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Abstract 

 This thesis describes a study of dimethylplatinum(II) complexes containing 

bidentate nitrogen donor ligands. This work deals with the oxidative addition of 

peroxides and focuses on synthesis, characterization and reaction mechanisms of these 

complexes. 

 Dimethylplatinum(II) complexes were reacted with oxidants  dimethyldioxirane 

(DMDO), meta-chloroperbenzoic acid (m-CPBA) and phthaloyl peroxide. The use of 

these oxidants has allowed for the synthesis of novel platinum(IV) complexes by 

oxidative addition and the formation of  unique supramolecular networks. The formation 

of both trans- and cis-oxidative addition products was controlled by the type of oxidant 

utilized. By varying the ligand design of the platinum(II) complexes, the formation of the 

multiple platinum(IV) complexes have been obtained, each demonstrating their own 

unique chemistry. 

 In other interests, low temperature 
1
H NMR spectroscopy has been utilized to 

follow the reaction pathway of the oxidative addition of iodine at [PtMe2(bpy)]. This 

technique allowed for the observation of intermediates formed within this reaction. The 

formation of intermediates shows solvent dependence following the trend; acetone 

>CD2Cl2 > toluene, suggesting there is stabilization of these intermediates by more polar 

solvents.  

Keywords: Platinum complexes, oxidative addition, bidentate nitrogen donor ligands, 

peroxides, dimethyldioxirane, meta-chloroperbenozic acid, phthaloyl peroxide, iodine, 

supramolecular chemistry. 
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Chapter 1 

 

 

General Introduction 
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1.1 The History of Platinum 

 

Platinum was first discovered in the sixteenth century in the Choco district of 

Colombia.
1
 Observed by Ulloa in 1736, its present name derives from the term “platina 

del pinto” or “little silver of the Pinto River”.
2
 The first sample of platinum was brought 

to Europe in 1741 by Charles Wood, an Assay Master of Jamaica. The metals within this 

platina species are platinum, palladium, rhodium, iridium, osmium, and ruthenium. The 

platinum group metals are amongst approximately 90 elements that comprise less than 

2% of the earth’s crust.
1
 The main areas from which platinum is extracted are ores in 

South Africa, Canada, Russia, Colombia, China and Australia. The ores consist of the six 

platinum metals, with palladium and platinum being the most abundant. The metals are 

obtained from the metallic phase of the sulphide matte or the anode slime from 

electrolytic refining of nickel where they fall to the bottom of the electrolytic cell and are 

recovered by filtration.
2 

Platinum has been utilized for many different things, from 

jewellery due to its beautiful, silvery white colour, to using it for lining of crucibles in the 

manufacturing of high grade optical glass due to its high corrosion resistant properties 

and high melting point (1772°C).
2
 

1.2  Platinum in Organometallic Chemistry 

The chemistry of platinum has been studied for over 200 years and has lead to many 

advances in the fields of organometallic and coordination chemistry. Organometallic 

chemistry has been established as an exchange between inorganic and organic chemistry. 

Organometallic complexes are characterized by direct, more or less polar bonds between 

compounds which contain at least one chemical bond between a carbon and metal atom.
3 

The introduction of a metal center and an organic fragment into a single molecule has 



3 

 

 

shown to induce modified properties to each component. Main group organometallics are 

typically characterized as stoichiometric reagents, however, transition metal 

organometallics typically act as catalysts.
4
 The first and possibly most important 

discovery in the field of organometallic chemistry was the synthesis of Zeise’s Salt in 

1827, by W.C. Zeise. The compound of K[Pt(C2H4)Cl3]·H2O was obtained as yellow, 

needle-like crystals after refluxing a mixture of PtCl4 and PtCl2 in ethanol, followed by 

the addition of KCl. This proved to be the first compound containing an organic molecule 

attached to a metal using the π electrons of the organic ligand.
5
 The formation of this first 

organometallic complex has lead to the discovery of various other platinum coordination 

complexes, including the first metal carbonyl-compound [PtCl2(CO)2] by Schützenberger 

in 1868, one of the first alkyl transition metal compounds [PtMe3I]4 by Pope in 1907, and 

an antitumor chemotherapeutic agent cis-[PtCl2(NH3)2], known as cis-platin.
6,7,8

 

The development of this type of organometallic chemistry has occurred rapidly, 

largely due to the versatility of platinum in the formation of a wide range of 

organometallic complexes. This versatility can be attributed to the formation of various 

coordination compounds of platinum with varying oxidation states, ranging from 0 to +6. 

The most common oxidation states of platinum are 0, +2 and +4, with platinum(II) 

forming d
8
 complexes with square planar geometry and platinum(IV) forming d

6
 

complexes which exhibit octahedral geometry.
9
  The ease in ability of organometallic 

complexes to undergo two electron oxidation and reductions through their three main 

oxidation states makes these types of complexes promising catalytic species.
10

 

Platinum has thirty nine known isotopes to date, with six of these occurring naturally. 

Three of the six naturally occurring isotopes are 
194

Pt, 
195

Pt, and 
196

Pt, which have the 
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greatest abundance of 32.965%, 33.832% and 25.142%, respectively.
11

 The most 

abundant of these naturally occurring isotopes, 
195

Pt exhibits a nuclear spin of ½. This 

NMR active isotope allows for spectroscopic observation of species in solution, 

especially pertaining to 
195

Pt NMR as well as 
195

Pt-H coupling in 
1
H NMR.

12 
The 

spectroscopic handle allows for platinum species to be characterized much easier than 

other metals in group 10 of the periodic table. It is also known that the reactivity of group 

10, trends from bottom to top.  This leads to slower reactions for platinum compared to 

the first and second row transition metals, which also makes platinum complexes ideal 

species for probing the reaction pathways and mechanisms, not possible with faster 

reacting metals.
10 

1.3 Oxidative Addition 

Oxidative addition reactions are some of the most fundamentally important reactions 

in transition metal chemistry in both synthesis and catalysis.
13

 They typically consist of a 

metal of relatively low oxidation state being formally oxidized by the addition of an XY 

substrate, and complete dissociation of the X-Y bond,
 
as illustrated in scheme 1.1.

4,10
 This 

oxidation process typically results in the oxidation state, coordination number and the 

electron count increasing by two units.
5
 Oxidative additions proceed by a variety of 

mechanisms, but the fact the electron count increases by two units means that a vacant 

two electron site is required on the metal. The change in oxidation state of the metal 

complexes means that they must be able to take on a stable oxidation state two units 

higher than before the oxidative addition process.
13 

Oxidative addition reactions typically 

occur on transition metal complexes having counts of 16 electrons or fewer. However, 

addition is possible to an 18 electrons species but loss of ligand is required for this to 
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occur.
5
 Based on these parameters and requirements, coordinatively unsaturated 

organoplatinum(II) complexes are viable candidates for the oxidative addition process, 

due to the 16 electron configuration.
10

 Changes in the nature of the metal, substrate and 

ligands can often dramatically alter the pathway for oxidative addition and thus several 

types of mechanism have been proposed and these are discussed in the subsequent 

sections. 

 

Scheme 1.1: General oxidative addition reactions of a substrate to a metal center 

 

1.3.1 Two Electron Oxidative Addition Pathways 

There are two main two electron pathways for the oxidative addition of an X-Y 

bond at a metal center. The substrates can be classified as class A or class B each varying 

in the type of molecule involved in the oxidative addition reactions. The first of these two 

mechanisms is known as three-center or cis-concerted oxidative addition and the second 

is classified as a bimolecular SN2 mechanism.  

 

1.3.2 Three-Center Concerted Mechanism 

Class A substrates typically are formed by non-polar species such as H2, R3Si-H 

and R-H.
14

 This oxidative addition tends to take place by the incoming ligand binding as 

a σ-complex and then undergoing bond breaking due to strong back donation from the 

metal into the σ* orbital. This concerted mechanism, depicted in scheme 1.2, typically 

results in a product with cis geometry.
13 

A requirement for the cis-addition process is the 
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utilization of unsaturation at the metal center, with the reaction proceeding with retention 

of configuration at a chiral carbon in the substrate.  

 

Scheme 1.2: Three centered or cis-concerted oxidative addition mechanism 

There are few examples of the oxidative addition of class A substrates to 

platinum(II) centers as these substrates tend to be difficult to activate.
14 

One example 

illustrates the activation of a C-C bond, which can be utilized for catalytic activation of 

C-C bonds to provide low energy, efficient routes to production of compounds useful in 

gasoline refining. Most prominent examples of C-C oxidative addition involve the 

reaction of cyclic hydrocarbons with one strained and weak C-C bond. In the example of 

Ziese’s dimer, [PtCl2(H2C=CH2)]2 with bicyclobutane, the relief of ring strain gives the 

complex platinabicyclopentane, as a stable complex illustrated in scheme 1.3.
15

 

 

Scheme 1.3: Example of C-C bond activation by platinum complex 

 

1.3.3 SN2 Bimolecular Mechanism 

The second major two electron oxidative addition pathway is termed bimolecular 

SN2 oxidative addition. This pathway has been adopted for polarized electrophilic species 



7 

 

 

such as alkyl halides and halogens.
14

 The SN2 pathway typically involves the metal center 

acting as a nucleophile, where the metal electron pair directly attacks the σ* orbital at the 

least electronegative atom of the substrate, breaking the bond. The formation of a cationic 

intermediate occurs, followed by coordination of the anionic ligand to the metal center, as 

depicted in scheme 1.4.
13 

Numerous types of this SN2 oxidative addition involve reactions 

that require coordination of an anion to the metal complex, generating a highly 

nucleophilic complex, illustrated in scheme 1.5.  

 

Scheme 1.4: Bimolecular SN2 oxidative addition mechanism 

 

Scheme 1.5: SN2 oxidative addition forming highly nucleophilic complex 

The SN2 reaction pathway typically invokes a trans-oxidative addition product. 

This reaction displays a characteristic inversion of configuration at a chiral carbon of the 

substrates, accelerated reaction rates in polar solvents and shows a large negative entropy 

of activation consistent with the polar transition state, which are all consistent with an 

SN2-type mechanism.
13,14 

As opposed to the three center concerted mechanism, there has been much more 

evidence to illustrate the formation of this trans-oxidative addition species by the SN2 

oxidative addition mechanism. Strong evidence for the mechanism of the SN2 pathway 

has been illustrated in numerous cases, one utilizing a reaction of Me-I with 
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[PtMe2(bpy)], where the cationic intermediate was detected by low-temperature NMR 

spectroscopy, found in scheme 1.6. The cationic intermediate was observed in polar 

solvents such as CD3CN and acetone-d6, with the oxidation step occurring along with 

coordination of solvent, to help contribute to the large negative entropy of activation. The 

solvent can then be displaced by the coordination of the anionic species formed, and the 

trans-species is formed due to the high trans-effect induced by the methyl ligand.
16 

 

Scheme 1.6: Trans-oxidative addition showing cationic intermediate (S = CD3CN, 

acetone-d6) 

 

1.3.4 Formal One-Electron Oxidative Addition Pathways 

 Radical mechanisms that are involved in oxidative additions are less desired as 

they are usually less easily controlled. Issues tend to arise within these systems if there 

are subtle changes in the structure of the substrate, the complex or in impurities present 

within the reagent or solvents, leading to possible changes in the rate and the overall 

mechanism in which the reaction is being carried out.
13

 Metal complexes that contain an 

odd number of d electrons, such as Co(II) and Rh(II), tend to act as suitable candidates 

for these radical type oxidative additions. This is not however to say that complexes with 

even number of d electrons cannot also react via the same radical mechanism, such as the 

often studied d
8
 Vaska’s complex.

5
 There are two main proposed mechanisms that have 
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been well investigated and are now distinguished as the nonchain and chain radical 

oxidative addition pathways.
13 

1.3.5 Free-Radical Nonchain Mechanism 

 Typically the free-radical nonchain mechanism requires the presence of an alkyl 

halide (R-X) as the substrate. This mechanism operates by the coordination of the RX via 

a lone pair on the X, leading to a one electron transfer from the metal to the RX σ* 

orbital. This causes the formation of a pair of radicals, which recombine rapidly to form 

the desired product before either can escape the solvent cage, as depicted in Scheme 

1.7.
13

 

 

Scheme 1.7: Free-radical non chain mechanism 

 In stark contrast to the SN2 reaction pathways described in the above section, 

racemisation instead of inversion is found at the chiral carbon of the substrate. This select 

difference is the only change in the overall reaction, otherwise the oxidative addition 

products are the same. There are other features that classify this mechanism, including a 

bond reactivity of order R-I > R-Br > R-Cl, demonstrating the ability of R-X to be 

reduced by the metal. The reaction also tends to slow down upon X acting as a good 

leaving group and the reaction rate increases as the alkyl radical R, becomes more stable. 

The stability induced in this respect leads to an ordering of R group reactivity of tertiary 

> secondary > primary > Me
13,14

  

 There is a great example illustrated in 1982 that demonstrates the nature of this 

one-electron, free-radical nonchain mechanism involving a platinum(II) complex. The 
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reaction of [PtCl2(bpy)] with CHCl3 utilizing UV light, illustrates and supports the 

proposed mechanism for this process and has been shown in scheme 1.8.
17

 

 

Scheme 1.8: Example of one-electron, free-radical nonchain mechanism 

 

1.3.6 Free-Radical Chain Mechanism 

 Opposite the radical nonchain mechanism is another type of oxidative addition 

known as the free-radical chain mechanism. This radical chain mechanism also invokes 

the use of a organic halide (R-X) and typically involves an induction period, a number of 

atom-abstraction steps and a source of initiator radicals.
13

 This type of mechanism can be 

initiated two ways. Formed radicals can escape the solvent cage without recombination or 

a radical initiator, In· (eg. trace of air) may be necessary to set the process in motion. A 

period of time occurs before the reaction starts, known as the induction period, which is 

then followed by propagation of the chain be a metal-centered radical abstracting X· from 

the halide, forming the carrier chain R·, which may react with itself to terminate the 

chain. This sequence is illustrated in scheme 1.9.
14
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Scheme 1.9: Free-Radical Chain Mechanism 

 The radical chain pathway can be distinguished by observations of increased 

reaction rates by radical initiators (such as oxygen or peroxides) and the presence of UV 

light. This pathway also demonstrates a characteristic retardation of reaction rate upon 

introduction of radical inhibitors due to quenching of the chain carrier. Literature 

examples of this type of mechanism have been illustrated, one example being a kinetic 

study of the photochemically initiated oxidative addition of 
i
PrI to [PtMe2(phen)]. The 

reaction is initiated by photochemical MLCT to form the radical initiator 

[Pt
+
Me2(phen)]

*
, which has been utilized for the abstraction of an iodide atom from the 

isopropyl iodide, forming 
i
Pr· radical acting as the chain carriers.

18 
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Scheme 1.10: Photochemically initiated oxidative addition of 
i
PrI to [PtMe2(phen)] 

 

1.4 Reductive Elimination 

Reductive elimination, the reverse of oxidative addition, involves the oxidation state, 

coordination number and electron count all decreasing by two units. This reaction has 

been demonstrated to be efficient for both d
8
 metals Ni(II), Pd(II), and Au(III) and for d

6
 

metals Pt(IV), Pd(IV), Ir(III) and Rh(III). The elimination reaction is believed to be 

analogous to the concerted oxidative addition reaction as they are believed to be 

eliminated by a non-polar, non-radical three center transition state.
 

Retention of 
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stereochemistry is a key characteristic of this type of reduction reaction.
13

 This reaction 

tends to occurs as a result of coupling from two covalent ligands at a single transition 

metal or two ligands from two different metal centers, shown in scheme 1.11.
19 

 

Scheme 1.11: Reductive elimination reactions of single and two metal centers 

 In most cases, at least those involving synthetically useful reductive elimination 

reactions, the reactions occur by a concerted three-centered process as outlined in scheme 

1.12. This mechanism requires the two leaving groups be attached to the metal in a cis-

nature and there is a retention of stereochemistry occurring at the leaving group atoms.
5
 

 

Scheme 1.12: Reductive elimination by a concerted three-centered process 

 When utilizing octahedral d
6
 complexes such as Pt(IV), Pd(IV), Ir(III) and 

Rh(III), reductive elimination readily occurs with initial loss of a ligand to generate a 5-

coordinate intermediate, which tends to be much more reactive than the former 6-

coordinate species. Studies carried out involving the six coordination octahedral complex 

[PtMe3I(PPh2-CH2-PPh2)] has illustrated the reductive elimination of alkyl halides and 

has been illustrated in scheme 1.13. In this example, there is attack of the iodide at the 
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coordinated methyl trans to the open side and displaces the platinum complex, which acts 

as a good leaving group. It has been shown that the reactive 5-coordiante intermediate 

can undergo concerted reductive elimination of ethane, when concentrations of I
- 

are 

low.
20

 

 

Scheme 1.13: Mechanism for reductive elimination forming C-C and C-Hal bonds 

 More recently, a reductive elimination reaction has been reported involving a 

Pt(IV) species, bearing two aryl and two iodo ligands, with the iodo ligands being 

mutually trans to each other. In the presence of polar solvents, products of C-I reductive 

elimination were the result. The formation of a 5-coordinate intermediate was concluded 

with implications of stabilization of the transition state by the presence of the polar 

solvents. The reaction pathway has been illustrated in scheme 1.14.  
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Scheme 1.14: Recent example of reductive elimination utilizing a Pt(IV) complex 

1.5 Activation of Inert Bonds 

In recent years, there has been intense research into the selective functionalization of 

alkanes by transition metal complexes. The fact that hydrocarbons are the most abundant 

and least expensive chemical feedstock available, we need to find a way to make alkanes 

suitable starting materials for the chemical industry.
21 

With this in mind it becomes 

obvious that transformations of saturated, as well as aromatic, olefinic, and acetylenic 

hydrocarbons, play an extremely vital role in contemporary chemistry. It is known that 

there is a chemical inertness associated with alkanes, as reflected by their old names, 

paraffins, from the Latin parum affinis (without affinity). New routes towards the 

synthesis from hydrocarbons to more valuable products such as alcohols, ketones, acids 

and peroxides are becoming of the utmost importance to the development of this area. 

The transformation of hydrocarbons by utilizing metal complexes seems to be a very 

promising field, especially when the complexes can act as catalysts. By utilizing metal 

catalysts, increase in reactivity of these generally inert molecules can be achieved by 

coordination to a metal center.
22

  

 Strong indications that platinum complexes act as viable sources of C-H bond 

activation have been prevalent since the early 1950 and 1960’s.
23

 Research conducted by 

Shilov in the late 1960’s, involves the incorporation of aqueous platinum salts in the 
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conversion of various hydrocarbons to their corresponding alcohols or alkyl chlorides, 

shown in scheme 1.15. The catalytic cycle is typically described in 3 steps; C-H 

activation, oxidation of Pt(II) to Pt(IV) and reductive elimination of the functionalized 

hydrocarbon.
24

 The discovery by Shilov has attracted much interest aimed at the 

understanding and improvement of the catalytic system by the use of platinum complexes 

with a variety of ligands due to the mild reaction conditions and stability of these systems 

to air. It is the ultimate goal to find a system that operates efficiently under conditions 

that are not detrimental and involve the use of oxidation without costly platinum salts. 

This is plausible due to the fact the oxidation step is a an electron transfer rather than 

alkyl-group transfer.
23 

 

 
Scheme 1.15: Shilov’s catalytic system 

The need to replace expensive oxidants with relatively inexpensive and more 

practical materials is a desired avenue being pursued by researchers. It has been shown 

that molecular oxygen, O2, is capable of being used as a suitable oxidant for the oxidation 

of platinum(II) complexes, shown in scheme 1.16.
25
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Scheme 1.16: Successful oxidation of platinum(II) complexes by O2, under mild 

conditions 

With these findings, it is possible to imagine a synthetic route in which the use of a 

platinum(II) complex is stabilized against reduction to platinum metal by strongly bound 

ligands and can be capable of activating alkanes to functionalized groups via O2.
26  

Recent articles have been published that shows oxidation by complexes containing O-O 

bonds in an attempt to replace the expensive platinum(IV) salts.
27,28,29

 Some of the 

reactions of platinum(II) complexes have been illustrated below. Work by Sarneski et 

al.
30

 in 1977, Wieghardt et al.
31

 in 1983 and research by Bercaw, Labinger and 

Goldberg,
26,33

 has lead to interest and development in the oxidation of platinum(II) 

complexes by the benign oxidant, O2.  

 

Scheme 1.17: Oxidation of a platinum complex by O2.Sarneski et al. (1997) 
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Scheme 1.18: Oxidation of platinum by O2. Bercaw, Labinger, Goldberg (1998-2002) 

Along these lines there has been work published by Monaghan and Puddephatt, 

which illustrates the activation of alcohols and water through oxidative addition reactions 

via interactions with transition metal complexes. This paper involved the use of the 

complexes [PtMe2(bpy)] and [PtMe2(phen)] in reactions involving water and alcohols. 

The reactions showed very interesting results in which these were the first examples of 

oxidation of platinum(II) complexes by alcohols and gave the first stable 

alkoxoplatinum(IV) complex. [PtMe2(OR)(NN)(OH2)]
+
[OH]

-
, was formed through these 

reactions, with the R group dependent on which type of alcohol was being utilized, or in 

the case of water R=H.
33 

 

Oxidative addition chemistry has also been examined utilizing peroxides in the 

presence of platinum(II) species. Typically electron rich platinum(II) species are utilized 

containing nitrogen based ligands that act as good sources of electron donation towards 

the platinum center. It has been shown in studies by both Puddephatt et al. and Tilset et 

al. that reactions of platinum(II) speices with hydrogen peroxide typically lead to the 

formation of a single platinum(IV) species containing dihydroxy groups in a trans-

arrangement.
34,35

 One example can be seen for the oxidative addition of the O-O peroxo 
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bond to the complex [PtMe2(phen)], leading to the formation of [PtMe2(OH)2(phen)], as 

shown in scheme 1.19.
35

 

 

Scheme 1.19: Example of an oxidative addition of hydrogen peroxide 

Promise has been shown with Pt(II) complexes containing bidentate nitrogen donor 

ligands in the presence of a weakly coordinating solvent. One of the most successful 

proposals to date has been the oxidation of methane to methyl bisulphate by sulphuric 

acid, catalyzed by a platinum(II) complex, illustrated in scheme 1.20 It is found that the 

organometallic compound used in this system is remarkably stable under reactions 

conditions as the ligand is not oxidized, nor is platinum metal formed. The product 

formed is of little direct use but has the capabilities of being converted into more useful 

compounds, such as methanol.
36

 This example provides insight into the potential for this 

type of chemistry in developing catalytic activation of an inert compound.  
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Scheme 1.20: Proposed mechanism for oxidation of methane by sulfuric acid, catalyzed 

by Pt(II) 

 

1.6 Supramolecular Chemistry 

Supramolecular chemistry may be defined as the chemistry of multicomponent 

molecular assemblies in which the individual structural units are held together by a 

variety of non-covalent interactions.
37

 This field of supramolecular chemistry has been 

developed rapidly over recent years, since the seminal discovery by Lehn et al. and their 

new ideas of molecular recognition and host-guest chemistry added new dimensions to 

the field of intermolecular interactions.
38

 Lehn’s description of this supramolecular 

chemistry refers to the designed chemistry of the intermolecular bond and chemistry 

beyond the molecule and of the non covalent bond. 
37 

 

This type of chemistry can also be referred to as host-guest chemistry, in which a 

molecule (host) binds another molecule (guest) producing a supermolecule. The host-

guest relationship has been defined by Donald Cram as complexes that are composed of 

two or more molecules or ions held together by electrostatic forces such as hydrogen 
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bonding, ion pairing, π-acid to π-base interactions, metal to ligand binding, and van der 

Waals attractive forces.
39

 It is found that the relative inertness of organoplatinum 

complexes makes them viable candidates for secondary bonding interactions, such as 

hydrogen bonding and there has been formation of complex organometallic complexes 

using alkylplatinum compounds as building blocks.
 
Recent examples involving platinum 

complexes and their ability to form supramolecular polymers through hydrogen bonding 

interactions of amides and carboxylic acids have been demonstrated.
40

 

 

Figure 1.1: Supramolecular chemistry of platinum complexes 
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 Hydrogen bonding interactions deserve special consideration as they are 

considered a unique type of electrostatic intermolecular interaction.
38

 Pauling’s 

description of the chemical bond was the first instance in which it was cited as an atom of 

hydrogen, under certain conditions being attracted by rather strong forces to two atoms 

instead of only one, thus acting as a bond between them.
41

 A simple definition of this is 

that there is an attractive interaction between a proton donor and a proton acceptor. 

Pimentel and McClellan go on further to state that a hydrogen bond exists between a 

functional group (A-H) and an atom (B) when there is evidence of bond formation or that 

there is evidence that this new bond linking A-H and B specifically involves the 

hydrogen atom already bonded to A.
38

 Hydrogen bonds are formed when the 

electronegetivity of A relative to H in an A-H covalent bond, withdraws electrons and 

leaves the proton partially unshielded, which can then interact with the acceptor B, which 

has lone pairs or polarziable π-electrons.
41

  The usual convention for the representation of 

a hydrogen bond is denoted as A-H···B (A= donor, B= acceptor) and the length (D,d) and 

angles (θ,ϕ) for the hydrogen bond are described as such, illustrated in figure 1.2.
42

 

 

Figure 1.2: Hydrogen bonded bridge between A and B showing representation of lengths 

and angles 

The most common hydrogen bond donor groups are C-H, N-H, O-H, S-H, P-H, F-H, 

Cl-H, Br-H and I-H, while the acceptor groups involved are commonly N, O, P, S, F, Cl, 
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Br, I, alkenes, alkynes, aromatic π-clouds and transition metals. There are many common 

arrangements for hydrogen bonding that have been discovered and these are summarized 

in figure 1.3.
37 

Along with the various arrangements for these hydrogen bonds, there are 

also various strengths of hydrogen bonding, which have been summarized in table 1.1.
41

 

 

Figure 1.3: Common Arrangements for Hydrogen Bond Types 

Table 1.1: Properties of strong, moderate and weak hydrogen bonds 

 Strong Moderate Weak 

A-H···B Mostly covalent Mostly electrostatic Electrostatic 

Bond Lengths A-H ≈ B···H A-H < B···H A-H << B···H 

H···B (Å) (d) ~ 1.2-1.5 ~ 1.5-2.2 ~ 2.2-3.2 

A···B (Å) (D) 2.2-2.5 2.5-3.2 3.2-4.2 

Bond Angles 175-180 130-180 90-150 

Bond Energy 

(kcal/mol) 

14-40 4-15 < 4 

Examples Acid salts Alcohols C-H···O/N bonds 
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A recent example has been published illustrating the use of hydrogen peroxide 

with a platinum(II) complex, forming an organometallic molecular material through self 

assembly by hydrogen bonding.
43

 It has been found that [Pt(OH)2Me2(dpa)] undergoes a 

remarkable form of self assembly through hydrogen bonding in the solid state, forming 

what appears to be the first organometallic zeolite. This new structure contains two 

bridging hydroxyl groups and two NH groups which have hydrogen bonding potential. 

The reaction is illustrated in scheme 1.21 and this has lead to the formation of a structure 

containing a network of hydrogen bonding interactions. 

Scheme 1.21: Self Assembly to form a complex network structure, the first 

organometallic zeolite. 

1.7 Peroxides 

Compounds containing the O-O bond linkages act as key species in carrying out 

oxidation reactions.
44

 The first synthesis of an organic peroxide was that of benzoyl 

peroxide reported by Brodie in 1858. Since that time, there has been synthesis and 

isolation of a large number of peroxo species.
 
Today, organic peroxides are being utilized 

as initiators in the manufacturing of major polymers such as polyethylene, poly(vinyl) 

chloride, polystyrene and many others.
45 

It has been found that the O2 moiety in 

peroxides contains two more electrons than neutral dioxygen. These two additional 

electrons being placed in the π
*
2p molecular orbitals, results in a bonding order of one for 
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the peroxo species and the formation of a diamagnetic species. The single bond character 

within peroxides is indicated by the longer bond length (1.49 Å) as well as the rotation 

barrier of the peroxide bond.
46

 The bond energy within O-O bonds is 34 kcal/mol, which 

is much lower than any X-O or X-X bond where X is H, C, N or F. This can be explained 

in the case of the X-O bond by increasing ionic character with difference in 

electronegativities, and in the case of the X-X bond, where there is weakening of the 

bond due to lone pair-lone pair repulsion.
44 

 

The characteristic feature of all organic peroxides is the presence of the O-O bond, 

however they can be further classified by the number and type of functional group 

attached to the oxygen atoms. A variety of classes are established and illustrated in figure 

1.4. The degree of reactivity of various peroxides tends to vary dependent upon the nature 

of the functional group attached to the O-O moiety. It has been found that peroxides with 

lower electron density on the O-O bond, generally act as stronger oxidants. It can be seen 

that the order of decreasing reactivity is peroxy acids > diacylperoxides > H2O2 or 

hydroperoxides > peroxy esters > dialkyl peroxides. Another factor that influences 

reactivity is degree of steric hinderence, where more hindered peroxides are non-reactive 

towards bulky substrates.
45,46
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Figure 1.4: Structure and nomenclature of various organic peroxides 

Organic peroxides are capable of undergoing numerous reaction pathways, 

depending on the reaction conditions of the individual reaction. Reaction pathways result 

typically from either homolytic or heterolytic cleavage of the O-O bond or redox 

reactions involving metal ions or other redox reagents.
39

 Reactions of peroxides mediated 

by metals can be divided into two groups demonstrating different mechanisms. The first 

group involves a homolytic, one electron process, in which free radicals are 

intermediates. The second group involves heterolytic, two electron processes. The 

formation of a cation and an anion occurs in this scenario, with the more electronegative 

fragment taking on both electrons. These two types of reactions are illustrated in scheme 

1.22.
47 

Stabilization of the radicals tends to make homolysis reactions more favourable 

and also helps lower activation barriers for these reactions. 

 

Scheme 1.22: Homolysis and Heterolysis mechanism illustrated for A-B bonds 
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1.8 Research Objective 

In today’s society, there is an inherent need for the production of energy resources 

that will help to reduce the reliance on our current energy sources. Alkanes are the least 

expensive and most abundant hydrocarbon resource and represent great potential for the 

formation of petrochemically useful components.
21

 Efficient and direct functionalization 

of hydrocarbons is one of the difficult obstacles facing chemists today. An approach to 

remedy this issue, involves the use of transition metals to help promote C-H bond 

activation, leading to the production of these desired functionalized hydrocarbons. 

Research conducted by Shilov in the late 1960’s, involves the incorporation of aqueous 

platinum salts in the conversion of various hydrocarbons to their corresponding alcohols 

or alkyl chlorides. This research is focused on the oxidation of the platinum(II) 

complexes forming platinum(IV) oxidative addition producta. Previous research has 

illustrated promising results involving reactions of hydrogen peroxide with platinum(II) 

complexes leading to the formation of Pt(IV) oxidative addition products.
24 

In an 

extension of these studies, the main goal of this research is to better understand the nature 

of the oxidation at a Pt(II) metal center by peroxides and peroxy acids.  

Platinum(II) species containing bidentate nitrogen donor ligands have been chosen as 

suitable candidates for this project. These nitrogen donor ligands tend to demonstrate 

good σ donating/weak п accepting capabilities, leading to enhanced nucleophilicity of the 

metal center, which can be used to promote oxidative addition reactions.
14

 A wide range 

of nitrogen-donor platinum(II) complexes were selected for this project and are illustrated 

in figure 1.5.  
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Figure 1.5: Platinum(II) bidentate nitrogen donor complexes 

Encouraged by the idea that metal oxo-complexes are key intermediates in 

biological, homogeneous and heterogeneous catalytic processes.
14,48

 Chapter 2 focuses on 

reactions of platinum(II) complexes with dimethyldioxirane (DMDO) and meta-

chloroperbenozic acid (m-CPBA). Examples are rare for the formation of oxo-platinum 

complexes, but a recent example has been published in which there is formation of a 

oxoplatinum(IV) complex.
49

 With this result, further study on platinum(II) complexes 

with DMDO and m-CPBA are carried out, resulting in the formation of platinum(IV) 

complexes via oxidative addition of these benign oxidants.  

Chapter 3 focuses on the exploration of the reactivity of phthaloyl peroxide at 

platinum(II) centers. As opposed to non-cyclic peroxides, where after cleavage of the O-

O bond, there exists two separate species, the connectedness of the phthaloyl peroxide 

group would lead to a relatively close proximity of the oxygen atoms, even after cleavage 

has occurred. The cyclic nature of this peroxide has shown to form both cis- and trans- 

oxidative addition products, converting platinum(II) complexes to platinum(IV) 
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complexes. The structure of this peroxide has shown in some cases to favor the cis-

oxidative addition products and this has been illustrated through X-ray structure analysis 

in this chapter. 

Chapter 4 is concerned with the mechanism of oxidative addition. Since halogens 

tend to react in the same manner as these peroxide complexes to platinum(II) complexes, 

the mechanism of oxidative addition is attempting to be elucidated. Utilizing 
1
H low 

temperature NMR spectroscopy, the detection of intermediates in the reaction of iodine 

with [PtMe2(bpy)] was carried out. The results indicate the formation of intermediate 

species held at low temperature and have been helpful in the determination of oxidative 

addition by halogen systems.  

There are vital techniques that have been utilized that have helped distinguish and 

characterize the multiple products formed throughout this work. 
1
H NMR spectroscopy 

had been particularly useful in the characterization of all complexes, in that 
1
H and 

195
Pt 

of spin active isotopes with abundance 100% and 33.7% respectively.
11 

Mass 

spectrometry, elemental analysis and scanning electron microscopy (SEM) have all 

proved to be useful techniques in characterizing the elemental makeup of the products 

formed. Finally, single crystal X-ray diffraction was utilized in forming structures of 

some difficult to characterize complexes, giving confirmation of the complexes formed.  
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2.1 Introduction 

 

The oxidative addition reaction represents one of the most fundamental processes 

in transition metal chemistry, involved in such processes such as synthesis and catalysis. 

Organoplatinum complexes have significant interest due to their capabilities to form a 

wide range of stable complexes, allowing their reactivity to be studied.
1
 These two 

electron oxidation and reduction reactions involving platinum are successful due to the 

ability of platinum to transfer between three oxidation states (0, +2, and +4), with the 

oxidative addition processes dominating the reactions of the metal in its lower oxidation 

state.
2
 Selective functionalization of alkanes has proven to be an attractive process, but it 

poses major hurdles for chemists to overcome. There has been some progress in this field 

made in the last decade. However, only few processes are known for oxidizing methane 

to more value-added products.
3,4

  

As discussed in section 1.5, the Shilov system represents one of the seminal 

discoveries in the functionalization of alkanes. It comprises aqueous platinum salts that 

can be used to convert hydrocarbons to their corresponding alcohols or alkyl halides.
3
 It 

is significant as a proof of concept, but the process is inefficient due to the use of 

stoichiometric amounts of platinum(IV) oxidant, required for catalytic action to proceed.
5
 

With the issue in oxidant selection, there has been much interest in the replacement of the 

impractical platinum(IV) salts used in the original study. Research has been conducted 

utilizing alternatives, such as dioxygen,
6,7

 chlorine,
8
 and peroxydisulfate,

9
 however all 

have proven to be ineffective due to low turnover numbers. Relevant to the oxidation step 

in the Shilov system, studies have been carried out utilizing environmentally friendly 

oxidants, O2 and hydrogen peroxide with varying success.
3,10,11 
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It is known that terminal metal oxo complexes are invoked as key intermediates in 

various biological, homogenous, and heterogeneous catalytic process in which oxygen 

atom transfer takes place, as well as oxygen activation or generation on transition metal 

surfaces. It has been discovered that terminal oxo-complexes of metals with no more than 

four d electrons are quite stable and common. Until recently, there had been few reports 

of late transition metal oxo-complexes with d electron counts above four.
12

 This is due 

inpart to the instability these complexes have arising from π-antibonding, playing a 

critical role in these electron rich complexes.
13,14

 The π* orbital becomes occupied in d
2
 

octahedral and d
4
 square planar complexes, where reduction of the excess electron 

density by π-backdonation strengthens the transition metal oxo-bond.
15

 

There are rare examples of d
6
 transition metal oxo complexes as expected because 

theory predicts that M=O bonds cannot exist in octahedral metal complexes if the metal 

ion has a d
6
 or higher electron configuration.

16,17,18,19
  However, recently an 

oxoplatinum(IV) complex has been discovered and is illustrated in scheme 2.1.
16

 Another 

example has been proposed utilizing dioxygen with [Pt(6,6'-

diaminoterpyridine)Me][SbF6], in which there is insertion of the dixoxygen into the 

methylplatinum bond. It has been theorized that there is formation of an intermediate 

platinum-oxo bond in oxidation reaction, as illustrated in scheme 2.2.
20

 These results 

have lead to research into the possibility that oxoplatinum(IV) complexes may act as 

intermediates in the chemistry of platinum-catalyzed oxidation reactions. Platinum 

oxides, hydroxides and peroxides are considered important intermediates in other 

catalytic reactions and so there is general interest in the synthesis, structure and reactivity 

of complexes of these types.
12-20
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Scheme 2.1: Synthesis of the oxoplatinum(IV) complex (S = solvent). 

 

Scheme 2.2: Reaction of dioxygen with a platinum complex, showing possible 

oxoplatinum(IV) intermediate. 

Dimethyldioxirane (DMDO) and meta-chloroperbenzoic acid (m-CPBA) are both 

utilized as very common oxidants, typically playing a role in oxidizing alkenes to 

epoxides, alcohols to aldehydes and ketones and a large variety of other reactions.
21

 The 

reagents are considered equivalent in their reactivities, with DMDO being slightly 

favoured over the peroxyacid in many cases.
22

 Dimethyldioxirane, in particular, has been 

of interest due to its capabilities as an ideal oxidant in efficient oxygen atom transfer, 

high chemo- and regioselectivity, mild reactivity towards substrates and can act 

catalytically.
23 

 It is noted that the characteristic and distinctive features of dioxiranes 

consists in their propensity for easy O-atom transfer to a variety of donor substrates and 
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forming new double bond derivatives, as shown in scheme 2.3.
21

 Based on this 

mechanism, it can be seen that the formation of an oxoplatinum(IV) complex may be 

formed as a reactive intermediate, as shown in scheme 2.4. 

 

Scheme 2.3: General mechanism of oxidation of substrate (S) by DMDO 

 

 
 

Scheme 2.4: Oxidation of a platinum(II) complex with DMDO, with the potential 

formation of an oxoplatinum(IV) complex (NN = chelating nitrogen-donor ligand). 

Organoplatinum(II) complexes containing nitrogen-donor ligands are known to be 

very reactive in oxidative addition reactions.
1 

The high reactivity exhibited by these types 

of complexes can prove to be of importance in the activation of normally inert chemical 

bonds.
24

 Desired insight into the oxidation step of the Shilov system has lead this 

research in the direction of utilizing O-O bond containing species in the oxidation of 

various platinum(II) complexes. In this chapter, the various reactions of both DMDO and 

m-CPBA with platinum(II) species have been carried out. Starting with a simple 

bidentate nitrogen donor ligand, 2,2'-bipyridine, adding various groups to the bipyridine 

rings to vary their solubility as well as reactivity, and finally changing the chelate ring 
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size and function for bonding, the oxidation reactions of these oxidants, DMDO and m-

CPBA towards platinum(II) complexes have been studied.  

2.2 Results and Discussion 

2.2.1 Reaction of [PtMe2(bpy)] with DMDO 

 The synthesis of complex 2.1, [PtMe2(bpy)] was previously reported and 
1
H NMR 

data can be found in appendix 2.2.2.
25

 The synthesis of dimethyldioxirane was carried out 

by a variation of the procedure reported by Murray et al.
26

 Complex 2.2, 

[PtMe2(OH)2(bpy)] was prepared by a dropwise addition of DMDO to a stirring solution 

of [PtMe2(bpy)] in acetone. Upon addition, the initial bright red colour of the platinum 

complex in solution dissipated, the solution gradually becoming clear and within seconds 

there was formation of a white precipitate.  After isolating the product in vacuo and 

washing with pentane, complex 2.2 was obtained as a solid white powder, with the 

overall reaction illustrated in Scheme 2.5.
 

 

Scheme 2.5: Synthesis of complex 2.2, by reaction of DMDO with [PtMe2(bpy)]. 

 The product was identical to the complex prepared by oxidation of [PtMe2(bpy)] 

with H2O2 and this has been identified via 
1
H NMR spectroscopy.

16
 The 

1
H NMR 

spectrum, indicates a clean reaction with the formation of only one trans-addition product 

as shown in figure 2.1.  
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Figure 2.1: 
1
H NMR spectrum of complex 2.2, [PtMe2(OH)2(bpy)] 

The 
1
H NMR showed a single methyl platinum resonance at δ =1.74 ppm, with 

broad satellites indicative of proton coupling to the platinum center with coupling 

constant  of 
2
J(PtH) = 72 Hz, indicating the formation of a platinum(IV) octahedral 

complex, with methyl groups trans to nitrogen. The presence of only one methyl 

platinum resonance indicates that the complex is symmetric, which is only consistent 

with the formation of the trans product.  The aromatic region exhibited only four 

resonances, with each peak integrating to two protons, providing further evidence of the 

trans-oxidative addition product.  

Complex 2.2 has been previously prepared via reactions with of complex 2.1 with 

hydrogen peroxide,
28,29

 but a crystal structure had never been obtained. Single, colourless 

crystals of complex 2.2 suitable for analysis were grown by a slow diffusion of pentane 

into a solution of complex 2.2 in dichloromethane. The single crystal X-ray structure 

supported the formation of the dihydroxyplatinum(IV) compound, as illustrated in Figure 

2.2. 
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Figure 2.2: Crystal Structure of Complex 2.2·7H2O. Selected bond parameters; Bond 

parameters: Pt(1)-O(1) = 2.019(5), Pt(1)-O(2) = 2.031(5), O(1)-O(11) = 2.925(6). 
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Table 2.1:  Bond lengths [Å] and angles [deg] for complex 2.2·7H2O 

            Pt(1)-O(1)                    2.019(5)  

            Pt(1)-O(2)                    2.031(5)  

            Pt(1)-C(12)                   2.036(7)  

            Pt(1)-C(11)                   2.045(7)  

            Pt(1)-N(1)                    2.170(5)  

 

            Pt(1)-N(2)                    2.178(6)  

            O(2)-H(30)                    0.8400  

            O(1)-H(29)                    0.8400 

            O(1)-O(11)                    2.925(6) 

            

            O(1)-Pt(1)-O(2)             179.4(2)  

            O(1)-Pt(1)-C(12)             88.3(3)  

            O(2)-Pt(1)-C(12)             91.4(3)  

            O(1)-Pt(1)-C(11)             90.9(3)  

            O(2)-Pt(1)-C(11)             89.6(3)  

            C(12)-Pt(1)-C(11)            87.7(3)  

            O(1)-Pt(1)-N(1)              89.0(2)  

            O(2)-Pt(1)-N(1)              90.5(2)  

            C(12)-Pt(1)-N(1)             97.6(3)  

            C(11)-Pt(1)-N(1)            174.6(3)  

            O(1)-Pt(1)-N(2)              92.6(2)  

            O(2)-Pt(1)-N(2)              87.7(2)  

            C(12)-Pt(1)-N(2)            173.5(3)  

            C(11)-Pt(1)-N(2)             98.7(3)  

            N(1)-Pt(1)-N(2)              76.0(2)  

            Pt(1)-O(2)-H(30)            109.5  

            Pt(1)-O(1)-H(29)            109.5 

 

The presence of water in the dichloromethane solution seems to have aided in the 

stabilization and formation of single crystals for complex 2.2, which crystallized as the 

hydrate [Pt(OH)2Me2(bpy)]·7H2O, one of the most hydrated organometallic compounds 

known.
27

 There are two non-equivalent platinum complexes in the structure and fourteen 

independent water molecules. The hydrogen bonds could not all be located in the 

structure determination and thus the nature of the hydrogen bonding is deduced from the 

position of the oxygen atoms. The bond distance between the hydroxyl oxygen and the 

solvating water molecules, O(1)-O(11) and symmetry equivalents, are in the region 

representing O-H···O hydrogen bond interaction which have been exemplified in 

previous literature, justifying the hydrogen bonding interactions of this system.
18

 Some of 

the distances represent weak hydrogen bonds, but if all are counted, the propagation of 

this motif leads to the formation of a supramolecular double stranded polymer of Pt(1) 

molecules linked by bridging water molecules. 
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Figure 2.3: Supramolecular double stranded polymer of Pt(1) molecules linked by 

bridging water molecules. 

 

With this X-ray structure, it can be verified that the dihydroxy-platinum(IV) 

complex was indeed the product formed, in the reaction of DMDO with complex 2.1. The 

most likely mechanism of formation for complex 2.2, would be a bimolecular SN2 

oxidative addition, resulting in the trans-oxidative addition product, which is illustrated 

in scheme 2.6. 
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Scheme 2.6: SN2 mechanism of oxidative addition for the reaction of [PtMe2(bpy)] with 

DMDO and H2O 

 

2.2.2 Reactions of [PtMe2(bpy)] with m-CPBA 

 

Meta-chloroperoxybenzoic acid is a widely used oxidant in organic chemistry due 

to the relative ease of handling of this peroxycarboxylic acid.
22

 An NMR experiment was 

conducted, involving the addition of m-CPBA to complex 2.1, [PtMe2(bpy)] in acetone-

d6, affording a cloudy white solution. 
1
H NMR data found in shown in Figure 2.4 show 

the formation of a cis-product as a result of the oxidative addition process. 
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Figure 2.4: 
1
H NMR spectrum of Complex 2.3, cis-[PtMe2(OH)(C7H4O2Cl)(bpy)]. (* = 

free     m-CPBA) 

The loss of  symmetry of this compound results in the presence of two methyl 

platinum peaks, one trans to the oxygen at δ = 1.12 ppm, with a coupling constant of 

2
J(PtMe) = 75 Hz, and one trans to the nitrogen shifted further downfield at 1.80 ppm 

with a smaller coupling of 
2
J(PtMe) = 69Hz. In the 

1
H NMR spectrum, there are 

resonances from the 3-chlorobenzoate group shifted further upfield from those for free m-

CPBA. This suggests that this 3-chlorobenzoate group, formed after the loss of the 

hydroxyl group, has been coordinated to the platinum center along with the hydroxyl 

group, forming a cis-oxidative addition product. With these results a proposed species of 

complex 2.3, [PtMe2(OH)(C7H4O2Cl)(bpy)], is illustrated in scheme 2.7.  
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Scheme 2.7: Proposed cis-oxidation species of complex 2.3, 

[PtMe2(OH)(C7H4O2Cl)(bpy)] 

The reasoning for this proposed structure relies on the ability of the carbonyl 

group from 3-chlorobenzoate to hydrogen bond with the hydroxyl group on the platinum 

center driving the formation of this product. This lends itself towards allowing an 

oxidative addition reaction to take place in which the product is formed in the cis-

geometry instead of the typical trans products seen for other peroxides.
6,9,25,28 

Mass 

spectrometry results have helped in the determination, displaying a m/z ratio of 

554.1g/mol which is indicative of the formation of the proposed species, complex [2.3-

H]
+
. Crystals of complex 2.3 suitable for X-ray analysis could not be grown, although 

many attempts were made. Although this result is unusual, it is not unprecedented as 

there has been literature reported in which there has been cis-directed oxidative addition 

of hydrogen peroxide through hydrogen bonding interactions, shown in scheme 2.8.
30

 

 

Scheme 2.8: Cis-oxidative addition directed by hydrogen bonding. 
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It was found over time, that in the acetone-d6 reaction mixture, a white precipitate 

began to form and settle to the bottom of the NMR tube. This lead to interest in whether 

this precipitate was the same as what was formed in complex 2.3 or a new complex. The 

reaction of m-CPBA and complex 2.1, [PtMe2(bpy)], was then carried out in acetone and 

on a larger scale. The two reactants were added and stirred for 10 minutes. The mixture 

was subsequently layered with pentane to afford a white precipitate. This product was 

washed and then dried in vacuo. The 
1
H NMR data illustrated in figure 2.5, demonstrates 

the formation of a trans-oxidative addition product, of which a similar product has been 

reported by Tilset et al. however was never fully characterized.
17

  

 

Figure 2.5: 
1
H NMR spectrum of complex 2.4, [PtMe2(OH)(OH2)(bpy)]

+
[m-

C6H4Cl(COO)]
- 
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The 
1
H NMR spectrum illustrates the trans-addition product by the single methyl 

platinum resonance at 1.85 ppm with a coupling of 
2
J(PtH) = 70Hz, indicative of an 

octahedral Pt(IV) complex formed by trans-oxidative addition. The product has been 

washed vigorously, but the 
1
H NMR spectrum still shows the presence of m-CPBA, with 

resonances ranging from 7.4-8.0 ppm, which are shifted from that of free m-CPBA. 

These results, coupled with the crystal structure data, allow for the determination of 

complex 2.4, which has been illustrated in scheme 2.9. 

 

Scheme 2.9: Trans-oxidative addition product of complex 2.4, [PtMe2(OH)(OH2)(bpy)]
+ 

[m-C6H4Cl(COO)]
-
 

 

 Single, clear, crystals suitable for X-ray analysis were grown by a slow diffusion 

of pentane into a dichloromethane solution of complex 2.4. The results of single crystal 

X-ray analysis, with the structure illustrated in figure 2.6, indicates the formation of the 

proposed species. 
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Figure 2.6: Crystal structure of Complex 2.4, [PtMe2(OH)(OH2)(bpy)]
+
[m-

C6H4Cl(COO)]
-
. Selected bond parameters: Pt(1)-O(1) = 2.001(4), Pt(1)-O(2): 2.041(4), 

O(3)-C(13) = 1.259(7), O(4)-C(13) = 1.247(7), O(2)-O(3) = 2.597(5), O(1A)-O(4) = 

2.597(5), O(2)-O(1A) = 2.485(6) Å. 
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Table 2.2:  Bond lengths [Å] and angles [deg] for complex 2.4. 

Pt(1)-O(1)                    2.001(4)  

            Pt(1)-O(2)                    2.041(4)  

            Pt(1)-C(12)                   2.044(5)  

            Pt(1)-C(11)                   2.048(5)  

            Pt(1)-N(2)                    2.168(4)  

            Pt(1)-N(1)                    2.169(4)  

            O(3)-C(13)                   1.259(7)  

           O(4)-C(13)                    1.247(7)  

 

            O(4)-C(13)                     1.247(7) 

            O(2)-H(25B)                   0.9807  

            O(2)-H(25C)                   0.9830  

            O(1)-H(1)                        0.8400  

            O(2)-O(3)                        2.597(5) 

            O(1)-O(4)                        2.791(3) 

            O(2)-O(1)                        2.485(6) 

            O(1)-Pt(1)-O(2)             177.99(15)  

           O(1)-Pt(1)-C(12)             89.16(19)  

           O(2)-Pt(1)-C(12)             88.87(19)  

           O(1)-Pt(1)-C(11)             91.9(2)  

           O(2)-Pt(1)-C(11)             88.3(2)  

           C(12)-Pt(1)-C(11)           86.1(2)  

           O(1)-Pt(1)-N(2)               89.85(16)  

           O(2)-Pt(1)-N(2)               92.11(16)  

            C(12)-Pt(1)-N(2)         177.09(19)             

            C(11)-Pt(1)-N(2)          96.6(2)  

            O(1)-Pt(1)-N(1)            88.45(16)  

            O(2)-Pt(1)-N(1)            91.60(16)  

            C(12)-Pt(1)-N(1)            101.0(2)  

            C(11)-Pt(1)-N(1)            172.9(2)  

            N(2)-Pt(1)-N(1)             76.24(16)  

             

 

The single crystal X-ray analysis demonstrates the formation of complex 2.4, 

illustrating interactions of the octahedral platinum(IV) complex with 3-chlorobenzoate 

anion which is formed by loss of the hydroxyl group. There appears to have been a 

transfer of the hydroxyl group of the m-CPBA, followed by uptake of water into the 

vacant site on the platinum center. There are also hydrogen bonding interactions shown 

between the hydroxo and aqua ligands of the newly formed platinum(IV) molecule with 

the 3-chlorobenzoate anion. The main problem in the determination of this structure is 

whether there are two hydroxyl groups on the platinum center and 3-chlorobenozoic acid 

or if a water molecule has coordinated to the platinum and the hydrogen bonded species 

is 3-chlorobenzoate. Comparison of bond lengths between C(13)-O(3) and C(13)-O(4), 

illustrates similar distances, which would suggest that this species exists as a carboxylate. 

This would suggest the formation of [PtMe2(OH)(OH2)(bpy)]
+
 and [m-C6H4Cl(COO)]

-
. 

There is also a strong hydrogen bonding interactions of type O-H···O, between O(1A)-
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O(2) with bond distance of 2.485(6) Å, indicating that the third hydrogen is bridging 

between neighboring platinum complexes [PtMe2(OH)(OH2)(bpy)]
+
. Complex 2.4, also 

exhibits hydrogen bonding interactions between the ion pairs; from the hydroxo or aqua 

groups on the platinum center and the carboxylate group of the 3-chlorobenzoate. This is 

determined by the short bond distances between O(1)-O(4) and O(2)-O(3) of 2.791(3) 

and 2.597(5) Å, respectively, which fall within the range typically observed for hydrogen 

bonding interactions.
31

 The hydrogen bonding interaction found between platinum 

complex and m-CPBA, leads to the formation of a polymeric species, as illustrated in 

figure 2.7. 

 

Figure 2.7: Polymeric species of [PtMe2(OH)(OH)2(bpy)]
+
 and [m-C6H4Cl(COO)]

-
 

connected through hydrogen bonded interactions. 
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2.2.3 Reactions of 6-Membered Chelate Rings, [PtMe2(dpk)] and [PtMe2(dpa)] 

with Dimethyldioxirane 

 Following experimental results of Zhang et al.
24

 utilizing hydrogen peroxide in 

reactions with the complex 2.5, [PtMe2(dpk)], a reaction with DMDO was carried out. 

 

Scheme 2.10: Reaction of complex 2.5 with hydrogen peroxide. 

Complex 2.5, [PtMe2(dpk)] was prepared according to the literature and 
1
H NMR 

data can be found in Appendix 2.2.3.
32

 To a stirring solution of [PtMe2(dpk)] in acetone 

was added DMDO until the inital red colour disappeared and the product was 

immediately bleached. A precipitate formed within the reaction mixture and this was 

isolated and characterized by 
1
H NMR spectroscopy, which is illustrated in figure 2.8. 
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Figure 2.8: 
1
H NMR spectrum of complex 2.6, [Pt(OH)Me2(dpkOH)] 

The results of the 
1
H NMR illustrate the formation of a clean product, showing a 

single platinum(IV) species based on the single resonance representing the six methyl 

protons on the platinum center with coupling of 
2
J(PtH) = 73 Hz. The aromatic region of 

the spectrum is easy to distinguish as there are only four resonances representing the 

eight aromatic protons from the bipyridyl ring system, representing symmetry within this 

molecule. When comparing these results to that of the results obtained by Zhang et al.
32 

it 

can be seen that this spectrum is identical except for the fact that the peaks in the spectra 

are slightly shifted upfield due to solvent effects. It can be said definitively that the 

product formed in this reaction is complex 2.6, [Pt(OH)Me2(dpkOH)], forming a 

platinum(IV) involving a fac-tridentate ligand with the reaction illustrated in scheme 

2.11.  
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Scheme 2.11: Synthesis of complex 2.6, [Pt(OH)Me2(dpkOH)] 

Furthering the study of six-coordinate platinum(II) complexes, complex 2.7, 

[PtMe2(dpa)] was synthesized according to the literature and 
1
H NMR data can be found 

in Appendix 2.2.4.
33

 Carrying out a reaction similar to all other platinum(II) complexes, 

the use of DMDO in a reaction with complex 2.7, was completed, however the results 

were not as conclusive as seen with the other platinum(II) species previously discussed. 

Typically in these reactions, a stoichiometric volume of DMDO is difficult to measure as 

the exact concentration of the DMDO solution is hard to determine. For previous 

reactions, reliance on the bleaching of the acetone solution forming a clear or white 

mixture is typically how to gauge the end point of this reaction. Initially, DMDO was 

added dropwise to a stirring solution of complex 2.7, [PtMe2(dpa)], however there 

appeared to be very little change from the yellow solution even with a large amount of 

DMDO being added. In a final attempt to gather information about this product a large 

excess of DMDO was added to a stirring solution of [PtMe2(dpa)], the product was 

purified leaving an orange-brown solid. The product complex 2.8, [PtMe2(dpa)(OH)2] 

was characterized by 
1
H NMR spectroscopy which is illustrated in figure 2.9.  
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Figure 2.9:
 1

H NMR spectrum of complex 2.8, [PtMe2(dpa)(OH)2)] 

The 
1
H NMR spectrum shows the formation of a single platinum complex, with 

evidence of the formation of a trans-oxidative addition product. There is a single methyl 

platinum resonance located at δ = 1.54 ppm with a coupling of 
2
J(Pt-H) = 64 Hz, 

indicative of the formation of a platinum(IV) species. The aromatic region of this 

spectrum supports the formation of the product by trans-oxidative addition, in that there 

are only four signals representing the eight bipyridyl protons, demonstrating the 

symmetry within this molecule. Mass spectrometry data help support the claims of the 

formation of a complex 2.8, [PtMe2(dpa)(OH)2], with most prominent peak at 431.1 m/z 

which represents the formation of complex [2.8-H]
+
. The overall reaction is clean and has 

been illustrated in scheme 2.12. 
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Scheme 2.12: Synthesis of complex 2.8, [PtMe2(dpa)(OH)2] 

  

2.2.4 Reactions of 6-Membered Chelate Rings, [PtMe2(dpk)] and [PtMe2(dpa)] 

with m-CPBA 

The oxidation capabilities of m-CPBA towards complex 2.5, [PtMe2(dpk)] were 

then studied to determine if similar complexes as formed with H2O2 would be 

obtained.
32,33

 To a stirring solution of [PtMe2(dpk)] in acetone was added a 1:1 

stoichometric amount of m-CPBA. The reaction mixture immediately lost its red colour, 

turning white, with the formation of a precipitate. The product was then purified and 

characterized by 
1
H NMR spectroscopy as shown in figure 2.10. 

Figure 2.10: 
1
H NMR spectrum of complex 2.9, [PtMe2(OH2)(dpkOH)]

+
[m-

C6H4Cl(COOH)]
- 
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 The 
1
H NMR spectrum shows that a trans-oxidative addition species has been 

formed. The single methyl platinum resonance at δ = 1.54 ppm with a coupling of 
2
J(Pt-

H) = 70 Hz, represents the formation of a platinum(IV) species. Further downfield in this 

spectrum, it can be seen that there are four resonances representing the eight protons on 

the bipyridyl rings, thus showing the symmetry of this molecule. Also present within this 

spectra are signals corresponding to the aromatic ring of the m-CPBA, which is similar to 

that seen in the spectra of complex 2.3. With this product being purified, this suggests 

that this is not just residual m-CPBA from the reaction mixture, but is coordinated to the 

platinum(IV) species, most likely as seen in the previous examples, through hydrogen 

bonding interactions. With this knowledge the proposed reaction equation can be 

illustrated in scheme 2.13, in the formation of complex 2.9. 

Scheme 2.13: Formation of complex 2.9, [PtMe2(OH2)(dpkOH)]
+
[m-C6H4Cl(COO)]

-
. 

Further clarification was necessary and to this end, a single crystal was grown by 

vapour diffusion of pentane into a 90:10 mixture of chlorobenzene and methanol, in 

which complex 2.9 was dissolved. The X-ray structure of this product is illustrated in 

figure 2.11. 



57 

 

 

 
 

Figure 2.11: Crystal Structure of complex 2.9·2MeOH. Selected Bond Parameters: 

Pt(1)-C(12) = 2.019(11); Pt(1)-C(13) = 2.059(9); Pt(1)-O(3) = 2.022(6); Pt(1)-O(2) = 

2.023(5); O(3)-O(7A) = 2.616(5); O(1)-O(2A) = 2.668(3); O(11)-O(11A) = 2.373(7) Å. 
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Table 2.3:  Bond lengths [Å] and angles [deg] for complex 2.9·2MeOH 

            Pt(1)-C(12)                   2.019(1)  

            Pt(1)-C(13)                   2.059(9) 

Pt(1)-O(3)                      2.022(6)  

            Pt(1)-O(2)                    2.023(5)  

            Pt(1)-N(2)                    2.161(7)    

            Pt(1)-N(1)                    2.169(7)  

            O(1)-C(6)                     1.367(1)  

            O(2)-C(6)                      1.420(9)  

            O(1)-H(1B)                   0.8363 

           O(3)-H(10A)                  0.9554  

            O(3)-H(10B)                  0.8226  

            O(11)-C(53)                   1.28(2)  

            O(11)-H(11)                   0.8200  

            O(12)-C(53)                    1.267(1)  

            O(3)-O(7A)                     2.616(5) 

            O(1)-O(2A)                    2.668(3) 

            O(11)-O(11A)                2.373(7) 

           C(12)-Pt(1)-O(3)             90.3(4)  

            C(12)-Pt(1)-O(2)             95.8(4)  

            O(3)-Pt(1)-O(2)              173.2(3)  

            C(12)-Pt(1)-C(13)           89.8(5)  

            O(3)-Pt(1)-C(13)             88.1(4)  

            O(2)-Pt(1)-C(13)             94.9(3)  

            C(12)-Pt(1)-N(2)             174.0(4)  

            O(3)-Pt(1)-N(2)               95.7(3)  

            O(2)-Pt(1)-N(2)               78.2(2)  

            C(13)-Pt(1)-N(2)             91.1(4)  

            C(12)-Pt(1)-N(1)             92.7(4)  

            O(3)-Pt(1)-N(1)               98.5(3)  

            O(2)-Pt(1)-N(1)               78.2(2)  

            C(13)-Pt(1)-N(1)              172.9(4)  

            N(2)-Pt(1)-N(1)                85.8(2)  

            C(6)-O(2)-Pt(1)                102.7(4)  

            O(1)-C(6)-O(2)                 111.5(6)  

            O(12)-C(53)-O(11)           121.8(2)  

            O(12)-C(53)-C(47)           123.6(2)  

         O(11)-C(53)-C(47)           114.6(2)              

         C(52)-C(47)-C(53)           121.6(2)  

        C(48)-C(47)-C(52)              120.5(2)                                     

        C(47)-C(48)-C(49)           120.1(2)  

        C(47)-C(48)-H(48)           119.9  

        C(49)-C(48)-H(48)           119.9  

        C(50)-C(49)-C(48)           119.1(2)  

        C(50)-C(49)-Cl(2)            119.8(2)  

        C(48)-C(49)-Cl(2)            121.1(2)  

        C(49)-C(50)-C(51)           120.9(2)  

        C(49)-C(50)-H(50)           119.5  

        C(51)-C(50)-H(50)           119.5  

        C(52)-C(51)-C(50)           119.7(2)  

        C(52)-C(51)-H(51)           120.2  

        C(50)-C(51)-H(51)           120.2  

        C(51)-C(52)-C(47)           119.7(2)  

        C(51)-C(52)-H(52)           120.1  

        C(47)-C(52)-H(52)           120.1 

        O(1)-Pt(1)-O(2)              177.99(2)  

  

  

This structure is very complex and the bonding modes of this structure will be 

discussed here.  Complex 2.9 has crystallized with a molecule of methanol of solvation. It 

can be seen that there is an interaction between O(3) and O(7A) as well as it’s symmetry 

equivalent with bond distances of 2.62 Å, connecting the methanol molecule to Pt(1) 

complexes via these hydrogen bonds. There are also hydrogen bonding interactions 

between O(1) and O(2A) and O(2) and O(1A). These have distances of 2.67 Å, which is 

in line with what can be considered hydrogen bonding interactions.
31 

Finally, although in 
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this case the meta-chlorobenzoate is not hydrogen bonded with the platinum complex, it 

can be seen that there is a hydrogen shared between the two meta-chlorobenzoate groups. 

This means that there is interaction of this hydrogen atom, in which it can shuttle back  

and forth between these two species, showing both the meta-chlorobenzoic acid as well 

as the meta-chlorobenzoate in a dynamic manner. This has been a difficult structure to 

extract, but based on the results, it proves to show some very interesting bonding 

interactions, which have overall lead to stabilization of this structure. Taking this one step 

further, when this structure is expanded, it can be seen to exist as a network of hydrogen 

bonding interactions between the platinum complexes and solvent methanol, leads to the 

interesting bonding dynamic illustrated in figure 2.12 

 

 
 

Figure 2.12: Overall bonding structure of complex 2.9·2MeOH, illustrating a network of 

hydrogen bonding interactions leading to a sheet structure 
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Furthering these studies and attempting to find even more interesting hydrogen 

bonding motifs, a 1:1 stoichiometric amount of m-CPBA was added to a stirring solution 

of complex 2.7, [PtMe2(dpa)] in acetone, affording a mixture which contained a white 

precipitate. This precipitate was isolated and purified and the 
1
H NMR, shown in figure 

2.13, illustrates the formation of a platinum(IV) complex.  

Figure 2.13: 
1
H NMR spectrum of complex 2.10, [PtMe2(dpa)(OH)(OH2)]

+ 

[C6H4Cl(COO)]
-
. 

The 
1
H NMR spectrum shows the formation of a single platinum(IV) species 

based on the fact that there is one resonance found at δ = 1.64 ppm which has a coupling 

constant of 
2
J(Pt-H) = 64 Hz, with only minor impurities. Upon examination of the 

downfield region of this spectrum two observations can be made. Through the use of 

COSY, the proton resonances from the bipyridyl rings can be established and the four 

signals indicate the presence of symmetry within this molecule and thus makes this a 

trans-oxidative addition product. The second conclusion that can be drawn from this 

spectrum is that there is the presence of m-CPBA within the species formed. As in the 

previous cases, it is probably the coordination of chlorobenzoate ion to the platinum(IV) 
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complex, which can occur through hydrogen bonding. A suitable crystal for X-ray 

analysis could not be obtained and thus mass spectrometry and elemental analysis are 

relied on to verify the formation of complex 2.10, 

[PtMe2(dpa)(OH)(OH2)]
+
[C6H4Cl(COO)]

-
. From the mass spectrometry results, it can be 

seen that most prominent peak in the spectra is m/z 411.1. This is representative of the 

formation of [PtMe2(dpa)(OH)]
+
, which would lead to suggestion that the group trans to 

the hydroxyl group is a water, which is very labile and would fall off, leaving a five 

coordinate cationic platinum species represented in the spectrum. The use of elemental 

analysis has also helped justify the formation of complex 2.10, in that the elemental 

values fall into place with the inclusion of a meta-chloroperbenzoate species into the 

overall formula. This fact helps establish that this reaction occurs by the same manner as 

those platinum(II) complexes previously carried out with m-CPBA, and thus this product 

can classified as complex 2.10, illustrated in Scheme 2.14. 

 

Scheme 2.14: Synthesis of complex 2.10, [PtMe2(dpa)(OH)(OH2)]
+
[C6H4Cl(COO)]

-
. 

 

2.2.5 Reactions of [PtMe2(DECBP)] with DMDO and m-CPBA 

 

 The relative inertness of platinum complexes gives advantages in that there can be 

self-assembly due to secondary bonding interactions, specifically hydrogen bonding. 

There has been significant interest in self assembly of polymers using simple 

coordination complexes as building blocks to give functional materials that can self 
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assemble through hydrogen bonding. There has been recent interest in the field of 

supramolecular chemistry in the use of dimethylplatinum(II) species contianing bidentate 

nitrogen donor ligands. These interests include the use of amides or esters as functional 

groups to act as hydrogen bond acceptors.
33,34

 Two oxidative addition reactions have 

been carried out utilizing the platinum(II) complex 2.9, [PtMe2(DECBP)].
34 

The ligand 

4,4'-diethoxycarbonbyl-2,2'-bipyridine (DECBP) was prepared by Safa
35

, via a modified 

procedure of Sprintschnik et al.
36

 The ester groups on the bipyridyl rings may prove to 

add some interesting bonding characteristics in the reaction of this complex with 

peroxides. 

Complex 2.11, [PtMe2(DECBP)], was prepared according to the literature and 
1
H 

NMR data may be found in appendix 2.2.5. To a stirring solution of complex 2.10, was 

added DMDO until the initial purple colour of the acetone solution dissipated and the 

complex 2.12, [PtMe2(DECBP)(OH)2] was isolated as a white solid.  The 
1
H NMR 

spectrum shown in figure 2.14 illustrates the formation of this product, forming the trans-

dihydroxo oxidative addition product.  
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Figure 2.14: 

1
H NMR spectrum of complex 2.12, [PtMe2(DECBP)(OH)2] along with free 

ligand. 

In the 
1
H NMR spectra of complex 2.12, there is a single methyl platinum methyl 

platinum resonance at δ = 1.65 ppm with a coupling of 
2
J(Pt-H) = 70 Hz. The presence of 

only one methyl platinum and one set of pyridyl resonances indicate that the complex has 

a plane of symmetry, as would be expected for the formation of a complex with trans 

geometry, the structure illustrated in scheme 2.15. There are additional proton resonances 

seen resulting from and assigned to uncoordinated DECBP ligand. These results are 

identical to those produced by Safa et al. in which a reaction was carried out with 

[PtMe2(DECBP)] and H2O2, and thus no further experimental or characterization was 

needed for this product.
22 
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Scheme 2.15: Synthesis of complex 2.12, [PtMe2(DECBP)(OH)2] 

 To complete the study of this platinum(II) complex, oxidation with m-CPBA was 

carried out. [PtMe2(DECBP)] was dissolved in acetone and m-CPBA was added to it. 

Immediately the purple colour of the solution disappeared and there was the formation of 

a yellow solution. Leaving the mixture to stir, it was found that a gel like material 

formed. When the gel was dried under high vacuum, the material became a solid powder. 

The proposed species for this reaction follows that of the previously characterized m-

CPBA reaction with platinum(II) species, forming complex 2.13, 

[PtMe2(OH)(DECBP)(OH2)]
+
[m-C6H4Cl(COO)]

- 
as outlined in scheme 2.16. This 

powder was characterized by 
1
H NMR, which has been illustrated in figure 2.15.

 

Scheme 2.16: Proposed product for reaction of [PtMe2(DECBP)] with m-CPBA forming 

complex 2.13. 
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Figure 2.15: 
1
H NMR spectrum of complex 2.13, [PtMe2(OH)(DECBP)(OH2)]

+
[m-

C6H4(COO)]
- 

 

The 
1
H NMR shows the formation of a single product, a platinum(IV) species 

based on the single methyl platinum resonance located at δ = 1.78 ppm with a coupling of 

2
J(Pt-H) = 66 Hz. The downfield region of this spectrum shows only one set of pyridyl 

protons, which is consistent with the formation of a product via trans-oxidative addition. 

There is also evidence that some m-CPBA is present within this spectrum and must 

somehow be incorporated into complex 2.13, as if it were free it would have been washed 

away during the purification steps. The resonances for these m-CPBA protons are also 

found shifted from that of free m-CPBA in CD2Cl2, which suggests there is some 

interaction with the platinum(IV) species. The mass spectrum results indicate the 

formation of a species containing multiple platinum complexes, in a polymer type 

arrangement. It can be seen that there is a trimeric species containing three 

[PtMe2(DECBP)(OH)2]
+
 units with a m/z of 1678.4 g/mol, a dimeric species containing 

two [PtMe2(DECBP)(OH)2]
+
, with a m/z of 1119.3 g/mol and finally a m/z peak located 

at 543.1 representative of the species [PtMe2(DECBP)(OH)]
+
,which would be the 

platinum species as a result of a loss of water. With no crystal data it becomes difficult to 
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characterize confidently that complex 2.13 is indeed the structure, thus, SEM (scanning 

electron microscopy) was utilized to help gather further information regarding this 

interesting complex. 

 To demonstrate the gel forming capabilities of this complex, figure 2.16 shows 

the formation of complex 2.13 in acetone. Electron microscopy was performed on the 

xerogels (air-dried gels) of the complex in order to study their morphologies. Scanning 

electron microscopy was utilized for the characterization of complex 2.13, with the 

results illustrated if figure 2.17. The results illustrate an interesting perspective on this 

material in that it appears to form as a microcrystalline solid in the air dried form. In 

figure 2.17(right), where the resolution has been enhanced, there is evidence of the 

formation of a network of fibrous structures and this may be attributed to the polymeric 

nature of this species.  

 
Figure 2.16: Picture display of polymeric nature of complex 2.13. (Left) solvent acetone. 

(Right) solvent DCM. 
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Figure 2.17: SEM images of complex 2.13 as xerogels. 

Electron dispersive X-ray spectroscopy (EDX) has been utilized to help determine the 

chemical composition of complex 2.13. It can be determined from these results that there is a 1:1 

molar ratio of platinum to chlorine, which suggests a 1:1 ratio of [PtMe2(OH)(DECBP)(OH2)]
+ 

and [m-C7H4ClO2]
-
, and thus helps to justify the proposed structure of this product. It can be 

suggested that the reason this product forming a gel material as compared to the other 

platinum(II) complexes used in this chapter, is due to the overall hydrogen bond capabilities 

exhibited by ester functional groups which have been shown to act as hydrogen bond 

acceptors.
33,34

 

2.3 Conclusion 

 

 A variety of platinum(II) complexes prepared from the precursor [Pt2Me4(μ-SMe2)2],
24

 

have been utilized in reactions with both dimethyldioxirane and meta-chloroperbenzoic acid. The 

goal was to test the reactivity of these platinum(II) species to oxidative addition reactions of 

these peroxides and peroxy acids. It can be determined that the use of DMDO, lead strictly to the 

formation of the dihydroxy products as seen with complex 2.2, 2.8 and 2.11, and a slight 

variation involving the use of the [PtMe2(dpk)] where instead of taking up a second hydroxyl, 
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there was attachment of an oxygen from the carbonyl group, forming complex 2.6. X-ray data 

has been helpful in clarifying the formation of complex 2.2, [PtMe2(bpy)(OH)2], where the aid of 

stabilizing water molecules has lead to crystallization of this difficult to crystallize product.  

 The m-CPBA reactions have illustrated similar results to that of the DMDO. It can be 

seen that the typical complexes formed when any platinum(II) complexes are reacted with m-

CPBA are platinum(IV) species in which there are either two hydroxyl groups trans to one 

another or a hydroxyl and a water molecule, displaying the same arrangement. Characterization 

of these complexes has been made through the use of 
1
H NMR, mass spectrometry and more 

definitively by X-ray analysis. It can be determined that complex 2.4, 2.9, 2.10, 2.13 are 

complexes containing two separate species, the platinum(IV) species formed and a meta-

chlorobenzoate moiety. One of the more interesting cases involved the use of complex 2.11, 

[PtMe2(DECBP), in which a gel type species formed, and this to illustrate the hydrogen bonding 

characteristics capable within these type of platinum system involving hydrogen bond donors 

and acceptors. Only in once case was there shown to be a prevalence of a cis-directed oxidative 

addition product and this was in complex 2.3. Further characterization of this complex was 

difficult, thus relying on the 
1
H NMR and mass spectroscopy results it has been tentatively 

classified as the cis-addition of a hydroxyl and meta-chloroperbenzoic acid species.  

 These results have helped illustrate the exceptional ability of electron rich platinum(II) 

complexes containing bidentate nitrogen donors to undergo oxidative addition reactions. The 

ease in which these peroxides were capable of oxidizing at the platinum center leads to promise 

towards finding an alternative approach to mediating the oxidative addition step in various types 

of Shilov chemistry.  
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2.4 Experimental 

 

All reactions were carried out using standard Schlenk techniques, unless otherwise stated. 

All NMR spectra were recorded on Varian Mercury 400 or Varian INOVA 400 or 600 MHz 

spectrometers. 
1
H NMR chemical shifts are reported in ppm (δ) relative to TMS and referenced 

to their corresponding solvents. Mass spectrometric analysis was carried out using an 

electrospray PE-Sciex Mass Spectrometer (ESI-MS) coupled with a TOF detector. The platinum 

dimer, [Pt2Me4(µ-SMe2)2] was prepared according to the literature and utilized in the formation 

of the Pt(II) complexes.
24 

Dimethyldioxirane. This compound was prepared from a modified procedure of Murray et al.
15 

 

The experimental setup involves the use of a 500mL, three neck round bottom flask with an 

attached thermometer and reflex condenser. The reflux condenser was attached to a two neck 

150mL collection flask being cooled by a dry-ice/acetone and equipped with a vacuum 

condenser also filled with dry ice/acetone. A mixture of water (102 mL), acetone (72 mL, 0.982 

mol), and sodium bicarbonate (24 g, 0.285 mol) was placed in the 500 mL round bottom 

equipped with a magnetic stir bar and was placed under a gentle stream of nitrogen. The reaction 

mixture was allowed to stir for 30 minutes while sitting in an ice bath. Upon completion of the 

30 minutes, small portions of Potassium peroxymonosulfate (Oxone, 48 g, 0.316 mol) were 

added over a 30 minute time period. The cooling bath was removed from the reaction mixture 

and it was allowed to stir for 30 minutes. A slight vacuum as well as moderate heat was then 

applied to the reaction assembly. The mixture began to reflux and the dimethyldioxirane was 

obtained in the receiving flask in an acetone solution. The solution was dried with MgSO4, and 

stored in the freezer for subsequent use. The product was characterized by 
31

P NMR for 
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dioxirane content using triphenylphosphine and the concentration was found to be ~0.100 M. 
31

P 

NMR in acetone-d6: δ = -5.82 (s, PPh3), 25.50 (s, Ph3P=O). 

 

Complex 2.1, [PtMe2(bpy)]. The synthetic route was previously reported by Puddephatt et al.
13

 

To a solution of [Pt2Me4(µ-SMe2)2] (200.0 mg, 0.348 mmol) in 40mL of toluene was added 2,2'-

bypyridine (109 mg, 0.697 mmol) in dry diethyl ether (30 mL). An immediate red colour was 

observed and a precipitate began to crash out. The solution was cooled to 5°C for 16 hours until 

the precipitate had formed. The solvent was decanted off and the red solid was washed with ether 

and dried in vacuo. The final yield was 81% (234 mg, 0.614 mmol). The 
1
H NMR spectrum is 

identical to the literature.
25
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) = 6 Hz, 

3
J(H

4
H

5
) = 8 Hz, H

5
), 8.02 (d, 2H,  

3
J(H

3
H

4
) = 8 Hz, H3), 8.12 (dd, 2H, 

3
J(H

3
H

4
) = 8 Hz, 

3
J(H

4
H

5
) = 8 Hz, H

4
), 9.29 (d, 2H, 

3
J(H

5
H

6
)= 6 Hz, 

3
J(PtH) = 22 Hz, H

6
). 

 

Complex 2.2, [PtMe2(OH)2(bpy)]. In a 50mL round bottom flask equipped with a stir bar, a 

solution of dimethyldioxirane (~0.1M) was added dropwise to a stirring solution [PtMe2(bpy)] 

(20.0mg, 0.0524mmol) in acetone. Dimethyldioxirane was added until the initial red colour 

completely dissipated and a clear, colourless solution was obtained. Almost immediately, a white 

precipitate began to form in the reaction flask. The reaction mixture was allowed to stir for 10 

minutes and then the reaction mixture was layered with pentane, leading to the precipitation of a 

white solid. The solvent was then decanted off and the white solid was washed with pentane and 

then dried in vacuo. The product was produced in an 84% yield (14.4 mg, 0.0347 mmol). 
1
H 

NMR in CD3OD: δ 1.74 (s, 6H, 
2
J(PtH) = 70Hz, Me), 7.83 (ddd, 

3
J(H

5
H

6
) = 6 Hz, 

3
J(H

5
H

4
) = 8 
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Hz, 
4
J(H

5
H

3
) = 1 Hz, H

5
), 8.27 (ddd, 2H, 

3
J(H

4
H

5
) = 8 Hz, 

3
J(H

3
H

4
) = 8 Hz, 

4
J(H

4
H

6
 = 1 Hz, 

H
4
), 8.86 (d, 2H, 

3
J(H

3
H

4
) = 8 Hz, H

3
), 9.02 (d, 2H, 

3
J(H

6
H

5
) = 6Hz, 

4
J(H

6
H

4
 = 1 Hz, H

6
).  

 

Complex 2.3, cis-[PtMe2(OH)(C7H4O2Cl)(bpy)].  An NMR experiment was conducted for the 

addition of meta-chloroperbenzoic acid (1.80 mg, 0.0105 mmol) to [PtMe2(bpy)] (4.00 mg, 

0.0105 mmol) in acetone-d6. Upon addition, the initial red colour of the solution dissipated and 

the solution turned to a white mixture, with a white solid precipitating out of solution. 
1
H NMR 

in acetone-d6: δ = 1.12 (s, 3H, 
2
J(PtH) = 75 Hz, PtMe), 1.80 (s, 3H, 

2
J(PtH) = 69 Hz, PtMe), 

7.19 (dd, 
3
J(H

2''
H

3''
) = 8Hz, 

3
J(H

3''
H

4''
) = 8Hz, H

3''
), 7.29 (d, 

3
J(H

3''
H

4''
) = 8Hz, H

4''
), 7.57 (d, 

3
J(H

2''
H

3''
) = 8Hz, H

2''
), 7.96 (dd, 1H, 

3
J(H

5
H

6
) = 8Hz, 

3
J(H

4
H

5
) = 1Hz, H

5
), 8.00 (dd, 1H, 

3
J(H

5’
H

6’
) = 8Hz, 

3
J(H

4’
H

5’
) = 1Hz, H

5’
), 8.39 (dd, 1H, 

3
J(H

3
H

4
) = 8Hz, 

3
J(H

4
H

5
) = 1Hz, H

4
), 

8.46 (dd, 1H, 
3
J(H

3’
H

4’
) = 8Hz, 

3
J(H

4’
H

5’
) = 1Hz, H

4’
), 8.73 (d, 1H, 

3
J(H

3
H

4
) = 8Hz, H

3
), 8.77 (d, 

1H, 
3
J(H

3’
H

4’
) = 8Hz, H

3’
), 9.05 (d, 1H, 

3
J(H

5
H

6
) = 6Hz, 

2
J(PtH) = 22Hz, H

6
), 9.46 (d, 1H, 

3
J(H

5’
H

6’
) = 6Hz, H

6’
). ESI-MS (TOF) [2.3-H]

+
: Calc. Precise Mass 554.07 g/mol; Determined 

Precise Mass: 554.1 g/mol. Anal. Calc’d. for C19H21ClN2O3Pt·H2O: C, 39.90; H, 3.70; N, 4.90%. 

Found: C, 39.69; H, 3.49; N, 4.80%. 

 

Complex 2.4 [PtMe2(OH)(OH2)(bpy)]
+
[C6H4Cl(COO)]

-
. The product was prepared by the 

addition of meta-chloroperbenzoic acid (9.0mg, 0.0526mmol) to [PtMe2(bpy)] (20.0mg, 

0.0526mmol) in acetone. The red colour seen initially dissipated and there was formation of a 

clear solution. The product was layered with pentane to precipitate out a white solid, which was 

subsequently dried in vacuo. The overall yield of the reaction was 81% (23.5 mg, 0.0424 mmol). 

The product was then characterized by NMR. 
1
H NMR in CD3OD. δ = 1.85 (s, 6H, 

2
J(PtH) = 
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70Hz, PtMe), 7.86 (dd, 2H, 
3
J(H

5
H

6
) = 6 Hz, 

3
J(H

5
H

4
) = 8 Hz, H

5
), 8.29 (dd, 2H, 

3
J(H

4
H

3
) = 8 

Hz, 
3
J(H

4
H

5
) = 8 Hz, H

4
), 8.67 (d, 2H, 

3
J(H

3
H

4
) = 8 Hz, H

3
), 9.00 (d, 2H, 

3
J(H

6
H

3
) = 6 Hz, H

6
). 

m-CPBA: δ = 7.42 (dd, 1H, 
3
J(H

3’
H

2’
) = 8 Hz, 

3
J(H

3’
H

4’
) = 8 Hz, H

3’
), 7.47 (d, 1H, 

3
J(H

2’
H

3’
) = 

8 Hz, H
2’

), 7.90 (d, 1H, 
3
J(H

4’
H

3’
) = 8Hz, H

4’
), 7.97 (s, 1H, H

6’
). ESI-MS (TOF) [2.4-H]

+
: Calc. 

Precise Mass: 416.09 g/mol; Determined Precise Mass: 416.1 g/mol. Anal. Calc’d. for 

C19H23ClN2O5Pt: C, 38.68; H, 3.93; N, 4.75%. Found: C, 38.16; H, 3.20; N, 4.65%. 

 

Complex 2.5, [PtMe2(dpk)]. This product was characterized according to Zhang et al.
19

 To a 

solution of [Pt2Me4(µ-SMe2)2] (250 mg, 0.435 mmol) in acetone (10 mL) was added a solution 

of di-2-pyridyl ketone (160 mg, 0.848 mmol) in acetone (10 ml). The solution immediately 

turned orange and the product precipitated as a dark red solid over 30 minutes. The solvent was 

decanted and the product was washed with pentane (3x2 mL) and ether (3x 2 mL) and then dried 

in vacuo. The yield was 87% (0.310 mg, 0.758 mmol). 
1
H NMR data in acetone-d

6
. δ 0.79 (s, 

6H, 
2
J(PtH) = 86 Hz, Pt-Me), 7.75 (dd, 2H, 

3
J(H

5
H

6
) = 5 Hz, 

3
J(H

4
H

5
) = 7 Hz, H

5
), 8.03 (d, 2H,  

3
J(H

3
H

4
) = 7 Hz, H3), 8.27 (dd, 2H, 

3
J(H

3
H

4
) = 7 Hz, 

3
J(H

4
H

5
) = 7 Hz, H

4
), 8.86 (d, 2H, 

3
J(H

5
H

6
)= 5 Hz, 

3
J(PtH) = 26 Hz, H

6
). 

 

Complex 2.6, [Pt(OH)Me2(DPKOH)]. In a 50 mL round bottom flask equipped with a stir bar, 

a solution of dimethyldioxirane (~0.1M) was added dropwise to a stirring solution of 

[PtMe2(dpk)] (0.040 g, 0.0761 mmol) in acetone. Dimethyldioxirane was added until the initial 

red colour completely dissipated and was followed by the formation of a white precipitate. The 

reaction was allowed to stir for 10 minutes and then the reaction mixture was layered with 

pentane, to fully precipitate out the white solid. The solvent was then decanted and the white 
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solid was washed with pentane (3x2 mL) and ether (3x2 mL) and then dried in vacuo. Yield 

80%. 
1
H NMR in methanol-d

6
: δ 1.51 (s, 6H, 

2
J(Pt-H) = 73 Hz, Pt-Me), 7.53 (ddd, 2H, 

2
J(H

5
-H

4
) 

= 8 Hz, 
2
J(H

5
-H

6
) = 5 Hz, 

2
J(H

5
-H

3
) = 2 Hz, H

5
) Hz 7.89 (dd, 2H, 

2
J(H

3
-H

4
) = 8 Hz, 

3
J(H

3
-H

5
) = 

2 Hz, 8.04 (ddd, 2H, 
2
J(H

4
-H

3
) = 8 Hz, 

2
J(H

4
-H

5
) = 8 Hz, 

3
J(H

4
-H

6
) = 2 Hz, H

4
), 8.82 (dd, 2H, 

2
J(H

6
-H

5
) = 5 Hz, 

3
J(H

6
-H

4
) = 2 Hz, H

6
). 

 

Complex 2.7, [PtMe2(dpa)]. This complex was prepared according to the literature. A solution 

of [Pt2Me4(µ-SMe2)2] (139 .0 mg, 0.243 mmol) in acetone (10 mL) and a solution of 

dipyridylamine (83.1 mg, 0.485 mmol) in acetone (10 mL) was mixed and allowed to stir for 4 

hours. The solution turned yellow/orange and the product precipitated as an orange solid over 

time. The solvent was decanted and the product was washed with pentane (3.x2 mL) and ether 

(3x2 mL) and then dried in vacuo. Yield 93% (179 mg, 0.412 mmol).  
1
H NMR in acetone-d6: δ 

0.59 (s, 6H, 
2
J(PtH) = 86 Hz, Pt-Me), 6.97 (dd, 2H, 

3
J(H

5
H

6
) = 6 Hz, 

3
J(H

4
H

5
) = 8 Hz, H

5
), 7.17 

(d, 2H,  
3
J(H

3
H

4
) = 8 Hz, H3), 7.85 (dd, 2H, 

3
J(H

3
H

4
) = 8 Hz, 

3
J(H

4
H

5
) = 8 Hz, H

4
), 8.60 (d, 2H, 

3
J(H

5
H

6
)= 5 Hz, 

3
J(PtH) = 26 Hz, H

6
), 9.22 (s, broad, NH).  

 

Complex 2.8, [PtMe2(dpa)(OH)2]: [PtMe2(dpa)] (9.8 mg, 0.0247 mmol) was dissolved in 

acetone and added to it was an extreme excess amount of a DMDO (10 mL). Initially upon 

addition, there was minimal change in the appearance, with the mixture turning opaque and 

darker yellow. The solution was concentrated down to a minimal volume under high vacuum and 

then was layered with pentane. An orange oil was formed upon layering of the solution and this 

was pumped down to obtain the oil, which was subsequently washed with ether. The product was 

attempted to be dissolved in acetone and was found to precipitate out in solution as a dark orange 
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solid. This was then layered with pentane and the resulting brown/black precipitate was isolated 

in the reaction flask. The product was washed with pentane (3x2mL) and ether (3x 2mL) and 

dried in vacuo. 
1
H NMR in CD3OD:  δ = 1.54 (s, 6H, 

2
J(Pt-H) = 64 Hz, Pt-Me), 7.19 (dd, 2H, 

3
J(H

5
-H

6
) = 6 Hz, 

3
J(H

5
-H

4
) = 7 Hz, H

5
), 7.31 (d, 2H, 

3
J(H

3
-H

4
) = 9 Hz, H

3
), 7.90 (ddd, 2H, 

3
J(H

4
-H

5
) = 7 Hz, 

3
J(H

4
-H

3
) = 9 Hz, 

4
J(H

4
-H

6
) = 1 Hz, H

4
), 8.45 (d, 2H, 

3
J(H

6
-H

5
) = 6 Hz, H

6
). 

ESI-MS (TOF) [2.8-H]
+
: Calc. Precise Mass: 431.1 g/mol. Determined Precise Mass: 431.1 

g/mol.  

 

Complex 2.9, [PtMe2(OH2)Me2(dpkOH)]
+
[C6H4Cl(COO)]

-
. [PtMe2(dpk)] (5.40 mg, 0.0131 

mmol) was dissolved in acetone and added to the stirring solution was m-CPBA (3.3 mg, 0.0131 

mmol). The initial red colour of the reaction mixture disappeared and a white solution was 

formed containing a precipitate. The solution was layered with pentane (3 mL) to precipitate out 

the remaining product. The product was then washed with pentane (3x2 mL) and ether (3x2 mL) 

and dried in vacuo. Yield 73%. 
1
H NMR in CD3OD: δ = 1.54 (s, 6H, 

2
J(Pt-H) = 70 Hz, Pt-Me), 

7.56 (ddd, 2H, 
3
J(H

5
-H

6
) = 6 Hz, 

3
J(H

5
-H

4
) = 8 Hz, 

4
J(H

5
-H

3
) = 1 Hz, H

5
), 7.92 (d, 2H, 

3
J(H

3
-H

4
) 

= 8 Hz, H
3
), 8.07 (ddd, 2H, 

3
J(H

4
-H

5
) = 8 Hz, 

3
J(H

4
-H

3
) = 8 Hz, 

4
J(H

4
-H

6
) = 1 Hz, H

4
), 8.45 (dd, 

2H, 
3
J(H

6
-H

5
) = 6 Hz, 

4
J(H

6
-H

4
) = 1 Hz, H

6
). m-CPBA: δ = 7.40 (dd, 1H, 

2
J(H

3'
-H

2'
) = 8 Hz, 

2
J(H

3'
-H

4'
) = 8 Hz, H

3'
), 7.48 (d, 1H, 

2
J(H

2'
-H

2'
) = 8 Hz, H

2'
), 7.90 (d, 1H, 

2
J(H

4'
-H

3'
) = 8 Hz, H

4'
), 

7.96 (s, 1H, H
6'
). ESI-MS (TOF) [2.9-H]

+
: Calc. Precise Mass: 440.1 g/mol Determine Precise 

Mass: 440.1 g/mol. 

 

Complex 2.10, [PtMe2(dpa)(OH)(OH2)]
+
[C6H4Cl(COO)]

-
 . [PtMe2(dpa)] (20.1 mg, 0.0507 

mmol) was dissolved in acetone and added to it was a meta-chloroperbenzoic acid (13.0 mg, 
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0.0527 mmol) dissolved in acetone. The yellow colour of the solution dissipated and a white 

precipitate was formed. The solution was allowed to stir for ten minutes and then was fully 

precipitated out with pentane. The solution was decanted and the product was washed with 

pentane (3x2 mL) and ether (3x2 mL) and then dried in vacuo. Yield 65%. 
1
H NMR in CD3OD:  

δ = 1.65 (s, 6H, 
2
J(Pt-H) = 66 Hz, Pt-Me), 7.28 (dd, 2H, 

3
J(H

5
-H

6
) = 6 Hz, 

3
J(H

5
-H

4
) = 8 Hz, 

H
5
), 7.36-7.39 (d, 2H, H

3
), 7.97 (ddd, 2H, 

3
J(H

4
-H

5
) = 8 Hz, 

3
J(H

4
-H

3
) = 9 Hz, 

4
J(H

4
-H

6
) = 2 

Hz), 8.45 (d, 2H, 
3
J(H

5
-H

6
) = 6 Hz, H

6
). m-CPBA. 7.35-7.40 (m, 1H, H3'), 7.46 (d, 1H, 

2
J(H

4'
-

H
3'
) = 8 Hz, H

4'
), 7.88 (d, 1H, 

2
J(H

2'
-H

3'
) = 8 Hz, H

2'
), 7.95 (s, 1H, H

6'
)  ESI-MS (TOF) 

[PtMe2(dpa)OH)]
+
: Calc. Precise Mass: 413.09 m/z; Determined Precise Mass: 413.1 m/z. Anal. 

Calc’d. for C19H22ClN3O4Pt (%): C 39.33; H 3.42; N 7.40%. Found: C 38.88; H 3.78; N 7.16%. 

 

Complex 2.11, [PtMe2(DECBP)]. The preparation of this product followed literature stated by 

Safa et al.
22

 To a solution of [Pt2Me4(µ-SMe2)2] (314.0 mg, 0.180 mmol) in ether (10 mL) was 

added 4,4'-diethoxycarbonyl-2,2'-bipyridine (108.0 mg, 0.361 mmol). After 5 minutes the 

solution turned purple and the product precipitated as a purple solid over 1 hour. The solvent was 

decanted and then the product was washed with pentane (3x5 mL) and then dried in vacuo.  

Yield 91% (172.0 mg, 0.328 mmol). 
1
H NMR in acetone-d6: δ = 1.10 (s, 6H, 

2
J(Pt-H) = 86 Hz, 

Pt-Me), 1.46 (t, 6H, 
3
J(H-H) = 7 Hz, CH3C), 4.48 (q, 4H, 

3
J(H-H) = 7 Hz, CH2C), 8.10 (dd, 2H, 

3
J(H

5
-H

6
) = 6 Hz, 

4
J(H

5
-H

3
) = 2 Hz, H

5
), 8.72 (d, 2H, 

4
J(H

3
-H

5
) = 2 Hz, H

3
), 9.36 (d, 2H, 

3
J(H

6
-

H
5
) = 6 Hz, 

3
J(Pt-H) = 22 Hz, H

6
) 

 

Complex 2.12, [PtMe2(DECBP)(OH)2]. To a solution of complex [PtMe2(DECBP)] (20.0 mg, 

0.0378 mmol) in acetone, was added an excess volume of DMDO (5 ml). The initial red purple 
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colour of the solution evaporated, turning clear and then over ten minutes a precipitate began to 

form within the solution. The precipitate was further crashed out with pentane and then the 

solvent was decanted. The solid white product was washed with pentane (2x3 mL) and ether 

(2x3 mL) and then dried in vacuo. Yield 78%. 
1
H NMR in CD2Cl2: δ = 1.48 (t, 6H, 

3
J(H-H) = 7 

Hz, CH3C), 1.65 (s, 6H, 
2
J(Pt-H) = 70 Hz, Pt-Me), 4.52 (q, 4H, 

3
J(H-H) = 7 Hz, CH2C), 8.26 

(dd, 2H, 
3
J(H

5
-H

6
) = 5 Hz, 

4
J(H

5
-H

3
) = 1 Hz, H

5
), 8.94 (d, 2H, 

4
J(H

3
-H

5
) = 1 Hz, H

3
), 9.12 (d, 

2H, 
3
J(H

6
-H

5
) = 5 Hz, H

6
). 

 

Complex 2.13, [PtMe2(OH)(DECBP)(OH2)]
+
[m-C6ClH4(COO)]

-
: To a solution of 

[PtMe2(DECPB)] (39.3 mg, 0.0747 mmol) in acetone was added m-CPBA (18.4 mg, 0.0747 

mmol). Upon addition, the solution began to exhibit a gel like characteristic, eventually forming 

a solid gel slightly yellow in colour. The product was dried in vacuo, with the gel becoming a 

solid upon removal of the solvent. Yield 83%. 
1
H NMR in CD2Cl2. δ = 1.44 (t, 6H, 

3
J(H-H) = 7 

Hz, CH3C), 1.78 (s, 6H, 
2
J(Pt-H) = 66 Hz, Pt-Me), 3.39 (broad), 4.45 (q, 4H, 

3
J(H-H) = 7 Hz, 

CH2C), 8.09 (dd, 2H, 
3
J(H

5
-H

6
) = 5 Hz, 

4
J(H

5
-H

3
) = 1 Hz, H

5
), 8.73 (d, 2H, H

3
), 9.04 (d, 2H, 

3
J(H

6
-H

5
) = 5 Hz, H

6
). m-CPBA: 7.23 (dd, 1H, 

3
J(H

5
-H

6
) = 8 Hz, 

3
J(H

5
-H

4
) = 8 Hz, H

5
), 7.37 (d, 

3
J(H

6
-H

5
) = 8 Hz, H

6
), 7.45 (d, 1H, 

3
J(H

4
-H

5
) = 8 Hz, H

4
), 7.84 (s, 1H, H

2
). ESI-MS (TOF): 

Calc. Precise Mass: [PtMe2(DECBP)(OH)]
+
: 542.1; [PtMe2(DECBP)(OH2)(OH)]+ 

[PtMe2(DECBP)(OH)2]: 1119.3; 2 x [PtMe2(DECBP)(OH2)(OH)]+ [PtMe2(DECBP)(OH)2]: 

1678.4 m/z ; Determined Precise Mass: [PtMe2(DECBP)(OH)]
+
: 542.1; 

[PtMe2(DECBP)(OH2)(OH)]
+
[PtMe2(DECBP)(OH)2]: 1119.3; 2 x 

[PtMe2(DECBP)(OH2)(OH)]
+
[PtMe2(DECBP)(OH)2]: 1677.4 m/z. EDX results(%): C: 59.8; O: 

27.1, Cl: 2.2, Pt; 10.9. 
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X-ray Structure Determination: X-ray data were obtained and solutions were determined by 

Matthew McCready in this chapter. Suitable crystals were mounted on a glass fibre and data was 

collected at low temperature 150(2) K on the Bruker Apex II CCD detector. The unit cell 

parameters were calculated and refined from the full data set. The crystal data and refinement 

parameters for all complexes are listed in the following tables.  
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Table 2.4: Crystallographic data for complex 2.2·7 H2O 

Empirical Formula C12 H18 N2 O9 Pt 

Formula Weight 529.37 

Wavelength 0.71073 Å 

Crystal System Monoclinic 

Space Group P21/n 

Unit Cell Dimensions a = 7.271(3) Å                  α = 90° 

b = 17.379(8) Å                β = 95.533(8)° 

c = 30.265(13) Å              γ = 90° 

Volume 3807(3) Å
3
 

Z 8 

Density (calculated) 1.847 Mg/m
3
 

Absorption Coefficient (μ) 7.415 mm
-1

 

Crystal Size 0.30 x 0.06 x 0.04 mm
3
 

Refinement Method Full-matrix least-squares on F
2
 

Goodness of fit on F
2
 1.024 

Final R indicies [I>2σ(I)] R1= 0.0429, wR2 = 0.0825 

R indicies (all data) R1 = 0.0647, wR2 = 0.0896 
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Table 2.5: Crystallographic data for complex 2.4·CH2Cl2 
 

Empirical Formula C19 H21 Cl N2 O4 Pt 

Formula Weight 571.92 

Wavelength 0.71073 Å 

Crystal System Monoclinic 

Space Group P21/c 

Unit Cell Dimensions a = 12.8754(7) Å                 α = 90° 

b = 10.0368(5) Å                 β = 93.153(8)° 

c = 15.0169(8) Å                  γ = 90° 

Volume 1937.66(18) Å
3
 

Z 4 

Density (calculated) 1.960 Mg/m
3
 

Absorption Coefficient (μ) 7.407 mm
-1

 

Crystal Size 0.07 x 0.07 x 0.02 mm
3
 

Refinement Method Full-matrix least-squares on F
2
 

Goodness of fit on F
2
 1.063 

Final R indicies [I>2σ(I)] R1= 0.0319, wR2 = 0.0729 

R indicies (all data) R1 = 0.0458, wR2 = 0.0790 
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Table 2.6: Crystallographic data for complex 2.9·2MeOH 
 

Empirical Formula C68 H80 Cl2 N8 O18 Pt4 

Formula Weight 2148.66 

Wavelength 0.71073 Å 

Crystal System Monoclinic 

Space Group C2/m 

Unit Cell Dimensions a = 23.271(6) Å                 α = 90° 

b = 20.83(4) Å                   β = 104.39(3)° 

c = 7.8963(16) Å                γ = 90° 

Volume 3707.7(14) Å
3
 

Z 2 

Density (calculated) 1.925 Mg/m
3
 

Absorption Coefficient (μ) 7.667 mm
-1

 

Crystal Size 0.05 x 0.05 x 0.02 mm
3
 

Refinement Method Full-matrix least-squares on F
2
 

Goodness of fit on F
2
 1.053 

Final R indicies [I>2σ(I)] R1= 0.0522, wR2 = 0.1257 

R indicies (all data) R1 = 0.0755, wR2 = 0.1390 

 

 

  



81 

 

 

2.5 Appendix 

 

2.5.1 EDX Results 

 

  C (%) O (%) Cl (%) Pt (%) 

edx 01 59.2 21.6 3.7 15.5 

edx 02 60.4 32.5 0.8 6.4 

Minimum 59.2 21.6 0.8 6.4 

Maximum 60.4 32.5 3.7 15.5 

Std. Dev. 0.8 7.7 2.1 6.5 

Average 59.8 27.1 2.2 10.9 
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2.5.2 
1
H NMR data of complex 2.1, [PtMe2(bpy)] 

 

 

 

2.5.3 
1
H NMR data of complex 2.5, [PtMe2(dpk)] 
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2.5.4 
1
H NMR data of complex 2.7, [PtMe2(dpa)] 

 

 

2.5.5 
1
H NMR data of complex 2.11, [PtMe2(DECBP)] 
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Chapter 3 

 

 

 

 Reactivity of Platinum(II) Complexes with Phthaloyl 

Peroxide 
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3.1 Introduction 

 

 The oxidative addition reactions are among the most significant reactions in the 

organometallic and bio-inorganic chemistry of the transition metals.
1,2

 Oxidative addition of a 

substrate leads to an increase in the coordination number of the complex due to the formation of 

two new bonds and an increase in both the oxidation state and electron count at the metal 

centre.
3,4

 The selective oxidation of methane to methanol, catalyzed by electrophilic late 

transition metals such as platinum, has attracted interest since the first observation by Shilov in 

the late 1960s.
5  

In the original Shilov study, the oxidation step of the cycle was carried out 

utilizing stoichiometric amounts of platinum(IV), making this system impractical. This has lead 

to interest by researchers to find alternative oxidants in which to complete this cycle in a more 

cost effective manner. The success thus far has been limited, with examples of the use of O2,
6
 

Cl2,
7
 SO3,

8
 and H2O2,

9
 as oxidants. The oxidative addition reactions of H2O2 and related types of 

compounds of type RXXR, where X = O, S, or Se, generally to platinum(II) complexes result in 

the formation of trans-[L4Pt(XR)2] complexes, which can be illustrated in Scheme 3.1.
10

 

 

Scheme 3.1: Typically seen trans-oxidative addition of RXXR (R = O, S, Se) 

Several trans-dihydroxoplatinum(IV) complexes are known and they tend to be rather 

unreactive due to their low spin d
6
 configuration and the weak trans effect due to the hydroxo 

ligands.
10

 By directing the reactivity towards forming a cis-dihydroxoplatinum(IV) alkyl 

intermediate, the possibility of tuning the Pt-C and Pt-O bond strengths by ancillary ligand 

would be plausible and inducing a C-O reductive elimination to the desired methanol product.
11 
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The first example of an entirely cis-hydroxoplatinum(IV) complex was reported by Vedernikov 

et al. utilizing a fac-tridentate ligand, di(2-pyridyl)methanesulfonate, forcing the hydroxo ligand 

and oxygen atom cis to one another as illustrated in scheme 3.2.
12 

 

 
Scheme 3.2: First evidence of a cis-hydroxoplatinum(IV) complex 

Research has also been conducted involving the formation of cis-

dihydroxodimethylplatinum(IV) complexes via oxidative additions reaction of H2O2 with Pt(II) 

dimethyl complexes containing hydrogen bonding amine substituents. The role of these 

hydrogen bonded substituents is in the stabilization of the cis-dihydroxo complex, preventing 

rearrangement to the trans-dihydroxo platinum(IV) species. The addition of hydrogen peroxide 

to [(6,6'-diamino-bpy)Pt(II)Me2] results in the formation of a trinuclear complex which upon 

addition of water, can form an exclusively cis-dihydroxo platinum(IV) complex, which has been 

illustrated in scheme 3.3. 

 
Scheme 3.3: Exclusive cis-oxidative addition of H2O2 to a platinum(II) complex 

 

 There have been numerous studies illustrating the use of dibenzoyl peroxide with 

platinum(II) complexes, each showing varying degrees of favouring the cis-oxidative addition 
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product. Shown here are two examples in the resulting products involved a cis-orientation, one 

showing more prevalence for the formation of this product over the other. The first of these 

reactions involved the reaction of benzoyl peroxide with [PtMe2(phen)] (phen = 1,10-

phenanthroline), in which the products were formed in a 5:1 trans to cis ratio, which has been 

illustrated in scheme 3.4.
13

 Utilizing a second platinum(II) complex, [PtMe2(MIM)2C=CH2)] 

where (MIM)2C=CH2 = 1,1-bis(1-methylimidazole-2-yl)ethane, it was found that this complex 

directed the reaction of benzoyl peroxide towards forming a product of exclusively cis nature, 

which can be seen in scheme 3.5.
14

 

Scheme 3.4: Cis and trans-oxidative addition of benzoyl peroxide at [PtMe2(phen)] 

 

 

Scheme 3.5: Exclusive cis-oxidative addition product utilizing [PtMe2(MIM)2C=CH2] with 

benzoyl peroxide. 

The concept of directing oxidative addition towards forming a complex of cis-geometry 

becomes important when understanding that the reactivity of these platinum(IV) complexes is 

greater than their trans counterparts.
11

 This concept has lead to the idea that the utilization of a 

cyclic peroxide, phthaloyl peroxide would be helpful to achieving this goal. The coordination of 

the O-O bond in a cis-directed manner due to the steric constraints imposed by the ring is the 
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goal of this study. Phthaloyl peroxide has been widely studied and is a six-membered aromatic 

diacyl peroxide containing four sp
2
-hybridized carbon atoms. It contains a relatively low 

activation energy (24 kcal/mol) for radical cleavage of the peroxide bond and this can be 

attributed to the peroxide dihedral angle of 11.4° with the O-O bond distance being stretched to 

1.474 Å because of the cyclic nature of this compound.
15,16

  

 

Figure 3.1: Phthaloyl peroxide and peroxide dihedral angle 

Utilizing this cyclic peroxide, upon breaking of the O-O bond, instead of resulting in two 

separate fragments, as with non-cyclic peroxides, the connectedness of the phthaloyl peroxide 

would lead to a relatively close proximity of the oxygen atoms, even after cleavage has occurred. 

With the cyclic nature of this peroxide, it would suggest that oxidation at the platinum(II) center 

by phthaloyl peroxide would most likely lead to the formation of the cis-oxidative addition 

product, which has been illustrated in scheme 3.6. 

 

Scheme 3.6: Proposed cis-oxidative addition reaction of the cyclic phthaloyl peroxide with 

platinum(II) complex. 
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 The goal of this chapter is to explore the reactivity of phthaloyl peroxide with many 

different platinum(II) complexes. The task is to attempt to understand if the geometry of the 

oxidative addition reaction may be controlled by applying restraints to the incoming oxidant. As 

in chapter 2, there have been different platinum(II) complexes utilized in this chapter, with the 

hopes of probing the full reactivity of this cyclic oxidant. Platinum(II) species containing 

nitrogen donor ligands are known to be very electron rich complexes and thus are ideal 

candidates for exemplifying the oxidation potential of this peroxide.
3 

Starting with very simple 

platinum(II) complexes, moving on to more substituted bipyridyl ligands, as well as platinum(II) 

complexes containing six-membered bidentate nitrogen donor ligands, the reactivity of phthaloyl 

peroxide has been extensively explored.  

 

3.2 Results and discussion 

 

 

3.2.1 Reaction of [PtMe2(bpy)] with Phthaloyl Peroxide 

In the initial stages of this research, the simplest of the platinum(II) complexes has been 

used in a reaction with phthaloyl peroxide. Phthaloyl peroxide was prepared by a modified 

procedure outlined by Russell.
17 

Phthaloyl peroxide was mixed in a 1:1 stoichiometric ratio with 

complex 2.1, [PtMe2(bpy)] in acetone forming a cloudy white solution. Subsequent layering with 

pentane induced precipitation of the remaining product, which was then washed and dried in 

vacuo. The 
1
H NMR spectrum shown in figure 3.2, illustrates the formation of multiple products 

in the reaction, tentatively characterized as both the cis and trans-oxidative addition products.  
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Figure 3.2: 
1
H NMR spectrum of complex 3.1: trans and complex 3.2: cis-oxidative species 

from reaction of [PtMe2(bpy)] with phthaloyl peroxide. (Δ = cis, o = trans, * = solvent) 
 

Complex 3.1, the trans-oxidative addition product has been identified by a single methyl 

platinum resonance at δ = 2.20 ppm with a coupling of 
2
J(PtH) = 66 Hz, but has proven difficult 

to characterize, so for this reaction, the cis-oxidative addition product will be the main focus, and 

has been named complex 3.2. This product is easily characterized by 
1
H and COSY NMR 

techniques. The characteristic two methyl platinum peaks that result from the lack of symmetry 

in the molecule, are found at δ = 1.10 and 1.15 with coupling constants of 
2
J(Pt-H) = 70 Hz and 

69 Hz, respectively. With the resonances showing very close coupling values, it is difficult to 

distinguish between the two based on which is trans to the nitrogen and which to the oxygen. 

The mass spectrum gives m/z = 546.1, corresponding to [3.2-H]
+
. The expected result of this 

reaction would be the cis-oxidative addition product, directed by the connectivity of the 

peroxide, as illustrated in Scheme 3.7. 
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Scheme 3.7: Proposed cis-oxidative addition product of the reaction of phthaloyl peroxide with 

[PtMe2(bpy)] 

After numerous attempts, a single crystal was obtained by the slow diffusion of pentane 

into a mixture of the phthaloyl peroxide and [PtMe2(bpy)] in dichloromethane, stored at 5°C. 

Single crystal X-ray analysis was utilized in the determination of the platinum(IV) species and 

the resulting structure of complex 3.2a, is illustrated in figure 3.3. 

 

Figure 3.3: Structure of Complex 3.2a·4.5H2O. Selected bond parameters; Pt(1)-O(1) = 

2.013(9), Pt(1)-O(5) = 2.206(9), Pt(1)-N(1) = 2.100(11), Pt(1)-N(2) = 2.014(11), Pt(1)-C(19) = 

2.039(13), Pt(1)-C(20) = 2.059(12) Å 
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Table 3.1:  Bond lengths [Å] and angles [deg] for Complex 3.2a·4.5 H2O 

            Pt(1)-O(1)                    2.013(9)  

            Pt(1)-N(2)                    2.014(1)  

            Pt(1)-C(19)                   2.039(1)  

            Pt(1)-C(20)                  2.059(1)  

            Pt(1)-N(1)                    2.100(1)  

 

            Pt(1)-O(5)                     2.206(9)  

            O(1)-C(11)                    1.318(1)  

            O(2)-C(11)                    1.244(2)  

            O(3)-C(18)                    1.245(2)  

            O(4)-C(18)                    1.253(2)  

 

            O(1)-Pt(1)-N(2)             172.4(4)  

            O(1)-Pt(1)-C(19)             86.2(4)  

            N(2)-Pt(1)-C(19)             98.3(5)  

            O(1)-Pt(1)-C(20)             83.0(4)  

            N(2)-Pt(1)-C(20)             90.7(5)  

            C(19)-Pt(1)-C(20)            91.0(5)  

            O(1)-Pt(1)-N(1)              96.1(4)  

            N(2)-Pt(1)-N(1)              79.3(4)  

            C(19)-Pt(1)-N(1)            177.3(5)  

            C(20)-Pt(1)-N(1)             87.8(5)  

            O(1)-Pt(1)-O(5)              96.4(3)            

            N(2)-Pt(1)-O(5)              89.6(4)  

            C(19)-Pt(1)-O(5)             92.0(4)  

            C(20)-Pt(1)-O(5)            176.9(5)  

            N(1)-Pt(1)-O(5)              89.2(4)  

            C(11)-O(1)-Pt(1)            125.3(8)  

            O(2)-C(11)-O(1)             124.1(1)  

            O(2)-C(11)-C(12)            122.1(1)  

            O(1)-C(11)-C(12)            113.8(1)  

            O(3)-C(18)-O(4)             124.9(1)  

 

 The structure demonstrates an unexpected result for what was thought to be a simple cis-

oxidative addition reaction. The expected product involved cleavage of the O-O bond from the 

peroxide, followed by oxidative addition of both oxygen atoms to the platinum center as 

illustrated in scheme 3.6. The mechanism expected for this reaction would be a two electron 

bimolecular SN2 oxidative addition. It appears however, based on the result of the crystal 

structure data that instead of coordination of the second oxygen from the phthaloyl peroxide, 

there has been coordination of a hydroxyl or a water molecule into the vacant site on the 

platinum center. Based on the mass spectrometry results the resulting crystal is most likely a 

result of hydrolysis of one of the phthaloyl peroxide oxygen atoms coordinated to the platinum 

by water in the recrystallization solvent, which has been illustrated in scheme 3.8. 
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Scheme 3.8: Formation of complex 2a, via hydrolysis an oxygen atom of phthaloyl peroxide via 

a water molecule. 

The protons on the oxygen atom in this structure were not located, which has lead to 

some uncertainty in the overall determination of the product. The issue lies with whether a water 

molecule or a hydroxyl group is bound to the platinum center. Comparison of the bond lengths of 

the non-coordinated carboxylate between C(18)-O(4) and C(18)-O(3), reveal bond distances that 

can be considered equivalent. This suggests the presence of carboxylate, compared to that of a 

carboxylic acid, which would have exhibited differing bond lengths. These results indicate that 

this product formed does indeed involve the interaction of water with the platinum center. There 

is also indication of intramolecular hydrogen bonding interactions between the water molecule 

on the platinum and the oxygen from the phthalate groups, O(5)-O(2), which may lend to overall 

stabilization of the structure. This structure also displays some very interesting results, with the 

incorporation of a cluster of water molecules, which have resulted due to the crystallization 

taking place in a moist solvent environment, which has been illustrated in figure 3.4. There is 

hydrogen bonds between O(1A)-O(6SC) and O(6SC)-O(4) and symmetry equivalents. These 

water molecules lead to hydrogen bonding interactions between the oxygen atoms on the 

platinum center and the oxygen atoms located on the phthaloyl peroxide, lending to the hydrogen 

bonded network shown in figure 3.4.  
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Figure 3.4: Hydrogen bonded network of water molecules with the phthaloyl peroxide on the 

platinum(IV) complex 

 Overall, this is a very unique and interesting structure; however the incorporation of the 

water molecules leaves uncertainty as to the product formed during this reaction. With 

difficulties in finding solvents for recrystallization due to solubility issues, further study was 

needed using a more soluble Pt(II) complex.  

3.2.2 Reaction of [PtMe2(bu2bpy)] with Phthaloyl Peroxide 

 The desire to find a platinum(II) complex suitable for forming single crystals has lead to 

the use of Complex 3.3, [PtMe2(bu2bpy)], which demonstrates very similar reactivity to that of 

[PtMe2(bpy)], but is more soluble due to the inclusion of the bulky organic groups.
18

 This 

inherent solubility is being relied on for the production of single crystals to help characterize this 
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cyclic peroxide system. Phthaloyl peroxide was mixed in a 1:1 stoichiometric ratio with 

[PtMe2(bu2bpy)],
18

 and immediately the orange colour of the platinum(II) complex dissipated 

and a clear and colourless solution was obtained. The solution was layered with pentane and a 

white precipitate was afforded. The 
1
H NMR spectrum was obtained in acetone-d6 and results are 

similar to those seen for complex 3.1, with the formation of multiple products, both the cis and 

trans oxidative addition products. The cis-oxidative addition product was isolated by 

recrystallization with slow diffusion of pentane into a dichloromethane solution containing 

complex 3.4, [PtMe2(bu2bpy)(C8H4O4)] and the 
1
H NMR spectrum is shown in figure 3.5.  

Figure 3.5: 
1
H NMR spectrum of complex 3.4, [PtMe2(bu2bpy)(C8H4O4)] via cis-oxidative 

addition. 

 

The cis-oxidative addition product is easily characterized by the two methyl platinum 

singlets at δ = 1.01 and 1.10 with coupling of 
2
J(PtH) = 67 Hz, and 70 Hz, respectively. The 
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coupling of 67 Hz, is characteristic of the methyl group trans to nitrogen, whereas the larger 

coupling constant of 70 Hz, is typical of the methyl group trans to oxygen, based on the trans-

effect series. Complex 3.4, was also characterized by mass spectrometry with the main signal 

present at m/z of 658.2 indicative of the coordination of the phthaloyl peroxide to the platinum 

center. The reaction for the formation of the cis-oxidative addition product, complex 3.3 is 

shown in scheme 3.9. 

 

Scheme 3.9: Complex 3.4, cis-addition product from the reaction of phthaloyl peroxide with 

[PtMe2(bu2bpy)] 

Single crystals were grown by a slow diffusion of pentane into a dichloromethane 

solution of complex 3.4. The results of the single crystal X-ray analysis, illustrated in figure 3.6, 

indicate the formation of the proposed species.  
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Figure 3.6: Single crystal X-ray structure of Complex 3.4·CH2Cl2. Selected bond parameters: 

Pt-O1 = 2.020(5), Pt-O2 = 2.160(4), O(2)-C(28) = 1.291(8), O(1)-C(21) = 1.296(8), O(4)-C(28) 

= 1.223(8), O(3)-C(21) = 1.221(9) Å. 

 

Table 3.2:  Bond lengths [Å] and angles [deg] for complex 3.4·CH2Cl2 

            Pt-O(1)                       2.020(5)  

            Pt-N(1)                       2.027(5)  

            Pt-C(20)                      2.063(6)  

            Pt-C(19)                      2.067(6)  

            Pt-N(2)                       2.120(5)  

            Pt-O(2)                       2.160(4)  

            O(2)-C(28)                 1.291(8)  

       

            O(1)-C(21)                   1.296(8)  

            C(28)-O(4)                    1.223(8)  

            C(28)-C(27)                   1.519(9)  

            C(22)-C(23)                   1.386(1)  

            C(22)-C(27)                   1.398(1)  

            C(22)-C(21)                   1.504(1)  

            C(21)-O(3)                    1.221(9)  

            

              O(1)-Pt-N(1)                169.9(2)  

            O(1)-Pt-C(20)                91.5(3)  

            N(1)-Pt-C(20)                98.2(3)  

            O(1)-Pt-C(19)                88.5(3)  

            N(1)-Pt-C(19)                88.8(3)  

            C(20)-Pt-C(19)               88.4(3)  

            O(1)-Pt-N(2)                 91.1(2)  

            N(1)-Pt-N(2)                 79.3(2)  

            C(20)-Pt-N(2)               177.2(2)  

            C(19)-Pt-N(2)                92.8(3)  

            O(1)-Pt-O(2)                 92.26(2  

            N(1)-Pt-O(2)                 89.44(2)  

            C(20)-Pt-O(2)                97.1(2)  

            C(19)-Pt-O(2)               174.4(3) 

            

            N(2)-Pt-O(2)                 81.60(1)  

            C(28)-O(2)-Pt               133.6(4)  

            C(21)-O(1)-Pt                121.0(4)  

            O(4)-C(28)-O(2)            122.6(6)  

            O(4)-C(28)-C(27)          117.3(6)  

            O(2)-C(28)-C(27)          120.0(6)  

            C(23)-C(22)-C(27)         118.1(7)  

            C(23)-C(22)-C(21)         117.2(6)  

            C(27)-C(22)-C(21)         124.4(6)  

            C(22)-C(27)-C(28)         123.0(6)  

            O(3)-C(21)-O(1)            121.0(7)  

            O(3)-C(21)-C(22)           118.8(7)  

            O(1)-C(21)-C(22)           120.0(7)  

 



100 

 

 

 The crystal structure shows the predicted product of an oxidation of the platinum(II) 

center by phthaloyl peroxide. Complex 3.4 varies from the previously discussed complex 3.1, in 

that there is coordination of both oxygen atoms of the peroxide forming a seven-member 

chelating ring to the platinum center, instead of insertion of a water molecule. The close 

proximity of the two oxygen atoms, has led to the cis-oxidative addition of the peroxide, instead 

of the typical trans-addition seen for other non-cyclic peroxide systems. The hypothesized 

mechanism for this reaction is a bimolecular SN2 oxidative addition in which the platinum 

attacks the σ* orbital of one of the oxygen, leading to breaking of the peroxy bond and formation 

of a cationic platinum center and an anionic oxygen atom. There is then coordination of the 

anionic ligand to the metal center, leading to the formation of the illustrated species. This can be 

seen outlined in scheme 3.10.  

 
 

Scheme 3.10: SN2 reaction mechanism for the cis-oxidative addition of phthaloyl peroxide to 

[PtMe2(bu2bpy)] 

There appears to be multiple C-H···O hydrogen bonds to the single carbonyl atom on the 

phthaloyl peroxide (O4) from the hydrogen atoms on the bipyridine rings of the neighbouring 

complex. This interaction may lend to stabilization of the crystal packing of this structure. The 

O···H distances are determined to be around 2.3 Å, and this finding is not unprecedented for C-

H···O interactions as previously reported by Desiraju.
19

 The crystal structure has helped prove 
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the formation of this novel product, the cis-oxidation addition reaction of phthaloyl peroxide at a 

Pt(II) center.  

3.2.3 Reaction of [PtMe2(MIM)2C=CH2] with Phthaloyl Peroxide.  

 Complex 3.5, [PtMe2(MIM)2C=CH2]  was synthesized by Safa et al,
14

 and has shown 

promise in the formation of purely cis-addition of peroxide compounds to the platinum center. In 

a reaction with dibenzoyl peroxide, there was evidence of a majority cis-oxidative addition 

product with use of this platinum(II) complex, which has been illustrated in the introduction of 

this chapter in scheme 3.5. This result has lead to interest in utilizing this platinum(II) complex 

to help exemplify the formation of a platinum(IV) complex in which phthaloyl peroxide 

coordinates by a strictly cis-geometry. The expected formation would be a platinum(IV) complex 

with the peroxide addition occurring in a cis-manner, as illustrated in scheme 3.11. 

 

Scheme 3.11: Expected cis-oxidative addition product of phthaloyl peroxide with 

[PtMe2(MIM)2C=CH2] 

This reaction was completed on an NMR scale involving the addition of phthaloyl 

peroxide in a 1:1 ratio to [PtMe2(MIM)2C=CH2] in an acetone-d6
 
solution. The resultant solution 

turned cloudy white with the formation of a precipitate, and was characterized by 
1
H NMR 

spectroscopy. The 
1
H NMR spectrum showed complete consumption of the starting platinum(II) 

complex and lead to the formation of a new product. The 
1
H NMR spectrum showed 
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characteristics of what would be expected for the cis-oxidative addition of the phthaloyl peroxide 

forming a platinum(IV) species, as illustrated in figure 3.7. 

 

Figure 3.7: 
1
H NMR spectrum of the complex 3.6, [PtMe2(C8H4O4)(MIM)2C=CH2] via the cis-

oxidative addition of phthaloyl peroxide. 

 

This product produced two methyl platinum signals in the spectrum one at δ = 1.23 and δ 

= 1.31, with two coupling of 
2
J(PtH) = 68 and 71 Hz, respectively. These values demonstrate 

that a platinum(IV) species was indeed formed, indicating an oxidative addition reaction had 

occurred. These coupling constants also give evidence for the expected cis-oxidative addition 

reaction. The methylplatinum with the larger coupling of 71 Hz, is assigned to the methyl trans  

to the oxygen, and resonance with the smaller coupling constant of 68 Hz, is assigned to the 

methyl trans to the nitrogen, due to its higher trans influence. There is further evidence of the 

formation of a cis-oxidative addition product, and this is shown by the loss of symmetry in the 
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molecule. Originally, [PtMe2(MIM)2C=CH2] showed a single peak at δ = 3.92, and this peak 

integrated to six protons. Upon the addition of the peroxide, this peak was split into two separate 

singlets each representing 3 protons, with varying chemical shift values of δ = 3.98 and δ = 4.08. 

Further evidence of the cis-oxidative addition product can be found downfield in the spectrum in 

which the original bridging CH2, found at δ = 6.18, accounting for two protons and existing as a 

singlet, and now can now be seen as two singlets at δ = 6.42 and δ = 6.50, each accounting for 

one proton. The aromatic region is difficult to distinguish, but it can be seen that there are 8 

distinct signals which correspond to the aromatic protons, and due to the number of signals 

doubling from the starting material, this structure can be classified as a cis-oxidative addition 

product. The mass spectrum contained a peak at 578.1, corresponding to [3.6-H]
+
, supporting the 

formation of the proposed structure. Numerous recrystallization attempts have been carried out 

showing no promise in delivering a single crystal suitable for X-ray analysis.  

 

3.2.4 Reactions of [PtMe2(dpk)] and [PtMe2(dpa)] with Phthaloyl Peroxide 

The effect of changing the chelate bite angle of the dipyridyl ligands of 

dimethylplatinum(II) complexes has been demonstrated to result in varying reactivity. There has 

been many studied carried utilizing ligands such as di-2-pyridylamine (dpa) and di-2-pyridyl 

ketone (dpk), which form six membered chelate rings with platinum(II) complexes and tend to 

show different reactivity than the conventional five membered chelate ring systems.
20

 In an 

attempt to show the reactivity of these larger chelate ring systems, studies utilizing phthaloyl 

peroxide with both complex 2.5, [PtMe2(dpk)] and complex 2.7, [PtMe2(dpa)] have been carried 

out to try to understand the trans-oxidative addition products of this system.  
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3.2.4a Reactions of [PtMe2(dpk)] with Phthaloyl Peroxide 

 Complex 2.5, [PtMe2(dpk)], was synthesized and reacted in 1:1 stoichometric ratio with 

phthaloyl peroxide. The initial red colour of the solution dissipated and a white precipitate began 

to form within the reaction mixture. The trans-product was found to be insoluble in the acetone 

solution, whereas the cis-product was soluble. In attempts to isolate the trans-product, the 

acetone solution was decanted off the white precipitate and analyzed separately. It was found 

that this was successful, in that upon purification of both the precipitate and of the acetone 

solution, that there had been the formation of two different products. The first of these products 

was characterized as the cis-oxidative addition product of phthaloyl peroxide with the 

[PtMe2(dpk)]. The 
1
H NMR spectrum of this complex is shown in figure 3.8. 

Figure 3.8: 
1
H NMR spectrum of complex 3.7, [PtMe2(dpk)(C8H4O2)] 

 

 The 
1
H NMR of this product, illustrates the cis-oxidative addition nature of the phthaloyl 

peroxide at the platinum(II) center. It can be seen from this spectrum that there are two methyl 

platinum proton resonances located at δ = 1.94 ppm and 2.04 ppm each with a coupling of 

2
J(PtH) =  70 Hz. This illustrates that a platinum(IV) species has indeed been formed and with 
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each of these resonances each representing 3 protons, suggesting a lack of symmetry of the 

molecule. This lack of symmetry is also evident within the aromatic portion of this spectrum, 

with varying resonances for the protons on bipyridyl rings. The protons were assigned to each of 

the rings through the use of COSY, however it was difficult to assign both H
5
 and H

5'
, as they 

seemed to overlap with the phthaloyl peroxide protons, which were also difficult to assign. There 

are two lines of thinking when it comes to the characterization of this product. It can be seen that 

a cis-oxidative addition species has been formed, however it is difficult to establish which 

complex actually results from this reaction. The complex could form in which both oxygen 

atoms from the phthaloyl peroxide species are coordinated which based on previous results 

would be a likely product, and this is shown in scheme 3.12. There is also the possibility that this 

species takes on similar characteristics to the previously reported peroxide additions with the 

[PtMe2(dpk)] in which there is reduction at the carbonyl leads to the insertion of an oxygen 

forming a hemi-acetal type product.
21

 

 

Scheme 3.12: Proposed reaction of [PtMe2(dpk)] with phthaloyl peroxide forming  

[PtMe2(dpk)(C8H4O2)]. 

 The inability to form single crystals suitable for X-ray analysis of this complex has led to 

both mass spectrometry and IR being relied on for characterization of this product. Simple IR 

experiments have been conducted comparing [PtMe2(dpk)] with that of the newly formed 

product, specifically viewing the carbonyl region. It can be observed that upon formation of this 
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new complex, that the CO stretch initially observed in the [PtMe2(dpk)] located at 1682 cm
-1

, has 

been lost and is not present in the spectrum of complex 3.7. There are however carbonyl 

stretches located at lower wavenumbers, around 1650-1600 cm
-1

, indicative of the phthaloyl 

peroxide coordinated to the platinum center. With this result and the fact that the elemental 

analysis results indicate the inclusion of water into the overall formula, we determined that the 

product formed is complex 3.7, cis-[PtMe2(dpkOH)(C8H5O4)] shown in scheme 3.13, not the 

proposed [PtMe2(dpk)(C8H4O2)] as shown in scheme 3.12. 

 

Scheme 3.13: Formation of cis-oxidative addition product via phthaloyl peroxide and 

[PtMe2(dpk)] forming complex 3.7. 

The use of mass spectrometry has also helped to confirm the formation of the complex 

3.7, however, it has been made difficult due to the solubility issues of this compound. The use of 

NaI in this mass spectroscopy characterization has lead to a peak of m/z 613.1, which represents 

[Pt(C8H5O4)Me2(dpkOH)Na]
+
. This result helps to clarify the formation of the proposed species 

resulting from the cis-oxidative addition reaction. With these results in hand, there is support 

from the findings that have already been made utilizing NMR, IR and elemental analysis. 

In work published by Zhang et al. it was found that the use of the [PtMe2(dpk)] in 

reactions with hydrogen peroxide lead to the formation of a species in which the carbonyl group 

was involved, forming the complex [Pt(OH)Me2(dpkOH)].
21

 With this in mind the acetone 
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portion of this sample was analyzed after being fully purified. It was found by looking at the 
1
H 

NMR spectrum shown in figure 3.9, that this product showed properties indicating that this 

reaction underwent a trans-oxidative addition.  

Figure 3.9: 
1
H NMR spectrum of complex 3.8, trans-[PtMe2(dpkOH)(C8H5O4)] 

As shown in the above 
1
H NMR spectrum, there is a single methyl platinum resonance 

located at δ = 1.64 ppm with a coupling of 
2
J(PtH) = 70 Hz. This is indicative that a 

platinum(IV) species has been formed and as seen in many of the cases of this research, there is 

reason to believe with these broad satellites that this contains a hydroxyl species within this 

product. It can also be seen that there are four peaks corresponding to the eight protons of the 

pyridyl rings, and this leads to the determination that this product is symmetrical about the 

platinum center. This was formed as the minor product in the reaction and thus gathering 

substantial amounts for mass spectroscopy and elemental analysis was made difficult. However, 

through a slow diffusion of pentane into a sample of complex 3.8, trans-

[PtMe2(dpkOH)(C8H5O4)] dissolved in dichloromethane, suitable crystals for X-ray analysis 

were obtained. These crystals proved to be a helpful resource in determining the species formed 

within this reaction. Based on the crystal structure as shown in figure 3.10, there proved to a 
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similar formation of product as compared to that of Zhang et al. as well as compared to the initial 

analysis of complex 3.8, except forming the trans isomer. 

 

Figure 3.10: Crystal structure of complex 3.8; Selected Bond Parameters: Pt(1)-N(1) = 2.146(8), 

Pt(1)-N(2) = 2.153(9), Pt(1)-O(1) = 2.009(6), Pt(1)-O(2) = 2,046(7), Pt(1)-C(12) = 2.062(11), 

Pt(1)-C(13) = 2.030(11), O(1)-C(6) = 1.438(7), O(2)-C(14) = 1.297(13), O(3)-C(14) = 1.226(13) 
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Table 3.3:  Bond lengths [Å] and angles [deg] for complex 3.8. 

            Pt(1)-O(1)                    2.009(6)  

            Pt(1)-C(13)                  2.030(1)  

            Pt(1)-O(2)                    2.046(7)  

            Pt(1)-C(12)                  2.062(1)  

            Pt(1)-N(1)                    2.146(8)  

            Pt(1)-N(2)                    2.153(9) 

      

            O(1)-C(6)                      1.438(11)  

            O(2)-C(14)                    1.297(13)  

            O(3)-C(14)                    1.226(13)  

            O(4)-C(21)                    1.312(14)  

            O(5)-C(21)                    1.204(15)  

 

            O(1)-Pt(1)-C(13)             93.3(4)  

            O(1)-Pt(1)-O(2)             178.8(3)  

            C(13)-Pt(1)-O(2)             87.7(4)  

            O(1)-Pt(1)-C(12)             95.0(4)  

            C(13)-Pt(1)-C(12)            90.9(5)  

            O(2)-Pt(1)-C(12)             84.3(4)  

            O(1)-Pt(1)-N(1)              78.6(3)  

            C(13)-Pt(1)-N(1)             89.8(4)  

            O(2)-Pt(1)-N(1)             102.1(3)  

            C(12)-Pt(1)-N(1)            173.6(4)  

            O(1)-Pt(1)-N(2)              77.8(3)          

            C(13)-Pt(1)-N(2)            170.9(4)  

            O(2)-Pt(1)-N(2)             101.3(3)  

            C(12)-Pt(1)-N(2)             91.8(4)            

            N(1)-Pt(1)-N(2)              86.6(3)  

            C(6)-O(1)-Pt(1)             102.1(5)  

            C(14)-O(2)-Pt(1)            118.6(7)  

            O(6)-C(6)-O(1)              111.2(8)  

            O(6)-C(6)-C(5)              108.7(8)  

            O(5)-C(21)-O(4)             119.7(1)  

 

From the X-ray structure, it can be seen that this product has one of the oxygen atoms 

from the phthaloyl peroxide species coordinated and one oxygen atom bound to the platinum 

center. This structure confirms the proposed conformation, and shows that the ligand, dpkOH, 

acts a fac-tridentate ligand in forming the platinum(IV) complex 3.7. The route in which this 

species is formed is difficult to fully understand, but it can be suggested that there is an 

equilibrium between the complex 3.7 and complex 3.8, the cis and trans species respectively. 

Upon inspection, it can be seen that there are two routes of formation. As in the case of most of 

these peroxide reactions, the peroxide bond is typically broken as one of the oxygen atoms binds 

to the platinum center leading to the formation of a five-membered, cationic platinum species. 

Scheme 3.12, shows the result of the other anionic oxygen atom from the phthaloyl peroxide 

species, coordinating to the cationic platinum center, through a rearrangement of the methyl 

groups of the metal forming a cis-coordianted product. On the other hand, when there is 

hydrolysis of the carbonyl by either a water or hydroxyl molecule, before the anionic oxygen of 

the phthaloyl peroxide can coordinate to the platinum center, the result is the formation of 
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complex 3.7 and 3.8. This overall process for the formation of complex 3.8 has been illustrated 

in Scheme 3.14 and this route would be the same for complex 3.7, except for the product would 

result in the cis-isomer. 

 
 

Scheme 3.14: Proposed pathway for the formation of complex 3.7, cis-

[PtMe2(dpkOH)(C8H5O8)] 

  

3.2.4b Reaction of [PtMe2(dpa)] with Phthaloyl Peroxide  

 A reaction was carried out in which complex 2.7, [PtMe2(dpa)] was mixed in a 1:1 ratio 

with phthaloyl peroxide. The initial yellow colour of the solution dissipated and a white 

precipitate began to form. The white mixture was layered with pentane and the product was 

isolated and dried in vacuo. The 
1
H NMR spectrum, shown in figure 3.11, illustrates the 

formation of complex 3.9, as the major product which has been tentatively characterized as 

[PtMe2(OH2)(dpa)(C8H4O4)].  



111 

 

 

Figure 3.11: 
1
H NMR spectrum of complex 3.9, from the reaction of [PtMe2(dpa)] with 

phthaloyl peroxide. 

 

The 
1
H NMR spectrum has helped to distinguish this product as undergoing a trans-

oxidative addition in which complex 3.9 has been formed. It can be seen in this spectrum that 

there is a single methyl platinum resonance located at δ = 1.61 ppm with a coupling of 
2
J(Pt-H) =  

67 Hz. There is symmetry about this complex with the fact that there is a single methyl platinum 

resonance and only four resonances for the aromatic region of this spectrum representing the 

eight protons of the pyridyl rings. There is some uncertainty towards assigning the phthaloyl 

peroxide protons as they are not fully resolved but it can be seen that the two separate resonances 

integrating to two protons each and thus it can be assigned as the phthaloyl peroxide coordinated 

to the platinum complex.  

There are a variety of possibilities possible for this product and thus mass spectrometry 

was relied on to help establish the actual structure of complex 3.9. It can be seen that there is a 

prominent peak at m/z = 561.1, which represents the species [PtMe2(dpa)(C8H5O4)]
+
, resulting in 
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a loss of the water group from the platinum center. Further supporting these claims is a very 

prominent peak at m/z 411.1, which illustrates the loss of the phthaloyl peroxide from the 

platinum center, forming [PtMe2(OH)(dpa)]
+
. This peak appears to be more prominent compared 

to that at 561.1 m/z due to the ease in which the phthaloyl group will be lost compared to the 

hydroxyl. Elemental analysis supports the characterization of complex 3.9, 

[PtMe2(OH2)(dpa)(C8H4O4)].  

 

3.3 Conclusion 

 The concept of directing oxidative addition towards forming a complex with cis-

geometry becomes important when understanding that the reactivity of these platinum(IV) 

complexes becomes increased compared to their relatively unreactive trans counterparts.
11 

With 

this concept in hand, it was important to try to utilize a peroxide complex which could be used to 

help with the cis-coordination at a platinum(II) center. Phthaloyl peroxide was chosen as a strong 

candidate for this type of chemistry due to it being a cyclic peroxide which even upon breaking 

of the O-O bond would not lead to complete dissociation of the molecule. Utilizing platinum(II) 

complexes containing bidentate nitrogen donor ligands with this cyclic peroxide yielded some 

very interesting results.  

The formation of complex 3.2 and complex 3.3 has illustrated the cis-coordination of this 

phthaloyl peroxide complex with both [PtMe2(bpy)] and [PtMe2(bu2bpy)]. The use of 

[PtMe2(bu2bpy)] has really helped to exemplify this chemistry in that a crystal structure was 

obtained of the first ever evidence of cis-oxidative addition of phthaloyl peroxide, forming a cis 

platinum(IV) complex. While these complexes did display cis-geometry, the trans isomer was 

formed in equilibrium in both cases. However the cis-product seems to be the 
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thermodynamically more fovourable. Utilizing [PtMe2(MIM)2C=CH2)] which has previously 

shown to favour cis-geometry with benzoyl peroxide,
14

 complex 3.6 was formed in a strictly cis-

geometry.  

Synthesis was then carried out with platinum(II) complexes containing six membered 

bidentate nitrogen donors, which have shown varying reactivity to the simple five membered 

chelate rings.
20

  The results of the reactions with [PtMe2(dpk)] showed the formation of both the 

cis and trans-isomers. The trans-isomer was easier to characterize because a crystal was obtained 

and analyzed as complex 3.8. The cis-isomer was more difficult to establish but though the use 

of IR and mass spectrometry it was classified as complex 3.7. The idea of using [PtMe2(dpa)] 

was that the amine group would leading to hydrogen bonding interactions with the phthaloyl 

peroxide and this would lead to stabilization of the product and ease in crystallization. This was 

not the case and it was found that complex 3.9 formed, which was a trans-isomer with no 

evidence of the cis-product a curious result based on the peroxide being used.  

Aside from the formation of complex 3.6 and 3.9, there appears to be prevalence for both 

a cis and trans-isomer formation even with the utilization of a cyclic peroxide to try to control 

this geometric obstacle. The prevalence for the formation of trans-species with platinum(II) 

complexes shows itself in the case of these complexes whilst even utilizing a supposed cis-

directing peroxide, trans-platinum(IV) species were formed.  The capabilities to form the cis-

isomers however and especially to obtain crystal data of complex 3.3 show some very exciting 

accomplishments in directing cis-oxidative addition reactions with peroxides.  
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3.4 Experimental 

All reactions were carried out using standard Schlenk techniques, unless otherwise stated. 

All NMR spectra were recorded on Varian Mercury 400 or Varian INOVA 400 or 600 MHz 

spectrometers. 
1
H NMR chemical shifts are reported in ppm (δ) relative to TMS and referenced 

to their corresponding solvents. Mass spectrometric analysis was carried out using an 

electrospray PE-Sciex Mass Spectrometer (ESI-MS) coupled with a TOF detector. The platinum 

dimer, [Pt2Me4(µ-SMe2)2] was prepared according to the literature and utilized in the formation 

of the Pt(II) complexes.
22 

Phthaloyl peroxide. This product was prepared by a variation on that outlined by Russell.
10

 A 

solution of sodium dihydrogen phosphate (15.0 g, 0.125 mol) and disodium hydrogen phosphate 

(15.0 g, 1.056 mol) in water (400 mL) was cooled to 5°C in an ice-water bath in a 1000 mL 

round bottom flask. Sodium peroxide (8.0 g, 0.1025 mol) was added to the stirred solution 

followed by a solution of 1,2-benzenedicarbonyl dichloride (phthaloyl chloride, 15 mL, 0.104 

mol) in chloroform (300 mL), also cooled to 5
°
C. Stirring was continued for 2 hours and then the 

chloroform layer was separated off and washed twice with water. The chloroform solution was 

evaporated down with a stream of air, until about 30 mL of solution remained in the flask. The 

solution was layered with pentane (10 mL) and left in the fridge overnight. A white precipitate 

formed in the solution and this was filtered with a Buchner funnel and dried thoroughly. The 

crude phthaloyl peroxide was recrytallized twice from a benzene/pentane mixture, with the 

product needing slight heat to dissolve in the benzene and an ice bath to crash out product upon 

addition of pentane. The final product was obtained as a white, light powder in an overall yield 

of 46% (7.53 g, 0.0459 mmol). 
1
H NMR in CDCl3: δ 8.04 (m, 2H, H

3
) 8.30 (m, 2H, H

2
). ESI-
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MS(TOF) [C8H4O4-H]
+
: Calc. Precise Mass = 165.01 m/z; Determined Precise Mass = 165.03 

g/mol. 

Complex 3.1 and 3.2, 3.2a. The addition of phthaloyl peroxide (7.70 mg, 0.0525 mmol) to a 

solution of [PtMe2(bpy)] (20.0 mg, 0.0525 mmol) in acetone was carried out, leading to the 

formation of a cloudy solution. The product was layered with pentane to precipitate out the 

remainder of the product. The product was subsequently washed with pentane (3x2 mL) and 

ether (3x2 mL) and then dried in vacuo. 
1
H NMR was used for characterization of the products. 

1
H NMR in acetone-d6:  

Complex 3.1, trans-product: δ = 2.20 (s, 6H, 
2
J(PtH) = 66 Hz, Me), 7.2 – 7.7 (m, 4H, Ar-H 

from peroxide), 7.84 (dd, 2H, 
3
J(H

5
H

6
) = 6 Hz, 

3
J(H

4
H

5
) = 8 Hz, H

5
), 8.23 (dd, 2H, 

3
J(H

4
H

5
) = 8 

Hz, 
3
J(H

4
H

3
) = 7 Hz, H

4
) 8.60 (d, 2H, 

3
J(H

3
H

4
) = 7 Hz, H

3
), 9.38 (d, 2H, 

3
J(H

6
H

5
) = 6 Hz, H

6
).  

Complex 3.2, cis-product: δ = 1.10 (s, 3H, 
2
J(PtH) = 70Hz, PtMe), 1.15 (s, 3H, 

2
J(PtH) = 69Hz, 

PtMe), 7.2-7.7 (m, 4H, Ar-H from peroxide), 7.81 (dd, 1H, 
3
J(H

5
H

6
) = 7 Hz, 

3
J(H

5
H

4
) = 8 Hz, 

H
5
) 8.05 (dd, 1H, 

3
J(H

5’
H

6’
) = 6 Hz, 

3
J(H

4`
H

5`
) = 8 Hz, H

5’
), 8.36 (dd, 1H, 

3
J(H

4’
H

3’
) = 8 Hz, 

3
J(H

4’
H

5’
) = 8 Hz, H

4’
), 8.37 (dd, 1H, 

3
J(H

3
H

4
) = 8 Hz, 

3
J(H

4
H

5
) = 8 Hz, H

4
), 8.73 (d, 1H, 

3
J(H

3
H

4
) = 8 Hz, H

3
), 8.79 (d, 1H, 

3
J(H

3’
H

4’
) = 8 Hz, H

3’
), 9.20 (d, 1H, 

3
J(H

6’
H

5’
) = 6 Hz, H

6’
), 

9.39 (d, 1H, 
3
J(H

6
H

5
) = 7 Hz, H

6
). ESI-MS (TOF) [3.2-H]

+
: Calc. Precise Mass: 546.09 g/mol; 

Determined Precise Mass: 546.1 g/mol. Anal. Calc’d. for (C20H18N2O4Pt·H2O) (%): C, 42.63; H, 

3.58; N, 4.97%. Found: C, 42.36; H, 3.41; N, 4.51. X-ray structure formed as complex 2a·4.5 

H2O. 

 

Complex 3.3, [PtMe2(bu2bpy)]. This complex was prepared following the literature.
18

 Solutions 

of [PtMe4(SMe2)2] (100 mg, 0.174 mmol) and 4,4’-di-tert-butyl-2,2’-bipyridine (0.0934g, 



116 

 

 

0.348mmol) in toluene were mixed and placed in the fridge for one day to precipitate out the 

product. The orange solid was separated by decanting of the solvent, washing with pentane and 

drying in vacuo. Yield was 82% (704 mg, 0.142mmol). 
1
H NMR in acetone-d6: δ = 0.91 (s, 6H, 

2
J(PtH) = 86 Hz, Me), 1.44 (s, 18H, t-Bu), 7.69 (dd, 2H, 

3
J(H

5
H

6
) = 6 Hz, 

4
J(H

3
H

5
) = 2 Hz, H

5
), 

8.45 (d, 2H, 
4
J(H

3
H

5
) = 2 Hz, H

3
), 9.08 (d, 2H, 

3
J(H

5
H

6
) = 6 Hz, 

3
J(PtH

6
) = 22 Hz, H

6
) 

 

Complex 3.4, [PtMe2(bu2bpy)(C8H4O4)]. Phthaloyl peroxide (6.0 mg, 0.0405 mmol) was added 

to [PtMe2(bu2bpy)] (20.0 mg, 0.0405 mmol) in 1:1 stoichioometic amounts in acetone. A clear 

solution was formed upon the mixture of the two compounds. The reaction mixture was then 

layered with pentane, affording a white precipitate, which was then washed with pentane (3x2 

mL) and ether (3x2 mL) and dried in vacuo. Isolation of the cis-product was achieved through 

recrystaillization by slow diffusion of pentane into a dichloromethane solution of complex 3.4. 

1
H NMR in acetone-d6 δ = 1.01 (s, 3H, 

2
J(PtH) = 68 Hz, Pt-Me to N), 1.10 (s, 3H, 

2
J(PtH) = 

70Hz, Pt-Me to O), 1.40 (s, 9H, t-butyl), 1.44 (s, 9H, t-butyl) 7.30-7.70 (m, 4H, peroxide 

protons), 7.73 (dd, 1H, 
3
J(H

5’
H

6’
) = 6 Hz, 

4
J(H

5’
H

3’
) = 1Hz, H

5’
), 8.01 (dd, 1H, 

3
J(H

5
H

6
) = 6 Hz, 

4
J(H

5
H

3
) = 1Hz, H

5
), 8.50 (d, 1H, 

3
J(H

5
H

6
 = 6 Hz, 

3
J(PtH

6
) = 22 Hz, H

6
), 9.06 (d, 1H, 

3
J(H

5’
H

6’
) 

= 6 Hz, H
6’

), 9.08 (d, 1H, 
4
J(H

3
H

5
) = 1Hz, H

3
), 9.12 (d, 1H, 

4
J(H

3’
H

5’
) = 1Hz, H

3’
) ESI-

MS(TOF) [3.4-H]
+
: Calc. Precise Mass = 658.22 g/mol; Determined Precise Mass = 658.2 

g/mol. Anal. Calc’d. for C29H36Cl2N2O4Pt (%): C, 48.89; H, 5.04; N, 4.00%. Found: C, 48.82; H, 

4.93; N, 3.61. 

 

Complex 3.5, [PtMe2(MIM)2C=CH2]. This complex was prepared according to the literature.
14 

[PtMe4(SMe2)2] (200 mg, 0.350 mmol) was added to a stirring solution of [(MIM)2C=CH2] (181 
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mg, 0.700 mmol) in ether. The complex precipitated out of solution as a light yellow solid and 

was placed in the fridge overnight. The solid was washed with ether and pentane and then dried 

in vacuo. Yield 79%. 
1
H NMR in acetone-d

6
. δ = 0.54 (s, 6H, 

2
J(PtH) = 86 Hz, Pt-Me), 3.92 (s, 

6H, N-Me), 6.19 (s, 2H, CH2), 7.20 (d, 2H, 
3
J(H

1
-H

2
) = 2Hz, 3J(Pt-H

1
) = 13 Hz, H

1
), 7.23 (d, 

2H, 
3
J(H

2
-H

1
) = 2 Hz, H

2
).  

 

Complex 3.6, [PtMe2(C8H4O4)(MIM)2C=CH2]. An NMR scale reaction was carried out with 

the addition of phthaoyl peroxide (3.2 mg, 0.0196 mmol) to a solution of Pt(MIM)2C=CH2 (8.1 

mg, 0.0196 mmol) in acetone-d6. A cloudy, white solution formed in the NMR tube upon 

addition of the starting materials. The 
1
H NMR indicates conversion of the initial platinum 

starting material to an entirely new product. 
1
H NMR in acetone-d6: δ = 1.23 (s, 3H, 

2
J(PtH) = 

68 Hz, PtMe to N), 1.31 (s, 3H, 
2
J(PtH) = 71 Hz, PtMe to O), 3.98 (s, 3H, MeN), 4.08 (s, 3H, 

MeN), 6.42 (s, 1H, CH2), 6.50 (s, 1H, CH2), 6.90-8.35 (Aromatic protons, 8H).  ESI-MS(TOF) 

[3.6-H]
+
: Calc. Precise Mass = 579.14 g/mol; Determined Precise Mass = 579.1 g/mol. 

 

Complex 3.7 and 3.8. To a stirring solution of [PtMe2(dpk)] (1.26 mg, 0.0307 mmol) in acetone 

was added a solution of phthaloyl peroxide (0.50 mg, 0.0307 mmol) in acetone. Initially the red 

colour of the solution dissipated, turning to a clear solution and over ten minutes of stirring a 

white precipitate was formed. The acetone solution was separated from the formed precipitate 

and each sample was characterized independently. The acetone solution was separated and then 

layered with pentane (3 mL) and a white product precipitated out of solution. Both products were 

washed with ether (3x2 mL) and pentane (3x2 mL) and then dried in vacuo.  
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Complex 3.7, cis-[PtMe2(dpk)(C8H4O2)]. 
1
H NMR in acetone-d

6
: δ = 1.94 (s, 3H, 

2
J(Pt-H) = 70 

Hz, Pt-Me), 2.04 (s, 3H, 
2
J(Pt-H) = 70 Hz, Pt-Me), 7.47-7.53 (m, 1H, H

5
), 7.80 (dd, 1H, 

3
J(H

3
-

H
4
) = 8 Hz, H

3
), 

4
J(H

3
-H

5
) = 1Hz), H

3
), 8.04 (ddd, 1H, 

3
J(H

4
-H

3
) = 8 Hz, 

3
J(H

4
-H

5
) = 8 Hz, 

4
J(H

4
-H

6
) = 1 Hz, H

4
), 9.21 (dd, 1H, 

3
J(H

6
-H

5
) = 6 Hz, 

4
J(H

6
-H

4
) = 1 Hz, H

6
), 7.47-7.53 (m, 1H, 

H
5'
), 7.92 (dd, 1H, 

3
J(H

3'
-H

4'
) = 8 Hz, 

4
J(H

3'
-H

5'
) = 2 Hz, H

3'
), 8.11 (ddd, 1H, 

3
J(H

4'
-H

3'
) = 8 Hz, 

3
J(H

4'
-H

5'
) = 9 Hz, 

4
J(H

4'
-H

6'
) = 1 Hz, H

4'
), 8.50 (dd, 1H, 

3
J(H

6'
-H

5'
) = 6 Hz, 

4
J(H

6'
-H

4'
) = 1 Hz, 

H
6'
).  ESI-MS(TOF) [Pt(C8H4O4)Me2(dpkOH)Na]

+
: Calc. Precise Mass: 613.1 g/mol. 

Determined Precise Mass: 613.1g/mol. IR (Nujol mull, cm
-1

): 1652 υ(CO), 1605 υ(CO). Anal. 

Calc’d. For C12H18N2O5Pt·H2O (%): C 42.64; H 3.41; N 4.74. Found: C 42.94; H 3.66; N 4.62.  

Complex 3.8, trans-[PtMe2(dpkOH)(C8H5O4)].
 1

H NMR in methanol-d
4
: δ = 1.64 (s, 6H, 

2
J(Pt-

H) = 70 Hz, Pt-Me), 7.50 (dd, 2H, 
2
J(H

5
-H

4
) = 8 Hz, 

2
J(H

5
-H

4
) = 5 Hz, H

5
), 7.80 (d, 2H, 

3
J(H

3
-

H
4
) = 8 Hz,  

4
J(H

3
-H

5
) = 1 Hz), H

3
), 8.07 (dd, 2H, 

3
J(H

4
-H

3
) = 8 Hz, 

3
J(H

4
-H

5
) = 8 Hz, H

4
), 9.05 

(d, 2H, 
3
J(H

6
-H

5
) = 5 Hz, 

4
J(H

6
-H

4
) = 1 Hz, H

6
), 7.52-7.92 (m, 4H, pthaloyl peroxide protons).  

 

Complex 3.9, [PtMe2(OH)(dpa)(C8H5O4)]. To a stirring solution of [PtMe2(dpa)] (1.1 mg, 

0.027 mmol) in acetone was added phthaloyl peroxide (0.44 mg, 0.027 mmol). The yellow 

colour of the solution immediately dissipated, forming a white reaction mixture which was 

allowed to stir for 1 hour. A precipitate formed in the reaction mixture. The remaining acetone 

solution was decanted and remaining off-white precipitate was subsequently washed with 

pentane (3x2 mL) and ether (3x2 mL) and then dried in vacuo. Yield 73%. 
1
H NMR in CD3OD: 

δ = 1.61 (s, 6H, 
2
J(Pt-H) = 67 Hz, Pt-Me), 7.30 (ddd, 2H,  

3
J(H

5
-H

6
) = 6 Hz, 

3
J(H

5
-H

4
) = 8 Hz,

 

4
J(H

5
-H

3
) = 1 Hz, H

5
), 7.40 (d, 2H, 

3
J(H

3
-H

4
) = 8 Hz, H

3
), 7.99 (ddd, 2H, 

3
J(H

4
-H

5
) = 8 Hz, 

3
J(H

4
-H

3
) = 8 Hz, 

4
J(H

4
-H

6
) = 2 Hz, H

4
), 8.45 (dd, 2H, 

3
J(H

6
-H

5
) = 6 Hz, 

4
J(H

6
-H

4
) = 2 Hz, H

6
), 



119 

 

 

7.58 (m, 2H, phthaloyl peroxide), 8.19 (m, 2H, phthaloyl peroxide). ESI-MS(TOF): Calc. 

precise mass: [PtMe2(OH)(dpa)]
+
 = 413.1; [PtMe2(dpa)(C8H5O4)]

+ 
= 561.1 g/mol. Determine 

precise mass: [PtMe2(OH)(dpa)]
+
 = 413.1 [PtMe2(dpa)(C8H5O4)]

+
 = 561.1 g/mol; . Anal. Calc’d. 

For C20H21N3O5Pt·1.5 H2O (%): C, 39.67; H, 4.00; N, 6.94%. Found: C, 39.71; H, 3.79; N, 6.62. 

 

X-ray Structure Determination: X-ray data were obtained and solutions were determined by 

Benjamin Cooper and Matthew McCready in this chapter. Suitable crystals were mounted on a 

glass fibere and data was collected at low temperature 150(2) K on the Nonius Kappa-CCD area 

detector diffractometer with COLLECT (Nonius B.V.; 1997-2002). The unit cell parameters 

were calculated and refined from the full data set. The crystal data and refinement parameters for 

all complexes are listed in the following tables.  

  



120 

 

 

Table 3.4: Crystallographic data for complex 3.2a·4.5H2O 

Empirical Formula C40 H36 N4 O19 Pt2 

Formula Weight 1266.91 

Wavelength 0.71073 Å 

Crystal System Triclinic 

Space Group P-1 

Unit Cell Dimensions a = 9.0456(12) Å               α = 95.283(3)° 

b = 16.846(2) Å                β = 103.731(3)° 

c = 16.919(2) Å                 γ = 103.638(3)° 

Volume 2403.5(6) Å
3
 

Z 2 

Density (calculated) 1.750 Mg/m
3
 

Absorption Coefficient (μ) 45.889 mm
-1

 

Crystal Size 0.07 x 0.03 x 0.02 mm
3
 

Refinement Method Full-matrix least-squares on F
2
 

Goodness of fit on F
2
 0.882 

Final R indicies [I>2σ(I)] R1= 0.0595, wR2 = 0.1428 

R indicies (all data) R1 = 0.0872, wR2 = 0.1652 
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Table 3.5: Crystallographic data for complex 3.4·CH2Cl2 

Empirical Formula C29 H36 Cl2 N2 O4 Pt 

Formula Weight 742.59 

Wavelength 0.71073 Å 

Crystal System Monoclinic 

Space Group P21/n 

Unit Cell Dimensions a = 15.897(3) Å                 α = 90° 

b = 17.898(4) Å                β = 107.08(3)° 

c = 22.069(4) Å                 γ = 90° 

Volume 6002(2) Å
3
 

Z 8 

Density (calculated) 1.644 Mg/m
3
 

Absorption Coefficient (μ) 4.889 mm
-1

 

Crystal Size 0.24 x 0.12 x 0.11 mm
3
 

Refinement Method Full-matrix least-squares on F
2
 

Goodness of fit on F
2
 1.078 

Final R indicies [I>2σ(I)] R1= 0.0460, wR2 = 0.1155 

R indicies (all data) R1 = 0.0726, wR2 = 0.1427 
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Table 3.6: Crystallographic data for complex 3.8 

Empirical Formula C21 H20 N2 O6 Pt 

Formula Weight 591.58 

Wavelength 0.71073 Å 

Crystal System Monoclinic 

Space Group C2/c 

Unit Cell Dimensions a = 34.149(3) Å                 α = 90° 

b = 7.8620(6) Å                 β = 115.614(2)° 

c = 16.3098(13) Å              γ = 90° 

Volume 3948.6(5) Å
3
 

Z 8 

Density (calculated) 1.990 Mg/m
3
 

Absorption Coefficient (μ) 7.150 mm
-1

 

Crystal Size 0.55 x 0.08 x 0.06 mm
3
 

Refinement Method Full-matrix least-squares on F
2
 

Goodness of fit on F
2
 0.936 

Final R indicies [I>2σ(I)] R1= 0.0442, wR2 = 0.1207 

R indicies (all data) R1 = 0.0807, wR2 = 0.1427 
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3.5 Appendix 

3.4.1 
1
H NMR spectrum of complex 3.3, [PtMe2(bu2bpy)] 

 

3.4.2 
1
H NMR spectrum of complex 3.4, [PtMe2(MIM)2C=CH2] 
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4.1 Introduction  

The reactions of oxidative addition and reductive elimination are known to be some of 

the most significant in the organometallic and bioinorganic chemistry of the transition metals.
1-3

 

Large number of studies have been carried out with the oxidative addition of halogens to 

platinum(II) complexes studying their reactivity and mechanistic pathways, as outlined below.
4
 

 

 An important aspect in studying this reactivity is by utilizing iodine as it is less reactive 

than other halogens, allowing for the ability to monitor and model the reaction pathways of these 

halogens with platinum(II) complexes. An early mechanistic study of the reaction of [Pt(acac)2] 

with iodine showed that the reaction proceeded by way of an intermediate [Pt(acac)2(I2)], which 

then rearranged by a free-radical chain mechanism to the product of trans-oxidative addition. 

This process has been illustrated in Scheme 4.1.
5,6

  

 

Scheme 4.1: Mechanistic pathway of [Pt(acac)2] with I2 

 The use of pincer complexes has also been utilized to show the formation of iodine 

complexes, which have been isolated and structurally characterized, as illustrated in scheme 4.2. 

These structures illustrate the complicating factor that iodine can also bind to a PtI group to form 
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the corresponding triiodide Pt-I3. The I-I distances of the I2 ligand in the complexes formed are 

2.822(1) and 2.793(1) Å, which are longer than the I-I distance seen in iodine itself of 2.715(6) 

Å.
7-9

 

 

Scheme 4.2: Reaction of a platinum(II) pincer complex with iodine. 

 It is known that when these reactions are carried out in polar solvents, the dihalogen 

complex is not usually observed and it is presumed to release a halide ion to give a cationic 

solvent complex of platinum(IV), which can often be identified as a long-lived reaction 

intermediate. In some cases, as illustrated in scheme 4.3, the intermediate may be isolated.
4,10-12 

It 

is often unclear as to whether the first step in the conversion is a solvent coordination or chloride 

dissociation, or if the reaction is concerted.
13 

The stepwise, polar mechanism illustrated in 

scheme 4.3 usually leads to trans-oxidative addition
1-8,10-24 

but since likely 5-coordinate 

intermediates are stereochemically non rigid,
25,26

 cis-oxidative addition can be observed or 

equilibrium between trans and cis isomers can be found if thermodynamically favourable. 
14, 24-26

 

There however, appears to be no well-established examples of concerted, non-polar cis oxidative 

addition of halogens to platinum(II) complexes. 
1-4,13 
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Scheme 4.3: Polar solvent forming a cationic solvent complex of platinum(IV) (NN = cis-1,4-

diaminocyclohexane, S = solvent = H2O, Me2NHCO, Me2SO, acetone). 

With further interest in the mechanism of oxidative addition, as well as in the use of 

oxidative addition reactions in the synthesis of new organometallic complexes, a study of the 

oxidative addition of iodine to the complex 2.1, [PtMe2(bpy)], has been carried out.
24,27-32

 Past 

research has lead to a proposed mechanism by way of one of the routes shown in scheme 4.4. In 

this research, the results of kinetic studies and DFT calculations were augmented with NMR 

studies, investigating the possible intermediates involved in this reaction.
12,27,28

 Low temperature 

NMR studies are illustrated in this chapter to help show the potential intermediates formed and 

elucidate the overall mechanism of this reaction. The overall reaction of iodine to  [PtMe2(bpy)] 

seems at first glance to be simple, but the potential involvement of solvent at intermediate stages 

or of a competing free radical mechanism cause it to be more complicated.  
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Scheme 4.4: Expected mechanistic routes for oxidative addition of iodine at [PtMe2(bpy)] (NN = 

2,2'- bipyridine, S = solvent) 

 

4.2 Results and Discussion 

 

4.2.1 Synthesis and Structure of Complex 4.1 and 4.2 

 In an attempt to help distinguish the mechanism of oxidative addition of a platinum(II) 

complex with iodine, low temperature NMR experiments were conducted to find the 

intermediates being formed. Before the low temperature experiments could be conducted, 

solvents needed to be selected to determine which would be suitable for forming the desired 

products. Thus, complex 2.1, [PtMe2(bpy)] was reacted with iodine to give the product of trans-

oxidative addition, complex 4.1 as the major product, with a smaller amount of the 

corresponding cis-adduct complex 4.2 as the minor product. Reactions of this nature in toluene 

gave very little of complex 4.2, however when using acetone or dichloromethane as solvents, 

about 5% of complex 4.2 was found and this can be seen in figure 4.1.  
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Figure 4.1: 
1
H NMR spectrum of complexes, 4.1 and 4.2 in CD2Cl2. 

 Attempts to grow single crystals of complex 4.1 have given co-crystals of complex 4.1 

and 4.2, in disordered form, in which the proportion of complex 4.2 was always greater. This 

means that during the crystallization process, which takes several weeks at room temperature, 

there is isomerisation of complex 4.1. It is presumed that the equilibration takes place by way of 

intermediates 4.5 and 4.7.
25, 26 

A structure has been obtained from a crystal containing complex 

4.1 and 4.2 in an approximate 41:59 ratio respectively, containing an additional iodine molecule. 

There is a center of inversion at the midpoint of the I-I bond, which relates the disordered atoms 

I(4), C(12), and C(13),I(3). The atoms C(11) and C(12) were not disordered. The structure 

illustrated in figure 4.1, shows one molecule of each complex 4.1 and 4.2 bridged by the iodine 

molecule.   
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Figure 4.2: Structure of complex 4.2·0.5I2, containing disordered 4.1 and 4.2 in ratio 41:59. 

Selected Bond Distances: Pt(1)-N(1) = 2.105(7); Pt(1)-N(2) = 2.193(7); Pt(1)-C(11) = 2.073(8); 

Pt(1)-C(12) = 1.96(3); Pt(1)-C(13) = 2.18(5); Pt(1)-I(2) = 2.7309(8); Pt(1)-I(3) = 2.543(1); Pt(1)-

I(4) = 2.648(2); I(1)-I(1A) = 2.7883(15); I(1)···I(2) = 3.431(2) Å. 
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Table 4.1:  Bond lengths [Å] and angles [deg] for complex 4.2·0.5I2 

            Pt(1)-C(12)                  1.96(3)  

            Pt(1)-C(11)                  2.073(8)  

            Pt(1)-N(1)                    2.105(7)  

            Pt(1)-C(13)                  2.18(5)  

            Pt(1)-N(2)                    2.193(7)  

 

            Pt(1)-I(3)                     2.5434(2)  

            Pt(1)-I(4)                     2.648(2)  

            Pt(1)-I(2)                     2.7309(8)  

            I(1)-I(1A)                    2.7873(2) 

            I(1)-I(2)       3.431(2) 

 

            C(12)-Pt(1)-C(11)            88.1(1)  

            C(12)-Pt(1)-N(1)             88.9(1)  

            C(11)-Pt(1)-N(1)             98.1(3)  

            C(12)-Pt(1)-C(13)            89.3(2)  

            C(11)-Pt(1)-C(13)            90.5(2)  

            N(1)-Pt(1)-C(13)             171.1(2)  

            C(12)-Pt(1)-N(2)             89.2(1)  

            C(11)-Pt(1)-N(2)             174.8(4)  

            N(1)-Pt(1)-N(2)              77.4(3)  

            C(13)-Pt(1)-N(2)             93.9(2)  

            C(12)-Pt(1)-I(3)              92.3(9)  

            C(11)-Pt(1)-I(3)              88.0(3)  

            N(1)-Pt(1)-I(3)               173.83(2)  

            C(13)-Pt(1)-I(3)              3.9(16) 

            N(2)-Pt(1)-I(3)              96.6(2)              

            C(12)-Pt(1)-I(4)             2.4(10)  

            C(11)-Pt(1)-I(4)             88.0(3)  

            N(1)-Pt(1)-I(4)              91.3(2)  

            C(13)-Pt(1)-I(4)            87.0(15)  

            N(2)-Pt(1)-I(4)              89.6(2)  

            I(3)-Pt(1)-I(4)                89.91(7)  

            C(12)-Pt(1)-I(2)             175.0(1)  

            C(11)-Pt(1)-I(2)             88.4(3)  

            N(1)-Pt(1)-I(2)               88.0(2)  

            C(13)-Pt(1)-I(2)             94.3(2)  

            N(2)-Pt(1)-I(2)               94.0(2)  

            I(3)-Pt(1)-I(2)                91.20(5)  

            I(4)-Pt(1)-I(2)                176.13(4)  

 

4.2.2 Detection of Intermediates by 
1
H NMR Spectroscopy 

 Attempts have been made to detect reaction intermediates by monitoring the reactions by 

1
H NMR spectroscopy. The reactions were however too rapid at room temperature and no 

intermediates could be detected under these conditions. Initial studies for this reaction were 

carried out in benzene and have illustrated a complete conversion of complex 2.1 to complex 4.1. 

A study of the reaction in toluene-d8 was carried out at -80°C, following by warming to room 

temperature. It was seen that the reaction was again rapid even at low temperatures and only 

complex 4.1 was formed without detection of any intermediates, as illustrated in figure 4.2. 

 With the failed attempts at tracking an intermediate in toluene-d8, the same reaction was 

carried out in CD2Cl2. Unlike the previous experiment, changing the solvent has given a 

detectable reaction intermediate as shown by the 
1
H NMR spectra in figure 4.3. The spectrum in 

figure 4.3a, at -80°C, shows the presence of three complexes; the starting material [PtMe2(bpy)], 
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the product 4.1 and a new complex which has tentatively been assigned as complex 4.3 (or 4.4) 

found in scheme 4.4 (S = CD2Cl2). The methylplatinum resonance intermediate appeared at δ = 

1.63, with coupling constant 
2
J(PtH) = 76 Hz, which can be classified as an intermediate value 

between 84 Hz and 72 Hz assigned to complex 2.1 and 4.1 respectively. The intermediate was 

still present in figure 4.3b, at -40°C, but they were absent at in figure 4.3c, at 0°C. The spectrum 

in figure 4.3c, shows the presence of about 5% of the cis-isomer 4.2.  

 

 

Figure 4.3: 
1
H NMR spectra in the methylplatinum region during the reaction of [PtMe2(bpy)] 

with iodine in CD2Cl2 solution to give both the trans- and cis-[PtI2Me2(bpy)], 4.1 and 4.2 via 

intermediate 4.3 or 4.4.: (a) -80°C, (b) -40°C, (c) 0°C. The peak labelled with # is due to water 

and 
195

Pt satellites are marked as *. 
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With this result, it was important to determine the effect that the solvent had on the 

overall formation of the intermediate. Thus, similar experiments were carried out using either 

50:50 or 70:30 mixtures by volume of CD2Cl2/toluene-d8. No intermediates were detected while 

using the 50:50 solvent mixture, but intermediates were detected using the 70:30 mixture. It was 

found, as shown in figure 4.4, that the intermediate was detected at both -80°C and -60°C. The 

methylplatinum resonance was located at δ = 2.18 with coupling constant 
2
J(PtH) = 76 Hz. This 

is most likely to be the same intermediate detected as for the pure CD2Cl2 experiment, with the 

chemical shift variation affected by the toluene co-solvent.  

The same experiment was carried out using acetone as solvent and the related spectra are 

illustrated in figure 4.4 (methylplatinum resonances) and 4.5 (bipyridine resonances). In figure 

4.4a, at -80°C, there is evidence of complex 4.1, trace amounts of [PtMe2(bpy)] and a third 

resonance located at δ = 1.69 with a coupling constant 
2
J(PtH) = 76 Hz, which may be assigned 

to complex 4.4 (or 4.3), similar to the spectrum in CD2Cl2 (figure 3a). It was then found that as 

the temperature was decreased to -60°C (figure 4.4b), the intermediate resonance was very broad 

and shifting and becoming sharper, as seen in figure 4.4c, at -40°C. It has shifted to δ = 1.61 and 

has the same coupling constant 
2
J(PtH) = 76 Hz. This peak then began to fully decay as 

temperatures were increased to 20°C, and the intensity of the resonance representing complex 

4.1 increased steadily.  
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Figure 4.4: 
1
H NMR spectra in the methylplatinum region during the reaction of [PtMe2(bpy)] 

with iodine in acetone-d6 solution to give trans-[PtI2Me2(bpy)], 4.1, via intermediates 4.4 and 

4.6. (a) -80°C; (b) -60°C; (c) -40°C; (d) 20°C. The peaks are labelled # is due to the solvent 

CHD2 isotopomer of acetone-d6 and 
195

Pt satellites are marked as *. 

This results leads to the suggestion that at -80°C, the iodine complex 4.4 is present, but 

when approaching warmer temperatures it is in rapid equilibrium with the ionic isomer complex 

4.6, [PtIMe2(acetone)(bpy)]I. NMR data of the bipyridine region of this spectrum shown in 

figure 4.5, helps to verify these results. It was seen that there are separate resonances for 
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complex 4.1 and for the intermediates, with the peaks for the intermediates being shifted further 

upfield in the spectrum and having much broader appearance.  

 

Figure 4.5: 
1
H NMR spectra in the bipyridine region during the reaction of [PtMe2(bpy)] with 

iodine in acetone-d6 solution to give trans-[PtI2Me2(bpy)], 4.1, via intermediates 4.4 and 4.6. (a) -

80°C; (b) -60°C; (c) -40°C; (d) 20°C. The peaks for 4.1 are in normal font, while the peaks 

representing 4.4 and 4.6 are in italics. 

4.3 Conclusion 

 The study of the mechanism by which oxidative addition of iodine occurs at a 

platinum(II) complex has been carried out utilizing low temperature 
1
H NMR spectroscopy. 

These NMR studies have shown the formation of an intermediate or intermediates during the 

reaction of [PtMe2(bpy)] with iodine in solvents CD2Cl2 and acetone. However, these 

intermediates were not detected in the reactions carried out in toluene-d8. The stability of the 

intermediates follows the series: acetone > CD2Cl2 > toluene, suggesting that there is 

stabilization by solvent coordination. The use of this technique illustrates that the intermediates 

are symmetric since only one methylplatinum and one bipyridine proton is observed in each 

case, helping to rule out any of the unsymmetrical proposed intermediates. This leads complex 

4.3-4.6 as possible structures, but the full characterization is not possible based on the NMR 
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studies alone. Further kinetic and DFT studies have been carried out, with the results found in the 

published paper.
33 

4.4 Experimental 

The variable temperature 
1
H NMR spectra were recorded on Varian Inova 400 

spectrometer. 
1
H NMR chemical shifts are reported in ppm (δ) relative to TMS and referenced to 

their corresponding solvents. The platinum dimer, [Pt2Me4(µ-SMe2)2] was prepared according to 

the literature and utilized in the formation of the Pt(II) complex.
34 

Toluene-d8: Complex 2a. Complex 2.1, [PtMe2(bpy)], (0.0040 g, 0.0105 mmol) was dissolved 

in toluene-d8 and transferred to an NMR tube, cooled to below -80°C in dry ice. To this solution 

was added a solution of I2, (0.0027g, 0.0105 mmol) in acetone-d
6
, and the tube was placed in the 

NMR spectrometer (Inova 400) where the probe temperature had been lowered to -80°C. The 

reaction was monitored by variable temperature 
1
H NMR spectroscopy, in which the reaction 

was monitored at 20°C intervals, as the temperature was increased from -80°C to 20°C. 
1
H NMR 

of complex 4.1 in toluene-d
8 

at 20°C; δ = 2.77 (s, 6H, 
2
J(Pt-H) = 73 Hz, MePt), 6.45 (broad, 2H, 

H
5
), 6.72- 6.96 (broad, 4H, H

4
 and H

3
), 8.49 (broad, 2H, H

6
). 

CD2Cl2: Complex 2a, 2b and 4.3/4.4. Complex 2.1, [PtMe2(bpy)], (0.0040 g, 0.0105 mmol) 

was dissolved in CD2Cl2 and was transferred to an NMR tube, cooled to below -80°C in dry ice. 

To this solution was added a solution of I2, (2.7 mg, 0.0105 mmol) in CD2Cl2, and the tube was 

placed in the NMR spectrometer (Inova 400) in which the temperature of the probe had been 

precooled to -80°C. The reaction was monitored by variable temperature 
1
H NMR spectroscopy, 

in which the reaction temperature was increased at 20°C intervals, as the temperature was 

increased from -80 to 20°C. Selected 
1
H NMR in CD2Cl2:  Complex 4.1 20°: δ = 2.40 (s, 6H, 

2
J(Pt-H) = 73Hz, MePt), 7.71 (ddd, 2H, 

3
J(H5-H4) = 8 Hz, 

3
J(H5-H6) = 6 Hz, 

4
J(H5-H3) = 1 Hz, 
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H
5
), 8.10 (ddd, 2H, 

3
J(H4-H5) = 8 Hz, 

3
J(H4-H3) = 8 Hz, 

4
J(H4-H6) = 1 Hz, H

4
), 8.31 (d, 2H, 

3
J(H3-H4) = 8 Hz, H

3
), 8.95 (dd, 2H, 

3
J(H6-H5) = 6 Hz, 

4
J(H6-H4) = 1 Hz, 

3
J(Pt-H6) = 12 Hz, H

6
).  

Complex 4.3 or 4.4 -80°C: δ = 1.63 ( s, 6H, 
2
J(Pt-H) = 76 Hz, MePt), 7.20-8.20 ( bipy; H

3
-H

6
). 

Complex 4.2 at 20°C: δ = 1.09 (s, 3H, 
2
J(Pt-H) = 79 Hz, MePt trans N). 2.09 (s, 3H, 

2
J(Pt-H) = 

70 Hz, MePt trans I).  

Toluene-d8:CD2Cl2 (1:1).  Complex 2a. Complex 2.1, [PtMe2(bpy)], (4.0 mg, 0.0105 mmol) 

was dissolved in a 1:1 mixture of toluene-d
8
 to CD2Cl2, and then transferred to an NMR tube, 

cooled to below -80°C in dry ice. To this solution was added a solution of I2, (2.7 mg, 0.0105 

mmol) dissolved in a 1:1 mixture of toluene-d
8
 to CD2Cl2 and the tube was placed in the NMR 

spectrometer (Inova 400) where the probe temperature had been lowered to -80°C. The reaction 

was monitored by variable temperature 
1
H NMR spectroscopy, in which the reaction was 

monitored at 20°C intervals, as the temperature was increased from -80°C to 20°C. 
1
H NMR of 

complex 4.1 in 1:1 toluene-d8/CD2Cl2 mixture at 20°C; δ = 2.43 (s, 6H, 
2
J(Pt-H) = 73 Hz, MePt), 

6.79 (dd, 2H, 
3
J(H5-H4) = 8 Hz, 

3
J(H5-H6) = 6 Hz, H

5
), 7.13 (dd, 2H, 

3
J(H4-H3) = 8 Hz, 

3
J(H4-H5) 

= 8 Hz, H
4
), 7.19 (d, 2H, 

3
J(H3-H4) = 8 Hz, H

3
), 8.49 (d, 2H, 

3
J(H6-H5) = 6 Hz). 

Toluene-d8:CD2Cl2 (3:7).  Complex 2a, 4.3/4.4. Complex 2.1, [PtMe2(bpy)], (4.0 mg, 0.0105 

mmol) was dissolved in a 3:7 mixture of toluene-d
8
 to CD2Cl2, and then transferred to an NMR 

tube, cooled to below -80°C in dry ice. To this solution was added a solution of I2, (2.7g, 0.0105 

mmol) dissolved in a 3:7 mixture of toluene-d8 to CD2Cl2 and the tube was placed in the NMR 

spectrometer (Inova 400) where the probe temperature had been lowered to -80°C. The reaction 

was monitored by variable temperature 
1
H NMR spectroscopy, in which the reaction was 

monitored at 20°C intervals, as the temperature was increased from -80°C to 20°C. 
1
H NMR of 

complex 4.1 in 3:7 toluene-d
8
/CD2Cl2 mixture at 0°C; δ = 2.34 (s, 6H, 

2
J(Pt-H) = 73 Hz, 
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MePt),7.09 (ddd, 2H, 
3
J(H5-H4) = 8 Hz, 

3
J(H5-H6) = 6 Hz, 

4
J(H5-H3) = 1 Hz, H

5
), 7.45 (ddd, 2H, 

3
J(H4-H3) = 8 Hz, 

3
J(H4-H5) = 8 Hz, 

4
J(H4-H6) = 1 Hz, H

4
), 7.59 (d, 2H, 

3
J(H3-H4) = 8 Hz, H

3
), 

8.62 (dd, 2H, 
3
J(H6-H5) = 6 Hz, 

4
J(H6-H4) = 1 Hz, 

3
J(Pt-H) = 13 Hz, H

6
). 

1
H NMR of complex 

4.3/4.4 in 3:7 toluene-d8/CD2Cl2 mixture at -40°C; δ = 1.58 (s, 6H, 
2
J(Pt-H) = 76 Hz, MePt), 

6.70- 8.1 (bipy H
3
-H

6
). 

Acetone-d6: Complex 2a, 4.4/4.6. Complex 2.1, [PtMe2(bpy)], (4.0 mg, 0.0105 mmol) was 

dissolved in acetone-d6 and transferred to an NMR tube, cooled to below -80°C in dry ice. To 

this solution was added a solution of I2, (2.7 mg, 0.0105 mmol) in acetone-d6, and the tube was 

placed in the NMR spectrometer (Inova 400) where the probe temperature had been lowered to -

80°C. The reaction was monitored by variable temperature 
1
H NMR spectroscopy, in which the 

reaction was monitored at 20°C intervals, as the temperature was increased from -80°C to 20°C. 

1
H NMR of complex 4.1 in acetone-d

6
 
 
at 20°C: δ = 2.37 (s, 6H, 

2
J(Pt-H) = 73Hz, MePt), 7.91 

(dd, 2H, 
3
J(H5-H4) = 8 Hz, 

3
J(H5-H6) = 6 Hz, H

5
), 8.33 (ddd, 2H, 

3
J(H4-H5) = 8 Hz, 

3
J(H4-H3) = 8 

Hz, 
4
J(H4-H6) = 1 Hz, H

4
), 8.77 (d, 2H, 

3
J(H3-H4) = 8 Hz, H

3
), 9.05 (d, 2H, 

3
J(H6-H5) = 6 Hz, 

4
J(H6-H4) = 1 Hz, 

3
J(Pt-H6) = 13 Hz, H

6
). 

1
H NMR of complex 4.4/4.6 in acetone-d6 at -80°C: δ 

= 1.67 (s, 6H, 
2
J(Pt-H) = 76 Hz, MePt), 7.62 (m, 2H, H

5
), 8.07 (dd, 2H, 

3
J(H4-H3) = 8 Hz, 

3
J(H4-

H5) = 8 Hz, H
4
), 8.24 (d, 2H, 

3
J(H3-H4) = 8 Hz, H

3
), 8.56 (d, 2H, 

3
J(H6-H5) = 8 Hz, H

6
). 

1
H NMR 

of complex 6 in acetone-d
6 

at -40°C; δ = 1.61 (s, 6H, 
2
J(Pt-H) = 76 Hz, MePt), 7.60 (dd, 2H, 

3
J(H5-H4) = 8 Hz, 

3
J(H5-H6) = 6 Hz, H

5
), 8.07 (dd, 2H, 

3
J(H4-H3) = 8 Hz, 

3
J(H4-H5) = 8 Hz, H

4
), 

8.24 (d, 2H, 
3
J(H3-H4) = 8 Hz, H

3
), 8.31 (broad, H

6
).  

 

X-ray Structure Determination: X-ray data was obtained and the solutions were determined by 

Benjamin Cooper and Matthew McCready in this chapter. A suitable crystal was mounted on a 
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glass fibre and data was collected at low temperature 150(2) K on Bruker Smart Apex II CCD 

detector. The unit cell parameters were calculated and refined from the full data set. Crystal data 

and refinement parameters for the complex ia listed in the following table.  
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Table 4.2: Crystallographic data for complex 4.1/4.2·0.5 I2 

Empirical Formula C12 H14 I3 N2 Pt 

Formula Weight 762.04 

Wavelength 0.71073 Å 

Crystal System Triclinic 

Space Group P-1 

Unit Cell Dimensions a = 6.8372(3) Å                 α = 81.616(3)° 

b = 8.9737(3) Å                 β = 82.110(3)° 

c = 14.2074(6) Å               γ = 83.090(3)° 

Volume 849.72(6) Å
3
 

Z 2 

Density (calculated) 2.978 Mg/m
3
 

Absorption Coefficient (μ) 13.693 mm
-1

 

Crystal Size 0.078 x 0.038 x 0.037 mm
3
 

Refinement Method Full-matrix least-squares on F
2
 

Goodness of fit on F
2
 1.042 

Final R indicies [I>2σ(I)] R1= 0.0446, wR2 = 0.0873 

R indicies (all data) R1 = 0.0727, wR2 = 0.0976 
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