
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

5-11-2012 12:00 AM

Software Size and Effort Estimation from Use Case Diagrams Software Size and Effort Estimation from Use Case Diagrams

Using Regression and Soft Computing Models Using Regression and Soft Computing Models

Ali Bou Nassif
The University of Western Ontario

Supervisor

Dr. Luiz Fernando Capretz

The University of Western Ontario

Graduate Program in Electrical and Computer Engineering

A thesis submitted in partial fulfillment of the requirements for the degree in Doctor of

Philosophy

© Ali Bou Nassif 2012

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Other Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Bou Nassif, Ali, "Software Size and Effort Estimation from Use Case Diagrams Using Regression and Soft
Computing Models" (2012). Electronic Thesis and Dissertation Repository. 547.
https://ir.lib.uwo.ca/etd/547

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F547&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/278?utm_source=ir.lib.uwo.ca%2Fetd%2F547&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/547?utm_source=ir.lib.uwo.ca%2Fetd%2F547&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

i

SOFTWARE SIZE AND EFFORT ESTIMATION FROM USE CASE DIAGRAMS

USING REGRESSION AND SOFT COMPUTING MODELS

(Spine title: Software Effort Estimation From Use Case Diagrams)

(Thesis Format: Integrated Article)

by

Ali Bou Nassif

Graduate Program in Electrical and Computer Engineering

A thesis submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

The School of Graduate and Postdoctoral Studies

Western University

London, Ontario, Canada

© Ali Bou Nassif 2012

ii

WESTERN UNIVERSITY

SCHOOL OF GRADUATE AND POSTDOCTORAL STUDIES

CERTIFICATE OF EXAMINATION

Supervisor

Dr. Luiz Fernando Capretz

Co-Supervisor

Mr. Danny Ho

Supervisory Committee

Examiners

Dr. Abdallah Shami

Dr. Abdelkader Ouda

Dr. Nazim Madhavji

Dr. Khalil El-Khatib

The thesis by

Ali Bou Nassif

entitled:

Software Size and Effort Estimation from Use Case Diagrams Using

Regression and Soft Computing Models

is accepted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

Date: May 11, 2012 _______________________________

Chair of the Thesis Examination Board

iii

Abstract

In this research, we propose a novel model to predict software size and effort from use

case diagrams. The main advantage of our model is that it can be used in the early stages

of the software life cycle, and that can help project managers efficiently conduct cost

estimation early, thus avoiding project overestimation and late delivery among other

benefits. Software size, productivity, complexity and requirements stability are the inputs

of the model. The model is composed of six independent sub-models which include non-

linear regression, linear regression with a logarithmic transformation, Radial Basis

Function Neural Network (RBFNN), Multilayer Perceptron Neural Network (MLP),

General Regression Neural Network (GRNN) and a Treeboost model. Several

experiments were conducted to train and test the model based on the size of the training

and testing data points. The neural network models were evaluated against regression

models as well as two other models that conduct software estimation from use case

diagrams. Results show that our model outperforms other relevant models based on five

evaluation criteria. While the performance of each of the six sub-models varies based on

the size of the project dataset used for evaluation, it was concluded that the non-linear

regression model outperforms the linear regression model. As well, the GRNN model

exceeds other neural network models. Furthermore, experiments demonstrated that the

Treeboost model can be efficiently used to predict software effort.

 Keywords: Software Size and Effort Estimation, Use Case Diagrams, Regression

Analysis, MLP Model, RBFNN Model, GRNN Model, Treeboost Model.

iv

Acknowledgements

I am heartily thankful to my supervisors, Luiz Fernando Capretz and Danny Ho for their

encouragement, guidance and support through my entire Ph.D. program. Their

constructive feedback motivated me to conduct my research efficiently and challenged

me to publish my work in reputable conferences and journals.

 I would also like to thank my wife Adeeba for her patience, support and tireless

effort during my studies.

v

Table of Contents

CERTIFICATE OF EXAMINATION .. ii

Abstract ... iii

Acknowledgements ... iv

Table of Contents ...v

List of Tables .. ix

List of Figures .. xii

Glossary of Terms .. xix

Chapter 1 ...1

1. Introduction ..1

1.1 Motivation ...1

1.2 Research Questions ..9

1.3 Research Contributions .. 13

1.4 Thesis Structure ... 15

References ...16

Chapter 2 ...19

2. Background ...19

2.1 Fuzzy Logic ... 19

2.2 Neural Network .. 20

2.2.1 Multilayer Perceptron (MLP) ... 22

2.2.2 Radial Basis Function Neural Network ... 23

2.2.3 General Regression Neural Network ... 25

2.3 Evaluation Criteria ... 26

2.4 Literature Review ... 29

2.4.1 Algorithmic Models ... 31

2.4.1.1 COCOMO .. 31

2.4.1.2 SLIM .. 33

2.4.1.3 Function Point Model ... 35

2.4.1.4 Use Case Point Model .. 36

2.4.2 Expert Judgement ... 44

vi

2.4.3 Estimation by Analogy ... 45

2.4.4 Soft Computing Models.. 46

2.5 Related Work ... 46

References ...52

Chapter 3 ...60

3. MLP and Linear Regression Models ..60

3.1 Introduction.. 60

3.2 Research Methodology and Models’ Evaluation ... 61

3.2.1 Regression Model ... 61

3.2.2 Fuzzy Logic Approach ... 74

3.2.3 Neural Network Model ... 77

3.3 Models Assessment and Discussion.. 83

3.3.1 Testing the Proposed Models .. 83

3.3.2 Comparison Among Different Models .. 87

3.3.3 Discussion .. 88

3.4 Threats to Validity ... 88

3.5 Conclusion ... 90

References ...92

Chapter 4 ...94

4. Regression, RBFNN and GRNN ...94

4.1 Introduction.. 94

4.2 Model’s Input Factors and Effort-Size Relationship 95

4.2.1 Size Estimation .. 96

4.2.2 Project Complexity ... 98

4.2.3 Productivity .. 100

4.2.3.1 Calibration of Productivity Factor ... 103

4.2.4 Requirements Stability ... 106

4.2.5 Effort-Size Relationship ... 108

4.3 Non-linear Regression Model ... 109

4.4 Linear Regression Model with a Logarithmic Transformation 118

4.5 Radial Basis Function Neural Network ... 126

4.6 General Regression Neural Network .. 131

vii

4.7 Software Estimation ... 133

4.7.1 Estimation using non-linear regression ... 133

4.7.2 Estimation using linear regression .. 134

4.7.3 Estimation using RBFNN and GRNN ... 135

4.8 Models verification .. 135

4.8.1 Non-Linear Model Verification .. 136

4.8.2 Linear Model Verification .. 137

4.8.3 Neural Network models verification ... 138

4.9 Models Evaluation and Comparison ... 140

4.9.1 Project Dataset ... 140

4.9.2 Models Evaluation.. 141

4.9.3 Comparison Between Models ... 151

4.9.3.1 Comparison With All Data Points ... 151

4.9.3.2 Comparison With Small Data Points ... 152

4.9.3.3 Comparison With Medium-Sized Data Points 152

4.9.3.4 Comparison With Large Data Points ... 153

4.10 Threats to Validity ... 154

4.11 Conclusions.. 155

References ...158

Chapter 5 ...161

5. A Treeboost Model for Software Effort Estimation161

5.1 Introduction.. 161

5.2 Decision Tree Model .. 162

5.3 Model’s Inputs ... 164

5.4 The Treeboost Model ... 166

5.5 Multiple Linear Regression Model ... 172

5.6 Model Evaluation ... 173

5.7 Discussion .. 176

5.8 Threats To Validity .. 176

5.9 Conclusions.. 178

References ...180

Chapter 6 ...182

viii

6. Summary and Future Work ..182

6.1 Future Work ... 187

References ...188

Appendix A ...189

Appendix B ...192

Appendix C ...195

Appendix D ...197

Appendix E ...201

Appendix F ..203

Appendix G ...207

Appendix H ...208

Curriculum Vitae and Thesis-Relevant Publications ...209

ix

List of Tables

Table 1-1 Functional Requirement Example .. 7

Table 1-2 Use case description.. 8

Table 2-1 Software project types [12] .. 33

Table 2-2 Use case scenario (description).. 38

Table 2-3 Complexity weights of use cases [20] ... 38

Table 2-4 Complexity weights of actors [20].. 38

Table 2-5 Technical factors .. 41

Table 2-6 Environmental factors .. 41

Table 3-1 ANOVA for Equation 3.5 .. 72

Table 3-2 Model parameters for Equation 3.5 ... 72

Table 3-3 ANOVA for Equation 3.8 .. 72

Table 3-4 Model parameters for Equation 3.8 ... 72

Table 3-5 Productivity factor ... 75

Table 3-6 New productivity factor using mamdani system 78

x

Table 3-7 New productivity factor using sugeno system ... 78

Table 3-8 Results using whole dataset .. 84

Table 3-9 Results using small projects ... 85

Table 3-10 Results using large projects ... 86

Table 4-1 Use case complexity ... 98

Table 4-2 Productivity factor .. 103

Table 4-3 New productivity factor .. 106

Table 4-4 Non-linear equations .. 111

Table 4-5 Linear model parameters ... 119

Table 4-6 RBFNN parameters.. 130

Table 4-7 GRNN spread value ... 132

Table 4-8 Non-linear regression verification ... 137

Table 4-9 Linear regression verification .. 138

Table 4-10 Neural network models verification .. 139

Table 4-11 Models evaluation- all data points ... 143

xi

Table 4-12 Models evaluation- small range ... 143

Table 4-13 Models evaluation- medium range .. 144

Table 4-14 Models evaluation- large range.. 144

Table 5-1 Model's Parameters ... 170

Table 5-2 Evaluation results .. 174

Table 6-1 Model features and applicability.. 186

xii

List of Figures

Figure 1-1 Requirements Engineering process [3] ... 4

Figure 1-2 Use case diagram [6] .. 5

Figure 2-1 Activation functions [3] ... 21

Figure 2-2 Schematic diagram of a MLP model .. 23

Figure 2-3 Schematic diagram of a RBFNN model [5] ... 24

Figure 2-4 Schematic diagram of a GRNN model [7] ... 25

Figure 2-5 Putnam’s time-effort graph based on Rayleigh distribution [13] 34

Figure 2-6 High level view of the function point model .. 36

Figure 3-1 Histogram of size ... 64

Figure 3-2 Histogram of effort .. 64

Figure 3-3 Histogram of ln(Size) .. 65

Figure 3-4 Histogram of ln(Effort).. 65

Figure 3-5 Comparison between software size and software effort 67

Figure 3-6 Q-Q plot for normalized size .. 68

xiii

Figure 3-7 Q-Q plot for normalized effort ... 69

Figure 3-8 Memdani input membership function .. 75

Figure 3-9 Mamdani output membership Function ... 75

Figure 3-10 Neural network model .. 79

Figure 3-11 Performance graph.. 82

Figure 3-12 Regression graph .. 82

Figure 3-13 MMER interval plot ... 85

Figure 3-14 MMER interval plot for small projects .. 86

Figure 3-15 MMER interval plot for large projects ... 87

Figure 4-1 Mamdani input membership function .. 104

Figure 4-2 Mamdani output membership function .. 104

Figure 4-3 Requirements stability .. 107

Figure 4-4 Comparison between UCP model and actual data 109

Figure 4-5 Polynomial, all data ... 112

Figure 4-6 Exponential 1, all data .. 113

xiv

Figure 4-7 Exponential 2, all data ... 113

Figure 4-8 Exponential 3, all data .. 113

Figure 4-9 Polynomial, small data ... 114

Figure 4-10 Exponential 1, small data ... 114

Figure 4-11 Exponential 2, small data ... 114

Figure 4-12 Exponential 3, small data ... 115

Figure 4-13 Polynomial, medium data ... 115

Figure 4-14 Exponential 1, medium data ... 115

Figure 4-15 Exponential 2, medium data ... 116

Figure 4-16 Exponential 3, medium data ... 116

Figure 4-17 Polynomial, large data .. 116

Figure 4-18 Exponential 1, large data .. 117

Figure 4-19 Exponential 2, large data .. 117

Figure 4-20 Exponential 3, large data .. 118

Figure 4-21 Size, all data... 121

xv

Figure 4-22 Effort, all data ... 121

Figure 4-23 Size, small data ... 121

Figure 4-24 Effort, small data .. 121

Figure 4-25 Size, medium data .. 121

Figure 4-26 Effort, medium data .. 121

Figure 4-27 Size, large data.. 122

Figure 4-28 Effort, large data ... 122

Figure 4-29 ln (Size_All_Data) .. 122

Figure 4-30 ln (Effort_All_Data) ... 122

Figure 4-31 ln (Size_Small_Data).. 122

Figure 4-32 ln (Effort_Small_Data) ... 122

Figure 4-33 ln (Size_Medium_Data) ... 123

Figure 4-34 ln (Effort_Medium_Data) ... 123

Figure 4-35 ln (Size_Large_Data).. 123

Figure 4-36 ln (Effort_Large_Data) ... 123

xvi

Figure 4-37 ln(size/effort), all data .. 124

Figure 4-38 ln(size/effort), small data .. 124

Figure 4-39 ln(size/effort), medium data ... 124

Figure 4-40 ln(size/effort), large data .. 125

Figure 4-41 Size/effort, all data.. 125

Figure 4-42 Size/effort, small data ... 125

Figure 4-43 Size/effort, medium data .. 126

Figure 4-44 Size/effort, large data.. 126

Figure 4-45 Size/ effort relationship .. 128

Figure 4-46 Number of neurons ... 129

Figure 4-47 Actual versus predicted effort .. 130

Figure 4-48 Actual versus predicted target (GRNN) ... 132

Figure 4-49 MMRE, all data .. 145

Figure 4-50 MMER, all data .. 145

Figure 4-51 Mean error, all data... 146

xvii

Figure 4-52 MMRE, small data.. 146

Figure 4-53 MMER, small data.. 147

Figure 4-54 Mean error, small data .. 147

Figure 4-55 MMRE, medium data ... 148

Figure 4-56 MMER, medium data ... 148

Figure 4-57 Mean error, medium data ... 149

Figure 4-58 MMRE, large data .. 149

Figure 4-59 MMER, large data .. 150

Figure 4-60 Mean Error, large data .. 150

Figure 5-1 Decision tree model .. 164

Figure 5-2 Data points used in training and the learning curve 171

Figure 5-3 Actual versus predicted effort .. 171

Figure 5-4 Number of trees, training and validation curves 172

Figure 5-5 MMRE interval plot ... 174

Figure 5-6 MMER interval plot ... 175

xviii

Figure 5-7 MAE interval plot ... 175

Figure 5-8 Scatterplot of size/predicted_effort .. 178

xix

Glossary of Terms

ANOVA Analysis of Variance: It provides statistical tests such as p-test and

f-test to learn the significance of the independent variables

CI Confidence Interval: It is a statistical term to measure the

reliability of a result. In statistics, A 95% confidence level is used

frequently. This means if an experiment is conducted over and

over, 95% of the time the true parameter will fall in the interval

FP Function Points. It is a unit of measurement to express the

business functionalities of an information system. This method

was introduced by Allan Albrecht at IBM in 1979

GRNN General Regression Neural Network. It is a type of artificial

neural network models that has four layers. The GRNN model

was proposed by DF Specht in 1991

ISBSG International Software Benchmarking Standards Group: It is a

non-profit organization that maintains a repository of IT projects

MAE Mean Absolute Error: It is an evaluation criterion which is the

mean of the absolute error between the difference of the predicted

effort and the actual effort

xx

ME Mean Error: It is an evaluation criterion which is the mean of the

error between the difference of the predicted effort and the actual

effort

MLP Multilayer Perceptron: It is one of the traditional artificial neural

network models. It is composed of an input layer, output layer and

one or more hidden layers

MMER Mean of the Magnitude of Error Relative to the estimate. It is an

evaluation criterion which is the mean of the absolute value of the

difference between the actual effort and the predicted effort

divided by the predicted effort

MMRE Mean of the Magnitude of Relative Error: It is an evaluation

criterion which is the mean of the absolute value of the difference

between the actual effort and the predicted effort divided by the

actual effort

NFR Non-Functional Requirements: These are also called quality

attributes. In this thesis, NFR are used as independent variables

such as productivity, complexity and requirements uncertainty

PRED Prediction Level. It is an evaluation criterion which was used in

conjunction with MMRE, MMER and CI. PRED(x) calculates the

xxi

ratio of a project’s MMRE (or MMER) that falls into the selected range

(x) out of the total projects

RBF Radial Basis Function: It is a real-valued function that satisfies the

condition () ()x x 

RBFNN Radial Basis Function Neural Network. It is a type of artificial

neural network models that has three layers. The RBFNN model

was proposed by Broomhead and Lowe. The hidden layer contains a

set of neurons that use Radial Basis Function (RBF) as activation

functions

Spread The spread is the radius or width of a RBF function which is denoted by

― ‖

UCP Use Case Points. It is a model introduced by G. Karner in 1993 to

estimate software effort from use case diagrams

1

Chapter 1 1

1. Introduction

1.1 Motivation

Estimation is part of our daily lives. When we plan to go to work, we estimate the time

needed to get there. This estimated time fluctuates according to some external factors,

such as the weather conditions, traffic jams, and so forth. If we want to build a house, we

estimate the cost and the schedule needed to complete its construction. Sometimes we

conduct estimation intentionally, but often it occurs naturally. We instinctively enhance

our estimation based on past experience and historical data.

Likewise, software estimation has become a crucial task in software engineering and

project management. Old estimation methods that have been used to predict project costs

1 Part of this chapter was published in the International Conference on Emerging Trends in Computer

Science, Communications and Information Technology, and in the Journal of Global Research in Computer

Science.

1. Ali Bou Nassif, Luiz Fernando Capretz and Danny Ho: Software Estimation in the Early Stages of

the Software Life Cycle, International Conference on Emerging Trends in Computer Science,

Communications and Information Technology (CSCIT 2010), January 2010, Nanded, India

(Published)

2. Ali Bou Nassif, Luiz Fernando Capretz and Danny Ho: Enhancing Use Case Points Estimation

Method using Soft Computing Techniques, Journal of Global Research in Computer Science,

Volume 1, No. 4, November 2010, PP. 12-21 (Published).

2

developed using procedural languages are becoming inappropriate methods of estimation

for the more recent projects being created with object-oriented languages. This in turn,

may lead to project failures and has spawned the need for developing new approaches to

software estimation.

The Standish Group [1] states that 44% of IT projects were delivered late and over

budget. This indicates that the role of project management has become increasingly more

important [2][3]. The International Society of Parametric Analysis (ISPA) identified the

main reasons behind project failures [4]. These reasons can be summarized as follows:

 Lack of estimation of the staff’s skill level

 Lack of understanding the requirements

 Improper software size estimation

Another study was conducted by the Standish Group International [1] to determine the

main factors that lead to project failures. These factors include:

 Uncertainty of system and software requirements

 Unskilled estimators

 Budget limitation

 Optimism in software estimation

 Ignoring historical data

 Unrealistic estimation

3

In a nutshell, many software projects fail because of the inaccuracy of software

estimation and misunderstanding or incompleteness of the requirements. This fact

motivated researchers to conduct research on software estimation for better software size

and effort assessment. One of the early stages of project management is planning; and in

that stage, software developers begin to perform software size and effort estimation to

calculate the budget, schedule and number of people required to develop the software.

According to Kotonya and Sommerville [3], the requirements engineering stage is mainly

composed of four interleaved activities. These activities include Requirements

Elicitation, Requirements Analysis and Negotiation, Requirements Documentation and

Requirements Validation. Figure (1-1) shows the requirements engineering process [3].

As software estimation becomes critical to prevent or reduce project failures, estimation

in the early stages of the software life cycle has become imperative. The earlier the

estimation is, the better project management will be. The importance of early estimation

is exposed when it is required to bid on a project or commit to a contract between a

customer and a developer. The early software estimation is conducted at a point when the

details of the problem are not yet disclosed; this is called the size estimation paradox [2] .

The software size should first be estimated in the early stages. In general, the early stage

of the software life cycle is the requirements phase.

4

Figure ‎1-1 Requirements Engineering process [3]

Software estimation can be conducted at any activity within the requirements engineering

process. However, performing estimation in the early activities stage, such as

Requirements Elicitation means that the requirements of the software are not complete

and more assumptions will need to be made in the estimation process. This could lead to

poor results. On the other hand, if software estimation is done during or after the

validation activity, fewer assumptions are needed and consequently, estimation results

will be more accurate.

UML diagrams, proposed by Jacobson et al. in 1992 [5], such as use case diagrams,

activity diagrams, collaboration diagrams, class diagrams and sequence diagrams are

used in the requirements, analysis and design stages in the software life cycle. As UML

diagrams have become popular in the last decade, software developers have become more

interested in conducting software estimation based on UML models, and especially the

5

use case diagrams. The use case diagram as shown in Figure (1-2), is a set of use cases

and actors that represents the functional requirements of a system and it is usually

included in the Software Requirements Specification (SRS) documents.

This thesis focuses on developing a novel model to calculate software size and effort

from use case diagrams. Our model can be used in the early stages of the software life

cycle (requirements stage) and results show that the proposed model is a competitive one

to alternative models that predict software effort from use cases.

Figure ‎1-2 Use case diagram [6]

6

The model introduced in this thesis is geared toward estimating software effort of UML-

based projects. For projects that do not contain use case diagrams and only contain

textual representation of the functional requirements, we propose the following algorithm

to map textual representation of the functional requirements to use case descriptions.

After the mapping, our model can be used for software effort estimation. Please note that

the validation of this algorithm is out of the scope of this thesis. The mapping algorithm

is presented as follows:

1- Each main functional requirement is mapped to a use case

2- Each sub-requirement that deals with a condition or alternative flow is mapped to

a transaction in the Extension (aka Alternative) scenario

3- Each sub-requirement that deals with a simple statement which represents an

interaction between an actor and the system is mapped to a transaction in the

Success (aka Main Flow) scenario

4- Each sub-requirement which is a mix between the above second and third steps is

mapped to Success as well as Alternative transactions

Table 1-1 is an example for a textual functional requirement in a University Course

Online Registration System project written using the RequisitePro tool. In this example,

the main functional requirement is FEAT28 and there are five sub-requirements which

include FEAT28.1, FEAT28.2, FEAT28.3, FEAT28.4 and FEAT28.5.

7

Table ‎1-1 Functional Requirement Example

Requirements Priority Difficulty Stability Risk Origin

FEAT28: Students can enroll in any listed course High Medium Medium Schedule –

Medium

End Users

 FEAT28.1: After course registration deadline

students can no longer enroll

High Medium Medium Schedule –

Medium

End Users

 FEAT28.2: Cannot enroll in more than one course

during a given time period

High Medium Low Schedule –

Low

End Users

 FEAT28.3: The system should check that student

has proper prerequisites

Medium Medium Medium Schedule –

Medium

End Users

 FEAT28.4: Cannot enroll into a course that has

reached max capacity

Low Low Medium Technology

– Low

End Users

 FEAT28.5: Cannot enroll into more than five

courses in the same term

Low Medium Low Schedule –

Low

End Users

With respect to the functional requirement listed in Table 1-1, the main requirement

FEAT28 is mapped to a use case named ―Enroll a Course‖. The sub-requirement

FEAT28.1 describes three main transactions. The first transaction is that the student

should select the course he or she wishes to enroll in. This is mapped to a transaction in

the Success scenario. The second transaction is that student enrolls in the course which is

also a transaction in the success scenario. The third transaction describes a condition that

students should register before the deadline which should be listed under the Extensions

(Alternative Scenario). The sub-requirement FEAT28.2 states a condition that students

cannot enroll in two or more courses that run on the same time period. FEAT28.2 should

be treated as a transaction under the Extensions. FEAT28.3 is mapped to a transaction in

the Extensions scenario which checks if the prerequisites of the course are fulfilled.

FEAT28.3 can also be mapped to a transaction under the Extensions (Alternative

8

Scenario) to describe the condition if the course prerequisites are not satisfied. FEAT28.4

describes a condition to check the maximum capacity of a course, which will be mapped

to a transaction under the Extensions. Finally, FEAT28.5 also states a condition to check

the number of courses registered by a student. Based on the above mapping description,

the use case description (aka use case scenario) of the use case ―Enroll a course‖ is

presented in Table 1-2.

Table ‎1-2 Use case description

Use Case Title: Student Enrolls in a Course

Actors: Student, Admin

Precondition: The student is not enrolled in a course

Main Success Scenario (Main Flow):

1. The student chooses the course he or she wishes to enroll in

2. The student enrolls in the course

Extensions (Alternative)

2a: The student does not have permission (e.g. the student has not paid the tuition)

 2a1: Notify the student to contact the administrator

2b: The deadline has passed

 2b1: An error message will be displayed

2c: The prerequisite of the course is not fulfilled

2c1: The student is advised to contact the professor to obtain permission

2d: Two courses have the same schedule

 2d1: The student is advised to choose one or the other

2e: The number of the enrolled courses has been exceeded

 2e1: An error message will be displayed

2f: The course is full

 2f1: An error message will be displayed

Post condition: The student has enrolled in a course

9

1.2 Research Questions

This research focuses on predicting software effort from use case diagrams. The use case

point model [7] was the first model to deal with software effort prediction from use case

diagrams. There are many limitations to the use case point model such as the complexity

weights assigned to use cases and the description of these weights are not satisfactory,

and the weights of the technical and environmental factors are outdated. There is several

related work that addressed the issues of the use case model. Authors in [8] and [9]

worked on adjustment factors, while others in [9] and [10] highlighted the discrepancies

in designing use case models. Researchers in [11], [12] and [13] proposed different size

metrics such as Transactions, TTPoints and Paths, while others [14], [15], [16], [17],

[18], [19] and [20] went further to extend the UCP model by providing new complexity

weights or by modifying the method used to predict effort.

Based on the above literature, we highlighted some research gaps. First, none of the

above work used neural network models to predict software effort from use case

diagrams. Second, the above work used linear regression for software effort estimation.

Third, the size of the projects used in most datasets is small (less than 4,000 person-

hours). As well, the influence of non-functional requirements was not addressed

adequately. Thus, we ask seven relevant questions:

1. How can we measure the size of a use case and how can we estimate the size of a

use case diagram?

2. How can team productivity contribute to software effort prediction?

10

3. To what degree can software effort estimation be influenced by project

complexity?

4. How will unstable requirements affect the accuracy of software effort estimation?

5. To what degree can software effort prediction from use case diagrams be affected

by non-functional requirements (productivity, complexity and requirements

stability combined)?

6. What is the nature of the relationship between software effort and size?

7. What type of models can be used to predict software effort from use case

diagrams?

Regarding the first question, we conducted two experiments. In the first experiment

described in Chapter 3, we used the method proposed by the use case point (UCP) model

(this model is described in Chapter 2). We found that this model is inadequate,

specifically regarding large use cases. In the second experiment, which is presented in

Chapter 4, we proposed a new method to calculate the size of a use case, and

consequently the size of the use case diagram.

The second question is addressed in Chapters 3 and 4. In Chapter 3, we used the

environmental factors with their default weights proposed by the UCP model to calculate

productivity. However, these factors were filtered and new weights were proposed in

Chapter 4. Moreover, we used a fuzzy logic technique to calibrate the proposed

productivity values.

11

The third question is tackled in Chapter 4, as we proposed a new method to calculate the

complexity of a project.

The fourth question is addressed in Chapter 3 and Chapter 4. In Chapter 3, we used

requirements stability as one of eight factors that contribute to productivity. However, we

found that the requirements stability factor plays an important role in estimating software

effort. For this reason, we eliminated the requirements stability factor from the eight

factors that contribute to productivity and proposed requirements stability as one of the

independent factors that affect software estimation, which is also presented in Chapter 4.

The fifth question deals with the influence of non-functional requirements (NFR) on

software estimation. Many published work ignore the impact of NFR on effort

estimation. The UCP model [7] states that the NFR can increase the effort by about 30%.

However, others argue that NFR can represent more than 50% of the total effort [21].

This indicates that NFR can double the predicted effort. In our research, we found that

NFR can increase software effort by a factor of 2.6 (160%). In our model, we represent

NFR through three main factors, which include productivity, complexity and

requirements uncertainty. The productivity factor itself can increase the effort by 42%

which corresponds to the lowest degree of team productivity. However, the complexity

factor and requirements stability factors can increase software effort by 30% and 40%,

respectively which correspond to the highest complexity degree and to the highest

requirements uncertainty degree. As a combination of productivity, complexity and

12

requirements uncertainty factors (this combination represents the NFR), the effort can be

increased to a factor of 2.6 (1.42*1.3*1.4) or by 160%.

In research question six, we ask about the relationship between software size and effort.

All researchers agree that software effort is correlated to software size. This means, when

software size increases, software effort will increase. However, many models including

the UCP claim that the relationship between software effort and size is linear. Other

prominent cost estimation models such as COCOMO claims that this relationship is log-

linear and it is represented as * bEffort a Size . In Chapters 3 and 4, we argue that this

relationship is non-linear. Specifically, we introduced three types of non-linear models in

Chapter 4 and we showed by experiments that these models outperform the log-linear

model especially for large projects. This is a breakthrough in the field of software

estimation.

In question seven, we investigate different models to see which one is suitable for

software effort prediction from use case diagrams. We show in Chapters 3 and 4 that

linear and non-linear regression models can be used for software effort estimation.

Furthermore, we assert that neural network models and especially MLP, RBFNN and

GRNN can also be used as alternatives to regression models. In Chapter 5, we present a

Treeboost model to predict software effort from use case diagrams based on three

predictors which include software size, productivity and complexity.

13

1.3 Research Contributions

This thesis focuses on creating a model to predict software size and effort from use case

diagrams. Research contribution can be mainly summarized as follows:

1- Several experiments were conducted to figure out the nature of the relationship

between software effort and size. Results concluded that this relationship is non-

linear, although the degree of non-linearity varies based on how large the software

size is. For instance, this non-linear relationship is insignificant with small

projects. However, this non-linearity becomes evident with mid-sized projects and

stands out with large projects.

2- Six different levels of complexity for use cases were identified. These include

Very Low, Low, Normal, High, Very High and Extra High. This classification is

based on the number of transactions of each use case by giving the Success

scenario more weight than the Extension scenario.

3- A new method to calculate the productivity of the team developing a project was

proposed. The overall productivity factor is based on five factors; each has five

levels (Level-1 which corresponds to very low, to Level-5 which corresponds to

very high). These factors include team experience about the problem domain,

team motivation, experience in the programming language used, experience in the

object oriented language and the level of the analytical skills of the team.

Additionally, we propose a weight to each of these five factors that contribute to

productivity. The final productivity weight is calculated based on the level of each

14

of the five factors. Furthermore, we used a fuzzy logic technique to calibrate the

proposed productivity factor.

4- A new method to calculate the project complexity factor was put forward based

on five levels. A weight was assigned to each complexity level.

5- Five levels of requirements uncertainty were proposed. Requirements uncertainty

includes the increase in the number of requirements as well as the change of the

requirements during the software development life cycle.

6- Six different models were put forward to estimate software effort from software

size, productivity, complexity and requirements uncertainty. These models

include linear regression, non-linear regression, Multilayer Perceptron neural

network, Radial Basis Function Neural Network, General Regression Neural

Network and Treeboost. Four experiments were carried out to evaluate and test

the proposed models with two other models that conduct software estimation from

use case diagrams. In the first experiment, all models were tested using 65 data

points of effort ranging between 120 person-hours and 224,890 person-hours.

After that, the 65 testing data points were divided into three categories: Small

Dataset, which contains 25 projects of effort ranging between 120 person-hours

and 3,000 person-hours; Medium Dataset which contains 21 projects of effort

ranging between 3,000 person-hours and 10,000 person-hours; and Large Dataset

which contains 19 projects of effort greater than 10,000 person-hours. In the

second experiment, all models were tested using the Small Dataset; however, in

the third and the fourth experiments, all models were tested using the Medium and

15

the Large Datasets respectively. A thorough comparison among all models was

carried out based on each experiment and recommendations on how to use each

model were proposed. Additionally, the proposed model was evaluated against

models that conduct software estimation from use case diagrams. The

experiments show that the proposed model outperforms other models based on

different evaluation criteria.

1.4 Thesis Structure

This thesis is organized as follows. Chapter 2 defines the terms used in this work, and

then presents a literature review, followed by related work. Chapter 3 introduces the

linear regression model and the Multilayer Perceptron neural network model. In Chapter

4, we elaborate on the linear and non-linear regression models, as well as the Radial

Basis Function Neural Network model and the General Regression Neural Network

Model. Chapter 5 proposes a Treeboost model to estimate software effort based on three

predictors. Finally, Chapter 6 summarizes the thesis and proposes future work.

16

References

[1] J. Lynch. Chaos manifesto. The Standish Group. Boston. 2009[Online]. Available:

http://www.standishgroup.com/newsroom/chaos_2009.php.

[2] O. Demirors and C. Gencel, "A Comparison of Size Estimation Techniques Applied

Early in the Life Cycle," Software Process Improvement, vol. 3281, pp. 184-194, 2004.

[3] G. Kotonya and I. Sommerville, Requirements Engineering: Processes and

Techniques. Chichester; New York: John Wiley, 1998.

[4] D. Eck, B. Brundick, T. Fettig, J. Dechoretz and J. Ugljesa, "Parametric estimating

handbook," The International Society of Parametric Analysis, Fourth Edition. 2009.

[5] I. Jacobson, M. Christerson, P. Jonsson and G. Overgaard, Object-Oriented Software

Engineering: A use Case Driven Approach. Addison Wesley, 1992.

[6] J. Rumbaugh, I. Jacobson and G. Booch, "Use cases," in UML Distilled, 3rd ed., M.

Fowler, Ed. Pearson Higher Education, 2004, pp. 103.

[7] G. Karner, "Resource Estimation for Objectory Projects," Objective Systems, 1993.

[8] S. Diev, "Use cases modeling and software estimation: applying use case points,"

SIGSOFT Softw. Eng. Notes, vol. 31, pp. 1-4, 2006.

17

[9] B. Anda, H. Dreiem, D. I. K. Sjoberg and M. Jorgensen, "Estimating software development

effort based on use cases-experiences from industry," 4th International Conference on the Unified

Modeling Language, Modeling Languages, Concepts, and Tools, 2001, pp. 487-502.

[10] M. Arnold and P. Pedross, "Software size measurement and productivity rating in a

large-scale software development department," in Proceedings of the 20th International

Conference on Software Engineering, 1998, pp. 490-493.

[11] G. Robiolo and R. Orosco, "Employing use cases to early estimate effort with simpler

metrics," Innovations in Systems and Software Engineering, vol. 4, pp. 31-43, 2008.

[12] G. Robiolo, C. Badano and R. Orosco, "Transactions and paths: Two use case based

metrics which improve the early effort estimation," in International Symposium on

Empirical Software Engineering and Measurement, 2009, pp. 422-425.

[13] M. Ochodek and J. Nawrocki, "Automatic transactions identification in use cases,"

in Balancing Agility and Formalism in Software Engineering, B. Meyer, J. R. Nawrocki

and B. Walter, Eds. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 55-68.

[14] K. Periyasamy and A. Ghode, "Cost estimation using extended use case point model," in

International Conference on Computational Intelligence and Software Engineering, 2009.

[15] F. Wang, X. Yang, X. Zhu and L. Chen, "Extended use case points method for

software cost estimation," in International Conference on Computational Intelligence

and Software Engineering, 2009.

18

[16] G. Schneider and J. P. Winters, Applied use Cases, Second Edition, A Practical

Guide. Addison-Wesley, 2001.

[17] M. R. Braz and S. R. Vergilio, "Software effort estimation based on use cases," in

COMPSAC '06, 2006, pp. 221-228.

[18] A. B. Nassif, L. F. Capretz and D. Ho, "Estimating software effort based on use case

point model using sugeno fuzzy inference system," in 23rd IEEE International

Conference on Tools with Artificial Intelligence, Florida, USA, 2011, pp. 393-398.

[19] P. Mohagheghi, B. Anda and R. Conradi, "Effort estimation of use cases for

incremental large-scale software development," in Proceedings of the 27th International

Conference on Software Engineering, St. Louis, MO, USA, 2005, pp. 303-311.

[20] M. Ochodek, J. Nawrocki and K. Kwarciak, "Simplifying effort estimation based on

Use Case Points," Information and Software Technology, vol. 53, pp. 200-213, 2011.

[21] Y. Ossia. IBM haifa research lab. IBM Haifa Research Lab [Online]. 2011.

Available: https://www.research.ibm.com/haifa/projects/software/nfr/index.html.

Equation Chapter 2 Section 1

19

Chapter 2

2. Background

In this chapter, we define the terms used in this thesis such as fuzzy logic, neural network

and its types, as well as the criteria used to evaluate our work. Moreover, a literature

review and the related work are presented.

2.1 Fuzzy Logic

Fuzzy logic is derived from the fuzzy set theory that was proposed by Lotfi Zadeh in

1965 [1]. As a contrary to the conventional binary (bivalent) logic that can only handle

two values True or False (1 or 0), fuzzy logic can have a truth value which is ranged

between 0 and 1. This means that in the binary logic, a member is completely belonged or

not belonged to a certain set, however in the fuzzy logic, a member can partially belong

to a certain set. Mathematically, a fuzzy set A is represented by a membership function as

follows:

[] () : [0,1].z AF x A x   (2.1)

Where A is the degree of the membership of element x in the fuzzy set A.

A fuzzy set is represented by a membership function. Each element will have a grade of

membership that represents the degree to which a specific element belongs to the set.

Membership functions include Triangular, Trapezoidal and S-Shaped. In fuzzy logic,

20

linguistic variables are used to express a rule or fact. For example, ―the temperature is

thirty degrees‖ is expressed in fuzzy logic by ―the temperature is low‖ or ―the

temperature is high‖ where the words low and high are linguistic variables. In fuzzy

logic, the knowledge based is represented by if-then rules. For example, if the

temperature is high, then turn on the fan. The fuzzy system is mainly composed of three

parts. These include Fuzzification, Fuzzy Rule Application and Defuzzification.

Fuzzification means applying fuzzy membership functions to inputs. Fuzzy Rule

Application is to make inferences and associations among members in different groups.

The third step in the fuzzy system is to defuzzify the inferences and associations, make a

decision and provide an output that can be understood. In this thesis work, fuzzy logic is

used to calibrate the productivity factor of the regression model.

2.2 Neural Network

Artificial Neural Network (ANN) is a network composed of artificial neurons or nodes

which emulate the biological neurons [2]. ANN can be trained to be used to approximate

a non-linear function, to map an input to an output or to classify outputs. There are

several algorithms available to train a neural network but this depends on the type and

topology of the neural network. The most prominent topology of ANN is the feed-

forward networks. In a feed-forward network, the information always flows in one

direction (from input to output) and never goes backwards. An ANN is composed of

nodes organized into layers and connected through weight elements. At each node, the

21

weighted inputs are aggregated, thresholded and inputted to an activation function to

generate an output of that node. Mathematically, this can be represented by:

0

1

() [].
n

i i

i

y t f w x w


  (2.2)

Where xi are neuron inputs, wi are the weights and f[.] is the activation function. There

are many types of activation functions as shown in Figure (2-1) [3].

Figure ‎2-1 Activation functions [3]

22

Feed-Forward ANN layers are usually represented as input, hidden and output layers. If

the hidden layer does not exist, then this type of the ANN is called perceptron. The

perceptron is a linear classifier that maps an input to an output provided that the output

falls under two categories. The perceptron can map an input to an output if the

relationship between the input and output is linear. If the relationship between the input

and output is not linear, one or more hidden layers will exist between the input and output

layers to accommodate the non-linear properties. Several types of feed-forward neural

networks with hidden layers exist. These include Multilayer Perceptron (MLP), Radial

Basis Function Neural Network (RBFNN) and General Regression Neural Network

(GRNN).

2.2.1 Multilayer Perceptron (MLP)

A MLP is a feed-forward neural network model that contains at least one hidden layer

and each input vector is represented by a neuron. The main difference between the MLP

and the Perceptron is that in the Perceptron, there are no hidden layers. In general, the

neurons in the hidden layer use non-linear activation function such as the sigmoid

function (logistic). The output layer node usually uses a linear activation function. The

number of hidden neurons varies and can be determined by trial and error so that the error

is minimal. MLPs are usually trained using the backpropagation algorithm which is a

type of gradient decent algorithm. Another algorithm can be used to train a MLP which is

the conjugate gradient algorithm [4]. The applications of the MLP model include image

recognition, speech recognition, curve fitting and machine translation. Figure (2-2) shows

23

the schematic diagram of a MLP that has five input vectors, seven neurons and one

output.

Figure ‎2-2 Schematic diagram of a MLP model

2.2.2 Radial Basis Function Neural Network

A Radial Basis Function Neural Network (RBFNN) was introduced by Broomhead and

Lowe [5]. A RBFNN is a feed-forward network that has three layers; an input layer, a

hidden layer and an output layer. Figure (2-3) shows the architecture of the RBFNN.

24

Figure ‎2-3 Schematic diagram of a RBFNN model [5]

The first layer is the input layer that represents the input vectors (in this chapter, there are

four input vectors; software size, team productivity, project complexity and requirements

stability). The hidden layer contains a set of neurons that use Radial Basis Function

(RBF) as activation functions. An RBF function depends on the distance from its center

Ci to the input X. Each RBF function has a radius or width (also called spread) which is

denoted by ― ‖. The width might be different for each neuron. The Gaussian function is

the most commonly used in RBF as shown in Equation (2.3):

2

2
() exp().

2

i

i

X C
f x




  (2.3)

Where Ci is the center and i is the width of the i
th
 neuron in the hidden layer. The

distance between X and the center is usually an Euclidean distance. The main advantages

25

of the RBFNN over other feed-forward neural networks include fast learning and not

suffering from problems such as local minima and paralysis [6].

2.2.3 General Regression Neural Network

The General Regression Neural Network (GRNN) is a type of neural networks that

performs regression on continuous target (output) variables. The GRNN was proposed by

Specht in 1991 [7]. A GRNN is composed of four layers as depicted in Figure (2-4).

Figure ‎2-4 Schematic diagram of a GRNN model [7]

The first layer is the input layer in which each independent variable (predictor) has a

neuron. The input neurons feed the values to the neuron in the second layer.

26

The second layer contains pattern neurons such that each training row in the training

dataset has a neuron. Each neuron computes the Euclidean distance from the input vector

X to the neuron’s center, then applies the RBF function using the sigma ― ‖ values. The

resulting value is then passed to neurons in the third layer (summation neurons).

The third layer only contains two neurons. One neuron is called the denominator

summation which adds the values of the weights coming from each of the pattern neurons

(second layer). The other neuron is the numerator summation that adds the weights

multiplied by the actual output (target) value of each pattern neurons.

The fourth layer contains the output neuron in which the value stored in the numerator

neuron is divided by the value stored in the denominator neuron. The output is the

predicted target value.

The GRNN has several advantages such as they learn faster and are more accurate than

other neural network models. Moreover, GRNN models are fairly insensitive to outliers.

The main disadvantage of GRNN is that it requires more memory space to store the

model and it becomes inapplicable if the number of the training project datasets is very

huge.

2.3 Evaluation Criteria

Several methods exist to compare cost estimation models. Each method has its

advantages and disadvantages. In our work, five different evaluation methods have been

used. These methods include the Mean of the Magnitude of Relative Error (MMRE), the

27

Mean of Magnitude of error Relative to the Estimate (MMER) the Prediction Level

(PRED), the Mean Error at 95% Confidence Interval (CI) and the Mean Absolute Error

(MAE).

 MMRE: This is a very common criterion used to evaluate software cost

estimation models [8]. The Magnitude of Relative Error (MRE) for each

observation i can be obtained as:

| |
 .

i i
i

i

Actual Effort Predicted Effort
MRE

Actual Effort


 (2.4)

MMRE can be achieved through the summation of MRE over N observations:

1

1
 .

N

iMMRE MRE
N

  (2.5)

 MMER: Another method can be used as an alternative to the MMRE which is the

Magnitude of Error Relative to the estimate (MER) [9]. MER is similar to MRE

with a difference that the denominator is the predicted effort instead of the actual

effort. Consequently, the equations for MER and MMER are:

| |
 .

i i
i

i

Actual Effort Predicted Effort
MER

Predicted Effort


 (2.6)

1

1
 .

N

iMMER MER
N

  (2.7)

As seen from Equations (2.4) and (2.6), improving one method might adversely affect the

other method. This is because the denominator of the MRE is the actual effort where the

28

denominator of MER is the predicted effort. Nevertheless, it is important that MMRE and

MMER are both used for evaluation. For instance, if the MMRE is large and the MMER

is small, this indicates that the average actual effort of the projects is less than the average

estimated effort. On the contrary, large MMER values indicate that the average estimated

effort is less than the average actual effort.

 PRED(x): PRED (x) can be described as:

  .
k

PRED x
n

 (2.8)

where x is the maximum MMRE (or MMER) of a selected range, n is the total number of

projects, and k is the number projects in a set of n projects whose MMRE (or MMER) <=

x. PRED calculates the ratio of a project’s MMRE (or MMER) that falls into the selected

range (x) out of the total projects. For example, PRED (30) gives the percentage of

software projects that were estimated with MMRE (or MMER) less than or equal to 0.3.

The estimation accuracy is proportional to PRED (x) and inversely proportional to

MMRE or MMER.

 CI: The equation of the mean error confidence interval is:

* .
SD

CI x t
N

  (2.9)

Where x is the mean error, SD is the standard deviation, N is the number of projects and t

is a constant called the test statistic that depends on the number of the samples (projects)

and the degree of the confidence level. The value of t is obtained from the t-distribution

29

table. The 95% confidence level becomes standard to many disciplines. For example, the

value of t is 2.042, 2, 1.98 and 1.96 if the number of projects is 30, 60, 100 and 1,000

respectively at the 95% confidence level. For instance, the value (SD/√N) is called the

standard error of the mean.

The equation for the mean error for each observation i and total number of observations

N is:

1

.
1

N

i

i

x x
N 

  (2.10)

Where ()i i ix Actual Effort Predicted Effort 

The equation of the standard deviation can be seen as:

2

1

1
 () .

1

N

i

i

SD x x
N 

 

 (2.11)

 MAE: The Mean Absolute Error (MAE) is the average of the absolute errors

between the actual and the predicted effort as shown in Equation (2.12).

1

1
| | .

N

a p

i

MAE E E
N 

  (2.12)

 Where Ea is the actual effort and Ep is the predicted effort.

2.4 Literature Review

Software estimation can be affected by several parameters [10] . These parameters

include:

30

 Size: The effort and cost of a software project depends on the size of the project.

The larger the size is, the higher effort and cost will be needed. Software size

estimation will first be performed if the size of the project is unknown upon

conducting effort estimation. The size of a project can be measured in Source

Lines of Codes (SLOC) or Function Points (FP).

 Category: The category of a project is important in software estimation. Examples

of project categories include Development, Maintenance, Migration, etc.

 Personnel Attributes: The experience and the productivity of a team affect

software estimation.

 Domain: The domain of the project might affect software estimation. The effort to

build a human resources management system is different from the effort needed to

develop an accounting and stock management system. Examples of domain

categories include finance, insurance, retail and manufacturing.

 Complexity: the complexity of a project plays an important role in software

estimation. Examples of complexity include mission-critical (will the application

be used in a healthcare system to monitor the heartbeats and the blood pressure of

a person?), architecture (is the architecture 2 tiers, 3 tiers or multi-tiers?) and

Service Level Agreement (will there be a strict SLA that should be met?).

There are several models for software effort and cost estimation. These include

algorithmic models, expert judgement models, estimation by analogy models and soft

computing models.

31

2.4.1 Algorithmic Models

This is still the most popular category in the literature [11]. These models include

COCOMO [12], SLIM [13], Function Point, Use Case Points [20] and SEER-SEM [14].

The main cost driver of these models is the software size. In COCOMO and SLIM

models, the size is measured in Source Lines of Code (SLOC). However, the function

point and the use case point models take software size in function points (FP) and use

case points (UCP) respectively. Algorithmic models either use a linear regression

equation, the one used by Kok et al. [15] or non-linear regression equations, those which

are used by Boehm [12].

2.4.1.1 COCOMO

The COnstructive COst MOdel (COCOMO) is an algorithmic model used to predict

software cost. It was developed by Barry Boehm in 1981 [12], and it was known as

COCOMO 81. COCOMO uses a simple regression formula. The model’s parameters are

derived from historical projects and current project characteristics. There are three main

types of COCOMO 81. These include Basic COCOMO, Intermediate COCOMO and

Detailed COCOMO. The Basic COCOMO equations are as follow:

.bEffort a Size  (2.13)

Where Effort is measured in person-months and Size is measured in KSLOC. The

constants ―a‖ and ―b‖ are determined based on the project type as seen in Table (2.1).

Equation (2.14) is used to calculate the time required to develop the project.

32

_ .dDevelopment Time c Effort  (2.14)

Where Development_Time is measured in months. The constants ―c‖ and ―d‖ are also

shown in Table (2.1). Equation (2.15) shows the number of people required for the

project development.

_ Re .
_

Effort
People quired

Development Time
 (2.15)

The constants ―a‖, ―b‖, ―c‖ and ―d‖ are determined based on three categories of projects

which are Organic, Semi-detached and Embedded as shown in Table (2-1). Organic

projects are projects where small teams with good experience are working with non-strict

requirements. Projects are classified as Semi-detached when medium teams with mixed

experience are working with requirements which are mixed between strict and non-strict.

Embedded projects are those that have tight constraints.

Intermediate COCOMO is an advanced model of the Basic COCOMO where software

effort is a function of software size and 15 other cost-driver attributes. These attributes

represent the non-functional requirements of the project. Each attribute has a rate on a

six-point scale ranging from ―very low‖ to ―extra high‖.

Detailed COCOMO incorporates the characteristics of the Intermediate COCOMO with

an assessment of the cost drivers according to each phase of the software life cycle.

33

Table ‎2-1 Software project types [12]

Software Project a b c D

Organic 2.4 1.05 2.5 0.38

Semi-detached 3.0 1.12 2.5 0.35

Embedded 3.6 1.20 2.5 0.32

Boehm introduced COCOMO II model [16] which is an advanced model of COCOMO

81. COCOMO II is more suitable for estimating modern software development projects.

The main differences between COCOMO II and COCOMO’81 can be summarized as:

 COCOMO II takes into account requirements volatility.

 Estimation is adjusted for software reuse and re-engineering when automated

tools are used.

 Cost drivers were updated.

 COCOMO II has more data points (161 data points as opposed to 63 in

COCOMO’81.

 COCOMO II uses logical SLOC where COCOMO’81 uses physical SLOC. One

logical SLOC (if-then-else) might contain several physical SLOC.

2.4.1.2 SLIM

The Software LIfecycle Management (SLIM) model, which is also known as the Putnam

model was developed by Lawrence Putnam in 1978 [13]. The SLIM describes the effort

and time required to finish a project of a certain size. The time-effort curve of Putnam

34

follows the Rayleigh distribution as shown in Figure (2-5). The effort required to develop

a project is as follows:

3

4/3
.

Pr

Size
Effort B

oductivity Time

 
  

 
 (2.16)

Where Effort is measured in person-years and Size in SLOC. Productivity is the process

productivity which is the ability of a software organization to develop software of a given

size at a certain defect rate. Time is measured in years where B is a scaling factor and it is

a function of project size.

Figure ‎2-5 Putnam’s time-effort graph based on Rayleigh distribution [13]

35

2.4.1.3 Function Point Model

Function Points measure the functionality of software as opposed to SLOC which

measures the physical components of software. The function point method was proposed

by Allan Albrecht in 1979 [17] [18]. There are a few methods to count function points

but the standard method is the one that is maintained by the Function Points Analysis

(FPA) which is based on the International Function Point Users Group (IFPUG) [19].

FPA defines five parameters that the size of software depends on. These parameters

include inputs, outputs, inquiries, internal files and external interfaces. It is clear that

these parameters are touchable by the end user. Figure (2-6) shows the function points

parameters within an application [18]. These parameters are discussed as the following:

 Inputs: These are inputs from the user to the application. For example, create,

delete, update and read are considered as inputs.

 Outputs: This is an output of a certain process in the application. For example a

financial report in an organization. The financial report is considered as an output

if it is printed, or stored in a database or external media storage, or even if it is just

displayed on the screen.

 Inquiries: These are queries executed by the user to fetch some data stored in the

database. The output of an inquiry is similar to the output discussed above, except

that business information is not processed in this case. Information is sorted or

rearranged based on the query issued by the user.

36

 Internal files: These files store all the data of the application. Internal files belong

to the application and are maintained by the application owner or the

administrator.

 Interfaces: This is the interface of external applications by which transactions can

be made to the main application. The function point model defines interface as

files that belong to external applications and are supported by those applications,

however these files contribute to the size of the main application. For example,

the main application might request a file that contains important information and

this file is maintained and updated by other applications.

Users

Internal

Logical Files

Measured

Application

External

Interface

Files

Application Boundary

Other

Applications

Internal

Logical Files

External

Inputs

External

Outputs

External

Inquiries

External

Inputs

External

Outputs

External

Inquiries

Figure ‎2-6 High level view of the function point model

2.4.1.4 Use Case Point Model

The Use Case Point (UCP) model [20] is based on mapping a use case diagram to a size

metric called use-case points. A use case diagram shows how users interact with the

system. A use case diagram is composed of use cases and actors. Use cases represent the

37

functional requirements where an actor is a role played by a user. Figure (1-2) is an

example of a use case diagram. Each use case is represented by a use case scenario

(description). The use case scenario (description) is mainly composed of a Success

scenario and an Extension (Alternative) scenario as shown in Table (2-2).

The use case point model was first described by Gustav Karner in 1993 [20]. This model

is used for software cost estimation based on the use case diagrams. First, the software

size is calculated according to the number of actors and use cases in a use case diagram

multiplied by their complexity weights. The complexity weights of use cases and actors

are presented in tables (2-3) and (2-4) respectively.

As shown in Table (2-3), the complexity of a use case is determined by the number of its

transactions as shown in the use case description of each use case. The software size is

calculated through two stages. These include the Unadjusted Use Case Points (UUCP)

and the Adjusted Use Case Points (UCP). UUCP is achieved through the summation of

the Unadjusted Use Case Weight (UUCW) and Unadjusted Actor Weight (UAW).

UUCW is represented in Equation (2.17).

38

Table ‎2-2 Use case scenario (description)

Use Case Title: Student Enrolls in a Course

Actors: Student, Admin

Precondition: The student is not enrolled in a course

Main Success Scenario (Main Flow):

1. The student chooses the course he or she wishes to enroll in

2. The student enrolls in the course

Extensions (Alternative)

2a: The student does not have permission (e.g. the student has not paid the tuition)

 2a1: Notify the student to contact the administrator

2b: The deadline has passed

 2b1: An Error message will be displayed

2c: The prerequisite of the course is not fulfilled

2c1: The student is advised to contact the professor to obtain permission

2d: Two courses have the same schedule

 2d1: The student is advised to choose either one

2e: The number of the enrolled courses has been exceeded

 2e1: An error message will be displayed

2f: The course is full

 2f1: An error message will be displayed

Post condition: The student has enrolled in a course

Table ‎2-3 Complexity weights of use cases [20]

Use Case

Complexity

Number of Transactions Weight

Simple Less than 4 (should be realized by

less than 5 classes)

5

Average Between 4 and 7 (should be realized

between 5 and 10 classes)

10

Complex More than 7 (should be realized by

more than 10 classes)

15

Table ‎2-4 Complexity weights of actors [20]

Actor Complexity Description Weight

Simple Through an API 1

Average Through a text-based user interface 2

Complex Through a Graphical User Interface 3

39

3

1

 .i i

i

UUCW n W


 (2.17)

where ni is the number of items of variety i of the use cases and Wi is the complexity

weight of the corresponding use case. Similarly, UAW is represented as follows:

3

1

 .j j

j

UAW m C


 (2.18)

where mj is the number of items of variety j of the actors and Cj is the complexity weight

of the corresponding actor. Consequently, UUCP can be defined as follows:

 UUCP UUCW UAW  (2.19)

After calculating the UUCP, the Adjusted Use Case Points (UCP) is calculated. UCP is

achieved by multiplying UUCP by the Technical Factors (TF) and the Environmental

Factors (EF). TF and EF represent the non-functional requirements of the software. TF

contributes to the complexity of the project while EF contributes to the team efficiency

and productivity. The technical and environmental factors are depicted in tables (2-5) and

(2-6) respectively. The technical factor is detailed as follows:

13

1

0.6 0 ..01 i i

i

TF T W


   (2.20)

where iT is a factor that takes values between 0 and 5. The value ―0‖ indicates that the

factor is unrelated while the value ―5‖ indicates that the factor is indispensable. The value

―3‖ specifies that the technical factor is not very important, nor irrelevant (average). For

instance, if all of the factors have a value of ―3‖, the technical factor (TF) will be 1. Wi

represents the weight of technical factors (Table 2-5).

40

On the other hand, the environmental factor (EF) can be described as follows:

8

1

1.4 0.03 .i i

i

EF E W


   (2.21)

where iE is the Environmental Factor (which is similar to iT in Equation 2.20), taking

values between 0 and 5. Finally, the Adjusted Use Case Points (UCP) can be defined as

follows:

.UCP UUCP TF EF   (2.22)

By incorporating TF and EF, the value of UCP will be more or less than the value of

UUCP by 30%. For effort estimation, Karner proposed 20 person-hours to develop each

UCP. This is expressed in Equation (2.23):

20.Effort Size  (2.23)

where Effort is measured in person-hours and Size is measured in UCP.

41

Table ‎2-5 Technical factors

Ti Complexity Factors Wi

T1 Easy installation 0.5

T2 Portability 2

T3 End user efficiency 1

T4 Reusability 1

T5 Complex internal processing 1

T6 Special security features 1

T7 Usability 0.5

T8 Application performance

objectives

1

T9 Special user training facilities

1

T10 Concurrency 1

T11 Distributed systems 2

T12 Provide direct access for third

parties

1

T13 Changeability 1

Table ‎2-6 Environmental factors

Ei Efficiency and Productivity Factors Wi

E1 Familiar with Objectory 1.5

E2 Object oriented experience 1

E3 Analyst capability 0.5

E4 Stable requirements 2

E5 Application experience 0.5

E6 Motivation 1

E7 Part-time workers -1

E8 Difficult programming language -1

There are several limitations regarding the UCP model. These include:

 The complexity of a use case is based on the number of transactions in the use

case scenario. A complex use case is defined when the number of transactions is

42

more than seven. In the industry, some use cases might contain more than twenty

transactions. According to the UCP, a use case with eight transactions has the

same complexity rate as the one of twenty transactions. However, the effort

required to build a use case of twenty transactions is more.

 The UCP assumes that the effort required to develop the Main Success Scenario

of a use case is the same as the Extensions, if both the Success scenario and the

Extensions have the same number of transactions. In fact, the effort required to

develop the Main Success Scenario should be more because it is the core of the

use case scenario.

 In the UCP model, NFR can increase software effort by 30%. However,

According to IBM, the NFR might increase the software effort of a software

project by 100% [21].

 The UCP ignores the Include and Extend use cases in the use case diagram.

However, developing these types of use cases require effort and thus, they should

not be ignored when calculating software effort.

 The equation used to calculate software effort is a simple linear regression, which

is the multiplication of software size by twenty. Here, there are two main

concerns. First, this equation is applied on any software size. Our experiments

show that a software equation used with large projects should be different from

the one used with small projects. Secondly, this equation assumes that the

relationship between software size and effort is linear. Longstreet [22] stated that

when estimation is based on the Function Points method, the effort required to

43

develop one Function Point is between 0.5 and 5 hours for small projects (less

than 100 function points) and between 20 to 60 hours for large projects (greater

than 7,000 function points). The UCP is similar to the Function Point model in the

way that both methods can be applied in the Requirements stage of the software

life cycle and both are independent of the programming language and the

topology used to develop the project. We believe that this non-linearity between

software effort and size in the Function Point model is valid as well as in the

UCP. For instance, if the effort required in building a software project of size 250

UCP is 5,000 person-hours, the effort needed to build the same project type of

size 500 UCP would be more than 10,000 person-hours. This is because the larger

the project is, the larger the team required to build this project [23]. When the

number of the team members increases, the number of the communication paths

among this team will dramatically increase as shown in Equation (2.24) [24], and

consequently, this requires more effort for the team communication and project

management.

(1)
_ .

2

N N
Communication Paths


 (2.24)

Where ―N‖ is the number of people in the team.

Although many related work tried to address some of the limitations of the UCP model,

many issues still exit and these issues are tackled by our model.

44

2.4.2 Expert Judgement

Expert judgement involves consulting a group of experts to use their experiences to

propose an estimation of a given project [25]. The Delphi technique is used to provide

communication and cooperation among the experts. The Delphi technique is summarized

as follows [26]:

1. A coordinator provides each expert with a project’s specifications and a form to

be filled.

2. The coordinator calls for a group meeting with the experts to discuss any issues.

3. The experts will anonymously fill the forms.

4. The coordinator receives the forms and prepares a summary for the estimation.

5. The coordinator calls for a meeting to discuss with the experts the proposed

estimation values, and especially when these values vary dramatically among

experts.

6. The experts fill the estimation forms again. Steps 4 to 6 are repeated until a

satisfaction has been reached.

The main advantage of this method is that the final estimation report can be reached in a

reasonable period. Moreover, this method is relatively inexpensive and can be accurate in

comparison with other models especially, when the experts have a solid knowledge of the

problem domain of the proposed project.

45

The main limitation of the expert judgement model is that this method is very subjective

and it lacks standardizations and thus, cannot be reusable. Another drawback of this

method is the lack of analytical argumentation because of the frequent use of phrases

such as ―I believe that …‖ or ―I feel that …‖ [27].

2.4.3 Estimation by Analogy

Estimation by analogy is a method in which the proposed project is compared to similar

historical projects where all required information about the historical projects is

documented. Estimation by analogy is actually a systematic form of expert judgement

since experts look for analogies. The main steps to conduct analogy by estimation

include:

1. The characteristics of the proposed project are identified.

2. Similar completed projects are selected.

3. Estimation of the proposed project is conducted.

The main advantage of this method is that estimators are using their expertise to estimate

new projects based on actual completed projects. Furthermore, this method is relatively

fast and reliable.

The main disadvantage of estimation by analogy is that companies are required to

maintain a well-designed knowledge repository. Moreover, companies should have a

good number of historical projects; however, this method cannot be applied in new

companies.

46

2.4.4 Soft Computing Models

Soft computing models include neural network models, fuzzy logic models, genetic

algorithm models and hybrid models such as, neuro-fuzzy and neuro-genetic models.

These models can be applied in two main situations. First, these models can be applied as

standalone models that take several inputs such as software size and productivity, then

provide an output such as software effort. These models can be trained using historical

projects. Another usage of these models is that they can be used to calibrate some

parameters or weights of algorithmic models such as COCOMO parameters and function

point model weights. Soft computing models can also be used with estimation by analogy

to increase the accuracy of estimation.

2.5 Related Work

In addition to the above literature in software estimation, some related work for software

estimation is listed as follows:

Periyasamy et al. [28] extended the UCP model by classifying actors into seven groups.

The weight proposed for actors varies between 0.5 and 3.5. Moreover, the authors

proposed four types of use cases and assigned new weights for each use case. The weight

of a use case is determined based on the number of associations between actors and the

use case. The authors also proposed a new method to calculate software size from use

cases; however, the authors have not evaluated their method against any related models.

47

Wang et al. [29] extended the UCP model by constructing a probabilistic cost model by

integrating a fuzzy set theory with Bayesian Belief Networks with the UCP model. The

proposed method was evaluated using two financial projects of efforts 3,016 and 4,459

person-hours respectively. These projects are located in China and developed using Java

programming language. The evaluation of the extended UCP shows slim improvement in

comparison with the original UCP.

Schneider et al. [30] mentioned that when calculating software effort, instead of

multiplying the size by 20 (as the original UCP model), Environmental factors should be

evaluated because these factors contribute to the efficiency of the team developing the

project. If the efficiency is fair, then 20 person-hours per UCP should be used. If the

efficiency is low, then 28 person-hours per UCP should be used. If the efficiency is very

low, then the project team should be reconstructed because very low efficiency indicates

that the project is at significant risk of failure with this team. Another approach can be

considered when the efficiency is very low by taking 36 person-hours for 1 UCP. The

main limitation of Schneider’s approach is that the effort required to develop one UCP is

either 20, 28 or 36 person-hours.

Azzeh et al. [31] and [32] proposed two models for software effort estimation. The first

one is an estimation- by-analogy model based on the integration of fuzzy set theory with

grey relational analysis and fuzzy numbers. However, the second model is based on

analogy estimation with fuzzy numbers and can be used in the early stages of the

software life cycle. Both models were evaluated using five different datasets such as

48

International Software Benchmarking Standards Group (ISBSG), Desharnais, Kemerer,

Albrecht & Gaffney and COCOMO 81. MMRE, MdMRE, MMER and PRED(25) were

used as evaluation criteria. Results proved that the proposed models are competitive

when compared with other models such as case-based reasoning, multiple linear

regression, stepwise regression and artificial neural networks.

Pendharkar et al. [33] developed a Bayesian network to predict software development

effort. The proposed model can incorporate decision making risks. The model was

evaluated using 33 industrial projects and was compared with other neural network and

regression tree forecasting models. The authors proved that their model can be a

competitive model for software effort prediction based on the absolute error criterion.

Jiang et al. [34] and Xia et al. [35] built linear regression models with a logarithmic

transformation based on function points using ISBSG data. Xia et al. used the regression

model as an activation function in a neural network to calibrate the weights in the

function point model. However, Jiang et al. used the regression model to study the effect

of software size on development effort and software quality. The main concern of these

models is that they ignore the influence of the non-functional requirements on estimation.

Park et al. [36] proposed a neural network for software effort estimation. This model

takes six inputs and the accuracy of the proposed model was compared with the accuracy

of human expert judgments and two traditional regression models. The evaluation was

conducted on 148 IT projects and results proved that the proposed neural network gives

49

better results than existing regression models based on the magnitude of relative error

(MRE).

Idri et al. [37] proposed two Radial Basis Neural Network model for software effort

estimation. Each of the RBFNN models uses different formula to calculate the width of

the RBF functions. The model was trained using COCOMO 81 and Tukutuku datasets

and evaluated based on MMRE and PRED criteria.

Idri et al. [38] investigates the use of the RBFNN models in software estimation and

especially the role of the hidden layer. In their paper, the authors use two clustering

techniques; the C-means and the APC-III. A comparison between these techniques was

conducted using COCOMO 81 and Tukutuku datasets.

Reddy et al. [39] proposed a RBFNN model for software effort estimation. The model

was trained based on the k-mean clustering algorithm and was evaluated using the

COCOMO 81 dataset.

Shin et al. [40] presented an objective modeling methodology to determine the RBFNN

model parameters using their SG algorithm. The model was then used to predict software

effort using the NASA dataset.

Heiat [41] compared a neural network model with regression models. The evaluation was

conducted on 67 projects from three different sources. The author concluded that the

neural network model was competitive to regression models when third generation

language was used. However, regression models gave better results when combinations

50

of third and fourth generation language projects were used. The evaluation criterion used

was the mean absolute percentage error (MAPE).

Tan et al. [42] proposed a new LOC estimation method for information systems based on

their conceptual data models through a multiple linear regression model. The authors

evaluated their work using open source and industrial projects.

Anvik et al. [43] used machine learning techniques to create recommenders to triage bug

reports that can be useful to streamline the development process.

Lopez-Martin [44], [45], [46] and [47] created regression models from short scale

programs and from ISBSG repository. The author also developed fuzzy logic and neural

network models such as Feed-Forward and General Regression Neural Networks. The

authors proved that these models can be used as alternatives to regression models to

predict software effort. The evaluation criteria used were the Mean of the Magnitude of

Relative Error (MMRE) and the Mean of Magnitude of error Relative to the Estimate

(MMER).

Shepperd and Schofield [48] proposed a software estimation model using analogy. The

model was evaluated based on 275 projects from nine different industrial datasets. The

authors argue that estimation model based on analogy surpasses other algorithmic models

based upon stepwise regression.

Jørgensen et al. [49] applied regression toward the mean (RTM) method with analogy for

software effort estimation. The proposed model was evaluated based on 5 different

51

datasets. The authors argued that the accuracy of software effort estimation using analogy

would be improved when using RTM.

Other machine learning models exist and are used to improve the accuracy of software

estimation. Examples of these models include [50], [51], [52], [53], [54], [55] and [56].

None of the above work developed neural network models to predict software effort from

use case diagrams. Furthermore, none has thoroughly investigated the non-linear

relationship between software size and effort the way it is addressed in this thesis.

52

References

[1] L. A. Zadeh, "Fuzzy sets," Information and Control, vol. 8, pp. 338-353, 1965.

[2] R. P. Lippman, "An Introduction to Computing with Neural Nets," IEEE ASSP

Magazine, vol. 3, no.2, pp. 4-22, 1987.

[3] O. C. Celebi, "Tutorial: Neural Networks and Pattern Recognition Using MATLAB,"

2011.

[4] M. F. Møller, "A scaled conjugate gradient algorithm for fast supervised learning,"

Neural Networks, vol. 6, pp. 525-533, 1993.

[5] D. S. Broomhead and D. Lowe, "Multivariable Functional Interpolation and Adaptive

Networks," Complex Systems, vol. 2, pp. 321-355, 1988.

[6] Chien-Cheng Lee, Pau-Choo Chung, Jea-Rong Tsai and Chein-I Chang, "Robust

radial basis function neural networks," Systems, Man, and Cybernetics, Part B:

Cybernetics, IEEE Transactions on, vol. 29, pp. 674-685, 1999.

[7] D. F. Specht, "A general regression neural network," Neural Networks, IEEE

Transactions on, vol. 2, pp. 568-576, 1991.

53

[8] L. C. Briand, K. E. Emam, D. Surmann, I. Wieczorek and K. D. Maxwell, "An

assessment and comparison of common software cost estimation modeling techniques,"

in International Conference on Software Engineering, 1999, pp. 313-322.

[9] B. A. Kitchenham, L. M. Pickard, S. G. MacDonell and M. J. Shepperd, "What

Accuracy Statistics Really Measure," IEE Proc. -Softw, vol. 148, no. 3, pp. 81-85, June,

2001.

[10] M. A. Parthasarathy, Practical Software Estimation: Function Point Methods for

Insourced and Outsourced Projects. Upper Saddle River, NJ: Addison-Wesley, 2007.

[11] L. C. Briand and I. Wieczorek, "Resource Estimation in Software Engineering,"

Encyclopedia of Software Engineering, vol. 2, pp. 1160-1196, 2002.

[12] B. W. Boehm, Software Engineering Economics. Prentice-Hall, 1981.

[13] L. H. Putnam, "A General Empirical Solution to the Macro Software Sizing and

Estimating Problem," IEEE Transactions on Software Engineering, vol. SE-4, pp. 345-

361, 1978.

[14] D. D. Galorath and M. W. Evans, Software Sizing, Estimation, and Risk

Management. Boston, MA, USA: Auerbach Publications, 2006.

[15] P. Kok, B. A. Kitchenham and J. Kirakowski, "The MERMAID approach to

software cost estimation," in Esprit Technical Week, 1990.

54

[16] B. Boehm, C. Abts, W. Brown and S. Chulani, Software Cost Estimation with

COCOMO II. Upper Saddle River, New Jersey: Addison Wesley, 2000.

[17] A. Albrecht, "Measuring application development productivity," in IBM Application

Development Symp. 1979, pp. 83-92.

[18] A. J. Albrecht and J. E. Gaffney Jr., "Software Function, Source Lines of Code, and

Development Effort Prediction: A Software Science Validation," IEEE Transactions on

Software Engineering, vol. SE-9, pp. 639-648, 1983.

[19] IFPUG. IFPUG counting practices manual. 1986 [Online]. Available:

www.ifpug.org.

[20] G. Karner, "Resource Estimation for Objectory Projects," Objective Systems, 1993.

[21] Y. Ossia. IBM haifa research lab. IBM Haifa Research Lab [Online]. 2011.

Available: https://www.research.ibm.com/haifa/projects/software/nfr/index.html.

[22] D. Longstreet, "Estimating Software Effort," Software Metrics, 2008.

[23] P. C. Pendharkar and J. A. Rodger, "The relationship between software development

team size and software development cost," Commun ACM, vol. 52, pp. 141-144, January,

2009.

[24] P. Kuthiala. PMBOK – PMP project management. JustPM Blog [Online]. 2009.

Available: http://www.justpmblog.com/2009/03/05/pmp-project-management-2/.

55

[25] R. T. Hughes, "Expert judgement as an estimating method," Information and

Software Technology, vol. 38, pp. 67-75, 1996.

[26] N. Dalkey and O. Helmer, "An Experimental Application of the Delphi Method to

the Use of Experts," Management Science, vol. 9, pp. pp. 458-467, 1963.

[27] M. Jørgensen, "Forecasting of software development work effort: Evidence on

expert judgement and formal models," International Journal of Forecasting, vol. 23, pp.

449-462, 2007.

[28] K. Periyasamy and A. Ghode, "Cost estimation using extended use case point (e-

UCP) model," in International Conference on Computational Intelligence and Software

Engineering, 2009.

[29] F. Wang, X. Yang, X. Zhu and L. Chen, "Extended use case points method for

software cost estimation," in International Conference on Computational Intelligence

and Software Engineering, 2009.

[30] G. Schneider and J. P. Winters, Applied use Cases, Second Edition, A Practical

Guide. Addison-Wesley, 2001.

[31] M. Azzeh, D. Neagu and P. Cowling, "Fuzzy grey relational analysis for software

effort estimation," Empirical Software Engineering, vol. 15, pp. 60-90, 2010.

56

[32] M. Azzeh, D. Neagu and P. I. Cowling, "Analogy-based software effort estimation

using Fuzzy numbers," Journal of Systems and Software, vol. 84, pp. 270-284, 2011.

[33] P. C. Pendharkar, G. H. Subramanian and J. A. Rodger, "A probabilistic model for

predicting software development effort," Software Engineering, IEEE Transactions on,

vol. 31, pp. 615-624, 2005.

[34] Z. Jiang, P. Naudé and B. Jiang, "The effects of software size on development effort

and software quality," International Journal of Computer and Information Science and

Engineering, vol. 1, pp. 230-234, 2007.

[35] W. Xia, L. F. Capretz, D. Ho and F. Ahmed, "A new calibration for Function Point

complexity weights," Information and Software Technology, vol. 50, pp. 670-683, 2008.

[36] H. Park and S. Baek, "An empirical validation of a neural network model for

software effort estimation," Expert Systems with Applications, vol. 35, pp. 929-937, 10,

2008.

[37] A. Idri, A. Zakrani and A. Zahi, "Design of Radial Basis Function Neural Networks

for Software Effort Estimation," International Journal of Computer Science Issues, vol.

7, pp. 11-17, 2010.

[38] A. Idri, A. Zahi, E. Mendes and A. Zakrani, "Software Cost Estimation Models

Using Radial Basis Function Neural Networks," Software Process and Product

Measurement, vol. 4895, pp. 21-31, 2008.

57

[39] C. S. Reddy, P. S. Rao, K. Raju and V. V. Kumari, "A New Approach For

Estimating Software Effort Using RBFN Network," International Journal of Computer

Science and Network Security, vol. 8, pp. 237-241, 2008.

[40] M. Shin and G. A.L., "Empirical data modeling in software engineering using radial

basis functions," Software Engineering, IEEE Transactions on, vol. 26, pp. 567-576,

2000.

[41] A. Heiat, "Comparison of artificial neural network and regression models for

estimating software development effort," Information and Software Technology, vol. 44,

pp. 911-922, 2002.

[42] H. B. K. Tan, Y. Zhao and H. Zhang, "Conceptual data model-based software size

estimation for information systems," ACM Transactions on Software Engineering and

Methodology, vol. 19, pp. 4:1-4:37, oct, 2009.

[43] J. Anvik and G. C. Murphy, "Reducing the effort of bug report triage:

Recommenders for development-oriented decisions," ACM Transactions on Software

Engineering and Methodology, vol. 20, pp. 10:1-10:35, aug, 2011.

[44] C. Lopez-Martin, "A fuzzy logic model for predicting the development effort of

short scale programs based upon two independent variables," Applied Soft Computing,

vol. 11, pp. 724-732, 1, 2011.

58

[45] C. Lopez-Martin, "Applying a general regression neural network for predicting

development effort of short-scale programs," Neural Computing & Applications, vol. 20,

pp. 389-401, 2011.

[46] C. Lopez-Martín, C. Yanez-Marquez and A. Gutierrez-Tornes, "Predictive accuracy

comparison of fuzzy models for software development effort of small programs," Journal

of Systems and Software, vol. 81, pp. 949-960, 2008.

[47] C. Lopez-Martin, C. Isaza and A. Chavoya, "Software development effort prediction

of industrial projects applying a general regression neural network," Empirical Software

Engineering, vol. 17, pp. 1-19, 2011.

[48] M. Shepperd and C. Schofield, "Estimating software project effort using analogies,"

Software Engineering, IEEE Transactions on, vol. 23, pp. 736-743, 1997.

[49] M. Jørgensen, U. Indahl and D. Sjøberg, "Software effort estimation by analogy and

―regression toward the mean‖," J. Syst. Software, vol. 68, pp. 253-262, 12/15, 2003.

[50] W. L. Du, D. Ho and L. F. Capretz, "Improving Software Effort Estimation Using

Neuro-Fuzzy Model with SEER-SEM," Global Journal of Computer Science and

Technology, vol. 10, pp. 52-64, 2010.

[51] Y. Li, M. Xie and T. Goh, "Adaptive ridge regression system for software cost

estimating on multi-collinear datasets," Journal of Systems and Software, vol. 83, pp.

2332-2343, 2010.

59

[52] G. Kousiouris, T. Cucinotta and T. Varvarigou, "The effects of scheduling, workload

type and consolidation scenarios on virtual machine performance and their prediction

through optimized artificial neural networks," Journal of Systems and Software, vol. 84,

pp. 1270-1291, 2011.

[53] X. Huang, D. Ho, J. Ren and L. F. Capretz, "Improving the COCOMO model using

a neuro-fuzzy approach," Appl. Soft Comput., vol. 7, no. 1, pp. 29-40, 2007.

[54] A. Mittal, K. Parkash and H. Mittal, "Software cost estimation using fuzzy logic,"

SIGSOFT Softw. Eng. Notes, vol. 35, no. 1, pp. 1-7, 2010.

[55] I. Attarzadeh and S. H. Ow, "Software Development Cost and Time Forecasting

Using a High Performance Artificial Neural Network Model," Intelligent Computing and

Information Science, vol. 134, pp. 18-26, 2011.

[56] I. Attarzadeh and S. H. Ow, "Improving the accuracy of software cost estimation

model based on a new fuzzy logic model," World Applied Sciences Journal, vol. 8, pp.

177-184, 2010.

Equation Chapter (Next) Section 1

60

Chapter 3

3. MLP and Linear Regression Models2

3.1 Introduction

This chapter presents our preliminary research in creating a linear regression with a

logarithmic transformation model, as well as a Multilayer Perceptron (MLP) neural

network. In this chapter, we introduce two main factors that contribute to software effort

estimation which include software size and team productivity. Software size is estimated

using the method proposed by the use case point (UCP) (section 2.4.1.4). Team

productivity is calculated based on the Environmental Factors (EF) (Table 2-6) proposed

2 Part of this chapter was published in the 2011 International Conference on Computer and Software

Modeling, in the 23rd IEEE International Conference on Tools with Artificial Intelligence and in the 2011

IEEE International Conference on Intelligent Computing and Intelligent Systems. An extended version of

these papers has been submitted to the Journal of Systems and Software (Elsevier).

1. Ali Bou Nassif, Danny Ho and Luiz Fernando Capretz: Regression Model for Software Effort

Estimation Based on the Use Case Point Model, 2011 International Conference on Computer and

Software Modeling (ICCSM 2011), September 2011, Singapore (Published).

2. Ali Bou Nassif, Luiz Fernando Capretz, Danny Ho, "Estimating Software Effort Based on Use

Case Point Model Using Sugeno Fuzzy Inference System," ictai, pp.393-398, 2011 IEEE 23rd

International Conference on Tools with Artificial Intelligence, Boca Raton, Florida, USA, 2011

(Published).

3. Ali Bou Nassif, Luiz Fernando Capretz, Danny Ho, ― A Regression Model with Mamdani Fuzzy

Inference System for Early Software Effort Estimation Based on Use Case Diagrams,‖ icis,

pp.615-620, 2011 IEEE International Conference on Intelligent Computing and Intelligent
Systems, Guangzhou, Guangdong, China, 2011 (Published).

4. Ali Bou Nassif, Danny Ho and Luiz Fernando Capretz, ―Towards an Early Software Estimation

Using Log-Linear Regression and a Multilayer Perceptron Model‖, Journal of Systems and

Software (Elsevier), 2012 (Under Review).

61

by the UCP model. The MLP model takes nine inputs which include software size and

the eight environmental factors.

Section 3.2 proposes the linear regression model with fuzzy logic as well as the MLP

approach. Section 3.3 demonstrates an assessment of the proposed models and provides

some discussion about the results. Section 3.4 lists some threats to validity. Finally,

Section 3.5 concludes the chapter.

3.2 Research‎Methodology‎and‎Models’‎Evaluation‎

This section presents the proposed regression model, the calibration of this model using

fuzzy logic and the proposed neural network model. Moreover, evaluations of these

models are demonstrated.

3.2.1 Regression Model

Equation (2.23) shows how software effort is calculated from software size based on the

original Use Case Point (UCP) model. There are two main shortcomings of this equation.

First, the relationship between software effort and size is linear and this assumption does

not reflect the actual situation in the software industry. Longstreet [1] stated that when

estimation is based on the Function Points method, the effort required to develop one

Function Point is between 0.5 and 5 hours for small projects (less than 100 function

points) and between 20 to 60 hours for large projects (greater than 7,000 function points).

The UCP is similar to the Function Point model in the way that both methods can be

applied in the Requirements stage of the software life cycle and both are independent of

the programming language and the topology used to develop the project. We believe that

62

this non-linearity between software effort and size in the Function Point model is valid as

well as in the UCP. McConnell [2] states that ―People naturally assume that a system that

is 10 times as large as another system will require something like 10 times as much effort

to build. But the effort for a 1,000,000 LOC system is more than 10 times as large as the

effort for a 100,000 LOC system. Using software industry productivity averages, the

10,000 LOC system would require 13.5 staff months. If effort increased linearly, a

100,000 LOC system would require 135 staff months. But it actually requires 170 staff

months‖. This shows that when software size increases, software effort would increase

but with a non-linear relationship. The second shortcoming is that this equation does not

take into consideration the productivity of the team that is developing the software. In the

proposed model, a novel regression analysis is applied to generate a new equation to

calculate software effort. The new equation takes into account the non-linear relationship

between software effort and size as well as the productivity factor of the team.

Furthermore, the value of the productivity factor is proposed using a multiple linear

regression model of two independent variables.

The general equation of software effort can be represented as [3]:

.
Complexity

Effort Size
Productivity

  (3.1)

where Complexity is the complexity factor of a project and Productivity is the

productivity factor of the team that is developing this project. To find the non-linear

relationship between software size and software effort, regression analysis was applied on

125 educational and industrial projects (see Appendix C) that have similar projects

63

complexity and team productivity. Thus, at this point, complexity and productivity

factors are ignored and software effort is a function of software size only. Questionnaire I

(Appendix A) was used to collect data. To obtain accurate results in regression analysis,

data should be normally distributed [4]. If data were normally distributed, the regression

equation would be:

.Effort a Size b   (3.2)

where a and b are constants.

Several experiments were conducted using Minitab version 16 to determine how data

were distributed. The histograms of software size (Figure 3-1) and software effort (Figure

3-2) show that data are not normally distributed. Generating regression models from data

based on Figures (3-1) and (3-2) is possible but this will lead to poor results. For this

reason, data were normalized using logarithmic transformation. After normalization, data

(ln size and ln effort) became normally distributed (Figures 3-3 and 3-4). The regression

equation after logarithmic transformation is:

ln() ln() .Effort c Size d   (3.3)

Where c and d are constants. Equation (3.3) can be rewritten as:

64

33628824019214496480

50

40

30

20

10

0

size (ucp)

Fr
e

q
u

e
n

c
y

Histogram of size (ucp)

Figure ‎3-1 Histogram of size

84007200600048003600240012000

60

50

40

30

20

10

0

Effort (person-hour)

Fr
e

q
u

e
n

c
y

Histogram of Effort (person-hour)

Figure ‎3-2 Histogram of effort

65

5.65.24.84.44.03.63.22.8

20

15

10

5

0

ln(size)

Fr
e

q
u

e
n

c
y

Mean 3.964

StDev 0.4766

N 125

Histogram of ln(size)
Normal

Figure ‎3-3 Histogram of ln(Size)

9.08.47.87.26.66.05.4

25

20

15

10

5

0

ln(Effort)

Fr
e

q
u

e
n

c
y

Mean 6.748

StDev 0.5670

N 125

Histogram of ln(Effort)
Normal

Figure ‎3-4 Histogram of ln(Effort)

() .BEffort A Size  (3.4)

66

Using Minitab, the values of A and B are 8.16 and 1.17 respectively. The proposed

regression equation is:

1.178.16 () .Effort Size  (3.5)

Where Size is the software size in UCP and Effort is the software effort in person-hours.

For instance, Equation (3.5) shows the non-linear relationship between Effort and Size

and ignores the Complexity and Productivity factors. The main equation of software

effort is expressed in Equation (3.6).

Figure (3-5) shows the relationship between software size and effort based on the original

UCP model (Equation 2.23) and the proposed regression model (Equation 3.5). The

straight line (blue line) represents Karner’s model (original UCP model) and the dotted

line represents the proposed regression model. This comparison shows that the non-linear

relationship is not significant for small projects (less than 200 UCP). On the other hand,

the non-linear relationship stands out for mid-size and large projects. The proposed

regression model also shows that when software size becomes larger and larger, software

effort is exponentially increasing. For instance, when software size is 1,000 UCP,

software effort based on the regression model is larger than the software effort based on

the original UCP model by 30%. For instance, Figure (3-5) answers the sixth research

question raised in Section 1.2.

67

Figure ‎3-5 Comparison between software size and software effort

It is very important to test and validate the proposed regression equation (Equation 3.5)

because this equation will be the core of the regression model (Equation 3.6 shows the

main regression equation of the model). To thoroughly validate this equation, several

techniques were used. These include the probability plot (aka Q-Q plot), the coefficient

of determination R
2
, Spearman and Pearson coefficients, Analysis of Variance (ANOVA)

and the model’s parameters. The probability plot (Q-Q plot) compares two probability

distributions by plotting their quantiles against each other. It shows if the relationship

between these two distributions is linear or not. Since the regression analysis was applied

after the logarithmic transformation, the Q-Q graphs of normalized size and normalized

effort were performed as shown in Figures (3-6) and (3-7) respectively. The figures

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3
x 10

4

size

E
ff

o
rt

68

show that 95% of normalized data (size and effort) are linearly distributed and thus, the

regression equation (Equation 3.5) is valid.

Another method was applied to measure the accuracy of the regression equation

(Equation 3.5). For this purpose, the value of the coefficient of determination R
2

was

measured. R
2
 is the percentage of variation in Effort explained by the variable Size. An

acceptable value of R
2

is ≥ 0.5 [5]. The value R
2
 reported for the regression model in

Equation (3.5) is 0.972. Approximately 97 % of the variation in Effort can be explained

by the variable Size. This shows a strong relation between Size and Effort.

Figure ‎3-6 Q-Q plot for normalized size

65432

99.9

99

95

90

80

70
60
50
40
30

20

10

5

1

0.1

ln(size)

P
e
rc

e
n
t

Mean 3.964

StDev 0.4766

N 125

AD 4.193

P-Value <0.005

Probability Plot of ln(size)
Normal - 95% CI

69

Figure ‎3-7 Q-Q plot for normalized effort

To thoroughly test the regression model, Spearman [6] and Pearson [7] coefficients were

determined to measure the correlation strength between the Effort and Size. The

coefficients range of both Spearman and Pearson is between [-1, 1]. The value 0 means

that these two variables are not correlated. A positive value represents a positive

correlation. Larger coefficient values correspond to stronger correlations. On the contrast,

negative values mean negative correlations. In our experiments, the Spearman and

Pearson coefficients are 0.98 and 0.97 respectively. This shows that the two variables

Effort and Size have a strong positive relationship.

Table (3-1) depicts the ANOVA for the regression equation. From the ―p‖ value of

ANOVA, we notice that there is a significant relationship among the variables at the 99%

confidence level. For instance, DF, SS, MS, F and P correspond to Degrees of Freedom,

Sum of Squares, Mean Square, F Ratio and P Ratio respectively. However, Table (3-2)

shows the model’s parameters to determine if the model can be simplified. The highest

98765

99.9

99

95

90

80

70
60
50
40
30

20

10

5

1

0.1

ln(Effort)

P
e
rc

e
n
t

Mean 6.748

StDev 0.5670

N 125

AD 5.706

P-Value <0.005

Probability Plot of ln(Effort)
Normal - 95% CI

70

―p‖ value in Table (3-2) is 0.000. Since the ―p‖ value of each variable is less than 0.05,

all independent variables are significant at the 95% confidence level.

Based on the above experiments and results, the regression equation represents the non-

linear relationship between software size and effort with high percentage of accuracy. By

taking into consideration Equation (3.5), the main equation for software effort in the

proposed model can be expressed as follows:

1.17Pr _
8.16 () .

Pr

oject Complexity
Effort Size

oductivity
   (3.6)

The second step of the proposed model is to calculate the values of Project_complexity

and Productivity. Table (2-5) presents some technical factors that represent the

complexity of a project. We will assume that Karner’s technical factor TF can represent

the Project_Complexity factor during the estimation of UCP and consequently, the

Project_Complexity factor in Equation (3.6) can be ignored. The main effort equation

will become:

1.178.16
() .

Pr
Effort Size

oductivity
  (3.7)

Equation (3.7) shows that Effort is inversely proportional to productivity. For instance,

Equation (3.7) answers the second research question proposed in Section 1.2. With

respect to productivity, Table (2-6) lists some productivity attributes. In the original UCP

model, productivity factor is only included when estimating the adjusted UCP size.

Schneider et al. [8] included the productivity factor while calculating software effort as

discussed in Section 1.5. We believe that the productivity factor should be included in the

71

software effort equation. Based on Table (2-6), the highest productivity factor is achieved

when the value of the factors E1 to E6 is 5 and the value of the factors E7 and E8 is 0. If

we assume that prod_sum =
8

1

i i

i

E W


 , this implies that the value of prod_sum is 32.5.

On the other hand, the lowest productivity factor is achieved when the value of E1 to E6

is set to 0 and the value of E7 and E8 is set to 5. This implies that the value of prod_sum

is -10. In the proposed approach, the productivity factor in Equation (3.7) is determined

based on the value of prod_sum. To discover the influence of prod_sum on software

effort, a multiple linear regression equation was generated using Minitab version 16 with

two independent variables (Size and prod_sum) as shown in Equation (3.8).

409 (24.9) (52.8 _).Effort Size prod sum     (3.8)

This equation shows that when software size increases, software effort increases.

However, when the productivity of the team (prod_sum) increases, software effort

decreases. This interpretation makes sense in the software industry and it is compatible

with the influences of software size and team productivity proposed in Equation (3.7).

 The value of the coefficient of determination R
2
of Equation (3.8) is 0.861. This indicates

that approximately 86 % of the variation in Effort can be explained by the independent

variables size and prod_sum. Tables (3-3) and (3-4) show the ANOVA and model

parameters of Equation (3.8). ANOVA shows that there is a significant relationship

among the variables at the 99% confidence level. The model’s parameters show that the

least value of ―p‖ is 0.009 which is less than 0.05 that indicates that all independent

variables are significant at the 95% confidence level.

72

Table ‎3-1 ANOVA for Equation 3.5

Source DF SS MS F P

Regression 1 38.756 38.756 4319.13 0.000

Residual

Error

123 1.104 0.009

Total 124 39.860

Table ‎3-2 Model parameters for Equation 3.5

Predictor Coef SE Coef T P

Constant 2.09835 0.07126 29.45 0.000

ln(size) 1.17314 0.01785 65.72 0.000

Table ‎3-3 ANOVA for Equation 3.8

Source DF SS MS F P

Regression 2 174055066 87027533 300.51 0.000

Residual Error 97 28090762 289595

Total 99 202145827

Table ‎3-4 Model parameters for Equation 3.8

Predictor Coef SE Coef T P

Constant 408.5 154.1 2.65 0.009

Size 24.939 1.120 22.26 0.000

Prod_sum -52.75 11.77 -4.48 0.000

From the above results, we deduce that the proposed multiple linear regression equation

is valid and it is used to determine the productivity factor in Equation (3.7) based on the

value of the variable prod_sum. Since the value of prod_sum varies between [-10, 32.5],

it is difficult to predict the value of productivity in Equation (3.7) based on each value of

73

prod_sum. For this reason, the productivity variable is depicted based on four main

ranges of prod_sum. This is analogous to the representation of cost drivers in the

COCOMO model where each cost drivers are classified according to five or six levels

(from very low, to very high). After that, fuzzy logic is used to adjust the values of the

productivity variable. Since the prod_sum variable falls between [-10, 32.5], the main

four regions of this variable are selected as between [-10, 0], between [1, 10], between

[11, 20] and between [21, 32.5]. To find the influence of prod_sum on Effort in Equation

(3.8), four values of prod_sum are selected such that each value belongs to each of the

aforementioned main regions. To minimize the influence of the size variable on Effort

and only focus on the influence of prod_sum, the value of the size variable is the same for

each value of prod_sum. The selected value of size is 80 UCP because the value ―80‖ is

considered as a medium-size project with respect to the pool of the projects used to

generate the regression equation. Based on this information and according to Equation

(3.8), the following rules can be deduced:

 If size is 80 and prod_sum is -7 then Effort is 2770. (-7 falls between [-10, 0])

 If size is 80 and prod_sum is 5 then Effort is 2137. (5 falls between [1, 10])

 If size is 80 and prod_sum is 16 then Effort is 1556. (16 falls between [11, 20])

 If size is 80 and prod_sum is 26 then Effort is 1028. (26 falls between [21,

32.5])

If we substitute the values of size and Effort of the aforementioned four rules in Equation

(3.7), the values of the productivity variable are 0.4, 0.7, 1 and 1.3 respectively.

74

Equation (3.7) represents the main proposed regression model for software effort

estimation, where Effort is the software effort in person-hours, size is the software size in

UCP and the value of productivity is depicted in Table 3-5.

3.2.2 Fuzzy Logic Approach

Table (3-5) shows the values of the productivity variable of Equation (3.7). The

productivity factors were predicted using the multiple linear regression model. Each

productivity factor value was given a description. The main drawback of the productivity

factor is that the values are crisp and there is no graduation in the productivity factor

values as the value of prod_sum increases. For instance, if the value of prod_sum is 10,

the productivity factor is 0.7, however, if the value of prod_sum is 11, the value of the

productivity factor is 1. To tackle this drawback, a fuzzy logic approach has been used.

A fuzzy logic approach is applied on the proposed regression model to adjust the values

of the productivity factor. In the proposed approach, we used two types of fuzzy systems.

This includes Mamdani [9] and Sugeno [10]. Both Mamdani and Sugeno can have the

same input (membership functions). However, the main difference between these two

models is that the output of Mamdani can take any membership function like the input

but the output of Sugeno can be either constant or a straight line. The input membership

of the fuzzy logic system used is Trapezoidal because each input has a range of values

(e.g. between 1 and 10). The output membership used is Triangular because each output

has a fixed value which is represented by a triangle’s vertex. The method used in the

Defuzzification stage is the centroid since this is the default and most common used

75

method. Matlab version 2010b was used to conduct the experiments of the fuzzy logic

approach. Figures (3-8) and (3-9) show the input and the output memberships of

Mamdani fuzzy logic system, respectively.

Table ‎3-5 Productivity factor

prod_sum =

8

1

i i

i

E W




Productivity

Description

Productivity

Factor

Less than 0 Very Low 0.4

Between 1 and 10 Low 0.7

Between 11 and 20 Average 1

Greater than 20 High 1.3

Figure ‎3-8 Memdani input membership function

Figure ‎3-9 Mamdani output membership Function

76

There are two main approaches to elicit fuzzy rules [11]. These include:

1. The expert knowledge is translated into if-then rules. A structured model can be used

to incorporate these rules. Membership functions and weights of rules can be calibrated

using input and output data.

2. No prior knowledge about the system is initially used. A fuzzy model is constructed

based on a certain algorithm. Fuzzy rules and membership functions are expected to

describe the system behavior. An expert can modify the rules and the membership

functions.

In this work, the first approach is used.

There are four fuzzy rules in the proposed approach. These include:

1- If prod_sum is less than 0, then productivity factor = 0.4.

2- If prod_sum is between 0 and 10, then productivity factor = 0.7.

3- If prod_sum is between 10 and 20, then productivity factor = 1.

4- If prod_sum is greater than 20, then productivity factor = 1.3.

The centroid method is used for Defuzzification which calculates the center of gravity of

a surface.

After applying the fuzzy logic approach, the productivity factor has a specific value for

each value of prod_sum. Table (3-6) shows some samples of the new values of the

productivity factors using Mamdani fuzzy system and Table (3-7) shows the values of the

values of the productivity factors using Sugeno fuzzy system. The labels IN, PO and PN

correspond to prod_sum, old productivity factor and new productivity factor respectively.

77

Our experiments show that there is no noticeable difference between Mamdani and

Sugeno systems so we compared the MLP model with the regression model which is

based on Mamdani system and thus, the Sugeno system was ignored.

As seen in Table (3-6), the values of the new productivity factor (PN) are not as crisp as

the values of the old productivity factor (PO). This leads to better estimation results. For

instance, a complete list of the productivity factor values can be obtained using the

proposed fuzzy logic inference system.

3.2.3 Neural Network Model

Neural network models have been widely used in software estimation as alternative

solutions to regression models. In this chapter, a neural network model is developed

based on a set of 120 projects, of which 100 projects were used in the training stage and

20 projects were used in the testing stage. In Section 3.3, a comparison is conducted

between the proposed neural network model and the proposed regression model with

fuzzy logic.

Each neural network model has input and output layers. If data are not linearly separable,

which is the case in our problem, a hidden layer should exist between the input and

output layers. The proposed neural network is classified as Multilayer Perceptron (MLP)

that contains an input layer, one hidden layer and an output layer. The main inputs to the

proposed neural network model are software size and team productivity represented by

the eight environmental factors (E1 to E8 as shown in Table 2-6). The output of the

model is software effort. The main reason of choosing the eight environmental factors to

78

represent the team productivity rather than choosing the prod_sum variable is to see the

impact of each of these eight factors on software effort. The structure of the proposed

neural network is depicted in Figure (3-10).

Table ‎3-6 New productivity factor using mamdani system

IN PO PN IN PO PN

-10 0.4 0.4 8 0.7 0.78

-9 0.4 0.44 9 0.7 0.81

-8 0.4 0.47 10 0.7 0.85

-7 0.4 0.493 11 1 0.88

-6 0.4 0.511 12 1 0.91

0 0.4 0.55 20 1 1.15

1 0.7 0.583 21 1.3 1.15

Table ‎3-7 New productivity factor using sugeno system

IN PO PN IN PO PN

-10 0.4 0.4 8 0.7 0.8

-9 0.4 0.42 9 0.7 0.83

-8 0.4 0.45 10 0.7 0.86

-7 0.4 0.46 11 1 0.89

-6 0.4 0.48 12 1 0.9

0 0.4 0.55 20 1 1.15

1 0.7 0.58 21 1.3 1.17

79

Figure ‎3-10 Neural network model

To generate the proposed neural network model, several steps must be considered. The

first step is to determine the number of nodes in the hidden layer. This problem is highly

controversial and there is no straightforward answer to it. If the number of hidden nodes

is too few, there will be high training error and high generalization error due to

underfitting. On the other hand, if the number of hidden nodes is too high, you may get

low training error but still have high generalization error due to overfitting. Overfitting

occurs when the model gives good results in training but bad results in the validation

process. Blum [12] and Linoff et al. [13] argued that the number of nodes in the hidden

layer should be between the number of nodes in the input layer and double that number.

In other words, if the number of the nodes in the input layer is ni, the number of nodes in

80

the hidden layer should be between (ni+1) and 2ni. In our case, the number of hidden

nodes falls between 10 and 18. Another consideration should be taken while developing

the neural network model is how to train, validate and test the model. Here, the term

―validation‖ is used during the training stage. The purpose of the validation is to see how

the model is performing in the training phase. On the other hand, the term ―testing‖ is

used when data which were not included in the training stage are used to test and assess

the model (this is discussed in Section 3.3). Taking these considerations into account is

very critical and crucial since the model is deemed definitive when the training process

has finished. After that, the model is used to predict software effort. The model is trained,

validated and tested using a set of 120 available projects (100 projects for training and 20

projects for testing, see Appendix D). The size, environmental factors (E1 to E8) and the

actual effort of each project are known. For better results, these projects should be

shuffled before the training process. For this reason, a k-fold cross-validation technique is

used. The value of ―k‖ chosen is 10. This means that the training data is divided into 10

equal sets. The training process is repeated 10 times. In each time, 9 sets are used for

training and 1 set to validate the training. The validation error of each round is computed

as the average error of the projects within a set. After the training process has finished, all

the sets will have been used in the training and validation processes. The round with

minimal average error is selected. Keep in mind that testing data should be selected

before applying the cross-validation method because testing data should not be included

in the training or validation processes. The algorithm used to train the model was

81

Levenberg-Marquardt backpropagation. To demystify the process of training the neural

network model, the following algorithm is used:

1- Prepare the data projects to be used in training, validation and testing processes.

2- Randomly pick 20 projects to be used for testing after the training/validation

process has finished.

3- Randomly divide the remaining data (100 projects) into 10 equal sets (S1 to S10).

4- Set the number of nodes in the hidden layer to 10 (―nh‖ =10).

5- Set the number of training rounds (i) to 1 (―i‖ =1)

6- In Round ―i‖ (―i‖ is a number between 1 and 10), use 9 sets for training and 1 set

for validation (for each value of ―i‖, 9 different sets are used for training and the

remaining set for validation)

7- Record the validation error Vi-nh (―i‖ represents the number of the round, and

―nh‖ the number of the nodes in the hidden layer. For instance, the first validation

error is V1-10).

8- Increment the value of ―i‖ by 1.

9- If the value of ―i‖ is 11, then increment the value of ―nh‖ by 1 and set the value of

―i‖ to 1.

10- If the value of ―nh‖ = 19, then stop training and exit.

11- Go to step ―6‖

82

Figure ‎3-11 Performance graph

Figure ‎3-12 Regression graph

83

Ten rounds of training and validation were performed for each value of the number of

hidden nodes ―nh‖. The values of ―nh‖ were chosen between 10 and 18. The value 10

represents the number of the input nodes plus 1. The value 18 represents the number of

hidden nodes multiplied by 2. This means that 90 values of Vi-nh were reported (from

V1-10 until V10-18). Experiments showed that the minimal value of validation error

occurred when the number of hidden nodes is 16.

To evaluate the proposed neural network model, performance and regression graphs were

conducted after training as shown in Figures (3-11) and (3-12) respectively. There is no

sign of overfitting in Figure (3-11).

3.3 Models Assessment and Discussion

This section presents the assessment of the proposed models. The set of projects that

were selected before training the neural network model is used for testing. Moreover a

comparison is performed between the proposed models and other models such as the

original UCP model and Schneider’s model. Furthermore, a discussion is provided about

the assessment of models.

3.3.1 Testing the Proposed Models

First, the set of testing projects that was excluded from the projects used to train the

neural network model is divided into two main subsets. The first subset contains projects

that are relatively small (< 100 UCP). The other subset contains projects that are

relatively large (> 100 UCP). Three main experiments were conducted to test the

84

proposed models. First, the proposed models are tested using the whole set. Secondly, the

proposed models are tested using the subset that contains the small projects. Thirdly, the

subset that contains the large projects is used. The main purpose of conducting three

experiments is to see how the neural network model performs with small and large

projects. The evaluation criteria used for testing are MMER as well as PRED (25), PRED

(35), PRED (50) and PRED (75). Table (3-8) shows the results when the whole set of

testing is used. The columns Kar, Sch, Reg and Neu correspond to Karner’s model

(original UCP model), Schneider’s model, the proposed regression model with fuzzy

logic (Equation 3.7, the value of the productivity factor is depicted in Table 3-7) and the

neural network model respectively. Figure (3-13) shows the Interval plot at 95%

confidence level of MMER against Karner, Schneider, Regression and neural network

models.

Table ‎3-8 Results using whole dataset

Critera Kar

(%)

Sch

(%)

Reg

(%)

Neu

(%)
MMER 29.6 25.2 21.7 32.2

PRED

(25)

70 80 75 65

PRED

(35)

70 80 90 65

PRED

(50)

90 100 95 75

PRED

(75)

100 100 100 100

85

NeuRegSchKar

50

40

30

20

10

M
M

ER

Interval Plot of Kar, Sch, Reg, Neu
95% CI for the Mean

Figure ‎3-13 MMER interval plot

The second experiment is conducted by using the subset of data projects that contains

small projects. Similarly, Table (3-9) and Figure (3-14) show the results.

Table ‎3-9 Results using small projects

Critera Kar

(%)

Sch

(%)

Reg

(%)

Neu

(%)
MMER 31.25 22.4 26.52 21.3

PRED

(25)

70 90 50 100

PRED

(35)

70 90 80 100

PRED

(50)

80 100 90 100

PRED

(75)

100 100 100 100

86

Neu_smReg_smSch_smKar_sm

45

40

35

30

25

20

15

10

M
M

ER

Interval Plot of Kar_sm, Sch_sm, Reg_sm, Neu_sm
95% CI for the Mean

Figure ‎3-14 MMER interval plot for small projects

Consequently, Table (3-10) and Figure (3-15) show the results when large projects are

used.

Table ‎3-10 Results using large projects

Critera Kar

(%)

Sch

(%)

Reg

(%)

Neu

(%)
MMER 28 27.9 16.9 43.1

PRED

(25)

70 70 100 30

PRED

(35)

70 70 100 30

PRED

(50)

100 100 100 50

PRED

(75)

100 100 100 100

87

Neu_lgReg_lgSch_lgKar_lg

90

80

70

60

50

40

30

20

10

0

M
M

ER

Interval Plot of Kar_lg, Sch_lg, Reg_lg, Neu_lg
95% CI for the Mean

Figure ‎3-15 MMER interval plot for large projects

3.3.2 Comparison Among Different Models

Table (3-8) shows that the proposed regression model surpassed the original UCP model

and Schneider’s model by about 8% and 3.5% respectively when MMER is used. The

regression model also gave good results when PRED (x) is used. However, the original

UCP model and Schneider’s model slightly surpassed the neural network model.

Moreover, Figure (3-13) shows that the neural network model has the largest variation in

the MMER which is not good. On the other hand, the neural network model gave

promising results when small projects are used for testing as it surpasses all the models

when MMER and PRED (x) are used. Furthermore, Figure (3-14) shows that the neural

network model has the least variation in the MMER. Lastly, when large projects are used

for testing, the regression model surpassed all the models when MMER and PRED (x)

evaluation criteria are used. On the other hand, the neural network model did not perform

well with large projects. As a conclusion, we noticed that the linear regression and the

88

MLP models can be used for software effort estimation and this answers the seventh

research question proposed in Section 1.2.

3.3.3 Discussion

This chapter proposed a novel regression model to calculate software effort based on the

use case diagrams. The regression model takes into consideration the non-linear

relationship between software size and effort as well as the influence of team

productivity. A Multilayer Perceptron (MLP) neural network model was also proposed in

this work. A comparison between these two models shows that the neural network model

can be used as an alternative to the proposed regression model. It is obvious from Table

(3-10) that the regression model excels when large projects are used for testing. This

might be because the regression model addresses the non-linear relationship between

software size and effort as opposed to Karner’s and Schneider’s models. The non-linear

relationship shows that when software size increases, software effort will increase

exponentially.

3.4 Threats to Validity

Threats to validity can be summarized as follows:

 The regression model represented in Equation (3.7) was created using

educational and industrial projects. Unfortunately, the majority of these

projects are considered as small projects in the industry’s point of view (less

than 340 UCP). As seen in Figure (3-5), the proposed model shows the

89

influence of the non-linear relationship when software size increases.

Nevertheless, the regression model has not been tested for projects whose

efforts are larger than 8,000 person-hours.

 One of the reasons that the neural network model did not perform well with

large projects is because the lack of the industrial projects. This model was

trained using 100 projects. For this model to give better results, more projects

should be used for training.

 It was difficult to elicit the environmental factors (Table 2-6) from the team

that is developing software projects. For instance, developers might be

optimistic when answering questions about their experiences and motivations.

Moreover, the motivation of a developer/programmer might differ when placed

in a different team, even in the same project. Furthermore, there is no

straightforward rule to calculate the productivity of the team based on the

productivity of each team member. In this work, the average of all team

members was performed to calculate the productivity of the team.

 The UCP model mainly depends on the use case diagrams. If the use case

diagrams were not properly designed, a huge error could be incurred.

 Because of the lack of obtaining industrial projects, some educational projects

were used. Educational projects are mainly developed by students who work

with these projects as part time. Projects developed by inexperienced students

might incur errors when the actual software effort is estimated. Moreover,

experiments show that most students only focus on the programming part

90

when developing software projects and thus, ignore the other stages of the

software life cycle.

3.5 Conclusion

This chapter focused on software effort estimation from the use case diagrams using the

use case point (UCP) model. In the UCP model, the unadjusted software size (UUCP) is

calculated based on the number and complexity of the use cases as well as the actors. The

adjusted use case point size (UCP) is then calculated by multiplying the UUCP by the

technical and environmental factors. The technical factors represent the project

complexity whereas the environmental factors represent the team productivity. After the

UCP size is calculated, software effort can be estimated by multiplying the UCP by 20.

There are two main shortcomings in the original UCP model. The first one is that the

UCP model considers the relationship between software size and effort is linear. This is

incorrect because when software size increases, the number of team members required to

develop this software increases. When the team becomes larger, communication overhead

will incur and this requires additional effort. This concludes that when software size

increases, software effort will increase exponentially. Another shortcoming is that the

influence of the team productivity is not taken into consideration while estimating effort.

In this work, a novel simple regression model is proposed to tackle these limitations. A

multiple linear regression model was developed to predict the productivity factor

proposed in the simple linear regression. A Mamdani fuzzy logic approach was used to

adjust the values of the productivity factor.

91

Another contribution in this work was to develop a Multi Layer Perceptron (MLP) neural

network model. This model takes the software size and the team productivity represented

by eight factors as inputs. The output of this model is the software effort. The proposed

regression and neural network models were tested and evaluated. A comparison among

the regression model, the neural network model, the original UCP model and the

Schneider’s model was conducted in three experiments. In the first experiment, all

available data set was used to test and assess the models. In the second test, larger

projects (>2,000 person-hours) were used for testing, while in the third experiment,

smaller projects (<2,000 person-hours) were used for testing. Results show that the

proposed regression model surpasses all the models when the first and the second

experiments were used. On the other hand, the neural network model gives better results

than the other models in the third experiment. This had led to the conclusion that an MLP

neural network can be used as an alternative to regression models for projects of effort

less than 2,000 person-hours.

The next step in this investigation will focus on improving the regression and the neural

network models when new projects are available. The environmental and the technical

factors of the UCP model should be updated. Moreover, the UCP model should be

reconstructed to handle use cases of more than 7 transactions. Furthermore, the weights

of the use cases should be calibrated.

92

References

[1] D. Longstreet, "Estimating Software Effort," Software Metrics, 2008.

[2] S. McConnell, Software Estimation: Demystifying the Black Art. Redmond,

Washington: Microsoft, 2006.

[3] D. D. Galorath and M. W. Evans, Software Sizing, Estimation, and Risk Management.

Boston, MA, USA: Auerbach Publications, 2006.

[4] A. C. Cameron and P. K. Trivedi, Regression Analysis of Count Data. Cambridge,

UK: Cambridge University Press, 1998.

[5] W. Humphrey, A Discipline for Software Engineering. Addison Wesley, 1995.

[6] E. L. Lehmann, Nonparametrics: Statistical Methods Based on Ranks. Prentice Hall,

1998.

[7] A. Edwards, An Introduction to Linear Regression and Correlation. W. H. Freeman

and Comp., 1976.

[8] G. Schneider and J. P. Winters, Applied use Cases, Second Edition, A Practical

Guide. Addison-Wesley, 2001.

[9] E. H. Mamdani, "Application of Fuzzy Logic to Approximate Reasoning Using

Linguistic Synthesis," IEEE Transactions on Computers, vol. C-26, pp. 1182-1191, 1977.

93

[10] M. Sugeno and T. Yasukawa, "A fuzzy-logic-based approach to qualitative

modeling," IEEE Transactions on Fuzzy Systems, vol. 1, pp. 7-31, 1993.

[11] Z. Xu and T. M. Khoshgoftaar, "Identification of fuzzy models of software cost

estimation," Fuzzy Sets and Systems, vol. 145, pp. 141-163, 2004.

[12] A. Blum, Neural Networks in C++: An Object-Oriented Framework for Building

Connectionist Systems. NY: Wiley, 1992.

[13] G. S. Linoff and M. J. Berry, Data Mining Techniques: For Marketing, Sales, and

Customer Relationship Management. NY: Wiley, 2011.

Equation Chapter (Next) Section 1

94

Chapter 4

4. Regression, RBFNN and GRNN3

4.1 Introduction

This chapter presents four sub-models of our main model. These models include non-

linear regression, linear regression with a logarithmic transformation, Radial Basis

Function Neural Network and General Regression Neural Network. Moreover, the inputs

of the model are introduced. They include software size, team productivity, project

complexity and requirements stability. The main difference between this chapter and

Chapter 3 is that in Chapter 3 we developed a neural network model of type Multilayer

Perceptron (MLP) as well as linear regression model with a logarithmic transformation.

The inputs of the MLP model were software size and team productivity. Software size

was calculated based on the use case point (UCP) method; however, team productivity

was calculated based on eight factors, also known as environmental factors as shown in

3 Part of this chapter has been submitted to journal of Systems and Software (Elsevier) and an extended

version was submitted to Empirical Software Engineering (Springer).

1. Ali Bou Nassif, Luiz Fernando Capretz, Danny Ho and Daniel Varona, ―Software Effort

Estimation from Use Case Diagrams Using Non-Linear Regression Analysis‖, Journal of Systems
and Software, 2012 (Under review).

2. Ali Bou Nassif, Luiz Fernando Capretz and Danny Ho, ―Regression and Neural Network Models

for Software Effort Estimation from Use Case Diagrams‖, Empirical Software Engineering, 2012

(Under review).

95

Table (2-6). Furthermore, the project complexity factor was ignored in the previous

chapter. This is because the project complexity was represented by the technical factors

through the adjusted use case point size.

In this chapter, we propose a new method to calculate software size from use cases to

overcome the limitations of the UCP model [1]. Team productivity was calculated based

on five factors illustrated in Section 4.2.3 instead of the eight environmental factors Table

(2-6) proposed in the use case point model. This is because Ochodek et al. [2] argued that

the number of environmental factors can be reduced without deteriorating the estimation

accuracy. Moreover, in this chapter, we introduce project complexity as a factor that

affects software effort in Section 4.2.2. Most importantly, in Chapter 3, the requirements

stability factor was one of the eight factors that contribute to productivity; however, we

found that requirements stability is an essential factor and thus, we introduce it in Section

4.2.4 as one of four factors that affect software effort estimation. Section 4.2.5 shows the

effort-size relationship. Sections 4.3 and 4.4 present the non-linear and linear regression

models, respectively. Sections 4.5 and 4.6 present a Radial Basis Function Neural

Network (RBFNN) and General Regression Neural Network (GRNN) models,

respectively. In Section 4.7, we show how software effort can be estimated based on the

regression and neural network models. Sections 4.8 and 4.9 present the verification and

evaluation of models, respectively. Section 4.10 presents threats to validity and Section

4.11 concludes the chapter.

4.2 Model’s‎Input‎Factors‎and‎Effort-Size Relationship

96

This section presents the four inputs of our proposed model. These include software size,

project complexity, productivity and requirements stability. Moreover, the calibration of

the productivity factor is introduced. Furthermore, we depict the actual relationship

between software effort and size based on the industrial data points.

4.2.1 Size Estimation

In this work, a new approach to predict size estimation from use case descriptions is

proposed to tackle the limitations of the use case model is proposed. In the use case point

model [1] the total number of transactions in the use case description (scenario) is

calculated as the number of transactions of the Success scenario plus the number of

transactions in the Extension scenario. In our work, we investigated the weight of the

transactions in the Success scenario versus the weight of the transactions in the

Extensions Scenario. We have noticed through comparing industrial projects that if the

Success and the Extensions have the same number of transactions, the effort required to

develop the Success scenario is more than the effort required to develop the Extensions

scenario. To support this claim, we have run three experiments. In each of the three

experiments, a multiple linear regression model is developed that has four independent

variables (productivity, complexity, requirements uncertainty and size) and one

dependent variable (effort). The main difference among these three experiments is the

why the size is estimated. In the first experiment, the complexity of a use case is

determined by adding the number of transactions in the Success scenario with the number

of transactions in the Extensions. In the second experiment, the use case complexity is

determined by adding the number of transactions in the Success scenario with half the

97

number of transactions in the Extensions scenario. In the third experiment, the use case

complexity is determined by adding the number of transactions in the Success scenario

with third the number of transactions in the Extensions scenario. In each experiment, the

coefficient of determination R
2
 was calculated. We have noticed that the value of R

2
of

the second experiment is the highest. Based on this, the use case complexity is

determined by adding the number of transactions in the Success scenario with half the

number of transaction in the Extensions scenario. Size estimation is based on the

following rules:

 Consider all types of use cases in the use case diagram.

 In the use case scenario of each use case, count the number of transactions (based

on the definition of transactions in the use case point model [1]) in the Main

Success Scenario. This is noted by TS.

 In the use case scenario of each use case, count the number of transactions in the

Extensions part. This is noted by TE.

 The total number of transactions of the use case is calculated as TS + TE/2.

 Assign a weight for each use case based on the rules proposed in Table (4-1).

 The total size of the project is conducted by adding the complexity weight of each

use case. In other words,

6

1

.i i

i

Size n w


  (4.1)

98

Where n is the number of use cases of variety i and w is its corresponding weight.

For instance, the open-bracket representation ―]4,8]‖ for LO indicates that ―4‖ is

not included. For instance, Table (4-1) answers the first research question

proposed in Section 1.2.

Table ‎4-1 Use case complexity

 Complexity level Number of transactions Complexity weight

VL (Very low) [1,4] 5

LO (Low)]4,8] 10

NM (Normal)]8,12] 15

HI (High)]12 to 16] 20

VH (Very High)]16 to 20] 25

XH (Extra High) > 20 30

4.2.2 Project Complexity

The complexity of the project is an important factor in software effort prediction.

Complexity can be interpreted as an item having two or more elements [3] [4]. There are

two dimensions of complexity. These include business scope such as schedule, cost, risk

and technical aspect which is the degree of difficulty in building the product [4].

Technical complexity deals with the number of components of the product, number of

technologies involved, number of interfaces and types of interfaces [4]. The project

complexity can be classified as low complexity, medium complexity or high complexity

[4]. Project complexity should be distinguished from other project characteristics such as

size and uncertainty [3]. Complex projects require more effort to develop than simple

99

projects that have the same size as shown in Equation (4.2). The general equation of

software effort can be represented as [5]:

.
Complexity

Effort Size
Productivity

  (4.2)

In our research, we identify the project complexity based on five levels (from Level-1 to

Level-5). The reason behind defining five levels is to be compatible with other cost

estimation models such as COCOMO where cost drivers are classified into five or six

levels (such as Very Low, Low, Nominal, High, Extra High). Additionally, this

classification is compatible to the project complexity classification in [4]. Regarding the

complexity weights, we followed the UCP model where the highest level of complexity

increases the effort by 30%. Moreover, as stated in the UCP model, normal complexity

will not increase nor decrease the effort (factor = 1). The five complexity levels are

defined as follows:

 Level-1: The complexity of a project is classified as Level-1 if the project team is

familiar with this type of project and the team has developed similar projects in

the past. The number and type of interfaces are simple. The project will be

installed in normal conditions where high security or safety factors are not

required. Moreover, Level-1 projects are those of which around 20% of their

design or implementation parts are reusable (came from old similar projects). The

weight of the Level-1 complexity is 0.7.

100

 Level-2: This is similar to level-1 category with a difference that only about 10%

of these projects are reusable. The weight of the Level-2 complexity is 0.85.

 Level-3: This is the normal complexity level where projects are not said to be

simple, nor complex. In this level, the technology, interface and installation

conditions are normal. Furthermore, no parts of the projects had been previously

designed or implemented. The weight of the Level-3 complexity is 1.

 Level-4: In this level, the project is required to be installed on a complicated

topology/architecture such as distributed systems. Moreover, in this level, the

number of variables and interface is large. The weight of the Level-4 complexity

is 1.15.

 Level-5: This is similar to Level-4 but with additional constraints such as a

special type of security or high safety factors. The weight of the Level-5

complexity is 1.3.

4.2.3 Productivity

Productivity is inversely proportional to effort as seen in Equation (4.2). The higher the

productivity of a team is, the less effort required to develop a project. Team productivity

was calculated based on five factors illustrated in Section 4.2.3 instead of the eight

environmental factors Table (2-6) proposed in the use case point model. This is because

Ochodek et al. [2] argued that the number of environmental factors can be reduced

without deteriorating the estimation accuracy. Also, in the use case point model,

Requirements Stability factor is one of the eighth environmental factors (Table 2-6).

101

According to NASA lab [6] and COCOMO II model [7], requirements uncertainty can

increase software effort up to 40%. This is the reason of removing the requirements

stability factor when calculating productivity and assigning it as an independent factor as

shown in Section 4.2.4. Each factor is rated from ―1‖ which represents ―very low‖ to ―5‖

which represents ―very high‖ and this is analogous to the classification of the cost drivers

in COCOMO model. Factors with average classifications are rated as ―3‖. These factors

and their corresponding weights are:

 Team experience regarding the problem domain. Weight is 2.

 Team motivation. Weight is 1.

 Programming language type and experience. Weight is 2.

 Object oriented experience (UML). Weight is 2.

 Analytical skills. Weight is 1.

Regarding the first factor, if the project team is acquainted with the problem domain of

the project, the effort required to develop the project will be less than the one if the team

is inexperienced with the problem domain. The motivation of the team also contributes to

the productivity. People within the same team who get along with each other can achieve

work faster. Team motivation is also influenced by several factors such as the

environment where the project is deployed, working pace, and the number of working

hours per day or per week. For instance, full-time employees tend to be more productive

than part-time employees. Another important productivity factor is the team experience

and the type of programming language used to implement the project. In general,

102

programmers who are expert in a certain language are those who have at least 5 years of

experience. Moreover, the productivity would be higher when using 4
th
 generation

languages (4GL) such as Visual Basic and Matlab rather than using 3GL such as C++.

The team experience in the object oriented concept is very important because the team is

either drawing UML diagrams or implementing UML diagrams. This research is based

on predicting software effort from UML use case diagrams. The final factor which

contributes to the productivity is the analytical skills of the team. This is the team’s

ability to articulate, understand and solve both complicated and uncomplicated problems.

The second step after assigning a rate (from 1 to 5) to each of the above productivity

factors, is to determine the value of the productivity. The productivity factor is calculated

in two steps. First, calculate productivity_sum as follows:

5

1

Pr _ * .i i

i

oductivity Sum F W


 (4.3)

Where F is the productivity factor of variety i and W is its corresponding weight. Based

on the rules introduced above, the minimum value of Productivity_Sum is when the rate

of all factors is ―1‖. Similarly, the maximum value would be when the rate of all factors

is ―5‖. This means that Productivity_Sum falls between 8 and 40. If all productivity

factors are average (rate=3), then Productivity_Sum is 24. The second step is to find the

final Productivity value which is based on the value of Productivity_Sum as shown in

Table (4-2).

103

Table ‎4-2 Productivity factor

Productivity_Sum Productivity

Less than or equal 14 0.7

Between 15 and 20 0.85

Between 21 and 27 1

Between 28 and 34 1.15

Greater than or equal 35 1.3

4.2.3.1 Calibration of Productivity Factor

Table (4.2) presents the values of the productivity factor. As seen in the table, these

values are crisp and there is no graduation between each level. To avoid this problem, we

use fuzzy logic to adjust the productivity values. The fuzzy system type used is Mamdani

[8], the input membership of the fuzzy logic system used is Trapezoidal where the output

membership is Triangular. Trapezoidal input membership was used because the input

value (Productivity_Sum) is a range between two numbers; however, triangular output

membership was used because the output (Productivity) has a single value. The method

used in the Defuzzification stage is the centroid which is the default method used. Matlab

version 2010b was used to conduct the experiments of the fuzzy logic approach. Figures

(4.1) and (4.2) show the input and the output memberships respectively.

104

Figure ‎4-1 Mamdani input membership function

Figure ‎4-2 Mamdani output membership function

There are two main approaches to elicit fuzzy rules [9]. These include:

1. The expert knowledge is translated into if-then rules. A structured model can be used

to incorporate these rules. Membership functions and weights of rules can be calibrated

using input and output data.

2. No prior knowledge about the system is initially used. A fuzzy model is constructed

based on a certain algorithm. Fuzzy rules and membership functions are expected to

105

describe the system behaviour. An expert can modify the rules and the membership

functions.

In this work, the first approach is used.

There are five fuzzy rules in the proposed approach. These include:

1- If Productivity_Sum is less than or equal 14, then productivity factor = 0.7.

2- If Productivity_Sum is between 15 and 20, then productivity factor = 0.85.

3- If Productivity_Sum is between 21 and 27, then productivity factor = 1.

4- If Productivity_Sum is between 28 and 34, then productivity factor = 1.15.

5- If Productivity_Sum is greater than 34, then productivity factor = 1.3.

The centroid method is used for Defuzzification which calculates the center of gravity of

a surface.

After applying the fuzzy logic approach, the productivity factor has a specific value for

each value of Productivity_Sum. Table (4-3) shows the old values of the productivity

factor as well as the adjusted values (after applying fuzzy logic). The labels P_S, O_F

and N_F correspond to Productivity_Sum, old productivity factor and new productivity

factor respectively.

As seen in Table (4-3), the values of the new productivity factor (N_F) are not as crisp as

the values of the old productivity factor (O_F). This leads to better estimation values.

106

Table ‎4-3 New productivity factor

P_S O_F N_F P_S O_F N_F P_S O_F N_F P_S O_F N_F

8 0.7 0.7 16 0.85 0.806 24 1 1.03 32 1.15 1.18

9 0.7 0.727 17 0.85 0.835 25 1 1.07 33 1.15 1.2

10 0.7 0.745 18 0.85 0.865 26 1 1.07 34 1.15 1.23

11 0.7 0.758 19 0.85 0.894 27 1 1.07 35 1.3 1.23

12 0.7 0.766 20 0.85 0.925 28 1.15 1.1 36 1.3 1.23

13 0.7 0.771 21 1 0.949 29 1.15 1.12 37 1.3 1.24

14 0.7 0.774 22 1 0.974 30 1.15 1.14 38 1.3 1.25

15 0.85 0.775 23 1 1 31 1.15 1.16 39 1.3 1.27

4.2.4 Requirements Stability

Another important factor when conducting software estimation is the degree of the

requirements stability. In many projects, clients tend to change or increase the number of

requirements and this will increase the effort. Figure (4-3) shows an example of 40%

increase in the number of requirements over time (x-axis) which has led to 40% increase

in software effort estimation (1.4x in y-axis). This approach has been used by leading

organizations such as NASA’s Software Engineering Laboratory [6]. COCOMO II uses a

similar approach called Breakage (BRAK) to reflect the requirements volatility of the

project [7].

107

Figure ‎4-3 Requirements stability

We propose 5 levels of Requirements Stability from Level-1 (unstable requirements) to

Level-5 (stable requirements). If the requirements are stable, there is no increase in

software effort. Based on [6] and [7], 40% increase (or change) in the requirements can

lead to 40% increase in effort. The weight for each level was defined as follows:

 Level-1: This indicates that there is an increase of 40% of the requirements during

the project life cycle. This incorporates new requirements and changes in existing

requirements. Weight is 1.4.

108

 Level-2: This indicates that there is an increase of 30% of the requirements during

the project life cycle. Weight is 1.3.

 Level-3: This indicates that there is an increase of 20% of the requirements during

the project life cycle. Weight is 1.2.

 Level-4: This indicates that there is an increase of 10% of the requirements during

the project life cycle. Weight is 1.1.

 Level-5: This indicates that the requirements are stable during the project life

cycle. Weight is 1.

4.2.5 Effort-Size Relationship

The original UCP model assumes that the relationship between software effort and size is

linear as expressed in Equation (2.23). As discussed in Section 2.4.1.4, when the software

size increases, software effort will increase but with non-linear relation. To support our

hypothesis and to discover the type of this relationship (Effort – Size), among the 214

data projects that we have, 65 projects of software effort ranged between 122 person-

hours and 129,353 person-hours were selected that have similar Complexity, Productivity

and Requirements Stability (See Appendix E) . Figure (4-4) depicts the actual size and

effort of these 65 projects as well as the original UCP Estimation. Figure (4-4) shows that

the UCP method can be applied with acceptable error on small projects (size less than

250 UCP which is equivalent to 5,000 person-hours). Based on Figure (4-4), the UCP

model cannot be applied on projects of effort more than 10,000 person-hours. Among the

214 data projects that we have, there are 58 projects (27%) that have effort more than

109

10,000 person-hours. This means that projects of greater than 10,000 person-hours cannot

be ignored. The plot of the actual data projects in Figure (4-4) shows that the relationship

between software effort and size in non-linear and this answers the sixth question

proposed in Section 1.2.

Figure ‎4-4 Comparison between UCP model and actual data

4.3 Non-linear Regression Model

In this section, we introduce the non-linear regression model that can best fit the non-

linear relationship of the actual data shown in Figure (4-4). In statistics, regression

analysis focuses on generating a relationship between a dependent variable (aka

response) and one or more independent variables (aka predictors) [10]. Regression

analysis studies show how the dependent variable responds to a change in the

independent variables and it identifies which independent variable is related to the

110

dependent variable. Legendre [11] and Gauss [12] were among the first people who

worked with regression models 200 years ago. There are many types of regression

analysis. These include simple regression, multiple regression, linear regression and non-

linear regression. Regression analysis has been widely used in software estimation.

Software developers and project managers use historical data to build regression models.

The regression models are then evaluated and compared with alternative models such as

soft computing models.

In our previous publications [13] and [14] (Chapter 3), we proposed a linear regression

model with a logarithmic transformation to predict software effort from use cases. In the

work proposed in Chapter 3, we used the method used by the original UCP model to

calculate software size. The factors calculating software effort were software size and

team productivity. The model was evaluated using educational and industrial projects that

are considered as relatively small projects. In this paper, a new approach to calculate

software size is introduced. Moreover, we study and present factors that affect the

prediction of software effort. These factors are the Project Complexity, Team

Productivity and Requirements Stability. Most importantly, our model has been evaluated

using industrial projects which are categorized from very small projects to very large

projects (between 120 and 224,890 person-hours).

With respect to non-linear regression, many non-linear functions exist and it is not simple

to just predict one. Based on the nature of the non-linear relationship in Figure (4-4), we

used four different non-linear equations to see which equation can best fit the actual data.

These equations include a second degree polynomial function and three exponential

111

functions as shown in Table (4-4), where the variable ―x‖ corresponds to software size,

the variable ―y‖ corresponds to software effort, and ―a‖, ―b‖, ―c‖ and ―d‖ are constants.

Table ‎4-4 Non-linear equations

Polynomial Exponential 1 Exponential 2 Exponential 3

2* *y a x b x c   *exp(*)y a b c x  *exp(*) *exp(*)y a b x c d x  exp(*)y a b x 

In each non-linear equation type (Table 4-4), several experiments using Matlab 2010

were conducted using the whole dataset used in Figure (4-4) (65 projects) to calculate the

values of the constants ―a‖, ―b‖, ―c‖ and ―d‖. In each experiment, the value of the

coefficient of determination R
2

and the Root Mean Square (RMS) were measured. R
2
 is

the percentage of variation in Effort explained by the variable Size. An acceptable value

of R
2

is ≥ 0.5 [15]. The RMS value shows how close the actual data are from the fitting

curve. Both R
2

and RMS are important. Good regression models are those that have

higher R
2
 values and lower RMS values. Figures (4-5), (4-6), (4-7) and (4-8) show the

regression graph, the value of the constants, R
2
and RMS of each function.

Based on the fitting graphs and on the R
2
 and RMS values, the Polynomial (Figure 4-5)

and the Exponential 2 (Figure 4-7) were candidates for the proposed regression model

since they gave higher R
2

values and lower RMS values. However, after we have tested

the Polynomial and Exponential 2 models, we found that they give inaccurate results

when software size is less than 50 UCP. Although projects of size smaller than 50 UCP

are considered small projects, small projects cannot be ignored. For this reason, the

Polynomial and Exponential 2 models were eliminated, and consequently we found that

none of these four non-linear models is appropriate to fit the whole project dataset.

112

Based on the above conclusion, the whole project dataset that is used to build the non-

linear regression models (65 projects), was divided into three different ranges based on

the software size. The first range is called Small, which includes 26 projects out of the 65

projects of software size less than 100 UCP (less than 2,000 person-hours). The second

range is the Medium range that contains 21 projects of size ranged between 100 and 300

UCP (between 2,000 and 8,500 person-hours) and the third range is the Large one which

contains 18 projects of size greater than 300 UCP (effort between 8,500 and 129,353

person-hours). Several experiments were performed to learn which of the four non-linear

equations (Table 4-4) can best fit each range (Figures 4-9, 4-10, 4-11 and 4-12 for small

dataset, Figures 4-13, 4-14, 4-15 and 4-16 for medium dataset and Figures 4-17, 4-18, 4-

19 and 4-20 for large dataset). Experiments show that based on the fitting graphs, values

of R
2
 and RMS, the Polynomial model (Figure 4-9) can best fit the small dataset.

However, the Exponential 3 (Figure 4-16) and Exponential 2 (Figure 4-19) models can

best fit the Medium and the Large ranges, respectively.

Figure ‎4-5 Polynomial, all data

Polynomial

a=0.01

b=28.07

c=-870

R
2
=0.99

RMS=1328

113

Figure ‎4-6 Exponential 1, all data

Figure ‎4-7 Exponential 2, all data

Figure ‎4-8 Exponential 3, all data

Exponential 1

a=225.3

b=0.43

c=0.005

R
2
=0.40

RMS=15650

Exponential 2

a=54580

b=0.00046

c=-55770

d=-0.0001

R
2
=0.99

RMS=1298

Exponential 3

a=8.37

b=0.0017

R
2
=0.93

RMS=5349

114

Figure ‎4-9 Polynomial, small data

Figure ‎4-10 Exponential 1, small data

Figure ‎4-11 Exponential 2, small data

Polynomial

a=0.08

b= 12

c= -20

R
2
=0.84

RMS= 167

Exponential 1

a=-68

b=283.3

c=0.02

R
2
=0.84

RMS=168.5

Exponential 2

a=0

b=0.015

c=369.5

d=0.015

R
2
=0.77

RMS= 202

115

Figure ‎4-12 Exponential 3, small data

Figure ‎4-13 Polynomial, medium data

Figure ‎4-14 Exponential 1, medium data

Exponential 3

a=5.57

b=0.02

R
2
=0.84

RMS= 170

Polynomial

a=0.024

b= 23.5

c= -975

R
2
=0.75

RMS= 1365

Exponential 1

a=140.1

b= 0.73

c= 0.031

R
2
=-0.8

RMS= 3670

116

Figure ‎4-15 Exponential 2, medium data

Figure ‎4-16 Exponential 3, medium data

Figure ‎4-17 Polynomial, large data

Exponential 2

a=-8.48e+10

b=-0.0014

c=8.48e+10

d=-0.0014

R
2
=0.56

RMS=1963

Exponential 3

a=6.9

b=0.0072

R
2
=0.80

RMS=1225

Polynomial

a=0.011

b= 25.19

c= 792.3

R
2
=0.99

RMS=1439

117

Figure ‎4-18 Exponential 1, large data

Figure ‎4-19 Exponential 2, large data

Exponential 1

a=225.3

b=0.041

c=0.0061

R
2
=-0.04

RMS=31700

Exponential 2

a=25780

b=0.00067

c=-29570

d=-0.00083

R
2
=0.99

RMS=1205

Exponential 3

a=9.34

b=0.001

R
2
=0.96

RMS=5951

118

Figure ‎4-20 Exponential 3, large data

4.4 Linear Regression Model with a Logarithmic

Transformation

In this section, we introduce the linear regression model. In linear regression, the best

results are obtained if data are normally distributed [16]. Several experiments were

conducted using Minitab version 16 to determine how data were distributed. For the

purpose of consistency with the previous section (non-linear regression), the experiments

were conducted on the whole project dataset, as well as the Small, Medium and Large

ranges as defined in the previous section. Figures 4-21 to 4-28 show the histograms of

software size and software effort, respectively when all dataset, small dataset, medium-

sized dataset and large dataset are used respectively. Results show that data are not

normally distributed. Generating regression models from data based on Figures 4-21 to 4-

28 is possible but this will lead to poor results. For this reason, data were normalized

using logarithmic transformation. After logarithmic transformation, data (ln size and ln

effort) of all, small, medium, and large project dataset became normally distributed

(Figures 4-29 to 4-36). If data were normally distributed, the regression equation would

be:

* .y a x b  (4.4)

Where a and b are constants.

But since data were not normally distributed, linear regression is applied on ln(x) and

ln(y) instead. The regression equation becomes as follows:

119

ln() *ln() .y c x d  (4.5)

Equation (4.5) can be written as follows:

* .By A x (4.6)

Where B=c and A=e
d
.

Table 4-5 shows the values of the constants in Equations (4.5) and (4.6) as well as the

values of R
2
 and RMS in each of the four experiments (All Data, Small Data, Medium

Data and Large Data).

Table ‎4-5 Linear model parameters

 Equation (4.5) Equation (4.6)

Category c d R
2
 RMS A B R

2
 RMS

All data 1.327 1.381 0.96 0.303 3.981 1.327 0.99 1506

Small Data 1.25 1.693 0.80 0.308 5.431 1.25 0.89 141.5

Medium

Data

1.286 1.528 0.55 0.414 4.602 1.286 0.55 1832

Large Data 1.26 1.862 0.99 0.067 6.431 1.26 0.99 2497

The fitting graphs of Equation (4.5) are shown in Figures 4-37 (All Data), 4-38 (Small

Data), 4-39 (Medium Data) and 4-40 (Large Data). However, the fitting graphs of

Equation (4.6) are depicted in Figures 4-41 (All Data), 4-42 (Small Data), 4-43 (Medium

Data) and 4-44 (Large Data). To better compare the non-linear equation with linear

equation, Equation (4.6) is used for the linear regression. Despite the fact that the linear

regression that represents the whole dataset (Figure 4-41) slightly surpasses the non-

linear regression models that represent whole dataset, this model (Figure 4-41) does not

perform well when the size of the input data points is too small or too large.

120

Consequently, this model is ignored and the other three models (Small, Medium and

Large) are used instead. The comparison between the proposed models is presented in

Section 4.9. Please note that Equations (4.5) and (4.6) as well as the non-linear equations

(Section 4.3) only represent the non-linear relationship between software effort and size

as shown in Figure 4-4 and not the final equations for predicting software effort. The

final equation of software effort is represented in Section 4.7 (Equation 4.7).

121

Figure ‎4-21 Size, all data

Figure ‎4-22 Effort, all data

Figure ‎4-23 Size, small data

Figure ‎4-24 Effort, small data

Figure ‎4-25 Size, medium data

Figure ‎4-26 Effort, medium data

122

Figure ‎4-27 Size, large data

Figure ‎4-28 Effort, large data

Figure ‎4-29 ln (Size_All_Data)

Figure ‎4-30 ln (Effort_All_Data)

Figure ‎4-31 ln (Size_Small_Data)

Figure ‎4-32 ln (Effort_Small_Data)

123

Figure ‎4-33 ln (Size_Medium_Data)

Figure ‎4-34 ln (Effort_Medium_Data)

Figure ‎4-35 ln (Size_Large_Data)

Figure ‎4-36 ln (Effort_Large_Data)

124

Figure ‎4-37 ln(size/effort), all data

Figure ‎4-38 ln(size/effort), small data

Figure ‎4-39 ln(size/effort), medium data

125

Figure ‎4-40 ln(size/effort), large data

Figure ‎4-41 Size/effort, all data

Figure ‎4-42 Size/effort, small data

126

Figure ‎4-43 Size/effort, medium data

Figure ‎4-44 Size/effort, large data

4.5 Radial Basis Function Neural Network

The diagram of the Radial Basis Function Neural Network (RBFNN) model is presented

in Figure 2-3. The input layer of our proposed model has four inputs which are software

size, project complexity, team productivity and requirements stability. The training

process performed in the neural network models is different from the regression models.

127

This is because in the regression models, the first step was to represent the non-linear

relationship between software effort and size. The second step was to include the

influence of the other three factors (project complexity, team productivity and

requirements stability). Our proposed neural network models map non-linear

relationships between the input and output of the model. For this reason, we trained our

neural network models, the RBFNN and the GRNN (presented in Section 4.6) using

actual projects by giving four inputs to the model and one output (software effort).

Nonetheless, it is important that our models are trained based on different data sizes

(small, medium and large). Among the whole project dataset (214 projects), there are 85

small projects (size less than 100 UCP), 69 medium-sized projects (size between 100 and

300 UCP) and 60 large projects (size greater than 300 UCP). In general, neural network

models are trained using 70% of the whole data and tested (evaluated) using the

remaining 30%. To guarantee that our model is trained and tested using dataset of

different sizes, 70% of each range (small, medium and large) is used for training and the

remaining 30% of each range are used for evaluating the models. So, the RBFNN and

GRNN models are trained using 149 industrial projects that include 60 small projects, 48

medium-sized projects and 41 large projects. The software effort/size relationship of

these 149 projects is depicted in Figure 4-45. The remaining data (25 small projects, 21

medium projects and 19 large projects) are used to evaluate not only the neural network

models, but also the regression models. The purpose that the same data is used to

evaluate the four models is to conduct a thorough and unbiased comparison among these

four models as shown in Section 4.9.

128

Figure ‎4-45 Size/ effort relationship

In general, RBFNN networks are trained using k-means clustering to find cluster centers

that can be used as centers for the RBF functions. However, this method has been

criticized because clustering results are not sensitive to initial conditions and ignore the

influence of dependent variable [17], and thus this method does not provide the optimal

centre for the RBF functions. In this work, the RBFNN model is trained using the

algorithm proposed by Chen et al [18]. This algorithm uses the orthogonal forward

selection method based on the leave one-out criterion. The number of the hidden neurons

will start by one and is increased until the best training results are achieved. Best results

are achieved when the average error in the training stage is minimal as well as the

validation error. To avoid overfitting (when the error is very low during training but high

in the validation), the k-fold (k=10) cross validation technique was used. The training

129

points were divided into 10 groups, such that 9 groups were used for training and 1 group

for validation. The process was repeated 10 times so that all data points were used in

training and validations. The average error of the 10 stages is reported. The training

process stopped when the number of the hidden neurons reached 9 as shown in Figure 4-

46. The proportion of variance explained by the model (R
2
) in the training and validation

processes is 0.99 and 0.51 respectively. The root mean squared errors (RMS) in the

training and validation are 2,015 and 15,063 respectively. Figure 4-47 shows the

relationship between the actual and predicted target values.

Figure ‎4-46 Number of neurons

130

Figure ‎4-47 Actual versus predicted effort

The main parameters of the RBFNN model (center and spread of each neuron for each

input variable) are shown in Table 4-6. The complete list of parameters is shown in

Appendix G.

Table ‎4-6 RBFNN parameters

 Size Project Complexity Team

Productivity

Requirements Stability

Neuron Center Spread Center Spread Center Spread Center Spread

1 14.09 57.97 0.24 379.54 -3.46 268.98 0.66 193.23

2 -0.30 9.86 -0.07 0.11 -3.68 149.66 1.92 390.26

3 1.72 0.27 -0.25 141.66 0.46 344.43 0.26 31.22

4 0.20 329.25 -0.07 204.63 -0.85 300.51 0.58 0.06

5 14.56 144.28 -0.06 67.63 -1.61 151.21 0.53 0.15

6 1.22 1.01 0.12 355.93 0.95 333.81 1.76 296.17

7 -0.06 10.68 -0.20 380.31 -2.22 179.61 1.65 137.95

8 0.60 10.91 0.29 95.95 -3.22 167.00 0.20 21.36

9 6.37 234.47 0.08 199.07 0.42 192.66 1.66 1.77

131

4.6 General Regression Neural Network

This section presents the General Regression Neural Network (GRNN) model. The

diagram of this model is shown in Figure 2-4. Like the RBFNN model, the GRNN model

was trained using 149 different data points (60 small, 48 medium and 41 large). The most

important parameter of the GRNN model is the spread value. Eleven experiments (Table

4-7) were conducted to learn the optimal value of the spread by taking different values of

spread. If the spread value is very small, the training error will be small but the validation

error will be high and this leads to overfitting. When the spread value increases, the

training error increases where the validation error decreases to a point where both the

training and validation errors start to increase until the training and the validation errors

become equal. The k-fold (k=10) cross validation technique was used in the training

stage. The optimal value of the spread value was selected based on the values of R
2
 and

RMS in each of the training and validation stages. The best results were obtained when

the spread value was 0.81.

Figure (4-48) shows the relationship between the actual and predicted target values.

132

Table ‎4-7 GRNN spread value

 Training Validation

Spread R2 RMS R2 RMS

0.5 0.99 1530 0.53 14479

0.6 0.99 1761 0.57 13950

0.7 0.99 2041 0.57 13840

0.81 0.99 2431 0.70 11705

0.85 0.99 2578 0.67 12044

0.88 0.98 2661 0.68 12098

0.93 0.98 2850 0.64 12795

1.44 0.96 4377 0.68 12146

2.81 0.88 7446 0.75 10577

3.10 0.86 8096 0.51 13787

6.05 0.56 14180 0.56 14159

Figure ‎4-48 Actual versus predicted target (GRNN)

133

4.7 Software Estimation

This section presents the prediction of software estimation based on the above four

models (non-linear regression, linear regression, RBFNN and GRNN).

4.7.1 Estimation using non-linear regression

Our novel model for software effort estimation is different from the one proposed in

Equation (4.2), as our model incorporates the non-linear relationship between software

size and effort and the requirements uncertainty, in addition to project complexity and

team productivity. The general equation of our model is shown as follows:

*
().

C R
Effort f size

P
 (4.7)

Where ―Effort‖ is measured in person-hours, ―C‖ is the project complexity as introduced

in Section 4.2.2, ―R‖ is the degree of the requirements stability as introduced in Section

4.2.4 and ―P‖ is the productivity as depicted in Table (4-3) in Section 4.2.3. Equation

(4.7) shows that effort is proportional to project complexity and requirements instability

and inversely proportional to productivity. For instance, Equation (4.7) answers the

second, third and fourth research questions. The complexity ―C‖ can increase the effort

by 30%. The requirements uncertainty ―R‖ can increase the effort by 40%. The

productivity ―P‖ can increase the effort by 42%. By taking the influence of each of the

complexity, productivity and requirements uncertainty factors, we deduced that the three

factors combined (non-functional requirements) can increase software effort by 160%

and this answers the fifth research question proposed in Section 1.2.

134

f(size) is different for each range (Small, Medium and Large) and calculated as follows:

2(_) * * .f size small a size b size c   (4.8)

Where ―size‖ is software size of values less than 100 UCP calculated based on the rules

listed in Section 2.1. The constants ―a‖, ―b‖ and ―c‖ have values of 0.08, 12 and -20,

respectively. Similarly,

(_) exp(*).f size medium a b size  (4.9)

Where ―size‖ is software size of values between 100 and 300 UCP calculated based on

the rules listed in Section 4.2.1. The constants ―a‖ and ―b‖ have values of 6.9 and 0.0072

respectively. Similarly,

(_ arg) *exp(*) *exp(*).f size l e a b size c d size  (4.10)

Where ―size‖ is software size of values greater than 300 UCP calculated based on the

rules listed in Section 4.2.1. The constants ―a‖, ―b‖, ―c‖ and ―d‖ have values of 25,780,

0.00067, -29,570 and -0.00083 respectively. Please note that there is a limitation for the

maximum size that can be used. This is discussed in the Threats to Validity Section

(Section 4.10).

4.7.2 Estimation using linear regression

Equation (4.7) will also be used to estimate software effort using the linear regression

model. Similarly, f(size) is different for each range (Small, Medium and Large) and

calculated as follows:

() *() .Bf size A size (4.11)

135

Where A=5.431 and B=1.25 for the small range (size less than 100 UCP), A=4.602 and

B=1.286 for the medium range (size between 100 and 300 UCP), A=6.431 and B=1.26

for the large range (size greater than 300 UCP). Please note that there is a limitation for

the maximum size that can be used. This is discussed in the Threats to Validity Section

(Section 4.10).

4.7.3 Estimation using RBFNN and GRNN

Each of the neural network models is trained and designed to take 4 input vectors which

are software size, project complexity, team productivity and requirements stability. The

output is the predicted target (software effort) measured in person-hours.

4.8 Models verification

In this section, we will verify the regression and the neural network models by injecting

random data points to the input and measuring the output. For regression models, 10 data

points are chosen such that 5 data points are of size ranging between 90 and 110 UCP.

However, the other 5 data points are of size between 280 and 320 UCP. The reason

behind choosing these data points is that size of the first 5 points is critical and can be

used as input to the model of the small range (less than 100 UCP) or with the model of

the medium range (between 100 and 300 UCP). Similarly, the second 5 data points fall

between the medium and the large ranges. Regarding the neural network models, 16 data

points of size ranging between 50 and 800 UCP (incremented by 50) are used to verify

the RBFNN and the GRNN models. The other three inputs (product complexity, team

productivity and requirements stability) are considered normal (value = 1). The main goal

136

of verifying the neural network models is to check the output of the models when the

input slightly increases. Please note that the verification part is different from the

evaluation part (Section 4.9) where the regression and the neural models are tested using

the same industrial data points.

4.8.1 Non-Linear Model Verification

Equations (4.8), (4.9) and (4.10) represent three non-linear regressions used for small,

medium, and large software size, respectively. However, before we can generalize these

equations, we have to make sure that there is no abrupt change in results when Equations

(4.8) and (4.9) are used at the same time with software size around 100 UCP. The same

assumption is valid when applying Equations (4.9) and (4.10) on projects of size around

300 UCP. In other words, Equation (4.8) should be used on projects of sizes that belong

to the interval [1,100] and Equation (4.9) should be used on the interval [100,300]. But

since the interval [90,110] falls between the intervals [1,100] and [100,300], the results

obtained from applying Equations (4.8) and (4.9) when software sizes belonging to the

interval [90,110] should be close. This assumption should be correct if we try to use

Equations (4.9) and (4.10) on projects of software size that fall in the interval [280,320].

To verify the above hypothesis, Equations (4.8) and (4.9) are applied on five software

size values which are 90, 95, 100, 105 and 110. Similarly, Equations (4.9) and (4.10) are

applied on five values which are 280, 290, 300, 310 and 320. Table 4-8 shows the results

with the mean error and the 95% confidence interval. These results show that the mean

error and the 95% confidence interval are relatively small and thus, we conclude that

137

there is a smooth transition from Equation (4.8) to Equation (4.9) and from Equation

(4.9) to Equation (4.10).

Table ‎4-8 Non-linear regression verification

Software Size (UCP) Equation (4.8) Equation (4.9) Equation (4.10)

90 1708 1916 N/A N/A

95 1842 1987 N/A N/A

100 1980 2060 N/A N/A

105 2122 2136 N/A N/A

110 2268 2215 N/A N/A

280 N/A N/A 7583 7668

290 N/A N/A 8152 8070

300 N/A N/A 8764 8473

310 N/A N/A 9422 8876

320 N/A N/A 10129 9278

Mean Error -78.8 337

Margin Error (95%

CI)

128 460

Confidence Interval 78.8 128  337 460

4.8.2 Linear Model Verification

The same process used to verify the non-linear model is used to verify the linear one.

Table 4-9 shows the results with the mean error and the 95% confidence interval. Results

show that the transition from the Small to the Medium ranges is very smooth and is better

than the transition in the non-linear regression. However, the transition between the

Medium and Large ranges is smoother in the non-linear regression. Most importantly,

models verification does not show the accuracy of models. The accuracy (evaluation) is

presented in Section 4.9.

138

Table ‎4-9 Linear regression verification

Software Size (UCP) Equation (4.11)small Equation (4.11) medium Equation (4.11)large

90 1505 1500 N/A N/A

95 1610 1608 N/A N/A

100 1717 1717 N/A N/A

105 1825 1828 N/A N/A

110 1934 1941 N/A N/A

280 N/A N/A 6456 7792

290 N/A N/A 6754 8145

300 N/A N/A 7055 8500

310 N/A N/A 7359 8859

320 N/A N/A 7666 9220

Mean Error -0.6 -1445

Margin Error (95% CI) 5.7 106.7

Confidence Interval 0.6 5.7  1445 106.7 

4.8.3 Neural Network models verification

To verify the RBFNN and GRNN models, 16 data points are used that have average

values in complexity, productivity and requirements stability (values = 1). The size of

these data points varies between 50 and 800 UCP incremented by 50. The main goal of

this verification is to measure the output (predicted effort) when software size varies from

small project size to large project size. There are two main hypotheses in the verification

of the neural network models. First, software effort is proportional to software size. An

increase in software size should lead to an increase to software effort. The second

hypothesis is that a slight change in software size should not lead to a big change in

software effort. Table 4-10 shows the results of RBFNN and GRNN models.

139

Table ‎4-10 Neural network models verification

 RBFNN GRNN

Size Effort Ratio Effort Ratio

50 383.95 7.68 1053.54 21.07

100 1521.26 15.21 2400.63 24

150 2933.26 19.56 2926.72 19.51

200 4611.92 23.06 3652.51 18.26

250 6516.15 26.06 4623.15 18.49

300 8574.92 28.58 5857.78 19.52

350 10711.75 30.61 7332.30 20.94

400 12875.90 32.19 8982.60 22.45

450 15027.60 33.39 10729.94 23.84

500 17058.79 34.12 12508.65 25.01

550 18773.60 34.13 14285.46 25.97

600 20055.82 33.43 16084.77 26.80

650 21050.16 32.38 18025.33 27.73

700 22073.24 31.53 20316.17 29.02

750 23354.45 31.14 23096.08 30.79

800 24928.72 31.16 26120.43 32.65

The effort column corresponds to the output of the model; however, the ratio column

corresponds to the division of the effort by the size. As a comparison between the

RBFNN and GRNN models in the verification stage, in the first data point, we notice that

the RBFNN models underestimates small projects, however, the GRNN model

overestimates small projects. With respect to the other 15 data points, both models

perform well with an advantage to the GRNN model as it seems to be more robust. The

accuracy of these models is presented in Section 4.9.

140

4.9 Models Evaluation and Comparison

This section presents the evaluation of the regression and neural network models. The

models were evaluated using 65 industrial projects using different evaluation criteria such

as MMRE, MMER, PRED and the Mean Error with 95% Confidence Interval (CI). Our

model is compared with other models that conduct software estimation from the use case

diagrams such as the original UCP and Schneider’s et al. models. Furthermore, a

discussion is provided in regards to the assessment of models.

4.9.1 Project Dataset

This research is based on software effort prediction from use case diagrams. We have

encountered many difficulties in acquiring industrial projects because revealing UML

diagrams of projects is considered confidential to many companies. For this reason, we

have prepared a questionnaire that could help us obtain industrial data without actually

having UML diagrams. In this questionnaire, we asked for example, the quantity of use

cases in each project, the number of transactions in the Main Success Scenario and in the

Extensions part, actual software size and effort as well as some non-functional

requirements such as the project complexity, uncertainty in requirements, and factors

contributing to productivity. Two hundred and fourteen industrial projects were collected

from three main sources using the questionnaire presented in Appendix B. These include

(See Appendix E and Appendix F):

141

 Source 1: One hundred and fifty six projects of software efforts vary between 120

person-hours and 60,826 person-hours were used as part of our whole dataset. The

main architecture of these projects is web architecture. Application types include

customer billing software, network management, insurance software, as well as

human resource. Programming languages include C++, Powerbuilder, Java and

.Net.

 Source 2: Thirteen projects were prepared that met our requirements. The range of

the projects effort falls between 4,648 and 129,353 person-hours. Information

about project types were kept confidential as required from the company.

 Source 3: This is a medium-sized company that employs 14 people to develop

several projects such as information systems for chains of hotels, multi-branch

universities and multi-warehouses book stores. The architectures used to develop

these projects are 2-tier desktop application and 3-tier web architecture. The

CASE tool used is Sybase PowerDesigner 12.5 and 15. Forty five projects of

effort between 570 and 224,890 person-hours were collected.

4.9.2 Models Evaluation

To fairly compare the four models, same data points (65 projects) were used for

evaluation. These data points contain 25 small projects (size less than 100 UCP), 21

medium-sized projects (size between 100 and 300 UCP) and 19 large projects (size larger

than 300 UCP). These data points were not included in the training stage of the models.

To thoroughly compare these models, we have conducted four experiments. In the first

142

experiment, the whole data points (65 projects) were used. In this experiment, the three

non-linear regression models and the three linear regression models were used based on

the value of software size (models that were developed based on the Small range are used

to evaluate data points of size less than 100 UCP. The same is correct for other models).

Then, we divided the whole dataset into three ranges; the Small range (25 projects), the

Medium range (21 projects) and the Large range (19 projects). In each of the four

experiments, our model (two regression and two neural network models) was evaluated

against other models that predict software estimation from the use case diagrams such as

the UCP and Schneider’s model. The evaluation criteria used for testing are MMRE,

MMER, and Mean Error with CI at 95%, as well as PRED (25), PRED (50), PRED (75)

and PRED (100). The PRED values were calculated based on both the MMER and the

MMRE criteria. Moreover, in each of the four different experiments, the interval plots at

95% CI of MMRE, MMER and Mean Error were constructed (Figures 4-49 to 4-60). The

labels ―non-ln‖, ―UCP‖, ―Sch‖, ―ln‖, ―RB‖ and ―GR‖ correspond to ―non-linear

regression model‖, ―UCP model‖, ―Schneider’s model‖, ―linear regression model‖,

―RBFNN model‖ and ―GRNN model‖ respectively. The main goal of conducting four

experiments is to see how each of the models performs for different software size ranges.

Tables 4-11, 4-12, 4-13 and 4-14 show the evaluation results of the models based on the

All, Small, Medium and Large ranges.

143

Table ‎4-11 Models evaluation- all data points

Criteria Non-linear UCP Schneider Linear RBFNN GRNN

MMRE 0.29 0.53 0.50 0.28 0.57 0.86

MMER 0.40 1.56 1.23 0.43 0.55 0.53

PRED_25_MMRE 49.23 12.3 10.7 49.23 32.30 35.38

PRED_50_MMRE 84.6 41.5 43 89.23 61.53 63.07

PRED_75_MMRE 98.46 86.15 96.9 98.46 73.84 80

PRED_100_MMRE 98.46 98.46 98.46 98.46 86.15 84

PRED_25_MMER 50.76 10.76 10.76 41.53 30.76 30.76

PRED_50_MMER 73.84 20 27.69 67.69 56.92 63.07

PRED_75_MMER 84.61 30.76 38.46 81.53 78.46 80

PRED_100_MMER 90.76 43.07 44.61 90.76 90.76 90.76

Mean Error

CI(95%)

1366+/-

1503

9261+/-

6316

8674+/-

6234

4350+/-

3528

72004+/-

3134

154335+/-

2208

Table ‎4-12 Models evaluation- small range

Criteria Non-linear UCP Schneider Linear RBFNN GRNN

MMRE 0.29 0.55 0.53 0.25 0.75 1.66

MMER 0.29 1.31 1.14 0.31 0.43 0.43

PRED_25_MMRE 64 8 4 76 24 28

PRED_50_MMRE 80 44 48 88 48 44

PRED_75_MMRE 96 88 96 96 76 60

PRED_100_MMRE 96 96 96 96 88 64

PRED_25_MMER 76 4 4 68 32 32

PRED_50_MMER 84 12 24 84 68 56

PRED_75_MMER 92 32 44 88 72 80

PRED_100_MMER 92 48 52 92 88 100

Mean Error CI(95%) -152+/- 249 816+/- 294 752+/- 294 -1.34+/- 235 -158+/- 390 885+/- 354

144

Table ‎4-13 Models evaluation- medium range

Criteria Non-linear UCP Schneider Linear RBFNN GRNN

MMRE 0.41 0.55 0.50 0.41 0.57 0.48

MMER 0.67 1.87 1.33 0.70 0.86 0.76

PRED_25_MMRE 9.5 14.28 14.28 4.7 19.04 23.80

PRED_50_MMRE 80.95 33.33 33.33 85.71 52.38 57.14

PRED_75_MMRE 100 76.19 100 100 76.19 85.71

PRED_100_MMRE 100 100 100 100 85.71 95.23

PRED_25_MMER 9.5 19.04 19.04 4.76 19.04 9.52

PRED_50_MMER 47.61 23.80 28.57 42.58 38.09 61.90

PRED_75_MMER 66.66 23.80 28.57 61.90 57.14 71.42

PRED_100_MMER 85.71 33.33 33.33 85.71 76.19 76.19

Mean Error

CI(95%)

2301+/-

1300

4096+/-

1612

3639+/-

1433

2424+/-

1260

1760+/-

1628

2223+/-

1674

Table ‎4-14 Models evaluation- large range

Criteria Non-linear UCP Schneider Linear RBFNN GRNN

MMRE 0.16 0.49 0.45 0.19 0.34 0.24

MMER 0.25 1.55 1.23 0.31 0.37 0.40

PRED_25_MMRE 73.68 15.78 15.78 63.15 52.63 57.89

PRED_50_MMRE 94.73 47.36 47.36 94.73 73.68 94.73

PRED_75_MMRE 100 94.73 94.73 100 84.21 100

PRED_100_MMRE 100 100 100 100 100 100

PRED_25_MMER 63.15 10.52 10.52 47.36 47.36 52.63

PRED_50_MMER 89.47 26.31 31.57 73.68 78.94 73.68

PRED_75_MMER 94.73 36.84 42.10 94.73 94.73 89.47

PRED_100_MMER 94.73 47.36 47.36 94.73 94.73 94.73

Mean Error

CI(95%)

2330+/-

4920

26083+/-

19792

24661+/-

19714

12204+/-

11366

725+/-

10750

3713+/-

7287

145

Figure ‎4-49 MMRE, all data

Figure ‎4-50 MMER, all data

146

Figure ‎4-51 Mean error, all data

Figure ‎4-52 MMRE, small data

147

Figure ‎4-53 MMER, small data

Figure ‎4-54 Mean error, small data

148

Figure ‎4-55 MMRE, medium data

Figure ‎4-56 MMER, medium data

149

Figure ‎4-57 Mean error, medium data

Figure ‎4-58 MMRE, large data

150

Figure ‎4-59 MMER, large data

Figure ‎4-60 Mean Error, large data

151

4.9.3 Comparison Between Models

In this section, we will compare the proposed four models as well as the UCP and

Schneider’s models based on the above four experiments. In the first part of the

comparison, all testing data points (65 projects) were used. On the second comparison,

small testing data points (25 projects) were used. Medium (21 projects) and large (19

projects) data points were used in the third and fourth comparisons respectively.

4.9.3.1 Comparison With All Data Points

Table (4-11) and Figures 4-49 to 4-51 show the evaluation of the proposed four models

as well as the UCP and Schneider’s. models when all testing data points were used. Table

(4-11) shows that the proposed four models outperform the UCP and Schneider’s models.

We noticed that the UCP and Schneider’s models deteriorate when the MMER criterion

is used. This means that these two models underestimate the value of the predicted effort.

For instance, the non-linear regression model surpasses the UCP and Schneider’s models

by 116% and 83% respectively when the MMER criterion is used. Moreover, the non-

linear model slightly surpasses the linear one especially in MMER and PRED which is

based on MMER. Regarding the neural network models, we notice that the RBFNN

model competes with the GRNN model when the MMRE criterion is used. On the other

hand, the GRNN model gives better results when other criteria are used, so we can

deduce that the GRNN model is better than the RBFNN model in this case. Figures 4-49

to 4-51 show the interval level of all models based on three criteria. Figure 4-49 shows

152

that the GRNN model has the largest variation based on the MMRE criterion which is not

good.

4.9.3.2 Comparison With Small Data Points

During the training process of the regression models, we noticed that the linear regression

(Figure 4-42) was better than the non-linear model (Figure 4-9). The R
2
 and RMS values

of the linear model are 0.89 and 141.5 respectively; however, these values are 0.84 and

167 with the non-linear model. The same observation was noticed in the testing stage

even with data points that were not used in the training. Table 4-12 shows that the

MMER value of the non-linear model was slightly better than the linear model. On the

contrary, the linear model surpasses the non-linear based on all other criteria. The MMRE

values of the UCP and Schneider’s models are acceptable; however, these models are still

suffering from underestimating software effort as shown in the MMER values. Regarding

the neural network models, the RBFNN surpasses the GRNN model when small testing

data points are used. Figure 4-52 shows that the GRNN model is the worst, while Figures

4-53 and 4-54 show that the UCP and Schneider’s models are the worst.

4.9.3.3 Comparison With Medium-Sized Data Points

In the training stage, the non-linear model (Figure 4-16) outperforms the linear model

(Figure 4-43). This remains true in the evaluation process where the non-linear model

surpasses the linear model and other models in all criteria. The UCP and Schneider’s

models are the worst in this category. Furthermore, the GRNN model surpasses the

RBFNN in this category.

153

4.9.3.4 Comparison With Large Data Points

When large data points were used for testing, we noticed that the non-linear model is the

best model where the linear model comes second. This conclusion was also correct in the

training stage. The GRNN model also outperforms the RBFNN in this category. The

results of the UCP and Schneider’s models are very far from the actual results based on

all criteria.

We can conclude that in general the non-linear regression model has the best results

among all the models, where the linear model comes second. We also noticed that the

GRNN model is better than the RBFNN model. However, we observed that the UCP and

Schneider’s models worsen dramatically when the size of the data points becomes larger

as shown in Figures 4-58 to 4-60. Typically, these models become inappropriate to use

for projects of effort greater than 10,000 person-hours. The reason that the UCP and

Schneider’s models do not perform well with large projects is because these models

define a use case as ―complex‖ when the number of transactions of this use case is more

than 7. Based on our dataset, we found that many use cases have more than 20

transactions. Another reason that contributes to the problem of the UCP and Schneider’s

models when used with large projects is that these models assume that the relationship

between software effort and size is linear.

Based on this comparison, we notice that linear and non-linear regression models as well

as RBFNN and GRNN models can be used for software effort prediction. This answers

the last research question proposed in Section 1.2.

154

4.10 Threats to Validity

Threats to validity can be summarized as follows:

 Four proposed models are used to predict software effort for different ranges of

software size. Nonetheless, our model has a limitation and cannot be used for

projects of more than 4,000 UCP (around 150,000 person-hours). The non-linear

regression model is more sensitive than the linear regression one with large

projects because the equation used in the large range of projects is exponential.

This means that a slight increase in software size over the size limit might cause a

dramatic increase in software effort.

 Based on the data points that we have, the actual effort of the very small projects

(size less than 25 UCP) is much larger than the predicted effort. This might be

because in some companies, there is a base cost in project development no matter

how small the size is. For instance, the predicted effort of a project that has two

small use cases was 55 person-hours; however the actual effort is 378 person-

hours. Nevertheless, our model was not highly affected by this change because

only 4% of the data points are considered as very small.

 Regarding size estimation (Table 4-1), the largest use case is defined when the

number of transactions is more than 20. Although this is much better than the

definition of the largest use case of the UCP model (greater than 7 transactions),

we have noticed that the number of transactions of some use cases in large

155

projects is about 40. This means that the size of these huge use cases is

underestimated.

 It was difficult to elicit the factors that contribute to Productivity (Section 4.2.3)

from the team that is developing software projects. For instance, developers might

be optimistic when answering questions about their experiences and motivations.

Moreover, the motivation of a developer/programmer might differ when placed in

a different team, even in the same project. Furthermore, there is no

straightforward rule to calculate the productivity of the team based on the

productivity of each team member. In this work, the average of all team members

was performed to calculate the productivity of the team. Furthermore, the

productivity factors were obtained from the project manager of each project and

not from the actual people who were involved in developing the projects.

 We were not able to obtain copies of the use case diagrams of the projects

because they are considered confidential and proprietary. We therefore simply

relied on the information provided by those who were involved in preparing the

data used. For instance, an error in counting the number of transactions of a use

case in either the Main Success Scenario or the Extensions part might lead to a

flaw in the design of our model.

4.11 Conclusions

This chapter introduces a novel model based on four sub-models to predict software

estimation from use case diagrams. These models include non-linear regression, linear

156

regression with a logarithmic transformation, Radial Basis Function Neural Network

(RBFNN) and General Regression Neural Network (GRNN). The first step of our model

was to estimate the size of a project by counting the number of use cases in the use case

diagram as well as the number of transactions in both the Main Success Scenario and the

Extensions part. Moreover, the project complexity, team productivity and the degree of

requirements uncertainty are factors in the effort estimation. We have also proved that the

relationship between software effort and size is non-linear because when software size

increases, the number of team members required to develop this software increases.

When the team becomes larger, communication overhead will incur and this requires

additional effort. This concludes that when software size increases, software effort will

increase exponentially. Furthermore, when building regression models, we found that one

regression equation cannot fit all project datasets of different size ranges. For this

purpose, we proposed three non-linear equations as well as three linear equations for

software effort estimation that can be used with three different ranges (Small, Medium

and Large) of software size. In the non-linear regression, a second degree polynomial

equation was proposed for the Small range and two different exponential equations were

proposed for the Medium and Large projects respectively. We have noticed that the non-

linear relationship is not significant in the Small projects and thus, the linear regression

model performed better in this range. However, the non-linear relationship stands out in

the Medium and Large projects.

Two neural network models were also proposed to predict software effort. The GRNN

model was slightly better than the RBFNN. We also showed that the RBFNN and GRNN

157

models can be used for software effort prediction as alternatives method to linear and

non-linear regression.

We have collected 214 industrial projects from three different sources. Sixty five

projects were used to train the regression models; however, 149 projects were used to

train the neural network models. All models were evaluated (tested) using 65 projects

based on four experiments which include evaluation using all data points (65 projects),

evaluation using small data points (25 projects), evaluation using medium-sized data

points (21 projects) and evaluation using large data points (19 projects). Our model

was also evaluated against two other models (UCP and Schneider) that predict

software effort from use cases. We used four different evaluation criteria; MMRE,

MMER, PRED and the Mean Error with 95% Confidence Interval (CI). The proposed

model gave promising results in comparison with the other two models and especially

with the MMER criterion. Our model is limited to projects of maximum effort around

150,000 person-hours. Despite this limitation, we believe that our model can widely be

applied since 150,000 person-hours projects are classified as large in the eye of the

industry.

158

References

[1] G. Karner, "Resource Estimation for Objectory Projects," Objective Systems, 1993.

[2] M. Ochodek, J. Nawrocki and K. Kwarciak, "Simplifying effort estimation based on

Use Case Points," Information and Software Technology, vol. 53, pp. 200-213, 2011.

[3] D. Baccarini, "The concept of project complexity—a review," Int. J. Project Manage.,

vol. 14, pp. 201-204, 8, 1996.

[4] L. Ireland, "Project complexity: A brief exposure to difficult situations," Asapm,

Tech. Rep. PrezSez 10-2007, 2007.

[5] D. D. Galorath and M. W. Evans, Software Sizing, Estimation, and Risk Management.

Boston, MA, USA: Auerbach Publications, 2006.

[6] S. McConnell, Software Estimation: Demystifying the Black Art. Redmond,

Washington: Microsoft, 2006.

[7] B. Boehm, C. Abts, W. Brown and S. Chulani, Software Cost Estimation with

COCOMO II. Upper Saddle River, New Jersey: Addison Wesley, 2000.

[8] E. H. Mamdani, "Application of Fuzzy Logic to Approximate Reasoning Using

Linguistic Synthesis," IEEE Transactions on Computers, vol. C-26, pp. 1182-1191, 1977.

159

[9] Z. Xu and T. M. Khoshgoftaar, "Identification of fuzzy models of software cost

estimation," Fuzzy Sets and Systems, vol. 145, pp. 141-163, 2004.

[10] P. D. Allison, Event History Analysis: Regression for Longitudinal Event Data. Sage

Publications, 1984.

[11] A. Legendre, Nouvelles Méthodes Pour La Détermination Des Orbites Des Comètes.

“Sur La Méthode Des Moindres Quarrés”. 1805.

[12] C. F. Gauss, Theoria Motus Corporum Coelestium in Sectionibus Conicis Solem

Ambientum. 1809.

[13] A. B. Nassif, D. Ho and L. F. Capretz, "Regression model for software effort

estimation based on the use case point method," in 2011 International Conference on

Computer and Software Modeling, Singapore, 2011, pp. 117-121.

[14] A. B. Nassif, L. F. Capretz and D. Ho, "Estimating software effort based on use case

point model using sugeno fuzzy inference system," in 23rd IEEE International

Conference on Tools with Artificial Intelligence, Florida, USA, 2011, pp. 393-398.

[15] W. Humphrey, A Discipline for Software Engineering. Addison Wesley, 1995.

[16] A. C. Cameron and P. K. Trivedi, Regression Analysis of Count Data. Cambridge,

UK: Cambridge University Press, 1998.

160

[17] J. M. Zhu, P. Du and T. T. Fu, "Research for RBF Neural Networks Modeling

Accuracy of Determining the Basis Function Center Based on Clustering Methods,"

Advanced Materials Research, vol. 317-319, pp. 1529-1536, 2011.

[18] S. Chen, X. Hong and C. J. Harris, "Orthogonal forward selection for constructing

the radial basis function network with tunable nodes," in IEEE International Conference

on Intelligent Computing, 2005, pp. 777-786.

Equation Chapter (Next) Section 1

161

Chapter 5

5. A Treeboost Model for Software Effort Estimation4

5.1 Introduction

This chapter presents a Treeboost model to predict software effort from use case

diagrams based on three independent variables (predictors). These predictors include

software size, productivity and complexity. The Treeboost model was trained using 168

data points and evaluated using 69 projects. To measure the accuracy of the proposed

model, a multiple linear regression model was developed based on the same 168 projects.

The Treeboost model was then evaluated against the multiple linear regression model

developed as well as the use case point model. The evaluation criteria used in this chapter

are MMRE, MMER, PRED(x) and MAE.

The Treeboost algorithm was introduced by J. Friedman [1] [2]. This algorithm was put

forward to improve the accuracy of decision trees models. The Treeboost algorithm has

been applied in many fields such as ecology [9], fresh water studies [10], earth and

4 This chapter has been submitted to the International Conference of Predictive Models in Software

Engineering (PROMISE 2012)

1- Ali Bou Nassif, Danny Ho and Luiz Fernando Capretz, ―A Treeboost Model for Software Effort

Estimation Based on Three Independent Variables‖, Predictive Models in Software Engineering,

2012 (Under review).

162

environmental science [11] and agronomy [12]. Section 5.2 defines the decision tree

model, followed by the introduction of the model’s inputs in Section 5.3. The Treeboost

and the multiple linear regression models are discussed in Sections 5.4 and 5.5,

respectively. The evaluation of models and a discussion on the results are presented in

Sections 5.6 and 5.7 respectively. Section 5.8 lists threats to validity and Section 5.9

concludes the chapter.

5.2 Decision Tree Model

A decision tree is a logical model that is mainly used in operations research, specifically

in decision analysis. A decision tree is composed of nodes of which the topmost node is

called the root. Each node is split into two nodes (children) until a decision is satisfied. A

node with no children is called a terminal node or a leaf. A node is split based on the

condition of a predictor after an analysis of the input data (data points used to train the

decision tree model). Examples of this analysis include the study of the influence of each

predictor on the dependent variable. For instance, based on the analysis of the variables

of the proposed model, when calculating the dependent variable ―effort‖, the predictor

―size‖ is more important that the predictors ―productivity‖ and ―complexity‖. The type of

the dependent variable (target) can be continuous (e.g. 100, 200, 500, etc.) or categorical

(e.g. ―male‖, ―female‖). If the target variable is continuous, the name of the decision tree

is called Regression. However, if the target variable is categorical, the name of the

decision tree is called Classification. There are many available tools to generate decision

trees such as Automatic Interaction Detection (AID) [3], CHAID [4], THAID [5] and

163

DTREG [6]. Figure (5-1) shows an example of a decision tree to build a model to predict

software effort from three independent variables (size, productivity and complexity). The

model is trained using 168 data points. For instance, the proposed Treeboost model

(Section 5.4) uses the same training data points and variables used to train the decision

tree model (Figure 5-1). In this figure, the root node is fed with 168 data points for

training purposes. The average (mean) effort of these data points is 7,189 person-hours.

The root node (Node 1) is split into two nodes (Node 2 and Node 3) based on a value of

the size (size=570). Similarly, Nodes 2, 3, 4 and 12 are split based on the variable ―size‖.

Nodes 5, 6 and 7 are split based on the variable ―productivity‖. However, Node 13 is split

based on the variable ―complexity‖.

The main advantage of the decision tree model is that it displays the problem and its

solution at a level that be comprehended by technical and non-technical people.

164

Figure ‎5-1 Decision tree model

The main limitation of the decision tree model is that it lacks accuracy if the number of

training rows is insufficient. To enhance the accuracy of the decision tree model, the

Treeboost model is brought into play.

5.3 Model’s‎Inputs

This chapter focuses on predicting software effort from use case diagrams based on three

independent variables. These include software size, productivity and complexity.

Software size was computed based on the use case point method (Equation 2.22). The

reason that requirements stability was not included as an independent variable (as was the

case in Chapter 4), is because in this experiment, a multiple linear regression model was

created to compare it against the Treeboost model. Generating multiple linear regression

models based on four independent variables (if requirements stability was an independent

165

factor) becomes inappropriate if the number of training rows is small. Requirements

stability factor was one of the factors that contributed to the productivity factor (Table 2-

6). To compensate the importance of the requirements stability factor, several

experiments were conducted to adjust its weight by assigning values from 2 to 5,

incremented by 0.5. The multiple linear regression model (Equation 5.3) was generated

based on each trial (from 2 to 5 incremented by 5). The highest R
2
 value was achieved

when the requirements stability weight was ―4‖. This indicates that the requirements

stability weight was modified from 2 (initial weight proposed by the UCP model) to 4.

The productivity factor was calculated according to this equation:

8

1

Pr .i i

i

oductivity E W


  (5.1)

Where Ei and Wi are the Environmental factors and their corresponding weights as

depicted in Table (2-6) with one exception for the weight of the requirements stability

factor (weight is 4 instead of 2).

Regarding project complexity, we introduce five levels of complexity based on these

rules:

 Level-1: The complexity of a project is classified as Level-1 if the project team is

familiar with this type of project and the team has developed similar projects in the

past. The number and type of interfaces are simple. The project will be installed in

normal conditions where high security or safety factors are not required. Moreover,

Level-1 projects are those for which around 20% of their design or implementation

166

parts are reusable (came from old similar projects). The weight of the Level-1

complexity is 1.

 Level-2: This is similar to Level-1 category except that only about 10% of these

projects are reusable. The weight of the Level-2 complexity is 2.

 Level-3: This is the normal complexity level where projects are not said to be simple,

nor complex. In this level, the technology, interface, and installation conditions are

normal. Furthermore, no parts of the projects had been previously designed or

implemented. The weight of the Level-3 complexity is 3.

 Level-4: In this level, the project is required to be installed using a complicated

topology/architecture such as distributed systems. Furthermore, in this level, the

number of variables and interface is large. The weight of the Level-4 complexity is 4.

 Level-5: This is similar to Level-4 but with additional constraints such as a special

type of security or high safety factors. The weight of the Level-5 complexity is 5.

Please note that software effort is inversely proportional to productivity and proportional

to complexity.

5.4 The Treeboost Model

The Treeboost model is also called Stochastic Gradient Boosting (SGB) [2]. Boosting is a

method to increase the accuracy of a predictive function by applying the function

frequently in a series and combining the output of each function. In other words, as

Kearns once asked [7], ―can a set of weak learners create a single strong learner?‖. The

167

main difference between the Treeboost model and a single decision tree is that the

Treeboost model consists of a series of trees. The main limitation of the Treeboost is that

it acts like a black box (similar to some neural network models) and cannot represent a

big picture of the problem as a single decision tree does. The Treeboost model has the

following characteristics:

 The Treeboost uses Huber-M loss function [8] for regression. This function is a

hybrid of ordinary least squares (OLS) and Least Absolute Deviation (LAD). For

residuals which are less than a cutoff point (Huber’s Quantile Cutoff), the square

of the residuals is used. Otherwise, absolute values are used. This method is used

to alleviate the influence of outliers. For outliers, where residuals have high

values, squaring the residuals will lead to huge values, so outliers will be treated

with the ―absolute values‖ method instead. The Huber’s Quantile Cutoff value is

recommended to be between 0.9 and 0.95. If it is 0.9, the residuals will first be

sorted from small to high. Then, the smallest 90% of the residuals will be squared

(OLS) and the other residuals (largest 10%) will be treated with the LAD method.

 In the Stochastic Gradient Boosting algorithm, ―Stochastic‖ means that instead of

using all data for training, a random percentage of training data points (50% is

recommended) will be used for each iteration instead. This has yielded an

improvement in the results.

 The Stochastic Gradient Boosting (SGB) algorithm has a factor called Shrinkage

factor. Experiments show that multiplying each tree in the series by this factor

168

(between 0 and 1) will delay the learning process and consequently, the length of

the series will be longer to compensate for the shrinkage. This also leads to better

prediction values.

 To improve the optimization of the process, an Influence Trimming Factor is

applied. In the Treeboost model, the residual errors of a tree are used as inputs to

the next consecutive iteration. The Influence Trimming Factor allows the rows

with small residuals to be excluded. If this factor is 0.10, rows with residuals that

represent less than 10% of the total residual weight will be ignored.

The Treeboost algorithm is described in Equation (5.2):

0() 1* 1() 2* 2() ... * ().F x F A T x A T x AM TM x     (5.2)

Where F(x) is the predicted target, F0 is the starting value, x is a vector which represents

the pseudo-residuals, T1(x) is the first tree of the series that fits the pseudo-residuals (as

defined below) and A1, A2, etc. are coefficients of the tree nodes. The Treeboost

algorithm is applied based on the following rules:

1- Find the coefficient of F0. This is the mean of the target variable.

2- Select the rows that will feed the next tree. If the stochastic factor is set to 0.5,

50% of the rows will be randomly chosen.

3- Sort the residuals of the rows being used and transform the residuals using

Huber’s Quantile Cutoff factor. The transformed residual values are called

pseudo-residuals.

169

4- Fit the first tree (T1) to pseudo-residuals.

5- Calculate the mean of the pseudo-residuals in each of the terminal nodes. This

mean becomes the predicted variable of the node.

6- Calculate the residuals between the predicted variable and the pseudo-residuals

that fed the tree, and apply Huber’s Quantile Cutoff factor again. Then, compute

the mean of these residuals.

7- Calculate the boost coefficient (A1) of the node which is the difference between

the mean residual value and the mean of the predicted values of the tree.

8- Multiply the boost coefficient by the shrink value to retard the learning process.

Regarding the use of the Treeboost algorithm in software estimation, one modest work

has been published by M. Elish [13] that compares a Stochastic Gradient Boosting model

with other neural and regression models. The main limitations of Elish’s work include:

 The Stochastic factor was set to 1. This means that all data points were used for

training. However, the main goal of the SGB algorithm (the stochastic part) is that

a random portion of the training data should be used for training as opposed to

using all data. By setting the Stochastic factor to ―1‖, the Stochastic Boosting

Algorithm will no longer be ―stochastic‖.

 Some important parameters such as the number of trees and shrinkage factor are

missing.

 The model and other neural and regression models were only trained using 18

projects. This is insufficient.

170

 The comparison conducted between the SGB and other models was based on

training and generalization processes only. In other words, the models should

have been tested with new data that were not included in the training process.

The Treeboost model proposed in our research work was trained using 168 data points

based on the parameters listed in Table (5-1). Figure (5-2) shows the plot of the training

data points used in the experiment and the training curve. Figure (5-3) shows the actual-

predicted effort diagram. The model was developed based on a series of 1,000 trees. To

avoid overfitting during the training process, 20% of the training rows were used for

validation. As shown in Figure (5-4), best validation results (the blue line represents the

training process and the red line represents the validation process) were obtained when

the number of trees was 359. Appendix H shows the validation error for each tree.

The analysis of variance (ANOVA) shows that the coefficient of determination (R
2
) and

the Root Mean Squared Error (RMS) are 0.97 and 1,556, respectively in the training

process. However, R
2
 and RMS values in the validation process are 0.86 and 4,385,

respectively.

Table ‎5-1 Model's Parameters

of trees Huber Quantile Cutoff Shrinkage Factor Stochastic Factor Influence Trimming Factor

359 0.9 0.1 0.5 0.1

171

Figure ‎5-2 Data points used in training and the learning curve

Figure ‎5-3 Actual versus predicted effort

172

Figure ‎5-4 Number of trees, training and validation curves

5.5 Multiple Linear Regression Model

The multiple linear regression model was constructed using the same 168 data points that

were used to train the Treeboost model. Minitab version 16 was used for this purpose.

The equation of the regression model is:

3661 (32.7) (183 Pr)

(1080).

Effort Size oductivity

Complexity

     


 (5.3)

Where Effort is measured in person-hours, Size in UCP, Productivity is measured based

on Equation (5.1) and Complexity is measured as proposed in Section (5.3). Equation

(5.3) shows that Effort is proportional to Size and Complexity but inversely proportional

to Productivity. This indicates that if the size or the complexity of a project increases,

173

software effort will increase. However, for the same software size and complexity, less

effort is required to develop the project if a highly productive team is used.

To measure the accuracy of the regression model, we measured the value of the

coefficient of determination R
2

which is 0.882. This indicates that approximately 88 % of

the variation in Effort can be explained by the independent variables Size, Complexity

and Productivity. Moreover, we measured the ANOVA and the model parameters. The

―p‖ value of the model is 0.000 which indicates that there is a significant relationship

among the variables at the 99% confidence level. The ―p‖ values of the independent

variables are 0.000 and 0.0083 for the constant. Since the highest ―p‖ value of the

model’s parameters is less than 0.005, this indicates that all independent variables are

significant at the 95% confidence level, and consequently the model is verified.

5.6 Model Evaluation

A total of 237 projects (211 industrial and 26 educational) were used in training and

testing the model. The reason that only 211 industrial projects were used here as opposed

to the 214 industrial projects used in section (4.9.1), is because the largest three projects

were eliminated as they were larger than the largest project used in training the model.

This is one of the limitations of the Treeboost model; the predicted effort of projects of

size above a certain limit is the same. This is discussed in detail in Section 5.8 (Threats to

Validity). Out of the 237 projects, 168 projects (70%) were used for training and 69

projects were used for evaluation. Four different criteria were used for evaluation. These

include MMRE, MMER, PRED and MAE. The Treeboost model was evaluated against

174

the UCP model as well as the multiple linear regression model. Table (5-2) shows the

evaluation results. Figures (5-5), (5-6) and (5-7) show the interval plots of MMRE,

MMER and MAE at 95% confidence level, respectively.

Table ‎5-2 Evaluation results

Criteria Treeboost UCP Multiple Regression

MMRE 0.44 0.40 0.93

MMER 0.35 1.06 0.51

PRED(25) 42 33 31

PRED(50) 75 49 63

PRED(75) 91 52 84

PRED(100) 94 62 88

MAE 2900 3890 3231

Figure ‎5-5 MMRE interval plot

175

Figure ‎5-6 MMER interval plot

Figure ‎5-7 MAE interval plot

176

5.7 Discussion

Table (5-2) shows that the Treeboost model outperforms the UCP and the regression

models when MMER, PRED and MAE criteria are used (lower MMER, MAE values and

higher PRED values). The UCP model was improved by 71% based on the MMER

criterion. The UCP model slightly surpasses the Treeboost model when MMRE was used.

By comparing the MMRE and MMER of the UCP model, we notice that the average

estimated effort of the UCP model is much less than the actual effort. As a comparison

between the UCP and the multiple regression models, the multiple regression model

outperforms the UCP model in all criteria except MMRE.

Figure (5-5) depicts that the multiple linear regression model is the most inferior model

based on the MMRE criteria; not only in the mean value (0.93), but also in the variation

of error (the multiple linear regression model has the longest interval). Figures (5-6) and

(5-7) show how the UCP model deteriorates when MMER and MAE criteria are used.

Bases on the above results, we conclude that the Treeboost model can be used to predict

software effort and can be competitive to other regression models. The Huber’s loss

function makes the model less sensitive to outliers. This indicates that this model is

recommended to estimate projects if the project manager believes that the values of one

or more independent variables might fall beyond the expected ranges.

5.8 Threats To Validity

177

1- The Treeboost model is a series of many small trees. The proposed model consists

of 359 trees. The model was trained using 168 projects with efforts ranging

between 120 and 60,862 person-hours. The mean value is 7,188 person-hours and

the standard deviation is 10,206. This shows that there is a significant difference

in size between the smallest and the largest data point. Despite the good results

obtained from the evaluation of the Treeboost model, this model would perform

better if more training data points would have been used.

2- The neural network and linear/non-linear regression models have the capability to

extrapolate the relationship between input and output vectors during the training

process and thus, can map outputs to inputs even if these inputs are beyond (to a

certain degree) the inputs of the training data points. However, this is not true

with Treeboost models. Based on the decision tree model (Figure 5-1), the node

with the largest number (Node 19) handles the last decision. For example, the

condition in Node 19 is that the predicted effort of projects of size larger than 821

UCP is 47,440 person-hours. This shows that the size limitation of testing data

points is around 821 UCP. The Treeboost model works in a similar way, but it is

more complicated than the single decision tree. Nonetheless, the Treeboost model

also has limitations determined by the values of the three independent variables

(size, productivity, complexity). To demonstrate this limitation, the Treeboost

model was tested using 16 data points with sizes ranging between 800 and 1,600

UCP incremented by 50. Since software size is the most important predictor in the

model, productivity and complexity values were set as 20 and 4, respectively for

178

all projects. Figure (5-8) shows the Scatterplot graph between software size and

predicted effort. The graph shows that the predicted effort of any project with a

size greater than 950 UCP (productivity = 20 and complexity =4) is 41,693

person-hours. Although the size limitation varies based on the values of other

predictors (productivity and complexity), it is not recommended to use the

proposed Treeboost model to test projects of size more than 1,000 UCP.

Figure ‎5-8 Scatterplot of size/predicted_effort

5.9 Conclusions

This chapter proposed a Treeboost model to predict software effort based on three

independent variables which include software size, productivity and complexity. The

Treeboost model was developed through a series of 359 trees and was trained using 168

179

data points. The model was evaluated using 69 data points against the UCP, as well as a

multiple linear regression model. The evaluation criteria used were MMRE, MMER,

PRED and MAE. The proposed model is limited to projects of size around 1,000 UCP

(around 40,000 person-hours). Results showed that the Treeboost model outperformed

the multiple linear regression model in all evaluation criteria and surpassed the UCP

model when MMER, PRED and MAE were used. Based on these results, we conclude

that the Treeboost model can be used for software effort estimation and can compete with

other regression models.

180

References

[1] J. H. Friedman, "Greedy Function Approximation: A Gradient Boosting Machine,"

Annals of Mathematical Statistics, vol. 29, pp. 1189-1232, 2001.

[2] J. H. Friedman, "Stochastic gradient boosting," Computational Statistics & Data

Analysis, vol. 38, pp. 367-378, 2002.

[3] J. N. Morgan and J. A. Sonquist, "Problems in the Analysis of Survey Data, and a

Proposal," Journal of the American Statistical Association, vol. 58, pp. pp. 415-434,

1963.

[4] G. V. Kass, "An Exploratory Technique for Investigating Large Quantities of

Categorical Data," Journal of the Royal Statistical Society, vol. 29, pp. 119-127, 1980.

[5] J. N. Morgan and R. C. Messenger, THAID, a Sequential Analysis Program for the

Analysis of Nominal Scale Dependent Variables. Ann Arbor: Survey Research Center,

Institute for Social Research, University of Michigan, 1973.

[6] P. Sherrod, "DTREG," Software for Predictive Modeling and Forecasting, 2011.

[7] M. Kearns, "Thoughts on Hypothesis Boosting," Machine Learning Class Project,

1988.

[8] P. J. Huber, "Robust Estimation of a Location Parameter," Annals of Mathematical

Statistics, vol. 35, pp. 73-101, 1964.

181

[9] R. Lawrence, A. Bunn, S. Powell and M. Zambon, "Classification of remotely sensed

imagery using stochastic gradient boosting as a refinement of classification tree analysis,"

Remote Sensing of Environment, vol. 90, pp. 331-336, 2004.

[10] M. Cappo, G. Deâ€™ath, S. Boyle, J. Aumend, R. Olbrich, F. Hoedt, C. Perna and

G. Brunskill, "Development of a robust classifier of freshwater residence in barramundi

(Lates calcarifer) life histories using elemental ratios in scales and boosted regression

trees," Marine and Freshwater Research, vol. 56, pp. 713-723, 07/25, 2005.

[11] J. M. MatÃas, A. Vaamonde, J. Taboada and W. GonzÃ¡lez-Manteiga, "Support

vector machines and gradient boosting for graphical estimation of a slate deposit,"

Stochastic Environmental Research and Risk Assessment, vol. 18, pp. 309-323, 2004.

[12] K. D. Shepherd, C. A. Palm, C. N. Gachengo and B. Vanlauwe, "Rapid

Characterization of Organic Resource Quality for Soil and Livestock Management in

Tropical Agroecosystems Using Near-Infrared Spectroscopy," Agronomy Journal, vol.

95, pp. 1314-1322, 2003.

[13] M. O. Elish, "Improved estimation of software project effort using multiple additive

regression trees," Expert Systems with Applications, vol. 36, pp. 10774-10778, 9, 2009.

182

Chapter 6

6. Summary and Future Work

Each chapter has its own conclusions. This chapter summarizes the entire thesis and

presents research avenues for the future work. In this thesis, we proposed an innovative

model to predict software size and effort from use case diagrams. The main model is

composed of six independent sub-models. These sub-models include linear regression

with a logarithmic transformation, non-linear regression, Multilayer Perceptron (MLP)

neural network model, Radial Basis Function Neural Network (RBFNN), General

Regression Neural Network (GRNN) and Treeboost. There are four main inputs to our

model. These include software size, productivity, complexity and requirements

uncertainty.

In Chapter 1, we introduced the motivation of our work and put forward several research

questions. The main motivation of our work was to develop a model to predict software

effort that can be used in the early stages of the software life cycle with a good level of

accuracy. The main research questions were concerned with how a project can be

estimated using cases diagrams and what the influence of non-functional requirements is

on software estimation. Additionally, we inquired about the type of models that can be

used to estimate software effort.

183

The second chapter provides the definition of the most commonly used terms in the

thesis. These include fuzzy logic, neural networks, regression analysis, evaluation criteria

used in this work (MMRE, MMER, PRED, CI and MAE). As well, a literature review

and related work were also presented.

Chapter 3 proposed a linear regression with logarithmic transformation, as well as an

MLP model. The inputs of the MLP were software size and team productivity. Team

productivity factor was calculated based on eight factors as shown in Table (2-6). These

factors include ―familiar with objectory‖ (IBM Rational Unified Process), ―object

oriented experience‖, ―analyst capability‖, ―stable requirements‖, ―application

experience‖, ―motivation‖, ―part-time workers‖ and ―difficult programming language‖.

We also demonstrated that the relationship between software effort and size is not linear

based on 125 projects that have similar productivity values. We compared our model

against two other models, namely, the Use Case Point (UCP) and Schneider’s model. We

chose to compare our model with these two models because these models predict

software effort from use case diagrams. The project dataset was divided into two main

parts; Small that contains projects of sizes less than 100 UCP and Large that contains

projects of sizes greater than 100 UCP. We conducted three experiments to evaluate our

model. In the first experiment, the whole dataset was used. In the second and third

experiments, the Small and Large parts were used, respectively. Results indicated that our

models outperform the UCP and Schneider’s models in all experiments using the MMER

and PRED criteria. As a comparison between the regression and the MLP model, the

184

MLP model gave better results when the Small part of the dataset was used. However, the

MLP model deteriorated when the Large part was used. In this chapter, the second, sixth

and seventh research questions were addressed.

In Chapter 4, we proposed linear and non-linear regression models, as well as RBFNN

and GRNN. New methods to calculate software size, productivity, complexity and

requirements uncertainty level were also introduced. The main difference between

Chapter 4 and Chapter 3 is that in Chapter 4 we introduced ―requirements stability‖ as an

independent factor that affects software effort estimation. In Chapter 3, ―requirements

stability‖ was one of eight factors that contributed to productivity. Another main

difference between these two chapters is that in chapter 3, the size of the projects used is

relatively small. In Chapter 4, we used industrial projects of efforts ranging between 120

person-hours and 224,890 person-hours. These projects were not available at the time

when the experiments of chapter 3 were conducted. In Chapter 4, we also carried out a

thorough comparison among the models. We evaluated the models based on four

different experiments. In the first experiment, the entire project dataset was used for

evaluation. Then, we divided our dataset into three main parts. These include Small,

Medium and Large sized projects. Results show that our model surpasses alternative

models based on the four experiments. We used four different criteria for evaluation.

These include MMRE, MMER, PRED and CI. As a comparison among our four sub-

models, the non-linear regression outperformed all models; however, the GRNN model

185

surpassed the RBFNN model. Chapter 4 tackles all the research questions raised in

Section 1.2.

The fifth chapter presents a Treeboost model to predict software effort based on three

independent variables. These include software size, productivity and complexity. The

model was trained using 168 projects. The Treeboost model was evaluated against a

multiple linear regression model as well as the UCP model based on four different criteria

which include MMRE, MMER, PRED and MAE. Experiments showed that the

Treeboost model surpasses the other two models and can be used to predict software

effort. The main advantage of the Treeboost model is that it is not sensitive to outliers in

the training process as other neural network and regression models are. The main

disadvantage of this model is that all testing data points should fall between the smallest

and the largest data points used in training the model. In this chapter, the second, fourth

and seventh research questions were tackled.

Each of the six sub-models has its own characteristics. Although the six sub-models can

be used for effort estimation, the performance of each model varies based on the size and

quality of training and testing data points. Table (6-1) lists the features and the

applicability of each sub-model.

186

Table ‎6-1 Model features and applicability

Model type Features and applicability

Linear regression

with logarithmic

transformation

 Good results with projects whose efforts are less than 3,000 person-hours (PH)

 Acceptable results with projects whose efforts are between 3,000 and 150,000 PH

 Regression analysis is based on the ordinary least squares method. This means the

model is sensitive if training data contain outliers

 Testing data points that are slightly beyond the training data points can be used as

model’s inputs

Non-linear

regression

 Acceptable results (when the polynomial equation is used) with projects whose

efforts are less than 3,000 PH

 Good results (when the exponential models are used) with projects whose efforts are

between 3,000 and 150,000 PH

 Testing data points that are slightly beyond the training data points can be used as

model inputs only if the model type is polynomial

 Not recommended to use testing data points that are slightly beyond the training data

points when the model is of the exponential type

MLP  Very good results with projects whose efforts are less than 3,000 PH

 Not recommended to estimate projects whose efforts are greater than 3,000 PH

 Sensitive to outliers

RBFNN  Good results with projects whose efforts are less than 3,000 PH

 Acceptable results with projects whose efforts are between 3,000 and 150,000 PH

 Recommended to re-train the model if the number of the training data points is more

than 500 data points

GRNN  Acceptable results with projects whose efforts are less than 3,000 PH

 Good results with projects whose efforts are between 3,000 and 150,000 PH

 Not recommended to re-train the model if the number of the training data points is

more than 500 data points

 More robust than MLP and RBFNN

 Less sensitive to outliers

Treeboost  Good results with projects whose efforts are less than 40,000 PH

 Highly recommended if the training data points might contain outliers

 Not recommended to re-train the model with new training data points if the range

between two consecutive data points is big, or if the standard deviation of the new

data points is high

 Absolutely inappropriate to predict the effort of projects that are beyond the training

data points

187

6.1 Future Work

One of the limitations of our work is the scarcity of the projects available to train and test

the model. Published datasets such as NASA[1], PROMISE [2], COCOMO [3], CeBASE

[4], Experience [5], Desharnais [6] and Maxwell [7] do not include information about use

case diagrams. Future work will focus on:

1- Contacting more companies to collect data based on the questionnaire proposed in

Appendix B.

2- Re-train all models when new data are available. The weight of the new data

during model recalibration will be determined based on their source and

importance.

3- Developing hybrid models between neural networks and evolutionary algorithms,

such as genetic algorithms and particle swarm. It is believed that genetic

algorithms can be used to train neural networks, and would thus increase the

accuracy of the model.

188

References

[1] NASA datasets. [Online]. Available: http://data.giss.nasa.gov/.

[2] PROMISE datasets. [Online]. Available: http://www.promisedata.org.

[3] COCOMO datasets. [Online]. Available: http://promisedata.org/?p=6.

[4] CeBASE datasets. [Online]. Available: http://www.cebase.com.

[5] Experience datasets. [Online]. Available: http://www.fisma.fi.

[6] Desharnais datasets. [Online]. Available: http://www.promisedata.org/?p=9.

[7] Maxwell datasets. Available: http://www.promisedata.org/?p=108.

http://data.giss.nasa.gov/
http://www.promisedata.org/
http://promisedata.org/?p=6
http://www.cebase.com/
http://www.fisma.fi/
http://www.promisedata.org/?p=9
http://www.promisedata.org/?p=108

189

Appendix A

Questionnaire I

1- What is the name of the project?

2- What is the number of people involved in this project?

3- What is the actual effort this project? (if you can break down the work per each

stage of the software life cycle, this would be preferable.)

4- Based on the use case diagram, what is the number of ―simple use cases‖,

―average use cases‖ and ―complex use cases‖ based on the definition below

(including the ―extend‖, ―include‖, and ―generalized‖ use cases).

 A use case is rated as ―Simple‖ if the number of transactions in the use case

scenario (Including both the Success and Extensions scenario) is less than or

equal 4. (check the example below to see how transactions are counted).

 A use case is rated as ―Average‖ if the number of transactions in the use case

scenario (Including both the Success and Extensions scenario) is between 4

and 7.

 A use case is rated as ―Complex‖ if the number of transactions in the use case

scenario (Including both the Success and Extensions scenario) is more than 7.

5- What is the programming language used in the project?

6- Please rate these factors from ―1‖ which represents ―very low‖ to ―5‖ which

represents ―very high‖. Factors with average classifications are rated as ―3‖.

Factor Rate

Familiar with Objectory

Object oriented experience

Analyst capability

Stable requirements

Application experience

Motivation

Part-time workers

Difficult programming language

7- Please rate these factors from ―1‖ which represents ―very low‖ to ―5‖ which

represents ―very high‖. Factors with average classifications are rated as ―3‖.

190

Factor Rate

Easy installation

Portability

End user efficiency

Reusability

Complex internal processing

Special security features

Usability

Application performance

objectives

Special user training facilities

Concurrency

Distributed systems

Provide direct access for third

parties

Changeability

Example of a use case scenario (description):

The following example introduces the scenario of the use case ―Student Enrolls in a

Course‖ in a University Online Registration System.

Use Case Title: Student Enrolls in a Course

Actors: Student, Admin

Precondition: The student is not enrolled in a course

Main Success Scenario (Main Flow):

1. The student chooses the course he or she wishes to enroll in

2. The student enrolls in the course

Extensions (Alternative)

2a: The student does not have permission (e.g. the student has not paid the tuition)

 2a1: Notify the student to contact the administrator

2b: The deadline has passed

 2b1: An Error message will be displayed

2c: The prerequisite of the course is not fulfilled

2c1: The student is advised to contact the professor to obtain permission

2d: Two courses have the same schedule

 2d1: The student is advised to choose either one

2e: The number of the enrolled courses has been exceeded

191

 2e1: An error message will be displayed

2f: The course is full

 2f1: An error message will be displayed

Post condition: The student has enrolled in a course

192

Appendix B

Questionnaire II

1- What is the name of the project?

2- What is the number of students involved in this project?

3- How many hours did each student work to finish this project? (if you can break

down the work per each stage of the software life cycle, this would be preferable.

If you cannot, just put the total number of hours).

4- Based on the use case diagram, what is the number of the use cases (including the

―extend‖, ―include‖, and ―generalized‖ use cases).

5- What is the number of transactions in the success scenario of each use case?

(check the example below).

6- What is the number of transactions in the Extension (exception) part of the

scenario of each use case?

(for example, if your use case diagram contains 20 use cases, you can name them

as U1, U2, U3, … U20. For each use case, write the number of transactions in the

success scenario as well as in the Extension part).

7- What is the programming language used in the project?

8- What is the complexity level of the project based on this definition:

 Level-1: The complexity of a project is classified as Level-1 if the project

team is familiar with this type of project and the team has developed similar

projects in the past. The number and type of interfaces are simple. The project

will be installed in normal conditions where high security or safety factors are not

required. Moreover, Level-1 projects are those of which around 20% of their

design or implementation parts are reusable (came from old similar projects).

 Level-2: This is similar to level-1 category except that only about 10% of

these projects are reusable.

 Level-3: This is the normal complexity level where projects are not said to be

simple, nor complex. In this level, the technology, interface, installation

conditions are normal. Furthermore, no parts of the projects had been previously

designed or implemented.

 Level-4: In this level, the project is required to be installed on a complicated

topology/architecture such as distributed systems. Moreover, in this level, the

number of variables and interface is large.

193

 Level-5: This is similar to Level-4 but with additional constraints, such as a

special type of security or high safety factors.

9- Please rate these factors from ―1‖ which represents ―very low‖ to ―5‖ which

represents ―very high‖. Factors with average classifications are rated as ―3‖.

 Team experience regarding the problem domain.

 Team motivation.

 Programming language experience.

 Object oriented experience (UML).

 Analytical skills.

10- Please rate the Requirements Stability degree of your project from Level-1

(unstable requirements) to Level-5 (stable requirements).

 Level-1: This indicates that there is an increase of 40% of the requirements

during the project life cycle. This incorporates new requirements and changes

in existing requirements.

 Level-2: This indicates that there is an increase of 30% of the requirements

during the project life cycle.

 Level-3: This indicates that there is an increase of 20% of the requirements

during the project life cycle.

 Level-4: This indicates that there is an increase of 10% of the requirements

during the project life cycle.

 Level-5: This indicates that the requirements are stable during the project life

cycle.

Example of a use case scenario (description):

Use Case Title: Student Enrolls in a Course

Actors: Student, Admin

Precondition: The student is not enrolled in a course

Main Success Scenario (Main Flow):

1. The student chooses the course he or she wishes to enroll in

2. The student enrolls in the course

Extensions (Alternative)

2a: The student does not have permission (e.g. the student has not paid the tuition)

 2a1: Notify the student to contact the administrator

194

2b: The deadline has passed

 2b1: An Error message will be displayed

2c: The prerequisite of the course is not fulfilled

2c1: The student is advised to contact the professor to obtain permission

2d: Two courses have the same schedule

 2d1: The student is advised to choose either one

2e: The number of the enrolled courses has been exceeded

 2e1: An error message will be displayed

2f: The course is full

 2f1: An error message will be displayed

Post condition: The student has enrolled in a course

195

Appendix C

project # size (ucp) Effort (person-hour) project # size (ucp) Effort (person-hour)

1 28 420 64 47 658

2 28 414.4 65 47 846

3 29 420.5 66 47 869.5

4 29 432.1 67 47 817.8

5 30 450 68 48 844.8

6 30 465 69 48 816

7 31 461.9 70 48 844.8

8 31 465 71 48 854.4

9 32 480.32 72 48 768

10 32 496 73 48 792

11 32 544 74 48 777.6

12 32 448 75 48 792

13 32 464 76 48 787.2

14 32 496 77 49 784

15 32 486.4 78 51 785.4

16 33 495 79 51 775.2

17 33 478.5 80 54 810

18 33 462 81 54 972

19 33 504.9 82 55 814

20 33 511.5 83 55 803

21 34 530.4 84 55 770

22 34 540.6 85 56 812

23 35 556.5 86 57 832.2

24 36 576 87 58 812

25 36 586.8 88 58 841

26 37 592 89 58 858.4

27 38 615.6 90 61 915

28 38 623.2 91 61 1342

29 39 647.4 92 62 868

30 39 631.8 93 63 894.6

31 40 660 94 66 957

32 41 688.8 95 66 924

33 41 697 96 66 976.8

34 41 656 97 69 966

35 41 664.2 98 71 958.5

196

36 41 672.4 99 71 979.8

37 41 697 100 74 1036

38 41 779 101 74 1110

39 41 615 102 74 1184

40 41 574 103 74 1332

41 42 631.26 104 80 1441.6

42 42 634.2 105 82 1492.4

43 42 642.6 106 84 1545.6

44 42 621.6 107 84 1520.4

45 42 625.8 108 85 1572.5

46 42 630 109 92 1720.4

47 42 617.4 110 92 1564

48 43 636.4 111 92 1582.4

49 43 638.55 112 94 1635.6

50 43 640.7 113 98 1862

51 43 645 114 98 1911

52 44 666.6 115 101 1616

53 44 671 116 105 1890

54 44 660 117 111 2109

55 45 697.5 118 118 1888

56 45 720 119 128 2432

57 45 742.5 120 145 3190

58 45 686.25 121 155 3875

59 46 736 122 212 4452

60 46 745.2 123 240 5760

61 46 782 124 280 7280

62 46 759 125 340 8160

63 47 893

197

 Appendix D

p
ro

je
ct

 #

A
ct

u
al

 E
ff

o
rt

 (
p

er
so

n
-h

o
u

r)

 S
iz

e
(U

C
P

)

F
1

 (
F

am
il

ia
r

w
it

h
 O

b
je

ct
o
ry

)
w

=
1
.5

F
2

 (
S

ta
b

le
 r

eq
u
ir

em
en

ts
)

w
=

2

F
3

 (
A

n
al

y
st

 c
ap

ab
il

it
y
)

w
=

0
.5

F
4

 (
A

p
p

li
ca

ti
o

n
 e

x
p
er

ie
n
ce

)
w

=
0
.5

F
5

 (
O

b
je

ct
 o

ri
en

te
d
 e

x
p
er

ie
n
ce

)
w

=
1

F
6
 (

M
o
ti

v
at

io
n
)

w
=

1

F
7

 (
D

if
fi

cu
lt

 p
ro

g
ra

m
m

in
g
 l

an
g
u
ag

e)
 w

=
-1

F
8

 (
P

ar
t-

ti
m

e
w

o
rk

er
s)

 w
=

-1

1 2124 118 2 2 2 2 2 3 4 0
2 1430 130 4 3 3 4 4 3 3 0

3 1445 85 3 3 3 3 3 4 3 0
4 4895 275 4 4 4 5 4 4 2 0

5 2420 110 3 2 2 3 3 3 4 0
6 2080 65 2 2 2 2 2 3 3 4

7 1265 55 3 3 2 2 3 2 4 3
8 1240 40 2 2 2 3 2 4 4 4

9 1950 78 3 4 3 3 3 3 3 4
10 967 52 3 2 2 3 3 2 4 3

11 1664 128 4 4 4 4 4 2 3 0
12 3630 110 3 2 3 2 3 3 4 0

13 3915 145 4 4 4 4 4 4 2 0
14 1553 135 2 1 3 1 2 3 3 0

15 1440 90 3 3 3 3 3 3 3 0
16 1334 58 1 3 1 1 1 4 4 5

17 1617 98 4 4 4 4 4 4 3 0
18 2875 125 1 2 3 3 1 4 4 0

19 1984 64 1 1 2 2 1 2 4 5
20 1050 75 4 4 4 4 4 4 3 4

198

21 1050 75 4 4 3 3 4 2 2 0

22 1218 84 3 3 5 4 3 5 2 0
23 2465 145 3 2 3 4 3 5 2 0

24 3875 155 2 3 3 3 2 2 4 0
25 1116 62 3 4 2 2 3 2 3 4

26 7952 284 4 4 4 3 4 4 3 0
27 2697 87 2 1 2 2 2 2 4 5

28 696 58 2 2 2 2 2 3 3 5
29 3248 112 3 2 2 2 3 3 4 4

30 4338 241 5 4 4 4 5 4 2 0
31 5040 210 5 3 3 3 5 3 3 1

32 6292 286 3 3 3 4 3 3 3 0
33 2871 87 2 3 4 3 2 3 3 5

34 2754 102 4 3 4 3 4 3 2 5
35 2736 114 3 3 5 4 3 4 4 5

36 2212 79 3 2 3 3 3 4 4 5
37 1512 84 2 4 2 3 2 4 4 5

38 2064 86 2 1 3 3 2 4 4 5
39 2772 154 3 3 2 4 3 3 3 4

40 3828 174 3 2 3 4 3 3 3 0
41 3213 189 3 4 2 5 3 3 4 0

42 3666 141 3 3 2 2 3 3 2 3
43 2904 132 4 3 4 2 4 4 2 3

44 2880 120 4 2 4 2 4 4 4 4
45 2058 98 5 2 3 3 5 4 3 4

46 3096 129 3 2 4 4 3 4 2 1
47 2384 149 3 4 3 3 3 3 2 0

48 3528 196 4 5 3 3 4 3 3 0
49 4992 208 4 4 4 2 4 3 3 0

50 4165 245 4 3 3 3 4 3 2 0
51 2646 147 4 3 4 4 4 4 4 1

52 4450 178 4 3 4 3 4 4 3 1
53 1392 58 2 3 3 3 2 2 2 5

54 1776 74 2 2 3 3 2 2 1 5
55 2156 98 3 4 4 4 3 3 4 5

56 1976 104 4 4 4 4 4 3 3 5
57 1496 68 4 3 4 4 4 3 3 5

58 2162 94 4 3 4 2 4 3 4 5
59 2832 118 3 3 4 2 3 3 2 5

60 2850 114 3 3 3 2 3 4 2 5

199

61 1794 69 3 2 3 1 3 3 2 5

62 2688 84 2 2 3 1 2 3 2 5
63 4032 168 2 2 3 3 2 3 1 0

64 4536 189 2 3 4 4 2 3 1 0
65 3915 174 3 4 4 3 3 3 4 0

66 4708 214 4 3 4 2 4 3 3 0
67 6993 259 5 3 2 4 5 3 2 0

68 3864 168 2 3 2 3 2 3 2 2
69 4848 202 3 4 3 1 3 3 4 1

70 3654 174 4 4 3 3 4 3 2 1
71 4368 168 1 3 3 4 1 3 2 1

72 3128 184 4 3 4 4 4 3 1 1
73 3485 198 5 2 4 3 5 3 1 0

74 6604 254 3 3 4 4 3 3 2 0
75 5568 232 3 4 4 2 3 3 1 0

76 1044 58 2 2 3 2 2 3 3 5
77 2340 78 2 2 4 3 2 3 3 5

78 2444 94 1 3 4 3 1 4 3 5
79 1482 78 3 3 3 3 3 4 4 5

80 1443 74 3 3 3 4 3 4 4 5
81 1365 65 3 3 3 1 3 3 3 5

82 2156 98 4 3 4 2 4 3 3 1
83 2162 94 4 4 4 2 4 3 3 0

84 1258 74 4 4 4 3 4 4 3 0
85 1173 69 5 4 4 3 5 4 4 0

86 1098 61 3 4 5 4 3 2 3 0
87 1428 84 3 3 3 4 3 2 3 1

88 1584 88 3 3 3 3 3 3 3 1
89 1584 88 3 3 3 3 3 3 2 4

90 1656 72 3 2 2 3 3 3 1 4
91 2832 118 4 2 2 3 4 3 4 5

92 2256 94 4 3 3 2 4 3 4 5
93 2716 97 2 1 2 2 2 3 3 5

94 1768 68 2 1 3 3 2 4 3 5
95 1998 74 2 2 2 1 2 4 3 2

96 1985 81 3 3 3 2 3 3 4 2
97 1955 85 3 3 3 4 3 3 3 0

98 1840 80 3 2 4 3 3 3 3 0
99 3784 172 4 3 2 3 4 4 4 1

100 1932 84 2 3 4 3 2 3 4 5

200

101 1632 96 3 3 3 4 3 4 4 0

102 1666 98 3 3 3 4 3 4 4 0
103 1653 87 4 4 3 4 4 4 4 0

104 1472 64 2 4 4 5 2 4 2 0
105 1276 58 4 4 4 3 4 3 2 5

106 2162 94 4 3 3 3 4 3 3 5
107 2064 86 4 3 2 3 4 3 3 5

108 1454 57 3 3 4 2 3 5 3 5
109 1911 91 3 2 3 2 3 5 3 1

110 1110 74 3 2 3 4 3 4 3 1
111 3615 241 3 4 3 4 3 4 4 0

112 2632 188 2 3 3 3 2 4 4 0
113 3472 124 2 3 4 3 2 4 3 0

114 1734 102 5 2 2 4 5 3 3 5
115 2668 116 3 2 3 3 3 3 2 5

116 2832 118 3 3 3 3 3 3 4 5
117 4680 156 1 3 3 2 1 4 4 5

118 3060 170 4 2 3 3 4 4 1 5
119 6072 264 4 2 3 3 4 2 4 0

120 4081 154 3 1 3 3 3 4 3 2

201

Appendix E

P
ro

je
ct

_n
u

m
b

er

C
o

m
p

ex
it

y
va

lu
e

P
ro

d
u

ct
iv

it
y

va
lu

e

R
eq

u
ir

em
en

ts
 S

ta
b

ili
ty

va

lu
e

Si
ze

Ef
fo

rt

1 1 1.3 1 13.5 122
2 1 1.15 1 18 296

3 0.7 1 1.2 20.5 360
4 0.7 1.15 1 28 170

5 0.85 1.15 1 39 507
6 1 1.15 1 41.5 634

7 1 1 1 47 752
8 1 1 1 47.5 751

9 0.7 1.15 1 51 244
10 1 1 1 52 843

11 0.85 1 1.1 53 948
12 0.85 1 1 53.5 809

13 1 1 1 58 870
14 1 1.15 1 61 902

15 1 1 1.1 63 1022
16 0.85 1 1 64 1024

17 0.85 1 1 65.5 1049
18 1 1 1 68 1212

19 1 1.15 1 70 1228
20 1 1.15 1 72 1209.6

21 1 1 1 75.5 1400
22 1 1.15 1 78 1216

23 1 1 1 80 1440
24 1 1 1.1 88 1613

25 1 1.3 1 90 1313
26 1 1.15 1 93 1550

202

27 1 1.3 1 104.5 1280

28 1 1 1 106.5 1983
29 1 1 1 111 2121

30 1 1.3 1 112 1702
31 1 1 1 115 2530

32 1 1 1 117 2640
33 1 1 1 123.5 2535

34 1 1.3 1 124.5 2020
35 0.85 1.3 1 131.5 1635

36 0.7 1.15 1 145.5 1926
37 1 0.7 1 150 4648

38 1 0.7 1 173 4498
39 1 1 1 192 3840

40 1.3 1 1 192 4992
41 1 1.15 1 197.5 3698

42 0.85 0.85 1 216.5 4198
43 1 1 1 226.5 7823

44 1 1 1.1 275 11580
45 0.7 1.3 1 286.5 1821

46 1 1 1.1 290 7224
47 1.3 1 1 293 8497

48 1 1 1 302 8298
49 1 1 1 313 8413

50 1 1 1 341 9507
51 1 1 1 357 10167

52 1 1 1 388.5 12606
53 1 1 1 407 13789

54 1 1 1 409 12449
55 1 1 1 472 16350

56 1 1 1 498 17848
57 1 1 1 552 17906

58 1 1 1 612 22491
59 1 1 1 619 19529

60 1 1 1 840 31542
61 1 1 1 967 33409

62 1.15 1.15 1 986.5 37723
63 1.15 1 1 1412 57044

64 1 0.7 1 1780 78693
65 1.3 1 1.1 2455 129353

203

Appendix F

66 1.15 0.7 1.4 5.5 167
67 1 0.7 1.4 10 278

68 0.85 1.15 1.1 17 374
69 1.15 1 1.2 18 368

70 0.85 1.15 1.1 25.5 664
71 0.85 1.15 1.1 31 626

72 1.3 0.7 1.4 31.5 1224
73 1.15 1 1.3 33.5 1280

74 1.3 1 1.3 36.5 1124
75 1.3 0.7 1.4 37 988

76 0.85 1.15 1.1 40 817
77 0.85 1.15 1 41.5 887

78 0.7 1.15 1.2 47.5 1078
79 1 1.15 1.2 47.5 1449

80 1.15 1 1.3 50.5 1586
81 1 1.15 1.3 53.5 1824

82 0.85 1.15 1.1 54 972
83 0.85 1.3 1.3 56 890

84 1.3 1 1.3 56.5 1608
85 1 1.15 1.1 58 1328

86 1.15 1 1.4 58.5 2158
87 1.15 1 1.4 59.5 2248

88 0.85 1.15 1.1 61 1278
89 0.85 1.15 1.1 63 1733

90 1 1.15 1.2 64 1860
91 1 1.15 1.1 68 1074.4
92 1.3 0.7 1.4 71 2244

93 0.85 1.15 1.2 71.5 1821
94 1 1.15 1.1 76 2964

95 0.85 1.15 1.2 77 2009
96 1.15 1 1.3 82 2965

97 1 1.3 1.2 92 1840
98 0.85 1.15 1.2 96 2264

99 1.15 1.15 1.1 96.5 2380

204

100 1.3 1 1.3 102.5 3240

101 0.85 1.3 1 115 1824
102 1.15 1 1.3 117 3890

103 0.85 1 1.1 123.5 3480
104 1.15 0.7 1.4 126.5 6645

105 0.7 1.3 1.1 127.5 4190
106 0.85 1 1.3 129.5 3480

107 0.85 1.15 1.1 134 2933
108 1 1.15 1.3 135 3430

109 1.3 1 1.3 147 5480
110 0.85 1.15 1.2 156.5 3147

111 1.15 1 1.4 163 6480
112 1 1.15 1.2 172 5963

113 0.7 1.3 1 180.5 3480
114 0.7 1.3 1.3 192.5 4800

115 1.15 1 1.4 196.5 5445
116 0.7 1.3 1 197 3660

117 1 1.15 1.2 198.5 5882
118 1.15 1 1.3 205.5 6810

119 1.3 1 1.3 210.5 7050
120 1 1.3 1.1 215 5760

121 1.3 1 1.2 245.5 7845
122 0.85 1.3 1 248 8340

123 1.3 1.3 1.2 260 8960
124 0.7 1.3 1 270.5 5210

125 0.85 1.15 1.1 282.5 5709
126 0.7 1.3 1.1 286.5 1904

127 1 1.15 1.3 311 11818
128 0.85 1.15 1.2 320 10240

129 1 1.15 1.2 322 11270
130 0.7 1.3 1.1 329.5 7880

131 1.3 1.15 1.1 335 12730
132 1 1.15 1.1 341 10912

133 0.85 1.3 1 350 7872
134 0.7 1.3 1 354 7234

135 1.15 0.7 1 390 13260
136 0.85 1.3 1.1 407 9930.8

137 0.7 1.3 1.1 433 12410
138 0.85 1.15 1 441.5 10004

139 1.3 1 1.3 455 20020

205

140 1.3 1 1.3 496.5 22110

141 1 1.3 1.1 508 22352
142 0.85 1.15 1.1 525 11022

143 1.3 1 1.3 554 26940
144 1 1.3 1.2 585 12916

145 1.15 1.15 1 660.5 16600
146 0.7 1.3 1 707 16845

147 0.85 1 1 1060 24192
148 1.15 1.3 1.1 1830 49536

149 1 1.15 1.3 4010 198840
150 1.3 0.7 1.4 6 378

151 1.3 0.7 1.4 13 397
152 0.85 1.3 1 17 120

153 1.3 0.7 1.3 18 400
154 1.3 0.7 1.4 23.5 838

155 1.3 0.7 1.4 25.5 760
156 0.85 1.15 1.1 32 724

157 1.3 0.7 1.4 39 1153
158 1.3 0.85 1.1 45 957

159 1.3 0.7 1.4 48.5 3323
160 1.3 0.7 1.3 53 2002

161 1.15 0.7 1.1 54.5 1090
162 1.3 0.7 1.3 56 2134

163 1.3 0.7 1.3 58 2175
164 1.3 0.85 1.2 59.5 1877

165 1.3 0.7 1 60 1400
166 1.3 0.7 1.1 63.5 1536

167 1.3 0.7 1.4 68 1820
168 1 0.85 1.2 68.5 1583

169 1.3 0.7 1.4 71.5 1880
170 1 0.7 1.2 73 1972

171 1 0.7 1.1 76.5 1882
172 1.3 0.7 1.4 77.5 1052

173 1.3 0.7 1.4 86 4108
174 1.15 1.15 1.3 94 2080

175 1.3 1 1.2 101 7602
176 1.15 1 1.2 104 4209

177 1.3 1 1.3 117.5 5374
178 1 1.15 1.2 124.5 4551

179 1 1.15 1.2 127 4651

206

180 1 1.15 1.2 130 4184

181 1.15 1 1.4 137 6910
182 0.85 1.15 1.2 167.5 4879

183 1.3 0.7 1.3 168.5 11680
184 0.85 1.3 1 180 1705

185 1.3 1 1.3 187 13288
186 1.15 1 1.2 196 15729

187 1 1.15 1.2 198 6051
188 1.15 1 1.2 227.5 9301

189 0.85 1.15 1.2 234 6552
190 1 1 1.3 253 11749

191 0.85 1.3 1.1 256 3664
192 0.85 1.3 1.1 264 3244

193 0.85 1.3 1 268 2978
194 0.85 1.3 1 274 3153

195 0.85 1.15 1.2 293 8790
196 0.7 1.3 1 310.5 6220

197 1 1 1.2 317 11095
198 0.7 1.3 1 324.5 5280

199 0.7 1.3 1.1 338.5 8100
200 0.85 1.15 1.1 349.5 8060

201 0.7 1.15 1.1 388 9312
202 0.7 1.3 1 412.5 7820

203 1 1.15 1.1 426 17892
204 1.15 1 1.3 436.5 20389

205 0.7 1.3 1 449 8180
206 1.15 1 1.3 509 60826

207 0.7 1.3 1 576.5 16532
208 0.7 1.3 1 737.5 19820

209 1.3 1.15 1 760 30912
210 0.85 1.3 1.1 878.5 27800

211 0.7 1.15 1.1 910 32800
212 0.7 1.3 1 3070 89030

213 0.7 1.3 1 3860 188340
214 0.7 1.3 1 3980 224890

207

Appendix G

RBFNN Parameters

Neuron Bias Weight Center_size Width_size Center_prod Width_prod Center_complex Width_complex Center_Req Width_Req

1 9700.5 205163.3 14.09376 57.96999 -3.46125 268.984 0.236544 379.5427 0.655411 193.2344

2 9700.5 40.8244 -0.30085 9.86213 -3.67838 149.6633 -0.06608 0.107198 1.91701 390.2638

3 9700.5 1296.638 1.717095 0.26561 0.45686 344.4288 -0.24646 141.6568 0.257214 31.21814

4 9700.5 15834.48 0.196781 329.2464 -0.85419 300.5105 -0.0693 204.6251 0.581591 0.060439

5 9700.5 -74059.4 14.56015 144.2844 -1.60751 151.2063 -0.05865 67.63445 0.532074 0.154067

6 9700.5 3705.166 1.224678 1.011923 0.945957 333.8084 0.118394 355.9286 1.761941 296.1721

7 9700.5 -35516.6 -0.05855 10.67504 -2.22027 179.6136 -0.20381 380.3062 1.648088 137.9463

8 9700.5 23263.67 0.599317 10.90981 -3.21756 167.0027 0.294767 95.94758 0.20181 21.36284

9 9700.5 3509.583 6.371061 234.4714 0.41795 192.6596 0.079526 199.0717 1.661398 1.767917

208

Appendix H
T

re
es

V
al

id
at

io
n
 A

b
so

lu
te

 E
rr

o
r

T
re

es

V
al

id
at

io
n
 A

b
so

lu
te

 E
rr

o
r

T
re

es

V
al

id
at

io
n
 A

b
so

lu
te

 E
rr

o
r

T
re

es

V
al

id
at

io
n
 A

b
so

lu
te

 E
rr

o
r

10 5869.987 260 2308.749 500 2293.532 750 2309.085

20 5386.938 270 2287.525 510 2298.875 760 2305.311

30 5064.88 280 2280.722 520 2294.796 770 2303.961

40 4721.407 290 2277.771 530 2298.728 780 2303.618

50 4410.863 300 2269.83 540 2300.85 790 2301.491

60 4127.959 310 2272.116 550 2298.998 800 2300.617

70 3902.936 320 2271.898 560 2301.035 810 2300.517

80 3767.422 330 2273.275 570 2301.466 820 2301.233

90 3642.507 340 2267.082 580 2305.604 830 2299.708

100 3509.104 350 2265.949 590 2308.908 840 2300.222

110 3411.708 359 2260.936 600 2311.757 850 2303.442

120 3315.563 360 2261.781 610 2310.508 860 2304.086

130 3230.62 370 2264.029 620 2310.197 870 2303.419

140 3141.166 380 2266.435 630 2309.814 880 2303.328

150 3076.801 390 2267.845 640 2311.502 890 2301.861

160 3008.4 400 2272.518 650 2309.714 900 2302.601

170 2947.416 410 2273.739 660 2314.439 910 2301.998

180 2867.299 420 2275.863 670 2315.995 920 2302.819

190 2787.113 430 2274.62 680 2317.473 930 2303.39

200 2713.735 440 2273.57 690 2315.097 940 2302.268

210 2647.587 450 2274.487 700 2315.732 950 2300.764

220 2551.555 460 2280.963 710 2314.046 960 2300.61

230 2494.742 470 2279.811 720 2312.364 970 2299.892

240 2420.565 480 2282.187 730 2311.937 980 2301.007

250 2370.713 490 2285.307 740 2310.119 990 2301.796

 1000 2300.96

209

Curriculum Vitae and Thesis-Relevant Publications

Name:

Post-Secondary Education

and Degrees:

Honours and Awards:

Related Work Experience:

Thesis-Related Publications:

Ali Bou Nassif

The University of Western Ontario

London, Ontario, Canada

Electrical and Computer Engineering

2009-2012 Ph.D (GPA 96.25%)

The University of Western Ontario

London, Ontario, Canada

Computer Science

2007-2009 M.Sc (GPA 91%)

Beirut Arab University

Beirut, Lebanon

Electrical Engineering

1992-1997 B.Eng

Ontario Graduate Scholarship (OGS)

The University of Western Ontario

May 2011 – April 2012

Outstanding Presentation in Graduate Symposium (2011)

The University of Western Ontario

Teaching and Research Assistant

The University of Western Ontario

2007-2012

Journal Papers:

1- Ali Bou Nassif, Luiz Fernando Capretz and Danny Ho,

―Regression and Neural Network Models for Software Effort

Estimation from Use Case Diagrams‖, Empirical Software

Engineering, 2012 (Under review).

2- Ali Bou Nassif, Luiz Fernando Capretz, Danny Ho and Daniel
Varona, ―Software Effort Estimation from Use Case Diagrams

Using Non-Linear Regression Analysis‖, Journal of Systems and

Software, Elsevier, 2012 (Under review).

3- Wei Lin Du, Luiz Fernando Capretz, Danny Ho and Ali Bou

Nassif: ―A Hybrid Neuro-fuzzy SEER-SEM Model for Better

Software Effort Estimation‖, IEEE Computational Intelligence,

2012 (Under review).

210

4- Ali Bou Nassif, Danny Ho and Luiz Fernando Capretz: Towards
an Early Software Estimation Using Log-Linear Regression and A

Multilayer Perceptron Model, Journal of Systems and Software,

Elsevier, 2012 (Under Review).

5- Ali Bou Nassif, Luiz Fernando Capretz and Danny Ho: Enhancing

Use Case Points Estimation Method using Soft Computing

Techniques, Journal of Global Research in Computer Science,

Volume 1, No. 4, November 2010, PP. 12-21 (Published).

Conference Papers:

6- Ali Bou Nassif, Luiz Fernando Capretz and Danny Ho, ―Software

Effort Prediction from Use Case Diagrams Using Multilayer

Perceptron‖, 6
th

 IEEE/ACM International Symposium on Empirical

Software Engineering and Measurement , 2012 (Under review)

7- Ali Bou Nassif, Luiz Fernando Capretz and Danny Ho, ―Software

Effort Estimation in the Early Stages of the Software Life Cycle

Using a Cascade Correlation Neural Network Model‖, 13th ACIS

International Conference on Software Engineering, Artificial
Intelligence, Networking and Parallel/Distributed Computing,

2012 (Accepted)

8- Ali Bou Nassif, Danny Ho and Luiz Fernando Capretz, ―A

Treeboost Model for Software Effort Estimation Based on Three

Independent Variables‖, Predictive Models in Software

Engineering, 2012 (Under review).

9- Ali Bou Nassif, Luiz Fernando Capretz and Danny Ho: A
Regression Model with Mamdani Fuzzy Inference System for

Early Software Effort Estimation Based on Use Case Diagrams,

2011 IEEE International Conference on Intelligent Computing and

Intelligent Systems (ICIS 2011), November 2011, Guangzhou,

China (Published)

10- Ali Bou Nassif, Luiz Fernando Capretz and Danny Ho: Estimating

UML Size/Cost, CASCON, November 2011, Toronto, Ontario,

Canada (Published).

11- Ali Bou Nassif, Luiz Fernando Capretz and Danny Ho: Estimating

Software Effort Based on Use Case Point Model Using Sugeno

Fuzzy Inference System, 23rd IEEE International Conference on

Tools with Artificial Intelligence (ICTAI 2011), November 2011,

Boca Raton, Florida, USA (Published)

12- Ali Bou Nassif, Danny Ho and Luiz Fernando Capretz: Regression

Model for Software Effort Estimation Based on the Use Case Point

Model, 2011 International Conference on Computer and Software
Modeling (ICCSM 2011), September 2011, Singapore (Published)

211

13- Ali Bou Nassif, Luiz Fernando Capretz and Danny Ho: Software
Estimation in the Early Stages of the Software Life Cycle,

International Conference on Emerging Trends in Computer

Science, Communications and Information Technology (CSCIT

2010), January 2010, Nanded, India (Published)

	Software Size and Effort Estimation from Use Case Diagrams Using Regression and Soft Computing Models
	Recommended Citation

	Software Size and Effort Estimation from Use Case Diagrams Using Regression and Soft Computing Models

