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Abstract 

Photocatalysis is a recognized approach where light energy is employed to excite the 

semiconductor material producing electron/hole pair which eventually involves in the 

detoxification of pollutants (in water or air) and water splitting. Existing photocatalysts 

suffer from poor activity or no activity in visible light irradiation which restricts them 

from solar light utilization. This work is focused on two key applications of 

photocatalysis (i) sacrificial hydrogen generation, and (ii) phenol degradation in visible 

and/or solar light. 

Platinum was loaded on TiO2 photocatalyst by solar photo-deposition method. Eosin Y 

dye was used as a sensitizer for sensitization of platinum loaded TiO2 photocatalyst. The 

photocatalyst was irradiated from the top with a solar simulator. The light source was 

equipped with AM 1.5 G as well as a 420 nm cutoff filter to remove all the UV light. 

A factorial design at two levels and four factors has been carried out in order to 

investigate the potential for hydrogen generation using Eosin Y-sensitized TiO2/Pt 

catalyst under visible solar light in presence of triethanolamine as electron donor. 

Experimental data were analyzed using both “Pareto analysis” as well as conventional 

regression analysis techniques. A regression function was proposed that satisfactorily 

predicts hydrogen generation as a function of various operating parameters. 

Later, the photocatalytic behavior of the eosin Y–sensitized photocatalyst was studied in 

solar-UV (300-388 nm), solar-visible (420-650 nm) and full solar spectrum (300-650 nm) 

to explore the optimum reaction conditions such as (i) light intensity (100 mW cm
-2

), (ii) 

solution pH (7.0), (iii) platinum content (wt %) on TiO2 (0.25 %), (iv) mass of eosin Y-

TiO2/Pt (1-1.3 g L
-1

) , (v) concentration of trietanolamine (0.25 M), and (vi) mass ratio of 

eosin Y to TiO2/Pt (1:10). The reaction mechanisms were different in solar and visible 

lights, although in both cases formaldehyde was detected as an intermediate product. 
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Studies in a pulsating flow reactor showed positive effects of pre-sonication, increased 

flow rate and bi-directional mixing mode in solar hydrogen generation.  

A detailed study on the photocatalytic behavior of formaldehyde for sacrificial hydrogen 

generation was performed for better understanding of the process. Photocatalytic 

hydrogen generation from formaldehyde was influenced by solution pH, platinum content 

(wt %) on TiO2, catalyst concentration, light intensity, and initial formaldehyde 

concentration. 

A Langmuir-type model was well fitted with the experimental data for photocatalytic 

hydrogen generation from both triethanolamine and formaldehyde as sacrificial agents. 

Apparent quantum yield (QY) was much higher for UV light driven hydrogen generation. 

In solar and visible light the QYs were a function of the light intensity and the 

wavelength range considered for the calculation. 

Phenol degradation with eosin Y-sensitized TiO2/Pt photocatalyst under solar-visible 

light was performed with triethanolamine as electron donor. About 93 % degradation of 

40 ppm phenol solution was achieved within 90 minutes using Eosin Y-TiO2/Pt 

photocatalyst at optimum conditions (pH = 7.0, catalyst loading = 0.8 g L
-1

, 

triethnolamine concentration = 0.2 M, 0.5 % Pt loading on TiO2,  visible solar light of 100 

mW cm
-2

). Kinetic rate constant and adsorption equilibrium constant were determined 

and a Langmuir-Hinshelwood type equation was proposed to describe phenol degradation 

on TiO2 at different visible light intensities. The model equation predicts experimental 

results quite well.  

Keywords: 

Dye, sensitization, solar, visible, hydrogen, sacrificial, TiO2, phenol, photoreactor, eosin 

Y, triethanolamine, formaldehyde. 
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Nomenclature 

C0 initial concentration (g L
-1

) 

Dye
+
 oxidized form of dye 

e- electron 

e
-
CB electron located in the conduction band 

EY eosin Y dye 

(EY)s adsorbed eosin Y on catalyst surface 

EY
+
 oxidized form of eosin Y dye  

EY* eosin Y dye in excited state 

G change in Gibb's free energy 

H change in enthalpy 

h
+
 hole 

h
+

VB hole left in the valance band 

h Plank's constant  

 frequcy (s
-1

) 

I radiation intensity (mW cm
-2

) 

k reaction rate constant 

K adsorption constant 
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kapp apparent kinetic constant 

 wavelength of radiation (nm) 
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Chapter 1  

1 General Introduction 

1.1 Background & Motivation 

1.1.1 Future fuel – hydrogen  

The world is moving from solid to liquid to gas fuels for future energy sources. The basic 

idea is decarbonization of the fuel. Coal has the lowest H:C ratio (0.5:1), for LPG the 

ratio goes up to 2.6:1 and for natural gas the ratio again increases to 4:1. Hydrogen is the 

fuel having H:C ratio of infinite. Hydrogen is the most abundant element in the universe 

found in water, life forms and hydrogen fuel.
1
 The global energy systems transition is 

shown in Figure 1.1. 

The driving forces for the energy transition towards hydrogen are many, but three major 

factors are i) growing energy demand, ii) oil scarcity in the near future and iii) risk of 

climate change. By 2050 world population will be 10 billion and the expected energy 

demand will be doubled.
2
 Coal and oil are promising energy sources but still we need 

some other energy sources which are more abundant and can make up the future energy 

demand.  

At the beginning stage of oil exploration (1859) the world petroleum supply was 

approximately 1.8 trillion barrel, and now we are left with only 0.9 trillion barrel 

petroleum with a current demand of 105 million barrel per day.
2
 The fossil fuels are being 

consumed at a much faster rate than it is produced by the nature.
3
 So a huge demand-

supply gap is going to be created in the near future for oil.  

Again with the declining oil reserve the extraction of the remaining oil will be more 

complicated considering the economical and technological difficulties, and consequently 

the energy requirement for obtaining oil will become significantly higher than the energy 

output from fuel.
2
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Another problem which is pushing the hydrogen transition is climate change. At the 

beginning of industrial revolution the atmospheric CO2 level was 270 ppm which rose to 

370 ppm during 20
th

 century and the current level of CO2 is 383 ppm. Different climate 

models suggest that a further increase of CO2 level beyond 550 ppm would lead to a 

magnitude of warming equal to that of the cooling seen in the last ice age. So we would 

have the opportunity to experience a “steam age” in the near future.
1, 2

 

 

 

 

 

 

 

 

 

 

 

Due to this, the world has progressively favored hydrogen atom over carbon atom. 

Between 1860 and 1990, the H:C ratio in fuel rose 6-fold. Right now the annual hydrogen 

production is 400 billion cubic meter. There are several routes for hydrogen production as 

mentioned in Table 1.1.
1
 Among these processes, steam reforming is the most common 

and least expensive technique used today in oil refineries and in chemical industries, but 

it is an energy intensive process and contributes to huge amounts of greenhouse gases. 

Figure 1.1 Global energy systems transition, 1850–2150. Reprinted with permission 

from Dunn.
1
 (Copyright 2002 Elsevier) 
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Therefore, the photoelectrochemical or photocatalytic water splitting would be the most 

promising technology for hydrogen generation from renewable water and sunlight.  

Table 1.1 Different routes for hydrogen production 

Hydrogen production 

routes 
Advantages Disadvantages 

Steam reforming of 

methane 

Least expensive (48 % of world 

hydrogen produced by this route) 

Generation of greenhouse 

gases. 

Gasification of coal Only competitive with methane 

reforming where natural gas is 

expensive. 

Generation of CO2;  

Less efficient. 

Gasoline and methanol 

reforming 

Not mentioned. Requirement of pure oxygen; 

Generation of more CO2 than 

steam reforming. 

From biomass Less expensive raw materials. Little contribution (4%) 

towards world H2 production.  

Electrolysis Cost effective for production of 

extremely pure hydrogen in small 

amount. 

Electrolysis is very much 

expensive at large scale. 

Solar and wind power 

based electrolysis 

Less expensive than conventional 

electrolysis. 

Still in developing stage. 

 

The unique solution for the problem is to use the abundant solar energy. To make a 

substantial contribution to the energy supply, solar energy needs to be captured, 

converted and stored, to overcome the daily cycle and the intermittency of solar radiation. 

The most fascinating approach for solar energy conversion and storage would be in the 

form of an energy carrier such as hydrogen. Following the conversion of solar radiation 

into hydrogen, it can be transported  as well as stored for an extended period of time. 

Hydrogen is a clean energy carrier because the chemical energy stored in the H–H bond 

is easily released when it reacts with oxygen, producing only water.
4, 5
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1.1.2 Water pollution and water treatment 

Water is the most precious natural resource in the world embracing over 70 % of the 

earth surface. In spite of this the accessibility of safe drinking water is a high priority 

issue for the survival of mankind as well as animals. This is because of the fact that water 

resources such as rivers, lakes and oceans are being contaminated by human beings 

through over-use and wastage. This affects natural environment as well as human health. 

Water pollutants are classified into two main groups namely i) point source (single 

source), and ii) non-point source (many sources) respectively.
6
 Causes of water pollution 

are many but major sources can be categorized as industrial waste, sewage and 

wastewater, agricultural waste, oil spills, marine dumping and nuclear wastes. The World 

Health Organization (W.H.O) reported that in 2008 some 884 million people still relied 

upon unimproved water sources – 84% of whom were living in rural areas. Many more 

are surviving by drinking microbiologically unsafe water and experiencing the agony of 

waterborne diseases including typhoid, hepatitis, and cholera.
7, 8

  

The removal of harmful matters from wastewater and detoxification of pollutants in 

surface water, and groundwater is a key issue in the world. Secondary treatment helps in 

organic matter decomposition to some extent, but major oxidation process occurs in 

tertiary treatment where wastewater is disinfected by Cl2, O3 or UV light. There are 

numerous methods under tertiary treatment which can be classified into biological, 

chemical or physical oxidation process. Biological oxidations are inexpensive but 

presence of toxic pollutants creates difficulties during the operation. Treatments of 

pollutant at high temperature (thermal treatment) are quite successful but not 

economically feasible. On the other hand, chemical oxidation with the help of several 

oxidants such as H2O2, O3, Cl2,and ClO2 do not experience such problem, although they 

could not afford complete mineralization of water pollutants.
9
 

Stringent regulations have been set by USEPA over a much broader range of 

contaminants for wastewater discharge. To comply with those regulations, advanced 

oxidation processes (AOPs) have been introduced to eliminate different potentially 
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harmful compounds that could not be effectively removed by conventional treatment 

processes.
10

 These AOPs include O3/UV, H2O2/UV, O3/H2O2/UV and TiO2/UV.
11

 

Among the AOPs, TiO2/UV based photocatalytic oxidation processes have received great 

attention in the recent years as an alternative for water detoxification. Common 

wastewater treatment scheme is shown in Figure 1.2.
12

 To make the TiO2 based 

photooxidation process economical, solar light can be used as a potential replacement for 

commercial UV lamps. This again requires modification of TiO2 and TiO2 based 

photocatalysts for utilization of solar visible spectra. 

 

 

Figure 1.2 Levels of wastewater treatment (Metcalf and Eddy
12

).  
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1.1.3 Heterogeneous photocatalysis – a single step solution for 
future fuel and water treatment 

1.1.3.1 Application of photocatalysis in hydrogen generation 

In the early 70s, Fujishima and Honda demonstrated water splitting for the 1
st
 time using 

a TiO2 electrode by UV light irradiation. Reduction of water molecule was achieved by 

the photogenerated electrons on a Pt counter electrode while oxidation of water was 

performed by the hole on the TiO2 electrode. Additionally some external bias was 

employed by a power supply or pH difference between a catholyte and an anolyte.
13

 

After that, remarkable progress has been seen in the last few decades using ultra-violet 

light.
14

 The elements of group 4 (Ti and Zr), group 5 (Nb and Tc) and group 6 (W) acted 

as wide band gap photocatalytic materials for water splitting. Platinized TiO2 

photocatalyst, NiO loaded SrTiO3, Rh loaded SrTiO3 were quite effective to decompose 

pure water into H2 and O2. ZrO2 was effective for water splitting without any co-catalyst 

because of its high conduction band level. K4Nb6 O17, Rb4Nb6O17, Ca2Nb2O7, SrNb2O7 

and Ba5Nb4O15 with layered structure showed high photocatalytic activities for water 

splitting. Alkali and alkaline earth tantalates also show good photocatalytic activity for 

water splitting.
13

 In different studies TiO2-based photocatalysts such as Pt/TiO2 and 

RuO2/TiO2 were investigated.
15, 16

 SrTiO3-based photocatalysts such as a reduced SrTiO3 

electrode with a platinum counterelectrode, platinized SrTiO3, SrTiO3 powder modified 

by rhodium oxide, and nickel-loaded SrTiO3 were also studied for improvement of their 

photocatalytic activities.
14, 17-19

 Kim et al.
20

showed that layered perovskite, La2Ti2O7 

[110] was a good photocatalyst under ultraviolet light in water splitting reaction. 

Nevertheless, such photocatalytic systems for water treatment as well as hydrogen 

generations are still experiencing a series of technical challenges. The basic difficulty 

with UV light is related to their narrow wavelength range (4 % of the solar spectrum) 

which is the driving force behind the utilization of the more abundant visible light (46 % 

of solar spectrum) for photocatalytic reactions. The photocatalyst used for above 

purposes must satisfy several functional requirements with respect to semiconducting and 
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electrochemical properties: i) suitable solar visible-light absorption capacity with a band 

gap around 2.0 – 2.2 eV and band edge potentials suitable for overall water splitting, ii) 

capacity for separating photoexcited electrons from reactive holes, iii) minimization of 

energy losses related to charge transport and recombination of photoexcited charges, iv) 

chemical stability against corrosion and photocorrosion in aqueous environment, v) 

kinetically suitable electron transfer properties from photocatalytic surface of water, and 

vi) easy synthesization and cost effective production.
24

 

1.1.3.2 Application of photocatalysis in water treatment 

The precise definition of the term ‘heterogeneous photocatalysis’ is a tricky one; 

particularly as in many cases the detailed mechanism of the ongoing reactions is 

uncertain. In case of photocatalytic reactions there is a light absorbing solid photocatalyst 

(semiconductor) which comes in contact with liquid or gas phase reactants and/or 

products.
21

 All advanced oxidation processes operate through the formation of hydroxyl 

radical (OH

), which has very low selectivity. OH


 radical can drive the oxidation process 

through complete mineralization of even less reactive pollutants. These radicals can even 

destroy biologically refractory pollutants that are characterized by high chemical 

stability.
22

 

Heterogeneous photocatalysis utilizing different semiconductor photocatalysts such as 

ZnS, ZnO, TiO2, CdS, and GaP have established their effectiveness in pollutant 

degradation and eventually complete mineralization. Among them, TiO2 is the most 

active photocatalyst under the photon energy of 300 nm<  < 390 nm and also showed 

highest stability compared to other photocatalysts of similar class.
23

 Moreover, TiO2 has 

acquired extensive applications in photocatalytic water treatment as well as air 

purification and self cleaning surfaces due to its thermal and chemical stability, strong 

mechanical properties and low cost.
24

 

Heterogeneous photocatalytic oxidation process became popular among the AOPs 

primarily because of the following reasons: (i) the processes can be carried out under 
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ambient condition (temperature and pressure), (ii) the oxidant is strong and less selective 

which leads to complete mineralization, (iii) the process do not consume any expensive 

oxidizing chemical, and iv) the photocatalyst are less expensive, non-hazardous, stable 

and reusable.
6, 25

 

1.1.4 Solar energy – an abundant source 

Sun is a massive source of energy, from which the earth receives 1.5x10
18

 kWh per year, 

or approximately 28000 times world consumption for one year. World Meteorological 

Organization has recommended the solar constant value of 1366.7 W m
-2

 outside the 

atmosphere.
26

 The solar radiation can be classified into two classes, direct and diffuse 

radiations. Direct radiation reaches the earth surface without being absorbed or scattered. 

On the other hand, if the radiation is dispersed before reaching earth surface, it is called 

diffuse radiation. Global radiation is basically the sum of direct and diffuse radiations 

(Figure1.3).  

 

 

 

 

 

 

 

 

 Figure 1.3 Direct and global radiation 
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The spectral irradiance data are generally acquired for the sun at a solar zenith angle of 

48.19º. There is a term called air mass (AM), which is frequently used to express the 

direct optical path length through the atmosphere. It is a ratio of the direct beam solar-

irradiance path length through the atmosphere at a certain solar zenith angle to the path 

length when the sun is in a vertical position (i.e. 0 º zenith angles). Here, zenith angle of 

48.19º corresponds to an air mass of 1.5. AM=1 when the sun is directly overhead 

(zenith). With increase in air mass, the direct beam passes through longer path lengths in 

the atmosphere that result in additional scattering and absorption of the direct beam and a 

lower percentage of direct-to-total radiation (Figure1.4).
27

 To simulate such system in 

photocatalysis laboratories, a solar simulator with 1.5 G (global) filter need to be used as 

light source. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4 Diagram for air mass and solar components (adapted from Galvez et al.
27

). 
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1.2 Problem Statement 

In order to use the entire solar spectra, especially visible one, and to improve the 

photocatalytic hydrogen generation and water treatment, several methods were 

undertaken to modify semiconductor photocatalyst. Metal/nonmetal doping was used to 

narrow down the band gap of photocatalyst.
28-32

 Valance band controlled photocatalysts 

(BiVO4, AgNbO3 and SnNb2O6),
33-35

 and solid solution photocatalyst (ZnS-CuInS2-

AgInS2)
36, 37

 were also applied to impose visible light activity in conventional 

photocatalyst. Composite semiconductor (CdS-TiO2, CdS-ZnS),
38, 39

 metal ion 

implantation and dye-sensitization were also reported as decent methods in such field.
40

 

Dye-sensitization method is an inexpensive method compared to other methods applied 

in this field. Ruthenium based sensitizers were used extensively in dye sensitization field 

but because of their higher cost and toxicity, they are gradually replaced by non toxic 

organic dyes. Eosin Y dyes is a xanthane group dye which was used as sensitizer for 

different semiconductors due to its superior photocatalytic activity for sacrificial 

hydrogen production.
41-46

 There is, however, lack of information on investigations of the 

key process parameters which affect sacrificial hydrogen generation based on robust 

experimental design methodology and statistical analysis.  

Eosin Y-sensitized photocatalytic systems have provided plenty of information on 

visible-light-driven dye-sensitized hydrogen generation in presence of sacrificial electron 

donor. None of those, however, investigated the dye-sensitized process in complete solar 

spectrum, which is very essential for using a photocatalyst in real solar light applications. 

There is also inadequate information on the behavior of the electron donor and dye in 

presence of solar UV radiation. Intermediate analysis is also missing in those studies 

which would be useful in establishing the reaction mechanism. In photocatalytic 

reactions, mass transfer and light illumination are the two main factors that should be 

incorporated for efficient designing and scaling up of photo reactor. To the best of my 

knowledge, no studies so far have included the above two factors.  
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Eosin Y-sensitized photocatalytic system with triethanoamine electron donor is 

successful for hydrogen generation under nitrogen atmosphere but has not yet been 

applied for phenol degradation under aerated (or O2) systems. No study has yet been 

performed with such a system for phenol degradation under visible solar light. There is 

also inadequate information on the kinetics of this system. 

1.3 Research Objectives 

The objective of the present research is to investigate the sacrificial hydrogen generation 

in complete solar spectrum with Eosin Y sensitized platinum loaded TiO2 (EY-TiO2/Pt) 

in aqueous triethanolamine solution. It also aims at exploring the dye-sensitization 

mechanism for phenol degradation under visible solar light with the same photocatalyst 

and electron donor. The specific objectives of this study are: 

1. To perform a systemic experimental study on dye-sensitized hydrogen generation 

using design of experiment (DOE). This will be followed by a statistical analysis 

of the experimental data, analysis of variance (ANOVA), regression analysis, 

Pareto analysis, normal distribution, main effect plots and interaction effect plots. 

2. To study the photocatalytic behavior in solar-UV (300-388 nm), solar-visible 

(420-650 nm) and full solar spectrum (300-650 nm) by varying reaction 

conditions including i) light intensity, ii) solution pH, iii) platinum content (wt %) 

on TiO2, iv) mass of EY-TiO2/Pt, v) concentration of trietanolamine, and vi) mass 

ratio of EY to TiO2/Pt. 

3. To establish photocatalytic hydrogen generation mechanism in visible and solar 

light through intermediate and photoluminescence (PL) analysis. 

4. To perform the parametric and kinetic study using the intermediate compound as 

electron donor for sacrificial hydrogen generation with Eosin Y-TiO2/Pt and 

triethanolamine. 
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5. To design a flow reactor considering the mass transfer limitations and preliminary 

hydrodynamics study for solar hydrogen generation with eosin Y-TiO2/Pt and 

triethanolamine. 

6. To perform the parametric studies of (i) platinum content (wt %) on TiO2, (ii) 

triehanolamine concentration, (iii) solution pH, (iv) light intensity, and (v) 

catalyst mass, as well as reaction kinetics for phenol photodegradation in visible 

solar light. 

1.4 Thesis Overview 

This thesis has seven chapters including this one and follows the “integrated-article 

format” as mentioned in the Thesis Regulation Guide by the School of Graduate and 

Postdoctoral Studies (SGPS) of the Western University. The synopsis of the chapters are 

as follows. 

Chapter 2 entitled “Dye-sensitized photocatalyst - a breakthrough in green energy and 

environmental detoxification” provides a critical review of dye sensitization theory, 

mechanism, metal ion deposition method, application in water treatment and hydrogen 

generation. 

Chapter 3 is a research article entitled “Factorial design analysis for dye-sensitized 

hydrogen generation from water” published in International Journal of Hydrogen Energy. 

In this chapter factorial design analysis was used as a screening approach to identify the 

significant factors influencing sacrificial hydrogen generation from water with dye-

sensitized photocatalyst. This method provides a quantitative assessment of the principal 

factors and effects that influence hydrogen generation performance. 

Chapter 4 describes the preparation, and characterization of dye-sensitized TiO2/Pt 

photocatalysts followed by their applications in solar, visible and UV light. Optimization 

of various parameters related to sacrificial hydrogen generation is also presented. Effect 

of light intensity was studied for dye-sensitized photocatalytic hydrogen generation to 
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correlate UV, visible and solar radiation. Detailed intermediate analysis was also 

performed to understand the reaction mechanism. Finally it illustrates the development of 

flow reactor to overcome mass transfer limitation in solar hydrogen generation. 

Chapter 5 investigates sacrificial hydrogen generation from formaldehyde (electron 

donor), which was detected as a major intermediate and product in solar (UV) and visible 

light irradiation respectively in chapter 5. The effects of different basic parameters were 

systematically studied with formaldehyde to understand the qualitative and quantitative 

effects as well as overall mechanism of the process. 

Chapter 6 is a research article entitled “Visible-Solar-Light-Driven Photocatalytic 

Degradation of Phenol with Dye-Sensitized TiO2: Parametric and Kinetic Study”, which 

has been published in Industrial & Engineering Chemistry Research. Parametric studies 

were performed for the catalyst loading, initial triethnolamine concentration, initial 

phenol concentration, platinum content on TiO2, solution pH, and visible light intensity. 

The kinetic rate constant and adsorption equilibrium constant were determined, and a 

Langmuir−Hinshelwood-type equation was proposed to describe phenol degradation on 

TiO2 at different visible light intensities. 

Chapter 7 summarizes the key conclusions and suggests some directions for future 

research based on this study. 
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Chapter 2  

2 Dye-Sensitized Photocatalyst - a Breakthrough in 
Green Energy and Environmental Detoxification 

2.1 Introduction 

Photocatalysis is a well known technology where light energy is utilized to excite the 

semiconductor material producing electron/hole pair which ultimately involves in the 

detoxification of pollutants and/or water splitting producing hydrogen. Pollutant 

degradation under UV light is already proven to be an effective method as reported by 

several researchers. At the same time, photocatalytic water splitting showed remarkable 

progress in the last few decades under UV light which started with the pioneer work of 

Fujishim and Honda.
1
 The basic difficulty with UV light was related to its narrow 

wavelength ranges (4 % of the solar spectrum) which really drive the researcher to utilize 

the more profuse visible light (46 % of solar spectrum) for the excitation of 

semiconductor.  

There are two significant impediments to visible light induced photocatalysis. First is the 

rapid recombination of electron/hole (e
-
/h

+
) pair. The second is poor activation of 

semiconductor photocatalyst. Moreover, there is an additional problem of rapid backward 

reaction during water splitting. Efforts have been made to improve the photocatalytic 

activity and visible light response. This includes modification of semiconductor 

photocatalyst to expand their photo-response to visible region in several ways such as 

doping with cation/anion, sensitizing with dye, coupling with another small band gap 

semiconductor and implantation of metal ion.
2
 Another approach, which attracts 

extensive industrial interest, is the field of dye-sensitization with possible applications in 

fields such as photography, photochromatic devices and photo lithography.
3
  

Dye-sensitization of semiconductor is also a very popular concept that has been 

successfully utilized in solar cell for generating electricity. The same principle can be 
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applied to split the water molecule under visible light to produce hydrogen as well as to 

degrade toxic pollutants. 

This review will first describe the basic phenomena for dye-sensitization and brief 

methodologies used for different semiconductor materials such as ZnO, TiO2, Cu2O etc. 

It will also discuss different methods for deposition of novel metals as co-catalyst on 

semiconductor surface. Finally dye-sensitization method will be elaborated with different 

semiconductors for hydrogen production and degradation of different organic pollutants. 

2.2 Dye Sensitization 

2.2.1 Theory of dye sensitization 

The process of expanding the sensitivity of transparent semiconductor materials to the 

visible spectra is known as spectral sensitization. When the sensitization of a large band 

gap semiconductor to the visible region is achieved with a dye at the molecular level, it is 

called dye-sensitization.
4
 The operating mechanism of dye in dye-sensitized 

semiconductor is similar to that in the field of photography.
5
 Dye is adsorbed chemically 

onto the semiconductor surface by conventional adsorption process and the chemisorbed 

dye molecules play the role of spectral sensitizer which upon excitation with visible light 

inject electron into the conduction band of the semiconductor.
5
 This phenomenon is also 

known as anodic sensitization. On the contrary, cathodic sensitization occurs when 

adsorbed dye molecule inject holes into valance band of the semiconductor.
6
 This review 

only consider anodic sensitization of semiconductor.  

Some early studies of spectral sensitization of semiconductors were conducted on ZnO 

and CdS. The first report discussed sensitization of pressed ZnO powder by adsorbed 

rhodamine B, eosin, erythrosine, and cyanine dyes.
7
 But most of these early studies 

focused on organic dyes of interest to photographic industry. Gleria and Memming
3
 

performed the first experiment of sensitization using inorganic Ru metal based 

polypyridine complex dyes on SnO2 electrodes.  
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Figure 2.1
3
 demonstrates the dye-sensitization principles of an n-type semiconductor 

electrode such as TiO2. In the first step, the organic or inorganic dye molecule adsorb 

photon and results in the formation of excited state (equation 2.1). Then the excited dye 

molecule inject electron into the conduction band of the semiconductor (equation 2.2). 

The oxidized dye (S
+
) is consequently reduced to ground state (S) by an electron donor. 

Electron donor can be a molecule or a mediating redox couple in a regenerative cell. The 

injected electron flows through the semiconductor and then through the external circuit to 

the counter electrode where the reduction of the oxidized donor takes place. So, the 

photon of irradiated light drives an electron through the semiconductor and the external 

circuit, and this results in conversion of light to electrical energy.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Dye sensitization principles for n-type semiconductor (adapted from 

Kalyanasundaram and Gratzel
3
).  
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The efficiency of the sensitization process can be expressed in terms of incident photon-

to-current conversion efficiency (IPCE). 

 

       (2.3) 

The IPCE value depends on the i) chemical nature of the dye, ii) mediating redox 

electrolyte, and iii) nature of the semiconductor and the interface of the electrolyte.
3
 The 

excited states of most of the metal complexes and organic dyes have short life span. So 

the efficiency of charge injection process depends on those dyes molecules that are in 

close proximity of the semiconductor electrodes.
3
 

The dye molecule should hold few basic properties regarding surface anchoring group, 

energy levels and ground state redox potential to undergo a successful electron injection. 

Anchoring groups, such as phosphonates or carboxylic acid derivatives form strong 

covalent bonds with the semiconductor surface and that covalent bond ultimately 

increases the strength of the electronic coupling between the molecular orbital of the dye 

and the semiconductor levels leading to fast electron injection rates.
8
 Carboxylic and 

phosphoric acid groups show very good electron transfer process (80-90 %) as mentioned 

for some ruthenium complexes.
4
 Different binding or interaction mode of TiO2 surface 

and –COOH group is shown in Figure 2.2 as described by Galoppini.
8
 The anchoring 

group can be arranged in the following order of reactivity: -P(O)(OH)2 > -COOH > -

COOR (R=alkyl group) > -COX (X=Cl, Br etc) > -COONH2 ~ COOM (M=Na, K etc). 

There are few more functional groups such as silanes, ethers, acetylacetone and 

S + h                      S

      (2.1) 

       S
*
                     S

+
 + e

-
CB (SC)     (2.2) 
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salicylates that can also form bonds with metal oxide (semiconductor) by reacting with 

surface hydroxyl groups. 

 

 

 

 

 

 

 

 

Dye molecules in the bulk phase of the electrolyte solution undergo severe charge 

collection problem similar to that in photogalvanic cells. To overcome this problem dye 

molecules are fixed on the semiconductor surface either by chemisorptions or by some 

form of derivatization. Several approaches were adopted to attach dye molecule on 

semiconductor surface since the mid seventies. Matsumura et al.
9
 investigated the 

possibility of chelate formation on the semiconductor surface. Fixation of xanthene dye 

to the surface was attempted either by etherification or by using a Si-CH2-CH2 -CH2 -NH-

CO-dye linkage. Visible light sensitization of ZnO was observed by certain azo dyes 

which form 1:1 Zn complex at the surface of ZnO powders. In another study, colloidal 

TiO2 sensitization was achieved by 8-hydroquinoline to generate hydrogen from water in 

visible light irradiation. 8-hydroquinoline experienced a chelation reaction with colloidal 

TiO2 that results in an active yellow complex during sensitization.
3, 10

 

The type of sensitization (anodic or cathodic) mainly depends on the band position of the 

semiconductor and energy level of the dye. In anodic sensitization the energy level of the 

Figure 2.2 Possible binding mode of TiO2 surface and –COOH. 

Reprinted with permission from Galoppini.
8
 (Copyright 2004 

Elsevier). 
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dye molecule at excited state should be comparable with the lower level of 

semiconductor conduction band for better electron injection.
5
 Here an electron excited 

from the lower singlet level (S0) to upper excited singlet level (S1) is transferred to 

conduction band (Figure 2.3). Moreover a higher value of ground state redox potential of 

the dye would be beneficial for rapid regeneration of exhausted dye in presence of 

suitable electrolyte such as I
-
/IO3

-
. The best reported value of ground state oxidation 

potential is 0.5V vs SCE (Standard Calomel Electrode).
4
 

The electron injection mechanism was explained by several authors but the most recent 

work by Willig’s group enlightened the interfacial electron transfer (ET) mechanism in a 

proper way. They demonstrated the ET dynamics in dye-TiO2 system and found that on 

leaving the dye, the electron was not trapped on the surface and certainly entered bulk 

TiO2. Their observations with femtosecond laser spectroscopy was not in agreement with 

the usual model of electron transfer.
11

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 Energy level diagram of anodic dye sensitization 

process 

e
-
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2.2.2 Dye sensitization methodology 

In dye sensitization the dye is adsorbed on to the semiconductor surface having a high 

surface area and forms a dye-sensitized semiconductor film which adsorbs the visible 

light efficiently. In common practice the semiconductor material (powder or immobilized 

form) is dipped into the dye solution for specified time interval under dark. Then the 

semiconductor material is separated from dye solution and washed with solvent (alcohol 

or water) to remove unadsorbed or loosely bound dye molecules from semiconductor 

surface. The final dye-sensitized material is obtained only after drying at some specific 

temperature in oven. Although the process is quite straight forward, wide variations are 

expected in sensitization with the change in dye type, dye concentration, semiconductor 

type, semiconductor surface morphology, solution pH and incorporation of electron 

donor into the system. Thus, the visible light absorption efficiency of dye-sensitized 

semiconductor is a function of all the above parameters.  

2.2.2.1 Selection of dye 

A group of semiconductor sensitizers such as porphyrins, coumarin, phalocyanines and 

carboxilate derivatives of anthracine are used by several authors. Among these 

photosensitizers, transition metal based sensitizers have been proved to be the best.
12

 

Transition metals such as Ru (II), Fe (II) and Os (II) form d
6
 complex and undergo 

intense charge transfer absorption across the entire visible range.
12

 In dye sensitized solar 

cells mainly Ru (II) polypyridine complexes are used. In the field of dye-sensitized solar 

cell Gratzel reported the best sensitizer, cis-[Ru(dcbH2)2(NCS)2] (N3) where he applied 

thiocyanate (NCS
-
) as an ancillary ligand. Subsequently, several investigators attempted 

to substitute the NCS
-
 ligands which led to a variety of new photosensitizers, but the 

efficiency did not improve.
5
 

The ruthenium polypyridyl complex contains heavy metals and thus it is not environment 

friendly. Moreover the process to synthesize the complex is complicated and costly. 

Recently few authors reported the use of natural dyes as an alternative for dye 
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sensitization. The natural dyes are generally found in fruits, flowers and leaves of plants. 

A list of several natural dyes is presented in Table 2.1. 

Table 2.1 Natural extracts used for dye-sensitization 

Extract source References 

Rosella Wongcharee et al.
13

 

Blue Pea Wongcharee et al.
13

 

Jaboticaba’s skin Polo and Iha
14

 

Chaste tree fruit Gracia et al.
15

 

Mulberry Gracia et al.
15

 

Cabbage-palm fruit Polo et al.
12

 

Java Palm Polo et al.
12

 

Pomegranate seeds Polo et al.
12

 

 

2.2.2.2 Selection of semiconductor material 

A range of semiconductors such as ZnO, TiO2, SrTiO3, SnO2 and Cu2O have been 

studied with different dyes.
16, 17

 TiO2 became the semiconductor of choice because of 

several advantages such as i) low cost, ii) wide availability, iii) non-toxic nature, iv) high 

stability against photo-corrosion, and v) superior electronic energy band structure.
5, 18

 The 

anatase form of TiO2 (Eg=3.2 eV) has been found to be the most active for photocatalysis. 

TiO2 sensitization have also been studied with different dyes such as Ru(bpy)3
2+

, RuL3
2+

 

(L=2,2’-bipyridine-4,4’-dicarboxilate) and metal-quinolinol.
16

 Composite semiconductors 

such as ZnO/SnO2, SnO2/MgO and Cds/MgO showed almost equal efficiencies as 

achieved with TiO2 in solar cells.
19

 

Semiconductor surface morphology and particle size are very important as these 

ultimately affect the e
-
/h

+
 recombination and photocatalytic reaction rate.

19
 Nanoporous 
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semiconductor film can be a solution to improve the process performance. There are 

several other methods to prepare the semiconductor material such as high temperature 

solidification methods from the elements in bulk form, or vapor phase and vacuum 

methods in the form of thin films.
20

 High temperature processes are now replaced with 

cathodic electrodeposition to produce thin film of semiconductor in more economically 

efficient manner.
21

 One step electrodeposition of ZnO/dye hybrid thin film was reported 

by Yoshida et al.,
22

 where the morphology, the crystal size, and orientation of ZnO were 

significantly modified by the added dyes such as eosin Y, tetrabomophenol blue, and 

tetrasulfonated metallophthalocyanines. Sol-gel method is another widely used method 

for the preparation of nanocystalline TiO2 and ZnO.
23-27

 

2.3 Incorporation of Noble Metal Co-catalyst on to 
Semiconductor 

In the last few years interest has been shown in improving activity of TiO2 by noble metal 

doping. Metal-ion-doped TiO2 has been primarily studied to enhance the photocatalytic 

activity under UV radiation.
28-30

 Choi et al.
31

 reported increased UV photocatalytic 

degradation of chloroform with Fe
3+

, Ru
3+

, V
4+

, Mo
5+

, Os
3+

, Re
5+

 and Rh
3+

 ion doped 

TiO2. At the same time they observed decreased photoactivity in case of Co
3+

 and Al
3+

 

ion doped TiO2.  

Gas phase oxidation rate of ethanol,
32

 acetone,
33

 and acetaldehyde,
34

 was improved with 

TiO2/Pt catalyst. It has been reported that in liquid phase, addition of Pt and other noble 

metals to TiO2 improve photocatalytic performance for the degradation of different 

pollutants.
35-37

 Platinum deposits on semiconductor assists better separation of 

photogenerated electron-hole pair.
32

 Surface modification of TiO2 by platinum is an 

effective method to increase its photoactivity for water and wastewater 

decontamination.
38

 The generated electron hole pairs through band gap excitation 

undergo recombination after a finite amount of time, and this recombination rate is a 

critical factor to determine the overall photocatalytic efficiency of TiO2. Electron/hole 

recombination usually dominates semiconductor photosensitization, so the overall 



27 

 

process is often not very efficient with respect to photons.
39

 Platinum metal consists of a 

Fermi levels lower than TiO2 conduction band and could function as an electron trap 

centre to accelerate the discharge of photogenerated electrons from TiO2. This increases 

the lifespan of electron-hole pairs and thereby improves the photocatalytic activity of 

TiO2.
40

 

2.3.1 Platinum deposition methods 

Several methods are available for platinum deposition on catalyst surface, such as photo-

deposition,
41-43

 impregnation,
37, 44, 45

 chemical vapor deposition,
46

 chemical reduction of 

Pt salts,
47, 48

 and atomic layer deposition.
40, 49, 50

 They yield different degree of surface 

modification and subsequent catalytic efficiency. A brief summary of platinum 

deposition methods is illustrated in the following section. 

2.3.1.1 Photodeposition method 

TiO2 powder is suspended in a deaerated solution and dispersed by sonication. The 

solution contains a platinum precursor (e.g. H2PtCl6, K2PtCl6, H2Pt(OH)6, Pt(NH3)2(NO2)2 

etc.), water and a sacrificial organic reagent such as methanol, ethanol, propan-2-ol, 2- 

methylpropan-2-ol, and acetic acid.
41

 The solution pH is adjusted to 3.0 before the 

reaction. The suspension is stirred and irradiated with either UV or solar light generated 

from Hg vapor lamp or Xe arc lamp. After 1-2 h irradiation, the color of the suspension 

changes from white to black owing to Pt deposition. Completion of photodeposition can 

be ascertained by an analysis of Pt species in the solution. In photodeposition method the 

platinum precursor Pt
(IV)

Cl6
2-

 is reduced by the photo generated electron at the valance 

band of TiO2, and the sacrificial organic reagent act as hole scavenger. According to Li et 

al.
42

 Pt
(IV)

Cl6
2- 

is first adsorbed on TiO2 surface, then reduced into Pt
(II)

Cl4
2-

 and Pt
0
 or 

(Pt
0
)m (Pt metal cluster). They confirmed the presence of Pt, Pt(OH)2, and PtO2 on the 

surface of TiO2. Yang et al.
43

 also reported a mixture of Pt
(II)

 and Pt
0
 state even after 24 h 

of photoreduction, which could suggest the simultaneous agglomeration of Pt atoms and 

cathode-like reduction during the particle growth of Pt metal. They also suggested a 

particle growth mechanism of Pt on the basis of EXAFS and XPS results. Nakamatsu et 
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al.
41

 reported the diameter of photodeposited platinum metal on TiO2 particles in the 

range of 0.3-0.8 μm. XRD measurement showed that most of the TiO2 particles were 

rutile and some were anatase (anatase (101)/rutile (110) peak ratio = 0.16). TEM and 

SEM analysis were carried out to identify the size distribution and orientation of the 

platinum deposits on TiO2. Dispersion of platinum deposit was dependent on sacrificial 

agent; the particle size decreased in the following order: acetic acid (100 nm) 2-

methylpropane-2-ol (100 nm) > methanol (30 nm) propane-2-ol (30 nm) > ethanol (5 

nm). 

2.3.1.2 Impregnation 

In impregnation process, metal complexes are dissolved in aqueous solution to allow the 

contact with a porous oxide catalyst support such as TiO2. In the aqueous solution the 

noble metal adsorbs onto the high surface area catalyst support. The catalyst slurry is then 

filtered if large excess solution has been employed, or just evaporated to dryness. Then it 

is treated further to transform the metal from its precursor state into its active form.
44

 

Platinum modified catalysts are synthesized by impregnation of anatase prepared from 

titanyl sulfate with aqueous solution of platinum nitrate. The mixture is evaporated to 

dryness and then calcined at 450
o
C for few hours. Then the deposited platinum salt is 

reduced to lower oxidation state in hydrogen atmosphere at 250
o
C. Kryukova et al.

37
 

reported 0.5-2 wt % platinum loading on TiO2 surface, with specific surface area of 

around 170 m
2 

g
-1

 regardless of Pt loadings. Bavykin et al.
45

 reported the impregnation of 

platinum metal on TiO2 nanotube. In order to produce TiO2/Pt, the nanotube titanium 

dioxide was mixed with aqueous H2PtCl6 solution. The process was very sensitive to 

humidity, so the reaction mixture was placed into a controlled humidity chamber for 7 

days. Reduction of H2PtCl6 in titanate nanotubes was carried out in a quartz U-tube with 

hydrogen at room temperature. This method allowed the deposition of nanowires of Pt 

metal inside nanotubes but resulted in very uneven distribution of platinum. 
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2.3.1.3 Chemical reduction of Pt salts 

In this method inorganic or organic reducing agents are used to reduce platinum 

precursors. The use of formaldehyde and ethylene glycol (EG) as potential reducing 

agents were reported by Li et al.,
47

 to deposit Pt on multiwalled carbon nanotube 

(MWNT) surface. Aqueous solution of H2PtCl6 was employed as platinum precursor. The 

MWNT/Pt catalyst with a metal loading of 10 wt % was obtained. In case of 

formaldehyde reduction, Pt particles have a wide particle-size distribution ranging from 2 

to 9 nm with a mean particle size of 3.4 nm. On the contrary, for EG reduction Pt 

particles had narrow size dispersion ranging from 2 to 5 nm with its peak centered at 2.6 

nm. This observation explained a better interaction of platinum precursor with EG 

solvent to produce a high homogeneous dispersion of spherical Pt metal particles with a 

narrow particle size distribution. They also mentioned that surface modification of 

MWNTs and water content in EG solvent were found to be the key factors in controlling 

the particle size and distribution of Pt particles deposited on the MWNT support. 

NaBH4 can also be used as reducing agent to prepare Pt deposited surface. Mei et al.
48

 

mentioned about the immobilization of platinum nanoparticles on spherical 

polyelectrolyte brushes. After reduction of H2PtCl6 by NaBH4 nanosized particles were 

formed. TEM analysis confirmed the formation of Pt nanoparticles with 2 nm diameter. 

2.3.1.4 Chemical vapor deposition 

There are wide applications of chemical vapor deposition (CVD) of noble metals in 

electronics, protective coating and catalyst industries. High volatility, thermal stability 

and clean decomposition of suitable precursors results in the effectiveness of CVD. Metal 

organic complexes are commonly used as precursors of noble metals in CVD. CVD 

method is applied to produce fine particles of platinum, which can be used to prepare 

catalysts. There are several precursors available for platinum CVD, such as Pt(acac)2, 

Pt(CO)2Cl2, (MeCp)Pt, Pt(allyl)2, (Cp)PtMe3, and (MeCp)PtMe3. The efficiency of CVD 

can be further improved by applying plasma or laser as an assisting energy source to 

CVD.
46
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2.3.1.5 Atomic layer deposition 

It is a thin film growth technology which provides outstanding conformal and uniform 

growth with good control over both composition and thickness. It also follows sequential 

self-limiting surface reaction steps for metal deposition in an atomic layer-by-layer 

approach.
50, 51

 

According to Floro et al.
49

 the nucleation of precursors on surface sites in the early stages 

of atomic layer deposition (ALD) growth can be based on the Volmer–Weber growth 

mechanism. Volmer–Weber growth mode includes the following microstructural stages i) 

nucleation of discrete islands, ii) island growth, iii) island impingement and coalescence, 

iv) percolation of the island array, and v) channel filling to eventually form a continuous 

thin film. Variations in deposition temperatures can result in varying particle densities. 

Therefore, changes in the frequency of ALD cycles and deposition temperatures can 

control the loading and dispersion of platinum. Such characteristics enable ALD to 

produce both high-quality films and nanoparticles on the surfaces of flat or particulate 

substrates. 

Zhou et al.
40

 used fluidized bed reactor (FBR) for ALD of Pt nanoparticles on the 

surfaces of primary TiO2. They also described ALD as the best method in term of precise 

control the Pt deposition, to uniformly modify surfaces with small, highly dispersed Pt 

nanoparticles. 
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2.4 Application of Dye-Sensitized Photocatalyst for Water 
and Wastewater Detoxification 

Table 2.2. Exposure and regulatory limits of some organic pollutants (adapted from ATSDR, 1997, 

2003, 2005, 2008, 1999) 

Compounds Use/Exposure Health effect 

Maximum 

allowable 

contaminant level 

Hydrazine i) rocket fuels, 

ii) chemical 

manufacturing, 

iii) boiler water 

treatment  

may cause nervous 

system effect, liver 

and kidney damage, 

human carcinogen 

0.03-0.06 mg L
-1

 

 

Trichloroethylene i) metal degreasing 

agent, 

ii) common ingredient 

in cleaning agents, 

paint and adhesive, 

varnishes and ink 

cause liver and lung 

damage, abnormal 

heartbeat, coma and 

possible death, 

human carcinogen 

5 g L
-1

 

Carbon tetrachloride i) used in the 

production of 

refrigeration fluid and 

propellants for aerosol 

cans, 

ii) as a cleaning fluid 

and degreasing agent, 

in fire extinguishers, 

and in spot removers 

can damage the 

liver, kidney and 

nervous system, 

human carcinogen 

5 g L
-1

 

Phenol i) used in the 

manufacture of 

phenolic resins nylon 

and other synthetic 

fiber, 

ii) used as a 

disinfectant and 

antiseptic 

high amount can 

produce skin burns, 

liver damage, dark 

urine, and even 

death, not a human 

carcinogen 

2 mg L
-1
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iii) it is found in 

aqueous effluent from 

industries such as 

petroleum refining, 

steel production, 

coal gasification, 

textile, tannery, pulp 

and paper, pesticides, 

pharmaceuticals and 

food processing 

 

Chlorophenols i) used in pesticides 

and antiseptics, 

ii) produced in pulp 

and paper industry in 

bleaching process with 

chlorine, 

iii) formed as a result 

of chlorination of 

humic matter during 

the chlorination of 

drinking water  

high levels can 

cause damage to 

liver and immune 

system 

 

0.04-0.05 mg L
-1

 

 

2.4.1 Aliphatic chlorinated hydrocarbon 

2.4.1.1 Carbon tetrachloride (CCl4) degradation 

The sensitized degradation of CCl4 in water was successfully demonstrated by several 

authors under visible light illumination (>420 nm).
52-55

 Ruthenium based dyes have very 

good potential to sensitize TiO2 photocatalyst as well as non ionic surfactant (Brij-35). 

Cho et al.
54

 studied the effect of different parameters such as solution pH, dissolved 

oxygen and number of dye layer on TiO2 surface as a function of CCl4 dechlorination 

rate. Tris (4,4-dicarboxy-2,2-bipyridyl) ruthenium (II) complex dye was used as 

sensitizer under visible light with 2-propanol as an electron donor. The pyrolysis rate was 

dependent on pH due to the strong pH dependence of the sensitizer adsorption on TiO2 
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surface with a maximum degradation rate achieved at pH 3.0. The photolysis rate of CCl4 

showed a maximum at a sensitizer surface coverage of 30 % monolayer. 

Dissolved oxygen showed negative effect towards dechlorination as oxygen competed for 

conduction band electrons. Similar result was observed by Cho et al.
52

 where they used 

[Ru
II
 (bpy)3] photosensitizer with nonionic surfactant. With increase in each 

concentration of surfactant, sensitizer or CCl4 the corresponding CCl4 dechlorination rate 

progressively increased to reach saturation at the concentration of 0.4 g L
-1

 (surfactant), 5 

mM (sensitizer) or 30 mM (CCl4) respectively. With the ruthenium sensitizer alone in the 

absence of the surfactant, the dechlorination rate is negligible as the photoinduced 

electron transfer from the excited sensitizer to CCl4 takes place only in the presence of 

the surfactant which concentrates both reactants within a micelle. 

Fung et al.
53

 anchored a Ru(II) photosensitizer onto the surface of anatase TiO2 particles 

via in situ silylation. The silyl linkage displayed excellent stability in both aqueous 

media, over a wide pH range, and in common organic solvents. The silyl linkage also 

enabled electronic coupling between the photosensitizer and TiO2 and mediated injection 

of electrons from the photosensitizer to the conduction band of TiO2 upon 

photoexcitation. The photosensitized TiO2 material TiO2-[Ru
II
(py-pz-Si)3] was able to 

mediate photodegradation of CCl4 in the presence of electron donor in aqueous medium 

under both aerobic and anaerobic conditions. The degradation kinetics obeys Langmuir-

Hinshelwood type rate law indicating the surface adsorption of CCl4 on TiO2 surface 

during degradation. 

2.4.1.2 Trichloroethylene (TCE) degradation 

Alexander et al. examined the photo oxidation of TCE using buoyant TiO2 coated 

microspheres, which was sensitized using natural anthocyanine dyes obtained from fruits. 

The dye-sensitized system provided excellent remediation with 93 % of the TCE removal 

in 12 h. A drawback to the photo-oxidative remediation technique is the significant drop 

in pH associated with the conversion of TCE to hydrochloric acid which would make this 

method unacceptable to some sensitive aquatic environments.
56
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2.4.1.3 Pesticides degradation 

Muszkat et al. suggested accelerated photocatalytic oxidation of pesticides in water by 

dye sensitization. They studied two widely applied herbicides, bromacil (5-bromo-3-sec-

butyl-6-methyluracil) and metribuzin (4-amino-6-tert-butyl-4,5-dihydro-3-methylthio-

1,2,4-triazine-5-one). In absence of TiO2, different reaction patterns of photo-oxidation 

were shown by the above mentioned pesticides. Oxygen had a distinct effect on the rate 

of photo-oxidation of metribuzin while the influence of H2O2 was quite moderate. On the 

contrary, in presence of H2O2, photo-oxidation of bromacil improved a lot although 

oxygen showed nominal effect. In dye-sensitized system, bromacil (BR) degradation was 

observed in presence of small amount of methylene blue (MB) and red 22 (R) dyes in UV 

and natural sun light respectively. Degradation of BR in UV light was slightly higher 

than that of sun light. The photo-oxidation mechanism of the reaction seems to happen in 

presence of dual oxidant. First one was hydroxyl radicals produced by band gap 

excitation of semiconductor and subsequent formation of electron/hole pair. Second one 

was singlet oxygen formed through dye-sensitization process.
57

 

2.4.1.4 Hydrazine degradation 

Chatterjee, studied the reduction of hydrazine to ammonia via dye-sensitized 

photocatalysis with Pt/TiO2-[Ru
III

(EDTA)(H2O)] - system. The reaction mechanism was 

explained by the formation of [Ru
III

(EDTA)(N2H5)] species (adsorbed on TiO2 surface) 

which experienced a two-electron transfer reduction followed by cleavage of the N-N 

bond of coordinated hydrazine as described below: 
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The rate controlling step of the photocatalytic process was the surface chemical step 

(electron transfer) which could be coupled with adsorption of reactants and desorption of 

ammonia molecule.
58

 

2.4.1.5 Dye degradation 

A non-sensitizing dye (e.g. acid blue1 (AB1)) in an effluent can be degraded by just 

mixing with another effluent containing sensitizing dye (eosin Y or thionine) and 

subjecting the mixture of effluent to visible light and aqueous suspensions of TiO2. 

However, the sensitizing dye also degrade gradually due to self-sensitized degradation 

mechanism.
59

 

Different dye degradation such as bromothymol blue, acid blue 1, methylene blue, eosin 

Y, thionine, and chrysoidine Y were reported in recent literatures.
59-63

 Degradation rates 

are strongly influenced by several factors such as solution pH, catalyst concentration, 

substrate concentration, type of electron acceptor and semiconductor type. Degussa TiO2 

P25 showed highest efficiency compared to Hombikat UV100, PC 500, TTP and ZnO.
60, 

61
 Solution pH is an important parameter in the photocatalytic reactions, since it 

influences the surface charge of the catalyst and therefore the adsorption behavior of the 

pollutants. The efficiency of bromothymol blue degradation was found to be more or less 

similar in pH range of 4-9. Formation of reaction intermediate was also confirmed by 

new absorption peak at pH 9. At pH 2, slightly lower mineralization rates were 

observed.
60

 In case of chrysoidine Y, maximum degradation was found at pH 9. At 

alkaline pH, high concentration of HO
-
 ion facilitated the formation of hydroxyl radicals, 

which finally diffused away and degraded the dye molecule in the bulk solution.
61

  

Simultaneous photocatalytic degradation of AB1, eosin Y and thionine in air equilibriated 

aqueous suspension of TiO2 photocatalyst has been achieved by Chatterjee et al.
59

 They 

also proposed the formation of reactive 

O2

-
/

HO2 as a major route of dye degradation. 

Degradation mechanism of AB1 in presence of eosin Y and thinine is quite different. 

Thionine accepts electron at the excited state whereas eosin Y usually releases electron. 

So, thionine can oxidize AB1 to AB1
+
 even in the absence of TiO2 and in the process it is 
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converted into a colorless species, semithionine. However, eosin Y cannot undergo such 

oxidation (AB1 to AB1
+
) upon irradiation in absence of TiO2. Scheme 1 and Scheme 2 

were proposed for the degradation of AB1-EY and AB1-Th.
59

 

Scheme 1: 

 

 

 

 

 

 

 

Scheme 2: 
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In case of dye-sensitized TiO2 photocatalyst, the dye molecules were only adsorbed on 

TiO2 surface and no stable chemical bonds were formed between them. As a result, the 

dye molecules were easily desorbed from TiO2 surface during photocatalytic process, 

which could decrease its photocatalytic activity. Jing et al. synthesized a dye modified 

TiO2 using Chrysoidine G (CG), tolylene-2,4-diisocyanate (TDI) and Degussa P25 as raw 

materials. TDI linked together TiO2 and CG via –NHCOOTi and –NHCONH- bonds to 

produce a dye modified TiO2 catalyst. The dye modified TiO2 showed strong absorption 

in visible region and improved adsorption capacity to methylene blue (MB) As a result, 

the photocatalytic degradation of MB by dye-modified TiO2 showed much higher activity 

than bare TiO2.
63

 

2.4.2 Aromatic compounds 

2.4.2.1 Phenol degradation 

Photodegradation of phenol with dye-sensitized TiO2 showed promising results under 

visible light irradiation.
64, 65

 Grandos et al. utilized Zn(II) and Co(II) 

tetracarboxyphthalocyanine (TcPcM) to sensitize TiO2 and TiO2/Pt for the degradation of 

phenol in visible light. They expressed the degradation of phenol with TcPcM/TiO2 in 

terms of photonic efficiency [ = (kC0/I0)]; where C0 was the initial phenol concentration 

and I0 was the incident photonic flow per unit volume. The photonic efficiencies () of 

phenol degradation were 4.3% and 3.3% on TcPcCo/TiO2 and TcPcZn/TiO2 respectively. 

Again, photodeposition of platinum on TcPcM/TiO2 enhanced reaction photo-efficiency 

up to   0.1.
64

 

Chowdhury et al.,
65

 also reported eosin Y-sensitized TiO2/Pt catalyst for the degradation 

of phenol in visible light. About 93% degradation of phenol (C0 = 40 mg L
-1

) was 

achieved within 90 minutes under optimum reaction conditions such as pH 7.0, catalyst 

loading of 0.8 g L
-1

, electron donor (triethnolamine) concentration of 0.2 M, 0.5% Pt 

loading on TiO2, and visible solar light intensity of 100 mW cm
-2

. They considered the 

formation of superoxide (

O2

−
) ions followed by HO


, which subsequently proceeded to 

the complete mineralization of phenol and other intermediates. They also found a 
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significant effect of the Pt loading on phenol degradation. Eosin Y-sensitized TiO2 

without Pt metal can degrade phenol ( 67 %) in visible light, but with the incorporation 

of Pt (0.5 %) on TiO2, complete degradation was achieved. 

2.4.2.2 Chlorophenol degradation 

Ghosh et al.
66

 reported the degradation of 4-chlorophenol in aqueous medium with 

coumerine (C-343, max= 446 nm) sensitized TiO2 photocatalyst using 436 nm LED 

based photoreactor. LEDs offer high electrical to light energy conversion with slight heat 

production, forward directed output facilitating delivery to a target, extended lifetime, 

and operation on DC which may facilitate its use in remote locations. Additionally, the 

LED reactor efficiency for 4-chlorophenol degradation was fairly comparable with a 

conventional multi-lamp reactor or sun light. The coumarin dye can harvest a larger 

fraction of energy from the well-matched LED. The reaction rate fitted approximately to 

first order kinetics and moved towards a limiting value at a quite high catalyst 

concentration (3 g L
-1

). They mentioned about HO

 radical initiated reaction mechanism 

although the formation of chlorocatechol was not reported. The only supporting fact 

regarding this was HO

 radical scavenging experiment. Formation of superoxide ion 

(

O2

−
) was also assumed, which would involve the attack to benzene ring with loss of 

chlorine from chlorophenol.
66, 67

 

2.4.2.3 Benzyl alcohol degradation 

The photocatalytic oxidation of benzyl alcohol has been investigated by Hussein and 

Alkateeb, under natural weathering conditions (sunlight and oxygen) in presence of TiO2 

or sensitized TiO2. Sensitization of TiO2 was achieved by the impregnation of riboflavin 

(RF), safranine O (SO), methyl red (MR), eosin B (EB), and methyl blue (MB) on 

anatase (TiO2 P25). Benzaldehyde was identified as the only reaction product through 

HPLC, FTIR, and spectrophotometric analysis. The photo-oxidation of benzyl alcohol 

was found to follow the sequence: RF > SO > naked TiO2 > MR > EB > MB. The 

formation of benzaldehyde during the photocatalytic reaction was studied by using FTIR, 

HPLC and spectrophotometric measurements.
68
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Table 2.3. Dye-sensitized photodegradation of organic compounds 

No 
Organic 

compounds 

Initial 

substrate 

concentration 

Sensitizer/ 

Photocatalyst 

Light source and 

accessories 

Other 

experimental 

details 

Results/ 

comments Reference 

1. CCl4 10 mM Ruthenium 

bipyridyl complex 

(Ru
II
(bpy)3)/nonion

ic surfactant Brij-

35 . 

 

450 W Xe arc 

lamp (Oriel); 10 

cm IR water filter; 

UV cutoff filter 

(>420 nm) 

Irradiation time 

120 min; Air 

equilibrated. 

i) CCl4 

degradation rate 

was enhanced in 

absence of O2 

Cho et al.
52

 

2. CCl4 

 

3 – 4 ppm  Silylated [Ru
II
(py-

pzH)3]
2+

/TiO2. 

py-pzH 3-(2’-

pyridyl) 

100 W tungsten 

lamp (Oriel) 

(>450 nm) ; 

IR filter. 

Irradiation time 

30 min; pH 

6.5-7.0; purged 

with air (for 15 

min); I
-
 as 

sacrificial 

electron donor. 

i) Silyl linkage is 

highly stable in 

extream pH range 

(pH 1.0 – 12.0). 

Fung et al.
53

 

 

3. CCl4 1 mM Tris (4, 4’-

dicarboxy-2,2’-

bipyridyl) 

ruthenium (II) 

chloride 

450 W Xe-arc 

lamp (Oriel); 10 

cm IR water filter; 

UV cut off filter 

(>420 nm). 

Irradiation time 

6 h; N2 

saturated 

system; 

TiO2=0.5g L
-1

; 

pH 3; 2-

propanol as 

electron donor. 

Quantum yield of 

CCl4 

dechlorination 10
-

3
 

Cho et al.
54
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4. i) CCl4 

ii) 

trichloroacet

ate (TCA) 

 

 

i) 1 mM 

ii) 1 mM 

Tris (4, 4’-

dicarboxy-2, 2’-

bipyridyl)-

ruthenium (II) 

complex.  

450 W Xe-arc 

lamp (Oriel); 10 

cm IR water filter; 

UV cut off filter 

(>420 nm). 

Irradiation time 

1 h (CCl4) and 

2 h (TCA); O2 

was removed 

by N2 sparging 

before reaction; 

pH 3 

 

 

 

Photocatalyst was 

completely 

inactive in 

presence of 

dissolved oxygen. 

Bae and Choi
55

 

5.  Trichloro-

ethylene 

(TCE) 

2-500 ppm Natural 

anthrocyanine dye 

(obtained from 

fruits)/buoyant 

TiO2 coated 

microsphere. 

150 W Xe lamp; 

 

 

Irradiation time 

15 - 1440 min 

i) Mineralization 

product: HCl; 

ii) 93 % TCE 

degradation was 

reported. 

Alexander and 

Rosentreter
56

 

6. Pesticides 

(bromacil 

(BR)) 

30-100 ppm Methylene blue 

(MB), Red 22 (R). 

UV: HBO 200 W; 

natural sunlight 

TiO2 

concentration 

100 mg L-1; 

MB/BR molar 

ratio varied 

from 0.05-0.2 ; 

R/BR molar 

ratio was 0.143 

Highest 

enhancement 

factor (EF) 2.27 

was achieved at 

MB/BR molar 

ratio of 0.1  

Muszkat et al.
57
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7. Hydrazine 1 mmol Ru
III

(EDTA)(H2O)
-

/Pt/TiO2 P25 

250 W Xe lamp Irradiation time 

8 h; pH 3.1; 

Temperature 

25
0
C. 

i) Hydrazine is 

reduced to 

ammonia; 

ii) Yield of 

ammonia 

production 

1.9810
-5

 mol h
-1

. 

ii) Declined yield 

after 5 h  

Chatterjee
58

 

8. Phenol 100 ppm  Zn(II) and Co(II) 

tetracarboxphthalo

cyanine/Pt/TiO2. 

100 W halogen 

lamp (Osram); 1M 

K2 Cr2O7 as UV 

filter.  

 

Irradiation time 

60 min; 

Temperature 

202
0
C; Air 

supply into 

reaction 

medium. 

i) 33 % phenol 

degradation with 

TcPcZn/TiO2/Pt 

ii) 65 % phenol 

degradation with 

TcPcCo/TiO2/Pt. 

 

 

Granados O et 

al.
64

 

 

9. 4-

chlorophenol 

(4ClPh) 

40 ppm Coumarin-

343/TiO2 P25 

81 Gilway “super 

bright” (Peabody, 

MA) E472 W 

(max output); 

1mM K2 Cr2O7 in 

0.22 M Na2CO3 

aqueous solution 

as UV filter. 

Irradiation time 

8 – 10 h; 

Temperature 

202
0
C; 

i) Reaction 

intermediate:1,2,4

-benzenetriol and 

d 

ihydroxymaleic 

acid; 

ii) First order 

reaction kinetics 

Ghosh et al.
66
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followed. 

10

. 

i) 

Chloropheno

l 

ii) 1,2-

dichloroetha

ne 

iii) 1,4-

dichlorobenz

ene 

iv) 

trichloroehyl

ene 

i) 1 mmol 

ii) 1 mmol 

iii) 0.1 mmol 

iv) 1 mmol 

Thionine, Eosin Y, 

Rhodamine B, 

methylene Blue, 

Nileblue A, 

Safranine O/ TiO2. 

150 W Xenon 

lamp (Oriel 

Instruments); UV 

filter solution 

(NaNO3+CuSO4+

NH4OH). 

O2 was bubbled 

in the 

photoreactor.  

i) Product of CO2, 

Cl
-
;  

ii) 55-72 % 

degradation of 

pollutant was 

achieved. 

Chatterjee et 

al.
59

 

11

. 

Benzyl 

alcohol 

 Riboflavin (RF), 

Safranine O (SO), 

Methyl red (MR), 

Eosin B (EB), 

Methylene blue 

(MB)/TiO2 P25 

 

Sunlight Irradiation time 

75 min; 

Temperature 

316-321 K; 

Reaction 

volume 150 

cm
3
. 

i) Benzaldehyde 

was the 

photooxidation 

product; 

ii) The sequence 

of dye in the 

following 

superiority order: 

RF>SO>naked 

TiO2>MR>EB>M

B; 

Hussein et al.
68
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Table 2.4 Dye-sensitized photodegradation of organic dyes 

No. 
Organic 

dyes 

Initial 

substrate 

concentration 

Sensitizer/ 

Photocatalyst 

Light source 

and accessories 

Other 

experimental 

details 

Results/ 

Comments Reference 

1. Methylene 

blue 

50 ppm Chrysoidine 

G/TiO2 P25. 

250 W metal 

halide lamp 

(Philips); UV 

cut off filter. 

Irradiation time 

12 h. 

special organic 

complexes were 

formed on the TiO2 

surface via stable -

conjugated chemical 

bonds between TiO2 

and dye molecules 

Jiang et al.
63

 

2.  Bromothy-

mol blue 

(BTB) 

0.25 mM TiO2 P25 125 W medium 

pressure 

mercury lamp; 

IR and UV filter. 

Catalyst dose 1 

g L
-1

; Irradiation 

time 90 min; 

electron 

acceptor 

(KBrO3, H2O2 

etc). 

Electron acceptors 

showed positive 

effect on BTB 

degradation 

Haque and 

Muneer
60

 

3. Acid blue 1 

(AB1) 

25 ppm Eosin Y, 

Thionine/TiO2. 

150 W Xenon 

lamp (Oriel 

Instruments); 

Copper sulfate 

and ammonium 

hydroxide as 

UV filter (> 

420 nm). 

Irradiation time 

5 h; O2 was 

bubbled in 

photoreactor; pH 

5.0. 

decoloration of 

eosinY (EY) or 

thionine (Th) 

due to self-sensitized 

degradation was also 

noticed 

Chatterjee et 

al.
59
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4. Chrysoidi-

ne Y 

0.25 mM Chrysoidine 

Y/TiO2 P25. 

125 W medium 

pressure Hg 

lamp. 

Irradiation time 

120 min; O2 

purging and 

stirring; pH 3.0-

9.0. 

Degussa P25 was 

more efficient than 

that of ZnO  

Qamar et al.
61
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2.5 Application of Dye-Sensitized Photocatalyst for 
Hydrogen Generation 

2.5.1 Basic requirement for hydrogen generation in visible light 

When a semiconductor material is illuminated with photons having an energy h equal to 

or larger than the semiconductor band gap, the result is formation of electronic charge 

carriers, electrons in the conduction band and holes in the valance band.  

Semiconductor + 2h   2h
+
 + 2e

-     
(2.4) 

 H2O + 2h
+
     1/2O2 + 2H

+
 (EO2/H2O)   (2.5) 

 2H
+
 + 2e

-
         H2 (EH2O/H2)     (2.6) 

 H2O + h                   H2(g) + 1/2O2(g)    (2.7) 

The photoelectrons and holes reduce and oxidize water to produce the stoichiometric 2:1 

mixture of H2 and O2 by the above reaction (2.4-2.7).
69

 

The Gibb’s free energy (G) at STP is positive for water splitting reaction (equation 

(2.7)). Such a non-spontaneous reaction will be possible if the energy of the incident 

photon’s energy is equivalent to the change in the Gibb’s free energy (G) of the reaction 

and that must be supplied. Under standard conditions water can be electrolyzed reversibly 

into hydrogen and oxygen (2:1) at a potential of 1.23 V which is derived from the 

equation of Gibb’s free energy:  

G
0
 = - nF ((E

0
)         (2.8) 

Where, G
0
 and E

0
 are standard Gibbs free energy change and standard electrical 

potential of the reaction. The standard Gibbs free energy change (G
0
) is the negative 

value of maximum electrical work corresponding to 237.14 kJ mol
-1

 or 2.46 eV for 

equation (2.7). Since this is a two electron redox process, photocatalytic water splitting is 
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possible if the semiconductor photocatalyst possess a band gap energy (Eg) greater than 

1.23 eV.
70, 71

  

Now the semiconductor photocatalyst will be visible light active if the band gap energy is 

less than 3.0 eV. In addition, the band position is also an important parameter for visible 

light excitation. Therefore, the photocatalytic materials for visible light water splitting 

should have proper band position and suitable band gap energy (1.23 eV < Eg < 3.0 eV).
70

 

Oxides such as TiO2, ZnO and SnO2 have large band gap (3-3.8 eV) and absorb only 

ultra-violet part of the solar emission and so has low conversion efficiencies. The 

adsorbed dye is photo excited and then inject electron to the conduction band of 

semiconductor.  

Dye sensitization to photocatalyst is an excellent method to broaden its absorbance range. 

Remarkable increases in visible-light absorption ability were observed after dye 

sensitization without compromising the photocatalyst structure. Abe et al.
72

 reported 

maximum improvement in visible light absorption for N3-TiO2/Pt (Ru complex N3) 

followed by M-TiO2/Pt (merocyanine NK2045) and C-TiO2/Pt (coumarine C343). 

Nanotube Na2Ti2O4(OH)2,
73

 has a absorption band edge of about 390 nm, which was 

expanded to 670 nm by sensitization with eosin Y dye. Sensitizations with eosin Y dye 

were also reported for N-doped TiO2/Pt,
74

 silane-coupled TiO2,
75

 mesoporous TiO2/Pt,
76

 

TS-1 zeolite,
77

 and silica gel H
78

. In all cases a red-shift of the absorption band edge to 

about 600 nm were observed. Li et al.
79

 prepared multilayer-eosin Y-TiO2 through 

linkage of Fe
3+

 and achieved similar improvement in visible light absorption. 

2.5.2 Dye-sensitized photocatalytic hydrogen generation 
mechanism 

Dye-sensitized photocatalytic hydrogen evolution from water is pointed out in Figure 

2.5.
80

 Light excitation of sensitizer is followed by electron transfer into the conduction 

band of the photocatalyst and is channeled to the platinum site, where hydrogen evolution 

occurs.
16
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Dye sensitization followed by photocatalytic hydrogen generation process can be 

expressed in few consecutive steps i) visible light absorption by dye molecule and 

excitation, ii) sensitization of semiconductor (TiO2) with excited dye species, iii) 

hydrogen generation with the assistance of co-catalyst (Pt), iv) regeneration of dye with 

the help of electron donor. 

i) Light absorption: 

 

ii) Sensitization of TiO2: 

 

 

Figure 2.4 Dye-sensitized photocatalytic H2 generation from water (adapted 

from Chen et al.
80

). 
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iii) Hydrogen generation: 

 

 

iv) Dye regeneration: 

 

 

The summarized scheme is give in Figure 2.6, which shows that the overall mechanism 

induced by light is reduction of water and oxidation of the third component employed as 

an electron donor. 

 

2.5.3 Sensitization with different dyes for photocatalytic hydrogen 
generation 

Different types of dye molecules have been used so far as sensitizer generating hydrogen 

in visible light. In early studies, Ru(bpy)3
2+

 and its derivatives were used as sensitizer for 

Pt/RuO2-loaded TiO2 particles for overall water cleavage.
81-83

 Sacrificial hydrogen 

generation was also reported for Ru(bpy)3
2+

 and Ru
II
(acid)3 sensitized TiO2/Pt in visible 

Figure 2.5 Scheme for visible light-driven hydrogen generation by dye-sensitized TiO2/Pt 
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light using EDTA as electron donor. Activities of Tris(2,2’-bipyridine-4,4’-dicarboxylic 

acid) ruthenium(II) (Ru(dcbpy)3) and Ru(bpym)3
2+

 were better for hydrogen generation in 

visible light compared to Ru(bpy)3
2+84

. Enhanced dye adsorption on the photocatalyst 

surface was mainly projected as the explanation of such improvement. Strongly bound 

dye molecule can be stabilized near semiconductor surfaces, which leads to fast electron-

injection of the excited dye into substrate. The photocatalytic activity and stability of 

Ru(bpy)3
2+

-sensitized TiO2 depends on surface anchoring group. According to Bae et 

al.
85

 phosphonate group based sensitizer exhibited higher photocatalytic activity for 

hydrogen production from water than carboxylate group based sensitizer. Anchoring 

through phosphonate group assisted faster regeneration and thus acted as better 

ruthenium sensitizer linkage to the TiO2 surface in aqueous solution.  

Again, close proximity of dye molecule and substrate also increases the probability of 

electron/oxidized dye recombination reaction. Kajiwara et al.
86

 also believed that the 

thermal re-orientational motion of the loosely attached molecules was responsible for 

enhanced electron transfer. Peng et al.
87

 did a comparative photosensitizing activity study 

with three kinds of dyes, having different terminal groups that can attach to TiO2 through 

firm or loose linkage. Among them, N719 [(n-Bu4N)2-cis-Ru(dcbpy)2(SCN)2], one of the 

best sensitizer for DSSCs with the same structure as N3 dye. Ru(bpy)2(him)2–NO3 and 

Ru2(bpy)4L1–PF6 have no terminal group like N719 and can just loosely link with TiO2. 

Ru2(bpy)4L1–PF6 showed more steady and higher increases in H2 generation with 

extended irradiation time than the strongly linked N719. Therefore, the dynamic 

equilibrium between the ground state dye-TiO2 attachment and oxidized dye-TiO2 

detachment played a crucial role in the photochemical behavior during the photocatalyst 

sensitization process.
88

 

Higher cost constrains and toxicity of metal based dyes (especially Ru based dyes) forced 

researchers to use less expensive organic dyes for dye sensitization. Photosensitization 

activity of five different dyes namely acriflavin, eosin blue, fluorescein, rhodamine B, 

rose bengal, was examined for hydrogen production by SnO2/Pt.
89

 Among them eosin 

blue provided the maximum efficiency to sensitize SnO2 and produced a greater amount 
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of hydrogen, even higher than Ru(bpy)3
2+

. Photosensitization abilities of eosin Y dye for 

sacrificial hydrogen generation were studied extensively by several authors.
73-79

 

Sreethawong et al.
76

 synthesized mesoporous-assembled TiO2/Pt by a single step sol-gel 

process with the aid of structure-directing surfactant. The activity of the photocatalyst 

with eosin Y sensitization was studied in diethanolamine (30 vol %) aqueous solution. 

Platinum loaded (0.6 wt %) TiO2 calcined at 500
0
C showed highest photocatalytic 

performance for hydrogen generation from aqueous diethanolamine solution containing 2 

mM eosin Y. Li et al.
74

 prepared a nitrogen-doped TiO2/Pt (N-TiO2) by calcination of the 

hydrolysis product of Ti(SO4)2 with aqueous ammonia followed by platinum loading. 

Then, N-TiO2/Pt was sensitized with anhydrous ethanol solution of eosin Y and used for 

hydrogen generation in presence of triethanolamine. Nitrogen doping created surface 

oxygen defects which facilitated the adsorption of eosin Y. Thus, under similar 

experimental conditions eosin Y-N-TiO2/Pt showed higher photocatalytic activity 

compared to that of eosin Y-TiO2/Pt. A chemical fixation of eosin Y on TiO2/Pt was tried 

by Abe et al.,
75

 with silane-coupling in order to get steady hydrogen generation from 

aqueous triethanolamine solution. The turnover number was quite high (10
4
), which 

represented high catalyst stability, although the initial hydrogen generation rate was low, 

compared to that of physically mixed system of eosin Y and TiO2/Pt. The quantum yield 

at 520 nm was found to be about 10 %. Eosin Y-sensitized platinum loaded nanotube 

Na2Ti2O4(OH)2, with a quantum yield up to 14.97 %, showed good photocatalytic 

stability for hydrogen production over 100 h after 10 consecutive runs. Li et al.
79

 

prepared a multilayer-eosin Y-sensitized TiO2 through Fe
3+

 coupling between TiO2-eosin 

Y and different eosin Y molecule. The photocatalyst had very high light harvesting 

efficiency and photocatalytic activity for visible light driven hydrogen generation from 

aqueous triethanolamine solution. The apparent quantum yield for hydrogen evolution 

was 19.1 %. Eosin Y-sensitized TS-1 zeolite,
77

 silica gel H,
78

 and multiwalled carbon 

nanotube/Pt,
90

 were also able to generate hydrogen from aqueous triethanolamine 

solution in visible light with apparent quantum efficiency of 9.4 %, 10.4 % and 12.4 % 

respectively. 
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2.5.4 Effect of different parameters on the photocatalytic activity 
for hydrogen generation 

2.5.4.1 Effect of co-catalyst loading 

Till date platinum has shown the highest photocatalytic activity as co-catalyst in water 

splitting system in visible light. There are few other noble metals from group 8-11 in 

periodic table (Ru, Rh, Pd, Ag and Au) which have also been reported as effective co-

catalyst for such system. Higher electron flow from semiconductor to metal can be 

achieved with the smaller Schottky barrier height at the metal/semiconductor junction 

which leads to higher photocatalytic activity for hydrogen production.
91

 

2.5.4.2 Effect of electron donor 

In case of band UV photocatalysis or band gap excitation process sacrificial agents are 

used to stop e
-
/h

+
 pair recombination. They are basically electron donors or hole 

scavengers. These react irreversibly with the photo-generated valance band hole and can 

enhance the e
-
/h

+
 pair separation and provide higher quantum efficiency. Aliphatic 

organic compounds such as ethylenediamine tetra-acetic acid (EDTA), carboxylic acids, 

aldehydes, and alcohols are mostly used as sacrificial agents to enhance hydrogen 

production.
2
 The degree of enhancement capability was found in the following order by 

Nada et al.
92

: EDTA > methanol > ethanol > lactic acid. Inorganic ions such as S
2-

/SO3
2-

, 

IO3
-
/I

-
 and Ce

4+
/Ce

3+
 were also used as sacrificial agent for hydrogen production.

93-95
 In 

dye-sensitized system under visible light, practically no hole is present. In this case the 

function of electron donor may be viewed in light of its dual function since it could 

quench the oxidized form of the dye (dye
+
) or it could extend its lifetime in the 

photosensitized system providing long-term hydrogen generation. Different electron 

donors such as EDTA, acetonitrile, methanol, isopropanol, IO
3-

/I
-
, diethanolamine, 

triethanolamine, chloroacetic acid, and oxalic acid etc. can be used. 
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2.5.4.3 Effect of solution pH 

Solution pH has immense influence on photocatalytic reaction which takes place over the 

photocatalyst surface. In aqueous slurry of TiO2 the catalyst surface is embraced with 

plenty of hydroxyl groups and thus the ionization of TiO2 is greatly affected by solution 

pH. Moreover, the ionization of the electron donor and regeneration of dye are also 

influenced by solution pH. Chowdhury et al.
96

 reported that dye (eosin Y) molecule 

showed stronger interaction with solution pH in comparison with the electron donor-pH 

interaction. Different optimum pH was reported for dye-sensitized photocatalytic system 

ranging from 3 to 11. With Ru (II) based sensitizer and methyl viologen (MV
2+

) the 

optimum pH was in acidic range.
81, 82

 In case of EDTA and triethanolamine based 

systems the optimum pH were 7.
73, 75, 84

 On the contrary, with diethanolamine based 

system the optimum pH was alkaline (11.5).
76
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Table 2.5. Dye-sensitized photocatalytic hydrogen generation 

No 
Aqueous 

mixture details 

Capacity/ 

Concentration 

Sensitizer/ 

Photocatalyst 

Light source 

and 

accessories 

Other 

experimental 

details 

Results/ 

Comments 
Reference 

1. Water, methyl 

viologen 

(MV
2+

) 

25 mL/ 

dye: 10
-4

 – 

5x10
-5

 M. 

 

[Ru(bpy)3]
2+

; 

Rhodamine B /TiO2 

sol loaded with Pt 

and RuO2 (Pt 1mg, 

RuO2 0.2 mg) 

450 W –Xe 

lamp, 420 nm 

cutoff filter 

 

N2 saturated; 

pH 3; TiO2 1g 

L
-1

. 

Quantum yield 

(QY) 30 % 

 

Duonghong et 

al.
81

 

 

2. Water, methyl 

viologen 

(MV
2+

) 

25 mL/ 10
-4

 M 

dye; 5x10
-3

 M 

MV
2+

 

[Ru(bpy)3]
2+

/colloid

al TiO2-Pt-RuO2 (Pt 

40 mg/L) 

450 W Xe 

lamp, IR filter, 

400 nm cut off 

filter 

N2 saturated; 

pH 4.7; TiO2 

0.5g/L, 4% 

Nb2O5, 0.1% 

RuO2 

 rate of H2 = 

2(rate of O2) 

only after 

saturation of 

TiO2 adsorption 

sites 

Borgarello et 

al.
82

  

 

3. Water- EDTA 

(electron 

donor) 

3 mL water; 

EDTA 0.01 M 

[Ru(bpy)3]
2+

/TiO2 

P25/Pt and TiO-5/Pt 

(0.3 wt %). 

500 W Xe 

lamp, UV 

cutoff filter 

L42 

pH 7 ; TiO2 

(TiO-5): 0.05g  

rate H2 

5.73μmol min
-1

 

Hirano et al.
84

 

 

4. Water 40 mL/10
-4

 M 

dye 

[Ru(dcbpy)2(dpq)]
2+

/TiO2 P25/Pt (0.4wt 

%); ZnO/Pt (0.4wt 

%) 

250 W tungsten 

halogen lamp; 

IR filter 

N2 saturated; 

pyrogallol 

solution to 

remove O2; 

cat dose 1g L
-

1
; 

rateH2: 4.16x10
-

3
 mL H2/min 

(TiO2/Pt), 5x10
-4

 

mL H2/min 

(ZnO/Pt) 

Dhanalakshmi et 

al.
16

 

 

5. Water- 100m L/ water 5 Merocyanine (M), 300 W Xe Cat dose 0.5 g Q.Y (%): N3- Abe et al.
72

 



54 

 

acetonitrile , 

NaI  (I3
-
/I

-
) 

(electron 

donor) 

%; NaI 0.1 M Coumarin (C), Ru 

complex (N3) 

dye/TiO2/Pt (0.5 wt 

%) 

lamp, 410 nm 

cut off filter  

L
-1

 Pt/TiO2 :4.5 ; C-

Pt/TiO2 :1.8 ; M-

Pt/TiO2 2.5.  

 

 

6.  Water-

methanol 

(MeOH) 

(electron 

donor); Water-

triethanolamine 

(TEOA) 

(electron 

donor) 

100 mL / 20 ml 

electron donor  

N719, 

Ru(bpy)2(him)2-

NO3, Ru2(bpy)4L1-

PF6/TiO2/Pt ( 1wt 

%) 

500 W-Xe arc 

lamp, 420 

cutoff filter, 

outer radiation 

type photo 

reactor 

Degassed 

before 

reaction; Cat 

dose 0.4g L
-1

 

Highest H2 

generation rate 

was observed 

with 

Ru2(bpy)4L1-

PF6; 

rateH2: 0.58 

μmol H2/min 

(with TEOA) 

and 0.04μmol 

H2/min (with 

methanol ) 

Peng et al.
87

 

 

7. Water- MeOH 

(electron 

donor)  

100 mL /20 ml 

MeOH 

N719, 

Ru(bpy)2(him)2-

NO3, Ru2(bpy)4L1-

PF6/mesoporous 

TiO2/Pt (1 wt%) 

250 W Xe lamp 

420 nm cutoff 

filter, outer 

radiation type 

photo reactor 

Degassed 

before 

reaction; Cat 

dose 0.4g L
-1

 

rateH2 : 

0.24 μmol min
-1

  

(300
0
 C 

calcination);  

0.16 μmol min
-1

  

(500 
0
C 

calcination ) 

 

Peng et al.
88

 

 

8. Water-TEOA 80 mL /TEOA Eosin Y/ 300 W tungsten N2 saturated; rateH2:1.26 Li et al.
73
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(electron 

donor) 

15 vol%,  
nanotube 

Na2Ti2O4(OH)2/Pt 

(0.5wt %) 

halogen lamp, 

420 nm cut off 

filter 

dye:cat 

mass=1:1; pH 

7; Cat dose: 

0.5g L
-1

; 

μmol/min; 

QY:14.97 %  

9. Water-TEOA 

(electron 

donor) 

80 mL/ TEOA 

0.79 M 

Eosin Y/N-TiO2/Pt 

(0.5 wt%) 

400 W high 

pressure Hg 

lamp; 420 nm 

cut off filter 

N2 saturated; 

pH 7; Cat 

dose: 1.25 g L
-

1
 

rateH21.33 

μmol min
-1

; 

Li et al.
74

  

 

10. Water-TEOA 

(electron 

donor) 

250 mL/ TEOA  Eosin Y/TiO2/ 

Pt (0.1 wt%) (fixed 

with silane coupling 

agent ) 

300 W Xe 

lamp; 460 nm 

cut off filter; 

N2 saturated; 

pH 7; Cat 

dose: 1.2g L
-1

; 

rateH211.6 

μmol min
-1

; 

QY:10 % 

Abe et al.
75

  

 

11. Water-

diethanolamine 

(electron 

donor) 

150 mL/ 

dierthanolamine 

30vol % 

Eosin Y/ 

mesoporous-

assembled TiO2/Pt 

(0.6 wt%) 

300 W Xe arc 

lamp; 400 nm 

cut off filter; 

N2 saturated; 

pH 11.5; Cat 

dose: 3.33g L
-

1
; 

rate H2  0.033 

ml min
-1

 

Sreethawong et 

al.
76

  

 

12. Water-TEOA 

(electron 

donor) 

60 mL/ TEOA  

15wt % 

Eosin Y/TS-1 

zeolite/Pt (1 wt%) 

300 W tungsten 

halogen lamp; 

420 nm cut off 

filter; 

N2 saturated; 

pH 7; dye:cat 

mass=1:8; Cat 

dose: 0.6g L
-1

; 

rate H2: 0.56 

μmol /min; 

QY:9.4 % 

Zhang et al.
77

  

13. Water-TEOA 

(electron 

donor) 

60 mL/ TEOA  

15wt % 

Eosin Y/silica gel/Pt  300 W tungsten 

halogen lamp; 

420 nm cut off 

filter; 

N2 saturated; 

pH 7; dye:cat 

mass=1:3; Cat 

dose: 1g L
-1

; 

rate H2: 0.72 

μmol min
-1

; 

QY:10.4 % 

Zhang et al.
78

  

14. Water-TEOA 

(electron 

donor) 

80 mL/ TEOA  

0.79 M 

Eosin Y/ TiO2/Pt (1 

wt%) (linkage via 

Fe
3+

 coupling) 

400 W metal 

halide lamp; 

420 nm filter; 

N2 saturated; 

pH 7; Cat 

dose:1.25g L
-1

 

rate H2: 4.58 

μmol /min; 

QY:19.1 % 

Li et al.
79
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2.6 Conclusions 

In this review the basic principle of dye-sensitization and effect of different parameters 

on the process were discussed. Surface anchoring group, energy level and ground state 

redox potential of dye molecule were recognized as the most important parameters for 

successful electron injection to the conduction band of semiconductor. Ruthenium based 

sensitizers were used extensively in dye sensitization field but because of their higher 

cost and toxicity, future researchers are gradually focusing on non-toxic organic dyes as 

well as natural dyes from fruits, flowers and vegetables. 

The presence of novel metals on semiconductor surface was crucial for hydrogen 

generation and also had positive effect on organic degradation. Different methods of co-

catalyst loading have been discussed in details. Among the five methods, atomic layer 

deposition (ALD) was described as the best method in terms of precise control over both 

composition and thickness of loaded metal. This however is an expensive method, and 

further research is needed to find a simpler method such as photodeposition that can 

utilize solar radiation instead of UV lamps to minimize the operation cost. 

Finally, the applications of different dye-sensitized photocatalysts under visible light 

were presented for treatment of organic compounds and hydrogen generation. Ru (II) 

based dye-sensitized photocatalysts were able to degrade carbon tetrachloride (CCl4) and 

hydrazine in high acidic pH. They also performed water splitting in visible light with 

high quantum yield. Organic and natural dye-sensitized photocatalysts were efficient for 

the degradation of pesticides, trichloroethylene, phenol and chlorophenols. Excellent 

hydrogen generation activity was observed for metal free dyes such as xanthane dyes, 

merocyanine dyes and coumarin dyes in visible light.  

Although extensive work in this field has been carried out, several topics are yet to be 

explored. Natural dyes need to be studied properly for dye sensitization purpose. We 

need to consider the utilization of complete solar spectrum rather than only visible light 

in those experiments. Effect of light intensity has not been studied for dye-sensitized 
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photocatalytic hydrogen generation. If the effect of light intensity on hydrogen generation 

is not properly selected, a large portion of photons energy will be dissipated in the form 

of heat.  
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Chapter 3  

3 Factorial Design Analysis for Dye-sensitized Hydrogen 
Generation from Water 

3.1 Introduction 

The pressing need to find viable alternatives to fossil fuels combined with the growing 

requirement for environmentally friendly industrial processes motivates a dramatic 

paradigm shift from fossil fuels (which also require carbon capture and sequestration) to 

reliable, clean, and efficient fuels.
1
 The long sought after shift from solid (coal) to liquid 

(oil) to gas (hydrogen) fuel based system is not a local phenomenon, it is happening on a 

global scale, and a technology that can shift the balance would be quickly pursued 

worldwide. The basic idea is decarbonization of the fuel. Coal has the lowest H/C ratio 

(0.5), for LPG the ratio goes up to 2.67 and for natural gas the ratio again increased to 4. 

Hydrogen is perceived as an ideal energy carrier
2
 having H/C ratio of infinite. Hydrogen 

has the potential to meet the requirements as a clean nonfossil fuel in the future if it can 

be produced using the world’s most abundant sources, the sun and water. The driving 

forces for the energy transition toward hydrogen are many, but three major reasons are (i) 

growing energy demand, (ii) oil shortage in near future and (iii) threat of climate change.
3
 

Hydrogen is a top energy storage candidate because it has a high energy content, low 

environmental impact, and can be stored or produced on demand.  

The world is gradually favoring hydrogen over carbon atom. Between 1860 and 1990, the 

H/C ratio in fuel rose 6-folds. As of 2002, the annual hydrogen production was close to 

400 billion cubic meters.
4
 Hydrogen is an ideal fuel

4
: when burned, the product is energy 

and water. This suggests visions of a world in which cars and other machines leave 

behind only plumes of water rather than clouds of smog. Unlike fossil fuels, hydrogen 

cannot simply be obtained from previous deposits; there are no hydrogen “mines”. This 

means that energy must be expended to remove hydrogen from other materials, and 

currently, most hydrogen produced is generated and used on-site in the chemical and 
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petroleum industries through natural gas reforming, coal gasification, thermal water 

splitting, and electrolysis.
5
 These processes require huge infrastructure, large energy 

input and come with a high environmental cost. Even more energy is required to 

distribute hydrogen if it is not generated on-site. Hydrogen can also be produced from 

biomass, but the basic feedstock is limited and would also need considerable energy 

input. Photoelectrical and photobiological hydrogen production methods exist
6
 but the 

technologies involved are currently at a very early stage of development, and it is unclear 

whether they will be a viable source. However, our planet is covered with an abundant, 

clean carbon free source of hydrogenewater. The planet is also bathed in an abundant, 

clean source of energy-sunlight. The vision and focus of our work is to use the green 

energy of the sun to split water into hydrogen using nanotechnology.
7, 8

 If such a system 

can be made inexpensive, efficient, and stable, it would provide a practical method of 

producing high-purity hydrogen. Currently this is not achievable
9
 and new photocatalytic 

nanomaterials and methods are required to reach this goal.  

Recent reviews of hydrogen production with visible light photocatalyst discussed various 

barriers of the process such as rapid recombination of photo-generated electron/hole pair 

(e
-
/h

+
) and poor activation of semiconductor photocatalyst. Dye-sensitization technique 

has been reported as an innovative technology that could play an important role in 

developing efficient and cost effective semiconductor photocatalyst in the near future.
9, 10

 

Solar cell applications based on dye-sensitized TiO2 is among the most popular and 

successful till date
11-14

 which has also been applied to visible light induced hydrogen 

generation.
9, 15-18

 The quintessence of dye-sensitization is the electron injection from the 

excited dye to the conductionband (CB) of TiO2 and the subsequent interfacial electron 

transfer.
19-23

 Eosin Y-sensitized systems have been extensively studied owing to its 

superior photocatalytic activity for hydrogen production from water splitting.
17, 24-28

 

There is however, lack of information on investigations of the key process parameters 

which affect sacrificial hydrogen generation based on robust experimental design 

methodology and statistical analysis.  
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The main objective of this investigation is to fill such gap, by developing a methodology 

based on factorial design analysis to screen the significant factors that influence the 

hydrogen generation from water with Eosin Y-sensitized TiO2 catalyst under visible solar 

light. Another objective is to define the optimum conditions for hydrogen generation 

within the investigated operating parameters space domain. 

3.2 Methodology 

3.2.1 Experimental 

3.2.1.1 Reagents 

All reagents were analytical grade and were used without further treatment. Aeroxide 

TiO2 P25 (80-20% anatase to rutile) from Evonik Degussa Corporation was used as 

catalyst. Eosin Y dye (99.0%, SigmaeAldrich Canada Ltd) was used as sensitizer for 

TiO2; triehanolamine (98.0%) and hydrogen hexachloroplatinate (IV) solution (8 wt %) 

were also purchased from SigmaeAldrich Canada Ltd. Ultra pure water (18MU) was 

prepared from an in-house EASYPure® RODI system (Thermo Scientific, Canada). 

3.2.1.2 Instruments 

The simulated Air Mass (AM) 1.5 solar light was generated using solar simulator (Model: 

SS1 KW, Sciencetech, ON, Canada with a 1000-W Xe arc lamp and an AM 1.5G filter). 

It produces identical simulated 1 SUN irradiance of 100 mW cm
-2

 at full power that 

matches the global solar spectrumat sea level. Spectral analysis of the irradiation from 

solar simulator with StellarNet EPP 2000C-25LT16 Spectrometer for UV-VIS-NIR 

showed 6.5% UV, 64.5% visible while the rest NIR light. The generated Hydrogen gas 

was quantified using gas chromatography (Shimadzu GC 2014, HeyeSep D packed 

column: 10 m length, 2 mm ID, 2 mm film thickness and thermal conductivity detector 

(TCD)). All the spectrophotomeric studies were done using UV-VIS-NIR 

Spectrophotometer (Shimadzu UV-3600). An integrating sphere was utilized in order to 

measure the diffuse reflectance absorption spectra of the catalyst. pH measurement was 

carried out using a pH meter (780-Metrohm Ltd). 
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3.2.1.3 Synthesis of eosin Y-sensitized TiO2/Pt photocatalyst 

Platinum was loaded on TiO2 catalyst by solar photodeposition method. TiO2 powder was 

stirred in an aqueous ethanol solution (ethanol: water = 1.0: 99.0 by volume) containing 

the required amount of hydrogen hexachloroplatinate (IV) solution and irradiated under 

the solar simulator (AM 1.5G filter) for 3 h. Photoreduction of Pt
IV

 (H2PtCl6) to Pt
0
 

(platinum particles) occurred, and highly dispersed Pt particles were deposited on the 

TiO2 surface.
16

 After filtering and washing with water, the powder was dried at 150
0
C for 

2 h and milled in a mortar. Eosin Y dye was adsorbed onto TiO2/Pt by stirring 0.5 g of 

the catalyst powder in a mixture of Eosin Y and anhydrous ethanol solvent (4.6 x 10
-4

 M 

to 4.6 x 10
-3

 M) at room temperature for 12 h in the dark. This was followed by filtration 

and washing with anhydrous ethanol and drying at 100
0
C for 2 h. The obtained sample 

was kept under dark to avoid catalyst deactivation. The Eosin Y-sensitized TiO2/Pt 

photocatalyst showed a broad absorption from 410 nm to 640 nm. 

3.2.1.4 Photocatalytic hydrogen generation 

Photocatlytic reactions were carried out in a gastight Pyrex glass reactor (600 mL) with a 

flat window at top for illumination. Figure 3.1 shows a schematic diagram of the 

photocatalytic reactor (11 cm diameter, 6.3 cm height) used in this investigation. The 

catalyst powder (Eosin Y-TiO2/Pt) was suspended in 100 mL trietanolamine (TEOA) 

solution (0.05 M-0.5 M) after pH adjustment with 1:1 HCl. The catalyst suspension was 

dispersed for 5 min in an ultrasonic bath and then the system was degassed by bubbling 

ultra pure nitrogen gas for 40 min. Very gentle stirring was performed using magnetic 

stirrer. The photocatalyst was irradiated with a solar simulator from the top. The light 

source was equipped with AM 1.5 G as well as a 420 nm cut-off filter (Omega optical, 

USA) to remove all the UV light. The water layer above the catalyst itself acted as an IR 

filter. The gas sampling port in the reactor was sealed with a silicone rubber septum, and 

sampling was made intermittently through the septum during the experiments. Hydrogen 

was analyzed by Shimazu GC 2014 (TCD, ultra pure N2 as carrier gas and HeyeSep D 

column). 



71 

 

 

 

 

 

 

 

 

 

 

 

3.2.2 Experimental design 

To evaluate the main factors that influence the hydrogen generation with dye-sensitized 

TiO2 photocatalyst, two different sets of full factorial design were performed to 

investigate the response in terms of percentage increment in hydrogen generation with 

dye-sensitized TiO2. In the first set a two levels three factors full factorial design 

approach was applied, where three factors such as solution pH, initial dye concentration 

for dye-sensitization (Eosin Y), and electron donor concentration (TEOA) were chosen. 

In the second set, a two levels four factors full factorial design was implemented in which 

four factors including platinum content (wt %) in TiO2 (Pt), visible light irradiation time 

(I-time), initial dye concentration for dye-sensitization (Eosin Y), and electron donor 

concentration (TEOA), were chosen.  

Each factor was studied at both low-and high-level. To analyze the factorial design, the 

original measurement units for the experimental factors (uncoded units) were transformed 

Figure 3.1 Experimental Setup: Gastight photo-reactor for 

dye-sensitized hydrogen generation 
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into coded units.
29

 The factor levels were coded as -1 (low) and +1 (high). The responses 

were expressed in terms of percent increment in hydrogen generation (calculated relative 

to reference center point experimental values as mentioned in Tables 3 and 4).  

In a two levels three factors full factorial design (set 1), the minimum number of 

experimental runs equals 2
3
 = 8 runs. With two replicates, the number of test runs 

increases to 16. Similarly in a two level four factors full factorial design (set 2) the 

minimum number of experimental runs = 2
4
 = 16; with two replicates, the total number is 

32 runs.
30

 Minitab 15 software was used to create and analyze the experimental data. 

Coded and uncoded values for set 1 and set 2 are presented in Tables 3.1 and Table 3.2. 

3.3 Results and Discussion  

The design table for the factors and the response in terms of percent change in hydrogen 

generation for set 1 and 2 are shown in Tables 3.3 and Table 3.4 respectively. 

Experiments in set 1 were performed to identify an optimum pH for further study. It also 

gave an idea of interaction among pH, dye molecule and electron donor. For set 2, a 

detailed statistical analysis (normal probability plot) of the data in terms of standardized 

residual was performed to confirm the normality of the data. A regression analysis was 

also conducted for the experimental data using least square technique. The effects of the 

different parameters are systematically discussed through Pareto chart, main effect plot 

and interaction effect plot in the following sections. 

Table 3.1 Coded and uncoded values of the factors for Set 1 

Factors 
Coded low 

level 

Corresponding 

uncoded 

low value 

Coded high 

level 

Corresponding 

uncoded 

high value 

Eosin Y concentration 

for dye-sensitization 

(Eosin Y) 

-1 4.6×10
-4

 M +1 4.6×10
-3

 M 

Electron donor 

concentration (TEOA) 

-1 0.05 M +1 0.5 M 

pH -1 4.0 +1 10.0 
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Table 3.2 Coded and uncoded values of the factors for Set 2 

Factors 
Coded 

low level 

Corresponding 

uncoded low value 

Coded 

high level 

Corresponding 

uncoded high value 

Electron donor 

concentration (TEOA) 

-1 0.05 M +1 0.5 M 

Initial Eosin Y 

concentration for dye-

sensitization (Eosin Y) 

-1 4.6×10
-4

 M  +1 4.6×10
-3

 M 

Platinum content (wt%) 

in TiO2 (Pt) 

-1 0.25 % +1 2.5 % 

Visible solar light 

irradiation time (I-time) 

-1 60 min +1 180 min 
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Table 3.3 Uncoded design table for factors and response for Set 1 

Run Eosin Y TEOA pH % increment in H2 generation 
a 

 (M) (M)  Replicate 1 Replicate 2 

1 -1 -1 -1 -87.39 -88.89 

2 1 -1 -1 -71.53 -72.09 

3 -1 1 -1 -73.60 -76.13 

4 1 1 -1 -71.31 -71.35 

5 -1 -1 1 8.29 7.22 

6 1 -1 1 51.97 48.73 

7 -1 1 1 40.35 44.87 

8 1 1 1 83.47 80.18 

a
Results in this column is based on relative increase/decrease with respect to experiment 

performed at reference centre point value corresponding to [Eosin Y] = 2.5×10
-3

 M; 

[TEOA] = 0.275 M; Pt% in TiO2 = 0.25%; pH = 7.0. 
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3.3.1 Effect of solution pH 

The 2 levels 3 factors Full Factorial Design (set 1) was performed to determine the 

interaction of the solution pH with the dye molecule and the electron donor. The solution 

pH seems to be a crucial parameter as it shows good interaction with both dye and 

electron donor. The main effect plot and interaction effect plot of pH are shown in 

Figures 3.2 and Figure 3.3 respectively. These are fairly consistent with the results of Li 

et al.,
25

 for the effect of the solution pH on the existing state of the dye and the electron 

donor as well as the change of the oxidation-reduction potential of semiconductor. From 

Figure 3.2 it is evident that the pH had a positive effect on sacrificial hydrogen generation 

from water. The Dye molecule showed stronger interaction with the pH as compared to 

the electron donor-pH interaction due to the stronger dependency of the dye regeneration 

rate on the pH.
27

 As can be seen from the results, an alkaline pH (10.0) results in much 

higher hydrogen generation compared to an acidic pH (4.0). This can be attributed to the 

fact that TEOA can more rapidly donate electrons to the oxidized sensitizer (Eosin Y
+
) in 

an alkaline solution than in an acidic solution due to the more protonated form.
27, 31

 The 

advantage of operating at higher pH however, was found to be offset by its negative 

impact on the catalyst integrity where deterioration to the dye-sensitized TiO2 occurred at 

such high pH values. Based on that, it was decided to maintain the solution pH at 7.0. 

 

Table 3.4 Uncoded design table for factors and response for Set 2 

Run TEOA Eosin Y Pt I-time % increment in H2 generation 
a
 

 (M) (M) (%) (min) Replicate 1 Replicate 2 

1 -1 -1 -1 -1 -68.93 -69.91 

2 1 -1 -1 -1 -59.01 -59.97 

3 -1 1 -1 -1 -48.79 -49.87 

4 1 1 -1 -1 -41.94 -40.12 
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5 -1 -1 1 -1 -86.81 -86.62 

6 1 -1 1 -1 -86.75 -87.44 

7 -1 1 1 -1 -65.40 -65.23 

8 1 1 1 -1 -65.19 -65.27 

9 -1 -1 -1 1 12.89 13.17 

10 1 -1 -1 1 54.43 51.56 

11 -1 1 -1 1 56.09 56.37 

12 1 1 -1 1 87.36 92.49 

13 -1 -1 1 1 -56.17 -56.44 

14 1 -1 1 1 -52.59 -52.33 

15 -1 1 1 1 -18.05 -19.70 

16 1 1 1 1 11.88 12.40 

a
Results in this column is based on relative increase/decrease with respect to experiment 

performed at reference centre point value corresponding to [Eosin Y] = 2.5×10
-3

 M; 

[TEOA] = 0.275 M; Pt% in TiO2 = 1.375%; visible light irradiation time = 120 min; pH = 

7.0. 
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Figure 3.2 Main effect plot for pH, dye and electron donor for 

% increment in hydrogen generation (Set 1) 
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3.3.2 Pareto plot 

Pareto analysis uses the Pareto principle, which is also called the “80-20” rule for data 

analysis. The numbers 80 and 20 are not meant to be absolute but a great majority of 

problems (80 %) are produced by a few key causes (20 %). If we can rectify these few 

key causes, we will have a better probability of success. Pareto plots are graphical tools 

used in Pareto analysis.
32

 A Pareto plot is a bar chart that displays the relative importance 

of factors in a format that is very easy to interpret. This plot visually represents the 

absolute values of the effects of the main factors and the effects of their interaction. The 

most important factor is represented by the tallest bar; the next important problem is 

represented by next tallest bar, and so on. It also draws a reference line to indicate that 

these factors extending past this line are potentially important.
33

 It can be seen from 

Figure 3.4 that visible light irradiation time has highest effect followed by Pt content and 

initial dye concentration. 

Figure 3.3 Interaction effect plot for pH, dye, and electron donor for 

% increment in hydrogen generation (Set 1) 
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3.3.3 Main effect plot (Set 2) 

The main effect is considered present when the mean response changes across the level of 

factor. The sign of the main effect indicates the direction of the effect.
30

 Figure 3.5 shows 

that the platinum content (Pt %) in TiO2 has negative effect on hydrogen generation 

whereas the other three factors, initial dye concentration (Eosin Y), electron donor 

concentration (TEOA) and visible light irradiation time (I-time) all have positive effects. 

In this reaction system, Eosin Y molecules adsorbs on the surface of TiO2/Pt. Under 

visible light irradiation, it absorbs visible light and the electron is excited from the 

HOMO (highest occupied molecular orbital) to LUMO (lowest unoccupied molecular 

orbital) state. The excited electron is trapped by TiO2 conduction band, and then transfers 

to the surface of the Pt nanoparticles directly, which then participates in the 

photocatalytic water reduction for hydrogen production.
25

 The decrease in photocatalytic 

Figure 3.4 Pareto chart for standardized effects for hydrogen generation 

(Set 2) (Response is % increment in hydrogen generation, =0.05) 
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activity as well as hydrogen generation with the increase in Pt content may be at least 

partly, due to more Pt cluster on TiO2 which would decrease adsorption sites for dye and 

would scatter the visible light.
34

 Eosin Y concentration also plays a key role in the 

number of electrons transported from the excited Eosin Y to TiO2 conduction band, 

resulting in enhancement of the photocatalytic hydrogen production activity.
25, 27

 Electron 

donor (TEOA) concentration, actually plays an important role in regenerating the 

electron-deficient sensitizer (Eosin Y
+
) after injecting electrons into the TiO2 conduction 

band. Sreethawong et al.,
27

 showed the increased rate of potocatalytic hydrogen 

production rate with increasing electron donor (diethanolamine) concentration for Eosin 

Y-mesoporous assembled Pt/TiO2 nanocrystal system. 

 

 

 

 

Figure 3.5 Main effects plot for Pt, dye, electron donor and irradiation time for % 

increment in hydrogen generation (Set 2) 
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Figure 3.6 Interaction effect plot for Pt, dye, electron donor and irradiation 

time for % increment in hydrogen generation (Set 2) 
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3.3.4 Interaction effects plot (Set 2) 

The interaction effects plot is shown in Figure 3.6 for the sacrificial hydrogen generation 

from water. The plot provides the mean response of two factors at all possible 

combinations of their settings. If the lines are not parallel, it is an indication of interaction 

between the two factors.
30, 33

 The interaction plot showed that the visible light irradiation 

time interacts strongly with all other factors which indicate its maximum influence on 

hydrogen generation. With time more photons are absorbed by dye molecules for its 

excitation as evident from the height interaction of Eosin Y and irradiation time. The 

oxidized dye molecules (Eosin Y
+
) are regenerated by electron donor (TEOA) whereas 

TEOA gradually spent out with time. Pt content also shows very good interaction with 

irradiation time. Minor interactions were observed in Eosin Y-Pt and Eosin Y-TEOA 

pairs. 

3.3.5 Regression analysis 

Regression analysis illustrates the statistical relationship between one or more predictors 

and the response variable to predict new observations. In this investigation, data analysis 

was achieved using Minitab 15 software which uses ordinary least squares method to 

derive a regression function. Regression results specify the statistical significance, 

direction and size of the relationship between a predictor and response. Sign of each 

coefficient indicates the direction of the relationship. The coefficients represent the mean 

change in the response for one unit of change in the predictor while holding other 

predictors in the model constant. The p-value for each coefficient tests the null hypothesis 

that the coefficient is equal to zero (no effect). Therefore, low p-values suggest the 

predictor is a meaningful addition to the proposed function.
29

 The regression results 

shown in Table 3.5 reveal that all the four predictors are significant because of their low 

p-values. For each 1 M increase in the initial Eosin Y concentration (for dye-

sensitization) the percentage of increment of hydrogen generation increased by 16.5 %. 

Again for each 1 min visible light irradiation time and each 1 M TEOA concentration 

increment, the percentage of increment of hydrogen generation increased by 38.8 % and 
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7.9 % respectively. On the other hand for each 1 % increase in Pt content in TiO2, 

percentage of increment of hydrogen generation decreased by 25.8 %. 

Table 3.5 Estimated effects and coefficients for hydrogen generation 
a
 

Predictor Regression coefficient Standardized effect (T) p-Value 

Constant -26.68 -32.52 0.000 

TEOA 7.90 9.63 0.000 

Eosin Y 16.49 20.10 0.000 

Pt -25.80 -31.43 0.000 

I-time 38.77 47.24 0.000 

TEOA x Eosin Y 1.23 1.50 0.148 

TEOA x Pt -3.58 -4.36 0.000 

TEOA x I-time 5.66 6.90 0.000 

Eosin Y x Pt 1.66 2.03 0.056 

Eosin Y x I-time 6.27 7.64 0.000 

Pt x I-time -15.16 -18.48 0.000 

a
Standard error coefficient for all cases = 0.8207; (R

2
 = 99.2 %) 

3.3.6 Prediction of hydrogen generation 

Using the experimentally measured results in Minitab 15, a regression function is 

generated which could be used to predict the % increment in hydrogen generation rate 

with confidence level of 95 %. TEOA-Eosin Y and Eosin Y-Pt interaction effects were 

not considered because of their high (>0.05) p-values. 

The regression function obtained is: 

Hydrogen generation (% increment) = - 26.7 + 7.90 × (TEOA) + 16.5 × (Eosin Y) - 25.8 

× (Pt) + 38.8 × (I-time) - 3.58 × (TEOA) × (Pt) + 5.66 × 

(TEOA) × (I-time) + 6.27 × (Eosin Y) × (I-time) - 15.2 × 

(Pt)×(I- time). 

Figure 3.7 shows a comparison between the experimental values and those predicted by 

the regression function (square symbols), which as can be seen is very satisfactory (R
2
 = 

0.99). The figure also shows comparison of few other independent experimental data 
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(Table 3.6) obtained under different experimental conditions that were not used in the 

regression analysis, with model predicted values (triangle symbol). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 Percent increment in hydrogen generation: 

Comparison between experimental including independent 

validation data and model predicted value 
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Table 3.6 Experimental data points for validation 

SL. 

No. 

TEOA 

(M) 

Eosin Y 

(M) 

Pt 

(%) 

Time 

(min) 

Experimental 

Value  

(% increment in 

H2 generation) 

Predicted 

Value 

(% increment in 

H2 generation) 

1. 0.254 4.6X10
-4

 1.0 60 -63.88 -72.57 

2. 0.254 4.6X10
-4

 1.0 120 -32.05 -35.58 

3. 0.254 4.6X10
-4

 1.0 180 6.17 1.40 

4. 0.254 4.6X10
-4

 0.75 60 -59.65 -70.24 

5. 0.254 4.6X10
-4

 0.75 120 -19.16 -29.81 

6. 0.254 4.6X10
-4

 0.75 180 14.49 10.61 

7. 0.275 2.54x10
-3

 0.25 60 -47.48 -54.90 

8. 0.275 2.54x10
-3

 0.25 120 -7.70 -0.90 

9. 0.275 2.54x10
-3

 0.25 180 65.64 53.1 

 

3.3.7 Normal probability plot of residuals 

Residual plots are used to examine the goodness of a fit in regression analysis and 

ANOVA (analysis of variance). Typically, residual plots are used to determine if the 

ordinary least squares assumptions are satisfactory to produce unbiased coefficient 

estimates with minimum variance. One of the key assumptions for the statistical analysis 

of data for experiments is that the data come from a normal distribution.
33

 The normal 

probability plot (residual) for hydrogen generations are presented in Figure 3.8. It is clear 

that all the points are fairly close to the straight line. Therefore, the data from the 

experiment (set 2) satisfies a normally distributed population.
30

 



86 

 

 

 

 

 

 

 

 

 

 

3.4 Conclusions 

The factorial design analysis can be used as a screening approach to identify the 

significant factors influencing sacrificial hydrogen generation from water with dye-

sensitized photocatalyst. This method provides a quantitative assessment of the principal 

factors and effects that influence hydrogen generation performance. Based on data 

analysis the following is concluded: (a) Solution pH is a significant parameter as it 

interacts with both Eosin Y and triethanolamine as well as affects the stability of dye-

sensitized TiO2/Pt, (b) Visible light irradiation time is the most influential factor in 

hydrogen generation. The second most significant factor is platinum content in TiO2. The 

interaction between these two factors has also considerable influence on hydrogen 

generation. The Pt content (wt %) has a negative effect, whereas visible light irradiation 

time has positive effect on hydrogen generation, and (c) Eosin Y concentration and 

TEOA concentration have shown moderate positive effect on hydrogen generation 

although their interaction effect is insignificant compared to other parameters. 

Figure 3.8 Normal probability plot of the residuals for % increment in 

hydrogen generation 
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Chapter 4  

4 Sacrificial Hydrogen Generation from Aqueous 
Triethanolamine with Eosin Y-Sensitized TiO2/Pt 
Photocatalyst, in UV, Visible and Solar Light Irradiation 

4.1 Introduction 

Photocatalytic water splitting for hydrogen production has drawn attention due to its 

potential to generate green fuel from water. Fujishima and Honda reported the 

photocatalytic water splitting over a TiO2 single crystal in 1972,
1
 following which a 

remarkable progress was witnessed in the last decade under ultra-violet light.
2, 3

 In 

different studies Pt/TiO2, RuO2/TiO2, reduced SrTiO3 electrode with a platinum counter 

electrode, platinized SrTiO3, SrTiO3 powder modified by rhodium oxide, and nickel-

loaded SrTiO3 were also investigated for improvement of their photocatalytic activities.
2, 

4-8
  

The primary problem with UV photocatalysis was its limited solar spectrum of 4% 

compared (46 %) for visible light. For visible light water splitting, the photocatalytic 

materials should have proper band position and suitable band gap energy (1.23 eV < Eg < 

3.0 eV).
9
 Oxides such as TiO2, ZnO and SnO2 have large band gap (3-3.8 eV) and absorb 

only ultra-violet part of the solar radiation and so has low conversion efficiencies. Only 

few chalcogenides (CdS, CdSe etc.) have band gap within 1.23 eV and 3.0 eV, which can 

be activated with visible light. These catalysts, however, can’t be used because of severe 

photo corrosion problem. 

Semiconductor photocatalyst can be modified to expand the photo-response to visible 

region in several ways such as doping with cation/anion, spectral sensitization using dye 

or polymer, coupling with another small band gap semiconductor and implantation of 

metal ions.
10

 To harvest solar visible light, spectral sensitization of broad band gap 

semiconductors such as TiO2, ZnO etc by adsorbed dye molecule have been studied for 

sacrificial hydrogen generation with several electron donors.
11

 Organic dyes, inorganic 
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sensitizers and coordination metal complexes were mostly studied for sacrificial 

hydrogen generation. Ruthenium-based dyes are very expensive and toxic which would 

not be economical in large scale application. On the contrary, organic dyes are less toxic, 

less expensive and can be used for dye sensitization process. Several organic dyes such as 

eosin Y, rose bengal, merocyanine, crystal violet and riboflavin have been utilized for 

spectral sensitization of semiconductors.
12

 

In dye sensitization process, sacrificial electron donors play a vital role, as the dye 

regeneration and electron injection to semiconductor are assisted by the electron donor. 

By choosing an industrial organic effluent as electron donor we can make the hydrogen 

generation process self sustained. Literature showed plenty of electron donors such as 

EDTA, acetonitrile, methanol, isopropanol, IO
3-

/I
-
, diethanolamine, triethanolamine, 

chloroacetic acid, and oxalic acid etc for such applications. Among these we have chosen 

triethanolamine as the electron donor which can be achieved easily from industrial 

effluents related to dry cleaning, cosmetics, shampoo, detergents, surfactant, textile and 

water repellents.
13, 14

 Among the dyes used, eosin Y (EY) and triethanolamine (TEOA) 

were proven to be a very good dye-electron donor couple for sacrificial hydrogen 

generation.
15

 EY showed a good absorption in solar visible spectrum and was studied 

with a wide variety of materials such as i) TS-1 zeolite,
16

 silica gel,
17

 multiwalled carbon 

nanotubes,
18, 19

 nanotube Na2Ti2O4(OH)2,
20

 sol-gel TiO2,
21

 N-doped sol-gel TiO2,
22

 and 

silane coupled-TiO2.
15

 

Although these studies have provided plenty of information on visible-light-driven dye-

sensitized hydrogen generation in presence of sacrificial electron donor, none of them 

have investigated the dye-sensitized process in complete solar spectrum which is very 

essential for using the photocatalyst in real solar light applications. Furthermore there is 

also insufficient information about the characteristics of the electron donor and dye in 

presence of solar UV radiation as well as lack of intermediate analysis to assist in 

establishing the reaction mechanism.  
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In this present work, we aim to explore the sacrificial hydrogen generation in complete 

solar spectrum with EY sensitized platinum loaded TiO2 in aqueous TEOA solution. The 

photocatalytic behavior has been systematically studied in solar-UV (300-388 nm), solar-

visible (420-650 nm) and full solar spectrum (300-650 nm) by varying reaction 

conditions including i) light intensity, ii) solution pH, iii) platinum content (wt %) on 

TiO2, iv) mass of EY-TiO2/Pt, v) concentration of TEOA, and vi) mass ratio of EY to 

TiO2/Pt. We also aim at investigating mass transfer and light intensity effects, which are 

essential parameters in designing flow photoreactor. To the best of our knowledge, 

studies of those factors are limited, thus, information gained in this investigation would 

be helpful for developing proper design and scale up methodologies for solar hydrogen 

generation photoreactors. 

4.2 Experimental 

4.2.1 Reagents 

All reagents were analytical grade and were used without further treatment. Aeroxide 

TiO2 P25 (80-20% anatase to rutile) from Evonik Degussa Corporation was used as 

catalyst. Eosin Y dye (99.0%, Sigma-Aldrich Canada Ltd) was used as sensitizer for 

TiO2; triehanolamine (98.0%) and hydrogen hexachloroplatinate (IV) solution (8 wt%) 

were also purchased from Sigma-Aldrich Canada Ltd. Ultra pure water (18 MΩ) was 

prepared from an in-house EASYPure® RODI system (Thermo Scientific, Canada).
23

 

4.2.2 Preparation of dye-sensitized photocatalyst 

Platinum was loaded on TiO2 catalyst by a solar photodeposition method. TiO2 powder 

was stirred in an aqueous ethanol solution (ethanol/water = 10/90 by volume) with 

hexachloroplatinate (IV) solution (H2PtCl6), the amount of which corresponded to 

platinum loadings of 0.05, 0.25, 0.5, 0.75, 1, and 1.5 wt %. Then, the solution was 

irradiated under the solar simulator (at 1 sun) for 3 h. Photoreduction of H2PtCl6 (Pt
IV

) 

occurred, and highly dispersed Pt particles were deposited on the TiO2 surface. After 
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being filtered and washed with water, the powder was dried at 150 °C for 2 h and milled 

in a mortar resulting in platinum loaded TiO2 (TiO2/Pt). 

Eosin Y (EY) sensitization was achieved by two different methods. In first method, EY 

was adsorbed on TiO2/Pt in anhydrous ethanol solution as described in our earlier work.
24

 

This photocatalyst is abbreviated as EY-TiO2/Pt. 

In second method, EY was mixed with TiO2/Pt in aqueous TEOA solution, sonicated and 

then purged with nitrogen gas. This photocatalyst is abbreviated as EY:TiO2/Pt. 

4.2.3 Photocatalyst characterization techniques 

Diffuse reflection spectra (DRS) were collected using UV-3600 (Shimadzu, Japan) 

equipped with DR integrated sphere coated with barium sulfate. Barium sulfate is also 

considered suitable standards by the CIE. The spectra were recorded at room temperature 

in the range of 200-750 nm. The Merck DIN 5033 barium sulfate powder standard (EM 

Industries Inc., Hawthorne, NY) has an absolute reflectance of 0.973 to 0.988 in the 380- 

to 750-nm wavelength range, and > 0.95 in the 750- to 1500-nm wavelength range. The 

XRD data were obtained using a Rigaku–MiniFlex II, powder diffractometer (Japan), 

using CuKα (λ for Kα = 1.54059 Å) over the desired 2θ range with step width of 0.05° 

with a counting time of 2s for each step. Scanning electron micrographs (SEM) and 

Energy Dispersive X-ray (EDX) were performed with Hitachi S-4500 field emission 

SEM with a Quartz XOne EDX system. Surface area was measured by Micromeritics 

ASAP 2010 instrument. FTIR study was performed with Nicolet 6700 FT-IR 

spectrophotometer. 

4.2.4 Reactor configuration for photocatalytic hydrogen generation 

Photocatlytic reactions were carried out in a gastight Pyrex glass made batch reactor (530 

mL) with a flat window at top for illumination (Appendix C). The catalyst powder (EY-

TiO2/Pt) was suspended in 100 mL TEOA solution (0.05 M to 0.5 M) after pH 

adjustment with 1:1 HCl. The catalyst suspension was dispersed for 5 min in an 

ultrasonic bath and then the system was degassed by bubbling ultra pure nitrogen gas for 
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40 min. Reaction mixture was stirred (500 rpm) using a magnetic stirrer. The 

photocatalyst was irradiated with a solar simulator from the top. The light source was 

equipped with AM 1.5 G as well as a 420 nm cut-off filter (Omega optical, USA) to 

remove all the UV light. A long pass filter was used to cut the visible and NIR light for 

UV operation only. The lamp and reactor was attached with cooling fans to avoid heating 

up. 

The gas sampling port in the reactor was sealed with a silicone rubber septum, and the 

sampling was made intermittently through the septum during the experiments. Hydrogen 

was analyzed by Shimazu GC 2014 (TCD, ultra pure N2 as carrier gas and HeyeSep D 

column). A flow reactor (Figure 4.1) was also used for better understanding the effect of 

mass transfer and future scale up of the solar hydrogen photo reactor. Details of the flow 

reactor are described in the Appendix C. 

The data show mean values from two to three independent experiments with standard 

deviation of less than 5 percent. 

 

 

 

 

 

 

 

 

 
Figure 4.1 Flow reactor for sacrificial hydrogen generation.  
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4.3 Results and Discussion 

4.3.1 Photocatalyst characterization results 

4.3.1.1 Diffuse reflectance spectra (DRS) 

Diffuse reflectance spectra of TiO2 P25 and EY-sensitized TiO2/Pt are shown in Figure 

4.2. It is clearly observed that the absorption band of TiO2 is in the UV light range of 

200-400 nm, and after platinum loading and EY sensitization the absorption edges shifted 

towards longer wavelength. A broad spectrum of 450−600 nm can be seen from the 

figure below. EY dye mainly absorbs visible light with a maximum absorption at 514 nm 

(Appendix A) and thus can provide visible light activity to the resulting photocatalyst. 

 

 

 

 

 

 

 

 

  

 

 

 

Figure 4.2 Diffuse reflectance spectra of TiO2 and EY-sensitized 

TiO2/Pt photocatalysts 
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4.3.1.2 Brunauer−Emmett−Teller (BET) method 

Figure 4.3 shows the representative Barrett−Joyner− Halenda (BJH) pore size distribution 

and adsorption−desorption isotherm plot (inset) of the EY-sensitized Pt-loaded TiO2 

catalyst. The determined BET surface area was found to be 55 m
2
 g

-1
, which is 

comparable to that of TiO2 P25 (50 m
2
 g

-1
). This indicates that platinum loading and dye 

adsorption did not significantly affect the catalyst total surface area. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 N2 adsorption-desorption isotherm (BJH poresize 

distribution) of EY-sensitized TiO2/Pt photocatalyst 



97 

 

4.3.1.3 X-ray diffraction (XRD) 

The XRD pattern (Figure 4.4) of TiO2 and EY-TiO2/Pt were investigated to identify the 

crystalline phase of the sample. Several dominant peaks at 2 of about 25.2, 37.9, 48.3, 

53.8, 62.7, 68.9 and 73.5
o
 were observed. These represented the indices of (101), (103), 

(200), (105), (213), (116), and (107) planes respectively and showed the crystalline 

structure of pure anatase phase.
21

 The XRD pattern was similar to the standard crystal 

structure of TiO2, with no diffraction peaks associated with Pt metal in the EY−TiO2/Pt 

sample. This suggests that the platinum loading process did not produce separate 

impurity phases and that the Pt nanoparticles can be considered as fully dispersed in the 

TiO2 lattice. The only difference in the Pt loaded EY-sensitized sample is the reduced 

peak intensity of anatase phase at 25.2
o
 compared to that of pure TiO2.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 XRD patterns of TiO2 and EY-TiO2/Pt photocatalysts 
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4.3.1.4 Fourier Transform Infrared (FTIR) spectroscopy 

Figure 4.5 shows the FTIR spectrum of EY, TiO2 and EY-sensitized TiO2/Pt samples. In 

all cases a broad peak was observed around 3200 cm
-1

, which may be due to surface – 

OH group of TiO2 or –COOH group of EY. The –C=O stretch band was observed at 1750 

cm
-1

 for EY samples, but pure TiO2 and EY-sensitized TiO2/Pt did not show such peak. 

The ester C-C(O)-C linkage appeared at around 1170 cm
-1

 as broad multiple peaks. 

Therefore the dye could be anchored on to TiO2/Pt through ester-like linkage or 

carboxylate linkage.
16, 25

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 FTIR spectrum of Eosin Y, TiO2 and EY-TiO2/Pt 
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4.3.1.5 Energy-dispersive X-ray (EDX) 

The EDX (Figure 4.6a) image clearly shows the existence of platinum metal on EY-TiO2. 

The elemental distribution of the platinum loaded EY-TiO2 was also examined using 

EDX analysis by elemental area mapping of each component. It is clear from the 

mapping diagram that platinum was well dispersed on the photocatlyst surface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 (a) EDX image of EY-TiO2/Pt (0.25 %) and EDX elemental area 

mapping: (b) Ti; (c) O; (d) Pt. 



100 

 

4.3.2 Sacrificial hydrogen generation in visible and solar light 
irradiation- parametric study 

Initially several dye solutions were used for dye-sensitization of Pt loaded TiO2 with 

different electron donor in visible light irradiation. EY-TEOA system showed highest 

performance for dye-sensitized hydrogen generation. The higher LUMO (lowest 

unoccupied molecular orbital) of EY (-0.92 V) than ECB (-0.5 V) of TiO2 and lower 

HOMO (+1.15 V) than E(TEOA+/TEOA) (+0.82 V) fulfills the thermodynamics for both 

electron injection and EY regeneration.
26

 

4.3.2.1 Comparison of TiO2 and EY-sensitized TiO2 based 
photocatalysts for hydrogen generation in solar and visible 
light irradiation 

TiO2 P25 and TiO2/Pt showed no activity in visible light irradiation. This was because of 

the higher band gap energy of TiO2 and TiO2/Pt. On the contrary, EY-sensitized TiO2P25 

and TiO2/Pt showed hydrogen generation activity in visible light irradiation. In solar light 

irradiation all of them showed hydrogen generation activity as shown in Table 4.1. 

Table 4.1 Activity of TiO2 and TiO2 based photocatalyst for sacrificial H2 generation 

Photocatalyst Hydrogen Generation (μmol g
-1

)
*
 

 Visible Light Solar Light 

TiO2 0 775 

EY-TiO2 42 1047 

TiO2/Pt 0 3629 

EY-TiO2/Pt 1181 4297 

(* Experimental conditions: H2 generation reported for 3h interval, [Catalyst]=1 g L
-1

, 

[TEOA]=0.25 M, I=100 mW cm
-2

, N2 saturated, pre-sonicated.) 
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EY can incorporate visible light activity in both TiO2 and TiO2/Pt. In solar light also 

hydrogen generation increased by 1.4 and 1.2 times by EY sensitization on TiO2 and 

TiO2/Pt respectively. Platinum had significant effect on hydrogen generation. In visible 

light a huge improvement in hydrogen generation was achieved compared to EY-TiO2 

alone. In solar light platinum loading on both TiO2 and EY-TiO2 gave 4.7 and 4.1 times 

increment in hydrogen generation respectively.  

4.3.2.2 Dependence of photocatalytic activity of hydrogen evolution 
on platinum loading (wt %) over EY-TiO2 in visible and 
solar light 

Photocatalytic hydrogen generation from EY-TiO2 with various platinum loadings (0.05–

1.5 wt %) was studied in aqueous solution of TEOA, in solar and visible light irradiation. 

In visible light, EY accepts photon and is excited to higher energy level from where it can 

inject electron to the conduction band of TiO2. Photogenerated conduction band electron 

then transferred to H
+
 forming gaseous hydrogen. In solar light the photocatalytic 

reaction initiates with the formation of electron/hole (e
-
/h

+
) pairs. With platinum on EY-

TiO2 photocatalyst, platinum can confine electrons and hydrogen can be produced on 

platinum particles.
27

 

The amount of hydrogen generation increased with irradiation time during 3 h reaction 

period. However, the rate of hydrogen generation in first hour was highest and decreased 

gradually with time due to backward reactions of gaseous products in the system.
28

 The 

rate of hydrogen production is presented as a function of platinum loading in both visible 

and solar light irradiation (Figure 4.7).  
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The rate of hydrogen generation initially increased as the platinum content increased 

from 0.05% to 0.25%, but further increment of platinum did not show any positive effect. 

Over loading of platinum metal beyond the optimum value resulted in lower hydrogen 

generation rate. The reasons may be the following: 

 i) more light scattering and lower light absorption due to excessive Pt nanoclusters on 

TiO2, and ii) at very high metal loading they act as recombination centres.
29

 

4.3.2.3 Dependence of hydrogen evolution on solution pH in visible 
and solar light 

Solution pH had notable effect on hydrogen generation over EY-TiO2/Pt as discussed in 

our earlier study.
23

. Acidic pH was not very helpful in hydrogen generation compared to 

alkaline pH. According to Li and Lu,
20

 EY molecule has carboxylic acid group that can 

Figure 4.7 Effect of platinum wt % on photocatalytic hydrogen 

generation over EY-TiO2. (Experimental conditions: [TEOA] = 0.25 M, 

[EY-TiO2/Pt] = 1 g L
-1

, I = 100 mW cm
-2

, pH = 7, N2 saturated, pre-

sonicated, visible - 420 nm cutoff filter). 
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interact with the hydroxyl groups on TiO2/Pt surface and thereby form an ester like 

linkage in TEOA solution. Again from zeta potential point of view, TiO2 has zero surface 

charge in between pH 5.6-6.8.
24, 30

 Hence, at alkaline pH (pH 10.0), the TiO2 surface is 

negatively charged, and at acidic pH (pH 4.0), the surface is positively charged. 

Therefore, the pH value has a significant effect on the adsorption−desorption properties 

at the EY−TiO2/Pt surface.  

Moreover, the ionization of oxidized form of triethanolamine (TEOA
+
) in aqueous 

solution depends on solution pH. At alkaline pH (pH = 9) TEOA
+
 deprotonates to yield a 

neutral radical with the unpaired electron in alpha-position to either the amino or alcohol 

group. Such species are expected to exhibit reduction instead of oxidation properties. In 

acidic pH, the acid base equilibrium of TEOA
+
 seems to favor the protonated form of the 

radical. In neutral solution both protonated and unprotonated forms coexist. The 

protonated form is less favorable as electron donor compared to the unprotonated form, 

thus unprotonated form of the amine is effective as reducing agent.
31

 

Comparable initial rate of hydrogen generation was found in our experiment for both 

neutral (pH = 7) and alkaline (pH = 10) solutions, although after a while the rate of 

hydrogen generation dropped considerably for alkaline pH. Lower rate of hydrogen 

generation at alkaline pH is also reported by Zhang et al.
17

. As described by Li and Lu,
20

 

at strong basic solution a part of hydroxyl group on catalyst surface (TiO2/Pt) first reacts 

with H
+
 and then leaves a basic group with negative charge. Because of the electrostatic 

repulsion force, carboxylic acid group of EY are difficult to adsorb on the TiO2/Pt 

surface, which prevents the electron transfer from excited dye (EY*) to the TiO2 

conduction band. In solar light irradiation, experiments were also performed at pH 7. 

4.3.2.4 Dependence of hydrogen evolution on catalyst mass in 
visible and solar light 

To explore the effects of catalyst mass on hydrogen generation, a series of batch 

experiments were performed with TiO2/Pt (0.25%) catalyst, in which the catalyst mass 

varied between 0.2 and 1.5 g L
-1

. In all cases natural pH (7.0) was maintained and all 
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other parameters such as initial concentration of TEOA, platinum content on TiO2 and 

light intensity were identical. The rate of hydrogen production (r) in visible light 

iradiation is shown as a function of catalyst loading (g L
-1

) (Figure 4.8). The rate 

increased with catalyst loading in a linear manner, in particular at low catalyst loadings.  

The rate of hydrogen generation increased initially up to 1.3 g L
-1

 then reached a plateau. 

This can be explained by the concept of active site. At a low concentration of 

photocatalyst slurry, the photocatalytic reaction is mainly controlled by active sites which 

are accessible for adsorption of light and reactant.
32, 33

 With gradual increment of 

photocatalyst slurry concentration the solution turbidity increases which, in turn, raises 

light scattering.  

In solar light, similar experiments were also performed to achieve the optimum catalyst 

concentration for hydrogen generation. The optimum catalyst concentration was 1 g L
-1

. 

This concentration was little lower than the optimum concentration obtained in visible 

light (Figure 4.8). 

 

 

 

 

 

 

 

 

 

Figure 4.8 Effect of photocatalyst mass on hydrogen generation. 

(Experimental conditions: [TEOA] = 0.25 M, Pt in TiO2 = 0.25%, I = 100 mW 

cm
-2

, pH = 7, N2 saturated, pre-sonicated, visible - 420 nm cutoff filter). 
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4.3.2.5 Comparison of immobilized and slurry photocatalyst for 
hydrogen generation in solar light 

4.3.2.5.1 Preparation of immobilized EY-TiO2/Pt/PAM 
photocatalyst 

A EY-TiO2/Pt/PAM composite was synthesized by solution polymerization method as 

described by Tang et al.
34

 Cross linked polyacrylamide (PAM) is a superabsorbent 

polymer which is able to absorb hundreds to thousands times water of its own mass to 

form a stable hydrogel.  

At first 0.13 g EY-TiO2/Pt catalyst was mixed with 3 gm acrylamide and 4 ml of 

deionized water. The mixture was sonicated for 5 min and then 0.0012 g cross linker was 

added. Again it was sonicated for 5 min and degassed under vacuum for 30 min. Then the 

mixture was heated in water bath (80
0
C) for 15 min with continuous stirring. Initiator was 

added (0.018 g) and the mixture was stirred a while. Finally the whole mixture was 

cooled down at room temperature.  

4.3.2.5.2 Hydrogen generation and stability of immobilized and 
slurry based EY-TiO2/Pt 

To compare the activity of immobilized versus slurry form of EY-TiO2/Pt catalyst, batch 

experiments were performed in solar light. Experiments were run up to 12 h, and at every 

3 h interval hydrogen gas was evacuated by nitrogen purging. This enabled us to obtain 

the consecutive hydrogen generation rates (Figure 4.9). During the reaction EY-

TiO2/Pt/PAM absorbed huge amount of water and formed hydrogel. The reaction rate of 

slurry catalyst was much higher compared to immobilized catalyst. The main reason of 

lower activity of immobilized catalyst could be low illuminated surface and mass 

transfer. 
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4.3.2.6 Dependence of hydrogen generation on EY to TiO2/Pt 
mass ratio 

The concentration of EY has a leading role in improving the number of excited electrons 

and thereby increasing the photocatalytic activity. Again, the dye adsorption and 

photocatalytic activities are both related to the active sites (or surface area) of the 

semiconductor catalyst. So, it was necessary to investigate the effect of the dye and 

semiconduction catalyst together. In earlier studies people reported different optimum 

EY:TiO2/Pt (EY:T) ratio for hydrogen generation in visible light. Li and Lu
20

 reported 

EY:T mass ratio of 1:1 as optimum for Na2TiO4(OH)2/Pt nanotubes in visible light. 

Zhang et al.
16

 reported an optimum mass ratio (EY:T) of 1:8 for TS-1 zeolite.  

Figure 4.9 Comparison of immobilized and slurry photocatalyst for 

hydrogen generation in solar light. (Experimental conditions: [TEOA] = 0.25 

M, Isolar = 100 mW cm
-2

, pH = 7, N2 saturated, pre-sonicated). 
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Our former method of dye sensitization using alcoholic solution of EY was time 

consuming and expensive. So, we switched to a simpler method to study the effect of EY 

concentration, where EY was mixed with the TiO2/Pt catalyst just before the reaction; 

sonicated and then purged with nitrogen gas. We found an optimum mass ratio (EY:T) of 

1:10 and 1:13.3 in visible and solar light respectively (Figure 4.10). 

 

 

 

 

4.3.2.7 Dependence of hydrogen generation on initial TEOA 
concentration 

TEOA played a vital role in dye-sensitized process for hydrogen generation. In absence 

of TEOA, EY-TiO2/Pt was unable to produce any hydrogen. TEOA has three different 

roles i) electron donor, ii) extend the dye stability and iii) act as a buffer. As an electron 

Figure 4.10 Effect of EY to TiO2/Pt mass ratio on hydrogen generation 

rate. (Experimental conditions: [TEOA] = 0.25 M, TiO2/Pt(0.25%) = 1 g L
-1

, I 

= 100 mW cm
-2

, pH = 7, N2 saturated, pre-sonicated, visible - 420 nm cutoff 

filter). 
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donor it can reduce the EY
+
 species to give it back to its ground state and also enhance 

the stability of EY through the Vander-Walls interaction with oxidized dye radicals.
17

 

Moreover, aqueous solution of TEOA had a natural pH of 10.4 and it actually acted as a 

buffer solution throughout the reaction. Initial concentration of TEOA correlates the 

hydrogen generation rate by Langmuir-type isotherm as discussed in section 4.3.4. 

4.3.3 Discussion of reaction mechanism in visible and solar light 
irradiation  

In the photosensitization system, a photochemically excited molecule may donate or 

accept electron depending on the presence of electron acceptor or electron donor 

respectively.
35

 In case of dye sensitization, dye serves dual role, i) sensitizer for 

semiconductor and ii) molecular bridge between semiconductor and electron donor.
12

 Till 

date most of the papers discussed application of dye-sensitized photocatalyst in visible 

light. We have used EY-sensitized Pt loaded TiO2 catalyst in solar light which includes 

both UV and visible spectrum. Results showed that the hydrogen production increased 

drastically in solar light with TEOA as electron donor. Probable explanation is that, in 

solar UV light band gap excitation produce e
-
/h

+
 pairs on TiO2. Positive h

+
 reacts with 

water to produce HO

 radical which oxidizes TEOA to HCHO and NH3. HCHO is further 

oxidized to produce H2 and CO2. Blank experiments were performed with only TiO2/Pt 

(without dye) separately in visible light and solar light in presence of aqueous solution of 

TEOA to verify the reaction mechanism. 

4.3.3.1 Reactions in visible light 

In visible light (> 420 nm) the energy of photon is lower than the band gap of TiO2/Pt 

but higher than the band gap of dye molecule. So, the adsorbed EY molecules on the 

surface of semiconductor are excited with visible photons and then inject electron to the 

conduction band of TiO2. After the electron injection EY is converted to its oxidized 

form (EY
+
) and the electron can reduce H

+
 to H2 on the platinum site over the TiO2. The 

proposed mechanism is shown below: 
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4.3.3.2 Reactions in solar light 

Solar light irradiation includes both UV and visible spectrum. UV light can excite TiO2 

and produce e
-
/h

+
 pair by conventional band gap excitation process. At the same time EY 

dye is also sensitized in solar light. TEOA oxidation might occured in presence of h
+
 /or 

HO

 radical as evident from the formation of formaldehyde as an intermediate. Oxidation 

of triethanolamine can be achieved in presence of several oxidants such as periodate, 

hypochlorous acid, chlorine dioxide, and hexacyanoferrate (III). But in those cases further 

oxidation of formaldehyde was not reported or the oxidation of the formaldehyde was 

extremely slow and, therefore, formaldehyde was the end product.
36

 In our case we 

Figure 4.11 Hydrogen generation in visible light.  
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noticed further oxidation of formaldehyde to hydrogen in solar light. This fact was 

confirmed by increased hydrogen generation and decreased formaldehyde concentration 

compared to visible light. This also confirms much higher oxidizing capability of HO

 

radical compared to above mentioned oxidants. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 4.12 Hydrogen generation in solar light. 
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4.3.3.3 Oxidation of TEOA: formation of formaldehyde 

Shukla et al.
36

 reported the oxidation kinetics of TEOA with alkaline hexacyanoferrate 

(III) in aqueous media. The oxidation reaction is shown below: 

 

Naman and Gratzel
37

 have studied the colloidal suspension of vanadium sulfide with 

different percentage of ethanolamine (mono-, di-, and triethanolamine) in water as a 

sweetening mixture of H2S. Trace amount of ethylene glycol was formed in the system, 

but further oxidation of ethylene glycol was not reported. 

 

 

In another study, the photodegradtion of ethanolamine did not report any ethylene glycol 

formation, but formaldehyde formation was mentioned as a major intermediate.
38

 In our 

case formaldehyde was detected and quantified as an intermediate product in both visible 

and solar light driven reactions using both semi-quantitative and quantitative methods. 

Table 4.2 shows the formaldehyde formation with different photocatalyst in solar and 

visible light irradiation. 
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Table 4.2 Comparison of formaldehyde formation with different catalyst in visible and solar light

 

Photocatalyst  Light sources HCHO 

(mg L
-1

) 

TiO2  Visible nil 

TiO2  Solar 15 

TiO2/Pt  Visible nil 

TiO2/Pt  Solar 28 

EY-TiO2/Pt  Visible 80 

EY-TiO2/Pt  Solar 78 

(Formaldehyde concentration was determined by MBTH method. Experimental 

conditions: Catalyst = 1 g L
-1

, I = 100 mW cm
-2

, pH = 7, N2 saturated, pre-sonicated, 

visible - 420 nm cutoff filter). 

In case of visible light, only dye sensitization mechanism is possible. So, TEOA is being 

oxidized by EY
+
 species. However, in presence of solar light, TEOA oxidation was also 

initiated by the valance band hole (hVB
+
). This is evident by the fact that, under similar 

reaction conditions visible light generates more formaldehyde than solar light. Figure 

4.13 shows the plot of EY:T mass ratio vs intermediate (formaldehyde) formation in solar 

and visible light. With the increase in dye to photocatalyst ratio the photocatalytic 

hydrogen generation rate is increased. At the same time formaldehyde formation is also 

increased. In solar light formaldehyde molecule is further oxidized to hydrogen which is 

not possible in visible light. Figure 4.14 and Figure 4.15 shows the plot of H2 and 

formaldehyde formation at different EY:T ratio in visible and solar light, respectively. 
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Figure 4.13 Formation of formaldehyde in visible and solar light irradiation. 



114 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.14 H2 generation and formaldehyde formation in visible 

light irradiation. (Experimental conditions: TiO2/Pt(0.25%) = 1 g L
-1

, 

[TEOA] = 0.25 M, Ivis = 100 mW cm
-2

, pH = 7, N2 saturated, pre-

sonicated, visible - 420 nm cutoff filter). 
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4.3.4 Hydrogen generation kinetics 

TEOA reacts with the photogenerated h
+
 and/or HO


 and degrade to different 

compounds. Thus the concentration of TEOA continuously changes throughout the 

reaction. To determine the effect of initial concentration of TEOA on hydrogen 

generation, we have chosen 60 minutes time interval, as the change of reactant or product 

can be well determined during this time interval. Figure 4.16 describes the effect of 

TEOA concentration on the rate of hydrogen evolution. A significant improvement of 

hydrogen generation was observed as the concentration of TEOA increased from 0.05 to 

0.25 M. However, the hydrogen generation rate was found almost independent after 0.25 

M of TEOA concentration. Therefore, the rate varies as a function of TEOA 

concentration according to Langmuir-type isotherm as described below
39

: 

Figure 4.15 H2 generation and formaldehyde formation in solar 

light irradiation. (Experimental conditions: TiO2/Pt(0.25%) = 1 g 

L
-1

, [TEOA] = 0.25 M, Isolar = 100 mW cm
-2

, pH = 7, N2 saturated, 

pre-sonicated). 
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       (4.1) 

Where, r is the initial rate of hydrogen generation, k, the reaction rate constant, and K the 

adsorption constant of triethanolamine on to EY-TiO2/Pt photocatalyst. According to the 

Langmuir - type plot k= 6.7723x10
-6

 mol min
-1

 and K= 14.44798 M
-1

. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.16 Rate of hydrogen generation as a function of initial 

concentration of TEOA. (Experimental conditions: TiO2/Pt(0.25%) = 

1 g L
-1

, E/T = 0.1, Ivis = 100 mW cm
-2

, pH = 7, N2 saturated, pre-

sonicated, visible - 420 nm cutoff filter). 
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4.3.5 Dependence of hydrogen evolution on light intensity 

The incident light intensity is expected to be one of the rate controlling parameters. In 

order to illustrate this effect, experiments were performed under four levels of light 

intensity and the hydrogen generation rates were compared. To achieve pure UV light 

from solar simulator we used a long pass filter placed above the reactor with an external 

attachment. To receive visible light we placed an UV cutoff filter inside the solar 

simulator. We have studied the effect of UV, visible, and solar light at different 

intensities such as 30 mW cm
-2

, 50 mW cm
-2

, 70 mW cm
-2

 and 100 mW cm
-2

 (Figure 

4.17). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.17 Dependence of H2 on light intensity of UV, visible and 

solar light. (Experimental conditions: TiO2/Pt(0.25%) = 1 g L
-1

, E/T = 

0.05, I = 100 mW cm
-2

, [TEOA] = 0.25 M,  pH = 7, N2 saturated, pre-

sonicated, visible - 420 nm cutoff filter, UV – long pass filter). 
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The reaction rate constant k, typically follows power-law dependence on light 

intensities.
40

 The hydrogen generation rate constants were evaluated as a function of UV, 

visible and solar light intensities (IUV, Ivis, Isolar), keeping all other parameters fixed. In 

UV and visible radiation, the data fited well with the power law model (k(I)=aI
b
) 

compared to that of solar light. The constants and R
2
 values are presented in the Table 

4.3.  

Table 4.3 Power law model constants and R
2 
values 

Light source a b R
2
 

UV 9.3078x10
-4

 1.66 0.996 

Visible 0.09794 0.799 0.992 

Solar 0.30169 0.598 0.943 

 

Solar light contains both UV and visible spectrum, so it may be assumed that the 

hydrogen generation rate in solar light could be predicted from UV and visible light 

assisted hydrogen generation. So, we tried modeling the solar hydrogen generation with 

the following function combining UV and visible rate constant data: 

      (4.2) 

                        (4.3) 

Where, β is the fraction of UV light contributed to solar hydrogen generation. 

Unfortunately, this model was not able to predict the hydrogen generation in solar light. 

On the contrary, solar hydrogen generation follow the simple power law model as 

described by the equation below. 

       (4.4) 
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The main reason behind the failure of the above model is the different excitation 

mechanism in UV and visible light. In both cases TEOA oxidation occurs with either 

EY
+
 or h

+
. Therefore in solar light there is always a competition for TEOA. 

4.3.6 Photoluminescence (PL) study under UV, visible and solar 
light 

Photoluminescence (PL) technique is a very good means to assess the electron transfer 

performance in semiconductor. We have studied the PL of EY sensitized TiO2/Pt 

photocatalyst in UV, visible and solar light irradiation (Figure 4.18). The excitation 

wavelength of the light source was 490 nm and the emission peaks were observed in the 

range of 525-540 nm. The emission peaks attributed the electron/EY
+
 or electron/hole 

recombination processes. UV and solar light showed lower PL intensities (6 x 10
5
 -7 x 

10
5
 s

-1
) compared to visible light (13 x 10

5
 s

-1
). Higher PL value for visible light indicates 

higher electron/EY
+
 recombination process. Again, the charge recombination process 

also increased with increasing light intensity for all three kind of light sources (Appendix 

F). 
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4.3.7 Apparent quantum yield in UV, visible, and solar light 

Figure 4.2 shows the DRS of pure TiO2 and EY sensitized TiO2/Pt photocatalyst. 

Compared to pure TiO2, the EY sensitized photocatalyst showed good visible light 

absorption which was also confirmed by its hydrogen generation capability in visible 

light. Apparent quantum yields were evaluated for hydrogen generation over EY 

sensitized TiO2/Pt (0.25 %) according to the formulae below (equation 4.5).
41

 Incident 

light intensities were measured with StelerNET instrument. Table 4.4 shows the apparent 

quantum yield values at different light intensities for UV, visible, and solar light. 

Apparent quantum yield was highest (9.58 %) in UV light whereas in both visible and 

solar light, the values were pretty low (2.15 - 2.39 %) at 1 sun considering full spectrum. 

Figure 4.18 Comparioson of PL for UV, vis and solar light irradiation. 

(Experimental conditions: TiO2/Pt (0.25%) = 1 g L
-1

, E/T=0.05, I = 50 mW cm
-2

, 

[TEOA] = 0.25 M, pH = 7, N2 saturated, pre-sonicated, visible - 420 nm cutoff filter, 

UV –long pass filter).  
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At 100 mW cm
-2

 the photon flux values implied the simulated sun light, which were 

higher than the previously reported values by several authors. At lower intensity the 

apparent quantum yields were much higher due to reduced e
-
/h

+
 recombination rate. 

Again at lower light intensity (30 mW cm
-2

), if only 300 – 520 nm range of wavelengths 

were considered we achieved higher apparent quantum yields (11.33 – 12.23 %) than that 

of UV light (10.82 %).  

The quantum yield () will certainly be higher than the apparent quantum yield, as the 

adsorbed photons are a certain fraction of the incident photons. 

           (4.5) 

Table 4.4 Apparent quantum yield in UV, visible and solar light 

Light source Apparent Quantum Yield (%) 

Wavelength (nm) 30 mW cm
-2

 50 mW cm
-2

 70 mW cm
-2

 100 mW cm
-2

 

UV 300-388 10.82 10.65 10.42 9.58 

Visible 420-650 5.16 3.88 3.26 2.39 

Visible 420-520 12.23 9.38 8.23 5.73 

Solar 300-650 5.81 5.23 3.32 2.15 

Solar 300-520 11.33 10.39 6.69 4.19 
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4.3.8 EY-sensitized hydrogen generation in flow-reactor in solar 
light 

4.3.8.1 Reactor configuration 

In the small batch reactor, a high ratio of illuminated surface of catalyst to the effective 

reactor volume can be achieved and low mass transfer limitation exists since the 

maximum diffusion resistance is very small due to the use of ultrafine photocatalyst 

particles In batch reactor with magnetic stirring the convective mass transfer is enhanced; 

but mechanical attrition and dye wash out are more likely. To overcome these problems 

and to scale-up of a slurry photocatlytic reactor we introduced a peristaltic pump in the 

reactor. The peristaltic pump is connected with a pump controller.
42

 

The flow reactor has two inlet and two outlet ports positioned diagonally to each other. It 

has one nitrogen purging line located at the middle of the reactor. A quartz glass plate is 

located at the top of the gas-tight reactor to allow illumination from the top. The gas 

collecting port is located on the opposite side of the nitrogen purging line. 

Figure 4.1 shows a schematic diagram of the flow reactor. Both unidirectional flow 

and/or bi-directional flows (pulsation flow) can be achieved with the help of a pump 

controller. Flow rate can be varied between 0 and 0.027 L s
-1

. In case of unidirectional 

operation, this is just like conventional peristaltic pump. However, in case of bi-

directional operation, the controller switches the inlet and outlet ports at regular time 

intervals. Bi-directional flow is quite similar as oscillating/pulsating type flow. The use of 

oscillatory motion is known to be an effective method for enhancing the performance of 

mass and heat transfer processes.
43-46

 In our case we have introduced this pulsating flow 

to achieve higher mass transfer rates which could not be achieved by conventional 

mixing. We have studied the effects of sonication, flow rate and both uni- and bi-

directional mixing modes on hydrogen generation under solar light irradiation. 
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4.3.8.2 Effect of pre-sonication of photocatalyst on hydrogen 
generation 

Sonication is a tool for obtaining a better dispersion of solid in liquid medium. In 

sonication the progression of a sound wave in liquid phase causes the molecule to 

oscillate about their mean position. During this process cavitation bubbles form, and 

implosion of the cavitation bubbles generate high energy shock waves.
47

 These effects 

usually lead to the reduction of particle size and better dispersion. 

In our experiment we have used a sonicator (330 W, 60 Hz) to disperse the solid 

photocatlyst in aqueous TEOA solution. We varied the sonication between 0-8 min and 

found 5 min sonication time as optimum for our reaction. Figure 4.19 and Figure 4.20 

show the effect of sonication in uni- and bi-directional operations, respectively. 

Sonication showed around 1.8 times improvement in hydrogen generation for zero 

mixing condition, whereas 1.6 and 1.4 times improvement for uni- and bi-directional 

mixing conditions (144 min residence time).  
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Figure 4.19 Effect of sonication on hydrogen generation for uni-

directional flow. (Experimental conditions: EY-TiO2/Pt (0.25%) = 1 g L
-1

, 

[TEOA] = 0.25 M, Isolar = 100 mW cm
-2

, pH = 7, N2 saturated, flow = 1.62 L 

min
-1, 

x-axis shows residence time inside reactor).  
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4.3.8.3 Effect of flow rate and different mixing mode on hydrogen 
generation 

Besides the process kinetic issues, significant mass transfer limitations are present in 

most heterogeneous photocatalytic reactors. Photocatalytic reactor design requires the 

presence of high catalyst surface area, illumination, and reactant species in close 

proximity. Immobilized photocatalysts face significant mass transfer limitations 

compared to slurry photocatalysts as observed in Figure 4.9. Again, photocatalyst in 

slurry form also experience similar mass transfer limitations as the suspended 

Figure 4.20 Effect of sonication on hydrogen generation for bi-directional 

flow. (Experimental conditions: EY-TiO2/Pt(0.25%) = 1 g L
-1

, [TEOA] = 0.25 

M, Isolar = 100 mW cm
-2

, pH = 7, N2 saturated, flow = 1.62 L min
-1

, x-axis 

shows residence time inside reactor).  
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photocatalyst tends to be present as micrometer-size agglomerates rather than discrete 

nano-size particles.  

We have studied the effects of both uni- and bi-directional flows in the flow reactor with 

variable flow rates (0, 0.84, and .1.62 L min
-1

). Figure 4.21 shows the effect of flow rate 

in uni- and bi-directional operations.  

 

 

 

 

 

 

 

 

 

 

 

 

By increasing the flow rate from zero to 0.84 L min
-1

, rate of hydrogen generation 

increased by 2.2 and 2.4 times for uni- and bi-directional flows respectively. With further 

increment of flow rate to 1.62 L min
-1 

the improvement of hydrogen generation was only 

6 % and 11 % for uni- and bi-directional flows respectively. Bi-direction flow seemed to 

be slightly better than uni-directional flow because of superior mixing, which could be 

Figure 4.21 Effect of flow rate on H2 generation for both uni- and bi-

directional mixing. (Experimental conditions: EY-TiO2/Pt(0.25%) = 1 g L
-1

, 

[TEOA] = 0.25 M, Isolar  = 100 mW cm
-2

, pH = 7, N2 saturated, pre-sonicated).  
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achieved during the switching of inlet and outlet positions of the reactor via pump 

controller. In case of bi-direction flow we observed a maximum of 11 % increment in 

hydrogen generation rate in comparison with uni-directional flow. Again, the rates of 

hydrogen generation in flow reactor were compared with the conventional batch reactor 

data, and 17 - 23 % improvement in hydrogen generation rate for flow reactor was 

observed. We anticipated even better results with flow reactor, which were not achieved 

so far. For this reason detailed hydrodynamic study of the flow reactor was performed by 

solving momentum equations using commercial software package FUENT.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.22 Comparison of H2 generation rate in batch and flow reactor. 

(Experimental conditions: EY-TiO2/Pt(0.25%) = 1 g L
-1

, [TEOA] = 0.25 M, 

Isolar = 100 mW cm
-2

, pH = 7, N2 saturated, pre-sonicated, batch reactor = 500 

rpm, flow reactor = 1.62 L min
-1

).  



128 

 

4.3.9 Modification of flow reactor by hydrodynamics study 

Computational fluid dynamics (CFD) is useful tool to investigate the hydraulics in 

chemical reactors. CFD provides detailed information on the flow and mixing in such 

system.
48

 It is also helpful for the design and optimization of the stirred reactor,
49, 50

 and 

has been widely used in the analysis of the reactor characterization in various 

applications.
51, 52

 Here, we have used a commercial code ANSYS FLUENT 12.1 

(FLUENT Inc.) to simulate our flow reactor for solar hydrogen generation.  

Hence, in the present case, the flow has been modeled in three-dimensions for the 

prediction of the velocity field. The continuity and Navier-Stokes equations for an 

incompressible, constant viscosity liquid can be written as follows: 

Continuity equation: 

  0



v

t





        (4.6) 

Momentum conversion equation: 

        gvvpvvv
t

T 
 




    (4.7) 

Where, p is the static pressure,  is dynamic viscosity and g


 is the gravitational body 

force. 

Grid preparation: 

The geometry of the reactor was modeled by using Gambit v.2.4.6 to draw and describe 

the geometrical properties of the reactor which is of 10 cm diameter and 6 cm height. It 

has two inlets and two outlets of 0.015 cm diameter. Pump performance curve was 

obtained experimentally to determine the mass flow at the inlet of the reactor and 

pressure outlet condition was set at the outlet of the reactor to be 10000 Pa based on the 

pump technical information. We located dead zones (Figure 4.23) at the middle of the 
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reactor indicated with deep blue color. The presence of dead zones was also confirmed by 

particle tracking method.  

 

 

 

 

 

 

 

 

 

 

 

To overcome this problem a special baffle needs to be introduced at the middle of the 

reactor. There are 36 holes in the baffle arranged in a systematic fashion to create 

turbulences in the reactor. In this arrangement we were able to eliminate those dead zones 

in the reactor which is also confirmed by particle tracking. Details about the baffle, 

improved flow pattern, and particle tracking diagrams are provided in Appendix G.  

 

 

 

Figure 4.23 Flow pattern inside the flow reactor 
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4.4 Conclusions 

From the discussion presented in this chapter, the following conclusions can be stated. 

i) DRS supported the visible light activity of EY-TiO2/Pt. TiO2 was mostly in anatase 

form and with Pt loading the surface area was not changed. FTIR results suggested about 

the ester like linkage with EY and TiO2 surface in the photocatalyst. EDX results 

reported the presence of Pt metal on TiO2 surface. 

ii) Different parameters showed significant effect on hydrogen generation. Neutral pH, 

0.25 wt% of Pt on TiO2, photocatalyst mass of 1-1.3 g L
-1

 were achieved as optimum 

levels for sacrificial hydrogen generation in solar and visible light. 

iii) Photocatalyst immobilization was not successful over slurry based photocatlytic 

hydrogen generation. This was due to insufficient active sites and the influence of 

internal mass transfer. 

iv) EY can incorporate visible light activity in both TiO2 and TiO2/Pt. In solar light, 

hydrogen generation rate increased by 1.4 and 1.2 times by EY sensitization on TiO2 and 

TiO2/Pt respectively.  

v) With the incorporation of Pt a huge improvement in hydrogen generation rate was 

achieved compared to EY-TiO2 alone in visible light. In solar light, platinum loading on 

both TiO2 and EY-TiO2 provided 4.7 and 4.1 times increment in hydrogen generation 

respectively.  

vi) EY to TiO2/Pt mass ratio was shown to a crucial parameter for hydrogen generation. 

We obtained an optimum mass ratio (EY:TiO2/Pt) of 1:10 and 1:13.3 in visible and solar 

light respectively. 

vii) Concentration of TEOA also played a major role during sacrificial hydrogen 

generation. Hydrogen generation rate varied as a function of TEOA concentration and it 

followed Langmuir-type isotherm. 
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viii) The reaction mechanisms in solar and visible light were different, although in both 

cases formaldehyde was detected as an intermediate product. However, in solar light, 

formaldehyde was oxidized by h
+
/HO


 to produce hydrogen. 

ix) Light intensity is also an important parameter in photocatalytic hydrogen generation. 

The optimum intensity was 100 mW cm
-2

 (1sun). 

x) Recombination of e
-
/h

+
 or e

-
/EY

+
 were determined through PL study, which illustrated 

the higher recombination rates in case of visible light compared to that of solar and UV 

light. 

xi) Study in flow reactor showed positive effect of pre-sonication, increased flow rate and 

bi-directional mixing mode in solar hydrogen generation. Both uni- and bi-direction 

mixing at a flow rate of 1.62 L min
-1

 showed higher hydrogen generation rates compared 

to the batch reactor. 

xii) The flow pattern inside the flow reactor was described using FLUENT which 

revealed the presence of dead zones in the middle of the reactor. 

 

 

 

 

 

 

 

 



132 

 

4.5 References 

1. Fujishima, A., Electrochemical photolysis of water at a semiconductor electrode. 

Nature 1972, 238, 37-38. 

2. Domen, K.; Kudo, A.; Onishi, T., Mechanism of photocatalytic decomposition of 

water into H2 and O2 over NiO-SrTiO3. Journal of Catalysis 1986, 102, (1), 92-98. 

3. Kudo, A.; Kato, H., Photocatalytic decomposition of water into H2 and O2 over 

novel photocatalyst K3Ta3Si2O13 with pillared structure consisting of three TaO6 chains. 

Chemistry Letters 1997, 26, (9), 867-868. 

4. Wrighton, M. S.; Ellis, A. B.; Wolczanski, P. T.; Morse, D. L.; Abrahamson, H. 

B.; Ginley, D. S., Strontium titanate photoelectrodes. Efficient photoassisted electrolysis 

of water at zero applied potential. Journal of the American Chemical Society 1976, 98, 

(10), 2774-2779. 

5. Wagner, F. T.; Somorjai, G. A., Photocatalytic hydrogen production from water 

on Pt-free SrTiO3 in alkali hydroxide solutions. Nature (London, United Kingdom) 1980, 

285, 559-560. 

6. Lehn, J. M.; Sauvage, J. P.; Ziessel, R.; Hilaire, L., Water photocatalysis by UV 

irradiation of rhodium loaded strontium-titanate catalysts-relation between catalytic 

activity and nature of the deposit from combined photolysis and ESCA studies. Israel 

Journal of Chemistry 1982, 22, (2), 168-172. 

7. Bulatov, A. V.; Khidekel, M. L., Decomposition of water under the effect of UV 

radiation in the presence of platinized titanium dioxide. Russian Chemical Bulletin 1976, 

25, (8), 1794. 

8. Sato, S.; White, J. M., Photodecomposition of water over Pt/TiO2 catalysts. 

Chemical Physics Letters 1980, 72, (1), 83-86. 

9. Lee, J. S., Photocatalytic water splitting under visible light with particulate 

semiconductor catalysts. Catalysis Surveys from Asia 2005, 9, (4), 217-227. 

10. Ni, M.; Leung, M. K. H.; Leung, D. Y. C.; Sumathy, K., A review and recent 

developments in photocatalytic water-splitting using TiO2 for hydrogen production. 

Renewable and Sustainable Energy Reviews 2007, 11, (3), 401-425. 

11. Abe, R.; Sayama, K.; Sugihara, H., Effect of Water/Acetonitrile Ratio on Dye-

Sensitized Photocatalytic H2 Evolution under Visible Light Irradiation. Journal of Solar 

Energy Engineering 2005, 127, 413-416. 



133 

 

12. Donghua, P.; Jingfei, L., Development of Visible Light-Responsive Sensitized 

Photocatalysts. International Journal of Photoenergy 2012, Article ID 262831, 

doi:10.1155/2012/262831. 

13. Pan, B. Y. K.; Yen, T. F.; Chen, J. R. Treatment of wastewater containing citric 

acid and triethanolamine. 1992. 

14. West, R. J.; Gonsior, S. J., Biodegradation of triethanolamine. Environmental 

Toxicology and Chemistry 1996, 15, (4), 472-480. 

15. Abe, R.; Hara, K.; Sayama, K.; Domen, K.; Arakawa, H., Steady hydrogen 

evolution from water on Eosin Y-fixed TiO2 photocatalyst using a silane-coupling 

reagent under visible light irradiation. Journal of Photochemistry and Photobiology A: 

Chemistry 2000, 137, (1), 63-69. 

16. Zhang, X.; Jin, Z.; Li, Y.; Li, S.; Lu, G., Photocatalytic hydrogen generation over 

Eosin Y-Sensitized TS-1 zeolite. Applied Surface Science 2008, 254, (15), 4452-4456. 

17. Zhang, X.; Jin, Z.; Li, Y.; Li, S.; Lu, G., Visible-light-induced hydrogen 

production over Pt-Eosin Y catalysts with high surface area silica gel as matrix. Journal 

of power sources 2007, 166, (1), 74-79. 

18. Kang, S. Z.; Chen, L.; Li, X.; Mu, J., Composite photocatalyst containing Eosin Y 

and multiwalled carbon nanotubes loaded with CuO/NiO: Mixed metal oxide as an active 

center of H2 evolution from water. Applied Surface Science 2012, 258, (16), 6029-6033. 

19. Li, Q.; Chen, L.; Lu, G., Visible-light-induced photocatalytic hydrogen generation 

on dye-sensitized multiwalled carbon nanotube/Pt catalyst. Journal of Physical Chemistry 

C 2007, 111, (30), 11494-11499. 

20. Li, Q.; Lu, G., Visible-light driven photocatalytic hydrogen generation on Eosin 

Y-sensitized Pt-loaded nanotube Na2Ti2O4(OH)2. Journal of Molecular Catalysis A: 

Chemical 2007, 266, (1), 75-79. 

21. Sreethawong, T.; Junbua, C.; Chavadej, S., Photocatalytic H2 production from 

water splitting under visible light irradiation using Eosin Y-sensitized mesoporous-

assembled Pt/TiO2 nanocrystal photocatalyst. Journal of Power Sources 2009, 190, (2), 

513-524. 

22. Li, Y.; Xie, C.; Peng, S.; Lu, G.; Li, S., Eosin Y-sensitized nitrogen-doped TiO2 

for efficient visible light photocatalytic hydrogen evolution. Journal of Molecular 

Catalysis A: Chemical 2008, 282, (1), 117-123. 

23. Chowdhury, P.; Gomaa, H.; Ray, A. K., Factorial design analysis for dye-

sensitized hydrogen generation from water. International Journal of Hydrogen Energy 

2011, 36, (21), 13442-13451. 



134 

 

24. Chowdhury, P.; Moreira, J.; Gomaa, H.; Ray, A. K., Visible Solar Light Driven 

Photocatalytic Degradation of Phenol with Dye-sensitized TiO2: Parametric and Kinetic 

Study. Industrial & Engineering Chemistry Research 2012, 51, (12), 4523-4532. 

25. Chen, H. H.; Anbarasan, R.; Kuo, L. S.; Chen, P. H., A novel report on Eosin Y 

functionalized MWCNT as an initiator for ring opening polymerization of 

caprolactone. Materials Chemistry and Physics 2011, 126, 584-590. 

26. Wang, Z. S.; Sayama, K.; Sugihara, H., Efficient eosin Y dye-sensitized solar cell 

containing Br
-
/Br

3-
electrolyte. Journal of Physical Chemistry B 2005, 109, (47), 22449-

22455. 

27. Schiavello, M., Heterogeneous photocatalysis. John Wiley & Sons: 1997; Vol. 3, 

p 87-107. 

28. Sreethawong, T.; Yoshikawa, S., Enhanced photocatalytic hydrogen evolution 

over Pt supported on mesoporous TiO2 prepared by single-step sol-gel process with 

surfactant template. International Journal of Hydrogen Energy 2006, 31, (6), 786-796. 

29. Mills, A.; Hunte, S. L., An overview of semiconductor photocatalysis. Journal of 

Photochemistry and Photobiology-Chemistry Section 1997, 108, (1), 1-36. 

30. Lu, M. C.; Roam, G. D.; Chen, J. N.; Huang, C. P., Factors affecting the 

photocatalytic degradation of dichlorvos over titanium dioxide supported on glass. 

Journal of Photochemistry and Photobiology A: Chemistry 1993, 76, (1), 103-110. 

31. Kalyanasundaram, K.; Kiwi, J.; Gratzel, M., Hydrogen evolution from water by 

visible light, a homogeneous three component test system for redox catalysis. Helvetica 

Chimica Acta 1978, 61, (7), 2720-2730. 

32. Badawy, M. I.; Ghaly, M. Y.; Ali, M. E. M., Photocatalytic hydrogen production 

over nanostructured mesoporous titania from olive mill wastewater. Desalination 2011, 

267, (2), 250-255. 

33. Daskalaki, V. M.; Kondarides, D. I., Efficient production of hydrogen by photo-

induced reforming of glycerol at ambient conditions. Catalysis Today 2009, 144, (1-2), 

75-80. 

34. Tang, Q.; Lin, J.; Wu, Z.; Wu, J.; Huang, M.; Yang, Y., Preparation and 

photocatalytic degradability of TiO2/polyacrylamide composite. European Polymer 

Journal 2007, 43, (6), 2214-2220. 

35. Larson, R. A.; Stackhouse, P. L.; Crowley, T. O., Riboflavin tetraacetate: a 

potentially useful photosensitizing agent for the treatment of contaminated waters. 

Environmental Science & Technology 1992, 26, (9), 1792-1798. 



135 

 

36. Shukla, K. S.; Mathur, P. C.; Bansal, O. P., Oxidation kinetics of triethanolamine 

by alkaline hexacyanoferrate (III). Journal of Inorganic and Nuclear Chemistry 1973, 35, 

(4), 1301-1307. 

37. Naman, S. A.; Gratzel, M., Visible-light generation of hydrogen from hydrogen 

sulphide in aqueous solutions of ethanolamines containing vanadium sulphide 

dispersions. Journal of Photochemistry and Photobiology A: Chemistry 1994, 77, (2-3), 

249-253. 

38. Yin, Z.; Li, Y.; Peng, S.; Lu, G.; Li, S., Photocatalytic hydrogen generation in the 

presence of ethanolamines over Pt/TiO2. Journal of Molecular Catalysis (China) 2007, 2. 

39. Li, Y.; Xie, Y.; Peng, S.; Lu, G.; Li, S., Photocatalytic hydrogen generation in the 

presence of chloroacetic acids over Pt/TiO2. Chemosphere 2006, 63, (8), 1312-1318. 

40. Ray, A. K.; Beenackers, A. A. C. M., Novel swirl-flow reactor for kinetic studies 

of semiconductor photocatalysis. AIChE Journal 1997, 43, (10), 2571-2578. 

41. Shimidzu, T.; Iyoda, T.; Koide, Y., An advanced visible-light-induced water 

reduction with dye-sensitized semiconductor powder catalyst. Journal of the American 

Chemical Society 1985, 107, (1), 35-41. 

42. Chen, D.; Li, F.; Ray, A. K., External and internal mass transfer effect on 

photocatalytic degradation. Catalysis today 2001, 66, (2-4), 475-485. 

43. Gomaa, H.; Al Taweel, A. M., Dynamic analysis of mass transfer at vertically 

oscillating surfaces. Chemical Engineering Journal 2004, 102, (1), 71-82. 

44. Mackley, M. R.; Stonestreet, P., Heat transfer and associated energy dissipation 

for oscillatory flow in baffled tubes. Chemical Engineering Science 1995, 50, (14), 2211-

2224. 

45. Gomaa, H.; Al Taweel, A. M.; Landau, J., Mass transfer enhancement at vibrating 

electrodes. Chemical Engineering Journal 2004, 97, (2), 141-149. 

46. Blel, W.; Le Gentil-Lelièvreb, C.; Bénézechb, T.; Legrand, J.; Legentilhomme, P., 

Application of turbulent pulsating flows to the bacterial removal during a cleaning in 

place procedure. Part 1: Experimental analysis of wall shear stress in a cylindrical pipe. 

Journal of Food Engineering 2009, 90, (4), 422-432. 

47. Chowdhury, P.; Viraraghavan, T., Sonochemical degradation of chlorinated 

organic compounds, phenolic compounds and organic dyes-A review. Science of the 

Total Environment 2009, 407, (8), 2474-2492. 

48. Wols, B. A.; Shao, L.; Uijttewaal, W. S. J.; Hofman, J.; Rietveld, L. C.; Van Dijk, 

J. C., Evaluation of experimental techniques to validate numerical computations of the 



136 

 

hydraulics inside a UV bench-scale reactor. Chemical Engineering Science 2010, 65, 

(15), 4491-4502. 

49. Stamou, A. I., Improving the hydraulic efficiency of water process tanks using 

CFD models. Chemical Engineering and Processing: Process Intensification 2008, 47, 

(8), 1179-1189. 

50. Torre, J. P.; Fletcher, D. F.; Lasuye, T.; Xuereb, C., Single and multiphase CFD 

approaches for modelling partially baffled stirred vessels: Comparison of experimental 

data with numerical predictions. Chemical Engineering Science 2007, 62, (22), 6246-

6262. 

51. Darelius, A.; Rasmuson, A.; van Wachem, B.; Niklasson Bjorn, I.; Folestad, S., 

CFD simulation of the high shear mixing process using kinetic theory of granular flow 

and frictional stress models. Chemical Engineering Science 2008, 63, (8), 2188-2197. 

52. Pareek, V. K.; Cox, S. J.; Brungs, M. P.; Young, B.; Adesina, A. A., 

Computational fluid dynamic (CFD) simulation of a pilot-scale annular bubble column 

photocatalytic reactor. Chemical Engineering Science 2003, 58, (3-6), 859-865. 

 

 

 

 

 



137 

 

Chapter 5  

5 Sacrificial Hydrogen Generation from Formaldehyde 
with TiO2/Pt Photocatalyst in Solar Radiation 

5.1 Introduction 

Hydrogen production from a renewable source is a dream project of the 21
st
 century. 

Photocatalytic water splitting technique has the potential for renewable hydrogen 

production from water.
1
 However water splitting is not an easy task because of two main 

reasons namely, (i) very high positive free energy change (G
0 

= 237 KJ mol
-1

), and (ii) 

rapid reverse reaction. Water splitting being an endothermic reaction demands energy 

that is equal to enthalpy change (H) required to split water into hydrogen and oxygen; 

G as a useful work and TS as a thermal energy.
2, 3

 Sacrificial agents can be used as 

electron donor during the photocatalytic reaction process, to achieve a much higher 

hydrogen production rate by reacting irreversibly with the oxygen formed, photo-induced 

hole, or OH

 radicals, to prevent backward reaction between produced H2 and O2 or 

hindering the recombination of photo-induced electrons and holes 
4
  

Organic pollutants can perform the role of electron donors, thereby can reduce the 

hydrogen production costs while at the same time can serve the dual role of hydrogen 

production as well as organic degradation. The chosen sacrificial agent should be 

inexpensive compared to the hydrogen produced to make the process a feasible one. 

Wastewater containing organic pollutants can be considered as suitable electron donor for 

this purpose. There are only few reports that demonstrate the involvement of organic 

pollutants as sacrificial electron donor for such system 
4-8

 Moreover TiO2 photocatalyst 

has inherent electron donation ability for hydrogen production. Hence, the electron donor 

should have higher efficiency and stability. 

In common photocatalytic degradation system, TiO2 catalyst shows very good results 

under UV light.
9
 The only exception is the involvement of oxygen during reaction. In 
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photodegradation process, O2 acts as an electron donor and produce superoxide ion which 

finally produce OH

 radical.

10
 If oxygen is present in the reaction system, then during 

photocatalytic water splitting it would compete with H
+
 ion for electron. Therefore, 

presence of oxygen in water splitting system is not advisable.  

TiO2 can produce hydrogen from water and different sacrificial agents but the efficiency 

is not significant; the system has considerable electron/hole recombination problem. This 

problem was addressed by the use of noble metal co-catalyst in trace amount on TiO2 

catalyst surface.
11

 Platinum loaded TiO2 catalyst has highest potential for hydrogen 

generation as shown by Li et al.
4
 

Formaldehyde is a major volatile organic compound commonly found in the indoor 

environment emitted from building, furnishing materials and consumer products. It can 

also be found in gas phase and wastewater as pollutant which can be oxidized under UV 

radiation with TiO2.
12-15

 

Formaldehyde is used in many industries such as adhesive and glue manufacturing, 

production of synthetic resin, chemical and petroleum industry, paper industry, textile 

and wood processing, disinfectant and preservative production etc. These industries 

generate wastewater having variable concentration of formaldehyde.
16

 Again the 

concentration of formaldehyde in effluents generated from many chemical industries 

ranges from 3 to 10 g L
-1

.
17

 Formaldehyde is toxic and has several health problems for 

humans. Thus, formaldehyde can seriously harm human health and impose ecological 

problems on the environment.
16

 

Numerous organic compounds have been used as electron donors for photocatalytic 

hydrogen generation, namely, carboxylic acids, alcohols, carbohydrates, hydrocarbons, 

artificial high polymers.
4, 11, 18

 There are very limited studies done on formaldehyde as 

sacrificial agent for hydrogen generation.
19

 Moreover, all studies primarily use UV lamps 

as light sources.  
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In our previous work with triethanolamine electron donor, formaldehyde was detected as 

a major intermediate product under both solar and visible light driven hydrogen 

generation. So a detailed study on the photocatalytic behavior of formaldehyde for 

sacrificial hydrogen generation was necessary for better understanding of the process. 

In this present work, we have used simulated solar light for degradation and simultaneous 

hydrogen generation from formaldehyde. The photocatalytic activity of TiO2/Pt catalyst 

produced by solar photo-deposition method was studied under both visible and solar 

irradiation. Effect of different basic parameters such as platinum content on TiO2, 

solution pH, initial concentration of formaldehyde, catalyst concentration and light 

intensity were systematically studied to understand the qualitative and quantitative effects 

as well as overall mechanism of the process. 

5.2 Experimental 

5.2.1 Reagents 

All reagents were of analytical grade and used without further treatment. Aeroxide TiO2 

P25 (80-20 % anatase to rutile) from Evonik Degussa Corporation was used as catalyst. 

Formaldehyde solution (36.5%) from Sigma-Aldrich was used as sacrificial agent. 

Hydrogen hexachloroplatinate (IV) solution (8 wt %) was also purchased from Sigma-

Aldrich Canada Ltd. Ultra pure water (18 MΩ) was prepared from an in-house 

EASYPure
®
 RODI system (Thermo Scientific, Canada). 

5.2.2 Preparation and characterization of photocatalyst 

Platinum loading of the TiO2-P25 catalyst was performed by solar photo-deposition 

method following a modified version of previously reported by Chowdhury et al.
20

 TiO2 

powder was mixed with required volume of 0.08 % hexacholoplatinic acid solution 

(corresponding to 0.25 %, 1 %, 1.3 %, 1.8 % nominal loading) and ethanol, and then it 

was sonicated for 5 min. A 90:10 volume ratio of water and ethanol was taken. Excess 

ethanol was used to supply enough sacrificial agents as hole (h
+
) scavenger to ensure 

complete reduction of Pt (IV). Then, the reaction mixture was placed under the solar 
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simulator (AM 1.5G filter, 1 Sun) for 3 h under vigorous stirring. As time progressed, the 

solution became off white color. After filtering and washing with water, the powder was 

dried at 150 
0
C for 2 h and milled in a mortar. Pure TiO2 has a bulky nature which is 

totally lost after it undergoes photo-deposition process. It also loses its milky white color 

and turns into light grey.  

Phase composition and the degree of crystallinity in the samples were determined by X-

ray diffraction (XRD). The XRD data were obtained using a Rigaku–MiniFlex II,  

powder diffractometer (Japan), using CuKα (λ for Kα = 1.54059 Å) over the desired 2θ 

range  with step width of 0.05°. 

DRS (diffuse reflectance spectra) were recorded on a Shimadzu UV-VIS-NIR 

spectrophotometer (UV-3600) equipped with an integrating sphere using BaSO4 as 

reference. Both absorbance and diffuse reflectance spectra were recorded for all samples. 

5.2.3 Light sources 

Experiments were performed under both solar and visible light. The simulated solar light 

was generated using solar simulator (Model: SS1KW, Sciencetech, ON, Canada with a 

1000-W Xe arc lamp and an AM 1.5G filter). It produces identical simulated sunlight (1 

Sun) of 100 mW cm
-2

 at full power that matches the global solar spectrum at sea level. To 

generate only visible light, a UV cut-off filter (Omega optical, USA:  > 420 nm) was 

used. Spectral analysis of the irradiation from solar simulator was performed with 

StellarNet EPP2000C-25LT16 spectrometer. 

5.2.4 Photocatalytic hydrogen generation 

Photocatlytic reactions were carried out in a gas tight 530 mL Pyrex glass reactor with a 

flat transparent window at the top for illumination (details in Appendix C). The catalyst 

powder (TiO2/Pt) was suspended in 100 mL of formaldehyde solution (40 ppm to 4600 

ppm) after pH adjustment with either 1:1 HCl or 0.1 M NaOH solution. The catalyst 

suspension was dispersed for 5 min in an ultrasonic bath and then the system was 

degassed by bubbling ultra pure nitrogen gas for about 40 min. Continuous stirring was 
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performed using magnetic stirrer (500 rpm). The photocatalyst was irradiated with a solar 

simulator from the top. 

The gas sampling port in the reactor was sealed with a silicone rubber septum, and 

sampling was made intermittently through the septum during the experiments. The gas 

mixture was analyzed by Shimazu GC 2014 with HeyeSep D packed column: 10 m 

length, 2 mm ID, 2 m film thickness and thermal conductivity detector (TCD). Ultra 

pure N2 gas was used as carrier gas. 

5.3 Results and Discussion 

5.3.1 Characterization of TiO2/Pt photocatalyst 

XRD of bare TiO2 P25 and platinum loaded (0.25 %) TiO2 is shown in Figure 5.1. 

Inclusion of platinum metal onto TiO2 P25 did not alter the phase composition of the 

TiO2. The XRD pattern in term of position and width of the peaks was similar to the 

standard crystal structure of TiO2 as described in our earlier studies.
10

 

Diffuse reflectance spectra (DRS) of TiO2 and platinum loaded TiO2 are shown in Figure 

5.2. With the incorporation of Pt metal, the peak little bit shifts toward visible region, and 

the bang-gap changed from 3.04 eV to 2.95 eV. 
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Figure 5.1 XRD for TiO2 and TiO2/Pt photocatalysts. 

Figure 5.2 DRS for TiO2 and TiO2/Pt photocatalysts. 
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5.3.2 Effect of platinum deposition on the photocatalytic activity of 
TiO2  

Photocatalytic activity increased significantly with the incorporation of platinum metal on 

TiO2 catalyst via solar photo-deposition method as shown in Figure 5.3. The rate of 

hydrogen generation increased from 0.34 μmol min
-1

 to 2.28 µmol min
-1

 with 1.0 % 

nominal loading of platinum. In order to determine the optimum dose of platinum, the 

loading was varied between 0 and 1.8 %. The rate of hydrogen generation increased 

rapidly up to 0.25 % platinum loading but then gradually dropped with further increment. 

Platinum metal as a dopant slightly reduced the band-gap of TiO2, but still could not 

initiate hydrogen generation under visible range of solar light. However, a significant 

enhancement of hydrogen generation was observed with the incorporation of platinum on 

TiO2 surface under solar light as shown in Table 5.1. Higher platinum loading beyond 

optimum dose showed negative effect in hydrogen generation. This may be due to the 

decrease in adsorption sites of formaldehyde on TiO2 and increase of UV light scattering 

during photocatalytic reaction.
4
 

  Table 5.1 Effect of Pt deposition on TiO2 P25 

Photocatalyst Hydrogen generation (μmol g
-1

) 

TiO2 P25 541 

TiO2/Pt (0.25 %) 4590 

 

According to Linsebigler et al.
21

 dispersed Pt metal on TiO2 surface forms a Schottky 

barrier at the metal/semiconductor interface. This actually reduces the electron/hole 

recombination rate, and thereby, improves charge separation efficiency. Platinum metal 

on TiO2 surface basically “pump” the photogenerated electron from TiO2 to the adsorbed 

species, and thus hinder the possibility of their recombination with holes. In addition, 

platinum metal particle on TiO2 improves reaction kinetics by decreasing the 

overpotential for hydrogen evolution.
22, 23
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5.3.3 Effect of catalyst loading 

To explore the effects of catalyst loading on hydrogen generation, a series of batch 

experiments were performed with TiO2/Pt (0.25 %) catalyst, in which the catalyst loading 

was varied between 0.2 and 1.9 g L
-1

. In all cases we have used natural pH (6.7) and all 

other parameters such as initial concentration of formaldehyde, platinum content on TiO2 

and light intensity were kept identical. TiO2/Pt has no visible light activity, and thus only 

solar-UV light was utilized during degradation of formaldehyde as well as generation of 

hydrogen. The rate of hydrogen production (r1) is shown in Figure 5.4, as a function of 

catalyst loading (g L
-1

). The rate increased with catalyst loading, but not linearly, in 

particular at low catalyst loadings, as would be expected.  

The rate of hydrogen generation increased initially up to 1 g L
-1

 then reached a plateau. 

This can be explained by the concept of active sites. At a low concentration of 

Figure 5.3 Hydrogen generation rate versus platinum weight percent on TiO2. 

(Experimental conditions: [HCHO] = 0.1332 M, pH 6.7, [TiO2/Pt] = 1 g L
-1

, ISolar = 

100 mW cm
-2

, N2 saturated, pre-sonicated). 
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photocatalyst slurry the photocatalytic reaction is mainly controlled by active sites which 

are accessible for adsorption of light and reactant.
5, 24

 With gradual increment of 

photocatalyst slurry concentration, the solution turbidity increases, which thereby 

increases the UV light scattering. Moreover, the increased UV light scattering by 

suspended photocatalyst significantly reduces the UV transmission resulting in poor 

photocatalytic hydrogen generation. This observed phenomenon can be rationalized in 

terms of the availability of illuminated active sites on the TiO2 surfaces, absorption and 

the penetration depths of light into the suspension. Hence, the rate of H2 production per 

unit mass of catalyst (r2) decreases with the increase in catalyst loading
25

, as shown in 

Figure 5.4.  
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5.3.4 Effect of initial pH of formaldehyde solution 

Solution pH has a very significant influence in the photocatalytic reaction that takes place 

on TiO2/Pt surface. In aqueous slurry of TiO2 the catalyst surface is embraced with plenty 

of hydroxyl groups and thus the ionization of TiO2 is greatly affected by solution pH.  

 

 

 

Figure 5.4 Effect of catalyst concentration on the rate of hydrogen 

generation (r1); rate per unit mass of catalyst (r2). (Experimental conditions: 

[HCHO] = 0.1332 M, pH 6.7, Pt in TiO2 = 0.25 %, ISolar = 100 mW cm
-2

, N2 

saturated, pre-sonicated). 
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The point of zero charge (pzc) of pure Degussa P25 TiO2 is in between 5.6 and 6.8,
10, 26

 

which can be slightly altered by the presence of trace amount of platinum deposits as per 

Pichat.
27

 

Sun et al.
28

 proposed plausible reaction mechanism for photocatalytic oxidation of 

gaseous formaldehyde in oxygen atmosphere where formation of superoxide anion or 

hydroxyl radical was mentioned as the heart of photo-oxidation process. In our case, the 

reactions were performed in N2 atmosphere which totally eliminates the possibility of 

formation of superoxide ions. Thus, the active species would be only hydroxyl radical 

produced by the reaction of positive hole (h
+
) with water and hydroxyl groups absorbed 

on the TiO2 surface. During the photocatalytic oxidation of formaldehyde on the TiO2/Pt, 

the formaldehyde is adsorbed on the hydroxyl groups on the catalyst surface via 

hydrogen bonding as shown in Figure 5.5. In presence of solar light irradiation, the 

formaldehyde is rapidly converted to formate species. 

 

 

 

 

 

 

 

 

 

Figure 5.5 Photocatalytic reaction of formaldehyde on TiO2/Pt surface 

TiO2/Pt TiO2/Pt TiO2/Pt 
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Under acidic pH, the degradation of formaldehyde producing hydrogen was lower 

compared to natural and alkaline pH (Figure 5.6). This could be explained by the fact of 

linkage of formaldehyde on TiO2 surface via hydrogen bonding, which was favored by 

negative surface charge of TiO2 at pH  6.2 (average point of zero charge of Degussa P25 

TiO2). The above phenomenon is quite opposite compared to the hydrogen generation 

frmo formic acid, acetic acid and oxalic acid,
4
 where acidic pH is considered as the best 

pH for hydrogen generation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6. Effect of initial pH of formaldehyde solution on the rate of 

hydrogen generation. (Experimental conditions: [HCHO] = 0.1332 M, 

[TiO2/Pt(0.25 %)] = 1 g L
-1

, ISolar = 100 mW cm
-2

, N2 saturated, pre-

sonicated). 
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5.3.5 Effect of initial concentration of formaldehyde  

Formaldehyde molecule reacts with the photo-generated hole and/or hydroxyl radical and 

degrade to different compounds, Thus, the concentration of formaldehyde continuously 

changes reaction progresses. To determine the effect of initial concentration of 

formaldehyde on hydrogen generation, we have chosen 60 minutes time duration of 

experiment to compare the production of hydrogen as the change of reactant and/or 

product can be well determined during this time interval. Figure 5.7 describes the effect 

of initial formaldehyde concentration on the rate of hydrogen evolution. A significant 

improvement of hydrogen generation was observed with an increase in the concentration 

of formaldehyde. However, the hydrogen generation rate was found almost independent 

after 0.1332 M (4000 mg L
-1

) of formaldehyde concentration. Therefore, the rate varied 

as a function of formaldehyde concentration according to Langmuir-type equation as 

described below.
4, 11

 

 

       (5.1) 

 

Where, r is the initial rate of hydrogen generation, k the reaction rate constant, and K the 

adsorption constant of formaldehyde on to TiO2/Pt photocatalyst. By fitting the above 

equation with experimental data (Figure 5.7), the values obtained for k = 2.3598 x 10
-6

 

mol min
-1

 and K= 17.73 M
-1

. 
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5.3.6  Effect of light intensity 

The main objective behind the optimization of different parameters such as photocatalyst 

dose, initial concentration of formaldehyde and/or the amount of noble metal (Pt) were to 

enhance the effective utilization of light energy. However, if the effect of light intensity 

on hydrogen is not wisely selected, a large portion of photons will be misused to heat up 

the system. This will also make our parameter optimization study ineffective. When 

higher light intensity causes energy waste instead of enhanced hydrogen generation, it 

would result in meaningless increase of cost. 

We have studied the effect of solar light intensity in the range of 30 mW cm
-2

 to 100 mW 

cm
-2

. The reaction rate constant k, followed power-law dependence on light intensities. 

Figure 5.7. Effect of initial concentration of formaldehyde solution on 

the rate of hydrogen generation (both experimental rate and 

Langmuir type model rate). (Experimental conditions: pH 6.7-

7.2,[TiO2/Pt]=1 g L
-1

, ISolar =100 mW cm
-2

, N2 saturated, pre-sonicated). 
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The hydrogen generation rate constants were evaluated as a function of solar light 

intensity, keeping all other parameters fixed. In solar radiation, the data fited well with 

the power law model (k(I)=aI
b
) with a= 1.4266x10

-6
, b=1.42 and R

2
 =0.999 (Figure 5.8). 

 

 

 

 

 

 

 

 

 

 

 

 

5.4 Reaction Mechanism 

The major oxidative and reductive processes in the photodegradation of formaldehyde in 

aerated system with TiO2 can be written as follows:
12

 

Step 1. 

 

 
 

 

 

Figure 5.8 Effect of light intensity on the rate of hydrogen generation. 

(Experimental conditions: [HCHO] = 0.1332 M, pH 6.7, [TiO2/Pt (0.25 

%)] = 1 g L
-1

, ISolar = 100 mW cm
-2

, N2 saturated, pre-sonicated). 

k(I)=a I
b
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Step 2. 
 
 
 

 
 

 

 

Step 3. 

 

 

 

 

 

 
 

In absence of -oxygen (nitrogen atmosphere) the reaction mechanism slightly differs with 

TiO2/Pt photocatalyst.
29

 

Step 1. 

 

 

 

 

Step 2. 
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Step 3. 

 

 

 

 

5.5 Apparent Quantum Yield 

Apparent quantum yield can be calculated using the formula stated by Shimidzu et al.
30

 

The quantum yield () will certainly be higher than the apparent quantum yield, as the 

adsorbed photons are a certain fraction of the incident photons. 

 

            

(5.2) 

Considering full solar spectrum (300-650 nm) the apparent quantum yield was 1.24 %. 

However, TiO2/Pt photocatalyst utilized only UV light range for photocatalytic reaction. 

Therefore, we recalculated the apparent quantum yield with only UV radiation portion 

(300-388) and found much higher apparent quantum yield (10.91 %). 
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5.6 Conclusions 

Results of the present study show that aqueous solution of formaldehyde under unaerated 

conditions produce hydrogen with the use of TiO2/Pt photocatalyst in solar radiation. 

With the incorporation of platinum metal onto TiO2 the band gap energy lowered by 0.09 

eV, but no photocatalytic activity was observed for hydrogen generation in visible light 

( > 420 nm). Formaldehyde in solution acts as an electron donor and h
+
/O2 scavenger, 

thereby suppresses the e
-
/h

+
 recombination and H2/O2 backward reaction. Therefore, 

degradation of formaldehyde and hydrogen production takes place simultaneously with 

high apparent quantum yield (10.91 %). Photocatalytic hydrogen generation from 

formaldehyde was very much influenced by solution pH, platinum content (wt%) on 

TiO2, catalyst concentration, light intensity, and initial formaldehyde concentration. The 

optimum conditions achieved for this study are given as follows: i) Isolar - 1sun, ii) 

platinum content – 0.25 wt%, iii) catalyst concentration – 1 g L
-1

, and iv) pH- neutral to 

alkaline. The proposed Langmuir-type model fits well with the experimental data for 

hydrogen generation at different initial concentration of formaldehyde. 
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Chapter 6  

6 Visible-Solar-Light-Driven Photocatalytic Degradation of 
Phenol with Dye-Sensitized TiO2: Parametric and 
Kinetic Study 

6.1 Introduction 

Solar energy is an abundant resource; the sun generates its energy through a 

thermonuclear process that converts hydrogen to helium every second. The process 

creates heat and electromagnetic radiation including visible, infrared, and ultraviolet 

radiation. Earth receives approximately 1.5 × 10
18

 kWh per year from solar energy, which 

is close to 28000 times the total annual world energy consumption.
1
  

Heterogeneous photocatalysis is a technology in which a photoexcitable solid catalyst is 

continuously illuminated with light with an energy greater than the band gap of the 

semiconductor and electron/hole (e
−
/h

+
) pairs are generated inside the semiconductor.

2,3
 If 

an e
−
/h

+
 pair does not recombine, it can migrate to the surface of the solid catalyst and 

participate in the degradation (oxidation or reduction) of pollutants.
4 

Phenol and phenolic compounds are toxic pollutants that can be found mainly in wastes 

from petroleum manufacture, coke ovens, paint stripping operations, and so on.
5
 

Photocatalytic degradation of phenol with the UV/TiO2 system has been reported by 

several authors.
4,6−8

  

In the solar spectrum, the range of wavelengths is broad, spanning from 250 to 2500 nm, 

but only 3.5−8 % of it is in the UV range.
1
 Hence, TiO2 can make use of only a small 

fraction of solar light for such photodegradation. This problem can be solved only by 

extending the light absorption capacity of TiO2 catalysts.  

Semiconductor photocatalysts can be modified to expand their photoresponse to the 

visible region for phenol degradation in several ways, including doping with 

cations/anions
9−15

 or coupling with another small-band-gap semiconductor.
16

 Most of 
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these methods, however, are quite expensive and time-consuming. Dye sensitization, on 

the other hand, is a new and simpler method that can extend TiO2 activation to 

wavelengths longer than those corresponding to its band gap.  

The dye-sensitization technique has been reported as an innovative technology that could 

play an important role in developing efficient and cost-effective semiconductor 

photocatalyst in the near future.
17

 Solar cell applications based on dye-sensitized TiO2 are 

among the most popular and successful methods to date
18−21 

and have also been applied 

to visible light-induced detoxification of pollutants.
22

 Dye sensitization begins with 

electron injection from the excited dye into the  conduction band (CB) of TiO2, followed 

by interfacial electron transfer.
23−27

  

In a dye-sensitized system, the main problem is the oxidation of adsorbed dye molecules 

with HO

 radicals.

28,29
 Inclusion of an additional electron donor might be helpful for the 

dye regeneration process, as reported for the dye-sensitized hydrogen generation 

process.
30

  

Recombination of charge carriers (e
−
/dye

+
) is also responsible for low dye-sensitization 

activity, as it reduces the electron transfer to the conduction band of the semiconductor. 

Many authors have reported increased photocatalytic activities for metal-loaded titanium 

dioxide for the photodegradation of organic compounds.
31−33

 Moreover, the presence of 

trace amounts of platinum metal was found to be beneficial in dye-sensitized hydrogen 

generation, as platinum reduces the recombination of cation/anion pairs.
30

  

Different dyes (thionine, eosin Y, rhodamine B, methylene blue, nile blue A, and 

safranine O) have been studied with TiO2 catalysts for the degradation of pollutants under 

visible light.
34,35

 Eosin Y dye has shown very good potential for the degradation of 

phenolic compounds.
28

  

In this work, we employed eosin Y-sensitized platinum loaded TiO2 catalyst with 

triethanolamine electron donor for the degradation of phenol under visible solar light. 

This photocatalytic system is successful for hydrogen generation under nitrogen 
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atmosphere but has not yet been applied for phenol degradation under aerated (or O2) 

systems. According to our knowledge, no study has yet been performed with such a 

system for phenol degradation under visible solar light. There is also inadequate 

information on the kinetics of this system.  

The main objective of this investigation was to understand the dye-sensitization 

mechanism for phenol degradation under visible solar light. Parametric studies of (i) 

platinum cocatalyst, (ii) triehanolamine as electron donor, (iii) solution pH, (iv) light 

intensity, and (v) catalyst amount, as well as reaction kinetics for phenol 

photodegradation, were investigated. 

6.2 Experimental Section 

6.2.1 Materials 

All reagents were of analytical grade and were used without further treatment. Aeroxide 

TiO2 P25 (80 %:20 % anatase/rutile) from Evonik Degussa Corporation was used as the 

catalyst. Eosin Y dye (99.0 %, Sigma-Aldrich Canada Ltd.) was used as the sensitizer for 

TiO2; triehanolamine (98.0 %) and hydrogen hexachloroplatinate (IV) solution (8 wt %) 

were also purchased from Sigma-Aldrich Canada Ltd. Ultrapure water (18 MΩ) was 

prepared from an in-house EASYPure RODI system (Thermo Scientific, Ontario, 

Canada). Phenol (99.0 %) was purchased from Sigma-Aldrich Canada Ltd. and used to 

make standards and aqueous solutions for the photocatalytic reactions. 

6.2.2 Instruments 

Simulated air mass (AM) 1.5 solar light was generated using a solar simulator (model 

SS1KW, Sciencetech, Ontario, Canada, with a 1000-W Xe arc lamp and an AM 1.5G 

filter). It produced identical simulated 1-sun irradiance of 100 mW cm
-2

 at full power that 

matched the global solar spectrum at sea level. Spectral analysis of their radiation from 

the solar simulator with a StellarNet EPP2000C-25LT16 spectrometer for UV−vis-NIR 

spectroscopy showed 6.5 % UV, 64.5 % visible, and the rest NIR light.  
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The quantification analyses of phenol and aromatic components were performed in a 

Shimadzu high-performance liquid chromatography (HPLC) prominence LC 20AB 

instrument with an SIL-20AC.HT auto sampler and a CTO-0AC column oven with an 

SPD-M20A diode array detector. An Altima HP C18 column (5 μm × 150 mm × 4.6 mm, 

lot 50198212) and a mobile phase of methanol and water (MiliQ water) 67/33% v/v at a 

flow rate of 0.5 ml min
-1

 were used. The temperature of the column oven was kept at 

25°C throughout the analysis. The wavelengths of analyses for phenol and reaction 

intermediates catechol [para-dihydroxybenzene (p-DHB)], hydroquinone (o-DHB), and 

1,4-benzoquinone (1,4-BQ) were done at 270, 290, 275, and 255 nm, respectively. The 

injection volume for all samples was 5 μL. An integrating sphere was utilized to measure 

the diffuse reflectance absorption spectra of the catalyst. pH measurements were carried 

out using a pH meter (780-Metrohm Ltd.). 

6.2.3 Synthesis of eosin Y-sensitized TiO2/Pt photocatalyst 

Platinum was loaded on TiO2 catalyst by a solar photo deposition method. TiO2 powder 

was stirred in an aqueous ethanol solution (ethanol/water = 10/90 by volume) with 

hexachloroplatinate (IV) solution (H2PtCl6), the amount of which corresponded to 

platinum loadings of 0.25, 0.5, 0.75, and 1 wt %. Then, the solution was irradiated under 

the solar simulator (at 1 sun) for 3 h. Photoreduction of H2PtCl6 (Pt
IV

) occurred, and 

highly dispersed Pt particles were deposited onthe TiO2 surface.
36

 After being filtered and 

washed with water, the powder was dried at 150°C for 2 h and milled in a mortar. 

Eosin Y dye (EY) was adsorbed onto TiO2/Pt by stirring 0.5 g of the catalyst powder in a 

mixture of EY and anhydrous ethanol solvent (4.6 × 10
−4

 M) at room temperature for 12 

h in the dark. This was followed by filtration, washing with anhydrous ethanol, and 

drying at 100 °C for 2 h. The obtained sample was kept in the dark to avoid catalyst 

deactivation. The EY-sensitized TiO2/Pt photocatalyst showed a broad absorption from 

410 to 640 nm.
30
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6.2.4 Photocatalytic phenol degradation 

Photocatalytic reactions were carried out in a Pyrex glass reactor (600 mL) with a flat 

window at the top for illumination. Figure 6.1 shows a schematic diagram of the 

photocatalytic reactor (11 cm diameter, 6.3 cm height) used in this investigation. The 

catalyst powder (EY−TiO2/Pt) was suspended in 150 mL of phenol and trietanolamine 

(TEOA) solution (0−0.5 M) after pH adjustment with 1:1 HCl. The catalyst suspension 

was dispersed for 5 min in an ultrasonic bath, and then the system was kept in the dark 

for 60 min to achieve adsorption equilibrium. A sample of about 3 mL was taken after 

filtration with 0.2-μm filter to determine its initial concentration prior to illumination. All 

experiments were performed by continuously bubbling air through the liquid phase to 

cover the catalyst surface with oxygen and keep it constant during the oxidation process. 

Continuous stirring was performed using a magnetic stirrer. The photocatalyst was 

irradiated from the top with a solar simulator. The light source was equipped with AM 

1.5G filter, as well as a 420-nm cutoff filter (Omega Optical) to remove all of the UV 

light. The water layer above the catalyst itself acted as an IRfilter. Liquid samples were 

collected at regular intervals and analyzed by HPLC for residual phenol, hydroquinone, 

catechol, and 1,4-benzoquinone. 

 

 

 

 

 

 

 
Figure 6.1 Photo-reactor for phenol degradation 
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6.3 Catalyst Characterization 

6.3.1 Brunauer−Emmett−Teller (BET) method 

As an approach to identify the surface area, pore size and the extent of porosity, a 

nitrogen adsorption−desorption isotherm was recorded. Figure 6.2 shows the 

representative Barrett−Joyner−Halenda (BJH) pore size distribution and 

adsorption−desorption isotherm plot (inset) of the EY-sensitized Pt-loaded TiO2 catalyst. 

The adsorption isotherm has a hysteresis loop at high N2 relative pressure (P/P0 > 0.85). 

The pore size distribution plot (dV/dD versus pore diameter) shows an average pore size 

of 1.7 nm. This implies the presence of a microporous structure. The determined BET 

surface area was found to be 55 m
2
 g

-1
, which is comparable to that of P25 TiO2 (50 m

2
 g

-

1
). This indicates that platinum loading and dye adsorption did not significantly affect the 

catalyst total surface area. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2 Isotherm plot (BJH pore size distribution) 
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6.3.2  X-ray diffraction (XRD) 

Figure 6.3 shows the XRD pattern of the EY−TiO2/Pt sample at 0.5 wt % platinum 

loading. The XRD pattern was similar to the standard crystal structure of TiO2, with no 

diffraction peaks associated with Pt metal in the EY−TiO2/Pt sample. Hence, the metal 

sites are likely to be below the visibility limit of the X-ray analysis.
37

 This suggests that 

the platinum loading process did not produce separate impurity phases and that the Pt 

nanoparticles can be considered as fully dispersed in the TiO2 lattice. According to Choi 

et al.,
38

 Ti (IV) ions can be substituted by Pt (IV) ions during platinum loading on to TiO2 

because of the similarity of their ionic radius [Pt (IV), 0.765 Å; Ti (IV), 0.745 Å]. 

However, Pt (II) ions could possibly be sited in the interstitial positions of the lattice 

instead of the Ti sites because of the relatively large size difference between the Pt (II) 

(0.94 Å) and Ti (IV) ions. 

 

 

 

 

 

 

 

 

 

 

Figure 6.3 XRD image for TiO2 and EY-TiO2/Pt catalysts. 
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6.3.3 Energy-dispersive X-ray (EDX) and Transmission and 
electron microscopy (TEM) 

EDX analysis (Figure 6.4 (a)) revealed the presence of Pt metal in the EY-sensitized TiO2 

catalyst. The TEM (Figure 6.4 (b)) image clearly shows that the platinum nanoclusters 

are highly dispersed in the framework. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4 (a) EDX image for EY-TiO2/Pt photocatalysts; (b) TEM image for EY-

TiO2/Pt photocatalysts. 

(a) (b) 
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6.3.4 Diffuse reflectance spectra (DRS) 

Diffuse reflectance spectra (Figure 6.5) provide an indication of visible light activity of 

the EY-sensitized TiO2/Pt catalyst. As can be seen, a broad spectrum of 450−600 nm is 

present. The catalyst has a band gap of 2.2 eV (average λ = 550 nm). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5 DRS image for TiO2 and EY-TiO2/Pt photocatalysts. 
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6.4 Reaction Mechanism and Kinetic Rate Expression 

6.4.1 Reaction mechanism 

The degradation mechanism of phenol (PhOH) and its derivatives under UV light is 

described in the literature,
7
 where hydroxyl radical (OH


) was reported to the main 

oxidizing species. The mechanism is given by the reactions. 

 

 

 

 

 

 

 

Dye-sensitized photodegradation of phenol (PhOH) under only visible light is initiated 

through excitation of the dye molecule from its ground state to the excited state, which 

finally facilitates electron transfer to the conduction band of the semiconductor (TiO2). 

The oxidized dye molecule (dye
+
) can interact with the pollutant (phenol), water, or an 

electron donor (e.g., TEOA) to return back to its ground state. A possible degradation 

reaction mechanism is described below.
35,39
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Because solar light contains both UV and visible radiation, the overall phenol 

degradation mechanism will be influenced by both types of radiation.
39
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The overall phenol degradation scheme is described in Figure 6.6.
40

 In our case, we 

recognized superoxide ion as the active species because negligible phenol degradation 

was achieved under nitrogen atmosphere compared to degradation under oxygen (air) 

atmosphere. The formation of superoxide ion was also supported by the work of Vinu et 

al.
28

 In our experiments, only catechol (p-DHB) and hydroquinone (o-DHB) were 

detected as intermediates, as indicated in Figure 6.7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6 Photo-degradation scheme of phenol under UV and visible photons. 
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6.4.2 Reaction kinetics 

It has been demonstrated that bare TiO2 catalyst is activated by light (λ < 380 nm) and 

photodegradation of organic compounds occurs in presence of water saturated with 

dissolved oxygen. The primary step in UV photodegradation is the formation of e
−
/h

+
 

pairs within TiO2 particles, whereas in dye-sensitized photodegradation under visible 

solar radiation, the dye molecule is first activated by visible light (λ > 420 nm) and then 

injects electrons into theTiO2 conduction band.
34 

The kinetics of phenol degradation on 

TiO2 can be described by a Langmuir−Hinshelwood equation as follows
7
: 
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Figure 6.7 Residual concentration vs irradiation time plot for phenol and intermediates. 
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Where, KA is the adsorption equilibrium constant, kr is the kinetic rate constant, I is the 

light intensity, β is a constant, V is the volume of the reaction mixture, W is the mass of 

catalyst, and CPh is the phenol concentration. The superscript 0 indicates the initial 

concentration. If we define the apparent kinetic constant as  

 

        (6.2) 

 

Then, combining equation (6.1) and (6.2) gives 

      (6.3) 

 

 

Equation (6.3) can be used to predict the kinetic parameters of phenol photodegradation 

at different irradiation intensities. Numerical details are discussed in section 6.6. 

6.5 Parametric Study 

6.5.1 Effect of mass of TiO2 

The effect of the amount of EY−TiO2/Pt catalyst on the removal of phenol was found to 

be significant. This finding confirms the positive influence of an increased number of 

photocatalyst active sites on the degradation kinetics. The variation in the degradation 

rate constant of phenol with the concentration of EY−TiO2/Pt was determined for the 

catalyst concentration range of 0.1−2.2 g L
-1

, as shown in Figure 6.8. The rate constant 

was found to increase with increasing concentration of catalyst and to approach a limiting 

value at high concentration. With an increase in catalyst mass, the total active surface 

area for light absorption increases, thereby increasing the number of hydroxyl and/or 

superoxide radicals. The limiting value mainly results from the following two factors: (i) 

aggregation of catalyst particles at high concentration causing a decrease in the number 

of surface active sites and (ii) an increase in opacity and light scattering of EY−TiO2/Pt 
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particles at high concentration leading to a decrease in the passage of irradiation through 

the sample. This is consistent with the results of other investigators.
7
  

In this study, the initial rate was found to be proportional to the catalyst mass. However, 

above a certain catalyst concentration, the reaction rate became constant and independent 

of EY−TiO2/Pt. This limit corresponds to the maximum amount of catalyst in which all 

of the particles and the entire surface exposed were completely illuminated.
7,41,42

 In our 

experiments, we used 0.8 g L
-1

 as the optimum catalyst dosage for phenol degradation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.8 Initial phenol degradation rate vs catalyst dosage. 
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6.5.2 Effect of Pt content on TiO2 

Noble-metal clusters onTiO2 mainly accelerate the formation of superoxide anion (O2
●−

) 

and also reduce the recombination of e
−
/dye

+
 pairs by scavenging the electrons in the 

conduction band of TiO2.
37 

Because platinum has the highest work function among 

metals, it is used extensively as a cocatalyst.
43

 We found a significant effect of the Pt 

loading on phenol degradation. EY-sensitized TiO2 without Pt metal can degrade phenol 

under visible light, but with the incorporation of 0.5 % Pt on TiO2, the degradation rate 

increases from 67 % to 100 % after 90 min of irradiation. Increasing the Pt content on the 

TiO2 surface enhances the rate of photocatalytic degradation, as shown in Figure 6.9. In 

our experiments, we used different Pt contents between 0 % and 1.0 % and found 

improved degradation up to 0.5 % Pt content. Based on this finding, we used a 0.5 % Pt 

concentration as the optimum dose throughout this investigation. High metal loading can 

have a negative effect because it can behave as an e
−
/h

+
 recombination center, as stated 

by Ni et al.
17

 Accelerated e
−
/h

+
 recombination by few transition metal loading was also 

reported by Ikeda et al.
44

 Another reason might be that a high Pt dose could result in a 

decrease in phenol molecule adsorption sites, as well as an increase in the scattering of 

light and a decrease in its absorption by TiO2−(EY)s.
43 
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6.5.3 Effect of initial triethanolamine (TEOA) concentration 

The role of TEOA can be viewed in light of its dual function because it could quench the 

oxidized form of the dye (EY
+
) or extend its lifetime in the photosensitized system, 

thereby providing efficient phenol degradation.
45

 We performed our experiments from 0 

to 0.5 M TEOA concentration and found an optimum dose of 0.2 M for phenol 

degradation at pH 7.0, as shown in Figure 6.10. TEOA solution itself is alkaline in nature 

and also can act as a buffer solution during phenol degradation. The oxidized dye species 

(EY
+
) can interact with both TEOA and phenol (or PhO

−
), and thus, a high TEOA 

concentration could slightly reduce the phenol degradation rate. The electron donor 

(TEOA) is used up through an irreversible oxidation that manifests itself in gradual 

darkening of the solution with time  

Figure 6.9 Residual phenol vs irradiation time plot at different 

platinum (wt %) on TiO2. 
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(EtOH)3 – N: + EY
+
 = (EtOH)3 – N

+
 + EY 

(EtOH)3 – N
+
 = (EtOH)2 – N – CH2-CH – OH + H

+  
(acid base equilibrium) 

TEOA exists more in a protonated form at pH 5 as compared to pH 9, where it is more 

deprotonated, and both forms exist at pH 7. The protonated form is a worse electron 

donor than the neutral form. Deprotonation of TEOA
+
 is a base-catalyzed reaction; its 

rate depends not only on the pH but also on the concentration of TEOA, which itself can 

act as a proton acceptor.
46

 

 

 

 

 

 

 

 

 

 

 

6.5.4 Effect of initial concentration of phenol 

Initial pollutant concentration is crucial parameter in any water treatment process, and it 

is necessary to investigate its effect on the process performance. In this investigation, 

different concentration profiles were observed during the degradation of different starting 

Figure 6.10 Residual phenol vs irradiation time plot at different 

concentration of TEOA. 
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initial phenol concentrations. Between 54% and 100% of the phenol was degraded in 3 h 

by the EY modified TiO2/Pt photocatalyst for initial phenol concentrations between 20 

and 100 mg L
-1 

(ppm), at a pH of 7.0 and a light intensity of 100 mW cm
-2

 (Figure 6.11). 

After 1 h, 98%, 78%, 56%, and 31% phenol degradations were achieved for initial phenol 

concentrations of 20, 40, 60, and 100 mg L
-1

, respectively. The time required afterward 

for the complete degradation of the aqueous phenol solution increased with increasing 

initial phenol concentration. This result can be explained by the fact that, at high initial 

phenol concentration, the quantity of phenol adsorbed on the EY−TiO2/Pt surface 

increases, which can suppress HO
•
 radical formation through the decrease in the active 

sites for the adsorption of superoxide ions. Moreover, a high phenol concentration in the 

aqueous phase reduces the catalyst illumination and, thereby, photon absorption by the 

catalyst, resulting in a considerable decrease in phenol degradation. The apparent rate 

constant kapp (min
−1

) decreased with increasing initial concentration of phenol when the 

other parameters were kept unchanged. Therefore, the degradation rate was found to be 

pseudo-first-order with respect to the phenol concentration within the experimental range. 

 

 

 

 

 

 

 

 

Figure 6.11 Initial phenol conc. vs irradiation time plot. 
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6.5.5 Effect of pH 

In heterogeneous photocatalysis, if the photodegradation takes place on a catalyst surface, 

then pH plays a major role. The point of zero charge (pzc) for TiO2 is about 6.8 at zero 

surface charge.
7
 Hence, at alkaline pH (pH 9.0), the TiO2 surface is negatively charged, 

and at acidic pH (pH 5.0), the surface is positively charged. Therefore, the pH value has a 

significant effect on the adsorption−desorption properties at the EY−TiO2/Pt surface 

 

 

 

 

 

 

There was a drop in pH value from 7.0 to 6.3 during the 3 h experiment, which indicates 

the formation of acidic compounds during the reaction. However, we did not analyze for 

those acidic intermediates in this study. The acidic intermediates seem to be the most 

difficult compounds to be mineralized according to Mantzavinos et al.
47

 Other 

intermediates such as aromatics (1,4-benzoquinone, hydroquinone, and catechol) that 

result from the reaction of hydroxyl radicals with phenol at the initial stage of the 

reaction undergo further photocatalytic oxidation to yield highly polar products such as 

aldehyde and carboxylic acid. We identified hydroquinone and catechol as intermediates 

(Figure 6.7) but detected no 1,4-benzoquinone. The aromatic intermediates disappeared 

some minutes after the disappearance of phenol. After reaching a maximum, the acids 

decreased with increasing reaction time, and at the end of the degradation process, phenol 

was completely mineralized to CO2 and H2O.
48

 

The effect of pH on the degradation of phenol is shown in Figure 6.12. The results 

indicate that pH has a significant effect at both low and high pH values where 

photodegradation rates are quite low. At pH 5.0, only 28 % phenol degradation was 

observed, which was quite similar to that at pH 9 (31 % degradation). At pH 9.0, 

EY−TiO2/Pt coagulates, and some of the dye leaches into the solution, imparting a pink 
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color to the solution. The optimum pH value for the degradation is 7.0, which gave 100 

% phenol degradation after 2 h under similar experimental conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.5.6 Effect of light intensity 

The incident light intensity is expected to be one of the rate-controlling parameters. To 

illustrate this effect, experiments were carried out at four different levels of incident light 

intensity, and the degradation rates at different times are reported in Figure 6.13. Previous 

studies on UV photodegradation have shown that the reaction rate increases with the 

square root of intensity at high intensity levels when mass-transfer limitations are not 

reached.
7
 At sufficiently low levels of illumination (catalyst-dependent), on the other 

hand, the degradation rate is first-order in intensity. 

 

 

Figure 6.12 Residual phenol vs irradiation time plot at different 

solution pH. 
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6.6 Phenol Degradation Kinetics 

The photocatalytic degradation kinetics of many organic substrates have been analyzed in 

terms of Langmuir−Hinshelwood (L−H) rate equations.
7,49,50

 Mostly in the literature, the 

L−H equation has been applied to describe the initial rate of degradation at time zero as a 

function of the initial substrate concentration. Less often, the L−H rate equation has been 

combined with the material, radiation, and momentum balance equations of the reactor to 

yield the dynamic or steady state behavior of the system.
51−53

 An accurate degradation 

kinetic expression is very useful for the design, scale-up, and optimization of 

photocatalytic reactors and, therefore, for the development of photocatalytic degradation 

technology for industrial water treatment. In this study, a series of experiments was 

carried out for phenol degradation at pH 7.0, 40 ppm phenol concentration, and 0.8 g L
-1

 

EY−TiO2/Pt loading. As mentioned in sections 5.2 and 5.3, the optimum platinum 

Figure 6.13 Phenol photo-degradation profiles at different 

irradiation intensities for both experimental and model plots. 
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content and TEOA concentration were determined to be 0.5 % and 0.2 M, respectively. 

The light intensity was varied from 25 to 100 mW cm
-2

. 

Mechanistic studies of photocatalytic degradation of phenol and its derivatives suggest a 

kinetic rate equation in the form of a modified L−H rate equation, given by the 

expression: 

 

 

   (6.4)     

 

Based on a parameter estimation using the experimental data, the values of β, Kapp, and 

KA were obtained for the degradation of phenol at different irradiation intensities. 

Kinetics constants and their correlation coefficients are reported in Tables 6.1 and 6.2, 

respectively. 

Table 6.1 Kinetics constant values 

Constant Value Unit 

kapp 8.024 × 10
-6

 min
-1

 

KA 0.134 ppm
-1

 

β 2.147 - 

error 93.85  

r
2
 0.998  

 

Table 6.2 Correlation coefficient values 

 kapp KA β 

kapp 1 0.9772 0.1101 

KA 0.9772 1 0.1259 

β 0.1101 0.1259 1 

 

The goodness of the model fit with the experimental data is reported in Figure 6.13. The 

kinetic equation can predict the concentration of phenol photodegradation during the 

entire degradation process and at different irradiation intensities at a pH value of 7.0 and 

an EY− TiO2/Pt concentration of 0.8 g L
-1

. Therefore, this model equation is meaningful. 

Table 3 presents a comparison between experimental phenol concentrations and the 
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model predictions at 100 mW cm
-2

 light intensity. Good agreement between the 

experimental and predicted values was found for all cases. 

 

Table 6.3 Comparison between experimental phenol concentration and model prediction values at 

100 mWcm
-2

 

Irradiation time 

(min) 

[Phenol] 

(mg L
-1

) 

[Phenol] model 

(mg L
-1

) 
Error 

0 40.8393 40.8393 0 

30 17.2168 19.6152 5.7522 

60 8.9238 9.4212 0.2474 

90 2.7224 4.5250 3.2494 

120 0 2.1734 4.7235 

150 0 1.0439 1.0896 

180 0 0.5014 0.2513 

 ∑error 15.3136 
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6.7 Conclusions 

Dye-sensitized photocatalysis was shown to be an efficient method for phenol 

degradation under visible solar light. The process involves electron transfer to the 

conduction band of TiO2 initiated by eosin Y dye sensitization under visible solar light. 

Eosin Y dye-sensitized TiO2/Pt exhibited good visible light activity, as the band-gap 

energy dropped upon dye sensitization. The photogenerated electrons have a high 

oxidation potential and produce superoxide (O2
−

) ions followed by HO
•
, which 

subsequently proceeds to the complete mineralization of phenol and other intermediates. 

Several reaction parameters were studied, and it was found that the catalyst dosage, 

solution pH, sacrificial electron-donor concentration, Pt content (wt %) on TiO2, light 

intensity, and initial concentration of phenol mainly control the rate of phenol 

degradation. In this work, the optimum conditions for achieving maximum efficiency 

were established. A parametric study revealed that a high visible solar light intensity 

(80−100 mW cm
-2

), moderate catalyst loading (0.8−1.0 g L
-1

), low platinum content 

(0.25−0.5 wt %) on TiO2, moderate sacrificial electron-donor (TEOA) concentration (0.2 

M), neutral pH (7.0), and low initial phenol concentration advanced the photodegradation 

of phenol. At optimum conditions, 100 % phenol degradation was achieved in less than 2 

h. Platinum loading and dye adsorption did not significantly affect the catalyst surface 

area, as is evident from BET data. With 0.5 % platinum incorporation on TiO2, 

approximately 33 % improvement in photodegradation was achieved, which 

demonstrates the importance of the noble metal in the dye-sensitized photodegradation of 

phenol. The proposed L−H kinetic model is able to fit the experimental data for phenol 

degradation on EY−TiO2/Pt at different irradiation intensities. Experimental results were 

obtained at optimum conditions of catalyst loading, sacrificial electron-donor 

concentration, pH, and platinum content (wt %). Parameter optimization allowed for the 

application of a kinetic constant and absorption constant for a wide range of irradiation 

intensities. 
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Chapter 7  

7 Conclusions and Recommendations 

This Ph.D. dissertation illustrates a research study on the application of solar and visible 

light photocatalysis for sacrificial hydrogen generation and water detoxification with 

chemically modified TiO2. Dye sensitization technique is applied to modify the 

photocatalytic activity of TiO2 in the solar and visible light spectrum. Reaction kinetics, 

parametric studies and well as reaction mechanism are performed for sacrificial hydrogen 

generation and water detoxification. The basic aspiration is to recognize the applicability 

of TiO2 based photocatalysts under solar light that is abundant and available free of cost.  

The potential of eosin Y-sensitized platinum loaded TiO2 photocatalyst was established 

for sacrificial hydrogen generation as well as phenol degradation in presence of 

triethanolamine as electron donor. A solar simulator was used as light source which 

provided UV, visible and complete solar spectra with the help of different optical filters. 

Several analytical instruments such as Gas Chromatography (equipped with a TCD), 

High Performance Liquid Chromatography (HPLC), UV-Vis-NIR spectrophotometer, 

QuantaMaster
TM

 40, HACH spectrophotometer, StellarNet EPP2000C-25LT16 

spectrometer, were employed for quantification of H2, analysis of phenol and its 

intermediate, analysis of eosin Y and triethanolamine, photoluminescence measurement, 

quantification of formaldehyde, and for measuring photon fluxes, respectively.  

7.1 Major Contributions 

The following are the significant contributions of this Ph.D. research. 

 Most of the studies were done at low intensity range with 300-400 W 

lamps. Effect of different light intensities on hydrogen generation was 

verified in this report, which was a necessary step for utilization of natural 

solar light. Apparent quantum yields at different light intensities were also 

evaluated. Individual effect of UV and visible spectra were determined for 
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hydrogen generation, and the correlation between UV, visible, and solar 

light irradiation for hydrogen generation was also evaluated.  

 Photoluminescence (PL) spectroscopy was used to verify the electron/hole 

recombination process, which was correlated with UV, visible and solar 

light at different light intensities. 

 With triethanolamine as electron donor, formaldehyde was detected in 

solar and visible light. The hydrogen generation process in solar light was 

a combination of band gap excitation and dye sensitization that was 

confirmed by estimating residual concentration of formaldehyde. 

 Detailed study was performed with formaldehyde for photocatalytic 

hydrogen generation. The heterogeneous rate of hydrogen generation was 

well fitted with a Langmuir type model. 

 To overcome the mass transfer limitation, a flow reactor was designed 

which utilized a peristaltic pump with controller to generate both uni- and 

bi-directional flows. Effects of sonication, flow rate and flow direction on 

hydrogen generation were established. 

 Solar light based platinum photo-deposition method was introduced for 

the first time, which should saved energy and cost. This method showed 

excellent efficiency for both H2 generation and phenol degradation. 

 Statistical analysis was performed using design of experiment for 

hydrogen generation using eosin Y-sensitized TiO2/Pt. This method 

provided a quantitative assessment of the principal factors and effects that 

influenced hydrogen generation performance. 

 Phenol degradation was studied for the first time with this new 

photocatalyst in presence of triethanolamine. The photogenerated 

electrons have a high oxidation potential and produce superoxide (O2
−

) 
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ions followed by HO

, which subsequently proceeds to complete 

degradation of phenol and other intermediates. 

7.2 Other Key Contributions  

 Diffuse reflectance spectra supported the visible light activity of eosin Y –

sensitized Pt loaded TiO2. X-ray diffraction spectra confirmed that TiO2 

was mostly in anatase form, and with Pt loading the surface area did not 

chang. FTIR results suggested the presence of ester like linkage with eosin 

Y and TiO2 surface in the photocatalyst. EDX results reported the 

presence of Pt metal on TiO2 surface.  

 Based on factorial design analysis, solution pH and light irradiation time 

showed positive effects on hydrogen generation whereas Pt content (wt %) 

showed negative effect on hydrogen generation. Eosin Y and 

triethanolamine concentration have shown moderate positive effects on 

hydrogen generation although their interaction effect was insignificant 

compared to other parameters. 

 Neutral pH, 0.25 wt % of Pt on TiO2, photocatalyst mass of 1-1.3 g L
-1

 

were achieved as optimum levels for sacrificial hydrogen generation in 

solar and visible light. Hydrogen generation rate varied as a function of 

triethanolamine concentration according to Langmuir-type isotherm. 

 In solar light, hydrogen generation rate increased by 1.4 and 1.2 times by 

sensitization with eosin Y on TiO2 and TiO2/Pt respectively. An additional 

improvement of 4.7 and 4.1 times in hydrogen generation was achieved by 

Pt loading on both TiO2 and EY-TiO2 respectively. With the incorporation 

of Pt a huge improvement in hydrogen generation rate was achieved 

compared to eosin Y-sensitized TiO2 alone in visible light. 
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 Eosin Y to TiO2/Pt mass ratio was shown to be a key parameter for 

hydrogen generation. Optimum mass ratios (EY : TiO2/Pt) of 1:10 and 

1:13.3 were obtained in visible and solar light respectively. 

 The reaction mechanisms for sacrificial hydrogen generation in solar and 

visible light were quite different. In visible light, dye sensitization 

mechanism worked whereas in solar light both band gap excitation and 

dye sensitization mechanism operated simultaneously. In both cases 

formaldehyde was detected as an intermediate product. In solar light, 

formaldehyde was oxidized by h
+
/OH


 to produce hydrogen, whereas in 

visible light formaldehyde was not oxidized any further. 

 Recombination of e
-
/h

+
 and/or e

-
/oxidized eosin Y (EY

+
) were determined 

through photoluminescence (PL) study, which illustrated the higher 

recombination rates in case of visible light compared to that of solar and 

UV light. The recombination rate increased with light intensity upon 

which depend the apparent quantum yields (QY). With the increase of 

light intensity QY was gradually dropped, which was also supported by 

the PL spectra. 

 A pulsating flow reactor was used for the hydrodynamic study of solar 

hydrogen generation. It confirmed the positive effect of pre-sonication, 

increased flow rate and bi-directional mixing mode in solar hydrogen 

generation.  

 Photocatalytic hydrogen generation from formaldehyde was affected by 

solution pH, Pt content (wt %) on TiO2, catalyst concentration, light 

intensity, and initial formaldehyde concentration. The optimum conditions 

were achieved as follows: i) Isolar - 1sun (100 mW cm
-2

), ii) platinum 

content – 0.25 wt%, iii) catalyst concentration – 1 g L
-1

, and iv) pH- 

neutral to alkaline. The proposed Langmuir-type model fitted well with 
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the experimental data for hydrogen generation at different initial 

concentrations of formaldehyde. Degradation of formaldehyde and 

hydrogen production took place simultaneously with high apparent 

quantum yield (10.91 %). 

 Eosin Y-sensitized photocatalysis was shown to be an efficient method for 

phenol degradation under visible solar light. A parametric study revealed 

that a high visible solar light intensity (80−100 mW cm
-2

), moderate 

catalyst loading (0.8−1.0 g L
-1

), low platinum content (0.25−0.5 wt %) on 

TiO2, moderate sacrificial electron-donor (triethanolamine) concentration 

(0.2 M), neutral pH (7.0), and low initial phenol concentration enhanced 

the photodegradation of phenol. At optimum conditions, 100 % phenol 

degradation was achieved in less than 2 h. The proposed L−H kinetic 

model was able to fit the experimental data for phenol degradation on 

eosin Y−sensitized TiO2/Pt at different irradiation intensities. 

7.3 Recommendations for Future Work 

Following are the recommendations for further studies: 

 Detailed study for solar photo-deposition method is required to be 

performed for further improvement of the photocatalyst. 

 Preliminary hydrodynamic study using FLUENT showed dead zones in 

the flow reactor. Efforts were made to eliminate those dead zone using 

baffles inside the reactor as described in Appendix G. More systematic 

computational fluid dynamics study is required for better reactor design. 

 Fractional factorial design approach can be used to include a large number 

of parameters for statistical design analysis. 
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 Since triethanolamine was present in the system during phenol 

degradation, initial TOC values were quite high. To achieve complete 

mineralization, longer duration needs to be considered in future research. 

 Since phenol degradation was studied in visible light only, the use of 

complete solar spectra for phenol degradation need to be explored in 

future studies. 

 A better IR filter should be used to remove IR that heats up the system. 

 Natural dye can be extracted and used for dye-sensitization of TiO2/Pt 

photocatalyst. 
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APPENDIX 

A. Appendix A: Dye Absorption Spectra 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.1 UV-vis absorption spectrum of 9.65 x 10
-3

 mM Eosin Y 

in aqueous solution  
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B. Appendix B: Calibration Plot –H2 Gas 

 

 

 

 

 

 

 

 

 

 

 YH2 = 310
-6

 X        (B.1) 

where, YH2 is the hydrogen concentration (µmol) and X is the TCD peak area. 

Equation B.1 reports the equation for the calibration curve that was obtained from the 

GC/TCD data with a R
2
 value of 0.993. 

 

 

 

 

Figure B.1 TCD calibration curve for hydrogen 
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Calculation of total H2 generation: 

 mole fraction is calculated from the GC calibration curve. 

 then the following formulae are used for the calculation of total amount of 

hydrogen in the reactor: 

 

 

     (B.2) 

 

 (B.3) 

 

where, nH2 is number of moles of hydrogen, P is the total pressure of the reactor; the 

hydrogen will instantaneously occupy the overhead volume of the reactor in a well mixed 

system. R is universal gas constant (8.314 N m mol
-1

 K
-1

) and T is temperature (K). 
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C. Appendix C: Details of Photoreactors 

 

 

 

 

 

 

 

 

 

i) Batch reactor used in sacrificial hydrogen generation from triethanolamine (Chapter-4) 

and formaldehyde (Chapter-5): 

Total volume = 530 mL; Illumination from the top through 6.5 cm diameter. Magnetic 

stirrer was used for mixing. Reaction mixture volume = 100 mL. System was saturated 

with N2 gas. 

ii) Flow reactor used in sacrificial hydrogen generation from triethanoamine (Chapter-4): 

Total volume =500 mL; Illumination from the top through 9 cm diameter. Peristalatic 

pump was used for mixing with a maximum flow of 1.62 L min
-1

. Reaction mixture 

volume = 200 mL. System was saturated with N2 gas. 

 

 

Figure C.1 Batch and flow reactor configuration under different light sources. 
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Flow reactor diagram (Chapter-4): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C.2 Flow reactor for sacrificial hydrogen generation 
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Figure C.3 Flow reactor exploded view 

top cover 

gasket 
quartz glass 

N2 purging line 
H2 sampling line 
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D. Appendix D: Eosin Y Degradation under Different Light 
Sources 

1. Effect of light sources on Eosin Y degradation: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D.1 Eosin Y degradation under solar and visible light. 

Experimental conditions: [EY]=3.86 x 10
-2

 mM, I=100 mW cm
-2

, 

[TEOA]=0.25 M. 
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2. Effect of UV, visible and solar light intensity on Eosin Y degradation: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D.2 Effect of UV light intensity on Eosin Y degradation. 

Experimental conditions: [EY]=7.72 x 10
-2

 mM, [TEOA]=0.25 M. 

Figure D.3 Effect of visible light intensity on Eosin Y degradation. 

Experimental conditions: [EY]=7.72 x 10
-2

 mM, [TEOA]=0.25 M. 



204 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Figure D.4 Effect of solar light intensity on Eosin Y degradation. 

Experimental conditions: [EY]=7.72 x 10
-2

 mM, [TEOA]=0.25 M. 
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E. Appendix E: Light Spectra of Solar Simulator 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

Figure E.1 Solar simulator light spectra at different intensities. 
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F. Appendix F: PL Spectra under UV, Visible and Solar 
light 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure F.1 PL spectra EY-TiO2/Pt catalyst solution at different solar light 

intensities showing higher e
-
/h

+
 recombination rate at higher light 

intensities. Experimental conditions: [EY]=7.72 x 10
-2

 mM, [TEOA]=0.25 M. 

EY-TiO2/Pt (0.25 %)= 1g L
-1

. 
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G. Appendix G: Flow Reactor Modifications 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure G.1 Proposed modified flow reactor with baffle. 
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Figure G.2 Modified flow reactor with minimum dead zones. 

Figure G.3 Particle tracking for modified flow reactor. 
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H. Appendix H: Calibration Curves for Phenol  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure H.1 Calibration curve for aqueous solution of phenol. 
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