
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

6-26-2012 12:00 AM

Methods for Shape-Constrained Kernel Density Estimation Methods for Shape-Constrained Kernel Density Estimation

Mark A. Wolters
The University of Western Ontario

Supervisor

W. John Braun

The University of Western Ontario

Graduate Program in Statistics and Actuarial Sciences

A thesis submitted in partial fulfillment of the requirements for the degree in Doctor of

Philosophy

© Mark A. Wolters 2012

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Statistical Methodology Commons

Recommended Citation Recommended Citation
Wolters, Mark A., "Methods for Shape-Constrained Kernel Density Estimation" (2012). Electronic Thesis
and Dissertation Repository. 609.
https://ir.lib.uwo.ca/etd/609

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F609&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/213?utm_source=ir.lib.uwo.ca%2Fetd%2F609&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/609?utm_source=ir.lib.uwo.ca%2Fetd%2F609&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

METHODS FOR SHAPE-CONSTRAINED KERNEL DENSITY

ESTIMATION

(Thesis format: Monograph)

by

Mark Wolters

Graduate Program in Statistical and Actuarial Sciences

A thesis submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

The School of Graduate and Postdoctoral Studies

The University of Western Ontario

London, Ontario, Canada

c© Mark Anthony Wolters 2012

THE UNIVERSITY OF WESTERN ONTARIO
School of Graduate and Postdoctoral Studies

CERTIFICATE OF EXAMINATION

Supervisor

Dr. W. John Braun

Examiners

Dr. Duncan Murdoch

Dr. Reg Kulperger

Dr. Craig Miller

Dr. Hanna K. Jankowski

The thesis by

Mark Anthony Wolters

entitled:

Methods for Shape-Constrained Kernel Density Estimation

is accepted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

Date Chair of the Thesis Examination Board

ii

Abstract

Nonparametric density estimators are used to estimate an unknown probability den-

sity while making minimal assumptions about its functional form. Although the low

reliance of nonparametric estimators on modelling assumptions is a benefit, their

performance will be improved if auxiliary information about the density’s shape is

incorporated into the estimate. Auxiliary information can take the form of shape con-

straints, such as unimodality or symmetry, that the estimate must satisfy. Finding

the constrained estimate is usually a difficult optimization problem, however, and a

consistent framework for finding estimates across a variety of problems is lacking.

It is proposed to find shape-constrained density estimates by starting with a pilot

estimate obtained by standard methods, and subsequently adjusting its shape until

the constraints are satisfied. This strategy is part of a general approach, in which a

constrained estimation problem is defined by an estimator, a method of shape adjust-

ment, a constraint, and an objective function. Optimization methods are developed

to suit this approach, with a focus on kernel density estimation under a variety of con-

straints. Two methods of shape adjustment are examined in detail. The first is data

sharpening, for which two optimization algorithms are proposed: a greedy algorithm

that runs quickly but can handle a limited set of constraints, and a particle swarm

algorithm that is suitable for a wider range of problems. The second is the method

of adjustment curves, for which it is often possible to use quadratic programming to

find optimal estimates.

The methods presented here can be used for univariate or higher-dimensional

kernel density estimation with shape constraints. They can also be extended to other

estimators, in both the density estimation and regression settings. As such they

constitute a step toward a truly general optimizer, that can be used on arbitrary

combinations of estimator and constraint.

Keywords: Kernel density estimation, nonparametric statistics, shape-constrained

estimation, heuristic optimization, particle swarm optimization, unimodal density es-

timation.

iii

Dedicated to the memory of Lanying Ma

iv

Acknowledgements

I would like to thank Dr. John Braun for his support and guidance over the course

of my studies. In his role as supervisor he was always focused on what was best for

me, both as a student and as a person, and for that I am grateful. My appreciation is

also extended to the rest of the faculty and staff at the Department of Statistical and

Actuarial Sciences, especially to Jennifer Dungavell and Jane Bai for their cheerful

patience in administrative matters.

As my years of study have accumulated, I have developed a deeper appreciation

of the impact scholarship funding has had on my career and my life. I thank the Nat-

ural Sciences and Engineering Research Council of Canada and the Ontario Student

Assistance Program for their generous support.

I am also happy to have the opportunity to express my gratitude to my par-

ents, Lawrence and Elizabeth, and to my brother John and his family, for the many

good influences they have had on me; and to my wife Na for her constant love and

companionship.

v

Contents

Certificate of Examination ii

Abstract iii

Acknowledgements v

List of Figures ix

List of Tables xi

List of Algorithms xii

1 Introduction 1
1.1 Background on Shape-Constrained Estimation 2
1.2 The Problem Defined in General . 4
1.3 The Case of Kernel Density Estimation 7

1.3.1 The Kernel Density Estimator 7
1.3.2 Varying the Locations (Data Sharpening) 9
1.3.3 Varying the Weights . 11
1.3.4 Varying the Bandwidths . 12
1.3.5 Using an Adjustment Curve 14
1.3.6 Shape Adjustment in Higher Dimensions 14

1.4 Overview of the Thesis . 17
1.4.1 Scope of the Present Work . 17
1.4.2 Plan of the Thesis . 17

2 Defining Constraints and Finding Estimates 19
2.1 Two Illustrative Examples . 19

2.1.1 Wind Speed Data . 19
2.1.2 Heart Disease Data . 20

2.2 A Suite of Useful Shape Constraints 22
2.2.1 Constraints on the number of Modes 23
2.2.2 Smoother Unimodal Constraints 29
2.2.3 More Univariate Possibilities 33
2.2.4 The Bivariate Case . 36

2.3 Choice of Objective Function . 40
2.3.1 Objectives Based on the Adjustable Values 41

vi

2.3.2 Objectives Based on Density Estimates 43
2.3.3 A Likelihood Objective . 44
2.3.4 Visualizing the Objective Functions 45

2.4 Bandwidth Selection . 45
2.4.1 Using a Standard Pilot Bandwidth 47
2.4.2 Maximizing a Pseudo-Likelihood 49

3 A Greedy Algorithm for Data Sharpening 52
3.1 The improve Algorithm . 53

3.1.1 Algorithm Description . 53
3.1.2 Implementation Details . 56

3.2 Examples . 60
3.2.1 Wind Speed Data . 60
3.2.2 Heart Disease Data . 64

3.3 Simulation Studies . 64
3.3.1 Study Design . 65
3.3.2 Convergence and Run Time 67
3.3.3 Optimization Performance . 67
3.3.4 Estimation Performance . 72

3.4 An Iterated Greedy Algorithm . 74
3.4.1 Iterated Local Search . 74
3.4.2 Incorporating the Greedy Algorithm in an ILS Scheme 76
3.4.3 Performance of ILSimprove 76

3.5 Limitations and Extensions . 77

4 A Particle Swarm Algorithm for Data Sharpening 80
4.1 Particle Swarm Optimization . 80
4.2 Constrained Estimation PSO . 84

4.2.1 Algorithm Description . 85
4.2.2 Controlling Swarm Dynamics 88

4.3 Implementation Details . 89
4.3.1 The Main Function . 89
4.3.2 Explore and Exploit . 92
4.3.3 Exchange . 94

4.4 Examples . 96
4.4.1 Wind Speed Data . 96
4.4.2 Heart Disease Data . 101

4.5 Simulation Studies . 102
4.5.1 Run-to-Run Variability . 104
4.5.2 Sensitivity to Swarm Control Parameters 106

4.6 Limitations and Extensions . 109

5 Optimal Adjustment Curves by Quadratic Programming 113
5.1 The Method . 113

5.1.1 A Quadratic Objective and Linear Constraints 114

vii

5.1.2 Constraints Fitting the QP Framework 116
5.1.3 Choosing the Adjustment Densities 117

5.2 Examples . 122
5.2.1 Wind Speed Data . 122
5.2.2 Heart Disease Data . 124

5.3 Simulation Studies . 126
5.4 Limitations and Extensions . 128

6 Conclusions and Further Work 132
6.1 Why, When, and How to Use the Methods 133
6.2 Areas for Further Improvement . 134

Appendix A Bandwidth Selection Simulation Study 138

Appendix B Example Quadratic Programs 144

Bibliography 152

Curriculum Vitae 156

viii

List of Figures

1.1 A kernel density estimate with different bandwidths. 8
1.2 Illustrating the premise of data sharpening. 11
1.3 Illustrating the premise of varying the weights. 12
1.4 Illustrating the premise of varying the bandwidths. 13
1.5 Illustrating the premise of adjustment curves. 15

2.1 The windspeed data set. 21
2.2 The heart disease data set. 22
2.3 An example of data sharpening by moving two points. 28
2.4 Constraints on modes and inflections. 30
2.5 Shape differences among bell-shaped densities. 32
2.6 A unimodal bivariate density with a local minimum. 37
2.7 Summands of four objective functions. 42
2.8 Contour plots of eight objective functions. 46

3.1 An illustration of greedy data sharpening. 56
3.2 A schematic illustration of the grid search for a single point. 59
3.3 Unimodal estimates for the wind speed data, SQP vs. improve. . . . 61
3.4 Unimodal estimates for the wind speed data, hML bandwidth. 63
3.5 Bell-shaped estimates for the wind speed data, four bandwidths. . . . 64
3.6 Unimodal estimate for the heart disease data, using improve. 65
3.7 True densities used in the simulation. 66
3.8 Simulation results: scatter plot of L1 sharpening distances. 69
3.9 Simulation results: box plots of normalized L1 distance. 70
3.10 Simulation results: example estimates. 71
3.11 Simulation results: empirical CDFs of TV distance. 72
3.12 Simulation results for the ILSimprove function. 78

4.1 Illustration of the lbest(k) neighbourhood structure. 82
4.2 Distribution of possible moves for a single particle. 83
4.3 Velocity components for the two swarms. 86
4.4 The region of promising solutions. 87
4.5 The shrinkage/expansion boundary for each swarm. 89
4.6 CEPSO results for three constraints on the wind speed data. 98
4.7 Comparing results of improve and CEPSO on the wind speed data. . . 99
4.8 The nearly normal constraint, applied to the wind speed data. 100
4.9 Constrained estimates for the heart disease data using CEPSO. 103

ix

4.10 CEPSO solution progress for the heart disease examples. 104
4.11 Results of repeated CEPSO runs on a single data set. 105
4.12 Objective values for repeated runs of CEPSO, for eight values of c. . 108
4.13 Best estimate and pointwise variability with c = 1. 109

5.1 An adjustment curve with densities placed at the data points. 120
5.2 An adjustment curve with densities placed on a grid. 122
5.3 Unimodal estimates for the wind speed data, different bandwidths. . . 123
5.4 Bell shaped estimates for the wind speed data, hML bandwidth. . . . 124
5.5 A star-unimodal estimate for the heart disease data. 126
5.6 Statistical performance of constrained estimates using f̂A

a
. 128

5.7 Median run times for the adjustment curve estimates. 129

A.1 hML vs. hLCV a for 1500 simulation runs. 139
A.2 Comparison of bandwidth selectors. 140
A.3 Pointwise MSE decomposition for three bandwidth selectors. 143

x

List of Tables

3.1 Convergence and run time results. 68
3.2 Mean TV distances from the truth across 250 replications. 73

4.1 Statistics of L2 values for repeated CEPSO runs on a t3 data set. . . 106

A.1 Sample mean of TV and ISE distances from the truth. 141

xi

List of Algorithms

2.1 Counting sign changes (signchanges). 24
2.2 Checking for k modes in a density estimate (haskmodes). 26
2.3 Checking for b inflections in an estimate (hasbinflections). 30
2.4 Checking for 2-D unimodality (isuni2D). 38
2.5 Checking for unimodal marginals (unimarg). 38
2.6 Checking for unimodal conditionals (unicond). 39

3.1 A greedy data sharpening algorithm (improve). 55
3.2 Iterated local search. 75
3.3 Iterated greedy algorithm for data sharpening (ILSimprove). 77

4.1 The canonical PSO algorithm. 84
4.2 Constrained estimation PSO (CEPSO). 90
4.3 Detailed code for the Explore and Exploit steps. 93

5.1 A minimizer for selecting r important points (findpoints). 118

xii

Chapter 1

Introduction

An estimator of an unknown probability density, regression curve, or other function

of interest is shape constrained if it is restricted to produce estimates having some

desired qualitative features. Qualitative features that might be of interest include

monotonicity, unimodality, or convexity, for example. Parametric estimators may be

considered shape constrained to a high degree, as their qualitative characteristics are

pre-established. Nonparametric function estimators, conversely, have a low degree of

shape restriction, their qualitative features being determined primarily by the data.

This thesis concerns a middle ground between the parametric and nonparametric

alternatives, where qualitative shape controls are added to a standard nonparametric

estimator. There are three main advantages to this estimation approach:

1. The data analyst can choose the shape of the estimate in a way that best

matches the available subject-matter knowledge, allowing the modelling as-

sumptions to be tailored to more closely match reality. The result is better

estimation than a purely nonparametric option, with less risk of model error

than a purely parametric option.

2. Enforcing constraints ensures that estimates have the desired shape character-

istics for all samples, not just on average or asymptotically. This provides con-

siderable benefit in exploratory data analysis and when communicating results

to others.

1

Chapter 1 2

3. Adding a shape restriction to a smooth nonparametric estimator usually makes

its performance less sensitive to the value of its smoothing parameters. This

makes the estimator easier to use in practice.

The barrier to realizing these advantages, and the main concern of this thesis, is

the difficult optimization problem that typically arises when building the estimate.

The focus of this work is density estimation, but a general constrained estimation

framework is kept in mind throughout. The concepts and methods introduced have

application in other settings, including regression.

1.1 Background on Shape-Constrained Estimation

Shape-restricted estimation is more common in regression than in density estima-

tion. The simplest constraint encountered in regression is monotonicity. The method

of isotonic regression (Brunk, 1955; Barlow et al., 1972), which produces monotonic

step functions, was the earliest proposal for this constraint. Smooth monotonic re-

gression estimators have also been proposed, for example using splines (Ramsay,

1988). Extensions have also allowed other simple constraints such as concavity or

convexity to be enforced (Meyer, 2008). Henderson and Parmeter (2009) summarize

shape-constrained regression in much more detail.

In density estimation, the qualitative constraints that have received the most

attention in the literature are monotonicity (the density must be nondecreasing or

nonincreasing) and unimodality (the density must have only one peak). Note that the

class of unimodal densities includes monotone densities as a special case, for which

the mode is located at either the left or right edge of the density’s support. Grenander

(1956) developed the nonparametric maximum likelihood estimator (NPMLE) for the

monotone case. For nonincreasing densities, it is the derivative of the least concave

majorant of the empirical cumulative distribution function (ECDF); for nondecreasing

densities, it is the derivative of the greatest convex minorant of the ECDF. The

pool adjacent violators algorithm (described in Barlow et al., 1972) provides a simple

means of finding the required majorant or minorant.

Chapter 1 3

Later research attempted to extend the Grenander estimator to any unimodal den-

sity. The common premise was to combine a nondecreasing Grenander estimate to the

left of the mode with a nonincreasing one to the right. When the location of the mode

is known, this estimator is the NPMLE; otherwise the NPMLE does not exist, and

other means must be used to situate the mode. Wegman (1972) considered specifying

a modal interval, Bickel and Fan (1996) plugged in a consistent point estimate of the

mode location, and Birgé (1997) chose the mode to minimize the distance between

the estimate and the ECDF. Reboul (2005) extended the work of Birgé to a general

unimodal or U-shaped function estimation setting. Like the Grenander estimator

itself, all of these methods produce a step-function estimate (though Bickel and Fan

did propose methods of smoothing the density after estimation).

Alternative approaches to estimation have been proposed to produce smooth den-

sity estimates directly, under the unimodality constraint or other simple constraints.

Fougères (1997) uses a monotone rearrangement to transform a multimodal density

estimate into a unimodal one, though under the restrictive assumption that the final

mode location is known. Cheng et al. (1999) start with a unimodal template den-

sity and then iteratively apply monotone transformations (possibly with intermediate

smoothing steps) to construct a more suitable unimodal estimate. The method of re-

arrangements has also been used to find monotone, convex, or log-concave estimates

(Birke 2009; see references therein for additional alternatives with these constraints).

When a shape-restricted estimation problem is stated formally, it typically leads

to a constrained optimization problem. All of the methods just summarized ease

the burden of constrained optimization in one of two ways: they either define the

estimator such that it satisfies the constraint by construction, or they limit attention

to certain constraints for which the optimization is straightforward (usually cases

where the constraints can be stated as a system of linear inequalities). As a result

there are numerous estimators, each applicable to a narrow range of problems and each

using its own unique methodology. Furthermore, most of the constrained estimators

discussed so far are have little connection to standard unrestricted estimators that

may be familiar to practitioners. These factors form a barrier to adoption of the

Chapter 1 4

methods. A data analyst wishing to explore three different shape restrictions, for

example, may be required to learn and implement three different estimators, none of

which resembles the estimator the analyst would choose in the absence of constraints.

Recent research has begun to address this problem by developing more general

approaches that can apply a variety of different constraints to familiar nonparametric

estimators in a consistent way. Braun and Hall (2001) and Hall and Kang (2005), for

example, used data sharpening (shifting the data points) to satisfy a variety of qual-

itative constraints in both density estimation and regression; and Du et al. (2010),

expanding on Hall and Huang (2001), used weights on the data points to enforce a

broad class of derivative constraints on kernel regression estimates. The principle

at work in each case is the application of a generic method of shape adjustment to

enforce constraints on a standard nonparametric estimator. Because approaches like

shifting or re-weighting data points are so general, they can work with any estima-

tor, and can in principle handle arbitrary constraints or high-dimensional problems.

Such methods, and their application specifically to shape-constrained kernel density

estimation, are discussed further in Section 1.3.

1.2 The Problem Defined in General

As mentioned above, many previous attempts at constrained estimation have sacri-

ficed generality for the sake of easier optimization problems. The spirit of the present

work is to reverse this idea: to retain a general estimation methodology, at the cost of

more difficult constrained optimization. The primary goal of this thesis is to present

heuristic optimization techniques that make such an approach feasible. First, we will

consider a general description of the constrained estimation problem.

Let x be a random sample of size n. Our preferred nonparametric estimator for

the function of interest—the one we would use in the absence of any constraints—is

the pilot estimator, denoted f̂ ◦(x). It is assumed that the pilot estimate fails to meet

the desired shape restrictions (otherwise the case is trivial).

To be able to handle constraints, the algebraic form of f̂ ◦ must admit some means

Chapter 1 5

of shape adjustment. Let q be a vector of adjustable values in the formula for f̂ ◦

that allows its shape to be altered. Let f̂q represent the shape-adjusted estimate at

a particular value of q . Further, define t to be the target value of q—the value that

reproduces the pilot estimate (that is, f̂t = f̂ ◦). Note that the pilot estimator may

contain other parameters, for example a bandwidth. It is assumed for the moment

that such parameters are chosen independently (see Section 2.4 for more on this

topic).

Define the functional I to indicate when an estimate satisfies all desired shape

constraints: I(f̂q) = 1 when the constraints are satisfied, and I(f̂q) = 0 otherwise.

Let C be the set of q vectors that produce constraint-respecting estimates:

C = {q : I(f̂q) = 1}. (1.1)

Any q in C is called a feasible solution.

The optimal shape-constrained estimate can now be identified. It is defined to be

f̂q∗ , where q
∗ is the solution to the constrained optimization problem

q
∗ = argmin

q∈C
δ(q , t), (1.2)

and δ(q , t) is an objective function measuring the closeness of q and t.

Note from the above that four elements are required to define a constrained esti-

mation problem:

1. A pilot estimator. This could be a standard nonparametric estimator, for ex-

ample a kernel density estimator (as considered in the following chapters), or a

local regression estimator, a smoothing spline, and so on.

2. A method of adjusting the estimate, achieved by varying a set of values. Four

adjustment methods suitable for kernel density estimators are introduced in

Section 1.3.

3. A set of shape constraints. Many types of shape constraints suitable for density

estimation are discussed in Section 2.2.

Chapter 1 6

4. An objective function, such as the squared-error distance. The choice of objec-

tive function is addressed in Section 2.3.

The difficulty of problem (1.2) depends on the specifics of these four components

in the problem at hand. The shape constraints are particularly important from the

optimization standpoint. In some cases the constraint q ∈ C can be translated into

a set of inequalities in q . If the inequalities take a simple form (especially if they are

linear), it may be possible to use standard methods of mathematical programming to

find the optimal solution. If the inequality constraints are nonlinear or nonconvex,

the problem will be challenging, and could have many local optima. In other cases it

may not even be possible or practical to express the constraint as explicit inequalities

in q . Furthermore, a change to any of the four elements of the problem creates a new

mathematical programming problem that must be worked out afresh.

If one abandons the mathematical programming approach and uses heuristic op-

timization techniques to find solutions, it is possible to leave the constraints in their

black box form, and use the constraint-checking functional I(f̂q) in the search. This

allows a much wider array of constraints to be considered. It is also more flexible in

a computer implementation, because it is usually easy to write functions to check the

validity of different constraints. This is the approach explored in the current work.

Of course, when one uses heuristic search algorithms to solve optimization problems

it is often necessary to give up any guarantees of convergence or optimality. This

is of little consequence in problems with nonlinear or nonconvex constraints, how-

ever, because the mathematical programming methods also cannot guarantee global

optimality. The purpose of defining the objective function δ(q , t) is to define which

solutions are better than others; so whichever method provides the solution with the

smallest objective value is to be preferred.

The above ideas are made more concrete in the next section, where they are

applied to kernel density estimators.

Chapter 1 7

1.3 The Case of Kernel Density Estimation

The constraint handling approach followed here involves first constructing a prelimi-

nary or pilot estimate, and subsequently adjusting its shape in some manner to satisfy

the required constraints. Henceforth we will be concerned only with density estima-

tion, and will exclusively use kernel estimates as pilot densities. The kernel density

estimator (KDE) is defined below, and four methods of adjusting its shape are subse-

quently introduced. The first three methods are natural extensions of the functional

form of the KDE, while the fourth approach is a new proposal.

1.3.1 The Kernel Density Estimator

Let x be a set of n independent observations from a distribution with probability

density function (pdf) f . The kernel density estimator of f is

f̂ (u) =
1

n

n
∑

i=1

Kh(u− xi), (1.3)

where Kh is a kernel function with scale parameter (or bandwidth) h. The kernel

function integrates to 1. It is usually symmetric around zero and often nonnegative (in

which case it is a pdf). If f is uniformly continuous, Kh satisfies very mild regularity

conditions, and h → 0 at an appropriate rate as n → ∞, the KDE is a uniformly

consistent estimator. The texts by Silverman (1986) and Wand and Jones (1995)

provide more information on these and other aspects of kernel density estimation.

The Gaussian kernel is used exclusively here, so Kh is taken to be a N(0,h2)

density. The Gaussian KDE may be written

f̂ ◦(u) =
1

nh

n
∑

i=1

φ

(

u− xi
h

)

, (1.4)

where φ(·) is the standard normal density function. The notation f̂ ◦ will be used

throughout to denote the pilot (unadjusted) estimator. For the moment it is assumed

that h is known, or chosen by some automatic rule. More will be said about bandwidth

Chapter 1 8

0

0.2

0.4

0.6

0.8
h = 0.1 h = 0.25

−2 0 2
0

0.2

0.4

0.6

0.8
h = 0.5

−2 0 2

h = 0.75

Figure 1.1: Kernel density estimates for a small sample using four different band-
widths. The data are sampled from a standard normal distribution (thick grey curve).
The dark lines are the density estimates. The kernel functions for each point are also
shown.

selection in Section 2.4.

Density estimate (1.4) is an evenly-weighted mixture of n normal densities, with

one mixture component centered at each data point, and each component having vari-

ance h2. Assuming no duplicate observations, f̂ will have n modes if h is sufficiently

small; if it is sufficiently large, there will be only one mode. This is illustrated in

Figure 1.1. For an intermediate h value, the density estimate may have spurious or

unwanted extra modes, especially in the tail regions where there are few points.

Thinking of the KDE as a mixture density suggests that it may be generalized

by allowing the locations, scales, and weights of its components to vary. This more

general estimator is

f̂ (u) =
n
∑

i=1

wi

bi
φ

(

u−mi

bi

)

, (1.5)

where the ith component has location mi, standard deviation (bandwidth) bi, and

weight wi. The parameters of the mixture are m = [m1 . . .mn]
T , b = [b1 . . . bn]

T

(with bi > 0, ∀i), and w = [w1 . . . wn]
T (with wi ≥ 0 and

∑

wi = 1). Note that the

Chapter 1 9

standard KDE (1.4) is reproduced when

m = x

w =
1

n
1 (1.6)

b = h1,

where 1 is an n-vector of ones. We refer to the right hand sides of equations (1.6) as

the target values for m, w, and b.

Jones and Henderson (2005, 2009) use this n-component Gaussian mixture as a

density estimator with no shape constraints. They allow some or all of the triple

{m,w,b} to vary (fixing the others at their target values), and fit the mixture to

data using maximum likelihood. When b is allowed to vary, maximum likelihood

fitting is made possible by the restriction that the geometric mean of the bandwidths

(
∏n

i=1 bi)
1/n

must equal some overall bandwidth h.

We will follow this example in considering the Gaussian KDE to be a normal

mixture, but rather than finding maximum likelihood estimates, we will treat the pilot

estimate f̂ ◦ as our preferred estimator, and focus on adjusting it as little as possible

to satisfy shape constraints. The first three approaches to shape adjustment are to

vary m, w, or b. The fourth is a new proposal. The four options are qualitatively

summarized below; mathematical details are given as needed in later chapters.

1.3.2 Varying the Locations (Data Sharpening)

The pilot estimate (1.4), thought of as a mixture distribution, uses the observations x

as its location parameters. So varying the locations of the estimator to accommodate

shape constraints amounts to modifying the observed data. As a general strategy for

improving the performance of statistical estimators, this practice is known as data

sharpening. Let x represent the original or unsharpened data, and y represent the

modified or sharpened data (that is, we use m = x in the pilot estimate, and m = y

in the constrained estimate).

The original motivation for introducing data sharpening into density estimation

Chapter 1 10

was to reduce the asymptotic bias of kernel density estimators (Choi and Hall, 1999;

Hall and Minnotte, 2002). The sharpening done by these original methods had the

effect of partially clustering the data to make the modes of the estimate more peaked.

In the method of Choi and Hall, y is found by performing local constant regression

of x on x. This operation tends to move points toward local modes. If iterated to

convergence (as done by Woolford and Braun 2007), it will identify one or more points

in the vicinity of the density’s peaks, making it a mode-finding algorithm rather than

a density estimator.

The use of data sharpening to accommodate constraints was outlined by Braun

and Hall (2001), in both the density estimation and regression contexts. Additional

theoretical and practical details were added by Hall and Kang (2005), for the case

of unimodal kernel density estimation. In this form of sharpening, y is determined

through an optimization step, rather than by a clustering procedure. The intent is

to choose a y that causes the constraints to be satisfied, while perturbing x as little

as possible. Figure 1.2 illustrates the principle, using the n = 5 example introduced

in Figure 1.1. Assume that we start with f̂ ◦ having bandwidth h = 0.5, and we seek

a unimodal estimate. The pilot estimate is bimodal, but in this case the sharpened

estimate can be constructed by shifting only one of the five points. The leftmost

point is shifted the minimum distance necessary to render the estimate unimodal.

In keeping with the notation introduced previously, the data sharpening estimator

with location values y will be denoted f̂M
y (x). The superscript M is included to

remind us that the locations mi are being adjusted, and to distinguish this shape-

adjusted estimator from the alternative ones introduced below.

The objective function δ(y,x), once specified, determines which sharpened data

set is best. A natural choice is to base the objective on a norm of the difference y−x,

defining

Lα(y,x) =

n
∑

i=1

|yi − xi|
α, 1 ≤ α ≤ 2. (1.7)

Both Braun and Hall (2001) and Hall and Kang (2005) found some evidence that

the L1 distance had better statistical performance than the more standard L2, but

Chapter 1 11

−2 0 2

0

0.2

0.4

Figure 1.2: A small example illustrating the premise of data sharpening. The solid
curve is the pilot KDE based on x (filled circles), and the dashed curve is the sharp-
ened KDE based on y (open circles).

also that optimization suffered from numerical difficulties when α = 1. They used

sequential quadratic programming (SQP) to carry out the optimization (for detail on

SQP, see Nocedal and Wright 1999, ch. 18, or Antoniou and Lu 2007, ch. 15; further

comments on SQP are also found in Section 2.2.1).

1.3.3 Varying the Weights

A second way to accommodate constraints in the KDE is to change the mixture

weights w from the standard n−1 weight on each point, to a non-uniform weighting.

This is the approach used, in the regression context, by Hall and Huang (2001). They

use a probability vector of weights to render a kernel regression estimator monotone,

by minimizing a distance measure between w and the target 1
n
1. This approach was

significantly extended by Du et al. (2010), who applied the same adjustment prin-

ciple to multivariate kernel regression. Their method can handle a wider range of

constraints, namely those expressible as linear inequality constraints on the deriva-

tives of the regression function. In their formulation the weights are allowed to take

negative values, and the L2 distance is used to measure the deviation of w from the

target. Sequential quadratic programming was again the optimizer of choice.

The same adjustment method can be readily applied to density estimation, and

the weight-adjusted KDE will be denoted by f̂W
w (x). Figure 1.3 provides a demon-

stration, using the same unimodality-constrained example of the previous two figures.

Chapter 1 12

−2 0 2

0

0.2

0.4

Figure 1.3: A small example illustrating the premise of varying the weights. The
solid curve is the pilot KDE, and the dashed curve is the unimodal adjusted KDE.
The weighted kernel functions used to produce the unimodal curve are also shown in
grey.

It shows that a unimodal estimate can be achieved by reducing the weight on the left-

most point, and increasing the weight on the second point (this solution was found

using the L2 objective). This example demonstrates that when using weights to en-

force a constraint locally, a global change in the estimate can result, because of the

requirement that
∑

wi = 1. This effect becomes less noticeable as the sample size

increases, however. Note also that if the nonnegativity requirement on w is lifted as in

Du et al. (2010), it is necessary to add a further shape constraint that f̂W
w (x) ≥ 0, ∀x,

to eliminate the chance of obtaining a density estimate with negative function values.

1.3.4 Varying the Bandwidths

A KDE with a different bandwidth value bi for each data point is known as a variable

KDE (Wand and Jones, 1995, p. 42). The attraction of the variable KDE is that

it permits varying degrees of smoothing in different parts of the density. Silverman

(1986, p. 21), for example, suggests letting bi equal the distance from xi to its

kth nearest neighbour to achieve more smoothing in data-sparse regions and less

smoothing in data-rich regions.

The idea of using a variable KDE to satisfy constraints does not appear to be

documented in the literature. Figure 1.4 shows how an adjustment of b can be used

to achieve unimodality, using the same example considered previously (n = 5, target

bandwidth 0.5, L2 objective). The spurious mode in the pilot estimate is eliminated

Chapter 1 13

−2 0 2

0

0.2

0.4

Figure 1.4: A small example illustrating the premise of varying the bandwidths. The
solid curve is the pilot KDE, and the dashed curve is the unimodal adjusted KDE.
The variable-bandwidth kernel functions used to produce the unimodal curve are also
shown in grey.

by increasing the bandwidths used by the first three points. Other constraints could

be handled in a similar manner. The notation f̂B
b (x) will be used to refer to the

shape-constrained variable KDE.

Remark

The variable KDE approach has particular appeal because it potentially obviates

the need to independently choose a pilot bandwidth. Adjusting the bandwidths to

minimize a distance measure between b and h01 still involves the problem of selecting

h0, but there are two possible strategies to eliminate this step. The first is to set h0 to

an artificially small value, or even to zero. In this case the optimization will attempt

to move each bi toward smaller values, but the shape constraint will prevent individual

bandwidths from becoming too small. The second is to drop the notion of a target

b value, and instead to maximize the likelihood of x under f̂, subject to the shape

constraint. This latter approach is similar to the method of Jones and Henderson

(2005, 2009), who found the maximum likelihood estimate of b in the absence of

shape constraints on f̂. Their procedure requires a constraint on the geometric mean

of the bi, but with a sufficiently strict shape constraint, this is not necessary. Despite

the promise of these ideas, they are not pursued further here because they are beyond

the scope of the present work.

Chapter 1 14

1.3.5 Using an Adjustment Curve

The final method of shape adjustment considered here is a new proposal. A simple

option for modifying the shape of a pilot KDE is to add a function to it, that can

annihilate any unwanted features of f̂ ◦, or add any desired features that are not

present. This added function will be referred to as an adjustment curve. Figure 1.5

continues the small example of the previous pages, showing how an adjustment curve

can be used to achieve unimodality. To ensure that the final estimate is still a density,

the adjustment curve must integrate to zero, and must not introduce any negative

density values. As seen in the figure, the adjustment curve is zero in locations distant

from constraint violations, and takes nonzero values only where the constraint is being

violated.

The crucial concerns, of course, are how the adjustment curve is constructed and

how the optimal adjustment curve is determined. These topics are addressed in

Chapter 5. There, it is proposed to let the adjustment curve be a linear combination

of appropriately chosen density functions ψi, making the estimator

f̂A
a
(x) = f̂ ◦(x) +

k
∑

i=1

aiψi(x). (1.8)

The coefficients a = [a1 · · · ak]
T of this linear combination are the adjustable param-

eters of the method, and they can be chosen to minimize an appropriate objective

function. In this formulation, many common constraints can be handled in a quadratic

programming framework.

1.3.6 Shape Adjustment in Higher Dimensions

The generalized Gaussian KDE of equation (1.5) can be extended to d dimensions as

the d-variate normal mixture

f̂ (u) =
n
∑

i=1

wiNd(u;mi,Bi), (1.9)

Chapter 1 15

−2 0 2

0

0.2

0.4

Figure 1.5: A small example illustrating the premise of adjustment curves. The solid
curve is the pilot KDE, and the dashed curve is the unimodal adjusted KDE. The
adjustment curve used to produce the unimodal estimate is also shown in grey.

where Nd(· ;mi,Bi) is the d-variate normal density with meanmi and covariance ma-

trix Bi. We may consider how each of the shape adjustment methods just introduced

can be extended to this multivariate situation.

Data sharpening

In the univariate case, data sharpening involves minimally perturbing n scalar points

to enforce a constraint. The extension to d dimensions is conceptually straightfor-

ward. Each mi is now a d-vector with target xi, and the set of n such vectors must

be perturbed to accommodate the constraint. The objective function used in the

optimization must measure a distance between the sets of vectors {mi} and {xi},

and the optimizer itself must operate on such sets of vectors. A simple option, for

example, is to stack the {mi} and {xi} vectors into column vectors of length nd and

use an L2 distance.

Weight adjustment

A practical advantage of the weight adjustment approach is that it does not depend

on the dimension of the data. There is a single n-vector w of adjustable parameters,

regardless of the value of d in (1.9). So no particular difficulties arise with multivariate

data.

Bandwidth adjustment

The complexity of constraint handling by bandwidth adjustment depends on how

Chapter 1 16

the matrices {Bi} in (1.9) are defined. Three possibilities are, in increasing order of

complexity,

Bi = biI, (1.10)

Bi = diag(bi), (1.11)

and

Bi = an arbitrary covariance matrix. (1.12)

Here I is the identity matrix and diag(v) is the diagonal matrix with jth diagonal el-

ement vj . The first option (1.10) implies a radially symmetric standard normal kernel

function, and requires only one bandwidth to be specified per point, n bandwidths

in all. This option does not require any extra effort when moving from d = 1 to

higher dimensionality. The second option (1.11) implies a product-kernel structure

for the density estimate. It requires a d-vector of parameters for each data point

(nd bandwidths in all). The final, fully general option (1.12) requires a nonnegative

definite matrix with d(d + 1)/2 unique elements to be specified for each data point.

This option is typically not practical except possibly for d = 2.

Adjustment curves

In d dimensions the pilot density f̂ ◦ is a (hyper) surface, and so what was an adjust-

ment curve in one dimension must become an adjustment surface. In the univariate

case, the adjustment curve is defined as a linear combination of univariate density

functions. To expand this to higher dimensions, in principle it is only necessary to

let the adjustment densities ψi be d-dimensional. Practical difficulties arise, however,

because the number of adjustment densities required to construct a good adjustment

curve rises rapidly with d. This problem is discussed in Chapter 5, which also includes

an example of bivariate adjustment.

Chapter 1 17

1.4 Overview of the Thesis

Shape-constrained nonparametric estimation is a large topic, and the range of prob-

lems expressible in the manner of Section 1.2 is broad. Some limitations on the scope

of the project are necessary. These limitations are reviewed next, and the layout of

the remainder of the thesis is described afterwards.

1.4.1 Scope of the Present Work

It has already been mentioned that this work focuses exclusively on kernel density

estimation; although the methods developed here can be extended to other density

estimators or regression estimators, such extensions are only mentioned in passing.

Similarly, while four methods of shape adjustment have just been listed, only two

of them (data sharpening and the method of adjustment curves) will be considered

in subsequent chapters. Having thus restricted attention to a single estimator and

two adjustment methods, the work will focus on different algorithms for handling a

variety of constraints.

The language and notation of the thesis will often imply univariate data, but as

described in Section 1.3.6, the adjustment methods can be extended to higher dimen-

sions. The new optimization heuristics are also designed with the d > 1 case in mind.

To make this more clear, each heuristic will be demonstrated on both a univariate

and a bivariate data set. Where data or adjustable values (x or y, for example)

are expressed as vectors, the multivariate extension will require these symbols to be

thought of as collections of vectors (or as a matrix). Additional complications arising

from the jump to higher dimensions will be addressed as they arise.

1.4.2 Plan of the Thesis

Five chapters follow this one. Chapter 2 explores shape constraints that are suitable

for density estimation. A variety of useful constraints are proposed. A new idea in

this chapter is to base shape constraints on the number of inflection points of the

density or its derivatives. Different possibilities for the objective function δ(·, ·) are

Chapter 1 18

briefly discussed as well. The problem of pilot bandwidth selection is also addressed

in this chapter, and a new likelihood-based bandwidth selector is proposed.

Chapters 3 and 4 describe two new constrained estimation optimizers for data

sharpening. A greedy algorithm is the subject of Chapter 3. This algorithm has

many practical advantages, but it is limited in some respects because of its greedy

design. It works well when the constraint is unimodality, but it is not suitable for

more difficult constraints. The limitations of the algorithm are alleviated somewhat

by incorporating it as part of a metaheuristic known as iterated local search. A

more generally applicable algorithm is given in Chapter 4. This algorithm is based

on particle swarm optimization, but with several unique features designed to let the

search handle the difficult constraints arising in constrained estimation problems.

The swarm-based algorithm is more computationally intensive, but can handle a

much wider range of problems.

The method of adjustment curves is described in Chapter 5. While heuristic

optimization methods are advocated throughout the thesis, the adjustment curve

is constructed in such a way that globally optimal solutions for many important

constraints can be found by quadratic programming (QP). For this reason the QP

framework is the main focus of the chapter. Adjustment curves for constraints not

fitting the QP structure can still be found using heuristic optimizers (such as the

algorithm of Chapter 4).

Chapter 6 is a concluding chapter that identifies areas of this research that would

benefit from further study.

Chapter 2

Defining Constraints and Finding

Estimates

The preceding chapter was primarily concerned with nonparametric estimators and

methods of shape adjustment. The remaining two elements of a constrained estima-

tion problem—the shape constraint and the objective function—are discussed below

in some detail. The difficult question of how to choose a bandwidth for the pilot

density is also addressed. Two data sets, that will be used to illustrate the ideas of

this and subsequent chapters, are first introduced.

2.1 Two Illustrative Examples

One univariate data set, the wind speed data, and one bivariate data set, the heart

disease data, have been chosen as examples.

2.1.1 Wind Speed Data

Alibrandi and Ricciardi (2008) reported data on 57 wind speed measurements made

at each of five different elevations in Italy’s Messina Strait region. We will consider

only the measurements made at the lowest elevation, 10 meters. The minimum and

maximum speeds measured were 5.6 and 30.4, respectively (units of measurement

19

Chapter 2 20

were not reported). The quartiles of the data were (Q1, Q2, Q3) = (10.1, 14.3, 15.8).

Figure 2.1 shows kernel density estimates based on this data set, for six different

bandwidth choices in the range 1 ≤ h ≤ 3.5. The estimate with h = 1 has three

modes. The central peak is the highest, while the mode on the right side is attributable

to a single outlying point. As the bandwidth is increased, the mode on the left shrinks

and becomes a shoulder in the main peak before h = 2 (a shoulder in an estimate is

here taken to mean a change in concavity that does not produce a mode). Further

increases in bandwidth cause further smoothing of the central mode. It takes a

bandwidth greater than about h = 3.4 to finally cover the outlying point and render

the estimate unimodal.

This data set demonstrates why it might be desirable to have shape control on a

density estimate, beyond what is possible through bandwidth selection. As a point of

reference, a popular automatic bandwidth selection rule (the Sheather-Jones band-

width, discussed in Section 2.4) chooses h = 1.55 for these data. Although this

selector generally works well, in this case it results in an estimate with three modes.

Given the small sample size and the nature of the quantity being measured, however,

it might be reasonable to require that the density estimate be unimodal, or at least

that it have smooth tails. It is also natural to require that the density estimate have

negligible probability mass for speeds less than zero. It is clear from Figure 2.1 that

these requirements on the density cannot be satisfied by an unconstrained KDE with

any value of h.

2.1.2 Heart Disease Data

The bivariate example is based on a South African study of risk factors for coronary

heart disease (Hastie and Tibshirani, 1987; Hastie et al., 2009). Two variables from a

larger data set are considered: systolic blood pressure (SBP) and concentration of low

density lipoprotein (LDL). Only the measurements of the n = 160 diseased patients

in the study are included. For convenience, both variables have been standardized to

have mean zero and unit standard deviation.

Figure 2.2 shows the heart disease data graphically. The scatter plot of LDL

Chapter 2 21

0

0.05

0.1
h = 1 h = 1.5 h = 2

0 20 40
0

0.05

0.1
h = 2.5

0 20 40

h = 3

speed
0 20 40

h = 3.5

Figure 2.1: Kernel density estimates for the wind speed data set, with six different
bandwidths.

against SBP is repeated four times, with different density estimates shown as con-

tour plots. Contour lines on each graph are drawn to enclose, from outermost to

innermost, probability mass of 0.95, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, and 0.05

(a convention that will be followed on all subsequent contour plots as well). The

first three plots show bivariate KDEs using the Gaussian product kernel, with three

different bandwidths (for simplicity, and because the data are not highly correlated,

the same bandwidth has been used for both variables). The fourth plot shows the

best bivariate normal fit to these data.

Visual inspection of the fourth plot suggests that the bivariate normal model

does not capture all of the meaningful features visible in the scatter plot. While it

is possible to consider data transformations or alternative parametric models, the

simplicity and data-driven nature of kernel methods are attractive. The addition

of shape constraints offers the potential to maintain the data-driven nature of the

estimate, while smoothing out some of the irregularities visible in the first three plots

of Figure 2.2. These irregularities are likely caused by sampling variation rather than

underlying data structure.

Chapter 2 22

−2 0 2 4

−2

0

2

4

SBP (h = 0.3)

LD
L

−2 0 2 4
SBP (h = 0.4)

−2 0 2 4
SBP (h = 0.5)

−2 0 2 4
SBP (bivariate normal)

Figure 2.2: Bivariate density estimates for the heart disease data. The first three
estimates are kernel density estimates with different bandwidths; the last estimate is
the maximum likelihood bivariate normal fit.

2.2 A Suite of Useful Shape Constraints

The crucial step of deciding which shape constraints to apply in a given situation has

not yet been addressed. Little general advice can be given, since this is a problem-

specific question. In some cases there may be theoretical reasons to expect a density

to have particular characteristics like monotonicity or unimodality. In small-sample

situations, shape restrictions provide a way to impose smoothness on an estimate, and

to eliminate spurious modes that typically arise in the density’s tails. Even when n is

larger, shape constraints offer an auxiliary way to realize the smoothness assumption

that is made in kernel density estimation (hopefully reducing sensitivity to bandwidth

choice in the process). Finally, it could be beneficial in the exploratory stage of data

analysis to consider a variety of shape restrictions. This section presents a number of

potential shape constraints that could be useful in any of these situations.

Remark

The definitions and constraints to follow make reference to a density function f . It is

assumed that the density in question has the characteristics typical of kernel density

estimators, particularly continuity and differentiability up to the necessary order. We

will begin by considering constraints applicable to univariate densities, move on to

bivariate constraints afterwards.

Chapter 2 23

2.2.1 Constraints on the number of Modes

The most obvious constraint one can apply to a KDE is a restriction on the number

of modes. Some elementary definitions are required first to eliminate confusion.

Definition 2.1 (mode) A point m is a mode of a density f if f is increasing in a

neighbourhood to the left of m and decreasing in a neighbourhood to the right (i.e.,

it is a local maximum of f). An interval (m1, m2) where f is constant and these

conditions are satisfied is also called a mode.

Definition 2.2 (two-tailed density) A density with support [a, b] is called two-

tailed if neither a nor b is a mode.

Definition 2.3 (sign change) Let u be a zero of a function g. Then g has a sign

change at u if there exists an ǫ > 0 such that g(u− ω)g(u+ ω) < 0 for all ω ∈ (0, ǫ).

If g is zero on an interval (u1, u2), we say that g has a sign change over this interval

if g(u1 − ω)g(u2 + ω) < 0 for all ω ∈ (0, ǫ).

Definition 2.1 is the usual definition of a mode applied to continuous density

estimates, but it is written here to distinguish our usage of the term from the one

typically used in the discrete case (where the mode occurs at the support point(s)

with the global maximum relative frequency). Also, note that a plateau in the density,

where the function value is constant, is counted as a single mode if it is higher than

its neighbouring points on either side.

Definition 2.2 is included to allow distinction between monotone densities (which

are also unimodal) and other unimodal densities. Because we are considering the KDE

with Gaussian kernel, we will concern ourselves primarily with constraints suitable

for two-tailed densities defined on the whole real line.

The definition of a sign change is also the natural one, and is also extended to

include the case of an interval over which the function g is zero. To count the sign

changes in a function, we may ignore any zeros of the function and observe how many

times the signum function sgn(g) changes value. Counting sign changes is a convenient

basis for implementing constraint-checking functions on a computer. Algorithm 2.1

Chapter 2 24

describes the function signchanges that performs this task using a set of function

values evaluated at a grid of points.

Algorithm 2.1: Counting sign changes (signchanges).

Input: A vector of r function values, f , evaluated at increasing abscissa values.
Output: c, the number of sign changes in f .

Set s← sgn(f)
Delete any elements of s that are zero.
Let d be the first difference of s (that is, di = si+1 − si).
c← the number of nonzero elements of d.

Definitions 2.1 and 2.3 were careful to treat constant intervals where f is a max-

imum or g = 0 appropriately, counting each interval as only a single mode or sign

change. This is important because such regions can in fact arise (at least to numerical

tolerances) in KDEs adjusted by data sharpening or adjustment curves. Figure 1.5

in the previous chapter illustrated this: the shape-adjusted density estimate had a

plateau across what was originally the unwanted second mode. In the constraints to

follow it is important that such plateaus are counted only as a single feature of the

density.

A formal definition of k-modality for a univariate density can now be presented.

Because the unimodal (k = 1) case is so important, it is given as a separate constraint.

Constraint 1 (unimodality) A two-tailed density f(x) is unimodal if there exists

an m such that f is nondecreasing to the left of m and nonincreasing to the right.

That is,

f ′(x) ≥ 0 if x ≤ m

f ′(x) ≤ 0 if x ≥ m.

Equivalently, the density is unimodal if f ′(x) has exactly one sign change.

Constraint 2 (k-modality) A two-tailed density f(x) is k-modal (k ≥ 1) if its first

derivative has exactly 2k − 1 sign changes.

Chapter 2 25

Consider how the problem of finding a unimodal KDE may be set up as a math-

ematical programming problem. Let q be the vector of adjustable parameters and t

be its target value. Let the constraint be enforced at a grid of points g = (g1, . . . , gG)

covering the support of the estimate1. Take the mode location m as fixed. If m falls

between grid points p and p+ 1, the problem may be formulated as

q
∗ = argmin

q

δ(q , t) subject to







f̂ ′
q
(gi) ≥ 0, i = 1, . . . , p

f̂ ′
q
(gi) ≤ 0, i = p+ 1, . . . , G,

(2.1)

where f̂q is the constrained estimate and q
∗ is the optimal solution. The unimodality

constraint has been converted into a set of G inequalities involving q . Expressed this

way, the problem looks like a standard problem in constrained nonlinear optimization,

and it is possible to use numerical optimization routines (SQP, for example) in an

attempt to solve it. The dependence of (2.1) on m is manifested in the value of p,

which changes as m varies. It is therefore necessary to run the SQP solver inside an

additional 1-D optimization scheme to determine the best value of m. This is not

trivial, since argmin δ(q , t) is not necessarily a convex function of m. An exhaustive

search over a range of possible of m values is a reasonable strategy.

The requirement of fixed m for running SQP in the unimodal case is manageable,

but the situation quickly becomes more cumbersome for the k-modal case. Taking

bimodality (k = 2) as an example, there are three important points at which the

derivative changes sign: the left mode of the estimate falls at some point m1, the

right mode at m3, and the minimum value between the modes falls at m2. Let p1, p2,

and p3 be the elements of g just to the left of m1,m2, and m3, respectively. Then the

1The elements of g are assumed to be monotonically increasing. For kernels with unbounded
support like the Gaussian, it is sufficient to let the grid extend beyond the smallest and largest
observations.

Chapter 2 26

problem is a search for

q
∗ = argmin

q

δ(q , t) subject to































f̂ ′
q
(gi) ≥ 0, i = 1, . . . , p1

f̂ ′
q
(gi) ≤ 0, i = p1 + 1, . . . , p2

f̂ ′
q
(gi) ≥ 0, i = p2 + 1, . . . , p3

f̂ ′
q
(gi) ≤ 0, i = p3 + 1, . . . , G.

(2.2)

There is no extra difficulty in solving problem (2.2) for a single choice of {p1, p2, p3},

but as these quantities are not known beforehand, SQP will need to run inside a

three-dimensional optimization routine in order to find the best estimate.

The mathematical programming approach to setting up the problem can be con-

trasted with the heuristic optimization strategy using a black-box constraint, where

constraint validity only needs to be checked using the indicator functional I(f̂q). In

this case the constraint checking function haskmodes(f̂q ,k) (Algorithm 2.2) can take

the role of I(f̂q), and it can be used for any choice of k. It is easy to evaluate and in-

troduces no extra difficulties. Solutions for a variety of k values can be found without

extra effort, as long as the heuristic optimizer is capable of finding good solutions.

Algorithm 2.2: Checking for k modes in a density estimate (haskmodes).

Input: f̂, a density estimator; k, the number of modes to check for.
Output: TF, a logical variable (true if the constraint is satisfied).

Set g ← [g1 · · · gG]
T , a vector of increasing values covering the data range.

Set f ← [f̂ ′(g1) · · · f̂
′(gG)]

T

if signchanges(f) = 2k − 1 *Use Algorithm 2.1*
TF ← true

else
TF ← false

Furthermore, there is also no guarantee that the mathematical programming ap-

proach will find better solutions than a heuristic optimizer, even for the unimodal

case. Chapter 3 will show in more detail how a greedy heuristic method can be com-

petitive with SQP for the unimodal estimation problem, but for the moment a small

example can illustrate why this is so.

Chapter 2 27

The example is a constructed problem where a KDE with h = 1 is to be rendered

unimodal through data sharpening, by moving only two of the data points. Let the

original and sharpened data vectors be

x = [−4 −2.85 −1 −0.5 0.5 1 2.85 4]T

y = [y1 −2.85 −1 −0.5 0.5 1 2.85 y8]T .

That is, the sharpening is to be performed by moving only the first and last of the eight

data points. The problem has solutions of the form (y1, y8), allowing the objective

function and the feasible region to be visualized on the plane.

The unsharpened estimate for this example is symmetric with three modes, as

shown in the top plot of Figure 2.3. The L1-optimal solution is also shown on the

plot. It is found by shifting each of the two moveable points slightly away from the

center of the distribution.

The bottom plot in Figure 2.3 shows the feasible region C superimposed on the

contours of the L1 objective. The feasible region for this case is not only non-convex, it

is not even a contiguous region. Finding the best solution on the constraint boundary

is a difficult problem, even with only two points to optimize.

The performance of a sequential quadratic programming algorithm is also shown

on the plot. SQP was started from five random starting points, and the solution

progress from each location is shown on the plot. The starting points are indicated

by triangles, and the search paths are plotted as dashed lines. The true location of the

mode (m = 0) was given to allow the algorithm to handle the unimodality constraint.

Even so, SQP had difficulty dealing with the complicated constraint region, and was

not able to find the true optimum from any of the starting points. In additional

repetitions, SQP was not successful unless it was supplied initial values close to the

true optimum.

Chapter 2 28

−6 −4 −2 0 2 4 6
0

0.05

0.1

0.15

0.2
KDE of Original Data and Optimal Solution

f(
x)

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

y
1

y 8

Contour Plot of Objective and Constraint

Figure 2.3: The feasible set for an example with only two moveable points. The top
graph shows the original data (dots), the two moveable points x1 and x8 (circles),
and the L1-optimal solution (stars). The bottom graph shows the solution space,
with the feasible region C overlaid on the contours of the L1 objective function. The
dashed lines show solution progress for optimization by SQP, for several starting
values (triangles).

Chapter 2 29

2.2.2 Smoother Unimodal Constraints

Mode constraints are restrictions on the number of sign changes in an estimate’s first

derivative. A greater degree of shape control and smoothness can be achieved by

considering the sign changes of higher derivatives. This section contains several new

proposals for constraints of this type, that operate on f ′′ and f ′′′.

Constraint 3 puts a restriction on the number of sign changes of the second deriva-

tive, that is, the number of inflection points of the density.

Constraint 3 (b inflections) A two-tailed density f(x) has b inflection points if its

second derivative has b sign changes.

The usual interpretation of an inflection point is of a transition between convex

and concave regions of a curve. Because our definition of sign changes includes the

possibility that the curve is zero over an interval, we also count as an inflection any

constant region of the density that separates convex and concave portions of the

curve.

The validity of this constraint can be numerically verified using the hasbinflec-

tions function provided in Algorithm 2.3. In this algorithm, line A involves calculat-

ing the second derivative of the density estimate at a grid of points. This can be done

exactly by differentiating the kernel function, or approximately by using numerical

differentiation techniques. The number of sign changes in the vector of derivative

values is checked in line B. Constraining a density to have b inflections will prevent

excessive waviness in the estimate2.

The qualitative difference between constraining modes and constraining inflections

is demonstrated in Figure 2.4. The figure shows a trimodal pilot estimate, with

constrained estimates using the unimodal, bimodal, and four-inflections constraints.

The plot is a cartoon; the actual shape of the constrained estimates will depend on

the particular adjustment method and objective function used. Constraints on the

number of modes do not impart a great degree of qualitative smoothness, as they

2It might be more sensible to constrain the estimate to have b or fewer sign changes, so as not
to preclude very smooth estimates when such estimates are supported by the data.

Chapter 2 30

Algorithm 2.3: Checking for b inflections in an estimate (hasbinflections).

Input: f̂, a density estimator; b, the number of inflections to check for.
Output: TF, a logical variable (true if the constraint is satisfied).

Set g ← [g1 · · · gG]
T , a vector of increasing values covering the data range.

A Set f ← [f̂ ′′(g1) · · · f̂
′′(gG)]

T *Use exact or approximate derivatives*
B if signchanges(f)=b *Use Algorithm 2.1*

TF ← true
else

TF ← false

Figure 2.4: Hypothetical example of three different constraints applied to a trimodal
density (thick grey curve). The dashed line shows the constrained density for each
case and the inflection points on each curve are indicated by dots.

typically convert modes into plateaus in the estimate. Restrictions on inflections

have a stronger smoothing effect, since reducing the number of inflections requires

that the waves or shoulders in the density be eliminated.

For the important case of unimodal densities, it is possible to achieve smoother

estimates by combining mode and inflection constraints. Constraints 4 and 5 are

two possibilities. Numerical algorithms for checking these two constraints are not

provided, as they are straightforward extensions of the previous algorithms.

Constraint 4 (two shoulders) A two-tailed density satisfies the two shoulders con-

straint if it is unimodal with no more than 6 inflections.

Constraint 5 (Bell shaped, type 1) A two-tailed density is bell shaped, type 1, if

it has exactly two inflections. This is a special case of Constraint 3, with b = 2.

The two shoulders constraint could be used when a unimodal estimate is desired,

but a controlled amount of data-driven waviness is permissible. The first and third

Chapter 2 31

constrained estimates in Figure 2.4 satisfy the two shoulders constraint.

Constraint 5 introduces the term bell shaped, which is reserved for constrained

estimates that are unimodal with a degree of smoothness approaching typical para-

metric forms3. The type 1 bell shape constraint requires only that the number of

inflections be exactly two. This implies that the KDE is unimodal with no shoulders.

Constraints 6 and 7 extend the family of bell shaped constraints. They impose

higher degrees of smoothness by controlling the number of inflections of the first

derivative of f , which is equivalent to restricting the number of sign changes of its third

derivative. This may seem excessive, but there are visually discernable differences

among these options.

Constraint 6 (Bell shaped, type 2) Let f be a two-tailed density with inflection

points at L and R, and call [L,R] the modal interval. Then f is bell shaped, type 2

if it is concave (f ′′ ≤ 0) on the modal interval and f ′ has exactly one inflection (f ′′′

has one sign change) on either side of the interval.

Constraint 7 (Bell shaped, type 3) A two-tailed density f is bell shaped, type 3

if f ′ has three inflections (f ′′′ has three sign changes).

The three classes of bell shaped densities just defined are nested inside one another:

type 2 is a subclass of type 1, and type 3 is a subclass of type 2. Figure 2.5 clarifies

the differences between the types. It shows an example of a density of each type,

with the first two derivatives of each density also shown. All three types consist of

a unimodal density with two inflection points, at L and R. It is convenient to think

of the density as separated into three segments: a modal region [L,R], and two tail

regions, one on either side of the modal interval. The type 1 class has no further

restrictions on its shape. In the example in the figure, the type 1 density has a bend

in it (we may call it a kink, or a knee, in the curve) in the modal region and one in

the right tail. While the density is certainly smooth, such kinks are not characteristic

of parametric densities that we may take as our ideal of qualitative smoothness.

3Note that the term “bell shaped” as used here only refers to the smoothness of the density as
defined in Constraints 5, 6, and 7; in particular, the present definitions do not require symmetry.

Chapter 2 32

f(x)

Type 1

f′(x)

f′′(x)

Type 2 Type 3

Figure 2.5: Shape differences among bell-shaped densities. Three density curves are
shown, with their first two derivatives plotted underneath. Dashed lines demarcate
the boundaries between the modal region and the tails. The inflection points on each
curve are indicated by dots.

Chapter 2 33

The kinks or knees in f can be eliminated by controlling the number of inflections

f ′. The type 2 bell-shaped density restricts f ′ to have only one inflection point in

each tail region, but does not restrict the derivative in the modal region. As seen in

the middle column of Figure 2.5, this type has very smooth tails but can still have

knees in the modal interval. The type 3 constraint removes the possibility of knees

in the modal region by requiring that f ′ have exactly three inflections—one in each

region of the density.

The bell shaped constraints, in particular type 3, should be of considerable prac-

tical interest if they can be implemented reliably. When a data analyst uses non-

parametric density estimation, it is usually because of unwillingness to commit to a

particular parametric form. This does not necessarily mean that the analyst wishes

to abandon the qualitative characteristics of parametric densities altogether. The

bell shaped constraints capture the qualitative characteristics of parametric forms to

a greater degree than simpler constraints like unimodality. Type 3 bell shape can

be considered a constrained nonparametric estimate with a parametric appearance

because it eliminates extra inflections in f ′ that standard parametric densities do not

have (the normal distribution, for example, has two inflections, and its jth derivative

has j+2 inflections).

2.2.3 More Univariate Possibilities

A number of other univariate constraints could be useful in different situations. They

are introduced below.

Constraint 8 (monotonicity) A density f is monotonic if its derivative has zero

sign changes over its support. That is, f ′(x) ≥ 0, ∀x ∈ S or f ′(x) ≤ 0, ∀x ∈ S where

S is the support of the density.

Monotonicity is an important constraint for densities with bounded support, par-

ticularly densities defined on the positive half-line. This constraint is included for

completeness, since it is not possible to achieve a monotonic estimate using a Gaus-

Chapter 2 34

sian KDE4.

Constraint 9 (Log-concavity) A density f is log-concave if ln(f) is a concave

function.

The log-concavity constraint has received considerable interest in the literature,

partly because it is mathematically convenient. Dümbgen and Rufibach (2009) and

Cule et al. (2010) summarize the theoretical and applied properties of log-concave

density estimators, and supply algorithms for obtaining the unique maximum likeli-

hood log-concave density estimate for data of any dimension. This estimate is not

smooth, but it does not depend on a bandwidth parameter, which is particularly

advantageous in higher dimensions. They also discuss a smoothed version of the es-

timate. Birke (2009) has developed a different smooth log-concave estimator, using

kernel methods with a monotone rearrangement.

In one dimension, log-concave estimates are unimodal and do not have plateaus,

but they may still possess kinks similar to those demonstrated in the type 1 bell-

shaped densities. As well, log-concavity does not tolerate heavy tails. For example,

the normal distribution is log-concave, but the t distributions are not.

Constraint 10 (nonnegative support) Let f̂ be a Gaussian KDE, and let X be

a random variable with f̂ as its density function. Then f̂ has a nonnegative support,

up to tolerance ǫ, if P(X < 0) ≤ ǫ.

Constraint 10 is intended to allow the Gaussian KDE to be used to estimate

densities defined on the half-line. While the Gaussian KDE is supported on the whole

line, enforcing the nonnegative support constraint with, for example, ǫ = 0.01, will

allow the estimator to produce practically useful estimates. Considered another way,

this constraint can be used to prevent unrealistically large h values from arising when

performing bandwidth selection. The wind speed example of Figure 2.1 illustrated

the need for such a constraint.

4Monotonic estimates on the half-line can be achieved with the Gaussian KDE using special
techniques, for example reflecting the data around zero and enforcing a unimodality constraint.
Such techniques are not explored further here.

Chapter 2 35

Constraint 11 (Symmetry) A density f is symmetric around the point M , up to

tolerance ǫ, if |f(M − d)− f(M + d)| ≤ ǫ, ∀d > 0.

The symmetry constraint is potentially useful on its own, or in conjunction with

other constraints (symmetric and unimodal, or symmetric and bell-shaped, for ex-

ample). The definition in Constraint 11 includes a tolerance because it looks toward

numerical implementations. Any constraint-checking function will require a tolerance

to effectively evaluate whether the constraint is satisfied.

The final univariate constraint considered here is a new proposal. It is intended

for cases where one believes the density should be close to a certain parametric form.

Constraint 12 (Nearly parametric) Let f̂ be a nonparametric density estimate,

and let ĝ be the density from a chosen parametric family that is closest to f̂ in some

sense. Then f̂ is said to be kth order nearly equal to the parametric family, with

tolerance ξ, if
∫ ∞

−∞

|ĝ(k)(x)− f̂ (k)(x)|dx ≤ ξ

∫ ∞

−∞

|ĝ(k)(x)|dx, (2.3)

where f (k) denotes the kth derivative of f .

In this definition, ĝ is the member of the parametric family that best matches f̂;

it is not necessarily the one that best matches the data (for example, it is not the

maximum likelihood estimate). The nearly parametric constraint serves to define a

new family of densities that, while not parametric, are within a certain distance of a

chosen parametric form. Fidelity to the data is handled at a higher level, by finding

the particular member of the nearly-parametric family that is closest to the pilot

density estimate5.

Two additional points are worth noting in Constraint 12. First, the definition

allows the closeness of ĝ and f̂ to be measured based on either the densities directly

(k = 0), or on any of their derivatives. It is expected that setting k to 1, 2, or 3 should

5One could define a constraint based on the distance to a fixed curve, such as a maximum
likelihood density estimate or its derivative. The drawback of doing this is that, depending on the
bandwidth and the means of adjusting the shape of the KDE, a feasible solution might not exist.

Chapter 2 36

produce progressively smoother estimates. Second, the measure of closeness in (2.3)

is only one possibility. Using this measure restricts the integrated distance between

the two curves, and allows the tolerance ξ to be interpreted as a fraction of the area

under |ĝ(k)(x)|. An alternative is to restrict the pointwise difference between the two

curves, but this has two drawbacks: i) no distinction is made between the tails and

the peaks in the curve, and ii) the value of ξ is harder to interpret and choose.

The practical value of Constraint 12 is still to be determined. The ability to

constrain a KDE to be close to a parametric form is desirable, but doing so requires

introducing two new parameters, k and ξ, that have to be set in addition to the

bandwidth. A first attempt at using this constraint is shown in Chapter 4.

2.2.4 The Bivariate Case

Defining constraints in higher dimensions is more difficult than in the univariate case,

and it is also harder to implement efficient functions for checking constraint validity.

Several constraints applicable to two-dimensional data are considered in this section,

to explore some of the possibilities.

The first constraint is bivariate unimodality. There are several non-equivalent

definitions of unimodality that can be applied to multivariate densities, such as star

unimodality, level set unimodality, and α-unimodality, among others (see, for exam-

ple, Gupta, 1976; Klemelä, 2009, p. 38–39). Star unimodality finds application in

Chapter 5. Constraint 13 provides one way of defining it.

Constraint 13 (Star unimodality) A multivariate density f is star unimodal with

mode m if it is a decreasing function along all rays emanating from m.

For present purposes, however, the following definition of unimodality is sufficient,

and acts as an easily-verified constraint in the bivariate case.

Constraint 14 (Bivariate unimodality) A bivariate density f is unimodal with

mode m if it has only one local maximum (at m), and no unique local minima.

The stipulation that the density have no local minima is required because a bivariate

density with only one mode can have one or more local minima as well. Any such

Chapter 2 37

Figure 2.6: A unimodal bivariate density with a local minimum.

minimum will have the appearance of a dimple in the downward-sloping side of the

density (see Figure 2.6).

To check these constraints and the ones to follow numerically, it is necessary to

evaluate the density function at a rectangular grid of points. Let v = [v1 · · · vm2
]T and

z = [z1 · · · zm1
]T be two regularly-spaced, increasing vectors of grid points covering

the range of the data in dimensions 1 and 2, respectively. Then we may use the

notation grid(v,z) to represent the m1×m2 grid with points at coordinates (vi, zj).

A simple means of checking the validity of Constraint 14 is given in the function

isuni2D (Algorithm 2.4). The function evaluates the density over a rectangular grid,

producing a matrix of function values. An element of this matrix is taken to corre-

spond to a local maximum if its value is higher than those of its eight neighbouring

points. Note that Algorithm 2.4 does not require the mode location as an input; this

would certainly be required if setting up this constraint using mathematical program-

ming.

Another option is to base the constraints on the density’s marginal or conditional

distributions. In Constraints 15 and 16, these distributions are required to be uni-

modal.

Constraint 15 (Unimodal marginals) A bivariate density f satisfies the unimodal

marginals constraint if both of its marginal distributions are unimodal (they satisfy

Chapter 2 38

Algorithm 2.4: Checking for 2-D unimodality (isuni2D).

Input: f̂, a bivariate density estimator; v and z, vectors of grid points in each
dimension.

Output: TF, a logical variable (true if the constraint is satisfied).

Set f ← a matrix of f̂ values evaluated at grid(v,z).
Set nmax ← the number of local max. in f . *Compare points to 8 neighbours*
Set nmin ← the number of local max. in −f . *Counts minima*
if nmax = 1 and nmin = 0

TF ← true
else

TF ← false

Constraint 1).

Constraint 16 (Unimodal conditionals) A bivariate density f satisfies the uni-

modal conditionals constraint if all of its conditional densities, in either variable, are

unimodal (they satisfy Constraint 1).

The unimodal marginals constraint is a relatively weak shape restriction, but it

could be of interest if there is reason to believe each of the variables in question should

have unimodal densities. Other marginal constraints (bell-shape, for example) could

be used instead.

Algorithm 2.5: Checking for unimodal marginals (unimarg).

Input: f̂, a bivariate density estimator; v and z, vectors of grid points in each
dimension.

Output: TF, a logical variable (true if the constraint is satisfied).

Set f ← a matrix of f̂ values evaluated at grid(v,z).
Set f1 ← a vector with jth element

∑

i fij .
Set f2 ← a vector with ith element

∑

j fij .

if f1 and f2 are both unimodal *Use Algorithm 2.2*
TF ← true

else
TF ← false

The unimodal conditionals constraint, on the other hand, is a strong shape require-

ment, and should enforce a higher degree of smoothness on f . In practice, Constraint

Chapter 2 39

15 and Constraint 16 can both be checked using a similar approach, as shown in

Algorithms 2.5 and 2.6. In both cases the density is evaluated at a rectangular grid

of points, and the resulting matrix f is used to approximate the appropriate marginal

or conditional densities. The haskmodes function is then employed to check for uni-

modality. Note that checking for unimodal conditionals is more computationally

intensive, because it requires checking for the unimodality of every row and column

of f .

Algorithm 2.6: Checking for unimodal conditionals (unicond).

Input: f̂, a bivariate density estimator; v and z, vectors of grid points in each
dimension.

Output: TF, a logical variable (true if the constraint is satisfied).

Set f ← an m1 ×m2 matrix of f̂ values evaluated at grid(v,z).
for i = 1 to m1

Set fi ← the ith row of f .
if fi is NOT unimodal *Use Algorithm 2.2*

TF ← false
Terminate the algorithm.

for i = 1 to m2

Set fj ← the jth column of f .
if fj is NOT unimodal *Use Algorithm 2.2*

TF ← false
Terminate the algorithm.

TF ← true

The last two constraints to be considered involve level sets of a bivariate density

function. It is common to use contour plots when visualizing a bivariate density, and

each contour in the plot is a level set enclosing a certain probability mass. Often

sampling variability makes the outer contours in such a plot convoluted and dis-

contiguous. The effect of sampling variability on these contours can be reduced by

requiring that certain level sets be connected, or enclose a convex region.

Constraint 17 (Contiguous contour) Let A be a level set of a bivariate density

f , defined either directly by the function value, or by the probability mass it encloses.

Then f satisfies the constraint if A is a connected set. In this case A forms a con-

tiguous contour.

Chapter 2 40

Constraint 18 (Convex contour) Let A be the level set of a bivariate density

f(x), with level c. Then f satisfies the constraint if {x : f(x) ≥ c} is a convex

set. In this case A forms a convex contour.

Making certain level sets connected is a way of selectively smoothing certain re-

gions of a contour plot. Requiring that the outermost contours be drawn as single

lines allows the low-density regions of the plot to be smoothed without affecting the

estimate in higher-density areas. See for example the heart disease data (Figure 2.2).

Applying Constraint 17 to the outermost three contours would improve the qualita-

tive appearance of the estimate with h = 0.3. A higher degree of smoothing can be

imposed by requiring the contours to be not only contiguous, but convex as well.

The best way to implement constraints 17 and 18 will depend on the system

being used to produce the contour plots. For this reason no algorithms for do-

ing so are presented here. The plots in this thesis were produced using MATLAB

(The Mathworks, Inc., 2007), and in this environment the contour plotting function

returns a data structure that makes it easy to inspect individual contours to see if

they are contiguous or convex6.

Constraints 17 and 18 again demonstrate the utility of defining constraints in a

black-box manner. Computer implementation of these constraints, in the form of

a binary constraint-checking function, is easy. Expressing the constraint in a form

suitable for mathematical programming, on the other hand, would be a daunting task.

2.3 Choice of Objective Function

The choice of objective function will influence both the nature of the optimization

problem and the qualitative behaviour of the resulting density estimates. Several

possibilities for δ(q , t) are discussed below.

6The plotting function returns a set of points that define each contour. Convexity, for example,
can be checked by using built-in functions to compare the area enclosed by these points to the area
of the points’ convex hull.

Chapter 2 41

2.3.1 Objectives Based on the Adjustable Values

The adjustable values q can be considered perturbations of the target vector t. It is

natural, then, to take the objective to be a measure of distance between vectors. One

option is the Lα distance defined in equation (1.7), which takes δ(q , t) to be a norm

of the difference q − t.

The choice of α can have important consequences on the performance of an es-

timator when the Lα distance is used. In data sharpening, for instance, α can be

interpreted as controlling the tendency to sharpen by moving single points or groups

of points. Setting α = 2 discourages movement of single points through large dis-

tances, while setting α = 1 makes the optimizer indifferent to the number of points

moved. The value of α can particularly affect behaviour in the tails of the distribution,

where there are few data points.

The Lα distance was used by Braun and Hall (2001) and Hall and Kang (2005) to

perform data sharpening with SQP as the optimizer. Those studies found that α = 1

gave better mean integrated squared error (MISE) performance in test problems, but

caused problems with numerical stability, occasionally leading to non-convergence.

Failure to converge was attributed to differentiability: L1(y,x) is not differentiable

in its ith dimension at yi = xi.

To improve the numerical stability of optimization, Hall and Kang (2005) pro-

posed using a metric defined as

Ψtan(y,x) =
n
∑

i=1

∫ di

0

arctan(t)dt,

where di = |yi − xi|. The reason for using this function was to mimic the linear

behaviour of L1 away from di = 0 while maintaining differentiability at zero. In

Chapter 3, a new alternative, the rounded-corners objective, will be used instead:

RCγ(y,x) =
n
∑

i=1

[(

2

3γ
d2i −

1

9γ2
d3i

)

I(di ≤ γ) +

(

d−
4

9
γ

)

I(di > γ)

]

, (2.4)

where di = |yi − xi| and I is the indicator function. The RC objective is a twice-

Chapter 2 42

−4 −3 −2 −1 0 1 2 3 4
0

1

2

3

4

y
i
−x

i

f(
y i−

x i)

L
1

RC
1

RC
2

Ψ
tan

Figure 2.7: Summands of four objective functions.

differentiable continuous piecewise function of di. The summand of (2.4) is a convex

cubic polynomial in the interval |yi− xi| ≤ γ and a line with unit slope (just like L1)

outside this interval. The central interval is effectively a curved, differentiable patch

that replaces the corner in the usual L1 objective. The constant γ determines the

width of this interval; smaller values of γ more closely approximate L1.

Figure 2.7 compares the summands of L1, RC1, RC2, and Ψtan. The RC objective

achieves the same aims as Ψtan, but without the need for integration. It also allows

the amount of curvature at the vertex to be controlled by changing the value of γ.

The goal of shape-constrained estimation is to find a good density estimate that

satisfies the constraint. If the problem is posed in terms of the adjustment vector q ,

rather than the density estimate itself, then in some situations the set of solutions

{q} can have a many-to-one mapping onto the set of density estimates {f̂y}. Data

sharpening has this property, for example, because the KDE is invariant to permu-

tations of y while the Lα and RC objectives are not. If two solution vectors y1 and

y2 are permutations of each other then they are practically equivalent; nonetheless,

numerical optimization routines using objective functions (1.7) or (2.4) will consider

them to be different because δ(y1,x) 6= δ(y2,x) in general for those objectives.

Where appropriate, the objective function can be modified to include a matching

Chapter 2 43

step to enforce permutation invariance on the solutions. The simplest way to match

points in 1-D problems is to start with t sorted in ascending order and then sort any

proposed q before calculating the objective function. A sorted Lα objective can then

be defined as:

Ls
α(q , t) = Lα(sort(q), t) =

n
∑

i=1

|q(i) − t(i)|
α, 1 ≤ α ≤ 2, (2.5)

where q(i) represents the ith largest point in q . The sorted version of RC can be

similarly defined and denoted RCs(q , t).

An optimization heuristic using only the un-sorted objective function will have

no way of knowing whether a solution’s objective value could be improved by re-

matching its points to t. The algorithm may fail to use promising solution paths, or

may converge to sub-optimal solutions when points “cross over” each other into an

un-matched state. Performing matching before evaluating the solution might improve

performance and reliability of solution methods.

2.3.2 Objectives Based on Density Estimates

Another approach to choosing an objective function is to use a metric based on the

constrained and pilot density estimates, f̂q and f̂t. There are a number of suitable

distance or discrepancy measures available, including integrated squared error (ISE),

Kullback-Leibler divergence (KL), and total variation (TV), respectively defined as

ISE(q , t) =

∫ ∞

−∞

(f̂t(t)− f̂q (t))
2dt, (2.6)

KL(q , t) =

∫ ∞

−∞

f̂q (t) ln

(

f̂q (t)

f̂t(t)

)

dt, (2.7)

TV (q , t) =
1

2

∫ ∞

−∞

|f̂t(t)− f̂q (t)|dt. (2.8)

ISE is an integrated L2 distance between estimates, while TV is an integrated L1

distance. Note that KL (also known as relative entropy) is not a true distance,

Chapter 2 44

because KL(q , t) 6= KL(t, q).

Devroye and Lugosi (2001) examined different distance measures in a density es-

timation context and concluded that the TV distance has several theoretical advan-

tages. In particular, it admits a probability interpretation: for any Borel set B,

|Pf̂t
(B)− Pf̂q

(B)| ≤ TV (q , t). That is, TV (q , t) is the maximum possible difference

attainable when the same probability is calculated with the two density estimates f̂q

and f̂t.

Objectives based directly on the estimates have the advantage of being insensitive

to the ordering of q and t. On the other hand, the density-based objectives are

specific to the density-estimation context, and would not apply if, for example, the

constraint handling methods were used in a monotone regression problem.

2.3.3 A Likelihood Objective

A final objective function is based on the negative log-likelihood of the data under the

constrained density f̂q . Using this objective, the goal is to find the shape-restricted

KDE that assigns greatest likelihood to the observed data. The objective function

can be written as

LIK(q ,x) = −
n
∑

i=1

ln f̂q (xi). (2.9)

The LIK objective has q and x as its arguments, rather than q and t in the general

framework. As such it does not strictly fit into the general framework previously

proposed (except in the case of data sharpening, where x = t). The algorithms

presented in later chapters all take t or f̂t as their reference point–the goal is to make

the adjusted estimate as close to the pilot estimate as possible. If instead we use

likelihood as the measure of success, the pilot estimate might not be the best point

of reference and the algorithms might not work as well.

Despite these complications, the LIK objective is given here because of its intu-

itive appeal. Likelihood is also used in Section 2.4 to motivate a bandwidth selector

suitable for shape-constrained estimates.

Chapter 2 45

2.3.4 Visualizing the Objective Functions

Section 2.2.1 included a small example where two of eight points were moved to achieve

unimodality (Figure 2.3). The same example can be used to visualize the different

objective functions in two dimensions. Figure 2.8 shows this problem’s objective

function contours for the eight objectives defined above. Each graph in the figure

shows the solution space for the problem, with each point (y1, y8) in the graphs

representing a potential solution.

Seven of the objective functions have their minimum value at the observed data.

LIK is the exception, reaching its minimum when both y1 and y8 are shifted slightly

inward from their corresponding x values.

The L1, L2, and RC objectives are all convex functions of (y1, y8). The sorted

objective Ls
2 and the four density-based objectives (ISE, TV , KL, and LIK) are

not—they exhibit many local optima, ridges, and plateaus. They are all symmetric

around the y1 = y8 line, consistent with the symmetry of the original problem.

From an optimization standpoint, the convexity of the first three functions is

attractive. All common deterministic optimization routines require a convex objective

function in order to reliably find a global optimum. Nevertheless, it would be better

if the choice of objective was not motivated by optimization convenience, and in

any given situation it may be desirable to use one of the non-convex objectives for

theoretical or practical reasons.

2.4 Bandwidth Selection

The proposed method for handling shape constraints involves constructing a pilot

estimate and subsequently adjusting its shape. An important question is how the

bandwidth of the pilot estimator should be chosen. Bandwidth selection is a difficult

problem even in the absence of shape constraints, and there is a large literature on

the subject, with many proposed selection rules. No single rule dominates all the

others. The best bandwidth selector for a given case depends on the true shape of

the density being estimated, and on how one measures estimation quality.

Chapter 2 46

−5

0

5
y 8

L
1 RC L

2
L

2
s

−5 0 5

−5

0

5

y
1

y 8

ISE

−5 0 5
y

1

y 8

TV

−5 0 5
y

1

y 8

KL

−5 0 5
y

1

y 8

LIK

Figure 2.8: Contour plots of eight objective functions over the search space for the
example of Figure 2.3. Higher (worse) regions are shaded in gray. The dots show the
unsharpened solution (−4, 4). All axes have the same scaling.

Optimal bandwidth selection becomes even more difficult when constructing a

shape constrained estimate, because the bandwidth that is best for an unconstrained

KDE is not necessarily best when constraints are added. The complexity of the

adjustment process makes theoretical development of an optimal shape-constrained

bandwidth selector a difficult task. Rather than attempting a theoretical treatment

here, two practical solutions are proposed. The first is to use a standard selection

rule for the pilot estimator. Justification for this approach, and a review of some

common selection rules, are given in Section 2.4.1. The second solution is to choose

h such that a type of likelihood is maximized after shape adjustment. This option

is described in Section 2.4.2, where it is also compared to the method of likelihood

cross validation. A simulation study comparing the bandwidth selection methods is

deferred to Appendix A.

Chapter 2 47

2.4.1 Using a Standard Pilot Bandwidth

The simplest way to choose the bandwidth in shape-constrained estimation is to

ignore any shape restrictions and choose an h that yields a good unconstrained density

estimate. Shape adjustment can then be applied to this good pilot density to enforce

constraints. Although this strategy does not account for the adjustment process, it

can be justified in two ways.

The first justification is an asymptotic argument that holds when the assumed

constraints are valid for the true density. If the KDE with the chosen bandwidth is

a consistent estimator and the true density satisfies the constraints, then it should

become unnecessary to do any adjustment for n sufficiently large. In that case a

bandwidth that is suitable for the pilot estimate should be suitable for the adjusted

one as well (since the two estimates are the same). Hall and Kang (2005) showed

this rigorously for the data sharpening case: as n increases, the sharpened estimator

modifies the KDE only in the ever-smaller regions where the constraint is violated.

A second justification of the simple approach to bandwidth selection, one that ap-

plies to finite samples, is that the statistical properties of shape-constrained estimators

should be less sensitive to bandwidth choice than unconstrained ones. This tendency

has been observed in empirical studies (Braun and Hall, 2001; Hall and Kang, 2005)

where it was found that data sharpened estimators do have different optimal band-

widths than their unsharpened counterparts, but also that a wide range of bandwidths

near the optimum give good results. It appears that restricting the density estimate

to a particular class of shapes reduces the impact of sample-to-sample variation and

thereby makes it less critical to choose an ideal value for h.

If we accept this approach to bandwidth selection, there are still many available

bandwidth selection rules from which to choose. Several of the most important options

are briefly reviewed here. For more details on the results below, see Wand and Jones

(1995, ch. 3), Silverman (1986, sec. 3.4), Scott (1992), or Wasserman (2006, ch. 6).

The normal-scale bandwidth is an estimate of the optimal bandwidth in the

asymptotic mean integrated squared error (AMISE) sense if the data-generating den-

Chapter 2 48

sity is N(µ, σ2). For the Gaussian KDE, this bandwidth choice is

hNS = 1.06
σ̂

n1/5
, (2.10)

where σ̂ is an estimate of σ (such as the sample standard deviation). Another AMISE-

motivated choice of h is the oversmoothed bandwidth selector, which is

hOS = 1.14
σ̂

n1/5
(2.11)

for the Gaussian KDE. It is meant more as a point of reference than as a good

bandwidth choice in itself, since it estimates an upper bound on the AMISE-optimal

h. As its name implies, hOS will typically produce overly smooth density estimates.

Comparison of (2.10) and (2.11) shows that hNS is about 93% of the upper bound

estimate, so hNS can also be expected to oversmooth the KDE unless the true density

is nearly as smooth as the normal pdf.

A more sophisticated selection method, with better performance across different

true densities, is the “two-stage plug-in” selector of Sheather and Jones (1991). For

the Gaussian KDE, this bandwidth is

hSJ =

(

0.282

R̂4n

)1/5

, (2.12)

where R̂j is an estimate of Rj = E[f (j)(X)] and f (j) is the jth derivative of the

unknown density f . The complexity of this method lies in determining R̂4. The

asymptotically optimal bandwidth for estimating Rj depends on Rj+2. To obtain

hSJ , a crude estimate of R8 is found using the normal-scale bandwidth. This estimate

is then used to find R̂6 and finally R̂4. The procedure is described in more detail by

Wand and Jones (1995, p. 72).

Cross-validation methods can also be used to choose a bandwidth in kernel density

Chapter 2 49

estimation. One approach, known as least squares cross-validation, selects

hLSCV = argmin
h≥0

∫

f̂(x; h)2dx−
2

n

n
∑

i=1

f̂−i(xi; h) (2.13)

as the optimal bandwidth, where f̂(x; h) is the standard KDE and f̂−i is the leave-

one-out estimator, the KDE formed using all of the data except xi. It can be shown

that, up to a constant free of h, the quantity being minimized in (2.13) is an unbiased

estimator of the mean integrated squared error between f̂ and f .

Another type of leave-one-out cross-validation is likelihood cross-validation. The

bandwidth selected by this method is

hLCV = argmax
h≥0

n
∏

i=1

f̂−i(xi; h). (2.14)

The ith term in the product on the right hand side of (2.14) is the likelihood of the

KDE with xi left out, evaluated at xi. The leave-one-out approach is necessary to

ensure that hLCV is nonzero. If the xi were not left out, the product
∏n

i=1 f̂(xi; h)

would approach infinity as h→ 0.

2.4.2 Maximizing a Pseudo-Likelihood

Despite the preceding justification for selecting the bandwidth prior to shape adjust-

ment, a bandwidth selection procedure designed specifically for shape-constrained

estimators would be welcome. Optimal bandwidth selection for this situation is an

open problem. Rather than try to solve the problem rigorously here, a bandwidth

choice with some some intuitive and practical appeal is proposed. The new bandwidth

is denoted hML, and is the maximizer of a quantity resembling a likelihood.

The proposal may be motivated by starting with the likelihood cross-validation

bandwidth (2.14). There are two attributes of hLCV that are particularly important:

1. It promotes density estimates that place higher density on the observed data

points.

Chapter 2 50

2. It severely penalizes any density estimate that places small probability mass on

an observed data point, because any h value yielding a negligible density over

a single point will drive the product in equation (2.14) close to zero.

Attribute 1 is reasonable, and is one of the motivations behind maximum likeli-

hood estimation in general. Attribute 2 has both positive and negative consequences.

Its positive consequence is preventing any density estimates that place negligible prob-

ability mass near an observed value. Its negative consequence is sensitivity to outliers

(Scott and Factor, 1981). Because the density estimate must not be too close to zero

at any data point, outliers will have disproportionate influence on hLCV , tending to

cause larger h values to be selected.

If one were to apply likelihood cross-validation to the shape-adjusted density es-

timator f̂q , the following bandwidth selector would suggest itself:

hLCV a = argmax
h≥0

n
∏

i=1

f̂q
−i
(xi; h), (2.15)

where the notation q−i indicates that the ith data point is withheld before determin-

ing the adjustment. Implementing (2.15) would be computationally intensive. In a

line search over the possible values of h, the adjustment procedure would need to be

carried out n times for each candidate h. Outlier sensitivity similar to hLCV could be

expected, since a larger h value would still be required for the case when the outlying

x value is left out.

The proposed bandwidth selector for shape-adjusted KDEs attempts to retain

the desirable characteristics of hLCV , with reduced outlier sensitivity and reduced

computational burden relative to hLCV a. The proposed selector is

hML = argmax
h≥0

n
∏

i=1

f̂q(xi; h), (2.16)

where f̂q(xi; h) is the shape constrained estimator with bandwidth h. The product

in the right hand side of (2.16) is the likelihood of x under the density f̂q , if we take

q to be a fixed vector (rather than what it truly is, a function of x and h). This

Chapter 2 51

resemblance to a maximum likelihood estimate motivates the notation hML.

The product in (2.16) does not involve the leave-one-out approach; the estimate f̂q

only needs to be worked out once per candidate h value. The existence of the shape

constraint makes it unnecessary to withhold points to obtain a reasonable band-

width, because for most constraints of practical interest, the product
∏n

i=1 f̂q (xi; h)

approaches zero, not infinity, as h→ 0 when the constraint is enforced. Eliminating

the cross-validation element from the selector causes an approximately n-fold reduc-

tion in computation versus hLCV a, and should also reduce outlier sensitivity because

the outlying points never need to be “left out.”

Appendix A provides details of a simulation study that compares hML to hSJ and

hLCV a. The results suggest that hML provides a reasonable bandwidth choice. While

it still has some sensitivity to outliers, this sensitivity is considerably reduced relative

to likelihood cross-validation.

Chapter 3

A Greedy Algorithm for Data

Sharpening

Heuristic optimizers operate by iteratively updating one or more candidate solutions.

Each update is a move that shifts a solution from one location to another in the

solution space. A major task of algorithm design is to define the set of possible moves

a candidate solution can make at any stage of the search, and a means of selecting

one move over the others. An algorithm is called greedy if, at each iteration, the move

that causes maximal improvement in the objective function is selected.

Greedy algorithms are a convenient first choice when developing heuristics, be-

cause they are often conceptually simple and computationally fast. The use of locally

optimal moves at each iteration maximizes the short-term improvement of the search,

but also makes the search prone to be trapped in local optima. It is usually possible

to improve the overall performance of a greedy heuristic by searching less aggressively

for good solutions at each move.

This chapter introduces a greedy algorithm for shape-constrained density estima-

tion by data sharpening. It is a deterministic algorithm that executes quickly, but

owing to its greedy design it only works well for less stringent constraints like uni-

modality. The algorithm is described below, and its properties are examined through

examples and simulations. Afterwards it is shown how it can be incorporated into

a metaheuristic known as iterated local search (ILS), that adds randomness to the

52

Chapter 3 53

search and should make the algorithm capable of solving more complex problems.

3.1 The improve Algorithm

The new algorithm described in this chapter applies to data sharpening problems,

where the target is the data x, and the candidate solution is a sharpened data vector

y. It carries out moves of the solution y (which are points in the n-dimensional

solution space) by sequentially moving its elements yi (which are scalar points in the

data space). Each move of a sharpened data point yi is done in a greedy manner.

The algorithm is called improve, because it takes a feasible guess solution as input

and returns another feasible solution with improved objective function as output.

3.1.1 Algorithm Description

The proposed procedure is listed as pseudocode in Algorithm 3.1. Search starts from

a user-supplied initial guess solution, v, that is feasible. From the initial solution

y = v, each yi is moved to be closer to its corresponding unsharpened (target) data

point xi. Every such move will reduce the Lα(y,x) objective function, but no point

may be moved in a way that causes constraint violations. In this way feasibility is

guaranteed throughout. The algorithm cycles through the elements of y for as long

as feasibility-preserving improvements can be made. The procedure is greedy in the

sense that each sharpened data point is moved individually to improve the objective

function as much as possible, without consideration of how the current move will

impact future moves of other points.

Step one in the search is initialization. The original data x is sorted in ascending

order, and the solution is initialized to y = v. The initial solution may be a simplistic

choice, but it must satisfy the constraint. If the kernel function itself satisfies the

operative shape constraints, an easy way to initialize is to let v have all of its data

points at the same location. This will cause the KDE to have the same shape as

the kernel function. When using this initialization strategy, the default choice for the

kernels’ location is the location of the highest mode in the unconstrained estimate. In

Chapter 3 54

other words, if m0 is the location of the highest mode, we set v = m01. This starting

solution has been found to perform adequately in most circumstances.

The second step is to prepare for moving the yi. The target values xi, i = 1, . . . , n

will also be called the home positions for their corresponding yi values. The solution

is improved during the algorithm by moving each yi toward home. If a point reaches

home, it stops moving. If the constraint prevents a point from moving closer to home,

that point is said to be pinned.

In preparation for moving the points, y is first sorted, to produce a sensible

matching to x. After this, each point is examined to determine whether or not it is

moveable. A point is considered moveable if it is neither pinned nor at home. The

total number of moveable points is M . The algorithm terminates when M = 0; at

this point no further moves can be made without either worsening the solution or

violating the constraint.

Step three in the algorithm is the core of the method—a sweep or pass through

all M moveable points in y. In each pass, every moveable point is moved closer to its

target position, or left in place if no feasible move is found. The movement of each

point is done by grid search over the interval [yi, xi]. Grid search is performed by

dividing the search interval into S steps. If any moves are made in a pass, S is left

unmodified and another pass begins after re-sorting y and re-counting the number of

moveable points. If a complete sweep results in no moved points, the value of S is

doubled before the next pass, permitting smaller moves to be made on a finer grid.

An important feature of the algorithm is that S is initialized to 1. This means

that during the first sequence of passes through the data, there is an attempt to

move points all the way home directly in one step. Doing so saves computation

time since in many cases a large portion of the points can move home immediately

without violating the constraint. By successively doubling S only when moves cannot

be made, more thorough searches are deferred until the later stages, when a small

number of points are being moved up against the constraint boundary. This strategy

reduces the greediness of the method, preventing points from becoming pinned too

soon and thereby conferring a considerable performance improvement.

Chapter 3 55

Algorithm 3.1: A greedy data sharpening algorithm (improve).

Input: A feasible initial guess, v; the data, x; a bandwidth, h
Output: A feasible solution y with Lα(y,x) ≤ Lα(v,x)

Initialize
Set y ← v.
Let S be the number of grid search steps. Set S ← 1.
Prepare for the first sweep
Sort y.
Find the set of moveable points (M of them).
while M > 0

Sweep through the points
for each moveable point

Use grid search with S steps to move the point closer to home, while
maintaining feasibility.

Prepare for the next sweep
if at least one point has moved

Sort y.
Find the set of moveable points (M of them)

else
Set S ← 2S

Note also that the sorting step is performed before every pass through the data.

Re-sorting the points at each step improves the performance of the algorithm because

sometimes points cross over one another, in which case both will be closer to home,

and the objective function will be decreased, if they switch target points.

These ideas are illustrated in Figure 3.1, which shows how the solution develops

over three passes for a small example with only five data points. The constraint in

this example is unimodality. The intermediate positions of the sharpened points are

shown after each pass, and a line joins each point to its target. Each line is labeled

to show the status of its corresponding sharpened point. Lines labeled with numbers

correspond to moveable points, and the numbers indicate the order in which points

are to be moved. Lines labeled with h correspond to points at home, while those

labeled with p correspond to points that are pinned. After the first pass (the upper

right plot in the figure), the sorting step has caused two points to switch targets. The

thick grey lines indicate the points’ new targets after re-matching. In this example

Chapter 3 56

1 2 4 5 3

Start

2 3 h 4 1

After 1 pass

h p h p 1

After 2 passes

h p h p p

After 3 passes

Figure 3.1: A small example illustrating the greedy sharpening method. Solid/dashed
lines show the sharpened/unsharpened estimates. Open/filled circles show the sharp-
ened/unsharpened data. Grey lines join each unsharpened point to its target and
indicate the status of the point.

the search terminates after three passes, with three points pinned and two points at

home.

3.1.2 Implementation Details

The steps just described omitted several details that are important when implement-

ing the algorithm on a computer. These details are briefly discussed below. More

information on the development of the algorithm is reported elsewhere (Wolters,

2009).

Initial Solution

Just like SQP, the greedy algorithm is sensitive to its starting point v. Supplying

a poorly-chosen starting value will result in premature termination of the algorithm

at a low-quality solution. The recommended initial value (all points at the highest

unsharpened mode) is pragmatic because it typically allows many points to move

directly to their home position in the early stages of the search, with the estimate

Chapter 3 57

slowly moving outward toward the tails as search progresses. Nevertheless, to reduce

the risk of initialization dependence, one could try multiple starting points and keep

only the best solution found—perhaps by using v = c1 and letting c vary over the

range of x. Such possibilities are not considered here because of the good general

performance of the default starting choice.

Sweep Order

Each sweep through the data is done in descending order of distance from home;

that is, the points with the greatest value of |yi − xi| are moved first. If all points

are started near the center of the distribution, this has the effect of moving points

toward the tails first, and then moving interior points that are closer to home. During

algorithm development this sweep order was found to have performance and speed

advantages over alternative orderings.

Feasibility Checking

The feasibility-preserving nature of the algorithm makes it necessary to perform a

large number of feasibility checks (to verify that y ∈ C, or in the general notation,

that I(f̂M
y) = 1). Feasibility must be checked at every step in the grid search, for

every moveable point at each iteration. Evaluating I(f̂M
y) therefore accounts for most

of the computational cost of the method. The improve function will execute quickly

only if the estimator itself can be evaluated quickly. Fortunately, the KDE can be

evaluated with high speed and accuracy using a binned kernel density approximation

(Wand and Jones, 1995, Appendix D.2).

Determining the Status of Each Point

Before each pass, every point is evaluated to determine whether it is home, pinned, or

moveable. Each of these states is defined computationally using a numerical tolerance,

τ :

Chapter 3 58

yi is home ⇔ |xi − yi| ≤ τ (3.1)

yi is pinned ⇔ setting yi := yi + sgn(xi − yi)τ renders y infeasible (3.2)

yi is moveable ⇔

{

|xi − yi| > τ, and

y remains feasible when yi := yi + sgn(xi − yi)τ.
(3.3)

Statements (3.1) through (3.3) mean, respectively, that a point is home when it

is within τ of its target; it is pinned when a move of size τ toward home causes a

constraint violation; and it is moveable when it is neither pinned nor at home.

The default value of τ is 10−4, though it should be adjusted to be suitable for the

scale of the data. Setting τ to be 4 or 5 orders of magnitude smaller than the range

of x is sufficient. Making τ too small will increase run time, though the final density

estimates will not be noticeably affected. Making τ too large will cause the algorithm

to terminate too soon, degrading the performance of the estimator.

Design of the grid search

The goal of each grid search step is to move the current point yi closer to its target

xi without violating the constraint. There are S candidate points along the interval

[yi, xi]. Rather than searching all S steps, the grid search is conducted by stepping

out from yi along the grid, until feasibility is lost. After this the last feasible point is

chosen. This procedure will not always find the feasible grid point closest to xi, but it

makes the overall search much more efficient by eliminating many fruitless constraint

checks.

The nature of the shrinking-grid search is illustrated in Figure 3.2 by looking at

a single point, yi, over six passes. For each pass, the interval [yi, xi] is shown with a

grid of S steps superimposed. When the point is moveable, but cannot step out along

the grid, the grid is made more fine by doubling S. As long as the point remains

moveable, each pass results in either a successful step out or a doubling of the grid.

Search terminates when the point ceases to be moveable. Two facts are not clearly

depicted in the figure: i) the grid steps are doubled only when none of the n points

Chapter 3 59

y[i] x[i]

regions of feasibility

Pass 1 S = 1. No move.

S = 2. No move.

S = 4. Move.

S = 4. No move.

S = 8. Move.

S = 8. Stop.6

5

4

3

2



Figure 3.2: A schematic illustration of the grid search for a single point.

move; and ii) the feasible region or target x might change between passes, since they

can be changed by the movement of other points.

Sorting memory

On rare occasions the configuration of the points could lead to cyclic behaviour caused

by the sorting step. For example, two moveable points could exchange targets repeat-

edly and thereby never reach a pinned state. To prevent this, a list of all previous

orderings is kept in memory, and new orderings are only accepted if they have not

been visited previously. The memory requirements for this control are not problem-

atic, since the number of passes used is typically small (on the order of 100 passes for

moderate-sized data sets). Eliminating cycling of the orders ensures that a final order

will eventually be reached. Once the ordering is fixed, the algorithm is guaranteed to

terminate (M will eventually equal zero), because every point will move toward its

target until it is either pinned or at home.

The bivariate case

The greedy algorithm involves moving points in turn toward their targets. These

steps can be applied to two-dimensional points, so the same algorithm can be applied

almost unchanged to bivariate problems (and, in principle, to higher dimensions as

well).

Chapter 3 60

The only aspect of the greedy algorithm that does not translate directly from

univariate to bivariate problems is the sorting step that occurs between passes through

the data. In higher dimensions it is not clear how to choose the best matching

of sharpened to unsharpened points. The points cannot be “sorted,” since a total

ordering property can no longer be exploited.

The following matching procedure is proposed for bivariate data. The sharpened

and unsharpened data are both given a location and scale transformation such that

their componentwise means and variances are zero and one, respectively. Then, the

points are matched to each other in a greedy way, by recursively letting those two

unmatched points separated by the smallest Euclidean distance be the next matched

pair.

3.2 Examples

The improve function was applied to both of the illustrative examples introduced in

Section 2.1. The wind speed data is used to compare the greedy algorithm to opti-

mization by SQP, and also to explore the use of the proposed hML bandwidth (2.16).

The heart disease data is used for a simple demonstration of bivariate unimodality.

Additional examples are reported by Wolters (2012).

3.2.1 Wind Speed Data

The simplest constraint to consider for the wind speed data is unimodality. As men-

tioned in Chapter 2, the unimodality constraint is amenable to optimization by se-

quential quadratic programming, so these data provide an opportunity to compare

estimates obtained using SQP with those obtained using improve.

Certain implementation decisions had to be made to run SQP. Because it requires

a mode location to be specified, the optimizer was run 20 times with different mode

choices, evenly spaced between the first and third quartiles of the data. The best

of these 20 solutions was used as the final estimate. Each SQP run was carried out

using NAG routine e04wd (Numerical Algorithms Group, 2009). The unsharpened

Chapter 3 61

0 10 20 30
0

0.05

0.1

h = 1

Pilot SQP Greedy

0 10 20 30

h = 1.5

0 10 20 30

h = 2

Figure 3.3: Results of unimodal density estimation on the wind speed data, using
SQP and the greedy algorithm.

data, x, was used as the starting point for the SQP search. The L1(y,x) objective

function caused numerical problems for the NAG routine, so the RC0.01 objective

function (equation 2.4) was used instead. By setting a small value γ = 0.01 in the

objective, behaviour nearly equivalent to L1 was obtained with significantly improved

numerical stability. Because the RC0.01 and L1 curves are so similar, no distinction

between the two objectives will be made in the following discussion.

Figure 3.3 shows results of both the greedy method and SQP for bandwidths h =

1, 1.5, and 2. In each plot of the figure, the pilot estimate is shown with the SQP

and greedy estimates superimposed. The h = 1 and h = 2 cases provide instances of

undersmoothing and oversmoothing, respectively, while the h = 1.5 case represents a

reasonable bandwidth choice (for reference, hSJ = 1.55 for these data).

The undersmoothed case is the most difficult from the optimization standpoint,

because the feasible region of the search space is smallest. The greedy algorithm

essentially ignored the outlying point in the right tail. This happened because the

starting solution puts all points at the highest unsharpened mode, causing the points

to move outward as search progresses. It was therefore not possible for the greedy

moves to shift a point far into the tail without violating the constraint. The SQP

solution, on the other hand, covers the outlying point, but in order to do so many

points had to be moved to fill in the gap between the outlier and the main part of

the density. The solution is clearly a poor local optimum. The objective values for

Chapter 3 62

the greedy and SQP solutions are 15.1 and 84.2, respectively.

The two methods perform more comparably in the h = 1.5 case. Both estimates

are equal to the pilot estimate over most of the density’s support. The SQP estimate

stretches farther into the tail, however, with a slightly lowered main peak to compen-

sate. The objective values in this case are 9.3 for improve, and 19.6 for SQP. Again,

the heuristic method found the preferable solution.

Looking finally at the oversmoothed h = 2 case, we see that SQP again had

difficulty duplicating f̂ ◦ at its main peak. This is surprising, because the pilot estimate

itself is almost unimodal at this bandwidth, which should make the problem easier.

Nevertheless SQP was unable to find a good optimum. The objective values were 4.1

for improve, and 18.6 for SQP.

Figure 3.4 shows how the two methods compare when using the hML bandwidth of

Section 2.4.2. Recall that this selector requires performing optimization over a range

of possible h values. Because each optimizer could find different solutions for any

particular bandwidth, it is necessary to determine hML separately for each method.

It happens that in this case SQP and improve choose nearly equal values for hML: 2.06

and 2.03, respectively. These values are large, and probably oversmooth the density

estimate in the central portion of the range. The large choice of hML can be attributed

to the outlier sensitivity inherent in the selection method (as discussed in Section 2.4

and Appendix A). The two unimodal estimates have nearly the same shape, but as

with the other bandwidths, the SQP estimate extends farther into the right tail,

while the greedy solution matches the pilot estimate more closely everywhere else.

The objective function values—which are only comparable because the bandwidths

are so similar—are 4.0 for improve and 8.3 for SQP.

The greedy algorithm obtained reasonable unimodal density estimates at all band-

widths considered, suggesting it is a suitable method for unimodal density estimation

(further evidence for this claim is given in the simulations of the next section). The

limitations of the method become more apparent when considering more strict con-

straints, however.

Figure 3.5 shows the estimates obtained by improve for the type 1 bell-shaped

Chapter 3 63

0 10 20 30
0

0.02

0.04

0.06

0.08

0.1 SQP
h

ML
 = 2.06

0 10 20 30

Greedy
h

ML
 = 2.03

Figure 3.4: Results of unimodal density estimation on the wind speed data, using
SQP and the greedy algorithm with the hML bandwidth. In both graphs, the thick
grey line is the pilot estimate, and the thin black line is the constrained estimate.

constraint (Constraint 5), for four different bandwidths (1, 1,5, 2, and hML)
1. For

the two smallest bandwidths in particular, the constrained estimates fail to provide

a good match to the pilot estimate. In all cases, the bell-shaped estimate has a

higher main peak than the pilot density. This is because the default starting solution

places all sharpened points at the same location. With the more difficult bell-shaped

constraint, it is not possible for individual points to move out into the tails without

violating the constraint. To find a feasible solution closer to the target x, it would

be necessary to move multiple points at once, or to move points outside the search

interval [yi, xi]. This is a limitation of the greedy design of the algorithm.

The pseudo-likelihood bandwidth selection procedure chose a value of hML = 2.39

with this constraint, a bandwidth even larger than was chosen for unimodality. In

this instance the large bandwidth can be attributed not only to outlier sensitivity,

but also to the poor performance of the optimizer. If the optimizer cannot find good

solutions at smaller h values, then larger bandwidths will be required to achieve a

maximum likelihood. The objective function values for the four cases in Figure 3.5

are, from left to right, 46.1, 26.8, 20.4, and 19.4. It will be shown in the next chapter

that better solutions do in fact exist for each case.

1The SQP solutions are not compared for this constraint because the time required to set up and
solve the mathematical programming problem is prohibitive; it involves an outer optimization loop
to find the best locations for both of the density’s inflection points.

Chapter 3 64

0 20
0

0.05

0.1

h = 1

0 20

h = 1.5

0 20

h = 2

0 20

h
ML

 = 2.39

Figure 3.5: Results of bell-shaped (type 1) density estimation on the wind speed data,
using the greedy algorithm with four bandwidths. In all graphs, the thick grey line
is the pilot estimate, and the thin black line is the constrained estimate.

3.2.2 Heart Disease Data

The heart disease data can be used to demonstrate data sharpening in two dimensions.

Bivariate unimodality (Constraint 14) is taken as the operative shape restriction.

The pilot density and its unimodal adjustment are plotted in Figure 3.6. For

this example, the Gaussian product kernel was used, with the normal-scale band-

width choice (equation 2.10). Because the data have been standardized, this selector

chooses the same bandwidth of hNS = 0.43 for both variables. The estimates were

calculated using a bivariate binned KDE approximation at a 200×200 grid of points,

and the same grid was used to check the validity of the constraint (as described in

Algorithm 2.4).

The pilot estimate has five local maxima and one local minimum. All but the

maximum that occurs at the central mode of the density are small variations occurring

in low-density regions. As seen in the right plot of the figure, the greedy algorithm is

able to eliminate these spurious maxima and minima by shifting several points. The

high-density regions of the estimate are not altered.

3.3 Simulation Studies

A simulation study was performed to compare the performance of three optimization

options: the greedy algorithm, SQP, and a combined optimizer, where the greedy

Chapter 3 65

−2 0 2 4
−3

−2

−1

0

1

2

3

4

SBP

LD
L

Pilot Estimate

−2 0 2 4
SBP

Unimodal Estimate

Figure 3.6: Pilot estimate and unimodal estimate for the heart disease data, using
the greedy algorithm to perform data sharpening. The original and sharpened data
are shown by crosses and circles respectively. Lines join the sharpened points to their
target locations. Local maxima are indicated by H and local minima by N.

solution is used as the starting point for an SQP search. All SQP runs were done in

the same manner as the wind speed estimates of the previous section.

3.3.1 Study Design

The three optimization methods were compared across 12 different test cases. The

test cases consisted of all combinations of two target densities, three sample sizes,

and two bandwidths.

Target densities: the t distribution with three degrees of freedom, and a
three-component normal mixture distribution. See Figure 3.7.

Sample sizes: 25, 50, and 100.

Bandwidths: 0.75hSJ and hSJ , where hSJ is the Sheather-Jones direct
plug-in bandwidth defined in (2.12).

The constraint of interest for all simulation runs was unimodality.

The target densities correspond to test densities 2 and 4 of Hall and Huang (2002).

The t3 distribution is challenging because its heavy tails result in outliers, and cor-

responding spurious modes, in many samples. The mixture distribution has a large,

Chapter 3 66

−8 −6 −4 −2 0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x

f(
x
)

t
3

mixture

Figure 3.7: True densities used in the simulation. The mixture density is composed
of N(−1, 0.62), N(1, 2.52), and N(5, 1.52) components in proportions 0.35, 0.5, 0.15.

nearly flat shoulder to the right of its mode, which produces a variety of multimodal

shapes in samples. The two bandwidth levels were chosen to influence the problem

difficulty rather than to achieve optimal estimation performance. Setting h = hSJ

produces smoother estimates that are easier to sharpen, while h = 0.75hSJ produces

more separated peaks and reduces the size of the feasible set C, making optimization

harder.

For each target density, 250 data vectors of each sample size were drawn from

the target distribution. To avoid trivial cases where no sharpening was necessary,

a rejection step was included when generating samples. Any sample producing a

unimodal unsharpened estimate was replaced with a new sample until a multimodal

estimate was obtained.

For each generated x, all three optimizers were run on the same data using both

bandwidths. All runs used the data sharpened Gaussian KDE f̂M
y (x) as the estimator,

and the response of interest was the L1(y,x) objective (referred to as the sharpening

distance)2. In all, 9000 optimizations were performed (12 cases, three optimizers, and

250 replicates).

2As with the wind speed examples, the RC0.01 objective was used with SQP, but given its
similarity to L1, we will treat all runs as if they used the same objective function, for ease of
exposition.

Chapter 3 67

3.3.2 Convergence and Run Time

For the present discussion an optimizer is defined to have converged if it reaches any

of its normal stop conditions and returns a feasible solution. Table 3.1 shows the

proportion of runs converging, and the median run time, for all three methods across

simulation cases.

The greedy algorithm converged for all simulation runs, because it is designed to

always return a feasible solution. Sequential quadratic programming had some failures

to converge in seven of the twelve test conditions, including all six cases based on the

t3 distribution. In those cases the proportion of runs converging varied from 84 to

96 percent, with with larger sample sizes having lower percentages3. Note that for

SQP to record a failure, the algorithm must fail to return a feasible solution at all 20

candidate mode points attempted.

The combined algorithm (where SQP was started from the greedy solution) had

much improved convergence proportions compared to SQP. Only three of the test

cases had any failures, and even in these three cases only one or two of the 250

replicates failed to converge. This indicates the importance of choosing a good starting

solution, and suggests that the greedy algorithm could at least be used as a way to

generate starting points for SQP.

The run time results show a clear advantage of greedy over SQP, with greedy runs

taking a fraction of a second while the median SQP run time ranged from four to 40

seconds depending on the case. For all cases, using the greedy solution as a starting

point (the combined method) caused a reduction in SQP run time. The improvement

was most pronounced for the t3 problems, all of which had a dramatic decrease in

median run time.

3.3.3 Optimization Performance

The three optimization methods were run on the same data sets, so each method’s

sharpening distances can be directly compared. Figure 3.8 shows the objective func-

3The sample size effect could be caused by greater inherent difficulty in the n-dimensional opti-
mization, or by the presence of more distant outliers in the larger t3 samples.

Chapter 3 68

Table 3.1: Convergence and run time results.

Proportion converging Median run time (s)
Density Bandwidth n Greedy SQP Combined Greedy SQP Combined

t3 0.75hSJ 25 1 0.956 1 0.061 9.6 2.0
t3 0.75hSJ 50 1 0.880 1 0.13 19 4.8
t3 0.75hSJ 100 1 0.844 0.992 0.31 41 16

t3 hSJ 25 1 0.964 1 0.044 3.9 2.0
t3 hSJ 50 1 0.936 0.996 0.092 15 4.7
t3 hSJ 100 1 0.916 0.996 0.21 38 15

mixture 0.75hSJ 25 1 1 1 0.12 4.4 3.6
mixture 0.75hSJ 50 1 1 1 0.28 9.7 8.4
mixture 0.75hSJ 100 1 0.992 1 0.74 31 28

mixture hSJ 25 1 1 1 0.060 3.3 3.1
mixture hSJ 50 1 1 1 0.14 8.2 7.7
mixture hSJ 100 1 1 1 0.38 28 26

tion values for the greedy and SQP methods plotted against each other, for the 2872

pairs of optimizations where SQP converged. Cases based on each of the two target

distributions are plotted with different markers. The 1:1 line is also shown on the

plot. Points below the line represent runs where the greedy method outperformed

SQP, and points above the line represent runs where SQP found the better solution.

The figure suggests that the greedy method had good relative performance. While

most of the runs had similar results for the two methods, there were also a large num-

ber of runs where the SQP objective value greatly exceeded the greedy value. These

are runs where SQP stopped at a particularly poor local minimum. Interestingly,

most of these poor SQP results arose in problems based on the mixture distribution,

where convergence was not a problem. There were also some data sets where SQP

greatly outperformed improve, but such cases were much less frequent.

To facilitate a more detailed comparison, objective function values for the greedy

and combined methods were normalized relative to the SQP sharpening distance for

the same sample and bandwidth. The normalized sharpening distance is the ratio

of that method’s L1 distance to the SQP value. Figure 3.9 shows box plots of the

normalized sharpening distance for both the greedy and combined methods, for all 12

simulation cases. Boxes show locations of the first, second, and third quartiles, and

whiskers extend to the most extreme values differing from the median by less than

Chapter 3 69

0 50 100 150 200 250 300
0

5

10

15

20

25

30

35

SQP L
1
 distance

G
re

e
d
y
 L

1
 d

is
ta

n
c
e

Figure 3.8: Scatter plot of sharpening distances across all simulation runs. Circles
and crosses denote cases based on the t3 and mixture distributions, respectively.

1.5 times the interquartile range.

Normalized objective function values less than 1 indicate performance better than

SQP. The boxplots for the greedy method show that it strongly outperformed SQP

on the t3 problems, and was roughly equivalent to SQP on the mixture problems. For

the t3 cases, all but one of the cases have their third quartiles less than one, indicating

that the greedy result was better than the SQP result more than 75% of the time.

The improvement over SQP is also more pronounced for larger sample sizes. In the

mixture cases, SQP outperformed greedy when the bandwidth was smaller, while

neither method was clearly superior for the larger bandwidth.

Looking at the combined-method cases in Figure 3.9, it is clear that the combined

method performed better than the default SQP with x as its starting point. Starting

at the greedy optimum had a pronounced effect for the more difficult t3 cases, but

only a negligible effect on the mixture cases. Note that using the greedy starting

point does not always improve the performance of SQP. The best starting point for

SQP is sample-dependent and one could not expect any rule to provide the best start

for all cases.

Chapter 3 70

mixture h 100
mixture h 50
mixture h 25
mixture 0.75h 100
mixture 0.75h 50
mixture 0.75h 25

t3 h 100
t3 h 50
t3 h 25
t3 0.75h 100
t3 0.75h 50
t3 0.75h 25 Greedy

0 0.5 1 1.5 2

mixture h 100
mixture h 50
mixture h 25
mixture 0.75h 100
mixture 0.75h 50
mixture 0.75h 25

t3 h 100
t3 h 50
t3 h 25
t3 0.75h 100
t3 0.75h 50
t3 0.75h 25

Normalized L
1
 Distance

Combined

Figure 3.9: Box plots of normalized L1 sharpening distance, for both the greedy and
combined search methods. The labels at left give the simulation case.

As a further illustration of the performance of the methods, Figure 3.10 gives

plots of the density estimates for nine randomly-selected simulation data sets. Each

plot gives the unsharpened density as well as the sharpened density based on both

the SQP and greedy search. Plots 1–3 show cases where SQP found the better

result, and plots 4–9 show cases where the greedy algorithm found the better result.

These examples were sampled from only those cases where the relative difference in

sharpening distance was large (the worse method’s sharpening distance being at least

50% larger than the better method’s).

The examples show that for cases when the unsharpened estimate is nearly uni-

modal (as in plots 1, 3, 6, and 9), there is little qualitative difference between the

greedy and SQP solutions despite the large relative difference in L1(y,x). When the

original estimate does have outliers or other large deviations from unimodality, the

differences in the estimate are more pronounced, and typically the SQP estimate is

inferior (as in plots 4, 5, 7, and 8). The greedy estimate matches the unsharpened

curve exactly at points away from the unwanted modes, while the SQP estimate may

Chapter 3 71

1 SQP 2 SQP 3 SQP

4 Greedy 5 Greedy 6 Greedy

7 Greedy 8 Greedy 9 Greedy

Figure 3.10: Comparing the unsharpened estimate (thick grey line), greedy estimate
(thin solid line), and SQP estimate (dashed line) for nine simulation data sets. Plot
labels in the upper right indicate which method had a smaller L1 sharpening distance.

be poor everywhere if the algorithm converges to a low-quality local optimum.

Plot 2 in Figure 3.10 is something of a special case. The data happened to arise in

such a way that the original estimate consisted of two modes of nearly equal height.

In this case neither method could estimate the density well, and the results of either

method would be highly sensitive to the initial solution provided.

Figure 3.11 provides some further justification for the claim that the greedy al-

gorithm produces reasonable density estimates, by comparing the greedy- and SQP-

based estimates, across all the generated data sets for which SQP was able to converge.

The plot shows the ECDF of the total variation distance (equation 2.8) between the

greedy- and SQP-based estimates, based on two groups of cases: the 1117 data sets

for which SQP was better than greedy (in the L1(y,x) sense), and the 1755 data sets

for which it was worse.

The figure shows that for those cases where SQP was better than the greedy

algorithm in sharpening-distance terms, the density estimates did not differ by much.

Chapter 3 72

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

1

TV (total variation between greedy and SQP estimates)

F
(T

V
)

SQP better L
1

SQP worse L
1

Figure 3.11: Empirical CDFs of the total variation distances between SQP and greedy
density estimates.

Over 95% of those cases had TV (ysqp,ygreedy) < 0.05, and only about 1% of them

had TV > 0.1. Conversely, when SQP performed worse than the greedy method, the

estimates had more pronounced differences. Only about 70% of the SQP-worse cases

had TV < 0.05, and about 13% of the runs had TV > 0.1. In other words, when

the greedy estimate loses, it does not lose by much, but when it wins, it can win by

a wide margin. This is in agreement with the observations made from the sample of

results illustrated in Figure 3.10.

3.3.4 Estimation Performance

The simulation results can also be used to compare the statistical performance of the

density estimators involved. Table 3.2 summarizes the results. For each combination

of true density and sample size, the average TV distance from the truth is shown

for seven different estimators. The columns labeled KDE, SQP, and Greedy give the

results for the unsharpened (multimodal) KDE, the unimodal SQP estimate, and the

unimodal greedy estimate, respectively; and one group of columns is given for each

bandwidth (hSJ or 0.75hSJ). The column labeled Reboul gives the TV distance for

the unimodal estimator described by Reboul (2005), which is an extension of the

Chapter 3 73

Table 3.2: Sample mean of TV distances from the truth across 250 replications.

h = hSJ h = 0.75hSJ

Case Reboul KDE SQP Greedy KDE SQP Greedy
t3, n = 25 .258 .156 .166 .149 .167 .187 .151
t3, n = 50 .189 .120 .132 .114 .127 .149 .116
t3, n = 100 .147 .095 .119 .091 .101 .133 .093

mixture, n = 25 .242 .183 .175 .173 .179 .162 .162
mixture, n = 50 .182 .148 .141 .140 .142 .129 .126
mixture, n = 100 .139 .118 .113 .111 .111 .106 .098

Note: The SQP results exclude runs that failed to converge. The standard error of the
estimate is less than 0.0036 for all table entries.

work of Birgé (1997). This estimator is a histogram with automatically-determined

variable bin widths. While it is not smooth, its performance can be used as a reference

point, since an upper bound on its L1 risk has been established (Reboul, 2005).

Considering first the results for the mixture distribution, both unimodal estimates

demonstrate a slight improvement in TV distance over the unsharpened KDE. The

greedy results are never larger than the SQP values, but the differences between the

two sharpening methods are very small. For the t3 cases, SQP performs worse than

either the greedy algorithm or the unsharpened estimate. This is because SQP occa-

sionally converged to local optima far from the best solution, causing the distribution

of TV values to be right-skewed (the median TV values for the t3 cases follow a pat-

tern similar to the mixture cases). Finally, all of the smooth estimates, including the

unconstrained KDEs, were markedly better than the Reboul estimator. This is not

surprising since the densities being estimated were in fact smooth, and the sample

sizes considered were relatively small.

The results of this brief study agree with the intuition that when x is sampled from

a unimodal density, estimation can be improved by adding a unimodality constraint.

Braun and Hall (2001) and Hall and Kang (2005) have also demonstrated this from

a squared error perspective. Naturally one must find a good data sharpening solution

to achieve this improvement in practice. In this respect the greedy algorithm showed

an advantage over SQP, particulary in the t3 examples.

Chapter 3 74

3.4 An Iterated Greedy Algorithm

The performance of the greedy algorithm can be improved by running it in an iterative

manner, with random perturbations introduced between iterates. The perturbations

allow the search to escape local optima, making it feasible, at least in principle, to

use the greedy algorithm on more difficult problems.

3.4.1 Iterated Local Search

The term metaheuristic is used to describe high-level search strategies that are not

specific to a particular problem instance, but that may be used to guide the design

of algorithms for particular situations. Iterated local search (Lourenço et al., 2010;

Talbi, 2009, sec. 2.6) is a conceptually simple metaheuristic that can be used to

enhance the performance of any local optimizer. It has been applied primarily to

combinatorial optimization problems, but its structure does not preclude its use in

continuous problems like the ones considered here.

The generic ILS algorithm is given in Algorithm 3.2. The metaheuristic assumes

that the local optimizer, called locsearch in the pseudocode, is a black box routine

capable of finding optimal solutions in the neighbourhood of its starting point. ILS

attempts to improve the performance of locsearch by embedding it in an iterative

procedure.

Let s′ be the locally-optimal solution found by locsearch, starting from some

user-supplied initial guess. This solution is used to start the three-step iteration that

is the core of the ILS algorithm, and is given in lines A, C, and D in the psuedocode.

The first step is to jump from s′ to another point s in the search space (using the

function perturb to do so). The local search is then started from s to find a new

optimum s′new. In the final step, the accept routine is used to determine which of s′

and s′new are retained to be used in the next iteration. This process is continued until

some stopping criterion is satisfied.

The operational characteristics of ILS depend on the details of the perturb and

accept steps. The goal in perturbing a locally-optimal solution is to find a point

Chapter 3 75

Algorithm 3.2: Iterated local search.

Input: A starting solution, s0.
Output: Final solution s∗.

Set s′ ← locsearch(s0) *Find the first local optimum*
repeat

A Set s← perturb(s′) *Produce a new solution*
C Set s′new ← locsearch(s) *Find another local optimum*
D if accept(s′, s′new) *Check acceptance criterion*

Set s′ ← s′new

until stop condition satisfied
Set s∗ ← s′

close enough to the current optimum to stay in the vicinity of good solutions, but far

enough from the optimum that the search can escape from poorer local optima and

move toward better ones. The perturb routine usually involves a stochastic element

so that the search does not cycle between solutions. Even so, if the perturbations are

too small the search will keep re-visiting the same parts of the search space and the

algorithm will terminate prematurely. If they are too large, the search will resemble

a random-restarts approach and will fail to exploit any structure that is present in

the objective function.

The acceptance criterion will affect the efficiency of the search in a similar way. If

only improving moves are accepted, for example, exploration of the search space will

be inhibited and it will be harder to find distant solutions that are better than the

current optimum. If we accept too many solutions that worsen the objective function,

however, the search might spend too much time in regions of the search space that

are not interesting. This is the classical trade-off between exploitation (moving from

a good solution to better ones in the same neigbourhood) and exploration (moving

to other neighbourhoods in the hopes of finding better solutions), that arises in all

heuristic optimizers.

Chapter 3 76

3.4.2 Incorporating the Greedy Algorithm in an ILS Scheme

The speed and guaranteed convergence of the greedy algorithm make it well suited

as the local search component of an ILS scheme. A crucial element that is lacking

in the standard ILS prescription, however, is the ability to handle constraints. In a

problem with constraints, perturbing a feasible solution randomly will often result

in an infeasible point being selected. A local search based on a feasibility-preserving

method (like improve) cannot handle infeasible starting points.

One way to use ILS in constrained optimization problems is to add a repair step

between the perturbation and optimization steps (lines A and C) in Algorithm 3.2.

The repair step acts to take an infeasible solution and move it back into the feasible

part of the search space.

It happens that improve can also be used as a repair method, leading to the

proposed iterative method ILSimprove, presented in Algorithm 3.3. The algorithm

starts by running the greedy search as usual. The resulting feasible solution is used

to start the ILS iterations (with repair) shown in lines A through D. In line A, the

current solution vector is perturbed by the addition of Gaussian noise with standard

deviation σ. The perturbed solution yǫ will usually not satisfy the constraint, but

it can be made feasible by using improve as a repair method in line B. This step

(using the previous best solution as the feasible starting point and yǫ as the target)

produces a new feasible point from which to start the optimization again in line C.

Finally the better of the new and old feasible solutions is retained in line D. Repeating

this perturb-repair-improve cycle typically yields better solutions than just running

the greedy algorithm once.

3.4.3 Performance of ILSimprove

Algorithm 3.3 was applied to the simulation problems of section 3.3. To run the

algorithm, a value for the noise standard deviation σ must be chosen, and a stopping

rule must be defined. For the noise level, it was decided to set σ to equal the KDE’s

bandwidth, h. This is reasonable, because h is a measure of the scale that one

Chapter 3 77

Algorithm 3.3: Iterated greedy algorithm for data sharpening (ILSimprove).

Input: The data, x; a feasible starting solution, y0; a noise level, σ.
Output: Final solution y∗.

Set y′ ← improve(y0,x) *Use Algorithm 3.1*
repeat

Let ǫ be a vector of iid N(0,σ2) variates.
A Set yǫ ← y′ + ǫ, *Perturb: yǫ is probably not feasible*
B Set yf ← improve(y′,yǫ) *Repair: data sharpening with yǫ as target*
C Set y′

new ← improve(yf,x) *Improve: data sharpening with x as target*
D if y′

new is better than y′ *Keep the better of two solutions*
Set y′ ← y′

new

until stop condition satisfied
Set y∗ ← y′

defines as local for a particular data set. Adding N(0,h2) noise in the perturbation

step should allow perturbed density estimates to cover the neighbourhood of a given

solution without straying too far away. For the stopping rule, the search was limited

to only 50 iterations, because this made ILSimprove have approximately the same

average run time as SQP.

Across all simulation runs, the iterated algorithm was able to improve upon the

single-run solution 95% of the time. Consequently its advantage over SQP was also

greater: while the greedy algorithm outperformed SQP in 61% of runs overall, the

iterated version did so in 84% of runs. Figure 3.12 illustrates this case-by-case, using

boxplots constructed the same way as those of Figure 3.9. Comparison of the two

figures shows that relative to a single greedy run, the average performance is improved

(the distributions of sharpening distances are shifted left) and fewer runs compare

poorly to SQP (the right tails are much lighter).

3.5 Limitations and Extensions

The improve algorithm compares favorably to SQP in the important special case of

univariate, unimodal density estimation. While this is promising, there are a few

limitations inherent in the design of the algorithm:

Chapter 3 78

0 0.5 1 1.5 2
mixture h 100
mixture h 50
mixture h 25
mixture 0.75h 100
mixture 0.75h 50
mixture 0.75h 25

t3 h 100
t3 h 50
t3 h 25
t3 0.75h 100
t3 0.75h 50
t3 0.75h 25

Normalized L
1
 Distance

Iterated greedy

Figure 3.12: Box plots of normalized L1 distance for the simulation data sets, using
the iterated greedy algorithm. Compare to Figure 3.9.

1. It performs well in the unimodal problems because the default starting point

(y = m01, where m0 is the location of the highest unsharpened mode) is well

suited to this constraint. The algorithm causes the points in y to spread out in-

crementally toward x, which often yields a good estimate. For other constraints,

it will be harder to find good starting solutions (consider bimodal estimation,

for example).

2. The algorithm requires a large number of constraint checks. In cases where

checking constraint validity is computationally intensive, the speed advantage

of the greedy approach could be lost4.

3. The number of constraint checks is proportional to n, meaning that the method

might not scale well to large sample sizes. In well-behaved cases many of the

n points will be moved home early in the search, reducing the computational

burden. But the magnitude of this effect will be problem-specific.

The ILS variant of improve is one possibility for overcoming the first limitation.

The proposal given in Algorithm 3.3 is a starting point, and could itself be improved.

In its present form it at least provides a way of generating a variety of feasible starting

points, by using improve as a repair mechanism. More sophisticated features like

4Any method that uses a black-box constraint will require frequent checks of constraint validity,
but this problem is exacerbated in the case of improve, because it moves one element of y at a time.

Chapter 3 79

stochastic acceptance rules or adaptive perturbation could be implemented to increase

the performance of the algorithm.

Finally, the idea of using improve as a repair function is itself potentially useful

in other constrained optimization settings. Repair of infeasible solutions is a general

strategy in adapting heuristics to handle constraints (Michalewicz and Fogel, 2004,

ch. 9), and designing an appropriate repair method can be challenging. Given a

feasible solution yf and an infeasible one y, improve(yf,y) will return a feasible

solution that is not on the straight-line path between the two points (because it acts

on the solutions elementwise). Such a repair method could be beneficial in population-

based heuristics that may track sub-groups of feasible and infeasible solutions.

Chapter 4

A Particle Swarm Algorithm for

Data Sharpening

The greedy algorithm of the previous chapter is a single-solution, deterministic search

method. The algorithm presently to be described, by contrast, is a multiple-solution

search with stochastic movement rules. It is called constrained estimation particle

swarm optimization (CEPSO). Search is carried out by two populations of solutions

that collaboratively explore the solution space using the principles of particle swarm

optimization (PSO). The algorithm is more complex and more computationally in-

tensive than the improve algorithm, but it can handle a wider range of problems. It

will be defined in a generic way suitable for any of the adjustment methods of Section

1.3, but demonstrations and evaluations of the method will use the data sharpening

estimator, f̂M .

A review of PSO is provided below. The new algorithm is then described, followed

by demonstrations on the example data sets, and then by simulation results.

4.1 Particle Swarm Optimization

Particle swarm optimization is a population-based optimization heuristic originally

proposed by Kennedy and Eberhart (1995). It is one of many heuristics that seek to

solve problems by mimicking the behaviour of biological systems (flocks of birds, ant

80

Chapter 4 81

colonies, swarms of bees, and so on). An overview of this natural computing approach

to optimization is provided by de Castro (2006). A brief summary of the standard

PSO algorithm is given below. For further background, see Kennedy et al. (2001),

Engelbrecht (2005), or Poli et al. (2007).

Consider the problem of minimizing a scalar objective function of n variables.

Particle swarm optimization conceives of potential solutions as objects (particles)

flying through the n-dimensional solution space, in discrete-time steps. A swarm is

a collection of P particles. The pth particle has position sp and velocity vp, both

of which are n-vectors. Particle movement is governed by simple rules that allow a

limited form of memory and inter-particle communication, and encourage the swarm

to move toward better solutions over time.

The quality or fitness of a particle’s current position is determined by its objec-

tive function value. Each particle is aware of its current fitness, and also retains a

memory of the best location it has visited in the past—its personal best solution, ṡp.

Particles are also able to see the personal best solutions of other particles, and use

this information to determine their own local best solution. The pth particle’s local

best solution, s̈p, is the best of the personal best solutions it is allowed to observe.

The set of particles used to determine the local best is called the particle’s neighbour-

hood. There are various ways to define particle neighbourhoods, but in the present

work the simple “lbest(k)” scheme (Kennedy and Mendes, 2002) is used, in which

neighbourhoods are established following the sequence of particle indices. In this

scheme, particle p has k neighbors, with indices p+ i−P ⌊ p+i
P+1
⌋ for i = 1, . . . , k (here

k ≤ P − 1, and ⌊⌋ indicates the floor function). Figure 4.1 provides two examples

of how neighbours are assigned. The use of local bests is an important feature of

PSO, as it allows information about promising solutions to be transmitted through

the swarm over time.

Each iteration of a PSO algorithm involves i) updating ṡ and s̈ for each particle,

ii) determining new particle velocities, and iii) updating the particle positions. The

Chapter 4 82

s1

s2 s3

s4 s5

s1

s2 s3

s4 s5

Figure 4.1: Illustrating the lbest(k) neighbourhood structure for a swarm with P = 5
and k = 1 (left) or k = 2 (right). Arrows point from each particle to its neighbours.

velocity update equation is

vp ← wvp + c1r1 ◦ (ṡp − sp) + c2r2 ◦ (s̈p − sp), (4.1)

and the position update is

sp ← sp + vp. (4.2)

In the velocity update, w ≥ 0 is a scalar inertia weight, c1 ≥ 0 and c2 ≥ 0

are scalar acceleration coefficients, r1 and r2 are independent vectors of independent

U(0, 1) variates (re-generated for each p at each iteration), and ◦ is used to represent

elementwise multiplication. The updated velocity is a weighted sum of three compo-

nents: the current velocity, a component in the direction of the personal best, and a

component in the direction of the local best.

The second and third terms in update (4.1) represent attraction to ṡp and s̈p,

respectively. These attractors tend to keep the particle near solutions that are known

from past iterations to be of high quality. This tendency is counterbalanced by

the first term, a self-velocity term, that gives the particle impetus to explore new

directions. The random vectors r1 and r2 make the search stochastic. Note that

the random vectors are multiplied elementwise, which ensures that attraction does

not act directly along a line from the current position to the attractor. Rather,

each coordinate of the solution is attracted a random amount, independently. Each

coordinate in the updated position is the sum of two (location-scale transformed)

uniform random variables. Figure 4.2 shows the marginal and joint distributions of

Chapter 4 83

sp

ṡp

s̈p

v1

v2

v3

Coordinate 1

C
oo

rd
in

at
e

2

Figure 4.2: Joint and marginal distributions of possible moves for a single particle
sp, in the canonical PSO. Contours of the joint density are shown inside the dashed
box (which is the density’s support). The vectors v1, v2, and v3 represent the three
terms in velocity update (4.1).

the new position for a hypothetical two-dimensional particle using update rules (4.1)

and (4.2).

PSO search continues using these particle movement rules until some stopping

criterion is satisfied. At any point in the search, the personal best solution with the

best fitness is called the global best solution, represented by s̃. When the search is

terminated, s̃ is returned as the selected optimum. With appropriate choice of the

algorithm parameters and sufficiently long run time, the swarm will converge—all

particles will be within some small distance of s̃, and particle velocities will be nearly

zero.

The values of w, c1, and c2 determine the convergence behaviour and the long-run

trade-off between exploration (greater swarm diversity, less chance of being trapped

near local optima) and exploitation (reduced diversity, faster convergence). Values of

w greater than unity cause the swarm to diverge due to increasing velocities, while

setting 0 < w < 1 promotes convergence. At the same time, choosing larger values of

c1, c2 promotes greater exploration by increasing the average step size. It is customary,

Chapter 4 84

but not necessary, to set c1 = c2. The neighbourhood size k also plays a role. Larger

k hastens the spread of information through the swarm, encouraging convergence;

smaller k slows communication and promotes search diversity.

Clerc and Kennedy (2002) developed the so-called constriction coefficient approach

to setting the three constants in the velocity update, such that the swarm is guaran-

teed to avoid divergent velocities, and ultimately to converge to a single solution. The

constriction method, with typical settings, is equivalent to employing the standard

update equation (4.1) with w = 0.730 and c1 = c2 = 1.496 (see Poli et al., 2007, p.

37–38). This choice of coefficients is taken to be the canonical PSO, on which the

methods of this chapter are based. It is recorded in Algorithm 4.1.

Algorithm 4.1: The canonical PSO algorithm.

Input: Population size, P ; neighbourhood size, k.
Output: Best solution found, s∗.

Initialize particle positions and velocities.
repeat

for i = 1, . . . , P
Compute ṡi and s̈i.
Set vi ← 0.73vi + 1.5r1 ◦ (ṡi − si) + 1.5r2 ◦ (s̈i − si)
Set si ← si + vi

until stop condition is met
Set s∗ ← s̃

4.2 Constrained Estimation PSO

The canonical PSO is applicable to unconstrained (or at most, bound constrained)

optimization problems. CEPSO is an attempt to incorporate the standard PSO into

a more sophisticated heuristic capable of handling the difficult constraints that arise

in shape-restricted estimation problems.

Chapter 4 85

4.2.1 Algorithm Description

The proposed algorithm is a cooperative search conducted by two swarms of P par-

ticles each. The first swarm, which will be referred to as Swarm 1 or the exploiter

swarm, is primarily responsible for finding improved feasible solutions in the vicinity

of the best known solution. It is this swarm that will ultimately provide the final

result. The second swarm, called Swarm 2 or the explorer swarm, is responsible for

covering the remainder of the search space, looking for either i) new feasible solutions

in distant areas, or ii) promising infeasible solutions that could lead to better search

paths in Swarm 1. At each iteration, after both swarms have updated their particle

positions, the swarms have the opportunity to trade particles in an exchange step.

Swarm 1 receives any feasible or promising particles from Swarm 2, in turn releasing

its worst particles to join the exploration group.

In this system, the set of personal best solutions, {ṡp}, is held in common between

the two swarms. The explore/exploit/exchange steps are continued until either the

values of {ṡp} converge, or the value of the global best s̃ stops changing. Note that

while particles in either swarm may visit infeasible portions of the search space, only

feasible solutions are permitted to become personal bests. This guarantees that s̃ will

always be feasible, and therefore the final solution will be as well.

The two swarms use different velocity update equations to perform their different

functions. For the exploiter swarm, the update equation is

vp ← wvp + 1.5r1 ◦ (ṡp − sp) + 1.5r2 ◦ (s̈p − sp), (4.3)

which is the same as the canonical PSO update equation (4.1), with c1 and c2 set to

the values required by the constriction coefficient approach. The value of w is left

unspecified for the moment; it is used to control swarm dynamics as described in

the next section. As with the canonical update, ṡp and s̈p act as attractors for the

particle. In this case, however, the attractors may only be feasible points, causing

Swarm 1 to stay close to known feasible regions.

Chapter 4 86

Figure 4.3: The velocity components for particles in either swarm. For clarity, com-
ponents v2 and v3 are shown to point directly toward their attractors. The actual
move will be random, as shown in Figure 4.2.

For the explorer particles, the proposed velocity update is

vp ← wvp + 1.5r1 ◦ (t− sp) + 1.5r2 ◦ (s̃− sp). (4.4)

Swarm 2 particles are attracted to the target or pilot solution t and the global best

s̃, instead of their personal or local bests. Because the local bests are not involved,

the particles of Swarm 2 do not influence each other. Every particle independently

searches a larger part of the solution space around the global best (where good solu-

tions are known to exist) and the target (where we would like to find new solutions).

Velocity updates (4.3) and (4.4) are illustrated pictorially in Figure 4.3. The

figure shows a hypothetical two-dimensional optimization, with feasible set C. A star

indicates the optimal solution, which is the feasible solution closest to t. One particle

from each swarm is shown, with arrows v1, v2, and v3 representing the three terms

in the respective update equations. Optimization by CEPSO is done with bound

constraints, to prevent particles from moving too far afield, and to permit bound

restrictions on solutions. The hyper-rectangular search space defined by the bounds

is denoted B.

The example of Figure 4.3 is extended in Figure 4.4 to illustrate how “promising”

Chapter 4 87

Figure 4.4: The region of promising solutions.

solutions are defined. A solution is considered promising if it is in the set

{s : s /∈ C, ‖s− s̃‖ ≤ ‖ṡw − s̃‖, δ(s, t) ≤ δ(s̃, t)} , (4.5)

where ṡw is the worst personal best (the one farthest from s̃), and ‖ · ‖ represents

Euclidean distance. This definition is motivated by the desire to find points near

the boundary of feasibility, in the general direction of the target. Such particles

are moved into the exploiter swarm during the exchange step. The hope is that

subsequent exploitation moves will cause the promising particles to cross into the

feasible region and provide improved solutions.

Note that the size of the promising region will shrink throughout the search as s̃

moves closer to t and ṡw approaches s̃. If Swarm 1 converges to the global optimum

as hoped, then continuing to run Explore and Exchange steps late in the search is

computationally wasteful. Nonetheless, the full Explore/Exploit/Exchange cycle is

run throughout the search, since there is no way to have final assurance that Swarm

1 is actually in the vicinity of the global optimum.

Chapter 4 88

4.2.2 Controlling Swarm Dynamics

In the canonical PSO, the trade-off between global exploration and local exploitation

is determined by the choice of w, c1, and c2. In the proposed approach, exploration

and exploitation duties are explicitly assigned to different swarms. For each swarm to

carry out its function, its spatial extent must be controlled as the search progresses.

At each iteration, this is done by first comparing each swarm to a shrinkage/expansion

boundary, and then adjusting the inertia weight w accordingly.

Figure 4.5 continues the previous two illustrations, this time showing the shrink-

age/expansion boundaries used for the two swarms. Both boundaries are level sets of

the objective function. For Swarm 1, the boundary is {s : δ(s, t) = δ(ṡw, t)}, and for

Swarm 2 it is {s : δ(s, t) = δ(s̃, t)}. The value of the inertia weight is chosen for each

swarm as follows. Let ρ be the proportion of particles that are inside the swarm’s

shrinkage/expansion boundary. Then set

w =



















0.5 if ρ < 0.9

0.73 if 0.9 ≤ ρ < 1

1.0 if ρ = 1.

(4.6)

The swarm is considered to be too diffuse if less than 90% of its particles are inside

the boundary, and too concentrated if 100% of its particles are inside. Applying rule

(4.6) leaves the inertia weight at its default of 0.73 when the swarm is neither too

diffuse nor too concentrated. If it is too diffuse, a smaller value of w = 0.5 is used

to encourage contraction of the swarm, and if it is too concentrated, a larger value of

w = 1 is used to encourage expansion.

Though this means of control is crude, it is sufficient to prevent velocities from

becoming too large or too small, without unduly interfering in the natural swarm

dynamics. It also helps each swarm to more quickly adjust to the new search envi-

ronment when the values of ṡw or s̃ change. This is also illustrated in Figure 4.5.

As the search progresses, s̃ will move toward t, and ‖ṡw − s̃‖ will get smaller. The

shrinkage/expansion boundaries will therefore also contract; this will result in a value

Chapter 4 89

Figure 4.5: The shrinkage/expansion boundary for each swarm, at two stages during
the search.

of w = 0.5 to be used for a number of iterations until the swarms have adapted

themselves to the new boundaries.

Note that although the boundary for Swarm 1 is outside that for Swarm 2, this

does not imply that the exploiter swarm is more spread out than the explorer swarm.

Swarm 1 will stay concentrated near the locations of good solutions, because exploiter

particles are attracted to ṡp and s̈p, which are always in C.

4.3 Implementation Details

The preceding description of CEPSO explained the general approach of the algorithm.

More detailed information, including pseudocode and the means handling of several

special cases, is provided below.

4.3.1 The Main Function

The CEPSO algorithm is summarized at a high level in Algorithm 4.2. Inputs to the

algorithm include all of the elements required for specification of the problem, as well

as a bounding box B and the population parameters, P and k. A final, optional, input

is a set of starting solutions. The main loop of the algorithm consists of three groups

of operations: updates for Swarm 2 (the explore step), updates for Swarm 1 (the

Chapter 4 90

exploit step), and trading of particles (the exchange step). Every in-bounds particle

must have its feasibility checked and its objective re-calculated after it is updated,

meaning that there are at most 2P calls to the objective and constraint-checking

functions per iteration.

Three topics of practical importance have not yet been addressed: how to initialize

the swarms, how to handle any particles that move outside of B, and how to define

stopping conditions. After considering these questions, the core explore, exploit, and

exchange steps are described in more detail.

Algorithm 4.2: Constrained estimation PSO (CEPSO).

Input: For the problem definition: f̂s(·), t, δ(·, ·), I(·), B.
For the algorithm: P , k, and starting solutions.

Output: Best feasible solution found, s∗.

Initialize Swarms.
Update personal and local bests.
Exchange particles if possible.
repeat

Explore step
Select w for Swarm 2 using (4.6)
Update Swarm 2 velocities using (4.4)
Update Swarm 2 positions using (4.2)
Exploit step
Select w for Swarm 1 using (4.6)
Update Swarm 1 velocities using (4.3)
Update Swarm 1 positions using (4.2)
Exchange step
Update personal/local bests
Exchange particles if possible

until stop conditions are met
Output s∗ ← s̃

Initializing the swarms.

The CEPSO code is designed to accept P or fewer user-supplied initial solutions,

that are used to populate Swarm 1. The remaining particles of Swarm 1, and all of

Swarm 2, are randomly initialized by uniform sampling inside B. Some special cases

arise if too few of the initial solutions are feasible. If none of the initial particles

Chapter 4 91

are feasible, then no personal, local, or global best solutions exist. In this case, both

swarms are run as explorer swarms using a random attractor in the place of the global

best solution (in a manner made explicit in the next section). If only a few feasible

solutions are given or discovered, then exploration moves can occur as usual, but

exploitation moves are still problematic, since ṡp and s̈p will not exist for all p. In

this case, any velocity terms in the exploiter update (4.3) that cannot be computed

are set to zero.

The algorithm will converge faster, and to better solutions, if good feasible starting

points are supplied. The means of finding feasible starting particles is problem-specific

and non-trivial. Additional comments on this topic are given in the conclusion to this

chapter.

Out-of-bounds particles.

The problem’s bounding box B is sometimes purely a convenience, but in other cases

(as when s is a vector of probability weights), the estimator f̂s does not exist for

s /∈ B. To handle this, and to prevent particles from spending too much time out of

bounds, the self-velocity term wvp in (4.3) and (4.4) is set to zero for any particle

that is out of bounds. Since all of the other terms in both the Explore and Exploit

velocity updates involve attraction to points inside B, setting w = 0 will naturally

bring particles back in bounds.

Stop conditions.

Search proceeds until some stop conditions are met. Some possible stopping criteria

are:

1. The maximum absolute componentwise distance between any two personal best

solutions is less than some tolerance:

max
i,j
‖ṡi − ṡj‖∞ < ǫ. (4.7)

2. The global best solution has not changed for g iterations.

Chapter 4 92

3. The search has run for G iterations.

Stop condition 1 indicates that the exploiter swarm has converged, but such con-

vergence may occur slowly, since it requires all particles to visit a feasible point

sufficiently close to s̃. Condition 2 provides a practical stopping criterion based on

lack of progress. Condition 3 simply provides an upper bound on the run time by

limiting the search to a maximum of G iterations.

For multi-modal problems like those of interest here, choosing termination con-

ditions is inherently difficult, as there is always a chance that better solutions exist

somewhere else in the search space. Even if Swarm 1 converges, there is a chance

that a new, better region of the search space will be found by Swarm 2 if the search

is continued. So the explorer swarm provides some insurance against premature con-

vergence if the search is continued long enough.

4.3.2 Explore and Exploit

The Explore and Exploit steps carry out the PSO moves for Swarm 1 and Swarm

2, respectively. Both types of move are built around the canonical PSO, and both

follow the same general steps. First the extent of the swarm is examined to determine

whether the inertia weight should be set to a higher or lower value for this iteration.

Then the particle velocities are updated. Each velocity is composed of three terms:

one term based on the previous velocity, and two more terms that define centers of

attraction for the swarm. After being updated, the new velocities are used to update

the particles’ positions.

Algorithm 4.3 gives pseudocode for both types of move. The steps unique to each

type of move are shown separately, in two boxes. Performing the velocity update in

the first box will result in an exploration move, while using the steps in the second box

will result in an exploitation move. This pseudocode is consistent with the description

in Section 4.2.1, but also includes expressions for handling out-of-bounds points, and

dealing with situations where ṡp, s̈p, or s̃ do not yet exist.

The velocity update for Explore is a standard PSO velocity update with three

Chapter 4 93

Algorithm 4.3: Detailed code for the Explore and Exploit steps.

Input: A swarm of particles.
Output: An updated swarm.

Adjust the inertia weight
if swarm is too large, then set w ← 0.5; elseif swarm is too small, set w ← 1;
else set w ← 0.73.

Update velocities—EXPLORE method
for each p

if sp is in bounds, then set v1 ← vp; else set v1 ← 0.
Set v2 ← r1 ◦ (t− sp)
if s̃ exists, then set v3 ← r2 ◦ (s̃− sp); else set v3 ← r2 ◦ (R− sp).
Set vp ← wv1 + 1.5v2 + 1.5v3

Update velocities—EXPLOIT method
for each p

if sp is in bounds, then v1 ← vp; else v1 ← 0.
if neither ṡp nor s̈p exist

Set v2 ← 0
Set v3 ← r2 ◦ (s̃− sp)

else
if ṡp exists, then set v2 ← r1 ◦ (ṡp − sp); else set v2 ← 0.
if s̈p exists, then set v3 ← r2 ◦ (s̈p − sp); else set v3 ← 0.

Set vp ← wv1 + 1.5v2 + 1.5v3

Update positions
for each p

Set sp ← sp + vp

Chapter 4 94

terms, but modified to make it into a non-convergent exploratory search. The three

terms are:

1. The self-velocity term. This is set to wvp, as in the standard PSO. If the

particle is out of bounds, however, vp is set to zero to encourage it to return to

the allowable search domain.

2. An attraction to the target solution, t. This replaces the personal-best term in

the standard PSO. This term remains the same in all circumstances.

3. An attraction to the global best, s̃. This replaces the local-best term in the

standard PSO. In the event that s̃ does not exist (because no feasible solutions

have yet been found), the attractor is a randomly-generated point that is the

same distance from t as sp (this point is denoted R in Algorithm 4.3).

The Exploit velocity update matches the canonical PSO update even more closely.

For particles that are in bounds and for which ṡp and s̈p exist, in fact, the update

is identical to the standard form. Modifications are only applied in special cases

that are most likely to arise in the early part of the search. First, as with Explore,

particles that are outside the search bounds have their self-velocity terms set to zero.

Second, the velocity terms for attraction to the personal or local bests are set to zero

if the corresponding best solution does not exist (as can happen before many feasible

solutions have been encountered). If it happens that neither ṡp nor s̈p exist, then a

new velocity term in the direction of s̃ is added in their place.

4.3.3 Exchange

The exchange of particles requires first updating the objective function value of all

in-bounds points, and then revising each particle’s personal and local best positions.

During this process, the exchange step also handles the sorting of solutions, in the

same way (and for the same reason) as the improve algorithm. When f̂s is invariant

to permutations of s, but δ(s, t) is not permutation-invariant, it is advantageous to

start with the elements of t ordered, and to sort any feasible solutions that are found.

Chapter 4 95

This will result in a reduction of δ(s, t) without a change in f̂s. The main example of

this is when data sharpening is used to adjust the shape of a kernel density estimator.

The shape of the density estimate does not depend on the ordering of s, but if the

objective function is, for example, a norm of t − s, then its value does depend on

order. In such a case, s can be improved directly by putting s and t in the same sort

order.

When sorting of solutions is desirable, the Exchange step will include an initial

sorting of any feasible solutions that are found. This ensures that the personal bests

(and thus the local and global bests, as well) are all in sorted order. Infeasible

solutions are not sorted, to reduce computational burden and to maintain swarm

diversity. As long as the best solutions are in sorted order, the rest of the swarm will

tend to approach a correct ordering as well.

After these preliminary activities, the Exchange step carries out two functions.

First, the two swarms’ lists of best solutions are brought back into agreement, keeping

the combined best P personal bests from both swarms. Second, the actual exchange

takes place: any feasible or promising particles from Swarm 2 are transmitted to

Swarm 1, in return for that swarm’s worst solutions (which are usually infeasible).

The explorer swarm is most likely to find new feasible solutions in the early stages

of the search, where s̃ is far from the global optimum and there is much room for

improvement. If any feasible solutions are found, transferring them to Swarm 1

can result in a rapid decrease in the best objective function value. At later stages,

Explore will become less and less able to find new feasible solutions, especially those

that improve upon s̃. Nonetheless, Explore can help Swarm 1 to avoid stagnation, by

providing promising points that may move into better solution regions in subsequent

steps.

The design of the algorithm is such that the number of points transferred in the

Exchange step will necessarily drop to zero as Swarm 1 converges (because ṡw will

become arbitrarily close to s̃, meaning that no particles can be labeled as promising).

As mentioned elsewhere, Explore steps are continued regardless, in the hope that

improved solutions can still be found.

Chapter 4 96

4.4 Examples

The following two sections return to the wind speed data and the heart disease data.

Density estimation is performed with a variety of constraints chosen to illustrate the

flexibility of CEPSO, as well as to demonstrate some of the characteristics of the

algorithm. A population of size P = 50 and a neighbourhood size of k = 10 was used

for both swarms in all of the examples. Demonstrations with other data sets have

also been reported previously (Wolters, 2011).

4.4.1 Wind Speed Data

As a first demonstration of CEPSO, three different constraints were imposed on a

kernel estimate of the wind speed distribution. The constraints were unimodality, type

1 bell shape, and type 3 bell shape. Shape adjustment was done by data sharpening,

with the L2 distance as objective function. Repeated runs were conducted at different

bandwidths, and the bandwidth that maximised the pseudo-likelihood (hML) criterion

was chosen1. A constraint of nonnegative support was also added to each estimate,

to ensure that the results were physically meaningful even at larger bandwidths. The

area under each constrained estimate to the left of zero was restricted to be less than

10−4.

Figure 4.6 shows pilot and constrained estimates for each case. In the density

plots, the thick grey curve is f̂ ◦, and the thin black curve is f̂M
s . As expected, the

constrained density estimates become smoother as one moves from unimodality, to

type 1 bell shape, to type 3 bell shape. The bandwidth is also indicated on each

plot. Its value increases considerably as the constraints become more restrictive—

an effect caused by the sensitivity of hML to the outlying point at a wind speed of

30.4. Looking at the left tail of the bell shaped density estimates, we can see that

the constraint of nonnegative support had a noticeable impact on the shape of the

estimate.

1Optimizations runs of 500 iterations were carried out at 20 bandwidths between 0.5hOS and
hOS to find an approximate value for hML. The chosen hML value was then used in a longer run of
1500 iterations to obtain the final solution.

Chapter 4 97

The figure also includes summaries of the search progress over the 1500 explore-

exploit-exchange iterations. The plots in the right half of the figure have two vertical

axes. The logarithmic axis on the left is used to measure the L2 objective function

value of the global best solution, and the value of a convergence diagnostic (the one

based on the distance between personal best solutions, equation 4.7). The linear axis

on the right is used to count the number of particle swaps made during the exchange

step, which are drawn as black bars on the plots. In all three cases, solution progress

follows a similar pattern. In the early stages of the search, the objective function

drops rapidly and there are many particle swaps. After the first 100 iterations or so,

there is little improvement made on the objective, and few particle exchanges occur.

Meanwhile the set of personal best solutions converges slowly toward the vicinity

of the global best. These later iterations correspond to the situation illustrated in

Figure 4.5, where the promising region of the solution space has become too small to

generate many particle exchanges, and there is little opportunity for improvement.

The convergence metric is not monotonically decreasing, because it is based on an

elementwise maximum distance. Any new personal best that is discovered must have

a lower the objective value than its predecessor, but could still increase the distance

between itself and the other personal bests. If a better solution is found in a distant

portion of the search space, for example, the personal bests will become spread out

for a time while the swarm migrates toward the new best part of the search space.

As a general rule, waiting for the exploiter swarm to converge to a single value is

not a practical stopping strategy. In an unconstrained problem using the canonical

PSO, the swarm will indeed converge or coalesce to a single point over time; but

when constraints are present, this could take a prohibitively long time. The swarm

can only converge after all of the personal best solutions have converged, and this

requires each of P particles to, by chance, move to a feasible point sufficiently close

to the global best solution.

In Section 3.2.1, an attempt was made to use the improve algorithm to find type

1 bell shaped KDEs from the wind speed data. Four bandwidths were used: 1, 1.5, 2,

and 2.39. At each bandwidth, the greedy algorithm returned estimates that appeared

Chapter 4 98

0 10 20 30
0

0.02

0.04

0.06

0.08

0.1

Speed

Unimodal h
ML

 = 1.82

0 500 1000 1500
10

−4

10
−2

10
0

10
2

10
4

D
is

ta
nc

e

0 500 1000 1500
0

10

20

30

40

50

N
um

be
r

of
 s

w
ap

s

Iteration

L
2
 distance

Convergence
 metric

0 10 20 30
0

0.02

0.04

0.06

0.08

0.1

Speed

Bell shape
type 1

h
ML

 = 2.58

0 500 1000 1500
10

−4

10
−2

10
0

10
2

10
4

D
is

ta
nc

e

0 500 1000 1500
0

10

20

30

40

50

N
um

be
r

of
 s

w
ap

s

Iteration

L
2
 distance

Convergence
 metric

0 10 20 30
0

0.02

0.04

0.06

0.08

0.1

Speed

Bell shape
type 3

h
ML

 = 2.75

0 500 1000 1500
10

−4

10
−2

10
0

10
2

10
4

D
is

ta
nc

e

0 500 1000 1500
0

10

20

30

40

50

N
um

be
r

of
 s

w
ap

s

Iteration

L
2
 distance

Convergence
 metric

Figure 4.6: CEPSO results and solution progress for three constraints on the wind
speed data.

Chapter 4 99

0 20
0

0.05

0.1

h = 1

0 20

h = 1.5

0 20

h = 2

0 20

h
ML

 = 2.39

0 20
0

0.05

0.1

h = 1

0 20

h = 1.5

0 20

h = 2

0 20

h = 2.39

RC = 46.1 RC = 26.8 RC = 20.4 RC = 19.4

RC = 29.9 RC = 19.0 RC = 15.2 RC = 10.4

Figure 4.7: Comparing results of improve (top row, repeated from Figure 3.5) and
CEPSO (bottom row) on the wind speed data with the type 1 bell shape constraint.

to be far from the best possible solution. To confirm that these results could in fact

be improved upon, CEPSO was run on the same four problems. The two methods

are compared in Figure 4.7. The top row of plots shows the estimates found using

improve (reproduced from Figure 3.5). The bottom row shows the estimates found

by CEPSO. The value of the RC0.01 objective function is also given on each plot.

CEPSO finds better solutions for all four bandwidths, and its bell-shaped estimates

match the shape of the pilot estimates more closely.

The nearly-parametric constraint (Constraint 12) can be used as a final demon-

stration with the wind speed data. The normal distribution family was chosen as

the desired parametric form, and the L2 distance was used as the objective function

for data sharpening. To make the problem more challenging, a pilot bandwidth of

0.75hSJ = 1.16 was used. Constrained estimates were found using CEPSO with the

tolerance in equation (2.3) set to one of three different values (ξ = 0.2, 0.1 or 0.05),

Chapter 4 100

C
o
n
st

ra
in

f

ξ = 0.2

C
o
n
st

ra
in

f
′

ξ = 0.1 ξ = 0.05

Figure 4.8: Density estimates for the wind speed data with a nearly normal constraint.
In each plot the grey curve is f̂ ◦(x), the solid black curve is f̂M

s (x), and the dashed
curve is the normal density implicit in the constraint. All axes have the same scaling.

and the constraint being based either directly on the density or its first derivative.

Figure 4.8 shows the six estimates obtained, with the corresponding normal densities

also plotted.

As expected, the estimates appear smoother when ξ is smaller, or when the con-

straint is applied to the derivative rather than to the density itself. The derivative-

constrained cases in particular have an appealing qualitative similarity of shape with

the normal distribution. Despite their overall smoothness, however, five of the six

estimates have two or more modes. This is possible because small modes in the tail

of the density only make a small contribution to the discrepancy between the KDE

and the matching normal distribution. An interesting possibility is to combine the

nearly normal constraint with a unimodal constraint, to build an estimator that is

unimodal, but less likely to have plateaus in its estimates. It is still questionable,

however, how useful such an estimator would be relative to a bell-shaped constraint

that achieves similar aims without introducing the new tuning parameter ξ.

Chapter 4 101

4.4.2 Heart Disease Data

For the analysis of the bivariate data set, the estimator was set up in the same way

described previously for the improve runs of Section 3.2.2: the product-normal ker-

nel function was used, with the normal-scale bandwidth hNS = 0.43 used in both

directions. The previous calculations were done using a binned kernel density esti-

mator for speed, and the estimate was calculated over a 200 × 200 grid. For this

set of trials the kernel functions were evaluated directly using the bivariate normal

density function, as this was found to reduce numerical problems with the relevant

constraint-checking functions. The higher accuracy of the direct calculation allowed

the set of constraint-checking points to be thinned out to a 90× 90 grid of locations.

With this configuration, one set of KDE evaluations could be done in approximately

the same time as the former binned KDE.

CEPSO was used to enforce three different constraints by data sharpening, us-

ing the L2 objective function. The constraints were unimodality (Constraint 14,

checked by applying Algorithm 2.4), unimodal conditional distributions (Constraint

16, checked with Algorithm 2.6), and convex contours (Constraint 18). The convex

contours constraint was checked by inspecting each of the default contour lines (those

enclosing probability mass of 0.95, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, and 0.05).

The first two cases were run for 1000 CEPSO iterations, while the last one, which

involves a more strict constraint, was run for 2000 iterations.

The pilot estimate and each of the constrained estimates are shown in Figure

4.9. The plots show both the sharpened and unsharpened data values, as well as

the locations of any local minima or maxima present in the estimate. The unimodal

and unimodal conditionals constraints were satisfied with limited movement of data

points, because the pilot estimate does not contain large violations of either of these

constraints. The convex contours constraint, however, could only be satisfied with

larger perturbations of the data. This constraint also allowed the three spurious local

optima in the high-LDL portion of the unsharpened density to persist, since these

points existed outside the 0.95 contour. Each of the three constrained estimates

Chapter 4 102

convey the same general structure present in the pilot estimate, but with increasing

degrees of smoothing in their outer contour lines.

These bivariate runs provide another opportunity to observe the convergence be-

haviour of the CEPSO algorithm. Figure 4.10 shows the objective function values

and the values of the convergence diagnostic (4.7) as a function of iteration number,

for all three estimates. In these examples, the objective function drops more gradu-

ally than in the univariate examples of Figure 4.6. It appears, in fact, that further

improvements in the convex contours estimator could have been made if the search

had been run for a longer time. The comments made about the convergence metric

in the univariate case apply here as well—while the value of this quantity might pro-

vide some information about solution progress, it is likely impractical to use it as a

stopping criterion.

The run time required to obtain these bivariate estimates was much longer than

that required for the univariate problems. In each case the CEPSO search took about

four hours per 1000 iterations. A similar number of iterations could be done in a few

minutes with the wind speed data. This is partly due to the sample size (n = 160

for the heart disease data, versus 57 for the wind speed data), but is primarily a

result of the extra time required to compute the bivariate estimates. Because of the

prohibitive run time, no investigation of optimal bandwidth selection was performed

for the heart disease data.

4.5 Simulation Studies

CEPSO uses stochastic moves, so it will not necessarily return the same solution in

repeated runs, even for identical initial conditions. The repeatability of CEPSO re-

sults is the subject of two simulation studies reported below. The first study evaluates

the degree of run-to-run variation in CEPSO solutions, and the sensitivity of results

to the population parameters P and k. The second study repeats the first, but at

different values of the PSO control parameters w, c1, and c2. Both of the studies are

based on repeated optimizations with the same single sample of size 50, drawn from

Chapter 4 103

−2 0 2 4
−3

−2

−1

0

1

2

3

4

LD
L

Pilot Estimate

−2 0 2 4

Unimodal

−2 0 2 4
−3

−2

−1

0

1

2

3

4

SBP

LD
L

Unimodal Conditionals

−2 0 2 4
SBP

Convex Contours

Figure 4.9: Pilot estimate and three shape-constrained estimates for the heart disease
data, using CEPSO to perform data sharpening. The original and sharpened data
are shown by crosses and circles respectively. Lines join the sharpened points to their
target locations. Local maxima are indicated by H and local minima by N. The
outermost contour of the pilot estimate is reproduced in each plot (dashed line) to
facilitate comparison.

Chapter 4 104

10
0O

bj
ec

tiv
e

va
lu

e convex

uni. conditionals

unimodal

0 500 1000 1500 2000
10

−2

10
0

Iteration number

C
on

ve
rg

en
ce

m
et

ric

convex

uni. conditionals

unimodal

Figure 4.10: Information on CEPSO solution progress for the heart disease examples.

the t distribution with three degrees of freedom. The problem being solved in both

cases is specified by the following four elements.

Estimator: the Gaussian kernel density estimator, with bandwidth h = 0.75hSJ ,

where hSJ is the Sheather-Jones bandwidth.

Adjustment method: data sharpening, where y is the sharpened data vector and the

target value is x.

Constraint: unimodality.

Objective function: the L2 distance.

4.5.1 Run-to-Run Variability

The thick grey line in Figure 4.11 shows the pilot density estimate for the data

set. These data are particularly challenging for unimodal density estimation, because

there are outlying observations in both tails, as well as an extra mode (or shoulder,

depending on the bandwidth) near the main peak. The relatively small bandwidth

of 0.75hSJ was chosen to accentuate the difficulty of the problem.

To examine the performance of CEPSO, optimization was repeated 100 times

at all four combinations of two population sizes (P = 25 and P = 50) and two

Chapter 4 105

-6 -4 -2 0 2 4 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x

f(
x
)

Figure 4.11: The unconstrained estimate (thick grey curve) for a t3 data set and
the best unimodal adjustment found (black curve). The dashed lines indicate the
run-to-run variation in best solution found.

neighbourhood sizes (k = 1
5
P and k = 2

5
P). The optimizations with P = 25 and

P = 50 were run for 4000 and 2000 iterations, respectively, to make them roughly

equivalent in terms of computational effort. Randomly-generated starting solutions

were used, since the exploration moves were able to find feasible solutions quite quickly

for this case.

The solid black curve in Figure 4.11 is the best unimodal sharpened KDE found

over all 400 optimizations. The unimodality constraint has been satisfied by shifting

the data points to turn the extra modes into shoulders and plateaus. The dashed

lines around the best solution give the pointwise 2.5% and 97.5% percentiles of the

set of 400 solutions. They show that the results in the central part of the distribution

are almost identical for all runs, with greater run-to-run variation in the tails, where

the solution depends on the precise location of only a few sharpened points.

Table 4.1 provides information on the variability of the best objective function

values found at each combination of P and k. The objective function value for the

overall best solution was 1.131, and the table shows that the algorithm was able to

consistently find solutions in the vicinity of this overall best, despite not converging to

exactly the same solution each time. As illustrated in Figure 4.11, the variation among

solutions does not translate into an appreciable difference in the density estimates,

especially considering the uncertainty in the estimate due to bandwidth selection and

Chapter 4 106

Table 4.1: Mean, standard deviation, extremes, and quartiles of L2 objective function
values for repeated runs on a t3 data set, at four different (P, k) combinations.

(P, k) mean SD min Q1 Q2 Q3 max
(25,5) 1.200 0.057 1.136 1.160 1.184 1.219 1.403
(25,10) 1.220 0.134 1.134 1.160 1.184 1.225 2.164
(50,10) 1.179 0.046 1.132 1.145 1.163 1.204 1.358
(50,20) 1.201 0.169 1.131 1.146 1.164 1.196 2.583

sampling variation.

The runs with larger neighbourhoods (P = 25, k = 10 and P = 50, k = 20) were

more likely to prematurely converge to poor solutions, and this is reflected in the

larger maximum objective values and standard deviations for those two cases in Table

4.1. This is consistent with the expected behaviour of particle swarms, where greater

information-sharing among particles tends to promote convergence. Nevertheless,

typical solutions found by all four combinations of P and k were close enough to the

overall best to be practically useful. This small study was the basis for choosing the

values P = 50 and k = 10 as the default inputs to the algorithm.

4.5.2 Sensitivity to Swarm Control Parameters

The CEPSO algorithm considers the swarm control parameters w, c1, and c2 to be

fixed quantities. Their values (w = 0.73 and c1 = c2 = 1.5) are based on the canonical

PSO. While it is natural to wonder how changing w, c1, and c2 might influence CEPSO

performance, there are a few reasons why it is inadvisable (or at any rate, difficult)

to modify the default scheme:

1. In the standard PSO, the relative sizes of c1 and c2 determine the trade-off

between exploration and exploitation. In CEPSO, exploration and exploitation

are explicitly assigned to the two swarms. So there is little motivation to explore

parameter settings with c1 6= c2.

2. The optimal parameter settings will be problem dependent, especially when

considering cases with c1 6= c2.

Chapter 4 107

3. There is theoretical and empirical evidence that the default parameter settings

(which are consistent with the constriction coefficient approach) will not lead to

divergent particle velocities (Poli et al., 2007, p. 37). For this reason, CEPSO

does not include velocity clamping (upper bounds on particle speeds), a device

that appears in other PSO variants. Other parameter settings might cause the

swarms to diverge if velocity clamping is not in place. Note that the introduc-

tion of clamping would effectively introduce a new adjustable parameter, the

maximum speed in each coordinate.

4. CEPSO includes some adaptation of the parameters, where the value of w is

set to a lower or higher value (0.5 or 1.0) depending on the spatial extent of

the swarm. It is not clear how one should modify this adaptation scheme when

exploring different combinations of w, c1 and c2.

Attempts to run CEPSO with arbitrary parameter combinations would, then, require

additional modifications to the algorithm, and any proposed settings would have to

be tested on a wide range of problems. Additionally, the three control parameters

could in principle be varied independently for both swarms. A thorough examination

of these possibilities is beyond the scope of this work.

While it may not be advisable to run CEPSO with arbitrary w, c1, and c2 lev-

els, some theoretical results can be used to suggest reasonable combinations of the

parameters. Poli et al. (2007, section 5) and Engelbrecht (2005, chapter 13) summa-

rize a number of theoretical investigations into swarm dynamics. One useful result

(Engelbrecht, 2005, p. 158) gives the following condition for a convergent swarm,

based on non-stochastic theoretical analyses of swarm dynamics:

0 ≤
1

2
(c1 + c2)− 1 < w < 1.

Setting w = 0.73 to avoid changing the CEPSO adaptation, and maintaining c1 = c2

as in the default case, this leads to

c1 = c2 ∈ [1, 1.73]

Chapter 4 108

1.15

1.2

1.25

1.3

1.35

1.4

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7
Value of c

O
b

je
c
ti
v
e

 f
u

n
c
ti
o

n
 v

a
lu

e

Figure 4.12: Boxplots of final objective function value for 100 CEPSO runs using the
t3 example, for eight values of c.

as a range of plausible c ≡ c1 = c2 values that should be compatible with the existing

CEPSO framework.

To explore how sensitive CEPSO is to changes in c, we can use the same unimodal

t3 example of the preceding section, keeping P = 50 and k = 10 and varying c this

time. The optimization was repeated 100 times each for eight levels of c in the

suggested range: 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, and 1.7. CEPSO was run for 1000

iterations each time.

Figure 4.12 shows, for each level of c, a boxplot of the objective function values

returned by CEPSO. The method appears reasonably robust to changes in c, though

with a slight shift toward worse results at the lowest c values. Figure 4.13 helps to

interpret the practical significance of the differences observed in the box plots. It

shows the best estimate and the pointwise 2.5% and 97.5% percentiles of the sharp-

ened estimates for the worst-performing case, c = 1. Even at a less favorable value of

c, the variation among the estimates is small.

Chapter 4 109

-6 -4 -2 0 2 4 6
0

0.1

0.2

0.3

0.4

x

f(
x
)

Figure 4.13: Best estimate found, and pointwise variation among the estimates, for
the t3 data set with c=1.

4.6 Limitations and Extensions

This chapter presents one way of implementing a particle swarm search for shape-

constrained nonparametric estimation. The main advantage of the proposed algo-

rithm is its broad applicability. Though the demonstrations of the method were

limited to match the scope of this work, CEPSO can be applied not only to KDEs

with different constraints, but also to different estimators, adjustment methods, and

objective functions. The algorithm has only two adjustable parameters, the popula-

tion size and the neighbourhood size, and it can find solutions for constraints that

would be intractable for traditional methods of optimization.

The algorithm is not without limitations, however, and in its present form it

should be viewed as a proof of concept, demonstrating that a general heuristic for

constrained nonparametric estimation is possible. We will now review the current

limitations of the method, together with some possible remedies.

One challenge that limits the number of estimators CEPSO can handle arises

when the estimator includes an equality constraint on the adjustable values. Sum

constraints (of the form
∑n

i=1 si = θ) can be particularly important. The weights in

the estimator f̂W
w , for example, must sum to unity; similarly the coefficients in the

adjustment-curve estimator f̂A
a

(as defined in the next chapter) must sum to zero.

CEPSO in its present form does not work in these cases, because the feasible set C

has zero volume, being of smaller dimension than the search space. Normal CEPSO

Chapter 4 110

moves will never be able to find feasible solutions.

Two possible solutions for this problem have met with some success in limited

testing. An approach used by Paquet and Engelbrecht (2003) involves replacing the

vectors r1 and r2 in the velocity updates by scalar values r1 and r2. Doing this

ensures that all subsequent particle positions will satisfy the sum constraint, as long

as all initial solutions satisfy it as well. Alternatively, each solution can be projected

orthogonally onto the subspace defined by
∑

si = 0, and then θ/n can be added to

each element of s to achieve appropriate sum. This approach permits the normal

swarm dynamics to take place at each move, and maintains the sum constraint with

only a single added step.

Finding feasible starting solutions is another potential difficulty. In some cases

simple ways of constructing feasible solutions will be readily apparent. Kernel density

estimates, for example, can be made to satisfy constraints by putting all points at

the same location (for data sharpening), by making the bandwidths sufficiently large

(for variable bandwidths), or by setting a sufficient number of weights to zero (for

variable weights)—as long as the kernel function itself satisfies the constraints. Few

recommendations for finding feasible solutions can be made in general, however, since

appropriate means of achieving feasibility will vary from problem to problem.

The algorithm does not in principle require feasible solutions to run. In the absence

of feasible starting points both swarms will perform Explore moves until a feasible

particle arises. The wait for this to happen may be impractically long, however, when

the volume of C is small compared to the overall search space.

Another limitation is the potential for inefficiency when the global best solution

or the target are close to the search boundaries. This problem arises, for example,

when some of the optimal weights in a variable-weight estimate are nearly zero. In

such a case, particles in both swarms will spend a high proportion of their time out

of bounds, and better solutions may never be found, or the solution may be improved

only slowly.

Adding penalty functions to the objective could alleviate problems caused by an

excess of infeasible or out-of-bounds particles. Penalty functions would be used to

Chapter 4 111

evaluate approximately how far a solution is from C, allowing infeasible candidates

to be ranked and handled accordingly. The movement of particles in Swarm 2, for

example, could be biased to favor directions of decreasing penalty, making the Explore

moves much more likely to discover feasible solutions. This would also ameliorate the

problem that the Explore moves become increasingly futile as the final optimum

is approached. Another alternative is to include a repair function (one that takes

infeasible solutions and makes them feasible, or takes out-of-bounds particles and

returns them to admissible space). This would also reduce the proportion of moves

wasted on inappropriate solutions.

It may not be possible, of course, to define penalty functions or repair functions

for all scenarios, which is why they have not been considered in the development of

CEPSO to this point. A logical next step in development would be to make such

functions optional user-supplied inputs, and write the swarm movement rules to take

advantage of this extra information when it is available. Alternatively, one could

attempt to solve difficult problems by running CEPSO on a sequence of problems

with successively tightening constraints.

Computational efficiency could be further improved by accelerating convergence

in the later stages of search. A local search step could be added, whereby the personal

best solutions attempt to improve themselves (for example, by moving some coordi-

nates in the direction of t until the constraint boundary is found). It is possible that

the greedy algorithm of Chapter 3 could be useful either as this type of local search,

or as a repair function. Various forms of adaptation could also be considered to better

control the exploration/exploitation trade-off. The neighbourhood size, for instance,

could be changed based on the number of particles that are feasible; the relative sizes

of Swarm 1 and Swarm 2 could be modified; or a different means of adapting the

swarm parameters w, c1, and c2 could used.

A final remark is reserved for the topic of run time. The execution time of the

PSO runs reported here varied from minutes (for the t3 data) to several hours (for

the heart disease data) on a laptop computer. The run time is dominated by the

time required to evaluate the estimator, however. Efficient implementations of the

Chapter 4 112

pilot estimator will result in more efficient constrained estimates. All of the estima-

tors used here (and the PSO code itself) were written in the interpreted MATLAB

language (The Mathworks, Inc., 2007). Run times could be significantly improved if

the estimators were written in a low-level compiled language.

Chapter 5

Optimal Adjustment Curves by

Quadratic Programming

The shape-constrained density estimates developed in this chapter differ from those of

the previous chapters in two important ways. First, the method of shape adjustment

is different: this chapter uses adjustment curves, while the preceding two chapters

used data sharpening. Second, the optimization problems of this chapter are solved

by mathematical programming, rather than by heuristic methods. The adjustment

curve and the objective function are formulated in such a way that several impor-

tant constraints can be expressed as quadratic programs, for which globally optimal

solutions can be found.

5.1 The Method

Let Ψ(x) be the adjustment curve. It is a function used in an additive manner to

correct any constraint violations in the pilot estimate f̂ ◦(x). The proposed estimator

is

f̂A(x) = f̂ ◦(x) + Ψ(x). (5.1)

The goal in constructing Ψ(x) is to bring the estimate into conformance with the

constraints, with minimal modification of the pilot density. For f̂A(x) to be a density,

113

Chapter 5 114

the adjustment curve must preserve the non-negativity and unit area properties of

the pilot estimate. That is,

Ψ(x) ≥ −f̂ ◦(x), ∀x (5.2)

for non-negativity, and
∫ ∞

−∞

Ψ(x)dx = 0 (5.3)

for integration to unity.

The new method is founded on the idea of letting Ψ(x) be a linear combination

of k density functions, ψi(x), i = 1, . . . , k. The ψi(x) are called adjustment densities.

Using this construction, the constrained estimator is

f̂A
a
(x) = f̂ ◦(x) + a1ψ1(x) + a2ψ2(x) + · · ·+ akψk(x)

= f̂ ◦(x) + aTψ(x),
(5.4)

where a = [a1 · · · ak]
T are the coefficients of the combination, and the notation ψ(x) =

[ψ1(x) · · ·ψk(x)]
T allows the estimator to be expressed in convenient vector form.

Estimator (5.4) fits into the general constrained estimation framework of Section 1.2.

The vector of adjustable values to be optimized is a, and the target value, at which

Ψ(x) = 0 everywhere and the pilot estimate is reproduced, is a = 0.

The value of k, and the location and scale of each ψi, determine which Ψ(x)

curves are possible. A proposal for setting up the ψi is given in Section 5.1.3. For

the moment it is sufficient to take the ψi as given, and assume only that they are

arranged such that a solution to the constrained estimation problem exists. The next

section shows how, for an appropriately chosen objective function and constraint, the

globally optimal a can be found using quadratic programming.

5.1.1 A Quadratic Objective and Linear Constraints

A number of possible objective functions could be considered to determine the best

adjustment curve from among all possibilities. A natural choice is to use the L2

Chapter 5 115

distance between a and its target:

L2(a, t) = L2(a) = a
Ta, (5.5)

which takes this particularly simple form since the target is the zero vector. An

alternative is to use the integrated squared error between f̂A
a
and f̂ ◦ as the objective:

ISE(a) =

∫ ∞

−∞

(f̂A(x)− f̂ ◦(x))2dx =

∫ ∞

−∞

aTψ(x)ψ(x)Ta dx. (5.6)

Either of these two objectives are suitable for quadratic programming, as both are

quadratic forms in a. For reasons to be explained in Section 5.1.3, the L2 objective

is used henceforth.

The optimal set of coefficients a∗ can now be defined as the solution to the opti-

mization problem

a∗ = argmin
a∈C

aTa subject to







∑k
i=1 ai = 0

f̂ ◦(g) + aTψ(g) ≥ 0, g ∈ {g1, . . . gG},
(5.7)

where as before, C is the set of coefficients for which the adjusted estimate satisfies

the shape constraints. Two constraints on a are included in (5.7) to ensure that f̂A
a

is a bona fide density. The first is a sum constraint on the ai, ensuring that Ψ(x)

satisfies (5.3) by integrating to zero. The second is a set of G inequalities, effective

at the grid points in g = [g1 · · · gG]
T , to ensure non-negativity as in (5.2).

Except for the requirement that a ∈ C, problem (5.7) is a quadratic program—

it has a quadratic form as its objective function, and constraints that are linear in

a. Quadratic programs can be readily solved in most statistical computing environ-

ments. In the present case the quadratic objective is positive definite, so quadratic

programming (QP) should return the globally optimal solution.

It is shown below that, for several important constraints, the a ∈ C restriction

can also be expressed as a system of linear equalities and inequalities in a, preserving

the favorable QP structure.

Chapter 5 116

5.1.2 Constraints Fitting the QP Framework

Shape constraints are to be imposed by enforcing them at g, a vector of constraint-

checking points, in the same manner as the non-negativity constraint in (5.7). A

reasonable choice is to let g be an evenly-spaced grid of values extending beyond the

minimum and maximum values of x, and consisting of G = 100 points or more (a

default rule for setting G is given in the next section).

The rth derivative of the adjusted estimate, evaluated at gi, is

f̂A
a

(r)(gi) = f̂ ◦(r)(gi) + aψ
(r)(gi),

which is linear in a. Thus any shape constraints involving only linear restrictions

on f̂A
a

or its derivatives will be linear in a, and so expressible in a form suitable for

QP. Enforcing the constraints at all points in g will produce a system of G equalities

or inequalities, each involving k coefficients. Of the univariate constraints given in

Section 2.2, the following can be expressed in this manner.

• M modes, with modes at m1, . . . , mM , and inter-mode minima at u1, . . . , uM−1.

Unimodality is a special case, requiring the only the single point m1 to be

specified.

• b inflections, at v1, . . . , vb. Bell shape (type 1) is a special case of this constraint

with b = 2.

• Two shoulders, with mode at m and inflection points at v1, . . . , v6.

• Bell shape (type 2), with inflections at L and R and inflections of f ′ at v1 < L

and v2 > R.

• Bell shape (type 3), with inflections of f ′ at v1, v2, and v3.

• Monotonic increasing or decreasing on the interval (g1, gG).

• nonnegative support with tolerance ǫ.

• Symmetry with known point of symmetry S and tolerance ǫ.

Chapter 5 117

Appendix B gives the details of setting up such constraints in a manner suitable for

QP software. Also note that it is not difficult to apply multiple constraints from the

above list simultaneously, for example to achieve a symmetric and unimodal estimate.

Most of the above constraints only satisfy the QP structure if one or more im-

portant points such as the mode, point of symmetry, or inflection points are known.

This is exactly the situation encountered when using SQP for data sharpening, as

discussed previously. The need to search for the best combination of the important

points adds complexity to the problem and destroys any guarantee of global optimal-

ity in practical application. Quadratic programming problems possess the advantage,

however, that they may be solved more quickly and with fewer numerical difficulties

than SQP problems. Consequently more effort can be directed toward finding the

best values of the important points, and good constrained estimates can be found as

long as the number of important points is not too large.

The following approach is recommended. Let the number of important points be

r, and label the points from left to right in ordered sequence v1 ≤ v2 ≤ . . . ≤ vr. Let

v0 and vr+1 be lower and upper bounds for the search, respectively. When r = 1, the

best estimate may be found by performing a one-dimensional minimization of the QP

objective as a function of v1, over the interval (v0, v2). For r > 1, a good solution

can be found by iteratively optimizing each vi over (vi−1, vi+1), and stopping when no

improvement can be made. This one-at-a-time approach is summarized in Algorithm

5.1. Any one-dimensional, gradient-free minimizer (such as golden section search)

can be used for the minimization step at line A; each evaluation of OF(vi;v)at that

step requires the quadratic program to be solved for a particular value of vi.

5.1.3 Choosing the Adjustment Densities

The estimator f̂A
a
(x) can be constructed in a manner suitable for solution by QP, but

the quality of the solution obtained (and the existence of a solution in the first place)

depends on the number of adjustment densities used, and on the location and scale

of each. To perform its function well, the adjustment curve should be smooth, but

Chapter 5 118

Algorithm 5.1: A minimizer for selecting r important points (findpoints).

Input: Objective function OF(v); Initial guess v0; bounds v0 and vr+1.
Output: Solution v∗.
Notation: Let OF(vi;v) be the objective viewed as a function of vi only, with
other elements of v fixed.

Set v ← v0

repeat
for i = 1, . . . , r

A Let vi ← the minimizer of OF(vi;v) over bounds (vi−1, vi+1)

until The loop has completed with no changes to v.
Set v∗ ← v

still have a high degree of shape flexibility over the support of the density—enough

that f̂A
a

can take shapes ranging from sharp peaks to completely flat sections. One

way of achieving this is to let the ith adjustment density be a N(µi, σ
2
i) density,

ψi(u) =
1

σi
φ

(

u− µi

σi

)

, (5.8)

which is a particularly convenient choice when f̂ ◦ is a Gaussian KDE. Good perfor-

mance of Ψ(x) can then be ensured by appropriate choices of (µi, σi), i = 1, . . . , k.

Two options appear most natural.

Option 1. Make the ψi equal to the kernel functions used to produce the pilot KDE.

In this option, k = n and the ith adjustment density has parameters µi = xi and

σi = h. In effect, each adjustment density is assigned to one data point and serves

to increase or decrease the contribution of the kernel at that point. With the {ψi}

matched to the KDE in this way, f̂A
a
(x) is

f̂A
a (u) = f̂ ◦(u) +

n
∑

i=1

aiψi(u)

=
1

nh

n
∑

i=1

φ

(

u− xi
h

)

+
n
∑

i=1

ai
h
φ

(

u− xi
h

)

=
1

h

n
∑

i=1

(

1

n
+ ai

)

φ

(

u− xi
h

)

, (5.9)

Chapter 5 119

which is equivalent to the variable-weight estimator f̂W
w (x), with wi =

1
n
+ ai. This

shows that the variable weight estimator can also be found using QP for the con-

straints listed in Section 5.1.2.

Figure 5.1 shows what the estimate looks like using this arrangement of adjustment

densities. The data in the figure are a random sample of size 50 from a lognormal

distribution. The pilot estimate (with h = 0.75hSJ) is trimodal with an outlying

point. Optimal unimodal estimates are shown for both the ISE and L2 objective

functions.

The figure illustrates the advantages of constructing Ψ(x) in this way. The weight

interpretation of a is an advantage in itself. Also, the adjustment curve is able to

perfectly annihilate any unwanted features of the pilot density (as with the outlying

mode in this example), because the adjustment densities are equal to the kernel

functions. Simplicity is another advantage, since k and {µi} are fixed by the data,

and choosing the pilot bandwidth determines {σi}.

Several important disadvantages of this construction are also apparent in the

estimates. First, in some circumstances it may be necessary to give points zero

weight (ai = −
1
n
) in order to find a feasible solution. This is the case for the outlying

point in Figure 5.1. It is not possible for the constrained estimator to extend its

right tail all the way out to this outlier. Second, this method inherits the problem

of variable-weight estimators, that a local adjustment in one region of the curve

may require compensatory adjustment in a distant region. In the figure, this effect

is more obvious when the aTa objective is used. The fact that the two objective

functions produce such different estimates is also discouraging, as both options should

promote selection of solutions that are close to the target (pilot) density. Finally,

the adjustment densities may become unnecessarily concentrated in the high-density

regions of the curve. This becomes increasingly inefficient as n grows, and could cause

ill-conditioning of the coefficient matrices used by the QP solver.

Option 2. Set the ψi to be identical, overlapping densities on a grid.

The second natural choice is to let all the adjustment densities have the same standard

Chapter 5 120

0

0.2

0.4

0.6

0.8

1

f(
x)

Pilot estimate
Unimodal (aT

a)

Unimodal (ISE)

0 0.5 1 1.5 2 2.5 3 3.5
x

Figure 5.1: A density adjusted to satisfy the unimodality constraint, with the ad-
justment densities located at the data points. The top plot shows the pilot estimate
and the unimodal estimates. The bottom plot shows the set of adjustment densities
(scaled down to fit on the plot), with the adjustment curves superimposed.

deviation σ, and locate them on an evenly-spaced grid. Let l and u be lower and upper

bounds for the grid, selected so that (l, u) extends beyond the data in either direction1.

Then the set of densities is fixed by specifying k and σ. As a rule of thumb, it is

proposed to use

k =

⌈

2(u− l)

h

⌉

and σ =
u− l

k − 1
≡ ∆, (5.10)

where ⌈ ⌉ represents the ceiling function and ∆ is the grid spacing. With this rule,

the adjustment densities are centered at µi = l + (i− 1)∆, i = 1, . . . , k.

The logic behind recommendation (5.10) is as follows. Take l and u as given. The

set of adjustment densities must be able to reproduce the pilot pdf to within some

tolerance, otherwise Ψ(x) would not be able to eliminate unwanted features of the

density. So the grid must be dense enough that every data point is close to a grid

point µi. The bandwidth h can be taken as a measure of closeness, so a grid spacing

of approximately h
2
should be sufficient. The grid spacing is ∆ = u−l

k−1
, so ideally one

1Setting l = x(1) − 4h and u = x(n) + 4h would seem reasonable.

Chapter 5 121

would choose
u− l

k − 1
=
h

2
⇒ k =

2(u− l)

h
+ 1.

The value suggested in (5.10) results by noting that 2(u− l)/h≫ 1 and that k must

be an integer.

With the values of k and ∆ thus determined, we set σ = ∆ to ensure that the ψi(x)

overlap to an appropriate degree. A trade-off exists in the choice of σ. If it is made

too large, the adjustment densities will overlap too much, and the adjustment curve

will be too smooth—unable to make rapid local changes of shape. The numerical

performance and speed of the QP solver is also adversely affected in this case. If σ

is too small, on the other hand, the adjustment curve (or its derivatives, which are

used in the constraints) will be insufficiently smooth, and the solver might not be

able to find a solution. Experience has shown that setting σ = ∆ provides a good

compromise between these two extremes.

Figure 5.2 demonstrates the results of this construction of Ψ(x) on the lognormal-

data example of Figure 5.1. In this case the adjustments to the pilot density are con-

fined to those regions near the constraint violations, and the adjusted estimate does

extend out to the outlying point. Also, the two different objective functions return

nearly indistinguishable solutions. This is a consequence of defining the adjustment

densities in this way, and the agreement between ISE(a) and L2(a) improves as n or

k grow (see Appendix B). Given these appealing characteristics, the grid construction

for Ψ(x) with rule of thumb (5.10) is used from this point forward.

When using this rule of thumb for setting up the adjustment densities, it is also

important to ensure that G, the number of constraint checking points, is sufficiently

large. If G is too small, then some adjustment densities might fall between points

in g, and the corresponding a values will have no influence on the constraints inside

the QP solver. This can lead to solutions with unintended constraint violations. A

default setting of G = 2k is recommended to avoid this problem. This default is used

in all of the examples and simulations to follow.

Chapter 5 122

0

0.2

0.4

0.6

0.8

1

f(
x)

Pilot estimate
Unimodal (aT

a)

Unimodal (ISE)

0 0.5 1 1.5 2 2.5 3 3.5
x

Figure 5.2: The example of Figure 5.1, but with the adjustment densities located on
a grid. The rule of thumb (5.10) chose k = 60 for these data.

5.2 Examples

The characteristics of f̂A
a
may be further explored using the wind speed data set. The

estimator can also be used on bivariate data, as demonstrated on the heart disease

data.

5.2.1 Wind Speed Data

Figure 5.3 shows the pilot and shape-adjusted estimates for the wind speed data at

four different bandwidths. The operative constraints in the figure are unimodality and

nonnegative support (the density was restricted to be less than 10−6 for x < 0). The

constrained estimates’ mode locations were chosen to minimize the aTa objective; in

all cases the constrained mode matched the location of the highest mode in the pilot

estimate.

For each pilot bandwidth, the estimator achieves unimodality by flattening out

the density across any constraint violations. The estimate looks increasingly like a

step function as h gets smaller and the number of constraint violations grow. This

illustrates how f̂A does not necessarily inherit the smoothness of the pilot KDE,

because the adjustment curve operates over the whole line, and not just at the data

points. Such behaviour is in contrast with the data sharpening estimator f̂M , which

Chapter 5 123

0 20
0

0.05

0.1

0.15
h = hSJ

−l = 157.5

0 20

h = 0.75hSJ

−l = 156.2

0 20

h = 0.5hSJ

−l = 154.8

0 20

h = 0.25hSJ

−l = 153.1

Figure 5.3: Unimodal estimates for the wind speed data at different bandwidths,
using the method of adjustment curves. Each plot shows the pilot estimate (grey)
and the adjusted estimate (black). Labels on the plots give the bandwidth and the
negative log likelihood of the data under the estimate.

is just as smooth as the pilot estimate because it uses the same bandwidth. When

using an adjustment curve, then, we can expect the choice of constraints to play a

bigger role in determining the qualitative smoothness of the estimate than it would

with another approach to shape adjustment.

This example also demonstrates a case where the proposed hML bandwidth will

not work well. As h gets smaller, the adjustment curve gets increasingly more shape

flexible, allowing the constrained estimate to have sharp spikes. Consequently the

pseudo-likelihood used to choose hML keeps growing as h is decreased (the negative

log-likelihood values are shown in the figure). This problem could be solved either by

using a more restrictive shape constraint or by changing the way Ψ(x) is constructed—

putting an upper bound on k, or a lower bound on σ, or using the weighted KDE

arrangement, for example.

The bell-shaped constraints are an example of more restrictive criteria that should

produce smoother estimates. Figure 5.4 shows the bell-shaped estimates of type 1,

2, and 3, each with pilot bandwidth hML. For each estimate, the optimal bandwidth

was determined by line search over a the range [0.2hOS, hOS], where hOS is the over-

smoothed bandwidth (equation 2.11). At each candidate bandwidth the best choices

of inflection points for each estimate were found using Algorithm 5.1. Interestingly,

the three estimates are nearly identical, despite the differences in their pilot band-

Chapter 5 124

0 10 20 30
0

0.05

0.1

0.15 hM L = 0.53

0 10 20 30

hM L = 0.72

0 10 20 30

hM L = 0.91

Figure 5.4: Bell shaped estimates for the wind speed data, with hML bandwidths.
Estimates are type 1, 2, and 3 bell shaped, from left to right. Each plot shows the
pilot estimate (grey) and the adjusted estimate (black).

widths. The main discernible changes among them are slight differences in the shape

of the right tail.

5.2.2 Heart Disease Data

The estimator f̂A
a

is in principle easily extended to higher dimensions. If a d-

dimensional estimate is required, one only needs to define the k adjustment densities

ψi as d-variate functions. The constrained estimator is still linear in a, and a is still

a k× 1 vector. Practical implementation of the method in d dimensions involves two

significant complications, however.

The first difficulty is the potential explosion in the number of adjustment densities

and constraint-checking points required as d increases. In the univariate case, it was

recommended to create a grid of k adjustment densities with a second grid of G = 2k

points used to evaluate the constraints. The size of the system of inequalities in

the QP problem will quickly become unmanageable if this strategy is expanded to

placing the ψi and gi on d-dimensional rectangular meshes. The number of adjustment

densities can be reduced to n (with a trade-off in estimator flexibility) by reverting

to the weighted-KDE arrangement, but there is little that can be done about the

number of constraint-checking points, unless moderate constraint violations can be

accepted.

Chapter 5 125

The size of the system of inequalities is a problem of computational capacity, but

a more fundamental problem is whether higher-dimensional shape constraints can be

expressed as linear inequalities in a. Simple univariate constraints like unimodal-

ity or bell shape do not necessarily translate easily to higher dimensions, and more

complex restrictions like unimodal conditional distributions are difficult to express

mathematically without assuming that many important points are pre-specified.

Despite these difficulties, some progress can be made. The heart disease data

is bivariate, and for d = 2 it is still possible to put the adjustment densities and

constraint-checking points on a mesh without exceeding the capacities of a typical

personal computer. Also, one multivariate constraint that can be implemented using

QP is star unimodality (Constraint 13). This constraint specifies that the density is

decreasing along all rays emanating from the mode location m. When m is taken

as known, the directional derivative of f̂A
a
(x) along the ray from m to gi can be

expressed as a function that is linear in a (see Appendix B). The constraint can be

implemented by establishing a set of constraint-enforcement points {gi}, and requiring

the directional derivative to be negative at all elements of the set.

Figure 5.5 shows the star unimodal estimator. The adjustment surface was con-

structed using a 20 × 20 grid of independent bivariate normal distributions, with

component standard deviations equal to the grid spacing. The constraint was en-

forced at a 35×35 grid of points. As with previous estimates on this normalized data

set, the kernel function for the pilot was an uncorrelated bivariate normal density

with covariance matrix h2I. The bandwidth was set to h = 0.23, which maximized

the pseudo-likelihood criterion of section 2.4.2. Applying the constraint does improve

the qualitative smoothness of the estimate, though the constrained estimate becomes

star-shaped, as the name of the constraint implies. The adjusted estimate has one

visible violation of the constraint (noted by an arrow in the figure). Increasing the

density of the grid would eliminate such artifacts, at the cost of longer run time.

The estimate in Figure 5.5 was obtained in approximately 30 seconds on a laptop

computer.

Chapter 5 126

−2 −1 0 1 2 3
−2

−1

0

1

2

3

4

SBP

LD
L

SBP
−2 −1 0 1 2 3

Figure 5.5: Pilot density estimate (left) and star unimodal estimate (right) for the
heart disease data. The bandwidth used was h = hML = 0.23, and the highest
mode of the pilot density (labelled by a star) was used as the mode for the adjusted
estimate.

5.3 Simulation Studies

A simulation study was performed to observe how the addition of different shape

constraints influence the quality of estimation afforded by the univariate Gaussian

KDE. Data sets for the simulation were drawn from the t distribution with 3 degrees

of freedom, with n = 50. For each of 260 draws, the f̂A
a

estimator was calculated

using the following five constraints:

1) no constraint,

2) unimodal,

3) unimodal and symmetric,

4) type 1 bell shape,

5) type 1 bell shape and symmetric around zero.

Each constraint was enforced using 10 different pilot bandwidths, evenly spaced be-

tween 0.2 and 0.8. In total, 13000 estimates were calculated (all combinations of 260

data sets, five constraints, and 10 bandwidths).

Note that unimodality, bell shape, symmetry, and symmetry around zero are

all true characteristics of the t densities, so each of the constraints introduces valid

Chapter 5 127

auxiliary information that should enhance estimation performance. The main goal

of the study was to observe whether the different constraints, which include different

amounts of auxiliary information, produce appreciable differences in mean estimation

quality and bandwidth sensitivity. The method of adjustment curves is well suited

to this goal because it can handle a range of possible constraints (unlike the greedy

algorithm) and still executes quickly (unlike the CEPSO algorithm).

The results of the study are summarized in Figure 5.6, which shows the mean val-

ues of the TV and ISE distances between the estimates and the truth, as a function

of h, for each constraint. The horizontal dashed line on each plot shows the mean

value of the appropriate distance when each unconstrained KDE was computed with

an oracle2 bandwidth selector—the bandwidth that actually minimizes the distance

between the estimate and the truth. Performance with the oracle bandwidth repre-

sents the best possible performance of an unconstrained KDE, and provides a useful

reference point.

The results suggest that adding constraints does improve performance and reduce

bandwidth sensitivity. The constraints involving more qualitative information yield

greater improvements. The symmetric and bell shaped estimator performed partic-

ularly well, likely because the correct point of symmetry (zero) was supplied to this

estimator. It should also be noted that the optimal bandwidth is largest for the

unconstrained estimate, and becomes smaller as better constrained estimators are

used.

One way to understand these observations is in terms of the partitioning of point-

wise mean squared error (MSE) into bias and variance terms. Using a smaller band-

width reduces bias, but increases the variance of the pilot estimate. Enforcing the

constraint should allow the adjusted estimator to damp out much of this increased

variance, with a resulting improvement in MSE. This line of reasoning corrobo-

rates the idea that MISE-optimal bandwidths may be smaller when constraints are

imposed than in the unconstrained case.

2A term used in model selection studies for selectors that operate with knowledge of the true
model. See, e.g., Fan and Li (2001).

Chapter 5 128

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.06

0.08

0.1

0.12

0.14

0.16

0.18

U

B

SU

SB

h

T
V

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.005

0.01

0.015

0.02

0.025

U

B

SU

SB

h

IS
E

Figure 5.6: Statistical performance of constrained estimates using f̂A
a
. The thick

line is the result for the pilot estimator. Labels on the other four lines indicate
the operative constraints: U for unimodality, B for bell shape, and S for symmetry.
The dotted horizontal lines give the performance of the unconstrained estimator with
oracle bandwidth. Typical standard errors for the points in the plot are 0.002 for
TV , and 0.0004 for ISE.

The simulation also provides information on typical run times required to obtain

constrained estimates. Figure 5.7 plots the median run time as a function of h and

the constraint type. The run times in the plot reflect the combined effects of two

factors: the size of the system of inequalities necessary to enforce the constraints,

and the repetitions required to find the best inflection or mode points. The system of

inequalities becomes larger as h gets smaller (a consequence of the default construction

of the adjustment curve), and also becomes larger when the symmetry constraint is

added. The bell-shaped constraint requires two fixed points to be selected, while

unimodality only requires one. Figure 5.6 suggests optimal bandwidths fall in the

range (0.4, 0.6). In this range, estimates can typically be obtained in 30 seconds or

less even for the symmetric and bell-shaped estimator.

5.4 Limitations and Extensions

The method of adjustment curves has some attractive features, foremost of which is

the ability to use fast and reliable quadratic programming routines to obtain certain

types of constrained estimates. In addition, the shape adjustment may be designed by

Chapter 5 129

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

20

40

60

80

100

U

B

SU

SB

h
T

im
e

(s
)

Figure 5.7: Median run times for the adjustment curve estimates. Line labels are the
same as in Figure 5.6. The unconstrained estimate is not shown because its run times
are too close to zero (typically 0.007s).

the user, and is not coupled to the form of the estimator, as it is for f̂M , f̂W , and f̂B.

This offers potentially greater flexibility in determining the constrained estimator’s

characteristics, and opens up a number of avenues for refinement or expansion of the

method. Several such ideas are summarized here.

• The method of constructing the adjustment curve is open to alteration. One

obvious change is to use adjustment densities that are compactly supported.

Alternatively, it may be possible to define ai to be the height of the adjustment

curve at point µi, and to define ψ(x) as a curve that interpolates these points.

Such changes might simplify the construction of Ψ(x) or improve numerical

performance.

• Two options for placement of the adjustment densities were proposed in this

chapter: putting them at the data locations, or putting them on a grid. An

adaptive or hybrid method of locating the adjustment densities could be pro-

posed, that combines the advantages of both options by putting more densities

in data-rich regions, and a regular grid of densities in data-poor regions.

• In addition to strict shape constraints, penalty terms can be added to the objec-

tive function of (5.7) to further control the shape of f̂A(x). Similar to penalties

in functional data analysis, these terms could be used to penalize roughness or

Chapter 5 130

to encourage the estimate to move toward a certain parametric form. Impor-

tantly, the objective function is still a quadratic form with such penalties, so

QP can still be used to find the estimates. This is a strength of the proposed

method, since similar function estimation approaches involve more complicated

optimizations not so routinely solved (e.g. Ramsay and Silverman, 2005, sec.

6.6). Taking the unimodal estimates of Figure 5.3 as an example, a roughness

penalty could be used to resolve the problem of spikes in the constrained esti-

mates (which would also allow hML to be used). Appendix B gives an example

of how a roughness penalty can be set up.

• Many shape constraints are actually restrictions on the derivatives of the es-

timate. It may be possible to apply the adjustment curve to the appropriate

derivative of the KDE rather than to the KDE itself. This approach could be

expected to give better numerical stability and smoother density estimates, but

more sophisticated optimization might be required.

• Quadratically constrained quadratic programming (QCQP) is a different con-

vex programming method that allows the constraints, not just the objective

function, to be quadratic forms. If QCQP solvers are available, additional con-

straints could be handled without resorting to heuristic methods. In particular,

the nearly parametric constraint (with distance measured by integrated squared

error) could be solved.

• Exploring better numerical methods could lead to improvements in the ability

to handle higher-dimensional problems. The optimization problem has a sparse-

ness property, since kernel functions and adjustment densities distant from any

x will not influence the estimate at x. Methods that work locally near a given

x might be able to expand the range of problems that are practicable.

• It should be possible to adapt the adjustment curve approach to constrained

nonparametric regression problems. Because the adjustment curve does not

directly depend on the data, it may be easier to find an optimal adjustment

Chapter 5 131

than to constrain the regression estimator directly.

This chapter has focused solely on the use of adjustment curves with problems for

which QP can be used to find solutions. It is important to note that f̂A
a
is not limited

to these cases, however. As long as a sufficiently effective optimizer is available, other

constraints could be satisfied by this adjustment method. To that end, a potentially

fruitful option is to use the CEPSO optimizer of Chapter 4 to find good values of a

for constraints that do not meet the QP requirements.

Chapter 6

Conclusions and Further Work

A number of new contributions were introduced in the preceding chapters. Heuristic

optimization algorithms improve, ILSimprove, and CEPSO were proposed for solving

difficult shape-constrained estimation problems. These heuristics were successfully

demonstrated on data sharpening problems, though they have the potential to work

with other forms of shape adjustment as well. A new method of shape adjustment, the

additive adjustment curve, was also developed. This form of adjustment has consid-

erable appeal because globally optimal solutions can be found for many constraints

when it is used. Other new ideas appeared alongside the optimization methods.

Several new constraints were proposed, a new distance function (RCγ) was used to

improve the numerical performance of SQP, and a new quantity hML was introduced

as a workable bandwidth selector that accounts for shape restrictions.

The limitations and possible extensions of the new methods have already been

discussed in Chapters 3, 4, and 5. Rather than reiterating them here, we will consider

the results of this work as a whole. The possibilities for application of the tools in

their present form are discussed first, followed by thoughts on the most important

areas for future work.

132

Chapter 6 133

6.1 Why, When, and How to Use the Methods

The advantages of shape-restricted nonparametric estimation have been demonstrated

throughout the thesis. When constraints are expressed as black box functions, mod-

elling assumptions can be tailored to more closely reflect the particular circumstances

of an analysis. Constraints can be used when there are theoretically-motivated rea-

sons to do so, but even in the absence of a theoretical basis, constrained estimation

can augment or improve the way a nonparametric estimator achieves its smoothness.

An appropriately-chosen constraint can influence the amount of smoothing that takes

place in different parts of the estimate, or reduce an estimator’s sensitivity to the val-

ues of its smoothing parameters.

In their current state of development, the optimization algorithms of chapters

3, 4, and 5 allow pointwise estimation of shape-constrained densities in one or two

dimensions (though higher-dimensional estimation may be feasible in some cases).

Interval estimation has not been considered. Because of this the methods are most

likely to be useful in exploratory data analysis and data visualization, where low-

dimensional density plotting and qualitative interpretation of results are important

activities. Fortunately this is a significant application of density estimation in prac-

tice. Constraints are also particularly useful when the sample size is small. In small-n

problems, the effect of sampling variation can be large enough to drastically influence

the qualitative characteristics of an estimate. Shape constraints provide a way to use

auxiliary information to reduce this effect.

The three main optimizers developed in previous chapters are improve, CEPSO,

and the adjustment-curve method using quadratic programming. A formal compar-

ison of these optimizers’ performance has not been conducted. The main reason for

this is the lack of overlap in the typical use for each approach. Given a data set and

a constraint to impose on a density estimate, the best optimization method can be

chosen in the following manner:

1. If the adjustment-curve estimator f̂A
a
(x) is acceptable and the constraint is

among those suitable for quadratic programming, use the methods of Chapter 5.

Chapter 6 134

In this combination of circumstances the calculation will be fast and the global

optimum solution will be found1, so there is no reason to consider alternative

methods.

2. If the data sharpening estimator f̂M
y (x) is preferred, the objective function is the

Lα type, and the constraint is univariate unimodality, either improve or CEPSO

can be used. Though both methods will run quickly, the greedy algorithm will

usually be faster, so it would be preferred when run time is a priority (e.g., in

a simulation study).

3. In all other situations, use CEPSO.

The ILSimprove function has not been included in this list. It would be an alternative

for any problem otherwise solved by CEPSO, but insufficient testing has been per-

formed to determine whether its performance is actually competitive with CEPSO.

Also, if the f̂W
w (x) or f̂A

a
(x) estimators are to be used with CEPSO, additional modifi-

cations would be required to handle the sum constraints on the adjustable parameters

(as discussed in Section 4.6).

6.2 Areas for Further Improvement

The most important open tasks suggested by this work can be grouped into three

areas: general improvements to the methodology, improvements specific to density

estimation, and extension of the methods to regression problems.

Methodological improvements

The ultimate goal toward which this thesis is working is a general-purpose constrained

estimation optimizer that can find good solutions for problems with any combination

of estimator, constraint, adjustment method, and objective function. The improve

algorithm is not sufficiently adaptable to meet this goal, owing to its greedy design and

its implicit use of the Lα objective function. The quadratic programming methods

1As described in Section 5.1.2, global optimality is contingent on finding the optimal locations of
certain important points (mode, inflection points, etc.) required as inputs to the QP solver.

Chapter 6 135

of Chapter 5 are inherently limited to problems using adjustment curves (or variable

weights, in the cases where these two adjustment methods are equivalent). So it is the

CEPSO algorithm that holds the most promise for becoming a truly general optimizer

for constrained estimation.

Even in its present form, CEPSO can be applied in a wider range of situations

than those considered in Chapter 4. This includes problems involving variable KDEs,

weighted KDEs, and regression estimators (see Wolters, 2011, for examples). Still,

the extensions proposed at the end of Chapter 4 are important to improve the al-

gorithm’s performance and expand its applicability. Finalizing a means of handling

sum-constrained adjustable values, for example, will make it a routine matter to use

different adjustment methods (including all four adjustments proposed for KDEs:

f̂M , f̂W , f̂B, and f̂A). Other performance enhancements such as repair functions,

penalty functions, or local improvement steps will likely be required to achieve reliable

performance over the widest range of problems.

Two outstanding concerns of a statistical nature form an avenue for improvement

completely separate from optimization questions. The first concern is uncertainty as-

sessment (interval estimation) for shape-constrained estimators. This is an especially

important topic in regression problems, where one is more likely to have inference as

a goal of the analysis. The second is establishing a means for testing the validity of

a shape constraint. Having a sufficiently powerful test for the truth of an arbitrary

shape constraint would help build confidence in constrained estimation. It could also

open up a new range of applications for constrained estimation, since the validity of

the constraint is often a question of considerable interest in its own right (as when

testing for unimodality of a density, for example). There are prior results in this area

upon which to build. Du et al. (2010) and Cule et al. (2010), for example, suggest

resampling-based methods for the constraints that they treat in their work.

Density estimation problems

The variable-bandwidth estimator f̂B was not examined in the preceding chapters,

and it does not appear to have received attention in the constrained estimation litera-

Chapter 6 136

ture. Nevertheless, it offers some enticing advantages that give it considerable poten-

tial in the continued development of shape-constrained density estimation. Foremost

among these is the possibility of eliminating bandwidth selection from the estimation

process. Another advantage is the ability to adapt the density’s smoothness locally,

which could be especially beneficial for eliminating spurious modes in a density’s tails.

It is not clear whether these advantages would correspond to improved estimation in

the MISE sense (Farmen and Marron, 1999, studied variable bandwidth KDEs in

the unconstrained case and found little improvement over hSJ), but the possibility is

worth further study.

Regression problems

The methods of this thesis could open new opportunities in shape constrained re-

gression problems. The number of inflection points in a nonparametric regression

estimate, for example, could be used as a type of smoothing parameter. An estimate

with a controlled number of inflections would have a restricted number of peaks and

valleys, but at the local scale any of its peaks or valleys could have high curvature if

the data demanded it. Or a model of the probability of success in a binary-response

problem could be constrained to have exactly one inflection point, as a more flexible

alternative to parametric options like logistic regression.

While there is no immediate barrier to applying CEPSO to regression problems,

more work must be done to explore its capabilities and to identify problem-specific

difficulties. The problem of finding feasible initial solutions, for example, is more

challenging in regression than in the density estimation case. In regression, the strat-

egy of reproducing the kernel function by putting all points at the same location is

not available. For some constraints it could be difficult to find even a single feasible

starting point. A reliable means of finding feasible solutions would therefore be of

great benefit.

Another important question for future work is whether and how the adjustment

curve approach can be extended to the regression case. Changes to the construc-

tion of the adjustment curve would probably be sensible, since a linear combination

Chapter 6 137

of density functions might not be the best choice outside of the density estimation

context. Different constraints would have to be considered in conjunction with the ad-

justment curve, to see whether any interesting problems could be solved by quadratic

programming. The only major differences between regression and density estimation

are the non-negativity and unit-integral restrictions, however, and these can easily be

removed from the adjustment curve. So there is reason to believe that the method

could be fruitfully implemented.

Appendix A

Bandwidth Selection Simulation

Study

A simulation study was performed to investigate the performance of different band-

width selectors in shape-constrained density estimation. The same data sets generated

for the simulation of Section 3.3 were used: 250 replications for each combination of

two densities (t3 or mixture, as shown in Figure 3.7) and three sample sizes (25, 50,

or 100). Unimodality was taken as the operative constraint, and data sharpening was

used as the method of shape adjustment. The greedy algorithm (Algorithm 3.1) was

used to find the unimodal estimates.

Three bandwidth selectors were considered:

The proposed pseudo-likelihood bandwidth, hML (equation 2.16).

The Sheather-Jones bandwidth hSJ (equation 2.12).

The likelihood cross-validation bandwidth hLCV a (equation 2.15).

Bandwidth hSJ was calculated from the unsharpened data prior to sharpening. This

bandwidth, well established in the unconstrained case, can serve as a reference value

for the other two bandwidths. For hML, the bandwidth was selected by line search

over the possible h values, with sharpening performed at each candidate h. Line

search was also used for hLCV a, with cross-validation carried out separately at each

candidate h. Both line searches were carried out over the interval [0.01, 1.5]hOS, using

golden section search (see, e.g. Lange, 2010, p. 67).

138

Appendix A 139

−1 0 1 2 3 4 5

−1

0

1

2

3

4

5

h
ML

h LC
V

a

t
3

−1 0 1 2 3 4 5

−1

0

1

2

3

4

5

h
ML

h LC
V

a

mixture

Figure A.1: Scatter plot of hLCV a versus hML for the simulation runs. The value of
hSJ has been subtracted from each bandwidth. The left and right plots show the t3
and mixture distribution cases, respectively. The 1:1 lines are also shown.

A summary of the results is shown in Figure A.1. The values of (hLCV a−hSJ) and

(hML − hSJ) are plotted against one another in two scatter plots, one for each true

density. The relative magnitudes of hLCV a and hML may be compared by observing

which side of the 1:1 line the points fall on. Points above the line have hLCV a > hML,

and points below it have hML > hLCV a. To compare either of the other bandwidths

to hSJ , the marginal distribution of points can be observed. Points close to zero

represent cases where the selected bandwidth is close to hSJ .

Applying these rules of interpretation to the two plots shows that likelihood cross-

validation typically smoothed the density estimates more than the pseudo-likelihood

method: hLCV a was greater than or equal to hML in almost all cases, for both true

densities. For samples from the heavier-tailed t3 density, both hLCV a and hML usu-

ally selected bandwidths larger than hSJ . For the mixture cases, hLCV a selected a

bandwidth smaller than hSJ about half of the time, while hML was less than hSJ in

most of the samples.

Figure A.2 shows the unimodal density estimates constructed using the three com-

peting bandwidths, for nine randomly-selected simulation runs. The plots illustrate

that hLCV a is most sensitive to outliers, while hML has this property to a lesser extent.

Appendix A 140

1 t3, n = 25 2 t3, n = 100 3 t3, n = 100

4 t3, n = 100 5 mix, n = 25 6 mix, n = 25

7 mix, n = 50 8 mix, n = 100 9 mix, n = 100

Figure A.2: Unimodal density estimates using hML (solid line), hLCV a (dashed line),
and hSJ (thick grey line), for nine randomly selected simulation runs. The labels
on each plot indicate the true density and sample size. The unsharpened data are
plotted on the horizontal axis.

When there are not extreme outliers, hML tends to select smaller bandwidths that

create sharper peaks over regions of high density.

The overall performance of each bandwidth can be evaluated by integrated mea-

sures of estimation accuracy. Table A.1 gives simulation averages of two such mea-

sures, the total variation (equation 2.8) and the integrated squared error (equation

2.6), for the six combinations of density and sample size. The conclusions are the

same for both TV and ISE. The pseudo-likelihood and cross-validation selectors

each performed worse than hSJ on the t3 cases, with hLCV a showing particularly poor

results. For the mixture cases, hML was the best bandwidth, with hSJ and hLCV a

approximately equal. The relative standing of the selectors was unaffected by sample

size, though the estimation accuracy naturally improved as n increased.

The absolute performance of each bandwidth can be evaluated using the perfor-

mance of the oracle bandwidth (the best bandwidth possible, given knowledge of the

true density, as used in Section 5.3) as a benchmark. Table A.1 also includes average

Appendix A 141

Table A.1: Sample mean of TV and ISE distances from the truth.

TV 10× ISE

Case hSJ hML hLCV a hOr

U
hOr

C
hSJ hML hLCV a hOr

U
hOr

C

t3, n = 25 .149 .173 .209 .131 .119 .165 .231 .319 .128 .116
t3, n = 50 .114 .140 .165 .102 .095 .100 .158 .214 .078 .073
t3, n = 100 .091 .120 .140 .084 .079 .063 .123 .160 .054 .051

mixture, n = 25 .173 .156 .175 .168 .143 .182 .143 .179 .159 .124
mixture, n = 50 .140 .124 .139 .136 .114 .125 .093 .123 .104 .080
mixture, n = 100 .111 .097 .111 .108 .090 .080 .055 .081 .063 .052

Note: the standard error of the estimate is less than 0.0057 for all TV entries and less than 0.0152 for all
10× ISE entries.

TV and ISE values for two oracle estimators. The column labelled hOr
U gives results

for the unconstrained KDE with the oracle bandwidth selector—the best possible

pilot estimator. The column labelled hOr
C shows results for the constrained estimate

with oracle bandwidth. The values in this column are the best results achievable

with any bandwidth selector when the improve algorithm is used to perform data

sharpening. Oracle bandwidth values were found using golden section search in the

same way as the other bandwidths.

The performance measures for hOr
U can be thought of as reasonable targets for

the performance of a constrained estimator. If the constraint confers an accuracy

advantage, it is reasonable to hope to estimate the truth as well as the best possible

unconstrained estimate. At the same time, the hOr
C results define a bound on the

amount of improvement that can be achieved. For the t3 problems, for example,

hOr
U and hOr

C give nearly equal performance, especially for the two largest sample

sizes. In this case we can not expect constrained estimation to have much effect

on these summary measures, regardless of bandwidth selector. It is perhaps not

surprising, then, that none of the three competing bandwidth selectors was able to

outperform hOr
U . Other constraints or adjustment methods could perhaps offer greater

improvements.

For the mixture problems, the difference between unconstrained and constrained

oracle estimates was larger, suggesting that there is greater potential for gains in

estimation performance. Still, neither hSJ nor hLCV a was able to outperform the

unconstrained oracle estimator. Only hML showed some improvement. Estimates

Appendix A 142

based on hML had average TV and ISE performance approximately midway between

that of hOr
U and hOr

C for all sample sizes.

Figure A.3 provides another view of statistical performance by showing the point-

wise bias-variance decomposition of the density estimates obtained using each band-

width. The figure contains one sub-plot for each simulation case. Each plot shows,

as a function of x, three envelopes, one for each bandwidth option. Each envelope

consists of two lines. The upper line is the mean squared error, and the lower line is

the squared bias. The gap between the two lines shows the magnitude of the variance.

The information in this figure corroborates the results already discussed. In the t3

samples, outlier-induced oversmoothing has led hML and hLCV a to poorly estimate

both the peak (underestimation) and the tails (overestimation) of the density, relative

to hSJ . Likelihood cross-validation shows a particularly high bias at the peak. The

pseudo-likelihood bandwidth does a much better job of estimating the peak in the

mixture cases than either of the other bandwidths.

The results presented here underscore the difficulty in making a general recom-

mendation for bandwidth selection. It appears, on one hand, that reasonable per-

formance can be achieved when using an established bandwidth selector like hSJ for

shape-adjusted estimation. On the other hand, it is also clear that there is potential

for performance improvement using a bandwidth selector that accounts for the shape

adjustment. The simulation suggests that the pseudo-likelihood bandwidth hML is a

promising choice, particularly when the density to be estimated is not heavy-tailed.

Appendix A 143

t
3
 Case

truth

Mixture Case

Figure A.3: Pointwise decomposition of MSE for the six simulation cases. The two
top plots show the densities being estimated. The rest of the plots show one envelope
for each bandwidth choice. The lower bound of each envelope is the squared bias,
and the upper bound is the MSE. Each plot has been scaled independently to fill
its axes.

Appendix B

Example Quadratic Programs

The general form of a quadratic program is as follows. Minimize the quadratic ob-

jective function

aTHa+ vTa, (B.1)

subject to linear equality and inequality constraints

Aa ≤ b (B.2)

Aeqa = beq. (B.3)

Here a is the k-vector of adjustment coefficients in the estimator f̂A
a
(x) = f̂ ◦(x) +

aTψ(x). Recall that ψ(x) = [ψ1(x) · · · ψk(x)]
T is the vector collecting the values

of all adjustment densities at x. The other quantities H, v, A, b, Aeq, and beq are

appropriately-sized matrices and vectors of constants that depend on the pilot estima-

tor, the chosen constraints and the way Ψ(x) is defined. This appendix demonstrates

how to determine these quantities for three instances:

1. A problem with symmetry and unimodality constraints.

2. The case where a penalty is added to the objective function to control the

roughness of the final estimate.

3. The bivariate star unimodality case.

144

Appendix B 145

The other constraints listed in Chapter 5 can be set up in a manner similar to these.

A Symmetric and Unimodal Estimator

We will consider how to construct the objective function, the equality constraints,

and the inequality constraints. The system of inequalities (B.2) must include three

shape restrictions: non-negativity, unimodality, and symmetry. So the matrix A and

vector b are each partitioned into three parts,

A =











A1

A2

A3











and b =











b1

b2

b3











, (B.4)

with each submatrix/subvector handling one constraint.

The Objective Function

Two possible objectives were mentioned in Chapter 5: the L2 objective a
Ta, and the

ISE objective
∫∞

−∞
aTψ(x)ψ(x)Ta dx. The L2 objective leads to a simple form of

(B.1):

L2 Objective

Minimize aTHa+ vTa,

where H = Ik, v = 0, and Ik is the k × k identity matrix.

The ISE objective can be approximated using the trapezoidal rule with the function

evaluated at the constraint-checking points g = [g1 . . . gG]
T , yielding

ISE(a) ≈
gG − g1
2(G− 1)

[

aT

(

D1 +DG + 2

G−1
∑

l=2

Dl

)

a

]

∝ aTDa, (B.5)

where Dl = ψ(gl)ψ(gl)
T is a k×k matrix. Thus the ISE objective may be expressed

as follows.

Appendix B 146

ISE Objective

Minimize aTHa+ vTa,

where H = D as defined in (B.5), and v = 0.

The form of the ISE objective allows us to see why the two objectives give such

similar results when the {ψi} and g are chosen by the default method described

in Section 5.1.3. With the ISE objective, the matrix H is a sum of G matrices

of the form Dl = ψ(gl)ψ(gl)
T , and the (i, j)th element of Dl is ψi(gl)ψj(gl). This

product will only be non-negligible if ψi and ψj are near each other; consequently

Dl (and H) will take large values only on the main diagonal and the first few sub-

and super-diagonals, regardless of k. When k is sufficiently large, H behaves for the

purposes of optimization much like an identity matrix, and the two objectives are

nearly equivalent.

Constraints to Ensure the Estimate is a Density

The constraint that the density estimate integrate to one leads to a restriction that

the ai must sum to zero.

Unit area restriction

Require Aeqa = beq, where Aeq = 1T
k , beq = 0, and 1k is a k-vector of ones.

The non-negativity constraint is enforced at the points in g and results in a system

of G inequalities. At the point gl, the inequality is f̂ ◦(gl) + ψ(gl)
Ta ≥ 0, and this

leads to the following system.

Appendix B 147

Non-negativity constraint

Require A1a ≤ b1, where

A1
G×k

= −











ψ(g1)
T

...

ψ(gG)
T











and b1 =











f̂ ◦(g1)
...

f̂ ◦(gG)











.

Shape Constraints

The first shape constraint is unimodality with mode m (which is taken as known and

fixed). Considering the constraint-checking points, we require the first derivative to

satisfy

f̂ ◦′(gl) +ψ
′(gl)

Ta







≥ 0, gl ≤ m

≤ 0, gl ≥ m
, (B.6)

or, equivalently,

−ψ′(gl)
Ta ≤ f̂ ◦′(gl) when gl ≤ m

ψ′(gl)
Ta ≤ −f̂ ◦′(gl) when gl ≥ m.

The two inequalities above differ only in their signs. The signum function can be used

to write the system of constraints in a unified way.

Unimodality constraint

Require A2a ≤ b2, where

A2
G×k

= −











sgn(g1 −m)ψ′(g1)
T

...

sgn(gG −m)ψ′(gG)
T











and b2 =











sgn(m− g1)f̂
◦′(g1)

...

sgn(m− gG)f̂
◦′(gG)











.

Appendix B 148

Moving on to the symmetry constraint, note first that if the estimate is unimodal

with mode m, then m must be its point of symmetry as well. For simplicity, let m =

(g1+gG)/2, so the estimate is to be symmetric around the midpoint of the constraint-

checking grid. The constraint is to be enforced at r pairs of points equidistant from

m. If G is odd, m = g(G−1)/2 and we will have r = (G− 1)/2; if G is even, r = G/2.

Strict symmetry constraints are equalities, however there may be numerical difficulties

enforcing them as such. For example, if the grid of ψi densities is not aligned to g, or

if k is too small, it may not be possible to get exact reflection around m. So it is more

effective to enforce near-symmetry through inequality constraints with a tolerance, ǫ.

For l = 1, . . . , r, the constraint is |f̂A
a
(gl)− f̂

A
a
(gG−l+1)| ≤ ǫ, or

f̂A
a
(gl)− f̂

A
a
(gG−l+1) ≥ −ǫ

f̂A
a
(gl)− f̂

A
a
(gG−l+1) ≤ ǫ.

So each of r symmetry checks produces two inequalities that must be satisfied. Writing

them in terms of the adjustment densities and their coefficients a produces

(ψ(gl)−ψ(gG−l+1))
Ta ≤ f̂ ◦(gG−l+1)− f̂

◦(gl) + ǫ

(ψ(gG−l+1)−ψ(gl))
Ta ≤ f̂ ◦(gl)− f̂

◦(gG−l+1) + ǫ,

which may be combined in matrix-vector form as shown below.

Appendix B 149

Symmetry constraint

Require A3a ≤ b3, where A3
2r×k

=





M

−M



, b3 =





w + ǫ1

−w + ǫ1



, and

M
r×k

=























(ψ(g1)−ψ(gG))
T

...

(ψ(gl)−ψ(gG−l+1))
T

...

(ψ(gr)−ψ(gG−r+1))
T























and w =























f̂ ◦(gG)− f̂
◦(g1)

...

f̂ ◦(gG−l+1)− f̂
◦(gl)

...

f̂ ◦(gG−r+1)− f̂
◦(gr)























.

Adding a roughness penalty to the objective

Consider a slightly more general form of the objective function (B.1),

aT (H+ λS)a+ vTa, (B.7)

where the matrix of the quadratic form has been expressed as a sum of two parts.

The matrix H is unchanged from the preceding calculations: it measures the L2 or

ISE distance between the estimate and the pilot density. The matrix S measures the

roughness of the estimate, in a manner to be described presently. The nonnegative

scalar λ is a tuning parameter that determines the degree to which roughness is taken

into account. Since the goal is to minimize the objective function, the λS term may

be viewed as a penalty that discourages less smooth solutions.

A common way of measuring the overall lack of smoothness of a function is the

integral of its squared second derivative. If we consider this quantity for f̂A
a
, we find

∫ ∞

−∞

(

f̂A
a

′′(x)
)2

dx =

∫ ∞

−∞

(

f̂ ◦′′(x) +ψ′′(x)Ta
)2

dx

=

∫ ∞

−∞

(

(f̂ ◦′′(x))2 + 2f̂ ◦′′(x)ψ′′(x)Ta+ aTψ′′(x)ψ′′(x)Ta
)2

dx,

Appendix B 150

which may be approximated using the trapezoidal rule over the points in g in the

same manner as (B.5). Doing so and ignoring a-free terms we arrive at the quantity

Pen(a) =
gG − g1
2(G− 1)

[

aT

(

2f̂ ◦′′(g1)ψ
′′(g1) + 2f̂ ◦′′(gG)ψ

′′(gG) + 4

G−1
∑

l=2

f̂ ◦′′(gl)ψ
′′(gl)

)

+ aT

(

ψ′′(g1)ψ
′′(g1)

T +ψ′′(gG)ψ
′′(gG)

T + 2
G−1
∑

l=2

ψ′′(gl)ψ
′′(gl)

T

)

a

]

,

and the final penalty is found by dropping the leading proportionality constant.

Roughness penalty

In the objective function aT (H+ λS)a + vTa, define S and v as

S = S1 + SG + 2

G−1
∑

l=2

Sl and v = v1 + vG + 2

G−1
∑

l=2

vl,

where Sl = ψ
′′(gl)ψ

′′(gl)
T and vl = f̂ ◦′′(gl)ψ

′′(gl).

The above penalty is not the only such quantity that could be derived. Other inte-

grated squared functions would have a similar form. For example one could penalize

only on the roughness of the adjustment rather than on the roughness of the final

estimate; or penalize on the integrated squared distance from a parametric density.

The Star Unimodal Constraint

The constraint of star unimodality with mode atm applies to d-dimensional densities.

It requires that f̂A
a
(x) is decreasing along any ray emanating fromm. We will consider

the d = 2 case. Where previously the constraints were enforced at a collection of G

scalar points, they are now enforced at {gl}, l = 1, . . . , G, a set of points in two-

dimensional space. The arrangement of these points over the support of the density

is practically important, but does not affect how the QP problem is set up.

Star unimodality can be checked by confirming that the directional derivative of

the density along the appropriate ray is negative. Let ul represent the unit vector in

Appendix B 151

the direction of gl from m, that is

ul =
gl −m

‖gl −m‖
.

The directional derivative at gl in the direction of ul is (∇f̂
A
a
(gl))

Tul, where ∇f̂
A
a

is

the gradient of the estimate:

∇f̂A
a
(gl) = ∇f̂ ◦(gl) +∇

(

aTψ(gl)
)

= ∇f̂ ◦(gl) +





aTψ′
1(gl)

aTψ′
2(gl)



 ,

where ψ′
i(y) is the derivative of ψ with respect to yi. So, letting ul = [ul1 u

l
2]
T , the

constraint is

(∇f̂A
a
(gl))

Tul = (∇f̂ ◦(gl))
Tul +

[

aTψ′
1(gl) aTψ′

2(gl)
]





ul1

ul2





= (∇f̂ ◦(gl))
Tul + a

T
(

ul1ψ
′
1(gl) + ul2ψ

′
2(gl)

)

.

Because this quantity must be less than or equal to zero, the constraint at point gl is

(

ul1ψ
′
1(gl) + ul2ψ

′
2(gl)

)T
a ≤ − (∇f̂ ◦(gl))

Tul.

Combining the constraints at all gl produces the system of inequalities.

Star unimodality constraint

Require A4a ≤ b4, where

A4
G×k

= −











u11ψ
′
1(gl)

T + u12ψ
′
2(g1)

T

...

uG1 ψ
′
1(gG)

T + uG2 ψ
′
2(gG)

T











and b4 = −











(∇f̂ ◦(g1))
Tu1

...

(∇f̂ ◦(gG))
TuG











.

Bibliography

Alibrandi, U. and Ricciardi, G. (2008), “Efficient evaluation of the pdf of a random
variable through the kernel density maximum entropy approach,” International
Journal for Numerical Methods in Engineering, 75, 1511–1548.

Antoniou, A. and Lu, W. (2007), Practical optimization: algorithms and engineering
applications, Springer-Verlag New York Inc.

Barlow, R. E., Bartholomew, R. J., Bremner, J. M., and Brunk, H. D. (1972), Sta-
tistical Inference Under Order Restrictions, London: John Wiley & Sons.

Bickel, P. J. and Fan, J. (1996), “Some Problems on the Estimation of Unimodal
Densities,” Statistica Sinica, 6, 23–45.

Birgé, L. (1997), “Estimation of Unimodal Densities Without Smoothness Assump-
tions,” The Annals of Statistics, 25, 970–981.

Birke, M. (2009), “Shape Constrained Kernel Density Estimation,” Journal of Sta-
tistical Planning and Inference, 139, 2851–2862.

Braun, W. J. and Hall, P. (2001), “Data Sharpening for Nonparametric Inference
Subject to Constraints,” Journal of Computational and Graphical Statistics, 10,
786–806.

Brunk, H. D. (1955), “Maximum Likelihood Estimates of Monotone Parameters,”
The Annals of Mathematical Statistics, 26, pp. 607–616.

Cheng, M.-Y., Gasser, T., and Hall, P. (1999), “Nonparametric Density Estimation
under Unimodality and Monotonicity Constraints,” Journal of Computational and
Graphical Statistics, 8, 1–21.

Choi, E. and Hall, P. (1999), “Data Sharpening as a Prelude to Density Estimation,”
Biometrika, 86, 941–947.

Clerc, M. and Kennedy, J. (2002), “The particle swarm - explosion, stability, and con-
vergence in a multidimensional complex space,” Evolutionary Computation, IEEE
Transactions on, 6, 58 –73.

Cule, M., Samworth, R., and Stewart, M. (2010), “Maximum likelihood estimation of
a multi-dimensional log-concave density,” Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 72, 545–607.

152

Bibliography 153

de Castro, L. N. (2006), Fundamentals of Natural Computing, Chapman & Hall.

Devroye, L. and Lugosi, G. (2001), Combinatorial Methods in Density Estimation,
Springer.

Du, P., Parmeter, C. F., and Racine, J. S. (2010), “Nonparametric Ker-
nel Regression with Multiple Predictors and Multiple Shape Constraints,”
http://www.stat.vt.edu/facstaff/pangdu/papers/2010 kern.pdf.

Dümbgen, L. and Rufibach, K. (2009), “Maximum likelihood estimation of a log-
concave density and its distribution function: Basic properties and uniform consis-
tency,” Bernoulli, 15, 40–68.

Engelbrecht, A. P. (2005), Fundamentals of Computational Swarm Intelligence, Wiley.

Fan, J. and Li, R. (2001), “Variable Selection via Nonconcave Penalized Likelihood
and its Oracle Properties,” Journal of the American Statistical Association, 96,
1348–1360.

Farmen, M. and Marron, J. (1999), “An assessment of finite sample performance of
adaptive methods in density estimation,” Computational statistics & data analysis,
30, 143–168.

Fougères, A.-L. (1997), “Estimation de densites unimodales,” The Canadian Journal
of Statistics / La Revue Canadienne de Statistique, 25, 375–387.

Grenander, U. (1956), “On the Theory of Mortality Measurement, Part II,” Skandi-
navisk Aktuarietidskrift, 39, 125–153.

Gupta, S. D. (1976), “S-Unimodal Function: Related Inequalities and Statistical
Applications,” Sankhya: The Indian Journal of Statistics, Series B (1960-2002),
38, pp. 301–314.

Hall, P. and Huang, L.-S. (2001), “Nonparametric Kernel Regression Subject to Mono-
tonicity Constraints,” The Annals of Statistics, 29, pp. 624–647.

— (2002), “Unimodal Density Estimation Using Kernel Methods,” Statistica Sinica,
12, 965–990.

Hall, P. and Kang, K.-H. (2005), “Unimodal Kernel Density Estimation by Data
Sharpening,” Statistica Sinica, 15, 73–98.

Hall, P. and Minnotte, M. C. (2002), “High Order Data Sharpening for Density
Estimation,” Journal of the Royal Statistical Society. Series B (Statistical Method-
ology), 64, 141–157.

Hastie, T. and Tibshirani, R. (1987), “Non-Parametric Logistic and Proportional
Odds Regression,” Journal of the Royal Statistical Society. Series C (Applied Statis-
tics), 36, 260–267.

http://www.stat.vt.edu/facstaff/pangdu/papers/2010_kern.pdf

Bibliography 154

Hastie, T., Tibshirani, R., and Friedman, J. (2009), The Elements of Statistical Learn-
ing: Data Mining, Inference, and Prediction, 2nd ed., Springer.

Henderson, D. J. and Parmeter, C. F. (2009), “Imposing Economic Constraints in
Nonparametric Regression: Survey, Implementation, and Extension,” Advances in
Econometrics, 25, 433–469.

Jones, M. and Henderson, D. (2005), “Maximum Likelihood Kernel Density Estima-
tion,” Technical Report 01/05, The Open University, UK.

Jones, M. C. and Henderson, D. A. (2009), “Maximum likelihood kernel density
estimation: On the potential of convolution sieves,” Computational Statistics and
Data Analysis, 53, 3726–3733.

Kennedy, J. and Eberhart, R. (1995), “Particle swarm optimization,” in Neural Net-
works, 1995. Proceedings., IEEE International Conference on, vol. 4, pp. 1942
–1948 vol.4.

Kennedy, J., Eberhart, R. C., and Shi, Y. (2001), Swarm Intelligence, Morgan Kauf-
mann.

Kennedy, J. and Mendes, R. (2002), “Population structure and particle swarm per-
formance,” in Evolutionary Computation, 2002. CEC ’02. Proceedings of the 2002
Congress on, vol. 2, pp. 1671 –1676.

Klemelä, J. (2009), Smoothing of Multivariate Data, Wiley.

Lange, K. (2010), Numerical Analysis for Statisticians, 2nd ed., Springer.

Lourenço, H. R., Martin, O. C., and Stützle, T. (2010), “Iterated Local Search:
Framework and Applications,” in Handbook of Metaheuristics, eds. M. Gendreau
and J.-Y. Potvin, Springer, pp. 363–397.

Meyer, M. (2008), “Inference using shape-restricted regression splines,” The Annals
of Applied Statistics, 2, 1013–1033.

Michalewicz, Z. and Fogel, D. B. (2004), How to Solve it: Modern Heuristics, 2nd
ed., Springer-Verlag.

Nocedal, J. and Wright, S. J. (1999), Numerical Optimization, Springer.

Numerical Algorithms Group (2009), NAG Toolbox for Matlab, Mark 21E, Numerical
Algorithms Group, Oxford, UK.

Paquet, U. and Engelbrecht, A. (2003), “A new particle swarm optimiser for linearly
constrained optimisation,” in Evolutionary Computation, 2003. CEC ’03. The 2003
Congress on, vol. 1, pp. 227 – 233 Vol.1.

Poli, R., Kennedy, J., and Blackwell, T. (2007), “Particle Swarm Optimization: An
Overview,” Swarm Intelligence, 1, 33–57.

Bibliography 155

Ramsay, J. and Silverman, B. (2005), Functional Data Analysis, 2nd ed., Springer.

Ramsay, J. O. (1988), “Monotone Regression Splines in Action,” Statistical Science,
3, pp. 425–441.

Reboul, L. (2005), “Estimation of a Function under Shape Restrictions. Applications
to Reliability,” The Annals of Statistics, 33, pp. 1330–1356.

Scott, D. W. (1992), Multivariate Density Estimation: Theory, Practice, and Visual-
ization, John Wiley and Sons.

Scott, D. W. and Factor, L. E. (1981), “Monte Carlo Study of Three Data-Based
Nonparametric Probability Density Estimators,” Journal of the American Statisti-
cal Association, 76, pp. 9–15.

Sheather, S. J. and Jones, M. C. (1991), “A reliable data-based bandwidth selection
method for kernel density estimation,” Journal of the Royal Statistical Society,
Series B, 53, 683–690.

Silverman, B. W. (1986), Density Estimation for Statistics and Data Analysis, Chap-
man and Hall.

Talbi, E.-G. (2009), Metaheuristics: From Design to Implementation, Wiley.

The Mathworks, Inc. (2007), MATLAB Version 7.4.0, Natick, Massachusetts.

Wand, M. and Jones, M. (1995), Kernel Smoothing, London: Chapman & Hall.

Wasserman, L. (2006), All of Nonparametric Statistics, Springer.

Wegman, E. J. (1972), “Nonparametric Probability Density Estimation: I. A Sum-
mary of Available Methods,” Technometrics, 14, 533–546.

Wolters, M. A. (2009), “A Greedy Algorithm for Unimodal Kernel Den-
sity Estimation by Data Sharpening,” Technical Report TR-09-01, Depart-
ment of Statistical and Actuarial Sciences, University of Western Ontario,
http://ir.lib.uwo.ca/statspub/2/.

— (2011), “A particle swarm algorithm with broad applicability in shape-
constrained estimation,” Computational Statistics & Data Analysis, in press, DOI:
10.1016/j.csda.2011.11.009.

— (2012), “A Greedy Algorithm for Unimodal Kernel Density Estimation by Data
Sharpening,” Journal of Statistical Software, 47, 1–26.

Woolford, D. G. and Braun, W. J. (2007), “Convergent data sharpening for the
identification and tracking of spatial temporal centers of lightning activity,” Envi-
ronmetrics, 18, 461–479.

http://ir.lib.uwo.ca/statspub/2/

156

Curriculum Vitae

Name: Mark A. Wolters

Education: Ph.D. (statistics), University of Western Ontario, 2012

M.Sc. (statistics), Simon Fraser University, 2007

B.Sc. (metals and materials engineering), University of British
Columbia, 1996

Awards: NSERC Canada Graduate Scholarship D, 2009–2010

Ontario Graduate Scholarship, 2008, 2009

Best Student Poster Award, Statistical Society of Canada
meetings, 2009

SFU Graduate Fellowship Award, 2006

ASQ Statistics Division’s Ellis R. Ott Scholarship in Applied
Statistics, 2006

NSERC Industrial Postgraduate Scholarship 1, 2004–2005

Work
Experience:

Instructor, Statistical Science 1023A (Statistical Concepts), fall
2009

Instructor, Statistical Science 2024A (Introduction to
Statistics), fall 2008 (13 lectures)

Product development engineer, Ballard Power Systems,
Burnaby, BC, 1998–2004

Peer-Reviewed
Publications:

Wolters, M. A. and Bingham, D. (2011), “Simulated Annealing
Model Search for Subset Selection in Screening Experiments,”
Technometrics, 53, 225–237.

Wolters, M. A. (2011), “A Particle Swarm Algorithm with
Broad Applicability in Shape-Constrained Estimation,”
Computational Statistics and Data Analysis, DOI:
10.1016/j.csda.2011.11.009.

Wolters, M. A. (2012), “A Greedy Algorithm for Unimodal
Kernel Density Estimation by Data Sharpening,” Journal of
Statistical Software, 47(6), 1–26.

157

Other
Publications:

Wolters, M. A. (2009), “A Greedy Algorithm for Unimodal
Kernel Density Estimation by Data Sharpening,” Technical
Report TR-09-01, Department of Statistical and Actuarial
Sciences, University of Western Ontario,
http://ir.lib.uwo.ca/statspub/2/

Wolters, M. A. (2008), “A Critical Look at Risk Measures:
Why Statistics Don’t Always Mean What they Say,” Fraser
Forum, Feb. 2008.

Mark Wolters (2007), “Real Risks: Statistical Thinking and
Risk Perception,” Fraser Institute Digital Publications, Dec.
2007.

http://ir.lib.uwo.ca/statspub/2/

	Methods for Shape-Constrained Kernel Density Estimation
	Recommended Citation

	Certificate of Examination
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Background on Shape-Constrained Estimation
	The Problem Defined in General
	The Case of Kernel Density Estimation
	The Kernel Density Estimator
	Varying the Locations (Data Sharpening)
	Varying the Weights
	Varying the Bandwidths
	Using an Adjustment Curve
	Shape Adjustment in Higher Dimensions

	Overview of the Thesis
	Scope of the Present Work
	Plan of the Thesis

	Defining Constraints and Finding Estimates
	Two Illustrative Examples
	Wind Speed Data
	Heart Disease Data

	A Suite of Useful Shape Constraints
	Constraints on the number of Modes
	Smoother Unimodal Constraints
	More Univariate Possibilities
	The Bivariate Case

	Choice of Objective Function
	Objectives Based on the Adjustable Values
	Objectives Based on Density Estimates
	A Likelihood Objective
	Visualizing the Objective Functions

	Bandwidth Selection
	Using a Standard Pilot Bandwidth
	Maximizing a Pseudo-Likelihood

	A Greedy Algorithm for Data Sharpening
	The improve Algorithm
	Algorithm Description
	Implementation Details

	Examples
	Wind Speed Data
	Heart Disease Data

	Simulation Studies
	Study Design
	Convergence and Run Time
	Optimization Performance
	Estimation Performance

	An Iterated Greedy Algorithm
	Iterated Local Search
	Incorporating the Greedy Algorithm in an ILS Scheme
	Performance of ILSimprove

	Limitations and Extensions

	A Particle Swarm Algorithm for Data Sharpening
	Particle Swarm Optimization
	Constrained Estimation PSO
	Algorithm Description
	Controlling Swarm Dynamics

	Implementation Details
	Examples
	Wind Speed Data
	Heart Disease Data

	Simulation Studies
	Run-to-Run Variability
	Sensitivity to Swarm Control Parameters

	Limitations and Extensions

	Optimal Adjustment Curves by Quadratic Programming
	The Method
	A Quadratic Objective and Linear Constraints
	Constraints Fitting the QP Framework
	Choosing the Adjustment Densities

	Examples
	Wind Speed Data
	Heart Disease Data

	Simulation Studies
	Limitations and Extensions

	Conclusions and Further Work
	Why, When, and How to Use the Methods
	Areas for Further Improvement

	Appendix Bandwidth Selection Simulation Study
	Appendix Example Quadratic Programs
	Bibliography
	Curriculum Vitae

