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 ABSTRACT 
 

 Cognitive control is an executive process that has been associated with a 

distributed set of cortical regions. These distributed regions appear to cluster into 

distinct networks with dissociable functions. In this study, independent 

component analysis was used as a tool to investigate functional connectivity in 

event-related fMRI data. Extracted networks of interest were functionally 

characterized using a hybrid task that independently probed moment-to-moment 

adjustments in control, and stable task-set maintenance. A cinguloinsular 

network was implicated in the processing of moment-to-moment adjustments in 

control based on its activation patterns during this task. Subsequently, functional 

connectivity between two networks previously implicated in control, two default 

mode networks, and a visual network were investigated overall, and in specific 

condition windows.  Findings from this study emphasize the utility of independent 

component analysis in directly functionally characterizing dissociable cognitive 

control networks. 

 

KEYWORDS: Functional connectivity, functional network, executive control, 

cognitive control, independent component analysis, functional magnetic 

resonance imaging (fMRI), stable task-set maintenance, adaptive control, 

frontoparietal, cinguloinsular 
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*lFP and CI are terms used to describe networks extracted in this study. The lFP 

network includes regions that overlap with ECN (Seeley et al., 2007) and FP 

(Doesenbach et al., 2008) networks. The CI network includes regions that 

overlap with the SN (Seeley et al., 2007) and CP (Dosenbach et al., 2007) 

network. 
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Chapter 1 - Introduction  
 

1.1 Preamble 

Cognitive control refers to the processes that guide perceptual and motor 

selection, particularly when faced with conflicting sources of information or task-

inappropriate response tendencies (Miller & Cohen, 2001; Wilk et al., 2012). 

Evidence supports that control processes are supported by a distributed set of 

cortical regions (Wilk et al., 2012; Botvinick et al. 2001; Cole & Schneider, 2007). 

A distinction in control processes has been made in the cognitive control 

literature based on the timescales on which the processes operate (Dosenbach 

et al., 2007, 2008). Moment-to-moment adjustments in control are dynamic 

changes that occur over short timescales in response to changing environmental 

demands; alternatively, stable task-set maintenance is a control process that 

operates over longer timescales to support appropriate behavior under stable 

environmental conditions (Dosenbach et al., 2007, 2008). In this study, cortical 

networks supporting control processing and how they respond to different 

cognitive demands are investigated using a hybrid fMRI task; this task probed 

moment-to-moment adjustments in control and stable task-set maintenance 

independently (Wilk et al., 2012).  

 

1.2 Probing Stable Task-set Maintenance and Adaptive Control  

In order to independently probe stable task-set maintenance and adaptive 

control, we developed a hybrid conflict adaptation task (Wilk et al., 2012). The 
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task was implemented in a hybrid block-event related design to enable 

independent modeling of both phasic (event-related) and tonic (block-level) 

signal changes (Wilk et al., 2012; Visscher, et al. 2003). This involved 

parametrically varying the frequency of compatible trials at the block level (75%, 

50% and 25%), in a size congruency number comparison task. Participants were 

asked to select the numerically larger of two numbers presented on a screen. On 

compatible trials, the numerically larger number was also physically larger. On 

incompatible trials, the numerically larger number was physically smaller. 

Participants were typically slower and less accurate when responding to 

incompatible trials – this is referred to as an interference effect. Interference 

effects become less pronounced as the frequency of compatible trials decreases 

– this frequency-based influence on the interference effect is referred to as the 

conflict adaptation effect (CAE – Banks & Flora, 1977; Borgman et al., 2011; 

Henik & Tzelgov, 1982). 

This block level frequency manipulation introduced parametrically varied 

demands on task-set maintenance and moment-to-moment adjustments in 

control. When the frequency of compatibility is high, the physical size of the digits 

becomes a more reliable cue, enabling participants to rely on both numerical and 

physical size to make an accurate decision. When incompatible trials are 

presented during these blocks, a greater adjustment is necessary in the moment 

to attend solely to the numerical dimension of the stimulus; under these 

conditions, there is an increased demand on moment-to-moment (dynamic) 

control processing (Wilk et al., 2012). In blocks where compatible trials are 
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infrequent, participants form a stronger task-set which involves attending only to 

the numerical magnitude of the stimulus. In these blocks, participants experience 

conflict between the numerical magnitude and physical magnitude on most trials. 

Subsequently, the task-set that involves identifying the numerically larger digit 

must be maintained actively to enable accurate responses; this block level 

frequency condition leads to increased demands on stable task-set maintenance 

(see figure 1 - Wilk et al., 2012).  

 

1.3 Cortical Substrates of Stable Task-set Maintenance and Adaptive Control

 Using these probes, regions involved in both moment-to-moment 

adjustments in control, and stable task set maintenance were identified in a 

standard voxel-wise General Linear Model (GLM) fMRI analysis (Wilk et al., 

2012). Regions involved in moment-to-moment adjustments included bilateral 

anterior insular cortex (AIC), right anterior cingulate cortex (ACC), bilateral 

dorsolateral prefrontal cortex (dlPFC), and right inferior parietal cortex (IPC). 

Regions involved in stable task-set maintenance included the medial superior 

frontal gyrus (Wilk et al., 2012). This study, including its novel approach to 

probing functional dissociations using a hybrid task, offered a promising advance 

in identifying regions involved in dissociable cognitive control demands. 

However, in a voxel-wise GLM the betas for each predictor included in the linear 

regression are calculated for each voxel independently. A subsequent voxel-wise 

t-test determines whether a predictor for a condition of interest statistically differs 

from a predictor representing control conditions. As a result, the regions identified 
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in a voxel-wise GLM are not necessarily functioning in unison, or engaging in 

related activity; this analysis identifies voxels that are independently involved in a 

specific aspect of the task. These regions could therefore not be described as a 

functionally integrated cortical network without statistically assessing 

relationships between the voxels involved. Several tools have been developed to 

assess such relationships. 

1.4 From Distributed Regions to Cortical Networks 

The growth of analytical tools to study functional connectivity in the human 

cortex has enabled the identification of a functionally coupled set of regions 

sometimes referred to as the Cognitive Control Network (CCN – Cole & 

Schneider, 2007; Duncan & Owen, 2000). Regions involved in this network 

include ACC (pre-supplementary motor area – pSMA), dlPFC, inferior frontal 

junction (IFJ), AIC, dorsal pre-motor cortex (dPMC), and posterior parietal cortex 

(PPC). Regions within the CCN demonstrate higher functional connectivity, as 

measured by timecourse correlations in resting fMRI data, than the average 

functional connectivity between any of the regions and a set of randomly selected 

non-CCN cortical regions (Cole & Schneider, 2007). Furthermore, these regions 

appear to coactivate in the face of cognitively demanding tasks (Cole & 

Schneider, 2007; Duncan & Owen, 2000). Many regions appear to be implicated 

in the CCN; furthermore, dissociations have been identified in control processes 

based on their timescale (Dosenbach et al., 2007, 2008). This raises the question 

as to whether control is processed by a single CCN, or multiple networks 

involved in processing different aspects of control.  
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The dual-networks account (Dosenbach et al., 2007, 2008) proposes that 

the CCN consists of two dissociable networks, identified using graph theoretic 

approaches; these include a frontoparietal (FP) network and a cingulopercular 

network (CP). Both networks demonstrate small-world characteristics, with strong 

short-range within network connections, and weaker long-range between network 

connections. This account proposes that the FP network, consisting of dlPFC, 

inferior parietal lobule (IPL), dorsal frontal cortex (dFC), inferior parietal cortex 

(IPC), precuneus, and middle cingulate cortex (mCC), is related to moment-to-

moment adjustments in control processing. The CP network, consisting of 

anterior PFC, AI/FO, dorsal ACC, and thalamus, is related to stable task-set 

maintenance. These functional characterizations stem from a review of univariate 

and single cell recording studies which ascribe functions to specific regions 

identified in these networks (Johnston et al., 2007; Liston et al., 2006; 

MacDonald et al., 2000; Rushworth et al., 2007; Sakai & Passingham, 2007).  

 Another approach to functionally characterizing dissociable CCN’s 

involves correlating measures of connectivity within a network with measures 

from offline tasks that probe cognitive abilities and behavioural tendencies 

(Seeley et al., 2007). In Seeley et al. (2007) networks were identified using two 

converging approaches: independent component analysis (ICA), and a region of 

interest (ROI) based functional connectivity analysis. Intrinsic network 

connectivity (INC) was used to define within network connectivity. This measure 

involved calculating the average pearson correlation coefficient by correlating 

timecourses between two nodes within a network. Correlations between 
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individual differences in these correlation coefficients and offline measures of 

prescan anxiety, and performance on an executive control task could then be 

used to characterize the function of these networks. A ‘salience network’ network 

included the dACC, orbital frontoinsular cortices, and several subcortical and 

limbic structures including the thalamus; this network included many regions that 

overlap with those in the CP network (Dosenbach et al., 2007, 2008). INC 

measures between dorsal ACC and dlPFC nodes of the salience network 

correlated with prescan anxiety measures, leading to the characterization of this 

network as a salience network. An ‘executive control network’ (ECN) included 

dlPFC and lateral PPC; this network included many regions that were also 

involved in the FP network (Dosenbach et al., 2007, 2008). INC measures 

between the lateral parietal nodes of this network correlated with offline executive 

task performance, leading to the characterization of this network as an executive 

control network.  

 Consistent spatial dissociations have been identified within the cognitive 

control network. Cinguloinsular (CI – including the SN and CP network) and FP 

networks appear to be relatively independent functional cortical networks, which 

are involved in different aspects of cognitive control (Dosenbach et al., 2007, 

2008; Macdonald et al., 2000; Seeley et al., 2007). Inconsistencies in the specific 

functional characterization of these networks across studies could stem from the 

indirect association between network topography and function. Resting state 

fMRI data can be paired with graph theoretic approaches, region of interest FC 

analyses, and independent component analysis to characterize the structural 
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parameters and topography of these networks. Furthermore, regions within these 

networks have been functionally characterized through the standard voxel-wise 

GLM analyses discussed above (Wilk et al., 2012). However, more direct 

functional characterizations can arguably be made by assessing the function of 

large-scale networks in an event-related design. With recent developments in 

tools for analyzing fMRI data, it has become possible to assess the function of a 

whole network in event-related data.  

 

1.5 Functionally Characterizing Cortical Networks  

Independent component analysis (ICA) is a statistical method used to 

identify systematically independent sources of variance in mixtures of data; in 

fMRI, ICA can be used to identify said independent sources, or components, 

under spatial or temporal (or a combination thereof) domains (Calhoun et al., 

2003). ICA identifies components that are derived from statistically independent 

sources; for fMRI analysis, spatial patterns of activation form components based 

on their non-Gaussian independence from one another (Calhoun et al., 2003). 

Calhoun et al. (2003) suggest that spatial ICA is particularly effective for cognitive 

tasks that are characterized by distributed activation patterns. Following 

identification of independent spatial components, each component’s respective 

timecourse is back-reconstructed. Back-reconstructed timecourses indicate the 

degree to which each spatial component contributes to the raw data in each 

volume (Calhoun & Adali, 2006). While components are maximally independent 

from one another, residual covariance remains between component timecourses, 
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enabling subsequent analyses of between-component FC.  Combined, these 

analyses enable us to move from a raw set of fMRI data, to an fMRI dataset that 

has been organized into independent spatial components, or functional networks, 

that have an associated timecourse. Objective selection of theoretically 

meaningful components can be achieved by spatially correlating component 

topographies with a network template from the existing cognitive control 

literature, temporally correlating a timecourse with a predictor from a design 

matrix, or both (Ezekiel & Morton, Submitted).  

There are several advantages to the use of ICA as an analytic tool in the 

context of this study. First, the concept of independence maximization between 

components enables variance that can be attributed to artifacts (like the cardiac 

rhythm or subject motion) to be attributed to unique components (Calhoun & 

Adali, 2006; Calhoun et al., 2003). This leaves components of interest relatively 

free of artifactual sources of variance. Second, since ICA is typically conducted 

on a whole-brain scale, the components extracted from the analysis are not 

biased by seeds selected according to an a priori hypothesis (Ezekiel & Morton, 

submitted). Third, ICA can be applied to both resting state and event-related 

fMRI data with converging results (Calhoun, 2008). Independent components can 

therefore be extracted from event-related data in an attempt to directly 

functionally characterize networks that have been heavily discussed in the 

resting-state literature. Fourth, ICA enables us to investigate interactions (FC) 

between the components (or functional networks) extracted, by comparing 

network timecourses. This can be done to investigate overall between-network 
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FC, or to identify connectivity under specific task demands by comparing 

timecourse correlations in specific task windows. 

 

1.6 The Current Study 

In this study, spatial ICA was applied to an event-related fMRI dataset in 

which the hybrid conflict adaptation paradigm discussed above was 

administered. A spatial selection criterion was used to identify networks that 

related to Executive Control and Salience Networks (Seeley et al. 2007). 

Subsequently, a GLM analysis was conducted on the reconstructed timecourses 

of selected components to identify whether effects of conflict, and conflict 

adaptation effects manifested in the activity profiles of these networks. 

Identification of conflict adaption effects in a network’s beta pattern would 

implicate that network in processing moment-to-moment adjustments in control. 

Networks demonstrating interference effects related to sustained signals that 

were not sensitive to conflict frequency could be implicated in general executive 

control processing (Wilk et al., 2012; Visscher, et al. 2003). Lastly, between-

network functional connectivity was assessed, both overall and in specific task 

conditions. 

  

1.7 Hypotheses 

It was hypothesized that: 
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1. Stable functional networks would be identified in our event-related 

dataset that are spatially consistent with those that have been 

discussed in the resting state literature using spatial ICA. 

2. Spatial correlation of network topographies would enable objective 

selection of a CI network from the Salience Network template and a FP 

network from the Executive Control Network template (Seeley et al., 

2007). 

3. Based on functional characterizations offered by Seeley et al., 2007, 

the task would elicit a pattern of betas consistent with the CAE in the 

CI network, while the FP network would demonstrate a typical conflict 

interference effect (greater responsivity to incongruence than 

congruence). 

4. The FP network and CI network would show strong overall between-

network FC, as both have been implicated in cognitive demands 

probed by this task. Precuneus and ventromedial PFC (vmPFC) 

default networks, which are both typically part of a single default 

network, would show high overall between-network FC.  

5. Analysis of condition-specific fluctuations in FC between networks 

would be exploratory, as there is very little evidence to form predictions 

based on this type of between-network comparison. 
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Chapter 2 - Methods 

 

*Note: Participants, Task and MRI Data Acquisition sections have been 

published in Wilk, H. A., Ezekiel, F., & Morton, J. B. (2012). Brain Regions 

Associated with Moment-to-Moment Adjustments in Control and Stable Task-Set 

Maintenance. Neuroimage 59, 2. 

 

2.1 Participants 

Participants included 26 right-handed young adults (12 males) who ranged 

in age from 21- to 35-years. All participants had normal or corrected-to-normal 

vision, and reported no history of neurological or psychiatric illness. Data from 

three participants were excluded from the analysis, one due to equipment 

malfunction and two due to excessive motion. Participants provided written 

consent to their participation prior to data collection. All aspects of the study were 

conducted in accordance with the Declaration of Helsinki. 

 

2.2 Task 

Participants were administered a size congruency task, in which on each 

trial, two white digits differing both in physical and numerical magnitude were 

presented simultaneously on a black background for 950ms (see Figure 1). Digits 

included numbers 1 through 9; physically large digits appeared in 60 point font; 

physically small digits appeared in 30 point font. On compatible trials, the 

numerically larger digit was physically larger. On incompatible trials, the 

numerically larger digit was physically smaller. Participants selected the 
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numerically larger of the two digits by depressing a key that corresponded with 

the location of the numerically larger digit (i.e., left or right) using their right hand. 

The response deadline was equal to the stimulus duration (950ms) and no 

feedback was provided. Individual trials were grouped into 16-trial blocks that  

differed in terms of the proportion of trials in the block that were compatible. 

Thus, in High-Frequency blocks, 75% of trials (or 12 of 16) were compatible; in 

Figure 1. An illustration of the experimental paradigm. Two digits that differed in 

physical and numerical magnitude were presented on each trial, and 

participants selected the numerically larger digit by means of a button-press. 

On compatible trials, the numerically larger digit was physically larger; on 

incompatible trials, the numerically larger digit was physically smaller. Individual 

trials were administered with a jittered ITI in 16-trial blocks that varied in terms 

of the proportion of compatible trials within the condition. Demands on moment-

to-moment adjustment parametrically increased with increases in the block-

level proportion of compatible trials; demands on task-set maintenance 

increased with decreases in the block-level proportion of compatible trials (Wilk, 

et al., 2012). 
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Medium-Frequency blocks, 50% of trials (or 8 of 16) were compatible; and in 

Low-Frequency blocks, 25% of trials (or 4 of 16) were compatible. An additional 

three anchor trials were added to the beginning of each block as a means of 

establishing expectations about the frequency of compatible trials within the 

block, but were modeled separately using a predictor of no interest. For High-

Frequency blocks, all three anchor trials were compatible; for Medium-Frequency 

blocks, either one or two trials were compatible, and for Low-Frequency blocks, 

none were compatible. Trials within blocks were presented in a random order 

that was fixed for all participants, and were randomly jittered by means of an 

inter-trial interval (or ITI) that ranged from 2500ms to 5500ms (M = 4000ms) in 

500ms increments. Blocks were presented in a random order, fixed for all 

Participants, and were separated by 10-second intervals. During all inter-trial and 

inter-block intervals, participants remained fixated on a centrally-presented white 

cross. In total, individual participants completed 24 separate blocks of trials (8 

each of High-, Medium-, and Low- Frequency) for a total of 384 individual trials. 

The entire task was administered in two separate 18-minute runs. 

 

2.3 MRI Data Acquisition 

MRI data were collected using a 3T Siemens TimTreo MRI scanner fitted 

with a Siemens 32-channel head coil (Siemens Medical Solutions, Erlangen, 

Germany). Functional volumes consisted of 36 slices acquired parallel to the 

ACPC axis using an interleaved slice acquisition order and an echo-planar 

imaging pulse sequence (TR = 2000ms, TE = 30ms, flip angle = 78○, 64 x 64 
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matrix, 21.1 x 21.1 cm FOV, 3 x 3 x 3mm voxel resolution). A total of 1486 

functional volumes were collected from each participant over two separate 743-

volume runs. In addition, a high-resolution anatomical scan (192 slices, 256 x 

256 matrix, 21.1 x 21.1 cm FOV, 1 x 1 x 1mm voxel resolution) was acquired 

from each participant to assist in visualizing the results of functional analyses.  

 

2.4 fMRI Data Preprocessing 

Prior to preprocessing, motion along 3 directions of translation and around 

3 axes of rotation were estimated for each run. Motion was constrained to a 

maximum of 3 mm over the entire run, resulting in the exclusion of 0 runs. Data 

were preprocessed using SPM8 (FIL, UCL, London, UK). Data were motion-

corrected by aligning each volume of each run to the first volume of the first 

functional run collected. Functional scans were then warped into Montreal 

Neurological Institute stereotactic space (MNI, Montreal, Canada) and smoothed 

using an 8 mm full-width at half-maximum Gaussian smoothing kernel.  

 

2.5 Independent Component Analysis 

A spatial group ICA was conducted on all subjects’ functional data using 

the Group ICA of fMRI toolbox for MATLAB (GIFT – MIND Research Network, 

Albuquerque, United States). 20 independent components were extracted in this 

ICA. A low model order was selected to ensure consistency in scale and spatial 

characteristics between the networks extracted in our study, and those extracted 

by Seeley et al., 2007. Prior to conducting the ICA, data were preprocessed by 
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removing the mean per time point in GIFT. The information maximization 

(Infomax) algorithm was used to extract group spatial components. This 

algorithm unmixes data to maximize the independence between source 

components extracted; at the same time, components extracted consist of voxels 

that demonstrate a high degree of covariance in their pattern of activation. To 

ensure the reliability of the spatial decomposition, the ICA was iterated 100 times 

with random initial weights using the ICASSO tool in GIFT. The clustering 

structure of the components extracted from each iteration was visualized in 

signal space. This tool enabled the assessment of component stability, as stable 

components show a high degree of clustering across iterations (Himberg, 

Hyvärinen, & Esposito, 2004). Group component timecourses were then back-

reconstructed using the GICA3 method in GIFT. Prior to subsequent analyses, 

group component timecourses were intensity normalized and linearly detrended.   

 

2.6 Component Selection 

 A spatial selection criterion was used to select components that were 

topographically consistent with functional networks discussed in the cognitive 

control literature. Independent spatial correlations were calculated between each 

component extracted from the functional data, with each of the SN and ECN 

templates (Seeley et al. 2007). Components involved in the default mode 

network were identified by correlation with a default mode network template 

(Bluhm et al., 2008). The best fitting component(s) (the component that yielded 

the highest significant spatial correlation) with each template was selected for 
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further analysis. A visual component was visually selected and included in 

subsequent analyses to see whether the patterns identified in our networks of 

interest were specific to networks that included regions previously implicated in 

cognitive control. 

 

2.7 Functional Analysis on Components of Interest 

 A GLM was conducted on timecourses of selected components to identify 

CAEs and interference effects in task-related BOLD modulation. Design matrices 

were created in SPM8, and included nine independently modeled predictors 

representing trial types included in the hybrid task, in addition to their time 

derivatives (see Table 1).  

Table 1. Predictors included in design matrix 

Predictor Description 
High-Compatible 75% compatible trials 

Compatible - larger number is physically larger 
High-Incompatible 75% compatible trials 

Incompatible – larger number is physically smaller 
Medium-Compatible 50% compatible trials 

Compatible - larger number is physically larger 
Medium-Incompatible 50% compatible trials 

Incompatible– larger number is physically smaller 
Low-Compatible 25% compatible trials 

Compatible - larger number is physically larger 
Low-Incompatible 25% compatible trials 

Incompatible – larger number is physically smaller 
Baseline All compatible trials in a block used to establish a baseline 

signal 
Start First 3 trials of each block 
Other Error trials or trials where participants did not respond 

within the allotted window 
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An ANOVA was run with condition (high, medium, or low frequency of 

compatibility) and trial-type (compatible or incompatible) as independent 

variables of interest. 

2.8 Between-Network FC Analysis 

 Overall FC between networks was assessed by calculating timecourse 

correlation coefficients between each selected network. Condition-specific 

between-network FC was calculated by extracting timecourses from each 

condition window, and calculating Pearson correlation coefficients between 

timecourses of networks of interest during these windows. These analyses were 

conducted in Matlab 2010b (Mathworks, Natick, Massachusetts). 
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Chapter 3 - Results 

 

*Note: The behavioral results section has been published in: 

Wilk, H. A., Ezekiel, F., & Morton, J. B. (In press). Brain Regions Associated with 

Moment-to-Moment Adjustments in Control and Stable Task-Set Maintenance. 

Neuroimage. 

 

3.1 Behavioural Results 

 Response time and accuracy are plotted in Figures 2 and 3. A 3 Condition 

x 2 Compatibility repeated-measures ANOVA confirmed an effect of Compatibility 

on response time, F (1, 22) = 80.3, p < .05, and accuracy, F (1, 22) = 13.7, p < 

Figure 2. Response times plotted as a function of Condition (i.e., 25%, 50%, or 

75% compatible) and Compatibility (i.e., Compatible and Incompatible). Error 

bars show one SE above and below the mean (Wilk et al., 2012). 
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.05, such that responses to incompatible stimuli were slower and more error-

prone than responses to compatible trials. There was also an effect of Condition 

on response time, F (2, 44) = 4.0, p < .05, such that responses were slower in 

the 25% (mean RT = 596 ms) and 50% (mean RT = 596 ms) compared with the 

75% (mean RT = 585 ms) conditions. Finally, there was a significant interaction 

of Condition and Compatibility on response time, F (2, 44) = 16.4, p < .05, and 

accuracy, F (2, 44) = 12.6, p < .05. Post-hoc tests (Bonferroni-corrected for 

multiple comparisons) confirmed that responses to compatible stimuli were faster 

in the 75% as compared to the 50% and 25% conditions, and more accurate in 

the 75% and 50% as compared to the 25% conditions.  

 

Figure 3. Behavioral accuracy as a function of Condition (i.e., 25%, 50%, or 

75% compatible) and Compatibility (i.e., Compatible and Incompatible). Error 

bars show one SE above and below the mean (Wilk et al., 2012). 
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To guard against the possibility that the pseudo-randomized block order 

administered to all participants may have unduly influenced performance, we 

tested for differences in behavioral performance between blocks administered 

early and those administered late in the testing session. A 2 Order (early, late) x 

3 Condition (25%, 50%, 75%) x 2 Compatibility (compatible, incompatible) 

repeated-measures ANOVA on response time revealed effects of Compatibility, 

F (1, 19) = 25.9, p < .01, and Condition, F (2, 38) = 6.5, p < .01, and an 

interaction of Compatibility and Condition, F (2, 38) = 12.1, p < .01, but no effects 

of Order and no higher order interactions involving Order. An identical analysis 

on accuracy revealed an effect of Compatibility, but no effects or interactions 

involving Order. 

 

3.2 Component Selection 

Of the 20 components extracted in this ICA, components that yielded the 

highest spatial correlation with templates from the resting state literature were 

selected for subsequent analyses. A CI network was selected for further analysis 

because it demonstrated the highest spatial correlation with the SN template 

(Seeley et al., 2007, r = .459, t (40) = 3.29, p < 0.01, see Figure 4). This 

component included regions of the anterior cingulate cortex and anterior insula. A 

left FP (lFP) network was selected because it showed the highest spatial 

correlation with the ECN template (Seeley et al., 2007, r = 0.325, t (40) = 2.173, p 

< 0.05, see Figure 5). Two default mode networks, one primarily composed of 

vmPFC (r = .308, t (40) = 2.05, p < 0.05), and another composed primarily of 
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precuneus (r = .309, t (40) = 2.06, p < 0.05) demonstrated the highest spatial 

correlation coefficients with a default mode template (Bluhm et al., 2008 - see 

Figures 6 and 7). Lastly, a visual component was visually selected which 

occupied V1 – V4 (see Figure 8). 

 

 

 

 

 

 

 

 

Figure 4. Cinguloinsular network. Spatial correlation with SN template, r = .459, 

t(40) = 3.29, p < .01. Component maps are visualized with a minimum 

threshold of z = 1, in standard orientation. 

Figure 5. Left frontoparietal network. Spatial correlation with ECN template,   

r = .325, t(40) = 2.173, p < .05. Component maps are visualized with a 

minimum threshold of z = 1, in standard orientation. 
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Figure 6. Ventromedial prefrontal network. Correlation with default template, r = .308, 

t(40) = 2.05, p < .05. Component maps are visualized with a minimum threshold of z = 1, 

in standard orientation. 

Figure 7. Precuneus network. Correlation with default template: r = .309, t(40) = 2.06, 

p < .05. Component maps are visualized with a minimum threshold of z = 1, in 

standard orientation. 
Z = ‐6 

Figure 8. Occipital network - visually selected. Component maps are visualized 

with a minimum threshold of z = 1, in standard orientation. 
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3.3 General Linear Model 

 A 3 Condition x 2 Trial-Type repeated measures ANOVA was conducted 

on mean betas extracted from a linear regression on the CI network timecourse. 

The ANOVA yielded a significant interaction that mirrored the conflict adaptation 

effect in its pattern of betas, F (1,41) = 3.688, p < .05 (see Figure 9). This 

interaction was characterized by a maximal effect of trial type in the high 

frequency compatibility condition, with almost no effect of trial type in the low 

compatibility condition. In this sense, the size congruency effect was largest in 

the high compatibility condition and decreased as compatibility decreased. The 

vmPFC network yielded a significant main effect of trial type, demonstrating 

greater activation in response to compatible, relative to incompatible stimuli, F 

Figure 9. An ANOVA on betas extracted from the CI network yielded a significant 

interaction, F (1,41) = 3.688, p < .05. This interaction mirrored the CAE, where 

greatest interference effects were identified in the high compatibility condition, 

and this effect decreased as the frequency of compatibility decreased.  
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(1,41) = 7.390, p < .01 (see Figure 11). No other significant effects were 

identified, including in the lFP network (see Figure 10). No other networks yielded 

significant interaction or main effects. 

 

 

Figure 10. Average betas extracted from the lFP network. An ANOVA on betas 

yielded no significant effects.  

Figure 11. An ANOVA on betas extracted from the ventromedial prefrontal cortex 

network yielded a main effect of trial-type, F (1,41) = 7.390, p < .01. This ANOVA 

did not yield a significant interaction, F (1,41) = 1.72, ns. 
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3.4 Between-Network Functional Connectivity 

 Overall between-network FC was identified by calculating Pearson 

correlation coefficients between the complete timecourses of networks of 

interest; these correlations have been visualized and enumerated in Figure 12. 

Timecourses of the lFP network and CI networks were negatively correlated (r = -

.4815), t(40) = -3.475, p < .05. The timecourse of the CI network was negatively 

correlated with that of both default networks (rvmPFC = -.5488), t(40) = -4.152, p < 

.0001, (rprecuneus = -.4249), t(40) = -2.969, p < .05. The timecourse of the lFP 

network was positively correlated with that of both networks that were selected 

by the default mode network template (rvmPFC = .6365), t(40) = 5.219, p < .0001, 

(rprecuneus = .5030), t(40) = .3681, p < .001. Timecourses of vmPFC and 

precuneus networks yielded the strongest positive correlation of all comparisons 

(r = .8220), t(40) = 9.129, p < .0001. 
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Figure 12. Overall between-network functional connectivity for all networks of 

interest. Pearson correlation coefficients calculated based on correlation of 

timecourses between all networks of interest are enumerated and visualized in 

this correlation matrix. All network pairings can be identified using the network 

legend, and labels on the x and y axes. Colour visualizations of Pearson 

correlation coefficients range from blue (perfect negative correlation) to yellow (no 

correlation) to red (perfect positive correlation). 
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3.5 Condition Induced Fluctuations of Between-Network Functional Connectivity 

The pattern of correlations identified above remained relatively stable 

when investigated in isolated condition windows (see Figure 13). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Condition specific between-network functionally connectivity for all 

networks of interest. Pearson correlation coefficients were calculated based on 

correlation of timecourses extracted from specific condition windows; 

comparisons between all networks of interest are enumerated and visualized in 

these correlation matrices. All network pairings can be identified using the 

network legend, and labels on the x and y axes. Colour visualizations of Pearson 

correlation coefficients range from blue (perfect negative correlation) to yellow (no 

correlation) to red (perfect positive correlation). Each correlation matrix is specific 

to a particular condition, as indicated by matrix titles. 
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Chapter 4 – Discussion 

 

4.1 Preamble 

 Resting state fMRI data has become widely used to assess FC. This has 

been a promising area of research, and has enabled the identification of, as well 

as spatial and architectural characterization of functional networks in the brain 

through a variety of analytical approaches (Dosenbach et al., 2007, 2008; Seeley 

et al., 2007; Cole & Schneider, 2007). However, without an ability to directly 

assess BOLD modulation in the context of a task performed online, it has been 

difficult to consistently functionally characterize the networks under discussion. 

This issue calls for the use of analytical tools for assessing functional networks in 

event-related fMRI data. 

 

4.2 ICA as a tool to identify functional networks in event-related fMRI 

 Twenty stable functional networks were identified from a spatial ICA 

conducted on event-related fMRI data. These networks were consistently 

extracted from the data over 100 iterations of the analysis, starting with random 

initial weightings in each iteration. The networks also appeared spatially 

consistent with functional networks discussed in the resting state literature upon 

visual inspection. The networks extracted consisted of spatial topographies that 

have typically been identified as frontoparietal, cinguloinsular, default mode, 

visual, and motor, among others. Furthermore, networks of interest were 

selected using spatial correlation with templates from the resting state literature 
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(Seeley et al., 2007 and Bluhm et al., 2008). The network that demonstrated the 

highest spatial correlation with each template was selected. Selecting 

components based on spatial correlation with templates from the resting state 

literature allowed us to objectively select components of interest based on a priori 

hypotheses. 

 The ability to extract consistent networks from both resting state and 

event-related fMRI data using ICA is a strong indicator of the robustness of this 

analytical tool, which has been demonstrated in other studies (Calhoun et al., 

2008). This indicates the effectiveness of ICA in moving toward functionally 

characterizing cortical networks. Aside from extracting networks spatially 

consistent with those discussed in the resting state literature, ICA offers several 

other benefits. First, extracted networks include a timecourse that can be used to 

identify BOLD modulation of the network during a task in a standard GLM. This is 

arguably a more direct way to identify whether, and how functional networks are 

involved in specific cognitive tasks. Second, since ICA extracts maximally 

independent sources of spatial variance from fMRI data, sources of artifacts such 

as cardiac rhythms and motion are assigned to their own components; this 

leaves components of interest relatively free from artifactual sources of variance 

(Calhoun & Adali, 2006; Himberg et al., 2004). Furthermore, the spatial 

characterization of our networks takes into account variance from voxels in the 

whole-brain, avoiding potential biases of FC scores based on a priori seed 

selection. These factors made ICA an effective tool for the identification and 
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objective selection of functional networks that could subsequently be functionally 

characterized.  

 

4.3 Network Selection 

 CI and lFP networks were selected based on spatial correlations with SN 

and ECN templates, respectively (Seeley et al., 2007). The lFP network primarily 

consisted of lateral prefrontal cortex and PPC. It was reminiscent of the adult FP 

network investigated using graph theoretic approaches (Dosenbach et al., 2007, 

2008) as well. The CI network extracted included the ACC, AI, and FO. The 

spatial architecture of this network is characteristic of the CP network discussed 

in Dosenbach et al. (2007, 2008). Two networks were selected from correlation 

with a default mode network template (Bluhm et al., 2008). One network 

consisted primarily of vmPFC and another primarily of the precuneus. Together, 

these networks form a typical spatial profile of default networks that have been 

discussed in the resting state fMRI literature. 

 A robust occipital network was chosen as a control network based on 

visual inspection. This network was included to ensure that effects seen in the 

functional analysis of our networks were specific to those which comprised 

regions that have been implicated in control.  
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4.3 Functional characterization of the CI network 

 It was hypothesized that the CI network would demonstrate a pattern of 

betas consistent with the CAE. This prediction was based on the characterization 

of this network as a salience network (Seeley et al., 2007; Menon & Uddin, 

2010). The salience network has been said to ‘flag’ salient events that are 

relevant to a particular task or behavior for further processing. According to this 

characterization, the CI network should engage in bottom-up processes related 

to identifying relevant information during and engaging the relevant control 

processes necessary to inform and appropriate response (Menon & Uddin, 

2010). These processes become most relevant in the high compatibility condition 

of our hybrid task, informing our hypothesis that a pattern of betas extracted from 

the CI network would yield a CAE. This pattern manifested in our data. A typical 

CAE was elicited in the pattern of betas of the CI network; this pattern involved 

greater interference effects in the high compatibility condition relative to the 

medium and low compatibility conditions. Thus, this network demonstrates 

greater modulation in response to conflict that is more salient, or less predictable 

based on the statistical environment. This characterization is not consistent with 

the idea that the CP network (Dosenbach et al., 2007, 2008) is implicated in 

stable task-set maintenance. Representations of the task-set are weakest in the 

high compatibility condition of this task, while demands on moment-to-moment 

adjustments in control are strongest (Wilk et al., 2012). The BOLD signal in the 

CI network was most strongly modulated during the high compatibility condition, 

implicating its involvement in processing moment-to-moment adjustments in 



32 
 

 

control. This finding is consistent with findings from our voxel-wise GLM analysis, 

where ACC and AI were identified by a predictor that probed moment-to-moment 

adjustments in control  (Wilk et al., 2012). 

 These findings indicate several characteristics associated with cortical 

regions involved in the CI network. First, it appears that regions of the ACC, AI, 

FO, thalamus, and limbic structures function as a functionally integrated network 

in the context of Executive Control Tasks. Second, these regions appear to be 

involved in the processing of moment-to-moment adjustments in control; they are 

related to processing unpredictable conflict that is statistically infrequent in the 

context. Third, these regions appear to operate independently from other areas, 

specifically FP areas, that have been previously associated as part of an 

integrated CCN (Cole & Schneider, 2007). 

 

4.4 Functional characterization of the lFP network 

FP regions have often been implicated in executive control tasks (Wilk et 

al., 2012, Cole & Schneider 2007). The FP network has been characterized as 

an executive control network based on the correlation between connectivity in 

this network and offline executive control tasks (Seeley et al., 2007). It has also 

been proposed that this network is involved in moment-to-moment adjustments in 

control (Dosenbach et al., 2007, 2008). In this GLM, an ANOVA on betas 

extracted from the lFP network yielded no significant effects. Based on previous 

implications of this network in executive control, it was hypothesized that it would 

yield a significant conflict effect. Furthermore, according to the Dosenbach et al. 
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(2007, 2008) account, it would have yielded a pattern of betas reminiscent of the 

CAE, as was identified in the CI network. That the lFP network yielded no 

significant effect in this GLM appears to indicate that it is not involved in moment-

to-moment adjustments in control as they are measured by this task. However, 

with extant evidence strongly indicating this network’s involvement in executive 

control, this could be related to the type of analysis and scale of networks under 

investigation in this study. Frontoparietal regions are distal cortical regions 

connected by long-range white matter connections (Eickhoff et al., 2010). While 

they are strongly functionally connected, it is feasible that they are involved in 

different executive control processes that are related but dissociable; this could 

lead to challenges in identifying BOLD modulation across the whole network 

during task performance. Both dlPFC and PPC appear to be involved in this task 

(Wilk et al., 2012), however, this effect does not appear to be detectable when 

investigating how these regions function as a whole unit. 

 

4.5 Functional characterization of the vmPFC default network 

 The vmPFC network extracted from a default mode template (Bluhm et al., 

2008) yielded a significant main effect of trial type, but no significant interaction. 

Previous studies assessing default network BOLD modulation during executive 

control tasks have indicated that the network, particularly the vmPFC node, can 

be modulated by cognitively demanding tasks (Sridharan, Levitin & Menon, 2008; 

McKiernan et al., 2003). This network demonstrated greater activation for 

compatible stimuli relative to incompatible stimuli, the opposite modulation 
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typically identified in task-active networks. This finding is consistent with 

evidence in the cognitive control literature that indicates deactivation in this 

network in the face of cognitively demanding tasks, and activation of this network 

at rest (Sridharan, Levitin & Menon, 2008; Hasson et al., 2009; McKiernan et al., 

2003). 

 

4.6 Between-network FC 

 As anticipated, timecourses of the CI and lFP networks were significantly 

correlated. However, this was a negative correlation, which appeared to be 

driven by strong stimulus-induced negativities in the timecourse of the CI 

network. The negative post-stimulus deflection in the CI timecourse was explored 

at length, and it appeared to be a consistent finding that drove both the negative 

betas identified in our functional analysis, and negative correlations between the 

CI network and other networks under investigation. However, since this 

timecourse is back-reconstructed from variance across a large number of voxels 

involved in the component, the valence of network BOLD signals associated with 

independent components can be more challenging to interpret relative to that of a 

single voxel or ROI.  Subsequently, patterns of modulation and correlation 

become the focus of ongoing analyses, rather than the valence of these 

relationships. 

 The CI network timecourse was significantly negatively correlated with 

both default network timecourses. This pattern is relatively typical of other 

findings in the cognitive control literature. Typically, default regions are 
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deactivated to the degree that individuals are engaged in cognitively effortful 

tasks (Sridharan, Levitin & Menon, 2008; Hasson et al., 2009; McKiernan et al., 

2003); thus, one might expect that conflict processing in a high compatibility 

condition, and subsequent modulation of the CI network would be negatively 

related to modulation of the default networks. 

vmPFC and precuneus default networks demonstrated the strongest 

positive correlation identified out of all our between-network correlations. These 

regions are often clustered within a unified default mode network (Bluhm et al., 

2008); the strong positive correlation between these regions is highly consistent 

with the default network literature and indicates that despite being unmixed in this 

ICA, these components often operate in unison. 

 

4.7 Condition-specific between-network functional connectivity 

 The pattern of between-network correlations was quite consistent across 

different conditions. Several factors likely underlie the consistency identified in 

functional connectivity across conditions. First, the difference between conditions 

in this task is relatively subtle. While differences in the statistical environment of 

compatibility in a number comparison task influences conflict processing, 

participants were viewing the same type of stimuli and performing very similar 

motor, and cognitive operations aside from disentangling conflict. It is 

conceivable that more drastic contrasts in task conditions would be necessary to 

stimulate differences in FC between large-scale functional networks. Second, the 

time windows from which condition-specific FC correlation coefficients were 
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calculated were substantially shorter than time windows used to measure overall 

between-network FC. This likely explains the reduction in between-network FC in 

the condition specific analysis, relative to the overall between-network FC 

analysis.  The reduction of power in this analysis might also have mitigated our 

ability to identify subtle differences in FC patterns in different conditions. Third, 

the scale of these networks is quite expansive. Our analysis was conducted with 

a relatively low model order; therefore, large scale networks were extracted that 

were comparable to those discussed in the resting state literature. The scale of 

the networks likely diluted our ability to identify condition specific changes in 

functional connectivity, which could be specific to smaller cortical regions. 

 

4.8 Limitations and Future Directions 

 ICA is a promising tool for studying the structure and function of cortical 

networks using fMRI. However, the scale of networks extracted in this study 

limited subsequent analysis on timecourses in the GLM analysis, and between-

network FC analysis. A low model order was chosen, extracting only 20 

components from the raw data to ensure that the networks extracted from our 

event-related data were comparable in scale to those extracted from resting state 

data in the literature (Seeley et al., 2007, Dosenbach et al., 2007, 2008). 

However, this reduced the comparability between our GLM findings and findings 

from ROI or whole-brain GLM analyses. Timecourses in this analysis were based 

on raw data from a large number of voxels. This was beneficial in the sense that 

a whole network could be functionally characterized based on its timecourse; 
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however, our ability to draw reference to previous findings from the fMRI 

literature was reduced by the scale of these networks. Furthermore, the same 

issue impacted our between-network FC analysis, particularly the analysis of 

condition specific between-network FC. As mentioned, the scale of the networks 

likely diluted subtle, region specific differences in FC that might have been 

identified in smaller-scale networks. 

 Two approaches could mitigate some of these issues in follow-up 

analyses. First, a high model order could be specified in the initial ICA, to extract 

more functional networks that are of smaller scale from the raw data. It would be 

then be possible to identify the smaller networks that were absorbed into a single 

CI or lFP network in this analysis; these ‘subnetworks’ could be identified using 

spatial correlation with CI and lFP templates generated in this study. A second 

alternative involves using the CI or lFP networks generated in this analysis as a 

mask in an ICA analysis to identify smaller functional networks within each of 

these large-scale networks. If small-scale networks were identified by either of 

these approaches, GLM and between-network FC analyses could be conducted 

with greater efficacy and sensitivity. 
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Chapter 5 – Summary and Conclusions 

 

 This study is unique in its attempt to functionally characterize large-scale 

networks by modeling variance in their activity timecourses. The robustness of 

ICA was replicated, as well as its ability to identify consistent functional networks 

in both resting and event-related fMRI data. Using a spatial selection criterion, 

components were objectively extracted from an ICA on event-related fMRI data 

that were spatially correlated with those identified in resting state FC analyses. 

ICA is unique among tools for assessing FC, in that networks identified are 

associated with a timecourse. This enabled a direct assessment of BOLD 

modulation in these functional networks during specific aspects of a cognitive 

control task. Effects that implicated a CI network in moment-to-moment control 

processing were identified, consistent with the characterization of this network as 

a salience network. Timecourses associated with functional networks in this 

study also enabled a between-network FC analysis; however, the scale of 

networks under investigation limited our ability to identify condition specific 

changes in FC. ICA offers promising solutions to this issue that can be 

implemented in future studies. 

 Overall, this study emphasized the benefits of and potential to studying 

networks as functionally cohesive units, rather than distributed regions. It also 

demonstrated the ability to identify dissociations in network function using a task 

that independently probes specific cognitive demands in a single task. With 

ongoing research, it will be possible to identify executive control processing 
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across integrated functional networks, and understand how each network is 

related to specific control processes. 
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