
Western University Western University 

Scholarship@Western Scholarship@Western 

Electronic Thesis and Dissertation Repository 

8-2-2012 12:00 AM 

A Homotopy Theory for Diffeological Spaces A Homotopy Theory for Diffeological Spaces 

Enxin Wu 
The University of Western Ontario 

Supervisor 

Dan Christensen 

The University of Western Ontario 

Graduate Program in Mathematics 

A thesis submitted in partial fulfillment of the requirements for the degree in Doctor of 

Philosophy 

© Enxin Wu 2012 

Follow this and additional works at: https://ir.lib.uwo.ca/etd 

 Part of the Geometry and Topology Commons 

Recommended Citation Recommended Citation 
Wu, Enxin, "A Homotopy Theory for Diffeological Spaces" (2012). Electronic Thesis and Dissertation 
Repository. 661. 
https://ir.lib.uwo.ca/etd/661 

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted 
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarship@Western

https://core.ac.uk/display/61633384?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F661&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/180?utm_source=ir.lib.uwo.ca%2Fetd%2F661&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/661?utm_source=ir.lib.uwo.ca%2Fetd%2F661&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca


A Homotopy Theory for Diffeological

Spaces

(Thesis format: Monograph)

by

Enxin Wu

Department of Mathematics

A thesis submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

The School of Graduate and Postdoctoral Studies

The University of Western Ontario

London, Ontario, Canada

c° Enxin Wu 2012



THE UNIVERSITY OF WESTERN ONTARIO

SCHOOL OF GRADUATE AND POSTDOCTORAL STUDIES

CERTIFICATE OF EXAMINATION

Supervisor: Examiners:

Dr. Dan Christensen Dr. Rob Corless

Dr. Graham Denham

Dr. Dan Isaksen

Dr. Gordon Sinnamon

The thesis by

Enxin Wu

entitled:

A Homotopy Theory for Diffeological Spaces

is accepted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

Date:

Chair of Examining Board

ii



Abstract

Smooth manifolds are central objects in mathematics. However, the category

of smooth manifolds is not closed under many useful operations. Since the 1970’s,

mathematicians have been trying to generalize the concept of smooth manifolds.

J. Souriau’s notion of diffeological spaces is one of them. P. Iglesias-Zemmour and

others developed this theory, and used it to simplify and unify several important

concepts and constructions in mathematics and physics.

We further develop the diffeological space theory from several aspects: cate-

gorical, topological and differential geometrical. Our main concern is to build a

suitable homotopy theory (also called a model category structure) on the category

of diffeological spaces, which encodes the usual smooth homotopy theory of smooth

manifolds and the diffeological bundle theory of Iglesias.

This is a huge task, and at the moment, we have not yet completely proved the

existence theorem. However, in the process, we can see the beauty of the merging

of differential geometry and homotopy theory. (More details are explained in the

Introduction.) These results should be of some interest to people working in these

fields.

Keywords: Diffeological spaces, D-topology, smooth homotopy groups, tangent

spaces, diffeological bundles, irrational torus, simplicial sets, model category theory,

homogeneous spaces.
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Introduction

Smooth manifolds are some of the most important objects in mathematics. They

contain a lot of geometric information: tangent spaces, tangent bundles, differential

forms, de Rham cohomology, etc. This information can be put to great use in

proving results. However, the category Mfd of smooth manifolds is not closed under

many useful constructions, such as subspaces, quotients, function spaces, etc.

On the other hand, the category of compactly generated weak Hausdorff topo-

logical spaces is closed under these constructions, but the geometric information is

missing.

Can we have the best of both worlds?

Since the 1970’s, mathematicians have been trying to generalize the concept of

smooth manifold. Based on the fact that the smooth structure of a smooth manifold

M can be tested by the set I(M) of all smooth maps from some test objects to

the manifold, or by the set O(M) of all smooth maps from the manifold to some

test objects, and these two sets I(M) and O(M) have compatibility conditions,

A. Stacey in [St] classified some of these approaches into three classes: the mapping-

in approaches (which use I(M) for defining the smooth structure, for example,

the Chen spaces [Ch], and J. Souriau’s diffeological spaces [So]), the mapping-out

approaches (which use O(M) for defining the smooth structure, for example, the

Sikorski spaces [Si], and the Smith spaces [Sm]), and the balanced approach (which

1



2

uses both I(M) and O(M) together with the compatibility condition for defining

the smooth structure, for example, the Frolicher spaces [F]). For the relationships

between these approaches, see [St].

We pick diffeological spaces as our main target for three reasons: (1) it is a

relatively well-developed theory, see [DI, Do, He, HM, I1, I2, I3, La, MS, So], etc;

(2) there are some amazing facts in diffeological bundle theory developed by P.

Iglesias-Zemmour, see [I1, I2] and Section 1.7 of this thesis. First of all, a diffeological

bundle is not defined to be a smooth map which is locally trivial under the D-

topology (see Section 1.3), but is defined to be a smooth map such that the pullback

along any plot is locally trivial (Definition 1.7.4). Then, given a Lie group G and

a subgroup H (not necessarily closed), the projection G ! G/H is a diffeological

bundle, where G/H is the set of left or right cosets (Proposition 1.7.12). Instead of

(continuous) homotopy groups, we use smooth homotopy groups (see Section 1.4),

and we get a long exact sequence of smooth homotopy groups for every diffeological

bundle (Theorem 1.7.13). As a consequence of this, the smooth fundamental group

of the irrational torus (Example 1.1.6) is non-trivial, but the continuous fundamental

group is trivial (Example 1.7.14); (3) if we take the mapping-out approaches, in order

to keep the underlying topology, the irrational torus becomes trivial. Similarly, if

we take the Frolicher space approach, in order to balance I(M) and O(M) and keep

the underlying topology, the irrational torus becomes trivial as well.

Our main goal of the thesis is to develop a homotopy theory on the category Diff

of diffeological spaces, which encodes the usual homotopy theory of smooth mani-

folds and the diffeological bundle theory. By homotopy theory, we mean a model

category structure on Diff. In 1967, D. Quillen introduced the concept of model cat-

egories in his famous book [Q] by axiomatizing the basic properties and relationship

between the category Top of topological spaces and its homotopy category Ho(Top).
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In the following 45 years, only slight changes have been made, and now model cate-

gories are a standard tool to do homotopy theory on any nice enough category. The

advantage of this abstract tool is that it unifies some ideas from different branches of

mathematics. For example, CW-approximations in Top and projective resolutions

of R-modules are cofibrant replacements in some model category structures on Top

and Ch≥0(R), respectively.

We set up our basic definitions of weak equivalences, fibrations and cofibrations

of Diff in Section 2.4. We use this definition for the following reasons: (1) we do

not use Theorem A.2.35 to check the existence of a model category structure on

Diff since it is hard to choose suitable sets I and J . Note that in the proof (see

[Ho]) that the standard model category structure on Top (Example A.2.53) satisfies

the model category axioms (Definition A.2.4), we need to use different forms of Sn,

for example, [0, 1]n/∂[0, 1]n, etc. However, in Diff they are not diffeomorphic; (2)

we have the usual compact cosimplicial object j∆•j′
D̃

in Diff with each j∆nj′
D̃

=

f (x0, x1, ¢ ¢ ¢, xn) 2 (R≥0)n+1 j
∑n

i=0 xi = 1g equipped with the sub-diffeology of

Rn+1. We use the noncompact cosimplicial object A• instead in our setup since

these j∆nj′
D̃

are too complicated (Remark 1.6.11, 1.8.2 and Example 1.8.1 (2)); (3)

A1 homotopy theory also uses a noncompact cosimplicial object. There is a folk belief

that to get the model structure, one can lift the standard model category structure

from sSet directly, instead of passing to the projective model category structure on

simplicial presheaves; (4) note that we also have an adjoint pair between Diff and

Top (Theorem 1.3.4). We do not talk about co-lifting the standard model category

structure on Top to Diff since otherwise the striking example of the irrational torus

would disappear.

Unfortunately, we have not yet completed the proof that under these definitions

Diff is a model category. Our main tool for the proof is Kan’s theorem (Theorem
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A.2.36). We have proved condition (1) of Kan’s theorem (Theorem 2.1.3), but we

have some difficulty in proving condition (2).

Nevertheless, we are able to prove many new results about diffeological spaces

and their homotopy theory. Our main results for this project are in Section 2.6 and

2.7 about some characterizations of fibrant and cofibrant objects in Diff (see below

for more details).

We also develop some basics of diffeological spaces. See below for more details.

Thesis Organization

Chapter 1:

We summarize and develop some basics of diffeological spaces in this chapter.

J. Souriau [So] introduced diffeological spaces in 1980. We review the basic

properties of this category in Section 1.1: it contains Mfd as a full subcategory

(Theorem 1.1.3), and it is complete, cocomplete and cartesian closed (Theorem

1.1.9 and 1.1.13). We recall the example of the irrational torus (Example 1.1.6) and

introduce another important example Λ2 (Example 1.1.10).

E.J. Dubuc [Du] introduced the concept of concrete sites (Definition 1.2.5) and

concrete (pre)sheaves (Definition 1.2.10) over a concrete site in 1977. J. Baez and

A. Hoffnung [BH] gave a sheaf theoretical approach to diffeological spaces in 2009.

They proved that Diff is equivalent to the category of concrete sheaves over the

diffeological site DS (Definition 1.2.7 and Theorem 1.2.12), and that the category

of concrete sheaves over any subcanonical concrete site is a quasi-topos. We further

explore this approach in Section 1.2. We show that the subcanonical condition can

be dropped and most of the results in [BH] still hold (Theorem 1.2.22). We also
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give conditions which imply that a presheaf is concrete (Lemma 1.2.24, Proposition

1.2.25 and 1.2.28). Furthermore, we study the example of lifting the standard model

category structure on sSet to a category of concrete (pre)sheaves over the simplicial

category ∆ (Example 1.2.15) as a test example. The results are: we could not lift the

standard model structure to the concrete presheaf category (Proposition 1.2.35), but

we can lift the standard model structure to the concrete sheaf category (Theorem

1.2.38).

P. Iglesias-Zemmour introduced a natural topology (called the D-topology) for

every diffeological space in his thesis [I2]. We further develop the general topology

aspect of diffeological space in Section 1.3. We have the following original results:

(1) there is an adjoint pair between Diff and Top (Theorem 1.3.4); (2) using results

from [KM], we observe that the D-topology is totally determined by all smooth

curves, while the diffeology is not (Remark 1.3.9); (3) the image of the D-topology

for all diffeological spaces is exactly the ∆-generated spaces (Definition 1.3.15 and

Proposition 1.3.16); (4) We study which topological spaces are ∆-generated. M.

Laubinger [La] gave a necessary condition (Proposition 1.3.3) which is not sufficient

(Example 1.3.23), and we give a sufficient condition (Proposition 1.3.18) and an ex-

ample showing this condition is not both necessary and sufficient (Example 1.3.20);

(5) we compare the D-topology on a function space with the compact-open topol-

ogy, and show that the D-topology is usually strictly finer than the compact-open

topology (Example 1.3.25 and 1.3.26, and Lemma 1.3.27); (6) some properties of

Mfd could not be extended to Diff: the usual notion of a ringed space does not

totally determine the diffeology (Example 1.3.29), and not every diffeological space

has the smooth variety property (Definition 1.3.31 and Example 1.3.33). Also, we

can associate two topologies for a sub-diffeological space, and in general they are dif-

ferent (Example 1.3.6). We give some conditions under which they coincide (Lemma

1.3.8, Example 1.3.14 and 1.3.14).
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P. Iglesias-Zemmour introduced smooth homotopy theory in his thesis [I2]. We

further develop this theory in Section 1.4. Our main contribution is that several

alternative definitions of the smooth homotopy groups of a diffeological space match

Iglesias’ original definition (Definition 1.4.1, Theorem 1.4.3, 1.4.4, 1.4.8 and 1.4.9).

Two more equivalent characterizations will be given in Section 2.7 (Remark 2.7.1

and Proposition 2.7.2).

J. Souriau [So] introduced the differential forms and de Rham cohomology for

diffeological spaces. P. Iglesias-Zemmour, etc. [I1, MS] further developed them. We

summarize the basic theory in Section 1.5. Note that de Rham cohomology is smooth

homotopy invariant (Theorem 1.5.12). We calculate the de Rham cohomology of

the irrational torus (Example 1.5.8) and Λ2 (Example 1.5.11). In Diff the de Rham

theorem does not hold (Remark 1.5.9).

In Section 1.6, we compare two approaches to defining the tangent space of a

pointed diffeological space, one introduced by G. Hector (we call it the internal

tangent space, see Section 1.6.1), and the other suggested by A. Kock (we call it

the external tangent space, see Section 1.6.2). Note that we can define the internal

tangent bundle in a natural way, but we have trouble to define external tangent

bundle in general. We compare the two tangent space approaches with the germ

approaches, and develop some calculational tools (see Section 1.6.3). Although

these approaches match for smooth manifolds, in general they are different. The

main examples are the two tangent spaces for the pointed irrational torus (Example

1.6.8) and for the closed half line pointed at the boundary (Example 1.6.10).

To have theoretical understanding of their previous calculations in [DI], P. Iglesias-

Zemmour introduced the diffeological bundle theory in his thesis [I2]. We summarize

this theory together with some basic diffeological group theory in Section 1.7: the

definition of a diffeological bundle (Definition 1.7.4), an example from diffeological

groups (Proposition 1.7.12), the long exact sequence of smooth homotopy groups for
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every diffeological bundle (Theorem 1.7.13) and the difference between continuous

and smooth fundamental groups of the irrational torus (Example 1.7.14). These

results serve as a motivation for the development of a model category structure on

Diff in the next chapter.

Finally we summarize the dimension theory of diffeological spaces in Section 1.8.

Some new examples are worked out there (Lemma 1.8.3 and 1.8.6, Example 1.8.4,

1.8.5 and 1.8.7, and Proposition 1.8.8).

Chapter 2:

In this chapter, we are trying to develop a homotopy theory (that is, a model

category structure) on Diff which encodes the usual homotopy theory of smooth

manifolds and the diffeological bundle theory of Iglesias (see Section 1.7). However,

we haven’t completed the proof of the existence of the model category structure from

our definitions of weak equivalences, fibrations and cofibrations (Definition 2.4.2) on

Diff. We have partial results as follows. With a few exceptions, the material in this

chapter is original.

In Section 2.1, we prove by definition that Diff is locally presentable (Theorem

2.1.3). More generally, a similar proof shows that the category of all concrete sheaves

over a concrete site is locally presentable (Remark 2.1.4).

In Section 2.2, we recall an adjoint functor theorem (Theorem 2.2.1) together

with three famous classical examples (Example 2.2.2, 2.2.3 and 2.2.4). We also set

up the adjoint pair between sSet and Diff using the noncompact cosimplicial object

A• (Example 2.2.5).

In Section 2.3, we prove that there is a model category structure on the category

of presheaves over the diffeological site DS (Corollary 2.3.3).

In Section 2.4, we introduce the diffeological spaces Λn, Λn
sub, ∂An and ∂An

sub,

and we define the weak equivalences, fibrations and cofibrations in Diff (Definition
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2.4.2).

In Section 2.5, we study some basic properties of the diffeological realization

functor j?jD̃ and the smooth singular functor SD̃. The main results are Lemma 2.5.1

and Proposition 2.5.2, 2.5.3 and 2.5.5.

In Section 2.6, we give characterizations of cofibrant objects and fibrant objects in

Diff. The main results are: (1) we have a partial factorization (Proposition 2.6.2);

(2) S1 is cofibrant (Theorem 2.6.9); (3) every homogeneous diffeological space is

fibrant (Theorem 2.6.23), in particular, every diffeological group (Proposition 2.6.12)

and every smooth manifold without boundary (Corollary 2.6.25) is fibrant; (4) every

topological space with the continuous diffeology is fibrant (Example 2.6.26); (5) some

functional spaces are fibrant (Proposition 2.6.27); (6) every diffeological bundle with

fibrant fiber is a fibration (Lemma 2.6.20); (7) not every diffeological space is fibrant

(Example 2.6.30, 2.6.31 and 2.6.32), and in particular, no smooth manifold with

boundary is fibrant (Example 2.6.33); (8) not every diffeological space is cofibrant

(Example 2.6.21).

In Section 2.7, we give two more equivalent definitions of the smooth homotopy

groups of a pointed diffeological space (Remark 2.7.1 and Proposition 2.7.2), and

we use these characterizations to prove that the smooth homotopy groups of a

fibrant diffeological space is bijective to the simplicial homotopy groups of its smooth

singular complex (Theorem 2.7.3).

Appendix A:

This appendix contains some basics of model category theory.

Section A.1 contains the basics of left and right Kan extensions. A good reference

is [Mac].

Section A.2 summarizes the basics of model category theory: the definition of a

model category, its homotopy category, Quillen pairs, Quillen equivalence, the small
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object argument, cofibrant generation, properness, simplicial model categories, and

Reedy model categories. We also review the standard model category structures on

Top and on sSet, and the projective model category structure on Ch≥0(R). Good

references for these are [DS, GJ, Hi, Ho, Q].
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Notations and Conventions

² We use N to denote all natural numbers f 0, 1, 2,¢ ¢ ¢ g, and we use Z+ to denote

all positive integers f 1, 2, 3,¢ ¢ ¢ g.

² Any category in this thesis is assumed to be locally small, in the sense that

given any two objects in this category, the class of morphisms from one object

to another is actually a set.

² We understand limits and colimits to be small, that is, they are defined with

respect to functors out of small categories.

² We use Set to denote the category of sets with set maps.

² We use VectR to denote the category of real vector spaces with R-linear maps.

² We use Mfd to denote the category of finite dimensional real smooth mani-

folds without boundary with smooth maps (that is, C∞ maps). All smooth

manifolds are assumed to be second countable.

² We use Top to denote the category of topological spaces with continuous maps.

² We use sSet to denote the category of simplicial sets with simplicial maps.

² Given a site C (Definition 1.2.3), we use Pre(C) (or Sh(C)) to denote the cat-

egory of presheaves (or sheaves) on Cwith natural transformations (Definition

1.2.4).

² Given a concrete site C(Definition 1.2.5), we use CPre(C) (or CSh(C)) to denote

the category of concrete presheaves (or concrete sheaves) on C with natural

transformations (Definition 1.2.10).

² We use DS to denote the diffeological site (Example 1.2.7).
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² We use Diff to denote the category of diffeological spaces with smooth maps

(see the beginning of Section 1.1.1).

² Given a category C, and given two objects A and B of C, we write C(A,B) for

the hom-set of all morphisms from A to B in C.

² By an adjoint pair F : C  D : G, we always mean that F is a left adjoint

and G is a right adjoint.



Chapter 1

Basics of Diffeological Spaces

Smooth manifolds are ubiquitous objects in mathematics. They contain a lot of im-

portant geometric information: tangent spaces, tangent bundles, differential forms,

de Rham cohomology, etc. However, the category Mfd of smooth manifolds is not

closed under many useful constructions, such as subsets, quotients, functional spaces,

etc.

In 1980, J. Souriau introduced a larger category called the category Diff of

diffeological spaces [So]. This category is closed under these usual constructions,

and on every diffeological space, we can still do differential geometry.

In Section 1.1, We summarize the basic properties of this category Diff: it is

complete, cocomplete and cartesian closed, and it contains Mfd as a full subcategory.

In Section 1.2, we develop the concrete sheaf theory following J. Baez and A.

Hoffnung. In [BH], they proved that Diff is equivalent to the category of concrete

sheaves over the diffeological site DS, and that the category of concrete sheaves

over any subcanonical concrete site is a quasi-topos. We show that the subcanonical

condition can be dropped and most of the results in [BH] still hold (Theorem 1.2.22).

We also give conditions which imply that a presheaf is concrete. Furthermore, we

12
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study the possibility of lifting the standard model category structure on sSet to a

category of concrete (pre)sheaves over the simplicial category ∆.

In Section 1.3, we develop the general topology aspect (called the D-topology)

of diffeological spaces after P. Donato [Do]. We discuss the following five themes in

this section: (1) the D-topology induces an adjoint pair between Diff and Top; (2)

we can associate two topologies for a sub-diffeological space, and in general they are

different. We give some conditions under which they coincide; (3) we characterize

which topological spaces can be realized as the D-topology of a diffeological space;

(4) we discuss the D-topology on function spaces; (5) some properties of Mfd fail

for Diff. The main original results for this section are Theorem 1.3.4, Remark 1.3.9,

Proposition 1.3.16 and 1.3.18, Lemma 1.3.27, Example 1.3.20, 1.3.25, 1.3.26, 1.3.29,

and 1.3.33.

In Section 1.4, we develop the smooth homotopy theory of diffeological spaces

after P. Iglesias-Zemmour [I1, I2]. Our main contribution is that several alternative

definitions of the smooth homotopy groups of a diffeological space match Iglesias’

original definition.

In Section 1.5, we summarize some basics of the differential forms and de Rham

cohomology theory for diffeological spaces [So, I1].

In Section 1.6, we compare two approaches to defining the tangent space of a

pointed diffeological space, one introduced by G. Hector (we call it the internal tan-

gent space), and the other suggested by A. Kock (we call it the external tangent

space). We also compare them with the germ approaches, and develop some calcu-

lational tools. Although these approaches match for smooth manifolds, in general

they are different. The main examples are the two tangent spaces for the pointed

irrational torus (Example 1.6.8) and for the closed half line pointed at the boundary

(Example 1.6.10).

In Section 1.7, we summarize the diffeological bundle theory of P. Iglesias-
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Zemmour [I1, I2], as a motivation for the possible model category structure in the

next chapter.

In Section 1.8, we summarize the dimension theory for diffeological spaces. A

few new examples are worked out there.
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1.1 Diffeological spaces, a set-theoretic point of

view

Definition 1.1.1 ([So]). A diffeological space is a set X together with a specified

set DX of maps U ! X (called plots) for every open set U in Rn and for each n 2 N,

such that for all open subsets U µ Rn and V µ Rm:

(1) (Covering) Every constant map U ! X is a plot;

(2) (Smooth Compatibility) If U ! X is a plot, and V ! U is smooth, then the

composition V ! U ! X is also a plot;

(3) (Sheaf Condition) If U = [ iUi is an open cover and U ! X is a set map such

that each restriction Ui ! X is a plot, then U ! X is a plot.

Without confusion, we usually use the underlying set X to represent the diffeo-

logical space (X,DX).

Definition 1.1.2 ([So]). LetX and Y be two diffeological spaces, and let f : X ! Y

be a set map. We call f smooth if for every plot u : U ! X of X, the composition

f ±u is a plot of Y .

The collection of all diffeological spaces with smooth maps forms a category,

and we will denote it by Diff. Given two diffeological spaces X and Y , we write

Diff(X,Y ) for the set of all smooth maps from X to Y . An isomorphism in Diff will

be called a diffeomorphism.

Theorem 1.1.3 ([So]). There is a fully faithful functor Mfd ! Diff.

Proof. Every smooth manifold M is canonically a diffeological space with the same

underlying set and plots all smooth maps U ! M in the usual sense. We call this

the standard diffeology on M . By using charts, it is easy to see that smooth maps
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in the usual sense between smooth manifolds coincide with smooth maps between

them with the standard diffeology.

From now on, without specification, every smooth manifold considered as a dif-

feological space is equipped with the standard diffeology.

Remark 1.1.4 ([I1]). Similar results holds for smooth manifolds with boundary.

This is a surprising result since it means that smoothness on the boundary can be

tested by smooth functions from all open subsets of Rn for all n 2 N. Actually this

also follows from Kriegl-Michor’s Theorem (Theorem 24.5 of [KM]).

Proposition 1.1.5 ([I1]). Given a set X, let D be the set of all diffeologies on X

ordered by inclusion. Then D is a complete lattice.

Proof. This follows from the fact that D is closed under arbitrary (small) inter-

section. The largest element in D is called the indiscrete diffeology on X, which

consists of all set maps U ! X, and the smallest element in D is called the discrete

diffeology on X, which consists of all locally constant maps U ! X.

The smallest diffeology DX(A) on X containing a set of maps A = f Ui ! Xgi∈I

is called the diffeology generated by A. More precisely, DX(A) consists of all maps

f : U ! X such that there exists an open cover f Vjg of U together with the

property that f restricted to each Vj factors through some element Ui ! X in A via

a smooth map Vj ! Ui. The standard diffeology on a smooth manifold is generated

by a smooth atlas on the manifold. For every diffeological space X, DX is generated

by [ n∈NDiff(Rn, X). We call elements in this generating set global plots.

Generalizing the previous paragraph, let A = f fj : Xj ! Xgj∈J be a set of

functions from some diffeological spaces to a fixed setX. Then there exists a smallest

diffeology on X making all fj smooth, and we call it the final diffeology defined by

A. For a diffeological space X with an equivalence relation » , the final diffeology
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defined by f X // // X/» g is called the quotient diffeology. Similarly, let B = f gk :

Y ! Ykgk∈K be a set of functions from a fixed set Y to some diffeological spaces.

Then there exists a largest diffeology on Y making all gk smooth, and we call it the

initial diffeology defined by B. For a diffeological space X and a subset A of X, the

initial diffeology defined by f A ↪! Xg is called the sub-diffeology.

Example 1.1.6 ([DI, I1]). Let T 2 = R2/Z2 be the usual 2-torus, and let Rθ be

the image of f y = θxg under the natural map R2 ! T 2 with θ irrational. Note

that T 2 is a Lie group, and Rθ is a subgroup. The set T 2/Rθ of left cosets with

the quotient diffeology is called the irrational torus of slope θ. One can show that

T 2/Rθ is diffeomorphic to R/(Z+ θZ) (denoted by T 2
θ ).

Here are some basic properties of irrational tori:

(1) Let p : R ! T 2
θ be the quotient map. Then for any interval J µ R, p(J) = T 2

θ .

Therefore, as a diffeological space, T 2
θ is neither discrete nor indiscrete. However,

for any a 2 T 2
θ , T 2

θ ¡ f ag as a sub-diffeological space is discrete. As a topological

space with the quotient topology, T 2
θ is indiscrete.

(2) Let α, β be two irrational numbers. Then for every smooth map f : T 2
α ! T 2

β ,

there exists λ, µ 2 R such that λ and αλ 2 Z + βZ and the affine map F : R ! R

sending x to λx+ µ makes the following diagram commutative:

R

²²

F // R

²²
T 2

α f
// T 2

β .

Furthermore, there exists a non-constant smooth map f : T 2
α ! T 2

β if and only

if α = a+bβ
c+dβ

with
(

a b
c d

)
2 GL2(Q) and a, b, c, d 2 Z if and only if there exists a

surjective smooth map f : T 2
α ! T 2

β .

Also, there is a smooth bijection f : T 2
α ! T 2

β if and only if α = a+bβ
c+dβ

with
(

a b
c d

)
2 GL2(Z) if and only if there is a diffeomorphism f : T 2

α ! T 2
β .
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Remark 1.1.7. Let X be a subset of Rn with the sub-diffeology. Then by Boman’s

theorem (Corollary 3.14 of [KM]), p : U ! X is a plot if and only if for every smooth

function f : R ! U , the composition p ± f : R ! X is a plot. In other words,

Diff(R, X) determines the smooth structure of X. Therefore, all the techniques

developed in [KM] apply in this case.

Example 1.1.8. In contrast, let X = R2 be equipped with the diffeology generated

by all maps R ! R2 which are smooth in the usual sense. Then the set map

id : R2 ! X is not a plot, although for every smooth map f : R ! R2, id ±f = f :

R ! X is a plot.

Theorem 1.1.9 ([So]). Diff is both complete and cocomplete.

The forgetful functor Diff ! Set preserves both limits and colimits since it

has both left (discrete diffeology) and right (indiscrete diffeology) adjoints. The

diffeology on the limit (colimit) is the initial (final) diffeology defined by the natural

maps from the universal properties. More precisely, for the limits, let F : J ! Diff

be a functor from a small category J . Then U ! limF is a plot of limF if and only if

the composition U ! limF ! F (j) is a plot of F (j) for any j 2 Obj(J). And for the

colimit, let F : J ! Diff be a functor from a small category J . Then U ! colimF

is a plot of colimF if and only if locally it factors through F (j) ! colimF for some

j 2 Obj(J), with the factorization a plot of F (j).

Example 1.1.10. Let Λ2 be the pushout of R R0ioo i // R with Im(i) = f 0g.

As a set, Λ2 = f (x, y) 2 R2 j x = 0 or y = 0g. If we denote the sub-diffeological

space of R2 with the same underlying set as Λ2 by Λ2
sub, then we have a smooth

map Λ2 ! Λ2
sub which is identity on the underlying sets. However, this map is not

a diffeomorphism. This is because there exists a smooth function f : R ! R such
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that f(t) > 0 for all t > 0, and f(t) = 0 for all t · 0, for example,

f(t) =





e−
1
t if t > 0

0 if t · 0.

Then the smooth map R ! R2 defined by t 7! (f(t), f(¡ t)) induces a plot of Λ2
sub,

but not a plot of Λ2 since no neighborhood of 0 has a smooth lifting to either of the

axes of R2.

We may call the crossing point (0, 0) of Λ2 and Λ2
sub a border point and a stop

sign, respectively, since every smooth curve making a turn in Λ2 must stop for an

amount of time, while in Λ2
sub it only needs to stop instantaneously.

Example 1.1.11. Let X be the pushout of

Rn £ (¡1 , ε) Rn £ (¡ δ, ε) Â Ä //? _oo Rn £ (¡ δ,1 )

for some ε, δ > 0. Then X is diffeomorphic to Rn+1. This result will be used

extensively for the gluing of smooth maps.

Example 1.1.12. In contrast to the previous example, the pushout of

Rn £ R≤0 Rn £ f 0g? _oo Â Ä // Rn £ R≥0

is not diffeomorphic to Rn+1, for any n 2 N. This can be proved by Lemma 1.8.6

and (2) of Example 1.8.1.

Theorem 1.1.13 ([So]). Diff is cartesian closed.

More precisely, given two diffeological spaces X and Y , the set of maps f U !

Diff(X,Y ) j U £ X ! Y is smoothg forms a diffeology on Diff(X, Y ). We call it

the functional diffeology on Diff(X,Y ), and without specification, we always give

any hom-set the functional diffeology. Furthermore, for any diffeological space Y ,

? £ Y : Diff  Diff : Diff(Y, ?) is an adjoint pair.
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1.2 Diffeological spaces, a sheaf-theoretic point of

view

In this section, we explore more generally to study ‘something like diffeological

spaces’. They are called concrete sheaves over a concrete site. There are three

themes here: (1) the basic properties of these categories; (2) conditions under which

a presheaf is concrete; (3) lifting of the standard model category structure on sSet

to CPre(∆) and CSh(∆).

1.2.1 Concrete (pre)sheaves over a concrete site

There is a long history of the definition of a site, and there are many variations.

The following four definitions are essentially from [Jo]:

Definition 1.2.1. A family is a collection of morphisms with a common codomain.

Definition 1.2.2. A coverage on a category C is a function assigning to each object

U in C a collection J(U) of families f fi : Ui ! Ugi∈I , called the covering families,

with the following properties:

(1) given a covering family f fi : Ui ! Ugi∈I and a morphism g : V ! U , there

exists a covering family f hj : Vj ! V gj∈J such that each morphism g ± hj factors

through some fi;

(2) let f Ui ! Ugi∈I be a covering family of U , and for each i 2 I, let f Uij !

Uigj∈Ji
be a covering family of Ui. Then f Uij ! Ui ! Ugi∈I,j∈Ji

is also a covering

family of U ;

(3) f id : U ! Ug is a covering family of U .

Definition 1.2.3. A site is a small category together with a coverage.

Definition 1.2.4. Let C be a site.
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(1) A presheaf on C is a functor Cop ! Set.

(2) Let F be a presheaf on C, let U be an object of C, and let f fi : Ui ! Ugi∈I

be a covering family of U . A function x : I ! [ i∈IF (Ui) with x(i) 2 F (Ui) for each

i 2 I is called compatible with respect to this covering family, if for any i, j 2 I, any

object V of C, and any morphisms g : V ! Ui and h : V ! Uj with fi ± g = fj ±h,

we have F (g)(x(i)) = F (h)(x(j)).

(3) A sheaf F on C is a presheaf F : Cop ! Set satisfying the following condition:

for any object U of C, any covering family f fi : Ui ! Ugi∈I of U , and any compatible

x : I ! [ i∈IF (Ui) with respect to this covering family, there exists a unique y 2

F (U) such that F (fi)(y) = x(i) for any i 2 I.

The category of all presheaves (or sheaves) on C with natural transformations

will be denoted by Pre(C) (or Sh(C)).

Definition 1.2.5. A site C is called concrete if it has a terminal object 1, such that

(1) C(1, ?) : C ! Set is faithful;

(2) for any object U in Cand any covering family f Uj ! Ugj∈J of U , the natural

map
∐

j∈J C(1, Uj) ! C (1, U) is surjective.

Compared to the definition of a concrete site in [BH], we drop the subcanonical

condition.

Example 1.2.6. Let X be a topological space. Then the poset O(X) with objects

all open subsets of X ordered by inclusion together with the usual open covering is

a site with terminal object X. It is concrete if and only if for any covering family

f Ui
Â Ä // X gi∈I of X, there exists i 2 I such that Ui = X.

Example 1.2.7 ([BH]). Let DS be the category with objects all open subsets

of Rn with n 2 N, and morphisms all smooth maps between them. We say

f Ui
Â Ä // U gi∈I is a covering family of U in DS if each Ui is open in U and
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[ i∈IUi = U . Then DS forms a concrete site with terminal object R0, and the

functor DS(R0, ?) : DS ! Set sends every object U of DS to its underlying set U .

We call DS the diffeological site.

Example 1.2.8 ([BH]). Let CS be the category with objects all convex subsets of

Rn for n 2 N with nonempty interior, morphisms all smooth functions, and coverings

the relative open coverings. Then CS forms a concrete site.

Remark 1.2.9. Similarly, we can construct many such examples of concrete sites.

For example, we can change the morphisms in DS or CS to be continuous maps, or

Ck-maps, or analytic maps, etc, to get concrete sites.

Also we can take the category with objects all open subsets of Cn with n 2 N,

morphisms all holomorphic maps, and coverings the usual open coverings to get a

holomorphic concrete site, etc.

Definition 1.2.10. A concrete presheaf (or sheaf ) X over a concrete site C is a

presheaf (or sheaf) such that for any object U in C, the natural map α : X(U) !

Set(C(1, U), X(1)) defined by α(f)(u) = u∗(f) is injective. The category of all

concrete presheaves (or sheaves) over C with presheaf maps will be denoted by

CPre(C) (or CSh(C)).

Remark 1.2.11. By replacing X(U) by its image under α, we can make the follow-

ing observation: giving a concrete presheaf over a concrete site C is the same as giving

a set A (thought of as X(1)) together with a set PA µ [ U∈Obj(C)Set(C(1, U), A),

such that

(1) every set map C(1, 1) ! A is in PA, so every constant map C(1, U) ! A is

in PA;

(2) if g : V ! U 2 Mor(C), and f : C(1, U) ! A 2 PA, then f ±g∗ 2 PA, where

g∗ : C(1, V ) ! C (1, U) is induced by g.
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A concrete sheaf is a concrete presheaf such that

(3) if f : C(1, U) ! A is a set map, and there exists a covering family f Ui ! Ugi∈I

of U such that the composition C(1, Ui) // C(1, U)
f // A is in PA for any i 2 I,

then f 2 PA.

Let A and B be two concrete presheaves (or sheaves) over the concrete site C in

the above sense. Then a set map f : A ! B is a morphism in CPre(C) (or CSh(C))

if f(PA) µ PB.

This shows that CSh(C) is equivalent to a category of sets with certain types of

plots.

Take C = DS as an example. The category whose objects and morphisms are

described in the above remark is exactly Diff. There is an equivalence β : Diff

 CSh(DS) : γ given by:

for a diffeological space X, β(X)(U) = the set of all plots U ! X, and

for a concrete sheaf Y over DS, γ(Y ) = Y (R0) and Dγ(Y ) = [ U∈Obj(DS)α(Y (U)).

This proves the following:

Theorem 1.2.12 ([BH]). There is an equivalence of categories between Diff and

CSh(DS).

Example 1.2.13. Fix n 2 Z+. Then DS ! Vectop
R given by U 7! Ωn(U), the set

of all smooth n-forms on U , is a sheaf, which is concrete if and only if n = 0.

Proposition 1.2.14. Let Cbe a concrete site. Then the Yoneda functor C ! Pre(C)

factors through the inclusion functor CPre(C) ! Pre(C).

Proof. We need to show that for any object U in C, C(?, U) is concrete. This is just

because by the definition of a concrete site, C(1, ?) : C ! Set is faithful.

Example 1.2.15. In general, the Yoneda functor does not factor through the in-

clusion functor CSh(C) ! Pre(C). For example, let C be the simplicial category
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∆ (see Example A.2.44 for more details). Then 0 is the terminal object, and

∆(0, n) »= f 0, 1, 2,¢ ¢ ¢, ng. If we define f fj : nj ! n injective 2 ∆(nj, n)g to be

a covering family of n if [ jfj(nj) = n, then ∆ becomes a concrete site. Clearly,

∆(1, 1) has three elements. But if we cover the domain with two singletons, and

note that ∆(0, 1) has 2 elements, the sheaf condition would require that ∆(1, 1) have

4 elements. In other words, ∆(?, 1) is a (concrete) presheaf, but not a sheaf.

On the other hand, C(?, 1) is a concrete sheaf for any concrete site Cwith terminal

object 1, since it is constant.

Definition 1.2.16. We call a concrete site C subcanonical if the Yoneda functor

factors through the inclusion functor CSh(C) ! Pre(C).

Example 1.2.17 ([BH]). Both DS and CSare subcanonical.

Proposition 1.2.18 ([BH]). There is an adjoint pair c : Pre(C)  CPre(C) : i, with

i the forgetful functor, and c(X)(U) = X(U)/» , where f » g 2 X(U) if and only if

they have the same image under the natural map α : X(U) ! Set(C(1, U), X(1)).

We call c : Pre(C) ! CPre(C) in the above proposition the concretization func-

tor. Clearly, c ± i = id, and c(X)(1) = X(1) for any presheaf X.

Proposition 1.2.19. The concretization functor preserves products.

Proof. This means that for any set of presheaves fXigi∈I over a concrete site C,

the natural presheaf map c(
∏

i∈I Xi) !
∏

i∈I c(Xi) is an isomorphism in CPre(C),

and it follows directly from the definition of the concretization functor in the above

proposition.

Proposition 1.2.20 ([BH]). There is an adjoint functor F : CPre(C)  CSh(C) : i,

where F is the usual sheafification functor restricted to CPre(C).

Clearly, F ± i = id.
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Theorem 1.2.21 ([BH]). Let C be a subcanonical concrete site, then CSh(C) is

complete, cocomplete, and (locally) cartesian closed.

In fact, we can drop the subcanonical condition and get:

Theorem 1.2.22. Let C be a concrete site, then both CPre(C) and CSh(C) are

complete, cocomplete, and cartesian closed.

Proof. For CPre(C), limits are calculated sectionwise, and colimits are calculated sec-

tionwise followed by concretization. Let X and Y be two concrete presheaves over C.

We can define another concrete presheaf CPre(C)(X, Y ) with CPre(C)(X, Y )(U) =

CPre(C)(X£C(?, U), Y ). Then we have the following adjoint pair ?£ X : CPre(C) 
CPre(C) : CPre(C)(X, ?).

For CSh(C), limits are calculated sectionwise, and colimits are calculated sec-

tionwise followed by concretization and sheafification. Let X and Y be two con-

crete sheaves over C. Then CPre(C)(X, Y ) (now we write it as CSh(C)(X, Y ))

is in fact a concrete sheaf, since if C(1, U) ! CSh(C)(X,Y ) is a set map such

that there exists a covering f Uigi∈I of U with the property that the composition

C(1, Ui) ! C (1, U) ! CSh(C)(X, Y ) 2 CSh(C)(X, Y )(Ui) for each i 2 I, then for

any (f, g) : C(1, V ) ! C (1, U) £ X(1) 2 PC(1,U)×X(1), there exists a covering family

f Vj ! V gj∈J of V such that we have commutative diagrams of the form

C(1, V )
(f,g) // C(1, U) £ X(1)

C(1, Vj)

OO

// C(1, Ui) £ X(1)

OO

with the bottom horizontal map in PC(1,Ui)×X(1), by the definition of coverage. Since

Y is a sheaf, the composition

C(1, V )
(f,g) // C(1, U) £ X(1) // Y (1)

is in PY (1).
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Remark 1.2.23. The above proof shows that if X is a concrete presheaf and Y is a

concrete sheaf over a concrete site C, then CPre(C)(X, Y ) is in fact a concrete sheaf.

Let F : J ! CSh(C) be a functor. Write F (j) = f Aj,PAj
g with Aj a set. Then

colim(F )(1) = colimj∈J Aj as a set, and C(1, U) ! colim(F )(1) is a plot if and

only if there exists a covering family f Ui ! Ugi∈I of U such that the composition

C(1, Ui) ! C (1, U) ! colim(F )(1) factors through some Aj ! colim(F )(1) via a

plot C(1, Ui) ! Aj for each i 2 I.

1.2.2 When concreteness is automatic?

Now let’s explore some conditions under which a presheaf over a concrete site is

guaranteed to be concrete.

Lemma 1.2.24. Every sub-presheaf A of a concrete presheaf X over a concrete site

is again concrete.

Proof. Let C be a concrete site with terminal object 1. We have the following

commutative diagram in Set:

A(U) //

²²

Set(C(1, U), A(1))

²²
X(U) // Set(C(1, U), X(1))

for any object U in C. Since A is a sub-presheaf of X, the left vertical map is

an injection, and since X is a concrete presheaf, the bottom horizontal map is an

injection. Hence the top horizontal map is also an injection.

Proposition 1.2.25. Let C be a concrete site. Then any coproduct in Pre(C) of

concrete presheaves is again concrete.

Proof. This directly follows from the definition.
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Remark 1.2.26. In general, the coequalizer in Pre(C) of concrete presheaves may

not be concrete.

For example let C= DS, let X = R0 = f xg and Y = R0
∐
R0 = f y1, y2g be two

objects in CPre(DS), and define maps fi : X ! Y by x 7! yi for i = 1, 2. Write A

for the coequalizer of X
f1 //
f2

// Y in Pre(DS). Then for any object U = U1

∐
U2 in

DS with both U1, U2 connected, we will have three elements for A(U). Since A(R0)

is a one-point set, A is not concrete.

Definition 1.2.27. Let C be a concrete site with terminal object 1. A morphism

i : A ! B in CPre(C) is called an induction if

(1) i1 : A(1) ! B(1) is injective;

(2) for any f : C(1, c) ! B(1) 2 B(c) with Im(f) µ A(1), there exists g :

C(1, c) ! A(1) 2 A(c) such that f = i1 ±g.

We call A a subspace of B when there exists an induction A ! B.

Proposition 1.2.28. Let Y X
g //foo Z be a diagram in CPre(C), such that

both f1 and g1 are injective, and one of f and g is an induction. Let

X
g //

f
²²

Z

h
²²

Y
k

// W

be a pushout diagram in Pre(C). Then W is concrete.

Proof. Note that both h1 and k1 are injective, and the rest is easy.

Remark 1.2.29. In the above proposition, the condition that one of f and g is an

induction is essential. See the proof of Proposition 1.2.35.

Let Cbe a concrete site, and let f : X ! Y be a morphism in CPre(C). Then the

graph map g = (idX , f) : X ! X £ Y is an induction, since there is an isomorphism

between X and Im(g) as a subspace of X £ Y .
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1.2.3 Concrete (pre)sheaves over ∆

In this part, we take a simple concrete site ∆ (see Example 1.2.15), and study the

liftings of the standard model category structure on sSet to CPre(∆) and CSh(∆),

respectively (see Definition A.2.37). They serve as testing examples of the idea of

the liftings of the standard model category structure on sSet to CPre(C) and CSh(C),

respectively, for arbitrary concrete site C. We will talk in more detail in Chapter 2

for C= DS, the diffeological site. No results in this part will be used in the rest of

the thesis.

For the background of this part, see Example A.2.44 for the definition of the

simplicial category ∆, and see Example A.2.54 for the standard model category

structure on the category sSet of simplicial sets.

Since every simplicial set is a set-valued presheaf over ∆, we call a set-valued

concrete presheaf over ∆ a concrete simplicial set. The category of all concrete

simplicial sets will be denoted by csSet, and by Proposition 1.2.18, we have the

following adjoint pair c : sSet  csSet : i, with c(X)n = Xn/» , and a » b if and

only if s∗(a) = s∗(b) in X0 for any s 2 ∆(0, n), or in other words, the ordered

vertices of a and b match.

Lemma 1.2.30. Let X be a simplicial set such that its non-degenerate elements

have the following properties:

(1) none of them has repeated vertices;

(2) any two of them have different ordered vertices.

Then X is concrete.

Proof. To show that the natural map Xn ! Set(n,X0) is injective for all n, we

write Xn as disjoint union of degenerate and non-degenerate elements, and check

that the image of any two different degenerate elements, any degenerate element and

any non-degenerate element, and any two non-degenerate elements, are all different.
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The assumption guarantees the last two cases. For the first case, suppose a =

si1(¢ ¢ ¢sim(x)) and b = sj1(¢ ¢ ¢sjl
(y)) are two degenerate elements in Xn with the

same ordered vertices, with both x and y non-degenerate, and i1 > ¢ ¢ ¢> im and

j1 > ¢ ¢ ¢> jl. By the assumption, it is easy to see that a = b. Therefore, X is

concrete.

Example 1.2.31. The simplicial sets ∆n, ∂∆n, Λn
k are all concrete.

Here are some more examples considered by other people earlier. They fit nicely

into the language of concrete simplicial sets.

Definition 1.2.32 ([Ja2]). A simplicial set is called a polyhedral complex if it is

a subcomplex of B(P ) for some poset P , where the classifying space functor B is

introduced in Example 2.2.3.

Example 1.2.33. Let A be a poset. Then its classifying space B(A) is a concrete

simplicial set, and so is every polyhedral complex.

In particular, let X be a simplicial set, and let NX be the set of all non-

degenerate simplices in X ordered by the face relation. Then B : sSet! sSet

defined by X 7! BX = B(NX) is a functor, since if f : X ! Y is a morphism in

sSet, then f∗ : NX ! NY defined by f(x) = tf∗(x) with f∗(x) 2 NY and t an

iterated degeneracy is a functor. We call BX the classifying space of the simplicial

set X, and it is always concrete.

Let P be a poset. Then there is a last vertex map γ : BB(P ) ! B(P ) defined

by NB(P ) ! P with (x : n ! P ) 7! x(n). Note that, we have B(n) = ∆n

and B∆n = Sd(∆n) = sd(n), where the functors Sd and sd are also introduced in

Example 2.2.4. The last vertex map induces γ : B∆n ! ∆n, hence γ : Sd(X) ! X

and Sd(X) ! BX for any simplicial set X. Moreover, [Ja2] shows that c(Sd(X)) =

BX for every simplicial set X, and Sd(X) ! BX is an isomorphism for every

polyhedral complex X.



CHAPTER 1. BASICS OF DIFFEOLOGICAL SPACES 30

Remark 1.2.34. In general, the concretization functor does not preserve equalizers.

For example, let Y be the simplicial set generated by

x
a

((

b

66 y

Let Z be the equalizer of ∆1 a //
b

// Y in sSet. Then Z = ∂∆1, while the equalizer

of c(∆1)
c(a) //
c(b)

// c(Y ) is ∆1 6= c(Z) = Z.

Proposition 1.2.35. We can not lift the standard model category structure of sSet

to csSet from the adjoint pair c : sSet  csSet : i (see Definition A.2.37).

Proof. Actually, condition (2) of Kan’s theorem fails. For example, the pushout of

Λ2
1

Â Ä //

²²

∂∆2

∆2

in csSet is ∆2, which is not weakly equivalent to ∂∆2.

Remark 1.2.36. By the definition of the coverage on ∆ (see Example 1.2.15), every

object in CSh(∆) is a Kan complex. Therefore, none of ∆n, ∂∆n, Λn
k are objects in

CSh(∆) except ∆0, Λ1
0 and Λ1

1.

Proposition 1.2.37. Let X be a concrete simplicial set. Then its sheafification

F(X) = Set(?, X0).

Proof. It is easy to see that Set(?, X0) is a concrete sheaf over ∆. Clearly F(X) µ

Set(?, X0), and Set(?, X0) µ F(X) can be proved by using the covering family of n

by n + 1 copies of 0’s, and the fact that all constant maps n ! X0 are in Xn since

X is concrete.
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Hence F(∆1) = F(∂∆1) = A with An = Set(f 0, 1,¢ ¢ ¢, ng, f 0, 1g). In fact, the

geometric realization of A is S∞. Therefore, it is not always true that if X is a

concrete simplicial set then X ! i ±F(X) is a weak equivalence of simplicial sets.

The above proposition says that we have an equivalence of categories CSh(∆) '

Set. In fact from the adjoint pair F ± c : sSet  CSh(∆) : i, we can figure out

the weak equivalences, fibrations and cofibrations on Set as follows. Since F(Λn
k) !

F(∆n) and F(∂∆n) ! F(∆n) are all identities for n ¸ 1, X ! Y in Set is a fibration

(or a trivial fibration) if and only if it has the right lifting property with respect to

d0, d1 : f 0g ! f 0, 1g (or ; ! f 0g). In other words, X ! Y is a trivial fibration

if and only if it is surjective, and it is a fibration if and only if it is surjective with

X 6= ; or X = ; and Y is arbitrary. Then A ! B is a cofibration, if and only if it is

injective, and it is a trivial cofibration if and only if it is injective when A 6= ; or it

is ; ! ; . Every map from a non-empty set is a weak equivalence, since Set(?, X)

is contractible for any set X via the homotopy Set(?, X) £ ∆1 ! Set(?, X) defined

by (x0,¢ ¢ ¢, xn; g) 7! (x0,¢ ¢ ¢, xi, x, ¢ ¢ ¢, x), where g−1(0) = f 0, 1,¢ ¢ ¢, ig. It is easy

to see that this is a proper cofibrantly generated model structure on Set ' CSh(∆).

In other words, we have proved:

Theorem 1.2.38. We can lift the standard model category structure on sSet to

CSh(∆) from the adjoint pair F ± c : sSet  CSh(∆) : i.
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1.3 The D-topology

A diffeological space is a set with some extra structure. We can associate to every

diffeological space the following interesting topology:

Definition 1.3.1 ([Do]). Given a diffeological space X, the final topology induced

by all its plots, where each domain is equipped with the standard topology, is called

the D-topology on X.

More precisely, if (X,D) is a diffeological space, then a subset A of X is open

(called D-open) in the D-topology of X if and only if φ−1(A) is open for each φ 2 D .

If D is generated by a subset D ′, then A is D-open if and only if φ−1(A) is open for

each φ 2 D ′.

Example 1.3.2 ([Do]). (1) The D-topology on any smooth manifold with the stan-

dard diffeology coincides with the usual topology on the smooth manifold.

(2) The D-topology on a discrete diffeological space is discrete, and the D-

topology on an indiscrete diffeological space is indiscrete.

Proposition 1.3.3 ([La]). For any diffeological space, the D-topology is locally path-

connected.

Proof. This is because every path component of a D-open set is D-open.

Theorem 1.3.4. There is an adjoint pair D : Diff  Top : T given by D(X) = the

set X with the D-topology, T (Y )(U) = f f : U ! Y continuousg, and both D(f) and

T (g) the same set maps for the underlying sets. Furthermore, we have T ±D±T = T

and D ±T ±D = D.

Proof. This is routine.
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Clearly, both functors D and T are faithful. But neither of them are full. Neither

of them reflects isomorphisms, since for example, the irrational torus T 2
θ and the

same set with the indiscrete diffeology have the same D-topology, and Q with the

usual topology or with the discrete topology have the same image in Diff. And

neither of them is essentially surjective, since the D-topology is always locally path-

connected, and there is no topological space X such that T (X) = T 2
θ , for the

identity underlying set map D(T (X)) ! X is continuous. The functor T sends

(in)discrete topological spaces to (in)discrete diffeological spaces, and it preserves

arbitrary coproducts. However, T does not preserve coequalizers in general. For

example, R0
i0 //
i1

// [0, 1] // S1 , with is(R0) = s for s = 0, 1, is a coequalier in

Top, while T (R0)
T (i0)//
T (i1)

// T ([0, 1]) // T (S1) is not a coequalizer in Diff.

Here is one application of the D-topology:

Example 1.3.5. Let X and Y be diffeological spaces such that X is indiscrete

and every point in D(Y ) is either open or closed. Then as diffeological spaces,

Diff(X,Y ) »= Y .

1.3.1 Two D-topologies related to a subspace

Let X be a diffeological space, and let Y be a quotient set of X. Then we can give

Y two topologies:

(1) the D-topology of the quotient diffeology on Y ;

(2) the quotient topology of the D-topology on X.

Since D : Diff ! Top is a left adjoint, these two topologies are the same. [I1]

has direct proof for this result.

Similarly, let X be a diffeological space, and let A be a subset of X. Then we

can give A two topologies:

(1) τ1 = the D-topology of the sub-diffeology on A;
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(2) τ2 = the sub-topology of the D-topology on X.

However, these two topologies are not the same in general. We can only conclude

that τ2 µ τ1.

Example 1.3.6. Let X = R have the standard diffeology, and let A = Q. Then τ1

is the discrete topology, which is strictly finer than the sub-topology τ2.

Remark 1.3.7. Let R have the standard diffeology, and let Q have the sub-topology

of R. Then Diff(T (Q),R) = Set(Q,R).

We are interested in the conditions under which τ1 = τ2.

Lemma 1.3.8. Let A be a locally convex subset of Rn. Then τ1 = τ2.

Proof. This is essentially (3) of Lemma 24.6 in [KM].

Remark 1.3.9. By the same proof of the above lemma, we can show that given any

diffeological space X, Diff(R, X) totally determines the D-topology on X, although

it does not determine the diffeology of X in general, see Example 1.1.8.

Example 1.3.10. For every open subset A of Rn, τ1 = τ2.

More generally, we have the following:

Lemma 1.3.11. If A is a D-open subset of a diffeological space X, then τ1 = τ2.

Proof. Let B be τ1-open, and let p : U ! X be an arbitrary plot of X. Since A is

D-open in X, p−1(A) is an open subset of U . Hence p−1(A) is an object in DS, and

the composition of p−1(A) ↪! U ! X is also a plot for X, which factors through

the inclusion map A ↪! X. Since B 2 τ1, (pjp−1(A))
−1(B) is open in p−1(A), which

implies that p−1(B) is open in U .
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Lemma 1.3.12. Let X be a diffeological space and let A be a subset of X. If

there exists a D-open neighborhood C of A in X together with a smooth retraction

r : C ! A (here both C and A are equipped with the sub-diffeologies from X), then

τ1(A) = τ2(A).

Proof. Let B 2 τ1(A). Then r−1(B) 2 τ1(C) = τ2(C) is D-open in X. Therefore,

B = A \ r−1(B) 2 τ2(A).

Example 1.3.13. Given a smooth manifold M of dimension n > 0, by the strong

Whitney Embedding Theorem, there is a smooth embedding M ↪! R2n. If we view

M as a subset of R2n, then τ1 = τ2 since there is a tubular neighborhood U of M in

R2n together with a smooth retraction U ! M .

Here are some other examples:

Example 1.3.14. The D-topologies on Λn,Λn
sub, ∂An, ∂An

sub coincide with the sub-

topologies of Rn, where these diffeological spaces are defined at the beginning of

Section 2.4.

1.3.2 Relationship with ∆-generated topological spaces

Definition 1.3.15. A topological space X is called ∆-generated if the following

condition holds: A µ X is open if and only if f−1(A) is open in j∆nj, the standard

n-simplex in Top, for any continuous map f : j∆nj ! X and any n 2 N.

More on ∆-generated topological spaces can be found in [Du1].

Proposition 1.3.16. The objects in the image of the functor D are exactly the

∆-generated topological spaces.

Proof. More generally, for any set S of topological spaces, we can define S-generated

topological spaces in the same way. Clearly any topological space in S is S-generated,
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since the identity map works. Hence f S-generated topological spacesg = f T -

generated topological spacesg if and only if every element in T is S-generated and

every element in S is T -generated.

Now let S = f Rn j n 2 Ng, and let T = fj ∆nj j n 2 Ng. Then a topological

space X is S-generated if and only if D ±T (X) = X. D ±T ±D = D implies that

the image of the functor D is exactly the S-generated topological spaces. To see

that j∆nj is S-generated, we only need to notice that the inclusion j∆nj ↪! Rn has

a continuous retract, and to see that Rn is T -generated, we only need to notice that

for every small open ball B in Rn, there is a continuous map j∆nj ! Rn which sends

an open ball in the interior of j∆nj homeomorphically to B.

Remark 1.3.17. [SYH] has results similar to Theorem 1.3.4 and Proposition 1.3.16.

Proposition 1.3.18. Every locally path-connected first countable topological space

is ∆-generated.

Proof. Let (X, τ) be a locally path-connected first countable topological space. Then

for any x 2 X, there exists a neighborhood basis f Aig∞i=1 of x, such that

(1) each Ai is path-connected;

(2) Ai+1 µ Ai.

This is because, for any neighborhood basis fBig∞i=1 of x, we can define A1 to

be the path-component of B1 containing x, and Ai to be the path-component of

Ai−1 \ Bi containing x for i ¸ 2.

Now let τ ′ be the final topology of X for all continuous maps j∆nj ! (X, τ)

for all n 2 N. Clearly τ µ τ ′. Suppose A is in τ ′ but not in τ . This means that

there exists x 2 A such that for any U 2 τ which is a neighborhood of x, there

exists xU 2 U ¡ A. Let f Aig∞i=1 be a neighbourhood basis for x with the above two

properties. Let’s write xn 2 An ¡ A accordingly. Define f : [0, 1] ! X by letting
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f j[ 1
i+1

, 1
i
] be a continuous path connecting xi+1 and xi in Ai, and f(0) = x. Easy to

see that f is continuous for (X, τ), but f−1(A) is not open in [0, 1].

Example 1.3.19. The infinite earring [ i∈Z+f (x, y) 2 R2 j (x ¡ 1
i
)2 + y2 = 1

i2
g with

the sub-topology of R2 is ∆-generated, since it is locally path-connected and first

countable.

However, the converse of the above proposition is not true:

Example 1.3.20. Let X be a set with the complement-finite topology. We write

card(X) for its cardinality. Then

(1) X is ∆-generated if card(X) < card(N) or card(X) ¸ card(R);

(2) X is not ∆-generated if card(X) = card(N).

Note that X is not first countable when card(X) ¸ card(R). This provides a

counterexample to the converse of the above proposition.

Proof. (1.1) If X is a finite set, then the complement finite topology is the discrete

topology. Hence X is ∆-generated.

(1.2) Assume card(X) ¸ card(R), and let B be a non-closed subset of X, that is,

B 6= X and card(B) ¸ card(N). We must construct a continuous map f : R ! X

such that f−1(B) is not closed in R. Note that in this case, every injection R ! X

is continuous.

Take an injection f̃ : f 1
n
gn∈Z+ ! B. We can extend this to an injection f : R !

X with f(0) 2 X ¡ B. This map is what we are looking for.

(2) If card(X) = card(N), then every continuous map R ! X is constant.

Otherwise, since every point in X is closed, R is a disjoint union of at least 2 and

at most countably many non-empty closed subsets. But this is impossible both for

finite disjoint union since R is connected, and for countable disjoint union because

of the existence of the Cantor set.
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Remark 1.3.21. Assume the continuum hypothesis. Then the above example can

be simply written as: a set X with complement finite topology is ∆-generated if

and only if X is not an infinite countable set.

Example 1.3.22. Let κ be a field. Then Spec(κ[x]) with the Zariski topology is

∆-generated if card(κ) < card(N) or card(κ) ¸ card(R). However, Spec(Z) and

Spec(Z[x]) with the Zariski topology are not ∆-generated.

Actually, not every locally path-connected topological space is ∆-generated. The

following example is given by J. Brazas:

Example 1.3.23. As a set, let X be the union of the closed unit intervals indexed

by I = f (a, b) j a, b are ordinals with a < b · ω1g, where ω1 is the first uncountable

ordinal. We write elements in X as xa,b with x 2 [0, 1] and (a, b) 2 I. Let Y be

the quotient set X/» , where the only non-trivial relations are 0a,b » 1c,a for any

(a, b), (c, a) 2 I. Since we will only work with Y , by abuse of notation, we denote

the elements in Y in the same way as those in X. The topology on Y is given by

the following subbasis:

(1) open intervals (xa,b, ya,b) for any 0 · x < y · 1 and (a, b) 2 I;

(2) ([ b≤c<d≤ω1 [0c,d, 1c,d]) [ ([ a<b≤e≤ω1(xa,e, 1a,e]) for any (b, ω1) 2 I and any x 2

[0, 1).

It is clear that Y is locally path-connected (but not first countable). However,

Y is not ∆-generated. Here is the proof. Let A = [ a<ω1(0a,ω1 , 1a,ω1 ]. Then A is not

open in Y . For any continuous map f : j∆nj ! X, we claim that f−1(A) is open

in j∆nj. Otherwise, there exists u 2 f−1(A) such that no open neighborhood of u is

contained in f−1(A). Then f(u) = ω1, and we can choose a sequence (ui) converging

to u, and each ui is not in f−1(A). Since ω1 is the first uncountable ordinal, f(ui)

is not convergent to f(u) = ω1, which conflicts the continuity of f .



CHAPTER 1. BASICS OF DIFFEOLOGICAL SPACES 39

Remark 1.3.24. Except local path-connectedness, almost no property in general

topology holds for an arbitrary ∆-generated space. Example 74 of [SS] shows that

not every ∆-generated space is locally compact or paracompact.

1.3.3 The D-topology on infinite dimensional spaces

For any two diffeological spaces X and Y , we have a canonical continuous map

D(X £ Y ) ! D(X) £ D(Y ). If both D(X) and D(Y ) are first countable, then by

a proof similar to the proof of Proposition 1.3.18, we can show that the canonical

map is a homeomorphism.

Example 1.3.25. Let M and N be two smooth manifolds. Then the D-topology on

Diff(M,N) is finer than the compact-open topology. This is because the compact-

open topology has a subbasis A(K,W ) = f f 2 Diff(M,N) j f jK µ Wg, where K is

a compact subset of M and W is an open subset of N . Let φ : U ! Diff(M,N) be

any plot of Diff(M,N). Since the corresponding map φ̄ : U £ M ! N is smooth,

φ̄−1(W ) is open in U £ M . Then for any u 2 φ−1(A(K,W )), f ug £ K is in the open

set φ̄−1(W ). By the compactness of K and the definition of the product topology,

V £ K µ φ̄−1(W ) for some open neighborhood V of u in U , which implies that

φ−1(A(K,W )) is open in U . Thus A(K,W ) is open in the D-topology.

Actually, the D-topology is almost always strictly finer than the compact-open

topology.

Example 1.3.26. Consider Diff(R,R). Let’s define A(K0, ¢ ¢ ¢, Kn;W0,¢ ¢ ¢,Wn) =

f f 2 Diff(R,R) j f (i)(Ki) µ Wi for all i 2 f 0, 1,¢ ¢ ¢, ngg, where each Ki is a

compact subset of R and each Wi is an open subset of R. The same proof as above

shows that A(K0,¢ ¢ ¢, Kn;W0,¢ ¢ ¢,Wn) is D-open in Diff(R,R). Now for example,

let U = A([¡ 1, 1], [¡ 1, 1]; (¡ 1, 1), (¡ 1, 1)). Clearly the zero function 0̂ 2 U . We
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claim that there is no open neighborhood of 0̂ in the compact-open topology of

Diff(R,R) contained in U . Otherwise, we may assume 0̂ 2 A(K, (¡ ε, ε)) µ U for

some ε > 0, since if 0̂ 2 A(K1,W1) \ ¢ ¢ ¢ \ A(Km,Wm), then 0 2 Wi for each i

and 0̂ 2 A(K1 [ ¢ ¢ ¢ [Km,W1 \ ¢ ¢ ¢ \Wm) µ A(K1,W1) \ ¢ ¢ ¢ \A(Km,Wm). Then

clearly f : R ! R defined by f(y) = ε
2
sin(2y

ε
) is in A(K, (¡ ε, ε)), but not in U . This

example is due to G. Sinnamon.

Now we define a topology on Diff(R,R). Clearly f An(ε)gn∈Z+,ε>0 with An(ε) =

f f 2 Diff(R,R) j f (j)([¡ n, n]) µ (¡ ε, ε) for j 2 f 0, 1, ¢ ¢ ¢, ngg forms a neighborhood

basis for 0̂ 2 Diff(R,R). Since Diff(R,R) is a diffeological abelian group (defined in

Section 1.7) under pointwise addition with identity 0̂, we can translate the neigh-

borhood basis of 0̂ to get a topology on Diff(R,R). Let’s call this the extended

compact-open topology of Diff(R,R). G. Sinnamon showed the following:

Lemma 1.3.27. The D-topology on Diff(R,R) coincides with the extended compact-

open topology.

Proof. From the previous example, we already know that the D-topology is finer

than the extended compact-open topology on Diff(R,R).

Let’s make some notation. Fix a smooth function h : R ! R such that

supp(h) µ [1, 4] and h(2) = 1. Now let’s define hn(x) = h(4nx) and let Mn =

maxx∈R,j∈{0,1,··· ,n}fj h
(j)
n (x)jg.

Assume that W is D-open but not open in the extended compact-open topology.

Without loss of generality, we may assume W is a D-open neighborhood of 0̂ in

Diff(R,R). Then there exists fn 2 An( 1
16nMn

) ¡ W for each n 2 Z+.

Now we claim that α : R ! Diff(R,R) defined by α(x) =
∑∞

i=1 hn(x)fn is a

well-defined smooth map, or in other words, that α̃ : R2 ! R defined by α̃(x, y) =

α(x)(y) =
∑∞

i=1 hn(x)fn(y) is a well-defined smooth map. Note that, except for the

y-axis, any point has an open neighborhood such that α̃ is a finite sum of smooth
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functions. Also on the left half open plane, all partial derivatives of α̃(x, y) exist

and are equal to 0. We are left to show that ∂j+k

∂xj∂yk α̃(0, y) = 0 for all j, k 2 N and

all y 2 R. We can prove this by induction on j, for each fixed k and y. Clearly

α̃(0, y) = 0. Assume that we have proved the equality for some j, then

lim
x→0+

1

x
(
∂j+k

∂xj∂yk
α̃(x, y) ¡

∂j+k

∂xj∂yk
α̃(0, y)) = 0

since we have

j
∂j+k

∂xj∂yk
α̃(x, y)j = jhj

n(x)fk
n(y)j · Mn £

1

16nMn

=
1

16n
· x2

if n ¸ maxf j, kg, x 2 [ 1
4n ,

1
4n−1 ] and y 2 [¡ n, n]. The rest of the claim is easy.

Note that α(0) = 0̂ and α( 2
4n ) = fn. Hence α−1(W ) is not open, which contra-

dicts the assumption that W is D-open.

By the same method, similar results holds for Diff(Rl,Rm), with An(ε) changed

to f f 2 Diff(Rl,Rm) j Dαf(B̄l
n) µ Bm

ε for all 0 · j αj · ng, where B̄l
n is the closed

ball in Rl with center the origin and radius n, and Bm
ε is the open ball in Rm with

center the origin and radius ε.

Here is another example:

Example 1.3.28. Let C be the poset N with the usual ordering. Define a functor

F : C ! Diff by (i · j) 7! (Ri ! Rj) with (x1,¢ ¢ ¢, xi) 7! (x1,¢ ¢ ¢, xi, 0, ¢ ¢ ¢, 0).

Let X = colim(F ). Then as a set, X = f x 2 RN j there exists N 2 N such that

xi = 0 for all i > Ng. This set has a natural metric d : X £ X ! R given by

d(x, y) =
∑

i∈N(xi ¡ yi)
2. There are natural smooth maps fn : Rn ! X given by

(x1, ¢ ¢ ¢, xn) ! (x1,¢ ¢ ¢, xn, 0, ¢ ¢ ¢) for all n 2 N. However, the D-topology (which

is the weak topology, that is, U µ X is D-open if and only if f−1
n (U) is open in

Rn for any n 2 N) on X is strictly finer than the topology induced by the metric
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d. For example, A = f x 2 RN j j
∑

i∈N xij < 1g \ X is clearly D-open with 0 2 A.

But there exists no ε > 0 such that B(0, ε) = f x 2 X j d(x, 0) < εg µ A. Also the

D-topology on X is strictly finer than the topology induced by the box topology on

RN. For example, B = (0, 1) [ (0, 1
2
)2 [ (0, 1

3
)3 [ ¢ ¢ ¢is only open in the D-topology.

1.3.4 Ringed space and the smooth variety property

In this part, we talk about some properties for smooth manifolds, but not for all

diffeological spaces.

Let X be a diffeological space. Then Diff(X,R) is a commutative R-algebra with

identity under pointwise addition, pointwise multiplication, and pointwise scalar

multiplication.

Let x0 2 X. Then B = f f 2 Diff(X,R) j f(x0) = 0g is a maximal ideal of

Diff(X,R), and as R-algebras, Diff(X,R)/B »= R.

Given a diffeological space X, we can define a ringed space (D(X),OX), where

OX(U) = Diff(U,R), with U equipped with the sub-diffeology of X. This gives a

functor F from Diff to the category of ringed spaces. It is a classical result (see

[DLORV]) that the restriction of this functor to Mfd reflects isomorphisms, that is,

if f : M ! N is a smooth map between two smooth manifolds such that F (f) is an

isomorphism between the corresponding ringed spaces, then f is a diffeomorphism.

However, the whole functor does not have this property:

Example 1.3.29. Let X1 be R2 with the standard diffeology, and let X2 be R2 with

diffeology generated by all the usual smooth maps R ! R2. Then D(X1) = D(X2)

by Remark 1.3.9. For any open subset U of R2, regard Ui = U as a sub-diffeological

space of Xi, i = 1, 2. By Boman’s theorem (Corollary 3.14 of [KM]), OX1(U1) =

Diff(U1,R) = Diff(U2,R) = OX2(U2).

Now we talk about the smooth variety property. It is motivated by the following
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theorem (see [KP]):

Theorem 1.3.30. For any closed subset A of Rn, there exists a smooth map f :

Rn ! R such that A = f−1(0).

Definition 1.3.31. We say that a diffeological space X has the smooth variety

property if for every D-closed subset A of X, there exists a smooth map f : X ! R

such that A = f−1(0).

Here is an easy corollary of Theorem 1.3.30:

Corollary 1.3.32. Let X be a diffeological space together with a smooth map f :

X ! Rn for some n 2 N such that the D-topology on X is the initial topology of f .

Then X has the smooth variety property.

For example, Λn, Λn
sub, ∂An, ∂An

sub (defined at the beginning of Section 2.4), and

every smooth manifold has the smooth variety property.

However, not every diffeological space has the smooth variety property. The

following example is due to J. Watts.

Example 1.3.33. Let X be the quotient diffeological space of R modulo the open

interval (¡ 1, 1). Then the D-topology on X is the same as the quotient topology.

Hence the point [0] 2 X is D-open. Note that every smooth map X ! R is a

smooth map R ! R which sends the open interval (¡ 1, 1) to a single point. So

there is no smooth map f : X ! R such that f−1(0) = X ¡ f [0]g.

Also note that in this example the initial topology onX with respect to Diff(X,R)

is strictly finer than the D-topology on X.
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1.4 Naive smooth homotopy theory

Smooth homotopy groups for pointed diffeological spaces were first introduced by

P. Iglesias-Zemmour in his Ph.D. thesis [I2]. We introduce them in a different way

(although the idea was already hidden in [I1, I2]), and prove that they are equivalent

to the original definition. The advantage of this approach is that the stationarity

condition in the original definition is not essential for the underlying set.

Definition 1.4.1. Let (X, x) be a pointed diffeological space. The nth smooth

homotopy group πD
n (X, x) ofX at x is defined to be f f 2 Diff(Rn, X) j f j∂In = xg/» ,

with f » g if and only if there exists F 2 Diff(Rn+1, X) such that F (a, 0) = f(a),

F (a, 1) = g(a) and F j∂In×R = x. Here In = [0, 1]n, the standard closed unit cube in

Rn.

» is an equivalence relation. Reflexivity and symmetry are clear. For transitivity,

let F1 be a smooth pointed homotopy between f and g, and let F2 be a smooth

pointed homotopy between g and h. Then

F (a, t) =





F1(a, ψ(2t)) if t · 1
2

F2(a, ψ(2t ¡ 1)) if t > 1
2

is a smooth pointed homotopy between f and h, where ψ : R ! R is a cut-

off function, that is, a smooth function such that there exists some ε > 0 with

ψ((¡1 , ε)) = 0, ψ((1 ¡ ε, 1 )) = 1 and Im(ψ) = [0, 1].

Remark 1.4.2. For any [f ] 2 πD
n (X, x), we can find g 2 Diff(Rn, X) such that

g » f and gjRn−εIn = x for some ε > 0, where εIn = [ε, 1 ¡ ε]n. Here is the reason:

take a cut-off function φ : R ! R, and define g = f ± φn. Clearly, gjRn−εIn = x,

and F (a1,¢ ¢ ¢, an, t) = f((1 ¡ φ(t))a1 + φ(t)φ(a1),¢ ¢ ¢, (1 ¡ φ(t))an + φ(t)φ(an)) is a

smooth pointed homotopy between f and g.
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The group structure on πD
n (X, x) for n 2 Z+ is defined in the same way as that

on the usual (continuous) homotopy groups in algebraic topology, by using the rep-

resentatives with the above stationarity property.

Here is a quick review of P. Iglesias-Zemmour’s definition of smooth homotopy

groups π̃D
n (X, x) of a pointed diffeological space (X, x):

Let X be a pointed diffeological space. We define an equivalence relation on X

by x » ′ x′ if and only if there is f 2 Diff(R, X) such that there exists ε > 0 with

f j(−∞,ε) = x and f j(1−ε,∞) = x′. We call such f a stationary path from x to x′, and

we define π̃D
0 (X) = X/» ′.

Given a pointed diffeological space (X, x), define StLoops1(X, x) to be f f 2

Diff(R, X) j f is a stationary path from x to itself g. The elements in StLoops1(X, x)

will be called stationary loops of (X, x). Note that StLoops1(X, x) is a diffeologi-

cal space with the sub-diffeology of the functional diffeology on Diff(R, X). There

is a canonical basepoint x1 = the constant map in StLoops1(X, x). Now recur-

sively define StLoopsn+1(X, x) = StLoops1(StLoopsn(X, x), xn), where xn is the

canonical basepoint on StLoopsn(X, x), that is, the constant map f : Rn ! X

sending everything to x. The nth smooth homotopy group of X at x is defined to

be π̃D
n (X, x) = π̃D

0 (StLoopsn(X, x)). The group structure on π̃D
n (X, x) for n 2 Z+

is defined as usual.

When unraveling StLoopsn(X, x) as smooth maps Rn ! X satisfying some

stationarity conditions using the cartesian closedness of Diff, these stationarity con-

ditions are quite complicated since they vary for different variables. However, we

have:

Theorem 1.4.3. The two definitions of smooth homotopy groups for a pointed dif-

feological space match.
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Proof. Let (X, x) be a pointed diffeological space. By cartesian closedness of Diff,

we have the inclusion map StLoopsn(X, x) ! Diff(Rn, X). Every stationary path

connecting f and g in StLoopsn(X, x) is a smooth pointed homotopy between f and

g, which implies that we have a canonical well-defined map i : π̃D
n (X, x) ! πD

n (X, x),

and it is clearly a group homomorphism for n 2 Z+. We have shown that i is

surjective in Remark 1.4.2.

i is injective, since every smooth pointed homotopy in Diff can be made into a

stationary path in StLoopsn(X, x) by precomposing with a cut-off function for all

the variables except the time variable.

The proof of the above theorem also indicates:

Theorem 1.4.4. Let (X, x) be a pointed diffeological space. Then πD
n (X, x) can

also be characterized as f f 2 Diff(Rn, X) j f jRn−εIn = x for some ε > 0g/» 1, where

f » 1 g if there exists F 2 Diff(Rn+1, X) and δ > 0 such that F (a, 0) = f(a),

F (a, 1) = g(a), and F j(Rn−δIn)×R = x.

Given any pointed diffeological space (X, x), there is a canonical well-defined map

jn : πD
n (X, x) ! πn(D(X), x) by restriction to In, which is a group homomorphism

when n ¸ 1.

Proposition 1.4.5 ([I1]). Let X be a diffeological space. Then j0 : πD
0 (X) !

π0(D(X)) is a bijection, that is, πD
0 (X) coincides with the usual (continuous) path

components of X under the D-topology.

The classical smooth approximation theorem shows:

Proposition 1.4.6. Let (X, x) be a pointed smooth manifold with the standard dif-

feology. Then jn : πD
n (X, x) ! πn(D(X), x) is an isomorphism for any n 2 N.

By a similar method to the proof of Theorem 1.4.3, it is easy to see that:
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Proposition 1.4.7. Let (X, x) be a pointed topological space. Then the canonical

map πD
n (T (X), x) ! πn(X, x) is an isomorphism for any n 2 N.

However, in general, πD
n (X, x) and πn(D(X), x) might differ; see Example 1.7.14.

We can also define smooth homotopy groups for a pointed diffeological space

(X, x) as [(Sn, N), (X, x)], where N = (0,¢ ¢ ¢, 0, 1) is the north pole of Sn, and

[(Sn, N), (X, x)] = f f 2 Diff(Sn, X) j f(N) = xg/» ′′, with f » ′′ g if there exists

F 2 Diff(Sn £ R, X) such that F (a, 0) = f(a), F (a, 1) = g(a) and F (N, t) = x for

any a 2 Sn and any t 2 R.

For any [g] 2 [(Sn, N), (X, x)], there exists g′ 2 Diff(Sn, X) with g′(x0,¢ ¢ ¢, xn) =

x if xn > 1¡ ε for some ε > 0, such that g » ′′ g′. In fact, g′ can be constructed as the

composition g±h with h 2 Diff(Sn, Sn) such that h(x0, ¢ ¢ ¢, xn) = N if xn > 1¡ ε. We

use the following charts for Sn: f (Ui, φi)gi=1,2 where U1 = f (x0,¢ ¢ ¢, xn) 2 Sn j xn >

¡ εg, U2 = f (x0,¢ ¢ ¢, xn) 2 Sn j xn < εg, and φ1 and φ2 are stereographic projections

with respect to the south pole S = (0,¢ ¢ ¢, 0, ¡ 1) and the north pole N , respectively.

h is defined by hjU2 = id, and φ1 ±hjU1 ±φ−1
1 by (y1, ¢ ¢ ¢, yn) 7! (y1τ(r),¢ ¢ ¢, ynτ(r))

for some cut-off function τ : R ! R and r =
√∑n

i=1 y
2
i . Clearly, h and idSn are

smoothly homotopic.

Theorem 1.4.8. For any pointed diffeological space (X, x), we have πD
n (X, x) =

[(Sn, N), (X, x)].

Proof. By the characterization of πD
n (X, x) in Theorem 1.4.4, we can define j :

πD
n (X, x) ! [(Sn, N), (X, x)] by [f ] 7! [g] with

g(x0,¢ ¢ ¢, xn) =





f ±φ(x0, ¢ ¢ ¢, xn), if xn 2 U

x, otherwise,

where U = Sn ¡ f Ng, and φ is the stereographic projection with respect to the

south pole S. This is clearly well-defined.



CHAPTER 1. BASICS OF DIFFEOLOGICAL SPACES 48

j is surjective, since for any [g] 2 [(Sn, N), (X, x)] with g(x0,¢ ¢ ¢, xn) = x if

xn > 1 ¡ ε for some ε > 0, we can define f : Rn ! X as the composition

Rn s // Rn φ−1
// U Â Ä // Sn g // X , where s is a re-scaling so that [f ] 2 πD

n (X, x).

It is clear that j([f ]) = [g].

j is injective, since any smooth homotopy in [(Sn, N), (X, x)] can be made sta-

tionary by composing with h 2 Diff(Sn, Sn) defined above.

In other words, we have also proved the following:

Theorem 1.4.9. πD
n (X, x) can be written as f f 2 Diff(Sn, X) j f(x0,¢ ¢ ¢, xn) = x

if xn > 1 ¡ ε for some ε > 0g/» 2, with f » 2 g if there exists F 2 Diff(Sn £ R, X)

such that F (a, 0) = f(a), F (a, 1) = g(a) and F ((x0,¢ ¢ ¢, xn), t) = N if xn > 1 ¡ δ

for some δ > 0, for any a 2 Sn and any t 2 R.

If n ¸ 1, then we can define [(Sn, N), (X, x)]£ [(Sn, N), (X, x)] ! [(Sn, N), (X, x)]

by ([f ], [g]) 7! [h], with f, g as described in the above theorem, and h : Sn ! X

defined by

h(x0, ¢ ¢ ¢, xn) =





f ±σ1(x0,¢ ¢ ¢, xn), if xn−1 < 0

g ±σ2(x0, ¢ ¢ ¢, xn), if xn−1 > 0

x, otherwise,

where σ1, σ2 are some diffeomorphisms between f (x0,¢ ¢ ¢, xn) 2 Sn j xn−1 < 0g,

f (x0,¢ ¢ ¢, xn) 2 Sn j xn−1 > 0g and Sn ¡ f Ng, respectively. We can pick suitable

σ1, σ2 so that this coincides with the group structure of πD
n (X, x), and the map j

defined in the proof of Theorem 1.4.8 is a group homomorphism (for n ¸ 1).

From Iglesias’ definition, πD
n (X, x) = StLoopsn(X, x)/» ′, we can give πD

n (X, x)

the quotient diffeology from StLoopsn(X, x). As [I1] shows, this is the discrete

diffeology.
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Definition 1.4.10 ([I1, I2]). Let X and Y be two diffeological spaces. We say two

smooth maps f, g : X ! Y are smoothly homotopic if [f ] = [g] 2 πD
0 (Diff(X,Y )).

Lemma 1.4.11 ([I1, I2]). The equivalence relation of smooth homotopy is compatible

with both left and right compositions.

Proposition 1.4.12 ([I1, I2]). πD
n : Diff∗ ! Set is a functor, which factors through

Grp when n ¸ 1, and factors through Ab when n ¸ 2.

Clearly, jn is a natural transformation πD
n ! πn ±D.

As usual, we have:

Proposition 1.4.13. If X is a diffeological group (which is introduced in Section

1.7), then πD
0 (X) is a group.

Proof. This is formal.

Proposition 1.4.14. Let f (Xj, xj)gj∈J be a set of pointed diffeological spaces. Then

the canonical map πD
n (

∏
j∈J Xj, (xj)j∈J) !

∏
j∈J π

D
n (Xj, xj) is an isomorphism, for

any n 2 N.

Proof. This is formal.

Given a diffeological space X, its fundamental smooth groupoid πD
1 (X) is defined

in [I1] to be the category with objects points of X, and morphisms πD
1 (X)(x, x′) =

πD
0 (Paths(X;x, x′)), where Paths(X;x, x′) = f f 2 Diff(R, X) j f(0) = x and

f(1) = x′g with the sub-diffeology of Diff(R, X). By using cut-off functions as above,

πD
1 (X)(x, x′) can also be written as πD

0 (StPaths(X; x, x′)), where StPaths(X;x, x′)

is the set of all stationary paths in X from x to x′, with the sub-diffeology of

Diff(R, X). The composition in πD
1 (X) is the usual composition of paths using sta-

tionary paths.
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For the rest of this section, let’s discuss relative smooth homotopy groups and

the long exact sequence of a diffeological pair (X,A), that is, X is a diffeological

space and A is a non-empty sub-diffeological space of X:

Definition 1.4.15 ([I1, I2]). Let (X,A) be a diffeological pair, and let a 2 A. Write

Paths(X,A, a) = f f 2 Diff(R, X) j f(0) 2 A, f(1) = ag with the sub-diffeology of

Diff(R, X). Define πD
n (X,A, a) = πD

0 (Paths(StLoopsn−1(X, a),StLoopsn−1(A, a), an−1))

for any n 2 Z+, where an−1 is the constant map Rn−1 ! X sending everything to

a, and as a convention StLoops0(X, a) = X.

Lemma 1.4.16 ([I1, I2]). Let (X,A) be a diffeological pair, and let a 2 A. Then

πD
n (X,A, a) = πD

n−1(Paths(X,A, a), a1) with a1 2 Diff(R, X) sending everything to

a. In particular, πD
n (X,A, a) is a pointed space if n = 1, it is a group if n = 2, and

it is an abelian group if n ¸ 3.

Theorem 1.4.17 ([I1, I2]). For any diffeological pair (X,A) and any a 2 A, there

is a long exact sequence

¢ ¢ ¢ // πD
n (A, a)

i∗ // πD
n (X, a)

j∗ // πD
n (X,A, a)

k∗ // πD
n−1(A, a) // ¢ ¢ ¢ // πD

0 (X),

where i∗ is induced from the inclusion i : A ! X, j∗ is induced from the inclusion

j : StLoops(X, a) ! Paths(X,A, a), and k∗ is induced from k : Paths(X,A, a) ! A

by sending f to f(0).
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1.5 Differential forms

Differential forms and de Rham cohomology for a diffeological space were introduced

in [So] and explored carefully in [I1] as follows:

Given a diffeological space X, we have the full subcategory DS/X of Diff/X,

with objects all plots U ! X, and morphisms commutative triangles

U //

²²

X

V

>>~~~~~~~~

with the vertical map a morphism in DS. We call DS/X the category of plots of X.

The set Ωn(X) of all smooth n-forms on X is defined to be the limit of the following

composition of functors DS/X ! DS ! Vectop
R , with the first functor the forgetful

functor and the second functor given by (f : U ! V ) 7! (f ∗ : Ωn(V ) ! Ωn(U))op.

In other words, a smooth n-form on X is a family of smooth n-forms on the domains

of plots of X, compatible with smooth maps between all plots. We denote a smooth

n-form on X by α = f αpg. There is a wedge product on Ω∗(X) defined by plotwise

wedge product.

The exterior derivative d : Ωn(U) ! Ωn+1(U) induces an exterior derivative

d : Ωn(X) ! Ωn+1(X) defined by d(f αpg) = f dαpg. Since d2 = 0, we can define the

de Rham complex of X to be the following cochain complex

0 // Ω0(X) d // Ω1(X) d // Ω2(X) d // ¢ ¢ ¢

Ω∗(X) together with the wedge product and the exterior derivative forms a

differential graded-commutative R-algebra.

The de Rham cohomology of X is defined to be the cohomology of the de Rham

complex H∗
de(X) = ker(d)/Im(d) as usual.

A smooth map g : X ! Y between two diffeological spaces induces a functor

g∗ : DS/X ! DS /Y . So we have g∗ : Ω∗(Y ) ! Ω∗(X) (called pullback of smooth
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forms), which turns out to be a morphism between differential graded-commutative

R-algebras. Hence, we have a graded-commutative R-algebra map g∗ : H∗
de(Y ) !

H∗
de(X). In other words, we have functors Ω∗ : Diff ! dgcAlgop

R and H∗
de : Diff !

gcAlgop
R .

These are natural generalizations of the set of all smooth n-forms, the de Rham

complex and the de Rham cohomology of a smooth manifold.

Proposition 1.5.1 ([I1]). Let X be a diffeological space. Then Ω0(X) = Diff(X,R).

Proof. This also follows easily from Theorem 2.1.3.

Differential forms are local, in the sense that:

Proposition 1.5.2 ([I1]). Two smooth forms α and β of a diffeological space X

coincide if and only if there is a D-open covering f Uigi∈I of X such that for each

Ui with the sub-diffeology, αjUi
= βjUi

for any i 2 I.

Proposition 1.5.3 ([I1]). Two smooth k-forms α and β of a diffeological space X

coincide if and only if αp = βp for every plot p : U ! X with dim(U) = k.

Definition 1.5.4 ([I1, I2]). A morphism f : X ! Y in Diff is called a subduction

if the diffeology on Y coincides with the final diffeology defined by f .

Theorem 1.5.5 ([I1]). Let π : X ! Y be a subduction in Diff. Then π∗ : Ωk(Y ) !

Ωk(X) is injective, with image f α 2 Ωk(X) j for any plots p1, p2 : U ! X with

π ±p1 = π ±p2, αp1 = αp2g.

Corollary 1.5.6 ([I1]). If X is a diffeological space with dimension n (< 1 ) (which

is defined in Section 1.8), then Ωm(X) = 0 for any m > n.

Remark 1.5.7. Given a diffeological space X, we can define its de Rham dimension

dimR(X) = supf n 2 N j Hn
de(X) 6= 0g. Then the above Corollary says dimR(X) ·

dim(X).
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Example 1.5.8 ([I1]). Let R ! R/(Z+ θZ) »= T 2
θ be the natural projection to the

irrational torus of slope θ. By the above theorem, we can calculate that Ω0(T 2
θ ) »=

all constant functions R ! R, Ω1(T 2
θ ) »= all 1-forms fdx on R with f : R ! R some

constant function, and the differential d is zero. Hence, H0
de(T

2
θ ) »= H1

de(T
2
θ ) »= R.

Remark 1.5.9. (1) Note that the usual cohomology group H1(D(T 2
θ );R) = 0,

which implies that de Rham theorem does not always hold in Diff.

(2) If we define the Euler characteristic χ(X) of a diffeological space X to be

the alternating sum of the dimensions of its de Rham cohomology groups, then

χ(T 2
θ ) = 0.

Proposition 1.5.10 ([I1]). Let (X,DX) be a diffeological space, and let J be a

generating set of DX (see the beginning of Section 1.8). Then f (αp)p∈J j αp 2

Ωk(dom(p))g is from a smooth k-form of X if and only if for any p : U ! X,

q : V ! X from J , and any morphisms f : W ! U and g : W ! V in DS such

that p ±f = q ±g, we have f ∗(αp) = g∗(αq).

Example 1.5.11. Let X = Λ2 (see Example 1.1.10). Then it is easy to calculate

that Ω0(X) = Diff(X,R) = f (f, g) 2 (Diff(R,R))2 j f(0) = g(0)g, Ω1(X) = Ω1(R)©

Ω1(R), and Ωi(X) = 0 for all i ¸ 2, with d0(f, g) = (df, dg). Hence, H0
de(X) = R,

and Hj
de(X) = 0 for all j ¸ 1.

Theorem 1.5.12 ([I1]). Let f, g : X ! Y be smoothly homotopic maps between

diffeological spaces. Then f ∗ = g∗ : H∗
de(Y ) ! H∗

de(X).

Proof. This follows directly from the fact that for any diffeological space Y , there

exists a chain homotopy K : Ωp(Y ) ! Ωp−1(Diff(R, Y )) for any p 2 Z+, such that

K ±d+ d ±K = t∗ ¡ s∗, where s, t : Diff(R, Y ) ! Y are defined by s(γ) = γ(0) and

t(γ) = γ(1).
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1.6 Tangent spaces

There are two ways to talk about tangent spaces for a pointed diffeological space.

One was introduced by G. Hector and uses plots, and we call it the internal tangent

space. The other uses smooth functions, and we call it the external tangent space.

We compare these tangent spaces through some examples, and find that in general

they are different.

I’d like to thank A. Kock for mentioning the external tangent space approach,

and its possible difference from the internal one.

1.6.1 Internal tangent spaces

The internal tangent space of a pointed diffeological space is defined using the plots.

It was first introduced in [He] as follows:

Given a pointed diffeological space (X, x), we define a subcategory (DS/X)x of

DS/X with objects f : U ! X such that 0 2 U and f(0) = x, and morphisms

commutative triangles

U //

²²

X

V

>>~~~~~~~~

with the vertical map also satisfying 0 7! 0. We call (DS/X)x the category of

plots of X centered at x. The internal tangent space Tx(X) of X at x is defined

to be the colimit of the following composition of functors (DS/X)x ! DS !

VectR, with the first functor the forgetful functor and the second functor given by

(f : U ! V ) 7! (f0 : T0(U) ! T0(V )).

The internal tangent bundle TX of X is defined to be the set
∐

x∈X Tx(X) with

diffeology generated by all maps Tf : TU ! TX, where f : U ! X is a plot of

X, TU has the standard diffeology, and for any u 2 U , Tfu : Tu(U) ! Tf(u)(X) is
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defined to be the composition Tu(U) // T0(U ¡ u) // Tf(u)X , with U ¡ u the

translation of U by u. Therefore, the natural map TX ! X is smooth. This gives

us a functor T : Diff ! Diff together with a natural transformation T ! 1.

These are natural generalizations of tangent spaces at a point and tangent bun-

dles for smooth manifolds.

Example 1.6.1 ([He, HM]). Let (X, x) be a pointed topological space. Then

Tx(T (X)) = 0, where T (X) has the continuous diffeology on X (see Theorem 1.3.4).

1.6.2 External tangent spaces

The external tangent space of a pointed diffeological space (X, x) is defined using the

functional space Diff(X,R). Recall that Diff(X,R) is an R-algebra under pointwise

addition, pointwise multiplication and pointwise scalar multiplication.

Definition 1.6.2. Let (X, x) be a pointed diffeological space. An external tangent

vector on X at x is an R-linear map F : Diff(X,R) ! R such that the Leibniz rule

holds: F (fg) = F (f)g(x) + f(x)F (g).

The Leibniz rule implies that F (f) = 0 for every constant function f on X.

In the definition, we do not require an external tangent vector F to be smooth.

However, if Diff(X,R) = 0, then every external tangent vector is smooth.

Definition 1.6.3. Let (X, x) be a pointed diffeological space. The external tangent

space T̂xX is defined to be the set of all external tangent vectors of X at x.

Clearly T̂xX is an R-vector space under pointwise addition and scalar multipli-

cation.

Let f : (X, x) ! (Y, y) be a pointed smooth map between two pointed diffe-

ological spaces. Then it induces a canonical R-linear map f∗ : T̂x(X) ! T̂y(Y )
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by f∗(F )(g) = F (g ± f) for F 2 T̂x(X) and g 2 Diff(Y,R). This gives a functor

T̂ : Diff∗ ! VectR.

As a set, we can define the external tangent bundle T̂ (X) of a diffeological space

X to be
∐

x∈X T̂x(X), and there is a canonical set map Pr: T̂ (X) ! X sending F

to x if F 2 T̂x(X). However, it seems difficult to give a suitable diffeology on T̂ (X)

to extend the concept of tangent bundles of smooth manifolds, since Pr in general

is not locally trivial (see Definition 1.7.2).

1.6.3 Comparisons and computations

In general, it is not easy to calculate the internal and external tangent spaces for a

pointed diffeological space. We are going to develop some useful calculational tools:

local generating sets and germs.

Let (X, x) be a pointed diffeological space. We call a set A x of objects in

(DS/X)x a local generating set of X at x, if for any object V ! X in (DS/X)x,

there exist an open neighborhood W of 0 in V , an object U ! X in A x, and a

smooth map W ! U with 0 7! 0, such that the following diagram is commutative:

W Â Ä //

²²

V

²²
U // X.

It is easy to see that [ x∈XA x is a generating set for DX if each A x is a local generating

set of X at x.

Lemma 1.6.4. Let (X, x) be a pointed diffeological space, and let Â x be the full

subcategory of (DS/X)x consisting of elements in a local generating set A x of X at

x. If we write F for the composition of functors Â x ↪! (DS/X)x ! DS ! VectR,

then there is a canonical surjective map colim(F ) ! Tx(X) in VectR.
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Proof. There is a canonical map colim(F ) ! Tx(X) by the universal property of

colimit, and surjectivity follows from the definition of a local generating set.

Let (X, x) be a pointed diffeological space. We say that two morphisms f, g :

(U ! X) ! (V ! X) in (DS/X)x are equivalent (denoted by f » g) if there exists

an open neighborhood W of 0 2 U such that f jW = gjW : W ! V . This is clearly

an equivalence relation on (DS/X)x((U ! X), (V ! X)) which is compatible with

compositions. We define the germ category G(X, x) of (X, x) to be the corresponding

quotient category.

There is a functor G(X, x) ! VectR defined by ([f ] : (U ! X) ! (V ! X)) 7!

f∗ : T0(U) ! T0(V ). Clearly the colimit of this functor is Tx(X). And it is easy to

see that there is an epimorphism ©T0(R) ! Tx(X), where the direct sum is over [p]

for all p : R ! X 2 (DS/X)x.

Let A x be a local generating set of X at x, and let Ã x be the full subcategory

of G(X, x) consisting of objects [f ] with f an element in A x. If Ã x is final, then

colim(Ã x ↪! G (X, x) ! VectR) »= Tx(X) [Mac]. And always, we have an epimor-

phism from this colimit to Tx(X).

Example 1.6.5. Let (X, x) be a pointed smooth manifold, and let A x be the set of

all charts U ! X with 0 2 U and 0 7! x. Then A x is a local generating set of X at

x. It is easy to see that Ã x is final. Because of the existence of smooth partitions

of unity on smooth manifolds, it is easy to see that every external tangent vector is

smooth. And it is a classical result that Tx(X) »= Rn »= T̂x(X), with n = dim(X).

Example 1.6.6. Let X = Λ2, and let x = (0, 0) 2 X. Then A x = f i0 : R0 ! X, i1 :

R ! X, i2 : R ! Xg is a local generating set of X at x. It is easy to see that Ã x is
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final, and the non-identity morphisms in Ã x are

R
i1

²²
R0 i0 //

0

>>||||||||

0 ÃÃB
BB

BB
BB

B X

R.

i2

OO

Therefore, Tx(X) = R2. Also it is easy to see that Ty(X) = R for any x 6= y 2 X.

These results are also in [HM].

We can also show that T̂x(X) »= T̂0(R) © T̂0(R) = R2. Here is the proof. For any

f 2 Diff(R,R), we can extend it to f̂i 2 Diff(X,R) by f̂i(x1, x2) = f(xi) for i = 1, 2.

For any F 2 T̂x(X), we can define Fi 2 T̂0(R) by Fi(f) = F (f̂i). For F1, F2 2 T̂0(R)

and f 2 Diff(X,R), we can define F 2 T̂x(X) by F (f) = F1(f ±i1)+F2(f ±i2). The

rest is easy. And it is easy to see that T̂y(X) = R for any x 6= y 2 X.

Remark 1.6.7. This example shows that TX ! X is not always a diffeological

bundle (defined in the next section).

Example 1.6.8. Let X be the irrational torus of slope θ, and let x 2 X.

Since the D-topology on X is indiscrete, the only smooth maps X ! R are the

constant maps, which implies T̂xX = 0.

On the other hand, since A x = f R ! Xg is a local generating set of X at [0],

and Z + θZ is totally disconnected in R, Â x is a trivial category. Hence, there is a

canonical surjective map R = T0(R) ! Tx(X). Moreover, by the same trick, we can

show that Ã x is final. Therefore, Tx(X) = R.

In other words, Tx(X) and T̂x(X) are not always isomorphic.

Let (X, x) be a pointed diffeological space. We say f » x g 2 Diff(X,R) if there

exists a D-open neighborhood U of x in X such that f jU = gjU . Clearly, this is
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an equivalence relation on Diff(X,R), and Diff(X,R)/» x is again an R-algebra.

The map Diff(X,R)/» x ! R given by [f ] 7! f(x) is a well-defined R-algebra

homomorphism, and its kernel Fx(X) is called the external germ of X at x. We

define T ′x(X) =VectR(Fx(X)/F 2
x (X),R) as an R-vector space.

We say that X has bump functions at x if for every D-open neighborhood U of x

in X, there exists f 2 Diff(X,R) such that f(x) = 1 and supp(f) µ U . For example,

every smooth manifold (or more generally, any diffeological space X which admits

a smooth injective map f : X ! Rn for some n 2 N such that the D-topology

on X is the initial topology of f) and every diffeological space with (in)discrete

D-topology (in particular, any irrational torus) has bump functions at any point.

If X has bump functions at x, then the Leibniz rule implies a well-defined R-linear

map T̂x(X) ! T ′x(X), which turns out to be an isomorphism by the same proof as

Lemma 1.16 in [Wa].

Here are some applications of this approach:

Example 1.6.9. Let (X, x) be a pointed discrete diffeological space. Then Tx(X) =

0, since Ã x = f x : R0 ! Xg is final; and T̂x(X) = 0, since Fx(X) = 0.

Similarly, let (X, x) be a pointed indiscrete diffeological space. Then T̂x(X) = 0

since Diff(X,R) only contains constant functions; and Tx(X) = 0 since for any

p : R ! X 2 (DS/X)0, there exists q : R ! X 2 (DS/X)0 such that q ± f = p,

where f : R ! R sends x to x3.

Example 1.6.10. Let X = [0,1 ) be the sub-diffeological space of R. Then X has

bump functions at 0, which implies T̂0(X) is isomorphic to T ′0(X). [KM] says that

Diff(X,R) = f f 2 Diff((0,1 ),R) j f (n)(0+) exists for all n 2 Ng = f f jX j f 2

Diff(R,R)g. Hence, the Taylor formula with the Lagrange form of the remainder for

any representative f of [f ] 2 F0(X) is given by f(x) =
∑n

i=1
f (i)(0)

i!
xi + f (n+1)(y)

(n+1)!
xn+1

for some y between 0 and x, for any n 2 Z+. In other words, f(x) ¡ f ′(0)x = xg(x)
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for some smooth function g : X ! R such that g(0) = 0. So any element in T ′0(X)

acting on f(x) is the same as acting on f ′(0)x. Therefore, T̂0(X) = T ′0(X) = R.

Now let’s calculate T0(X). We claim that the square function f f : R !

X j f(x) = x2g is a local generating set for all curves in X at 0. In other words,

every p 2 Diff(R, X) with p(0) = 0 locally factors through f at 0. Note that

p 2 Diff(R, X) with p(0) = 0 means that p : R ! R is a smooth function such

that p(x) ¸ 0 for all x, and p(0) = 0. Suppose p(n)(0) 6= 0 for some n 2 N. Then

the first such n must be an even integer, say 2m, with a positive coefficient, by

using the Taylor formula for p. That is, p(x) = x2mg(x) for some smooth function

g : R ! R with g(0) > 0. Therefore, locally at 0, x 7! xm
√
g(x) is a well-defined

smooth function whose square is f . The rest of the proof for this claim is due to

G. Sinnamon. Now suppose p 2 Diff(R,R) is such that p(x) ¸ 0 for all x, and

p(n)(0) = 0 for all n 2 N. Let A = \ ∞k=0(p
(k))−1(0). Then A is closed in R, and by

the mean value theorem, A contains all the limit points of p−1(0). Therefore, we can

define a smooth map g : R ¡ A ! R by suitable modification (choose appropriate

sign) of the function discussed above, so that pjR−A = g2. Now we define h : R ! R

by

h(x) =





0, if x 2 A

g(x), otherwise.

Then clearly h is continuous and at each point x 2 R, f(x) = h2(x). To show that

h is smooth, we will show by induction on n that h(n)(a) = 0 for all a 2 ∂A. n = 0

is the same as h continuous. Suppose we have h(k)(a) = 0 for all k · n ¡ 1. Then

h(n)(a) = lim
x→a

h(n−1)(x) ¡ h(n−1)(a)

x ¡ a
= lim

x→a

h(x)

(n ¡ 1)!(x ¡ a)n
,

and

lim
x→a

j
h(x)

(x ¡ a)n
j = lim

x→a

√
f(x)

(x ¡ a)2n
= lim

x→a

√
f (2n)(x)

(2n)!
= 0.
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Note that we have a commutative diagram

R −idR //

f ÃÃ@
@@

@@
@@

@ R
f

²²
X,

which implies T0(X) = 0.

Remark 1.6.11. Here is another observation made by G. Sinnamon: not every

smooth map Rn ! [0,1 ) with 0 7! 0 locally factors through the square function.

One example is n = 2, p : R2 ! R given in polar coordinates as (r, θ) 7! e−
1
r (1 ¡

cos(3θ)). It is not too hard to check that p is smooth (in xy-coordinates). p−1(0)

consists of three rays θ = 0, 2
3
π, 4

3
π, which cut R2 into three connected pieces. If

there is a smooth (in xy-coordinates) function g : R2 ! R such that f = g2 in a

small neighborhood of 0, then g has fixed sign at each connected piece, and g has

to change sign when passing through any ray, which makes a contradiction.

It is easy to check that ∂2p
∂x2 (0), ∂2p

∂x∂y
(0) and ∂2p

∂y2 (0) are all 0. Hence, the square

function does not factor locally at 0 through p as well.

Remark 1.6.12. With a similar method, we can see that if X is a locally convex

subset of Rn with non-empty interior, together with the sub-diffeology, then T̂x(X) =

T ′x(X) = Rn. This is based on the following facts from analysis: (1) every smooth

map f : X ! R is a restriction of a smooth map from some open neighborhood of

X in Rn to R (see [KM]); (2) let f : X ! R be a smooth function with f(a) = 0

for some fixed a 2 X. Then f(x) =
∑n

i=1 xi
∂f
∂xi

(a) +
∑n

i=1 xigi(x) for some smooth

functions gi : X ! R with gi(a) = 0.

Remark 1.6.13. It is much easier to see that T[0](Xn) = 0 by Lemma 1.6.4, where

Xn is introduced in (2) of Example 1.8.1.
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1.7 Diffeological bundles and diffeological groups

Definition 1.7.1 ([I1, I2]). Let F be a diffeological space. A smooth map f : X !

Y between two diffeological spaces is called trivial of fiber type F , if there exists

a diffeomorphism h : X ! F £ Y , where F £ Y is equipped with the product

diffeology, such that the following diagram is commutative:

X

f ##GGGGGGGGG
h // F £ Y

pr2

²²
Y.

Definition 1.7.2 ([I1, I2]). Let F be a diffeological space. A morphism f : A ! U

in Diff with U an open subset of Rn is called locally trivial of fiber type F , if there

exists an open covering f Uigi∈I of U such that f jf−1(Ui) : f−1(Ui) ! Ui is trivial of

fiber type F for each i 2 I.

Proposition 1.7.3 ([I1, I2]). Let f : X ! Y be a smooth surjective map between

two diffeological spaces. The following two statements are equivalent:

(1) There exists a diffeological space F such that the pullback of f along any plot of

Y is locally trivial of fiber type F ;

(2) There exists a diffeological space F such that the pullback of f along any global

plot of Y (that is, plots of the form Rn ! Y ) is trivial of fiber type F .

Definition 1.7.4 ([I1, I2]). A smooth surjective map f : X ! Y between two

diffeological spaces is called a diffeological bundle if one of the conditions in the

above theorem holds.

Remark 1.7.5. Every smooth fiber bundle over a smooth manifold is a diffeological

bundle.

Definition 1.7.6 ([So]). A diffeological group G is a group object in Diff, that is,
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it is both a diffeological space and a group, such that the multiplication and inverse

maps are smooth.

Example 1.7.7 ([So]). Any Lie group with the standard diffeology is a diffeological

group.

Example 1.7.8. Let G be a topological group. Then T (G) is a diffeological group.

Remark 1.7.9 ([I1]). Let G be a diffeological group, and let H be any subgroup

of G. Then H with the sub-diffeology of G is automatically a diffeological group.

If H is a normal subgroup of G, then G/H with the quotient diffeology is also a

diffeological group.

Example 1.7.10 ([So]). Let X be a diffeological space. Write Diff(X) for the set

of all diffeomorphisms from X to itself. Then f φ : U ! Diff(X) j U £ X ! X

defined by (u, x) 7! φ(u)(x) and U £ X ! X defined by (u, x) 7! (φ(u))−1(x) are

both smoothg is a diffeology on Diff(X), which makes Diff(X) a diffeological group.

Example 1.7.11 ([So]). Let M be a smooth manifold, viewed as a diffeological

space with the standard diffeology. Then the set Diff(M) with the sub-diffeology

of the functional diffeology on Diff(M,M) is already a diffeological group, since the

implicit function theorem implies that this diffeology is the same as the diffeology

defined in the above example.

Proposition 1.7.12 ([I1, I2]). Let G be a diffeological group, and let H be a subgroup

of G. Then G ! G/H is a diffeological bundle of fiber type H (equipped with the

sub-diffeology of G), where G/H is the set of left (or right) cosets of H in G, with

the quotient diffeology.

Theorem 1.7.13 ([I1, I2]). Let f : X ! Y be a diffeological bundle of fiber type

F = f−1(y) (equipped with the sub-diffeology of X) for some y 2 Y . Pick x 2 F .
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Then f induces an isomorphism πD
j (X,F, x) ! πD

j−1(Y, y) of pointed sets for j = 1

and of groups for j ¸ 2. Therefore, we have the following long exact sequence:

¢ ¢ ¢ // πD
n (F, x)

i∗ // πD
n (X, x) // πD

n (Y, y) // πD
n−1(F, x) // ¢ ¢ ¢ // πD

0 (M) // 0.

Example 1.7.14 ([I1, I2]). Let T 2
θ

»= T 2/Rθ be the irrational torus of slope θ.

Then we have a diffeological bundle T 2 ! T 2/Rθ with fiber Rθ. By Theorem 1.7.13,

πD
1 (T 2

θ ) »= πD
1 (T 2/Rθ) »= Z © Z. But as a topological space with the D-topology,

π1(T
2
θ ) »= 0.
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1.8 Dimension theory

The dimension of a diffeological space is defined in [I1, I3] and [La] as follows:

Given a diffeological space (X,DX), define a map d : DX ! N by d(φ) = n

for φ : U ! X with U open in Rn. Let A be a generating set for the diffeology

DX (that is, the smallest diffeology on X containing A is exactly DX), and denote

dA = supf d(φ) j φ 2 Ag. The dimension of (X,DX) is defined to be dim(X) =

inff dA j A 2 Jg, with J the set of all generating sets for the diffeology DX on X.

This is a generalization of the definition of dimension for smooth manifolds. It is

easy to see that dimension is invariant under any diffeomorphism.

Therefore, if dim(X) = n < 1 , then there exists a generating set A for DX

which consists of some plots of the form Rn ! X.

Here are some (in)equalities about the dimensions of diffeological spaces, with

the first three from [I1]:

(1) dim(X) = 0 if and only if X is a discrete diffeological space;

(2) dim(X/» ) · dim(X);

(3) maxf dim(X), dim(Y )g · dim(X £ Y ) · dim(X) + dim(Y );

(4) dim(
∐

i∈I Xi) = maxi∈I f dim(Xi)g.

Here is another characterization of dimension of a diffeological space from [I1, I3]:

By the notation we introduced in Section 1.6.3, we can define dimx(X) =

inff dA j A is a local generating set of X at xg. In fact, dim(X) = supx∈X f dimx(X)g,

and if f : X ! Y is a diffeomorphism, then dimx(X) = dimf(x)(Y ) for any x 2 X.

Example 1.8.1 ([I1, I3]). (1) The dimension of the irrational torus T 2
θ is 1.

(2) We can equip [0,1 ) with the sub-diffeology of R (denoted by X∞), or the

quotient diffeology of Rn/O(n,R) (denoted by Xn) under the identification [x] !
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jjxjj 2. Then dim0(Xn) = n, dim0(X∞) = 1 , and dimx(Xn) = dimx(X∞) = 1 for

any 0 6= x 2 X.

(3) The unit interval X = [0, 1] with the sub-diffeology of R has dimension 1 ,

since dim0(X) = dim1(X) = 1 and dimx(X) = 1 if x 2 (0, 1).

Remark 1.8.2. The identity set maps (under the identifications in (2) of the pre-

vious example) f : Xn ! X∞ and in : Xn ! Xn+1 are smooth. Moreover, by (a) or

(c) of Theorem 1.2 in [BBCP],

f∗ : colim( X1
i1 // X2

// ¢ ¢ ¢ // Xn
in // Xn+1

// ¢ ¢ ¢) ! X∞

is not a diffeomorphism. It is easy to check that the dimension of this colimit is 1 .

Lemma 1.8.3. Let X be a diffeological space, and let Y be a D-open subset of X

with the sub-diffeology. Then dim(Y ) · dim(X).

Proof. Let A = f fi : Ui ! Xgi∈I be a generating set for DX with dim(X) =

supi∈I f dim(Ui)g. Since Y is a D-open subset of X, f−1
i (Y ) is open in Ui for each

i 2 I. Each fi induces a plot f−1
i (Y ) ! Y of Y , and it is easy to check that the set

of all such plots forms a generating set for DY .

Example 1.8.4. Let X be a diffeological space with diffeology generated by f Ui !

Xgi∈I . Clearly, dim(X) · supf dim(Ui) j i 2 Ig. The equality does not always

hold, even if I only contains one element. For example, let X = f 0, 1g be equipped

with the diffeology generated by the map f : R2 ! X with f−1(0) = R £ R≥0.

Then dim(X) = 1, since the composition R2 g // R h // R2 f // X is f , where

g(x, y) = y and h(x) = (0, x).

Example 1.8.5. Let X = f 0, 1g be equipped with the diffeology generated by the

map f : R2 ! X with f−1(0) = Q2. Then dim(X) = 2. Here is the reason. Clearly

1 · dim(X) · 2. Suppose dim(X) = 1, that is, there exists an open covering
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f Vigi∈I of R such that f restricted to each Vi is equal to Vi
gi // R hi // X with gi

a smooth map, gi(Q2 \ Vi) \ gi((R2 ¡ Q2) \ Vi) = ; and hi a plot of X. Then Q2 must

contain a regular point a of gi, that is, (∂gi

∂x
(a), ∂gi

∂y
(a)) 6= (0, 0), by its density in R2.

Hence there exists a neighborhood Ui of a in Vi such that gi(a) is a regular value

of gijUi
: Ui ! R. Therefore, gij−1

Ui
(gi(a)) is a dimension 1 submanifold of Ui which

is contained in Q2. This is impossible. This example also shows that f 0, 1g with

the indiscrete diffeology has dimension ¸ 2. In fact, the dimension of f 0, 1g with

the indiscrete diffeology is infinity, and the following proof is due to R. Shafikov.

Assume the dimension is n < 1 . Then f : Rn+1 ! f 0, 1g with f−1(0) = Qn+1 must

locally factor through some set map Rn ! f 0, 1g via a smooth map. Let g : U ! Rn

be such a smooth map with U an open subset of Rn+1. Let b 2 U be a point with

the highest rank. Then there exists a neighborhood U ′ µ U of b such that gjU ′ has

constant rank. Pick a point a 2 U ′ \ Qn+1. By the constant rank theorem, g−1
U ′ (g(a))

is a submanifold of U ′ with dimension n + 1¡ rank(a), and the same argument as

above shows that there is a contradiction.

Lemma 1.8.6. Let f : A ! X and g : X ! A be morphisms in Diff such that

g±f = idA. Then A is diffeomorphic to a sub-diffeological space of X and dim(A) ·

dim(X).

Proof. g ± f = idA implies that f is injective. Let p : U ! X be a plot such

that Im(p) µ Im(f). Then there is a set map h : U ! A with p = f ± h. So

h = g ±f ±h = g ±p : U ! A is a plot. In other words, A is diffeomorphic to Im(f)

with the sub-diffeology of X.

Assume that S = f pi : Ui ! Xgi∈I is a generating set of the diffeology DX . Let

q : V ! A be a plot. Then there is a covering f Vjgj∈J of V such that for each

j 2 J , there exists pi(j) : Ui(j) ! X 2 S and a smooth map Vj ! Ui(j) making the
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following diagram commutative

Vj
Â Ä i //

''PPPPPPPPPPPPPPP V
q // A

f // X

Ui(j)

pi(j)

==|||||||||

Note that q = g ±f ±q and q ± i = g ±f ±q ± i, which implies that f g ±pi : Ui ! Ag

is a generating set of the diffeology DA.

As a direct corollary of this lemma and Example 1.8.5, any set X with the

indiscrete diffeology has dimension 1 if card(X) > 1. And as a direct corollary of

this lemma and Example 1.8.1, there are no smooth retracts R ! [0, 1] or R ! X∞.

Example 1.8.7. dim(Λn) = dim(∂An) = n ¡ 1, where Λn and ∂An are defined

at the beginning of Section 2.4. Therefore, it is not always true that dimx(X) =

dim(Tx(X)), for example, X = Λ2 and x = (0, 0).

Proposition 1.8.8. Let f : X ! Y be a diffeological bundle with fiber F . Then

dim(X) · dim(F ) + dim(Y ).

Proof. Assume dim(F ) = k and dim(Y ) = l with k, l < 1 . Then for any plot

p : Rn ! X, there exists an open covering f Uigi∈I of Rn, smooth functions f hi :

Ui ! Rlgi∈I and plots f gi : Rl ! Y gi∈I such that f ± pjUi
= gi ±hi for each i 2 I.

Hence, we have the following commutative diagrams for each i 2 I

U Â Ä //

(hi,wi)
##

hi

ÂÂ

Rn

p

¿¿
Rl £ F

²²

// X

f

²²
Rl

gi

// Y,

where the bottom square is the pullback square, and the dotted arrow exists by the

universal property of pullback. Therefore, there exists an open covering f Vijgj∈J of
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Ui, smooth functions sij : Vij ! Rk and plots tij : Rk ! F such that wijVij
= tij ±sij.

The inequality follows.



Chapter 2

A Homotopy Theory for

Diffeological Spaces

Our main goal in this chapter is to construct a homotopy theory (that is, a model

category structure) on Diff, which extends the usual homotopy theory of smooth

manifolds, and recovers the diffeological bundle theory.

With the exception of the adjoint functor theorem and the first three examples

of Section 2.2, this chapter is original. Here is the structure of the chapter:

In Section 2.1, we prove that Diff is locally presentable (Theorem 2.1.3). More

generally, the category of all concrete sheaves over a concrete site is locally pre-

sentable. We also reach a characterization of ∆-generated topological spaces as

colimits of second countable locally path-connected topological spaces.

In Section 2.2, we recall an adjoint functor theorem together with three famous

classical examples. We also set up the adjoint pair between sSet and Diff using a

noncompact cosimplicial object.

In Section 2.3, we prove that there is a model category structure on Pre(DS).

In Section 2.4, we define the weak equivalences, fibrations and cofibrations in

70
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Diff.

In Section 2.5, we study some basic properties of the diffeological realization

functor and the smooth singular functor.

In Section 2.6, we give characterizations of cofibrant objects and fibrant objects

in Diff. The main results are: (1) we have a partial factorization (Proposition 2.6.2);

(2) S1 is cofibrant (Theorem 2.6.9); (3) every homogeneous diffeological space is fi-

brant (Theorem 2.6.23), in particular, every diffeological group and every smooth

manifold without boundary is fibrant; (4) every topological space with the contin-

uous diffeology is fibrant (Example 2.6.26); (5) some functional spaces are fibrant

(Proposition 2.6.27); (6) every diffeological bundle with fibrant fiber is a fibration

(Lemma 2.6.20); (7) not every diffeological space is fibrant (Examples 2.6.30, 2.6.31

and 2.6.32), and in particular, no smooth manifold with boundary is fibrant (Ex-

ample 2.6.33); (8) not every diffeological space is cofibrant (Example 2.6.21).

In Section 2.7, we give two more equivalent definitions of the smooth homotopy

groups of a pointed diffeological space, and we use these characterizations to prove

that the smooth homotopy groups of a fibrant diffeological space is bijective to the

simplicial homotopy groups of its smooth singular complex (Theorem 2.7.3).
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2.1 Diff is locally presentable

Locally presentable categories are studied carefully in [AR]. The following definition

is taken from [Lu]:

Definition 2.1.1. A category C is locally presentable if it satisfies the following

conditions:

(1) C is cocomplete;

(2) There exists a set S of objects of C such that every object in C is a colimit

of a functor F : J ! C taking values in S;

(3) Every object in S is small (see Definition A.2.30).

Remark 2.1.2. Clearly, if C is a locally presentable category, then any set I of

morphisms in C permits the small object argument (see Definition A.2.31).

Theorem 2.1.3. Diff is locally presentable.

Proof. (1) We already know that Diff is cocomplete (see Theorem 1.1.9).

(2) Let S be the set of all open subsets of Rn for all n 2 N. We claim that every

diffeological space X is the colimit of the composition F : DS/X ! DS ! Diff,

where the category DS is introduced in Section 1.5, the first functor here is the

forgetful functor, and the second functor is the inclusion. For any diffeological space

Y and any cocone F ! Y , there is a unique set map f : X ! Y defined pointwise

as follows. Since X is a diffeological space, for any x 2 X, x : R0 ! X is an object

in DS/X. f is defined to be the unique set map making all the following diagrams

commutative:

R0

x

²² ÃÃA
AA

AA
AA

A

X
f

// Y,
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where R0 ! Y is from the cocone F ! Y . f is smooth, since for any plot U ! X of

X, the following diagram is commutative, which can be checked pointwise as above

U

²² ÃÃ@
@@

@@
@@

@

X
f

// Y,

where U ! Y is also from the cocone F ! Y .

(3) Let U be an object in DS. We claim that U is κ-small, where κ is some

cardinal larger than 2ℵ0 . That is, for every κ-filtered ordinal J (see Definition A.2.29)

and every functor F : J ! Diff, the natural set map colimj∈J Diff(U,F (j)) !

Diff(U, colimj∈J F (j)) is a bijection.

This map is surjective for the following reason. For any f 2 Diff(U, colimj∈J F (j)),

by the definition of colimit in Diff, for any u 2 U , there exists a neighborhood Vu of

u in U such that there exists some ju 2 J and a smooth map Vu ! F (ju), making

the following diagram commutative:

F (ju)

''NNNNNNNNNNN

Vu
Â Ä //

<<yyyyyyyy
U

f
// colimj∈J F (j).

For any u, u′ 2 U and any a 2 Vu\ Vu′ , the image of a under the two compositions Vu\

Vu′ ! Vu ! F (ju) ! colimj∈J F (j) and Vu \ Vu′ ! Vu′ ! F (ju′) ! colimj∈J F (j)

are the same. Since J is filtered, by the construction of colimits in Set, there

exists an upper bound ju,u′,a of ju and ju′ such that the image of a under the two

compositions Vu \ Vu′ ! Vu ! F (ju) ! F (ju,u′,a) and Vu \ Vu′ ! Vu′ ! F (ju′) !

F (ju,u′,a) are the same. J0 = f ju,u′,a j u, u′ 2 U, a 2 Vu \ Vu′g is a subset of J with

cardinality · 2ℵ0 < κ. Hence by the definition of κ-filteredness of J , there exists

an upper bound j for J0 in J . By construction, we have a smooth map U ! F (j)



CHAPTER 2. A HOMOTOPY THEORY FOR DIFFEOLOGICAL SPACES 74

making the following diagram commutative

F (j) // colimj∈J F (j)

U,

OO 88pppppppppppp

which implies the surjectivity.

This map is injective for the following reason. Suppose f, g 2 colimj∈J Diff(U, F (j))

have the same image in Diff(U, colimj∈J F (j)). Since J is filtered, this just means

that there exists j 2 J and two smooth maps f, g : U ! F (j), such that their com-

position with F (j) ! colimj∈J F (j) agree. For any u 2 U , there exists ju ¸ j in J

such that the image of f(u) and g(u) agree under F (j) ! F (ju). J0 = f ju j u 2 Ug

is a subset of J with cardinality · 2ℵ0 < κ. Therefore, there exists an upper bound

j′′ of J0 in J , and f, g : U ! F (j) composed with F (j) ! F (j′′) agree, which

implies the injectivity.

Remark 2.1.4. More generally, a similar proof shows that the category of all con-

crete sheaves over any concrete site C (note that we define a site to be a small

category to start with, see Definition 1.2.3) is locally presentable. By the adjoint

F : CPre(C)  CSh(C) : i, CSh(C)(F(C(?, c)), X) »= CPre(C)(C(?, c), X) = X(c). We

only need to change two things: (1) fix a concrete sheaf X over C. The set S is

changed to f F(C(?, c)) j c 2 Obj(C)g. The composition of functors DS/X ! DS !

Diff is changed to the forgetful functor S̃ ! CSh(C) with the index category S̃ hav-

ing objects all morphisms in CSh(C) of the form F(C(?, c)) ! X and morphisms all

commutative diagrams

F(C(?, c)) //

²²

F(C(?, d))

wwpppppppppppp

X,

with c, d any two objects of C and the horizontal map induced by a morphism
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c ! d in C, and the forgetful functor sends the above commutative triangle to the

horizontal map F(C(?, c)) ! F(C(?, d)); (2) 2ℵ0 is changed to an infinite cardinal

which is larger than the cardinality of the underlying set of any object in the site C.

S. Isaacson had essentially the same proof at the same time. Moreover, P. Johnstone

already has the same result in [Jo].

Remark 2.1.5. Top is not locally presentable, since not every topological space is

small. For example, the Sierpinski space and the indiscrete space on two points are

not small (see [Ho]).

Remark 2.1.6. Let X be a diffeological space, and let Â be a full subcategory of

DS/X whose objects forms a generating set of X and contains Diff(R0, X). Then by

the same proof as the above theorem, we can see that the colimit of the composition

of functors Â ↪! DS /X ! DS ! Diff is X.

Corollary 2.1.7. A topological space is ∆-generated if and only if it is a colimit of

second countable locally path-connected topological spaces.

Proof. (( ) This follows from Proposition 1.3.18 and the facts thatD : Diff ! Top is

a left adjoint, and a topological space X is ∆-generated if and only if D(T (X)) = X.

() ) By the previous remark and the above theorem, T (X) is the colimit of

the composition (denoted by F ) of functors Â ↪! DS /T (X) ! DS ! Diff, with

Obj(Â ) = [ ∞n=0Top(Rn, X). ThenX = D(T (X)) = D(colimF ) = colim(D±F ).
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2.2 An adjoint functor theorem

Here is a general theorem from [MM]:

Theorem 2.2.1. Given a small category C, a cocomplete category D, and a functor

F : C ! D , there is an adjoint pair L : Pre(C)  D : R with R(d)(c) = D(F (c), d)

and L(X) = colimC(?,c)→X F (c), where c is any object in C and d is any object in D.

If we take Cto be the simplicial category ∆ (see Example A.2.44), then the above

theorem says that, given a cosimplicial object in a cocomplete category D (that is,

a functor ∆ ! D ), we get an adjoint pair sSet  D.

Here are three standard examples from [MM] and [GJ]. Note that the second

and the third examples are not used anywhere else in this chapter.

Example 2.2.2. If we take F : ∆ ! Top, sending n to j∆nj = f (x0, x1, ¢ ¢ ¢, xn) 2

Rn+1 j
∑n

i=0 xi = 1, xi ¸ 0 for all i 2 f 0, 1, ¢ ¢ ¢, ngg with the sub-topology of Rn+1,

then we get the usual adjoint pair j?j : sSet  Top: s.

Example 2.2.3. If we take F : ∆ ! Cat, sending n to the poset f 0 < 1 < ¢ ¢ ¢< ng,

where Cat is the category of all small categories with functors, then we get an adjoint

pair L : sSet  Cat: B. The right adjoint B is called the classifying space functor

with B(C) = Cat(F (n),C).

Hence the functor B commutes with products, which implies that B sends a

natural transformation to a naive simplicial homotopy. Therefore, B sends every

adjoint pair (in particular, an equivalence between two categories) to a naive simpli-

cial homotopy equivalence. Also B sends any small category with initial or terminal

object to a contractible simplicial set.

Example 2.2.4. If we define sd : ∆ ! sSet by sd(n) = B(P ′n), where P ′n is the

power set of the set f 0, 1, ¢ ¢ ¢, ng without the empty set, ordered by inclusion, and
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B : Cat ! sSet is the classifying space functor, then we get an adjoint pair Sd : sSet

 sSet: Ex. More precisely, for any simplicial sets X,Y , Sd(X) = colim∆n→X sd(n)

and (Ex(Y ))n = sSet(sd(n), Y ).

Here is the most important example for the rest of the chapter:

Example 2.2.5. We write An = f (x0, x1,¢ ¢ ¢, xn) 2 Rn+1 j
∑n

i=0 xi = 1g with

the sub-diffeology. It is diffeomorphic to Rn, by forgetting the first coordinate, for

example. As for the standard cosimplicial object in Top, A• is a cosimplicial object

in Diff. Hence, we get an adjoint pair j?jD̃ : sSet  Diff: SD̃. We call j?jD̃ the

(diffeological) realization functor and SD̃ the (smooth) singular functor.

More precisely, SD̃(X)n = Diff(An, X) = Diff(Rn, X) and jAjD̃ = colim∆n→AAn =

colim∆n→ARn = coequalizer of
∐

φ:n→m∈Mor(∆)Rn £ Am

φ∗ //
φ∗

//
∐

n∈NRn £ An , with

φ∗ = 1 £ φ∗ : Rn £ Am ! Rn £ An, and φ∗ = φ∗ £ 1 : Rn £ Am ! Rm £ Am. In

other words, on
∐

n∈NRn £ An, we can define an equivalence relation generated by

Rn £ An 3 (a, x) » (a′, x′) 2 Rm £ Am if there is a morphism f : n ! m in ∆ such

that f∗(a) = a′ and f ∗(x′) = x, where f∗ : Rn ! Rm and f ∗ : Am ! An are induced

from f . And jAjD̃ =
∐

n∈NRn £ An/» has the quotient diffeology.
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2.3 A model category structure on Pre(DS)

Let C be a site, and let F̃ : ∆ ! C be a cosimplicial object in C. Composing with

the Yoneda embedding C ! Pre(C), we get a cosimplicial object F : ∆ ! Pre(C) in

Pre(C). By the adjoint functor theorem in the previous section, we get an adjoint

pair: L : sSet  Pre(C) : R.

Theorem 2.3.1. We can lift the model category structure of sSet to Pre(C) through

the above adjoint pair L : sSet  Pre(C) : R if R(L(Λn
k)) ! R(L(∆n)) is a trivial

cofibration in sSet for any n 2 Z+ and 0 · k · n.

Proof. We are going to use Kan’s theorem (Theorem A.2.36) to prove this:

[AR] says Pre(C) is locally presentable. Also, Pre(C) is both complete and

cocomplete. So condition (1) of Kan’s theorem holds.

Condition (2) of Kan’s theorem holds, since

(i) By assumption, R sends LJ to trivial cofibrations in sSet.

(ii) the colimits in any set-valued presheaf category are taken as sectionwise

colimits in Set, which implies that the functor R commutes with colimits, in par-

ticular, with pushouts and transfinite compositions. Because any pushout along a

trivial cofibration in sSet is again a trivial cofibration, and any transfinite compo-

sition of weak equivalences in sSet is again a weak equivalence, R sends relative

LJ-cell complexes to weak equivalences in sSet.

Let F = A• : ∆ ! Diff be the cosimplicial object defined in Example 2.2.5.

Since A• »= R• as cosimplicial objects, we can also view F as a cosimplicial object

in DS. As in the above setting, we get an adjoint pair j?jD : sSet  Pre(DS) : SD.

We call a presheaf X over DS contractible if there is a presheaf map H : X £
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j∆1jD ! X such that the following diagram is commutative:

X £ j ∆0jD

1×|d0|D
²²

c

$$JJJJJJJJJJJ

X £ j ∆1jD
H // X

X £ j ∆0jD,

1×|d1|D
OO

p

::tttttttttt

where c is the constant map and p is the projection onto the first coordinate.

Lemma 2.3.2. Let f : X ! Y be a presheaf map between contractible presheaves

over DS. Then SD(f) : SD(X) ! SD(Y ) is a weak equivalence in sSet.

Proof. By the two out of three property of weak equivalences (see Definition A.2.4

and Example A.2.54), it is enough to prove that SD(X) ! ∆0 is a weak equivalence.

And it is enough to prove that SD(X) is contractible in sSet.

Since SD is a right adjoint, we have the following commutative diagram

SD(X) £ ∆0
1×η∆0//

1×d0

²²

SD(X) £ SD(j∆0jD)

1×SD|d0|D
²²

SDc

((QQQQQQQQQQQQQ

SD(X) £ ∆1
1×η∆1// SD(X) £ SD(j∆1jD)

SDH // SD(X)

SD(X) £ ∆0
1×η∆0//

1×d1

OO

SD(X) £ SD(j∆0jD),

1×SD|d1|D
OO

p

66mmmmmmmmmmmmm

where η is the unit of the adjunction j?jD : sSet  Pre(DS) : SD. Hence SD(X) is

contractible.

Corollary 2.3.3. We can lift the model category structure of sSet to Pre(DS)

through the adjoint pair j?jD : sSet  Pre(DS) : SD.

Proof. SD(jΛn
k jD) ! SD(j∆njD) is a trivial cofibration in sSet. It is a cofibration

since it is clearly injective sectionwise. It is a weak equivalence by the above lemma

since both jΛn
k jD and j∆njD are contractible in Pre(DS).
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Remark 2.3.4. jΛn
k jD is concrete, F(jΛn

k jD) = jΛn
k jD̃, and there is a canonical

presheaf map jΛn
k jD ! F(jΛn

k jD) which is the identity for the underlying sets.
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2.4 Definitions of weak equivalences and (co)fibrations

in Diff

Recall that in Example 2.2.5, we have the adjoint pair j?jD̃ : sSet  Diff: SD̃. Let’s

make some conventions here:

Since Λn
k is the coequalizer of

∐
0≤i<j≤n,i,j 6=k ∆n−2 // //

∐
0≤i≤n,i6=k ∆n−1 in sSet,

jΛn
k jD̃ is the coequalizer of

∐
0≤i<j≤n,i,j 6=k An−2 // //

∐
0≤i≤n,i6=k An−1, for the (diffeo-

logical) realization is a left adjoint. It is easy to see that all jΛn
k jD̃’s are diffeomorphic

to Λn = f (x1,¢ ¢ ¢, xn) 2 Rn j xi = 0 for some 1 · i · ng with the coequalizer diffe-

ology from
∐(n

2)
i=1Rn−2 ////

∐n
i=1Rn−1 if n ¸ 2, and to Λ1 = R0 if n = 1.

Since ∂∆n is the coequalizer of
∐

0≤i<j≤n ∆n−2 ////
∐

0≤i≤n ∆n−1 in sSet, j∂∆njD̃

is the coequalizer of
∐

0≤i<j≤nAn−2 ////
∐

0≤i≤nAn−1 , for the (diffeological) re-

alization is a left adjoint. It is easy to see that it is diffeomorphic to ∂An =

f (x1,¢ ¢ ¢, xn) 2 Rn j xi = 0 for some i 2 f 1, 2,¢ ¢ ¢, ng or
∑n

i=1 xi = 1g = Λn [

f (x1,¢ ¢ ¢, xn) 2 Rn j
∑n

i=1 xi = 1g with the coequalizer diffeology if n ¸ 2, and to

∂A, the coproduct of two copies of R0, if n = 1.

Remark 2.4.1. As explained in Example 1.1.10, Λn and ∂An are not sub-diffeological

spaces of Rn for any n ¸ 2. If we denote the sub-diffeological spaces of Rn with

the same underlying sets as Λn and ∂An by Λn
sub and ∂An

sub, respectively, then we

have smooth maps Λn ! Λn
sub and ∂An ! ∂An

sub which are both identities on the

underlying sets.

Definition 2.4.2. We define a morphism X ! Y in Diff to be a weak equivalence

(or fibration) if SD̃X ! SD̃Y is a weak equivalence (or fibration) in sSet. We define

a morphism X ! Y in Diff to be a cofibration if it has the left lifting property with

respect to all trivial fibrations.

The following proposition is only used in property (2) of the next section.



CHAPTER 2. A HOMOTOPY THEORY FOR DIFFEOLOGICAL SPACES 82

Proposition 2.4.3. Let R• 2 DS ∆ be defined as above. Then DS∆(R•,R•) »= f g 2

Diff(R,R) j g(0) = 0, g(1) = 1g.

Proof. Let f 2 DS ∆(R•,R•). We write fn : Rn ! Rn in coordinates by sending

(x1, ¢ ¢ ¢, xn) to (fn1(x1, ¢ ¢ ¢, xn),¢ ¢ ¢, fnn(x1,¢ ¢ ¢, xn)). Clearly id = f0 : R0 ! R0,

and f1 ±di = di ±f0 for i = 0, 1 implies that f1(0) = 0 and f1(1) = 1.

In fact f is determined by f1 for the following reason. Assume that fn−1 is

determined by f1 for some n ¸ 2. Then si ±fn = fn−1 ±si for i 2 f 0, 1g means that

fn is determined by fn−1, hence determined by f1. Moreover, we can calculate that

fni(x1,¢ ¢ ¢, xn) = f1(xi + ¢ ¢ ¢+ xn) ¡ f1(xi+1 + ¢ ¢ ¢+ xn) for any i 2 f 1, 2,¢ ¢ ¢, ng.

Moreover, for any g 2 Diff(R,R) with g(0) = 0 and g(1) = 1, we can define

f : R• ! R• by fni(x1,¢ ¢ ¢, xn) = g(xi + ¢ ¢ ¢+ xn) ¡ g(xi+1 + ¢ ¢ ¢+ xn). By direct

calculation, we can see that f 2 DS ∆(R•,R•).

In fact, DS∆(R•,R•) is a (non-commutative) monoid under composition, and for

any diffeological space X, DS∆(R•,R•) naturally acts on the simplicial set SD̃X.
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2.5 Properties of the functors j?jD̃ and SD̃

Now let’s explore some properties of the two functors j?jD̃ : sSet ! Diff and SD̃ : Diff

! sSet:

(1) SD̃ is faithful, since if f, g : X ! Y in Diff induces Sf = Sg : SX ! SY in

sSet, then f = (Sf)0 = (Sg)0 = g : X = (SX)0 ! (SY )0 = Y .

(2) Proposition 2.4.3 implies that the functor SD̃ is not full. For example, let

X be the set f 0, 1g with the indiscrete diffeology. Then any non-identity map f 2

DS∆(R•,R•) induces a non-identity simplicial map SD̃X ! SD̃X, but (SD̃X)0 !

(SD̃X)0 is the identity X ! X.

(3) SD̃ is not essentially surjective, that is, there exists a simplicial set X such

that there is no diffeological space Y with X »= SD̃Y . For example, let A be

the set R with the diffeology DA generated by f : R ! R with f(x) = x2. Let

X = sk1(SD̃A), that is, the sub-simplicial set of SD̃A generated by (SD̃A)0 and

(SD̃A)1. If X »= SD̃Y for some diffeological space (Y,DY ), then as a set Y »= R, and

DA µ D Y since f 2 D Y . However (SD̃Y )2 = X2 µ (SD̃A)2. The inclusion is proper

since R2 ! R given by (x, y) 7! x2y2 factors through f , while it does not locally

factor through f by s0
∗ or s1

∗.

Note that if X is a non-discrete diffeological space with card(X) < 1 , then

there exists a plot U ! X which is not locally constant. Let n = dim(U). Then

(SD̃(X))n is an infinite set. Hence (SD̃(X))m is an infinite set for any m 2 Z+.

This implies that if A is a simplicial set which is not a coproduct of finitely many

∆0’s, and there exists some n 2 Z+ such that An is a finite set, then there is no

diffeological space X with the property that A »= SD̃(X).

(4) SD̃ reflects isomorphisms. Assume that f : X ! Y in Diff induces an

isomorphism SD̃f : SD̃X ! SD̃Y in sSet. Write g : SD̃Y ! SD̃X for the inverse of

SD̃f . Then f ±g0 = idY and g0 ±f = idX as set maps. In fact, g0 : Y ! X is smooth.
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Let l : U ! Y be a plot of Y , and let U = [ i∈IUi with each Ui diffeomorphic to Rn

via fi, where n = dim(U). Write h for the composition Rn (fi)
−1

// Ui
Â Ä // U

l // Y .

We have the following commutative diagram

Rn gn(h) //

h !!CC
CC

CC
CC

X

f
²²
Y

g0

²²
X.

Note the composition of the two vertical maps is identity, which implies g0 ±h is a

plot of X. Therefore, by the sheaf condition, g0 ± l is a plot of X, which implies the

smoothness of g0.

(5) We have the following lemma connecting naive smooth homotopy and sim-

plicial homotopy:

Lemma 2.5.1. SD̃ : Diff ! sSet sends smoothly homotopic maps to simplicially ho-

motopic maps. Hence smoothly homotopic maps induce the same map on simplicial

homotopy groups.

Proof. f, g : X ! Y being smoothly homotopic (see Definition 1.4.10) means that

there exists a stationary path in Diff(X,Y ) connecting f and g. By cartesian closed-

ness of Diff, we have the following commutative diagram in Diff:

X £ f 0g

²²

f

$$III
III

III
I

X £ R // Y

X £ f 1g.

OO

g

::uuuuuuuuuu
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Since SD̃ is a right adjoint, we have the following commutative diagram in sSet

SD̃X £ ∆0

wwnnnnnnnnnnnn

²²

SD̃f

&&MMMMMMMMMMM

SD̃X £ ∆1 1×ν // SD̃X £ SD̃R // SD̃Y

SD̃X £ ∆0,

ggPPPPPPPPPPPP

OO

SD̃g

88qqqqqqqqqq

where ν corresponds to the identity map R ! R by the Yoneda lemma.

We call a diffeological space X smoothly contractible, if the identity map X ! X

is smoothly homotopic to a constant map X ! X.

Therefore, if a diffeological space X is smoothly contractible, then X ! R0 is a

weak equivalence. In particular, the map Λn ! Λn
sub introduced in Remark 2.4.1 is

a weak equivalence.

(6) Here is a very unpleasant result:

Proposition 2.5.2. The functor j?jD̃ : sSet ! Diff does not commute with finite

products.

Proof. For simplicial sets X and Y , we have a natural map jX £ Y jD̃ ! j X jD̃ £j Y jD̃

induced from the projections. However, it is not always a diffeomorphism. For

example, it is easy to see that j∆1 £ ∆1jD̃ is the pushout of

j∆1jD̃
|d0∗| //

|d2∗|
²²

j∆2jD̃,

j∆2jD̃

hence not diffeomorphic to R2 = j∆1jD̃ £ j ∆1jD̃. (In fact, j∆1 £ ∆1jD̃ »= Λ2 £ R.)

(7) For any simplicial sets X and Y , the natural smooth map f : jX £ Y jD̃ !

jX jD̃ £ j Y jD̃ induced from the projections is surjective. (The proof of Proposition

2.5.2 shows that this map is not injective in general.)
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Before giving the proof, let’s understand jAjD̃ better. By using the coequalizer

notation for jAjD̃, we call a point (x, b) in Ã =
∐

n∈NAn £ An nondegenerate if b is

nondegenerate in A and x is interior, that is, not of the form di(y). We can define

α : Ã ! Ã by (x, b) 7! (y, di1 ± ¢ ¢ ¢ ±dit(b)) if x = dit ± ¢ ¢ ¢ ±di1(y) with y interior

and 0 · i1 < ¢ ¢ ¢< it · n, and define β : Ã ! Ã by (x, b) 7! (sj1 ± ¢ ¢ ¢sjl(x), c)

if b = sjl
± ¢ ¢ ¢ ±sj1(c) with c nondegenerate in A and 0 · j1 < ¢ ¢ ¢< jl < n.

Then α ±β sends each point in Ã to a nondegenerate point. If (x, b) » (x′, b′), then

α ± β(x, b) = α ± β(x′, b′). In other words, as a set jAjD̃ is exactly the set of all

nondegenerate points in Ã.

Here is the proof of the claim. For any nondegenerate representative (x, a) 2

jX jD̃ and (y, b) 2 jY jD̃, we can construct [(z, c£ d)] 2 jX £ Y jD̃ as follows such that

(x, a) » (z, c) and (y, b) » (z, d). If x = (x0,¢ ¢ ¢, xn) and y = (y0,¢ ¢ ¢, ym), then

define z = (x0,¢ ¢ ¢, xn−1, zn, y1,¢ ¢ ¢, ym) with zn = xn ¡
∑m

j=1 yj = y0 ¡
∑n−1

i=0 xi,

and define c = sn−1 ± ¢ ¢ ¢ ±s0(a) and d = sn+m−1 ± ¢ ¢ ¢ ±sn(b). This defines a set map

g : jX jD̃ £ j Y jD̃ ! j X £ Y jD̃ such that f ±g = 1.

(8) For every simplicial set A, the unit η : A ! SD̃jAjD̃ is a cofibration in sSet.

For every diffeological space X, the counit ε : jSD̃(X)jD̃ ! X is a subduction (see

Definition 1.5.4).

Here is the proof. Let a, b 2 An such that ηn(a) = ηn(b) : An ! j AjD̃. This

means that [(x, a)] = ηn(a)(x) = ηn(b)(x) = [(x, b)] for any x 2 An. We can pick

x = ( 1
n+1

,¢ ¢ ¢, 1
n+1

). Then a = sjk
± ¢ ¢ ¢ ±sj1(a

′) with a′ nondegenerate in A and

0 · j1 < ¢ ¢ ¢< jk < n implies α ±β(x, a) = (sj1 ± ¢ ¢ ¢ ±sjk(x), a′). Hence, a = b.

Since ε([(x, a)]) = a(x), by concreteness, we know that ε is surjective. Since each

open set U of Rn is locally diffeomorphic to Rn, it is clear that ε is a subduction.

(9) Let’s compare the three adjoint pairs j?jD̃ : sSet  Diff: SD̃, D : Diff

 Top: T and j?j : sSet  Top: s.
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Proposition 2.5.3. Given any topological space A, there is a weak equivalence

between SD̃(T (A)) and sA in sSet.

Proof. For any topological space A, SD̃(T (A)) = Diff(A•, T (A)) = Top(D(A•), A),

and sA = Top(j∆•j, A).

Consider the Reedy model structure on Top∆. See the appendix for more details.

Note that every topological space is fibrant in the standard model category struc-

ture of Top, both D(A•) and j∆•j are cosimplicial resolutions of a point in Top,

and the natural inclusion map i : j∆•j ! D(A•) is a Reedy weak equivalence in

Top∆ (since for any n 2 N, both j∆nj and D(An) are contractible). Therefore,

i∗ : SD̃(T (A)) ! sA is a weak equivalence of fibrant simplicial sets.

Remark 2.5.4. I’d like to thank D. Dugger for the idea of the proof of this propo-

sition.

Also we have the following:

Proposition 2.5.5. Given any simplicial set X, there is a weak equivalence between

D(jX jD̃) and jX j in Top.

Proof. This follows from the fact that i : j∆•j ! D(A•) has a retract in Top∆, and

? £ I : Top ! Top is a left adjoint.
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2.6 Examples of cofibrations and fibrations in Diff

By the adjunction j?jD̃ : sSet  Diff : SD̃ and Definition 2.4.2, X ! Y is a fibration

in Diff if and only if it has the right lifting property with respect to Λn ! Rn for all

n 2 Z+, and X ! Y is a trivial fibration in Diff if and only if it has the right lifting

property with respect to ∂An ! Rn for all n 2 N. In particular, taking n = 0, we

see that all trivial fibrations are surjective.

Also, if a smooth map f : A ! B is a (diffeological) realization of a trivial

cofibration in sSet, and g : X ! Y is a fibration in Diff, then any commutative

solid diagram

A //

f
²²

X

g
²²

B //

>>

Y

in Diff has a smooth lift.

Proposition 2.6.1. j?jD̃ : sSet ! Diff preserves cofibrations. The class of cofibra-

tions in Diff is closed under isomorphisms, pushouts, smooth retracts and (transfi-

nite) compositions.

Proof. This is formal.

Proposition 2.6.2. Every smooth map f in Diff has a functorial factorization as

f = α(f) ±β(f) with α(f) a trivial fibration and β(f) a cofibration.

Proof. Apply the small object argument (Theorem A.2.32) to the set I = f ∂An !

Rn j n 2 Ng.

Corollary 2.6.3. We have a functorial cofibrant replacement for every diffeological

space.

Example 2.6.4. Λn ! Rn for any n 2 Z+ and ∂Am ! Rm for any m 2 N are all

cofibrations.
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Example 2.6.5. Rn is cofibrant for any n 2 N, since Rn = j∆njD̃.

Example 2.6.6. Λ2 is cofibrant, since it is the pushout of

R0 //

²²

R

R.

Example 2.6.7. More generally, all Λn = jΛn
k jD̃ and ∂An = j∂∆njD̃ are cofibrant.

This can also be seen by building them as pushouts along the cofibrations in the

previous examples, and along the way, we obtain other interesting cofibrations and

cofibrant objects. For example, _n
i=1R are all cofibrant.

Example 2.6.8. The pushout of

∂A //

²²

R0

R

will be denoted by Ŝ1, and it is cofibrant.

Clearly Ŝ1 is not diffeomorphic to S1, because Ŝ1 has tails. But even the sub-

diffeological space of Ŝ1 with the tails removed is not diffeomorphic to S1, because

of the point where the gluing occurs.

²

Figure 2.1: Ŝ1

²

Figure 2.2: Ŝ1 with tails removed

We have the following amazing result:

Theorem 2.6.9. S1 is cofibrant.
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Proof. Let X be the simplicial set whose non-degenerate simplices are:

x x

y y

A

B

c
//

a

FF°°°°°°°°°

b

XX111111111
a

FF°°°°°°°°°

d //

Then jX jD̃ is cofibrant, and it is diffeomorphic to the union of the xy-plane and

yz-plane in R3 modulo the following relation: (
p

3y, y ¡ 1
2
, 0) » (0, y,

√
3

2
¡

p
3y).

We are going to prove that S1 is a smooth retract of jX jD̃. In other words, we

are going to define smooth maps f : S1 ! j X jD̃ and g : jX jD̃ ! S1 such that

g ±f = idS1 . In order that Im(f) (with the sub-diffeology of jX jD̃) and S1 have the

same smooth structure, Im(f) has to tangentially approach the lines along which

the gluing occurs. These lines are the y-axis, the line y = x√
3

¡ 1
2

in the xy-plane,

and the line z = ¡
p

3y +
√

3
2

in the yz-plane.

By modifying the smooth function R ! R2 (see the graph below) with t 7!

(t, (1 ¡ φ(2t))
p

3t+ φ(2t)(
√

3
2

¡
p

3t)) for some cut-off function φ, we can define:

//

OO

°°°°°°°°

11111111

Figure 2.3: The smooth function

f(θ) =





(
√

3
4

(2θ
π

¡ 1)φ( θ
π
), ¡ θ

π
+ 3

4
(2θ

π
¡ 1)φ( θ

π
), 0) if θ 2 [0, π]

(0, ¡ θ
π

+ 3
4
(2θ

π
+ 1)φ(¡ θ

π
), ¡

√
3

4
(2θ

π
+ 1)φ(¡ θ

π
)) if θ 2 [¡ π, 0].

and

g(x, y, z) =





eπi(
√

3x−y), if z = 0

e−πi(y+
√

3z) if x = 0.
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Example 2.6.10. Every discrete diffeological space X is both cofibrant (since X =

j
∐

x∈X ∆0jD̃) and fibrant (since every smooth map Λn ! X must be constant).

Every indiscrete diffeological space X is fibrant, since every diagram

Λn //

²²

X

Rn

has a lift in Diff. Moreover, X is smoothly contractible.

Example 2.6.11. Let (X1,D1), (X2,D2) be two diffeological spaces with the same

underlying set X, such that D1 µ D 2. Then the identity set map X1 ! X2 is a

fibration if and only if D1 = D2. Indeed, suppose id : X1 ! X2 is a fibration and

let f : Rn ! X2 be a plot. Then

R0 id−1(f(0)) //

0
²²

X1

id
²²

Λn //

g

66

Rn
f

// X2

has a lift to X1 in Diff, since 0 : R0 ! Λn is a trivial cofibration (it is a cofibration

since it is the diffeological realization of ∆0 ! Λn
k for any k, and it is a weak

equivalence since Λn is smoothly contractible). Hence

Λn g //

²²

X1

id
²²

Rn
f

//

==

X2

has a lift Rn ! X1 in Diff making the whole diagram commutative, which implies

that f is a plot in X1.

Proposition 2.6.12. Every diffeological group is fibrant.
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Proof. The right adjoint of an adjoint pair between two categories with finite prod-

ucts always sends group objects to group objects. The group objects in Diff and

in sSet are precisely diffeological groups and simplicial groups, respectively, and

Moore’s lemma ([GJ, Lemma I.3.4]) says that every simplicial group is fibrant in

sSet.

Example 2.6.13. (1) Every Lie group viewed as a diffeological space with the

standard diffeology is fibrant.

(2) Every irrational torus is fibrant.

Example 2.6.14. Here is a more concrete way to see that every diffeological abelian

group A is fibrant. Given a solid diagram

Λn F //

²²

A

Rn
F̃

>>

in Diff, define the extension F̃ directly as follows. For any 0 · k < n and 1 ·

i1 < ¢ ¢ ¢< ik · n, write Pi1,··· ,ik : Rn ! Λn for the orthogonal projection onto the

coordinate plane xi1 ¢ ¢ ¢xik . When k = 0, this is the constant map Rn ! Λn sending

everything to 0. All of these projections are clearly smooth. Then the smooth map

F̃ =
∑n−1

k=0

∑
1≤i1<···<ik≤n(¡ 1)n−k+1F ±Pi1,··· ,ik is an extension of F .

Example 2.6.15. Let A be a diffeological group. Then Diff(X,A) is also a diffeo-

logical group for any diffeological space X, hence fibrant.

Lemma 2.6.16. Fibrant diffeological spaces are closed under coproducts in Diff,

and if X is fibrant, then so is each path component.

Proof. This is because both D(Λn) and D(Rn) are connected.
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Proposition 2.6.17 (Right Proper). Let

W h //

²²

X

f
²²

Z g
// Y

be a pullback diagram in Diff with f a fibration and g a weak equivalence. Then h

is also a weak equivalence.

Proof. This follows from the right properness of the standard model category struc-

ture on sSet.

Proposition 2.6.18. The class of fibrations in Diff is closed under isomorphisms,

pullbacks, smooth retracts and finite compositions.

Proof. This is formal.

Corollary 2.6.19. Let f : X ! Y be a fibration in Diff, then any fiber of f is

fibrant, that is, for any y 2 Y , f−1(y) with the sub-diffeology of X is fibrant.

Lemma 2.6.20. Any diffeological bundle with fibrant fiber is a fibration.

Proof. Suppose f : X ! Y is a diffeological bundle with fiber F . Given any

commutative diagram in Diff

Λn

a
²²

b // X

f
²²

Rn
c

// Y,

we have the following pullback diagram in Diff

Rn £ F

π1

²²

d // X

f
²²

Rn
c

// Y.
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Therefore, we have the following commutative diagram:

Λn

a

ÃÃ

b

&&

(a,e)

$$
Rn £ F

π1

²²

d // X

f
²²

Rn
c

// Y.

Let g : Rn ! F be any smooth map and consider the smooth section (1, g) : Rn !

Rn £ F . Then f ±d ±(1, g) ±π1 = c ±π1 ±(1, g) ±π1 = c ±π1, and by the surjectivity

of π1, we have the following commutative triangle

X

f
²²

Rn

d◦(1,g)
==||||||||

c
// Y.

We also want the triangle

Λn b //

a
²²

X

Rn,
d◦(1,g)

==||||||||

to commute, which requires us to pick the smooth map g nicely. Since F is fibrant,

we choose g to be a lifting of

Λn

a
²²

e // F

Rn

g

>>

composed with the inclusion F ↪! X. Then for any x 2 Λn, we have d±(1, g)±a(x) =

d(a(x), g ±a(x)) = d(a(x), e(x)) = (d ± (a, e))(x) = b(x).

Example 2.6.21. Not every diffeological space is cofibrant. For example, the ir-

rational torus T 2
θ (see Example 1.1.6) is not cofibrant, since the diffeomorphism

T 2
θ ! T 2/Rθ by sending [x] to [(1, x)] has no smooth lift to T 2 by the connectedness

of R, and note that the quotient map T 2 ! T 2/Rθ is a trivial fibration.



CHAPTER 2. A HOMOTOPY THEORY FOR DIFFEOLOGICAL SPACES 95

Definition 2.6.22. Let G be a diffeological group and let H be a subgroup of G.

Then the set G/H of left cosets, with the quotient diffeology, is called a homogeneous

diffeological space.

Note that we do not require H to be a closed subgroup of G. We can define a ho-

mogeneous diffeological space to be the set of right cosets, and all the corresponding

results still hold.

Theorem 2.6.23. Every homogeneous diffeological space is fibrant.

Proof. We will give two proofs for this.

Here is the first proof:

By Proposition 7.5 (i) on page 26 of [May], we know that if f : X ! Y is a

fibration in Diff, X is fibrant and SD̃f : SD̃X ! SD̃Y is onto, then Y is fibrant.

Here Diff(Rn, X) = (SD̃X)n ! (SD̃Y )n = Diff(Rn, Y ) being onto just means that

any global plot of Y has a smooth lift:

X

f
²²

Rn //

==

Y.

In particular, if X ! Y is a diffeological bundle with fibrant fiber and X is fibrant,

then so is Y . Now G ! G/H is a diffeological bundle with both G and H fibrant.

Hence the result follows.

Here is the second proof:

Given b : Λn ! G/H, let a : R0 ! G have a(0) 2 p−1(b(0,¢ ¢ ¢, 0)), where



CHAPTER 2. A HOMOTOPY THEORY FOR DIFFEOLOGICAL SPACES 96

p : G ! G/H is the quotient map. Then we have the following smooth liftings:

R0 a //

²²

G

p

²²
Λn b //

α

<<

²²

G/H

Rn.

β

EE

γ

;;

The lifting α exists because R0 ! Λn is a trivial cofibration in Diff and p is a

fibration by Lemma 2.6.20. The lifting β exists because G is fibrant. And γ = p ±β

is easily seen to be the required lifting.

Remark 2.6.24. This theorem was suggested by P. Iglesias-Zemmour, and it gener-

alizes the two classes of fibrant diffeological spaces: diffeological groups and smooth

manifolds without boundary (see below).

The second proof of the theorem shows that if a smooth map X ! Y is a

fibration in Diff and a surjective set map, with X fibrant, then Y is also fibrant.

Corollary 2.6.25. Every smooth manifold without boundary is fibrant.

Proof. We will also give two proofs of this corollary.

Here is the first proof:

Use Theorem 2.6.23 and the fact that Diff(M)/stab(M,x) »= M [Do], where

M is an arbitrary connected smooth manifold and x 2 M . Diff(M) is introduced

in Example 1.7.11 and stab(M,x) = f f 2 Diff(M) j f(x) = xg is a subgroup of

Diff(M). Then use Lemma 2.6.16.

Here is a sketch of the second proof:

Let f (Uα, fα)g be an atlas of M , that is, each Uα is open in M , and each fα :
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Uα ! Rm is a diffeomorphism, where m is the dimension of M . Given any diagram

Λn f //

²²

M

Rn,

take one Uα such that it contains f((0, 0,¢ ¢ ¢, 0)). Since Uα is diffeomorphic to Rm,

and Rm is fibrant, there is a smooth lift from a small neighborhood (we can think of

it as a small open cube) of (0,¢ ¢ ¢, 0) in Rn to Uα, hence to M . We need to further

extend it to the whole Rn. This can be done because Rm has the following weak

right lifting property:

Fix any ε, τ > 0 with τ < ε. Let A = f (x1,¢ ¢ ¢, xn) 2 Rn j xn > ¡ εg[

all the coordinate hyperplanes in Rn. For any smooth map g : A ! Rm, where

the smoothness means that the restriction of g to the first part of A and to each

coordinate hyperplane is smooth in the usual sense, we have a smooth map g̃ : Rn !

Rm such that g̃ restricted to B = f (x1, ¢ ¢ ¢, xn) 2 Rn j xn > ¡ τg[ all the coordinate

hyperplanes in Rn is g.

This is because we also have a smooth extension h respecting all coordinate hy-

perplanes in Rn as explained in Example 2.6.14. Let V1 = f (x1,¢ ¢ ¢, xn) 2 Rn j xn >

¡ εg and V2 = f (x1,¢ ¢ ¢, xn) 2 Rn j xn < ¡ τg. Then f V1, V2g forms an open cover

of Rn. So there exists a smooth partition of unity ρ1, ρ2 subordinate to this cover.

Then ρ1g + ρ2h is what we want.

We use this weak right lifting property of Rm repeatedly to get the desired

smooth lift. Since Rn is not compact, we will try to manage on compact sets first,

and then go further. For example, we will try on closed cubes, and then make the

cubes bigger and bigger, so that eventually we reach the smooth lift for the whole

Rn.

As a direct result of Corollary 2.6.3, if we take a functorial cofibrant replacement
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X̃ of a fibrant diffeological space X, then X̃ is both cofibrant and fibrant. In

particular by the above corollary, if we take a functorial cofibrant replacement M̃

of a smooth manifold M , then M̃ is both cofibrant and fibrant.

Example 2.6.26. Let X be a topological space. Then T (X) is a fibrant diffeological

space, since D(Λn) ! D(Rn) has a retract in Top. However, if Y is a diffeological

space, then the natural map Y ! T (D(Y )) is not always a weak equivalence in Diff.

Y = T 2
θ , the irrational torus of slope θ, is such an example (see Example 1.7.14).

Proposition 2.6.27. Let A be a diffeological space which is a smooth retract of the

diffeological realization of a simplicial set X, and let B be a fibrant diffeological space.

If in £ 1 : Λn £ j X jD̃ ! Rn £ j X jD̃ is the diffeological realization of a cofibration in

sSet for any n 2 Z+, then Diff(A,B) is also a fibrant diffeological space.

Proof. Since the class of fibrant diffeological spaces is closed under smooth retracts,

it is enough to prove that Diff(jX jD̃, B) is fibrant. By cartesian closedness of Diff, it

is equivalent to showing that in £ 1 : Λn £ j X jD̃ ! Rn £ j X jD̃ is a trivial cofibration

for every n 2 Z+. in £ 1 is a weak equivalence since in is a weak equivalence, and it

is a cofibration by the assumption.

Remark 2.6.28. It is not always true that Rn £ j X jD̃ is the diffeological realization

of a simplicial set. For example, if n = 1 and X is the simplicial set whose non-

degenerate simplices are

² ((
66 ²

then R £ j X jD̃ is not the diffeological realization of any simplicial set.

Corollary 2.6.29. Let X be a fibrant diffeological space. Then Diff(Rm, X) is also

fibrant for any m 2 N.

Proof. This is because Rm = j∆mjD̃, and for any n 2 Z+, Λn £ Rm ! Rn £ Rm is

the diffeological realization of the cofibration [ n−1
i=0 d

i(∆n+m−1) ↪! ∆n+m−1.
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Not every diffeological space is fibrant:

Example 2.6.30. Λn is not fibrant for any n ¸ 2, since there is no smooth re-

tract Rn ! Λn for the natural injective map Λn ! Rn, using the definition of the

coequalizer diffeology on Λn.

Λn
sub is not fibrant for any n ¸ 2 as well. Otherwise, i : Λn

sub ! Rn has a smooth

retract f : Rn ! Λn
sub. Then the composition i ± f : Rn ! Rn is smooth in the

usual sense, and id = (i ± f)∗ : T0Rn ! T0Rn. This implies that i ± f is a local

diffeomorphism at 0 by the inverse function theorem, which is a contradiction.

For the same reasons, neither ∂An nor ∂An
sub is fibrant for any n ¸ 2.

Example 2.6.31. Write R̂n for Rn with the diffeology generated by any set S µ

Diff(Rn−1,Rn) which contains all the natural inclusions Rn−1 ! Rn into coordinate

hyperplanes. Then R̂n is not fibrant for any n ¸ 1. Otherwise, we have the following

commutative diagram in Diff:

Λn i //

i
²²

R̂n // Rn

Rn

F

;;

U
?Â

OO

f
//

F |U

EE

Rn−1,

g

OO

where F 2 Diff(Rn, R̂n), U is some neighborhood of 0 2 Rn, f 2 Diff(U,Rn−1),

g 2 S, and the unnamed horizontal arrow is the identity on the underlying set of

Rn. This implies that we have the following commutative diagram in V ectR:

T0Rn

T0U f∗
//

(F |U )∗
99ssssssssss

Tf(0)Rn−1.

g∗

OO

Note that (F jU)∗ = id, which contradicts the commutativity of the above triangle.
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The same method shows that for any n,m 2 N with n > m, Rn with the

diffeology generated by any set S µ Diff(Rm,Rn) which contains all the natural

inclusions Rm ! Rn into coordinate m-planes, is not fibrant.

Example 2.6.32. For any pointed diffeological space (X, x), we can construct the

path space P (X, x) = f f 2 Diff(R, X) j f(0) = xg, with the sub-diffeology of

the functional diffeology of Diff(R, X). This diffeological space is always smoothly

contractible since we have a smooth map α : P (X, x) £ R ! P (X, x) defined by

α(f, t)(s) = f(θ(t)s), where θ : R ! R is some cut-off function. We also have a

natural smooth map ev1 : P (X, x) ! X defined by f 7! f(1). However, ev1 is not

always a fibration in Diff. For example, take X = Λ2 and x = (0, 0) 2 X. Here

is a modified proof using ideas of Gaohong Wang. We only need to show that the

fiber of ev1 at x, i.e. the loop space Ω(X, x) = f f 2 Diff(R, X) j f(0) = f(1) = xg

with the sub-diffeology of P (X, x), is not fibrant. We can construct a smooth map

H : X ! Ω(X, x) by H(x, 0)(t) = (xψ(t), 0) and H(0, y)(t) = (0, yψ(t)), where

ψ : R ! R is a smooth function such that there exists ε > 0 so that ψ(t) = 0 when

t < ε or t > 1 ¡ ε and ψ(1
2
) = 1. Then the diagram

Λ2 H //

²²

Ω(X, x)

R2,

does not have a lift in Diff, since otherwise Λ2 ! R2 would have a smooth retract,

which contradicts Example 2.6.30.

Example 2.6.33. X = [0, 1 ) as a sub-diffeological space of R is not fibrant. The

following proof is due to G. Sinnamon. Let f : Λ3 ! X be defined by fi : R2 ! X

with fi(xj, xk) = (xj ¡ xk)
2 for f i, j, kg = f 1, 2, 3g. Assume that f has a smooth

extension G : R3 ! X, that is, there exists a smooth function F : R3 ! R
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such that Im(F ) µ X, F (x1, x2, 0) = (x1 ¡ x2)
2, F (0, x2, x3) = (x2 ¡ x3)

2 and

F (x1, 0, x3) = (x1 ¡ x3)
2. Consider the composition h : R g // R3 G // X , with

g(t) = (t, t, t). Then by the chain rule, it is easy to calculate that h(t) = ¡ 3t2+o(t2),

which contradicts that Im(F ) µ X.

As an easy corollary of this result, any smooth manifold with boundary is not

fibrant.

Hence this example together with Theorem 2.6.23 gives another proof showing

that Xn and X∞ (introduced in (2) of Example 1.8.1) are not diffeomorphic.

Remark 2.6.34. We call a diffeological space X k-fibrant if it has the right lifting

property with respect to Λn ! Rn for all n 2 f 1, 2,¢ ¢ ¢, kg. Then every diffeological

space is 1-fibrant since there is a smooth retract for Λ1 ! R, and a diffeological

space is fibrant if and only if it is k-fibrant for all k 2 Z+. It is not hard to prove

that [0,1 ) with the sub-diffeology of R is 2-fibrant, and the above example shows

that it is not 3-fibrant. And R̂n in Example 2.6.31 is (n¡ 1)-fibrant but not n-fibrant.
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2.7 Comparison of smooth and simplicial homo-

topy groups for fibrant diffeological spaces

By Proposition 2.6.12, we know that SD̃(R) is a simplicial abelian group. So we

can use Dold-Kan correspondence (see, for example, [GJ]) to calculate its simplicial

homotopy groups. More precisely, given a simplicial group G, we can form a chain

complex N(G) with (N(G)n = \ n−1
i=0 ker(di), where di : Gn ! Gn−1 is the boundary

map, and the differential for the chain complex is given by (¡ 1)ndn : (N(G))n !

(N(G))n−1. (This forms a chain complex due to the simplicial identities.) Moreover,

πs
n(G, g) »= Hn(N(G)) for any g 2 G0.

In the case G = SD̃(R), (N(G))n = f f 2 Diff(An,R) j di(f) = 0 for all

i 2 f 0, 1,¢ ¢ ¢, n ¡ 1gg, and (¡ 1)ndn(f) = (¡ 1)nf(x0,¢ ¢ ¢, xn−1, 0). We claim that

Hn(G, 0) = 0 for all n 2 N. In other words, if f 2 Diff(An,R) such that di(f) = 0

for all i 2 f 0, 1, ¢ ¢ ¢, ng, then we can find some g 2 Diff(An+1,R) such that di(g) = 0

for all i 2 f 0, 1, ¢ ¢ ¢, ng, and f = (¡ 1)n+1dn+1(g). In fact, g(x0, ¢ ¢ ¢, xn+1) =

(¡ 1)n+1φ(1 ¡ xn+1)f( x0

1−xn+1
,¢ ¢ ¢, xn

1−xn+1
) with φ some cut-off function satisfies these

properties.

Note that πD
n (R, 0) = 0, which implies that πs

n(SD̃(R), 0) »= πD
n (R, 0). This is

not a coincidence. We will show that the similar result holds for any pointed fibrant

diffeological space.

Before giving the proof, we give two different characterizations of smooth homo-

topy groups of a pointed diffeological spaces as follows:

By the rescaling trick, we have the following observation.

Remark 2.7.1. Let (X, x) be a pointed diffeological space. Then πD
n (X, x) can also

be characterized as f f 2 Diff(Rn, X) j f jRn−ε|∆̃n| = x for some ε > 0g/» ′, where
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εj∆̃nj = f (x1,¢ ¢ ¢, xn) 2 Rn j
∑n

i=1 xi < 1 ¡ ε and xi > ε for all i 2 f 1, 2,¢ ¢ ¢, ngg,

and f » ′ g if and only if there exists F 2 Diff(Rn+1, X) such that F (x1, ¢ ¢ ¢, xn, 0) =

f(x1,¢ ¢ ¢, xn), F (x1, ¢ ¢ ¢, xn, 1) = g(x1,¢ ¢ ¢, xn), and F j(Rn−δ|∆̃n|)×R = x for some

δ > 0.

Proposition 2.7.2. Let (X, x) be a pointed diffeological space. Then πD
n (X, x) can

be characterized as A = f f 2 Diff(Rn, X) j f j∂An = xg/» , where f » g if and

only if there exists F 2 Diff(Rn+1, X) such that F (x1,¢ ¢ ¢, xn, 0) = f(x1,¢ ¢ ¢, xn),

F (x1, ¢ ¢ ¢, xn, 1) = g(x1, ¢ ¢ ¢, xn), and F j∂An×R = x.

Proof. It is clear that this is true for n = 0.

For n ¸ 1, define i : πD
n (X, x) ! A by sending [f ] to [f ], where f is chosen to

satisfy the condition of Remark 2.7.1, that is, f jRn−ε|∆̃n| = x for some ε > 0. Clearly,

this map is well-defined.

Note that there is a diffeomorphism of diffeological pairs (Rn, ∂An) and (An, ∂′An),

where ∂′An = f (x0, ¢ ¢ ¢, xn) 2 An j xi = 0 for some i 2 f 0, 1,¢ ¢ ¢, ngg with the co-

equalizer diffeology. For simplicity, we switch to use (An, ∂′An) for the rest of the

proof.

i is surjective. For any [g] 2 A with g 2 Diff(An, X) such that gj∂′An = x,

we need to find F 2 Diff(An £ R, X) such that F (x0, ¢ ¢ ¢, xn, 1) = g(x0,¢ ¢ ¢, xn),

F j∂′An×R = x and F (x0,¢ ¢ ¢, xn, 0) = x if some xi < ε for some ε > 0. Let α : R ! R

be the smooth function with α(y) = yφ(y), where φ : R ! R be a cut-off function

such that φ(y) = 0 if y < ε, φ(y) = 1 if y > 1¡ ε for some 0 < ε < 1
n+1

, and φ(y) > 0 if

y ¸ 1
n+1

. Let αt : R ! R be the smooth function with αt(y) = φ(t)y+(1¡ φ(t))α(y),

and let p : Rn+1 ¡ f (x0,¢ ¢ ¢, xn) 2 Rn+1 j
∑n

i=0 xi = 0g ! An be the smooth

function with p(x0,¢ ¢ ¢, xn) = ( x0Pn
i=0 xi

,¢ ¢ ¢, xnPn
i=0 xi

). Define F = g ± p ± β with

β : An £ R ! Rn+1 ¡ f (x0,¢ ¢ ¢, xn) 2 Rn+1 j
∑n

i=0 xi = 0g with β(x0, ¢ ¢ ¢, xn, t) =

(αt(x0), ¢ ¢ ¢, αt(xn)), and it is easy to check that F has all the required properties.
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i is injective. If [f ], [g] 2 πD
n (X, x) with both f and g chosen to satisfy the

condition of Remark 2.7.1, such that i([f ]) = i([g]), that is, there exists F 2

Diff(An £ R, X) such that F (x0, ¢ ¢ ¢, xn, 0) = f(x0,¢ ¢ ¢, xn), F (x0, ¢ ¢ ¢, xn, 1) =

g(x0,¢ ¢ ¢, xn) and F j∂′An×R = x, then the composition F ± ((p ±αn+1) £ 1R) implies

that f ± p ±αn+1 » ′ g ± p ±αn+1. Clearly, f » ′ f ± p ±αn+1 and g » ′ g ± p ±αn+1,

which implies that [f ] = [g] in πD
n (X, x).

Theorem 2.7.3. Let (X, x) be a pointed diffeological space with X fibrant. Then

πD
n (X, x) »= πs

n(SD̃(X), x).

Proof. Since X is a fibrant diffeological space, SD̃(X) is a Kan complex. The nth

simplicial homotopy group of (SD̃(X), x) is defined as follows [May]: πs
n(SD̃(X), x) =

f f 2 (SD̃(X))n j di(f) = x for all i 2 f 0, 1,¢ ¢ ¢, ngg/» s, with f » s g if there

exists h 2 (SD̃(X))n+1 such that dn(h) = f , dn+1(h) = g and di(h) = x for all

i 2 f 0, 1,¢ ¢ ¢, n ¡ 1g.

Actually, πs
0(SD̃(X)) can also be described as the coequalizer of

(SD̃(X))1

d0 //
d1

// (SD̃(X))0.

Therefore, πD
0 (X) »= πs

0(SD̃(X)).

Now for n ¸ 1, we define α : πD
n (X, x) ! πs

n(SD̃(X), x) by α([f ]) = [f ], where

f 2 Diff(Rn, X) is chosen to satisfy the condition of Proposition 2.7.2, that is,

f j∂′An = x. It is well-defined, since if [f ] = [g], that is, there exists F 2 Diff(An £

R, X) such that F (x0,¢ ¢ ¢, xn, 0) = f(x0,¢ ¢ ¢, xn), F (x0,¢ ¢ ¢, xn, 1) = g(x0,¢ ¢ ¢, xn)

and F j∂′An×R = x, then divide An £ R into n + 1 (n + 1)-simplices using the prism

operators in [Ha]. Note that for each such (n+1)-simplex, exactly two faces are not

contained in ∂An £ R. Since » s is an equivalence relation, we have f » s g.

α is clearly surjective.
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α is injective. Let [f ], [g] 2 πD
n (X, x) with both f and g chosen to satisfy

the condition of Proposition 2.7.2, such that α([f ]) = α([g]), that is, there ex-

ists F 2 Diff(An+1, X) such that F (x0,¢ ¢ ¢, xn−1, 0, xn+1) = f(x0,¢ ¢ ¢, xn−1, xn+1),

F (x0, ¢ ¢ ¢, xn, 0) = g(x0,¢ ¢ ¢, xn) and F (x0,¢ ¢ ¢, xn+1) = x if some other xi = 0.

Then the composition F ±β with β : An £ R ! An+1 defined by

β(x0,¢ ¢ ¢, xn, t) = (x0,¢ ¢ ¢, xn−1, txn, (1 ¡ t)xn)

implies that [f ] = [g] in πD
n (X, x).



Appendix A

Basics of Model Categories

By axiomatizing the basic properties and relationship between Top and Ho(Top),

D. Quillen introduced the concept of model categories in 1967 in his famous book

[Q]. In the following 45 years, only slight changes have been made, and now model

categories are a standard tool to do homotopy theory on any nice enough category.

We summarize some basics of model category theory in this appendix. The stan-

dard references are [DS], [GJ], [Hi], [Ho], [Q]. Due to limited space, many interesting

topics related to model category theory are not covered, for example, the fact that

the homotopy category of a (pointed) model category is a closed module over the

homotopy category of (pointed) simplicial sets, that every homotopy category of a

pointed model category is pre-triangulated, localizations of model categories, model

category structures on simplicial (pre)sheaves [Ja1], D. Dugger’s approach to A1 ho-

motopy theory [Du2], existence of non-cofibrantly generated model categories [CH],

etc. All of these can be found in the references.

Only two uses of model category theory are explained: (1) the localization of

a category with respect to arbitrary class of morphisms may not be a category

again, but the localization of a model category with respect to the class of its

106
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weak equivalences is again a category; (2) model category theory unifies the idea of

CW-approximations in Top and projective resolutions of modules, and homological

algebra can be recovered from a model category structure on the category of chain

complexes.

In this thesis, model category theory will be used in Section 1.2.3 and most of

Chapter 2. Readers can refer to this appendix for the notation and basic results

(without proof) of model category theory whenever needed.
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A.1 Kan extensions

We present the basics of Kan extensions in this section. A good reference is [Mac].

Definition A.1.1. Let A ,B and C be three categories, and let X : A ! C , F :

A ! B be two functors between them. The left Kan extension (LKF (X), µ) of

X along F is a functor LKF (X) : B ! C together with a natural transformation

µ : X ! LKF (X)±F such that for any pair (G, ν) where G : B ! C is a functor and

ν : X ! G±F is a natural transformation, there is a unique natural transformation

τ : LKF (X) ! G that makes the following diagram commutative:

X
ν //

µ

²²

G ±F

LKF (X) ±F.
τF

77oooooooooooo

Right Kan extensions are defined dually.

Definition A.1.2. Let A ,B and C be three categories, and let X : A ! C , F :

A ! B be two functors between them. The right Kan extension (RKF (X), µ) of

X along F is a functor RKF (X) : B ! C together with a natural transformation

µ : RKF (X)±F ! X such that for any pair (G, ν) where G : B ! C is a functor and

ν : G±F ! X is a natural transformation, there is a unique natural transformation

τ : G ! RKF (X) that makes the following diagram commutative:

RKF (X) ±F
µ // X

G ±F.

τF

OO

ν

88rrrrrrrrrrr

When a Kan extension exists, it is clearly unique up to a unique isomorphism.

Theorem A.1.3. If A is small and C is cocomplete, then each left Kan extension

exists, and LKF (X)(b) »= colimF (a)→bX(a). Dually, if A is small and C is complete,

then each right Kan extension exists, and RKF (X)(b) »= limb→F (a)X(a).



APPENDIX A. BASICS OF MODEL CATEGORIES 109

Proof. To prove the first statement, define τ : LKF (X) ! G by defining τb :

LKF (X)(b) ! G(b) as follows. For any f : F (a) ! b we have

X(a)
νa // G(F (a))

G(f) // G(b).

Hence we have the required map. The remaining parts are easy.

Proposition A.1.4. If all left Kan extensions exist, then we have the following

adjoint pair: LKF (?) : CA  CB :? ±F . If all right Kan extensions exist, then we

have the following adjoint pair: ? ±F : CB  CA : RKF (?).

Proof. This is direct from the definitions.

We now give some examples of Kan extensions:

Example A.1.5. The colimit of a functor X from a small category A to a cocom-

plete category C is the left Kan extension of X along the unique functor from A to

the terminal category 1 (that is, the category with one object and one morphism).

Dually, The limit of a functor X from a small category A to a complete category C

is the right Kan extension of X along the unique functor from A to the category 1.

Example A.1.6. Define functors X : ∆ ! Top by X(n) = j∆nj, the standard

n-simplex in Top, and F : ∆ ! sSet by F (n) = ∆n, the standard n-simplex in sSet.

Then the left Kan extension of X along F is the usual geometric realization functor

j?j.

Example A.1.7. Moreover, the left adjoint L in Theorem 2.2.1 is the left Kan

extension of F : C ! D along the Yoneda embedding C ! Pre(C) defined by
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(f : c ! c′) 7! (f∗ : C(?, c) ! C (?, c′)). We have natural isomorphisms:

D(LX, Y ) = D( colim
C(?,c)→X

F (c), Y )

»= lim
C(?,c)→X

D(F (c), Y )

= lim
C(?,c)→X

RY (c)

»= lim
C(?,c)→X

Pre(C)(C(?, c), RY )

»= Pre(C)( colim
C(?,c)→X

C(?, c), RY )

»= PreC(X,RY ),

for any objects X in Pre(C) and Y in D, and the adjointness follows.
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A.2 Model categories

Good references for this section are [DS], [GJ], [Hi], [Ho], [Q]. However, the termi-

nology is slightly different in these references. The purpose here is to summarize the

theory with consistent terminology for the thesis.

A.2.1 Basic theory of model categories

The basics

Unless otherwise stated, the main source for this part is [Q].

Definition A.2.1. Let M be a category and let f : A ! B and g : C ! D be

two morphisms in M . We say that f is a retract of g if we have the following

commutative diagram in M

A //

f
²²

C //

g
²²

A

f
²²

B // D // B

with the composition of the two horizontal morphisms being idA and idB, respec-

tively.

Definition A.2.2. Let M be a category, let f : A ! B be a morphism in M , and

let I be a class of morphisms in M . We say that f has the left lifting property with

respect to I if for any commutative solid diagram

A //

f
²²

C

g
²²

B //

>>

D

with g 2 I, the dotted arrow exists and makes the whole diagram commutative.

Dually, we can define a morphism to have the right lifting property with respect to

a class of morphisms.
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The following definition is from [Ho]:

Definition A.2.3. Let M be a category. Define Map(M ) to be the category whose

objects are maps in M and morphisms are commutative squares in M . A functorial

factorization of maps in M is a pair of functors α, β : Map(M ) ! Map(M ) such

that f = α(f) ±β(f) for any map f in M .

Definition A.2.4 ([Hi, Ho]). A model category is a category M together with three

classes of morphisms (called weak equivalences W , cofibrations C and fibrations F ),

satisfying the following axioms:

(1) the category M is complete and cocomplete;

(2) (two out of three) let f and g be two morphisms in M such that g ± f is

defined. If two of f , g and g ±f are weak equivalences, then so is the third;

(3) (retraction) the retract of a weak equivalence (cofibration, or fibration) is

again a weak equivalence (cofibration, or fibration);

(4) (lifting) given a commutative solid diagram

A //

f
²²

B

g
²²

C

h

>>

// D

in M with f a cofibration and g a fibration, then the dotted arrow h exists to make

the whole diagram commutative, if either f or g is a weak equivalence;

(5) (factorization) every morphism in M can be functorially factored as a trivial

cofibration (a morphism that is both a weak equivalence and a cofibration) followed

by a fibration, and as a cofibration followed by a trivial fibration (a morphism that

is both a weak equivalence and a fibration).

Remark A.2.5. In [DS, GJ], the definition of a model category (which is called

a closed model category in [Q]) is defined similarly except (1) only finite limits
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and colimits of M are required to exist; (2) factorizations are not required to be

functorial. However, most of the known examples of model categories satisfy all the

above five axioms.

The definition of a model category is self-dual, in the following sense:

Lemma A.2.6. If (M ,W ,C,F ) is a model category, then (M op,W op,C′,F ′) with

C′ = F op and F ′ = Cop is a model category.

The following lemma can be found in [Hi]:

Lemma A.2.7. Let M be a model category.

(1) Let A be an object of M . Then the comma category A/M is a model category

in which a map is a weak equivalence, fibration, or cofibration if it is one in M .

(2) Let A be an object of M . Then the comma category M /A is a model category

in which a map is a weak equivalence, fibration, or cofibration if it is one in M .

Here are some properties of a model category:

Proposition A.2.8. Let (M ,W ,C,F ) be a model category. Then

(1) C= f f 2 Mor(M ) j f has the left lifting property with respect to F \ Wg ;

(2) C \ W = f f 2 Mor(M ) j f has the left lifting property with respect to Fg;

(3) both C and C \ W are closed under pushouts;

Dually,

(4) F = f f 2 Mor(M ) j f has the right lifting property with respect to C \ Wg ;

(5) F \ W = f f 2 Mor(M ) j f has the right lifting property with respect to Cg;

(6) both F and F \ W are closed under pullbacks.

These properties together with the model category axioms imply that any two of

the three classes of morphisms W , C and F determine the other in a model category.
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Definition A.2.9. An object X in a model category is called cofibrant (or fibrant)

if the natural map 0 ! X is a cofibration (or X ! 1 is a fibration). Here 0 denotes

an initial object and 1 denotes a terminal object in the category.

Definition A.2.10. Let X be an object in a model category C.

(1) We say that X̃ is a cofibrant replacement of X if X̃ is cofibrant, and there is

a weak equivalence X̃ ! X.

(2) We say that X ′ is a fibrant replacement of X if X ′ is fibrant, and there is a

weak equivalence X ! X ′.

The following lemma is discussed in [Hi, Ho]:

Lemma A.2.11 (Ken Brown). Let M be a model category, and let N be a category

with a subcategory N ′ that satisfies the two out of three property. Suppose the functor

F : M ! N takes every trivial cofibration between cofibrant objects to a morphism

in N ′. Then F takes every weak equivalence between cofibrant objects to a morphism

in N ′. Dually, if F takes every trivial fibration between fibrant objects to a morphism

in N ′, then F takes every weak equivalence between fibrant objects to a morphism

in N ′.

The following proposition is discussed in [Hi]:

Proposition A.2.12. Let M be a model category, and let f : X ! Y be a morphism

in M .

(1) If both X and Y are cofibrant, then f can be factored as X
g // Z h // Y ,

where g is a cofibration, h is a trivial fibration, and there exists a trivial cofibration

k : Y ! Z such that h ±k = 1Y .

(2) If both X and Y are fibrant, then f can be factored as X
g // Z h // Y ,

where g is a trivial cofibration, h is a fibration, and there exists a trivial fibration

k : Z ! X such that k ±g = 1X .
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In general, given a category C and a class of morphisms S of C, we can formally

form the localization S−1C in which the maps in S have been inverted. However,

the localization may not be a category in the usual sense, since the target of the

hom-functors may not land in Set any more. For example, let C be a category

with a proper class of objects, and let a, b be two distinct objects in C. Besides the

identity maps, the only morphisms are maps from a (and b) to all the other objects

except b (a), exactly one map for each such object. Let S be the class of all the

morphisms from b. Then S−1C is not a category. However, model categories don’t

have this problem:

Theorem A.2.13. Let M be a model category with weak equivalences W . Then

the localization W−1M is again a category (that is, all hom-functors have targets in

Set).

Definition A.2.14. We call the localization in the above theorem the homotopy

category of M , and denote it by Ho(M ).

The above theorem is true for the following reasons:

Let M be a model category. Let’s denote by M c (M f , M cf ) the full subcat-

egory of M consisting of cofibrant objects (fibrant objects, objects that are both

fibrant and cofibrant). Then the inclusion functors induce equivalences of categories

Ho(M cf ) ! Ho(M c) ! Ho(M ) and Ho(M cf ) ! Ho(M f ) ! Ho(M ).

For Ho(M cf ), there is another description as follows:

Definition A.2.15. Let M be a model category, and let f, g : X ! Y be two

morphisms in M .

(1) A cylinder object of X is a factorization of the fold map X
∐
X ! X into a

cofibration i0 + i1 : X
∐
X ! X ′ followed by a weak equivalence X ′ ! X.

(2) A path object of Y is a factorization of the diagonal map Y ! Y £ Y into a

weak equivalence Y ! Y ′ followed by a fibration (p0, p1) : Y ′ ! Y £ Y .
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(3) A left homotopy from f to g is a morphism F : X ′ ! Y in M for some

cylinder object X ′ of X such that F ± i0 = f and F ± i1 = g. In this case, we write

f » l g.

(4) A right homotopy from f to g is a morphism G : X ! Y ′ in M for some

path object Y ′ of Y such that p0 ±G = f and p1 ±G = g. In this case, we write

f » r g

(5) We say that f and g are homotopic if they are both left and right homotopic.

In this case, we write f » g.

(6) We say that f is a homotopy equivalence if there is a morphism h : Y ! X

such that h ±f » 1X and f ±h » 1Y .

Here is a summary of the basic properties of the above defined terms:

Proposition A.2.16. Let M be a model category, and let f, g : X ! Y be two

morphisms in M .

(1) If f » l g and h : Y ! Z is a morphism in M , then h ±f » l h ±g; dually, if

f » r g and h : Z ! X is a morphism in M , then f ±h » r g ±h.

(2) If Y is fibrant, f » l g, and h : Z ! X is a morphism in M , then f±h » l g±h;

dually, if X is cofibrant, f » r g, and h : Y ! Z is a morphism in M , then

h ±f » r h ±g.

(3) If X is cofibrant, then left homotopy is an equivalence relation on M (X,Y );

dually, if Y is fibrant, then right homotopy is an equivalence relation on M (X, Y ).

(4) If X is cofibrant and h : Y ! Z is a trivial fibration or a weak equivalence be-

tween fibrant objects, then h induces an isomorphism M (X, Y )/» l ! M (X,Z)/» l;

dually, if Y is fibrant and h : Z ! X is a trvial cofibration or a weak equiva-

lence between cofibrant objects, then h induces an isomorphism M (X, Y )/» r !

M (Z, Y )/» r.

(5) If X is cofibrant, then f » l g implies f » r g. Furthermore, if Y ′ is any path
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object of Y , then there is a right homotopy X ! Y ′ from f to g; dually, if Y is

fibrant, then f » r g implies f » l g. Furthermore, if X ′ is any cylinder object of X,

then there is a left homotopy X ′ ! Y from f to g.

(6) If X is cofibrant and Y is fibrant, then left homotopy and right homotopy on

M (X, Y ) coincide, and both are equivalence relations. Furthermore, if f » g, then

there is a left (right) homotopy from f to g through any cylinder object of X (path

object of Y ).

(7) The homotopy relation on the morphisms of M cf is an equivalence relation

which is compatible with composition. Hence the quotient category M cf/» exists.

Proposition A.2.17. Let M be a model category, and let f : X ! Y be a morphism

in M .

(1) If both X and Y are cofibrant, then f is a weak equivalence if and only if for

every fibrant object Z of M , the induced map f ∗ : M (Y, Z)/» ! M (X,Z)/» is a

bijection.

(2) If both X and Y are fibrant, then f is a weak equivalence if and only if for

every cofibrant object Z of M , the induced map f∗ : M (Z,X)/» ! M (Z, Y )/» is

a bijection.

We also have the following generalization of Whitehead’s theorem from Top,

which implies Ho(M cf ) »= M cf/» for any model category M :

Theorem A.2.18. Let M be a model category. Then a map in M cf is a weak

equivalence if and only if it is a homotopy equivalence.

We summarize the above theory in the following theorem:

Theorem A.2.19. Let M be a model category, and let γ : M ! Ho(M ) be the

canonical functor. Write Q (R) for the cofibrant (fibrant) replacement functor of

M .
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(1) The inclusion functor M cf ! M induces an equivalence of categories

M cf/» ! Ho(M cf ) ! Ho(M ).

(2) There are natural isomorphisms

M (QRX,QRY )/» »= Ho(M )(γ(X), γ(Y )) »= M (RQX,RQY )/» .

In addition, there is a natural isomorphism Ho(M )(γ(X), γ(Y )) »= M (QX,RY )/» .

(3) γ identifies left or right homotopic maps.

(4) If f is a morphism in M such that γ(f) is an isomorphism in Ho(M ), then

f is a weak equivalence in M .

We consider functors between model categories in the following proposition. The

last two conditions are due to D. Dugger (see [Hi]):

Proposition A.2.20. Let F : M  N : G be an adjoint pair between model

categories. Then the followings are equivalent:

(1) F preserves both cofibrations and trivial cofibrations.

(2) G preserves both fibrations and trivial fibrations.

(3) F preserves cofibrations and G preserves fibrations.

(4) F preserves trivial cofibrations and G preserves trivial fibrations.

(5) F preserves cofibrations between cofibrant objects and all trivial cofibrations.

(6) G preserves fibrations between fibrant objects and all trivial fibrations.

If one of the above conditions holds, we call the adjoint pair a Quillen pair. We

also call F a left Quillen functor and G a right Quillen functor.

Definition A.2.21. Given a functor F : M ! N between two model categories.

The total left derived functor LF : Ho(M ) ! Ho(N ) of F is defined to be

RKγM(γN ± F ), and the total right derived functor RF : Ho(M ) ! Ho(N ) of

F is defined to be LKγM(γN ±F ).
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Theorem A.2.22. Let F : M  N : G be a Quillen pair between two model

categories. Then the total left derived functor LF of F and the total right derived

functor RG of G both exist, and they form an adjoint pair LF : Ho(M )  Ho(N ) :

RG. Moreover, LF is the composition Ho(M )
Ho(Q)// Ho(M c)

Ho(F ) // Ho(N ) , and

RG is the composition Ho(N )
Ho(R)// Ho(Nf )

Ho(G)// Ho(M ) .

Definition A.2.23. A Quillen pair F : M  N : G between two model categories

is called a Quillen equivalence, if for any cofibrant object M in M and any fibrant

object N in N , M ! GN is a weak equivalence in M if and only if its adjoint

FM ! N is a weak equivalence in N .

Theorem A.2.24. Let F : M  N : G be a Quillen equivalence between two model

categories. Then the adjoint pair LF : Ho(M )  Ho(N ) : RG is an equivalence of

categories.

The small object argument

We talk about the small object argument in this part. Good references for the

material in this part are [Hi, Ho]:

An ordinal is an isomorphism class of well-ordered sets. Or we define the empty

set to be an ordinal named 0, and a non-zero ordinal is the well ordered set of all

lesser ordinals.

Definition A.2.25. (1) The successor of an ordinal β is the smallest ordinal greater

than β, and a limit ordinal is an ordinal that is neither 0 nor a successor ordinal.

(2) A cardinal is an ordinal that is of greater cardinality than any lesser ordinal.

Definition A.2.26. Let M be a cocomplete category, let λ be an ordinal, and let

I be a class of morphisms in M . Then
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(1) a λ-sequence in M is a functor X : λ ! M such that for every limit ordinal

γ < λ, the natural morphism colimβ<γ Xβ ! Xγ is an isomorphism;

(2) a transfinite composition of maps in I is X0 ! colimβ<λXβ for a λ-sequence

X with each Xβ ! Xβ+1 in I for all ordinals β with β + 1 < λ.

Definition A.2.27. Let I be a class of morphisms in a category M .

(1) A morphism in M is I-injective if it has the right lifting property with respect

to every element in I. The class of all I-injective maps will be denoted by I-inj.

(2) A morphism in M is an I-cofibration if it has the left lifting property with

respect to all I-injective maps. The class of all I-cofibrations will be denoted by

I-cof.

Definition A.2.28. Let I be a set of morphisms in a cocomplete category M . A

relative I-cell complex is a transfinite composition of pushouts of elements in I. The

class of all relative I-cell complexes will be denoted by I-cell.

Definition A.2.29. Let γ be a cardinal. An ordinal α is γ-filtered if it is a limit

ordinal and, if A µ α and jAj < γ, then sup(A) < α.

Definition A.2.30. Let I be a class of morphisms in a cocomplete category M .

An object M in M is small relative to I if there exists a cardinal κ, such that for

every κ-filtered ordinal λ and every λ-sequence X : λ ! M with Xβ ! Xβ+1 in

I for every ordinal β with β + 1 < λ, the natural set map colimβ<λ M (M,Xβ) !

M (M, colimβ<λXβ) is a bijection. M is small if it is small relative to Mor(M ).

Definition A.2.31. Let M be a cocomplete category, and let I be a set of mor-

phisms in M . We say that I permits the small object argument if the domain of any

element in I is small relative to I-cell.

Now we can state the famous small object argument:



APPENDIX A. BASICS OF MODEL CATEGORIES 121

Theorem A.2.32. Let M be a cocomplete category, and let I be a set of maps in

M , which permits the small object argument. Then there is a functorial factorization

of maps in M . More precisely, any map f in M can be written as f = α(f) ±β(f)

with α(f) 2 I-inj and β(f) 2 I-cell.

Related concepts for model categories

We are going to talk about cofibrant generation, properness and simplicial model

categories in this part. A good source for this material is [Hi]:

Definition A.2.33. A cofibrantly generated model category is a model category such

that

(1) there exists a set I of morphisms (called a set of generating cofibrations) that

permits the small object argument and such that a morphism is a trivial fibration if

and only if it has the right lifting property with respect to every element of I, and

(2) there exists a set J of morphisms (called a set of generating trivial cofi-

brations) that permits the small object argument and such that a morphism is a

fibration if and only if it has the right lifting property with respect to every element

of J .

Proposition A.2.34. Let (M ,W ,C,F ) be a cofibrantly generated model category

with generating cofibrations I and generating trivial cofibrations J . Then

(1) C= I-cof = the class of all retracts of I-cell;

(2) F = J-inj;

(3) C \ W = J-cof = the class of all retracts of J-cell;

(4) F \ W = J-inj.

Here is a way to recognize a cofibrantly generated model category:
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Theorem A.2.35 ([Hi, Ho]). Let M be a category, let W be a subcategory of M ,

and let I and J be two sets of maps in M , such that

(1) M is complete and cocomplete;

(2) W has the two out of three property and is closed under retracts;

(3) both I and J permit the small object argument;

(4) J-cell µ W \ I-cof;

(5) I-inj µ W \ J-inj;

(6) either W \ I-cof µ J-cof or W \ J-inj µ I-inj.

Then there is a cofibrantly generated model category structure on M with W

the weak equivalences, I-cof the cofibrations, J-inj the fibrations, I the generating

cofibrations and J the generating trivial cofibrations.

Here is another way to recognize a cofibrantly generated model category through

an adjoint pair:

Theorem A.2.36 (D.M. Kan). Let C be a cofibrantly generated model category with

generating cofibrations I and generating trivial cofibrations J . Let D be a category

that is closed under small limits and colimits, and let F : C  D : G be an adjoint

pair. Write FI = f Fu j u 2 Ig and FJ = f Fv j v 2 Jg. If

(1) both of the sets FI and FJ permit the small object argument, and

(2) G takes relative FJ-cell complexes to weak equivalences,

then there is a cofibrantly generated model category structure on D in which FI

is a set of generating cofibrations, FJ is a set of generating trivial cofibrations,

and the weak equivalences are the maps that G takes into a weak equivalence in C.

Furthermore, with respect to this model category structure, (F,G) is a Quillen pair.

Definition A.2.37. If the conditions of Kan’s theorem hold, we say that we can

lift the model category structure from C to D.
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Definition A.2.38. A model category is said to be

(1) right proper if the class of weak equivalences is closed under pullback along

fibrations;

(2) left proper if the class of weak equivalences is closed under pushout along

cofibrations;

(3) proper if it is both right and left proper.

Proposition A.2.39. Let M be a model category.

(1) If every object of M is cofibrant, then M is left proper;

(2) If every object of M is fibrant, then M is right proper;

(3) If every object of M is both cofibrant and fibrant, then M is proper.

Proposition A.2.40. Let M be a right proper model category. If

X //

²²

Y

²²

Zoo

²²
X ′ // Y ′ Z ′oo

is a commutative diagram in M with all vertical maps being weak equivalences, and

at least one map in each row being a fibration, then the natural map of pullbacks

X £ Y Z ! X ′ £ Y ′ Z
′ is also a weak equivalence.

Dually, let M be a left proper model category. If

X

²²

Yoo //

²²

Z

²²
X ′ Y ′oo // Z ′

is a commutative diagram in M with all vertical maps being weak equivalences, and

at least one map in each row being a cofibration, then the natural map of pushouts

X
∐

Y Z ! X ′ ∐
Y ′ Z

′ is also a weak equivalence.
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Definition A.2.41. A simplicial category A is a category enriched in simplicial

sets. That is, the following conditions hold:

(1) for any two objects X,Y , there is a simplicial set A (X, Y );

(2) (simplicial composition) for any three objects X, Y, Z, there is a simplicial

map cX,Y,Z : A (Y, Z) £ A (X, Y ) ! A (X,Z);

(3) (simplicial identity) for any object X, there is a simplicial map η : ∆0 !

A (X,X);

(4) simplicial composition for A is associative, and η provides left and right

simplicial identity;

(5) for any two objects X and Y , there is an isomorphism (A (X, Y ))0
»= A (X, Y )

which is compatible with the composition rules.

Definition A.2.42. A simplicial model category M is a model category that is also

a simplicial category, satisfyings the following axioms:

(1) for any two objects X,Y in M and any simplicial set K, there are objects

X  K and Y K in M such that there are isomorphisms of simplicial sets

M (X  K,Y ) »= sSet(K,M (X,Y )) »= M (X,Y K)

that are natural in X, Y and K;

(2) for any cofibration i : A ! B and any fibration p : X ! Y in M ,

M (B,X) ! M (A,X) £ M(A,Y ) M (B, Y ) is a fibration in sSet, which is also a

weak equivalence whenever i or p is.

Reedy model structure

This part is only used in the proof of Proposition 2.5.3. A good reference for this

part is [Hi]:
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Definition A.2.43. A Reedy category (B,B+,B−, d) is a small category B together

with two subcategories B+ and B−, and a function (called the degree function)

d : Obj(B) ! N, such that

(1) every non-identity morphism of B+ raises degree;

(2) every non-identity morphism of B− lowers degree;

(3) every morphism g in B has a unique factorization g = g+ ±g− with g+ in B+

and g− in B−.

Example A.2.44. Let ∆ be a category with objects n = f 0, 1,¢ ¢ ¢, ng for all n 2 N

and morphisms ∆(m,n) the set of all non-decreasing maps m ! n. Or if we view

each n as an ordered set (hence a category) 0 < 1 < ¢ ¢ ¢< n, then ∆ is the small

category with objects the ordered sets n for all n 2 N and morphisms functors

between them. In fact, (∆,∆1,∆2; d) is a Reedy category, where ∆1 and ∆2 are

the subcategories of ∆ with the same objects as ∆ and morphisms injective and

surjective maps in ∆, respectively, and d : Obj(∆) ! N is given by n 7! n.

Let B be a category, and let b be an object of B. We write Bb and Bb for the full

subcategory of B/b and b/B without idb : b ! b, respectively.

Let Cbe a model category, let B be a Reedy category, and let b be an object of B.

Write Lb and Mb for the composition of functors CB // CB+ // C(B+)b
colim // C

and CB // CB− // C(B−)b lim // C , respectively, where both first functors are re-

strictions, and second functors are forgetful functors. Therefore, we have natural

maps LbX ! Xb and Xb ! MbX for any object X of CB.

Theorem A.2.45. Suppose C is a model category, and B is a Reedy category. Then

there is a model category structure (called the Reedy model category structure) on

the functor category CB, with f : X ! Y a weak equivalence if fb is a weak equiva-

lence for every b 2 Obj(B); f : X ! Y a (trivial) cofibration if Xb

∐
LbX

LbY ! Yb

is a (trivial) cofibration for every b 2 Obj(B); and f : X ! Y a (trivial) fibration if
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Xb ! Yb£ MbYMbX is a (trivial) fibration for every b 2 Obj(B). The Reedy model

structure on CB is left proper, right proper, proper, or simplicial, if C is.

Definition A.2.46. Let C be a model category. A cosimplicial resolution of an

object c in C is a cofibrant replacement of the constant cosimplicial object c (by

abuse of notation) in the Reedy model category C∆.

Proposition A.2.47. Any two cosimplicial resolutions of an object in a model cat-

egory are connected by an essentially unique zig-zag of weak equivalences between

cosimplicial resolutions of this object, where essentially uniqueness means that any

such zig-zag of weak equivalences connecting the two cosimplicial resolutions can be

reached from any other such zig-zag of weak equivalences connecting the two cosim-

plicial resolutions by composing two adjacent arrows pointing in the same direction,

or deleting two adjacent identical arrows with different directions, or their inverses.

Proposition A.2.48. Let C be a model category. If c is a cosimplicial object in C,

then it is a cosimplicial resolution if and only if it is Reedy cofibrant and all of the

coface and codegeneracy operators of c are weak equivalences.

Proposition A.2.49. Let C be a model category. If i : a ! b is a Reedy weak

equivalence of cosimplicial resolutions in C, and c is a fibrant object of C, then

i∗ : C(b, c) ! C (a, c) is a weak equivalence of fibrant simplicial sets.

Definition A.2.50. Let C be a model category, let c be a cosimplicial object in C,

and let K be a simplicial set. We define c K = colim∆n→K c(n).

Proposition A.2.51. Let C be a model category. If c is a cosimplicial object in C,

then Lnc ! c(n) is naturally isomorphic to c ∂∆n ! c ∆n for all n 2 N.

Theorem A.2.52. Let C be a model category and let c be a cosimplicial object in

C. Then there is an adjoint pair c ? : sSet  C : C(c, ?).
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A.2.2 Examples of model categories

The following standard examples are taken from [Q, DS]:

Example A.2.53. There is a cofibrantly generated proper simplicial model category

structure on Top with weak equivalences the weak homotopy equivalences (for all

points of the domain), fibrations the Serre fibrations, and cofibrations the maps

having the left lifting property with respect to all trivial fibrations. We call it the

standard model structure on Top.

Under this model structure, every topological space is fibrant. The generating

cofibrations are I = f Sn−1 ↪! Dn j n ¸ 0g, and the generating trivial cofibrations

are J = fDn £f 0g ! Dn £ I j n ¸ 0g. Every cofibration is a retract of a generalized

relative CW inclusion. Therefore, CW approximation is a (non-functorial) cofibrant

replacement.

Example A.2.54. The category sSet of simplicial sets is defined to be the functor

category Set∆op
= Pre(∆). There is a cofibrantly generated proper simplicial model

category structure on sSet with weak equivalences the maps whose geometric realiza-

tion is a weak homotopy equivalences in Top, cofibrations the monomorphisms, and

fibrations the Kan fibrations. The generating cofibrations are I = f ∂∆n ↪! ∆n j n 2

Ng and the generating trivial cofibrations are J = f Λn
k ↪! ∆n j n 2 Z+, 0 · k · ng.

Here ∆n(m) = ∆(m,n). We call it the standard model structure on sSet. Under

this model structure, every simplicial set is cofibrant.

Given a simplicial set X, we use Xn to denote X(n), which is isomorphic to

sSet(∆n, X) by the Yoneda lemma.

The usual adjoint pair of geometric realization and singular functors j?j : sSet

À Top: s gives a Quillen equivalence. The unit and counit maps for the adjunction

X ! s(jX j) and js(Y )j ! Y are both weak equivalences for any simplicial set X

and any topological space Y , respectively.
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Example A.2.55. Let R be a unital ring. Then there is a model category structure

on Ch≥0(R) with weak equivalences the quasi-isomorphisms, fibrations the degree-

wise epimorphisms for degree > 0, cofibrations the degreewise monomorphisms with

degreewise projective cokernels. This model category is cofibrantly generated by

I = f Sn−1(R) ! Dn(R) j n 2 Ng and J = f 0 ! Dn(R) j n 2 Z+g, where for

n 2 Z+ and any (left) R-module M , Sn−1(M) is the cochain complex with M in

degree n ¡ 1 and 0 elsewhere, and Dn(M) is the cochain complex with M in degrees

n¡ 1 and n, and 0 elsewhere, with dn = 1M ; S−1(M) = 0 and D0(M) = S0(M). Un-

der this model structure, every cochain complex is fibrant, and cofibrant objects are

exactly cochain complexes with degreewise projective R-modules. Therefore, a cofi-

brant replacement of S0(M) is exactly a projective resolution of M . Furthermore,

Ho(Ch≥0(R))(S0(M), Sn(N)) »= Extn
R(M,N).
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