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Abstract 

Humans are born with a sensitivity to numerical magnitude. In literate cultures, 

these numerical intuitions are associated with a symbolic notation (e.g..Hindu-Arabic 

numerals). While a growing body of neuroscientific research has been conducted to 

elucidate commonalities between symbolic (e.g. Hinud-Arabic numerals) and non-

symbolic (e.g. arrays of objects) representations, relatively little is known about the 

neural correlates specific to the symbolic processing of numerical magnitude. To 

address this, I conducted the three fMRI experiments contained within this thesis to 

characterize the neuroanatomical correlates of the auditory, visual, audiovisual, and 

semantic processing of numerical symbols.  

In Experiment 1, the neural correlates of symbolic and non-symbolic number 

were contrasted to reveal that the left angular and superior temporal gyri responded 

specifically to numerals, while the right posterior superior parietal lobe only responded 

to non-symbolic arrays. Moreover, the right intraparietal sulcus (IPS) was activated by 

both formats. The results reflect divergent encoding pathways that converge upon a 

common representation across formats.  

In Experiment 2, the neural response to Hindu-Arabic numerals and Chinese 

numerical ideographs was recorded in individuals who could read both notations and a 

control group who could read only the numerals. A between-groups contrast revealed 

semantic processing of ideographs in the right IPS, while asemantic visual processing 
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was found in the left fusiform gyrus. In contrast to the ideographs, the semantic 

processing of numerals was associated with left IPS activity. The role of these brain 

regions in the semantic and asemantic representation of numerals is discussed.  

In Experiment 3, the neural response of the visual, auditory, and audiovisual 

processing of numerals and letters was measured. The regions associated with visual and 

auditory responses to letters and numerals were highly similar. In contrast, the 

audiovisual response to numerals recruited a region of the right supramarginal gyrus, 

while the audiovisual letters activated left visual regions. In addition, an effect of 

congruency in the audiovisual pairs was comparable across numeral-number name pairs 

and letter-letter name pairs, but absent in letter-speech sound pairs.  

Taken together, these three experiments provide new insights into how the brain 

processes numerical symbols at different levels of description. 

 

 

 

Keywords: Hindu-Arabic numerals, letters, symbols, ideographs, fMRI, numerical 

magnitude representation, audiovisual integration, intraparietal sulcus, fusiform gyrus, 

superior temporal gyrus 
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Chapter 1: General Introduction 

Chapter  1:  General Introduction 

1.1 Introduction to numerical symbols 

"This profoundly human invention [number systems] is also the most 
universal of inventions. In more than one sense, it binds humanity together. 
There is no Tower of Babel for numbers: once grasped, they are everywhere 
understood in the same way. There are more than four thousand languages, 
of which several hundred are widespread; there are several dozen alphabets 
and writing systems to represent them; today, however, there is but one 
single system for writing numbers. The symbols of this system are a kind of 
visual Esperanto: Europeans, Asiatics, Africans, Americans or Oceanics, 
incapable of communicating by the spoken word, understand each other 
perfectly when they write numbers using the figures 0, 1, 2, 3, 4… and this 
is one of the most notable features of our present number-system. In short, 
numbers are today the one true universal language. Anyone who thinks that 
number is inhuman would do well to reflect on this fact" (Ifrah, 1981, p 
594). 

 

 Numerical symbols, and the Hindu-Arabic numerals in particular, are perhaps 

the most ubiquitous type of symbolic representation in the world today. In the 

industrialized West, our lives are inundated with numerals across almost every aspect of 

our lives: sports scores, grocery bills, ISBN numbers, medication doses, and calendar 

dates, to name a few examples. The ability to effectively use these types of symbols is 

crucial to navigating our environment.  



2  

 

 

Numerical symbols provide a unique opportunity to learn how the human brain 

learns, decodes, and represents symbols. How is it, for example, that numerical symbols 

become connected with their referents, such as their semantic meaning or their verbal 

name? How does the brain accomplish this task? Does the manner in which a numeral is 

used change its relationship to its meaning? Are different levels of representation, such 

as nominal, ordinal, or ratio, processed in parallel? Yet despite the ubiquity of numeral 

use and the diversity of rich questions that can be asked about it, little is known about 

the neural processing of numerical symbols.  

In the following body of work, three empirical studies are presented that begin to 

fill in this gap in our knowledge.  After a brief historical introduction to numerical 

symbols, the two most principal referents of numerals (semantic and auditory) will be 

discussed. The discussion then turns to what is currently known about the 

neuroanatomical correlates underlying the semantic and asemantic processing of 

numerals. The first chapter concludes with an overview of the three unanswered 

questions that guide each of the empirical studies that were conducted and the 

methodologies used to address them. Following the conclusion of Chapter 1, each of the 

studies and their results will then be described in detail within their own chapters. 

Between each of these empirical chapters, an interim summary will be provided to 

transition from one study to the next. The thesis will conclude with a fifth chapter 

discussing what can be learned from these studies and future directions that research 

into the neurobiology of numerical symbol processing can take. 
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1.1.1 A brief history of numerals 

Although the first formal writing system can be dated to 3,000 B.C.E. in ancient 

Sumer, systems for expressing numerical information developed somewhat later than 

writing systems.  All numerical notation systems found their origins in language, as 

every culture first expressed their numbers as words (Menninger, 1992).  Eventually, 

some cultures developed special symbols for representing numerical values, a process 

which occurred independently in several cultures. These symbols slowly replaced 

numerical icons such as tally sticks, knotted ropes, as well as idiosyncratic (personal or 

community-based) number writing systems.   

In the western world, the first numeral systems were created by using alphabetic 

characters as numerals.  In one archaic practise, the number words were abbreviated 

such that the first letter of the number word was used to represent that number (Ifrah, 

1981, p. 220).  This would be equivalent to English speakers representing the numbers 

seven, eight, and nine with S, E, and N, respectively.  The Babylonians developed a 

more advanced numeral system in which two Cuneiform symbols (a symbol similar to 

Y was used for single units and one similar to < was used for ten units) and a primitive 

place-value system was used to represent numbers 1-59. Thus the number 32 would be 

represented as <<<YY (Ifrah, 1981, p. 88).  This notation system is, like the Greek and 

Roman numeral systems were pseudosymbolic as the numerical referent is not 

independent from the sign that represents it (Peirce, 1976).  Later, sometime after the 

11th Century B.C.E., the ancient Greeks began using the sequence of their alphabetic 
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characters to build a numerical notation (Menninger, 1992).  Here the first letter in the 

alphabet corresponded to the first symbol in the numeral sequence and the 10th letter in 

the alphabet corresponded to the tenth numeral, etc.  This type of system spread into the 

Semitic languages of the Middle East and later into the Roman Empire, whose numerals 

we still use in limited contexts in the present day. 

Eventually, the Greek system was replaced by the Hindu-Arabic numerals first 

developed in ancient India and brought to Europe by the Arabic people of ancient 

Persia.  This numeral system expressed quantities using a place value system and 

included a way of expressing zero.  The Hindu-Arabic numerals were fully developed 

by around 500 C.E., having grown out of the earlier Brahmi numeric script (Ifrah, 

1985).  This numeral system was popularized in Europe by Fibonacci in 1202 and also 

spread eastward into China.  Before this, Chinese represented numbers using number 

words rather than a separate notational system.  Because of the widespread use of the 

Hindu-Arabic numerals, numerical notation systems have a much greater degree of 

cultural homogeneity than writing systems as expressed in the quote inscribing the 

beginning of this discussion. 

1.1.2 Numerals and their referents 

In Figure 1.1, nine symbols are presented. To anyone unfamiliar with these 

symbols, it is impossible to know much about them. One could perhaps guess that they 

come from an East Asian script. However, to anyone who reads the script of the Thai 

language, several things would be clear. Each symbol has a name, an auditory referent 
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that is associated with the visual form. In addition, these symbols are numerical in 

nature and therefore are associated with a semantic referent. The symbols also relate to 

each other in an ordinal system that implies that each subsequent numeral is 1 greater 

than the numeral before it. 

 

 
Figure 1.1 Numerals 1-9 in the Thai script. 

  

Like all true symbols, numerals refer to their referents in a purely arbitrary way (Peirce, 

1976). That is, there is no features of the Numeral 7, which give any information 

regarding either the auditory number word “seven” or the cardinal value “*******”. 

The arbitrary nature of the numeral-referent connection implies that numerals are 

culturally transmitted representations that must be formally learned. In this way, a 

symbolic representation of number can be differentiated from an acultural non-symbolic 

representation described in the next section.  

1.1.2.1 Semantic referents of numerals 

While the association between a numeral and its semantic referent requires some 

type of formal or informal training, the understanding of the semantic referent (referred 

to as numerical magnitude) has its roots in a phylogenetically continuous capacity for 

perceiving numerical information. Sensitivity to numerical magnitude can be seen in the 
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wide varieties of animal species that have demonstrated the ability to make behavioral 

decisions based on numerical information (Brannon, 2006; Nieder & Dehaene, 2009). 

Across the phyla, mammals (Cantlon & Brannon, 2006; Meck & Church, 1983; 

Roitman, Brannon, & Platt, 2007), birds (Roberts & Mitchell, 1994), and even 

amphibians (Krusche, Uller, & Dicke, 2010) and fish (Agrillo, Dadda, Serena, & 

Bisazza, 2009), are able to perceive numerical magnitudes. Such perceptions provide 

adaptive information about their natural environments, such as the number of predators, 

amount of food items, or the number of calls of a particular kind.  

In humans, this basic perception of numerical magnitude can be seen in infants, 

(Antell & Keating, 1983; Feigenson, Carey, & Spelke, 2002; Libertus & Brannon, 2009; 

Lipton & Spelke, 2004; Wynn, 1992; F Xu & Spelke, 2000a, 2000b; Fei Xu, Spelke, & 

Goddard, 2005), as well as in human cultures who use extremely few or no number 

words (Butterworth, Reeve, Reynolds, & Lloyd, 2008; Gordon, 2004; Pica, Lemer, 

Izard, & Dehaene, 2004). Taken together, studies of non-human animals, human infants, 

and individuals without number words provides strong evidence that the capacity to 

perceive numerical magnitude is a predisposition of the human mind adapted for by 

evolution rather than something that needs to be instructed. These pre-verbal 

representations of numerical magnitude are the essence of the semantic representation 

that becomes associated with numerical symbols. As such, it is important to understand 

the nature of the representation of numerical magnitude in order to study how numerical 

symbols are semantically processed.   
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The pre-verbal representation of number described above is approximate and 

non-symbolic. The perception of numerical magnitude is bound by Weber’s Law and 

becomes less precise as the size of the to-be-represented number increases. 

Psychophysically, the imprecision of numerical magnitude representations result in two 

related effects called the distance effect and the size effect. These effects are important 

for understanding the semantic processing of numerical symbols. The size effect states 

that larger numerical values are characterized by greater representational imprecision. 

This fact is utilized by the classic raffle game in which one must guess how many 

objects (for example jellybeans) are in a container. As everyone who has ever played 

this or similar games is familiar with, large collections of jellybeans are notoriously 

difficult to precisely enumerate. The distance effect refers to the influence numerical 

magnitude has on quantitative decisions. Numerical magnitudes that are numerically 

more similar (smaller numerical distance) are more difficult to distinguish than 

quantities that are numerically more dissimilar (larger numerical distance). For example, 

if one were asked to distinguish 31 from 37 jellybeans, one would have a much more 

difficult time (i.e., higher error rate and longer reaction times) than if one were asked to 

distinguish 42 from 91 jellybeans. More contemporary research has combined these two 

effects into the numerical ratio effect, which states that discrimination performance 

decreases as the numerical ratio between two numbers increases. Thus, 31 vs. 62 (ratio 

of 0.5) is easier than 18 vs. 24 (ratio of 0.75), more challenging than 17 vs. 68 (ratio 

0.25) and equally as challenging as 23 vs. 46 (ratio of 0.5).  
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Thus far, it has been asserted that the semantic representations associated with 

numerals originate in the approximate, non-symbolic system for perceiving and 

representing numerical magnitude. An alternative hypothesis would be that two separate 

systems of representation exist (Cohen Kadosh & Walsh, 2009). In this theory, the non-

symbolic system is employed by humans to make judgments about non-symbolic 

magnitudes. In contrast, a symbolic system of number representation would provide 

precise cardinal values of numerical magnitude. Superficially, this two-system 

explanation is compelling. While it is perceptually impossible to discriminate 437 from 

438 dots, it is quite simple to discriminate the values using symbolic representations. 

However, psychophysical data suggest that even the symbolic representation of 

numerical magnitude suffers from imprecision. In tasks such as the numerical 

comparison task, human participants are asked to choose which of two simultaneously 

presented quantities are numerically larger. Consistent with evidence reported in animal 

models, the documented accuracy and latency profiles of the numerical comparison task 

in literate adults show that numerical decisions are slower and more inaccurate as 

numerical ratio between the to-be-compared numerals increases (Buckley & Gillman, 

1974; Dehaene, Spelke, Pinel, Stanescu, & Tsivkin, 1999; Moyer & Landauer, 1967; 

Sekuler & Mierkiewicz, 1977). For example, Moyer and Landauer (1967) demonstrated 

that when adults compared which of two simultaneously presented numerals was 

numerically larger, the reaction time and error rate of the judgments decreased as 

numerical distance increased. The distance effect, they argued, demonstrates that the 
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semantic representations underlying the numerical symbols are imprecise in nature. If, 

instead, the representations of the numerals were digital and precise, there would be no 

reason why the comparison of 7 vs. 9 should take significantly longer or be more 

inaccurate than the comparison of 3 vs. 9. Considering this evidence, it is clear that the 

semantic representations of numerals are constructed from and continue to be linked to 

the intrinsic non-symbolic representation of numerical magnitude.  

While this evidence of links between the symbolic and non-symbolic 

representation of numerical magnitude is compelling, it should still be acknowledged 

that numerical symbols afford a representation of numerical magnitude that can be used 

to discriminate quantities far greater than those that can be discriminated non-

symbolically. That is, when a symbol is linked with a numerical magnitude 

representation, it adds a degree of precision. Recent research has reported evidence that 

this sharpening of the magnitude representation occurs both in the human brain (Piazza, 

Pinel, Le Bihan, & Dehaene, 2007) as well as in neural network models of symbolic 

numeral representation (Verguts & Fias, 2004).  

In summary, the semantic representation of numerals is characterized by 

imprecision inherited from the non-symbolic numerical magnitude representations on 

which they are mapped. This representational imprecision results in the numerical ratio 

effect, which can be used to study the semantic processing of numerals. Let us now turn 

to the other principal referent of numerical symbols: auditory number names. 
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1.1.2.2 Auditory referents of numerals 

 Relative to the semantic referents of numerals, very little is known about the 

nature of their auditory referents. The study of the cognitive and neural correlates of 

numerals has focused almost exclusively on the semantic level of representation. The 

dominant theory guiding the study of numerical cognition considers the auditory 

processing of numerals as a purely linguistic process (Dehaene, 1992). Yet, the degree 

to which the auditory processing of numerals is comparable to the auditory process of 

other types of verbal representations has not been empirically tested.  

 Although the auditory referents of numerals have been largely ignored, they 

nonetheless play a crucial role in the acquisition of the symbolic representation of 

number. This fact has been demonstrated clearly by studies of the acquisition of 

counting. Typically developing children know the names of numbers (what becomes the 

auditory referents of numerals) well before they understand what those numbers mean 

(Le Corre & Carey, 2007; Le Corre, Van de Walle, Brannon, & Carey, 2006; Wynn, 

1990). Wynn (1990), for example, used the so-called “Give-a-Number” task with 

children 2 to 4 years of age. In this task, children are first asked to demonstrate their 

ability to count, typically by counting as high as they can. Following this, children are 

introduced to a stuffed animal that has forgotten how to count. They are asked to give 

the stuffed animal a certain quantity of objects from a large bowl of those objects placed 

near the child. Children younger than 3 ½ or 4 years of age show a peculiar pattern of 

performance such that they are able to recite the number sequence quite well, but are not 
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able to utilize counting to enumerate the proper quantity of objects for the stuffed 

animal. For example, a child of 3 years might be able to count to 25, but when asked to 

give a stuffed toy 5 marbles the child does not understand that the auditory words in the 

counting sequence can be used to count out 5 marbles. Through a process that is still 

poorly understood, learning to count assists young children in associating the auditory 

number words with a semantic meaning. In other words, an asemantic auditory 

representation becomes associated with the representation of numerical magnitude. As 

children begin formal education, children learn the written numerical symbols that 

become connected with both the auditory and the numerical magnitude representations. 

Although the auditory referents of numerical symbols play an important scaffolding role 

in the acquisition of number symbols, little research has been conducted to specifically 

study them. 

 When the auditory number words are linked to visual representations such as 

numerals, an additional level of processing emerges—one in which the auditory and 

visual representations are integrated into a bimodal audiovisual percept. This 

audiovisual level of processing is crucial in reading alphabetic languages where the 

phonological information of speech sounds is associated with the visual information of 

letters (for review see Blomert, 2011). It can be assumed that a similar process of 

audiovisual integration is important for reading numerals. Unlike letters, however, 

numerals have an additional semantic content embedded in them. It, therefore, remains 

unclear whether comparable audiovisual processing exists in the reading of letters and 
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numerals. Moreover, the interaction between the audiovisual and semantic 

representations of numerals has never been studied.  

 In summary, the number words are important for the initial acquisition of 

symbolic representations of numerical magnitude. Children learn number words and 

associate them with their pre-existing representations of numerical magnitude. In early 

elementary school, children then learn to read a special set of symbols (numerals) that 

can be used to stand in for the number words. The degree to which the verbal and 

audiovisual processing of numerals is similar to and divergent from the processing of 

words and letters remains to be determined.  

 Thus far, I have discussed numerals and their two principal referents. Next I turn 

to a brief overview of what is currently known about how numerical symbols are 

processed in the brain both in the semantic and the asemantic (auditory, visual, and 

audiovisual) domains. 

1.2 Neural substrates of symbolic number processing 

1.2.1 Semantic processing of numerals 

 The above discussion introduced the notion that the semantic representation of 

numerals is constructed from the intrinsic, approximate, non-symbolic representation of 

numerical magnitude. The basic evidence for this is the effect of numerical ratio on the 

processing of numerical symbols, which originates from the imprecise nature of 

numerical magnitude representations. Almost all of the neuroimaging research that has 



13  

 

 

been conducted on the processing of numerical symbols has focused on testing this 

hypothesis. A growing number of studies have demonstrated a neural correlate that is 

common for the semantic processing of numerals (Ansari, Garcia, Lucas, Hamon, & 

Dhital, 2005; Cantlon et al., 2009; Chochon, Cohen, van de Moortele, & Dehaene, 1999; 

Eger, Sterzer, Russ, Giraud, & Kleinschmidt, 2003; Fias, Lammertyn, Reynvoet, 

Dupont, & Orban, 2003; Notebaert, Pesenti, & Reynvoet, 2010; Pesenti, Thioux, Seron, 

& De Volder, 2000; Pinel et al., 1999; Pinel, Dehaene, Rivière, & LeBihan, 2001) and 

the quantitative processing of non-symbolic stimuli, such as arrays of dots (Ansari & 

Dhital, 2006; Ansari, Dhital, & Siong, 2006; Cantlon et al., 2009; Cantlon, Brannon, 

Carter, & Pelphrey, 2006; Cappelletti, Lee, Freeman, & Price, 2010; Fias et al., 2003; 

Piazza, Izard, Pinel, Le Bihan, & Dehaene, 2004; Piazza et al., 2007). This body of 

literature has converged on the intraparietal sulcus (IPS), which runs between the 

inferior and superior parietal lobes, as the brain region that houses the representation of 

numerical magnitude (see Figure 1.2).  
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Figure 1.2 Brain regions commonly involved in number processing and referred to in 

the empirical chapters: superior parietal lobe (pale yellow), inferior parietal lobe (dark 

yellow), supramarginal gyrus (olive green), superior temporal gyrus (light green), 
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angular gyrus (blue), fusiform gyrus (pink). Note that the intraparietal sulcus runs 

between the superior and inferior parietal lobes. 

In general, two different paradigms have been used to elicit the neural correlates 

of numerical magnitude processing. The first is the numerical comparison task, which 

was discussed above. In this task, participants are asked to compare two numerical 

magnitudes. The numerical ratio between these magnitudes is varied so that 

experimenters can identify brain regions whose response is modulated by numerical 

information. The IPS responds more strongly when numerical ratio is large (magnitudes 

are more similar) than when numerical ratio is small (magnitudes are less similar). This 

response is thought to reflect the greater reliance on the neural system of semantic 

representation to disambiguate two quantities whose representations are highly 

overlapping. In other words, the IPS must be brought online much more strongly to 

distinguish 32 from 42 dots relative to when it is asked to distinguish 32 from 12 dots. 

As aforementioned, this neural ratio effect is seen in the IPS regardless of whether the 

numerical comparison task uses symbolic or non-symbolic stimuli.  

 The other experimental paradigm used to study the semantic processing of 

numerals is called the numerical adaptation paradigm. In such paradigms, the repeated 

presentation of the same quantity (adaptation stimulus) will cause the neurons that 

encode numerical magnitude representation to reduce in the extent of their response 

(Cantlon et al., 2006; Piazza et al., 2004). When one presents a novel quantity (deviant 

stimulus), the size of the rebound is inversely proportional to the amount of overlap 
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between the adaptation and deviant quantities. Therefore, as the IPS is adapted to the 

quantity “23,” it will show a larger rebound when the deviant is 11 than when the 

deviant is 22. This is due to the fact that the quantities 22 and 23 are highly overlapping 

in their respective representations and, therefore, utilize many of the same neurons to 

encode the quantity. Thus, when deviant 22 is presented, most of the neurons that 

encode it have already been adapted. Presenting 22 would not result in the recruitment 

of many new neurons that were not involved in the previous response to 23. Presenting 

11, on the other hand, would result in a much larger rebound effect as many of the 

representational neurons were not previously adapted to 23. 

Recently published data has suggested that important differences in the 

representation of symbolic and non-symbolic numerical magnitudes may be detectable 

in the IPS. Piazza et al. (2007) used a numerical adaptation paradigm to examine the 

representation of symbolic and non-symbolic numerical magnitude in the parietal lobe. 

These authors demonstrated that the left IPS showed evidence of greater 

representational precision for numerical symbols relative to non-symbolic magnitudes. 

The right IPS showed no differences between formats. More evidence for the 

specialization of the left IPS for the representation of symbolic numerical magnitudes 

comes from a study published by Cohen Kadosh and colleagues (2007) who used an 

adaptation paradigm to demonstrate that the left IPS showed ratio-dependent adaptation 

to both numerals and number words, whereas the right IPS showed quantity adaptation 

only to numerals. Finally, Notebaert and colleagues showed that activity in the left, but 
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not the right, IPS is correlated with the numerical ratio of both single- and double-digit 

Arabic numerals during a numerical adaptation task (2011). Taken together, these data 

are commensurate with a recently proposed hypothesis suggesting specialization of the 

left IPS for the representation of symbolic number (Ansari, 2007, 2008).  

In summary, studies of the semantic processing of numerical symbols have 

demonstrated that the IPS underpins the numerical magnitude representations associated 

with the numerals. Recent research has begun to underscore the importance of the left 

IPS for the representation of symbolic numerical magnitudes. In the next section, I turn 

to a discussion of what is known about the asemantic processing of numerals in the 

brain, which can include processing numerals as an asemantic visual form, an asemantic 

auditory representation or an asemantic audiovisual percept. 

1.2.2 Asemantic processing of numerals 

 The overwhelming majority of research studying the neurocognitive correlates of 

number processing have focused on understanding the representation of numerical 

magnitude, whether the representations are encoded in a non-symbolic or symbolic 

manner. This emphasis on numerical representation has resulted in a marked lack of 

research investigating any aspect of the asemantic processing of numerals in the human 

brain. Studies that have measured the neural responses to asemantic tasks such as 

Hindu-Arabic number naming have used these responses as a comparison with semantic 

processing (Chochon et al., 1999; Pesenti et al., 2000; Zago et al., 2001). The specific 

neural responses to these asemantic tasks were never reported. 
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 One recent study has examined the neural correlates involved in the asemantic 

visual processing of Hindu-Arabic numerals (Price & Ansari, 2011). These authors 

presented participants with numerals, letters, and scrambled versions of the same. 

Relative to scrambled stimuli, a dorsal region of the left angular gyrus showed more 

activation for whole numerals and letters. In addition, a ventral region of the left angular 

gyrus showed more activation for numerals relative to letters. These results suggest that 

the left angular gyrus is involved in some aspect of the asemantic visual processing of 

numerals. 

1.3 Open questions 

The above review outlined what is currently known about the two main referents 

of numerals, followed by a description of the neural correlates underlying the semantic 

and asemantic processing of numerals. As demonstrated, the vast majority of research 

investigating numerical symbol processing has focused on the semantic level. The 

semantic representation of numerical magnitude has been well characterized on both the 

behavioral and the neural level. However, it must be noted that characterizing a 

representation of numerical magnitude that is common across all forms of number, 

including numerals, cannot yield any information specifically about the processing of 

numerical symbols. Thus, almost nothing is known about the neural correlates that are 

specific to the processing of Hindu-Arabic numerals. Against this background, a set of 
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three inquiries that can begin to provide insights into the specific neural correlates 

underlying various aspects of numerical symbol processing is proposed.  

1.4 The present studies 

1.4.1 Similarities and differences in symbolic and non-symbolic processing 

Assuming that a common representation of numerical magnitude exists for 

symbolic and non-symbolic formats, distinct brain regions must be involved in 

accessing the numerical information from the visual stimulus. Non-symbolic arrays 

encode numerical magnitude in a 1:1 fashion, whereas numerals encode numerical 

magnitude in a purely abstract way. If the numerical magnitude representation 

underlying symbolic and non-symbolic format is similar, a common substrate should be 

found in response to both formats. In addition, if the brain encodes this abstract 

representation in format-specific ways, then it should also be possible to identify neural 

correlates specific to each type of numerical stimulus format.  In other words, what 

brain regions are common and divergent in the processing of symbolic and non-

symbolic numerical magnitudes and what can they tell us about how the brain 

transforms numerical information into numerical representation?  

To address this question, Experiment 1 was conducted. Adult participants 

performed symbolic and non-symbolic numerical comparisons while their neural 

responses were recorded using fMRI. The neural response to each format was contrasted 

to delineate the neural correlates related to each numerical stimulus format. A 
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conjunction analysis was then conducted to identify regions that were significantly 

active during both symbolic and non-symbolic comparison. The details and results of 

this experiment can be found in Chapter 2. 

1.4.2 Semantic versus asemantic processing of numerical symbols 

While the nature of the semantic representation of numerical symbols has been 

relatively well characterized, it is currently unknown what regions come online as a 

symbol is changed from an arbitrary, asemantic shape to a quantitatively rich semantic 

entity. In other words, what brain regions respond when the arbitrary visual shape of a 

symbol is viewed asemantically relative to when it is viewed semantically? What 

regions in the cortex differentiate semantic processing from asemantic processing? Are 

they similar to the neural correlates that differentiate symbolic from non-symbolic 

numerical processing? Does the visual processing of numerals interact with the semantic 

processing of numerals? 

To test this, two groups of participants were recruited: individuals who spoke 

and read either Cantonese or Mandarin and individuals who did not. Using an fMRI 

adaptation paradigm adapted from (Notebaert et al., 2011), the participants were 

presented with two different types of numerical symbols: Hindu-Arabic numerals and 

Chinese numerical ideographs. Since the Chinese readers knew the ideographs as a 

semantically rich symbol, but the control group did not, a between-group comparison of 

the neural response to ideographs distinguished semantic from asemantic processing of 

numerical symbols. A contrast of the Chinese readers’ response to numerical ideographs 
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with both groups’ response to numerals was also conducted in order to detect any 

differences between the semantic processing of ideographs and numerals. The details 

and results of this experiment are documented in Chapter 3. 

1.4.3 Visual, auditory, and audiovisual processing of numerical symbols 

In addition to a semantic referent, the Hindu-Arabic numerals are associated with 

an auditory number name. Are these number names distinct from similar verbal stimuli 

such as letter names? How are these auditory referents integrated with the visual form of 

the numeral? If reading numerals is akin to reading letters, then the audiovisual 

integration of both should rely on common neural correlates. However, it is also 

possible that the reading of numerals is highly dissimilar from the reading of letters. If 

both commonalities and differences in numeral and letter processing can be identified, 

what can they tell us about the processes underlying the reading of these two types of 

symbols? 

Chapter 4 holds a description of a study conducted to examine the audiovisual 

processing of numerical symbols. To accomplish this, a paradigm used in studies of the 

audiovisual processing of letters and speech sounds (van Atteveldt, Formisano, Goebel, 

& Blomert, 2004) was adapted. Participants passively viewed three different audiovisual 

pairs: letters and letter sounds, letters and letter names, and numerals and number 

names. The pairs could either be congruent, e.g., participants saw 3 and heard “three,” 

or incongruent, e.g., participants saw 3 and heard “nine.” Three contrasts were of central 

interest in this study. Firstly, what regions respond greater to the congruent relative to 
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incongruent pairing of numerals and number names, i.e., what regions are involved in 

integrating the auditory and the visual information in numerals? Secondly, in numerals, 

does the semantic level of representation interact with the audiovisual response, i.e., are 

semantic and audiovisual processing parallel processes? Thirdly, do any differences 

exist between the audiovisual processing of numeral-number name pairs and the 

audiovisual processing of letter-letter name pairs or letter-letter sound pairs, i.e., is 

audiovisual integration general to letters and numerals? This experiment also afforded a 

test of whether the unimodal visual or the unimodal auditory response differed between 

letters and numerals.  

1.5 Summary and Conclusion 

In summary, the three empirical chapters that follow will present the first data to 

document the neural correlates underlying the processing of numerical symbols in the 

human brain. The data presented will address the three areas of inquiry described 

immediately above. Together, they will provide insight into the processes that are 

common between numerals and non-symbolic numerical stimuli, on the one hand, and 

numerals and non-numerical letter symbols, on the other hand. In addition, they will 

characterize differences between numerals, non-symbolic arrays, and letters, which, in 

turn, can be used to identify processes specific to reading and understanding Hindu-

Arabic numerals. 

 



23  

 

 

 

1.6 References 

Agrillo, C., Dadda, M., Serena, G., & Bisazza, A. (2009). Use of number by fish. PloS 
one, 4(3), e4786. doi:10.1371/journal.pone.0004786 

Ansari, D. (2007). Does the parietal cortex distinguish between “10,” “ten,” and ten 
dots? Neuron, 53(2), 165-7. doi:10.1016/j.neuron.2007.01.001 

Ansari, D. (2008). Effects of development and enculturation on number representation 
in the brain. Nature reviews. Neuroscience, 9(4), 278-91. doi:10.1038/nrn2334 

Ansari, D., & Dhital, B. (2006). Age-related changes in the activation of the intraparietal 
sulcus during non-symbolic magnitude processing: an event-related functional 
magnetic resonance imaging study. Journal of Cognitive Neuroscience, 18(11), 
1820-8. doi:10.1162/jocn.2006.18.11.1820 

Ansari, D., Dhital, B., & Siong, S. C. (2006). Parametric effects of numerical distance 
on the intraparietal sulcus during passive viewing of rapid numerosity changes. 
Brain Research, 1067(1), 181-8. doi:10.1016/j.brainres.2005.10.083 

Ansari, D., Garcia, N., Lucas, E., Hamon, K., & Dhital, B. (2005). Neural correlates of 
symbolic number processing in children and adults. Neuroreport, 16(16), 1769-73. 

Antell, S. E., & Keating, D. P. (1983). Perception of numerical invariance in Neonates. 
Child Development, 54(3), 695–701. JSTOR. 

Blomert, L. (2011). The neural signature of orthographic-phonological binding in 
successful and failing reading development. NeuroImage, 57(3), 695-703. Elsevier 
Inc. doi:10.1016/j.neuroimage.2010.11.003 

Brannon, E. M. (2006). The representation of numerical magnitude. Current opinion in 
neurobiology, 16(2), 222-9. doi:10.1016/j.conb.2006.03.002 

Buckley, P. B., & Gillman, C. B. (1974). Comparisons of digits and dot patterns. 
Journal of Experimental Psychology, 103(6), 1131. American Psychological 
Association. 



24  

 

 

Butterworth, B., Reeve, R., Reynolds, F., & Lloyd, D. (2008). Numerical thought with 
and without words: Evidence from indigenous Australian children. Proceedings of 
the National Academy of Sciences of the United States of America, 105(35), 13179-
84. doi:10.1073/pnas.0806045105 

Cantlon, J. F., & Brannon, E. M. (2006). Shared system for ordering small and large 
numbers in monkeys and humans. Psychological science, 17(5), 401-6. 
doi:10.1111/j.1467-9280.2006.01719.x 

Cantlon, J. F., Brannon, E. M., Carter, E. J., & Pelphrey, K. a. (2006). Functional 
imaging of numerical processing in adults and 4-y-old children. PLoS biology, 
4(5), e125. doi:10.1371/journal.pbio.0040125 

Cantlon, J. F., Libertus, M. E., Pinel, P., Dehaene, S., Brannon, E. M., & Pelphrey, K. a. 
(2009). The neural development of an abstract concept of number. Journal of 
Cognitive Neuroscience, 21(11), 2217-29. doi:10.1162/jocn.2008.21159 

Cappelletti, M., Lee, H. L., Freeman, E. D., & Price, C. J. (2010). The role of right and 
left parietal lobes in the conceptual processing of numbers. Journal of Cognitive 
Neuroscience, 22(2), 331-46. doi:10.1162/jocn.2009.21246 

Chochon, F., Cohen, L., van de Moortele, P. F., & Dehaene, S. (1999). Differential 
contributions of the left and right inferior parietal lobules to number processing. 
Journal of Cognitive Neuroscience, 11(6), 617-30. 

Cohen Kadosh, R., Cohen Kadosh, K., Kaas, A., Henik, A., & Goebel, R. (2007). 
Notation-dependent and -independent representations of numbers in the parietal 
lobes. Neuron, 53(2), 307-14. doi:10.1016/j.neuron.2006.12.025 

Cohen Kadosh, R., & Walsh, V. (2009). Numerical representation in the parietal lobes: 
abstract or not abstract? The Behavioral and brain sciences, 32(3-4), 313-28; 
discussion 328-73. doi:10.1017/S0140525X09990938 

Deacon, T. (1998). The Symbolic Species: the co-evolution of language and the brain. 
New York, NY: W. W. Norton & Company. 

Dehaene, S. (1992). Varieties of numerical abilities. Cognition, 44(1-2), 1–42. Elsevier. 

Dehaene, S., Spelke, E., Pinel, P., Stanescu, R., & Tsivkin, S. (1999). Sources of 
Mathematical Thinking: Behavioral and Brain-Imaging Evidence. Science, 
284(5416), 970-4. doi:10.1126/science.284.5416.970 



25  

 

 

Eger, E., Sterzer, P., Russ, M. O., Giraud, A.-L., & Kleinschmidt, A. (2003). A 
supramodal number representation in human intraparietal cortex. Neuron, 37(4), 
719-25. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12597867 

Feigenson, L., Carey, S., & Spelke, E. (2002). Infants’ discrimination of number vs. 
continuous extent. Cognitive psychology, 44(1), 33-66. 
doi:10.1006/cogp.2001.0760 

Fias, W., Lammertyn, J., Reynvoet, B., Dupont, P., & Orban, G. a. (2003). Parietal 
representation of symbolic and non-symbolic magnitude. Journal of Cognitive 
Neuroscience, 15(1), 47-56. doi:10.1162/089892903321107819 

Gordon, P. (2004). Numerical cognition without words: evidence from Amazonia. 
Science, 306(5695), 496-9. doi:10.1126/science.1094492 

Ifrah, G. (1981). The Universal History of Numbers. John Wiley & Sons, Inc. 

Ifrah, G. (1985). From One to Zero: A universal history of numbers. New York, NY: 
Viking Penguin, Inc. 

Krusche, P., Uller, C., & Dicke, U. (2010). Quantity discrimination in salamanders. The 
Journal of experimental biology, 213(11), 1822-8. doi:10.1242/jeb.039297 

Le Corre, M., & Carey, S. (2007). One, two, three, four, nothing more: an investigation 
of the conceptual sources of the verbal counting principles. Cognition, 105(2), 395-
438. doi:10.1016/j.cognition.2006.10.005 

Le Corre, M., Van de Walle, G., Brannon, E. M., & Carey, S. (2006). Re-visiting the 
competence/performance debate in the acquisition of the counting principles. 
Cognitive psychology, 52(2), 130-69. doi:10.1016/j.cogpsych.2005.07.002 

Libertus, M. E., & Brannon, E. M. (2009). Behavioral and neural basis of number sense 
in infancy. Current Directions in Psychological Science, 18(6), 346. SAGE 
Publications. doi:10.1111/j.1467-8721.2009.01665.x.Behavioral 

Lipton, J. S., & Spelke, E. S. (2004). Discrimination of Large and Small Numerosities 
by Human Infants. Infancy, 5(3), 271-290. doi:10.1207/s15327078in0503_2 

Meck, W. H., & Church, R. M. (1983). A mode control model of counting and timing 
processes. Journal of experimental psychology. Animal behavior processes, 9(3), 
320-34. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/6886634 



26  

 

 

Menninger, K. (1992). Number Words and Number Symbols: a Cultural History of 
Numbers (p. 480). Mineola, NY: Dover Publications. 

Moyer, R. S., & Landauer, T. K. (1967). Time required for judgements of numerical 
inequality. Nature, 215(2), 1519-1520. Nature Publishing Group. Retrieved from 
http://www.nature.com/nature/journal/v215/n5109/abs/2151519a0.html 

Nieder, A., & Dehaene, S. (2009). Representation of number in the brain. Annual 
Review of Neuroscience, 32, 185-208. doi:10.1146/annurev.neuro.051508.135550 

Notebaert, K., Nelis, S., & Reynvoet, B. (2011). The magnitude representation of small 
and large symbolic numbers in the left and right hemisphere: an event-related fMRI 
study. Journal of Cognitive Neuroscience, 23(3), 622-30. 
doi:10.1162/jocn.2010.21445 

Notebaert, K., Pesenti, M., & Reynvoet, B. (2010). The neural origin of the priming 
distance effect: distance-dependent recovery of parietal activation using symbolic 
magnitudes. Human Brain Mapping, 31(5), 669-77. doi:10.1002/hbm.20896 

Peirce, C. S. (1976). The new elements of mathematics. Vol. IV. Atlantic Highland, NJ: 
Mouton/Humanities Press. 

Pesenti, M., Thioux, M., Seron, X., & De Volder, a. (2000). Neuroanatomical substrates 
of arabic number processing, numerical comparison, and simple addition: a PET 
study. Journal of Cognitive Neuroscience, 12(3), 461-79. Retrieved from 
http://www.ncbi.nlm.nih.gov/pubmed/10931772 

Piazza, M., Izard, V., Pinel, P., Le Bihan, D., & Dehaene, S. (2004). Tuning curves for 
approximate numerosity in the human intraparietal sulcus. Neuron, 44(3), 547-55. 
doi:10.1016/j.neuron.2004.10.014 

Piazza, M., Pinel, P., Le Bihan, D., & Dehaene, S. (2007). A magnitude code common 
to numerosities and number symbols in human intraparietal cortex. Neuron, 53(2), 
293-305. doi:10.1016/j.neuron.2006.11.022 

Pica, P., Lemer, C., Izard, V., & Dehaene, S. (2004). Exact and approximate arithmetic 
in an Amazonian indigene group. Science, 306(5695), 499-503. 
doi:10.1126/science.1102085 



27  

 

 

Pinel, P., Dehaene, S., Rivière, D., & LeBihan, D. (2001). Modulation of parietal 
activation by semantic distance in a number comparison task. NeuroImage, 14(5), 
1013-26. doi:10.1006/nimg.2001.0913 

Pinel, P., Le Clec’H, G., van de Moortele, P. F., Naccache, L., Le Bihan, D., & 
Dehaene, S. (1999). Event-related fMRI analysis of the cerebral circuit for number 
comparison. Neuroreport, 10(7), 1473-9. Retrieved from 
http://www.ncbi.nlm.nih.gov/pubmed/10380965 

Price, G. R., & Ansari, D. (2011). Symbol processing in the left angular gyrus: Evidence 
from passive perception of digits. NeuroImage. Elsevier Inc. 
doi:10.1016/j.neuroimage.2011.05.035 

Roberts, W., & Mitchell, S. (1994). Can a Pigeon Simultaneously Process Temporal and 
Numerical Information? Journal of Experimental Psychology: Animal Behavior 
Processes, 20(1), 66-78. Retrieved from 
http://psycnet.apa.org/journals/xan/20/1/66/ 

Roitman, J. D., Brannon, E. M., & Platt, M. L. (2007). Monotonic coding of numerosity 
in macaque lateral intraparietal area. PLoS biology, 5(8), e208. 
doi:10.1371/journal.pbio.0050208 

Sekuler, R., & Mierkiewicz, D. (1977). Children’s judgments of numerical inequality. 
Child Development, 48(2), 630–633. JSTOR. Retrieved from 
http://www.jstor.org/stable/1128664 

Verguts, T., & Fias, W. (2004). Representation of number in animals and humans: a 
neural model. Journal of Cognitive Neuroscience, 16(9), 1493-504. 
doi:10.1162/0898929042568497 

Wynn, K. (1990). Children’s understanding of counting. Cognition, 36, 155-193. 
Retrieved from 
http://www.sciencedirect.com/science/article/pii/0010027790900033 

Wynn, K. (1992). Addition and subtraction by human infants. Nature, 358(6389), 749–
750. Nature Publishing Group. Retrieved from 
http://www.nature.com/nature/journal/v358/n6389/abs/358749a0.html 

Xu, F, & Spelke, E. S. (2000a). Large number discrimination in 6-month-old infants. 
Cognition, 74(1), B1-B11. Retrieved from 
http://www.ncbi.nlm.nih.gov/pubmed/10594312 



28  

 

 

Xu, F, & Spelke, E. S. (2000b). Large number discrimination in 6-month-old infants. 
Cognition, 74(1), B1-B11. Retrieved from 
http://www.ncbi.nlm.nih.gov/pubmed/10594312 

Xu, Fei, Spelke, E. S., & Goddard, S. (2005). Number sense in human infants. 
Developmental Science, 8(1), 88-101. doi:10.1111/j.1467-7687.2005.00395.x 

Zago, L., Pesenti, M., Mellet, E., Crivello, F., Mazoyer, B., & Tzourio-Mazoyer, N. 
(2001). Neural correlates of simple and complex mental calculation. NeuroImage, 
13(2), 314-27. doi:10.1006/nimg.2000.0697 

van Atteveldt, N. M., Formisano, E., Goebel, R., & Blomert, L. (2004). Integration of 
letters and speech sounds in the human brain. Neuron, 43(2), 271-82. 
doi:10.1016/j.neuron.2004.06.025 

 

 



29  

 

 

 

Chapter 2: Common and segregated neural pathways for the processing of 

symbolic and non-symbolic numerical magnitude: an fMRI study 

2.1 Introduction 

Because numerical magnitude is an abstract quality of a set, its meaning does not 

depend on the format in which that number is presented. In other words, whether one 

sees a numerical representation such as “6,” a verbal representation such as “six,” or a 

non-symbolic representation such as six goldfinches in a bush, the “sixness” of the 

number is the same in all cases. 

This abstract quality of numerical magnitude has led to a substantial amount of 

research that has canvassed the brain in search of brain responses that reflect such an 

abstract representation of numerical magnitude. These empirical efforts have 

demonstrated that bilateral inferior parietal regions (most commonly the intraparietal 

sulcus (IPS)) respond to numerical magnitude across numerical stimulus formats. The 

IPS is modulated by numerical information when magnitudes are presented as numerals 

(Ansari, Garcia, Lucas, Hamon, & Dhital, 2005; Chochon, Cohen, van de Moortele, & 

Dehaene, 1999; Pesenti, Thioux, Seron, & De Volder, 2000), words (Dehaene et al., 

1996; Pinel, Dehaene, Rivière, & LeBihan, 2001), or non-symbolic arrays (Ansari & 

Dhital, 2006; Ansari, Dhital, & Siong, 2006; Cantlon, Brannon, Carter, & Pelphrey, 
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2006; Piazza, Izard, Pinel, Le Bihan, & Dehaene, 2004; Piazza, Pinel, Le Bihan, & 

Dehaene, 2007; Venkatraman, Ansari, & Chee, 2005). In addition, numerical 

information evokes IPS activation in both the visual and the auditory domains (Eger, 

Sterzer, Russ, Giraud, & Kleinschmidt, 2003). It has, therefore, been contended that the 

IPS is a region of the brain that supports the representation of abstract numerical 

information (Dehaene, Piazza, Pinel, & Cohen, 2003). However, it should be noted that 

the idea of abstract numerical representation has been challenged by recent behavioral 

and neuroimaging research (Cohen Kadosh & Walsh, 2009).  

Irrespective of its validity, by focusing on the search for an abstract 

representation of numerical magnitude, the majority of existing research has 

deemphasized the importance of numerical stimulus format in the processing of 

numerical magnitude. Investigations designed to characterize similarities in the neural 

processing across all representations of numerical magnitude are an exploration of 

commonalities in the neural structures underlying the processing of all numerical 

stimulus formats and, therefore, treat differences between these formats as a variable of 

no interest. 

Behavioral studies have begun to reveal important variations in numerical 

processing that depend upon differences in numerical stimulus format. For example, a 

study performed by Campbell has shown that stimulus format differences are crucial in 

the domain of calculation (Campbell, 1994). Specifically, these authors compared 

simple addition and multiplication problems presented as either Hindu–Arabic numerals 
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or number words. The error profiles of the two problem types differed depending upon 

the numerical stimulus format in which the problems were presented. Format 

differences have also been shown to be important even for low-level numerical 

processing such as numerical comparison. For example, a recent behavioral study 

showed that children with developmental dyscalculia performed at the same level as 

matched controls on relative magnitude judgments of non-symbolic arrays, but 

performed much more poorly than their typically developing peers on judgments of 

Hindu–Arabic numerals (Rousselle & Noël, 2007). In addition, behavioral work by 

Holloway and Ansari demonstrated a similar effect in a sample of typically developing 

children (Holloway & Ansari, 2009). Specifically, these authors found that children's 

individual differences in the basic processing of symbolic, but not non-symbolic 

numerical magnitudes are related to individual differences in mathematics achievement. 

In addition to behavioral research pointing to important format- related 

differences in number processing, recent brain imaging research has found hemispheric 

differences in numerical representation that are dependent on stimulus format. In a 

recent study, Cohen Kadosh et al., compared the neural representation of numerical 

magnitude for Hindu–Arabic numerals and written number words using an fMRI 

adaptation design. In fMRI adaptation experiments, the neural response to stimulus 

repetition is measured, with the assumption that neural regions involved in the 

processing of a particular stimulus dimension will decrease in their activation as a 

function of stimulus repetition. In their fMRI adaptation study, Cohen Kadosh et al. 
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found that while left IPS exhibited cross-format adaptation (decreased parietal response 

following repetition of number irrespective of the presentation format), the right IPS 

was only found to adapt its response to the repeated presentation of Arabic numerals, 

with no such pattern emerging for number words or cross-format pairs (Cohen Kadosh, 

Cohen Kadosh, Kaas, Henik, & Goebel, 2007). These data suggested that the left IPS is 

related to format-independent numerical magnitude representation, while the right IPS 

shows some specificity for the representation of Hindu–Arabic numerals. In a related 

experiment also employing an fMRI adaptation design, Piazza et al. demonstrated that 

the representation of Arabic numerals in the left IPS is more finely tuned than the 

representation of non-symbolic arrays in the left IPS (Piazza et al., 2007). These two 

sets of findings have led some to argue that the abstract representation of numerical 

magnitude in the left IPS could undergo important changes due to enculturation (Ansari, 

2007) and moreover suggests that the IPS may contain both abstract and non-abstract 

representations of numerical quantity. 

In a recent computational model Verguts and Fias have proposed a mechanism 

by which differences in the processing of symbolic (i.e., Hindu-Arabic numerals) and 

non-symbolic representations (i.e., arrays of dots) of numerical magnitude develop 

(Verguts & Fias, 2004). Using non-symbolic numerical input, these authors trained a 

neural network to represent discrete quantities. Their model included an “input field” in 

which the external representation of the number was presented, a “summation field” in 

which the external, non-symbolic representation was summed and recoded so that it 
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could be represented on a place-coded “number field”. To explain, the “summation 

field” represents the items in the set through an additive process called summation 

coding. In summation coding the size of the representation monotonically increases with 

the size of the quantity being represented. In contrast to the “summation field,” the 

“number field” corresponds to the internal representation of number and is defined by 

place coding. Place coding is a way of representing the total number of items in a set by 

representing that quantity with a specific “place” on a number line. Verguts and Fias 

showed that with repeated trials, a neural network with a pre-existing ability to sum the 

items of a non-symbolic array could learn how to internally represent non-symbolic 

quantities using place coding. 

Verguts and Fias then tested whether this model could be trained to process 

symbolic representations of numerical magnitude, such as the Hindu–Arabic numerals. 

Specifically, the authors tested the hypothesis that symbolic numerical representations 

can be learned through a process of association with pre-existing non-symbolic 

representations of numerical magnitude. Thus, they trained their model to associate 

symbolic numerals with the non-symbolic representations that the model had learned 

previously. In each trial the presentation of symbolic inputs was paired with the 

presentation of non-symbolic inputs. As a function of this training regime, the network 

eventually developed a so-called “symbolic field” which was used in place of the 

“summation field” to transform symbolic inputs into place-coded representations on the 

internal layer of the model. In other words, the network began representing a symbolic 
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number by summing the associated non-symbolic array, but as a function of training 

time, ceased using summation coding and began mapping symbolic inputs directly onto 

the internal place coding representation common to symbolic and non-symbolic 

representations of numerical magnitude. 

Based on the results, two testable predictions can be derived from this model. 

First, the model predicts that across different types of surface format, numerical 

magnitude is internally represented in a common, place-coded representation. Second, 

the model suggests that, within the adult human brain, one should find that symbolic and 

non-symbolic representations of numerical magnitude are processed with divergent 

encoding pathways. 

In the present functional magnetic resonance imaging (fMRI) study, I tested 

these two predictions. To do so, I collected functional neuroimaging data while 

participants performed relative magnitude judgments on both symbolic (Hindu–Arabic 

numerals) and non-symbolic (arrays of squares) stimuli. A numerical comparison task 

was chosen for this study as such tasks require participants to process the stimuli 

semantically, while also allowing for differences in stimulus format. Therefore, this task 

could be used to measure both semantic and stimulus format-related processing. To test 

the first prediction of the Verguts and Fias model, I investigated which brain areas were 

associated with the conjunction of symbolic and non-symbolic numerical magnitude 

comparison. In this way, I was able to identify regions that showed common activation 

to both numerical stimulus formats. In accordance with the large corpus of research (for 
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an overview see Dehaene et al., 2003) examining the neural correlates of numerical 

representation, I predicted that a conjunction of activation between symbolic and non-

symbolic numerical processing would be found in inferior parietal regions. Although my 

hypothesis is convergent with the findings reviewed by Dehaene et al., my analysis 

includes important differences from these previous studies. 

To test the second prediction, I statistically contrasted the neural responses to 

symbolic and non-symbolic numerical comparison. I expected to find differential 

regions involved in the processing of the two numerical stimulus formats. I 

hypothesized that regions of the superior parietal lobe would be particularly involved in 

non-symbolic numerical processing, while regions in the left temporoparietal junction 

would be implicated in symbolic numerical processing. Because a similar analysis has 

not been previously reported in the literature, I based my hypothesis on ancillary sources 

of evidence. With respect to non-symbolic comparison, recent work has shown that 

neurons found in the lateral intraparietal area (LIP) of macaque monkeys are involved in 

numerically summing an array of objects (Roitman, Brannon, & Platt, 2007). The 

existence of this type of summation coding in humans has been shown in a behavioral 

study (Roggeman, Verguts, & Fias, 2007). Importantly, a number of studies have 

suggested that the human homologue of the macaque LIP is found in the superior 

parietal lobe (Koyama et al., 2004; Sereno, Pitzalis, & Martinez, 2001). Consistent with 

these data from non-human primates, Santens, Roggeman, Fias, & Verguts (2010) have 

recently shown that the superior parietal cortex exhibits a pattern of increasing 
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activation with increasing numerical size of non-symbolic arrays. Based on these 

findings, it is reasonable to predict that non-symbolic comparison will activate regions 

of the superior parietal cortex, potentially reflecting this region's involvement in the 

summation coding necessary for non-symbolic number processing. 

To formulate my anatomical hypotheses for symbolic comparison, I looked to 

neuroimaging studies of reading. Against the background of data showing that left 

temporoparietal regions are involved in integrating orthographic, phonological and 

lexical–semantic dimensions of words during reading (Booth, Burman, Meyer, & Lei, 

2003; C. J. Price, 2000; Pugh et al., 2001), I hypothesized that these regions may also 

play a role in symbolic number processing and, in particular, the association of 

numerical symbols with their quantitative referents. 

2.2 Methods 

2.2.1 Participants 

Nineteen (10 females) adults (Mean age = 23.5 years, Range = 18.4–28.25 years) 

participated in this study. All participants were healthy, right-handed, and had normal or 

corrected-to-normal vision. Participants were recruited from graduate and undergraduate 

faculties at Dartmouth College, Hanover, NH, USA. All participants gave informed 

consent in accordance with the Committee for the Protection of Human Subjects at 

Dartmouth College. All fMRI scans took place at the Dartmouth College Brain Imaging 

Center. 
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To ensure that the fMRI data were not confounded by motion artifacts, I applied 

stringent criteria for the inclusion of functional data based on participants' motion. 

Specifically, only functional runs whose overall motion was less than one voxel (3 mm) 

across the entire run were included in the analysis. In addition, only functional runs with 

less than 2 mm motion between sequential functional volumes were included in the 

analysis. Participants were required to have at least one run for each condition that met 

these motion parameters to be included in the analysis. Every run from each participant 

met these criteria and thus no runs were removed from the analysis. 

2.2.2 Task Design and Stimuli 

2.2.2.1 General Features of Stimuli 

The stimuli for each of the four tasks described immediately below were created 

using Adobe PhotoShop software and presented using SuperLab software (Cedrus 

Corporation, San Pedro, CA). All stimuli were white presented on a black background 

measuring 600 × 800 pixels. Stimuli were presented equidistant from a fixation dot that 

appeared between individual trials. See Figure 2.1 for an example of each stimuli type. 

2.2.2.2 Symbolic Task 

  In the symbolic task, Arabic numerals 1–9 were presented measuring 200 pixels 

in height. Participants were asked to choose which side of the screen contained the 

larger number. The stimuli pairs used were: 1–6, 1–7, 1–8, 2–3, 2–4, 2–7, 2–8, 2–9, 3–4, 

3–5, 3–6, 3–9, 4–6, 4–7, 4–9, 5–2, 5–4, 5–8, 6–5, 7–1, 7–2, 7–4, 7–5, 7–6, 7–8, 8–1, 8–
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2, 8–3, 8–6, 9–2, 9–3, 9–6, and 9–7. The pairs 2–9, 8–1, and 8–3 were used twice 

resulting in a total of 36 stimulus pairs laterally counterbalanced across the three runs of 

the experiment for a total of 72 trials per condition. Blocks of trials consisted 

exclusively of either small numerical distances (1–3) or large numerical distances (5–7). 

2.2.2.3 Non-symbolic Task 

In the non-symbolic comparison condition, the same stimuli were used as those 

reported in three recently published studies (Holloway & Ansari, 2009; Price, 

Holloway, Räsänen, Vesterinen, & Ansari, 2007). Specifically, in this task, participants 

were asked to determine which of two arrays of white squares contained the larger 

numerosity. Each non-symbolic trial matched the number-pair parameters of a 

corresponding symbolic trial, e.g., a symbolic number comparison of 3 vs. 7 would 

correspond to a non-symbolic comparison of 3 squares vs. 7 squares. To control for the 

possible confound of continuous variables, the density, individual square size, and total 

area of each array was systematically varied across trials to ensure that numerosity 

could not be reliably predicted from variables continuous with it. Specifically, I first 

divided the 24 stimulus pairs into two groups of 12. In one of these groups, the larger 

numerosity had a larger overall area than the smaller numerosity. This pattern was 

reversed in the other group. Then, each group of 12 stimuli was further divided into 

two additional groups of 6 such that within each group of twelve, six of the stimuli with 

a greater overall area also had the greater density and six of the stimuli with a smaller 

overall area had the greater density. In addition to these controls, individual square size 
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was also varied in each array. In this way, numerosity could not be reliably predicted 

from variables continuous with it. 

 
Figure 2.1 Experimental timing information and examples of stimuli. During symbolic 

comparison, participants chose which of two Arabic numerals was numerically larger. 

During non-symbolic comparison, participants chose which side of the screen contained 

more squares. The control tasks recombined the numerical comparison tasks into shapes 

and participants were asked to choose which of two shapes more closely resembled a 

diagonal line. 
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2.2.2.4 Control Tasks 

The control tasks for both the symbolic and non-symbolic comparison tasks 

involved judging which of two stimuli more closely resembled a diagonal line. In this 

way, the control task, like the experimental task, involved making a selection between 

the two sides of the display. For the symbolic control task, the stimuli were created by 

dividing the Arabic numerals into segments which were then rotated and reconnected in 

arbitrary shapes that either unambiguously approximated a diagonal line or did not (see 

Figure 2.1 for an example of this). My symbolic control stimuli were thus very similar 

to stimuli used by Göbel et al. (2004). Using a similar procedure, the non-symbolic 

control task was created by combining the separate squares into either a shape that 

resembled a diagonal line or a shape that did not. The line-like stimuli were all 

constructed from the larger numerosity. In other words, when a participant was 

presented with a trial pairing 8 and 2 in the numerosity comparison tasks, a 

corresponding control task was created such that 8 was transformed into a line-like 

shape and 2 was transformed into a non-line-like shape. No visual information was 

added or subtracted from the stimuli. Thus the overall visual stimulation (the amount of 

white color in the display) in the control tasks is equivalent to the experimental tasks 

2.2.3 Task Timing Parameters 

A total of 12 functional runs was collected for each participant, three runs for 

each of the four conditions (see Figure 2.1). Each functional run contained blocks of 
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only one type of comparison task. Functional runs began with 30s of fixation followed 

by four 15-second blocks of trials made up of 6 trials each. Each trial was 2.5s in length. 

The trials were further divided into 1200ms of stimulus presentation followed by 

1300ms of fixation. Participants were instructed to choose which of the two sides of the 

screen corresponded to the correct answer. Subjects were asked to make the appropriate 

responses as quickly and accurately as possible by depressing the response button 

placed in their right hand if the correct answer was located on the right side of the screen 

and the response button placed in their left hand if the correct answer was located on the 

left side of the screen. The blocks of trials were separated by 21-second blocks of rest 

during which subjects were presented with a fixation dot and were not required to make 

any responses. After the final block of trials a block of rest was presented for 27 s before 

the run terminated. Thus, the total duration of each run was 3 min. Small and large 

distance blocks were alternated within a functional run. 

2.2.4 Data Acquisition 

Functional and structural images were acquired in a 3T Phillips Intera Allegra 

whole-body MRI scanner (Phillips Medical Systems, The Netherlands) using an 8-

Channel Phillips Sense head-coil. A gradient echo-planar imaging T2⁎ sequence 

sensitive to blood-oxygenation level-dependent (BOLD) contrast was used to acquire 

functional images. Functional images consisting of 30 non-contiguous slices were 

acquired in an interleaved order (4 mm thickness, 0.5 mm gap, 80 × 80 matrix, 

repetition time (TR): 3000 ms, echo time: 35 ms, flip angle: 90°, field of view 240 × 240 
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mm) covering the whole brain. For each functional run, 58 volumes were acquired. Each 

volume was collected using a standard Phillips MPRage 3-D sequence. Volumes 

consisted of 160 three-dimensional whole-brain high-resolution T1- weighted images 

collected in the sagittal plane and measuring 1 mm × 0.94 mm × 0.94 mm. 

2.2.5 Data Analysis 

Both structural and functional images were analyzed using Brain Voyager QX 

2.0.7 (Brain Innovation, Maastricht, Netherlands). The functional images were corrected 

for differences in slice time acquisition, head motion, and linear trends. In addition, 

functional images were spatially smoothed with a 6-mm full width at half maximum 

Gaussian smoothing kernel. Following initial automatic alignment, the alignment of 

functional images to the high-resolution T1 structural images was manually fine-tuned. 

The realigned functional data set was then transformed into Talairach space (Talairach 

& Tournoux, 1988). A two-gamma hemodynamic response function was used to model 

the expected BOLD signal (Friston et al., 1998).  

An initial whole-brain, random-effects conjunction analysis was conducted to 

reveal regions that responded to both numerical stimulus formats greater than their 

control conditions (symbolic − symbolic control) ∩ (non-symbolic − non-symbolic 

control). That is, this conjunction revealed regions that were significantly more activated 

in the numerical than the control task for both types of stimulus format. Following the 

conjunction, I conducted a whole-brain random-effects analysis, which examined 

differences in BOLD response to the two numerical formats (i.e., symbolic and non-
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symbolic). Before contrasting the two numerical formats with one another, I first 

subtracted out neural activation of the corresponding control tasks. Thus, this analysis 

revealed regions sensitive to differences in numerical stimulus format (symbolic − 

symbolic control) − (non-symbolic − non-symbolic control) after controlling for  

response selection and aspects of visual processing common to numerical and control 

tasks. 

The conjunction analysis and contrast of numerical stimulus format were 

initially calculated using an uncorrected statistical threshold of p < .005 and p < .001, 

respectively. For the conjunction analysis, the lower statistical threshold was chosen 

since in a conjunction analysis two contrasts of interest must both significantly modulate 

the fMRI activation in a given region. For a conjunction analysis, the effective p-value 

is the square of the p-values for each component (in my case 0.0052). Therefore, a more 

liberal threshold for such a conservative statistical procedure is justified. Both of the 

resulting statistical maps were subsequently corrected for multiple comparisons using 

cluster-size thresholding (Forman et al., 1995; Goebel et al., 2006). In this method, an 

initial voxel-level (uncorrected) threshold is set. Then, thresholded maps are submitted 

to a whole-slab correction criterion based on the estimate of the map’s spatial 

smoothness and on an iterative procedure (Monte Carlo simulation) for estimating 

cluster-level false-positive rates. After 1000 iterations, the minimum cluster-size that 

yielded a cluster-level false-positive rate (∝) of 0.05 (1%) was used to threshold the 

statistical maps. Put another way, this method calculates the size that a cluster would 
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need to be (the cluster threshold) to survive a correction for multiple comparisons at a 

given statistical level. Only activations whose sizes meet or exceed the cluster threshold 

are allowed to remain in the statistical maps. 

Region of interest (ROI) analyses were conducted for the sole purpose of 

extracting parameter estimates from regions showing significant whole-brain effects. 

For each ROI analysis described below, the region was first defined from areas that 

showed significant activations in the whole-brain analysis. In other words, my regions 

of interest were not defined a priori, but instead were defined by my actual data and 

intended simply as further explorations of the whole- brain effects. A general linear 

model (GLM) was performed across all of the voxels that comprised a given ROI, 

leading to an average activation of voxels within the region of interest for each 

condition and subject. The resulting parameter estimates (beta weights) are standardized 

scores (z-scores). In each ROI analysis therefore, each subject has a beta weight from 

the GLM for each condition, which represents this average z-scored magnitude of the 

activation for all voxels in a given ROI for each condition. 

I performed two specific types of ROI analysis. For both the conjunction and the 

contrast of stimulus format, I extracted beta weights for the four experimental conditions 

(symbolic, symbolic control, non-symbolic, and non-symbolic control). This afforded 

further offline statistical analysis of the relative differences in BOLD response for each 

of these conditions in each region and allowed my to assess to what extent format 

differences are differences in activation or deactivation of brain regions. 
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The second ROI analysis examined the effect of numerical distance on the 

regions found in the conjunction analyses. I did not perform the analysis of distance on 

the regions elicited by differences in numerical stimulus format as numerical distance 

was not the primary focus of my stimulus-format analysis. I included the analysis of 

numerical distance to investigate whether regions elicited by the conjunction analysis 

were sensitive to the semantic dimension of numerical magnitude for both stimulus 

formats. The blocks of trials in the numerical comparison tasks were separated into 

small and large distances (see above), which allowed my to model the effect of symbolic 

and non-symbolic numerical distance on the hemodynamic response. Accordingly, my 

second ROI extracted beta weights for the effect of symbolic and non-symbolic 

numerical distance from the areas implicated in the conjunction analyses. Both the 

effects of symbolic and non-symbolic distance were examined. 

Finally, I performed a series of correlational analyses to rule out the possibility 

that the modulation of brain regions was due simply to differences in task difficulty 

between conditions. Specifically, I examined whether the magnitude of differences in 

BOLD activity in regions showing differences between numerical notations correlated 

with differences in accuracy and response time between numerical notations. I reasoned 

that if the difference between the neural response to symbolic and non-symbolic 

numerical processing in a given region was related to differences between reaction time 

and accuracy for symbolic and non-symbolic numerical processing, then the neural 

activation could be related to a general feature of the tasks rather than to numerical 
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processing per se. However, if no correlation exists between BOLD activity and task 

performance, then I can be reasonably more certain that my findings reflect numerical 

processing rather than general task performance. 

2.3 Results 

2.3.1 Behavioural Results 

Format differences in reaction time and accuracy of the numerical comparison 

tasks were analyzed in separate 2 (format: symbolic vs. non-symbolic) by 2 (task: 

numerical vs. control) repeated measures analyses of variance. The effect of numerical 

distance on reaction time and accuracy was analyzed in a similar way using separate 2 

(format: symbolic vs. non-symbolic) by 2 (distance: small vs. large) repeated measures 

analyses of variance. For the distance effect analyses, the small distance level was 

created by averaging behavioral responses to distance 1–3 while the large distance level 

was formed by an average of behavioral responses to distance 5–7. For all analyses, 

significant interactions were further analyzed using Bonferroni-corrected t-tests. 

Because the accuracy data were skewed, I applied a logarithmic transformation to the 

data before submitting them to the analyses of variance and any follow-up t-tests. 

2.3.1.1 Effect of Format Differences on Reaction Time 

The analysis revealed a main effect of format in which the reaction times 

required for non-symbolic comparison (M = 548.1, SD = 128.8) were found to be higher 
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than those required for symbolic number comparison (M =493.1, SD = 109.5), F (1, 18) 

= 25.4, p < .001, η2 = 0.59. A main effect of task was also revealed by this analysis, such 

that the numerical comparison tasks (M = 577.6, SD = 121) required more time than the 

control tasks (M = 463.6, SD = 121.2), F (1, 18) = 65.2, p < .001, η2 = 0.78. In addition, 

the effect of format differed by task F (1, 18) = 30.0, p < .001, η2 = 0.62. In the 

numerical task, reaction times during symbolic comparison (M = 525.9, SD = 104.7) 

were significantly shorter than reaction times during non-symbolic comparison (M = 

629.4.1, SD = 146.6), t (18) = − 5.7, p < .001 corrected. In contrast, the reaction times of 

the control tasks did not differ by format t (18) = − 0.8, ns. 

2.3.1.2 Effect of Format Differences on Accuracy 

Accuracy for all of the comparison tasks was all above 95%. Overall, more 

errors were made in the numerical tasks (M = 0.97, SD = 0.02) than the control tasks 

(M = 0.99, SD = 0.01), F (1, 18) = 16.9, p < .01, η2 = 0.48. In addition, more errors 

were committed during the non-symbolic condition (M = 0.97, SD = 0.02) than the 

symbolic condition (M = 0.99, SD = 0.01), F (1, 18) = 19.9, p < .001, η2 = 0.53. 

Bonferroni-corrected post-hoc analyses of the significant interaction between task and 

format, F (1, 18) = 13.4, p < .01, η2 = 0.43, suggested that the lower accuracy in the 

non-symbolic (M = 0.95, SD = 0.03) compared with the symbolic condition (M = 0.99, 

SD = 0.02) was present in the numerical tasks, t (18) = 4.7, p < .001 corrected, but not 

the control tasks, t (18) = 2.3, ns. 
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2.3.1.3 Effect of Distance on Reaction Time 

Reaction time for performing symbolic comparison (M = 525.9, SD = 104.7) 

was lower than that required for non-symbolic comparison (M = 629.4.1, SD = 146.6), 

F (1, 18) = 32.1, p < .001, η2 = 0.64. In addition, numerical distance had a main effect 

on reaction time, F (1, 18) = 117.6, p < .001, η2 = 0.87, with small distances (M = 

651.6, SD = 138.3) requiring longer reaction times than large distances (M = 503.6, SD 

= 109.1). The effect of numerical distance on reaction time also depended upon the 

stimulus format, F (1, 18) = 49.5, p < .001, η2 = 0.73. Specifically, reaction times to 

small distances were significantly longer in the non-symbolic condition (M = 743.9, SD 

= 183.3) compared with the symbolic condition (M = 559.3, SD = 109.4), t (18) = 6.7, p 

< .001 corrected, whereas large distances did not differ between stimulus formats, t 

(18) = 1.7, ns. 

2.3.1.4 Effect of Distance on Accuracy 

The analysis of the accuracy data revealed results very similar to those of the 

reaction time data. A main effect of format was found, F (1, 18) = 22.1, p < .001, η2 = 

0.55. More errors were made in the non-symbolic format (M = 0.95, SD = 0.03) than the 

symbolic format (M = 0.99, SD = 0.02). A main effect of distance was found such that 

more errors were made for small numerical distances (M = 0.95, SD = 0.03) than for 

large distances (M = 0.99, SD = 0.01), F (1, 18) = 30.3, p < .001, η2 = 0.62. In addition, 

an interaction was found between distance and format, F (1, 18) = 20.6, p < .001, η2 = 
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0.53. For small distances, significantly more errors were made for the non-symbolic 

stimuli (M = 0.92, SD = 0.05) than the symbolic stimuli (M = 0.98, SD = 0.03), t (18) = 

4.9, p < .001. No difference between symbolic and non-symbolic formats was found for 

the large distances, t (18) = 0.1, ns. 

2.3.2 Imaging Results 

2.3.2.1 Conjunction Analysis 

In a first analysis, the conjunction of numerical stimulus format was analyzed by 

conducting a voxel-wise t-test to examine which areas were significantly modulated by 

both symbolic and non-symbolic comparison relative to their control conditions (see 

Figures 2.2 and 2.3 and Table 2.1). Results from the conjunction analysis revealed 

several distinct regions whose activity was significantly greater than their controls. Of 

particular note, two of the regions revealed by the conjunction analysis were the right 

inferior parietal lobule (IPL) and right superior parietal lobule (SPL). In addition, the 

conjunction analysis revealed several additional regions including the inferior frontal 

gyrus extending up into the middle frontal gyrus, a region of the right anterior insula, the 

anterior cingulate, and the right superior frontal gyrus extending ventro-laterally into the 

middle frontal gyrus. 
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Figure 2.2 Statistical map illustrating activation elicited by conjunction of symbolic and 

non-symbolic comparison. Bar charts represent mean parameter estimates of activation 

across all participants in the inferior parietal lobe (above) and superior parietal lobe 

(below). Y-axis depicts BOLD signal represented in z-scores. Error bars represent 

standard error of the mean. 
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Figure 2.3 Statistical map illustrating activation elicited by conjunction of symbolic and 

non-symbolic comparison. Bar charts represent mean parameter estimates of activation 

across all participants in the right inferior frontal gyrus for symbolic small distance (SS), 

symbolic large distance (SL), non-symbolic small distance (NS) and non-symbolic large 

distance (NL). Y-axis depicts BOLD signal represented in z-scores. Error bars represent 

standard error of the mean. 

 

2.3.2.2 Analysis of distance contrast in conjunction-defined regions 

To examine the effect of numerical distance on these regions, I conducted a 2 

(format: symbolic and non-symbolic) by 2 (distance: small and large) repeated 
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measures ANOVA on each of the six regions implicated in the conjunction analysis. 

After applying a Bonferroni correction to control for type I error inflation due to 

multiple comparisons, four of the six regions showed a significant main effect of 

numerical distance. These included both the inferior parietal lobe, F (1, 18) = 10.0, p < 

.05, η2 = 0.36 and the superior parietal lobe, F (1, 18) = 12.9, p < .05, η2 = 0.42 (see 

Table 1). In addition, the activation of the anterior insula, F (1, 18) = 12.8, p < .05, η2 = 

0.42 and the inferior frontal gyrus, F (1, 18) = 14.1, p < .05, η2 = 0.44 also reflected 

significant modulation by numerical distance. Importantly, none of these regions 

showed a significant format × distance interaction, which suggests that effect of 

numerical distance on the hemodynamic response was comparable in both symbolic 

and non-symbolic comparison. The anterior cingulate, on the other hand, showed no 

main effect of distance, but a significant format × distance interaction, F (1, 18) = 9.5, p 

< .05, η2 = 0.35. Bonferroni-corrected t-tests indicated that this interaction is 

characterized by a significant effect of distance in the non-symbolic condition, t (18) = 

3.2, p < .05, but not the symbolic condition, t (18) = 1.0, ns. The superior frontal gyrus 

showed no significant effect of distance or a significant format × distance interaction. 

 

Table 2.1 Activations from conjunction analysis 

 x y z k t S SC N NC SS SL NS NL 
R inferior 
frontal gyrus 

48 13 31 1322 3.7 0.7 0.5 0.8 0.4 0.7 0.6 0.9 0.6 
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R inferior 
parietal lobe 

45 -41 49 254 3.4 0.7 0.5 0.6 0.4 0.8 0.7 0.8 0.5 

R anterior insula 
 

32 20 4 1678 3.5 0.7 0.4 0.8 0.5 0.8 0.6 0.9 0.6 

R superior 
parietal lobe 

30 -51 44 333 3.4 0.9 0.8 1.1 0.8 1.0 0.9 1.2 0.9 

R superior 
frontal gyrus 

20 11 58 504 3.5 0.4 0.3 0.6 0.3 0.5 0.3 0.7 0.5 

R anterior 
cingulate 

5 23 38 1373 3.5 0.7 0.5 0.8 0.5 0.8 0.6 1.1 0.5 

 
Notes: List of the anatomical localization of the peak voxel for each activation, its 

coordinates, the number of voxels in each activated region, and the average t-statistic for 

each distinct activation elicited by the conjunction of stimulus format (symbolic − 

control) + (non-symbolic − control). The right side of the table lists the average 

parameter estimate for the symbolic (S), symbolic control (SC), non-symbolic (N), non-

symbolic control (NC), symbolic small distance (SS), symbolic large distance (SL), 

non-symbolic small distance (NS), and non-symbolic large distance (NL) conditions. 

2.3.2.3 Contrast of Stimulus Format 

To examine the effect of numerical stimulus format, I conducted a voxel-wise t-

test to examine the brain for regions which showed significant differences in activation 

between the symbolic and non-symbolic stimulus formats after subtracting out activity 

associated with the control tasks (see Figures 2.4 and 2.5 and Table 2.2). Nine regions 

were found. Seven of these areas showed greater activation in the non-symbolic 
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condition relative to the symbolic condition. These included the posterior portion of the 

right superior parietal lobe, the anterior portion of the right inferior occipital gyrus, the 

right cuneus, the posterior aspect of the left occipital gyrus extending ventrally into 

inferior occipital gyrus, the left superior occipital gyrus extending down into the middle 

occipital gyrus, and the left middle occipital gyrus extending ventrally into inferior 

occipital gyrus. In addition, one very large region was found centered on the right 

superior occipital gyrus, which extended into the middle occipital gyrus and, at its 

extremes, to ventral aspects of the cuneus and very posterior aspects of the inferior 

parietal lobe. Note that the posterior right superior parietal lobe found in this contrast 

did not overlap with the more anterior portion of the superior parietal lobe elicited by 

the conjunction analysis (see Tables 2.1 and 2.2). Two regions showed greater 

modulation during the symbolic compared to the non-symbolic comparison task. They 

include the left angular gyrus and the left superior and middle temporal gyrus near their 

border with the supramarginal gyrus. 
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Figure 2.4 Statistical map illustrating activations elicited by contrast of stimulus format. 

Activations in blue areas that were modulated more by the non-symbolic compared with 

the symbolic tasks (after subtraction of the control tasks), while activations in orange 

represent regions showing relatively greater activation for symbolic compared to non-

symbolic comparisons (after subtraction of the control tasks). Bar charts represent mean 

parameter estimates of activation across all participants in the left angular gyrus (above) 

and superior parietal lobe (below) for the symbolic condition (S), symbolic control 

condition (SC), non-symbolic condition (N) and non-symbolic control condition (NC). 

Y-axis depicts BOLD signal represented in z-scores. Error bars represent standard error 

of the mean. 
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Figure 2.5 Statistical map illustrating activations elicited by contrast of stimulus format. 

Orange represent regions showing greater activation for symbolic compared to non-

symbolic comparisons (after subtraction of the control tasks). Bar charts represent mean 

parameter estimates of activation across all participants in the left superior temporal 

gyrus for the symbolic condition (S), symbolic control condition (SC), non-symbolic 

condition (N) and non-symbolic control condition (NC). Y-axis depicts BOLD signal 

represented in z-scores. Error bars represent standard error of the mean. 
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Table 2.2 Activations from contrast of stimulus format 

 

 

x y z voxels t S SC N NC 

R inferior occipital gyrus 49 -54 -2 122 -5.4 0.5 0.7 0.8 0.7 

R superior occipital gyrus 29 -79 19 5183 -5.7 0.8 1.2 1.7 1.2 

R superior parietal lobe 18 -64 53 2527 -5.5 0.6 0.9 1.3 0.8 

R cuneus 9 -89 20 1294 -5.8 0.4 0.7 1.6 1.1 

L superior occipital gyrus -27 -77 23 1651 -5.5 0.8 1.2 1.6 1.1 

L posterior superior  
occipital gyrus 

-23 -91 18 161 -5.3 0.6 1.0 1.4 0.9 

L middle occipital gyrus  -32 -84 6 252 -5.3 0.8 1.2 1.3 1.0 

L angular gyrus -43 -67 30 85 5.1 0.0 -0.1 -0.5 0.0 

L superior temporal gyrus -52 -44 11 496 5.5 0.2 0.0 -0.2 0.0 

 
Notes: list of the anatomical localization of the peak voxel for each activation, its 

coordinates, the number of voxels in the activation, and the average t-statistic for each 

distinct activation elicited by the contrast of stimulus format (symbolic − control) − 

(non-symbolic − control). Right side of the table lists the average parameter estimate for 

the symbolic (S), symbolic control (SC), non-symbolic (N), and non-symbolic control 

(NC) conditions. 
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2.3.2.4 Analysis of Directionality of Effects in Contrast-defined Regions 

In previous studies, some of the activations found in temporoparietal regions 

such as the angular gyrus have been shown to be reflective of relative deactivation in 

this region (Ischebeck et al., 2006; Shulman, Astafiev, McAvoy, D’Avossa, & Corbetta, 

2007). I, therefore, examined the beta weights from each of the regions elicited by my 

contrast of stimulus format to determine the directionality of the effects. Of the nine 

regions found, only two of these involved relative deactivations. I examined the effects 

of task and format more closely in these two regions using separate 2 (format: symbolic 

vs. non-symbolic) by 2 (task: numerical vs. control) repeated measures analyses of 

variance, corrected for multiple comparisons using the Bonferroni method. In the 

angular gyrus, my analysis revealed both a significant main effect of format, F (1, 18) = 

16.0, p < .01, η2 = 0.47, and a significant main effect of task, F (1, 18) = 10.3, p < .01, η2 

= 0.36. These effects were not interpreted in light of the significant interaction between 

task and format F (1, 18) = 36.2, p < .01, η2 = 0.69. Bonferroni correct t-tests indicated 

that the interaction was characterized by a significant difference between symbolic and 

non-symbolic numerical comparison, t (18) = − 7.1, p < .01, but no difference between 

the control conditions, t (18) = − 0.307, ns. In addition, a one-sample t-test revealed that 

the difference between the symbolic and non-symbolic numerical tasks was 

characterized by a significant deactivation of the angular gyrus during the non-symbolic 

condition, t (18) = − 5.1, p < .001 and no significant modulation in the symbolic 

condition, t (18) = 0.52, ns (for a visual representation of this see Figure 2.4). Thus, the 
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interaction was characterized by a significant difference in numerical conditions (i.e., 

deactivation during non-symbolic and no significant modulation during symbolic) and 

no difference in modulation of the angular gyrus during the control conditions. 

An identical analysis was conducted on the parameter estimates from the 

superior temporal gyrus. Neural activity in this region was characterized by a significant 

effect of format F (1, 18) = 21.9, p < .001, η2 = 0.55 and a significant interaction 

between format and task, F (1, 18) = 64.9, p < .01, η2 = 0.78. Bonferroni-corrected t-

tests indicated that the interaction was defined by a significant difference between the 

numerical comparison conditions, t (18) = − 7.0, p < .01, but no difference between the 

control conditions, t (18) = − 0.079, ns. One-sample t-tests revealed that the difference 

in activation between the symbolic and non-symbolic numerical tasks was due to a 

significant deactivation during the non-symbolic numerical comparison, t (18) = − 2.8, p 

< .05 and a significant activation in the symbolic condition, t (18) = 3.5, p < .01 (for a 

visual representation of this see Figure 2.5). In the superior temporal gyrus, the 

interaction was defined by a significant difference in numerical conditions (i.e., 

deactivation during non-symbolic and significant activation during symbolic) and no 

significant modulation of this region during the control conditions. 

2.3.2.5 Tests of Correlation between Parameter Estimates and Behavioral 

Measures 

The behavioral data above revealed a difference in reaction time and accuracy 

between the symbolic and non-symbolic numerical tasks. The behavioral data above 
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revealed a difference in reaction time and accuracy between the symbolic and non-

symbolic numerical tasks. To rule out the possibility that format-related differences in 

brain activation were solely related to differences in general task performance, I 

performed a series of correlational analyses. Thus, for each subject I calculated two 

performance scores that reflected the difference in reaction time and accuracy between 

the symbolic and non-symbolic numerical conditions. I also calculated scores reflecting 

the difference in BOLD activity between the symbolic and non-symbolic numerical 

conditions for each region that showed a significant effect of stimulus format. No 

significant correlations were found between BOLD activity and performance, which 

suggests that the brain activation differences cannot be entirely explained by differences 

in task performance. 

2.4 Discussion 

In this study, I investigated the neural correlates of symbolic and non-symbolic 

numerical processing to elucidate commonalities and differences between the 

processing of numerical stimulus formats in the adult human brain. To examine which 

brain regions responded to both symbolic and non-symbolic formats of stimulus 

presentation, I investigated the conjunction of neural response to symbolic and non-

symbolic comparison. This was followed by a contrast of numerical stimulus format to 

identify regions that responded differentially to symbolic and non-symbolic numerical 

processing. Below I discuss the results from these analyses in turn. 



61  

 

 

2.4.1 Conjunction of stimulus format 

The conjunction of symbolic and non-symbolic stimulus formats revealed several 

areas previously shown to be engaged by numerical comparison including the right 

superior parietal lobe (Chochon et al., 1999; Eger et al., 2003; Pesenti et al., 2000), the 

right superior frontal gyrus (Chochon et al., 1999; Pinel et al., 1999), the inferior 

frontal gyrus (Pinel et al., 1999), and the right anterior cingulate (Chochon et al., 1999; 

Pinel et al., 1999). Most notably, this analysis supported my prediction that inferior 

parietal regions would be activated by the conjunction of symbolic and non-symbolic 

numerical comparison. This result is commensurate with a growing body of 

neuroimaging studies showing that this region is engaged by numerical processing 

tasks in symbolic formats (Ansari et al., 2005; Chochon et al., 1999; Eger et al., 2003; 

Pesenti et al., 2000; Pinel et al., 1999, 2001), non-symbolic formats (Ansari & Dhital, 

2006; Ansari et al., 2006; Cantlon et al., 2006; Piazza et al., 2004, 2007), and both 

(Venkatraman et al., 2005). My findings also converge with previous research by Fias 

et al. who demonstrated the IPL to be involved in the processing of both numerical 

(Hindu–Arabic numerals) and non- numerical (line length and angle size) magnitudes 

(Fias, Lammertyn, Reynvoet, Dupont, & Orban, 2003). 

However, the notion that parietal responses during number comparison are 

specifically related to the processing of numerical magnitude has not been 

uncontroversial. In particular, Göbel et al. have challenged the findings of previous 

numerical comparison studies implicating the parietal cortex in the processing and 
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representation of numerical magnitude by demonstrating that inferior parietal regions 

(in particular the intraparietal sulcus) are engaged to an equal extent when participants 

are required to select one of two non-numerical stimuli (Göbel et al., 2004). Since all 

numerical comparison tasks contain a response selection component, it is difficult to 

determine whether the activation in response to numerical comparison is reflective of 

numerical processing or response selection. However, by using control stimuli very 

similar to the stimuli used by Göbel et al., I was able to avoid this confound. The 

activations shown in the present study were present even after controlling for response 

selection components of the tasks (selecting one of two sides of the display by means 

of a button press). 

The results of the conjunction analysis revealed inferior parietal activation that 

was found to be right lateralized. Similar lateralization has been demonstrated in other 

neuroimaging research of numerical processing. In particular, Chochon et al. compared 

numerical comparison to arithmetic tasks. They showed that the right, but not left, 

parietal cortex is modulated by nonverbal numerical processing and thus concluded that 

the right parietal lobe houses an analog representation of numerical magnitude 

(Chochon et al., 1999). This conclusion was later supported by Piazza et al. who 

demonstrated format-general representation of numerical magnitude only in the right 

parietal lobe (Piazza et al., 2007). The present data converge with these previous data 

and implicate the right parietal lobe in format-general numerical representation. 

Recently, Cantlon et al. (2009) published a report documenting the ontogenetic 
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development of a format-independent representation of numerical magnitude. In this 

study, the authors used comparison tasks that were highly similar to the ones used in this 

study. Using a conjunction analysis between symbolic and non-symbolic numerical 

comparison, the authors showed that adults show stronger activation relative to children 

in the left superior parietal cortex. However, when these authors examined only the 

adult participants, they found that adults recruited bilateral parietal regions extending 

along the intraparietal sulcus from the superior to the inferior parietal lobules. Thus, my 

data are commensurate with those reported by Cantlon and colleagues in that both 

studies implicate parietal regions in the format-independent processing of numerical 

magnitude. The specific regions revealed in these two studies (right lateralized 

intraparietal suclus in my study and bilateral IPS in Cantlon et al.'s study) are, overall, 

quite similar. The differences in the parietal activation between the two studies are 

likely due to my use of a control task in addition to the numerical comparison tasks. It 

will be important for future studies of the development of numerical representation to 

include appropriate control tasks to distinguish developmental differences in number-

related activation from developmental differences in task-specific and domain-general 

response selection mechanisms. 

In addition to parietal regions, the conjunction analysis also revealed that the right 

inferior frontal gyrus was significantly activated by both symbolic and non-symbolic 

representations of numerical magnitude. While the precise role of this region in 

numerical magnitude processing is unclear, recent research has suggested that this 



64  

 

 

region might be mediating a connection between symbolic and non-symbolic 

representations that is crucial for the establishment of connections between numerals 

and their semantic referents (Cantlon et al., 2009; Diester & Nieder, 2007). My data are 

commensurate with this hypothesis in that both symbolic and non-symbolic 

representations activate this region. 

2.4.2 Contrast of stimulus format 

2.4.2.1 Regions responding to non-symbolic numerical processing 

The contrast of numerical stimulus format revealed regions that were 

differentially activated by the surface format in which quantities were represented. It 

should be noted that these format-related differences emerged after subtracting away the 

variance related to the control tasks. These control tasks included a response selection 

component (depressing a button underneath the side of the display that most closely 

resembled a line) and were equated with the experimental tasks in terms of the number 

of white pixels that were visually presented. 

The contrast of non-symbolic vs. symbolic number comparison revealed a large 

area of the visual cortex, which reflects the greater visual demands of the non-symbolic 

condition. This activation could reflect aspects of visual processing that were not 

accounted for by the control task such as processing the density of an array. However, 

it is also possible that some of the activation in the visual cortex reflects visual 

processing necessary for non-symbolic numerical processes such as the individuation 
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and summation of the white squares. Future studies specifically targeting the role of 

visual aspects in non-symbolic numerical processing are needed to clarify this issue 

further. In addition to these visual regions, the non-symbolic condition also activated a 

region of the right posterior superior parietal lobe—an area that has previously been 

implicated in non-symbolic number processing by several other studies (Ansari et al., 

2006; Cantlon et al., 2006; Piazza et al., 2004, 2007). 

The involvement of the posterior superior parietal lobe in non-symbolic 

numerical processing confirms my prediction put forward in the introduction. 

Specifically, at the outset of this paper I proposed that this region would be involved in 

non-symbolic numerical processing due to its role in the summation coding necessary 

for processing non-symbolic quantities. Indirect support for the role of the posterior 

superior parietal lobe in summation coding can be found in recent research in monkeys 

and humans. Roitman et al. recently demonstrated that the LIP of macaque monkeys 

contains neurons whose firing rate increases monotonically with the number of non-

symbolic items presented (Roitman et al., 2007). Thus, the behavior of these neurons 

reflects a summing of the objects (summation coding) in a visually presented non-

symbolic array. Behavioral research has demonstrated the existence of summation 

coding in humans (Roggeman et al., 2007). Furthermore, recent neuroimaging work 

has demonstrated that the superior parietal lobe (Talairach coordinates: 21, − 67, 57) is 

involved in non-symbolic, but not symbolic, numerical processing and, consistent with 

the summation coding, is modulated by the set size of non-symbolic numerical 
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magnitudes (Santens et al., 2010). Other neuroimaging work has provided evidence that 

the superior parietal lobe in humans is the homologue to the LIP of macaque monkeys 

(Koyama et al., 2004; Sereno et al., 2001). More specifically, Koyama and colleagues 

elicited LIP activation in macaque monkeys and SPL activity in humans using identical 

visually-guided saccade tasks. The authors reported bilateral activity in the human SPL 

that was homologous to the LIP activation in macaques. The Talairach coordinates of 

the peak voxel for the right SPL in that study were reported as 19, − 63, 49. To quantify 

the proximity of that activation with the SPL activation elicited by my contrast of 

stimulus format, I calculated the Euclidean distance between them. The activations 

reported by Santens et al. and Koyama and colleagues are quite close (d = 4.69 and 

4.24, respectively) to the peak voxel of my SPL: 18, − 64, 53. Taken together, these 

data support my claim that the activity of the superior parietal lobe in non-symbolic 

comparison may reflect this region's role in summation coding. 

This explanation is also consistent with the predictions put forward in the 

Verguts and Fias (2004) model. This model predicts that non-symbolic quantities 

initially undergo a format-specific summation process and are subsequently represented 

in a format-general, place-coded manner. Against the background of this model, my data 

suggest that the posterior superior parietal lobe is involved in the summation coding 

necessary for enumerating a non-symbolic array. 

Importantly, the right superior parietal activation elicited by the contrast of 

stimulus format did not overlap with the right superior parietal activation elicited by the 
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conjunction analysis, d = 19.8. Specifically, the region from the conjunction analysis 

(peaking at 30, − 51, 44) was more ventral, lateral and anterior relative to the region 

from the contrast of stimulus format peaking at (18, − 64, 53). In addition, this region 

from the conjunction analysis, was much further removed, relative to the superior 

parietal lobe elicited by the contrast of stimulus format, from the purported homologue 

of the LIP reported by Koyama and colleagues, d = 17.0. Further research should 

clarify how the involvement of the posterior superior parietal lobe in non-symbolic 

processing is related to other processes associated with this region such as saccadic eye 

movements (Koyama et al., 2004) or visual attention (Corbetta & Shulman, 2002; 

Simon, Mangin, Cohen, Le Bihan, & Dehaene, 2002). Indeed, because my study did 

not control for participants' eye movements, it is impossible to completely 

disambiguate eye movements from summation coding in the superior parietal lobe 

using the current data. It is therefore possible that the activation I show in the superior 

parietal lobe is related to saccadic eye movements. However, it should be kept in mind 

that eye movements are an integral part of the process underlying the enumeration of 

arrays of items. One possibility is that over the course of evolution, domain-general 

competencies such as visual attention and saccades served as a foundation upon which 

a summation system was built. 

2.4.2.2 Regions involved in symbolic number processing 

The contrast of stimulus format revealed two regions in the left hemisphere 



68  

 

 

which showed statistically greater modulation in response to symbolic relative to non-

symbolic comparison: the left angular and the left superior temporal gyri. The left 

angular gyrus has long been associated with numerical processing. For example, damage 

to this region is associated with a variety of symptoms including impairments in 

calculation (Gerstmann, 1940). Several neuroimaging studies have demonstrated 

empirically that the left angular gyrus is important for calculation (Burbaud et al., 1999; 

Roland & Friberg, 1985; Rueckert et al., 1996), may be more involved in exact than 

approximate calculation (Dehaene, Spelke, Pinel, Stanescu, & Tsivkin, 1999; 

Venkatraman et al., 2005), and is likely involved in arithmetic fact retrieval (Delazer, 

2003; Delazer et al., 2005; Grabner et al., 2009). The present study is the first to 

demonstrate the role of the left angular gyrus in basic numerical processing in the 

absence of calculation. My data suggests that this region is not restricted to the retrieval 

of arithmetic facts, but instead, with the superior temporal gyrus, may play a more 

general role in symbolic numerical processing. 

Convergent evidence for the left angular gyrus' specific involvement in basic 

symbolic numerical processing can be found in a recent study examining the neural 

correlates of calculation in adults (Grabner et al., 2007). Specifically, this study 

compared the effect of individual differences in mathematical competence on brain 

activation patterns during single and multi-digit multiplication as well as a control task 

where participants judged whether three Hindu–Arabic numerals were identical or not. 

Interestingly, the authors showed that even in the control task, which involved 
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absolutely no calculation, but merely asemantic processing of Arabic numerals, 

mathematical competence modulated activation of the left angular gyrus in a similar 

way as for calculation. Against the background of these results, the authors argued that 

the differences in angular gyrus activation could reflect group differences in the amount 

of stimulus-driven access to the semantic information represented by the symbolic 

numerals. 

Another region directly adjacent to both of the neural loci found in my study, the 

left supramarginal gyrus, has also been implicated in symbolic numerical processing. 

Roux et al. showed that direct electrostimulation of the cortex disrupted reading of 

numerical symbols in the supramarginal gyrus of the dominant hemisphere (Roux, 

Lubrano, Lauwers-Cances, Giussani, & Démonet, 2008). Further evidence to implicate 

the left temporoparietal cortex in the processing of numerical symbols comes from a 

neuropsychological study. In their study of a patient with a focal lesion of white matter 

directly beneath the left anterior supramarginal gyrus, Polk et al. presented evidence for 

a specific role of the supramarginal gyrus in symbolic but not non-symbolic number 

processing (Polk, Reed, Keenan, Hogarth, & Anderson, 2001). As a result of the lesion, 

the patient presented with a severe deficit in the processing of numerical symbols, while 

retaining intact non-symbolic numerical processing. 

Together with these findings, my study could suggest a broader role of the left 

temporoparietal junction (composed of the angular, supramarginal gyri and the 

posterior aspect of the superior temporal gyrus) in symbolic number processing. While 
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the exact role of the left angular and superior temporal gyri in symbolic number 

processing cannot be directly addressed by my data, a review of neuroimaging studies 

of reading yields an interesting possibility for how they may be involved in processing 

numerical symbols. Neuroimaging research has found the left angular gyrus (Booth et 

al., 2003; Joseph, Cerullo, Farley, Steinmetz, & Mier, 2006; McDermott, Petersen, 

Watson, & Ojemann, 2003; Pugh et al., 2001) and left superior temporal regions (Raij, 

Uutela, & Hari, 2000; van Atteveldt, Formisano, Goebel, & Blomert, 2004) to be 

involved in the integration of letters (graphemes) with speech sounds (phonemes). I 

propose that my results may reflect similar roles for these regions in the numerical 

domain. The greater involvement of the left angular and superior temporal gyri in 

symbolic relative to non-symbolic processing could reflect this region's role in 

processing the connection between numerical symbols and their quantitative referents 

(numerical magnitude). In the case of the left angular gyrus, the symbol-to-referent 

mapping hypothesis can explain both my findings and previous work implicating this 

site in calculation. The association between an arithmetic equation and its result, on the 

one hand, and the mapping between a numerical symbol and its numerical magnitude, 

on the other hand, could both involve the angular gyrus. Here the common denominator 

is the role it may play in mapping between a visual form and its semantic referent. This 

hypothesis is directly in line with the one put forth by Grabner and colleagues, 

suggesting that “in addition to being involved in the automatic retrieval of arithmetic 

facts, the angular gyrus also mediates the mapping between symbols and numerical 
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magnitudes” (p. 354). 

Compared to the non-symbolic condition, the degree to which my symbolic 

findings converge with the model put forth by Verguts and Fias is less straightforward. 

While these authors predicted that non-symbolic processing would require summation 

coding, the nature of the “symbolic field” in their model was described in much less 

detail. However, one feature must be present in order for this input field to be truly 

symbolic. A symbolic relationship requires there to be an integration of at least two 

distinct types of representation. For example, the symbolic relationship embedded in a 

written word requires the reader to integrate a visual representation with an auditory 

representation which is itself symbolically related to a semantic representation. Thus, a 

given symbolic relationship involves distinct representations and the connection 

between them. Therefore, although not explicitly stated by Verguts and Fias, the 

processing underlying the “symbolic (number) field” should be characterized by similar 

properties. Put most simply, such symbolic processing would involve a visual external 

representation of the numeral, a semantic internal representation of numerical 

magnitude (shown in this study to be housed in the right parietal lobe) and a connection 

between these. As these brain regions have not been associated with basic visual 

processing, I contend that the angular and superior temporal gyri are not involved in the 

processing of the visual features of the symbolic (Hindu–Arabic) numerals. Instead, 

and especially given their involvement in cross-modal integration in reading, I suggest 

that these regions support the processing of the symbolic relationship between the 
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visual and numerical representations of symbolic numerals. 

An alternate explanation of the activity of the temporoparietal junction in my 

study is that it reflects the processing of verbal number words associated with 

numerical symbols rather than a connection between symbols and their semantic 

referents. In his influential “Triple Code Model,” Dehaene suggests that one aspect of 

numerical information is verbal in nature (Dehaene, 1992) and that this verbal code is 

localized in the left angular gyrus (Dehaene et al., 2003). It is possible that the 

participants in my study were covertly saying the names of the Arabic numerals during 

symbolic numerical comparison. Thus, my data are commensurate either with the 

verbal hypothesis of Dehaene or with the symbol-to-referent mapping hypothesis put 

forth by Grabner and colleagues. To distinguish between these hypotheses, future 

studies must be designed that decompose symbolic number processing into its verbal 

and non-verbal components. 

It should be mentioned that other recent data suggest that the prefrontal cortex is 

important for the creation of neural associations between numerical symbols and 

parietally-mediated numerical representations in monkeys (Diester & Nieder, 2007). In 

a training study, these authors trained monkeys to associate symbolic numerals with 

non-symbolic numerical arrays. The authors found neurons in the prefrontal cortex that 

respond preferentially to symbolic and non-symbolic numbers as well as neurons that 

respond to both stimulus formats and suggested that this region is involved in forming 

the connection between a numerical symbol and numerical representations. These data 
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do not necessarily conflict with ours. Indeed, my conjunction analysis revealed right 

inferior frontal gyrus activation during the processing of both symbolically and non-

symbolically presented numerical information. Unlike Diester and Nieder, however, I 

found no evidence of prefrontal activation that reflects preferential processing of 

symbolic or non-symbolic numerical processing alone. Taken together with the results 

presented by Diester and Nieder, my findings could suggest that while prefrontal areas 

are involved in the initial establishment of associations between numerical symbols and 

quantitative referents, the temporoparietal region revealed in my data reflects 

development of efficient activation and retrieval of those associations. However, this 

explanation does not completely account for why the prefrontal cortex is activated by 

both symbolic and non-symbolic numerical magnitudes. Future research must clarify the 

role of the prefrontal cortex in the numerical magnitude processing of both children and 

adults. 

It is important to note that the activity in the angular gyrus is defined by 

deactivations relative to baseline. Although relatively common (Dehaene et al., 1996; 

Grabner et al., 2007; Ischebeck et al., 2006; Rickard et al., 2000; Shulman et al., 2007; 

Venkatraman, Siong, Chee, & Ansari, 2006; Zago et al., 2001), the nature of such 

deactivations is currently unresolved in the literature. One possibility is that the 

deactivations in the angular gyrus relate to task difficulty. Two of the above studies 

observed that greater deactivation was found in response to increased difficulty of the 

tasks being performed (Ischebeck et al., 2006; Zago et al., 2001). However, the 
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deactivation in my study cannot be explained through a similar appeal to task difficulty. 

My pattern of reaction times showed that the non-symbolic comparison was more 

difficult than symbolic comparison, which in turn, was more difficult than either control 

task. If activity in this region were defined solely by task difficulty, one would expect to 

see greater deactivation in the more demanding symbolic condition than the control 

tasks. However, inspection of the beta weights suggest that the activity in response to 

the symbolic condition in the left angular gyrus was actually slightly, non-significantly 

higher than the activation related to the control tasks. Thus a pure task difficulty 

explanation cannot hold, as it should generalize to differences between the symbolic and 

control tasks, where a reaction time difference was also found. 

A different explanation for neural deactivation has been put forth by Shulman et 

al. in a study of visual attention (Shulman et al., 2007). These authors showed that when 

participants searched presentations of distracter objects for a visual target, the right 

supramarginal gyrus (a region adjacent to the angular and superior temporal gyri) was 

significantly deactivated until the target was detected. Shulman et al. suggested that 

deactivation of this region inhibits stimulus-driven reorientation of attention to 

inappropriate stimuli and, in this way, acts as a neural stimulus filter. In this view, 

deactivation can serve a functional role in the performance of cognitive tasks. 

I have proposed that the left temporoparietal areas found in my study are a 

network of brain regions that serve to process the connection between numerical 

symbols and their quantitative referents. Against the background of the Shulman et al. 
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findings, I tentatively hypothesize that deactivation of the left TPJ may serve a key 

function in the symbol-to-referent mapping attributed to this region. Specifically, the 

deactivation of the TPJ in response to non-symbolic stimuli, in concert with its 

activation in response to symbolic stimuli (in the superior temporal gyrus), could reflect 

these regions' joint role as a stimulus filter or gateway that allows differential access to 

numerical representations dependent upon the stimulus format of the number being 

presented. When individuals are presented with a non-symbolic numerical array, access 

to the quantity represented by the array may be indirect and mediated through the 

summation coding of the right superior parietal lobe. In contrast, presentation of an 

Arabic numeral could trigger a more direct access to the numerical representation with 

which it is associated and, hence, an absence of suppression (relative to baseline). 

Thus, the filter would not be engaged when representations can be mapped onto their 

semantic referents without further processing. This hypothesis should be explored 

using functional connectivity analysis in the context of an event-related fMRI study. It 

should be acknowledged that in the presence of significant deactivation in the left AG 

during non-symbolic comparison and no significant activation during symbolic 

comparison, it is difficult to ascertain, from the present findings, whether the pattern of 

relative deactivation of the left AG in the present study indicates anything about the 

processing of the symbolic stimuli or whether it merely reflects a function relevant to 

the processing of the non-symbolic stimuli. Thus the present hypothesis of a filtering 

mechanism is speculative and requires follow-up research. In contrast the pattern of 
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activation from the left STG is much clearer, where significant activation during 

symbolic but neither non-symbolic nor control conditions is observed. Thus, my data 

provide clearer support for the involvement of the left STG in symbolic number 

processing than they do for the left AG. 

In sum, the present study revealed brain regions involved in processing different 

numerical stimulus formats. I have shown a pattern of results that fits into the model of 

stimulus format processing put forth by Verguts and Fias (2004). These authors 

predicted that differential pathways are responsible for encoding a quantity from either 

symbolically or non-symbolically represented numbers. These differential pathways 

were then predicted to converge on a format- general representation of numerical 

magnitude. My data provide support for these predictions and identify key regions that 

might mediate different functions predicted by the Verguts and Fias model. In 

particular, a comparison of symbolic and non-symbolic numerical processing reveals 

different regions involved in these numerical stimulus formats in the left 

temporoparietal regions and the right posterior superior parietal lobe, respectively. In 

addition, I demonstrated that a conjunction between symbolic and non-symbolic 

numerical processing reveals regions in the right inferior parietal lobe and anterior 

superior parietal lobe, regions long associated with numerical representation. Thus, this 

study starts to map out the pathways that mediate numerical stimulus format processing 

in the human brain. I have demonstrated that while there is evidence for a common 

abstract representation of numerical magnitude, there are also important differences in 
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the pathways mediating the mapping from external representations to internal ones. 

These mappings should be investigated developmentally to clarify more precisely how 

this mapping emerges through interplay of education and brain maturation. 
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Interim Summary 

In the previous chapter, I report evidence for common and distinct neural 

correlates underlying symbolic and non-symbolic numerical magnitude processing. 

These data revealed that numerical symbols are associated with activation in the left 

superior temporal gyrus and the left angular gyrus. In addition, the right intraparietal 

sulcus (IPS) was activated by both the symbolic and non-symbolic formats, presumably 

due to its role in representing and processing the numerical magnitude embedded in 

numerical stimulus formats at an abstract level. These activations yield questions that 

will be addressed in the next two chapters of the thesis. 

One of the goals of this thesis was to investigate the semantic processing of 

numerals. Chapter 2 indicates that the right IPS was recruited when participants made 

symbolic and non-symbolic numerical comparisons, which implies that this region is 

involved in representing the numerical magnitude of number symbols. However, this 

conjunction analysis, which is designed to identify commonalities, cannot provide any 

information about the neural correlates that are specific to numerals and their semantic 

representation in the brain. The contrast of symbolic and non-symbolic comparison is 

not ideally suited to identify regions specifically involved in the semantic processing of 

numerical symbols. Regions emerging from a symbolic vs. non-symbolic contrast could 

reflect differences in input-to-representation mechanisms, differences in representational 

mechanisms, differences in mechanisms needed to complete the tasks, or any 
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combination of the three. A more elegant way to identify regions involved in the 

semantic processing of numerals is to compare numerical symbols that have a semantic 

referent with those that do not. Such an analysis can, in principle, reveal cortical sites 

that are specifically involved in the semantic processing of numerals. This reasoning 

inspires Chapter 3, which compares the semantic and asemantic processing of numerical 

symbols.  
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Chapter 3: Semantic and perceptual processing of number symbols: evidence from a 

cross-linguistic fMRI adaptation study 

3.1 Introduction 

 The ability to understand and use numerical symbols is a culturally transmitted 

skill. Like literacy, symbolic numeracy only exists in cultures where it is explicitly 

instructed. The theoretical foundation (Dehaene, 1997) guiding the study of numerical 

cognition posits that symbolic numerical processing is scaffolded by a system of non-

symbolic numerical representation—one that is phylogenetically continuous (Brannon, 

2006), ontogenetically foundational (Libertus & Brannon, 2009), and culturally universal 

(Gordon, 2004; Pica, Lemer, Izard, & Dehaene, 2004; Zebian & Ansari, 2012). This non-

symbolic system of numerical magnitude, often called the Analog Number System 

(ANS), is populated by neural representations of quantity that are imprecise in nature 

(Nieder & Dehaene, 2009). The representational imprecision can also be seen in symbolic 

representations of number, which suggests that numerical symbols are associated with the 

approximate magnitude representations of the ANS (Dehaene, 1989; Dehaene, Dupoux, 

& Mehler, 1990; Duncan & McFarland, 1980; Hinrichs, Yurko, & Hu, 1981; Moyer & 

Landauer, 1967; Restle, 1970; Sekuler & Mierkiewicz, 1977). To date, little is known 

about how this process of associating numerical symbols occurs in the human brain or 

what effect the “symbolization” of numerical magnitude has on the intrinsic 
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representations of quantity. Extant research has utilized three strategies to examine the 

neural correlates underlying acquired brain representations for numerical symbols: 1) 

comparison of symbolic with non-symbolic numerical processing; 2) examination of 

ontogenetic changes in symbolic number processing; 3) training individuals to associate 

numerical magnitudes with novel symbols. Below, I briefly outline each of these 

approaches and their associated findings before introducing a novel approach to 

understanding the neural representations of numerical symbols, which is the focus of this 

report. 

Following the first approach, a growing body of research comparing symbolic 

with non-symbolic processing (Chochon, Cohen, van de Moortele, & Dehaene, 1999; 

Holloway, Price, & Ansari, 2010; Piazza, Pinel, Le Bihan, & Dehaene, 2007) has 

suggested that processing numerical symbols is associated with activation of the parietal 

cortex. When comparing symbolic and non-symbolic numerical magnitude processing, 

hemispheric differences in the parietal cortex have been observed. While the non-

symbolic representation of number has been associated with activity in the bilateral 

intraparietal sulcus (Dehaene et al. 2003), data from investigations using symbolic stimuli 

have converged to suggest that the left IPS may become specialized for the processing of 

numerical symbols (Ansari 2008). While these results are promising, it must also be 

acknowledged that symbolic and non-symbolic numerical stimulus formats are, 

perceptually, quite different. Indeed, previous research has suggested that the processes 

involved in encoding numerical magnitude from symbolic and non-symbolic formats are 
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underpinned by distinct neural circuits (Holloway et al. 2010). In view of this, any 

differences between symbolic and non-symbolic processing may represent encoding, 

representation or both. Therefore, while comparisons of symbolic and non-symbolic 

processing can provide a broad understanding of the neural processing of numerical 

symbols, they cannot specifically address the brain changes that occur when an arbitrary 

shape becomes a semantically-rich numerical symbol. 

The second approach investigates the effects of learning symbolic number 

representations by comparing age-related differences in the neural representation of 

numerical symbols. This approach has been taken by several studies. These studies have 

shown that the processing of numerical symbols undergoes an age-related shift in locus of 

activity from prefrontal regions earlier in development to inferior parietal regions later in 

development. Together, they suggest that the parietal lobe becomes tuned to numerical 

symbols over time (Ansari, Garcia, Lucas, Hamon, & Dhital, 2005; Cantlon et al., 2009; 

Holloway & Ansari, 2010; Houdé, Rossi, Lubin, & Joliot, 2010; Kaufmann et al., 2006). 

Using developmental time as an independent variable affords a more direct way of 

investigating how numerical symbols come to be associated with internal representations 

of numerical magnitude. However, as with all developmental research, it remains unclear 

whether the shift from frontal to parietal regions reflects enculturation processes, brain 

maturation, or both.  

One neuroimaging study has used the third approach to investigate the neural 

consequences of training individuals to associate numerical magnitude with novel 
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symbols (Lyons & Ansari, 2009). These authors trained a group of adults to associate 

novel symbols with non-symbolically presented numerosities (dot arrays) while fMRI 

data were recorded. Activity in the left inferior parietal cortex was systematically-related 

to individual differences in how well novel symbols were connected to their semantic 

referents, giving further credence to the notion that left parietal regions become attuned to 

the semantic information associated with numerical symbols. Because this study was 

conducted with adult participants, the findings can be linked to learning-related processes 

independent of brain maturation. However, it is unclear exactly how the association of 

novel symbols with non-symbolic quantities is related to the learning of numerical 

symbols that occurs through enculturation, which involves a highly complex and 

developmentally-protracted interplay of representations (verbal, semantic, and visual) and 

skills (subitizing, counting, and ordering). Indeed, a moment of introspection reveals that 

the visual form “31” does not elicit an imprecise image of approximately 31 dots, but 

rather calls forth a variety of mental representations including a distinct verbal tag, the 

knowledge of where 31 falls on a number line, and a quantitative understanding of “31-

ness.” Thus, while providing important clues to the neural processes underlying 

numerical symbol-to-referent mapping, the neural correlates elicited by such a training 

study should be considered as suggestive of, rather than equivalent to, the neural 

correlates of numerical enculturation.  

In the present study, I propose an alternative to the three approaches described 

above. An ecologically valid way to examine symbolic number processing is to study 
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differences in the neural responses to known and unknown symbolic representations of 

numerical magnitude. For example, individuals who are raised reading Chinese learn two 

different symbolic number systems: the Hindu-Arabic numerals and the logographic 

system of Chinese numerical ideographs. In contrast, individuals who learn to read 

languages such as English or Polish become fluent in using the Hindu-Arabic numeral 

system, but have no knowledge of Chinese ideographs. It is possible, therefore, to utilize 

these naturally occurring groups to create an experimental scenario in which one group of 

participants has a semantic representation of a symbol while the other group does not.  

Against the background of the evidence reviewed above, I used this cross-

linguistic approach to investigate the neural correlates involved in the semantic 

processing of numerical symbols that overcomes some of the limitations of the three 

methods discussed above. Specifically, I analyzed similarities and differences in brain 

activation associated with Hindu-Arabic numerals and Chinese numerical ideographs in 

participants who knew the semantic referents (numerical magnitude) of both types of 

symbols or only the Hindu-Arabic numerals. I reasoned that a comparison of the two 

symbol types would reveal the neural differences between semantic and non-semantic 

processing of numerical symbols. In response to numerals, which can be semantically 

processed by both groups of participants, the IPS should show an activation pattern 

reflective of this common cultural knowledge. In contrast to numerals, numerical 

ideographs can be semantically processed by the Chinese readers, whilst in controls 

ideographs can only be processed as arbitrary shapes. Thus, a comparison between 
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Chinese readers and controls should isolate regions recruited for the semantic processing 

of numerical symbols in a more direct fashion than was possible using the previous, 

above discussed, approaches.  

To collect my data, I employed an fMRI adaptation paradigm, which takes 

advantage of a particular feature of the hemodynamic response measured by fMRI (Grill-

Spector et al. 2006). Specifically, if a particular aspect of a stimulus is presented 

repeatedly, the region or regions that respond to that feature will show a reduction in their 

hemodynamic response with repeated exposure (adaptation). A region that exhibits 

adaptation effects will also show a rebound response when the feature it encodes is 

changed. To put this in the present context: if a region encodes the semantic meaning of a 

specific numeral (hereafter referred to as the adaptation number), this region will adapt 

(decrease in response) to repeated exposure to the numeral. In addition, this region will 

rebound (increase in activation) when a novel numeral is presented (hereafter referred to 

as a deviant number). Most importantly, the extent of the rebound is a function of the 

numerical difference between the adapted number and the deviant in such a way that 

deviants that are further away on the ‘number line’ from the adaptation number will lead 

to a relatively larger rebound response. This occurs because the internal representation of 

numerical magnitude is ratio-dependent. Numbers that are close together on the ‘number 

line’ (e.g., 6 and 8, ratio 0.75) have a higher ratio and therefore share more 

representational overlap than numbers that are further apart (e.g., 6 and 12, ratio: 0.5). 

Ratio-dependent representation implies that if a region were responding to the semantic 
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information embedded in a numerical symbol, the rebound in activation to a deviant 

should increase as the ratio between the adaptation and deviant numbers decreases 

(Piazza et al. 2004). 

My use of fMRI adaptation affords me the confidence to compare the neural 

response to ideographs between the groups. If one uses an active task to compare the 

neuroanatomical correlates of different groups, one risks conflating group differences in 

competence with group differences in performance. In the present context, the aim is to 

isolate group differences in the semantic representation of numerical ideographs. By 

using an adaptation paradigm, I will be able to probe the neural representation of 

ideographs while avoiding confounding group differences in task performance. 

However my use of an adaptation design also faces a significant challenge. The 

question of semantic vs. asemantic processing of numerical symbols was recently cast 

into sharp relief by Cohen (2009). This investigator reported data that decidedly showed 

that behavioral correlates previously assumed to reflect the semantic processing of Hindu-

Arabic numerals in a particular cognitive task actually reflected the processing of the 

visual similarity (i.e., shape) of the numerals.  Specifically, when visual similarity was 

pitted against numerical distance it was found to account for unique variance in response 

time data.  While it could be argued that Cohen’s findings were specific to the task he 

used, his data hinge upon a broader point: the visual similarity of the single digit Hindu-

Arabic numerals is highly correlated with the semantic similarity of the single digit 

Hindu-Arabic numerals. Thus, data collected in an experimental design such as fMRI 
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adaptation, which does not specifically direct attention to the semantics of numerals, faces 

the possibility that neural correlates evoked by semantic features of the numerals will be 

conflated with those that are evoked by visual features. I addressed this issue in two ways. 

Using similarity values adapted from Cohen’s physical similarity function, I created a 

predictor to test for brain regions that respond to visual features of the numerals. In 

addition, my cross-linguistic design affords my another source of methodological traction 

on this issue. A comparison of the Chinese readers and the control group during 

ideograph processing could yield some important insights into the differences between 

the neuroanatomical correlates of ratio-dependent (semantic) and shape-dependent 

(visual) processing, because while Chinese readers can process both the semantic and 

visual dimensions of the ideographs, the control group can only be sensitive to visual 

aspects of the ideographs.  

Because the central question of this study focuses upon group similarities and 

differences in the semantic tuning of symbolic numerical magnitudes, it is crucial to 

verify that any potential group differences I report are specific to having acquired a 

symbolic representation and not due to group differences in the more basic non-symbolic 

representations of the ANS. Therefore, I collected neuroimaging data while participants 

performed a non-symbolic comparison task on three different numerical ratios. I then 

tested whether the effect of numerical ratio on non-symbolic comparison differed 

between the groups.  
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In summary, I presented two types of numerical symbols: 1) the standard Hindu-

Arabic numerals and 2) simplified Chinese ideographs to two groups of participants: 1) 

Chinese/English bilinguals who could read the ideographs and 2) English/Other bilinguals 

who could not read the ideographs, nor any related ideographs from other east Asian 

writing systems. I hypothesized that if the neural signal in the IPS is tuned to cultural 

symbols of numerical magnitude, then I should demonstrate a ratio-dependent rebound 

response to the numerals, in both groups, but only see a rebound response to ideographs 

in the Chinese readers. 

3.2 Methods 

3.2.1 Participants 

Twenty-six adults from undergraduate and graduate faculties at Western University were 

recruited into two groups of thirteen participants. The first group was comprised of 

individuals who reported the ability to read both Chinese and English fluently (Age: 20-

29 years, mean 25; 4 males). The other group consisted of individuals who reported fluent 

reading in English and another non-East-Asian language (18-34 years, mean 25; 4 males). 

After viewing the ideographs, participants were asked whether they recognized the 

symbols. All Chinese readers were able to indicate the correct numerical value for each 

ideograph. In contrast, none of the control group participants were able to indicate the 

meaning of the ideographs. All participants gave informed consent consistent with the 

policies of the Human Subjects Research Ethics Board at Western University. 
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The English language abilities of the participants in each group were measured in 

two ways. All individuals were students enrolled in the University of Western Ontario 

and, as such, were either native English speakers or demonstrated English proficiency in 

accordance with admissions policies at the University. Both groups completed the 

Reading Fluency, Word Attack, Math Fluency, and Calculation subtests of the Woodcock 

Johnson III Tests of Achievement. The control group showed significantly higher reading 

scores than the Chinese readers on both the Reading Fluency (M = 99.7, SE = 4.16, M = 

89.42, SE = 2.70, t (20) = 2.14, p = 0.045) and the Word Attack subtests (M = 102.20, SE 

= 3.28, M = 90.75, SE = 2.74, t (20) = 2.70, p = 0.014). Relative to the control group, the 

Chinese Readers exhibited significantly higher scores on both the Math Fluency (M = 

129.17, SE = 1.46, M = 98.60, SE = 6.23, t (20) = 5.20, p < .001) and Calculation tests 

relative to the control group (M = 126.17, SE = 3.68, M = 96.40, SE = 4.53, t (20) = 5.78, 

p < .001). Note that, while the groups differed in reading, both groups showed scores well 

within the normal range (85-115). This was not the case in mathematics; the control 

group scored within the normal range, while the Chinese readers scored above the normal 

range. Due to attrition, 4 individuals (3 from the control group and 1 from the Chinese 

readers) did not complete the standardized tests. 

3.2.2 Stimuli 

Parameters for stimuli were based on a recently published study investigating the 

neural correlates of numeral processing using fMRI adaptation (Notebaert et al. 2011). 

The adaptation number (6) as well as the deviants (3, 4, 5, 8, 9, and 12) were presented in 
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black on a gray background (color values: 211, 211, 211) using E-Prime 1.2 software. 

These quantities were presented as Hindu-Arabic numerals and simplified ideographs. To 

control for low-level perceptual effects that could confound the adaptation/rebound 

signal, both the font and the location of the stimuli were varied across trials. In the 

Numeral condition, stimuli were presented in either Times New Roman (40pt) or Courier 

New (40pt). In the ideograph condition, stimuli were presented in either SimSun (40pt) or 

STHeiti (40pt). Font was randomized across trials such that each font appeared an equal 

number of times for both the adaptation and deviant quantities over the course of an 

experimental run. In addition to variations in font, the stimuli were presented in one of six 

locations 2 degrees from the center of the display. The variation in location was pseudo-

randomized such that stimuli did not appear in the same location twice in a row. 

3.2.3 Experimental Procedure 

3.2.3.1 Adaptation Task 

 Numerals and ideographs were presented in four separate runs, each of which 

consisted of a stream of symbols punctuated by blank screens. Each stream of symbols 

appeared for 200ms. Each of the blank screens appeared for 1200ms. The background 

color of the screen was the same when the screen was blank and when it contained a 

symbol. The stream of symbols consisted of a series of adaptation trials followed by 

either a deviant trial (36 total), a catch trial (12 total) or a null trial (12 total).  
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Adaptation trials consisted of repeated presentations of the numeral 6 between 5 

and 9 times (average of 7 repeats). During a deviant trial, a quantity that deviated from 

the adaptation number was presented. Deviants included 3, 4, 5, 8, 9, and 12. For analysis 

purposes, deviants were binned by ratio: large ratio, 2.0 (deviants 3 and 12), medium ratio 

1.5 (deviants 4 and 9), and small ratio, 1.25 (deviants 5 and 8). Each deviant quantity was 

randomly dispersed through the run, resulting in twelve trials for each ratio over the 

course of a run. For the 12 catch trials, the adaptation number (6) was presented in red 

font. Participants were asked to press a button any time they saw a red symbol. The catch 

trials were randomly dispersed through the run. The 12 null trials consisted of the 

presentation of a numeral 6 in the same font as the adaptation trials. Thus, to the 

participant, a null trial looked identical to an adaptation trial. An illustration of the 

adaptation, deviant, null, and catch trials can be seen in Figure 3.1. 

Each participant first completed the two ideograph runs followed by the two 

numeral runs. This fixed order was used to ensure that the control participants did not use 

the numerical information from the numeral task to guess what the ideographs meant. 

Because the trial duration (1400 ms) was not a multiple of the scan repetition time (TR = 

2000 ms), a natural jitter (oversampling) was created in the time course of data 

acquisition.  
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Figure 3.1 Illustration of the habituation, deviant, null, and catch trial types. See Table 1 

for a complete list of the deviants used. 
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Table 3.1 Numerals and ideographs for each ratio 

 Ratio 2.0 Ratio 1.5 Ratio 1.2 Ratio 1.0 Ratio 1.3 Ratio 1.5 Ratio 2.0 

Numerals 3 4 5 6 8 9 12 

Ideographs 三  四  五  六  ⼋八  九  ⼗十⼆二  

 

 

3.2.3.2 Non-symbolic comparison task 

After the adaptation runs were completed, participants performed a non-symbolic 

numerical comparison task in which two dot arrays were presented. Participants were 

instructed to select the larger magnitude with a button press. The dot arrays were paired 

such that they represented one of three numerical ratios: 0.5, 0.66, or 0.75. Contour 

length, density, and individual dot size were controlled such that the larger number of 

dots could not be reliably predicted from any of the non-numerical variables continuous 

with it. Specifically, in half of the trials, the total area of each array in a given pair was 

equal, while the perimeters of each area were set such that the ratio between them was the 

inverse of the ratio of the number of dots. In the other half of the trials, the areas of each 

array in a given pair were defined such that the ratio between them was the inverse of the 

ratio between the number of dots, while the overall perimeter of each array in a pair was 



101  

 

 

the same for both arrays. Sixteen trials for each ratio were presented in an event-related 

fashion with a jittered inter-trial interval of 5-9 seconds (average 7500ms). 

3.2.4 fMRI Data Acquisition 

Functional and structural images were acquired in a 3-Tesla Siemens Tim Trio 

whole-body MRI scanner, using a Siemens 32-channel head coil. A gradient echo-planar 

imaging T2* sequence sensitive to the blood oxygenation level dependent (BOLD) 

contrast was used to acquire 38 functional images per volume, which were collected in an 

interleaved order (3mm thickness, 80 x 80 matrix, repetition time (TR): 2000 ms, echo 

time (TE): 52ms, flip angle: 78°) and covered the whole brain. 355 volumes were 

acquired for each functional run. High-resolution anatomical images were acquired with a 

T1-weighted MPRAGE sequence (1 x 1 x 1 mm, T1 = 2300 ms, TE = 4.25 ms, TR = 

2300 ms, flip angle: 9°). 

3.2.5 fMRI Data Preprocessing  

All functional images were preprocessed using BrainVoyager QX 2.4.1 (Brain 

Innovation, The Netherlands). The steps included slice scan time correction (cubic spline 

interpolation), correction for 3D head motion (trilinear motion detection and sinc motion 

correction) and temporal high-pass filtering (GLM-Fourier 2 cycles). All runs had less 

than 3mm overall head motion and were thus included in the analysis. Each functional 

image was then coregistered to the subject's anatomical image, transformed into Talairach 
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space, and smoothed with a 6 mm full width at half maximum Gaussian smoothing kernel 

(Talairach & Tournoux, 1988). 

3.2.6 Data Analysis 

3.2.6.1 Statistical Threshold 

Each of the statistical maps reported in my study was first thresholded with an 

uncorrected p-value of .001. Subsequently, the maps were corrected for multiple 

comparisons to a statistical level of p < .05 using the cluster level correction plugin built 

into BrainVoyager. This procedure was identical to the one described above in 

Experiment 1. A review of this approach to multiple comparison corrections can be found 

here (Forman, Cohen, & Fitzgerald, 1995). 

3.2.6.2 Ratio-dependent Adaptation/Rebound  

The analysis of these data was adapted from one recently published by Notebaert 

and colleagues (2011). For each participant, a design matrix was created with three 

predictors: a parametrically weighted predictor for all ratio trials (parametric effect of 

ratio); a predictor in which all ratio trials were weighted equally (main effect of ratio); 

and a predictor for catch trials. The adaptation and null trials were modeled as baseline. In 

the ratio predictor, all of the deviant trials were included and each was given a weight 

value equal to that of its ratio to the adaptation number (see Table 1). Deviants 5 and 8 

were given a weight of 1.25; deviants 4 and 9 were given a weight of 1.5; deviants 3 and 

12 were given a weight of 2.0. To allow the general linear model (GLM) to 
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mathematically distinguish the ratio effect from the main effect, the BrainVoyager 

analysis package automatically centered the weights on zero by subtracting the mean of 

the weights from each weight before convolving the predictors with the hemodynamic 

response function. A whole-brain multi-subject general linear model (GLM) was 

calculated to test for regions exhibiting a significant ratio-dependent parametric increase 

of activation with increasing ratio. The resulting GLM consisted of three predictors, 

including one for catch trials (when the number turned red and participants had to press a 

button), one for the main effect of ratio, and a final one for the parametric effect of ratio. 

To maximize the sensitivity of the parametric test of ratio, I used a conjunction analysis to 

isolate regions whose activation profile exhibited both a significant main effect of ratio 

and a significant parametric effect of ratio. This approach was used because a region 

could theoretically show a significant effect of ratio, but not show any evidence of 

numerical processing greater than baseline. I avoided this problem by testing for regions 

that were sensitive to a conjunction of the main effect (all deviants > baseline) and the 

parametric effect (increased activation with decreasing ratio). To plot the ratio effect in 

each region, I extracted and plotted a parameter estimate of the mean activation across 

runs for the null trials and each deviant number(see Figures 2-4). 

I designed my analyses to test the two a priori hypotheses outlined above. To 

review: commensurate with previous literature evincing its role in the semantic 

processing of numerals, I hypothesized that the IPS would show ratio-dependent 



104  

 

 

processing in response to the Hindu-Arabic numerals. I expected that this activity would 

be highly similar across both groups. I tested this with Analysis 1, which canvassed the 

brain for regions showing ratio-dependent modulation (Main ∩ Parametric) in the Hindu-

Arabic Numeral condition. I first tested for regions showing ratio-dependent modulation 

across both groups (Analysis 1a). I followed this by examining whether any regions 

showed significant group differences in ratio-dependent modulation by Hindu-Arabic 

numerals (Main Chinese ∩ Parametric Chinese) > (Main Control ∩ Parametric Control) 

(Analysis 1b). Following the same line of reasoning, I also hypothesized that the IPS 

would show ratio-dependent modulation in response to ideographs, but only in the 

Chinese readers. Mirroring my first analysis, Analysis 2 identified the ratio-dependent 

neural correlates of ideograph processing (Main ∩ Parametric). Initially, I looked within 

the Chinese and control groups separately to test for regions showing ratio-dependent 

modulation in response to the ideographs (Analysis 2a and 2b, respectively). I then tested 

whether any regions reflected significant group differences in the semantic processing of 

ideographs (Main Chinese ∩ Parametric Chinese) > (Main Control ∩ Parametric Control) 

(Analysis 2c).  

Because of the relative nature of fMRI analysis, any voxelwise group difference I 

detect could reflect three different patterns that would have distinct functional 

implications. On the one hand, it is possible that both groups could show a significant 

effect, but that this effect is significantly greater in one group relative to the other. 

Alternately, it is possible that neither group exhibits an effect that is significantly different 
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than baseline, but that the groups differ enough that I detect a significant difference. 

Finally, it is possible that one group shows an effect that is significantly greater than 

baseline, but the other group does not. To test between these hypotheses, any significant 

group difference were further analyzed using simple contrasts of the means with baseline 

(one way t-test) to further determine the nature of the group difference. 

3.2.6.3 Distinguishing shape from semantic processing 

As noted in the introduction, a recent behavioral study demonstrated that, in some 

contexts, the shape of Hindu-Arabic numerals can be processed independently of the 

semantic meaning of the numerals (Cohen, 2009). To address whether any of the ratio 

dependent effects I observe could be accounted for by differences in the visual features of 

the numerals, I performed an analysis looking for an effect of numeral shape similarity on 

the hemodynamic response function. I created a physical similarity predictor using an 

adapted version of the physical similarity function outlined by Cohen (2009). Using this 

approach, each numeral is first converted into the type of numeral that is used in old-

fashioned digital alarm clocks or other appliances. In this way, each numeral can be 

created out of a pattern of seven lines, some of which are shared between two numerals 

and some which are not shared. I then calculated the ratio of shared features to the 

number of shared features plus the number of non-shared features (Shared/(Shared + Not 

Shared)). As the number of not shared features increases (i.e., as the numerals become 

visually dissimilar) the denominator of the equation increases and the calculated 

similarity value decreases. Using this Physical Similarity Function, I calculated the 
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following similarity values and used them as weights in a parametric predictor. Numeral 3 

= 1.75, Numeral 4 = 2.33, Numeral 5 = 1.2, Numeral 8 = 1.17, Numeral 9 = 1.75, 

Numeral 12 = 2.25. These weights correlated with the ratio weights (r = .63). In harmony 

with the ratio-dependent analysis, I examined which brain regions exhibited a significant 

conjunction of the Main and Parametric effects of the shape predictor.  

In addition to my analysis using a physical similarity predictor, the cross-linguistic 

nature of my study afforded my an additional and unique way to investigate differences 

between shape and semantic response to numerical symbols. Because the control group 

did not know the meaning of the Chinese symbols, any response to numerical ideographs 

could therefore only be caused by differences in the visual features of the symbols rather 

than their meaning. Therefore, Analysis 2b, described above, provided data to examine 

the asemantic (shape-dependent) response to numerical ideographs (Main Control ∩ 

Parametric Control). 

3.2.6.4 Non-symbolic Task 

To analyze the non-symbolic comparison task, I modeled the numerical ratio of 

each trial resulting in a parametric predictor with three ratios (.25, .50, & .75). This 

predictor was then regressed across the whole brain and resulted in a GLM that tested for 

a main effect (all deviant trials equally weighted) and a parametric effect (each deviant 

trial weighted by ratio). Using an analysis comparable to the two described above, I 

isolated regions of the cortex that showed a conjunction of the main and parametric 

effects of non-symbolic numerical ratio. I then directly compared the neural correlates of 



107  

 

 

the non-symbolic ratio effect between groups across the whole brain. This analysis was 

included to verify that the two groups showed comparable numerical representation in 

response to non-symbolic numerical stimuli.  

Although it was only indirectly relevant to my central question, my data provided 

a unique opportunity to examine the relationship between individual differences in non-

symbolic representations of magnitude and mathematical achievement scores in adults. 

As reported above, the Chinese group demonstrated better mathematical achievement 

relative to the control group. I was therefore curious whether behavioral performance on 

the non-symbolic comparison task administered in the scanner was systematically related 

to mathematical achievement scores. This question is driven by the mixture of results 

reported by previous studies testing the association between non-symbolic magnitude 

representation and arithmetic performance. Evidence from some studies has supported a 

link between these two variables (Halberda, Mazzocco, & Feigenson, 2008), whereas 

other studies have found that math skills are correlated with symbolic but not non-

symbolic representations of numerical magnitude (Holloway & Ansari, 2009). I examined 

whether the group difference in mathematical achievement was related to better 

behavioral performance on the non-symbolic comparison task. In accordance with 

previous literature (Bugden, Price, McLean, & Ansari, in press; Bugden & Ansari, 2010) 

I used a regression analysis to create standardized regression coefficients reflecting the 

parametric effect of ratio (.25, .50, .75) on reaction time for each individual. I then 

examined group differences in these values to establish whether the non-symbolic ratio 
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effect is related to mathematical achievement. In addition to reaction time, I also 

examined whether individual differences in overall accuracy accounted for differences in 

math achievement. 

3.3 Results 

3.3.1 Whole-brain analyses  

3.3.1.1 Analysis 1: Adaptation to Hindu-Arabic numerals 

Analysis 1a revealed that both the left IPS and the left fusiform gyrus (FG) 

showed a significant response to the conjunction of main and parametric effects in Hindu-

Arabic numerals across both groups (Figure 3.2). These were the only regions revealed in 

this analysis. No other regions were significantly activated when the threshold was 

lowered to p < .05 uncorrected. To determine whether both groups activated the left IPS 

equally, I conducted a whole-brain between groups t-test (Main Chinese ∩ Parametric 

Chinese) > (Main Control ∩ Parametric Control) (Analysis 1b, not pictured). The results 

of this analysis statistically demonstrated that the activation in the left IPS and left FG 

was comparable across groups, as no region showed greater activation for one group 

relative to the other even at p < .05 uncorrected.  
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Figure 3.2 Activation of the left IPS and left FG showed ratio-dependent modulation in 

response to Hindu-Arabic Numerals across both groups. The IPS activation consisted of 

670 anatomical voxels with an average t-statistic of 2.5. The peak voxel is located at 

Talairach coordinates -31, -65, 36. The FG activation consisted of 853 anatomical voxels 

with an average t-statistic of 2.0. The peak voxel is located at Talairach coordinates -46, -

47, -12. The functional map (p < .001) was corrected at the cluster level to be significant 

at p < .05, k = 10 functional voxels. Line graphs represent parameter estimates reported as 

percent signal change for the adaptation number and deviants. 



110  

 

 

 

3.3.3.2 Analysis 2: Adaptation to Ideographs 

Analysis 2a demonstrated that activation in the right IPS showed ratio-dependent 

modulation in response to numerical ideographs in the Chinese readers (Figure 3.3). No 

other regions were found to show significant ratio-dependent modulation in Chinese 

readers at my predetermined threshold. However, if a more liberal threshold (p < .005, 

cluster corrected to p < .05) is used, Analysis 2a reveals bilateral IPS and left fusiform 

gyrus activation. The control group also showed a neural response to numerical 

ideographs. Analysis 2b, which examined the control group separately from the Chinese 

readers, revealed that the left fusiform gyrus, but no regions in the IPS, showed a 

significant conjunction of main and parametric effects (see Figure 3.5) in the control 

group. No other regions showed such an effect at the lower threshold of p < .05, 

uncorrected. 
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Figure 3.3 Activation of the right IPS showed ratio-dependent modulation in response to 

numerical ideographs in Chinese readers. The right IPS activation comprised 585 

anatomical voxels and showed an average t-statistic of 2.2. The peak voxel is located at 

Talairach coordinates 26, -56, 39. The functional map (p < .001) was corrected at the 

cluster level to be significant at p < .05, k = 10 functional voxels. Line graphs represent 

parameter estimates reported as percent signal change for the adaptation number and 

deviants. 

 

Analysis 2c revealed only one region whose activation pattern reflected group 

differences in ratio-dependent modulation in response to numerical ideographs: the right 

IPS (Figure 3.4). In this region, the effect of numerical ratio (parametric effect) was 

greater in the Chinese readers compared to the control group participants. Tested against 

zero, the Chinese group showed significant ratio-dependent activity in the IPS (M = 

0.406, SE = 0.101, t (12) = 4.0, p = .001). This was not the case for the control group who 

did not exhibit ratio-dependent activation in response to Chinese ideographs that was 

statistically different than zero (M = 0.153, SE = 0.089, t (12) = 1.7, p = .11) (Figure 3.4, 

bar chart). No group difference was found in the left FG even when the statistical 

threshold was reduced to p < .05. 
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Figure 3.4 Activation of the right IPS showed a significant group difference in the 

conjunction of main and parametric effects in response to Chinese ideographs. The 

activated region in the IPS consisted of 300 antomical voxels with an average t-statistic of 

3.8. The peak voxel is located at Talairach coordinates 29, -56, 36. Functional maps (p < 

.001) were corrected at the cluster level to be significant at p < .05, k = 10 functional 

voxels. Line graphs represent parameter estimates reported as percent signal change for 

the adaptation number and deviants for the Chinese (white line) and control (orange line) 

groups. Bar charts represent the parameter estimates for the average main effect and 

parametric effect response for the Chinese (white) and control (orange) groups. 
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3.3.3.3 Physical similarity analysis 

I examined the effect of physical similarity in two ways. My first approach tested 

the parametric effect of physical similarity using parametric values calculated using the 

adapted verions of Cohen’s formula, described above (Cohen, 2009). This analysis 

revealed that the left fusiform gyrus, but not the IPS, demonstrated an activation pattern 

that was parametrically modulated by the shape predictor. My second approach to 

investigating shape-dependent processing of numerical symbols was to examine the ratio-

dependent response to numerical ideographs in the control group (Analysis 2b). This 

analysis also revealed a significant activation in the left fusiform gyrus (see Figure 3.5).  
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Figure 3.5 Overlayed activations in the left FG from three of my analyses: Hindu-Arabic 

numerals across groups (orange), Chinese ideographs in the control group (dark red), and 

the similarity function (brown). 

 

3.3.3.4 Non-symbolic comparison analysis 

The behavioral data from the non-symbolic comparison task across the groups 

showed higher reaction time for increasing ratio, but no group by ratio interaction Fratio (2, 
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44) = 133, p < .001; FratioXgroup (2, 44) = 1.4, p = .25. Similarly, error rate increased with 

increasing ratio across the groups, but this pattern did not differ between groups Fratio (2, 

44) = 29, p < .001; FratioXgroup (2, 44) = 1.4, p = .27.  

On the neural level, across the groups, a network of frontal and parietal regions 

showed a significant conjunction between the main and parametric effect. These included 

the right anterior IPS(35, -41, 36), the right posterior IPS (20, -62, 39), the left IPS (-22, -

50, 39), the anterior cingulate gyrus (5, 10, 45) the right anterior insula (32, 19, 9), and 

the right inferior frontal gyrus (41, 4, 27). However, none of these regions, nor any others, 

showed significant group differences, even at the reduced threshold of p < .05, 

uncorrected.  

3.4 Discussion 

Human knowledge develops over a life-long interaction of biology and culture. 

One of the key questions facing modern cognitive neuroscience is how the human brain 

adapts its intrinsic, evolutionarily preserved knowledge and skills to process culturally 

transmitted information, such as numerical symbols (Dehaene & Cohen, 2007). 

Investigations characterizing the neural circuitry underlying the processing of numerical 

symbols in the brain typically fall into one of three categories: developmental studies, 

training studies and those that contrast symbolic and non-symbolic processing. All three 

of these have yielded important clues about the symbolic representation of numerical 

magnitude in the brain. However, as discussed above, all three also suffer their particular 
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limitations. While developmental studies reveal the effect of chronological age on 

functional brain organization, such studies cannot be used to establish whether brain 

changes are caused by maturation of brain circuits, experience and learning, or a complex 

interaction between these factors (Poldrack 2010). Training studies, while free of brain 

maturation confounds, conflate a relatively brief period of training with the breadth and 

depth of learning that results from prolonged processes of enculturation. Comparisons of 

symbolic and non-symbolic processing can provide broad insights about the neural 

correlates of number symbol processing, but are limited in their specificity. Indeed, none 

of these approaches has yielded insight into the differences in neural substrates of the 

semantic relative to the asemantic processing of numerical symbols.  

The present experiment was designed to further constrain our understanding of the 

brain regions that underlie semantic and asemantic processing of number symbols. I 

hypothesized that parietal regions would be implicated in the semantic processing of 

symbolic quantities and, furthermore, that the left parietal lobe, in particular, would 

respond to numerical symbols. While previous adaptation experiments have characterized 

the neural correlates of symbolic number processing using similar adaptation designs 

(Cohen Kadosh, Cohen Kadosh, Kaas, Henik, & Goebel, 2007; Notebaert, Nelis, & 

Reynvoet, 2011; Piazza et al., 2007), my study diverged from this previous research in its 

ability to distinguish semantic from asemantic processing of numerical symbols. 

Moreover, my investigation of the semantic processing of numerical ideographs is the 

first of its kind. 
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To test my hypotheses, I investigated the neural correlates specific to the semantic 

processing of numerical symbols by comparing the neural correlates underlying Chinese 

ideographs, which were known only to one group, and Hindu-Arabic numerals, which 

were known to both groups. Using an fMRI adaptation paradigm, I isolated brain regions 

whose activation patterns reflected sensitivity to the semantic information embedded in 

numerical symbols—both numerals (Analysis 1) and ideographs (Analysis 2). I then 

tested whether these results could be accounted for by differences in numerical shape or 

by group differences in how basic non-symbolic quantities are represented. I found partial 

support for my hypotheses. Commensurate with previous studies, I discovered that the 

left IPS shows sensitivity to the numerical ratio of Hindu-Arabic numerals. In contrast, 

the right IPS was implicated in the semantic representation of numerical ideographs only 

in those participants who knew their numerical meaning. The left fusiform gyrus, on the 

other hand, exhibited activation related to the physical similarity of the numerical 

symbols rather than ratio-dependent processing. Below, I discuss the results I obtained 

against the background of my hypotheses and put forth a theoretical explanation for the 

symbol-dependent laterality differences observed across my analyses.  

My first hypothesis stated that across both groups the meanings of Hindu-Arabic 

numerals should be represented in the parietal lobe in and around the intraparietal sulcus. 

Consistent with this hypothesis, the results from Analysis 1a showed that activity in the 

left IPS was found to be correlated with numerical ratio. The activation in this region was 

not found to differ between groups (Analysis 1b), suggesting that the role of this brain 
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area in Hindu-Arabic numeral processing was equivalent in both groups. I also showed 

parietal activation in response to the Chinese numerical ideographs, but commensurate 

with my hypothesis, only in the Chinese readers who were the only participants who 

knew what the symbols meant. This group difference was statistically confirmed with 

Analysis 2c, which revealed that the effect of numerical ratio was found to be 

significantly stronger in the right IPS in the group of Chinese readers relative to the 

control group. A series of planned t-tests demonstrated that the group difference in the 

right IPS was characterized by significant parametric modulation to the semantics of the 

ideographs in the Chinese readers that was absent in the control group.  

In addition to demonstrating the role of the IPS in the semantic processing of 

numerical ideographs, my data also demonstrate a high degree of similarity in the neural 

correlates underlying the representation of Hindu-Arabic numerals across both groups. 

The null result of Analysis 1b, even at a low threshold, suggests that the cultural and 

linguistic differences between the groups do not influence the basic representation of 

symbolic numerical magnitude. This fact stands in direct contrast to other research 

suggesting that cultural differences influence the neural correlates of basic arithmetic 

(Tang et al., 2006). Taken together, my data and those of Tang et al. (2006) suggest that 

the role of culture and language on the neuroanatomical substrates of numerical 

processing depends on the nature of the process being observed. While the basic 

representation of symbolic numerical magnitude may be highly comparable across 

culture, arithmetic processing with its deeper reliance on linguistic processing and the 
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mental manipulation of numerical magnitudes appears to be more susceptible to cultural 

influences. Future research is necessary to truly clarify the role of culture in numerical 

neurocognition.  

Taken together, the findings from Analyses 1 (adaptation to Hindu-Arabic 

numerals across groups), 2a (adaptation to Chinese ideographs in Chinese readers) and 2c 

(adaptation to Chinese ideographs between groups) provide strong evidence for the role 

of the parietal lobe in the semantic representation of numerical symbols. My results 

validate previous data linking the IPS to the semantic representation and processing of 

symbolic numerical magnitude by providing an exact replication of the data reported by 

Notebaert et al. (2011). I provide an important extension to these previous findings with 

my demonstration that the parietal response to numerical symbols is general across 

cultures. 

In addition to the high similarity in the processing of Arabic numerals in the two 

groups, they also exhibited absolutely no difference in the neural response to numerical 

ratio when the numerical information was presented as non-symbolic arrays. Of the three 

perceptual formats (Hindu-Arabic numerals, numerical ideographs, and non-symbolic 

arrays) that were tested in this study, the only one that showed significant differences 

between the groups was the culture-specific Chinese ideographs.  

In accordance with previous research, which has hinted at left hemisphere 

dominance for numerical symbol processing, I anticipated finding left hemisphere 

dominance for both numerals and ideographs. I found partial support for this hypothesis. 
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The analyses reported suggest a strong left lateralization in the parietal activation 

underlying the processing of Hindu-Arabic numerals, which is consistent with data 

reported by Notebaert et al. (2011). The left-lateralization of numerals, however, stands in 

contrast to the right parietal response to numerical ideographs. However, the neural 

response to numerical ideographs shows much weaker evidence of lateralization as a 

slightly reduced statistical threshold revealed bilateral IPS response to ideographs. What 

can account for these notation dependent differences in laterality? I propose that the 

neural differences could reflect differences in how numerals and ideographs are used in 

Chinese culture. For this proposal to be considered plausible, two conditions must be met. 

It must be the case that, in Chinese culture, ideographs and numerals are used in divergent 

ways. Secondly, it must be demonstrated that specialization of the left hemisphere is 

possible, such as through changes in laterality over developmental time. 

Speaking to the first condition, numerical ideographs, while clearly recognized 

and understood by readers of the Chinese languages, are used less frequently than the 

Hindu-Arabic numerals, which officially replaced them in 1955 (for more information see 

the chapter entitled “Spoken Numbers and Number Symbols in China and Japan” in 

Menninger, 1992). Ifrah sums up this point nicely: “The [Hindu-Arabic numerals] are a 

kind of visual Esperanto: Europeans, Asiatics, Africans, Americans or Oceanics, 

incapable of communicating by the spoken word, understand each other perfectly when 

they write numbers using the figures 0, 1, 2, 3, 4…, and this is one of the most notable 

features of our present number-system. In short, numbers are today the one true universal 



121  

 

 

language” (Ifrah, 1981, p. 594) Both cultures use Hindu-Arabic numerals, rather than 

ideographs or number words, to teach and perform formal mathematical operations. 

Indeed, as Menninger states, “There is another difference between the [Hindu-Arabic] 

and the Chinese numerals: with the former it is possible to make written computations, 

but not with the latter...Thus the Chinese have always made their computations on the 

abacus...” (Menninger 1992, p.458). The use of numerals for mathematical training 

implies that educated individuals from both cultures have had a great deal more practice 

(and therefore have more fluency in) accessing the quantitative meaning of Hindu-Arabic 

numerals relative to number words or ideographs.  

Does the left hemisphere show developmental and functional specialization in 

other domains? Evidence for this second condition can be found in neuroimaging studies 

of the development of reading. Such research has demonstrated a right-to-left shift in the 

neural correlates related to syntactic processing (Nuñez et al. 2011) as well as 

phonological, semantic, and orthographic tasks (Spironelli & Angrilli 2009). In similar 

fashion, my data suggest that activity in the IPS shifts from bilateral recruitment for non-

symbolic and relatively unrefined symbolic representation of quantity (such as can be 

found in contemporary use of Chinese numerical ideographs) to a left-lateralized 

recruitment as symbolic representations become highly refined (such as can be found in 

contemporary use of Hindu-Arabic numerals). This assertion presupposes that the 

representation of numerical magnitude is present in the parietal lobe before formal 

schooling and is focused in the right intraparietal sulcus, as has been shown in recent 
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studies (Cantlon et al. 2006; Hyde & Spelke 2011; Izard et al. 2008). I suggest that, as is 

the case in reading, the left IPS becomes increasingly active in the representation of 

numerical magnitude over developmental time through an interaction of brain maturation 

and training in the use of numerical symbols. My data add important nuance to previous 

findings, which have suggested a specialization of the left IPS for symbolic number 

processing. In particular, rather than suggesting that the left IPS is specialized for the 

representation of numerical symbols in general, I show that the left IPS is specialized for 

the highly fluent semantic processing that underlies the use of Hindu-Arabic numerals in 

Chinese and Western culture and which differentiates the use of numerals from numerical 

ideographs in Chinese culture.  

In addition to constraining our understanding of the semantic processing of 

number symbols in the brain, the present results also shed light on a recent issue that has 

been raised in the study of numerical cognition. Cohen (2009) demonstrated that a 

parametric response to numerical ratio is correlated with physical similarity between 

numerals when participants have to decide whether a target number is the same or 

different compared a reference number (in his study participants had to decide whether a 

target Arabic numeral was a 5 or not). More specifically, Cohen’s results showed that the 

physical similarity between the target and reference was a better predictor of reaction 

time variability than the numerical ratio, suggesting that subjects were relying on 

perceptual similarity between the symbols to a greater extent than their semantic 

referents. Against the background of these findings, Cohen pointed out that we should be 
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cautious how we interpret some behavioral effects that have often been linked to the 

semantic processing of numerical symbols, as the data may be equally well accounted for 

by metrics of the physical similarity between numerical symbols. This observation also 

has implications for brain imaging studies, such as the one reported here. In view of these, 

I investigated whether any brain regions were modulated by the physical similarity 

between the adaptation number and the deviants in the Hindu-Arabic numeral condition. 

The only region to show an effect of physical similarity was the left fusiform gyrus. Thus, 

the present findings suggest that physical similarity and the numerical magnitude of 

number symbols are being processed in parallel in the brain, with the IPS sensitive to the 

numerical magnitude and the fusiform to the physical similarity between the adaptation 

stimulus (6) and the deviants.  

Another way in which my experiment allows my to look at the difference between 

semantic and perceptual processing of numerical symbols is through the comparison of 

the activation in response to the ideographs between the two groups. Specifically, in 

Analysis 2b; Chinese numerical ideographs elicited ratio-dependent responses in the left 

fusiform gyrus in the control group in a region overlapping with the area that exhibited 

response to the physical similarity of the Hindu-Arabic numerals. Because this group of 

participants had no knowledge of the meaning of the ideographs, it is impossible that the 

response in this group was related to the semantic processing of the ideographs. Instead, 

the response must have been related to the visual processing of the shape of the 

ideographs. The fusiform gyrus (see Figure 3.5) has been implicated in shape processing 
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in other studies (e.g.,, Starrfelt & Gerlach, 2007), making this interpretation likely. Taken 

together, my findings suggest dissociation between the perceptual and semantic 

processing of numerical symbols in the brain and lend further support that activation of 

the parietal cortex during symbolic number tasks is reflective of the processing of the 

semantic referents of numerical symbols.  

As a final note, the two groups exhibited substantially different mathematical 

achievement abilities. Despite these differences, the two groups showed remarkably 

similar neural and behavioral correlates of non-symbolic number processing. I 

demonstrated that while the Chinese group showed higher mathematical skills, their mean 

non-symbolic ratio effect was no different from the control group. The current body of 

literature on the potential relationship between non-symbolic processing and math is 

characterized currently by a very mixed pattern of findings. Some studies report a 

significant relationship (Halberda & Feigenson, 2008; Halberda et al., 2008), while other 

researchers have failed to find similar results (Holloway & Ansari, 2009; Mundy & 

Gilmore, 2009). The data from the present study provide another piece of the puzzle, 

which can help future researchers clarify the relationship between basic, non-symbolic 

numerical representation and mathematical performance. 

3.5 Conclusion 

In summary, the findings reported in the present paper make two principal 

contributions. First, I showed that the left parietal cortex is specialized for the 
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representation of Hindu-Arabic numerals. Against the background of previous 

demonstrations that the left IPS houses a neural representation that is more finely-tuned 

than that of the right IPS (Piazza et al., 2007), this brain region may represent an optimal 

site for the precise numerical representations communicated by the Hindu-Arabic 

numerals in cultures that use these numerals for mathematical computations. Secondly, 

the cross-linguistic nature of my study showed clear evidence that the IPS activity is 

related to semantic rather than asemantic processing – only participants who have a 

semantic representation of numerical symbols show responses to these in the IPS. 

Furthermore, the present study reveals that the fusiform gyrus is likely involved in 

asemantic visual processing of numerical symbols. Future studies should address the 

development of connectivity between these regions to clarify further how their interplay 

constructs the symbolic representation of number. 



126  

 

126 

3.6 References 

Ansari, D., Garcia, N., Lucas, E., Hamon, K., & Dhital, B. (2005). Neural correlates of 
symbolic number processing in children and adults. Neuroreport, 16(16), 1769-73. 

Brannon, E. M. (2006). The representation of numerical magnitude. Current opinion in 
neurobiology, 16(2), 222-9. doi:10.1016/j.conb.2006.03.002 

Buckley, P. B., & Gillman, C. B. (1974). Comparisons of digits and dot patterns. 
Journal of Experimental Psychology, 103(6), 1131. American Psychological 
Association. 

Bugden, S., & Ansari, D. (2010). Individual differences in children’s mathematical 
competence are related to the intentional but not automatic processing of Arabic 
numerals. Cognition, 118(1), 32-44. Elsevier B.V. 
doi:10.1016/j.cognition.2010.09.005 

Bugden, S., Price, G. R., McLean, A., & Ansari, D. (n.d.). The role of the left 
intraparietal sulcus in the relationship between symbolic number processing and 
children’s arithmetic competence. Developmental Cognitive Neuroscience. 

Cantlon, J. F., Libertus, M. E., Pinel, P., Dehaene, S., Brannon, E. M., & Pelphrey, K. a. 
(2009). The neural development of an abstract concept of number. Journal of 
cognitive neuroscience, 21(11), 2217-29. doi:10.1162/jocn.2008.21159 

Chochon, F., Cohen, L., van de Moortele, P. F., & Dehaene, S. (1999). Differential 
contributions of the left and right inferior parietal lobules to number processing. 
Journal of cognitive neuroscience, 11(6), 617-30. 

Cohen, D. J. (2009). Integers do not automatically activate their quantity representation. 
Psychonomic bulletin & review, 16(2), 332-6. doi:10.3758/PBR.16.2.332 



127  

 

127 

Cohen Kadosh, R., Cohen Kadosh, K., Kaas, A., Henik, A., & Goebel, R. (2007). 
Notation-dependent and -independent representations of numbers in the parietal 
lobes. Neuron, 53(2), 307-14. doi:10.1016/j.neuron.2006.12.025 

Dehaene, S. (1989). The psychophysics of numerical comparison: a reexamination of 
apparently incompatible data. Perception & psychophysics, 45(6), 557-66. 
Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/2740196 

Dehaene, S. (1997). The Number Sense (p. 274). New York, NY: Oxford University 
Press. 

Dehaene, S., & Cohen, L. (2007). Cultural recycling of cortical maps. Neuron, 56(2), 
384-98. doi:10.1016/j.neuron.2007.10.004 

Dehaene, S., Dupoux, E., & Mehler, J. (1990). Is numerical comparison digital? 
Analogical and symbolic effects in two-digit number comparison. Journal of 
experimental psychology. Human perception and performance, 16(3), 626-41. 

Duncan, E. M., & McFarland, C. E. (1980). Isolating the effects of symbolic distance 
and semantic congruity in comparative judgments: an additive-factors analysis. 
Memory & cognition, 8(6), 612-22. Retrieved from 
http://www.ncbi.nlm.nih.gov/pubmed/6163942 

Forman, S., Cohen, J., & Fitzgerald, M. (1995). Improved Assessment of Significant 
Activation in Functional Magnetic Resonance Imaging (fMRI): Use of a Cluster-
Size Threshold. Magnetic Resonance in Medicine, (5), 636-647. Retrieved from 
http://onlinelibrary.wiley.com/doi/10.1002/mrm.1910330508/abstract 

Gordon, P. (2004). Numerical cognition without words: evidence from Amazonia. 
Science, 306(5695), 496-9. doi:10.1126/science.1094492 

Halberda, J., & Feigenson, L. (2008). Developmental change in the acuity of the 
“Number Sense”: The Approximate Number System in 3-, 4-, 5-, and 6-year-olds 
and adults. Developmental psychology, 44(5), 1457-65. American Psychological 
Association. doi:10.1037/a0012682 



128  

 

128 

Halberda, J., Mazzocco, M. M. M., & Feigenson, L. (2008). Individual differences in 
non-verbal number acuity correlate with maths achievement. Nature, 455(7213), 
665-8. doi:10.1038/nature07246 

Hinrichs, J. V., Yurko, D. S., & Hu, J.-mei. (1981). Two-digit number comparison: Use 
of place information. Journal of Experimental Psychology: Human Perception and 
Performance, 7(4), 890-901. doi:10.1037//0096-1523.7.4.890 

Holloway, I. D., & Ansari, D. (2008). Domain-specific and domain-general changes in 
children’s development of number comparison. Developmental science, 11(5), 644-
9. doi:10.1111/j.1467-7687.2008.00712.x 

Holloway, I. D., & Ansari, D. (2009). Mapping numerical magnitudes onto symbols: the 
numerical distance effect and individual differences in children’s mathematics 
achievement. Journal of experimental child psychology, 103(1), 17-29. Elsevier 
Inc. doi:10.1016/j.jecp.2008.04.001 

Holloway, I. D., & Ansari, D. (2010). Developmental specialization in the right 
intraparietal sulcus for the abstract representation of numerical magnitude. Journal 
of cognitive neuroscience, 22(11), 2627-37. doi:10.1162/jocn.2009.21399 

Holloway, I. D., Price, G. R., & Ansari, D. (2010). Common and segregated neural 
pathways for the processing of symbolic and non-symbolic numerical magnitude: 
an fMRI study. NeuroImage, 49(1), 1006-17. Elsevier Inc. 
doi:10.1016/j.neuroimage.2009.07.071 

Houdé, O., Rossi, S., Lubin, A., & Joliot, M. (2010). Mapping numerical processing, 
reading, and executive functions in the developing brain: an fMRI meta-analysis of 
52 studies including 842 children. Developmental science, 13(6), 876-85. 
doi:10.1111/j.1467-7687.2009.00938.x 

Ifrah, G. (1981). The Universal History of Numbers. John Wiley & Sons, Inc. 

Kaufmann, L., Koppelstaetter, F., Siedentopf, C., Haala, I., Haberlandt, E., 
Zimmerhackl, L.-B., Felber, S., et al. (2006). Neural correlates of the number-size 
interference task in children. Neuroreport, 17(6), 587-91. Retrieved from 



129  

 

129 

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2853705&tool=pmcent
rez&rendertype=abstract 

Libertus, M. E., & Brannon, E. M. (2009). Behavioral and neural basis of number sense 
in infancy. Current Directions in Psychological Science, 18(6), 346. SAGE 
Publications. doi:10.1111/j.1467-8721.2009.01665.x.Behavioral 

Moyer, R. S., & Landauer, T. K. (1967). Time required for judgements of numerical 
inequality. Nature, 215(2), 1519-1520. Nature Publishing Group. Retrieved from 
http://www.nature.com/nature/journal/v215/n5109/abs/2151519a0.html 

Mundy, E., & Gilmore, C. K. (2009). Children’s mapping between symbolic and non-
symbolic representations of number. Journal of experimental child psychology, 
103(4), 490-502. doi:10.1016/j.jecp.2009.02.003 

Nieder, A., & Dehaene, S. (2009). Representation of number in the brain. Annual review 
of neuroscience, 32, 185-208. doi:10.1146/annurev.neuro.051508.135550 

Notebaert, K., Nelis, S., & Reynvoet, B. (2011). The magnitude representation of small 
and large symbolic numbers in the left and right hemisphere: an event-related fMRI 
study. Journal of cognitive neuroscience, 23(3), 622-30. 
doi:10.1162/jocn.2010.21445 

Piazza, M., Pinel, P., Le Bihan, D., & Dehaene, S. (2007). A magnitude code common 
to numerosities and number symbols in human intraparietal cortex. Neuron, 53(2), 
293-305. doi:10.1016/j.neuron.2006.11.022 

Pica, P., Lemer, C., Izard, V., & Dehaene, S. (2004). Exact and approximate arithmetic 
in an Amazonian indigene group. Science, 306(5695), 499-503. 
doi:10.1126/science.1102085 

Restle, F. (1970). Speed of Adding and Comparing Numbers. Journal of Experimental 
Psychology, 83(2, Pt.1), 274-278. doi:10.1037/h0028573 

Sekuler, R., & Mierkiewicz, D. (1977). Children’s judgments of numerical inequality. 
Child Development, 48(2), 630–633. JSTOR. Retrieved from 
http://www.jstor.org/stable/1128664 



130  

 

130 

Starrfelt, R., & Gerlach, C. (2007). The visual what for area: words and pictures in the 
left fusiform gyrus. NeuroImage, 35(1), 334-42. 
doi:10.1016/j.neuroimage.2006.12.003 

Talairach, J., & Tournoux, P. (1988). Co-Planar Stereotaxic Atlas of the Human Brain.  
New York, NY: Thieme Medical Publishers, Inc. 

Tang, Y.-Y., Zhang, W., Chen, K., Feng, S., Ji, Y., Shen, J., Reiman, E. M., et al. 
(2006). Arithmetic processing in the brain shaped by cultures. Proceedings of the 
National Academy of Sciences of the United States of America, 103(28), 10775-80. 
doi:10.1073/pnas.0604416103 

Zebian, S., & Ansari, D. (2012). Differences between literates and illiterates on 
symbolic but not non-symbolic numerical magnitude processing. Psychonomic 
bulletin & review, 93-100. doi:10.3758/s13423-011-0175-9 



131  

 

131 

 

Interim summary 

 Chapter 3 was designed to compare the semantic relative to the asemantic 

processing of numerical symbols. Both the intraparietal sulcus (IPS) and the fusiform 

gyrus (FG) were associated with the processing of numerical symbols. The data analysis 

suggested that the IPS was involved in the semantic processing of the symbols, while 

the FG was involved in the visual processing of the symbols.  

 One of the goals of Chapter 3 was to clarify and extend the findings of Chapter 2 

by identifying regions that are specific to the semantic processing of numerical symbols. 

While Chapter 2 isolated regions involved in symbolic relative to non-symbolic 

numerical processing, the data reported in Chapter 3 identified the regions involved in 

the semantic relative to the asemantic processing of numerical symbols. Although both 

studies implicated the IPS in the semantic processing of Hindu-Arabic numerals, the 

laterality of the effect was reversed (right IPS for Chapter 2 and left IPS for Chapter 3). 

This laterality difference is likely due to differences in the analysis conducted. Chapter 2 

focused on identifying regions commonly involved in symbolic and non-symbolic 

representation, while Chapter 3 looked for regions specifically involved in the semantic 

processing of numerals. This difference likely reflects a specialization of the left IPS for 

the representation of symbolic numerical magnitude. However, it must also be 

acknowledged that the left IPS showed much weaker involvement in the semantic 
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processing of numerical ideographs. The specialization of the IPS will be discussed in 

more detail in Chapter 5. 

 In Chapter 2, the semantic comparison of numerals elicited activation in the left 

superior temporal gyrus (STG) to a significantly greater extent than did the comparison 

of non-symbolic numerical stimuli. In view of these findings, I hypothesized this region 

is involved in either the deliberate or automatic activation of the auditory referents of 

numerals. Although null results should always be interpreted with caution, Chapter 3 

showed no involvement of the STG, even when comparing numerical ideographs in 

Chinese readers versus the control group. This could potentially suggest that the 

involvement of the STG in Chapter 2 reflects the deliberate recruitment of auditory 

information by participants when performing a numerical comparison task. However, 

this interpretation hinges on the involvement of the STG in the auditory or audiovisual 

processing of numerals, which will be empirically determined in the next Chapter. 
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Chapter 4: Audiovisual processing of numerals 

4.1 Introduction 

4.1.1 Background 

The numerical abilities of humans have been widely studied and a growing body 

of literature describes both the behavioral and the neural correlates of numerical 

magnitude processing (e.g., Dehaene, Spelke, Pinel, Stanescu, & Tsivkin, 1999). One 

important insight that has emerged from this research is that the processing of numerical 

magnitude is built upon an evolutionarily ancient system of magnitude representation 

that is present across animal species (Brannon, 2006; Nieder & Dehaene, 2009). Thus, 

humans share the ability with non-human animals to approximately represent numerical 

magnitude from non-symbolic sources such as clusters of berries or piles of rocks.  

In addition to this approximate, non-symbolic representation of numerical 

magnitude, humans have also developed a symbolic notation for expressing numerical 

magnitude. These symbols allow us to represent and manipulate quantity in a more 

precise and abstract manner. Indeed, a numeral such as “11” does not refer to any 

particular set of eleven items, but instead to the abstract concept of eleven: the set of all 

possible groups of eleven things. In this way, the symbolic representation of number 
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could be considered a representational hybrid, combining the precision of language with 

the phylogenetically continuous, yet imprecise, representations of numerical magnitude.  

This mapping between language and numerical magnitude representation occurs 

in early childhood through a process that remains poorly understood. The principal 

mechanism through which children learn to symbolize number is thought to be counting, 

which teaches a child to associate a number word with a quantitative representation 

(Gallistel & Gelman, 1992; Sarnecka & Carey, 2008). Interestingly, learning the 

meaning of counting is a protracted process. Until around age 3.5, children will often 

demonstrate perfect fluency in reciting the counting sequence, but not understand what 

the words mean (Wynn, 1990). Eventually, the linguistic representations of the counting 

sequence become associated with their abstracted semantic referents. Subsequent to this 

process, near the onset of formal education, children learn to read numerals. In other 

words, the verbal-semantic representations of early childhood become associated with a 

visual form, most often the Hindu-Arabic numerals. It is thought that this ability to read 

numerals becomes a foundation for higher-level mathematical abilities (Holloway & 

Ansari, 2009; Mundy & Gilmore, 2009; Rousselle & Noël, 2007).  

4.1.2 Open questions 

Against the background of the above discussion, it is clear that numerals also 

convey auditory information in the form of number names, visual information in the 

form of canonical shapes, and audiovisual information in which the auditory and visual 
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information is combined into a unified percept. Yet despite the richness of numerals, 

little is known about the visual, auditory, and audiovisual representation of numerals. 

Indeed, because the principal referent of numerals is the quantity they represent, it is 

understandable that the vast majority of research into the processing of numerical 

symbols has focused on semantic representation. This emphasis on understanding the 

semantic processing of numerals has left questions about auditory, visual, and 

audiovisual representations largely unexplored.  

One of the most obvious questions that could be asked about the auditory 

processing of numerals is whether, and to what extent, the reading of numerals is 

comparable to the reading of letters. This comparison is compelling, especially when 

considering that before the dominance of Hindu-Arabic numerals, many cultures, such 

as the Ancient Greeks, used their alphabet to express numerical information. Thus, to 

the Hellenic world, numerals and letters were not simply similar, but absolutely 

identical (Menninger, 1992). Yet despite their similarities, it remains an open question 

whether the linguistic levels of representation of numerals are comparable to those of 

letters.  

Another open question regards the extent to which the semantic processing of 

numerals would influence other levels of numeral representation, such as the processing 

of their auditory referents. In a previous study, Eger and colleagues presented 

participants with a series of intermixed unimodal visual letters, visual numerals, 

auditory letter names, auditory number names, visual bars of color, or auditory color 
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names. Participants were instructed to monitor the series of stimuli and press a button 

whenever they saw or heard a particular letter, number, and color. Relative to letters and 

colors, when numerical stimuli (visual or auditory) were presented in the series, the 

intraparietal sulcus (IPS) was significantly activated. This was interpreted as evidence 

that numerical stimuli could automatically elicit a semantic response even when the task 

is simply target detection. Moreover, in Chapter 3 of this thesis, the passive viewing of 

numerals in the adaptation paradigm modulated activity in the left IPS. It is, therefore, 

possible that passive exposure to visual numerals, auditory number words, or 

audiovisual numeral-number name pairs could also automatically activate the semantic 

representation of numerical magnitude found in the IPS.  

4.1.3 Audiovisual paradigm and the importance of the congruency effect  

To address the questions discussed above, I used an fMRI paradigm that allowed 

my to compare and contrast the auditory, visual, and audiovisual processing of numerals 

and letters. Specifically, I adapted a paradigm frequently used in previous research to 

measure the neural response to letters (van Atteveldt, Formisano, Goebel, & Blomert, 

2004). In the original paradigm, participants were presented, in separate runs, with 

letters (unimodal visual), letter sounds (unimodal auditory), and simultaneous letters and 

letter sounds (bimodal audiovisual). The audiovisual runs were further separated into 

runs where the audiovisual information was congruent (letter and sound matched) and 

runs where the audiovisual information was incongruent (letter and sound did not 
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match). The principal analysis that was employed in this study is a comparison of the 

neural correlates of congruent to incongruent audiovisual pairs, as this allows the 

distinction between general multisensory processing and the processing of pairs that are 

highly overlearned. In other words, the presence of simultaneous auditory and visual 

information would be expected to elicit a hemodynamic response in multisensory 

regions, such as the superior temporal cortex (Beauchamp, Argall, Bodurka, Duyn, & 

Martin, 2004; Calvert, Spence, & Stein, 2004; G. a. Calvert, 1997; Stein & Stanford, 

2008). Therefore, to detect learned audiovisual integration (as opposed to general 

multisensory processing), it is not sufficient to simply examine regions that respond to 

both auditory and visual stimuli.  One must, instead, look for a multisensory response 

that is modulated by whether the auditory and visual information “belong together.” An 

effect of congruency indicates that a brain region is sensitive to the distinction between 

a learned or “correct” audiovisual pair and an unlearned or “incorrect” pair (Goebel & 

van Atteveldt, 2009). In reading, the congruency effect is not only theoretically 

important, but its presence seems to reflect fluent reading (Blau et al., 2010; Blau, van 

Atteveldt, Ekkebus, Goebel, & Blomert, 2009; Blomert, 2011). In previous studies, the 

congruency effect has been associated with activity in primary auditory cortex as well as 

posterior portions of the superior temporal gyrus.  

I adapted the audiovisual paradigm to examine visual, auditory, and audiovisual 

processing in numerals.  I used the basic four conditions (unimodal visual, unimodal 

auditory, bimodal congruent, bimodal incongruent) with three different audiovisual pairs 
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(numeral-number name, letter-letter name, letter-letter sound). The letter conditions 

were used as control tasks with which to compare the audiovisual processing of 

numerals. I included these two different control tasks for the following reasons. The 

audiovisual processing of letter-letter sound pairs has been repeatedly investigated in 

previous studies and, therefore, is important to include in this study (for review see 

Blomert & Froyen, 2010). However, the auditory referents of numerals are number 

names and not speech sounds. Therefore, I included the letter-letter name pairs in order 

to contrast the numeral condition with a different type of symbol that is also associated 

with a verbal name. 

I planned my analysis to look for similarities and differences in the three 

audiovisual pair types across the four conditions. I hypothesized that both the unimodal 

and bimodal conditions would be highly similar across pair types. Furthermore, 

commensurate with previous research, I expected to see superior temporal sulcus/gyrus 

(STS/STG) activity in response to congruent relative to incongruent audiovisual pairs in 

numerals as well as letters.  

4.2 Methods 

4.2.1 Participants 

 Eighteen individuals (nine females, nine males; age range: 19 – 35; mean age: 

24) were paid to participate in this study. Participants were recruited from undergraduate 
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and graduate faculties at the University of Western Ontario as well as from the 

surrounding community in London, Ontario. All participants reported normal or 

corrected-to-normal vision, no hearing problems, right-handedness, and Canadian 

English as their first and primary language. Participants gave informed consent as 

monitored by the Research Ethics Board at the University of Western Ontario. 

4.2.2 Stimuli and Experimental Design 

 Stimuli consisted of eight single digit numbers (1, 2, 3, 4, 5, 6, 8, 9) and eight 

lowercase letters (b, h, j, k, l, p, r, v) presented in both the visual and the auditory 

modality. The Numeral 7 was not used because its auditory referent “seven” is two 

syllables while all other auditory referents used were one syllable. Those particular eight 

letters were chosen because they have the highest percentage of sound regularity in 

English. Of all English letters, these are most often associated with only one letter 

sound. Visual stimuli were presented in white 40 point Arial font and centred on a black 

background. Auditory stimuli consisted of number names (“one” “three”), letter names 

(e.g., “bee” “kay”), and phonemes (e.g., /b/ /k/) spoken by a female Canadian English 

speaker. Auditory stimuli were digitally recorded with a sampling rate of 44.1 kHz with 

16-bit quantization. Each sound used in the fMRI experiment was recognized correctly 

100% of the time by ten additional participants in a pilot experiment. 

 Stimuli for each of the three audiovisual pair types: numeral-number name (NN), 

letter-letter name (LN), and letter-letter sound (LS) were presented in four different 
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conditions. In the unimodal visual (UV) condition, participants were asked to watch a 

series of either visual letters or numerals presented in silence. The unimodal auditory 

(UA) condition presented auditory content (letter sounds, letter names, or number 

names) to the participants without corresponding visual information. In the bimodal 

conditions, visual and auditory information was presented simultaneously. The bimodal 

congruent (BC) condition provided visual information that matched the corresponding 

auditory information, whilst the bimodal incongruent (BI) condition did not. Each 

condition (UV, UA, BC, BI) was presented separately for each audiovisual pair (LS, 

LN, NN) resulting in a total of twelve conditions overall. 

 The twelve conditions were each presented to the participants in separate blocks 

of 21400ms. Each unimodal block was presented once over the course of a run and each 

bimodal block was presented twice over the course of a run. Each participant completed 

two runs and thus four blocks of each of the bimodal conditions and two blocks of each 

of the unimodal conditions. The blocks were pseudo-randomized over the course of a 

run such that the same block was never presented twice in a row. At the beginning and 

end of each run as well as between each block a fixation period of 16000ms was 

presented. 

 Because most of my stimuli included an auditory signal, I employed a sparse 

sampling paradigm to eliminate the confound of scanner background noise (Hall et al., 

1999). Sparse sampling takes advantage of the temporal delay in the hemodynamic 

response function. Typically, and in this experiment, a stimulus or series of stimuli are 
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presented in silence followed by the recording of a single functional volume, which 

samples the hemodynamic response as it peaks from the preceding stimulation. My use 

of this type of paradigm required my to divide my blocks of trials into separate mini-

blocks. Thus, for each block of trials, participants would be presented with five stimuli 

(350ms) in the absence of scanner noise followed by short fixation in which a single 

functional volume (1500ms) was collected. The inter-stimulus interval, which might be 

described instead as a stimulus buffer, was 350ms. Six stimulus buffers were included: 

one between each stimulus trial, one before the first stimulus, and one following the last 

stimulus. In total, the five stimuli (350ms x 5 = 1750ms), the six buffers (350ms x 6 = 

2100ms) and the single volume acquisition (1500ms) resulted in a mini-block (TR) that 

was 5350ms long. Four mini-blocks were collected in each larger block, resulting in a 

total of twenty stimuli per block (5350ms x 4 = 21400ms). Please see Figure 4.1 for 

details. In total, then, I collected two runs, each consisting of thirty-seven blocks 

(nineteen blocks of fixation: 16000 x 19 = 304000ms; eighteen blocks of trials: 21400 x 

18 = 385200ms) totalling roughly 11.5 minutes. 
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Figure 4.1 Cartoon depiction of sparse sampling paradigm. Each block of stimuli was 

made up of four mini-blocks in which five stimuli were presented followed by a volume 

acquisition. White squares represent stimuli presented without the collection of 

functional neuroimaging data. Gray rectangles represent the acquisition of a single 

functional volume.  Punctuating blocks of stimulation were blocks of fixation. 

4.2.3 MRI Data Acquisition 

 Functional and structural images were acquired in a 3-Tesla Siemens Tim Trio 

whole-body MRI scanner, using a Siemens 12-channel head coil. A gradient echo-planar 

imaging T2* sequence sensitive to the blood oxygenation level dependent (BOLD) 

contrast was used to acquire 28 functional images per volume, which were collected in 

an interleaved order (3mm thickness, 64 x 64 matrix, repetition time (TR): 5350 ms, 

echo time (TE): 30ms, flip angle: 78°) and covered the whole brain with the exception 

of the most anterior and inferior section of the temporal poles. 256 volumes were 
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acquired for each functional run. High-resolution anatomical images were acquired with 

a T1 weighted MPRAGE sequence (1 x 1 x 1 mm, T1 = 2300 ms, TE = 4.25 ms, TR = 

2300 ms, flip angle: 9°). 

4.2.4 fMRI Data Preprocessing  

 All functional images were preprocessed using BrainVoyager QX 2.2.0. The 

steps included slice scan time correction (cubic spline interpolation), correction for 3D 

head motion (trilinear motion detection and sinc motion correction) and temporal high-

pass filtering ( GLM-Fourier 2 cycles). All runs had less than 3mm overall head motion 

and were thus included in the analysis. Each functional image was then coregistered to 

the subject's anatomical image, transformed into Talairach space, and smoothed with a 6 

mm full width at half maximum Gaussian smoothing kernel (Talairach & Tournoux, 

1988). 

4.2.5 fMRI Analysis Strategy 

 The analysis for this study was adapted from (van Atteveldt et al., 2004).  For 

each participant, a design matrix was created with twelve predictors: each of the four 

conditions (UV, UA, BC, BI) for each of the three audiovisual pair types (LS, LN, NN). 

The resulting random-effect whole-brain general linear model included these twelve 

predictors.  
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4.2.5.1 Analysis of unimodal effects 

The central goal of this study was to compare the neural correlates of visual 

processing, auditory processing, and audiovisual integration in numbers with the 

corresponding correlates elicited by letters. My analysis was thus two-fold. To test for 

similarities and differences in the unimodal processing of numerals and letters, I 

conducted five analyses. To identify regions commonly involved in visual processing, I 

performed a conjunction of visual letters and visual numerals. To identify regions 

commonly involved in auditory processing, I performed a conjunction of number names, 

letter names, and letter sounds.  To test for differences between the visual processing of 

letters and the visual processing of numerals, I conducted a whole brain t-test (letters > 

numerals) balanced for the uneven number of conditions. To test for differences in the 

auditory processing across the three notations, I conducted a whole brain single factor 

analysis of variance (three levels: number names, letter names, letter sounds). Finally, to 

test for amodal number specific activation I ran a conjunction analysis of (numerals > 

letters) ∩ (number names > letter names). 

4.2.5.2 Analysis of bimodal effects 

The second series of analyses were designed to test for similarities and 

differences in audiovisual integration in the three pair types. To do this, I conducted a 

whole brain two factor analysis of variance. Factor 1 was notation and had three levels 

(NN, LN, LS). Factor 2 was congruency and had two levels (C, I). The interaction of 
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notation X congruency reveals regions where the congruency effect is significantly 

different between symbol types. The main effect of notation reveals regions 

differentially involved in audiovisual processing regardless of congruency. The main 

effect of congruency shows commonalities in the congruency effect across all three pair 

types.  The most important of these analyses to my purposes is the interaction of 

notation by congruency, as it statistically demonstrates differences in audiovisual 

integration between different types of audiovisual pairs. As detailed in the introduction, 

the congruency effect is designed to measure audiovisual integration rather than a more 

general multisensory processing.  

Against the background of this reasoning, I structured my specific analysis as 

follows. I initially conducted a 3 x 2 analysis of variance using pair type (LS, LN, NN) 

and congruency (congruent, incongruent) as within-subjects factors. Within this 

analysis, I focused upon the interaction of pair type and congruency as a means to reveal 

any statistical differences in the congruency effect between pair types. Any significant 

interaction was further analyzed by performing post-hoc contrasts within each 

significant region using BrainVoyager’s ROI analysis module. Of secondary interest 

was the detection of any main effects (condition or congruency).  Because this analysis 

of variance is unable to statistically test for the presence of congruency-related 

modulation within each condition independently, I employed a subsequent series of 

three whole-brain t-tests to verify and supplement the results of the initial analysis.  
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4.2.6 Statistical thresholding 

All statistical maps presented and interpreted below were given an uncorrected 

statistical threshold of p < .005. A cluster-correction algorithm was then used to 

mathematically determine the number of functional voxels that a given cluster must be 

in order to be 95% certain that the cluster did not occur simply due to chance. This so-

called cluster correction is a common way to account for the inflation of type I error due 

to comparisons across multiple voxels (Forman, Cohen, & Fitzgerald, 1995). For any 

significant F-statistics, post hoc contrasts were conducted to clarify the directionality of 

the significant effect. Each contrast was corrected for multiple comparisons using the 

Bonferroni method. 

 All figures are presented in radiological convention, i.e., seen from below, 

resulting in the right side of the image representing the left side of the body and vice 

versa. Any supplemental bar charts are meant only as rediscriptions of the significant 

effects. The bars within the bar charts represent z-standardized parameter estimates. 

Error bars represent standard error of the mean of the parameter estimates. 
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4.3 Results 

4.3.1 Unimodal Effects 

4.3.1.1 Conjunction of visual response 

 The conjunction of visual response revealed a wide network of regions including 

much of the occipital cortex, the bilateral superior parietal lobe, left pre- and postcentral 

sulcus, and the superior frontal gyrus spanning the midline of the brain. 

4.3.1.2 Conjunction of auditory response 

 The conjunction of auditory response revealed a similarly large collection of 

regions including bilateral superior temporal regions and an activation spanning the left 

precentral and postcentral sulcus. The conjunction of these conditions was also found in 

anterior medial regions of primary visual cortex. This analysis also yielded a reverse 

conjunction. Bilateral posterior regions of primary visual cortex showed a response in 

which both conditions were significantly less active than baseline. 

4.3.1.3 Contrast of visual response to letters and numerals 

 No regions were found that showed significantly differential response to visually 

presented letters and visually presented numerals. 

4.3.1.4 Contrast of auditory response 

 The left angular gyrus (see Figure 4.2) showed significant main effect of 

notation. This effect was characterized by significant activation in response to letter 
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names t (19) = 3.18, p < .05 as well as letter sounds t (19) = 5.51, p < .05, but not to 

number names t (19) = .385, p = .7.   

 

Figure 4.2 Significant main effect of notation in left angular gyrus. 

4.3.1.5  Number specific activations 

 To identify regions that showed more unimodal activation in response to 

numerical stimuli relative to letter stimuli, I conducted a conjunction analysis of 

(numerals > letters) ∩ (number names > letter names). No regions showed a significant 

response to this analysis. 

4.3.2 Bimodal Effects 

4.3.2.2 Main effect of notation 

 A main effect of notation (LS, LN, NN collapsed across congruent and 

incongruent trials) was found in three regions of the cortex.  The right supramarginal 
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gyrus (SMG) showed a greater response during the NN condition relative to the 

conditions utilizing letters.  Conversely, two regions in and around the left fusiform 

gyrus showed more activity in response to letters than numerals.  One region spanning 

parts of the left lingual gyrus and left fusiform gyrus showed significant activation in the 

LN condition relative to the other two conditions, as revealed by post-hoc contrasts. The 

second region, located ventrolateral to the former and encompassing portions of the 

inferior occipital gyrus and the fusiform gyrus, showed stronger response to the two 

letter conditions than the numeral condition.  Please see Figure 4.3 for details. 
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Figure 4.3 Regions showing a significant main effect of condition across both levels of 

congruency including the right SMG (47, -38, 42), the left lingual/fusiform gyrus (-31, -

68, 9), and the left IOG/fusiform gyrus (-40, -59, -6). Bar charts are included to illustrate 

the nature of the interaction.  The bars within the bar charts represent z-standardized 

parameter estimates of the (from left to right) letter-letter sound pairs (LS), letter-letter 

name pairs (LN), and numeral-number name pairs (NN).  Error bars represent standard 

error of the mean of the parameter estimates.   

4.3.2.3 Main effect of congruency 

 A main effect of congruency was found across an extensive bilateral fronto-

parietal network of brain regions, reported in full in Table 4.1.  The pattern of activity in 

each of these regions is characterized by an incongruency effect, or greater activation 

during the incongruent relative to the congruent pairs, across all three conditions. No 

region showed a significant congruent > incongruent effect across all three conditions. 

 

Table 4.1 Regions showing a main effect of congruency (incongruent > congruent). 

 X Y Z 

Right inferior temporal gyrus 60 -53 -3 

Right middle frontal gyrus 39 28 39 

Right inferior frontal gyrus 47 -2 18 

Right intraparietal sulcus and surrounding parietal lobules 32 -44 39 
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Cerebellum 2 -71 -33 

Left middle and inferior frontal gyri -43 16 33 

Posterior cingulate -4 -56 18 

Left intraparietal sulcus and surrounding parietal lobules  -40 -56 42 

Left middle and inferior temporal gyri -46 -38 3 

 
Descriptions and Talairach coordinates are presented for each region. 

 

4.3.2.1 Interaction between congruency and notation 

 A significant interaction between audio-visual congruency and notation was 

found in three regions of the superior temporal cortex.  One region in the right posterior 

STG (Figure 4.3) and two regions in the left STG (Figure 4.4), one anterior and one 

posterior showed a significant interaction. The bar charts in the bottom sections of 

Figures 4.3 and 4.4 illustrate the pattern of the interaction. A congruency effect, 

characterized by greater activation in response to congruent relative to incongruent 

audiovisual pairs (see the two rightmost bars in each chart) is present in the numeral-

number name and letter-letter name conditions. A comparable congruency effect is 

absent in the letter-letter sound condition.  To help clarify this effect further, I looked for 

an effect of congruency in each notation individually. Figures 4.5 and 4.6 illustrate a 

significant congruency effect in the left STG in response to both the letter-letter name 
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pairs and the numeral-number name pairs. I then performed an additional analysis of 

variance to test for an interaction of congruency and condition across the whole brain, 

but only within the NN and LN pairs. No interaction was detected, suggesting 

commonality in the audiovisual integration of LN and NN pairs. No effect of 

congruency was found for the letter-letter sound pairs when the congruency effect was 

analyzed for this condition alone, even when I reduced the threshold to p < .05 

uncorrected. 
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Figure 4.4 Significant congruency by notation interaction in the right pSTG (44, -32, 

21).   
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Figure 4.5 Significant congruency by notation interaction in the left anterior STG 

(aSTG) (-46, -8, 8), and the left posterior STG (pSTG) (-43, -28, 9). Bar charts are 

included to illustrate the nature of the interaction.  The bars within the bar charts 

represent z-standardized parameter estimates of the (from left to right) visual, auditory, 

congruent, and incongruent conditions.  Error bars represent standard error of the mean 

of the parameter estimates. 

 

 

Figure 4.6 A region in the left STG (-40, -26, 12) showing a significant congruency 

effect in response to letter-letter name pairs. 
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Figure 4.7 Regions showing a significant effect of congruency in response to the 

numeral-number name pairs, including the bilateral STG (38, -29, 9) and (-55, -8, 9).  

Other regions not pictured include two additional portions of the bilateral STG (56, -20, 

21) and (-46, -26, 18) and, as well as the left SMG (-55, -26, 24). 

4.4 Discussion 

Numerical symbols, such as Hindu-Arabic numerals, are perhaps the most widely used 

symbolic system in the world. Across languages and cultures, Hindu-Arabic numerals 

convey quantitative meaning to those who know them. Since the transmission of 

numerical information is their primary use, it is not surprising that the vast majority of 

research interrogating the processing of numerals has focused on the semantic level of 

processing. However, numerals are more than simply semantic entities. The visual form 
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of each numeral is associated with an auditory referent. In this way, numerals are, on the 

surface, very similar to letters. It is plausible, therefore, that processing the connections 

between auditory and visual information embedded in numerals relies on neural circuits 

highly similar to those used for the audiovisual processing of letters. On the other hand, 

numerals differ from letters in that their principal referent is semantic, not auditory. It is, 

therefore, also plausible that reading numerals would rely on neural circuits unique from 

those used in letter reading. In this experiment, I employed fMRI to examine the 

veracity of these two opposing possibilities. I measured the neural response to unimodal 

visual, unimodal auditory, congruent audiovisual, and incongruent audiovisual 

stimulation in the form of numerals and letters. I then compared and contrasted the 

neural responses to these four conditions in the three types of audiovisual pairs. Below, I 

discuss the results of these analyses and their implications for my understanding of the 

processing of Hindu-Arabic numerals.  

4.4.1 Similarities and differences in unimodal response 

 As expected, the conjunction between the visual and auditory processing of 

letters and numerals revealed primary visual and auditory regions, respectively. While 

no differences were found in the visual processing of letters and numerals, the auditory 

processing across the three symbols types revealed one salient difference. The left 

angular gyrus (Figure 4.2) responded significantly to letter sounds and letter names, but 

showed no comparable response to number names. The left angular gyrus has often been 
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implicated in phonological processing, and in particular, categorical phoneme detection 

(for reviews see Seghier, 2012; Turkeltaub & Coslett, 2010). My data are commensurate 

with that role of the left angular gyrus. 

 My results that show no differential activation for visual letters and numerals 

contrast with a recently reported study in which two regions in the left angular gyrus 

were shown to be active in response to the passive viewing of Hindu-Arabic numerals 

(Price & Ansari, 2011). In that study, participants viewed four conditions: numerals, 

scrambled numerals, letters, and scrambled letters. A region in the left ventral angular 

gyrus showed more activation for numerals relative to all other conditions.  In addition, 

a region in the left dorsal angular gyrus showed more activation for letters and numerals 

relative to scrambled letters and numerals. My study, in contrast, showed no difference 

in response to visually presented numerals and letters. This difference could reflect that 

the activations reported by Price & Ansari (2011) resulted from the contrast of whole 

symbols with scrambled versions, whilst my contrast did not involve scrambled versions 

of the stimuli. 

 My results also conflict with previously reported findings by Eger and 

colleagues (2003). In this study, participants monitored a stream of unimodal auditory 

and visual letters, numbers, and colors and pressed a button whenever a target was 

presented, in either the visual or the auditory modality. When the neural response during 

the presentation of numerical stimuli was contrasted with the presentation of letters and 

colors, the authors found significant bilateral IPS activity. They suggested that because 
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the IPS showed a response even when the task did not require them to specifically attend 

to the numerical meaning of the numerals and number names, that the simple 

presentation of numerical stimuli automatically activates the associated numerical 

magnitude representation. In my results, I found no evidence that the IPS showed 

activation in unimodal numerals and number names relative to unimodal letters, letter 

names, and letter sounds. One reason for this discrepancy could be the difference in 

attentional components across the two studies. In the results reported by Eger et al., 

participants were monitoring streams of stimuli for a particular target and, therefore, 

were required to directly compare each visual or auditory numerical stimulus to this 

target. My study, in contrast, was truly passive as no attentional demands were placed 

on participants as they viewed or listened to the stimuli. 

4.4.2 Similarities and differences in bimodal response 

4.4.2.1 The congruency effect 

 In the congruency effect analysis, I contrasted the neural response to congruent 

audiovisual pairs with the response to incongruent audiovisual pairs. The results of this 

suggest that the audiovisual processing of numbers and letters relies on highly 

comparable brain regions. As seen in Figures 4.4, 4.5, and 4.6, both the NN condition 

and the LN condition recruited the left posterior superior temporal gyrus to a 

significantly greater extent when the audiovisual pairs were congruent relative to when 

they were incongruent. This congruency effect is considered the litmus test of 
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audiovisual integration in the brain (Goebel & van Atteveldt, 2009). In other words, 

because the superior temporal cortex is associated a wide variety of multisensory tasks, 

it is expected to respond robustly when simultaneous auditory and visual information is 

presented (Beauchamp et al., 2004; Driver & Noesselt, 2008; Ghazanfar & Schroeder, 

2006; Stein & Stanford, 2008) Thus, it is crucial to test not only for audiovisual 

processing, but for an effect of audiovisual congruency. This ensures that the isolated 

regions are sensitive to the link between a specific visual stimulus and its specific 

auditory referent. The activation in the bilateral STG also converges with previous 

literature, conducted with Dutch participants, that implicates the STG in the audiovisual 

integration (congruent > incongruent) of letters and letter sound pairs (see Blomert, 

2011; Blomert & Froyen, 2010 for reviews). Taken together, the results of this analysis 

support the notion that the reading of both letters and Arabic numerals relies on highly 

comparable audiovisual processes in the brain. 

 Due to the paucity of research into the topic, it is challenging to situate my 

findings in the context of a broader literature on audiovisual processing of numerals. It 

has been previously theorized that the left angular gyrus would be involved in the 

audiovisual processing of numerical symbols due to its repeated implication in 

arithmetic fact retrieval (Dehaene & Cohen, 1995; Dehaene, Piazza, Pinel, & Cohen, 

2003). This theory posits that when facts such as 8 X 4 = 32 are learned, they are 

learned in a purely verbal way, i.e., the problem 8 X 4 is associated directly with the 

solution 32 without any intervening semantic processing of the numbers. The angular 
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gyrus, it was suggested, mediates this asemantic, verbal processing of numerals. More 

recent theory has suggested that the left angular gyrus is involved in accessing the stored 

solution of the problem from long term memory (Zamarian, Ischebeck, & Delazer, 

2009). While retrieving verbal mathematical facts from memory clearly involves an 

amount of audiovisual processing, the complexity of tasks that elicit angular gyrus 

activation disallows simple explanations of the left angular gyrus’ role in numerical 

processing. In contrast, the audiovisual processing involved in my experiment was 

relatively straightforward and more “process pure” in that the congruency effect simply 

identifies regions that are tuned to the learned association between a visual symbol and 

its auditory referent.  

Eger and colleagues (2003) (discussed above) suggested that the semantic 

representations housed in the intraparietal sulcus can be automatically activated by 

passive tasks. However, the task they used was not entirely passive and required that 

participants compare numbers to a target. In the completely passive environment of my 

study, no evidence of IPS activation was found. This suggests that the presence of 

numerical stimuli does not necessarily evoke representations of numerical magnitude. 

Moreover, it suggests that the audiovisual processing of NN pairs occurs independently 

from the semantic processing of numerals. Future research will be needed to clarify how 

the audiovisual processing of the superior temporal lobe integrates with the semantic 

representations of the parietal lobe in the service of tasks, such as arithmetic, that utilize 

the both audiovisual and semantic representations. 
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4.4.2.2 The potential role of orthographic transparency 

Surprisingly, I found no evidence of a congruency effect in the superior temporal 

gyrus in one of my control conditions: letter and letter sound pairs. This appears to 

contradict both previous data published on this relationship and my own claims of a 

common substrate of audiovisual processing in numerals and letters. However, it might 

instead provide greater nuance into the role the STG plays in audiovisual integration. A 

large number of studies have showed audiovisual integration in bilateral STG in Dutch 

readers (Blau et al., 2010; Blau, van Atteveldt, Ekkebus, Goebel, & Blomert, 2009; 

Froyen, Bonte, van Atteveldt, & Blomert, 2009; van Atteveldt, Blau, Blomert, & 

Goebel, 2010; van Atteveldt, Formisano, Blomert, & Goebel, 2007; van Atteveldt, 

Formisano, Goebel, & Blomert, 2004, 2007; van Atteveldt, Roebroeck, & Goebel, 

2009). This has lead some theorists to argue that the STG becomes tuned to pairings 

between letter and letter sounds only because such pairings are highly regular in a 

transparent orthography, such as that found in Dutch (Blomert, 2011). In the Dutch 

alphabet, each letter corresponds to one and only one letter sound. Hence the 

correspondence between letter and sound is considered 100% transparent. In contrast, 

LS pairs in English are opaque.  The letter “t” can sound like /t/ when in the word 

“meter,” /sh/ when in the word “motion,” and /th/ when in the word methane.  The 

correspondence between the visual letter and its auditory referent depends on context. 

Blomert (2011) hypothesized that the congruency effect in the STG reflects the 

transparency of the Dutch orthography and, therefore, might not be found in English. 
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My data converge with and extend this hypothesis. When English readers are presented 

with NN or LN pairs, the congruency effect is highly comparable to the congruency 

effect seen in Dutch readers. In contrast, when English readers are presented with LS 

pairs, the congruency effect is absent. The similarity between NN and LN pairs on the 

one hand and Dutch LS pairs on the other hand could be due to the transparency of the 

audiovisual pairs. However, one might argue that the English LS pairs I selected for my 

study are, in themselves, highly transparent. It is here that my data expand on the 

previous theory. Rather than reflecting a feature of the transparency of the audiovisual 

pairs directly, I propose that the congruency effect in the STG emerges only when the 

audiovisual pairs are learned in a context in which they are always transparent. While 

the single letter English LS pairs used in my study are transparent on their own, the 

regularity of their audiovisual relationships becomes much more irregular in the context 

of reading whole words in English. Thus, the context in which English LS pairs are 

learned is one in which the audiovisual pairs are regularly changing depending on the 

word in which the letters appear. In contrast, the other three audiovisual types (LN, NN, 

and Dutch LS) are learned in a context in which the transparency of the audiovisual 

pairs is always 100%. In light of this, I suggest that the congruency effect reflects the 

context in which audiovisual pairs are learned rather than the transparency of the 

particular audiovisual pair. 
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4.4.2.3 Audiovisual processing across levels of congruency 

As discussed above, the integration of numerals and number names is best 

measured by the effect of congruency. This congruency effect was clearly localized to 

the bilateral superior temporal gyrus. However, I was also curious whether differences 

between symbols types existed across audiovisual processing as a whole. As illustrated 

in Figure 5, when the three pair types were compared across both congruent and 

incongruent pairs, the right supramarginal gyrus showed greater modulation to numerals 

than it did to either letter condition. At this juncture, I can only speculate as to the role 

this region plays in the audiovisual processing of numerals. The supramarginal gyrus, 

which is located just anterior and lateral to the angular gyrus, has been implicated in one 

study whose questions were relevant to the present findings. Roux and colleagues 

reported results from an electrocortical stimulation study conducted over 6 years in 

which various areas of the neocortices of 53 patients were stimulated just prior to 

neurosurgery (Roux, Lubrano, Lauwers-Cances, Giussani, & Démonet, 2008). Of the 

257 language areas stimulated in the study, 3 regions resulted in the specific impairment 

of numeral reading: the dominant supramarginal gyrus, a section of the fusiform gyrus, 

and a portion of Broca’s area. While this study converges with ours to implicate the 

supramarginal gyrus in the auditory processing of number names, my studies differ in 

the laterality of the findings.  

Relative to audiovisual processing of NN pairs, LN and NN pairs showed 

significant activation in the left fusiform gyrus. This region has repeatedly been 
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implicated in the visual processes of reading (Cohen et al., 2000; Dehaene & Cohen, 

2007; McCandliss, 2003; Schlaggar & McCandliss, 2007). Because my findings relate 

to the audiovisual and not simply the visual processing of letters, they could suggest that 

the fusiform gyrus, like superior temporal regions, is involved in audiovisual processing 

of letters in general, but not specifically involved in audiovisual integration (i.e., not 

significantly more active for congruent relative to incongruent pairs).  The difference 

between LN/LS pairs and NN pairs could also be seen to contrast with the data reported 

in Chapter 3 in which the fusiform gyrus was sensitive to the visual form of the 

numerals. This lack of convergence could be due to differences in the analysis used. In 

Chapter 3, the analysis was designed to look for parametric response to changes in 

numeral shape, whereas the present analysis collapsed across all numeral shapes and 

compared this to baseline.  

4.4.2.4 Processing incongruency across symbol type 

On a final note, my analysis also revealed a main effect of congruency across all 

three audiovisual pair types. An examination of the parameter estimates suggests that 

this effect would be better described as a main effect of incongruency. That is, across all 

three pair types, a highly similar network of regions responded more robustly to 

incongruent relative to congruent audiovisual pairs. These regions are commonly found 

in studies of task-related cognitive conflict (for review, see Roberts & Hall, 2008). 

Importantly, this main effect of incongruency verifies that participants were able to 
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notice the incongruency across all three types of audiovisual stimuli. Therefore, it 

cannot be argued that the lack of a congruency effect in LS pairs reflects an inability of 

participants to distinguish congruent from incongruent letter letter sound pairs.  

 In summary, this study explored the neural correlates underlying the audiovisual 

processing of numerals and compared these with those involved in the audiovisual 

processing of letters. Broad similarities were found in the visual and auditory processing 

of both letters and numerals. In addition, the audiovisual integration of numerals with 

their number names was highly similar to the audiovisual integration of letters and letter 

names. Interestingly, comparable activation in response to the audiovisual integration of 

letters and speech sounds was absent, potentially suggesting a role of orthographic 

transparency in audiovisual processing in English. Future research is required to 

examine the interplay between audiovisual and semantic processing of number. Of 

particular interest is whether individual differences in the audiovisual processing of 

number are related to individual differences in semantic or mathematical processing. 

Equally important is the exploration of neural connections between the inferior parietal 

semantic regions of number and the superior temporal audiovisual regions identified by 

this study. 
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Chapter 5: Conclusion 

5.1 Summary of results 

 Numerical symbols are one of the most common and important stimuli in 

modern life. Yet despite their ubiquity, little is known about how the brain processes the 

visual, auditory, audiovisual, and semantic information that is embedded in such 

symbols. To fill this gap in our understanding of numerical neurocognition, this thesis 

presented three empirical studies designed to characterize the neurobiological correlates 

associated with processing Hindu-Arabic numerals (see Figure 5.1 for summary). 

 



173  

 

173 

 

Figure 5.1 Cartoon summary of brain regions described in the three studies above. The 

semantic processing of numerical magnitude associated with symbols is associated with 

the intraparietal sulcus (green). The processing of the visual form of numerals is 

associated with the fusiform gyrus (blue). The auditory processing of numerals is 

associated with activation in the superior temporal cortex (red). A subsection of this 

region is implicated in the processing of audiovisual information in numerals (purple). 

 

In Chapter 2, the neural correlates of Hindu-Arabic numerals were compared 

with those of non-symbolic arrays. The analysis revealed brain regions associated with 
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each stimulus format specifically, as well as correlates shared across symbolic and non-

symbolic representations. The comparison of numerals relative to non-symbolic arrays 

was correlated with activity in the left superior temporal gyrus (STG) and the left 

angular gyrus (AG). The reverse contrast revealed that the right posterior superior 

parietal lobe was associated specifically with the comparison of non-symbolic arrays. In 

addition to areas specifically modulated by numerical symbols or non-symbolic arrays, a 

common representation was found in the right intraparietal sulcus (IPS), whose activity 

was correlated with both symbolic and non-symbolic comparison. The data were 

interpreted as reflecting specific encoding pathways for numerals in the STG and AG 

that converge upon an abstract numerical magnitude representation housed in the IPS. 

While these data describe broad differences between symbolic and non-symbolic 

processing, they were not able to specifically address the brain regions that are involved 

in the semantic, relative to the asemantic, processing of numerical symbols. That 

question requires a comparison between numerically meaningful and novel symbols—a 

reflection that inspired Chapter 3. 

 In Chapter 3, a cross-linguistic fMRI adaptation paradigm was used to compare 

the processing of Hindu-Arabic numerals and the numerical ideographs found in written 

Chinese. The neural responses to these two types of symbols were collected in two 

groups: a group of individuals who could read both the ideographs and the numerals and 

a control group of individuals who could read only the numerals. Both groups showed 

evidence of semantic processing of numerals in the left IPS and visual processing of 
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numerals in the left fusiform gyrus (FG). Relative to the control group, the Chinese 

readers showed activity in the right IPS in response to ideographs. Within the control 

group, the only region that responded to ideographs was the left FG. The results were 

interpreted as reflecting semantic processing of numerical symbols in the IPS and 

asemantic visual processing of numerical symbols in the FG. This experiment was able 

to isolate the visual and semantic correlates of numerical symbols, but was silent 

regarding asemantic auditory processing. This curiosity about the auditory and 

audiovisual processing of numerals led to Chapter 4. 

 In Chapter 4, the visual, auditory, and audiovisual correlates of numerals and 

their associated number names were compared with two control conditions: letter-letter 

names and letter-letter sounds. The results suggested a high degree of overlap between 

the visual and auditory processing of numerals and letters, but some differences in 

regions responding to audiovisual integration were found. The congruency effect, which 

is the litmus test of audiovisual integration, showed expected activation in bilateral 

superior temporal regions for congruent numeral-number name pairs (NN) and left 

lateralized activation in response to congruent letter-letter name pairs (LN). STG 

activation was absent in letter-letter sound pairs (LS), which potentially reflects a 

difference in the orthographic transparency of LS pairs relative to NN and LN pairs.  

Overall, the neural correlates were quite similar across letters and numerals, but three 

salient differences were found. A number specific activation was found in the right 

supramarginal gyrus (SMG) for audiovisual numerals relative to audiovisual letters. 
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Inversely, the left FG showed more activity for audiovisual letters than for audiovisual 

numerals. Finally, auditory letter sounds and letter names showed significantly more 

activation in the left AG than auditory number names. 

 Together, these three studies give the first account of the neural correlates 

underlying the visual, auditory, audiovisual, and semantic processing of numerical 

symbols. Below, each of these levels of representation is considered in more detail. The 

subsequent section will discuss what the results of these experiments can tell us about 

the automatic versus deliberate activation of these levels of representation. Following 

this is a review of the limitations of these studies and future directions that this line of 

research could take. 

5.2 Visual processing of numerals 

 Evidence for the neural correlates of the visual processing of numerals was 

found in the cross-linguistic study of Chapter 3. In the analysis, the neural response to a 

parametric ratio-dependent predictor was compared with the neural response to a 

parametric shape-dependent predictor. This comparison suggested that the left FG is 

involved in the visual processing of numerals. This conclusion was supported by the 

control group, in which the only region that responded to the novel numerical symbols 

(ideographs) was the left FG. Taken together, these data suggest that the left FG is 

sensitive to differences in symbol shape.  
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The audiovisual experiment of Chapter 4 adds nuance to the role that the left FG 

plays in the visual processing of numerals. In that study, the visual presentation of both 

letters and numerals was related to activation in bilateral visual cortex, including the FG. 

This activation did not differ between numerals and letters, as a comparison of the 

neural correlates to unimodal visual letters and unimodal visual numerals showed no 

differences. This suggests coarse similarities between the visual processing of numerals 

and letters. However, the left FG also showed an important symbol-related difference in 

this study. Collapsed across congruent and incongruent audiovisual pairs, the left FG 

showed significant modulation to audiovisual letters and no comparable modulation to 

audiovisual numerals. This difference could suggest that the audiovisual processing of 

letters requires more visual information than that of numerals, potentially due to the 

differences in orthographic transparency between numerals (which are always 

transparent) and letters (which are transparent with their names but not with their 

sounds).  

The role of the fusiform gyrus has long been theorized to be involved in the 

visual processing of numerals (Dehaene & Cohen, 1995). While the present data 

confirm this hypothesis, a recent report found no evidence of FG activation for the 

visual processing of numerals (Price & Ansari, 2011). In their experiment, the authors 

passively presented participants with both whole and scrambled numerals and letters. 

Their results indicated that only the left angular gyrus was recruited during the passive 

viewing of whole letters and numerals relative to their scrambled counterparts. 
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Moreover, another portion of the left AG showed more modulation for numerals relative 

to letters. The present study, in contrast, showed no evidence of AG activation in 

response to the visual processing of numerals. One reason for this discrepancy is the 

difference between the tasks involved in each experiment. Price & Ansari asked 

participants to monitor a hash mark (#) and to indicate, with a button press, whenever 

that symbol turned red. The experiment detailed in Chapter 3 asked participants to 

monitor the numerical symbols directly and indicate whenever a red symbol appeared. 

While this difference is small, it could be important. In the present experiment (Chapter 

3), the salient feature (press a button whenever the symbol turns red) had to be detected 

within the visual form of the numeral. In the experiment reported by Price & Ansari, the 

visual form of the numerals and letters were not important. Only the hash mark required 

attention. This could indicate that the left FG is not automatically activated by the 

presence of numerical symbols, but instead activated when the shape of the numerals is 

the feature to which participants are attending. These findings highlight the potential 

effects of task set on the neural activations observed.  

5.3 Auditory and audiovisual processing of numerals 

 Chapter 4 demonstrated that the auditory processing of number names was 

localized to regions spanning large portions of the superior temporal cortex. This 

activity was highly similar to that which responded to letter names and letter sounds as 

confirmed in the conjunction analysis. The only regions that showed significant 
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notation-related differences in auditory processing was the left angular gyrus, which was 

more active during the two letter conditions than the number name condition. The 

involvement of the left angular gyrus is likely related to the discrimination of phonemic 

information during the audiovisual letter tasks (Turkeltaub & Coslett, 2010).  

 The audiovisual integration (distinguishing congruent from incongruent pairs) of 

numerals and number names was localized to bilateral regions of the posterior superior 

temporal gyrus, which is commensurate with previous research highlighting the 

importance of this region in audiovisual integration of letters (Blomert & Froyen, 2010; 

van Atteveldt, Formisano, Goebel, & Blomert, 2004). The role of this region in 

audiovisual processing can help clarify the results of the experiment presented in 

Chapter 2.  In that experiment, symbolic numerical comparison elicited activation in this 

the left STG relative to non-symbolic comparison and both control conditions. Against 

the background of the results from Chapter 4, the involvement of the STG in Chapter 2 

may suggests that participants who perform a symbolic numerical comparison task are 

recruiting auditory referents of numerical symbols to help them complete the task. 

5.4 Semantic processing of numerals 

The IPS has repeatedly been associated with the representation of numerical 

magnitude (Brannon, 2006; Dehaene, Piazza, Pinel, & Cohen, 2003; Nieder & Dehaene, 

2009). The data reported in Chapters 2 and 3 are consistent with this interpretation of 

IPS activity. In Chapter 2, the right IPS was commonly activated in both symbolic and 
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non-symbolic comparison relative to the control tasks. The results of Chapter 3 also 

implicated the IPS, but in the opposite hemisphere of the brain. The left, but not the 

right IPS showed a significant adaptation/rebound response to numerals, which is 

thought to reflect this region’s sensitivity to the representation of numerical magnitude 

associated with the symbols. In contrast to Hindu-Arabic numerals, the neural response 

to numerical ideographs was more bilateral. The right IPS showed the strongest tuning 

to the semantics of the ideographs, but, at a slightly lower threshold, the left IPS also 

showed sensitivity to the numerical meaning of the ideographs.  

 Although the data presented in Chapters 2 and 3 clearly implicate the IPS in the 

semantic processing of numerals, the laterality of this effect is challenging to interpret. 

Some theorists have speculated that the left IPS becomes specialized for the symbolic 

representation of numerical magnitude (Ansari, 2007, 2008). The data presented in this 

thesis are only partially commensurate with this hypothesis. While only the left IPS 

showed specificity for the representation of Hindu-Arabic numerals in Chapter 3, the 

right IPS was implicated in the representation of numerical ideographs. In addition, 

activity in the right IPS was significantly correlated with the numerical comparison of 

Hindu-Arabic numerals in Chapter 2. Thus, the data suggest that non-symbolic arrays 

and Chinese ideographs are represented in the right IPS, while the representation of 

Hindu-Arabic numerals is sometimes associated with right IPS activity and sometimes 

associated with left IPS activity.  
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One reason for the laterality differences reported in these data could be the 

expertise associated with different levels of representation. Research investigating the 

neural correlates of numerical representation in infants, who have very little experience 

with numerical magnitude and none with numerical symbols, has implicated the right 

IPS (Hyde & Spelke, 2011; Izard, Dehaene-Lambertz, & Dehaene, 2008). In addition, 

the right IPS seems to be implicated in the common representation of symbolic and non-

symbolic numerical magnitude as demonstrated in Chapter 2 and in other data 

(Holloway & Ansari, 2010). In other words, it is possible that the right IPS houses the 

basic non-symbolic representation of numerical magnitude, which becomes associated 

with numerical symbols over development. The left IPS, in contrast, could house a more 

refined, experience-dependent representation that emerges as individuals become more 

experienced with using numerical symbols in the precise manner needed to perform 

arithmetic. The data from Chapter 3 support this notion as the representation of 

numerical ideographs, which are not used for arithmetic in Chinese culture, was 

associated with right IPS activity and the representation of Hindu-Arabic numerals, 

which are used for mathematics in Chinese culture, was associated with the left IPS.  

However, this interpretation is speculative. It falls to future studies to clarify the 

differential role of the left and right parietal lobe in the representation of numerical 

symbols.  
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5.5 Recruitment of representations: intentional or automatic? 

In addition to yielding a description of the neural correlates associated with the 

auditory and semantic representations of numerals, the results of these three studies 

provide insight into whether these levels of representation are intentional or 

automatically evoked during various tasks. Simply put, when one sees a Hindu-Arabic 

numeral, do either the auditory or semantic representations associated with that symbol 

become active automatically? The following discussion uses the results of Chapters 2-4 

to address this question.  

5.5.1 Automatic activation of auditory referents 

In Chapter 4, the auditory and audiovisual processing of numerals was 

associated with activity in bilateral STG. The STG was also implicated in Chapter 2, as 

the semantic comparison of numerals elicited activation in the left superior temporal 

gyrus to a significantly greater extent than did the comparison of non-symbolic 

numerical stimuli. Why would the STG be more active during symbolic comparison 

relative to non-symbolic comparison? One possibility is that viewing numerals 

automatically activates the auditory referent associated with them. However, Chapter 3 

showed no involvement of the STG during the passive viewing of numerical symbols. 

While null results should always be interpreted cautiously, this could suggest that the 

auditory processing of numerals depends on how the numerals are used in a particular 

task.  
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5.5.2 Automatic activation of semantic referents 

A similar question could be asked of the semantic processing of numerals. Both 

behavioral (Dehaene & Akhavein, 1995; Girelli, Lucangeli, & Butterworth, 2000; 

Rubinsten, Henik, Berger, & Shahar-Shalev, 2002) and neuroimaging (Ansari, Dhital, & 

Siong, 2006; Cohen Kadosh, Cohen Kadosh, Kaas, Henik, & Goebel, 2007; Eger, 

Sterzer, Russ, Giraud, & Kleinschmidt, 2003; Piazza, Pinel, Le Bihan, & Dehaene, 

2007) studies have argued that numerical magnitude representations are automatically 

activated even when they are task irrelevant. For example, Eger and colleagues (2003) 

found that bilateral IPS was activated in response to numerals when participants were 

simply asked to scan a series of stimuli for a target. Because the task can be completed 

with only the visual information of the stimuli and not their semantic meaning, Eger et 

al. argued that the presence of numerals automatically elicits representations of 

numerical magnitude. The data from the audiovisual integration study of Chapter 4 

conflict with this account. In this study, the comparison of numerical vs. non-numerical 

stimuli did not reveal activity in the IPS, but rather in the right supramarginal gyrus. 

These data find convergence with those reported by Price & Ansari (2011) who also 

showed no IPS activation in response to the passive viewing of numerals. One reason 

for the discrepancy between these data and those reported by reported by Eger and 

colleagues, is that the latter were collected from an active task that involved comparing 

a numeral to target. It is possible that participants were making this comparison, not 

based solely on the visual features of the numerals, but also on their numerical value. 
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This could account for why the IPS was activated during that task, but not during the 

passive viewing of numerals in Chapter 4 or in Price & Ansari (2011).  

It must also be acknowledged, however, that the passive viewing of numerals 

was related to IPS activity in Chapter 3, where a clear adaptation/rebound response was 

seen in the left IPS. In other words, the passive viewing of numerals automatically 

elicited ratio-dependent IPS activation in Chapter 3, but did not in Chapter 4. This 

difference could be due to the analyses used in the two studies. The adaptation paradigm 

uses an analysis that is highly sensitive to ratio-dependent modulation. Therefore, it is 

possible that this analysis is able to detect IPS activity that is too subtle to be seen in a 

coarser level of analysis such as numerals > letters.  

In summary, the results of these three studies cannot definitively address 

whether semantic and auditory referents of numerical symbols are automatically 

activated when Hindu-Arabic numerals are seen. While future research will have to 

clarify this issue, is seems likely that the various representations of numerals are not 

automatically activated, considering how numerals are used in modern life. Although 

numerals such as bank balances and speed limits refer to quantitative referents, other 

numerals such as those found on sports jerseys or fast food value menus are simply 

nominal designations rather than quantitative ones. Thus, individuals are often faced 

with situations where the numeral 5 does not refer to five of anything, but instead to a 

particular thing that is called “Number 5.” Likewise, numerals are sometimes used as 

ordinal categories, such as in certain waiting rooms where each person is given a 
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number to designate her place in line. In this situation, the numeral 49 does not imply 

that she is associated with the cardinal value of 49, but rather that she comes before the 

person who has numeral 50 and after the person who has numeral 48. In other words, 

because numerals are fluently used in a variety of contexts, the representation elicited by 

a given numeral is likely to be highly dependent upon the context in which it is used.  

5.6 Limitations and future directions 

 The most significant limitation of the studies presented in this thesis is the lack 

of connectivity analyses between the regions that were identified. The studies identified 

a trifecta of regions, each of which is involved in a different level of processing of 

numerals. The left FG is employed to decode the visual information of the numeral’s 

shape. The STG integrates this visual information with the auditory number name 

associated with the numeral. The IPS houses the numerical magnitude representations 

that numerical symbols convey. However, it is still unknown whether and how these 

various levels of representation are connected to one another in the brain. Future 

research that employs methods such as diffusion tensor imaging tractography or 

effective functional connectivity analyses will be required to identify the structural 

connections between these regions. 

 In a similar vein, the functional interaction between these differing levels of 

representation still remains to be studied. How, for example, do the auditory and 

numerical magnitude representations interact during arithmetic and does this interaction 



186  

 

186 

differ depending upon the type of arithmetic being performed, e.g., subtraction versus 

multiplication? Similarly, does the integration of numerals and number names relate to 

the ability to perform arithmetic in much the same way that the integration of letters and 

speech sounds relates to reading ability (Blau et al., 2010; Blau, van Atteveldt, Ekkebus, 

Goebel, & Blomert, 2009)? 

 It remains to be investigated how ordinal representations of numerical symbols 

interface with the visual, auditory, and semantic (cardinal) representations characterized 

in the above studies. One intriguing possibility is that, as children learn how to use 

symbolic representations of number, order processing could provide the initial link 

between the auditory number names and the representations of numerical magnitude. 

Ordinality is also another point of overlap between the processing of numerals and the 

processing of letters. Future studies should examine how the audiovisual representations 

localized in the STG interact with ordinal representation and how these, in turn, interact 

with representations of numerical magnitude. 

 Another limitation of the present body of work is that the definition of “semantic 

representation of numerals” was restricted only to approximate representations of 

numerical magnitude housed in the IPS. However, many numerical symbols used in 

higher mathematics have a very different kind of semantic meaning. On the one hand, 

constants such as pi or e refer to numerical values that can be approximated but cannot 

be physically represented. On the other hand, a whole class of imaginary numbers exists 

such as i (i.e., ) whose semantic referents cannot be represented by the approximate 
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magnitude system. Truly understanding the neural correlates of semantic processing of 

numerical symbols implies understanding how the brain represents irrational and 

imaginary numbers as well as cardinal values. Related to both this and an earlier point, 

the semantic referents of numerical symbols are sometimes not numerical at all. 

Previously, the example of nominal representations was given, such as the numbers that 

dental workers assign to teeth. The meaning of the numerical symbol in that context is a 

particular tooth in a particular location in the mouth. Another example is the numbers 

given to particular tax forms. In that context, in the United States, 1040 refers to a 

particular form, not to the numerical value 1,040. Does the semantic processing of these 

nominal representations of number interface with the representation of numerical 

magnitude? Or is such processing more akin to the semantic processing of words? 

 Finally, future research will be required to characterize the developmental 

trajectory of numerical symbols and their neural instantiation. For example, does the 

auditory representation of numerals play a greater role in young children’s semantic 

understanding of numerals than it does in adults? Do children who excel at reading 

numerals also excel at reading letters and words? Are children who are taught more than 

one form of numerical symbol (such as Hindu-Arabic numerals and Roman numerals) 

better able to understand numerical information in general? These and many other 

questions remain to be addressed as researchers clarify the development of numerical 

symbol processing. 
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5.7 General conclusion 

 In conclusion, the body of research presented above has identified and described 

the neural correlates of visual, auditory, and semantic processing of numerical symbols. 

Many of the brain regions implicated in these levels of processing are highly similar to 

those related to reading. Indeed, the ability to use numerical symbols is predicated on 

the ability to use language and the ability to read. However, numerals are also a special 

class of symbol as their principal referent is numerical magnitude, which is a system of 

representation that is not dependent upon language abilities. Thus, studying the 

neurobiology of numeral processing can help us understand how culturally-mediated 

information interacts with and shapes biologically-mediated systems in the brain. 
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