Western SGraduate & Postdoctoral Studies

Western University Scholarship@Western

Electronic Thesis and Dissertation Repository

6-21-2012 12:00 AM

Preoperative Angiotensin Converting Enzyme Inhibitor or Angiotensin Receptor Blocker Use and Acute Dialysis: A **Population Based Cohort Study**

Mitesh K. Shah The University of Western Ontario

Supervisor Dr. Amit Garg The University of Western Ontario

Graduate Program in Epidemiology and Biostatistics A thesis submitted in partial fulfillment of the requirements for the degree in Master of Science © Mitesh K. Shah 2012

Follow this and additional works at: https://ir.lib.uwo.ca/etd

Part of the Nephrology Commons

Recommended Citation

Shah, Mitesh K., "Preoperative Angiotensin Converting Enzyme Inhibitor or Angiotensin Receptor Blocker Use and Acute Dialysis: A Population Based Cohort Study" (2012). Electronic Thesis and Dissertation Repository. 605.

https://ir.lib.uwo.ca/etd/605

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

PREOPERATIVE ANGIOTENSIN CONVERTING ENZYME INHIBITOR OR ANGIOTENSIN RECEPTOR BLOCKER USE AND ACUTE DIALYSIS: A POPULATION BASED COHORT STUDY

(Spine title: Preoperative ACEi or ARB Use and Acute Dialysis)

(Thesis format: Monograph)

by

Mitesh K. Shah

Graduate Program in Epidemiology and Biostatistics

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science

The School of Graduate and Postdoctoral Studies The University of Western Ontario London, Ontario, Canada

© Mitesh K. Shah 2012

THE UNIVERSITY OF WESTERN ONTARIO School of Graduate and Postdoctoral Studies

CERTIFICATE OF EXAMINATION

Supervisor

Dr. Amit Garg

Supervisory Committee Member

Dr. Arsh Jain

Examiners

Dr. Mark Speechley

Dr. Dan Hackam

Dr. Alp Sener

The thesis by

Mitesh K. <u>Shah</u>

entitled:

Preoperative Angiotensin Converting Enzyme Inhibitor or Angiotensin Receptor Blocker Use and Acute Dialysis: A Population Based Cohort Study

is accepted in partial fulfillment of the requirements for the degree of Master of Science

June 21, 2012

Date

Chair of the Thesis Examination Board

ABSTRACT

Angiotensin converting enzyme inhibitor (ACEi) or angiotensin receptor blocker (ARB) use prior to major surgery is controversial. We performed a population based retrospective cohort study of 237,208 elderly patients (of whom 101,494 (42.8%) were ACEi or ARB users) who underwent major elective surgery from 1995 to 2010 in Ontario, Canada. The primary outcome was acute kidney injury treated with dialysis (AKI-D) within 14 days following surgery (810 (0.34%) patients). The secondary outcome was all-cause mortality within 90 days following surgery (11,089 (4.67%) patients). After adjusting for potential confounders, preoperative ACEi or ARB use was associated with a lower relative risk of AKI-D (adjusted relative risk (RR): 0.83; 95% confidence interval (CI): 0.71 to 0.98) and a lower relative risk of all-cause mortality (adjusted RR: 0.91; 95% CI: 0.87 to 0.95). Results were consistent in propensity score matched analyses. We observed a significant effect modification by chronic kidney disease on AKI-D (p-value < 0.0001). Randomized controlled trials are needed to clarify this issue.

Keywords: Angiotensin converting enzyme inhibitor, angiotensin receptor blocker, acute kidney injury treated with dialysis, retrospective cohort study, elective surgery, all-cause mortality, relative risk, propensity score matched analyses, chronic kidney disease, randomized controlled trials

iii

DEDICATION

I dedicate this thesis to my parents for their love and encouragement throughout my life

and my sister, Dhara.

ACKNOWLEDGEMENTS

Supervisory Committee

Dr. Amit Garg is my primary supervisor and was involved in all the aspects of master's dissertation such as literature review, study design, preparing data creation plan, interpreting study results, and preparing final dissertation. Dr. Arsh Jain is a supervisory committee member and advised me on study design and updating a data creation plan.

Kidney Clinical Research Unit

Team members in the Kidney Clinical Research Unit (KCRU) were supportive throughout my research training.

Institute for Clinical Evaluative Sciences (ICES)

I am grateful to Mr. Jin Luo, a programmer at ICES central (Toronto), for analyzing and providing study results according to the data creation plan. I also thank

Dr. Salimah Shariff for her comments on the data creation plan. This dissertation was supported by the ICES, which is funded by an annual grant from the Ontario Ministry of Health and Long-Term Care (MOHLTC). The opinions, results, and conclusions reported in this dissertation are those of the authors and are independent from the funding sources. No endorsement by the ICES or the Ontario MOHLTC is intended or should be inferred.

Brogan Inc., Ottawa

I thank Brogan Inc., Ottawa for use of its Drug Product and Therapeutic Class Database.

Funding

I received a Western graduate research scholarship (WGRS) and funding from Dr. Garg's research grants.

TABLE OF CONTENTS

CERTIFICATE OF EXAMINATIONii
ABSTRACT AND KEYWORDSiii
DEDICATIONiv
ACKNOWLEDGEMENTS v
TABLE OF CONTENTS vi
LIST OF TABLES
LIST OF FIGURES ix
LIST OF APPENDICES x
CHAPTER 1 - INTRODUCTION 1
1.1 Acute Kidney Injury1
1.2 Major surgeries can be complicated by acute kidney injury treated with dialysis 1
1.3 Angiotensin converting enzyme inhibitor and angiotensin receptor blocker
1.4 Impact of preoperative ACEi or ARB use on renal function
1.5 Clinical practice guidelines: Preoperative ACEi or ARB use
CHAPTER 2 - LITERATURE REVIEW7
2.1 Potential risk factors for postoperative AKI
2.2 Present studies: Preoperative ACEi or ARB use and AKI
CHAPTER 3 - STUDY RATIONALE AND RESEARCH QUESTIONS 18
3.1 Limitations of existing studies
3.2 Choice of study design 19
3.3 Research Questions
3.3.1 Primary research question
3.3.2 Secondary research question

CHAPTER 4 - STUDY METHODS	. 21
4.1 Study overview and setting	. 21
4.2 Data Sources	. 21
4.3 Patients	. 23
4.4 Preoperative ACEi or ARB use	. 25
4.5 Baseline Characteristics	. 25
4.6 Potential Confounders	. 25
4.7 Primary and secondary outcomes	. 26
4.8 Primary Analysis	. 26
4.9 Additional Analyses	. 27
CHAPTER 5 - STUDY RESULTS	. 30
5.1 Baseline characteristics: ACEi or ARB users and non-users	. 30
5.2 Primary analysis: AKI-D and all-cause mortality	. 30
5.3 Additional Analyses	. 31
5.3.1 Propensity score matched analysis: AKI-D and all-cause mortality	. 31
5.3.2 Subgroup analysis for AKI-D and all-cause mortality	. 31
5.3.3 Time to event analysis for AKI-D	. 32
CHAPTER 6 - GENERAL DISCUSSION	. 40
6.1 Summary of study results	. 40
6.2 Interpreting study results	. 40
6.3 Study Strengths	. 43
6.4 Study Limitations	. 45
6.5 Future Directions	. 46
6.6 Study Implications	. 48
BIBLIOGRAPHY	. 49
CURRICULUM VITAE	. 75

LIST OF TABLES

Table 1: Independent risk factors for postoperative AKI	9
Table 2: Studies: Preoperative ACEi or ARB use associated with more AKI	. 11
Table 3: Studies: Preoperative ACEi or ARB use not associated with AKI	. 13
Table 4: Studies: Preoperative ACEi or ARB use associated with less AKI	. 16
Table 5: Postoperative AKI studies: Baseline differences in ACEi or ARB users and n	ion-
users	. 17
Table 6: Time Frame Definitions	. 23
Table 7: Baseline characteristics: ACEi or ARB users and non-users	. 34
Table 8: Association between preoperative ACEi or ARB use and outcomes	. 36
Table 9: Propensity score matched analysis: Preoperative ACEi or ARB use and	
outcomes	. 37
Table 10: Subgroup analysis for AKI-D	. 38
Table 11: Subgroup analysis for all-cause mortality	. 39

LIST OF FIGURES

Figure 1: Preoperative ACEi or ARB use may lead to AKI	5
Figure 2: Preoperative ACEi or ARB use may prevent AKI	6
Figure 3: Flow diagram: Patient selection	33

LIST OF APPENDICES

Appendix A: Data creation plan submitted to ICES	58
Appendix B: STROBE checklist	67
Appendix C: Codes used to identify comorbidities	69
Appendix D: OHIP fee codes for acute dialysis (AKI-D)	73
Appendix E: Sample of codes used to determine surgical procedures	74

CHAPTER 1 – INTRODUCTION

1.1 Acute Kidney Injury

Acute kidney injury (AKI) is sudden decline in renal function and severe AKI can require treatment with dialysis.¹⁻⁵ Hospital admission with AKI is associated with a longer hospital length of stay and a higher risk of mortality.^{6;7} In the United States, AKI accounts for yearly health care expenditures in excess of ten billion dollars.⁶

1.2 Major surgeries can be complicated by acute kidney injury treated with dialysis

Approximately 1.25 million patients undergo cardiac surgery around the world every year.⁸ About 1% of patients (12,500 patients) develop AKI treated with dialysis (AKI-D).^{2;3;8;9} Approximately 225 million patients undergo non-cardiac surgery worldwide every year.¹⁰ The risk of AKI-D in non-cardiac surgeries is particularly high with vascular, thoracic, abdominal, and retro-peritoneal surgeries.^{4;11-14} About 0.4% of patients (900,000 patients) undergoing non-cardiac surgery develop AKI-D.¹⁵⁻¹⁷

Postoperative AKI occurs as a result of decreased renal perfusion which causes a hypoxic insult, followed by activation of inflammatory mediators, proinflammatory transcription factors, and adhesion molecules which subsequently lead to AKI (Figure 1 and Figure 2).^{18;19} There are several clinical factors that may influence a patient's risk for developing postoperative AKI. Chronic kidney disease is considered to be the most important risk factor, while other comorbidities such as congestive heart failure, coronary artery disease, hypertension, and diabetes may also increase the risk of postoperative AKI.^{11;13;20} Perioperative clinical factors such as hypotension, blood loss, volume depletion, and

administration of vasoconstrictor agents may all increase the risk of postoperative AKI.^{19;21}

Some preoperative medications may also influence the risk of postoperative AKI.¹⁷ This is particular true for angiotensin converting enzyme inhibitor (ACEi) and angiotensin receptor blocker (ARB), which is the focus of this dissertation given the possibility of modification prior to planned elective surgeries.^{12;21-28}

1.3 Angiotensin converting enzyme inhibitor and angiotensin receptor blocker

ACEi and ARB are therapeutic drug classes that inhibit the renin-angiotensin system.^{25;29;30} ACEi inhibits angiotensin converting enzyme primarily formed in the pulmonary vasculature and prevents formation of angiotensin II from angiotensin I.²⁵ ARB competitively replace angiotensin II from the angiotensin I receptor and prevents angiotensin II mediated effects.³⁰ ACEi was first introduced in 1981 for the treatment of hypertension.²⁵ Since then, ACEi has proven to be beneficial in a variety of clinical conditions.²⁵ Chronic ACEi and ARB use in the outpatient settings reduces the risk of mortality, stroke, and myocardial infarction (fatal and non-fatal).^{25;30} Patients with comorbid conditions such as congestive heart failure, atherosclerotic cardiovascular disease, diabetes mellitus, and chronic kidney disease benefit from using ACEi and ARB medications.^{25;29;31} Several international randomized controlled trials such as HOPE, EUROPA, PEACE, OPTIMAAL, VALIANT, and SAVE trials have also demonstrated benefits of ACEi and ARB use in reducing cardiovascular morbidity and mortality.³²⁻³⁸ Due to these benefits, ACEi and ARB are highly prescribed medications: in the United States there are more than 155 million prescriptions filled each year for ACEi and more than 80 million prescriptions for ARB.³⁹

1.4 Impact of preoperative ACEi or ARB use on renal function

ACEi or ARB use lowers blood pressure.^{25;30} Preoperative use of these medications may exacerbate hypotension from anesthesia and may lead to renal hypoperfusion (Figure 1).^{26;29;40-43} Perioperative clinical factors such as poor cardiac output, blood loss, dehydration, and administration of vasoconstrictors can all contribute to lower renal perfusion.^{19;21;44} The autoregulation to renal hypoperfusion is to increase angiotensin II production, which constricts the glomerular efferent arteriole and maintains the glomerular filtration rate (GFR).⁴⁴ However, ACEi or ARB use interferes with the angiotensin II mediated autoregulation to renal hypoperfusion.^{19;44} This can lead to sudden decline in GFR, hypoxic insult, followed by activation of the inflammatory response, and subsequent AKI (Figure 1).^{18;19;44}

Contrary to the proposed damaging effects, ACEi or ARB use may have beneficial effects which reduce the risk of postoperative AKI (Figure 2).^{23;25;29;30;45-50} ACEi and ARB medications possess vasculoprotective properties mainly through inhibition of a potent vasoconstrictor, angiotensin II.^{23;25;29;30;45-50} Angiotensin II can increase the risk of postoperative AKI by accelerating oxidative stress, endothelial dysfunction, the inflammatory response, and acute ischemia, which may be mitigated by ACEi or ARB use.^{23;25;29;30;46-48} ACEi or ARB use through the inhibition of angiotensin II mediated vasoconstriction can also reduce the risk of postoperative AKI by decreasing renal vascular resistance and promoting renal blood flow.^{23;25;29;30;45-50}

1.5 Clinical practice guidelines: Preoperative ACEi or ARB use

There is lack of clear recommendations on whether ACEi or ARB should be withheld prior to major surgery with a marked difference in practice patterns worldwide.^{21;22;40;41;51-53} The American College of Cardiology (ACC) / American Heart Association (AHA) 2007 guidelines reported that several authors suggested to withhold ACEi or ARB medication the morning of surgery and to restart these medications in the postoperative period only when a patient is euvolemic.⁵² This management strategy may reduce the risk of postoperative AKI but there is lack of high quality evidence to support this suggestion.⁵²

Figure 1: Preoperative ACEi or ARB use may lead to AKI^{18;19;26;29;40-44;54-58}

Figure 2: Preoperative ACEi or ARB use may prevent AKI^{18;19;23;25;28;46-50;54-58}

CHAPTER 2 – LITERATURE REVIEW

2.1 Potential risk factors for postoperative AKI

We performed a literature review to identify potential risk factors for postoperative AKI (requiring or not requiring dialysis).^{4;9;11;13;17;20} We summarized the potential risk factors and their association with postoperative AKI in Table 1. Thakar *et al.*⁹, in a predictive model for AKI after cardiac surgery, suggested that congestive heart failure, diabetes mellitus, chronic obstructive pulmonary disease, peripheral vascular disease, and cerebrovascular disease were potential risk factors for postoperative AKI-D. Kheterpal *et al.*¹³, in a risk index for AKI after general surgery, indicated that older age (\geq 56 years), male sex, diabetes mellitus, chronic kidney disease, congestive heart failure, hypertension, and intraperitoneal surgery were all potential risk factors for postoperative AKI.

2.2 Present studies: Preoperative ACEi or ARB use and AKI

As of May 2012, 12 observational studies (11 published studies and one abstract) have examined the association between preoperative ACEi or ARB use and postoperative AKI with non-users as the comparison group.^{12;21-24;26-28;49;50;59;60} Four studies described a higher risk of AKI with preoperative ACEi or ARB use ^{12;21;22;60}, while six studies described no significant association.^{26-28;49;50;59} Conversely, two studies suggested a lower risk of AKI with preoperative ACEi or ARB use.^{23;24} We summarized all 12 studies in Table 2, 3, and 4.^{12;21-24;26-28;49;50;59;60} In Table 5 we also summarized key baseline characteristics that differed in ACEi or ARB users and non-users in studies of postoperative AKI.^{21-24;26;28;49} Characteristics such as congestive heart failure, diabetes mellitus, hypertension, coronary artery disease, chronic kidney disease, and peripheral vascular disease were more in ACEi or ARB users compared to non-users.^{21-24;26;28;49}

Risk factors	Author	Association with postoperative AKI		
		(requiring or not requiring dialysis)		
Older age	Kheterpal <i>et al.</i> ⁴	Age \geq 59 years: Adjusted hazard ratio = 4.2		
		(95% CI: 2.9 to 6.0)		
	17	[Reference group: age < 59 years]		
	Kheterpal <i>et al.</i> ¹⁵	Age \geq 56 years:		
		Adjusted hazard ratio $= 1.7$		
		(95% CI: 1.4 to 2.2)		
		[Reference group: age < 56 years]		
	Abelha <i>et al</i> . ¹¹	Age ≥ 65 years: OR = 1.9		
		(95% CI: 1.2 to 3.0)		
		[Reference group: age < 65 years]		
Male gender	Kheterpal <i>et al.</i> ¹³	Adjusted hazard ratio = 1.4		
01 111		(95% CI: 1.2 to 1.7)		
Chronic kidney	Kheterpal <i>et al.</i> ¹³	Chronic kidney disease (Moderate) :		
disease		Adjusted hazard ratio = 3.2		
		(95% CI: 2.8 to 3.7)		
		Chronic kidney diacogo (Mild)*:		
		A divisted bagard ratio $= 2.1$		
		Augusted hazard fatto -5.1 (05% CI: 2.5 to 2.0)		
		(9370 CI. 2.3 to 3.9)		
		Reference group:		
		Patients without chronic kidney disease		
	Wijevsundera <i>et al</i> ²⁰	$sCr > 133 \mu mol/L$:		
		Adjusted OR = $15.2 (95\% \text{ CI}: 9.6 \text{ to } 24.7)$		
		5		
		100 μ mol/L < sCr \leq 133 μ mol/L:		
		Adjusted OR = $3.1 (95\% \text{ CI: } 1.9 \text{ to } 5.2)$		
		$sCr \le 100 \ \mu mol/L$ and $CrCl \le 60 \ ml/min$:		
		Adjusted OR = 2.8 (95% CI: 1.4 to 5.3)		
		Reference group:		
	12	$sCr \le 100 \ \mu mol/L$ and $CrCl > 60 \ ml/min$		
Hypertension	Kheterpal <i>et al.</i> ¹⁵	Adjusted hazard ratio $= 1.5$		
		(95% CI: 1.2 to 1.9)		
Diabetes –	Kheterpal <i>et al.</i> ¹³	Adjusted hazard ratio = 1.7		
Insulin therapy		(95% CI: 1.3 to 2.3)		
Diabetes – Oral	Kheterpal <i>et al.</i>	Adjusted hazard ratio*" = 1.3		
therapy	20	(95% CI: 1.0 to 1.7)		
Diabetes –	Wijeysundera <i>et al.</i> ²⁰	Adjusted $OR = 2.5$		
requiring		(95% CI: 1.7 to 3.6)		
medication				

Table 1: Independent risk factors for postoperative AKI

Congestive heart	Kheterpal <i>et al.</i> ¹³	Adjusted hazard ratio $= 2.0$
failure		(95% CI: 1.4 to 3.0)
	Abelha <i>et al.</i> ¹¹	OR = 3.9 (95% CI: 2.5 to 6.1)
Coronary artery	Abelha <i>et al.</i> ¹¹	OR = 2.1 (95% CI: 1.3 to 3.3)
disease including		
angina		
Peripheral	Kheterpal <i>et al.</i> ⁴	Adjusted hazard ratio $= 4.2$
vascular disease		(95% CI: 2.5 to 7.1)
COPD requiring	Kheterpal <i>et al.</i> ⁴	Adjusted hazard ratio $= 3.0$
treatment with		(95% CI: 1.9 to 5.0)
bronchodilator		
therapy		
Liver disease	Kheterpal <i>et al.</i> ⁴	Adjusted hazard ratio $= 2.4$
		(95% CI: 1.4 to 4.3)
Type of surgery	Kheterpal <i>et al.</i> ⁴	High-risk surgery ⁺⁺ :
		Adjusted hazard ratio $= 2.9$
		(95% CI: 2.0 to 4.3)
	Kheterpal <i>et al.</i> ¹³	High-risk surgery* ⁺ :
		Adjusted hazard ratio $= 3.3$
		(95% CI: 2.4 to 4.7)
	Abelha <i>et al.</i> ¹¹	High-risk surgery [#] : OR = 3.5
		(95% CI: 2.1 to 5.6)

CI: Confidence interval; OR: Odds ratio; AKI: Acute kidney injury; sCr: Serum creatinine; CrCl: Creatinine clearance; COPD: Chronic obstructive pulmonary disease; AKI-D: AKI treated with dialysis

Kheterpal *et al.*¹³ studied general surgery procedures in adult patients. Postoperative AKI was defined as an increase in serum creatinine of ≥ 2 mg/dl or requirement of dialysis within 30 days after surgery.¹³ Preoperative mild* chronic kidney disease was defined as a serum creatinine of 1.2 to 1.9 mg/dl in the 90 days prior to surgery.¹³ Preoperative moderate⁺ chronic kidney disease was defined as a serum creatinine ≥ 2.0 mg/dl in the 90 days prior to surgery.¹³ High-risk surgery*⁺ included intraperitoneal surgery except hernia repairs, while the reference group included general surgery involving hernia repairs.¹³ The adjusted hazard ratio*" for diabetes – oral therapy was statistically significant.¹³

Abelha *et al.*¹¹ studied major noncardiac surgery in adult patients. AKI was defined according to AKIN criteria.^{5;11} High-risk surgeries[#] included intrathoracic, intraperitoneal, and suprainguinal vascular procedures, while the reference group included the remaining types of major noncardiac surgery.¹¹

Wijeysundera *et al.*²⁰ studied cardiac surgery procedures in adult patients to identify independent risk factors for postoperative AKI-D.

Kheterpal *et al.*⁴ studied major noncardiac surgery procedures in adult patients with preoperative $CrCl \ge 80$ ml/min. Postoperative AKI was defined as a $CrCl \le 50$ ml/min within seven days after surgery.⁴ High-risk surgeries⁺⁺ included intraperitoneal, intrathoracic, suprainguinal vascular, or surgeries involving heavy blood loss or fluid resuscitation, while reference group included remaining types of major noncardiac surgery.⁴

Author	Study Design, Setting and Patient	Key Results	Conclusions	Study
	Groups			Limitations
Cittanova <i>et al</i> . ¹²	Prospective cohort study 249 patients who underwent aortic surgery over a 2 year period 23% (57 out of 249) patients were on ACEi 24.5% (61 out of 249) patients developed AKI	ACEi use was significantly associated with AKI ^a : Adjusted OR = 2.01 ; 95% CI: 1.05 to 3.83, p = 0.034	Preoperative ACEi use may increase the risk of AKI after aortic surgery	Single centre study Only studied aortic surgery Risk of overfitting in statistical model
Arora <i>et al</i> . ²²	Retrospective cohort study 1,358 patients who underwent cardiac surgery between 2001 and 2005 52% (706 out of 1,358) patients were on ACEi or ARB 14% (189 out of 1,358) patients developed AKI	ACEi or ARB users vs. non-users (referent): AKI ^b : Adjusted OR = 1.41; 95% CI: 1.07 to 1.85	Preoperative ACEi or ARB use may increase the risk of AKI after cardiac surgery	Two study centres Only studied cardiac surgery
Miceli <i>et al.</i> ²¹	Retrospective cohort study 9,274 patients who underwent cardiac surgery between 1996 and 2008 51% (4,730 out of 9,274) patients were on ACEi or ARB Propensity score matched analysis 3,052 ACEi or ARB users were	ACEi or ARB users vs. non-users (referent): AKI ^c (7.1% vs. 5.4%; OR = 1.36; 95% CI: 1.10 to 1.67; p = 0.006) Death ^d (1.3% vs. 0.7%;	Preoperative ACEi or ARB use may increase the risk of AKI and mortality after cardiac surgery	Single centre study Only studied cardiac surgery

<u>Table 2</u>: Studies: Preoperative ACEi or ARB use associated with more AKI

	matched to 3,052 non-users	OR = 2.00; 95% CI: 1.17 to 3.42; p = 0.013)		
Railton <i>et al.</i> ⁶⁰	Retrospective cohort study 883 patients who underwent open abdominal aortic aneurysm (AAA) repair between 1998 and 2005 41% (366 out of 883) patients were on ACEi or ARB Propensity score matched analysis 261 ACEi or ARB users were matched to 261 non-users	ACEi or ARB users vs. non-users (referent): AKI-D ^e : 4.6% vs. 0.8%, p = 0.013 Death ^f : 6.1% vs. 1.5%; OR = 5.00; 95% CI: 1.40 to 27.00; p = 0.008	Preoperative ACEi or ARB use may increase the risk of AKI-D and mortality after open abdominal aortic aneurysm repair	Two study centres Small sample size Only studied open abdominal aortic aneurysm repair

OR: Odds ratio; CI: Confidence interval; AKI: Acute kidney injury; ACEi: Angiotensin converting enzyme inhibitor; ARB: Angiotensin receptor blocker; ESRD: End stage renal disease; AKI-D: AKI treated with dialysis

AKI^a was defined as a >20% decrease in creatinine clearance between preoperative and postoperative period.

 AKI^{b} was defined as an increase in serum creatinine > 0.3 mg/dl or > 50% increase from preoperative baseline value according to the RIFLE (risk, injury, failure, loss, ESRD) classification.¹

AKI^c was defined as a postoperative serum creatinine level > 200 μ mol/L and ≥ 1.5 times increase from preoperative baseline serum creatinine value. Death^d occurred within 30 days after surgery.

AKI^e was defined as a requirement of dialysis (AKI-D). Death^f occurred within 30 days after surgery. Railton *et al.*⁶⁰ did not find a significant association between preoperative ACEi or ARB use and AKI (not requiring dialysis) (undefined).

Author	Study Design, Setting and Patient Groups	Key Results	Conclusions	Study Limitations
Ouzounian <i>et al.</i> 49	Retrospective cohort study 5,946 patients who underwent cardiac surgery between 1998 and 2007 54.9% (3,262 out of 5,946) patients were on ACEi	ACEi users vs. non-users (referent): AKI ^j : Adjusted OR = 0.70; 95% CI: 0.50 to 1.10; p = 0.09 Death ^k : Adjusted OR = 1.10;	Preoperative ACEi use may not be associated with AKI and mortality after cardiac surgery	Single centre study Only studied cardiac surgery Risk of overfitting in statistical model for AKI
	*1,647 patients were selected to study the association with AKI	p = 0.76 p = 0.76		
Rady <i>et al</i> . ⁵⁰	Retrospective cohort study 11,330 patients who underwent cardiac surgery between 1993 and	ACEi users vs. non-users (referent): AKI ¹ : Adjusted OR = 0.90; 95% CI: 0.70 to 1.20	ACEi use prior to surgery may not be associated with AKI and mortality	Single centre study Only studied cardiac surgery
	26.7% (3,025 out of 11,330) patients were on ACEi	Death ^m : Adjusted OR = 0.90; 95% CI: 0.70 to 1.20	surgery	
Yoo <i>et al.</i> ²⁸	Retrospective cohort study	ACEi or ARB users vs. non- users (referent):	Preoperative ACEi or ARB use may	Single centre study
	472 patients who underwent cardiac surgery between 2006 and 2009	AKI ⁿ : Adjusted OR = 0.34 ; 95% CI: 0.11 to 1.10:	not be associated with AKI after cardiac surgery	Only studied cardiac surgery
	62.7% (296 out of 472) patients were on ACEi or ARB	p = 0.090		Risk of overfitting in statistical model

Table 3: Studies: Preoperative ACEi or ARB use not associated with AKI

Barodka <i>et al.</i> ⁵⁹ (Abstract)	 20.6% (97 out of 472) patients developed AKI and 1.5% (7 out of 472) patients required AKI-D Retrospective cohort study 6,679 patients who underwent cardiac surgery between 1994 and 2007 32.4% (2,164 out of 6,679) patients were on ACEi 	ACEi users vs. non-users (referent): AKI ^o : Adjusted OR = 0.97 ; 95% CI: 0.88 to 1.07; p = 0.52	Preoperative ACEi use may not be associated with AKI after cardiac surgery	Single centre study Only included cardiac surgery
	36.6% (2,447 out of 6,679) patients developed AKI			
Kheterpal <i>et al.</i> ²⁶	 Prospective cohort study 45,291 patients who underwent non-cardiac surgery between 2003 and 2006 20.2% (9,143 out of 45,291) patients were on ACEi or ARB Propensity score matched analysis Of the matched cohort, 3,256 patients were selected to study the association with AKI 	ACEi or ARB users vs. non- users (referent): AKI ⁱ : 1.95% (25/1284) vs. 1.57% (31/1972), p = 0.51	Preoperative ACEi or ARB use may not be associated with AKI after non-cardiac surgery	Single centre study
Kincaid <i>et al.</i> ²⁷	Retrospective cohort study 1,209 patients who underwent cardiac surgery between 2000 and	Preoperative ACEi use along with intraoperative aprotinin use was significantly associated with	Preoperative ACEi use alone was not significantly associated with	Single centre study Only included

2002 45.1% (545 out of 1,209) patients were on ACEi	AKI ^p : Adjusted OR = 2.9; 95% CI: 1.4 to 5.8; p < 0.0001	AKI after cardiac surgery	cardiac surgery Risk of overfitting in statistical model
3.5% patients developed AKI	Neither ACEi nor aprotinin alone was significantly associated with AKI ^p		

OR: Odds ratio; CI: Confidence interval; AKI: Acute kidney injury; ACEi: Angiotensin converting enzyme inhibitor; ARB: Angiotensin receptor blocker; ESRD: End stage renal disease

 AKI^{j} was defined as serum creatinine exceeding 176 μ mol/L and > 50% increase from preoperative baseline value. *Only a subgroup of patients (1,647 patients) was considered to examine the association between preoperative ACEi use and AKI because there was no information available on AKI in the database prior to 2004. Death^k is in-hospital mortality.

AKI¹ was defined with one of the following criteria: (1) increase in serum creatinine concentration $\ge 3.8 \text{ mg/dL}$; (2) doubling of preoperative (baseline) serum creatinine concentration if preoperative value > 1.9 mg/dL; (3) a requirement of postoperative dialysis. Death^m occurred within 30 days after surgery.

AKIⁿ was defined as an increase in serum creatinine greater than 0.3 mg/dl or greater than 50% increase from preoperative baseline value (using RIFLE (risk, injury, failure, loss, ESRD) classification¹).

 AKI^{o} was defined as an increase in serum creatinine > 0.3 mg/dl or 1.5 times or higher increase from preoperative baseline value (using RIFLE (risk, injury, failure, loss, ESRD) classification¹) or requirement of dialysis.

 AKI^{i} was defined as a decrease in postoperative estimated creatinine clearance (Cockroft-Gault formula⁶¹) < 50 mL/min within the first 7 days after surgery; all patients had preoperative estimated creatinine clearance > 80 mL/min. Kheterpal *et al.*²⁶ studied only a subgroup of patients to determine the association of ACEi or ARB use with AKI.

 AKI^{p} was defined as an increase in serum creatinine concentration > 2.0 mg/dl within 72 hours of surgery.

Author	Study Design, Setting and Patient Groups	Key Results	Conclusions	Study Limitations
Benedetto et al. ²⁴	Retrospective cohort study 536 patients who underwent cardiac surgery between 2004 and 2008 52.4% (281 out of 536) patients were on ACEi 9.1% (49 out of 536) patients developed AKI (not requiring dialysis) and 4.3% (23 out of 536) patients developed AKI-D	ACEi users vs. non- users (referent): AKI ^g : Adjusted OR = 0.48; 95% CI: 0.23 to 0.77; p = 0.04	Preoperative ACEi use may decrease the risk of AKI after cardiac surgery	Single centre study Only studied cardiac surgery Risk of overfitting in statistical model
Barodka <i>et al.</i> ²³	Retrospective cohort study 346 patients who underwent cardiac surgery between 2003 and 2007 35% (122 out of 346) patients were on ACEi or ARB 5.5% (19 out of 346) patients developed AKI and 0.9% (3 out of 346) patients developed AKI-D	ACEi or ARB users vs. non-users (referent): AKI ^h : Adjusted OR = 0.19 ; 95% CI: 0.04 to 0.84; p = 0.029	Preoperative ACEi or ARB may decrease the risk of AKI after cardiac surgery	Single centre study Only studied cardiac surgery Risk of overfitting in statistical model

Table 4: Studies: Preoperative ACEi or ARB use associated with less AKI

OR: Odds ratio; CI: Confidence interval; AKI: Acute kidney injury; ACEi: Angiotensin converting enzyme inhibitor; ARB: Angiotensin receptor blocker; GFR: Glomerular filtration rate; AKI-D: AKI treated with dialysis

AKI^g was defined as a 50% or more decrease in GFR relative to preoperative baseline GFR value but not requiring dialysis and the modified diet and renal disease (MDRD) equation was used to estimate GFR.⁶² Benedetto *et al.*²⁴ did not find significant association between preoperative ACEi use and 30-day all-cause mortality.

 AKI^{h} was defined with one of the following criteria: (1) increase in serum creatinine concentration above 2.0 mg/dL; (2) doubling of preoperative (baseline) serum creatinine concentration; (3) a requirement of postoperative dialysis. Barodka *et al.*²³ did not find significant association between preoperative ACEi or ARB use and 30-day all-cause mortality.

<u> Fable 5</u> : Postoperative Ak	I studies: Baselin	e differences in ACEi o	r ARB users and non-users
------------------------------------	--------------------	-------------------------	---------------------------

Author	No. of patients	Baseline characteristics significantly higher in ACEi or ARB users
		compared to non-users (p-value < 0.05)
Kheterpal <i>et al.</i> ²⁶	ACEi users: 9,143;	Coronary artery disease, cerebrovascular disease, congestive heart failure,
	non-users: 36,148	chronic obstructive pulmonary disease, diabetes mellitus, arrhythmia,
		hypertension, previous myocardial infarction, peripheral vascular disease,
		pulmonary hypertension, preoperative chronic kidney disease (serum creatinine
		\geq 2 mg/dL), age, beta-blocker use, diuretic use, calcium channel blocker use
Miceli <i>et al.</i> ²¹	ACEi users: 4,730;	Hypertension, diabetes mellitus, vascular disease, previous myocardial
	non-users: 4,544	infarction, coronary artery disease, age
Ouzounian <i>et al.</i> ⁴⁹	ACEi users: 3,262;	Hypertension, diabetes mellitus, congestive heart failure, previous myocardial
	non-users: 2,684	infarction, cerebrovascular disease, peripheral vascular disease, chronic kidney
		disease, beta-blocker use, statin use
Arora <i>et al.</i> ²²	ACEi or ARB users: 706;	Diabetes mellitus, hypertension, congestive heart failure, body mass index
	non-users: 652	$(> 25 \text{ kg/m}^2)$
Benedetto <i>et al.</i> ²⁴	ACEi users: 281;	Hypertension, beta-blocker use
	non-users: 255	
Yoo <i>et al.</i> ²⁸	ACEi or ARB users: 296;	Diabetes mellitus, hypertension, diuretic use
	non-users: 176	
Barodka <i>et al.</i> ²³	ACEi or ARB users: 122;	Hypertension, male gender
	non-users: 224	

AKI: Acute kidney injury; ACEi: Angiotensin converting enzyme inhibitor; ARB: Angiotensin receptor blocker

3.1 Limitations of existing studies

There are several methodological limitations of the existing studies on preoperative ACEi or ARB use and postoperative AKI.^{12;21-24;26-28;49;50;59;60}

- Study centres: All of the existing studies were limited to only single or two centres.
- (2) Sample size: The results for Cittanova et al.¹², Arora et al.²², Railton et al.⁶⁰ Benedetto et al.²⁴, Barodka et al.²³, Yoo et al.²⁸, Kincaid et al.²⁷, and Ouzounian et al.⁴⁹ were limited by the small sample size (249, 1358, 883, 536, 346, 472, 1209, and 1647 patients respectively). One of the concerns due to small sample size is overfitting in statistical models.^{63;64} Overfitting in a statistical model occurs when it has more variables in respect to the amount of available data (e.g. A regression model requires a minimum of 10 to 12 events for every included variable to produce a stable regression model).^{63;64}
- (3) *Type of surgery*: With the exception of Kheterpal *et al.*²⁶, all of the existing studies were limited to only cardiac or vascular surgery. This raises concerns about the generalizability of the study results for other type of major surgery.
- (4) Study design: All of the existing studies are observational in nature and could not establish the causal association between preoperative ACEi or ARB use and postoperative AKI.⁶⁵

3.2 Choice of study design

The best estimates for treatment effects come from randomized controlled trials (RCT).⁶⁵ However, a limitation to conducting such a trial on the outcome of AKI-D is one of logistics and cost.

For example, a sample size of over 156,500 patients is needed to conduct an RCT on the outcome of AKI-D. (Assumptions: i) incidence of AKI-D of 0.45% in a group of patients having any type of major surgery, ii) 1:1 allocation (ACEi or ARB users vs. non-users), iii) relative risk reduction of 20% with ACEi or ARB use, iv) no loss to follow-up, v) two tailed $\alpha = 0.05$, and vi) $1 - \beta = 0.8$). It would not be possible to conduct such a large RCT.

On the other hand, well designed cohort studies can provide useful information on estimates of treatment effects, and can guide the conduct and interpretation of future RCT.⁶⁵ For this reason, we conducted a population based retrospective cohort study in Ontario, Canada to determine whether preoperative ACEi or ARB use compared to non-use is associated with an increased risk of AKI-D following a non-urgent major surgical procedure.

3.3 Research Questions

3.3.1 Primary research question

In elderly patients undergoing non-urgent major surgery: Is preoperative ACEi or ARB use (vs. non-use) associated with a higher risk of postoperative AKI-D? **Hypothesis:** Preoperative ACEi or ARB use increases the risk of AKI-D compared to non-use.

3.3.2 Secondary research question

In elderly patients undergoing non-urgent major surgery:

Is preoperative ACEi or ARB use (vs. non-use) associated with an increased risk of postoperative all-cause mortality?

Hypothesis: Preoperative ACEi or ARB use increases the risk of all-cause mortality compared to non-use.

CHAPTER 4 – STUDY METHODS

4.1 Study overview and setting

We performed a *retrospective cohort study* of elderly patients in the province of Ontario, Canada who were admitted to a hospital for a non-urgent, elective surgical procedure. We performed this study in accordance with a prespecified study protocol approved by the institutional review board (IRB) of Sunnybrook Health Sciences Centre, Toronto (detailed data creation plan in Appendix A). We used several linked Ontario health administrative databases held at ICES (Institute for Clinical Evaluative Sciences). We followed guidelines as stated in STROBE (Strengthening the Reporting of Observational Studies in Epidemiology) to report the findings of our study (detailed in Appendix B).⁶⁶

4.2 Data Sources

All the residents in Ontario (Canada) have universal coverage for health-care services under the Ontario Health Insurance Plan (OHIP).¹⁷ Moreover, the Ontario Drug Benefits (ODB) plan covers routinely prescribed outpatient medications for patients 65 years of age or older.¹⁷ Patients' related health information such as vital status, demographics, outpatient health-care access, hospitalization, procedures (such as therapeutic, diagnostic, surgical procedures etc.), and drug prescriptions are electronically collected in several health administrative databases.¹⁷ The Institute for Clinical Evaluative Sciences has anonymously linked these databases for the purposes of population based health research.^{17;67-75} We used the following databases in our study:

- (1) Ontario Drug Benefits (ODB) Database: We reviewed the ODB database from September 1994 to November 2010 to obtain information on different outpatient medications such as drug identification number (DIN), therapeutic class etc.¹⁷ There was a minimal error rate of 0.7% (95% CI: 0.5% to 0.9%) on prescriptions dispended within this database.⁷²
- (2) Canadian Institute for Health Information (CIHI) Discharge Abstract Database (DAD): The CIHI-DAD collects information on hospital admissions including demographic and procedural information such as therapeutic, diagnostic, and surgical procedures.¹⁷ The CIHI-DAD used the Canadian Modified International Classification of Disease ninth version (ICD-9 CA) before 2002 and ICD-10 CA (10th version) thereafter. We reviewed the CIHI-DAD from January 1992 to November 2010 to obtain various patients' related health information.
- (3) Ontario Health Insurance Plan (OHIP) Database: The OHIP database records information on billing claims for inpatient, outpatient, and laboratory services.¹⁷ We reviewed the OHIP database from January 1992 to February 2011.
- (4) Registered Persons Database (RPDB): The RPDB provides information on demographics and vital statistics such as vital status, socioeconomic status, birth-date, sex, and postal code for the residents in Ontario.¹⁷ We reviewed the RPDB from January 1992 to February 2011.

Table 6: Time Frame Definitions

4.3 Patients

We selected patients' over the age of 66 years who were admitted to a hospital in Ontario (Canada) for an elective, non-urgent surgical procedure between January 1, 1995 and November 30, 2010. Patients age 65 years or older receive universal prescription coverage under ODB plan in Ontario. Patients who were in their first year of coverage (age 65 years) were excluded to avoid incomplete medication records. We studied the following five surgical categories which all carry an appreciable risk for the complication of AKI-D^{4;17;20}: 1) Cardiac; 2) Thoracic; 3) Vascular; 4) Abdominal; and 5) Retro-peritoneal (bladder, ureter, kidney).

We defined the 'index date' as the date of elective, non-urgent surgical procedure during a hospital admission. If there was a missing procedural date, we used the hospital admission date. We excluded all the surgeries done during the course of a non-surgical hospital admission to avoid selecting emergent or urgent surgery. We also excluded one hospital from analysis where a single treatment of intra-operative dialysis was routinely performed upon patients undergoing cardiopulmonary bypass surgery.

In a data cleaning step, we excluded hospital admissions associated with invalid or a missing provincial health card number (ICES key number), missing age or sex, or any records with errors in vital statistics (< 1.2% of records excluded for these reasons). We limited our analyses to patients with at least one ODB prescription in the 120 days prior to the index date to ensure patients were assessing the ODB plan before surgery and were in Ontario. In order to assess of the event of new postoperative AKI-D, we excluded patients with any evidence of dialysis or kidney transplantation in the 3 years prior to surgery.

To avoid the need to account for less frequently prescribed anti-hypertensive medications in the analysis, we only considered those patients who could have evidence of a prescription for the following frequently prescribed anti-hypertensive medications in the 120 days prior to surgery: ACEi, ARB, beta-adrenergic blocker, calcium channel blocker, non-potassium sparing diuretic (loop diuretic and thiazide diuretic), and excluded remaining anti-hypertensive medications. For patients with multiple eligible surgical procedures during the study period, we selected one surgical procedure at random and excluded the remaining procedures to avoid within patient clustering in the analysis.

4.4 Preoperative ACEi or ARB use

Within our study, our exposure group contained ACEi or ARB users, if there was evidence of at least one ODB prescription for an ACEi or ARB in the 120 days prior to the index date. Non-users (control group) had no evidence of an ODB prescription for an ACEi or ARB in the 120 days prior to the index date. We considered a time frame of 120 days because the ODB plan requires that each prescription be renewed at least every 100 days and we added 20 extra days to accommodate missed doses.⁷⁶

4.5 Baseline Characteristics

We evaluated demographic characteristics and comorbidities for selected patients using validated database codes whenever possible (provided in Appendix C).^{17;77-85} We also evaluated concomitant medications use in the 120 days prior to the index date.

4.6 Potential Confounders

We considered factors associated with ACEi or ARB use and those associated with postoperative AKI to determine potential confounders.^{4;11-13;17;20-28;30;49;50;59;60;86} We adjusted for the following potential confounders in the logistic regression analysis: age (in years), sex (male/female; referent = female), chronic obstructive pulmonary disease (yes/no; referent = no), cerebrovascular disease (yes/no; referent = no), peripheral vascular disease (yes/no; referent = no), coronary artery disease (yes/no; referent = no), congestive heart failure (yes/no; referent = no), chronic kidney disease (yes/no; referent = no), chronic liver disease (yes/no; referent = no), antidiabetic agent (yes/no; referent = no), beta-adrenergic blocker (yes/no; referent = no), calcium channel blocker (yes/no; referent = no), non-potassium sparing diuretic
(yes/no; referent = no), statin (yes/no; referent = no), type of surgery (cardiac, thoracic, vascular, abdominal, retro-peritoneal; referent = abdominal), era of surgery (1995 to 1998, 1999 to 2001, 2002 to 2004, 2005 to 2007, 2008 to 2010; referent = 1995 to 1998)

4.7 Primary and secondary outcomes

The primary outcome was AKI-D within 14 days of the index date. We assessed the primary outcome of AKI-D using OHIP database codes for acute dialysis (provided in Appendix D).^{17;87} The secondary outcome was all-cause mortality within 90 days of the index date.

4.8 Primary Analysis

Statistical analysis was performed using SAS 9.2 (SAS Institute, Cary, NC, USA). We evaluated differences in baseline characteristics between ACEi or ARB users and nonusers using standardized differences and considered > 10% as a meaningful difference between the two groups.⁸⁶ For our primary and secondary outcomes, we determined the total number of events for ACEi or ARB users and non-users followed by unadjusted and adjusted logistic regression analysis with non-users as the referent group. We determined the unadjusted odds ratio (OR), the adjusted OR, and their 95% confidence intervals (CI). We adjusted for all the prespecified potential confounders in the logistic regression analysis to determine the adjusted OR. Given the low observed incidence for our study outcomes, we interpreted odds ratios as relative risks.⁸⁸

4.9 Additional Analyses

We conducted several additional analyses to explore the relationship between preoperative ACEi or ARB use and outcomes.

(1) Propensity score matching: Cohort studies are prone to selection bias that might predispose a patient to receive or not receive ACEi or ARB prior to surgery.^{86;89-91} Because of this form of bias, cohort studies may be limited in their ability to make comparisons between ACEi or ARB users and nonusers.^{86;89-91} A propensity score matched analysis is a statistical approach to reduce this form of bias.⁸⁹⁻⁹¹ In our context, we analyzed numerous risk factors that were associated with why a patient was or was not prescribed preoperative ACEi or ARB and assigned a propensity score – this score indicated the likelihood of ACEi or ARB use if the risk factor was present.^{86;89-91} When multiple risk factors were present in a single patient, we amalgamated the propensity scores for those risk factors and assigned an overall propensity score for that patient from 0 to 1 reflecting the likelihood of receiving ACEi or ARB.⁸⁹ We then matched patients receiving preoperative ACEi or ARB on one-to-one basis with patients not receiving ACEi or ARB who had an identical overall propensity score.⁸⁹ We excluded patients not successfully matched through this process.⁸⁹

In our study we performed an individual one-to-one match based on age (± 5 years), sex (men/women) and the presence of chronic kidney disease (yes/no). We then derived a propensity score for every patient from all the potential confounders prespecified in our logistic regression analysis and matched each

ACEi or ARB user to a non-user using a caliper of ± 0.2 standard deviation of all the propensity scores.⁸⁹ Through this process we obtained a group of matched cohort for ACEi or ARB users and non-users.⁸⁹ Each non-user could only be selected once to derive the propensity score. For the primary and secondary outcomes, we determined the total number of events for propensity matched ACEi or ARB users and non-users followed by relative risk (95% CI). We also calculated absolute risk reduction (95% CI) for primary and secondary outcomes.⁸⁸ In a case where preoperative ACEi or ARB use was beneficial, we calculated the number needed to treat (1 / absolute risk reduction), which indicates how many patients need to receive preoperative ACEi or ARB to prevent one patient from developing an event such as receipt of AKI-D who otherwise would have developed the event (a lower number indicating a more beneficial effect of ACEi or ARB use).⁸⁸

(2) Effect modification by preoperative chronic kidney disease, era of surgery. and type of surgery: We performed subgroup analyses (tests of effect modification) for the outcome of AKI-D and all-cause mortality for the following three characteristics: presence of preoperative chronic kidney disease (yes/no), era of surgery (1995 to 1998, 1999 to 2001, 2002 to 2004, 2005 to 2007, 2008 to 2010), and type of surgery (cardiac, thoracic, vascular, abdominal, retro-peritoneal). We fit a logistic regression model to perform subgroup analyses where we adjusted for all the prespecified potential confounders except the subgroup factor being tested. We determined the total number of events and event rate per 10,000 persons followed by the unadjusted and adjusted relative risk (95% CI). We considered a p-value < 0.05 for the test of effect modification to be significant.

(3) <u>Time to event analysis</u>: We repeated our analysis using a Cox-proportional hazards model for the outcome of AKI-D, censored for death or end of the 14th day after index date. We adjusted for all prespecified potential confounders and determined the adjusted hazard ratio (95% CI) for ACEi or ARB users with non-users as the referent group.

CHAPTER 5 – STUDY RESULTS

5.1 Baseline characteristics: ACEi or ARB users and non-users

We identified 237,208 patients from 118 hospitals in Ontario (Canada) after applying our selection criteria (Figure 3). There were 101,494 (42.8%) ACEi or ARB users and 135,714 (57.2%) non-users. The baseline characteristics for ACEi or ARB users and non-users are presented in Table 7. In comparison to non-users, ACEi or ARB users were more likely to be male, were on a higher number of medications such as antidiabetic agent, other anti-hypertensive medications (beta-blocker, calcium channel blocker, and non-potassium sparing diuretic) and statin, had higher rates of cerebrovascular disease, peripheral vascular disease, coronary artery disease including angina, congestive heart failure, and chronic kidney disease. ACEi or ARB users were more likely to undergo cardiac and vascular surgeries compared to other types of eligible surgeries. Patients having their surgery in more recent years (2002 to 2010) were more likely to have received preoperative ACEi or ARB compared to past years (1995 to 2001).

5.2 Primary analysis: AKI-D and all-cause mortality

The incidence of postoperative AKI-D (within 1 to 14 days after surgery) was 0.34% (810 out of 237,208 patients) and postoperative 90-day all-cause mortality was 4.67% (11,089 out of 237,208 patients). After adjustment for prespecified potential confounders, ACEi or ARB use prior to surgery was associated with a lower relative risk of AKI-D (adjusted relative risk (RR): 0.83; 95% CI: 0.71 to 0.98) and a lower relative risk of 90-day all-cause mortality (adjusted RR: 0.91; 95% CI: 0.87 to 0.95) (Table 8).

5.3 Additional Analyses

5.3.1 Propensity score matched analysis: AKI-D and all-cause mortality

Out of 101,494 ACEi or ARB users selected for the primary analysis, 67,822 ACEi or ARB users were matched to 67,822 non-users using predefined characteristics including the propensity score (Table 7). Similar to the primary analysis, preoperative ACEi or ARB use was associated with a lower relative risk of AKI-D (RR: 0.77; 95% CI: 0.65 to 0.92) and a lower relative risk of 90-day all-cause mortality (RR: 0.93; 95% CI: 0.88 to 0.97) (Table 9). For the outcome of AKI-D, the absolute risk reduction (ARR) for ACEi or ARB users compared to non-users was 0.09% and number needed to treat (NNT) was 1,077. It indicates that 1,077 patients need to be treated with ACEi or ARB prior to surgery to prevent one case of postoperative AKI-D. Similarly, for the outcome of 90-day all-cause mortality, the ARR for ACEi or ARB users compared to non-users was 0.35%, and the NNT was 289.

5.3.2 Subgroup analysis for AKI-D and all-cause mortality

We summarized the results for subgroup analysis for AKI-D and all-cause mortality in Table 10 and Table 11. We did not find type of surgery or era of surgery modified the association between preoperative ACEi or ARB use and AKI-D. For patients with chronic kidney disease, we observed a lower incidence of AKI-D (246.8 per 10,000 persons) in preoperative ACEi or ARB users compared to non-users (354.1 per 10,000 persons). Preoperative ACEi or ARB use in patients with chronic kidney disease was associated with a lower relative risk of AKI-D (adjusted RR: 0.62; 95% CI: 0.50 to 0.78), while there was no such association in patients without chronic kidney disease (adjusted RR: 1.00; 95% CI: 0.81 to 1.24), with a significant test of interaction by the

presence of chronic kidney disease (p-value < 0.0001). We did not find significant effect modification by chronic kidney disease, type of surgery, or era of surgery on the outcome of all-cause mortality.

5.3.3 Time to event analysis for AKI-D

We observed similar result in the time to event analysis for AKI-D. The adjusted hazard ratio for preoperative ACEi or ARB use compared to non-use was 0.83 (95% CI: 0.71 to 0.97).

Figure 3: Flow diagram: Patient selection

Hospital admissions for cardiac surgery, vascular surgery, thoracic surgery, abdominal surgery and retro-peritoneal surgery during 1995 to 2010 in 118 hospitals in Ontario, Canada Total No. of hospital admissions: 1,762,271 (100%)

	Entire Cohort			Propensity Matched Cohort	
	ACEi or ARB	Non-users		ACEi or ARB	Non-users
	users	(control)		users	(control)
	N=101,494	N=135,714		N=67,822	N=67,822
Demographics					
Age at index date (years)	74 (70 to 78)	73 (69 to 78)		74 (70 to 78)	74 (70 to 78)
Age groups (years)					
66 to 70	30,557 (30.1%)	43,652 (32.2%)		20,098 (29.6%)	20,165 (29.7%)
71 to 75	30,966 (30.5%)	40,782 (30.0%)		20,482 (30.2%)	20,391 (30.1%)
76 to 80	23,898 (23.5%)	29,529 (21.8%)		15,982 (23.6%)	15,779 (23.3%)
81 to 85	11,812 (11.6%)	15,361 (11.3%)		8,101 (11.9%)	8,205 (12.1%)
86 to 90	3,651 (3.6%)	5,294 (3.9%)		2,682 (4.0%)	2,761 (4.1%)
91+	610 (0.6%)	1,096 (0.8%)		477 (0.7%)	521 (0.8%)
Women	41,034 (40.4%)	60,522 (44.6%)		29,425 (43.4%)	29,425 (43.4%)
Comorbidities					
Chronic obstructive pulmonary disease	5,806 (5.7%)	7,121 (5.2%)		3,789 (5.6%)	3,527 (5.2%)
Cerebrovascular disease	18,016 (17.8%)*	17,551 (12.9%)*		10,970 (16.2%)	11,097 (16.4%)
Peripheral vascular disease	6,490 (6.4%)*	5,571 (4.1%)*		3,675 (5.4%)	3,599 (5.3%)
Coronary artery disease	67,921 (66.9%)*	61,137 (45.0%)*		40,114 (59.1%)	40,346 (59.5%)
Congestive heart failure	22,108 (21.8%)*	12,413 (9.1%)*		10,740 (15.8%)	10,317 (15.2%)
Chronic kidney disease	7,538 (7.4%)*	5,027 (3.7%)*		3,852 (5.7%)	3,852 (5.7%)
Chronic liver disease	295 (0.3%)	478 (0.4%)		200 (0.3%)	194 (0.3%)
Medications					
Oral hypoglycemic	21,267 (21.0%)*	10,381 (7.6%)*		8,766 (12.9%)	8,625 (12.7%)

<u>Table 7</u>: Baseline characteristics: ACEi or ARB users and non-users

Insulin	6,089 (6.0%)*	2,381 (1.8%)*	2,348 (3.5%)	1,937 (2.9%)
Anti-diabetic agent	25,041 (24.7%)*	12,215 (9.0%)*	10,364 (15.3%)	10,076 (14.9%)
Beta-adrenergic blocker	44,835 (44.2%)*	34,096 (25.1%)*	24,550 (36.2%)	24,702 (36.4%)
Calcium channel blocker	36,659 (36.1%)*	32,859 (24.2%)*	21,630 (31.9%)	22,131 (32.6%)
Non-potassium sparing diuretic	40,345 (39.8%)*	22,042 (16.2%)*	19,830 (29.2%)	19,595 (28.9%)
Statin	53,915 (53.1%)*	31,691 (23.4%)*	27,348 (40.3%)	26,913 (39.7%)
			· · ·	
Surgical Characteristics				
Type of Surgery				
Cardiac surgery	40,694 (40.1%)*	29,475 (21.7%)*	22,222 (32.8%)	22,380 (33.0%)
Thoracic surgery	5,771 (5.7%)	10,177 (7.5%)	4,561 (6.7%)	4,176 (6.2%)
Vascular surgery	18,459 (18.2%)*	18,969 (14.0%)*	11,509 (17.0%)	11,904 (17.5%)
Abdominal surgery	30,471 (30.0%)*	64,911 (47.8%)*	24,592 (36.2%)	24,630 (36.3%)
Retro-peritoneal surgery	6,099 (6.0%)*	12,182 (9.0%)*	4,938 (7.3%)	4,732 (7.0%)
Era of surgery				
1995 to 1998	14,718 (14.5%)*	45,173 (33.3%)*	13,278 (19.6%)	13,647 (20.1%)
1999 to 2001	16,900 (16.6%)*	30,122 (22.2%)*	13,457 (19.8%)	13,963 (20.6%)
2002 to 2004	20,960 (20.7%)*	21,992 (16.2%)*	13,404 (19.8%)	13,194 (19.5%)
2005 to 2007	23,711 (23.4%)*	19,520 (14.4%)*	13,625 (20.1%)	13,300 (19.6%)
2008 to 2010	25,205 (24.8%)*	18,907 (13.9%)*	14,058 (20.7%)	13,718 (20.2%)

ACEi: Angiotensin converting enzyme inhibitor; ARB: Angiotensin receptor blocker

Data are presented as number (percentage (rounding off to one decimal place)) with the exception of age at index date. Age at index date is presented as median (interquartile range). Index date is a surgical procedure date or a hospital admission date (if the surgical procedure date is not available).

^{*}Represents a standardized difference of > 10% between ACEi or ARB users and non-users. We considered a standardized difference of > 10% between ACEi or ARB users and non-users as a meaningful difference.⁸⁶ Standardized differences are not much sensitive to sample size compared to traditional hypothesis tests.⁸⁶ It is calculated by examining the difference between ACEi or ARB users and non-users divided by the pooled standard deviation of the two groups.⁸⁶ A total of 3% (3,091 out of 101,494) patients were on both ACEi and ARB medication.

Outcomes	No. of patients w	ith event (percent)	Relativ (95% Confid	ve Risk ence Interval)
	ACEi or ARB users	Non-users	Unadjusted	Adjusted*
	(N=101,494)	(N=135,/14)		
AKI-D (1 to 14 days after surgery)	438 (0.43%)	372 (0.27%)	1.58 (1.37, 1.81)	0.83 (0.71, 0.98)
Death (1 to 90 days after surgery)	4,654 (4.59%)	6,435 (4.74%)	0.97 (0.93, 1.00)	0.91 (0.87, 0.95)

Table 8: Association between preoperative ACEi or ARB use and outcomes

ACEi: Angiotensin converting enzyme inhibitor; ARB: Angiotensin receptor blocker; AKI-D: Acute kidney injury treated with dialysis

Relative risk was calculated for preoperative ACEi or ARB use compared to non-use

*Adjusted for age, sex, chronic obstructive pulmonary disease, cerebrovascular disease, peripheral vascular disease, coronary artery disease, congestive heart failure, chronic kidney disease, chronic liver disease, anti-diabetic agent, beta-adrenergic blocker, calcium channel blocker, non-potassium sparing diuretic, statin, type of surgery (cardiac, thoracic, vascular, abdominal, retro-peritoneal), era of surgery (1995-1998, 1999-2001, 2002-2004, 2005-2007, 2008-2010)

Outcomes	No. of patien (per	ts with event cent)	Deletive Diele	Absolute Risk	Number Needed to Treat ⁺	
	ACEi or ARB	Non-users	(95% CI)	Reduction		
	users		(9370 CI)	(95% CI)		
	(N=67,822)	(N=67,822)				
AKI-D	215(0.220/)	278 (0 419/)	0.77(0.65,0.02)	0.000/(0.030/0.160/)	1.077	
(1 to 14 days after surgery)	213 (0.3270)	278 (0.41%)	0.77(0.03, 0.92)	0.09% (0.03%, 0.10%)	1,077	
Death (1 to 90 days after surgery)	3,060 (4.51%)	3,295 (4.86%)	0.93 (0.88, 0.97)	0.35% (0.12%, 0.57%)	289	

Table 9: Propensity score matched analysis: Preoperative ACEi or ARB use and outcomes

ACEi: Angiotensin converting enzyme inhibitor; ARB: Angiotensin receptor blocker; AKI-D: Acute kidney injury treated with dialysis; CI: Confidence interval

Relative risk was calculated for preoperative ACEi or ARB use compared to non-use

⁺The number needed to treat is the reciprocal of the absolute risk reduction (1 / absolute risk reduction) and indicates the total number of patients who need to be treated with an ACEi or ARB prior to surgery to prevent one case of AKI-D or death, respectively.⁸⁸

	No. of	events	Event rate		Relativ	P-value	
			per 10,000 persons		(95% Confid	(Test for	
	ACEi or	Non-users	ACEi or	Non-	Unadjusted	Adjusted ⁺	interaction)
	ARB users		ARB users	users			
CKD							
Yes	186 / 7,538	178 / 5,027	246.75	354.09	0.69 (0.56, 0.85)	0.62 (0.50, 0.78)	
No	252 / 93,956	194 / 130,687	26.82	14.84	1.81 (1.50, 2.18)	1.00 (0.81, 1.24)	}<0.0001
Era of surgery							
1995 to 1998	77 / 14,718	113 / 45,173	52.32	25.01	2.10 (1.57, 2.80)	1.13 (0.81, 1.56)	
1999 to 2001	57 / 16,900	68 / 30,122	33.73	22.57	1.50 (1.05, 2.13)	0.78 (0.53, 1.15)	
2002 to 2004	93 / 20,960	66 / 21,992	44.37	30.01	1.48 (1.08, 2.03)	0.88 (0.62, 1.25)	
2005 to 2007	92 / 23,711	63 / 19,520	38.80	32.27	1.20 (0.87, 1.66)	0.64 (0.45, 0.92)	J
2008 to 2010	119 / 25,205	62 / 18,907	47.21	32.79	1.44 (1.06, 1.96)	0.84 (0.60, 1.17)	
Type of surgery							
Cardiac	232 / 40,694	147 / 29,475	57.01	49.87	1.14 (0.93, 1.41)	0.74 (0.59, 0.93)	
Thoracic	14 / 5,771	12 / 10,177	24.26	11.79	2.06 (0.95, 4.46)	1.84 (0.77, 4.40)	
Vascular	117 / 18,459	92 / 18,969	63.38	48.50	1.31 (0.99, 1.72)	1.09 (0.80, 1.48)	
Abdominal	71 / 30,471	109 / 64,911	23.30	16.79	1.39 (1.03, 1.87)	0.72 (0.52, 1.01)	」 ノ ^{**5}
Retro-peritoneal	4 / 6,099	12/12,182	6.56	9.85	0.67 (0.22, 2.07)	0.94 (0.28, 3.22)	

Table 10: Subgroup analysis for AKI-D

AKI-D: Acute kidney injury treated with dialysis; ACEi: Angiotensin converting enzyme inhibitor; ARB: Angiotensin receptor blocker; CKD: Chronic kidney disease; NS: not significant;

Relative risk was calculated for preoperative ACEi or ARB use compared to non-use

⁺ For adjusted analyses, we included all the prespecified potential confounders except the subgroup factor being tested

	No. of events		Event rate		Relativ	P-value	
			per 10,000 persons		(95% Confid	(Test for	
	ACEi or ARB	Non-users	ACEi or	Non-	Unadjusted	Adjusted ⁺	interact-
	users		ARB users	users			ion)
CKD							
Yes	606 / 7,538	467 / 5,027	803.93	928.98	0.85 (0.75, 0.97)	0.86 (0.75, 0.98)	
No	4,048 / 93,956	5,968 / 130,687	430.84	456.66	0.94 (0.90, 0.98)	0.91 (0.87, 0.96)	} NS
Era of surgery							
1995 to 1998	846 / 14,718	2,077 / 45,173	574.81	459.79	1.27 (1.17, 1.37)	1.05 (0.95, 1.15)	``
1999 to 2001	790 / 16,900	1,418 / 30,122	467.46	470.75	0.99 (0.91, 1.09)	0.96 (0.87, 1.06)	
2002 to 2004	922 / 20,960	1,089 / 21,992	439.89	495.18	0.88 (0.81, 0.97)	0.87 (0.79, 0.96)	\geq _{NS}
2005 to 2007	1,005 / 23,711	967 / 19,520	423.85	495.39	0.85 (0.78, 0.93)	0.81 (0.74, 0.90))
2008 to 2010	1,091 / 25,205	884 / 18,907	432.85	467.55	0.92 (0.84, 1.01)	0.90 (0.82, 0.99)	
Type of surgery							
Cardiac	1,460 / 40,694	1,184 / 29,475	358.78	401.69	0.89 (0.82, 0.96)	0.82 (0.75, 0.89)	\
Thoracic	432 / 5,771	830 / 10,177	748.57	815.56	0.91 (0.81, 1.03)	1.00 (0.87, 1.15)	
Vascular	936 / 18,459	916 / 18,969	507.07	482.89	1.05 (0.96, 1.16)	1.02 (0.91, 1.13)	\geq _{NS}
Abdominal	1,625 / 30,471	3,112 / 64,911	533.29	479.43	1.12 (1.05, 1.19)	0.92 (0.86, 0.99)	J
Retro-peritoneal	201 / 6,099	393 / 12,182	329.56	322.61	1.02 (0.86, 1.23)	0.92 (0.76, 1.13)	

Table 11: Subgroup analysis for all-cause mortality

ACEi: Angiotensin converting enzyme inhibitor; ARB: Angiotensin receptor blocker; CKD: Chronic kidney disease; NS: not significant;

Relative risk was calculated for preoperative ACEi or ARB use compared to non-use

⁺ For adjusted analyses, we included all the prespecified potential confounders except the subgroup factor being tested

CHAPTER 6 – GENERAL DISCUSSION

6.1 Summary of study results

The benefits of chronic ACEi or ARB use in reducing cardiovascular morbidity and mortality have been established in several international randomized controlled trials.³²⁻³⁸ However, optimal ACEi or ARB use in the perioperative period is still a matter of debate and practice patterns vary on whether these medications should be used or temporarily held prior to surgery.^{21;22;40-42;51-53}

We conducted a large population based retrospective cohort study to determine whether ACEi or ARB use prior to elective surgery is associated with a higher risk of AKI-D. Contrary to our hypothesis, ACEi or ARB use prior to surgery was associated with 17% lower relative risk of AKI-D and 9% lower relative risk of 90-day all-cause mortality after adjusting for relevant baseline characteristics. We observed similar results with propensity score matched analyses. However, we observed a significant effect modification by chronic kidney disease on AKI-D and the benefit of preoperative ACEi or ARB use in reducing the risk of AKI-D was only observed in patients with chronic kidney disease.

6.2 Interpreting study results

There is a supporting biological rationale which explains why ACEi or ARB use may improve outcomes in the perioperative setting. Both ACEi and ARB reduce the activity of angiotensin II which is thought to result in kidney protection.^{25;30;45-48} There are at least four potential mechanisms by which angiotensin II may increase the risk of postoperative AKI and mortality: i) Angiotensin II is a potent vasoconstrictor and acts directly on the renal efferent arteriole, severely altering renal hemodynamics, ii) it increases super oxide anion production and can lead to oxidative stress and impaired endothelial function, iii) it can accelerate the inflammatory response by promoting release of inflammatory mediators, adhesion molecules, and proinflammatory transcription factors, and iv) it accelerates acute ischemic events by increasing the release of plasminogen activator inhibitor-1.^{25;30;45-48} By reducing the activity of angiotensin II, ACEi or ARB may prevent the aforementioned events from increasing risk of kidney damage and death.^{25;30;45-48}

Our results are consistent with two previous small studies (studies summarized in Table 3). Benedetto *et al.*²⁴ studied 536 patients who underwent cardiac surgery and noted that preoperative ACEi use compared to non-use was associated with a lower risk of postoperative AKI (adjusted OR: 0.48; 95% CI: 0.23 to 0.77). The authors speculated the pathophysiologic benefit of ACEi use stemmed from preservation of renal blood flow during surgery.²⁴ Following 346 patients who underwent cardiac surgery, Barodka *et al.*²³ observed that preoperative ACEi or ARB use compared to non-use was associated with a substantially lower risk of AKI (adjusted OR: 0.19; 95% CI: 0.04 to 0.84). Contrary to our results, neither Benedetto *et al.*²⁴ or Barodka *et al.*²³ found a statistically significant association between preoperative ACEi or ARB use and all-cause mortality.

Miceli *et al.*²¹ performed a propensity score matched analysis in 9,274 patients who underwent cardiac surgery and observed that preoperative ACEi use compared to nonuse was associated with a 1.36 fold higher risk of postoperative AKI (adjusted OR: 1.36; 95% CI: 1.10 to 1.67) and a two-fold higher risk of postoperative mortality (adjusted OR: 2.00; 95% CI: 1.17 to 3.42). Miceli *et al.*²¹ suggested that postoperative AKI occurred as a result of decreased renal perfusion, mainly due to decreased arterial pressure along with increased intraoperative use of vasoconstrictors.

An additional four epidemiological studies conducted by Ouzounian *et al.*⁴⁹, Rady *et al.*⁵⁰, Yoo *et al.*²⁸, and Barodka *et al.*⁵⁹ (studies summarized in Table 4), demonstrated no significant association between preoperative ACEi or ARB use and postoperative AKI. However, all the four studies observed a non-significant trend towards benefit with preoperative ACEi or ARB use (adjusted OR < 1.00; p-value: not significant) and these could have been due to insufficient statistical power to detect a meaningful clinical benefit.^{28;49;50;59}

The major considerations in comparing our study results with all previous studies are the heterogeneous AKI definitions and type of surgery studied.^{12;21-24;26-28;49;50;59;60} We studied the outcome of AKI-D, the renal outcome most important to patients and their health-care providers.⁹² It differs from an outcome of AKI defined by acute changes in serum creatinine.^{1;5} The latter is a surrogate outcome, and could be misleading particularly in the ACEi or ARB use setting (i.e. ACEi or ARB use versus placebo may increase serum creatinine concentration but prevents the most clinically important renal outcome of end-stage renal disease requiring on-going maintenance dialysis).^{22;25;29;30;44} Out of all previous studies on this issue^{12;21-24;26-28;49;50;59;60}, only Railton *et al*.⁶⁰ studied the outcome of AKI-D and observed a higher risk for AKI-D with preoperative ACEi or ARB use (summarized in Table 2). However, the study was limited by a small group of patients (883 patients) who underwent abdominal aortic aneurysm (AAA) repair and a small number of AKI-D events (24 events).⁶⁰ Contrary to our study and Railton *et al.*⁶⁰, the remaining studies defined AKI using different criteria^{12;21-24;26-28;49;50;59}, such as: i) a composite outcome on changes in serum creatinine and AKI-D, ii) changes in serum creatinine using RIFLE classification¹, iii) changes in serum creatinine using arbitrary criteria, iv) changes in creatinine clearance or glomerular filtration rate (AKI definitions provided in footnotes of Table 2, 3, and 4). Different from our study and Kheterpal *et al.*²⁶, all existing previous studies considered only cardiac or vascular surgery to examine the association with postoperative AKI.^{12;21-24;27;28;49;50;59;60} However, Kheterpal *et al.*²⁶, after applying their selection criteria of overnight hospital admission, no urological procedure, and normal preoperative renal function, only studied a subgroup of patients (3,256 patients) out of a large cohort (45,291 patients) who underwent non-cardiac surgery. Kheterpal *et al.*²⁶ observed no significant association between preoperative ACE or ARB use and postoperative AKI and surmised this was potentially due to the limited small sample size.

Although we observed a lower relative risk of AKI-D with preoperative ACEi or ARB use, the benefit was only seen in patients with chronic kidney disease, while we found no significant association in patients without chronic kidney disease. Chronic kidney disease is considered to be the most important risk factor for AKI.^{13;20} However, majority of the previous studies did not account for chronic kidney disease in their analyses, so we do not know whether this explains differences in study results.^{12;21-24;26-28;49;50;59;60}

6.3 Study Strengths

Our study has a number of strengths:

- The large sample size (237,208 patients) from 118 hospitals in Ontario increased the generalizability of the study results.
- (2) Statistical overfitting with poor regression modeling can occur when there are less than 10 to 12 events for every variable included in the regression analysis.^{63;64} Unlike other studies, the large number of events for the primary outcome in our study (AKI-D, 810 events) reduced concerns about statistical overfitting.^{23;24;63;64}
- (3) To the best of our knowledge, this is the largest cohort study to examine the association between preoperative ACEi or ARB use and postoperative AKI.
- (4) AKI prevention is important for both cardiac and non-cardiac major surgeries. This is first study of its kind that considered both cardiac and non-cardiac major surgeries (including thoracic, vascular, abdominal and retro-peritoneal surgeries).
- (5) Given there were less than 1% yearly emigration from Ontario, the loss to follow up was minimal.⁹³
- (6) The information in Ontario health administrative databases reflects routine clinical practice and therefore, less prone to screening biases that could arise in other types of studies.^{17;70;71;73}
- (7) Our data sources provided accurate information on the dispensing of different outpatient medication prescriptions with a minimal error rate of 0.7% (95% CI: 0.5% to 0.9%).⁷²

6.4 Study Limitations

The study does have some limitations:

- (1) Confounding by indication, due to non random allocation of treatment, is well described in observational studies related to pharmacoepidemiology.⁸⁹⁻⁹¹ Because of this issue, the associations observed in this study may not be causal.⁸⁹⁻⁹¹ In other words, it is possible the results observed in this study are attributable to residual confounding rather than a true ACEi or ARB effect.^{90;91;94;95} Patients with comorbidities such as chronic kidney disease. diabetes, hypertension, congestive heart failure, coronary artery disease, and peripheral vascular disease are more likely to receive an ACEi or ARB, and these comorbidities also increase the risk for AKI.^{4;11;13;20;21;25;26} To deal with confounding, we adjusted for potential confounders in logistic regression analysis.^{89-91;95} We also repeated our analysis using propensity score matching.^{89-91;95} It is reassuring that these different methods of analysis provided similar results. However, we were unable to adjust for certain variables that were not available in our data sources, i.e. race, body mass index, non-prescription medication use, in hospital medication use, and medication compliance.¹⁷
- (2) Accuracy of codes: One of the concerns using health administrative databases is the accuracy of codes for patient related health information, e.g. chronic kidney disease (CKD) is considered to be the most important risk factor for postoperative AKI and the validity of database codes for CKD is limited (sensitivity: 28.3%; specificity: 94.6%; positive predictive value: 51.9%;

negative predictive value: 86.5%; compared with the reference standard of estimated GFR < 60 mL/min/ $1.73m^2$).⁸³ However, we used validated database codes whenever possible.^{17;77-85}

(3) A key information gap in our study was that we did not have complete information on perioperative ACEi or ARB use. We cannot determine whether patients took their ACEi or ARB around the time of surgery. We did not know:
(a) whether it was held prior to surgery and if so which day prior to surgery it was held; (b) if it wasn't held whether the full dose was used just prior to surgery, and (c) if ACEi or ARB was held prior to surgery, if and when it was restarted after surgery during the hospital stay. These are critical issues to guide the safe and optimal use of these medications in the perioperative period.^{40-42;51-53}

6.5 Future Directions

Future research studies will better clarify the relationship between preoperative ACEi or ARB use and postoperative AKI.

(1) Prospective cohort studies: Well conducted large multi-centre prospective cohort studies may provide better information on this association.⁶⁵ In this regard we have been funded by the Canadian Institutes of Health Research to study the association between preoperative ACEi or ARB use and AKI in an international prospective cohort study, VISION (Vascular Events In Noncardiac Surgery Patients Cohort Evaluation Study; Principal investigator: Dr. PJ Devereaux, McMaster University). In this study AKI will be defined by a ≥ 100% increase in serum creatinine defined according to RIFLE

classification.¹ VISION includes patients' aged 45 years or more undergoing major noncardiac surgery requiring hospitalization. The data collection includes detailed information on demographic characteristics, comorbidities, preoperative and postoperative serum creatinine measurement, postoperative AKI-D, preoperative medications use and whether these medications are temporarily withheld prior to surgery or not. Further, chronic kidney disease is classified according to estimated glomerular filtration rate categories based on modified diet and renal disease (MDRD) equation.⁶² This will provide better information on a key comorbid condition as opposed to our current study where the presence of chronic kidney disease was determined with poorly validated database codes.⁸³ Moreover, we will be able to explore the impact of holding vs. not holding ACEi or ARB prior to surgery. We expect to study a sample of over 30,000 patients recruited across multiple countries after applying our selection criteria.

(2) <u>Future randomized controlled trials</u>: Large randomized controlled trials are required to establish the causal association between preoperative ACEi or ARB use and postoperative outcomes.^{22;24;65} If one were to consider a primary outcome of 90-day all-cause mortality, the sample size would be 15,100 patients (Assumptions: i) incidence of 90-day all-cause mortality in 4.5% of patients undergoing major surgery, ii) 1:1 allocation for ACEi or ARB users and non-users, iii) relative risk difference: 20%, iv) no loss to follow-up, v) two tailed, $\alpha = 0.05$, and vi) $1 - \beta = 0.8$)). The sample size could be smaller if it proves reasonable to study the outcome of AKI defined according to changes in serum creatinine.^{1;5} Given the signal of benefit was strongest in the subgroup of patients with chronic kidney disease, enrolling a large number patients with chronic kidney disease may be prudent.

6.6 Study Implications

AKI-D is a serious complication of major surgery. Our study results suggest that preoperative ACEi or ARB use in older people may protect against the complication of AKI-D and may also reduce the risk of postoperative mortality. However, we observed the benefits of preoperative ACEi or ARB use in reducing the risk of AKI-D only in chronic kidney disease patients. Moreover, we cannot rule out the possibility of residual confounding and we did not have key information regarding the nature of ACEi or ARB use in the perioperative period. Large randomized controlled trials are required to address this issue.

BIBLIOGRAPHY

REFERENCES

- Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P: Acute renal failure definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. *Crit Care* 8:R204-R212, 2004
- 2. Chertow GM, Levy EM, Hammermeister KE, Grover F, Daley J: Independent association between acute renal failure and mortality following cardiac surgery. *Am J Med* 104:343-348, 1998
- Demirjian S, Schold JD, Navia J, Mastracci TM, Paganini EP, Yared JP, Bashour CA: Predictive models for acute kidney injury following cardiac surgery. *Am J Kidney Dis* 59:382-389, 2012
- 4. Kheterpal S, Tremper KK, Englesbe MJ, O'Reilly M, Shanks AM, Fetterman DM, Rosenberg AL, Swartz RD: Predictors of postoperative acute renal failure after noncardiac surgery in patients with previously normal renal function. *Anesthesiology* 107:892-902, 2007
- 5. Mehta RL, Kellum JA, Shah SV, Molitoris BA, Ronco C, Warnock DG, Levin A: Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. *Crit Care* 11:R31, 2007
- 6. Chertow GM, Burdick E, Honour M, Bonventre JV, Bates DW: Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. *J Am Soc Nephrol* 16:3365-3370, 2005
- 7. Ricci Z, Cruz D, Ronco C: The RIFLE criteria and mortality in acute kidney injury: A systematic review. *Kidney Int* 73:538-546, 2008
- Fergusson DA, Hebert PC, Mazer CD, Fremes S, MacAdams C, Murkin JM, Teoh K, Duke PC, Arellano R, Blajchman MA, Bussieres JS, Cote D, Karski J, Martineau R, Robblee JA, Rodger M, Wells G, Clinch J, Pretorius R: A comparison of aprotinin and lysine analogues in high-risk cardiac surgery. N Engl J Med 358:2319-2331, 2008
- Thakar CV, Arrigain S, Worley S, Yared JP, Paganini EP: A clinical score to predict acute renal failure after cardiac surgery. *J Am Soc Nephrol* 16:162-168, 2005
- Weiser TG, Regenbogen SE, Thompson KD, Haynes AB, Lipsitz SR, Berry WR, Gawande AA: An estimation of the global volume of surgery: a modelling strategy based on available data. *Lancet* 372:139-144, 2008

- 11. Abelha FJ, Botelho M, Fernandes V, Barros H: Determinants of postoperative acute kidney injury. *Crit Care* 13:R79, 2009
- 12. Cittanova ML, Zubicki A, Savu C, Montalvan C, Nefaa N, Zaier K, Riou B, Coriat P: The chronic inhibition of angiotensin-converting enzyme impairs postoperative renal function. *Anesth Analg* 93:1111-1115, 2001
- 13. Kheterpal S, Tremper KK, Heung M, Rosenberg AL, Englesbe M, Shanks AM, Campbell DA, Jr.: Development and validation of an acute kidney injury risk index for patients undergoing general surgery: results from a national data set. *Anesthesiology* 110:505-515, 2009
- 14. Sural S, Sharma RK, Singhal M, Sharma AP, Kher V, Arora P, Gupta A, Gulati S: Etiology, prognosis, and outcome of post-operative acute renal failure. *Ren Fail* 22:87-97, 2000
- 15. Hamel MB, Henderson WG, Khuri SF, Daley J: Surgical outcomes for patients aged 80 and older: morbidity and mortality from major noncardiac surgery. *J* Am Geriatr Soc 53:424-429, 2005
- McNicol L, Story DA, Leslie K, Myles PS, Fink M, Shelton AC, Clavisi O, Poustie SJ: Postoperative complications and mortality in older patients having non-cardiac surgery at three Melbourne teaching hospitals. *Med J Aust* 186:447-452, 2007
- Molnar AO, Coca SG, Devereaux PJ, Jain AK, Kitchlu A, Luo J, Parikh CR, Paterson JM, Siddiqui N, Wald R, Walsh M, Garg AX: Statin use associates with a lower incidence of acute kidney injury after major elective surgery. J Am Soc Nephrol 22:939-946, 2011
- 18. Devarajan P: Update on mechanisms of ischemic acute kidney injury. *J Am Soc Nephrol* 17:1503-1520, 2006
- 19. Rosner MH, Okusa MD: Acute kidney injury associated with cardiac surgery. *Clin J Am Soc Nephrol* 1:19-32, 2006
- 20. Wijeysundera DN, Karkouti K, Beattie WS, Rao V, Ivanov J: Improving the identification of patients at risk of postoperative renal failure after cardiac surgery. *Anesthesiology* 104:65-72, 2006
- 21. Miceli A, Capoun R, Fino C, Narayan P, Bryan AJ, Angelini GD, Caputo M: Effects of angiotensin-converting enzyme inhibitor therapy on clinical outcome in patients undergoing coronary artery bypass grafting. *J Am Coll Cardiol* 54:1778-1784, 2009
- 22. Arora P, Rajagopalam S, Ranjan R, Kolli H, Singh M, Venuto R, Lohr J: Preoperative use of angiotensin-converting enzyme inhibitors/angiotensin

receptor blockers is associated with increased risk for acute kidney injury after cardiovascular surgery. *Clin J Am Soc Nephrol* 3:1266-1273, 2008

- 23. Barodka V, Silvestry S, Zhao N, Jiao X, Whellan DJ, Diehl J, Sun JZ: Preoperative renin-angiotensin system inhibitors protect renal function in aging patients undergoing cardiac surgery. *J Surg Res* 167:e63-e69, 2011
- 24. Benedetto U, Sciarretta S, Roscitano A, Fiorani B, Refice S, Angeloni E, Sinatra R: Preoperative Angiotensin-converting enzyme inhibitors and acute kidney injury after coronary artery bypass grafting. *Ann Thorac Surg* 86:1160-1165, 2008
- 25. Bicket DP: Using ACE inhibitors appropriately. *Am Fam Physician* 66:461-468, 2002
- 26. Kheterpal S, Khodaparast O, Shanks A, O'Reilly M, Tremper KK: Chronic angiotensin-converting enzyme inhibitor or angiotensin receptor blocker therapy combined with diuretic therapy is associated with increased episodes of hypotension in noncardiac surgery. *J Cardiothorac Vasc Anesth* 22:180-186, 2008
- Kincaid EH, Ashburn DA, Hoyle JR, Reichert MG, Hammon JW, Kon ND: Does the combination of aprotinin and angiotensin-converting enzyme inhibitor cause renal failure after cardiac surgery? *Ann Thorac Surg* 80:1388-1393, 2005
- Yoo YC, Youn YN, Shim JK, Kim JC, Kim NY, Kwak YL: Effects of reninangiotensin system inhibitors on the occurrence of acute kidney injury following off-pump coronary artery bypass grafting. *Circ J* 74:1852-1858, 2010
- 29. Auron M, Harte B, Kumar A, Michota F: Renin-angiotensin system antagonists in the perioperative setting: clinical consequences and recommendations for practice. *Postgrad Med J* 87:472-481, 2011
- 30. Barreras A, Gurk-Turner C: Angiotensin II receptor blockers. *Proc (Bayl Univ Med Cent)* 16:123-126, 2003
- 31. Shah B, Mamdani M, Kopp A: Drug use in older people with diabetes. *An Institute for Clinical Evaluative Sciences Atlas* 3:51-76, 2002
- 32. Braunwald E, Domanski MJ, Fowler SE, Geller NL, Gersh BJ, Hsia J, Pfeffer MA, Rice MM, Rosenberg YD, Rouleau JL: Angiotensin-converting-enzyme inhibition in stable coronary artery disease. *N Engl J Med* 351:2058-2068, 2004
- 33. Dagenais GR, Pogue J, Fox K, Simoons ML, Yusuf S: Angiotensinconverting-enzyme inhibitors in stable vascular disease without left ventricular

systolic dysfunction or heart failure: a combined analysis of three trials. *Lancet* 368:581-588, 2006

- 34. Dickstein K, Kjekshus J: Effects of losartan and captopril on mortality and morbidity in high-risk patients after acute myocardial infarction: the OPTIMAAL randomised trial. Optimal Trial in Myocardial Infarction with Angiotensin II Antagonist Losartan. *Lancet* 360:752-760, 2002
- 35. Fox KM: Efficacy of perindopril in reduction of cardiovascular events among patients with stable coronary artery disease: randomised, double-blind, placebo-controlled, multicentre trial (the EUROPA study). *Lancet* 362:782-788, 2003
- 36. McMurray J, Solomon S, Pieper K, Reed S, Rouleau J, Velazquez E, White H, Howlett J, Swedberg K, Maggioni A, Kober L, Van de WF, Califf R, Pfeffer M: The effect of valsartan, captopril, or both on atherosclerotic events after acute myocardial infarction: an analysis of the Valsartan in Acute Myocardial Infarction Trial (VALIANT). J Am Coll Cardiol 47:726-733, 2006
- 37. Pfeffer MA, Braunwald E, Moye LA, Basta L, Brown EJ, Jr., Cuddy TE, Davis BR, Geltman EM, Goldman S, Flaker GC, .: Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. Results of the survival and ventricular enlargement trial. The SAVE Investigators. *N Engl J Med* 327:669-677, 1992
- Yusuf S, Sleight P, Pogue J, Bosch J, Davies R, Dagenais G: Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. N Engl J Med 342:145-153, 2000
- 39. Top Therapeutic Classes by U.S. Dispensed Prescriptions. IMS Health 2011
- 40. Bertrand M, Godet G, Meersschaert K, Brun L, Salcedo E, Coriat P: Should the angiotensin II antagonists be discontinued before surgery? *Anesth Analg* 92:26-30, 2001
- 41. Raja SG, Fida N: Should angiotensin converting enzyme inhibitors/angiotensin II receptor antagonists be omitted before cardiac surgery to avoid postoperative vasodilation? *Interact Cardiovasc Thorac Surg* 7:470-475, 2008
- 42. Rosenman DJ, McDonald FS, Ebbert JO, Erwin PJ, LaBella M, Montori VM: Clinical consequences of withholding versus administering renin-angiotensinaldosterone system antagonists in the preoperative period. *J Hosp Med* 3:319-325, 2008
- 43. Tuman KJ, McCarthy RJ, O'Connor CJ, Holm WE, Ivankovich AD: Angiotensin-converting enzyme inhibitors increase vasoconstrictor requirements after cardiopulmonary bypass. *Anesth Analg* 80:473-479, 1995

- 45. Atlas SA: The renin-angiotensin aldosterone system: pathophysiological role and pharmacologic inhibition. *J Manag Care Pharm* 13:9-20, 2007
- 46. Lazar HL: The use of angiotensin-converting enzyme inhibitors in patients undergoing coronary artery bypass graft surgery. *Vascul Pharmacol* 42:119-123, 2005
- 47. Lazar HL: Role of angiotensin-converting enzyme inhibitors in the coronary artery bypass patient. *Ann Thorac Surg* 79:1081-1089, 2005
- 48. Lazar HL: All coronary artery bypass graft surgery patients will benefit from angiotensin-converting enzyme inhibitors. *Circulation* 117:6-8, 2008
- 49. Ouzounian M, Buth KJ, Valeeva L, Morton CC, Hassan A, Ali IS: Impact of preoperative angiotensin-converting enzyme inhibitor use on clinical outcomes after cardiac surgery. *Ann Thorac Surg* 93:559-564, 2012
- 50. Rady MY, Ryan T: The effects of preoperative therapy with angiotensinconverting enzyme inhibitors on clinical outcome after cardiovascular surgery. *Chest* 114:487-494, 1998
- Devbhandari MP, Balasubramanian SK, Codispoti M, Nzewi OC, Prasad SU: Preoperative angiotensin-converting enzyme inhibition can cause severe post CPB vasodilation--current UK opinion. *Asian Cardiovasc Thorac Ann* 12:346-349, 2004
- 52. Fleisher LA, Beckman JA, Brown KA, Calkins H, Chaikof E, Fleischmann KE, Freeman WK, Froehlich JB, Kasper EK, Kersten JR, Riegel B, Robb JF, Smith SC, Jr., Jacobs AK, Adams CD, Anderson JL, Antman EM, Buller CE, Creager MA, Ettinger SM, Faxon DP, Fuster V, Halperin JL, Hiratzka LF, Hunt SA, Lytle BW, Nishimura R, Ornato JP, Page RL, Tarkington LG, Yancy CW: ACC/AHA 2007 guidelines on perioperative cardiovascular evaluation and care for noncardiac surgery: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 2002 Guidelines on Perioperative Cardiovascular Evaluation for Noncardiac Surgery): developed in collaboration with the American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Rhythm Society, Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, and Society for Vascular Surgery. *Circulation* 116:e418-e499, 2007

- 53. Pigott DW, Nagle C, Allman K, Westaby S, Evans RD: Effect of omitting regular ACE inhibitor medication before cardiac surgery on haemodynamic variables and vasoactive drug requirements. *Br J Anaesth* 83:715-720, 1999
- 54. Burne-Taney MJ, Kofler J, Yokota N, Weisfeldt M, Traystman RJ, Rabb H: Acute renal failure after whole body ischemia is characterized by inflammation and T cell-mediated injury. *Am J Physiol Renal Physiol* 285:F87-F94, 2003
- 55. Burne-Taney MJ, Rabb H: The role of adhesion molecules and T cells in ischemic renal injury. *Curr Opin Nephrol Hypertens* 12:85-90, 2003
- Donnahoo KK, Meng X, Ayala A, Cain MP, Harken AH, Meldrum DR: Early kidney TNF-alpha expression mediates neutrophil infiltration and injury after renal ischemia-reperfusion. *Am J Physiol* 277:R922-R929, 1999
- 57. McCoy RN, Hill KE, Ayon MA, Stein JH, Burk RF: Oxidant stress following renal ischemia: changes in the glutathione redox ratio. *Kidney Int* 33:812-817, 1988
- Sheridan AM, Bonventre JV: Cell biology and molecular mechanisms of injury in ischemic acute renal failure. *Curr Opin Nephrol Hypertens* 9:427-434, 2000
- Barodka V, Shah A, Berkowitz D, Nythan D, Hogue CW: Preoperative ACE Inhibitor Therapy Does Not Reduce the Risk for Renal Injury after Cardiac Surgery [Abstract]. *Annual Meeting of the American Society Anesthesiologists* 2009
- 60. Railton CJ, Wolpin J, Lam-McCulloch J, Belo SE: Renin-angiotensin blockade is associated with increased mortality after vascular surgery. *Can J Anaesth* 57:736-744, 2010
- 61. Cockcroft DW, Gault MH: Prediction of creatinine clearance from serum creatinine. *Nephron* 16:31-41, 1976
- 62. Stevens LA, Coresh J, Greene T, Levey AS: Assessing kidney function-measured and estimated glomerular filtration rate. *N Engl J Med* 354:2473-2483, 2006
- 63. Babyak MA: What you see may not be what you get: a brief, nontechnical introduction to overfitting in regression-type models. *Psychosom Med* 66:411-421, 2004
- 64. Peduzzi P, Concato J, Kemper E, Holford TR, Feinstein AR: A simulation study of the number of events per variable in logistic regression analysis. *J Clin Epidemiol* 49:1373-1379, 1996

- 65. Benson K, Hartz AJ: A comparison of observational studies and randomized, controlled trials. *N Engl J Med* 342:1878-1886, 2000
- 66. von EE, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP: The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. *Lancet* 370:1453-1457, 2007
- 67. Alter DA, Naylor CD, Austin P, Tu JV: Effects of socioeconomic status on access to invasive cardiac procedures and on mortality after acute myocardial infarction. *N Engl J Med* 341:1359-1367, 1999
- 68. Austin PC, Mamdani MM, Tu K, Jaakkimainen L: Prescriptions for estrogen replacement therapy in Ontario before and after publication of the Women's Health Initiative Study. *JAMA* 289:3241-3242, 2003
- 69. Jaglal SB, Weller I, Mamdani M, Hawker G, Kreder H, Jaakkimainen L, Adachi JD: Population trends in BMD testing, treatment, and hip and wrist fracture rates: are the hip fracture projections wrong? *J Bone Miner Res* 20:898-905, 2005
- Juurlink DN, Mamdani M, Kopp A, Laupacis A, Redelmeier DA: Drug-drug interactions among elderly patients hospitalized for drug toxicity. *JAMA* 289:1652-1658, 2003
- 71. Juurlink DN, Mamdani MM, Lee DS, Kopp A, Austin PC, Laupacis A, Redelmeier DA: Rates of hyperkalemia after publication of the Randomized Aldactone Evaluation Study. *N Engl J Med* 351:543-551, 2004
- 72. Levy AR, O'Brien BJ, Sellors C, Grootendorst P, Willison D: Coding accuracy of administrative drug claims in the Ontario Drug Benefit database. *Can J Clin Pharmacol* 10:67-71, 2003
- 73. Mamdani M, Juurlink DN, Lee DS, Rochon PA, Kopp A, Naglie G, Austin PC, Laupacis A, Stukel TA: Cyclo-oxygenase-2 inhibitors versus non-selective non-steroidal anti-inflammatory drugs and congestive heart failure outcomes in elderly patients: a population-based cohort study. *Lancet* 363:1751-1756, 2004
- 74. Mamdani MM, Tu JV: Did the major clinical trials of statins affect prescribing behaviour? *CMAJ* 164:1695-1696, 2001
- 75. Tu K, Mamdani MM, Jacka RM, Forde NJ, Rothwell DM, Tu JV: The striking effect of the Heart Outcomes Prevention Evaluation (HOPE) on ramipril prescribing in Ontario. *CMAJ* 168:553-557, 2003
- 76. Gill SS, Anderson GM, Fischer HD, Bell CM, Li P, Normand SL, Rochon PA: Syncope and its consequences in patients with dementia receiving

cholinesterase inhibitors: a population-based cohort study. *Arch Intern Med* 169:867-873, 2009

- 77. Austin PC, Daly PA, Tu JV: A multicenter study of the coding accuracy of hospital discharge administrative data for patients admitted to cardiac care units in Ontario. *Am Heart J* 144:290-296, 2002
- 78. Gershon AS, Wang C, Wilton AS, Raut R, To T: Trends in chronic obstructive pulmonary disease prevalence, incidence, and mortality in ontario, Canada, 1996 to 2007: a population-based study. *Arch Intern Med* 170:560-565, 2010
- Henderson T, Shepheard J, Sundararajan V: Quality of diagnosis and procedure coding in ICD-10 administrative data. *Med Care* 44:1011-1019, 2006
- 80. Juurlink DN, Preyra C, Croxford R, Chong A, Austin PC, Tu JV, Laupacis A: Canadian Institute for Health Information Discharge Abstract Database: A Validation Study. *ICES Investigative Report* 2006
- 81. Kramer JR, Davila JA, Miller ED, Richardson P, Giordano TP, El-Serag HB: The validity of viral hepatitis and chronic liver disease diagnoses in Veterans Affairs administrative databases. *Aliment Pharmacol Ther* 27:274-282, 2008
- Liu L, Reeder B, Shuaib A, Mazagri R: Validity of stroke diagnosis on hospital discharge records in Saskatchewan, Canada: implications for stroke surveillance. *Cerebrovasc Dis* 9:224-230, 1999
- Ronksley PE, Tonelli M, Quan H, Manns BJ, James MT, Clement FM, Samuel S, Quinn RR, Ravani P, Brar SS, Hemmelgarn BR: Validating a case definition for chronic kidney disease using administrative data. *Nephrol Dial Transplant* 2011
- 84. Thygesen SK, Christiansen CF, Christensen S, Lash TL, Sorensen HT: The predictive value of ICD-10 diagnostic coding used to assess Charlson comorbidity index conditions in the population-based Danish National Registry of Patients. *BMC Med Res Methodol* 11:83, 2011
- Waikar SS, Wald R, Chertow GM, Curhan GC, Winkelmayer WC, Liangos O, Sosa MA, Jaber BL: Validity of International Classification of Diseases, Ninth Revision, Clinical Modification Codes for Acute Renal Failure. *J Am Soc Nephrol* 17:1688-1694, 2006
- Mamdani M, Sykora K, Li P, Normand SL, Streiner DL, Austin PC, Rochon PA, Anderson GM: Reader's guide to critical appraisal of cohort studies: 2. Assessing potential for confounding. *BMJ* 330:960-962, 2005

- 87. Quinn RR, Laupacis A, Hux JE, Moineddin R, Austin PC, Oliver MJ: Forecasting the Need for Dialysis Services in Ontario, Canada to 2011. *HEALTHCARE POLICY* 4:e151-e161, 2009
- Schechtman E: Odds ratio, relative risk, absolute risk reduction, and the number needed to treat--which of these should we use? *Value Health* 5:431-436, 2002
- 89. Glynn RJ, Schneeweiss S, Sturmer T: Indications for propensity scores and review of their use in pharmacoepidemiology. *Basic Clin Pharmacol Toxicol* 98:253-259, 2006
- 90. Psaty BM, Koepsell TD, Lin D, Weiss NS, Siscovick DS, Rosendaal FR, Pahor M, Furberg CD: Assessment and control for confounding by indication in observational studies. *J Am Geriatr Soc* 47:749-754, 1999
- 91. Walker AM: Confounding by indication. Epidemiology 7:335-336, 1996
- 92. Manns B, Doig CJ, Lee H, Dean S, Tonelli M, Johnson D, Donaldson C: Cost of acute renal failure requiring dialysis in the intensive care unit: clinical and resource implications of renal recovery. *Crit Care Med* 31:449-455, 2003
- 93. Annual Demographic Estimates: Canada, Provinces and Territories. *Statistics Canada* 2011
- 94. Fewell Z, Davey SG, Sterne JA: The impact of residual and unmeasured confounding in epidemiologic studies: a simulation study. *Am J Epidemiol* 166:646-655, 2007
- 95. Normand SL, Sykora K, Li P, Mamdani M, Rochon PA, Anderson GM: Readers guide to critical appraisal of cohort studies: 3. Analytical strategies to reduce confounding. *BMJ* 330:1021-1023, 2005

Name and	Acute dialysis following non-urgent surgery: incidence, trends, risk
number of	factors, and outcomes: Preoperative ACEi or ARB use
study	2009 0809 010 000
PIA	Yes, 2009 0809 010 000
approved?	(E-mail from Conrad Pow Feb 11 th , 2009)
Data creation plan (DCP) update history (AG: Amit Garg; AJ: Arsh Jain; MS: Mitesh Shah; SS: Salimah Shariff; JL: Jin Luo)	Version 24: February 24, 2012 (MS; after a conference call with JL) Version 23: February 21, 2012 (MS; after an email from JL) Version 22: February 14, 2012 (MS, AG, and AJ) Version 21: February 06, 2012 (MS; after a conference call with JL) Version 20: January 25, 2012 (MS, AG, and AJ) Version 19: November 22, 2011 (MS; AG, and SS) Version 19: November 22, 2011 (MS; after discussion with AG) Version 17: November 04, 2011 (MS; after discussion with AS) Version 16: November 03, 2011 (MS; after discussion with SS) Version 16: November 03, 2011 (MS; after discussion with SS) Version 15: October 18, 2011 (MS; after discussion with SS) Version 14: September 20, 2011 (MS; after discussion with SS) Version 13: September 11, 2011 (MS; after discussion with AG) Version 11: July 21, 2011 (MS; after discussion with AG) Version 10: July 07, 2011 (MS; after discussion with AG) Version 10: July 07, 2011 (MS; after discussion with AG) Version 10: July 06, 2011 (MS; after discussion with AG) Version 8: June 20, 2011 (MS; after discussion with AG) Version 7: June 09, 2011 (MS; after discussion with AG) Version 7: June 09, 2011 (MS; after discussion with AG) Version 6: February 02, 2011 (MS; after discussion with AG) Version 7: June 09, 2011 (MS; after discussion with AG) Version 6: February 02, 2011 (MS; after discussion with AG) Version 7: June 09, 2011 (MS; after discussion with AG) Version 7: June 09, 2011 (MS; after discussion with AG) Version 7: June 09, 2011 (MS; after discussion with AG) Version 7: June 09, 2010 (MS) Version 7: December 20, 2010 (MS) Version 7: September 28, 2010 (MS) Version 7: 2 September 28, 2010 (MS)
	Version 1: August-September 2010 (MS; after discussion with AG)
Short description of research questions	Research project objective: To determine whether preoperative ACEi (angiotensin converting enzyme inhibitor) or ARB (angiotensin receptor blocker) use is associated with an increased risk of AKI-D following major non-urgent surgery. Hypothesis:
	Preoperative ACEi or ARB use increases the risk of AKI-D compared to non-use. <u>Design</u> : <i>Retrospective cohort study</i> with the following population of interest:

Appendix A: Data creation plan submitted to ICES

	Individuals age \geq 66 years without a history of receipt of dialysis or kidney transplantation in the previous 3 years, admitted to a hospital for a non-urgent, elective surgical procedure.
	We will group these individuals into ACEi or ARB users (exposure group) and non-users (control group) and follow them in the perioperative period. The incidence of AKI-D in ACEi or ARB users and non-users will be determined.
	Primary outcome: AKI-D (1 to 14 days after surgery)
	Secondary outcome: Death (1 to 90 days after surgery)
List of dataset	<u>s:</u>
ODB (availab) 2010) Population ⊠ Age 66+	le from April 1990; required from September 1994 to November
<u>RPDB (require</u>	ed from January 1992 to March 2011)
<u>CIHI-DAD (a</u> <u>Source</u> ☐ Inpatient ☐ Same day : <u>Institution typ</u> ☐ Acute care <u>Include suspec</u> ☐ No	vailable from April 1988; required from January 1992 to March 2011) surgery es (insttype = 'AP' or 'AT') eted/questionable diagnoses?
<u>OHIP (availab</u> <u>Claim Type</u> ⊠ All <u>Code Types</u> ⊠ Fee codes ⊠ Diagnosis	ole from July 1991; required from January 1992 to March 2011) codes

Defining the cohort				
Index date	Date of elective, non-urgent surgical procedure during a hospital admission. If no procedure date is attributed to CIHI-DAD procedural code, use the date for hospital admission as 'index date' (<i>The date of surgery may be less accurate prior to 1999 as some dates were missing</i>).			

	Begin with the index date between accrual start date and end date (January 1, 1995 to November 30, 2010)
Surgical groups	Only include hospital admissions with evidence of a surgery in one of the following five categories: Cardiac surgery (Category C), Thoracic surgery (Category T), Vascular surgery (Category V), Abdominal surgery (Category A), Retro-peritoneal surgery (bladder, ureter, kidney) (Category R)
	<u>Study period</u> \boxtimes Prior to 2002 fiscal year → Include ICD-9/CCP codes \boxtimes From 2002 fiscal year and onwards → Include ICD-10/CCI codes
	We are not studying the following surgical categories: anorectal, breast, external head and neck, lower urological and gynecological, musculoskeletal, neurosurgical, ophthalmologic, skin and soft tissue, unclassified.
Exclusions	 Exclude hospital admissions for patients undergoing emergent/urgent surgery, also exclude invalid and newborns Coded as "urgent": code = admcat "U" Coded as "emergent": code = admcat "E" Coded as "newborn": code = admcat "N" Coded as "invalid": code = admcat "Z" These codes are attached to the hospital admission (and not to a given procedure). As such, they will exclude all surgeries done during the course of a non-surgical hospital admission (i.e. patient admitted to a hospital for reasons other than surgery and surgeries performed in this setting are likely to be urgent / emergent). We expect that there will be few such surgeries. For the years 2006 to 2008 (January 1, 2006 to December 31, 2008): Exclude all admissions at hospital number 1444 (St. Michael's hospital). In internal analysis, we observed that there was a far higher than expected percentage of surgical patients requiring post-operative dialysis at St. Michael's hospital between 2006 and 2008. We feel that this may be due to erroneous use of the dialysis codes for cardiopulmonary bypass and have thus chosen to exclude all hospital admissions at St. Michael's hospital during this time-period. Absolute numbers were similarly high and falsely elevated the overall rate of acute dialysis in Ontario

Unless otherwise stated, the following applies: <u>Diagnosis type (dxtype)</u> All (alldx)
Include suspected/questionable diagnoses?
Include abandoned procedures?
 Exclusions: Exclude hospital admissions with invalid or missing IKN (ICES key number), age, or sex
• Exclude those deaths prior to the 'index date' (this does not include the index date)
Reference date Do not include index date in look-back period (stop at index-1)
• Exclude hospital admissions where a patient's age < 66 years at the time of 'index date' (this includes the index date)
• Exclude hospital admissions associated with non-Ontario residents
• Exclude those patients who do <u>not</u> meet the following criteria: evidence of at least one ODB prescription ≤ 120 days prior to 'index date' (this does not include the index date)
Reference date Do not include index date in look-back period (stop at index-1)
• Exclude hospital admissions for patients with evidence of dialysis or kidney transplantation in a 3 year look-back period prior to the 'index date' [this does not include the index date]
Study period Prior to 2002 fiscal year \rightarrow Include ICD-9/CCP/OHIP fee codes
From 2002 fiscal year and onwards \rightarrow Include ICD- 10/CCI/OHIP fee codes

$\frac{\text{Reference date}}{\square}$ Do not include index date in look-back period (stop at index-1)
• Exclude those patients who are on any of the following antihypertensive medications 120 days prior to index date [this does not include the index date]:
 a) Alpha adrenergic blocker b) Adrenergic neurone blocker c) Centrally acting anti-adrenergic drug d) Vasodilator anti-hypertensive drug e) Direct renin inhibitor f) Potassium sparing diuretic g) Alpha 2-agonist
$\frac{\text{Reference date}}{\square}$ Do not include index date in look-back period (stop at index-1)
• For patients with multiple eligible surgical procedures within study period (after applying previous exclusion criteria), select one surgical procedure at random. Exclude remaining surgical procedures.

Exposure and control group				
ACEi or	\geq 1 ODB prescription for ACEi or ARB \leq 120 days prior to the index			
ARB users	date (this does not include the index date).			
(exposure	Reference date			
group)	b) \square Do not include index date in look-back period (stop at index-1)			
Non-users	No evidence of an ODB prescription for ACEi or ARB \leq 120 days			
(control	prior to the index date (this does not include the index date).			
group)	Reference date			
	\square Do not include index date in look-back period (stop at index-1)			

Baseline characteristics for ACEi or ARB users and non-users Report standardized difference in baseline characteristics between ACEi or ARB users and non-users

 $\frac{\text{Diagnosis type (dxtype)}}{\bigotimes \text{All (alldx)}}$

<u>Study period</u> \square Prior to 2002 fiscal year → Include ICD-9/CCP/OHIP fee codes \square From 2002 fiscal year and onwards → Include ICD-10/CCI/OHIP fee codes

Include suspected/questionable diagnoses?

Demographics

- 1. Age at index date (years): median (interquartile range)
- 2. Age group categories (66 to 70, 71 to 75, 76 to 80, 81 to 85, 86 to 90, > 90): total number (percentage)
- 3. Female: total number (percentage)

Comorbidities (report total number (percentage))

- 4. Chronic obstructive pulmonary disease (COPD)
- 5. Cerebrovascular disease
- 6. Peripheral vascular disease (PVD)
- 7. Coronary artery disease (CAD) including angina
- 8. Congestive heart failure (CHF)
- 9. Chronic kidney disease (CKD)
- 10. Chronic liver disease

<u>Medication Use</u> (below mentioned medications from 11 to 17; report total number (percentage))

Users: Evidence of at least one ODB prescription in the 120 days prior to index date;

Non-users: No ODB prescription in the past 120 days prior to index date

Reference date

 \boxtimes Do not include index date in look-back period (stop at index-1)

- 11. Oral hypoglycemic (any drug from the following drugs): Sulfonylurea, meglitinide, biguanide, thiazolidinedione, alpha-glucosidase inhibitor
- 12. Insulin
- 13. Antidiabetic medications (oral hypoglycemic & insulin)
- 14. Beta-blocker
- 15. Calcium channel blocker (CCB)
- 16. Non-potassium sparing diuretic
- 17. Statin

Surgical Characteristics (report total number (percentage))

Type of Surgery:

- 1. Cardiac surgery (Category C)
- 2. Thoracic surgery (Category T)
- 3. Vascular surgery (Category V)
- 4. Abdominal surgery (Category A)
- 5. Retro-peritoneal surgery (bladder, ureter, kidney) (Category R)

Era of surgery: 1995 to 1998, 1999 to 2001, 2002 to 2004, 2005 to 2007, and 2008 to 2010) (If no procedure date is attributed to CIHI-DAD procedural code, use the hospital admission date as 'index date' to determine year of cohort entry)

Outcomes (events) for incidence analysis

Report the following outcomes:

 <u>"Acute Dialysis (AKI-D)"</u> within 14 days of index surgery (Primary outcome): Evidence of ≥ 1 OHIP code for acute dialysis within 1 to 14 days after index date (acute dialysis outcome must appear during any hospital stay). Reference date

 \boxtimes Do not include index date in look-forward period (start at index + 1)

2. Death within 1 to 90 days after index surgery (Secondary outcome) <u>Reference date</u>

 \square Do not include index date in look-forward period (start at index + 1)

Statistical Analysis			
Association between ACEi or ARB use (exposure) and study outcomes:			
- Use logistic regression model			
- Exposure group: ACEi or ARB users; Referent group: non-users			
- Analysis will be done for (1) Primary outcome; and (2) Secondary outcome			
- Report number of events, unadjusted odds ratio (95% confidence interval			
(CI)) and adjusted odds ratio (95% CI)			
Adjust for the following characteristics:			
$\frac{1}{1}$ A ge (in years)			
2 Sex (male/female: referent=female)			
3 Chronic obstructive pulmonary disease (ves/no: referent=no)			
4 Cerebrovascular disease (ves/no: referent=no)			
5 Peripheral vascular disease (ves/no; referent=no)			
6. Coronary artery disease including angina (ves/no: referent=no)			
7. Congestive heart failure (ves/no: referent=no)			
8. Chronic kidney disease (ves/no; referent=no)			
9. Chronic liver disease (yes/no; referent=no)			
10. Antidiabetic medications use (yes/no; referent=no)			
11. Beta-blocker use (yes/no; referent=no)			
12. Calcium channel blocker use (yes/no; referent=no)			
13. Non-potassium sparing diuretic use (yes/no; referent=no)			
14. Statin use (yes/no; referent=no)			
15. Type of surgery (Categories: C, T, V, A, R; referent surgical category=A)			
16. Era of surgery (1995 to 1998, 1999 to 2001, 2002 to 2004, 2005 to 2007,			
2008 to 2010; referent=1995 to 1998)			
Propensity score matching: Baseline characteristics for ACEi or ARB users and			
non-users (Report standardized difference in baseline characteristics between both			

Hard match (1:1) on the following characteristics:

these groups)

- 1. Age $(\pm 5 \text{ years})$
- 2. Sex (male/female)
- 3. Chronic kidney disease (yes/no)

Perform propensity score matching on all the 16 predefined characteristics included in the primary analysis using a caliper of ± 0.2 standard deviation of all the propensity scores that we derived from all the 16 predefined characteristics. Each non-user could only be selected once to derive the propensity score.

<u>Analysis based on propensity score matching</u>: Association between ACEi or ARB use and outcomes.

- Use logistic regression model
- Analysis will be done for (1) Primary outcome; and (2) Secondary outcome
- Report number of events and odds ratio (95% CI)

Subgroup Analysis:

Effect modification by (1) Chronic kidney disease (yes/no); (2) Era of surgery (1995 to 1998, 1999 to 2001, 2002 to 2004, 2005 to 2007, 2008 to 2010); and (3) Type of surgery (cardiac, thoracic, vascular, abdominal, retro-peritoneal)

- Perform for primary and secondary outcomes
- Use logistic regression model to perform subgroup analyses
- Adjust for all the predefined characteristics included in the primary analysis except the subgroup factor being tested
- Report total number of events and event rate per 10,000 persons followed by unadjusted odds ratio (95% CI) and adjusted odds ratio (95% CI)

Report p-value for the test of effect modification for all the three characteristics mentioned above

<u>Time to event analysis</u>: Perform only for the primary outcome of acute dialysis (AKI-D), censored for (1) death; and (2) end of 14th day after index date

Reference date

 \boxtimes Do not include index date in look-forward period (start at index + 1)

- Use a Cox proportional hazards model
- Report number of events, unadjusted hazard ratio (95% CI), and adjusted hazard ratio (95% CI)
- Adjust for all 16 predefined characteristics included in the primary analysis

Appendix B: STROBE ⁶⁶ checklist				
	Item No	Recommendation	Reported on Page no., Appendix, Figure, or Table	
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	ii, iii	
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	iii	
Introduction				
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	1-4, 18, 19	
Objectives	3	State specific objectives, including any pre-specified hypotheses	19, 20	
Methods				
Study design	4	Present key elements of study design early in the paper	21, Appendix A	
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	21-25, Appendix A	
Participants 6 (a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up		23, 24, Appendix A		
		(b) For matched studies, give matching criteria and number of exposed and unexposed	27, 28, Appendix A	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	25-26, 28, 29 Appendix A	
Data sources/	8	For each variable of interest, give sources of data and details of methods of assessment	21, 22,	
measurement		(measurement). Describe comparability of assessment methods if there is more than one group	Appendix A,C,D,E	
Bias	9	Describe any efforts to address potential sources of bias	25-28, Appendix A	
Study size	10	Explain how the study size was arrived at	n/a	
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	25, 26, Appendix A	
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	26-29, Appendix A	
		(b) Describe any methods used to examine subgroups and interactions	28, 29, Appendix A	
		(c) Explain how missing data were addressed	n/a	
		(d) If applicable, explain how loss to follow-up was addressed	n/a	
		(e) Describe any sensitivity analyses	n/a	

13	(a) Report numbers of individuals at each stage of study—e.g., numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	Figure 3
	(b) Give reasons for non-participation at each stage	23, 24, Figure 3
	(c) Consider use of a flow diagram	Figure 3
14	(a) Give characteristics of study participants (e.g., demographic, clinical, social) and information on exposures and potential confounders	Table 7
	(b) Indicate number of participants with missing data for each variable of interest	n/a
	(c) Summarise follow-up time (e.g., average and total amount)	30, 31
15	Report numbers of outcome events or summary measures over time	30, Table 8
16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (e.g., 95% confidence interval). Make clear which confounders were adjusted for and why they were included	Table 8
	(b) Report category boundaries when continuous variables were categorized	Table 7
	(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	Table 9
17	Report other analyses done—e.g., analyses of subgroups and interactions, and sensitivity analyses	31, 32, Table 10, Table 11
18	Summarise key results with reference to study objectives	40
19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	44-46
20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	40-43
21	Discuss the generalisability (external validity) of the study results	43-48
22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	v
	13 14 15 16 17 18 19 20 21 22	13 (a) Report numbers of individuals at each stage of study—e.g., numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed (b) Give reasons for non-participation at each stage (c) Consider use of a flow diagram 14 (a) Give characteristics of study participants (e.g., demographic, clinical, social) and information on exposures and potential confounders (b) Indicate number of participants with missing data for each variable of interest (c) Summarise follow-up time (e.g., average and total amount) 15 Report numbers of outcome events or summary measures over time 16 (a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (e.g., 95% confidence interval). Make clear which confounders were adjusted for and why they were included (b) Report category boundaries when continuous variables were categorized (c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period 17 Report other analyses done—e.g., analyses of subgroups and interactions, and sensitivity analyses 18 Summarise key results with reference to study objectives 19 Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias 20 Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and o

Exc	Exclusion: Dialysis and kidney transplantation codes			
		Codes	Validation	
1.	Dialysis	ICD-9: "V45.1", "V56.0", "V56.8"	V45.1, V56.0, V56.8: Sensitivity ⁸⁵ = 90.4%; Specificity ⁸⁵ = 93.8%; $PPV^{85} = 94.0\%;$ $NPV^{85} = 90.0\%$	
		ICD10: "T824", "Y602", "Y612", "Y622", "Y841", "Z49", "Z992", "N180", "E1022", "E1023", "E1122", "E1123", "E1322", "E1323", "E1422", "E1423"		
		CCP: "51.27", "51.42", "51.43", "51.95", "66.98"		
		CCI: "10T53DATS", "10T53HATS", "10T53LATS", "1PZ21", "1SY55LAFT", "7SC59QD", "1KY76"		
		OHIP FEE: "R850", "G324", "G336", "G327", "G862", "G865", "G099", "R825", "R826", "R827", "R833", "R840", "R841", "R843", "R848", "R851", "Z450", "Z451", "Z452", "G864", "R852", "R853", "R854", "R885", "G333", "H540", "H740"		
2.	Kidney Transplantation	ICD-9: "V42" ICD-10: "N165", "Z940", "T86100", "T86101", "T86102" CCP: "67.43", "67.5" CCI: "1PC85LAXXJ", "1PC85LAXXK" OHIP FEE: "E762", "S435", "E769", "S434", "E771", "Z631", "G347", "G348", "G412", "G408" "G409"		

Appendix C: Codes used to identify comorbidities

Comorbidities				
		Codes	Validation	
1.	Chronic kidney	ICD-9: "403.0", "403.1",	583 to 586 (ICD-9) and	
	disease (CKD)	"403.9", "404.0", "404.1",	N00, N04, N08, N18,	
		"404.9", "582", "583", "580",	N19 (ICD-10):	
		"581", "584", "585", "586",	Sensitivity ^{83} = 28.3%;	

		"587", "588.0", "588.8", "588.9", "593.7" ICD-10: "I12", "I13", "N01", "N03", "N05", "N07", "N14", "N15", "N00", "N04", "N08", "N18", "N19", "N26", "N25", "N137", "N280", "N2888", "N06", "N391"	Specificity ⁸³ = 94.6%; $PPV^{83} = 51.9\%;$ $NPV^{83} = 86.5\%;$ (Case definition for CKD: 1 claim or 1 hospitalization in past 3 years; compared with the reference standard of eGFR < 60 $mL/min/1.73m^2$)
		"581", "585"	
2.	Chronic obstructive	ICD-9: "491", "492", "496"	Sensitivity ⁷⁸ = 85.0% ; Specificity ⁷⁸ = 78.4% (Validated for patients >
	disease	"ICD-10. J41, J42, J43, "IAA"	(Valuated for patients > 35 years)
	4150450		<i>55 yoursj</i>
3.	Cerebrovascular disease	ICD-9: "430", "432.1", "433", "435", "436", "437", "438", "362.3" ICD-10: "I60", "I61", "I63"	436: $PPV^{82} = 78\%$
		"I64", "I65", "I66", "I67", "I68", "I69", "G45", "G46", "H34"	G45,G46: Sensitivity ⁷⁹ = 89%; PPV ⁷⁹ = 93%
		CCP: "50.11", "50.12", "51.28"	
		CCI: "1JE50", "1JE57", "1JE87", "1JW50", "1JX57", "1JW57", "1JW76"	
		OHIP FEE: "R792", "N220", "N223", "J050", "N104", "N157", "N120"	
		OHIP DX: "432", "435", "436", "437"	
4.	Peripheral vascular disease	ICD-9: "440.0", "440.2", "440.8", "440.9", "557.1", "443.9", "444"	
		ICD-10: "I700", "I702", "I708", "I709", "I731", "I738", "I739", "K551"	1739: Sensitivity ⁷⁹ = 74%; PPV ⁷⁹ = 62%; 1700, 1702, 1708, 1709, 1731, 1738: PPV ⁸⁴ = 100%
		CCP: "51.25", "51.29", "50.14", "50.16", "50.18", "50.28", "50.38"	

		CCI: "1KG76MI", "1KA76", "1KA50", "1KE76", "1KG26", "1KG50", "1KG57", "1KG87" OHIP FEE: "R787", "R780", "R797", "R804", "R809", "R875", "R815", "R936", "R783", "R784", "R785", "E626", "R814", "R786", "R937", "R860", "R861", "R937", "R856", "R933", "R934", "R791", "R794", "E672", "R813", "R867",	
5.	Coronary artery disease	ICD-9: "412", "414", "429.2", "429.5", "429.6", "429.7" ICD-10: "I20", "I21", "I22", "I23", "I24", "I25", "Z955", "Z958", "Z959", "R931", "T822" CCP: "48.01", "48.02", "48.03", "48.04", "48.05", "48.1", "48.2", "48.3" CCI: "1IJ26", "1IJ27", "1IJ50", "1IJ54", "1IJ57", "1IJ76" OHIP FEE: "R741", "R742", "R743", "G298", "E646", "E651", "E652", "E654", "E655", "G262", "Z434", "Z448"	I21, I22, I25: Sensitivity ⁷⁹ = 86%, PPV ⁷⁹ = 96%; I20: Sensitivity ⁸⁰ = 82%; PPV ⁸⁰ = 52%; I23: PPV ⁸⁴ = 98%
		OHIP DX: "410", "412", "413"	410: Sensitivity ⁷⁷ = 88.8%; Specificity ⁷⁷ = 92.8%; PPV ⁷⁷ = 88.5% 413: Sensitivity ⁷⁷ = 57.9%; Specificity ⁷⁷ = 93.9%; PPV ⁷⁷ = 78.1%
6.	failure	ICD-9: "425", "518.4", "514" ICD-10: "I255", "I500", "I501", "I509", "J81"	I500, I501: Sensitivity ⁷⁹ = 86%; $PPV^{79} = 86\%;$

		CCP: "49.61", "49.62"	
		CCI: "1HP53"	
		OHIP FEE: "R701", "R702"	
		OHIP DX: "428"	428:
			Sensitivity ⁷⁷ = 58.5% ;
			Specificity ⁷⁷ = 96.8%;
			$PPV^{77} = 65.1\%$
7.	Chronic liver	ICD-9: "571.0", "571.1",	$PPV^{81} = 43 \text{ to } 93\%;$
	disease	"571.2", "571.3", "571.5",	$NPV^{81} = 77$ to 100%;
		"571.6", "070.2", "070.3",	
		"070.4", "070.5", "V02.6"	
		ICD-10: "K73", "K702",	K73, K702, K703, K717,
		"K703", "K717",	K740, K742, K743,
		"K740","K742", "K743",	K744, K745, K746:
		"K744", "K745", "K746",	Sensitivity ⁷⁹ = 58% ;
		"K721", "K729", "K766",	$PPV^{79} = 69\%;$
		"K767"	
			K721, K729, K766,
			K767:
			Sensitivity ⁷⁹ = 86% ;
			$PPV^{79} = 63\%;$

ICD-9: International classification of disease 9th version; ICD-10: International classification of disease 10th version; CCI: The Canadian Classification of Health Interventions; CCP: The Canadian Classification of Diagnostic, Therapeutic and Surgical Procedures; OHIP FEE – Ontario health insurance plan fee codes; OHIP DX: Ontario health insurance plan diagnostic codes;

R849	Dialysis - haemodialysis - initial & acute
G323	Dialysis - haemodialysis - acute, repeat (first 3 services)
G866	Intermittent haemodialysis treatment centre
G330	Peritoneal dialysis - acute (up to 48 hours)
G331	Peritoneal dialysis - repeat acute (up to 48 hours) (first 3 services)
G093	Haemodiafiltration - continuous - initial & acute (first 3 services)
G095	Slow continuous ultrafiltration - initial & acute (first 3 services)
G294	Arteriovenous slow continuous ultrafiltration - initial and acute
	(first 3 services)
G295	Continuous arteriovenous haemofiltration - initial and acute
	(first 3 services)

Appendix D: OHIF	fee codes	for acute dialy	rsis (AKI-D)
------------------	-----------	-----------------	--------------

OHIP fee codes – Ontario health insurance plan fee codes

SURGERY CLASS	DATABASE	SAMPLE OF CODES USED
Cardiac	CIHI-	CCI: 1IJ76 (Bypass, coronary arteries),
	procedure	1HU80 (Repair, mitral valve)
	CIHI-	CCP: 47.22 (Replacement of mitral valve with tissue
	procedure	graft), 48.09 (Other removal of coronary artery
		obstruction)
Thoracic	CIHI-	CCI: 1GV87 (Excision partial, pleura), 1GR91
	procedure	(Excision radical, lobe of lung),
	CIHI-	CCP: 54.0 (Esophagotomy), 44.5 (Complete
	procedure	pneumonectomy)
Vascular	CIHI-	CCI: 1KE76 (Bypass, abdominal arteries), 1JK57
	procedure	(Extraction, subclavian artery)
	CIHI-	CCP: 50.14 (Endarterectomy of aorta), 50.34
	procedure	(Resection of aorta with replacement)
Abdominal	CIHI-	CCI: 1NM80LA (Repair, large intestine open
	procedure	approach using apposition technique), 1NF87RK
		(Excision partial, stomach with vagotomy open
		approach gastrojejunal anastomosis)
	CIHI-	CCP: 53.51 (Excision of accessory spleen), 57.55
	procedure	(Left hemicolectomy)
Retro- peritoneal	CIHI-	CCI: 1PG80 (Repair, ureter),
	procedure	1PB87 (Excision, partial, adrenal gland)
	CIHI-	CCP: 69.4 (Partial cystectomy), 20.2 (Bilateral
	procedure	adrenalectomy)

Appendix E: Sample of codes used to determine surgical procedures

CCI: The Canadian Classification of Health Interventions; CCP: The Canadian Classification of Diagnostic, Therapeutic and Surgical Procedures; CIHI-DAD: Canadian Institute for Health Information Discharge Abstract Database;

Juurlink *et al.*⁸⁰ performed a CIHI-DAD validation study and observed a high sensitivity 0.95 (interquartile range (IQR): 0.89 to 0.99), and positive predictive value 0.91 (IQR: 0.82 to 0.97) to identify surgical procedures using CCI codes. The CIHI-DAD considers CCP prior to 2002 and CCI thereafter to identify surgical procedures.

CURRICULUM VITAE

Name:	Mitesh Shah	
Post-secondary Education and Degrees:	The University of Western Ontario, London, Ontario, Canada M.Sc. – Epidemiology and Biostatistics September 2010 to June 2012	
	Indian Institute of Public Health (Public Health Foundation of India), Hyderabad, Andhra Pradesh, India Post Graduate Diploma in Biostatistics & Data Management August 2008 to July 2009	
	B. J. Medical College, Ahmedabad, Gujarat, IndiaM.B.B.S. (Bachelor of Medicine & Bachelor of Surgery)October 2000 to September 2005	
Grants:	Garg A, Devereaux PJ, Walsh MW, Molnar A, Mrkobrada M, Shah MK. Preoperative Medications and Acute Kidney Injury: A VISION sub-study. Canadian Institutes of Health Research - Operating Grant \$119,920 (2011 – 2013).	
	Garg A, Devereaux PJ, Whitlock R, Shah MK, SIRS collaborative group, POISE-2 collaborative group. Preventing Peri-operative Acute Kidney Injury: SIRS & POISE-2 Sub- studies. Canadian Institutes of Health Research - Operating Grant \$502,500 (2012 – 2016).	
Honours and Awards:	Western Graduate Research Scholarship (WGRS) (\$10,800/year) September 2010 to August 2012	
	The endowment scholarship by Public Health Foundation of India (PHFI) August 2008 to July 2009	
	Shri Dhirubhai Ambani Undergraduate Scholarship October 2000 to September 2005	
Related Work Experience:	Medical Officer Block Health Office – Veraval, Gujarat, India August 2009 to May 2010	
	Physician (Resident) Department of Community Medicine, B. J. Medical College, Ahmedabad, Gujarat, India May 2007 to July 2008	

Physician (Intern) Civil Hospital, Ahmedabad, Gujarat, India September 2005 to September 2006