolbert, 1983; 
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Verdonschot and Huiskes, 1996, 1997a, 1997b; Wheeler et al., 1997; Verdonschot et al., 

1998).  To the author’s knowledge, no previous studies have examined the impact of 

interface fixation loss on load transmission surrounding distal ulnar implants.  As such, 

the effect of debonding at the stem-cement interface, which could impact the transfer 

of load through the cement to the surrounding bone, is currently unknown.  Quantifying 

these load changes (through monitoring strains) would be of interest in examining the 

effect of loss of interface fixation on the causative factors associated with aseptic 

loosening, including, mechanical failure of the cement and stress shielding resulting in 

bone loss (Sundfeldt et al., 2006).  In theory, a bonded implant would allow for greater 

load transfer through the cement mantle to the surrounding bone thereby reducing the 

effects of stress shielding.  

The purpose of this study was to investigate the effect of cement-implant debonding on 

strains within the lateral cement mantle and distal ulnar bone under multiple loading 

conditions.  The hypothesis was that strains within the cement mantle and surrounding 

bone would increase with debonding of the implant-cement interface; however, strains 

proximal to the implant would not be affected. 

3.2 Materials and Methods 

Eight fresh frozen cadaveric male ulnae (3 left, 5 right), with a mean age (± standard 

deviation) of 71 (± 8) years, were sectioned just distal to the coronoid process, thawed, 

and the proximal end cleaned of soft tissue (See Appendix 7 for specimen details).  The 

distal ulnar head was removed and an intramedullary canal (7.9 mm diameter, 80 mm 

length from the cut distal surface) drilled by a fellowship trained surgeon.  An additional 
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4.4 mm canal was drilled 80 mm from the cut distal edge through the lateral ulna.   The 

proximal portion of each ulna was then cemented in a polyvinyl chloride (PVC) cylinder 

via a custom potting jig, and a laser level utilized to ensure alignment of the bone with 

the jig on both anterior-posterior and medial-lateral sides (Appendix 8, Figure A.6).    

Two triaxial strain gauges (SGD-2/350-RY53, Omega Environmental, Quebec, Canada) 

were affixed with a 0.5 mm layer of Simplex P® bone cement (Stryker, Michigan, US), to 

an E-centrix® distal ulna implant (Wright Medical Technology, Tennessee, US), 1 cm and 

4 cm from the distal end of the stem, using the methodology employed in Chapter 2 

(Figure 3.1).  Internal gauge positions were selected due to the predominant deviations 

in strain in the distal and proximal regions of the implant stem.  As well, additional 

internal gauges were not added due to the size and mass of the wires.  Key points on the 

implant were digitized both pre and post strain gauge fixation using a MicroScribe® 

(Revware, San Jose, California) to confirm gauge location and depth (Figure 3.2). Points 

of digitization are cataloged in Appendix 9.   

Pilot studies indicated that breaking a cement-implant bond in a timely fashion would 

not be feasible.  Therefore, this study was designed to first develop and test a debonded 

implant, following with the removal and recementing of the implant to create a bonded 

implant-stem interface.  Several debonding agents were investigated, however it was 

determined that of the available options, petroleum jelly the only substance capable of 

inhibit bonding without compromising the cement mantle.  (See Appendix 10 for release 

agent validation.)   
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Figure 3.1: Internal gauge position and orientation   
Internal gauges were attached to the Wright E-centrix 
implant with a 0.5 mm layer of Simplex P® bone cement.  
The proximal (I4) and distal (I1) strain gauges were 
positioned 4 cm and 1 cm respectively from the implant 
head.  Omega Environmental model SGD-2/350-RY53 
gauge rosettes were used, with short lead wires attached, 
external dimensions of 5.6 x 5.6 mm, and wire grid 
dimensions of 2.0 x 1.1 mm.  The original lead wires were 
extended for testing using 32 gauge wires.  However, the 
number of gauges was limited due to the bulk of the wires 
within the cement mantle. 
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Figure 3.2: MicroScribe®   
The MicroScribe® was used to digitize key points on the 
implant and bone both pre and post strain gauge fixation.   
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The implant was positioned and oriented with the gauges aligned along the lateral side 

of the distal ulna via a laser level and the gauge wires threaded through the canal and 

out the 4.4 mm lateral hole (Figure 3.3).  The uncemented areas of the implant stem 

were coated with a layer of petroleum jelly to inhibit bonding.  Using fluid vacuum 

mixed Simplex P® bone cement, pressurized with a syringe (Appendix 3), and consistent 

tension on the wires to prevent bunching, the E-centrix® distal ulna implant was 

inserted and cemented into the drilled intramedullary canal (as previously described in 

Section 2.2).  The implanted ulna was then wrapped in a saline soaked towel, a thin 

layer of low density polyethylene (LDPE), and a LDPE bag for 24 h, to provide time for 

cement curing while maintaining bone moisture. 

Post curing, the ulna was instrumented with five triaxial strain gauges (SGD-2/350-RY53) 

applied to the lateral external surface of the bone; one, two, four, five and ten 

centimeters from the distal end.  A laser beam was projected on the bone surface 

throughout gauging to ensure gauge alignment along the long axis of the bone (Figure 

3.4).  The gauges were affixed using a previously developed gluing technique (Finlay et 

al., 1982; Cordey and Gautier, 1999; Kim et al., 2001; Dunham, 2005), further details of 

which are available in Appendix 11. When gauged, a MicroScribe® was used to digitize 

key points on the bone and potting fixture (Appendix 9). 
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Figure 3.3: Implant oriented for embedment   
Implant and internal gauges positioned and oriented in a 
cadaver ulna prior to cementing and implantation.  Gauge 
wires are visible exiting the bone through a 4.4 mm 
proximal hole.  
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Figure 3.4: External gauge location and alignment   
Triaxial gauges (E1, E2, E4, E5, and E10) were applied at set 
distances along the lateral side of the bone.  A laser level 
was used to facilitate gauge alignment along the long axis 
of the bone.  
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The internal and external gauges were connected to a data acquisition system (SCXI 

1520, National Instruments, Austin, TX, USA) through a strain gauge module, using a 

Wheatstone quarter-bridge configuration, and a 2.5 V excitation voltage.  The strain 

response from the gauges, as well as the load and displacement data from the materials 

testing machine (Instron 8872, Canton, MA, USA) were recorded via a custom LabVIEW® 

(National Instruments, Austin, TX) program.  See Appendix 5 for LabVIEW® program 

details.  

The ulna was positioned in a materials testing machine with a 1,000 N load cell (Instron 

8872, Canton, MA, USA) and secured via the PVC cylinder in a custom jig setup (Figure 

3.5A).  Prior to testing all gauges were connected and operated for at least two hours to 

allow the system to reach thermal equilibrium, in accordance with the findings of 

Chapter 2. Despite the application of petroleum jelly to the stem, bonding still occurred 

(although weakened).  A debonded interface was obtained through the application of 

torsional loads until implant rotation of 7o (as recommended by a fellowship trained 

surgeon as the rotational point of definitive debonding) was obtained (Takaki, 2007).  

Using a 200 N load cell and the Instron®, six different bending loads (5-30 N) were 

sequentially applied to the lateral-side of the distal implant tip, thereby generating a 

moment about the anterior-posterior axis simulating the DRUJ reaction force during 

active unresisted forearm rotation (Gordon et al., 2006).      
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Figure 3.5: Experimental setup and points of load 
application  
(A) Lateral view of the implant cement loading setup.  The 
proximal portion of each gauged and implanted ulna was 
potted in a PVC cylinder and secured in a custom jig setup.  
Six different loads (5-30 N) were sequentially applied in (B) 
bending, (C) torsion, with a supporting polymer block to 
prevent bending, and (D) combined loading. (End on view) 
All loads were applied via an Instron® materials testing 
machine. 
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Similarly, six different loads (0.025-0.15 Nm) were sequentially applied five millimeters 

from center along a supported and unsupported torque arm to simulate torsional and 

combined loading, respectively, during active unresisted forearm rotation in accordance 

with the findings of Gordon et al. (2006).  All loads were applied at load-controlled rate 

of 2 N/s, held for 30 sec, unloaded at 2 N/s and held for 10 sec to allow a cement 

relaxation period prior to application of the next load (Appendix 12).  Overall the total 

loading period took approximately 6 min.  As such, it is not expected that the drift of the 

internal gauges, noted in Section 2.4, would affect the gauge response during this short 

of an interval.  Load orientation and points of application are displayed in Figure 3.5, 

and both bending and torsional free body diagrams are provided in Appendix 13. 

Using combined axial (i.e., pull out) and torsional loading the implant was removed from 

the bone (leaving the strain gauges behind in the mantle), the canal reamed (being 

careful not to damage the gauges or wires), and implant recemented using another 

package of vacuum mixed Simplex P® bone cement.  The loading protocol was repeated 

14-16 h post reimplantation, to allow time for the cement to cure. Post testing, 

debonding of the implant-cement interface was attempted through the application of 

torsional loads until 7o rotation of the implant-bone construct was obtained.  

Throughout testing, bone moisture was maintained through regular applications of 

deionized water.  Deionized water was used as opposed to saline to avoid compromising 

the external gauges, due to sodium buildup on the gauges and gauge wires. A detailed 

testing protocol is provided in Appendix 9. 
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To eliminate gauge offset the unloaded strain response was nulled, and the resultant 

strain values for each loading scenario converted to principal strain using the equations 

listed in Section 1.4.1.  One-way repeated measures ANOVAs (α = 0.05) were performed 

on the bonded and debonded data for all gauges at 10, 20 and 30 N applied loads with 

bonding condition as the factor.  Post-hoc Student-Newman-Keuls tests were used in all 

analyses, where a value of p<0.05 was considered significant.   

3.3 Results 

The external gauges were fully bonded and functional throughout testing.  Internal 

gauges were successfully embedded in the cement at an average depth of 0.52 mm 

(standard deviation ± 0.13) from the surface of the implant stem, based on 

measurements developed from MicroScribe® data.  Of the internal gauges, one proximal 

gauge (I4) lost adhesion during stem implantation (specimen #10-06020), and one distal 

gauge (I1) failed during implant removal after the debonded and prior to the bonded 

trials (specimen #09-13055).  Both defective gauges were disregarded prior to analysis. 

Cement-stem debonding (≥7o rotation) of the initial compromised interface was 

successful in all ulnae (n=8) (Figure 3.6); however, when the specimen was torqued to 

seven degrees post rebonding, implant rotation was not observed (i.e., motion 

generated through bone twist, and possible bone fracture).  The loads necessary to 

reach seven degree rotation with a compromised (average load 2.8 Nm, std dev 0.8) 

interface, were significantly lower than those with a bonded (average load 4.9 Nm, std 

dev 1.2) interface condition (p=0.003).    
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Figure 3.6: Implant orientation pre and post-ulna torsion 
to 7o 

Implant stem orientation in cadaver distal ulna (A) at start, and 
(B) post cement-implant debonding.  (C) Debonded implant 
orientation post 7o rotation with initial orientation outlined in 
purple.  
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The internal and external strain responses to a 20 N bending load are shown in Figure 

3.7B.  Variations in bonding conditions at the implant-cement interface did not influence 

internal or proximal-external strains.  External strains one and two centimeters from the 

distal surface of the bone were increased with bonding of the implant-cement interface 

(pE1, pE2<0.001).  A similar gauge response was noted under combined loading, with 

bonding of the implant-cement interface resulting in increases in strain at E1 (p<0.001) 

and E2 (p<0.001) (Figure 3.8B).  Increases in strain were noted in the bonded scenario in 

gauges E1 (p=0.002), E2 (p<0.001) and I4 (p= 0.048) with application of 0.1 Nm torsional 

loads.  Deviations in strain between the bonded and debonded scenario for the 

remaining external and internal gauges were not significant (Figure 3.9B). 

Variations in strain response were consistent at alternate loads (10 and 30 N) in bending 

(Figure 3.7A&C) and combined loading scenarios (Figure 3.8A&C).  Likewise, under 

torsion there was no variation in gauge response, with the exception of E4 (Figure 3.9).  

Under higher torsional loads (0.15 Nm), the bonded interface resulted in higher strains 

than debonded at E4 (p=0.013).  A compilation of all experimentally determined 

principal strain data is available in Appendix 14.   

3.4 Discussion 

Long-term maintenance of an implant-cement bond cannot be assured throughout the 

life of an implant (McGee et al., 2000).  As such, several studies have investigated the 

effect of cement-stem interface debonding on cement strains in the proximal femur.   
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Figure 3.7: Mean and standard deviation between 
specimens in bending 
Microstrain data in response to the application of (A) 10 N, (B) 
20 N, and (C) 30 N bending loads.  Significance (p<0.05) is 

denoted with an asterisk (*). 
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    - Bonded     - Debonded 

 

 

 

Figure 3.8: Mean and standard deviation between 
specimens in combined loading 
Microstrain data in response to the application of combined 
loads, (A) 10 N bending and 0.05 Nm torque, (B) 20 N bending 
and 0.10 Nm torque, and (C) 30 N bending and 0.15 Nm torque.  

Significance (p<0.05) is denoted with an asterisk (*). 
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    - Bonded     - Debonded 

 

 

 

Figure 3.9: Mean and standard deviation between 
specimens in torsion 
Microstrain data in response to the application of (A) 0.05 Nm, 
(B) 0.10 Nm, and (C) 0.15 Nm torsional moments.  Significance 

(p<0.05) is denoted with an asterisk (*). 
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These studies suggest that when loads are applied parallel to the long axis of the femur 

and the implant stem debonded, strains within the cement mantle increase between 

two to four times those found with a bonded stem (Crowninshield and Tolbert, 1983; 

Mann et al., 1995; Verdonschot and Huiskes, 1997a, 1997b; Wheeler et al., 1997).  

Other studies have indicated that the increase in strain found in the debonded cement 

mantle may be partially negated by increasing interface friction through the inclusion of 

axial groves or increased surface roughness in the implant stem design (Verdonschot 

and Huiskes, 1996; Verdonschot et al., 1998). 

To the author’s knowledge, no previous studies have directly compared the effect of 

implant-cement debonding on strains within the cement mantle of an ulnar implant.  

This is challenging work due to the size constraints of the bone and canal.  Also, since 

the loads received by the distal ulna are much smaller and the direction of loading 

dissimilar from those found in the femur (Gordon et al., 2006), variants in strain 

observed in femoral studies may not pertain to those of the upper limbs.     

In the cement mantle, significant decreases in strain were noted in the proximal mantle 

and reduced strain in the distal mantle under torsional loading conditions.  The decrease 

in strain within the cement may be explained through the surface geometry of the E-

centrix® implant, which is both fluted and roughened.  This results in a high interface 

friction, thereby reducing the load transfer from the stem to the surrounding cement.   

The lack of significance in the distal internal gauge should be treated with caution.  In 

the distal region inconsistences within the cement were more prevalent, owing to the 

potential for void formation during implant insertion, due to inconsistencies in the 
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cadaver bone.  There is therefore a greater degree of deviation in the resulting data 

between specimens, which could negate otherwise significant results.  As such, 

additional specimens would be required to reach significance at the distal internal 

gauge. 

Previous studies have investigated strains on the external surface of the distal ulna 

under both bonded and debonded cement-implant interface conditions.  Austman et al. 

(2008) showed that in the distal ulna stem-cement interface, debonding of a threaded 

implant under bending did not impact lateral bone strains.  This outcome was observed 

in the proximal gauges utilized in this study, but distally, strains decreased with interface 

debonding.  As the inter-study discrepancy is only noted in external gauges directly 

overlaying the implant stem, this deviation in results may be attributed to the variations 

in stem geometry between the straight threaded stem utilized by Austman et al. (2008) 

and the tapered, fluted and roughened commercial stem utilized in this study.  

A decrease in the distal bone strain between the bonded and debonded implant-cement 

interface was observed in all loading scenarios.  Such a decrease in strain could be an 

indicator for stress shielding and resulting bone resorption.  This would be consistent 

with the results found in current short-term clinical reviews of ulnar prosthesis, where 

evidence of bone resorption (potentially as a result of stress shielding) was found in the 

distal region of the ulna (Willis et al., 2007).   

Decreases in strain with debonding were observed in the most distal portion of the ulna; 

however, at higher torsional loads, a decrease in strain was also noted in the bone 

directly exterior to the proximal end of the stem.  One possible explanation is to 
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consider the shear modulus of both the cement and bone.  At low loads, the strains will 

be relatively close in magnitude, owing to the linearity of the stress strain curve; 

however, as the loads increase, the resulting strains will also deviate.  The applied 

torsional loads of 0.05 – 0.15 Nm were determined based on a prior study by Gorden et 

al. (2006), which found average DRUJ loads in the neutral position during unrestrained 

forearm rotation fell within this range (Gordon et al., 2006).  As such, debonding load 

variations on the ulna at the proximal end of the stem may not be seen during the 

majority of normal forearm rotation; however, during the higher forces which could 

potentially be incurred during activities of daily living, this deviation may be significant.  

Although multiple factors may contribute to distal ulnar implant failure, the purpose of 

this study was to focus on the impact that implant-cement debonding has on strains 

(and thereby stresses) in the bone and cement mantle.  This study is limited due to the 

utilization of elderly cadaveric bone, the measurement of strains at discrete locations in 

both the bone and cement, and the potential for variation in cement mantle properties 

due to the embedment of mechanical gauges. Furthermore, as the cement-implant 

interface is normally degraded through long durations of cyclic loading and exposure to 

bodily fluids (Crowninshield and Tolbert, 1983), the utilization of a release agent and 

multistage bonding process did not provide a strictly realistic model.  These may be 

addressed, in part, through the development of a validated finite element model (FEM) 

to examine these conditions. 

Distal ulnar head arthroplasty can greatly improve the quality of life for individuals 

afflicted with both chronic disorders and severe traumatic injuries to the distal 
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radioulnar joint.  Through greater understanding of the load transfer pathways, implant 

designs may be adapted to improve clinical outcomes.  As such, the results of this study 

suggest that debonding of the implant cement interface reduces strains both within the 

cement and within the surrounding bone, which suggests that compromising the 

implant-cement interface, may lead to stress shielding and ultimately implant failure. 
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Chapter 4 -  Finite Element Examination of the Effect 
of Implant Debonding on Load Transfer  

 

OVERVIEW:  Finite element models enable the testing of multiple 

biomechanical scenarios in a time and resource effective fashion; 

however, the quality of the data obtained in this manner is only as 

accurate as the model itself.  As such, this study expands the capabilities 

of a previously developed and validated finite element model of distal 

ulnar arthroplasty, to include the addition of cement strains and variable 

cement-stem interface conditions.  

 

4.1 Introduction 

The development of finite element (FE) models capable of accurately quantifying the 

mechanical behavior of biological tissues and components can be advantageous to the 

field of orthopedic biomechanics.  Such models may be used to test a wide array of 

implant designs and conditions in a more cost-effective and timely manner than could 

be accomplished via in vitro testing.  However, prior to their widespread use, such 

models must be validated to ensure their ability to mimic the results from the in vitro 

(or in vivo) studies they are designed to represent.  In the case of models designed to 

quantify the behavior of cemented distal ulnar joint replacement systems, this includes 
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accurately representing strains within the cement mantle for both bonded and 

debonded cement-stem interface conditions.      

Multiple FEM studies have successfully modeled the cement-implant interface of 

femoral implants and quantified the surrounding cement strains (Mann et al., 1991, 

1995; Verdonschot and Huiskes, 1996; Wheeler et al., 1997; Ramaniraka and 

Rakotomanana, 2000; Nuño and Amabili, 2002).  The majority of such studies have 

determined that the smooth debonded femoral stem-cement interface may be 

accurately represented using the Coulomb friction model.  Coulomb friction assumes 

that atomically close contact only occurs over a small fraction of the contact surface, 

and relates the stress that may be transferred along the interface in shear to the stress 

transferred normal to the interface, by the coefficient of friction (Mann et al., 1991).  

Each element in the frictional region may be sticking (Equation 5), slipping (Equation 6), 

or open (Equation 7). 

 

        Equation 5 

        Equation 6 

      Equation 7 

Where:   = Shear stress 
   = Coefficient of friction 
   = Stress normal to the interface 
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Unlike finite element models of the femur, models of the distal ulna have been limited 

to the examination of bone surface strains under bonded cement-stem interface 

conditions.   As such, the purpose of this study is to advance a distal ulnar model 

previously developed by Austman et al. (2009) to incorporate strains within the cement 

mantle, and to determine the functionality of a Coulomb frictional interaction in 

modeling a debonded cement-implant interface.   

4.2 Materials and Methods 

The eight specimen’s experimentally tested in Chapter 3 were scanned using a micro CT 

scanner with 152 µm voxel spacing (eXplore Ultra, GE Healthcare, London, Canada) to 

capture bone geometry and density information. The scans were completed after the 

proximal end of each specimen was potted in the PVC cylinder and the intramedullary 

canals drilled (see Section 3.2), but prior to implant embedment.  One specimen 

(specimen number 09-12057) was selected for modeling, as its exhibited strain results 

most closely matched the average strain data computed from the eight tested 

specimens (Table 4.1). 

To enable the creation of a three dimensional model, the micro-CT files obtained from 

the scan (.vff format) were converted to DICOM (Digital Imaging and Communications in 

Medicine) using Microview (GE Healthcare, London, Ontario).  The files were then 

imported into MIMICS® (Materialise, Leuven, Belgium), where the software’s 

thresholding features were used to isolate the bone’s exterior and interior canal 

geometry.   
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Table 4.1: Difference between independent and averaged 
gauge response 
The percent differences between the experimentally 
determined specimen and average strain in response to a 20 N 
bending load are displayed. Results were calculated across both 
bonded and debonded conditions, and averaged for all internal 
and external gauges.  The average percentage difference was 
also calculated across all gauges for each specimen, and the 
lowest average percentage difference highlighted in yellow. 

 E1 
(%) 

E2 
(%) 

E4 
(%) 

E5 
(%) 

E10 
(%) 

I1   
(%) 

I4  
(%) 

Average
(%) 

09-12057 -28.4 14.3 21.3 -10.1 -41.4 26.7 23.7 0.9 

09-13055 Eliminated due to incomplete gauge set 

10-01004 36.8 29.2 33.3 6.3 51.3 -4.3 13.1 23.7 

10-06020 Eliminated due to incomplete gauge set 

11-03022 -32.2 -36.4 8.9 8.2 -8.1 217.3 -40.2 16.8 

11-03026 -74.2 20.0 9.7 3.0 -26.5 -272.6 -25.9 -52.4 

11-03045 -31.6 32.5 -38.3 26.9 -11.0 27.0 7.6 1.9 

11-03057 18.9 -33.7 10.8 -22.3 -25.4 28.7 8.2 -2.1 
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This enabled a three dimensional shell to be formed for each component (i.e., interior 

and exterior) and exported as two separate IGES files for further analysis. 

In Abaqus® (Simulia, Providence, Rhode Island, USA) the shells were converted to three 

dimensional models of the bone and associated cement canal.  During the experimental 

specimen development, the internal bone canal was filled with cement prior to implant 

insertion (Section 3.2).  Therefore, the cement mantle was developed by converting the 

shell of the internal bone canal into a three dimensional model, from which the volume 

of the implant stem was subtracted.  Model development is depicted in Table 4.2.  For 

the stem, a CAD model of the Wright E-centrix® implant was obtained directly from the 

manufacturer, and imported into the cement and bone assembly.   

Validation of the model required comparing the finite element strains from the model 

to those captured by the strain gauges during experimental testing (Chapter 3).  

Therefore, the locations of the internal and external gauges were determined in the 

model based on the MicroScribe® coordinates collected for each gauge location relative 

to bone (external gauge) and implant (internal gauge) coordinate systems (Section 3.2).  

The bone and implant coordinate systems were recreated in Abaqus® and, based on the 

gauge coordinates, two millimeter circular “gauge regions” were identified at all internal 

and external gauge locations.  The two millimeter radius was selected based on the 

active region of the experimental triaxial strain gauges. 
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Table 4.2: Development of bone and cement model 
The conversion of micro-CT files into 3D models occurred in 
three stages.  Initially thresholding (green line) in MIMICS® was 
used to isolate the bone’s exterior and interior canal geometry.  
Then a shell was formed for each component, which was 
exported into Abaqus® and converted into a 3D model. 

Bone Model Development 

Thresholding Shell 3D Model 

 

  

Cement Model Development 
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Each component of the model was meshed with a 0.75 mm global mesh, and 0.30 mm 

local mesh at the gauge locations.  Four independent meshes were generated for the 

bone (265,924 elements), cement (124,366 elements), implant (43,788 elements), and 

for a joined implant bone construct (167,286 elements).  Previous studies of the ulna 

have validated the use of 0.75 mm global mesh (Austman et al., 2008).  However, as a 

smaller mesh size may increase FE accuracy, an additional model was developed with 

0.50 mm global, and 0.20 mm local meshes, to compare to the effectiveness of the 

larger mesh.   

To apply subject-specific bone material properties to the model, the ulnar bone mesh 

and original micro-CT files were imported into custom-written MapFE software (Robarts 

Research, London, Ontario).  Using the density-modulus relationship developed by 

Austman et al. (2009), and provided in Equation 8, this software assigned an elastic 

modulus (E) to each voxel based on the associated attenuation coefficients in the 

original micro-CT scans.  The mesh was then imported back into Abaqus®.   

 

E = 8346(ρdensity)
1.5 Equation 8 

Where: E = elastic modulus (MPa) 

ρdensity = apparent density (g/cm3) 

 

Homogeneous material properties were applied to both the implant stem and bone 

cement.  According to the manufacturer’s product guidelines, the Wright E-centrix® 

implant stem was made of titanium with an elastic modulus of 110 GPa.  Based on 
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experimental results, determined from cement samples prepared concurrently with the 

specimen and tested in bending (Appendix 9), an elastic modulus of 2.1 GPa was 

calculated for the bone cement.  Poisson’s ratio was valued at 0.3 for all materials, in 

accordance with values reported in the literature (Mann et al., 1991, 1995; Wheeler et 

al., 1997). 

Mirroring the experimental setup for bending loads only, a 20 N force was applied to the 

distal tip of the implant head, and the proximal bone surface was fully constrained.  In 

the bonded model, the stem-cement interface was represented as a single surface of 

nodes, thereby creating a perfect bond.  However, in the debonded model, the cement-

implant interface was modeled separately for each surface. A detailed developmental 

methodology is available in Appendix 15.   

In consistence with the frictional interaction determined by previous femoral studies, a 

Coulomb frictional model was selected for the bebonded implant-cement interface.  In 

Abaqus®, Coulomb interface friction (Equation 5 - Equation 7) is represented using the 

penalty interaction.  In this case, the coefficient of friction and maximum elastic slip may 

be defined by the user; however, the shear stress and stress normal to the interface are 

calculated for each element by the software.  The current debonded models were 

developed with a 0.25 frictional coefficient, as recommended in previous studies for a 

smooth femoral stem-cement debonded interface (Mann et al., 1991). The maximum 

elastic slip rate was varied from the standard 0.5% to 1.0%, in order to determine its 

impact of the resulting strains.  A model with a higher coefficient of friction of 0.85 was 

also developed to account for the roughened ulnar implant.   
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To compare the results obtained from the finite element model to those determined 

experimentally, the average maximum principal strain for each of the “gauge regions” 

was determined.  The root mean squared errors (RMSE) were calculated between the 

model and experimental results for each gauge as a measure of error magnitude, and 

Bland-Altman plots were constructed to detect systemic errors or bias in the results.   

4.3 Results 

The large (0.75 global, 0.30 local) and small (0.50 global, 0.20 local) mesh sizes were 

compared through a quantitative comparison of the microstrain at all internal and 

external gauges in both bonded and debonded scenarios.  When the debonded scenario 

was tested with a Coulomb friction interaction (0.25 coefficient of friction, and 0.5% 

slip) and small mesh size, it required a processor with 260 GB random access memory 

(RAM) to run.  Due to the heavy computational requirements, Abaqus® technical 

support ran the small mesh debonded model, and returned the results for analysis.  All 

other models were run in-house. Similar strain outputs were noted for both the bonded 

and debonded models, indicating that use of the larger mesh was reasonable (Figure 

4.1). 

A comparison between finite element and experimental results is depicted in Figure 4.2, 

associated root mean square errors listed in Table 4.3, and Bland-Altman plots displayed 

in Figure 4.3.  The internal strain gauges were successfully incorporated into the bonded 

model (RMSE 19.3 µԑ).   
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Figure 4.1: Strain output using large and small meshes 
Comparison of microstrain output at both internal and external 
gauge locations for the large (0.75 global, 0.30 local) and small 
(0.50 global, 0.20 local) meshes.  Results were compared in both 
the, (A) bonded model, and (B) debonded model using a 
Coulomb friction interaction with a 0.25 coefficient of friction 
and 0.5% slip.   
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Figure 4.2: Strain output of experimental and FE models 
Microstrain output for (A) bonded, and (B) debonded data.  The 
bars within each grouping represent the experimental and finite 
element data.  Multiple debonded interface conditions are 
represented, including modifications to the interaction 
property, friction coefficient (Ff), and slip. 
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Table 4.3: RMSE for bonded and debonded conditions 
The root mean squared error between experimental and finite 
element strains all of internal and external gauges, and average 
RMSE for each bonding scenario are listed.   

Bonding 
Scenario 

Interface 
Characteristics 

Gauges 

External (µԑ) Internal (µԑ) All (µԑ) 

Bonded NA 53.3 19.3 46.2 

Debonded Coulomb 

(Ff=0.25, slip=0.5%) 
72.2 33.0 63.5 

Coulomb 

(Ff=0.85, slip=0.5%) 
71.8 39.8 64.3 

Coulomb 

(Ff=0.25, slip=1.0%) 
72.5 31.7 63.5 
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Figure 4.3: Bland-Altman plots for each interface 
condition 
Bland-Altman plots for model outputs compared to 
experimental strains, for each interface condition. (A) bonded, 
debonded Coulomb interaction with (B) frictional coefficient of 
0.25 and 0.5% slip, (C) frictional coefficient of 0.85 and 0.5% 
slip, and (D) frictional coefficient of 0.25 and 1.0% slip.  The 
mean difference (dashed line) and confidence intervals of two 
standard deviation (solid lines) are displayed. 
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RMSE was relatively static between debonded interface conditions for the entire gauge 

set; however, slight variations were recorded for the internal and external gauges.  The 

Bland-Altman plots were also relatively consistent between debonded interface 

conditions; however, a marginally lower standard deviation of 61.20 µԑ was recorded 

when a 0.25 frictional coefficient and 0.5% slip were used.   

4.4 Discussion 

The development of a subject specific finite element model requires care during 

multiple steps of the development process to ensure the accuracy of the final 

simulation.  Optimally, a convergence study may be conducted to determine the most 

favorable mesh where the model is constructed using repeatedly smaller meshes until 

the change in the resultant strain energy is below 5% for all gauge locations.  However, 

as the inhomogeneous material application to the bone and the computation of smaller 

mesh sizes both required outsourcing, a complete convergence study could not be 

conducted.  However, in applying the mesh to the model, large (0.75 mm global, 0.30 

mm local) and small (0.75 mm global, 0.30 mm local) elements were applied and tested 

in bonded and debonded (Coulomb friction, 0.25 coefficient of friction, and 0.5% slip) 

conditions to verify model functionality.  At all internal and external gauge locations, 

marginal changes in strain were noted between mesh sizes, with the exception of the 

debonded internal-distal gauge, where a slight increase in strain was recorded in the 

larger mesh.  However, in incorporating nonlinearity into the model through debonding 

the cement-stem interface, the computational requirements significantly increase, such 

that Abaqus® technical support recommended a processor with greater than 260 GB of 
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random access memory (RAM) to operate the model within an acceptable timeframe, 

and as a result, the model could not be run in-house.  As the inconsistency was small 

and isolated to the distal-interior gauge and the available processors were unable to 

meet RAM requirements, the large mesh was utilized for further assessments. 

Previous findings by Austman et al. (2009) indicated that the utilization of the density-

modulus relationship provided in Equation 8 would offer superior correlation to 

experimental results, as compared to other equations available in the literature.  Based 

on the Bland-Altman plots, the bias error is equivalent, and confidence interval 

marginally larger then that found by Austman et al. (2009).  The average RMSE 

determined for the external gauges in the bonded model (53.3 µԑ) is slightly higher than 

the average RMSE expected for this equation, but within the specimen range (6.7 – 60.3 

µԑ) noted by Austman et al. (2009).  The increased confidence interval and RMSE may 

be attributed to the external proximal (E10) and middle (E4) strain gauges, which 

displayed higher deviation between model and experimental values. The external 

proximal deviation may result from inconsistences in this region of the cadaver bone 

(such as microcracks), which may not have been completely imaged by the micro-CT, 

thereby resulting in the improper assignment of material properties.  In addition, the 

variation in strain at the external-middle gauge (E4) may be attributed to inconsistencies 

in the cement or bone in this transitional region around the distal tip of the implant.   

Through cement segmentation and isolation of the nodes at the internal strain gauge 

locations, the embedded strain gauges were successfully incorporated into the bonded 
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model.  The small root mean squared error of 19.3 µԑ indicates that the model is able to 

accurately simulate the experimentally determined internal strain response.   

Previous studies conducted on the distal femur have investigated the effect of implant-

cement debonding on the strains in the surrounding cement and bone (Mann et al., 

1991, 1995; Verdonschot and Huiskes, 1996; Wheeler et al., 1997; Nuño and Amabili, 

2002).  These studies utilized simplified stem geometries without significant external 

variants in the stem surface (e.g., fluting, grooves, etc.), and suggest that when loads are 

applied parallel to the long axis of the femur, the debonded interface may be 

represented as a Coulomb frictional interaction.  Coefficients of friction between 0.25-

0.35 were determined to optimally recreate the debonded response in these scenarios 

(Mann et al., 1991).  

Utilization of the Coulomb interaction to model the debonded and fluted distal ulnar 

stem-cement interface in bending did not induce the same change in strain observed 

between experimentally bonded and debonded scenarios.  Though variations in the 

frictional coefficient and maximum elastic slip rate were trialed, they induced minimal 

deviations in calculated strain.  When the frictional coefficient was increased to better 

simulate the roughened implant stem, the RMSE and standard deviation (Bland-Altman 

plots) also increased.  Based on these results, Coulomb frictional interactions may not 

be the best representation of the complex bonding scenario present at the distal ulnar 

implant-cement interface.   

As has been done by others, this study employed Coulomb friction.  Other friction 

models, such as Lagrange interaction, are available in Abaqus®.  The Lagrange 
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interaction prevents any motion between contact surfaces; as opposed to the Coulomb 

(penalty) interaction, which only limited motion between surfaces to the user defined 

elastic slip.  The Lagrange interaction was trialed in the current study, but the run did 

not complete due to lack of computational power.  Future studies are required to 

determine whether such modifications to the interaction properties will better predict 

debonded strains. 

In summation, despite the computational limitations of the current study, this finite 

element methodology effectively incorporates and validates areas of internal strain 

measurement into a specimen specific distal ulnar model. It was also determined that 

the Coulomb frictional interaction previously validated for the femoral stem-cement 

interface, was inapplicable to the distal ulna. Further studies are needed to examine 

alternate frictional interactions in order to successfully replicate debonded experimental 

results in a finite element model. 
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Chapter 5 -  Summary and Conclusions 

 

OVERVIEW: This chapter provides a summary of the research findings, and 

reexamines the original objective and hypothesis as outlined in Chapter 1.  

The strengths and limitations of the studies are reviewed and potential 

areas of further enquiry and continued research addressed. 

      

5.1 Summary 

Arthroplasty can provide a viable treatment option for otherwise painful and 

debilitating disorders of the distal radioulnar joint (DRUJ).   As this is a relatively new 

procedure, current knowledge related to the transfer of load through the implant and 

its surroundings is limited, but has been hypothesized to be impacted by the degree of 

bonding at the cement-implant interface.  As such, the objective of this body of work 

was to improve understanding of the role of the implant-cement interface conditions on 

strains in the cement mantle and ultimately their impact on stress shielding and implant 

loosening.   

Development of a strain gauge embedment methodology was the subject of Chapter 2.  

A bonding method was established that utilized Simplex P® to adhere strain gauges a set 

distance from the implant stem, prior to embedment within a cement mantle.  The 

functionality of the embedded gauge was determined by examining the drift, linearity, 
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hysteresis, and repeatability of the gauge output, as well as, visually inspecting the 

cement bond. Once thermal equilibrium was reached, the gauge was determined to 

have minimal drift, a linear and repeatable response, and no visually evident cement 

defects at or around the embedded gauge. This confirms the initial hypothesis, that 

strain gauges embedded using the bonded methodologies are more functional than 

those implanted via wafer embedment methods. 

Using the gauge embedment methodology outlined in Chapter 2 and a previously 

developed technique to adhere strain gauges to bone, Chapter 3 examined the impact 

of cement-stem debonding on strain transfer under multiple loading conditions.  

Bending loads (5-30 N), torsional (0.025-0.15 Nm), and combined (5-30 N bending loads 

and 0.025-0.15 Nm torsion) moments, were used to determine the impact of strains at 

discrete locations within the cement and on the bone.  Under bending and combined 

loading, variations in bonding conditions at the implant-cement interface did not 

influence internal or proximal-external strains.  External distal strains on the bone 

surface were decreased with debonding of the implant-cement interface.  In torsion, 

decreases in strain under interface debonding were observed at all loads in the proximal 

cement mantle and distal ulna; however, at higher torsional loads, a decrease in strain 

was also noted in the bone directly exterior to the proximal end of the stem.  This, in 

part, confirms the second hypothesis, that debonding at the implant-cement interface 

will not affect strains on the proximal surface of the bone, and disproves it, in that 

debonding at the implant-cement interface decreases both cement and bone strains 

surrounding the implant. 
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The next step of this research was to advance a previously developed distal ulnar model 

(Austman et al., 2009), to incorporate strains within the cement mantle, and to 

determine if a debonded distal ulnar cement-implant interface may be modeled via a 

Coulomb frictional interaction.  Using a micro-CT and commercially available software, a 

model was developed of one of the distal ulna (specimen number 09-12057) tested in 

Chapter 3.  The gauge locations were located on the model and bonded and debonded 

simulations were run at 20 N bending loads.  In the debonded simulations, a Coulomb 

frictional interaction was applied to the implant-cement interface.  The internal strain 

gauges were successfully applied and validated in the distal ulnar model.  However, the 

Coulomb frictional interaction was determined inappropriate in representing the 

complex cement-stem debonded interface.  This partially confirms the final hypothesis, 

in that finite element results do agree with experimental results for the bonded model.  

However, the hypothesis is also partially refuted, as agreement was not reached 

between the finite element and experimental debonded strains, most likely due to the 

inefficiency of the Coulomb frictional interaction in modeling the debonded cement-

implant interface. 

5.2 Strengths and Limitations 

Study strengths and limitations have already been addressed in their associated 

chapters; however, additional details and general themes remain to be discussed.  The 

most significant limitations derive from restrictions in the accurate representation of the 

subject population, and in vivo loading conditions.  The use of cadaveric specimens, as 

representative of in vivo conditions is limited.  Furthermore all specimens were male, 
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and elderly (mean age 71 years).  Since distal ulnar replacements are frequently 

conducted in the elderly, this may be considered representative of the patient 

population.  However, care should be taken in when applying these results to female, 

young, or active patients.   

Additional limitations were present due to simplifications in loading protocol.  With the 

testing setup employed, the proximal ulna was assumed to be fully secured and all 

loading was performed in the neutral position.  In reality, loading would occur 

throughout the arc of forearm rotation.  Furthermore, the applied loads were drawn 

from the literature, but represent unresisted forearm motion.  Loads borne by the ulna 

during more strenuous activities would be expected to be much larger.  However, by 

restricting the protocol to known load values, overrepresentation of the impact of 

debonding and potential Type II errors are avoided.    

It is possible that the wires from the embedded strain gauges produced a reinforcing 

effect in the cement mantle.  In the experimental setup, the lead wires are threaded 

through the cement mantle of the specimen, and exit through a proximal hole in the 

bone.  A proximal exit point was selected to avoid compromising the implant collar-

cadaver bone contact.  However, the presence of lead wires throughout the cement 

mantle could reinforce the construct, thereby, reducing the strain response.  To mitigate 

this error, thin diameter wires were used and spread throughout the mantle, as 

recommended by Little et al. (1990). 

Although this study addressed changes in bone strain, these values are only applicable 

immediately after debonding.  In vivo, bone is capable of remodeling to accommodate 



97 
 

 

applied loads, with bone resorption occurring in areas of low strain, and growth in 

higher strain regions.  Over time it would be expected that the material properties of 

the bone and, therefore, the strain values would change.  Such variation would be 

particularly evident in the distal region where the greatest deviations in strain were 

noted.  

The final issue pertaining to the studies’ results is the variance between clinical and 

statistical relevance.  The impact of variations in load on crack formation within bone 

cement in vivo, and bone remodeling is currently unknown.  As such, the presence of 

increased strain during the bonding scenario does not necessarily imply that damage 

may be induced to the cement mantle and, reduced bone loading post, cement-stem 

debonding, does not necessarily imply clinically significant bone resorption.  Likewise, 

the inverse may be true where the absence of statistical significance may not correlate 

with the absence of clinical significance.  As such, caution must be taken when 

interpreting the statistical significance of data.          

5.3 Future Directions 

The research conducted throughout this thesis has provided a fundamental 

understanding of the impact distal ulnar cement-stem interface conditions have on 

strain in the surrounding cement and bone.  However, there are still multiple areas of 

interest relating to the impact of varying interface conditions.  As well, the preliminary 

research, including the development of a functional gauge embedment technique, lends 

itself to potential future work. 
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For the purpose of this study, internal strains were measured on the lateral cement 

mantle.  However, previous femoral studies have found variations in strain in different 

implant planes (Crowninshield and Tolbert, 1983).  Further research examining strains in 

different planes, locations, alternate forearm positions (i.e. supination and pronation), 

and with different interface properties (i.e. partial bond, friction, etc.), would further 

increase understanding of the impact of cement-stem interface conditions on strains in 

the surrounding cement and ulna.  

A finite element model was adapted to incorporate strains within the cement mantle; 

however, there are still opportunities for further development.  Continued testing and 

validation of alternate contact properties is necessary to expand the applicability of the 

model to incorporate debonded distal ulnar implants.  Furthermore, a model capable of 

simulating debonded scenarios could be adapted to incorporate various cement-stem 

interface conditions, and be used in determining the impact of multiple implant 

interface characteristics on debonding.  

In addition to furthering research concerning implant-cement interface conditions, the 

gauge embedment technique and finite element model could also be utilized to study 

the impact of various implant designs on strains within the cement mantle.  Commercial 

implants currently use a fluted and tapered stem with a roughened finish. However, 

future research could be conducted to determine the impact alternate stem topologies 

and surface finishes have on implant debonding, and strain optimization within the 

cement mantle.  
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5.4 Overall Significance 

In conclusion, this work has contributed to the knowledge of strain distribution both 

within the cement mantle and surrounding distal ulna as a function of bonded versus 

debonded cement-stem interface conditions.  Furthermore, an experimental strain 

gauge embedment technique and finite element model has been developed that may be 

utilized in a variety of future studies, both in continuing research regarding the cement-

stem interface, and in studying implant design characteristics. It is hoped that 

information garnered through this thesis may be used to optimize the design of distal 

ulnar implants, thereby reducing the need for replacement through costly and painful 

revision surgeries. 
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Appendix 1 –   Glossary of Terms 

 

This appendix contains a definitions of terminology used throughout this 

thesis to assist the lay reader. 

 

anatomical position – body upright, with arms to the side of the body and palms and 
hands facing forward 

anterior – Situated towards the front of the body 

arthroplasty – Surgical joint replacement or reconstruction 

attenuation coefficient – degree of reduction in pixel intensity (as it pertains to micro-
computed tomography (µCT) images) 

congenital disorders – defects present from birth 

coronoid process – a triangular protrusion projecting from the anterior proximal portion 
of the ulna 

cosmesis – the preservation or restoration of the body from disfigurement 

distal – situated away from the midline of the body along a limb 

ectopic calcification – the depositing of calcium salts on tissue 

femur – the most proximal bone in the leg, articulates with the tibia distally (at the 
knee) and the pelvis proximally (at the hip) 

finite elements – small interconnected segments of a larger part, used in FEA 

Hounsfield units – an interval of the quantitative scale used in describing radiodensity 

humerus – bone located in the upper arm, between the elbow and the shoulder 

intramedullary canal – the internal, marrow-filled cavity found in long bones 
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lateral – located away from the midline of the body 

medial – located toward the midline of the body 

neutral position – during forearm rotation, the point midway between pronation and 
supination  

node – point at which two or more finite elements meet, used in FEA 

posterior – situated towards the back of the body 

pronation – rotation of the forearm such that the palm of the hand faces downward 

prosthesis – an artificial body part 

proximal – situated toward the midline of the body along a limb 

radius – one of the two long bones of the forearm (the other being the ulna) between 
the wrist and elbow, located laterally when in anatomical position   

resection – to surgically remove all or part of a tissue, structure, or organ 

resorbable – a substance that can be biologically assimilated 

rheumatoid arthritis – a chronic and progressive inflammatory disease 

sigmoid notch – an indentation on distal radius in which the ulnar head rotates 

supination – rotation of the forearm such that the palm of the hand faces upward 

stress shielding – a reduction in bone density due to the removal of normal bone 
stresses 

synovial joint – a freely moving joint comprised of articular cartilage covered bony 
surfaces surrounded by lubricating synovial fluid contained within a joint capsule 

synovitis – synovial membrane inflammation 

ulna – one of the two long bones of the forearm (the other being the radius) between 
the wrist and elbow, located medially when in anatomical position; articulates with the 
humerus proximally (at the elbow) and the radius distally 
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Appendix 2 –   Preliminary Testing of Gauge 
Carrier for Internal Strain Gauge 
Embedment 

 

The following pilot trials were performed to determine the feasibility of 

using strain gauges encapsulated in a cement carrier prior to internal 

gauge embedment.  The proposed method would encompassed a strain 

gauge in a thin wafer of cement and utilize the wafer to stabilize the 

gauge during implantation.   

 

Trial 1 – Wafer Formation 

Three methods of wafer formation were trialed utilizing Denstone® (Modern Materials, 

Niagara-on-the-Lake, ON, Canada) as a cementing medium and five simulated gauges 

per group.  Simulated gauges were comprised of a thin layer of cellulose tape cut to 1 

cm square with two 3 x 0.3 cm strands left on one side to simulate the gauge wires.      

Method 1:  Using a folded plastic gauge cover, fill the cover with semi-solid Denstone®, 

and centralize the simulated gauge within the cement.  Compress the cover 

utilizing a heavy weight.  Allow to cure for 5 min, when cured remove the 

gauge cover as well as any excess cement.  Allow to air dry until the cement 

is fully hardened. 
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Results – The cover was difficult to remove resulting in fracturing of the 

cement and increased pressure on the wires.  Due to cement 

damage no valid wafers were formed. 

Method 2:  Using two 3x3 cm pieces of LDPE and a small quantity (approximately 3 mL) 

of semi-solid Denstone®, layer the materials as LDPE-Denstone®-simulated 

gauge-Denstone®-LDPE. Compress the construct using a heavy weight.  Allow 

to cure for 5 min, when cured peel off the LDPE and remove excess cement 

as required.  Allow to air dry until the cement is fully hardened. 

Results – The LDPE sheets were easily separated from the Denstone®; 

however, the wafers formed using this method displayed an 

irregular geometry and the cement covering the simulated gauges 

was susceptible to fracture during removal of the excess cement.  

Wafer thickness was greater than desired in several of the samples 

(Wafer thickness: 0.96 – 1.26 mm). 

Method 3:  Paint a smooth layer of Denstone® onto each simulated gauge.  Using two 

3x3 cm pieces of LDPE and a small quantity (approximately 3 mL) of semi-

liquid Denstone®, layer the materials as LDPE-Denstone®-simulated gauge-

Denstone®-LDPE. Compress the construct using a heavy weight.  Allow to 

cure for 5 min, when cured peel off the LDPE and remove excess cement as 

required. 

Results – The LDPE sheets were easily separated from the Denstone®, and 

the wafers formed were of an acceptable thickness.  An irregular 
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geometry was noted on all gauges; however the wafer could be cut 

to desired shape as required (Wafer thickness: 0.5 – 1.0 mm). 

 

Trial 2 – Functionality of Encapsulated Gauge in Denstone® 

Methods 

The specimen developed in this study was comprised of a Vishay C2A-13-125WW-350 

general purpose stacked strain gauge rosette (Vishay Intertechnology Inc., Malvern, 

Pensalvania, USA) embedded into Denstone® golden cement (Modern Materials, 

Niagara-on-the-lake, ON, Canada).  To prepare and protect the strain gauge rosette prior 

to implantation, it was encapsulated in a thin wafer of cement utilizing embedment 

Method 3 as outlined in Trial 1 – Wafer Formation.  Throughout the encapsulation 

process care was taken not to damage the attached wires.   

Utilizing a custom designed setup, a hollow cylinder was constructed and the 

encapsulated gauge was embedded within the cylinder.  To properly model the desired 

geometry, the cylinder was constructed in a three stage process.  In the first stage, the 

lower two thirds of the cylinder were formed by filling the mold with cement and 

allowing the cement to harden until capable of supporting the gauge.  Using tweezers, 

the strain gauge was carefully pressed into the cement until the top of the gauge was 

flush.  The final stage of the construction process was completed by filling the remaining 

third of the cylinder mold with cement and allowing one hour to cure.  The sample was 

then carefully removed from the mold and allowed to cure for an additional 23 hours 
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prior to testing.  All Denstone® was prepared using a 5:2 cement to water ratio, and 

hand mixed for five minutes to ensure product consistency and uniformity. 

The strain gauge was wired as a quarter Wheatstone bridge via a NI SCXI 1314 terminal 

block (National Instruments, Austin, TX) and given +5V DC excitation voltage.  Bending 

loads were applied using an Instron 8872 Fatigue Testing System with 10,000 N load cell 

(High Wycombe, Bucks, UK.  Bending loads between 100 and 1,000 N were applied, and 

the effects of drift, repeatability, hysteresis, and gauge accuracy examined. 

Results  

Drift 

To determine the magnitude and maximum drift the embedded gauges were balanced 

and unloaded readings were recorded over a three hour period.  A consistent drift to a 

maximum deviation of 26.4 µԑ was noted over the first two hours.  However, the drift 

stabilized, with an increase in drift to a maximum of 1.9 µԑ (standard deviation 3.2 µԑ) 

between two and three hours.  
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Figure A.1:  Drift of an encapsulated strain gauge 
Principal strain for a triaxial rosette embedded in Denstone®, 
recorded over a three hour period with a maximum drift of 26.4 
µԑ over the first two hours and a subsequent drift of 1.9 µԑ  
(standard deviation 3.2 µԑ) over the final hour.   

 

Repeatability 

Gauge repeatability during bending load application was measured by applying loads of 

100 N, 500 N and 1,000 N three times and determining the standard deviation in strain 

between trials at each load.  For all loads the standard deviation in strain was below 0.5 

µԑ.   

Hysteresis 

Hysteresis of the gauge was recorded by generating two sets of linear curves, by 

increasing and subsequently decreasing the load between zero and 1,000 N over 30 

second intervals. At predetermined loads the deviation between these lines was 
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recorded, and the maximum deviation utilized to quantify the gage’s hysteresis.  A 

maximum hysteresis error of 3.23 µε was recorded. 

Accuracy 

Accuracy was determined by recording the gauge outputs at maintained 100 N, 200 N, 

500 N, 750 N and 1,000 N loads.  The resultant gauge outputs shown in Table A.1 were 

compared to calculated strain values determined from Instron displacement 

measurements.   

 

Table A.1: Accuracy of encapsulated gauge throughout 
load application range 

Load 100 N 200 N 500 N 750 N 1,000 N Average 

Error (%) 22.2 29.5 36.3 36.8 39.7 32.9 

 

Discussion and Conclusions 

Overall gauge performance regarding repeatability and hysteresis were acceptable given 

the limitations of the gauge used.  The Drift may be a factor of gauge heating during 

initial activation and may be negated by allowing a 3h heating period prior to testing.  

The deviation in strain gauge accuracy is predominantly accredited to gauge angulation 

during embedment.  However, this shows a major limitation in the encapsulated 

embedment methodology, as the wafer susceptible to misalignment during the 

embedment process.  Securing the wafer wires may aid in alleviating the issue. 
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Trial 3 – Functionality of Encapsulated Gauge in PMMA Bone Cement (Simplex P®) 

A triaxial strain gauge (SGD-2/350-RY53, Omega Environmental, Quebec, Canada) was 

prepared in a thin wafer of bone cement utilizing embedment Method 3 as outlined in 

Trial 1 – Wafer Formation.  Though wafer formation was successful, the edges of the 

wafer were damaging to the gauge wires.  Despite repeated attempts to resolder the 

gauge wires, the thin Simplex P® wafer edges repeatedly severed the wires during the 

embedment process resulting in loss of gauge functionality.  As a thicker wafer would 

not be acceptable for future embedment into the cement mantle of an ulnar implant, 

further testing of gauge carriers was not pursued. 
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Appendix 3 –   Cementing Technique 

 

The following procedure was utilized to cement a gauged distal ulnar 

implant in a cadaver ulna using Simplex P® bone cement.  This procedure 

was used in Chapters 2 and 3. 

 

(1) Place one package of Simplex P® bone cement in a refrigeration unit and allow to 

chill overnight. 

(2) Connect an Optivac® Vacuum Mixing System with long cartridge (Biomet Inc, 

Warsaw, Indiana USA) to a 15-20 mmHg vacuum pump, and using a funnel to 

control flow empty one packet of Simplex P® powder into the cartridge.   

(3) Completely empty the accompanying vial of monomer into the cartridge and 

immediately screw closed the cartridge head.   

(4) Allow 10 seconds for a vacuum to form within the unit.  Then move the plunger in a 

rapid downward-twisting motion to mix the cement.  Ensure that the plunger 

makes full contact with both ends of the unit during mixing and no residual powder 

is allowed to remain along the bottom.  Mix vigorously for 60 seconds.  

(5) Quickly unscrew the cartridge head and pour the fluid cement into a 60 mL syringe. 

(6) Remove excess air from the syringe. 
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Appendix 4 –   Internal Strain Gauge Application 
Technique 

 

The following procedure was used to affix strain gauges to an implant 

with 0.5 mm layer of Simplex P® bone cement.  This procedure is utilized 

solely for the adherence of the internal strain gauges. 

 

Before beginning, prepare a gauging baseplate (Figure A.2) capable of orienting the 

implant in the desired position. 

 
Figure A.2: Gauging baseplate 
The detailed and dimensioned drawing of the gauging baseplate 
used for implant alignment and gauge fixation was created in 
Solidworks (Dassault Systemes, Concord, Massachusetts, USA).  
The base was machined from stainless steel and details 
constructed from adhesive backed paper.  All dimensions are in 
millimeters. 
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Create a torque limiter to prevent implant rotation, a 0.5 mm thick polymer clay mold 

with cutouts 1 mm larger than the gauge at the desired gauge locations, and a 

compression tool with cutout depths equal to the desired cement thickness plus the 

thickness of the gauge. These tools are displayed in Figure A.3. 

 

  
Figure A.3: Required tools for strain gauge fixation  
Tools necessary to affix a strain gauge to an implant stem with a 
0.5 mm layer of Simplex P® bone cement: (A) torque limiter 
affixed to implant, (B) polymer clay mold, and (C) compression 
tool 

 

(1) Gently sand the back of the gauges with 400 grit sandpaper, and wipe with a clean 

cotton swab to remove particulate. 

(2) Clean the surface of the implant with acetone, rinse with water and pat dry with 

paper towel. 

(A) 

(B) (C) 

Implant 

Torque Limiter 
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(3) Attach the torque limiter to the implant as shown in Figure A.3(A).  Using a 

permanent marker and a caliper mark the desired gauge locations on the implant.  

(4) Orient the implant via the torque limiter in the baseplate notch and align the 

gauges to the desired gauge locations.  Secure the gauge wires to fix the gauges in 

the desired locations and remove the implant. Take care not to disturb the gauge 

alignment during implant removal.  

(5) Place the mold onto the implant ensuring that there is a snug fit between the 

implant and the mold, some positioning may be required. 

(6) Vacuum mix chilled Simplex P® bone cement at a pressure between 15-20 mmHg 

allowing 10 seconds after closing the vacuum mixing chamber for a vacuum to 

form.  Mix vigorously for one minute using a plunging and rotational movement. 

(7) Pour the cement into a syringe and wait until the cement becomes viscous (20-30 

sec). 

(8) Using viscous Simplex P® bone cement fill the voids in the polymer mold until level 

with mold. 

(9) When the cement becomes tacky quickly remove the mold and return the implant 

to its outlined position on the template.  Using the compression tool press the 

gauges down onto the implant, take care that excess cement does not interfere 

with the positioning of the compression tool. 

(10) Remove excess cement from the implant, wires and gauging tools. 

(11) Validate that gauge functionality and adherence to the implant.  

  



114 
 

 

Appendix 5 –   Strain Data Collection Program  

 

The front panel of the LabVIEW program written and utilized to collect the 

strain, load, and displacement data for the experimental studies outlined 

in Chapters 2 and 3 is shown in Figure A.4.  The programming details are 

shown in Figure A.5.   

 

 

Figure A.4: LabVIEW program front panel 
This custom designed LabVIEW program was utilized for strain, 
load, and displacement data collection 
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Figure A.5: LabVIEW program back panel 
This custom designed LabVIEW program was utilized for strain, 
load, and displacement data collection 
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Appendix 6 –   Gauge Embedment Pilot Study 
Strain Data  

 

This appendix contains the tabulated and graphically represented 

processed strain data that was presented in summation in Chapter 2.  The 

strain values are presented in units of microstrain (µԑ), and load values in 

newton (N).  

 

Hysteresis 

Table A.2: Hysteresis for strain gauge embedment pilot 
study  

Load (N) Increasing (µԑ) Decreasing (µԑ) Difference (µԑ) 

5 10.58 10.37 0.21 

10 18.26 20.01 1.75 

15 31.45 31.17 0.28 

20 40.04 42.49 2.45 

25 51.17 53.74 2.57 

30 62.86 60.38 2.48 

Average     1.62 

Max     2.57 
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Repeatability and Linearity 

Table A.3: Average recorded principal strain by load and 
testing day  

Load (N) Day 1 (µԑ) Day 2 (µԑ) Day 7 (µԑ) 

5 9.66 11.19 8.51 

10 20.07 21.08 19.04 

15 29.51 29.45 30.70 

20 39.82 39.17 42.46 

25 50.36 47.21 52.30 

30 60.95 57.00 61.73 
 

Table A.4: Standard deviation of recorded principal strain  

Load  (N) 
Inner Trial Standard Deviation Inter-trial Standard 

Deviation (Day 1) 
(µԑ) 

Inter-day Standard 
Deviation (µԑ) Day 1 

(µԑ) 
Day 2 
(µԑ) 

Day 7 
(µԑ) 

5 3.36 3.41 3.21 0.14 1.10 

10 3.42 3.24 3.32 0.67 0.83 

15 3.34 3.29 3.50 1.04 0.58 

20 3.39 3.40 3.31 0.40 1.42 

25 3.36 3.43 3.34 0.85 2.10 

30 3.71 3.40 3.49 0.20 2.07 

Average 3.43 3.36 3.36 0.55 1.35 
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Appendix 7 –   Detailed Specimen Information 

 

The specimen number, arm, age and functional internal gauges of each 

experimentally tested ulna are provided.  All specimens are from male 

subjects.   

 

Specimen Number Arm Age 
Functional Internal 

Gauges 

11-03022 Left 75 I1, I4 

10-01004 Left 69 I1, I4 

11-03026 Left 79 I1, I4 

09-12057 Right 81 I1, I4 

09-13055 Right 73 I4 

10-06020 Right 57 I1 

11-03045 Right 75 I1, I4 

11-03057 Right 59 I1, I4 
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Appendix 8 –   Fixture Utilized in the Ulnar 
Fixation Process 

 

The fixture utilized to pot the proximal portion of each cadaveric ulna in a 

PVC cylinder, showing the laser level line that was utilized to ensure 

alignment of the bone with the jig both anterior-posteriorly and medial-

laterally.  

 

   
Figure A.6: Specimen number 09-12057 in potting fixture  
Fixture utilized for cementing bones into a PVC cylinder with 
Denstone® cement (Modern Materials, Niagara-on-the-lake, 
ON, Canada) 

  

Laser Line Laser Line 
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Appendix 9 –   Cement-Stem Bonded/Debonded 
Interface Testing Procedure 

 

The following detailed experimental procedure was used in cement-

implant interface testing as discussed in Chapters 3.  Throughout testing 

the specimen was kept moist through the application of deionized water.  

All digitization was accomplished using a MicroScribe® (Revware, San 

Jose, California) and during testing strain data were recorded via custom 

LabView software outlined in Appendix 5. 

 

Testing Preparation (Specimen #          -                            ) 
 
Cement 
(1) Place 4 bags of cement in the freezer (3 for testing, 1 backup) 

 
MicroScribe® 
(1) Open “MicroScribe New Bones” Excel program on computer  
(2) Setup MicroScribe® 
(3) Press button to home the MicroScribe® and complete one test point to ensure that 

the device is working 
 

Specimen 
(1) Select one ulna from the freezer for testing 
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(2) Mark the coordinate system and distal gauge ends on the stem (areas to be 
identified outlined in blue below) 
 

 
 
 
 

 
 
 
 
 
 
 
Implant 
(1) Mark the coordinate system and distal gauge ends on the stem (areas to be 

identified outlined in blue below) 
 

 
 
 
 
 
 
 
 
Internal Gauges 
(1) Solder 32 gauge lead wires to the 1” gauge connectors and coat wires in 

polyurethane 
(2) Verify gauge function 
(3) Using the implant and gauge markings as a guide carefully align the gauges on 

gauging baseplate  
(4) Verify gauge function 
(5) Verify gauge placement 
 
External Gauges 
(1) Using 30 strand ribbon wire, solder long lead wires to the 1” gauge connectors on 5 

gauges and coat wires in polyurethane 
(2) Verify gauge function 

 
 

 
 
  

  1 cm 

2 cm 4 cm 

5 cm 
10 cm 

(1) 

(3) 
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Testing (Specimen #          -                            ) 

Day 1 

(1) Remove specimen and saline soaked towel from freezer 

(2) Digitize pre-instrumented bone, wrap in saline soaked paper towel 

(3) Digitize Pre-gauged implant 

(4) Cement Gauges on implant as outlined in Appendix 4. 

(5) Allow 20min for the cement to harden. 

(6) Digitize post-gauged implant 

(7) Using a caliper measure gauge depth and width 

 

 

(8) Verify internal gauge functionality and wrap the wire ends together with tape 
(9) Thread the internal gauge wires through the bone while supporting the implant to 

ensure pressure is not placed on the gauge-cement bond.  Unwrap the wire ends. 

(10) Using 18 strand ribbon wire, solder long wires to the gauge leads and coat 
connection in polyurethane.  Verify gauge function and leave gauges operational to 
monitor variations in strain.  

(11) Coat the implant stem in Vaseline and implant head in carnauba wax.  Make sure 
not to get any debonding agent on the gauges or gauge wires. 

(12) Prepare a batch of Simplex P® bone cement, as outlined in Appendix 3. 

(13) Using the cement filled syringe, fill the cadaver bone until cement is level with the 
distal end and visibly flowing from the wire exit hole.  Plunge the ulna with a small 
diameter (<5 mm) wooden dowel to remove air pockets and refill with bone 
cement. 

(14) Supporting the gauged implant, gently but firmly direct the implant into the cement 
filled canal.  Maintain consistent pressure on the wires to prevent bunching inside 
the bone.  Monitor the internal gauge response to ensure that the gauges are not 
compromised in the cementing process.   

(15) If at any point during implant insertion the level of bone cement within the canal 
decreases, use residual cement in the syringe to fill the canal until it is level with the 
cut edge of the distal ulna. 

(16) Once the implant is in place and internal gauges verified as operational remove 
excess cement from the bone and around the implant head. 

(17) Using the same cement batch, form two sample blocks using the custom 10 x 80 
mm mold. 
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(18) Allow 20 min for the cement to harden. 

(19) Verify gauge function and coat the gauge wires where they exit the bone with M-
bond epoxy.  Wrap the wires in plastic wrap and secure at both ends with electrical 
tape. 

(20) Mark around the implant head to denote its starting position and take a photo of 
the initial implant head orientation. 

(21) Wrap the bone in a saline soaked towel, and plastic wrap.  Wrap the two sample 
cement blocks in paper towel moistened with deionized water.  Place entire setup 
in a plastic bag, with the two sample cement blocks. 

(22) Begin the “Sayward Strain 4.0” LabView program and record variations in strain 
overnight at 1 Hz. 

 

Day 2 

(23) 24 h after implant embedment, verify internal gauge function 

(24) Bond 5 external gauges to the bone 

(25) Digitize bone and Implant 

(26) Test the Semi-debonded implant and record variations in strain at 10 Hz in:  

- Bending  

- Torque_5mm  

- Combined_5mm  

(27) Torque implant to 7o using a 100 mm torque arm (axial displacement of 12.4 mm) 

Starting Position = _________        Ending Position = _________        

(28) Take a photo of the implant head orientation.  

(29) Return implant to starting orientation and digitize the debonded implant. 

(30) Test the debonded implant and record variations in strain at 10 Hz in:  

- Bending  

- Torque_5mm  

- Combined_5mm  

(31) Using a combination of axial and rotational loading carefully remove the implant. 

(32) Gently remove excess Vaseline from both the stem and canal using rolled paper 
towel. Use medical files and small drill bits to carefully increase the canal diameter 
until the implant is able to freely rotate within the canal. 

(33) Return implant to the bone in its starting orientation and digitize implant and bone 

setup. 
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(34) Test the fully debonded implant and record variations in strain at 10 Hz in:  

- Bending  

- Torque_5mm  

- Combined_5mm  

(35) Implant the stem in the ulna, while monitoring gauge activity and verifying implant 
orientation using a laser level. Make certain cement does not contact any of the 
external gauges and excess cement is removed from around the implant head.   

(36) Test the first of the cement samples in bending. 

(37) 20 min post-implant embedment, gently wrap the bone, taking care to avoid the 
gauges, in paper towel moistened with deionized water. Also wrap the remaining 
cement block in moistened paper towel.  Place specimen and cement block in a 
plastic bag. Record variations in strain overnight at 1 Hz. 

 

Day 3 

(38) 14-16 h after implant embedment, verify gauge functionality and take a photo of 

the implant head orientation.  

(39) Test the bonded implant and record variations in strain at 10 Hz in:  

- Bending  

- Torque_5mm  

- Combined_5mm  

(40) Torque specimen to 7o using a 100 mm torque arm (axial displacement of 12.4 mm) 

Starting Position = _________        Ending Position = _________         

(41) Take a photo of the implant head orientation.  

(42) Return implant to starting orientation.  Digitize semi-bonded implant. 

(43) Test the semi-bonded implant and record variations in strain at 10 Hz in:  

- Bending  

- Torque_5mm  

- Combined_5mm  

(44) Using a combination of axial and rotational loading carefully remove the implant.     

Note:  CAUTION!  When the bone fractures the fragments are sharp. 

(45) Test the second cement sample in bending. 

(46) Clean and sanitize all work surfaces.  Dispose of biologic and bio contaminated 
material in the appropriate manner. 
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Appendix 10 –   Debonding Agent Validation  

 

The following pilot study was used to select and validate the functionality 

of a cement-implant debonding agent. Testing was performed using 

cylindrical stemmed implants (8.0 mm diameter) in an 18.8 mm square 

cement mantle with a cement potting depth of 20.0 mm.  

 

The torsional loads required to debond (rotate a cemented ulnar implant 7o) can be 

damaging to the surrounding cadaver bone when applied over a short duration.  To test 

the characteristics of a debonded interface it is therefore necessary to compromise the 

implant-cement interface prior to implant embedment.  As such, the purpose of this 

pilot study is to validate the functionality of several release agents and select the 

optimal material for inclusion in implant interface conditions testing.  

Materials and Methods 

A total of six cobalt chrome stemmed implants with a cylindrical cross sectional 

diameter of 8.0 mm were utilized in this study.  Four implants were coated with unique 

debonding agents: mineral oil (Johnson & Johnson, New Jersey, USA), mold 

release/conditioner (Castin' Craft, Environmental Technology Inc, Fields Landing, USA), 

petroleum jelly (Vaseline, New Jersey, USA), or carnauba wax (104 High Temp Mold 

Release Wax, TR Mold Release, Los Angeles, USA).  The fifth implant was coated with 

both mineral oil and petroleum jelly and the sixth stem tested sans debonding agent. 
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Using a custom jig, specimens were embedded in a square 18.8 mm vacuum mixed 

Simplex P® bone cement mantle constrained within an aluminum tube.  The stem was 

centralized within the fixture and the cement depth constrained to 20.0 mm via a 

custom fit Delrin® (DuPont, Delaware, U.S) centralizing block. 

Specimens were tested in a biaxial materials testing machine (Instron 8872, Canton, MA, 

USA), and torsional loads applied cyclically from 0-10 Nm at 1 Nm increments, with 100 

cycles per increment.  Data was collected at 1.5 Hz and debonding (7o rotation) loads 

recorded.  A manual axial stem pullout was used to validate the mobility of the stem 

post debonding.  

Results 

Debonding was successfully achieved for the mineral oil, petroleum jelly, carnauba wax 

and mineral oil/petroleum jelly coated implants.  Both the implant coated in mold 

release/conditioner and the uncoated implant failed to debond.  The torsional loads at 

which interface failure occurred are displayed in Table A.5. 

 

Table A.5: Debonding characteristics of release agent 
coated implants 

Debonding Agent 
Torsional load at 
Debonding (Nm) Axial Stem Pullout 

Mineral Oil 1.27 Failed 

Mold 
Release/Conditioner >10.00 Failed 

Petroleum Jelly 0.43 Successful 

Carnauba Wax 0.29 Successful 

Mineral Oil/Petroleum 
Jelly 0.78 Failed 

None >10.00 Failed 
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Manual axial stem pullout was successful in the petroleum jelly, and carnauba wax 

coated stems, with both stems fully lifting from the cement mantle.  Axial movement 

was not obtained in any of the other specimens.   

Discussion and Conclusions 

Release agents capable of greatly reducing the torsional loads at debonding are 

preferable for inclusion in implant interface conditions testing.  As such, the mold 

release/conditioner was immediately discarded as a viable coating agent.  The failure of 

the mineral oil and mineral oil/petroleum jelly coated stems in axial stem pullout also 

excluded them from future utilization.  Both the petroleum jelly and carnauba wax were 

viable options for inclusion in future testing, however the carnauba wax flaked during 

embedment resulting in particulate formation within the cement.  As the presence of 

particulates could compromise cement integrity carnauba wax was also disregarded as a 

potential debonding agent.  Petroleum jelly was therefore selected as the release agent 

for use in compromising the implant-cement interface prior to implant embedment. 
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Appendix 11 –   External Strain Gauge Application 
Technique 

 

The following procedure was used to affix strain gauges to bone, using a 

previously developed gluing technique (Finlay et al., 1982; Cordey and 

Gautier, 1999; Kim et al., 2001), which was further modified in the Jack 

McBain Biomechanical Testing Laboratory (Dunham, 2005).  The M-prep 

neutralizer, M-boned catalyst,  M-boned 200 adhesive, M-Coat A 

polyurethane coating and strain gauge installation tape were all 

purchased from Viashay Micro-Measuremetns (Raleigh, NC, USA).   

 

(1) Remove any excess tissue from the surface of the bone where the gauge is to be 

positioned 

(2) Rub the bone with an alcohol pad to degrease and sand with 400 grit sandpaper. 

Repeat 2 times. 

(3) Apply M-prep neutralizer and scrub with a cotton tipped applicator.  Wipe dry with 

a single wipe of a clean cotton swab. 

(4) Apply a thin layer of catalyst and let dry for 1 min. 

(5) Add 2 drops of M-bond adhesive to the area and using a piece of gauge installation 

tape press into a thin layer using finger pressure.  Hold for 1 min. 

(6) Wait 5 minutes. 
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(7) Remove the tape and smooth the surface with sandpaper. 

(8) Apply M-prep neutralizer and scrub with a cotton tipped applicator.  Wipe dry with 

a single wipe of a clean cotton swab. 

(9) Align strain gauge on a piece of gauge installation tape. 

(10) Apply a thin layer of catalyst to the bone and gage, let dry for 1 min. 

(11) Apply one drop of M-bond adhesive to the bone.   

(12) Align gauge and slowly rotate tape while pressing down on gauge.  Using figure 

pressure hold gauge in place for one minute. 

(13) Remove tape by peeling back a sharp angle.  Wait 5 min. 

(14) Apply M-coat polyurethane coating. 
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Appendix 12 –   Loading Protocol  

 

The loading protocol utilized in Chapter 2 and 3 is shown in Figure A.7.  

Note that there is an initial period sans loading during which the 

unloaded strain response of the gauges may be collected.  Between 

measured loads a 0.5 N relaxation period is provided, during this period 

loading is greatly reduced, but not fully eliminated, to prevent the 

Instron® from impacting the sample during load application.   

 

 

Figure A.7: Experimental loading protocol 
This experimental loading protocol was applied directly to the 
implant head to simulate bending loads (5-30 N) and 0.5 mm 
from center along a torque arm to generate torsional and 
combined loads (0.025-0.15 Nm). 
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Appendix 13 –   Free Body Diagram of Ulna with 
Loads 

 

This appendix contains a free body diagram of the instrumented ulna with 

both bending and torsional loads applied. 

 

Diagram 1 – Bending 

 

 

 

 

 

Diagram 2 – Torsion 
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Appendix 14 –   Experimentally Derived Principal 
Strain Data  

 

This appendix contains the tabulated processed strain data that was 

presented in part or summation in Chapter 3.  The strain values are 

presented in units of microstrain (µԑ). 
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Strain Data for Loads Applied in Bending 

Table A.6: Principal strain in specimen 11-03022 under 
bending load application 

Condition 
Load 
(N) 

Gauge 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

Bonded 5 58.1 60.8 49.1 51.5 26.8 24.3 26.6 

10 136.5 124.6 110.5 121.3 60.4 51.1 67.7 

15 204.3 187.1 163.2 187.5 87.8 78.9 107.0 

20 276.4 252.9 219.7 255.0 114.8 107.3 152.3 

25 357.2 328.7 283.2 331.1 144.5 140.9 202.6 

30 403.1 373.1 320.4 379.2 153.1 166.5 241.0 

Semi-
bonded 

5 67.4 52.1 51.4 55.0 21.7 21.3 29.6 

10 150.6 127.1 115.6 132.9 45.0 59.9 82.4 

15 221.3 189.1 170.5 199.3 61.0 92.8 125.7 

20 291.8 248.9 226.2 263.6 75.9 125.8 166.2 

25 368.5 313.8 285.9 332.2 96.2 160.6 206.5 

30 426.2 374.8 333.3 395.2 105.7 196.8 234.2 

Fully 
Debonded 

5 48.4 42.6 37.6 32.6 11.0 15.5 16.0 

10 118.6 100.0 95.2 86.2 29.1 49.0 39.4 

15 185.6 158.0 149.9 141.6 48.2 76.6 58.4 

20 251.2 214.5 204.8 197.1 68.6 101.3 75.4 

25 346.3 295.3 282.8 278.4 95.0 129.3 94.4 

30 401.6 349.7 332.3 331.5 109.9 157.3 105.0 

Semi-
debonded 

5 50.5 37.4 40.0 36.0 3.8 19.4 45.3 

10 130.8 109.8 105.9 87.9 17.6 53.2 101.8 

15 193.0 166.3 158.3 130.1 29.4 81.6 144.3 

20 248.0 220.0 203.2 166.4 42.1 108.2 181.5 

25 331.7 293.8 270.2 220.9 62.2 143.8 229.8 

30 376.8 346.1 308.3 252.1 73.5 172.2 250.6 

Debonded 5 67.3 58.3 51.7 41.8 25.2 49.2 29.5 

10 144.4 125.9 113.1 98.7 32.7 104.8 -59.5 

15 209.6 183.4 165.6 147.1 40.3 149.0 -130.9 

20 270.3 244.9 215.1 200.7 51.2 190.4 -180.1 

25 348.7 313.7 277.0 267.8 68.3 240.5 -181.0 

30 399.4 362.9 319.9 312.6 77.9 276.3 -178.3 
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Table A.7: Principal strain in specimen 10-01004 under 
bending load application 

Condition 
Load 
(N) 

Gauge 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

Bonded 5 32.6 56.3 40.4 31.5 22.4 29.0 15.4 

10 68.2 124.3 84.5 68.9 40.8 59.0 30.5 

15 102.1 200.9 128.5 108.1 59.3 89.6 45.2 

20 132.0 273.0 170.6 142.8 75.6 118.6 59.6 

25 174.8 346.0 216.9 180.5 94.5 148.3 75.4 

30 194.4 417.8 258.4 208.7 110.8 175.6 91.2 

Semi-
bonded 

5 60.7 74.3 48.6 43.1 19.2 31.6 14.0 

10 117.8 146.9 94.1 83.4 34.5 60.0 28.2 

15 172.4 219.8 139.2 119.3 49.3 85.2 42.8 

20 223.2 290.1 183.5 154.5 61.4 110.3 57.5 

25 278.7 361.4 228.7 191.9 73.1 136.1 72.5 

30 314.0 433.6 269.7 222.0 83.9 161.3 87.2 

Fully 
Debonded 

5 29.6 51.3 43.0 5.4 5.1 34.6 39.0 

10 58.6 115.2 85.2 17.2 14.9 43.3 48.0 

15 86.1 176.1 126.9 35.3 23.7 65.3 54.9 

20 114.0 239.7 167.9 55.5 31.7 96.9 61.7 

25 143.9 300.5 211.1 76.0 38.9 123.1 68.4 

30 170.1 360.4 251.4 92.9 46.4 156.0 76.8 

Semi-
debonded 

5 32.5 67.1 41.0 39.1 9.8 31.1 58.9 

10 66.1 131.2 79.9 73.4 17.7 51.5 105.7 

15 100.3 190.9 119.5 101.8 26.0 64.6 148.2 

20 131.8 257.7 157.2 137.0 35.6 84.1 197.5 

25 165.3 320.3 195.9 171.5 45.0 98.9 240.0 

30 193.4 382.2 231.9 200.0 53.2 108.0 276.9 

Debonded 5 26.3 48.3 31.3 23.2 4.1 17.8 24.1 

10 55.5 107.6 70.5 48.6 6.5 34.1 51.3 

15 85.7 170.2 110.0 71.9 12.0 46.9 67.1 

20 114.3 235.6 148.0 97.4 18.7 61.7 79.0 

25 145.1 297.4 188.0 123.5 26.0 79.2 89.8 

30 170.8 363.9 224.0 145.8 33.7 97.2 98.7 
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Table A.8: Principal strain in specimen 11-03026 under 
bending load application 

Condition 
Load 
(N) 

Gauge 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

Bonded 5 58.0 48.5 41.9 32.3 30.4 23.7 58.1 

10 140.2 114.5 98.9 73.0 57.9 48.7 86.5 

15 227.5 184.5 159.0 114.1 88.3 75.3 130.0 

20 312.6 253.5 218.4 158.2 116.6 104.0 169.4 

25 401.3 323.0 279.4 200.0 146.2 131.2 217.1 

30 488.2 395.5 341.1 245.6 176.5 161.6 263.4 

Semi-
bonded 

5 66.9 44.5 37.1 33.0 31.9 21.9 179.8 

10 148.6 112.1 93.2 74.7 57.7 47.4 332.5 

15 232.0 176.0 151.3 109.6 83.8 72.9 487.5 

20 317.8 246.5 211.4 146.2 111.9 100.8 537.9 

25 405.6 318.4 273.4 183.5 139.4 128.4 582.9 

30 491.2 393.2 334.0 215.3 170.5 160.0 628.9 

Fully 
Debonded 

5 78.3 71.6 38.5 24.4 11.2 24.1 18.9 

10 163.3 143.8 88.6 47.7 25.5 54.9 68.1 

15 248.8 211.9 140.6 69.7 40.0 79.6 287.5 

20 332.3 284.6 194.9 85.0 49.2 101.1 96.9 

25 418.3 353.6 251.8 100.0 59.8 121.6 84.2 

30 503.5 422.6 311.2 113.5 72.3 148.8 399.2 

Semi-
debonded 

5 72.1 54.9 45.3 30.9 16.2 8.9 73.7 

10 156.4 122.7 106.4 70.1 37.4 21.1 176.9 

15 240.6 191.4 167.3 103.1 55.9 36.7 284.8 

20 327.2 263.4 229.3 134.3 75.0 55.4 397.0 

25 411.2 333.9 290.1 167.3 91.0 76.1 510.1 

30 496.9 400.9 350.7 191.4 109.9 96.5 616.3 

Debonded 5 75.8 67.6 51.0 32.2 29.0 34.0 152.1 

10 161.1 137.3 105.4 59.7 48.7 88.4 239.6 

15 243.9 200.5 158.2 86.9 65.5 129.8 277.7 

20 327.5 272.6 212.6 112.1 77.0 162.8 300.4 

25 414.1 339.6 269.6 143.8 90.3 191.9 314.0 

30 498.3 405.6 326.4 177.3 101.9 219.3 331.0 
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Table A.9: Principal strain in specimen 09-12057 under 
bending load application 

Condition 
Load 
(N) 

Gauge 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

Bonded 5 93.4 75.9 50.9 53.8 35.0 18.2 28.4 

10 183.5 144.8 98.7 102.6 65.8 37.0 53.4 

15 271.7 224.2 147.9 151.8 98.1 57.0 78.3 

20 362.6 298.0 197.4 196.4 130.1 75.8 105.5 

25 454.9 381.6 249.6 249.6 164.0 99.1 134.2 

30 547.1 457.4 297.1 296.3 195.8 123.8 164.4 

Semi-
bonded 

5 92.0 82.7 50.0 54.7 27.3 22.1 34.0 

10 182.4 161.7 103.1 100.6 51.4 41.5 71.8 

15 273.6 237.1 154.3 140.8 73.6 62.4 113.6 

20 364.5 316.1 205.1 183.6 96.3 86.6 153.7 

25 455.6 396.0 256.5 226.7 119.0 111.5 190.6 

30 547.9 467.7 302.9 265.3 140.5 137.5 226.4 

Fully 
Debonded 

5 87.2 79.5 58.5 22.0 25.2 8.2 11.8 

10 174.4 153.0 109.1 46.1 47.5 12.0 18.6 

15 262.0 231.2 160.0 75.6 69.0 16.2 29.6 

20 351.3 311.6 212.6 107.7 89.8 25.0 40.7 

25 443.1 394.7 266.7 142.8 108.6 21.3 48.5 

30 535.2 469.7 316.6 171.3 128.0 11.7 60.5 

Semi-
debonded 

5 86.9 85.5 52.7 55.8 35.6 16.3 40.5 

10 174.8 160.0 101.9 103.6 65.9 30.5 82.6 

15 265.1 240.7 150.9 153.1 97.1 46.6 130.0 

20 353.2 323.2 198.5 201.8 128.2 64.0 179.4 

25 443.6 399.7 248.5 246.9 158.3 80.0 224.4 

30 531.7 478.0 292.9 289.6 188.3 96.8 269.8 

Debonded 5 94.9 77.9 44.5 38.6 6.5 21.8 17.7 

10 180.2 150.9 89.2 44.6 15.0 46.1 25.9 

15 266.2 224.9 134.2 71.0 29.1 66.7 28.4 

20 352.5 298.9 178.2 102.0 44.5 84.9 29.1 

25 437.2 371.0 224.3 137.2 61.7 100.3 29.9 

30 523.3 450.0 270.6 183.0 81.2 111.2 31.8 
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Table A.10: Principal strain in specimen 09-13055 under 
bending load application 

Condition 
Load 
(N) 

Gauge 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

Bonded 5 36.6 72.2 73.1 63.3 16.9 25.5  

10 70.2 143.1 144.2 126.6 32.6 45.3  

15 102.4 215.9 216.8 190.9 48.7 68.4  

20 134.1 286.6 291.2 248.9 63.8 90.5  

25 169.9 357.4 366.4 306.7 79.4 112.7  

30 193.6 434.2 441.4 368.4 93.1 136.2  

Semi-
bonded 

5 43.6 75.2 75.3 53.7 16.0 23.5  

10 83.0 155.4 151.7 112.2 31.6 46.0  

15 118.9 232.2 224.6 169.0 46.2 68.7  

20 156.7 307.6 299.0 222.7 60.2 90.5  

25 196.7 383.0 372.3 279.8 74.6 114.8  

30 225.3 458.9 447.9 333.6 87.7 136.5  

Fully 
Debonded 

5 36.5 73.3 56.5 11.2 7.8 12.3  

10 74.0 145.8 123.5 19.3 10.9 22.6  

15 110.4 216.1 192.6 36.7 15.9 33.3  

20 144.9 288.2 264.2 63.2 18.9 45.3  

25 184.6 363.5 336.7 91.2 23.9 56.4  

30 211.2 437.4 407.7 121.5 27.1 69.2  

Semi-
debonded 

5 39.6 73.7 66.7 45.2 -0.7 21.3 17.6 

10 71.6 133.0 136.6 72.6 -0.3 42.3 3.5 

15 101.7 201.9 207.9 101.4 2.0 63.5 17.1 

20 131.2 269.2 280.4 132.4 5.7 85.5 22.6 

25 164.5 334.2 352.4 162.0 10.2 106.4 27.2 

30 187.1 400.7 426.2 195.4 15.0 129.5 34.4 

Debonded 5 34.2 64.9 69.5 48.7 3.2 25.9 137.5 

10 71.9 131.6 138.9 81.3 1.8 45.5 233.9 

15 104.0 200.9 208.8 110.5 1.8 68.6 262.2 

20 137.4 269.2 277.7 134.9 5.6 91.3 259.5 

25 174.8 338.0 347.8 163.5 12.6 113.9 254.5 

30 202.1 401.4 418.5 190.5 19.6 134.3 248.5 
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Table A.11: Principal strain in specimen 10-06020 under 
bending load application 

Condition 
Load 
(N) 

Gauge 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

Bonded 5 50.4 78.8 79.8 55.2 25.2  32.4 

10 102.8 157.7 157.2 111.2 49.5  66.9 

15 153.4 232.8 233.6 167.4 72.2  98.7 

20 204.3 309.7 311.8 222.0 96.2  135.2 

25 256.5 387.4 390.3 278.1 123.0  170.5 

30 305.4 468.8 471.5 335.3 184.0  206.0 

Semi-
bonded 

5 59.8 70.4 78.6 52.3 24.6  35.9 

10 113.5 150.1 153.7 108.2 43.7  73.2 

15 169.2 230.6 232.6 161.4 62.1  114.8 

20 226.8 316.8 317.5 215.1 79.8  164.4 

25 283.3 401.2 399.7 268.5 97.3  209.4 

30 334.1 474.9 476.7 319.0 111.3  246.7 

Fully 
Debonded 

5 50.9 83.9 74.7 25.1 13.4  45.4 

10 105.8 161.8 151.8 53.7 19.2  77.1 

15 160.1 240.6 230.0 82.4 23.7  110.3 

20 215.3 316.6 309.1 110.9 25.8  143.5 

25 269.2 397.5 387.0 142.6 31.5  179.9 

30 322.9 476.0 470.1 174.0 33.2  217.5 

Semi-
debonded 

5 56.3 68.6 78.8 54.2 -0.6  26.0 

10 112.6 139.8 150.3 106.0 -3.7  49.5 

15 167.3 213.0 222.6 158.3 -5.0  72.5 

20 221.2 281.6 292.8 207.2 -5.3  93.4 

25 277.2 349.9 365.0 254.5 -5.6  116.1 

30 329.4 421.1 439.2 303.0 -3.0  130.4 

Debonded 5 57.7 70.7 73.6 45.6 6.0  36.2 

10 114.5 144.5 145.7 87.1 6.3  51.5 

15 169.7 215.6 217.9 127.6 3.5  58.3 

20 226.2 284.5 291.9 165.6 6.0  65.9 

25 281.1 361.1 364.6 209.5 9.5  75.2 

30 334.9 435.4 440.5 249.6 15.2  83.3 
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Table A.12: Principal strain in specimen 11-03045 under 
bending load application 

Condition 
Load 
(N) 

Gauge 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

Bonded 5 67.4 44.3 80.5 44.1 40.8 25.2 38.4 

10 140.1 87.2 161.7 85.7 82.1 48.6 80.8 

15 208.1 138.8 243.0 130.3 119.2 79.7 125.3 

20 276.7 183.7 325.6 167.3 154.9 106.3 168.9 

25 347.4 237.4 410.5 208.8 190.5 136.3 212.6 

30 409.9 287.7 496.3 239.5 223.3 164.6 256.8 

Semi-
bonded 

5 74.2 56.2 83.0 44.3 36.0 34.8 34.7 

10 150.0 103.9 168.9 82.7 70.2 67.8 77.1 

15 224.4 157.2 255.0 123.8 102.4 108.9 123.1 

20 298.0 209.7 344.2 161.5 134.4 150.3 170.2 

25 371.8 264.8 431.8 201.2 164.6 195.4 217.3 

30 440.6 316.3 524.5 232.6 194.9 244.3 266.0 

Fully 
Debonded 

5 75.3 71.5 100.7 28.7 23.2 37.9 40.4 

10 146.8 136.4 201.1 53.5 56.7 72.6 53.0 

15 218.2 207.7 303.3 82.6 96.8 110.2 91.7 

20 289.9 277.6 406.2 112.3 141.0 145.5 118.9 

25 361.0 346.8 507.7 142.0 182.5 180.7 141.3 

30 423.6 411.7 611.1 169.8 226.9 215.9 158.2 

Semi-
debonded 

5 74.7 48.5 82.1 42.8 14.4 24.3 30.5 

10 148.0 95.0 164.8 69.9 22.5 40.1 37.9 

15 217.6 145.6 248.8 97.5 27.2 60.1 55.2 

20 289.1 201.2 335.9 129.8 34.2 84.5 79.5 

25 359.3 249.3 420.2 158.3 41.1 103.3 105.4 

30 422.3 299.4 505.8 181.9 57.3 126.7 126.7 

Debonded 5 74.1 55.3 80.9 23.6 7.5 17.1 17.7 

10 146.3 106.1 164.5 32.7 9.9 38.1 2.3 

15 216.1 157.8 248.2 48.5 21.2 61.8 1.0 

20 284.7 212.7 334.0 71.9 39.7 87.1 2.4 

25 354.4 263.9 419.9 93.6 58.9 107.3 -1.9 

30 416.0 313.5 507.4 114.2 79.6 130.9 -2.5 
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Table A.13: Principal strain in specimen 11-03057 under 
bending load application 

Condition 
Load 
(N) 

Gauge 

E10 
(µԑ) 

E5   
(µԑ) 

E4   
(µԑ) 

E2   
(µԑ) 

E1   
(µԑ) 

I4    
(µԑ) 

I1    
(µԑ) 

Bonded 5 72.8 82.9 49.8 59.7 37.9 24.4 15.9 

10 153.9 165.8 105.2 118.3 79.1 49.3 25.7 

15 233.7 247.7 154.9 179.8 117.0 77.8 36.4 

20 315.2 329.6 205.4 240.4 152.6 106.2 46.5 

25 397.9 416.5 257.8 302.7 187.7 136.4 59.9 

30 477.5 498.4 304.4 361.2 214.5 165.0 67.6 

Semi-
bonded 

5 80.9 85.1 53.6 69.7 35.9 28.0 9.3 

10 161.8 164.4 107.0 130.4 69.3 57.8 19.4 

15 244.2 241.6 159.3 188.3 98.1 90.0 29.8 

20 325.1 324.5 211.5 248.3 123.7 124.4 39.1 

25 403.5 401.1 265.4 301.9 147.3 156.3 48.2 

30 486.1 486.6 316.6 360.0 169.5 190.8 57.9 

Fully 
Debonded 

5 72.9 85.4 64.2 14.6 12.5 12.3 52.7 

10 154.4 186.2 134.3 26.9 29.7 26.2 115.9 

15 237.7 291.9 209.2 39.9 46.4 41.1 176.5 

20 319.1 382.9 275.4 54.3 64.2 53.6 250.0 

25 399.2 467.8 340.7 69.0 74.4 64.2 315.7 

30 481.6 558.0 401.4 84.6 91.0 72.3 393.0 

Semi-
debonded 

5 52.2 59.7 34.7 30.4 1.5 4.4 22.4 

10 99.8 111.0 65.4 56.1 0.5 11.5 39.5 

15 143.6 161.9 93.5 81.6 -0.8 22.7 56.6 

20 173.8 191.9 110.3 93.2 -5.5 39.9 72.2 

25 201.1 221.1 128.4 104.0 -9.5 50.3 87.6 

30 225.7 250.0 140.6 109.8 -9.7 52.1 104.7 

Debonded 5 80.1 80.9 58.8 52.0 0.8 19.1 8.7 

10 161.0 173.0 117.7 107.7 1.9 44.0 26.4 

15 239.0 253.5 168.2 156.6 3.3 66.0 37.9 

20 319.2 333.7 220.0 203.1 8.6 85.9 51.6 

25 398.6 410.7 272.8 249.6 13.8 100.4 63.4 

30 478.5 493.5 322.0 296.6 21.1 113.5 76.2 
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Strain Data for Torsional Loading 

Table A.14: Principal strain in specimen 11-03022 during 
torsional loading 

Condition 
Load 

(x10-2 Nm) 

Gauge 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

Bonded 2.5 15.6 12.4 9.3 20.5 7.3 8.5 7.1 

5.0 28.5 26.1 16.2 39.1 10.3 15.5 15.8 

7.5 32.4 29.0 18.6 48.6 9.5 20.0 19.4 

10.0 35.5 32.0 19.3 54.9 9.3 22.4 22.8 

12.5 39.5 37.2 20.7 65.3 8.3 26.8 25.3 

15.0 42.4 39.2 21.4 70.6 6.2 29.1 28.1 

Semi-
bonded 

2.5 8.2 6.1 4.1 12.1 7.9 6.6 11.9 

5.0 18.4 7.7 11.3 26.0 13.3 15.1 23.7 

7.5 27.0 16.6 19.2 44.8 18.4 23.5 34.6 

10.0 37.5 28.9 28.5 65.1 22.5 32.3 47.3 

12.5 48.8 39.5 39.5 83.0 27.5 38.7 61.1 

15.0 57.9 50.5 47.8 100.2 31.8 45.1 74.5 

Fully 
Debonded 

2.5 27.0 30.0 28.9 17.4 5.6 70.4 24.0 

5.0 57.7 65.7 60.7 26.9 7.4 193.8 104.8 

7.5 80.2 97.3 86.1 35.1 10.5 319.3 221.6 

10.0 101.3 128.6 114.2 40.4 32.2 492.3 447.1 

12.5 122.6 150.9 137.4 45.1 22.9 489.2 428.2 

15.0 149.7 205.8 180.3 62.7 84.3 666.0 806.9 

Semi-
debonded 

2.5 12.3 13.6 14.2 5.5 3.8 10.0 22.8 

5.0 14.4 16.9 17.3 6.5 3.2 9.5 32.1 

7.5 17.3 23.3 20.7 9.4 3.4 9.6 43.8 

10.0 22.1 30.3 25.1 10.8 4.5 10.3 55.2 

12.5 26.0 37.0 29.1 13.0 4.5 10.7 66.6 

15.0 28.0 41.9 30.1 16.1 4.4 11.7 75.2 

Debonded 2.5 6.6 6.8 5.5 2.9 1.5 0.9 5.0 

5.0 4.1 11.4 8.5 1.6 0.0 2.5 9.5 

7.5 3.4 16.4 13.0 -1.8 -1.5 -2.1 15.1 

10.0 5.0 22.5 15.8 -0.7 -3.1 -6.1 20.1 

12.5 7.4 26.7 21.3 -1.3 -3.6 -8.3 24.9 

15.0 10.9 32.7 26.6 -1.3 -2.9 -7.0 32.7 
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Table A.15: Principal strain in specimen 10-01004 during 
torsional loading 

Condition 
Load 

(x10-2 Nm) 

Gauge 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

Bonded 2.5 44.9 65.8 51.1 38.6 19.7 30.7 15.0 

5.0 75.0 121.6 88.0 69.4 36.1 55.0 26.1 

7.5 78.2 146.3 103.1 80.9 43.9 64.0 31.1 

10.0 74.5 162.4 110.0 87.4 46.2 69.5 32.5 

12.5 77.8 171.3 119.7 87.8 50.3 70.6 34.3 

15.0 73.8 186.6 124.8 91.3 52.5 74.1 35.3 

Semi-
bonded 

2.5 47.5 51.0 34.7 28.9 15.0 21.1 12.7 

5.0 92.1 111.2 72.7 59.8 27.1 44.8 23.2 

7.5 102.2 133.2 86.6 65.9 31.8 50.7 27.2 

10.0 102.3 141.0 92.8 66.9 34.0 51.0 29.0 

12.5 113.4 158.2 105.4 73.9 37.8 56.8 31.4 

15.0 117.5 173.7 114.8 77.1 39.9 60.5 33.8 

Fully 
Debonded 

2.5 27.7 53.3 44.1 5.0 9.1 59.5 4.9 

5.0 47.8 98.0 78.1 10.3 10.0 92.9 3.5 

7.5 56.2 119.6 97.5 10.3 10.1 112.8 3.3 

10.0 62.2 140.4 111.8 13.1 12.8 129.2 1.2 

12.5 66.5 151.3 124.5 11.6 14.8 147.4 -1.1 

15.0 65.6 161.9 133.5 13.5 16.1 159.6 -6.6 

Semi-
debonded 

2.5 16.3 25.5 11.7 12.3 9.6 9.4 22.7 

5.0 26.5 44.0 25.4 18.2 13.9 14.2 44.3 

7.5 36.9 66.2 38.4 26.5 18.1 21.6 73.5 

10.0 44.7 82.1 49.9 32.3 20.3 25.9 94.8 

12.5 55.0 102.9 61.8 40.3 22.6 32.7 123.2 

15.0 64.9 118.3 73.2 44.5 23.0 34.0 144.1 

Debonded 2.5 5.7 17.0 14.5 8.2 4.7 3.2 6.7 

5.0 14.6 34.4 26.3 13.2 2.6 4.3 9.8 

7.5 24.2 50.2 37.6 16.4 1.7 4.7 9.2 

10.0 32.1 66.3 48.0 22.2 0.7 5.6 9.7 

12.5 43.1 83.8 62.0 25.9 0.2 3.2 13.5 

15.0 53.2 103.8 75.7 33.6 0.8 7.3 17.9 
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Table A.16: Principal strain in specimen 11-03026 during 
torsional loading 

Condition 
Load 

(x10-2 Nm) 

Gauge 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

Bonded 2.5 39.7 28.2 27.6 17.4 7.8 13.8 21.3 

5.0 74.9 55.9 48.5 43.8 33.1 30.0 43.9 

7.5 108.8 76.6 70.3 59.8 48.6 43.0 66.1 

10.0 143.6 104.0 90.5 77.4 62.0 59.0 80.4 

12.5 157.4 112.8 100.2 95.7 89.0 82.4 95.3 

15.0 174.9 120.8 109.9 108.6 93.8 90.3 92.6 

Semi-
bonded 

2.5 18.5 21.4 18.5 15.1 13.5 6.5 32.0 

5.0 41.9 46.8 38.7 28.8 30.2 19.9 45.9 

7.5 67.1 70.1 61.4 43.6 46.3 32.6 70.5 

10.0 92.9 90.3 84.2 56.7 63.9 46.8 131.9 

12.5 113.0 110.3 102.6 67.9 82.0 63.9 160.0 

15.0 131.6 131.0 119.2 79.9 104.7 89.6 207.5 

Fully 
Debonded 

2.5 11.3 12.1 12.9 12.1 8.4 2.6 962.6 

5.0 22.1 27.1 23.3 21.6 6.4 11.3 107.3 

7.5 34.4 40.9 34.6 37.5 8.3 21.0 187.5 

10.0 45.0 53.2 42.9 48.1 9.7 29.1 255.9 

12.5 54.3 65.8 50.6 60.5 13.3 36.8 313.9 

15.0 66.4 82.3 61.7 67.3 12.4 47.8 396.0 

Semi-
debonded 

2.5 11.3 8.4 10.6 7.2 9.6 5.3 21.5 

5.0 36.1 29.2 28.3 13.9 21.5 16.5 58.3 

7.5 49.5 39.9 39.0 19.2 29.4 27.9 83.9 

10.0 63.8 53.8 51.0 26.0 38.4 40.3 112.1 

12.5 74.7 65.7 60.3 32.8 46.4 51.3 136.2 

15.0 84.1 78.0 69.3 40.2 54.1 65.4 159.0 

Debonded 2.5 16.6 13.4 11.3 6.5 12.5 8.3 23.5 

5.0 36.1 27.0 24.3 12.8 25.3 19.6 46.9 

7.5 47.4 37.0 32.9 17.5 30.9 28.9 62.0 

10.0 58.0 46.4 40.4 21.1 30.7 34.4 78.9 

12.5 64.4 53.3 46.2 27.5 29.7 40.9 95.5 

15.0 73.6 59.9 54.7 33.3 29.2 45.8 110.4 
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Table A.17: Principal strain in specimen 09-12057 during 
torsional loading 

Condition 
Load 

(x10-2 Nm) 

Gauge 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

Bonded 2.5 35.8 31.4 25.0 21.3 26.7 6.9 14.0 

5.0 65.7 58.7 43.6 43.2 43.5 11.8 23.6 

7.5 91.5 89.0 61.2 68.0 63.3 16.8 33.3 

10.0 118.0 114.7 79.1 88.5 84.0 20.9 43.2 

12.5 143.3 135.5 97.2 107.4 102.8 23.9 52.1 

15.0 166.2 161.6 112.3 129.2 122.4 28.9 61.5 

Semi-
bonded 

2.5 28.4 5.5 15.0 17.5 6.0 8.8 14.4 

5.0 52.5 19.6 28.0 26.4 11.7 14.4 32.2 

7.5 72.2 35.6 40.4 33.6 15.4 19.4 46.0 

10.0 90.9 54.2 52.0 42.4 21.2 24.6 57.6 

12.5 108.5 71.5 63.5 52.3 26.9 28.6 69.5 

15.0 123.6 93.2 74.8 63.0 35.1 33.8 82.3 

Fully 
Debonded 

2.5 24.3 24.4 15.6 5.0 6.0 59.3 10.5 

5.0 40.9 47.4 32.5 11.7 5.8 118.8 19.2 

7.5 57.7 64.6 50.1 16.8 10.5 182.2 20.0 

10.0 74.1 85.5 68.3 23.9 21.8 272.1 -1.9 

12.5 89.9 102.0 85.0 31.9 36.6 351.7 2.9 

15.0 106.3 122.2 100.5 45.7 69.0 477.5 27.0 

Semi-
debonded 

2.5 36.1 30.8 25.9 22.9 11.1 13.3 19.3 

5.0 62.5 55.7 45.7 42.3 22.9 19.4 41.6 

7.5 86.1 83.5 65.8 63.5 35.5 26.2 67.3 

10.0 108.0 111.7 84.0 85.1 47.4 34.3 94.6 

12.5 130.8 136.3 107.6 102.8 59.7 41.7 124.7 

15.0 153.8 167.1 128.0 124.9 72.6 51.3 161.9 

Debonded 2.5 27.2 33.2 17.2 15.4 8.7 4.0 17.9 

5.0 44.7 50.7 28.0 24.6 9.5 11.5 23.0 

7.5 63.3 66.5 37.4 26.3 12.7 11.9 22.6 

10.0 79.6 86.6 47.2 33.6 21.0 9.6 22.3 

12.5 92.2 101.4 56.7 39.6 29.2 7.4 22.9 

15.0 107.1 118.7 65.2 41.5 42.2 -0.7 24.7 
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Table A.18: Principal strain in specimen 09-13055 during 
torsional loading 

Condition 
Load 

(x10-2 Nm) 

Gauge 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

Bonded 2.5 12.2 35.6 27.4 27.2 8.8 15.5  

5.0 21.3 57.1 48.3 43.3 12.4 21.1  

7.5 30.3 83.5 68.9 58.8 16.1 26.1  

10.0 37.2 103.3 89.1 73.8 20.5 33.1  

12.5 46.5 124.6 109.3 88.5 25.6 40.2  

15.0 51.8 145.8 128.9 102.4 28.7 45.7  

Semi-
bonded 

2.5 34.5 54.9 45.0 33.4 16.9 17.7  

5.0 44.8 75.9 61.7 47.0 20.0 24.2  

7.5 51.9 88.3 74.8 56.4 23.2 28.9  

10.0 58.6 99.9 86.0 63.8 26.3 32.7  

12.5 65.6 112.8 97.3 72.5 30.2 35.8  

15.0 69.5 127.7 107.3 80.1 33.5 40.0  

Fully 
Debonded 

2.5 13.9 19.1 17.9 12.6 3.4 10.6  

5.0 20.8 33.6 31.6 15.7 4.1 34.1  

7.5 27.4 46.9 45.6 18.9 4.7 48.6  

10.0 35.3 63.7 62.8 23.9 5.4 62.0  

12.5 42.8 80.2 79.5 27.2 6.6 77.6  

15.0 50.4 93.4 95.5 33.5 8.7 88.8  

Semi-
debonded 

2.5 20.9 23.2 23.3 11.0 4.4 7.7 11.3 

5.0 34.7 42.0 41.9 18.9 3.9 12.7 13.8 

7.5 49.6 61.2 59.6 25.4 4.5 18.1 12.0 

10.0 62.2 75.4 75.8 29.4 4.0 22.6 8.0 

12.5 74.8 99.2 94.3 40.9 3.8 30.1 4.3 

15.0 85.9 118.7 114.1 47.0 2.8 36.9 -1.1 

Debonded 2.5 16.7 39.7 36.5 16.5 5.7 13.2 53.4 

5.0 24.2 61.6 56.2 28.8 5.2 20.3 69.0 

7.5 34.9 81.4 75.3 35.6 5.2 25.5 76.9 

10.0 41.6 98.9 92.9 41.2 4.1 30.4 92.8 

12.5 50.5 116.6 110.5 46.3 3.2 34.9 97.6 

15.0 56.2 130.0 126.5 47.5 2.4 38.9 94.7 
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Table A.19: Principal strain in specimen 10-06020 during 
torsional loading 

Condition 
Load 

(x10-2 Nm) 

Gauge 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

Bonded 2.5 16.6 19.1 21.0 13.9 5.6  11.4 

5.0 29.0 36.7 42.5 35.4 15.1  23.2 

7.5 42.1 59.7 65.9 57.8 26.8  38.2 

10.0 53.8 76.6 88.1 78.4 34.9  50.2 

12.5 68.0 100.3 112.4 103.4 47.3  66.3 

15.0 78.2 122.3 136.3 127.6 57.9  80.4 

Semi-
bonded 

2.5 26.0 26.8 18.4 23.0 20.3  16.0 

5.0 28.3 41.3 35.1 40.0 27.5  18.7 

7.5 35.3 57.2 52.1 54.4 34.6  25.0 

10.0 44.5 73.7 68.2 73.3 42.9  31.0 

12.5 51.3 87.8 85.8 90.4 49.7  34.8 

15.0 60.2 106.7 104.2 109.7 59.1  44.2 

Fully 
Debonded 

2.5 28.7 38.2 32.7 20.6 17.3  6.9 

5.0 46.6 71.2 60.9 34.4 21.5  13.8 

7.5 58.4 94.9 87.9 49.4 17.3  15.3 

10.0 68.7 116.0 111.5 62.3 15.6  19.3 

12.5 80.7 143.3 132.4 78.9 20.4  25.8 

15.0 90.0 162.1 151.1 90.1 18.9  29.9 

Semi-
debonded 

2.5 11.2 16.0 26.4 22.7 6.9  19.1 

5.0 25.0 39.6 50.3 48.2 7.8  37.7 

7.5 39.2 63.1 74.0 72.3 11.7  51.2 

10.0 52.3 82.8 98.3 94.1 14.8  63.8 

12.5 64.3 107.0 121.8 119.4 17.6  80.9 

15.0 76.7 124.5 145.4 137.5 23.4  97.1 

Debonded 2.5 28.3 32.2 29.4 12.3 8.9  10.5 

5.0 42.3 52.6 49.4 22.1 8.4  15.0 

7.5 52.1 66.2 62.7 28.8 9.1  19.7 

10.0 61.2 80.2 76.2 36.5 9.5  23.6 

12.5 70.3 93.6 90.1 45.0 8.5  26.1 

15.0 77.8 104.3 107.1 51.0 7.3  29.9 
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Table A.20: Principal strain in specimen 11-02045 during 
torsional loading 

Condition 
Load 

(x10-2 Nm) 

Gauge 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

Bonded 2.5 43.3 35.8 49.9 31.7 30.5 16.2 32.6 

5.0 54.7 51.8 69.5 48.2 49.8 22.2 52.1 

7.5 63.1 59.5 86.7 59.6 67.7 23.7 69.3 

10.0 69.2 70.0 100.3 70.8 83.0 27.7 86.3 

12.5 73.7 78.3 112.9 81.4 98.0 30.1 100.2 

15.0 78.1 87.9 126.5 88.5 111.4 32.3 114.7 

Semi-
bonded 

2.5 13.9 14.7 15.0 15.9 15.2 9.1 19.3 

5.0 20.1 22.9 25.6 25.0 24.8 11.9 35.9 

7.5 30.1 30.5 37.0 32.4 35.9 14.4 54.1 

10.0 38.6 38.2 47.8 38.8 44.7 17.2 72.0 

12.5 44.0 43.9 57.3 46.5 52.7 20.9 89.3 

15.0 50.5 46.3 67.2 50.0 59.8 22.8 105.7 

Fully 
Debonded 

2.5 25.5 25.6 42.7 13.4 0.9 24.6 38.1 

5.0 47.4 45.8 68.8 15.2 2.3 48.4 46.6 

7.5 54.6 57.6 77.9 17.3 -0.5 69.5 55.0 

10.0 60.1 60.7 87.2 15.8 -5.0 79.5 49.0 

12.5 69.0 69.3 97.1 16.3 -7.9 85.7 52.2 

15.0 74.8 74.7 105.1 17.1 -12.0 88.9 51.8 

Semi-
debonded 

2.5 15.3 8.1 18.1 10.6 5.9 2.4 3.3 

5.0 27.1 17.9 32.8 21.4 11.7 4.6 7.8 

7.5 37.7 25.7 46.9 28.7 17.3 5.7 8.0 

10.0 47.8 33.9 59.8 37.8 19.7 8.4 7.9 

12.5 56.3 43.4 70.5 46.7 21.3 12.4 8.8 

15.0 65.6 53.5 83.3 55.1 26.2 15.0 7.3 

Debonded 2.5 9.0 16.4 21.6 9.4 10.0 12.6 11.1 

5.0 15.4 22.3 34.4 8.4 11.5 12.4 11.8 

7.5 24.3 30.4 47.7 9.1 12.8 14.8 12.7 

10.0 31.3 41.6 57.9 10.5 15.1 22.6 21.1 

12.5 35.3 46.4 64.4 10.3 15.0 25.1 22.0 

15.0 41.5 51.1 71.8 9.9 15.2 29.2 22.4 
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Table A.21: Principal strain in specimen 11-03057 during 
torsional loading 

Condition 
Load 

(x10-2 Nm) 

Gauge 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

Bonded 2.5 21.3 30.1 18.9 28.0 17.4 13.0 6.1 

5.0 40.5 53.4 35.0 50.0 34.0 21.1 9.0 

7.5 54.4 71.4 44.8 65.5 43.3 26.4 10.4 

10.0 68.5 89.4 56.0 82.3 58.1 33.6 13.9 

12.5 78.5 100.7 65.8 98.3 70.8 40.0 15.9 

15.0 86.9 117.2 72.5 114.8 83.9 48.1 18.6 

Semi-
bonded 

2.5 46.2 52.9 27.6 32.8 15.7 13.1 6.6 

5.0 83.7 92.9 54.1 60.9 34.6 26.7 11.8 

7.5 119.4 133.3 78.9 89.8 51.8 42.0 16.2 

10.0 144.8 163.8 95.7 111.8 65.0 55.1 20.5 

12.5 156.2 176.6 103.9 123.6 72.3 62.7 22.5 

15.0 167.1 190.8 111.1 135.0 80.3 70.7 24.9 

Fully 
Debonded 

2.5 35.6 37.1 28.0 17.2 1.4 9.5 6.2 

5.0 74.3 73.0 54.3 26.0 -4.5 30.7 19.2 

7.5 114.8 108.0 81.5 31.0 -3.4 56.2 35.8 

10.0 153.3 148.7 107.4 38.9 0.5 80.2 56.6 

12.5 190.0 186.9 134.1 47.3 1.1 96.2 82.7 

15.0 227.4 224.5 158.8 52.9 5.5 111.8 121.9 

Semi-
debonded 

2.5 41.4 46.1 32.6 26.6 10.5 9.7 12.5 

5.0 83.4 87.6 61.0 50.3 14.4 15.9 19.2 

7.5 125.2 129.7 89.4 71.4 20.6 27.6 26.9 

10.0 165.2 172.8 115.0 91.8 29.0 44.4 35.2 

12.5 201.9 207.7 139.9 109.6 32.9 61.2 40.9 

15.0 232.2 243.5 158.7 127.2 40.6 79.6 46.9 

Debonded 2.5 72.2 66.5 44.8 40.3 -0.9 17.6 15.8 

5.0 102.7 96.4 63.5 58.1 -2.9 21.0 20.0 

7.5 129.3 125.7 78.3 75.6 -2.1 25.6 24.9 

10.0 151.9 145.5 90.3 86.5 -6.1 27.6 26.5 

12.5 164.7 161.0 95.7 94.1 -3.3 29.5 29.2 

15.0 171.9 164.2 95.8 95.2 -6.7 27.6 27.3 
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Strain Data for Combined Loading 

Table A.22: Principal strain in specimen 11-03022 during 
combined loading 

Condition 
Load 

N (x10-2 
Nm) 

Gauge 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

Bonded 5 (2.5) 72.4 55.9 53.9 72.5 31.3 30.6 36.4 

10 (5.0) 138.8 116.6 105.6 139.2 54.5 57.3 72.1 

15 (7.5) 203.4 167.5 154.3 198.2 75.7 78.9 108.4 

20 (10.0) 266.6 224.6 202.3 263.2 95.4 105.2 144.5 

25 (12.5) 331.0 275.3 248.0 326.9 117.6 128.6 188.6 

30 (15.0) 394.2 335.6 299.2 390.5 134.3 154.8 225.4 

Semi-
bonded 

5 (2.5) 65.3 52.2 48.7 65.7 19.6 25.5 38.1 

10 (5.0) 142.9 113.8 107.2 137.8 36.7 51.9 87.4 

15 (7.5) 212.3 176.6 161.6 209.4 51.3 79.0 131.2 

20 (10.0) 275.1 232.5 209.9 271.4 64.0 103.3 168.8 

25 (12.5) 350.8 292.6 267.2 340.0 81.1 129.8 208.7 

30 (15.0) 404.6 348.4 310.8 400.2 90.0 155.2 235.5 

Fully 
Debonded 

5 (2.5) 67.8 60.4 49.8 36.8 5.1 109.1 51.6 

10 (5.0) 154.9 142.0 122.9 92.9 17.9 206.1 68.6 

15 (7.5) 222.7 209.3 182.3 141.4 31.9 282.7 76.8 

20 (10.0) 279.3 271.6 236.5 184.6 47.4 372.8 86.9 

25 (12.5) 356.1 353.0 308.2 246.6 66.6 463.5 80.6 

30 (15.0) 413.9 425.0 369.8 299.7 80.3 567.4 93.9 

Semi-
debonded 

5 (2.5) 70.7 65.3 62.1 55.2 15.1 30.2 58.3 

10 (5.0) 140.0 126.3 121.7 105.9 23.8 52.9 106.8 

15 (7.5) 186.0 165.4 163.7 137.1 29.4 68.7 134.1 

20 (10.0) 253.1 231.5 221.5 188.8 41.9 96.4 165.6 

25 (12.5) 320.0 289.9 276.2 227.6 61.6 121.9 185.9 

30 (15.0) 368.2 342.2 316.4 263.2 71.6 147.2 247.2 

Debonded 5 (2.5) 75.6 61.8 52.5 37.0 12.1 55.0 -16.0 

10 (5.0) 139.7 120.5 104.5 78.8 22.7 103.0 -21.6 

15 (7.5) 195.9 177.7 147.7 114.3 47.0 135.5 -26.8 

20 (10.0) 248.2 226.8 189.3 150.2 67.1 143.2 -24.8 

25 (12.5) 323.7 299.8 251.0 213.3 75.7 165.9 -14.4 

30 (15.0) 378.9 354.6 299.5 265.3 84.6 177.5 -6.0 
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Table A.23: Principal strain in specimen 10-01004 during 
combined loading 

Condition 
Load 

N (x10-2 
Nm) 

Gauge 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

Bonded 5 (2.5) 44.2 50.0 39.6 29.0 16.1 27.6 10.7 

10 (5.0) 93.8 114.5 83.9 63.5 33.9 60.3 19.7 

15 (7.5) 137.0 181.2 129.3 97.0 51.0 92.8 30.9 

20 (10.0) 180.2 248.9 173.9 129.4 64.7 123.4 42.4 

25 (12.5) 230.5 316.2 219.3 164.1 75.0 150.8 53.9 

30 (15.0) 260.6 388.0 261.4 191.9 74.8 178.5 66.7 

Semi-
bonded 

5 (2.5) 42.8 51.8 37.1 35.1 10.9 21.3 16.3 

10 (5.0) 98.7 118.5 82.7 67.0 24.8 46.6 26.4 

15 (7.5) 149.3 191.7 127.0 102.3 37.4 74.4 43.3 

20 (10.0) 197.1 260.0 171.2 132.0 49.6 98.8 51.5 

25 (12.5) 251.2 330.6 216.3 165.7 60.5 125.9 63.2 

30 (15.0) 285.5 399.5 258.1 191.4 69.9 150.7 68.3 

Fully 
Debonded 

5 (2.5) 28.1 51.8 39.6 9.9 9.5 14.3 11.7 

10 (5.0) 57.9 114.6 84.6 25.6 15.9 34.1 17.8 

15 (7.5) 84.9 176.7 128.3 43.5 21.6 54.4 20.2 

20 (10.0) 112.4 239.8 173.7 61.4 28.8 81.6 20.0 

25 (12.5) 141.9 306.6 220.6 82.1 36.9 119.2 19.6 

30 (15.0) 165.8 373.8 266.8 97.8 43.0 159.8 23.4 

Semi-
debonded 

5 (2.5) 30.8 53.6 37.7 26.3 6.0 21.8 39.5 

10 (5.0) 62.0 112.5 75.0 51.0 10.6 35.7 87.4 

15 (7.5) 93.2 174.3 113.7 76.9 17.2 47.6 132.8 

20 (10.0) 123.1 234.3 151.4 103.3 24.5 60.6 177.7 

25 (12.5) 154.8 297.6 190.5 132.2 32.7 74.7 220.5 

30 (15.0) 180.0 356.9 225.2 155.6 39.2 86.7 271.1 

Debonded 5 (2.5) 27.1 49.3 33.5 19.1 5.1 17.2 13.7 

10 (5.0) 57.9 109.3 72.2 41.4 9.5 32.7 23.3 

15 (7.5) 84.5 168.7 109.5 63.5 14.0 40.3 33.2 

20 (10.0) 111.6 231.2 147.5 86.2 19.8 47.8 43.0 

25 (12.5) 142.1 293.9 187.7 110.4 27.3 58.3 50.4 

30 (15.0) 165.4 351.8 224.4 127.8 32.7 64.8 69.1 

 

 

 



151 
 

 

Table A.24: Principal strain in specimen 11-03026 during 
combined loading 

Condition 
Load 

N (x10-2 
Nm) 

Gauge 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

Bonded 5 (2.5) 70.3 57.1 44.8 29.5 25.4 21.1 30.1 

10 (5.0) 146.4 114.3 92.9 65.7 54.7 46.1 64.0 

15 (7.5) 219.5 164.6 138.1 98.2 86.2 72.3 103.8 

20 (10.0) 300.7 225.8 189.8 138.3 118.2 97.5 137.6 

25 (12.5) 377.1 284.9 239.0 168.6 149.7 126.3 164.4 

30 (15.0) 450.1 330.7 283.7 197.6 188.7 158.7 190.1 

Semi-
bonded 

5 (2.5) 65.7 51.5 38.4 32.8 18.1 21.9 36.4 

10 (5.0) 143.3 107.5 88.4 60.4 41.6 46.7 122.3 

15 (7.5) 219.2 166.2 137.8 87.2 66.8 75.8 157.5 

20 (10.0) 288.4 220.3 180.4 108.3 96.6 109.4 178.3 

25 (12.5) 363.6 278.5 228.7 136.8 118.0 133.5 194.0 

30 (15.0) 445.5 338.7 283.0 165.3 158.6 159.9 222.6 

Fully 
Debonded 

5 (2.5) 45.6 37.5 31.9 17.6 17.5 10.8 30.2 

10 (5.0) 129.6 107.8 88.8 46.5 48.0 36.1 69.9 

15 (7.5) 213.5 176.6 147.7 73.2 73.0 66.4 704.2 

20 (10.0) 298.5 241.6 205.6 93.9 95.2 96.5 804.2 

25 (12.5) 383.5 314.8 263.8 115.0 112.6 119.8 416.6 

30 (15.0) 468.7 379.7 320.8 128.1 127.0 134.1 -97.8 

Semi-
debonded 

5 (2.5) 67.4 56.1 44.7 28.0 14.4 12.5 66.5 

10 (5.0) 147.8 120.9 99.9 53.4 30.4 31.2 155.1 

15 (7.5) 226.8 188.2 153.6 79.6 46.9 51.9 246.6 

20 (10.0) 307.5 251.4 209.4 104.6 63.9 74.0 341.4 

25 (12.5) 388.1 318.6 264.5 132.1 81.1 97.7 432.4 

30 (15.0) 468.8 377.8 319.6 156.4 98.8 124.8 521.8 

Debonded 5 (2.5) 67.5 52.6 53.3 22.9 6.5 21.9 85.0 

10 (5.0) 148.4 120.0 106.0 40.3 12.2 44.5 191.2 

15 (7.5) 226.5 177.2 157.5 54.0 18.7 66.9 271.2 

20 (10.0) 307.0 244.3 209.9 73.8 28.4 89.4 334.4 

25 (12.5) 386.1 306.5 261.6 89.8 38.3 107.0 387.7 

30 (15.0) 467.5 364.9 316.1 104.3 49.3 119.9 432.2 
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Table A.25: Principal strain in specimen 09-12057 during 
combined loading 

Condition 
Load 

N (x10-2 
Nm) 

Gauge 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

Bonded 5 (2.5) 86.2 74.6 44.2 55.7 36.0 13.0 22.9 

10 (5.0) 175.5 143.7 91.0 99.6 70.4 27.2 45.7 

15 (7.5) 265.0 216.4 137.6 146.2 106.0 43.0 68.5 

20 (10.0) 354.9 292.6 184.1 195.3 140.1 61.0 91.5 

25 (12.5) 443.4 363.3 230.3 240.1 175.8 77.6 114.2 

30 (15.0) 535.7 437.4 277.1 287.5 211.5 97.4 138.1 

Semi-
bonded 

5 (2.5) 89.4 80.0 46.9 37.2 21.7 16.5 36.2 

10 (5.0) 177.3 153.1 93.6 73.8 43.1 33.1 69.5 

15 (7.5) 265.2 227.7 141.1 111.5 68.2 49.9 95.6 

20 (10.0) 354.0 297.9 187.3 148.7 94.7 66.4 124.4 

25 (12.5) 442.4 375.5 235.1 189.7 119.2 85.1 151.5 

30 (15.0) 532.8 450.9 279.8 226.2 146.2 104.2 179.7 

Fully 
Debonded 

5 (2.5) 79.6 77.2 48.8 29.5 8.7 15.0 34.6 

10 (5.0) 167.2 142.0 93.9 46.9 10.7 45.2 32.7 

15 (7.5) 255.8 214.6 138.8 65.9 16.0 102.7 23.3 

20 (10.0) 344.9 282.8 184.6 84.7 20.9 152.4 21.3 

25 (12.5) 433.7 355.7 232.1 108.1 31.6 181.6 25.6 

30 (15.0) 521.8 416.6 274.1 126.2 48.2 209.3 28.0 

Semi-
debonded 

5 (2.5) 88.3 64.5 49.4 31.7 25.8 20.4 27.3 

10 (5.0) 178.5 135.3 98.3 69.0 46.1 38.3 71.3 

15 (7.5) 266.0 208.8 145.2 107.6 60.4 55.8 117.8 

20 (10.0) 354.0 282.6 189.1 141.0 80.4 73.6 218.9 

25 (12.5) 443.0 354.6 237.4 175.5 100.1 91.1 277.4 

30 (15.0) 527.0 425.7 281.3 202.0 119.8 109.8 288.6 

Debonded 5 (2.5) 86.4 72.1 40.8 25.4 13.4 1.3 20.8 

10 (5.0) 172.8 140.8 86.8 47.4 24.8 -0.3 27.6 

15 (7.5) 259.6 207.3 133.1 70.9 38.7 -6.0 42.3 

20 (10.0) 346.7 281.7 178.8 102.3 56.7 -12.7 60.5 

25 (12.5) 436.6 350.2 227.6 131.4 80.7 -31.0 79.3 

30 (15.0) 526.7 422.0 272.6 163.5 106.2 -42.3 94.7 
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Table A.26: Principal strain in specimen 09-13055 during 
combined loading 

Condition 
Load 

N (x10-2 
Nm) 

Gauge 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

Bonded 5 (2.5) 32.9 75.3 70.5 58.9 22.1 29.2   

10 (5.0) 69.2 137.2 138.4 108.4 37.9 47.9   

15 (7.5) 103.1 206.8 207.5 162.7 54.7 70.2   

20 (10.0) 136.0 276.2 276.5 217.1 71.6 91.3   

25 (12.5) 172.1 345.5 346.5 271.2 87.8 112.7   

30 (15.0) 198.8 414.2 417.5 325.4 103.1 134.7   

Semi-
bonded 

5 (2.5) 39.6 68.2 69.8 51.4 19.3 22.6   

10 (5.0) 77.6 133.8 137.3 100.3 34.0 42.1   

15 (7.5) 112.6 203.4 204.4 153.2 47.7 64.1   

20 (10.0) 147.3 270.4 272.5 201.3 61.7 84.0   

25 (12.5) 184.3 334.4 339.5 249.0 75.8 104.6   

30 (15.0) 212.7 405.6 408.0 300.7 88.5 126.0   

Fully 
Debonded 

5 (2.5) 35.6 74.9 60.0 20.2 17.3 20.6   

10 (5.0) 72.7 137.3 124.0 30.7 23.9 28.2   

15 (7.5) 105.5 196.3 188.2 43.1 28.1 40.1   

20 (10.0) 139.6 263.5 253.2 59.3 32.2 58.1   

25 (12.5) 177.6 320.9 318.7 72.0 37.6 73.0   

30 (15.0) 205.1 384.8 384.4 90.5 40.0 89.0   

Semi-
debonded 

5 (2.5) 31.7 61.9 56.9 38.8 6.6 25.8 3.7 

10 (5.0) 63.5 121.2 121.3 67.5 8.6 46.2 11.0 

15 (7.5) 93.4 175.7 185.8 91.8 10.5 65.5 24.5 

20 (10.0) 124.8 241.8 251.6 122.4 14.9 87.0 31.7 

25 (12.5) 160.4 302.4 317.0 149.0 19.4 107.1 39.4 

30 (15.0) 187.1 364.8 383.6 178.9 23.9 128.7 48.2 

Debonded 5 (2.5) 32.9 61.4 59.7 38.1 2.6 24.4 54.4 

10 (5.0) 65.5 125.9 122.4 59.9 2.9 44.2 42.0 

15 (7.5) 98.8 189.0 186.5 80.1 7.1 64.5 37.7 

20 (10.0) 130.0 247.8 248.7 101.5 11.9 83.9 32.9 

25 (12.5) 165.6 312.4 314.8 131.2 17.3 106.5 28.9 

30 (15.0) 196.2 377.7 381.3 158.7 24.9 126.2 21.9 
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Table A.27: Principal strain in specimen 10-06020 during 
combined loading 

Condition 
Load 

N (x10-2 
Nm) 

Gauge 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

Bonded 5 (2.5) 48.6 68.0 65.8 48.6 26.6  34.6 

10 (5.0) 99.0 140.9 136.8 100.0 48.9  65.0 

15 (7.5) 149.1 212.4 210.4 151.2 70.2  94.8 

20 (10.0) 199.1 283.7 281.7 201.8 89.7  125.3 

25 (12.5) 249.8 355.1 355.9 252.5 111.5  157.3 

30 (15.0) 296.4 426.7 430.5 303.7 128.5  188.6 

Semi-
bonded 

5 (2.5) 54.2 64.8 70.1 47.4 16.8  19.0 

10 (5.0) 105.4 127.9 134.8 95.7 33.8  38.6 

15 (7.5) 156.4 196.1 201.7 144.1 51.0  63.4 

20 (10.0) 208.5 263.7 271.5 190.8 67.8  90.7 

25 (12.5) 260.6 333.9 339.4 238.6 85.0  120.1 

30 (15.0) 309.6 398.6 409.9 284.1 97.4  142.6 

Fully 
Debonded 

5 (2.5) 56.3 66.3 57.6 27.3 9.6  9.1 

10 (5.0) 107.8 132.5 119.7 52.9 13.3  17.0 

15 (7.5) 155.0 195.8 182.2 78.2 14.4  23.0 

20 (10.0) 200.5 260.2 240.3 108.5 16.6  30.5 

25 (12.5) 246.6 314.7 295.6 132.0 22.3  40.8 

30 (15.0) 294.6 387.1 357.5 163.0 23.3  48.5 

Semi-
debonded 

5 (2.5) 52.5 63.7 65.2 48.1 3.1  34.2 

10 (5.0) 101.9 132.5 132.0 94.4 0.2  61.4 

15 (7.5) 151.6 195.4 199.7 138.6 -1.0  81.2 

20 (10.0) 203.3 262.3 269.5 183.3 0.8  105.5 

25 (12.5) 254.9 330.0 339.3 229.1 -0.6  129.9 

30 (15.0) 302.8 397.7 409.0 270.8 2.8  157.7 

Debonded 5 (2.5) 47.6 64.4 66.8 23.4 7.6  5.7 

10 (5.0) 100.9 130.1 133.1 47.1 12.8  9.2 

15 (7.5) 153.2 197.8 200.7 81.4 18.0  15.0 

20 (10.0) 203.9 263.0 267.6 117.0 20.8  22.9 

25 (12.5) 256.1 326.2 336.4 151.9 24.2  31.4 

30 (15.0) 305.4 387.1 407.2 185.0 28.1  41.6 
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Table A.28: Principal strain in specimen 11-03045 during 
combined loading 

Condition 
Load 

N (x10-2 
Nm) 

Gauge 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

Bonded 5 (2.5) 71.3 40.6 74.5 47.9 33.8 19.0 34.5 

10 (5.0) 139.7 85.0 141.8 85.7 67.4 41.7 67.9 

15 (7.5) 210.6 125.4 211.9 119.2 100.2 63.7 102.0 

20 (10.0) 276.4 172.0 281.8 155.4 130.4 89.3 136.7 

25 (12.5) 343.0 215.6 350.1 190.4 157.5 115.4 170.1 

30 (15.0) 403.6 257.6 421.2 217.9 183.1 142.9 201.6 

Semi-
bonded 

5 (2.5) 69.8 46.2 64.7 45.1 31.0 34.1 39.1 

10 (5.0) 139.4 89.2 132.8 76.5 55.1 65.0 72.7 

15 (7.5) 208.3 129.4 203.1 105.3 76.9 98.8 109.5 

20 (10.0) 278.9 173.0 275.5 134.0 99.2 136.4 148.5 

25 (12.5) 347.4 223.4 348.2 164.7 117.4 176.3 183.9 

30 (15.0) 410.7 265.9 423.7 186.8 137.4 212.7 217.5 

Fully 
Debonded 

5 (2.5) 73.0 56.2 73.4 21.3 17.6 39.2 56.3 

10 (5.0) 143.3 114.5 145.0 38.3 34.1 82.9 90.4 

15 (7.5) 211.5 163.3 213.6 48.3 54.5 117.5 104.0 

20 (10.0) 280.9 220.5 283.8 63.9 79.7 155.5 150.0 

25 (12.5) 350.7 273.2 355.6 77.8 102.7 189.9 163.8 

30 (15.0) 412.8 326.4 429.8 93.3 129.5 226.4 189.8 

Semi-
debonded 

5 (2.5) 69.7 48.5 72.3 32.8 16.0 16.3 19.8 

10 (5.0) 138.3 97.6 146.2 61.6 27.1 35.4 20.6 

15 (7.5) 204.6 141.4 222.1 86.0 32.6 53.1 30.7 

20 (10.0) 270.2 188.7 298.6 109.7 42.5 72.5 51.5 

25 (12.5) 337.3 237.7 375.2 137.0 47.1 94.4 75.5 

30 (15.0) 396.3 283.5 454.3 153.3 54.3 120.0 81.1 

Debonded 5 (2.5) 72.8 48.6 71.4 24.9 21.7 18.1 15.0 

10 (5.0) 143.5 96.6 143.1 43.6 34.3 34.8 16.9 

15 (7.5) 212.6 146.7 213.9 60.9 51.3 54.3 24.2 

20 (10.0) 279.4 190.0 286.7 77.8 64.5 71.8 14.9 

25 (12.5) 349.0 242.0 359.2 98.9 83.8 96.5 30.7 

30 (15.0) 411.8 287.4 434.8 114.7 100.6 112.8 15.1 
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Table A.29: Principal strain in specimen 11-03057 during 
combined loading 

Condition 
Load 

N (x10-2 
Nm) 

Gauge 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

E10 
(µԑ) 

Bonded 5 (2.5) 71.6 75.5 45.4 58.7 34.2 25.6 12.8 

10 (5.0) 146.1 146.7 92.2 108.7 66.1 46.5 20.2 

15 (7.5) 220.5 222.5 136.9 160.4 96.2 68.7 29.3 

20 (10.0) 296.5 300.9 181.7 214.6 127.0 93.2 39.9 

25 (12.5) 370.9 372.7 227.7 263.3 155.1 115.2 48.0 

30 (15.0) 446.5 451.5 270.5 316.0 183.1 139.5 58.2 

Semi-
bonded 

5 (2.5) 76.9 70.5 45.5 52.9 32.4 30.6 5.9 

10 (5.0) 149.4 143.3 91.9 103.5 60.1 56.1 13.4 

15 (7.5) 224.1 212.8 138.2 149.5 86.4 81.3 23.4 

20 (10.0) 297.2 287.9 183.7 198.9 108.1 109.8 31.8 

25 (12.5) 372.2 361.9 231.4 244.8 129.3 138.3 42.1 

30 (15.0) 447.2 442.3 274.3 295.7 147.5 169.9 51.2 

Fully 
Debonded 

5 (2.5) 66.5 64.2 49.9 11.1 -4.3 82.3 18.6 

10 (5.0) 140.7 136.2 101.8 22.2 -2.0 93.4 42.2 

15 (7.5) 216.5 210.3 152.6 34.7 8.1 98.8 69.8 

20 (10.0) 289.8 287.6 202.5 50.3 22.9 93.0 101.8 

25 (12.5) 365.4 358.5 255.0 62.6 32.0 83.4 134.2 

30 (15.0) 441.8 440.7 305.8 81.2 51.2 74.8 176.2 

Semi-
debonded 

5 (2.5) 72.5 75.2 42.2 40.3 10.5 22.4 14.6 

10 (5.0) 148.7 147.6 88.6 70.7 17.5 56.5 27.3 

15 (7.5) 222.5 222.2 132.5 105.0 26.7 92.9 38.8 

20 (10.0) 297.9 292.3 176.1 136.3 34.3 132.6 49.0 

25 (12.5) 374.4 369.2 221.6 170.9 46.6 174.0 62.4 

30 (15.0) 450.6 445.2 263.6 199.4 54.1 207.7 75.8 

Debonded 5 (2.5) 73.6 77.4 47.8 40.3 7.0 20.7 13.1 

10 (5.0) 148.7 149.2 93.9 83.7 3.9 37.9 24.5 

15 (7.5) 223.4 223.1 139.4 127.0 5.7 55.6 37.7 

20 (10.0) 298.0 298.6 182.8 170.4 7.9 74.4 51.8 

25 (12.5) 374.6 372.9 228.8 212.4 11.4 90.1 66.0 

30 (15.0) 451.8 448.1 273.2 251.3 13.0 100.4 79.3 
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Appendix 15 –   Detailed Bone and Implant 
Modeling Process 

 

The following procedure outlines a process used to generate finite 

element models of bonded and debonded implants cemented in bone.    

 

Step 1: 3D Surface Development from a CT file 

A. Using the ‘Microview’ program (available at microview.sourceforge.net) convert the 

.vff files obtained from the microCT scanner to DICOM files. 

B. In Mimics, select File/Import Images and select the folder containing the DICOM 

files for one bone.  Press  and then , a window will appear 

requesting verification of image orientation in the orthoginal planes, as shown in 

Figure A.8.  If necessary right click on the orientation characters to modify their 

layout, otherwise select  to procede.  The plane layout will now be displayed 

in the main window in addition to a 3D representation of the bone.  The scroll 

wheel may be used to look at cross-sections throughout the bone and control-

rightclick used to manipulate the zoom. 
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Figure A.8: Verification of 3D image orientation. 
This window appears when importing DICOM files into Mimics 
to allow for selection of image orientation. 
 
 

Step 1.1: 3D Bone Surface Development 

A. To develop a 3D model of the bone, the image must first be sectioned through 

thresholding, which allows the user to develop a segmented object containing only 

those pixels within selected minimum and maximum threshold values.   

i. Click the thresholding icon ( ) in the top left corner of the segmentation 

module to begin.   

ii. A window will appear allowing user to vary the minimum and maximum 

thresholding values via a slider or by typing the desired values into the 

appropriate text boxes (Figure A.9).  As the threshold values are adjusted the 

selected pixels will be visualized as a colored mask.  

iii. When the desired values have been selected, click the ‘Fill holes’ and ‘Keep 

largest’ checkboxes to limit the voids in the developed mask and focus the 

mask on the largest pixel grouping.  
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iv. Click  to generate the mask, which will appear in the top right side of the 

Mimics window under the ‘Masks’ tab. 

  

 
Figure A.9: Thresholding 
The user may vary the minimum and maximum thresholding 
values via the slider or by typing the desired values into the 
appropriate text boxes.  The ‘Fill holes’ and ‘Keep largest’ check 
boxes to limit the voids in the developed mask and focus the 
mask on the largest pixel grouping respectively. 

 

B. From the new mask limit the length of the bone by using the Region Growing 

function.  This will enable the user to generate a new mask focused on a selected 

region of interest without extraneous proximal or distal data. 

i. Click the Region Growing icon ( ) and select the desired mask from the 

‘Source:’ dropdown list. 

ii. In the target dropdown list select <New Mask>, and uncheck both the ‘Leave 

Original Mask’ and ‘Multiple Layer’ checkboxes. 

iii. Select the most proximal and distal layers by clicking on the colored region in 

the axial view.  Select the ‘Multiple Layer’ checkbox and click on the colored 

region in any slice between the previously selected layers to fill the region in-

between.   
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iv. A new mask will now be available under the ‘Masks’ tab containing only the 

selected region of interest.  

C. The newly formed regional mask will contain large internal voids that need to be 

eliminated.  

i. In the ‘Masks’ tab select the regional mask and click ‘Calculate 3D from Masks’  

( ).  In the window that appears select a quality level of ‘Optimal‘, and press

.  This will develop a 3D image with the most favorable ratio between 

quality and development time. 

ii. A new object will now appear in the 3D visualization window and be available 

in the ‘3D Objects’ tab on the middle right side of the Mimics window. 

iii. Click the ‘Calculate polylines from 3D’ button ( ) and select the newly created 

3D image. 

iv. A series of polylines will be displayed in both the axial view and in the 3D 

visualization window. 

v. To isolate the outer contours and remove the inner polylines click ‘Cavity fill 

from polylines’ ( ).  Select the polylines to be filled in the ‘Fill cavity of:’ drop 

down list and enter <New Mask> in the ‘Using Mask:’ field.  Click  to 

complete this action and generate a filled mask. See Figure A.10 for an axial 

view of a filled mask and source polyline series.  
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Figure A.10: Axial view of a polyline series and mask 
The polyline series (purple) was used to generate the filled mask 
(blue) using ‘Cavity fill from polylines’.  

 

D. Excess tissue on the exterior of the bone and any remaining cavities must be filled 

manually using ‘Edit Masks’ ( ) or ‘Multiple Slice Edit’ ( ) to generate a solid 

mask.  Both functions allow the user to draw, erase, or threshold areas on the mask 

with a variable size and shape modification tool.  The ‘Edit Masks’ function allows 

the user to modify each image independently while the ‘Multiple Slice Edit’ tool 

allows users to carry modifications to neighbouring frames. 

E. Using the newly edited mask, polylines need to be created to represent the outer 

surface of the bone.   

i. Click ‘Calculate Polylines’ ( ) and select the fully edited mask, then click 

 to proceed.   

ii. The newly created polylines may contain instances where two or more 

contours are on the same plane.  To eliminate this error select ‘Polyline 

Growing’ ( ).  In the ‘From:’ drop down list enter the source polylines and 

enter ‘New Set’ in the ‘To:’ filed.  Check ‘Auto multi-select’ to allow 
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neighbouring frames containing only one contour to be automatically selected.  

In the axial window select the polylines on each plane until all of the desired 

contours are selected. 

F. To generate a 3D surface for exporting the polylines must be converted into a 

surface CAD Object.   

i. Right click on the desired polyline set and select ‘Fit Surface’.  In the window 

that appears the u and v-parameters may be adjusted to modify the splines in 

generating the surface.  Where the higher the u and v-parameters the better 

the fit, but also the greater the errors at the extremities. 

ii. After selecting  , the new surface will appear in the middle-right side of 

the Mimics window under the ‘CAD Objects’ tab.  Right click on the surface, 

select ‘Iges Export…’ ( ) and  the file to the desired computer folder, 

before clicking  to export. 

Step 1.2: 3D Cement Surface Development 

A. To develop a 3D model of the cement the image must first be sectioned through 

thresholding.  To do this follow the actions outlines in Step 1.1 (A), but do not select 

the ‘Fill holes’ and ‘Keep largest’ checkboxes. 

B. The generated mask will contain excess pixels exterior to the bone.  These may be 

removed using ‘Edit Masks’ ( ) and ‘Multiple Slice Edit’ ( ) thereby restricting 

the mask to the pixels in the internal channel.   
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C. To complete the generation of a 3D cement surface repeat Step 1.1 (C-F) for the 

internal canal mask. 

 

Step 2: 3D Model Development from 3D Surface 

A. The .igs files exported from Mimics are open ended hollow shells; however solidity 

may be added to the 3D surfaces in Abaqus®.   

i. To import the file, open Abaqus®, click file/import/part and select the bone .igs 

file. Ctrl-Alt and mouse movement may be used to rotate the bone and the 

scroll wheel used to manipulate the zoom. 

ii. The ends of the part are currently open.  To close these faces select 

Tools/Geometry Edit/Face/Cover Edges in the ‘Part’ module and select the 

distal and proximal edges on the bone (Figure A.11). 

iii. To fill the hollow part, select Shape/Solid/Form Shell, select the distal surface of 

the bone and fill inwards.  The bone will now be solid.   

iv. Repeat this process with the cement IGS file to generate to generate a solid 

cement body. 

v. Repeat step (i) to import the implant into the model. 
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Figure A.11: Editing the geometry of the imported bone 
IGS file 
Editing was performed on a surface in order to close the distal 
end of the part.  The selected surface is highlighted in orange.  
 

 

B. All of the parts are now available in the model and may be fit together to represent 

the experimental setup.  As the cement and bone are both oriented as they were 

experimentally they may be easily merged in the ‘Assembly’ module. 

i. Import the parts into the same instance by selecting Instance/Create and 

selecting the parts as dependents. 

ii. To join the cement and bone select Instance/Merge/Cut Instances and with the 

parts selected opt to ‘retain boundaries’ so as not to merge the cement and 

bone and ‘suppress original’ to keep only the newly created cement-bone part.   

iii. To reduce potential errors at the extremities due to the original polyline fitting 

during shell formation in Mimics, remove the distal 0.4 mm of the assembly 

using the ‘Create Datum Plane: 3 Points’ ( ), ‘Create Datum Plane: Offset 

from Plane’ ( ), and ‘Create Cut: Extrude’ ( ) functions. 
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C. The orientation of the implant will vary from that of the bone-cement setup. 

However, it may be oriented in the bone by aligning the distal surface of the bone 

with the proximal surface of the implant head, as well as, the boundaries and 

alignment of the cement canal with the positioning and alignment of the implant 

stem.  Multiple functions are used in this process, in particular ‘Create Datum Plane: 

3 Points’ ( ), ‘Create Datum Point: Enter Coordinates’ ( ) in the ‘Part’ module, as 

well as, ‘Translate Instance’ ( ), ‘Translate To’ ( ), and ‘Rotate Instance’ ( ) in 

the ‘Assembly’ module are all necessary for this task.  

NOTE: It is critical that the implant is adapted to match the bone’s orientation.  At 

no point in this process may the bone’s position be altered. 

D. Once satisfied with the implant orientation combine the implant and cement using 

Instance/Merge/Cut Instances and with the parts selected opt to ‘retain 

boundaries’ so as not to merge the implant and cement and ‘suppress original’ to 

keep only the newly created implant-cement-bone part.   

E. To simplify the identification of areas of strain monitoring and the application of 

material properties at this point it is helpful to separate the assembly into two 

parts, one containing the bone and the other the implant and cement.  This may be 

accomplished by generating two copies of the complete part and in the ‘Part’ 

module removing the desired cells using Tools/Geometry Edit…/Face/Remove. 
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Step 3: Identifying Areas of Strain Monitoring in 3D Model 

Step 3.1: External Gauges 

A. During experimental testing MicroScribe data was collected of the external gauge 

locations, and a coordinate system developed based on three identifiable points 

along a notch in the PVC cylinder used to pot the bone.  These same coordinate 

points were identified on the CT images in Mimics (Figure A.12). 

i. To find points in Mimics under the ‘CAD Objects’ tab click ‘New” (

)/point/draw and using the stylus that appears place a point in the desired 

location.  Coordinates may be viewed by selecting the point in the ‘CAD 

Objects’ tab and selecting ‘Properties’ ( ) 

 

 

Figure A.12: Axial view of the coordinate points selected 
in Mimics 
The three coordinate points (red) were based on a linear 
marking placed on the PVC potting fixture of specimen 09-
12057R prior to CT’ing. 

 

B. Using the matrix equations outlined in Equation 9 and Equation 10 the 

MicroScribed points on the external gauges were converted to the CT coordinate 
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system and plotted on the Abaqus® model using the ‘Create Datum Point: Enter 

Coordinates’ ( ) function. 

 

[      
           ][    

    ]   [    
           ]  Equation 9 

[             
  ][                 

           ]   [                 
  ] Equation 10 

 

Where: [      
           ] - Transformation matrix of the bone coordinates in 

relation to the MicroScribe 

[    
    ] - Transformation matrix of the CT coordinates in 

relation to the bone 

[    
           ] - Transformation matrix of the CT coordinates in 

relation to the MicroScribe 

 [             
  ] - Transformation matrix of the MicroScribe coordinates 

in relation to the CT 

 [                 
           ] - Coordinates of the external gauges with respect to the 

MicroScribe  

 [                 
  ] - Coordinates of the external gauges with respect to the 

CT 

 

C. Using the previously formed points and the ‘Partition Face: Sketch’ ( ) function a 

circular section (2 mm diameter) was portioned from the surface of the bone at 

each gauge location.  The pixels within the circular gauge sections will be averaged 

to determine the external strain at those locations.  The completed bone post 

sectioning is shown in Figure A.13. 
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Figure A.13: Bone model segmented to denote external 
gauge locations.   
The gauge points (yellow circles) and datum planes (yellow hash 
lines) upon which the segmentation is based are also visible. 

 

Step 3.2: Internal Gauges 

A. Post fixation of the internal gauges on the implant MicroScribe data was collected 

of the internal gauge locations, and a coordinate system developed based on four 

identifiable points on the implant head. These same coordinate points were 

identified on the implant in Abaqus®, as shown in Figure A.14. 

 

 
Figure A.14: Axial view of the implant coordinate points  
The three coordinate points (red) were selected experimentally 
with the MicroScribe and in Abaqus® to form the implant 
coordinate system.  
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B. Using the matrix equations outlined in Equation 11 and Equation 12 the internal 

gauges MicroScribed points were converted to the Abacus coordinate system and 

plotted on the model using the ‘Create Datum Point: Enter Coordinates’ ( ) 

function. 

 

[             
       

][                 
           ]   [                 

       
]  Equation 11 

[         
      ] [                 

       
]   [                 

      ] Equation 12 

 

Where: [             
       

] - Transformation matrix of the implant coordinates in 
relation to the MicroScribe 

[                 
           ] - Coordinates of the internal gauges with respect to the 

MicroScribe 

[                 
       

] - Coordinates of the internal gauges with respect to the 
implant 

 [         
      ] - Transformation matrix of the implant coordinates in 

relation to Abacus 

 [                 
      ] - Coordinates of the internal gauges with respect to 

Abacus 

 

C. Using the previously formed points and the ‘Create Solid: Extrude’ ( ) function a 

circular section (2 mm diameter) was portioned from the gauge level to the surface 

of the cement at each gauge location.  The pixels on the internal surface of the 

gauge sections will be averaged to determine the internal strain at that location.  

The cement complete with sectioning is shown in Figure A.15. 
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Figure A.15: Implant and cement model segmented to 
denote gauge locations.   
On the implant and cement model the gauges (denoted as black 
circles) within the cement and gauge points (yellow circles) 
upon which the gauge locations are based are visible. 

 

Step 4: Generating a Tetrahedral Solid Mesh 

A tetrahedral solid mesh was selected and applied with an approximate global size of 

0.75 (0.50 for convergence study) and local size of 0.30 (0.20 for convergence study) at 

the gauge locations on both the bone and implant-cement models. 

i. In the ‘Mesh’ module and using ‘Assign Mesh controls’ ( ), select all parts and 

apply a ‘Tet’ mesh.  As the only meshing technique compatible with tetrahedral 

elements is ‘Free’ the part will turn pink, as shown in Figure A.16(B).  Select the 

default algorithm and to complete the mesh control application. 

ii. Apply an approximate global seed size of 0.75, with a maximum deviation 

factor in curvature control and minimum size control by fraction of global size 

of 0.10, using the ‘Seed Part’ ( ) function. 

iii. To the gauge circles use the ‘Seed Edges’ ( ) function to apply a local seed 

size of 0.30. 

iv. To reduce potential errors, mesh segments individually using the ‘Mesh 

Regions’ ( ) function, and use the highlight function in ‘Verify Mesh’ ( ) to 
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confirm that there are no errors or warnings before proceeding.  The fully 

meshed cement and implant is shown in Figure A.16(C). 

v. Should errors or warnings appear several options are available to aid in their 

removal.  

 To manually edit any errors select the ‘Edit Mesh’ ( ) function and use the 

Node/Drag feature to manually modify the problematic node. 

 Errors resulting from excessively segmented lines or regions may be 

eliminated by removing the mesh and using ‘Virtual Topology: Combine 

Edges’ ( ) or ‘Virtual Topology: Combine Faces’ ( ) respectively to 

smooth the edges.  The mesh may then be reapplied. 

 Segmentation of the region may also be utilized to reduce the area to be 

meshed on each pass thereby reducing errors.  To do this remove the mesh 

and create a plane perpendicular to the part using ‘Create Datum Plane: 3 

Points’ ( ).  Create additional planes using ‘Create Datum Plane: Offset 

from Plane’ ( ), use ‘Partition Cell: Define Cutting Plane’ ( ) to Segment 

the bone at each datum plane, and remesh using the new smaller segments. 

NOTE: To reduce meshing errors the distal tip of the implant was excluded 

from the mesh. 
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Figure A.16: Implant and cement model  
Implant and cement (A) segmented, (B) with mesh controls 
applied and edges seeded, and (C) meshed.  

 

Step 6: Assign Material Properties 

Step 6.1: Homogeneous 

A. To generate the materials for the stem and cement in the ‘Property’ module select 

the ‘Material Manager’ ( ) and click .  In the window that appears name the 

material and assign relivent material properties. 

B. Use the ‘Assign Section’ ( ) feature to select the cement and implant individually 

and assign the appropriate material properties. 

  

A B C 
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Step 6.2: Inhomogeneous 

A. Export the meshed bone from Abaqus® as an .inp file. 

i. Copy the Model containing the meshed bone and implant-cement.  In the 

copied model delete all but the final meshed bone part.  Ensure that the 

assembly has been created with an independent bone instance.  

ii. In the ‘Job’ module select the ‘Job Manager’ ( ) and click .  Select the 

newly created model, name the job and then click  and  in the 

windows that appear. 

vi. Right click on the newly created job and select ‘Write Input’. 

B. Use the ‘MapFE’ program to assign material properties to the bone model. 

i. Specify the ‘Number of Materials’ as the number of material groupings in which 

the range of elastic moduli (E) determined for the bone may be divided into.  

(Selection of 400 materials for an ulna is recommended.) 

ii. Using the browse buttons specify the path to the exported INP bone file in the 

‘INP Input’ field, the original .vff files in the ‘VFF Input’ filed, and desired output 

location in the ‘INP Output’ filed.  

iii. If available select the ‘Material Definition File:’ from the desktop.  Otherwise 

enter the appropriate values in the associated fields. 

 Calibrate - Specify the calibration units to convert Hounsfield units to ash 

density, using two points to define a linear relationship. 
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 Scale - State the conversion factor from ash to apparent density. 

 E-relate - Provide the density-modulus relationship. 

 V-relate - Identify Poisson’s ratio. 

iv. Select ‘Start’ to begin the program. 

C. Import the file to Abaqus® as a second-order tetrahedral orphan mesh by clicking 

File/Import/Model… and selecting the new .inp file.  Copy the bone part into the 

module containing the implant and cement part. 

 

Step 5: Apply Node Sets to Areas of Desired Strain Measurement 

To record strains within a select area a set may be created to isolate strains within a 

given region.  As such, a unique set is required for each of the internal and external 

strain gauges. 

i. In the bone part, right click on the ‘Sets’ list item and select Create…/Element, 

name the set and select . 

ii. Using the ‘Select the Entity Closest to the Screen’ ( ), ‘Select from Exterior 

Entities’ ( ), ‘Use Circular Drag Shape’ ( ) and ‘Select Entities Inside and 

Crossing the Drag Shape’ ( ) tools, select the surface elements within the 

previously sectioned circular gauge areas.  The completed node sets for the 

internal gauges is shown in Figure A.17. 
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iii. Repeat this process for the gauges within the cement using ‘Select from All 

Entities’ ( ), and ‘Use Rectangular Drag Shape’ ( ) to pick the elements on 

the circular interior surface of the sectioned gauge area.  

 

 
Figure A.17: Completed node set for both internal gauge 
locations 
The circular node sets are shown in red and, though they 
appear to be located on the cement surface, the nodes selected 
are within the body of the cement. 

 

Step 7: Generate Bonded/Debonded Model 

At this point the cement-implant and bone parts may be combined to form either the 

bonded or debonded model.  Prior to development any instances in the assembly of the 

current parts model must be removed and two copies of the model generated.  These 

copies will become the bonded and debonded models.  

Step 7.1: Bonded 

In the ‘Assembly’ module click ‘Instance Part’ ( ) and select both the implant-cement 

and bone parts.  An assembly will now be generated with both components 

Step 7.2: Debonded 

A. Isolate both the implant and the cement.  This may be accomplished by generating 

two copies of the complete part and in the ‘Part’ module removing the desired cells 
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using Tools/Geometry Edit…/Face/Remove.  If the mesh was removed in the 

process of completing this action it will need to be reapplied. 

B. In the ‘Assembly’ module click ‘Instance Part’ ( ) and select both the implant, 

cement, and bone parts.  An assembly will now be generated with all three 

components 

 

Step 8: Apply Load, Boundary Conditions, Constraints and Interactions 

Step 8.1: Loading/Boundary Conditions and Constrains 

This section will need to be completed for both the bonded and debonded models. 

A. In the implant part generate an applied load at the distal end of the implant 

i. In the bone part right click on the ‘Sets’ list item and select Create…/Node, 

name the set and click .  Select the nodes by ‘Feature Edge’ and record 

the number of nodes selected. 

ii. In the ‘Part’ module use ‘Create Datum CSYS: 3 Points’ ( ) to select three 

points on the loading area and generate a loading coordinate system. 

iii. In the ‘Load’ module select ‘Create Load’ ( ), chose ‘Concentrated Force’ and 

use the previously generated loading set to select the location of the load.  

Select the loading coordinate system enter the force in the appropriate 

direction.  

NOTE: The force will be applied per node. 
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B. Generate a boundary condition on the proximal surface of the bone. 

i. Right click on the ‘Sets’ list item and select Create…/Node, name the set and 

click .  Select the nodes ‘by angle’ and select the proximal face of the 

bone. 

ii. In the ‘Load’ module select ‘Create Boundary Condition’ ( ), chose 

‘Symmetry/Antisymmetry/Encastre’ and use the previously generated 

boundary condition set to select the proximal end of the bone as a ‘pinned’ 

boundary condition.   

C. Constrain the external cement to the internal bone surface.  This functionality is 

available in the ‘Interaction’ module.  Use ‘Create Constraint’ ( ) to create a ‘Tie’ 

constraint, and select both master and slave surfaces.  The slave surface should be 

the one with a finer mesh, or if the meshes are approximately equal the surface 

with a smaller elastic modulus. 

Step 8.2: Interface Interactions  

As the implant and cement are connected in the bonded scenario this section is only 

required for the debonded model. 

A. In the ‘Interaction’ module, select ‘Create Interaction Property’ ( ), name the 

property, and pick ‘Contact’. 

B. In the window that opens select Mechanical/Tangential Behavior. 

C. Select the desired ‘Friction formulation’, enter the appropriate ‘Friction Coeff’, and 

adjust the other properties as required.  When finished click   . 
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D. Select the ‘Interactions’ ( ) icon, name the interaction and pick the desired type.  

For ‘Penalty’ interactions ‘Surface-to-surface contact’ is recommended.  

E. Select the desired master and slave surfaces from the model.  From the ‘Contact 

interaction property:’ dropdown list chose the previously created interaction 

property.  When finished select  . 

 

Step 9: Create and Run Job 

A. In the ‘Job’ module click ‘Create Job’ ( ) and select the desired model.  In the ‘Edit 

Job’ window enter the job details, such as, the directory in which to store data, the 

amount memory allocation, and number of processors to be used.   

NOTE: Using additional processors also uses an equal number of additional tokens 

on the license. 

B. To check for errors and warnings in the model prior to running the full analysis, 

right click on the job name and select ‘Data Check’. 

C. Once satisfied with the functionality of the model, right click on the job and select 

‘Submit’.  

D. Once the job has completed the results may be viewed by right clicking on the job 

and selecting ‘Results’.  Use ‘Plot Contours on Deformed Shape’ ( ) to view 

deformations and strain gradients within the model.  Use ‘Probe Values ( ) to 

view stress or strain gradients in a particular region or at an element face or node.  

The probe values window is shown in Figure A.18.   
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Figure A.18: Probe values input window 
Selecting the icon in the green rectangle allows modification of 
field output variables, while any modifications made to the 
components within the orange box will alter the areas selected 
for value identification. 
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