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ABSTRACT 
 A markerless RSA method was used to determine the effect of orthotics on the 

normal, pes planus and pes cavus populations. Computed tomography (CT) was used to 

create bone models that were imported into the virtual environment. Joint coordinate 

systems were developed to measure kinematic changes in the hindfoot during weight-

bearing gait and quiet standing. The objectives of this thesis were to (1) implement a 

fluoroscopy-based markerless RSA system on the foot, (2) determine the effect of 

various orthotics at midstance of fully weight-bearing dynamic gait, and (3) determine 

the effect of orthotics as measured using three different techniques. Every individual in 

this study reacted differently depending on the footwear condition tested. Despite the 

change in alignment caused by orthotics lacking statistical significance it appears the 

change may be significant with more subjects.  Fluoroscopy should enable substantial 

improvements in orthotic design for optimal results in the future. 

 

Keywords: fluoroscopy; radiostereometric analysis (RSA); hindfoot; orthotics; 

kinematics; computed tomography (CT); pronation; supination 
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CHAPTER 1- INTRODUCTION   
 

OVERVIEW: The current state of biomechanics research surrounding the 

foot and ankle region and the effect of orthotic insoles requires a more 

thorough analysis. This chapter begins by detailing the most common 

methods presently used for quantifying joint kinematics. It then outlines 

the history of radiostereometric analysis (RSA) and its applications. A 

brief summary of foot anatomy, orthotics, and kinematics that will be 

required for subsequent chapters is also given. The chapter concludes 

with rationale, objectives and hypotheses of this work.  

 

  

1.1 TRADITIONAL METHODS TO ANALYZE JOINT 

BIOMECHANICS 

 Biomechanics is the study of mechanical behaviour of biological tissues, 

segments and bodies. The study of biomechanics dates back more than two thousand 

years ago. The biomechanical research of Aristotle (384-322 BC), Leonardo da Vinci 

(1452-1519), Galileo Galilei (1564-1642) are just a few examples that biomechanics was 

an important part of the Greek Revolution as well as the European Renaissance 

(Humphrey, 2002). Orthopaedics is the medical specialty that focuses on injuries and 

diseases of the body's musculoskeletal system including: bones, joints, ligaments, 

tendons, muscles and nerves. These are the fundamental aspects that allow for 

movement, work, and daily activity. The technological methods used to explain 

orthopaedic biomechanics are constantly evolving when questions still remain 



2 
 

 
 

unanswered regarding disease progression, compensation mechanisms, recovery 

techniques and success.  

 The study of biomechanics can be divided into two groups: kinematics and 

kinetics. Kinematics defines the range and nature of motion in any joint and describes 

the motion of a body segment in three planes: frontal (coronal or longitudinal), sagittal, 

and transverse (horizontal) (Nordin & Frankel, 2001). Kinematics is concerned with the 

description of motion, but not with the causes of motion. Kinetics on the other hand is 

concerned about the causes of motion. Kinetics is the study of forces and moments of 

force acting on tissues, body segments and joints both statically and dynamically (Nordin 

and Frankel, 2001). In this thesis the kinematics of interest are specifically those of the 

bones within the human foot and ankle. 

 There are numerous methods used to quantify human joint motion both in-vivo 

and in-vitro. In-vivo is considered to be experimentation using a whole, living organisms 

as opposed to an in-vitro which uses partial or dead organisms in a controlled 

environment. In-vivo testing is generally preferred over in-vitro because it's better suited 

for observing overall effects of an experiment on a living subject. In-vitro techniques 

include using cadavers to mimic real-life motions (Ferreira et al., 2010), as well as testing 

implant wear (Burton et al., 2012), and subjecting the specimen to scenarios that would 

never be approved in living creatures (Hashimoto et al., 2012). The investigation of 

tissue loading, in particular, bone, ligaments and tendons are essential from a clinical 

perspective to gain insight into injury mechanisms, and biomechanical function. In-vivo 

experiments consist of two types: invasive and non-invasive. Ethically it becomes more 
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challenging with in-vivo experimentation especially one in which the technique used is 

invasive.  Examples of some invasive measurement techniques involve the use of bone 

pins (McClure et al., 2001) or transducers, and standard radiostereometric analysis 

(Kedgley, 2009). Invasive techniques require penetration of the skin which lends itself to 

complications (Tranberg, 2011). Invasive techniques may be more accurate and 

reproducible however they are generally less accessible and less safe for those involved 

(Tranberg, 2011). Non-invasive techniques to measure in-vivo kinematic measurement 

include: goniometers, potentiometers, inclinometers, photographic and video cameras, 

optical and electromagnetic tracking systems, and medical imaging techniques (Futai et 

al., 2010; Allen, 2009; Svedmark et al., 2011). Each technique is more applicable to 

certain applications, and includes both advantages and disadvantages.  

1.1.1  GONIOMETER, POTENTIOMETER, AND INCLINOMETER 

 A goniometer is an instrument commonly used to measure a joint angle. This 

device is essentially a protractor containing two long arms which rotate about a central 

axis. The central axis may be attached to the joint of interest and the angle is read 

manually. Consequently, this device is limited to static positions. A potentiometer is a 

form of sliding-contact resistive transducers that converts a mechanical displacement 

input into an electrical output based on the change in the effective length of a 

conductive material located within the device. A potentiometer can be incorporated into 

a goniometer to allow electronic readings which can be used to measure both static and 

dynamic measurements. An inclinometer is an instrument for measuring angles of slope, 
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and elevation or depression of an object with respect to the horizontal. They can be read 

both manually or electronically.  

 Advantages with goniometers and inclinometers include that they are relatively 

inexpensive, provide immediate output and are portable. However, they are only able to 

measure relative angles not absolute, they may be difficult to align correctly with the 

bones of interest, and their measurements could be inaccurate due to their movement 

relative to the underlying anatomy during subject motion. Additionally, goniometers act 

as a simple hinge that can only measure motion about a single axis which could 

constrain the motion of a subject. With this in mind goniometers are not useful in 

measuring complex motions, making precise or accurate measurements, especially 

when there may be a significant mass of soft tissue between the skin and the bone 

(Winter, 2009). Goniometers are useful for a quick, single joint measurement where high 

precision and accuracy are not required.  

1.1.2 PHOTOGRAPHIC AND VIDEO CAMERAS 

 High-speed photographic and video camera techniques are capable of capturing 

full body motion without interfering with the movement. Video cameras have been used 

to analyze factors in running such as step length, step frequency and contact time on the 

ground (Padulo et al., 2011). In addition video cameras have been used to measure 

posture (Xu et al., 2011), and body segment joint angles (Mizner et al., 2012; Winter, 

2009). The cameras can be high speed with capture rates around 210 frames per second 

(Padulo et al., 2011) or can be standard capture at 30 frames per second (Mizner et al., 

2012). Generally, the camera is located far enough away from the subject so motion is 
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not interrupted and the angle is usually setup to be perpendicular to the plane of 

interest. For example if camera is located perpendicular to the sagittal plane motions 

step length (Padulo et al., 2011) and posture (Xu et al., 2011) can be measured. The 

aperture speed of the camera allows the movements to be captured without blurring. 

One advantage of the high speed cameras is the lack of image degradation during the 

subjects' movements. Multiple cameras are required if three-dimensional (3D) 

measurements are desired. Projection errors may occur if a single camera is used 

because the motion of the subject may not be directly in line with the cameras view 

(Bechard et al., 2009). Analysis of kinematics using a video cameras sequence of images 

can be completed using motion analysis software such as Dartfish 5.5 Pro (Dartfish; 

Swiss Federal Institute of Technology, Fribourg, Switzerland) or ImageJ (ImageJ; National 

Institutes of Health, Bethesda, Maryland). These programs can be used to digitize the 

location of landmarks on the body or markers that have been attached to the body to 

determine kinematic changes during a study. The accuracy associated with this 

measurement technique is dependent on the sample rate used, the use of markers, and 

the distance from the subject. Data from at least two cameras can be combined by 

calibrating the volume of interest with an object of known dimensions using methods 

similar to optical motion tracking systems, described in the next section. This additional 

data will allow for the kinematics to be quantified in three dimensions.  

1.1.3 OPTICAL AND ELECTROMAGNETIC TRACKING SYSTEMS 

 Three-dimensional optical and electromagnetic tracking systems are used to 

more accurately quantify kinematic motion in three dimensions. Optical motion systems 
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use a series of cameras that track sets of either passive (light-reflecting) or active (light-

emitting) markers. Passive systems, such as the six-camera real-time motion analysis 

system (Hawk cameras, Cortex software system, Motion Analysis Corp., Santa Rosa, 

California, USA) at the Wolf Orthopaedic Quantitative Imaging Laboratory (WOQIL), 

track reflective markers. Active systems such as Cortex (Northern Digital Inc., Waterloo, 

Ontario, Canada) track infrared diodes that may either be wired or wireless. In both the 

passive and active systems markers are placed on anatomical landmarks or body 

segments of interest. In an optical motion capture system (passive or active) a person is 

required to have markers on some body parts. Reflective markers need to be placed in a 

location where the skin is close to the bone in order to reduce the introduction of skin 

motion artifact (explained in detail in section 1.1.4). The markers are generally placed on 

specific joint locations or feature points of interest on the human body. Optical motion 

capture systems are commonly used to analyze gait. There are two common marker sets 

used in gait analysis laboratories. These include the Cleveland Clinic Marker Set and the 

Helen Hayes Marker Set (Madihally, 2010). The Helen Hayes marker set was developed 

at the Helen Hayes Hospital and is the more popular of the two. In the Helen Hayes 

marker set, 15 markers are placed over bony landmarks. The markers are captured by 

the cameras to define joint centers and relevant axes of rotation. The markers typically 

reflect the infrared light, which is picked up by the cameras in a direct sight to the 

marker. So long as at least two cameras can image the marker, direct linear 

transformation (DLT or triangulation) and multi-based correlation methods are used to 

estimate the position of the markers with respect to the cameras and the laboratory 
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frame of reference (Madihally, 2010). Provided three markers per segment are 

triangulated, a post-processing software package (i.e. Cortex and OrthoTrak; Motion 

Analysis Corporation, Santa Rosa, CA, USA) calculates the position and orientation of the 

segment with respect to its more proximal segment. This is most often reported as Euler 

angles or joint angles. While some user intervention is sometimes required to manually 

identify markers whose trajectories are fragmented or truncated, the tracking of 

segments is almost entirely automated by the motion capture system. The disadvantage 

with optical motion capture is the requirement that at least two cameras have line of 

sight to each marker at all times. Otherwise if the marker is obstructed, there is 

ambiguity in the marker location and the segment cannot be tracked (Kapur et al., 

2010). Despite the limitations optical motion capture systems have been used to 

quantify in-vivo kinematics of the shoulder (McQuade and Smidt, 1998; Meskers et al., 

2007), the elbow (Van Roy et al., 2005), the spine (Burnett et al., 2008; Ma et al., 2009), 

the hip, knee, ankle and foot (Gribble et al., 2009; Jenkyn and Nicol, 2007; Jenkyn et al., 

2010).  

 Electromagnetic tracking devices such as 'Flock of Birds' (Ascension Technologies, 

Burlington, Vermont, USA) function by using a transmitter to track up to 16 receivers in 

six degrees of freedom (DOF; i.e. three rotations and three translations). The receivers 

are rigidly attached to the bony landmarks of interest within a joint. The transmitter 

emits an electromagnetic field which is detected by the receivers. Since the bones move 

the three-dimensional position and orientation of the receivers with respect to the 

transmitter's location is calculated and recorded. The device functions by measuring the 
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strength of the magnetic fields generated by sending a current through three small wire 

coils oriented orthogonal to one another. Applying a current to the wire allows each 

wire to be an electromagnet. By activating each of the wires and measuring the 

magnetic fields generated the position and orientation of the sending unit can be 

received and deciphered. This type of tracking system can be used for in-vivo and in-

vitro studies. Electromagnetic tracking systems have been used to measure in-vivo 

kinematics such as neck mobility (Koerhuis, 2003), and ankle-hindfoot stability 

(Watanabe et al., 2012). Electromagnetic tracking systems have also been used to 

measure in-vitro kinematics in the elbow (Sabo et al., 2011), knee (Bjornaraa and Di 

Fabio, 2011), foot and ankle (Brown et al., 2009). Milne et al. (1996) has shown that the 

receiver and transmitter distance has an optimal operational range between 22.5 and 

64.0 cm. Over a 1° to 20° range the mean rotational error was found to be 1.6%. The 

'Flock of Birds' electromagnetic device was sensitive enough to read positional and 

orientation changes of 0.25mm and 0.1°, respectively (Kedgley, 2009). Electromagnetic 

tracking systems have the advantage that magnetic fields can pass through most 

materials, metals excepted, so a direct line of site is not necessary between the 

transmitter and the receiver as required in optical motion capture. Each receiver is built 

with three coils thus creating its individual coordinate system. This is an advantage over 

the optical tracking systems where three non-collinear markers are required. 

Electromagnetic tracking systems are susceptible to interference from ferro-magnetic 

and conductive metals, producing errors in the locations of the position of the receivers 

being tracked (Kapur et al., 2010). Despite the limitations of the electromagnetic 
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tracking systems they have been used to quantify in-vivo kinematics of the shoulder 

(Meskers et al., 1998; Myers et al., 2006), the spine (Shum et al., 2007), the elbow 

(Bottlang et al., 2000), and the hip, knee and ankle (Hemmerich et al., 2006).  

 The advantages of using either an optical or electromagnetic tracking system 

include the capability of a fully dynamic analysis as well as the high sampling frequency. 

The Cortex system at the WOQIL can sample up to 200 frames per second, much faster 

than standard video cameras. The data is presented in an absolute reference frame, 

allowing for less complicated data processing. There are still disadvantages with these 

systems, including the high cost. Most electromagnetic and active marker based optical 

systems contain interference from the wires which may results in subjects producing 

movements not associated with uninhibited conditions. The greatest disadvantage with 

both optical motion capture and electromagnetic capture systems is the introduction of 

skin motion artifact error into the captured trajectories.  

1.1.4 SKIN MOTION ARTIFACT 

 Skin motion artifact is inaccuracy in bony anatomy tracking measured with skin-

mounted sensors or markers (such as in optical and electromagnetic systems) due to the 

skin moving relative to the underlying bone. When bony landmarks need to be located, 

they must be digitized through the skin with optical and electromagnetic systems. Skin 

motion artifact errors arise due to a combination of inertial effects of soft tissue, skin 

deformation and sliding, and motion due to the muscle contractions (Leardini et al., 

2005; Shultz et al., 2011). Information about joint movement will have a limit to its 

accuracy so long as skin motion artifact error is present because the magnitudes of the 
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skin motion errors are usually larger than accuracy of optical and electromagnetic 

measurement systems, are task dependant, and are not reproducible between subjects 

(Leardini et al., 2005; Shultz et al., 2011). During toe-off of the foot the highest skin 

motion artifact was found for both the navicular and the calcaneus bones (Tranberg and 

Karlsson, 1998). The smallest errors were found for the bases and the heads of the 

metatarsals bone. The maximal deviation in the position of the markers was 4.3mm 

(Tranberg and Karlsson, 1998). Shultz et al., found the skin motion artifact ranged 

between 6.46 to 16.72mm. The larger estimate of skin motion artifact errors in the 

Shultz study compared to the Tranberg and Karlsson study was thought to be caused by 

the increased inertia of the passive optical markers being organized in triad clusters 

(Shultz et al., 2011).  

 In order to avoid the error associated with skin motion artifact, optical motion 

analysis systems and electromagnetic systems may be used in conjunction with markers 

attached with bone pins (Arndt et al., 2007; Larfortune et al., 1992; Karduna et al., 

2001). While the bone pin method provides good kinematic data it is generally too 

invasive to be practical for larger sized studies. The method has an inherent risk of 

infection; subjects may experience discomfort and as such may not be able to move in a 

normal manner. The large skin translations, passive motion of the skin and active muscle 

contraction may interfere with the bone pins by moving or bending them (Karduna et 

al., 2000; Benoit et al., 2006). Other solutions to the skin motion artifact problem 

include least-squares corrections post hoc (Sodkervist and Wedin, 1993; Chèze et al., 

1995; Veldpaus et al., 1998; Klous and Klous, 2010), linear interpolation post hoc (Dumas 
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and Cheze, 2009), linear regression post hoc (Meskers et al., 1998), and filtering of 

marker trajectories with smoothing filters (Cerveri et al., 2005). 

1.1.5 MEDICAL IMAGING TECHNIQUES 

 One of the biggest factors limiting the improvement of the study of human joint 

motion is skin motion artifact, particularly in the joints of the foot (Shultz et al., 2011; 

Arndt et al., 2007). Medical imaging has the advantage of allowing the bones to be 

viewed directly, removing error associated with skin motion artifact. There are three 

main techniques used in orthopaedic biomechanics. These include x-ray and 

fluoroscopy, computed tomography (CT) and magnetic resonance imaging (MRI).  

1.1.5.1 PLANE X-RAY AND FLUOROSCOPY 

 Plane x-ray images are two-dimensional (2D) projections of an object onto a film 

(or digitally onto a flat panel), produced by the interaction of x-rays with the various 

tissues of the body. Fluoroscopy is an imaging technique that is used to obtain real-time 

dynamic images of the internal structures of a patient through the use of a fluoroscope. 

Fluoroscopy units contain an image intensifier (II) along with a closed-looped television 

system. The principal component of the imaging chain that distinguishes fluoroscopy 

from plane x-ray is the image intensifier (Bushberg, 2002). The imaging chain of a typical 

fluoroscopy machine is seen in Figure 1.1.  
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Figure 1.1: Fluoroscopy imaging chain loop.  

 The diameter of the II can be as large as 16 inches. Fluoroscopy imaging is 

capable of 'real-time' capture rates, 30 interlaced frames per second, which is the same 

as the standard television frame rate. Clinically, fluoroscopy units are used to help 

visualize internal anatomy and components during procedures such as angiography and 

orthopaedic nailing and rodding. Plane x-rays have the advantage of being a commonly 

available in medical practices. Plane x-rays have been used to study kinematics of the 

knee (Frankel et al., 1971; Mu et al., 2011), the shoulder (Poppen and Walker, 1976; 

Howell et al., 1988; Burkhart, 1992), the foot (Tranberg and Karlsson, 1998; Löfvenberg 

et al., 1989), and the spine (Dunk et al., 2009). Plane fluoroscopy has been used to 

examine several joints including the shoulder (Talkhani and Kelly, 2001), the spine 

(Auerbach et al., 2007), the knee (Wada et al., 2001) and the foot (Wearing et al., 1998). 

The subject is limited to static image capture during a plane x-ray examination, but 

during fluoroscopy motion can be captured. Dynamic fluoroscopy has previously tested 
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knee kinematics while walking on a treadmill (Forokji et al., 2012). Plane fluoroscopy 

may have the subject hold positions as instructed by the technician to compare bone 

kinematics of the left and right shoulder (Matsuki et al., 2011). Plane fluoroscopy has 

previously been used in the foot to measure deformable characteristics (Wrbaskić, 

2007), as well as motion in the human arch during gait (Wearing et al., 1998).  

 The main disadvantages of plane x-rays and fluoroscopy is the mandatory 

exposure to ionizing radiation. The use of 2D imaging techniques to record a 3D motion 

will result in projection errors that are unavoidable. It is highly unlikely that the motion 

of interest will occur exactly in the plane of the image. In order for this to be possible the 

axis of rotation of the joint of interest should be perpendicular to the image plane (van 

der Helm and Pronk, 1995; de Groot, 1999). However, the axes of most joints are not 

consistently in one plane throughout their range of motion (ROM) (Duck et al., 2003). In 

addition to this it is difficult to ensure that volunteers precisely position themselves in 

the plane of interest as required (Howell et al, 1988).  

1.1.5.2 COMPUTED TOMOGRAPHY (CT) SCAN 

A CT scan is an x-ray based imaging method that uses multiple x-ray views and 

tomography to create a three dimensional image of internal anatomy. A CT combines a 

series of x-ray views taken from multiple angles to produce cross-sectional images of 

both the bones and soft tissues inside the body (Bushberg, 2002). The tomograms (also 

known as the cuts) for the CT are usually made approximately 5mm or 10mm apart 

(these values can vary) (Bushberg, 2002). The CT machine rotates 360 degrees around 

the subject’s body. The machine picks up and records the absorption rates of the varying 
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thicknesses of both bone and tissue. Three-dimensional reconstruction of the CT slices is 

possible through the use of computer software such as OsiriX (Advanced Open-Source 

PACS Workstation DICOM Viewer, Antoine Rosset, USA). It has been shown that CT scans 

have a spatial accuracy of 99.2±0.8% of distances measured (Smith et al., 1989). Multi-

planar reconstruction is the simplest technique which creates the 3D model by stacking 

the axial slices. Another method is surface rendering. This uses the idea of a threshold 

value set by the operator, for example, a threshold value that corresponds to bone. 

Through the use of this threshold value a three-dimensional model of the bone can be 

created using edge detection image processing techniques. Multiple models can be 

created by using various threshold values (i.e. for muscle or for cartilage).  CT scans can 

be used in conjunction with other methods or on their own. A CT image can be used to 

measure three-dimensional kinematics statically of the arm (Kataoka et al., 2012; Roach, 

2012), the spine (Hioki et al., 2011), and the foot and ankle (Green et al., 2011). The 

greatest disadvantage is the exposure to ionizing radiation. A disadvantage for 

biomechanical studies solely using CT imaging is only being able to capture static images. 

When motion occurs during a CT image acquisition the final result becomes blurry and 

difficult to analyze. The subject also needs to hold their position for much longer than 

would be required for a plane x-ray image to be captured.  

1.1.5.3 MAGNETIC RESONANCE IMAGING (MRI) 

An MRI is a medical imaging technique that also provides a three-dimensional 

image of internal structures of the body. An MRI machine uses a powerful magnetic field 

to align the magnetization of some atoms within the body (Bushberg, 2002). Since the 
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body is largely composed of water molecules (each containing two-hydrogen nuclei or 

protons) when a person enters an MRI machine the powerful magnetic field of the 

scanner affects the magnetic moments of some of these water nuclei. These change and 

align with the direction of the created field. An MRI machine uses a radio frequency 

transmitter to produce the electromagnetic field. Just the right amount of energy is used 

to flip the spin of the aligned protons in the body. The position information is found 

using the resulting signal by the mathematical Fourier transform technique (Bushberg, 

2002). An image can be constructed this way because the protons in the tissues return 

to their equilibrium state at different rates which can be detected. MRI is particularly 

useful for imaging parts of the body with many hydrogen nuclei and little density 

contrast, such as the brain, muscle, connective tissue and most tumours. MRI is superior 

to CT in that it does not require the use of ionizing radiation. However, this imaging 

technique makes it more difficult to create a bone model due to the low bone contrast. 

MRI has been used on its own to measure kinematics in the body during static 

conditions in the foot (Fassbind et al., 2011) and the knee (Kothari et al., 2012). MRI is 

limited in measuring kinematics alone due to the slowness associated with its 

acquisition. This type of medical imaging requires the subject stay static for the time of 

the scan.  

When analyzing implant motion the manufacturer may have a generic 3D 

computer aided design (CAD) model that can be used in place of individual CT or MRI 

models of the anatomy. The CAD model technique cannot be used in-vivo unless only 

the kinematics of implanted portion is of interest. A CT scan was used to create 3D bone 
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models during the work of this thesis due to its advantages outweighing the 

disadvantages associated with this imaging technique compared to the other techniques 

discussed.  

 Clinical measurements pertaining to joint range of motion define the anatomical 

position. This is necessary to track 3D joint motion in order to quantitatively measure 

the effects of medical interventions such as orthopaedic surgeries, physiotherapy 

programs, and pedorthic foot adjustments. Skeletal kinematics can provide information 

regarding the normal joint function, development and progression of musculoskeletal 

diseases, and injuries. Currently there are various methods available to assess joint 

kinematics, but it remains difficult to do so both accurately and non-invasively.  

 

1.2 HISTORY OF RADIOSTEREOMETRIC ANALYSIS (RSA) 

1.2.1 STANDARD RSA 

Stereophotogrammetry is a method of using two simultaneous two dimensional 

images to create a three dimensional image of a structure of interest (Selvik, 1989). The 

method is more than a century old; however in 1974 Selvik applied the technique to x-

ray stereophotogrammetry in order to measure a relative rigid body motion of a skeletal 

system (Selvik, 1989). Selvik named his method Roentgen stereophotgrammetric 

analysis (RSA), which is presently interchangeable with the terms radiostereometric 

analysis and radiostereometry (Valstar, 2005). The method of RSA developed by Selvik 

will be considered standard RSA when continuing onto discuss markerless RSA 

techniques. 



17 
 

 
 

Standard RSA relies on tantalum makers placed in the bone surrounding as well 

as on an implant to be measured. In order to determine the pose of a rigid body at least 

three non-collinear markers are required on the body at known locations. The 

combination of position and orientation refers to the pose of an object. It is 

recommended to use between six and nine markers since the markers can be obscured 

by metal objects and can become out of view during the motion (Valstar, 2005). Small 

spherical tantalum markers are used almost exclusively as well-defined landmarks. They 

can be inserted into the bone and can also be attached to surgical implants (Valstar, 

2005). Tantalum markers are considered bio-inert and as such have been determined to 

be biochemically acceptable as a biomaterial. Clinically, a tantalum bead is used as a 

marker for standard RSA due to its high density, making it easy to distinguish after being 

x-rayed. The beads are implanted during surgery. A maximal error reported by Selvik in 

the laboratory environment using standard RSA ranged between 0.02mm to 0.45mm 

and from 0.02° to -0.19° (Selvik, 1989). The implantation of markers onto the bone has 

some ethical challenges associated with the invasive process required for the insertion 

of the tantalum beads. The reasoning for conducting this invasive method is due to its 

high accuracy in measuring skeletal kinematics. Standard RSA has found wide application 

in orthopedic implant research. Standard RSA can be done using either an x-ray or a 

fluoroscopy medical imaging device. X-ray is able to take a static roentgen image 

whereas a fluoroscopy unit is able to capture dynamic images in addition to static. The 

use of x-ray RSA or fluoroscopy based RSA kinematic analysis comes with both 

advantages and disadvantages. Common benefits to conducting research using standard 
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RSA techniques include its high accuracy in measuring skeletal kinematics. Fluoroscopy 

RSA has the advantage over x-ray RSA of being able to capture x-ray images in real time. 

Standard RSA has been used to measure kinematics of the shoulder (Kedgley, 2009), 

knee (Hurschler et al., 2009; Fleming, 2001), and implant migration (Hurschler et al., 

2008). 

1.2.2 MARKERLESS RSA 

Markerless RSA relies on anatomical landmarks. Rather than relying on embedding 

tantalum markers in the bone, image processing techniques have been used to locate 

the position of the bone. In this thesis surface models of the bone were segmented and 

matched to the radiographic image pairs by the approach used in the model-based 

method. An algorithm is used to recreate the experimental conditions. The choice in 

segmentation software may also affect accuracy. The bone segmentation program used 

in this thesis (OsiriX DICOM Viewer) has been validated by previous researchers 

comparing results to leading medical imaging software available and has proven to have 

a maximal error of 0.3mm (Kim et al., 2012). 

If a study were to use tantalum beads, in the case of standard RSA, to study 

implant wear the cost would drastically increase in addition to the period of time 

required to complete the research. Markerless RSA removes the need to insert beads 

into bones and implants under study. Studies have discussed that marking the implant 

with beads can compromise the strength of the implant as well as the beads causing a 

local stress risers. These stress risers could result in cracks in the bone cement as well 

reduced bone fixation (Kaptein et al., 2003). Although the markerless RSA technique on 
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its own is relatively new its origins actually date back to the first RSA study to analyze 

total hip prostheses wear and movement (Baldursson et al., 1979). Baldursson et al. not 

only used the inserted beads as markers but the femoral head and the ends of the wire 

in the acetabular socket as additional markers. Other groups have used prosthetic 

landmarks such as the head, shoulder, and tip of the femoral components.  

The use of markerless RSA techniques today needs to be able to analyze complex 

landmarks. More generally, applicable markerless RSA methods were developed in order 

to accommodate these complex landmarks. These markerless RSA methods have various 

names depending on the algorithms employed and laboratories in which the studies 

were conducted. Some of these names include image-based RSA (IBRSA) (de Bruin, 

2008), image matching method (Fox, 2011; Allen, 2009; Kedgley, 2009; Bingham and 

Rowell, 2006; Li et al., 2006), model-based tracking (Kaptein et al., 2003; Komistek et al., 

2000), and model based Roentgen stereophotogrammetry (Valstar, 2001). 

A previous study evaluated the translational and rotational motions of the distal 

tibia relative to the talus in subjects that have had total ankle arthroplasty (TAA). The 

group completing this study used three-dimensional CAD models of the components of 

interest within the TAA (Komistek et al., 2000). This CAD method of markerless RSA is 

only possible if you are only interested in a manufactured part that could have been 

modeled prior to implantation. Markerless RSA is superior to traditional RSA because it 

is unnecessary to implant beads onto a bone. The implantation of tantalum beads is 

generally only approved if surgery on the joint of study is going to be preformed 
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regardless. This means studying the normal population becomes impossible with 

traditional RSA techniques.  

1.3 HUMAN FOOT 

This thesis focuses on the affect orthotics have on the human hindfoot during an 

in-vivo study. Therefore, a brief description of the anatomy and kinematics of the human 

foot will be given with a focus on the hindfoot region.  

The human foot consists of 28 bones (including the sesamoids) whose motions are 

closely interrelated. The foot not only functions as a structural supporting platform 

capable of withstanding repetitive loads multiple times bodyweight, but it must also be 

able to adapt to different ground surfaces and varying speeds of locomotion. Footwear 

may consist of a rigid ski boot to a soft slipper. The change in material worn may alter 

normal foot biomechanics.  

1.3.1 ANATOMY 

 The human foot can be functionally divided into three areas; these are the 

forefoot, midfoot and hindfoot. The forefoot consists of five metatarsals, two phalanges 

attached to the first metatarsal, and three phalanges attached to the remaining 

metatarsals (figure 1.2). The midfoot and hindfoot contain the bones of interest for this 

study. The midfoot consists of the cuboid, navicular, medial cuneiform, intermediate 

cuneiform, and lateral cuneiform (figure 1.2). The midfoot forms the foot’s arch and 

serves as a shock absorber. The bones of the midfoot are connected to the forefoot and 

the hindfoot via several joints that are moved and stabilized by muscles and the plantar 
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fascia (arch ligament). The hindfoot is composed of of only one bone, the calcaneus, 

which has three joints and links the midfoot to the talus (ankle). The calcaneus is the 

largest bone in the foot. It joins the talus to form the subtalar joint. This joint has 

complex motion in three planes and produces the motions of supination and pronation. 

The subtalar joint and the transverse tarsal joint are both responsible for transforming 

tibial rotation into forefoot supination and pronation.  

 It is possible for an extra bone lump to be lcoated at the navicular. This is known 

as accessory navicular syndrome and could result in painful symptoms.  

1.3.2 BONES AND ARTICULATIONS 

 The bones of interest in this study are located in the hindfoot and midfoot and 

include: the calcaneus, cuboid and navicular. The relationship of the tibia and fibula with 

respect to the foot complex are also of interest.  

 Within the calcaneus there are several important landmarks present. The Achilles 

tendon insertion site is located in roughed area on the superior-posterior side of the 

calcaneus bone. Also on the superior side of the calcaneus is the location for the 

articulation with the talus bone (Nordin and Frankel, 2001). The talus bone is the second 

largest bone in the tarsus. The talus allows for motion in the foot overall with respect to 

the lower leg and transfers the body’s weight onto the foot. The talus articulates with 

the tibia creating the tibiotalar joint. The cuboid (figure 1.2) bone is one of the several 

bones located in the tarsal region of the body. The function of the cuboid bone is to help 

support the body’s weight, locomotion, and maintaining lateral foot stability. The 

navicular (figure 1.2) is a relatively small bone in the tarsal region; it helps in the function 
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of locomotion and body support. The navicular contacts five other bones. These include: 

three cuneiforms, the talus bone, and the cuboid bone.  

 

Figure 1.2: The bones of the foot, specifically a left foot (sesamoids excluded).  

 

The tibia and fibula are the lower leg bones that articulate with the talus. The 

tibia is located on the medial side of the leg and the fibula is located on the lateral side 

of the leg. The tibia and the fibula can be used to evaluate subtalar motion. Previous 

research has linked the motion of tibia/fibula to the subtalar joint (Wu et al., 2002). 

When the tibia internally rotates, the subtalar joint everts (pronates). Conversely, 

external rotation of the tibia results in subtalar inversion (supination) (Nordin and 

Frankel, 2001).  

The subtalar joint occurs with the meeting of the talus and the calcaneus bones. 

Root et al describes the subtalar joint neutral (STJN) position as a position in which the 

joint is neither pronated or supinated (Root et al., 1977). The location of the STJN 
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position is determined clinically by palpating the congruency of the talar head proximal 

to the navicular (Chuter et al., 2003).  

1.3.3 KINEMATICS  

 The overall motion of the foot is complex and occurs on three planes. Flexion-

extension occurs in the sagittal plane, abduction-adduction occurs in the transverse 

plane, and inversion-eversion occurs in the coronal (frontal plane) (figure 1.3). Pronation 

and supination are terms generally used to describe positioning of the plantar surface of 

the foot. Supination is the combination of inversion, plantarflexion, and internal 

rotation. Pronation is a combination of eversion, dorsiflexion, and external rotation 

(Nordin and Frankel, 2001).  

 

 

Figure 1.3: Motion of the foot around three axes.  

*Note: Lateral direction based on the ‘right-handed’ coordinate system (i.e. medial and lateral defined 

based on the right foot). 
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 International standards have been developed to enable comparisons of 

kinematic data between labs, and these will be followed where possible during this 

thesis. Data for such kinematic analysis have been obtained using all the biomechanical 

methods described in section 1.1 and will be highlighted below.  

1.4 ORTHOTICS  

 Orthotics are commonly prescribed for the conservative treatment of 

musculoskeletal disorders of the foot and ankle such as pes cavus or pes planus. Pes 

cavus is defined as having a high arch in the foot and pes planus is defined as having a 

low arch in the foot. Orthotics are thought to alter the motion of the bones of the foot 

by applying constraint or support to various structures on the plantar surface. Orthotics 

can be either custom-made by a pedorthist or bought ‘off-the-shelf’. Custom-made 

orthotics can be constructed of a 4mm plastazote (soft), compliant material or with a 

3mm RCH-500 (rigid) material, depending on the preference and the clinician and the 

amount of control desired (Fields, Sykes, Walker, & Jackson, 2010). Currently, there are 

three techniques for moulding an orthotic, plaster wrap, the foam box technique, and 

the application of laser technology. The plaster wrap casting technique requires the 

patient lie prone in a figure four position during the process. A negative impression of 

the foot is taken while being locked in the subtalar neutral position. Historically plaster 

casting has been the standard method, however, the foam box technique has increased 

in popularity. The foam box technique has the practitioner guide the patient’s foot into a 

foam tray that takes a negative impression of the foot while in the subtalar neutral 
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position (Laughton et al., 2002). The foam box eliminates the drying process required in 

plaster casting. More recently laser technology has developed to a more affordable 

technique to cast orthotics. This technology has the ability to obtain either a partial 

weight bearing or a non-weight bearing representation of the foot (Laughton et al., 

2002).  

 Orthotics are associated with controlling excessive foot pronation. To date 

results from previous studies provide some evidence that orthotics, motion control 

shoes and even therapeutic taping were able to reduce hindfoot eversion. Despite this 

many of these studies contained methodological flaws and are more likely to provide 

optimistic estimates of treatment effects (Pinto et al., 2012). Whether orthotic 

interventions are effective in controlling this excessive pronation is still unclear. 

 Merton Root is a name often associated with scientific techniques used to 

understand the inner workings of the foot for pedorthists. The Root Theory of 

biomechanics attempts to explain the function of the foot and lower extremity. In terms 

of orthotic casting Roots theory states that the orthotic should be casted in the STJN 

position. This STJN approach is based upon the belief that the foot functions normally 

during gait when the subtalar joint is in the neutral position following heel-strike and 

midstance (Watkins, 2009). In the subtalar neutral approach, the foot is assessed by 

casting the foot in the subtalar neutral position while non-weight bearing in order to 

capture the forefoot-hindfoot orientation and the calcaneal inclination angle. Objection 

on this particular position is quite evident in the scientific community. The argument is 

that the STJN occurs for a fraction of the gait cycle during stance phase; the time-frame 
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is not evidence enough to build a cast on this position. As such this area requires a more 

quantifiable analysis.  

1.5 KINEMATICS OF THE HINDFOOT 

 During normal gait the foot experiences complex characteristics reflective of the 

multi-planar contact at the plantar surface. Based on kinematic data obtained using 

optical motion capture systems with a multi-segment foot model the hindfoot has been 

shown to experience motion in three planes during stance phase. Previous studies have 

shown hindfoot motion in the sagittal, transverse, and coronal plane. The hindfoot has 

been reported during midstance to enter dorsiflexion, and externally rotate (Kidder et 

al., 1996; Harris et al., 2008). The motion in the inversion/eversion plane has previously 

been reported to maintain near the neutral position during midstance (Kidder et al., 

1996; Harris et al., 2008). 

 A coordinate system is often used to specify the position of a point relative to a 

known location (the origin of the coordinate system). A bone coordinate system defines 

a global position on a rigid segment that is used to determine relative motion of the 

joints. This relative motion is done by defining joint coordinate systems. A joint 

coordinate system is described by two segment-fixed axes (or bone coordinate systems). 

In order to compare the motion of joints in the foot between two individuals, a common 

method of defining joint motion is required. This is done by creating joint coordinate 

systems that are defined with respect to well defined anatomical landmarks.  

 To quantify hindfoot joint motion, the position and orientation of the navicular 

and cuboid relative to the calcaneus are required. To relate results to previously defined 
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coordinate systems the position and orientation of the calcaneus relative to the tibia 

and fibula is required. A coordinate system must be established on each of these bones 

the same way between subjects and conditions. Coordinate systems are created 

according to the convention established by the International Society of Biomechanics 

(ISB) (Wu et al., 2002). As there are three rotational degrees of freedom (DOF) in the 

hindfoot, three rotations are required to describe the orientation of the navicular and 

cuboid relative to the calcaneus, and the calcaneus relative to the tibia/fibula complex. 

The axes of the bone coordinate systems are placed to allow these rotations to be 

clinically significant (i.e. the rotation to the plane in which internal/external rotation, 

plantar/dorsi flexion, inversion/eversion occurs).  

 Coordinate systems are first created by obtaining a three-dimensional model of 

the bones of interest. This can be done through the use of technologies such as a CT 

scan, MRI, or generic bone models. Models of the bones are created using image 

processing software. Each landmark is digitized with a point and their positions are 

determined. The digitization process must be conducted carefully. Errors made in the 

location of the bony landmark result in fixed errors in the location of the bone 

coordinate systems, and therefore in the rotations of the joint (Della Croce et al., 2005).  

 Once bony landmarks are digitized, bone coordinate systems are created. A 3 by 

3 rotation matrix relating the bone coordinate system to the laboratory coordinate 

system is defined as,  

     
    [  ⃑⃑ 

   

    
 ⃑⃑ 

   

    
 ⃑⃑    

    
]   (Eq. 1. 1) 
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where,  ⃑⃑ 
   

    ,  ⃑⃑ 
   

    ,  ⃑⃑    
     are the bone coordinate system axes (i.e. 3 by 1 

matrices) described in the laboratory reference frame. A transformation matrix of the 

bone relative to the lab,  

     
    [      

        
    

      
]        (Eq. 1. 2) 

follows, in which:  

     
   = the rotation matrix relating the bone coordinate system to the lab 

coordinate system, 

     
   = the location of the origin of the bone coordinate system in the lab-

based coordinate system. 

 This transformation matrix is consistently changing. The process above needs to 

be repeated for each frame of data collected during a dynamic trial.   

1.5.1 CALCANEUS COORDINATE SYSTEM 

 In this study, to enable the creation of the calcaneus coordinate system four 

bony landmarks (figure 1.4) are digitized. These landmarks are the most superior point 

on the posterior surface of the calcaneus (calA), the lateral process of the calcaneal 

tuberosity (calB), the tuberosity located on the medial side in the posterior third of the 

calcaneus (calC), and the medial process of the calcaneal tuberosity (calD). 

 The lateral axis of the coordinate system,        , is defined as a unit vector from 

calA to calB. A vector located at the midpoint of calA and calB, defined midAB is created 

to aid in the creation of an anterior directed unit vector. The anterior directing 

vector,        , is defined as the unit vector from midAB to calC. The superior directing 
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vector,  ⃑      , is defined as the cross product of         and        . The final calcaneus 

coordinate system vectors were done by completing cross products between the 

previously defined unit vectors to ensure each vector is orthogonal to one another (i.e. 

      was created as the cross product of         and        ).  

 The origin of the calcaneus coordinate system is,  ⃑    , is established as the point 

calA. Therefore, the transformation matrix between the lab coordinate system and the 

calcaneus coordinate system may be written as:  

      
     [  ⃑⃑    

    ⃑⃑    
    ⃑    

    ⃑⃑    
   

    
]     (Eq. 1.3) 
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Figure 1.4: The calcaneus coordinate system. 

(A) The digitized landmarks on the calcaneus: the medial process of the calcaneal 

tuberosity (calA), the lateral process of the calcaneal tuberosity (calB), the 

tuberosity located on the medial side in the posterior third of the calcaneus 

(calC), and the most superior point on the posterior surface of the calcaneus 

(calD). (B) The vectors used in the creation of (C) the calcaneus coordinate 

system. Images of the model created from a clinical CT scan with points added in 

OsiriX. 
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1.5.2 NAVICULAR COORDINATE SYSTEM 

 In this study, to enable the creation of the navicular coordinate system three 

bony landmarks (figure 1.5) are digitized. These are the tuberosity found on the most 

lateral aspect (navA), the most superior aspect above the facet for the second cuneiform 

(navB), and the most posterior point (navC).  

 The superior axis of the navicular coordinate system was created as a unit vector 

from navC to navB and defined as  ⃑      . The coordinate located at the midpoint of navB 

and nav C was used to aid the creation of the lateral directing vector. The lateral axis of 

the navicular coordinate system was created as a unit vector from midBC to navA. The 

lateral axis vector was defined as        . The anterior directed axis of the navicular 

coordinate system was created from the cross product of the vector        and  ⃑      . 

The final navicular coordinate system vectors were created by completing the cross 

products between the previously defined unit vectors to ensure each vector is 

orthogonal to one another (i.e.  ⃑     was created as the cross product of         and 

       ). 

 The origin of the navicular,  ⃑    , was defined to be navA. It then follows that the 

transformation matrix between the lab coordinate system and the navicular coordinate 

system may be written as:  

    
     [  ⃑⃑    

    ⃑⃑    
    ⃑    

    ⃑⃑    
   

    
]    (Eq. 1. 4) 
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Figure 1.5: The navicular coordinate system, from a posterior view. 

(A) The digitized landmarks on the navicular: the tuberosity found on the most lateral 

aspect (navA), the most superior aspect above the facet for the second cuneiform 

(navB), and the most posterior point (navC). (B) The vectors used in the creation of (C) 

the navicular coordinate system. (Images of the model created from a clinical CT scan 

with points added in OsiriX). 
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1.5.3 CUBOID COORDINATE SYSTEM 

 In this study, to enable the creation of the cuboid coordinate system three bony 

landmarks (figure 1.6) are digitized. These are the lateral tuberosity beside the calcaneus 

facet (cubA), the medial plantar tuberosity beside the calcaneus facet (cubB), the plantar 

tuberosity adjacent to the third cuneiform (cubC), and the tuberosity on the most distal 

portion of the plantar surface (cubD). 

 The anterior axis of the cuboid coordinate system,        , was created as a unit 

vector from the midpoint of cub A and cubB, defined as midAB, to cubC. The lateral axis 

of the cuboid coordinate system was defined as the vector,        , created as a unit 

vector from cubB to cubA. The superior axis of the cuboid coordinate system,  ⃑      , was 

created from the cross product of         and         . The final cuboid coordinate system 

vectors were created by completing the cross products between the previously defined 

unit vectors to ensure each vector is orthogonal to one another (i.e.       was created as 

the cross product of  ⃑       and        ). 

 The origin of the cuboid,  ⃑    , was defined to be cubA. It then follows that the 

transformation matrix between the lab coordinate system and the navicular coordinate 

system may be written as:  

    
     [  ⃑⃑    

    ⃑⃑    
    ⃑    

    ⃑⃑    
   

    
]                 (Eq. 1. 5) 
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Figure 1.6: Cuboid Coordinate System, views as defined. 

(A) The digitized landmarks on the cuboid: the lateral tuberosity beside the calcaneus 

facet (cubA), the medial plantar tuberosity beside the calcaneus facet (cubB), the plantar 

tuberosity adjacent to the third cuneiform (cubC), and the tuberosity on the most distal 

portion of the plantar surface (cubD). (B) The vectors used in the creation of (C) the 

cuboid coordinate system. (Images of the model created from a clinical CT scan with 

points added in OsiriX). 
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1.5.1.1 TIBIA AND FIBULA COORDINATE SYSTEM 

 In this study, to enable the creation of the tibia/fibula coordinate system six bony 

landmarks (figure 1.7) are digitized. These are the lateral malleolus on the fibula (fibA), 

the medial malleolus on the tibia (tibB), the most medial portion of the superior end of 

the tibia (tibC), most lateral portion of the superior end of the tibia (tibD), the most 

medial potion of the superior end of the fibula (fibE), and the most lateral portion of the 

superior end of the fibula (fibF). MATLAB was used to calculate the midpoint of fibA and 

fibB, this was defined as midAB (The MathWorks, Natick, MA, USA).  

 The lateral axis of the tibia/fibula coordinate system,           , is initially defined 

as the unit vector from tibB and midAB. The superior axis of the tibia/fibula coordinate 

system,  ⃑         , is defined as the unit vector from midAB to midCF. The anterior axis of 

the tibia/fibula coordinate system,           , is defined by the cross product of            

and  ⃑         . The final tibia/fibula coordinate system vectors were created by 

completing the cross products between the previously defined unit vectors to ensure 

each vector is orthogonal to one another (i.e.  ⃑        was created as the cross product of 

           and           ). 

 The origin of tibia/fibula,  ⃑       , was defined to be midAB. It then follows that 

the transformation matrix between the lab coordinate system and the navicular 

coordinate system may be written as:  

       
     [  ⃑⃑    

       ⃑⃑    
       ⃑    

       ⃑⃑    
      

    
]   (Eq. 1. 6) 
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Figure 1.7: Tibia and fibula coordinate system 

(A) The digitized landmarks on the tibia-fibula: the lateral malleolus on the fibula (fibA), 

the medial malleolus on the tibia (tibB), the most medial portion of the superior end of 

the tibia (tibC), most lateral portion of the superior end of the tibia (tibD), the most 

medial potion of the superior end of the fibula (fibE), and the most lateral portion of the 

superior end of the fibula (fibF)). (B) The vectors used in the creation of (C) the tibia-

fibula coordinate system. (Images of the model created from a clinical CT scan with 

points added in OsiriX). 

(A) (B) 

(C) 
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1.5.1.2 SIGN CONVENTIONS 

 In order to obtain consistent kinematic outcome measures between subjects 

only the left foot was studied. The following motions were established as being positive: 

inversion, dorsiflexion, and internal rotation according to the ISB standard.  

1.5.4 HINDFOOT JOINT KINEMATICS 

 Since the desired results of kinematic analyses are those that are clinically 

meaningful interpretations of the rotations and translations that occur at a joint, the 

relationship between the coordinate systems on the calcaneus, cuboid, navicular and 

the tibia/fibula must be established. This was also done according to the conventions 

established by the ISB (Wu et al., 2002). The translation of the calcaneus relative to the 

tibia-fibula is simply the change in position of OCal within the tibia-fibula frame of 

reference. The translation of the cuboid relative to the tibia/fibula is simply the change 

in position of OCub within the tibia/fibula frame of reference. The translation of the 

navicular relative to the tibia/fibula is simply the change in position of ONav within the 

tibia-fibula frame of reference. 

 Clinically relevant rotations of the hindfoot (with respect to the tibia/fibula joint) 

are calculated by Z-X-Y Euler angle analysis (Winter, 2009; Wu. et al., 2002). An Euler 

angle analysis defines the orientation of one object with respect to another through 

three independent rotation parameters. These rotations take place about the axes of a 

Cartesian coordinate system. The orientation of the axis about which each rotation takes 

place is dependent upon the previous rotation(s). This means that the order of the 

rotations has an effect on the outcome orientation. It is assumed that the two frames of 
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reference are initially aligned (figure 1.9). The rotation sequence will be explained with 

reference to the calcaneus with respect to the tibia/fibula reference frame. The 

information can be repeated with the cuboid and the navicular in the same manner as 

described below (thus it will not be repeated for each bone). Rotations are then taken 

about: (A) the Z-axis of the tibia-fibula coordinate system (        ), giving the rotation to 

the plane in which dorsi/plantar flexion occurs (α); (B) the X-axis of the tibia-fibula 

coordinate system (     ), giving the rotation of the plane in which inversion/eversion 

rotation occurs (β); and (C) the Y-axis of the tibia-fibula coordinate system ( ⃑    ), giving 

the rotation of the plane in which internal/external rotation occurs (γ). Since the 

assumption behind the kinematics is that the coordinate systems were initially aligned, 

the initial rotation may equivalently have taken place about      , and it will be referred 

to as this from now on. The sequence of the rotations can be written in matrix form as 

the product of three individual rotation matrices, or combined as a single rotation matrix 

for the three rotations as shown:  

    
          ( ⃑      )     ( ⃑⃑      )     ( ⃑⃑      )             (Eq. 1.7)     

 [
          
         
   

] [
   
          
         

] [
         
   

          
] 

 [

   ( )    ( )     ( )    ( )     ( )     ( )     ( )    ( )    ( )     ( )    ( )     ( )

   ( )    ( )     ( )    ( )     ( )    ( )     ( )    ( )    ( )     ( )    ( )     ( )

    ( )     ( )     ( )    ( )     ( )

] 

where: 

rot( ⃑      )= rotation about  ⃑     of magnitude α; 
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Figure 1.8: Euler Z-X-Y rotations 

(A) The coordinate systems initial set up, calcaneus and tibia-fibula coordinate systems 

overlap. (B) The rotation starts about the Z-axis of the tibia-fibula coordinate system, (C) 

rotation about the X'-axis of the calcaneus coordinate system, and (D) rotation about the 

Y''-axis of the calcaneus coordinate system. (D) The resulting coordinate systems.  

 

 

 

 

 

 

(C) (B) (A) 

(E) (D) 
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 In order to describe the location of the calcaneus relative to the tibia-fibula, 

transformation matrices must be combined as shown:  

    
      

     
      

     
    

 

 [

          
          
          
    

] 

where:  

    
      

 [        
   ]

  
= the transformation matrix describing the position and orientation 

of the lab coordinate system relative to tibia-fibula bone coordinate system; 

     
   = the transformation matrix describing the position and orientation of the 

calcaneus bone coordinate system relative to the lab; and 

    
      

= the transformation matrix describing the position and orientation of the 

calcaneus bone coordinate system relative to the tibia-fibula bone coordinate system. 

 

 In order to describe the rotation of the calcaneus relative to the tibia-fibula, 

Equation 1.7 is compared with Equation 1.8 to obtain:  

Dorsi/Plantar flexion:           (
   

   
)                      (Eq. 1. 9) 

Internal/External rotation:           
    

   
                       (Eq. 1. 10) 

Inversion/Eversion:    
   

   
    ( )        (Eq. 1. 11) 

(Eq. 1. 8) 
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where arctan2 is the four quadrant inverse tangent function, with results between pi 

and -pi. Differing from the standard inverse tangent function which results in a solution 

within the first and fourth Cartesian quadrants only.  

1.5.5 THE STUDY OF THE HINDFOOT JOINT BIOMECHANICS 

 Each study of this thesis aims specifically to quantify the kinematics of the 

calcaneus, cuboid, and navicular relative to the tibia-fibula. One of the major obstacles 

in studying the foot is that the motions of the internal bones during weight-bearing or 

walking gait are relatively unknown. By understanding the kinematics of the foot, 

specifically the hindfoot, the treatment of problems such as foot pain, plantar fasciitis, 

and other foot pathologies may be better assessed and possibly improved. The effect of 

orthotics can be quantified and their designs can potentially be optimized for better 

performance. 

 Due to the scarcity of palpable bony landmarks, and the awkward location of 

landmarks there are, it is difficult to track foot kinematics during dynamic activities 

(Shultz et al., 2011) using optical (Wolf et al., 2008; Jenkyn and Nicol, 2007) and 

electromagnetic (Hemmench et al., 2006; Brown et al., 2009) tracking techniques. As 

previously discussed soft tissue artifact is an unavoidable error associated with these 

measurement techniques. This error has be shown to be task dependent and not 

reproducible among subjects making this error difficult if not impossible to filter from 

the actual motion of interest (Leardini et al., 2005). The hindfoot has multiple bony 

landmarks but many of them are not palpable. Those landmarks that may be palpable 

are located in locations in which dynamic motions would not be possible to measure 
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with or without shoes. To more accurately measure joint kinematics others have used 

bone pins which have been directly implanted into the target bone through the skin 

(Arndt et al., 2007; Larfortune et al., 1992; Karduna et al., 2001), however this technique 

has many negative drawbacks as discussed in section 1.1.4.  

 Imaging techniques used for measuring foot kinematics include 2D x-ray 

(Tranberg and Karlsson, 1998; Lofverberg et al., 1989), and single plane fluoroscopy 

(Wearing et al., 1998).  

1.6 STUDY RATIONALE 

 The rationale behind this work consists of several distinct parts. The 

incorporation of fluoroscopy with markerless RSA will allow the capture of moving 

images and therefore further facilitate the study of in-vivo kinematics under dynamic 

conditions. Using x-ray fluoroscopy the kinematic analysis will be much more reliable 

since skin motion artifact will have been eliminated. This study will provide a better 

kinematic analysis of the foot through use of the markerless RSA and individual bone 

coordinate systems. The examination of the effects orthotics have on the internal foot 

bones will provide insight into changes in their design (if necessary).  

1.7 OBJECTIVES AND HYPOTHESES 

 The objectives of this thesis were: (1) to implement a fluoroscopy-based 

markerless RSA system on the foot, (2) to determine the effect of various orthotics at 

midstance of fully weight-bearing walking gait (dynamic), and (3) determine the effect of 

various orthotics during weight-bearing standing (static). 
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 The primary hypothesis (1) is that markerless RSA is a feasible method to 

measuring foot kinematics when compared to existing biomechanical tracking 

technology. It was also hypothesized (2) that differences in orthotics types can be 

measured and the coordinate systems designed could be considered to be equivalent to 

the current ISB standard coordinate system in the foot. Finally, it was hypothesized that 

(3) the fluoroscopy-based markerless RSA system would prove to be a useful clinical 

tool, able to quantify changes in kinematics following a conservative treatment in the 

foot.  

1.8 THESIS OVERVIEW 

 Chapter 2 describes the effect of a foam casted orthotic and a neutral cushioning 

running shoe on the normal population. Chapter 3 contains the results of the study for 

the plaster casted orthotic on the normal population. Chapter 4 contains the results of 

foam casted orthotics on the pes cavus and pes planus populations. Chapter 5 compares 

three different analysis techniques for measuring the effect of orthotics at altering foot 

pronation. Chapter 6 summarizes the conclusions drawn from this work, outlines its 

significance, and suggests some potential work which may follow.  
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CHAPTER 2- THE EFFECT OF FOAM CASTED 

ORTHOTICS ON THE NORMAL FOOT USING 

MARKERLESS RSA 
 

OVERVIEW: This chapter describes the effect of a foam casted orthotic and 

a neutral cushion running shoe compared to barefoot on the alignment of 

the bones of the foot in a normal population compared a to barefoot 

condition. Bi-planar x-ray fluoroscopy and the markerless RSA technique 

are used to determine the change in pronation of the normal population 

at midstance during gait.  

 

2.1 INTRODUCTION 

 Orthotics are commonly prescribed for the conservative treatment of 

musculoskeletal disorders in the foot and ankle, such as pes cavus or pes planus. These 

devices are intended to alter the motion of the foot bones by applying constraint or 

support to various structures on the plantar surface. However, there have been very few 

studies to quantify the effects of orthotic devices on the human foot during weight-

bearing activities, especially within the normal population. The subtalar joint consists of 

two bones, the talus and calcaneus. The subtalar neutral position is considered the point 

when the subtalar joint is neither pronated nor supinated. Clinicians who assess foot 

posture frequently use the definition of a neutral foot when referring to the subtalar 

neutral (STN) position. When casting an orthotic in the subtalar neutral position the 
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clinician must palpate the talonavicular joint and determine the mid-position (Houck et 

al., 2008). The normal population is considered to have a foot that experiences 

approximately 5° eversion in the frontal plane during walking gait. The normal 

population is considered to be those with an arch that pronates less than pes planus and 

more than pes cavus individuals during level walking gait. The pes planus population is 

considered to have an arch that collapses due to excessive pronation. The pes cavus 

population remains in fixed plantarflexion during walking gait. The pes cavus population 

is characterized by an abnormally high medial longitudinal arch. Excessive supination is 

present in the pes cavus population during walking gait. The pronated foot is one where 

the arch collapses inward (or the sole of the foot faces laterally) (Nordin and Frankel, 

2001). Pronation is considered to be a combination of external rotation, dorsiflexion, 

and eversion. Supination is considered to be the combination of internal rotation, 

plantarflexion, and inversion.  

 Markerless radiostereometric analysis (RSA) systems show promise in 

tracking skeletal kinematics while using two fluoroscopes without requiring the insertion 

of beads into the bones of interest (as required with traditional RSA). Using the 

markerless RSA technique, based on the work completed by Allen and Kedgley, a three-

dimensional (3D) computer model of the bones of interest is matched to the two 

fluoroscopic images taken simultaneously of the bones from different angles (Allen, 

2009; Kedgley, 2009). The RSA method in this case determines the position and 

orientation of the bones of interest during walking gait to determine the effect orthotics 

have on the bones of the foot, specifically: the calcaneus, cuboid, navicular and 
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tibia/fibula. A difference of approximately 5° between barefoot and a shoed (orthotic or 

no orthotic) condition is the minimal difference expected to be clinically significant. A 

difference of approximately 5° between barefoot and a shoed (orthotic or no orthotic) 

condition is the minimal difference expected to be clinically significant. The barefoot 

condition is used as the reference position since pedorthists use barefoot walking to 

analyze a patient’s gait and cast custom orthotics. A calibration technique was used to 

determine the relative positions of the two x-ray images (parameters include, the x-ray 

foci locations and the pose of both image planes). The location of the fluoroscope 

sources and projected image planes, provided by the calibration parameters, were 

accurately positioned in a virtual environment. The 3D computer bone model created 

from computed tomography (CT) scans could then be imported into the virtual 

environment and manually adjusted in 3D space until the projections matched the bone 

shadows on the radiographs.  

 The aims of this study were to quantify the change in pronation of the hindfoot 

in a normal population during weight-bearing walking gait. Four conditions were tested: 

(1) barefoot, (2) with neutral cushion running shoes, (3) a soft foam casted orthotic 

(foam soft), and (4) a rigid foam casted orthotic (foam hard). It was hypothesized that 

orthotics would change the alignment of the hindfoot, putting it into less pronation. It 

was also hypothesized that the rigid foam casted orthotic would reduce pronation by a 

greater amount than the soft foam orthotic.  
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2.2 METHODS 

 Ethics approval was obtained from the Health Sciences Research Ethics Board at 

The University of Western Ontario prior to the commencement of any data collection 

(Appendix A). 

2.2.1 PLATFORM DESIGN 
 A platform was designed and built for this study that raised the test subjects off 

the ground and allowed them to walk through the capture volume of the two 

fluoroscopes. This was necessary since the C-arm fluoroscopes in the Wolf Orthopaedic 

Quantitative Imaging Laboratory (WOQIL) cannot be lowered down entirely to the floor. 

Two fluoroscopic views were captured, one was a dorsal-medial to plantar-lateral view 

and the second was a sagittal view. The platform was fabricated by the University 

Machine Shop at The University of Western Ontario. The concept drawing of the 

platform (figure 2.1) was completed using SolidWorks (SolidWorks; Dassault Systèmes 

SolidWorks Corp., Waltham, MA, USA). 

 

Figure 2.1: Platform concept drawing prior to being built.  
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2.2.2 DATA COLLECTION 
 Five (5) normally arched volunteers with no previous foot or ankle disorders, no 

foot or ankle pain, and no previous orthotic use were recruited to participate in this 

study. Individuals with previous fractures in the lower extremities were avoided and pre-

screened for. Each volunteer had their feet examined by a certified pedorthist to ensure 

they fit the criteria for normal. Volunteers were asked to fill out a consent form after the 

study was explained as well as any risks involved. The volunteers were fitted for two 

pairs of custom-made orthotics with: (1) a 4mm plastazote (soft) and (2) 3mm RCH-500 

(hard) material by the same Canadian certified pedorthist at the Fowler Kennedy Sport 

Medicine Clinic, London, ON, Canada. The pedorthist used a foam box casting technique 

for this study.  

 The fluoroscopes were positioned so the two images of the foot gave optimal 

views of the calcaneus at the instant of midstance of gait. At least one calibration image 

was captured prior to the volunteer’s arrival for the study. The calibration process is 

described in detail in section 2.2.3. Each volunteer wore a wrap-around leaded apron 

and kilt on their upper and lower body respectively, including a thyroid collar (figure 

2.2). This protected them from any secondary x-ray scatter and ensured that only the 

feet were exposed to the primary x-ray beams. Section 2.2.2.1 to section 2.2.2.4 were 

completed in a randomized order. To reduce repetition it is assumed the order was 

completed as written.  
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Figure 2.2: Final platform design, the wrap around leaded clothing, the fluoroscope set-

up and foot location for a static trial in a neutral cushion shoe. The barefoot trial (with 

no footwear) and the orthotic trials (different insoles) require the volunteer to appear 

similar.  

2.2.2.1 BAREFOOT 

 Each volunteer was asked to stand on the platform barefoot. The volunteer was 

asked to place their left foot in the field of view of the two fluoroscopes (figure 2.2). An 

x-ray technician ensured the two views of the calcaneus were optimal. The x-ray 

technician then outlined the location of the volunteer's foot to be used as a target 

during the dynamic walking trials. Each volunteer was asked to walk at their preferred 

pace along the platform and through the fluoroscopes field of view as the fluoroscopes 

recorded images of the left foot from heel strike to toe-off. Images were recorded at 60 

interlaced frames per second (or 30 true frames per second). The images were recorded 

on the PC in the adjacent control room. The captured images were checked to ensure 

that the calcaneus and tarsus were sufficiently visible for the subsequent RSA procedure 
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before moving onto the next trial. If the calcaneus was not satisfactorily visible, the trial 

was repeated. The barefoot condition was repeated two times.  

2.2.2.2 NEUTRAL CUSHION RUNNING SHOE 

 Each volunteer was asked to wear a neutral control running shoe, specifically, a 

New Balance (model 882) neutral cushioning running shoe for the purposes of this 

study. Each volunteer was asked to walk at their preferred pace along the platform as 

the fluoroscopes recorded images of the left foot from heel strike to toe-off. Images 

were recorded at 30 frames per second.  The images were recorded on the control PC in 

the adjacent control room. As with the barefoot trials, if the calcaneus was not 

satisfactorily imaged the trial was repeated. The foam soft trial condition was repeated 

two times. 

2.2.2.3 FOAM SOFT ORTHOTIC 

 Each volunteer was asked to wear the neutral cushioning running shoe (New 

Balance, model 882) with the custom-made soft foam casted orthotic insole inserted in 

place of the provided manufacturer's insole. Each volunteer was asked to walk at their 

preferred pace as the fluoroscopes recorded images of the left foot movement at 30 

frames per second from heel strike to toe-off. The images were recorded on the control 

PC in the adjacent control room. As with the barefoot trials, if the calcaneus was not 

satisfactorily imaged the trial was repeated. The foam soft trial condition was repeated 

two times. 
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2.2.2.4 FOAM HARD ORTHOTIC  

 Each volunteer was asked to wear the neutral cushioning running shoe (New 

Balance, model 882) with the custom-made hard foam casted orthotic insole inserted in 

place of the manufacturer's insole. Each volunteer was asked to walk at their preferred 

pace as the fluoroscopes recorded the left foot movement at 30 frames per second from 

heel strike to toe-off.  The images were recorded on the PC in the adjacent control 

room. As with the barefoot trials, if the calcaneus was not satisfactorily imaged the trial 

was repeated. The foam soft trial condition was repeated two times. 

2.2.3 CALIBRATION 
 Bi-planar RSA uses two x-ray imaging devices. Fluoroscopy image intensifiers (II) 

were used for the purpose of this thesis. A calibration frame is used to establish a 

laboratory coordinate system for the capture volume through which the test subject will 

walk and determines the locations of the two imaging devices relative to one another. A 

calibration object is placed within the capture volume so that it can be seen by both 

fluoroscopes simultaneously. The calibration object is a cube with two fiducial planes 

and two control planes (figure 2.3). A calibration frame designed by Kedgley, was used 

as the calibration phantom for this thesis (Kedgley, 2009; Kedgley and Jenkyn, 2009). 

The custom-designed calibration frame was constructed using 9.5mm thick acrylic sheet. 

Each fiducial plane was embedded with 45 beads (1mm in diameter) at known 3D 

locations. The control plane was embedded with 45 beads (2mm in diameter) at known 

3D locations. Each frame defined the laboratory coordinate system and was used to 
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determine the experimental set-up parameters necessary for analysis. The x-, y-, and z-

axes are coloured red, green, and blue respectively, as seen in Figure 2.3. 

 In order to calibrate the capture volume each imaging device must have a view of 

one fiducial plane and one control plane on the calibration box. The fiducial plane is 

used to calculate a transformation from the image coordinate system to the laboratory 

coordinate system. The control plane determines the location of the focal point from 

which the x-rays originate in the laboratory frame (Kedgley and Jenkyn, 2009). A 

calibration algorithm is used to determine the relationship of the 3D bead locations and 

the two-dimensional (2D) images captured of the beads. For the calibration algorithm to 

be successful, it is assumed that the fiducial plane has been placed closest to the II 

(figure 2.3) of each fluoroscope (Kedgley, 2009). The parameters outputted from the 

calibration algorithm are used to reconstruct the experimental set-up in the virtual 3D 

environment (Rhinoceros, Robert McNeel & Associates, Seattle, WA, USA).  

 

Figure 2.3: The calibration frame. The x-, y-, and z-axes are shown in red, green and blue 

respectively. The origin of the frame is located where all the colours intersect in the 

picture above.  
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 Images of the calibration frame were captured, digitized and corrected for 

pincushion distortion (Kedgley, 2009). The image is captured such that the control beads 

and the fiducial beads superpose onto one image plane. It was ensured that at least 6 

fiducial beads and 6 control beads were visible in each image. While this number of 

beads the minimum needed for calibration, accuracy of the calibration procedure is 

increased when a greater number of beads can be utilized. Prior to proceeding with the 

calibration procedure it was ensured that no beads were overlapped in the image. If this 

was the case, manipulation of the calibration frame was necessary until a good image of 

the fiducial and control planes could obtained for both fluoroscopes simultaneously. The 

distortion correction process required that an image of the distortion grid be captured 

and digitized on each fluoroscope during each set-up. The distortion grid, Figure 2.4, 

designed by Kedgley contains 131 beads embedded at known locations (Kedgley, 2009). 

The algorithm then corrected for distortion by using a fourth-order polynomial fit 

approach (Kedgley, 2009).  

 

Figure 2.4: Distortion grid attached to fluoroscope for image capture.  
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 The location of the fluoroscopes x-ray source was determined using an existing 

standard RSA code developed by Kedgley. The location of the x-ray source (xs,ys,zs) was 

considered to be a known locations beyond this algorithms calculations (Kedgley, 2009; 

Allen, 2009). 

2.2.3.1 CALIBRATION ALGORITHM 
 The algorithm used for the remainder of the calibration is based on the work of 

Rougée et al. (1993a and 1993b). Each fluoroscope is represented using a perspective 

projection model where the mathematical relationship between the 3D calibration 

points and their 2D projections are determined and defined for the algorithm to 

continue. Using the mathematical relationship and an optimization algorithm 

determines the calibration parameters necessary for an accurate model can be 

determined.  

 The derivation required for the calibration of a single fluoroscope will be shown 

in this thesis. The same technique can be used to model the second fluoroscope. The 

result of the derivation will be included for both fluoroscopes. 

2.2.3.2 THE FLUOROSCOPE PROJECTION MODEL 
 Each fluoroscope is modeled as a pinhole camera using a perspective projection 

model. All x-rays are assumed to travel in straight lines and originate from a single point 

source. The derivation is based off the set-up used for this thesis as seen in Figure 2.5.  
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Figure 2.5: Example of the experimental set-up with the calibration frame in its position. 

The image intensifier (II) for fluoroscope A and fluoroscope B are labelled. The x-ray 

source for each fluoroscope cannot be seen in the image above.  

 

The perspective projection model for fluoroscope A can be seen in Figure 2.6 where,  

O- the origin of the calibration frame, 

S- the position of x-ray source, 

S’- the position of the projection of the x-ray source onto the image plane, 

R= (o, X, Y, Z), calibration frame coordinate system (also known as the laboratory 

coordinate system), 

R’= (s, X, Y, Z), the projection coordinate system. 

 
 

The C and L axes define the 2D image plane coordinate system and are assumed 

parallel to the Z’ and Y’ axes respectively for the purposes of the model. All 

measurements are conducted in mm except for the image plane coordinate system. The 

image plane coordinate system is measured in pixels.  

 

 

 

Fluoroscope A 

Fluoroscope B 
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Figure 2.6: Perspective projection model illustrating the calibration frame coordinate 

system, and projection coordinate system. This is based on calibration set-up in Figure 

2.5.  

 

 

 

 

Figure 2.7: Planar view of the projection of a calibration point onto the image plane 

based on the calibration setup in figure 2.3. The distances labelled on the figure are used 

to determine the relationship between the coordinates of the calibration point in the 

projection coordinate system (x',y',z'), and the respective image point (cs,ls) in X'-Z' 

plane.  
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Figure 2.8: Planar view of the projection of a calibration point onto the image plane 

based on the calibration setup in figure 2.3. The distances labelled on the figure are used 

to determine the relationship between the coordinates of the calibration point in the 

projection coordinate system (x',y',z') and the respective image point (cs,ls) in the X'-Y' 

plane.  

 

 The perspective projection model in the Y-direction (figure 2.7) and Z-direction 

(figure2.8), is used to develop a mathematical relationship by way of similar triangles 

between the coordinates of the calibration point in the projection coordinate system (x’, 

y’, z’) and its image point (c, l). The equations developed by the relationship are 

represented in equations 2.1 and 2.2. 

(
    

 
)    

  

   
         (Eq. 2. 1) 

 (
    

 
)    

  

           (Eq. 2. 2) 

where:  

d= distance from s to s’ (mm), 

Sp= pixel size (mm), 

(c,l)- coordinates of the image point (pixels), 

(cs, ls)- coordinates of the projection of the source (pixels), 
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(x’,y’,z’)- calibration point in the projection coordinate system (mm). 

Equation 2.1 and Equation 2.2 can be rearranged into equations 2.3 and 2.4 respectively.  
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Equations 2.3 and 2.4 can be written in matrix from (Eq. 2.5). 
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where the matrix P(cs, ls,d) is defined as:  
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       (Eq. 2. 6) 

The coordinates of the calibration point in R’ (image plane coordinate system) are not 

known, however, the coordinates can be calculated using their known coordinates in R 

(the laboratory coordinate system). 

[
  
  

  

]   (     ) [

    

    

    

]        (Eq. 2. 7) 

where: 

R(     )=Y-Z-X Euler angle sequence associated with the axes change from R to R’, 
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θ= the rotation about the Y-axis, 

Φ= the rotation about the Z-axis, 

Ψ= the rotation about the X-axis. 

The rotation chosen is based upon the relative positioning of the two 

fluoroscopes and their relationship to the laboratory custom calibration frame used in 

this study as done using a geometrical three-dimensional reconstruction technique 

(Rougée et al., 1993a; Rougée et al., 1993b).  

The rotation matrix R is calculated by:  

R(θ,  , ψ)=rot(Y, θ)rot(Z, φ) rot(X, ψ)      (Eq. 2. 8) 
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] (Eq. 2. 9) 

where, 

rot(Y, θ)= rotation about the Y-axis of magnitude θ , 

rot(Z, φ)= rotation about the Z-axis of magnitude φ,  

rot(X, ψ)= rotation about the X-axis of magnitude ψ. 

 

Equation 2.7 can now be written as:  
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]     (Eq. 2. 10) 

where,  
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]     (Eq. 2. 11) 
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Substituting equations 2.6 and 2.10 into equation 2.5 yields:  
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]  (Eq. 2. 12) 

 

A portion of equation 2.12 can be represented as:  

 ( )   (       )   (     )   (        )     (Eq. 2. 13) 

 

Therefore equation 2.12 can be simplified:  
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]         (Eq. 2. 14) 

where,  

( j)j=1,9= calibration parameters (xs, ys, zs, θ,  ,ψ, cs, ls, d). 

 

 Equation 2.14 shows the required relationship between 3D points and their 2D 

projections. Utilizing the known coordinates of the 3D calibration points (xi, yi, zi) and 

their measured corresponding 2D projected image points (ci, li), each point [i=1,N] must 

satisfy equation 2.14. Equation 2.14 can be re-written for easier calculation purposes as 

Equation 2.15 and Equation 2.16.  

   
                     

                     
       (Eq. 2. 15) 

 

   
                     

                     
       (Eq. 2. 16) 

 

where, mkl is the kth
 row and the lth column.  
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2.2.3.3 PIXEL SIZE CALCULATION 
 The pixel size is not considered a calibration parameter but rather a known value 

throughout the calibration algorithm. The pixel size for each fluoroscope is assumed to 

remain constant. To determine the pixel size of each fluoroscope Allen and Kedgley had 

a pixel grid manufactured with 0.2mm diameter holes at known locations (Allen, 2009). 

Using custom-written MATLAB script titled "Pixel_Size_Calculator" found in Appendix 

A.2 of Allen's 2009 thesis work the average pixel size was calculated (MATLAB; The 

MathWorks, Natick, MA, USA) (Allen, 2009). The pixel size for fluoroscope A and 

fluoroscope B were found to be 0.3847mm and 0.3819mm, respectively.  

2.2.3.4 CALIBRATION PARAMETER ESTIMATION 
 An optimization technique was completed using the information of the pixel size, 

and the relationship between the 3D calibration points and their 2D image plane 

projections. A program created initially by Allen using MATLAB was modified for each 

calibration in this thesis (Allen, 2009). This MATLAB script used the ‘fmincon’ function 

that calculates the minimum of a constrained non-linear multivariable function by way 

of numerical optimization. The calibration parameters that are optimized during this 

process include: the known 3D calibration coordinates (xi, yi, zi), and the distortion 

corrected 2D image point coordinates (ci,li). 

 The 2D image point coordinates were determined by first digitizing the 

calibration images followed by a distortion correction algorithm. The digitization process 

involves identifying each calibration bead visible. Distortion correction was completed 

on the 2D image point coordinates using custom-written MATLAB script (Kedgley, 2009). 
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The 3D calibration points were matched with the corresponding 2D images points that 

were used for the optimization of those input parameters. The optimization algorithm 

created by Allen minimized the root mean squared error (RMSE) between the digitized 

2D calibration image points (ci,li) and the 2D image points ci( ), li( ) (Allen, 2009). Where 

the ci( ), li( ) are the 2D coordinates of the projection points calculated using (xi, yi, zi) by 

applying equations 2.15 and 2.16. The symbolic equations for ci( ), li( ) were written in 

Maple (Maplesoft, Waterloo, ON, Canada) which were then imported into the MATLAB 

code used to calculate ci( ), li( ) for the purpose of estimating the initial calibration 

parameters (Allen, 2009).  

 According to the fluoroscopes operating manual (SIREMOBIL Compact (L), 

Siemens Medical Solutions USA Inc., Malvern, PA, USA) the distance d, as represented in 

Figure 2.6 and Figure 2.7, should be 1000 mm. The coordinates of the projected source 

(cs,ls) should be located at (0,0) provided that the distortion grid was placed directly at 

the centre of the II. However, since the fluoroscopes manual did not contain the 

manufacturing tolerances and the distortion grid may have been placed slightly off-

centered it was believed that it was reasonable to constrain the projected source to 

within 2 pixels of (0,0) and d to within 5mm of 1000mm (Allen, 2009).  

 Initial Euler angle estimates were calculated by iteration through several angle 

values to calculate the combination that resulted in the lowest RMSE. The Euler angles 

determine the rotation required by the image plane to match the orientation of the 3D 

calibration frame relative to the laboratory coordinate system. The initial Euler angles 

were iterated between – radians to  radians with a step size of /16 radians. Two 
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additional iterations were then performed to determine more precise initial estimates 

for the Euler angles.  

2.2.3.5 IMAGE PLANE CORRECTION 
 The calibration algorithm discussed in sections 2.2.3.1-2.2.3.4 of this thesis 

described the method by which the input parameters were calculated. The image plane 

correction determines the rotation and translation required for the image plane to 

match the laboratory coordinate systems location.  

 To ensure this step goes smoothly when the distortion grid was imaged on the 

fluoroscope it was important that the grid was manually positioned on the input screen 

of the image intensifier. The lines of the distortion grid are visually lined up to avoid 

large rotations and translations during the distortion correction process (figure 2.9). 

Having the distortion grid placed differently will result in a successful calibration; 

however, visually it will be less appealing. Custom MATLAB and RhinoScript programs 

developed by Allen were used to correct for any additional image rotations and 

translations (Rhinoceros; Robert McNeel & Associates, Seattle, WA, USA). This allowed 

for an initial estimate of the image plane rotation and translation of the distortion grid 

with respect to the pixel coordinate system. An optimization technique was then 

completed to find the final image pose for the virtual experimental re-creation.  
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Figure 2.9: Image of the distortion grid. The axis of Xd and yd represent the distortion grid 

coordinate system. The axis of xi and yi represent the image plane coordinate system.  

 

Detailed steps to describe the process required in the recreation of the experimental 

set-up in the virtual environment can be found in Appendix E of Allen's 2009 thesis work. 

When completing the final Rhinoscript code titled "ImportPoints" described in Allen's 

Appendix E only the points which have been previously digitized and corrected for 

distortion onto the image (figure 2.10) were included during this codes use. These 2D 

points were considered the distortion corrected points. Although it may appear as 

though more points could have been digitized (figure 2.11) the control and fiducial 

points are actually overlapped. It is important not to digitize points if they are too close 

to each other as it will result in a failed calibration since the algorithm will not be able to 

compute the x-ray focus accurately.   

 

Xd 

yd 

yi 

Xi 
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Figure 2.10: Calibration Image of the distortion-corrected 2D calibration points. The 

distortion corrected points are represented as open squares and the uncorrected points 

are represented as black circular image points. The image plane is outlined in red. 

 

Figure 2.11: The 3D calibration points associated with this fluoroscope are represented 

as open red squares ("Frame Points-F2C2.3dm"). Right: View of fluoroscope A's source 

and the image on the left is a front view. It can be seen that the points do not line up 

with those in the fluoroscopes image and require further correction.  
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 With the experimental set-up roughly modeled in the virtual environment the 3D 

calibration frame points can be imported into the experimental set-up file (figure 2.11). 

These calibration files are titled "Frame Points-F1C1.3dm" and "Frame Points-F2C2.3dm" 

and contain the 3D location of the beads with respect to each other and considered the 

laboratory coordinate system. Each file corresponds to fiducial plane 1 (F1) and control 

plane 1 (C1) or fiducial plane 2 (F2) and control plane 2 (C2). Based on Figure 2.5 the 

calibration of fluoroscope A was associated with the "Frame Points-F2C2.3dm" file. 

Similarly, fluoroscope B is associated with F1C1 since they both cannot be associated 

with the same sides of the calibration frame. 

 It becomes obvious that the laboratory coordinate system (red points in figure 

2.11) does not match up with the respective projections on the image plane. Therefore 

further optimization is required to find the rotation and translation required to correct 

the positioning of the distortion corrected points. The MATLAB script titled 

"Rot_Trans_ImPlane" developed by Allen was used to optimize the location of the image 

plane and the distortion corrected points (Allen, 2009). This code functions by 

minimizing the error between the 3D calibration points and the 2D distortion corrected 

image points resulting with the location that projects the points onto the image plane. 

Minimizing the error of the rotation and translation for the image plane and the 

calibration frame points to align will be outputted by the code. Applying the rotation and 

translation as outputted by the program the resulting position and orientation of the 

fluoroscope is obtained with respect to the calibration frame.  



77 
 

 
 

 The points that can be projected by the Rhinoscript must have been digitized 

during that process described earlier and located within the image plane (figure 2.10). In 

addition, the points must have been corrected for distortion in the previous steps. The 

image plane coordinate system and distortion grid coordinate system are outlined in 

figure 2.9 and are bound by the black outline of the fluoroscopes image file. This means 

that points lying outside of the black image cannot be projected even if they were 

previously digitized and corrected for distortion. Completing the steps outlined in Allen's 

Appendix F thesis results in the image plane correction required to yield the final pose of 

the image plane. The red 3D calibration points should now match up with the 2D 

projected calibration image (figure 2.12). The final file is saved as FluoroA-

Calibration.3dm and contains the final image plane pose for fluoroscope A. This file will 

be used in conjunction with the calibration of second fluoroscope.  

 

Figure 2.12: Final Image plane pose.  
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2.2.3.6 CALIBRATION FOR SECOND FLUOROSCOPE 
 Sections 2.2.3.1-2.2.3.5 are repeated for the second fluoroscope after a 

determination required to change the matrix P(cs,ls,d) is applied since its projection is 

related to a different plane on the calibration frame. The mathematical relationship 

determined for fluoroscope B, by way of similar triangles, is identical to the method 

described in the previous section, however, the result will yield a different matrix 

P(cs,ls,d) than that relationship for fluoroscope A. The resulting matrix P(cs,ls,d) for 

fluoroscope B for the set-up in figure 2.3 is defined as:  

 

 (       )  
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 ]
 
 
 
 

      (Eq. 2.17) 

 

where: d=distance from S to S' (mm),  

sp= pixel size (mm),  

(cs,ls)= coordinates of the project of the source (pixels).  

 

 The Euler angle sequence associated with fluoroscope B is X-Y-Z based on the 

set-up in figure 2.3. Using these modifications the remaining steps in sections 2.2.3.1-

2.2.3.5 now can be continued for fluoroscope B. The final experimental set-up file for 

fluoroscope B will be named FluoroB-Calibration.3dm.  
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2.3 VIRTUAL RECREATION OF EXPERIMENTAL SET-UP 

 Using the final files created in sections 2.2.3.1-2.2.3.6 (FluoroA-Calibration.3dm 

and FluoroB-Calibration.3dm) a single file is created titled FluoroAB-Calibration.3dm. 

This is done by opening one of the calibration files (i.e. FluoroA-Calibration.3dm) and 

importing the second calibration file (i.e. FluoroB-Calibration.3dm). The setup is verified 

visually to ensure it looks like the fluoroscopes setup during testing day. Each of the 

fluoroscopes were modelled as a perspective projection camera as outlined in Appendix 

E of Allen's thesis (Allen, 2009). The camera and target are set to the x-ray focus and 

image plane centre respectively. By setting the view up properly one could accurately 

recreate the 3D reality (figure 2.13). 

 

 
Figure 2.13: The two viewpoints from the x-ray foci. Left: Fluoroscope B, Right: 

Fluoroscope A. 
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2.4 BONE MODEL CREATION 

 Three-dimensional models of the bones under study were created using a 

computed tomography (CT) scan of the volunteer's foot and the program OsiriX-DICOM 

Viewer (Advanced Open-Source PACS Workstation DICOM Viewer, Antoine Rosset, USA). 

Detailed steps on how to segment the bone(s) of interest from a CT scan using OsiriX 

imaging software are provided in Appendix B. The bone models were converted to a 

triangular mesh of file format stereolithography (.stl) (or object file .obj). Figure 2.14 

shows the 3D rendered model of the calcaneus, cuboid, navicular, and tibia/fibula. The 

landmarks of interest were located as described in chapter 1 (section 1.5.1) of this thesis 

were marked on each of the bone models as indicated.  
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Figure 2.14: Rendered 3D model of the: (A) calcaneus, (B) cuboid, (C) navicular and (D) 

tibia/fibula as viewed in Rhinoceros. 

 

2.5 MATCHING BONES TO IMAGE PLANE 

 The matching process recreates the pose of the bones captured by the two 

fluoroscopes. The computer bone models (section 2.4) are imported into the virtual 

environment (e.g. into file FluoroA/B-Calibration.3dm). Initially the entire fluoroscopic 

image is viewed and each bones silhouette is matched closely to its entire bony outline 

on both images (fluoroscope A and fluoroscope B). Once the match appears close the 

image is enlarged (i.e. the lens length on the camera is increased). It is noted that the 

roller button on the mouse changes the camera and target location not the lens length 

(A) Calcaneus (B) Cuboid 

(C) Navicular (D) Fibula (left), tibia (right) 
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thus not providing a zoom-in but rather changing the view completely. A few easily 

identifiable landmarks are used to fine-tune the match. At this point the object is moved 

by increments as small as 0.01mm and 0.01° until the outline of the models bony 

landmarks completely matches the outline of the bony landmarks on the image in both 

views. It is still important to ensure that the overall match is still obtained when 

matching the specific landmarks. Once the match is complete the bony landmarks are 

exported to an excel spreadsheet using the "ExportPoints" Rhinoscript developed by 

Allen (Allen, 2009). This Rhinoscript is used to export the 3D coordinates of the bony 

landmarks for each frame.  

 For each position being studied the corresponding fluoroscopic images are 

imported into the virtual environment and the bone model is re-matched to the new 

image. Since this study is interested in dynamic trials more than one frame was used for 

each shoe and orthotic condition. The number of frames analyzed was dependant on the 

speed the individual walked across the platform while in view of the fluoroscopes. A 

minimum of five frames are analyzed during midstance for each condition. The 

calcaneus, cuboid, navicular, and tibia/fibula are shown matched in figure 2.15, figure 

2.16, figure 2.17 and figure 2.18 respectively. 



83 
 

 
 

 

Figure 2.15: The calcaneus matched to the fluoroscopic images. Top left: Fluoroscope B, 

Bottom left: Fluoroscope A, Right side: 3D model of the calcaneus.  

 

 

 
 

Figure 2.16: The cuboid matched to the fluoroscopic images. Top left: Fluoroscope B, 

Bottom left: Fluoroscope A, Right side: 3D model of the cuboid.  
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Figure 2.17: The navicular matched to the fluoroscopic images. Top left: Fluoroscope B, 

Bottom left: Fluoroscope A, Right side: 3D model of the navicular. 

 

 

 

Figure 2.18: The tibia and fibula matched to the fluoroscopic images. Top left: 

Fluoroscope B, Bottom left: Fluoroscope A, Right side: 3D model of the tibia and fibula. 
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 Once the matching process is completed the mathematical analysis to determine 

the change in alignment can be completed. Custom MATLAB script developed 

specifically for this thesis calculates the pronation angle in the foot (Appendix C). 

Pronation is defined as the combination of external rotation, dorsiflexion, and eversion. 

Using the excel files that contain the 3D coordinates of the bony landmarks on the 

calcaneus, cuboid, navicular, tibia and fibula as exported by the previous Rhinoscript 

(ExportPoints) the individual bone coordinate systems can be calculated. Bone 

coordinate systems are created using at least three non-collinear landmarks. Once the 

bone coordinate systems are calculated the change in pronation of calcaneus with 

respect to tibia and fibula can be determined. The MATLAB script is designed to output 

an excel spreadsheet containing the foots internal rotation, plantarflexion, and inversion 

angles for the various bones with respect to each other as represented in table 2.1. The 

calcaneus with respect to the tibia/fibula is calculated based on International Society of 

Biomechanics (ISB) joint coordinate system definition (section 1.6.1) (Wu et al. , 2002). 

The calcaneus with respect to the tibia and fibula was considered the standard 

measurement in this thesis due to the previous acceptance for measuring foot pronation 

by ISB (Wu et al., 2002). The measurement was used to determine if the foot was 

pronating more or less than the barefoot condition. However, this was not the only 

measurement considered in this thesis. Since individual bone alignment in the foot has 

never been studied during dynamic trials to the authors' knowledge the changes in the 

cuboid and navicular were also considered during midstance. Therefore the alignments 
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of interest were summarized in table 2.1 using the MATLAB script 

"Calcaneuspronation_kinematics.m" in Appendix C.  

 

Table 2.1: The alignment calculations completed using the custom MATLAB script in 
Appendix C.  
 

Internal 

Rotation Calcaneus 

with respect 

to the 

tibia/fibula 

Navicular 

with respect 

to the 

tibia/fibula 

Cuboid with 

respect to 

the 

tibia/fibula 

Navicular 

with 

respect to 

the 

calcaneus 

Cuboid with 

respect to 

the 

calcaneus 

Plantar/dorsi 

flexion 

Inversion/ 

Eversion 

 

 A repeated measures analysis of variance (ANOVA) using SPSS was produced to 

test for differences between measurement conditions (SPSS; IBM Corporation, Armonk, 

NY, USA). A probability level of p<0.05 was used to indicate significance. All levels of 

significance are reported however, only where significance is found will the results be 

included in appendix F. 

 

2.6 RESULTS 

 Using the output values from "Calcaneuspronation_kinematics.m" the impact of 

the different shoe conditions (neutral cushion running shoe, foam soft orthotic, and 

foam hard orthotic) can be determined on the normal population. The barefoot 

condition was used as the baseline measurement for each subject studied. Table 2.2 

shows the average barefoot alignment as outputted from the 

Calcaneuspronation_kinematics program for each subject's barefoot condition in the 
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internal/external rotation plane, plantar/dorsi flexion plane, and inversion/eversion 

plane of motion. 

Table 2.2: Barefoot baseline angle results for the five (5) subjects used for this thesis. All 
entries are in degrees.  
 

Measurement Subject# 
cal wrt 
tibfib 

nav wrt 
cal 

cub wrt 
cal 

nav wrt 
tibfib 

cub wrt 
tibfib 

External 
Rotation 

1 15.47 -13.33 61.17 33.97 -48.14 

2 46.47 22.02 87.11 50.84 -62.06 

10 47.68 6.42 89.29 65.82 -47.13 

11 31.20 5.61 65.19 36.85 -36.47 

23 43.32 27.13 87.79 41.77 -40.36 

Average 36.83 9.57 78.11 45.85 -46.83 

Standard 
Deviation 

13.61 15.92 13.73 12.87 9.78 

 

Dorsiflexion 

1 183.09 -45.69 13.95 -127.12 -171.60 

2 148.79 -38.58 99.37 -168.45 -162.27 

10 155.63 -47.09 59.50 -132.82 -164.39 

11 164.20 -51.98 -22.35 -139.33 -151.92 

23 152.37 -37.89 -9.40 -159.83 -168.48 

Average 160.82 -44.25 28.21 -145.51 -163.73 

Standard 
Deviation 

13.70 5.97 50.54 17.81 7.52 

 

Eversion 

1 166.70 22.96 14.14 140.97 164.37 

2 150.75 23.28 -115.48 123.54 156.38 

10 157.79 27.16 -74.80 123.77 163.51 

11 152.06 16.39 -33.57 134.32 169.05 

23 165.60 31.90 -74.29 128.43 174.37 

Average 158.58 24.34 -56.80 130.20 165.54 

Standard 
Deviation 

7.41 5.73 49.10 7.45 6.70 

Note: The output from the program was manipulated beyond this table to represent the results where 

positive represents the change in motion towards the direction that promotes an increase in supination. 

 

 Due to the large variance between subjects (table 2.2) every measurement 

reported consists of the alignment difference compared to each volunteer's average 
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barefoot condition reported in table 2.2. The standard deviation for each subject was 

calculated for each condition and measurement. The average standard deviation for 

internal rotation, dorsiflexion, and inversion for individual subjects are shown in 

Appendix D (table D.1, table D.2, and table D.3) respectively. The values shown in these 

tables for each subject represent the average standard deviation for at least five frames 

during midstance for that particular subject. The average effect of the neutral cushion 

running shoe, and foam soft orthotics for each plane of motion (internal rotation, 

plantarflexion and inversion) is shown in figure 2.19, figure 2.20, and figure 2.21 

respectively. All values in the graphs (figure 2.19, figure 2.20, and figure 2.21) have been 

created such that the positive values represent an increase in the direction towards 

supination for comparative purposes in the discussion (section 2.7) of this chapter. 

 

Figure 2.19: The average change in internal rotation for the calcaneus with respect to 

the tibia/fibula in the normal population. A positive change represents an increase in 

internal rotation, and a negative change represents an increase in external rotation. 

-4.00

-2.00

0.00

2.00

4.00

6.00

8.00

10.00

12.00

In
te

rn
al

 R
o

ta
ti

o
n

 A
n

gl
e 

(d
e

gr
ee

s)
 

Condition 

Neutral Cushioning Running Shoe Foam Soft Foam Hard



89 
 

 
 

 

Figure 2.20: The average change in plantarflexion for the calcaneus with respect to the 

tibia/fibula in the normal populations. A positive change would represent an increase in 

dorsiflexion and a negative change represents an increase in plantarflexion. 

 

 
 

Figure 2.21: The average change in the inversion angle for the calcaneus with respect to 

the tibia/fibula on the normal population. A positive change represents an increase in 

inversion, and a negative change represents an increase in eversion.  
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 The average effect of the neutral cushion running shoe on the pronation angle is 

summarized in table 2.3, table 2.4, and table 2.5 as internal rotation, plantarflexion, and 

inversion respectively. The average effect of the foam soft orthotic on the pronation 

angle is show in table 2.6, table 2.7, and table 2.8 as internal rotation, plantarflexion, 

and inversion respectively. The average effect of the foam hard orthotic on the 

pronation angle is shown in table 2.9, table 2.10, and table 2.11 as internal rotation, 

plantarflexion, and inversion respectively.  

 

Table 2.3: Change in internal rotation for the neutral cushion running shoe condition. All 

entries are in degrees.  

Neutral Cushion Running Shoe: Internal Rotation Angle 

Subject# cal wrt tibfib nav wrt cal cub wrt cal nav wrt tibfib cub wrt tibfib 

1 5.27
+ 4.28

+
 17.11

+
 2.05* -9.94 

2 17.36
+
 7.97

+
 -11.19 8.64

+
 2.15

+
 

10 -11.94 -11.68 -14.10 -3.52 6.80
+
 

11 7.63
+
 16.06

+
 -10.50 -20.66 13.20

+
 

23 -15.64 -2.31 -13.34 -4.60 -3.84 

AVERAGE 0.54 2.86* -6.40 -3.62 1.67
+
 

Note: A negative value indicates the opposite motion (i.e. external rotation). Those with a (*) represent a 

value which is significant to one standard deviation. Those with a (+) are significant to two standard 

deviations. 
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Table 2.4: Change in plantarflexion angle for the neutral cushion running shoe condition. 

All entries are in degrees.  

Neutral Cushion Running Shoe: Plantarflexion Angle 

Subject# cal wrt tibfib nav wrt cal cub wrt cal nav wrt tibfib cub wrt tibfib 

1 -2.58 3.74 26.43
+
 -3.81 -5.70 

2 -10.11 -0.08 18.95
+
 -0.57 -3.07 

10 3.40* -3.35 3.38 -0.41 3.05* 

11 2.01* -6.00 -10.30 16.05
+
 2.18 

23 7.21
+
 3.10 -39.18 -4.36 17.62

+
 

AVERAGE -0.01 -0.52 -0.14 1.38 2.82
*
 

Note: A negative value represents the opposite motion (i.e. dorsiflexion). Those with a (*) represent a 

value which is significant to one standard deviation. Those with a (+) are significant to two standard 

deviations. 

 

 

 

 

Table 2.5: Inversion/Eversion angle for the neutral cushion running shoe condition. All 

entries are in degrees.  

Neutral Cushion Running Shoe: Inversion Angle 

Subject# cal wrt tibfib nav wrt cal cub wrt cal nav wrt tibfib cub wrt tibfib 

1 1.83 2.16
+
 -14.13 -0.35 12.13

+
 

2 -7.31 -2.40 -33.50 -2.75 -4.40 

10 6.23
+
 0.55 40.39

+
 5.98

+
 3.79

+
 

11 0.71 -5.74 22.55
+
 9.26

+
 -7.15 

23 -8.41 -10.81 25.69
+
 5.26* -9.95 

AVERAGE -1.39 -3.25 8.20* 3.48* -1.12 
Note: A negative value represents the opposite motion (i.e. eversion). Those with a (*) represent a value 

which is significant to one standard deviation. Those with a (+) are significant to two standard deviations. 
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Table 2.6: Change in internal rotation angle for the foam soft orthotic condition. All 

entries are in degrees. 

Foam Soft: Internal Rotation 

Subject# cal wrt tibfib nav wrt cal cub wrt cal 
nav wrt 

tibfib 
cub wrt 

tibfib 

1 9.46
+
 4.24* 25.27

+
 13.62

+
 -19.89 

2 32.68
+
 13.27

+
 -21.97 27.80

+
 -5.60 

10 -9.41 -14.23 -16.96 -0.96 13.90
+
 

11 9.76
+
 8.22

+
 4.15

+
 -3.53 3.51

+
 

23 -6.13 -9.26 -26.52 -9.54 17.29
+
 

AVERAGE 7.27
+
 0.45 -7.21 5.48

+
 1.84* 

Note: A negative value indicates the opposite motion (i.e. external rotation). Those with a (*) represent a 

value which is significant to one standard deviation. Those with a (+) are significant to two standard 

deviations. 

 
 
 
 
 

Table 2.7: Change in plantarflexion rotational for the foam soft orthotic condition. All 

entries are in degrees. 

Foam Soft: Plantarflexion 

Subject# cal wrt tibfib nav wrt cal cub wrt cal 
nav wrt 

tibfib 
cub wrt 

tibfib 

1 -5.68 -0.78 70.61 -0.14 2.44* 

2 -14.10 3.00 38.74 -10.15 25.63
+
 

10 10.29
+
 1.50 -41.74 0.20 -0.63 

11 -3.51 -3.67 -10.78 9.17
+
 0.30 

23 13.15 1.12 -6.21 11.39
+
 1.86 

AVERAGE 0.03 0.24 10.12
+
 2.09* 6.17

+
 

Note: A negative value represents the opposite motion (i.e. dorsiflexion). Those with a (*) represent a 

value which is significant to one standard deviation. Those with a (+) are significant to two standard 

deviations. 
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Table 2.8: Inversion angle for the foam soft orthotic condition. Each value represents the 

angle difference compared to the barefoot condition. All entries are in degrees.  

Foam Soft: Inversion 

Subject# cal wrt tibfib nav wrt cal cub wrt cal 
nav wrt 

tibfib 
cub wrt 

tibfib 

1 -5.80 4.84* 47.10
+
 -11.14 -17.21 

2 -3.33 0.58 -52.80 -19.22 -8.63 

10 5.57
+
 -1.17 36.72

+
 5.97

+
 9.79

+
 

11 1.21 -4.18 3.84
+
 5.69

+
 -2.95 

23 -1.42 -2.21 47.65
+
 4.51

+
 2.99* 

AVERAGE -0.75 -0.43 16.50
+
 -2.84 -3.20 

Note: A negative value represents the opposite motion (i.e. eversion). Those with a (*) represent a value 

which is significant to one standard deviation. Those with a (+) are significant to two standard deviations. 

 

 

 

Table 2.9: Change in internal rotation angle for the foam hard orthotic condition. All 

entries are in degrees.  

Foam Hard: Internal Rotation 

Subject# cal wrt tibfib nav wrt cal cub wrt cal 
nav wrt 

tibfib 
cub wrt 

tibfib 

1 10.23
+
 4.02* 14.79

+
 8.45

+
 -3.24 

2 -1.56 -9.00 2.18
+
 22.18

+
 9.56

+
 

10 -13.18 -10.56 -16.57 -11.70 11.45
+
 

11 2.74 16.48
+
 4.39 -11.73 0.24 

23 3.24 3.76
+
 2.01

+
 -9.06 -3.78 

AVERAGE 0.29 0.94 1.36 -0.37 2.84 
Note: A negative value indicates the opposite motion (i.e. external rotation). Those with a (*) represent a 

value which is significant to one standard deviation. Those with a (+) are significant to two standard 

deviations. 
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Table 2.10: Change in plantarflexion angle for the foam hard orthotic condition. All 

entries are in degrees.  

Foam Hard: Plantarflexion 

Subject# cal wrt tibfib nav wrt cal cub wrt cal nav wrt tibfib cub wrt tibfib 

1 -2.61 8.51
+
 10.60* -6.41 -1.90 

2 1.40 -2.34 -39.17 -1.44 -4.03 

10 10.29
+
 1.50

+
 -41.74 0.20 0.63 

11 -1.28 -1.06 -17.72 7.70
+
 -1.84 

23 -1.18 -2.17 -64.60 5.60
+
 -0.91 

AVERAGE 1.32 0.89 -30.53 1.13 -1.61 
Note: A negative value represents the opposite motion (i.e. dorsiflexion). Those with a (*) represent a 

value which is significant to one standard deviation. Those with a (+) are significant to two standard 

deviations. 

 
 
 
 
 

Table 2.11: Inversion/Eversion angle for the foam hard orthotic condition. Each value 

represents the angle difference compared to the barefoot condition. All entries are in 

degrees.  

Foam Hard: Inversion/Eversion 

Subject# 
cal wrt 
tibfib 

nav wrt cal cub wrt cal 
nav wrt 

tibfib 
cub wrt 

tibfib 

1 1.45* 2.61
+
 -2.43 -2.37 7.60* 

2 0.99 9.30
+
 37.13

+
 -10.25 3.12

+
 

10 8.05* -1.41 35.36
+
 10.87* -19.35 

11 11.73
+
 10.69

+
 4.91 0.99 1.90 

23 9.12
+
 -3.49 -16.32 10.61 0.14 

AVERAGE 6.27
+
 3.54 11.73 1.97 -1.32 

Note: A negative value represents the opposite motion (i.e. eversion). Those with a (*) represent a value 

which is significant to one standard deviation. Those with a (+) are significant to two standard deviations. 

 
 
 



95 
 

 
 

2.7 DISCUSSION 

 This study quantifies the effect foam casted orthotics have on the normal 

population compared to each volunteers barefoot condition in three-dimensions. The 

findings suggest that the general population will see a reduction in pronation when 

wearing a foam casted orthotic although the results were not found to be statistically 

significant (Appendix F). 

 Each subject's data was evaluated with an ANOVA repeated measures statistical 

test using SPSS (SPSS; IBM Corporation, Armonk, NY, USA) to determine if there is a 

statistically significant difference between the each of the shoe conditions tested 

compared to the barefoot condition. Each plane of motion was analyzed separately. A 

probability level of p<0.05 was considered significant. While wearing the foam soft 

orthotic no significant changes were found in internal rotation (p=0.385), plantarflexion 

(p=0.831), and inversion (p=0.581). While wearing the foam hard orthotic no significant 

changes were found in internal rotation (p=0.942), plantarflexion (p=0.601), and 

inversion (p=0.085). While wearing the neutral cushioning running shoe no significant 

changes in alignment were found in internal rotation (p=0.935), plantarflexion (p=0.997), 

and inversion (p=0.450). It was discovered that there is no statistical difference in the 

foam soft, foam hard, and neutral cushion running shoe conditions for each plane of 

motion in the normal population. Significance may not have been reached because of 

the small sample size.  

 Based on the joint coordinate system motion work done by Wu et al. the 

calcaneus with respect to the tibia/fibula is considered the measure that most 
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accurately represents pronation when the three planes are taken into consideration. The 

results of the calcaneus with respect to the tibia/fibula were shown in figure 2.19, figure 

2.20, and figure 2.21 for the internal rotation, plantarflexion, and inversion planes 

respectively. The graphs represent the normal population's average change compared to 

the barefoot condition. It was found that the foam soft orthotic had the greatest 

increase in internal rotation and inversion. However, the difference between this foam 

soft condition and the neutral running shoe and the foam hard orthotic was less than 

one standard deviation. The foam hard orthotic had the greatest increase in 

plantarflexion, but the change was within the standard deviation bars in figure 2.20. 

From this it was concluded that although a significant change may occur on the 

individual level the change is not predicable in the overall population. The remainder of 

the discussion will be presented at the individual level.  

 Even though the results were not found to be significant for the group as a whole 

the standard deviations were used to compare the different conditions and there effects 

on pronation. To determine if a condition had an effect on an individual level the 

concept of the normal distribution was used. Natural variance of several variables has 

the tendency to follow the normal distribution. With that in mind the normal 

distribution has the property of 68% of cases fit within one (1) standard deviation (SD). 

Even more significant is 95.5% of cases will fall within two (2) SD (Norman and Streiner, 

2003; Portney and Watkins, 2000). Therefore when deciding significance of the results of 

those with one (1) standard deviation of significance were represented with an asterisk 

(*) and those with two (2) standard deviations were represented with a plus sign (+).  
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 Since pronation is a combination of external rotation, dorsiflexion, and eversion a 

reduction in pronation requires the opposite combination to occur. Therefore, for the 

foot to experience a decrease in pronation (alignment change in the direction of 

supination) the foot must experience internal rotation, plantarflexion, and inversion 

when compared to the baseline (barefoot) condition.  

 Upon examination of the calcaneus with respect to the tibia/fibula while wearing 

the neutral cushioning running shoe a reduction in pronation was not found when an 

average among all subjects is calculated. While wearing the foam soft orthotic an overall 

reduction in external rotation was found for the calcaneus with respect to the 

tibia/fibula when the average among all subjects was calculated (>2SD). While wearing 

the foam hard orthotics a reduction in pronation occurred in all three planes of motion 

however, only the inversion plane had a significant decrease (>2SD). The reduction in 

pronation in the internal rotation plane, and plantarflexion plane was not found to be 

significant when averaged among all participants. 

 The evaluation of the navicular with respect to the calcaneus showed that the 

navicular responded to the neutral cushion running shoe and the orthotic conditions as 

well. While wearing the neutral cushion running shoe internal rotation (>1SD) was found 

to occur as an average of all subjects for the navicular with respect to the calcaneus. 

While wearing the foam soft orthotic no statistically significant motion was found to 

occur with the navicular with respect to the calcaneus. While wearing the foam hard 

orthotic it was found that the change in inversion (>2SD) occurred for the navicular with 

respect to the calcaneus.  
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 The evaluation of the navicular with respect to the tibia/fibula showed that 

motion was not quite as evident. While wearing the neutral cushion running shoe an 

increase in inversion (>1SD) was found. While wearing the foam soft orthotic an increase 

in both internal rotation (>2SD), and plantarflexion (>1SD) occurred. While wearing the 

foam hard orthotic no significant motion occurred. 

 Upon examination of the cuboid with respect to the calcaneus significant motion 

two of the conditions tested. It was found that an increase in plantarflexion (>2SD) 

occurred while wearing the foam soft orthotic. It was found that the cuboid experienced 

an increase in inversion with respect to the calcaneus while wearing the neutral running 

shoe (>1SD) and the foam soft orthotic (>2SD). 

 Examining the cuboid with respect to the tibia/fibula resulted in significant 

alignment change; however, this change did not occur simultaneously while wearing the 

same type of footwear. An increase in internal rotation was found while wearing the 

neutral cushion running shoe (>2SD), and the foam soft orthotic (>1SD). An increase in 

plantarflexion motion was found while wearing the neutral cushion running shoe (>1SD) 

and, the foam hard orthotic (>2SD). No significant change in motion occurred in the 

inversion plane. 

 Although every individual reacted differently depending on the footwear 

condition tested, in addition to the bones analyzed it appears to be a safe conclusion 

that orthotics do have an impact on the alignment of the bones within the foot when 

compared to the barefoot condition. The difference between wearing a neutral cushion 

running shoe was not found to be statistically different than both orthotic conditions. It 
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was found that the type of material used in the orthotic does not have enough impact to 

deem the difference is statistically significant. This lack of significance between the 

material type may be related to the small sample size. With that in mind the comfort of 

the patient and the judgment of the pedorthist should be used to determine a material 

that is found to be qualitatively better overall. 
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CHAPTER 3- THE EFFECT OF PLASTER CASTED 

ORTHOTICS ON THE NORMAL FOOT USING 

MARKERLESS RSA 
 

OVERVIEW: This chapter describes the effect of plaster casted orthotics on 

the kinematics of the foot in a normal population compared to their 

barefoot behaviour. Bi-planar x-ray fluoroscopy and the markerless RSA 

technique are used to determine the change in pronation of the normal 

population at midstance during gait.  

 

3.1 INTRODUCTION  
 Orthotics are frequently prescribed for the treatment of musculoskeletal 

disorders in the foot and ankle such as pes cavus or pes planus. Orthotics are intended 

to alter the motion of hindfoot and midfoot bones by applying constraint or support to 

various structures on the plantar surface. There has been relatively little in-vivo analysis 

completed on the normal human population. The normal foot is considered to be those 

that have a medial longitudinal arch that naturally pronates less than pes planus and 

more than pes cavus feet during weight-bearing activities such as walking. The subtalar 

joint consists of two bones the talus and calcaneus. The subtalar neutral (STN) position is 

considered the point when the subtalar joint is neither pronated nor supinated. 

Clinicians often use the STN position as a reference when casting an orthotic. The 

normal population is considered to have a foot that experiences approximately 5° 
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eversion in the frontal plane during walking gait. The pes planus population is 

considered to have an arch that collapses due to excessive pronation. The pes cavus foot 

is characterized by an abnormally high medial longitudinal arch. The pes cavus 

population remains in fixed plantarflexion during walking gait. The pronated foot is one 

where the arch collapses inward and is defined as a combination of eversion, 

dorsiflexion, and external rotation (Nordin and Frankel, 2001). Supination is the opposite 

of pronation and is considered to be the combination of inversion, plantarflexion, and 

internal rotation. A difference of approximately 5° between barefoot and a shoed 

(orthotic or no orthotic) condition is the minimal difference expected to be clinically 

significant. The barefoot condition is used as the reference position since pedorthists 

use barefoot walking to analyze a patient’s gait and cast custom orthotics.  

Markerless radiostereometric analysis (RSA) systems show promise in tracking 

skeletal kinematics. Building on the markerless RSA work by Allen, a three-dimensional 

(3D) computer  model of the bones of interest is created and matched to the two 

radiographs captured simultaneously of the bone from two different angles (Allen, 

2009). The RSA method in this case determines the position and orientation of the 

bones of the foot during walking gait. The effect orthotics have on the bones of interest 

can be determined following a detailed calibration process. A calibration technique is 

used to determine the relative positions of the two x-ray images (parameters include the 

x-ray foci locations of each fluoroscope and the corresponding pose of each image 

plane). The 3D computer bone model created from a computed tomography (CT) scan 
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were imported into the virtual environment and manually adjusted in 3D space until the 

projections matched the radiographs.  

 The aims of this study were to quantify the change in pronation of the hindfoot 

in the normal population during weight-bearing walking gait. Three conditions were 

tested: (1) barefoot, (2) with a soft plaster casted orthotic, and (3) with a hard plaster 

casted orthotic. It was hypothesized that the plaster casted orthotics would reduce 

pronation of the hindfoot during walking compared to the barefoot walking. It was also 

hypothesized that the hard plaster orthotic would have a greater effect in reducing 

pronation compared to the soft plaster orthotic. 

3.2 METHODS 
 Ethics approval was obtained from the Health Sciences Research Ethics Board at 

The University of Western Ontario prior to the commencement of any data collection 

(Appendix A). The platform described in the previous study (section 2.2.1) was used in 

this study and allowed the test subjects to walk through the capture volume of the two 

fluoroscopes.  

3.2.1 DATA COLLECTION 

 Five (5) normally arched volunteers with no previous foot or ankle disorders, no 

foot or ankle pain, and no previous orthotic use were recruited to participate in this 

study. Individuals with previous fractures in the lower extremities were avoided and pre-

screened for. Each volunteer had their feet examined by a certified pedorthist to ensure 

they fit the criteria for normal. Volunteers were asked to fill out a consent form after the 

study was explained as well as any risks involved. The volunteers were fitted with two 
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pairs of custom-made orthotics with: (1) a 4mm plastazote (soft) and (2) a 2mm RCH-500 

(rigid) material by the same Canadian certified pedorthist at the Fowler Kennedy Sport 

Medicine Clinic, London, ON. The pedorthist used the plaster wrap casting technique for 

this study. The plaster casting technique requires the patient lie prone in a figure four 

position during the process. A negative impression of the foot is taken while being 

locked in the subtalar neutral position. While plaster casting has historically been the 

standard method, foam box has increased in popularity.  

 The two fluoroscopes were positioned about the platform so that the two images 

of the foot gave optimal views of the calcaneus at the instant of midstance during 

walking gait. After positioning the fluoroscopes, they had to be calibrated using the RSA 

method. At least one pair of images of the calibration frame was captured prior to the 

volunteer's arrival for the study. The calibration process will be summarized briefly 

below in section 3.2.5. Each volunteer wore a wrap-around leaded apron and kilt on 

their upper and lower body respectively, including a thyroid collar (figure 3.1). It is noted 

that section 3.2.2 to section 3.2.4 were completed in a randomized order.  

 

Figure 3.1: Platform and wrap-around leaded clothing.  
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3.2.2 BAREFOOT 

 Each volunteer was instructed to stand on the platform in the view of each 

fluoroscope barefoot. An x-ray technician ensured the two fluoroscopic views of the 

hindfoot were optimal from both angles. The x-ray technician then outlined the location 

of the volunteer's foot for a target during walking. Each volunteer was asked to walk at 

their preferred pace as the fluoroscopes recorded their left foot's motion at 30 frames 

per second from heel strike to toe-off. The captured images were checked to ensure that 

the calcaneus and tarsus were sufficiently visible for the subsequent RSA procedure 

before moving onto the next trial. If the calcaneus was not satisfactorily visible, the trial 

was repeated. Approved images were recorded on the control PC in the adjacent control 

room. The barefoot condition was repeated two times. 

3.2.3 SOFT PLASTER ORTHOTIC 

 Each volunteer was instructed wear the neutral cushion running shoe (New 

Balance #882) with a soft plaster casted orthotic replacing the manufacturers insole. 

Each volunteer was asked to walk at their preferred pace as the fluoroscopes recorded 

their left foot's motion at 30 frames per second from heel strike to toe-off. The captured 

images were checked to ensure that the calcaneus and tarsus were sufficiently visible for 

the subsequent RSA procedure before moving onto the next trial. If the calcaneus was 

not satisfactorily visible, the trial was repeated. Approved images were recorded on the 

control PC in the adjacent control room. The soft plaster condition was repeated two 

times. 



106 
 

 
 

3.2.4 RIGID PLASTER ORTHOTIC 

 Each volunteer was instructed wear the neutral cushion running shoe (New 

Balance #882) with a rigid plaster casted orthotic replacing the manufacturers insole. 

Each volunteer was asked to walk at their preferred pace as the fluoroscopes recorded 

their left foot's motion at 30 frames per second from heel strike to toe-off. The captured 

images were checked to ensure that the calcaneus and tarsus were sufficiently visible for 

the subsequent RSA procedure before moving onto the next trial. If the calcaneus was 

not satisfactorily visible, the trial was repeated. Approved images were recorded on the 

control PC in the adjacent control room. The soft plaster condition was repeated two 

times. 

3.2.5 CALIBRATION OVERVIEW 

 Both traditional and markerless bi-planar RSA requires two imaging devices. In 

this study two C-arm fluoroscopes with 9 inch image intensifiers (II) were used. A 

calibration frame was used to establish a coordinate system for the capture volume of 

interest (Kedgley, 2009). Calculations with the laboratory frame are used to determine 

the location of each imaging device. The calibration device was designed and used to 

determine the relationship of the 3D known bead locations and the two-dimensional 

images captured of the beads (Kedgley and Jenkyn, 2009). At least six fiducial and six 

control beads were visible to ensure a successful calibration. Images of the calibration 

frame were then digitized, and corrected for pincushion distortion. During the 

digitization process a space of at least 1 diameter of the bead must be visible as open 

space to ensure a smooth calibration. The MATLAB script uses the fiducial plane to 
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create a transformation from the image coordinate system to the laboratory coordinate 

system (MathWorks, Natick, MA, USA). The MATLAB script uses the control plane to 

determine the focal point from which the x-rays originate (Kedgley and Jenkyn, 2009). 

The calibration algorithm used in this thesis goes on to determine the parameters 

required to accurately recreate the experimental set-up in the virtual environment.   

3.2.5.1 CALIBRATION ALGORITHM 

 Based on the work of Rougée et al. (1993a and 1993b) an algorithm was 

developed by Allen that was furthered modified for the setup used in this thesis. This 

required that each fluoroscope be represented as a perspective projection model. The 

mathematical relationship between the 3D calibration points and their 2D projections 

are defined. An optimization algorithm is used with the mathematical relationship to 

determine the calibration parameters required for the recreation of the experimental 

setup into the virtual environment are calculated. 

 The derivation required for the calibration of a single fluoroscope is detailed in 

section 2.2.3.2 of this thesis. The calibration setup used for this study is seen in figure 

3.2. 
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Figure 3.2: Calibration set-up for study. The image intensifier (II) of each fluoroscopes 

are labelled. 

 

3.2.5.2 PIXEL SIZE CALCULATION 

 The pixel size of each fluoroscope is not considered to be a calibration parameter 

but rather a known value. The pixel size is assumed to remain a constant value. The pixel 

size for fluoroscope A and fluoroscope B were found to be 0.3847mm and 0.3819mm 

respectively.  

3.2.5.3 CALIBRATION PARAMETER ESTIMATION 

 According to the fluoroscopes operating manual (SIREMOBIL Compact (L), 

Siemens Medical Solutions USA Inc., Malvern, PA, USA) the distance (d) between the 

image intensifier (II) and the x-ray source should be 1000mm. Since the manual did not 

contain the manufacturing tolerances and the distortion grid may not have been placed 

directly center on the II it was thought to be a reasonable assumption to constrain the 

projected source to within 2 pixels of (0,0) and d to within 5mm of 1000mm (Allen, 

2009). 

Fluoroscope A 

Fluoroscope B 
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 These initial Euler angle estimate were calculated by iteration through several 

angle values to find the combination that resulted in the lower root mean squared error 

(RMSE). The initial Euler angles were iterated between - radians to  radians with a 

step size of /16 radians. Two additional iterations were then performed to determine 

more precise initial estimates for the Euler angle sequence. 

 An optimization technique was completed using the information of the pixel size 

and the mathematical relationship between the location of the 3D calibration points and 

their 2D projections onto the image plane. A custom-coded MATLAB script originally 

developed by Allen was modified for this study (Allen, 2009). A numerical optimization is 

employed to determine the rotation and translation required by the image plane. 

Detailed steps on how to obtain and utilize these calibration parameters are found in 

Appendix E of Allen's 2009 thesis work. Once this step is completed the experimental 

set-up should be accurately modeled in Rhinoceros (Rhinoceros, Robert McNeel & 

Associates, Seattle, WA, USA). 

3.2.5.4 CALIBRATION OF THE SECOND FLUOROSCOPE 

 Calibration of the second fluoroscope follows the same process as the first 

fluoroscope, however, the matrix P(cs,ls,d) contains a different mathematic relationship. 

Once this relationship is modified the process can be followed in the same manner as 

done for the calibration of the first fluoroscope. 

3.3 VIRTUAL RECREATION OF EXPERIMENTAL SET-UP 
 Using the files created in sections 3.2.5 (FluoroA-Calibration.3dm and FluoroB-

Calibration.3dm) a single file is created titled FluoroAB-Calibration.3dm. This is 
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computed by importing one of the files into the calibration file of the other fluoroscope 

(e.g. import FluoroB-Calibration.3dm into FluoroA-Calibration.3dm). Each fluoroscope 

should have a designated view and be modelled as a perspective projection camera in 

the program Rhinoceros. The camera location should be defined as the x-ray source 

coordinates and the cameras target location should be placed at the centre of the image 

plane for each fluoroscope. The resulting images of interest for this study are then 

viewed as seen from each x-ray source (figure 3.3). 

 

Figure 3.3: Two viewpoints from the x-ray foci. Left: Fluoroscope B, Right: Fluoroscope A. 

 

3.4 BONE MODEL CREATION 
 Three-dimensional models of the bones under study were created using a 

computed tomography (CT) scan of the volunteer's foot and the program OsiriX-DICOM 

Viewer (Advanced Open-Source PACS Workstation DICOM Viewer, Antoine Rosset, USA). 

Detailed steps on how to segment the bone(s) of interest from a CT scan using OsiriX are 

provided in Appendix B. The models were converted to a triangular mesh of file format 



111 
 

 
 

stereolithography (.stl) (or object file .obj). Figure 3.4 shows the 3D rendered model of 

the calcaneus, cuboid, navicular, and tibia/fibula. The landmarks of interest were located 

as described in chapter 1 (section 1.5.1) of this thesis and marked on each of the bone 

models as indicated.  

            
 

 

   
 

 
Figure 3.4: Rendered 3D model of: (A) calcaneus, (B) cuboid, (C) navicular and (D) 

tibia/fibula as viewed in Rhinoceros. 

 

3.5 MATCHING BONES TO THE IMAGE PLANE 
 The matching process recreates the pose of the bones captured by the 

fluoroscopes. The computer bone models (section 3.4) are imported into the virtual 

environment. Initially the entire fluoroscopic image is viewed and each bones silhouette 

(A) Calcaneus (B) Cuboid 

(C) Navicular (D) Fibula (left), Tibia (right) 
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is matched closely to its entire bony outline on both images (fluoroscope A and 

fluoroscope B). Once the match is close the image is enlarged (i.e. increase the lens 

length on the camera was increased) and a few easily identifiable landmarks are used to 

fine-tune the match. At this point the object is moved by increments as small as 0.01mm 

and 0.01° until the silhouette's of the bony landmarks completely matches the outline of 

the bony landmarks on the image. It is still important to ensure that the overall match is 

still obtained when the image is enlarged. Once the match is complete the bony 

landmarks are exported to an excel spreadsheet using the "ExportPoints" Rhinoscript 

developed by Allen (Allen, 2009). This Rhinoscript is used to export the bony landmark 

3D coordinates of the bony landmarks. 

 For each condition being studied (barefoot, plaster hard orthotics, and plaster 

soft orthotics) the corresponding fluoroscope images are imported into the virtual 

environment and the model is re-matched. Since this study is interested in dynamic 

trials more than one frame was used for each condition. The number of frames used was 

dependant on the speed the individual walked while in the view of the fluoroscope. A 

minimum of five (5) frames were analyzed during midstance for each condition. The 

calcaneus, cuboid, navicular, and tibia/fibula are matched in figure 3.5, figure 3.6, figure 

3.7, and figure 3.8 respectively. 
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Figure 3.5: The calcaneus matched to both fluoroscope images. Top left: fluoroscope B, 

Bottom left: fluoroscope A, Right: 3D model of the calcaneus in virtual environment. 

 

 

 

Figure 3.6: The cuboid matched to both fluoroscope images. Top left: fluoroscope B, 

Bottom left: fluoroscope A, Right: 3D model of the cuboid in the virtual environment. 
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Figure 3.7: The navicular matched to both fluoroscope images. Top left: fluoroscope B, 

Bottom left: fluoroscope A), Right: 3D model of the navicular in the virtual environment. 

 

 

 

Figure 3.8: The tibia/fibula matched to both fluoroscope images. Top left: fluoroscope B, 

Bottom left: fluoroscope A, Right: 3D model of the tibia and fibula in the virtual 

environment. 
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 Once the matching process is completed the mathematical analysis to determine 

the change in the alignment of the foot can be calculated. Custom MATLAB script 

(Calcaneuspronation_kinematics.m) was developed for this thesis (Appendix C). Using 

the excel files generated from the "ExportPoints" Rhinoscript containing the 3D 

coordinates of the bony landmarks on the calcaneus, cuboid, navicular, tibia and fibula 

individual bone coordinate systems can be calculated as described in chapter 1. Once 

the bone coordinate systems are calculated the change in pronation with respect to the 

calcaneus, and the tibia/fibula can be determined. The custom MATLAB script 

(Calcaneuspronation_kinematics.m) exports an excel spreadsheet which contains the 

foots internal rotation, plantarflexion, and inversion angles for the various bones with 

respect to each other as labelled (table 3.1). The calcaneus with respect to the 

tibia/fibula is calculated based on the International Society of Biomechanics (ISB) joint 

coordinate system definition (section 1.6.1) (Wu et al., 2002). Since the calcaneus with 

respect to the tibia/fibula was considered the standard measurement it was used to 

determine if the foot was pronating overall. However, this was not the only 

measurement considered in this thesis. Since individual bone alignment in the foot has 

never been studied prior to this thesis work (to the author's knowledge) the changes in 

the cuboid and navicular were also considered during midstance. 
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Table 3.1: The calculations completed using the custom MATLAB script in Appendix C for 
the three planes of motion.  

 

Internal/External 

Rotation 
Calcaneus 

with 

respect to 

the 

tibia/fibula 

Navicular 

with 

respect to 

the 

tibia/fibula 

Cuboid with 

respect to 

the 

tibia/fibula 

Navicular 

with 

respect to 

the 

calcaneus 

Cuboid 

with 

respect to 

the 

calcaneus 

Plantar/dorsi 

flexion 

Inversion/ 

Eversion 

 
 A repeated measures analysis of variance (ANOVA) using SPSS was produced to 

test for differences between measurement conditions (SPSS; IBM Corporation, Armonk, 

NY, USA). A probability level of p<0.05 was used to indicate significance. All levels of 

significance will be reported however, only where significance is found will the results of 

the statistical test be included in appendix F. 

 

3.6 RESULTS 
 The impact of plaster casted orthotics on the hindfoot was determined by using a 

reverse engineering technique. By manipulating the bony landmark locations the 

variance in the bone coordinate systems can be used to determine the change in 

pronation on the population studied. The barefoot values were used for a baseline in 

this study and are found in table 3.2. 
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Table 3.2: Barefoot baseline angle measurements for the five (5) subjects. All entries in 
degrees. 

 

Measurement Subject# 
cal wrt 
tibfib 

nav wrt 
cal 

cub wrt 
cal 

nav wrt 
tibfib 

cub wrt 
tibfib 

External 
Rotation 

1 15.47 -13.33 61.17 33.97 -48.14 

2 46.47 22.02 87.11 50.84 -62.06 

10 47.68 6.42 89.29 65.82 -47.13 

11 31.20 5.61 65.19 36.85 -36.47 

23 43.32 27.13 87.79 41.77 -40.36 

Average 36.83 9.57 78.11 45.85 -46.83 

Standard 
Deviation 

13.61 15.92 13.73 12.87 9.78 

 

Dorsiflexion 

1 183.09 -45.69 13.95 -127.12 -171.60 

2 148.79 -38.58 99.37 -168.45 -162.27 

10 155.63 -47.09 59.50 -132.82 -164.39 

11 164.20 -51.98 -22.35 -139.33 -151.92 

23 152.37 -37.89 -9.40 -159.83 -168.48 

Average 160.82 -44.25 28.21 -145.51 -163.73 

Standard 
Deviation 

13.70 5.97 50.54 17.81 7.52 

 

Eversion 

1 166.70 22.96 14.14 140.97 164.37 

2 150.75 23.28 -115.48 123.54 156.38 

10 157.79 27.16 -74.80 123.77 163.51 

11 152.06 16.39 -33.57 134.32 169.05 

23 165.60 31.90 -74.29 128.43 174.37 

Average 158.58 24.34 -56.80 130.20 165.54 

Standard 
Deviation 

7.41 5.73 49.10 7.45 6.70 

Note: The output from the program was manipulated beyond this table to represent the results where 

positive represents the change in motion towards the direction that promotes an increase in supination. 

 

 

 Due to the large variance between subjects each individual's barefoot condition 

(table 3.2) was used as their baseline value and only the change in pronation is reported. 

The standard deviation associated with each subject during all conditions and 
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measurements was calculated. This average standard deviation for the soft plaster 

casted orthotic and the rigid plaster casted orthotic is reported in Appendix E and is 

represented in table E.1 and table E.2 respectively. The values shown in these tables 

represent the standard deviation for at least five frames during midstance for that 

particular subject. The average effect of the plaster casted orthotic on the calcaneus 

with respect to the tibia/fibula for the three planes of motion: internal rotation, 

plantarflexion, and inversion can be found in figure 3.9, figure 3.10, and figure 3.11 

respectively.   

 The average effect of the soft plaster casted orthotic on the pronation angle is 

shown in table 3.3, table 3.4, and table 3.5 for internal rotation, plantarflexion, and 

inversion respectively. The average effect of the rigid plaster casted orthotic is 

summarized in table 3.6, table 3.7, and table 3.8 for the internal rotation, plantarflexion, 

and inversion respectively.  
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Figure 3.9: The average change in internal rotation for the normal population while 

wearing plaster casted orthotics. The internal rotation is measured for the calcaneus 

with respect to the tibia/fibula.  

 

 

Figure 3.10: The average change in the plantarflexion angle in the normal population 

while wearing the plaster casted orthotics. A negative change represents an increase in 

plantarflexion, and a positive change indicates an increase in dorsiflexion. 
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Figure 3.11: The average change in the inversion angle for the calcaneus with respect to 

the tibia/fibula while wearing plaster casted orthotics on the normal population. 

 

 

 
Table 3.3: Results representing the internal rotation angle changes in the foot while 
wearing the soft plaster orthotic. All entries in degrees. 

 
Soft Plaster Orthotic: Internal Rotation 

Subject# cal wrt tibfib nav wrt cal cub wrt cal 
nav wrt 

tibfib 
cub wrt 

tibfib 

1 7.54
+
 7.73

+
 -4.43 3.66

+
 9.30

+
 

2 19.96
+
 12.82

+
 -19.50 19.97

+
 -8.54 

10 -8.73 -4.20 -11.25 -0.90 4.21
+
 

11 -3.58 1.37 0.15 -9.10 2.82
+
 

23 -15.87 -6.94 -18.00 -10.57 -1.60 

AVERAGE -0.14 2.16* -10.60 1.38* 1.24* 
Note: A negative value indicates the opposite motion (i.e. external rotation). Those with a (*) represent a 

value which is significant to one standard deviation. Those with a (+) are significant to two standard 

deviations. 
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Table 3.4: Results representing plantarflexion angle changes in the foot while wearing 
the soft plaster orthotic. All entries in degrees. 

Soft Plaster Orthotic: Plantarflexion 

Subject# cal wrt tibfib nav wrt cal cub wrt cal nav wrt tibfib cub wrt tibfib 

1 -3.69 3.14* -26.00 -4.87 14.35
+
 

2 -10.76 -2.36 30.18
+
 -2.71 15.15

+
 

10 7.41
+
 1.97 -53.57 -4.71 1.25

+
 

11 3.27* -1.19 2.58 9.19
+
 -13.36 

23 6.44
+
 -1.05 5.71 -0.92 -2.43 

AVERAGE 0.53 0.10 -8.22 -0.80 2.99* 
Note: A negative value represents the opposite motion (i.e. dorsiflexion). Those with a (*) represent a 

value which is significant to one standard deviation. Those with a (+) are significant to two standard 

deviations. 

 

 

 

 

 

Table 3.5: Results representing Inversion angle changes in the foot while wearing the 
soft plaster orthotic. All entries in degrees. 

Soft Plaster Orthotic: Inversion 

Subject# cal wrt tibfib nav wrt cal cub wrt cal nav wrt tibfib cub wrt tibfib 

1 -4.20 2.34
+
 -1.04 -6.04 -5.04 

2 -16.01 4.81
+
 -50.41 -14.51 -10.31 

10 -0.86 4.92
+
 48.18

+
 -3.85 2.65

+
 

11 17.11
+
 2.07

+
 14.25

+
 14.46

+
 5.25

+
 

23 -2.22 1.81* 38.49
+
 -1.76 -5.14 

AVERAGE -1.24 3.19
+
 8.82

+
 -2.34 -2.52 

Note: A negative value represents the opposite motion (i.e. eversion). Those with a (*) represent a value 

which is significant to one standard deviation. Those with a (+) are significant to two standard deviations. 
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Table 3.6: Results representing internal rotation angle changes in the foot while wearing 
the rigid plaster orthotic. All entries in degrees. 

Rigid Plaster Orthotic: Internal Rotation 

Subject# cal wrt tibfib nav wrt cal cub wrt cal nav wrt tibfib cub wrt tibfib 

1 20.26
+
 23.96

+
 19.40

+
 1.54 -1.92 

2 10.04
+
 3.99* -10.12 1.31 2.10 

10 -9.39 -8.33 -8.63 -1.65 6.46
+
 

11 -0.30 5.57
+
 19.21 -10.35 -7.33 

23 -17.92 -2.64 -9.42 -19.36 -5.29 

AVERAGE 0.54 4.51
+
 2.09* -5.70 -1.20 

Note: A negative value indicates the opposite motion (i.e. external rotation). Those with a (*) represent a 

value which is significant to one standard deviation. Those with a (+) are significant to two standard 

deviations. 

 

 

 

 

Table 3.7: Results representing the plantarflexion changes in the foot while wearing the 
rigid plaster orthotic. All entries in degrees. 

Rigid Plaster Orthotic: Plantarflexion 

Subject# cal wrt tibfib nav wrt cal cub wrt cal 
nav wrt 

tibfib 
cub wrt 

tibfib 

1 -7.87 4.60
+
 18.14

+
 -3.84 5.32

+
 

2 -8.12 -4.15 19.20
+
 7.80

+
 -12.50 

10 7.94
+
 2.52

+
 -72.55 -8.13 8.84

+
 

11 8.37
+
 -0.29 1.40 14.35

+
 5.39* 

23 5.70
+
 -1.01 -10.28 0.35 3.06* 

AVERAGE 1.21* 0.33 -8.82 2.11 2.02 
Note: A negative value represents the opposite motion (i.e. dorsiflexion). Those with a (*) represent a 

value which is significant to one standard deviation. Those with a (+) are significant to two standard 

deviations. 
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Table 3.8: Results representing inversion angle changes in the foot while wearing the 
rigid plaster orthotic. All entries in degrees. 

Rigid Plaster Orthotic: Inversion 

Subject# cal wrt tibfib nav wrt cal cub wrt cal nav wrt tibfib cub wrt tibfib 

1 -6.73 5.97
+
 14.44* -9.67 -3.07 

2 4.42
+
 -3.96 -30.74 6.34

+
 -3.09 

10 -2.53 0.55* 29.88
+
 -1.24 12.76 

11 3.19* 5.89
+
 -23.960 -0.80 18.27

+
 

23 1.75 0.30 22.44
+
 3.34

+
 3.97

+
 

AVERAGE 0.02 1.75* 2.44 -0.41 5.97
+
 

Note: A negative value represents the opposite motion (i.e. eversion). Those with a (*) represent a value 

which is significant to one standard deviation. Those with a (+) are significant to two standard deviations. 

 

 

3.7 DISCUSSION 
 This study examines the effect that plaster casted orthotics have on the normal 

foot as compared to each individual participants barefoot condition in three-dimensions. 

By an Euler angle analysis the findings suggest that the general population will see a 

reduction in pronation when wearing a plaster casted orthotic although the results of 

this study were not found to be statistically significant (Appendix F).  

 Each subjects' data was evaluated with an ANOVA repeated measures statistical 

test using SPSS (SPSS; IBM Corporation, Armonk, NY, USA) to determine the statistical 

significance between each shoed condition as compared to the barefoot condition. Each 

plane of motion was analyzed separately. A probability level of p<0.05 was considered 

significant. While wearing the plaster soft orthotic no significant changes were found in 

internal rotation (p=0.984), plantarflexion (p=0.884), and inversion (p=0.827). While 

wearing the plaster hard orthotic no significant changes were found in internal rotation 

(p=0.940), plantarflexion (p=0.766), and inversion (p=0.992) planes of motion.  It was 
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discovered that no overall statistical difference caused by wearing plaster soft and 

plaster hard orthotic insoles. Significance may not have been reached due to the small 

sample size.  

 Based on the kinematic joint coordinate system motion definition accepted by 

ISB the calcaneus with respect to the tibia/fibula is considered the measure that most 

accurately represents pronation when the three planes of motion are taken into 

consideration (Wu et al., 2002). The results of the calcaneus with respect to the 

tibia/fibula were shown in figure 3.9, figure 3.10, and figure 3.11 for the internal 

rotation, plantarflexion, and inversion planes respectively. The graphs represent the 

normal population's average change in pronation compared to the barefoot condition 

between the soft and hard material based orthotic. It was found that the plaster rigid 

orthotic had the greatest increase in internal rotation and inversion (figure 3.9 and 

figure 3.11). However, the difference between the plaster soft condition and the plaster 

rigid orthotic was less than one standard deviation for the inversion plane of motion. 

The plaster soft orthotic had the greatest increase in plantarflexion, but the change still 

remained within one standard deviation in figure 3.10. From this it was concluded that 

although a significant change may occur on the individual level this change is not 

predicable in the overall population. The remainder of the discussion will be presented 

at the individual level.  

 To determine if a condition had an effect on an individual level the concept of 

the normal distribution was used. Natural variance of several variables has the tendency 

to follow the normal distribution curve. Meaning that 68% of all cases will fit within one 
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(1) standard deviation (SD), and 99.5% of all cases will fit within two (2) SD (Norman and 

Streiner, 2003; Portney and Watkins, 2000). Therefore when deciding significance in the 

results those found to have one standard deviation of significance were represented 

with an asterisk (*) and those with two standard deviations of significance were 

represented with a plus (+) sign.  

 Since the calcaneus with respect to the tibia/fibula is considered the 

measurement that most accurately represents pronation when the three planes of 

motion are taken into consideration (Wu et al., 2002). The other measurements will be 

discussed as their single plane effect rather than on their effect to reduce pronation as a 

whole.  

 Pronation is defined as the combination of external rotation, dorsiflexion, and 

eversion. A reduction in pronation requires the opposite combination to occur in the 

three planes of motion. Therefore, for the foot to see an overall decrease in pronation 

(alignment change in the direction of supination) the foot must experience a change 

increasing internal rotation, plantarflexion, and inversion when compared to the 

barefoot (baseline) condition. 

 Examining the effect of the soft plaster orthotic shows that the calcaneus with 

respect to the tibia/fibula little variation for the overall average of all participants. As 

participants wore the rigid plaster orthotic all three planes of motion did not experience 

a significant reduction in pronation. The calcaneus with respect to the tibia/fibula 

experienced an increase in plantarflexion (>1SD) with no significant change visible in the 

internal rotation and inversion planes of motion. 
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 The evaluation of the navicular with respect to the calcaneus showed that the 

navicular reacted to the orthotics. While wearing the soft plaster orthotic an increase in 

internal rotation (>1SD), and inversion (>2SD) was found to occur overall. While wearing 

the rigid plaster orthotic an increase in internal rotation (>2SD) and inversion (>1SD) was 

the resultant found for the overall normal subject population tested.  

 Examining the navicular with respect to the tibia/fibula less motion was evident 

by comparison to the navicular with respect to the calcaneus. The only significant 

change in alignment occurred while wearing the soft plaster casted orthotic in the 

internal rotation (>1SD) plane of motion.  

 Upon examination of the cuboid with respect to the calcaneus significant motion 

was found in one plane, although different, for each orthotic type tested. It was found 

that the cuboid experienced an increase in inversion (>2SD) while wearing the soft 

plaster orthotic, and an increase in internal rotation (>1SD) while wearing the rigid 

plaster orthotic. 

 The cuboid with respect to the tibia/fibula experienced a significant increase in 

motion in two planes while wearing the soft plaster orthotic. An increase in internal 

rotation (>1SD), and plantarflexion (>1SD) was found while wearing the soft plaster 

orthotic. While wearing the rigid plaster casted orthotic an increase in inversion (>2SD) 

was found.  

 Although each participant reacted differently during each footwear and orthotic 

condition tested. It is still evident that the plaster casted orthotics did have an impact on 

the alignment of the bones within the foot when compared to the barefoot condition. It 
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was found that the type of material used (soft or rigid) did not have a significant impact 

on the alignment, although while wearing the soft plaster orthotic more conditions 

experienced a significant change in alignment. Taking all things into consideration the 

patient and pedorthist should chose a material type that is found to be qualitatively 

more successful based on their past experiences. 
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CHAPTER 4- THE EFFECT OF FOAM CASTED 

ORTHOTICS ON THE PES PLANUS AND PES CAVUS 

FOOT USING MARKERLESS RSA 
 
OVERVIEW: This chapter describes the effect foam casted orthotics have 

on altering the alignment of the bones in the hindfoot in the pes planus 

and pes cavus population. Bi-planar x-ray fluoroscopy and the markerless 

RSA technique are used to determine the change in pronation of the pes 

planus and pes cavus population at midstance during gait. 

 

4.1 INTRODUCTION 

Pes planus (or flat foot) is the condition in which the medial longitudinal arch of 

the foot collapses coming into complete or near-complete contact with the ground. The 

pes planus foot is considered to be one experiencing external rotation, dorsiflexion, and 

eversion (Yagerman et al., 2011). A pes cavus (or high arch) foot has visual arch 

properties opposite to that of the pes planus foot. The pes cavus foot generally has a 

rigid medial longitudinal arch present. Conservative management of patients with 

painful pes planus or pes cavus feet typically involve the use of orthotics. Orthotics are a 

device inserted as a replacement for the manufacturer's insole with the intent to 

support and realign the foot. An orthotic device is used in attempt to reduce and 

redistribute the loading on the plantar surface. Altering the alignment in the foot bones 

is thought to reduce and redistribute load to certain regions of the foot.  The change is 
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dependent on the type of orthotic and its aggressiveness. A difference of approximately 

5° between barefoot and a shoed (orthotic or no orthotic) condition is the minimal 

difference expected to be clinically significant. The barefoot condition is used as the 

reference position since pedorthists use barefoot walking to analyze a patient’s gait and 

cast custom orthotics.  

 Markerless radiostereometric analysis (RSA) systems have been shown to be a 

feasible method for measuring foot bone motions during in-vivo weight bearing gait 

(Kedgley et al., 2009). This method uses x-ray images from two fluoroscopes taken 

simultaneously from different locations in order to track the alignment of the foot in real 

time by using three-dimensional (3D) bone models. By employing an accurate calibration 

technique the experimental set-up can be recreated in the virtual environment and the 

motion of the bones can be tracked in real time.  

 The aims of this study were to quantify the variation in pronation on a pes cavus 

and pes planus population when asked to walk: (1) barefoot, (2) wearing a pair of foam 

casted soft orthotics, (3) wearing a pair of foam casted hard orthotics. It is hypothesized 

that the pes cavus group will experience little variation while wearing any orthotic type 

by comparison to the pes planus group. It is also hypothesized that the pes planus group 

will experience a reduction in pronation when wearing the orthotic insoles, with the 

more rigid material resulting in a greater reduction.  

4.2 METHODS 
 Ethics was obtained from the Research Ethics Board at The University of Western 

Ontario prior to the commencement of any data collection. A recruitment poster was 
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created for the Canadian certified pedorthist to explain the research study to potential 

volunteers. 

4.2.1 DATA COLLECTION 

 Three (3) pes planus and three (3) pes cavus volunteers were recruited to 

participate in this study. These volunteers were not screened for minor pain, or 

deformities. Individuals with previous fractures in the lower extremities were avoided 

and pre-screened for. Each volunteer had their feet examined to ensure they fit the 

criteria for pes planus or pes cavus. Volunteers were asked to fill out a consent form 

after the study was explained as well as any risks involved. The volunteers were fitted 

with two pairs of custom-made orthotics with: (1) a 4mm plastazote (soft) and (2) 3mm 

RCH-500 (rigid) foam box casted orthotic as per usual clinical practice. The orthotics 

were casted by the same Canadian certified pedorthist at the Fowler Kennedy Sport 

Medicine Clinic, London, ON, Canada. When the orthotics were ready for wear the 

volunteers returned for the image collection.  

 The fluoroscopes were positioned so the two images of the foot gave optimal 

views of the calcaneus at the instant of midstance during walking gait. After positioning 

the fluoroscopes, they had to be calibrated using the RSA method. At least one image of 

the calibration frame was captured prior to the volunteer's arrival for the study. Each 

volunteer wore a wear wrap-around apron and kilt on their upper and lower body 

respectively, including a thyroid collar (figure 4.1). Sections 4.2.1.1 to 4.2.1.3 were 

completed in a randomized order. It is assumed that the order completed as presented 

in order to reduce repetition in the steps. 
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Figure 4.1: Platform and wrap-around leaded clothing. Image taken during a dynamic 

trial. 

 

4.2.2.1 BAREFOOT 

 Each volunteer was instructed to stand barefoot on the platform placing their left 

foot in the field of view of both fluoroscopes. An x-ray technician ensured the two views 

of the calcaneus were optimal. The foot was adjusted accordingly to include the midfoot 

and entire tarsus. The x-ray technician then outlined the location of the volunteer's left 

foot to be used as a target location during the dynamic walking trials. Each volunteer 

was asked to walk at their preferred pace as the fluoroscope recorded the left foots 

motion at thirty (30) frames per second from heel strike to toe off. The captured images 

were checked to ensure that the calcaneus and tarsus were sufficiently visible for the 

subsequent RSA procedure prior to moving onto the next trial. If the calcaneus was not 

satisfactorily visible the trial was repeated. The barefoot condition was repeated two (2) 

times.  
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4.2.2.2 FOAM SOFT CASTED ORTHOTIC 

 Each volunteer was asked to wear the neutral cushioning running shoe (New 

Balance, model 882) with the custom-made foam soft casted orthotic insole inserted in 

place of the provided manufacturer's insole. Each volunteer was asked to walk at their 

preferred pace as the fluoroscopes recorded images of the left foot movement at 30 

frames per second from heel strike to toe off. The images were recorded on the control 

PC in the adjacent control room. As with the barefoot trials, if the calcaneus was not 

satisfactorily visible the trial was repeated. The foam soft trial was repeated two times.  

4.2.2.3 FOAM HARD CASTED ORTHOTIC 

 Each volunteer was instructed to wear the neutral cushioning running shoe (New 

Balance, model 882) with the custom-made foam hard casted orthotic. Each volunteer 

was asked to walk at their preferred pace as the fluoroscopes recorded the left foots 

motion at 30 frames per second from heel strike to toe off. The images were recorded 

on the control PC in the adjacent control room. As with the barefoot trials, if the 

calcaneus was not satisfactorily imaged the trial was repeated. The foam hard condition 

was repeated two times.  

4.2.2 CALIBRATION 

 Two imaging devices, specifically, C-arm fluoroscopes with 9 inch image 

intensifiers (II) were used for the purpose of this study. A calibration frame is used to 

establish a laboratory coordinate system for the capture volume through which the test 

subject will walk and determines the locations of the two imaging devices relative to one 

another. A calibration frame designed by Kedgley was used as the calibration phantom 
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for this thesis (Kedgley, 2009). This custom designed calibration object is a cube with 

two fiducial planes and two control planes (figure 4.2). This custom designed calibration 

frame was constructed of 9.5mm thick acrylic sheet. Each fiducial plane was embedded 

with 45 beads (1mm in diameter) at known 3D locations.  Each control plane was 

embedded with 45 beads (2mm in diameter) at known 3D locations. The frame was used 

to define the laboratory coordinate system. The steps required to successfully complete 

a calibration are based on a standard RSA algorithm in combination with the work of 

Rougée et al. (1993a and 1993b).  

 In order to calibrate the capture volume each imaging device must have a view of 

one fiducial plane and one control plane on the calibration box. The fiducial plane is 

used to calculate a transformation from the image coordinate system to the laboratory 

coordinate system. The control plane determines the location of the focal point from 

which the x-rays originate in the laboratory frame (Kedgley and Jenkyn, 2009). At least 

six fiducial and six control beads were visible to ensure a successful calibration. While 

this number of beads is the minimum needed for calibration, accuracy of the calibration 

procedure is increased when a greater number of beads can be utilized. Prior to 

proceeding with the calibration procedure it was ensured that no beads were 

overlapped in the image. If this were the case, manipulation of the calibration frame was 

necessary until a good image of the fiducial and control planes could be obtained for 

both fluoroscopes simultaneously. Images of the calibration frame were digitized, and 

corrected for pincushion distortion based on a standard RSA technique (Kedgley, 2009). 

The calibration device was designed and used to determine the relationship of the 3D 
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known bead locations with their 2D projections onto the image plane (Kedlgey and 

Jenkyn, 2009). The calibration algorithm was conducted to determine the parameters 

necessary to reconstruct the experimental set-up in a virtual environment.  To continue 

the calibration an algorithm based on the work of Rougée et al. is modified to represent 

the experimental set-up.  

 Continuing the calibration requires a three-dimensional modeling program and 

the ability of representing the laboratory set-up as a perspective projection model. Using 

this concept the mathematical relationship between the 3D calibration points and the 

2D image plane projections are defined.  Using this model along with an optimization 

algorithm the parameters required to model the experimental set-up in the virtual 

environment are calculated. This perspective projection model will be explained for a 

single fluoroscope. The calibration setup used for this study is found in figure 4.2.  

 

 

Figure 4.2: Calibration set-up for the study. The image intensifier (II) of each fluoroscope 

is labelled. 

 

Fluoroscope A 

Fluoroscope B 
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 The optimization technique used the pixel size, and the mathematical 

relationship between the 3D calibration points and their 2D projection onto the image 

plane. A custom-written MATLAB script originally developed by Allen was modified for 

this study to match the calibration setup. By conducting a numerical optimization 

technique the location of the known 2D projections can be calculated. An initial estimate 

of the Euler angle rotation is calculated while minimizing the lower root mean squared 

error throughout the algorithm. A guide describing how to use the calibration 

parameters is outlined in Appendix E of Allen’s 2009 thesis work. After completing the 

guide the experimental setup should be accurately modeled in the virtual environment. 

The process is repeated with a modified projection relationship for the second 

fluoroscope. 

4.2.3 BONE MODEL CREATION 

 To accurately model the bone, three-dimensional models were segmented from 

a computed tomography (CT) scan of the volunteer's foot using the program OsiriX-

DICOM Viewer (Advanced Open-Source PACS Workstation DICOM Viewer, Antoine 

Rosset, USA). Detailed steps describing the method on how to segment the bone(s) of 

interest from the foot using a Digital Imaging and Communications in Medicine (DICOM) 

image file and converting it to a useable file type, such as stereolithography (.stl) are 

provided in Appendix B. Figure 4.3 shows the 3D rendered bone model of the calcaneus, 

cuboid, navicular, and tibia/fibula. The landmarks of interest were located as described 

in chapter 1 (section 1.5.1) of this thesis and marked on each of the bone models as 

indicated. 
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Figure 4.3: Rendered 3D model of: (A) calcaneus, (B) cuboid, (C) navicular, (D) 

tibia/fibula as viewed in Rhinoceros.  

 

4.2.4 IMAGE PLANE MATCHING 

 Matching is done to recreate the pose of the bone as captured by the 

fluoroscopes. The computer bone models (section 4.3) are imported into the virtual 

environmental of the calibration. The bone (e.g. the calcaneus) is rotated and translated 

until the bone closely matches the pose captured by the fluoroscopes. This is most easily 

done by using easily identifiable landmarks and matching those closely (e.g. the medial 

process of the calcaneal tuberosity, labelled in figure 4.4) by increasing the lens length of 

(A) Calcaneus (B) Cuboid 

(C) Navicular (D) Fibula (left), Tibia (right) 
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the projection camera model.  The bone model is now moved by increments as small as 

0.01mm and 0.01° until the silhouette’s of the models bony landmarks completely 

matches the outline of the bony landmark on the image. The model is then viewed 

entirely to ensure that the overall match is still obtained.  Once the match is complete 

the bony landmarks (figure 4.4) coordinates are exported into an excel spreadsheet.   

  

   

Figure 4.4: Calcaneus bone model with visual of its bone coordinate system and location 

of the medial process of the calcaneal tuberosity labelled. Model was used for the 

matching process to obtain the 3D pose of the bone during the various shoe conditions. 

 

 Images were collected at a rate of 30 frames per second; therefore, multiple 

frames were repeated in the matching process. A minimum of five frames were analyzed 

during midstance, this number was dependent on the speed the volunteer walked.  The 

calcaneus, cuboid, navicular, and tibia/fibula were matched for each image frame. 

Custom MATLAB script developed for this thesis calculates the degree of pronation in 

the foot during the condition being analyzed. Pronation is defined as the combination of 

external rotation, dorsiflexion, and eversion. The custom script (Appendix C- 

Calcaneuspronation_kinematics.m) outputs the angle relative to the bones of interest 

  medial process of  
  calcaneal tuberosity 

�⃑⃑� 𝒄𝒂𝒍 
�⃑⃑� 𝒄𝒂𝒍 

𝑿𝒄𝒂𝒍 
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and divides the motion of pronation into three planes.  The calcaneus with respect to 

the tibia/fibula is considered to have landmarks defined by the International Society of 

Biomechanics (ISB) therefore these bones were used to create the bone coordinate 

system. The motion of the navicular, and cuboid bones were also considered with 

respect to both the calcaneus and tibia/fibula coordinate systems.  

 This process is repeated for each condition studied (barefoot, foam hard 

orthotic, and foam soft orthotic). Fluoroscope images that were taken during the 

scenario of interest are imported into the virtual environment on the respective image 

plane and the model is matched. This is repeated for each bone (calcaneus, cuboid, 

navicular, tibia/fibula). The calcaneus, cuboid, navicular, and tibia/fibula are matched in 

figure 4.5, figure 4.6, figure 4.7, and figure 4.8 respectively.  

 

Figure 4.5: The calcaneus matched to the fluoroscopic images. Top left: Fluoroscope B, 

Bottom left: Fluoroscope A, Right: 3D model of the calcaneus.  
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Figure 4.6: The cuboid matched to the fluoroscopic images. Top left: Fluoroscope B, 

Bottom left: Fluoroscope A, Right: 3D model of the cuboid.  

 

 

Figure 4.7: The navicular matched to the fluoroscopic images. Top left: Fluoroscope B, 

Bottom left: Fluoroscope A, Right: 3D model of the navicular. 
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Figure 4.8: The tibia and fibula matched to the fluoroscopic images. Top left: 

Fluoroscope B, Bottom left: Fluoroscope A, Right: 3D model of the tibia and fibula. 

 

 A repeated measures analysis of variance (ANOVA) using SPSS was produced to 

test for differences between measurement conditions (SPSS; IBM Corporation, Armonk, 

NY, USA). A probability level of p<0.05 was used to indicate significance. All levels of 

significance will be reported however, only where significance is found will the results of 

the statistical test be included in appendix F. 

 

4.3 RESULTS 

Using the output values from the transformation matrices calculation the impact of the 

different orthotic conditions (foam hard and foam soft) can be determined for the pes 

cavus and the pes planus groups studied in this chapter. The barefoot condition was 

used as the baseline measurement on an individual basis for the pes cavus and pes 

planus groups as shown in table 4.1 and table 4.2 respectively. The average effect on the 
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pes cavus and pes planus populations while wearing the foam soft and foam hard 

orthotics were analyzed. Figure 4.9, figure 4.10, and figure 4.11 contain the average 

effect as measured for the three planes of motion: internal rotation, plantarflexion, and 

inversion respectively.  

 

Table 4.1: Barefoot baseline angle measurement for the three pes cavus subjects used in 

this study. All entries are in degrees. 

Measurement Subject# 
cal wrt 
tibfib 

nav wrt 
cal 

cub wrt 
cal 

nav wrt 
tibfib 

cub wrt 
tibfib 

External 
Rotation 

9 26.67 -0.83 58.60 51.91 -46.46 

15 8.60 -38.65 37.98 70.45 32.69 

22 23.62 14.18 77.11 11.95 -48.38 

Average 19.63 -8.43 57.89 44.77 -20.72 

Standard 
Deviation 

9.68 27.23 19.58 29.90 46.26 

 

Dorsiflexion 

9 175.46 -40.34 2.39 -153.01 -150.01 

15 178.17 -68.95 -7.77 -109.81 -156.93 

22 168.17 -44.25 26.97 -146.20 -170.66 

Average 173.93 -51.18 7.20 -136.34 -159.20 

Standard 
Deviation 

5.17 15.51 17.86 23.23 10.51 

 

Eversion 

9 176.14 -51.27 -5.70 -123.01 -155.01 

15 175.18 -62.90 -12.02 -117.04 -158.31 

22 170.02 -47.43 53.37 -130.60 -156.66 

Average 173.78 -53.87 11.89 -123.55 -156.66 

Standard 
Deviation 

3.29 8.06 36.07 6.80 1.65 

Note: The output from the program was manipulated beyond this table to represent the results where 

positive represents the change in motion towards the direction that promotes an increase in supination. 
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Table 4.2: Barefoot baseline angle measurement for the three pes planus subjects used 

in this study. All entries are in degrees. 

Measurement Subject# 
cal wrt 
tibfib 

nav wrt 
cal 

cub wrt 
cal 

nav wrt 
tibfib 

cub wrt 
tibfib 

External 
Rotation 

5 26.37 17.04 89.25 10.21 -59.23 

16 23.17 28.51 88.23 15.22 -60.40 

19 41.21 56.62 79.73 -13.01 -29.72 

Average 30.25 34.06 85.74 4.14 -49.79 

Standard 
Deviation 

9.63 20.37 5.23 15.06 17.38 

 

Dorsiflexion 

5 35.67 29.47 89.97 21.80 -57.76 

16 25.84 34.56 89.77 28.15 -61.99 

19 42.70 41.90 58.05 13.19 -10.22 

Average 34.74 35.31 79.27 21.05 -43.32 

Standard 
Deviation 

8.47 6.25 18.38 7.51 28.75 

 

Eversion 

5 29.66 26.93 84.58 9.07 -51.34 

16 24.50 29.96 87.52 10.59 -56.79 

19 39.64 50.76 75.72 4.15 -25.77 

Average 31.27 35.89 82.61 7.93 -44.63 

Standard 
Deviation 

7.70 12.97 6.14 3.36 16.56 

Note: The output from the program was manipulated beyond this table to represent the results where 

positive represents the change in motion towards the direction that promotes an increase in supination. 
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Figure 4.9: The average effect of wearing a foam soft and foam hard orthotics on both 

the pes cavus and pes planus populations studied for the plane of motion providing the 

change in internal rotation. The standard deviation is represented by the bars. 

 

 
Figure 4.10: The average effect on the pes planus and pes cavus populations while 

wearing a foam soft and foam hard orthotic in the plantarflexion plane.  
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Figure 4.11: The average effect on the pes planus and pes cavus populations while 

wearing a foam soft and foam hard orthotic in the inversion/eversion plane of motion. 

 

 The calcaneus, navicular, cuboid, and tibia/fibula motion summarized for internal 

rotation, plantarflexion and inversion in table 4.3, table 4.4, and table 4.5 respectively 

for the pes cavus population wearing the foam soft orthotic. The calcaneus, navicular, 

cuboid, and tibia/fibula motion is summarized for internal rotation, plantarflexion and 

inversion in table 4.6, table 4.7, and table 4.8 respectively for the pes cavus population 

wearing the foam hard orthotic. The calcaneus, navicular, cuboid, and tibia/fibula 

motion is summarized in table 4.9, table 4.10, and table 4.11 for internal rotation, 

plantarflexion and inversion respectively for the pes planus population wearing the foam 

soft orthotic. The calcaneus, navicular, cuboid, and tibia/fibula motion summarized in 

table 4.12, table 4.13, and table 4.14 for internal rotation, plantarflexion and inversion 

respectively for the planus population wearing the foam hard orthotic. 
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Table 4.3: Results representing the change in the internal rotation angle for the pes 

cavus foot group while wearing the foam soft orthotic. All entries in degrees. 

Foam Soft Orthotic: Internal Rotation 

Subject# cal wrt tibfib nav wrt cal cub wrt cal nav wrt tibfib cub wrt tibfib 

9 9.31
+
 12.43

+
 0.72

+
 11.59

+
 1.47* 

15 2.67
+
 6.05

+
 1.55

+
 12.94

+
 -1.59 

22 1.48
+
 -14.72 -21.69 26.20

+
 19.51

+
 

AVERAGE 4.49
+
 1.25 -6.47 16.91

+
 6.46

+
 

Note: A negative value represents the opposite motion (i.e. external rotation). Those with a (*) represent 

a value which is significant to one standard deviation. Those with a (+) are significant to two standard 

deviations. 

 

Table 4.4: Results representing the change in plantarflexion angle for the pes cavus foot 

group while wearing the foam soft orthotic. All entries in degrees. 

Foam Soft Orthotic: Plantarflexion 

Subject# cal wrt tibfib nav wrt cal cub wrt cal nav wrt tibfib cub wrt tibfib 

9 -4.92 12.51
+
 18.03

+
 -18.96 10.88

+
 

15 -30.49 -75.21 -40.70 -18.13 26.13
+
 

22 1.14 -10.21 13.26
+
 16.75

+
 -7.58 

AVERAGE -11.42 -24.30 -3.14 -6.78 9.81
+
 

Note: A negative value represents the opposite motion (i.e. dorsiflexion). Those with a (*) represent a 

value which is significant to one standard deviation. Those with a (+) are significant to two standard 

deviations. 

 
 

Table 4.5: Results representing the change in the inversion angle for the pes cavus foot 

group while wearing the foam soft orthotic. All entries in degrees. 

Foam Soft Orthotic: Inversion 

Subject# cal wrt tibfib nav wrt cal cub wrt cal nav wrt tibfib cub wrt tibfib 

9 -16.90 23.79
+
 -7.63 -39.44 15.24

+
 

15 3.41
+
 14.05

+
 -7.21 -8.06 6.17* 

22 -1.85 -11.77 15.59
+
 8.02

+
 -1.66 

AVERAGE -5.11 8.69
+
 0.25 -13.16 6.59

+
 

Note: A negative value represents the opposite motion (i.e. eversion). Those with a (*) represent a value 

which is significant to one standard deviation. Those with a (+) are significant to two standard deviations. 
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Table 4.6: Results representing the change in the internal rotation angle for the pes 

cavus foot group while wearing the foam soft orthotic. All entries in degrees. 

Foam Hard Orthotic: Internal Rotation 

Subject# cal wrt tibfib nav wrt cal cub wrt cal nav wrt tibfib cub wrt tibfib 

9 3.29
+
 9.90

+
 -4.68 -1.14 7.89

+
 

15 1.33 1.45 -0.71 -4.63 3.61
+
 

22 -1.57 -5.86 -4.01 17.16
+
 3.95* 

AVERAGE 1.02 1.83 -3.13 3.79 5.15
+
 

Note: A negative value represents the opposite motion (i.e. external rotation). Those with a (*) represent 

a value which is significant to one standard deviation. Those with a (+) are significant to two standard 

deviations. 

 

Table 4.7: Results representing the change in plantarflexion angle for the pes cavus foot 

group while wearing the foam soft orthotic. All entries in degrees. 

Foam Hard Orthotic: Plantarflexion 

Subject# cal wrt tibfib nav wrt cal cub wrt cal nav wrt tibfib cub wrt tibfib 

9 -2.05 -2.09 -30.60 0.64 5.57
+
 

15 -27.18 -87.12 10.73
+
 -3.03 23.88

+
 

22 -2.56 -8.55 6.88 8.38
+
 -8.65 

AVERAGE -10.60 -32.59 -4.33 1.99 6.93
+
 

Note: A negative value represents the opposite motion (i.e. dorsiflexion). Those with a (*) represent a 

value which is significant to one standard deviation. Those with a (+) are significant to two standard 

deviations. 

 

 

Table 4.8: Results representing the change in the inversion angle for the pes cavus foot 

group while wearing the foam soft orthotic. All entries in degrees. 

Foam Hard Orthotic: Inversion 

Subject# cal wrt tibfib nav wrt cal cub wrt cal nav wrt tibfib cub wrt tibfib 

9 -9.67 16.83
+
 17.14

+
 -26.02 11.97

+
 

15 -2.18 1.39
+
 1.98

+
 -1.59 2.92

+
 

22 6.07
+
 -8.78 -0.66 10.61

+
 8.96

+
 

AVERAGE -1.93 3.15
+
 6.15

+
 -5.66 7.95

+
 

Note: A negative value represents the opposite motion (i.e. eversion). Those with a (*) represent a value 

which is significant to one standard deviation. Those with a (+) are significant to two standard deviations. 
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Table 4.9: Results representing inversion angle changes in the planus foot while wearing 

the foam soft orthotic. All entries in degrees. 

Foam Soft Orthotic: Internal rotation 

Subject# cal wrt tibfib nav wrt cal cub wrt cal nav wrt tibfib cub wrt tibfib 

5 2.46* 9.15
+
 -5.48 -25.27 17.11

+
 

16 14.02
+
 30.87

+
 12.59

+
 -33.05 -2.16 

19 22.16
+
 10.35

+
 5.68

+
 5.09

+
 8.10

+
 

AVERAGE 12.88
+
 16.79

+
 4.27

+
 -17.74 7.68

+
 

Note: A negative value represents the opposite motion (i.e. external rotation). Those with a (*) represent 

a value which is significant to one standard deviation. Those with a (+) are significant to two standard 

deviations. 

 

Table 4.10: Results representing plantarflexion angle changes in the planus foot while 

wearing the foam soft orthotic. All entries in degrees. 

Foam Soft Orthotic: Plantarflexion 

Subject# cal wrt tibfib nav wrt cal cub wrt cal nav wrt tibfib cub wrt tibfib 

5 3.61
+
 0.29 0.54 17.41

+
 -11.02 

16 0.45 18.98
+
 -2.52 -12.75 -5.02 

19 -3.01 -9.85 15.08
+
 19.96

+
 6.19

+
 

AVERAGE 0.35 3.14* 4.37* 8.21
+
 -3.28 

Note: A negative value represents the opposite motion (i.e. dorsiflexion). Those with a (*) represent a 

value which is significant to one standard deviation. Those with a (+) are significant to two standard 

deviations. 

 
 

Table 4.11: Results representing inversion angle changes in the planus foot while 

wearing the foam soft orthotic. All entries in degrees. 

Foam Soft Orthotic: Inversion 

Subject# cal wrt tibfib nav wrt cal cub wrt cal nav wrt tibfib cub wrt tibfib 

5 9.94
+
 1.35 -1.81 10.81

+
 12.39

+
 

16 9.29
+
 -11.56 7.18

+
 22.49

+
 4.17* 

19 -11.45 -1.12 -4.26 -5.58 4.92
+
 

AVERAGE 2.59
+
 -3.78 0.37 9.24

+
 7.16

+
 

Note: A negative value represents the opposite motion (i.e. eversion). Those with a (*) represent a value 

which is significant to one standard deviation. Those with a (+) are significant to two standard deviations. 
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Table 4.12: Results representing inversion angle changes in the planus foot while 

wearing the foam hard orthotic. All entries in degrees. 

Foam Hard Orthotic: Internal Rotation 

Subject# cal wrt tibfib nav wrt cal cub wrt cal nav wrt tibfib cub wrt tibfib 

5 4.21
+
 21.08

+
 1.42 -58.58 8.99

+
 

16 7.62
+
 26.54

+
 10.11

+
 -31.24 3.68

+
 

19 21.60
+
 24.41

+
 10.18

+
 -24.71 4.18

+
 

AVERAGE 11.14
+
 24.01

+
 7.23

+
 -38.18 5.62

+
 

Note: A negative value represents the opposite motion (i.e. external rotation). Those with a (*) represent 

a value which is significant to one standard deviation. Those with a (+) are significant to two standard 

deviations. 

 

Table 4.13: Results representing plantarflexion angle changes in the planus foot while 

wearing the foam hard orthotic. All entries in degrees. 

Foam Hard Orthotic: Plantarflexion 

Subject# cal wrt tibfib nav wrt cal cub wrt cal nav wrt tibfib cub wrt tibfib 

5 0.68 -10.93 -8.09 30.00
+
 -5.00 

16 -2.99 6.04
+
 -4.25 -7.23 -1.38 

19 1.85
+
 -3.19 26.40

+
 15.60

+
 14.00

+
 

AVERAGE -0.15 -2.69 4.69* 12.79
+
 2.54* 

Note: A negative value represents the opposite motion (i.e. dorsiflexion). Those with a (*) represent a 

value which is significant to one standard deviation. Those with a (+) are significant to two standard 

deviations. 

 
 

Table 4.14: Results representing inversion angle changes in the planus foot while 

wearing the foam hard orthotic. All entries in degrees. 

Foam Hard Orthotic: Inversion 

Subject# cal wrt tibfib nav wrt cal cub wrt cal nav wrt tibfib cub wrt tibfib 

5 9.60
+
 -3.94 3.84 18.17

+
 7.42

*
 

16 3.80
+
 -12.62 1.66 19.05

+
 -0.57 

19 -12.29 0.56* -16.23 -1.28 -0.70 

AVERAGE 0.37 -5.33 -3.58 11.98
+
 2.05* 

Note: A negative value represents the opposite motion (i.e. eversion). Those with a (*) represent a value 

which is significant to one standard deviation. Those with a (+) are significant to two standard deviations. 
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4.4 DISCUSSION 

 Many symptomatic individuals are diagnosed with a foot in the pes planus or pes 

cavus category. Malalignment in the foot is assumed to be the cause of pain treatable by 

a foot orthotic insole. The ability of a custom-made orthotic to realign bones in the foot 

has never been measured beyond a qualitative analysis, or when quantitatively 

measured with unrealistic assumptions such as treating foot as a rigid segment. The 

International Society of Biomechanics (ISB) has defined bone coordinate systems to 

allow researchers to measure clinically significant joint motions. The consistency of 

coordinate systems allows for results to be comparable across laboratories around the 

world (Wu et al., 2002). These definitions have already been defined and accepted as 

clinically relevant motions by ISB. For the foot the relevant motion occurs with the 

calcaneus and the tibia/fibula complex (Wu et al., 2002). The method used to obtain the 

joint coordinate systems in this study, are explained in detail in chapter 1, and were 

calculated in such a way to result in a coordinate system that matched the one accepted 

by ISB as close as possible. Figure 4.9, figure 4.10, and figure 4.11 were created to 

compare two orthotic types (foam soft and foam hard) as they affect the pes cavus and 

pes planus populations for the internal rotation, plantarflexion, and inversion planes of 

motion respectively.  The overall average change in the internal rotation angle suggests 

that the pes planus population has a greater degree of expected change (figure 4.9). The 

overall average change in the plantarflexion angle suggests that the pes planus 

population has a greater degree of reducing dorsiflexion, however, the pes cavus group 
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showed a larger degree of change (figure 4.10). The average change for the inversion 

angle change has the least difference between foot types (figure 4.11).  

 The average effect caused by the foam casted orthotics for all foot types were 

tested for statistical significance using a repeated measures ANOVA. While wearing the 

foam soft orthotic no significant findings were found in the pes planus group in the 

internal rotation (p=0.153), plantarflexion (p=872) and inversion (p=0.747) plane of 

motion. While wearing the foam hard orthotic no significant findings were found in the 

pes planus group in the internal rotation (p=0.171), plantarflexion (p=926), and inversion 

(p=0.960) plane of motion. The lack of a significant finding for the pes planus group 

could be caused by the sample size being underpowered for the trend to be seen. It was 

expected that an overall decrease in pronation would be found during orthotic wear in 

the pes planus group with a larger sample size. The pes cavus group did not experience a 

significant change while wearing the foam soft orthotic for the internal rotation 

(p=0.250), plantarflexion (p=0.360), and inversion (p=0.490) plane of motion. The pes 

cavus group did not experience a significant change in motion while wearing the foam 

hard orthotic in the internal rotation (p=0.960), plantarflexion (p=0.330), and inversion 

(p=0.713) plane of motion. The remainder of the discussion will provide an overview of 

the impact orthotics had on the navicular and cuboids motion.   

 To determine if a condition had an effect on an individual level the concept of 

the normal distribution was used. Natural variance of several variables has the tendency 

to follow the normal distribution curve. Meaning that 68% of all cases will fit within one 

(1) standard deviation (SD), and 99.5% of all cases will fit within two (2) SD (Norman and 
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Streiner, 2003; Portney and Watkins, 2000). Therefore when deciding significance in the 

results those found to have one standard deviation of significance were represented 

with an asterisk (*) and those with two standard deviations of significance were 

represented with a plus (+) sign.  

 The navicular and cuboids motion was summarized in table 4.3, table 4.4, and 

table 4.5 for internal rotation, plantarflexion and inversion respectively for the pes cavus 

population wearing the foam soft orthotic. The navicular and cuboids motion was 

summarized in table 4.6, table 4.7, and table 4.8 for internal rotation, plantarflexion and 

inversion respectively for the pes cavus population wearing the foam hard orthotic. The 

change associated for the pes cavus population while wearing the foam soft orthotic 

experienced by the navicular with respect to the calcaneus included an increase in the 

inversion (>2SD) angle (table 4.5). The pes cavus population experienced an increase in 

the inversion angle (>2SD) while wearing the foam hard orthotic (table 4.8). The 

navicular with respect to the tibia/fibula demonstrated an increase in internal rotation 

(>2SD) while wearing the foam soft orthotic (table 4.3) for the pes cavus population. An 

increase in the internal rotation (>1SD) was experienced by the pes cavus population 

while wearing the foam hard orthotic (table 4.6) for the navicular with respect to the 

tibia/fibula.  

The cuboid with respect to the calcaneus experienced no significant changes in 

alignment while wearing the foam soft orthotic in the pes cavus population. The pes 

cavus population experienced an increase in inversion (>2SD) while wearing the foam 

hard orthotic (table 4.8) for the cuboid with respect to the calcaneus. The pes cavus 
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population experienced an increase in internal rotation (>2SD), plantarflexion (>2SD), 

and inversion (>2SD) while wearing the foam soft orthotic for the cuboid with respect to 

the tibia/fibula (table 4.3, table 4.4 and table 4.5 respectively). The pes cavus population 

experienced an increase in internal rotation (>2SD), plantarflexion (>2SD), and inversion 

(>2SD) while wearing the foam hard orthotic (table 4.6, table 4.7 and table 4.8 

respectively). 

 The navicular and cuboids motion was summarized in table 4.9, table 4.10, and 

table 4.11 for internal rotation, plantarflexion and inversion respectively for the pes 

planus population wearing the foam soft orthotic. The navicular and cuboids motion was 

summarized in table 4.12, table 4.13, and table 4.14 for the pes planus population 

wearing the foam soft orthotic in the three planes of motion: internal rotation, 

plantarflexion and inversion respectively. The calcaneus motion with respect to the 

tibia/fibula is also present so it's possible to see how the motions differ. The navicular 

with respect to the calcaneus experienced an increase in the internal rotation (>2SD) 

and plantarflexion (>1SD) plane for the pes planus population wearing the foam soft 

orthotic (table 4.9 and table 4.10 respectively). The pes planus population experienced 

an increase in the internal rotation angle (>2SD) for the navicular with respect to the 

calcaneus while wearing the foam hard orthotic (table 4.12). The navicular with respect 

to the tibia/fibula demonstrated an increase in plantarflexion (>2SD), and inversion 

(>2SD) while wearing the foam soft orthotic (table 4.10 and table 4.11 respectively). The 

navicular with respect to the tibia/fibula experienced an increase in plantarflexion 
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(>2SD), and inversion (>2SD) for the pes planus population while wearing the foam hard 

orthotic (table 4.13 and table 4.14 respectively).  

 The cuboid motion with respect to the calcaneus experienced an increase in 

internal rotation (>2SD), and plantarflexion (>1SD) while wearing the foam soft orthotic 

for the pes planus population. The cuboid motion with respect to the calcaneus 

experienced an increase in internal rotation (>2SD), and plantarflexion (>1SD) while 

wearing the foam hard orthotic for the pes planus population. The cuboid motion with 

respect to the tibia/fibula experienced an increase in internal rotation (>2SD), and 

inversion (>2SD) while wearing the foam soft orthotic for the pes planus population. The 

cuboid with respect to the tibia/fibula experienced an increase in internal rotation 

(>2SD), plantarflexion (>1SD), and inversion (>1SD) while wearing the foam hard orthotic 

for the pes planus population. 

 Although each participant in this study reacted with different outcomes it is 

evident that foam casted orthotics do change the alignment in the foot compared to the 

individuals barefoot condition. It was found that the planus group did have a higher 

degree of change overall, although this value was not found to be significant in all three 

planes of motion. The lack of significant findings is partly due to the small sample size 

and of course that human subjects all contain slightly different foot anatomy.  
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CHAPTER 5- THE EFFECT ON PRONATION WHILE 

WEARING FOAM CASTED ORTHOTIC IN THE NORMAL, 
PES PLANUS, AND PES CAVUS FOOT USING THREE 

DIFFERENT MEASUREMENT TECHNIQUES. 

 

OVERVIEW: This chapter describes the effect of foam casted orthotics on 

the normal, pes planus, and pes cavus foot measured using a static 

method compared to the corresponding dynamic condition measurements 

conducted in the previous studies. A comparison of the two-dimensional 

measurement to the three-dimensional corresponding measurement is 

conducted to determine if the result obtained provides a similar change in 

bone alignment. Using bi-planar x-ray fluoroscopy an individual's static 

image is compared to the corresponding midstance image. The purpose of 

this study is to determine if a static image obtains similar results to a 

dynamic sequence of images collected during midstance. The second 

reason for this study was to determine if a two-dimensional measurement 

would obtain similar results when compared to the three-dimensional 

technique. 

 

5.1 INTRODUCTION 

 Clinically, bone alignment in the foot can be estimated using optical motion 

capture, video analysis, magnetic resonance imaging (MRI), x-ray, computed 
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tomography (CT) or visually (Mattingly et al., 2006). Pronation and supination of the foot 

arises from the motion of the bones within the foot. During gait the foot rolls inwards 

and comes into complete contact with the ground. The rolling of the foot distributes the 

impact and is critical to shock absorption. This inward roll is often called pronation. 

Clinically measuring the degree of pronation an individual experiences is important for 

footwear choice and orthotic use. However, using optical motion tracking the motion of 

the foot is not accurately measured. This is because the foot is treated as a single rigid 

segment and tracked with only three reflective markers when common marker sets such 

as Cleveland Clinic and Helen Hayes are used. Many of the bony landmarks of interest in 

the foot cannot be tracked independently with a reflective bead. It is also a challenge to 

mark bony landmarks with skin-mounted markers when wearing a shoe. Therefore it is 

difficult to quantify changes in foot bone alignment accurately with different footwear 

or orthotics using optical motion capture.  

 Hindfoot motion has been measured previously using goniometers (Inman, 1991; 

Kitaoka et al., 1995), magnetic resonance imaging (MRI) (Mattingly et al., 2006), and 

optical motion capture (Kedgley, 2009; Tulchin et al., 2010). Goniometers and MRI 

devices can only be used during static scenarios. Static measurements have never been 

validated at the bone level to mimic the motion of the foot during dynamic conditions.  

 Fluoroscopy has been proven to be a feasible method to measure kinematics in 

the shoulder, knee and foot (Kedgley, 2009; Li et al., 2008). Fluoroscopy has the 

advantage over optical motion capture in that x-ray imaging techniques can see bone 

kinematics through footwear. Fluoroscopy removes the need to modify footwear with 
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holes to attach skin mounted markers. Two dimensional (2D) imaging techniques 

capture kinematics using only one plane of motion. Previous studies have measured the 

sagittal plane motion of the human arch (Wearing et al., 1998), and anterior-posterior x-

rays have been used to determine arch height (Murley et al., 2009). When measuring 

foot kinematics using a 2D radiographic approach standardization in the devices 

positioning becomes crucial if individuals are to be compared as well as conditions 

within the same individual. The location of the x-ray source in a 2D analysis can affect 

the angles measured due to out of plane movement such as rotational motion if using 

the lateral view (Brage et al., 1994). 2D analysis is computationally much faster and 

easier to automate by comparison to three-dimensional (3D) techniques. The analysis 

has never been compared to the results of a corresponding 3D model analysis at the 

bone level in order to quantify its degree of accuracy. 

 Standard RSA is based on tracking markers embedded in the bone which can 

then be related to anatomical landmarks using bone models created from imaging 

techniques such as MRI or CT. Markerless RSA is performed by matching 3D computer 

bone models to the corresponding outline on the radiographs (Fox et al., 2011). 

Markerless RSA has the advantage over standard RSA in that tantalum beads do not 

need to be implanted in the bones. The use of a CT scan to obtain bone models in 

addition to bi-planar x-ray fluoroscopy was used to quantify bone motion in this study.  

 Foot orthotics are commonly used to manage a range of lower limb overuse 

conditions (Landorf and Keenan, 2000). The aim of a foot orthotic insole is to realign the 

skeletal structures, alter movement patterns of the lower extremity and reduce painful 
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symptoms in the patient (Murley et al., 2010; Collins et al., 2007). The pes cavus 

population is defined as having a high arch in the foot and the pes planus population is 

defined as having a low arch in the foot. Orthotic devices can either be custom-made or 

purchased 'off-the-shelf'. Currently, there are three techniques for moulding an orthotic, 

plaster wrap, foam box, and the application of laser technology. The plaster casting 

technique has the patient lie prone in a figure four position during the process. A 

negative impression is taken while the patient's foot is locked in the subtalar neutral 

position. Laser scanning is a reverse engineering technique which models the foot either 

weight-bearing or nonweight-bearing to cast an orthotic. This study focuses on the foam 

box technique which has the practitioner guide the patient's foot into a foam tray that 

takes a partial weight-bearing negative impression of the foot while in the subtalar 

neutral position (Laughton et al., 2002). The foam box technique eliminates the drying 

process required during the plaster casting method.  

 The purpose of this study is: (1) to determine if there is a difference between 

measuring hindfoot alignment during static versus dynamic weight-bearing conditions, 

and (2) to determine if a two-dimensional measure results in the same overall functional 

conclusions compared to the true 3D method of fluoroscopic bi-planar 

radiostereometric analysis. It was hypothesized that the dynamic weight-bearing 

condition would give a different hindfoot angulation compared to the corresponding 

static condition. It was also hypothesized that the two-dimensional measurement would 

not lead to the same functional conclusion about hindfoot behaviour compared to the 

3D measurement. 
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5.2 METHODS 

 Ethics approval was obtained from the Health Sciences Research Ethics Board at 

The University of Western Ontario prior to the commencement of any data collection 

(Appendix A). The platform described previously (section 2.2.1) was used for the 

purpose of this study and allowed the test subjects to walk through the capture volume 

of the two fluoroscopes.  

5.3 DATA COLLECTION 

 Four (4) normal arched, three (3) pes planus, and three (3) pes cavus volunteers 

were recruited to participate in this study. Normal arched volunteers were screened for 

pain and deformities. Those found with either were excluded from the study. The pes 

planus and pes cavus groups were not screened for minor pain or foot deformities 

provided these conditions did not affect their walking gait. An exclusion criterion for all 

three groups was a history of previous fractures anywhere in the lower extremity. All 

volunteers were fitted with two pairs of custom-made orthotics: (1) a 4mm plastazote 

(soft) and (2) a 3mm RCH-500 (rigid) foam box casted orthotic as per usual clinical 

practice. Orthotics were fitted by the same Canadian certified pedorthist at the Fowler 

Kennedy Sport Medicine Clinic, London, ON, Canada. When the orthotics were 

completed and ready for wear the volunteers returned for the fluoroscopic RSA testing 

session. 

 During the fluoroscopic testing session, the volunteer wore a wrap-around 

leaded apron and kilt including a thyroid collar to protect their upper and lower body 
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(figure 5.1). This ensured that the primary x-ray beam only exposed the foot and ankle 

and that no secondary scatter was absorbed by the body.  

 
Figure 5.1: Platform and wrap-around leaded clothing.  

 

5.3.1 DYNAMIC IMAGE COLLECTION 

 The images used for the dynamic portion of this study were collected during 

study 2 and study 4 of this thesis. Specifically, please refer to steps for the normal 

population outlined in section 2.2.2.1, section 2.2.2.3, and section 2.2.2.4 for the 

barefoot, foam soft orthotic and foam hard orthotic conditions respectively. Please refer 

to the steps outlined for the pes cavus and pes planus groups in section 4.2.2.1, section 

4.2.2.2, and section 4.2.2.3 for the barefoot, foam soft, and foam hard orthotic 

conditions respectively. 

5.3.2 STATIC IMAGE COLLECTION 

5.3.2.1 BAREFOOT 
 Each volunteer was asked to stand on the platform barefoot. The volunteer was 

asked to place their left foot in the views of the two fluoroscopes. An x-ray technician 
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ensured the two views were optimal of the bony structures of interest (i.e. the entire 

hindfoot including the tarsal bones) was on the fluoroscopes screen display. The images 

were then captured and stored on the PC in the adjacent control room. The x-ray 

technician outlined the location of the volunteer's foot as a target footprint for future 

trials.  

5.3.2.2 FOAM SOFT ORTHOTIC 

 Each volunteer was asked to wear the neutral cushion running shoe (New 

Balance, model 882) provided with the foam soft orthotic insole inserted. The volunteer 

was asked to place their left foot in the views of the two fluoroscopes as outlined on the 

platform by the technician. The x-ray technician ensured a complete view the structures 

of interest (i.e. the entire hindfoot and the tarsus) was on the fluoroscopes displays. The 

images were captured and stored on the PC in adjacent control room. 

5.3.2.3 FOAM HARD ORTHOTIC 

 Each volunteer was asked to wear the neutral cushion running shoe (New 

Balance, model 882) provided with the foam hard orthotic insole inserted. The volunteer 

was asked to place their left foot in the view of the fluoroscope as outlined on the 

platform. The x-ray technician ensured a complete view of structures of interest (i.e. the 

entire hindfoot including the tarsus) was on the fluoroscopes displays. The image was 

captured and stored on the PC in adjacent control room. 
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5.3.3 DATA ANALYSIS 

5.3.3.1 THREE-DIMENSIONAL ANALYSIS 

  The calibration process for the three-dimensional (3D) analysis can be found in 

section 2.2.3 of this thesis. The end result after following the calibration process 

outlined in chapter 2 will accurately produce the experimental setup in the virtual 

environment. 

 Following the calibration process 3D bone models are created using OsiriX-

DICOM Viewer (Advanced Open-Source PACS Workstation DICOM Viewer, Antoine 

Rosset, USA). Detailed steps describing how to segment the bones of interest to create 

3D bone models are provided in Appendix B. The models are then converted into a 

triangular mesh of file format stereolithography (.stl) for the image processing software 

program Rhinoceros to be able to recognize and use the files (Rhinoceros; Robert 

McNeel & Associates, Seattle, WA, USA). The landmarks of interest as described in 

chapter 1, section 1.6.1, were marked on each of the bones.  

 Once the 3D bone models are created and the calibration process is done, the 

matching process can be completed for the various conditions imaged during data 

collection. Details regarding the matching process are found in section 2.5. Once the 

matching process is complete the location of the bony landmarks are exported using the 

Rhinoscript program titled "ExportPoints" (Allen, 2009). The custom-written kinematics 

program titled Calcaneuspronation_kinematics.m (Appendix C) is used to calculate the 

change in pronation as represented by the three planes of motion: internal rotation, 

plantarflexion, and inversion. The results outputted from this custom-written kinematics 
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program will be used to compare the change in alignment while wearing the foam soft 

and form hard orthotics measured during static and dynamic trial conditions.  

 An overall 3D angle was calculated for comparative purposes with the 2D analysis 

to be conducted as described below. This was as completed by using equation 5.1 at the 

individual level.  

                 

 √(                 ( ))  (              ( ))  (         ( ))      (Eq. 5.1) 

 

5.3.3.2 TWO-DIMENSIONAL ANALYSIS 

 Only one of the two fluoroscope images was used during the 2D portion of the 

analysis. Specifically, the left foot is analyzed from an oblique, dorsal-medial to plantar-

lateral view in this study (figure 5.2). Each image was processed using custom-written 

software (MATLAB; Mathworks Inc., Natick, MA). The first program, Find_Points.m 

(Appendix C) determined the location of the landmarks. When using the Find_Points.m 

program the lateral and medial aspects of Chopart's line were identified (figure 5.2). A 

third point was used to create a vector that was tangent to the lateral portion of the 

calcaneus as drawn in figure 5.2. A second custom-written program, Angle_Calc.m 

(Appendix C), calculated the angle (θ) seen in figure 5.2 using the landmark locations as 

outputted from the Find_Points.m program. The angle between these lines was defined 

as the amount of calcaneal pronation calculated in 2D. The output value is then 

compared to the barefoot (baseline) condition to determine the effect of the different 

shoe conditions when measured using a 2D approach. An increase in the angle (θ) 
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represents an increase in pronation and, a decrease represents an increase in 

supination. 

 

Figure 5.2: Calcaneus pronation angle (θ), lateral and medial landmark. 

 

 Using the results outputted from the 2D custom-written pronation angle 

program, Angle_Calc.m, a comparison of the 3D calculation can be completed (Appendix 

C). The 2D results are compared to the change in the overall 3D angle while the 

individual wears the custom-made orthotic during gait specifically at midstance. The 2D 

results are compared to the change associated with each plane of motion (internal 

rotation, plantarflexion, and inversion) experiences while the individual wears the 

custom-made orthotic during gait, specifically at midstance.  A repeated measures 

analysis of variance (ANOVA) using SPSS was produced to test for differences between 

measurement conditions (SPSS; IBM Corporation, Armonk, NY, USA). A probability level 

of p<0.05 was used to indicate significance. All degrees of significance are reported, 

however only significant outputs are found in Appendix F. Bland-Altman plots were 

created to compare the overall 3D angle measurement to the 2D pronation angle to 

lateral landmark 

(cuboid) medial 

landmark 

(navicular) 
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determine if the measurement technique agrees sufficiently to warrant using 2D in place 

of the 3D technique.  

5.4 RESULTS 

 The internal rotation angle while barefoot was measured during a static trial and 

compared to a dynamic trial for each subject individually (figure 5.3). The plantarflexion 

angle while barefoot was measured during a static trial and compared to the 

corresponding dynamic trial at midstance for each subject individually (figure 5.4). The 

inversion angle while barefoot was measured during a static trial and compared to the 

corresponding dynamic trial for each subject individually (figure 5.5). A Bland-Altman 

plot was created to assess agreement between the barefoot static condition and the 

corresponding dynamic condition as measured for internal rotation, plantarflexion, and 

inversion in figure 5.6, figure 5.7, and figure 5.8 respectively. 

 

Figure 5.3: Individual internal rotation angle for the barefoot condition when measured 

standing statically or dynamically at midstance.  

C C C N N N N P P P

Static 33.71 26.39 42.97 13.25 48.06 23.66 24.31 25.89 22.20 26.22

Dynamic 26.37 23.17 41.21 15.47 46.47 47.68 31.20 26.67 8.60 23.62
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Figure 5.4: Individual plantarflexion angle for the barefoot condition when measured 

standing statically compared to the dynamic image at midstance.  

 

 

 

Figure 5.5: Individual inversion angle for the barefoot condition when measured 
standing compared to the dynamic image at midstance. 

C C C N N N N P P P

Static 165.30 140.13 150.42 190.43 151.17 168.27 169.61 172.27 174.33 175.77
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Figure 5.6: Bland-Altman plot for the static angle measurement compared to the 

dynamic angle for the barefoot condition for internal rotation.  

 

 

Figure 5.7: Bland-Altman plot for the static angle measurement compared to the 

dynamic angle for the barefoot condition for plantarflexion.  
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Figure 5.8: Bland-Altman plot for the static angle measurement compared to the 
dynamic angle for the barefoot condition for inversion. 

 

 The change in pronation while wearing the foam soft orthotic as measured in 

two-dimensions is shown graphically as compared with the overall 3D angle in figure 5.9. 

A Bland-Altman plot was created to assess agreement between the 2D pronation angle 

and the overall 3D angle as measured for the foam soft orthotic condition in figure 5.10. 

The change in pronation while wearing the foam soft orthotic as measured in two-

dimensions (figure 5.2) is shown graphically as compared with the with the change 

associated with each plane of motion: internal rotation, plantarflexion, and inversion in 

figure 5.11, figure 5.12 and figure 5.13 respectively.  
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Figure 5.9: The change in pronation calculated with wearing the foam soft orthotic 
compared to the barefoot condition. The measurement was done using the 2D method 
(figure 5.2) and the change associated with the overall 3D angle. 

 

 
 

Figure 5.10: Bland-Altman plot for the overall 3D angle measurement with the 2D 
pronation angle for the foam soft condition from the dorsal-medial to plantar-lateral 
view.  
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Figure 5.11: The change in pronation calculated with wearing the foam soft orthotic 

compared to the barefoot condition. The measurement was done using the 2D method 

(figure 5.2) and the change associated with the internal rotation plane of motion.  

 

  

Figure 5.12: The change in pronation calculated with wearing the foam soft orthotic 

compared to the barefoot condition. The measurement was done using the 2D method 

(figure 5.2) and the change associated with the plantarflexion plane of motion.  
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Figure 5.13: The change in pronation calculated with wearing the foam soft orthotic 
compared to the barefoot condition. The measurement was done using the 2D method 
(figure 5.2) and the change associated with the inversion plane of motion.  

 

 

 The change in pronation while wearing the foam hard orthotic as measured in 

two-dimensions is shown graphically as compared with the overall 3D angle in figure 

5.14. A Bland-Altman plot was created to assess agreement between the 2D pronation 

angle and the overall 3D angle as measured for the foam hard orthotic condition in 

figure 5.15. The change in pronation while wearing the foam hard orthotic as measured 

in two-dimensions is shown graphically as compared with the with the change 

associated with each plane of motion: internal rotation, plantarflexion, and inversion in 

figure 5.16, figure 5.17 and figure 5.18 respectively.  
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Figure 5.14: The change in pronation calculated with wearing the foam hard orthotic 

compared to the barefoot condition. The measurement was done using the 2D method 

(figure 5.2) and the change associated with the overall 3D angle. 

 

 

Figure 5.15: Bland-Altman plot for the overall 3D angle measurement with the 2D 

pronation angle during the foam hard condition from the dorsal-medial to plantar-

lateral view. 
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Figure 5.16: The change in pronation calculated with wearing the foam hard orthotic 

compared to the barefoot condition. The measurement was done using the 2D method 

(figure 5.2) and the change associated with the internal rotation plane of motion. 

 

 

Figure 5.17: The change in pronation calculated with wearing the foam hard orthotic 

compared to the barefoot condition. The measurement was done using the 2D method 

(figure 5.2) and the change associated with the plantarflexion plane of motion. 
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Figure 5.18: The change in pronation calculated with wearing the foam hard orthotic 

compared to the barefoot condition. The measurement was done using the 2D method 

(figure 5.2) and the change associated with the inversion plane of motion. 

 

 A Bland-Altman plot was created to assess agreement in measuring the degree of 

pronation between the 2D angle and the corresponding internal rotation, plantarflexion, 

and inversion plane of motion in figure 5.19, figure 5.20 and figure 5.21 respectively.  
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Figure 5.19: Bland-Altman plot for the 2D angle measurement and the internal rotation 

angle measurement during the foam soft and foam hard conditions.  

 

 

Figure 5.20: Bland-Altman plot for the 2D angle measurement and the plantarflexion 

angle during the foam soft and foam hard conditions at midstance.  
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Figure 5.21: Bland-Altman plot for the 2D angle measurement and the inversion angle 
during the foam soft and foam hard conditions at midstance. 

 

5.5 DISCUSSION 

 Common practice to date has been to determine the alignment of the foot bones 
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through on-site gait analysis. Goniometers and MRI devices have the disadvantage of 

only being able to measure accurately during static scenarios. The accuracy of a static 

measurements ability to mimic the real-world dynamic walking conditions has never 

been proven on the bone level prior to this study to the authors' knowledge. Figure 5.3, 

figure 5.4, and figure 5.5 compare the same individuals' hindfoot barefoot alignment 

measurements in quiet standing and during walking gait at midstance with the same 

three-dimensional analysis approach. Since the hindfoot experiences movement in three 
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completed. To compare the degree of pronation measured when standing quietly the 

same volunteer was used during midstance. Using the three-dimensional bone model 

technique the static trial angle associated with each plane of motion was compared to 

the corresponding dynamic scenario. Figure 5.3 represents the internal rotation angle 

while barefoot during a static and dynamic condition. Figure 5.4 represents the 

plantarflexion angle while barefoot during a static and dynamic condition. Figure 5.5 

represents the inversion angle while barefoot during a static and dynamic condition. It 

appears that most subjects had static results relatively close to the corresponding 

dynamic barefoot condition for all three planes of motion. Visually appearing to 

represent the dynamic scenario does not necessarily mean that the results are going to 

correlate. 

 In clinical measurements comparison of a new measurement technique needs to 

be assessed for agreement with the established method of measurement. Bland-Altman 

plots are used to determine if the new approach agrees sufficiently to replace the old 

techniques (Bland and Altman, 1986). When the limit of agreement is small the new 

technique is considered to show good agreement with the established method of 

measurement. The Bland-Altman plots used to determine agreement between the static 

weight-bearing measurements in place of dynamic measurements during midstance are 

plotted in figure 5.6, figure 5.7, and figure 5.8 for internal rotation, plantarflexion, and 

inversion respectively. Based on the results from the Bland-Altman plots the limit of 

agreement has a large range for internal rotation (-19.114° to 19.875°), plantarflexion (-

23.798° to 24.206°), and inversion (-14.089° to 9.868°). This indicates that a static 



179 
 

 
 

weight-bearing measurement does not accurately mimic dynamic walking gait at 

midstance. 

 Another common approach used to simplify image analysis is evaluating data 

using a two-dimensional technique. Using a 2D technique can fail to describe complex 

multi-axial motion of the hindfoot (Mattingly et al., 2006). Several studies have proven 

radiographic measurements to be more reliable than goniometers (Lamm et al., 2005; 

Saltzman and El-Khoury, 1995). However, it is understood that the out-of-plane motion 

is still a challenge when using a 2D approach. It is quite difficult to ensure an individual 

walks in view of the fluoroscope perfectly to obtain a clinically relevant plane of motion. 

A comparison between the results of the 2D image analysis and the overall 3D angle for 

the foam soft and foam hard conditions were completed. A comparison between the 

results of the 2D image analysis to the 3D as represented by the three planes of motion 

for the foam soft and foam hard orthotic conditions were completed. 

 The effect on the hindfoot while wearing the foam soft orthotic was represented 

graphically in figure 5.9. Visually, it is quite apparent that the overall 3D angle does not 

measure the same degree of pronation change. However, this does not mean that there 

is a lack of agreement between the two techniques. A Bland-Altman plot was used to 

determine agreement between dynamic weight-bearing walking gait as measured in 3D 

compared to 2D during midstance (figure 5.10). The limit of agreement between the 

overall 3D calculation and the 2D angle is quite large (-8.25°-54.04°). This indicates that 

simplifying analysis into 2D does not accurately mimic the 3D motion the hindfoot 

experiences during walking gait while wearing a foam soft orthotic. Since the 2D 
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measurement can only truely represent a single plane of motion the 2D angle was also 

compared to each individual plane of motion to determine if the measurement was 

statistically different.  

 By visual inspection it appears as though there is a significant difference between 

the 2D measurement and the internal rotation plane of measurement (figure 5.11) when 

determining the amount of pronation the hindfoot is experiencing. The same conclusion 

would be drawn for the plantarflexion (figure 5.12) and inversion (figure 5.13) plane of 

motion. In some of the measurements the foam soft orthotic moved the foot by a large 

amount in individuals when measured across three planes of motion, however, in the 2D 

measurement technique much of this movement is not seen.  

 Similarly, by visual inspection it appears as though there is a significant difference 

in the 2D change in pronation and the individual planes of motion as represented in 

three-dimensions while wearing the foam hard orthotic by comparison to the barefoot 

baseline measurement value. It is noted that the change found in the calcaneal 

pronation angle measurement (figure 5.2) compared to the change in pronation 

detected through internal rotation (figure 5.9) planes measurement is relatively close in 

most individuals by a visual inspection. The plantarflexion (figure 5.10) and inversion 

(figure 5.11) planes of motion showed more drastic differences by comparison to the 2D 

calcaneal pronation angle.  

 Since a visual inspection is not a good method of comparison a repeated 

measures ANOVA was completed with a confidence interval of 95% to determine if the 

2D found a significant change in motion while wearing the foam soft and foam hard 
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orthotic. No significant change in alignment was found while wearing the foam soft 

(p=0.414) orthotic, and foam hard (p=.140) orthotic as measured using the 2D approach. 

To determine if the 2D approach resulted in a similar change in alignment the 2D change 

was compared to the change associated with the individual planes of motion (i.e. 2D 

compared to internal rotation).  

 Bland-Altman plots were created to determine the limit of agreement in the 

change in pronation between the 2D angle measurement and the individual planes of 

motion as measured using the 3D technique. The range of the limit of agreement 

indicates that the 2D measurement does not reflect the results from the more accurate 

3D motion for the internal rotation (-14.37° to33.18°), plantarflexion (-33.55° to 28.77°), 

and inversion (-20.42° to 26.19°) planes of motion.  

 The final test was to determine if the results show a significant change in 

conditions strictly for the 2D analysis technique. The change in calcaneal pronation as 

measured using the 2D technique did not find a statistical difference between the 

barefoot and foam soft orthotic condition.  The change in calcaneal pronation as 

measured using the 2D technique did not find a statistical difference between the 

barefoot and foam hard orthotic condition.   
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CHAPTER 6- GENERAL DISCUSSION AND 

CONCLUSION 
 

Overview: This chapter summarizes the findings of this research, outlines 

its strengths and limitations, and lists several recommendations. The 

potential for future research is addressed and the significance of this work 

is highlighted. 

 

6.1 SUMMARY 
 Markerless radiostereometric analysis (RSA), while not a new technology, has 

recently been incorporated with fluoroscopy to provide a means for measuring dynamic 

kinematics with high precision and accuracy without requiring the insertion of tantalum 

beads. Using the markerless RSA system previously validated by both Allen and Kedgley 

for dynamic kinematic studies the objective of this study was to develop a measurement 

system for the hindfoot. The system used consists of two 9 inch portable C-arm 

fluoroscopy units and a desktop computer used to store the information. Images are 

digitized using custom-written software that was created in MATLAB. Calibration of the 

system was completed using a custom-made calibration frame (Kedgley, 2009). The 

bone models were created using OsiriX DICOM viewer and the experimental setup was 

recreated in the virtual environment using a solid modelling program, Rhinoceros. The 

bony landmarks of interest were followed in the virtual environmental and the 

calculation of their locations in three-dimensions was conducted using another custom-
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written MATLAB program. Finally, another custom-written MATLAB program was used 

to determine the angle associated with each plane of motion for the bones with respect 

to each other (i.e. the navicular with respect to the calcaneus). The method of 

quantifying the kinematic measurements was outlined in Chapter 1. The effect of the 

foam casted orthotics, made from both soft and rigid materials were described in 

Chapter 2. The purpose was to quantify and compare the effect of foam casted orthotics 

on the hindfoot region of the foot when made from soft and rigid materials. It was 

hypothesized that both material types would reduce pronation in the foot. It was further 

hypothesized that the rigid material would result in a greater degree of reduced 

pronation. Five normal arched volunteers were tested to determine the measurable 

change in alignment caused by the different shoe conditions. Every individual was found 

to react different depending on the footwear condition being tested. Although the 

hypothesis was not proved to be statistically different it is believed that with more 

subjects the results may prove to have a statistically significant outcome.  

 The effect of plaster casted orthotics, made from both soft and rigid materials 

were described in Chapter 3. Once the foam casted orthotics were tested the orthotics 

molded using the plaster casting technique were measured for their effectiveness at 

altering pronation in the hindfoot. It was hypothesized that the plaster casting technique 

would reduce pronation and the rigid material type would have a greater effect at this 

reduction. The same five normal arched volunteers used in Chapter 2 were tested to 

determine the measurable change in alignment caused by the different shoe conditions. 

Every individual was found to react different depending on the footwear condition being 
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tested. Although the hypothesis was not proved to be statistically different it is believed 

that with more subjects the results may prove to have a statistically significant outcome.  

 The significance of Chapter 2 and Chapter 3 are in part to compare the results of 

the foam casted orthotic with the effectiveness of the plaster casted orthotic technique 

when designing an orthotic for a patient. Since one casting technique did not prove to 

be better at reducing pronation than the other the foam casted technique was used in 

subsequent chapters. The effect foam casted orthotics had on the pes cavus and pes 

planus populations were described in Chapter 4. The significance of this study was to 

quantify the variation in pronation on a pes cavus and pes planus population. It was 

hypothesized that the pes cavus group would experience little variation in their bone 

alignment while wearing any orthotic type by comparison to the pes planus group. It 

was further hypothesized that the pes planus group will experience a noticeable 

difference between the rigid and soft orthotics. Every individual was found to react 

different depending on the shoe condition being tested. It was found that the pes planus 

group experienced a greater degree of change while wearing an orthotic overall, 

although this change was not found to be significant in all planes of motion. It was found 

that the pes planus group experienced a significant change in bone alignment while 

wearing both the foam soft and foam hard orthotic in the plantarflexion plane of 

motion. The pes cavus group reacted as expected having little change in their bone 

alignment with orthotic use.  

 The effect on pronation while wearing a foam casted orthotic in the normal, pes 

planus and pes cavus foot types were compared using three different measurement 
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techniques. The significance of this study is to try and reduce the amount of time 

required in image analysis. Alternative measurement techniques are computationally 

less intensive then the three-dimensional dynamic technique used in the previous 

chapters. This study compared a foam orthotics effect on bone alignment while static 

weight-bearing to the corresponding dynamic condition while measured during walking 

gait at midstance. The second part of this study compared a two-dimensional 

measurement of the bone alignment to the overall 3D motion as measured by the three 

planes of motion in the previous studies. It was hypothesized that the dynamic study 

would provide a different angular change between conditions when compared to the 

corresponding static measurement. It was also hypothesized that the two-dimensional 

analysis would not provide similar results to any of the planes of motion or the overall 

3D angle when measuring pronation.  

 When measuring agreement of the static measurements to the corresponding 

dynamic measurements at midstance the internal rotation plane, plantarflexion and the 

inversion plane of motion did not result in an accurate agreement to represent the 

dynamic motion. Based on the results from the Bland-Altman plot it is not 

recommended to use a static image analysis approach where dynamic motions more 

accurately mimic the use of the product tested (i.e. walking in a shoe versus standing in 

a shoe). When comparing the two-dimensional (2D) images from an oblique, dorsal-

medial to plantar-lateral view to the internal rotation, plantarflexion and inversion 

planes of motion using a Bland-Altman agreement between the 2D and 3D 

measurement was not found. Upon completion of this study it is not recommended to 
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use a 2D analysis in place of a 3D one due to the fact that the motion in the other planes 

is not seen.  

6.2 STRENGTHS AND LIMITATIONS 
 The strengths and limitations of each study will have some overlap due to the 

nature of this type of analysis. The primary goal of this analysis was to develop a tool for 

measuring hindfoot kinematics accurately using the previously validated markerless RSA 

system developed by Allen (Allen, 2009). The biggest limitation of this technique is the 

exposure of the test subject to ionizing radiation. Radiation comes in the form of a CT 

scan in addition to fluoroscopy images for kinematic data acquisition. The second 

limitation is that all images are manually digitized in its current implementation. This 

places a restriction on how fast the results can be processed. Third, only bony structures 

are well enough defined in the fluoroscopy images to be digitized. This means that soft 

tissue structures such as tendons or ligaments cannot be examined in-vivo.  

 Additional potential limitations of the studies include that the capture volume is 

quite small on the fluoroscopes, limiting the visible region. The maximum capture rate of 

the fluoroscopy units limits the speed of motions that may be performed, as blurring can 

occur if motions are performed too quickly. Furthermore, a bi-planar RSA setup may 

limit the range of motion of subjects.  

 There are limitations in the accuracy of the 3D bone models created and the 

markerless RSA calibration process. The 3D bone models do not perfectly capture the 

bones geometry due to factors such as imperfect segmentation and smoothing 

techniques that occur when creating the triangular mesh. Calibration is limited due to 
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factors such as: the manufacturing accuracy of the calibration frame and the distortion 

grid, the digitization process and the distortion correction process. These errors have 

been quantified together previously as a standard error of measurement of 0.032mm 

for translations and 0.121° for rotations (Kedgley and Jenkyn, 2009). Performing 

markerless RSA is an operator intensive task. It requires an investigator who is 

comfortable deriving new calibration equations based on the experimental set-up, and 

running software in multiple programs (Maple, MATLAB, and Rhinoceros). These 

constraints limit the amount of investigators capable of performing markerless RSA. The 

task requires extensive training and this will limit immediate clinical application. 

 The matching procedure is also an operator intensive task. To determine the 

skeletal kinematics an operator manually matches the 3D bone models to the two 

fluoroscopic images. This process is constrained to the operator's ability to detect 

different pixel shades as the operator must detect the exact edge of a bone in each 

image analyzed (Allen, 2009). The matching process is also affected by the patience of 

the operator; it can take several hours to match one bone to both fluoroscopic images. 

While this process has been proven accurate it varies based on the operator's perfection 

of a 'matched' 3D model. This was demonstrated previously in Allen's thesis work to 

have an intra-operator reliability of 0.58mm and 0.74° and an inter-operator reliability 

of 0.49mm and 0.75° (Allen, 2009). 

 The final limitation of this study is the sample size. Five normal arched volunteers 

were used in chapter 2 and chapter 3. Three pes cavus and three pes planus volunteers 

were used in chapter 4 of this study. The subjects used in Chapter 2 to Chapter 4 were 
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used in chapter 5 of this study. An increase in the number of subjects used would 

improve the accuracy of any conclusions drawn throughout this thesis.   

 The major strength to this research is due to the combination of fluoroscopy with 

a markerless RSA system. Dynamic conditions can be studied when a conventional 

stereographic system would not have this capability. The implantation of tantalum 

beads is removed when conducting markerless RSA. This means that the normal subject 

population can be studied as ethically the risk of infection, and need for unnecessary 

surgery is removed. The full range of motion in the foot can be examined which is not 

possible using an MRI examination. Finally, and perhaps the greatest advantage is the 

elimination of skin motion artifact that is inevitable when using optical or 

electromagnetic surface marker systems.   

6.3 RECOMMENDATIONS AND FUTURE DIRECTIONS 
 Several recommendations can be made to improve the WOQIL fluoroscopic RSA 

system. These include: 

1) Equipment 

a. The acquisition of fluoroscopes with larger image intensifiers would increase the 

field of view of each fluoroscope and therefore also greatly increase the capture 

volume of the RSA system. This would increase the range of motion in which 

kinematics can be analyzed in additional to increase the number of joints that 

can be examined simultaneously.  

b. Flat-panel detectors would improve accuracy of analysis technique as this type of 

system does not suffer from pin-cushion distortion as the image intensifiers in 
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WOQIL do (Yaffe and Rowlands, 1997; Seibert, 2006; Davies et al., 2007; Kedgley, 

2009). Davies et al. stated that image quality does not improve with the use of a 

flat-panel detector (Davies et al., 2007). However Seibert stated that the image 

quality may be a function of operator experience and training on the new system 

type (Seibert, 2006).  

 

2) Markerless RSA program 

a. The RSA program should be made more user-friendly for those users that are not 

familiar and comfortable with MATLAB. This process has been started and the 

graphical user interface (GUI) has been created, however, there are still bugs in 

this and they need to be worked out. 

b. An automated bead detection scheme (Cho and Johnson, 1998) should be 

implemented in order to reduce the amount of manual digitization required. This 

implementation is quite feasible and would reduce a large amount processing 

time. This system would require validation once completed to ensure its working 

accurately. 

c. Edge detection should be incorporated to outline the bones on the images prior 

to matching. These outlines would reduce the subjectivity of the matching 

process created by the estimation of the edge required by the operator.  

d. It is recommended that further attempts be made to reduce the radiation 

exposure to subjects during the markerless RSA process. Using a general 3D 

computer bone model instead of the 3D computer models created from the 
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individuals CT scan would drastically reduce radiation exposure to subjects. It is 

suggested that a generic bone model be compared to the actual results in this 

thesis to determine if the differences found in the results warrant the extra 

radiation to the subjects.  

 

 This facility allows for what seems like an endless list of future work. Kinematics 

can not only be measured prior to surgery but also on a normal population to determine 

the differences between subject groups. This system can be used to study the effect of a 

wide range of interventions beyond what was studied in this thesis including joint 

arthroplasty and reconstructive surgeries. The markerless RSA system used in this thesis 

has the ability to answer a broad range of biomechanical questions and therefore 

significantly contribute to the field of biomechanics in the future. 
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APPENDICES 
 

APPENDIX A- ETHICS APPROVAL AND DOSAGE CALCULATION 

 

Figure A.1: Scanned copy of ethics approval obtained for this thesis. 
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Figure A.2: Scanned copy of the Critical Research Impact Committee (CRIC) approval. 
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Table A.1: The resulting dosage from the x-ray fluoroscopy machines during testing as 
well as the amount of time the fluoroscopes were on. 

Subject 

Fluoroscope A Fluoroscope B 

Exposure 
(mA) 

kVp 
Time 
(min) 

Exposure 
(mA) 

kVp 
Time 
(min) 

1 0.7 51 1.4 1.4 61 1.2 
2 0.3 48 1.8 1.6 61 2 
3 0.3 48 1.8 0.3 51 1.8 
4 0.3 48 1.6 0.3 50 1.7 

5 0.3 49 0.8 0.3 51 0.8 
6 0.3 49 1.1 0.3 51 1.1 
7 1.1 51 0.9 1.4 57 0.9 
8 0.3 51 0.9 0.3 49 1.1 
9 0.3 49 0.8 0.3 51 0.8 

10 0.3 48 0.9 0.3 51 0.9 
11 0.3 48 1 0.3 50 1 
13 0.3 48 0.9 0.3 50 0.9 
15 0.7 55 1.2 0.3 51 1.2 

16/18 0.3 49 0.9 0.3 51 0.9 
17 0.5 53 1.4 0.3 49 1.3 
19 0.3 49 0.9 0.3 51 1 
20 0.3 49 1.4 0.5 53 1.4 
21 0.3 49 2.1 0.5 53 2.1 
22 0.3 48 1 0.5 53 1 
23 0.6 53 1.3 2.4 60 1.2 
24 0.3 49 1.1 0.3 51 1 

AVERAGE 0.39 49.6 1.2 0.56 52.2 1.21 

SD 0.20 2.01 0.38 0.57 3.33 0.40 

*Note: Subject 16/18 are the same subject but their testing was spread out 

over two testing dates because of a manufacturing error in the orthotics. 

The exposure and kVp values were identical on the two testing dates so the 

time recorded is cumulative over both testing dates. 
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APPENDIX B- OSIRIX DIGITIZATION INFORMATION 
This appendix describes how to open the files generated by 

a CT scan in OsiriX, create models of the bones and digitize 

the locations of any bony landmarks. 

B.1 IMPORTING THE SCAN AND SEGMENTING THE BONE 

 

***Note: Do not hit save throughout the process until this guide advises the user to do so*** 

*** Hitting save will result in an error message during the process, and you may lose data *** 

 

1) Open OsiriX. Choose the CT file group of interest.  

2) An "important notice" will pop-up (figure B.1). Click "I agree".  

 

Figure B.1: Pop-up window in OsiriX occurs when program is opened.  

3) Select 3D Viewer from the menu bar-> 3D Volume Rendering. 

 

4) Change the level of detail to fine, then click the 3D presets menu (figure B.2). In the 

3D presets menu set the group to basic (should be default menu), chose low contrast. 

This should eliminate some of the noise in the image.  

 

 Figure B.2: 3D viewer setting changes. 
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5) Remove any bone you are not interested in leaving only one bone for segmentation 

purposes. Some of the useful tools (figure B.3):  

a. Scissors: will remove or keep what is selected. To remove what you have 

selected hit the delete key. To keep what is selected hit the return key.  

b. Poison: this will remove all bone that is touching the bone you are looking to 

remove. Useful for bones which have an obvious gap, but not a great feature for 

small bones. Use this feature first you can always undo anything if it deletes too 

much bone. 

c. Magnifying glass: this will allow you to zoom in and out. This will be good for 

tight spaces.  

d. ISO box: this wills all you to change your view.  

e. Target button: allows you to identify landmarks of interest as a mesh form for 

further analysis.  

 

 

 

 Figure B.3: The menu options for the 3D volume rendering section of bone 

 segmentation. 

 Note: The letters in the figure refer to the above descriptions.   

 

6) Once everything but the bone of interest has been removed enter the 3D presets 

menu (as done in step 4). Change the group type to Bone CT. From there pick the soft 

bone style. This will have the greatest success later for the segmentation task.  

 

7) In the menu bar: select 3D Viewer ->3D surface rendering. The "surface setting" menu 

pops up automatically (figure B.4). It should be noted that the preset menu options are 

  c.                   d.                              e.        a.       b. 
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not necessarily ideal for the bone of interest. It is not a bad idea to see how the default 

settings show the bone image. If the image is not desirable open the surface setting 

menu again (found on the main tool bar window). For the foot it was found that optimal 

bone settings were:  

 Change resolution to the highest point rather than the midpoint default 

setting.  

 Change the decimate to 0.1 from the 0.5 default setting 

 Pixel value: this will be dependent on the bone. Go to a point where the 

holes created in this process have disappeared; however, be careful that 

the shape and contours of the bone have not been affected. You cannot 

just set a value for the pixels that will automatically work each time as 

this will affect the bones shape and size. This could affect results later on.  

 You can change the colour of the bone if you wish, but Rhinoceros will 

just default it back to black mesh so not a crucial step. 

 

 

 Figure B.4: Surface Rendering Settings menu.  

 

8) The bone should be completely segmented and ready to be exported for further data 

analysis (figure B.5).  



200 
 

 
 

 

 Figure B.5: Complete segmented bone. Calcaneus segmented from the left foot.  

 

9) Export the bone as a stl or obj file type of file. The 3D-SR icon on the main menu 

(within surface rendering still) is where the stl and obj file type is available to export 

your image. Choose your folder to save to on the Macintosh computer. It proved to be 

important to save this file several times (with different names) and as both .stl and .obj 

file types. Loss of data can occur when transferring from a Macintosh to a PC, so several 

saves could avoid this situation. It will be necessary to type .stl or .obj (depending on the 

file type) on the end of the name once imported into the PC machine. Until this is done 

Rhinoceros will not recognize your file type.  

 

10) The file can then be imported into Rhinoceros. Note you will have to change the 

import default in Rhinoceros to 'all files' in order for the segmented bone to be visible.  
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APPENDIX C- PRONATION KINEMATICS 
This appendix contains the MATLAB script developed to 

calculate the alignment changes in the foot during gait and 

static fluoroscopy capture. This section also contains the 

code used for the two-dimensional study in chapter 5. 

 

C.1- MATLAB KINEMATICS OF THE FOOT 
% Program:          Calcaneuspronation_kinematics.m 
% Description:      Calculates the calcaneus pronation kinematics from 

the 
%                   3D Ct scan and the anatomical landmarks 
% Written by:        Kristen Bushey 
% Date Written:     October 18, 2011 
% Last Modified:    Jan 31, 2012 
% NOTE: make sure calcaneus, cuboid and navicular landmarks are located 

in 
% the correct rows in excel!!! 
%Modified (June 24, 2012) to convert to positive directions reflecting 

%the right-hand coordinate system rule for the body... There for lateral 

%is associated with lateral of the right foot. Therefore if using a left 

%foot lateral is actually point towards the center of the body. 
%----------------------------------------------------------------------- 

  
%Initialize Variables 
endline = [0 0 0 1]; 

  
%Obtain information about the data to be analyzed from the user 
%data_folder = input('Enter the name of the folder with the digitized 

points: ', 's'); 
data_dir = ['C:\Users\Kristen\Desktop\DATA (GOOD FOLDER)\Planus\Subject 

19\Static\']; 
%data_file1= input('Enter the name of the output file you wish to have: 

', 's'); 
num_files = input('Enter the number of files to be analyzed: '); 
start_file = input('Enter the value of the first file in the series: '); 

  
for z = start_file:(start_file + num_files - 1) 
    file_num = int2str(z); 
    if z < 10 
        data_file1 = strcat('Fluoro-000', file_num, '_analyzed.xls'); 
    elseif (z >= 10 && z < 100) 
        data_file1 = strcat('Fluoro-00', file_num, '_analyzed.xls');  
    elseif (z >= 100 && z < 1000) 
        data_file1 = strcat('Fluoro-0', file_num, '_analyzed.xls'); 
    else 
        data_file1 = strcat('Fluoro-', file_num, '_analyzed.xls'); 
    end 
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%Obtain calcaneus information from the user (code will generate where 

user is obtaining information) 
%Up to folder location (if different change the data file to another 

folder 
%here) 
anat_cal_landmarks_dir= data_dir; 
%Landmark locations from Rhinoceros Output File (Generated using 
%ExportPoints code) 
%anat_cal_landmarks_file = input('Enter the name of the file with the 

calcaneus anatomical landmarks from Rhino: ','s'); 
anat_cal_landmarks_filename=strcat('landmarks-fluoro-00',file_num,'cal', 

'.xls'); 
anat_cal_landmarks = xlsread([anat_cal_landmarks_dir, 

anat_cal_landmarks_filename], 1); 
anat_cal_landmarks= anat_cal_landmarks(:,1:3); 

  
%Calcaneus landmarks as located in excel. 
calA= anat_cal_landmarks (1, 1:3); 
calB= anat_cal_landmarks (2, 1:3); 
calC= anat_cal_landmarks (3, 1:3); 
calD= anat_cal_landmarks (4, 1:3); 

  
%Calcaneus Bead Coordinate System (points exported from Rhino using 
%exportpoints code) 
%Calcaneus landmarks:  
%ISB standard: upper ridge of calcaneus (def: calA) also origin for 

tmatrix 
%calB- medial process of the calcaneal tuberosity 
%calC- origin site of the extensor digitorum brevis 

  
%NOTE: Zcal_lab - Z direction vector for calcaneus in lab coordinate 

system 

  
calBA= calB-calA; 
midAB= (calA+calB)/2; 

  
%create lateral directing vector 
Z1cal_lab= calBA; 
Z1cal_lab_length= norm(Z1cal_lab); 
Z1cal_lab= Z1cal_lab/Z1cal_lab_length; 

  
%create anterior directed vector 
X1cal_lab= calC-midAB; 
X1cal_lab_length= norm(X1cal_lab); 
X1cal_lab= X1cal_lab/X1cal_lab_length; 

  
%Ensure everything is actually orthogonal (repeat cross products for 

%final coordinate system information 

  
Ycal_lab= cross(Z1cal_lab, X1cal_lab); 
Ycal_lab_length= norm(Ycal_lab); 
Ycal_lab= Ycal_lab/Ycal_lab_length;  

  
Zcal_lab= cross(X1cal_lab, Ycal_lab); 
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Zcal_lab_length= norm(Zcal_lab); 
Zcal_lab= Zcal_lab/Zcal_lab_length;  

  
Xcal_lab= cross(Ycal_lab, Zcal_lab); 
Xcal_lab_length= norm(Xcal_lab); 
Xcal_lab= Xcal_lab/Xcal_lab_length;  

  
%Origin of T-matrix will be calD (calA in thesis document) 
origin_cal=calD; 

  
%T-matrix calcaneus wrt lab 
Tlandmark_cal2lab= [Xcal_lab' Ycal_lab' Zcal_lab' origin_cal']; 
Tlandmark_cal2lab= cat(1, Tlandmark_cal2lab, endline); 
%create T-matrix lab wrt calcaneus 
Tlab2cal= inv(Tlandmark_cal2lab);  

  

  
%Cuboid Coordinate System 
%Obtain Landmark Location From User. Input location of cuboid 

%coordinate system 
anat_cub_landmarks_dir= data_dir; 
%landmarks as outputted from rhino  
%anat_cub_landmarks_file = input('Enter the name of the file with the 

cuboid anatomical landmarks from CT: ','s'); 
anat_cub_landmarks_filename=strcat('landmarks-fluoro-00',file_num,'cub', 

'.xls'); 
%anat_cub_landmarks_filename=strcat(anat_cub_landmarks_file, '.xls'); 
anat_cub_landmarks = xlsread([anat_cub_landmarks_dir, 

anat_cub_landmarks_filename], 1); 
anat_cub_landmarks= anat_cub_landmarks(:,1:3); 

  
%cubA lateral plantar tuberosity beside calcaneus facet 
cubA= anat_cub_landmarks (1, 1:3); 
%cubB medial plantar tuberosity beside calcaneus facet 
cubB= anat_cub_landmarks (2, 1:3); 
%cubC plantar tuberosity adjacent to 3rd cuniform 
cubC= anat_cub_landmarks (3, 1:3); 
%cubD triangular point located on the plantar side of the cuboid in 

between 
%the 4th and 5th metatarsal facets 
cubD= anat_cub_landmarks (4, 1:3); 

  
%create vectors originating from the origin location on the cuboid (A) 

  
cubDA= cubD-cubA; 

  
%create distal (anterior) directing vector (X) from A to D 
X1cub_lab= cubDA; 
X1cub_lab_length= norm(X1cub_lab); 
X1cub_lab= X1cub_lab/X1cub_lab_length; 

  
% create lateral directing vector (Z) 
Z1cub_lab= cubB-cubA; 
Z1cub_lab_length= norm(Z1cub_lab); 
Z1cub_lab= Z1cub_lab/Z1cub_lab_length; 
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 %create superior directed vector (Y) 
Y1cub_lab= cross (Z1cub_lab, X1cub_lab); 
Y1cub_lab_length= norm(Y1cub_lab); 
Y1cub_lab= Y1cub_lab/ Y1cub_lab_length;  

  
%Ensure all vectors are truly orthogonal redo cross products one more 
%time using newly created vectors... 

  
Zcub_lab= cross(X1cub_lab, Y1cub_lab); 
Zcub_lab_length= norm(Zcub_lab); 
Zcub_lab= Zcub_lab/Zcub_lab_length;   

  
Ycub_lab= cross(Zcub_lab, X1cub_lab); 
Ycub_lab_length= norm(Ycub_lab); 
Ycub_lab= Ycub_lab/Ycub_lab_length;  

  
Xcub_lab= cross(Ycub_lab, Zcub_lab); 
Xcub_lab_length= norm(Xcub_lab); 
Xcub_lab= Xcub_lab/Xcub_lab_length;  

  

  
%Origin of T-matrix will be cubA  
origin_cub= cubA; 

  
%Tmatrix cuboid wrt lab coordinate system 
Tlandmark_cub2lab= [Xcub_lab' Ycub_lab' Zcub_lab' origin_cub']; 
Tlandmark_cub2lab= cat(1, Tlandmark_cub2lab, endline); 
%Calculate inverse Tmatrix (lab wrt cuboid) 
Tlab2cub= inv(Tlandmark_cub2lab);  

  
%Navicular coordinate system 
%Obtain navicular landmark from user. Change navicular data base if this 

%is not in general bone landmark directory 
anat_nav_landmarks_dir= data_dir; 
%anat_nav_landmarks_file = input('Enter the name of the file with the 

navicular anatomical landmarks from Rhino: ','s'); 
anat_nav_landmarks_filename=strcat('landmarks-fluoro-00',file_num,'nav', 

'.xls'); 
anat_nav_landmarks = xlsread([anat_nav_landmarks_dir, 

anat_nav_landmarks_filename], 1); 
anat_nav_landmarks= anat_nav_landmarks(:,1:3); 

  

  
%navA- navicular tuberosity (medial landmark) 
navA= anat_nav_landmarks (1, 1:3); 
%navB- most superior part of the navicular (generally located near the 
%middle of the navicular but slightly to the lateral side) 
navB= anat_nav_landmarks (2, 1:3); 
%navC- triangular protrusion of navicular on the plantar side where the 
%talus interacts with the bone.  
navC= anat_nav_landmarks (3, 1:3); 

  
navBC= navB-navC;  
navCA= navC-navA; 
midBC= (navB+navC)/2; 
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%create superior directed vector (Y) 

  
Y1nav_lab= navBC; 
Y1nav_lab_length= norm(Y1nav_lab); 
Y1nav_lab= Y1nav_lab/Y1nav_lab_length;  

  
%create lateral directing vector (Z) 

  
Z1nav_lab= navA-midBC; 
Z1nav_lab_length= norm(Z1nav_lab);  
Z1nav_lab= Z1nav_lab/Z1nav_lab_length;  

  
%create proximal (or anterior) directed vector (X) 

  
X1nav_lab= cross (Y1nav_lab, Z1nav_lab); 
X1nav_lab_length= norm(X1nav_lab); 
X1nav_lab= X1nav_lab/X1nav_lab_length;  

  
%Enusre all vectors are truely orthogonal redo cross products one more 
%time using newly created vectors... 

  
Ynav_lab= cross(Z1nav_lab, X1nav_lab); 
Ynav_lab_length= norm(Ynav_lab); 
Ynav_lab= Ynav_lab/Ynav_lab_length;  

  
Znav_lab= cross(X1nav_lab, Ynav_lab); 
Znav_lab_length= norm(Znav_lab); 
Znav_lab= Znav_lab/Znav_lab_length;  

  
Xnav_lab= cross(Ynav_lab, Znav_lab); 
Xnav_lab_length= norm(Xnav_lab); 
Xnav_lab= Xnav_lab/Xnav_lab_length;  

  
%origin of navicular (navA) 
origin_nav= navA;  

  
%T-matrix navicular wrt lab coordinate system 
Tlandmark_nav2lab= [Xnav_lab' Ynav_lab' Znav_lab' origin_nav']; 
Tlandmark_nav2lab= cat(1, Tlandmark_nav2lab, endline); 

  

  
%Fibula/Tibia coordinate system 
%Obtain tibia/fibular landmark information from the user. If this is not 
%located in th3 directory 
anat_tibfib_landmarks_dir= data_dir; 
%anat_tibfib_landmarks_file = input('Enter the name of the file with the 

tibia/fibula anatomical landmarks from Rhino: ','s'); 
anat_tibfib_landmarks_filename=strcat('landmarks-fluoro-

00',file_num,'tibfib', '.xls'); 
anat_tibfib_landmarks = xlsread([anat_tibfib_landmarks_dir, 

anat_tibfib_landmarks_filename], 1); 
anat_tibfib_landmarks= anat_tibfib_landmarks(:,:); 
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%fibA- lateral malleolus on fibula 
fibA= anat_tibfib_landmarks (1, 1:3); 
%tibB- medial malleolus on tibia 
tibB= anat_tibfib_landmarks (2, 1:3); 
%tibC-  most medial portion of the top of the tibia 
tibC= anat_tibfib_landmarks (3, 1:3); 
%tibD- most lateral portion of the top of the tibia 
tibD= anat_tibfib_landmarks (4, 1:3); 
%%fibE- most medial portion of the top of the fibula 
fibE= anat_tibfib_landmarks (5, 1:3); 
%fibF- most lateral portion of the top of the fibula 
fibF= anat_tibfib_landmarks (6, 1:3); 
%midpoint between line drawn between fibA and tibB (not as accurate so 
%removed) 
%midAB1= anat_tibfib_landmarks (7, 1:3); 

  
%midpoint of fibA and tibB 
midAB= (fibA+tibB)/2; 
%midpoint betweeen fibC and fibf 
midCF= (tibC+fibF)/2; 

  
%create lateral directing vector (Z) 
Z1tibfib_lab= midAB-fibA;  
Z1tibfib_lab_length= norm(Z1tibfib_lab); 
Z1tibfib_lab= Z1tibfib_lab/Z1tibfib_lab_length; 

  
%create superior directing vector (Y) 
Y1tibfib_lab= midCF- midAB; 
Y1tibfib_lab_length= norm(Y1tibfib_lab); 
Y1tibfib_lab= Y1tibfib_lab/Y1tibfib_lab_length;  

  
%create anterior directing vector (X) 
X1tibfib_lab= cross(Y1tibfib_lab, Z1tibfib_lab); 
X1tibfib_lab_length= norm(X1tibfib_lab); 
X1tibfib_lab= X1tibfib_lab/X1tibfib_lab_length; 

  
%Ensure vectors are all normal to each other (complete cross products 

again 
%with previously created vectors above) 

  
%superior directing 
Ytibfib_lab= cross(X1tibfib_lab, Z1tibfib_lab); 
Ytibfib_lab_length= norm(Ytibfib_lab); 
Ytibfib_lab= Ytibfib_lab/Ytibfib_lab_length;  

  
%lateral directing 
Ztibfib_lab= cross(X1tibfib_lab, Ytibfib_lab); 
Ztibfib_lab_length= norm(Ztibfib_lab); 
Ztibfib_lab= Ztibfib_lab/Ztibfib_lab_length; 

  
%anterior directing 
Xtibfib_lab= cross(Ytibfib_lab, Ztibfib_lab); 
Xtibfib_lab_length= norm(Xtibfib_lab); 
Xtibfib_lab= Xtibfib_lab/Xtibfib_lab_length; 
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 %orgin tib fib, midpoint of AB 
origin_tibfib= midAB;  

  
%T-matrix navicular wrt lab coordinate system 
Tlandmark_tibfib2lab= [Xtibfib_lab' Ytibfib_lab' Ztibfib_lab' 

origin_tibfib']; 
Tlandmark_tibfib2lab= cat(1, Tlandmark_tibfib2lab, endline); 

  
%Inverse of T-matrix... lab wrt. tibfib 
Tlab2tibfib= inv(Tlandmark_tibfib2lab); 

  
%manipulate T-matrices to form correct angles:  

  
%Tmatrix cuboid wrt calcaneus 
Tcub2cal= Tlab2cal * Tlandmark_cub2lab;  
%Tmatrix navicular wrt calcaneus 
Tnav2cal= Tlab2cal * Tlandmark_nav2lab;  

  
%Tmatrix calcaneus wrt tibfib 
Tcal2tibfib= Tlab2tibfib*Tlandmark_cal2lab; 

  
%Tmatrix cuboid wrt tibfib 
Tcub2tibfib= Tlab2tibfib*Tlandmark_cub2lab; 

  
%Tmatrix navicular wrt tibfib 
Tnav2tibfib= Tlab2tibfib*Tlandmark_nav2lab; 

  
%EULER ANGLE ANALYSIS (cuboid wrt calcaneus)  
alpha1= atan2((-Tcub2cal(1,2)), Tcub2cal(2,2)); 
gamma1= atan2 (-Tcub2cal(1,3), Tcub2cal(3,3)); 
beta1= atan2(Tcub2cal(2,3), Tcub2cal(3,3)*cos(gamma1)); 

  
alpha1= alpha1*180/pi; 
beta1= beta1*180/pi; 
gamma1= gamma1*180/pi; 

  
%EULER ANGLE ANALYSIS ZXY analysis (navicular wrt calcaneus) 

  
alpha2= atan2((-Tnav2cal(1,2)), Tnav2cal(2,2)); 
gamma2= atan2 (-Tnav2cal(1,3), Tnav2cal(3,3)); 
beta2= atan2(Tnav2cal(2,3), Tnav2cal(3,3)*cos(gamma2)); 

  
alpha2= alpha2*180/pi; 
beta2= beta2*180/pi; 
gamma2= gamma2*180/pi; 

  
%EULER ANGLE ANALYSIS ZXY analysis (calcaneus wrt tibfib) 

  
alpha3= atan2((-Tcal2tibfib(1,2)), Tcal2tibfib(2,2)); 
gamma3= atan2 (-Tcal2tibfib(1,3), Tcal2tibfib(3,3)); 
beta3= atan2(Tcal2tibfib(2,3), Tcal2tibfib(3,3)*cos(gamma3)); 

  
alpha3= alpha3*180/pi; 
beta3= beta3*180/pi; 
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gamma3= gamma3*180/pi; 

  
%Euler Angle analysis ZXY (navicular wrt tibfib) 
alpha4= atan2((-Tnav2tibfib(1,2)), Tnav2tibfib(2,2)); 
gamma4= atan2 (-Tnav2tibfib(1,3), Tnav2tibfib(3,3)); 
beta4= atan2(Tnav2tibfib(2,3), Tnav2tibfib(3,3)*cos(gamma4)); 

  
alpha4= alpha4*180/pi; 
beta4= beta4*180/pi; 
gamma4= gamma4*180/pi; 

  
%Euler Angle analysis ZXY (cuboid wrt tibfib) 
alpha5= atan2((-Tcub2tibfib(1,2)), Tcub2tibfib(2,2)); 
gamma5= atan2 (-Tcub2tibfib(1,3), Tcub2tibfib(3,3)); 
beta5= atan2(Tcub2tibfib(2,3), Tcub2tibfib(3,3)*cos(gamma5)); 

  
alpha5= alpha5*180/pi; 
beta5= beta5*180/pi; 
gamma5= gamma5*180/pi; 

  
%OUTPUT ROWS Information (labelling the rows) 
%Inversion/eversion 
label_info1a={'Inversion/Eversion'}; 
output_write= fullfile(data_dir, data_file1); 
xlswrite(output_write, label_info1a, 1, 'A9'); 
label_info1={'cal wrt tibfib', 'nav wrt cal', 'cub wrt cal', 'nav 

wrt.tib','cub wrt tibfib'}; 
output_write= fullfile(data_dir, data_file1); 
xlswrite(output_write, label_info1, 1, 'A10'); 

  

  
%OUTPUT ROWS Information (labelling the rows) 
%Plantar Dorsi 
label_info2a={'Dorsi/Plantar Flextion'}; 
output_write= fullfile(data_dir, data_file1); 
xlswrite(output_write, label_info2a, 1, 'A5'); 
label_info2={'cal wrt tibfib', 'nav wrt cal', 'cub wrt cal', 'nav 

wrt.tib','cub wrt tibfib'}; 
output_write= fullfile(data_dir, data_file1); 
xlswrite(output_write, label_info2, 1, 'A6'); 

  
%OUTPUT ROWS Information (labelling the rows) 
%Internal/External 
label_info3a={'Internal/External Rotation'}; 
output_write= fullfile(data_dir, data_file1); 
xlswrite(output_write, label_info3a, 1, 'A1'); 
label_info3={'cal wrt tibfib', 'nav wrt cal', 'cub wrt cal', 'nav 

wrt.tib','cub wrt tibfib'}; 
output_write= fullfile(data_dir, data_file1); 
xlswrite(output_write, label_info3, 1, 'A2'); 

  
%OUTPUT INFORMATION CUBOID WRT CALCANEUS 
%beta1- inversion/eversion cub wrt cal 
Beta1_angle_info = {beta1}; 
output_write= fullfile(data_dir, data_file1); 
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xlswrite(output_write, Beta1_angle_info, 1, 'C3') 

  
%alpha1- plantar/dorsi cub wrt cal 
Alpha1_angle_info= { alpha1}; 
output_write=fullfile(data_dir, data_file1); 
xlswrite(output_write, Alpha1_angle_info, 1, 'C7') 

  
%gamma1- internal external rotation cub wrt cal 
Gamma1_angle_info= {gamma1}; 
output_write=fullfile(data_dir, data_file1); 
xlswrite(output_write, Gamma1_angle_info, 1, 'C11')   

  

  
%OUTPUT INFORMATION NAVICULAR WRT CALCANEUS 
%beta2- inversion/eversion nav wrt cal 
Beta2_angle_info = {beta2}; 
output_write= fullfile(data_dir, data_file1); 
xlswrite(output_write, Beta2_angle_info, 1, 'B3') 

  
%alpha2- plantar/dorsi nav wrt cal 
Alpha2_angle_info= {alpha2}; 
output_write=fullfile(data_dir, data_file1); 
xlswrite(output_write, Alpha2_angle_info, 1, 'B7') 

  
%gamma2- internal external rotation nav wrt cal 
Gamma2_angle_info= {gamma2}; 
output_write=fullfile(data_dir, data_file1); 
xlswrite(output_write, Gamma2_angle_info, 1, 'B11')   

  
%OUTPUT INFORMATION CALCANEUS WRT TIBIA/FIBULA   
%beta3- inversion/eversion cal wrt tibfib 
Beta3_angle_info = {beta3}; 
output_write= fullfile(data_dir, data_file1); 
xlswrite(output_write, Beta3_angle_info, 1, 'A3') 

  
%alpha3- plantar/dorsi cal wrt tibfib 
Alpha3_angle_info= {alpha3}; 
output_write=fullfile(data_dir, data_file1); 
xlswrite(output_write, Alpha3_angle_info, 1, 'A7') 

  
%gamma3- internal external rotation cal wrt tibfib 
Gamma3_angle_info= {gamma3}; 
output_write=fullfile(data_dir, data_file1); 
xlswrite(output_write, Gamma3_angle_info, 1, 'A11')     

  

  
%OUTPUT INFORMATION NAVICULAR WRT TIBIA/FIBULA 
%beta4- inversion/eversion nav wrt tibfib 
Beta4_angle_info = {beta4}; 
output_write= fullfile(data_dir, data_file1); 
xlswrite(output_write, Beta4_angle_info, 1, 'D3') 

  
%alpha4- plantar/dorsi nav wrt tibfib 
Alpha4_angle_info= {alpha4}; 
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output_write=fullfile(data_dir, data_file1); 
xlswrite(output_write, Alpha4_angle_info, 1, 'D7') 

  
%gamma4- internal external rotation nav wrt tibfib 
Gamma4_angle_info= {gamma4}; 
output_write=fullfile(data_dir, data_file1); 
xlswrite(output_write, Gamma4_angle_info, 1, 'D11')   

  

  
%OUTPUT INFORMATION CUBOID WRT TIBIA/FIBULA 
%beta5- inversion/eversion cub wrt tibfib 
Beta5_angle_info = {beta5}; 
output_write= fullfile(data_dir, data_file1); 
xlswrite(output_write, Beta5_angle_info, 1, 'E3') 

  
%alpha5- plantar/dorsi cub wrt tibfib 
Alpha5_angle_info= {alpha5}; 
output_write=fullfile(data_dir, data_file1); 
xlswrite(output_write, Alpha5_angle_info, 1, 'E7') 

  
%gamma5- internal external rotation cub wrt tibfib 
Gamma5_angle_info= {gamma5}; 
output_write=fullfile(data_dir, data_file1); 
xlswrite(output_write, Gamma5_angle_info, 1, 'E11')   
end 
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C.2-TWO-DIMENSIONAL ANALYSIS: ANGLE CALCULATION CODE 
%***********************************************************************

***** 
% Program: Angle_Calc.m 

% Measure angles from output of 'Find_points.m' 
% Created by: Kristen Bushey 
% Date Modified: June 15, 2011 
%-----------------------------------------------------------------------

----- 

  
%Obtain excel file name from user with output points from Find_Points.m 
data_folder = input('Enter the name of the folder that contains the 

points files: ','s'); 
data_dir = ['M:\IntraOp\' data_folder '\']; 

  
% Obtain information about a range of files if required 
num_files = input('Enter the number of files to be analyzed: '); 
start_file = input('Enter the value of the first file in the series: '); 
data_file1 = input('Enter the start of the name of the file which 

contains the object data: ','s'); 

  
i = 0; 

  
for z = start_file:(start_file + num_files - 1) 
    i = i + 1; 

     
    if z < 10 
        file_num = int2str(z); 
        points_filename = strcat(data_file1, '-000', file_num, 

'_points.xls'); 
    elseif (z >= 10 && z < 100) 
        file_num = int2str(z); 
        points_filename = strcat(data_file1, '-00', file_num, 

'_points.xls'); 
    elseif (z >= 100 && z < 1000) 
        file_num = int2str(z); 
        points_filename = strcat(data_file1, '-000', file_num, 

'_points.xls'); 
    elseif (z >= 1000 && z < 10000) 
        file_num = int2str(z); 
        points_filename = strcat(data_file1, '-000', file_num, 

'_points.xls'); 
    else 
        file_num = int2str(z); 
        points_filename = strcat(data_file1, '-00', file_num, 

'_points.xls'); 
    end 

  
    % Pixel coordinates of chosen points (x,y) 
    points2use = xlsread([data_dir,points_filename],1,'B1:C4'); 

  
    % Calculating angle between two lines created from four selected 

points 
    line_1_x = points2use(1,1)-points2use(2,1); 
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    line_1_y = points2use(1,2)-points2use(2,2); 
    line_2_x = points2use(3,1)-points2use(4,1); 
    line_2_y = points2use(3,2)-points2use(4,2); 
    line_1 = [line_1_x line_1_y]; 
    line_2 = [line_2_x line_2_y]; 
    line_1_2_product = dot(line_1, line_2); 
    line_1_length = norm(line_1); 
    line_2_length = norm(line_2); 
    line_1_2_L = line_1_2_product/(line_1_length*line_2_length); 
    line_1_u = line_1/line_1_length; 
    line_2_u = line_2/line_2_length; 

  
    if ((line_2_u(2)-line_1_u(2))<0)        

        angle = -acosd(line_1_2_L); 
    else 
        angle = acosd(line_1_2_L); 
    end 

  
    %output_filename = strrep(points_filename, 'points', 'analyzed'); 
    %output_write = fullfile(data_dir, output_filename); 
    output_write = fullfile(data_dir, [data_file1, '_analyzed.xls']); 
    points_analyzed = [line_1 line_2 angle]; 
    %xlswrite(output_write, points_analyzed, 1'); 
    range = ['A', int2str(i)]; 
    xlswrite(output_write, points_analyzed, 1, range); 

  
end 
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APPENDIX D- ADDITIONAL DATA FOR CHAPTER 2 
The standard deviations calculated for the normal population during barefoot, running 

shoe, foam soft orthotic and foam hard orthotic are summarized in this section.  

 

Table D.1: The average standard deviation for each subject is shown below for internal 

rotation. The average standard deviation was calculated across all normal subjects.  

Internal Rotation 

Condition Subject 
cal wrt 
tibfib 

nav wrt 
cal 

cub wrt 
cal 

nav wrt 
tibfib 

cub wrt 
tibfib 

Barefoot 

1 0.47 0.26 0.67 0.45 1.15 

2 0.58 0.59 0.15 1.65 0.64 

10 0.98 2.46 0.89 3.14 1.54 

11 1.96 1.33 9.27 1.24 4.75 

23 0.86 1.31 1.00 11.87 0.78 

Avg. SD 0.97 1.19 2.40 3.67 1.77 

 

Neutral 
Cushion 
Running 

Shoe 

1 1.53 0.94 1.37 1.51 0.54 

2 3.69 2.03 3.02 2.85 1.01 

10 0.92 1.41 1.59 1.77 0.52 

11 1.14 0.92 1.23 0.66 0.40 

23 2.63 2.39 2.39 3.66 1.62 

Avg. SD 1.98 1.54 1.92 2.09 0.82 

 

Foam 
Soft 

1 4.15 3.47 2.67 2.30 1.55 

2 0.74 2.69 1.06 0.98 0.93 

10 0.72 2.32 1.19 0.26 0.93 

11 2.38 0.12 0.00 3.25 0.67 

23 2.76 1.43 1.62 2.43 1.90 

Avg. SD 2.15 2.01 1.31 1.84 1.20 

 

Foam 
Hard 

1 1.94 2.41 3.33 0.29 1.59 

2 2.48 2.02 0.36 3.66 1.81 

10 4.71 0.33 10.04 7.42 10.12 

11 5.02 2.94 4.43 1.86 1.10 

23 4.19 2.30 0.21 3.56 2.01 

Avg. SD 3.67 2.00 3.67 3.36 3.33 
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Table D.2: The average standard deviation for each subject is shown below for 

plantarflexion. The average standard deviation was calculated across all normal subjects.  

Plantarflexion 

Condition Subject 
cal wrt 
tibfib 

nav wrt 
cal 

cub wrt 
cal 

nav wrt 
tibfib 

cub wrt 
tibfib 

Barefoot 

1 0.19 0.52 4.56 0.64 3.64 

2 0.84 1.38 0.93 1.45 0.86 

10 0.59 2.64 8.47 3.67 2.31 

11 1.11 0.65 6.26 1.30 4.74 

23 1.99 5.28 6.70 9.04 1.70 

Avg. SD 0.94 2.09 5.39 3.22 2.65 

 

Neutral 
Cushion 
Running 

Shoe 

1 0.96 4.83 2.55 6.39 1.52 

2 1.52 1.05 6.18 1.39 3.60 

10 1.84 2.61 5.69 2.20 1.59 

11 1.19 1.31 5.03 0.83 2.44 

23 0.35 0.23 0.82 2.12 3.12 

Avg. SD 1.17 2.01 4.05 2.59 2.45 

 

Foam 
Soft 

1 1.55 1.43 12.41 2.58 2.18 

2 1.35 1.91 2.55 0.78 0.44 

10 1.25 0.97 0.95 0.65 1.53 

11 1.26 0.22 0.00 0.95 0.87 

23 2.04 1.54 7.11 2.46 3.00 

Avg. SD 1.49 1.21 4.60 1.48 1.60 

 

Foam 
Hard 

1 1.22 0.94 6.17 1.23 1.42 

2 1.55 0.32 5.00 4.05 2.41 

10 1.99 0.29 11.69 2.25 5.99 

11 1.84 1.71 3.46 1.04 1.26 

23 3.53 1.35 10.11 0.30 1.49 

Avg. SD 2.02 0.92 7.29 1.77 2.51 
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Table D.3: The average standard deviation for each subject is shown below for inversion. 

The average standard deviation was calculated across all normal subjects. 

Inversion 

Condition Subject 
cal wrt 
tibfib 

nav wrt 
cal 

cub wrt 
cal 

nav wrt 
tibfib 

cub wrt 
tibfib 

Barefoot 

1 0.34 0.13 6.18 0.16 5.14 

2 0.44 0.23 0.59 0.59 2.08 

10 0.82 1.53 14.90 1.67 4.61 

11 2.59 0.98 12.63 2.88 5.75 

23 3.37 5.60 4.79 7.09 4.96 

Avg. SD 1.51 1.69 7.82 2.48 4.51 

 

Neutral 
Cushion 
Running 

Shoe 

1 0.96 0.41 6.63 1.53 3.18 

2 6.22 1.03 5.32 3.62 1.95 

10 1.34 0.96 6.64 2.11 1.52 

11 0.84 0.26 3.82 0.81 1.67 

23 2.51 0.70 4.47 2.80 3.35 

Avg. SD 2.37 0.67 5.38 2.17 2.33 

 

Foam Soft 

1 4.45 4.25 12.18 1.07 3.14 

2 1.45 1.55 1.87 0.21 1.69 

10 0.77 0.29 1.98 0.43 0.82 

11 2.83 0.00 0.00 2.71 2.11 

23 1.99 1.56 2.18 0.72 1.59 

Avg. SD 2.30 1.53 3.64 1.03 1.87 

 

Foam 
Hard 

1 1.12 0.39 9.50 0.83 3.98 

2 3.45 0.83 3.10 2.94 1.51 

10 5.33 0.27 14.96 6.28 1.38 

11 3.32 1.31 4.48 1.62 2.11 

23 1.12 0.63 6.91 1.77 0.99 

Avg. SD 2.87 0.68 7.79 2.69 2.00 
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APPENDIX E- ADDITIONAL DATA FOR CHAPTER 3 
Table E.1: The standard deviation associated with the angle measurements in all three 

planes of motion for the soft plaster casted orthotic. All entries in degrees. 

Soft Plaster Casted Orthotic 

Measurement Subject# 
cal wrt 
tibfib 

nav wrt 
cal 

cub wrt 
cal 

nav wrt 
tibfib 

cub wrt 
tibfib 

Internal 
Rotation 

1 0.72 1.28 1.86 1.13 2.40 

2 4.30 1.24 5.54 2.01 1.53 

10 1.52 1.50 0.71 0.80 0.77 

11 0.57 0.93 0.64 0.33 0.20 

23 0.43 1.25 0.96 0.92 1.04 

Average 1.51 1.24 1.94 1.04 1.19 

 

Plantarflexion 

1 3.98 2.07 3.07 3.50 1.65 

2 4.98 5.67 1.23 1.75 2.57 

10 4.55 2.65 0.96 1.89 0.40 

11 10.71 2.03 1.86 3.97 3.60 

23 9.02 1.17 2.01 1.66 1.17 

Average 6.65 2.72 1.83 2.55 1.88 

 

Inversion 

1 4.08 2.14 2.54 0.97 3.22 

2 2.99 5.13 1.03 1.20 2.56 

10 3.46 0.77 1.63 0.47 0.31 

11 5.09 2.33 2.73 1.68 3.00 

23 4.74 1.81 0.96 1.36 1.06 

Average 4.07 2.43 1.78 1.14 2.03 
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Table E.2: The standard deviation associated with the angle measurements in all three 

planes of motion for the rigid plaster casted orthotic. All entries in degrees. 

Rigid Plaster Casted Orthotic 

Measurement Subject# 
cal wrt 
tibfib 

nav wrt 
cal 

cub wrt 
cal 

nav wrt 
tibfib 

cub wrt 
tibfib 

Internal 

1 0.91 0.38 0.96 4.17 1.50 

2 1.32 0.80 1.70 1.77 2.58 

10 0.45 0.84 0.78 0.61 1.21 

11 0.70 1.02 0.53 2.15 0.64 

23 4.00 1.33 0.68 7.84 4.77 

Average 1.48 0.87 0.93 3.31 2.14 

 

Plantarflexion 

1 2.48 1.80 1.06 4.47 1.41 

2 3.51 3.47 1.48 1.65 3.08 

10 3.46 1.10 1.50 2.05 1.76 

11 11.41 1.16 2.03 3.02 3.46 

23 37.12 2.31 2.05 2.22 1.62 

Average 11.60 1.97 1.62 2.68 2.26 

 

Inversion 

1 3.79 1.00 1.21 1.15 3.82 

2 0.71 2.92 0.74 0.96 2.94 

10 0.92 0.99 1.51 0.45 1.55 

11 1.96 2.13 2.76 3.21 3.49 

23 22.90 2.06 1.26 2.59 1.44 

Average 6.06 1.82 1.50 1.67 2.65 
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APPENDIX F- STATISTICAL ANALYSIS 
This appendix contains the statistical results for all subjects. 

Only statistical analyses are included for those that resulted 

in a significant finding. 

 

F.1     STATISTICAL RESULTS 
No results in this study were found to be significant using the ANOVA repeated 

measures approach.  
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