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Abstract 
The design of artificial or synthetic strands that self-assemble to form double-helical 

complexes have been of great interest to chemists and researchers since the discovery of the 

double helical DNA structure in 1953 by Watson and Crick. Most of the complexes were 

self-complementary double-helical homodimers and while few heterodimer complexes are 

also known. The present thesis describes the design, synthesis and characterization of 

complementary and self-complementary hydrogen bond arrays built from heterocycles such 

as pyridine, thiazine dioxide and indole connected in different sequences. The sequence-

based stabilities, insolubility issues, substitution and preorganization effects in these arrays 

have been studied in detail. 

The design and syntheses of four self-complementary oligomers that contain an 

underlying AADD hydrogen bond Donor/Acceptor sequence are presented and their self-

association examined in the solution and solid states. Substitution with electron donating and 

withdrawing groups and the influence of preorganization had a large effect on the overall 

stabilities of the complexes studied. A wide range (>105 M-1) of stabilities were demonstrated 

and in the most extreme case, the dimerization constant measured (Kdimer ≥ 4.5 x 107 M-1) is 

comparable to the most stable homodimers of neutral coplanar AADD arrays reported to 

date. 

Two sets of DDD hydrogen bond arrays were synthesized that form triply hydrogen 

bonded double helical complexes with an AAA array when combined in CDCl3 solution. In 

contrast to the detrimental effect of appended alkyl chain arrays containing tethers between 

donor heterocycles displayed an increased stability in their association constants (Ka). 



 

iv 

 

The effect of introduction of a hexyl chain on the solubility of an originally insoluble 

(in CDCl3) DDD array based on three thiazine dioxides was studied. The association 

constants measured based on NMR titrations and ITC titrations demonstrate formation of a 

highly stable double-helical pair with a Ka value of 1.4 x 105 M-1. A self-complementary 

double helical complex based on six hydrogen bond AAADDD array was also synthesized 

and displays very strong dimerization (Kdimer > 4.5 x 107 M-1 in CDCl3) examined by NMR 

dilution and mixed solvent studies. These findings establish the high potential of the DDD 

array and the AAADDD array as monomer components to build supramolecular architectures 

or polymers.  

 
Keywords 
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Chapter 1  

1   Introduction 

The concept that the complementarity of interacting sites forms the basis for 

molecular recognition was first introduced by the Dutch chemist Emil Fischer,1 who 

proposed in 1894 that an enzyme and substrate fit together "like a lock and key". A 

contemporary view on molecular recognition, termed induced fit, considers that the 

interacting molecules are flexible and can change their shape during the recognition 

process (Figure 1-1).2 Induced fit has been observed experimentally for many protein-

ligand interactions. At the molecular level, the factors that contribute to the 

complementarity between two molecules include the shape of the interacting sites, their 

various non-covalent interactions and the chemical as well as physical environment.  

 

Figure 1-1 (i) Interaction of an enzyme with a substrate by a lock and key mechanism to 

give an enzyme–substrate complex. (ii) Interaction of an enzyme with a substrate by an 

induced fit mechanism to give an enzyme–substrate complex. 
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The essential processes of life such as self-replication, information transportation 

and metabolisms occur largely by site-specific interactions between biological molecules.  

Therefore understanding how molecules recognize each other is one of the fundamental 

issues in biochemical processes. Molecules can be engineered to self-assemble into 

higher order complexes by arranging the “codes” or information placed on these sites via 

non-covalent bonds. Although single and discrete non-covalent interactions are usually 

weak in nature and often do not withstand the thermal collisions of molecules that keep 

them apart, the effects of their cumulative strength are evident in both natural and 

synthetic materials. The profound effect of these secondary interactions that are used to 

build „smart materials‟3 has a range of interacting energies that gives rise to a flexible 

array of interesting properties in contexts as diverse as the vital functions of living 

organisms to data storage in novel materials.4  While molecular recognition is broadly 

based on non-covalent interactions such as hydrogen bonding, π-π stacking,5 pre-

organizational effects,6 ion-dipole interactions,7 hydrophobic8 and lipophilic interactions,9 

it is hydrogen bonding that often forms the basis for a recognition process that requires 

specificity, directionality and stability in complex formation. 

1.1 Significance and Occurrence of Hydrogen Bonds 

Indeed, hydrogen bonds provide directional interactions that support not only 

molecular recognition but a wide range of self-assembly. The cores of most proteins are 

composed of hydrogen bonded secondary structures such as -helices and -sheets 

(Figure 1-2 (below)).10 Among natural or designed substrate receptors, complementary 

hydrogen bonded duplexes have been recognized from the commencement of this field. 
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DNA is one central and remarkable example of two different oligomeric molecular 

strands coming together in an intertwined, highly specific and reversible manner.  

 

Figure 1-2 (above) A cartoon representation of DNA double helical structure with 

specific base pairing projected as an inset. Keratin (below) displaying -helix and a -

pleated sheet secondary structures. 
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  If not for hydrogen bonding, water would not have its special role as a solvent that 

boils at a high temperature of 100 oC. The hydrogen bonding makes the water molecules 

“stick” together. In contrast to the desirable qualities, unwanted effects can be seen when 

cyanuric acid and melamine are brought together (Figure 1-3) leading to kidney stone 

formation and renal damage.11 Thus this concept of weak interactive forces is very 

powerful as a cumulative effect and needs to be well studied and understood. 

 

Figure 1-3 A two dimensional array of melamine and cyanuric acid assembled due to the 

intermolecular attractions of hydrogen bonding that form an insoluble crystal lattice.    

Hydrogen bonding can be used to construct larger molecules from smaller ones 

and thus can be used as „molecular Velcro‟ to glue molecules together in a highly specific 

manner. The stability of such supramolecules in turn rests on the strength of the net 

hydrogen bonding, the type of modules taking part in hydrogen bonding to bringing about 

such assemblies and also is often proportional to the number of hydrogen bonds.  



5 

 

1.2   Hydrogen Bonding 

Hydrogen bonding is a complex interaction that consists of at least four types of 

chemical characteristics: electrostatics (acid/base), polarization (soft/hard), van der Waals 

(repulsion/dispersion), and covalency (charge transfer).12 The division into these 

components has been well studied and reported though polarization is not completely 

independent of the other three components. 

1.2.1 Definition  

Pauling, in 1939, stated in his book The Nature of the Chemical Bond “under 

certain conditions an atom of hydrogen is attracted by rather strong forces to two atoms, 

instead of only one, so that it may be considered to be acting as a bond between them”. 

Thus an H atom is the key element that brings a hydrogen bonding donor (X) and 

hydrogen bonding acceptor (Y) together (Figure 1-4). Depending on the nature of X and 

Y, the energy of hydrogen bond lies in the range of 2.1 to 167 kJ mol-1. The strongest 

hydrogen bonds are stronger than the weakest covalent bonds while the weakest 

hydrogen bonds are practically indistinguishable from van der Waals interactions.  

 

Figure 1-4  Hydrogen bonding between two electronegative heteroatoms X and Y 

mediated by a hydrogen atom. 

In the recent past (1997), IUPAC defined hydrogen bonding in its Gold Book. 

The definition states that a hydrogen bond is “… a form of association between an 

electronegative atom and a hydrogen atom attached to a second, relatively 
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electronegative atom. It is best considered as an electrostatic interaction, heightened by 

the small size of hydrogen, which permits proximity of the interacting dipoles or charges. 

Both electronegative atoms are usually (but not necessarily) from the first row of the 

Periodic Table, i.e., N, O or F. Hydrogen bonds may be intermolecular or 

intramolecular. With a few exceptions, usually involving fluorine, the associated energies 

are less than 20–25 kJ mol
−1

(5–6 kcal mol
−1

) …”. The evidence for hydrogen-bond 

formation may be experimental or theoretical, or ideally, a combination of both. Some 

criteria useful as evidence and some typical characteristics for hydrogen bonding, not 

necessarily exclusive, are listed in a recent essay by Desiraju, in detail.13,14 

These two definitions do serve to describe hydrogen bonds in their own manner 

but in simpler parlance we will define it as: the attractive force between the 

electropositive hydrogen interceding between two electronegative species such as X and 

Y. Usually the electronegative species X and Y are heteroatoms such as oxygen, nitrogen, 

or fluorine, which have a partial negative charge and the hydrogen a partial positive 

charge. In supramolecular terms, the electronegative heteroatom to which the hydrogen is 

covalently bound is called the hydrogen bond donor (denoted by D). The other 

electronegative atom must have one or more unshared electron pairs as in the case of 

oxygen and nitrogen, have a negative partial charge and will be called a hydrogen bond 

acceptor (denoted by A). The hydrogen on the donor, which has a partial positive charge 

binds to another atom of oxygen or nitrogen with excess electrons to share and is 

attracted to the partial negative charge of the acceptor. This forms the basis for a 

hydrogen bond.  
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1.2.2 Characteristics of Hydrogen Bonds 

Hydrogen bonding is ubiquitous in nature and is characterized mainly by three 

qualities : strength, directionality and specificity. These unique qualities distinguish it 

from other types of non-covalent interactions that are generally lacking in at least one of 

these characteristics. The variance of these qualities in single hydrogen bonds as well as 

on hydrogen bonded complementary complexes are discussed in the further sections of 

this chapter. 

1.2.2.1 Strength of a Single Hydrogen Bond 

The strength of a single hydrogen bond depends on the electronegativity of D and 

A heteroatoms and the influence of the adjacent functional groups they are connected to. 

This results in a wide range of energies observed starting from < 2 kJ mol-1 to > 170 kJ 

mol-1.15 A weak hydrogen bond can be characterized by bond energies less than 16 kJ 

mol-1, an angle less than 110 and a very long bond length between the heteroatoms (> 

3.6 Å). On the other hand strong hydrogen bonds are easy to distinguish with energies > 

40 kJ mol-1, short bond distances (< 3.2 Å) and angles from 150    180.16 The strength of 

a hydrogen bonding is a direct outcome of both the electronegativities of the donor and 

the acceptor as well as the linearity of the hydrogen bond.  

Physical organic chemists have determined the association constants Ka for a very 

large number of intermolecular interactions in the solution phase. For simple molecules, 

Abraham has developed an equation that relates the log K for a hydrogen bond 

interaction between two functional groups and their empirically determined donor or 

acceptor properties expressed as 2
H and β2

H values. 
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where                                           log K = C1 α2
H β2

H + C2 

C1 is a solvent dependent constant and C2 is the entropic cost of bringing two neutral 

molecules together (approximately 6 kJ mol-1).17a  

The relationship between pKa values of a given functional group and the ability to 

hydrogen bond is not directly applicable to all the functional groups. The relationship 

may hold among a set of similar functional group derivatives but not for comparisions 

between different functional groups. For example, relative to alcohols, thiols are fairly 

acidic. Butanethiol has a pKa of 10.5 vs 15 for butanol. Thiophenol has a pKa of 6 vs 10 

for phenol. However, alcohols are fairly good hydrogen bond donors whereas thiols are 

very poor hydrogen bond donors. 

In 2004, Hunter developed a new pair of quantities ( and )17b that describe 

hydrogen bond donor and acceptor ability respectively:  

α = Emax/52 kJ mol-1 = 4.1(α2
H + 0.33)  

β = Emin/52 kJ mol-1 = 10.3(β2
H + 0.06) 

where Emax and Emin are the potential minima and maxima on the molecular electrostatic 

potential surfaces of the molecules as determined by AM1 calculations (Figure-5). Based 

on Abraham‟s examples of simple common molecules participating in hydrogen bonding, 

Hunter has  published scatter plots of α2
H and β2

H values vs Emin and Emax per kJ mol-1 and 

correlated  and  with α2
H and β2

H values. The results are surprisingly linear and form 

the basis for a reasonably accurate estimation of the strength of a hydrogen bond between 

two functional groups.  

http://en.wikipedia.org/wiki/PKa
http://en.wikipedia.org/wiki/PKa
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Figure 1-5  Molecular electrostatic potential surfaces plotted on the van der Waals‟ 

surface of the molecule calculated by using AM1 and a positive point charge in a vacuum 

as the probe. a) N-methyl acetamide; b) Carbon tetrachloride. Positive regions are shown 

in blue, negative regions are shown in red and green is neutral and c) The maxima (Emax) 

and minima (Emin) in the AM1 molecular electrostatic potential surfaces of a range of 

simple molecules containing only one functional group plotted against the corresponding 

experimentally determined values of α2
H and β2

H from Abraham‟s examples.17c 

1.2.2.2 Directionality of Single Hydrogen Bonding 

Directionality is one widely accepted aspect of hydrogen bonding. Although 

secondary interactions in a system may force the angle D–H…A away from linearity, it is 

the directionality in hydrogen bonding that develops from an anisotropic intermolecular 

potential that separates it from the more general van der Waals forces, which are likely to 

be isotropic. They are very different from non-polar interactions in terms of this 
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directional aspect and they do not arise from point charges as in case of ionic interactions. 

The forces are the direct result of the tendency of charge separation between an 

electronegative atom and the hydrogen connected to it. The hydrogen being partially 

electropositive at a point on its electrostatic surface directly opposite to the donor 

heteroatom, seeks association with a partially electronegative area of interaction located 

on A. Linkage through these electronegative regions provides the directionality, as only a 

particular area and orientation (Figure 1-6) is actually available for interaction and not the 

entire spherical space around A.  The hydrogen bond is strongest when the hydrogen 

forms the „bridge‟ between the two electronegative atoms in aligned linearly with an 

angle , close to 180 with a short bond length. There may be slight deviation from 

linearity but cannot form or hydrogen bond where  < 110 as it will lead an acute angle 

with lesser compatibility for hydrogen bond formation. Ideally the angles > 150 are 

generally considered best for hydrogen bonding even though the bond lengths may be 

longer than usual.18
 

A 
A 

 

Figure 1-6   Hydrogen bonding between the acceptor (A) and the hydrogen atom of the 

donor (D). The directionality of the (head-on or end-on binding, not side-on binding) 

electrostatic surface dictates the directionality of the hydrogen bonding which is not 

observed on the right resulting from an acute bond angle and where there is no contact 

with the electrostatic potential area of interaction (shown in red in potential map). 
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1.2.2.3 Specificity of Hydrogen Bonds 

Specificity may be defined as the ability to distinguish or discriminate between 

the arrangement of complementary surfaces and their complementary sites on these 

surfaces based on strength and orientation of interactions (Figure 1-7). Due to the 

presence of partial charges that give rise to intermolecular interactions, recognition may 

occur in a highly specific manner. The partial charges act as electrostatic map i.e. a 

partially electronegative species or atoms will selectively attract a partially 

electropositive species or atoms. The specificity of the interaction (similar to a binary 

code) is enhanced by the proper alignment which gives the interaction a high degree of 

selectivity in terms of binding.  

 

Figure 1-7 Arrangement of complementary sites leads to specifically attractive or 

repulsive interactions as demonstrated using 2-aminopyridine molecules.  

Depending on the nature and strength of electronegative species participating in 

hydrogen bonding, these interactions lead to wide variations in selectivity. Proximity of 

the available partial charges also can affect the specific nature of binding when the 

partially charged species form side chains on a covalent main chain moiety thus leading 

to sequence specificity through hydrogen bonding. Sequence specificity was pointed out 

by Watson and Crick in their double helical DNA model where base pairs display near 

perfect specificity via hydrogen bonding.19 The concept leads to the use of sequence 



12 

 

specific hydrogen bond interactions to form complexes where the components are 

arranged in a specific manner. 

1.3 Hydrogen Bonded Complexes 

 

Figure 1-8 Common complementary hydrogen bonding arrays developed that resemble 

base pairs. 

Almost six decades after the discovery of the complementary double-helical DNA 

complex structure, supramolecular chemists have gained enough information and access 

to design, synthesis and study the binding patterns of artificial complementary complexes 

mimicking the base pairs of DNA. Hydrogen bonding serves as the basis for 

complementary complex formation. Numerous examples of complementary complexes 

have been reported and various aspects of these complexations have been subjected to 

analysis. The concept has been extensively studied in linear arrays that may produce 
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complexes with binding constants on the order of 104 M-1 and above.20 These motifs are 

often used in the construction of supramolecular architectures. 

Meijer and Zimmerman are two pioneers in the field of development of molecular 

motifs for complementary hydrogen bonding. Ureido-pyrimidones (UPy),20-21 the 

butylurea of guanosine (UG)22 and diamido-naphthyridine (DAN)21b,23 derivatives are 

well known motifs that form hydrogen bonded arrays (Figure 1-8). Most of the existing 

synthetic hydrogen bond arrays are a result of inspiration from natural complementary 

complexes such as the DNA base pairs or  pleated sheets of proteins. Gong and 

coworkers have reported numerous examples that are mimics of the  pleated sheets 

(Figure 1-9).24  

 

Figure 1-9 (i) Hydrogen bonding in an anti-parallel  sheet and (ii) Bing Gong‟s 

hydrogen bonded complex which resembles a  sheet. 

1.3.1 Design Parameters of Hydrogen Bonded Complexes 

The primary interest in supramolecular systems is the examination of complex 

formation. Small monomer components that are built to self-assemble hold the 

information that forms the basis of complex formation. A design involves more than a 
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synthetic scheme which is often simple and consists of only a few steps. It also takes into 

account all the plausible geometrical issues of the complexes whether they be steric or 

electronic effects that dictate the interactions and stabilities of such assemblies.25 The 

goal of a designer has always been to create these assemblies with minimum number of 

synthetic steps and generate complexity by assembly of monomer components using 

molecular recognition into materials with the desired properties. In order to maximize the 

effects of hydrogen bonding, various types of complexes such as cleft structures, linear or 

helical complexes have been designed, studied and manipulated to understand the 

stabilities of these complexes. Often, the starting materials are commercially available 

and inexpensive. We will discuss several aspects that are important for a well-designed 

complex system such as functional groups, preorganization, tautomer formation, 

solubility, fidelity and number of hydrogen bonds and secondary interactions. 

1.3.1.1 Functional Groups and Substituents  

Hydrogen bonding is often highly sensitive to the nature of the substituents 

connected to the donor and acceptor components.  An electron withdrawing group 

connected to a donor subunit in an array can make the donor hydrogen atom(s) more 

highly electropositive. The connection can be in the form of resonance through 

conjugation or inductively through the - framework. Similarly electron donating groups 

that are connected to an acceptor subunit in an array may improve the acceptor character 

and tuning of these factors together can significantly improve the overall stabilities of the 

resulting complexes. Thus a basic design with an accommodation to incorporate 

functional groups at optimal positions can have a significant effect on stabilities of 

hydrogen bonded complexation. Boyd et al. have examined computationally a contiguous 
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triply hydrogen bonded system whose binding strengths were studied as a function of 

various electron withdrawing groups on the donor components and electron donating 

groups on acceptor components.26 The largest effects were seen when the withdrawing 

groups acted through resonance (Figure 1-10). 

      

 

 

 

 

Figure 1-10 AAA-DDD Model system investigated by Boyd and coworkers including 

the gas phase binding energies stated as function of withdrawing groups on DDD 

components.  

 

Figure 1-11 Substituent effects in the complementary AAA-DDD arrays on the 

association constants (measured in CDCl3) which are displayed on right hand side; N/A = 

data not available.  

R‟ Binding Energy                         
(kJ mol-1) 

NH2 31.8 
OH 32.2 
H 32.6 
F 35.6 
Cl 41.0 
CN 66.9 

CHO 73.6 
NO2 83.7 
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Recently our research group has reported substituent effects on a triply hydrogen 

bonded system27 (Figure 1-11) incorporating withdrawing substituents such as halogens, 

esters and nitrile groups on indole hydrogen bond donors. The association constants 

could be raised from 3.1 x 103 M-1 to 4.8 x 105 M-1 (i.e. by a factor of 30 or 12 kJ mol-1 

difference) when titrated against substituted (methyl and amino) terpyridyl based 

acceptor components in CDCl3.  

Wilson and coworkers have developed AADDDA type heterodimers28 based on 

amidoisocytosine and ureidoimidazole moieties, respectively, that illustrated that remote 

substituent effects control dimerization affinity in a predictable manner.  

 

Figure 1-12 Possible tautomeric and conformational states of arrays 1-3 and 1-4. 

The ureidoimidazole motif 1-4 is suitable for studying remote electronic substituent 

effects because although the hydrogen-bonding array may adopt two tautomeric 

configurations, these are very similar and either of the conformations that must be 
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adopted as a consequence of the enforced intramolecular hydrogen bonding presents a 

DDA array (Figure 1-12). Similarly two tautomeric forms are possible for 

amidoisocytosine (1-3) both stabilized by intramolecular hydrogen bonding among which 

only one presents the required AAD array. A series of complexes were synthesized with 

different substituents in the para position of the aromatic ureido/amido ring system.  

1.3.1.2 Preorganization  

Preorganization is a central factor that affects the stability of complexation during 

molecular recognition. In order to form a complex, the orientation of the non-covalent 

interactions depends on the geometrical arrangement of the individual components and 

the way they come together. The degree of freedom to rotate over single bonds in a 

molecule is what determines its range of conformations. It generally requires energy to 

bring individual functional groups into the right alignment to form a stable complex. 

Hence, preorganization can have a great effect in terms of conserving energies which 

otherwise would be spent bringing the array to its optimal geometrical alignment for 

complexation. As a design parameter preorganization can be introduced to the 

participating groups via intramolecular interactions, contributing to the net stability of 

complex formation.  

While preorganization in metal driven coordinated complexes has been extensively 

studied,29 non-metallic complexation assemblies with preorganizational effects have been 

gaining importance in recent times. In 1990, Etter framed a set of rules30 as “hydrogen 

bond rules for organic compounds”. She laid out general rules along with specific ones 
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for compounds with various functional groups, which can be utilized while designing a 

complex based from them. 

1.   All good proton donors and acceptors are used in hydrogen bonding. 

2.   Six-membered-ring intramolecular hydrogen bonds form in preference to inter-   

              molecular hydrogen bonds. 

3.  The best proton donors and acceptors remaining after intramolecular hydrogen-  

     bond formation form intermolecular hydrogen bonds to one another. 

Figure 1-14 Conformational equilibrium of ethoxynaphthyridine 1-5 and its complex 

with array 1-6. Array 1-7 contains an oxy substituent but is constrained in a ring. 

Association constants are measured in CDCl3. 

Along with intramolecular hydrogen bonding, other conformational issues may 

affect the level of preorganization. Hamilton found that ethoxynaphthyridine 1-5 bound 

triacetyl guanosine 1-6 with a Ka = 126 M-1 (Figure 1-14),31 which is at least two orders 

of magnitude lower than the Ka of a very similar complex, 1-61-7. In the example 

(Figure 1-14) Murray and Zimmerman proposed that the ethoxy group of 1-5 suffers 

from steric interactions with the guanine amino group. Thus there is an energy cost for 

producing the less stable conformation of the ethoxy group in 1-51-6. Evidence for this 

hypothesis was drawn from the studies of 1-7 with an alkoxy group in the 8-position that 
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is “tied back” in a lactone ring. In contrast to 1-51-6 the Ka of 1-61-7 is > 104 M-1, 

which is expected of a DDAAAD type complex.32  

 

Although intramolecular hydrogen bonding is a very useful tool to arrange a 

molecule in a desired conformation, there are also complications that can arise with 

preorganization via intramolecular hydrogen bonding. The example above demonstrates 

the unwanted effects of an intramolecular hydrogen bond by clipping a ureido donor to a 

pyridyl group and bypassing the ADD system intended to produce a DA array instead. 

This is an undesired result of poor design that introduces intramolecular hydrogen 

bonding that has a negative effect on the stability of the resulting complex. Thus the 

example emphasizes the powerful nature of preorganization and how it can be determined 

by design.  

Figure 1-15 Imide-urea strands that pair into self-complementary duplexes 1-81-8 via 

bifurcated hydrogen bonds. 
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In a recent example,33 a quadruply hydrogen-bonded duplex (1-81-8), based on 

an imide-urea structure preorganized partially by three-center hydrogen bonds was 

reported to associate via bifurcated hydrogen bonds (Figure 1-15). 1H NMR dilution 

experiments revealed the high stability of the homodimer in a non-polar solvent (Kdimer > 

105 M–1 in CDCl3) and enhancement of the association due to electron-withdrawing 

substituent effects (eg. –CF3 in Figure 1-15).  

1.3.1.3 Tautomers 

Tautomers are isomers differing only in the positions of hydrogen atoms and 

electrons. The carbon skeleton of the compound is unchanged. A reaction which involves 

simple proton transfer in an intramolecular fashion is called a tautomerism. When 

designing a complex it is a good idea to pay special attention to the locations of double 

bonds and functional groups such as carbonyl, amide, amine and lactams so as to avoid 

unnecessary tautomerism which may affect the overall stability of a complex. In fact, it 

has been proposed that mutations in DNA may occur as a consequence of mispairing of 

minor tautomers of the four natural bases,34 indicating the importance of the concept.  

Meijer and coworkers have reported a DDA array of 2-ureido-4-pyrimidone 

(UPy, 1-9) which tautomerizes to an AADD array (1-9a) and ADAD array (1-9b) and 

undergoes self-association (Figure 1-16).21a This is a very good example that 

demonstrates the role of tautomer formation in determining the overall stability of the 

complex. The AADD array displays greater stability (over two orders of magnitude) 

compared to the ADAD array due to the presence of fewer repulsive secondary 
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interactions. Some tautomers may not even allow the formation of a complex by altering 

the sequence of the hydrogen bonding array. 

 

Figure 1-16 The tautomeric and self-association equilibria observed in a solution of 2-

ureido-4-pyrimidone (1-9). The dimerization values were measured in CDCl3. 
 

Zimmerman and coworkers have reported an AADD array 1-10a that by design 

forms a tautomer 1-10b that has the same kind of AADD arrangement  and thus avoids 
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formation of a less favourable array (Figure 1-17).35 Hence, these types of tautomer 

conflicts can be controlled through careful design if necessary. 

 

Figure 1-17 Zimmerman‟s AADD array 1-10a that can only form a tautomeric AADD 

array 1-10b thereby maximising the association constant values possible for the complex. 

1.3.1.4 Solubility 

Figure 1-18. Intermolecular interactions in solution are a competition between solute–

solvent interactions in the free state, and solute–solute and solvent–solvent interactions in 

the bound state. For simple functional groups, the primary mode of interaction is 

hydrogen-bond contacts between the maxima (black) and minima (grey) in the 

electrostatic potential surfaces of the molecules.36  

Solubility plays a central role in many chemical transformations and in the field 

of molecular recognition, desolvation can be a dominant factor in the stability of non-

covalently interacting systems. Polar solvents can bind competitively to hydrogen bond 
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arrays and may cause a significant decrease in the stability of any complex formation. 

The analysis of many self-assembled systems are thus restricted to operation in non-

competitive, non-polar solvents such as chloroform, toluene and cyclohexane. Solubility 

is one of the most commonly faced hurdles in terms of the physical properties of 

supramolecular complexes. 

In the solution phase, there is a competition between solute–solute, solvent–

solvent, and solute–solvent interactions (Figure 1-18) and Hunter‟s universal hydrogen-

bond scale can be used to predict the free energy of hydrogen-bonding interactions (ΔGH-

bond in kJ mol−1) in most solvents.36-37 

-RT lnK = ∆GH-bond = - (α-αs) (β-βs)  

α and β are hydrogen-bond donor and hydrogen-bond acceptor constants for the solute 

molecules, and αS and βS are the corresponding hydrogen-bond donor and hydrogen-bond 

acceptor constants for the solvent. The new parameters, α and β correspond to normalized 

versions of Emax and Emin [α = Emax/52 = 4.1(α2
H + 0.33), β = - Emin/52 = 10.3(β2

H + 0.06)] 

determined from AM1 electrostatic potential surfaces, as discussed earlier. 

Hunter and coworkers have also studied a system for which the association 

constants were reported in various solvents to highlight the role of competitive solvents 

and non-competitive solvents play in the determination of the stability of the 

complexes.17b One of the most polar hydrogen-bond donors known is perfluoro-tert-butyl 

alcohol and one of the best hydrogen-bond acceptors known is tri-n-butylphosphine oxide 

(Figure 1-19). Experiments on the complexation between these two compounds in 

comparison to standard reference hydrogen bond acceptors and donors in carbon 
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tetrachloride suggest that the complex should exhibit extraordinary stability, thereby 

allowing quantification of the hydrogen bond interaction in competitive polar solvents.37 

The results demonstrate the predictable drop in association constants, Ka values with 

increasing solvent competition/polarity. 

Solvent Ka in M-1 

n-decanol 1.6 x 10-1 

DMSO 6.8 x 10-1 
NMF 8.9 x 10-1 
Pyridine 6.5 x 100 
pyrrole 1.3 x 101 
acetone 6.5 x 101 
acetonitrile 1.6 x 102 
tetrahydrofuran 2.4 x 102 
nitromethane 1.5 x 103 
CHCl3 2.7 x 103 
Benzene 1.9 x 104 
CCl4 7.6 x 104 
Cyclohexane > 105 

 

Figure 1-19 Results of 31P NMR titration experiments displaying the association constant 

for formation of a 1:1 complex between perfluoro-tert-butyl alcohol and tri-n-butyl 

phosphine oxide at 295 K as a function of solvent properties. Errors in Ka are  20%, 

except for the values in N-methylformamide (NMF), dimethyl sulfoxide (DMSO), and n-

decanol, where only 30–40% of the binding isotherm was accessible and the values are 

accurate to within an order of magnitude.  

There are different ways to overcome solubility issues without disrupting the 

primary design of a complex. Lengthy alkyl chains, polyethylene glycol units or sterically 

hindering groups can be incorporated that may improve the solubility of otherwise 

insoluble components. Alternatively, mixed solvent systems can be used to measure the 

association constants or for comparative studies of specific interactions. Both of these 

strategies are employed and discussed in chapter three of this thesis. 
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1.3.1.5 Fidelity  

Fidelity is defined in various fields in different manners. It is the degree or quality 

of faithfulness toward a particular interaction. The genetic information that is passed on 

from double helical DNA strands to RNA and subsequently on to proteins is based on the 

specific recognition of complementary base pairing and such specificity is highly 

desirable when mimicking nature in order to develop materials for perticular applications. 

In supramolecular terms, fidelity is minimal competition from other recognition events 

during the process of complex formation. Fidelity has been defined as the ratio of 

concentration of the desired complexes to the concentration of all associated species. 

Thus fidelity F, can range from 0  F ≥ 1, where F = 1 indicates exclusive formation of 

the desired complex and F = 0 indicates exclusive formation of other undesired 

complexes. 

Zimmerman and coworkers have reported several triple and quadruple hydrogen 

bonded motifs that form heterodimer complexes with very high fidelity.22, 38  

Orthogonality has been studied in several examples and a few of them stand out 

displaying high fidelity. The concept is well demonstrated by complex formation of 2,7-

diamido-1,8-naphthyridine (DAN) and the butylurea of guanosine (UG) in chloroform as 

DANUG. The complex is exceptionally strong due to high fidelity between the 

participating arrays. The association constant for the DANUG complex was found to be 

5 × 107 M-1 by fluorescence energy transfer from the naphthyridine unit of DAN to 

coumarin 343 covalently linked to UG (Figure 1-20) and is among the highest reported 

for a neutral DNA base-pair analogue. The relatively negligible self-association of DAN 
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(Kdimer < 10 M-1) and UG (Kdimer = 300 M-1) strongly suggests that the DANUG complex 

forms with unparalleled fidelity. 

 

Figure 1-20 (i) DANUG complex formed due to the high fidelity interaction between 

the two arrays; (ii) Fluorescence emission of DANUG complex displaying the 

fluorescence energy transfer from the naphthyridine unit of DAN to a coumarin 343 

covalently linked UG with dilution in chloroform (background subtracted); (iii) 

Fluorescence intensity (arbitrary units) plotted against concentration for the association 

pictured in (ii). 

In the above case, F is calculated using the equation: 

             
       

                          
 

(iii) 
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The DANUG complex (1:1 stoichiometry) exhibits a nearly perfect fidelity of > 99.9% 

at 1 M and maintains that level across a 106-fold dilution. Complexes of such high 

fidelity can be used for highly specific purposes in the field of biochemistry and 

supramolecular architectures such as reversible polymers constructed using DAN and UG  

arrays.38  

1.3.1.6 Number of Hydrogen Bonds and Secondary Interactions. 

Hydrogen bonds are not usually stable individually but cumulatively they can 

exert a much stabler effect. As the stability of the hydrogen bonded complex is a 

collective effect, it should be directly proportional to the number of D-A pairs 

participating in the hydrogen bonding i.e it is expected that a triply hydrogen bonded 

complex is stronger than a doubly hydrogen bonded complex.  

Schneider and coworkers studied the effects of the number of hydrogen bonds and 

a linear correlation was made between the complexation free energy (G) in CDCl3 and 

number of hydrogen bonds in eight different hydrogen bonded complexes formed from 

amide or imide and amino- or amidopyridine components.39,40 From the correlation, they 

concluded that each hydrogen bond interaction contributed approximately 5.0 kJ mol-1 to 

the energy of complexation. Furthermore, no such attempts were reported that would 

generalize the concept and it is arguable that the conclusion made is limited to the 

carefully chosen complexes with similar types of hydrogen bonded arrays. There are 

actually a number of examples reported more recently that contain arrays with fewer 

pairs of hydrogen bonds and significantly higher association or dimerization constants 

that will be discussed in the subsequent chapters of this thesis. 
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Figure 1-21 Secondary interactions shown in four different modules, DADADA, 

ADDDAA and DDDAAA motifs along with the number of attractive and repulsive 

interactions in each case.  

The strength also depends upon the sequence of the hydrogen bonding arrays as 

secondary interactions can affect the overall stability of a complex as introduced by 

Jorgenson and coworkers.41 Depending upon the sequence one can calculate the number 

of attractive and repulsive interactions that contribute to the net stability of a complex. 

Alternating A and D components in an array gives rise to the weakest complexes possible 

as there are only repulsive secondary interactions present in these type of arrays (Figure 

1-21). On the contrary, contiguous arrays give rise to the strongest hydrogen bonded 

complexes due to the presence of entirely attractive secondary interactions and no 

repulsive secondary interactions.  

1.3.2 Complementary and Self-Complementary Hydrogen Bonded Complexes 

Molecular recognition through complementary surfaces bearing complementary 

sites was developed more out of scientific curiosity to understand the functional aspects 
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of biochemical processes such as the role of complementarity in translation and 

replication of nucleotides. Later this understanding has been applied to the development 

of functional materials with interesting properties. The complementary nature of the 

duplexes is a manifestation of underlying cooperative action of non-covalent interactions 

resulting in thermodynamically stable assemblies. An ideal self-assembly involves the 

associating units that store and retrieve information as the assembly takes place. Hence, 

“codes”, in form of hydrogen bonding components are the key to complementary 

complex formation. 

1.3.2.1 Self-Complementary or Homodimer Complexes  

The development of self-complementary complexes involves the arrangement of 

intermolecular hydrogen-bonding sites into arrays. Introduction of a sequential 

arrangement produces a set of hydrogen-bonded duplexes, where the hydrogen bond 

modules recognize either themselves (self-complementary) or their complements.  The 

number of N duplexes with n intermolecular hydrogen-bonding sites can be calculated as: 

                 N = 2n-2 + 2(n-3)/2                                           when n = odd number   

                N = 2n-2 + 2(n-2)/2                                           when n = even number 

If n is an odd number, there can be no self-complementary sequences.  If n is even, then 

the number of self-complementary sequences is described by the second term of the 

equation.  Thus, in the set of triple hydrogen bond arrays, there are 3 complementary 

pairs and in the set of quadruple hydrogen bonded arrays, there are 4 complementary 
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pairs and 2 self-complementary sequences. The following sections discuss some of the 

self-complementary arrays reported in the literature that display high stabilities.  

1.3.2.1.1 ADAD Complexes 

Among self-complementary H-bonded arrays, linear quadruple complexes are 

well known and studied. Though ADAD modules are expected to be weak hydrogen 

bonded complexes due to their entirely repulsive secondary interactions that underlie 

these motifs, there are some interesting examples provided by Meijer and coworkers.  

.  

Figure 1-22 Dimers of acylated diaminotriazine and diaminopyrimidine ADAD modules. 

Association constants are measured in CDCl3 at room temperature. 

Meijer‟s group was among the first to synthesize self-complementary quadruple 

hydrogen-bonding motifs with an ADAD array formed by acylation of diaminotriazines 

and diaminopyrimidines (Figure 1-22).42 The dimerization constants for these complexes 

were measured in CDCl3 and vary significantly with the corresponding complexation free 

energies differing by over 17 kJ mol-1 from strongest to weakest.  The acylated 

compounds were reported being stabilized by intramolecular hydrogen bonding having 

association constants up to 105 M-1 in CDCl3 (Figure 1-23). They have well demonstrated 



31 

 

the importance of conformational effects and supportive intramolecular hydrogen 

bonding.  

 

Figure 1-23 Diacylpyrimidine 1-11 and ureidoacylpyrimidine 1-12 as ADAD bonding 

motifs according to Meijer and co-workers. 

1.3.2.1.2 AADD Complexes 

 

Figure 1-24 Meijer‟s AADD motifs displaying extreme complex stabilities. 
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There are numerous examples of AADD self-complementary motifs build by 

Meijer‟s group detailed in different sections of this chapter, displaying Kdimer values on 

the order of 105 to 108 M-1. 43,43,44
  

Figure 1-25 Amidinourea-based self-complementary modules with preorganized linear 

hydrogen-bonding arrays. The intramolecular hydrogen bonding supports the structural 

geometry and thereby increase the overall dimerization values. 

Inspired from the basic design of Meijer and Zimmerman, Sanjayan and 

coworkers45 have developed sulfonyl based amidinourea AADD arrays that self-assemble 

to form the hydrogen bonded complexes. The stability and preorganization in these 

complexes is augmented by supportive intramolecular hydrogen bonding interactions 

(Figure 1-25). ESI mass spectroscopy and X-ray diffraction studies were extensively used 

to investigate the self-assembling propensities of the sulfonyl based AADD array 

systems.  

Tung and coworkers have reported the first example of a fluorescent sensor for 

fluoride anions based on the 2-ureido-4[1H]-pyrimidinone quadruple hydrogen bonded 

AADD supramolecular assembly46 where the assembly and dissembly processes respond 

to external stimuli. They employ Meijer‟s AADD arrays for the self-complementary 

complex formation and attached an anthracene moiety via a methylene carbon to the 

AADD array, turning the unit into a fluorescent sensor (Figure 1-26).  



33 

 

 

Figure 1-26 A highly selective, neutral, fluorescent sensor based on 2-ureido-4[1H]-

pyrimidinone quadruple hydrogen-bonded AADD motif.  

 

Figure 1-27  Design and self-assembly of general-purpose Bis-DeAP module. 

Zimmerman and coworkers have reported a ditopic hydrogen-bonding module 

bis-ureidodeazapterin (Bis-DeAP), as a basic AADD-linker-DDAA moiety (Figure 1-

27)47 for building supramolecular star polymers. It was programmed to self-assemble into 
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cyclic aggregates. The synthetic ease and scalability are also noteworthy factors. 

Depending on the flexibility of the linker, different main chain polymers can be drawn. 

The size of the cyclic assembly is determined by the angle between the hydrogen bonding 

modules. The scope of the monomer moiety is significant as the terminal hydroxyl group 

can be attached to polymer initiators which can readily undergo polymerizations, making 

Bis-DeAP a very valuable addition to the „supramolecualr toolbox‟ for the generation of 

ordered nanoscale materials. 

  The AADD hydrogen-bonding module ureidoimidazo[1,2-a]pyrimidine (UImp-

2),48 developed by Hisamatsu and co-workers forms a highly stable unfolded dimer via an 

AADD array (Kdimer > 1.1 × 105 M-1 in CDCl3) without competition from undesired 

conformers. This result demonstrates the usefulness of quadruple hydrogen-bonding 

modules based on five-membered heterocyclic urea structures. When a CDCl3 solution 

of UImp-2 was diluted from 8.0 to 0.40 mM, no changes were observed in chemical shift 

values of NHa and NHb. This shows that the dimerization of UImp-2 persists at a low 

concentration and that the Kdimer value is significantly high. Assuming that at this 

concentration there is less than 10% dissociation that is not detected by 1H 

NMR, the Kdimer of  UImp-2 was estimated to have a lower limit of 1.1 x 105 M-1. The 

original arrays that inspired the development of UImp-2 are based on ureidocytosine 

UC,49 which has a much similar Kdimer  >  2.5 × 105 M-1 but due to the ability of UC to fold 

and form an AD array instead of an AADD array there is at least 5% competition from 

the folded UC conformation (Figure 1-28). The UImp-2 avoids this kind of conformation 

by switching from ureidocytosine to a five membered ring fused to a six membered 

heterocycle.  
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Figure 1-28 Structure of an AADD array (left) based on ureidoimidazo[1,2-a]pyrimidine 

UImp-2, forming a stable dimer. On the right, the ureidocytosine UC, a different AADD 

array can fold up and thus form a duplex with lower stability. All the dimerization 

constants were determined in CDCl3 at room temperature. 

1.3.2.1.3 Six-membered Self-Complementary Complexes 

 

Figure 1-29 The design of the self-complementary duplex forming a AADADD-

DDADAA complex in the solution state. 

Examples of extremely stable self-complementary six hydrogen bonded 

AADADDDDADAA duplexes (Figure 1-29) consisting of amide linkages have been 
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reported by Gong and coworkers.50 The Kdimer is reported to be greater than 4.5 x 107 M-1 

in CDCl3. Due to the high degree of complexation, the chemical shifts of the amine 

protons do not display any movement either up field or down field, in a wide range of 

dilutions from 1mmol to 2 M. 

1.3.2.2 Complementary or Heterodimer Complexes    

As a result of the influence of positive and negative secondary interactions, the 

ADADAD arrangement is less stable than the AADDDA arrangement which is less 

stable than the AAADDD arrangement donor/acceptor arrays. The subsequent examples 

discussed in this section bear out this general trend where we examine only those 

complexes with relatively large (Ka > 104 M-1) stabilities. 

1.3.2.2.1 AADDDA Complementary Complexes 

 

Figure 1-30 Assorted complexes containing the AADDDA motif. The Ka values are 

measured in CDCl3. 
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Compared to ADADAD motifs the more stable AADDDA arrangement was 

extensively investigated before the development of quadruple hydrogen bonded 

complexes. The prototypical example of the naturally occurring AADDDA array is the 

CG base pair. The association constants (Figure 1-30) lie approximately in the 104-105 

M-1 range,51 which are two to three orders of magnitude higher than observed for typical 

ADADAD systems. It is a significant observation as the subunits used to build both 

motifs are often very similar. 

1.3.2.2.2 AAADDD Complementary Complexes 

Among triply hydrogen bonded complexes the AAADDD arrangement was 

found to be that with the highest stability due to the presence of entirely attractive 

secondary interactions.  

 

Figure 1-31 A diaryl-1,9,10-anthyridine module forming complexes with neutral and 

cationic DDD arrays in an AAADDD arrangement with high stability.52 The association 

constants are measured in CDCl3.  

The synthesis of multi-annulated heteroaromatic rings can be difficult and 

electron withdrawing substituents like nitro- or nitrile groups can cause solubility 
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problems.53 Though synthetically challenging, the association values of these two 

examples are in the range required to qualify the monomers to be used to build 

supramolecular polymers.  

 

Figure 1-32 Extremely stable complexes of both neutral and ionic types. The association 

constants are measured in CH2Cl2 by using fluorescence spectroscopy. The plot details the 

fluorescence intensities of AAA array up on addition of ionic DDD array.  

           More recently, Leigh and coworkers reported a set of extremely strong AAADDD 

complexes including an example that is cationic in nature. They used similar analogs and 

altered the design of the AAA motif (Figure 1-32) to achieve extremely high stabilities.54  

1.3.2.2.3 ADDADAAD Complementary Complexes 

 

 Figure 1-33 Highly stable complexes exhibiting ADDADAAD hydrogen bond arrays. 
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There are very few examples of the ADDADAAD type of complexes reported in 

the literature some of which were discussed in previous sections of the chapter. The two 

conformers of ureidodeazapterin (DeAP) (Figure 1-33) display a high fidelity towards 

complex formation with DAN. Computational studies suggested that this is an intrinsic 

property of the complexes rather than an energetic preference for conformers of the 

DeAP.55 

1.3.2.2.4 AAAADDDD Complementary Complexes 

 

Figure 1-34  Formation of the putative heterodimer AAAADDDD with four hydrogen 

bonds and six attractive secondary interactions.  

Extention of these contiguous hydrogen bonded arrays has led to the development 

of AAAADDDD arrays though there are very few examples known. The first example 

was reported by Luening and coworkers based on the sulfurane AAAA motif and a urea 

amide based DDAD moiety converted to a DDDD motif upon protonation (Figure 1-

34).56  The remarkably low association constant observed is attributed to many factors 

that stem from poor design of the cationic duplex. 2-Pyridinyl ureas can form 

intramolecular hydrogen bonds that inhibit complexation. In the sulfurane, methyl groups 
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are attached at the  positions (highlighted in blue circles) that repel the hydrogen 

bonding partner requiring energy to be expended to form the complex. It has also been 

reported by Meijer and coworkers that ethylene glycol chains may reduce the association 

constants of these types of complexes.57 Protonation of the AAAA is also yet another 

possibility to be considered while using a protonated DDDD, which may result in 

formation of an AADA array and thus form an AADADDAD complex which likely has 

a lower association constant.  

Figure 1-35 1H NMR spectra (500 MHz, CD2Cl2, 298 K) of DDDD+ (top), complex 

DDDD+
AAAA. (middle) and AAAA (bottom). Dashed lines show the changes in 

chemical shift of the resonances in DDDD+ and AAAA on formation of complex 

DDDD+
AAAA. 

Very recently, surmounting all the negative factors mentioned above, Leigh‟s 

group has reported an AAAADDDD system (Figure 1-35) displaying exceptional 

DDDD

AAA
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complex stability (in fact the highest to date).58 The DDDD+ array has two intramolecular 

hydrogen bonds to help stabilize the cationic guanidinium group, which should also 

increase the donor strength of the other hydrogen-bond donor groups. The AAAA array is 

a hexacene system intended to improve its chemical stability compared to underivatized 

linear arrays of pyridine rings linked through their 2,3/4,5 edges.  

The system displays extreme stability in a range of solvent systems (Ka = 3 x 1012 

M-1 in CH2Cl2, 1.5 x 106 M-1 in CH3CN and 3.4 x 105 M-1 in 10% DMSO/CHCl3). The 

association constant in CH2Cl2 corresponds to a binding free energy (G) in excess of –

71 kJ mol-1 (more than 20% of the thermodynamic stability of a carbon–carbon covalent 

bond), which is remarkable for a supramolecular complex held together by just four 

intercomponent hydrogen bonds. Significantly large downfield shifts of up to 10 ppm of 

the NH protons of the DDDD+ array upon complex formation with the AAAA array and 

upfield shifts of the benzimidazole CH protons as the NH bonds become more polarized 

through hydrogen bonding were observed in the 1H NMR spectra. The broad NH signals 

in the DDDD+ array alone may be the consequence of the interconversion of the possible 

tautomers that it can form. In contrast, well-resolved signals for three different types of 

NH protons (Habc) are observed in the spectrum of DDDD+
AAAA, as expected for the 

DDDD+ tautomer. With over seven times the order of magnitude required for the 

complex to qualify for supramolecular polymers, the complex would be very interesting 

for such extended studies. 

1.3.2.2.5 Unusual Complementary Complexes 

In a very recent work, Gong and coworkers have reported a strategy for 

association specificity of hydrogen bonded duplexes by varying the spacings between 



42 

 

adjacent hydrogen bonds (Figure 1-36).59 The AADD described in their work are unusual 

as they do not form the homodimers but still form the AADD arrays bound to DDAA 

arrays but by heterodimerization. It is a special case of heterodimeric arrays built with 

what would typically be a homodimeric hydrogen bond sequence. 

Figure 1-36 Oligoamide strands containing both benzene and naphthalene spacers 

sharing AADD sequences that heterodimerize.  

1.3.3 Double-Helical Complexes 

All the discussions so far have centered on linear hydrogen bond arrays. Most of 

the issues such as unwanted tautomerizations, isomerization conformations are serious 

considerations when designing a synthetic array for complementary complexation. In an 

attempt to overcome these hurdles, various attempts have been made by supramolecular 

chemists to understand some of nature‟s best complementary systems. The knowledge 

gained through these studies has enabled them to apply the underlying principles they 

have uncovered to build artificial double helical complexes.60  

Helical oligopyridine‐dicarboxamide strands61 (Figure 1-37) were reported by Lehn and 

coworkers demonstrating the ability of the oligomers to form both single helical 

foldamers and double helical complexes. The conformations leading to the helical shape 

of the array result from intramolecular hydrogen bonding within 2'-pyridyl-2-

7.2 Å  4.9 Å   
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pyridinecarboxamide units.  Extensive intermolecular aromatic stacking was observed 

stabilizing the double-stranded helices that form through dimerization.  

 

Figure 1-37 Structure of an oligopyridinecarboxamide and the crystal structures of its 

single helix foldamer and double helix dimer. 

A number of complexes have been studied by Yashima and coworkers who have 

reported double helical oligoresorcinols that specifically recognize oligosaccharides by 

forming heteroduplexes through noncovalent interactions in water. It is quite difficult to 

accomplish saccharide recognition in water using artificial receptors because water 

molecules are such good competitors for the hydrogen bonds. An exception to this is the 

receptor system relying on covalent sugar-boronate formation, which is truly effective in 

water.62 The oligoresorcinol forms a double helix in water, which unravels and entwines 

upon complexation with specific oligosaccharides having a particular chain length and 

glucosidic linkage pattern, thus generating the heteroduplex with an excess one-handed 

(ii) (iii) 
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helical conformation that can be readily monitored and further quantified by absorption, 

circular dichroism and NMR spectroscopies.  

 

Figure 1-38 Schematic illustration of the heteroduplex formation of 9merH with 

oligosaccharides63 and structure of 9merH (on right). 

The oligoresorcinol nonamer 9merH (Figure 1-28) is long enough to form a 

double helix as the major species in water, but it dissociates into individual strands in the 

presence of an increasing volume of organic polar solvents such as methanol at more than 

28 vol %, indicating that the double helix formation is highly sensitive to its environment. 

It starts to unwind as oligosaccharides or polysaccharides are introduced in to the 

aqueous layer to form the corresponding heterodimer complex whose affinities are 

measured to be in the range of 3.5 x 103 M-1 in water despite the competition.  

The same group has reported an entirely different kind of double helical formation 

of sequence and chain length specific complementary complexes that are built via 

amidinium-carboxylate salt bridges (Figure 1-39).64 The helical strands consisting of two, 

three, or four m-terphenyl groups attached by diacetylene linkers with complementary 

binding sites, either the chiral amidine A or achiral carboxyl C group, were employed. 

When three dimeric molecular strands (AA, CC, and AC) or six trimeric molecular 

strands (AAA, CCC, AAC, CCA, ACA, and CAC) were mixed in solution, the 
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complementary strands were sequence-specifically hybridized to form one-handed 

double-helical dimers AACC and (AC)2 or trimers AAACCC, AACCCA, and 

ACACAC, respectively, through complementary amidinium-carboxylate salt bridges. 

 

Figure 1-39 Structures of m-terphenyl-based molecular strands bearing amidine and/or 

carboxyl groups and an illustration of double-helical oligomers consisting of 

complementary molecular strands stabilized by amidinium-carboxylate salt bridges. A 

and C denote the monomer units bearing the chiral amidine and achiral carboxyl groups, 

respectively. 

Upon the addition of CCA to a mixture of AAA, AAC, and ACA, the AACCCA double 

helix was selectively formed. Moreover, the homo-oligomer mixtures of amidine or 

carboxylic acid from the monomers to tetramers (A, AA, AAAA, C, CC, and CCCC) 

assembled with a precise chain length specificity to form AC, AACC, and 

AAAACCCC, which indicated an extremely specific and well behaved complementary 

helical system. The high specificity is attributed to the vast gap in binding affinities as 
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dimerization of carboxylic acid (~ 102 M-1) is much less than binding constant of 

amidinium carboxylate salt bridges (> 106 M-1). Based on the success of the salt bridge 

arrays the group has extended the design to make platinum coordinated polymers65 or by 

incorporating phosphoric acid diesters.66  

Heteromeric double helices formed by cross-hybridization of chloro and fluoro-

substitured quinolone oligoamides have been reported by Huc and coworkers,67  whose 

handedness can be controlled by the chiral substituents on the strands (Figure 1-40). 

These strands are stabilized by intramolecular N-H…F hydrogen bonds and C=O…F 

repulsions of the consecutive quinolone units of the sequence.  

 

Figure 1-40 Fluoro-substituted quinoline oligoamide that forms cross-hybridized double 

helical complex. Towards it‟s right is the crystal structure of the chloro analogue.  

Several examples of double helical complexes have been reported from our group 

that are both self-complementary and complementary arrays built based on pyridyl, 

thiazine dioxide and indole heterocycles. These examples have demonstrated the 

importance of considerations of secondary interactions in this context. More will be 

discussed in detail about these complementary AAADDD and self-complementary 

AADD and AAADDD helical duplexes in the following chapters.   
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1.3.3.1 Design of Double-Helical Arrays 

 

Figure 1-41 (i) A and D subunits form components of a supramolecular “toolbox” which 

can be used to construct arrays that undergo hydrogen bonding to form complementary 

complexes; (ii) X-ray crystal structure and schematic representation of a self-

complementary double helical ADADA complex developed previously in our research 

group. 

The design of the hydrogen bonding motifs consists of heterocycles such as 

pyridine, thiazine dioxide and indole derivatives that will form components of our 

supramolecular „toolbox‟. The pyridyl moieties form the acceptor or A units (represented 

in blue, Figure 1-40) and indole and thiazine dioxides form the donor or D units 

(represented in red). Pyridine, being easily derivatized, will incorporate methyl groups to 

enhance the design where required. They serve as electron donating as well as providing  

steric bias to induce “kink” in the molecule so as to give it a helical geometry. Thiazine 

dioxide bearing a strong electron withdrawing sulfone group in conjugation with the 
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amine group, usually forms the central or inner D component. On the other hand, indole 

being a relatively poor hydrogen donor requires electron withdrawing substituents such 

as halogens, esters and nitro functional groups (at 5-position) for increased hydrogen 

bond donor ability and usually forms the terminal or outer D components while designing 

a complex. Keeping these factors in mind the design is extendable to construction of 

different arrays merely by changing the sequence of the omponents. An alternating self-

associating pentamer ADADA complex has been reported from our research group serves 

as an example.  

1.4 Scope of the Thesis 

The goal of our studies discussed in this thesis was to develop new helical 

hydrogen bond motifs that are highly specific, soluble in non-competitive solvents and 

form a variety of double-helical complexes based on hydrogen bonding with a high 

degree of fidelity. Our intent was to develop a „toolbox‟ of heterocyclic acceptor and 

donor units (pyridine, thiazine dioxide and indole derivatives) use them in different 

sequences and study the effect of sequence and substitution on complex stability.  

Chapter 2 describes the synthesis of self-complementary AADD helical arrays 

with the  added effects of electron donor and acceptor substituents and preorganization. 

Methyl, ester and nitro functional groups were examined as additions to the acceptor and 

the donor heterocycles of the arrays. Trimethylene tethers were used to bridge donor 

heterocycles to provide preorganization. Overall, a wide range (>105 M-1) of stabilities 

with respect to substitutions at various positions in the AADD oligomers was 

demonstrated.  
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Chapter 3 describes the synthesis of some preorganized DDD arrays, substituent 

effects and accompanying solubility issues encountered. The effect of the addition of 

pentyl chains to the donor arrays in term of solubilities and overall stabilities was 

examined by comparison. The extrapolation of these comparative studies gives an 

estimate of the binding strength of a previously synthesized donor array that was 

insoluble. 

Chapter 4 describes the effects of attachment of alkyl chain to an insoluble (in non-

polar solvents such as chloroform and dichloromethane) DDD array and the resulting 

changes in solubility and binding strength. The chapter also discusses the extended 

studies of the self-complementary system AADDDDAA to AAADDDDDDAAA 

double helical complementary complex. The longer helical complex provides information 

about binding propensities (Kdimer > 4.5 x 107 M-1 in CDCl3, and  1.2 x 104 M-1 in 5% 

DMSO/CDCl3 mixture) and the extensibilities of these oligomers which are crucial for 

using them in developing applications reversible polymers. 
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Chapter 2 

2 Synthesis and Self-Association of Double Helical AADD Arrays 

2.1 Hydrogen Bonded Supramolecular Polymers 

  Synthetic polymeric materials are amongst the most important classes of new 

materials introduced in the previous century. The impressive recent progress in 

supramolecular chemistry, has paved the way to design polymers and polymeric materials 

that lack a formal macromolecular structure.1 Instead, highly directional secondary 

interactions are used to assemble the many repeating units into a polymer-like array. 

Polymers based on this concept hold promise as a unique class of novel materials,2 

because they combine many of the attractive features of conventional polymers with the 

reversibility originating from the secondary interactions that assemble them. Hydrogen 

bond arrays have been used as building blocks for stimuli-responsive polymers and 

assemblies with nanoscale dimensions.3,4 In order to construct a stable reversible 

polymeric material,5 quadruple hydrogen bond arrays with strong binding constants have 

been employed in the past leading to supramolecular materials. In the polymer phases, 

weak interactions that are non-directional can give rise to microphase-separated 

structures or gelation due to network formation.6  

  The degree of polymerization of reversibly interacting “monomers” can be plotted 

as a function of the stability of their interactions. The diagram (Figure 2-1) indicates that 

the minimum association or dimerization constant required for a complex to be eligible 

for formation of supramolecular reversible polymers based on hydrogen bonding is 
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greater than 104 M-1 for reaching a degree of polymerization of 100 at 0.05 M or 103 M-1 

at 1 M.7  

Figure 2-1 A plot of the relation between association constant Ka and the degree of 

polymerization8 of idealized monomers at two different concentrations.  

Based on Meijer‟s UPy-based building blocks, there have been numerous patent 

applications filed using supramolecular architectures in fields ranging from adhesives,9 

printing,10 cosmetics11 and personal care12 to coatings.13  

  

 

 

 

 

(i) 

Cooling 

Heating 
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Figure 2-2 (i) Changing the macroscopic properties of a telechelic poly(ethylene/ 

butylene) copolymer (left) by end-group modification with self-associating hydrogen-

bonding motifs  The macromolecular structure is a network of monomers connected by 

hydrogen bonds. (ii) The UPy units form hydrogen bonds to each other and act as 

monomers in a polymeric chain.14 

One of the salient features of the materials, unique to reversible polymers, is that 

the supramolecular chains lose strain by breaking, followed by recombination of free 

chain ends without strain.15 Breaking rates increase with temperature, and contribute to 

the temperature-dependent behaviour of supramolecular polymers (Figure 2-2 (i)).14, 16 

2.2 AADD Arrays as Components of Hydrogen Bonded Materials 

The synthesis and application of self-complementary coplanar AADD hydrogen 

bond arrays with very large dimerization constants (e.g. 107-108 M-1), originally 

introduced by the groups of Meijer6a and Zimmerman,17 stand as a milestone in the 

development of both supramolecular and materials chemistry. Although there are a great 

number of advantages of their use in reversible polymeric materials, the materials are 

based on a very few examples of self-associating quadruple AADD arrays that form 

highly stable dimers reported in the literature (Figure 2-3).18  

  

(ii) 

Figure 2-2 continued … 
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Figure 2-3  Examples of AADD arrays and designs with Kdimer values, method used for 

the analysis and supporting solvents at room temperature. 
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       Well-defined hydrogen bonding arrays have been incorporated in a number of 

polymers as end groups,6a, 19,20 side chains21,22 and in the main chains,23,24 in the pursuit 

of new materials designs. Most of the properties were studied in the solution state.19-25 In 

an example study, UPy groups were introduced as thermoreversible interaction sites to a 

chemically cross-linked polymer network, resulting in shape memory properties.26 Guan 

and co-workers have reported the first biomimetic design of a linear polymer composed 

of a tandem array of biomimetic cyclic UPy modules, closely mimicking the titin protein 

architecture, yielding a strong, tough, processable, and highly adaptive material (Figure 

2-4).3a  

Figure 2-4 Biomimetic linear modular polymer based on the Upy AADD array, 

mimicking titin, a skeletal muscle protein. 

  Titin absorbs energy by the reversible rupture of intramolecular secondary 

interactions, followed by refolding induced recovery, making it an intriguing model for 

the design of adaptive materials. Experiments were conducted to study the mechanical 

and adaptive nature of the biomimetic polymer such as incubation in water, heating the 

polymer and cooling it down to freeze the shape. The results demonstrated valuable 
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properties such as shape-memory properties, high modulus and toughness, large 

extensibility, and intriguing adaptive behaviour, whereas similar tests on the control 

polymer where the dimerization of UPy arrays was blocked completely lacked the above 

properties, suggesting that the reversible rupture and refolding of UPy dimer modules 

contributes to the macroscopic properties. 

  These types of unique materials with excellent qualities of stability and 

reversibility are an inspiration for the development of new AADD arrays that can be used 

orthogonally to extend the behaviour to use more than one interaction.27 We anticipated 

that we could achieve this goal using double helical self-complementary complexes. As 

discussed, in order to be effective as the monomers of a supramolecular polymer, our 

AADD arrays should possess a Kdimer value of at least 104 M-1.8 The rest of this chapter 

discusses the efforts to test the efficacy of our design and also to engineer the highest 

possible dimer stabilities with this sequence. 

2.3 Design of Double-Helical AADD Arrays 

Utilizing the acceptor (A) and the donor (D) heterocycles from our 

supramolecular “tool box” we engineered the basic design to construct our arrays (Figure 

2-5). Sequential connection of these heterocycles gives rise to the desired oligomers 

which self-associate based on the order of connectivity. Before discussing the 

specificities of our design there are other important factors to be considered from the 

point view of the AADD arrays. Based on the sequence of the arrangement of 

heterocycles in an oligomer, attractive or repulsive secondary interactions28 play an 

important role in determining stabilities of hydrogen bonded complexes.  



62 

 

 

Figure 2-5 Basic design of the arrays with a simple donor (D) and acceptor (A) pair 

leading to an oligomeric strand. The strands should undergo self-assembly into double-

helical self-complementary duplexes. 

  Generally, in a similar manner to traditional coplanar hydrogen bond arrays, the 

stability of these complexes is also dependent on the number29,30 of hydrogen bonded 

components in an array, apart from their order of arrangement. The general trend can be 

greatly disrupted based on the interplay of secondary interactions. The dependence of the 

stabilities of these complexes due to secondary interactions is aptly demonstrated by the 

two complexes depicted at the top and bottom left of Figure 2-6.31,32 The complex formed 

by the two contiguous arrays presenting AAA and DDD sequences is several orders of 

magnitude more stable than that produced by the dimerization of the ADADA array 

pictured above it, even though it incorporates one less hydrogen bond. Presumably the 

effect is a result of strong secondary hydrogen bond interactions between the two strands 
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upon complex formation. The AAADDD complex has four attractive secondary 

interactions and no repulsive secondary interactions whereas the ADADA dimer has six 

repulsive secondary interactions and no attractive secondary interactions.  

 

Figure 2-6 The AADD complex design as a hybrid of alternating ADADA and 

contiguous AAADDD sequences. 

  Given these results, we considered whether the two designs could be 

amalgamated to generate a hybrid structure (an AADD array) with both contiguous and 

alternating elements and how stable the resulting complex would be. It would be a very 

interesting as well as a challenging study particularly with four attractive secondary 

interactions and two repulsive secondary interactions, whether the quadruple arrays 

would form highly stable self-complementary double-helical complexes. In view of the 
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importance and wide utility of coplanar AADD arrays described above in the 

development of supramolecular polymers and materials,6a, 17b, 33 we anticipated an array 

based on our design containing this sequence could be utilized in similar applications. 

Figure 2-7 Design attributes of the AADD array outlined using different colors.  

The acceptor components of the AADD array may contain additional electron 

donating groups (blue) that improve their hydrogen acceptor character. The (green) 

methyl component is not desirable as an electron donating group placed on the hydrogen 

bond donor component (thiazine dioxide) which may reduce the hydrogen bonding donor 

capacity of the amine proton. However, it is likely necessary to provide a steric “kink” in 

the molecule so that it undergoes helical complex formation via hydrogen bonding. The 

alkyl tether (orange) between the hydrogen bond donor heterocycles also provides 

preorganization in the array and the (red) electron withdrawing group increases the 

hydrogen bond donor character of the indole N-H.  

Following these criteria, a series of AADD arrays were designed by progressively 

introducing one or more stabilising factors into each motif (Figure 2-7). The stepwise 

introduction of these strengthening elements was also intended to give an estimation of 

how much they contribute individually toward the overall stability of the complexes. This 

Electron withdrawing groups 
Electron donating groups 

Sterics to enforce non-planar conformation 

Preorganization 
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kind of information is essential in order to fine tune the stability of such complexes to 

function in materials based on them.  

    

  

 

Figure 2-8 Four different AADD arrays 2-1a-d highlighting the progressive changes 

made to the basic design that may lead to increased stability of the complexes. Initial 

changes are in red and blue indicates changes carried forward through the molecular 

design. 

  Array 2-1b has a methyl group introduced to the thiazine dioxide ring between the 

central acceptor and donor heterocycles. The methyl functional group improves the 

stability compared to the 2-1a by preventing unwanted intramolecular and intermolecular 

hydrogen bonding as explained in the preceding paragraphs. 2-1c has an electron with 

drawing ester functional group introduced at the 5-position of the indole ring. This should 

provide an idea how such groups can influence the dimerization stability. The last AADD 

array in the series has three major changes. The first change is the introduction of nitro 

substituent as a very strong electron withdrawing group. The second change is the 

introduction of a pre-organizing trimethylene tether between the two donor subunits. The 

final change is the addition of two more methyl groups at positions 4 and 5 on the 

terminal pyridine heterocycle thereby improving its hydrogen bond acceptor character. 

The syntheses of the four AADD arrays may be approached using a simple retrosynthetic 
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analysis. 

2.4 Synthesis of Double Helical AADD Arrays 

 

Scheme 2-1 Retrosynthetic pathways leading from the series of AADD arrays. After 

disconnecting the condensed thioethers into acceptor and donor units, they follow two 

different retrosynthetic paths to readily available starting materials.  
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The thiazine dioxide heterocycle can be disconnected on either side of the amine 

group which may be formed by condensation of a 3-sulfonyl-1,5-dione precursor 

(Scheme 2-9). The sulfones are the oxidized forms of thioethers which in turn are 

products from the SN2 reaction of thiols (referred to as the donor components) and 

halides (referred to as the acceptor components). The -bromoketones undergo 

substitution readily and are simple to synthesize. The acceptor bipyridyl derivatives may 

be obtained through the corresponding 6-bromo-2-acetyl or propionyl lutidines by Stille 

coupling with tributyltin pyridines. The thiols of the donor components are generated 

from the corresponding thioacetates which are products from substitution of the 

corresponding halides.34 The halides can be obtained from the acyl indoles by -

bromination in a similar fashion to the acceptor components. The acetyl indoles can be 

synthesized either by acetylating skatole directly (not shown) or constructing them via 

Japp-Klingemann/Fisher-Indole cyclizations starting from diazonium salts of the 

corresponding anilines. 

The two major subunits in the retrosynthetic scheme are the acceptor and donor 

components (Scheme 2-1). Synthesis of the bipyridyl fragments was developed earlier in 

our research group35 and the reported procedures were largely duplicated. The initial 

synthetic sequence of the acceptor component began with the preparation of 2,6-

diiodolutidine. 3,5-Lutidine (Scheme 2-2) was oxidized using an excess of 30% hydrogen 

peroxide in acetic acid.
36

 Due to the hygroscopic nature of the N-oxide product it was 

necessary to ensure that the substrate was dry before carrying on to the next step. 

Purification was carried out using glass vacuum distillation apparatus or Kugelrohr and 

stored in a desiccator for later use. The distillation step can be eliminated by drying over 
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excess magnesium sulphate in chloroform, concentrating the compound under reduced 

pressure for a couple of hours and immediately using it in the dilithiation step. 

 

Scheme 2-2 Synthesis of acceptor components 2-10a-c. Reaction conditions: (a) 1eq. 

H2O2, CH3COOH, reflux 12 h, 87%; (b) 2.4eq. nBuLi, THF, -78 C, 2 h, 2.2 eq. I2, THF, 

-78 C to 21 C, 8 h, 50%; (c) 2.5 eq. PCl3, CHCl3 reflux, 6 h, 99%; (d) 0.75 eq. Zn(CN)2, 

3% Pd(PPh3)4, DMF, Microwave, 3 minutes, 200 C,  27% (2-3), 38% (2-4), 35% (2-5); 

(e) 3 % Pd(PPh3)4, toluene, reflux 26 h, 65-85%; (f) 1.6 eq. Zn(CN)2, 3% Pd(PPh3)4, 

DMF, Microwave, 3 minutes,170 C, 75%; (g) 1.2 eq MeMgBr/EtMgBr, THF, addn at 0 

C, reflux 12 h, 80-90%; (h) 1.2 eq. Br2, Et2O, 36 h, 35-82 %.  
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Oxidation of the 3,5-lutidine nitrogen activates the 2- and 6-positions to undergo 

lithiation and hence the N-oxide was iodinated to give 2-2 as an off-white solid in 45-

50% yield.37 The use of different stoichiometries of iodine in the reaction leads to 

different ratios of products. These include formation of coupled products such as 

bis(iodolutidine) in minute quantities. In order to get the best yields of diiodolutidine N-

oxide, 2.2 equivalents of iodine were employed. Compound 2-2 was deoxygenated using 

phosphorus trichloride in near to quantitative yields. Caution was applied by using ice 

while quenching and working up as the deoxygenation reaction is highly exothermic and 

evolves enormous heat due to the reaction of in situ formed phosphorous oxychloride 

with water.  

 

Figure 2-9 
1H NMR spectrum of the substitution reaction using Zn(CN)2 as cyanide 

reagent, displaying resonances corresponding to the two products 2-4 and 2-5 and the 

starting material 2-3. Reaction conditions: 0.75 eq. Zn(CN)2, 3% Pd(PPh3)4, DMF, 

Microwave, 3 minutes, 200 C,  27% (2-3), 35% (2-4), 38% (2-5). 
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In order to generate the mono halo-nitrile 2-4, various stoichiometries of nitrile 

reagent, zinc cyanide or sodium cyanide (with copper (II) iodide in the presence of Pd [0] 

catalysts) were explored. Zinc cyanide was a better source of the cyanide reagent in terms 

of cleanliness of the reaction, work up and yields of 2-4 compared to sodium cyanide. 

Table 2-1 Cyanide reagents and stoichiometries used and yields observed in the cyano-

dehalogenation reaction of 2-3. Reaction conditions as in Figure 2-6. 

Eq. of Zn(CN)2 Yield %  2-3 : 2-4 : 2-5 Eq. of NaCN Yield %  2-3 : 2-4 : 2-5 

0.50                  46 : 36 : 18 0.50                  83 : 15 : 02 

0.75                  27 : 38 : 35 0.80                  57 : 25 : 18 

1.00                  17 : 33 : 50  1.20                  31 : 36 : 33 

 

No matter what stoichiometries or the method of heating (refluxing or 

microwave), this reaction always resulted in mixtures of mono- and di substituted nitrile 

2-4 and 2-5 and starting material 2-3. As the step requires purification using flash column 

chromatography yielding 38% at the most, it necessitated repeating the substitution 

reaction step several times to attain a sufficient amount of 2-4 to carry forward in the 

reaction. 

Trimethyltin chloride was initially used to synthesize trimethyltin pyridine but was 

replaced with tributyltin chloride to avoid the higher toxicity of the former reagent. 

Though, tributyltin pyridine is well known, 2-tributyltin-4,5-lutidine 2-6b has not been 

reported in the literature. Altering the method followed by Yves et al.
38 provided a route 
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to the synthesis of 2-6b in a moderate yield of 45% for the lithiation of 3,4-lutidine 

followed by addition of tributyl tin halide. The yield is not a surprise considering the two 

steps in a single pot and as the reaction is carried out directly on the lutidine instead of 

the 2-substituted halide as normally practiced in the literature. Solvents and 

stoichiometries of the reagents play an important role in determining the selective 

formation of the product 2-6b. The use of excess solvent and reagent improves the 

selectivity of product formation, as the use of lesser amounts leads to the formation of 

unwanted 3,4-dimethyl-2-(trimethylstannyl)pyridine. These stannyl compounds are easily 

purified by column chromatography using silica and are stable to storage for long 

periods.  

 

Scheme 2-3 Direct incorporation of bromide and tributyltin groups to 4-picoline and 3,4-

lutidine. Reaction conditions: (i) 2 eq. 2-(dimethylamino)ethanol in anhyd. hexanes (15 

mL per 10.5 mmol), 0 C, 4 eq. nBuLi in hexanes -0 C, 0.5 h, 5 eq. tributyltin chloride, 

THF, -78 C, 1 h, 80 %; (ii) (b) 2 eq. 2-(dimethylamino)ethanol, 0 C, 4 eq. nBuLi in 

hexanes (50 mL per 10 mmol), -0 C, 30 minutes, 4 eq. CBr4, THF, -78 C, 1h, 80 %. (i) 

and (ii) are reported. (iii) 2 eq. 2-(dimethylamino)ethanol in anhy. Hexanes (25 mL per 

10.5 mmol), 0 C, 4.5 eq. nBuLi in hexanes -0 C, 0.5 h, 2.6 eq. tributyltin chloride, THF, 

-78 C, 1h, 45 %. 
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At this juncture we explored two ways to synthesize intermediate 2-9. Tributyltin 

derivative 2-6 can either be coupled to 2-3 or to 2-4. Compound 2-7 was synthesized via 

Stille coupling of compound 2-3 directly with the corresponding stannyl pyridines or 

stannyl lutidines (2-6a-b) by refluxing in toluene in the presence of the catalyst 

tetrakis(triphenyl phosphine)palladium. The reaction gave rise to numerous by-products 

and was difficult to purify. Though the later step of converting 2-7 to 2-8 was high 

yielding, this route was unattractive because of these purification problems. Compound 

2-8 was synthesized alternatively by coupling 2-6a to 2-4 using the same Stille conditions 

to give a clean product. The acetyl bipyridyl 2-9a was synthesized by subjecting 2-

cyanobipyridyl derivative 2-8 to reaction with methylmagnesium bromide solution.  

Table-2-2 Trials of the bromination of 2-9a using different reaction conditions. 

Brominating reagent Solvents and conditions NMR spectroscopy % Yield 

1 eq. of Bromine CH3COOH, 23 C, 4 h Decomposition 0 

1 eq. of N-Bromosuccinimide CH3CN, 23 C, 3 h Decomposition 0 

1 eq. of Bromine THF, 23 C, 12 h Decomposition 0 

1 eq. of Bromine Ether, 23 C, 36 h 2-9 + 2-10 35 

1.2 eq. of Bromine and 2 eq. 
of 33% HBr in acetic acid 

CH3COOH, 23 C, 12 h No mixtures, only 
product 

75 

 

Bromination of 2-9a was very difficult and does not go to completion giving 

product 2-10a in only 35% yield. Of all the solvents employed, diethyl ether seems to be 

most advantageous for the reaction. The partial reaction necessitated the repetition of this 
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particular step several times to aquire enough of the product for further steps and so a 

different route to the bromination was sought. Treating the acetyl 2-9a with 1.2 eq. 

bromine and 33% HBr in acetic acid solution greatly improved the yield from 35% to 

75%. The remaining bottleneck of the synthetic scheme, namely monocyanation of 2-3 

prompted us to alter our approach in order to improve yields and cut down on the 

repetition of steps.  

The first alternate route to synthesis of the dipyridyl fragments is outlined in 

Scheme 2-4. The starting nitrile was obtained according to the procedure of Kokotos39
 in 

82 % yield. It was then oxygenated using excess hydrogen peroxide in refluxing acetic 

acid for approximately 16 h, cooling it in ice, then basified and extracted the N-oxide 

product. Treating the N-oxide with phosphorus oxychloride produced 2-4b with 

elimination of oxygen and was subjected to a halogen exchange reaction using 33% 

hydrogen bromide in acetic acid solution to produce 2-4c. Thus one of the bottlenecks of 

the Scheme 2-2 was eliminated. Also it‟s noteworthy that none of the reactions up to this 

point needs to be purified by column chromatography as they are pure enough be carried 

forward to next step. They also can be recrystallized from ethanol if necessary. 

 

Scheme 2-4 Synthesis of -haloacylpyridyl fragments 2-11a-b of the AADD arrays. 

Reaction conditions: a) (i) Excess H2O2/AcOH, reflux, 18 h, 80 %, (ii) Ex. POCl3, reflux 

0.5 h, 75%; (b) 2 eq. 33% HBr, in AcOH, reflux, 78%; (c) 1.25 eq. MeMgBr/EtMgBr, 

THF, 0 C, reflux 18 h, 70-85%; (d) 3 % Pd(PPh3)4, toluene, reflux 18 h, 75-85%. 
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Bromide 2-4c is then reacted with methyl or ethylmagnesium bromide solution 

producing 2-11a or 2-11b in 70-80 % yield. The further bromination is the same as 

described in the previous scheme. The advantage of the present scheme is the direct 

development of mononitrile heterocycle 2-4c which avoids the three step synthesis of 

diiodolutidine and the messy conversion to 2-4. This scheme contains fewer steps and the 

reactions are faster with no or little effort required for purification. Disadvantages are that 

the initial steps require fuming, toxic reagents involving highly exothermic workups. As 

an alternative approach, dibromination of 3,5-lutidine in a single step was carried out by 

modifying the original Dunn et al.
40

 procedure using fuming sulphuric acid. Pugh et al.
41 

brought down the temperature to 160 oC from the originally reported 220 oC and the 

bromine addition was performed over 3-4 h at the same temperature. The reaction 

mixture was maintained over a period of 14-16 h at reflux. The reaction was quenched by 

pouring the reaction mixture into a large beaker (typically a 3 liter beaker for a scale of 

10 grams product) filled half way with ice. The quenching process needs to be handled 

with full protection of eyes and general body parts as the contents are highly fuming and 

acidic. The direct bromination of 3,5-lutidines gave the desired 2,6-dibromo-3,5-lutidine 

in 60 % yield after recrystallization from ethanol as colourless needles.  

 

Scheme 2-5 Synthesis of 2-11a,b from 2,6-dibromo-3,5-lutidine. Reaction condition: a) 

Fuming H2SO4 (20% free SO3), 0 C to 160 C, 1 eq. Br2, reflux 15 h, 60%; b) 1.2 eq. 
tBuLi / Et2O, -78 C, 0.5 h, 1 eq. N,N-dimethylacetamide or  N,N-dimethyl propionamide,  

-78 C, 1.5 h, 80-85%; c) 3 % Pd(PPh3)4, toluene, reflux 18-36 h, 75-85%. 
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The preparation of 2,6-dibromo-3,5-lutidine opened a route to selectively mono 

lithiate the dibromolutidine at one of the ortho positions and add either an acetyl or 

propanoyl moiety thereby obviating the cyanation step that produces corresponding 2-11a 

and 2-11b. Monolithiation was not a possibility with the diiodolutidines as lithiating the 

iodides was very difficult. Though possible in this case, the yields of monolithiated 

lutidines from their iodide counterparts were very poor (5-12%), even when employing a 

stronger base such as tBuLi as the lithiating reagent.42  

The increased overall yields of 2-11a,b and elimination of two steps in the 

reaction scheme is noteworthy. This improvement also shortens the reaction times as the 

acylations are carried to completion within a period of two and half hours compared to 

the cyanation reactions that are followed by 16-18 hour Grignard reactions in the 

previous schemes. Upon synthesizing the coupled products 2-9a-c, they were subjected to 

bromination and carried further in the synthesis.  

The synthetic scheme for the donor component is relatively straight forward and 

involves ultimately inexpensive starting materials such as aniline and its 4-substituted 

derivatives, allowing simple access to 2-acyl-5-functionalized skatoles. Originally 

skatole, a foul malodorous compound (purchased from Alfa Aesar) was directly used as a 

starting material for the unsubstituted (5-H) indole derivatives. Acetylating or attaching a 

propionyl group via electrophilic substitution in the presence of a Lewis acid such as 

AlCl3, yielded the desired ketone product along with other by-products (Scheme 2-6).43 

The crude material was subjected to tedious flash column chromatography that was 

required to isolate the pure compound.  
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Scheme 2-6 Direct acetylation of skatole using AlCl3 as Lewis acid resulting in mixture 

of by-products. Reaction conditions: (a) CH3COCl, AlCl3, 1,2-dichloroethane, 25 °C, 6 h. 

To avoid the nauseating odour of the skatole and purifications, a more economical route 

was adapted using a Japp-Klingemann/Fisher Indole cyclization to obtain the indoles 

starting from anilines (see experimental procedures).  

 

Scheme 2-7 Synthesis of the indole containing fragments of AADD arrays. Reaction 

conditions: a) (i) KOH, EtOH, H2O, 0 C to room temperature, (ii) HCOOH, reflux 2-20 

h, 80-90%; b)  1 eq. PTAP (Phenyltrimethylammonium tribromide), dry THF, 40 C, 1-

12 h, 72-80 %; (c) (i) 1 eq. KSAc, Dry DMF, 4-12 h, 90-95%; (ii) 1 eq. Cysteamine.HCl, 

1.2 eq. NaHCO3, MeCN, 24 h, 77-85%. 

Indole subunits were synthesized by reaction of aryl diazonium salts and β-

ketoesters to form the corresponding hydrazones. Methyl 2-ethylacetoacetate (Scheme 2-

7), a β-ketoester was used as starting material that leads to the formation of 
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corresponding acetyl hydrazone via Japp-Klingemann reaction. The formation of 

hydrazones was aided by buffering the reaction mixture with sodium acetate and by 

stirring the buffered mixture vigorously. Ester hydrazones precipitated in non-buffered 

solutions and required excess stir times to get rid of unwanted salts. The hydrazone 

undergoes the Fisher Indole when refluxed in formic acid to give the desired acetyl 

skatole moieties with or without functional groups at the 5th position of indole.  

 

Scheme 2-8 Synthetic schemes of nitro substituted donor units reflecting poor yields and 

synthetic difficulties obtaining acyclic nitro skatoles compared to the facile formation of 

cyclic nitroindole 2-16. Reaction conditions: (a) KOH, EtOH, H2O, 0 C to r.t., HCOOH, 

reflux 20 h, 10%; (b) 1.2 eq AlCl3, 1 eq. acetyl chloride, 10% and very difficult 

isolations; (c) H2SO4, HNO3, 15%, difficult isolations;  (d) KOH, EtOH, H2O, 0 C to r.t., 

HCOOH, reflux 20 h, 90%.  

The 5-nitro-substituted indole was the most challenging to synthesize and isolate. 

Few trials were attempted to nitrate the skatole units through direct nitration using 

sulphuric acid and nitric acid at zero to subzero temperatures. The method works, but 

poor yields (10-15%) and tedious isolations led us to adopt a seven membered cyclic 
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nitro-skatole 2-16 as a better alternative due to the synthetic ease as well as the 

preorganization that it provide in the final AADD array contributing to the overall 

stability of duplex formation.  

 

Scheme 2-9 Mechanistic details of the diazonium salt of nitroaniline undergoing Japp-

Klingemann reaction followed by Fisher Indole cyclization in acidic medium with an 

overall yield of 90%.44  

Scheme 2-7 requires 2-(hydroxymethylidene)cycloheptanone as the starting 

material which was synthesized by vigorously stirring the cycloheptanone in the presence 
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of strong base such as sodium methoxide and ethyl formate for 18 h. The reaction 

mixture was quenched with 1 M HCl and the product was extracted using ethyl acetate. 

No purification was required and the product was carried forward as is. 

The highly active 2-(hydroxymethylidene)cycloheptanone forms the 

corresponding hydrazone even with a very strong electron with drawing nitro group on 

the aniline in contrary to the acyclic hydrazone formations. The cyclic derivative of the 

indole hydrazone undergoes cyclization in high purity and yields (Scheme 2-8). Japp-

Klingemann/Fischer Indole cyclization proceeds through nucleophilic addition of enolate 

anion to diazonium salt, followed by hydrolysis of the intermediate to give hydrazone. 

Fisher Indole mechanism consists essentially of three separate stages: (a) hydrazone-

enehydrazine equilibrium; (b) formation of a new C-C bond; (c) loss of ammonia and 

cyclization. 

Bromination of the ketoindoles was achieved using phenyltrimethylammonium 

tribromide to give products in 75 %-80 % yield.45 Various other reagents such as, 

bromine, N-bromosuccinimide, (aq.) HBr solution and pyridinium bromide were 

explored, unsuccessfully. Moderate to good yields, short reaction times and simple work 

up procedures are advantages of the reaction with phenyltrimethylammonium tribromide. 

It is necessary to make sure that the intermediate ketoindoles are completely dry as the 

bromination reaction is highly sensitive to stoichiometry and any solvent mass in the 

starting material leads to the formation of dibromide products. The dibromides have very 

similar RF values with their singly brominated analogues thus making the purification 

process difficult using column chromatography. Washing the mixtures with an excess of 

cold methanol dissolves these dibromides to a considerable extent. 
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Figure 2-10 1H NMR of the mixture of mono and dibrominated acetyl skatole before (a) 

and after (b) washing with ice cold methanol shows considerable reduction of the 

dibromide contaminant compared to the mono brominated product. 
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When such a mixture of mono and dibromides is used to synthesize thioacetates, 

only mono thioacetates are formed as dithioacetate formation requires attack of the 

nucleophile at the more sterically congested dibromide. Hence purification does not 

necessarily need to be performed at the bromination step to isolate reasonable yields of 

the further thioacetate intermediates. Whether purified or not the bromides are then 

thioacetylated using potassium thioacetate and hydrolyzed to give the corresponding 

thiols 2-15a-b and 2-18. Various solvents were explored for both these steps. Anhydrous 

ethanol or dry DMF offer the best yields in the thioacetylations and acetonitrile was 

found to be the best solvent for the hydrolysis reactions as there are few or no side 

products formed.   

The thioacetate of 2-17 was synthesized in similar manner by using potassium 

thioacetate in anhydrous DMF and the crude mixture hydrolyzed in the presence of 

cysteaminehydrochloride. The resulting solution was acidified with 10 % HCl if no 

precipitation occurred by the addition of water to the reaction. Acetonitrile as solvent 

medium produced best results with no side products and with no requirement of further 

purification.  

Thiols 2-15 and 2-18 are stable solids and can be shelved for months for later use. 

Any residue of solvent DMF, from the thioacetate step makes precipitation of the thiols 

difficult and in these cases large amounts of water are added and the mixtures are 

vigorously stirred for 12 h to induce precipitate formation.  In addition, as a measure of 

precaution, the aqueous layers are further extracted with dichloromethane, to give 

reasonably high yields (no other purifications were carried out).  
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The synthesis of thioethers 2-19 was performed in anhydrous DCM by cooling to zero 

degrees followed by the slow addition of a solution of bromide 2-10 to a solution of thiol 

2-15 and, after 30 minutes, addition of base. The sequence of addition is important for the 

reaction as addition of base to any one of the components alone did not yield the desired 

product but gave unidentified by-products even under a nitrogen atmosphere. The 

formation of 2-19 is also sensitive to the strength of the base used.  

 

Scheme 2-10 Final steps in the synthetic route to AADD arrays 2-1a-d. Reaction 

conditions: a) 1 eq. 2,6-Lutidine, MeCN, 2-14 h, 80-85%; b) 4eq. Urea hydrogen 

peroxide, 3 eq. TFAA, MeCN, 2 h, to 12 h, 80-95%; c) 6-10 eq. NH4OAc, AcOH, reflux 

18-36 h, 70-90%. 
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Triethylamine and potassium carbonate are the two other typical choices for the 

base in these reactions, but they proved to be incompatible here. A milder base (2,6-

lutidine) was used which was neutralized at the end of reaction using citric acid. One 

equivalent of the base is required but addition of an extra equivalent does not have any 

unwanted side reactions and moreover, the reaction is faster with an excess of lutidine. 

Faster reaction times are observed in DCM and slower reaction times with acetonitrile 

but cleaner products are obtained with the latter solvent. In either solvent, letting the 

reaction run a longer time than required to finish has a detrimental effect on yields and 

purity. Thioethers 2-19b-c were synthesized in similar manner as described for 2-19a. 2-

19b-d were all isolated as mixtures of either enantiomers or diastereomers. 

Thioethers 2-19 were oxidized using UHP/TFAA mixtures in the ratio 4/3 in 

acetonitrile solution. UHP has very poor solubility in acetonitrile but upon addition of 

TFAA becomes soluble. The order of addition to generate the reagent is important, 

particularly in gram scale or larger reactions. After transferring the UHP to the 

acetonitrile solution, TFAA is added drop wise to it while stirring. Once the UHP 

dissolves completely, this reagent solution is added drop wise to the reaction mixture at 

zero degrees or at room temperature based on the starting material quantity. The 

thioethers 2-19 gave crude enantiomeric or diastereomeric sulfone mixtures which were 

isolated using flash column chromatography. These stereoisomeric mixtures were carried 

forward to the next step of synthesis without resolving them as the chiral center(s) are 

lost in the cyclization step. The sulfones 2-20a-d were cyclized using ammonium acetate 

in acidic medium (AcOH) under reflux to produce the final AADD arrays 2-1.  
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2.5 X-ray Analysis of AADD Arrays  

Table 2-3  Crystallographic parameters for 2-1a2-1a and 2-1b2-1b crystals. 

Crystal Parameters 2-1a2-1a 2-1b2-1b 

chemical formula C25H22N4O2S C27H25Cl3N4O2S 

formula weight (g∙mol‐1) 442.53 575.92 

crystal system monoclinic monoclinic 

space group   P21/c  Cc 

a (Å) 10.515(3) 22.305(5) 

b(Å) 20.231(5) 11.774(2) 

c (Å) 20.630(6) 21.760(4) 

β (°) 97.150(3) 106.73(3) 

V (Å3) 4355(2) 5472.8(19) 

T (K) 173(2) 150(2) 

Z 8 8 

λ (Mo Kα) (Å) 0.71073 0.71073 

Dcalc (g∙cm‐3) 1.350 1.398 

μ (mm‐1) 0.179 0.444 

F (000) 1856.0 2384.0 

reflection collected 37669 13865 

unique reflections 7421 8667 

absorption correction multi-scan multi-scan 

refinement on F
2 

F
2 

R (F0) (I > 2σ (I)) 0.0983 0.1307 

Rw(F0
2) (I > 2σ (I)) 0.2371 0.3143 

R (F0) (all data) 0.1073 0.1619 

Rw(F0
2) (all data) 0.2451 0.3410 

GOF on F2
 1.397 1.368 
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Table 2-4  Crystallographic data for 2-1c2-1c and 2-1d2-1d. 

Crystal Parameters 2-1c2-1c 2-1d2-1d 

chemical formula C61H60Cl3N9O8S2 C32H31Cl6N5O4S 

formula weight (g∙mol‐1) 1217.65 794.38 

crystal system monoclinic monoclinic 

space group P21/n C2/c 

a (Å) 12.8276(8) 26.009(5) 

b(Å) 20.8609(13) 12.919(3) 

c (Å) 23.0123(13) 23.029(5) 

β (°) 106.135(2) 113.26(3) 

V (Å3) 5915.4(6) 7109(2) 

T (K) 150(2) 150(2) 

Z 4 8 

λ (Mo Kα) (Å) 0.71073 0.71073 

Dcalc (g∙cm‐3) 1.367 1.485 

μ (mm‐1) 0.289 0.587 

F (000) 2544.0 3264.0 

reflection collected 138863 12073 

unique reflections 12569 6287 

absorption correction multi-scan multi-scan 

refinement on F
2 F

2 

R (F0) (I > 2σ (I)) 0.0644 0.0617 

Rw(F0
2) (I > 2σ (I)) 

0.1442 0.1774 

R (F0) (all data) 0.1318 0.0872 

Rw(F0
2) (all data) 

0.1781 0.2071 

GOF on F2
 

1.023 1.079 
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Upon successful completion of the synthesis of AADD arrays 2-1a-d we 

attempted to crystallize them to observe their behaviour in the solid state. Single crystals 

suitable for X-ray diffraction were grown for all four of the AADD arrays synthesized.  

Of the four sets of crystals analysed, satisfactory solutions were obtained for those 

containing 2-1a, 2-1c and 2-1d. The crystals of 2-1b were tiny and poorly diffracted 

resulting in a poor solution that has numerous issues such as twinning and solvent 

disorder. Nevertheless, the solution is of adequate quality to illustrate a complex topology 

for this array in the solid state that is very similar to that observed for 2-1c and 2-1d.  The 

solid state structures are instructive and shed light on the solution studies that follow.  

 
  All four double helical AADD arrays 2-1a-d were crystallized in a monoclinic 

crystal system but in four different space groups P21/c, Cc, P21/n and C2/c respectively. 

Crystals of 2-1a are merohedral twinned and so further refinement did not lead to a better 

final R value. The crystallization of 2-1c was achieved at approximately -20 C. The 

crystals thus grown are stable to air and can be brought to normal temperatures without 

desolvation or dissolution. With the exception of the uncomplexed 2-1a crystals (yellow 

blocks) all the other crystals were colourless. 

  Crystal 2-1a has two molecules per asymmetric unit which form zigzag one-

dimensional tapes in the lattice through bifurcated hydrogen bonds between the sulfone 

oxygen atoms of one array and the indole proton of an adjacent molecule (O1…N8 = 2.92 

Å, O1…H8 = 2.12 Å, O1…H8-N8 = 158°, O2…N8 = 3.47 Å, O2…H8 = 2.80 Å, O2…H8-

N8 = 139°; O3…N4 = 3.16 Å, O3…H4A = 2.43 Å, O3…H4A-N4 = 139°, O4…N4 = 3.18 

Å, O4…H4A = 2.46 Å, O4…H4A-N4 = 139°).  Aside from this intermolecular interaction, 



87 

 

the two molecules have very similar conformations and do not exhibit the double helical 

dimer character that one might be expected.  Instead, the two molecules both display an 

electrostatically favourable intramolecular contact between the N-H proton of their 

thiazine donor and the nitrogen atom of their lutidine acceptor (N2…H3A = 2.16 Å, 

N2…H3A-N3 = 112°; N6…H7 = 2.23 Å, N6…H7-N7 = 107°) resulting in interplanar 

angles between these two heterocycles of only 22 and 24° (N2-C12-C13-N3 and N7-

C38-C37-N6 respectively).   

Figure 2-11 Stick representation of X-ray crystal structure of array 2-1a with 

intermolecular (dashed orange lines) as well as intramolecular (dashed purple lines) 

hydrogen bonds” indicated.  All C-H hydrogen atoms have been removed for clarity. 

  The formation of this intramolecular hydrogen bonding can be prevented by 

introducing a methyl group on the thiazine dioxide between the acceptor unit and donor 
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unit as demonstrated below in the remaining structure and solution state studies. The 

methyl group may not only be expected to enforce a dihedral twist between the planes of 

the lutidine and thiazine dioxide rings, but also to prevent potential intermolecular 

interactions between the sulfone oxygens and the NH donors of other arrays.  

Figure 2-12 Stick representation of the X-ray crystal structure of array 2-1b with 

intermolecular (dashed orange lines) hydrogen bonds indicated.  All C-H hydrogen atoms 

have been removed for clarity. 
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 The addition of a methyl group (R2) to the other three derivatives 2-1b-d proved 

very helpful in complexation.  In fact, none of these three structures exhibit any 

intramolecular hydrogen bonds analogous to 2-1a.  Instead, all three undergo the 

expected double helical dimer arrangement in the solid state. 

In this case of 2-1b, the array crystallizes in space group Cc with a single 

molecule per asymmetric unit. The molecules are arranged to form four identical double-

helical dimeric complexes, each exhibiting C2 symmetry, in the unit cell (Figure 2-12). 

The two molecules comprising each dimer are, again, positioned to allow four primary 

hydrogen bonds (N1…N65 = 2.84 Å, H1…N65 = 1.96 Å, N1-H1…N65 = 176°; N8…N63 = 

2.93 Å, H8…N63 = 2.14 Å, N8-H8…N63 = 148°; N23…N48 = 2.96 Å, H23…N48 = 2.14 

Å, N23-H23…N48 = 153°; N25…N41 = 2.84 Å, H25…N41 = 2.04 Å, N25-H25…N41 = 

168°). Adjacent heterocyclic rings in each molecule are twisted out of plane from one 

another in order to accommodate the four hydrogen bonds between the two strands (N1-

C6-C7-N8 = 38°; N8-C9-C15-N23 = 60°; N23-C22-C24-N25 = 28°; N41-C46-C47-N48 

= 42°; N48-C49-C55-N63 = 67°; N63-C62-C64-N65 = 24°).  It is notable that the 

dihedral angle between the thiazine and lutidine rings in each strand is significantly larger 

(60 and 67°) than those between the other rings ( 42°).  Short secondary hydrogen bond 

contacts also support the entwined hydrogen bonded geometry (N1…N63 = 3.2 Å, 

H1…N63 = 2.48 Å, N1-H1…N63 = 140°; N8…N65 = 3.10 Å, H8…N65 = 2.72 Å, N8-

H8…N65 = 107°; N23…N41 = 3.12 Å, H23…N41 = 2.60 Å, N23-H23…N41 = 135°; 

N25…N48 = 3.29 Å, H25…N48 = 2.92 Å, N25-H25…N48 = 107°).  

Array 2-1c crystallized in space group P21/c including two molecules per 

asymmetric unit.  Inspection of the lattice reveals a repeating dimer motif in which the 
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two unique molecules intertwine to form a hydrogen bonded double helix with 

approximate C2 symmetry (Figure 2-13).   

Figure 2-13 Stick representation of the X-ray crystal structure of dimer 2-1c2-1c with 

intermolecular hydrogen bonds indicated (dashed orange lines).  All C-H hydrogen atoms 

have been removed for clarity. 

The two molecules assemble in an antiparallel fashion that arranges their 

hydrogen bond donors and acceptors in register to provide four primary hydrogen bonds 

between them (N1B…N4A = 3.00 Å, H1B…N4A = 2.10 Å, N1B-H1B…N4A = 178°; 

N2B…N3A = 3.17 Å, H2B…N3A = 2.35 Å, N2B-H2B…N3A = 165°; N2A…N3B = 3.11 

Å, H2A…N3B = 2.24 Å, N2A-H2A…N3B = 175°; N1A…N4B = 2.92 Å, H1A…N4B = 
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2.06 Å, N1A-H1A…N4B = 172°). Adjacent heterocyclic rings in each molecule are 

twisted out of plane from one another in order to accommodate the four hydrogen bonds 

between the two strands (N1B-C12B-C13B-N2B = 33°; N2B-C17B-C18B-N3B = 60°; 

N3B-C24B-C25B-N4B = 40°; N1A-C12A-C13A-N2A = 37°; N2A-C17A-C18A-N3A = 

56°; N3A-C24A-C25A-N4A = 45°).  It is again notable that the dihedral angle between 

the thiazine and lutidine rings in each strand is significantly larger (60 and 56°) than 

those between the other rings (< 46°).  Whether this is a result of the steric repulsion 

provided by the two methyl substituents on the adjacent thiazine and lutidine rings, 

repulsive electrostatics between the two opposing thiazine donors (H2A…H2B = 2.57 Å) 

and lutidine acceptors (N3A…N3B = 3.11 Å), or both is impossible to distinguish based 

on the X-ray data alone.  Short secondary hydrogen bond contacts also support the 

entwined hydrogen bonded geometry (N1B…N3A = 3.08 Å, H1B…N3A = 2.68 Å, N1B-

H1B…N3A = 107°; N2B…N4A = 3.32 Å, H2B…N4A = 2.75 Å, N2B-H2B…N4A = 127°; 

N2A…N4B = 3.20 Å, H2A…N4B = 2.68 Å, N2A-H2A…N4B = 119°; N1A…N3B = 3.12 

Å, H1A…N3B = 2.71 Å, N1A-H1A…N3B = 111°).46 

The solid state structure of 2-1d is similar to that of 2-1c. In this case, the array 

crystallizes in space group C2/c with a single molecule per asymmetric unit. The 

molecules are arranged to form four identical double-helical dimeric complexes, each 

exhibiting C2 symmetry, in the unit cell (Figure 2-14). The two molecules comprising 

each dimer are, again, positioned to allow four primary hydrogen bonds (N1…N4 = 2.88 

Å, N1…H4 = 2.18 Å, N1…H4-N4 = 172°; N2…N3 = 2.97 Å, N2…H3 = 2.15 Å, N2…H3-

N3 = 175°) and four secondary hydrogen bond contacts (N1…N3 = 3.21 Å, N1…H3 = 

2.75 Å, N1…H3-N3 = 117°; (N2…N4 = 3.09 Å, N2…H4 = 2.69 Å, N2…H4-N4 = 118°) to 
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stabilize the complex geometry giving rise to non-coplanar orientations of the adjacent 

heterocyclic rings (N1-C7-C8-N2 = 42°; N2-C14-C15-N3 = 67°; N3-C18-C24-N4 = 23°) 

in each strand.  

Figure 2-14 Stick representation of the X-ray crystal structure of dimer 2-1d2-1d with 

intermolecular hydrogen bonds indicated (dashed orange lines).  All C-H hydrogen atoms 

have been removed for clarity. 
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The major contrast between these latter two structures is a compression of the 

interplanar angles between the indole and thiazine rings (23° versus 33 and 37°) and a 

concomitant expansion of the interplanar angle between the thiazine and lutidine rings 

(67° versus 56 and 60°) of 2-1d versus 2-1c.  Likely, this is a result of the trimethylene 

tether present in 2-1d that greatly restricts the conformational freedom of the two donor 

heterocycles to a narrow range of interplanar angles. The table below summarizes the 

bond angles and lengths of the three crystal structures that undergo expected double-

helical formation using hydrogen bonding in solid state. 

Table 2-5  Summary of bond distances and angles of 2-1b2-1b, 2-1c2-1c and 2-1d2-1d 

from their X-ray crystal structure data. 

2-1b Bonds Distances 

N-H
…

N (Å) 

Distances 

N-H (Å) 

Distances 

N-H
…

N (Å) 

Angles () 

In-Py N1…N65 2.8413 (99) 0.8793 (69) 1.9638 (72) 175.56 

Th-Lu N8…N63 2.9306 (98) 0.8804 (60) 2.1471 (74) 147.91 

Lu-Th N23…N48 2.9546 (99) 0.8803 (69) 2.1419 (72) 153.25 

Py-In N25…N41 2.8413 (98) 0.8802 (66) 2.0364 (86) 168.31 
2 Hydrogen 

Bonding In-Th N1…N63 3.2066 (94)  2.4818 (76) 140.01 

 N8…N65 3.0977 (99)  2.7215 (89) 107.21 

 N8…N48 3.0196 (80)  N/A N/A 

 N23…N63 3.2580 (86)  3.0133 (11) 88.98 

 N23…N41 3.2855 (99)  2.5998 (84) 135.42 

 N25…N48 3.2850 (98)  2.9240 (72) 106.56 
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Interplanar angles (strand-A)           () Interplanar angles (strand-B)           () 

Py-Lu N1-C6-C7-N8 38.20 PY-LU N41-C46-C47-N48 42.14 

Lu-Th N8-C9-C15-N23 60.02 LU-TH N48-C49-C55-N63 67.11 

Th-In N23-C22-C24-N25 28.34 TH-IN N63-C62-C64-N65 23.65 

2-1c Bonds Distances 

N-H
…

N (Å) 

Distances 

N-H (Å) 

Distances 

N-H
…

N (Å) 

Angles () 

In-Py N1B…N4A 3.0036 (44) 0.9125 (417) 2.0914 (417) 178.21 

Th-Lu N2B…N3A 3.1656 (40) 0.8314 (413) 2.3562 (407) 164.67 

Lu-Th N2A…N3B 3.1123 (40) 0.8806 (29) 2.2346 (27) 174.49 

Py-In N1A…N4B 2.9172 (41) 0.8636 (401) 2.0594 (407) 172.05 
2 Hydrogen 

Bonding In-Th N1B…N3A 3.0824 (38)  2.6784 (349) 107.79 

 N2B…N4A 3.3166 (45)  2.7462 (385) 127.30 

 N2B…N2A 3.2619 (33)  2.9894 (339) 101.75 

 N3A…N3B 3.1134 (42)  N/A N/A 

 N2A…N4B 3.2006 (40)  2.8806 (24) 107.99 

 N1A…N3B 3.1222 (39)  2.6801 (27) 118.96 

Interplanar angles (bent)                  () Interplanar angles (straight)             () 

In-Th N1B-C12B-C13B-N2B 33.13 IN-TH N1A-C12A-C13A-N2A 36.68 

Th-Lu N2B-C17B-C18B-N3B 60.02 TH-LU N2A-C17A-C18A-N3A 55.76 

Lu-Py N3B-C24B-C25B-N4B 40.07 LU-PY N3A-C24A-C25A-N4A 45.88 
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2-1d Bonds Distances 

N-H
…

N (Å) 

Distances 

N-H (Å) 

Distances 

N-H
…

N (Å) 

Angles () 

In-Lu N4…N1 2.8877 (48) 0.7122 (399) 2.1803 (409) 172.37 

Th-Lu N3…N2 2.9698 (45) 0.8206 (426) 2.1518 (430) 174.69 

2 Hydrogen 

Bonding In-Th 

N3…N1 3.2066 (37)  2.7465 (358) 117.28 

 N4…N2 3.0867 (43)  2.6891 (363) 117.85 

 N2…N2 2.9594 (38)  N/A N/A 

 N3…N3 3.2549 (50)  2.9296 (403) 106.16 

Interplanar angles                             ()  

Lu-Lu N1-C7-C8-N2 41.88    

Th-Lu N2-C14-C15-N3 67.41    

Th-In N3-C18-C24-N4 23.1    

Where Py = pyridine; Lu = lutidine; Th = Thiazine dioxide; In = indole deravatives on 

AADD arrays.  

As a final comparisons between the complexes, it is interesting to note that the average of 

the interplanar angles amongst the set of 2-1b2-1b, 2-1c2-1c and 2-1d2-1d crystals was 

calculated to be 43, 46 and 44 respectively which might suggest that the angle 45 is 

the optimal interplanar value for double-helical formation.  

2.6 Solution Characterization of the Dimerization of 2-1a-d 

One of the primary goals in designing and synthesizing the complementary 

complexes is to study the stabilities of the duplexes formed. There are a number of 
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factors that must be considered when measuring complex stabilities such as the 

appropriate method of analysis, solubilities of the arrays, the presence of tautomers, 

temperature and other environmental effects. Some of these factors are discussed in the 

following sections.  

2.6.1 Analysis of Complex Stability 

General methods of analyzing complex stability use titration or dilution and 

observe changes in NMR, UV-Vis, fluorescence spectra or changes in enthalpy (ITC). 

Modern NMR instruments allow titrations to be run at dilutions on the order of 1 x 10-4 M 

allowing the measurement of Ka values up to 106 M-1. In practicality, Ka values up to 1 x 

105 M-1 can be determined with accuracy47 and any value that is above this limit is not 

generally reliable. Typically for data analysis of NMR titrations, the chemical shifts of 

the participating protons are plotted against the concentrations of the host and guest in 

solution and fit to a 1:1 binding model using data analysis software.  Another 

consideration is whether the system of interest is in the fast or slow exchange region 

under the conditions used.  

Calorimetry is another powerful method used to determine complex stability. It 

relies on measuring enthalpy (H) changes on the addition of guest to a host in a specially 

designed apparatus measuring the heat (Q) formed or absorbed (usually an isothermal 

calorimeter-ITC, Figure 2-15). ITC has a wider range of detection and can directly 

measure binding constants in the range of 102 to 109 M-1.48  Larger binding constants of 

109 to 1012 M-1 can be measured using competitive binding techniques. The most 

powerful feature of calorimetric titrations is that not only do they yield the free energy 
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(G) changes via the association constant according to eqn (1) but also the enthalpy and 

thus the entropy (S) change can also be obtained from eqn (2). It also provides 

information regarding the stoichiometry of the complexation. 

G = - RTln(K)       (1) 

G = H - TS      (2) 

 

Figure 2-15 (A) Schematic diagram of ITC; (B) An example of isotherms obtained and 

plotting of the isotherm for determination of G, H and S. 

Another common method for studying binding interactions is UV-Vis 

spectroscopy. A good chromophore, such as a porphyrin, allows host concentrations in 

the sub-micromolar (10-7 M) region, making the determination of association constants as 

high as 109 M-1 in simple 1 : 1 systems possible. Larger binding constants of 109 to 

1012 M-1 can be measured using competitive binding techniques. The concentrations 

chosen must lie within the region where the absorption peak(s) of interest in both the host 
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and its complex are within the limits of the Beer–Lamberts Law (A = bcɛ, with A < 1). 

There must also be some measureable change in the UV-Vis spectrum upon complex 

formation. Fluorescence spectroscopy is also a powerful and highly sensitive tool but 

only those complexes which are fluorescence active can be subjected to these 

experiments.  

In the present study, dilutions studies using NMR spectroscopy are the only 

applicable method of analyzing the stabilities of 2-1a-d. This is due to the sparingly 

soluble nature of the arrays in non-competitive solvents such as CDCl3 and limited 

fluorescence of the arrays. Attempts at dilutions using UV-Vis spectroscopy revealed no 

useful measureable changes, (eg. appearance of a charge transfer band) nor an isosbestic 

point that could be identified.  

  Hence, 1H NMR dilution experiments were used to characterize the dimerizations 

of 2-1a-d. As the process of dimerization is a concentration dependent phenomenon, the 

monomer and dimer concentrations are used to arrive at an equation that would define a 

dimerization constant Kdimer.
49

 

    A + A            A2 

   Kdimer = 
    

    
                                                                     (3) 

                  obs = 
     

    
  dimer +    

    
  monomer                                 (4)  

Where, 

 [A]0 = total concentration of monomer and dimer                        
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obs = observed chemical shift of a donor proton  

[A] = concentration of the monomer      dimer = hydrogen bonded proton chemical shift  

[A]2 = concentration of dimer                 dimer = uncomplexed donor proton chemical shift     

                                            (5)  

From Eq. 3 and 5             =  Kdimer [    -     ]2          (6)  

Rearrangement of Eq. 6 to describe [A2] in terms of [A]o leads to: 

                                 
                √               

         
                                        (7) 

Substitution of the Eq. 7 for      in the first term of Eq. 4 and substitution of Eq. 5 and 7 

for     in the second term of Eq. 4, eliminates all other concentration terms except known 

     leading to the final expression Eq. 8. 

 obs = 
 (

                √               
         

)

    
  dimer                              

                       +   
      (

                √               
         

)

    
  monomer      (8)     

  In our NMR dilution experiments, as the relative concentration of the dimer 

increases, the chemical shift of the donor proton(s) shifts downfield as a result of 

participation in hydrogen bonding. We used Origin data analysis software, to plot the 

dilution curves and calculate the Kdimer values based on the above 1:1 dimerization model 

through non-linear regression.18             
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2.6.2 1
H NMR Studies of 2-1a-d 

The self-associating behaviour of all four sets of AADD arrays was investigated 

using this 1H NMR method.  The concentration-dependent chemical shifts of the thiazine 

and indole NH protons upon dilution of a concentrated solution in CDCl3 at room 

temperature were plotted in three of the four cases 2-1a, b and c. The fourth case (2-1d) 

displays extremely strong binding behaviour and therefore the lower limit possible for the 

binding constant was calculated by a slightly different method which will be discussed in 

detail later when that dimer is considered. 

Figure 2-16 1H NMR spectra displaying the concentration dependant behaviour of 2-1a 

in CDCl3. (i) 7 x 10-5 M at 298 K and (ii) 2 x 10-3 M solution at 298 K. While no shift in 

the NHa peak is noticeable upon comparison of the two concentrations, the NHb peak 

moves down field by approximately 1.5 ppm. 
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Figure 2-17 NMR dilution curve of array 2-1a (following N-Hb) with Kdimer value and 

free energies calculated from fitting of the data to a 1:1 dimerization model.49  Note that 

only one of two potential dimers of 2-1a is depicted. 

The spectral behaviour of 2-1a reveals the presence of unwanted intramolecular 

hydrogen bonding resulting in a low Kdimer value of approximately 90 M-1. The dilution of 

a sample of 2-1a (CDCl3, 298K) exhibits no change in the chemical shift of the thiazine 

proton NHa (δ = 9.80 ppm) with respect to concentration (Figure 2-16).  This indicates 

that in both the self-complexed and unassociated states this proton is intramolecularly 

hydrogen bonded in a manner comparable to that observed in the solid state (Figure 2-

11).  However, the indole NHb proton shifts downfield with increasing concentration 

(Figure 2-17) indicating an intermolecular hydrogen bond interaction as a result of weak 

self-association (Kdimer = 90 M-1
 ΔG = -11.1 kJ mol-1).  Examination of molecular models 

based on the solid-state structure (i.e. intramolecularly hydrogen bonded) does permit the 

possibility of an antiparallel 1:1 self-associated geometry involving hydrogen bonding 

between either the two indole and pyridyl termini of the oligomers or the indole donors 
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and opposing sulfone acceptors (Figure 2-18).  Regardless, the Kdimer is weak and does 

not appear to produce the double helical geometry intended in solution. 

In case of 2-1b, the 1H NMR dilution/concentration studies demonstrated at room 

temperature, that both peaks corresponding to the NH groups of thiazine dioxide and 

indole heterocycles were broad and move downfield by 1 ppm.  

 

Figure 2-18 Stacked plot of 1H NMR dilutions of 2-1b in CDCl3 at concentrations of 6.0 

x 10-3 M, 1.5 x 10-3 M, 7.2 x 10-4 M, 2.8 x 10-4 M, 8.6 x 10-5 M (stacked from bottom to 

top) at room temperature. Both N‐H protons a and b move downfield at high 

concentrations. 

This indicates (Figure 2-18) that both NH groups are in interaction via hydrogen 

bonding which was not observed for 2-1a. The Kdimer for 2-1b was found to be 1400 M-1 

(ΔG = -17.9) which is a better value compared to that of 2-1a but not an expected value.  
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Figure 2-19 Dilution curve of array 2-1b (following N-Hb) in CDCl3 with Kdimer value 

and free energy calculated from fitting of the data to the 1:1 dimerization model. 

The low value for a quadruple bonding in this case can be accounted for on the basis of 

two repulsive secondary interactions between the central A and D components of the 

AADD complex and the poor hydrogen bond donor character of the indole ring. 

Concentration of a solution of 2-1c (CDCl3, 298K) produces large downfield 

shifts of the NH protons (NHa and NHb) in the array (Figure 2-20). Fitting of this data 

(employing N-Hb) to the 1:1 dimerization model yields Kdimer = 5700 M-1 (ΔG = -21.4 kJ 

mol-1) for 2-10c (Figure 2-21). The calculated uncomplexed chemical shifts of NHa (δfree 

= 7.72 ppm) derived from fitting of the dilution data of 2-1b and c are significantly up 

field from that measured for solutions of 2-1a (δ = 9.80 ppm at all concentrations) and 

indicative of this lack of interaction in their free states.  In fact, the δmax (NHa) calculated 

for self-association of both 2-1b and 2-1c from the dilution data (9.90 and 10.16 ppm 
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respectively) are very similar to the value for 2-1a; lending further support for this 

conclusion.   

 

Figure 2-20 Stacked plot of 1H NMR dilutions of 2-1c in CDCl3 at concentrations of 26.0 

x 10-3 M, 4.2 x 10-3 M, 6.5 x 10-4 M, 1.3 x 10-4 M, 9.8 x 10-5 M (stacked from bottom to 

top) at room temperature. Both N‐H protons a and b move downfield at incresing 

concentrations. 

 

Addition of a moderately electron withdrawing substituent (R4 = -COOEt) to the 

indole ring in 2-1c increases dimer stability by a modest amount in comparison to 2-1b 

(ΔΔG = -3.5 kJ mol-1) and with a similar magnitude to that observed in a related system 

we have recently reported.10c 
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Figure 2-21 Dilution curve of array 2-1c (following N-Hb) with Kdimer value and free 

energy calculated from fitting of the data to a 1:1 dimerization model. 

  The structure of 2-1d incorporates three modifications to the AADD design 

intended to further increase the stability of the homodimer.  Firstly, the two donor 

heterocycles of the array were restricted to a narrow range of interplanar angles using a 

trimethylene tether (R3 = -CH2CH2-).  Simple molecular models19 of the free array 

indicate that the dihedral angle HN-C-C-NH is expected to be 20 ± 5°, preorganizing the 

two NH groups in their approximate binding orientations with respect to one another. 

Secondly, a more powerful withdrawing group was placed on the indole ring (R4 = -NO2) 

to improve the hydrogen bond donor character of the NH group. Finally, two methyl 

substituents were placed on the terminal pyridine acceptor (R1 = -CH3) in positions that 

would not sterically perturb the conformation of either the free or self-associated arrays 

but improve the hydrogen bond acceptor character of the heterocycle.  

Indeed, the solution behaviour of 2-1d upon dilution (CDCl3, 298K) is very different in 

comparison to 2-1a-c.  In this case, self-association appears to be complete in all the 
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solutions examined down to a minimum concentration practicably measurable by the 600 

MHz NMR spectrometer employed in our studies (Figure 2-22).20  

 

Figure 2-22 (i) 600 MHz 1H NMR spectrum of 2-1d at 2.5 x 10-3 M in CDCl3; (ii) and 

(iii) Downfield portion of the 1H NMR spectra of 2-1d (in ppm) at 100 µM and 1 µM 

dilutions, respectively.  

In an attempt to detect the signals of 2-1d at 1 µM dilution, the spin-lattice relaxation 

time (T1) was experimentally determined to be 0.65 s.  The 1H NMR spectrum at 1 µM 

dilution was recorded for a period of approximately 15 h 25 m. (acquisition time = 1.708 
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s; relaxation delay time = 0.5 s; excitation pulse width = 8.3 µs with a tip angle of 60 

degrees; number of acquisitions = 25,000). Due to very strong intermolecular hydrogen 

bonding, the NHa and NHb peaks remained sharp and intact at 10.85 and 13.60 ppm, even 

at 1 µM dilution, respectively.  

  Unfortunately, the absence of any variation in the proton chemical shifts in the 

concentration range examined precludes fitting of the data to the model used in 

determining the dimerization constants for 2-1a-c. However, when we (conservatively) 

assume 10% dissociation at 1 µM, a lower limit of Kdimer ≥ 4.5 x 107 M-1 (ΔG = -43.7 kJ 

mol-1) may be calculated for the dimerization of 2-1d under these conditions.17b,50   The 

dimerization constant exhibited by this array is comparable to the most stable examples 

of neutral AADD dimers reported in the literature to date.  Given the limited increases in 

dimer stability expected from the incorporation of the electron withdrawing (R4 = -NO2) 

and donating (R1 = -CH3) groups to the underlying skeleton,10c a large proportion of this 

remarkable increase in stability (ΔΔG ≥ -22.3 kJ mol-1) must originate from 

preorganization by the trimethylene tether.  Moreover, it raises the question of what 

further increases in Kdimer might be realized in this system if either or both of the two 

remaining interplanar degrees of freedom were restrained in a similar manner.  

2.7 Conclusion 

Four new double-helical AADD hydrogen bond arrays (2-1a-d) were designed, 

synthesized and their self-complementary dimerization examined.  Intramolecular 

hydrogen bonding prevented one of the arrays (2-1a) from forming the entwined structure 

expected.  The elimination of this intramolecular interaction through steric interference 

(R2 = -CH3) enabled the remaining three arrays (2-1b-d) to assume the double-helical 
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complex geometry intended in both the solution and the solid state.  The stabilities of 

these dimers, while demonstrably higher than the desmethylated example (2-1a), vary 

greatly depending on their pattern of further substitution.  Installation of an electron 

withdrawing group to the indole ring system increased Kdimer (2-1c) by a relatively small 

margin.  A much greater increase in stability was observed (2-1d) upon introduction of a 

trimethylene tether between the two donor heterocycles that preorganizes them for 

binding.  This modification, and the incorporation of electron withdrawing/donating 

substituents to polarize the hydrogen bond donor/acceptor subunits of the array further, 

produces a complex with an extremely high dimerization constant (kdimer ≥ 4.5 x 107 M-1) 

that parallels the most stable literature examples based on neutral hydrogen bond 

interactions.  These studies demonstrate that this type of binding motif can generate 

complexes with comparable interaction strengths to those observed in rigid coplanar 

arrays but with very different topologies.  The project leaves a promising scope for 

investigating the integration of these building blocks into higher order assemblies such as 

supramolecular polymers and copolymers with desirable material properties. An 

extrapolation of the design into construction of an AAADDD array that may self-

assemble into longer double helical oligomeric complexes will be discussed in detail in 

chapter four.  

2.8 Experimental 

General: All experiments were performed under an atmosphere of nitrogen unless 

otherwise indicated. Chemicals were purchased from Aldrich and Alfa aesar and used as 

received. Solvents (THF, hexanes, dichloromethane, toluene and diethyl ether) were 

obtained from Caledon Laboratories and dried using an Innovative Technology Inc. 
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Controlled Atmospheres Solvent Purification System that utilizes dual alumina columns 

(SPS-400-5), or purchased from Aldrich and used as is. Reactions were monitored by thin 

layer chromatography (TLC) performed on EM 250 Kieselgel 60 F254 silica gel plates. 

Column chromatography was performed with 240-400 mesh silica gel-60. Nuclear 

magnetic resonance spectra were recorded on an INOVA and Mercury 400 MHz 

spectrometer (13C = 100.52 MHz). Proton and 13C{1H} NMR spectra were referenced 

relative to Me4Si using the NMR solvent (1H: CHCl3,  = 7.26 ppm, C3HD5O,  = 2.05 

ppm,; 13C{1H}: CHCl3,  = 77.16 ppm, C3HD5O,  = 29.84, 206.26 ppm). Solvents for 

1H NMR spectroscopy (CHLOROFORM-d, ACETONE-d6, DMSO-D6) were purchased 

from Cambridge Isotope Laboratories. Mass spectra were recorded using an, electron 

ionization Finnigan MAT 8200 mass spectrometer and PE-Sciex API 365. X-ray 

diffraction data were collected on a Bruker Nonius Kappa CCD X-ray diffractometer 

using graphite monochromated Mo-K radiation ( = 0.71073 Å). 

2.8.1 1
H NMR Dilution Procedure 

An accurately measured amount (0.50 mL) of CDCl3 was injected into a NMR tube via 

syringe, and a 1H NMR spectrum was then recorded. A sample (2-1a-c) of known weight 

was dissolved in 2.0 mL CDCl3 to produce a 1x10-3 M solution. Aliquots of the prepared 

solution were added successively to the NMR tube containing the CDCl3 solution (0.5 μL 

× 8, 10.0 μL × 6, 20.0 μL × 5, 50.0 μL × 4), the tube was well shaken each time to mix 

the contents, and the 1H NMR spectrum was recorded after each addition. The chemical 

shifts of the N-H protons from the two hydrogen bond donors in each sample were 

recorded and fit satisfactorily to 1:1 binding model using Origin data analysis software 
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(Microcal, USA).  The average of the two Kdimer values determined from these two 

protons was used as the value for that dilution run.   

2.8.2 General Synthetic Methods 

General Synthesis of Thioacetates: To a solution of potassium thioacetate (20.98 mmol) 

dissolved in 50 mL of anhydrous DMF (degassed for 10 minutes) was added a solution of 

the alkyl halide (20.98 mmol) dissolved in 50 mL of anhydrous DMF (degassed for 10 

minutes) drop wise over a period of 20 minutes. The reaction mixture was stirred for 4 h 

and filtered through celite. The filtrate was poured into 100 mL water and extracted with 

DCM 3x50 mL, wahed with water 2x100 mL and the organic layers were combined, 

dried over MgSO4. The solvent was concentrated under reduced pressure to obtain the 

corresponding thioacetates.  

General Synthesis of Thiols:  To a degassed solution of thioacetate (6.78 mmol) 

dissolved in 50 mL of anhydrous acetonitrile, cysteamine (6.78 mmol) was added under a 

blanket of nitrogen and stirred for 5 minutes. Sodium bicarbonate (6.78 mmol) was added 

to the reaction mixture and stirred for 4 h. The reaction was quenched with 30 mL of 10 

% HCl solution. The reaction mixture was poured in to 100 mL of water and if 

precipitated, the mixture is stirred and the product was filtered and dried under vacuum. 

If the product does not precipitate then it was extracted with 2x50 mL of DCM, washed 

with 2x50 mL of water and dried over MgSO4. The solvent was removed by rotary 

evaporation, giving corresponding thiols.  

General Synthesis of Thioethers: To a solution of thiol (6.47 mmol) in 10 mL of dry 

DCM, a solution of halide (6.47 mmol) in 10 mL of dry DCM was added drop wise over 
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a period of 20 minutes. 2,6-lutidine (6.47) was added via syringe to the reaction mixture 

and stirred for 3 h. The reaction mixture was concentrated and subjected to flash column 

chromatography, affording corresponding pure thioethers. 

General Synthesis of Sulfones: Thioether (2.33 mmol) was dissolved in acetonitrile 

followed by the addition of urea hydrogen peroxide (UHP) (9.32 mmol) and 

trifluoroacetic anhydride, (TFAA) (7.00 mmol) at 0 C. The reaction mixture was brought 

to room temperature and stirred for 2 h, diluted with water. Most of the sulfones were 

precipitated out and the sulfones that were not precipitated were extracted with 2 x 40 mL 

dichloromethane. The organic layers were combined and washed with 2x50 mL of water 

and dried over MgSO4. The solvent was removed by rotary vaporation and the residue 

was washed with methanol, affording almost quantitative yields of purified sulfones.  

G eneral Synthesis of thiazine dioxide derivatives: Sulfone (2.19 mmol) was dissolved 

in 10 mL of acetic acid and 5 to 10 equivalents of ammonium acetate were added. The 

reaction mixture was refluxed overnight or longer based on the completion of reaction 

(monitored by TLC). The reaction mixture is poured on ice to precipitate out the product. 

The precipitate is filtered and washed with 2x50 mL water and air dried to afford 

powdery solids of corresponding thiazine dioxides. 

2.8.3 Synthetic Methods 

Synthesis of 3,5-Dimethylpyridine-1-oxide: Hydrogen peroxide (1.33 mL, 

30 % H2O2, 11.61 mmol) was added drop wise to the solution of 3,5-

Lutidine (1.25 g, 11.61 mmol) dissolved in 10   mL of glacial acetic acid and 

refluxed after 5 h. A second portion of hydrogen peroxide (1.33 mL, 30 % H2O2, 11.61 
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mmol) was added to the solution and refluxing was continued overnight. The pH of the 

solution was adjusted to 8-9 by adding concentrated sodium hydroxide solution and 

extracted with 2x50 mL of dichloromethane (DCM) and washed with 40 mL of water. 

The organic layer is dried over MgSO4 and solvent was removed under reduced pressure, 

afforded a colourless crystalline solid (87%, 1.25 g, 10.13 mmol). 1H NMR (CDCl3, 400 

MHz)  ppm 7.96 (s, 2H), 6.98 (s, 1H), 2.27 (s, 6H). 13C NMR (100MHz, CDCl3) , 

136.6, 136.0, 128.5, 18.2. 

 

Synthesis of 2-2: 3,5-Dimethyl pyridine-1-oxide (5.6 g, 45.53 mmol) was 

dissolved in 30 mL of tetrahydofuran (THF), and cannula transferred into a 

solution of nbutyl lithium (nBuLi) (2.5 M in hexanes, 45.79  mL), cooled to -

78 oC, over a period of half an hour. The solution was stirred for an hour and half, at -78 

oC. Iodine (11.56 g, 90.09 mmol) dissolved in 25 mL of THF was added drop wise to the 

reaction mixture at -78 oC. After an hour of stirring at -78 C, the reaction mixture was 

allowed to warm up to room temperature and stirred overnight. The mixture was washed 

with 30 mL of saturated solution of sodium thiosulfate and the pale yellow solid was 

filtered and washed with a small portion of cold methanol. The filtrate was collected, 

extracted with 2 x 50 mL of DCM and washed with water and dried over MgSO4, solvent 

removed using roto-vaporation gave a dirty light brown solid. The solid was 

recrystallized in cold methanol. The Residue from the first filtration and the solid from 

the recrystallization were identified to be same compound (45%, 7.22 g, 22.31 mmol) by 

NMR analysis. 1H NMR (400 MHz, CDCl3) δ ppm 6.87 (s, 1H), 2.45 (s, 6H). 13C NMR 
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(100 MHz, CDCl3) δ 148.4, 137.5, 132.3, 16.8. EI‐HRMS calcd. for C7H7I2NO (M)+: 

374.8617, found: 374.8630. 

 

Synthesis of 2-3 : To a solution of 2-2 (1.72 g, 4.59 mmol) in 25 mL of 

chloroform, phosphorous trichloride (1.18 mL, 13.77 mmol) dissolved in  

10 mL of chloroform was added drop wise and refluxed overnight. The reaction mixture 

was basified to a pH of 9 and extracted with 2x30 mL of DCM, washed with water and 

dried over MgSO4. The solvent was removed by rotary evaporation afforded pale 

yellowish white crystalline solid. The crude product was further purified by flash column 

chromatography using 3 : 7; EtOAc : Hexane, as eluent system, to give colourless 

crystalline solid (98.75%, 1.63 g, 4.53 mmol). 1H NMR (400 MHz, CDCl3) δ ppm 7.18 

(s, 1H), 2.28 (s, 6H). 13C NMR (100 MHz, CDCl3) δ 138.2, 137.0, 118.9, 24.7. EI‐HRMS 

calcd. for C7H7I2N (M)+: 358.8668, found: 358.8665. 

 

Synthesis of 2-4: To a solution of 2,6-diiodo-3,5-lutidine (1.01 g, 2.82 

mmol), sodium cyanide (0.12 g, 2.54 mmol) and cuprous iodide (0.05 g, 

0.25 mmol, 10%) in 10 mL of dry acetonitrile, 10 % palladium over carbon was added. 

The reaction solution was refluxed overnight. The resulting mixture was then filtered 

through celite and the filtrate was portioned between  mL of distilled water and  mL of 

dichloromethane and extracted with 2x30 mL of dichloromethane. The organic layers 

were combined and washed with 2x40 mL of distilled water, brine and dried over 

MgSO4, concentrated using reduced pressure. Column chromatography using 100% 

DCM as eluent system, gave white needle like crystals (35%, 0.2545 g, 0.9864 mmol). 1H 



114 

 

NMR (400 MHz, CDCl3) δ ppm 7.40 (s, 1H), 2.46 (s, 3H), 2.43 (s, 3H); 13C NMR 

(100MHz, CDCl3)  143.73, 138.40, 138.14, 131.68, 121.83, 115.43, 26.58, 18.10.  EI-

HRMS calcd. for C8H7IN2 [M]+ : 257.9654, found : 257.9652. 

Synthesis of 2-8: Compound 2-4 (0.61 g, 2.37 mmol) was dissolved 

in 20 mL of dry toluene followed by addition of 2-trimethyltin 

pyridine (0.57 g, 2.37 mmol) and tetrakis(triphenylphosphine) 

palladium [0] (0.082 g, 3%), under nitrogen. The reaction mixture was refluxed for a 

period of about 26 h and filtered. After removing the solvent by reduced pressure, flash 

column chromatography is done on the residue, using 1 : 1 ; EtOAc : Hexanes, as eluent 

system, yielded white needle like crystals (85%, 0.42 g, 2.01 mmol). 1H NMR (400 MHz, 

CDCl3) δ ppm 8.67 (d, J=4.88 Hz, 1H), 7.88 (dt, J=8.01 Hz, 1H), 7.84 (td, J=8.01 Hz, 

1H), 7.58 (s, 1H), 7.33 (dd, J=4.88 Hz, 1H), 2.60 (s, 3H), 2.57 (s, 3H); 13C NMR 

(100MHz,)  CDCl3 157.4, 155.5, 148.6, 141.4, 139.0, 137.7, 137.0, 130.9, 124.6, 123,5, 

116.8, 20.8, 18.4. ESI HRMS calcd. for C13H11N3 m/z : 209.0953, found : 209.0951. 

Synthesis of 2-9a: To a solution of methyl magnesium bromide (3.5 

mL, 8.98 mmol) in 50 mL of tetrahydofuran (THF), a solution of 2-8 

(1.87 g, 8.93 mmol) in 50 mL of THF was added drop wise at 0 oC, 

over 15 minutes. The reaction mixture was refluxed overnight followed by neutralization 

with 10% HCl solution and extraction with 2x40 mL of dichloromethane. The organic 

layer was washed with 2x40 mL of water dried over MgSO4. The solvent was removed 

by reduced pressure to yield pale yellow crude product which is subjected to flash 

column chromatography using EtOAc : Hexanes; 2 : 3, as eluent system, afforded white 
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needle like crystals (90%, 1.82 g, 8.04 mmol). 1H NMR (400 MHz, CDCl3) δ ppm 8.67 

(d, J=4.88 Hz,  1H), 7.97 (t, J=8.01, 1H), 7.83 (t, J=8.01, 1H), 7.48 (s, 1H), 7.30 (d, 

J=4.88 Hz, 1H), 2.74 (s, 3H), 2.61 (s, 6H); 13C NMR (100MHz, CDCl3)  202.5, 158.8, 

152.5, 148.5, 148.4, 143.7, 136.7, 136.2, 134.2, 124.4, 122.91, 28.3, 20.5, 20.2. ESI 

HRMS calcd. for C14H14N2O m/z : 226.1106, found : 226.1105. 

 

Synthesis of 2-10a: White crystalline needles of 2-9a (0.68 g, 

3.01 mmol) were dissolved in dry diethyl ether followed by 

addition of 2% AlCl3 under nitrogen. Liquid bromine (0.16 mL, 

3.12 mmol), partially dissolved in dry diethyl ether, was added drop wise to the reaction 

mixture over 15 minutes. The reaction mixture was stirred for 36 h. The mixture was 

washed with sodium bicarbonate solution and extracted with 2x30 mL of 

dichloromethane. The organic layers were combined washed with 2x30 mL of water and 

dried over MgSO4. The solvent is removed by roto-vaporation and flash column 

chromatography was done using EtOAc : DCM; 1: 9, as eluent system. The product was 

obtained in the form of whitish yellow crystals (35%, 0.3213 g, 1.0534 mmol). 1H NMR 

(400 MHz, CDCl3) δ ppm 8.68 (dq, J=4.88 Hz, 1H), 7.94 (dt, J=8.01 Hz, 1H), 7.85 (td, 

J=8.01 Hz, 1H), 7.53 (s, 1H), 7.33 (dd, J=4.88 Hz, 1H), 4.92 (s, 2H), 2.65 (s, 3H), 2.63 

(s, 3H); 13C NMR (100MHz, CDCl3)  193.7, 158.3, 152.8, 148.4, 146.4, 144.0, 137.5, 

136.9, 135.8, 124.4, 123.1, 35.4, 20.7, 20.1. ESI HRMS calcd. for C14H14BrN2O m/z : 

304.0211, found : 304.0213. 
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Synthesis of 2-13a: 1-(3-Methyl-1H-indol-2-yl)-ethanone was 

prepared in accordance with the R. Dakarapu et al.
29 method, in 76 % 

yield. The crude was purified by flash column chromatography using 

EtOAc : Hexanes; 2 : 3, as eluent system affording pale yellow crystalline solid.  

Synthesis of S-2-(3-methyl-1H-indol-2-yl)-2-oxoethyl 

ethanethioate: To a solution of potassium thioacetate (0.6042 g, 

5.3004 mmol) dissolved in 3.0  mL of dry DMF, 2-13a (1.34 g, 5.30 mmol) dissolved in 

3.0 mL of dry DMF was added drop wise and stirred for 4 h. The crude product was 

precipitated out by adding 30 mL of ice cold water to the reaction mixture and filtered. 

Residue was air dried and purified by flash column chromatography, using 100% DCM 

as eluent, affording reddish yellow powdery solid (94%, 1.24 g, 5.00 mmol). 1H NMR 

(400 MHz, CDCl3) δ ppm 9.09 (s, br, 1H), 7.70 (dd, J = 8.01 Hz, 1H), 7.37 (m, 2H), 7.15 

(dd, J = 8.01 Hz, 1H), 4.33 (s, 2H), 2.70 (s, 3H), 2.44 (s, 3H); 13C NMR (100MHz, 

CDCl3)  196.3, 177.2, 138.9, 134.0, 129.6, 127.1, 125.4, 121.5, 120.5, 112.2, 41.1, 24.2, 

7.9. EI HRMS calcd. for C13H13NO2S m/z : 247.0667, found : 247.0669.  

Synthesis of 2,6-Dibromo-3,5-dimethylpyridine: The title compound 

was synthesized in accordance with the procedure of Dunn et al.40 and 

Pugh  et al.41 in 60% yield, using bromine and fuming sulphuric acid refluxing at 160 °C. 

Synthesis of 2-11a: To a stirred solution of 2,6-Dibromo-3,5-

dimethylpyridine (1.05 g, 3.96 mmol) in diethylether (25 mL) at -78 °C 

was added drop wise a 1.7 M solution of tBuLi (2.7 mL, 4.75 mmol) in 

n-pentane over 10 min. After 30 minutes stirring at -78 °C, N,N-dimethylacetamide (0.42 
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mL, 3.95 mmol) was added and stirring maintained further 1.5 h The resulting mixture 

was allowed to warm to room temperature and treated with water (5 mL). The formed 

bilayers were separated, and the organic phase was washed with water (2 X 10 mL). The 

aqueous layer was extracted with Et2O (3 X 10 mL). The combined organic layers were 

dried over MgSO4. Removal of the solvent under reduced pressure gave yellow oil that 

was further purified by chromatography using 0.5 : 9.5; EtOAc : Hexanes as eluent 

system affording white crystalline solid (80 %, 0.7672 g, 3.17 mmol). 1H NMR (400 

MHz, CDCl3) δ ppm 7.38 (s, 1H), 2.65 (s, 3H), 2.50 (s, 3H), 2.38 (s, 3H); 13C NMR 

(100MHz, CDCl3)  200.7, 149.5, 142.8, 140.0, 138.5, 134.0, 27.9, 21.8, 19.5. ESI 

HRMS calcd. for C9H10BrNO m/z : 226.9945, found : 226.9939. 

Synthesis of 2-11b: The title compound 2-11b is synthesized in the 

similar fashion as of 2-11a, except that N,N-dimethylpropamide is 

used in the place of N,N-dimethylacetamide, with 85% yield. 1H 

NMR (400 MHz, CDCl3) δ ppm 7.39 (s, 1H), 3.17 (q, J=7.23 Hz, 2H), 2.50 (s, 3H), 2.39 

(s, 3H), 1.15(t, J=7.23 Hz, 3H); 13C NMR (100MHz, CDCl3)  203.3, 149.6, 142.7, 

141.1, 138.2, 133.8, 32.9, 212.8, 19.4, 7.9. ESI HRMS calcd. for C10H12BrNO m/z : 

241.0102, found : 241.0106.  

Synthesis of 2-6a: Prepared according to the literature procedure of 

Shin et al.
38a 

 in alomost quantitative yield. The crude is passed through 

nuetral alumina loaded with 1: 24; EtOAc : Hexanes as eluent system to give pale 

yellowish oil in 96% yield. 
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Synthesis of 2-6b: The synthesis of the 2-6b was carried through 

extrapolation  and modification of the synthetic methods followed by 

Y. Fort et al.
38b of litiations of lutidines. A solution of 2-

(dimethylamino)ethanol (1.06 mL, 10.5 mmol) in dry hexanes (25 mL) was treated with 

nBuLi (8.5 mL, 22.1 mmol) drop wise at 0 oC. After the mixture was stirred for 15 

minutes in ice bath, a solution of 3,4-lutidine (0.6 mL, 5.3 mmol) in 5 mL of hexanes was 

added drop wise. After 1 h at 0 oC, the orange solution was cooled to -78 oC and treated 

with a solution of tributyltin chloride (3.7 mL, 13.64 mmol) in THF (12.5 mL). After 1 h 

at -78 oC, the reaction mixture was warmed to room temperature. Hydrolysis was carried 

at 0 oC with water (20 mL). The organic layer was then extracted with diethyl ether (2x15 

mL) and dried over MgSO4, and the solvents were evaporated under vacuum. The crude 

product was then purified by column chromatography with hexanes:EtOAc, 4:1 mixtures 

as eluents giving pure product as yellow liquid in 45% (0.96 g, 24.2 mmol).  1H NMR 

(400 MHz, CDCl3) δ ppm 8.46 (s, 1H), 7.14 (s, 1H), 2.22 (s, 3H), 2.20 (s, 3H), 1.60-144 

(m, 6H), 1.38-1.25 (m, 8H) 1.11-1.07 (m, 4H) 0.88 (t, 9H); 13C NMR (100MHz, CDCl3) 

 169.7, 151.0, 142.8, 133.4, 130.5, 29.3, 29.1, 27.8, 27.3, 26.8, 18.9, 17.5, 16.3, 13.7, 

9.7, 8.7. ESI HRMS calcd. for C19H35NSn m/z : 397.1791, found : 397.1794. 

Synthesis of 2-9a: White crystalline needles of 2-11a (0.64 g, 2.81 

mmol) were dissolved in 30 mL of dry toluene followed by addition 

of tributyltin pyridine (1.03 g, 2.81 mmol) and tetrakis triphenylphosphine palladium [0] 

(0.097 g, 3%), under nitrogen. The reaction mixture was refluxed for a period of about 18 

h and filtered. After removing the solvent by reduced pressure, flash column 

chromatography was done on the residue, using 1 : 1 ; EtOAc : Hexanes, as eluent 
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system, yielded white needle like crystals (85%, 0.57 g, 2.38 mmol). The data matches 

with the set of data reported for the same compound but synthesized using a different 

route. 1H NMR (400 MHz, CDCl3) δ ppm 8.67 (dq, J=4.88 Hz, 1H), 7.97 (dt, J=8.01, 

1H), 7.83 (td, J=8.01, 1H), 7.48 (s, 1H), 7.30 (dd, J=4.88 Hz, 1H), 2.74 (s, 3H), 2.61 (s, 

6H); 13C NMR (100MHz, CDCl3)  202.5, 158.8, 152.5, 148.5, 148.4, 143.7, 136.7, 

136.2, 134.2, 124.4, 122.91, 28.3, 20.5, 20.2. ESI HRMS calcd. for C14H14N2O m/z : 

226.1106, found : 226.1105. 

Synthesis of 2-9b: The propanone 2-9b is prepared in 80 % 

yield via the above mentioned procedure of 2-9a. 1H NMR (400 

MHz, CDCl3) δ ppm 8.67 (d, J=4.88 Hz, 1H), 7.97 (d, J=7.81 

Hz, 1H), 7.83 (t, J=7.81 Hz, 1H), 7.48 (s, 1H), 7.30 (dd, J=4.88 Hz, 1H), 3.27 (q, J=7.42 

Hz, 2H), 2.61 (s, 3H), 1.18 (t, J=7.42 Hz, 3H); 13C NMR (100MHz, CDCl3)  204.9, 

158.7, 152.3, 148.9, 148.3, 143.6, 136.6, 135.8, 133.9, 124.3, 122.8, 33.0, 20.4, 20.0, 8.3. 

ESI HRMS calcd. for C15H16N2O m/z : 240.1263, found : 240.1261. 

Synthesis of 2-9c: The title compound is synthesized 

according to the procedure of 2-9b and whitish yellow crude 

product is subjected to flash column chromatography using 

EtOAc : dichloromethane; 1 : 4, as eluent system, affording white needle like crystals in 

75% yield. 1H NMR (400 MHz, CDCl3) δ ppm 8.36 (s, 1H), 7.65 (s, 1H), 7.43 (s, 1H), 

3.25 (q, J=7.42 Hz, 2H), 2.56 (s, 3H), 2.54 (s, 3H), 2.34 (s, 3H), 2.28 (s, 3H) 1.16 (t, 

J=7.42 Hz, 3H); 13C NMR (100MHz, CDCl3)  204.8, 156.3, 152.6, 148.7, 148.5, 146.0, 
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143.1, 135.4, 133.2, 131.4, 124.8, 32.8, 20.1, 19.7, 19.4, 16.2, 8.0. ESI HRMS calcd. for 

C17H20N2O m/z : 268.1576, found : 268.1572. 

Synthesis of 2-10a: White crystalline needles of 2-9a (0.68 g, 

3.01 mmol) were dissolved in 5 mL of acetic acid followed by 

addition of 2% AlCl3 under nitrogen. HBr solution, 33 wt% in 

acetic acid (0.77 mL, 3.13 mmol) was added drop wise to the reaction mixture over 15 

minutes. The reaction mixture was stirred for 18 h and was washed with sodium 

bicarbonate solution followed by extraction with 2x30 mL of dichloromethane. The 

organic layers were combined washed with 2x30 mL of water and dried over MgSO4. The 

solvent is removed by roto-vaporation and subjected to flash column chromatography 

using EtOAc : DCM; 1: 9, as eluent system. The product was obtained in the form of 

whitish yellow crystals (75 %, 0.64 g, 2.11 mmol). The data matches with the set of data 

reported for the same compound but synthesized using a different route. 1H NMR (400 

MHz, CDCl3) δ ppm 8.68 (dq, J=4.88 Hz, 1H), 7.94 (dt, J=8.01 Hz, 1H), 7.85 (td, J=8.01 

Hz, 1H), 7.53 (s, 1H), 7.33 (dd, J=4.88 Hz, 1H), 4.92 (s, 2H), 2.65 (s, 3H), 2.63 (s, 3H); 

13C NMR (100MHz, CDCl3)  193.7, 158.3, 152.8, 148.4, 146.4, 144.0, 137.5, 136.9, 

135.8, 124.4, 123.1, 35.4, 20.7, 20.1. ESI HRMS calcd. for C14H14BrN2O m/z : 304.0211, 

found : 304.0213. 

Synthesis of 2-10b: The bromide 2-10b is synthesized 

according to the procedure for synthesis of 5a except for the 

reagent and solvent is replaced by bromine and dry THF, respectively and the reaction 

was carried under nitrogen. Flash column chromatography was done on crude using 

EtOAc : DCM; 1: 9, as eluent system. to give the product in 82%. 1H NMR (400 MHz, 



121 

 

CDCl3) δ ppm 8.68 (d, J=4.88 Hz, 1H), 7.97 (dt, J=7.81  J=1.17, Hz, 1H), 7.85 (td, 

J=7.81 J=1.95, Hz, 1H), 7.54 (s, 1H), 7.33 (d, J=4.88 Hz, 1H), 6.15 (q, J=7.03 Hz, 1H), 

2.63 (s, 3H), 1.88 (d, J=7.03 Hz, 3H); 13C NMR (100MHz, CDCl3)  195.6, 158.2, 152.3, 

148.1, 146.3, 143.5, 136.7, 136.6, 135.5, 124.3, 122.8, 43.5, 20.3, 19.7, 19.5. ESI HRMS 

calcd. for C15H15BrN2O m/z : 318.0367, found : 318.0364. 

Synthesis of 2-10c: The bromide 2-10c is synthesized under 

same conditions of 2-10b and flash column chromatography 

was done using EtOAc : hexanes; 1: 4, as eluent system. The 

product was obtained in the form of whitish yellow crystals in 74% yield. 1H NMR (400 

MHz, CDCl3) δ ppm 8.38 (s, 1H), 7.67 (s, 1H), 7.50 (s, 1H), 6.15 (q, J=6.64 Hz, 1H), 

2.59 (s, 3H), 2.57 (s, 3H), 2.37 (s, 3H), 2.30 (s, 3H), 1.87 (d, J=6.64 Hz, 3H); 13C NMR 

(100MHz, CHLOROFORM-d)  195.7, 160.0, 152.9, 148.5, 146.2, 143.3, 136.5, 135.2, 

131.6, 125.0, 43.8, 20.2, 19.8, 19.5, 16.3. ESI HRMS calcd. for C17H19BrN2O m/z : 

346.0681, found : 346.0669. 

Synthesis of 2-12a-c: The compounds 6a-c are synthesized according to standard 

procedure of diazonium salts preparations as described by the Hillier M. C. et al. in J. 

Org. Chem. 70 (21) 2005,8385-8394 and then subjected to Japp-Klingemann reaction to 

produce the corresponding hydrazones which were carried forward to Fisher Indole 

Cyclization process to obtain the corrsponding indoles. No purifications required in any 

of the steps involved. If desired, recrystallizations can be carried out in cold ethanol to 

yeild pure crystalline products. 
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Synthesis of 2-13a: The hydrazone obtained by the Japp-Klingemann 

reaction of 2-12a and methyl 2-ethyl-3-oxobutanoate was refluxed in 

formic acid yielding fisher indole product 2-13a in 85% and the nmr 

data matched with the literature dataS6. 

Synthesis of 2-13b: Compound 2-13b was prepared in similar 

manner as of 32a by using the corresponding hydrazone in 88% 

yield. M.P. 198.2-200.6 oC. 1H NMR (400 MHz, DMSO-d6, 298 

K)  (ppm) = 11.81(s, 1H), 8.37-8.34 (m, 1H), 7.87-7.84 (m, 1H), 7.49-7.45 (m, 1H), 

4.31 (q, J  = 7.0 Hz, 2H), 2.59 (s, 3H), 2.58 (s, 3H), 1.34 (t, J = 7.0 Hz, 3H); 13C NMR 

(100 MHz, DMSO-d6, 298 K)  (ppm) = 190.7, 166.3, 138.5, 133.6, 127.5, 125.7, 123.6, 

121.2, 119.0, 112.4, 60.3, 29.1, 14.3, 10.4, EI HRMS m/z calculated for C14H15NO3 : 

245.1052, found 245.1056. 

 Synthesis of 2-16: The title compound was synthesized by 

refluxing the cyclic hydrazone, 2-(2-(4-

nitrophenyl)hydrazono)cycloheptanone (2.00 g, 7.65 mmol) in 25 

mL of formic acid for about 20 h and quenching the reaction by adding water to the 

reaction mixture. The contents were then allowed to stir for about 20 minutes and then 

filtered off to give the yellowish crude product (1.69 g, 6.92 mmol, 90%) and the crude is 

carried forward without any purifications. M.P. 268.8-271.2 oC. 1H NMR (400 MHz, 

CDCl3, 298 K) δ (ppm) = 9.48 (s, br, lH,), 8.67 (d, J = 1.9 Hz, 1H), 8.23 (d, J = 9.4 Hz, 

1H),  7.44 (d, J = 9.4 Hz, 1H), 3.26 (t, J = 5.8 Hz, 2H), 2.90 (t, J = 5.8 Hz, 2H), 2.20-2.10 

(m, 2H), 2.09-2.00 (m, 2H). 13C NMR (100MHz, CDCl3, 298 K) δ (ppm) = 194.9, 141.9, 
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139.0, 135.0, 127.4, 126.3, 121.6, 119.0, 112.1, 42.9, 26.4, 25.7, 22.5. HRMS m/z 

calculated for C13H12N2O3 : 244.0848, found 244.0838. 

Synthesis of 2-14a: 2-Bromo-1-(3-methyl-1H-indol-2-yl)-ethanone 

was made in accordance with the A.N. Kost et al.
 45 method in 72 % 

yield. 

Synthesis of 2-14b: The title compound was synthesized by 

following the same method as described for 2-14a and 

obtained the product in 78% yield as light yellowish green 

solid. M.P. 184.5-186.0 oC. 1H NMR (400 MHz, DMSO-d6, 298 K)  (ppm) = 11.96 (s, 

1H), 8.39-8.37 (m, 1H), 7.91-7.88 (m, 1H), 7.52-7.48 (m, 1H), 4.80 (s, 2H) 4.31 (q, J = 

7.0 Hz, 2H), 2.63 (s, 3H), 1.34 (t, J = 7.0 Hz, 3H); 13C NMR (100 MHz, DMSO-d6, 298 

K)  (ppm) = 190.7, 166.3, 138.5, 133.6, 127.5, 125.7, 123.6, 121.2, 119.0, 112.4, 60.3, 

29.1, 14.3, 10.4; EI-HRMS (m/z) calculated for C14H14BrNO3 : 323.0157, found : 

323.0165. 

Synthesis of 2-17: The bromide was made in accordance with 

the A.N. Kost et al.
45 method in 80 % yield. M.P. 272.5-275.2 

oC. 1H NMR (400 MHz, DMSO-d6, 298 K) δ (ppm) = 12.00 (s, 

br, lH,), 9.15 (d, J = 2.3 Hz, 1H), 8.64 (dd, J = 8.9 Hz, J = 2.3 Hz, 1H), 8.10 (d, J = 8.9 

Hz, 1H), 5.64-5.62 (m, 1H), 3.98-3.90 (m, 1H), 3.75-3.66 (m, 1H), 3.11-3.03 (m, 1H), 

2.96-2.85 (m, 2H), 2.72-2.61 (m, 1H). 13C NMR (100MHz, DMSO-d6, 298 K) δ (ppm) = 

187.5, 141.0, 140.0, 132.8, 126.1, 125.8, 120.8, 119.1, 113.0, 56.3, 31.7, 24.5, 22.8. EI 

HRMS m/z calculated for C13H11BrN2O3 : 321.9953, found : 321.9958. 
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Synthesis of 2-15a: To a solution of potassium thioacetate (2.39 

g, 20.98 mmol) dissolved in 15 mL of anhydrous DMF was added 

a solution of the bromide 2-14a (5.28 g, 20.98 mmol) dissolved in 

25 mL of anhydrous DMF drop wise over a period of 5 minutes. The reaction mixture 

was stirred for 4 h and quenched with 50 mL of water. The mixture was extracted with 

3x15 mL of DCM and washed with 3 x 25 mL of water. The organic layers were 

combined and concentrated by rotary evaporation, to obtain the corresponding thioacetate 

(4.61 g, 18.74 mmol, 90%). The crude thioacetate was dissolved in 75 mL of dry 

acetonitrile and an equivalent of cysteamine hydrochloride was added to the solution 

followed by addition of an equivalent of sodium bicarbonate. The reaction mixture was 

stirred for 8-10 h and the reaction was quenched by 10% hydrochloride solution followed 

by the addition of 100 mL of water. Then, 3 x 40 mL of DCM was used to extract the 

organic layers and washed with 3 x 50 mL of water before the organic layers were pooled 

and dried over MgSO4. Reduction of solvent was carried out under reduced pressure to 

yield the title compound 2-15a (3.32 g, 16.20 mmol, 85% or 77% overall yield) as a pale 

yellow solid. M.P. 180.6-182.2 oC. 1H NMR (400 MHz, CDCl3, 298 K) δ (ppm) = 8.94 (s, 

br, 1H), 7.70 (d, J = 8.2 Hz, 1H), 7.39-7.36 (m, 2H), 7.19-7.13 (m, 1H), 3.92 (d, J = 7.5 

Hz, 2H), 2.66 (s, 3H), 2.17 (t, J = 7.5 Hz, 1H); 13C NMR (100MHz, CDCl3 with few 

drops of DMSO-d6, 298 K) δ (ppm) = 187.5, 136.7, 130.2, 128.0, 125.9, 120.6, 119.5, 

119.2, 112.1, 32.3, 10.7. EI HRMS m/z calculated for C11H11NOS: 205.0561, found : 

205.0565. 

Synthesis of 2-15b: The title compound was synthesized in 

a similar manner as described for compound 2-15a in an 
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overall yileld of 80 %. M.P. 201.2-204.0 oC. 1H NMR (400 MHz, CDCl3, 298 K) δ (ppm) 

= 9.14 (s, br, 1H), 8.51-8.49 (m, 1H), 8.04 (dd, J = 8.6 Hz, J = 1.6 Hz, 1H), 7.40-7.38 (m, 

1H), 4.41 (q, J = 7.0 Hz, 2H), 3.92 (d, J = 6.6 Hz, 2H), 2.70 (s, 3H), 2.16 (t, J = 6.6 Hz, 

1H), 1.43 (t, J = 7.0 Hz, 3H); 13C NMR (100MHz, CDCl3, 298 K) δ (ppm) = 187.6, 167.1, 

138.7, 131.8, 128.4, 127.7, 124.6, 122.9, 120.6, 111.7, 60.9, 32.8, 14.4, 11.2. ESI HRMS 

m/z calculated for C14H15NO3S : 277.0773, found : 277.0785. 

Synthesis of 2-18: To a solution of Potassium thioacetate 

(0.97 g, 8.51 mmol) in 10 mL dry DMF, was added a 

solution of bromide (2.75 g, 8.51 mmol) in 15 mL dry DMF, 

drop wise over a period of 15 min. and stirred at room temperature for 16 h The reaction 

mixture was poured in to 50 mL water and stirred for 20 minutes before filtering the 

thioacetate as yellow solid. To the solution of thioacetate (2.5 g, 7.86 mmol) in 100 mL 

of dry acetonitrile, was added cysteamine hydrogen chloride (0.89 g, 7.86 mmol) 

followed by the addition of sodium bicarbonate (0.66 g, 7.86 mmol). The mixture was 

stirred for 28 h and then treated with 30 mL of 10% HCl solution. The resultant mixture 

was stirred for 15 minutes and filtered off to collect the yellowish green thiol as solid 

(1.99 g, 7.23 mmol, 85%). M.P. 210.5-212.2 oC. 1H NMR (400 MHz, DMSO-d6, 298 K) δ 

(ppm) = 12.22 (s, br, lH,), 8.72 (d, J = 2.0 Hz, 1H), 8.13 (dd, J = 8.9 Hz, J = 2.0 Hz, 1H),  

7.53 (d, J = 8.9 Hz, 1H), 4.38-4.32 (m, 1H), 3.36-3.25 (m, 1H), 3.13-3.00 (m, 1H), 2.50-

2.43 (m, 2H), 2.10-1.95 (m, 2H). 13C NMR (100MHz, DMSO-d6, 298 K) δ (ppm) = 

191.4, 140.9, 139.7, 133.9, 126.1, 125.5, 120.5, 118.8, 113.0, 47.6, 31.7, 24.2, 22.9. EI 

HRMS m/z calculated for C13H12N2O3S : 276.0569, found : 276.0558. 
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 Synthesis of 2-19a: To a solution of 2-15a (1.33 

g, 6.47 mmol) in 10 mL of dry DCM, a solution 

of 2-10a (1.97 g, 6.47 mmol) in 10 mL of dry 

DCM was added drop wise over a period of 10 

minutes. 2,6-lutidine (0.75 mL, 6.47 mmol) was added via syringe to the reaction mixture 

and stirred for 3 h. The reaction mixture was quenched using citric acid solution and re-

extracted with 15 mL of DCM. The organic layers are combined and dried over MgSO4 

and concentrated under reduced pressure. Thus obtained crude is subjected to flash 

column chromatography (1:4, EtOAc:DCM) affording the pure thioether, 2-19a as a 

yellow solid (2.22 g, 5.18 mmol, 80 %). M.P. 185.0-188.2 oC. 1H NMR (400 MHz, 

CDCl3, 298 K) δ (ppm) = 9.39 (s, 1H), 8.63 (dq, J = 4.9 Hz, J = 0.7 Hz, 1H), 7.90 (dt,  J = 

8.0 Hz, J = 0.7 Hz, 1H), 7.74-7.78 (m, 1H), 7.66 (d, J = 8.0 Hz, 1H), 7.49 (s, 1H), 7.35-

7.30 (m, 2H), 7.24 (dd, J = 4.9 Hz, 1H), 7.13 (dd, J = 8.0 Hz, 1H), 4.28 (s, 2H), 3.95 (s, 

2H), 2.65 (s, 3H), 2.60 (s, 3H), 2.59 (s, 3H). 13C NMR (100MHz, CDCl3, 298 K) δ (ppm) 

= 197.6, 187.5, 158.3, 152.6, 148.4, 147.3, 144.0, 137.0, 136.8, 136.7, 135.7, 131.3, 

129.0, 126.9, 124.45, 123.0, 121.5, 120.4, 120.1, 112.2, 40.0, 38.0, 20.6, 20.1, 11.3. EI 

HRMS m/z calculated for C25H23N3O2S : 429.1511, found : 429.1509. 

 

Synthesis of 2-19b: The title compound 2-19b 

was synthesized in the same manner as described 

for 2-19a in 80 % yield. M.P. 188.8-190.4 oC. 1H 

NMR (400 MHz, CDCl3, 298 K) δ (ppm) = 9.45 (s, br, 1H), 8.58 (dq, J = 4.7 Hz, J = 0.8 

Hz, 1H), 7.85 (dt, J =  7.8 Hz, J = 1.2 Hz, 1H), 7.68 (td, J = 7.8 Hz, J = 2.0 Hz, 1H), 7.60 
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(d,  J = 8.2 Hz, 1H), 7.42 (s, 1H), 7.29-7.27 (m, 2H), 7.18-7.15 (m, 1H), 7.10-7.08 (m, 

1H), 5.31 (q, J = 7.4 Hz, 1H), 3.87 (dd, J = 32.0 Hz, J = 15.6 Hz, 2H), 2.58 (s, 3H), 2.51 

(s, 3H), 2.45 (s, 3H), 1.56 (d, J = 7.4 Hz, 3H); 13C NMR (100MHz, CDCl3, 298 K) δ 

(ppm) = 198.4, 187.3, 158.0, 152.1, 148.1, 147.6, 143.4, 136.5, 136.4, 136.0, 135.4, 

131.0, 128.6, 126.4, 124.1, 122.7, 121.1, 120.0, 119.5, 111.8, 41.3, 39.1, 20.1, 19.7, 16.7, 

10.9. EI HRMS m/z calculated for C26H25N3O2S : 443.1667, found : 443.1658. 

Synthesis of 2-19c: The title compound 2-

19c was synthesized in the same manner as 

described for 2-19a in 82% yield. M.P. 

175.2-177.8 oC. 1H NMR (400 MHz, CDCl3, 298 K) δ (ppm) = 9.55 (s, br,1H), 8.62 (d, J 

= 4.7 Hz, 1H), 8.42 (s, 1H), 8.00 (d, J = 8.2 Hz, 1H), 7.84 (d, J = 7.8 Hz, 1H), 7.74 (t, J = 

7.8 Hz, 1H), 7.44 (s, 1H), 7.30 (d, J = 8.2 Hz, 1H), 7.22 (t, J = 6.6 Hz, 1H), 5.32 (q, J = 

7.0 Hz, 1H), 4.41 (q, J = 7.0 Hz, 2H), 3.89 (dd, J = 39.5 Hz, J = 15.2 Hz, 2H), 2.59 (s, 

3H), 2.50 (s, 6H), 1.57 (d, J=7.0 Hz, 3H), 1.43 (t, J=7.0 Hz, 3H); 13C NMR (100MHz, 

CDCl3, 298 K) δ (ppm) = 198.9, 187.6, 167.4, 158.4, 152.6, 148.6, 148.0, 143.8, 138.8, 

136.8, 136.4, 135.9, 132.5, 128.6, 127.6, 124.9, 124.5, 123.2, 122.9, 121.1, 111.8, 61.2, 

41.7, 39.6, 20.4, 20.4, 20.1, 16.6, 14.8, 11.3. EI HRMS m/z calculated for C29H29N3O4S : 

515.1879, found : 515.1886.  

Synthesis of 2-19d: The title compound 2-

19d was synthesized in the same manner as 

described for 2-19a except that acetonitrile 

was used as solvent giving 85% product yield. M.P. 205.8-207.5 oC. 1H NMR (400 MHz, 

CDCl3, 298 K) δ (ppm) = 9.62 (s, br,1H), 8.58 (s, 1H), 8.32 (s, 1H), 7.72 (d, J = 8.6 Hz, 
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1H), 7.48 (s, 1H), 7.40 (s, 1H), 3.84 (q, J = 7.0 Hz, 1H), 3.22-3.16 (m, 1H), 2.88-2.67 (m, 

2H), 2.64 (s, 3H), 2.54 (s, 3H), 2.23 (s, 3H), 2.17 (s, 3H), 2.19-2.07 (m, 2H), 1.93-1.87 

(m, 2H), 1.51 (d, J = 7.0 Hz, 3H); 13C NMR (100MHz, CDCl3, 298 K) δ (ppm) = 199.2, 

191.2, 155.2, 148.5, 143.6, 141.8, 139.8, 136.1, 134.5, 132.3, 127.1, 125.3, 121.3, 120.3, 

118.8, 112.1, 52.8, 43.9, 29.5, 25.8, 22.8, 22.6, 19.9, 19.5, 16.6, 16.4. ESI HRMS m/z 

calculated for C30H30N4O4S : 542.1988, found : 542.1996. 

Synthesis of 2-20a: The thioether 2-19a (1.00 

g, 2.34 mmol) was dissolved in 15 mL of 

acetonitrile followed by the addition mixture of 

urea hydrogen peroxide, (UHP) (0.88 g, 9.32 mmol) and trifluoroacetic anhydride, 

(TFAA) (0.99 mL, 6.99 mmol) in 10 mL acetonitrile at 0 oC. The reaction mixture was 

brought to room temperature and stirred for 120 minutes and diluted with 40 mL of 

water. The sulfone was extracted with 2 x 40 mL DCM, the organic layers were 

combined and washed with 2 x 50 mL of water and dried over MgSO4. The solvent was 

removed by rotary evaporation affording the desired product. Flash column 

chromatography was carried out using 2% methanol in DCM to elute the pure sulfone 2-

20a (0.97 g, 2.11 mmol, 90%). M.P. 188.8-190.3 oC.  1H NMR (400 MHz, CDCl3, 298 K) 

δ (ppm) = 9.21 (s, 1H), 8.62 (d, J = 4.9 Hz, 1H), 7.89 (d,  J = 7.8 Hz, 1H), 7.76 (dt, J = 

7.8 Hz, J = 1.2 Hz, 1H), 7.66 (d,  J = 8.0 Hz, 1H), 7.53 (s, 1H), 7.36-7.31 (m, 2H), 7.22 

(dd, J = 4.9 Hz, J = 0.7 Hz, 1H), 7.14 (dd, J = 8.0 Hz, J = 1.2 Hz, 1H), 5.44 (s, 2H), 4.96 

(s, 2H), 2.66 (s, 3H), 2.61 (s, 3H), 2.61 (s, 3H). 13C NMR (100MHz, CDCl3, 298 K) δ 

(ppm) = 191.6, 180.9, 157.6, 153.1, 148.3, 146.4, 144.1, 138.2, 137.3, 136.9, 136.5, 



129 

 

131.6, 128.8, 127.9, 124.4, 123.2, 122.5, 121.7, 120.8, 112.3, 62.0, 61.0, 20.5, 20.1, 11.3. 

EI HRMS m/z calculated for C25H23N3O4S : 461.1409, found : 461.1407. 

Synthesis of 2-20b: The title compound 2-20b 

was synthesized in the same manner as described 

for 2-20a in 85% yield. M.P. 195.0-197.2 oC. 1H 

NMR (400 MHz, CDCl3, 298 K) δ (ppm) = 9.42 (s, 1H), 8.52 (d, J = 4.7 Hz, 1H), 7.8 (dt,  

J = 7.8 Hz, J = 1.2 Hz, 1H), 7.63 -7. 59 (m, 2H), 7.5 (s, 1H), 7.34-7.27 (m, 2H), 7.13-

7.05 (m, 2H), 6.41 (q, J = 7.4 Hz, 1H), 4.76 (dd, J = 124.5 Hz, J = 14.8 Hz, 2H), 2.64 (s, 

3H), 2.54 (s, 3H), 2.48 (s, 3H), 1.77 (d, J = 7.4 Hz, 3H); 13C NMR (100MHz, CDCl3, 298 

K) δ (ppm) = 194.3, 180.1, 157.3, 153.7, 148.2, 146.3, 144.0, 143.8, 137.5, 136.4, 136.3, 

131.4, 128.4, 124.1, 122.7, 122.5, 121.4, 121.2, 120.4, 112.1, 63.6, 63.5, 20.2, 19.9, 11.7, 

10.8. EI HRMS m/z calculated for C26H25N3O4S : 475.1566, found : 475.1562.  

Synthesis of 2-20c: The title compound 2-

20c was synthesized in the same manner as 

described for 2-20a in 95% yield. M.P. 

182.6-185.0 oC. 1H NMR (400 MHz, CDCl3, 298 K) δ (ppm) = 9.55 (s, 1H), 8.56 (d, J = 

4.7 Hz, 1H), 8.44 (s, 1H), 8.04-8.01 (m, 1H), 7.80 (d, J = 7.6 Hz, 1H), 7.70 (t, J = 7.6 Hz, 

1H ), 7.54 (s, 1H), 7.32 (d, J = 8.8 Hz, 1H), 7.16 (t, J = 7.6 Hz, 1H), 6.38 (q, J = 7.0 Hz, 

1H), 4.76 (dd, J = 176.9 Hz, J = 14.6 Hz, 2H), 4.42 (q, J = 7.0 Hz, 2H), 2.67 (s, 3H), 2.58 

(s, 3H), 2.55 (s, 3H),1.77 (d, J=7.0 Hz, 3H), 1.43 (t, J = 7.0 Hz, 3H) ; 13C NMR 

(100MHz, CDCl3, 298 K) δ (ppm) = 194.4, 180.1, 166.9, 157.2, 152.6, 148.2, 146.4, 

144.1, 139.2, 137.7, 136.8, 136.6, 132.6, 128.2, 124.8, 124.2, 123.1, 111.9, 63.8, 60.9, 
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20.2, 14.4, 11.9, 10.9. EI HRMS m/z calculated for C29H29N3O6S : 547.1777, found : 

547.1784. 

Synthesis of 2-20d: The title compound 

2-20d was synthesized in the same 

manner as described for 2-20a in 96% 

yield. M.P. 210.5-213.2 oC.1H NMR (400 MHz, CDCl3, 298 K) δ (ppm) = 10.08 (s, 

br,1H), 8.59 (s, 1H), 8.37 (s, 1H), 8.21 (d, J = 8.6 Hz, 1H), 7.57 (s, 1H), 7.50 (s, 1H), 

4.86 (q, J = 7.0 Hz, 1H), 4.41 (q, J=7.0 Hz, 1H), 3.22-3.12 (m, 2H), 2.87-2.75 (m, 2H), 

2.66 (s, 3H), 2.48 (s, 3H), 2.21-2.19 (m, 2H), 2.18 (s, 3H), 2.02 (s, 3H), 1.74 (d, J = 7.0 

Hz, 3H); 13C NMR (100MHz, CDCl3, 298 K) δ (ppm) = 193.6, 187.4, 155.1, 153.1, 

149.0, 146.8, 144.1, 143.0, 139.4, 137.2, 134.2, 132.1, 127.1, 124.9, 122.2, 119.2, 119.0, 

112.5, 71.0, 64.9, 59.7, 26.6, 25.2, 22.8, 22.8, 19.9, 19.1, 16.6, 16.0, 10.8. EI HRMS m/z 

calculated for C30H30N4O6S : 574.1886, found : 574.1882. 

Synthesis of 2-1a: Compound 2-1a was synthesized by 

refluxing the solution of compound 2-20a (1.2 g, 2.60 

mmol) in acetic acid in the presence of ammonium acetate 

(1.2 g, 15.62 mmol) for 18 h before the mixture was 

poured in to ice and stirred to precipitate. The crude was 

purified by using flash column chromatography using a solvent system of 3% methanol 

in dichloromethane yielding pure pale yellow crystals (0.92 g, 2.08 mmol, 80 %). 1H 

NMR (400 MHz, CDCl3, 298 K) δ (ppm) = 10.01 (s, 1H), 9.83 (s, 1H), 8.66 (d, J = 4.9 

Hz, 1H), 7.81 (td, J = 7.8 Hz, J = 1.2 Hz, 1H), 7.66 (dt,  J = 7.8 Hz, J = 1.2 Hz, 1H), 7.55 

(d, J = 8.0 Hz, 1H), 7.51 (s, 1H), 7.37 (d, J = 4.8 Hz, 1H), 7.34 (dd, J = 7.6 Hz, J = 1.2 
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Hz, 1H), 7.25 (dd, J = 7.6 Hz, J = 1.2 Hz, 1H), 7.12 (dd, J = 8.0 Hz, 1H), 6.22 (d, J = 3.7 

Hz, 1H), 6.09 (d, J = 3.7 Hz, 1H), 2.50 (s, 3H), 2.49 (s, 3H), 2.39 (s, 3H). 13C NMR 

(100MHz, CDCl3, 298 K) δ (ppm) = 157.2, 153.3, 148.8, 144.4, 143.9, 139.5, 137.4, 

137.0, 136.6, 134.2, 132.5, 129.1, 126.0, 124.4, 123.5, 121.1, 119.8, 113.5, 111.7,  103.9, 

99.6, 21.0, 19.5, 9.9. ESI HRMS m/z calculated for C25H22N4O2SNa : 465.1371, found : 

465.1361. 

Synthesis of 2-1b: Compound 2-1b was made in 

accordance with the synthesis of 2-1a, using 10 

equivalents of Ammonium acetate, in 85 % yield, upon 

refluxing for 36 h. 1H NMR (400 MHz, CDCl3, 298 K) δ 

(ppm) = 11.41 (s, br, 1H), 10.01 (s, br, 1H), 8.62 (d, J = 

4.9 Hz, 1H), 7.75 (t, J = 7.8 Hz, 1H), 7.65-7.56 (m,  1H), 7.40-7.30 (m, 1H), 7.29 (s, 1H), 

7.23-7.18 (m, 1H), 7.09-7.01 (m, 2H), 6.99-6.93 (m, 1H), 6.03 (s, 1H), 2.52 (s, 3H), 2.41 

(s, 3H), 1.87 (s, 3H), 1.08 (s, 3H). 13C NMR (100MHz, CDCl3, 298 K) δ (ppm) = 152.1, 

149.2, 148.0, 142.1, 137.5, 136.5, 136.2, 135.7, 133.2, 132.3, 129.0, 125.7, 124.3, 123.6, 

123.2, 120.0, 119.4, 113.6, 111.7, 110.8, 109.8,  98.5, 19.8, 17.4, 10.4, 7.0. EI HRMS m/z 

calculated for C26H24N4O2S : 456.1620, found : 457.1626. 

 

Synthesis of 2-1c: Compound 2-1c was made in 

accordance with the synthesis of 2-1a, using 10 

equivalents of ammonium acetate, in 82 % yield, 

upon refluxing for 28 h. 1H NMR (400 MHz, 
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CDCl3, 298 K) δ (ppm) = 12.37 (s, br, 1H), 10.62 (s, br, 1H), 8.60 (d, J = 3.9 Hz, 1H), 

8.38 (s, 1H), 7.80 (t, J = 7.8 Hz, 1H), 7.69-7.67 (m,  1H), 7.38-7.35 (m, 1H), 7.26-7.25 

(m, 1H), 7.14 (d, J = 7.8 Hz, 1H), 6.87 (d, J = 8.6 Hz, 1H), 6.07 (s, 1H), 4.35 (q, J = 7.0 

Hz, 2H), 2.58 (s, 3H), 2.41 (s, 3H), 1.76 (s, 3H), 1.40 (t, J = 7.0 Hz, 3H), 0.84 (s, 3H). 13C 

NMR (100MHz, CDCl3, 298 K) δ (ppm) = 167.6, 149.3, 148.0, 142.3, 138.5, 136.9, 

136.6, 135.3, 133.3, 132.1, 128.5, 126.9, 124.4, 123.8, 123.0, 121.6, 115.2, 111.9, 110.3, 

109.8,  98.9, 60.6, 42.13, 19.9, 17.3, 14.4, 10.7, 6.8. ESI HRMS m/z calculated for 

C29H28N4O4S : 528.1831, found : 528.1838. 

Synthesis of 2-1d: Compound 2-1d was made in 

accordance with the synthesis of 2-1a, using 10 

equivalents of ammonium acetate, in 82 % yield, 

upon refluxing for 28 h. 1H NMR (400 MHz, CDCl3, 

298 K) δ (ppm) = 13.60 (s, br, 1H), 10.85 (s, br, 1H), 

8.56 (s, 1H), 8.33 (s, 1H), 7.82 -7.80 (m, 1H), 7.26-7.22 (m,  1H), 7.19-7.16 (m, 1H), 

7.12 (s, 1H), 6.85-6.83 (m, 1H), 6.72-6.66 (m, 1H), 3.53-3.42 (m, 2H), 3.32-3.12 (m, 

2H), 2.47-2.44 (m, 6H), 3.34-2.31 (m, 6H), 1.26-1.18 (m, 2H), 0.57 (s, 3H), 1.40 (t, J = 

7.0 Hz, 3H), 0.84 (s, 3H). 13C NMR (100MHz, DMSO-d6, 298 K) δ (ppm) = 154.3, 151.1, 

150.8, 149.2, 147.5, 139.2, 138.5, 133.7, 133.3, 128.7, 127.6, 124.4, 124.1, 123.4, 121.9, 

121.6, 120.8, 118.4, 112.3, 111.8, 110.5, 108.3, 31.3, 29.6, 24.2, 17.8, 16.5, 14.7, 13.4, 

6.9. EI HRMS m/z calculated for C30H29N5O4S : 555.1940, found : 555.1946. 
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Chapter 3 

3 The Effect of Sterics and Preorganization on Stability in Double-

Helical AAA-DDD Complexes. 

3.1 Contiguous Arrays for Hydrogen Bonded Complex Formation 

Contiguous arrays have been reported as the ideal arrangement of hydrogen bond 

donor/acceptor pairs to build some of the most stable hydrogen bonded complexes 

known. As hypothesized initially by Jorgenson, secondary hydrogen bond interactions 

may contribute significantly to complex stability in these cases.1 Therefore, in systems 

containing two, three or four hydrogen bonds, sequences with AADD, AADDD, 

AAADDD and AAAADDDD arrangements are expected to result in the most stable 

complexes2 as a result of multiple attractive secondary interactions. Fused ring 

heterocyclic arrays have been well studied as frameworks for contiguous arrays in 

hydrogen bonded complexes.3  

As outlined in the first chapter, the first experimental systems containing 

contiguous arrays were synthesized by Murray and Zimmerman4 who reported the 

association constants of an AADDD complex (Figure 3-1) to be Ka = 3 x 103 M-1 and that 

of an AAADDD complex to be Ka  ≥ 105 M-1 in CDCl3. However, the AAADDD 

system examined was chemically unstable in the presence of acid. The system required 

addition of a proton scavenger (1,8-bis(dimethylamino)naphthalene) to solution during 

the binding studies to prevent a facile hydride shift occurring from C-4 of the DDD 

array to C-10 of the AAA array. Bell and Anslyn‟s positively charged AAADDD+ 

complex was synthesized by protonating the central pyridyl nitrogen of a 
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diaminopyridine derivative to form a pyridinium ion which also contributed to large 

values of the association constants (Ka > 5 x 105 M-1) determined by UV-Vis titration 

experiments.  

 

Figure 3-1 Early experimental examples of AA•DDD and AAA•DDD hydrogen bonding 

arrays reported by Zimmerman‟s group (left and middle) and Bell and Anslyn (right). 

Neutral (AAA-DDD) and cationic (AAADDD+) complexes reported by David 

Leigh and co-workers,2c based on triple hydrogen bonding have displayed exceptional Ka 

values on the order of 107 M-1 and 1010 M-1, respectively. The binding constants were 

determined by fluorescence spectroscopy in dichloromethane (CH2Cl2). The first 

quadruple contiguous array AAAADDDD+ complex was reported by Lüning5 (as 

detailed in chapter one) with a very low association constant of 525 M-1 (Figure 3-2) due 

to numerous factors impeding complexation. Leigh‟s group has reported an extremely 

stable AAAADDDD+ complex with an association constant greater than 3 x 1012 M-1 

determined using UV-Vis competition experiments in CH2Cl2. While any hydrogen bond 
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complex with an association constant approximately above 105 M-1 can be used as a motif 

for supramolecular architectures such as reversible polymers,6 these complexes that have 

Ka values much greater than 105 M-1 and may possess very interesting properties in 

supramolecular materials.  

 

Figure 3-2 Two examples of complementary AAAA•DDDD+ hydrogen bonding 

complexes and their Ka values determined in CDCl3 (left side)5 and CH2Cl2 (right side)2d
. 

In the previous chapter, the synthesis and self-association of AADD arrays based 

on a double helical complex geometry were discussed in detail. The repulsive secondary 

interactions between the central A and D heterocycles (avoided by default in AAA•DDD 

complexes), the effects of substituents and the preorganizing effect of the trimethylene 

tether between the donor heterocycles on the overall stabilities were important factors to 

consider in the AADD array design that can be utilized while designing a new set of 

complementary helical hydrogen bonded complexes.  As stated earlier, our research 

group reported a complementary double-helical system (Figure 3-3) where the DDD 

array was insoluble in CDCl3 alone, but was drawn into solution to form a complex upon 
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addition of a terpyridyl derived AAA array. The lower limit for the association constant 

of the complex was calculated to be 105 M-1 in CDCl3.7 The calculated complexation 

induced shifts in the DDD arrays as a result of hydrogen bonding were Δδ = 5.60 (N-Ha) 

and 4.73 (N-Hb) ppm supporting the formation of a very strong complex between the two 

arrays. 

Figure 3-3 (i) A very stable complementary double helical AAA•DDD hydrogen bond 

complex with a Ka value > 105 M-1 in CDCl3; (ii) solid state X-ray structure displaying the 

double-helical nature of the complex; (iii) Downfield region of the partial 1H NMR 

spectrum of the AAA•DDD complex in CDCl3 at room temperature indicating the 

complexation induced shifts of N-Ha and N-Hb.7 

The high stability of the AAADDD complex motivated us to design and 

synthesize other AAADDD motifs using the same pyridine acceptors and mixed indole 
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and thiazine dioxide oligoheterocycles as DDD arrays (Figure 3-4). The Ka value of the 

original unsubstituted complex (3-1a3-2a) was measured as 3.1 x 103 M-1 in CDCl3.  

 

Figure 3-4  (i) Complexes 3-1a-h3-2a-c displaying an increase in the association 

constants by up to a factor of 30 in the cases studied; (ii) Plot of log(KR,R‟/KH,H) versus 

Σσp for the interaction of 3-1a-h with 3-2a; (iii) Optimized (HF 6-31G*) molecular model 

of the 3-1a3-2a complex.8 

For a triply hydrogen bonded contiguous AAADDD system this value is lower 

than that measured for the ter(thiazine dioxide) complex by at least two orders of 

magnitude which may be attributed to the poor hydrogen bond donor character of the 

terminal indole heterocycles. The addition of electron withdrawing groups at the 5-

position of the indole rings, increase the Ka value to 1.1 x 105 M-1 in CDCl3. Electron 
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donating functional groups were also incorporated with the pyridine acceptors 

demonstrating a similar trend in improving the stabilities of the complexes formed (3-

1h3-2c; Ka = 5.0 x 105 M-1 in CDCl3). A few DDD arrays were prepared incorporating 

electron withdrawing groups (eg. 3-1i X = CN, Y = CN) that were insoluble and 

prevented the determination of binding constants, even at very low dilutions. Though 

there was a linear free energy relationship between the functional group Hammett values 

and the binding constants in all the cases examined there appeared to be no 

straightforward enthalpy-entropy compensation effect in the complexation.8  

Overall, the various combinations of these modifications demonstrated a control 

over complex affinities of more than three orders of magnitude from 102 to >105 M-1 (or 

> 20 kJ mol-1) within the same underlying recognition motif. The predictable nature of 

these effects could be used to easily tailor a particular stability complex for applications 

where complementary hydrogen bond association is desirable as a design feature (e.g. 

supramolecular polymerization).  

3.2 Results and Discussion 

3.2.1 Design of the Donor Arrays 

A combination of the substitutions discussed above and the preorganizational 

effect demonstrated in the previous chapter applied in our AAADDD system would 

presumably result in the formation of extremely stable complexes. In order to study this 

combination, a di/trimethylene tether was introduced between the central thiazine dioxide 

heterocycle and one of the terminal indole heterocycles (Figure 3-5). The DDD arrays 

can be oriented in a particular conformation by restricting the dihedral freedom of 
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adjacent donor heterocycles in this manner. This preorganization maintains the helical 

geometry of the DDD array, saving energy which otherwise would be spent bringing the 

molecule into the optimal conformation for binding.  

 

Figure 3-5  DDD arrays originally designed for the current study (i) The doubly-tethered 

symmetrical DDD arrays 3-3a-c; (ii) The singly di/trimethylene tethered DDD arrays 3-

4a-b; (iii)  Complex 3-1a,b3-2a used as a comparison in complex studies; (iv) Alkylated 

singly tethered and non-tethered DDD arrays 3-5a,b and 3-6a,b. 

The previous chapter‟s results demonstrated that preorganization brought about 

by a di/trimethylene tether can increase the association constants by at least an order of 
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magnitude per tether. We intended to construct donor strands 3-3a-c that would form 

exceptionally strong contiguous complementary complexes. Arrays 3-3a,b were meant to 

probe the basic unsubstituted DDD skeleton and 3-3c to study one of the strongest 

hydrogen bond donor arrays we could easily synthesize. Concurrently, the syntheses of 3-

4a,b was designed to explore a single preorganization (with both di/trimethylene tethers) 

and the effect of the two electron withdrawing groups (ester and nitro) on these donor 

arrays. As the trimethylene tether was expected to provide similar or even more 

demanding sterics compared to a methyl group attached to the thiazine dioxide, we 

anticipated that the presence of this group would avoid unwanted intermolecular 

hydrogen bonding between the DDD arrays thereby avoiding the problems with solubility 

previously encountered. Finally, the four alkylated DDD arrays, 3-5a-b and 3-6a-b were 

not originally part of the synthetic plan but were included later as a solution to 

accompanying insolubility issues that will be discussed later in this chapter. The binding 

studies of these alkylated contiguous complexes display interesting results upon 

comparison with those of 3-1a-b3-2a. The contiguous AAA array 3-2a was used in the 

complexation studies with all the above DDD arrays to provide a consistent comparison.  

3.2.2 Synthesis of 3-3a-c Donor Arrays 

The synthesis of the symmetric DDD arrays 3-3a-c consisting of di/trimethylene 

tethers on either side of the central donor heterocycle was planned through the 

retrosynthetic pathway pictured in Scheme 3-1. It would be realized through cyclization 

of a 3-sulfonyl-1,5-dione precursor. Sulfones are the oxidized forms of thioethers which 

can be oxidized using mCPBA or urea hydrogen peroxide and trifluoroacetic anhydride 

mixture. The condensation of -ketobromides could be achieved by employing sodium 
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sulphide nonahydrate or sodium hydrogensulphide, forming the corresponding thioethers 

and sodium bromide. The rest of the intermediates are familiar from chapter 2.  

 

Scheme 3-1 Retrosynthetic pathway leading from the preparation of doubly 

di/trimethylene tethered DDD arrays 3-3a-c to commercially available anilines and cyclic 

ketones.  

The initial reactions to synthesize the doubly tethered DDD arrays were carried 

out in a similar manner to those detailed in chapter two; Japp-Klingemann/Fischer Indole 

synthesis9 followed by bromination of the -ketobromides using phenyl 

trimethylammonium tribromide.10 The reactions times were generally longer compared to 

the acyclic indole analogues. The bromination reactions took 12-16 h to reach 

completion. Condensation of the -ketobromides took approximately 3 days (versus 3 h 

in the case of acyclic indole analogues) to yield the products in 85 - 90%. The thioethers 

were oxidized using mCPBA as an oxidant in DMF11 as the thioethers were sparingly 

soluble in non-polar and most polar solvents except DMF and DMSO. Unfortunately all 
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the attempts for the final cyclization of the sulfone precursors to produce 3-3 were 

unsuccessful regardless of the reagents and conditions used (Table 3-1).   

Table  3-1 Trials of reactions attempted for last step of scheme 3-1. 

Reagent Reaction Conditions Results 

6 to 25 eq. of 

ammonium acetate 

Glacial acetic acid, reflux for 

16 h. to 7 days 

No reaction, starting 

materials recovered 

6 to 8 eq. of ammonium 

acetate 

Methanol, reflux  

16 h. to 48 h. 

Decomposed 

6 to 8 eq. of ammonium 

acetate 

Ethanol, reflux  

16 h. to 48 h. 

Decomposed 

6 to 10 eq. of 

ammonium formate 

Formic acid, N2, reflux  

16 h. to 48 h. 

Decomposed 

2 to 6 eq. of hydrazine Ethanol, reflux  

16 h. to 48 h. 

No reaction, starting 

materials recovered 

 

3.2.3 Synthesis of Single Trimethylene Tethered DDD Arrays  

The failure of the last synthetic step to produce doubly trimethylene bridged DDD arrays 

left the remaining synthesis of singly di/trimethylene tethered DDD arrays 3-4a,b 

(Scheme 3-2). Diazonium salts 3-7 of unsubstituted and substituted anilines were 

synthesized using sodium nitrite and hydrochloric acid at 0 C, which readily react with a 

methyl oxopentanoate derivative12 or formylated cyclic ketones13 to give corresponding 

hydrazone intermediates that were subjected to Fischer Indole cyclization requiring 
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approximately 24 to 36 h for reaction completion.  
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Scheme 3-2 General synthetic scheme to construct the singly tethered DDD arrays; 

Reaction conditions: (a) (i) HCl, H2O, NaNO2, KOH, EtOH, 0 oC to room temperature, 

(ii) HCOOH, reflux 2 h. - 36 h., 90%-almost quantitative yields; (b) Trimethylphenyl 

ammonium tribromide, dry THF, 40 oC 1.5 h. - 12 h., 75-80 % (c) (i) KSAc, Dry DMF, 4 

h. 90-95% (ii) Cysteamine.HCl, NaHCO3, MeCN, 24 hr. 85-92% (d) K2CO3, MeCN, 

H2O, 2days, 80-85% (e) 2.1 eq. mCPBA, DMF, 0 C to room temperature, 12 h. to 18 hr., 

75-85% (f) 5 eq. NH4OAc, AcOH, reflux 1day to 2 days, 70-80 %. 

  Bromides 3-9 and 3-11 are obtained by reaction of the indoles and with the 

quaternary bromide salt trimethylphenylammonium tribromide for 1.5 (3-8) to 12-16 (3-

10) h respectively. The bromides 3-11 were converted to the corresponding thiols 3-12 

through hydrolysis of their thioacetate substitution products. The thiol and bromide 

intermediates 3-9 and 3-12 are condensed using potassium carbonate (in place of 2,6-

lutidine) in excess (3 eq.). These reaction conditions gave cleaner thioethers 3-13 which 

did not require any column chromatography for purification. If desired, recrystallization 

may be carried out in ethanol to give yellowish-orange crystals. Oxidations of 3-13 

employing the urea hydrogen peroxide and trifluoroacetic anhydride mixture (4:3) 

resulted in decompositions. The oxidations were instead performed using an excess of 2.1 

eq. mCPBA in DMF (at 0 C).8 The reaction mixture was brought to room temperature 
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slowly and stirred more than 12 h to give the desired sulfones, 3-14. Sodium bicarbonate 

solution was used to neutralize the mCBA by-product at the completion of reaction. A 

saturated solution of sodium sulfite is more effective in the neutralization process but 

could be harsh on the sulfones and led to formation of disconnected by-products such as 

acetyl or propionyl skatoles observed in the 1H NMR spectra. Column chromatography is 

required at this stage to purify most of the sulfones which are then subjected to 

cyclizations employing 6 to 8 eq. of ammonium acetate refluxed in glacial acetic acid. In 

contrast to the doubly tethered sulfone precursors, these sulfones undergo relatively facile 

cyclizations giving the desired arrays 3-4a,b. Unfortunately, both of these DDD arrays 

were insoluble in non-polar solvents such as CDCl3 and DCM. They do however display 

good solubilities in more polar solvents such as acetonitrile, acetone, methanol and 

DMSO.  

3.2.4 Synthesis of Dissymetric Soluble DDD Arrays 3-5a,b and 3-6a,b 

 

Figure 3-6  Synthesis of methyl 2-acetyloctanoate, for the incorporation of a pentyl chain 

at the 3-position of the indole heterocycle; Reaction conditions: (a) 3 eq. K2CO3, THF, 

reflux for 36 h followed by Japp-Klingemann/Fischer Indole synthesis of alkylated acyl  

Indoles.  

  In order to make relevent comparisons to our own and literature values of 

association constants these measurements should be made in typical non-polar solvents 
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such as CDCl3 and CD2Cl2. Our strategy to induce solubility14 and retain the trimethylene 

tether between an indole and the central thiazine dioxide heterocycles was to attach a 

pentyl chain to the other indole at the 3-position. This may be accomplished by simply 

employing methyl 2-acetyloctanoate15 in place of methyl 2-ethyl-3-oxobutanoate as the 

starting material for the Japp-Klingemann reaction followed by the Fisher Indole 

synthesis (Figure 3-6). The rest of the steps are similiar to those discussed in Scheme 3-2. 

Fortunately the arrays 3-5 and 3-6 were remarkably soluble in CDCl3 compared to arrays 

3-4. Four DDD arrays are synthesized, two with a single trimethylene tether but retaining 

the pentyl chain (3-5a,b) and the other two without the tether but retaining the pentyl 

chain (3-6a,b). Comparisons of their binding behaviours were drawn with the 

corresponding complexes 3-1a,b3-2a.  

3.3 Solid State X-Ray Studies of the DDD Arrays 3-4a,b and 3-5b. 

 All attempts to cocrystallize the complexes were unsuccessful, as the DDD arrays 

formed powders or amorphous solids before any crystallization occured. However, single 

crystals of 3-4a (Figure 3-7) were grown by the slow diffusion of diisopropyl ether into 

the concentrated solution of DCM. Although 3-4a was not soluble in non-competitive 

solvents it was nevertheless an illuminating structure as the solid state structure might 

indicate the effects of both preorganization and reasons for insolubility. 

 The lattice is composed of antiparallel C2 symmetric 1-D chains (Figure 3-7) that 

lie along the c direction of the unit cell.  The chains are held together by two 

intermolecular hydrogen bonds between the donor N-H groups (N3-H3 and N2-H2) of 

one molecule of 3-4a and one of the sulfone oxygen atoms (O4) of the next in the chain.   
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Table 3-2: Summary of the crystallographic data of the all three crystal structures 3- 

4aCH2Cl, 3-4b and 3-5bDMSO. 

Crystal 

Parameters 

3-4aCH2Cl2 3-4b 3-5bDMSO  

chemical formula C25H22Cl2N4O4S C28H26Cl3N4O6S C33H39N3O5S2  

Formula weight  545.43 546.59 621.79  

crystal system monoclinic Triclinic Orthorhombic  

space group P21/c P -1 Pna2(1)  

a (Å) 12.241(1) 10.846(2) 30.553(1)  

b(Å) 16.713(1) 12.315(3) 10.465(4)  

c (Å) 12.689(1) 14.506(3) 9.980(4)  

,  β and  (°) 90, 111.062(5), 90 111.1(1), 98.8(1), 109.5(1) 90, 90, 90  

V (Å3) 2422.5(3) 1618.2(6) 3190.9(2)  

T (K) 150(2) 293(2) 150(2)  

Z 4 2 4  

λ (Mo Kα) (Å) 0.71073 0.71073 0.71073  

Dcalc (mg∙cm‐3) 1.495 1.122 1.294  

μ (mm‐1) 0.396 0.141 0.212  

F (000) 1128 572 1320  

  total reflections  34030 13351 16485  

unique reflections 5549 7473 4863  

absorption  multi-scan multi-scan multi-scan  

refinement on F
2 

F
2 F

2  

R (F0) (I>2σ (I)) 0.0468 0.0534 0.0350  

Rw(F0
2 (I>2σ (I)) 0.1085 0.1038 0.0828  

R (F0) (all data) 0.0787 0.0952 0.0452  

Rw(F0
2) (all data) 0.1225 0.1493 0.0881  

GOF on F2
 1.021 1.067 0.884  
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Figure 3-7 Stick representations of X-ray crystal structure of DDD array 3-4a. (i) The 

intermolecular hydrogen bonding interactions between O4 atoms and donor N-H groups 

N2-H2 and N3-H3. (ii) The dihedral angle between the tethered indole and thiazine 

dioxide  is N2-C6-C5-N3 = 15. All C-H hydrogen atoms have been removed for clarity. 

(ii) 

(i) 
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  The individual molecules reside in a helical conformation such that the tethered 

indole donor N-H group N3-H3 forms a hydrogen bond with O4 (sulfone oxygen atom) 

in the adjacent molecule (N3-H3…O4 = 2.89 Å and N3-H3…O4 = 162°).  The thiazine 

NH donor group N2-H2 participates in hydrogen bonding with the same oxygen atom O4 

(N2-H2…O4 = 2.99 Å and N2-H2…O4 = 171°). The Donor N4-H4 group participates in a 

bifurcated hydrogen bonding arrangement with both oxygen atoms O1 and O2 of the 

nitro-functional group (N4-H4…O1 = 3.27 Å, N4-H4…O2 = 3.15 Å, N4-H4…O1 = 148° 

and N4-H4…O2 = 154°). 

  The dihedral angle between the the two donor heterocycles that are connected 

through dimethylene tether was measured to be 14, which is likely too acute for efficient 

formation of a double helical complex. The small dihedral angle is due to the rigidity 

induced by the six membered ring between the two donor heterocycles. Examination of 

molecular models suggests a dihedral angle between these two heterocycles of 30 to 60 

would be optimal in this case.  

  Apart from the hydrogen bonding interactions and preorganization, the solid state 

structure also displays π-π interactions between the benzene ring of the tethered indole of 

a DDD array with benzene ring of the tethered indole of adjacent DDD array. The 

distance between the centroid of the C1-C2-C3-C13-C23-C24 ring to the centroid of the 

C1‟-C2‟-C3‟-C13‟-C23‟-C24‟ ring is 3.542 (1) Å, strongly indicating favourable π-π 

interactions between the two ring systems. The presence of these intermolecular 

interactions in the solid state is a reasonable basis for the insolubility of these arrays in 

non-polar solution due to aggregation.  
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Figure 3-8 Stick representation of X-ray crystal structure of array 3-4b. (i) 

Supramolecular dimers from intermolecular hydrogen bonding between amine donors 

and the sulfonyl oxygens of the thiazine dioxide heterocycles. (ii) Supramolecular dimers 

from intermolecular hydrogen bonding between amine donors and the carbonyl oxygen 

of the ester functional group. The dihedral angle between the tethered indole and thiazine 

dioxide rings is N2-C7-C-13-N3 = 25.  

(i) 

(ii) 
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  Though the solid state structure of the 3-4b does not form 1-D chains through 

hydrogen bonding, the single X-ray structure demonstrates similar hydrogen bonding 

interactions, preorganization and moderate π-π interactions. There are two modes of 

hydrogen bonding interactions that can be observed as depicted in Figure 3-8 (i) and (ii) 

which together create supramolecular crosslinks in the lattice. The untethered indole 

donor group N4-H4 hydrogen bonds with O3 of the sulfone group (N4-H4…O3 = 2.79 Å 

and N4-H4…O = 157°) the carbonyl oxygen O5 of the ester group participate in a 

bifurcated hydrogen bonding arrangement (N2-H2…O5 = 2.80 Å, N3-H3…O5 = 3.00 Å, 

N2-H2…O5 = 161° and N3-H3…O5 = 152°). Each of the DDD arrays likely participates 

in both types of interactions in solution thereby rendering them insoluble. The increase in 

the tether by one carbon in 3-4b has resulted in a higher dihedral of 25 which is much 

closer to the optimal range of dihedral angle than 3-4a and so the arrays with 

trimethylene tether bridges between one of the terminal donor heterocycle and the central 

heterocycle (Figure 3-8) are likely capable of forming very stable double helical 

complementary complexes. In the solution state, indeed the DDD array 3-4b forms a very 

stable double-helical complex with AAA array 3-2a (see section 3.4.1). The solid state 

structure of 3-4b also displays π-π interactions between the benzene ring of the 

untethered indole of a DDD array with benzene ring of the untethered indole of an 

adjacent DDD array. The distance between the centroid of the C20-C21-C22-C23-C24-

C25 ring to the centroid of the C20‟-C21‟-C22‟-C23‟-C24‟-C25‟ ring is 3.732 (1) Å, 

strongly indicating favourable π-π interactions between the two aryl ring systems.  

  Numerous attempts have been made to co-crystallize the complexes 3-5a-b3-2a 

and 3-6a-b3-2a unsuccessfully. However, single crystals of 3-5b alone were grown by 
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slow evaporation of concentrated solution in chloroform (Figure 3-9). There are 

negligible weak interactions observed in the crystal structure of 3-5b.  

 

Figure 3-9 Stick representations of X-ray crystal structure of array 3-5b. (i) Looking 

down on the plane of the tethered indole ring; (ii) Looking down the axis connecting N2 

and S1. The dihedral angle between the tethered indole N-H group and the thiazine 

dioxide heterocycle (N1-C13-C12-N2 = 24)  is similar to that observed in the case of 3-

4b.  

  The important observations were brought out by comparison with the above 

discussed structures. The dimer formation of the DDD arrays via hydrogen bonding 

(between donor N-H groups and carbonyl oxygen atoms) is absent in this case and likely 

(i) 

(ii) 
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explains the solubility of this array (and by analogy 3-5a and 3-6) in non-polar solvents 

such CDCl3. One further observation is the haphazard orientation of the pentyl chain the 

sterics of which may detrimentally affect the binding constants by hindering the 

approaching acceptor arrays during complex formation.  

3.4 NMR Titration Studies of DDD Arrays 

The stabilities of the complexes formed between the DDD and AAA arrays were 

investigated using 1H NMR titrations. As the process of titration is a concentration 

dependant phenomenon, the host and guest concentrations were used to arrive at a set of 

equations that would define an association constant, Ka as shown below. 

     H + G            HG 

                                     Ka = 
    

      
                                          (1) 

                  obs = 
    

    
   bound  +     

    
  free                                                     (2)16

  

                                                                                  (3a)  

                                                                                                                              (3b) 

Where, 

[H]0 = total concentration of host                [G]0 = total concentration of guest  

[H] = concentration of uncomplexed host   [HG] = concentration of complexed                                

          host and guest                                                                   

obs = the chemical shift of N‐H observed during the titration experiment 

bound = the proton chemical shift of the host-guest complex (N‐H…N)     
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free = the chemical shift of uncomplexed donor proton (N‐H) in the free host 

From Eq. 1 and 3a and 3b 

                                        =  Ka (         ) (         )                               (4)  

Squaring the Eq. 4 on both sides and rearranging the equation leads to Eq. 5  

                                       
2
 (  

  
          )               = 0                      (5) 

When the Eq. 5 is rearranged using the quadratic equation, leads to Eq. 6: 

             
                   √                          

          

    
            (6) 

Substituting the Eq. 6 in Eq. 3a, leads to Eq. 7 

            (
                   √                          

          

    
) (7)          

Substituting the above Eqs. 6 and 7 in Eq. 2 yields the final Eq. 8 

 

obs  =   
(                   √                          

          )

        
  bound + 

                

(      (
                   √                          

          

    
))

    
free   (8)                          
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  During the NMR titration experiments, as the concentration of the guest increases, 

the chemical shift of the donor proton shifts downfield as a result of a decrease in 

electron density due to participation in hydrogen bonding. Origin is a data analysis 

software package that uses non-linear regression of the concentration and chemical shift 

data to plot the titration curves and calculate the Ka values based on the above 1:1 

complexation model. 

3.4.1 NMR Titration Studies of DDD Array 3-4b. 

  Though the DDD arrays 3-4a,b are insoluble in all non-competitive organic 

solvents such as chloroform, DCM and toluene, they are drawn into chloroform solution 

when the AAA array is added to it in a 1:2.5 ratio. The ability of the AAA array to draw 

the insoluble DDD into solution suggests a strongly hydrogen bonded complex. There 

have been similar solubility issues reported in the literature17,18 in which cases titrations 

were carried out in mixed solvents. Among the DDD arrays synthesized, array 3-4b 

should form the strongest complex with acceptor array 3-2a and was therefore considered 

the best option to carry out such tests. Determination of these binding constants provides 

a method to estimate the binding constant in non-polar solution. In the case of 3-4b, 

addition of 0.5% CH3OH to CDCl3 was sufficient to dissolve the array and therefore 

different percentages of methanol were added to test, compare and extrapolate the 

binding constants to solutions containing no CH3OH. Six different concentrations of glass 

distilled CH3OH (non-deuterated) were mixed in CDCl3 and used in the titrations to give 

interesting results. There appears to be an exponential decrease in binding constants from 

0.5% to 1% CH3OH in CDCl3 that tapers off as the amount of CH3OH added increases 

(Figure 3-10 and 3-11).    
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Figure 3-10  Titration curves measured at six different percentages of added CH3OH 

(v/v) in CDCl3, association constants (Ka) and free energies of complexation (G), 

determined at room temperature.  
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3-4b3-2a 
0.5 % CH3OH in CDCl3 

Ka = 2.0 x 10
5
 

M
-1

  

G = -30.3 kJ mol
-1 

 

3-4b3-2a 
1.0 % CH3OH in CDCl3 

Ka = 2.4 x 10
4
 

M
-1  

G = -25.0 kJ mol
-1 

 

3-4b3-2a  
2.0 % CH3OH in CDCl3 

Ka = 8.1 x 10
3
 

M
-1  

G = -22.3 kJ mol
-1 

 

3-4b3-2a 
3.0 % CH3OH in CDCl3 

Ka = 4.0 x 10
3

 

M
-1 

G = -20.6 kJ mol
-1 

 

3-4b3-2a 
4.0 % CH3OH in CDCl3 

Ka = 2.0 x 10
3
 

M
-1 

G = -18.9 kJ mol
-1 

 

3-4b3-2a  
5.0 % CH3OH in CDCl3 

Ka = 1.3 x 10
3
 

M
-1 

G = -17.8 kJ mol
-1 
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% CH3OH in 

CDCl3 (v/v) 

Ka values, 

(M-1) 

G,  

(kJ mol-1) 

0.5%  2.0 x 105 -30.3 

1%   2.4 x 104 -25.0 

2%   8.1 x 103 -22.3 

3%   4.0 x 103 -20.6 

4%   2.0 x 103 -18.9 

5%   1.3 x 103 -17.8 

 

 

Figure 3-11  (i) Ka and G values measured in solutions with different percentages of 

added CH3OH for complex 3-4b3-2a; Plots of Ka (ii) and G values (iii) vs. % CH3OH 

in CDCl3. Curves included in the plots are only meant to guide the eye. 

  The largest association constant for the complex 3-4b3-2a was measured to be 

2.0 x 105 M-1 with 0.5 % (v/v) CH3OH in CDCl3. The exponential nature of the changes 

in association constants corresponding to 0.5%  and 1% added CH3OH experiments 

makes it difficult to predict the value at 0% added CH3OH (pure CDCl3). However the 

plots of G vs. added CH3OH is more easily followed and produces a conservative 

estimate for the free energy of complexation at 36.0 kJ mol-1 or Ka = 2.0 x 106 M-1. A 

(i) 

(ii) (iii) 
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steeper approach to the y-axis would give an estimate of closer to 40.0 kJ mol-1 or Ka = 

1.0 x 107 M-1. 

  In previously reported work,8 the Ka value of complex 3-1h3-2a (R = CN, R‟ = 

CO2Et, absent of the tether and considering electron withdrawing nature of CN being 

similar to NO2) was reported to be 1.5 x 105 M-1. There is an approximately order of 

magnitude increase in the association constant estimated here. The increase in Ka value 

can be attributed to the preorganization by the trimethylene tethering of the donor 

heterocycles. As mentioned the estimation may not be entirely accurate (in fact likely too 

low) but is encouraging enough to carry out further comparative studies to establish the 

higher stabilities of the complexes with these tethers.  

 

3.4.2 NMR Studies of Soluble DDD Arrays 3-5a,b and 3-6a,b: 

  The new DDD arrays 3-5a-b and 3-6a-b were synthesized following Scheme 3-2 

were found to be soluble (as expected) in non-competitive solvents such as CDCl3. 

Solubility is the important here as it allows determination of exact binding constants 

through NMR titration experiments with out added polar solvent like the experiment 

above. All NMR experiments were carried out in CDCl3 and association constants are 

determined by fitting the data to the 1:1 complexation model described earlier.  

  The goal of these experiments is to compare the stabilities of the soluble 

complexes, and draw correlations between the association constants and individual 

molecular features. In fact, a correlation of the association constants between the 

complexes 3-5a,b3-2a,  3-6a,b3-2a and 3-1a,b3-2a is apparent from this limited study. 
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Figure 3-12 Titration curves for three different types of complexes 3-5a,b3-2a,  3-

6a,b3-2a and 3-1a,b3-2a, their respective association constants (Ka) and free energies of 

complexation (G) in CDCl3 at room temperature.  
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  The association constant of complex 3-1a3-2a was determined to be 3.1 (0.6) x 

103 M-1 (G = -20.0 kJ mol-1) from previous work8 in our lab whereas the association 

constant of complex 3-5a3-2a was determined to be 4.5 (0.2) x 103 M-1 (G = -20.8 kJ 

mol-1). Though there is an increase in the association constant, it is not significant as the 

difference in Gibb‟s free energies of the two complexes is only 0.8 kJ mol-1 which 

appears to be very low considering the anticipated effect of preorganization due to 

trimethylene tether. However, this observation does not take into account the effect of the 

pentyl substituents. The Ka value of the complex 3-6a3-2a was determined to be 4.5 

(0.6) x 102 M-1 (G = -15.1 kJ mol-1) which is significantly lower than the other two 

complexes. The difference between the Gibb‟s free energies of complexes 3-1a3-2a and 

3-6a3-2a is 4.9 kJ mol-1 (which corresponds to almost an order of magnitude in term of 

Ka values), indicating that the pentyl chain, though it induces solubility in the arrays, has 

a detrimental effect on the stability of complex formation. The net energy difference 

between complex 3-5a3-2a and complex 3-6a3-2a is calculated to be 5.7 kJ mol-1 which 

is the combination of the two effects namely, preorganization and pentyl group 

attachments. 

  From the comparison of association constant values of the complexes 3-1a3-2a, 

3-5a3-2a, 3-6a3-2a and taking the mixed solvent studies of 3-4b3-2a, we may 

conclude that, though preorganization greatly increases the stability of the resultant 

complexes (by almost an order of magnitude in terms of the association constant) by 

holding the donor heterocycles in an optimal geometry for complex formation, the 

incorporation of the pentyl chains at the 3-position of the indole ring can greatly lower 

the complex stability.  
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Table  3-2 Four sets of complementary AAADDD complexes (3-5a3-2a, 3-5b3-2a, 3-

6a3-2a and 3-6b3-2a) compared with the association constants, free energies, their 

differences and net difference in energies with that of 3-1a3-2a and 3-1b3-2a, 

respectively. 

Added Molecular 

 Features 

Complex Ka   

(kJ mol-1) 

G  

(kJ mol-1) 

G
a
   

(kJ mol-1) 

G
a
   

(kJ mol-1) 

Tether + pentyl 3-5a3-2a 4500 20.8 
0.8 

5.7 
  

 None 3-1a3-2a 3100 20.0 

4.9 
Pentyl 3-6a3-2a 450 15.1 

  
Tether + pentyl 3-5b3-2a 16000 24.0 

0.7 

5.7 
  

 None 3-1b3-2a 12000 23.3 

5.0 Pentyl 3-6b3-2a 1640 18.3 

 
a) difference in values that appear immediately above and below in the column to the left. 

  Extrapolating the results from the exact values and accurate comparisons we can 

conclude that preorganization due to the trimethylene tether accounts for an increase in 

stability of approximately 5.7 kJ mol-1 or over an order of magnitude in terms of the Ka 

values for complexes 3-4a,b3-2a, 3-5a3-2a and 3-6a3-2a. This conclusion is similar to 

the estimation derived from the mixed solvent NMR titration experiments and 

extrapolation to pure CDCl3 of 3-4a-b3-2a complex (Ka value  106 M-1). However, the 

pentyl chains at 3-position of indole rings decrease the stability of the complexes 3-6a3-

2a and 3-6b3-2a by approximately 5.0 kJ mol-1. In a similar manner, complexes 3-5b3-
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2a and 3-6b3-2a may be compared with complex 3-1b3-2a to yield an almost identical 

result (Table 3-2). 

3.5 Conclusion 

  In the complementary systems discussed, we have studied both the individual and 

collective effects of preorganization (due to tethering of the heterocycles) and the 

introduction of alkyl chains for the induction of solubility. These two modifications 

produce competing effects. The tethering feature helps to greatly increase the stabilities 

of the complementary systems by preorganizing the DDD arrays in a optimal helical 

geometry thereby producing the need to expend energy bringing the array to the required 

geometry to form the complex. Sterics in the solution phase can effect the stabilities of 

complex formation significantly as revealed by the effect of the alkyl chains at the 3-

positions of the indole rings. From our comparative studies, the preorganization in these 

complexes appears to increase the complex stability by nearly an order of magnitude. 

Complexes with with very high association constants (in the range of 106 M-1 for three 

hydrogen bond arrays) were realized through incorporation of electron withdrawing 

functional groups and by preorganization via trimethylene tethers between the donor 

heterocycles.  

3.5.1 Experimental 

General: All experiments were performed under an atmosphere of nitrogen unless 

otherwise indicated. Chemicals were purchased from Aldrich and Alfa Aesar and used as 

received. Solvents (THF, hexanes, dichloromethane, toluene and diethyl ether) were 

obtained from Caledon Laboratories and dried using an Innovative Technology Inc. 
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Controlled Atmospheres Solvent Purification System that utilizes dual alumina columns 

(SPS-400-5), or purchased from Aldrich and used as is. Reactions were monitored by thin 

layer chromatography (TLC) performed on EM 250 Kieselgel 60 F254 silica gel plates. 

Column chromatography was performed with 240-400 mesh silica gel-60. Nuclear 

magnetic resonance spectra were recorded on an INOVA and Mercury 400 MHz 

spectrometer (13C = 100.52 MHz). Proton and 13C{1H} NMR spectra were referenced 

relative to Me4Si using the NMR solvent (1H: CHCl3,  = 7.26 ppm, C3HD5O,  = 2.05 

ppm,; 13C{1H}: CHCl3,  = 77.16 ppm, C3HD5O,  = 29.84, 206.26 ppm). Solvents for 

1H NMR spectroscopy (chloroform-D, acetone-D6, DMSO-D6) were purchased from 

Cambridge Isotope Laboratories. Mass spectra were recorded using an, electron 

ionization Finnigan MAT 8200 mass spectrometer and PE-Sciex API 365. X-ray 

diffraction data were collected on a Bruker Nonius Kappa CCD X-ray diffractometer 

using graphite monochromated Mo-K radiation ( = 0.71073 Å). 

3.5.2 1
H NMR Titration Procedure 

A host sample (DDD array) of known weight was dissolved in 2.0 mL CDCl3 to 

produce a 5 x 10-4 M solution.  A portion (0.75 mL) of this solution was transferred into a 

NMR tube, and a 1H NMR spectrum was then recorded. An accurately weighed sample 

of the guest was then dissolved in 1.0 mL of the remaining host solution to produce a 5 x 

10-3 M guest solution.  Aliquots of guest solution were added successively to the NMR 

tube containing the host solution (7.5 μL × 20, 15.0 μL × 5, 37.5 μL × 4, 75.0 μL × 3), 

the tube was well shaken each time to mix the host and guest solutions, and the 1H NMR 

spectrum was recorded after each addition. The chemical shifts of the N-H protons from 
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all three hydrogen bond donors in each sample were recorded and fit satisfactorily to a 

1:1 binding model using Origin data analysis software (Microcal, USA).  The average of 

the three Ka values determined from these three protons was used as the value for that 

titration run.   

3.5.3 Synthetic Procedures  

Synthesis of methyl 2-acetyloctanoate: To a mixture of methyl 

acetylacetate (1.00g, 5.00 mmol) and iodohexane (1.06g, 5.00 

mmol) in THF (15 mL), potassium carbonate (2.07g, 15.00 mmol) 

was added and the mixture was refluxed for about 60 h. The solids were filtered and the 

organics were extracted with DCM (3x10 mL) washed with water (3x10 mL) dried over 

MgSO4 and concentrated under reduced pressure to give pure orange brown oil which 

was carried on to next reaction step. IH-NMR (CDCl3) δ: 3.72 (s, 3H), 3.41 (t, J=8.3 Hz, 

lH), 2.21 (s, 3H), 1.86-1.78 (m, 2H), 1.28-1.21 (m, 8H), 0.86 (t, J=7.0 Hz, 3H). 13C NMR 

(100MHz, CDCl3)  ppm 203.8, 171.2, 59.8, 52.1, 31.8, 28.7, 28.2, 27.1, 22.2, 13.9. ESI 

HRMS calcd. for C11H20O3 m/z : 200.1412, found : 200.1410. 

Synthesis of 3-8c: A solution of sodium hydroxide (5M, 12.05 mmol) 

was added to a solution of methyl 2-acetyloctanoate (2.19 g, 10.95 

mmol) in water (7.5 mL) and stirred for about 16 h. and of concentrated 

hydrochloric acid (1.26 mL, 12.05 mmol) was added drop wise at 0 °C and aged 45 

minutes at the same temperature. To a mixture of aniline (1.02 g, 1.0 mL, 10.95 mmol), 

(3.4 mL, 32.86 mmol) and water (6.6 mL), a solution of sodium nitrite (0.76 g, 10.95 

mmol) was added drop wise at 0 °C and stirred for 20 min. at the same temperature. This 
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mixture was added to the buffered solution of methyl 2-acetyloctanoate at 0 °C and 

stirred at room temperature for about 1 h. and the entire mixture was added to a saturated 

solution of sodium acetate (5.0 mL) and stirred for an additional 2 h. before the 

precipitate was collected by filtration and washed with water to give the intermediate 

product, 3-(2-phenyl hydrazono)nonan-2-one (2.03g) as red solid granules. A solution of 

3-(2-phenyl hydrazono)nonan-2-one (1.90 g) in formic acid (20 mL) was stirred at 100 

°C for 16 h. and the mixture was allowed to cool to room temperature. The reaction 

mixture was poured onto ice cold water (50 mL) stirred for about 30 min. and the 

resulting residue was filtered and air dried to give pure brown solid beads (1.8 g). 1H 

NMR (400 MHz, CDCl3) δ ppm:, 9.21 (s, br, lH,), 7.70 (d, J=8.2 Hz, 1H), 7.38 - 7.32 (m, 

2H),  7.15 - 7.11 (m, 1H), 3.10 (t, J=8.2 Hz, 2H), 2.66 (s, 3H), 1.76-1.68 (m, 2H), 1.48 - 

1.32 (m, 4H), 0.92 (t, J=7.0 Hz, 3H). 13C NMR (100MHz, CDCl3)  ppm 190.7, 136.3, 

132.0, 129.6, 128.5, 126.5, 124.7, 121.5, 120.1, 112.1, 32.3, 31.6, 28.5, 25.7, 22.7, 14.2. 

ESI HRMS calcd. for C15H19NO m/z : 229.1467, found : 229.1466. 

Synthesis of 3-9c: The bromide was made in accordance with the A.N. 

Kost et al.
45 method in 80 % yield. 1H NMR (400 MHz, CDCl3) δ 

ppm:, 8.96 (s, br, lH,), 7.70 (d, J=8.2 Hz, 1H), 7.42 - 7.32 (m, 2H),  

7.17 - 7.13 (m, 1H), 4.43 (s, 2H), 3.09 (t, J=8.2 Hz, 2H), 2.66 (s, 3H), 1.76-1.68 (m, 2H), 

1.50 - 1.25 (m, 4H), 0.92 (t, J=7.0 Hz, 3H). 13C NMR (100MHz, CDCl3)  ppm 184.1, 

137.1, 132.0, 128.4, 127.4, 126.2, 121.8, 120.6, 120.2, 112.2, 32.8, 31.6, 26.1, 25.7, 22.7, 

14.2. ESI HRMS calcd. for C15H18BrNO m/z : 307.0572, found : 307.0575. 
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Synthesis of 2-(Hydroxymethylidene)cycloheptanone: To a mixture of 

cycloheptanone (1.2 mL), diethyl ether (10 mL) and sodium methoxide (1.08 

g) was added ethyl formate (1.1 mL), and the mixture was stirred at room temperature for 

18 h I N Hydrochloric acid was added to the reaction mixture, and the mixture was 

extracted with ethyl acetate. The extract washed with saturated brine, dried over 

anhydrous magnesium sulphate, filtered and concentrated to give the title compound 

(1.32g) as a yellow liquid. IH-NMR (CDCl3) δ: 14.63 (d, J=8.7 Hz, 1H), 7.59 (d, J=8.3 

Hz, lH), 2.51-2.48 (2H, m), 2.23-2.20 (2H, m), 1.75-1.53 (6H, m). 13C NMR (100MHz, 

CDCl3)  ppm 204.3, 170.9, 114.7, 42.1, 31.7, 29.8, 28.6, 24.6. ESI HRMS calcd. for 

C8H12O2 m/z : 140.0837, found : 140.0838. 

Synthesis of 3-10d: A mixture of ethyl 4-aminobenzoate (1.65 g, 10 

mmol), concentrated hydrochloric acid (2.06 g), water (6 mL) and 

sodium nitrite (0.69 g, 10 mmol) was stirred at 0° C. for 20 min. 

This mixture was added to a mixed solution of 2(hydroxymethylene)cyc1o-heptanone 

(l.40 g) in ethanol (16 mL) and a solution of potassium hydroxide (561 mg) in water (0.6 

mL) at 0° C., and the mixture was stirred at 0° C. for 10 min and at room  temperature for 

1 hr and added to water. The precipitate was collected by filtration and washed with 

water to give the intermediate compound, ethyl 4-(2-(2-oxocycloheptylidene) 

hydrazinyl)benzoate (2.03 g) as a yellow solid. The title compound was synthesized from 

the hydrazone as described in the cyclization process above by refluxing in formic acid in 

90% yield. IH NMR (AcetoneD6) δ: 10.74 (s, br, 1H), 8.42 (s, 1H), 7.96 (dd, J=8.6 Hz, 

J=1.6 Hz, 1H), 7.55 (d, J=8.6 Hz, 1H), 4.35 (q, J=7.0 Hz, 2H), 3.213.18 (m, 2H), 

2.812.78 (m, 2H), 2.131.95 (m, 4H), 1.38 (t, J=7.0 Hz, 3H). 13C NMR (100MHz, 
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AcetoneD6)  ppm 195.0, 167.8, 140.7, 135.8, 128.8, 127.8, 125.9, 125.3, 123.6, 113.5, 

61.6, 43.9, 27.8, 26.3, 23.8, 15.3. ESI HRMS calcd. for C16H17NO3 m/z : 271.1208, found 

: 271.1210. 

Synthesis of 3-11d: The bromide was made in accordance with 

the A.N. Kost et al.
45 method in 80 % yield. 1H NMR (400 MHz, 

CDCl3) δ ppm: 9.37 (s, br, lH,), 8.44 (s, 1H),  8.04 (dd, J=8.6 Hz, 

J=1.6 Hz, 1H), 7.40 (d, J=8.6 Hz, 1H), 5.014.98 (m, 1H), 4.40 (q, J=7.0 Hz, 2H), 

3.453.12 (m, 2H), 2.502.45 (m, 3H), 2.202.15 (m, 1H), 1.42 (t, J=7.0 Hz, 3H). 13C 

NMR (100MHz, CDCl3)  ppm 193.8, 189.9, 167.0, 139.1, 132.8, 127.8, 127.3, 126.6, 

124.6, 122.8, 111.7, 60.9, 53.3, 30.5, 30.3, 25.1, 14.4. EI HRMS calcd. for C16H16BrNO3 

m/z : 349.0314, found : 349.0319.  

Synthesis of 3-12d: To a solution of Potassium thioacetate (0.97 

g, 8.50 mmol) in 10 mL dry DMF, was added a solution of 

bromide 3-11d (2.95 g, 8.50 mmol) in 15 mL dry DMF, drop wise 

over a period of 15 min. and stirred at room temperature for 16 h The reaction mixture 

was poured in to 50 mL water and stirred for 20 minutes before filtering the yellow solid, 

corresponding thioacetate. The solid was taken up in 100 mL of acetonitrile solution and 

to this was added Cysteamine.HCl salt (0.95 g, 8.50 mmol) followed by the addition of 

sodium bicarbonate. The contents are stirred for about 24 h and acidified with 10% HCl 

solution and stirred for 2 h to give the title compound as yellowish red solid (90%, 2.29 g, 

7.59). 1H NMR (400 MHz, DMSO-d6) δ ppm: 11.82 (s, br, lH,), 8.34 (s, 1H),  7.87 (d, 

J=8.6 Hz, 1H), 7.46 (d, J=8.6 Hz, 1H), 4.30 (q, J=7.0 Hz, 2H), 4.274.20 (m, 1H), 
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3.283.16 (m, 2H), 3.06-2.95 (m, 1H), 2.402.28 (m, 1H), 2.12-1.94 (m, 3H), 1.33 (t, 

J=7.0 Hz, 3H). 13C NMR (100MHz, DMSO-d6)  ppm 191.3, 166.2, 139.4, 132.5, 126.5, 

126.2, 124.6, 123.9, 121.3, 112.4, 60.4, 47.6, 31.9, 24.4, 23.1, 14.3. ESI HRMS calcd. for 

C16H17NO3 m/z : 303.0929, found : 303.0930. 

Synthesis of 3-13d: Potassium carbonate (1.42 g, 

10.28 mmol) was added to the solution of 3-9c (1.20 

g, 3.42 mmol) and 3-12d (1.04 g, 3.42 mmol) in 

acetonitrile and was stirred for a period of 36 h at 

room temperature. The resulting mixture was poured into water and stirred for 2 h to give 

the brownish red precipitate as product (85%, 1.54 g, 2.91 mmol). 1H NMR (400 MHz, 

DMSO-d6) δ ppm:, 11.82 (s, br, lH), 11.58 (s, br, lH), 8.35 (s, 1H), 7.88 (d, J=8.6 Hz, 

1H),  7.66 (d, J=8.6 Hz, 1H), 7.50-7.41 (m, 2H), 7.29 (t, J=7.4 Hz, 1H), 7.06 (t, J=7.4 

Hz, 1H), 4.31 (q, J=7.0 Hz, 2H), 4.24-4.10 (m, 2H), 4.05-4.00 (m, 1H), 3.08-3.00 (m, 

2H), 2.98-2.62 (m, 2H), 2.40-1.92 (m, 4H), 1.62-1.58 (m, 2H), 1.38-1.25 (m, 6H), 0.80 (t, 

J=7.0 Hz, 3H). 13C NMR (100MHz, DMSO-d6)  ppm 190.0, 187.5, 171.3, 166.3, 139.4, 

136.5, 132.7, 129.9, 127.4, 126.6, 125.7, 124.5, 124.0, 123.8, 121.4, 120.8, 119.7, 112.6, 

112.4, 60.3, 52.0, 31.4, 30.4, 28.6, 24.7, 24.5, 22.8, 22.0, 14.3, 13.9. ESI HRMS calcd. 

for C31H34N2O4S m/z : 530.2239, found : 530.2236.  

Synthesis of 3-14d: To the solution of 3-13d (1.50 

g, 2.83 mmol) in 15 mL DMF was added a solution 

of mCPBA (2.53 g, 11.32 mmol) in 5 mL DMF was 

added dropwise. The reaction mixture was stirred 
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for 12 h and poured into a saturated solution of sodium sulphite and washed with 50 mL 

water. The product was extracted with dichloromethane  and the organic layer was dried 

using MgSO4 The solvent was evaporated to at reduced pressures to give orange 

brownish precipitate (80 %, 1.27 g, 2.26 mmol). 1H NMR (400 MHz, DMSO-d6) δ ppm:, 

11.26 (s, br, lH), 11.22 (s, br, lH), 8.33 (s, 1H), 7.89 (d, J=8.6 Hz, 1H),  7.59 (d, J=8.6 

Hz, 1H), 7.40-7.32 (m, 2H), 7.25 (t, J=7.4 Hz, 1H), 7.02 (t, J=7.4 Hz, 1H), 5.17 (dd, J = 

110.2 Hz, J = 14.5 Hz, 2H), 4.98-4.93 (m, 2H), 4.30 (q, J = 7.0 Hz, 1H), 3.30-2.95 (m, 

4H), 2.60-2.36 (m, 3H), 2.37-2.12 (m, 1H), 1.60-1.55 (m, 2H), 1.40-1.21 (m, 7H), 0.78 (t, 

J=7.0 Hz, 3H). 13C NMR (100MHz, CDCl3 and DMSO-d6 mixture in 1:1 ratio)  ppm 

185.7, 180.9, 166.0, 166.3, 139.4, 136.8, 132.6, 129.7, 127.4, 127.0, 126.8, 126.1, 125.9, 

123.7, 121.5, 120.4, 119.4, 111.9, 111.7, 70.1, 61.1, 59.9, 31.1, 29.8, 25.1, 24.3, 22.7, 

21.7, 20.8, 13.6, 13.3. ESI HRMS calcd. for C31H34N2O6S m/z : 562.2138, found : 

562.2140. 

Synthesis of 3-5b: the title compound is made 

following the general method for synthesis of thiazine 

dioxides in 80 % yield. 1H NMR (400 MHz, DMSO-d6) 

δ ppm:, 11.57 (s, br, lH), 11.43 (s, br, lH), 10.45 (s, br, 

lH), 8.34 (s, 1H), 7.88 (dd, J=8.6 Hz, J=1.6 Hz, 1H),  7.67-7.61 (m, 2H), 7.51 (d, J=8.2 

Hz, 1H), 7.26 (t, J=7.8 Hz, 1H), 7.10 (t, J=7.8 Hz, 1H), 6.17 (s, 1H), 4.35 (q, J=7.0 Hz, 

2H), 3.12 (t, J=7.0 Hz, 2H), 2.95 (t, J=7.8 Hz, 2H), 2.64-2.60 (m, 2H), 2.32-2.24 (m, 

2H), 1.73-1.64 (m, 2H), 1.40-1.30 (m, 7H), 0.85 (t, J=7.0 Hz, 3H). 13C NMR (100MHz, 

DMSO-d6)  ppm 166.5, 138.4, 136.9, 135.9, 132.9, 127.8, 127.6, 127.5, 126.5, 124.4, 

123.3, 121.6, 121.3, 119.7, 119.3, 117.2, 115.8, 111.6, 111.5, 99.5, 79.2, 60.3, 31.3, 30.5, 
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30.2, 23.8, 23.5, 21.9, 20.7, 14.3, 14.0. ESI HRMS calcd. for C31H33N3O4S m/z : 

543.2192, found : 543.2196.   

Synthesis of 3-8b: The light yellow brown title compound was 

made by following the general method for synthesis of Fisher 

Indole synthesis starting with Ethyl 4-aminobenzoate in 85 %. 1H NMR (400 MHz, 

CDCl3) δ ppm:, 9.26 (s, br, lH,), 8.48 (s, 1H), 8.02 (dd, J=8.6 Hz, J=1.6 Hz, 1H), 7.38 (d, 

J=8.6 Hz, 1H),  4.41 (q, J=7.0 Hz, 2H),  2.99 (q, J=7.4 Hz, 2H), 2.68 (s, 3H), 1.43 (t, 

J=7.0 Hz, 3H), 1.29 (t, J=7.4 Hz, 3H). 13C NMR (100MHz, CDCl3)  ppm 193.7, 135.9, 

132.3, 128.9, 126.2, 121.1, 124.7, 120.0, 117.8, 111.8, 34.3, 11.2, 8.0. ESI HRMS calcd. 

for C15H17NO3 m/z : 259.1208, found : 259.1210. 

Synthesis of 3-9b: The yellow brown title compound was made 

by following the general method for synthesis of bromination 

indoles. 1H NMR (400 MHz, DMSO-d6, 298 K)  (ppm) = 11.98 (s, 1H), 8.38 (m, 1H), 

7.88 (m, 1H), 7.51 (m, 1H), 5.50 (q, J= 6.3Hz, 1H), 4.31 (q, J= 7.0Hz, 2H), 2.65 (s, 3H), 

1.82 (d, J=6.3Hz, 2H), 1.34 (t, J=7.0Hz, 3H); 13C NMR (100 MHz, DMSO-d6, 298 K)  

(ppm) = 186.6, 166.2, 138.9, 130.4, 127.4, 126.3, 123.7, 121.6, 121.1, 112.6, 60.4, 45.0, 

19.8, 14.3, 10.4; EI-HRMS (m/z) calculated for C15H16NBrO3: 337.0314, found 

337.0311. 

Synthesis of ethyl 2-(2-bromopropanoyl)-3-methyl-1H-

indole-5-carboxylate: The yellow brown title compound was 

made by following the general method for synthesis of thiols of indoles. 1H NMR (400 

MHz, CDCl3) δ ppm:, 9.67 (s, br, lH,), 8.47 (s, 1H), 8.02 (dd, J = 8.6 Hz, J = 1.6 Hz, 
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1H), 7.39 (d, J = 8.6 Hz, 1H),  4.41 (q, J = 7.0 Hz, 2H),  4.26-4.22 (m, 1H), 2.08 (d, J = 

9.8 Hz, 1H), 2.70 (s, 3H), 1.68 (d, J = 6.6 Hz, 3H), 1.42 (t, J=7.0 Hz, 3H). 13C NMR 

(100MHz, CDCl3)  ppm 190.9, 167.1, 138.8, 131.2, 128.5, 127.4, 124.5, 122.6, 120.1, 

111.6, 60.8, 38.5, 20.8, 14.3, 11.2. ESI HRMS calcd. for C15H17NO3S m/z : 291.0929, 

found : 291.0926.  

 Synthesis of 3-13f: the title compound is made as 

described for compound 3-13d in 80 % yield. 1H 

NMR (400 MHz, CDCl3) δ ppm:, 10.46 (s, br, lH), 

9.17 (s, br, lH), 8.48 (s, 1H), 8.42 (s, 1H),  8.04-8.01 

(m, 1H), 7.68-7.64 (m, 2H), 7.40-7.32 (m, 3H), 7.15-7.11 (m, 1H), 4.47-4.39 (m, 3H), 

4.05 (dd, J = 40.0 Hz, J = 14.5 Hz, 2H), 4.05-4.00 (m, 1H), 3.14-3.09 (m, 2H), 2.68 (s, 

3H), 1.70-1.62 (m, 3H), 1.52-1.43 (m, 6H), 1.29 (t, J=7.0 Hz, 3H), 0.90 (t, J=7.0 Hz, 

3H). 13C NMR (100MHz, CDCl3)  ppm 193.9, 188.2, 167.2, 138.8, 138.2, 136.9, 136.1, 

133.3, 131.6, 129.4, 128.0, 126.9, 126.3, 124.3, 122.8, 122.3, 121.3, 114.3, 111.9, 60.7, 

43.7, 37.3, 35.0, 32.0, 25.5, 22.5, 24.7, 24.5, 22.8, 22.0, 16.2, 14.0, 11.1, 7.8. EI HRMS 

calcd. for C31H34N2O4S m/z : 518.2239, found : 518.2242. 

 Synthesis of 3-14f: the title compound is made 

following the general method for synthesis of 

sulfones in 85 % yield. 1H NMR (400 MHz, CDCl3 

and DMSO-d6 mixture in 1:1 ratio) δ ppm:, 9.29 (s, 

br, lH), 8.48 (s, br, lH), 8.35 (s, 1H), 7.89 (d, J=8.6 Hz, 1H),  7.69 (d, J=8.6 Hz, 1H), 

7.58-7.54 (m, 2H), 7.40-7.28 (m, 1H), 7.14 (t, J=7.4 Hz, 1H), 5.36-5.31 (m, 1H), 4.77 (q, 
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J = 7.0 Hz, 2H), 4.45-4.38 (m, 2H), 3.12-3.08 (m, 2H), 2.69 (s, 3H), 1.86-1.68 (m, 3H), 

1.50-1.38 (m, 6H), 1.29 (t, J = 7.0 Hz, 3H), 0.89 (t, J = 7.0 Hz, 3H). 13C NMR (100MHz, 

CDCl3)  ppm 197.2, 193.6, 164.0, 140.8, 138.7, 136.7, 135.8, 132.6, 131.8, 129.3, 

128.1, 127.8, 125.6, 124.8, 122.9, 121.6, 120.7, 113.8, 110.3, 72.3, 62.1, 60.6, 43.9, 38.2, 

28.4, 24.6, 16.8, 12.7, 11.6, 8.9. ESI HRMS calcd. for C30H34N2O6S m/z : 550.2138, 

found : 550.2141. 

Synthesis of 3-6b: the title compound is made 

following the general method for synthesis of thiazine 

dioxides in 80 % yield. 1H NMR (400 MHz, CDCl3 with 

few drops of DMSO-d6) δ ppm:, 10.93 (s, br, lH), 10.32 

(s, br, lH), 9.79 (s, br, lH), 7.97 (s, 1H), 7.53 (dd, J=8.6 Hz, J=1.6 Hz, 1H),  7.27-7.24 

(m, 1H), 7.04 (d, J=8.2 Hz, 1H), 6.96 (t, J=7.8 Hz, 1H), 6.82 (t, J=7.8 Hz, 1H), 6.70 (t, 

J=7.8 Hz, 1H), 5.59 (s, 1H), 4.00 (q, J=7.0 Hz, 2H), 2.63 (t, J=7.0 Hz, 2H), 1.99 (s, 3H), 

1.77 (s, 3H), 1.38-1.32 (m, 2H), 1.01-1.07 (m, 4H), 0.85 (t, J=7.0 Hz, 3H). 13C NMR 

(100MHz, DMSO-d6)  ppm 166.5, 138.4, 136.9, 135.9, 132.9, 127.8, 127.6, 127.5, 

126.5, 124.4, 123.3, 121.6, 121.3, 119.7, 119.3, 117.2, 115.8, 111.6, 111.5, 99.5, 79.2, 

60.3, 31.3, 30.5, 30.2, 23.8, 23.5, 21.9, 20.7, 14.3, 14.0. EI HRMS calcd. for 

C31H33N3O4S m/z : 543.2192, found : 543.2195. 

Synthesis of 3-10c : The title compound was synthesized as described 

for 3-10d, in 90% yield. IH NMR (AcetoneD6) δ: 10.34 (s, br, 1H), 

7.65 (d, J = 8.2 Hz, 1H), 7.46 (d, J = 8.6 Hz, 1H), 7.27 (t, J = 7.0 Hz, 1H), 7.05 (t, J = 

7.0 Hz, 1H), 3.163.08 (m, 2H), 2.782.70 (m, 2H), 2.041.99 (m, 2H), 1.97-1.88 (m, 
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2H). 13C NMR (100MHz, AcetoneD6)  ppm 195.0, 127.3, 122.4, 121.0, 113.7, 43.9, 

27.9, 26.4, 24.0. EI HRMS calcd. for C13H13NO m/z : 199.0997, found : 199.0992. 

Synthesis of 3-11c: The bromide was made in accordance with the 

A.N. Kost et al. method in 80 % yield. 1H NMR (400 MHz, DMSO-

d6) δ ppm: 11.44 (s, br, lH,), 7.64 (d, J = 8.2 Hz, 1H),  7.27 (t, J = 7.0 Hz, 1H), 7.03 (t, J 

= 7.0 Hz, 1H), 5.225.16 (m, 1H), 3.30-3.18 (m, 2H), 2.482.23 (m, 2H), 2.211.98 (m, 

2H). 13C NMR (100MHz, DMSO-d6)  ppm 187.2, 137.6, 130.1, 126.9, 126.4, 123.5, 

121.3, 119.7, 112.4, 56.8, 32.1, 24.8, 23.0. EI HRMS calcd. for C13H12BrNO m/z : 

277.0102, found : 277.0105. 

Synthesis of 3-12c: The title compound was made following the 

method for synthesis of thiols in 85 % yield. 1H NMR (400 MHz, 

CDCl3) δ ppm: 8.98 (s, br, lH,), 7.65 (d, J = 8.6 Hz, 1H),  7.42-7.32 (m, 2H), 7.18-7.09 

(m, 1H), 4.18-4.10 (m, 2H), 3.283.16 (m, 2H), 3.30-3.00 (m, 2H), 2.52 (d, J = 6.6 Hz, 

1H), 2.45-2.37 (m, 1H), 2.27-2.10 (m, 3H). 13C NMR (100MHz, CDCl3)  ppm 191.9, 

137.3, 130.8, 127.8, 127.1, 124.7, 123.9, 121.4, 120.4, 112.2, 48.0, 31.9, 25.7, 23.6. ESI 

HRMS calcd. for C13H13NOS m/z : 231.0718, found : 231.0721. 

Synthesis of 3-13c: The title compound was 

synthesized by following the method described for 

synthesis of 3-13d in 80 % yield. 1H NMR (400 

MHz, CDCl3) δ ppm:, 11.26 (s, br, lH), 11.03 (s, br, 

lH), 7.65-7.56 (m, 2H), 7.46-7.40 (m, 2H),  7.28-7.20 (m, 2H), 7.08-7.00 (m, 2H), 4.18-

3.86 (m, 2H), 4.05-4.01 (m, 1H), 3.46-3.18 (m, 1H), 3.10-2.85 (m, 3H), 2.82-2.70 (m, 
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1H), 2.37-2.16 (m, 1H), 1.45-1.12 (m, 4H), 0.87 (t, J=7.0 Hz, 3H). 13C NMR (100MHz, 

CDCl3 and few drops of DMSO-d6)  ppm 188.9, 186.2, 136.1, 135.6, 131.7, 130.0, 

128.8, 126.4, 125.9, 124.6, 124.4, 124.0, 122.4, 121.6, 119.5, 118.2, 113.2, 111.2, 50.8, 

41.2, 36.9, 30.5, 29.5, 27.2, 25.0, 23.7, 21.1, 12.7. EI HRMS calcd. for C28H30N2O2S m/z 

: 458.2028, found : 458.2034.  

Synthesis of 3-14c: The title compound was 

synthesized by following the method described for 

general synthesis of sulfones in 85% yield. 1H NMR 

(400 MHz, CDCl3) δ ppm:, 11.82 (s, br, lH), 11.58 

(s, br, lH), 8.35 (s, 1H), 7.88 (d, J=8.6 Hz, 1H),  7.66 (d, J=8.6 Hz, 1H), 7.50-7.41 (m, 

2H), 7.29 (t, J=7.4 Hz, 1H), 7.06 (t, J=7.4 Hz, 1H), 4.31 (q, J=7.0 Hz, 2H), 4.24-4.10 

(m, 2H), 4.05-4.00 (m, 1H), 3.08-3.00 (m, 2H), 2.98-2.62 (m, 2H), 2.40-1.92 (m, 4H), 

1.62-1.58 (m, 2H), 1.38-1.25 (m, 7H), 0.80 (t, J=7.0 Hz, 3H). 13C NMR (100MHz, 

CDCl3 and DMSO-d6 mixture in 1:1 ratio)  ppm 185.7, 180.9, 166.0, 166.3, 139.4, 

136.8, 132.6, 129.7, 127.4, 127.0, 126.8, 126.1, 125.9, 123.7, 121.5, 120.4, 119.4, 111.9, 

111.7, 70.1, 61.1, 59.9, 31.1, 29.8, 25.1, 24.3, 22.7, 21.7, 20.8, 13.6, 13.3. ESI HRMS 

calcd. for C28H30N2O4S m/z : 490.1926, found : 490.1930. 

Synthesis of 3-5a: the title compound is made 

following the general method for synthesis of thiazine 

dioxides in 80 % yield. 1H NMR (400 MHz, DMSO-

d6) δ ppm:, 11.57 (s, br, lH), 11.43 (s, br, lH), 10.45 

(s, br, lH), 8.34 (s, 1H), 7.88 (dd, J=8.6 Hz, J=1.6 Hz, 1H),  7.67-7.61 (m, 2H), 7.51 (d, 
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J=8.2 Hz, 1H), 7.26 (t, J=7.8 Hz, 1H), 7.10 (t, J=7.8 Hz, 1H), 6.17 (s, 1H), 4.35 (q, 

J=7.0 Hz, 2H), 3.12 (t, J=7.0 Hz, 2H), 2.95 (t, J=7.8 Hz, 2H), 2.64-2.60 (m, 2H), 2.32-

2.24 (m, 2H), 1.73-1.64 (m, 2H), 1.40-1.30 (m, 7H), 0.85 (t, J=7.0 Hz, 3H). 13C NMR 

(100MHz, DMSO-d6)  ppm 166.5, 138.4, 136.9, 135.9, 132.9, 127.8, 127.6, 127.5, 

126.5, 124.4, 123.3, 121.6, 121.3, 119.7, 119.3, 117.2, 115.8, 111.6, 111.5, 99.5, 79.2, 

60.3, 31.3, 30.5, 30.2, 23.8, 23.5, 21.9, 20.7, 14.3, 14.0. ESI HRMS calcd. for 

C31H33N3O4S m/z : 543.2192, found : 543.2196.   

Synthesis of 3-13e: the title compound is made as 

described for compound 3-13d in 80 % yield. 1H NMR 

(400 MHz, CDCl3) δ ppm:, 10.06 (s, br, lH), 9.22 (s, br, 

lH), 7.70-7.64 (m, 2H), 7.45-7.32 (m, 4H),  7.16-7.06 

(m, 2H), 4.48 (q, J = 6.6 Hz, 1H), 4.10-3.92 (m, 2H), 3.08-3.02 (m, 2H), 2.67 (s, 3H), 

1.74-1.65 (m, 2H), 1.62 (d, J = 6.6 Hz, 3H), 1.56-1.21 (m, 4H), 0.90 (t, J=7.0 Hz, 3H). 

13C NMR (100MHz, CDCl3)  ppm 189.8, 187.8, 136.7, 136.6, 130.5, 130.1, 128.6, 

128.2, 127.0, 126.5, 126.4, 121.5, 121.1, 120.3, 120.1, 120.0, 112.1, 112.0, 111.9, 43.6, 

37.2, 32.0, 31.4, 25.8, 22.5, 16.5, 14.0, 11.0. EI HRMS calcd. for C27H30N2O2S m/z : 

446.2028, found : 446.2034. 

Synthesis of 3-14e: the title compound is made 

following the general method for synthesis of sulfones 

in 85 % yield. 1H NMR (400 MHz, CDCl3) δ ppm:, 

9.89 (s, br, lH), 9.79 (s, br, lH), 7.66-7.60 (m, 2H), 

7.38-7.27 (m, 4H),  7.17-7.08 (m, 2H), 5.42-5.34 (m, 1H), 4.81 (dd, J = 40.0 Hz, J = 14.5 
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Hz, 2H), 3.08-3.04 (m, 2H), 2.67 (s, 3H), 1.82 (d, J = 6.6 Hz, 3H), 1.68-1.58 (m, 2H), 

1.42-1.30 (m, 4H), 0.87 (t, J = 7.0 Hz, 3H). 13C NMR (100MHz, CDCl3 and a few drops 

of DMSO-d6)  ppm 184.6, 180.2, 137.7, 137.4, 130.8, 130.7, 129.6, 128.5, 128.0, 127.6, 

127.5, 123.4, 121.5, 121.4, 120.6, 120.5, 112.5, 112.4, 65.5, 59.5, 36.5, 25.3, 22.5, 14.0, 

12.3, 10.9. EI HRMS calcd. for C27H30N2O4S m/z : 478.1926, found : 478.1928. 

Synthesis of 3-6a: the title compound is made following 

the general method for synthesis of thiazine dioxides in 80 

% yield. 1H NMR (400 MHz, CDCl3) δ ppm:, 9.16 (s, br, 

lH), 9.02 (s, br, lH), 7.68 (s, br, lH), 7.61-7.56 (m, 2H), 

7.37 (d, J=8.6 Hz, 2H),  7.28-7.23 (m, 2H), 7.20-712 (m, 2H), 5.71 (s, 1H), 2.70-2.64 (m, 

2H), 2.22 (s, 3H), 1.93 (s, 3H), 1.45-1.40 (m, 2H), 1.16-1.00 (m, 4H), 0.72 (t, J=7.0 Hz, 

3H). 13C NMR (100MHz, CDCl3)  ppm 137.6, 136.6, 132.9, 128.2, 124.7, 124.3, 120.5, 

120.2, 120.0, 119.9, 119.6, 114.4, 112.0, 111.7, 31.8, 30.9, 24.5, 22.3, 13.9, 9.5, 8.6. EI 

HRMS calcd. for C27H29N3O2S m/z : 459.1980, found : 459.1984. 
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Chapter 4  

4 Synthesis and Binding Studies of a Complementary DDDAAA 

Complex and a Self-Associated Double-Helical AAADDDDDDAAA 

Complex  

The strongest possible hydrogen bonded complexes arise from the contiguous 

arrangement of the arrays. Numerous examples have been provided and discussed in 

detail in the preceding chapter. Recently, several examples have been developed in our 

research group and reported.1 Among them, of particular interest was the AAADDD 

hydrogen bonded double complex 4-14-2, (Figure 4-1) stabilized by three hydrogen 

bonds that exhibits a very high binding constant (Ka ≥ 105 M-1).2  

          

Figure 4-1 An AAADDD complementary complex with high stability (Ka ≥ 105 M-1) in 

CDCl3. Stick representation of X-ray crystal structure of 4-14-2 displaying the double 

helical arrangement of the complex. 

Donor array 4-1 can be drawn into a solution of non-polar, non-competitive 

solvent CDCl3 in the presence of a molar equivalent of complementary 4-2. 

Unfortunately, the donor array 4-1 alone is completely insoluble in all non-polar solvents 
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examined. This insolubility prevents a proper binding study and thus the evaluation of the 

donor array as a potential monomer in building supramolecular assemblies.  

A potential reason behind the accompanying solubility issue was evident from the 

solid state structure of a similarly insoluble DDD array 4-3a, (Figure 4-2). Array 4-3a (R 

= H) was completely insoluble in non-polar solvents such as CDCl3. Introduction of a 

methyl group for R in 4-3b induced solubility in CDCl3. Presumably this methyl group 

provides enough steric hindrance to avoid the undesirable intermolecular hydrogen bonds 

between the DDD monomers observed in solid state 4-3a.  

      

Figure 4-2 (i) Thiazine dioxide and indole containing DDD arrays. (ii) Crystal structure 

of the insoluble array 4-3a (R = H) displaying the intermolecular hydrogen bonds 

between N-H donors of the thiazine dioxide and indole heterocycles and oxygen 

acceptors of the thiazine dioxide sulfones forming an infinite columnar array.1a  

Following these encouraging results, we considered incorporating an alkyl group 

on the central thiazine dioxide heterocycle to induce solubility in the DDD array 4-1. 

Since the design consists of three thiazine dioxide rings (i.e. stronger hydrogen bonding 

compared to indole donor subunits) it was assumed that the degree of intermolecular 
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interaction might be greater in this particular case. Thus a more demanding steric 

encumbrance than one methyl group was estimated to be necessary to prevent unintended 

intermolecular hydrogen bonding. In the previous chapter, pentyl chains were successful 

in inducing a great degree of solubility and hence an alkyl chain was introduced instead 

of a methyl group on the central thiazine dioxide heterocycle.  

 

Figure 4-3 (i) Ter(thiazine dioxide) based DDD array 4-4 including a hexyl chain 

attached to the central donor heterocycle to induce solubility in CDCl3; (ii) a six-

hydrogen bond self-complementary AAADDD array 4-5.  

Apart from employing entirely contiguous arrays, extremely stable complexes can 

be also be constructed by increasing the number of hydrogen bonds.3,4 As the number of 

hydrogen bonds increases, cooperativity generally results in an increasing association 

constant.5 Taking the successful AADD designs from chapter 2 we wished to test their 

extensibility and resulting binding behavior by a synthesizing six hydrogen bond self-

complementary complex. Toward this end, a six membered AAADDD array was 
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designed to study such a system. Thus, schemes were drawn up to synthesize arrays 4-4 

and 4-5 (Figure 4-3). 

4.1 Synthesis of Alkylated DDD Array 4-4 

 

Scheme 4-1 Synthetic pathway for the preparation of alkylated DDD array 4-4 which 

undergoes complementary helical complex formation with 4-2. Reaction conditions: a) 

K2CO3, CH3CN, 12-16 h; b) 4 eq. UHP, 3 eq. TFAA, CH3CN, 90 minutes; c) 8 eq. 

NH4OAc, AcOH, reflux, 12-16 h; d) formic acid, reflux; e) Na2S.9H2O, H2O, acetone 3 

h; f) 4 eq. UHP, 3 eq. TFAA, CH3CN, 90 minutes (g) 4 portions of 2eq. 1-iodohexane 

and 2eq. DBU, CH3CN, approximately 7 days; (h) 8 eq. NH4OAc, AcOH, reflux, 3days.  
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The synthetic steps involved in preparation of the alkylated donor array are 

largely the same as previously reported.1a The scheme is unaltered until the alkylation of 

sulfone 4-11, followed by the cyclization (Scheme 4-1).  

Some modifications were made in terms of reaction conditions, purifications and 

isolations, thereby giving better results. The condensation of the protected dibromide and 

the 2-mercapto-propiophenone was carried out in the presence of an excess of potassium 

carbonate (3 eq.) and the reaction time was reduced to 12 h (from 2 days as originally 

reported) and extracted with DCM to give clean product. Thioether 4-6, was oxidized 

using urea hydrogen peroxide (UHP) and trifluoro acetic anhydride (TFAA) in a 4:3 ratio 

at room temperature in acetonitrile over 2 h. The product was cleaner compared to the 

one obtained using mCPBA as oxidant, with no side products observed. Cyclization of 

the sulfone was performed in glacial acetic acid in the presence of 6-8 eq. of ammonium 

acetate. Best results are obtained when heated at 100 C to 110 C. Any temperature 

above this leads to cleavage of the cyclized product producing propiophenone. 

The protected bromide 4-8 was deprotected by refluxing the reaction mixture in 

formic acid for approximately an hour. Letting the reaction run for longer times leads to 

formation of the cleaved product again. The deprotected bromide (4-9) was dissolved in 

acetone and added drop wise to an aqueous solution containing a half an equivalent of 

sodium sulfide (nonahydrate) at 0 C and the reaction mixture was stirred at room 

temperature for 3 h to yield thioether 4-10. The change in reagent from sodium hydrogen 

sulfide (original procedure) to sodium sulfide allowed shorter reaction times and resulted 

in cleaner products. Thioether 4-10 was oxidized using the 4:3 UHP/TFAA mixture in 
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acetonitrile. The reaction mixture was extracted with DCM, washed with water and 

sodium bicarbonate solution to yield pure sulfone 4-11, in high yield. The alkylation with 

the hexyl chain was carried out in basic medium using excess DBU6,7 and 1–iodohexane. 

Sterics play a significant role as the alkylation took approximately a week stirring at 

room temperature. Heating the reaction mixture resulted in decomposition. The reaction 

mixture was washed with 10 % HCl solution, extracted with DCM and carried forward to 

the cyclization step8 without any further purification.1a, 9 The final DDD array 4-4 was 

obtained upon treatment of the alkylated sulfone with 6-8 equivalents of ammonium 

acetate at reflux in acetic acid for 3 days. The reaction times were likely a result of sterics 

of the alkyl chain. The final product was purified by preparatory thin layer 

chromatography using 5% CH3OH in CH2Cl2 as eluent.  

4.2 NMR Titration Studies of the AAADDD Array 

The solubility induced by the hexyl chain allowed the execution of binding 

studies and analysis of its complexation with acceptor array 4-2. 1H NMR titrations 

conducted in CDCl3 show significant downfield shifts of the N-H protons of the thiazine 

dioxide heterocycles. Proton peaks corresponding to amine groups, N-Habc are shifted 

from 8.30, 7.86 and 8.12 ppm to 12.76, 11.89 and 12.08 ppm ( = 4.46, 4.03 and 3.96 

ppm) respectively. The large values of downfield chemical shifts are suggestive of very 

strong binding between the participating acceptor and donor arrays. The upfield shifts of 

phenyl ring protons are indicative of either  stacking with the pyridyl rings of 4-2, 

induction due to hydrogen bonding or combination of both the effects. The other peak 

movements are less definitive of particular interactions. 
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Figure 4-4 Stacked plot of the downfield region of the 1H NMR spectra of alkylated 

donor array 4-4, acceptor array 4-2 and the complex 4-44-2 in CDCl3 at room 

temperature. Chemical shift changes of the three thiazine dioxide NH groups, (NH, abc), 

three thiazine ring protons (Th-H, def), phenyl ring protons (Ph, upfield shifts) and 

pyridyl protons (Pyridyl-Hs) are indicated by dotted lines. It is apparent that the addition 

of the hexyl chain solubilizes array 4-4 in CDCl3.  

In our recent report1a the Ka value for complex 4-14-2 was determined to have a 

lower limit2 of 105 M-1 and the Ka value of the complex 4-44-2 was determined using 

NMR titration (performed thrice) to be 1.40 (±0.75) x 105 M-1. 
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Figure 4-5 Titration curve displaying the concentration dependent chemical shifts of the 

amine proton of thiazine dioxide of 4-4 when titrated with 4-2. For clarity only one of the 

three NH protons is shown here.  

Further analysis of the complexation was conducted employing Isothermal Titration 

Calorimetry (ITC).  Titration was carried out in undeuterated HPLC grade chloroform 

(performed three times) and a Ka value of 1.35 (±0.10) x 105 M-1 was determined by 

fitting the data satisfactorily to a 1:1 binding model (Figure 4-4). Analysis of the data 

provides the thermodynamic quantities G = -28.68 (±0.6) kJ mol-1, H = -56.19 (±0.6) 

kJ mol-1 and S = -92.88 J mol-1. We observe that the free energy of complexation is 

enthalpy driven as one would expect for hydrogen bond driven complexation in non-polar 

solution.  
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Figure 4-6 ITC data for the binding of 4-4 and 4-2 in CDCl3 at 22 C. The upper plot 

illustrates the power as a function of time and the bottom plot displays integrated 

enthalpy values as a function of the molar ratio of 4-2 titrated into 4-4. 

Though the Ka value indicates strong complexation, three thiazine dioxides are 

expected to result in formation of a stronger complex probably with a likely binding 

constant approximately an order of magnitude higher. The reason for the attenuation of 

the Ka value in this case may be explained based on the observations from the previous 

chapter, where the inclusion of an alkyl group not only contributed to an increase in 

solubility of the DDD arrays but also a decrease in the association constant by 
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approximately an order of magnitude. It is reasonable to expect a similar effect at work 

here. Applied to the present AAADDD complex we may estimate a Ka value ≥ 1 x 106 

M-1 for the non-alkylated complex 4-14-2. Hence, an extra amount of energy is required 

to bring the DDD array in to right conformation to form the complex. 

4.3 Synthesis of a Double Helical Self-Complementary AAADDD Array 

Although self-complementary complexes have been well studied in literature, 

there are very few examples of six or more hydrogen bond arrays that form self-

complementary complexes. These are highly stable due to the number of hydrogen bonds 

present in the complex. Based on these considerations, a six hydrogen bonding self-

complementary AAADDDDDDAAA system was selected to test the binding strength 

and extensibility of our self-complementary design. 

 

Figure 4-7 A double-helical six hydrogen bonded self-complementary system 4-54-5 

based on thiazine dioxide, indole and pyridine heterocycles. 

The design consists of two lutidines sandwiching a pyridine connected to two 

thiazine dioxides terminated by an indole donor.1b,10 An ester appended indole was 

preferred to enhance the solubility of the complex and also as a mild electron 

withdrawing group for additional stability. Methyl groups of the lutidine heterocycle 
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should increase the electron donating nature of the acceptor components and to induce an 

angular twist to aid in formation of the double helical complex. There are eight attractive 

secondary interactions and two repulsive secondary interactions and so overall the 

stabilizing factors should greatly outweigh the number of destabilizing factors.  

 

Scheme 4-2 Synthetic scheme leading to preparation of acceptor component 4-19. 

Reaction conditions: (a) 5 % Pd(PPh3)4, toluene, reflux 16 h., 85%; (b) 2.4eq. nBuLi, 

THF, -78 C, 2 h. 2.2 eq. SnnBu3Cl, THF, -78 C to 21 C, 80 %; (c) 5 % Pd(PPh3)4, 

toluene, reflux 16 h., 85%; (d) 1.2 eq. Br2, anhy. THF, 16 h., 70%. (e) (i) 1 eq. potassium 

thioacetate, absolute ethanol, 3h. (ii) 1 eq. cysteamine. HCl, acetonitrile, 4 h. 85%.  

The synthesis is straight forward and most of the steps are derived from the 

synthetic schemes of the self-complementary and complementary arrays reported in 

chapter 2 and 3. The acceptor fragment (4-19, Scheme 4-2) was largely synthesized by 

Stille coupling of suitably functionalized heterocycles. Lutidine-N-oxide was 

deprotonated with iPrMgCl11 followed by addition of iodine. A selective 

monohalogenation was observed which stands in contrast to the reaction performed using 
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alkyllithium, which gave mainly dihalogenated products. 2-Bromo-6-tri-n-butylstannyl 

pyridine (synthesized according to literature)12 and 2-iodo-3,5-lutidine were coupled 

under standard Stille coupling conditions in the prescence of 5% tetrakis 

(triphenylphosphine)palladium to yield fine crystals of 4-14. The dimethyl substituted 

halo bipyridine was lithiated using nBuLi at -65 C and after stabilizing the lithium 

intermediate (dark brown color) tributyltin chloride was added at -78 C. The pale yellow 

organo-tin compound 4-15, was coupled to halide 4-16 using standard Stille conditions. 

The resulting 4-17 was brominated in anhy. THF solution using 1.2 eq. of bromine 

solution in the presence of a lewis acid (AlCl3). Thioacetate was obtained from 

compound 4-18, by employing potassium thioacetate which was hydrolysed using 

cysteamine.HCl to produce a pale yellow solid, 4-19. Though the reactions are simple to 

execute, almost every step required purification either by chromatography or 

recrystallization in ethanol.   

-Bromoacylindole 4-20 (Scheme 4-3), was relatively simple to synthesize13 with 

no requirement for purification by column chromatography or recrystallization to produce 

pure material. The synthesis of this component was performed in a similar manner as 

described in scheme 4-1. The bromide was converted to the corresponding thiol which 

was condensed with the protected dibromide 4-21 to form thioether 4-23. The thioether 

was oxidized and cyclized to produce protected intermediate 4-25. Deprotection of 4-25 

was carried out in formic acid yielding 4-26 as a brownish white powder. Synthesis of 

donor fragment 4-26 utilized methods developed in the previous chapters. 
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Scheme 4-3 Synthetic scheme leading to 4-26. Reaction conditions: (a) (i) 1 eq. 

potassium thioacetate, absolute ethanol, 3h. (ii) 1 eq. cysteamine. HCl, acetonitrile, 4 h. 

80 %; (b) 3 eq. potassium thioacetate, acetonitrile, 12 h. 80 %; (c) 4 eq. UHP, 3 eq. 

TFAA in acetonitrile, 90 minutes, 85% (d) 6-8 eq. ammonium acetate, glacial acetic acid, 

reflux 16 h., 85%; (e) formic acid (20 mL for per gram) reflux 1 h., 90%.  

 

Scheme 4-4 Synthetic scheme leading to preparation of 4-5 and its homodimer. Reaction 

conditions: (a) 1 eq. 2,6-lutidine, MeCN, 3 h., 70%; b) 4 eq. urea hydrogen peroxide, 3 

eq. TFAA, MeCN, 90 minutes, 85%; c) 6 eq. NH4OAc, AcOH, reflux 18-36 h., 65%. 
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The final steps of the synthesis connected the acceptor and donor fragments 4-19 and 4-

26 in the presence of a mild base such as 2,6-lutidine. The thioether was then oxidized 

using UHP/TFAA in the ratio of 4:3 equivalents and cyclized under acidic conditions 

using 6-8 equivalents of ammonium acetate to give the final array 4-5. 

4.4 Self-Association of the Double-Helical AAADDDDDDAAA Complex 

 

Figure 4-8 1H NMR spectrum of the double-helical AAADDDDDDAAA 4-54-5 

Complex, in 1.0 x 10-3 M solution of CDCl3 at room temperature.  

Multiple arrays usually display extremely strong binding propensities during complex 

formation in solution phase.4a,14 Often the dimerization constants (Kdimer) exceed the 

upper limit of values that can be measured through NMR dilution studies. The self-

assembly of the AAADDD array displays exceptionally strong binding behaviour in 

CDCl3 solution (Figure 4-8) as the peaks corresponding to the three protons of N-H peaks 
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(at 13.86, 12.43 and 11.80 ppm) show no movement upfield over a range NMR dilutions 

starting from 3.2 mM to 1 M, suggesting extremely strong dimerization of the array.  

 

Figure 4-9  1H NMR dilution curve of array 4-5 with a Kdimer value of 1.2 x 104 M-1, 

calculated from fitting of the data to a 1:1 dimerization model with 5% DMSO in CDCl3. 

Though a definitive binding constant cannot be determined in CDCl3, a Kdimer with 

a lower limit of 4.5 x 107 M-1 can be calculated with a conservative assumption of 10% 

dissociation at 1 M. However, a definitive Kdimer value of 1.2 (0.1) x 104 M-1 was 

obtained by performing the dilution in 5% DMSO (a highly competitive solvent) in 

CDCl3 solution (v/v) (figure 4-9). The mixed solvent experiment was carried out to 

estimate the dimerization values and compare them with the literature dimerization 

strengths of complexes with similar reported Kdimer values. Despite significant 

competition from 5% DMSO-d6 the fact that the array still forms a stable dimer indicates 

extreme binding strength of the array in the absence of competitive solvents. When 
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compared to the literature4b,15 (with four three center hydrogen bonds, Figure 4-10), the 

Kdimer value of the array can be few orders of magnitude higher than the calculated lower 

limit Kdimer value (4.5 x 107 M-1).  

 

Figure 4-10 Examples of dimers with their definitive Kdimer values determined in 5% 

DMSO (v/v)/CDCl3 solvent mixture. 

4.5 Conclusion 

Complementary and self-complementary arrays were synthesized which display 

exceptionally strong hydrogen bonding based complexation studied employing NMR and 

ITC titrations. Their extreme strengths (Kdimer on the orders of 105 and 107 M-1) and high 

binding constants are direct result of the attractive secondary interactions and also the 

number of hydrogen bonded heterocycles. Also these systems demonstrate the 

extendibility of our donor and acceptor heterocycles into longer oligomeric chains and 

may potentially be employed in the construction of supramolecular polymers and smart 

materials.  
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4.6 Experimental 

General. All experiments were performed under an atmosphere of nitrogen unless 

otherwise indicated. Chemicals were purchased from Aldrich and Alfa aesar and used as 

received. Solvents (THF, hexanes, dichloromethane, toluene and diethyl ether) were 

obtained from Caledon Laboratories and dried using an Innovative Technology Inc. 

Controlled Atmospheres Solvent Purification System that utilizes dual alumina columns 

(SPS-400-5), or purchased from Aldrich and used as is. Reactions were monitored by thin 

layer chromatography (TLC) performed on EM 250 Kieselgel 60 F254 silica gel plates. 

Column chromatography was performed with 240-400 mesh silica gel-60. Nuclear 

magnetic resonance spectra were recorded on an INOVA and Mercury 400 MHz 

spectrometer (13C = 100.52 MHz). Proton and 13C{1H} NMR spectra were referenced 

relative to Me4Si using the NMR solvent (1H: CHCl3,  = 7.26 ppm, C3HD5O,  = 2.05 

ppm,; 13C{1H}: CHCl3,  = 77.16 ppm, C3HD5O,  = 29.84, 206.26 ppm). Solvents for 

1H NMR spectroscopy (chloroform-D, acetone-D6, DMSO-D6) were purchased from 

Cambridge Isotope Laboratories. Mass spectra were recorded using an, electron 

ionization Finnigan MAT 8200 mass spectrometer and PE-Sciex API 365. X-ray 

diffraction data were collected on a Bruker Nonius Kappa CCD X-ray diffractometer 

using graphite monochromated Mo-K radiation ( = 0.71073 Å). 

 

4.6.1 Isothermal Titration Calorimetry Procedure 

Isothermal titration calorimetry experiments were carried out using a Microcal VP-ITC 

microcalorimeter.  The sample cell was charged with a 2.0 x 10-4 M solution of the donor 
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(4-1) dissolved in dry CHCl3 (4Å mol. sieves) and the reference cell with the same pure 

solvent.  The injector syringe was loaded with a 2 x 10-3 M solution of the acceptor 

dissolved in dry CHCl3.  The instrument was equilibrated for 1 hour and then a series of 

40 x 5 µL injections were executed.  A similar experiment was executed with a neat 

CHCl3 solution in the sample cell (i.e. no host present) and this background run was 

subtracted from the analogous run containing host to give a corrected data set.  The data 

was then integrated and fit satisfactorily to a 1:1 binding model.  Each set of experiments 

was repeated three times to arrive at the average value and error quoted. 

4.6.2 Synthetic Procedures 

Synthesis of 4-6: Phenylpropiothiol (4.15 g, 25.00 mmol) 

and 1,4-Dibromo-3,3-dimethoxybutan-2-one (1) (7.25 g, 

25.00 mmol) were dissolved in CH3CN (75 mL) and 

potassium carbonate (10.36 g, 75 mmol) was all added at once. The reaction mixture was 

stirred for 12 h before the slurry was filtered through celite, and the filtrate was 

concentrated under reduced pressure to give pure product, yellowish brown oil (9 g, 

96%).  1H NMR (400 MHz, CDCl3) δ ppm 8.02 (d, J = 7.2 Hz, 2H), 7.57 (t, J= 7.5 Hz, 

1H), 7.47 (t, J= 7.8 Hz, 2H), 4.52 (q, J = 6.8 Hz, 1H), 3.73 (m, 2H), 3.47 (s, 2H), 3.27 (s, 

3H), 3.23 (s, 3H), 1.55 (d, J = 7.0 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ  ppm  202.6, 

196.2, 135.1, 132.9, 128.4, 128.3, 101.7, 50.0, 49.8, 41.2, 37.6, 29.4, 16.4; EI HRMS 

calculated for C15H19BrO4S m/z : 375.0266, found 375.0272. 

Synthesis of 4-7: To a 50 mL solution of acetonitrile, solid 

urea hydrogen peroxide (UHP) (8.52 g, 90.66 mmol) was 



205 

 

added followed by drop wise addition of TFAA (9.7 mL, 68.00 mmol). The reagent 

mixture was stirred to dissolve UHP and the mixture was added dropwise to a 50 mL 

acetonitrile solution of 4-6 (8.5 g, 22.66 mmol). The mixture was stirred vigorously for 

90 minutes.  The reaction solution was quenched with ice cold water, extracted with 

DCM (3 × 30 mL).  The combined organic layers were washed with water and dried over 

anhydrous MgSO4.  The crude product was concentrated under reduced pressure to give 

the pure waxy orange product in 95% (8.70 g, 21.53 mmol).  1H NMR (400 MHz, 

CDCl3) δ ppm 8.03 (d, J = 8.2 Hz, 2H), 7.64 (t, J = 7.7 Hz, 1H), 7.52 (t, J = 7.7 Hz, 2H), 

5.47 (q, J = 7.2 Hz, 1H), 4.68-4.64 (m, 2H), 3.47-3.43 (m, 2H), 3.32 (s, 3H), 3.26 (s, 3H), 

1.75 (d, J = 7.2 Hz, 3H). 13C NMR (100 MHz, CDCl3) δ ppm 199.1, 193.5, 135.3, 134.4, 

129.0, 109.8, 101.6, 64.2, 59.2, 50.4, 40.2, 28.9, 12.3; EI HRMS calculated for 

C15H19BrO6S m/z : 407.0164; found 407.0157. 

Compounds 4-8, 4-9 are synthesized as according to the procedures mentioned in our 

recent publication.1a 

Synthesis of 4-10: To an aqueous solution 

of sodium sulfide (nonahydrate) (1.41 g, 

5.87 mmol) a solution of 4-9 (4.00 g, 11.73 

mmol) in 35 mL of acetone was added drop wise at 0 C. The reaction mixture was 

brought to room temperature and was stirred for 3 h to give the condensed product. The 

reaction mixture was poured into 100 mL of ice cold water and acidified with 10% HCl 

solution, extracted with 3 x 30 mL of DCM. The organic layers were combined, dried 

over MgSO4 and concentrated under reduced pressure to yield the desired product in 90% 

(2.93 g, 10.96 mmol). 1H NMR (400 MHz, CDCl3) δ ppm 7.96 (s, 2H), 7.46 (m, 6H), 
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7.35 (m, 4H), 6.77 (s, 2H), 3.93 (s, 4H), 2.02 (s, 6H); 13C NMR (100 MHz, CDCl3) δ 

ppm 188.9, 139.5, 134.9, 132.9, 130.3, 129.1, 128.4, 110.9, 104.2, 35.8, 8.7; EI HRMS 

calculated for C26H24N2O6S3 m/z : 556.0796; found 556.0781. 

Synthesis of 4-11: The title compound 4-11 

was synthesized following the same 

procedure outlined for the synthesis of 4-7 

in 80 %. 1H NMR (400 MHz, CDCl3) δ ppm 8.03 (s, 2H), 7.50-7.40 (m, 6H), 7.38-7.28 

(m, 4H), 6.89 (s, 2H), 5.00 (s, 4H), 2.04 (s, 6H); 13C NMR (100 MHz, CDCl3) δ ppm 

194.3, 142.6, 135.7, 133.3, 131.9, 129.7, 128.1, 111.2, 105.6, 61.7, 9.1; EI HRMS 

calculated for C26H24N2O8S3 m/z : 588.0695; found 588.0702. 

Synthesis of 4-4: To a solution of 4-11 (1.50 g, 

2.55 mmol) in 40 mL acetonitrile, DBU (0.76 

mL, 5.10 mmol) was added drop wise followed 

by slow addition of 1-iodohexane (0.75 mL, 

5.10 mmol). The base and reagent was added 

several times during the course of reaction to drive it towards product formation. After 

stirring the reaction mixture approximately a week, the reaction went to completion and 

the reaction mixture was quenched with 10% aqueous HCl solution and poured into 100 

mL ice cold water and stirred for 12 h. The resulting precipitate was vacuum filtered, 

dried and carried forwards to cyclization reaction. To the crude residue solution in 15 mL 

of glacial acetic acid, 8 eq. of ammonium acetate was added in single portion and 

refluxed for approximately 3 days and the reaction mixture was cooled to room 

temperature and poured into 100 mL of ice cold solution and stirred for 2 h. The solids 
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were collected under vacuum filtration and the dried crude was purified by flash column 

chromatography using 5% methanol in DCM as eluent yielding pale yellow solid in 

overall 50 % (for two steps, 0.82 g, 1.25 mmol). 1H NMR (400 MHz, CDCl3) δ ppm 8.30 

(s, 1H), 8.12 (s, 1H), 7.86 (s, 1H), 7.54-7.35 (m, 10H), 6.79 (s, 1H), 6.64 (s, 1H), 5.72 (s, 

1H), 2.56 (t, J = 7.0 Hz, 2H), 2.32 (s, 3H), 2.21 (s, 3H), 1.52-1.38 (m, 2H), 1.12-0.89 (m, 

6H), 0.72 (t, J = 7.0 Hz, 3H). 13C NMR (100 MHz, CDCl3) δ ppm 155.8, 155.3, 154.6, 

147.8, 146.6, 146.0, 135.9, 134.6, 128.3, 18.0, 127.8, 118.1, 108.9, 107.3, 102.4, 102.0, 

100.6, 32.4, 29.6, 26.8, 22. 3, 21.6, 14.7, 9.1, 8.9; EI HRMS calculated for C32H35N3O6S3 

m/z : 653.1688; found 653.1696. 

Synthesis of 4-13: The title compound was synthesized according to the 

method developed by Almqvist,11 and deoxygenated using phosphorous 

trichloride as described previously, in overall 80 % yield. The 1H, 13C NMR studies 

matches with the known compound.16 

Synthesis of 2-bromo-6-(tributylstannyl)pyridine
12a

: A solution 

of 2,6-dibromopyridine (3.00 g, 12.66 mmol) in anhy. THF was 

added drop wise to a solution nBuLi (1.2 eq. 15.19 mmol) at -10 C. After the mixture 

was stirred for 45 minutes, at the same temperature, the  orange solution was further 

cooled to -75 C and treated with a solution of tributyltin chloride (1.2 eq., 3.32 mL, 

15.19 mmol). After 1 h at -78 
C, the reaction mixture was warmed to room temperature. 

Hydrolysis was carried at 0 C with water (20 mL). The organic layer was then extracted 

with diethylether (2x15 mL) and dried over MgSO4, and the solvents were evaporated 

under vacuum. The crude product was then purified by column chromatography with 
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hexanes:EtOAc, 4:1 mixtures as eluents giving pure product as yellow liquid in 90% 

(5.10 g, 11.39 mmol). The NMR spectral studies match with the reported literature 

values.12b 

Synthesis of 4-14: 2-bromo-6-tri-n-butylstannylpyridine (3.50 g, 

7.83 mmol) and 2-iodo-3,5-lutidine (1.82 g, 7.83 mmol) were  

dissolved in anhy. toluene under nitrogen and refluxed in the 

presence of 5% Pd(PPh3)4 (0.45 g, 0.39 mmol) for about 16 h and filtered. After 

removing the solvent under reduced pressure, flash column chromatography was done on 

the residue, using 1 : 1 ; EtOAc : Hexanes, as eluent system, yielded white needle like 

crystals (85%, 1.74 g, 2.01 mmol). 1H NMR (400 MHz, CDCl3) δ ppm 8.33 (s, 1H), 7.84 

(d, J = 7.8 Hz, 1H), 7.65 (t, J = 7.8 Hz, 1H), 7.46 (d, J = 7.8 Hz, 1H), 7.41 (s, 1H), 2.53 

(s, 3H), 2.35 (s, 3H); 13C NMR (100MHz,)  CDCl3 156.3, 154.1, 147.6, 142.4, 140.2, 

135.6, 133.3, 130.9, 128.3, 126.2, 122.7, 19.8, 18.7. EI HRMS calcd. for C12H11BrN2 m/z 

: 262.0106, found : 262.0110. 

Synthesis of 4-15: The title compound was synthesized 

follwing the same method as described for synthesis of 2 in 

80 % yield. The product was purified by flash column 

chromatography using 25:1 ratio of hexanes to ethyl acetate producing a pale yellow 

colour solution. 1H NMR (400 MHz, CDCl3) δ ppm 8.33 (s, 1H), 7.71 (d, J = 8.2 Hz, 

1H), 7.60 (t, J = 8.2 Hz, 1H), 7.40 (s, 1H), 7.35 (d, J = 7.0 Hz, 1H), 2.55 (s, 3H), 2.35 (s, 

3H), 1.66-1.52 (m, 4H), 1.40-1.27 (m, 10H), 1.15-1.08 (m, 4H), 0.89-0.85 (m, 9H); 13C 

NMR (100MHz,)  CDCl3 168.4, 155.7, 154.9, 146.4, 138.7, 136.3, 132.5, 128.1, 126.8, 
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120.2, 27.3, 27.2, 26.2, 26.1, 19.9, 18.2, 16.2, 16.0, 14.0, 13.9. EI HRMS calcd. for 

C24H38N2Sn m/z : 474.2057, found : 474.2061. 

Synthesis of 4-17: The title compound was synthesized 

follwing the same method as described for synthesis of 

3 in 85% yield. The white crude solid was subjected to 

flash column chromatography using 1 : 1 ; EtOAc : Hexanes, as eluent system, yielded 

white needle like crystals. 1H NMR (400 MHz, CDCl3) δ ppm 8.37 (s, 1H), 7.99-7.91 (m, 

1H), 7.84 (d, J = 8.2 Hz, 1H), 7.60-7.54 (m, 1H), 7.46 (s, 1H), 7.35-7.28 (m, 1H), 3.29 (q, 

J = 7.4 Hz, 2H), 2.60 (s, 6H), 2.51 (s, 3H), 2.36 (s, 3H), 1.20 (t, J = 7.4 Hz, 3H); 13C 

NMR (100MHz,)  CDCl3 204.8, 157.7, 157.0, 153.7, 152.3, 148.7, 147.0, 143.4, 139.8, 

138.7, 137.1, 135.7, 134.6, 133.6, 132.5, 131.7, 129.8, 1276.8, 123.2, 122.9, 32.9, 20.6, 

20.1, 19.8, 18.0, 8.1. EI HRMS calcd. for C22H23N3O m/z : 345.1841, found : 345.1844. 

Synthesis of 4-18: White crystalline needles of 7 (1.6 

g, 4.78 mmol) were dissolved in 50 mL of anhy. THF 

followed by addition of 2% AlCl3 under nitrogen. 

Bromine solution, (0.26 mL, 5.72 mmol) was added drop wise to the reaction mixture 

over 15 minutes. The reaction mixture was stirred for 16 h. and was washed with sodium 

bicarbonate solution followed by extraction with 2x30 mL of dichloromethane. The 

organic layers were combined washed with 2x30 mL of water and dried over MgSO4. The 

solvent is removed by roto-vaporation and subjected to flash column chromatography 

using EtOAc : DCM; 1: 9, as eluent system. The product was obtained in the form of 

yellowish white crystals (70 %, 1.41 g, 3.31 mmol). 1H NMR (400 MHz, CDCl3) δ ppm 

8.36 (s, 1H), 8.00-7.93 (m, 2H), 7.85 (d, J = 8.2 Hz, 1H), 7.51 (s, 1H), 7.42 (s, 1H), 6.18 
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(q, J = 6.4 Hz, 1H), 2.62 (s, 3H), 2.61 (s, 3H), 2.50 (s, 3H), 2.36 (s, 3H), 1.88 (d, J = 6.4 

Hz, 3H); 13C NMR (100MHz,)  CDCl3 195.7, 157.6, 157.0, 156.7, 153.5, 152.5, 147.0, 

143.5, 139.8, 137.2, 136.7, 132.6, 131.7, 123.4, 120.1, 43.6, 20.7, 20.1, 19.8, 19.5, 18.0. 

EI HRMS calcd. for C22H22BrN 3O m/z : 423.0946, found : 423.0952. 

Synthesis of 4-19: To a solution of potassium 

thioacetate (0.37 g, 3.20 mmol) dissolved in 25 mL of 

anhydrous ethanol was added a solution of the 

bromide 7 (1.35 g, 3.20 mmol) dissolved in 25 mL of anhydrous Ethanol drop wise over 

a period of 5 minutes. The reaction mixture was stirred for 4 h and solid contents were 

filtered through celite. The mixture was extracted with 3x15 mL of diethylether and the 

solids were again filtered through celite to give pure thioacetate of 7. The organic layers 

were combined and concentrated by rotary evaporation, to obtain the thioacetate. The 

crude thioacetate was dissolved in 75 mL of dry DCM and an equivalent of cysteamine 

hydrochloride was added to the solution followed by addition of an equivalent of sodium 

bicarbonate under nitrogen blanket. The reaction mixture was stirred for 3 h and the 

reaction was quenched by 10% hydrochloride solution followed by the addition of 100 

mL of water. Then, 3 x 40 mL of DCM was used to extract the organic layers and washed 

with 3 x 50 mL of water before the organic layers were pooled and dried over MgSO4. 

Reduction of solvent was carried out under reduced pressure to yield the title compound 

4-19 (1.02 g, 2.27 mmol, 85% overall yield) as a pale yellow solid. 1H NMR (400 MHz, 

CDCl3) δ ppm 8.41 (s, 1H), 8.00-7.92 (m, 2H), 7.92-7.85 (m, 1H), 7.51 (s, 1H), 7.50 (s, 

1H), 5.20-5.15 (m, 1H), 2.64 (s, 3H), 2.61 (s, 3H), 2.53 (s, 3H), 2.39 (s, 3H), 2.01 (d, J = 

8.2 Hz, 1H), 1.59 (d, J = 7.0 Hz, 3H); 13C NMR (100MHz,)  CDCl3 199.4, 158.3, 150.7, 
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148.3, 147.2, 144.0, 139.5, 138.5, 136.8, 136.4, 136.2, 126.1, 125.1, 42.4, 36.5, 20.7, 

19.7, 19.5, 18.2. EI HRMS calcd. for C22H23N 3OS m/z : 377.1562, found : 377.1566. 

Synthesis of 4-20: The yellow brown title compound was made 

in accordance with the A.N. Kost et al.
13b method in 80 % yield 

1H NMR (400 MHz, DMSO-d6, 298 K)  (ppm) = 11.98 (s, 1H), 8.38 (m, 1H), 7.88 (m, 

1H), 7.51 (m, 1H), 5.50 (q, J= 6.3Hz, 1H), 4.31 (q, J= 7.0Hz, 2H), 2.65 (s, 3H), 1.82 (d, 

J=6.3Hz, 2H), 1.34 (t, J=7.0Hz, 3H); 13C NMR (100 MHz, DMSO-d6, 298 K)  (ppm) = 

186.6, 166.2, 138.9, 130.4, 127.4, 126.3, 123.7, 121.6, 121.1, 112.6, 60.4, 45.0, 19.8, 

14.3, 10.4; EI-HRMS (m/z) calculated for C15H16NBrO3: 337.0314, found 337.0311. 

Synthesis of 4-21: The yellow brown title compound was 

made by following the general method for synthesis of 

thiols in 80 % described in the previous chapter. 1H NMR 

(400 MHz, CDCl3) δ ppm:, 9.67 (s, br, lH,), 8.47 (s, 1H), 8.02 (dd, J = 8.6 Hz, J = 1.6 

Hz, 1H), 7.39 (d, J = 8.6 Hz, 1H),  4.41 (q, J = 7.0 Hz, 2H),  4.26-4.22 (m, 1H), 2.08 (d, J 

= 9.8 Hz, 1H), 2.70 (s, 3H), 1.68 (d, J = 6.6 Hz, 3H), 1.42 (t, J=7.0 Hz, 3H). 13C NMR 

(100MHz, CDCl3)  ppm 190.9, 167.1, 138.8, 131.2, 128.5, 127.4, 124.5, 122.6, 120.1, 

111.6, 60.8, 38.5, 20.8, 14.3, 11.2. EI HRMS calcd. for C15H17NO3S m/z : 291.0929, 

found : 291.0926.  

 

Synthesis of 4-23: The title compound was 

synthesized following the same method as 
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described for synthesis of 4-6 in 80 % yield. 1H NMR (400 MHz, CDCl3) δ ppm 10.06 (s, 

1H), 8.47 (s, 1H), 8.07-8.00 (m, 1H), 7.48-7.36 (m, 1H), 4.41 (q, J = 7.0 Hz, 2H), 4.30 (q, 

J = 6.6 Hz, 1H), 3.90 (dd, J = 97.9 Hz, J = 18.0 Hz, 2H), 3.56-3.47 (m, 2H), 3.30 (s, 3H), 

3.26 (s, 3H), 2.68 (s, 3H), 1.57 (d, J = 6.6 Hz, 3H), 1.42 (t, J = 7.0 Hz, 3H); 13C NMR 

(100 MHz, CDCl3 and DMSO-d6, 1:1 ratio) δ  ppm  190.4, 180.5, 168.3, 137.2, 131.6, 

126.8, 126.1, 124.2, 121.1, 119.6, 112.5, 59.7, 49.8, 36.6, 28.5, 24.1, 23.7, 18.2, 14.7, 8.9. 

EI HRMS calcd. for C21H26BrO6S m/z : 499.0664; found 499.0669.  

Synthesis of 4-24: The title compound was 

synthesized following the same method as 

described for synthesis of 4-7 in 85% yield. 1H 

NMR (400 MHz, CDCl3) δ ppm 9.63 (s, 1H), 8.46 

(s, 1H), 8.06-7.97 (m, 1H), 7.43-7.36 (m, 1H), 5.31 (q, J = 6.6 Hz, 1H), 4.68 (s, 2H), 4.40 

(q, J = 7.0 Hz, 2H), 3.46-3.41 (m, 2H), 3.31 (s, 3H), 3.26 (s, 3H), 2.76 (s, 3H), 1.79 (d, J 

= 6.6 Hz, 3H), 1.42 (t, J = 7.0 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ  ppm  198.7, 

184.8, 166.9, 139.3, 131.9, 128.3, 128.0, 126.8, 124.6, 119.4, 112.0, 101.5, 66.0, 60.8, 

50.4, 50.1, 34.2, 28.9, 14.3, 10.9. EI HRMS calcd. for C21H26BrO8S m/z : 531.0563; 

found 531.0565. 

Synthesis of 4-25: The title compound was 

synthesized following the same method as described 

for synthesis of 4-8 in 85% yield. 1H NMR (400 

MHz, CDCl3) δ ppm 9.23 (s, 1H), 8.85 (s, 1H), 8.48 (s, 1H), 8.07-7.95 (m, 1H), 7.45-7.39 

(m, 1H), 6.04 (s, 1H), 4.40 (q, J = 7.0 Hz, 2H), 3.55 (s, 2H), 3.29 (s, 6H), 2.36 (s, 3H), 

2.14 (s, 3H), 1.42 (t, J = 7.0 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ  ppm  164.3, 150.3, 
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147.7, 136.2, 131.4, 130.4, 127.8, 126.8, 121.5, 116.3, 111.4, 100.1, 66.0, 61.2, 52.6, 

50.1, 35.2, 28.9, 14.3, 10.9, 8.1. EI HRMS calcd. for C21H25BrN2O6S m/z : 512.0617; 

found 512.0620. 

Synthesis of 4-26: The title compound was 

synthesized following the same method as 

described for synthesis of 4-9 in 90% yield. 1H 

NMR (400 MHz, CDCl3) δ ppm 9.31 (s, 1H), 9.26 

(s, 1H), 8.46 (s, 1H), 8.04-7.95 (m, 1H), 7.42-7.38 (m, 1H), 6.66 (s, 1H), 4.40 (q, J = 7.0 

Hz, 2H), 4.30 (s, 2H), 2.32 (s, 3H), 2.15 (s, 3H), 1.42 (t, J = 7.0 Hz, 3H); 13C NMR (100 

MHz, CDCl3) δ  ppm  197.8, 164.3, 153.8, 148.2, 134.3, 131.6, 130.4, 127.1, 126.5, 

121.4, 116.3, 114.5, 112.8, 111.8, 110.4, 62.5, 30.1, 14.3, 11.2, 8.6. EI HRMS calcd. for 

C21H25BrN2O6S m/z : 512.0617; found 512.0620. 

Synthesis of 4-27: To the 

thiol (1.00 g, 2.65 mmol) (4-

19) solution in 25 mL of 

anhy. DCM, the solution of bromide (4-26) (1.24 g, 2.65 mmol) in 40 mL anhy. DCM 

was added drop wise at 0 C. After the addition the reaction mixture was brought to room 

temperature and after half an hour of stirring, 2,6-lutidine (0.32 mL, 2.75 mmol) was 

added and stirred for a period of 2 h. The reaction was quenched using 10% aqueous HCl 

solution and extracted using 2 x 20 mL of DCM and the organic layers were combined, 

dried over MgSO4. The dried DCM layer was evaporated under reduced pressure 

yielding a yellow sticky compound. Flash column chromatography carried on the 

thioethers crude using 2% methanol in DCM as eluent system afforded white solid in 
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70% yield (1.42 g, 1.86 mmol). 1H NMR (400 MHz, CDCl3) δ ppm 11.15 (s, 1H), 8.68 

(s, 1H), 8.32-8.26 (m, 2H), 7.95-7.80 (m, 2H), 7.72 (d, J = 7.8 Hz, 1H), 7.60 (d, J = 7.8 

Hz, 1H), 7.43 (s, 2H), 7.25-7.21 (m, 1H), 6.26 (s, 1H), 5.24-5.17 (m, 1H), 4.40 (q, J = 7.0 

Hz, 2H), 3.68 (dd, J = 99.5 Hz, J = 15.6 Hz, 2H), 2.58 (s, 3H), 2.43 (s, 3H), 2.34 (s, 6H), 

2.18 (s, 3H), 2.03 (s, 3H), 1.46 (d, J = 7.4 Hz, 3H), 1.42 (t, J = 7.0 Hz, 3H); 13C NMR 

(100MHz,)  CDCl3 198.6, 188.8, 167.5, 156.4, 153.1, 150.9, 147.2, 146.2, 143.7, 138.8, 

136.9, 136.4, 135.8, 133.4, 131.7, 127.7, 126.5, 124.6, 123.5, 123.0, 122.4, 122.1, 114.4, 

113.6, 111.1, 102.8, 60.7, 41.7, 35.4, 21.0, 20.3, 19.7, 19.3, 18.0, 16.5, 14.4, 9.1. EI 

HRMS calcd. for C41H41N5O6S2 m/z : 763.2498, found :763.       

Synthesis of 4-28: To a 

solution of 4-27 (1.20 g, 

1.57 mmol) in 30 mL of 

acetonitrile, a mixture of UHP (0.60 g, 6.29 mmol) and TFAA (0.70 mL, 4.72 mmol) 

dissolved in 10 mL of acetonitrile was added drop wise and the reaction was stirred at 

room temperature for 90 minutes. The reaction mixture was poured in a beaker 

containing 100 mL of ice cold water and stirred to precipitate the yellowish white product 

in 85% yield (1.00 g, 1.33 mmol). 1H NMR (400 MHz, CDCl3) δ ppm 10.61 (s, 1H), 9.90 

(s, 1H), 8.34 (s, 1H), 8.18-8.12 (m, 2H), 7.97-7.90 (m, 1H), 7.78 (d, J = 7.8 Hz, 1H), 7.69 

(d, J = 7.8 Hz, 1H), 7.58 (s, 1H), 7.56 (s, 1H), 7.34-7.30 (m, 1H), 6.31 (s, 1H), 6.28-6.22 

(m, 1H), 4.68 (dd, J = 124.5 Hz, J = 15.6 Hz, 2H), 4.42 (q, J = 7.0 Hz, 2H), 2.52 (s, 3H), 

2.47 (s, 3H), 2.38 (s, 6H), 2.17 (s, 3H), 2.05 (s, 3H), 1.65 (d, J = 7.4 Hz, 3H), 1.43 (t, J = 

7.0 Hz, 3H); 13C NMR (100MHz,)  CDCl3 197.8, 189.6, 166.9, 156.3, 153.4, 150.3, 

146.9, 146.1, 142.5, 139.0, 137.2, 136.5, 136.1, 133.8, 131.1, 127.4, 126.6, 125.2, 123.3, 
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122.7, 122.5, 121.8, 115.1, 113.8, 111.6, 103.7, 74.6, 62.4, 60.8, 21.5, 20.8, 19.1, 18.5, 

17.9, 16.1, 14.8, 9.6. EI HRMS calcd. for C41H41N5O8S2 m/z : 795.2397, found :795.    

Synthesis of 4-5: To a 

solution of 4-28 (0.85 g, 1.07 

mmol) in 15 mL of glacial 

acetic acid, solid ammonium acetate (0.50 g, 6.40 mmol) was added in portions and the 

reaction mixture was refluxed for approximately 16 h. The mixture was cooled to room 

temperature and poured in to a beaker containing 150 mL of ice cold water to precipitate 

the crude product. The crude was purified using preparatory thin layer chromatography 

using 5% methanol in DCM as eluent to give pale yellowish crystals in 65 % yield (0.52 

g, 0.69 mmol). 1H NMR (400 MHz, CDCl3) δ ppm 13.86 (s, 1H), 12.43 (s, 1H), 11.80 (s, 

1H), 8.72 (s, 1H), 8.50 (s, 1H), 8.24-8.10 (m, 2H), 7.99-7.95 (m, 1H), 7.92-7.68 (m, 2H), 

7.60 (s, 1H), 7.56 (s, 1H), 6.28 (s, 1H), 6.08 (s, 1H), 4.40 (q, J = 7.0 Hz, 2H), 2.58 (s, 

3H), 2.53 (s, 3H), 2.45 (s, 3H), 2.01 (s, 3H), 1.90 (s, 3H), 1.59 (s, 3H), 1.43 (t, J = 7.0 Hz, 

3H), 0.92 (s, 3H); 13C NMR (100MHz,)  CDCl3 165.8, 156.3, 156.2,156.0, 155.7, 155.6, 

155.2, 154.9, 150.5, 148.2, 146.6, 141.3, 137.0, 136.1, 131.8, 130.4, 130.0, 127.8, 126.5, 

127.1, 122.3, 121.8, 121.2, 118.5, 116.2, 115.4, 112.8, 112.1, 111.6, 101.1, 100.7, 61.8, 

60.8, 20.8, 20.1, 19.6, 19.3, 15.1, 14.7, 9.6, 8.7. EI HRMS calcd. for C41H40N6O6S2 m/z : 

776.2451, found :776.2457. 
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Chapter 5  

5 Conclusions  

Linear self-complementary AADD arrays are some of the most studied in the 

literature of hydrogen bonded complexes and they are widely used in supramolecular 

polymers and nano- materials. We report a new non-linear self-complementary design of 

AADD arrays 2-1a-d whose synthesis, design and binding propensities (in solid state and 

solution) were investigated. The importance of unwanted intramolecular hydrogen 

bonding that prevents double-helical complex formation and the elimination of this 

intramolecular interaction through steric interference was examined. Dimerization 

constants as function of array substitution (electron donating groups on acceptor 

components and electron withdrawing groups on donor components) were measured and 

discussed. A preorganization effect due to trimethylene tether group between the donor 

components of 2-1d was highlighted. 1H NMR dilution studies indicated that the 

dimerization constants of 2-1a-d range from 9.0 x 101 M-1 to > 4.5 x 107 M-1. This 

demonstrates a wide range (>105 M-1 or G ≥ 32.6 kJ mol-1) of stabilities with respect to 

substitutions and preorganization of the AADD oligomers. 

Secondly, how substituent groups, alkyl chain incorporation and preorganization 

affect the binding stabilities of the AAADDD complexes 3-5a,b3-2a and 3-6a,b3-2a 

was investigated. The electron withdrawing effects of an ester group was studied in 

comparison to unsubstituted DDD arrays. Not only the solubilizing effect of an appended 

pentyl group was examined, but also the destabilization effect (X-ray structure of 3-5b) 

due to steric hindrance caused by the alkyl chain resulting in expenditure of energy in 
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bringing the donor array in to optimal geometry for complexation. This was reflected in a 

great decrease in complex stability. On the other hand, the preorganization effect 

compensated for the loss in terms of increased binding constants (5.0 kJ mol-1 or at least 

an order of magnitude per tether). The comparison studies allowed calculation of exact 

amounts of stabilizing energies due to preorganization and substitution groups which 

indicate that triple hydrogen bond complexes with association constants up to at least 106 

M-1 can be synthesized and used in construction of reversible supramolecular polymers. 

As a final study, synthesis of a soluble DDD array 4-4 was realized through 

incorporation of a hexyl group on the central donor heterocycle. Formation of a highly 

stable complementary complex (Ka = 1.4 x 105 M-1 for triple hydrogen bonded complex) 

was examined, despite the destabilizing effect of the corresponding bulky hexyl group. 

Comparison with our previous studies allowed a calculated Ka value ≥ 106 M-1 for the 

non-alkylated complex 4-14-2. In addition, a self-complementary complex 

AAADDDDDDAAA was synthesized to test the extensibility and the binding propensity 

of longer arrays. The 1H NMR studies display similar results as in the case of array 2-1d 

and a Kdimer ≥ 4.5 x 107 M-1 was estimated as the lower limit in CDCl3 and a Kdimer = 1.2 x 

104 M-1 was determined in 5% DMSO/CDCl3. The extreme stabilities of the complex are 

the direct outcome of an increased number of hydrogen bonding components and 

attractive secondary hydrogen bonding interactions. The values are similar to literature 

values of multi hydrogen bonded complexes. 

In conclusion, we have constructed highly stable complementary and self-

complementary double helical complexes (Ka and Kdimer > 105 M-1) which can likely be 

used as hydrogen-bonded motifs for supramolecular polymerization. 



221 

 

5.1 Scope for Future Work 

The main disadvantage of the DDD arrays was their insolubility which can be 

prevented by incorporation of alkyl chains at 3-position of indoles or on the thiazine 

dioxides. However, appending the alkyl chains led to destabilization of the complexation 

due to the bulky nature of the alkyl chain. It may be that appending shorter alkyl chains 

such as ethyl or propyl (Figure 5-1) could induce the required solubility but still not be 

too sterically demanding to avoid unwanted destabilization of the resulting complex with 

the AAA array.  

 

Figure 5-1  Propyl chain incorporated DDD arrays. 

In addition a modification could be made to the acceptor arrays. For example a 

dimethylamine group can be incorporated at the 4-position of the pyridyl heterocycles 

and preorganization could be introduced by adding trimethylene tethers to connect one or 

two of the pyridyl rings (Figure 5-2).  

 

Figure 5-2 : N,N’-dimethylamine functionalized and preorganized DDD arrays. 
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All the above DDD and AAA arrays are potential motifs for synthesizing supramolecular 

reversible polymers and therefore it would be very interesting to study the synthesis and 

macromolecular behaviour of main-chain polymers derived from these hydrogen bonding 

complementary motifs. 

As an application of the complexes towards construct of supramolecular smart materials, 

reversible polymers can be synthesized based on the hydrogen bonding utilizing the 

complex arrays discussed in previous chapters as depicted in Figure 5-3. 

Figure 5-3 : Supramolecular polymers formed on the basis of DDD-Linker-DDD and 

AAA-Linker-AAA. 

Apart from the reversible polymers, hydrogen bonded complexes found applications 

relating to hot-melt inks,1 aqueous based inks formulated with supramolecular polymers 

(Xerox),2  polychrome graphics3 (Kodak) and coatings for glass fibers (DSM)4. Our new 

arrays with extreme stabilities are very promising in displaying stimuli responsive 

(       )
n

 

n = 2 to 10 

n = 2 to 10 

n = 2  
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behavior and would present a very interesting reseach study to enhance the desirable 

properties.  
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