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Abstract 

Human equilibrative nucleoside transporter 1 (hENT1) is the main mediator of bi-

directional nucleoside flux into and out of cells and is found ubiquitously in all tissues. 

Inhibitor and substrate interactions with ENT1 are known to be affected by cysteine-

modifying reagents. Our aim was to investigate the importance of cysteine residues in 

hENT1 function and identify which residues were sensitive to thiol modification for 

further application of cysteine scanning mutagenesis on extracellular loop 5. Transporter 

function was assessed by the binding of [3H] nitrobenzylmercaptopurine riboside 

(NBMPR) and the cellular uptake of [3H]2-chloroadenosine. Treatment of hENT1 with the 

neutral sulfhydryl-modifier methyl methanethiosulfonate (MMTS) enhanced [3H]NBMPR 

binding but decreased [3H]2-chloroadenosine uptake. The membrane impermeable 

positively charged reagent [2-(trimethylammonium)ethyl] methane-thiosulfonate 

(MTSET), but not the negatively charged reagent sodium-(2-sulfonatoethyl)-

methanethiosulfonate (MTSES), inhibited [3H]NBMPR binding and enhanced [3H]2-

chloroadenosine uptake. Furthermore, all three sulfhydryl modifiers decreased 

[3H]NBMPR binding when allowed cytoplasmic access. Site-directed mutagenesis on 

Cys222 eliminated the effect of MMTS on NBMPR binding. Mutation of Cys378 abolished 

the effect of MTSET on NMBPR binding and indicated that Cys378 is an extracellularly-

located residue. Mutation of Cys414 led to an enhancement of the ability of MTSET to 

inhibit NBMPR binding and this effect was eliminated by co-mutation of Cys378. 

Mutation of Cys416 abolished the effect of charged sulfhydryl reagents to inhibit NBMPR 

binding in isolated membranes. Additionally, Cys416 to serine also eliminated transport 

function supporting a conformational linkage between the fifth intracellular loop and 

the NBMPR binding domain, and implicates this region in the translocation function of 

hENT1. To further confirm the importance of this region, extracellular loop 5 (EL5) was 

examined by cysteine scanning mutagenesis as residues in EL5 were individually 

mutated to cysteines. Mutation of N379, F390, E391, H392, and D393 to cysteine 

abolished uptake of [3H]2-chloroadenosine indicating their role in the transport 

mechanism of hENT1. Treatment of EL5 mutants with MTSET inhibited NBMPR binding 
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in all but the V389C mutant. Co-incubation of NBMPR with MTSET was able to protect 

N379C from thiol modification while co-incubation of adenosine with MTSET protected 

R384C, Y385C, and L386C from MTSET effects. Our results indicate that adenosine may 

bind in close vicinity or in direct contact to these residues to prevent MTSET to attain 

access.  
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Chapter 1: Introduction 

1.1 Nucleosides 

Nucleosides are endogenous purine and pyrimidine heterocyclic nitrogenous bases 

attached to a ribose or 2-deoxyribose sugar. The main naturally occurring nucleosides 

include adenosine, guanosine and inosine (purines) and thymidine, uridine, and cytidine 

(pyrimidines) (Figure 1.1) [1, 2]. The primary functions of nucleosides are to form the 

base structural unit of nucleotides and nucleic acids. Once formed, nucleotides are then 

involved in multiple events such as DNA/RNA formation (NTP, dNTP), energy supply 

(ATP/GTP), and signaling pathways (cAMP, cGMP). The main source of nucleoside 

formation is through a series of resourceful enzymatic cascades involving the breakdown 

of nucleotides. These pathways are performed by 5’ nucleotidases found intracellularly 

and by ectonucleotide hydrolyzing enzymes such as triphosphate diphosphohydrolases 

(E-NTPDase), pyrophosphatase/phosphodiesterases (E-NPP), ecto-5’nucleotidase (CD73) 

and alkaline phosphatases (AP) located extracellularly on plasma membranes [3-7] 

(Figure 1.2). In this cyclical manner, there is a continuous supply of nucleosides and 

nucleotides under basal conditions. The generation of these nucleoside pools can have 

an important impact on their secondary function as signaling molecules, specifically as 

purinergic agonists. For example, adenosine is a ubiquitous signaling molecule in 

purinergic pathways by binding to its purinergic receptors (P1) also known as adenosine 

receptors that are widely distributed throughout the body [8-10]. These P1 receptors are 

a class of G protein-coupled receptors further divided into 4 subtypes (A1, A2a, A2b, and 

A3) [11]. The four adenosine receptors subtypes differ in their molecular structure, 

tissue distribution, and pharmacological profile and mediate diverse biological effects 

[12-16]. 

For instance, the A1 receptor subtype is found largely in the central nervous 

system (CNS) particularly in the cerebral cortex, hippocampus, cerebellum, and spinal 

cord. When adenosine binds to pre and postsynaptic A1 receptors, it inhibits 
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Figure 1.1. Chemical structures of physiological nucleosides  

Adenosine, inosine and guanosine are purine nucleosides while cytidine, uridine, and 
thymidine are pyrimidine nucleosides. 
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Figure 1.2. Schematic pathways of adenosine breakdown and formation 

Adenosine is formed from the breakdown of adenosine triphosphate (ATP), adenosine 
diphosphate (ADP), and adenosine monophosphate (AMP) by enzymatic activity of 
alkaline phosphatase (AP), ecto 5‘ nucleotidase (Ecto-5’-NT), ecto-nucleoside 
triphosphate diphosphohydrolase (E-NTPDase), or ecto-nucleotide pyrophosphatase/  
phosphodiesterase (E-NPP).
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neurotransmitter release to cause a depression of neuronal activity. This is especially 

important in times of hypoxia and ischemia because adenosine which is released in high 

doses during times of stress can act as a neuroprotective agent to reduce neuronal 

activity and oxygen consumption [17-19]. Adenosine receptors expressed in the 

cardiovascular system can also elicit responses such as cardiac depression and 

vasodilation when activated by adenosine. A1 receptor activation in the sinoatrial and 

atrioventicular nodes can result in bradycardia and heart block to slow down the heart 

rate; this event has been applied to treat supraventricular tachycardia.  Alternatively, 

adenosine binding to the A2a receptor subtype located on vascular smooth muscles of 

coronary arteries can elicit a relaxation response by activation of adenylate cyclase [9, 

20].  Thus it is clear that endogenous adenosine plays an important role in human 

physiology and can impact a wide variety of processes including cardiovascular function, 

neurotransmission, inflammatory reactions, and immune responses.  

 

1.2 Nucleoside analogues 

Given the importance of nucleosides as metabolic precursors to biologically important 

molecules, their properties have been capitalized upon for the treatment of many 

diseases by the design of nucleoside analogues. Cytotoxic nucleoside analogues are used 

as antimetabolites that interfere with the synthesis of nucleic acids. These agents can 

exert cytotoxicity either by being incorporated into and altering the DNA and RNA 

macromolecules themselves, or by interfering with various enzymes involved in 

synthesis of nucleic acids, or even by modifying the metabolism of physiological 

nucleosides [21-26]. In this manner, nucleoside analogues can be used as antiviral, 

chemotherapeutic, and immunosuppressive agents. Currently there are several 

analogues that are clinically used for their anticancer properties (Figure 1.3). Specifically, 

cladribine and fludarabine are two purine analogues used for their treatment of low-

grade malignant disorders of the blood [27, 28]. Pyrimidine analogues, such as 

cytarabine and gemcitabine, are extensively used in the treatment of acute leukaemia; 

various solid tumours and some hematological malignant diseases [29-33]. Additionally, 
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the fluoropyrimidines 5-fluorouracil and capecitabine have shown to have activity 

against colorectal and breast cancers [34-37].  

Cytotoxic nucleosides are also used in anti-viral therapy against various highly 

active viral diseases such as acquired immunodeficiency syndrome (AIDS) and diseases 

caused by the herpes simplex virus (HSV). Anti-viral nucleoside analogues include 2′, 3′-

dideoxyinosine (ddI, didanosine), 3′-azido-3′-deoxythymidine (AZT, zidovudine, Retrovir), 

(-)-β-L-2′, 3′-dideoxy-3′-thiacytidine (3TC, lamivudine), and (-)-β-L-2′, 3′-dideoxy-3′-thia-

5-fluoro-cytidine (L-FTC, emtricitabine) (Figure 1.4). Once again, they produce their 

therapeutic effects by becoming phosphorylated intracellularly and inhibiting viral DNA 

synthesis or by involving mitochondrial toxicity. However, all of these anti-viral agents 

and the anti-cancer agents described above utilize membrane transporters to gain 

access to target cells for further activation by intracellular kinases and cytosolic 

metabolic reactions in forming their active phosphate derivatives. 

 

1.3 Nucleoside transporters  

Given the importance of nucleosides and their analogues in their roles in extracellular 

signaling and intracellular nucleotide generation, the ability of cells to effectively 

accumulate these molecules relies on their efficient movement across membranes. 

Nucleosides and their analogues are hydrophilic due to the hydrogen bonding nature of 

the hydroxyl groups found on the sugar moiety and consequently, the presence of 

specialized transporters are necessary to effectively facilitate their import. Additionally, 

cells that lack de novo nucleoside synthesis capabilities such as enterocytes, bone 

marrow cells, and certain brain cells, rely heavily on these nucleoside transporters to 

salvage nucleosides from the extracellular milieu [38-40]. Nucleoside transporters are 

characterized into two separate gene families that differ in their structure and transport 

mechanism, and are termed concentrative nucleoside transporters (CNT) and 

equilibrative nucleoside transporters (ENT) [41-43]. 
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Figure 1.3. Chemical structures of anti-cancer cytotoxic nucleoside analogues 

Cladribine, cytarabine, fludarabine, capecitabine, and gemcitabine are nucleoside 
analogues used in the treatment of certain cancers.
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Figure 1.4. Chemical structures of antiviral cytotoxic nucleoside analogues 

Emtricitabine, lamivudine, zidovidune, and didianosine are nucleoside analogues used in 
the treatment of multiple viral infections.  
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The concentrative nucleoside transporters (gene SLC28) are sodium-dependent 

symporters that move nucleosides unidirectionally into cells in an active energy-costly 

process [44, 45]. CNTs are generally found in apical membranes of specialized epithelial 

cells of the intestine and kidney and can play a major role in active absorption or 

reabsorption processes. There are three sub-families of CNTs that have been cloned, 

CNT1, CNT2 and CNT3, that differ in their substrate selectivity and sodium:nucleoside 

stoichiometry [46, 47]. CNT1 selectively transports pyrimidine nucleosides and 

adenosine while CNT2 transports purines and uridine. CNT3 transports both purine and 

pyrimidine nucleosides and functions by translocating two sodium molecules per 

nucleoside. These three concentrative nucleoside transporters are plasma membrane 

transporters and share a general topology based on 13 putative transmembrane 

domains, a long intracellular N-terminus, and an extracellular C-terminus [48].  

 

The equilibrative nucleoside transporters (gene SLC29) are sodium-independent 

facilitated diffusers that have been confirmed to transport nucleosides bi-directionally 

down concentration gradients [49]. These transporters are found in most if not all cell 

types, and can transport a wide variety of purines and pyrimidines and in some cases 

nucleobases. There are four subtypes of ENTs (ENT1-4) that have been cloned to date 

and differ in their substrate selectivities and inhibitor sensitivities [43, 50] (Table 1.1). 

ENT1 and ENT2 were the first transporters to be characterized by their differential 

inhibition by nitrobenzylthioinosine (NBMPR), ENT1 being sensitive to NBMPR at a nM 

range [51]. ENT2, insensitive to NBMPR, transports nucleosides as well as nucleobases 

such as hypoxanthine and is found predominantly in skeletal muscle, although its 

expression has been detected in brain, heart, placenta, and kidney. ENT3 and ENT4 have 

recently been characterized as members of the ENT family of transporters that are 

active in acidic pH. ENT3 is found intracellularly and contains an endosomal/lysosomal 

targeting motif and is shown to have elevated expression in human placenta [52, 53]. 

ENT4 found abundantly in heart and brain is also termed plasma membrane monoamine 

transporter (PMAT) because it efficiently transports serotonin and MPP+ at neutral pH 
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while only transporting adenosine at acidic pH [54]. All four equilibrative nucleoside 

transporters transport adenosine and therefore can influence the many physiological 

processes described above such as cardiovascular tone and neurotransmission. 

 

1.4 ENT1 subtype 

The ENT1 subtype has been suggested to be the main mediator of adenosine flux and 

cytotoxic accumulation of nucleoside analogues, as inhibition of ENT1 has been proven 

to increase adenosine levels and adenosine signaling in cardiovascular tissues, CNS, and 

kidney [55-57]. Since the ENT1 subtype is highly and widely expressed and mediates the 

entry of cytotoxic nucleoside analogues, it is not surprising that the loss of ENT1 

expression has been correlated to drug resistance in in vitro models of malignant cancer 

cells. Additionally, studies with the ENT1-knock out mouse (ENT1-KO) have found higher 

levels of circulating adenosine and ribavirin (a nucleoside drug) compared to their wild-

type counterparts suggesting that ENT1 is a major contributor to extracellular adenosine 

concentrations and uptake of nucleoside drugs [58, 59]. The ENT1 knock-out mouse was 

first created by Choi et al. (2004) through deletion at exons 2-4 of the protein-coding 

region of the ENT1 gene. The ENT1 knock-out mice in those studies that were less than 4 

months of age, reproduced normally, were viable, showed apparent normal mortality 

rates, and had normal brain anatomy [60]. However, these mice had a lower body 

weight (8.7% less than wild-type littermates), and were found to show a slower rate of 

intoxication and increased preference for ethanol consumption. This enhancement for 

ethanol consumption was associated with increased levels of cAMP response element 

binding protein (pCREB) in the striatum through an increase in glutamate signaling. 

Furthermore, when examining the behaviour of the ENT1-KO mice, it was shown that 

they showed less of an anxiety phenotype when compared to their wild-type 

counterparts. They also showed a lowered natural aversion to the centre of an open 

field indicating that they showed less anxiety; however, the locomotor activity was 

similar to that of wild-type [61]. When wild-type mice were injected with NBMPR 
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Table 1.1.  Characteristics of the Equilibrative Nucleoside Transporter (ENT) Family 

members 
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(specific ENT1 inhibitor) in the amygdala, they also showed reduced anxiety indicating 

that the behavioural effects in the ENT1-KO mice were due to a loss of ENT1 and not 

through developmental changes. Additionally, phenotypic changes have been recently 

identified in older ENT1-KO mice (12 months of age) in our lab. Current studies from our 

lab (unpublished work from Bone and Warraich et al.) have found ENT1-null mice 

acquired spinal stiffness, hind limb dysfunction and eventual paralysis by 12 months of 

age. Upon further examination, it was found that the mice showed signs of ectopic 

mineralization of paraspinal tissues in the cervical-thoracic region (as early as 2 months 

of age) forming lesions that contained high amounts of calcium and phosphorus. These 

unpublished studies by Bone and Warraich et al., are the first to identify ENT1 as playing 

a role in regulating the calcification of soft tissues.  

The cardiovascular system has also been studied in the ENT1-null mouse, as its 

substrate adenosine is a significant contributor to vascular tone and heart function. 

Initial examination of the ENT1-null mouse found it to be cardioprotected such that 

myocardial infarcts were significantly smaller after subjected to ischemia (coronary 

occlusion for 30 min and reperfusion for 2h) [55]. Cardiomyocytes isolated from these 

mice showed no significant differences in gene expression profiles of the other ENT 

subtypes or adenosine receptors indicating that there was no compensation of the loss 

of ENT1 in these cells [58]. However, when examining isolated microvascular endothelial 

cells from the ENT1-KO mice, there was a 2 fold increase in expression of the A2a 

receptor and adenosine deaminase enzyme was observed [62]. Given that there is an 

increase in circulating adenosine in KO mice, increased expression of these genes may 

reflect compensatory mechanisms in the animal to handle the excess adenosine.  

The expression of ENT1 itself is still under investigation with a large body of 

evidence opbtained from studies using cultured human cells indicating that hENT1 

expression was coordinated with the cell cycle [63-66]. Expression of hENT1 showed a 

doubling between the G1 and G2-M phases indicating that cellular deoxynucleotide 

levels could play a role in cell cycle regulation by coordinating transporter expression. 

Additionally, studies in HeLa and MCF-7 cells showed that ENT1 expression responded to 
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phorbol ester treatment by activation of protein kinase C (PKC) isoforms [67-70]. The 

specific targets on mouse ENT1 (mENT1) for PKC-mediated phosphorylation have been 

shown to involve serines 279 and 286 and threonine 274 located in the large 

intracellular loop betweetn transmembrane 6 and 7 [71]. Alternatively, hENT1 also 

contains casein kinase II (CK2) consensus sites which are known to play a role in 

regulating proliferation [72, 73]. Inhibition of CK2 phosphorylation was shown to 

increase hENT1 activity and NBMPR binding in human osteosarcoma cells [74]. Our own 

lab has demonstrated that the expression of a catalytically inactive CKII subunit which 

inhibits endogenous CKII activity caused an enhancement in hENT1-specific NBMPR 

binding and transport of the substrate 2-chloroadenosine in U2OS cells [75].  Taken 

together, these data have demonstrated that ENT1 is a phosphoprotein that can be 

directly phosphorylated at several sites which shows that it is involved in a complex 

array of pathways in its regulation. 

Besides post-translational regulation by phosphorylation, pre-transcriptional 

events also regulate hENT1 expression. The promoter sequence of hENT1 (involving one 

transcriptional initiation site 58 base pairs downstream of the TATA box) has been 

shown to contain consensus sites for ERE, MAZ, Sp1, AP-2, and CREB transcription 

factors [76]. Studies investigating hENT1 expression and activity have shown that human 

umbilical vein endothelial cells (HUVEC) isolated from gestational diabetic pregnancies 

showed a decrease in hENT1 expression [77]. A second study found hENT1 expression 

was reduced in HUVECs when exposed to hyperglycemic conditions by the engagement 

of nitric oxide, MAP kinase, and PKC. Incubation with N(G)-nitro-L-arginine methyl ester 

(L-NAME, nitric oxide synthase inhibitor), PD-98059 (MEK1/2 inhibitor), or calphostin C 

(PKC inhibitor) prevented hENT1 downregulation in the hyperglycemic environment 

[78]. Additionally, when measuring Sp1 protein levels, they found Sp1 expression 

increased when hENT1 promoter activity decreased, suggesting that Sp1 may be a 

negative transcriptional factor for hENT1 [79]. These studies link the importance of 

hENT1 regulation in certain pathologies such as gestational diabetes where the 
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adenosine-modulated placenta to fetus blood flux is damaged and loss of hENT1 causes 

a loss of the endothelium ability to remove adenosine from the extracellular space.  

Furthermore, ENTs are also predominantly expressed in endothelial cells of the 

cardiovascular system with minimal contribution from the CNTs [80]. In human 

microvascular endothelial cells (HMEC-1), it was found that, under hypoxic conditions, 

ENT1 expression was downregulated in a HIF-1 (hypoxia inducible factor 1)-dependent 

manner [81]. These findings indicate that an innate protective mechanism is present 

that serves to enhance adenosine signaling in times of cellular stress by decreasing 

uptake of nucleosides into cells by ENT1.  

1.4.1 Characterization of ENT1 

The NBMPR-sensitive transporter ENT1 was first purified from human erythrocytes 

which allowed for the cloning of hENT1 from human placental cDNA [82]. Previous 

studies examining cells that transported nucleosides relied on the use of radioligand 

binding and uptake assays. These initial studies on ENT1 activity found that 

nitrobenzylthioinosine bound to high-affinity sites on human and sheep erythrocyte 

membranes and on rat, mouse, guinea pig, and dog cortical membranes in a saturable 

manner (Kd ~ 0.1-1 nM) [83-88]. Binding data from these studies indicated that NBMPR 

had a specific interaction with functional nucleoside-transport sites that could be 

inhibited by nitrobenzylthioguanosine (NBTGR), dipyridamole (a vasodilator), and 

uridine (substrate). Additionally, transport processes examined in human and sheep 

erythrocytes showed [3H]NBMPR inhibition of [14C]uridine influx, consistent with a 

simple competitive inhibition model (apparent Ki = 1 nM). Binding of inhibitor to these 

sites was competitively blocked by uridine, a well characterized substrate for the 

nucleoside transporter (apparent Ki = 1.25 and 0.9 mM, respectively). These apparent Ki 

values were found to be close to the apparent Km for uridine equilibrium exchange in 

human erythrocytes, indicating that NBMPR competes directly with nucleosides for the 

permeation site of the nucleoside transporter, and that the inhibitor binds preferentially 

to the external membrane surface [85]. 
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Human ENT1 is 456 amino acids and is 78% identical in sequence to rat ENT1 and 

79% identical to mouse ENT1 [82, 89, 90]. Splice variants of hENT1 are not reported, 

however, there are multiple variants found in mouse shown to possess different 

functional characteristics [75, 91]. One functional splice variant mENT1.2 altered at the 

end of exon 7, lacks a potential casein kinase II phosphorylation site and has shown to 

be widely expressed with mENT1.1. This mouse variant, mENT1.2, was also found to 

have an altered affinity for the prototypical ENT1 inhibitor NBMPR. Another splice 

variant of mouse ENT1 involving the exclusion of exon 11 during pre-RNA processing is  

widely distributed in multiples tissues. This functional variant termed mENT1Δ11 bound 

inhibitors and transported substrates with high affinities and was predicted to possess 

nine TM domains and cytoplasmic COOH and NH2 termini.  Additionally, rat ENT1 is 

found to be inhibited by NBMPR but is resistant to inhibition by the vasodilator 

compounds dilazep, draflazine and dipyridamole [82] (Figure 1.5).  

Human, mouse and rat ENT1, transport a wide range of purine and pyrimidine 

nucleosides with affinities ranging from 0.05 mM for adenosine to 0.6 mM for cytidine. 

However ENT1 subtypes are unable to transport the pyrimidine base uracil. Human and 

rat ENT1 also poorly transport the antiviral nucleosides ddC, ddI and AZT (compared to 

the anti-neoplastic analogues). These anti-viral drugs are pyrimidine nucleoside 

analogues that lack the C3- hydroxyl group, revealing the importance of the hydroxyl 

group for permeant recognition by ENT1 [92]. In contrast, the anticancer analogues such 

as gemcitabine and fludarabine are transported readily and efficiently by the ENT1 

subtype [93].  

ENT1 is expressed ubiquitously in all tissues but at differing levels. For example, 

hENT1 is found in brain tissue with higher expression in the frontal and parietal lobes of 

the cortex [94]. In the rat kidney cortex, rENT1 is found on the basolateral surface of the 

tubular epithelial cells similarly seen in hENT1-GFP tagged proteins in MDCK cells in vitro 

[45]. Additionally, rENT1 found in high abundance in the sinoatrial node of the heart is 

suggested to play a role in modulating the chronotropic effects of adenosine [95].  

Therefore though ENT1 is found throughout the body, its abundance can vary depending 
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on tissue and cell location. Furthermore, though ENT1 is primarily expressed as a plasma 

membrane transporter, there are also studies that suggests it can also be detected in 

nuclear membranes and endoplasmic reticulum [96]. Functional human ENT1 is also 

found in the mitochondria where it has been suggested to play a part in the 

mitochondrial toxicity effects of the antiviral agents [97]. This feature seems to be 

specific for the human homologue, as rat and mouse ENT1 lack the mitochondrial-

targeting motif (PEXN). These subpopulations of intracellular ENT transporters are 

thought to contribute to the nucleoside passage between the cytosol and lumen of 

cellular compartments and could also correspond to a pool of intracellular transporters 

available for membrane recruitment at crucial time points.   

 

1.4.2 Homologues of ENT1 

Following the initial cloning of hENT1, homologues of mammalian ENTs have been 

detected in protozoa, fungi, plants, nematodes, and insects due to their sequence 

similarity to mammalian ENTs [50, 98] (Figure 1.6). Within the nematode Caenorhabditis 

elegans genome, there are five genes encoding equilibrative nucleoside transporters, 

two of which (CeENT1 and Ce ENT2) are closely related with 94% sequence similarity. 

The substrate specificities of the CeENTs closely resemble those of hENT1 and hENT2. 

However, their sequence similarities to hENT1 and hENT2 are between 15-24% and they 

both differ from the mammalian transporters in that they are not sensitive to NBMPR, 

dilazep, or draflazine. Dipyridamole, on the other hand, does show moderate inhibition 

of CeENT1 and Ce ENT2 at an IC50 300 nM, indicating that inhibitors with different 

structures interact with the protein at different residues. The CeENTs also are capable of 

transporting the cytotoxic dideoxynucleosides (ddI, ddC, AZT) with high efficiency [99, 

100].  
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Figure 1.5. Chemical structures of ENT inhibitors 

Nitrobenzylmercaptopurine riboside (NBMPR), dipyridamole, dilazep, and draflazine are  
potent inhibitors of hENT1.
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The parasite Plasmodium falciparum, which is the causative microbe in malaria, 

also possess ENT family members that have been designated as PfENT1-4 [40, 101, 102]. 

The PfENTs have broad substrate specificity and have 18% sequence identity to hENT1 

and hENT2. Similar to the CeENTs, PfENTs are not proton dependent and have 

conserved sequence motifs in the region of the transmembrane spanning segments 

confirmeing that they are members of the ENT protein family. The majority of 

transporter expression has been detected during the erythrocytic stages of the parasite 

which are known to be responsible for the clinical pathogenesis of the disease. PfENTs 

are efficient in transporting natural nucleosides with apparent affinities (Km)  of 320 µM 

similarly reported for mammalian ENTs. However, PfENTs are not sensitive to NBMPR or 

the inhibitory vasodilators up to the mM concentrations.  

Mammalian ENTs are also homologous to the active, proton-linked transporters 

in kinetoplastid protozoa in Leshmania and Trypanosoma [103-105]. Transporters in the 

Trypanosoma brucei, include two high affinity transporters (P1 and P2) that differ in 

their substrate selectivity [106-108]. The P1 transporters mediate the movement of 

adenosine and inosine with higher affinity (low Km) than the PfENTs.  P2 transporters 

passage adenosine and the nucleobase adenine and was initially identified through its 

sequence similarity from the Leishmania donovani nucleoside transporter LdNT1.1.  

In Leishmania donovani, there are also two nucleoside transport processes, one 

selective for adenosine and pyrimidine nucleosides (LdNT1.1 and LdNT1.2) and the other 

for inosine and guanosine (LdNT2) [109-111]. Comparing LdNT1.1 and LdNT1.2, they 

have almost identical sequences and transport adenosine at high affinities of Km < 1 µM 

however uridine is also transported at a much lower affinity. The LdNT2 transporter 

selectively carries inosine with a high affinity (Km 0.3 µM) as well as guanosine (Km 1.7 

µM). Despite the functional difference from mammalian transporters in the fact that 

they are proton linked and therefore not equilibrative diffusers, they are confirmed to 

belong to the ENT family due to their amino acid sequences and membrane topologies. 
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Figure 1.6. The Equilibrative Nucleoside Transporter family rootless phylogenetic tree.  

The blue box highlights hENT1 and the red boxes highlight homologs of hENT1 described 
in Section 1.4.1  

Permission to use copyrighted material : adapted from Acimovic and Coe, 2002 [112]
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1.5 Clinical relevance of hENT1 

1.5.1 Inhibitors: NBMPR and the vasodilators 

The influence of ENT1 on the extracellular levels of adenosine, a nucleoside with 

physiological activity, indicates that it is a viable target for drug therapy in multiple 

pathologies. Inhibition of hENT1 is of particular importance because it is the main 

contributor of adenosine uptake and clearance from the extracellular space [49, 98]. By 

blocking the removal of adenosine, there is enhancement of adenosine signaling 

through adenosine receptors which can impact the neurological, cardiovascular, and 

immunological systems [113]. NBMPR and the coronary vasodilators such as 

dipyridamole, dilazep, and draflazine (Figure 1.5) inhibit ENT1 leading to enhanced 

extracellular concentrations of adenosine [114-117].  Studies in murine cardiomyocytes 

show that adenosine uptake is sodium independent, saturable, and inhibited by NBMPR, 

dilazep, and dipyridamole [118]. In endothelial cells, the inhibition of hENT1 by 

draflazine provided increased A1/A3 signaling shown to be beneficial in the 

ischemic/reperfused myocardium [119, 120]. Additionally, administration of 

dipyridamole during percutaneous transluminal coronary angioplasty in humans also 

reduced the incidence of abrupt vessel closure by inhibition of ENTs [121]. The ENT1-KO 

mice also been have shown to have a cardioprotected phenotype especially during times 

of ischemia/reperfusion by having enhanced circulating adenosine levels compared to 

wildtype [55].  

In addition to blocking adenosine reuptake, hENT1 inhibitors have shown to be 

useful in anti-cancer therapy as well. For example, the cytotoxic effect of cladribine 

uptake by nucleoside transporters is complemented with co-treatment of NBMPR to 

prevent drug efflux [122]. Therefore selective inhibition of ENTs may be useful in 

combined drug therapy in the treatment of many cancers to improve drug efficacy.  

1.5.2 Substrates: Cytotoxic nucleoside analogues 

A frequent avenue in drug therapy for cancer and viral diseases utilizes cytotoxic 

nucleoside analogues. The ENTs play an important part for entry of these drugs inside 
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the target cells. Specifically, human ENT1 has been shown to enhance the transport of 

chemotherapeutic agents such as cladribine, cytarabine, fludarabine, gemcitabine, and 

capecitabine (Figure 1.3) [93, 123, 124]. These nucleoside analogues function in a variety 

of ways: by incorporation into nucleic acids, through interfering with the nucleic acids 

synthesis, and by modifying the metabolism of endogenous nucleosides. By depleting 

the endogenous pools of nucleosides, the cytotoxic nucleosides increase their chances 

for incorporation into newly forming DNA and RNA.  Expression of hENT1 in highly 

proliferating cells such as the malignant cancerous cells contributes to the selectivity for 

nucleoside analogues since they require higher transport of nucleosides for their 

replication [125]. For example, in acute lymphoblastic leukaemia cells, hENT1 expression 

was correlated to increased sensitivity to cladribine [126]. In accord with this evidence, 

the downregulation of hENT1 was also suggested to contribute to clinical resistance of 

cytarabine and gemcitabine given that ENT1 is the major route of entry for these drugs 

[127]. Specifically, leukemic cells resistant to Ara-C treatment showed a downregulation 

in hENT1 gene expression [128]. Moreover, hENT1 is now known as a positive predictive 

marker of patients receiving gemcitabine treatments for pancreatic cancer and 

metastatic lung disease [127, 129].  

 

Recent studies highlight the importance in measuring hENT1 levels as a 

predictive tool for better drug therapy protocols that are specific to individual patients 

as levels of hENT1 in patients with different breast cancers, Hodgkin’s disease, and 

pancreas adenocarcinoma have shown a significant range of distribution. Additionally, 

the expression of hENT1 has been shown to be positively correlated with a three-fold 

increase in the survival of patients receiving gemcitabine treatment [130]. Imaging 

analogues of NBMPR for specific binding to hENT1 have proven useful in determining 

the abundance of transporter expression at the plasma membrane to guide drug 

treatment protocols [131]. Given that cancer cells have a higher demand for 

extracellular nucleosides to maintain their increased proliferation rates, nucleoside 

analogues are relatively specific for target cells. With higher levels of hENT1 being a 
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predictive marker in pancreatic cancer and non-small cell lung cancer, it is of significant 

importance to improve the selectivity and specificity of drugs for cancer cells to help 

decrease normal cell toxicity and death.   

1.6 Molecular characteristics of hENT1 

1.6.1 Membrane topology and protein structure determinants 

The original hydropathy plot of hENT1 indicated a 2-D topology of an intracellular N-

terminus, 11 transmembrane domains (TM), an extracellular C-terminus, and a large 

intracellular loop linking TM6 and 7 (Figure 1.7) [90]. This generated figure was then 

confirmed and supported using biochemical studies using antibodies as topological 

probes in combination with glycosylation scanning mutagenesis [132]. Additionally, 

hENT1 is shown to have a glycosylation site in the extracellular loop 1 at residue Asn48, 

however, this modification does not seem to have an essential role in either activity or 

expression at the plasma membrane [133]. Given that rat ENT1 had a different inhibitor 

profile sensitivity to vasodilator compounds [134], studies based on human and rat 

chimeras identified regions containing TM 3-6 to have a significant role in hENT1 

functionality in both inhibitor binding and substrate interactions [135]. This region is 

thought to form the major site of interaction with NBMPR and substrates as multiple 

studies have shown their ability to competitively inhibit each other [86, 136]. Mutational 

analyses within this region have also validated the importance of this domain. For 

example, mutations of Gly154 and Ser160 in TM4 affected permeant translocation and 

NBMPR binding, indicating that they possessed dual roles recognizing inhibitors and 

substrates [137, 138].  

 

Mutation of Gly154 to serine caused a loss of NBMPR binding and decreased 

affinities of hENT1 for adenosine and cytidine. The important roles of glycine residues 

have also been implicated in hENT1 structure as mutations at the conserved Gly179 and 

Gly184 residues altered hENT1 activity and reduced plasma membrane expression 

respectively [139]. Although TM3 is crucial for ENT1 function, characterization of other 

point mutations throughout the transporter has also revealed important  
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Figure 1.7. Predicted 2-D topology of hENT1 created in TMPPres2D [140] 

The primary amino acid sequence of hENT1 was inserted into the TMPPres 2D program 
and predicted the membrane-spanning regions and their orientation.
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structural/functional roles for other regions of hENT1. In particular, mutations of Met89 

and Leu92 in TM2 produced changes in transporter affinities for adenosine, guanosine, 

NBMPR and dipyridamole [138, 141].  Additionally, Leu442 in TM11 was found to be 

involved in dipyridamole sensitivity when Met33 in TM1 was first mutated to isoleucine 

[100]. This study indicated a functional interaction between TM1 and TM11, regions 

outside the predicted crucial domain (TM3-6) and implicated Met33 in dipyridamole and 

NBMPR binding interactions. Additionally, the highly conserved residue Trp29 was found 

to have a selective role in pyrimidine transport activity (uridine and cytidine) [142]. 

Mutation of Trp29 also decreased the ability of the inhibitors to interact with hENT1. A 

helical wheel projection of this transmembrane helix (TM1) suggested that Trp29 and 

Met33 were in close proximity and therefore validates the importance of this region in 

hENT1 activity.  

 

Further evidence for the involvement of the terminal domains was revealed by 

mutations at Phe334 and Asp338 in TM8 altered the ability of hENT1 to be inhibited by 

the coronary vasodilators [143]. Specifically, Phe334 (TM8) mutated to tyrosine 

increased the rate of transport of 2-chloroadenosine suggesting an altered conformation 

state of hENT1 to accept the substrate. Mutational analysis of the LdNT2 transporter has 

also implicated a role for TM8 in ENT functions, where hydrophilic residues Asp341 and 

Arg345 (corresponding to Phe334 and Asp338 in hENT1) are essential for expression and 

function of the transporter [110]. As a result of these studies (summarized in Figure 1.8), 

it is suggested that though there is one overlapping recognition site for inhibitors and 

substrates, there are multiple regions that contribute to ENT1 function. In effect, each 

individual mutation that was examined did not alter all interactions with different 

inhibitors or substrates which indicates that each ligand has its own individual points of 

contact with hENT1. As hENT1 is shown to have therapeutic potential through its 

inhibition as well as its cytotoxic nucleoside translocation, development of specific drugs 

to recognize and preferentially select for hENT1 may prove helpful. Understanding the 

structure and mechanism of action of hENT1 in terms of where the permeants bind and 
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how they interact with the protein can help in the design of such drugs. However, there 

are no 3-D models of hENT1 given its unyielding nature for biophysical techniques such 

as x-ray crystallography, therefore the advancement of such rational drug design has 

been slow moving.  

 

1.6.2 Pharmacophore modeling 

One way to gain an understanding of the binding determinants of nucleosides and 

inhibitors to their transporters is to use a computational approach to model in vitro 

affinity data. In silico studies can be used as a tool to direct the exploration of new ligand 

to nucleoside transporters. Given that the structure of ENTs have not yet been 

elucidated, studies predicting ligand interactions have employed the use of ligand-based 

quantitative structure-activity relationships (QSAR). Current biological tested models of 

inhibitor and substrate interactions have found that on NBMPR, the nitrobenzyl moiety 

is critical for high-affinity binding to the transporter. Specifically, electron-withdrawing 

substituents at the 6-position benzyl substituent have been indicated to contribute to 

high affinity binding of the transporter [144, 145]. Addition of a nitro group at that 

position enhanced affinity by 50-fold compared to NBMPR itself. A specific feature of the 

nitro group was its electron-withdrawing capabilities as well as its negative charge, 

suggesting that negative charges interact with positively charged moieties in the binding 

site of the transporter.  

 

Given the size of the nitrobenzyl moiety and the enhanced interaction with the 

nitro group, these data suggest that the area where NBMPR binds is in a large pocket 

that is able to accommodate its chemical structure containing an area of positively 

charged residues. A separate study analyzing the ability of C2-purine position-substituted 

analogs of NBMPR to inhibit ENT1 has identified that substitutions at the C2 lead to a 

general decrease in the ability of the analogues to inhibit hENT1 activity compared to 

NBMPR [146]. These data suggest that C2 interacts with the transporter in a very specific 

manner and any addition to that area via steric bulk sizes or charges impacts on the 
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Figure 1.8. Topology model of hENT1 with amino acid residues that have been 
identified as structurally or functionally important determinants.  

The 2-D topology of hENT1 is shown with residues identified to be important for ENT 
activity indicated by the blue filled circles. 

 

  



26 
 

 

 

ability of the purine portion of NBMPR to bind with hENT1. Additionally, examination on 

the structure-activity relationship of ENTs to substrates found the requirement of sugar 

moiety for transporter interaction specifically with the presence of the C3 hydroxyl [92]. 

Selective structural determinant for ENT1 also include C2 and C5 in comparison to ENT2 

requiring only the C5 interaction [147, 148]. Further investigations using bioinformatics 

found incorporation of electrostatic and steric features at the C3 position and a negative 

charge at the 2,7 position of the purine (3,5-position pyrimidine) to contribute to 

enhanced affinity to hENT1, validating again a positively charged region within the ligand 

binding pocket [149, 150]. These 3-D QSAR models are based on correlations between 

ligand affinities and variations on their structural features and validated the importance 

of the substrates C3 position and the pentose ring structure for hydrogen bond 

formation (Figure 1.9). As mentioned previously, these models should assist the design 

of high-affinity nucleoside transporter inhibitors and substrates; however, caution 

should be taken when interpreting these data before assessment in biological models.   

  

1.6.3 Mechanism of translocation function 

It is believed that nucleoside transporters share a common evolutionary origin with the 

MFS (Major Facilitator Superfamily) of transporters of which the majority function as 

monomers, transporting substrates in an “alternating access mechanism” [85, 151, 152]. 

In this manner, ENT1 is also predicted to have an extracellular and intracellular substrate 

site that when bound, produces a conformational change in the transporter to reorient 

itself and release the substrate on the opposite side of the membrane (Figure 1.10). In 

this case, there would be two primary conformations for ENT1 that alternated regardless 

of substrate binding, one inward facing and one outward facing. However, only one site 

would be accessible at any time. NBMPR binds specifically to the extracellular site of the 

protein and would potentially lock it into this conformation in this model [46, 153]. 

Additionally, depending on the permeant bound, hENT1 may be able to alter the rate at 

which the conformation would change. For example, hENT1 expressed in human  
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Figure 1.9. Generated pharmacophore model aligned against NBMPR obtained from 
PHASE.  

Chemical structure of NBMPR shown on the right beside the Pharmacophore model. Red 
points indicating hydrogen-bond acceptors (oxygen), orange points for aromatic groups, 
green indicated for hydrophobic regions, blue points indicate nitrogen, yellow points 
showing sulfur, gray is showing carbon and white highlights hydrogen. 

Permission to use copyrighted material : adapted from Zhu and Buolamwini, 2008. [149] 
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erythrocytes showed a rapid conformation change with pyrimidine nucleosides and a 

slower change with 2-chloroadenosine [51]. However, there are other complex models 

of hENT1 that have been proposed where the transporter may exist as an oligomer with 

allosteric sites. Several studies have found the presence of higher molecular weight 

bands on immunoblots probing for ENT1 in multiple tissues in rats. From our own lab, 

photoaffinity labelling of mouse ENT1 with [3H]NBMPR found that mENT1 was present 

at a higher molecular weight band at approximately 100 kDa, or twice the size of the 

ENT1 monomer. Additionally, unpublished data from Cunningham F. et al., found hENT1 

at a higher molecular mass complex (147-180 kDa) compared to its monomer size (55 

kDa) under native conditions using the blue native gel electrophoresis technique. It has 

been previously suggested that there are two permeant recognition sites for hENT1, one 

that is a high affinity site for NBMPR and substrates and a second lower affinity site 

which may allosterically modulate the higher affinity site. Data from [3H]NBMPR 

inhibition studies using dipyridamole and the lidoflazine analogues as competitive 

inhibitors found them to have pseudo-Hill coefficients that were not equal to unity 

indicating the presence of co-operativity or multiple sites. Additionally, studies 

examining the rates of dissociation of [3H]NBMPR binding found nucleosides to enhance 

dissociation rates versus inhibitors such as dipyridamole and dilazep decreased 

dissociation rates. This suggests the presence of a second site that can influence the first 

high affinity site which could indicate either multiple sites or co-operativity. However, 

there is still not enough evidence to distinguish between the two possibilities and 

mechanisms.  

 

1.6.4 Predicted 3-D topology of ENT1 

Clearly, understanding the structure, function, and mechanism of hENT1 would be of 

considerable value in drug discovery. Current homology and comparative modeling of 

ENT1 have generated several putative configurations of the transporter since the 

primary sequences have been validated and secondary structures have been proposed.  
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Figure 1.10. Schematic depicting the alternating access model for ENT1.  

The substrate/nucleoside binding site will be alternately exposed from the extracellular 
milieu (outward facing) to the cytoplasm (inward facing). NBMPR shown in dashed lines 
would only access ENT1 from the extracellular side and lock it in the outward facing 
conformation. 
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Recent high resolution crystal structures of the prokaryotic transporters lactose 

permease LacY and the glycerol-3-phosphate transporter GlpT [154, 155] have identified 

important structural and molecular mechanisms of membrane proteins. Surprisingly 

both transporters show similar folding patterns though they are functionally different. 

Therefore, new investigations using comparative modeling of unknown transporter 

structures revolve around the premise that all MFS transporters share a similar folding 

pattern. Analysis of the primary and secondary sequences of nucleoside transporters 

have led to the generation of putative models of ENTs that are based on the known 3-D 

models of proteins in the MFS superfamily.  

One model from Baldwin et al. compared PfENT1, a Plasmodium falciparum ENT 

against the template of the bacterial GlpT [40]. This model suggested that TMs 1, 2, 4, 5, 

8 and 11 are surrounding the solvent-accessible permeant binding site which has also 

been shown for the LacY transporter. An alternative modeling approach utilized the 

template-independent ab initio technique. In this manner, the ENT model would be 

based solely on its primary sequence and a combination of different algorithms and 

modeling techniques. The proposed ab initio model of the LdNT1.1 transporter also 

found TM domains 1, 2, 4, 5, 7, 8, 10 and 11 to surround the general hydrophilic crevice 

further validating the previous model on PfENT1 (Figure 1.11) [156]. However, this study 

also suggested that TM1, 10, and 11 directly line the substrate translocation pathway. 

Our lab has identified a functional splice variant of mouse ENT1 where the last three TM 

helices and associated loops were missing [157]. This splice variant (mENT1Δ11) was 

able to both bind NBMPR and translocate 2-chloroadenosine which is contradictory to 

the proposed 3-D model. Therefore though the models are good foundations to build 

future studies upon, caution needs to be taken when interpreting these generated 

models to different species of ENT1 and there is need for them to be experimentally 

tested.  
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Figure 1.11. Structural model of LdNT1.1 based on ab initio analysis.  

Transmembrane helices are indicated by rigid cylinders and are numbered 1–11 shown 
from the cytoplasmic side. Three hypothetical ab initio models for LdNT1.1 derived from 
Rosetta modeling are presented and compared with a model obtained by threading 
analysis upon the template of the 3-glycerol-phosphate transporter of E. coli. 

Permission to use copyrighted material: from Valdes et al., 2009 [156] 
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1.6.5 Thiol modifications 

Generally, interactions and orientations comprising the translocation domains are not 

well defined as there is limited information on the 3-D structure of ENT1. Therefore, 

useful ways to determine important residues in hENT1 structure and function include 

mutational techniques and chemical modifying reagents. Chemically modifying a 

particular amino acid can identify if it is or is not an important residue in the binding of 

ligands or function of the protein. Since cysteines contain sulfhydryl groups which may 

form important disulfide bonds in protein folding they are an amino acid of interest. The 

sulfhydryl moiety of a Cys residue may be located in one or more possible regions: a 

water accessible region on the extracellular surface; a hydrophobic region of the 

transmembrane domains; or the cytoplasmic region of the cell’s interior. Depending on 

its location, a cysteine residue will react differently to sulfhydryl compounds of with 

various physiocochemical properties. For example, a cysteine residue located 

extracellularly in a negatively charged environment may be more accessible to a thiol 

modifying reagent that is positively charged versus a cysteine located in the lipophilic 

transmembrane domain which would be more readily accessed by a neutral thiol 

modifying reagent. Additionally, mutation or modification of endogenous cysteine 

residues that could interact directly with substrates and inhibitors will alter transporter 

function and/or inhibitor binding. By determining whether the endogenous Cys residue 

can be protected from the effects of thiol modification with co-incubation with either 

substrate or inhibitor, information regarding whether they are located within or close to 

the permeation site will be provided. Since inhibitors and substrates of hENT1 

competitively inhibit each other and therefore are predicted to interact with the 

transporter in one site but with a separate set of determinants, it will be conducive in 

finding their separate points of contact.  

A previous study of rat ENT2 found an exofacial Cys involved in the functionality 

of the transporter [158]. Chemical modification of rENT2 with p-

chloromercuribenzylsulfonate (pCMBS) (a membrane impermeable sulfhydryl-specific 

reagent) inhibited rENT2 activity via interaction of pCMBS with Cys140 in TM4. 
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Additionally, uridine at high concentrations was able to block these effects indicating 

that Cys140 was located at the exofacial, solvent accessible side of TM4 (given that 

pCBMS is negatively charged and unable to cross membranes) and was either directly 

involved in the substrate translocation pathway or in close proximity. The corresponding 

residue in hENT1 is Gly154 in TM4 which, when mutated to serine, caused a decrease in 

affinity for the inhibitors NBMPR, dilazep, and dipyridamole in addition to a decrease in 

affinity for adenosine and cytidine [137]. This suggested that Gly154 was in an important 

region of the permeant binding site. Not surprisingly, this region of TM 3-6 has already 

been implicated in both inhibitor and nucleoside binding in hENT1 [134]. Within this 

region, there are three cysteine residues (Cys 193 in TM5, Cys213 in TM6, and Cys 222 in 

TM6) that could also potentially contribute to the active site.  

The localization of functionally important sulfhydryl groups within membrane 

proteins has also been achieved through the comparison of the reaction with 

membrane-permeant and membrane-impermeant sulfhydryl-reactive derivatives [159-

161]. Specific reagents used in this thesis include the MTS reagents that all contain a 

methanethiosulfonate (MTS) moiety attached to a neutral methyl (MMTS) group or 

various charged groups: ethyltrimethylammonio (MTSET) or ethylsulfonate (MTSES) 

(Figure 1.12). These reagents add a positive or negative charge at the position of a 

previously neutral Cys residue, and could cause structural changes in the transporter 

that can be measured by functional assays. The selectivity and reactivity of these 

reagents compared to their less reactive counterparts (NEM and pCMBS) is highly 

desirable for cysteine modifying studies. Additionally, as they come in a variety of sizes 

and charges, their properties can be exploited to determine if affected residues are in an 

aqueous or lipid phase of the membrane. These reagents have been exploited in many 

studies to assess various features of the structure of channel proteins. Recently, they 

have been used to assess the transmembrane topology of the pore-forming regions of K+ 

channels and their relatives, the cyclic nucleotide-gated channels [162-166]. 
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MTSET (+) 

 
 
 
 

 
MMTS (neutral) 

 
 
 
 

 

 

  

Figure 1.12. Chemical structures of methanethiosulfonate reagents (MTS):  MTSES, 
MMTS, and MTSET 

MTS reagents are thiol modifying reagents that react rapidly and specifically with 
cysteine groups.
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1.7 Substituted cysteine accessibility method 

Substituted cysteine accessibility method (SCAM) is a method that has been proven 

helpful in examining membrane topology and structure of membrane-bound 

transporters [162, 167]. This technique utilizes site-directed mutagenesis in combination 

with specific chemical modifying reagents that react with cysteine sulfhydryls. Mutation 

of a residue to a cysteine can first identify if the loss of the mutated residue was critical 

for expression and/or function and if the introduced cysteine at that location alters 

function.  Secondly, after the residue is mutated to a cysteine, the protein can be 

treated with a multitude of thiol modifiers with different characteristics (sizes, charges, 

membrane permeabilities) to assess if modification alters protein function. If the data 

shows that the cysteine mutant protein was sensitive to different thiol modifiers 

compared to the wild-type protein, it may provide evidence as to the location and type 

of environment of where the introduced cysteine lies. In this manner, if the sequential 

mutations are carried out on specific domains of a protein (whole transmembrane 

domains), the resulting data can provide evidence as to which parts of the protein are 

exposed to the extracellular side as well as determine which residues line the pore or 

are involved in substrate binding.  

By using this technique, information on transmembrane configurations can be 

elucidated for integral membrane proteins. Such studies have been applied to an array 

of mammalian transporters such as the glucose transporter (Glut1), glutamate 

transporter (GltT), and the Na+/H+ exchanger 1 (NHE1) [168-170]. However, in order to 

use cysteine scanning mutagenesis, there is a necessity of having a membrane protein 

that lacks any endogenous sulfhydryl groups or one that is insensitive to sulfhydryl 

modification. Most studies employ the use of molecular mutational techniques to 

remove existing cysteines in order to acquire a cysteine-less construct. This cysteine-less 

construct must still have wild-type functional characteristics in order to obtain biological 

meaningful data. 
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Results of the investigations in determining the role of cysteine functional groups 

within ENT1 have proven to be variable, apparently due to the use of different species 

and cell types [171-173]. The outcomes of these studies prove to be debatable as one 

study using murine myeloma cells found the affinity of NBMPR to ENT1 to be lowered by 

NEM treatment but had no effect on Bmax. Alternatively, in other models, NEM had 

complex effects on the transporter, where it inhibited function or ligand binding at low 

concentrations but enhanced function/binding at higher concentrations; this once again 

could be attributed to differences in cell lines and treatment conditions. In our own lab, 

a previous study has implicated cysteines to be of importance in the binding of NBMPR 

to ENT1. In mouse ENT1, N-ethylmaleimide (NEM) (a membrane permeable thiol 

modifying reagent) produced a concentration-dependent biphasic effect on NBMPR 

binding affinity (Kd) as well as binding sites (Bmax) in intact cells [174]. As NEM is targeted 

to block free sulfhydryls by forming covalent thioether bonds at cysteine residues, the 

resulting loss of NBMPR binding is attributed to a loss of reactive cysteine residues. 

Additionally, NEM effects were lost when cells were co-incubated with NBMPR, 

adenosine, or uridine indicating that the sulfhydryls modified by NEM are located within 

the binding domains of these agents. This same study found p-

chloromercuribenzylsulfonate (pCMBS), a membrane-impermeable negatively charged 

thiol modifying reagent, to cause no effect in intact cells but a decrease in Bmax and Kd 

with broken cell preparations supporting a role for intracellular cysteines in ENT1-ligand 

interactions. A second study in our lab found that the functional truncated slice variant 

mENT1Δ11, missing the last three TM domains (TM9-11) and associated extracellular 

and intracellular loops 5, could not be photolabeled with [3H] NBMPR and showed a 

decrease in NEM sensitivity on NBMPR binding and [3H] 2-chloroadenosine uptake 

[156,[157] These data suggest that the loss of the last three TM domains and associated 

extracellular loop (EL5) leads to a change in reactive residues in the area of the NBMPR 

binding pocket. It is suggested that TM9-11 and EL5 must have a peripheral role in the 

NBMPR binding pocket crucial for photoaffinity labeling. 
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Chapter 2: Rationale 

It is well established that nucleoside transporters modulate the flux of physiologically 

important nucleosides and cytotoxic nucleoside analogues into and out of cells [43, 93, 

175]. As mentioned in Chapter 1, ENT1 is the main contributor to the regulation of 

extracellular concentrations of adenosine available to purinergic receptors and is 

therefore a viable therapeutic target for drug development [98, 114-117]. Additionally, 

the successful delivery of nucleoside-based drugs into their intracellular sites of action is 

dependent on functional nucleoside transporters at the plasma membrane, highlighting 

the role that nucleoside transporters play in targeted chemotherapies [123, 124, 176, 

177]. However, the current understanding of ENT1 structures is limited to predicted 

topologies and low resolution homology modeling. The generation of specific drugs that 

can target hENT1 will be greatly assisted if the structure and mechanism of how ENTs 

function is elucidated. Identifying the specific regions and residues that contribute to the 

inhibitor binding pocket and substrate translocation site will be important to further 

refine the current structural model of ENT1. Since integral membrane proteins like 

hENT1 are not readily amenable to crystallization procedures, alternative techniques 

such as cysteine scanning mutagenesis are required to access information on its 

structure. 

As mentioned previously, results from previous studies attempting to identify the 

importance of cysteine residues in ENT1 function are variable given the use of different 

models, species of ENT1, reagents and treatment conditions. However, the general 

findings from these studies suggest that modification of cysteine residues alters the 

function of ENT1. This thesis further probes the general finding by utilizing site-directed 

mutagenesis techniques and specific sulfhydryl reagent treatments to attempt a 

systematic analysis of the ligand binding site of hENT1 to better understand the 

molecular mechanisms of nucleoside transport and its structure.  

2.1 Hypothesis #1: 

There is a cysteine in a hydrophobic environment that, when modified, affects NBMPR 

binding. 
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Rationale #1:  

A previous study by Vyas et al., examined a range of group-specific amino acid modifiers 

for their effects on NBMPR binding and found that treatment with phenylglyoxal (targets 

arginines), diethylpyrocarbonate (targets histidines),  acetic anhydride, succinic 

anhydride, or ethyl acetimidate (targets lysines) had no effect on NBMPR binding [174]. 

However, treatment with trinitrobenzylsulfonic acid (TNBS) inhibited NBMPR binding. 

Since TNBS reacts with lysine (amino groups) and cysteines (sulfhydryl groups), and ethyl 

aceimidate produced no effect on NBMPR binding, the effect of TNBS was suggested to 

be due to cysteine groups. This suggestion was further confirmed using the sulfhydryl 

modifiers NEM and pCMBS which are more selective for sulfhydryl groups on cysteines. 

Treatment with NEM (a neutral membrane permeable thiol modifier) produced an 

irreversible biphasic inhibition on cells and cell membrane preparations and a decrease 

in NBMPR binding affinity (Kd) as well as binding sites (Bmax) in intact Ehrlich cells. In 

contrast, the membrane-impermeable negatively charged reagent pCMBS had no effect 

on intact cells. As NEM is targeted to block or alkylate free sulfhydryls from cysteine 

residues, the resulting loss of NBMPR binding is attributed to a loss of reactive cysteine 

residues.  

 

Additionally, NEM effects were lost when cells were co-incubated with NBMPR, 

adenosine, or uridine indicating that the sulfhydryls modified by NEM are located within 

the binding domains of these agents. Given that NEM but not pCMBS produced effects, 

we hypothesize that there is a cysteine residue that contributes to NBMPR binding 

located in a hydrophobic region of hENT1. Human ENT1 has 7 cysteine residues (C87, 

C193, C213, C222, C297, C333, and C439) predicted to be in TM helices and therefore 

may be located in potential hydrophobic regions (Figure 2.1). One or more of these 

residues may be accessible for neutral thiol modifiers and impact the functional site of 

hENT1. Additionally, another study examining mouse ENT1 found that NEM had no 

effect on NBMPR binding to mENT1Δ11, (a mouse ENT1 variant missing the last three 

transmembrane domains TM9-11) [157]. This indicated that cysteines residing in TM9-11 
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and interacting loops in ENT1 were responsible for NEM effects to full length mENT1. In 

human ENT1 there are four cysteines residues in that region (Cys378 in TM9, Cys 414 in 

IL5, Cys 416 in IL5, and Cys 439 in TM11) indicating that they could also be targeted for 

sulfhydryl modification to impact transporter function.  

2.2 Hypothesis #2:  

There is a cysteine residue in a cytoplasmic region of hENT1 that, when modified, affects 

NBMPR binding. 

Rationale #2:  

As previously mentioned, the study by Vyas et al. examined the effects of pCMBS 

(membrane impermeable thiol modifier) on mouse and human ENT1 function. In intact 

cells, pCMBS had no effect on NBMPR binding to mouse or human ENT1. However, 

when pCMBS was applied to broken cell preparations of Ehrlich cells and human 

erythrocyte membranes, NBMPR binding (Bmax and Kd) decreased by 100%. Given that 

pCMBS cannot cross the cell membrane and had no effect to intact cells, this indicated 

that the inhibition to NBMPR binding to cell membranes was caused by modification of 

intracellular cysteine residues. We therefore hypothesize that intracellular cysteine 

residues impact the binding site of NBMPR. There are two likely cytoplasmic cysteines 

(Cys414 and Cys416) found in the C-proximal half of hENT1. It is possible that these 

residues contribute to the extracellular facing NBMPR binding site.  

2.3 Hypothesis #3:  

Residues in EL5 are involved in the NBMPR binding pocket and permeant recognition 

site.  

Rationale #3: 

The study by Robillard et al., examining mENT1Δ11, (a mouse ENT1 variant lacking the 

last three TM domains TM9-11 and associated loops EL5 and Il5) found that the 

functional truncated splice variant could not be photolabeled with [3H]NBMPR 

compared to the full length wild-type variant mENT1. Therefore, this suggested that the 

loss of the C-terminal region of mENT1 causes either a loss of residues involved in 
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NBMPR cross-linking or a shift in ENT1 conformation which prevented the residues to 

become accessible for covalent attachment to NBMPR. Given that the region of ENT1 

that is predicted to covalently attach with NBMPR after UV exposure is in the N-terminal 

half of the protein [178-180], these data suggested that the loss of the last three TM 

domains and associated extracellular loop (EL5) lead to a change in reactive residues in 

the area of the NBMPR binding pocket available for covalent modification. It was 

suggested that TM9-11 and EL5 must have a peripheral role in the NBMPR binding 

pocket crucial for photoaffinity labeling. Therefore we hypothesized that residues in the 

extracellular loop five are involved in the NBMPR binding pocket and permeant 

recognition site. 

 

Experimental objectives: 

The aim of this research project was to perform cysteine mutagenesis combined with 

thiol modifications on endogenous cysteine residues of hENT1 and on the residues of 

extracellular loop 5 to expand the current knowledge of hENT1 structure and to isolate 

the specific residues that are important in the functional characteristics of hENT1. 

Utilizing site-directed mutagenesis with the addition of sulfhydryl reagent treatments, 

this thesis attempted a systematic analysis of a portion of the extracellular binding 

pocket of hENT1 to better understand the molecular mechanisms of nucleoside 

transport and the structure of hENT1.  

2.4 Specific Aims: 

1. To determine the sensitivity and accessibility of endogenous cysteines in hENT1 

with methanethiolsulfonate reagents of varying sizes and charges by: 

a. Determining the cysteine residue(s) involved in MMTS effects (neutral 

membrane permeable thiol modifier) 

b. Determining the cysteine residue(s) involved in MTSET effects (positively 

charged, membrane impermeable thiol modifier) 
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Figure 2.1. Predicted 2-D topology of hENT1 with location of 10 endogenous cysteine 
residues indicated in light blue circles. 
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a. Determining the cysteine residue(s) involved in MTSES effects (negatively 

charged, membrane impermeable thiol modifier) 

 

2. Create an extracellular-cysteine-less mutant for SCAM analysis of extracellular 

binding determinants of substrates and inhibitors  

3. To determine the effects of mutating residues in EL5 to cysteines on NBMPR 

binding and 2-chloroadenosine uptake 

4. To probe the accessibility of the introduced cysteines in EL5 to MTSET and 

determine if they are protected by hENT1 ligands 
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Chapter 3: Materials and Methods 

3.1 Materials: 

[3H]NBMPR (5.5-20.1 Ci/mmol), [3H]2-chloroadenosine (9.1 Ci/mmol), and [3H]-labeled 

water (1 mCi/g) were obtained from Moravek Biochemicals (Brea, CA). Methyl 

methanethiosulfonate (MMTS), [2-(trimethylammonium)ethyl]methanethiosulfonate 

bromide (MTSET), and sodium (2-sulfonatoethyl)methanethiosulfonate (MTSES) were 

acquired from Toronto Research Chemicals (Toronto, ON). Culture-grade phosphate-

buffered saline (PBS), Modified Eagle's Medium (MEM), G418 (Geneticin), 

penicillin/streptomycin, trypsin/EDTA, sodium pyruvate, nonessential amino acids, and 

Lipofectamine LTX and Lipofectamine 2000 were purchased from Invitrogen 

(Burlington, ON). Bovine growth serum (BGS) was supplied by ThermoScientific, Hyclone 

Laboratories (Utah, USA). T175 flasks, T75 flasks, T25 flasks, 12-well plates and 24-well 

plates were purchased from BD Biosciences (Bedford, MA).  Cloning cylinders were 

supplied by Bel-Art Products (Pequannock, NJ). Oligonucleotide primers were obtained 

from Sigma-Genosys (Oakville, ON). NBMPR, 2-chloroadenosine, dipyridamole, 

nitrobenzylthioguanosine riboside [NBTGR; S-(4-nitrobenzyl)-6-thioguanosine], and 

p3×FLAG-CMV10 vector were purchased from Sigma-Aldrich (Oakville, ON). The QIAprep 

Spin miniprep kit was provided by Qiagen (Mississauga, ON).  TRIZOL Reagent, 

Superscript First Strand Synthesis System for RT PCR, Platinum Pfx DNA Polymerase, 

and the PureLink Quick Gel Extraction Kit were purchased from Invitrogen (Burlington, 

ON).  Dilazep (N,N′-bis[3-(3,4,5-trimeth-oxybenzo-yloxy)propyl]-homo-piperazine) was 

provided by Asta Werke (Frankfurt, Germany) and draflazine [2-(aminocarbonyl)-4-

amino-2,6-dichlorophenyl)-4-[5,5-bis(4- fluorophenyl) pentyl]-1-piperazine acetamide 

2HCl] was acquired from Janssen Research Foundation (Beerse, Belgium). 2-

Bromohexadecanoic acid (2-bromopalmitic acid [2-Br]) was purchased from Sigma 

Aldrich (Oakville, ON). The primary monoclonal mouse anti-FLAG Ab and secondary goat 

anti-mouse Ab were purchased from Sigma Aldrich (Oakville, ON). The primary 

monoclonal mouse anti-Na+, K+-ATPase Ab were purchased from AbNova (Cambridge, 

MA., USA). Cell lysis buffer (10X) and LumiGLO chemiluminescent substrate were 
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purchased from Cell Signaling Technology (Danvers, MA). The mammalian protease 

inhibitor cocktail was purchased from Calbiochem (Billerica, MA).  The Bradford 

colorimetric protein assay kit was purchased from Thermo Fisher Scientific (Waltham, 

MA).  Pierce Cell Surface Protein Isolation Kit was purchased from ThermoScientific 

(Rockford, IL). PK15-NTD (Pig Kidney nucleoside transporter-deficient) cells and hENT1-

pcDNA3.1 were generously provided by Dr. Ming Tse (Johns Hopkins University, 

Baltimore, MD). 5'-S-[2-(1-[(fluorescein-5-yl) thioureido]-hexanamido) ethyl]-6-N-(4-

nitrobenzyl)-5'-thioadenosine (FTH-SAENTA) was generously donated by Dr. John K. 

Buolamwini (The University of Tennessee Health Science Centre, Memphis, TN). 

3.2 Plasmid generation:  

EcoRV and KpnI restriction sites were added, respectively, to the 5’ and 3’ ends of the 

cDNA encoding hENT1 (primers 5` EcoRV: 5`AGCGCGGATATCGATGACAACCAGT3` and 3` 

Kpn I: 5`TAGCTAGGTACCTCACAC AATTGCCCG3`) (Sigma Aldrich), and the resulting 

construct was ligated into p3×FLAG-CMV-10 using standard techniques. Briefly, the 

p3xFLAG-CMV-10 expression vector was digested with KpnI and EcoRV restriction 

enzymes (Fermentas, Burlington, ON) at 37°C for 1 hr, after which the hENT1 cDNA was 

ligated into it with a femtomolar vector/insert ratio of 1:3, using a T4 DNA Ligase Kit 

(Invitrogen, Burlington, ON). The resulting expression plasmid, hENT1-p3xFLAG (N-

terminal epitope tag-DYKYYYD), was amplified and purified using the QIAprep Spin 

Miniprep Kit (Qiagen, Mississauga, ON). The sequence of the vector was confirmed by 

DNA sequencing at the Robarts Research Institute Sequencing Facility (London Regional 

Genomics Centre, London, ON).  

3.3 Single amino acid mutagenesis 

Single amino acid substitutions were introduced into the hENT1-p3xFLAG template using 

the Stratagene Quikchange mutagenesis kit (Stratagene, Mississauga, ON) following the 

manufacturer’s instructions. Primers for all mutations are listed in Table 2. Briefly, 25 ng 

of hENT1-p3xFLAG template and 125 ng each of the respective forward (5’) and reverse 

(3’) primers were added to a PCR mixture containing 10X reaction buffer, 
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deoxyribonucleotide triphosphates (dNTPs), ddH2O and PfuUltra High Fidelity DNA 

polymerase (2.5 U/l).  The reactions were overlaid with 30 l of mineral oil and cycled 

in a Perkin-Elmer 480 thermal cycler using the following parameters: 95C for 30 sec (1 

cycle); 95C for 30 sec, 55C for 1 min and 68C for 8 min (16 cycles).  Completed 

reactions were placed on ice for 2 min and then incubated with 1 l of Dpn I restriction 

enzyme (10 U/l) at 37C for 1 hr to digest parental dsDNA. Digested plasmid DNA was 

transformed into XL1-Blue supercompetent cells, plated onto LB-ampicillin agar plates 

containing 80 g/ml X-gal and 20 mM IPTG and incubated overnight at 37C.  The next 

day, viable colonies were picked, shaken overnight (250 rpm, 37C) in LB broth 

containing 0.1 mg/ml ampicillin, and plasmid DNA was extracted using the QIAprep 

Spin Miniprep Kit (Qiagen, Mississauga, ON).  The hENT1-p3xFLAG and hENT1-mutants-

p3xFLAG were sequenced by DNA sequencing at Robarts Research Institute Sequencing 

Facility (London Regional Genomics Centre, London, ON).  The resulting sequence was 

compared with the full published coding region of hENT1 (GenBank accession number: 

gi:1845345e). 

 

3.4 Stable cell line generation:  

The PK15 cells of pig kidney epithelial tissue were donated from Dr. Ming Tse (Johns 

Hopkins University, Baltimore, MD, USA) were initially made nucleoside transport 

deficient by treating them first to with ethylmethanesulfonate, a chemical mutagen, and 

secondly to the cytotoxic nucleosides cytarabine (AraC) and tubericidin. After a 3 week 

treatment period, viable cells that survived the cytotoxic nucleoside exposure were 

screened for [3H]uridine transport to determine whether or not resistance was due to 

the absence of nucleoside uptake [181]. After confirmation of nucleoside transport 

deficiency, the PK15-NTD cells were transfected with hENT1-p3xFLAG (wild-type) or Ser-

substituted hENT1-mutations using Lipofectamine 2000.  Near (90%) confluent cells 

were incubated with 1.6 µg of plasmid, 4.8 µl of Lipofectamine and 200 µl of 

OptiMEM. After 24 hr incubation, transfected cells were placed under a three week 



46 
 

 

Table 3.1. List of the PCR primers used for single site-directed mutagenesis of cysteine 
residues to serine residues on the hENT1 template. Underlined base pairs indicate the 
mutation site.  

Cysteine Mutation  Prime sequence (5’ to 3’) 

C87S Forward CAATGTCATGACCCTATCTGCCATGCTGCCCCTGC 

C87S Reverse GCAGGGGCAGCATGGCAGATAGGGTCATGACATTG 

C193S Forward CCATGATCTCCGCTATTGCCAGTGGCTC  

C193S Reverse GAGCCACTGGCAATAGCGGAGATCATGG 

C213S Forward CGGCTACTTTATCACAGCCTCTGCTGTTATCATTTTGACC 

C213S Reverse GGTCAAAATGATAACAGCAGAGGCTGTGATAAAGTAGCCG 

C222S Forward GACCATCATCTCTTACCTGGGCCTGCC 

C222S Reverse GGCAGGCCCAGGTAAGAGATGATGGTC 

C297S Forward GTCCTGGCTTTCTCTGTCTCCTTCATCTTCAC 

C297S Reverse GTGAAGATGAAGGAGACAGAGAAAGCCAGGAC 

C333S Forward CGTTACTTCATTCCTGTGTCCTCTTTCTTGACTTTC 

C333S Reverse GAAAGTCAAGAAAGAGGACACAGGAATGAAGTAACG 

C378S Forward CCACTGCTGCTGCTGTCCAACATTAAGCCCCG 

C378S Reverse CGGGGCTTAATGTTGGACAGCAGCAGCAGTGG 

C414S Forward GGCTACCTCGCCAGCCTCTCTATGTGCTTCGGGCCCAAG 

C414S Reverse CTTGGGCCCGAAGCACATAGAGAGGCTGGCGAGGTAGCC 

C416S Forward CTCGCCAGCCTCTGCATGTCTTTCGGGCCCAAGAAAGTG 

C416S Reverse CACTTTCTTGGGCCCGAAAGACATGCAGAGGCTGGCGAG 

C439S Forward CATCATGGCCTTCTTCCTGTCTCTGGGTCTGGCACTGGGG 

C439S Reverse CCCCAGTGCCAGACCCAGAGACAGGAAGAAGGCCATGATG 
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selection period using 500 µg/ml G418 in modified Eagle's medium supplemented with 

10% (v/v) bovine growth serum (BGS), 100 U of penicillin, 100 µg/ml of streptomycin, 0.1 

mM nonessential amino acids, and 1 mM sodium pyruvate (Selection media). Individual 

cell colonies were selected and expanded in media containing 300 µg/ml G418 

(Maintenance media) at 37°C in a 5% CO2 humidified atmosphere. Each individual 

monoclonal population of cells were then checked for hENT1 transcript by collecting 

mRNA, performing reverse-transcription PCR, and sequencing. Briefly, total RNA was 

isolated using TRIZOL reagent (Invitrogen, Burlington, ON) following the 

manufacturer’s instruction. Isolated mRNA was then reverse transcribed to cDNA using a 

Superscript First Strand Synthesis kit and amplified using Platinum Pfx DNA 

Polymerase. Primers for the hENT1 cDNA (forward primer: hENT1 5’ – 

GACAACCAGTCACCAGCCTCAGGACAG; reverse primer: hENT1 3’ - 

CACACAATTGCCCGGAACAGGAAGGAG) were used to amplify the extracted cDNA in a 

Perkin-Elmer 480 Thermal Cycler using the following conditions: 2 min at 94C; 15 s at 

94C, 30 s at 55C, 1.5 min/kb at 68C (for 35 cycles); 7 min at 68C. PCR amplified DNA 

samples were then resolved on a 1.0% agarose gel and visualized under UV light. Bands 

that were found at the corresponding the hENT1 cDNA size (1377 kb) were isolated and 

purified using the PureLink Quick Gel Extraction Kit. Purified PCR products were then 

sequenced as before.   

3.5 Transient transfections: 

PK15-NTD cells were transfected with empty-p3xFLAG (empty control), wild-type hENT1-

p3xFLAG, and mutants hENT1-C416A, hENT1-439A, or EL5-mutants-p3xFLAG (16 

individual mutants) using Lipofectamine LTX following the manufacturer’s instruction 

(Invitrogen, Burlington, ON). Briefly, 18.75 μg plasmid DNA was incubated with 3.75 ml 

Opti-MEM media, 18.75 μl Plus reagent, and 46.87 μl of Lipofectamine LTX for 30 

min. After 30 min, the DNA-Lipofectamine complex was slowly added to near (90%) 

confluent cells grown in T75 flasks void of antibiotics and incubated for at least 24 hrs 

before their utilization. 
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3.6 Crude Cell Membrane Preparations: 

PK15-NTDs expressing hENT1-p3xFLAG or hENT1-mutants-p3xFLAG were harvested from 

T175 flasks by 0.05% Trypsin/0.53 mM EDTA. Cells pellets were then resuspended in 5 

mM sodium phosphate buffer containing a mammalian protease inhibitor cocktail 

(Calbiochem, Billerica, MA) for 30 min on ice. Cells were then sonicated using a Sonic 

Dismembrator model 150 for 30 s and then centrifuged at 3,000× g for 30 min at 4oC to 

pellet nuclei and whole cells. The supernatant containing the crude cell membranes 

were then centrifuged for 1 hr at 30,000 × g at 4oC to pellet the membranes. The 

remaining membrane pellet was then resuspended in 5 mM sodium phosphate buffer 

and protease inhibitor cocktail mix and protein content was determined by the Bradford 

colormetric assay. Resuspended crude membranes were either used immediately for 

subsequent assays or frozen at -80C to be used at a later date.  

3.7 Treatment with MTS reagents:  

PK15-NTD cells expressing hENT1-p3xFLAG or hENT1-mutants-p3xFLAG were harvested 

from culture flasks using 0.05% Trypsin/0.53 mM EDTA, diluted with media containing 

10% (v/v) BGS, collected by centrifugation at 6,000xg, and washed twice with 

phosphate-buffered saline (PBS; 137 mM NaCl, 6.3 mM Na2HPO4, 2.7 mM KCl, 1.5 mM 

KH2PO4, 0.5 mM MgCl2 • 6H2O, 0.9 mM CaCl2 • 2H2O, pH 7.4, 22°C). Cell pellets were 

then suspended in PBS for [3H]NBMPR binding assays or sodium-free N-methyl-D-

glucamine (NMG) buffer (pH 7.25, containing 140 mM NMG, 5 mM KCl, 4.2 mM KHCO3, 

0.36 mM K2HPO4, 0.44 mM KH2PO4, 10 mM HEPES, 0.5 mM MgCl2, and 1.3 mM CaCl2) for 

[3H]2-chloroadenosine uptake assays. Cell suspensions were incubated with 0.1% 

dimethylsulfoxide (DMSO, control) or MTS reagents dissolved in DMSO. Cell suspensions 

were then washed three times with PBS or NMG, depending on the assay type, by 

centrifugation to remove un-reacted MTS reagents.  A concentration versus time course 

analysis was performed with each MTS reagent to optimize the concentration and 

incubation period needed for a maximal distinguishable effect. In some experiments, 10 

nM NBMPR or 1 mM adenosine was included in the MTS treatment protocol to assess 

the ability of these ENT1 ligands to protect the cells from MTS modification. 
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3.8 [3H]NBMPR binding assay: 

PK15-NTD cells expressing empty-p3xFLAG, hENT1-p3xFLAG or hENT1-mutants-p3xFLAG 

(~75,000 cells per assay) were suspended in PBS and incubated with [3H]NBMPR for 45 

min at room temperature (~22°C). Cells were collected on Whatman Binder-Free Glass 

Microfiber Filters: Type 934-AH using a 24-port Brandel cell harvester, washed twice 

with Tris buffer (10 mM Tris, pH 7.4, 4°C) and analyzed for 3H content using standard 

liquid scintillation counting techniques. Specifically bound [3H]NBMPR was defined as 

total binding minus cell-associated [3H]NBMPR in the presence of 10 µM 

nitrobenzylthioguanosine riboside (NBTGR) (nonspecific binding). Nonlinear regression 

was used to fit hyperbolic curves (GraphPad Prism 4.03) of specific [3H]NBMPR binding 

against the free concentration of [3H]NBMPR, in order to determine Kd and Bmax values. 

Curves were fitted using one-site specific binding based on the equation Y = Bmax*X/(Kd + 

X), where Y= specific binding and X= concentration of radioligand. 

3.9 5’-S-[2-(1-[(fluorescein-5-yl) thioureido] hexanoamido) ethyl]-6-N (2-nitrobenzyl) -5’-

thio adenosine (FTH-SAENTA) Inhibition Assay: 

PK15-NTD cells transfected with hENT1-p3xFLAG, C416A-p3xFLAG, C439A-p3xFLAG or 

EL5-mutants-p3xFLAG were incubated with 5 nM [3H]NBMPR for 40 min in the presence 

and absence of 100 nM FTH-SAENTA (membrane impermeable) or 10 µM NBTGR (non-

specific binding) and then processed as described above for the [3H]NBMPR binding 

assays. FTH-SAENTA would displace only the extracellular binding sites of [3H]NBMPR as 

the large fluorescein tag prevents access to intracellular pools [143, 182].  Data was 

calculated as the total amount of NBTGR-sensitive [3H]NBMPR binding inhibited by FTH-

SAENTA which represented the percentage of sites expressed at the membrane.  

3.10 [3H]2-chloroadenosine uptake assay: 

Uptake was initiated by the addition of suspended cells (~750,000 cells per assay) in 

NMG buffer to [3H]2-chloroadenosine layered over 200 µl of silicon/mineral oil (21:4 

vol/vol) in 1.5-ml microcentrifuge tubes. Parallel assays were conducted in the absence 

(total uptake) and presence (non-transporter-mediated uptake) of 5 µM 

NBMPR/dipyridamole to determine the ENT1-mediated uptake of substrate in each 
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condition. Initial rates of uptake were determined from time-courses of cellular uptake 

of [3H]2-chloroadenosine and calculated an incubation time of 5 s for measuring 

transport studies [157]. After the defined incubation time of 5 s, uptake was terminated 

by centrifugation for 10 s (~12,000 × g). Aqueous substrate and oil layers were removed 

by aspiration, and pelleted cells were digested in 1 M NaOH overnight (12–16 h). A 

sample of the digest was removed and analyzed for 3H content using standard liquid 

scintillation counting techniques. Uptake data are presented as pmol/µl of intracellular 

volume after correction for the amount of extracellular 3H in the cell pellet. Total volume 

was determined by incubating cells with 3H2O for 3 min and processed as above. 

Extracellular water space was estimated by extrapolation of the linear time course of 

nonmediated uptake to zero time. To determine Km, curves were fitted using the 

Michaelis-Menten equation: Y = Vmax*X/(Km + X), where Y= rate of mediated uptake and 

X= substrate concentration. 

3.11 Inhibition studies:  

PK15-NTD cells transfected with hENT1-p3xFLAG or the hENT1-mutant-p3xFLAG were 

incubated with 0.5 nM [3H]NBMPR for 40 min in the presence and absence of a range of 

concentrations of test inhibitor, and then processed as described above for the 

[3H]NBMPR binding assays. IC50 values were determined as the concentration of 

inhibitor that produced a 50% decrease in the specific binding of [3H]NBMPR. For 

inhibition of uptake, cells were incubated with 10 µM [3H]2-chloroadenosine in the 

presence and absence of a range of concentrations of test inhibitor layered over 200 µl 

of silicon/mineral oil (21:4 vol/vol) in 1.5-ml microcentrifuge tubes. Assays were 

processed as described above for the [3H]2-chloroadenosine uptake assays. Ki values 

were derived from IC50 values based on the equation of Cheng and Prusoff [183] using 

the Kd for [3H]NBMPR binding or the Km for [3H]2-chloroadenosine uptake determined 

under the same conditions. Cheng-Prusoff equation: Ki= IC50/(1+[L]/Kd), where [L]= 

concentration of free radioligand used and Kd= dissociation constant of the radioligand 

for the receptor. Data were fitted using the one-site sigmoid dose-response with 

variable slope model (GraphPad Prism 4.03), using the following equation: 
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Y=Bottom + (Top-Bottom)/(1+10^((LogIC50-X)*HillSlope)), where Y= % total binding and 

X= logarithm concentration of the inhibitor. Top and bottom are the maximal and 

minimal limits constrained to 100% and 0% of total site-specific binding, respectively.   

3.12 Cell Surface Biotinylation: 

The biotinylation and isolation of cell surface proteins for Western blot analysis was 

performed as per manufacturer’s instructions (Thermo Scientific, Rockford, IL, USA). In 

brief, untransfected and transiently transfected wild-type hENT1 and C416A PK15-NTD 

cells were grown in four T75 flasks, washed with cold PBS and incubated for 30 min with 

cold membrane-impermeable Sulfo-NHS-SS-Biotin on a rocking platform at 4oC.  The 

cells were harvested and washed with Tris-Buffered Saline (TBS) with subsequent 

centrifugation at 500 × g for 3 min. Cell pellets were lysed, sonicated, and vortexed 

periodically on ice for 30 min. Cell lysate was spun at 10,000 × g for 2 min at 4°C after 

which the supernatant was added to the column of NeutrAvidin Agarose and incubated 

for 60 min at 20oC with end-over-end mixing using a rotator. The column was then 

washed and cell surface protein was eluted from the column using end-over-end mixing 

for 60 min incubation with SDS-PAGE and DTT sample buffer.  The eluted protein 

samples were then used for Western blot analysis.  

3.13 Western Blot Analysis: 

Cell surface expression levels of wild-type hENT1-p3xFLAG and C416A-p3xFLAG were 

estimated by western blot analysis where biotinylated samples were loaded into 12% 

polyacrylamide gels (1.5 M Tris pH 8.8, 0.1% sodium dodecyl sulfate (SDS), bis-

acrylamide, 0.05% ammonium persulfate (APS), 0.05% TEMED) and run in the Mini-

PROTEAN Tetra Cell electrophoresis system for ~1 hr at 120 V.  Following 

electrophoresis, gels were transferred to polyvinylidene fluoride (PVDF) membranes 

using a Trans-Blot SD Semi-Dry Electrophoretic Transfer Cell at 440 mA, 20 V limit for 

45 min.  Membranes were blocked for 1 hr at room temperature with 5% skim milk-TBST 

buffer (0.5 mM Tris, 13.8 mM NaCl, 2.7 mM KCl, 0.05% Tween-20), and then incubated 

overnight at 4C with primary monoclonal mouse anti-FLAG Ab (1:2,500 in 5% skim milk-
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TBST).  Membranes were washed with TBST and incubated for 1 hr at room temperature 

with secondary goat anti-mouse HRP conjugated antibody (1:25,000 in 5% skim milk-

TBST), and then washed further with TBST. Membranes were incubated for 1 min with 

LumiGLO chemiluminescent reagent and then imaged using the Molecular 

ImagerVersaDoc 5000 MP System (Bio-Rad Laboratories, Hercules, CA). Na+/K+-

ATPase was used as a cell surface loading control after membranes were stripped with 

mild Stripping Buffer (200 mM glycine, 1% Tween-20, and 0.1% SDS; pH 2.2).  Following 

this, membranes were washed twice with PBS and TBST before being blocked for 1 hr 

with 5% skim milk.  The membranes were incubated overnight at 4C with primary 

mouse antibody to Na+/K+-ATPase (1:2,500 in 5% skim milk/TBST).  After three washes 

with TBST, membranes were incubated for 1 hour at room temperature with secondary 

goat anti-mouse HRP conjugated antibody (1:25,000 in 5% skim milk/TBST).  After a final 

three washes, the membranes were visualized as above.   

3.14 Data analysis and statistics:  

Data are presented as means ± SEM with hyperbolic curves fitted using Graphpad Prism 

5.0 software. Where appropriate, statistical analysis was performed using a One-way 

ANOVA (Dunnett’s), or a paired student’s t test with p<0.05.  
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Chapter 4: Results 

Many attempts have been made to determine the role of cysteines in nucleoside 

transport function; however results from those studies have been inconsistent. Within 

the murine system, NEM and pCMBS treatments have indicated the involvement of two 

cysteines in ENT1 function [157, 174]. In our own lab, the membrane permeable thiol 

modifying compound NEM significantly inhibited binding of the selective probe NBMPR 

at low concentrations, while at high concentrations enhanced binding. Additionally, the 

negatively charged membrane impermeable reagent pCMBS inhibited NBMPR binding 

when allowed access to the intracellular side. This suggested that there are two cysteine 

residues involved in the two distinct effects. To extend these previous studies, 

experiments were carried out with a different set of sulfhydryl-reactive MTS reagents of 

different sizes and charges to probe the locations of cysteines. These reagents possess 

enhanced sensitivity and reaction rates against cysteine residues in comparison to NEM 

and pCMBS. Changes in hENT1 functionality were assessed by measuring binding of the 

prototypical inhibitor [3H]NBMPR and the transport kinetics of the substrate [3H]2-

chloroadenosine.  

 

4.1 Validation that hENT1-p3XFlag functions in PK15-NTD cells: 

Initial studies confirmed that the PK15-NTD cells transfected with empty-vector were 

devoid of nucleoside transport activity and did not bind [3H]NBMPR (Vector only from 

Figure 4.1A). After stable transfection of wild-type hENT1-p3xFLAG, PK15-hENT1 cells 

specifically bound [3H]NBMPR with a Kd of 0.4 ± 0.02 nM to a maximum of 3.6 ± 0.2 x105 

ENT1 sites/cell (Figure 4.1A). Membranes prepared from the PK15-hENT1 transfectants 

had an affinity for [3H]NBMPR  of 0.1 ± 0.02 nM and bound 1.2 ± 0.1 pmol/mg protein 

(Figure 4.1B). PK15 cells transfected with hENT1 cDNA accumulated [3H]2-

chloroadenosine via a NBMPR-sensitive transport process with a Vmax of 9.5 ± 0.8 

pmol/µl/s and Km of 71 ± 8 μM (Figure 4.1C). Fundamentally, PK15-hENT1 cells bound 

NBMPR with high affinity (nM) and transported 2-chloroadenosine with high affinity 

(µM). These characteristics are consistent with a fully functional ENT1-type transporter, 
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and are similar to previous reports of hENT1 constructs expressed in this cell model 

[181] indicating that the N-terminus FLAG epitope did not significantly affect transporter 

functionality.  

 

4.1.1 Inhibitor profile for PK15-hENT1 cells  

To determine if there were any compound specific differences and sensitivities for the 

coronary vasodilators in transfected hENT1-FLAG-tagged constructs, the PK15-hENT1 

cells were incubated with increasing concentrations of competitive inhibitors to 

determine their ability to alter [3H]NBMPR binding or [3H]2-chloroadenosine uptake. The 

coronary vasodilators: Dipyridamole, dilazep, and draflazine inhibited the binding of 

[3H]NBMPR with Ki values of 22 ± 8, 1.9 ± 0.4, and 3.3 ± 0.7 nM, respectively (Figure 

4.2A).  Additionally, dipyridamole, dilazep, NBMPR, and NBTGR inhibited [3H]2-

chloroadenosine influx with Ki values of 111 ± 35, 10.4 ± 1.7, 2.0 ± 1.0, and 8.6 ± 1.9 nM, 

respectively (Figure 4.2B).  These values reflect the inhibitor’s capacity to effectively 

block the permeation site as previously seen in other studies [98, 133, 157, 184]. 

Draflazine, dipyridamole, and dilazep are competitive inhibitors of the binding of NBMPR 

and substrate uptake in a variety of experimental models indicating that the expression 

vector and FLAG-tag did not alter the hENT1 binding site for these inhibitors and verified 

the mammalian cell model [86, 171, 185]. 

 

4.1.2 DTT treatment had no effect on PK15-hENT1 cells 

In the analysis of the amino acid sequence of hENT1, there were five potential disulfide 

bridges that were identified using a network predictor site, DiANNA 1.1 web server, 

utilizing all of the ten endogenous cysteines highlighted in Figure 2.1. In this model, the 

potential bridges would link [C87-C378]; [C193-C222]; [C213-C333], [C297-C414], and 

[C416-C439]. To determine the presence and importance of these potential disulfide 

bridges, PK15-hENT1 cells and cell membranes were treated with dithiothreitol (DTT) 

and assessed for [3H]NBMPR binding. Dithiothreitol treatment (2 mM, 10 min, room 
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Figure 4.1. Characterization of PK15-hENT1. [3H]NBMPR binding of PK15-hENT1 cells 
(Panel A), PK15-hENT1 membranes (Panel B) and [3H]2-chloroadenosine uptake of 
PK15-hENT1 cells (Panel C). Specific binding of PK15-hENT1 or PK15-NTD cells was 
determined by total bound minus non-specific bound where cells or membranes were 
incubated with a range of concentrations of [3H]NBMPR in the presence (nonspecific 
binding) and absence of 10 µM NBTGR (total binding). Each point represents the mean ± 
SEM from at least 11 experiments done in duplicate. Nonlinear regression analysis was 
used to fit hyperbolic curves to the site-specific binding of [3H]NBMPR plotted against 
the free [3H]NBMPR concentration at steady-state. (Panel C) Concentration-dependent 
uptake of [3H] 2-chloroadenosine to PK15-hENT1 or PK15-NTD cells incubated with a 
range of concentrations of [3H]2-chloroadenosine for 5 seconds in the presence or 
absence of 10 µM dipyridamole/NBTGR. Each point represents the mean ± SEM of the 
cellular accumulation of [3H]2-chloroadenosine from at least ten independent 
 experiments conducted in duplicate.
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Figure 4.2. Inhibitor profile for PK15-hENT1 cells. (Panel A) Inhibition of [3H]NBMPR 
binding to PK15-hENT1 (□) draflazine, (○) dilazep, and (●) dipyridamole. Data are shown 
as percent of control binding where control is determined as specific binding of 0.5nM 
[3H]NBMPR in the absence of inhibitor. (Panel B) Inhibition of [3H] 2-chloroadenosine 
uptake to PK15-hENT1 by (●) NBMPR, (Δ) dipyridamole, (□) NBTGR, and (○) dilazep. Data 
is shown as percent of control binding where control is determined as mediated uptake 
of 10 µM [3H] 2-chloroadenosine in the absence of inhibitor. Each point represents the 
mean ± SEM of at least five experiments done in duplicate.
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Figure 4.3. Effect of DTT on PK15-hENT1 activity. Effect of 2mM DTT treatment to 
[3H]NBMPR binding of PK15-hENT1 cells (Panel A) and PK15-hENT1 membranes (Panel 
B). Cells or membranes were treated with 2 mM DTT for 10 min at room temperature 
and then incubated with a range of concentrations of [3H]NBMPR (abscissa) in the 
presence (nonspecific binding) and absence of 10 µM NBTGR (total binding). Each point 
represents the mean ± SEM from at least four experiments done in duplicate. Nonlinear 
regression analysis was used to fit hyperbolic curves to the site-specific binding of 
[3H]NBMPR plotted against the free [3H]NBMPR concentration at steady-state. 
  



58 
 

 

temperature) of the PK15-hENT1 cells and membranes had no effect on the binding of 

[3H]NBMPR  (Figure 4.3A and 4.3B), suggesting that the potential sulfhydryl bonds 

between cysteine residues were not contributing to protein structure of importance to 

NBMPR binding. Alternatively, this suggested that all ten cysteines possessed free 

sulfhydryl groups that were potentially available to react with the MTS reagents.  

 

4.2 Optimization of MTS reagents 

To defined an optimal incubation period, MTS reagents were initially used at a 

concentration taken from the literature, MTSET 1 mM, MTSES 10 mM, and MMTS 5 mM 

[162]. These were then incubated with PK15-hENT1 cells for various times (1-15 min) 

and analyzed for [3H]NBMPR binding. A 10 min incubation period revealed significant 

decreases in Bmax at MTSET 1.0 mM and an increase in Bmax at MMTS 5 mM with no 

further increases or decreases observed at 15 minutes (Figures 4.4A, 4.4B, 4.4C). This 

incubation period was subsequently used while varying the concentrations of MTS 

reagents and functional characterization of hENT1.  Optimal concentrations of MTS 

reagents were determined to be 1 mM MMTS, 5 mM MTSES, 5 mM MTSET where their 

DMSO-treated control produced no effect, indicating that the vehicle was not 

contributing to the observed effects.  

  

4.3 Effects of MTS reagents on hENT1 function and ligand binding:  

As mentioned previously the MTS reagents: MTSES, MMTS, MTSET (Figure 1.12) were 

used in this study due to their selectivity to cysteines as well as their reactivity in mild 

conditions. Because they come in a variety of charges, sizes, and lipophilicity they are 

able to better probe the location of cysteines and provide information about their 

environment. These MTS reagents tested the surface accessibility of cysteines by 

covalent modification at thiol side chains which may cause a change in transporter 

function and hence further elucidate the contributions of cysteines to hENT1 structure 

and function.  
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Figure 4.4. Varying incubation times with MTS reagents to PK15-hENT1 cells. Cells were 
treated with (Panel A) 5 mM MMTS, (Panel B) 10 mM MTSES, (Panel C) 1 mM MTSET for 
incubation periods of 1 min to 15 min and then assessed for [3H]NBMPR binding. Bmax 
were calculated. Nonlinear regression analysis was used to fit hyperbolic curves to the 
site-specific binding of [3H]NBMPR plotted against the free [3H]NBMPR concentration at 
steady-state. Each bar represents the mean ± SEM from at least four experiments done 
in duplicate. * Indicates a significant change in Bmax from the MTS reagent at that time 
point compared to the Bmax from DMSO-treated PK15-hENT1 cells (P < 0.05 one-way 
ANOVA : Dunnett’s post-test). 
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4.3.1 Effects of MMTS on NBMPR Binding: the NBMPR binding site is sensitive to neutral 

thiol modification 

MMTS, which like NEM is a neutral membrane-permeable reagent, caused a significant 

62 ± 11% increase in the number of NBMPR binding sites in intact cells with no change in 

binding affinity (Figure 4.5A). However, in isolated membranes prepared from these 

cells, MMTS inhibited binding by about 30% (Figure 4.5B). To investigate further the 

difference in MMTS effect on intact cells (enhancement) versus membranes (inhibition), 

intact cells were treated with MMTS (or DMSO as control) and then used to prepare 

isolated membranes for analysis of [3H]NBMPR  binding.  The membranes derived from 

cells treated with MMTS had significantly lower binding (Bmax = 1.7 ± 0.2 pmol/mg) than 

did membranes prepared from cells treated with DMSO alone (controls, Bmax = 2.2 ± 0.4 

pmol/mg) (Figure 4.6A).  Similarly, the binding of [3H]NBMPR to broken cell preparations 

(no separation of membrane components) was also decreased by treatment with MMTS 

(Figure 4.6B). In addition, to determine whether transmembrane ion gradients played a 

role in these divergent effects of MMTS, cells were treated with MMTS in either PBS (pH 

7.4), NMG (pH 7.25), or 50 mM Tris-HCl of varying pH (6.0, 7.2, or 8.2). There were no 

differences in the results obtained when using the PBS, NMG, and Tris-HCl (pH 7.2–7.4) 

incubation conditions. However, incubating cells with MMTS in 50 mM Tris at pH 8.2 

eliminated completely the ability of MMTS to enhance the binding of [3H]NBMPR (Figure 

4.7A, 4.7B, 4.7C). Finally, the competitive inhibition of [3H]NBMPR by dipyridamole, 

draflazine and dilazep was assessed for potential changes after MMTS treatment. 

Treatment of the neutral thiol reagent had no effect on the ability of dipyridamole, 

dilazep or draflazine to inhibit the binding of [3H]NBMPR to wild-type hENT1 (Figure 4.8).  
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Figure 4.5. Treatment of hENT1 with MMTS. Effects of MMTS on [3H]NBMPR  binding by 
PK15-hENT1 cells (Panel A), cell membranes (Panel B) and on [3H]2-chloroadenosine 
uptake by PK15-hENT1 cells (Panel C). Cells or membranes were incubated with either 1 
mM MMTS or 0.1% DMSO (Control) for 10 min, washed thrice, and then incubated with 
a range of concentrations of [3H]NBMPR (abscissa) in the presence and absence of 10 
µM NBTGR to define total and nonspecific binding or then assessed for their capacity to 
accumulate [3H]2-chloroadenosine (5 s incubation) in the presence and absence of 5 µM 
NBTGR/dipyridamole. Each point represents the mean ± SEM from at least 5 
experiments done in duplicate. * Significant difference from control Bmax for NBMPR 
binding studies and control Vmax for uptake studies (Student's t test for paired samples, P 
<0.05)  
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Figure 4.6. Effects of isolating membranes to the treatment of hENT1 with MMTS. 
Specific binding of [3H]NBMPR to PK15-hENT1 cell membranes isolated from cells pre-
treated with MMTS (Panel A) and from cells that were treated with MMTS and then 
broken open (Panel B). PK15-hENT1 cells were incubated with (○) and without MMTS 
(●), washed, and then membranes prepared. Isolated cell membranes were incubated 
with a range of concentrations of [3H]NBMPR  (abscissa) in the presence (nonspecific 
binding) and absence of 10 µM NBTGR (total binding). Specific binding was determined 
by total bound minus non-specific bound. Each point represents the mean ± SEM from at 
least four independent experiments done in duplicate. * Significant difference from 
control Bmax (Student's t test for paired samples, P <0.05). 
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Figure 4.7. MMTS effects are dependent on pH. Effect of pH on the capacity of MMTS to 
modify [3H]NBMPR binding to cells transfected with wild-type hENT1.  Intact cells were 
treated with 0.1% DMSO (controls, closed symbols/ solid lines) or 1 mM MMTS (open 
symbols/ dashed lines) in 50 mM TRIS  at pH 6.0 (Panel A),  pH 7.2 (Panel B), or pH 8.2 
(Panel C) for 10 min at room temperature, washed extensively with PBS (pH 7.4), and 
then exposed to a range of concentrations of [3H]NBMPR in the presence and absence of 
10 µM NBTGR to define the amount of site-specific binding of this ligand in each cell 
(ENT1/cell, left ordinate).   Each point is the mean ± SEM from at least 4 experiments 
conducted in duplicate. * Indicates a significant effect of MMTS relative to control Bmax  
(Students t-test for paired samples, P < 0.05).
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Figure 4.8. Effects of MMTS treatment of hENT1 on inhibitor binding. Inhibition of 
[3H]NBMPR binding by a range of concentrations of inhibitors on cells that were 
pretreated with either 0.1% DMSO (solid lines, closed symbols) or 1 mM MMTS (dashed 
lines, open symbols).  Each point is the mean ± SEM from at least four experments. 
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4.3.1.1 Effect of pH on PK15-hENT1 activity 

Given that MMTS effects were abolished when treatment took place in basic pH 

medium, we considered the fundamental effects of pH on hENT1 function. To compare 

the effect of pH on PK15-hENT1 activity, we utilized 50 mM Tris at pH 6.2, 7.2, and 8.2 

for our incubation media due to its buffering range at that pH. Cells expressing 

recombinant wildtype hENT1 cells were harvested, washed in the described buffer and 

incubated with a range of [3H]NBMPR concentrations to determine site-specific binding. 

Specific binding of [3H]NBMPR in pH 6.2 and 7.2 yielded near identical Bmax values of 3.9 

± 0.7 x 105 ENT1 sites/cell and 3.5 ± 0.6 x 105 ENT1 sites/cells, respectively. However, 

specific binding of [3H]NBMPR in pH 8.2 showed an increased Bmax of 6.3 ± 0.8 x 105 

ENT1 sites/cell or a 45% increase compared to pH 7.2 (Figure 4.9A). Affinities for all 

three pH were not significantly different, pH 6.2 Kd = 0.1 ± 0.02 nM, pH 7.2 Kd = 0.1 ± 

0.01 nM, and pH 8.2 Kd = 0.1 ± 0.003 nM. To determine if the change in Bmax at pH 8.2 

could be due to the loss of K+ and/or Cl- ion gradients (our experiments were repeated 

using NMG buffer at pH 7.4 and 8.2 and found a similar results where incubation in NMG 

at pH 8.2 caused an increase in Bmax by 52 ± 20% compared to NMG at pH 7.2 (Figure 

4.9B). Additionally, affinities for [3H]NBMPR were not significantly different; pH 7.4 Kd = 

0.14 ± 0.02 nM, pH 8.4 Kd = 0.18 ± 0.04 nM. To determine if the increase seen in 

[3H]NBMPR Bmax represented an increase in functional hENT1 transporters at the 

membrane, [3H]2-chloroadenosine uptake assays were performed with NMG buffer at 

pH 7.4 and pH 8.4. Initial rates of uptake for wildtype hENT1 were unaffected by the 

change in pH (Figure 4.9C); pH 7.4 Vmax = 6.5 ±1.2 pmol/µl/s versus pH 8.4 Vmax = 6.6 ± 

1.5 pmol/µl/s. 

 

4.3.2 Effects of MMTS on 2-chloroadenosine uptake: substrate transport by hENT1 is 

sensitive to neutral thiol modification 

MMTS inhibited the NBMPR-sensitive uptake of [3H]2-chloroadenosine by PK15-hENT1
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Figure 4.9. NBMPR binding to hENT1 is sensitive to pH. Effect of pH on [3H]NBMPR 
binding of cells transfected with wild-type hENT1 incubated with Tris (Panel A)  or NMG 
(Panel B) and the effect of pH on [3H]2-chloroadenosine uptake (Panel C). Intact cells 
were incubated in 50 mM Tris at pH 6.2,  pH 7.2, or pH 8.2 (Panel A) or in NMG at pH 7.4 
or pH 8.2 (Panel B) and then exposed to a range of concentrations of [3H]NBMPR in the 
presence and absence of 10 µM NBTGR to define the amount of site-specific binding of 
this ligand in each cell. Panel C shows intact cells incubated in NMG at pH 7.4 or pH 8.2 
and then assessed for [3H]2-chloroadenosine mediated uptake using a 5 s incubation 
time in the presence and absence of 5 µM NBTGR/dipyridamole to define the 
transporter-mediate uptake component. Each point is the mean ± SEM from at least 4 
experiments conducted in duplicate. * Indicates a significant effect of pH 8.2 relative to 
pH 7.2 Bmax (Students t-test for paired samples, P < 0.05). 
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cells (by 36 %) (Figure 4.5C), and led to a significant decrease in the ability of 

dipyridamole (Ki = 413 ± 124 nM), NBMPR (Ki = 5.8 ± 1.0 nM) and dilazep (Ki = 16 ± 2 nM) 

to inhibit [3H]2-chloroadenosine  uptake (Figure 4.10A).  On the other hand, the ability of 

substrates such as adenosine and inosine to inhibit [3H]2-chloroadenosine  uptake was 

unaffected by MMTS treatment (Figure 4.10B).   

 

4.3.3 Protection of hENT1 from the effects of MMTS  

To determine if the effects of MMTS could be blocked with either inhibitor or substrate, 

PK15-hENT1 cells were treated with MMTS in the presence of unlabelled NBMPR or 

adenosine. Given that the inhibitor binding site is predicted to overlap the substrate 

translocation site but with a different set of binding determinants, both the prototypical 

inhibitor (NBMPR) and substrate (adenosine) were used in these protection studies at 

concentrations that were above their calculated affinities to the transporter. Co-

incubation of cells with MMTS and either adenosine (1 mM) or NBMPR (10 nM) 

produced a similar enhancement of [3H]NBMPR binding in intact cells as did MMTS alone 

(Figure 4.11A, 4.11B).  

 

4.3.4 Effects of MTSES on NBMPR binding and on 2-chloroadenosine uptake: the NBMPR 

binding pocket is sensitive to negatively charged thiol modification of cytoplasmic 

cysteines. 

The negatively charged reagent pCMBS in previous studies produced either no effect on 

intact cells or a much smaller effect compared to NEM on ENT1 function in different cell 

models and conditions. We assessed the effects of the negatively charged reagent, 

MTSES, on PK15-hENT1 cells. The negatively charged membrane-impermeable thiol 

modifier MTSES had no effect on [3H]NBMPR binding in whole cells but did inhibit 

[3H]NBMPR  binding to isolated membranes (~60% inhibition to 0.43 ± 0.11 pmol/mg) 

(Figures 4.12A, 4.12B). The inability of MTSES to affect NBMPR binding of whole cells 

mimics previous studies in our lab by Vyas et al. and Robillard et al. where pCMBS was 

only able to inhibit NBMPR binding in broken cell preparations [157, 174]. In addition to  
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Figure 4.10. Effects of the treatment of hENT1 with MMTS on the inhibition of 
substrate uptake. Inhibition of [3H]2-chloroadenosine uptake by a range of 
concentrations of inhibitors (Panel A) and of substrates (Panel B) by cells that have been 
pretreated with either 0.1% DMSO (solid lines, closed symbols) or 1 mM MMTS (dashed 
lines, open symbols).  Each point is the mean ± SEM from at least four experiments.  
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Figure 4.11. NBMPR and adenosine are unable to protect against MMTS effects. Effect 
of MMTS on NBMPR binding to cells by co-incubation with 10 nM NBMPR (Panel A) and 
1 mM adenosine (Panel B).  PK15-hENT1 cells were incubated for 10 min at room 
temperature with 0.1% DMSO (control), 10 nM NBMPR (+NBMPR) or 1 mM adenosine 
(+adenosine), 1 mM MMTS (+MMTS) or the combination of 10 nM NBMPR/1 mM 
adenosine and 1 mM MMTS. After extensive washing to remove NBMPR and un-reacted 
MMTS, cells were exposed to a range of concentrations of [3H]NBMPR in the presence 
and absence of 10 µM NBTGR to define the site-specific binding.  Each point is the mean 
± SEM from at least five experiments conducted in duplicate. * Indicates there was a 
significant difference between the MMTS, NBMPR/MMTS or adenosine/MMTS treated 
cells compared with their respective experimental control Bmax (Students t-test for  
paired samples, P < 0.05).
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Figure 4.12. Effect of MTSES on hENT1. Effects of MTSES on [3H]NBMPR  binding of 
PK15-hENT1 cells (Panel A), cell membranes (Panel B) and on [3H]2-chloroadenosine 
uptake by PK15-hENT1 cells (Panel C). Cells or membranes were incubated with either 5 
mM MTSES or 0.5% DMSO (Control) for 10 min, washed thrice, and then incubated with 
a range of concentrations of [3H]NBMPR (abscissa) in the presence and absence of 10 
µM NBTGR to define total and nonspecific binding (Panel A and B) or cells were assessed 
for their capacity to accumulate [3H]2-chloroadenosine (5 s incubation) in the presence 
and absence of 5 µM NBTGR/dipyridamole (Panel C).  Each point represents the mean ± 
SEM from at least five experiments. * Significant difference from control Bmax (Student's  
t test for paired samples, P <0.05).
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having no effect in whole cell NBMPR binding, MTSES treatment of PK15-hENT1 cells had 

no effect on [3H]2-chloroadenosine uptake (Figure 4.12C).  

 

4.3.5 Effects of MTSET on NBMPR binding and 2-chloroadenosine uptake: the NBMPR 

binding pocket and substrate translocation site are sensitive to a thiol modifier with a 

positive charge 

Previous studies on ENT1-thiol modification have limited their thiol reagents to ones of 

neutral or negative charge. Our study widened the scope of cysteine accessibility by 

using a positively charged sulfhydryl reagent, MTSET. Though MTSET and MTSES are 

similar in size, they differ in charge and therefore may provide additional information on 

hENT1 structure as any differences in effects between them may be attributable to the 

charge difference. Treatment of PK15-hENT1 cells with the membrane-impermeable 

MTSET produced a slight but significant decrease (13 %) in [3H]NBMPR binding in intact 

cells (Figure 4.13A). This same treatment also decreased binding to isolated membranes 

(by about 60% to 0.42 ± 0.18 pmol/mg) (Figure 4.13B). When testing the sensitivity of 

hENT1 transport mechanism to the thiol modification by a positively charged reagent, 

MTSET increased the Vmax of [3H]2-chloroadenosine  uptake by 45 % with no change in 

Km (Figure 4.13C).   

 

4.4 Summary of MTS effects  

In all cases, the effects on [3H]NBMPR  binding and [3H]2-chloroadenosine  uptake 

reflected a change in maximum (Bmax, Vmax) rather than a change in affinity (Kd, Km) for 

the ligand. As summarized in Table 4.1, the neutral membrane permeable MMTS caused 

significant effects in both binding Bmax and uptake Vmax. The negatively charged 

membrane impermeable reagent MTSES produced no changes in whole cell hENT1 

functionality. The positively charged membrane impermeable reagent MTSET caused a 

decrease in binding Bmax and an enhanced uptake Vmax. All three MTS reagents produced 

a significant decrease in NBMPR binding in broken cell membrane preparations. This 
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Figure 4.13. Effect of MTSET on hENT1. Effects of MTSET on [3H]NBMPR binding by 
PK15-hENT1 cells (Panel A), cell membranes (Panel B) and on [3H]2-chloroadenosine 
uptake by PK15-hENT1 cells (Panel C). Cells or membranes were incubated with either 5 
mM MTSET or 0.5% DMSO (Control) for 10 min, washed thrice, and then incubated with 
a range of concentrations of [3H]NBMPR (abscissa) in the presence and absence of 10 
µM NBTGR to define total and nonspecific binding (Panel A and B) or assessed for their 
capacity to accumulate [3H]2-chloroadenosine (5 s incubation) in the presence and 
absence of 5 µM NBTGR/dipyridamole (Panel C). Each point represents the mean ± SEM 
from at least 5 experiments done in duplicate. * Significant difference from control Bmax 
for NBMPR binding studies and control Vmax for uptake studies (Student's t test for  
paired samples, P <0.05)
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suggests there is a hENT1 cysteine being modified by the positively charged reagent 

MTSET that could not be accessed by the negatively charged reagent MTSES in whole 

cells. In addition to this predicted-extracellular cysteine, there is also a second cysteine 

that is being modified by the membrane permeable reagent MMTS to cause an increase 

in NBMPR binding located within a lipophilic environment. Lastly, there is a cysteine 

located cytoplasmically that is contributing to NBMPR binding. This is yet another 

cysteine given that modification of this cytoplasmic cysteine with all three MTS reagents 

results in a decrease in NBMPR binding.  These results support our first and second 

hypotheses where we hypothesized that there were two seperate cysteines located in 

two separate environments that when modified would affect hENT1 function; one of 

these cysteines was predicted to be in a hydrophobic environment, and the second 

cysteine was predicted to be in a cytoplasmic location.  

 

4.5 Mutation of 10 endogenous cysteines 

The preceding studies indicated the importance of cysteine residues to hENT1 function. 

Therefore to determine which cysteines were involved in the effects observed with MTS 

reagents (Table 4.1), we systematically mutated each cysteine to serine (a modest 

change in reactive side chain and size) and assessed mutant function. Additionally, the 

cysteine to serine mutants were tested for their sensitivity to MTS reagents and 

examined to see if they contributed to those effects in wild-type hENT1. The intent of 

this approach was to determine the cysteine responsible for the MTSET effects. 

Subsequently, the residue could be removed to construct an extracellular cysteine-less 

mutant unresponsive to MTSET to create a template for future cysteine mutagenesis 

studies in mapping the extracellular binding domain of NBMPR.  



74 
 

 

Table 4.1. Summary of the effects of MTS reagents on [3H]NBMPR binding (Bmax) and 
[3H]2-chloroadenosine (Vmax)  by cells and cell membranes transfected with hENT1. 
Data shown are the percent change mean ± SEM from at least four independent 
experiments. 

 

MTS 
Reagent 

[3H]NBMPR binding of 
intact cells (% control 
Bmax) 

[3H]NBMPR binding of 
cell membrane (% 
control Bmax) 

[3H]2-chloroadenosine 
uptake (% control Vmax) 

MMTS 62 ± 11% increase in Bmax  43±5% decrease in Bmax  36 ± 16% decrease in 
Vmax  

MTSET 13 ± 4% decrease in Bmax  71±10% decrease in Bmax  45 ± 24% increase in 
Vmax  

MTSES No effect 29±12% decrease in Bmax  No effect 
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4.5.1 Mutation of C87 to serine 

hENT1-C87S cells bound [3H]NBMPR  with a Kd of 0.3 ± 0.06 nM which is not significantly 

different from that obtained for wild-type hENT1 (Figure 4.14A, Table 4.2).  Likewise, 

membranes prepared from these cells had a Kd of 0.2 ± 0.04 nM which is similar to that 

determined for wild-type hENT1 membranes (Figure 4.14B).  However, the Km for [3H]2-

chloroadenosine  uptake (27 ± 3 µM) was significantly lower than that seen for wild-type 

hENT1 (71 ± 8 µM) (Figure 4.14C, Table 4.2).  The Bmax of [3H]NBMPR  binding and the 

Vmax of [3H]2-chloroadenosine uptake by hENT1-C87S cells were 1.4 ± 0.1 x 105 ENT1 

sites/cell and 6.5 ± 0.4 pmol/µl/s (Figure 4.14A, 4.14C), respectively, giving a Vmax/Bmax 

ratio of 4.6 ± 0.5 X 10-5 pmol/ENT1/s which is significantly greater than the Vmax/Bmax 

ratio of for the wild-type hENT1 (calculated from all control data sets).  

 

4.5.1.1 C87S MTS treatment 

As seen for the wild-type hENT1, MMTS treatment increased the Bmax of [3H]NBMPR  

binding to hENT1-C87S by 49 ± 12%, and decreased the Vmax of [3H]2-chloroadenosine  

influx by 20 ± 14% with no significant change in Kd (Figure 4.15A, 4.15C).  Neither MTSES 

nor MTSET had any effect on [3H]NBMPR  binding to intact hENT1-C87S transfected cells 

(Figure 4.16A, 4.16C).  However, as in wild-type hENT1, MTSET enhanced (51 ± 24%) the 

Vmax of [3H]2-chloroadenosine  uptake by hENT1-C87S and MTSES had no effect (Figure 

4.16B, 4.16D).  In isolated membranes MMTS decreased the Bmax of [3H]NBMPR  binding 

(from 0.7 ± 0.05 to 0.3 ± 0.01 pmol/mg), with no significant change in Kd (Figure 4.15B).    

 

4.5.2 Mutation of C193 to serine 

hENT1-C193S cells bound [3H]NBMPR with a Kd of 0.2 ± 0.03 nM to a maximum of 2.5 ± 

0.3 x 105 ENT1 sites/cell (Figure 4.17A, Table 4.2). Membranes prepared from these cells 

had a Kd of 0.1 ± 0.02 nM and a [3H]NBMPR  Bmax of 17 ± 2 pmol/mg protein (Figure 

4.17B). The Km and Vmax for [3H]2-chloroadenosine  uptake were 39 ± 5 µM and 5.1 ± 0.6 

pmol/ µl/s (Figure 4.17C, Table 4.2), respectively, resulting in a Vmax/Bmax ratio of 2.0 ± 

0.3 pmol/ENT1/s which is similar to that seen in for the wild-type hENT1.   
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Figure 4.14. Characterization of PK15-C87S. [3H]NBMPR binding of PK15-C87S cells 
(Panel A) and PK15-C87S membranes (Panel B) and [3H]2-chloroadenosine uptake of 
PK15-C87S cells (Panel C). For panels A and B, cells and membranes were incubated 
with a range of concentrations of [3H]NBMPR  (abscissa) in the presence (nonspecific 
binding) and absence of 10 µM NBTGR (total binding). Specific binding was determined 
by total bound minus non-specific bound. Each point represents the mean ± SEM from at 
least four experiments done in duplicate. For panel C, cells were incubated with a range 
of concentrations of [3H]2-chloroadenosine for 5 s in the presence (Non-mediated) or 
absence (Total uptake) of 5 µM dipyridamole/NBTGR. Transporter-mediated uptake 
(Mediated) was calculated as the difference between the total and non-mediated 
uptake components.  Each point represents the mean ± SEM of the cellular accumulation 
of [3H]2-chloroadenosine from at least four independent experiments conducted in 
duplicate.
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Table 4.2. Summary of effects of cysteine mutations on the binding of [3H]NBMPR to 
PK15-hENT1 cells and the uptake of [3H]2-chloroadenosine by PK15-hENT1 cells. Data 
shown are the means ± SEM from at least four independent experiments.  * Significant 
difference from wildtype hENT1 affinities (P < 0.05 one-way ANOVA : Dunnett’s post-
test). n/d indicates that values were not determined 
 

 NBMPR Binding 2-chloroadenosine Uptake 

 

Bmax 

(# ENT1 sites/cell) 
x 105 

Kd 

(nM) 

Vmax 

(pmol/µl/s) 

Km 

(µM) 

PK15-NTD n/d n/d n/d n/d 

PK15- hENT1 3.6 ± 0.20 0.38 ± 0.02 9.5 ± 0.75 71 ± 7.7 

PK15-C87S 1.4 ± 0.12 0.30 ± 0.06 6.5 ± 0.40 27 ± 2.5* 

PK15-C193S 2.5 ± 0.30 0.24 ± 0.03 5.1 ± 0.56 39 ± 4.7* 

PK15-C213S 2.8 ± 0.62 0.45 ± 0.10 22 ± 2.8 77 ± 10 

PK15-C222S 2.0 ± 0.16 0.29 ± 0.04 9.3 ± 1.3 63 ± 11 

PK15-C297S 1.3 ± 0.25 0.30 ± 0.04 5.7 ± 0.68 61 ± 13 

PK15-C333S 4.3 ± 0.40 0.37 ± 0.06 6.7 ± 0.75 39 ± 5.0* 

PK15-C378S 4.7 ± 0.35 0.39 ± 0.03 11 ± 1.0 57 ± 6.3 

PK15-C414S 2.1 ± 0.23 0.45 ± 0.05 6.3 ± 0.42 35 ± 5.0* 

PK15-C416A 4.6 ± 2.3 0.10 ± 0.02 n/d n/d 

PK15-C439A 8.6 ± 1.4 0.50 ± 0.10 8.4 ± 0.80 165 ± 32  
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Figure 4.15. Effect of MMTS treatment on C87S activity. Effects of MMTS on 
[3H]NBMPR  binding of PK15-C87S cells (Panel A), cell membranes (Panel B) and on 
[3H]2-chloroadenosine uptake by PK15-C87S cells (Panel C). Cells or cell membranes 
were incubated with either 1 mM MMTS or 0.1% DMSO (Control) for 10 min, washed 
extensively, and then incubated with a range of concentrations of [3H]NBMPR in the 
presence and absence of 10 µM NBTGR to define total and nonspecific binding (Panel A 
and B). Panel C describes the concentration-dependent uptake of [3H]2-chloroadenosine 
of cells treated for 10 min with 1 mM MMTS or 0.1% DMSO (Control)  and washed three 
times. Cells were incubated with a range of concentrations of [3H]2-chloroadenosine for 
5 s in the presence (Non-mediated) or absence (Total uptake) of 5 µM 
dipyridamole/NBTGR. Each point represents the mean ± SEM of the cellular 
accumulation of [3H]2-chloroadenosine from at least four independent experiments 
conducted in duplicate. * Significant difference from control Bmax for NBMPR binding 
studies and control Vmax for uptake studies (Student's t test for paired samples, P <0.05) 
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Figure 4.16. Treatment of C87S with MTSET and MTSES. Effects of MTSET (Panel A and 
B) and MTSES (Panel C and D) on [3H]NBMPR binding and on [3H]2-chloroadenosine 
uptake by hENT1-C87S expressed in PK15-NTD cells.  For Panel A and C, cells were 
incubated with either 5 mM MTSET (Panel A), or 5 mM MTSES (Panel C) for 10 min, 
washed extensively, and then incubated with a range of concentrations of [3H]NBMPR in 
the presence and absence of 10 µM NBTGR to define total and nonspecific binding. Each 
point represents the mean ± SEM from at least 5 experiments done in duplicate. For 
Panel B and D, cells were incubated with either 5 mM MTSET (Panel B) or 5 mM MTSES 
(Panel D) for 10 min, washed extensively, and then incubated with a range of 
concentrations of [3H]2-chloroadenosine for 5 s in the presence (Non-mediated) or 
absence (Total uptake) of 5 µM dipyridamole/NBTGR. Each point represents the mean ± 
SEM of the cellular accumulation of [3H]2-chloroadenosine from at least four 
independent experiments conducted in duplicate. * Significant difference from control 
Bmax for NBMPR binding studies and control Vmax for uptake studies (Student's t test for  
paired samples, P <0.05)
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Figure 4.17. Characterization of PK15-C193S. [3H]NBMPR binding of PK15-C1963S cells 
(Panel A) and PK15-C193S membranes (Panel B) and [3H]2-chloroadenosine uptake of 
PK15-C193S cells (Panel C). For panels A and B, cells and membranes were incubated 
with a range of concentrations of [3H]NBMPR  (abscissa) in the presence (nonspecific 
binding) and absence of 10 µM NBTGR (total binding). Specific binding was determined 
by total bound minus non-specific bound. Each point represents the mean ± SEM from at 
least four experiments done in duplicate. For panel C, cells were incubated with a range 
of concentrations of [3H]2-chloroadenosine for 5 s in the presence (Non-mediated) or 
absence (Total uptake) of 5 µM dipyridamole/NBTGR. Transporter-mediated uptake 
(Mediated) was calculated as the difference between the total and non-mediated 
uptake components.  Each point represents the mean ± SEM of the cellular accumulation 
of [3H]2-chloroadenosine from at least four independent experiments conducted in 
duplicate.
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4.5.2.1 Effects of MTS treatment on the function of C193S 

MMTS treatment more than doubled (106 ± 28% increase) the number of [3H]NBMPR  

binding sites in hENT1-C193S cells relative to wild-type hENT1 (Figure 4.18A), and this 

effect was significantly greater than that observed for any of the other hENT1 mutants 

tested in this study.  Also, unlike that observed for the wild-type hENT1 and other 

mutants, MMTS did not affect the rate of [3H]2-chloroadenosine  uptake in the C193S 

cells (Figure 4.18B).  Likewise, the membrane-impermeable reagents (MTSET and 

MTSES) had no effect on either [3H]NBMPR  binding or [3H]2-chloroadenosine  uptake in 

these cells (Figure 4.19A, 4.19B).  

 

4.5.3 Mutation of C213 to serine 

hENT1-C213S cells bound [3H]NBMPR  with a Kd of 0.4 ±0.1 nM to a maximum of 2.8 ± 

0.6 x 105 ENT1 sites/cell (Figure 4.20A, Table 4.2). Membranes prepared from these cells 

had a Kd of 0.2 ± 0.02 nM and a [3H]NBMPR  Bmax of 0.7 ± 0.03 pmol/mg protein (Figure 

4.20B). The Km and Vmax for [3H]2-chloroadenosine  uptake were 77 ± 10 µM and 22 ± 3 

pmol/ µl/s (Figure 4.20C, Table 4.2), respectively, resulting in a Vmax/Bmax ratio of 7.9 ± 

2.0 pmol/ENT1/s which is significantly greater than that of wild-type hENT1. The cells 

transfected with hENT1-C213S appeared to increase in their transport and binding 

capacity with time. In this way they were distinct from the other hENT1-mutants tested, 

which remained relatively consistent in their binding and transport capacity throughout 

the study.   

 

4.5.3.1 C213S MTS treatments 

The effects of the MTS reagents were comparable to that seen for the wild-type hENT1 

cells.  MMTS treatment induced a 56 ± 20% increase in [3H]NBMPR  binding Bmax and a 

40 ± 7% decrease in the Vmax of [3H]2-chloroadenosine  uptake (Figure 4.21A, 4.21B). 

MTSET inhibited [3H]NBMPR  binding by a significant 18 ± 12%, but had no effect of 

[3H]2-chloroadenosine  uptake (Figure 4.22A, 4.22B), which makes this mutant similar to 

C193S in that regard.  MTSES had no effect on either [3H]NBMPR  binding or [3H]2-  
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Figure 4.18. Effects of MMTS treatment on C193S activity. Effects of MMTS on 
[3H]NBMPR  binding (Panel A) and [3H]2-chloroadenosine (Panel B) uptake by hENT1-
C193S expressed in PK15-NTD cells.  Cells were incubated with either 1 mM MMTS or 
0.1% DMSO (Control) for 10 min, washed extensively, and then incubated with a range 
of concentrations of [3H]NBMPR in the presence and absence of 10 µM NBTGR to define 
total and nonspecific binding. Panel B describes the concentration-dependent uptake of 
[3H]2-chloroadenosine of cells treated for 10 min with 1 mM MMTS or 0.1% DMSO 
(Control)  and washed three times. Cells were incubated with a range of concentrations 
of [3H]2-chloroadenosine for 5 s in the presence (Non-mediated) or absence (Total 
uptake) of 5 µM dipyridamole/NBTGR. Each point represents the mean ± SEM of the 
cellular accumulation of [3H]2-chloroadenosine from at least four independent 
experiments conducted in duplicate. * Significant difference from control Bmax  (Student's  
t test for paired samples, P <0.05).
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Figure 4.19. Treatment of C193S with MTSET and MTSES. Effects of MTSET and MTSES 
on [3H]NBMPR  binding (Panel A) and [3H]2-chloroadenosine (Panel B) uptake by hENT1-
C193S expressed in PK15-NTD cells.  Cells were incubated with either 5 mM MTSET (blue 
squares), or 5 mM MTSES (green squares) for 10 min, washed extensively, and then 
incubated with a range of concentrations of [3H]NBMPR in the presence and absence of 
10 µM NBTGR to define total and nonspecific binding. Panel B describes the 
concentration-dependent uptake of [3H]2-chloroadenosine of cells treated for 10 min 
with either 5 mM MTSET or 5 mM MTSES and washed three times. Cells were then 
incubated with a range of concentrations of [3H]2-chloroadenosine for 5 s in the 
presence (Non-mediated) or absence (Total uptake) of 5 µM dipyridamole/NBTGR. Each 
point represents the mean ± SEM of the cellular accumulation of [3H]2-chloroadenosine 
from at least five independent experiments conducted in duplicate.



84 
 

 

0.0 0.5 1.0 1.5
0

1.0×105

2.0×105

3.0×105
C213S

[
3
H] NBMPR (nM)

S
p

e
c
if

ic
 B

o
u

n
d

 (
E

N
T

1
/c

e
ll

)

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8 C213S

[
3
H] NBMPR (nM)

S
p

e
c
if

ic
 B

o
u

n
d

 (
p

m
o

l/
m

g
)

A B

0 100 200 300 400
0

5

10

15

20

C213S

[
3
H] 2-chloroadenosine (M)

In
it

ia
l 
ra

te
 o

f 
u

p
ta

k
e
 (

p
m

o
l/


l/
s
)

C

 

Figure 4.20. Characterization of PK15-C213S. [3H]NBMPR binding of PK15-C213S cells 
(Panel A) and PK15-C213S membranes (Panel B) and [3H]2-chloroadenosine uptake of 
PK15-C213S cells (Panel C). For panels A and B, cells and membranes were incubated 
with a range of concentrations of [3H]NBMPR  (abscissa) in the presence (nonspecific 
binding) and absence of 10 µM NBTGR (total binding). Specific binding was determined 
by total bound minus non-specific bound. Each point represents the mean ± SEM from at 
least four experiments done in duplicate. For panel C, cells were incubated with a range 
of concentrations of [3H]2-chloroadenosine for 5 s in the presence (Non-mediated) or 
absence (Total uptake) of 5 µM dipyridamole/NBTGR. Transporter-mediated uptake 
(Mediated) was calculated as the difference between the total and non-mediated 
uptake components.  Each point represents the mean ± SEM of the cellular accumulation 
of [3H]2-chloroadenosine from at least four independent experiments conducted in 
duplicate.
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Figure 4.21. Treatment of C213S with MMTS. Effects of MMTS on [3H]NBMPR  binding 
(Panel A) and [3H]2-chloroadenosine (Panel B) uptake by hENT1-C213S expressed in 
PK15-NTD cells.  Cells were incubated with either 1 mM MMTS or 0.1% DMSO (Control) 
for 10 min, washed extensively, and then incubated with a range of concentrations of 
[3H]NBMPR in the presence and absence of 10 µM NBTGR to define total and 
nonspecific binding. Specific binding was calculated as the difference between the total 
and nonspecific binding components. Each point represents the mean ± SEM from at 
least 5 experiments done in duplicate. Panel B describes the concentration-dependent 
uptake of [3H]2-chloroadenosine of cells treated for 10 min with 1 mM MMTS or 0.1% 
DMSO (Control)  and washed three times. Cells were incubated with a range of 
concentrations of [3H]2-chloroadenosine for 5 s in the presence (Non-mediated) or 
absence (Total uptake) of 5 µM dipyridamole/NBTGR. Transporter-mediated uptake 
(Mediated) was calculated as the difference between the total and non-mediated 
uptake components.  Each point represents the mean ± SEM of the cellular accumulation 
of [3H]2-chloroadenosine from at least four independent experiments conducted in 
duplicate. * Significant difference from control Bmax for NBMPR binding studies and 
control Vmax for uptake studies (Student's t test for paired samples, P <0.05) 
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 Figure 4.22. Treatment of C213S with MTSET and MTSES. Effects of MTSET (Panel A 
and B) and MTSES (Panel C and D) on [3H]NBMPR binding and on [3H]2-chloroadenosine 
uptake of hENT1-C213S expressed in PK15-NTD cells.  For Panel A and C, cells were 
incubated with either 5 mM MTSET (Panel A), or 5 mM MTSES (Panel C) for 10 min, 
washed extensively, and then incubated with a range of concentrations of [3H]NBMPR in 
the presence and absence of 10 µM NBTGR to define total and nonspecific binding. Each 
point represents the mean ± SEM from at least 5 experiments done in duplicate. For 
Panel B and D, cells were incubated with either 5 mM MTSET (Panel B) or 5 mM MTSES 
(Panel D) for 10 min, washed extensively, and then incubated with a range of 
concentrations of [3H]2-chloroadenosine for 5 s in the presence (Non-mediated) or 
absence (Total uptake) of 5 µM dipyridamole/NBTGR. Transporter-mediated uptake 
(Mediated) was calculated as the difference between the total and non-mediated 
uptake components.  Each point represents the mean ± SEM of the cellular accumulation 
of [3H]2-chloroadenosine from at least four independent experiments conducted in 
duplicate. 
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chloroadenosine uptake in the C213S mutants (Figure 4.22C, 4.22D).  

 

4.5.4 Mutation of C222 to serine 

hENT1-C222S cells bound [3H]NBMPR  with a Kd of 0.3 ±0.04 nM to a maximum of 2.0 ± 

0.2 x 105 ENT1 sites/cell (Figure 4.23A, Table 4.2). Membranes prepared from these cells 

had a Kd of 0.08 ± 0.01 nM and a [3H]NBMPR  Bmax of 0.5 ± 0.05 pmol/mg protein (Figure 

4.23B). The Km and Vmax for [3H]2-chloroadenosine  uptake were 63 ± 11 µM and 9.3 ± 

1.3 pmol/ µl/s (Figure 4.23C, Table 4.2), respectively, resulting in a Vmax/Bmax ratio of 4.7 

± 0.8 pmol/ENT1/s, which is significantly greater than that of wild-type hENT1.  

 

4.5.4.1 C222S MTS treatments 

MMTS treatment had no significant effect on [3H]NBMPR  binding to hENT1-C222S in 

intact cells (Figure 4.24A), making this the only mutant studied that did not respond to 

MMTS with an increase in [3H]NBMPR  binding.  MTSES had no effect on NBMPR binding 

however MTSET induced a slight inhibition of [3H]NBMPR  binding, similar to that seen in 

the hENT1 wild-type cells and the C213S mutants (Figure 4.25A).  The C222S cells were 

also similar to the C87S and C213S mutants and the hENT1 wild-type cells in that MMTS 

caused a significant decrease (53 ± 21%) in the maximal rate of [3H]2-chloroadenosine  

uptake (Figure 4.24B).  Neither MTSET nor MTSES affected [3H]2-chloroadenosine  

uptake by the hENT1-C222S cells (Figure 4.25B).  The hENT1-C222S mutant was also the 

only one of those studied that did not show a significant decrease in [3H]NBMPR binding 

Bmax in isolated cell membranes treated with MMTS. Additionally, when C222S intact 

cells were treated with MMTS (or DMSO as control) and then used to prepare isolated 

membranes for analysis of [3H]NBMPR  binding, the membranes derived from cells 

treated with MMTS had Bmax that were not significantly different than those membranes 

prepared from cells treated with DMSO alone (Figure 4.26A, 4.26B).  MMTS did 

however, appear to decrease the affinity of [3H]NBMPR  for its binding sites in the C222S 

cells relative to wild-type hENT1 (Kd of 0.2 ± 0.03 and 0.08 ± 0.01 nM in C222S and 

hENT1 wild-type, respectively).   MTSET treatment, on the other hand, almost 
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Figure 4.23. Characterization of PK15-C222S. [3H]NBMPR binding of PK15-C222S cells 
(Panel A) and PK15-C222S membranes (Panel B) and [3H]2-chloroadenosine uptake of 
PK15-C222S cells (Panel C). For panels A and B, cells and membranes were incubated 
with a range of concentrations of [3H]NBMPR  (abscissa) in the presence (nonspecific 
binding) and absence of 10 µM NBTGR (total binding). Specific binding was determined 
by total bound minus non-specific bound. Each point represents the mean ± SEM from at 
least four experiments done in duplicate. For panel C, cells were incubated with a range 
of concentrations of [3H]2-chloroadenosine for 5 s in the presence (Non-mediated) or 
absence (Total uptake) of 5 µM dipyridamole/NBTGR. Transporter-mediated uptake 
(Mediated) was calculated as the difference between the total and non-mediated 
uptake components.  Each point represents the mean ± SEM of the cellular accumulation 
of [3H]2-chloroadenosine from at least four independent experiments conducted in 
duplicate. 
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Figure 4.24. Treatment of C222S with MMTS: NBMPR binding to C222S is insensitive to 
MMTS. Effects of MMTS on [3H]NBMPR  binding (Panel A) and [3H]2-chloroadenosine 
(Panel B) uptake by hENT1-C222S expressed in PK15-NTD cells.  Cells were incubated 
with either 1 mM MMTS or 0.1% DMSO (Control) for 10 min, washed extensively, and 
then incubated with a range of concentrations of [3H]NBMPR in the presence and 
absence of 10 µM NBTGR to define total and nonspecific binding. Specific binding was 
calculated as the difference between the total and nonspecific binding components. 
Each point represents the mean ± SEM from at least 5 experiments done in duplicate. 
Panel B describes the concentration-dependent uptake of [3H]2-chloroadenosine of cells 
treated for 10 min with 1 mM MMTS or 0.1% DMSO (Control)  and washed three times. 
Cells were incubated with a range of concentrations of [3H]2-chloroadenosine for 5 s in 
the presence (Non-mediated) or absence (Total uptake) of 5 µM dipyridamole/NBTGR. 
Transporter-mediated uptake (Mediated) was calculated as the difference between the 
total and non-mediated uptake components.  Each point represents the mean ± SEM of 
the cellular accumulation of [3H]2-chloroadenosine from at least four independent 
experiments conducted in duplicate. * Significant difference from control Vmax (Student's 
t test for paired samples, P <0.05). 
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Figure 4.25. Treatment of C222S with MTSET and MTSES. Effects of MTSET and MTSES 
on [3H]NBMPR  binding (Panel A) and [3H]2-chloroadenosine (Panel B) uptake by hENT1-
C222S expressed in PK15-NTD cells.  Cells were incubated with either 5 mM MTSET (blue 
squares), or 5 mM MTSES (green squares) for 10 min, washed extensively, and then 
incubated with a range of concentrations of [3H]NBMPR in the presence and absence of 
10 µM NBTGR to define total and nonspecific binding. Specific binding was calculated as 
the difference between the total and nonspecific binding components. Each point 
represents the mean ± SEM from at least 5 experiments done in duplicate. Panel B 
describes the concentration-dependent uptake of [3H]2-chloroadenosine of cells treated 
for 10 min with either 5 mM MTSET or 5 mM MTSES and washed three times. Cells were 
then incubated with a range of concentrations of [3H]2-chloroadenosine for 5 s in the 
presence (Non-mediated) or absence (Total uptake) of 5 µM dipyridamole/NBTGR. 
Transporter-mediated uptake (Mediated) was calculated as the difference between the 
total and non-mediated uptake components.  Each point represents the mean ± SEM of 
the cellular accumulation of [3H]2-chloroadenosine from at least four independent 
experiments conducted in duplicate. * Significant difference from control Bmax (Student's 
t test for paired samples, P <0.05). 
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Figure 4.26. Cell membrane treatment of C222S with MMTS.  
Effects of MMTS on [3H]NBMPR binding to hENT1-C222S cell membranes isolated from 
cells pre-treated with MMTS (Panel A) and hENT1-C222S cell membranes treated with 
MMTS (Panel B). PK15-C222S cells and membranes were incubated with a range of 
concentrations of [3H]NBMPR (abscissa) in the presence (nonspecific binding) and 
absence of 10 µM NBTGR (total binding).  Each point represents the mean ± SEM from at 
least four experiments done in duplicate. Nonlinear regression analysis was used to fit 
hyperbolic curves to the site-specific binding of [3H]NBMPR plotted against the free 
[3H]NBMPR concentration at steady-state.  
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Figure 4.27. Cell membrane treatment of C222S with MTSET. Effect of MTSET on 
[3H]NBMPR  binding by PK15-C222S cell membranes. Membranes were incubated with 
either 5 mM MTSET or 0.5% DMSO (Control) for 10 min, washed thrice, and then 
incubated with a range of concentrations of [3H]NBMPR (abscissa) in the presence and 
absence of 10 µM NBTGR to define total and nonspecific binding. Specific binding 
(ordinate) was calculated as the difference between the total and nonspecific binding 
components. Each point represents the mean ± SEM from at least 5 experiments done in 
duplicate. * Significant difference from control Bmax (Student's t test for paired samples,  
P <0.05).
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completely eliminated [3H]NBMPR binding to the isolated membranes (0.04 ± 0.01 

pmol/mg protein versus 0.4 ± 0.01 pmol/mg protein in the control cells) (Figure 4.27).   

 

4.5.4.2 C222S pH effects 

Mutation of C222 to serine abolished the effects of MMTS treatment similarly to the 

way alkaline pH abolished the effects of MMTS treatment in wild-type hENT1. Given that 

wild-type hENT1 showed enhanced binding in alkaline pH, and that MMTS is targeted to 

C222, we hypothesized that C222 was also involved in the pH effects seen in wild-type. 

PK15-C222S cells were incubated with NMG buffer at pH 7.4 and 8.4 and we found 

specific binding of [3H]NBMPR in pH 7.4 and 8.4 yielded near identical Bmax values of 4.9 

± 0.1 x 105 ENT1 sites/cell and 5.2 ± 0.1 x 105 ENT1 sites/cells respectively (Figure 4.28).  

 

4.5.5 Mutation of C297 to serine: 

hENT1-C297S cells bound [3H]NBMPR with a Kd of 0.3 ± 0.04 nM, which is not 

significantly different from that obtained in wild-type hENT1 (Figure 4.29A, Table 4.2). 

Membranes prepared from these cells had a Kd of 0.1 ± 0.01 nM and a [3H]NBMPR  Bmax 

of 0.4 ± 0.01 pmol/mg protein (Figure 4.29B). Similarly, the Km for [3H]2-chloroadenosine 

uptake was 61 ± 13 µM for C297S-hENT1 which is not significantly different to the wild-

type Km values as previously calculated (Figure 4.29C, Table 4.2). The Bmax of [3H]NBMPR  

binding and the Vmax of [3H]2-chloroadenosine uptake by hENT1-C297S cells were 1.3 ± 

0.2 x 105 ENT1 sites/cell and 5.7 ± 0.6 pmol/µl/s, respectively, giving a Vmax/Bmax ratio of 

4.5 ± 0.9 X 10-5 pmol/ENT1/s.  

 

4.5.5.1 C297S MTS treatments 

When treated with MMTS, hENT1-C297S showed a similar enhancement in Bmax of 

[3H]NBMPR  binding by 52 ± 4% with no significant change in Kd as previously described 

in the wild-type (Figure 4.30A). In contrast, hENT1-C297S lost sensitivity to MMTS in 

relation to [3H]2-chloroadenosine uptake (Figure 4.30B). Treatment with MTSET yielded 

opposite results where [3H]NBMPR binding was unaffected and [3H]2-chloroadenosine  



94 
 

 

 

Figure 4.28. NBMPR binding to C222S is insensitive to pH. Effect of pH on [3H]NBMPR 
binding to PK15-C222S cells. Intact cells were incubated in NMG buffer of pH 7.2 or pH 
8.2 and then exposed to a range of concentrations of [3H]NBMPR in the presence and 
absence of 10 µM NBTGR to define the amount of site-specific binding of this ligand in 
each cell. Each point is the mean ± SEM from at least 4 experiments conducted in 
duplicate. 
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Figure 4.29. Characterization of PK15-C297S. [3H]NBMPR binding of PK15-C297S cells 
(Panel A) and PK15-C297S membranes (Panel B) and [3H]2-chloroadenosine uptake of 
PK15-C297S cells (Panel C). For panels A and B, cells and membranes were incubated 
with a range of concentrations of [3H]NBMPR  (abscissa) in the presence (nonspecific 
binding) and absence of 10 µM NBTGR (total binding). Specific binding was determined 
by total bound minus non-specific bound. Each point represents the mean ± SEM from at 
least four experiments done in duplicate. For panel C, cells were incubated with a range 
of concentrations of [3H]2-chloroadenosine for 5 s in the presence (Non-mediated) or 
absence (Total uptake) of 5 µM dipyridamole/NBTGR. Transporter-mediated uptake 
(Mediated) was calculated as the difference between the total and non-mediated 
uptake components.  Each point represents the mean ± SEM of the cellular accumulation 
of [3H]2-chloroadenosine from at least four independent experiments conducted in 
duplicate.
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Figure 4.30. Treatment of C297S with MMTS. Effects of MMTS of [3H]NBMPR  binding 
(Panel A) and [3H]2-chloroadenosine (Panel B) uptake by hENT1-C297S expressed in 
PK15-NTD cells.  Cells were incubated with either 1 mM MMTS or 0.1% DMSO (Control) 
for 10 min, washed extensively, and then incubated with a range of concentrations of 
[3H]NBMPR in the presence and absence of 10 µM NBTGR to define total and 
nonspecific binding. Specific binding was calculated as the difference between the total 
and nonspecific binding components. Each point represents the mean ± SEM from at 
least 5 experiments done in duplicate. Panel B describes the concentration-dependent 
uptake of [3H]2-chloroadenosine of cells treated for 10 min with 1 mM MMTS or 0.1% 
DMSO (Control)  and washed three times. Cells were incubated with a range of 
concentrations of [3H]2-chloroadenosine for 5 s in the presence (Non-mediated) or 
absence (Total uptake) of 5 µM dipyridamole/NBTGR. Transporter-mediated uptake 
(Mediated) was calculated as the difference between the total and non-mediated 
uptake components.  Each point represents the mean ± SEM of the cellular accumulation 
of [3H]2-chloroadenosine from at least four independent experiments conducted in 
duplicate. * Significant difference from control Bmax (Student's t test for paired samples,  
P <0.05).
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 Figure 4.31. Treatment of C297S with MTSET and MTSES. Effects of MTSET (Panel A 
and B) and MTSES (Panel C and D) on [3H]NBMPR binding and on [3H]2-chloroadenosine 
uptake of hENT1-C297S expressed in PK15-NTD cells.  For Panel A and C, cells were 
incubated with either 5 mM MTSET (Panel A), or 5 mM MTSES (Panel C) for 10 min, 
washed extensively, and then incubated with a range of concentrations of [3H]NBMPR in 
the presence and absence of 10 µM NBTGR to define total and nonspecific binding. Each 
point represents the mean ± SEM from at least 5 experiments done in duplicate. For 
Panel B and D, cells were incubated with either 5 mM MTSET (Panel B) or 5 mM MTSES 
(Panel D) for 10 min, washed extensively, and then incubated with a range of 
concentrations of [3H]2-chloroadenosine for 5 s in the presence (Non-mediated) or 
absence (Total uptake) of 5 µM dipyridamole/NBTGR. Each point represents the mean ± 
SEM of the cellular accumulation of [3H]2-chloroadenosine from at least four 
independent experiments conducted in duplicate. * Significant difference from control 
Vmax (Student's t test for paired samples, P <0.05). 
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uptake Vmax remained sensitive to MTSET enhancement (Figure 4.31A, 4.31B). MTSES, 

the negatively charged impermeable reagent, had no effect on either [3H]NBMPR or 

[3H]2-chloroadenosine kinetics (Figure 4.31C, 4.31D).   

 

4.5.6 Mutation of C333 to serine: 

hENT1-C333S cells bound [3H]NBMPR with a Kd of 0.4 ± 0.06 nM to a maximum of 4.3 ± 

0.4 X 105 ENT1 sites/cell (Figure 4.32A, Table 4.2). Membranes prepared from these cells 

had a Kd of 0.2 ± 0.01 ƞM and a [3H]NBMPR  Bmax of 2.4 ± 0.4 pmol/mg protein (Figure 

4.32B). Transport of [3H]2-chloroadenosine by hENT1-C333S had a Km and Vmax of  39 ± 5 

µM (Figure 432C, Table 4.2) and 6.7 ± 0.7 pmol/ µl/s, respectively. The Vmax/Bmax ratio 

was calculated at 1.5 ± 0.2 X 10-5 pmol/ENT1/s which is similar to wild-type hENT1, 

however the Km of hENT1-C333S is significantly lower than wild-type indicating a greater 

affinity for the substrate.  

 

4.5.6.1 C333S MTS treatments 

The effect of MMTS on hENT1-C333S [3H]NBMPR binding produced similar effects 

compared to wild-type as the neutral reagent caused a 77 ± 13% enhancement in Bmax 

(Figure 4.33A). In contrast, MMTS was unable to produce an effect on the [3H]2-

chloroadenosine uptake of hENT1-C333S (Figure 4.33B). Additionally, treatment with 

either MTSES or MTSET did not produce any effects on [3H]2-chloroadenosine uptake or 

[3H]NBMPR binding (Figure 4.34A, 4.34B).  

 

4.5.7 Mutation of C378 to serine: 

hENT1-C378S cells bound [3H]NBMPR with a Kd of 0.4 ± 0.03 nM to a Bmax of 4.7 ± 0.4 x 

105 ENT1 sites/cell (Figure 4.35A, Table 4.2). Membranes prepared from these cells had 

a Kd of 0.1 ± 0.01 nM and a [3H]NBMPR  Bmax of 1.9 ± 0.12 pmol/mg protein (Figure 

4.35B). The transport kinetics of [3H]2-chloroadenosine by hENT1-C378S were calculated 

to have a Vmax of  11 ± 1.0 pmol/ µl/s and Km of 57 ± 6 µM (Figure 4.35C, Table 4.2). The  
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Figure 4.32. Characterization of PK15-C333S. [3H]NBMPR binding of PK15-C333S cells 
(Panel A) and PK15-C333S membranes (Panel B) and [3H]2-chloroadenosine uptake of 
PK15-C333S cells (Panel C). For panels A and B, cells and membranes were incubated 
with a range of concentrations of [3H]NBMPR  (abscissa) in the presence (nonspecific 
binding) and absence of 10 µM NBTGR (total binding). Specific binding was determined 
by total bound minus non-specific bound. Each point represents the mean ± SEM from at 
least four experiments done in duplicate. For panel C, cells were incubated with a range 
of concentrations of [3H]2-chloroadenosine for 5 s in the presence (Non-mediated) or 
absence (Total uptake) of 5 µM dipyridamole/NBTGR. Transporter-mediated uptake 
(Mediated) was calculated as the difference between the total and non-mediated 
uptake components.  Each point represents the mean ± SEM of the cellular accumulation 
of [3H]2-chloroadenosine from at least four independent experiments conducted in 
duplicate.
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Figure 4.33. Treatment of C333S with MMTS. Effects of MMTS of [3H]NBMPR  binding 
(Panel A) and [3H]2-chloroadenosine (Panel B) uptake by hENT1-C333S expressed in 
PK15-NTD cells.  Cells were incubated with either 1 mM MMTS or 0.1% DMSO (Control) 
for 10 min, washed extensively, and then incubated with a range of concentrations of 
[3H]NBMPR in the presence and absence of 10 µM NBTGR to define total and 
nonspecific binding. Specific binding was calculated as the difference between the total 
and nonspecific binding components. Each point represents the mean ± SEM from at 
least 5 experiments done in duplicate. Panel B describes the concentration-dependent 
uptake of [3H]2-chloroadenosine of cells treated for 10 min with 1 mM MMTS or 0.1% 
DMSO (Control)  and washed three times. Cells were incubated with a range of 
concentrations of [3H]2-chloroadenosine for 5 s in the presence (Non-mediated) or 
absence (Total uptake) of 5 µM dipyridamole/NBTGR. Transporter-mediated uptake 
(Mediated) was calculated as the difference between the total and non-mediated 
uptake components.  Each point represents the mean ± SEM of the cellular accumulation 
of [3H]2-chloroadenosine from at least four independent experiments conducted in 
duplicate. * Significant difference from control Bmax (Student's t test for paired samples, 
P <0.05). 
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Figure 4.34. Treatment of C333S with MTSET and MTSES.  
Effects of MTSET and MTSES on [3H]NBMPR  binding (Panel A) and [3H]2-
chloroadenosine (Panel B) uptake by hENT1-C333S expressed in PK15-NTD cells.  Cells 
were incubated with either 5 mM MTSET (blue squares), or 5 mM MTSES (green 
squares) for 10 min, washed extensively, and then incubated with a range of 
concentrations of [3H]NBMPR in the presence and absence of 10 µM NBTGR to define 
total and nonspecific binding. Specific binding was calculated as the difference between 
the total and nonspecific binding components. Each point represents the mean ± SEM 
from at least 5 experiments done in duplicate. Panel B describes the concentration-
dependent uptake of [3H]2-chloroadenosine of cells treated for 10 min with either 5 mM 
MTSET or 5 mM MTSES and washed three times. Cells were then incubated with a range 
of concentrations of [3H]2-chloroadenosine for 5 s in the presence (Non-mediated) or 
absence (Total uptake) of 5 µM dipyridamole/NBTGR. Transporter-mediated uptake 
(Mediated) was calculated as the difference between the total and non-mediated 
uptake components.  Each point represents the mean ± SEM of the cellular accumulation 
of [3H]2-chloroadenosine from at least four independent experiments conducted in 
duplicate.



102 
 

 

0.0 0.5 1.0 1.5 2.0
0

1.0×10 5

2.0×10 5

3.0×10 5

4.0×10 5

5.0×10 5 C378S

[
3
H] NBMPR (nM)

S
p

e
c
if

ic
 B

o
u

n
d

 (
E

N
T

1
/c

e
ll

)

0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

2.0 C378S

[
3
H] NBMPR (nM)

S
p

e
c
if

ic
 B

o
u

n
d

 (
p

m
o

l/
m

g
)

A B

0 100 200 300 400
0

5

10

15 C378S

[
3
H] 2-chloroadenosine ( M)

In
it

ia
l 

ra
te

 o
f 

u
p

ta
k
e
 (

p
m

o
l/


l/
s
)

C

 

Figure 4.35. Characterization of PK15-C378S. [3H]NBMPR binding of PK15-C378S cells 
(Panel A) and PK15-C378S membranes (Panel B) and [3H]2-chloroadenosine uptake of 
PK15-C378S cells (Panel C). For panels A and B, cells and membranes were incubated 
with a range of concentrations of [3H]NBMPR  (abscissa) in the presence (nonspecific 
binding) and absence of 10 µM NBTGR (total binding). Specific binding was determined 
by total bound minus non-specific bound. Each point represents the mean±SEM from at 
least four experiments done in duplicate. For panel C, cells were incubated with a range 
of concentrations of [3H]2-chloroadenosine for 5 s in the presence (Non-mediated) or 
absence (Total uptake) of 5 µM dipyridamole/NBTGR. Transporter-mediated uptake 
(Mediated) was calculated as the difference between the total and non-mediated 
uptake components.  Each point represents the mean ± SEM of the cellular accumulation 
of [3H]2-chloroadenosine from at least four independent experiments conducted in 
duplicate.
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Vmax/Bmax ratio was determined to be 2.3 ± 0.2 X 10-5 pmol/ENT1/s which is similar to 

wild-type hENT1. 

 

4.5.7.1 C378S MTS Treatments 

After treatment with MMTS, hENT1-C378S [3H]NBMPR Bmax increased by 49 ± 14% and 

decreased [3H]2-chloroadenosine Vmax by 40 ± 12% (Figure 4.36A, 4.36B) adhering to 

wild-type trends seen with MMTS treatment. MTSET and MTSES treatment had no effect 

on either [3H]NBMPR binding or [3H]2-chloroadenosine transport similar to that seen in 

the hENT1-C333S mutant (Figure 4.37A, 4.37B).  

 

4.5.8 Mutation of C414 to serine:  

hENT1-C414S cells bound [3H]NBMPR with a Kd of 0.4 ± 0.05 ηM to a Bmax of 2.1 ± 0.2 X 

10-5 ENT1 sites/cell (Figure 4.38A, Table 4.2). Membranes prepared from these cells had 

a Kd of 0.08 ± 0.01 nM and a [3H]NBMPR  Bmax of 1.5 ± 0.1 pmol/mg protein (Figure 

4.38B). [3H]2-chloroadenosine transport function remained intact as it achieved 

mediated uptake at a Vmax and Km of 6.3 ± 0.4 pmol/ µl/s and 35 ± 5 µM (Figure 4.38C, 

Table 4.2), respectively providing a Vmax/Bmax ratio of 3.0 ± 0.3 X 10-5 pmol/ENT1/s. 

 

4.5.8.1 C414S MTS treatments 

Treatment with MMTS increased [3H]NBMPR Bmax by 98 ± 12% indicating a significant 

difference compared to the other cysteine mutants (Figure 4.39A). Additionally, [3H]2-

chloroadenosine Vmax decreased by 30 ± 13% with MMTS incubation as observed in 

preceding studies (Figure 4.39B). MTSES did not affect [3H]NBMPR binding or [3H]2-

chloroadenosine transport by the hENT1-C414S cells (Figure 4.39C, 4.39D). When 

comparing MTSET effects of hENT1-C414S to wild-type hENT1, it was surprising to note 

the mutant transporter showed enhanced inhibition of [3H]NBMPR Bmax by 50 ± 9% 

(Figure 4.40). Since MTSET effect was greater in hENT1-C414S than wild-type this 

suggested that the loss of the intracellularly located residue was inducing a  
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Figure 4.36. Treatment of C378S with MMTS. Effects of MMTS of [3H]NBMPR  binding 
(Panel A) and [3H]2-chloroadenosine (Panel B) uptake by hENT1-C378S expressed in 
PK15-NTD cells.  Cells were incubated with either 1 mM MMTS or 0.1% DMSO (Control) 
for 10 min, washed extensively, and then incubated with a range of concentrations of 
[3H]NBMPR in the presence and absence of 10 µM NBTGR to define total and 
nonspecific binding. Specific binding was calculated as the difference between the total 
and nonspecific binding components. Each point represents the mean ± SEM from at 
least 5 experiments done in duplicate. Panel B describes the concentration-dependent 
uptake of [3H]2-chloroadenosine of cells treated for 10 min with 1 mM MMTS or 0.1% 
DMSO (Control)  and washed three times. Cells were incubated with a range of 
concentrations of [3H]2-chloroadenosine for 5 s in the presence (Non-mediated) or 
absence (Total uptake) of 5 µM dipyridamole/NBTGR. Transporter-mediated uptake 
(Mediated) was calculated as the difference between the total and non-mediated 
uptake components.  Each point represents the mean ± SEM of the cellular accumulation 
of [3H]2-chloroadenosine from at least four independent experiments conducted in 
duplicate. * Significant difference from control Bmax for NBMPR binding studies and 
control Vmax for uptake studies (Student's t test for paired samples, P <0.05) 
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Figure 4.37. Treatment of C378S with MTSET and MTSES: NBMPR binding to C378S is 
insensitive to MTSET.  Effects of MTSET and MTSES on [3H]NBMPR  binding (Panel A) 
and [3H]2-chloroadenosine (Panel B) uptake by hENT1-C378S expressed in PK15-NTD 
cells.  Cells were incubated with either 5 mM MTSET (blue squares), or 5 mM MTSES 
(green squares) for 10 min, washed extensively, and then incubated with a range of 
concentrations of [3H]NBMPR in the presence and absence of 10 µM NBTGR to define 
total and nonspecific binding. Specific binding was calculated as the difference between 
the total and nonspecific binding components. Each point represents the mean ± SEM 
from at least 5 experiments done in duplicate. Panel B describes the concentration-
dependent uptake of [3H]2-chloroadenosine of cells treated for 10 min with either 5 mM 
MTSET or 5 mM MTSES and washed three times. Cells were then incubated with a range 
of concentrations of [3H]2-chloroadenosine for 5 s in the presence (Non-mediated) or 
absence (Total uptake) of 5 µM dipyridamole/NBTGR. Transporter-mediated uptake 
(Mediated) was calculated as the difference between the total and non-mediated 
uptake components.  Each point represents the mean ± SEM of the cellular accumulation 
of [3H]2-chloroadenosine from at least four independent experiments conducted in 
duplicate.  
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Figure 4.38. Characterization of PK15-C414S. [3H]NBMPR binding of PK15-C414S cells 
(Panel A) and PK15-C414S membranes (Panel B) and [3H]2-chloroadenosine uptake of 
PK15-C414S cells (Panel C). For panels A and B, cells and membranes were incubated 
with a range of concentrations of [3H]NBMPR  (abscissa) in the presence (nonspecific 
binding) and absence of 10 µM NBTGR (total binding). Specific binding was determined 
by total bound minus non-specific bound. Each point represents the mean ± SEM from at 
least four experiments done in duplicate. For panel C, cells were incubated with a range 
of concentrations of [3H]2-chloroadenosine for 5 s in the presence (Non-mediated) or 
absence (Total uptake) of 5 µM dipyridamole/NBTGR. Transporter-mediated uptake 
(Mediated) was calculated as the difference between the total and non-mediated 
uptake components.  Each point represents the mean ± SEM of the cellular accumulation 
of [3H]2-chloroadenosine from at least four independent experiments conducted in 
duplicate.
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Figure 4.39. Treatment of C414S with MMTS and MTSES. Effects of MMTS (Panel A and 
B) and MTSES (Panel C and D) on [3H]NBMPR binding and on [3H]2-chloroadenosine 
uptake of hENT1-C414S expressed in PK15-NTD cells.  For Panel A and C, cells were 
incubated with either 1 mM MMTS (Panel A), or 5 mM MTSES (Panel C) for 10 min, 
washed extensively, and then incubated with a range of concentrations of [3H]NBMPR in 
the presence and absence of 10 µM NBTGR to define total and nonspecific binding. For 
Panel B and D, cells were incubated with either 1 mM MMTS (Panel B) or 5 mM MTSES 
(Panel D) for 10 min, washed extensively, and then incubated with a range of 
concentrations of [3H]2-chloroadenosine for 5 s in the presence (Non-mediated) or 
absence (Total uptake) of 5 µM dipyridamole/NBTGR. Each point represents the mean ± 
SEM of the cellular accumulation of [3H]2-chloroadenosine from at least four 
independent experiments conducted in duplicate. * Significant difference from control 
Bmax for NBMPR binding studies and control Vmax for uptake studies (Student's t test for 
 paired samples, P <0.05)
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Figure 4.40. Treatment of C414S with MTSET: enhanced inhibition of NBMPR binding. 
Effects of MTSET on [3H]NBMPR  binding by hENT1-C414S expressed in PK15-NTD cells.  
Cells were incubated with 5 mM MTSET (blue squares) or 0.5% DMSO (black circles) for 
10 min, washed extensively, and then incubated with a range of concentrations of 
[3H]NBMPR in the presence and absence of 10 µM NBTGR to define total and 
nonspecific binding. Specific binding was calculated as the difference between the total 
and nonspecific binding components. Each point represents the mean ± SEM from at 
least 5 experiments done in duplicate. * Significant difference from control Bmax 
(Student's t test for paired samples, P <0.05). 
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conformational change allowing greater access to the MTSET-sensitive cysteine to cause 

inhibition of [3H]NBMPR.  

 

4.5.8.2 Mutation of C378 and C414 to serines: 

The significant decrease seen in [3H]NBMPR Bmax by 50 ± 9% from MTSET treatment on 

C414S mutant (Figure 4.40) indicated the presence of a second cysteine residue being 

modified. Given that removal of C378 eliminated MTSET sensitivity (Figure 4.37A) and is 

predicted to lie extracellularly (Figure 2.1), we proposed that C378 was the cysteine 

being accessed for hydrophilic thiol modification. To test this idea, a double mutant, 

C378S - C414S was created on the wild-type hENT1 template and its activity and 

sensitivity to MTS reagents determined. Double mutant hENT1-C378S-414S expressing 

cells bound [3H]NBMPR with a Kd of 0.22 ± 0.03 nM to a Bmax of 4.6 ± 0.6 X 10-5 ENT1 

sites/cell (Figure 4.41A, Table 4.2). hENT1-C378S-414S transported [3H]2-

chloroadenosine at a Vmax and Km of 21 ± 5 pmol/ µl/s and 87 ± 18 µM (Figure 4.41B, 

Table 4.2), respectively providing a Vmax/Bmax ratio of 4.5 ± 1.1 X 10-5 pmol/ENT1/s. 

 

4.5.8.2.1 C378-414S MTS treatments: 

After treatment with MMTS, [3H]NBMPR Bmax increased by 65 ± 15 % and [3H]2-

chloroadenosine Vmax showed a drastic decrease of 69 ± 8 % (Figure 4.42A, 4.42B). 

However, treatment with MTSET had no effect on either [3H]NBMPR binding or [3H]2-

chloroadenosine uptake (Figure 4.43A, 4.43B) emphasizing the role of C378 in MTSET 

actions on wild-type hENT1. MTSES treatment also had no effect on [3H]NBMPR binding 

or [3H]2-chloroadenosine uptake (Figure 4.42C, 4.42D).  

 

4.5.9 Mutation of C416 and C439 to serines and alanines: 

Cells stably transfected with the  C416S and C439S mutant constructs did not produce  

measurable level of hENT1 protein function, as determined by lack of 2-chloroadenosine 

uptake, NBMPR binding and immunoblotting, even though mRNA for the mutant hENT1 

was clearly identified in these cells. The next approach in identifying the importance of  
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Figure 4.41. Characterization of PK15-C378-C414S. [3H]NBMPR binding (Panel A) and 
[3H]2-chloroadenosine uptake (Panel B) of PK15-C378-414S cells. Cells were incubated 
with a range of concentrations of [3H]NBMPR  (abscissa) in the presence (nonspecific 
binding) and absence of 10 µM NBTGR (total binding). Specific binding was determined 
by total bound minus non-specific bound. Each point represents the mean ± SEM from at 
least four experiments done in duplicate. Panel B shows the [3H]2-chloroadenosine 
uptake of PK15-C378-414S cells that were incubated with a range of concentrations of 
[3H]2-chloroadenosine for 5 s in the presence (Non-mediated) or absence (Total uptake) 
of 5 µM dipyridamole/NBTGR. Transporter-mediated uptake (Mediated) was calculated 
as the difference between the total and non-mediated uptake components.  Each point 
represents the mean ± SEM of the cellular accumulation of [3H]2-chloroadenosine from 
at least four independent experiments conducted in duplicate. 
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Figure 4.42. Treatment of C378-414S with MMTS and MTSES. Effects of MMTS (Panel A 
and B) and MTSES (Panel C and D) on [3H]NBMPR binding and on [3H]2-chloroadenosine 
uptake of hENT1-C378-414S expressed in PK15-NTD cells.  For Panel A and C, cells were 
incubated with either 1 mM MMTS (Panel A), or 5 mM MTSES (Panel C) for 10 min, 
washed extensively, and then incubated with a range of concentrations of [3H]NBMPR in 
the presence and absence of 10 µM NBTGR to define total and nonspecific binding. For 
Panel B and D, cells were incubated with either 1 mM MMTS (Panel B) or 5 mM MTSES 
(Panel D) for 10 min, washed extensively, and then incubated with a range of 
concentrations of [3H]2-chloroadenosine for 5 s in the presence (Non-mediated) or 
absence (Total uptake) of 5 µM dipyridamole/NBTGR. Each point represents the mean ± 
SEM of the cellular accumulation of [3H]2-chloroadenosine from at least four 
independent experiments conducted in duplicate. * Significant difference from control 
Bmax for NBMPR binding studies and control Vmax for uptake studies (Student's t test for 
paired samples, P <0.05) 
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Figure 4.43. Treatment of C378-414S with MTSET: NBMPR binding to C378-414S is 
insensitive to MTSET. Effects of MTSET of [3H]NBMPR  binding (Panel A) and [3H]2-
chloroadenosine (Panel B) uptake by hENT1-C378-414S expressed in PK15-NTD cells.  
Cells were incubated with either 5 mM MTSET or 0.5% DMSO (Control) for 10 min, 
washed extensively, and then incubated with a range of concentrations of [3H]NBMPR in 
the presence and absence of 10 µM NBTGR to define total and nonspecific binding. 
Specific binding was calculated as the difference between the total and nonspecific 
binding components. Each point represents the mean ± SEM from at least 5 experiments 
done in duplicate. Panel B describes the concentration-dependent uptake of [3H]2-
chloroadenosine of cells treated for 10 min with 5 mM MTSET or 0.5% DMSO (Control)  
and washed three times. Cells were incubated with a range of concentrations of [3H]2-
chloroadenosine for 5 s in the presence (Non-mediated) or absence (Total uptake) of 5 
µM dipyridamole/NBTGR. Transporter-mediated uptake (Mediated) was calculated as 
the difference between the total and non-mediated uptake components.  Each point 
represents the mean ± SEM of the cellular accumulation of [3H]2-chloroadenosine from 
at least four independent experiments conducted in duplicate.  
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C416 and C439 was to employ an alternate mutation to alanine (C416A, C439A); 

however, these mutants were also not expressed in PK15-NTD cells. 

 

4.5.9.1 Inhibition of palmitoylation 

We tested the idea that the cytoplasmically located C416 could be a target for cysteine 

specific palmitoylation and therefore removal of this residue may lead to improper 

protein targeting at the membrane and loss of transporter expression. However 

treatment of wild-type hENT1 cells with 100 µM 2-Bromohexadecanoic acid (2-Br), a 

known blocker of palmitoylation, for 24 and 48 hrs in serum-free media lead to no 

changes in [3H]NBMPR binding and [3H]2-chloroadenosine uptake (Figure 4.44A, 4.44B). 

These results indicated that hENT1 expression and function is unaffected by the 

palmitoylation blockade by 2-Br.  

 

4.5.9.2 Transient transfection of C416A and C439A 

The two remaining cysteine mutants, PK15-C416A and PK15-C439A were analyzed 

through transient transfection methods. Transient transfection of empty-p3xFLAG 

vector showed no quantifiable binding of [3H]NBMPR while transfection of C416A 

showed specific binding with a Kd of 0.1 ± 0.02 nM and Bmax of 4.6 ± 2.3 X 105 ENT1 

sites/cell similar to wild-type (Figure 4.45A, Table 4.2). C439A bound [3H]NBMPR with a 

Kd of 0.5 ± 0.1 nM and Bmax of 8.6 ± 1.4 X 105 ENT1 sites/cell (Figure 4.45B, Table 4.2) and 

transported [3H]2-chloroadenosine with a Vmax of  8.4 ± 0.8 pmol/ µl/s and Km of 165 ± 

32 µM (Figure 4.45C, Table 4.2). However, C416A showed no transport of [3H]2-

chloroadenosine (Figure 4.45C) indicating a crucial role of C416 in hENT1 function in this 

mammalian expression model.  
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Figure 4.44. Treatment of PK15-hENT1 with 2-bromohexadecanoic acid (2-Br). Effects 
of 100 µM 2-Br treatment for 24 and 48 hrs on [3H]NBMPR  binding (Panel A) and [3H]2-
chloroadenosine uptake (Panel B) by wild-type hENT1 expressed in PK15-NTD cells.  
Transfected cells were incubated and grown in serum-free media treated with 100 µM 
2-Br., a palmitoylation inhibitor or Control (DMSO) for 24 or 48 hrs. Cells were 
harvested, washed and subjected to either [3H]NBMPR  binding (Panel A) or [3H]2-
chloroadenosine uptake (Panel B) assays. Each point represents the mean ± SEM from at 
least four independent experiments conducted in duplicate. 
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Figure 4.45. Characteristics of PK15-C416A and PK15-C439A: PK15-416A does not 
transport 2-chloroadenosine. [3H]NBMPR binding of PK15-C416A (Panel A), PK15-C439A 
(Panel B) cells and [3H]2-chloroadenosine uptake of PK15-C416A and PK15-C439A cells 
(Panel C). Cells were incubated with a range of concentrations of [3H]NBMPR in the 
absence (total binding) and presence (nonspecific binding) of 10 µM NBTGR. Specific 
binding was calculated as the difference between the total and nonspecific binding 
components. Each point represents the mean ± SEM from at least five experiments done 
in duplicate. Panel C shows the [3H]2-chloroadenosine uptake of PK15-C416A and PK15-
C439A cells that were incubated with a range of concentrations of [3H]2-
chloroadenosine for 5 s in the presence (Non-mediated) or absence (Total uptake) of 5 
µM dipyridamole/NBTGR. Transporter-mediated uptake (Mediated) was calculated as 
the difference between the total and non-mediated uptake components.  Each point 
represents the mean ± SEM of the cellular accumulation of [3H]2-chloroadenosine from  
at least four independent experiments conducted in duplicate.
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4.5.9.3 Plasma membrane expression with biotinylation and FTH-SAENTA 

Cell surface biotinylation analysis and SDS-Page Western blotting analysis were utilized 

to determine C416A expression at the cell membrane (Figure 4.46A). Expression of 

C416A-hENT1 was probed with anti-FLAG Ab, with Na+/K+-ATPase used as a plasma 

membrane marker.  Furthermore, 79 ± 6.7% of the specific binding of NBMPR to cells 

expressing C416A could be inhibited by the membrane-impermeable FTH-SAENTA, 

indicating that the majority of the hENT1-C416A protein was processed to the plasma 

membrane.  Similar levels of FTH-SAENTA mediated inhibition at the membrane of 

plasma membrane hENT1 protein was found for cells expressing the wild-type hENT1 

(85 ± 1.4%) and C439A (80 ± 4.4%) (Figure 4.46B). These results indicate that mutation of 

C416A caused a loss in transport capability (either loss of substrate binding affinity 

and/or translocation function) rather than a loss of transporter expression at the plasma 

membrane.  

 

4.5.9.4 Competitive inhibition of [3H]NBMPR binding by 2-chloroadenosine 

To test whether the loss of transport function of C416A was due to a loss of substrate 

binding affinity and/or translocation mechanism, we performed inhibitor assays using 2-

chloroadenosine as a competitive blocker of [3H]NBMPR binding. Given that the 

substrate translocation site and the NBMPR binding site are essentially overlapping, the 

ability of the substrate to effectively and competitively remove NBMPR from its site 

indicates its affinity for the transporter (essentially Ki = Km). Unlabelled 2-

chloroadenosine was able to inhibit the binding of [3H]NBMPR with similar affinity in 

both the hENT1-WT and hENT1-C416A transfectants (Figure 4.47).  Given that the ability 

of a substrate to inhibit the binding of [3H]NBMPR generally reflects its affinity as a 

hENT1 substrate, this finding suggests that the loss of [3H]2-chloroadenosine transport 

by hENT1-C416A was not due to a decline in transporter substrate affinity.  Therefore, 

the C416A mutant may be compromised in terms of its substrate translocation 

mechanism.  
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Figure 4.46. Analysis of the plasma membrane expression of PK15-hENT1 and PK15-
C416A via biotinylation and FTH-SAENTA competition assays. Panel A shows the 
expression of C416A at the plasma membrane. Immunoblot analysis of cell surface 
biotinylated samples obtained from untransfected PK15-NTD cells or those transfected 
with hENT1 or C416A. Expression of hENT1 and C416A mutant was determined with 
mouse anti-FLAG antibodies (1:2,500) (Top panel). Blots were stripped and probed with 
anti-Na+, K+-ATPase antibody (1:2,500) (Bottom panel). Panel B shows the quantification 
of cell-surface hENT1 by competitive inhibition assay of NBMPR and FTH-SAENTA. Cells 
transfected with hENT1, C416A, or C439A were incubated with 5 nM [3H]NBMPR for 45 
min in the absence or presence of either 100 nM FTH-SAENTA or 1 mM NBTGR. Cell 
surface binding was calculated from Total binding (absence of inhibitors) subtracted 
from the non-specific binding (1 mM NBTGR) and intracellular binding (FTH-SAENTA). 
Each bar represents the mean ± SEM of three independent experiments.  
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Figure 4.47. 2-chloroadenosine can effectively block NBMPR binding to C416A. 
Inhibition of [3H]NBMPR binding to PK15-hENT1 and PK15-C416A with a range of 
concentrations of 2-chloroadenosine. Data are shown as percent of control binding 
where control is determined as specific binding of 0.5 nM [3H]NBMPR in the absence of 
substrate. Each point represents the mean ± SEM of at least three experiments done 
in duplicate.



119 
 

 

4.5.9.5 C416A and C439A MTS treatments 

The effects of these mutations on the sensitivity of hENT1 to MTSET and MTSES were 

then assessed in isolated membranes prepared from cells transiently transfected with 

C416A or C439A.  Both cysteine mutants retained [3H]NBMPR binding activity (C416A 

Bmax =2.2 ± 0.4 pmol/mg, Kd  = 0.08 ± 0.008 nM;  C439A Bmax = 2.4 ± 0.2 pmol/mg, Kd = 0.3 

± 0.06 nM) (Figure 4.48A, Table 4.3) similar to that seen for wild-type hENT1. MTSES and 

MTSET inhibited [3H]NBMPR binding to the C439A mutant, similar to that seen for the 

wild-type hENT1 (Figure 4.48B, 4.48C, Table 4.3).  However, MTSES did not inhibit 

[3H]NBMPR binding in the C416A mutant (Figure 4.49, Table 4.3). Additionally, the 

effects of MTSET and MMTS were also diminished in the C416A mutant. These data 

suggest that C416 is involved in the binding of NBMPR.  However, co-treatment of 

membranes expressing the wild-type hENT1 with MTSES and non-radiolabelled NBMPR 

(10 nM) or the hENT1 substrate  adenosine  (10 mM) did not prevent the inhibitory 

effects of MTSET on [3H]NBMPR binding (Figure 4.50A, 4.50B).  

 

4.6 Summary of Cysteine Mutants 

For the single cysteine mutants, neither the loss of the residue nor introduction of a 

serine in that position altered hENT1 ability to bind NBMPR (Table 4.2). Surprisingly, the 

importance of C416 was identified as a critical residue for protein expression together 

with C439 (TM11), given that both of these mutants showed no measurable activity or 

expression in our stable cell lines. Additionally, mutation of C416 to alanine caused a loss 

of 2-chloroadenosine transport mechanism while the ability to recognize the substrate 

and inhibitor NBMPR was retained. Additionally, mutation of Cys222 in TM 6 eliminated 

the effect of MMTS on NBMPR binding (Figure 4.24A). We therefore have addressed the 

first hypothesis in identifying the cysteine targeted by neutral thiol modification to cause 

a change in hENT1 function. MTSET inhibition of [3H]NBMPR binding is abolished in C378 

(Figure 4.37A) and is even more pronounced in the C414S mutant (Figure 4.40). Given 

that C378 is the only cysteine predicted to lie in the extracellular space, we postulated 

that removal of the downstream intracellular located C414 may cause a conformational
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Figure 4.48. Cell membrane treatment of C439A with MTSET and MTSES. [3H]NBMPR 
binding by PK15-hENT1, PK15-C416A, and PK15-C439A cell membranes (Panel A) and 
the effects of MTSET (Panel B) and MTSES (Panel C) on [3H]NBMPR  binding by hENT1-
C439A cell membranes. Membranes were incubated with a range of concentrations of 
[3H]NBMPR in the absence (total binding) and presence (nonspecific binding) of 10 µM 
NBTGR. Each point represents the mean  ± SEM from at least five experiments done in 
duplicate. For Panel B and C, membranes were incubated with either 5 mM MTSET (blue 
squares), or 5 mM MTSES (green squares) for 10 min, washed extensively, and then 
incubated with a range of concentrations of [3H]NBMPR in the presence and absence of 
10 µM NBTGR to define total and nonspecific binding. Each point represents the mean ± 
SEM from at least 5 experiments done in duplicate. * Significant difference from control 
Bmax (Student's t test for paired samples, P <0.05). 
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Figure 4.49. Treatment of C416A with MMTS, MTSET, MTSES: NBMPR binding to C416A 
is insensitive to MTS reagents. Effects of MMTS, MTSET, and MTSES on [3H]NBMPR 
binding by hENT1-C416A expressed in PK15-NTD cell membranes.  Membranes were 
incubated with either 1 mM MMTS, 5 mM MTSET, or 5 mM MTSES for 10 min, washed 
extensively, and then incubated with a range of concentrations of [3H]NBMPR in the 
presence and absence of 10 µM NBTGR to define total and nonspecific binding. Bmax 
were calculated from nonlinear regression analysis was used to fit hyperbolic curves to 
the site-specific binding of [3H]NBMPR plotted against the free [3H]NBMPR 
concentration at steady-state. Each bar represents the mean± SEM from at least four 
experiments done in duplicate. * Significant difference from their respective untreated 
control Bmax (Student's t test for paired samples, P <0.05). 
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Table 4.3. Effects of MTS reagents on [3H]NBMPR binding (Bmax) by cell membranes 
transfected with hENT1 and with C416A or C439A cysteine mutants. Membranes were 
prepared from cells 24 hr following transfection with the indicated hENT1 construct.  
The isolated membranes were then assessed for their level of site-specific [3H]NBMPR 
binding as described for Fig. 4.48. Values shown are the means ± SEM from at least three 
independent experiments conducted in duplicate. * Significant difference from control 
(Student's t test for paired samples, P <0.05). 

 

 

  [3H]NBMPR Binding 

  Bmax (pmol/mg) 

Cell Line MTS Reagent Control 
Treated 

Treated 

hENT1-WT MMTS 1.24 ± 0.34 1.03 ± 0.17 

 MTSET 3.15 ± 0.94 0.78 ± 0.28* 

 MTSES 3.19 ± 1.51 1.92 ± 0.85* 

C416A MMTS 1.23 ± 0.19 1.42 ± 0.29 

 MTSET 2.73 ± 1.17 2.30 ± 1.14 

 MTSES 2.33 ± 0.97 2.34 ± 0.97 

C439A MMTS 0.99 ± 0.23 0.78 ± 0.08 

 MTSET 4.29 ± 1.78 1.13 ± 0.42* 

 MTSES 1.57 ± 0.61 0.71 ± 0.25* 
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Figure 4.50. NBMPR and adenosine are unable to protect against MTSES effects in 
membranes.  Crude membranes isolated from PK15-NTD cells transfected with hENT1 
were incubated for 10 min at room temperature with 0.5% DMSO (control), 10 nM 
NBMPR (Panel A) or 1 mM adenosine (Panel B), 5 mM MTSES, or the combination of 10 
nM NBMPR and 5 mM MTSES or 1 mM adenosine and 5 mM MTSES. After extensive 
washing to remove NBMPR/adenosine and unreacted MTSES, membranes were exposed 
to a range of concentrations of [3H]NBMPR in the presence and absence of 10 µM 
NBTGR to define the site-specific binding. Each point is the mean ± SEM from at least 
four experiments conducted in duplicate. * Significant difference from control Bmax 
(Student's t test for paired samples, P <0.05).
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change in the protein to increase accessibility to C378. Therefore, we performed a 

double mutation of C378S and C414S and tested MTSET inhibition of NBMPR binding. 

Removal of C378 in addition to C414 eliminated the [3H]NBMPR binding inhibition seen 

in both wild-type and C414S mutant (Figure 4.43A). This provided more evidence that 

C378 was the extracellularly located residue interacting with MTSET to inhibit binding. 

Additionally, this result suggested a structural cooperation between the two residues in 

two different domains (TM9 and intracellular loop 5) in forming the NBMPR binding 

pocket.  Lastly, in cell membrane preparations, mutation of C416 to serine abolished the 

inhibitory effects of MTSES on NBMPR binding seen in wildtype hENT1 (Figure 4.49). This 

identified C416 as the intracellular residue responsible for negatively charged thiol 

modification indirectly involved in the NBMPR binding structure and supported the 

second hypothesis of this study. Given that neither 10 nM NBMPR nor 10 mM adenosine 

were able to protect against MTSES effects (Figure 4.50A, 4.50B), we infer that C416 

does not directly interact with the ligand but may induce an indirect conformational 

change in structure.  

 

4.7 SCAM analysis of Extracellular loop 5 

The preceding data in section 4.5 revealed a role for the C-terminus of hENT1 in NBMPR 

binding and substrate uptake. These date suggest a functional interaction between C378 

(TM9) and C414 (IL5), C416 as a critical amino acid involved in hENT1 functionality also 

located in IL5, and C378 as the target residue for MTSET inhibition of NBMPR binding. 

Therefore, it is of interest to determine how this C-terminal region of hENT1 interacts 

functionally and structurally with the TM3-6 region that has been defined previously as 

the part of hENT1 critical to transporter function and ligand binding [134]. As thus, or 

third hypothesis in Chapter 2 was that residues in extracellular loop 5 are involved in the 

extracellular binding pocket of hENT1. To determine their roles in hENT1 functionality, 

we used the MTSET-insensitive C378S mutant transporter as the background template, 

and the 16 residues of EL5 sequentially replaced with cysteines and then tested for their 

ability to bind NBMPR and transport 2-chloroadenosine in transiently transfected PK15 
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cells. Each mutant was also assessed for MTSET accessibility to determine whether they 

could be located for thiol modification. 

4.7.1 Assessment of [3H]NBMPR binding for EL5 mutants 

The 16 EL5-cysteine mutants were individually assessed for their ability to bind NBMPR 

in whole cells. Figure 4.51A showing [3H]NBMPR binding to PK15-N379C in cells is a 

representation of the nature of the analysis performed on the other 15 EL5 mutants. All 

of the 16 mutants were able to bind NBMPR with high affinity (Figure 4.51B) indicating 

that neither loss of these residues nor the introduction of cysteine at that position 

abrogated the NBMPR binding site in a critical manner.  

 

4.7.2 Assessment of [3H]2-chloroadenosine uptake for EL5 mutants 

The 16 EL5-cysteine mutants were also individually assessed for their ability to transport 

[3H]2-chloroadenosine.  Figure 4.52A showing [3H]2-chloroadenosine uptake of PK15-

I380C into cells is a representation of the nature of the analysis performed on the other 

15 EL5 mutants. Our results indicate that eleven of the EL5-cysteine mutants were able 

to transport [3H]2-chloroadenosine however, N379C, F390C, E391C, H392C, and D393C 

showed no measurable uptake of [3H]2-chloroadenosine (Figure 4.52B).  

 

4.7.2.1 Expression of N379C, F390C, E391C, H392C, and D393C at the membrane 

To determine whether the loss of function from the five EL5-cysteine mutants was due 

to a loss of expression at the plasma membrane, we performed FTH-SAENTA inhibition 

assays. Extracellular binding sites for NBMPR were calculated from transfected cells 

incubated with and without FTH-SAENTA which is membrane impermeable and hence 

will block the binding of NBMPR at extracellular sites. N379C, F390C, E391C, H392C, and 

D393C all showed high levels of hENT1 expression at the plasma membrane at 

approximately the same levels as seen with wild-type hENT1 (Figure 4.53).  
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Figure 4.51. EL5 mutants bind NBMPR with high affinities. Binding affinities of 
[3H]NBMPR to wild-type hENT1, hENT1-C378S, and hENT1-extracellular loop 5 cysteine 
mutants. Binding affinities were determined from nonlinear regression analysis used to 
fit hyperbolic curves to the site-specific binding of [3H]NBMPR plotted against the free 
[3H]NBMPR concentration at steady-state (example of the analysis shown in Panel A). 
Panel B depicts the binding affinities (Kd) shown in nM; solid bars represent the mean± 
SEM from at least six experiments done in duplicate. * Indicates a significant difference 
from WT affinity (P < 0.05 one-way ANOVA : Dunnett’s post-test) *** Indicates a 
significant difference from WT affinity (P <0.001 one way ANOVA: Dunnett’s post-test)
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Figure 4.52. N379C, F390C, E391C, H392C, and D393C show no measurable uptake of 
[3H]2-chloroadenosine. Transport affinities of [3H]2-chloroadenosine to wild-type 
hENT1, hENT1-C378S, and hENT1-extracellular loop 5 cysteine mutants. Transport 
affinities were determined from non-linear regression analysis of Michaelis-Menten 
fitted uptake, calculated as the difference between the total and non-mediated uptake 
components (example of the analysis shown in Panel A). Panel B depicts the substrate 
affinity shown in µM; solid bars represents the mean ± SEM from at least three 
experiments done in duplicate. * Indicates a significant difference from WT affinity (P < 
0.05 one-way ANOVA : Dunnett’s post-test) where five EL5 mutants showed no 
transport of [3H]2-chloroadenosine.  
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Figure 4.53. Quantification of cell-surface hENT1 by competitive inhibition assay of 
NBMPR and FTH-SAENTA of N379C, F390C, E391C, H392C, or D393C. Cells transfected 
with N379C, F390C, E391C, H392C, or D393C were incubated with 5 nM [3H]NBMPR for 
45 min in the absence or presence of either 100 nM FTH-SAENTA or 1 mM NBTGR. Cell 
surface binding was calculated from Total binding (absence of inhibitors) subtracted 
from the non-specific binding (1 mM NBTGR) and intracellular binding (FTH-SAENTA). 
Each bar represents the mean ± SEM of three independent experiments.
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4.7.2.2 Competitive inhibition with 2-chloroadenosine 

To determine whether the loss of [3H]2-chloroadenosine transport was due to a loss of 

transport mechanism or a loss of substrate affinity for the transporter, we performed 

competitive inhibition assays using non-labeled 2-chloroadenosine as our competitive 

inhibitor.  2-chloroadenosine was able to inhibit the binding of [3H]NBMPR with similar 

affinity to the N379C, F390C, E391C, H392C, and D393C mutants (Figure 4.54). This 

suggests that the loss of [3H]2-chloroadenosine transport by these five mutants was not 

due to a loss of substrate recognition of the transporter but rather to the disruption of 

the translocation mechanism. 

 

4.7.3 Effects of MTSET on extracellular loop five mutants  

To determine if amino acids in EL5 when mutated to cysteine were sensitive to MTSET 

modification, PK15-EL5 mutants were treated with 5 mM MTSET and tested for 

[3H]NBMPR binding as depicted in Figure 4.55A using the N379C mutant as an example 

of how the analyses were performed. Treatment of MTSET caused an inhibition of 

NBMPR binding in all EL5-cysteine mutants except for V389C.  Inhibition of binding 

ranged from 10-50% decreases in Bmax (Figure 4.55B).  

 

4.7.3.1 Protection against the effects of MTSET on extracellular loop five mutants with 

NBMPR 

To determine whether residues in EL5 that were sensitive to MTSET could be protected 

from thiol modification, cells were co-incubated with NBMPR and MTSET. Figure 4.56A 

showing [3H]NBMPR binding to PK15-I380C after co-incubation with NBMPR and MTSET 

is a representation of the protection experiments performed on the rest of the EL5 

mutants.  Our results indicated that co-incubation with NBMPR blocked MTSET 

inhibitory effects on N379C (Figure 4.56B). This indicated that NBMPR may have direct 

contact or be in very close vicinity with N379C where its binding can block MTSET 

modification.  
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Figure 4.54. 2-chloroadenosine can effectively block NBMPR binding to N379C, F390C, 
E391C, H392C, or D393C. Inhibition of [3H]NBMPR binding to PK15-N379C, PK15-F390C, 
PK15-E391C, PK15-H392C, and PK15-D393C with a range of concentrations of 2-
chloroadenosine. Data are shown as percent of control binding where control is 
determined as specific binding of 0.5 nM [3H]NBMPR in the absence of substrate. Each 
point represents the mean ± SEM of at least three experiments done in duplicate. 
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Figure 4.55. NBMPR binding of all EL5 mutants except V389C are sensitive to MTSET. 
Effects of MTSET on [3H]NBMPR  binding by hENT1-mutants expressed in PK15-NTD 
cells. Cells were treated with 5 mM MTSET for 10 min, washed extensively, and then 
assessed for [3H]NBMPR as mentioned in methods. Bmax were calculated from nonlinear 
regression analysis was used to fit hyperbolic curves to the site-specific binding of 
[3H]NBMPR plotted against the free [3H]NBMPR concentration at steady-state as 
depicted in Panel A. Panel B depicts the inhibition of specific binding of [3H]NBMPR to 
PK15-hENT1 and EL5 mutants calculated from their respective controls (DMSO treated); 
solid bars represents the mean± SEM from at least three experiments done in duplicate. 
The blue box indicates the residue insensitive to MTSET inhibition of NBMPR binding.  
* Significant difference from each mutants respective control Bmax (Student's t test for 
paired samples, P <0.05).
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Figure 4.56. NBMPR is able to protect N379C against MTSET effects in cells. Co-
incubation of MTSET with 10 nM NBMPR. PK15-hENT1 cells transfected with wild-type 
hENT1 or cysteine mutants were incubated for 10 min at room temperature with 0.5% 
DMSO (control), 10 nM NBMPR (+NBMPR), 5 mM MTSET (+MTSET) or the combination 
of 5 mM MTSET+ 10 nM NBMPR. After extensive washing to remove NBMPR and un-
reacted MTSET, cells were exposed to a range of concentrations of [3H]NBMPR in the 
presence and absence of 10 µM NBTGR to define the site-specific binding as shown in 
Panel A for the I380C mutant. Panel B depicts the inhibition of specific binding of 
[3H]NBMPR to PK15-hENT1 and EL5 mutants calculated from their respective controls 
(DMSO treated); solid bars represents the mean ± SEM from at least three experiments 
done in duplicate. Blue box indicated where NBMPR was able to protect against MTSET 
effects. * Significant difference from MTSET treated inhibition of NBMPR binding Bmax 
(Student's t test for paired samples, P <0.05).  
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4.7.3.2 Protection against the effects of MTSET on extracellular loop five mutants with 

adenosine 

To determine if modified cysteines in EL5 could also become protected by a substrate, 

cells were co-incubated with adenosine and MTSET and then tested for changes in 

[3H]NBMPR binding. Figure 4.57A showing [3H]NBMPR binding to PK15-N379C after co-

incubation with adenosine and MTSET is a representation of the protection experiments 

performed on the rest of the EL5 mutants. In this manner, the separate binding 

determinants could be distinguished for substrates and inhibitors. Co-incubation of 

adenosine blocked MTSET inhibitory effects on R384C, Y385C, L386C (Figure 4.57B). 

These residues are predicted to be in the middle of the extracellular loop and could 

therefore have direct contact with adenosine to prevent that large positively charged 

reagent to react.  

 

4.8 Summary of EL5 mutants 

For the 16 individual cysteine mutations in EL5, all 16 mutants retained the ability to 

bind NBMPR with high affinity. This indicated that none of the amino acids in EL5 are 

critical for NBMPR to bind. However, five of the 16 mutants lost the ability to transport 

2-chloroadenosine (N379C, F390C, E391C, H392C, and D393C). This loss of transport was 

attributed to a complication in the transport mechanism as the mutant transporters 

were expressed at the membrane and retained the ability of 2-chloroadenosine to 

inhibit NBMPR binding. Finally, it was found that all residues except for V389C were 

sensitive to MTSET inhibition of binding indicating that modification at those sites 

impacted NBMPR binding. NBMPR co-incubation protected N379C indicating that it may 

be in close proximate location to the inhibitor recognition site. Additionally, adenosine 

co-incubation protected R384C, Y385C, and L386C indicating their possible involvement 

in adenosine interactions with the transporter.  
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Figure 4.57. Adenosine protects R384C, Y385C, and L386C against MTSET effects in 
cells. Co-incubation of MTSET with 1 mM adenosine. PK15-hENT1 cells transfected with 
wild-type hENT1 or cysteine mutants were incubated for 10 min at room temperature 
with 0.5% DMSO (control), 1 mM adenosine, 5 mM MTSET,  or the combination of 5 mM 
MTSET + 1 mM adenosine. After extensive washing to remove adenosine and un-reacted 
MTSET, cells were exposed to a range of concentrations of [3H]NBMPR in the presence 
and absence of 10 µM NBTGR to define the site-specific binding as depicted in Panel A 
with the N379C mutant. Panel B depicts the inhibition of specific binding of [3H]NBMPR 
to PK15-hENT1 and EL5 mutants calculated from their respective controls (DMSO 
treated); solid bars represents the mean± SEM from at least three experiments done in 
duplicate. Blue box indicated where adenosine was able to protect against MTSET 
effects. * Significant difference from MTSET treated inhibition of NBMPR binding Bmax  
(Student's t test for paired samples, P <0.05).
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Chapter 5: Discussion 

In mammalian cells, nucleoside and nucleoside analogue transport processes are 

mediated through two major protein families termed CNTs and ENTs [42, 51]. A major 

contributor to these transport processes is the hENT1 subtype which is selectively 

inhibited by NBMPR at nanomolar concentrations and by coronary vasodilators with 

high affinities [114-117]. Functionally, TM 3 to 6 have been observed to be necessary for 

inhibitor binding [134, 135]. This region of TM3-6 is also predicted to be the site where 

substrates are recognized for transport. Results from human and rat chimeric studies 

where mutants missing TM3-6 were unable to bind NBMPR or transport uridine. In this 

manner, the NBMPR binding site and the substrate translocation pathway are suggested 

to overlap since NBMPR is able to competitively inhibit substrate transport [86, 133, 

136]. Conversely, increasing concentrations of substrates competitively inhibit NBMPR 

binding to hENT1. This indicates that the functional substrate binding site of hENT1 and 

the site to which NBMPR binds are within the same region.  

The coronary vasodilators, which act as ENT1 inhibitors, were also found to 

inhibit both NBMPR binding and nucleoside transport in a competitive manner and the 

region of TM3-6 is again indicated in their sensitivities [82, 179, 186]. However, 

mutagenesis studies on hENT1 involving TM1 and TM11 (outside of the TM3-6 domains) 

have indicated the possibility that these TM domains are relatively proximal to each 

other [100, 187]. Mutagenesis of Leu442 in TM11 altered sensitivities to NBMPR and 

dipyridamole when Met33 in TM1 was first mutated to isoleucine. This suggested that 

regions outside of TM3-6 also play essential structural and functional roles for hENT1. 

However, information on how hENT1 folds into the membrane as well as the important 

functional features of hENT1 is still unknown. Understanding how the TM domains and 

loops are arranged will allow for the development of effective isoform-specific inhibitors 

and generation of selective cytotoxic nucleoside analogues targeted for hENT1. The 

current inhibitors of nucleoside transport, except for NBMPR, are not selective for the 

ENT1 subtype and may inhibit several subfamilies of nucleoside transporters, which may 
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not be favorable for targeted therapies. The same is true for the cytotoxic nucleoside 

analogues, as they are able to use multiple families of nucleoside transporters to 

produce their effects which could be unfavorable for host cell preservation [188]. 

Therefore, the physiological and pharmacological properties of these agents are 

dependent on their specificity and selectivity to nucleoside transporters. Due to the 

unavailability of 3-D crystal structures of hENT1, structure function studies on hENT1 

rely heavily on mutagenesis approaches.  

Prior to this thesis, it was suggested that cysteines may play an important role for 

ENT1 function since treatment with thiol modifying reagents such as pCMBS and NEM 

altered NBMPR binding and substrate translocation [157, 171, 172, 174]. However, the 

location and contribution of these residues remained unknown. This study explored the 

hENT1 permeant site by targeting cysteine residues and the region of the C-terminus to 

better understand the specific functional determinants involved in transporter activity. 

Since hENT1 is an integral membrane protein and not readily isolated for biophysical 

analysis, the relationships between various regions of the protein have not yet been 

delineated.  An approach commonly used for such intransigent proteins, is cysteine 

scanning mutagenesis to assess the aqueous accessibility of various regions of the 

protein given that cysteines can be targeted for chemical modification with a wide 

variety of sulfhydryl modifying reagents. The use of this technique has been applied to 

several integral membrane proteins such as P-glycoprotein (Pgp) and glucose 

transporter (Glut1) to reveal information on protein topology and ligand binding 

domains [168, 189-191]. For example, cysteine scanning mutagenesis of the Glut1 

transporter found predicted exofacial residues of TM 7 to be accessible to the external 

aqueous environment and provided support for the placement of TM7 in the glucose 

permeation pathway.  However, this approach requires a clear understanding of the 

roles of endogenous cysteines in transporter function, which has been addressed in this 

study. Additionally, although it is known that TM3-6 are critical for hENT1 transporter 

function, it is also important to determine if and how other regions contribute to the 

binding pocket as recent evidence points toward the involvement of these flanking 
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domains of hENT1. We targeted the region of EL5 and found it to be indirectly involved 

in the NBMPR binding pocket as well having singular residues critical in substrate 

translocation. 

 

5.1 Wild-type hENT1 is sensitive to neutral and positively charged thiol modification 

To initially assess the involvement of cysteine residues in hENT1 function, we used the 

sulfhydryl modifiers MMTS, MTSET, and MTSES (Figure 1.12) to probe with free 

accessible thiols and determine their relative location and purpose. The reaction of MTS 

reagents to free sulfhydryls is via a nucleophilic attack of the thiolate anion (RS-) to the 

disulfide bond (-S-S-) of the MTS reagent resulting in the formation of a mixed disulfide. 

The present study supports previous work from our lab where the neutral and therefore 

membrane permeable sulfhydryl reagent MMTS, like NEM, caused an increase in 

NBMPR Bmax of hENT1 in whole cells (Figure 4.5A) [174]. In contrast with what was 

observed with NEM, this same treatment caused a decrease in the maximal rate of 

uptake of [3H]2-chloroadenosine (Figure 4.5C).  This finding is contrary to general dogma 

in the field that changes in NBMPR binding site numbers reflect changes in ENT1-

mediated transport capacity [86].  Under many conditions, it has been shown that 

NBMPR binding sites are proportional to Vmax values for nucleoside uptake in 

erythrocytes suggesting that the presence of NBMPR-binding sites can be used as a 

measure of functional ENT1 transporters [192]. However, our study demonstrates that 

this assumption should be confirmed before further analyses are taken. While such 

striking conflicting results have not been reported previously, there have been reports 

where changes in nucleoside uptake did not correlate with the changes in the amount of 

transporter present at the cell membrane. Our data imply that the ‘increased’ NBMPR 

binding sites induced by MMTS treatment are not actually functional transporters at the 

plasma membrane [71]. This suggests that not all hENT1 exhibiting high-affinity 

[3H]NBMPR binding are necessarily functional transporters, and may reflect different 

hENT1 subpopulations within the cell as previously described [67, 193-195].  One 

possibility is that MMTS treatment may have caused an increase in NBMPR binding sites 
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found within membranes of intracellular organelles. It has been shown that expression 

of hENT1 has been found in nuclear membranes, endoplasmic reticulum, and 

mitochondria suggesting that there is a mix of subpopulations of hENT1. These 

transporters have also been shown to be functionally active at those sites, suggesting 

that they play a role in the transport of nucleosides between the cytosol and lumen of 

these organelles.  

In times of high growth and energy consumption, it is possible that the increased 

presence of these transporters is needed to fuel these processes. Additionally, 

nucleoside analogues, which exhibit clinical mitochondrial toxicity, have been correlated 

to nucleoside transporter expression at mitochondrial membranes [196-198]. In one 

case, the overexpression of hENT1 in MDCK cells resulted in enhanced mitochondrial 

toxicity of the hepatitis B uridine analog Fialuridine (FIAU)[97]. According to this 

reasoning, the separate effects of MMTS on hENT1 function may be due to its 

modification of transporters found in two separate membrane populations. The 

difference between MMTS treatments in whole cells versus membranes from cells 

pretreated with MMTS may also be explained in this way. A reduction in the number of 

binding sites was observed in membrane preparations of cells pre-treated with MMTS 

(Figure 4.6A), indicating the loss of intracellular compartments (such as nuclei and 

mitochondria) by differential centrifugation may be involved in the loss of the Bmax 

enhancement. It may be possible that MMTS is modifying those transporters in whole 

cell experiments to cause an increase in Bmax and this hENT1 population is lost during cell 

membrane preparations. Furthermore, incubating cells with MMTS in 50 mM Tris at a 

pH of 8.2 eliminated the ability of MMTS to enhance the binding of [3H]NBMPR (Figure 

4.7C). This indicated that basic pH either increased hydrolysis of the thiol modifier 

destroying the active reagent or caused de-protonation of the protein causing thiol 

moieties to become unreactive. To test this hypothesis, we compared the effects of 

varying pH on [3H]NBMPR binding and [3H]2-chloroadenosine uptake by hENT1. Our 

results found that buffers of basic pH (both Tris and NMG) enhanced [3H]NBMPR Bmax by 

approximately 50% compared to [3H]NBMPR binding in pH 7.4 indicating that the 
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transporter was sensitive to enhanced pH and hydrogen ion concentrations (Figure 4.9A, 

4.9B). The result that pH altered NBMPR binding and not substrate transport (Figure 

4.9C) indicates that the increase in binding sites may not reflect functional transporters 

at the plasma membrane but may be due to exposing previously hidden binding sites.  

In addition to the MMTS enhancement of NBMPR binding in whole cells, we 

observed a decrease in NBMPR binding with MTSET, the positively charged reagent 

(Figure 4.13A). Prior to this study, sulfhydryl reagents used to probe ENT1 have included 

those that were neutral (NEM) or negatively charged (pCMBS) [157, 172, 174, 199, 200]. 

As mentioned previously, pCMBS had no effect on ENT1 in intact cells in the same way 

that the negatively charged MTSES had no effect in the present study (Figure 4.12A, 

4.12C). However, positively charged MTSET appeared able to access and modify a 

cysteine in intact cells which caused changes in both [3H]NBMPR binding and [3H]2-

chloroadenosine uptake. This indicates that there is a cysteine that can be accessed by 

MTSET located in a hydrophilic region or extracellularly that has an impact on the 

permeation site or pathway. Either blocking of a cysteine thiol or the introduction of a 

large positively charged alkyl group caused a change in transporter conformation to alter 

the number of NBMPR binding sites as well as substrate uptake velocity. An increase in 

Vmax with MTSET treatment may result from an increase in mobility of the transporter 

due to increased plasticity (Figure 4.13C). Transporter plasticity has been shown to have 

an impact on substrate translocation rates in hENT2 as mutational analysis at residue 

isoleucine 33 to methionine was found to have increased Vmax values for purine 

nucleosides [187]. Additionally, mutation of methionine 89 to cysteine and 

phenylalanine 334 to tyrosine of hENT1 both increase Vmax relative to wild-type hENT1, 

indicating that they possessed increased rates of catalytic turnover [138, 143]. In our 

case, it is possible that MTSET modifies a cysteine in a manner that causes a minor 

distortion at the NBMPR binding site, while making the substrate binding site more 

transport active. These findings suggest that there are two separate cysteines involved 

in hENT1 ligand conformation; one located in a region that is accessible only to MMTS 

and another in an extracellular, possibly negatively charged region accessible to MTSET. 
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Given that C378 is the only cysteine predicted to lie at the extracellular face of the 

transporter shown in Figure 2.1 ( and potentially close to negatively charged residues 

E391 and D393 on the opposite end of extracellular loop 5), it was predicted as being the 

target residue for the membrane impermeable reagent MTSET (Figure 5.1). The present 

study also highlighted again the contribution of intracellular cytoplasmic cysteines to the 

transport/binding competence of hENT1. Treatment with MMTS, MTSES, and MTSET all 

caused a significant decrease in NBMPR binding Bmax in broken cell preparations (Figure 

4.5B, 4.12B, 4.13B) showing that modification of intracellular cysteines produces an 

impact on NBMPR binding, known to be located on the exofacial surface. As previously 

mentioned, the negatively charged reagent pCMBS has been shown in multiple models 

to modify intracellularly located cysteine(s) to cause a decrease in NBMPR binding to 

ENT1. Given that C414 and C416 are predicted to be located on the 5th intracellular loop 

of hENT1, it is suggested that they are the possible targets of this type of modification.  

 

5.2 Assessment of single cysteine to serine mutants 

To determine which of any of the ten cysteines in hENT1 were important for its function 

and which are implicated in MTS mediated effects, site-directed mutagenesis was used 

to replace cysteine residues with serines or alanines. We found the transport and 

binding activities of the C87S, C193S, C213S, C222S, C297S, C333S, C378S, and C414S 

mutants to be comparable to that of wild-type hENT1. This indicated that none of these 

residues are crucial for substrate binding or protein expression. Though there were 

some significant differences in the affinity of [3H]NBMPR and [3H]2-chloroadenosine for 

the various mutants, these relatively minor differences in affinity (under 2-fold in most 

cases) likely reflect subtle shifts in the overall structure of the inhibitor/substrate 

binding domains due to minor disruptions of the hydrogen bonding network maintaining 

tertiary structure. Specifically, C87S, C193S, C222S and C297S each had a slightly higher 

affinity for [3H]NBMPR relative to the wild-type ENT1. Additionally, C87S and C193S had 

a significantly higher affinity for [3H]2-chloroadenosine in the cellular uptake transport 

assays, as did C333S and C414S.  This indicated that mutation of these residues into  
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Figure 5.1 Predicted topology of hENT1 with C378 highlighted in grey as the target 
residue for positively charged thiol modification with MTSET (+). Negatively charged 
amino acids found in predicted extracellular regions are highlighted in blue and 
suggested to be in close vicinity to C378. Residues highlighted with orange are residues 
that have been implicated in enhanced Vmax of substrate transport similar to the effect 
of MTSET on hENT1 [3H]2-chloroadenosine uptake in cells. 
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serines could have produced a change in the conformation of hENT1 for increased 

substrate affinity. 

However, mutation of C416 or C439 to either a serine or alanine was not 

tolerated in our stable mammalian cell model where there was no ENT1 expression 

observed either via NBMPR binding or Western blotting. These results suggest important 

roles for C416 located in the 5th intracellular loop and C439 located in TM11 in the 

proper post-transcriptional processing of the hENT1 protein.  These results differ from 

previous studies with mENT1Δ11, the functional mENT1 splice variant that is truncated 

after TM8, where loss of the last three TM helices and associated loops did not alter its 

expression or basic functionality [157].  Additionally, our results diverges from those of 

previous studies on the ENT parasitic homologs in Plasmodium falciparum ENT1 

(PfENT1) and Leishmania donovani ENT (LdNT1.1) [201, 202] where expression and 

function of cysteine-less versions of ENT1 have been described. This difference could 

reflect species differences in ENT1 structure/processing, or the different heterologous 

expression models used. A recent study has also demonstrated the activity of a cysteine-

less version of hENT1 (hENT1C-) in which all 10 endogenous cysteine residues were 

mutated to serine [203]. However, this study utilized an enhanced expression vector 

pGEMHE in Xenopus oocytes to characterize hENT1C-, where as in our model we have 

utilized a mammalian expression system that may differ in cellular environment by 

potentially employing more complex posttranslational modifications. Since cysteines can 

be palmitoylated and contribute to protein trafficking and membrane tethering, we 

tested the hypothesis that C416 and C439 were targets for this post-translational 

modification. Though C416 was predicted to be palmitoylated (CSS-Palm 3.0), our study 

determined that the palmitoylation inhibitor 2-Br had no effect on hENT1 function 

(Figure 4.44) suggesting that C416 was not acting as a palmitoylation site. At closer 

inspection, the location of C439 was noted to be adjacent to the conserved GxxxG motif. 

The GxxxG motif often associates in helix-helix interactions specifically as a dimerization 

arrangement [204-206]. It is possible that mutation of C439 abrogates this motif and 

interrupts interactions that could be essential for protein folding and assembly. 
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Unpublished work from our lab by Cunningham, F. et al., has validated the importance 

of this motif. Mutation of G445 to leucine in hENT1 was not tolerated and could not be 

expressed despite transfection of the cells being confirmed by mRNA extraction and 

subsequent DNA sequencing, similarly to that observed here for C416S and C439A 

mutants. Additionally, it is noted that the pig kidney epithelial cells used for expression 

of human ENT1 may have modified cellular characteristics due to earlier methods on 

selecting for nucleoside transporter deficiency.    

Furthermore, an endoplasmic reticulum retention signal (KKVK) is found between 

C416 and C439 (three amino acids downstream of C416) which could also explain their 

ineffectual expression. This motif is used as a quality control signal within the cell to 

determine whether proteins are destined for degradation, secretion, or expression [207, 

208]. The proximity of these residues to the motif raises the possibility that 

displacement or adjustment of the signal sequence may result in altered sorting and 

trafficking of mutant proteins and therefore impacting their expression in our stable 

mammalian cell models. However, transient expression of these constructs did result in 

the expression of hENT1 protein as defined by immunoblotting and NBMPR binding. This 

suggested that chronic expression of these mutant proteins was deleterious to cell 

function and that they were degraded via the cellular unfolded-protein response 

mechanisms. 

 

5.2.1 Mutation of C416 to alanine alters the transport mechanism 

With expression in transient transfection models, we assessed the ability of C416A and 

C439A to bind [3H]NBMPR and transport [3H]2-chloroadenosine (Figure 4.45A, 4.45B). 

We found C439 to bind NBMPR with relatively high affinity and transport [3H]2-

chloroadenosine as well (Figure 4.45C). Surprisingly the C416A mutant bound 

[3H]NBMPR with high affinity, but was unable to transport [3H]2-chloroadenosine (Figure 

4.45C). This suggested that the loss of C416 or introduction of alanine at that position 

produced two separate effects at the inhibitor site and the substrate site. To determine 

whether this change in transport competance was due to a loss of hENT1 expression at 
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the plasma membrane, as NBMPR can bind to intracellular hENT1 sites in other cell 

compartment membranes. C416A expression levels were measured at the plasma 

membrane by cell surface biotinylation and FTH-SAENTA competition assays (Figure 

4.46A, 4.45B) but no difference between wild-type hENT1 and C416A and C439A was 

detected suggesting that C416A was found at the plasma membrane but was not 

transporting.  

To determine whether this loss of function was due to loss of recognition for the 

substrate or due to loss of the transport mechanism, it was determined that 2-

chloroadenosine inhibited the binding of [3H]NBMPR both the hENT1-WT and hENT1-

C416A transfectants with similar affinity (Figure 4.47).  This indicates that 2-

chloroadenosine can still interact with hENT1-C416A with high affinity but is not able to 

activate the transport mechanism. Given that the ability of a substrate to inhibit 

[3H]NBMPR binding generally reflects its affinity as a hENT1 substrate, this finding 

suggests that the loss of [3H]2-chloroadenosine transport by hENT1-C416A was not due 

to a decline in transporter substrate affinity. Therefore, the C416A mutant may be 

compromised in terms of its substrate translocation mechanism. A similar effect has 

been observed for mutations at glycine 179 in TM5 where substitutions with amino acids 

with large side chains such as leucine or valine eliminated transporter activity but had no 

effect on membrane expression [139]. Once again, if using the ab initio model, the 

endofacial ends of TM10 and TM5 are located are in close proximity to one another and 

more importantly are positioned in a “V” shape within the membrane (Figure 5.2). Given 

that C416 is close to the cytoplasmic end of TM10, it is possible that mutation at this site 

alters the positioning of TM10 thereby shifting the hydrophilic space between TM5 and 

10 and abolishing transport.   
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Figure 5.2. Simulated topologies of hENT1 based on the ab initio model of LdNT1.1. 
Panel A shows a side view of the generated figure of hENT1 with numbered 
transmembrane helices based on the models described by Valdes et al., 2009. [156] 
shown in Panel B. Cys416 is shown in the green circle off the predicted site of 
intracellular loop 5. Dashed green lines illustrate the potential interaction between TM5 
and TM10.  
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5.2.2 Cysteine 222 is responsible for MMTS effects 

When the functional mutants were treated with MTS and then subjected to NBMPR 

binding analysis, we found that mutation of the conserved cysteine at position 222 

(C222) in TM 6 to serine resulted in the loss of MMTS sensitivity (Figure 4.24A). This 

suggested that C222 is responsible for the enhancement of activity observed after 

MMTS treatment of wild-type hENT1. For further validation, C222S was exposed to 

MMTS and then membranes were isolated and NBMPR binding assays were performed. 

Interestingly, C222S did not display the same decrease in NBMPR binding sites in the 

membranes under these conditions as it did with experiments using the wild-type hENT1 

cells (Figure 4.26A, 4.26B). As neither of the other charged thiol reagents (MTSET and 

MTSES) enhanced NBMPR binding, it indicates that they were not able to access and 

modify C222 because of its location. Since MMTS is a neutral membrane permeable 

reagent and enhances NBMPR binding by targeting C222, it is reasonable to conclude 

that C222 is located in a hydrophobic region and validates our first hypothesis in which 

there is a cysteine in a hydrophobic domain that can be modified to alter hENT1 

function. In support of this conclusion, it is worth noting that C222 is adjacent to 

hydrophobic amino acids like isoleucine and leucine which can be critical for membrane 

insertions and anchoring (Figure 5.3). For MMTS to modify C222, it is possible that loss 

of the thiol functional group increases lipophilicity at the end of TM6 to free previously 

hidden binding sites within the cell. However, when MMTS was applied directly to 

broken cell preparations of C222S, the number of NBMPR binding sites still declined 

similar to that observed using wild-type hENT1 cell membranes, indicating that C222S 

was not responsible for the reduction in NBMPR binding under these conditions.  
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Figure 5.3 Predicted topology of hENT1 with C222 highlighted in grey as the target 
residue for neutral thiol modification with MMTS. Hydrophobic amino acids of 
transmembrane 6 are highlighted in red and suggested to be in close vicinity to C222. 
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Therefore, it is suggested that MMTS has a dual effect on NBMPR binding to 

hENT1 involving at least two distinct cysteine residues. In intact cells, MMTS both 

enhances NBMPR binding via modification of the intra-membrane C222, and inhibits 

NBMPR binding via modification of another cysteine residue cytoplasmically located, 

most likely C416. The enhancement of NBMPR binding via C222 is lost upon cell lysis and 

subsequent differential centrifugation to prepare the membranes, leaving only the 

inhibitory component. This suggests that the enhancing effect of MMTS relies on other 

intracellular components, or it involves ENT1 proteins in intracellular compartments that 

are lost during the membrane preparation. The effect of MMTS could not be reversed by 

co-incubation of the cells with adenosine or NBMPR. Hence C222 that MMTS is 

interacting with is either not directly part of the binding domain or MMTS can still gain 

access to this residue in spite of the proximity of these agents. Furthermore, mutation of 

C222 to serine was also able to abolish the effect that basic pH had on [3H]NBMPR 

binding (Figure 4.28). This suggested that C222 was responsible for causing an increase 

in [3H]NBMPR binding when cells were incubated in basic pH. It may be possible that 

C222 becomes deprotonated in basic pH and that this change in reactivity of the residue 

causes [3H]NBMPR to bind to more intracellular sites. Given that both MMTS and basic 

pH increased Bmax, and both effects were abolished with mutation of C222, it is proposed 

that the reactivity of this residue plays an important role in stabilizing the transporter to 

the NBMPR conformation.  

 

Additionally, C222S retained MMTS-inhibition of [3H]2-chloroadenosine Vmax 

(Figure 4.24B) indicating that the residue was not the cysteine responsible for the 

inhibition of substrate uptake. This suggests that C222 is not a shared residue between 

the NBMPR binding site and the substrate translocation pathway and this in turn implies 

a physical distinction between the NBMPR binding site from the substrate translocation 

site.  It is important to note that NBMPR has been shown to be a competitive inhibitor of 

nucleoside transport in various models [179, 209], and nucleoside substrates are 

competitive inhibitors of NBMPR binding [90, 210]. Therefore, there is clearly an overlap 
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in the NBMPR and substrate binding sites of hENT1. Cysteine 222 appears either to be in 

the distinctive NBMPR binding region, or is affecting NBMPR binding to that region via 

MMTS-induced conformational changes. When looking for the cysteines involved in the 

Vmax enhancement effect with MMTS, we found mutation of C193 (TM5), C297 (TM7), or 

C333 (TM8) to serine led to a significant reduction of the MMTS effect on [3H]2-

chloroadenosine uptake. This study could not narrow down the search for the 

implicated cysteine or cysteines. This could be in part due to MMTS acting with all three 

cysteines or that these cysteines act in combination to produce those effects.  These 

results suggest that a distinct cysteine, or sets of cysteines, is involved in the effect of 

the MTS reagents on substrate transport versus NBMPR binding.  

 

5.2.3 Cysteine 378 is responsible for MTSET effects 

When determining which cysteine was involved in MTSET effects, the function of C193S, 

C213S, C297S, C333S, and C378S was observed to be insensitive to MTSET. Surprisingly, 

mutation of C414 to serine produced an even greater inhibition in [3H]NBMPR binding 

with MTSET treatment (Figure 4.40). Given that MTSET is a large membrane-

impermeable positively charged reagent and that C193, C213, C297 and C333 are 

located within TM regions (Figure 2.1), it was suggested that they were not involved in 

MTSET effects but rather mutation of these residues could have altered transporter 

conformation to bury C378 making its side chain inaccessible to MTSET. C378 is a 

conserved residue that is predicted to be positioned at the interface of TM9 and the 

extracellular loop indicating that it has a higher probability of interacting with a charged 

reagent. Additionally, mutation of the intracellular C414 seemed to produce an 

enhanced accessibility to the targeted residue.  The region between C378 and C414 

includes EL5 and TM10, therefore it is possible that TM10 plays an important structural 

and/or functional link between these two residues.  

 

To test this idea, a stably expressed functional double mutant of C378 and C414 

to serines was produced and tested for MTSET sensitivity. The double mutant (C378S-
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C414S) was insensitive to MTSET inhibition of NBMPR binding as previously observed for 

the C378S mutant which indicated that C378 is likely the targeted residue (Figure 4.43A). 

The structural and/or functional cooperation between C378 and C414 is a novel finding 

as residues in the cytoplasmic domain are not known to show influences on the 

extracellular binding domain. However, a recent finding by Yao et al. (2011) indicated 

low amounts of nucleobase transport by wild-type hENT1 in an enhanced expression 

vector pGEMHE and suggested that C414 was responsible for this nucleobase activity. It 

must also be noted, that we have not found any evidence for nucleobase (hypoxanthine) 

transport by recombinant hENT1 expressed in the PK15-NTD at concentrations of 

nucleobases below 400 µM (unpublished data). Thus, the nucleobase transport 

observed by hENT1 by Yao et al. may reflect the expression model used, or higher 

concentrations of nucleobases than employed in previous studies are required to 

measure observable transporter-mediated uptake.  Therefore, we have found C378 to 

possibly be in a region that is of anionic character so that, when modified with a 

positively charged reagent, it inhibits binding of NBMPR. Since MTSET cannot cross the 

membrane, this inhibition of NBMPR binding is therefore restricted to those sites found 

at the plasma membrane supporting the conclusion that C378 resides in a hydrophilic or 

extracellular environment. When reviewing the 2-D topology of hENT1, it is noted that 

there are negative charges located near the membrane boundaries in EL4 and EL5 (E391, 

D393) indicating that they may form a pocket of negatively charged environment near 

the membrane that C378 may lie within (Figure 5.1). In this way, if EL4 and EL5 are 

relative close, the adjoining TMs may also lie in close proximity and possibily TM7 and 

TM10 may also be neighbors. Once again, when assessing the ab initio model of LdNT1.1 

(Figure 1.11), the exofacial ends of TM7 and TM10 are shown to be adjacent with one 

another and may contribute to the NBMPR binding domain (Figure 5.4).  

 

The mENT1Δ11 variant that had lost the ability to covalently bind NBMPR, has 

already indicated the importance of TM9-11 and EL5 in the NBMPR covalent 

attachment. The results of the present study provide more evidence on this area of the 
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transporter and indicate that C378 (located at the TM9 and EL5 interface) may be 

adjacent to important determinants of NBMPR binding. Additionally, this study found 

that residue C414 in intracellular loop 5 can be an important contributor to extracellular 

regions of hENT1. Since C414 mutation to serine enhances the ability of MTSET 

inhibition at C378, this suggests that modification at cytoplasmic portions of the 

transporter impacts the extracellular side. As previously described, mutation of C416 

(close to C414) in IL5 abrogated the translocation function, our results in this section 

further validates the role of intracellular residues in impacting transporter function.  This 

suggests that the cytoplasmic ends of TM10 and 11 are conformationally linked to TM3-

6 which has already been shown to partially form the active site of hENT1.     
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Figure 5.4. Simulated topology of hENT1 based on the ab initio model of LdNT1.1. 
highlighting extracellular negatively charged amino acids.  Cys378 is shown in the grey 
circle at the TM9 interface, Cys 222 shown in the red cirble, blue circles indicate relative 
positions of negatively charged amino acids. Representation of the side view of the 
LdNT1.1 model described by Valdes 
et al., 2009. [156]

C222 
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5.2.4 Cysteine 416 is responsible for MTSES effects in membrane preparations 

Cysteine mutants treated with MTSES in whole cells produced no effects in either 

[3H]NBMPR binding or [3H]2-chloroadeonsine uptake as previously seen with wild-type 

hENT1. This validated that effects observed in broken cell preparations are due to the 

contribution of intracellularly located cysteines. When membrane preparations enriched 

for cysteine mutants (C87S, C193S, C213S, C222S, C297S, C333S, C414S, and C439A) 

were subjected to MTSES treatment, significant inhibition of NBMPR binding was 

observed. The single cysteine mutant that was unaffected by MTSES treatment was 

C416A (Figure 4.49). Thus, MTSES and MMTS treatment did not decrease [3H]NBMPR 

binding in the C416A mutant and the effect of MTSET was significantly less relative to 

wild-type hENT1. This indicates that C416 is in a cytoplasmic location, which supports 

the 2-D topology model of hENT1 and substantiates the second hypothesis in this thesis 

where it was proposed that there is a cytoplasmic-located cysteine that when modified 

causes a change in hENT1 function. The conserved residues, C416 was also found to be 

the targeted residue in IL5 for thiol modification that is involved in the NBMPR binding 

pocket. In effect, since neither adenosine nor NBMPR alone could protect against these 

effects (Figure 4.50A, 4.50B), it is suggested that there is no direct interaction and hence 

C416 most likely does not line the permeation pathway nor lie in the inhibitor binding 

site. The alternating access mechanism proposed in Chapter 1 of this thesis suggests that 

ENT1 has an extracellular and intracellular site that can alternate between the two 

conformations depending on whether a substrate is bound.  

 

It is also suggested that the extracellular site can bind NBMPR and other 

inhibitors to lock it in that conformation. Therefore, it is possible that the location of IL5 

is not directly part of the ligand binding site but that interaction with C416 with MTS 

reagents may lock hENT1 in an inwardly faced conformation. The modification may be 

the result of either introduction of a charged/uncharged alkyl group or loss of the 

hydrogen bonding interactions of sulfhydryl groups. Given that C416 has already been 

implicated in 2-chloroadenosine uptake mechanism but is still able to bind NBMPR with 
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high affinity, it was proposed that C416 has an important function in the orientation of 

TM helix 10 and 11 to TM 3-6, which is the previously recognized ligand binding domain. 

It is possible that the packing of TMs helices around the solvent-accessible permeant 

and inhibitor binding site requires the aid of C416. The recently published ab initio 

model of the LdNT1.1, highlighted the structure to have one inner bundle of TM helices 

(1, 2, 4, 5, 7, 8, 10, 11) encompassing a hydrophilic cavity and the remaining TMs (3, 6, 

and 9) encircling the inner bundle [156]. Following this model, the results of the present 

study indicate that the cytoplasmic link between TM10 and 11 (where C416 is located) 

may actually not be central to ligand translocation or recognition but instead may have a 

conformational role in keeping the TM helices stable for substrate interaction. 

Therefore, it is possible that modification at C416 with MTS reagents may alter the angle 

or rotation of these transmembrane domains causing the effects seen in NBMPR binding 

(Figure 5.2). 

 

5.3 Role of residues in EL5 

With the results from the preceding studies highlighting the roles of TM9-11 and IL5 in 

the structure and function of hENT1, examination was extended into the role of EL5. This 

region of hENT1 has not been clearly defined in its function; however, evidence from 

studies of CeENT1 revealed that an Ala and Thr in TM 1 and 11, respectively, impaired 

uridine and adenosine transport and that L442 of hENT1 was involved in permeant 

selectivity [100]. Recent studies have also identified Phe334, Asn338, (TM8) and Leu442 

(TM11) of ENT1 as contributing to interactions with coronary vasodilators [100, 143]. 

Additionally, there is a multitude of evidence that extracellular loops can contribute in 

the function of integral membrane proteins. For example, studies on the Na+/H+ 

exchanger 1 (NHE1) have found that its extracellular loop 2 (EL2) is implicated in 

substrate and inhibitor sensitivities. Residues Pro153, Pro154 and Phe155 all found in 

EL2 were critical for NHE1 activity [211]. Furthermore, the Cys-loop family of ligand-

gated ion channels have implicated extracellular residues to undergo conformational 

changes that are critical in function [212-215]. There is also evidence of transporters 
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such as hOCT2 that show the contribution of extracellular loops in protein folding, 

membrane expression, and oligomeric assembly [216]. In our study, mutation of each 

residue in EL5 to cysteine produced no change in the ability of hENT1 to bind 

[3H]NBMPR. This indicated that none of the residues in EL5 are crucial points of contact 

for NBMPR binding or that the cysteine introduced into that location retained the ability 

to recognize [3H]NBMPR and perform the same hydrogen bonding capabilities or 

retained the same flexibilities.  

 

5.3.1 N379C, F390C, E391C, H392C, and D393C are critical in transporter function 

When assessing EL5 mutants in their ability to transport [3H]2-chloroadenosine; N379C, 

F390C, E391C, H392C, and D393C showed no uptake of the substrate (Figure 4.53). It is 

important to note that N379, F390, H392, and D393 are conserved residues between 

mammalian homologs of ENT1. To determine whether the loss of transport in these five 

mutants was due to a loss of transporter expression at the membrane, FTH-SAENTA 

inhibition assays were performed. In this manner, only the transporters expressed at the 

plasma membrane would be inhibited by the membrane-impermeable analogue. The 

results obtained showed all five non-functional mutants to have significant expression at 

the plasma membrane, indicating that the loss of transport function was most likely due 

to a change in substrate affinity or to a change in transport mechanism as previously 

observed for the C416A mutant. To test these ideas, competitive inhibition assays were 

performed using 2-chloroadenosine as the inhibitor against [3H]NBMPR binding. For all 

five non-functional mutants, 2-chloroadenosine was able to inhibit NBMPR binding with 

similar affinities (Figure 4.54) indicating that the substrate recognition site was still intact 

and 2-chloroadenosine remained a competitive inhibitor but the mechanism for 

transport was impaired. Given that the four residues are found in succession on one side 

of the loop (F390C, E391C, H392C, and D393C), it is possible that these residues are 

crucial in constructing part of the substrate translocation site. Additionally, E391 and 

D393 are both predicted to be negatively charged at physiological pH, and are able to 

form ionic bonds with positively charged amino acids or form ion dipole interactions 
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with water. Removal of these strong ionic bonding partners in this region could cause 

this drastic impact seen in hENT1 functionality. It is interesting to note that mutation of 

the positively charged residues (K381, R383, and R384) to Cys in EL5 had no effect on 

[3H]2-chloroadenosine uptake, suggesting that the negative charges of EL5 possess a 

greater role in transporter function. Furthermore the asparagine residue (N379) can also 

function as a chain crosslinker or in hydrogen bonding to water at the protein surface. 

Since asparagines are often found in protein bends it is possible that abrogation of this 

bend at the TM9 interface repositions the TM helix in a manner that reshapes the 

translocation pathway. It has already been shown that C3-OH and C5-OH groups of the 

sugar moieties of nucleoside analogues form strong interactions with hENT1 suggesting 

a role for hydrogen bonding between the transporter and ligand. Therefore the 

availability of these bonding partners via functional side chains of amino acids can have 

a drastic impact on hENT1 function. The previously mentioned ab initio model of the 

LdNT1.1 with one inner bundle of TM helices (1, 2, 4, 5, 7, 8, 10, 11) forming the 

hydrophilic pore and the remaining TMs (3, 6, and 9) surrounding the inner bundle 

suggests that the extracellular loop would link the inner bundle to the outer bundle 

[156]. Results of this study when combined with this model, suggests that the residues 

that are implicated in substrate uptake are located closer to the extracellular end of 

TM10 which is predicted to form part of the hydrophilic pore.  

 

5.3.2 MTSET effects on EL5 mutants 

When testing the accessibility of the mutated residues in EL5 to MTSET, it was observed 

that all mutants except for V389C to have some measurable inhibition of NBMPR binding 

with MTSET treatment (Figure 4.55). Given that the majority of the EL5 residues can 

become modified with MTSET indicates that EL5, although not directly involved in 

NBMPR binding, is nevertheless close enough to the pocket to disrupt it when bulky 

positively charged alkyl groups are attached. The maximal amount of inhibition was seen 

at ~50% at R383C, indicating that it may be the closest residue to the hydrophilic binding 

pocket and significantly block NBMPR binding when modified with a positively charged 
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reagent. The observation that V389C was not sensitive to MTSET is surprising given that 

adjacent residues are able to be sufficiently modified to inhibit binding. There may be 

two reasons for this effect, one is that V389C is not accessible for modification or that 

modification at this site does not impact NBMPR binding. However, MTSET inhibition at 

15 out of the 16 EL5 mutants does support the extracellular location of this loop, 

supporting the 2-D topology model of hENT1. Co-incubation of NBMPR with MTSET was 

able to protect N379 from thiol modification indicating that the inhibitor NBMPR was 

able to block the reaction at that site. Co-incubation of adenosine with MTSET produced 

a separate set of amino acids that were protected from MTSET inhibition of binding: 

R384C, Y385C, and L386C. Not surprisingly, these three residues are all found in 

sequence within the middle or apex of EL5 which would have the greatest accessibility 

to ligands. These results indicate that adenosine may bind in close vicinity or in direct 

contact to these residues to prevent MTSET to attain access.  

 

5.4 General conclusions 

Human ENT1 is known to be the major facilitator of bi-directional nucleoside flux and 

uptake of anti-cancer and anti-viral analogues. Based upon data from previous 

glycosylation and hydropathy studies, hENT1 is predicted to have an intracellular N-

terminus, extracellular C-terminus and 11 transmembrane domains. Human ENT1 is 

thought to function as a simple carrier, where there is one exofacial site for nucleoside 

or inhibitor interactions and an endofacial site for nucleoside flux. However, one of the 

key issues related to the function of ENT transporters is the location and structure of the 

permeation site. Previous studies using NEM and pCMBS have identified the importance 

of cysteines in ENT1 function. In this thesis, we have found the neutral membrane-

permeable reagent MMTS to produce an enhancement of intracellular binding sites for 

the prototypical probe NBMPR. This effect was due to modification of C222 found in TM 

6 indicating that it was located in a hydrophobic environment. C222 was also found to 

be responsible for the enhanced NBMPR binding of hENT1 in basic pH suggesting that 

de-protonation of C222 causes the formation of new intracellular binding sites.  



158 
 

 

Additionally, these studies are the first to show that a positively charged reagent, 

MTSET, can inhibit NBMPR binding in intact cells, which indicated that there was a 

cysteine residue accessible to the extracellular space. The cysteine responsible appears 

to be C378 indicating that it is in an aqueous negatively charged environment close to 

the inhibitor binding pocket. The predicted topology of hENT1 puts C378 near the 

extracellular end of TM9; therefore results are consistant with this model and show it is 

likely the single Cys residue accessible to positively charged modification. The 

association of C378 and C414 has indicated the structural and/or functional linkage 

between TM9 and IL5 where intracellular modifications can have a drastic impact on the 

extracellular side of hENT1. Conjointly, the role of C416 has been made apparent and is 

the first study to show the contribution of IL5 residues in the functionality of hENT1. This 

study establishes C416 as the cytoplasmically located cysteine that modifies the 

extracellular binding site and is susceptible to thiol modification by charged thiol 

reagents in membranes.  C416 is also implicated in the permeation site or pathway of 2-

chloroadenosine and has a central role in the substrate translocation mechanism. Lastly, 

a functional role for EL5 has been revealed which has never been examined previously. 

Mutational analysis found N379, F390, E391, H392, and D393 to have crucial functions 

for the hENT1 translocation machinery. Furthermore, MTSET treatment of EL5 mutants 

inhibited binding of NBMPR to hENT1, thereby suggesting that EL5 is in close proximity 

to the inhibitor recognition site. Finding that there are two separate sets of residues that 

can be protected from MTSET by using NBMPR or adenosine also indicated that the two 

ligands interact with hENT1 at separate orientations and determinants. In this manner, 

new regions of hENT1 have been identified that were previously not known to 

contribute to its function. This is the first study to describe the importance of 

extracellular loops in ENT1 function and will provide a basis for future targeting studies 

on hENT1 structure-function.   
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