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Abstract
We consider higher-order hidden Markov models (HMM), also called weak HMM (WHMM),

to capture the regime-switching and memory properties of financial time series. A technique of

transforming a WHMM into a regular HMM is employed, which in turn enables the develop-

ment of recursive filters. With the use of the change of reference probability measure method-

ology and EM algorithm, a dynamic estimation of model parameters is obtained. Several

applications and extensions were investigated. WHMM is adopted in describing the evolution

of asset prices and its performance is examined through a forecasting analysis. This is ex-

tended to the case when the drift and volatility components of the logreturns are modulated by

two independent WHMMs that do not necessarily have the same number of states. Numerical

experiment is conducted based on simulated data to demonstrate the ability of our estimation

approach in recovering the “true” model parameters. The analogue of recursive filtering and

parameter estimation to handle multivariate data is also established. Some aspects of statisti-

cal inference arising from model implementation such as the assessment of model adequacy

and goodness of fit are examined and addressed. The usefulness of the WHMM framework

is tested on an asset allocation problem whereby investors determine the optimal investment

strategy for the next time step through the results of the algorithm procedure. As an application

in the modeling of yield curves, it is shown that the WHMM, with its memory-capturing mech-

anism, outperforms the usual HMM. A mean-reverting interest rate model is further developed

whereby its parameters are modulated by a WHMM along with the formulation of a self-tuning

parameter estimation. Finally, we propose an inverse Stieltjes moment approach to solve the

inverse problem of calibration inherent in an HMM-based regime-switching set-up.

Keywords: Higher-order Markov chain, filtering, change of reference probability method,

asset price modeling, forecasting, asset allocation, multivariate data, term structure of interest

rates, inverse problem in finance
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Chapter 1 1

Chapter 1

Introduction

1.1 Background and motivation

A higher-order hidden Markov model (HMM) or the so-called weak HMM (WHMM) is an

extension of the usual HMM in which the hidden process (i.e., not observed) is a higher-order

Markov chain. WHMMs are also known as hidden semi-Markov models or variable-duration

HMM in other areas of engineering and the physical sciences.

A WHMM is a Markov chain model that is dependent on prior states. Hence, the higher the

order, the greater is the dependency and so more information about the past is captured by this

type of model. Solberg [20] comments on the idea of higher-order Markov chain and states

“The real significance of higher-order Markov chain is to establish that the Markov assump-

tion is not really as restrictive as it first appears”. Barbu and Limnios [1] remark “The main

drawback of HMMs comes from the Markov property, which requires that the sojourn time in a

state be geometrically distributed. This makes the HMMs too restrictive from a practical point

of view. Thus, [with WHMM] we have a model that combines the flexibility of a semi-Markov

process with the modeling capacity of HMMs”. This cognizance from experts in the area of

Markov chain modeling highlights the advantages obtained when longer past state sequence is

taken into account into HMMs.
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The memoryless property of the original HMM can be formulated as follows. If the past and

current information of a process are known, the statistical behavior of future evolution of the

process is determined by its present state, and therefore, the states of the past and the future are

conditionally independent. Nonetheless, there are many situations in real life where HMMs

memoryless property seems unwarranted and indefensible. For instance, the presence of mem-

ory in asset prices, interest rates and other time series of financial variables is well documented.

The HMM can capture more information from the past by weakening its Markovian hypothe-

sis and extending the dependency to any number of prior epochs, thus giving rise to WHMMs.

Such models are certainly appropriate for financial time series where memories are evident.

In the majority of WHMM applications, parameter estimation is at the core of its implemen-

tation. The estimation procedure for WHMM is much more complicated than the observable

weak Markov chain (WMC). The underlying WMC in WHMM is neither observed nor can

be measured directly. Instead, we are given the evolution in time of the observations distorted

in noise. From an engineering perspective, one may view the observed process as a received

signal and the hidden WMC as an emitted signal. In WHMM, the number of involved model

parameters increases exponentially as the number of states and length of order increase. Need-

less to say, the large number of parameters complicates the estimation procedure and increases

the computational burden. Thus, designing efficient computing algorithms which can facilitate

the estimation is desired. On the other hand, accurate forecasting of financial variables is an

important consideration in the application of WHMM to many types of decision-making en-

deavors. Theoretically speaking, since WHMM can capture more historical information of the

unobservable market state, it should outperform the usual HMM on data fitting provided there

is presence of memory in the data-generating process. It is therefore worthwhile to investi-

gate if advantages and benefits of employing WHMM exist in the context of practical financial

applications.
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1.2 Research objectives

To tackle some of the major aforementioned problems above, it is the fundamental theme of this

work to widen the literature on the applications of WHMMs capable of capturing the memory

property in financial time series. This research comprises of both theoretical and numerical

investigations. The main objectives and scope of this thesis are as follows:

• Develop a methodology to estimate parameters of WHMM: The higher-order Markov

chain is transformed into a regular Markov chain. Signal filtering techniques are then

utilized to filter out the hidden signal. Recursive filters are derived for the state of the

Markov chain and other auxiliary processes related to the Markov chain. With the EM

algorithm, we provide recursive estimates for the parameters of several financial models.

• Demonstrate the accessibility and applicability of the proposed models and estimation

techniques: Recursive filters and estimation methods are implemented on simulated data

and market data to recover model parameters. The developed algorithms are run on

batches of data to reduce computational expenses.

• Evaluate the performance of WHMM in fitting and forecasting and address related statis-

tical inference issues in model implementation: The short-term forecasts under WHMM

setting are compared to those from regular HMM using different performance metrics.

As well, statistical tests are applied to determine significance of results under various

financial modeling considerations.

• Illustrate the benefits and accurate modeling of WHMM to financial applications: We

consider the modeling of asset prices involving both univariate and multivariate data and

the term structure of interest rates. Application of WHMM to asset allocation is also

examined.

• Development of an estimation technique for calibration of regime-switching models:

This thesis aims to contribute to the further development of regime-switching models
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by constructing a method that will compute model parameters given market price data.

Such a problem is a central concern in option pricing and hedging.

1.3 Literature

This section surveys available literature on higher-order HMMs sketching a backdrop against

which this study has taken place. Note that in the context of a particular application, more spe-

cific perspective on the relationship of our research to existing literature on regime-switching

models, original HMMs and WHMMs shall be provided in the beginning of each succeeding

chapter.

The theory and algorithms pertaining to WHMM were first enriched by the application of

WHMM in speech recognition. WHMM-based approach was first proposed by Ferguson [8].

In his pioneering work, such approach was called explicit-duration HMM. In contrast to the

implicit duration of HMMs, the state of duration is dependent on the current state of the un-

derlying higher-order Markov process. Russel and Moore [16] investigated WHMM in using

a Poisson distribution to model duration. Levison [13] further explored the model with contin-

uous duration by employing a gamma distribution in the modeling of speech segment durations.

Guédon and Cocozza-Thivent [9] proposed the adoption of the EM algorithm to WHMMs in

estimating the duration parameters. In their work, WHMMs were presented with state occu-

pancy modeled by a gamma distribution as put forward in [13] and the observation process is

modeled by a mixed Gaussian distribution. Kriouile, et al. [10] derived an extended Baum-

Welch re-estimation algorithm for second-order discrete HMMs. Ferguson [8] pointed out that

the state and the duration time in one state of a WHMM can be embedded into a complex

state of HMM. Ferguson’s idea was exploited in Krishnamurthy, et al. [11] by reformulating a

higher-order scalar state into a first-order 2-vector HMM. With such a reformulation, signals

and parameters can be estimated by the Baum-Welch algorithm. Since then, similar approaches
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started to appear in the literature including Ramesh and Wilpon [15] and Sin and Kim [19] us-

ing Viterbi algorithm.

As previously mentioned, computational complexity is a common problem in the applications

of WHMM mainly due to the large number of parameters. This drew researchers’ attention to

construct efficient estimation algorithms for WHMMs. Du Preez [5] developed a Fast Incre-

mental Training algorithm which can reduce a WHMM with any order to a regular HMM. Yu

and Kobayashi [22] proposed a forward-backward algorithm in which the notion of a state to-

gether with its remaining sojourn time is used to define the forward-backward variables. Bulla,

et al. [3] developed a software package for the statistical software R, which allows for the sim-

ulation and maximum likelihood estimation of WHMMs. Overfitting is another issue that may

be dealt with cross-validate technique, see Elliott, et al. [6].

Since the 1990s, the WHMM was applied to various fields including electrocardiography by

Thoraval, et al. [21], hand writing recognition by Kundu, et al. [12], genes recognition in DNA

by Burge and Karlin [4], among others. In recent years starting in 2000, the applications of

WHMM have been increasing with the advent of technological advancements. They were

widely applied in areas of growing human interests such as wireless internet traffic (Yu, et

al. [23]), protein structure prediction (Schmidler, et al. [18]), rain event time series (Sansom

and Thomson [17]), MRI sequence analysis (Faisan, et al. [7]), financial time series (Bulla and

Bulla [2]) and classification of musics (Liu, et al. [14]).

1.4 Structure of the thesis

This thesis is composed of eight chapters including this Introduction. The rest of the material

are compilations of the related research outputs on WHMMs and regime-switching models.

The contents of the subsequent chapters are detailed below.
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In chapter 2, we introduce the concept of WHMM in an attempt to capture more accurately

the evolution of a risky asset. The logreturns of assets are modulated by a WMC with finite

state space. In particular, the optimal states estimates of the second-order Markov chain and

parameters estimates of the model are given in terms of the discrete-time filters for the state of

the Markov chain, the number of jumps, occupation time and auxiliary processes. We provide

a detailed implementation of the model a financial time series dataset along with the analysis

of the h-step ahead forecasts. The results of our error analysis suggest that within the dataset

studied and considering longer predictive horizons, WHMM gives a better forecasting perfor-

mance than the traditional HMM.

An extension of the WHMM for logreturns of assets in which the drift and volatility are gov-

erned by two independent WMCs is given in chapter 3. A detailed example is provided to

demonstrate the transformation of an extended WHMM into a regular WHMM. Filtering meth-

ods and EM algorithm are implemented on simulated data to recover the “true” parameters.

Error analyses of the h-step ahead predictions are provided to assess model performance for

different combination of states.

In chapter 4, we present an analysis of asset allocation strategies when the asset returns are

driven by a discrete-time WHMM. The “switching” and “mixed” strategies are studied. We

use a multivariate filtering approach in conjunction with the EM algorithm to obtain estimates

of model parameters. This, in turn, aids investors in determining the optimal strategy for the

next time step. Numerical implementation is carried out on the Russell 3000 value and growth

indices data. The respective performances of portfolios under particular trading strategies are

benchmarked against three classical investment measures.

A multivariate higher-order Markov model for the structure of interest rates is developed in

chapter 5. The multivariate filtering technique and EM algorithm are adopted to obtain optimal

estimates of model parameters. We assess the goodness of fit of the one-step-ahead forecasts
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and apply the Akaike information criterion (AIC) in finding the optimal number of economic

regimes. The filtering algorithms were implemented on a dataset consisting of approximately 3

years of daily US-Treasury yields. Our empirical results show that based on the AIC and root-

mean-square error metric, a two-state WHMM is deemed as the most appropriate in describing

the term structure dynamics within the dataset and period of study. Moreover, an analysis of

the h-day ahead predictions generated from WHMM is compared with those generated from

the regular HMM. By including a memory-capturing mechanism, the WHMM outperforms the

HMM in terms of low forecasting errors.

In chapter 6, an Ornstein-Uhlenbeck interest rate model whose mean-reverting level, speed of

mean reversion and volatility are all modulated by a WMC. We derive the filters of the WMC

and other auxiliary processes through a change of reference probability measures. Optimal

estimates of model parameters are computed by employing the EM algorithm. We examine the

h-step ahead forecasts under our proposed set-up and compare them to those under the usual

Markovian regime-switching framework. Our numerical results generated from the implemen-

tation of WMC-based filters on a ten-year dataset of weekly short-term maturity Canadian

yield rates give better goodness-of-fit performance than that from the HMM, and indicate that

a two-state WMC is adequate to model the data.

In chapter 7, we address the problem of model calibration under a regime-switching model

setting. A method is proposed to recover the time-dependent parameters of the Black-Scholes

option pricing model when the underlying stock price dynamics are modeled by a finite-state

continuous-time Markov chain. The coupled system of Dupire-type partial differential equa-

tions is derived and formulated as an inverse Stieltjes moment problem. A numerical illustra-

tion is included to show how to apply our proposed method on financial data. The accuracy of

the calculation is examined and sensitivity analyses are undertaken to study the behavior of the

estimated results when model parameters are varied.
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A summary of the findings of the thesis as well as possible future works motivated by this

research is presented in chapter 8.
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Chapter 2

Parameter estimation of an asset price

model driven by a WHMM

2.1 Introduction

In this chapter, we introduce the concept of higher-order HMM or WHMM and how it extends

the regime-switching framework. The key ideas are presented including the notation and ratio-

nale for building financial models enriched by WHMM.

In financial modeling, it is well known that the parameters of a model for the evolution of fi-

nancial data tend to change over time. Various Markov-switching models have been proposed

to describe the behavior of business cycles or volatility regimes. The idea of regime-switching

models can be traced back to the early works of Quandt [17] and Quandt and Goldfeld [11]. In

an influential paper, Hamilton [13] puts forward Markov-switching methods in the modeling of

non-stationary time series. Turner, et al. [21] argue that in a model, either the mean or variance,

or both may exhibit differences between two regimes. Chu, et al. [3] apply a Markov-switching

model to market returns and examine the variation in volatility for different return regimes. The

results of their analysis show that the stock returns are best characterized by a model containing

six regimes. Bollen, et al. [1] introduce a regime-switching model with independent shifts in
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mean and variance and examine its ability to capture the dynamics of foreign exchange rate.

The mathematical challenge akin to regime-switching models largely boils down to obtaining

the optimal estimation of the required number of parameters and the parameters themselves,

which are governed by a discrete-time Markov chain. A previous study by Elliott, et al. [4],

provides not only recursive estimates of the Markov chain but also continual, recursively self-

updating estimates for all parameters of the model. HMM filtering methods are quite popular in

statistics and engineering and have been widely applied to financial problems. Elliott and van

der Hoek [7] adopt an HMM filtering-based method in the examination of an asset allocation

problem. More recently, Erlwein, et al. [9] develop and analyze investment strategies relying on

HMM approaches. In Elliott, et al. [5], HMM filtering techniques are applied to an interest rate

model and an explicit expression for the price of zero-coupon bonds is provided. Furthermore,

Erlwein and Mamon [8] derive and implement the filters of a Hull-White interest rate model

in which the interest rate’s volatility, mean-reverting level and speed of mean-reversion are

governed by a Markov chain in discrete time. The investigation of Elliott, et al. [6], based on

the gauge transformation, provides a robust form of filtering equations which offers substantial

improvement over classical filtering by avoiding numerical approximations to stochastic inte-

grals, for a continuous-time HMM.

In recent years, there has been a considerable attention in financial time series that are ob-

served to possess memories and usually modeled by stochastic evolution equations. While the

traditional HMM already brings a certain degree of modeling sophistication since it is able

to capture the switching of parameters between regimes, it is felt that the usual Markov as-

sumption is inadequate. It is for this reason that a WHMM is appropriate when memories are

present. For instance, the second-order Markov chain has the effect of having the next state

dependent on the two prior states. Of course, the higher the order of the chain, the more ex-

tended the dependency and consequently, more information from the past is incorporated into
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the Markov chain model. As mentioned in Solberg [20], the real significance of higher-order

Markov chains is the demonstration that the Markov assumption is not really as restrictive as it

first appears. One is not limited to a dependence on just one previous time epoch. In principle,

the dependency can be extended to any number of prior epochs. Obviously, the drawback is

that there is a practical price to pay for the enlargement of the number of states and the estima-

tion of parameters becomes more involved.

Recursive filtering equations for a discrete-time WHMM with finite state space and discrete-

range observations are derived in Luo and Tsoi [14]. These filters are used to re-estimate the

parameters of the model. An application of WHMM in risk measurement of a risky portfolio

can be found in the paper of Siu, et al. [19], who also examine the higher-order effect of the

underlying Markov chain via backtesting. In Siu, et al. [18], a method to recover spot rates

and credit ratings is developed using a double higher-order HMM. For valuation of derivatives,

Ching, et al. [2] investigated the problem of pricing exotic options under a WHMM setting.

In this chapter, we introduce a WHMM-modulated model for the logreturns of a risky asset.

More specifically, we assume that the the mean and variance of the logreturns from the risky

asset are governed by a discrete-time, finite-state WHMM. We first derive the filters for the

discrete-time, continuous-range observations and obtain the optimal estimates for the parame-

ters. Second, we test the applicability and effectiveness of the WHMM in capturing the empir-

ical features of stock index data, S&P500, spanning the period 1997-2010. Third, in terms of

evaluating the model’s predictability performance, we compare our WHMM with the regular

HMM under different numbers of states to ascertain the benefits derived from the proposed

WHMM-based asset price model.

This chapter is structured as follows. Section 2.2 gives the WHMM formulation. We introduce

the change of reference probability technique in Section 2.3, which forms the underpinnings of

the filtering and estimation employed in this chapter. Sections 2.4 and 2.5 set out the details of
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the steps for the filtering method and the optimal recursive parameter estimation. An empirical

investigation involving a data set along with the forecasting analysis is presented in section 2.6.

Finally, section 2.7 concludes.

2.2 Description of a weak hidden Markov model

Owing to its simplicity and along with the fact that any diffusion can be approximated by a

Markov chains, the theory of Markov chain has found abundant applications in the modeling

of complex and dynamical systems including the financial market. An accessible and brief

survey of Markov chains and an account of its ubiquity in several branches of science are given

in Haigh [12]. In addition to the objectives specified in section 2.1, it is the intent of this paper

to illustrate the usefulness of higher-order hidden Markov chains in economic modeling highly

intertwined to the interest of financial analysts and engineers.

In engineering, for example, the charge, Q(t), at time t at a fixed point in an electrical circuit is

of interest. However, due to error in the measurement of Q(t), it cannot really be measured but

rather just a noisy version of it. The aim is to filter the noise out of our observations. Similarly,

in financial economics, we wish to answer the question if financial data such as asset prices

and stock indices contain information about latent variables? If so, how might their behavior

in general and in particular their dynamics be estimated? We shall present a methodology to

address this problem.

In the succeeding discussion, all vectors will be denoted by bold letters in lowercase and all

matrices will be denoted by English or Greek letters in uppercase. We assume all stochastic

processes are defined on a complete probability space (Ω,F , P), where P is a real-world prob-

ability. Let x = {xk}k≥0 be a discrete-time Markov chain with N states. We associate the state

space of xk with the canonical basis {e1, e2, . . . , eN} ⊂ R
N , where the ei’s are unit vectors in

RN with unity in the ith element and zero elsewhere. We use 〈xk, ei〉 = 1{xk=ei} to emphasize
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the identification of xk with the canonical basis, where 〈b, c〉 represents the Euclidean scalar

product in RN of the vectors b and c. The state process x may represent the state of an econ-

omy. If N = 3 for example, 〈xk, e1〉, 〈xk, e2〉 and 〈xk, e3〉 represent the “best”, “second-best”

and “worst” economic state, respectively. We suppose x0 is given, or its distribution known.

We say that process x is a weak Markov chain of order n ≥ 1, if its value at the time k + 1

depends on its value in the previous n time steps. That is,

P(xk+1 = xk+1|x0 = x0, x1 = x1, . . . , xk−1 = xk−1, xk = xk)

= P(xk+1 = xk+1|xk−n+1 = xk−n+1, . . . , xk−1 = xk−1, xk = xk). (2.1)

When n = 1, the usual or regular Markov chain is recovered.

Remark: To simplify the discussion and present a complete characterization of the parameter

estimation, we only concentrate on a weak Markov chain of order 2.

Under the second-order Markov chain, we have

P(xk+1 = xk+1|x0 = x0, x1 = x1, . . . , xk−1 = xk−1, xk = xk)

= P(xk+1 = xk+1|xk−1 = xk−1, xk = xk). (2.2)

Write

almv := P(xk+1 = el|xk = em, xk−1 = ev), (2.3)

where l,m, v ∈ {1, 2, . . . ,N}. Then we have the associated N × N2 transition matrix

A =


a111 a112 . . . a11N . . . a1N1 . . . a1NN

a211 a212 . . . a21N . . . a2N1 . . . a2NN

. . . . . .

aN11 aN12 . . . aN1N . . . aNN1 . . . aNNN

 .
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Let yk, k ≥ 1, denote the observation process which is the sequence of logreturns of asset

prices. It has to be noted that we do not observe x from the financial market directly. Instead,

there exists a function h such that

yk+1 = h(xk, zk+1) = f (xk) + σ(xk)zk+1, k ≥ 1. (2.4)

The {zk}k≥1 in equation (2.4) is a sequence of independent identically distributed (IID) stan-

dard normal random variables independent of x. We assume there are some vectors f =

( f1, f2, . . . , fN)> and σ = (σ1, σ2, . . . , σN)> such that f (xk) = 〈f, xk〉 and σ(xk) = 〈σ, xk〉 repre-

sent the mean and volatility of yk at time k, respectively. This assumption comes naturally from

the canonical state space implying that a non-linear function of the chain can be represented as

linear function of the chain via the scalar product. Here, > denotes the transpose of a matrix.

We shall further assume σi > 0 for every 1 ≤ i ≤ N. Let {Fk}k≥0 denote the complete filtration

generated by x, {Yk}k≥0 denote the complete filtration generated by y and {Hk}k≥0 denote the

complete filtration generated by x and y. The model in equation (2.4) under the usual HMM

was also the starting point of an empirical study in [15] devoted to the analysis of inflation rate

movement.

The main idea of constructing filtering equations for the WHMM is to embed the second-order

Markov chain into a first-order Markov chain, and then apply the already known methods for

regular HMMs. To do this, we define a mapping ξ by

ξ(er, es) = ers, for 1 ≤ r, s ≤ N,

where ers is a unit vector in RN2
with 1 in its ((r − 1)N + s)th position. The mapping ξ groups

two time steps of x to form a new first-order Markov chain. Note that

〈ξ(xk, xk−1), ers〉 = 〈xk, er〉〈xk−1, es〉
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represents the identification of x at the current and previous time steps with the canonical

basis. Let Π be an N2 × N2 matrix, which represents the transition probability matrix of the

new Markov chain ξ(xk, xk−1). It can be reconstructed from the matrix A and is given by

Π =



a111 . . . a11N 0 . . . 0 . . . 0 . . . 0
0 . . . 0 a121 . . . a12N . . . 0 . . . 0

. . . . . . . . . . . .

0 . . . 0 0 . . . 0 . . . a1N1 . . . a1NN

. . . . . . . . . . . .

aN11 . . . aN1N 0 . . . 0 . . . 0 . . . 0
0 . . . 0 aN21 . . . aN2N . . . 0 . . . 0

. . . . . . . . . . . .

0 . . . 0 0 . . . 0 . . . aNN1 . . . aNNN


,

where

πi j =


almv if i = (l − 1)N + m, j = (m − 1)N + v

0 otherwise.

Now at time k, each nonzero element in Π represents the probability

πi j = almv = P(xk = el|xk−1 = em, xk−2 = ev)

and each zero represents an impossible transition. Following Siu, et al. [19], under the proba-

bility measure P, the weak Markov chain x has the semi-martingale representation

ξ(xk, xk−1) = Πξ(xk−1, xk−2) + vk, (2.5)

where {vk}k≥1 is a sequence of RN2
-martingale increments with E[vk|Fk] = 0.

2.3 Change of reference probability measure

In this section, we aim to estimate ξ(xk, xk−1) given the observed data yk under the real world

probability P. In reality, yk are not independent of each other. By the Kolmogorov’s Extension
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Theorem, there exists a reference probability measure P̄, under which the observed data are

independent, and thus, the calculations are easier to perform. We first present the relation be-

tween the real world probability measure P and the reference probability measure P̄ and then

estimate ξ(xk, xk−1) under P̄.

Under the ideal measure P̄,

(i) {yk}k≥1 is a sequence of N(0, 1) IID random variables, which are independent of xk, and

(ii) {xk}k≥0 is a weak Markov chain such that (2.5) holds and Ē[vk|Fk] = 0.

Write φ(z) for the probability density function of a standard normal random variable Z. To

construct P from P̄, we define the processes λl and Λk by

λl :=
φ(σ(xl−1)−1(yl − f (xl−1)))

σ(xl−1)φ(yl)
, (2.6)

and

Λk :=
k∏

l=1

λl, k ≥ 1, Λ0 = 1. (2.7)

To back out the probability measure P, we consider the Radon-Nikodým derivative Λk and set

dP
dP̄

∣∣∣∣∣
Hk

= Λk. (2.8)

It could be shown that under P, the sequence {zk} is a sequence of IID standard normal random

variables, where

zk = σ(xk−1)−1(yk − f (xk−1)), k ≥ 1. (2.9)

That is, the probability laws of x under P and P̄ are the same; see Elliott, et al. [4] further.

While we need the estimates of ξ(xk, xk−1) under P, we shall perform all calculations under the

reference probability measure P̄. We could then employ the Bayes’ theorem for conditional

expectation, which relates conditional expectations under two different measures.
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Let pk denote the conditional distribution of ξ(xk, xk−1) given Yk under P, so that pk =
(
p11

k , . . . , pi j
k ,

. . . , pNN
k

)>
, 1 ≤ i, j ≤ N, is a vector in RN2

and

pi j
k = P(xk = ei, xk−1 = e j|Yk)

= E[〈xk, ei〉〈xk−1, e j〉|Yk]

= E
[〈
ξ(xk, xk−1), ei j

〉∣∣∣Yk
]
.

Write

qk := Ē
[
Λkξ(xk, xk−1)

∣∣∣Yk
]
. (2.10)

Since ξ(xk, xk−1) takes values on the canonical basis of indicator functions, we have

〈
ξ(xk, xk−1), 1

〉
=

N∑
i, j=1

〈
ξ(xk, xk−1), ei j

〉
= 1, (2.11)

where 1 is an RN2
vector of 1’s. Therefore,

〈qk, 1〉 = Ē
[
Λk

〈
ξ(xk, xk−1), 1

〉∣∣∣Yk
]

= Ē[Λk|Yk] (2.12)

Invoking the Bayes’ theorem for conditional expectation and equation (2.12), we get the ex-

plicit form for the conditional distribution

pk =
qk

〈qk, 1〉
. (2.13)

2.4 Calculation of recursive filters

The method we utilize to estimate the unknown model parameters is based on the estimation of

the state process; this is ξ(xk, xk−1) in our case. Looking at equation (2.13), we need a recursive
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filter for the process qk. Let Bk denote the N2 × N2 diagonal matrix at time k, i.e.,

Bk =



b1
k

. . .

bN
k

. . .

b1
k

. . .

bN
k


, (2.14)

where

bi
k =

φ(σ−1
i (yk − fi))
σiφ(yk)

. (2.15)

Hence, a recursive expression for qk is

qk+1 = Bk+1Πqk. (2.16)

The proof of equation (2.16)is given in Appendix A.

We also need to derive recursive filters for the following four related processes:

(i) Jrst
k , the number of jumps from state (es, et) to er up to time k,

Jrst
k =

k∑
l=2

〈xl, er〉〈xl−1, es〉〈xl−2, et〉. (2.17)

(ii) Ors
k , the occupation time spent by the weak Markov chain x in state (er, es) up to time k,

Ors
k =

k∑
l=2

〈xl−1, er〉〈xl−2, es〉. (2.18)

(iii) Or
k, the occupation time spent by the weak Markov chain x in state er up to time k,

Or
k =

k∑
l=1

〈xl−1, er〉. (2.19)
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(iv) T r
k(g), the level sum for the state er,

T r
k(g) =

k∑
l=1

g(yl)〈xl−1, er〉. (2.20)

Here g is a function that takes the form g(y) = y or g(y) = y2.

For any H -adapted process Xk, the filter of Xk is defined as X̂k := E[Xk|Yk]. We write

γ(X)k := Ē[ΛkXk|Yk]. Again, from Bayes’ theorem for conditional expectation and equation

(2.13), we have

X̂rst
k =

Ē[ΛkXrst
k |Yk]

Ē[Λk|Yk]
=

Ē[ΛkXrst
k |Yk]

〈qk, 1〉
. (2.21)

It would be difficult to estimate the quantities Jrst
k , Ors

k , Or
k and T r

k(g) directly. However, we

could take advantage of the semi-martingale representation in equation (2.5) to obtain re-

cursive filter relations for the vector quantities Jrst
k ξ(xk, xk−1), Ors

k ξ(xk, xk−1), Or
kξ(xk, xk−1) and

T r
k(g)ξ(xk, xk−1). The recursive filters of these vector processes are given in the following propo-

sition.

Proposition 2.4.1 Let Vr, 1 ≤ r ≤ N, be an N2 × N2 matrix such that the ((i − 1)N + r)th

column of Vr is eir for i = 1, 2, . . . ,N and zero elsewhere. If B is the diagonal matrix defined

in equation (2.14) then

γ
(
Jrstξ(xk+1, xk)

)
k+1

= Bk+1Πγ
(
Jrstξ(xk, xk−1)

)
k

+ br
k+1〈Πest, ers〉〈qk, est〉ers, (2.22)

γ
(
Orsξ(xk+1, xk)

)
k+1

= Bk+1Πγ(Orsξ(xk, xk−1))k + br
k+1〈qk, ers〉Πers, (2.23)

γ
(
Orξ(xk+1, xk)

)
k+1

= Bk+1Πγ(Orξ(xk, xk−1))k + br
k+1VrΠqk, (2.24)

γ
(
T r(g)ξ(xk+1, xk)

)
k+1

= Bk+1Πγ(T r(g)ξ(xk, xk−1))k + br
k+1g(yk+1)VrΠqk. (2.25)

Proof See Appendix B.

The recursive filters given in Proposition 2.4.1 provide updates to the estimates of the vec-

tor processes every time new information arrives. Each recursion involves the state process
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ξ(xk, xk−1). Similar to equation (2.12), we can relate the vector recursive processes to the scalar

quantities of interest. For instance, the scalar quantity γ(Jrst)k, can be calculated by noting that

〈
γ
(
Jrstξ(xk, xk−1)

)
k, 1

〉
= Ē

[
ΛkJrst

k
〈
ξ(xk, xk−1), 1

〉∣∣∣Yk
]

= Ē
[
ΛkJrst

k

∣∣∣Yk
]

= γ(Jrst)k.

The values for the other scalar quantities can be computed similarly.

2.5 Parameter estimation

In this section, we describe the estimation of the asset price model parameters, f and σ in

equation (2.4). Unlike the usual HMM, we estimate the transition matrix A instead of Π. We

make use of the Expectation-Maximization (EM) algorithm. This algorithm offers an alter-

native method to maximize the conditional pseudo log-likelihood. The parameter updates are

expressed in terms of the recursion in Proposition 2.4.1.

We first recall the EM algorithm. Let {Pθ, θ ∈ Θ} be a family of probability measures on a

measurable space (Ω, F ) which is absolutely continuous with respect to a fixed probability

measure P0; Θ is some parameter space. Let Y ⊂ F . The likelihood function for estimating

the parameter θ based on the information encapsulated in Y is given by

L(θ) = E0

[dPθ

dP0

∣∣∣∣Y ]

while the maximum likelihood estimator of θ is defined by

θ̂ ∈ arg max
θ∈Θ

L(θ).

The most likely value of the parameter θ is the one that maximizes this conditional expectation.
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The MLE is, however, difficult to compute. By employing the EM algorithm, we can obtain

the “maximizer” iteratively. The procedure is described below:

Step 1. Set m = 0 and choose θ̂0.

Step 2. (E-step) Set θ∗ = θ̂m and compute

Q(θ, θ∗) = Eθ∗

[
log

dPθ

dPθ∗

∣∣∣∣Y ]
.

Step 3. (M-step) Find

θ̂m+1 ∈ arg max
θ∈Θ

Q(θ, θ∗).

Step 4. Replace m by m + 1 and repeat the procedure beginning with step 2 until a stopping

criterion is satisfied.

It is shown in Wu [22] that the sequence of estimates {θ̂m} gives nondecreasing values of the

likelihood function and it converges to a local maximum of the expected log-likelihood. Since

the EM algorithm does not identify the global maximum of the likelihood function, we may

have to test several initial values at a wide range to illustrate that the all converge to the same

value; this converged value is still not necessarily a global maximum but it gives us some as-

surance that we have a maximum value over a wide range of the parameter space. Suppose our

model is determined by a set of estimated parameters θ̂ = {ârst, f̂r, σ̂r, 1 ≤ r, s, t ≤ N} which

maximizes the corresponding conditional log-likelihood function.

Consider the case of estimating the transition matrix A. The EM algorithm involves a change

of measure from Pθ to Pθ̂. Under Pθ, x is a weak Markov chain with transition matrix A. Under

measure Pθ̂, x remains a weak Markov chain with transition matrix Â = (ârst), which means

Pθ̂(xk+1 = er|xk = es, xk−1 = et) = ârst. Therefore, ârst ≥ 0 and
∑N

r=1 ârst = 1. To replace the
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parameter A by Â in the weak Markov chain x, we define the Radon-Nikodým derivative of Pθ̂

respect to Pθ:
dPθ̂

dPθ

∣∣∣∣∣
Yk

= Γk, (2.26)

where

Γk =

k∏
l=2

N∏
r,s,t=1

( ârst

arst

)〈xl,er〉〈xl−1,es〉〈xl−2,et〉

.

In case arst = 0, take ârst = 0 and ârst/arst = 1. Refer to [14] for the justification why x has

transition matrix Â under Pθ̂. The optimal estimates for the model parameters, f̂, σ̂ and Â are

given by the following proposition.

Proposition 2.5.1 If the set of parameters {ârst, f̂r, σ̂r} determines the model then the EM

estimates for these parameters are given by

ârst =
Ĵrst

k

Ôst
k

=
γ(Jrst)k

γ(Ost)k
, ∀ pairs (r, s), r , s, (2.27)

f̂r =
T̂ r

k

Ôr
k

=
γ(T r(y))k

γ(Or)k
, (2.28)

σ̂2
r =

T̂ r
k(y2) − 2 f̂rT̂ r

k(y) + f̂ 2
r Ôr

k

Ôr
k

, and σ̂r =

√
σ̂2

r . (2.29)

Proof See Appendix C.

Remark: The estimator given in (2.27) is defined for the elements, arst, where r , s. However,

one can compute the estimated values for asst by noting that ∀s, t,
∑N

r=1 arst = 1.

2.6 Numerical results

We implement the recursive filters derived in the previous section on the daily logreturns series

of S&P500. The data were recorded from September 1997 to March 2010; the dataset then

consists of 3156 data points. Preliminary diagnostics would revel that the evolution of the log

return undergoes several distinct regimes characterized by states with high and low means as
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well as high and low volatilities. To capture the behavior of regime switching, we assume that

the log return’s mean f and volatility σ are governed by an WHMM x. Given the daily asset

price process S k, we have

yk+1 = log
S k+1

S k
= 〈f, xk〉 + 〈σ, xk〉zk+1.

We segregate the observation data into different groups according to the level of mean and

volatility. Of course, this is a qualitative way of selecting states. A more formal method of

doing this is through a sequential analysis, see Wu [23], that deals with change-point prob-

lems. Tables 2.1 and 2.2 display descriptive statistics for possible segregations of actual data

into either two or three states. From these segregations we can see that the log return yk has

a lower volatility when the mean is positive. When the market is bearish, i.e., associated with

yk having negative mean, equity investment is more risky and thus, we expect a higher volatility.

1st state 2nd state
Sept 1997-Jan 2000 Feb 2000-Sept 2003
Mean: 7.33 × 10−4 Mean: −3.78 × 10−4

Variance: 1.25 × 10−4 Variance: 2 × 10−4

Oct 2003-Dec 2006 Jan 2007-Mar 2010
Mean: 4.04 × 10−4 Mean: −2.44 × 10−4

Variance: 4.48 × 10−5 Variance: 3.01 × 10−4

Table 2.1: Segregation of the period of actual data into two states

1st state 2nd state 3rd state
Sept 1997-Jan 2000 Oct 2003-Dec 2006 Feb 2000-Sept 2003
Mean: 7.33 × 10−4 Mean: 4.04 × 10−4 Mean: −3.78 × 10−4

Variance: 1.25 × 10−4 Variance: 4.48 × 10−5 Variance: 2 × 10−4

Jan 2007-Mar 2010
Mean: −2.44 × 10−4

Variance: 3.01 × 10−4

Table 2.2: Segregation of the period of actual data into three states
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The implementation starts with the assignment of initial values for fr and σr, r = 1, . . . ,N.

All non-zero entries in the transition matrix Π were assigned an initial value of 1/N. In using

the recursive filter equations, we process (i.e., apply recursive filters) the data in batches of 20

observation points. This means the parameters are roughly updated monthly. Each algorithm

run, which processes a batch of 20 data points, constitutes what we call one complete algorithm

step or an algorithm pass. At the end of each step, new estimates for f, σ and A are obtained.

From the matrix A, we get Π. These new estimates are in turn used as initial estimates for

the successive parameter estimation using the recursive filter equations. The frequency of pa-

rameter updating usually depends on the nature of observation data and the dictates of the

financial market. We also experimented processing the data with different batch lengths in our

multi-pass procedure, and it appears that monthly updating is sufficient for this particular case

judging from the small forecasting error criterion.

Figure 2.1 shows three plots depicting the evolution of estimates for f, σ and the transition

matrix A under the two-state weak Markov chain setting. For the three-state weak Markov

chain setting, the transition matrix has 33 = 27 elements and their evolutions are shown in

three separate plots in Figure 2.2. Figure 2.3 displays the plots for the dynamics of the mean

and volatility under the 3-state WHMM set-up. In both 2-state and 3-state WHMM modeling

frameworks, the movements of the mean and volatility exhibit similar patterns. It is worth

noting that through this multi-pass recursive algorithm, parameters appear to stabilize after

approximately six passes. Our experiment indicates that this stability is achieved regardless of

the choice of the initial parameter values. We note nonetheless that the speed of convergence

is sensitive to the initial choice of parameter values. We note that on step 140, there is a

change in the trend of the estimated probabilities and kinks in the estimated f and σ. This

coincides with the market crisis that occurred in mid 2008. Thus, the filters are able to adapt

to market conditions that prevailed in that period. We derive the explicit formula of the Fisher

information to measure the variability of parameter estimates. The Fisher information I(θ) is
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Figure 2.1: Evolution of estimates for f, σ and A-matrix under the 2-state setting
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Figure 2.2: Evolution of estimates for the transition probabilities under the 3-state setting
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Figure 2.3: Evolution of estimates for f and σ under the 3-state setting
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Parameter Range of standard errors
estimate 1-state 2-state 3-state

ârst [3.22×10−14, 3.19×10−9] [1.18×10−12, 1.26×10−7] [8.21×10−12, 1.25×10−5]
f̂r [5.18×10−18, 5.74×10−13] [2.99×10−16, 1.32×10−10] [2.26×10−14, 7.57×10−9]
σ̂r [2.59×10−18, 2.87×10−13] [1.50×10−16, 6.75×10−11] [1.13×10−14, 4.04×10−9]

Table 2.3: Range of SEs for each parameter under the 1-, 2- and 3-state settings

defined as the negative expectation of the second derivative of the log-density for a parameter

θ. The inverse of the Fisher information is used to calculate the variance associated with the

maximum-likelihood estimates. The sampling distribution of a maximum likelihood estimator

is asymptotically normal and its variance can be calculated from I−1(θ); see Garthwaite, et

al. [10], for example. Following equations (C.1), (C.7) and (C.8) for 1 ≤ r, s, t ≤ N, the

closed-form expressions for the Fisher information of each parameter are given by

I(arst) =
Ĵrst

k

a2
rst
, I( fr) =

Ôr
k

σ−2
r

and I(σr) = −
Ôr

k

σ2
r

+
3
(
T̂ r

k(y2
k) − 2T̂ r

k(yk) fr + f 2
r

)
σ−4

r
.

We provide the range of tabulated SEs over the entire algorithm steps for each parameter in

Table 2.3 under the WHMM with N = 1, 2, 3.

Since the model via recursive formulas is self-updating and quickly produces reasonable pa-

rameter estimates, we can use it to forecast asset prices over an h-day ahead horizon. The

semi-martingale representation of a weak Markov chain x in equation (2.5) suggests that

E[ξ(xk+1, xk)|Yk] = Πpk, where pk = E[ξ(xk, xk−1)|Yk].

This tells us that

E[ξ(xk+h, xk+h−1)
∣∣∣Yk] = Πhpk, for h = 1, 2 . . . . (2.30)

Recall that A is defined by almv = P(xk+1 = el|xk = em, xk−1 = ev), so that

E[xk+1|Yk] = Apk. (2.31)
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Equations (2.31) and (2.30) then imply that

E[xk+h|Yk] = Apk+h−1 = AΠh−1pk. (2.32)

Using equation (2.32), the best estimate of the logarithmic increment yk+h given available in-

formation at time k is

E[yk+h|Yk] = 〈f,AΠh−1pk〉.

On the other hand, the conditional variance of yk+h is given by

Var[yk+h|Yk] = f>diag(AΠh−1pk)f + σ>diag(AΠh−1pk)σ − 〈f,AΠh−1pk〉
2,

where diag(AΠh−1pk) is a diagonal matrix whose diagonal entries are the components of the

vector AΠh−1pk.

Conditional on the information structure Yk, the observation process yk+h has a mixed normal

distribution with explicit representation

N∑
i, j=1

〈pk+h−1, ei j〉φ(y; fi, σi).

Therefore the best estimate of the asset price at time k + h based on available information at

time k is given by

E[S k+h|Yk] = S k

N∑
i, j=1

〈Πh−1pk, ei j〉 exp
(

fi +
σ2

i

2

)
. (2.33)

Equation (2.33) is used to compute the h-day ahead forecasts of the S&P500 index values.

In a related study, Mamon, et al. [16] compared the predictability performance under the

Diebold-Kilian metric of two- and three-state HMM with the predictability performance im-

plied by their chosen benchmarked models, namely, autoregressive conditional heteroscedas-

ticity (ARCH(1)) and generalized ARCH (GARCH(1,1)) models. Their results suggest that
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h−day RMSE AME RAE APE
ahead WHMM HMM WHMM HMM WHMM HMM WHMM HMM
1 14.6652 14.6471 10.4380 10.4249 0.0663 0.0663 0.0092 0.0092
2 20.1931 20.1873 14.8358 14.8329 0.0943 0.0943 0.0130 0.0130
3 23.9568 23.9544 17.8275 17.8331 0.1133 0.1133 0.0157 0.0157
4 27.2519 27.2521 20.3194 20.3276 0.1291 0.1292 0.0179 0.0179
5 30.1839 30.1862 22.4197 22.4284 0.1425 0.1425 0.0197 0.0197
6 32.7025 32.7057 24.4092 24.4189 0.1551 0.1552 0.0215 0.0215
7 34.9630 34.9673 26.0477 26.0606 0.1655 0.1656 0.0229 0.0229
8 36.8720 36.8770 27.4169 27.4313 0.1742 0.1743 0.0241 0.0242
9 38.7440 38.7496 28.6977 28.7143 0.1824 0.1825 0.0253 0.0253
10 40.5210 40.5268 30.0238 30.0416 0.1908 0.1909 0.0265 0.0266
11 42.3122 42.3185 31.4179 31.4378 0.1997 0.1998 0.0278 0.0278
12 43.9374 43.9445 32.6621 32.6803 0.2076 0.2077 0.0289 0.0289
13 45.8010 45.8090 34.1693 34.1893 0.2171 0.2173 0.0303 0.0303
14 47.6995 47.7079 35.7466 35.7676 0.2272 0.2273 0.0316 0.0317
15 49.4687 49.4772 37.0384 37.0573 0.2354 0.2355 0.0328 0.0328
16 51.0220 51.0303 38.2533 38.2738 0.2431 0.2432 0.0339 0.0339
17 52.6908 52.6991 39.5625 39.5788 0.2514 0.2515 0.0350 0.0350
18 54.3287 54.3370 40.7496 40.7646 0.2590 0.2591 0.0361 0.0361
19 55.7159 55.7239 41.8855 41.8977 0.2662 0.2663 0.0371 0.0371
20 57.1569 57.1648 43.0776 43.0913 0.2738 0.2738 0.0381 0.0381
21 58.5421 58.5499 44.0828 44.0959 0.2801 0.2802 0.0390 0.0390
22 59.7281 59.7360 45.0667 45.0793 0.2864 0.2865 0.0399 0.0399
23 61.0026 61.0106 46.0674 46.0786 0.2928 0.2928 0.0409 0.0409
24 62.2606 62.2689 47.1080 47.1190 0.2994 0.2994 0.0418 0.0418
25 63.4862 63.4945 48.0434 48.0530 0.3053 0.3054 0.0426 0.0426

Table 2.4: Error analysis of WHMM and HMM models under the 2-state setting

compared to the benchmarked models, HMM models produce higher measures of short- and

medium-run predictability.

In this empirical implementation, we compare the forecasting performance of WHMM with

that of the regular HMM. The goodness of fit of the h-day ahead forecasts (h = 1, . . . , 25)

to the actual data is evaluated using the root mean square error (RMSE), absolute mean error

(AME), relative absolute error (RAE) and absolute percentage error (APE). These forecasts er-

rors under the two- and three-state model settings are given in Table 2.4 and 2.5, respectively.
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h−day RMSE AME RAE APE
ahead WHMM HMM WHMM HMM WHMM HMM WHMM HMM
1 14.8066 14.6767 10.5542 10.4603 0.0671 0.0665 0.0093 0.0092
2 20.3007 20.1974 14.9244 14.8386 0.0948 0.0943 0.0131 0.0130
3 24.0228 23.9588 17.8700 17.8281 0.1136 0.1133 0.0157 0.0157
4 27.2972 27.2530 20.3319 20.3181 0.1292 0.1291 0.0179 0.0179
5 30.2163 30.1841 22.4184 22.4177 0.1425 0.1425 0.0197 0.0197
6 32.7255 32.7022 24.3957 24.4071 0.1550 0.1551 0.0215 0.0215
7 34.9782 34.9624 26.0275 26.0448 0.1654 0.1655 0.0229 0.0229
8 36.8819 36.8711 27.4015 27.4131 0.1741 0.1742 0.0241 0.0241
9 38.7495 38.7428 28.6763 28.6940 0.1822 0.1824 0.0253 0.0253
10 40.5234 40.5197 29.9903 30.0185 0.1906 0.1908 0.0265 0.0265
11 42.3108 45.0483 31.3680 31.8622 0.1993 0.1833 0.0278 0.0284
12 43.9309 47.0441 32.6089 33.3315 0.2072 0.1917 0.0289 0.0297
13 45.7893 49.2302 34.1124 34.8385 0.2168 0.2004 0.0302 0.0311
14 47.6846 51.3417 35.6899 36.5875 0.2268 0.2104 0.0316 0.0326
15 49.4517 53.3269 36.9841 37.9214 0.2350 0.2181 0.0327 0.0337
16 51.0056 54.8892 38.2056 39.2742 0.2428 0.2259 0.0338 0.0350
17 52.6736 56.8324 39.5141 40.7638 0.2511 0.2345 0.0350 0.0363
18 54.3113 58.6921 40.7013 42.0401 0.2587 0.2418 0.0360 0.0374
19 55.6988 60.1808 41.8339 43.1875 0.2659 0.2484 0.0370 0.0384
20 57.1400 61.8393 43.0299 44.4809 0.2735 0.2558 0.0381 0.0396
21 58.5253 63.5352 44.0464 45.7187 0.2799 0.2630 0.0390 0.0407
22 59.7102 64.9906 45.0458 46.9500 0.2862 0.2700 0.0399 0.0418
23 60.9835 66.7393 46.0340 48.2065 0.2925 0.2773 0.0408 0.0430
24 62.2403 68.4247 47.0681 49.4898 0.2991 0.2846 0.0418 0.0441
25 63.4650 69.9037 48.0087 50.6459 0.3051 0.2913 0.0426 0.0451

Table 2.5: Error analysis of WHMM and HMM models under the 3-state setting
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Compared to the two-state WHMM, the regular two-state HMM yields lower forecast errors in

the short forecasting horizon. However, the difference is too small to yield any practical signif-

icance. In all forecasting metrics (RMSE, MAE, RAE and APE), both WHMM and HMM

forecasts errors are almost identical in the short- and medium- forecasting horizons. The

WHMM clearly outperforms the HMM over a long forecasting horizon. For the three-state

models, HMM gives slightly better fit to the actual data than the WHMM for the short fore-

casting horizon only. The benefit of employing a 3-state WHMM can be seen in the medium-

and long-forecasting horizons in which the WHMM forecasting errors are much lower than the

HMM forecasting errors.

The special case of one-state modeling framework for both the WHMM of order 2 and HMM,

which correspond to the second-order and first-order autoregressive models, respectively, was

also investigated. We found that the forecasting errors are generally higher than those exhibited

by the two-state and three-state WHMM and HMM. This suggests that there is merit to explor-

ing regime-switching models incorporating memories to accurately capture the dynamics of

the data series.

2.7 Conclusion

In this chapter, we proposed a weak Markov chain-modulated model for asset prices. By trans-

forming a WHMM into a regular HMM, we developed general recursive filters for discrete-

time, continuous-range observations and utilized the EM algorithm in conjunction with the

change of probability measure to re-estimate the parameters in our model. We analyzed the

h−day ahead predictions and results from WHMM were compared to those from the regular

HMM. Our empirical findings show that by including memories in the model, the two- and

three-state WHMM outperforms the HMM in terms of low forecasting errors in the long fore-

casting horizon.
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In this study, we only consider a weak Markov chain of order 2. However, in many financial

time series applications such as GARCH and ARCH models, lag 1 or lag 2 already appears to

be sufficient. Of course, it would be interesting to examine third-order or even nth-order HMM

models with n ≥ 4. The challenge here is to deal with the complexity of the estimation and

the notation would certainly become unwieldy. As the number of states increases, the number

of parameters also increases exponentially. A natural direction of this research is to develop a

statistical methodology that will determine the optimal number of states and lags of the weak

Markov chain.
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Chapter 3

Parameter estimation in a WHMM setting

with independent drift and volatility

components

3.1 Introduction

In this chapter, we consider a quite general extension of WHMM-modulated asset price model

by allowing the drift and volatility to be driven by two independent WMCs not necessarily

having the same number of states. That is, for instance, the drift may have 3 states while the

volatility has only two states and the asset returns components are driven by different Markov

chains.

In recent years, Markovian regime switching models have received considerable interests in

economics, finance and actuarial science. In a pioneering work, Hamilton [10] proposed a class

of discrete-time Markov switching autoregressive time series models. In Hamilton’s model, the

parameters are modulated by a discrete-time, finite state Markov chain so that the parameters

have different values in a particular time period according to the state of the chain in that pe-

riod. This idea gives a natural and simple way to model the cyclical behavior or the impact of
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changes in the financial market on financial series dynamic. Many empirical studies reveal that

Markovian regime-switching model can provide a better description of economic and financial

series then that from a single regime model. Hardy [11] proposed a Markov regime-switching

lognormal model for stock returns, and implemented the model on S&P500 and the Toronto

Stock Exchange 300 indices; it was found that the regime-switching model performed better

than the GARCH model. Comparison of the fit to the data between the regime switching model

and GARCH model is presented. Lange and Rohbek [13] gave a survey on regime switching

in econometric time series modeling and the differences between observation switching and

Markov switching are discussed. Ang and Timmermann [1] discussed the impact of regime

switching on equilibrium asset prices and suggested that regimes exist in a variety of financial

series such as fixed income, equity and currency markets. Veronesi [23] considered a three-

state model in which the asset prices are highest in the “good” regime and lowest in the “bad”

regime. Calvet and Fisher [3] suggested that regimes can account for time-varying state de-

pendent and asymmetric reaction of equilibrium stock prices to news. A well-known class of

such models is the HMM, in which a hidden Markov chain is adopted to describe the ran-

dom transition of the hidden state of an economy. HMM can provide a reasonably realistic

description of some important empirical features such as heavy-tails of the distribution of the

returns and time-varying conditional volatility. Due to their empirical successes, HMMs have

been widely adopted in modeling financial series dynamics. Rydén, et al. [20] considered an

HMM for modeling daily return series, and investigated the capability of HMM to capture the

series’ stylized facts. By applying the model to S&P500 daily returns, the results suggest that

the HMM can describe most of the stylized facts except for the slowly decaying autocorre-

lation function of the absolute return. Early studies of HMM to financial time series include

Tyssedal and Tjotheim [22], Pagan and Schwert [19] and Sola and Leroux [14]. The mono-

graph by Elliott, et al. [5] provides a comprehensive discussion of parameter estimation under

the HMM framework using filtering techniques. Since then, many researchers follow and ap-

ply this technique to finance and economics. Elliott, et al. [6] applied robust filtering equations
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for a continuous-time HMM to estimate the volatility of a risky asset. Erlwein, et al. [17] de-

rived and implemented the filters for logreturn of commodity prices, and compared the HMM

to ARCH and GARCH models with respect to the prices’ predictability. The HMM filtering

method is applied to many other financial problems, for example, asset allocation [7, 9], inter-

est rate modeling [8, 27], option pricing [15], and so on.

Although popular, the simple homogeneous Markov switching model is memoryless, which

seems inadequate for real-world data. It is well-known in the economic and finance literature

that the states of an economy and financial series present long-range dependence, which can

be reified through a simple plot of an empirical autocorrelation function. Motivated by this

empirical phenomenon, we consider a WHMM, as a more flexible alternative to HMM. The

basic idea of an nth order HMM is that the behavior of the underlying Markov chain at the

present time depends on its behavior in the past n time steps. WHMM is popular in speech

and text recognition, but is rather new in probing the finer structures of the financial market.

Bulla and Bulla [2] examined the fit of WHMMs to 18 daily sector return series and suggested

that the stylized fact of slowly decaying autocorrelation can be described better by WHMMs.

Yu, et al. [26] explored the use of WHMMs to capture the long-range dependence property.

They derived the recursive formula for the autocovarriance function over different time scales

and the estimator of the Hurst parameter. Their empirical results demonstrate that the model

can capture long-range dependence if one state is heavy-tailed distributed. By weakening the

Markov assumption, WHMMs provide a simple and flexible way to describe the duration de-

pendence through their dependence on backward recurrence time. This has led some authors to

study the ideas of WHMMs in the fields of financial derivatives, for example, risk management

[21], option pricing [4], interest rate modeling [12], and asset returns [25].

Mamon and Jalen [18] proposed a method based on employing tensors to transform two in-

dependent chains into one Markov chain so that the regular filtering technique can be applied.
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This method is then implemented on two stock indices for illustration. In this paper, we in-

vestigate a WHMM in the situation that drift and volatility of the given data are driven by two

independent WMCs. In particular, we suppose that the rate of return of a risky asset is gov-

erned by a WHMM with two underlying WMCs. The transformation method based on tensors

is adopted and the filtering technique of WHMMs with one chain is then applied. Numeri-

cal study based on simulated observation data is given to demonstrate the effectiveness of this

method. We also provide error analyses for different combination of states through the h-step

ahead prediction performance.

This chapter is organized as follows. In section 3.2, we present the modeling framework of

WHMM. The dynamics of a risky asset price under the WHMM extension is described. By

utilizing a measure-change method, we derive recursive filters for the state of WMC and other

processes of interests. Parameter estimation based on EM algorithm is established. In sec-

tion 3.3, we implement the filters under the proposed extended set-up on simulated data. The

method is examined using different algorithm starting values. We generate one- and five-step

ahead forecasts for different models and compare the forecasting performance via four error

metrics. The chapter ends with a conclusion section.

3.2 Model background

Now, we present a WHMM for modeling asset prices, where the drift and volatility have

independent probability behavior. In the sequel, all vectors will be denoted by bold En-

glish or Greek letters in lowercase and all matrices will be denoted by bold letters in upper-

case. Fix a complete probability space (Ω,F , P), where P is a real world probability mea-

sure. Define a discrete-time weak Markov chain {xk}, k ≥ 0 on (Ω,F , P) with a finite space

S = {s1, s2, . . . , sN}. The states of the chain represent different states of economy. Without loss

of generality, the points in S can be identified using the canonical basis {e1, e2, . . . , eN} ⊂ R
N ,

where ei = (0, . . . , 0, 1, 0, . . . , 0)> and > denotes the transpose of a vector. The expression
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〈xk, ei〉 represents the event that the economy is in state i at time t and 〈 , 〉 stands for the inner

product in RN .

In the succeeding discussion, we concentrate on a WMC of order 2 to simplify the discussion

and present a complete characterization of the parameter estimation. The probability of the

next time step for a second-order WMC depends on the information on current and previous

time steps. Let A ∈ RN×N2
denote the transition probability matrix of WMC xk. Each entry

almv := P(xk+1 = el|xk = em, xk−1 = ev), l,m, v ∈ 1, . . . ,N is the transition probability that the

chain x enters state l given that the current and previous states were states m and v, respectively.

The salient idea in the filtering method for WHMM is that, a second-order Markov chain is

transformed into a first-order Markov chain through a mapping ξ, and then we may apply the

regular filtering method. The mapping ξ is defined by

ξ(er, es) = ers, for 1 ≤ r, s ≤ N,

where ers is an RN2
−unit vector with unity in its ((r − 1)N + s)th position. The identification of

the new first-order Markov chain with the canonical basis is given by

〈ξ(xk, xk−1), ers〉 = 〈xk, er〉〈xk−1, es〉.

We further assume that the new Markov chain has a new transition probability matrix, Π ∈

RN2×N2
, given by

πi j =


almv if i = (l − 1)N + m, j = (m − 1)N + v

0 otherwise.

Each non-zero element πi j represents the probability

πi j = almv = P(xk = el|xk−1 = em, xk−2 = ev),
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and each zero represents an impossible transition. It may be shown that the new Markov chain

ξ(xk, xk−1) has the semi-martingale representation

ξ(xk, xk−1) = Πξ(xk−1, xk−2) + vk, (3.1)

where {vk}k≥1 is a sequence of RN2
martingale increments.

Let S k, k ≥ 1, denote a series of asset prices and yk denote the logarithmic increments. In

the previous study Xi and Mamon [25], we discussed the case where the drift and volatility

of yk are governed by the same hidden Markov chain. In particular, yk is assumed to have the

dynamics

yk+1 = f (xk) + σ(xk)zk+1 = 〈f, xk〉 + 〈σ, xk〉zk+1. (3.2)

The sequence {zk} is a sequence of N(0, 1) IID random variables, which are independent of the

x-process. In this study, we consider the case when the drift and volatility have independent

states and probabilistic behavior. That is, we assume yk has the dynamics

yk+1 = 〈f, x1
k〉 + 〈σ, x

2
k〉zk+1, (3.3)

where xi is an Ni-state WMC on state space Si with transition matrix Ai ∈ R
Ni×N2

i . Suppose the

drift and volatility have the form f = ( f1, f2, . . . , fN1) ∈ R
N1 and σ = (σ1, σ2, . . . , σN2) ∈ R

N2

respectively. In order to apply the regular WHMM filtering technique, we aim to re-formulate

the hidden WMCs so that the dynamic of yk is in the same form as in equation (3.2). Let ⊗

denote tensor product. Following the idea in [18], we transform the two chains, x1
k and x2

k , into a

new WMC xk using Kronecker product or tensor product, i.e., xk = x1
k⊗x2

k . Then xk is an N1N2-

state WMC with transition matrix A = A1⊗A2. Write 1N for the vector (1, 1, . . . , 1) ∈ RN . The
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reformulated drift and volatility are given by

α = f ⊗ 1N2 ,

η = 1N1 ⊗ σ

Therefore the dynamics of yk in equation (3.3) can be rewritten as

yk+1 = 〈α, xk〉 + 〈η, xk〉zk+1. (3.4)

We demonstrate the workings of this transformation through a numerical example in section

3.4.

3.3 Filters and parameter estimation

Under the real world measure P, we cannot observe the hidden state of the economy xk directly.

Instead, we are given market observations yk, which contain information about xk. Since the

unknown drift and volatility are highly dependent on the WMC, the estimation of parameters

reduced to “filtering” the hidden WMC out of the observations. However, the derivation of

filters under P is complicated. Exploiting the Kolmogorov’s Extension theorem, we note that

there exists a reference probability measure P̄ under which

• yk’s are N(0, 1) IID random variables and

• x is a finite state WMC satisfying (3.1) and Ē[vk|Yk] = 0.

Under the measure P̄, y does not depend on x, and therefore it is more convenient to evaluate

the filtered estimates. The calculation starts with the reference probability measure and then

we perform a measure change to construct the real-world measure P. Consider a Yk-adapted
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process Λk, k ≥ 0 defined by

λl =
φ
(
σ(xl−1)−1(yl − f (xl−1))

)
σ(xl−1)φ(yl)

, (3.5)

Λk =

k∏
l=1

λl, k ≥ 1, Λ0 = 1, (3.6)

where φ(z) is the probability density function of a standard normal random variable Z. Define

the Radon-Nikodým derivative of P with respect to P̄ by

dP
dP̄

∣∣∣∣
Yk

:= Λk. (3.7)

Suppose Xk is a Yk-adapted process. Write X̂k := E[Xk|Yk] and γ(Xk) := Ē[ΛkXk|Yk]. Then by

Bayes’ theorem, the unnormalized filer of Xk is

X̂k =
Ē[ΛkXk|Yk]
Ē[Λk|Yk]

=
γ(Xk)
γ(1)

. (3.8)

Let us derive the conditional expectation of ξ(xk, xk−1) given Yk under P. Write

pi j
k := P(xk = ei, xk−1 = e j|Yk) = E[〈ξ(xk, xk−1), ei j〉|Yk] (3.9)

with pk = (p11
k , . . . , pi j

k , . . . , pNN
k ) ∈ RN2

. Bayes’ theorem for conditional expectation (for ex-

ample, see p.22 of Elliott, et al. [5]) implies

pk = E[ξ(xk, xk−1)|Yk] =
γ(ξ(xk, xk−1))

γ(1)
. (3.10)

Note that
N∑

i, j=1

〈ξ(xk, xk−1), ei j〉 = 〈ξ(xk, xk−1), 1N2〉 = 1. (3.11)



Chapter 3 48

Let qk = γ(ξ(xk, xk−1) so that

〈qk, 1N2〉 = Ē[Λk〈ξ(xk, xk−1), 1N2〉|Yk] = γ(1). (3.12)

From equations (3.10) and (3.12), we get the conditional distribution of ξ(xk, xk−1) under P as

pk =
qk

〈qk, 1N2〉
. (3.13)

In order to estimate the state process ξ(xk, xk−1), we shall investigate the recursion for the

process qk. Define the diagonal matrix Bk ∈ R
N2×N2

by

Bk = diag(b1
k , . . . , b

N
k , . . . , b

1
k , . . . , b

N
k ) (3.14)

where diag(v) is a diagonal matrix whose diagonal entries are the components of the vector v

and

bi
k =

φ ((yk − fi)/σi)
σiφ(yk)

. (3.15)

To estimate the parameters of the model, we first present a set of quantities that are useful

for the derivation of estimates. Three of these processes are related to the state process and

one is related to both the state and observation processes. These quantities are defined by, for

r, s, t = 1, . . . ,N,

• Jrst
k , the number of jumps from (es, et) to state er up to time k,

Jrst
k =

k∑
l=1

〈xl, er〉〈xl−1, es〉〈xl−2, et〉 (3.16)

• Ors
k , the occupation time of x spent in state (er, es) up to time k,

Ors
k =

k∑
l=1

〈xl−1, er〉〈xl−2, es〉 (3.17)
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• Or
k, the occupation time spent by x in state er up to time k,

Or
k =

k∑
l=1

〈xl−1, er〉 (3.18)

• T r
k(g), the level sum for the state er,

T r
k(g) =

k∑
l=1

g(yl)〈xl−1, er〉. (3.19)

Here, g is a function with the form g(y) = y or g(y) = y2, for 1 ≤ l ≤ k.

The following proposition presents the recursive formulas for the vectors γ
(
Jrst

k ξ(xk, xk−1)
)
,

γ
(
Ors

k ξ(xk, xk−1)
)
, γ

(
Or

kξ(xk, xk−1)
)

and γ
(
T r

k(g)ξ(xk, xk−1)
)
, which are the unnormalized filtered

estimates of Jrst
k , Ors

k , Or
k and T r

k(g) respectively. The recursive relation of these vector processes

and qk under a multi-dimensional observation set-up are given in the following proposition.

Proposition 3.3.1 Let Vr, 1 ≤ r ≤ N be an N2×N2 matrix such that the ((i−1)N +r)th column

of Vr is eir for i = 1 . . .N and zero elsewhere. If B is the diagonal matrix defined in equation

(3.14) then

qk+1 = Bk+1Πqk (3.20)

and

γ(Jrst
k+1ξ(xk+1, xk)) =Bk+1Πγ(Jrst

k ξ(xk, xk−1)) + br
k+1〈Πest, ers〉〈qk, est〉ers, (3.21)

γ(Ors
k+1ξ(xk+1, xk)) =Bk+1Πγ(Ors

k ξ(xk, xk−1)) + br
k+1〈qk, ers〉Πers, (3.22)

γ(Or
k+1ξ(xk+1, xk)) =Bk+1Πγ(Or

kξ(xk, xk−1)) + br
k+1VrΠqk, (3.23)

γ(T r
k+1(g)ξ(xk+1, xk)) =Bk+1Πγ(T r

k(g)ξ(xk, xk−1)) + g(yg
k+1)br

k+1VrΠqk. (3.24)

Proof The proof is given in Appendices A and B, where N = N1 × N2.
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Similar to equation (3.11), the unnormalized filter estimates of γ(Jrst
k ), γ(Ors

k ), γ(Or
k) and

γ(T r
k(g)) can be determined by taking the inner products with 1N2 . For example,

γ(Jrst
k ) =

〈
γ(Jrst

k ξ(xk, xk−1)), 1N2
〉
.

The normalized estimates are obtained by dividing γ(Jrst
k ) by γ(1), that is, Ĵrst

k = γ(Jrst
k )/γ(1).

We now briefly illustrate the EM algorithm for estimating the optimal parameters using the

filters in Proposition 3.3.1. The parameters in our model are given by the set

θ = {arst, fr, σr. 1 ≤ r, s, t ≤ N}.

The EM method provides an estimation technique based on two stages: the expectation and

maximization. The algorithm proceeds by initially selecting any set of parameters, denoted by

θ0, for the model. The change to a new set of parameters is described by a change of probability

measure from P0 to Pθ. This means that the likelihood function for estimating the parameter θ

based on the given information Y is

L(θ) = E0

[
dPθ

dP0

∣∣∣∣Y ]
.

The logarithm of the Radon-Nykodým derivative of the new measure with respect to the old

measure is then calculated. A set of parameters that maximize the conditional log-likelihood

is then determined. It is shown in [24] that the sequence of the estimated log-likelihood is

monotonically increasing and the sequence of estimates converges to a local maximum of the

expectation of the estimated likelihood function. This method provides a self-tuning approx-

imation of the maximum likelihood estimate. As an example, let us consider the case of esti-

mating the transition matrix. Note that the non-zero entries of Π are the same as the entries of

A. We estimate the matrix A then construct Π for the calculation of filters. We first perform



Chapter 3 51

a change of measure from Pθ to Pθ̂ for this method. Under Pθ, x is a WMC with transition

matrix A = (arst). In [16], it is proved that under Pθ̂, x is still a WMC and the transition matrix

is Â = (ârst). To replace A by Â, the likelihood function is

dPθ

dP0

∣∣∣∣
Yk

= ΓA
k ,

ΓA
k =

k∏
l=2

N∏
r,s,t=1

(
ârst

arst

)〈xl,er〉〈xl−1,es〉〈xl−2,et〉

.

In case arst = 0, take ârst = 0 and ârst/arst = 1. The estimates are expressed in terms of the

recursions provided in equations (3.21)-(3.24) and given in the following proposition.

Proposition 3.3.2 Suppose the observation is d-dimensional and the set of parameters {ârst, f̂r,

σ̂r} determines the dynamics of yk, k ≥ 1. Then the EM estimates for these parameters are given

by

ârst =
Ĵrst

k

Ôst
k

=
γ(Jrst

k )
γ(Ost

k )
, ∀ pairs (r, s), r , s, (3.25)

f̂r =
T̂ r

k

Ôr
k

=
γ(T r

k(y))
γ(Or

k)
, (3.26)

σ̂r =

√√
T̂ r

k(y2) − 2 f̂rT̂ r
k(y) + f̂ 2

r Ôr
k

Ôr
k

. (3.27)

Proof See Appendix C.

Given the observation up to time k, new parameters ârst(k), f̂r(k), σ̂r(k), 1 ≤ r, s, t ≤ N are

provided by equations (3.25)-(3.27). The recursive filters for the unobserved Markov chain

and related processes in Proposition 3.3.1 can easily get updated every time new information

arrives. Thus, the parameter estimation is self-tuning.
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3.4 A simulation study

In this section, we present a simulation study to illustrate the filtering technique when the drift

and volatility of a process are governed by independent hidden WMCs.

An example of model setup

Suppose we are given a set of data generated from a process with a 3-state drift and 2-state

volatility: f = ( f1, f2, f3) and σ = (σ1, σ2). The re-formulated drift and volatility are

α = f ⊗ 12 = ( f1, f1, f2, f2, f3, f3)

η = 13 ⊗ σ = (σ1, σ2, σ1, σ2, σ1, σ2).

Note that the new WMC x has 6 states. Instead of estimating all values in α and η, we only

estimate f and σ, then reformulate α and η for the recursive filters. In this way, the algorithm

estimates fewer parameters than the actual 6-state model, but it is rich enough to capture all

information.

The steps of the algorithm are as follows:

1. Initialize f, σ, A1 and A2.

2. Construct α, η, A and Π.

3. Calculate the filters in Proposition 3.3.1 using α, η, A and Π.

4. After a batch of yk values, compute new estimates of f, σ and A using the recursive

filters in Proposition 3.3.2.

5. Construct the new α, η and Π, and use these estimates as the initial values for the next

batch of data points. Repeat from step. 3

The algorithm allows us to generate new estimates when the new information arrives. There-

fore the model is considered as self-tuning.
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We illustrate the proposed scheme using simulated data. For the simulated observation data,

two sets of 1000 point WMCs were generated with the following parameter values:

A1 =


0.8 0.8 0.8 0.1 0.1 0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.8 0.8 0.8 0.1 0.1 0.1

0.1 0.1 0.1 0.1 0.1 0.1 0.8 0.8 0.8

 ,

A2 =

0.7 0.7 0.3 0.3

0.3 0.3 0.7 0.7

 .
The initial states of both WMCs are state 1. The true values of drift and volatility are f =

(0.04, 0, −0.02) and σ = (0.02, 0.05), respectively. The dynamics in equation (3.3) yield 1000

simulated observation points which can be considered as daily returns of an asset price. Our

on-line algorithm runs in batches consisting of 10 data points and produces a set of updated

parameter estimates. We call one batch of data as one complete algorithm pass or step. In

our simulation study, 100 algorithm steps were run and the parameters were updated every two

weeks.

An important aspect to consider when implementing the EM algorithm is to determine the

number of states. Erlwein and Mamon [8] determined the optimal number of regimes using

the Akaike information criteria and found that a two-state HMM outperforms other multi-state

HMMs in capturing the dynamics of the Canadian short rates proxied by the 30-day T-bill

yields. Indeed, the number of states can be any reasonable value indicated by the data. In our

case, we run the algorithm using different choices for the number of states to obtain the pa-

rameter estimates. In order to compare the performance of the models, we compare the 1-step

ahead forecasts together with different goodness-of-fit measures (e.g. RMSE).

Figure 3.4 displays the evolution of f and σ estimates under various WHMM settings. Initial
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values of f and σ are indicated below the corresponding plots. These values are chosen based

on the true parameter values. All initial entries of the transition matrix, A, are set to be 1/N.

The parameters become stable after approximately 5 steps in plots 3.1(a)-3.1(c). In plot 3.1(d),

convergence is achieved after 25 steps. Our experiment shows that the convergence can be

achieved with other valid starting values. However, the choice of initial parameter values and

the model setting affect the speed of convergence.

The semi-martingale representation of a WMC in equation (3.1) and the definition of A lead to

E[xk+h|Yk] = AΠh−1pk, h ≥ 1.

The h-step ahead forecasts of the logarithmic increment yk is

E[yk+h|Yk] = 〈f,AΠh−1pk〉,

and the conditional variance of yk+h is

Var[yk+h|Yk] = f>diag(AΠh−1pk)f + σ>diag(AΠh−1pk)σ − 〈f,AΠh−1pk〉
2,

We compare the forecasting performance of WHMM with different initial settings. To assess

the goodness-of-fit of the h-step ahead forecasts, we evaluate the RMSE, AME, RAE and APE

for h = 1 and h = 5. These errors are reported in Tables 3.1 and 3.2. In both cases of h = 1

and h = 5, the model with 3-state drift and 2-state volatility gives the best fit in terms of lowest

forecasting errors. Note that the 1-state drift and volatility model produces the highest errors

in all metrics. It is because the single regime model is not able to capture the dynamics of the

data series. Furthermore, the model with 2-state drift and 3-state volatility yields higher errors

than all 2-state volatility models. Since the data is simulated using 2-state volatility, a model

with more states will cause overestimation of parameters and produce large errors.
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(a) 1-state drift and 2-state volatility with initial values: f = 0 and σ = (0.01, 0.04)
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(b) 2-state drift and 2-state volatility with initial values: f = (0.03,−0.03) and σ = (0.01, 0.03)
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(c) 3-state drift and 2-state volatility with initial values: f = (0.03, 0,−0.03) and σ = (0.01, 0.03)
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(d) 2-state drift and 3-state volatility with initial values: f = (0.03, 0) and σ = (0.01, 0.02, 0.03)

Figure 3.1: Evolution of parameter estimates under different model settings



Chapter 3 56

f σ RMSE AME RAE APE
1-state 1-state 1.3911 1.0233 0.1010 0.0440
1-state 2-state 1.0780 0.7001 0.0691 0.0282
2-state 3-state 1.0842 0.7010 0.0690 0.0819
2-state 1-state 1.0787 0.7006 0.0692 0.0820
2-state 2-state 1.0824 0.7088 0.0700 0.0285
3-state 2-state 1.0742 0.6854 0.0687 0.0279

Table 3.1: Comparison of 1-step ahead forecast errors

f σ RMSE AME RAE APE
1-state 1-state 2.6274 1.8770 0.1854 0.0775
1-state 2-state 2.4653 1.7449 0.1723 0.0705
2-state 3-state 2.4717 1.7477 0.1726 0.0706
2-state 1-state 2.4653 1.7450 0.1723 0.0705
2-state 2-state 2.4689 1.7470 0.1725 0.0706
3-state 2-state 2.4648 1.7442 0.1722 0.0704

Table 3.2: Comparison of 5-step ahead forecast errors

3.5 Conclusion

We extended a WHMM to model the evolution of a risky asset by considering the drift and

volatility of the logarithmic increments governed by two independent hidden Markov chains.

A tensor-based technique was employed to transform the two independent WMCs into a new

WMC. Filtered estimates of the drift, volatility and the state of the new WMC were derived

based on EM algorithm. Numerical examples on simulated data were given. Other than the

true number of states, we also considered other combinations of state for drift and volatility and

analyzed forecasting errors. Our empirical results suggest that using the number of states and

the initial values indicated by the observation data will make the model perform better. Indeed,

the starting values affects the algorithm performance. This is why we determine the correct

number of states for each parameter when implementing the estimation filters on market obser-

vations via the RMSEs. It is worth an exploring the effectiveness and efficiency of the proposed

filtering and parameter estimation technique on other models in finance and economics.
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Chapter 4

A weak hidden Markov chain-modulated

model for asset allocation

4.1 Introduction

This chapter extends the WHMM featured in chapter 2 to its multivariate version. We suppose

that we have a multivariate financial time series and each series is driven by the same WMC

although the white noise-driving process is different for every data series. Filtering algorithms

are developed and we apply our results in the evaluation of several competing trading strategies

within the context of an asset allocation problem.

It is well documented in the asset allocation literature that the inclusion of market regime-

switching dynamics has considerable impact on the optimal portfolio strategy of individual

investors. In financial portfolio management, the portfolio risk cannot be entirely eliminated

although it can be controlled with an optimal asset allocation strategy combining different types

and amount of investment. Each investment has its own unique risk and return characteristics.

A well-designed investment aims at the maximization of expected portfolio return while con-

trolling the level of risk. A fundamental example of the single-period mean-variance asset

allocation problem is given by the Nobel prize-winning work of Markowitz [24], in which the
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variance is employed as a measure of risk and the efficient allocation of wealth among dif-

ferent investment classes is provided. Since practical asset allocation problems involve inter-

temporal decisions, Samelson [30] and Merton [26] considered asset allocation problem in a

multi-period model and in a continuous-time model, respectively. In particular, Merton uti-

lized stochastic optimal control theory to derive a closed-form solution for an asset allocation

strategy under certain assumptions. A key assumption of these early works in the literature

is that the dynamics of asset returns are linear processes with constant coefficients. How-

ever, the state of the economy and the financial market varies randomly over time. Investors

are concerned with regime-switching uncertainty affecting the portfolio return. Such uncer-

tainty affects the future payoffs and therefore could alter the optimal asset allocation. Ang and

Bekaert [3] introduced a regime-switching model with time-varying correlations and volatili-

ties for asset allocation. They reported evidence of shifting regimes in the US, UK and German

equity markets. In a subsequent study, Ang and Bekaert [4] expanded the lists of markets and

assets for investigation of optimal asset allocation under a regime-switching framework. Their

out-of-sample test shows that the regime-switching strategy dominates a non-regime depen-

dent strategy. Bauer, et al. [5] observed the tendency of changing correlations and volatility

among assets, and considered a regime-switching technique for portfolio optimization. An

out-of-sample backtesting was applied on a six-asset portfolio consisting of equities, bonds,

commodities and real estate. The results demonstrated a significant information gain by using

a regime-switching strategy. Guidolin and Timmermann [18] considered asset allocation de-

cisions under a regime-switching model for asset returns with four separate regimes. It was

found that the optimal allocations vary considerably across these states and change over time

as investors revise their estimate of the state probabilities.

Various works that support model assumptions in which parameters change over time in ac-

cordance with the evolution of an unobserved Markov chain have been proposed. Elliott and

van der Hoek [15] put forward a model for the rates of asset returns driven by a Markov chain
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in discrete time. Their work features filtering and prediction techniques in the model identi-

fication and outlines how their method could be applied to the asset allocation problem using

mean-variance type utility criterion. Graflund and Nilsson [17] investigated dynamic portfo-

lio selection within a Markovian switching framework. Their results highlight the economic

importance of regimes and suggests that ignoring the regime will require significant compen-

sation. In the study of Ammann and Verhofen [2], Markov Chain Monte Carlo methods were

applied to estimate a multivariate regime-switching model. Two clearly separable regimes

characterized by different mean returns, volatilities and correlations were found. The results of

their out-of-sample backtest suggests that the buy-and-hold strategy based on regime-switching

model can be profitable. Bulla, et al. [7] focused on daily stock market return series at five ma-

jor regional markets over the last four decades. They presented an out-of sample performance

analysis with transaction costs taken into account and concluded that the strategy is improved

by considering a Markovian switching model. Erlwein, et al. [16] developed and compared in-

vestment strategies in allocating funds to either growth or value stocks, whose price dynamics

are driven by a hidden Markov model (HMM). Their investigation shows that the HMM-based

strategies are more stable and outperform the pure growth strategy in terms of higher Sharpe

ratios and lower variance of the performance. Elliott, et al. [14] considered a mean-variance

portfolio selection problem where the appreciation rate of the risky asset is modulated by a

continuous-time Markov chain. They employed the gauge transformation technique to obtain

robust filters and developed the filter-based EM algorithm in calculating the estimates of the

unknown parameters. An explicit solution to the mean-variance portfolio problem is derived

using the filtering results.

While the original HMM is able to capture the switching of market or economy states, and

hence leads to its widespread use, there is growing evidence that many financial series possess

memories. There has been considerable interest in the study of long-range dependence present

in the state of economy. In long-range dependent processes, the coupling between values at
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different times is stronger than that of short-range dependent processes, and hence it exhibits

a slow decay of autocorrelation. The analysis of long memory was pioneered by Hurst [20].

Long-range dependence is often presented by models that have been devised to be self-similar,

and they can be described by heavy-tailed distributions. The presence of long memory in as-

set prices and returns has important implications in modern financial economics. A number

of studies have investigated the presence of long-range dependence in financial series. Lo-

bato and Savin [21], and Ray and Tsay [28] found evidence of long-range dependence in the

volatility of returns on S&P500. McCarthy, et al. [25] found evidence of long memory in

percentage change in yields on Treasury debt securities. The dependence properties of asset

returns have motivated many researchers to develop stochastic models for this phenomenon. A

study by Dajcman [11] examined a time varying long memory parameter for eight European

stock market returns by using an auto regressive fractionally integrated moving average model.

Couillard and Davison [10] noted that caution must be taken in statistical tests of long range

Hurst process like dependence. Maheu [23] suggested that GARCH models can in some cir-

cumstances account for the long-memory property found in financial market volatility. There is

a vast literature in modeling long-range dependence using single-state stochastic models. Yu,

et al. [34] developed a recursive formula for estimating the Hurst parameter for a second-order

HMM. Their numerical experiment on Web server workload showed that the second-order

HMM can capture long-range dependence properties when the distribution of at least one state

is heavy tailed. As an extension of the HMM, higher-order HMM has attracted more attention

because of its capacity to a capture memory effect. It is suggested by Rydén, et al. [29] that

a HMM cannot described the stylized fact of the very slowly decay in autocorrelation of re-

turns. Bulla and Bulla [6] explored the goodness of fit of two WHMMs to daily return series

from 18 pan-European sector indices. Their analysis shows a significantly improved fit of the

autocorrelation and hence illustrates that the long-range dependence can be described better

by WHMM. In this chapter we consider a WHMM, in particular a second-order HMM, for

an asset allocation problem. As mentioned in Solberg [32], the real significance of WHMM
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is to establish that the Markov chain assumption is not really as restrictive as it first appears.

One is not limited to a dependence on just one prior time epoch but can make the dependency

extend to any finite number of prior epochs, thereby capturing more information from the past.

This, in turn, widens the literature on models that aim to reflect long-range dependence in fi-

nancial models. In the WHMM model the transition matrix between one state and the next

state is itself dependent on the information in the prior states. An nth-order Markov chain is

dependent on the prior n states. The higher the order, the more extended the dependency, and

therefore more information from the past can be reflected. Xi and Mamon [33] proposed a

WHMM for discrete-time continuous-range observations and provided a detailed implemen-

tation of the model to a financial dataset. Hess [19] considered conditional CAPM strategies

based on regime forecasts from an autoregressive Markov regime-switching behavior with lag

two. The improvement of the portfolio performance by using the proposed strategy is exam-

ined through in-sample and out-of-sample analyses. An application of higher-order Markovian

switching models for risk measurement is presented by Siu, et al. [31]. Another application of

WHMM, on option pricing can be found in Ching, et al. [9].

In this chapter, we investigate optimal investment strategies for asset allocation under a weak

Markov-switching framework. In particular, we assume the log returns of risky assets are mod-

ulated by a second-order multivariate Markov chain, whose current behavior depends on its

behavior at the previous two time steps. The states of the weak Markov chain are interpreted as

states of the economy. Compared to our previous research in [33], we extend the single-variate

WHMM to a multivariate case by modifying the Radon-Nikodým derivative. This extension

allows us to investigate the application of WHMM involving multiple financial series, such as

those occurring in asset allocation. We use the same asset allocation strategies from [16]. Com-

pared to their research, we relax the Markov assumption by increasing the first-order HMM to

second-order HMM. The filtering technique for WHMM is implemented on updated market

data, which includes the period of the subprime crisis. The numerical results show how a
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WHMM captures information during the crisis period and affects the strategy. The WHMM

has the advantage that it can capture the long-range dependence of the states of the market,

and therefore it is more appropriate when memories are evident in financial series. From the

investors’ view, tactical investment decisions require the the evaluation of the expected future

payoff on risky assets. More economic insights can be gained if relevant historical information

can be incorporated into the unobservable market state; this will be beneficial to investors from

both the economic and statistical perspectives. Although a higher-order Markov chain, more

specifically a Markov chain of order higher than two, leads to more information incorporated

in the HMM, the number of model parameters involved increases exponentially. Ching, et

al. [8] apply a higher-order multivariate HMM to a sequence of multivariate categorical data

and show that an nth-order, s-variate, N-state Markov chain model requires ns2N2 parameters.

To facilitate the dynamic estimation of this huge number of parameters, we use a transforma-

tion that converts a WHMM into a regular HMM thereby enabling the estimation algorithm to

perform smoothly. The transformation, which is essentially a mapping of states, is employed

to eventually recover the required number of parameters. Our asset allocation strategies rely

on the estimates of parameters and forecasted returns through the mathematical techniques of

WHMM’s.

This chapter is organized as follows. In section 4.2, we present the multidimensional WHMM

filtering and estimation techniques. WHMM filtering procedure is applied to the Russell 3000

value and growth indices data, whose logreturns are assumed to follow a normal distribution

with regime-switching dependent on two previous time epochs. The EM algorithm is then ap-

plied to obtain the online recursive estimates of the model parameters. In section 4.3, we utilize

the optimal estimates to forecast the two indices and conclude that a two-state WHMM is suf-

ficient to capture the characteristics of our data based on four error metrics. We investigate an

investment strategy switching between the Russell 3000 Value and Growth indices in section

4.4. The switching decision determined by the one-step ahead forecasts return of each index.
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In section 4.5, a mixed investment strategy is considered. The optimal weights of investment

between the two indices are obtained by solving a mean-variance problem under the regime-

switching setting. The estimation of the optimal weights incorporates the parameter estimates

as well as the states of a weak Markov chain. Portfolio performance is investigated in section

4.6, where we use three classical measures for benchmarking. Furthermore, a bootstrap analy-

sis is used to compare the stability of portfolios with various level of transaction costs. Section

4.7 concludes the chapter.

4.2 Filtering and parameter estimation

Let (Ω,F , P) be a complete probability space under which xk is a Markov chain with finite-

state space in discrete time (k = 0, 1, 2 . . .). To simplify the discussion and present a complete

characterization of the parameter estimation, we only consider a weak Markov chain of order

2. That is,

P(xk+1 = xk+1|x0 = x0, . . . , xk−1 = xk−1, xk = xk)

= P(xk+1 = xk+1|xk−1 = xk−1, xk = xk).

Without loss of generality, the N-state weak Markov chain takes value from the canonical basis

{e1, e2, . . . , eN} ⊂ R
N , where ei is the vector with unity in the ith element and zero elsewhere.

We interpret 〈xk, ei〉 as the event that the economy is in the state i at time k. Here 〈·, ·〉 denotes

the inner product in RN . The element almv, l,m, v ∈ 1, . . . ,N, of the transition probability ma-

trix A refers to the probability that the process enters state l given that the current state is the

mth state and the previous state was in v.

Instead of studying the weak Markov chain directly, we introduce a mapping ξ, to embed

the second-order Markov chain into the first-order Markov chain, and then apply the regular

filtering method. This idea is an analogy to the embedding of higher-order ODEs into systems
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of first-order ODEs and solving the system by regular methods, see Abell and Braslton [1].

The mapping ξ is defined by

ξ(er, es) = ers, for 1 ≤ r, s ≤ N,

where ers is an RN2
−unit vector with unity in its ((r − 1)N + s)th position. Note that

〈ξ(xk, xk−1), ers〉 = 〈xk, er〉〈xk−1, es〉

represents the identification of the new first-order Markov chain with the canonical basis. We

also define the new N2 × N2 transition probability matrix Π of the new Markov chain by

πi j =


almv if i = (l − 1)N + m, j = (m − 1)N + v

0 otherwise.

Note that at time k, each non-zero element πi j represents the probability

πi j = almv = P(xk = el|xk−1 = em, xk−2 = ev),

and each zero represents an impossible transition. It is known [31] that the new Markov chain

ξ(xk, xk−1) has a semi-martingale representation

ξ(xk, xk−1) = Πξ(xk−1, xk−2) + vk, (4.1)

where {vk}k≥1 is a sequence of RN2
martingale increments.

In a comprehensive monograph on HMM, MacDonald and Zucchini [22] devoted a section of

introducing WHMM and give a detailed example of transforming a second-order two-state

Markov chain into a regular two-state Markov chain. An efficient recursive algorithm for
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computing the likelihood from consecutive observations under a second-order HMM is given.

However, no application of the second-order WHMM MLE is given in this book. Du Preez, et

al. [27] developed a computing algorithm to reduce any higher-order HMM to a correspond-

ing first-order HMM. The algorithm is applied to language recognition. In contrast to their

research objectives, we focus on financial time series applications. In particular, we obtain the

reduced first-order HMM and estimate parameters of logreturns of asset prices.

Let yk = (y1
k , y

2
k , . . . , y

d
k) be a d-dimensional process. Each component yg

k , 1 ≤ g ≤ d, is the

sequence of log returns of an asset price with the dynamics

yg
k+1 = f g(xk) + σg(xk)z

g
k+1.

Here, each {zg
k} is a sequence of N(0, 1) IID random variables and independent of x. The func-

tion f g and σg are determined by the vectors fg = ( f g
1 , f g

2 , . . . , f g
N)> and σg = (σg

1, σ
g
2, . . . , σ

g
N)>

in RN , and f g(xk) = 〈fg, xk〉 and σg(xk) = 〈σg, xk〉 represent the mean and variance of yg
k , re-

spectively and > denotes the transpose of a matrix. Note that all components of the vector

observation process have the same underlying weak Markov chain. In this chapter, we do not

model the correlation among assets explicitly. However, the two asset prices are governed by

the same hidden WMC, and thus they are correlated implicitly. Actual filter with correct cor-

relation structure will presumably be better. So, one may view that this study is a lower bound

for the validity of a larger study.

It must be noted that we do not observe the underlying weak Markov chain from the financial

market directly. Under the real world measure P, the state xk is contained in the noisy obser-

vations yk, k ≥ 1. We aim to “filter” the noise out of the observations. By the Kolmogorov

Extension Theorem, there exists a reference probability measure P̄, under which the observa-

tion yk are multivariate N(0, 1) IID random variables and therefore P̄ is deemed to be an easier

measure to work with. The filters are derived under the reference measure. We perform a mea-
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sure change to construct the real-world measure P from the ideal-world measure P̄ by invoking

a discrete-time version of Girsanov’s theorem. Let φ(z) denote the probability density function

of a standard normal random variable z. For each component g, define

λ
g
l =

φ(σg(xl−1)−1(yg
l − f g(xl−1)))

σg(xl−1)φ(yg
l )

,

and the Radon-Nikodým derivative of P with respect to P̄, dP
dP̄ |Yk = Λk, is given by

Λk =

d∏
g=1

k∏
l=1

λ
g
l , k ≥ 1, Λ0 = 1.

To obtain the estimates of ξ(xk, xk−1) under the real world measure, we first perform all cal-

culations under the reference probability measure P̄. Then, Bayes’ theorem is employed to

relate the conditional expectation under two different measures. Note that we can also consider

another reference probability measure P̃ under which the yg
k are N(0, σ2), σ , 1. In that case,

we define

λ̃
g
l =

φ(σg(xl−1)−1(yg
l − f g(xl−1)))

φ(σg(xl−1)−1yg
l )

.

Based on our numerical experiment, since λ̃ is much larger than λ, the speed of convergence

with λ̃ is 10 steps slower than using λ.

Let us derive the conditional expectation of ξ(xk, xk−1) given Yk under P. Write

pi j
k = P(xk = ei, xk−1 = e j|Yk) = E[〈ξ(xk, xk−1), ei j〉|Yk], (4.2)

with pk = (p11
k , . . . , pi j

k , . . . , pNN
k ) ∈ RN2

. Using Bayes’ theorem, we have

pk = E[ξ(xk, xk−1)|Yk] =
Ē[Λkξ(xk, xk−1)|Yk]

Ē[Λk|Yk]
. (4.3)
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Defining qk = Ē[Λkξ(xk, xk−1)|Yk] and 1 = (1, . . . , 1)> ∈ RN2
, we see that

N∑
i, j

〈ξ(xk, xk−1), ei j〉 = 〈ξ(xk, xk−1), 1〉 = 1,

so that

〈qk, 1〉 = Ē[Λk〈ξ(xk, xk−1), 1〉|Yk] = Ē[Λk|Yk]. (4.4)

With equations (4.3) and (4.4), we get the explicit form of the conditional distribution

pk =
qk

〈qk, 1〉
.

Now, we need a recursive filter for the process qk in order to estimate the state process ξ(xk, xk−1).

Define the diagonal matrix Bk by

Bk =



b1
k

. . .

bN
k

. . .

b1
k

. . .

bN
k


, (4.5)

where

bi
k =

d∏
g=1

φ((yg
k − f g

i )/σg
i )

σ
g
i φ(yg

k)
. (4.6)

Notation: For any Yk-adapted process Xk, write X̂k = E[Xk|Yk] and γ(X)k = Ē[ΛkXk|Yk].

Again invoking Bayes’ theorem, we have

X̂k =
γ(X)k

Ē[Λk|Yk]
. (4.7)

To estimate the parameters of the model, recursive filters shall be derived for the following

processes:
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1. Jrst,the number of jumps from (es, et) to state er up to time k.

2. Ors
k , the occupation time of the weak Markov chain spent in state (er, es) up to time k,

3. Or
k, the occupation time spent by the weak Markov chain in state er up to time k,

4. T r
k(h), the level sum for the state er, where h is a function with the form h(y) = y or

h(y) = y2.

To obtain on-line estimates for the quantities of the above four related process, we shall take

advantage of the semi-martingale representation in (4.1) and result in (4.7). We can then ob-

tain recursive equations for the vector quantities Jrst
k ξ(xk, xk−1), Ors

k ξ(xk, xk−1), Or
kξ(xk, xk−1)

and T r
k(h)ξ(xk, xk−1). The recursive relation of these vector processes and qk under a multi-

dimensional observation set-up are given in the following proposition.

Proposition 4.2.1 Let Vr, 1 ≤ r ≤ N be an N2×N2 matrix such that the ((i−1)N +r)th column

of Vr is eir for i = 1 . . .N and zero elsewhere. If B is the diagonal matrix defined in equation

(4.5), then

qk+1 = Bk+1Πqk (4.8)

and

γ(Jrstξ(xk+1, xk))k+1 = Bk+1Πγ(Jrstξ(xk, xk−1))k

+ br
k+1〈Πest, ers〉〈qk, est〉ers, (4.9)

γ(Orsξ(xk+1, xk))k+1 = Bk+1Πγ(Orsξ(xk, xk−1))k

+ br
k+1〈qk, ers〉Πers, (4.10)

γ(Orξ(xk+1, xk))k+1 = Bk+1Πγ(Orξ(xk, xk−1))k

+ br
k+1VrΠqk, (4.11)

γ(T r(h)ξ(xk+1, xk))k+1 = Bk+1Πγ(T r(h)ξ(xk, xk−1))k

+ h(yg
k+1)br

k+1VrΠqk. (4.12)
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Proof See Appendices A and B for an analogous proof of each estimate under the single

observation setting.

Similar to equation (4.4), by summing the components, equations (4.9) to (4.12) give expres-

sions for γ(Jrst)k, γ(Ors)k, γ(Or)k and γ(T r(g))k.

Now we make use of the EM algorithm to estimate the optimal parameters. The calculation is

similar to the technique as in single observation set-up. The estimates are expressed in terms

of the recursions in equations (4.9)-(4.12), which are provided in the following proposition.

Proposition 4.2.2 Suppose the observation is d-dimensional and the set of parameters {ârst, f̂ g
r , σ̂

g
r }

determines the dynamics of yg
k , k ≥ 1, 1 ≤ g ≤ d, then the EM estimates for these parameters

are given by

ârst =
Ĵrst

k

Ôst
k

=
γ(Jrst)k

γ(Ost)k
, ∀ pairs (r, s), r , s, (4.13)

f̂ g
r =

T̂ r
k

Ôr
k

=
γ(T r(yg))k

γ(Or)k
, (4.14)

σ̂g
r =

√√
T̂ r((yg)2)k − 2 f̂ g

r T̂ r(yg)k + ( f̂ g
r )2Ôr

k

Ôr
k

. (4.15)

Proof See Appendix C for an analogous proof of each estimate under the single observation

setting.

Given the observation up to time k, new parameters ârst(k), f̂ g
r (k), σ̂g

r (k), 1 ≤ r, s, t ≤ N are

given by equations (4.13)-(4.15). The recursive filters for the unobserved Markov chain and the

related process in Proposition 4.2.1 can be re-evaluated using the new estimates. Consequently,

it allows the algorithm to update the parameters automatically.
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4.3 Forecasting indices

Suppose an investor wants to choose a portfolio with two investments to diversify his/her risk.

In order to have such diversification the two assets should act differently during different pe-

riods in the economic cycle. For example, growth and value stocks tend to perform well at

different times of the economic cycle, so switching between the classes at appropriate times

may add value. We apply the iterative procedure derived in the previous section to two weekly

datasets of stock indices: Russell 3000 growth and Russell 3000 value indices. The data were

recorded from June 1995 to December 2010; thus there are 783 data points in each dataset.

Both indices are constructed based on the Russell 3000 index, in which the underlying com-

panies are all incorporated in the U.S and representing approximately 98% of the investable

U.S. equity market. Companies within the Russell 3000 that exhibit higher price-to-book and

forecasted earnings are used to form the Russell 3000 growth index. This subindex therefore

measures the performance of the broad growth segment of the US equity market. The Russell

3000 value index includes Russell 3000 companies with lower price-to-book value and lower

forecasted growth values. Therefore the Russell 3000 value index measures the performance

of the value stocks in the US equity market.

The regime-switching models are developed to capture particular behavior of the evolution of

an asset price. We segregate the observation data into four intervals to investigate the index

values and returns. Tables 4.1-4.3 provide descriptive statistics of the Russell 3000 Index to-

gether with the growth- and value-subindices for the entire period as well as the subperiods.

The descriptive statistics demonstrate the possible segregation of the actual data into different

states according to the levels of mean and volatility. We find the subperiods characterized by

different levels of mean and volatility. For example, we can see that the log return yk has a

higher volatility when the mean is negative, and vice versa. If the data has only one state, the

model will collapse to one regime. As a result, the estimated parameters of each state will be

close to each other.
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Entire data 06/95-07/98 07/98-09/03 09/03-08/08 09/05/08-12/31/10
Max 0.1659 0.0669 0.1659 0.0429 0.1090
Min -0.1806 -0.0462 -0.1683 -0.0522 -0.1806
Median 0.0026 0.0052 0.0007 0.0012 0.0034
Mean 0.0010 0.0048 -0.0008 0.0009 0.0005
Std 0.0299 0.0196 0.0379 0.0184 0.0399
Skewness -0.4478 -0.0281 -0.0721 -0.3730 -0.8401
Kurtosis 5.0859 0.1581 2.6943 0.2936 3.7011

Table 4.1: Summary statistics of Russell 3000 growth returns

Entire data 06/95-07/98 07/98-09/03 09/03-08/08 09/05/08-12/31/10
Max 0.1381 0.0554 0.0719 0.0615 0.1381
Min -0.2167 -0.0551 -0.1162 -0.0609 -0.2167
Median 0.0025 0.0052 -0.0007 0.0028 0.0031
Mean 0.0011 0.0042 0.0001 0.0011 -0.0005
Std 0.0266 0.0168 0.0258 0.0187 0.0465
Skewness -0.8031 -0.2649 -0.2585 -0.4757 -0.7317
Kurtosis 8.1906 0.5851 1.6751 0.7746 4.0000

Table 4.2: Summary statistics of Russell 3000 value return

We consider the two indices as a two-dimensional observation process. The dynamics of the

log returns are given by

yRV
k+1 = log

RValue(k + 1)
RValue(k)

= f RV(xk) + σRV(xk)wRV
k+1

yRG
k+1 = log

RGrowth(k + 1)
RGrowth(k)

= f RG(xk) + σRG(xk)wRG
k+1

Entire data 06/95-07/98 07/98-09/03 09/03-08/08 09/05/08-12/31/10
Max 0.1204 0.0611 0.0995 0.1204 0.1204
Min -0.1986 -0.0507 -0.1267 -0.1986 -0.1986
Median 0.0024 0.0048 -0.0008 0.0038 0.0042
Mean 0.0012 0.0045 -0.0002 -0.0015 0.0000
Std 0.0272 0.0177 0.0302 0.0465 0.0426
Skewness -0.6741 -0.1051 -0.2204 -0.6765 -0.8040
Kurtosis 5.8949 0.2693 2.0180 2.9595 3.9150

Table 4.3: Summary statistics of Russell 3000 return
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where

fRV = ( f RV
1 , . . . , f RV

N ) ∈ RN , fRG = ( f RG
1 , . . . , f RG

N ) ∈ RN ,

σRV = (σRV
1 , . . . , σRV

N ) ∈ RN , σRG = (σRG
1 , . . . , σRG

N ) ∈ RN ,

are governed by the same WHMM x. Here, wRV
k and wRG

k are N(0, 1) IID random variables

independent of each other. The data are processed in batches of 10 observation points. At the

end of each pass through the data, f, σ, A and Π are updated with new estimates using the for-

mulas given in the previous section. These new estimates are in turn used as initial parameters

for the next pass. This means the parameters are updated roughly every two and a half months.

We process the data in batches in order to lower computational expenses. Furthermore, the use

of batches is consistent with the idea of suboptimal schemes; see page 15 of Elliott, et al. [13].

Investors can choose any length of a batch to update their information according to their needs.

In our numerical experiment, we find that updating parameters every two and half months is

sufficient to capture market information. While using batches with less numbers of data points

improves forecasting errors slightly, it does not lead to a better portfolio performance. Figure

4.1 displays the plot of the evolution of fRV , fRG, σRV , σRG and the transition matrix A under

the two-state WHMM setting.

The optimal investment strategy is developed based on the forecasts of index returns. To assess

the predictive performance of the model, we calculate the one-step ahead forecasts for both

indices through the following equations:

E[RValuek+1|Yk] = RValuek

N∑
i, j=1

〈pk, ei j〉 exp( f RV
i + (σRV

i )2/2) (4.16)

E[RGrowthk+1|Yk] = RGrowthk

N∑
i, j=1

〈pk, ei j〉 exp( f RG
i + (σRG

i )2/2). (4.17)

The left panel of Figure 4.2 depicts a comparison between the actual Russell 3000 growth and
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Figure 4.1: Evolution of parameter estimates under the 2-state setting
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Figure 4.2: Actual data and one-step ahead forecasts for Russell 3000 growth and value indices
(left), and zoom-in view for the period Jul 02 – Dec 05 (right)

value indices data and the one-step ahead forecasts. We can observe from the zoom-in view

(right panel) highlighting a period of over 3 years how close the forecasts are to the actual

data. We see that we have a reasonable prediction performance from both plots based on a

strong positive relation between actual indices and one-step ahead forecasts. Any diffusion-

type model will suggest that tomorrow’s level is close to today’s; the WHMM we present is

no exception. Note that the result of prediction in Figure 4.2 is similar to that of an AR(1)

process applied to the indices. This is because the 1-state WHMM is an AR(1)-process. As

regular AR(p) models are not able to describe the temporal properties, TP1 and TP2, in Rydén,

et al. [29], we assume WHMM can perform better in forecasting. In this study, the only fore-

casting performance we care about is to test how much better we can manage a portfolio using

WHMMs; This is not a purely classical econometrics exercise. Scatter plots for actual returns

versus one-step ahead forecast returns are shown in Figure 4.3. The plots form a circle pattern

centering at zero. This is consistent with the fact that even if the states could be forecasted with

greater accuracy, we will not get the correct sign of the return much more than half the time

because the volatility term is much higher than the drift term. In light of Figures 4.3, how can

we discern the usefulness of the WHMM? We need to examine the performance of an entire

strategy.

We also run the filtering algorithm with different number of states. To assess the goodness

of fit of the one-step ahead forecasts, we use four criteria: RMSE, AME, RAE and APE, for
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Figure 4.3: Actual returns and one-step ahead forecasts for returns of Russell 3000 growth
(left) and value (right) indices

1-state WHMM 2-state WHMM 3-state WHMM
RAE value 0.0966 0.0976 0.1044
APE value 0.0188 0.0192 0.0216
AME value 38.6423 39.0510 41.7675
RMSE value 54.4720 54.6768 56.7974
RAE growth 0.1159 0.1170 0.1241
APE growth 0.0215 0.0218 0.0241
AME growth 43.0295 43.4276 46.0558
RMSE growth 64.4588 64.7098 66.5664

Table 4.4: Error measures for one-step ahead forecasts under 1-, 2- and 3-state WHMM set-ups

N = 1, N = 2 and N = 3. The results of this error analysis are given in Table 4.4. The results

show that the two-state tends to outperform the three-state model in all forecasting metrics.

Although the one-state model has a slight improvement, the APE has smaller value under the

two-state model. We further adopt three information criteria, namely, the Akaike information

criterion (AIC), the small-sample-size corrected version of AIC (AICc) and Bayesian informa-

tion criterion (BIC) to measure the relative goodness of fit of a statistical model. Information

criteria offer a relative measure of lost information described by the trade-off between bias and
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variance in the model construction. The formulas of these information criteria are:

AIC = 2s − 2L(θ),

AICc = AIC +
2s(s + 1)
n − s − 1

,

BIC = slog(n) − 2L(θ),

where s is the number of parameters, n is the number of data points and L(θ) denotes the log-

likelihood function of the model. The preferred model is the one that gives the smallest criteria

value. For the vector observation process yk in each pass, the log-likelihood of the parameter

set θ is given by

L(θ) =

# in batch∑
l=1

d∑
i=1

N∑
r=1

〈xl−1, er〉

−1
2

log
(
2πσi(xl−1)2

)
−

(
yi

l − f i(xl−1)
)2

2σi(xl−1)2

 . (4.18)

The calculated values for the 1-, 2- and 3-state models after each algorithm step are presented

in Figure 4.4. Observe that the 1-state model produces the smallest AIC values except around

step 68 which is corresponding to the period of subprime crisis. This implies that the 1-state

model is not able to describe the market during the crisis period. Therefore, the error analysis

confirms the capability of the two-state WHMM in capturing the characteristics of the dataset.

4.4 A switching investment strategy

There are various asset allocation strategies that one can devise. Here we focus on a dynamic

asset allocation which assumes active changes to an investment based on short-term market

forecasts for returns. The switching strategy utilizes the forecasted risk-adjusted returns of

the indices as signals to switch investments between the Russell 3000 growth and Russell 3000

value index. The forecasted risk-adjusted return is calculated by dividing the forecasted returns

by the realized volatility of each index covering the previous 20 data points.
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We implement the switching strategy on a 15-year dataset recorded from June 1995 to Decem-

ber 2010. The observation data is divided into 15 intervals and each interval covers roughly

one year. We suppose a hypothetical starting investment of $100 and then apply the forecast-

ing method on the period considered. At the beginning of each interval, the signals from the

1-step ahead forecasted risk-adjusted return on both indices are compared. The full amount is

invested in the index with the higher forecasted risk-adjusted return. We also assume that the

transaction cost is a fixed percentage of total investment. When asset allocation changes, this

transaction cost is subtracted from total investment.

The overall performance of the switching strategy is compared with that of the pure investment

strategy on the basis of the log-return of the terminal wealth. Let XRG and XRV denote the

differences of log-returns from the switching and pure strategies, which are defined by

XRG
i = log

SWi

100
− log

RGi

100
(4.19)

XRV
i = log

SWi

100
− log

RVi

100
, (4.20)

for i = 1, 2, . . . , 15.Here, SWi denotes the terminal wealth of the portfolio with switching strat-

egy at the end of the ith interval. RGi and RVi denote the terminal wealth of the investment,

holding 100% of Russell 3000 growth index and Russell 3000 value index, respectively, at the

end of the ith interval. The portfolio performance under varying transaction costs from 5 basis

points (1bp=0.01%) to 70 bps is presented in Table 4.5. In addition, we present the performance

of both switching and pure indices strategies using the usual HMM forecasts. Our study shows

that the WHMM-based switching strategy has higher values in Mean(XRV) and Mean(XRG) than

those from HMM-based switching strategy yielding negative values. WHMM-based strategy

shows higher std(XRV) and lower std(XRG) than those based on HMM strategy. As we can ob-

serve, WHMM-based Mean(XRV) and Mean(XRG) are positive and slightly decrease as trans-

action cost increases. This means that on average the log return from the switching strategy is
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Transaction 5 bps 20 bps 50 bps 70 bps
Cost WHMM HMM WHMM HMM WHMM HMM WHMM HMM
Mean (XRG) % 3.9106 -0.6895 3.5163 -0.9281 2.7261 -1.4062 2.1979 -1.7258
Std (XRG) % 2.4102 6.7138 2.4701 6.5882 2.7086 6.3598 2.9403 6.2259
Mean (XRV ) % 11.2393 -9.5292 10.8450 -9.7677 10.0547 -10.2458 9.5266 -10.5654
Std (XRV ) % 18.4701 15.8552 18.2859 16.0045 17.9291 16.3117 17.7003 16.5226

Table 4.5: Performance comparison for WHMM- and HMM-based switching strategies with
varying transaction costs.
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Figure 4.5: Numbers of the intervals switching strategy has the highest and the second highest
terminal values for varying transaction cost

higher than that from the pure index investments. Compared with the pure growth and value

strategies, the WHMM switching strategy has either the highest or the second highest terminal

value in 15 intervals. Figure 4.5 displays number of the intervals in which switching strategy

has the highest and the second highest terminal values for transaction cost varying from 1bp

to 80bps. We observe, however, high values of std(XRV) and std(XRG), which indicate a high

risk of employing the switching strategy. We next introduce a mixed strategy to address the

diversification of risks.
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4.5 A mixed investment strategy

Selecting an investment strategy is similar to the asset allocation decision problem in that one

tries to maximize strategy return while controlling portfolio risk. The risk is evaluated in terms

of the variance of the portfolio’s return. The mean-variance problem entails maximizing the

expected portfolio’s return and minimizing the variance of the portfolio’s return. In this section,

we investigate a mixed asset allocation strategy on two assets whose dynamics are modulated

by WHMM. With this strategy investors determine the optimal weight of each asset to allocate

based on the estimated parameters and the state of the weak Markov chain. The development

here follows the applications of results in Erlwein, et al. [16] and Elliott and van der Hoek [15].

Suppose an investor is guided by an optimization equation MV, which is a linear combination

of the expected portfolio’s return and variance of the portfolio’s return. Let w = (wg,wv) denote

the weight of Russell 3000 growth and value indices, respectively. To solve this mean-variance

problem, we wish to estimate the optimal w which maximizes the function

MV(w) = vE[wgyRG
k+1 + wvyRV

k+1|Yk] − Var[wgyRG
k+1 + wvyRV

k+1|Yk],

where yRG and yRV are the logreturns of Russell 3000 growth and value indices, and v is a non-

negative risk aversion factor. The optimal weights are given in the following proposition.

Proposition 4.5.1 Let v > 0 be the risk aversion factor. Suppose that neither short selling nor

borrowing is allowed. Strictly speaking, since we have to rebalance the portfolio every year

using the filters, w is time-dependent. The optimal weight wg is given by

wg =



v(〈fRG ,x̂k〉−〈fRV ,x̂k〉)+2〈σRV ,x̂k〉
2

2(〈σRG ,x̂k〉2+〈σRV ,x̂k〉2) when −2〈σRV , x̂k〉
2 < v(〈fRG, x̂k〉 − 〈fRV , x̂k〉)

< 2〈σRG, x̂k〉
2

1 when v(〈fRG, x̂k〉 − 〈fRV , x̂k〉) > 2〈σRG, x̂k〉
2

0 when v(〈fRG, x̂k〉 − 〈fRV , x̂k〉) < −2〈σRV , x̂k〉
2

,
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and the optimal weight wv is given by wv = 1 − wg.

Proof See [16] for proof.

It has to be emphasized that, the optimal weight depends on the state of the embedded MC

ξ(xk, xk−1) by noting that

〈x̂k, er〉 =

N∑
i=1

E[〈ξ(xk, xk−1), eri〉|Yk], for r = 1 . . .N,

where eri = ξ(er, ei).

Note that the weights belong to the interval [0, 1] since neither short selling nor borrowing is

allowed. Similar to the previous section, we divide the observation data into 15 intervals. For

each interval, the optimal weights are calculated for each time k utilizing the optimal parame-

ters and the estimated states of the weak Markov chain. Investors can allocate investment using

different parameter updating frequencies depending on their goal. To achieve consistency in

comparison with the switching and pure index strategies, the weights employed for each index

is updated at the beginning of each interval. Transaction costs will also be considered. To

gauge the strategy performance, we shall focus on the terminal value of the portfolio.

Figure 4.6 exhibits a plot of optimal weights for Russell 3000 growth and value indices. The

risk aversion factor v is a scaling constant which is chosen by the investor. Here, we allow this

factor to vary from v = 0 (totally avoiding risk) to v = 5 (seeking some risk). The evolution

of optimal weights for Russell 3000 growth index with different values of v is shown in Figure

4.7. When v is small, the investor is relatively conservative. The switching of market’s regime

has less impact on his/her asset allocation as can be viewed from the stable variation of weights

for the Russell 3000 growth index. The investor with higher v appears to aggressively react to

market regime switching. In the left panel of Figure 4.2, we see that there are roughly two dif-

ferent states: Russell 3000 growth index has higher risk than the value index before September

2001 and it has lower risk after that. Consequently, the weight to allocate in growth index is
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Figure 4.6: Optimal weights for Russell 3000 value and growth indices in the WHMM-based
mixed strategy with v = 0.08
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Figure 4.7: Evolution of optimal weights for Russell 3000 growth index in the WHMM-based
mixed strategy with varying v’s
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Transaction 5 bps 20 bps 50 bps 70 bps
Cost WHMM HMM WHMM HMM WHMM HMM WHMM HMM
Mean (XRG) % 4.5606 2.9287 3.5750 1.8686 1.5993 -0.2564 0.2789 -1.6767
Std (XRG) % 10.664 11.8866 10.3087 11.5399 9.7089 10.9647 9.4039 10.6797
Mean (XRV ) % -2.7680 -5.9108 -3.7536 -6.9710 -5.7292 -9.0960 -7.0497 -10.5163
Std (XRV ) % 8.5098 7.6077 8.9849 8.1914 10.0169 9.4298 10.7537 10.2950

Table 4.6: Performance comparison between WHMM- and HMM-based mixed strategies with
varying transaction costs.

higher than 0.5 before this time and it drops below 0.5 when the index has less uncertainty.

Table 4.6 shows the overall performance of the mixed strategy, which is compared with the

pure growth and pure value strategies with v = 0.08, obtained though the analogue formulas of

(4.19) and (4.20). The standard deviations of the differences of returns, std(XRG) and std(XRV),

are lower than that of using switching strategy as we expected. Mean(XRG) and Mean(XRV)

decrease as transaction cost increases. Compared to the mixed strategy based on the forecasts

under the usual HMM framework, the WHMM-based mixed strategy produces higher values

in both mean and standard deviation. The WHMM setting certainly carries more opportunities

to explore the trade off between expected return and risk, which means higher risk may lead to

higher return.

Figure 4.8 presents the evolution of investment under the switching, mixed and pure index

strategies. Each subplot covers three years of data. We can see that based on the value of

the investments, the mixed strategy does not always outperform other strategies. It is not

straightforward to establish from the plots which strategy is the best. We shall then evaluate

the portfolio performance through some classical measures in investment.

4.6 Evaluating the portfolio performance

In this section, we carry out performance comparisons among portfolio allocation strategies

developed in the previous sections using historical data and simulated data. We evaluate the
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Figure 4.8: Switching, mixed, pure growth and pure value strategies comparison between 1995
and 2010



Chapter 4 88

Switching Mixed Pure Russell Pure Russell Pure Russell
Period strategy strategy 3000 value 3000 growth 3000 index
1 0.2164 0.2016 0.1645 0.2164 0.2020
2 0.2254 0.2178 0.2254 0.2020 0.2177
3 -0.0083 -0.0298 -0.0523 -0.0083 -0.0292
4 0.0999 0.1485 0.0999 0.1699 0.1491
5 0.0141 0.0095 0.0141 0.0058 0.0184
6 -0.0751 -0.1347 -0.0751 -0.1652 -0.1360
7 -0.1488 -0.1930 -0.1488 -0.2394 -0.1984
8 0.1252 0.1304 0.1252 0.1331 0.1311
9 0.0206 -0.0393 0.0206 -0.1104 -0.0475
10 0.0701 0.0630 0.0555 0.0701 0.0633
11 0.0976 0.0701 0.0976 0.0346 0.0653
12 -0.0839 -0.1471 -0.1904 -0.0839 -0.1405
13 -0.1293 -0.1294 -0.1293 -0.1264 -0.1292
14 0.0259 0.0243 0.0259 0.0219 0.0241
15 0.6620 0.5511 0.4190 0.6620 0.5581

Mean 0.0741 0.0495 0.0435 0.0521 0.0499
(4.96 × 10−4) (4.74 × 10−4) (3.92 × 10−4) (5.42 × 10−4) (4.7 × 10−4)

Std 0.1976 0.1890 0.1577 0.2168 0.1906
(5.99 × 10−4) (4.46 × 10−4) (3.10 × 10−4) (5.82 × 10−4) (4.50 × 10−4)

Mean/Std 0.3751 0.2622 0.2755 0.2405 0.2618
(2.24 × 10−3) (2.55 × 10−3) (2.66 × 10−3) (2.53 × 10−3) (2.50 × 10−3)

Table 4.7: Sharpe ratio for five investment strategies using 15 intervals. Numbers inside the
parentheses are standard errors.

portfolio performance through a benchmark. In this case, the Russell 3000 index is a natu-

ral benchmark since both the Russell 3000 growth and value indices are its subindices. The

comparison of four portfolios with the benchmark is made using three classical measures on

returns; these are the Sharpe ratio, Jensen’s alpha and the appraisal ratio.

The first measure is the Sharpe ratio, denoted by SR, and

SR =
E[Rportfolio − Rriskfree]√
Var(Rportfolio − Rriskfree)

,

where Rriskfree is the risk-free interest rate (downloaded from the Federal Reserve board web-

site). This SR is used to characterize how well the return of an asset compensates the investors
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for the risk taken. The higher the Sharpe ratio the higher is the return with the same level of

risk. In Table 4.7, we tabulate the Sharpe ratio of five investment strategies using the dataset

divided into 15 intervals. Note that the switching strategy has the same Sharpe ratio with that of

one of either pure value or pure growth strategy. At the beginning of each interval, the switch-

ing strategy allocates to one of the subindices with a number of shares depending on the value

of the switching investment and the chosen index at previous time step. Hence, the switch-

ing portfolio and the chosen subindex have the same return in one interval. Such similarity is

also true in other measures since all the calculations are based on the returns. The differences

among the strategies are small. Out of the 15 intervals, the switching strategy shows a better

performance than the benchmark in 11 intervals and the mixed strategy outperforms the bench-

mark in 6 intervals. Both the WHMM switching and WHMM mixed strategies have higher

risk-adjusted mean than the benchmark. In particular, the switching strategy shows the highest

risk-adjusted mean in all of the strategies.

We calculate Jensen’s alpha, which is often used to measure the abnormal return of a portfolio

over the expected return. This is denoted by αJ and it is the constant in the regression model,

αJ = Rportfolio − [Rriskfree − βportfolio(Rbenchmark − Rriskfree)].

A positive alpha indicates the portfolio has a higher marginal return. Table 4.8 shows the

Jensen’s alpha for four allocation strategies. Although the differences among the values of α

are very small, there are 11 and 5 positive α’s out of 15 for the switching and mixed strategies,

respectively. It indicates the marginal returns in these periods are higher than that of the bench-

mark.

Finally, we consider Treynor and Black’s appraisal ratio (AR), also known as the information
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Switching Mixed Pure Russell Pure Russell
Period Strategy Strategy 3000 Value 3000 Growth

(×10−4) (×10−4) (×10−4) (×10−4)
1 1.2306 -0.0417 1.230 -1.3637 6
2 3.6729 0.0300 -3.7262 3.6729
3 4.0153 -0.1148 4.0153 -4.3166
4 -5.6901 -0.0249 5.0587 -5.6901
5 6.1203 -2.5431 -10.2510 6.1203
6 17.7209 0.8786 -21.5255 17.7209
7 12.7347 1.5509 -14.0599 12.7347
8 -0.1632 -0.0380 0.1686 -0.1632
9 11.3998 1.4556 -12.270 11.3998 7
10 1.8036 -0.1018 1.8036 -1.5748
11 6.3168 0.9435 -6.3031 6.3168
12 13.8661 -1.7868 13.8661 -14.7742
13 -2.1714 -0.2851 1.9350 -2.1714
14 -0.4850 -0.0225 0.5308 -0.4850
15 18.0944 -0.9831 18.0944 -18.4459

Mean 5.8977 -0.0722 -1.4289 0.5987
(0.0183) (0.0028) (0.0261) (0.0245)

Std 7.3348 1.0969 10.3850 9.6750
(0.0099) (0.0022) (0.0182) (0.0169)

Mean/Std 8040.7842 -658.2883 -1375.9094 618.8129
(26.1277) (28.2625) (28.1958) (28.4250)

Table 4.8: Jensen’s alpha for four investment strategies using 15 intervals. Numbers inside the
parentheses are standard errors.
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Switching Mixed Pure Russell Pure Russell
Period Strategy Strategy 3000 Value 3000 Growth
1 0.1539 -0.1761 -0.1571 0.1539
2 -0.0239 -0.0252 -0.0239 0.0233
3 0.0863 -0.1354 -0.0921 0.0863
4 -0.1729 -0.0946 -0.1729 0.1781
5 -0.0130 -0.2037 -0.0130 -0.0227
6 0.1810 0.1199 0.1810 -0.1746
7 0.2562 0.1838 0.2562 -0.2658
8 -0.0528 -0.0547 -0.0528 0.0529
9 0.3399 0.3356 0.3399 -0.3478
10 0.0251 -0.0042 -0.0206 0.0251
11 0.1213 0.1122 0.1213 -0.1222
12 0.3355 -0.3366 -0.3338 0.3355
13 -0.0718 -0.0686 -0.0718 0.0703
14 0.0260 0.0307 0.0260 -0.0250
15 0.3435 -0.3505 -0.3388 0.3435

Mean 0.1023 -0.0445 -0.0235 0.0207
(4.03 × 10−4) (4.66 × 10−4) (4.88 × 10−4) (4.90 × 10−4)

Std 0.1633 0.1869 0.1926 0.1953
(2.14 × 10−4) (3.19 × 10−4) (3.17 × 10−4) (3.27 × 10−4)

Mean/Std 0.6263 -0.2381 -0.1220 0.1060
(27.1 × 10−4) (29.41 × 10−4) (29.01 × 10−4) (28.63 × 10−4)

Table 4.9: AR for four investment strategies using 15 intervals. Numbers inside the parentheses
are standard errors.
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ratio. It is defined as the ratio between relative return and the relative risk and is given by

AR =
E[Rportfolio − Rbenchmark]√
Var(Rportfolio − Rbenchmark)

.

The formula is very similar to the Sharpe ratio. Whereas the Sharpe ratio measures return

relative to a riskless asset, the AR looks at returns relative to a risky benchmark. The higher the

AR, the higher is the active return of the portfolio given the same risk level. Table 4.9 reports

the AR of four investment strategies. The switching strategy outperforms the mixed strategy

in 11 intervals. In particular, we have the highest mean and lowest standard deviation under

this measure. We observe higher mean for switching strategy in each performance measure.

A t-test is carried out to assess whether the means of portfolio under various performance

measures are statistically different. In order to run a t-test, each of the two data means sets being

compared should follow a normal distribution. Table 4.10 presents the p-values for the Jarque-

Bera normality test for the portfolio measures. The p-value for Jensen’s alpha and Appraisal

ratio of all portfolios are high which suggests there is not sufficient evidence to indicate that

these data sets are coming from a non-normal distribution. Moreover, at 0.05 significance level,

we can reject the null hypothesis that under the Sharpe ratio, the data on switching, mixed, pure

growth and pure index strategies are from normal distribution. We test the difference between

each pair of portfolios for the two measures. Table 4.11 shows the p-value for a one-tailed

paired t-tests of significance assuming unequal variances. Comparing the switching and mixed

strategies, the p-values in the first column are very small. This tells us that the difference in

means under these performance measures of these two strategies is highly significant. The

same can be said for the comparison of switching and pure growth strategies. Comparing the

mixed and the pure value strategies, the p-values are large so that we cannot reject the null

hypothesis, i.e., we cannot reject that the two means are equal. Similar conclusion can be made

when we compare the mixed and pure growth strategies. Moreover, the switching strategy has

the best performance for the period considered. In addition to the t-test, we use the Wilcoxon
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Switching Mixed Pure Russell Pure Russell Pure Russell
strategy strategy Value Growth Index

Sharpe Ratio 0.0026 0.0350 0.3136 0.0111 0.0322
Jensen’s Alpha 0.4092 0.3608 0.5000 0.5000 -
Appraisal Ratio 0.4929 0.5000 0.5000 0.5000 -

Table 4.10: p-values for the Jarque-Bera test of normality on data given in Tables 4.7 - 4.9

Switching vs Switching vs Switching vs Mixed vs Mixed vs
Mixed Pure growth Pure value Pure growth Pure value

Jensen’s alpha 0.0035 0.0174 0.0515 0.3113 0.3967
Appraisal ratio 0.0149 0.1127 0.0321 0.1791 0.3821

Table 4.11: p-values for a one-tailed significance test on the performance results shown in
Tables 4.8 - 4.9

rank sum test for the significance of the differences, and the p-values are reported in Table 4.12.

Wilcoxon test does not rely on the normality assumption and so it complements our use of the

t-test. The results suggest that the Jensen’s alpha and Appraisal ratio for switching strategy are

significantly different from that of mixed strategy. It is consistent with the results from t-test.

Next, we give a simulation analysis in conjunction with the three portfolio measures.

We are interested in the statistical inference of the above portfolio measures for each portfolio

strategy. The bootstrap is a way of finding the sampling distribution from one sample path.

Introduced by Efron and Tibshirani [12], it is a technique allowing estimation of the sample

distribution of almost any statistic. This method can be implemented when the sample could be

assumed to be drawn from an independent and identically distributed population. The bootstrap

method constructs a number of resamples of the observation datasets with equal size by random

sampling with replacement from the original dataset. The datasets used for the bootstrapping

Switching vs Switching vs Switching vs Mixed vs Mixed vs
Mixed Pure growth Pure value Pure growth Pure value

Sharpe Ratio 0.6935 0.6934 0.8681 0.9835 0.9669
Jensen’s alpha 0.0161 0.0648 0.1054 0.6187 0.6783
Appraisal ratio 0.0344 0.2899 0.0742 0.2998 0.6783

Table 4.12: p-values for a Wilcoxon rank sum test on the performance results shown in Tables
4.7 - 4.9
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are the Russell 3000 index, the growth subindex and the value subindex. Each of the original

datasets contains 784 data points. The procedure of the simulation is as follows:

1. We divide the datasets into 16 intervals and each interval contains 49 weeks.

2. A resample is created by repeatedly sampling with replacement from these 16 intervals.

This means that we randomly pick one interval for the resample path and put the interval

back for drawing again. As a result, any interval can be drawn more than once, or not at

all. The resample has the same size as the original data.

3. The three measures are calculated for the new resample path.

The construction is repeated 10,000 times and the statistics of the three classical measures are

obtained. Table 4.13 shows the statistics of the portfolios, Sharpe ratio, Jensen’s alpha and

AR with a transaction cost amounting to 5bps. Table 4.14 presents the same analysis with

transaction cost of 30bps. When 5 bps transaction costs are introduced, the WHMM switching

and mixed strategies generate higher mean Sharpe ratio and AR from the 10,000 bootstrap

sample paths than those from other strategies. Only the pure growth strategy leads to a negative

mean in the Jensen’s alpha measure. The standard deviation of switching strategy from the

bootstrapped samples is higher than that in the mixed strategy in all cases. The estimated 95%

confidence intervals for the mixed strategy are smaller than those in the switching strategy.

Apparently, the WHMM mixed strategy is more stable than the WHMM switching strategy in

terms of the standard deviation and 95% confidence interval under the 5bps transaction cost. A

comparison of the mean and variance of the portfolio returns is also presented. The switching

strategy outperforms other strategies with the highest variance nonetheless. On the other hand,

the pure Russell 3000 index strategy has the lowest variance, but the 95% confidence interval is

bigger than those in both WHMM strategies. It indicates that both WHMM strategies are more

stable than the benchmark in terms of the confidence interval. When transaction costs are set to

30 bps, the switching strategy produces the highest mean in all cases. Since the mixed strategy

is the most costly strategy, it has a lower mean than pure value strategy under all measures.
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Sharpe ratio Mean (×10−2) Std (×10−2) 95% Con.Int. (×10−2)
Switching 3.1617 0.1711 [3.1498 3.1737]
Mixed 2.8455 0.1321 [2.8363 2.8548]
Pure Value 2.8137 0.1430 [2.8038 2.8238]
Pure Growth 1.7502 0.0829 [1.7445 1.7561]
Pure Index 2.2978 0.1056 [2.2904 2.3052]

Jensen’s α Mean (×10−3) Std (×10−3) 95% Con.Int. (×10−3)
Switching 0.4037 0.0607 [0.3995 0.4080]
Mixed 0.2259 0.0483 [0.2225 0.2293]
Pure Value 0.2673 0.0370 [0.2647 0.2699]
Pure Growth -0.0430 0.0506 [-0.0465 -0.0395]

AR Mean (×10−3) Std (×10−3) 95% Con.Int. (×10−3)
Switching 1.4270 0.4287 [1.3970 1.4570]
Mixed -2.3559 0.3149 [-2.3779 -2.3338]
Pure Value -7.0522 0.5095 [-7.0879 -7.0165]
Pure Growth -6.2734 0.3956 [-6.3010 -6.2457]

Mean & Std return Mean (×10−3) Std (×10−3) 95% Con.Int. (×10−3)
Switching 0.9250 0.0429 [0.9220 0.9280]
Mixed 0.8682 0.0244 [0.8665 0.8699]
Pure Value 0.7770 0.0065 [0.7765 0.7774]
Pure Growth 0.7829 0.0074 [0.7824 0.7834]
Pure Index 0.8967 0.0051 [0.8964 0.8971]

Table 4.13: Performance evaluation for 10000 bootstrapped datasets with 5bps transaction cost

However, it still has positive means in both Jensen’s alpha and AR measures. Both WHMM-

based strategies outperform the benchmark with 30 bps transaction cost in terms of higher

Sharpe ratio, positive Jensen’s alpha and positive AR. The switching strategy is the most risky

judging the standard deviation of the measures. The mixed strategy shows a lower variance

than the pure sub-indices strategies in Sharpe ratio and Jensen’s alpha, and a lower variance

than the pure growth strategy in the AR. Furthermore, the smaller 95% confidence interval of

mixed strategy indicates that it is more stable than the switching strategy in the case of 30bps

transaction cost. Therefore, we could conclude that the WHMM switching strategy gives a

higher mean return, however the WHMM mixed strategy is less risky and more stable.
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Sharpe Ratio Mean (×10−2) Std (×10−2) 95% Con.Int. (×10−2)
Switching 3.7352 0.3169 [3.7130 3.7574]
Mixed 2.4876 0.1220 [2.4791 2.4962]
Pure Value 2.8781 0.1380 [2.8684 2.8877]
Pure Growth 1.5679 0.1173 [1.5597 1.5761]
Pure Index 2.1326 0.1176 [2.1244 2.1408]

Jensen’s α Mean (×10−3) Std (×10−3) 95% Con.Int. (×10−3)
Switching 5.0273 0.7980 [4.9714 5.0832]
Mixed 1.6992 0.5069 [1.6637 1.7347]
Pure Value 2.6856 0.4149 [2.6565 2.7146]
Pure Growth -0.2362 0.5838 [-0.2770 -0.1953]

AR Mean (×10−3) Std (×10−3) 95% Con.Int. (×10−3)
Switching 7.5903 0.8554 [7.5304 7.6501]
Mixed 1.3412 0.3479 [1.3169 1.3656]
Pure Value 3.4708 0.2721 [3.4517 3.4898]
Pure Growth -5.8516 0.5834 [-5.8925 -5.8108]

Mean & Std return Mean (×10−3) Std (×10−3) 95% Con.Int. (×10−3)
Switching 1.0447 0.0673 [1.0400 1.0494]
Mixed 0.7382 0.0193 [0.7369 0.7396]
Pure Value 0.7669 0.0058 [0.7665 0.7674]
Pure Growth 0.6304 0.0108 [0.6297 0.6312]
Pure Index 0.7236 0.0070 [0.7231 0.7241]

Table 4.14: Performance evaluation for 10000 bootstrapped datasets with 30bps transaction
cost
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4.7 Conclusion

Asset allocation strategies for growth and value stocks under a weak hidden Markovian regime-

switching setting are examined. We suppose that the mean and volatilities of the price indices

returns are modulated by a discrete-time multivariate WHMM process. Recursive optimal es-

timates by filtering multidimensional observations are given for the state and various processes

related to the underlying second-order Markov chain. The parameters of the model, includ-

ing the transition probabilities, the drift and the variance parameters in the multidimensional

observations, can be re-estimated and the forecasts can be obtained using the estimates. We

investigated two investment strategies: a switching strategy and a mixed strategy, using the

weekly Russell 3000 growth and value indices data from 1995 to 2010. The switching strategy

made use of the one-step ahead forecasted return for both indices and invested into the index

with higher risk-adjusted forecasted return for each time interval. The mixed strategy lead to a

mean-variance optimization problem, in which the optimal weights for each index were calcu-

lated using the estimated drifts and variance.

We compared both WHMM strategies with the HMM-based approach. For certain levels of

transaction costs, the WHMM-based strategies outperform the HMM-based strategies in terms

of the higher differences of log-return between the tested strategy and the pure strategies. The

WHMM switching strategy never gives the worst performance in the time interval considered.

The evolution of the optimal weights represents the investors’ reaction to regime-switching in

the market. And thus the mixed strategy has a lower variance of the return. Performance com-

parisons of the four portfolio strategies with the benchmark using Sharpe ratio, Jensen’s alpha

and AR were presented. When compared to the benchmark, which is the pure Russell 3000

index strategy, both WHMM strategies have higher risk-adjusted return. The switching strat-

egy has higher marginal and relative returns than the benchmark. Furthermore, the bootstrap

analysis with different transaction costs demonstrates that with 5 bps transaction cost, both

WHMM-based strategies have higher return and are more stable than the benchmark in terms
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of higher values in the performance measures and smaller confidence intervals. In the case

of 30 bps transaction costs, the WHMM strategies still have higher returns, but the switching

strategy is less stable and the mixed strategy is more stable than the benchmark.
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Chapter 5

Yield curve modeling using a multivariate

higher-order HMM

5.1 Introduction

This chapter considers the application of a higher-order Markov chain to the modeling of the

term structure of interest rates. This is a further application of the theoretical developments

in chapter 4. However, instead of considering a bivariate series with emphasis on investment

strategies, the application here is centered on a multivariate series of yields and an error analy-

sis is extended to a multidimensional WHMM setting.

Interest rate modeling is a central consideration in financial markets given its fundamental

importance in pricing, risk management and investment. Classical models for the short-term

interest rate, such as those proposed by Merton [23], Vasicek [30], Cox, et al. [5], and Hull

and White [16], assume deterministic parameters. However, we all know that the economy and

market are subjected to dynamic, and in some cases, significant changes. Such changes have

substantial impact on the evolution of interest rates. Research works in recent years focus on

the development of appropriate quantitative models suited for time-varying model parameters

to accurately capture the behavior of various financial variables and economic indicators. The
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introduction of regime-switching models provided some ways of incorporating the impact of

market and economic changes on interest rates. Hamilton’s works (cf. [13]) set forth the impe-

tus for the construction of regime-switching-based methods in the modeling of non-stationary

time series. Under such methods, values of the model parameters at a particular moment de-

pends on the state of an underlying Markov chain at that moment. A study by Smith [27] found

evidence that volatility depends on the level of the short rate and supports Markov-switching

model over a stochastic volatility model. Landen [18] developed an HMM framework for

the short-term interest rates, in which the mean and variance are governed by an underlying

Markov process. In practice, the underlying state of the market and volatilities are unobserv-

able and so parameter estimation for these Markov-switching models presents some challenges

both from the practical and mathematical standpoints.

In a comprehensive work, Elliott, et al. [9] provided recursive self-updating estimates for the

Markov chain as well as the model drift and diffusion parameters modulated by the same

Markov chain. Elliott, et al. [10] proposed a multivariate HMM for the short rate process

and HMM filtering techniques are employed in their implementation. Erlwein and Mamon

[11] considered a Hull-White interest rate model in which the interest rate’s volatility, mean-

reverting level and speed of mean-reversion are all governed by a Markov chain in discrete

time. The HMM filters are derived and implemented on a financial dataset. Their analysis of

prediction errors together with the aid of the Akaike information criterion shows that a two-

regime model is sufficient to describe the interest rate dynamics in their study. More recent

developments on regime-switching literature focus on extending various commonly known

models. Hunt and Devolder [17] studied an extension of the Ho and Lee model under a semi-

Markov regime-switching framework, and an application of their proposed extension to the

pricing of European bond options was given. Zhou and Mamon [32] investigated the Vasicek,

CIR and Black-Karasinski models with the parameters of the short rate being modulated by

a finite-state Markov chain in discrete time. A quasi-maximum likelihood method is utilized
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to estimate model parameters and implementation of their algorithms was carried out on the

Canadian yield rates.

Some recent studies examine the integration of regime-switching models with other modeling

approaches to obtain a richer methodology. A four-state model to capture rate dynamics in

the US spot and forward rate markets was proposed by Guidolin and Timmermann [12]; their

out-of-sample forecasting exercise show evidence that, at short horizons, combining regime-

switching forecasts with simpler univariate time-series forecasts can help reduce the root mean

squared forecast errors. Meligkotsidou and Dellaportas [22] adopted a Bayesian forecasting

methodology of discrete-time finite state-space HMM with non-constant transition matrix in

modeling monthly data on rates of return series; the results of their Markov chain Monte Carlo

algorithms indicate that nonhomogeneous HMMs improve the predictive ability of the model

when compared against a standard homogeneous HMM.

Other papers on regime-switching models advance new approaches in detecting further evi-

dence of regime shifts in the market. Startz and Tsang [29] constructed an unobserved com-

ponent model in which the short-term interest rate is composed of a stochastic trend and a

stationary cycle; results from their model-based measures suggest that allowing for regime

switching in shock variances improves model performance. Audrino and Mederos [1] pro-

posed a smooth transition tree model that combines regression trees and GARCH models to

describe regime switches in the short-term interest rate series; their empirical results provide

evidence of the power of the model in forecasting the conditional mean and variance. Utilizing

an adapted unit-root test, Holmes, et al. [15] found evidence that Australian and New Zealand

interest rates can switch between regimes characterized by differences in mean, variance and

persistence.

For a review of models of term structure of interest rates under regime-switching setting, in-

cluding earlier regime-switching models of short-term interest rate in discrete time, and recent
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Markov-switching models in continuous-time, refer to Nieh, et al. [24]. Whist the original

HMM can reasonably model the impact of structural changes in the financial time series, there

is a need to also develop quantitative models that are able to capture time series memory. Pro-

cesses with long-memory characteristics have stronger coupling between values at different

times than that of short-memory processes, and they can be described by heavy-tailed distribu-

tions. Mandelbrot [20] demonstrated applications of stochastic processes with long memory in

economics and finance. Cajueiro and Tabak [2, 3] showed evidence of long-range dependence

in the LIBOR and US interest rates. McCarthy, et al. [21] probed the presence of long memory

in corporate bond yield spreads and found strong evidence that such presence exists. Numerous

studies have developed stochastic models to capture the long-range dependence property in fi-

nancial time series. Maheu [19] concluded that GARCH models can capture the long-memory

property in volatility of financial prices under some circumstances. Dajcman [6] proposed

an autoregressive fractionally integrated moving average (AFIMA) model for eight European

stock market returns. Duan and Jacob [8] suggested that inclusion of long-range dependence

in their model improves significantly model fitting performance on real interest rate data. It

seems, however, that the existing literature on long-memory property of time series mainly

concentrates on single-state stochastic models.

This chapter contributes to the widening of literature on the development of models that are

able to capture not only regime-switching but also short- or long-term dependence in the HMM

that modulates regime switches. We put forward a WHMM to model the movement of the term

structure of interest rates. As Solberg [28] pointed out, the real significance of WHMM is to

rectify the weakness of the usual HMM. In certain instances, HMM’s memoryless property

seems unwarranted for many stochastic processes observed in real-life applications. WHMM

generalizes HMM and therefore, the memoryless property implied by the Markov assumption

is not really as restrictive as it first appears. By using WHMM, the probability of current state

does not depend on just one prior time epoch but on any finite number of prior epochs, and
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so more information from the past is taken into account. The higher-order Markov chain and

its applications in finance have been investigated by a number of authors, and these include,

among others, Xi and Mamon [31] for returns of risky assets; Siu, et al. [26] for risk measure-

ment; Ching, et al. [4] for exotic option pricing, and Siu, et al. [25] for spot rates and credit

ratings.

In this chapter, we consider a multivariate WHMM for the evolution of the term structure of in-

terest rates. Extending the formulation in [10], the short term rate can be rewritten as a function

of a discrete-time WMC. We assume that the drift and diffusion terms of the yield values are

governed by a second-order multivariate Markov chain. The states of the WMC are associated

with the states of the market, whose current behavior depends on the behavior at the previous

two time steps. We utilize a transformation that converts a WHMM into a regular HMM al-

lowing us to apply the usual HMM estimation algorithm.

The remainder of this chapter is organized as follows. Section 5.2 describes the formulation

of the multivariate modeling framework. The derivation of the filters for the states of WMC

and other related processes through a measure change is presented. The recursive estimations

are obtained by applying the EM algorithm. The implementation of this proposed model is

given in section 5.3. The dataset involved in our numerical study consists of daily US Treasury

yields. In section 5.4, we provide a discussion on how to select the optimal number of states.

Using some criteria, we conclude that a two-state WHMM is sufficient to capture the market

dynamics of our data. We also present an analysis of h-day ahead forecasts under the 1-, 2-, 3-

and 4-state settings. Forecasting errors generated under the WHMM are compared with those

generated under the regular HMM. With WHMM, being a device to capture both memory and

regime-switching properties in the data series, we obtain better results than those produced by

the HMM in terms of lower forecasting errors. We conclude with some remarks in section 5.5.
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5.2 Filtering and parameter estimation

We assume all processes in our modeling set-up are supported by complete probability space

(Ω,F , P). Let {xt}, t ≥ 0 be a continuous-time weak Markov chain with finite space S =

{s1, s2, . . . , sN}. Without loss of generality, we identify the points in S with the canonical basis

{e1, e2, . . . , eN} ⊂ R
N , where ei = (0, . . . , 0, 1, 0, . . . , 0)> and> denotes the transpose of a vector.

The representation 〈xt, ei〉 refers to the event that the economy is in state i at time t. Here, 〈 , 〉

stands for the inner product in RN . We suppose the short rate process rt is a function of the

unobservable Markov chain xt, such that rt = r(xt) = 〈r, xt〉 for some vector r ∈ RN . At time t,

a zero-coupon bond expiring at time t + τg, g = 1, . . . , d, has the price

Fg(xt, t) = E
[
exp

(
−

∫ t+τg

t
r(xs)ds

) ∣∣∣Ft

]
.

It was shown in Siu, et al. [26] that the yield values in discrete-time can be expressed as

〈fg, xk〉 = − 1
τg

log Fg(xk, tk), and xk = xtk , as a discrete-time version of the state process xk. Let

yk = (y1
k , y

2
k , . . . , y

d
k) denote the d-dimensional yield process. Each component yg

k , 1 ≤ g ≤ d, is

part of the sequence of yield values and has dynamics

yg
k+1 = f g(xk) + σg(xk)z

g
k+1.

Each sequence {zg
k} is a sequence of N(0, 1) IID random variables, which are independent

of the x-process. More specifically, the functions f g and σg are given by the vectors fg =

( f g
1 , f g

2 , . . . , f g
N)> and σg = (σg

1, σ
g
2, . . . , σ

g
N)> in RN , f g(xk) = 〈fg, xk〉 and σg(xk) = 〈σg, xk〉

represent the mean and variance of yg
k , respectively. Note that we do not model the correlation

among yields explicitly. However, all components of the vector observation process are modu-

lated by the same underlying WMC, and thus they are correlated implicitly. Actual filter with

correct correlation structure will presumably be better. So, one may view that this study is a

lower bound for the validity of a larger study.
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Our attention will solely be on a WMC of order 2 to simplify the discussion and present a

complete characterization of the parameter estimation. The probability of the next time step

for the WMC given the previous information is

P(xk+1 = xk+1|x0 = x0, . . . , xk−1 = xk−1, xk = xk)

= P(xk+1 = xk+1|xk−1 = xk−1, xk = xk).

Each entry of the transition probability matrix A := (almv) ∈ RN×N2
, where l,m, v ∈ 1, . . . ,N,

refers to the probability that the process enters state l given that the current and previous states

were in states m and v, respectively. The salient idea in the filtering of WHMM is that, a

second-order Markov chain is transformed into a first-order Markov chain through a mapping

ξ, and then we may apply the regular filtering method. The mapping ξ is defined by

ξ(er, es) = ers, for 1 ≤ r, s ≤ N,

where ers is an RN2
−unit vector with unity in its ((r − 1)N + s)th position. Note that

〈ξ(xk, xk−1), ers〉 = 〈xk, er〉〈xk−1, es〉

is the identification of the new first-order Markov chain with the canonical basis of RN2
. The

new N2 × N2 transition probability matrix Π of the new Markov chain is defined by

πi j =


almv if i = (l − 1)N + m, j = (m − 1)N + v

0 otherwise.

Here, each non-zero element πi j represents the probability

πi j = almv = P(xk = el|xk−1 = em, xk−2 = ev),
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and each zero represents an impossible transition. It may be shown that the new Markov chain

ξ(xk, xk−1) has the semi-martingale representation

ξ(xk, xk−1) = Πξ(xk−1, xk−2) + vk, (5.1)

where {vk}k≥1 is a sequence of RN2
martingale increments.

Under the real world measure P (the market measure in the context of this discussion), the

underlying WMC is not observed directly. Instead, the state xk is contained in the noisy market

observations yk, k ≥ 1. We aim to “filter” the noise out of the observed market values. However,

the derivation of filters under P is complicated. By Kolmogorov’s extension theorem, there

exists a reference probability measure P̄ under which the yk’s are N(0, 1) IID random variables

and therefore P̄ is an easier measure to work with. Now, we perform a measure change to

construct the real-world measure P from the ideal-world measure P̄ by invoking a discrete-time

version of Girsanov’s theorem. Let φ(z) denote the probability density function of a standard

normal random variable z. For each component g, write

λ
g
l :=

φ(σg(xl−1)−1(yg
l − f g(xl−1)))

σg(xl−1)φ(yg
l )

.

The Radon-Nikodým derivative of P with respect to P̄, dP
dP̄ |Yk := Λk, is defined by

Λk =

d∏
g=1

k∏
l=1

λ
g
l , k ≥ 1, Λ0 = 1.

To obtain the estimates of ξ(xk, xk−1) under the real world measure, we first perform all cal-

culations under the reference probability measure P̄. Calculations under the two measures are

linked by the Bayes’ theorem for conditional expectation.
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Let us derive the conditional expectation of ξ(xk, xk−1) given Yk under P. Write

pi j
k := P(xk = ei, xk−1 = e j|Yk) = E[〈ξ(xk, xk−1), ei j〉|Yk] (5.2)

with pk = (p11
k , . . . , pi j

k , . . . , pNN
k ) ∈ RN2

. Using Bayes’ theorem, we have

pk = E[ξ(xk, xk−1)|Yk] =
Ē[Λkξ(xk, xk−1)|Yk]

Ē[Λk|Yk]
. (5.3)

Letting qk = Ē[Λkξ(xk, xk−1)|Yk] and 1 = (1, . . . , 1)> ∈ RN2
, we have

N∑
i, j=1

〈ξ(xk, xk−1), ei j〉 = 〈ξ(xk, xk−1), 1〉 = 1,

so that

〈qk, 1〉 = Ē[Λk〈ξ(xk, xk−1), 1〉|Yk] = Ē[Λk|Yk]. (5.4)

From equations (5.3) and (5.4), we get the explicit form of the conditional distribution as

pk =
qk

〈qk, 1〉
. (5.5)

Now, we need a recursive filter for the process qk in order to estimate the state process ξ(xk, xk−1).

Define the diagonal matrix Bk by

Bk =



b1
k

. . .

bN
k

. . .

b1
k

. . .

bN
k


, (5.6)
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where

bi
k =

d∏
g=1

φ((yg
k − f g

i )/σg
i )

σ
g
i φ(yg

k)
.

Notation: For any Yk-adapted process Xk, write X̂k := E[Xk|Yk] and γ(X)k := Ē[ΛkXk|Yk].

Invoking Bayes’ theorem again, we get

X̂k =
γ(X)k

Ē[Λk|Yk]
. (5.7)

To estimate the parameters of the model, recursive filters will be derived for several quantities

of interest. For r, s, t = 1, . . . ,N, let Jrst denote the number of jumps from (es, et) to state er up

to time k, that is,

Jrst
k =

k∑
l=1

〈xl, er〉〈xl−1, es〉〈xl−2, et〉;

Ors
k represents the occupation time of the WMC spent in state (er, es) up to time k, that is,

Ors
k =

k∑
l=1

〈xl−1, er〉〈xl−2, es〉;

Or
k denotes the occupation time spent by the weak Markov chain in state er up to time k, that is,

Or
k =

k∑
l=1

〈xl−1, er〉;

T r
k(g) is the level sum for the state er, that is,

T r
k(h) =

k∑
l=1

h(yl)〈xl−1, er〉.

Here, h is a function with the form h(y) = y or h(y) = y2.

The quantities considered in the above four related processes are needed in the estimation of

model parameters as illustrated in Proposition 5.2.1 below. We shall take advantage of the semi-
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martingale representation in (5.1) and best estimate of an adapted process X in (5.7) to obtain

recursive formulas for the vector quantities γ
(
Jrst

k ξ(xk, xk−1)
)
, γ

(
Ors

k ξ(xk, xk−1)
)
, γ

(
Or

kξ(xk, xk−1)
)

and γ
(
T r

k(h)ξ(xk, xk−1)
)
. The recursive relation of these vector processes and qk under a multi-

dimensional observation set-up are given in the following proposition.

Proposition 5.2.1 Let Vr, 1 ≤ r ≤ N be an N2×N2 matrix such that the ((i−1)N +r)th column

of Vr is eir for i = 1 . . .N and zero elsewhere. If B is the diagonal matrix defined in equation

(5.6) then

qk+1 = Bk+1Πqk (5.8)

and

γ(Jrstξ(xk+1, xk))k+1 =Bk+1Πγ(Jrstξ(xk, xk−1))k + +br
k+1〈Πest, ers〉〈qk, est〉ers, (5.9)

γ(Orsξ(xk+1, xk))k+1 =Bk+1Πγ(Orsξ(xk, xk−1))k + br
k+1〈qk, ers〉Πers, (5.10)

γ(Orξ(xk+1, xk))k+1 =Bk+1Πγ(Orξ(xk, xk−1))k + br
k+1VrΠqk, (5.11)

γ(T r(h)ξ(xk+1, xk))k+1 =Bk+1Πγ(T r(h)ξ(xk, xk−1))k + h(yg
k+1)br

k+1VrΠqk. (5.12)

Proof See Appendices A and B for an analogous proof for each of the filters under the single-

observation setting.

Similar to equation (5.5), we determine the normalized filter estimates of γ(Jrst)k, γ(Ors)k,

γ(Or)k and γ(T r(h))k by summing up the components of the vector expressions given in equa-

tions (5.9) to (5.12).

We adopt the EM algorithm to estimate the optimal parameters. The calculation is similar to

the technique for the single-observation set-up. The estimates are expressed in terms of the

recursions provided in equations (5.9)-(5.12) and given in the following proposition.

Proposition 5.2.2 Suppose the observation is d-dimensional and the set of parameters {ârst, f̂ g
r , σ̂

g
r }
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determines the dynamics of yg
k , k ≥ 1, 1 ≤ g ≤ d. Then the EM estimates for these parameters

are given by

ârst =
Ĵrst

k

Ôst
k

=
γ(Jrst)k

γ(Ost)k
, ∀ pairs (r, s), r , s, (5.13)

f̂ g
r =

T̂ r
k

Ôr
k

=
γ(T r(yg))k

γ(Or)k
, (5.14)

σ̂g
r =

√√
T̂ r((yg)2)k − 2 f̂ g

r T̂ r(yg)k + ( f̂ g
r )2Ôr

k

Ôr
k

. (5.15)

Proof See Appendix C for an analogous proof of each estimate under the single observation

setting.

Given the observation up to time k, new parameters ârst(k), f̂ g
r (k), σ̂g

r (k), 1 ≤ r, s, t ≤ N are

provided by equations (5.13)-(5.15). The recursive filters for the unobserved Markov chain

and related processes in Proposition 5.2.1 can easily get updated every time new information

arrives. Thus, we obtain a dynamic parameter estimation.

5.3 Implementation

We implement the recursive filters derived in the previous section on yields of 3-month and

6-month US T-bills, 1-year and 5-year US T-notes, and 20-year and 30-year US bonds. The

dataset of yields, compiled by the Bank of Canada, contains 718 daily vector observations from

22 December 2008 to 31 October 31 2011. The evolution of yields underwent several regimes

as evidenced by the changes in parameter values and the summary descriptive statistics (see

Table 5.1) signifying that the data are coming from a distribution with heavy tails relative to the

normal distribution. In particular, we see that the values of excess kurtosis for the yield curves

are higher than those from a normal distribution. Regime-switching models are designed to

capture this type of data behavior. Tables 5.1 and 5.2 display possible segregations of the

actual data into either two or three states based on mean and volatility levels. This preliminary

analysis of the actual data reveals that yield volatilities exhibit some degree of correlation to
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the mean and maturity. From Table [?] and assuming we have two distinct states corresponding

to Dec/08-July/10 and August/10-Nov/11, we see that when maturity is short, yield volatilities

are higher with relatively high means; when maturity is long, yield volatilities are higher with

lower means.

Overall Dec/08-July/10 August/10-Nov/11
Maturity Mean STD Ex. Kurtosis Mean STD Mean STD
3-month 0.13 0.06 0.57 0.14 0.07 0.12 0.04
6-month 0.23 0.09 1.97 0.26 0.10 0.20 0.05
1-year 0.43 0.16 0.22 0.45 0.12 0.41 0.20
5-year 3.39 0.57 0.70 3.33 0.42 3.45 0.71
20-year 4.07 0.46 7.88 4.14 0.38 3.98 0.53
30-year 4.12 0.50 6.65 4.15 0.50 4.09 0.48

Table 5.1: Descriptive summary statistics and data segregation into two states

Dec/08-Feb/09 March/09-April/11 May/11-Nov/11
Maturity Mean STD Mean STD Mean STD
3-month 0.17 0.07 0.13 0.04 0.09 0.04
6-month 0.34 0.08 0.20 0.04 0.18 0.06
1-year 0.54 0.11 0.38 0.14 0.44 0.19
5-year 3.11 0.47 3.41 0.57 3.71 0.53
20-year 3.97 0.43 4.14 0.44 4.01 0.50
30-year 3.86 0.55 4.30 0.38 4.01 0.50

Table 5.2: Segregation of data into three states

The dataset on yield values is a six-dimensional observation process, whose dynamics are given

by

yg
k+1 = f g(xk) + σg(xk)z

g
k+1, g = 1, . . . , 6,

where fg = ( f g
1 , . . . , f g

N) ∈ RN and σg = (σg
1, . . . , σ

g
N) ∈ RN are governed by the WHMM x. The

implementation procedure starts with choosing the initial values for fg and σg, g = 1, . . . , 6.

All non-zero entries in the transition matrix Π are set to 1/N. The data are processed in 71

batches, and a batch consists of 10 yield vectors. Each algorithm run through a batch of data

is termed as one complete pass or algorithm step. At the end of each step, new estimates for

f, σ and A are computed. From the estimates of A, we construct Π. These new estimates are
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in turn used as initial parameter values in the succeeding batch data processing that employs

the recursive filter equations. This self-tuning algorithm allows a forthnightly update of the

parameters.

Figure 5.1 illustrates the evolution of the transition probabilities under the two-state setting.

The plot in the top panel shows the probabilities of staying in the same regime as the previous

step. The plot in the bottom panel shows the probabilities of switching to a different state from

the previous step. Except for some jumps in the probability values around the 50th algorithm

pass, the bond market is quite stable as demonstrated by the relatively smooth evolution of

probabilities. The large changes correspond to yield fluctuations over a brief period of time,

e.g., 6-month T-bill rate increased from 0.29 on 31 Dec 2010 to 0.61 on 03 Jan 2011, and

20-year T-bond rate increased from 4.13 on 31 Dec 31 2010 to 4.55 on 05 Jan 2011. These

significant changes during a short time span constitute evidence of states switching captured

by the WHMM. Additionally, these market changes are reflected in the dynamics of parameter

estimates.

Figures 5.2 and 5.3 show plots depicting the movement through time of the optimal parameter

estimates for each yield vector under the 2-state WHMM set-up. Furthermore, the values of f

and σ are positively correlated with the yield maturity, i.e., the longer the maturity, the higher

the mean and volatility levels. The evolution of parameters for 1-, 5- and 20-year yields sup-

port our preliminary analysis that the 1-year and 5-year yields have states characterized by high

(low) means and high (low) volatilities. The 20-year yield series, however, has states character-

ized by low (high) means and high (low) volatilities. Such consistent behavioral mean-volatility

relationship patterns are not necessarily present for yields of instruments that have either very

short or very long maturities. It is worth mentioning that parameters appear to stabilize after

approximately seven steps through this online algorithm. The same patterns are produced re-

gardless of the choice of the initial values. The choice of the initial parameter values though
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can affect the speed of convergence. For the 3-state setting, we report the final estimates of A,

f and σ after the final algorithm step in Table 5.3.
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Figure 5.1: Evolution of estimates for transition probabilities through algorithm steps under
the 2-state setting

Final estimation:

A matrix:

0.818 0.848 0.836 0.029 0.000 0.005 0.041 0.007 0.010
0.091 0.076 0.082 0.942 1.000 0.989 0.041 0.008 0.010
0.091 0.076 0.082 0.029 0.000 0.006 0.918 0.985 0.980



f matrix:



0.06 0.13 0.07
0.53 0.23 0.50
0.87 0.43 0.91
3.04 3.39 3.12
3.79 4.08 3.85
3.56 4.14 3.62


σ matrix:



0.16 0.06 0.07
0.08 0.08 0.05
0.02 0.16 0.05
0.35 0.57 0.20
0.48 0.45 0.21
0.44 0.49 0.21


Table 5.3: Parameter estimates at the end of final algorithm step for N = 3
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Figure 5.2: Evolution of estimates for f through algorithm steps under the 2-state setting
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Figure 5.3: Evolution of estimates for σ through algorithm steps under the 2-state setting



Chapter 5 120

5.4 Forecasting and error analysis

In this section, we shall use the model parameter estimates to forecast yield values covering an

h-day ahead horizon. The semi-martingale representation of x in (5.1) leads to

E[ξ(xk+1, xk)|Yk] = Πξ(xk, xk−1) = Πpk. (5.16)

Furthermore, we have

E[ξ(xk+h, xk+h−1)|Yk] = Πhpk, for h = 1, 2, . . . (5.17)

Recall that Π is constructed from A, which is defined by

almv = P(xk+1 = el|xk = em, xk−1 = ev),

so that equation (5.16) gives

E[xk+1|Yk] = Apk. (5.18)

Hence, from equations (5.17) and (5.18),

E[xk+h|Yk] = Apk+h−1 = AΠh−1pk. (5.19)

Using equation (5.19), the best estimate of the h-step ahead predicted yields yi
k+h given available

information up to time k is

ŷi
k+h = E[yi

k+h|Yk] = 〈f i,AΠh−1pk〉, for 1 ≤ i ≤ d. (5.20)

The conditional variance for the predicted yields are calculated using

Var[yi
k+h|Yk] = (f i)>diag(AΠh−1pk)f i + (σi)>diag(AΠh−1pk)σi − 〈f,AΠh−1pk〉

2, (5.21)
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where diag(AΠh−1pk) is a diagonal matrix whose diagonal entries are the components of the

vector (AΠh−1pk).

The determination of the optimal number of states given a particular dataset is an important

statistical inference problem. Hardy [14], and Erlwein and Mamon [11] applied the AIC to

determine the optimal number of regimes in HMM-based models. The AIC is a measure of the

relative goodness of fit of a statistical model. It offers a relative measure of lost information

described by the trade-off between bias and variance in the model construction. The AIC is

calculated as

AIC = 2s − 2L(θ),

where s is the number of parameters and L(θ) denotes the likelihood function of the model.

The preferred model is the one that gives the minimum AIC value. For the vector observation

process yk in each pass, the log-likelihood of the parameter set θ is given by

L(θ) =

# in batch∑
l=1

d∑
i=1

N∑
r=1

〈xl−1, er〉

−1
2

log
(
2πσi(xl−1)2

)
−

(
yi

l − f i(xl−1)
)2

2σi(xl−1)2

 . (5.22)

The calculated AIC values for the 1-, 2-, 3- and 4-state models after each algorithm step are

presented in Figure 5.4. Both 1- and 2-state models are reasonable in capturing the dynamics of

our data gauging from this criterion with the 1-state model producing the smallest AIC values.

The results indicate that both 1- and 2-state models perform better than the 3- and 4-state mod-

els. The model we proposed requires the estimation of (N2 − 1)N + 2mN parameters, where m

is the number of securities. As N becomes gradually higher, the number of needed estimations

rises quickly leading to higher AIC’s. Nonetheless, the AIC cannot measure how well a model

fits the actual time series data. In order to assess the goodness of fit of the one-step ahead

forecasts, we evaluate the RMSE for the 1-, 2-, 3- and 4-state WHMM-based term structure

models. The results of this error analysis are given in Table 5.4.
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Figure 5.4: AIC for the 1-, 2-, 3- and 4-state models

Clearly, the 2-state model outperforms the model with no switching in terms of lower forecast-

ing errors. The large improvement in the error implies that the models with regime switching

can generate better price forecasts. The comparison of error measures also shows that the 4-

state model is able to forecast the short-maturity yields better than the 2-state model. However,

the improvement is not significant. Since a larger number of state increases the complexity of

parameter estimation, a 2-state model is sufficient to model the yield values.

State setting 3-month 6-month 1-year 5-year 20-year 30-year
1 0.0558 0.0864 0.1631 0.4923 0.4363 0.4732
2 0.0539 0.0821 0.1458 0.3418 0.2994 0.3590
3 0.0558 0.0854 0.1619 0.4921 0.4357 0.4722
4 0.0524 0.0806 0.1426 0.3656 0.3194 0.3710

Table 5.4: RMSE for one-step ahead predictions versus actual values

Figure 5.5 exhibits the actual yields and 1-step ahead forecasted yields for the 3- and 6-

month T-bills, 1- and 5-year T-notes, and 20- and 30-year T-bonds. The 99% confidence

intervals for the predicted yields is also displayed and were calculated using E[yi
k+1|Yk] ±
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2.575
√

Var[yi
k+1|Yk]. The resulting forecasts follow the actual data quite well. Empirical re-

sults confirm that the WHMM can capture most of the market dynamics.

In [31], the forecasting performance of the one-dimensional WHMM is compared with that of

the regular HMM using the dataset on S&P500 prices. The results suggest that the WHMM

outperforms the HMM over a long forecasting horizon. In this empirical implementation, we

also evaluate the goodness of fit of the h-day ahead forecasts using the RMSE and APE as

benchmarks. The multi-dimensional WHMM-based term structure model is compared with

the regular multi-dimensional HMM model using these two criteria. The RMSE for an h-day

ahead prediction of yi, i = 1, . . . , d is given by

RMSE(i, h) =

√√
1
M

M∑
k=1

(yi
k+h − ŷi

k+h)2,

where M is the number of forecast points. Similarly, the APE for an h-day ahead prediction of

yi is defined by

APE(i, h) =
1
M

M∑
k=1

∣∣∣∣∣∣yi
k+h − ŷi

k+h

yi
k+h

∣∣∣∣∣∣ .
Following the idea in Date, et al. [7] in measuring the prediction performance of multivariate

models, we calculate the average RMSE (AvRMSE) and average APE (AvAPE) over six yields.

AvRMSE(h) is the average of RMSE(i, h) over yield values with different maturities, i.e.,

AvRMSEh =
1
d

d∑
i=1

RMSE(i, h).

On the other hand, AvAPE(h) denotes the average of APE(i, h) over yield values with different

maturities, i.e.,

AvAPEh =
1
d

d∑
i=1

APE(i, h).

These error analyses are displayed in Tables 5.5-5.8. In Table 5.5, the one-state WHMM co-

incides with the one-state HMM. Under the WHMM framework, memory is a property of the
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h-day ahead
1 2 3 4 5 6 7

AvRMSEh of WHMM/HMM 0.2845 0.2862 0.2825 0.2883 0.2842 0.2828 0.2943
AvAPEh of WHMM/HMM 0.2843 0.2687 0.2690 0.2722 0.2817 0.3073 0.3018

Table 5.5: Error analysis of WHMM and HMM models under the 1-state setting

h-day ahead
1 2 3 4 5 6 7

AvRMSEh of WHMM 0.2137 0.2175 0.2173 0.2263 0.2241 0.2812 0.2351
AvRMSEh of HMM 0.2738 0.2773 0.2742 0.2815 0.2794 0.3054 0.2897
AvAPEh of WHMM 0.2465 0.2352 0.2393 0.2436 0.2546 0.2812 0.2769

AvAPEh of HMM 0.2789 0.2643 0.2656 0.2694 0.2794 0.3054 0.2998

Table 5.6: Error analysis of WHMM and HMM models under the 2-state setting

underlying market state process. A one-state Markov chain stays in only one state throughout

the progression of time. That is, there is no memory of visiting other states in the previous

steps. This is why WHMM collapses to the HMM set-up under the one-state setting. The 2-

state WHMM gives a better fit than the HMM in terms of lower forecasting errors with respect

to both metrics. The differences between errors from the WHMM and HMM models within

the 3-state setting, shown in Table 5.7, are too small to make any practical significance. The

4-state WHMM seems to outperform the regular HMM in the long-horizon forecasting under

the RMSE but not for the APE metric.

5.5 Conclusion

In this chapter, we put forward a multivariate WHMM-driven term structure model where the

means and volatilities of vector observations are governed by a second-order Markov chain in

h-day ahead
1 2 3 4 5 6 7

AvRMSEh of WHMM 0.2839 0.2857 0.2819 0.2877 0.2838 0.2725 0.2851
AvRMSEh of HMM 0.2855 0.2841 0.2844 0.2864 0.2866 0.2328 0.2451
AvAPEh of WHMM 0.2828 0.2673 0.2676 0.2707 0.2804 0.2782 0.2763

AvAPEh of HMM 0.2855 0.2867 0.2670 0.2773 0.2875 0.2849 0.2805

Table 5.7: Error analysis of WHMM and HMM models under the 3-state setting
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h-day ahead
1 2 3 4 5 6 7

AvRMSEh of WHMM 0.2219 0.2252 0.2231 0.2320 0.2318 0.2307 0.2399
AvRMSEh of HMM 0.2098 0.2057 0.2182 0.2291 0.2368 0.2437 0.2514
AvAPEh of WHMM 0.2485 0.2364 0.2388 0.2416 0.2544 0.2805 0.2775

AvAPEh of HMM 0.2086 0.2113 0.2129 0.2172 0.2218 0.2346 0.2406

Table 5.8: Error analysis of WHMM and HMM models under the 4-state setting

discrete time. The proposed model is tested on time series data of yields covering 3- and 6-

month US T-bills, 1- and 5-year US T-notes, and 20- and 30-year US T-bonds. A multivariate

filtering technique along with the EM algorithm was employed in the optimal estimation of

parameters. The algorithms were run on batches of data and parameters are updated when

new information arrives thereby making the model self-tuning. The empirical results of the

implementation of filters and parameter estimation demonstrate the adequacy of the proposed

model in capturing market dynamics and regime changes in the data. We applied the AIC

to determine the optimal number of regimes and assessed the goodness of fit of the one-step

ahead forecasts generated by the 1-, 2-, 3- and 4-state models. We found that within the dataset

examined, a two-state model is deemed sufficient to capture the term structure dynamics. An

analysis of the h-day ahead predictions was also presented and results from WHMM were

compared with those from the regular HMM. The numerical results in this chapter manifest the

merits of WHMM as it outperforms the HMM in terms of low forecasting errors. We attribute

such improved performance to building a model that takes into account both regime switching

and memories in the data series.
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Chapter 6

An interest rate model incorporating

memory and regime-switching

6.1 Introduction

This chapter is closely related to chapter 5 as the main theme is still the modeling of the term

structure of interest rates. However, instead of modeling directly the evolution of yields, we

focus on the modeling of the short rate driven by a diffusion process whose parameters are

modulated by a WHMM. As the short rate process is really not observed, it is being proxied

by the returns series from a fixed income instrument with a very short maturity (30-day T-bill

in this case) in our numerical implementation. Other proxies for the short rate are the LIBOR

rates; see Filipović [16].

Various models for the evolution of the short rate, forward rate and the LIBOR rate have been

put forward in the last three decades. The modeling of interest rates is a paramount consider-

ation in finance as the theoretical construction of the yield curve hinges on it. Various interest

rates are also prime economic indicators monitored and controlled by regulatory authorities

such as the Feds and other central banks. The short rate is the interest rate at which a loan

can be charged for an infinitesimally short period. Classical models describing the short rate
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dynamics include those developed by Vasicek [38], Cox, et al. [8], and Hull and White [22].

These models are able to capture the mean-reverting property of the interest rate process. Such

property suggests that interest rates’ high and low values are temporary and the value will

tend to move to an average level over time. The Vasicek and CIR models assume a constant

mean-reverting level. The Hull-White model is an extension of the Vasicek model in which the

parameters are deterministic functions of time. Methodologies have been developed in order

to capture the dynamic behavior of financial and economic variables, e.g., Hamilton [19]. A

regime-switching-based approach posits that an economic environment varies and shifts be-

tween different regimes as time progresses. Such approach has the flexibility and capability

of handling changes in economic states by allowing model parameters to stochastically vary.

More specifically, Markov-switching models have parameters that change over time in accor-

dance with the dynamics of an unobserved Markov chain.

Hamilton [19] pioneered the research in this field with a particular focus to economic model-

ing. A study by Smith [34] found evidence that the volatility depends on the level of the short

rate and supports a Markov-switching model over a stochastic volatility model. Landen [25]

developed an HMM for short-term interest rates, in which the rate’s mean and variance are gov-

erned by a Markov process. In practice, the data fitting performance of these Markov-switching

models is a central concern. As the Markov chain is not directly observed, hence it is hidden,

there is a need to devise optimal, efficient and self-updating estimation techniques. As can be

expected, this kind of estimation for the model parameters and Markov chain’s unobservable

state presents some challenges both from the practical and mathematical standpoints. In a com-

prehensive work, Elliott, et al. [13] provided recursive estimates of the Markov chain together

with the drift and volatility parameters in a Markov-based modeling framework. Elliott, et

al. [11] proposed a multivariate HMM for the short rate and filtering methods were applied to

obtain optimal estimates of the parameters. Many of the developments in the regime-switching

literature focus on extending various commonly known models. Elliott and Mamon [12] pro-
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posed a Vasicek model where the mean-reverting level depends on a continuous-time Markov

chain. Erlwein and Mamon [14] considered a Hull-White interest rate model in which the in-

terest rate’s volatility, mean-reverting level and speed of mean-reversion are all governed by

a Markov chain in discrete time. The HMM filters are derived and implemented on a finan-

cial dataset and their analysis of the prediction errors along with the use of AIC shows that a

two-regime model is sufficient to describe the interest rate dynamics. Zhou and Mamon [41]

investigated the Vasicek, CIR and Black-Karasinski short-rate models whose parameters are

modulated by a finite-state and discrete-time Markov chain. A quasi-maximum likelihood

method is utilized to estimate model parameters and implementation of their algorithms was

carried out on the Canadian yield rates.

Some recent studies integrate regime-switching models with other modeling approaches to ob-

tain an enhanced methodology. Guidolin and Timmermann [18] proposed a four-state model

for the US spot and forward rates; their forecasting experiment shows evidence that, at short

horizons, combining regime-switching forecasts with simpler univariate time-series forecasts

is able to reduce forecasting errors. A Bayesian forecasting methodology involving a discrete-

time HMM with non-constant transition matrix in modeling monthly data on rates of return

series was used by Meligkotsidou and Dellaportas [30]; the nonhomogeneous HMMs showed

improved predictive ability over a standard homogeneous HMM. Other papers on regime-

switching models feature new approaches in detecting further evidence of regime shifts in

the market. Startz and Tsang [36] constructed a model in which the short-term interest rate

consists of two components: a stochastic trend and a stationary cycle; their results suggest that

allowing for regime switching in shock variances improves model performance. In the work

by Audrino and Mederos [2], a smooth transition tree model that combines regression trees

and GARCH models is employed to describe regime switches in the short-term interest rate

series; their empirical results provide evidence of the power of the model in forecasting the

conditional mean and variance. Utilizing an adapted unit-root test, Holmes, et al. [21] found
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evidence that Australian and New Zealand interest rates switch between regimes in mean and

variance. For an exhaustive review of term structure models under a regime-switching setting,

see Nieh, et al. [31].

While the regular HMM is quite popular and succeeded in capturing the dynamics of many

financial and economic processes, its major drawback is the memoryless property of the under-

lying Markov process. In this chapter, we propose a WHMM to address such deficiency of the

usual HMM. As argued by Solberg [35], the real significance of WHMM is to establish that

the assumption of memoryless property is not really as restrictive as it first appears. By using

a higher-order Markov chain, the probability of the current state is not only dependent on just

one prior time epoch but on any finite number of prior epochs. This model offers an alternative

to long-range dependence models designed to capture data memory present in financial time

series. Mandelbrot [27] demonstrated the benefits of incorporating memory in economics and

finance applications. Cajueiro and Tabak [4, 5] showed evidence of long-range dependence in

LIBOR and US interest rates. To quantify the presence of memory, Matteo [28] gave a detailed

description of the generalized Hurst exponent approach and carried out an empirical analysis

across different markets. McCarthy, et al. [29] examined corporate bond yield spread data and

found strong evidence that data memory exists. Processes with long memory characteristics

have stronger coupling between values at different time than that of short-memory processes.

As illustrated in the empirical work of Bouchaud and Potters [3], long-memory processes are

not normally distributed but have fatter tails and higher peaks around the mean.

Other studies have developed models to deal directly with the long-range dependence property

in financial time series. Maheu [26] concluded that GARCH models can capture the long-

memory property in financial volatility under some circumstances. Dajcman [9] proposed an

autoregressive fractionally integrated moving average model for the returns of eight European

stock market returns. Duan and Jacob’s long-range dependence model [10] yields a signif-
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icantly improved fit when applied to real interest rate data. However, most of the existing

models in time series that take into account the data memory property have stationary param-

eters, which seem inadequate in real-world applications. This serves as another motivation to

introduce the idea of higher-order HMMs. The underlying Markov process for these models

offers a simple way yet rich enough to describe the evolution of market variables with dynamic

parameters and capture as well the memory property through the dependence on the back-

ward time recurrence. To the best of our knowledge, the embedding of WHMM into available

interest rate modeling approaches in the context of dynamic parameter estimation is so far

non-existent. It is our intent to show the usefulness and merits of a WHMM-based interest

rate model. Attempting to accomplish a similar goal, Hunt and Devolder [23] constructed an

extension of the Ho and Lee model under a semi-Markov regime-switching framework aimed

to capture the data’s long-memory property. An application of their proposed extension to the

pricing of European bond options was given. A few applications of higher-order Markov chain

in finance were considered in recent years and include modeling applications for returns of

risky assets (Xi and Mamon [40]), risk management (Siu, et al. [33]), exotic option pricing

(Ching, et al. [7]), and spot rates and credit ratings (Siu et al. [32]). Except for [40], none of

these deal with the problem of efficient and systematic parameter estimation.

In this chapter, we investigate the development of a mean-reverting interest rate model under a

weak Markov-switching framework. Following the approach in [14], the dynamics of the short-

term rate can be re-written as a function of a discrete-time WMC. In particular, we assume the

level and speed of mean reversion, and the volatility are governed by a second-order WMC,

whose current behavior depends on the behavior exhibited at the previous two time steps. The

WHMM could capture the presence of dependence in the states of the market, and therefore it

is more appropriate when financial series exhibit memories. A transformation, which is fun-

damentally a mapping of states, is employed to convert a WHMM into a regular HMM. The

estimation algorithm updates parameter estimates as soon as new data points become available.
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Thus, what we come up with is a “self-tuning” estimation procedure.

This chapter is structured as follows. The next section describes the formulation of the mod-

eling framework. A discussion on how to incorporate a WMC in the single-factor Hull-White

model is presented. In section 6.3, we derive the filters for the states of the underlying WMC

and other auxiliary processes through a change of reference probability technique. The recur-

sive estimates of the speed and level of mean reversion, volatility and transition probability

matrix are computed by utilizing the EM algorithm. The filtering technique and parameter

estimation are then implemented in section 6.4 on the Canadian T-bill rates. In section 6.5, the

h-step ahead forecasts under WHMM are generated and compared to those obtained under the

usual HMM. We discuss the determination of the most appropriate number of states and how to

provide standard errors on our model parameter estimates. Finally, section 6.6 provides some

concluding remarks.

6.2 Model construction

For short rate models, the instantaneous spot rate rt is the state variable. The stochastic dif-

ferential equation (SDE) describing the dynamics of rt in the Hull-White model [22] has the

form

drt = µt(βt − rt)dt + ζtdWt. (6.1)

The parameters µt, βt and ζt are deterministic functions of t and Wt is a standard Brownian

motion. Originally, this kind of process was studied in the physics literature, and is known as

a particular case of the Ornstein-Uhlenbeck process. The solution of this SDE is

rt = r0e−µt + (1 − e−µt)β + ζ

∫ t

0
e−µ(t−u)dWu.
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This implies that, for any s < t,

rt = rse−µ(t−s) + (1 − e−µ(t−s))β + ζ

∫ t

s
e−µ(t−u)dWu. (6.2)

Note that, E[rt] → β as t → ∞. This property is referred to as the mean reversion of the short

rate. The respective mean-reverting level and speed of mean reversion are βt and µt.

In the subsequent discussion, all vectors and matrices are written in boldface English or Greek

letters; vectors are in lowercase while matrices are in uppercase. Assume all processes in our

modeling set-up are supported by a complete probability space (Ω,F , P). Let {xt}, t ≥ 0,

be a continuous-time WMC with finite space S = {s1, s2, . . . , sN}. Without loss of general-

ity, the points in S can be identified with the canonical basis {e1, e2, . . . , eN} ⊂ R
N , where

ei = (0, . . . , 0, 1, 0, . . . , 0)> and > denotes the transpose of a vector. The expression 〈xt, ei〉 rep-

resents the event that the economy is in state i at time t. Here, 〈 , 〉 stands for the inner product

in RN .

Now, assume the parameters µt, βt and ζt are governed by the WMC x and therefore, the model

parameters are switching among different economic regimes through time. The SDE in (6.1)

for rt can be re-written as

drt = µ(xt)(β(xt) − rt)dt + ζ(xt)dWt,

with µ(xt) = 〈µ, xt〉, β(xt) = 〈β, xt〉 and ζ(xt) = 〈ζ, xt〉. For small t − s such that x is constant

over [s, t], the solution in (6.2) is

rt = rse−µ(xt)(t−s) + (1 − e−µ(xt)(t−s))β(xt) +

∫ t

s
e−µ(xt)(t−u)ζ((xu)dWu. (6.3)



Chapter 6 138

Write

α(xk) := e−µ(xk)4tk+1 , (6.4)

η(xk) := β(xk)(1 − e−µ(xk)4tk+1), (6.5)

σ(xk) := ζ(xk)
√

(2µ(xk))−1(1 − e−2µ(xk)4tk+1) (6.6)

and 4tk+1 := tk+1 − tk.

Equation (6.3) can be used to obtain a discrete-time representation of the interest rate process.

While the short rate is a key interest rate and essential to no-arbitrage valuation, it cannot be

observed directly. Short rates are proxied instead by the yields from short-term maturity fixed-

income instruments as they are very liquid. The argument and evidence supporting the validity

of such proxies is given in Filipović [16] and Chapman, et al. [6]. With the yield rate as proxy

for the short rate and employing the newly defined parameters in equations (6.4)-(6.6), the

observed yield value has dynamics

yk+1 = α(xk)yk + η(xk) + σ(xk)zk+1. (6.7)

The sequence {zk} is a sequence of N(0, 1) IID random variables, which are independent from

the x-process.

Again, we shall focus on a WMC of order 2 to simplify the discussion and present a complete

characterization of the parameter estimation. The probability involved in the next time step for

a second-order WMC depends on the information on the current and previous time steps. The

transition probability matrix A ∈ RN×N2
is defined by

almv := P(xk+1 = el|xk = em, xk−1 = ev), l,m, v ∈ 1, . . . ,N. (6.8)

Each entry of A refers to the probability that the process enters state l given that the current
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and previous states are m and v, respectively. The pertinent idea in the filtering method for

WHMM is that a second-order Markov chain is transformed into a first-order Markov chain

through a mapping ξ, and after which we may apply the regular filtering method. The mapping

ξ is defined by

ξ(er, es) = ers, for 1 ≤ r, s ≤ N,

where ers is an RN2
−unit vector with unity in its ((r − 1)N + s)th position. The identification of

the new first-order Markov chain with the canonical basis is given by

〈ξ(xk, xk−1), ers〉 = 〈xk, er〉〈xk−1, es〉.

The new transition probability matrix, Π ∈ RN2×N2
, of the new Markov chain is then

πi j =


almv if i = (l − 1)N + m, j = (m − 1)N + v

0 otherwise.

Here, each non-zero element πi j refers to the probability

πi j = almv = P(xk = el|xk−1 = em, xk−2 = ev),

and each zero represents an impossible transition. The new Markov chain ξ(xk, xk−1) has the

semi-martingale representation

ξ(xk, xk−1) = Πξ(xk−1, xk−2) + vk, (6.9)

where {vk}k≥1 is a sequence of RN2
-martingale increments.
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6.3 Filters and parameter estimation

Under the real world measure P, the true state of the underlying WMC xk is neither observed

nor measured directly. Instead, it is contained in the noisy market observations yk with “real

world” dynamics given by equation (6.7). Our objective is to “filter” the noise out of the

observation process in the best possible way. However, the derivation of filters under P is not

straightforward. So, we take advantage of the Kolmogorov’s extension theorem that justifies

the existence of a reference probability measure P̄ under which the yk’s are N(0, 1) IID random

variables. Mathematically, P̄ is an easier measure to work with. Thus, we perform a change of

probability measure to construct the real-world measure P from the ideal-world measure P̄ by

invoking the discrete-time version of the Girsanov’s theorem. Under P, the sequence of zk
′s is a

sequence of IID standard normal random variables, where zk = σ(xk)−1(yk+1 − α(xk)yk − η(xk)).

Write

λl :=
φ(σ(xl)−1)(yl+1 − α(xl)yl − η(xl))

σ(xl)φ(yl)
, (6.10)

where φ(z) denotes the probability density function of a standard normal random variable Z.

The Radon-Nikodým derivative of P with respect to P̄, dP
dP̄ |Yk := Λk, is defined by

Λk =

k∏
l=1

λl, k ≥ 1, Λ0 = 1, (6.11)

and {Yk} is the filtration generated by the observation process yk.

It has to be noted that Erlwein and Mamon [14] considered a reference measure P̃, under which

the observation yk is a sequence of N(0, σ2
k) IID random variables. We experimented processing

datasets using filters derived under the P̃ setting and then back out the real world measure P.

We found that the parameter estimation algorithms under P̄ have faster convergence than those

under P̃. This rationalizes the slightly modified construction of the Radon-Nikodým derivative

as proposed in our formulation above.
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To estimate the state of the new first-order Markov chain, ξ(xk, xk−1) under the real world mea-

sure, we first perform all calculations under the reference probability measure P̄. Calculations

under the two measures are then linked via Bayes’ theorem for conditional expectation.

Let us derive the conditional expectation of ξ(xk, xk−1) given Yk under P. Write

pi j
k := P(xk = ei, xk−1 = e j|Yk) = E[〈ξ(xk, xk−1), ei j〉|Yk] (6.12)

with pk = (p11
k , . . . , pi j

k , . . . , pNN
k ) ∈ RN2

. Bayes’ theorem tells us that

pk = E[ξ(xk, xk−1)|Yk] =
Ē[Λkξ(xk, xk−1)|Yk]

Ē[Λk|Yk]
. (6.13)

Writing 1 for the vector (1, . . . , 1)> ∈ RN2
, we see that

N∑
i, j=1

〈ξ(xk, xk−1), ei j〉 = 〈ξ(xk, xk−1), 1〉 = 1.

Let qk = Ē[Λkξ(xk, xk−1)|Yk] so that

〈qk, 1〉 = Ē[Λk〈ξ(xk, xk−1), 1〉|Yk] = Ē[Λk|Yk]. (6.14)

From equations (6.13) and (6.14), we get the conditional distribution of ξ(xk, xk−1) under P as

pk =
qk

〈qk, 1〉
. (6.15)

In order to estimate dynamically the state process ξ(xk, xk−1), we derive a recursion for the
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process qk. Define the diagonal matrix Bk by

Bk =



b1
k

. . .

bN
k

. . .

b1
k

. . .

bN
k


, (6.16)

where

bi
k =

σ−1
i φ(yk − αiyk−1 − ηi)

σiφ(yk)
.

Notation: For any Yk-adapted process Xk, write X̂k := E[Xk|Yk] and γ(X)k := Ē[ΛkXk|Yk].

Again, from Bayes’ theorem, we have

X̂k =
γ(X)k

Ē[Λk|Yk]
. (6.17)

To estimate the parameters of the model, recursive filters are derived for a set of quantities

related to the process x. For r, s, t = 1, . . . ,N, these quantities are as follows:

Jrst
k =

∑k
l=1〈xl, er〉〈xl−1, es〉〈xl−2, et〉

= the number of jumps from state (es, et) to state er up to time k,

Ors
k =

∑k
l=1〈xl−1, er〉〈xl−2, es〉

= the occupation time of x spent in state (er, es) up to time k,

Or
k =

∑k
l=1〈xl−1, er〉

= the occupation time spent by x in state er up to time k,

T r
k(g) =

∑k
l=1 g(yl)〈xl−1, er〉

= the level sum for the state er
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The function g in the level sum takes the form g(y) = y, g(y) = y2 or g(y) = yl−1yl, for 2 ≤ l ≤ k.

The four quantities above are needed in the estimation of model parameters as manifested

in Proposition 6.3.1. By the semi-martingale representation in (6.9) and the best estimate

of an adapted process X in (6.17), we can obtain recursive formulas for the vector quantities

Jrst
k ξ(xk, xk−1), Ors

k ξ(xk, xk−1), Or
kξ(xk, xk−1) and T r

k(g)ξ(xk, xk−1). The recursive relations of these

vector processes and qk are given in the following proposition.

Proposition 6.3.1 Let Vr, 1 ≤ r ≤ N be an N2×N2 matrix such that the ((i−1)N +r)th column

of Vr is eir for i = 1 . . .N and zero elsewhere. If B is the diagonal matrix defined in equation

(6.16) then

qk+1 = Bk+1Πqk (6.18)

and

γ(Jrstξ(xk+1, xk))k+1 =Bk+1Πγ(Jrstξ(xk, xk−1))k + br
k+1〈Πest, ers〉〈qk, est〉ers, (6.19)

γ(Orsξ(xk+1, xk))k+1 =Bk+1Πγ(Orsξ(xk, xk−1))k + br
k+1〈qk, ers〉Πers, (6.20)

γ(Orξ(xk+1, xk))k+1 =Bk+1Πγ(Orξ(xk, xk−1))k + br
k+1VrΠqk, (6.21)

γ(T r(g)ξ(xk+1, xk))k+1 =Bk+1Πγ(T r(g)ξ(xk, xk−1))k + g(yk+1)br
k+1VrΠqk. (6.22)

Proof The proof is given in Appendix B.

Similar to the representation in equation (6.15), it is straightforward to determine the normal-

ized filter estimates of γ(Jrst)k, γ(Ors)k, γ(Or)k and γ(T r(g))k by summing the components of

the vector expressions given in equations (6.19) to (6.22).

We adopt the EM algorithm and the filters in Proposition 6.3.1 to estimate the optimal model
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parameters given by the set

θ = {arst, αr, ηr, σr; 1 ≤ r, s, t ≤ N}.

The algorithm proceeds by selecting a set of initial parameters, θ0, for the model. The change

to the updated parameter is described by a change of probability measure from Pθ0 to Pθ. That

is, the likelihood function for estimating a parameter θ based on the information reflected in

the yield values is

L(θ) = Eθ0

[
dPθ

dPθ0

∣∣∣∣Y ]
.

The logarithm of the Radon-Nykodým derivative of the new measure with respect to the old

measure is then calculated. A set of parameters θ̂ that maximizes the conditional log-likelihood

is determined. It is shown in [39] that the sequence of the log-likelihoods is monotonically in-

creasing and the associated sequence of estimates converges to a local maximum of the expec-

tation of the likelihood function. Consider the estimation of the transition matrix. The non-zero

entries of Π are the same as the entries of A. We estimate the matrix A and then construct Π

for the computation of filters. We first perform a change of measure from Pθ to Pθ̂. Under Pθ,

x is a WMC with transition matrix A = (arst). Under Pθ̂, x is still a WMC and the transition

matrix is Â = (ârst). To replace A by Â, we use the likelihood function

dPθ

dPθ0

∣∣∣∣Yk = ΓA
k ,

ΓA
k =

k∏
l=2

N∏
r,s,t=1

(
ârst

arst

)〈xl,er〉〈xl−1,es〉〈xl−2,et〉

. (6.23)

In case arst = 0, take ârst = 0 and ârst/arst = 1. The model parameters are provided in the

following proposition.

Proposition 6.3.2 The EM estimates ârst, α̂r, η̂r and σ̂r, given the sequence of observations
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yk, k ≥ 1, are given by

ârst =
Ĵrst

k

Ôst
k

=
γ(Jrst)k

γ(Ost)k
, ∀ pairs (r, s), r , s, (6.24)

α̂r =
T̂ r

k(yk−1, yk) − ηrT̂ r
k(yk−1)

T̂ r
k(y2

k−1)
=
γ(T r

k(yk−1, yk))k − η
rγ(T r

k(yk−1))k

γ(T r
k(y2

k−1))k
, (6.25)

η̂r =
T̂ r

k(yk) − αrT̂ r
k(yk−1)

Ôr
k

=
γ(T r(yk))k − α

rγ(T r(yk−1))k

γ(Or)k
, (6.26)

σ̂2
r =

T̂ r
k(y2

k) + α2
r T̂ r

k(yk−1) + η2
r Ôr

k − 2αrT̂ r
k(ykyk−1) − 2ηrT̂ r

k(yk) + 2ηrαrT̂ r
k(yk−1)

Ôr
k

. (6.27)

Proof See Appendix C for proof of (6.24) and Appendix D for proofs of equations (6.25)-

(6.27).

We see that having observations up to time k, new parameters ârst(k), α̂r(k), η̂r(k), σ̂r(k), 1 ≤

r, s, t ≤ N are then obtained using equations (6.24)-(6.27). In turn, the recursive filters for

the unobserved Markov chain and related processes in Proposition 6.3.1 produce parameter

updates each time new information arrives. This gives rise to a dynamic parameter estimation.

6.4 Implementation

The recursive filters specified in Proposition 6.3.1 are tested on yield rates of 30-day Canadian

Treasury bills compiled by the Bank of Canada. The dataset consists of weekly T-bill yields

recorded every Friday between 11 March 2002 to 09 March 2012. There are 505 data points.

Tables 6.1 and 6.2 display the summary descriptive statistics of the data and possible segre-

gation into either two states or three states, respectively. The evolution of yields undergoes

several regimes characterized by different parameter values. This is supported by the summary

statistics in the possible grouping periods obtained by using a least-square method assuming

a one-state setting to estimate the parameters α, η and σ in each designated interval. Then,

we recover the model parameters µ, β and ζ from equations (6.4)-(6.6) with 4t = 1/52. The

least-square parameter estimation was carried out using the MATLAB function ‘lsqcurvefit’.
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Overall 11Mar02–28Mar08 04Apr08–09Mar12
Sample Mean 0.021515 0.030109 0.008233
Sample Std 0.012979 0.007680 0.006837

α f it 0.999087 0.997781 0.988183
η f it 5.26×10−5 4.26 ×10−5 7.79 ×10−5

σ f it 0.001587 0.001323 0.004161
µ f it 0.047500 0.115500 0.618100
β f it 0.057619 0.019216 0.006593
ζ f it 0.005723 0.004774 0.015093

Table 6.1: Possible segregation of data into 2 states

Overall 11Mar02–30Sep05 07Oct05–30Jan09 06Feb09–09Mar12
Sample Mean 0.021515 0.024567 0.033035 0.005409
Sample Std 0.012979 0.003173 0.010039 0.003306

α f it 0.999087 0.991748 0.999262 0.9990297
η f it 5.26 ×10−5 2.1 ×10−4 3.3 ×10−5 2.39 × 10−9

σ f it 0.001587 0.002184 0.001298 0.003629
µ f it 0.047500 0.430900 0.038400 0.507000
β f it 0.057619 0.026032 0.044706 2.47 × 10−7

ζ f it 0.005723 0.007906 0.004680 0.013148

Table 6.2: Possible segregation of data into 3 states

The preliminary analysis demonstrates possible segregation of the actual data into different

states in accordance with the values of mean-reverting level, rate of mean reversion and vari-

ance. In particular, we see that the yield values yk has a low mean-reverting speed, high mean-

reverting level and low variance when the sample mean of yields is high. When the sample

mean of yields is low, the estimated mean-reverting level is low, and both mean-reverting speed

and the estimated variance are high.

Before we apply our filtering equations to the T-bill yield dataset, we ensure that the dataset

does indeed exhibit the memory property. One way to find out presence of memory or long-

range dependence is through the evaluation of the Hurst exponent. Let H be the Hurst exponent

of an observed process yk, and ρ(q) denote the sample autocovariance function with time lag

q, i.e., ρ(q) = cov(yk, yk+q). Then yk has long memory if there exists a constant c > 0 such
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R/S analyses Wavelet analyses 2nd-order Derivative Variance vs Level
H 0.6376 0.7132 0.7414 0.7733

Table 6.3: Estimates of H under different estimators

that limh→∞ ρ(q)/(cq2H−2) = 1 for H ∈ (0.5, 1). There are several methods to estimate H in the

financial and economic literature. The seminal work by Hurst [24] on re-scaled range statistical

analysis R/S presented an estimator for H. Abry, et al. [1] used wavelet analysis to estimate H.

Taqqu, et al. [37] discussed and compared nine different estimators in their research. In order

to test the presence of long-range dependence in our data, we estimate H using four different

estimators. The first two are the R/S and wavelet estimators. The third approach is based on

the second-order discretized derivative and the last estimator is based on the slope of the loglog

plot of the data’s level versus variance. The MATLAB function ‘wfbmesti’ is used to find the

estimates. The results are shown in Table 6.3. All four estimators give values over 0.5. Hence,

this indicates that the data possesses some lag dependence.

The implementation procedure starts by selecting initial values for the parameters. All non-

zero entries in the transition matrix Π are set to 1/N . The initial values of other parameters

are αr = 0.99, ηr = 0.02, σr = 0.1, r = 1, . . . ,N. The dataset is processed in batches of 12

data points. An algorithm run, which processes a batch of data points, constitutes one complete

algorithm step. At the end of each algorithm step, new parameter estimates are obtained and

they are utilized iteratively as new initial values for the next batch. Since there are 12 weekly

data points in a batch, the parameters are updated every 3 months. Different sizes of data-

processing window (other than 12) were also tried, but they produce similar result.

Figures 6.1 and 6.2 display the evolution of estimates of A, µ, β and ζ under the 2-state

WHMM setting; the values for estimates are in percentage. The plot in the top panel of Fig-

ure 6.1 shows the probabilities of staying in the same regime at the next time step. The plot

in the bottom panel shows the probabilities of switching in the next step to a state different

from the state in the previous step. The noticeable changes in the transition probabilities from
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Figure 6.1: Evolution of estimates for transition probabilities under the 2-state setting
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Figure 6.2: Evolution of parameter estimates under the 2-state setting



Chapter 6 150

the 25th to the 30th algorithm step correspond to the drastic decline of the T-bill rate from

2.5% in June 2008 to 0.1% in September 2009, a period of economic meltdown brought about

by the US subprime mortgage crisis. These significant market changes signal the occurrence

of a regime switch in the market. The filtering algorithms are able to pick these up and they

are reflected in the dynamics of the parameter estimates. We observe in Figure 6.2 that the

movement of the optimal parameters through time still supports our preliminary analyses con-

cerning the regime characteristics: state 1 has low mean-reverting speed, high-mean reverting

level and low variance (until the 35th step); and the reverse is true for state 2. Figure 6.3 depicts

the movement of µ, β and ζ through time under the three-state WHMM set up. We observe

similar state characteristics for µ and ζ based on the dynamics of the parameters however, β

does not follow the same evolution pattern as that in the 2-state setting. Note that under the

three-state setting, the evolution of the parameters in states 1 and 2 is similar and the parameter

values are close while the movement of parameters in state 3 is distinct. This suggests that a

two-state WHMM is sufficient to capture the underlying market information. This is further

backed up by a statistical-inference-based reasoning in the next section. It is worth mentioning

that the parameters become stable after approximately 6 steps. Our experiment shows that this

convergence can be achieved as long as the initial choice of parameter values are in a reason-

able range consistent with equations (6.4)-(6.6). Apparently, the algorithms will not work for

out-of-range or invalid initial values such as αr < 0 or σr < 0. Furthermore, just like any other

algorithm the choice of initial values may affect the speed of convergence.

In order to measure the variability of parameter estimates, we derive the explicit formula of the

Fisher information for each parameter. The Fisher information I(θ) is defined as the negative

expectation of the second derivative of the log-density for a parameter θ. The inverse of the

Fisher information is used to calculate the variance associated with the maximum-likelihood

estimates. The sampling distribution of a maximum likelihood estimator is asymptotically

normal and its variance can be calculated from I−1(θ); see Garthwaite, et al. [17], for example.
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Parameter Range of standard errors
estimate 1-state 2-state

ârst [1.86×10−62, 1.91×10−7] [3.54×10−64, 3.77×10−7]
α̂r [5.89×10−66, 3.03×10−10] [1.71×10−66, 1.03×10−9]
η̂r [5.00×10−65, 2.73×10−9] [1.47×10−65, 8.00×10−9]
σ̂r [6.00×10−65, 3.27×10−9] [1.76×10−65, 9.61×10−9]

3-state 4-state
ârst [1.10×10−63, 2.00×10−4] [8.32×10−63, 0.2896]
α̂r [1.52×10−66, 3.16×10−7] [2.51×10−66,4.27×10−4]
η̂r [1.3×10−65, 2.55×10−6] [2.14×1065, 0.0036]
σ̂r [1.56×10−65, 3.06×10−6] [2.57×10−65, 0.0043]

Table 6.4: Range of SEs for each parameter under the 1-, 2-, 3- and 4-state settings

Following equations (C.1), (D.1), (D.2) and (D.3) for 1 ≤ r, s, t ≤ N, the closed-form

expressions for the Fisher information of each parameter are given by

I(arst) = a−2
rst Ĵ

rst
k (6.28)

I(αr) = σ−2
r T̂ r

k(y2
k−1) (6.29)

I(ηr) = σ−2
r Ôr

k (6.30)

I(σr) = −σ−2
r Ôr

k + 3σ−4
r

[
T̂ r

k(y2
k) + α2

r T̂ r
k(y2

k−1) + η2
r Ôr

k

−2αrT̂ r
k(yk−1yk) − 2ηrT̂ r

k(yk) + 2ηrαrT̂ r
k(yk−1)

]
. (6.31)

In Erlwein and Mamon [14], the inverse of Fisher information was utilized to compute the

confidence interval for each parameter estimates. In our case, the I−1(θ) estimates, which

give the standard errors (SEs), turn out to be extremely small making the confidence intervals

(CIs) very narrow. So, plotting the parameter estimates with the CIs is impractical. However,

we provide the range of tabulated SEs over the entire algorithm steps for each parameter in

Table 6.4 under the WHMM with N = 1, . . . , 4.



Chapter 6 153

6.5 Forecasting and error analyses

In this section, we make use of the recursive parameter estimation technique for observations yk

to forecast yield values covering an h-week ahead horizon. The semi-martingale representation

of x in (6.9) leads to

E[ξ(xk+1, xk)|Yk] = Πξ(xk, xk−1) = Πpk. (6.32)

Recall that Π is constructed from A defined by

almv = P(xk+1 = el|xk = em, xk−1 = ev),

so that equation (6.32) gives

E[xk+h|Yk] = AΠh−1pk, h ≥ 1. (6.33)

The one-step ahead forecasted yields of the T-bill rates are calculated by

E[yk+1|Yk] = E[α(xk)yk + η(xk) + σ(xk)zk+1|Yk]

= 〈α, x̂k〉yk + 〈η, x̂k〉. (6.34)

Similarly, the two-step forecasted yields are given by

E[yk+2|Yk] = E[α(xk+1)yk+1 + η(xk+1) + σ(xk+1)zk+2|Yk]

= 〈α,Apk〉〈α, x̂k〉yk + 〈η,Apk〉. (6.35)
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Figure 6.4: Plot of actual and one-step ahead forecasts in a 2-state WHMM

Following equations (6.33), (6.34) and (6.35), for any h ≥ 3, the h-step ahead prediction of yk

is given by,

E[yk+h|Yk] =

h−1∏
i=1

〈α,AΠi−1pk〉
(
〈α, x̂k〉yk + 〈η, x̂k〉

)
+

h−2∑
i=1

h−2∏
j=i

〈α,AΠ jpk〉〈η,AΠi−1pk〉 + 〈η,AΠh−2pk〉. (6.36)

Proof See Appendix E for the proof of equation (6.36).

Figure 6.4 displays the one-step ahead forecasts for T-bill rates under a two-state WHMM

setting. We observe that the resulting forecasts follow the actual data very closely. Empirical

results confirm that our WHMM-based self-tuning algorithms capture the dynamics of the T-

bill yields very well. The filtering and parameter estimation algorithms are also implemented

with different number of states.

In Xi and Mamon [40], the forecasting performance of the WHMM is compared with that of the

regular HMM using the S&P500 index dataset. They concluded that the WHMM outperforms
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the HMM over a long forecasting horizon. We found that by including regime switching in

our model, we obtain closer forecasts than those provided by the 1-state model on the basis of

smaller forecasting errors. In recognition of the presence of long-range dependence revealed

by the data, we aim to compare the predictability performance of the WHMM-based Hull-

White model with that of the regular HMM-based model. In order to assess the goodness of fit

of the h-step ahead forecasts, we evaluate the RMSE, AME, RAE and APE for the 1-, 2-, 3-

and 4-state models. The RMSE, AME, RAE and APE for an h-step ahead prediction of yk are

calculated by

RMSE(h) =

√√
1
M

M∑
k=1

(yk+h − ŷk+h)2, (6.37)

AME(h) =
1
M

M∑
k=1

|yk+h − ŷk+h|, (6.38)

RAE(h) =

∑M
k=1 |yk+h − ŷk+h|∑M

k=1 |yk+h − ȳ|
, (6.39)

APE(h) =
1
M

M∑
k=1

∣∣∣∣∣yk+h − ŷk+h

yk+h

∣∣∣∣∣ , (6.40)

where M is the total number of forecasting points and ȳ is the mean of yk over the forecasting

period considered in the analysis. The WHMM and the regular HMM are compared using

the four criteria in equations (6.37)–(6.40). The results of the error analyses are reported in

Tables 6.5–6.7. The WHMM outperforms the regular HMM in terms of lower forecasting er-

rors with respect to all four metrics. Note that the 4-state WHMM appears to have a slightly

better fit than the 2-state WHMM over a short-time horizon. We perform a t-test of statistical

significance for the mean difference of errors and the p-values are reported in Table 6.8. The

p-values for comparing the 2-state and 3-state WHMM are large. Therefore we cannot reject

the null hypothesis that the differences in means of the errors are equal. This is consistent with

Figure 6.3 where states 1 and 2 almost coincide. Thus, a third regime to capture the data is

not going to make a difference. We note that when comparing the 2- and 4-state WHMM, the
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p-values are very small for the RMSE, RAE and APE metrics. It suggests that there is merit

in considering a 4-state WHMM. Nonetheless, the benefit from such an increased number of

states may be outweighed by the cost associated with the available resources such as com-

puting time and memory, and may not be worth the further efforts. In other words, the error

difference may be statistically significant but they may not necessarily be practically signifi-

cant. In the third column of Table 6.8, we observe small p-values under the AME, RAE and

APE measures. This implies that a 4-state WHMM has a better forecasting performance than

a 3-state WHMM, which is in agreement with the fact that the 4-state WHMM is statistically

different from the 2-state WHMM and both the 3-state and 2-state WHMMs have almost equal

modeling capability when assessed under these fitting metrics.

A t-test is also carried out to evaluate whether the means of each set of forecasting errors under

the WHMM are statistically different from those under the regular HMM. Table 6.9 exhibits

the p-values for the one-tailed paired t-tests of significance for each pair of forecasting errors

assuming unequal variance. The p-values for all metrics under the 2-, 3- and 4-state settings

are very small. This tells us that the mean differences of the forecasting errors between the

WHMM and HMM are all highly significantly. By including a mechanism to capture memory,

the WHMM has a better fitting performance than the regular HMM for N = 2, 3, and 4.

In order to find the most appropriate number of states inferred from the dataset given a WHMM

or HMM set-up, we follow the approach used in Hardy [20] and Erlwein and Mamon [14]. We

compare the AIC values for the 1-, 2- 3- and 4-state models. The AIC, motivated by the

Kullback-Leiber information, is a function of the number of model parameters and the log-

likelihood function of the model. The model selection criterion is calculated as

AIC = 2s − 2L(θ),
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h RMSE AME RAE APE
WHMM HMM WHMM HMM WHMM HMM WHMM HMM

1 0.1035 0.1047 0.0545 0.0556 0.0501 0.0511 0.0540 0.0552
2 0.1036 0.1048 0.0546 0.0556 0.0501 0.0510 0.0541 0.0552
3 0.1037 0.1048 0.0547 0.0556 0.0501 0.0509 0.0542 0.0553
4 0.1038 0.1048 0.0547 0.0555 0.0500 0.0508 0.0543 0.0554
5 0.1041 0.1051 0.0551 0.0558 0.0503 0.0509 0.0548 0.0558
6 0.1047 0.1056 0.0557 0.0563 0.0507 0.0513 0.0556 0.0565
7 0.1049 0.1056 0.0560 0.0564 0.0509 0.0513 0.0560 0.0569
8 0.1051 0.1058 0.0562 0.0565 0.0510 0.0513 0.0562 0.0570
9 0.1051 0.1058 0.0561 0.0564 0.0508 0.0511 0.0562 0.0569
10 0.1050 0.1056 0.0560 0.0562 0.0506 0.0508 0.0561 0.0568
11 0.1051 0.1055 0.0560 0.0560 0.0504 0.0505 0.0562 0.0568
12 0.1048 0.1049 0.0556 0.0555 0.0500 0.0499 0.0560 0.0566

Table 6.5: Error analysis for 2-state setting

h RMSE AME RAE APE
WHMM HMM WHMM HMM WHMM HMM WHMM HMM

1 0.1036 0.1056 0.0546 0.0568 0.0502 0.0523 0.0544 0.0589
2 0.1037 0.1056 0.0547 0.0568 0.0502 0.0521 0.0545 0.0589
3 0.1038 0.1056 0.0548 0.0567 0.0502 0.0520 0.0547 0.0589
4 0.1039 0.1055 0.0548 0.0566 0.0501 0.0517 0.0547 0.0590
5 0.1042 0.1057 0.0552 0.0568 0.0504 0.0519 0.0553 0.0594
6 0.1048 0.1061 0.0558 0.0572 0.0508 0.0521 0.0560 0.0601
7 0.1050 0.1061 0.0561 0.0573 0.0510 0.0521 0.0564 0.0605
8 0.1052 0.1063 0.0563 0.0574 0.0511 0.0521 0.0567 0.0607
9 0.1052 0.1062 0.0562 0.0572 0.0508 0.0518 0.0566 0.0606
10 0.1051 0.1060 0.0561 0.0570 0.0507 0.0515 0.0565 0.0604
11 0.1052 0.1057 0.0561 0.0567 0.0506 0.0511 0.0566 0.0604
12 0.1049 0.1050 0.0557 0.0561 0.0501 0.0504 0.0564 0.0601

Table 6.6: Error analysis for 3-state setting
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h RMSE AME RAE APE
ahead WHMM HMM WHMM HMM WHMM HMM WHMM HMM
1 0.1034 0.1047 0.0540 0.0562 0.0497 0.0517 0.0524 0.0575
2 0.1035 0.1048 0.0541 0.0562 0.0497 0.0516 0.0525 0.0575
3 0.1036 0.1048 0.0542 0.0562 0.0497 0.0515 0.0526 0.0576
4 0.1037 0.1048 0.0542 0.0561 0.0496 0.0513 0.0527 0.0577
5 0.1041 0.1051 0.0547 0.0565 0.0499 0.0515 0.0532 0.0582
6 0.1047 0.1056 0.0553 0.0569 0.0504 0.0519 0.0540 0.0589
7 0.1049 0.1058 0.0556 0.0571 0.0505 0.0519 0.0544 0.0593
8 0.1051 0.1060 0.0558 0.0573 0.0506 0.0520 0.0546 0.0595
9 0.1050 0.1060 0.0556 0.0572 0.0503 0.0518 0.0545 0.0595
10 0.1049 0.1058 0.0556 0.0570 0.0502 0.0515 0.0544 0.0594
11 0.1051 0.1057 0.0555 0.0568 0.0501 0.0512 0.0545 0.0594
12 0.1048 0.1051 0.0552 0.0563 0.0496 0.0506 0.0543 0.0591

Table 6.7: Error analysis for 4-state setting

2-state WHMM 2-state WHMM 3-state WHMM
vs 3-state WHMM vs 4-state WHMM vs 4-state WHMM

RMSE 0.3662 8.67 × 10−4 0.3266
AME 0.3469 0.0656 0.0312
RAE 0.2536 0.0077 0.0016
APE 0.1362 1.30 × 10−4 8.21 × 10−6

Table 6.8: p-values for a one-tailed significance test on the comparison of WHMM states based
on forecasting errors shown in Tables 6.5-6.7

RMSE AME RAE APE
WHMM vs HMM WHMM vs HMM WHMM vs HMM WHMM vs HMM

2-state 1.12 × 10−3 1.48 × 10−2 2.37 × 10−3 9.03 × 10−3

3-state 1.06 × 10−5 4.65 × 10−6 8.92 × 10−7 4.44 × 10−11

4-state 3.94 × 10−4 4.80 × 10−7 5.64 × 10−10 1.69 × 10−12

Table 6.9: p-values for a one-tailed significance test on the comparison of HMM and WHMM
based on forecasting errors shown in Tables 6.5-6.7
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Figure 6.5: Plots of AIC values for 1-,2-,3- and 4-state WHMMs

where s is the number of parameters and L(θ) denotes the log-likelihood function of the model

given a vector of parameters θ. The preferred model has the minimum AIC value. For the

observation process yk in each pass, the log-likelihood of the vector of parameters θ is given by

L(θ) =

# in batch∑
l=1

N∑
r=1

〈xl, er〉

(
−

1
2

log
(
2πσ2(xl)

)
−

(yl+1 − α(xl)yl − η(xl))2

2σ2(xl)

)
.

The AIC for each model is evaluated using the parameter estimates given at the end of each

algorithm step. This means that we obtain an AIC value after an algorithm run processing one

batch of data points. The evolution of AIC values for the 1-, 2-, 3- and 4-state models after each

algorithm step is presented in Figure 6.5. The AIC offers a relative measure of lost information

described by the tradeoff between bias and variance in the model construction. In our model

setting, there are (N2 − 1)N + 3N parameters needed to be estimated. A larger number of states

increases the complexity of the parameter estimation and leads to a rapid increase in the AIC

values. Although the 1-state model produces the smallest AIC values for majority of the steps,
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it has the highest AIC values from the 25th to the 30th step. It is evident that there is merit in

using a regime-switching model when market instability is expected to occur as the AIC values

appear to be robust even in times of turbulent market conditions. While Table 6.8 shows that

a 4-state WHMM has a fitting performance better than the 2- or 3-state WHMMs, the 2-state

model is still reasonable in capturing the dynamics of our data and performs better than the 3-

and 4-state models with respect to the AIC. Hence, the 2-state WHMM is adjudged as the most

suitable for our dataset.

6.6 Conclusion

A regime-switching Hull-White model is developed in which the level and speed of mean

reversion together with the volatility are governed by a second-order Markov chain in discrete

time. The inclusion of the previous two time-steps in the Markov chain features the model’s

capacity to capture presence of memory in the data. By transforming a WHMM into a regular

HMM, we were able to present general recursive filters. With the aid of the EM algorithm and

change of reference probability measures, the model parameters are dynamically estimated.

The proposed model is tested on a financial time series data of 30-day Canadian T-bill rates

compiled during a 10-year period. The WHMM h-step ahead predictions are calculated and

compared to those from the regular HMM under the 2-, 3- and 4-state settings. Our empirical

results demonstrate that by utilizing a higher-order HMM, a better fit is obtained on the basis

of forecasting errors way lower than those produced by the usual HMM. The choice of the

most appropriate number of states was validated by the AIC analysis in conjunction with the

goodness-of-fit exercise for the one-step ahead forecasts. We found that in the context of the

dataset examined, the 2-state WHMM is sufficient to capture the interest rate dynamics. This

result is consistent with the previous findings in Erlwein and Mamon [14] but we got a much

improved fit given the smaller forecasting errors. The WHMM-based parameter estimation

is also robust given the substantially low standard errors all throughout the entire algorithm

steps. The WHMM-driven Hull-White filtering and parameter estimation technique that we
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developed can be applied to a wide variety of processes exhibiting mean-reversion and presence

of memory in finance, economics, engineering and other areas of the mathematical sciences.

It may also be extended to a multivariate-data setting in a straightforward manner similar in

idea to the extension for the non-mean-reverting regular HMM case carried out in Erlwein, et

al. [15] although, of course, the computations will undoubtedly become more involved as the

dimension of the data and lag dependence become bigger.
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Chapter 7

Calibration of a regime-switching model

using an inverse Stieltjes moment

approach

7.1 Introduction

A central problem in finance that is somewhat different from the focus of chapters 2 to 6, which

makes use of historical data, is the calibration of pricing models. Calibration means that we

wish to obtain estimates of parameters given current market option prices. The recovery of

model parameters given current observed market derivative prices is termed as an inverse prob-

lem in finance.

Volatility, for instance, is an important but unobservable parameter, whose estimate is neces-

sary when pricing derivatives and enables us to understand price dynamics. Traders calculate

implied volatilities from market data for option valuation as well as use them as a guide to

monitor the market’s sentiments. In the present work, we focus on recovering the parameters

of a regime-switching model from European call option prices.
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A number of approaches have been proposed to deal with this type of problem. In a pioneer-

ing paper, Dupire [12] verified empirically that different strikes and maturities lead to different

implied volatilities for options on a given asset. Boyle and Thangaraj [6], as well as Andersen

and Brotherton-Ratcliffe [1], obtained local implied volatilities by numerically implementing

Dupire’s equation. Rodrigo and Mamon [24] gave a new expression for the volatility by de-

riving a semi-explicit solution of Dupire’s equation. They also provided a different formula

in [23], which makes use of the so-called inverse Stieltjes moment approach. Bouchouev and

Isakov [4] reduced the identification of the volatility to an inverse parabolic problem with the

final observation. Deng, et al. [10] employed an optimal control framework with a new termi-

nal condition to solve this kind of inverse problem.

Recently, considerable attention has been given to the use of regime-switching models, or

HMMs, in finance. In an HMM, the model parameters switch among unobservable states of

the economy and are governed by a Markov process. A regime-switching volatility is a simple

way to incorporate stochastic volatilities. It has the ability to capture long-term and fundamen-

tal changes in the economic mechanism that generates the data. Significant empirical evidence

from the literature lends support for the appropriateness of regime-switching models. For in-

stance, Chu, et al. [8] advocated the use of these models to describe returns and volatility

dynamics in the stock market. Turner, et al. [26] argued that either the mean or variance, or

both, may exhibit differences between two regimes. The investigation of Engel and Hamil-

ton [19], Bekaert and Hodrick [3], and Engel and Hakkio [18] documented regime switching

in major foreign exchange rates. Dahlquist and Gray [9] and Ang and Bekaert [2] showed that

various foreign, short-term interest rates are well described by regime-switching models. Some

applications of regime-switching models modulated by a hidden Markov chain can be found in

the work of Elliott and Mamon [16], as well as in Elliott and Kopp [15].

Regime-switching models have achieved growing importance in various financial problems as



Chapter 7 169

they can capture a richer set of empirical and theoretical characteristics of a market. They have

also enriched the developments in option pricing theory. For example, Elliott, et al. [14] de-

veloped a method to price options based on a regime-switching random Esscher transform. In

turn, this method was used by Ching, et al. [7] to price exotic options under a hidden Markov

model with long-range dependence in the states of an economy, which is known as a higher-

order HMM. Mamon and Rodrigo [22] presented closed-form solutions for European option

values when the dynamics of both the short rate and the volatility of the underlying price pro-

cess are modulated by a continuous-time Markov chain. Boyle and Draviam [5] derived the

system of partial differential equations (PDEs) of Black-Scholes type that governs the dynam-

ics of European options in a regime-switching framework and price exotic options by solving

the coupled PDEs numerically. Duan, et al. [11] developed a family of option pricing models

which are based on the GARCH process and the variance-updating schemes also depend on

a second factor orthogonal to asset innovations. Other works that feature regime-switching

models in other applications include Siu, et al. [25] for credit default swaps, Elliott and van der

Hoek [17] for asset allocations, and Elliott and Mamon [16] for short-term interest rates.

The above studies in option pricing under a regime-switching framework serve as motivation

for investigating the inverse problem of recovering the volatilities when they are governed by

HMMs. There is a relatively limited amount of literature on estimating regime-switching pa-

rameters using market data. In this chapter, we extend the inverse Stieltjes moment approach

in [23] by assuming that the volatility of the underlying asset is governed by a continuous-time

Markov chain. In this model, the unobservable parameters are the volatilities in each state and

the intensity probabilities of the hidden Markov chain. We start with the well-known system

of Black-Scholes-type PDEs and derive the coupled system of Dupire-type PDEs that governs

the dynamics of European option prices.

The rest of the chapter is organized as follows. In section 7.2, we recall the regime-switching
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model setup. In section 7.3, we derive the system of Dupire-type PDEs describing the dy-

namics of European option prices under this setup. We formulate the inverse Stieltjes moment

problem in section 7.4, and also discuss how our proposed method could determine the model

parameters. In section 7.5, we exhibit an implementation to a set of “theoretical data” which

were generated by solving the coupled, Dupire-type PDEs. In section 7.6, numerical results for

“practical data”, which is obtained from market data are presented. We conclude with a brief

summary in section 7.7.

7.2 Regime-switching model setup

We wish to value a European option within the standard Black-Scholes market with two basic

securities consisting of a riskless asset (a bond whose value is Bt at time t ≥ 0) and a risky

asset (a stock whose price is S t at time t). Moreover, we assume that the economic state of the

world is modeled by a finite-state Markov chain xt that evolves in continuous time. This im-

plies that the bank rate process rt and the stock’s volatility σt and rate of return µt are governed

by Markov chain dynamics.

Without loss of generality, we may take the state space of xt to be the finite set {e1, . . . , eN} of

canonical vectors in RN . Assume that xt is homogeneous in time and has intensity matrix A =

(ai j), i.e.,

a ji ≥ 0 for j , i,
N∑

i=1

ai j = 0 for each j = 1, . . . ,N.

If pt = E[xt] = (p1
t , . . . , pN

t )∗ where ∗ is the transpose operator, then pt satisfies

dpt

dt
= Apt.

It can be shown [13] that xt has a semi-martingale representation

xt = x0 +

∫ t

0
Axu du + Mt,
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where Mt is a martingale.

Suppose that rt = 〈r, xt〉 for some given vector r = (r1, . . . , rN)∗ in RN with r1, . . . , rN > 0.

Here, 〈·, ·〉 denotes the usual inner product in RN . Then $1 invested at time zero becomes

Bt = e
∫ t

0 ru du (7.1)

at time t. In addition, suppose that the rate of return µt and the volatility σt depend on the

state xt, i.e., there exist vectors µ = (µ1, . . . , µN)∗ and σ = (σ1, . . . , σN)∗ in RN (with µi, σi > 0

for all i = 1, . . . ,N) such that µt = 〈µ, xt〉 and σt = 〈σ, xt〉. Then the dynamics of the stock are

described by the stochastic differential equation

dS t = µtS t dt + σtS t dWt,

where Wt is a Brownian motion on a filtered probability space denoted by (Ω,F , P, (Ft)t≥0) and

(Ft)t≥0 is taken to be the natural filtration. Wt is independent of xt. It can be shown that S t is

expressible as

S t = S 0e
∫ t

0 (µu−σ
2
u/2) du+

∫ t
0 σudWu . (7.2)

If the bond and stock dynamics are given by equations (7.1) and (7.2), respectively, and if at

time t ∈ [0,T ] we have S t = S and xt = x, then the price of a European call option with

expiry T and strike price K is

c(t, S ,T,K, x) = EQ
[
e−

∫ T
t ru du(S T − K)+ | S t = S , xt = x

]
(7.3)

where (z)+ = max(z, 0) and EQ denotes the expectation evaluated under a risk-neutral mea-

sure Q. We remark that regime switching leads to an incomplete market, which can be com-

pleted by the introduction of Arrow-Debreu securities [20] related to the cost of switching.

Thus, in equation (7.3) we are assuming that we are already working under a risk-neutral mea-
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sure Q. Just like in the classical Black-Scholes case, we assume that µ = r in the stock price

dynamics under Q; hence the rate of return will not appear in equation (7.3). We do not rule

out the dependence of the market price of risk on the state xt at time t. But, irrespective of

whether or not we assume a special or functional form for the market price of risk that depends

on xt, or some other more general dependence which we do not know, the information from the

market should be implicitly reflected in the parameters that we want to estimate. That is, we do

not know what the exact dependence is but what is important to us are the parameter estimates

that should encapsulate this information.

Define ci(t, S ,T,K) = c(t, S ,T,K, ei) for each i = 1, . . . ,N. We note that ri = 〈r, ei〉 and

σi = 〈σ, ei〉. It can be shown in [22] that c1, . . . , cN satisfy a system of coupled PDEs of

Black-Scholes type in the variables t and S , namely

∂ci

∂t
+

1
2
σ2

i S 2∂
2ci

∂S 2 + riS
∂ci

∂S
− rici +

N∑
j=1

a jic j = 0 (i = 1, . . . ,N), (7.4)

together with the terminal conditions

ci(T, S ,T,K) = (S − K)+ (i = 1, . . . ,N). (7.5)

Let c = (c1, . . . , cN)∗, Σ = diag(σ1, . . . , σN), and R = diag(r1, . . . , rN). Then equations (7.4)

and (7.5) can be recast in matrix form as

∂c
∂t

+
1
2

S 2Σ2 ∂
2c

∂S 2 + S R
∂c
∂S
− Rc + A∗c = 0, (7.6)

c(T, S ,T,K) = (S − K)+1, (7.7)

respectively, where 0 is the N-dimensional zero vector and 1 is the N-dimensional vector all of

whose components are equal to one.
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Our aim here is to solve the inverse problem of recovering the parameters of the underlying

model from market data. The inverse problem was first considered by Dupire [12], who showed

that if the prices of a European call option were known for all strike prices and maturity dates,

then the volatility surface can be recovered from market data. In our case, instead of a local

volatility function, we wish to recover the volatility matrix Σ, the transition intensity matrix A,

and the rate matrix R.

It is important to note that actual market option prices are quoted for varying strikes and times to

maturity. Thus, since we want to utilize a PDE-based approach to solve the inverse problem, we

must first derive a system of PDEs similar to equation (7.6) but with the independent variables

being the time to maturity and the strike price. In other words, we wish to obtain the analogue

of Dupire’s equation for the system of PDEs given in equation (7.6), which is the goal of the

next section.

7.3 Derivation of a system of Dupire-type PDEs

First, we show that c1, . . . , cN are homogeneous functions of degree one with respect to S and

K, i.e.,

ci(t, λS ,T, λK) = λci(t, S ,T,K) (i = 1, . . . ,N) (7.8)

for all λ > 0. To prove equation (7.8), we will use a uniqueness argument by showing that

ci(t, λS ,T, λK) and λci(t, S ,T,K) for all i = 1, . . . ,N satisfy the following final-value problem

for v(t, x, u, y):

∂vi

∂t
+

1
2
σ2

i x2∂
2vi

∂x2 + rix
∂vi

∂x
− rivi +

N∑
j=1

a jiv j = 0 (i = 1, . . . ,N), (7.9)

vi(T, x, u, y) = λ(x − y)+ (i = 1, . . . ,N). (7.10)

Let c1, . . . , cN be a solution of (7.4) and (7.5). Take vi(t, x, u, y) = λci(t, S ,T,K) where x = S ,
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u = T , and y = K. Then it is easy to see that v1, . . . , vN satisfy equations (7.9) and (7.10). Now

take vi(t, x, u, y) = ci(t, S ,T,K) where x = S/λ, u = T , and y = K/λ. Again, it is straight-

forward to verify that v1, . . . , vN satisfy equations (7.9) and (7.10). Thus, the homogeneity

condition (7.8) follows from the uniqueness of the solution of the final-value problem.

Invoking Euler’s theorem on homogeneous functions, we obtain

S
∂ci

∂S
+ K

∂ci

∂K
= ci (i = 1, . . . ,N).

Differentiating the above equation with respect to S and K gives

S
∂2ci

∂S 2 = −K
∂2ci

∂S ∂K
, K

∂2ci

∂K2 = −S
∂2ci

∂K∂S
(i = 1, . . . ,N),

respectively. It follows that

S 2∂
2ci

∂S 2 = K2 ∂
2ci

∂K2 (i = 1, . . . ,N)

and equation (7.4) becomes

∂ci

∂t
+

1
2
σ2

i K2 ∂
2ci

∂K2 − riK
∂ci

∂K
+

N∑
j=1

a jic j = 0 (i = 1, . . . ,N), (7.11)

with the same terminal condition (7.5). In matrix form we therefore have

∂c
∂t

+
1
2

K2Σ2 ∂
2c

∂K2 − KR
∂c
∂K

+ A∗c = 0, (7.12)

c(T, S ,T,K) = (S − K)+1. (7.13)

Finally, letting c(t, S ,T,K) = c̄(u, S ,K) where u = T − t in equations (7.12), (7.13) yields

∂c̄
∂u

=
1
2

K2Σ2 ∂
2c̄

∂K2 − KR
∂c̄
∂K

+ A∗c̄, (7.14)
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c̄(0, S ,K) = (S − K)+1, (7.15)

respectively. Note that equations (7.14) and (7.15) is now an initial-value problem. When

N = 1, we have
∂c̄1

∂u
=

1
2
σ2

1K2∂
2c̄1

∂K2 − r1K
∂c̄1

∂K
, (7.16)

which is Dupire’s equation with a constant volatility [12]. Hence, equation (7.14) is the ana-

logue of Dupire’s equation for the regime-switching case.

7.4 Inverse Stieltjes moment problem

Having derived the system of PDEs in the appropriate independent variables u and K, we now

proceed to solve the inverse problem of parameter estimation via the inverse Stieltjes moment

method first proposed in Rodrigo and Mamon [23].

To simplify the ensuing notation, we shall write c(u,K) instead of c̄(u, S ,K). We will also

assume for simplicity that R = rI for some given r > 0, where I is the identity matrix; the

method can be easily extended to the more general case. As in Rodrigo and Mamon [23], let

us define the nth moment of the call price by

m(i)
n (u) =

∫ ∞

0
Knci(u,K) dK (i = 1 . . .N),

where n is a nonnegative integer. Multiplying both sides of equation (7.14) by Kn and integrat-

ing over (0,∞), we formally obtain

∫ ∞

0
Kn ∂c
∂u

dK =
1
2

∫ ∞

0
Kn+2Σ2 ∂

2c
∂K2 dK −

∫ ∞

0
rKn+1 ∂c

∂K
dK

+

∫ ∞

0
KnA∗c dK.

(7.17)
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Assuming that the call price decays to zero sufficiently fast as K → ∞, we deduce that

∫ ∞

0
Kn ∂c
∂u

dK =
dmn

du
,∫ ∞

0
Kn+1 ∂c

∂K
dK = −(n + 1)mn,∫ ∞

0
Kn+2 ∂

2c
∂K2 dK = (n + 1)(n + 2)mn.

Thus, equation (7.17) simplifies to

dmn

du
− r(n + 1)mn =

[
1
2

(n + 1)(n + 2)Σ2 + A∗
]

mn.

Considering any N consecutive moments gives

dmn

du
− r(n + 1)mn =

[
(n + 1)(n + 2)

2
Σ2 + A∗

]
mn,

dmn+1

du
− r(n + 2)mn+1 =

[
(n + 2)(n + 3)

2
Σ2 + A∗

]
mn+1,

...

dmn+N−1

du
− r(n + N)mn+N−1 =

[
(n + N)(n + N + 1)

2
Σ2 + A∗

]
mn+N−1.

(7.18)

Since the option prices are assumed to be observed, the moments are also known and we wish

to estimate A and Σ. Given that A is an intensity matrix, each of its N diagonal entries, say aii,

is expressible as a sum of the entries in the ith column, so there are essentially N2−N unknown

entries of A. Together with the N unknown diagonal entries of Σ, we therefore have a total of

N2 parameters to estimate. Note that (7.18) is a linear system of N2 equations in N2 unknowns.
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To explain the basic idea, let us take N = 2. Then (7.18) gives



(n+1)(n+2)
2 m(1)

n 0 m(2)
n − m(1)

n 0

0 (n+1)(n+2)
2 m(2)

n 0 m(1)
n − m(2)

n

(n+2)(n+3)
2 m(1)

n+1 0 m(2)
n+1 − m(1)

n+1 0

0 (n+2)(n+3)
2 m(2)

n+1 0 m(1)
n+1 − m(2)

n+1



×



σ2
1

σ2
2

a21

a12


=



dm(1)
n

du − r(n + 1)m(1)
n

dm(2)
n

du − r(n + 1)m(2)
n

dm(1)
n+1

du − r(n + 2)m(1)
n+1

dm(2)
n+1

du − r(n + 2)m(2)
n+1


. (7.19)

Note that from (7.15) we see that

mn(0) =

∫ ∞

0
Kn(S − K)+1 dK =

S n+2

(n + 1)(n + 2)
1.

Let

M(i)
n (u) =

∫ u

0
m(i)

n (s) ds, (i = 1, 2).

To incorporate the initial conditions, we integrate (7.19) over [0, u] with respect to a dummy

variable s to get



(n+1)(n+2)
2 M(1)

n 0 M(2)
n − M(1)

n 0

0 (n+1)(n+2)
2 M(2)

n 0 M(1)
n − M(2)

n

(n+2)(n+3)
2 M(1)

n+1 0 M(2)
n+1 − M(1)

n+1 0

0 (n+2)(n+3)
2 M(2)

n+1 0 M(1)
n+1 − M(2)

n+1



×



σ2
1

σ2
2

a21

a12


=



m(1)
n −

S n+2

(n+1)(n+2) − r(n + 1)M(1)
n

m(2)
n −

S n+2

(n+1)(n+2) − r(n + 1)M(2)
n

m(1)
n+1 −

S n+3

(n+2)(n+3) − r(n + 2)M(1)
n+1

m(2)
n+1 −

S n+3

(n+2)(n+3) − r(n + 2)M(2)
n+1


. (7.20)
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In summary, given c1(u,K) and c2(u,K) where 0 ≤ u ≤ T and K ≥ 0, we compute m(1)
n , m(2)

n ,

m(1)
n+1, and m(2)

n+1 (for a fixed nonnegative integer n), as well as their integrals over [0, u] for some

u in [0,T ]. We then solve the linear system (7.20) for the unknown parameters σ1, σ2, a21, and

a12. Note that a11 = −a21 and a22 = −a12 by the definition of A. In addition, the choice of u in

[0,T ] should not matter since in this framework A and Σ are constant matrices.

7.5 Numerical implementation and results

To test the accuracy of the inverse Stieltes moment method, we need to have “observed” option

prices. The “observed” option prices can be taken to be the solution generated by the initial-

value problem (7.14), (7.15) (after specifying some matrices A and Σ). Then we try to recover

A and Σ using the moment method.

As a trial run, suppose that A = 0, i.e., there is no switching among regimes. Then equation

(7.14) reduces to a system of uncoupled Dupire equations. Hence, each component of c solves

Dupire’s equation, i.e., if c = (c1, . . . , cN)∗, then

ci(u,K) = S Φ(d(i)
1 (u,K)) − Ke−ruΦ(d(i)

2 (u,K)) (i = 1, . . . ,N),

d(i)
1 (u,K) =

log(S/K) + (r + σ2
i /2)u

σi
√

u
, (7.21)

d(i)
2 (u,K) =

log(S/K) + (r − σ2
i /2)u

σi
√

u
,

where Φ denotes the cumulative distribution function of a standard normal variable. Now we

assume that r = 0.02, S = 20, u = 0, T = 1, σ1 = 0.1 and σ2 = 0.3. We take 50 values

for strike price ranging from 0 to 60 and 100 values for the time to maturity ranging from 0

to 1. Then the moments and their integrals are calculated and moment method in (7.20) is

applied. The estimated parameters are: a21 = 6.67 × 10(−4), a12 = 3.15 × 10(−4), σ1 = 0.1 and

σ2 = 0.2957.
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However, for the more realistic case A , 0, there is no known explicit solution of (7.14)-(7.15)

in general. So we will have to solve this problem numerically to generate the “observed” option

prices. This implies that we have to truncate the interval (0,∞) to some finite interval (0,Kmax)

where Kmax > 0, and then impose reasonable boundary conditions for c at K = 0 and K = Kmax.

If the right endpoint Kmax is sufficiently large, and recalling that each component of c tends to

zero as K → ∞, then we can assign a positive but small value to each component. However,

the boundary condition at the left endpoint K = 0 is not clear. When N = 1, the Black-Scholes

formula evaluated at K = 0 gives S for the call price. For N > 1, it is not certain whether

each component of c will also have the value S . To get around this problem, we will solve

(7.14)-(7.15) numerically for K ∈ [0,Kmax] and u ∈ [0,T ] by formulating an explicit method

with implicit boundary conditions.

Discretize the variables by

u ' ui, K ' K j, c ' ci, j = (ci, j
1 , c

i, j
2 )∗,

where

ui = i∆u, ∆u =
T
I

(i = 0, . . . , I)

and

K j = j∆K, ∆K =
Kmax

J
( j = 0, . . . , J).

Using an explicit scheme, we discretize equation (7.14) to get

ci+1, j
1 − ci, j

1

∆u
=

1
2
σ2

1(K j)2 ci, j−1
1 − 2ci, j

1 + ci, j+1
1

(∆K)2 − rK j c
i, j+1
1 − ci, j

1

∆K

+ a11ci, j
1 + a21ci, j

2 ,

ci+1, j
2 − ci, j

2

∆u
=

1
2
σ2

2(K j)2 ci, j−1
2 − 2ci, j

2 + ci, j+1
2

(∆K)2 − rK j c
i, j+1
2 − ci, j

2

∆K

+ a12ci, j
1 + a22ci, j

2 .
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This is equivalent to

ci+1, j = ci, j +
1
2

∆u
(∆K)2 (K j)2Σ2(ci, j−1 − 2ci, j + ci, j+1)

−
r∆u
∆K

K j(ci, j+1 − ci, j) + ∆uA∗ci, j,

for all i = 1, . . . , I − 1 and j = 1, . . . , J − 1. This solves for the option prices at time i +

1 in the open interval (0,Kmax) using the option prices calculated at time i over the closed

interval [0,Kmax]. The initial condition is determined by

c0, j = (S − K j)+1 ( j = 0, . . . , J),

which includes the values at both endpoints.

To determine the boundary values at K = 0, we use second-order Taylor expansions at (u, 0) in

the continuous variables, i.e.,

c(u,∆K) ' c(u, 0) + (∆K)
∂c
∂K

(u, 0) +
1
2

(∆K)2 ∂
2c

∂K2 (u, 0),

c(u, 2∆K) ' c(u, 0) + (2∆K)
∂c
∂K

(u, 0) +
1
2

(2∆K)2 ∂
2c

∂K2 (u, 0),

c(u, 3∆K) ' c(u, 0) + (3∆K)
∂c
∂K

(u, 0) +
1
2

(3∆K)2 ∂
2c

∂K2 (u, 0).

Define

αL(u) =
∂c
∂K

(u, 0), βL(u) =
∂2c
∂K2 (u, 0).

Then in discretized variables we get

ci,1 = ci,0 + ∆KαL(ui) +
1
2

(∆K)2βL(ui),

ci,2 = ci,0 + 2∆KαL(ui) + 2(∆K)2βL(ui),

ci,3 = ci,0 + 3∆KαL(ui) +
9
2

(∆K)2βL(ui),
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valid for all i = 1, . . . , I. In matrix form, this is the same as


1 ∆K 1

2 (∆K)2

1 2∆K 2(∆K)2

1 3∆K 9
2 (∆K)2




ci,0

1

α(1)
L (ui)

β(1)
L (ui)

 =


ci,1

1

ci,2
1

ci,3
1


and 

1 ∆K 1
2 (∆K)2

1 2∆K 2(∆K)2

1 3∆K 9
2 (∆K)2




ci,0

2

α(2)
L (ui)

β(2)
L (ui)

 =


ci,1

2

ci,2
2

ci,3
2

 .
Note that the vectors αL(ui) and βL(ui) are not known, which is why we need to solve these

two linear systems to obtain the really desired quantity ci,0. Moreover, ci,1, ci,2, and ci,3 on the

right-hand sides are known if we first solve the PDEs in the interior (0,Kmax).

Similarly, at the right boundary point K = Kmax, we expand

c(u,Kmax − ∆K) ' c(u,Kmax) + (−∆K)
∂c
∂K

(u,Kmax)

+
1
2

(−∆K)2 ∂
2c

∂K2 (u,Kmax),

c(u,Kmax − 2∆K) ' c(u,Kmax) + (−2∆K)
∂c
∂K

(u,Kmax)

+
1
2

(−2∆K)2 ∂
2c

∂K2 (u,Kmax),

c(u,Kmax − 3∆K) ' c(u,Kmax) + (−3∆K)
∂c
∂K

(u,Kmax)

+
1
2

(−3∆K)2 ∂
2c

∂K2 (u,Kmax).

Defining

αR(u) =
∂c
∂K

(u,Kmax), βR(u) =
∂2c
∂K2 (u,Kmax),
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we obtain

ci,J−1 = ci,J − ∆KαR(ui) +
1
2

(∆K)2βR(ui),

ci,J−2 = ci,J − 2∆KαR(ui) + 2(∆K)2βR(ui),

ci,J−3 = ci,J − 3∆KαR(ui) +
9
2

(∆K)2βR(ui),

or, in matrix form, 
1 −∆K 1

2 (∆K)2

1 −2∆K 2(∆K)2

1 −3∆K 9
2 (∆K)2




ci,J

1

α(1)
R (ui)

β(1)
R (ui)

 =


ci,J−1

1

ci,J−2
1

ci,J−3
1


and 

1 −∆K 1
2 (∆K)2

1 −2∆K 2(∆K)2

1 −3∆K 9
2 (∆K)2




ci,J

2

α(2)
R (ui)

β(2)
R (ui)

 =


ci,J−1

2

ci,J−2
2

ci,J−3
2

 .
As before, the vectors αR(ui) and βR(ui) are not known, so we solve these two linear systems to

obtain the really desired quantity ci,J. Moreover, ci,J−1, ci,J−2, and ci,J−3 on the right-hand sides

are known if we first solve the PDEs in the interior (0,Kmax).

Summarizing, the explicit algorithm incorporating implicit boundary conditions that we pro-

pose can be formulated as follows:

1. Set

c0, j = (S − K j)+1 ( j = 0, . . . , J).

2. For all i = 0, . . . , I − 1 do
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(a) For all j = 1, . . . , J − 1 do

ci+1, j = ci, j +
1
2

∆u
(∆K)2 (K j)2Σ2(ci, j−1 − 2ci, j + ci, j+1)

−
r∆u
∆K

K j(ci, j+1 − ci, j) + ∆uA∗ci, j.

(b) Solve 
1 ∆K 1

2 (∆K)2

1 2∆K 2(∆K)2

1 3∆K 9
2 (∆K)2




ci+1,0

1

α(1)
L (ui+1)

β(1)
L (ui+1)

 =


ci+1,1

1

ci+1,2
1

ci+1,3
1


and 

1 ∆K 1
2 (∆K)2

1 2∆K 2(∆K)2

1 3∆K 9
2 (∆K)2




ci+1,0

2

α(2)
L (ui+1)

β(2)
L (ui+1)

 =


ci+1,1

2

ci+1,2
2

ci+1,3
2


for ci+1,0 = (ci+1,0

1 , ci+1,0
2 )∗.

(c) Solve 
1 −∆K 1

2 (∆K)2

1 −2∆K 2(∆K)2

1 −3∆K 9
2 (∆K)2




ci+1,J

1

α(1)
R (ui+1)

β(1)
R (ui+1)

 =


ci+1,J−1

1

ci+1,J−2
1

ci+1,J−3
1


and 

1 −∆K 1
2 (∆K)2

1 −2∆K 2(∆K)2

1 −3∆K 9
2 (∆K)2




ci+1,J

2

α(2)
R (ui+1)

β(2)
R (ui+1)

 =


ci+1,J−1

2

ci+1,J−2
2

ci+1,J−3
2


for ci+1,J = (ci+1,J

1 , ci+1,J
2 )∗.

A stability criterion for this scheme is

∆u ≤ (∆K)2 min
(

1
σ2

1

,
1
σ2

2

)
.

Although explicit schemes are generally slower than implicit schemes, the programming is
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straightforward for the former compared to the latter since the linear system to be solved for

the implicit scheme is not anymore tridiagonal.

In the following simulations, we take the parameter values to be r = 0.02, S = 20, u = 0,

T = 1, Kmax = 60, σ1 = 0.1, and σ2 = 0.3. We use 1200 nodes to discretize time axes

and 120 nodes to discretized strike axes, i.e., ∆u = 1
1200 and ∆K = 0.5, in solving the PDEs

(7.14), (7.15) numerically. The numerical solution contains a larger sized dataset which usually

does not exist in practice; in reality there is only a set of small data points corresponding to

time and strike nodes. In our example, we pick 13-time and 21-strike nodes from the solutions

and these prices are used as market data in the inverse Stieltjes moment approach. Next, in

order to calculate the truncated moments and their integrals accurately, we interpolate the call

prices from time to maturity- and strike-direction. The size of the dataset increases to 500 by

500 points after interpolation. Here, we use a Matlab built-in function called Piecewise Cu-

bic Hermite Interpolating Polynomial (PCHIP) for the interpolation procedure. Note that in

general that the market data is not equally spaced through time to maturity and strike prices.

Therefore, the number of nodes interpolated between two prices depends on the differences in

time to maturity and strike price of the two prices. Finally we solve the algebraic system (7.20)

for the “unknown” parameters.

First, let us suppose that the intensity matrix A is of the form

A =

−λ λ

λ −λ


where λ > 0. In Table 7.1, we present the estimated parameters for different values of λ and

n. Additionally, we evaluate the errors for the estimated option prices using the RMSE, which

helps us to analyze the sensitivity of λ and n. From (7.20), the estimated parameters should

be independent of n. The error, which occurs by solving the Dupire PDEs, certainly affects
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Estimated n
λ parameter 2 3 4

0.25
(λ1, λ2)
(σ1, σ2)

(rmse1,rmse2)

(0.2567,0.2240)
(0.0977,0.3002)
(0.0021,0.0058)

(0.2523,0.1995)
(0.0987,0.2989)
(0.0013,0.0069)

(0.2498,0.1477)
(0.0994,0.2964)

(7.70×10−4,0.0094)

0.5
(λ1, λ2)
(σ1, σ2)

(rmse1,rmse2)

(0.5073,0.4686)
(0.0978,0.3001)
(0.0013,0.0051)

(0.5016,0.4420)
(0.0989,0.2989)

(6.49×10−4,0.0060)

(0.4982,0.3844)
(0.0997,0.2964)

(1.7l×10−4,0.0083)

1
(λ1, λ2)
(σ1, σ2)

(rmse1,rmse2)

(1.0088,0.9570)
(0.0981,0.2999)

(8.4×10−4,0.0042)

(0.9995,0.9205)
(0.0994,0.2988)

(7.22×10−4,0.0049)

(0.9939,0.8571)
(0.1002,0.2964)

(8.87×10−4,0.0065)

2
(λ1, λ2)
(σ1, σ2)

(rmse1,rmse2)

(2.0094,1.9369)
(0.0987,0.2999)
(0.0015,0.0034)

(1.9900,1.9001)
(0.1004,0.2990)
(0.0015,0.0019)

(1.9782,0.19101
(0.1015,0.2968)
(0.0020,0.0047)

5
(λ1, λ2)
(σ1, σ2)

(rmse1,rmse2)

(4.9470,5.0349)
(0.1021,0.3017)
(0.0043,0.0051)

(4.9522,4.8768)
(0.1047,0.3007)
(0.0041,0.0046)

(4.8405,4.8238)
(0.1061,0.2992)
(0.0024,0.0028)

8
(λ1, λ2)
(σ1, σ2)

(rmse1,rmse2)

(7.7259,8.6577)
(0.1069,0.3062)
(0.0162,0.0179)

(7.5802,8.3862)
(0.1102,0.3041)
(0.0143,0.0160)

(7.5168,8.1685)
(0.1116,0.3024)
(0.0120,0.0139)

Table 7.1: Example 1: Estimated parameters for different λ and n with σ1 = 0.1 and σ2 = 0.3

the calculation. To rectify this to some extent, we utilize larger degrees of the moment, i.e.,

n ≥ 2, which would put more weight on option prices in the calculation of moments and

consequently reduce the impact of the errors in the Dupire PDEs. In this example, the column

corresponding to n = 2 shows very good agreement between the estimated values and the

actual values assigned when λ ≤ 2. However, if the value of n is too large, higher calculation

error occurs when the moments are calculated, and it also affects the estimated results. As

can be observed, in the case of λ ≤ 2, most of the RMSEs are larger when higher n is used.

Furthermore, the accuracy of the estimation is also affected by the value of the intensity rate. As

the intensity rate increases, the market tends to switch more frequently between the states and

thus, it is more difficult to capture the information from the market data reducing the accuracy

of the estimation. Again, this problem can be corrected by using larger degrees of the moment.

Therefore, when λ ≥ 2, RMSE is smaller when higher n is used.
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In our second numerical experiment, we assume different intensity rates for state 1 and state 2,

so the intensity matrix is of the form

A =

−λ1 λ2

λ1 −λ2

 .
Other values of parameters remain unchanged. The estimated parameters for different values

of (λ1, λ2) and n are presented in Table 7.2. The difference between the intensity parameters,

λ1 and λ2 is apparently noticeable on the estimated parameters. When the difference is low, the

estimated results closely agree to the actual values for all degrees of moments. In cases where

the differences between the intensity parameters are quite substantial, for example λ1 = 0.25,

λ2 = 5, the estimated results are inaccurate for low degree of moments. However, by using a

higher degree of moment, e.g., n = 4, we still obtain the results closer to actual parameters.

After we estimate the unknown parameters, we calculate the call option prices in each states

by solving (7.6) and (7.7). Figure 7.1 shows the estimated option prices and the actual values

using λ1 = 0.25, λ2 = 2 and n = 2. Note that the computed values agree very well with the

actual data.

7.6 Implementation to “practical data”

In practice, unlike the theoretical data sets used in section 7.4, there is only one set of option

prices. In this section, we demonstrate how to split one set of option prices into two sets which

would correspond to the two regimes and apply the inverse Stieltjes moment approach. In order

that we have the “true” values of the parameters to benchmark with, we simulate option prices

with different times to maturity and strike prices via Monte Carlo simulation method.

The parameters used for this particular implementation are r = 0.02, σ1 = 0.1 and σ2 = 0.3.

This allows us to compare the numerical estimates and “true” values for the volatility. Let
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Estimated n
(λ1, λ2) parameter 2 3 4

(0.25, 0.5)
(λ1, λ2)
(σ1, σ2)

(rmse1,rmse2)

(0.2578,0.4708)

(0.0976,0.3001)

(0.0022,0.0051)

(0.2529,0.4474)

(0.0987,0.2990)

(0.0014,0.0060)

(0.2500,0.3956)

(0.0993,0.2965)

(8.21×10−4,0.0084)

(0.25, 1)
(λ1, λ2)

(σ1, σ2)

(rmse1,rmse2)

(0.2604,0.9602)

(0.0974,0.2997)

(0.0024,0.0039)

(0.2541,0.9414)

(0.0985,0.2989)

(0.0015,0.0046)

(0.2506,0.8910)

(0.0993,0.2968)

(8.94×10−4,0.0064)

(0.25, 2)
(λ1, λ2)

(σ1, σ2)

(rmse1,rmse2)

(0.2672,1.9039)

(0.0970,0.2979)

(0.0027,0.0026)

(0.2676,1.9134)

(0.0983,0.2982)

(0.0017,0.0028)

(0.2521,1.8780)

(0.0091,0.2970)

(0.0010,0.0037)

(0.25, 5)
(λ1, λ2)

(σ1, σ2)

(rmse1,rmse2)

(0.3044,1.8150)

(0.0954,0.2253)

(0.0047,0.0145)

(0.2772,3.5618)

(0.0974,0.2693)

(0.0024,0.0053)

(0.2612,4.3568)

(0.0987,0.2870)

(0.0014,0.0021)

(1, 0.5)
(λ1, λ2)

(σ1, σ2)

(rmse1,rmse2)

(1.0059,0.4630)

(0.0983,0.3001)

(0.0010,0.0053)

(0.9982,0.4296)

(0.0996,0.2987)

(8.89×10−4,0.0063)

(0.9934,0.3593)

(0.1004,0.2960)

(0.0011,0.0085)

(1, 2)
(λ1, λ2)

(σ1, σ2)

(rmse1,rmse2)

(1.0159,1.9301)

(0.0977,0.2993)

(7.96×10−4,0.0029)

(1.0028,1.9159)

(0.0991,0.2989)

(4.447×10−4,0.0033)

(0.9951,1.8564)

(0.1000,0.2971)

(5.71 × 10−4,0.0042)

(1, 5)
(λ1, λ2)

(σ1, σ2)

(rmse1,rmse2)

(1.0518,4.3958)

(0.0962,0.2887)

(0.0015,0.0017)

(1.0194,4.6501)

(0.0983,0.2984)

(7.26×10−4,0.0013)

(1.0007,4.8092)

(0.0996,0.2973)

(1.84×10−4,0.0011)

(1, 8)
(λ1, λ2)

(σ1, σ2)

(rmse1,rmse2)

(1.1127,2.0694)

(0.0946,0.2077)

(0.0044,0.0082)

(1.0491,5.1333)

(0.0974,0.2598)

(0.0014,0.0026)

(1.0115,6.8723)

(0.0992,0.2851)

(5.94×10−4,8.18×10−4)

(2, 5)
(λ1, λ2)

(σ1, σ2)

(rmse1,rmse2)

(2.0416,4.8157)

(0.0974,0.2980)

(5.11×10−4,0.0014)

(2.0013,4.8841)

(0.0996,0.2991)

(6.81 × 10−4,0.0015)

(1.9788,4.9018)

(0.1009,0.2994)

(9.45 × 10−4,0.0017)

(2, 8)
(λ1, λ2)

(σ1, σ2)

(rmse1,rmse2)

(2.0934,7.4342)

(0.0961,0.2937)

(6.35×10−4,4.58×10−4)

(2.0207,7.7349)

(0.0990,0.2974)

(1.62×10−4,5.15×10−4)

(1.9793,8.0197)

(0.1006,0.3008)

(3.91×10−4,6.29×10−4)

Table 7.2: Example 2: Estimated parameters for different λ and n with σ1 = 0.1 and σ2 = 0.3.
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Figure 7.1: Actual and estimated call prices: λ1 = 0.25,λ2 = 2 and n = 2.
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C̄(K, τ) denote the call option prices obtained from Monte Carlo simulation with 5000 sample

paths. The grid for call prices usually vary with the market data. In our example, we use the

same grid as described in section 4, which is uniform with 9 nodes on the time axis and 21

nodes on the strike price axis. Let C̄1(K, τ) and C̄2(K, τ) denote the call prices corresponding

to state 1 and 2 which are obtained from C̄.

In splitting C̄(K, τ) into C̄1(K, τ) and C̄2(K, τ), we first need to know information of the un-

derlying stock and the behavior of the hidden Markov chain. We adopt the filtering technique

from Mamon, et al. [21], and apply to a set of historical prices of the underlying stock. The

recursive filters lead to optimal estimates for the volatilities σ̂1 and σ̂2, the intensity matrix Q̂

and the respective probabilities of each state x̂1 and x̂2 at time t. Here, the historical data is

simulated using S t0 = 20, t0 = 0, t1 = 1 and ∆t = 1
500 . Note that S t = S t1 is the spot price of the

underlying stock.

Next, the estimates σ̂1 and σ̂2 and Q̂ are used to solve the Dupire PDE system in (7.16) to get

the “theoretical” call prices C1(K, τ) and C2(K, τ). Values of other parameters for solving the

PDE are Kmin = 10−3, Kmax = 60, ∆K = 3
25 and ∆t = 1

500 . The difference between the two sets

of prices, ∆C(K, τ) = C2(K, τ) − C1(K, τ), is then calculated. In order to make the comparison

valid between ∆C(K, τ) and C̄(K, τ), the values of ∆C are selected in such a way that they

correspond to the grid of C̄. This assumes that the difference between C̄1(K, τ) and C̄2(K, τ) is

equal to ∆C(K, τ). It implies that

C̄2(K, τ) − C̄1(K, τ) = ∆C(K, τ). (7.22)

Furthermore, we suppose that the market price C̄ is an expectation of the two prices from each

state and thus

C̄1(K, τ)x̂1 + C̄2(K, τ)x̂2 = C̄(K, τ). (7.23)



Chapter 7 190

Solving equations (7.22) and (7.23) gives us the call prices corresponding to state 1 and 2. Once

the two sets of option prices are obtained, the inverse Stieltjes moment approach is applied to

recover the unknown parameters as we did in section 7.4. Similarly, we perform sensitivity

analysis when the intensity rates are the same for both states and when they are different.

Based on the derivation of the inverse Stieltjes moment approach, the estimation results will

depend on the agreement of data to the Dupire PDEs. Since C̄1(K, τ) and C̄2(K, τ) are obtained

based on the estimated differences and probabilities, they do not satisfy the Dupire PDEs as

well as the theoretical data. The error, which occurs by substituting C̄1(K, τ) and C̄2(K, τ) into

the Dupire PDEs, certainly affects the calculation and hence the estimated results could be

relatively unstable at times. To rectify this to some extent, we utilize larger degrees of the mo-

ment, i.e., n ≥ 5, which would put more weight on option prices in the calculation of moments

and consequently reduce the impact of the errors in the Dupire PDEs. Table 7.3 depicts the

estimated parameters for different intensity rates λ and n. To estimate the option prices, we use

the estimated σ1, σ2 and Q to solve (7.16) and substitute the solutions into equation (7.23).

Additionally, we evaluate the errors for the estimated option prices using the RMSE, which are

also reported in Table 7.3. In the case of λ = 0, the standard Black-Scholes model without

regime switching is recovered, and it has the largest error. When λ is small, the estimated

option prices have good agreement with the market prices. As the intensity rate increases, the

market becomes more unstable and hence the RMSEs increase as well. This result is similar

to the impact of λ on the numerical implementation to the theoretical data. In Figure 7.2, a

comparison of the market and estimated option prices with λ = 2 and n = 7 is shown.

The estimated parameters and RMSE with different intensity rates for each state are shown in

Table 7.4. Similar to the result shown in Table 7.2, the estimation error is affected by the dif-

ference between the two intensity rates. We can observe higher RMSEs in the cases of larger

differences between λ1 and λ2. Again the degree of moment, n, somehow effects the estima-
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n

λ
Estimated
value 5 6 7

0 λ 0.2613 0.3358 0.4111
σ1 0.1959 0.1062 0.1033
σ2 0.2133 0.1939 0.1763

RMSE 1.4529 1.4454 1.4290

0.25 λ 0.2657 0.2899 0.2768
σ1 0.2114 0.1940 0.1735
σ2 0.3018 0.3160 0.3141

RMSE 0.3086 0.4147 0.3713

0.5 λ 0.5846 0.5873 0.6153
σ1 0.1708 0.1697 0.1639
σ2 0.3130 0.3528 0.3904

RMSE 0.5554 0.5421 0.5482

1 λ 0.8411 0.7625 0.7878
σ1 0.1530 0.1981 0.1997
σ2 0.3560 0.3903 0.3386

RMSE 0.0428 0.0773 0.3753

2 λ 2.5568 2.2888 2.2948
σ1 0.1297 0.1617 0.1206
σ2 0.3167 0.3591 0.2746

RMSE 0.1406 0.1904 0.1651

5 λ 5.1631 4.9145 4.5840
σ1 0.1761 0.1641 0.1368
σ2 0.3302 0.3253 0.2924

RMSE 0.5679 0.5411 0.5144

Table 7.3: Example 1: Estimated parameters for different λ and n.
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Figure 7.2: Actual and estimated call prices: λ = 2 and n = 7.

tion. However, it appears that a particular pattern for the RMSEs as a result of this impact does

not really emerge. We present a comparison of the actual and estimated option prices in Figure

7.3 when λ1 = 0.25, λ2 = 1 and n = 7.

7.7 Conclusion

We developed a methodology based on the inverse Stieltjes moment technique to recover the

parameters of a regime-switching model from option prices. In particular, the volatility of the

asset price, which is the underlying variable of the option, switches over time and modulated by

a continuous-time, finite-state Markov chain. The coupled system of Dupire-type PDEs was

derived from the well-known coupled system of Black-Scholes PDEs. The inverse Stieltjes

moment approach was adopted to formulate the PDEs forming a linear system of equations

for the volatilities and the intensity parameters. We demonstrated how to apply this method

to “theoretical data”, which were obtained by solving the Dupire PDEs, and “practical data”

obtained from market data. Numerical results were presented to illustrate the accuracy of our
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n

(λ1, λ2)
Estimated
parameter

5 6 7

(0.25, 0.5) (λ1, λ2) (0.1891,0.4951) (0.2631,0.5950) (0.2202,0.6399)
(σ1, σ2) (0.1373,0.2791) (0.1893,0.2605) (0.1171,0.2705)
RMSE 0.3398 0.5176 0.6128

(0.25, 1) (λ1, λ2) (0.2244,1.1918) (0.2300,0.8251) (0.1900,0.9501)
(σ1, σ2) (0.1670,0.2793) (0.1555,0.2955) (0.1366,0.3360)
RMSE 0.3693 0.2912 0.2374

(0.25, 2) (λ1, λ2) (0.1933,1.2001) (0.2126,1.4492) (0.2268,1.3190)
(σ1, σ2) (0.1729,0.2233) (0.1701,0.2383) (0.1763,0.2053
RMSE 0.3054 0.3002 0.3093

(0.25, 5) (λ1, λ2) (0.1725,1.8142) (0.1768,2.1447) (0.1859,2.1059)
(σ1, σ2) (0.1772,0.3454) (0.1788,0.2581) (0.1741,0.2760)
RMSE 0.8698 0.9121 0.9342

(1, 0.5) (λ1, λ2) (1.0440,0.6132) (0.7531,0.5906) (0.6788,0.3740)
(σ1, σ2) (0.1232,0.2845) (0.1841,0.3932) (0.1451,0.3800)
RMSE 0.1183 0.7557 1.0029

(1, 2) (λ1, λ2) (0.7180,1.5622) (1.0843,2.6256) (1.4354,1.8084)
(σ1, σ2) (0.1833,0.2877) (0.1621,0.3567) (0.1425,0.3327)
RMSE 0.5907 0.5139 0.4401

(1, 5) (λ1, λ2) (0.9290,2.5717) (1.4728,3.1720) (0.9066,6.3060)
(σ1, σ2) (0.1062,0.2192) (0.1173,0.2543) (0.1219,0.2412)
RMSE 0.7413 0.5533 0.7658

(2, 1) (λ1, λ2) (1.9702,0.8243) (1.8701,1.5095) (1.8611,0.9318)
(σ1, σ2) (0.1748,0.2691) (0.1549,0.4179) (0.1352,0.3570)
RMSE 0.3975 0.4297 0.5018

(2, 5) (λ1, λ2) (1.6245,3.3135) (1.2278,4.3946) (1.8332,4.3734)
(σ1, σ2) (0.1363,0.2522) (0.1123,0.3441) (0.1262,0.3569)
RMSE 0.3884 0.2724 0.1648

Table 7.4: Example 2: Estimated parameters for different λ and n.
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Figure 7.3: Actual and estimated call prices: λ1 = 0.25, λ2 = 1 and n = 7.

method. We also performed various analyses for both cases when the intensity parameters of

the intensity matrix A and the degree of the moment n is varied. Our findings based on the

numerical experiments on the two types of data sets indicate the following: (i) for a single

intensity rate λ, the higher the intensity rate the lower accuracy of the method, and (ii) for two

different intensity parameters λ1 and λ1, the greater the difference between these intensity rates

the less accurate the estimation.
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Chapter 8

Concluding remarks

8.1 Summary and commentaries

In this thesis, we consider further theoretical developments of regime-switching models mod-

ulated by higher-order HMMs together with their efficient and dynamic parameter estimation.

Special emphasis was given to various applications in finance in the context of risk manage-

ment, asset allocation and the inverse problem involved in pricing derivatives. Throughout the

course of this study, we exploited the power and capabilities of WHMMs and found opportuni-

ties demonstrating that they outperform the usual HMM under various criteria such as goodness

of fit, model adequacy and investment performance metrics. The benefits from WHMMs stem

from the fact that they are able to capture more information from the past by weakening the

Markov assumption and extending the dependency to any number of prior epochs. This feature

of WHMMs is appropriate for financial time series which usually exhibit a memory property.

Filtering methods via the change of reference probability measures along with the EM algo-

rithm were employed in the estimation of parameters using historical data. To complement our

contributions to parameter estimation using past information for regime-switching models, we

address the inverse problem under a regime-switching model for equity options. Below is a

brief summary of what have been accomplished in the chapters containing the research dealt

with in this thesis.
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In chapter 2, we provided the background of and motivation for WHMM. A transformation

mapping is introduced that permits the embedding of WHMM into a first-order HMM. Thus,

general recursive filters for the discrete-time, continuous-range observations based on tradi-

tional HMM filtering method could be applied. By including a mechanism that captures mem-

ory in the states of the model, the HMM is outperformed by the WHMM with respect to low

forecasting errors over the long forecasting horizons.

The case when drift and volatility components of asset returns are driven by two different

WHMM is discussed in chapter 3. The two independent WMCs are converted into a new

WMC through a tensor-product-based technique. Numerical examples on the simulated data

demonstrate the accuracy of our estimation algorithms as “true” parameters were recovered.

In chapter 4, the filtering of a multivariate WHMM is developed and its application in asset

allocation is considered. Parameter estimates were derived in the context of vector observa-

tions. Two WHMM-based investment strategies (switching and mixed) were proposed and

compared to their counterparts under the HMM setting. For certain levels of transaction costs,

the WHMM-based strategies produce better results than those from the HMM-based strategies

on the basis of higher differences of logreturn values and benchmarks on pure strategies.

Another application of multivariate HMM was given in chapter 5 dealing with the term struc-

ture of interest rates. The proposed model and filtering algorithms were tested on time series

data of yields on 3- and 6-month US T bills, 1- and 5-year US T-notes, and 20- and 30-year

US T-bonds. Empirical results of our implementation of the filtering and parameter estimation

methods illustrate the reasonability and sufficiency of our modeling approach in capturing mar-

ket dynamics and regime changes in the data. Such results also provide support for the merits

of employing WHMM over HMM when the data have memory property.



Chapter 8 200

Continuing the theme of interest rate modeling, a regime-switching Hull-White model is pre-

sented in chapter 6. In contrast to regime-switching interest rate models in the literature, we

considered a model where its mean level, speed of mean reversion and volatility are all driven

by a WMC. Recursive filters and estimates for the parameters were derived. The estimation

algorithms were implemented on a data series of 30-day Canadian T-bill yields (as proxy for

the short rate process) compiled during a 10-year period. By utilizing a higher-order HMM, a

better fit was obtained than those from the usual HMM.

In chapter 7, a method based on the inverse Stieltjes moment technique is put forward to re-

cover parameters of a Markov-switching model from option prices. The coupled system of

Dupire-type PDEs was established using the well-known coupled Black-Scholes PDEs. Then,

the inverse moment approach was applied to formulate the PDEs forming a linear system of

equations for the volatility and intensity parameters. We demonstrated the accuracy of our

proposed method by applying it to “theoretical” and “practical data”.

8.2 Further research directions

Possible extensions and powerful enhancements can further be investigated as offshoots of

these research works. We detail them below.

• As noted in this thesis, we concentrated on a WHMM of order 2 to temper the computa-

tional complexity involved in the implementation of filtering parameter estimation. An

alternative methodology to the transform suggested here that can handle the estimation

of WHMM with a lag higher than 2 would be desirable.

• The signal dynamics of WHMM can be made more general and nonlinear. Research on

the WHMM context but similar to that of an HMM with nonlinear dynamics discussed

in section 4.4 of Elliott, et al. [2] would be a natural extension. The development of

unnormalized filters and recursive filters could be the aim of the investigation.
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• A similar extension can be afforded to WHMM based on Hughes, et al. [4] proposing

a nonhomogeneous HMM in which the transition probabilities depend on the history of

states and the covariate of the underlying Markov chain.

• So far, we only considered WHMMs with discrete-time observations. The models can be

studied under the continuous-time framework. In this case, we have an intensity matrix

and its estimation along with the estimation of other parameters can be expected to be

more complex given that the estimation of joint occupation times of the WMC and the

observation process will be needed. See Elliott, et al. [2] for the usual HMM case.

• A class of WHMM-driven models for non-Gaussian observations could be examined.

For example, a jump diffusion model or constant elasticity of variance (CEV) model

have parameters driven by a WHMM.

• Some previous papers [1, 5, 3] suggested GARCH-type models with parameters driven

by HMM. It would be worth examining the benefits of replacing HMM by WHMM.

• As noted in this thesis, the speed of convergence of parameter estimates is greatly af-

fected by the initial values chosen. Thus, an efficient and systematic method or solid

heuristics in setting appropriate initial values would be very helpful.

• With regard to the asset allocation problem, it would be interesting to explore applica-

tions that involve other types of portfolios such as those that cover currencies and other

kinds of commodities and see if WHMM still offers some advantages and up to what

extent.

• The inclusion of correlation between the driving noise (Brownian motion) of each as-

set return in the multivariate WHMM setting would lead to a more accurate estimation

and effective risk management. The online estimation of correlation using the WHMM

filtering approach will be a worthwhile investigation.
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• The calibration method considered in chapter 7 is developed under a continuous-time

HMM setting and the PDE was discretized in the implementation stage. Its extension to

the WHMM setting and measuring the extent of the merits of this new setting over the

added complexity would be an appealing research endeavor.
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Appendix A

Proof of equation (2.16)

From the definition of qk in equation (2.10), we have

qk+1 = Ē[Λk+1ξ(xk+1, xk)|Yk+1]

= Ē[Λkλk+1Πξ(xk, xk−1)|Yk+1]

=

N∑
l,m,v=1

bm
k+1Ē[Λk〈Πemv, elm〉〈ξ(xk, xk−1), emv〉|Yk]elm

=

N∑
l,m,v=1

bm
k+1〈Πemv, elm〉〈qk, emv〉elm

= Bk+1Πqk.
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Appendix B

Proof of Proposition 2.4.1

B.1 Proof of equation (2.22)

Using the expressions in (2.6)-(2.7) and the definition in (2.22), we obtain

γ
(
Jrstξ(xk+1, xk)

)
k+1

= Ē[Λk+1Jrst
k+1ξ(xk+1, xk)|Yk+1]

= Ē[Λkλk+1(Jrst
k + 〈xk+1, er〉〈xk, es〉〈xk−1, et〉)Πξ(xk, xk−1)|Yk+1]

=

N∑
l,m,v=1

bm
k+1Ē[ΛkJrst

k 〈Πemv, elm〉〈ξ(xk, xk−1), emv〉|Yk]elm

+ br
k+1Ē[Λk〈Πest, ers〉〈ξ(xk, xk−1), ers〉|Yk]ers

=

N∑
l,m,v=1

bm
k+1〈Πemv, elm〉〈γ(Jrst

k ξ(xk, xk−1))k, emv〉elm + br
k+1〈Πest, ers〉〈qk, est〉ers

= Bk+1Πγ(Jrstξ(xk, xk−1))k + br
k+1〈Πest, ers〉〈qk, est〉ers
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B.2 Proof of equation (2.23)

Using the expressions in (2.6)-(2.7) and the definition in (2.23), we get

γ(Orsξ(xk+1, xk))k+1

= Ē[Λk+1Ors
k ξ(xk+1, xk)|Yk+1]

= Ē[Λkλk+1(Ors
k + 〈xk, er〉〈xk−1, es〉)ξ(xk+1, xk)|Yk+1]

=

N∑
l,m,v=1

bm
k+1Ē[ΛkOrs

k 〈Πemv, elm〉〈ξ(xk, xk−1), emv〉|Yk]elm

+

N∑
l=1

br
k+1Ē[Λk〈Πers, elr〉〈ξ(xk, xk−1), ers〉|Yk]elr

=

N∑
l,m,v=1

bm
k+1〈Πemv, elm〉〈γ(Ors

k ξ(xk, xk−1))k, emv〉elm + br
k+1

N∑
l=1

〈Πers, elr〉〈qk, ers〉elr

= Bk+1Πγ(Orsξ(xk, xk−1))k + br
k+1〈qk, ers〉Πers
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B.3 Proof of equation (2.24)

From the expressions in (2.6)-(2.7) and the definition in (2.24), we have

γ(Orξ(xk+1, xk))k+1

= Ē[Λk+1Or
k+1ξ(xk+1, xk)|Yk+1]

= Ē[Λkλk+1(Or
k + 〈xk, er〉)Πξ(xk, xk−1)|Yk+1]

=

N∑
l,m,v=1

bm
k+1Ē[ΛkOr

k〈Πemv, elm〉〈ξ(xk, xk−1), emv〉|Yk]elm

+

N∑
l,m=1

br
k+1Ē[Λk〈Πerm, elr〉〈ξ(xk, xk−1), erm〉|Yk]elr

=

N∑
l,m,v=1

bm
k+1〈Πemv, elm〉〈γ(Or

kξ(xk, xk−1))k, emv〉elm +

N∑
l,m=1

br
k+1〈Πerm, elr〉〈qk, erm〉elr

= Bk+1Πγ(Orξ(xk, xk−1))k + br
k+1VrΠqk

The proof of recursive formulas (2.25) follow similar proof of equation (2.24) by using the

definition of λl and evaluating the resulting conditional expectation under P̄.
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Appendix C

Proof of Proposition 2.5.1

C.1 Proof of equation (2.27)

To derive an optimal estimate for arst, we consider a new measure Pθ̂, which is defined in

equation (2.26). This means that

log
(
dPθ̂

dPθ

∣∣∣∣Yk

)
=

k∑
l=2

N∑
r,s,t=1

[log(ârst) − log(arst)]〈xl, er〉〈xl−1, es〉〈xl−2, et〉

=

N∑
r,s,t=1

log ârstJrst + Remainder, (C.1)

where the Remainder is independent of ârst. Write E[·] = Eθ̂[·]. Taking expectation of equation

(C.1) we have

E
[
log

(
dPθ̂

dPθ

) ∣∣∣∣Yk

]
=

N∑
r,s,t=1

log ârst Ĵrst + Remainder. (C.2)

The optimal estimate of arst is the value that maximizes the log-likelihood in equation (C.1)

subject to the constraint
∑N

r=1 ârst = 1. Now, we introduce the Lagrange multiplier β with the

function:

L(ârst, β) =

N∑
r,s,t=1

log ârst Ĵrst + β

 N∑
r=1

ârst − 1

 + Remainder. (C.3)

Differentiating equation (C.3) with respect to ârst and β, and equating the derivatives to 0, we
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get
1

ârst
Ĵrst + β = 0 (C.4)

and
N∑

r=1

ârst = 1. (C.5)

Rewriting (C.4) yields

ârst = −
Ĵrst

β
. (C.6)

Consequently, from equations (C.5) and (C.6) we have

N∑
r=1

ârst = −

N∑
r=1

Ĵrst

β
= −

Ôst

β
= 1.

Hence, the Lagrange multiplier has the value β = −Ôst. From equation (C.6), the optimal

estimates for ârst is

ârst =
Ĵrst

Ôst
,

which is the desired equation (2.27) that we wanted to show.

C.2 Proof of equation (2.28)

Given the parameters f = ( f1, f2, . . . , fN)> ∈ RN and we wish to perform a change to f̂ =

( f̂1, f̂2, . . . , f̂N)> ∈ RN . Consider a new measure Pθ̂ defined by

dPθ̂

dPθ

∣∣∣∣
Yk

= Γ
f
k =

k∏
l=1

λ
f
l ,

where

λ
f
l = exp

( 1
2σ(xl−1)2

(
f (xl−1)2 − f̂ (xl−1)2 − 2yl f (xl−1) + 2yl f̂ (xl−1)

))
.
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Therefore, we have

E
[

log
dPθ̂

dPθ

∣∣∣∣Yk

]
= E

[ k∑
l=1

log λ f
l

∣∣∣∣Yk

]
= E

[ k∑
l=1

2yl f̂ (xl−1) − f̂ (xl−1)2

2σ(xl−1)2 + Remainder
∣∣∣∣Yk

]
=

k∑
l=1

E
[ N∑

r=1

〈xk−1, er〉
2yl f̂r − f̂ 2

r

2σ2
r

∣∣∣∣Yk

]
+ Remainder

=

k∑
l=1

E
[2T r

k(y) f̂r − Or
k f̂ 2

r

2σ2
r

∣∣∣∣Yk

]
+ Remainder

=

k∑
l=1

2T̂ r
k(y) f̂r − Ôr

k f̂ 2
r

2σ2
r

+ Remainder, (C.7)

where the Remainder does not involve f̂ . We differentiate the above expression and set its

derivative to 0. This gives the optimal choice for f̂i given the observation data y so that we have

f̂r =
T̂ r

k(y)

Ôr
k

.

C.3 Proof of equation (2.29)

To perform a change from σ = (σ1, σ2, . . . , σN)> ∈ RN to σ̂ = (σ̂1, σ̂2, . . . , σ̂N)> ∈ RN , we

define the Radon-Nikodým derivative as

dPθ̂

dPθ

∣∣∣∣
Yk

= Γσk =

k∏
l=1

λσl ,

where

λσl =
σ(xl−1)
σ̂(xl−1)

exp
( 1
2σ(xl−1)2

(
yl − f (xl−1)

)2
−

1
2σ̂(xl−1)2

(
yl − f (xl−1)

)2
)
.

Hence,

E
[

log
(dPθ̂

dPθ

)∣∣∣∣Yk

]
= E

[ k∑
l=1

(
− log σ̂(xl−1) −

(
yl − f (xl−1)

)2

2σ̂(xl−1)2

)
+ Remainder

∣∣∣∣Yk

]
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= E
[
−

k∑
l=1

N∑
r=1

〈xl−1, er〉
(

log σ̂r +
(yl − fr)2

2σ̂2
r

)∣∣∣∣Yk

]
+ Remainder

=

N∑
r=1

(
− log σ̂rÔr

k −
1

2σ̂2
r

(
T̂ r

k(y2) − 2T̂ r
k(y) fr + f 2

r
))

+ Remainder, (C.8)

where the Remainder is independent of σ̂. We differentiate the above expression in σ̂r and

equate the result to zero. Solving the equation we get the optimal choice of σ̂2:

σ̂2
r =

1
Ôr

k

(
T̂ r

k(y2) − 2T̂ r
k(y) f̂r + f̂ 2

r Ôr
k
)
,

which is the result in equation (2.29).
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Appendix D

Proof of Proposition 6.3.2

D.1 Proof of equation (6.25)

Given the parameter α = (α1, α2, . . . , αN)> ∈ RN , we wish to update the estimates to α̂ =

(α̂1, α̂2, . . . , α̂N)> ∈ RN . Consider a new measure Pθ̂ defined by

dPθ̂

dPθ

∣∣∣∣
Yk

= Λα
k =

k∏
l=1

λl(α̂l−1, yl),

where

λl(α̂l−1, yl) = exp
{
−

(yl − α̂(xl−1)yl−1 − η(xl−1))2 − (yl − α(xl−1)yl−1 − η(xl−1))2

2σ(xl−1)2

}
.

Write E[·] = Eθ̂[·]. Therefore, we have

E
[
log

dPθ̂

dPθ

∣∣∣∣Yk

]
= E

 k∑
l=1

log λl(αl−1, yl)
∣∣∣∣Yk


= E

 k∑
l=1

−

(
α̂(xl−1)2y2

l−1 − 2α̂(xl−1)yl−1yl + α̂(xl−1)η(xl−1)yl−1

)
2σ(xl−1)2 + R

∣∣∣∣Yk


=

k∑
l=1

E

 N∑
r=1

−
〈xk−1, er〉

2σ2
r

(
α̂2

r y2
l−1 − 2α̂ryl−1yl + α̂rηryl−1

) ∣∣∣∣Yk

 + R
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=

N∑
r=1

E
[
−

1
2σ2

r

(
α̂2

r T r
k(y2

k−1) − 2α̂rT r
k(yk−1yk) + α̂rηrT r

k(yk−1)
) ∣∣∣∣Yk

]
+ R

=

N∑
r=1

−
1

2σ2
r

(
α̂2

r T̂ r
k(y2

k−1) − 2α̂rT̂ r
k(yk−1yk) + α̂rηrT̂ r

k(yk−1)
)

+ R, (D.1)

where R does not involve α̂. We differentiate the above expression and set its derivative to 0.

This gives the optimal choice for α̂i given the observation data yk. We get

α̂r =
T̂ r

k(yk−1, yk) − ηrT̂ r
k(yk−1)

T̂ r
k(y2

k−1)
.

D.2 Proof of equation (6.26)

Given the parameter η = (η1, η2, . . . , ηN)> ∈ RN , we wish to obtain the update η̂ = (η̂1, η̂2, . . . ,

η̂N)> ∈ RN . Consider a new measure Pθ̂ defined by

dPθ̂
dPθ

∣∣∣∣
Yk

= Λα
k =

k∏
l=1

λl(η̂l−1, yl),

where

λl(η̂l−1, yl) = exp
{
−

(yl − η(xl−1)yl−1 − η̂(xl−1))2 − (yl − α(xl−1)yl−1 − η(xl−1))2

2σ(xl−1)2

}
.

Therefore, we have

E
[
log

dPθ̂

dPθ

∣∣∣∣Yk

]
= E

 k∑
l=1

log λl(αl−1, yl)
∣∣∣∣Yk


= E

 k∑
l=1

−

(
η̂(xl−1)2 − 2η̂(xl−1)yl + 2α(xl−1)η̂(xl−1)yl−1

)
2σ(xl−1)2 + R

∣∣∣∣Yk


=

k∑
l=1

E

 N∑
r=1

−
〈xk−1, er〉

2σ2
r

(
η̂2

r − 2η̂ryl + 2αrη̂ryl−1

) ∣∣∣∣Yk

 + R
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=

N∑
r=1

E
[
−

1
2σ2

r

(
η̂2

r Or
k − 2η̂rT r

k(yk) + 2αrη̂rT r
k(yk−1)

) ∣∣∣∣Yk

]
+ R

=

N∑
r=1

−
1

2σ2
r

(
η̂2

r Ôr
k − 2η̂rT̂ r

k(yk) + 2αrη̂rT̂ r
k(yk−1)

)
+ R, (D.2)

where R does not involve η̂. We differentiate the above expression and set its derivative to 0.

This gives the optimal choice for η̂i given the observation data yk . We obtain

η̂r =
T̂ r

k(yk) − αrT̂ r
k(yk−1)

Ôr
k

.

D.3 Proof of equation (6.27)

To perform a change from σ = (σ1, σ2, . . . , σN)> ∈ RN to σ̂ = (σ̂1, σ̂2, . . . , σ̂N)> ∈ RN , we

define the Radon-Nikodým derivative

dPθ̂

dPθ

∣∣∣∣
Yk

= Λσ
k =

k∏
l=1

λl(σ̂l−1, yl),

where

λl(σ̂l−1, yl) =
σ(xl−1)
σ̂(xl−1)

exp
{

(yl − α(xl−1)yl−1 − η(xl−1))2

2σ(xl−1)2 −
(yl − α(xl−1)yl−1 − η(xl−1))2

2σ̂(xl−1)2

}
.

Hence,

E
[
log

(
dPθ̂

dPθ

) ∣∣∣∣Yk

]
= E

 k∑
l=1

− log σ̂(xl−1) −
[
yl − α(xl−1)yl−1 − η(xl−1)

]2

2σ̂(xl−1)2

∣∣∣∣Yk

 + R

= E
[
−

k∑
l=1

N∑
r=1

〈xl−1, er〉
(

log σ̂r +
1

2σ̂2
r
(y2

l + α2
r y2

l−1 + η2
r Or

k

− 2αryl−1yl − 2ηryl + 2ηrαryl−1)
)∣∣∣∣Yk

]
+ R
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=

N∑
r=1

(
− log σ̂rÔr

k −
1

2σ̂2
r
(T̂ r

k(y2
k) + α2

r T̂ r
k(y2

k−1) + η2
r Ôr

k

− 2αrT̂ r
k(yk−1yk) − 2ηrT̂ r

k(yk) + 2ηrαrT̂ r
k(yk−1))

)
+ R, (D.3)

where R is independent of σ̂. We differentiate the above expression in σ̂r and equate the result

to zero. Solving the equation we get the optimal choice of σ̂2, which is

σ̂2
r =

T̂ r
k(y2

k) + α2
r T̂ r

k(yk−1) + η2
r Ôr

k − 2αrT̂ r
k(ykyk−1) − 2ηrT̂ r

k(yk) + 2ηrαrT̂ r
k(yk−1)

Ôr
k

and this agrees with equation (6.27).
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Appendix E

Proof of equation (6.36)

We use mathematical induction to prove (6.36) for h ≥ 3. Following equations (6.34) and (6.35),

we have, when h = 3,

E[yk+3|Yk] = 〈α,pk+2〉E[yk+2|Yk] + 〈η,pk+2〉

= 〈α,pk+2〉
(
〈α,pk+1〉E[yk+1|Yk] + 〈η,pk+1〉

)
+ 〈η,pk+2〉

=

2∏
i=1

〈α,AΠi−1pk〉(〈α, x̂k〉yk + 〈η, x̂k〉) + 〈α,AΠpk〉〈η,Apk〉 + 〈η,AΠpk〉.

Therefore, the statement is true for h = 3. Assume the statement is true for h = m, i.e.,

E[yk+m|Yk] =

m−1∏
i=1

〈α,AΠi−1pk〉
(
〈α, x̂k〉yk + 〈η, x̂k〉

)
+

m−2∑
i=1

m−2∏
j=i

〈α,AΠ jpk〉〈η,AΠi−1pk〉 + 〈η,AΠm−2pk〉.

We demonstrate that equation (6.36) is true for h = m + 1.

E[yk+m+1|Yk] = 〈α,pk+m〉E[yk+m|Yk] + 〈η,pk+m〉

= 〈α,AΠm−1pk〉

m−1∏
i=1

〈α,AΠi−1pk〉
(
〈α, x̂k〉yk + 〈η, x̂k〉

)
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+ 〈α,AΠm−1pk〉

m−2∑
i=1

m−2∏
j=i

〈α,AΠ jpk〉〈η,AΠi−1pk〉

+ 〈α,AΠm−1pk〉〈η,AΠm−2pk〉 + 〈η,AΠm−1pk〉

=

m∏
i=1

〈α,AΠi−1pk〉
(
〈α, x̂k〉yk + 〈η, x̂k〉

)
+

m−2∑
i=1

m−1∏
j=i

〈α,AΠ jpk〉〈η,AΠi−1pk〉

+ 〈α,AΠm−1pk〉〈η,AΠm−2pk〉 + 〈η,AΠm−1pk〉

=

m∏
i=1

〈α,AΠi−1pk〉
(
〈α, x̂k〉yk + 〈η, x̂k〉

)
+

m−1∑
i=1

m−1∏
j=i

〈α,AΠ jpk〉〈η,AΠi−1pk〉 + 〈η,AΠm−1pk〉.

Therefore, by the principle of mathematical induction, the statement in equation (6.36) is true

for h ≥ 3.
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