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Abstract 

In this research, we propose a novel model to predict software size and effort from use 

case diagrams. The main advantage of our model is that it can be used in the early stages 

of the software life cycle, and that can help project managers efficiently conduct cost 

estimation early, thus avoiding project overestimation and late delivery among other 

benefits. Software size, productivity, complexity and requirements stability are the inputs 

of the model. The model is composed of six independent sub-models which include non-

linear regression, linear regression with a logarithmic transformation, Radial Basis 

Function Neural Network (RBFNN), Multilayer Perceptron Neural Network (MLP), 

General Regression Neural Network (GRNN) and a Treeboost model. Several 

experiments were conducted to train and test the model based on the size of the training 

and testing data points. The neural network models were evaluated against regression 

models as well as two other models that conduct software estimation from use case 

diagrams. Results show that our model outperforms other relevant models based on five 

evaluation criteria. While the performance of each of the six sub-models varies based on 

the size of the project dataset used for evaluation, it was concluded that the non-linear 

regression model outperforms the linear regression model. As well, the GRNN model 

exceeds other neural network models. Furthermore, experiments demonstrated that the 

Treeboost model can be efficiently used to predict software effort. 

 Keywords: Software Size and Effort Estimation, Use Case Diagrams, Regression 

Analysis, MLP Model, RBFNN Model, GRNN Model, Treeboost Model. 
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Chapter 1 1
 

1. Introduction 

1.1 Motivation 

Estimation is part of our daily lives.  When we plan to go to work, we estimate the time 

needed to get there. This estimated time fluctuates according to some external factors, 

such as the weather conditions, traffic jams, and so forth. If we want to build a house, we 

estimate the cost and the schedule needed to complete its construction. Sometimes we 

conduct estimation intentionally, but often it occurs naturally. We instinctively enhance 

our estimation based on past experience and historical data. 

Likewise, software estimation has become a crucial task in software engineering and 

project management. Old estimation methods that have been used to predict project costs 

                                                

1 Part of this chapter was published in the International Conference on Emerging Trends in Computer 

Science, Communications and Information Technology, and in the Journal of Global Research in Computer 

Science. 

 

1. Ali Bou Nassif, Luiz Fernando Capretz and Danny Ho: Software Estimation in the Early Stages of 

the Software Life Cycle, International Conference on Emerging Trends in Computer Science, 

Communications and Information Technology (CSCIT 2010), January 2010, Nanded, India 

(Published) 

2. Ali Bou Nassif, Luiz Fernando Capretz and Danny Ho: Enhancing Use Case Points Estimation 

Method using Soft Computing Techniques, Journal of Global Research in Computer Science, 

Volume 1, No. 4, November 2010, PP. 12-21 (Published). 
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developed using procedural languages are becoming inappropriate methods of estimation 

for the more recent projects being created with object-oriented languages. This in turn, 

may lead to project failures and has spawned the need for developing new approaches to 

software estimation. 

The Standish Group [1] states that 44% of IT projects were delivered late and over 

budget. This indicates that the role of project management has become increasingly more 

important [2][3]. The International Society of Parametric Analysis (ISPA) identified the 

main reasons behind project failures [4]. These reasons can be summarized as follows: 

 Lack of estimation of the staff’s skill level 

 Lack of understanding the requirements 

 Improper software size estimation 

Another study was conducted by the Standish Group International [1] to determine the 

main factors that lead to project failures. These factors include: 

 Uncertainty  of system and software requirements 

 Unskilled estimators 

 Budget limitation 

 Optimism in software estimation 

 Ignoring historical data 

 Unrealistic estimation 
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In a nutshell, many software projects fail because of the inaccuracy of software 

estimation and misunderstanding or incompleteness of the requirements. This fact 

motivated researchers to conduct research on software estimation for better software size 

and effort assessment. One of the early stages of project management is planning; and in 

that stage, software developers begin to perform software size and effort estimation to 

calculate the budget, schedule and number of people required to develop the software. 

According to Kotonya and Sommerville [3], the requirements engineering stage is mainly 

composed of four interleaved activities. These activities include Requirements 

Elicitation, Requirements Analysis and Negotiation, Requirements Documentation and 

Requirements Validation. Figure (1-1) shows the requirements engineering process [3]. 

As software estimation becomes critical to prevent or reduce project failures, estimation 

in the early stages of the software life cycle has become imperative. The earlier the 

estimation is, the better project management will be. The importance of early estimation 

is exposed when it is required to bid on a project or commit to a contract between a 

customer and a developer. The early software estimation is conducted at a point when the 

details of the problem are not yet disclosed; this is called the size estimation paradox [2] . 

The software size should first be estimated in the early stages. In general, the early stage 

of the software life cycle is the requirements phase.  
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Figure ‎1-1  Requirements Engineering process [3] 

 

Software estimation can be conducted at any activity within the requirements engineering 

process. However, performing estimation in the early activities stage, such as 

Requirements Elicitation means that the requirements of the software are not complete 

and more assumptions will need to be made in the estimation process. This could lead to 

poor results. On the other hand, if software estimation is done during or after the 

validation activity, fewer assumptions are needed and consequently, estimation results 

will be more accurate. 

UML diagrams, proposed by Jacobson et al. in 1992 [5],  such as use case diagrams, 

activity diagrams, collaboration diagrams, class diagrams and sequence diagrams are 

used in the requirements, analysis and design stages in the software life cycle. As UML 

diagrams have become popular in the last decade, software developers have become more 

interested in conducting software estimation based on UML models, and especially the 
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use case diagrams. The use case diagram as shown in Figure (1-2), is a set of use cases 

and actors that represents the functional requirements of a system and it is usually 

included in the Software Requirements Specification (SRS) documents.  

This thesis focuses on developing a novel model to calculate software size and effort 

from use case diagrams. Our model can be used in the early stages of the software life 

cycle (requirements stage) and results show that the proposed model is a competitive one 

to alternative models that predict software effort from use cases. 

 

Figure ‎1-2  Use case diagram [6] 
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The model introduced in this thesis is geared toward estimating software effort of UML-

based projects. For projects that do not contain use case diagrams and only contain 

textual representation of the functional requirements, we propose the following algorithm 

to map textual representation of the functional requirements to use case descriptions. 

After the mapping, our model can be used for software effort estimation. Please note that 

the validation of this algorithm is out of the scope of this thesis. The mapping algorithm 

is presented as follows: 

1- Each main functional requirement is mapped to a use case 

2- Each sub-requirement that deals with a condition or alternative flow is mapped to 

a transaction in the Extension (aka Alternative) scenario 

3- Each sub-requirement that deals with a simple statement which represents an 

interaction between an actor and the system is mapped to a transaction in the 

Success (aka Main Flow) scenario 

4- Each sub-requirement which is a mix between the above second and third steps is 

mapped to Success as well as Alternative transactions 

Table 1-1 is an example for a textual functional requirement in a University Course 

Online Registration System project written using the RequisitePro tool. In this example, 

the main functional requirement is FEAT28 and there are five sub-requirements which 

include FEAT28.1, FEAT28.2, FEAT28.3, FEAT28.4 and FEAT28.5. 
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Table ‎1-1 Functional Requirement Example 

Requirements Priority Difficulty Stability Risk Origin 

FEAT28: Students can enroll in any listed course  High Medium Medium Schedule – 

Medium 

End Users 

     FEAT28.1: After course registration deadline 

students can no longer enroll  

High Medium Medium Schedule – 

Medium 

End Users 

     FEAT28.2: Cannot enroll in more than one course 

during a given time period  

High Medium Low Schedule –  

Low 

End Users 

     FEAT28.3: The system should check that student 

has proper prerequisites  

Medium Medium Medium Schedule – 

Medium 

End Users 

     FEAT28.4: Cannot enroll into a course that has 

reached max capacity  

Low Low Medium Technology 

– Low 

End Users 

     FEAT28.5: Cannot enroll into more than five 

courses in the same term  

Low Medium Low Schedule –  

Low 

End Users 

 

With respect to the functional requirement listed in Table 1-1, the main requirement 

FEAT28 is mapped to a use case named ―Enroll a Course‖. The sub-requirement 

FEAT28.1 describes three main transactions. The first transaction is that the student 

should select the course he or she wishes to enroll in. This is mapped to a transaction in 

the Success scenario. The second transaction is that student enrolls in the course which is 

also a transaction in the success scenario. The third transaction describes a condition that 

students should register before the deadline which should be listed under the Extensions 

(Alternative Scenario). The sub-requirement FEAT28.2 states a condition that students 

cannot enroll in two or more courses that run on the same time period. FEAT28.2 should 

be treated as a transaction under the Extensions. FEAT28.3 is mapped to a transaction in 

the Extensions scenario which checks if the prerequisites of the course are fulfilled. 

FEAT28.3 can also be mapped to a transaction under the Extensions (Alternative 
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Scenario) to describe the condition if the course prerequisites are not satisfied. FEAT28.4 

describes a condition to check the maximum capacity of a course, which will be mapped 

to a transaction under the Extensions. Finally, FEAT28.5 also states a condition to check 

the number of courses registered by a student. Based on the above mapping description, 

the use case description (aka use case scenario) of the use case ―Enroll a course‖ is 

presented in Table 1-2.  

Table ‎1-2 Use case description 

Use Case Title:  Student Enrolls in a Course 

Actors: Student, Admin  

Precondition: The student is not enrolled in a course 

Main Success Scenario (Main Flow): 

1. The student chooses the course he or she wishes to enroll in 

2. The student enrolls in the course 

Extensions (Alternative) 

2a: The student does not have permission (e.g. the student has not paid the tuition) 

             2a1: Notify the student to contact the administrator  

2b: The deadline has passed 

 2b1: An error message will be displayed              

2c: The prerequisite of the course is not fulfilled 

2c1: The student is advised to contact the professor to obtain permission 

2d: Two courses have the same schedule 

 2d1: The student is advised to choose one or the other 

2e: The number of the enrolled courses has been exceeded 

 2e1: An error message will be displayed  

2f: The course is full 

             2f1: An error message will be displayed 

Post condition: The student has enrolled in a course 
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1.2 Research Questions 

This research focuses on predicting software effort from use case diagrams. The use case 

point model [7] was the first model to deal with software effort prediction from use case 

diagrams. There are many limitations to the use case point model such as the complexity 

weights assigned to use cases and the description of these weights are not satisfactory, 

and the weights of the technical and environmental factors are outdated. There is several 

related work that addressed the issues of the use case model. Authors in [8] and [9] 

worked on adjustment factors, while others in [9] and [10] highlighted the discrepancies 

in designing use case models. Researchers in [11], [12] and [13] proposed different size 

metrics such as Transactions, TTPoints and Paths, while others [14], [15], [16], [17], 

[18], [19] and [20] went further to extend the UCP model by providing new complexity 

weights or by modifying the method used to predict effort. 

Based on the above literature, we highlighted some research gaps. First, none of the 

above work used neural network models to predict software effort from use case 

diagrams. Second, the above work used linear regression for software effort estimation. 

Third, the size of the projects used in most datasets is small (less than 4,000 person-

hours). As well, the influence of non-functional requirements was not addressed 

adequately. Thus, we ask seven relevant questions: 

1. How can we measure the size of a use case and how can we estimate the size of a 

use case diagram? 

2. How can team productivity contribute to software effort prediction? 



10 

 

 

3. To what degree can software effort estimation be influenced by project 

complexity? 

4. How will unstable requirements affect the accuracy of software effort estimation? 

5. To what degree can software effort prediction from use case diagrams be affected 

by non-functional requirements (productivity, complexity and requirements 

stability combined)? 

6. What is the nature of the relationship between software effort and size? 

7. What type of models can be used to predict software effort from use case 

diagrams? 

Regarding the first question, we conducted two experiments. In the first experiment 

described in Chapter 3, we used the method proposed by the use case point (UCP) model 

(this model is described in Chapter 2). We found that this model is inadequate, 

specifically regarding large use cases. In the second experiment, which is presented in 

Chapter 4, we proposed a new method to calculate the size of a use case, and 

consequently the size of the use case diagram. 

The second question is addressed in Chapters 3 and 4. In Chapter 3, we used the 

environmental factors with their default weights proposed by the UCP model to calculate 

productivity. However, these factors were filtered and new weights were proposed in 

Chapter 4. Moreover, we used a fuzzy logic technique to calibrate the proposed 

productivity values. 
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The third question is tackled in Chapter 4, as we proposed a new method to calculate the 

complexity of a project. 

The fourth question is addressed in Chapter 3 and Chapter 4. In Chapter 3, we used 

requirements stability as one of eight factors that contribute to productivity. However, we 

found that the requirements stability factor plays an important role in estimating software 

effort. For this reason, we eliminated the requirements stability factor from the eight 

factors that contribute to productivity and proposed requirements stability as one of the 

independent factors that affect software estimation, which is also presented in Chapter 4.  

The fifth question deals with the influence of non-functional requirements (NFR) on 

software estimation. Many published work ignore the impact of NFR on effort 

estimation. The UCP model [7] states that the NFR can increase the effort by about 30%. 

However, others argue that NFR can represent more than 50% of the total effort [21]. 

This indicates that NFR can double the predicted effort. In our research, we found that 

NFR can increase software effort by a factor of 2.6 (160%). In our model, we represent 

NFR through three main factors, which include productivity, complexity and 

requirements uncertainty. The productivity factor itself can increase the effort by 42% 

which corresponds to the lowest degree of team productivity. However, the complexity 

factor and requirements stability factors can increase software effort by 30% and 40%, 

respectively which correspond to the highest complexity degree and to the highest 

requirements uncertainty degree. As a combination of productivity, complexity and 
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requirements uncertainty factors (this combination represents the NFR), the effort can be 

increased to a factor of 2.6 (1.42*1.3*1.4) or by 160%.  

In research question six, we ask about the relationship between software size and effort. 

All researchers agree that software effort is correlated to software size. This means, when 

software size increases, software effort will increase. However, many models including 

the UCP claim that the relationship between software effort and size is linear. Other 

prominent cost estimation models such as COCOMO claims that this relationship is log-

linear and it is represented as * bEffort a Size . In Chapters 3 and 4, we argue that this 

relationship is non-linear. Specifically, we introduced three types of non-linear models in 

Chapter 4 and we showed by experiments that these models outperform the log-linear 

model especially for large projects. This is a breakthrough in the field of software 

estimation. 

In question seven, we investigate different models to see which one is suitable for 

software effort prediction from use case diagrams. We show in Chapters 3 and 4 that 

linear and non-linear regression models can be used for software effort estimation. 

Furthermore, we assert that neural network models and especially MLP, RBFNN and 

GRNN can also be used as alternatives to regression models. In Chapter 5, we present a 

Treeboost model to predict software effort from use case diagrams based on three 

predictors which include software size, productivity and complexity. 
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1.3 Research Contributions 

This thesis focuses on creating a model to predict software size and effort from use case 

diagrams. Research contribution can be mainly summarized as follows: 

1- Several experiments were conducted to figure out the nature of the relationship 

between software effort and size. Results concluded that this relationship is non-

linear, although the degree of non-linearity varies based on how large the software 

size is. For instance, this non-linear relationship is insignificant with small 

projects. However, this non-linearity becomes evident with mid-sized projects and 

stands out with large projects. 

2- Six different levels of complexity for use cases were identified. These include 

Very Low, Low, Normal, High, Very High and Extra High. This classification is 

based on the number of transactions of each use case by giving the Success 

scenario more weight than the Extension scenario.  

3- A new method to calculate the productivity of the team developing a project was 

proposed. The overall productivity factor is based on five factors; each has five 

levels (Level-1 which corresponds to very low, to Level-5 which corresponds to 

very high).  These factors include team experience about the problem domain, 

team motivation, experience in the programming language used, experience in the 

object oriented language and the level of the analytical skills of the team. 

Additionally, we propose a weight to each of these five factors that contribute to 

productivity. The final productivity weight is calculated based on the level of each 
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of the five factors. Furthermore, we used a fuzzy logic technique to calibrate the 

proposed productivity factor.  

4- A new method to calculate the project complexity factor was put forward based 

on five levels. A weight was assigned to each complexity level. 

5- Five levels of requirements uncertainty were proposed. Requirements uncertainty 

includes the increase in the number of requirements as well as the change of the 

requirements during the software development life cycle.  

6- Six different models were put forward to estimate software effort from software 

size, productivity, complexity and requirements uncertainty. These models 

include linear regression, non-linear regression, Multilayer Perceptron neural 

network, Radial Basis Function Neural Network, General Regression Neural 

Network and Treeboost. Four experiments were carried out to evaluate and test 

the proposed models with two other models that conduct software estimation from 

use case diagrams. In the first experiment, all models were tested using 65 data 

points of effort ranging between 120 person-hours and 224,890 person-hours. 

After that, the 65 testing data points were divided into three categories: Small 

Dataset, which contains 25 projects of effort ranging between 120 person-hours 

and 3,000 person-hours; Medium Dataset which contains 21 projects of effort 

ranging between 3,000 person-hours and 10,000 person-hours; and Large Dataset 

which contains 19 projects of effort greater than 10,000 person-hours. In the 

second experiment, all models were tested using the Small Dataset; however, in 

the third and the fourth experiments, all models were tested using the Medium and 
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the Large Datasets respectively. A thorough comparison among all models was 

carried out based on each experiment and recommendations on how to use each 

model were proposed. Additionally, the proposed model was evaluated against 

models that conduct software estimation from use case diagrams. The 

experiments show that the proposed model outperforms other models based on 

different evaluation criteria. 

1.4 Thesis Structure 

This thesis is organized as follows. Chapter 2 defines the terms used in this work, and 

then presents a literature review, followed by related work. Chapter 3 introduces the 

linear regression model and the Multilayer Perceptron neural network model. In Chapter 

4, we elaborate on the linear and non-linear regression models, as well as the Radial 

Basis Function Neural Network model and the General Regression Neural Network 

Model. Chapter 5 proposes a Treeboost model to estimate software effort based on three 

predictors. Finally, Chapter 6 summarizes the thesis and proposes future work.  

 

 

 

 

 



16 

 

 

References  

[1] J. Lynch. Chaos manifesto. The Standish Group. Boston. 2009[Online]. Available: 

http://www.standishgroup.com/newsroom/chaos_2009.php.  

[2] O. Demirors and C. Gencel, "A Comparison of Size Estimation Techniques Applied 

Early in the Life Cycle," Software Process Improvement, vol. 3281, pp. 184-194, 2004.  

[3] G. Kotonya and I. Sommerville, Requirements Engineering: Processes and 

Techniques. Chichester; New York: John Wiley, 1998.  

[4] D. Eck, B. Brundick, T. Fettig, J. Dechoretz and J. Ugljesa, "Parametric estimating 

handbook," The International Society of Parametric Analysis, Fourth Edition. 2009.  

[5] I. Jacobson, M. Christerson, P. Jonsson and G. Overgaard, Object-Oriented Software 

Engineering: A use Case Driven Approach. Addison Wesley, 1992.  

[6] J. Rumbaugh, I. Jacobson and G. Booch, "Use cases," in UML Distilled, 3rd ed., M. 

Fowler, Ed. Pearson Higher Education, 2004, pp. 103.  

[7] G. Karner, "Resource Estimation for Objectory Projects," Objective Systems, 1993.  

[8] S. Diev, "Use cases modeling and software estimation: applying use case points," 

SIGSOFT Softw. Eng. Notes, vol. 31, pp. 1-4, 2006.  



17 

 

 

[9] B. Anda, H. Dreiem, D. I. K. Sjoberg and M. Jorgensen, "Estimating software development 

effort based on use cases-experiences from industry," 4th International Conference on the Unified 

Modeling Language, Modeling Languages, Concepts, and Tools, 2001, pp. 487-502.  

[10] M. Arnold and P. Pedross, "Software size measurement and productivity rating in a 

large-scale software development department," in Proceedings of the 20th International 

Conference on Software Engineering, 1998, pp. 490-493.  

[11] G. Robiolo and R. Orosco, "Employing use cases to early estimate effort with simpler 

metrics," Innovations in Systems and Software Engineering, vol. 4, pp. 31-43, 2008.  

[12] G. Robiolo, C. Badano and R. Orosco, "Transactions and paths: Two use case based 

metrics which improve the early effort estimation," in International Symposium on 

Empirical Software Engineering and Measurement, 2009, pp. 422-425.  

[13] M. Ochodek and J. Nawrocki, "Automatic transactions identification in use cases," 

in Balancing Agility and Formalism in Software Engineering, B. Meyer, J. R. Nawrocki 

and B. Walter, Eds. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 55-68.  

[14] K. Periyasamy and A. Ghode, "Cost estimation using extended use case point model," in 

International Conference on Computational Intelligence and Software Engineering, 2009. 

[15] F. Wang, X. Yang, X. Zhu and L. Chen, "Extended use case points method for 

software cost estimation," in International Conference on Computational Intelligence 

and Software Engineering, 2009. 



18 

 

 

[16] G. Schneider and J. P. Winters, Applied use Cases, Second Edition, A Practical 

Guide. Addison-Wesley, 2001.  

[17] M. R. Braz and S. R. Vergilio, "Software effort estimation based on use cases," in 

COMPSAC '06, 2006, pp. 221-228.  

[18] A. B. Nassif, L. F. Capretz and D. Ho, "Estimating software effort based on use case 

point model using sugeno fuzzy inference system," in 23rd IEEE International 

Conference on Tools with Artificial Intelligence, Florida, USA, 2011, pp. 393-398.  

[19] P. Mohagheghi, B. Anda and R. Conradi, "Effort estimation of use cases for 

incremental large-scale software development," in Proceedings of the 27th International 

Conference on Software Engineering, St. Louis, MO, USA, 2005, pp. 303-311.  

[20] M. Ochodek, J. Nawrocki and K. Kwarciak, "Simplifying effort estimation based on 

Use Case Points," Information and Software Technology, vol. 53, pp. 200-213, 2011.  

[21] Y. Ossia. IBM haifa research lab. IBM Haifa Research Lab [Online]. 2011. 

Available: https://www.research.ibm.com/haifa/projects/software/nfr/index.html.   

Equation Chapter 2 Section 1 



19 

 

 

Chapter 2  

2. Background 

In this chapter, we define the terms used in this thesis such as fuzzy logic, neural network 

and its types, as well as the criteria used to evaluate our work. Moreover, a literature 

review and the related work are presented. 

2.1 Fuzzy Logic 

Fuzzy logic is derived from the fuzzy set theory that was proposed by Lotfi Zadeh in 

1965 [1]. As a contrary to the conventional binary (bivalent) logic that can only handle 

two values True or False (1 or 0), fuzzy logic can have a truth value which is ranged 

between 0 and 1. This means that in the binary logic, a member is completely belonged or 

not belonged to a certain set, however in the fuzzy logic, a member can partially belong 

to a certain set. Mathematically, a fuzzy set A is represented by a membership function as 

follows: 

[ ] ( ) : [0,1].z AF x A x    (2.1) 

Where  A  is the degree of the membership of element x in the fuzzy set A.  

A fuzzy set is represented by a membership function. Each element will have a grade of 

membership that represents the degree to which a specific element belongs to the set. 

Membership functions include Triangular, Trapezoidal and S-Shaped.  In fuzzy logic, 
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linguistic variables are used to express a rule or fact. For example, ―the temperature is 

thirty degrees‖ is expressed in fuzzy logic by ―the temperature is low‖ or ―the 

temperature is high‖ where the words low and high are linguistic variables. In fuzzy 

logic, the knowledge based is represented by if-then rules. For example, if the 

temperature is high, then turn on the fan. The fuzzy system is mainly composed of three 

parts. These include Fuzzification, Fuzzy Rule Application and Defuzzification. 

Fuzzification means applying fuzzy membership functions to inputs. Fuzzy Rule 

Application is to make inferences and associations among members in different groups. 

The third step in the fuzzy system is to defuzzify the inferences and associations, make a 

decision and provide an output that can be understood. In this thesis work, fuzzy logic is 

used to calibrate the productivity factor of the regression model. 

2.2 Neural Network 

Artificial Neural Network (ANN) is a network composed of artificial neurons or nodes 

which emulate the biological neurons [2]. ANN can be trained to be used to approximate 

a non-linear function, to map an input to an output or to classify outputs. There are 

several algorithms available to train a neural network but this depends on the type and 

topology of the neural network. The most prominent topology of ANN is the feed-

forward networks.  In a feed-forward network, the information always flows in one 

direction (from input to output) and never goes backwards. An ANN is composed of 

nodes organized into layers and connected through weight elements. At each node, the 
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weighted inputs are aggregated, thresholded and inputted to an activation function to 

generate an output of that node. Mathematically, this can be represented by: 

0

1

( ) [ ].
n

i i

i

y t f w x w


   (2.2) 

Where xi are neuron inputs, wi are the weights and f[.] is the activation function. There 

are many types of activation functions as shown in Figure (2-1) [3].  

 

Figure ‎2-1 Activation functions [3] 
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Feed-Forward ANN layers are usually represented as input, hidden and output layers. If 

the hidden layer does not exist, then this type of the ANN is called perceptron. The 

perceptron is a linear classifier that maps an input to an output provided that the output 

falls under two categories. The perceptron can map an input to an output if the 

relationship between the input and output is linear. If the relationship between the input 

and output is not linear, one or more hidden layers will exist between the input and output 

layers to accommodate the non-linear properties. Several types of feed-forward neural 

networks with hidden layers exist. These include Multilayer Perceptron (MLP), Radial 

Basis Function Neural Network (RBFNN) and General Regression Neural Network 

(GRNN). 

2.2.1 Multilayer Perceptron (MLP) 

A MLP is a feed-forward neural network model that contains at least one hidden layer 

and each input vector is represented by a neuron. The main difference between the MLP 

and the Perceptron is that in the Perceptron, there are no hidden layers. In general, the 

neurons in the hidden layer use non-linear activation function such as the sigmoid 

function (logistic). The output layer node usually uses a linear activation function. The 

number of hidden neurons varies and can be determined by trial and error so that the error 

is minimal. MLPs are usually trained using the backpropagation algorithm which is a 

type of gradient decent algorithm. Another algorithm can be used to train a MLP which is 

the conjugate gradient algorithm [4]. The applications of the MLP model include image 

recognition, speech recognition, curve fitting and machine translation. Figure (2-2) shows 
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the schematic diagram of a MLP that has five input vectors, seven neurons and one 

output. 

 

Figure ‎2-2  Schematic diagram of a MLP model 

 

2.2.2 Radial Basis Function Neural Network 

A Radial Basis Function Neural Network (RBFNN) was introduced by Broomhead and 

Lowe [5]. A RBFNN is a feed-forward network that has three layers; an input layer, a 

hidden layer and an output layer. Figure (2-3) shows the architecture of the RBFNN. 
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Figure ‎2-3  Schematic diagram of a RBFNN model [5] 

 

The first layer is the input layer that represents the input vectors (in this chapter, there are 

four input vectors; software size, team productivity, project complexity and requirements 

stability). The hidden layer contains a set of neurons that use Radial Basis Function 

(RBF) as activation functions. An RBF function depends on the distance from its center 

Ci to the input X. Each RBF function has a radius or width (also called spread) which is 

denoted by ― ‖. The width might be different for each neuron. The Gaussian function is 

the most commonly used in RBF as shown in Equation (2.3): 

2

2
( ) exp( ).

2

i

i

X C
f x




   (2.3) 

Where Ci is the center and i is the width of the i
th
 neuron in the hidden layer. The 

distance between X and the center is usually an Euclidean distance. The main advantages 
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of the RBFNN over other feed-forward neural networks include fast learning and not 

suffering from problems such as local minima and paralysis [6]. 

2.2.3 General Regression Neural Network  

The General Regression Neural Network (GRNN) is a type of neural networks that 

performs regression on continuous target (output) variables. The GRNN was proposed by 

Specht in 1991 [7]. A GRNN is composed of four layers as depicted in Figure (2-4). 

 
Figure ‎2-4  Schematic diagram of a GRNN model [7] 

 

The first layer is the input layer in which each independent variable (predictor) has a 

neuron. The input neurons feed the values to the neuron in the second layer. 
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The second layer contains pattern neurons such that each training row in the training 

dataset has a neuron. Each neuron computes the Euclidean distance from the input vector 

X to the neuron’s center, then applies the RBF function using the sigma ― ‖ values. The 

resulting value is then passed to neurons in the third layer (summation neurons). 

The third layer only contains two neurons. One neuron is called the denominator 

summation which adds the values of the weights coming from each of the pattern neurons 

(second layer). The other neuron is the numerator summation that adds the weights 

multiplied by the actual output (target) value of each pattern neurons. 

The fourth layer contains the output neuron in which the value stored in the numerator 

neuron is divided by the value stored in the denominator neuron. The output is the 

predicted target value.  

The GRNN has several advantages such as they learn faster and are more accurate than 

other neural network models. Moreover, GRNN models are fairly insensitive to outliers. 

The main disadvantage of GRNN is that it requires more memory space to store the 

model and it becomes inapplicable if the number of the training project datasets is very 

huge. 

2.3 Evaluation Criteria 

Several methods exist to compare cost estimation models. Each method has its 

advantages and disadvantages. In our work, five different evaluation methods have been 

used. These methods include the Mean of the Magnitude of Relative Error (MMRE), the 
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Mean of Magnitude of error Relative to the Estimate (MMER) the Prediction Level 

(PRED), the Mean Error at 95% Confidence Interval (CI) and the Mean Absolute Error 

(MAE). 

 MMRE: This is a very common criterion used to evaluate software cost 

estimation models [8]. The Magnitude of Relative Error (MRE) for each 

observation i can be obtained as: 

|         |
  .

 

i i
i

i

Actual Effort Predicted Effort
MRE

Actual Effort


      (2.4) 

MMRE can be achieved through the summation of MRE over N observations:  

1

1
    .

N

iMMRE MRE
N

   (2.5) 

 MMER: Another method can be used as an alternative to the MMRE which is the 

Magnitude of Error Relative to the estimate (MER) [9]. MER is similar to MRE 

with a difference that the denominator is the predicted effort instead of the actual 

effort. Consequently, the equations for MER and MMER are: 

|         |
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As seen from Equations (2.4) and (2.6), improving one method might adversely affect the 

other method. This is because the denominator of the MRE is the actual effort where the 
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denominator of MER is the predicted effort. Nevertheless, it is important that MMRE and 

MMER are both used for evaluation. For instance, if the MMRE is large and the MMER 

is small, this indicates that the average actual effort of the projects is less than the average 

estimated effort. On the contrary, large MMER values indicate that the average estimated 

effort is less than the average actual effort. 

 PRED(x): PRED (x) can be described as: 

     . 
k

PRED x
n

  (2.8) 

where x is the maximum MMRE (or MMER) of a selected range, n is the total number of 

projects, and k is the number projects in a set of n projects whose MMRE (or MMER) <= 

x. PRED calculates the ratio of a project’s MMRE (or MMER) that falls into the selected 

range (x) out of the total projects. For example, PRED (30) gives the percentage of 

software projects that were estimated with MMRE (or MMER) less than or equal to 0.3. 

The estimation accuracy is proportional to PRED (x) and inversely proportional to 

MMRE or MMER. 

 CI: The equation of the mean error confidence interval is: 

* .
SD

CI x t
N

   (2.9) 

Where x is the mean error, SD is the standard deviation, N is the number of projects and t 

is a constant called the test statistic that depends on the number of the samples (projects) 

and the degree of the confidence level. The value of t is obtained from the t-distribution 
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table. The 95% confidence level becomes standard to many disciplines. For example, the 

value of t is 2.042, 2, 1.98 and 1.96 if the number of projects is 30, 60, 100 and 1,000 

respectively at the 95% confidence level. For instance, the value (SD/√N) is called the 

standard error of the mean. 

The equation for the mean error for each observation i and total number of observations 

N is: 

1
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   (2.10) 

Where (         )i i ix Actual Effort Predicted Effort   

The equation of the standard deviation can be seen as: 
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 MAE: The Mean Absolute Error (MAE) is the average of the absolute errors 

between the actual and the predicted effort as shown in Equation (2.12). 

1

1
| | .
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MAE E E
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   (2.12) 

 Where Ea is the actual effort and Ep is the predicted effort. 

2.4 Literature Review  

Software estimation can be affected by several parameters [10] . These parameters 

include: 
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 Size: The effort and cost of a software project depends on the size of the project. 

The larger the size is, the higher effort and cost will be needed. Software size 

estimation will first be performed if the size of the project is unknown upon 

conducting effort estimation. The size of a project can be measured in Source 

Lines of Codes (SLOC) or Function Points (FP).  

 Category: The category of a project is important in software estimation. Examples 

of project categories include Development, Maintenance, Migration, etc. 

 Personnel Attributes: The experience and the productivity of a team affect 

software estimation. 

 Domain: The domain of the project might affect software estimation. The effort to 

build a human resources management system is different from the effort needed to 

develop an accounting and stock management system. Examples of domain 

categories include finance, insurance, retail and manufacturing. 

 Complexity: the complexity of a project plays an important role in software 

estimation.  Examples of complexity include mission-critical (will the application 

be used in a healthcare system to monitor the heartbeats and the blood pressure of 

a person?), architecture (is the architecture 2 tiers, 3 tiers or multi-tiers?) and 

Service Level Agreement (will there be a strict SLA that should be met?). 

There are several models for software effort and cost estimation. These include 

algorithmic models, expert judgement models, estimation by analogy models and soft 

computing models. 
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2.4.1 Algorithmic Models  

This is still the most popular category in the literature [11]. These models include 

COCOMO [12], SLIM [13], Function Point, Use Case Points [20] and SEER-SEM [14]. 

The main cost driver of these models is the software size. In COCOMO and SLIM 

models, the size is measured in Source Lines of Code (SLOC). However, the function 

point and the use case point models take software size in function points (FP) and use 

case points (UCP) respectively. Algorithmic models either use a linear regression 

equation, the one used by Kok et al. [15] or non-linear regression equations, those which 

are used by Boehm [12]. 

2.4.1.1 COCOMO 

The COnstructive COst MOdel (COCOMO) is an algorithmic model used to predict 

software cost.  It was developed by Barry Boehm in 1981 [12], and it was known as 

COCOMO 81. COCOMO uses a simple regression formula. The model’s parameters are 

derived from historical projects and current project characteristics. There are three main 

types of COCOMO 81. These include Basic COCOMO, Intermediate COCOMO and 

Detailed COCOMO. The Basic COCOMO equations are as follow: 

.bEffort a Size   (2.13) 

Where Effort is measured in person-months and Size is measured in KSLOC. The 

constants ―a‖ and ―b‖ are determined based on the project type as seen in Table (2.1). 

Equation (2.14) is used to calculate the time required to develop the project. 
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_ .dDevelopment Time c Effort   (2.14) 

Where Development_Time is measured in months. The constants ―c‖ and ―d‖ are also 

shown in Table (2.1). Equation (2.15) shows the number of people required for the 

project development. 

_ Re .
_

Effort
People quired

Development Time
      (2.15) 

The constants ―a‖, ―b‖, ―c‖ and ―d‖ are determined based on three categories of projects 

which are Organic, Semi-detached and Embedded as shown in Table (2-1). Organic 

projects are projects where small teams with good experience are working with non-strict 

requirements. Projects are classified as Semi-detached when medium teams with mixed 

experience are working with requirements which are mixed between strict and non-strict. 

Embedded projects are those that have tight constraints.  

Intermediate COCOMO is an advanced model of the Basic COCOMO where software 

effort is a function of software size and 15 other cost-driver attributes. These attributes 

represent the non-functional requirements of the project. Each attribute has a rate on a 

six-point scale ranging from ―very low‖ to ―extra high‖. 

Detailed COCOMO incorporates the characteristics of the Intermediate COCOMO with 

an assessment of the cost drivers according to each phase of the software life cycle.  
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Table ‎2-1  Software project types [12] 

Software Project a b c D 

Organic 2.4 1.05 2.5 0.38 

Semi-detached 3.0 1.12 2.5 0.35 

Embedded 3.6 1.20 2.5 0.32 

 

Boehm introduced COCOMO II model [16] which is an advanced model of COCOMO 

81. COCOMO II is more suitable for estimating modern software development projects. 

The main differences between COCOMO II and COCOMO’81 can be summarized as: 

 COCOMO II takes into account requirements volatility. 

 Estimation is adjusted for software reuse and re-engineering when automated 

tools are used. 

 Cost drivers were updated. 

 COCOMO II has more data points (161 data points as opposed to 63 in 

COCOMO’81. 

 COCOMO II uses logical SLOC where COCOMO’81 uses physical SLOC. One 

logical SLOC (if-then-else) might contain several physical SLOC. 

2.4.1.2 SLIM 

The Software LIfecycle Management (SLIM) model, which is also known as the Putnam 

model was developed by Lawrence Putnam in 1978 [13]. The SLIM describes the effort 

and time required to finish a project of a certain size. The time-effort curve of Putnam 
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follows the Rayleigh distribution as shown in Figure (2-5). The effort required to develop 

a project is as follows: 

3

4/3
.

Pr

Size
Effort B

oductivity Time

 
  

 
       (2.16) 

Where Effort is measured in person-years and Size in SLOC. Productivity is the process 

productivity which is the ability of a software organization to develop software of a given 

size at a certain defect rate. Time is measured in years where B is a scaling factor and it is 

a function of project size. 

 

Figure ‎2-5   Putnam’s time-effort graph based on Rayleigh distribution [13] 
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2.4.1.3 Function Point Model 

Function Points measure the functionality of software as opposed to SLOC which 

measures the physical components of software. The function point method was proposed 

by Allan Albrecht in 1979 [17] [18]. There are a few methods to count function points 

but the standard method is the one that is maintained by the Function Points Analysis 

(FPA) which is based on the International Function Point Users Group (IFPUG) [19].  

FPA defines five parameters that the size of software depends on. These parameters 

include inputs, outputs, inquiries, internal files and external interfaces. It is clear that 

these parameters are touchable by the end user. Figure (2-6) shows the function points 

parameters within an application [18]. These parameters are discussed as the following: 

 Inputs: These are inputs from the user to the application.  For example, create, 

delete, update and read are considered as inputs. 

 Outputs: This is an output of a certain process in the application. For example a 

financial report in an organization. The financial report is considered as an output 

if it is printed, or stored in a database or external media storage, or even if it is just 

displayed on the screen. 

 Inquiries: These are queries executed by the user to fetch some data stored in the 

database. The output of an inquiry is similar to the output discussed above, except 

that business information is not processed in this case. Information is sorted or 

rearranged based on the query issued by the user. 
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 Internal files: These files store all the data of the application. Internal files belong 

to the application and are maintained by the application owner or the 

administrator. 

 Interfaces: This is the interface of external applications by which transactions can 

be made to the main application. The function point model defines interface as 

files that belong to external applications and are supported by those applications, 

however these files contribute to the size of the main application. For example, 

the main application might request a file that contains important information and 

this file is maintained and updated by other applications. 

Users
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Application

External 

Interface 

Files

Application Boundary

Other  

Applications
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External

Inputs
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Outputs

External
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Figure ‎2-6  High level view of the function point model 

 

2.4.1.4 Use Case Point Model 

The Use Case Point (UCP) model [20] is based on mapping a use case diagram to a size 

metric called use-case points. A use case diagram shows how users interact with the 

system. A use case diagram is composed of use cases and actors. Use cases represent the 
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functional requirements where an actor is a role played by a user. Figure (1-2) is an 

example of a use case diagram. Each use case is represented by a use case scenario 

(description). The use case scenario (description) is mainly composed of a Success 

scenario and an Extension (Alternative) scenario as shown in Table (2-2).  

The use case point model was first described by Gustav Karner in 1993 [20]. This model 

is used for software cost estimation based on the use case diagrams. First, the software 

size is calculated according to the number of actors and use cases in a use case diagram 

multiplied by their complexity weights. The complexity weights of use cases and actors 

are presented in tables (2-3) and (2-4) respectively.   

As shown in Table (2-3), the complexity of a use case is determined by the number of its 

transactions as shown in the use case description of each use case. The software size is 

calculated through two stages. These include the Unadjusted Use Case Points (UUCP) 

and the Adjusted Use Case Points (UCP). UUCP is achieved through the summation of 

the Unadjusted Use Case Weight (UUCW) and Unadjusted Actor Weight (UAW). 

UUCW is represented in Equation (2.17). 
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Table  ‎2-2   Use case scenario (description) 

Use Case Title:  Student Enrolls in a Course 

Actors: Student, Admin  

Precondition: The student is not enrolled in a course 

Main Success Scenario (Main Flow): 

1. The student chooses the course he or she wishes to enroll in 

2. The student enrolls in the course 

Extensions (Alternative) 

2a: The student does not have permission (e.g. the student has not paid the tuition) 

             2a1: Notify the student to contact the administrator  

2b: The deadline has passed 

 2b1: An Error message will be displayed              

2c: The prerequisite of the course is not fulfilled 

2c1: The student is advised to contact the professor to obtain permission 

2d: Two courses have the same schedule 

 2d1: The student is advised to choose either one 

2e: The number of the enrolled courses has been exceeded 

 2e1: An error message will be displayed  

2f: The course is full 

             2f1: An error message will be displayed 

Post condition: The student has enrolled in a course 

 

Table  ‎2-3   Complexity weights of use cases [20] 

Use Case 

Complexity 

Number of Transactions Weight 

Simple Less than 4 (should be realized by 

less than 5 classes) 

5 

Average Between 4 and 7 (should be realized 

between 5 and 10 classes) 

10 

Complex More than 7 (should be realized by 

more than 10 classes) 

15 

 

 

Table  ‎2-4  Complexity weights of actors [20] 

Actor Complexity Description Weight 

Simple Through an API 1 

Average Through a text-based user interface 2 

Complex Through a Graphical User Interface 3 
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  .i i

i

UUCW n W


  (2.17) 

where ni is the number of items of variety i of the use cases and Wi is the complexity 

weight of the corresponding use case. Similarly, UAW is represented as follows: 

3

1

  .j j

j

UAW m C


  (2.18) 

where mj is the number of items of variety j of the actors and Cj is the complexity weight 

of the corresponding actor. Consequently, UUCP can be defined as follows: 

 UUCP UUCW UAW   (2.19) 

After calculating the UUCP, the Adjusted Use Case Points (UCP) is calculated. UCP is 

achieved by multiplying UUCP by the Technical Factors (TF) and the Environmental 

Factors (EF). TF and EF represent the non-functional requirements of the software. TF 

contributes to the complexity of the project while EF contributes to the team efficiency 

and productivity. The technical and environmental factors are depicted in tables (2-5) and 

(2-6) respectively. The technical factor is detailed as follows: 

13

1

0.6 0 ..01    i i

i

TF T W


    (2.20) 

where iT  is a factor that takes values between 0 and 5. The value ―0‖ indicates that the 

factor is unrelated while the value ―5‖ indicates that the factor is indispensable. The value 

―3‖ specifies that the technical factor is not very important, nor irrelevant (average). For 

instance, if all of the factors have a value of ―3‖, the technical factor (TF) will be 1. Wi 

represents the weight of technical factors (Table 2-5). 
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On the other hand, the environmental factor (EF) can be described as follows: 

8

1

1.4 0.03 .i i

i

EF E W


    (2.21) 

where iE is the Environmental Factor (which is similar to iT  in Equation 2.20), taking 

values between 0 and 5. Finally, the Adjusted Use Case Points (UCP) can be defined as 

follows: 

.UCP UUCP TF EF    (2.22) 

By incorporating TF and EF, the value of UCP will be more or less than the value of 

UUCP by 30%.  For effort estimation, Karner proposed 20 person-hours to develop each 

UCP. This is expressed in Equation (2.23): 

20.Effort Size   (2.23) 

where Effort is measured in person-hours and Size is measured in UCP. 
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Table ‎2-5  Technical factors 

Ti Complexity Factors Wi 

T1 Easy installation 0.5 

T2 Portability 2 

T3 End user efficiency 1 

T4 Reusability 1 

T5 Complex internal processing 1 

T6 Special security features 1 

T7 Usability 0.5 

T8 Application performance 

objectives 

1 

T9 Special user training facilities

  

1 

T10 Concurrency 1 

T11 Distributed systems 2 

T12 Provide direct access for third 

parties 

1 

T13 Changeability  1 

 

Table ‎2-6  Environmental factors 

Ei Efficiency and Productivity Factors Wi 

E1 Familiar with Objectory 1.5 

E2 Object oriented experience  1 

E3 Analyst capability 0.5 

E4 Stable requirements 2 

E5 Application experience 0.5 

E6 Motivation 1 

E7 Part-time workers -1 

E8 Difficult programming language -1 

 

There are several limitations regarding the UCP model. These include: 

 The complexity of a use case is based on the number of transactions in the use 

case scenario. A complex use case is defined when the number of transactions is 
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more than seven. In the industry, some use cases might contain more than twenty 

transactions. According to the UCP, a use case with eight transactions has the 

same complexity rate as the one of twenty transactions. However, the effort 

required to build a use case of twenty transactions is more. 

 The UCP assumes that the effort required to develop the Main Success Scenario 

of a use case is the same as the Extensions, if both the Success scenario and the 

Extensions have the same number of transactions. In fact, the effort required to 

develop the Main Success Scenario should be more because it is the core of the 

use case scenario.   

 In the UCP model, NFR can increase software effort by 30%. However, 

According to IBM, the NFR might increase the software effort of a software 

project by 100% [21]. 

 The UCP ignores the Include and Extend use cases in the use case diagram. 

However, developing these types of use cases require effort and thus, they should 

not be ignored when calculating software effort. 

 The equation used to calculate software effort is a simple linear regression, which 

is the multiplication of software size by twenty. Here, there are two main 

concerns. First, this equation is applied on any software size. Our experiments 

show that a software equation used with large projects should be different from 

the one used with small projects. Secondly, this equation assumes that the 

relationship between software size and effort is linear. Longstreet [22] stated that 

when estimation is based on the Function Points method, the effort required to 
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develop one Function Point is between 0.5 and 5 hours for small projects (less 

than 100 function points) and between 20 to 60 hours for large projects (greater 

than 7,000 function points). The UCP is similar to the Function Point model in the 

way that both methods can be applied in the Requirements stage of the software 

life cycle and both are independent of the programming language and the 

topology used to develop the project. We believe that this non-linearity between 

software effort and size in the Function Point model is valid as well as in the 

UCP. For instance, if the effort required in building a software project of size 250 

UCP is 5,000 person-hours, the effort needed to build the same project type of 

size 500 UCP would be more than 10,000 person-hours. This is because the larger 

the project is, the larger the team required to build this project [23]. When the 

number of the team members increases, the number of the communication paths 

among this team will dramatically increase as shown in Equation (2.24) [24], and 

consequently, this requires more effort for the team communication and project 

management. 

( 1)
_ .

2

N N
Communication Paths


  (2.24) 

Where ―N‖ is the number of people in the team. 

Although many related work tried to address some of the limitations of the UCP model, 

many issues still exit and these issues are tackled by our model.  
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2.4.2 Expert Judgement  

Expert judgement involves consulting a group of experts to use their experiences to 

propose an estimation of a given project [25]. The Delphi technique is used to provide 

communication and cooperation among the experts. The Delphi technique is summarized 

as follows [26]: 

1. A coordinator provides each expert with a project’s specifications and a form to 

be filled. 

2. The coordinator calls for a group meeting with the experts to discuss any issues. 

3. The experts will anonymously fill the forms. 

4. The coordinator receives the forms and prepares a summary for the estimation. 

5. The coordinator calls for a meeting to discuss with the experts the proposed 

estimation values, and especially when these values vary dramatically among 

experts. 

6. The experts fill the estimation forms again. Steps 4 to 6 are repeated until a 

satisfaction has been reached. 

The main advantage of this method is that the final estimation report can be reached in a 

reasonable period. Moreover, this method is relatively inexpensive and can be accurate in 

comparison with other models especially, when the experts have a solid knowledge of the 

problem domain of the proposed project. 
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The main limitation of the expert judgement model is that this method is very subjective 

and it lacks standardizations and thus, cannot be reusable. Another drawback of this 

method is the lack of analytical argumentation because of the frequent use of phrases 

such as ―I believe that …‖ or ―I feel that …‖ [27]. 

2.4.3 Estimation by Analogy 

Estimation by analogy is a method in which the proposed project is compared to similar 

historical projects where all required information about the historical projects is 

documented. Estimation by analogy is actually a systematic form of expert judgement 

since experts look for analogies. The main steps to conduct analogy by estimation 

include: 

1. The characteristics of the proposed project are identified. 

2. Similar completed projects are selected. 

3. Estimation of the proposed project is conducted. 

The main advantage of this method is that estimators are using their expertise to estimate 

new projects based on actual completed projects. Furthermore, this method is relatively 

fast and reliable. 

The main disadvantage of estimation by analogy is that companies are required to 

maintain a well-designed knowledge repository. Moreover, companies should have a 

good number of historical projects; however, this method cannot be applied in new 

companies. 



46 

 

 

2.4.4 Soft Computing Models 

Soft computing models include neural network models, fuzzy logic models, genetic 

algorithm models and hybrid models such as, neuro-fuzzy and neuro-genetic models. 

These models can be applied in two main situations. First, these models can be applied as 

standalone models that take several inputs such as software size and productivity, then 

provide an output such as software effort. These models can be trained using historical 

projects. Another usage of these models is that they can be used to calibrate some 

parameters or weights of algorithmic models such as COCOMO parameters and function 

point model weights. Soft computing models can also be used with estimation by analogy 

to increase the accuracy of estimation.  

2.5 Related Work 

In addition to the above literature in software estimation, some related work for software 

estimation is listed as follows: 

Periyasamy et al. [28] extended the UCP model by classifying actors into seven groups. 

The weight proposed for actors varies between 0.5 and 3.5. Moreover, the authors 

proposed four types of use cases and assigned new weights for each use case. The weight 

of a use case is determined based on the number of associations between actors and the 

use case. The authors also proposed a new method to calculate software size from use 

cases; however, the authors have not evaluated their method against any related models.  
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Wang et al. [29] extended the UCP model by constructing a probabilistic cost model by 

integrating a fuzzy set theory with Bayesian Belief Networks with the UCP model. The 

proposed method was evaluated using two financial projects of efforts 3,016 and 4,459 

person-hours respectively. These projects are located in China and developed using Java 

programming language. The evaluation of the extended UCP shows slim improvement in 

comparison with the original UCP. 

Schneider et al. [30] mentioned that when calculating software effort, instead of 

multiplying the size by 20 (as the original UCP model), Environmental factors should be 

evaluated because these factors contribute to the efficiency of the team developing the 

project. If the efficiency is fair, then 20 person-hours per UCP should be used. If the 

efficiency is low, then 28 person-hours per UCP should be used. If the efficiency is very 

low, then the project team should be reconstructed because very low efficiency indicates 

that the project is at significant risk of failure with this team. Another approach can be 

considered when the efficiency is very low by taking 36 person-hours for 1 UCP. The 

main limitation of Schneider’s approach is that the effort required to develop one UCP is 

either 20, 28 or 36 person-hours.  

Azzeh et al. [31] and [32] proposed two models for software effort estimation. The first 

one is an estimation- by-analogy model based on the integration of fuzzy set theory with 

grey relational analysis and fuzzy numbers. However, the second model is based on 

analogy estimation with fuzzy numbers and can be used in the early stages of the 

software life cycle. Both models were evaluated using five different datasets such as 
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International Software Benchmarking Standards Group (ISBSG), Desharnais, Kemerer, 

Albrecht & Gaffney and COCOMO 81. MMRE, MdMRE, MMER and PRED(25) were 

used as evaluation criteria. Results proved that the proposed models are competitive 

when compared with other models such as case-based reasoning, multiple linear 

regression, stepwise regression and artificial neural networks.  

Pendharkar et al. [33] developed a Bayesian network to predict software development 

effort. The proposed model can incorporate decision making risks. The model was 

evaluated using 33 industrial projects and was compared with other neural network and 

regression tree forecasting models. The authors proved that their model can be a 

competitive model for software effort prediction based on the absolute error criterion.  

Jiang et al. [34] and Xia et al. [35] built linear regression models with a logarithmic 

transformation based on function points using ISBSG data. Xia et al. used the regression 

model as an activation function in a neural network to calibrate the weights in the 

function point model. However, Jiang et al. used the regression model to study the effect 

of software size on development effort and software quality. The main concern of these 

models is that they ignore the influence of the non-functional requirements on estimation. 

Park et al. [36] proposed a neural network for software effort estimation. This model 

takes six inputs and the accuracy of the proposed model was compared with the accuracy 

of human expert judgments and two traditional regression models. The evaluation was 

conducted on 148 IT projects and results proved that the proposed neural network gives 
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better results than existing regression models based on the magnitude of relative error 

(MRE).  

Idri et al. [37] proposed two Radial Basis Neural Network model for software effort 

estimation. Each of the RBFNN models uses different formula to calculate the width of 

the RBF functions. The model was trained using COCOMO 81 and Tukutuku datasets 

and evaluated based on MMRE and PRED criteria. 

Idri et al. [38] investigates the use of the RBFNN models in software estimation and 

especially the role of the hidden layer. In their paper, the authors use two clustering 

techniques; the C-means and the APC-III. A comparison between these techniques was 

conducted using COCOMO 81 and Tukutuku datasets. 

Reddy et al. [39] proposed a RBFNN model for software effort estimation. The model 

was trained based on the k-mean clustering algorithm and was evaluated using the 

COCOMO 81 dataset.  

Shin et al. [40] presented an objective modeling methodology to determine the RBFNN 

model parameters using their SG algorithm. The model was then used to predict software 

effort using the NASA dataset. 

Heiat [41] compared a neural network model with regression models. The evaluation was 

conducted on 67 projects from three different sources. The author concluded that the 

neural network model was competitive to regression models when third generation 

language was used. However, regression models gave better results when combinations 
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of third and fourth generation language projects were used. The evaluation criterion used 

was the mean absolute percentage error (MAPE). 

Tan et al. [42] proposed a new LOC estimation method for information systems based on 

their conceptual data models through a multiple linear regression model. The authors 

evaluated their work using open source and industrial projects.  

Anvik et al. [43] used machine learning techniques to create recommenders to triage bug 

reports that can be useful to streamline the development process.  

Lopez-Martin [44], [45], [46] and [47] created regression models from short scale 

programs and from ISBSG repository. The author also developed fuzzy logic and neural 

network models such as Feed-Forward and General Regression Neural Networks. The 

authors proved that these models can be used as alternatives to regression models to 

predict software effort. The evaluation criteria used were the Mean of the Magnitude of 

Relative Error (MMRE) and the Mean of Magnitude of error Relative to the Estimate 

(MMER). 

Shepperd and Schofield [48] proposed a software estimation model using analogy. The 

model was evaluated based on 275 projects from nine different industrial datasets. The 

authors argue that estimation model based on analogy surpasses other algorithmic models 

based upon stepwise regression.  

Jørgensen et al. [49] applied regression toward the mean (RTM) method with analogy for 

software effort estimation. The proposed model was evaluated based on 5 different 
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datasets. The authors argued that the accuracy of software effort estimation using analogy 

would be improved when using RTM. 

Other machine learning models exist and are used to improve the accuracy of software 

estimation. Examples of these models include [50], [51], [52], [53], [54], [55] and [56]. 

None of the above work developed neural network models to predict software effort from 

use case diagrams. Furthermore, none has thoroughly investigated the non-linear 

relationship between software size and effort the way it is addressed in this thesis. 
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Chapter 3  

3. MLP and Linear Regression Models2 

3.1 Introduction  

This chapter presents our preliminary research in creating a linear regression with a 

logarithmic transformation model, as well as a Multilayer Perceptron (MLP) neural 

network. In this chapter, we introduce two main factors that contribute to software effort 

estimation which include software size and team productivity. Software size is estimated 

using the method proposed by the use case point (UCP) (section 2.4.1.4). Team 

productivity is calculated based on the Environmental Factors (EF) (Table 2-6) proposed 

                                                

2 Part of this chapter was published in the 2011 International Conference on Computer and Software 

Modeling, in the 23rd IEEE International Conference on Tools with Artificial Intelligence and in the 2011 

IEEE International Conference on Intelligent Computing and Intelligent Systems. An extended version of 

these papers has been submitted to the Journal of Systems and Software (Elsevier). 
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2. Ali Bou Nassif, Luiz Fernando Capretz, Danny Ho, "Estimating Software Effort Based on Use 

Case Point Model Using Sugeno Fuzzy Inference System," ictai, pp.393-398, 2011 IEEE 23rd 

International Conference on Tools with Artificial Intelligence, Boca Raton, Florida, USA, 2011 

(Published). 

3. Ali Bou Nassif, Luiz Fernando Capretz, Danny Ho, ― A Regression Model with Mamdani Fuzzy 
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pp.615-620, 2011 IEEE International Conference on Intelligent Computing and Intelligent 
Systems, Guangzhou, Guangdong, China, 2011 (Published). 

4. Ali Bou Nassif, Danny Ho and Luiz Fernando Capretz, ―Towards an Early Software Estimation 

Using Log-Linear Regression and a Multilayer Perceptron Model‖, Journal of Systems and 

Software (Elsevier), 2012 (Under Review). 



61 

 

 

by the UCP model. The MLP model takes nine inputs which include software size and 

the eight environmental factors. 

Section 3.2 proposes the linear regression model with fuzzy logic as well as the MLP 

approach. Section 3.3 demonstrates an assessment of the proposed models and provides 

some discussion about the results. Section 3.4 lists some threats to validity.  Finally, 

Section 3.5 concludes the chapter. 

3.2 Research‎Methodology‎and‎Models’‎Evaluation‎ 

This section presents the proposed regression model, the calibration of this model using 

fuzzy logic and the proposed neural network model. Moreover, evaluations of these 

models are demonstrated. 

3.2.1 Regression Model 

Equation (2.23) shows how software effort is calculated from software size based on the 

original Use Case Point (UCP) model. There are two main shortcomings of this equation. 

First, the relationship between software effort and size is linear and this assumption does 

not reflect the actual situation in the software industry. Longstreet [1] stated that when 

estimation is based on the Function Points method, the effort required to develop one 

Function Point is between 0.5 and 5 hours for small projects (less than 100 function 

points) and between 20 to 60 hours for large projects (greater than 7,000 function points). 

The UCP is similar to the Function Point model in the way that both methods can be 

applied in the Requirements stage of the software life cycle and both are independent of 

the programming language and the topology used to develop the project. We believe that 
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this non-linearity between software effort and size in the Function Point model is valid as 

well as in the UCP. McConnell [2] states that ―People naturally assume that a system that 

is 10 times as large as another system will require something like 10 times as much effort 

to build. But the effort for a 1,000,000 LOC system is more than 10 times as large as the 

effort for a 100,000 LOC system. Using software industry productivity averages, the 

10,000 LOC system would require 13.5 staff months. If effort increased linearly, a 

100,000 LOC system would require 135 staff months. But it actually requires 170 staff 

months‖. This shows that when software size increases, software effort would increase 

but with a non-linear relationship. The second shortcoming is that this equation does not 

take into consideration the productivity of the team that is developing the software. In the 

proposed model, a novel regression analysis is applied to generate a new equation to 

calculate software effort. The new equation takes into account the non-linear relationship 

between software effort and size as well as the productivity factor of the team. 

Furthermore, the value of the productivity factor is proposed using a multiple linear 

regression model of two independent variables.  

The general equation of software effort can be represented as [3]: 

.
Complexity

Effort Size
Productivity

   (3.1) 

where Complexity is the complexity factor of a project and Productivity is the 

productivity factor of the team that is developing this project. To find the non-linear 

relationship between software size and software effort, regression analysis was applied on 

125 educational and industrial projects (see Appendix C) that have similar projects 
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complexity and team productivity. Thus, at this point, complexity and productivity 

factors are ignored and software effort is a function of software size only. Questionnaire I 

(Appendix A) was used to collect data. To obtain accurate results in regression analysis, 

data should be normally distributed [4]. If data were normally distributed, the regression 

equation would be: 

.Effort a Size b    (3.2) 

where a and b are constants.  

Several experiments were conducted using Minitab version 16 to determine how data 

were distributed. The histograms of software size (Figure 3-1) and software effort (Figure 

3-2) show that data are not normally distributed. Generating regression models from data 

based on Figures (3-1) and (3-2) is possible but this will lead to poor results. For this 

reason, data were normalized using logarithmic transformation. After normalization, data 

(ln size and ln effort) became normally distributed (Figures 3-3 and 3-4).  The regression 

equation after logarithmic transformation is: 

ln( ) ln( ) .Effort c Size d    (3.3) 

Where c and d are constants. Equation (3.3) can be rewritten as:  
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Figure ‎3-1 Histogram of size 
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Figure ‎3-2 Histogram of effort 
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Figure ‎3-3 Histogram of ln(Size) 
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Figure ‎3-4 Histogram of ln(Effort) 

 

( ) .BEffort A Size   (3.4) 
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Using Minitab, the values of A and B are 8.16 and 1.17 respectively. The proposed 

regression equation is: 

1.178.16 ( ) .Effort Size   (3.5) 

Where Size is the software size in UCP and Effort is the software effort in person-hours. 

For instance, Equation (3.5) shows the non-linear relationship between Effort and Size 

and ignores the Complexity and Productivity factors. The main equation of software 

effort is expressed in Equation (3.6).   

Figure (3-5) shows the relationship between software size and effort based on the original 

UCP model (Equation 2.23) and the proposed regression model (Equation 3.5). The 

straight line (blue line) represents Karner’s model (original UCP model) and the dotted 

line represents the proposed regression model. This comparison shows that the non-linear 

relationship is not significant for small projects (less than 200 UCP). On the other hand, 

the non-linear relationship stands out for mid-size and large projects. The proposed 

regression model also shows that when software size becomes larger and larger, software 

effort is exponentially increasing. For instance, when software size is 1,000 UCP, 

software effort based on the regression model is larger than the software effort based on 

the original UCP model by 30%. For instance, Figure (3-5) answers the sixth research 

question raised in Section 1.2.   
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Figure ‎3-5  Comparison between software size and software effort 

 

It is very important to test and validate the proposed regression equation (Equation 3.5) 

because this equation will be the core of the regression model (Equation 3.6 shows the 

main regression equation of the model). To thoroughly validate this equation, several 

techniques were used. These include the probability plot (aka Q-Q plot), the coefficient 

of determination R
2
, Spearman and Pearson coefficients, Analysis of Variance (ANOVA) 

and the model’s parameters.  The probability plot (Q-Q plot) compares two probability 

distributions by plotting their quantiles against each other. It shows if the relationship 

between these two distributions is linear or not. Since the regression analysis was applied 

after the logarithmic transformation, the Q-Q graphs of normalized size and normalized 
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show that 95% of normalized data (size and effort) are linearly distributed and thus, the 

regression equation (Equation 3.5) is valid. 

Another method was applied to measure the accuracy of the regression equation 

(Equation 3.5).  For this purpose, the value of the coefficient of determination R
2 

was 

measured. R
2
 is the percentage of variation in Effort explained by the variable Size. An 

acceptable value of R
2 

is ≥ 0.5 [5]. The value R
2
 reported for the regression model in 

Equation (3.5) is 0.972. Approximately 97 % of the variation in Effort can be explained 

by the variable Size. This shows a strong relation between Size and Effort. 

 

 

Figure ‎3-6  Q-Q plot for normalized size 
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Figure ‎3-7  Q-Q plot for normalized effort 

 

To thoroughly test the regression model, Spearman [6] and Pearson [7] coefficients were 

determined to measure the correlation strength between the Effort and Size.  The 

coefficients range of both Spearman and Pearson is between [-1, 1]. The value 0 means 

that these two variables are not correlated. A positive value represents a positive 

correlation. Larger coefficient values correspond to stronger correlations. On the contrast, 

negative values mean negative correlations. In our experiments, the Spearman and 

Pearson coefficients are 0.98 and 0.97 respectively. This shows that the two variables 

Effort and Size have a strong positive relationship. 

Table (3-1) depicts the ANOVA for the regression equation. From the ―p‖ value of 

ANOVA, we notice that there is a significant relationship among the variables at the 99% 

confidence level. For instance, DF, SS, MS, F and P correspond to Degrees of Freedom, 

Sum of Squares, Mean Square, F Ratio and P Ratio respectively. However, Table (3-2) 

shows the model’s parameters to determine if the model can be simplified. The highest 
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―p‖ value in Table (3-2) is 0.000. Since the ―p‖ value of each variable is less than 0.05, 

all independent variables are significant at the 95% confidence level.  

Based on the above experiments and results, the regression equation represents the non-

linear relationship between software size and effort with high percentage of accuracy. By 

taking into consideration Equation (3.5), the main equation for software effort in the 

proposed model can be expressed as follows: 

1.17Pr _
8.16 ( ) .

Pr

oject Complexity
Effort Size

oductivity
             (3.6) 

The second step of the proposed model is to calculate the values of Project_complexity 

and Productivity. Table (2-5) presents some technical factors that represent the 

complexity of a project. We will assume that Karner’s technical factor TF can represent 

the Project_Complexity factor during the estimation of UCP and consequently, the 

Project_Complexity factor in Equation (3.6) can be ignored. The main effort equation 

will become: 

1.178.16
( ) .

Pr
Effort Size

oductivity
   (3.7) 

Equation (3.7) shows that Effort is inversely proportional to productivity. For instance, 

Equation (3.7) answers the second research question proposed in Section 1.2. With 

respect to productivity, Table (2-6) lists some productivity attributes. In the original UCP 

model, productivity factor is only included when estimating the adjusted UCP size. 

Schneider et al. [8] included the productivity factor while calculating software effort as 

discussed in Section 1.5. We believe that the productivity factor should be included in the 



71 

 

 

software effort equation. Based on Table (2-6), the highest productivity factor is achieved 

when the value of the factors E1 to E6 is 5 and the value of the factors E7 and E8 is 0. If 

we assume that prod_sum = 
8

1

i i

i

E W


 , this implies that the value of prod_sum is 32.5. 

On the other hand, the lowest productivity factor is achieved when the value of E1 to E6 

is set to 0 and the value of E7 and E8 is set to 5. This implies that the value of prod_sum 

is  -10. In the proposed approach, the productivity factor in Equation (3.7) is determined 

based on the value of prod_sum. To discover the influence of prod_sum on software 

effort, a multiple linear regression equation was generated using Minitab version 16 with 

two independent variables (Size and prod_sum) as shown in Equation (3.8). 

409 (24.9 ) (52.8 _ ).Effort Size prod sum               (3.8) 

This equation shows that when software size increases, software effort increases. 

However, when the productivity of the team (prod_sum) increases, software effort 

decreases. This interpretation makes sense in the software industry and it is compatible 

with the influences of software size and team productivity proposed in Equation (3.7). 

 The value of the coefficient of determination R
2 
of Equation (3.8) is 0.861. This indicates 

that approximately 86 % of the variation in Effort can be explained by the independent 

variables size and prod_sum. Tables (3-3) and (3-4) show the ANOVA and model 

parameters of Equation (3.8). ANOVA shows that there is a significant relationship 

among the variables at the 99% confidence level. The model’s parameters show that the 

least value of ―p‖ is 0.009 which is less than 0.05 that indicates that all independent 

variables are significant at the 95% confidence level. 
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Table ‎3-1  ANOVA for Equation 3.5 

Source            DF       SS       MS          F       P 

Regression 1 38.756  38.756 4319.13 0.000 

Residual 

Error 

123 1.104 0.009   

Total 124 39.860    

 

Table ‎3-2  Model parameters for Equation 3.5 

Predictor  Coef SE Coef T P 

Constant 2.09835 0.07126 29.45 0.000 

ln(size) 1.17314 0.01785 65.72 0.000 

 

 

Table ‎3-3  ANOVA for Equation 3.8 

Source            DF       SS       MS          F       P 

Regression 2 174055066 87027533 300.51 0.000 

Residual Error 97 28090762 289595   

Total 99 202145827    

 

Table ‎3-4  Model parameters for Equation 3.8 

Predictor  Coef SE Coef T P 

Constant 408.5 154.1 2.65 0.009 

Size 24.939 1.120 22.26 0.000 

Prod_sum -52.75 11.77 -4.48 0.000 

 

From the above results, we deduce that the proposed multiple linear regression equation 

is valid and it is used to determine the productivity factor in Equation (3.7) based on the 

value of the variable prod_sum. Since the value of prod_sum varies between [-10, 32.5], 

it is difficult to predict the value of productivity in Equation (3.7) based on each value of 
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prod_sum. For this reason, the productivity variable is depicted based on four main 

ranges of prod_sum. This is analogous to the representation of cost drivers in the 

COCOMO model where each cost drivers are classified according to five or six levels 

(from very low, to very high). After that, fuzzy logic is used to adjust the values of the 

productivity variable. Since the prod_sum variable falls between [-10, 32.5], the main 

four regions of this variable are selected as between [-10, 0], between [1, 10], between 

[11, 20] and between [21, 32.5]. To find the influence of prod_sum on Effort in Equation 

(3.8), four values of prod_sum are selected such that each value belongs to each of the 

aforementioned main regions. To minimize the influence of the size variable on Effort 

and only focus on the influence of prod_sum, the value of the size variable is the same for 

each value of prod_sum. The selected value of size is 80 UCP because the value ―80‖ is 

considered as a medium-size project with respect to the pool of the projects used to 

generate the regression equation. Based on this information and according to Equation 

(3.8), the following rules can be deduced: 

 If size is 80 and prod_sum is -7 then Effort is 2770. (-7 falls between [-10, 0]) 

 If size is 80 and prod_sum is 5 then Effort is 2137. (5 falls between [1, 10]) 

 If size is 80 and prod_sum is 16 then Effort is 1556. (16 falls between [11, 20]) 

 If size is 80 and prod_sum is 26 then Effort is 1028. (26 falls between [21, 

32.5]) 

If we substitute the values of size and Effort of the aforementioned four rules in Equation 

(3.7), the values of the productivity variable are 0.4, 0.7, 1 and 1.3 respectively.  
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Equation (3.7) represents the main proposed regression model for software effort 

estimation, where Effort is the software effort in person-hours, size is the software size in 

UCP and the value of productivity is depicted in Table 3-5.  

3.2.2 Fuzzy Logic Approach 

Table (3-5) shows the values of the productivity variable of Equation (3.7). The 

productivity factors were predicted using the multiple linear regression model. Each 

productivity factor value was given a description. The main drawback of the productivity 

factor is that the values are crisp and there is no graduation in the productivity factor 

values as the value of prod_sum increases. For instance, if the value of prod_sum is 10, 

the productivity factor is 0.7, however, if the value of prod_sum is 11, the value of the 

productivity factor is 1. To tackle this drawback, a fuzzy logic approach has been used.  

A fuzzy logic approach is applied on the proposed regression model to adjust the values 

of the productivity factor. In the proposed approach, we used two types of fuzzy systems. 

This includes Mamdani [9] and Sugeno [10]. Both Mamdani and Sugeno can have the 

same input (membership functions). However, the main difference between these two 

models is that the output of Mamdani can take any membership function like the input 

but the output of Sugeno can be either constant or a straight line. The input membership 

of the fuzzy logic system used is Trapezoidal because each input has a range of values 

(e.g. between 1 and 10). The output membership used is Triangular because each output 

has a fixed value which is represented by a triangle’s vertex.  The method used in the 

Defuzzification stage is the centroid since this is the default and most common used 
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method. Matlab version 2010b was used to conduct the experiments of the fuzzy logic 

approach. Figures (3-8) and (3-9) show the input and the output memberships of 

Mamdani fuzzy logic system, respectively.  

Table ‎3-5  Productivity factor 

prod_sum = 

8

1

i i

i

E W


  

Productivity 

Description 

Productivity 

Factor 

Less than 0 Very Low 0.4 

Between 1 and 10 Low 0.7 

Between 11 and 20 Average 1 

Greater than 20 High 1.3 

 

 

Figure ‎3-8  Memdani input membership function 

 

Figure ‎3-9  Mamdani output membership Function 
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There are two main approaches to elicit fuzzy rules [11]. These include: 

1. The expert knowledge is translated into if-then rules. A structured model can be used 

to incorporate these rules. Membership functions and weights of rules can be calibrated 

using input and output data. 

2. No prior knowledge about the system is initially used. A fuzzy model is constructed 

based on a certain algorithm. Fuzzy rules and membership functions are expected to 

describe the system behavior. An expert can modify the rules and the membership 

functions. 

In this work, the first approach is used. 

There are four fuzzy rules in the proposed approach. These include: 

1- If prod_sum is less than 0, then productivity factor = 0.4. 

2- If prod_sum is between 0 and 10, then productivity factor = 0.7. 

3- If prod_sum is between 10 and 20, then productivity factor = 1. 

4- If prod_sum is greater than 20, then productivity factor = 1.3. 

The centroid method is used for Defuzzification which calculates the center of gravity of 

a surface. 

After applying the fuzzy logic approach, the productivity factor has a specific value for 

each value of prod_sum. Table (3-6) shows some samples of the new values of the 

productivity factors using Mamdani fuzzy system and Table (3-7) shows the values of the 

values of the productivity factors using Sugeno fuzzy system. The labels IN, PO and PN 

correspond to prod_sum, old productivity factor and new productivity factor respectively. 
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Our experiments show that there is no noticeable difference between Mamdani and 

Sugeno systems so we compared the MLP model with the regression model which is 

based on Mamdani system and thus, the Sugeno system was ignored. 

As seen in Table (3-6), the values of the new productivity factor (PN) are not as crisp as 

the values of the old productivity factor (PO). This leads to better estimation results. For 

instance, a complete list of the productivity factor values can be obtained using the 

proposed fuzzy logic inference system. 

3.2.3 Neural Network Model 

Neural network models have been widely used in software estimation as alternative 

solutions to regression models. In this chapter, a neural network model is developed 

based on a set of 120 projects, of which 100 projects were used in the training stage and 

20 projects were used in the testing stage. In Section 3.3, a comparison is conducted 

between the proposed neural network model and the proposed regression model with 

fuzzy logic. 

Each neural network model has input and output layers. If data are not linearly separable, 

which is the case in our problem, a hidden layer should exist between the input and 

output layers. The proposed neural network is classified as Multilayer Perceptron (MLP) 

that contains an input layer, one hidden layer and an output layer. The main inputs to the 

proposed neural network model are software size and team productivity represented by 

the eight environmental factors (E1 to E8 as shown in Table 2-6). The output of the 

model is software effort. The main reason of choosing the eight environmental factors to 
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represent the team productivity rather than choosing the prod_sum variable is to see the 

impact of each of these eight factors on software effort. The structure of the proposed 

neural network is depicted in Figure (3-10). 

Table ‎3-6  New productivity factor using mamdani system 

IN PO PN IN PO PN 

-10 0.4 0.4 8 0.7 0.78 

-9 0.4 0.44 9 0.7 0.81 

-8 0.4 0.47 10 0.7 0.85 

-7 0.4 0.493 11 1 0.88 

-6 0.4 0.511 12 1 0.91 

0 0.4 0.55 20 1 1.15 

1 0.7 0.583 21 1.3 1.15 

 

Table ‎3-7  New productivity factor using sugeno system 

IN PO PN IN PO PN 

-10 0.4 0.4 8 0.7 0.8 

-9 0.4 0.42 9 0.7 0.83 

-8 0.4 0.45 10 0.7 0.86 

-7 0.4 0.46 11 1 0.89 

-6 0.4 0.48 12 1 0.9 

0 0.4 0.55 20 1 1.15 

1 0.7 0.58 21 1.3 1.17 
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Figure ‎3-10  Neural network model 

 

To generate the proposed neural network model, several steps must be considered. The 

first step is to determine the number of nodes in the hidden layer. This problem is highly 

controversial and there is no straightforward answer to it. If the number of hidden nodes 

is too few, there will be high training error and high generalization error due to 

underfitting. On the other hand, if the number of hidden nodes is too high, you may get 

low training error but still have high generalization error due to overfitting. Overfitting 

occurs when the model gives good results in training but bad results in the validation 

process. Blum [12] and Linoff et al. [13] argued that the number of nodes in the hidden 

layer should be between the number of nodes in the input layer and double that number. 

In other words, if the number of the nodes in the input layer is ni, the number of nodes in 
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the hidden layer should be between (ni+1) and 2ni. In our case, the number of hidden 

nodes falls between 10 and 18. Another consideration should be taken while developing 

the neural network model is how to train, validate and test the model. Here, the term 

―validation‖ is used during the training stage. The purpose of the validation is to see how 

the model is performing in the training phase. On the other hand, the term ―testing‖ is 

used when data which were not included in the training stage are used to test and assess 

the model (this is discussed in Section 3.3). Taking these considerations into account is 

very critical and crucial since the model is deemed definitive when the training process 

has finished. After that, the model is used to predict software effort. The model is trained, 

validated and tested using a set of 120 available projects (100 projects for training and 20 

projects for testing, see Appendix D). The size, environmental factors (E1 to E8) and the 

actual effort of each project are known. For better results, these projects should be 

shuffled before the training process. For this reason, a k-fold cross-validation technique is 

used. The value of ―k‖ chosen is 10. This means that the training data is divided into 10 

equal sets. The training process is repeated 10 times. In each time, 9 sets are used for 

training and 1 set to validate the training. The validation error of each round is computed 

as the average error of the projects within a set. After the training process has finished, all 

the sets will have been used in the training and validation processes. The round with 

minimal average error is selected. Keep in mind that testing data should be selected 

before applying the cross-validation method because testing data should not be included 

in the training or validation processes. The algorithm used to train the model was 
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Levenberg-Marquardt backpropagation. To demystify the process of training the neural 

network model, the following algorithm is used: 

1- Prepare the data projects to be used in training, validation and testing processes. 

2- Randomly pick 20 projects to be used for testing after the training/validation 

process has finished. 

3- Randomly divide the remaining data (100 projects) into 10 equal sets (S1 to S10). 

4- Set the number of nodes in the hidden layer to 10 (―nh‖ =10). 

5- Set the number of training rounds (i) to 1 (―i‖ =1) 

6- In Round ―i‖ (―i‖ is a number between 1 and 10), use 9 sets for training and 1 set 

for validation (for each value of ―i‖, 9 different sets are used for training and the 

remaining set for validation) 

7- Record the validation error Vi-nh (―i‖ represents the number of the round, and 

―nh‖ the number of the nodes in the hidden layer. For instance, the first validation 

error is V1-10). 

8- Increment the value of ―i‖ by 1. 

9- If the value of ―i‖ is 11, then increment the value of ―nh‖ by 1 and set the value of 

―i‖ to 1. 

10- If the value of ―nh‖ = 19, then stop training and exit. 

11- Go to step ―6‖ 
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Figure ‎3-11  Performance graph 

 

 

Figure ‎3-12  Regression graph 
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Ten rounds of training and validation were performed for each value of the number of 

hidden nodes ―nh‖. The values of ―nh‖ were chosen between 10 and 18. The value 10 

represents the number of the input nodes plus 1. The value 18 represents the number of 

hidden nodes multiplied by 2. This means that 90 values of Vi-nh were reported (from 

V1-10 until V10-18). Experiments showed that the minimal value of validation error 

occurred when the number of hidden nodes is 16.  

To evaluate the proposed neural network model, performance and regression graphs were 

conducted after training as shown in Figures (3-11) and (3-12) respectively. There is no 

sign of overfitting in Figure (3-11).  

3.3 Models Assessment and Discussion 

This section presents the assessment of the proposed models. The set of projects that 

were selected before training the neural network model is used for testing. Moreover a 

comparison is performed between the proposed models and other models such as the 

original UCP model and Schneider’s model. Furthermore, a discussion is provided about 

the assessment of models. 

3.3.1 Testing the Proposed Models 

First, the set of testing projects that was excluded from the projects used to train the 

neural network model is divided into two main subsets. The first subset contains projects 

that are relatively small (< 100 UCP). The other subset contains projects that are 

relatively large (> 100 UCP). Three main experiments were conducted to test the 
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proposed models. First, the proposed models are tested using the whole set. Secondly, the 

proposed models are tested using the subset that contains the small projects. Thirdly, the 

subset that contains the large projects is used. The main purpose of conducting three 

experiments is to see how the neural network model performs with small and large 

projects. The evaluation criteria used for testing are MMER as well as PRED (25), PRED 

(35), PRED (50) and PRED (75). Table (3-8) shows the results when the whole set of 

testing is used. The columns Kar, Sch, Reg and Neu correspond to Karner’s model 

(original UCP model), Schneider’s model, the proposed regression model with fuzzy 

logic (Equation 3.7, the value of the productivity factor is depicted in Table 3-7) and the 

neural network model respectively. Figure (3-13) shows the Interval plot at 95% 

confidence level of MMER against Karner, Schneider, Regression and neural network 

models. 

 

Table ‎3-8 Results using whole dataset 

Critera Kar 

(%) 

Sch 

(%) 

Reg 

(%) 

Neu 

(%) 
MMER 29.6 25.2 21.7 32.2 

PRED 

(25) 

70 80 75 65 

PRED 

(35) 

70 80 90 65 

PRED 

(50) 

90 100 95 75 

PRED 

(75) 

100 100 100 100 
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Figure ‎3-13  MMER interval plot 

 

The second experiment is conducted by using the subset of data projects that contains 

small projects. Similarly, Table (3-9) and Figure (3-14) show the results. 

 

Table ‎3-9  Results using small projects 

Critera Kar 

(%) 

Sch 

(%) 

Reg 

(%) 

Neu 

(%) 
MMER 31.25 22.4 26.52 21.3 

PRED 

(25) 

70 90 50 100 

PRED 

(35) 

70 90 80 100 

PRED 

(50) 

80 100 90 100 

PRED 

(75) 

100 100 100 100 
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Figure ‎3-14  MMER interval plot for small projects 

 

Consequently, Table (3-10) and Figure (3-15) show the results when large projects are 

used. 

Table ‎3-10  Results using large projects 

Critera Kar 

(%) 

Sch 

(%) 

Reg 

(%) 

Neu 

(%) 
MMER 28 27.9 16.9 43.1 

PRED 

(25) 

70 70 100 30 

PRED 

(35) 

70 70 100 30 

PRED 

(50) 

100 100 100 50 

PRED 

(75) 

100 100 100 100 



87 

 

 

Neu_lgReg_lgSch_lgKar_lg

90

80

70

60

50

40

30

20

10

0

M
M

ER

Interval Plot of Kar_lg, Sch_lg, Reg_lg, Neu_lg
95% CI for the Mean

 

Figure ‎3-15  MMER interval plot for large projects 

 

3.3.2 Comparison Among Different Models 

Table (3-8) shows that the proposed regression model surpassed the original UCP model 

and Schneider’s model by about 8% and 3.5% respectively when MMER is used. The 

regression model also gave good results when PRED (x) is used. However, the original 

UCP model and Schneider’s model slightly surpassed the neural network model. 

Moreover, Figure (3-13) shows that the neural network model has the largest variation in 

the MMER which is not good. On the other hand, the neural network model gave 

promising results when small projects are used for testing as it surpasses all the models 

when MMER and PRED (x) are used. Furthermore, Figure (3-14) shows that the neural 

network model has the least variation in the MMER. Lastly, when large projects are used 

for testing, the regression model surpassed all the models when MMER and PRED (x) 

evaluation criteria are used. On the other hand, the neural network model did not perform 

well with large projects. As a conclusion, we noticed that the linear regression and the 
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MLP models can be used for software effort estimation and this answers the seventh 

research question proposed in Section 1.2. 

3.3.3 Discussion 

This chapter proposed a novel regression model to calculate software effort based on the 

use case diagrams. The regression model takes into consideration the non-linear 

relationship between software size and effort as well as the influence of team 

productivity. A Multilayer Perceptron (MLP) neural network model was also proposed in 

this work. A comparison between these two models shows that the neural network model 

can be used as an alternative to the proposed regression model. It is obvious from Table 

(3-10) that the regression model excels when large projects are used for testing. This 

might be because the regression model addresses the non-linear relationship between 

software size and effort as opposed to Karner’s and Schneider’s models. The non-linear 

relationship shows that when software size increases, software effort will increase 

exponentially.  

3.4 Threats to Validity 

Threats to validity can be summarized as follows: 

 The regression model represented in Equation (3.7) was created using 

educational and industrial projects. Unfortunately, the majority of these 

projects are considered as small projects in the industry’s point of view (less 

than 340 UCP). As seen in Figure (3-5), the proposed model shows the 
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influence of the non-linear relationship when software size increases. 

Nevertheless, the regression model has not been tested for projects whose 

efforts are larger than 8,000 person-hours. 

 One of the reasons that the neural network model did not perform well with 

large projects is because the lack of the industrial projects. This model was 

trained using 100 projects. For this model to give better results, more projects 

should be used for training. 

 It was difficult to elicit the environmental factors (Table 2-6) from the team 

that is developing software projects. For instance, developers might be 

optimistic when answering questions about their experiences and motivations. 

Moreover, the motivation of a developer/programmer might differ when placed 

in a different team, even in the same project. Furthermore, there is no 

straightforward rule to calculate the productivity of the team based on the 

productivity of each team member. In this work, the average of all team 

members was performed to calculate the productivity of the team. 

 The UCP model mainly depends on the use case diagrams. If the use case 

diagrams were not properly designed, a huge error could be incurred. 

 Because of the lack of obtaining industrial projects, some educational projects 

were used. Educational projects are mainly developed by students who work 

with these projects as part time. Projects developed by inexperienced students 

might incur errors when the actual software effort is estimated. Moreover, 

experiments show that most students only focus on the programming part 
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when developing software projects and thus, ignore the other stages of the 

software life cycle. 

3.5 Conclusion  

This chapter focused on software effort estimation from the use case diagrams using the 

use case point (UCP) model. In the UCP model, the unadjusted software size (UUCP) is 

calculated based on the number and complexity of the use cases as well as the actors. The 

adjusted use case point size (UCP) is then calculated by multiplying the UUCP by the 

technical and environmental factors. The technical factors represent the project 

complexity whereas the environmental factors represent the team productivity. After the 

UCP size is calculated, software effort can be estimated by multiplying the UCP by 20. 

There are two main shortcomings in the original UCP model. The first one is that the 

UCP model considers the relationship between software size and effort is linear. This is 

incorrect because when software size increases, the number of team members required to 

develop this software increases. When the team becomes larger, communication overhead 

will incur and this requires additional effort. This concludes that when software size 

increases, software effort will increase exponentially. Another shortcoming is that the 

influence of the team productivity is not taken into consideration while estimating effort.  

In this work, a novel simple regression model is proposed to tackle these limitations. A 

multiple linear regression model was developed to predict the productivity factor 

proposed in the simple linear regression. A Mamdani fuzzy logic approach was used to 

adjust the values of the productivity factor. 



91 

 

 

Another contribution in this work was to develop a Multi Layer Perceptron (MLP) neural 

network model. This model takes the software size and the team productivity represented 

by eight factors as inputs. The output of this model is the software effort. The proposed 

regression and neural network models were tested and evaluated. A comparison among 

the regression model, the neural network model, the original UCP model and the 

Schneider’s model was conducted in three experiments. In the first experiment, all 

available data set was used to test and assess the models. In the second test, larger 

projects (>2,000 person-hours) were used for testing, while in the third experiment, 

smaller projects (<2,000 person-hours) were used for testing. Results show that the 

proposed regression model surpasses all the models when the first and the second 

experiments were used. On the other hand, the neural network model gives better results 

than the other models in the third experiment. This had led to the conclusion that an MLP 

neural network can be used as an alternative to regression models for projects of effort 

less than 2,000 person-hours. 

The next step in this investigation will focus on improving the regression and the neural 

network models when new projects are available. The environmental and the technical 

factors of the UCP model should be updated. Moreover, the UCP model should be 

reconstructed to handle use cases of more than 7 transactions. Furthermore, the weights 

of the use cases should be calibrated. 
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Chapter 4  

4. Regression, RBFNN and GRNN3 

4.1 Introduction 

This chapter presents four sub-models of our main model. These models include non-

linear regression, linear regression with a logarithmic transformation, Radial Basis 

Function Neural Network and General Regression Neural Network. Moreover, the inputs 

of the model are introduced. They include software size, team productivity, project 

complexity and requirements stability. The main difference between this chapter and 

Chapter 3 is that in Chapter 3 we developed a neural network model of type Multilayer 

Perceptron (MLP) as well as linear regression model with a logarithmic transformation. 

The inputs of the MLP model were software size and team productivity. Software size 

was calculated based on the use case point (UCP) method; however, team productivity 

was calculated based on eight factors, also known as environmental factors as shown in 

                                                

3 Part of this chapter has been submitted to journal of Systems and Software (Elsevier) and an extended 

version was submitted to Empirical Software Engineering (Springer). 

 

1. Ali Bou Nassif, Luiz Fernando Capretz, Danny Ho and Daniel Varona, ―Software Effort 

Estimation from Use Case Diagrams Using Non-Linear Regression Analysis‖, Journal of Systems 
and Software, 2012 (Under review). 

2. Ali Bou Nassif, Luiz Fernando Capretz and Danny Ho, ―Regression and Neural Network Models 

for Software Effort Estimation from Use Case Diagrams‖, Empirical Software Engineering, 2012 

(Under review). 
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Table (2-6). Furthermore, the project complexity factor was ignored in the previous 

chapter. This is because the project complexity was represented by the technical factors 

through the adjusted use case point size.  

In this chapter, we propose a new method to calculate software size from use cases to 

overcome the limitations of the UCP model [1]. Team productivity was calculated based 

on five factors illustrated in Section 4.2.3 instead of the eight environmental factors Table 

(2-6) proposed in the use case point model. This is because Ochodek et al. [2] argued that 

the number of environmental factors can be reduced without deteriorating the estimation 

accuracy. Moreover, in this chapter, we introduce project complexity as a factor that 

affects software effort in Section 4.2.2. Most importantly, in Chapter 3, the requirements 

stability factor was one of the eight factors that contribute to productivity; however, we 

found that requirements stability is an essential factor and thus, we introduce it in Section 

4.2.4 as one of four factors that affect software effort estimation. Section 4.2.5 shows the 

effort-size relationship. Sections 4.3 and 4.4 present the non-linear and linear regression 

models, respectively. Sections 4.5 and 4.6 present a Radial Basis Function Neural 

Network (RBFNN) and General Regression Neural Network (GRNN) models, 

respectively. In Section 4.7, we show how software effort can be estimated based on the 

regression and neural network models. Sections 4.8 and 4.9 present the verification and 

evaluation of models, respectively. Section 4.10 presents threats to validity and Section 

4.11 concludes the chapter. 

4.2 Model’s‎Input‎Factors‎and‎Effort-Size Relationship 
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This section presents the four inputs of our proposed model. These include software size, 

project complexity, productivity and requirements stability. Moreover, the calibration of 

the productivity factor is introduced. Furthermore, we depict the actual relationship 

between software effort and size based on the industrial data points.  

4.2.1  Size Estimation 

In this work, a new approach to predict size estimation from use case descriptions is 

proposed to tackle the limitations of the use case model is proposed. In the use case point 

model [1] the total number of transactions in the use case description (scenario) is 

calculated as the number of transactions of the Success scenario plus the number of 

transactions in the Extension scenario. In our work, we investigated the weight of the 

transactions in the Success scenario versus the weight of the transactions in the 

Extensions Scenario. We have noticed through comparing industrial projects that if the 

Success and the Extensions have the same number of transactions, the effort required to 

develop the Success scenario is more than the effort required to develop the Extensions 

scenario. To support this claim, we have run three experiments. In each of the three 

experiments, a multiple linear regression model is developed that has four independent 

variables (productivity, complexity, requirements uncertainty and size) and one 

dependent variable (effort).  The main difference among these three experiments is the 

why the size is estimated. In the first experiment, the complexity of a use case is 

determined by adding the number of transactions in the Success scenario with the number 

of transactions in the Extensions. In the second experiment, the use case complexity is 

determined by adding the number of transactions in the Success scenario with half the 
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number of transactions in the Extensions scenario. In the third experiment, the use case 

complexity is determined by adding the number of transactions in the Success scenario 

with third the number of transactions in the Extensions scenario. In each experiment, the 

coefficient of determination R
2
 was calculated. We have noticed that the value of R

2 
of 

the second experiment is the highest. Based on this, the use case complexity is 

determined by adding the number of transactions in the Success scenario with half the 

number of transaction in the Extensions scenario. Size estimation is based on the 

following rules: 

 Consider all types of use cases in the use case diagram. 

 In the use case scenario of each use case, count the number of transactions (based 

on the definition of transactions in the use case point model [1]) in the Main 

Success Scenario. This is noted by TS.  

 In the use case scenario of each use case, count the number of transactions in the 

Extensions part. This is noted by TE.  

 The total number of transactions of the use case is calculated as TS + TE/2. 

 Assign a weight for each use case based on the rules proposed in Table (4-1). 

 The total size of the project is conducted by adding the complexity weight of each 

use case. In other words,  

6

1

.i i

i

Size n w


   (4.1) 
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Where n is the number of use cases of variety i and w is its corresponding weight. 

For instance, the open-bracket representation ―]4,8]‖ for LO indicates that ―4‖ is 

not included. For instance, Table (4-1) answers the first research question 

proposed in Section 1.2. 

  

Table ‎4-1 Use case complexity 

  Complexity level Number of transactions Complexity weight 

VL (Very low) [1,4] 5 

LO (Low) ]4,8] 10 

NM (Normal) ]8,12] 15 

HI (High) ]12 to 16] 20 

VH (Very High) ]16 to 20] 25 

XH (Extra High) > 20 30 

 

4.2.2 Project Complexity 

The complexity of the project is an important factor in software effort prediction. 

Complexity can be interpreted as an item having two or more elements [3] [4]. There are 

two dimensions of complexity. These include business scope such as schedule, cost, risk 

and technical aspect which is the degree of difficulty in building the product [4]. 

Technical complexity deals with the number of components of the product, number of 

technologies involved, number of interfaces and types of interfaces [4]. The project 

complexity can be classified as low complexity, medium complexity or high complexity 

[4]. Project complexity should be distinguished from other project characteristics such as 

size and uncertainty [3]. Complex projects require more effort to develop than simple 
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projects that have the same size as shown in Equation (4.2). The general equation of 

software effort can be represented as [5]: 

.
Complexity

Effort Size
Productivity

   (4.2) 

In our research, we identify the project complexity based on five levels (from Level-1 to 

Level-5). The reason behind defining five levels is to be compatible with other cost 

estimation models such as COCOMO where cost drivers are classified into five or six 

levels (such as Very Low, Low, Nominal, High, Extra High). Additionally, this 

classification is compatible to the project complexity classification in [4]. Regarding the 

complexity weights, we followed the UCP model where the highest level of complexity 

increases the effort by 30%. Moreover, as stated in the UCP model, normal complexity 

will not increase nor decrease the effort (factor = 1). The five complexity levels are 

defined as follows: 

 Level-1: The complexity of a project is classified as Level-1 if the project team is 

familiar with this type of project and the team has developed similar projects in 

the past. The number and type of interfaces are simple. The project will be 

installed in normal conditions where high security or safety factors are not 

required. Moreover, Level-1 projects are those of which around 20% of their 

design or implementation parts are reusable (came from old similar projects). The 

weight of the Level-1 complexity is 0.7. 
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 Level-2: This is similar to level-1 category with a difference that only about 10% 

of these projects are reusable. The weight of the Level-2 complexity is 0.85. 

 Level-3: This is the normal complexity level where projects are not said to be 

simple, nor complex. In this level, the technology, interface and installation 

conditions are normal. Furthermore, no parts of the projects had been previously 

designed or implemented. The weight of the Level-3 complexity is 1. 

 Level-4: In this level, the project is required to be installed on a complicated 

topology/architecture such as distributed systems. Moreover, in this level, the 

number of variables and interface is large. The weight of the Level-4 complexity 

is 1.15. 

 Level-5: This is similar to Level-4 but with additional constraints such as a 

special type of security or high safety factors. The weight of the Level-5 

complexity is 1.3. 

4.2.3 Productivity 

Productivity is inversely proportional to effort as seen in Equation (4.2). The higher the 

productivity of a team is, the less effort required to develop a project. Team productivity 

was calculated based on five factors illustrated in Section 4.2.3 instead of the eight 

environmental factors Table (2-6) proposed in the use case point model. This is because 

Ochodek et al. [2] argued that the number of environmental factors can be reduced 

without deteriorating the estimation accuracy. Also, in the use case point model, 

Requirements Stability factor is one of the eighth environmental factors (Table 2-6). 
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According to NASA lab [6] and COCOMO II model [7], requirements uncertainty can 

increase software effort up to 40%. This is the reason of removing the requirements 

stability factor when calculating productivity and assigning it as an independent factor as 

shown in Section 4.2.4. Each factor is rated from ―1‖ which represents ―very low‖ to ―5‖ 

which represents ―very high‖ and this is analogous to the classification of the cost drivers 

in COCOMO model. Factors with average classifications are rated as ―3‖. These factors 

and their corresponding weights are: 

 Team experience regarding the problem domain. Weight is 2. 

 Team motivation. Weight is 1. 

 Programming language type and experience. Weight is 2. 

 Object oriented experience (UML). Weight is 2. 

 Analytical skills. Weight is 1. 

Regarding the first factor, if the project team is acquainted with the problem domain of 

the project, the effort required to develop the project will be less than the one if the team 

is inexperienced with the problem domain. The motivation of the team also contributes to 

the productivity. People within the same team who get along with each other can achieve 

work faster. Team motivation is also influenced by several factors such as the 

environment where the project is deployed, working pace, and the number of working 

hours per day or per week. For instance, full-time employees tend to be more productive 

than part-time employees. Another important productivity factor is the team experience 

and the type of programming language used to implement the project. In general, 
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programmers who are expert in a certain language are those who have at least 5 years of 

experience. Moreover, the productivity would be higher when using 4
th
 generation 

languages (4GL) such as Visual Basic and Matlab rather than using 3GL such as C++. 

The team experience in the object oriented concept is very important because the team is 

either drawing UML diagrams or implementing UML diagrams. This research is based 

on predicting software effort from UML use case diagrams. The final factor which 

contributes to the productivity is the analytical skills of the team. This is the team’s 

ability to articulate, understand and solve both complicated and uncomplicated problems. 

The second step after assigning a rate (from 1 to 5) to each of the above productivity 

factors, is to determine the value of the productivity. The productivity factor is calculated 

in two steps. First, calculate productivity_sum as follows: 

5

1

Pr _ * .i i

i

oductivity Sum F W


  (4.3) 

Where F is the productivity factor of variety i and W is its corresponding weight. Based 

on the rules introduced above, the minimum value of Productivity_Sum is when the rate 

of all factors is ―1‖. Similarly, the maximum value would be when the rate of all factors 

is ―5‖. This means that Productivity_Sum falls between 8 and 40. If all productivity 

factors are average (rate=3), then Productivity_Sum is 24. The second step is to find the 

final Productivity value which is based on the value of Productivity_Sum as shown in 

Table (4-2). 
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Table ‎4-2 Productivity factor 

Productivity_Sum Productivity 

Less than or equal 14 0.7 

Between 15 and 20 0.85 

Between 21 and 27 1 

Between 28 and 34 1.15 

Greater than or equal 35 1.3 

 

4.2.3.1 Calibration of Productivity Factor 

Table (4.2) presents the values of the productivity factor. As seen in the table, these 

values are crisp and there is no graduation between each level. To avoid this problem, we 

use fuzzy logic to adjust the productivity values. The fuzzy system type used is Mamdani 

[8], the input membership of the fuzzy logic system used is Trapezoidal where the output 

membership is Triangular. Trapezoidal input membership was used because the input 

value (Productivity_Sum) is a range between two numbers; however, triangular output 

membership was used because the output (Productivity) has a single value. The method 

used in the Defuzzification stage is the centroid which is the default method used. Matlab 

version 2010b was used to conduct the experiments of the fuzzy logic approach. Figures 

(4.1) and (4.2) show the input and the output memberships respectively.  
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Figure ‎4-1  Mamdani input membership function 

 

 

Figure ‎4-2  Mamdani output membership function 

 

 

There are two main approaches to elicit fuzzy rules [9]. These include: 

1. The expert knowledge is translated into if-then rules. A structured model can be used 

to incorporate these rules. Membership functions and weights of rules can be calibrated 

using input and output data. 

2. No prior knowledge about the system is initially used. A fuzzy model is constructed 

based on a certain algorithm. Fuzzy rules and membership functions are expected to 
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describe the system behaviour. An expert can modify the rules and the membership 

functions. 

In this work, the first approach is used. 

There are five fuzzy rules in the proposed approach. These include: 

1- If Productivity_Sum is less than or equal 14, then productivity factor = 0.7. 

2- If Productivity_Sum is between 15 and 20, then productivity factor = 0.85. 

3- If Productivity_Sum is between 21 and 27, then productivity factor = 1. 

4- If Productivity_Sum is between 28 and 34, then productivity factor = 1.15. 

5- If Productivity_Sum is greater than 34, then productivity factor = 1.3. 

The centroid method is used for Defuzzification which calculates the center of gravity of 

a surface. 

After applying the fuzzy logic approach, the productivity factor has a specific value for 

each value of Productivity_Sum. Table (4-3) shows the old values of the productivity 

factor as well as the adjusted values (after applying fuzzy logic). The labels P_S, O_F 

and N_F correspond to Productivity_Sum, old productivity factor and new productivity 

factor respectively. 

As seen in Table (4-3), the values of the new productivity factor (N_F) are not as crisp as 

the values of the old productivity factor (O_F). This leads to better estimation values. 
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Table ‎4-3 New productivity factor 

P_S O_F N_F P_S O_F N_F P_S O_F N_F P_S O_F N_F 

8 0.7 0.7 16 0.85 0.806 24 1 1.03 32 1.15 1.18 

9 0.7 0.727 17 0.85 0.835 25 1 1.07 33 1.15 1.2 

10 0.7 0.745 18 0.85 0.865 26 1 1.07 34 1.15 1.23 

11 0.7 0.758 19 0.85 0.894 27 1 1.07 35 1.3 1.23 

12 0.7 0.766 20 0.85 0.925 28 1.15 1.1 36 1.3 1.23 

13 0.7 0.771 21 1 0.949 29 1.15 1.12 37 1.3 1.24 

14 0.7 0.774 22 1 0.974 30 1.15 1.14 38 1.3 1.25 

15 0.85 0.775 23 1 1 31 1.15 1.16 39 1.3 1.27 

 

4.2.4 Requirements Stability 

Another important factor when conducting software estimation is the degree of the 

requirements stability. In many projects, clients tend to change or increase the number of 

requirements and this will increase the effort. Figure (4-3) shows an example of 40% 

increase in the number of requirements over time (x-axis) which has led to 40% increase 

in software effort estimation (1.4x in y-axis). This approach has been used by leading 

organizations such as NASA’s Software Engineering Laboratory [6]. COCOMO II uses a 

similar approach called Breakage (BRAK) to reflect the requirements volatility of the 

project [7]. 
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Figure ‎4-3  Requirements stability 

 

We propose 5 levels of Requirements Stability from Level-1 (unstable requirements) to 

Level-5 (stable requirements). If the requirements are stable, there is no increase in 

software effort. Based on [6] and [7], 40% increase (or change) in the requirements can 

lead to 40% increase in effort. The weight for each level was defined as follows: 

 Level-1: This indicates that there is an increase of 40% of the requirements during 

the project life cycle. This incorporates new requirements and changes in existing 

requirements. Weight is 1.4. 
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 Level-2: This indicates that there is an increase of 30% of the requirements during 

the project life cycle. Weight is 1.3. 

 Level-3: This indicates that there is an increase of 20% of the requirements during 

the project life cycle. Weight is 1.2. 

 Level-4: This indicates that there is an increase of 10% of the requirements during 

the project life cycle. Weight is 1.1. 

 Level-5: This indicates that the requirements are stable during the project life 

cycle. Weight is 1. 

4.2.5 Effort-Size Relationship 

The original UCP model assumes that the relationship between software effort and size is 

linear as expressed in Equation (2.23). As discussed in Section 2.4.1.4, when the software 

size increases, software effort will increase but with non-linear relation. To support our 

hypothesis and to discover the type of this relationship (Effort – Size), among the 214 

data projects that we have, 65 projects of software effort ranged between 122 person-

hours and 129,353 person-hours were selected that have similar Complexity, Productivity 

and Requirements Stability (See Appendix E) . Figure (4-4) depicts the actual size and 

effort of these 65 projects as well as the original UCP Estimation. Figure (4-4) shows that 

the UCP method can be applied with acceptable error on small projects (size less than 

250 UCP which is equivalent to 5,000 person-hours). Based on Figure (4-4), the UCP 

model cannot be applied on projects of effort more than 10,000 person-hours. Among the 

214 data projects that we have, there are 58 projects (27%) that have effort more than 
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10,000 person-hours. This means that projects of greater than 10,000 person-hours cannot 

be ignored. The plot of the actual data projects in Figure (4-4) shows that the relationship 

between software effort and size in non-linear and this answers the sixth question 

proposed in Section 1.2. 

 

Figure ‎4-4  Comparison between UCP model and actual data 

  

4.3 Non-linear Regression Model 

In this section, we introduce the non-linear regression model that can best fit the non-

linear relationship of the actual data shown in Figure (4-4). In statistics, regression 

analysis focuses on generating a relationship between a dependent variable (aka 

response) and one or more independent variables (aka predictors) [10]. Regression 

analysis studies show how the dependent variable responds to a change in the 

independent variables and it identifies which independent variable is related to the 
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dependent variable. Legendre [11] and Gauss [12] were among the first people who 

worked with regression models 200 years ago. There are many types of regression 

analysis. These include simple regression, multiple regression, linear regression and non-

linear regression. Regression analysis has been widely used in software estimation. 

Software developers and project managers use historical data to build regression models. 

The regression models are then evaluated and compared with alternative models such as 

soft computing models.  

In our previous publications [13] and [14] (Chapter 3), we proposed a linear regression 

model with a logarithmic transformation to predict software effort from use cases. In the 

work proposed in Chapter 3, we used the method used by the original UCP model to 

calculate software size. The factors calculating software effort were software size and 

team productivity. The model was evaluated using educational and industrial projects that 

are considered as relatively small projects. In this paper, a new approach to calculate 

software size is introduced. Moreover, we study and present factors that affect the 

prediction of software effort. These factors are the Project Complexity, Team 

Productivity and Requirements Stability. Most importantly, our model has been evaluated 

using industrial projects which are categorized from very small projects to very large 

projects (between 120 and 224,890 person-hours). 

With respect to non-linear regression, many non-linear functions exist and it is not simple 

to just predict one. Based on the nature of the non-linear relationship in Figure (4-4), we 

used four different non-linear equations to see which equation can best fit the actual data. 

These equations include a second degree polynomial function and three exponential 
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functions as shown in Table (4-4), where the variable ―x‖ corresponds to software size, 

the variable ―y‖ corresponds to software effort, and ―a‖, ―b‖, ―c‖ and ―d‖ are constants. 

Table ‎4-4  Non-linear equations 

Polynomial Exponential 1 Exponential 2 Exponential 3 

2* *y a x b x c    *exp( * )y a b c x   *exp( * ) *exp( * )y a b x c d x   exp( * )y a b x   

 

In each non-linear equation type (Table 4-4), several experiments using Matlab 2010 

were conducted using the whole dataset used in Figure (4-4) (65 projects) to calculate the 

values of the constants ―a‖, ―b‖, ―c‖ and ―d‖. In each experiment, the value of the 

coefficient of determination R
2 

and the Root Mean Square (RMS) were measured. R
2
 is 

the percentage of variation in Effort explained by the variable Size. An acceptable value 

of R
2 

is ≥ 0.5 [15]. The RMS value shows how close the actual data are from the fitting 

curve. Both R
2 

and RMS are important. Good regression models are those that have 

higher R
2
 values and lower RMS values. Figures (4-5), (4-6), (4-7) and (4-8) show the 

regression graph, the value of the constants, R
2 
and RMS of each function. 

Based on the fitting graphs and on the R
2
 and RMS values, the Polynomial (Figure 4-5) 

and the Exponential 2 (Figure 4-7) were candidates for the proposed regression model 

since they gave higher R
2 

values and lower RMS values. However, after we have tested 

the Polynomial and Exponential 2 models, we found that they give inaccurate results 

when software size is less than 50 UCP. Although projects of size smaller than 50 UCP 

are considered small projects, small projects cannot be ignored. For this reason, the 

Polynomial and Exponential 2 models were eliminated, and consequently we found that 

none of these four non-linear models is appropriate to fit the whole project dataset.  
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Based on the above conclusion, the whole project dataset that is used to build the non-

linear regression models (65 projects), was divided into three different ranges based on 

the software size. The first range is called Small, which includes 26 projects out of the 65 

projects of software size less than 100 UCP (less than 2,000 person-hours). The second 

range is the Medium range that contains 21 projects of size ranged between 100 and 300 

UCP (between 2,000 and 8,500 person-hours) and the third range is the Large one which 

contains 18 projects of size greater than 300 UCP (effort between 8,500 and 129,353 

person-hours). Several experiments were performed to learn which of the four non-linear 

equations (Table 4-4) can best fit each range (Figures 4-9, 4-10, 4-11 and 4-12 for small 

dataset, Figures 4-13, 4-14, 4-15 and 4-16  for medium dataset and Figures 4-17, 4-18, 4-

19 and 4-20 for large dataset). Experiments show that based on the fitting graphs, values 

of R
2
 and RMS, the Polynomial model (Figure 4-9) can best fit the small dataset. 

However, the Exponential 3 (Figure 4-16) and Exponential 2 (Figure 4-19) models can 

best fit the Medium and the Large ranges, respectively.  

 

Figure ‎4-5 Polynomial, all data 

 

Polynomial 

a=0.01 

b=28.07 

c=-870 

R
2
=0.99 

RMS=1328 
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Figure ‎4-6  Exponential 1, all data 

 

Figure ‎4-7 Exponential 2, all data 

 

Figure ‎4-8  Exponential 3, all data 

Exponential 1 

a=225.3 

b=0.43 

c=0.005 

R
2
=0.40 

RMS=15650 

Exponential 2 

a=54580 

b=0.00046 

c=-55770 

d=-0.0001 

R
2
=0.99 

RMS=1298 

Exponential 3 

a=8.37 

b=0.0017 

 

R
2
=0.93 

RMS=5349 
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Figure ‎4-9  Polynomial, small data 

 

Figure ‎4-10  Exponential 1, small data 

 

Figure ‎4-11  Exponential 2, small data 

Polynomial 

a=0.08 

b= 12 

c= -20 

R
2
=0.84 

RMS= 167 

Exponential 1 

a=-68 

b=283.3 

c=0.02 

R
2
=0.84 

RMS=168.5 

Exponential 2 

a=0 

b=0.015 

c=369.5 

d=0.015 

R
2
=0.77 

RMS= 202 
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Figure ‎4-12  Exponential 3, small data 

 

Figure ‎4-13  Polynomial, medium data 

 

Figure ‎4-14  Exponential 1, medium data 

Exponential 3 

a=5.57 

b=0.02 

 

R
2
=0.84 

RMS= 170 

Polynomial 

a=0.024 

b= 23.5 

c= -975 

R
2
=0.75 

RMS= 1365 

Exponential 1 

a=140.1 

b= 0.73 

c= 0.031 

R
2
=-0.8 

RMS= 3670 
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Figure ‎4-15  Exponential 2, medium data 

 

Figure ‎4-16  Exponential 3, medium data 

 

Figure ‎4-17  Polynomial, large data 

Exponential 2 

a=-8.48e+10 

b=-0.0014 

c=8.48e+10 

d=-0.0014 

R
2
=0.56 

RMS=1963 

Exponential 3 

a=6.9 

b=0.0072 

 

R
2
=0.80 

RMS=1225 

Polynomial 

a=0.011 

b= 25.19 

c= 792.3 

R
2
=0.99 

RMS=1439 
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Figure ‎4-18  Exponential 1, large data 

 

Figure ‎4-19  Exponential 2, large data 

 

Exponential 1 

a=225.3 

b=0.041 

c=0.0061 

R
2
=-0.04 

RMS=31700 

Exponential 2 

a=25780 

b=0.00067 

c=-29570 

d=-0.00083 

R
2
=0.99 

RMS=1205 

Exponential 3 

a=9.34 

b=0.001 

 

R
2
=0.96 

RMS=5951 



118 

 

 

Figure ‎4-20  Exponential 3, large data 

4.4 Linear Regression Model with a Logarithmic 

Transformation 

In this section, we introduce the linear regression model. In linear regression, the best 

results are obtained if data are normally distributed [16]. Several experiments were 

conducted using Minitab version 16 to determine how data were distributed. For the 

purpose of consistency with the previous section (non-linear regression), the experiments 

were conducted on the whole project dataset, as well as the Small, Medium and Large 

ranges as defined in the previous section. Figures 4-21 to 4-28 show the histograms of 

software size and software effort, respectively when all dataset, small dataset, medium-

sized dataset and large dataset are used respectively. Results show that data are not 

normally distributed. Generating regression models from data based on Figures 4-21 to 4-

28 is possible but this will lead to poor results. For this reason, data were normalized 

using logarithmic transformation. After logarithmic transformation, data (ln size and ln 

effort) of all, small, medium, and large project dataset became normally distributed 

(Figures 4-29 to 4-36). If data were normally distributed, the regression equation would 

be: 

* .y a x b   (4.4) 

Where a and b are constants. 

But since data were not normally distributed, linear regression is applied on ln(x) and 

ln(y) instead. The regression equation becomes as follows: 



119 

 

 

ln( ) *ln( ) .y c x d   (4.5) 

Equation (4.5) can be written as follows: 

* .By A x  (4.6) 

Where B=c and A=e
d
.
 
 

Table 4-5 shows the values of the constants in Equations (4.5) and (4.6) as well as the 

values of R
2
 and RMS in each of the four experiments (All Data, Small Data, Medium 

Data and Large Data). 

Table ‎4-5  Linear model parameters 

 Equation (4.5)  Equation (4.6) 

Category c d R
2
 RMS  A B R

2
 RMS 

All data 1.327 1.381 0.96 0.303 3.981 1.327 0.99 1506 

Small Data 1.25 1.693 0.80 0.308 5.431 1.25 0.89 141.5 

Medium 

Data 

1.286 1.528 0.55 0.414 4.602 1.286 0.55 1832 

Large Data 1.26 1.862 0.99 0.067 6.431 1.26 0.99 2497 

 

The fitting graphs of Equation (4.5) are shown in Figures 4-37 (All Data), 4-38 (Small 

Data), 4-39 (Medium Data) and 4-40 (Large Data). However, the fitting graphs of 

Equation (4.6) are depicted in Figures 4-41 (All Data), 4-42 (Small Data), 4-43 (Medium 

Data) and 4-44 (Large Data). To better compare the non-linear equation with linear 

equation, Equation (4.6) is used for the linear regression. Despite the fact that the linear 

regression that represents the whole dataset (Figure 4-41) slightly surpasses the non-

linear regression models that represent whole dataset, this model (Figure 4-41) does not 

perform well when the size of the input data points is too small or too large. 
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Consequently, this model is ignored and the other three models (Small, Medium and 

Large) are used instead. The comparison between the proposed models is presented in 

Section 4.9. Please note that Equations (4.5) and (4.6) as well as the non-linear equations 

(Section 4.3) only represent the non-linear relationship between software effort and size 

as shown in Figure 4-4 and not the final equations for predicting software effort. The 

final equation of software effort is represented in Section 4.7 (Equation 4.7).   
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Figure ‎4-21 Size, all data 

 

 

Figure ‎4-22  Effort, all data 

 

 

Figure ‎4-23  Size, small data 

 

 

Figure ‎4-24  Effort, small data 

 

 

Figure ‎4-25  Size, medium data 

 

 

Figure ‎4-26  Effort, medium data 
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Figure ‎4-27  Size, large data 

 

 

Figure ‎4-28  Effort, large data 

 

 

Figure ‎4-29  ln (Size_All_Data) 

 

 

Figure ‎4-30  ln (Effort_All_Data) 

 

 

Figure ‎4-31  ln (Size_Small_Data) 

 

 

Figure ‎4-32  ln (Effort_Small_Data) 
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Figure ‎4-33  ln (Size_Medium_Data) 

 

 

Figure ‎4-34  ln (Effort_Medium_Data) 

 

 

Figure ‎4-35  ln (Size_Large_Data) 

 

 

Figure ‎4-36  ln (Effort_Large_Data) 
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Figure ‎4-37  ln(size/effort), all data 

 

Figure ‎4-38  ln(size/effort), small data 

 

Figure ‎4-39  ln(size/effort), medium data 
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Figure ‎4-40  ln(size/effort), large data 

 

Figure ‎4-41  Size/effort, all data 

 

Figure ‎4-42  Size/effort, small data 
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Figure ‎4-43  Size/effort, medium data 

 

Figure ‎4-44  Size/effort, large data 

 

4.5 Radial Basis Function Neural Network  

The diagram of the Radial Basis Function Neural Network (RBFNN) model is presented 

in Figure 2-3. The input layer of our proposed model has four inputs which are software 

size, project complexity, team productivity and requirements stability. The training 

process performed in the neural network models is different from the regression models. 
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This is because in the regression models, the first step was to represent the non-linear 

relationship between software effort and size. The second step was to include the 

influence of the other three factors (project complexity, team productivity and 

requirements stability). Our proposed neural network models map non-linear 

relationships between the input and output of the model. For this reason, we trained our 

neural network models, the RBFNN and the GRNN (presented in Section 4.6) using 

actual projects by giving four inputs to the model and one output (software effort). 

Nonetheless, it is important that our models are trained based on different data sizes 

(small, medium and large). Among the whole project dataset (214 projects), there are 85 

small projects (size less than 100 UCP), 69 medium-sized projects (size between 100 and 

300 UCP) and 60 large projects (size greater than 300 UCP). In general, neural network 

models are trained using 70% of the whole data and tested (evaluated) using the 

remaining 30%. To guarantee that our model is trained and tested using dataset of 

different sizes, 70% of each range (small, medium and large) is used for training and the 

remaining 30% of each range are used for evaluating the models. So, the RBFNN and 

GRNN models are trained using 149 industrial projects that include 60 small projects, 48 

medium-sized projects and 41 large projects. The software effort/size relationship of 

these 149 projects is depicted in Figure 4-45. The remaining data (25 small projects, 21 

medium projects and 19 large projects) are used to evaluate not only the neural network 

models, but also the regression models. The purpose that the same data is used to 

evaluate the four models is to conduct a thorough and unbiased comparison among these 

four models as shown in Section 4.9. 
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Figure ‎4-45  Size/ effort relationship 

 

In general, RBFNN networks are trained using k-means clustering to find cluster centers 

that can be used as centers for the RBF functions. However, this method has been 

criticized because clustering results are not sensitive to initial conditions and ignore the 

influence of dependent variable [17], and thus this method does not provide the optimal 

centre for the RBF functions. In this work, the RBFNN model is trained using the 

algorithm proposed by Chen et al [18]. This algorithm uses the orthogonal forward 

selection method based on the leave one-out criterion. The number of the hidden neurons 

will start by one and is increased until the best training results are achieved. Best results 

are achieved when the average error in the training stage is minimal as well as the 

validation error. To avoid overfitting (when the error is very low during training but high 

in the validation), the k-fold (k=10) cross validation technique was used. The training 
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points were divided into 10 groups, such that 9 groups were used for training and 1 group 

for validation. The process was repeated 10 times so that all data points were used in 

training and validations. The average error of the 10 stages is reported. The training 

process stopped when the number of the hidden neurons reached 9 as shown in Figure 4-

46. The proportion of variance explained by the model (R
2
) in the training and validation 

processes is 0.99 and 0.51 respectively. The root mean squared errors (RMS) in the 

training and validation are 2,015 and 15,063 respectively. Figure 4-47 shows the 

relationship between the actual and predicted target values. 

 

 

Figure ‎4-46  Number of neurons 
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Figure ‎4-47  Actual versus predicted effort 

 

The main parameters of the RBFNN model (center and spread of each neuron for each 

input variable) are shown in Table 4-6. The complete list of parameters is shown in 

Appendix G. 

Table ‎4-6  RBFNN parameters 

 Size Project Complexity Team 

Productivity 

Requirements Stability 

Neuron Center Spread Center Spread Center Spread Center Spread 

1 14.09 57.97 0.24 379.54 -3.46 268.98 0.66 193.23 

2 -0.30 9.86 -0.07 0.11 -3.68 149.66 1.92 390.26 

3 1.72 0.27 -0.25 141.66 0.46 344.43 0.26 31.22 

4 0.20 329.25 -0.07 204.63 -0.85 300.51 0.58 0.06 

5 14.56 144.28 -0.06 67.63 -1.61 151.21 0.53 0.15 

6 1.22 1.01 0.12 355.93 0.95 333.81 1.76 296.17 

7 -0.06 10.68 -0.20 380.31 -2.22 179.61 1.65 137.95 

8 0.60 10.91 0.29 95.95 -3.22 167.00 0.20 21.36 

9 6.37 234.47 0.08 199.07 0.42 192.66 1.66 1.77 

 



131 

 

 

4.6 General Regression Neural Network  

This section presents the General Regression Neural Network (GRNN) model. The 

diagram of this model is shown in Figure 2-4. Like the RBFNN model, the GRNN model 

was trained using 149 different data points (60 small, 48 medium and 41 large). The most 

important parameter of the GRNN model is the spread value. Eleven experiments (Table 

4-7) were conducted to learn the optimal value of the spread by taking different values of 

spread. If the spread value is very small, the training error will be small but the validation 

error will be high and this leads to overfitting. When the spread value increases, the 

training error increases where the validation error decreases to a point where both the 

training and validation errors start to increase until the training and the validation errors 

become equal. The k-fold (k=10) cross validation technique was used in the training 

stage. The optimal value of the spread value was selected based on the values of R
2
 and 

RMS in each of the training and validation stages. The best results were obtained when 

the spread value was 0.81. 

Figure (4-48) shows the relationship between the actual and predicted target values. 
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Table ‎4-7  GRNN spread value 

 Training Validation 

Spread R2 RMS R2 RMS 

0.5 0.99 1530 0.53 14479 

0.6 0.99 1761 0.57 13950 

0.7 0.99 2041 0.57 13840 

0.81 0.99 2431 0.70 11705 

0.85 0.99 2578 0.67 12044 

0.88 0.98 2661 0.68 12098 

0.93 0.98 2850 0.64 12795 

1.44 0.96 4377 0.68 12146 

2.81 0.88 7446 0.75 10577 

3.10 0.86 8096 0.51 13787 

6.05 0.56 14180 0.56 14159 

 

 

 

Figure ‎4-48  Actual versus predicted target (GRNN) 
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4.7 Software Estimation 

This section presents the prediction of software estimation based on the above four 

models (non-linear regression, linear regression, RBFNN and GRNN). 

4.7.1 Estimation using non-linear regression 

Our novel model for software effort estimation is different from the one proposed in 

Equation (4.2), as our model incorporates the non-linear relationship between software 

size and effort and the requirements uncertainty, in addition to project complexity and 

team productivity. The general equation of our model is shown as follows: 

*
( ).

C R
Effort f size

P
  (4.7) 

Where ―Effort‖ is measured in person-hours, ―C‖ is the project complexity as introduced 

in Section 4.2.2, ―R‖ is the degree of the requirements stability as introduced in Section 

4.2.4 and ―P‖ is the productivity as depicted in Table (4-3) in Section 4.2.3. Equation 

(4.7) shows that effort is proportional to project complexity and requirements instability 

and inversely proportional to productivity. For instance, Equation (4.7) answers the 

second, third and fourth research questions. The complexity ―C‖ can increase the effort 

by 30%. The requirements uncertainty ―R‖ can increase the effort by 40%. The 

productivity ―P‖ can increase the effort by 42%. By taking the influence of each of the 

complexity, productivity and requirements uncertainty factors, we deduced that the three 

factors combined (non-functional requirements) can increase software effort by 160% 

and this answers the fifth research question proposed in Section 1.2. 
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f(size) is different for each range (Small, Medium and Large) and calculated as follows: 

2( _ ) * * .f size small a size b size c    (4.8) 

Where ―size‖ is software size of values less than 100 UCP calculated based on the rules 

listed in Section 2.1. The constants ―a‖, ―b‖ and ―c‖ have values of 0.08, 12   and -20, 

respectively. Similarly,  

( _ ) exp( * ).f size medium a b size   (4.9) 

Where ―size‖ is software size of values between 100 and 300 UCP calculated based on 

the rules listed in Section 4.2.1. The constants ―a‖ and ―b‖ have values of 6.9 and 0.0072 

respectively. Similarly, 

( _ arg ) *exp( * ) *exp( * ).f size l e a b size c d size         (4.10) 

Where ―size‖ is software size of values greater than 300 UCP calculated based on the 

rules listed in Section 4.2.1. The constants ―a‖, ―b‖, ―c‖ and ―d‖ have values of 25,780, 

0.00067, -29,570 and -0.00083 respectively. Please note that there is a limitation for the 

maximum size that can be used. This is discussed in the Threats to Validity Section 

(Section 4.10). 

4.7.2 Estimation using linear regression 

Equation (4.7) will also be used to estimate software effort using the linear regression 

model. Similarly, f(size) is different for each range (Small, Medium and Large) and 

calculated as follows: 

( ) *( ) .Bf size A size  (4.11) 
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Where A=5.431 and B=1.25 for the small range (size less than 100 UCP), A=4.602 and 

B=1.286 for the medium range (size between 100 and 300 UCP), A=6.431 and B=1.26 

for the large range (size greater than 300 UCP). Please note that there is a limitation for 

the maximum size that can be used. This is discussed in the Threats to Validity Section 

(Section 4.10). 

4.7.3 Estimation using RBFNN and GRNN 

Each of the neural network models is trained and designed to take 4 input vectors which 

are software size, project complexity, team productivity and requirements stability. The 

output is the predicted target (software effort) measured in person-hours.  

4.8 Models verification 

In this section, we will verify the regression and the neural network models by injecting 

random data points to the input and measuring the output. For regression models, 10 data 

points are chosen such that 5 data points are of size ranging between 90 and 110 UCP. 

However, the other 5 data points are of size between 280 and 320 UCP. The reason 

behind choosing these data points is that size of the first 5 points is critical and can be 

used as input to the model of the small range (less than 100 UCP) or with the model of 

the medium range (between 100 and 300 UCP). Similarly, the second 5 data points fall 

between the medium and the large ranges. Regarding the neural network models, 16 data 

points of size ranging between 50 and 800 UCP (incremented by 50) are used to verify 

the RBFNN and the GRNN models. The other three inputs (product complexity, team 

productivity and requirements stability) are considered normal (value = 1). The main goal 
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of verifying the neural network models is to check the output of the models when the 

input slightly increases. Please note that the verification part is different from the 

evaluation part (Section 4.9) where the regression and the neural models are tested using 

the same industrial data points.  

4.8.1 Non-Linear Model Verification 

Equations (4.8), (4.9) and (4.10) represent three non-linear regressions used for small, 

medium, and large software size, respectively. However, before we can generalize these 

equations, we have to make sure that there is no abrupt change in results when Equations 

(4.8) and (4.9) are used at the same time with software size around 100 UCP. The same 

assumption is valid when applying Equations (4.9) and (4.10) on projects of size around 

300 UCP. In other words, Equation (4.8) should be used on projects of sizes that belong 

to the interval [1,100] and Equation (4.9) should be used on the interval [100,300]. But 

since the interval [90,110] falls between the intervals [1,100] and [100,300], the results 

obtained from applying Equations (4.8) and (4.9) when software sizes belonging to the 

interval [90,110] should be close. This assumption should be correct if we try to use 

Equations (4.9) and (4.10) on projects of software size that fall in the interval [280,320]. 

To verify the above hypothesis, Equations (4.8) and (4.9) are applied on five software 

size values which are 90, 95, 100, 105 and 110. Similarly, Equations (4.9) and (4.10) are 

applied on five values which are 280, 290, 300, 310 and 320. Table 4-8 shows the results 

with the mean error and the 95% confidence interval. These results show that the mean 

error and the 95% confidence interval are relatively small and thus, we conclude that 
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there is a smooth transition from Equation (4.8) to Equation (4.9) and from Equation 

(4.9) to Equation (4.10). 

Table ‎4-8  Non-linear regression verification 

Software Size (UCP) Equation (4.8) Equation (4.9) Equation (4.10) 

90 1708 1916 N/A N/A 

95 1842 1987 N/A N/A 

100 1980 2060 N/A N/A 

105 2122 2136 N/A N/A 

110 2268 2215 N/A N/A 

280 N/A N/A 7583 7668 

290 N/A N/A 8152 8070 

300 N/A N/A 8764 8473 

310 N/A N/A 9422 8876 

320 N/A N/A 10129 9278 

Mean Error -78.8 337 

Margin Error (95% 

CI) 

128 460 

Confidence Interval  78.8 128    337 460  

 

4.8.2 Linear Model Verification 

The same process used to verify the non-linear model is used to verify the linear one. 

Table 4-9 shows the results with the mean error and the 95% confidence interval. Results 

show that the transition from the Small to the Medium ranges is very smooth and is better 

than the transition in the non-linear regression. However, the transition between the 

Medium and Large ranges is smoother in the non-linear regression. Most importantly, 

models verification does not show the accuracy of models. The accuracy (evaluation) is 

presented in Section 4.9. 
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Table ‎4-9  Linear regression verification 

Software Size (UCP) Equation (4.11)small Equation (4.11) medium Equation (4.11)large 

90 1505 1500 N/A N/A 

95 1610 1608 N/A N/A 

100 1717 1717 N/A N/A 

105 1825 1828 N/A N/A 

110 1934 1941 N/A N/A 

280 N/A N/A 6456 7792 

290 N/A N/A 6754 8145 

300 N/A N/A 7055 8500 

310 N/A N/A 7359 8859 

320 N/A N/A 7666 9220 

Mean Error -0.6 -1445 

Margin Error (95% CI) 5.7 106.7 

Confidence Interval  0.6 5.7    1445 106.7   

 

4.8.3 Neural Network models verification 

To verify the RBFNN and GRNN models, 16 data points are used that have average 

values in complexity, productivity and requirements stability (values = 1). The size of 

these data points varies between 50 and 800 UCP incremented by 50. The main goal of 

this verification is to measure the output (predicted effort) when software size varies from 

small project size to large project size. There are two main hypotheses in the verification 

of the neural network models. First, software effort is proportional to software size. An 

increase in software size should lead to an increase to software effort. The second 

hypothesis is that a slight change in software size should not lead to a big change in 

software effort. Table 4-10 shows the results of RBFNN and GRNN models. 
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Table ‎4-10  Neural network models verification 

 RBFNN GRNN 

Size Effort Ratio Effort Ratio 

50 383.95 7.68 1053.54 21.07 

100 1521.26 15.21 2400.63 24 

150 2933.26 19.56 2926.72 19.51 

200 4611.92 23.06 3652.51 18.26 

250 6516.15 26.06 4623.15 18.49 

300 8574.92 28.58 5857.78 19.52 

350 10711.75 30.61 7332.30 20.94 

400 12875.90 32.19 8982.60 22.45 

450 15027.60 33.39 10729.94 23.84 

500 17058.79 34.12 12508.65 25.01 

550 18773.60 34.13 14285.46 25.97 

600 20055.82 33.43 16084.77 26.80 

650 21050.16 32.38 18025.33 27.73 

700 22073.24 31.53 20316.17 29.02 

750 23354.45 31.14 23096.08 30.79 

800 24928.72 31.16 26120.43 32.65 

 

The effort column corresponds to the output of the model; however, the ratio column 

corresponds to the division of the effort by the size. As a comparison between the 

RBFNN and GRNN models in the verification stage, in the first data point, we notice that 

the RBFNN models underestimates small projects, however, the GRNN model 

overestimates small projects. With respect to the other 15 data points, both models 

perform well with an advantage to the GRNN model as it seems to be more robust. The 

accuracy of these models is presented in Section 4.9. 
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4.9 Models Evaluation and Comparison 

This section presents the evaluation of the regression and neural network models. The 

models were evaluated using 65 industrial projects using different evaluation criteria such 

as MMRE, MMER, PRED and the Mean Error with 95% Confidence Interval (CI). Our 

model is compared with other models that conduct software estimation from the use case 

diagrams such as the original UCP and Schneider’s et al. models. Furthermore, a 

discussion is provided in regards to the assessment of models. 

4.9.1 Project Dataset 

This research is based on software effort prediction from use case diagrams. We have 

encountered many difficulties in acquiring industrial projects because revealing UML 

diagrams of projects is considered confidential to many companies. For this reason, we 

have prepared a questionnaire that could help us obtain industrial data without actually 

having UML diagrams. In this questionnaire, we asked for example, the quantity of use 

cases in each project, the number of transactions in the Main Success Scenario and in the 

Extensions part, actual software size and effort as well as some non-functional 

requirements such as the project complexity, uncertainty in requirements, and factors 

contributing to productivity. Two hundred and fourteen industrial projects were collected 

from three main sources using the questionnaire presented in Appendix B. These include 

(See Appendix E and Appendix F): 
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 Source 1: One hundred and fifty six projects of software efforts vary between 120 

person-hours and 60,826 person-hours were used as part of our whole dataset. The 

main architecture of these projects is web architecture. Application types include 

customer billing software, network management, insurance software, as well as 

human resource. Programming languages include C++, Powerbuilder, Java and 

.Net.  

 Source 2: Thirteen projects were prepared that met our requirements. The range of 

the projects effort falls between 4,648 and 129,353 person-hours.  Information 

about project types were kept confidential as required from the company. 

 Source 3: This is a medium-sized company that employs 14 people to develop 

several projects such as information systems for chains of hotels, multi-branch 

universities and multi-warehouses book stores. The architectures used to develop 

these projects are 2-tier desktop application and 3-tier web architecture. The 

CASE tool used is Sybase PowerDesigner 12.5 and 15. Forty five projects of 

effort between 570 and 224,890 person-hours were collected.  

4.9.2 Models Evaluation 

To fairly compare the four models, same data points (65 projects) were used for 

evaluation. These data points contain 25 small projects (size less than 100 UCP), 21 

medium-sized projects (size between 100 and 300 UCP) and 19 large projects (size larger 

than 300 UCP). These data points were not included in the training stage of the models. 

To thoroughly compare these models, we have conducted four experiments. In the first 
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experiment, the whole data points (65 projects) were used. In this experiment, the three 

non-linear regression models and the three linear regression models were used based on 

the value of software size (models that were developed based on the Small range are used 

to evaluate data points of size less than 100 UCP. The same is correct for other models). 

Then, we divided the whole dataset into three ranges; the Small range (25 projects), the 

Medium range (21 projects) and the Large range (19 projects). In each of the four 

experiments, our model (two regression and two neural network models) was evaluated 

against other models that predict software estimation from the use case diagrams such as 

the UCP and Schneider’s model. The evaluation criteria used for testing are MMRE, 

MMER, and Mean Error with CI at 95%, as well as PRED (25), PRED (50), PRED (75) 

and PRED (100). The PRED values were calculated based on both the MMER and the 

MMRE criteria. Moreover, in each of the four different experiments, the interval plots at 

95% CI of MMRE, MMER and Mean Error were constructed (Figures 4-49 to 4-60). The 

labels ―non-ln‖, ―UCP‖, ―Sch‖, ―ln‖, ―RB‖ and ―GR‖ correspond to ―non-linear 

regression model‖, ―UCP model‖, ―Schneider’s model‖, ―linear regression model‖, 

―RBFNN model‖ and ―GRNN model‖ respectively. The main goal of conducting four 

experiments is to see how each of the models performs for different software size ranges. 

Tables 4-11, 4-12, 4-13 and 4-14 show the evaluation results of the models based on the 

All, Small, Medium and Large ranges. 
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Table ‎4-11  Models evaluation- all data points 

Criteria Non-linear UCP Schneider Linear RBFNN GRNN 

MMRE 0.29 0.53 0.50 0.28 0.57 0.86 

MMER 0.40 1.56 1.23 0.43 0.55 0.53 

PRED_25_MMRE 49.23 12.3 10.7 49.23 32.30 35.38 

PRED_50_MMRE 84.6 41.5 43 89.23 61.53 63.07 

PRED_75_MMRE 98.46 86.15 96.9 98.46 73.84 80 

PRED_100_MMRE 98.46 98.46 98.46 98.46 86.15 84 

PRED_25_MMER 50.76 10.76 10.76 41.53 30.76 30.76 

PRED_50_MMER 73.84 20 27.69 67.69 56.92 63.07 

PRED_75_MMER 84.61 30.76 38.46 81.53 78.46 80 

PRED_100_MMER 90.76 43.07 44.61 90.76 90.76 90.76 

Mean Error 

CI(95%) 

1366+/-

1503 

9261+/-

6316 

8674+/- 

6234 

4350+/- 

3528 

72004+/- 

3134 

154335+/- 

2208 

 

Table ‎4-12  Models evaluation- small range 

Criteria Non-linear UCP Schneider Linear RBFNN GRNN 

MMRE 0.29 0.55 0.53 0.25 0.75 1.66 

MMER 0.29 1.31 1.14 0.31 0.43 0.43 

PRED_25_MMRE 64 8 4 76 24 28 

PRED_50_MMRE 80 44 48 88 48 44 

PRED_75_MMRE 96 88 96 96 76 60 

PRED_100_MMRE 96 96 96 96 88 64 

PRED_25_MMER 76 4 4 68 32 32 

PRED_50_MMER 84 12 24 84 68 56 

PRED_75_MMER 92 32 44 88 72 80 

PRED_100_MMER 92 48 52 92 88 100 

Mean Error CI(95%) -152+/- 249 816+/- 294 752+/- 294 -1.34+/- 235 -158+/- 390 885+/- 354 
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Table ‎4-13  Models evaluation- medium range 

Criteria Non-linear UCP Schneider Linear RBFNN GRNN 

MMRE 0.41 0.55 0.50 0.41 0.57 0.48 

MMER 0.67 1.87 1.33 0.70 0.86 0.76 

PRED_25_MMRE 9.5 14.28 14.28 4.7 19.04 23.80 

PRED_50_MMRE 80.95 33.33 33.33 85.71 52.38 57.14 

PRED_75_MMRE 100 76.19 100 100 76.19 85.71 

PRED_100_MMRE 100 100 100 100 85.71 95.23 

PRED_25_MMER 9.5 19.04 19.04 4.76 19.04 9.52 

PRED_50_MMER 47.61 23.80 28.57 42.58 38.09 61.90 

PRED_75_MMER 66.66 23.80 28.57 61.90 57.14 71.42 

PRED_100_MMER 85.71 33.33 33.33 85.71 76.19 76.19 

Mean Error 

CI(95%) 

2301+/- 

1300 

4096+/- 

1612 

3639+/- 

1433 

2424+/- 

1260 

1760+/- 

1628 

2223+/-

1674 

 

Table ‎4-14  Models evaluation- large range 

Criteria Non-linear UCP Schneider Linear RBFNN GRNN 

MMRE 0.16 0.49 0.45 0.19 0.34 0.24 

MMER 0.25 1.55 1.23 0.31 0.37 0.40 

PRED_25_MMRE 73.68 15.78 15.78 63.15 52.63 57.89 

PRED_50_MMRE 94.73 47.36 47.36 94.73 73.68 94.73 

PRED_75_MMRE 100 94.73 94.73 100 84.21 100 

PRED_100_MMRE 100 100 100 100 100 100 

PRED_25_MMER 63.15 10.52 10.52 47.36 47.36 52.63 

PRED_50_MMER 89.47 26.31 31.57 73.68 78.94 73.68 

PRED_75_MMER 94.73 36.84 42.10 94.73 94.73 89.47 

PRED_100_MMER 94.73 47.36 47.36 94.73 94.73 94.73 

Mean Error 

CI(95%) 

2330+/- 

4920 

26083+/- 

19792 

24661+/- 

19714 

12204+/- 

11366 

725+/- 

10750 

3713+/- 

7287 
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Figure ‎4-49  MMRE, all data 

 

 

Figure ‎4-50  MMER, all data 
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Figure ‎4-51  Mean error, all data 

 

 

Figure ‎4-52  MMRE, small data 
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Figure ‎4-53  MMER, small data 

 

 

 

Figure ‎4-54  Mean error, small data 
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Figure ‎4-55  MMRE, medium data 

 

 

 

Figure ‎4-56  MMER, medium data 
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Figure ‎4-57  Mean error, medium data 

 

 

Figure ‎4-58  MMRE, large data 
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Figure ‎4-59  MMER, large data 

 

 

Figure ‎4-60  Mean Error, large data 
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4.9.3 Comparison Between Models 

In this section, we will compare the proposed four models as well as the UCP and 

Schneider’s models based on the above four experiments. In the first part of the 

comparison, all testing data points (65 projects) were used. On the second comparison, 

small testing data points (25 projects) were used. Medium (21 projects) and large (19 

projects) data points were used in the third and fourth comparisons respectively. 

4.9.3.1 Comparison With All Data Points 

Table (4-11) and Figures 4-49 to 4-51 show the evaluation of the proposed four models 

as well as the UCP and Schneider’s. models when all testing data points were used. Table 

(4-11) shows that the proposed four models outperform the UCP and Schneider’s models. 

We noticed that the UCP and Schneider’s models deteriorate when the MMER criterion 

is used. This means that these two models underestimate the value of the predicted effort. 

For instance, the non-linear regression model surpasses the UCP and Schneider’s models 

by 116% and 83% respectively when the MMER criterion is used. Moreover, the non-

linear model slightly surpasses the linear one especially in MMER and PRED which is 

based on MMER. Regarding the neural network models, we notice that the RBFNN 

model competes with the GRNN model when the MMRE criterion is used. On the other 

hand, the GRNN model gives better results when other criteria are used, so we can 

deduce that the GRNN model is better than the RBFNN model in this case. Figures 4-49 

to 4-51 show the interval level of all models based on three criteria. Figure 4-49 shows 
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that the GRNN model has the largest variation based on the MMRE criterion which is not 

good. 

4.9.3.2 Comparison With Small Data Points 

During the training process of the regression models, we noticed that the linear regression 

(Figure 4-42) was better than the non-linear model (Figure 4-9). The R
2
 and RMS values 

of the linear model are 0.89 and 141.5 respectively; however, these values are 0.84 and 

167 with the non-linear model. The same observation was noticed in the testing stage 

even with data points that were not used in the training. Table 4-12 shows that the 

MMER value of the non-linear model was slightly better than the linear model. On the 

contrary, the linear model surpasses the non-linear based on all other criteria. The MMRE 

values of the UCP and Schneider’s models are acceptable; however, these models are still 

suffering from underestimating software effort as shown in the MMER values. Regarding 

the neural network models, the RBFNN surpasses the GRNN model when small testing 

data points are used. Figure 4-52 shows that the GRNN model is the worst, while Figures 

4-53 and 4-54 show that the UCP and Schneider’s models are the worst. 

4.9.3.3 Comparison With Medium-Sized Data Points 

In the training stage, the non-linear model (Figure 4-16) outperforms the linear model 

(Figure 4-43). This remains true in the evaluation process where the non-linear model 

surpasses the linear model and other models in all criteria. The UCP and Schneider’s 

models are the worst in this category. Furthermore, the GRNN model surpasses the 

RBFNN in this category. 
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4.9.3.4 Comparison With Large Data Points 

When large data points were used for testing, we noticed that the non-linear model is the 

best model where the linear model comes second. This conclusion was also correct in the 

training stage. The GRNN model also outperforms the RBFNN in this category. The 

results of the UCP and Schneider’s models are very far from the actual results based on 

all criteria. 

We can conclude that in general the non-linear regression model has the best results 

among all the models, where the linear model comes second. We also noticed that the 

GRNN model is better than the RBFNN model. However, we observed that the UCP and 

Schneider’s models worsen dramatically when the size of the data points becomes larger 

as shown in Figures 4-58 to 4-60. Typically, these models become inappropriate to use 

for projects of effort greater than 10,000 person-hours. The reason that the UCP and 

Schneider’s models do not perform well with large projects is because these models 

define a use case as ―complex‖ when the number of transactions of this use case is more 

than 7. Based on our dataset, we found that many use cases have more than 20 

transactions. Another reason that contributes to the problem of the UCP and Schneider’s 

models when used with large projects is that these models assume that the relationship 

between software effort and size is linear. 

Based on this comparison, we notice that linear and non-linear regression models as well 

as RBFNN and GRNN models can be used for software effort prediction. This answers 

the last research question proposed in Section 1.2. 
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4.10 Threats to Validity 

Threats to validity can be summarized as follows: 

 Four proposed models are used to predict software effort for different ranges of 

software size. Nonetheless, our model has a limitation and cannot be used for 

projects of more than 4,000 UCP (around 150,000 person-hours). The non-linear 

regression model is more sensitive than the linear regression one with large 

projects because the equation used in the large range of projects is exponential. 

This means that a slight increase in software size over the size limit might cause a 

dramatic increase in software effort.  

 Based on the data points that we have, the actual effort of the very small projects 

(size less than 25 UCP) is much larger than the predicted effort. This might be 

because in some companies, there is a base cost in project development no matter 

how small the size is. For instance, the predicted effort of a project that has two 

small use cases was 55 person-hours; however the actual effort is 378 person-

hours. Nevertheless, our model was not highly affected by this change because 

only 4% of the data points are considered as very small. 

 Regarding size estimation (Table 4-1), the largest use case is defined when the 

number of transactions is more than 20. Although this is much better than the 

definition of the largest use case of the UCP model (greater than 7 transactions), 

we have noticed that the number of transactions of some use cases in large 
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projects is about 40. This means that the size of these huge use cases is 

underestimated.  

 It was difficult to elicit the factors that contribute to Productivity (Section 4.2.3) 

from the team that is developing software projects. For instance, developers might 

be optimistic when answering questions about their experiences and motivations. 

Moreover, the motivation of a developer/programmer might differ when placed in 

a different team, even in the same project. Furthermore, there is no 

straightforward rule to calculate the productivity of the team based on the 

productivity of each team member. In this work, the average of all team members 

was performed to calculate the productivity of the team. Furthermore, the 

productivity factors were obtained from the project manager of each project and 

not from the actual people who were involved in developing the projects. 

 We were not able to obtain copies of the use case diagrams of the projects 

because they are considered confidential and proprietary. We therefore simply 

relied on the information provided by those who were involved in preparing the 

data used. For instance, an error in counting the number of transactions of a use 

case in either the Main Success Scenario or the Extensions part might lead to a 

flaw in the design of our model. 

4.11 Conclusions 

This chapter introduces a novel model based on four sub-models to predict software 

estimation from use case diagrams. These models include non-linear regression, linear 
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regression with a logarithmic transformation, Radial Basis Function Neural Network 

(RBFNN) and General Regression Neural Network (GRNN). The first step of our model 

was to estimate the size of a project by counting the number of use cases in the use case 

diagram as well as the number of transactions in both the Main Success Scenario and the 

Extensions part. Moreover, the project complexity, team productivity and the degree of 

requirements uncertainty are factors in the effort estimation. We have also proved that the 

relationship between software effort and size is non-linear because when software size 

increases, the number of team members required to develop this software increases. 

When the team becomes larger, communication overhead will incur and this requires 

additional effort. This concludes that when software size increases, software effort will 

increase exponentially. Furthermore, when building regression models, we found that one 

regression equation cannot fit all project datasets of different size ranges. For this 

purpose, we proposed three non-linear equations as well as three linear equations for 

software effort estimation that can be used with three different ranges (Small, Medium 

and Large) of software size. In the non-linear regression, a second degree polynomial 

equation was proposed for the Small range and two different exponential equations were 

proposed for the Medium and Large projects respectively. We have noticed that the non-

linear relationship is not significant in the Small projects and thus, the linear regression 

model performed better in this range. However, the non-linear relationship stands out in 

the Medium and Large projects.  

Two neural network models were also proposed to predict software effort. The GRNN 

model was slightly better than the RBFNN. We also showed that the RBFNN and GRNN 
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models can be used for software effort prediction as alternatives method to linear and 

non-linear regression.  

We have collected 214 industrial projects from three different sources. Sixty five 

projects were used to train the regression models; however, 149 projects were used to 

train the neural network models. All models were evaluated (tested) using 65 projects 

based on four experiments which include evaluation using all data points (65 projects), 

evaluation using small data points (25 projects), evaluation using medium-sized data 

points (21 projects) and evaluation using large data points (19 projects). Our model 

was also evaluated against two other models (UCP and Schneider) that predict 

software effort from use cases. We used four different evaluation criteria; MMRE, 

MMER, PRED and the Mean Error with 95% Confidence Interval (CI). The proposed 

model gave promising results in comparison with the other two models and especially 

with the MMER criterion. Our model is limited to projects of maximum effort around 

150,000 person-hours. Despite this limitation, we believe that our model can widely be 

applied since 150,000 person-hours projects are classified as large in the eye of the 

industry. 
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Chapter 5  

5. A Treeboost Model for Software Effort Estimation4 

5.1 Introduction 

This chapter presents a Treeboost model to predict software effort from use case 

diagrams based on three independent variables (predictors). These predictors include 

software size, productivity and complexity. The Treeboost model was trained using 168 

data points and evaluated using 69 projects. To measure the accuracy of the proposed 

model, a multiple linear regression model was developed based on the same 168 projects. 

The Treeboost model was then evaluated against the multiple linear regression model 

developed as well as the use case point model. The evaluation criteria used in this chapter 

are MMRE, MMER, PRED(x) and MAE.  

The Treeboost algorithm was introduced by J. Friedman [1] [2]. This algorithm was put 

forward to improve the accuracy of decision trees models. The Treeboost algorithm has 

been applied in many fields such as ecology [9], fresh water studies [10], earth and 

                                                

4 This chapter has been submitted to the International Conference of Predictive Models in Software 

Engineering (PROMISE 2012) 

1- Ali Bou Nassif, Danny Ho and Luiz Fernando Capretz, ―A Treeboost Model for Software Effort 

Estimation Based on Three Independent Variables‖, Predictive Models in Software Engineering, 

2012 (Under review). 
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environmental science [11] and agronomy [12]. Section 5.2 defines the decision tree 

model, followed by the introduction of the model’s inputs in Section 5.3. The Treeboost 

and the multiple linear regression models are discussed in Sections 5.4 and 5.5, 

respectively. The evaluation of models and a discussion on the results are presented in 

Sections 5.6 and 5.7 respectively. Section 5.8 lists threats to validity and Section 5.9 

concludes the chapter. 

5.2 Decision Tree Model 

A decision tree is a logical model that is mainly used in operations research, specifically 

in decision analysis. A decision tree is composed of nodes of which the topmost node is 

called the root. Each node is split into two nodes (children) until a decision is satisfied. A 

node with no children is called a terminal node or a leaf. A node is split based on the 

condition of a predictor after an analysis of the input data (data points used to train the 

decision tree model). Examples of this analysis include the study of the influence of each 

predictor on the dependent variable. For instance, based on the analysis of the variables 

of the proposed model, when calculating the dependent variable ―effort‖, the predictor 

―size‖ is more important that the predictors ―productivity‖ and ―complexity‖. The type of 

the dependent variable (target) can be continuous (e.g. 100, 200, 500, etc.) or categorical 

(e.g. ―male‖, ―female‖). If the target variable is continuous, the name of the decision tree 

is called Regression. However, if the target variable is categorical, the name of the 

decision tree is called Classification. There are many available tools to generate decision 

trees such as Automatic Interaction Detection (AID) [3], CHAID [4], THAID [5] and 
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DTREG [6]. Figure (5-1) shows an example of a decision tree to build a model to predict 

software effort from three independent variables (size, productivity and complexity). The 

model is trained using 168 data points. For instance, the proposed Treeboost model 

(Section 5.4) uses the same training data points and variables used to train the decision 

tree model (Figure 5-1). In this figure, the root node is fed with 168 data points for 

training purposes. The average (mean) effort of these data points is 7,189 person-hours. 

The root node (Node 1) is split into two nodes (Node 2 and Node 3) based on a value of 

the size (size=570). Similarly, Nodes 2, 3, 4 and 12 are split based on the variable ―size‖. 

Nodes 5, 6 and 7 are split based on the variable ―productivity‖. However, Node 13 is split 

based on the variable ―complexity‖.  

The main advantage of the decision tree model is that it displays the problem and its 

solution at a level that be comprehended by technical and non-technical people.  
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Figure ‎5-1  Decision tree model 

 

 

The main limitation of the decision tree model is that it lacks accuracy if the number of 

training rows is insufficient. To enhance the accuracy of the decision tree model, the 

Treeboost model is brought into play. 

5.3 Model’s‎Inputs 

This chapter focuses on predicting software effort from use case diagrams based on three 

independent variables. These include software size, productivity and complexity. 

Software size was computed based on the use case point method (Equation 2.22). The 

reason that requirements stability was not included as an independent variable (as was the 

case in Chapter 4), is because in this experiment, a multiple linear regression model was 

created to compare it against the Treeboost model. Generating multiple linear regression 

models based on four independent variables (if requirements stability was an independent 
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factor) becomes inappropriate if the number of training rows is small. Requirements 

stability factor was one of the factors that contributed to the productivity factor (Table 2-

6). To compensate the importance of the requirements stability factor, several 

experiments were conducted to adjust its weight by assigning values from 2 to 5, 

incremented by 0.5. The multiple linear regression model (Equation 5.3) was generated 

based on each trial (from 2 to 5 incremented by 5). The highest R
2
 value was achieved 

when the requirements stability weight was ―4‖. This indicates that the requirements 

stability weight was modified from 2 (initial weight proposed by the UCP model) to 4. 

The productivity factor was calculated according to this equation: 

 
8

1

Pr .i i

i

oductivity E W


   (5.1) 

Where Ei and Wi are the Environmental factors and their corresponding weights as 

depicted in Table (2-6) with one exception for the weight of the requirements stability 

factor (weight is 4 instead of 2).  

Regarding project complexity, we introduce five levels of complexity based on these 

rules: 

 Level-1: The complexity of a project is classified as Level-1 if the project team is 

familiar with this type of project and the team has developed similar projects in the 

past. The number and type of interfaces are simple. The project will be installed in 

normal conditions where high security or safety factors are not required. Moreover, 

Level-1 projects are those for which around 20% of their design or implementation 
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parts are reusable (came from old similar projects). The weight of the Level-1 

complexity is 1. 

 Level-2: This is similar to Level-1 category except that only about 10% of these 

projects are reusable. The weight of the Level-2 complexity is 2. 

 Level-3: This is the normal complexity level where projects are not said to be simple, 

nor complex. In this level, the technology, interface, and installation conditions are 

normal. Furthermore, no parts of the projects had been previously designed or 

implemented. The weight of the Level-3 complexity is 3. 

 Level-4: In this level, the project is required to be installed using a complicated 

topology/architecture such as distributed systems. Furthermore, in this level, the 

number of variables and interface is large. The weight of the Level-4 complexity is 4. 

 Level-5: This is similar to Level-4 but with additional constraints such as a special 

type of security or high safety factors. The weight of the Level-5 complexity is 5. 

Please note that software effort is inversely proportional to productivity and proportional 

to complexity. 

5.4 The Treeboost Model 

The Treeboost model is also called Stochastic Gradient Boosting (SGB) [2]. Boosting is a 

method to increase the accuracy of a predictive function by applying the function 

frequently in a series and combining the output of each function. In other words, as 

Kearns once asked [7], ―can a set of weak learners create a single strong learner?‖. The 
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main difference between the Treeboost model and a single decision tree is that the 

Treeboost model consists of a series of trees. The main limitation of the Treeboost is that 

it acts like a black box (similar to some neural network models) and cannot represent a 

big picture of the problem as a single decision tree does. The Treeboost model has the 

following characteristics:  

 The Treeboost uses Huber-M loss function [8] for regression. This function is a 

hybrid of ordinary least squares (OLS) and Least Absolute Deviation (LAD). For 

residuals which are less than a cutoff point (Huber’s Quantile Cutoff), the square 

of the residuals is used. Otherwise, absolute values are used. This method is used 

to alleviate the influence of outliers. For outliers, where residuals have high 

values, squaring the residuals will lead to huge values, so outliers will be treated 

with the ―absolute values‖ method instead. The Huber’s Quantile Cutoff value is 

recommended to be between 0.9 and 0.95. If it is 0.9, the residuals will first be 

sorted from small to high. Then, the smallest 90% of the residuals will be squared 

(OLS) and the other residuals (largest 10%) will be treated with the LAD method. 

 In the Stochastic Gradient Boosting algorithm, ―Stochastic‖ means that instead of 

using all data for training, a random percentage of training data points (50% is 

recommended) will be used for each iteration instead. This has yielded an 

improvement in the results. 

 The Stochastic Gradient Boosting (SGB) algorithm has a factor called Shrinkage 

factor. Experiments show that multiplying each tree in the series by this factor 
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(between 0 and 1) will delay the learning process and consequently, the length of 

the series will be longer to compensate for the shrinkage. This also leads to better 

prediction values. 

 To improve the optimization of the process, an Influence Trimming Factor is 

applied. In the Treeboost model, the residual errors of a tree are used as inputs to 

the next consecutive iteration. The Influence Trimming Factor allows the rows 

with small residuals to be excluded. If this factor is 0.10, rows with residuals that 

represent less than 10% of the total residual weight will be ignored.  

The Treeboost algorithm is described in Equation (5.2): 

0( ) 1* 1( ) 2* 2( ) ... * ( ).F x F A T x A T x AM TM x           (5.2) 

Where F(x) is the predicted target, F0 is the starting value, x is a vector which represents 

the pseudo-residuals, T1(x) is the first tree of the series that fits the pseudo-residuals (as 

defined below) and A1, A2, etc. are coefficients of the tree nodes. The Treeboost 

algorithm is applied based on the following rules: 

1- Find the coefficient of F0. This is the mean of the target variable. 

2- Select the rows that will feed the next tree. If the stochastic factor is set to 0.5, 

50% of the rows will be randomly chosen. 

3- Sort the residuals of the rows being used and transform the residuals using 

Huber’s Quantile Cutoff factor. The transformed residual values are called 

pseudo-residuals.  
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4- Fit the first tree (T1) to pseudo-residuals. 

5- Calculate the mean of the pseudo-residuals in each of the terminal nodes. This 

mean becomes the predicted variable of the node.  

6- Calculate the residuals between the predicted variable and the pseudo-residuals 

that fed the tree, and apply Huber’s Quantile Cutoff factor again. Then, compute 

the mean of these residuals.  

7- Calculate the boost coefficient (A1) of the node which is the difference between 

the mean residual value and the mean of the predicted values of the tree.  

8- Multiply the boost coefficient by the shrink value to retard the learning process. 

Regarding the use of the Treeboost algorithm in software estimation, one modest work 

has been published by M. Elish [13] that compares a Stochastic Gradient Boosting model 

with other neural and regression models. The main limitations of Elish’s work include: 

 The Stochastic factor was set to 1. This means that all data points were used for 

training. However, the main goal of the SGB algorithm (the stochastic part) is that 

a random portion of the training data should be used for training as opposed to 

using all data. By setting the Stochastic factor to ―1‖, the Stochastic Boosting 

Algorithm will no longer be ―stochastic‖. 

 Some important parameters such as the number of trees and shrinkage factor are 

missing.   

 The model and other neural and regression models were only trained using 18 

projects. This is insufficient. 
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 The comparison conducted between the SGB and other models was based on 

training and generalization processes only. In other words, the models should 

have been tested with new data that were not included in the training process. 

The Treeboost model proposed in our research work was trained using 168 data points 

based on the parameters listed in Table (5-1). Figure (5-2) shows the plot of the training 

data points used in the experiment and the training curve. Figure (5-3) shows the actual-

predicted effort diagram. The model was developed based on a series of 1,000 trees. To 

avoid overfitting during the training process, 20% of the training rows were used for 

validation. As shown in Figure (5-4), best validation results (the blue line represents the 

training process and the red line represents the validation process) were obtained when 

the number of trees was 359. Appendix H shows the validation error for each tree.  

The analysis of variance (ANOVA) shows that the coefficient of determination (R
2
) and 

the Root Mean Squared Error (RMS) are 0.97 and 1,556, respectively in the training 

process. However, R
2
 and RMS values in the validation process are 0.86 and 4,385, 

respectively.  

Table ‎5-1 Model's Parameters 

# of trees Huber Quantile Cutoff Shrinkage Factor Stochastic Factor  Influence Trimming Factor 

359 0.9 0.1 0.5 0.1 
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Figure ‎5-2  Data points used in training and the learning curve 

 

 

Figure ‎5-3  Actual versus predicted effort 
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Figure ‎5-4  Number of trees, training and validation curves 

 

5.5 Multiple Linear Regression Model 

The multiple linear regression model was constructed using the same 168 data points that 

were used to train the Treeboost model. Minitab version 16 was used for this purpose. 

The equation of the regression model is: 

3661 (32.7 ) (183 Pr )

(1080 ).

Effort Size oductivity

Complexity

     


                                        (5.3) 

Where Effort is measured in person-hours, Size in UCP, Productivity is measured based 

on Equation (5.1) and Complexity is measured as proposed in Section (5.3). Equation 

(5.3) shows that Effort is proportional to Size and Complexity but inversely proportional 

to Productivity. This indicates that if the size or the complexity of a project increases, 
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software effort will increase. However, for the same software size and complexity, less 

effort is required to develop the project if a highly productive team is used. 

To measure the accuracy of the regression model, we measured the value of the 

coefficient of determination R
2 

which is 0.882. This indicates that approximately 88 % of 

the variation in Effort can be explained by the independent variables Size, Complexity 

and Productivity. Moreover, we measured the ANOVA and the model parameters. The 

―p‖ value of the model is 0.000 which indicates that there is a significant relationship 

among the variables at the 99% confidence level. The ―p‖ values of the independent 

variables are 0.000 and 0.0083 for the constant. Since the highest ―p‖ value of the 

model’s parameters is less than 0.005, this indicates that all independent variables are 

significant at the 95% confidence level, and consequently the model is verified. 

5.6 Model Evaluation 

A total of 237 projects (211 industrial and 26 educational) were used in training and 

testing the model. The reason that only 211 industrial projects were used here as opposed 

to the 214 industrial projects used in section (4.9.1), is because the largest three projects 

were eliminated as they were larger than the largest project used in training the model. 

This is one of the limitations of the Treeboost model; the predicted effort of projects of 

size above a certain limit is the same. This is discussed in detail in Section 5.8 (Threats to 

Validity). Out of the 237 projects, 168 projects (70%) were used for training and 69 

projects were used for evaluation. Four different criteria were used for evaluation. These 

include MMRE, MMER, PRED and MAE. The Treeboost model was evaluated against 
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the UCP model as well as the multiple linear regression model. Table (5-2) shows the 

evaluation results. Figures (5-5), (5-6) and (5-7) show the interval plots of MMRE, 

MMER and MAE at 95% confidence level, respectively. 

Table ‎5-2 Evaluation results 

Criteria Treeboost UCP Multiple Regression 

MMRE 0.44 0.40 0.93 

MMER 0.35 1.06 0.51 

PRED(25) 42 33 31 

PRED(50) 75 49 63 

PRED(75) 91 52 84 

PRED(100) 94 62 88 

MAE 2900 3890 3231 

 

 

 

 

 

Figure ‎5-5  MMRE interval plot 
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Figure ‎5-6  MMER interval plot 

 

 

Figure ‎5-7  MAE interval plot 
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5.7 Discussion  

Table (5-2) shows that the Treeboost model outperforms the UCP and the regression 

models when MMER, PRED and MAE criteria are used (lower MMER, MAE values and 

higher PRED values). The UCP model was improved by 71% based on the MMER 

criterion. The UCP model slightly surpasses the Treeboost model when MMRE was used. 

By comparing the MMRE and MMER of the UCP model, we notice that the average 

estimated effort of the UCP model is much less than the actual effort. As a comparison 

between the UCP and the multiple regression models, the multiple regression model 

outperforms the UCP model in all criteria except MMRE. 

Figure (5-5) depicts that the multiple linear regression model is the most inferior model 

based on the MMRE criteria; not only in the mean value (0.93), but also in the variation 

of error (the multiple linear regression model has the longest interval). Figures (5-6) and 

(5-7) show how the UCP model deteriorates when MMER and MAE criteria are used.  

Bases on the above results, we conclude that the Treeboost model can be used to predict 

software effort and can be competitive to other regression models. The Huber’s loss 

function makes the model less sensitive to outliers. This indicates that this model is 

recommended to estimate projects if the project manager believes that the values of one 

or more independent variables might fall beyond the expected ranges.  

5.8 Threats To Validity 
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1- The Treeboost model is a series of many small trees. The proposed model consists 

of 359 trees. The model was trained using 168 projects with efforts ranging 

between 120 and 60,862 person-hours. The mean value is 7,188 person-hours and 

the standard deviation is 10,206. This shows that there is a significant difference 

in size between the smallest and the largest data point. Despite the good results 

obtained from the evaluation of the Treeboost model, this model would perform 

better if more training data points would have been used.  

2- The neural network and linear/non-linear regression models have the capability to 

extrapolate the relationship between input and output vectors during the training 

process and thus, can map outputs to inputs even if these inputs are beyond (to a 

certain degree) the inputs of the training data points. However, this is not true 

with Treeboost models. Based on the decision tree model (Figure 5-1), the node 

with the largest number (Node 19) handles the last decision. For example, the 

condition in Node 19 is that the predicted effort of projects of size larger than 821 

UCP is 47,440 person-hours. This shows that the size limitation of testing data 

points is around 821 UCP. The Treeboost model works in a similar way, but it is 

more complicated than the single decision tree. Nonetheless, the Treeboost model 

also has limitations determined by the values of the three independent variables 

(size, productivity, complexity). To demonstrate this limitation, the Treeboost 

model was tested using 16 data points with sizes ranging between 800 and 1,600 

UCP incremented by 50. Since software size is the most important predictor in the 

model, productivity and complexity values were set as 20 and 4, respectively for 
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all projects. Figure (5-8) shows the Scatterplot graph between software size and 

predicted effort. The graph shows that the predicted effort of any project with a 

size greater than 950 UCP (productivity = 20 and complexity =4) is 41,693 

person-hours. Although the size limitation varies based on the values of other 

predictors (productivity and complexity), it is not recommended to use the 

proposed Treeboost model to test projects of size more than 1,000 UCP.  

 

Figure ‎5-8  Scatterplot of size/predicted_effort 

 

5.9 Conclusions 

This chapter proposed a Treeboost model to predict software effort based on three 

independent variables which include software size, productivity and complexity. The 

Treeboost model was developed through a series of 359 trees and was trained using 168 
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data points. The model was evaluated using 69 data points against the UCP, as well as a 

multiple linear regression model. The evaluation criteria used were MMRE, MMER, 

PRED and MAE. The proposed model is limited to projects of size around 1,000 UCP 

(around 40,000 person-hours). Results showed that the Treeboost model outperformed 

the multiple linear regression model in all evaluation criteria and surpassed the UCP 

model when MMER, PRED and MAE were used. Based on these results, we conclude 

that the Treeboost model can be used for software effort estimation and can compete with 

other regression models. 
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Chapter 6  

6. Summary and Future Work 

Each chapter has its own conclusions. This chapter summarizes the entire thesis and 

presents research avenues for the future work. In this thesis, we proposed an innovative 

model to predict software size and effort from use case diagrams. The main model is 

composed of six independent sub-models. These sub-models include linear regression 

with a logarithmic transformation, non-linear regression, Multilayer Perceptron (MLP) 

neural network model, Radial Basis Function Neural Network (RBFNN), General 

Regression Neural Network (GRNN) and Treeboost. There are four main inputs to our 

model. These include software size, productivity, complexity and requirements 

uncertainty.  

In Chapter 1, we introduced the motivation of our work and put forward several research 

questions. The main motivation of our work was to develop a model to predict software 

effort that can be used in the early stages of the software life cycle with a good level of 

accuracy. The main research questions were concerned with how a project can be 

estimated using cases diagrams and what the influence of non-functional requirements is 

on software estimation. Additionally, we inquired about the type of models that can be 

used to estimate software effort. 
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The second chapter provides the definition of the most commonly used terms in the 

thesis. These include fuzzy logic, neural networks, regression analysis, evaluation criteria 

used in this work (MMRE, MMER, PRED, CI and MAE). As well, a literature review 

and related work were also presented. 

Chapter 3 proposed a linear regression with logarithmic transformation, as well as an 

MLP model. The inputs of the MLP were software size and team productivity. Team 

productivity factor was calculated based on eight factors as shown in Table (2-6). These 

factors include ―familiar with objectory‖ (IBM Rational Unified Process), ―object 

oriented experience‖, ―analyst capability‖, ―stable requirements‖, ―application 

experience‖, ―motivation‖, ―part-time workers‖ and ―difficult programming language‖. 

We also demonstrated that the relationship between software effort and size is not linear 

based on 125 projects that have similar productivity values. We compared our model 

against two other models, namely, the Use Case Point (UCP) and Schneider’s model. We 

chose to compare our model with these two models because these models predict 

software effort from use case diagrams. The project dataset was divided into two main 

parts; Small that contains projects of sizes less than 100 UCP and Large that contains 

projects of sizes greater than 100 UCP. We conducted three experiments to evaluate our 

model. In the first experiment, the whole dataset was used. In the second and third 

experiments, the Small and Large parts were used, respectively. Results indicated that our 

models outperform the UCP and Schneider’s models in all experiments using the MMER 

and PRED criteria. As a comparison between the regression and the MLP model, the 
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MLP model gave better results when the Small part of the dataset was used. However, the 

MLP model deteriorated when the Large part was used. In this chapter, the second, sixth 

and seventh research questions were addressed. 

In Chapter 4, we proposed linear and non-linear regression models, as well as RBFNN 

and GRNN. New methods to calculate software size, productivity, complexity and 

requirements uncertainty level were also introduced. The main difference between 

Chapter 4 and Chapter 3 is that in Chapter 4 we introduced ―requirements stability‖ as an 

independent factor that affects software effort estimation. In Chapter 3, ―requirements 

stability‖ was one of eight factors that contributed to productivity. Another main 

difference between these two chapters is that in chapter 3, the size of the projects used is 

relatively small. In Chapter 4, we used industrial projects of efforts ranging between 120 

person-hours and 224,890 person-hours. These projects were not available at the time 

when the experiments of chapter 3 were conducted. In Chapter 4, we also carried out a 

thorough comparison among the models. We evaluated the models based on four 

different experiments. In the first experiment, the entire project dataset was used for 

evaluation. Then, we divided our dataset into three main parts. These include Small, 

Medium and Large sized projects. Results show that our model surpasses alternative 

models based on the four experiments. We used four different criteria for evaluation. 

These include MMRE, MMER, PRED and CI. As a comparison among our four sub-

models, the non-linear regression outperformed all models; however, the GRNN model 
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surpassed the RBFNN model. Chapter 4 tackles all the research questions raised in 

Section 1.2. 

The fifth chapter presents a Treeboost model to predict software effort based on three 

independent variables. These include software size, productivity and complexity. The 

model was trained using 168 projects. The Treeboost model was evaluated against a 

multiple linear regression model as well as the UCP model based on four different criteria 

which include MMRE, MMER, PRED and MAE. Experiments showed that the 

Treeboost model surpasses the other two models and can be used to predict software 

effort. The main advantage of the Treeboost model is that it is not sensitive to outliers in 

the training process as other neural network and regression models are. The main 

disadvantage of this model is that all testing data points should fall between the smallest 

and the largest data points used in training the model. In this chapter, the second, fourth 

and seventh research questions were tackled. 

Each of the six sub-models has its own characteristics. Although the six sub-models can 

be used for effort estimation, the performance of each model varies based on the size and 

quality of training and testing data points. Table (6-1) lists the features and the 

applicability of each sub-model.  
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Table ‎6-1  Model features and applicability  

Model type Features and applicability 

Linear regression 

with logarithmic 

transformation 

 Good results with projects whose efforts are less than 3,000 person-hours (PH) 

 Acceptable results with projects whose efforts are between 3,000 and 150,000 PH 

 Regression analysis is based on the ordinary least squares method. This means the 

model is sensitive if training data contain outliers 

 Testing data points that are slightly beyond the training data points can be used as 

model’s inputs 

Non-linear 

regression 

 Acceptable results (when the polynomial equation is used) with projects whose 

efforts are less than 3,000 PH 

 Good results (when the exponential models are used) with projects whose efforts are 

between 3,000 and 150,000 PH 

 Testing data points that are slightly beyond the training data points can be used as 

model inputs only if the model type is polynomial 

 Not recommended to use testing data points that are slightly beyond the training data 

points when the model is of the exponential type 

MLP  Very good results with projects whose efforts are less than 3,000 PH 

 Not recommended to estimate projects whose efforts are greater than 3,000 PH 

 Sensitive to outliers 

RBFNN  Good results with projects whose efforts are less than 3,000 PH 

 Acceptable results with projects whose efforts are between 3,000 and 150,000 PH 

 Recommended to re-train the model if the number of the training data points is more 

than 500 data points 

GRNN  Acceptable results with projects whose efforts are less than 3,000 PH 

 Good results with projects whose efforts are between 3,000 and 150,000 PH 

 Not recommended to re-train the model if the number of the training data points is 

more than 500 data points 

 More robust than MLP and RBFNN 

 Less sensitive to outliers 

Treeboost  Good results with projects whose efforts are less than 40,000 PH 

 Highly recommended if the training data points might contain outliers 

 Not recommended to re-train the model with new training data points if the range 

between two consecutive data points is big, or if the standard deviation of the new 

data points is high 

 Absolutely inappropriate to predict the effort of projects that are beyond the training 

data points   
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6.1 Future Work 

One of the limitations of our work is the scarcity of the projects available to train and test 

the model. Published datasets such as NASA[1], PROMISE [2], COCOMO [3], CeBASE 

[4], Experience [5], Desharnais [6] and Maxwell [7] do not include information about use 

case diagrams. Future work will focus on: 

1- Contacting more companies to collect data based on the questionnaire proposed in 

Appendix B. 

2- Re-train all models when new data are available. The weight of the new data 

during model recalibration will be determined based on their source and 

importance. 

3- Developing hybrid models between neural networks and evolutionary algorithms, 

such as genetic algorithms and particle swarm. It is believed that genetic 

algorithms can be used to train neural networks, and would thus increase the 

accuracy of the model. 
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Appendix A 

Questionnaire I  

1- What is the name of the project? 

2- What is the number of people involved in this project? 

3- What is the actual effort this project? (if you can break down the work per each 

stage of the software life cycle, this would be preferable.) 

4- Based on the use case diagram, what is the number of ―simple use cases‖, 

―average use cases‖ and ―complex use cases‖ based on the definition below 

(including the ―extend‖, ―include‖, and ―generalized‖ use cases). 

 A use case is rated as ―Simple‖ if the number of transactions in the use case 

scenario (Including both the Success and Extensions scenario) is less than or 

equal 4. (check the example below to see how transactions are counted). 

 A use case is rated as ―Average‖ if the number of transactions in the use case 

scenario (Including both the Success and Extensions scenario) is between 4 

and 7. 

 A use case is rated as ―Complex‖ if the number of transactions in the use case 

scenario (Including both the Success and Extensions scenario) is more than 7. 

5- What is the programming language used in the project? 

6- Please rate these factors from ―1‖ which represents ―very low‖ to ―5‖ which 

represents ―very high‖. Factors with average classifications are rated as ―3‖.  

Factor Rate 

Familiar with Objectory  

Object oriented experience   

Analyst capability  

Stable requirements  

Application experience  

Motivation  

Part-time workers  

Difficult programming language  

 

7- Please rate these factors from ―1‖ which represents ―very low‖ to ―5‖ which 

represents ―very high‖. Factors with average classifications are rated as ―3‖. 
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Factor Rate 

Easy installation  

Portability  

End user efficiency  

Reusability  

Complex internal processing  

Special security features  

Usability  

Application performance 

objectives 

 

Special user training facilities

  

 

Concurrency  

Distributed systems  

Provide direct access for third 

parties 

 

Changeability   

 

Example of a use case scenario (description): 

The following example introduces the scenario of the use case ―Student Enrolls in a 

Course‖ in a University Online Registration System. 

Use Case Title:  Student Enrolls in a Course 

Actors: Student, Admin  

Precondition: The student is not enrolled in a course 

Main Success Scenario (Main Flow): 

1. The student chooses the course he or she wishes to enroll in 

2. The student enrolls in the course 

Extensions (Alternative) 

2a: The student does not have permission (e.g. the student has not paid the tuition) 

             2a1: Notify the student to contact the administrator  

2b: The deadline has passed 

 2b1: An Error message will be displayed              

2c: The prerequisite of the course is not fulfilled 

2c1: The student is advised to contact the professor to obtain permission 

2d: Two courses have the same schedule 

 2d1: The student is advised to choose either one 

2e: The number of the enrolled courses has been exceeded 
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 2e1: An error message will be displayed  

2f: The course is full 

             2f1: An error message will be displayed 

Post condition: The student has enrolled in a course 
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Appendix B 

Questionnaire II 

1- What is the name of the project? 

2- What is the number of students involved in this project? 

3- How many hours did each student work to finish this project? (if you can break 

down the work per each stage of the software life cycle, this would be preferable. 

If you cannot, just put the total number of hours). 

4- Based on the use case diagram, what is the number of the use cases (including the 

―extend‖, ―include‖, and ―generalized‖ use cases). 

5- What is the number of transactions in the success scenario of each use case? 

(check the example below). 

6- What is the number of transactions in the Extension (exception) part of the 

scenario of each use case? 

(for example, if your use case diagram contains 20 use cases, you can name them 

as U1, U2, U3, … U20. For each use case, write the number of transactions in the 

success scenario as well as in the Extension part). 

7- What is the programming language used in the project? 

8- What is the complexity level of the project based on this definition: 

 Level-1: The complexity of a project is classified as Level-1 if the project 

team is familiar with this type of project and the team has developed similar 

projects in the past. The number and type of interfaces are simple. The project 

will be installed in normal conditions where high security or safety factors are not 

required. Moreover, Level-1 projects are those of which around 20% of their 

design or implementation parts are reusable (came from old similar projects).  

 Level-2: This is similar to level-1 category except that only about 10% of 

these projects are reusable.  

 Level-3: This is the normal complexity level where projects are not said to be 

simple, nor complex. In this level, the technology, interface, installation 

conditions are normal. Furthermore, no parts of the projects had been previously 

designed or implemented.  

 Level-4: In this level, the project is required to be installed on a complicated 

topology/architecture such as distributed systems. Moreover, in this level, the 

number of variables and interface is large.  
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 Level-5: This is similar to Level-4 but with additional constraints, such as a 

special type of security or high safety factors.  

 

9- Please rate these factors from ―1‖ which represents ―very low‖ to ―5‖ which 

represents ―very high‖. Factors with average classifications are rated as ―3‖.  

 Team experience regarding the problem domain. 

 Team motivation.  

 Programming language experience.  

 Object oriented experience (UML).  

 Analytical skills.  

 

10-  Please rate the Requirements Stability degree of your project from Level-1 

(unstable requirements) to Level-5 (stable requirements).  

 Level-1: This indicates that there is an increase of 40% of the requirements 

during the project life cycle. This incorporates new requirements and changes 

in existing requirements. 

 Level-2: This indicates that there is an increase of 30% of the requirements 

during the project life cycle. 

 Level-3: This indicates that there is an increase of 20% of the requirements 

during the project life cycle.  

 Level-4: This indicates that there is an increase of 10% of the requirements 

during the project life cycle.  

 Level-5: This indicates that the requirements are stable during the project life 

cycle. 

 

Example of a use case scenario (description): 

Use Case Title:  Student Enrolls in a Course 

Actors: Student, Admin  

Precondition: The student is not enrolled in a course 

Main Success Scenario (Main Flow): 

1. The student chooses the course he or she wishes to enroll in 

2. The student enrolls in the course 

Extensions (Alternative) 

2a: The student does not have permission (e.g. the student has not paid the tuition) 

             2a1: Notify the student to contact the administrator  
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2b: The deadline has passed 

 2b1: An Error message will be displayed              

2c: The prerequisite of the course is not fulfilled 

2c1: The student is advised to contact the professor to obtain permission 

2d: Two courses have the same schedule 

 2d1: The student is advised to choose either one 

2e: The number of the enrolled courses has been exceeded 

 2e1: An error message will be displayed  

2f: The course is full 

             2f1: An error message will be displayed 

Post condition: The student has enrolled in a course 
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Appendix C 

project #         size (ucp)         Effort (person-hour)         project #         size (ucp)         Effort (person-hour) 

1 28 420 64 47 658 

2 28 414.4 65 47 846 

3 29 420.5 66 47 869.5 

4 29 432.1 67 47 817.8 

5 30 450 68 48 844.8 

6 30 465 69 48 816 

7 31 461.9 70 48 844.8 

8 31 465 71 48 854.4 

9 32 480.32 72 48 768 

10 32 496 73 48 792 

11 32 544 74 48 777.6 

12 32 448 75 48 792 

13 32 464 76 48 787.2 

14 32 496 77 49 784 

15 32 486.4 78 51 785.4 

16 33 495 79 51 775.2 

17 33 478.5 80 54 810 

18 33 462 81 54 972 

19 33 504.9 82 55 814 

20 33 511.5 83 55 803 

21 34 530.4 84 55 770 

22 34 540.6 85 56 812 

23 35 556.5 86 57 832.2 

24 36 576 87 58 812 

25 36 586.8 88 58 841 

26 37 592 89 58 858.4 

27 38 615.6 90 61 915 

28 38 623.2 91 61 1342 

29 39 647.4 92 62 868 

30 39 631.8 93 63 894.6 

31 40 660 94 66 957 

32 41 688.8 95 66 924 

33 41 697 96 66 976.8 

34 41 656 97 69 966 

35 41 664.2 98 71 958.5 



196 

 

 

36 41 672.4 99 71 979.8 

37 41 697 100 74 1036 

38 41 779 101 74 1110 

39 41 615 102 74 1184 

40 41 574 103 74 1332 

41 42 631.26 104 80 1441.6 

42 42 634.2 105 82 1492.4 

43 42 642.6 106 84 1545.6 

44 42 621.6 107 84 1520.4 

45 42 625.8 108 85 1572.5 

46 42 630 109 92 1720.4 

47 42 617.4 110 92 1564 

48 43 636.4 111 92 1582.4 

49 43 638.55 112 94 1635.6 

50 43 640.7 113 98 1862 

51 43 645 114 98 1911 

52 44 666.6 115 101 1616 

53 44 671 116 105 1890 

54 44 660 117 111 2109 

55 45 697.5 118 118 1888 

56 45 720 119 128 2432 

57 45 742.5 120 145 3190 

58 45 686.25 121 155 3875 

59 46 736 122 212 4452 

60 46 745.2 123 240 5760 

61 46 782 124 280 7280 

62 46 759 125 340 8160 

63 47 893 
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1 2124 118 2 2 2 2 2 3 4 0 
2 1430 130 4 3 3 4 4 3 3 0 

3 1445 85 3 3 3 3 3 4 3 0 
4 4895 275 4 4 4 5 4 4 2 0 

5 2420 110 3 2 2 3 3 3 4 0 
6 2080 65 2 2 2 2 2 3 3 4 

7 1265 55 3 3 2 2 3 2 4 3 
8 1240 40 2 2 2 3 2 4 4 4 

9 1950 78 3 4 3 3 3 3 3 4 
10 967 52 3 2 2 3 3 2 4 3 

11 1664 128 4 4 4 4 4 2 3 0 
12 3630 110 3 2 3 2 3 3 4 0 

13 3915 145 4 4 4 4 4 4 2 0 
14 1553 135 2 1 3 1 2 3 3 0 

15 1440 90 3 3 3 3 3 3 3 0 
16 1334 58 1 3 1 1 1 4 4 5 

17 1617 98 4 4 4 4 4 4 3 0 
18 2875 125 1 2 3 3 1 4 4 0 

19 1984 64 1 1 2 2 1 2 4 5 
20 1050 75 4 4 4 4 4 4 3 4 
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21 1050 75 4 4 3 3 4 2 2 0 

22 1218 84 3 3 5 4 3 5 2 0 
23 2465 145 3 2 3 4 3 5 2 0 

24 3875 155 2 3 3 3 2 2 4 0 
25 1116 62 3 4 2 2 3 2 3 4 

26 7952 284 4 4 4 3 4 4 3 0 
27 2697 87 2 1 2 2 2 2 4 5 

28 696 58 2 2 2 2 2 3 3 5 
29 3248 112 3 2 2 2 3 3 4 4 

30 4338 241 5 4 4 4 5 4 2 0 
31 5040 210 5 3 3 3 5 3 3 1 

32 6292 286 3 3 3 4 3 3 3 0 
33 2871 87 2 3 4 3 2 3 3 5 

34 2754 102 4 3 4 3 4 3 2 5 
35 2736 114 3 3 5 4 3 4 4 5 

36 2212 79 3 2 3 3 3 4 4 5 
37 1512 84 2 4 2 3 2 4 4 5 

38 2064 86 2 1 3 3 2 4 4 5 
39 2772 154 3 3 2 4 3 3 3 4 

40 3828 174 3 2 3 4 3 3 3 0 
41 3213 189 3 4 2 5 3 3 4 0 

42 3666 141 3 3 2 2 3 3 2 3 
43 2904 132 4 3 4 2 4 4 2 3 

44 2880 120 4 2 4 2 4 4 4 4 
45 2058 98 5 2 3 3 5 4 3 4 

46 3096 129 3 2 4 4 3 4 2 1 
47 2384 149 3 4 3 3 3 3 2 0 

48 3528 196 4 5 3 3 4 3 3 0 
49 4992 208 4 4 4 2 4 3 3 0 

50 4165 245 4 3 3 3 4 3 2 0 
51 2646 147 4 3 4 4 4 4 4 1 

52 4450 178 4 3 4 3 4 4 3 1 
53 1392 58 2 3 3 3 2 2 2 5 

54 1776 74 2 2 3 3 2 2 1 5 
55 2156 98 3 4 4 4 3 3 4 5 

56 1976 104 4 4 4 4 4 3 3 5 
57 1496 68 4 3 4 4 4 3 3 5 

58 2162 94 4 3 4 2 4 3 4 5 
59 2832 118 3 3 4 2 3 3 2 5 

60 2850 114 3 3 3 2 3 4 2 5 
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61 1794 69 3 2 3 1 3 3 2 5 

62 2688 84 2 2 3 1 2 3 2 5 
63 4032 168 2 2 3 3 2 3 1 0 

64 4536 189 2 3 4 4 2 3 1 0 
65 3915 174 3 4 4 3 3 3 4 0 

66 4708 214 4 3 4 2 4 3 3 0 
67 6993 259 5 3 2 4 5 3 2 0 

68 3864 168 2 3 2 3 2 3 2 2 
69 4848 202 3 4 3 1 3 3 4 1 

70 3654 174 4 4 3 3 4 3 2 1 
71 4368 168 1 3 3 4 1 3 2 1 

72 3128 184 4 3 4 4 4 3 1 1 
73 3485 198 5 2 4 3 5 3 1 0 

74 6604 254 3 3 4 4 3 3 2 0 
75 5568 232 3 4 4 2 3 3 1 0 

76 1044 58 2 2 3 2 2 3 3 5 
77 2340 78 2 2 4 3 2 3 3 5 

78 2444 94 1 3 4 3 1 4 3 5 
79 1482 78 3 3 3 3 3 4 4 5 

80 1443 74 3 3 3 4 3 4 4 5 
81 1365 65 3 3 3 1 3 3 3 5 

82 2156 98 4 3 4 2 4 3 3 1 
83 2162 94 4 4 4 2 4 3 3 0 

84 1258 74 4 4 4 3 4 4 3 0 
85 1173 69 5 4 4 3 5 4 4 0 

86 1098 61 3 4 5 4 3 2 3 0 
87 1428 84 3 3 3 4 3 2 3 1 

88 1584 88 3 3 3 3 3 3 3 1 
89 1584 88 3 3 3 3 3 3 2 4 

90 1656 72 3 2 2 3 3 3 1 4 
91 2832 118 4 2 2 3 4 3 4 5 

92 2256 94 4 3 3 2 4 3 4 5 
93 2716 97 2 1 2 2 2 3 3 5 

94 1768 68 2 1 3 3 2 4 3 5 
95 1998 74 2 2 2 1 2 4 3 2 

96 1985 81 3 3 3 2 3 3 4 2 
97 1955 85 3 3 3 4 3 3 3 0 

98 1840 80 3 2 4 3 3 3 3 0 
99 3784 172 4 3 2 3 4 4 4 1 

100 1932 84 2 3 4 3 2 3 4 5 
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101 1632 96 3 3 3 4 3 4 4 0 

102 1666 98 3 3 3 4 3 4 4 0 
103 1653 87 4 4 3 4 4 4 4 0 

104 1472 64 2 4 4 5 2 4 2 0 
105 1276 58 4 4 4 3 4 3 2 5 

106 2162 94 4 3 3 3 4 3 3 5 
107 2064 86 4 3 2 3 4 3 3 5 

108 1454 57 3 3 4 2 3 5 3 5 
109 1911 91 3 2 3 2 3 5 3 1 

110 1110 74 3 2 3 4 3 4 3 1 
111 3615 241 3 4 3 4 3 4 4 0 

112 2632 188 2 3 3 3 2 4 4 0 
113 3472 124 2 3 4 3 2 4 3 0 

114 1734 102 5 2 2 4 5 3 3 5 
115 2668 116 3 2 3 3 3 3 2 5 

116 2832 118 3 3 3 3 3 3 4 5 
117 4680 156 1 3 3 2 1 4 4 5 

118 3060 170 4 2 3 3 4 4 1 5 
119 6072 264 4 2 3 3 4 2 4 0 

120 4081 154 3 1 3 3 3 4 3 2 
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1 1 1.3 1 13.5 122 
2 1 1.15 1 18 296 

3 0.7 1 1.2 20.5 360 
4 0.7 1.15 1 28 170 

5 0.85 1.15 1 39 507 
6 1 1.15 1 41.5 634 

7 1 1 1 47 752 
8 1 1 1 47.5 751 

9 0.7 1.15 1 51 244 
10 1 1 1 52 843 

11 0.85 1 1.1 53 948 
12 0.85 1 1 53.5 809 

13 1 1 1 58 870 
14 1 1.15 1 61 902 

15 1 1 1.1 63 1022 
16 0.85 1 1 64 1024 

17 0.85 1 1 65.5 1049 
18 1 1 1 68 1212 

19 1 1.15 1 70 1228 
20 1 1.15 1 72 1209.6 

21 1 1 1 75.5 1400 
22 1 1.15 1 78 1216 

23 1 1 1 80 1440 
24 1 1 1.1 88 1613 

25 1 1.3 1 90 1313 
26 1 1.15 1 93 1550 
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27 1 1.3 1 104.5 1280 

28 1 1 1 106.5 1983 
29 1 1 1 111 2121 

30 1 1.3 1 112 1702 
31 1 1 1 115 2530 

32 1 1 1 117 2640 
33 1 1 1 123.5 2535 

34 1 1.3 1 124.5 2020 
35 0.85 1.3 1 131.5 1635 

36 0.7 1.15 1 145.5 1926 
37 1 0.7 1 150 4648 

38 1 0.7 1 173 4498 
39 1 1 1 192 3840 

40 1.3 1 1 192 4992 
41 1 1.15 1 197.5 3698 

42 0.85 0.85 1 216.5 4198 
43 1 1 1 226.5 7823 

44 1 1 1.1 275 11580 
45 0.7 1.3 1 286.5 1821 

46 1 1 1.1 290 7224 
47 1.3 1 1 293 8497 

48 1 1 1 302 8298 
49 1 1 1 313 8413 

50 1 1 1 341 9507 
51 1 1 1 357 10167 

52 1 1 1 388.5 12606 
53 1 1 1 407 13789 

54 1 1 1 409 12449 
55 1 1 1 472 16350 

56 1 1 1 498 17848 
57 1 1 1 552 17906 

58 1 1 1 612 22491 
59 1 1 1 619 19529 

60 1 1 1 840 31542 
61 1 1 1 967 33409 

62 1.15 1.15 1 986.5 37723 
63 1.15 1 1 1412 57044 

64 1 0.7 1 1780 78693 
65 1.3 1 1.1 2455 129353 
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Appendix F 

 

66 1.15 0.7 1.4 5.5 167 
67 1 0.7 1.4 10 278 

68 0.85 1.15 1.1 17 374 
69 1.15 1 1.2 18 368 

70 0.85 1.15 1.1 25.5 664 
71 0.85 1.15 1.1 31 626 

72 1.3 0.7 1.4 31.5 1224 
73 1.15 1 1.3 33.5 1280 

74 1.3 1 1.3 36.5 1124 
75 1.3 0.7 1.4 37 988 

76 0.85 1.15 1.1 40 817 
77 0.85 1.15 1 41.5 887 

78 0.7 1.15 1.2 47.5 1078 
79 1 1.15 1.2 47.5 1449 

80 1.15 1 1.3 50.5 1586 
81 1 1.15 1.3 53.5 1824 

82 0.85 1.15 1.1 54 972 
83 0.85 1.3 1.3 56 890 

84 1.3 1 1.3 56.5 1608 
85 1 1.15 1.1 58 1328 

86 1.15 1 1.4 58.5 2158 
87 1.15 1 1.4 59.5 2248 

88 0.85 1.15 1.1 61 1278 
89 0.85 1.15 1.1 63 1733 

90 1 1.15 1.2 64 1860 
91 1 1.15 1.1 68 1074.4 
92 1.3 0.7 1.4 71 2244 

93 0.85 1.15 1.2 71.5 1821 
94 1 1.15 1.1 76 2964 

95 0.85 1.15 1.2 77 2009 
96 1.15 1 1.3 82 2965 

97 1 1.3 1.2 92 1840 
98 0.85 1.15 1.2 96 2264 

99 1.15 1.15 1.1 96.5 2380 
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100 1.3 1 1.3 102.5 3240 

101 0.85 1.3 1 115 1824 
102 1.15 1 1.3 117 3890 

103 0.85 1 1.1 123.5 3480 
104 1.15 0.7 1.4 126.5 6645 

105 0.7 1.3 1.1 127.5 4190 
106 0.85 1 1.3 129.5 3480 

107 0.85 1.15 1.1 134 2933 
108 1 1.15 1.3 135 3430 

109 1.3 1 1.3 147 5480 
110 0.85 1.15 1.2 156.5 3147 

111 1.15 1 1.4 163 6480 
112 1 1.15 1.2 172 5963 

113 0.7 1.3 1 180.5 3480 
114 0.7 1.3 1.3 192.5 4800 

115 1.15 1 1.4 196.5 5445 
116 0.7 1.3 1 197 3660 

117 1 1.15 1.2 198.5 5882 
118 1.15 1 1.3 205.5 6810 

119 1.3 1 1.3 210.5 7050 
120 1 1.3 1.1 215 5760 

121 1.3 1 1.2 245.5 7845 
122 0.85 1.3 1 248 8340 

123 1.3 1.3 1.2 260 8960 
124 0.7 1.3 1 270.5 5210 

125 0.85 1.15 1.1 282.5 5709 
126 0.7 1.3 1.1 286.5 1904 

127 1 1.15 1.3 311 11818 
128 0.85 1.15 1.2 320 10240 

129 1 1.15 1.2 322 11270 
130 0.7 1.3 1.1 329.5 7880 

131 1.3 1.15 1.1 335 12730 
132 1 1.15 1.1 341 10912 

133 0.85 1.3 1 350 7872 
134 0.7 1.3 1 354 7234 

135 1.15 0.7 1 390 13260 
136 0.85 1.3 1.1 407 9930.8 

137 0.7 1.3 1.1 433 12410 
138 0.85 1.15 1 441.5 10004 

139 1.3 1 1.3 455 20020 
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140 1.3 1 1.3 496.5 22110 

141 1 1.3 1.1 508 22352 
142 0.85 1.15 1.1 525 11022 

143 1.3 1 1.3 554 26940 
144 1 1.3 1.2 585 12916 

145 1.15 1.15 1 660.5 16600 
146 0.7 1.3 1 707 16845 

147 0.85 1 1 1060 24192 
148 1.15 1.3 1.1 1830 49536 

149 1 1.15 1.3 4010 198840 
150 1.3 0.7 1.4 6 378 

151 1.3 0.7 1.4 13 397 
152 0.85 1.3 1 17 120 

153 1.3 0.7 1.3 18 400 
154 1.3 0.7 1.4 23.5 838 

155 1.3 0.7 1.4 25.5 760 
156 0.85 1.15 1.1 32 724 

157 1.3 0.7 1.4 39 1153 
158 1.3 0.85 1.1 45 957 

159 1.3 0.7 1.4 48.5 3323 
160 1.3 0.7 1.3 53 2002 

161 1.15 0.7 1.1 54.5 1090 
162 1.3 0.7 1.3 56 2134 

163 1.3 0.7 1.3 58 2175 
164 1.3 0.85 1.2 59.5 1877 

165 1.3 0.7 1 60 1400 
166 1.3 0.7 1.1 63.5 1536 

167 1.3 0.7 1.4 68 1820 
168 1 0.85 1.2 68.5 1583 

169 1.3 0.7 1.4 71.5 1880 
170 1 0.7 1.2 73 1972 

171 1 0.7 1.1 76.5 1882 
172 1.3 0.7 1.4 77.5 1052 

173 1.3 0.7 1.4 86 4108 
174 1.15 1.15 1.3 94 2080 

175 1.3 1 1.2 101 7602 
176 1.15 1 1.2 104 4209 

177 1.3 1 1.3 117.5 5374 
178 1 1.15 1.2 124.5 4551 

179 1 1.15 1.2 127 4651 
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180 1 1.15 1.2 130 4184 

181 1.15 1 1.4 137 6910 
182 0.85 1.15 1.2 167.5 4879 

183 1.3 0.7 1.3 168.5 11680 
184 0.85 1.3 1 180 1705 

185 1.3 1 1.3 187 13288 
186 1.15 1 1.2 196 15729 

187 1 1.15 1.2 198 6051 
188 1.15 1 1.2 227.5 9301 

189 0.85 1.15 1.2 234 6552 
190 1 1 1.3 253 11749 

191 0.85 1.3 1.1 256 3664 
192 0.85 1.3 1.1 264 3244 

193 0.85 1.3 1 268 2978 
194 0.85 1.3 1 274 3153 

195 0.85 1.15 1.2 293 8790 
196 0.7 1.3 1 310.5 6220 

197 1 1 1.2 317 11095 
198 0.7 1.3 1 324.5 5280 

199 0.7 1.3 1.1 338.5 8100 
200 0.85 1.15 1.1 349.5 8060 

201 0.7 1.15 1.1 388 9312 
202 0.7 1.3 1 412.5 7820 

203 1 1.15 1.1 426 17892 
204 1.15 1 1.3 436.5 20389 

205 0.7 1.3 1 449 8180 
206 1.15 1 1.3 509 60826 

207 0.7 1.3 1 576.5 16532 
208 0.7 1.3 1 737.5 19820 

209 1.3 1.15 1 760 30912 
210 0.85 1.3 1.1 878.5 27800 

211 0.7 1.15 1.1 910 32800 
212 0.7 1.3 1 3070 89030 

213 0.7 1.3 1 3860 188340 
214 0.7 1.3 1 3980 224890 
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Appendix G 

RBFNN Parameters 

Neuron Bias Weight Center_size Width_size Center_prod Width_prod Center_complex Width_complex Center_Req Width_Req 

1 9700.5 205163.3 14.09376 57.96999 -3.46125 268.984 0.236544 379.5427 0.655411 193.2344 

2 9700.5 40.8244 -0.30085 9.86213 -3.67838 149.6633 -0.06608 0.107198 1.91701 390.2638 

3 9700.5 1296.638 1.717095 0.26561 0.45686 344.4288 -0.24646 141.6568 0.257214 31.21814 

4 9700.5 15834.48 0.196781 329.2464 -0.85419 300.5105 -0.0693 204.6251 0.581591 0.060439 

5 9700.5 -74059.4 14.56015 144.2844 -1.60751 151.2063 -0.05865 67.63445 0.532074 0.154067 

6 9700.5 3705.166 1.224678 1.011923 0.945957 333.8084 0.118394 355.9286 1.761941 296.1721 

7 9700.5 -35516.6 -0.05855 10.67504 -2.22027 179.6136 -0.20381 380.3062 1.648088 137.9463 

8 9700.5 23263.67 0.599317 10.90981 -3.21756 167.0027 0.294767 95.94758 0.20181 21.36284 

9 9700.5 3509.583 6.371061 234.4714 0.41795 192.6596 0.079526 199.0717 1.661398 1.767917 
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10 5869.987 260 2308.749 500 2293.532 750 2309.085 

20 5386.938 270 2287.525 510 2298.875 760 2305.311 

30 5064.88 280 2280.722 520 2294.796 770 2303.961 

40 4721.407 290 2277.771 530 2298.728 780 2303.618 

50 4410.863 300 2269.83 540 2300.85 790 2301.491 

60 4127.959 310 2272.116 550 2298.998 800 2300.617 

70 3902.936 320 2271.898 560 2301.035 810 2300.517 

80 3767.422 330 2273.275 570 2301.466 820 2301.233 

90 3642.507 340 2267.082 580 2305.604 830 2299.708 

100 3509.104 350 2265.949 590 2308.908 840 2300.222 

110 3411.708 359 2260.936 600 2311.757 850 2303.442 

120 3315.563 360 2261.781 610 2310.508 860 2304.086 

130 3230.62 370 2264.029 620 2310.197 870 2303.419 

140 3141.166 380 2266.435 630 2309.814 880 2303.328 

150 3076.801 390 2267.845 640 2311.502 890 2301.861 

160 3008.4 400 2272.518 650 2309.714 900 2302.601 

170 2947.416 410 2273.739 660 2314.439 910 2301.998 

180 2867.299 420 2275.863 670 2315.995 920 2302.819 

190 2787.113 430 2274.62 680 2317.473 930 2303.39 

200 2713.735 440 2273.57 690 2315.097 940 2302.268 

210 2647.587 450 2274.487 700 2315.732 950 2300.764 

220 2551.555 460 2280.963 710 2314.046 960 2300.61 

230 2494.742 470 2279.811 720 2312.364 970 2299.892 

240 2420.565 480 2282.187 730 2311.937 980 2301.007 

250 2370.713 490 2285.307 740 2310.119 990 2301.796 

            1000 2300.96 
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