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Abstract 

Controlling transport phenomena in liquid and gaseous media through electrostatic forces 

has brought new important scientific and industrial applications. Although numerous 

EHD applications have been explored and extensively studied so far, the fast-growing 

technologies, mainly in the semiconductor industry, introduce new challenges and 

demands.  These challenges require enhancement of heat transfer and mass transport in 

small scales (sometimes in molecular scales) to remove highly concentrated heat fluxes 

from reduced size devices. Electric field induced flows, or electrohydrodynamics (EHD), 

have shown promise in both macro and micro-scale devices.         

Several existing problems in EHD heat transfer enhancements were investigated in this 

thesis. Enhancement of natural convection heat transfer through corona discharge from an 

isothermal horizontal cylindrical tube at low Rayleigh numbers was studied 

experimentally and numerically. Due to the lack of knowledge about local heat transfer 

enhancements, Mach-Zehnder Interferometer (MZI) was used for thermal boundary layer 

visualization. For the first time, local Nusselt numbers were extracted from the 

interferograms at different applied voltages by mapping the hydrodynamic and thermal 

field results from numerical analysis into the thermal boundary layer visualizations and 

local heat transfer results.  

A novel EHD conduction micropump with electrode separations less than 300 µm was 

fabricated and investigated experimentally. By scaling down the pump, the operating 

voltage was reduced one order of magnitude with respect to macro-scale pumps. The 

pumping mechanism in small-scales was explored through a numerical analysis. The 

measured static pressure generations at different applied voltages were predicted 

numerically. 

A new electrostatically-assisted technique for spreading of a dielectric liquid film over a 

metallic substrate was proposed. The mechanism of the spreading was explained through 

several systematic experiments and a simplified theoretical model. The theoretical model 

was based on an analogy between the Stefan’s problem and current problem. The 
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spreading law was predicted by the theoretical approach and compared with the 

experimental results.  

Since the charge transport mechanism across the film depends on the thickness of the 

film, by continuing the corona discharge exposure, the liquid film becomes thinner and 

thinner and both hydrodynamic and charge transport mechanisms show a cross-over and 

causes different regimes of spreading. Four different regimes of spreading were 

identified. For the first time, an electrostatically accelerated molecular film (precursor 

film) was reported.  

The concept of spreading and interfacial pressure produced by a corona discharge was 

applied to control an impacting dielectric droplet on non-wetting substrate. For the first 

time, the retraction phase of the impact process was actively suppressed at moderate 

corona discharge voltages. At higher corona discharge strengths, not only was the 

retraction inhibited but also the spreading phase continued as if the surface was a wetting 

surface.    

  

 

Keywords 

Electrohydrodynamics, Corona Discharge, Heat Transfer, Natural Convection, EHD Heat 

Transfer Enhancement, Mach-Zehender Interferometer, Nusselt Number, Critical Heat 

Transfer, Droplet Cooling, Jet Impingement, Hydraulic Jump, Conduction Pumping, 

Micropump, Liquid Sheet, Dielectric Liquid Thin Film, Dielectric Droplet, Spreading, 

Interfacial Electric Pressure, Leaky Dielectric Liquid, Retraction Inhibition.      
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Chapter 1  

Introduction and general literature review 

1.1 Introduction 

Electrohydrodynamics (EHD) deals with motions in liquid or gaseous media induced by 

electric fields [1]. Applications of electrohydrodynamics (EHD) are diverse and 

sometimes striking [2]. One of the most remarkable appearances of the EHD in nature 

involves the blue haze found above heavily forested areas [3]. B.R Fish, a scientist from 

Oak Ridge National Laboratory, provided experimental evidence to support his 

hypothesis that the haze derives from waxy substances sprayed into the atmosphere from 

the tips of pine needles by high fields accompanying the overhead passage of electrified 

clouds during thunderstorms. Although Fish proposed the mechanism of haze generation 

through extensive sets of experiments, several other reasons including the thermal 

evaporation of the wax is also realized as the haze formation mechanism. As another 

remarkable example, EHD forces have been used to simulate the earth’s gravitational 

field during convection experiments carried out during a space shuttle flight [4]. In this 

application, combining a radial electric field with a temperature gradient between 

concentric spheres produces polarization forces that mimic gravity.  

The earliest record of an EHD experiment is in William Gilbert’s seventeenth century 

treatise De Magnete, which describes the formation of a conical shape upon bringing a 

charged rod above a sessile drop [5]. Until the 1960s most studies focused on the 

behavior of good conductors, (mercury or water) or perfect dielectrics (purified benzene). 

No significant theoretical work was done during more than three hundred years towards 

understanding the poorly conductive materials. This began to change following studies on 

poorly conducting liquids—leaky dielectrics—by Allan & Mason in 1962 [6]. 

1.2 Outline of the chapter 

Diverse applications of EHD have introduced different fields of studies in physics and 

engineering. Corona discharge and its applications, and EHD pumping of dielectric 

liquids are the main subjects of the EHD studies [2]. In the following sections, corona 
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discharge and its application will be reviewed briefly. Then, the importance of EHD 

pumping is described in both macro-scale and micro-scale applications. Different 

pumping mechanisms are explained and compared. As a particular application, heat 

transfer enhancement through EHD effects is reviewed. Since the controlling of liquid 

droplets and liquid films on a solid surface is important in numerous applications, we 

review the liquid droplet/film spreading over solid surfaces. The new trend of research in 

controlling the liquid film through electrostatic forces is highlighted.  

1.3 Corona discharge and its applications 

An important part of electrohydrodynamics is concerned with corona discharge in 

gaseous media [2]. The corona discharge has found broad scientific and industrial 

applications. In order to establish a corona discharge, at least two separate electrodes, a 

high voltage sharp emitter and a grounded collector, are needed. By applying a high 

voltage above the corona discharge threshold to a sharp needle, the electric field ionizes 

some of the neutral gas molecules in the high field region adjacent to the electrode [7]. 

The generated ions are accelerated towards the grounded collector. Typically, large and 

concentrated electric fields are required to generate such ionic discharges [8]. The high 

momentum accelerated ions drag neutral molecules and a jet-like motion of ambient gas 

can be developed [9]. The motion is the so-called corona wind or ionic wind [7-9].  

As an important application, corona discharge has been used in mass spectrometers to 

determine the elemental composition and chemical components of a sample by measuring 

the mass-to-charge ratio [10]. Corona discharge has been also extensively used to 

produce ozone [11,12]. The ozone production technique through corona discharge found 

important applications in water treatment industry [13]. As an important application in air 

pollution control industry, electrostatic precipitators use corona discharge to remove fine 

particulate matter, such as dust and smoke from the air stream [14,15]. The corona 

discharge has also found application in electrostatic painting [14], separation [16] and 

electrospinning of polymers [17].  
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The corona wind momentum produced by corona discharge has found several 

applications in heat [18-22] and mass transport enhancement applications [23-29]. The 

corona wind has demonstrated promising applications in enhancement of convective heat 

transfer in internal [30-36] and external flows [37-42], evaporation/drying [23-29], and 

flame control [43-46] in both normal and microgravity conditions. 

1.4 Electrohydrodynamic pumping 

Electrohydrodynamic pumping deals with the interaction between electric fields and 

fluids [47,48]. This interaction, for instance, may result in electrically induced pumping, 

fluid mixing [49], or enhancement of heat transfer [50-53]. The application of EHD to 

heat and mass transport demonstrates promising perspectives in several industrial 

applications [53-55], where special requirements restricts the device operation condition, 

but augmented heat transfer and mass transport are of interest. For instance, in 

microgravity conditions where the gravitational field is absent, a low energy consumption 

heat transfer enhancement technique with minimum physical maintenance of the cooling 

circuit elements is required. Circulating pumps typically used in the normal condition 

consume tens of watts while creating noise and mechanical vibration, which may lower 

the life of the devices. By eliminating the moving parts, EHD devices offers static 

operation with significantly lower energy consumption. It is worthy to note that a 

vibration free cooling system is crucial in several precise optical device applications with 

high power dissipations, for example, high power laser diodes, optical mirrors, and other 

optical components where the positioning is important.     

The electric body force f� in a dielectric liquid, that results from an imposed electric field, 

E  �, can be expressed as [56]: 
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where ρ�is net volume charge density, ε is the fluid permittivity, ρ	is the fluid density and 

T is the fluid temperature.   



4 

 

4 

 

The first term on the right hand side of the Eq.(1) is the electrophoretic, or Coulombic, 

force that results from the net free space charges in the fluid. The second term, known as 

the dielectrophoretic force, arises from the permittivity gradient. The last term, called the 

electrostrictive force, is important only for compressible fluids and two phase flows. Free 

space charges in dielectric liquids can be generated by three different mechanisms. I) 

Induction [57-59]: occurs in dielectric liquid with variable electrical conductivity, which 

can be caused due to the presence of a thermal gradient, or in two or multi phase flows, 

II) Conduction [60-63]: through imbalanced dissociation-recombination reactions in the 

areas adjacent to the electrodes, III) Injection [64-67]: by direct charge injection from the 

solid/liquid interface. These three distinctive mechanisms for free space charge 

generation can be exploited to create induction, conduction and injection EHD pumping 

[56,60].  

1.4.1 Direct ion-injection pumping 

One method of generating net free charges in a fluid medium is direct charge injection 

from electrode/liquid interface [56]. An electric field is imposed between a sharp 

electrode, called an emitter, and another blunt electrode, called the collector. The free 

charges are accelerated along the electric field direction dragging the adjacent fluid and 

induce shear motion. The EHD pumps based on direct ion injection charging are known 

as ion-drag pumps or direct-ion injection pumps. The ion injection pumping in dielectric 

liquid by the ion injection mechanism has been known for long time [56]. Early works by 

Stuetzer [64] and Pickard [65,66] revealed the ion-injection pumping through both a 

theoretical and experimental approach. In all the initial experimental works, transformer 

oils were used as the working fluid. Maximum velocities around 10 cm/s were obtained 

using mesh-type electrodes. More recently, Bryan and Seyed-Yagoobi [68] demonstrated 

an ion-drag pump with significantly higher pumping velocities around 33 cm/s. 

Sharbaugh and Walker [67] used their designed pump in a 167 kVA distribution 

transformer to enhance convective cooling of the transformer. However, before 500 h of 

operation, its operation declined in pumping efficiency due to the fact that the collector 

electrode behaved as a filter. The filtering behavior resulted in the accumulation of the 

contaminations around the collector electrode. The ion-injection pump showed significant 
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pressure drops in the cooling circuit caused by this contamination accumulation. As a 

main disadvantage, recent studies revealed that these pumps may cause degeneration of 

the thermophysical and electrical properties of the working fluid, thus, they are not 

reliable for long term operation [69].  For instance, the typical electrode life time in an 

ion injection small scale pumps was reported to be less than an hour [70]. The 

electrochemical effects cause irreversible electrode damages which affect the desired 

sharp profile of the emitter electrode and therefore the static head generation produced by 

the device. 

1.4.2 Conduction pumping 

Unlike the ion-injection pumping, the concept of conduction pumping in dielectric liquids 

has been proposed very recently [71]. This is probably due to the fact that the conduction 

mechanism of creating space charge is a rather complicated phenomenon. When a 

relatively small electric field (below 0.1V/µm) is established between a low potential and 

a high potential electrode immersed in a dielectric liquid, the ion injection is negligible, 

but the liquid impurities adjacent to the electrodes may begin to dissociate. The process 

of dissociation of the neutral species and recombination of the created ion pairs can be 

schematically written as follows [63]: 

                                              −+−+ + BABA    (2) 

By increasing the applied voltage, but before reaching some threshold value of electric 

field (approximately 0.1 V/µm), the existing ions due to the dissociation of neutral 

species experience strong enough electrical Coulomb force, which concentrates the 

positive and negative ions around counter-polarized electrodes. The concentrated ions 

around each electrode form charge layers around them.  The ion density distributions in 

the dielectric liquid bulk can be determined on the basis of the conservation law of 

neutral species. The attraction between the electrodes and the charges results in a net 

fluid flow from the blunt electrode towards the electrode having smaller radii of 

curvature. The conduction mechanism in this regime is mainly due to the ionic 

dissociation and is referred to as EHD conduction pumping and the charge layer around 

K
K
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the electrodes is known as hetero-charge layers.  Further increasing of the electric field 

(in the order of 10V/µm, depending on the liquid characteristics and impurity 

concentration), results in ion injection from the liquid/metal interface and produces a 

reverse pressure. Beyond this threshold, the ion-injection pumping mechanism will be 

dominant [63] and the pumping direction is reversed. 

Several theoretical [6,17], numerical [12,15,18,19] and experimental works [5,13,21,16] 

were carried out to determine the feasibility of EHD pumping through the conduction 

phenomenon. In all of the previous studies, commercial refrigerants R-123, R-134a and 

N-Hexane were introduced as working fluids to a single or multi-stage pump with the 

electrode spacing in the order of millimeters and the steady-state static pressure 

generation of the pump was determined. Furthermore, several geometries for high voltage 

electrodes were investigated to increase pressure generation [21]. Typical static pressure 

generation for macro-scale conduction pumps is in the order of 10-1000 Pa at 15 kV 

applied voltage with few millimeters gap spacing between electrodes.  

1.4.3 Induction pumping 

Induction pumping can be achieved by inducing space charge in a liquid due to a gradient 

or discontinuity of the electric conductivity [56]. An AC traveling electric wave attracts 

or repels these induced charges, leading to fluid motion. The concept of EHD induction 

pumping was introduced by Melcher in 1966 [57]. Extensive theoretical and experimental 

studies were performed by Melcher and Firebaugh [58], Wong and Melcher [59], Kervin 

et al. [72], and Seyed-Yagoobi et al. [73,74]. More recently, Wawzyniak and Seyed-

Yagoobi [75,76] conducted a theoretical and experimental study on EHD induction 

pumping of a stratified liquid/vapor medium in a rectangular channel configuration. They 

extended Melcher’s work by taking into account the induction of charges in the bulk of 

the liquid (due to Joule heating) along with those induced at the interface. This 

augmentation is largest for the highest heat flux and applied voltage. 

Brand and Seyed-Yagoobi [77] demonstrated EHD induction pumping of liquid films and 

showed its potential for heat transfer augmentation purposes in heat exchangers through 
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flow control. Utilizing the EHD induction mechanism to pump liquid films makes this 

technology attractive for several industrial applications. 

1.5 Micro-scale EHD pumping 

In recent micro-scale applications, the importance of EHD-based devices has been 

highlighted [78]. It might be attributed to the fact that the EHD forces can be significant 

in a small-scale process, even though in large-scales they might have smaller contribution 

[79]. 

A strong motivation for decreasing the size of EHD ion-drag pumps has been known 

since their inception: a decrease in the electrode gap produces better performance and 

requires lower operating voltage. However, producing electrode geometries and spacing 

in the sub-millimeter range was not possible until the development of micro-fabrication 

technologies in the mid-eighties. 

Credit for the first micro-scale EHD pump is owed to Richter and Sandmaier [80] who 

fabricated electrode grids on a silicon substrate. A maximum static pressure of 1200 Pa 

with ethanol as the working fluid was achieved with an input voltage of 300 V. Such a 

small input voltage was due to the reduced electrode spacing. Static pressure was 

comparable to the pressure obtained with the large -scale pumps. They proposed using 

this pump as a flow meter by recording the time of flight method for injected charges. 

Sandia National Laboratory researchers used laser micromachining to develop a micro-

EHD pump [81]. They produced two designs. The first one had two silicon substrates 

with gold layers stacked on top of each other and fluid channels were drilled with a laser. 

The second design had silicon grids manufactured and attached back-to-back, which 

reduced the electrode distances to about 100 µm. A static pressure head of 290 Pa was 

obtained with an input voltage of 120 V. To date it was the lowest input voltage used for 

an EHD pump and is the power required is within an order of magnitude of that provided 

by a typical battery. Several different ion drag EHD micropumps were reported [82-86].   
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1.6 EHD heat transfer enhancement techniques 

The EHD enhancement of heat transfer refers to the coupling of an electric field with the 

fluid field in a dielectric fluid medium. In this technique, either a DC or an AC high-

voltage low-current electric field is applied in the dielectric medium between a charged 

and a receiving (grounded) electrode. The heat transfer medium can be gaseous, single-

phase or two-phase flows. The EHD heat transfer enhancement method is particularly 

important in microgravity applications, where the gravitational field is absent and 

minimization of energy consumption in active cooling elements is of great concern. 

Typically, significant heat transfer improvements with small energy consumption can be 

obtained in the presence of electric field. Moreover, minor maintenance for EHD devices 

is required since the mechanical moving parts and the associated vibrations are 

eliminated.  Therefore, EHD enhancement techniques can be an excellent candidate for 

special application including the devices operating in space.  

1.6.1 Single-phase EHD enhanced heat transfer in gaseous 

medium 

Convective heat transfer can be enhanced in the presence of strong electric fields [19-22]. 

As mentioned earlier, most of the previous works in air used corona discharge to develop 

corona wind over a heat transfer target. The EHD enhancement technique can be applied 

for both external [37-42] and internal [30-36] fluid flows. In both applications, the corona 

discharge can be generated by establishing a strong field between a corona discharge 

emitter electrode and an electrically grounded heated object. The momentum of the 

corona wind resulting from a corona discharge may disturb the thermal and 

hydrodynamic boundary layer. Moreover, the corona wind resulting from a highly non-

uniform electric field is accompanied with strong vorticities [87-89] and local increase in 

coolant velocity. These electrostatic interactions in a flow field may promote significant 

local or average heat transfer enhancements. 

The corona discharge was extensively used in natural convection heat transfer 

enhancement from an external object such as cylindrical single tube [42], bunch of 
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tubes[41, 89, 92-96], vertical [90] and horizontal heated plates [40, 91]. Different types of 

electrodes, such as wires, blades and razors, have been used to generate corona discharge. 

Typical EHD heat transfer enhancements compared with natural convection have been 

more than 100% for all of those studies with energy consumption in the order of less than 

a watt.  Most of the previous studies have been limited to measuring the average 

enhanced heat transfer coefficients. Several authors used interferometers to visualize the 

thermal boundary layer affected by corona discharge [42,90]. Even more significant 

corona wind enhancements have been reported locally just around the corona sharp 

electrode [30,42,90]. The natural convection heat transfer heat transfer enhancement 

showed promise for microgravity conditions.     

1.6.2 Single-phase EHD enhanced heat transfer in dielectric 

liquids 

As described earlier, EHD pumps can be used as an active element to control the heat 

removal from a heated surface. Since the pumps are operated with dielectric liquids, the 

direct cooling method can be applied, which is particularly important in hot spot 

management in electronic cooling [84, 85]. Direct cooling reduces the heat resistance 

across the heat sink by eliminating the need for soldering or bonding of the heat sink to 

the hot spot. Therefore, EHD pumps with dielectric liquids can be exploited for high 

performance direct cooling.  

In single-phase flows, the Coulombic force is responsible for inducing liquid motion in 

the fluid and enhancement of the local or average heat transfer from a surface. The 

electrostatic forces may increase the momentum of the liquid around the heated target. 

The hydrodynamic and thermal boundary layer thinning leads to typically high heat 

transfer coefficients. Several electronic cooling applications have benefited from EHD 

pumping [83-85] to enhance heat removal capacity.  
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1.6.3 Two-phase flow EHD enhanced heat transfer 

The phase change phenomenon occurring during the boiling and condensation processes 

is an important mode of heat transfer. Boiling and condensation heat transfer 

enhancement can be particularly important to design more efficient evaporators and 

condensers. Several passive and active techniques have been used to improve the heat 

removal capacity in the presence of phase charge heat transfer.  The study of EHD effects 

as an active technique on phase change heat transfer enhancements began about 40 years 

ago [97]. Although several theoretical and experimental works have been conducted to 

explore the enhancement mechanisms involving the phase change heat transfer, a 

complete theory does not exist to describe the enhancement mechanisms in the presence 

of an electric field. This is attributed to the fact that the enhancement mechanisms are 

complicated and the understanding depends on the detailed macroscopic and microscopic 

knowledge of heated surface wettability, roughness, microscopic surfaces forces, and so 

on. Phase change phenomena during heat transfer can be directly or indirectly affected by 

the electrostatic forces [98]. Some of the above parameters such as wettability and 

microscopic balance in surface forces can be affected by electrostatic forces. EHD effects 

may improve the heat transfer through enhancement of wettability over the heat transfer 

surface [97-99].   

Boiling heat transfer enhancement has been a subject of more intensive studies compared 

with the condensation heat transfer. This is because of the fact that the condensation 

enhancement through electrostatic effects includes many unknown interrelated 

microscopic parameters, which might be essential but may complicate the processes.  The 

more extensive interest in boiling heat transfer enhancement through EHD might be 

attributed to the fact that the boiling heat transfer enhancement experiments are more 

repeatable since they rely on better-defined physical parameters. In both cases, the 

microscopic surface forces may cause macroscopic effects, which drastically change the 

thin liquid film wetting dynamics and control the heat transfer from the surface. In the 

following section, a review on boiling heat transfer enhancement through EHD effect is 

given. 
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1.6.4 EHD boiling heat transfer enhancement 

Although EHD boiling heat transfer has been subject of many studies [100-108], only a 

few limited works have focused on exploring the EHD enhancement of this process 

[100]. Most of the previous studies have concentrated on heat transfer enhancement at 

nucleation boiling [102-106] and critical heat flux regimes (CHF) [101]. Only limited 

literature exists on the effect of electric field at the beginning of the phase change and last 

regimes of boiling (post-CHF) [109-111]. The mechanisms by which EHD techniques 

enhance the boiling process are summarized as follow: 

1) movement of vapor bubbles on the heated surface due to Maxwell stress, 

2) spreading of the vapour bubble base over the heat transfer surface due to 

electrostatic forces,  

3) increasing the number of bubbles by breaking up large bubbles by decreasing the 

bubble detachment diameter and creating more turbulence, 

4) elimination of boiling hysteresis, by decreasing the degree of the superheat 

required to start nucleate boiling, 

5) improving the transitional and minimum film boiling conditions by destabilizing 

the blanketing vapor film, 

6) improving the wetting of the heating surface due to the interfacial normal and 

shear stresses arising from surface charge accumulation in the presence of a 

strong electric field, 

7) introducing the EHD waves and perturbations at the surface of a boiling liquid, 

causing an increase in re-wetting of the heated surface due to the EHD interfacial 

instability of the vapor/liquid interface. 

In most of previous studies, improvement of the wettability of the heated surface through 

EHD effect was the main enhancement mechanism [100, 112]. The two-phase heat 

transfer results as well as many other practical applications may stimulate research on the 

EHD-enhanced wetting and spreading of liquid films. This investigation can be beneficial 



12 

 

12 

 

in understanding of the electro-spreading/wetting mechanisms that promotes two-phase 

heat transfer enhancements through EHD effects.  

1.7 Wetting and spreading of liquid droplets on solid surfaces 

The spreading of liquids on solids is of significant importance in everyday life, for 

instance, while painting, writing with ink on a sheet of paper and spreading of the oil film 

over the pan. Wetting and spreading also play basic role in many industrial applications 

[113-120], wetting of porous rocks in oil/water reservoirs [121], in agriculture [117,119], 

phase-change heat transfer [115, 116] as well as numerous other fields such as coating, 

deposition, soldering, and lubrication.  

In all the above applications, detailed knowledge of the spreading dynamics is needed. In 

general, spreading is a complicated problem since many known or unknown parameters 

are involved. This is a common problem in the field of surface science. Even a small 

amount of impurity in the liquid phase or solid surface may significantly affect the 

macroscopic observed phenomena. The topography of the solid surface and even its 

crystallographic structure may affect the spreading dynamics [122]. 

Spreading of fluids belongs to the broad field of wetting phenomena. There is a 

macroscopic difference between the case where liquid completely spreads over substrate 

(oil over stainless steel) and partial wetting (water over stainless steel) [122]. Complete 

wetting corresponds to the situation, where the macroscopic contact angle tends to zero 

when the time goes to infinity [123]. Partial wetting corresponds to an equilibrium 

condition with a non-zero finite contact angle [124].  

The key to the analysis of spreading can be found in the experimental studies presented 

by Hardy [125], who recognized that an ultra thin film always precedes a spreading 

droplet. The thickness of the film is normally below micron range. This ultra thin film 

has been called the precursor film. At the early stages of precursor film spreading, the 

molecular thickness (below 1 nm) develops progressively during the spreading process of 

a droplet as a tongue-like structure ahead of the nominal contact line of the main 

spreading film. From the experimental observations through detailed optical techniques at 
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the Naval Research Laboratory, Bascom realized that the long-range forces should be 

considered to explain the behavior and dynamics of the ultra thin film precursors [126]. 

He noticed that in the case of non-ionic precursor films, the dynamics of the film is 

governed by a dispersive van der Waals forces, while for the charged films the dynamics 

of the thin film is governed by both van der Waals forces and charged layer interactions. 

This was only the beginning and led to more than a century of struggles to better 

understand different aspects of this complicated problem [125-134]. In spite of such 

extensive efforts, the mechanisms of the precursor film formation still remained one of 

the most challenging issues in the field of condensed matter. Moreover, some 

fundamental paradoxes, most famously, the Huh-Scriven paradox [135] regarding the no-

slip boundary condition at the solid substrate that the precursor film spreads, remained 

unanswered. As Huh and Scriven wrote [135]:  “Not even Hercules could sink a solid if 

the physical model (no-slip boundary condition) were entirely valid.”  This has opened 

more than 40 years ongoing effort of physicists to understand seemingly one of the 

easiest fluid mechanics problems, coating flow, appearing in every undergraduate fluid 

mechanics textbooks.  

Electrocapillarity, the basis of modern electrowetting, was first explained in detail in 

1875 by an ingenious physicist Gabriel Lippmann, who won the Nobel prize in 1908 

[136,137]. Lippmann found that the capillary depression of mercury in contact with 

electrolyte solutions could be varied by applying a voltage between the mercury and 

electrolyte. The original Lippmann paper has only been available in French, but the 

interested reader may find a translation of his work in [136]. The work of Lippmann and 

of those who followed him in the subsequent more than a hundred years was devoted to 

aqueous electrolytes in direct contact with mercury surfaces or mercury droplets in 

contact with insulators. A major obstacle to broader applications was electrolytic 

decomposition of water upon applying voltages beyond a few hundred millivolts. The 

recent developments were initiated in the early 1990s by Berge [138], who introduced the 

idea of using a thin insulating layer to separate the conductive liquid from the metallic 

electrode in order to eliminate the electrolysis phenomenon at the metallic interface. This 

is the concept that has also become known as electrowetting on dielectric (EWOD). 
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Electrowetting on dielectric layer techniques are only limited to the case of controlling a 

droplet on a low energy surface. Gently deposited droplets over partial wetting substrates 

reach an equilibrium thermodynamic state with an equilibrium contact angle. The method 

is difficult or technically impossible to apply for manipulating droplets over a high 

energy surface since the droplet will completely wet the substrate. Therefore, an 

alternative method should be used to control the liquid film/droplet on high energy 

substrates.  

The literature dealing with spreading of dielectric liquids over a solid surface is very 

sparse. Although several investigations were performed to investigate the EHD 

instabilities induced by corona discharge over a dielectric interface, no net spreading 

effect has been reported [139,140]. In a recent attempt, the alternative technique for 

droplet/film spreading over high energy substrates, such as a metallic substrate, was 

introduced by a joint research group at Harvard and Princeton [141] who demonstrated a 

selective spreading of a silicone oil film on a relatively high energy substrate. In their 

technique, the surface charge is accumulated over the dielectric interface and the 

tangential component of electric forces was created by an inclined planar electrode. A 

strong shear stress is developed over the interface, which expands the liquid from the low 

field region to the high field region. The spreading was accompanied by formation of 

Taylor cones at the liquid interface with several periodic jets ensuing during the film 

expansion process.  

1.8 Objectives  

The overall objective of the thesis is to increase the understanding of the effect of 

electrostatic forces to control or enhance fluid flow and heat transfer in gaseous media, 

bulk liquids, dielectric droplets and thin films.  The main subject of the Chapters 2-4 is to 

investigate single-phase and two-phase cooling and the potential application of the EHD 

effect for heat transfer enhancement purposes. It was found that the EHD enhanced 

rewetting process plays a pivotal role in boiling heat transfer enhancement. In order to 

further understand the EHD wetting enhancement mechanisms, one may understand the 

spreading mechanisms of charged liquid/vapor interfaces and charge transport 
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mechanisms across the thin films. Investigation of the conduction pumping with reduced 

gap spacing presented in Chapter 5 provides an intuitive understanding about charge 

transport mechanism and the electrostatic pressure generation across dielectric liquid 

films. 

Chapters 6-8 comprise the main part of the thesis where the main subject of the 

investigations was electrostatic-assisted spreading and in particular the wetting and 

spreading process of charged interfaces. A new concept of spreading based on the ionic 

bombardment of the dielectric liquid interface through corona discharge was proposed. 

When exposed to a corona discharge, the thickness of the dielectric liquid becomes 

monotonically thinner and liquid films with even nanometer size can be obtained, if the 

exposure time is long enough. Since the spreading dynamics and charge transport across 

the thin film are strongly coupled, it is crucial to understand the charge transport 

mechanism across the film. This understanding originated from our studies in the 

conduction pumping effect presented in Chapter 4, where the liquid film was confined 

between two electrodes. This new concept of corona discharge–assisted spreading was 

also applied to suppress or inhibit the retraction phase of an impacting droplet. 

The spreading dynamics of the charged interface may be encountered in numerous 

applications including EHD boiling heat transfer enhancement. As mentioned earlier, the 

charge transport mechanism across the thin film may govern the hydrodynamics of 

spreading. Since the spreading of thin films is one dimensional in nature, the study of the 

thin film dynamics may give intuitive understanding about the charge transport 

mechanism across the thin film. Since the charge transport across the thin films occurs in 

several recent applications, such as thin film transistors and other molecular electronic 

devices, the study of one dimensional film spreading may help the understanding of the 

charge carrier transport phenomena across thin films. 
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1.9 Outline of thesis 

The thesis objective described above has been presented in seven chapters followed by a 

closing chapter, where the thesis summary and new applications are discussed. The 

material presented in each chapter is outlined below. 

Chapter 2 

Chapter 2 presents experimental and numerical results for natural convection heat 

transfer enhancement from an iso-thermal horizontal cylinder in the presence of corona 

discharge. A Mach-Zehnder interferometer was used to visualize the thermal boundary 

layer around the cylinder in air.  Local Nusselt numbers were extracted from the 

interferograms. A numerical study was performed to predict the measured local Nusselt 

numbers around the cylinder at different surface temperatures and corona discharge 

voltages.   

Chapter 3 

In Chapter 3, two-phase cooling of free-falling mono-dispersed water droplets impacting 

on a smooth upward-facing horizontal heated disk at pre-CHF regimes was revisited. The 

goals of this investigation were to show that (i) the existing correlations are not 

applicable for very low impacting velocities and (ii) several complications associated 

with the experimental setups and procedure made their results unreliable.  The effect of 

droplet size and impacting frequency on the boiling curves and CHF was investigated in 

the absence of electric field. With more than 150 experimental data, two different 

hydrodynamic regimes of impact were characterized and different correlations for each 

regime were proposed to predict the CHF results in the absence of electric field. For the 

experiments in the presence of electric field it was found that the imposed electric field 

significantly changed the path of the falling droplets. Moreover, sporadic jetting and 

random Taylor cone formation re-directed the main volume of the coolant off the heated 

surface. Although the droplet cooling in the presence of electric field results were not 

encouraging, the authors included this chapter in this thesis. Two new correlations in this 
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chapter applicable at very low Weber numbers might be of interest for further studies. 

Moreover, one may find an appropriate technique to control impacting droplets through 

electrostatic forces and compare those results with the current study in the absence of 

electric field.            

Chapter 4 

Direct jet impingement boiling heat transfer operating at low flow rates is of great interest 

for the localized moderate heat fluxes found with delicate mechanical structures, where 

the aggressive techniques such as high-speed jets are not suitable. Boiling heat transfer 

from an upward facing disk targeted by a falling jet was studied experimentally at 

different volumetric flow rates and various jet lengths. Using previous CHF correlations 

in their original form, valid at very low volumetric flow rates, result in large 

disagreements since it was found that variation in the jet length changes the boiling 

characteristics. Since the conventional correlations for impinging jets are not valid for 

low flow rates, the problem of the impinging jet in the absence of electric field was 

revisited.  The working fluid chosen was the dielectric liquid HFE7100.  

In the absence of an electric field, the simplest way to increase the momentum of the 

liquid sheet around the rim is by increasing the flow rate. However it is shown that an 

alternative way to enhance the momentum of the liquid sheet around the edge is to 

introduce EHD forces. The last part of this chapter investigates boiling heat transfer 

enhancement of falling jet in the presence of electric field. 

Chapter 5 

In Chapter 5, an EHD conduction micropump was designed, fabricated and characterized 

for the first time. Comparing with previous macro-scale conduction micropumps, the gap 

spacing between the electrodes was reduced by one order of magnitude. The static 

pressure generation was determined at different applied voltages. A numerical solution 

was used to predict the static pressure generation at different electric field strengths. The 

hetero-charge layer interactions, static pressure generation mechanism in such a confined 

structure provide a deeper understanding of the charge transport mechanism across the 
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thin liquid layers. This was the foundation for understanding of the charge transport 

mechanism across the dielectric liquid films encountered in following three chapters. 

 

Chapter 6 

Chapter 6 focuses on understanding the enhancement of the liquid film contact with a 

substrate through the use of electrostatic forces over an isothermal substrate. Here, a 

corona discharge-assisted technique for spreading a gently deposited dielectric droplet 

into a uniform thin film over a dry isothermal conductive substrate is proposed. The 

surface charge was built up over the droplet interface through ion bombardment using a 

sharp emitter electrode. Interaction of the surface charge density and the intense electric 

field generates an interfacial electrical pressure and leads to a uniform axisymmetric 

spreading of the droplet in the radial direction. The dynamics of the film spreading due to 

the corona discharge was confirmed through a simplified analytical model. 

Chapter 7 

As it was demonstrated in Chapter 6, a dielectric liquid interface exposed to the corona 

discharge spreads over the grounded substrate. In Chapter 7, the spreading of a dielectric 

liquid film subjected to a long-term corona discharge was investigated. It has been 

demonstrated that the charge transport mechanism across the film determines the regime 

of spreading.  Four different regimes of spreading were identified and each regime was 

discussed in detail. By further increasing the corona discharge exposure time, in the 

fourth regime the thickness of the dielectric film decreases, and an electrostatically-

accelerated precursor film with nanometric thickness is developed and diffuses ahead of 

the apparent contact line. The thickness and spreading dynamics of the precursor film 

were measured by an ellipsometer. Deposition of such nanometric thin films through the 

corona discharge forced-spreading may create a platform for further fundamental studies 

such dielectric phenomena in thin films, hydrodynamics of the thin films, accelerated 
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wetting process, coating and deposition. As a result several industrial applications may 

benefit from such investigations. 

 

Chapter 8       

Controlling the deposition of impacted droplets on a non-wetting solid substrate is 

important for numerous industrial and scientific applications including droplet impact 

cooling. In Chapter 8, a new active method based on the corona discharge-assisted 

spreading concept is proposed to control the deposition of an impacted dielectric droplet. 

An electric pressure resulting from the electric surface charge produced by the corona 

discharge squeezes the droplet interface towards the grounded substrate and generates a 

resistance against the droplet retraction. It is demonstrated that the electrical pressure 

effectively suppresses the droplet retraction at voltages above the corona discharge 

threshold.  

Chapter 9  

This chapter summarizes the material presented in Chapters 2 through 8. It also suggests 

possible applications for the proposed concepts described in the thesis. 
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Chapter 2 

The Effect of Corona Discharge on Free Convection Heat 

Transfer from a Horizontal Cylinder 

2.1 Introduction 

Establishment of corona discharge between a sharp electrode and a grounded heated 

surface usually induces an ionic wind whose momentum can be used for enhancement of 

heat transfer from the heated surface. The corona discharge and ionic wind are caused by 

the ionization of air molecules in the intense electric field region around the sharp 

electrode that accelerates ions and drags the air molecules toward the grounded surface. 

Electrostatic cooling devices operate without any moving parts, which reduces the 

mechanical vibration, energy losses and associated noises. Therefore, the electrostatic 

cooling is potentially attractive.      

Corona enhancement of heat transfer from various objects has been the subject of many 

investigations because of a comparatively significant local enhancement of heat transfer 

coefficient with small corona discharge power consumption. For the first time, Marco and 

Velkoff [1] reported a 500% enhancement of average heat transfer coefficient and even 

higher local enhancements from a vertical heated plate in the presence of corona wind. 

The momentum integral analysis was carried out to further verify the experimental 

results. The theoretical results were in good agreement with experimental studies. 

Yabe et al. [2] investigated the enhancement of heat transfer from a horizontal 

downward-facing plate using 40µm wire electrode in a Plexiglass chamber connected to a 

high voltage source. A Langmuir probe was used to measure the space charge density 

distribution and to verify the numerical results. They were able to model the recirculation 

flow inside the chamber and achieved a good agreement with their experimental results.  

O'Brien and Shine used an interferometer to measure the ElectroHydroDynamic (EHD) 

enhancement of local heat transfer from a vertical isothermal flat plate for various air 
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pressures [3]. They concluded that the boundary layer was distorted in the vicinity of the 

plate surface and the heat transfer coefficient increased with corona current. 

Franke and Hogue [4] studied the corona wind effect on a heated horizontal cylinder 

using both a multi-emitter electrode and a wire electrode. The average heat transfer 

enhancement was quantitatively calculated by a heat-balance method and qualitatively 

measured with a Mach-Zehnder interferometer. Enhancement of heat transfer from the 

cylinder due to the corona discharge was reported to be as much as six times the free 

convection heat transfer. The authors found that the multi emitter electrode was more 

effective compared with the stretched wire electrode. However, they did not report the 

local heat transfer coefficient around the cylinder.  

The literature review shows that finding the average heat transfer rate for external free 

convection flows in the presence of corona discharge has been the subject of several 

investigations. Various heated test sections, such as horizontal plate [22, 23], vertical 

plate [24] and horizontal tube bank [25,26,27,20], were investigated. Owsenek and 

Seyed-Yagoobi [5] experimentally investigated the corona wind heat transfer 

enhancement from a horizontal flat plate. Needle electrodes with different heights were 

used as the corona electrode. An enhancement of more than 25:1 over free convection 

was reported. More recently [6], the same authors continued their theoretical and 

experimental studies and focused on a comparison between single and multiple wire 

electrodes. They concluded that for a given applied voltage, multiple wire electrodes 

yield smaller heat transfer enhancement per wire electrode than that of a single wire 

electrode. It was also found that dual recirculation may be formed between wire 

electrodes. Numerical simulations of novel electrode geometries revealed that this 

inefficiency may be eliminated through the use of blade geometry. 

Franke [7] investigated heat transfer from a vertical plate in the presence of corona-

generated vortices. The vortices were generated by the corona discharge from parallel 

Multi-wire electrpodes. He also visualized the thermal boundary layer using a Mach-

Zehnder interferometer and measured the resulting heat transfer through both an energy 
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balance and interferograms. A doubling of the convective component of total heat 

transfer was reported when the applied corona voltage was above the corona onset value. 

Although enhancement of free convection heat transfer through corona discharge has 

been widely studied, few experimental studies have been performed to find the local heat 

transfer rate for external free convection flows in the presence of corona discharge. 

Moreover, previous studies on ionic wind-enhanced heat transfer show that the corona 

discharge has comparatively smaller effect on high-Reynolds force convection [21]. 

Likewise, investigation of the interaction between the corona discharge and buoyancy-

driven flow has been investigated.  

In most of the previous interferometric studies, the EHD enhancements in heat transfer 

investigations have been limited to a qualitative visualization of the thermal boundary 

layer. In those studies, the average Nusselt number was determined using the energy 

balance method. The investigation reported here involves a quantitative interferometric 

study of the positive corona discharge on the local heat transfer enhancement from an 

isothermal horizontal cylinder for different Rayleigh numbers. A circular cylinder was 

selected as the test section, because the circular tube is widely used in typical heat 

exchangers. Considering the limitations of the interferometer plates, the diameter of the 

cylinder and the surface temperature were selected to obtain an appropriate range of 

Rayleigh number (1500 < �� < 5000) which is frequently encountered in conventional 

HVAC systems. In order to generate a uniform distribution of discharge effects along the 

laser beam, which is needed for the two dimensional interferometric studies, a sharp tip 

blade was used as a high voltage corona electrode. Moreover, compared with other 

electrode geometries, alignment of the blade electrode can be achieved more precisely 

along the laser beam. In order to find the details of the flow patterns and to further verify 

the experimental results, a numerical simulation was also performed.  

2.2 Experimental Setup 

The apparatus used in this experiment consisted of three major components: (i) an 

isothermally heated surface, heating facilities, instrumentation, and control (ii) high 



37 

 

37 

 

voltage apparatus and measurement devices (iii) temperature field visualization system. 

The schematic view of the experimental setup and apparatus is presented in Fig.1-a. 

The test section was an extruded aluminum hollow cylinder with a highly polished outer 

surface. The details of the test section are shown in Fig.1-b.  The length of the cylinder 

was chosen as 160 mm (16 times of diameter) which causes the induced flow to be two-

dimensional. In order to minimize the thermal end effects, two wooden fiber end caps 

with 	 = 0.05#/%&' were installed at both ends of the test section. In order to position 

the cylinder in the horizontal direction, two plastic rods were connected to these end caps 

and installed on the XYZ holders. The cylinder had an axial cavity to facilitate 

installation of a coiled nickel-chromium wire heater element at the center of the cavity. 

The space between the heater coil and inner wall of the hollow cylinder was filled with 

magnesium oxide powder. Four holes with 0.55 mm diameter were drilled into the base 

surface of the cylinder at 30, 50, 60 and 80 mm from the base ends in different peripheral 

angles. Four calibrated K type thermocouples were inserted and fixed in these holes. All 

the temperatures were monitored continuously by a TESTO 177 data logger which was 

connected to a PC. The maximum difference in surface temperature readings at the four 

thermocouple junctions were about 0.2 degree before tests. Furthermore, the outer surface 

temperature of the cylinder was measured at 20 different locations both in the peripheral 

and longitudinal directions with a calibrated hand held digital thermometer. The 

difference between the readings did not exceed 0.2 degree. The combination of the 

relatively thick-walled aluminum cylinder and the high thermal conductivity of 

magnesium oxide powder helped achieve the desired uniformity of the surface 

temperature both peripherally and longitudinally. The electrical power supplied to the 

heater was controlled by a variable transformer, therefore, it was possible to achieve 

different surface temperatures and different Rayleigh numbers. 



38 

 

38 

 

 

Figure 1-a: Schematic of experimental setup  

 

Figure 1-b: Details of the cylinder and the blade electrode. 
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The electrical input power was varied to keep the surface temperature constant in the 

presence and the absence of corona discharge. After changing the power level, it took 

about one hour to obtain steady state condition with quasi-constant surface temperature in 

the absence of corona discharge. For the corona discharge experiments it took about 20 

minutes to obtain quasi-constant surface temperature.  At the steady state condition and 

before initiating the tests, the maximum differences in surface temperature readings of 

four thermocouple junctions were about 0.2 degree.   A high voltage DC power supply 

(0-30kV Spellman supply SL-600) was used to generate the positive DC corona 

discharge. The blade electrode was fixed 40 mm below the cylinder and connected to the 

positive terminal of the high voltage DC power supply. This comparatively large spacing 

provided larger voltage range between corona onset and breakdown allowing larger 

number of different voltages to be tested. Parallelism and adjustments of the blade with 

respect to the cylinder were done using optical positioners.   

A Mach-Zehnder interferometer with 100 mm diameter optical plates and 100 mW He–

Ne laser light source was used to visualize the temperature field around the cylinder. A 

schematic of the interferometer is shown in Fig.1-c. Infinite fringe interferograms were 

digitized by a Panasonic WV-CP410- 1/3 CCD camera which was connected to a PC. In 

this set up, the laser beam splits into two beams of approximately equal intensity. A 

reference beam passes through the thermally undisturbed ambient air, and the test beam 

passes through the thermally disturbed air adjacent to the heated cylinder. Because the 

refractive index varies with temperature, the two laser beams are no longer in the same 

phase when they are recombined. This phase shift produces an interference pattern in the 

optical output of the Mach-Zehnder interferometer, which can be recorded with a CCD 

camera. When these two beams are parallel upon recombination, the constructive and 

destructive interference fringes correspond directly to the isotherms in the flow field. 

Further adjustments of the test section and its parallelism along the laser beam were 

examined by the laser beam, CCD camera, and a simple image processing procedure. 
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Figure 1-c:  Plane view of Mach–Zehnder interferometer. 

2.3 Experimental procedure and data reduction method 

The test procedure was initiated by testing the free convection heat transfer from the 

horizontal cylinder in the absence of corona discharge. After reaching the steady state 

condition, interferograms were taken. The corona discharge was generated near the 

cylinder by applying the high voltage to the blade, with magnitude in the range between 

onset of corona discharge and breakdown voltage. At each voltage, five interferograms 

were recorded for assurance of the experiment repeatability and data reduction. Fig.2 

represents examples of the infinite fringe interferograms for two extreme cases, at lowest 

and highest Rayleigh numbers, for different applied voltages. The atmospheric pressure 

and the relative humidity of the laboratory were recorded during all the experiments. The 

infinite temperature ()was monitored at two different vertical locations about 500 mm 

away from the test section and they both indicated the same value. A code was developed 

to calculate the local Nusselt number around the cylinder using infinite fringe 

interferograms. The data reduction procedure was similar to the work done by Ashjaee et 

al. [28].  
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Figure 2: Examples of interferograms in the absence and presence of corona.   
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The local Nusselt number is defined as follows: 

										*+, = ℎ,.	/ 																																																																																(1)	
The local heat transfer coefficient can be obtained as: 

ℎ, = −	/ 34(456789/&,, ∙ 1(; − () 																																																				(2) 
The local temperature gradient can be calculated from infinite fringe interferograms as: 

  

<4(45=789/&,, = <4(4>=789/&,, ∙ <4>45=789/&,, 																																											(3)	
The fringe shift due to the spatial temperature difference in the interferometer test arm 

can be obtained as [8,9]: 

 

<4(4>=789/&,, = 6ABC)D��(7E/&
F3ABC) − 2D��(7E/>G& 																																						(4)	

 

<IJIKLK8�/&,Mcan be calculated by the measuring the distance between the fringes from the 

cylinder surface.  The temperature of the farthest fringe from the cylinder surface was 

logged by a K-type thermocouple. The order number of this fringe is set to zero (> = 0) 

and is considered as the reference fringe. The reference temperature readings, (7E/, near 

the heated surface are slightly higher than the infinite temperature readings, which were 

located sufficiently far from the test section. 
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The local Nusselt number can be written as: 

*+, = − .(; − () ∙ 	 6ABC)D�°(7E/&
F3ABC) − 2D�°(7E/>G& ∙ <4>45=789/&,, 				(5)	

The average Nusselt number can be calculated as: 

*+ = 1O P *+,
Q

R
4S																																																													(6)	

The average Nusselt number was obtained by integrating the local Nusselt number over 

the left hand side and right hand side of the cylinder for each interferogram. Comparing 

the average Nusselt number calculated for the both sides shows maximum 4.5% 

discrepancy at (Ra = 5000 and φV = 17.0kV) which is within the uncertainty band. In 

some cases, the experimental asymmetry observed in the interferograms may be greater 

than the thickness of the fringe. However, in order to get more accurate local Nusselt 

number, the middle of the fringes was recorded instead of their edges.  

2.4 Uncertainty Analysis 

The experimental uncertainty of the local Nusselt number was performed using the 

ASME guidelines on reporting the uncertainties in experimental measurements and 

results [10]. The propagation equation of Kline and McClintock for local Nusselt number 

calculation from Eq.(5) can be written as:  

CWXY& = 3Z*+,Z() 6& C[\& + 3Z*+,Z(; 6& C[̂& + _Z*+,Z(7E/ `& C[abc& + 3Z*+,ZC) 6& Cd\& + 3Z*+,ZB 6& Ce& + 3Z*+,Z. 6& C9&

+ 3Z*+,Z(∆5)6
& C∆7&  

The precision limit of the experimental values and associated uncertainties for �� =
1500 is listed in Table I. The precision limit of ∆5 is related to the digitized 

interferogram readings of the radial fringes distance from the cylinder surface. The 

precision limits for universal gas constant, the Gladstone–Dale constant, the laser wave 
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length, and the fringe shifts have been neglected. The bias error for the thermocouples, 

pressure gage, voltmeter (80K-40 Fluke high voltage probe), microammeter, and 

micrometer was negligible because they had been calibrated. A Mach-Zehnder 

interferometer encounters various sources of bias errors including refraction errors in 

thermal boundary layer, misalignment of test section, and light distortion errors due to the 

test section end effects. The systematic errors,	B*+S ,	associated with the temperature 

gradient measurement using Mach-Zehnder interferometer are summarized in Table II. 
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The theory of the propagation of uncertainty (hWX = i(CWX& + jWX& )) was applied to 

evaluate the 95% confidence uncertainty of the local Nusselt numbers. The maximum 

uncertainty associated with the Rayleigh number, local Nusselt numbers, and average 

Nusselt numbers were estimated to be 3.73, 6.28, and 4.85% respectively.  

2.5 Numerical Model 

The free convection heat transfer in the presence of corona discharge is a multiphysics 

problem. The combination of buoyancy body force and corona-driven flow can 

potentially induce various flow patterns. Because the interferometric study only provides 

an interstitial temperature gradient, the numerical study was performed to find the flow 

pattern and further verify the experimental results. Commercial software COMSOL was 

used to solve the governing equations. The electric body force can be expressed as [13]:  

k = ρ�l − 12 |l|&n>� + 12 ∇ p|l|&ρ 3∂>�∂ρ 6rs								(7) 
The first term on the right side of Eq.(7) is the electrophoretic, or Coulombic, force that 

results from the net free charges in gas. The second term, known as the dielectrophoretic 

force, arises from permittivity gradients. The last term is called the electrostrictive force 

and is important only for compressible fluids and two phase flows. The corona wind 

arises completely from the electrophoretic force term. The bulk flow is laminar and two 

dimensional. The buoyancy effect is estimated using the Boussinesq approximation.  The 

governing equations are as follows [14]: 

∇ ∙ (ρt) = 0																																																																				(8) 

 

∇ ∙ (ρtt) = −np + w∇&t + xβ(T − T)) + ρ�l									(9) 

 

t ∙ ∇T = |∇&T + ρ�b|l|&ρA~ 																																																		(10) 
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The second term on the right hand side is Joule heating heat source caused by ionic 

current. 

The electric field around the sharp tip, which is responsible for the free ion generation, is 

distorted by the free charges in the ionized medium and is governed by Poisson’s 

equation as: 

n ∙ l = n ∙ (−∇φ) = ρ�>� 																																																										(11)				 
The generated ions are moved from the high voltage electrode toward the grounded 

surface through the electric force. The transport equation for conservation of ions is 

governed by:  

n ∙ � = 0																																																																																			(12) 

where current density is defined as: 

																																			� = ρ�bl − D�∇ρ�                                                          (13) 

In the present work, the ion mobility and ion diffusion coefficient are assumed as 

� = 1.88 × 10��  m	&V�	�	s�	� and D� = 3.50 × 10�� m&s�	�, respectively [14].  

 

2.5.1 Boundary conditions 

The 2D fluid flow was simulated using the steady Navier–Stokes equation in which the 

source terms are electric body force and buoyancy force and the cylinder was modeled as 

a no-slip and isothermal surface. A symmetry condition (zero normal gradient) was 

implemented along the vertical line of symmetry and the equations were solved for half 

of the domain. The far field was also modeled as a symmetry boundary condition and set 

at a height ten times the expected boundary layer thickness at the domain exit. Two 

common boundary conditions exist for the Poisson equation. A specified potential value 

(Dirichlet boundary condition) was used at the grounded electrode and the emitter 
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electrode. The cylinder electrode was grounded and modeled with a zero value, whereas 

the 15mm of the blade electrode, which was exposed to the air, was given the applied 

potential. The blade support was assumed to be insulating (Neumann boundary condition) 

due to the dielectric plexiglass used in the experiment. Although the real computational 

domain for electric field extends to infinity, truncating boundaries were considered in 

order to limit the computational domain. These artificial boundary conditions were set as 

zero normal electric field (Neumann boundary condition). 

The charge transport equation was also simulated with two types of boundary conditions. 

Along the symmetry line, dielectric surface and truncating boundaries, normal current 

density was assumed to be zero and known space charge density for the blade electrode 

was assumed to be emitted from the tip of the electrode.  The diffusive flux of the charge 

carrier assumed to be zero over the cylinder surface [29]. The microammeter readings 

were used to determine the total current flow across the cylinder surface for different 

applied voltages. The space charge assumption on the blade electrode updated and 

numerical total current flow integrated over the cylinder surface. The numerical total 

current compared with the microammeter readings and solution procedure continued until 

reaching the same numerical value. 

Equations (8) to (12) were solved in a two-dimensional domain using the commercial 

finite element-based software COMSOL. The charge transport and Poisson’s equations 

were solved using the general form PDE solver.  The momentum and energy equations 

were solved with PDE general form solvers as well. The solution procedure was initiated 

by solving Poisson’s equation for the electric field and the charge transport equation in 

order to determine the electric body force. Next, the momentum equation was solved 

considering the electric body force. The solution procedure was continued by the solution 

of the energy equation. The momentum equation was solved by considering the electric 

body force and buoyancy body force.  An unstructured mesh was used with increased 

mesh densities in the area of the intense electric field around the blade tip and in the 

boundary layer region around the cylinder. In order to ensure that the numerical results 

are independent of the computational grid, a grid sensitivity analysis was performed. The 
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details of the grid sensitivity analysis in the extreme case (φV = 17.0kV ,	� = 10μA and 

�� = 5000) are given in the Table III.  

 

 

 

2.6 Results and discussion 

In order to test the accuracy of the experimental results and the data reduction procedure, 

the local Nusselt numbers were obtained for an isothermal horizontal cylinder in absence 

of corona wind at �� = 10�. Furthermore, the computational results were reproduced for 

the same conditions. Fig.3 shows the comparison of the experimental and numerical 

local Nusselt numbers for the horizontal isothermal cylinder with previous works [15-18] 

at �� = 10�. Our experimental and computational results are in good agreement with 

previous studies showing a maximum difference of 5.6% and 5.3%, respectively. The 

numerical deviations fall well within the experimental uncertainty bands. 
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Figure 3: Experimental and numerical local Nusselt number for the free convection 

heat transfer from the horizontal cylinder compared with other works [15,16,17,18] 

at Ra=1000. 

 The numerical solution for the electric potential and the distribution of charges at 

φV = 17.0kV, � = 10�� are shown in Fig. 4. The concentration of ions around the blade 

tip is highest, where the electric field is strongest. 

Fig.5 represents the experimental results for the variation of the local Nusselt number 

around the cylinder in the absence and presence of the corona discharge at	�� = 1500. 

For further verification, the numerical results are also compared with the experimental 

data. The numerical local Nusselt numbers are in good agreement with experimental data 

at various applied voltages and show a maximum difference of 2.1%. By increasing the 

blade voltage from 0.0kV to 11.0 kV, no charge was injected to the air, the electrical 

current is negligible and no change in local Nusselt number occurs. 
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Figure 4 (a): Numerical results for ion concentration (charge concentration 

difference between two adjacent lines is 5×10-7 C/m3). and (b) electric potential in 

the blade-cylinder geometry at �� = ��. ���, � = ���.A.  

 

 

 

 

  

kV 



51 

 

51 

 

 

 

 

 

Figure 5: Experimental and numerical local Nusselt number for the horizontal 

cylinder for various corona voltages at Ra=1500. 

When the blade electrode is supplied with 12.0kV, the corona discharge is initiated, 

which was confirmed by audible acoustic noise, and the measured current at this voltage 

was �� = 1��. At the onset of corona discharge, corona-driven flow is established around 

the cylinder and caused the abrupt increment of local Nusselt number especially around 

the lower stagnation point (S = 0°). The enhancement of local Nusselt number at the 

onset of corona discharge is 23% for the lower stagnation point. Because the corona 

current is comparatively small at the onset of corona, the ionic wind does not have 

enough momentum to enhance the local Nusselt number around the upper stagnation 

point. As shown in Fig.2-b, it can be found qualitatively that there is no significant 

displacement of fringe toward the cylinder surface at S = 180. As depicted in Fig.5, the 

corona wind has a weak effect on temperature gradient at S > 150°. 
By increasing the voltage, the corona current increases. The increment of corona current 

results in stronger ionic wind and higher heat transfer rate; this enhancement can be seen 
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in all peripheral positions around the cylinder. For example, for �� = 1500 and φV =
17.0kV, the enhancement of local Nusselt number at	S = 180° is 78% as compared with 

the free convection.    

In the high electric field region, the space charge concentration can generate intense 

electric body force. However, at voltages around	φ = 15.5kV and � = 7��, a small local 

decrease in local Nusselt number occurs around S = 30°, near the lower stagnation point. 

By increasing the voltage to	φV = 17.0kV and current to � = 12��, this reduction in 

local cooling becomes greater. The numerical results predict the same local decrease in 

local Nusselt number around	S = 30°. In order to understand this local reduction of the 

Nusselt number around the lower stagnation point, detailed information of the flow 

pattern is useful. 

Fig.6 shows the numerical results for the streamline patterns and isotherms around the 

cylinder for �� = 1500 at φV = 12.0kV	and	17.0kV. As seen in this figure, at φV =
12.0kV	and I = 1μA the flow pattern around the cylinder remains streamwise. However, 

for voltages above the	φV = 15.5kV and � = 6μA, the electric body force becomes strong 

enough to produce high velocity gradients near the blade. This strong velocity gradient 

results in a recirculation zone establishing below the cylinder. The recirculation zone 

causes an insufficient entrainment of the cool fresh air into the thermal boundary layer at  

0° < S < 80° and results a decrease in local Nusselt number at the same location. 

Stronger recirculation is produced by higher corona current. Therefore, a greater local 

decrease in Nusselt number near the lower stagnation point is expected at higher corona 

currents. As shown in Fig.2-c, the visual effect of recirculation zone and its impact on the 

last fringe can be qualitatively recognized for φ = 15.5kV	and	17.0kV at �� = 1500.  

In order to investigate the corona wind effects at higher Ra numbers, the results of 

experimental and numerical investigations for �� = 5000 are presented in Fig. 7. A 

similar trend in the variation of local Nusselt numbers can be seen as in Fig.6. For 

�� = 5000, the enhancement of heat transfer at lower stagnation point for φV = 17.0kV, 

� = 10�� is only 10% less than the enhancement of heat transfer at �� = 1500. In 
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contrast, the local Nusselt number at the upper stagnation point at �� = 5000 and 

φV = 17.0kV shows the enhancement 200% less than that of �� = 1500. 

 

Figure 6: Numerical results for isotherms and streamlines for Ra=1500 at �� =
��. ���	���	��. ���. 

The comparatively small enhancement of the local Nusselt number at �� = 5000 with 

respect to the �� = 1500 is mainly due to the dominancy of buoyancy-driven flow 

regime around the cylinder over the corona wind driven flow at higher Ra numbers.  
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Figure 7: Experimental and numerical local Nusselt number for the horizontal 

cylinder for various corona voltages at Ra=5000. 

 

Figure 8: Experimental results for the average Nusselt number enhancement of heat 

transfer at various applied voltages 
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Fig. 8 shows the variation of average Nusselt numbers versus Ra for different corona 

discharge voltages. It should be noted that for higher �� numbers, the EHD effect on the 

average Nusselt number decreases at the same corona voltage and spacing.  At higher Ra 

numbers, buoyancy-driven flow becomes stronger compared to corona-driven flow. 

Therefore, the trend of average Nusselt number enhancement versus Ra for a specific 

applied voltage is a decreasing function. The maximum enhancement of the average 

Nusselt number around the cylinder occurs at the lowest �� number (�� = 1500) and 

17kV applied voltage. As expected, at a specific voltage the average Nusselt number is a 

decreasing function of the Ra. By increasing the applied voltage, the slope of average 

Nusselt function becomes steeper because the electric body force decreases for higher Ra 

numbers. The observations showed that the electric body force is affected by the 

temperature field around the heated cylinder. The V-I characteristics for �� = 0, 

�� = 1500, and �� = 5000 are shown in Fig.9.  

 

Figure 9: V-I characteristic diagram for blade-cylinder geometry with 40 mm 

spacing at different Ra numbers. 
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The thermal effect causes the change in the trend of the V-I characteristics at different 

Rayleigh numbers. For example, at �� = 5000 and φV = 15.5kV, the discharge current 

is 15% less than that of �� = 1500. This may be attributed to the ion mobility 

temperature dependence. Ion mobility and current density decrease with increasing the 

surface temperature of the ground electrode [19].  In other words, the thermal effect 

reduces the current density, the corona power consumption, the electric body force, and 

local Nusselt number enhancements for a specific corona voltage. 

The effect of Joule heating is numerically investigated through considering the source 

term in the energy equation. The numerical results show that the effect of Joule heating 

does not cause temperature increments of air temperature around the intense electric field 

zone. It is mainly because of the relatively low level of current density, which is unable to 

produce significant thermal effects in surrounding air. At higher Ra numbers, the effect 

of Joule heating inside the thermal boundary layer becomes even less important because 

the electrical conductivity of air is inversely proportional to the temperature.  

According to the results presented in this paper, the enhancement of heat transfer through 

the corona discharge is stronger for lower �� numbers and a decreasing function of �� 

number. At a specific voltage with a fixed spacing between electrodes, a recirculation 

zone, which is created by the electric body force, causes the local decrease in heat 

transfer from the cylinder. By increasing the corona voltage, the stronger recirculation 

zone is generated and causes a larger local decrease in heat transfer rate. Systematic study 

is needed to find the optimum electrode spacing and the applied voltage in the various 

ranges of �� numbers for single or array of cylinder. This knowledge can be 

implemented for high performance ionic heat exchanger design.   
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Nomenclature  

b  Ion mobility (m	&V�	�	s�	�) 

A Gladstone–Dale coefficient (m�	�Kg�	�) 
A~ Specific heat	(J	Kg�	�K�	�) 

.  Diameter of cylinder (m) 

D�  Ion diffusion coefficient (m&s�	�) 

l  Electric field (V	m�	�) 

k  Electric body force (N	m�	�) 
x  Gravitational acceleration (m	s�	&) 

h   Heat transfer coefficient (W	m�	&K�	�) 

�¦ Corona current (A) 

�  Current density (A	m�	&) 

	/   Thermal conductivity (W	m�	�K�	�) 
B  Length of cylinder (m) 

*+   Nusselt Number 

C Pressure (Pa) 

5   Radial distance from the cylinder surface (m) 

��	 Gas constant (J	Kg�	�K�	�) 
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�� Conventional Rayleigh number based on temperature,¨©((; − ()).� w|⁄  

(  Temperature (K) 

t Velocity field vector (m	s�	�) 

Greek symbols 

| Thermal diffusivity (m&s�	�) 

© Volumetric thermal expansion coefficient (K�	�) 

>	 Shift fringe  

>� Vacuum permittivity ≈  air permittivity (A	s	V�	�m�	�) 

�	 Electric potential (V) 

φV Voltage applied to corona electrode (V) 
D Laser wave length (m) 

« Air density (Kg	m�	�) 

ρ� Charge density ( C	m�	�) 
­  Electrical conductivity (Ω�	�m�	�) 
w  Kinematic viscosity (m&s�	�) 

Subscripts  

¯ Referred to surface  

S Referred to periphery angle 

∞ Referred to infinite medium 
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Chapter 3 

Two-phase cooling characteristics of mono-dispersed 

droplets impacted on an upward-facing heated disk 

 

3.1 Introduction 

Dramatic shrinking in the dimensions of electronic devices results in high speed 

operation but is accompanied by higher density heat generation.  Thermal management of 

these devices is an important limiting design factor for further size reduction. High 

density heat generation at relatively low temperatures (for silicon carbide devices 

typically 150 W/cm2 at reliable operation temperature of about 150 °C) can be dissipated 

by applying high performance phase-change based techniques. Recently, spray cooling 

and mono-dispersed droplet cooling have been proven to be efficient methods for high 

heat dissipation at low surface temperature superheats using only a few hundred cc/min 

of the coolant. As an important advantage, using a small volume of the coolant reduces 

considerably the size of cooling circuit elements, such as the circulation pump and 

condenser. 

Two-phase droplet cooling uses latent heat to dissipate extremely high heat fluxes at 

relatively low temperature differences. Since the vapor is not trapped by the pool of 

liquid and can be easily released, the amount of heat transferred by the stream of 

atomized or mono-dispersed droplets (MDSD) impacted on a heated surface is higher 

than the pool boiling. The droplets are evaporated and replaced by fresh droplets, so that 

the heated surface remains at relatively uniform low superheat temperatures. Heat fluxes 

as much as 1000 W/cm2 and 300 W/cm2 at low superheats (typical superheat at CHF for 

water is about 30˚ C) can be removed by atomized droplets (sprays) and MDSD, 

respectively. Spray cooling techniques dissipate higher heat transfer rates, but typically 

operate at higher pressures (1.5-4 atm) and higher mass flow rates (100 cc/min). 
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Eliminating the need for bulky pumps makes the MDSD suitable for a number of 

applications with moderate thermal loads between the pool boiling and spray cooling heat 

removal range. However, MDSD cooling introduces additional complexities such as 

droplet generation reproducibility, complex droplet impact dynamics, and stabilization of 

liquid film over the heated surface. 

Due to the high heat flux removal at relatively uniform low superheats droplet cooling 

has been a subject of many investigations and has been found suitable for a number of 

applications [1-10]. However, comparing the MDSD cooling and spray cooling method 

through the literature, spray cooling has been studied more extensively [20-24]. A 

comprehensive review of the spray cooling technique can be found in several 

publications [5, 25]. In the MDSD cooling technique, a free falling stream of droplets can 

be produced by forcing the coolant through a capillary tube. The droplets are generated 

by gravity-surface tension interaction or other external actuators, such as ultrasonic 

devices, and deposited on the heated surface. The axial momentum of the falling droplets 

converts to the radial momentum due to the initial kinetic energy; the droplets spread 

over the heated surface and create a film of coolant. At a low range of impact Weber 

numbers (We < 20), the deformation of impacted droplets results in a continuum film of 

liquid, while at higher range of Weber numbers the impacted droplets break up to tiny 

fragments [14,15]. The thin film of coolant heats up quickly during the early stages of the 

spreading process, dominantly due to the conduction mechanism, and the heat transfer 

rapidly enters to nucleation boiling. High amounts of heat flux are removed due to the 

phase change process. The rate of heat transfer is determined by the film spreading 

characteristics, which depend on several parameters related to the droplet/target 

interactions such as: impact velocity [31], initial size of the droplet, frequency of impact, 

surface temperature, surface wettability [30] and roughness [15], heated surface material 

properties and the operating pressure. 

High speed photographic analysis of impact droplet boiling provides better understanding 

of the relationship between the spreading dynamics, phase change phenomenon and dry-

out initiation at CHF Regime. A good historical review for high speed photographic 

studies of pool boiling, flow boiling, and droplet impact boiling can be found in the work 
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of Kandlikar and Steinke [26]. Early photographic investigations by Chandra and 

Avedisian [27, 28] reveal that droplet dynamic contact angle determines the initiation of 

critical heat flux regime. When the surface temperature increases, the dynamic contact 

angle increases significantly during the spreading process due to the rapid evaporation of 

the liquid around the solid-liquid and vapor interface around the droplet edge. The study 

of the dynamic contact angle variation during the spreading process and its effect on the 

maximum spreading ratio and critical heat flux initiation was continued by Kandlikar and 

Steinke [29]. It was found that the curl back phenomenon, which was reported previously 

by Chandra and Avedisian [27, 28], profoundly affects the maximum spreading ratio and 

it is responsible for critical heat flux initiation. Bernardin et al. [14] used high speed 

photographic techniques to investigate the pattern showing the impact behavior of water 

droplets on a hot aluminum plate with surface temperature ranging from 100 to 280 °C. 

Droplet impact velocity and surface temperature were found to be important parameters 

governing both impact behavior and the heat transfer process. These authors identified 

four different boiling regimes: film boiling, transition boiling, nucleate boiling, and film 

evaporation through matching the sequential photographs corresponding to the heat 

transfer measurements. As an important result, the temperature corresponding to the 

critical heat flux and Leidenfrost point showed little sensitivity to both droplet impact 

velocity and frequency in the range of their experimental parameter.  

Several early experimental investigations were performed to characterize the maximum 

heat flux dissipated by the MDSD technique as a function of relevant parameters and 

various non-dimensional numbers. Watchters and Westerling [9] suggested that the 

Weber number, a measure to compare the strength of the inertia force and surface 

tension, has significant importance in characterizing the droplet impact heat transfer 

process. McGinnis and Holman [8] developed a correlation for normalized CHF based on 

the modified Weber number. They introduced the ratio of liquid and vapor density in the 

standard Weber number definition at the film temperature. Their correlation could predict 

normalized CHF based on the modified Weber number. Sawyer et al. [3, 10] reviewed 

the experimental study on liquid jets conducted by Monde and Inoue [4] and 

hypothesized that, due to the analogy between impingement jet and droplet cooling, the 

CHF can be determined by referring to the standard definition of Weber number and 
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Strouhal number. In order to examine their hypothesis, a complex fluid delivery system 

was developed and the dripping parameters such as droplet size, impact velocity and 

frequency were varied independently. After many sets of experiments, they concluded 

that although the Weber number is the primary parameter which affects CHF, the droplet 

impact frequency might be taken into account as a secondary relevant parameter. The 

Strouhal number,( )Vdf p , along with a standard form of Weber number, ( )σρ pL dV 2 , 

were found to be essential parameters for determining the CHF. The experimental CHFs 

for various cases were modified based on the total area initially wetted. The 

Kurabayashi–Yang correlation [32] was used to predict the maximum spreading ratio of 

the impacted droplet, β. A correlation for the modified CHF was proposed for the range 

of Weber number (175 < We < 730) and Strouhal number (7×10-3 < St < 3×10-2). They 

also continued the study and proposed an empirical correlation of adjusted CHF (based 

on the K-Y spreading ratio correlation) [1] for MDSD cooling using the same 

dimensionless numbers as in Halvorson’s experimental data [6, 7]. The range of 

experimental Weber and Strouhal numbers in [6,7] (55 < We < 109 and  1.9×10-3 < St < 

3.7×10-2)  was well below the range of Sawyer’s correlation applicability. They 

concluded that the Sawyer’s correlation is not applicable for low Weber number droplet 

cooling. Ignoring the uncertainty of K-Y correlation in modified CHF calculation at low 

Weber numbers, the difference between two correlations was reported due to the different 

spreading mechanism (droplet fragmentation) at higher impact velocity and high Weber 

number regime. It should be highlighted here that the K-Y correlation provides the best 

agreement among several other similar analytical expressions, which were derived from 

energy balance equation [11], however, it overestimates the maximum spreading ratio, 

especially at lower Weber numbers [2] (for instance, ~+70% at We=10 and ~+40% at 

We=58). Since the wetted area is proportional to β
2, the β-calculation using the K-Y 

correlation leads to significant errors (by the factor of ~1.5-2) in the modified CHF 

calculation.  

Although several empirical CHF correlations have been proposed in the literature for 

mono-dispersed droplet cooling, they are not applicable for low Weber numbers (< 50) 

[3,7,10]. The various authors frequently used complicated external sources to control the 
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droplet parameters, which make their result reproducibility difficult or even impossible. 

Moreover, two complications regarding the previous experimental setup design [6], 

which will be discussed in results and discussion section, motivated the authors to revise 

the previous experimental setup and revisit the mono-dispersed droplet cooling problem 

experimentally. This paper aims to investigate the two-phase characteristics of free-

falling MDSD impact on smooth upward-facing horizontal heated surface at the range of 

low Weber numbers 3 < We < 100 and Strouhal numbers 1.81×10-3 <  St < 3.86×10-2. 

The droplets were generated by a natural formation-breakup mechanism due to the 

gravity and surface tension interaction. The impact velocity of the droplets, their size and 

frequency were varied by changing the capillary size, the spacing between the capillary 

and heated surface, and varying the volumetric flux, respectively. Deionised water was 

chosen as the working fluid and the experiments were conducted at atmospheric pressure. 

The time-averaged boiling curves were obtained up to the CHF-regime for various 

droplet parameters. In order to predict the experimental results for average CHF, two 

separate correlations based on the relevant dimensionless numbers were developed.  

3.2 Experimental setup and procedure  

The experimental setup was designed to investigate the heat transfer from a horizontal, 

upward-facing, heated surface impacted by a stream of mono-dispersed water droplets of 

different sizes, impact velocities and impact frequencies. The experimental apparatus 

consisted of three major components, (I) heat surface, (II) measurement system and 

instrumentation (III) for fluid delivery system. The schematic diagram of the 

experimental circuit is presented in Fig.1-a.  The circular heat transfer surface is a tapered 

base of nickel-plated heated cylinder. The heated cylinder was made of copper, coated 

with a protective layer of 30 micron nickel. The heat transfer surface was fully polished 

and coated with an additional layer of 25 micron nickel. Surface measurement after the 

coating process showed its arithmetic average roughness was less than 200 nm. Four 

identical cavities were drilled in the cylinder and four identical 300 W-cartridge 

WATLOW heaters were inserted axially into the cavities, connected in parallel and 

supplied with a programmable power supply (QuadTech Model: 42000). The upper end 

of the heated cylinder was tapered to a smaller diameter (8 mm) to increase surface heat 
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flux and instrumented with 12 calibrated K-type thermocouples with a 0.25 mm bead 

(Omega K-type thermocouples 0.25 mm- 5SRTC series Kapton®). The thermocouples 

were embedded in the neck of the heat transfer surface and fixed using a mixture of 

ultrafine copper powder and high thermal conductive adhesive epoxy (OMEGABOND 

200®). The thermal conductivity of copper at saturation temperature was used in the 

present work (395 W/m.K). A linear function for variation of thermal conductivity of 

copper was used to estimate the thermal conductivity of copper at higher temperatures. 

The decrease in thermal conductivity is ~ 3 W/m.K at Ts=130 oC. The heated cylinder was 

inserted into a Teflon block to minimize the heat losses. Extra slag wool with thermal 

conductivity ~ 0.04 W/m.K was used in the neck region to reduce the radial heat transfer. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-a: Schematics of experimental setup 
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Figure 1-b: Details of heater bar and thermocouple locations (dimensions in 

mm) 

The heated surface was fitted to a truncated Teflon ring to seal the neck of the heat 

transfer surface and to direct the excess liquid to the drain. The rim of the impacted 

surface was insulated using a conical ceramic connection and sealed with a thin strip of a 

high temperature resistant silicone rubber.  An adjustable holder was used to precisely 

align the heated surface in x-y-z direction. The details of heater bar and thermocouple 

location are presented in Fig.1-b. 
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In order to examine the uniformity of temperature over the heated surface at different 

levels and to allow accurate heat flux calculation, the 12 calibrated thermocouples 

(Omega K-type thermocouples 0.25 mm- 5SRTC series Kapton®) were placed at three 

different levels and in four different radial depths and peripheral angles using a 16-

channel data acquisition system NI-DAQ 9213. A LABVIEW code was developed to 

calculate the heat flux and surface temperature measurements from the thermocouple 

readings. The local heat flux was calculated from 1-D steady state Fourier’s law of 

conduction for the cylinder neck at four different peripheral angles at different radial 

distances. The detailed locations of thermocouple junctions are presented in Fig.1-b. The 

local heat flux variations measured at four different locations never exceeded 2% of 

measured value. The surface temperature was obtained by real time linear extrapolation 

of thermocouple readings. The surface temperature variation calculated at different 

peripheral angles showed typically less than 0.5% variation.    At high superheats and 

pre-CHF, the boiling curve fluctuates due to the transient boiling regime and it depends 

on the mass flow rate and the impact velocity. Polynomial curves were fitted to this 

portion to interpolate the maximum heat transfer and its corresponding superheat. The 

liquid volumetric flux was measured using calibrated rotameters. The frequency and size 

of droplets were obtained using high-speed video recording along with time-dependent 

frame-shot capturing software. 

Figure 2 shows the variation of the generated droplet as a function of capillary size at 

different volumetric flow rates.  Decreasing capillary diameters at a given volumetric 

flow rate resulted in decreasing droplet diameters. Reduced initial droplet diameter, 

impacting a heated surface at a given velocity, creates a thinner liquid film with reduced 

maximum spreading ratios. Since the area of the surface wetted by the stream of droplets 

can be controlled by volumetric flow rate, initial size of the droplets and capillary size, 

the range of these experimental parameters was chosen to maximize the wetted area for 

all test cases. Selecting the range between 1 and 4.8 cc/min and choosing capillaries 

ranged between 17 and 21g, the smallest measured wetted area for stream of droplets 

generated by a 17g needle was 96% of the heated surface area.  For the narrowest 

capillaries (21g) and at the lowest impact velocities, 0.28  m/s,  the dry area of the disk 

was measured to be  less than 17% at the lowest volumetric flow rate 1 cc/min. It was 
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observed that the average surface temperature variation for all thermocouple readings 

adjacent to the surface was below 1%.  Therefore, the average heat flux is presented 

based on the entire heated surface area. 

 

Figure 2: Droplet size variation using different hypodermic needle gauges at 

different volumetric flow rates.  

The fluid delivery system consisted of a recycling circuit with the following components: 

hydrostatic pressurized acrylic reservoir, acrylic vessel, nozzle cartridge, standard 

hypodermic needles ranged from 17g to 22g and fine thread needle valves. The liquid 

was forced by pressurizing the reservoir and directed to the nozzle cartridge, and the 

hypodermic needle was positioned above the heated surface. The needles were insulated 

with a 10-mm in diameter Teflon cylinder to minimize the heat transfer due to the 

condensation of the hot vapor generated in the test section. A thermocouple was inserted 

into the Teflon block and fixed at the needle wall 2-mm away from its tip to measure the 

inlet coolant temperature. The nozzle cartridge was equipped with a universal fitting to 

readily mount various capillaries centered above the heat transfer surface. Various droplet 

sizes were obtained through variation of volumetric flux using different capillaries. In 
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order to obtain various impact velocities ranged between ~0.28 to 1.3 m/s, the spacing 

between the heated surface and capillaries was varied between ~3 and 90 mm through a 

vertical adjustment mechanism.  Two OMEGA needle valves (NV1 and NV2) were used 

to precisely control the flow rate passing through the capillary. Applying different 

hypodermic needles along with varying the gap between the capillary and heated surface 

provides a reasonably wide range of droplet size, impact velocity and frequency. The 

nozzle cartridge, needle, and heated surface were placed in an acrylic vessel with a small 

vent on its top. The free convection heat transfer from the acrylic box walls is enough to 

condense the saturated vapor. The excess coolant and the vapor were recycled and 

directed to a tank through a drain connection at the bottom of the acrylic vessel. A 

removable view port was mounted for imaging purposes.  

Before starting the heat transfer experiments, the fluid delivery system was tested to 

examine the reproducibility of the droplets. The reservoir was filled out with DI water, 

pressurized to maximum 300 kPa and the stream of droplets was generated by forcing the 

coolant to the various capillaries. The impact velocity of droplets was estimated by taking 

into account the effect of drag and buoyancy forces. The details of the impact velocity 

calculation can be found in [13]. 

 

Figure 3: Comparison between the measured impact velocity of the generated 

droplet and the predicted impact velocity using Eq.(2)   
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Assuming that the terminal velocity has not been reached and the droplet initial velocity 

is zero [13] (i.e, the droplets are still accelerating with the gravitational acceleration), the 

momentum balance equation in the vertical direction gives the net force 

                             
dt

dV
mmaFFFF dbg ==++=∑                 (1) 

where Fg, Fb, and Fd refer to the gravitational, buoyancy, and drag force, respectively. 

They are given by mgFg = , gmF Lab ρρ /=  ( aρ is the mass density of the air), and bVFd =

where b is a drag coefficient defined by 2/6 pdb πµ= ; m is mass of the droplet. The 

solution of the above differential equation gives the impact velocity as 
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In the above derivation, the internal circulation of the fluid in the droplet, the effect of 

interfacial condensation and the variation of mass density of air due to the presence of 

vapor are assumed to be small.  The calculation of velocity based on this method and 

measurement of instantaneous velocity of the impacted droplet are consistent (See Fig.3).  

The size and frequency of generated droplets were obtained using a digital camera and an 

image processing MATLAB code for each individual capillary at different volumetric 

fluxes. The measured diameter sizes were consistent with volume-weight conversion 

calculation. The standard deviation of the size and frequency of the droplets generated by 

the hypodermic needle 17g for =pd 3.71 mm at =f 5.5 Hz was below ±1%. The size and 

frequency of the generated droplet were found to be constant in all the experiment since 

the variation of pressure in pressurized reservoir showed variations of 300 kPa±0.5 kPa. 

It should be noted that the size of the generated droplets and the temperature of the 

droplet might be affected by the generated vapor cloud in the experimental test section 

due to the condensation of the vapor on the droplet surface during its flight. In the present 

study, we measured the size of droplets at room temperature. Monitoring the falling 

droplets during its impact to the heated surface showed that the droplet diameter change 

due to the condensation is small and it is below the certainty of the droplet size 
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measurements. The frequency of the droplet generation at a specific mass flow rate does 

not show measurable change in the heat transfer experiments.    

The heating power was set to 20 W, while the thermocouple readings were recorded in 1 

to 3-second intervals. The desired stream of droplets was generated and directed to the 

heated surface and the time-space averaged thermocouple readings were monitored to 

determine the steady-state condition. It was assumed that the steady-state was reached at 

the heated surface, when the calculated time-spaced averaged surface temperature 

changed by < 0.1o C over a 30 s period. It took generally less than 15 s per 1 W input 

power increment to reach the steady-state condition. After reaching steady-state 

condition, the space-time averaged heat flux and surface temperature were recorded for a 

30-second period. The data acquisition process was initiated when the surface 

temperature reached the steady-state saturation temperature. By increasing the electrical 

power, surface temperature rises and heat transfer shows sharp increase due to the 

evaporation and boiling process. By further increasing the input power, the heat transfer 

approaches to maximum value and is followed by a steep decrease and rapid temperature 

rises. This maximum value of the heat flux is defined as CHF. After reaching the post-

CHF boiling regime, the electrical power was switched off and the heated surface and 

insulation were allowed to cool down. The procedure was repeated for the next run. The 

coolant flow rate and impact frequency were monitored periodically during the test. All 

of the experiments were repeated three times to verify the reproducibility of results.   

3.3 Experimental uncertainty and error analysis 

Three sources of error contribute to the heat flux calculation: errors in thermocouple 

readings, uncertainty in thermal conductivity of copper, and uncertainty in thermocouple 

locations. The propagation equation of Kline McClintock for heat flux calculation can be 

expressed as: 
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The precision errors,
ixU , associated with the various measured quantities, ix  were 

summarized in Tab. 1. The bias error for the thermocouples, pressure gauge, and 

rotameter was negligible, because they had been calibrated.  The theory of the 

propagation of uncertainty was applied to evaluate the 95% confidence uncertainty of the 

average heat fluxes. The maximum uncertainties associated with the heat flux were 

obtained to be 6% at 40 W/cm2 and 4% at 100 W/cm2. The maximum uncertainties of 

Weber and Strouhal number calculations were estimated to be less that 3% and 5%, 

respectively. Both numbers are calculated based on subcooled water temperature. Heat 

flux calculation based on one-dimensional heat conduction assumption was generally 5% 

lower than the net power supplied to the heater cartridges. It is consistent with expected 

losses due to the free convection from the heated surface.  

Table 1. The precision error associated with measured parameters 

 

3.4 Results and Discussion 

In order to check the accuracy of the experimental procedure and the data reduction 

method, the boiling curves of droplet cooling for capillary 17g with impact velocity of 

~1.3 m/s were obtained at different mass fluxes and average CHFs were compared with 

the unadjusted CHF data reported by Halvorson [6]. It should be noted that Halvorson [6] 

used tissue around the experimental test section in order to suck up excess water by 

capillary action. These previous experiments were reproduced by applying various tissues 

around the experimental test section to mimic the physical conditions of Halvorson’s 

experiments and the new CHFs were obtained. Although the repeatability of the previous 
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experiments [6] depends on the physical properties of the applied tissue and its 

dimensions, the CHF can be reproduced by applying some dense cotton tissue. However, 

after eliminating the cotton tissue a significant discrepancy can be observed between the 

measured CHF and those reported by Halvorson [6]. The previous experiments [6] 

overestimated the average CHFs by a factor of ~2. Fig. 4 shows the average CHFs 

obtained by Halvorson [6] versus the current experimental results with and without cotton 

tissue. The cotton tissue presumably introduces additional physical complications. It acts 

as a physical block, particularly when it becomes saturated by excess water, and this may 

enhance the droplet resident time over the heated surface, which would result in 

artificially higher CHF measurements. It is concluded that the cotton tissue interferes 

with the data collection and makes the result highly dependent on the cotton tissue 

condition including size, material, porosity, and the amount of water absorbed by the 

tissue.  

 

Figure 4:  Variation of droplet cooling CHF with mass flux of capillary 17g 

compared with previous studies 
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There is one more complication regarding to the previous experimental setup, which may 

lead to the mentioned discrepancy. In Halvorson’s setup [6], the bare capillary was fixed 

above the heated surface and it was in direct contact with the hot saturated vapor 

produced by boiling process. This resulted in condensation heat transfer occurrence at the 

capillary surface and significant increments in inlet water temperature. Accordingly, the 

inlet temperature varies depending on the coolant mass flux and the condensation rate. 

Although they reported the vigorous condensation at the capillary wall, they did not 

report any measure to reduce this undesired heat transfer at the wall.  

In the current experimental setup, the condensation heat transfer was reduced by adding a 

10-mm diameter Teflon block insulation around the capillaries. The inlet water 

temperature was monitored by a thermocouple junction installed just upstream of the 

capillary outlet and controlled to be CC oo 225 ±  during the experiment.  The experimental 

runs were performed at least 20 minutes apart from each other to ensure proper insulation 

cooling. 

 

Figure 5: Boiling curves of 17g capillary at various volumetric flow rates 
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In order to investigate the droplet cooling at very low Weber numbers, the CHFs were 

found at low impact velocities, where the spreading process is theoretically more stable. 

The capillary was fixed at the distance in the order of the initial droplet diameter, 

approximately 3-4 mm. The acquired velocity of the droplet was estimated to be ~ 0.28 

m/s.  Based on the impact velocity and droplet size, the Weber number varies in the range 

between 3 and 4 for volumetric flow rates in the range of 1-2.5 cc/min. Since the trend of 

boiling curves for various capillary gauges is similar, the boiling curves for only smallest 

and largest capillaries used in these experiments are presented.  

 

Figure 6: Boiling curves for 22g capillary at different volumetric flow rates 
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Figure 7: Boiling curves for 22g and17g capillaries at different volumetric flow rates 

Figures 5, 6 and 7 depict boiling characteristics of droplets with impingement velocity ~ 

0.28 m/s at four different flow rates for 17g and 22g capillaries, respectively. As it can be 

seen, the magnitude of the measured heat dissipation in the two-phase regime using 

different capillaries, ranged between 17g-22g, is in the order of tens of W/cm2. For 

instance, average heat fluxes as much as 60 W/cm2 and 138 W/cm2 with 16 C̊ and 19C̊ 

superheat can be removed through the impacted droplets generated by a 22g capillary 

with initial diameter size of ~2.39 mm at 1 cc/min and 2.5 cc/min, respectively. This 

significant heat removal improvement is mainly attributed to the boiling heat transfer 

enhancement, due to the stagnation point flow-like pattern of the coolant after droplet 

impact and the resulting thin film establishment during the spreading process.  

Departing from the single-phase regime, a relatively sharp transition to the two-phase 

regime is observed for both capillaries in Figs. 5-7 at around the saturated temperature. 

At lower volumetric fluxes (~ 1 cc/min), the transition to the nucleation regime is slightly 

sharper due to the smaller rate of droplet formation and resulting thinner liquid film over 

the heated surface. Comparing the two-phase characteristics for fine and coarse 
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boiling regime regardless of the mass flux. The CHFs obtained at a given mass flow rate 

for low impacted velocities using various capillaries is almost identical. This suggests 

that at low impact velocities the CHF is only influenced by flow rate of the coolant rather 

than the initial droplet size variation or frequency. As expected, by increasing the flow 

rate the CHF increases and dry out occurs at higher surface superheats for both 

capillaries. The dry-out occurs between ~114 ˚C and 120 ˚C for 1 cc/min and 2.5 cc/min.  

Figure 8 depicts the boiling curves of droplet cooling at various impact velocities for the 

22g needle. The boiling curves for different impact velocities ranging between 0.28 and 

1.3 m/s show a similar trend. The prominent feature of the boiling curves is their steep 

departure from single-phase regime and sharp transition to two-phase regime. The sharp 

transition around the saturation temperature is primarily due to the thin film evaporation 

and onset of nucleate boiling in the thin liquid film. The trend of the boiling curves in the 

nucleation boiling regime is identical regardless of impact velocity. The mono-dispersed 

droplet impingement featured for single-phase regime also results in higher amount of 

heat dissipation, which can be as high as ~ 19 W/cm2 around the saturated temperature. 

By increasing the flow rate from 1 cc/min to 1.6 cc/min, single-phase heat transfer 

augmentation ~ 60% is obtained due to the mean radial velocity increment over the 

heated surface. However, changing volumetric flow rates between 1.6 cc/min and 2.5 

cc/min through the 22g needle, the single-phase heat transfer enhancement 

asymptotically reaches to maximum 19 W/cm2 at slightly below the saturated 

temperature. This asymptotic behavior for single-phase convective heat transfer at high 

flow rates is believed to be due to the increased loss of the supplied coolant flooding off 

the heated surface in the spreading process. 



81 

 

81 

 

 

Figure 8: Boiling curves of droplet cooling of 22g capillary at various impact 

velocities 
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have a significant influence on the droplet cooling process. For example, at lower impact 

velocity (V < 0.6 m/s) corresponding to We <20, comparatively thick continuum liquid 

film is preserved and the residential time increases. The fingerprint for the film continuity 

can be explored comparing Figs. 5-7 with Fig. 8. The heat transfer curves for V~0.28 m/s 
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temperature. At low Weber numbers, the fresh droplet lands on the heated surface, when 

the previous droplet volume is still engaged in the boiling process. The fresh sub-cooled 

droplet is mixed vigorously with the liquid film and the temperature rises up to the 

saturation point and the boiling process resumes quickly. Therefore, the heat transfer for 

the stream of droplets impacted on the heated surface at lower impact velocities is more 

stable, likely due to the continuity of liquid film. For very low impacted velocities 

(We<10), slightly increased impact velocity enhances CHF due to higher kinetic energy 

of the impact. Moreover, for very low Weber numbers (below 10), the resulting film is 

comparatively thick and hydrodynamically stable, thus it is less likely to develop semi-

dry spots at low superheats and CHF postponed to higher values.  However, by increasing 

the impact velocity (V>0.7 m/s), corresponding to We >20, the impacted droplet breaks 

up to tiny droplets. The film continuity is not preserved during the spreading process and 

characteristic curves show appreciable fluctuations. For high impact velocities (We >20), 

thinner film formation decreases residential time. Therefore, the fresh droplet lands on 

the heated surface, when the most volume of the previous droplet was evaporated. Thus, 

the heated surface more likely becomes locally semi-dried in a time period between two 

landings. The local lack of coolant on the surface due to the disintegration of the liquid 

film and reduced residual time may cause early dry-out.  

Figure 9 shows the variation of CHF with respect to the volumetric flow rate ranged 

between 1 cc/min and 4.67 cc/min at low Weber numbers We<20. This CHF variation is 

nearly universal and independent of capillary gauge size at low volumetric flow rates, but 

it shows deviation from the universal trend at higher flow rates. This indicates that at low 

Weber numbers, We< 20, the CHF is a dominant function of mass flow rate rather than 

the initial droplet size or frequency. Although the variation of the CHF is approximately 

universal at low flow rates, asymptotic behavior using 19-22g needles at higher flow rates 

can be observed in Fig. 9. The asymptotic trend may have been due to the flooding of the 

high frequency sub-cooled droplets, which do not have enough time to contribute the heat 

transfer process.  
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Figure 9: Variation of average CHF for various capillaries at different volumetric 

flow rates 

Figure 10 shows the variation of average CHF with respect to the volumetric flow rate for 

droplet impact velocity of ~1.3 m/s using different capillaries. As it can be clearly seen, 

the CHF variation strongly depends on the size of capillary. Comparing the coarse (17g) 

and fine capillaries (22g), the rate of increase in resulting CHF is significantly steeper for 

fine capillaries. The CHFs obtained for coarse capillaries (17g and 19g) show nearly 

linear trend for ~1.6 cc/min, but at moderate and high flow rates (above ~1.6 cc/min) an 

asymptotic trend in CHF is observed. The CHF generally enhances nearly linearly with 

respect to the volumetric flow rate for fine capillaries (22g and 21g). 
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Figure 10: Variation of average CHF at different volumetric flow rates 

Qualitative observations confirmed that supplying coolant with higher flow rates causes 

the liquid film to be swept away by fresh droplets and prevents temperature rise over the 

heated surface at moderate superheats, and results in suppression in bubble generation 

mechanism and nucleate boiling regime. Similar asymptotic behavior of two-phase 

characteristic curves was reported for spray cooling at high mass flow rates [11, 12]. 

 

Figure 11: Comparison between the experimental and the predicted CHF evaluated 

by Sawyer et al.’s correlation [3]. 
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Through this extensive set of experiments it was confirmed that the CHF can be 

correlated to initial droplet size, impact velocity and frequency by considering two 

dimensionless groups, Weber and Strouhal numbers. However, comparing the current 

result for the range of low Weber number, 10 < We <100, shows that the Sawyer et al.’s 

correlation [3] shows some deviations (see Fig.11); the current deviation with Sawyer et 

al.’s correlation is significantly lower than that of Halvorson’s experimental data [1]. This 

evidence is consistent with the earlier discussion on validity of the CHF reported by 

Halvorson [6]. The appearance of the current correlation, ba
fgL StWemVhCHF ⋅⋅=ρ , is similar 

to the previous correlation given by Sawyer et al. [3]. The correlation and the range of 

applicability for Weber numbers between 10 and 100 and Strouhal numbers between

31081.1 −× and 21086.3 −× based on 150 data points are given as: 

9.02.021046.6 StWe
Vh

CHF

fgL

−−×=
ρ

          (4) 

 

Figure 12: Comparison between the all experimental and the predicted CHF 

evaluated by Eq.(4) and Eq.(5). 
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As seen in Fig. 12, the proposed correlation predicts the current experimental CHF with 

an absolute error of less than ±25% for any combination of the droplet size, frequency 

and velocity of impacts. Dashed lines represent 95% confidence interval for the 

correlation given in Eq (4). 

It should be noted that the data points collected for We < 10 are not presented in Fig. 12. 

Fig. 13 compares the measured CHF data for We<10 and the proposed correlation given 

in Eq (4). The blue dash lines correspond to the error margins of ±25%. The average CHF 

shows considerable deviations at the range of very low Weber number (We < 10). This 

suggests that the droplet spreading dynamics and two-phase characteristics behavior have 

distinctive differences at very low Weber numbers (We < 10). 

 

Figure 13: Comparison between the experimental CHF and the predicted values 

using Eq.(4) for low Weber numbers (We<10) 

As it was shown in Fig. 9, at very low Weber numbers, the CHF varies linearly with 

respect to the mass flow rate and it is an increasing function of both Weber and Strouhal 

numbers. It should be noted that by increasing the mass flow rate, both the droplet size 

and frequency increase and result in higher Weber and Strouhal numbers.  Since the mass 
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flow rate is proportional to impact frequency and the volume of the single droplet is 

proportional to 3
pdf ⋅ , the appearance of the correlation is expected to be 

ba
fgL StWenVhCHF ⋅=ρ , where, 2=a , 1=b or 1=a , 2=b . Assuming 2=a , 1=b preserves 

the dependency of CHF to the impacted velocity and provides more accurate correlation 

(see Fig. 14). The CHF correlation and the range of its applicability for  Weber numbers 

between 3 and 10 and Strouhal numbers between  31035.6 −× and 
21088.3 −× based on 42 

data points is given as: 

StWe
Vh

CHF

fgL

2310588.4 −×=
ρ

        (5) 

 

Figure 14: Comparison between the experimental and predicted CHF data obtained 

by the dimensionless groups presented in Eq.(5) for We<10.  

Fig. 14 shows the ability of Eq.(5) to predict the CHF data at very low Weber numbers. 

The determination factor is 0.957, indicating that 95% of the measured CHF can be 

predicted by the correlation given by Eq.(5) with accuracy of 20%. The direct 

comparison of the proposed correlation is depicted in Fig. 14.     
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3.5 Conclusions 

The cooling characteristics of mono-dispersed water droplet impacting a circular heated 

disk were investigated. The boiling curves were obtained for various impact velocities 

volumetric fluxes and capillary sizes, ranged between 0.28 m/s and 1.3 m/s, 1 and 4.8 

cc/min, and 17 and 22g, respectively. The size and frequency of droplets were varied 

through the volumetric flux variation. The prominent feature of the boiling curves is their 

steep departure from the single-phase regime and sharp transition to the two-phase 

regime. The nucleation boiling regime of the boiling curves is approximately identical 

regardless of impact velocity and droplet parameters. The CHFs obtained at a given mass 

flow rate for low impacted velocities using various capillaries is almost identical. 

Through collecting 150 data points it was also confirmed that the average CHF of mono-

dispersed droplet cooling can be fitted using a correlation based on Weber numbers 

ranged between 10 and 100 and Strouhal numbers between 31081.1 −× and 
21086.3 −× , 

respectively.  Since the droplet dynamics and heat transfer characteristics show 

significant changes at very low Weber number, a separate CHF correlation based on the 

42 data points was developed for We<10. It should be noted that the proposed 

correlations are only valid for water and one may use different working fluids to adapt 

more general correlations applicable for the broader range of thermo-physical properties. 

 

Nomenclature 

CHF   Average critical heat flux ( )2−Wcm  

pd     Initial diameter of droplet ( )m  

f     Impact frequency ( )1−s  

fgh    Latent heat of vaporization( )1−Jkg  
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k    Thermal conductivity( )11 −− KWm  

"q    Heat flux ( )2−Wcm  

µ
ρ pLVd

=Re  Reynolds number 

V

fd
St

p=   Strouhal number 

U
.
   Volumetric flux (ccmin-1) 

V    Impact velocity ( )1−ms  

σ
ρ pL dV

We
2

=  Weber number 

Lρ    Density ( )3−kgm   

σ    Surface tension ( )1−Nm  

µ                          Viscosity ( )sNm 2−  
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Chapter 4 

Two-phase cooling characteristics of a saturated free falling 

circular jet of HFE7100 on a heated disk in the presence and 

absence of electric field 

 

4.1 Introduction  

The two-phase jet-impingement method is typically used to dissipate moderate and high 

concentrated heat loads in the order of 100-1000 W/cm² at relatively low superheats [1, 

2]. Such heat fluxes are encountered in several specialized applications such as cooling of 

high-energy x-ray devices, high power laser diode arrays, Si-C based photonic devices 

and the recent solid-state photonic components, such as optical scaling power elements 

[3]. The jet impingement technique has also found extensive applications in the transient 

quenching of alloys to accurately control the material phase-microstructure curves in 

metal industries. In several recent applications [1-3], the heated targets are delicate 

structures where their performance is sensitive to the mechanical stresses. Although high 

momentum jets are remarkably effective for the cooling of such localized heated targets, 

this aggressive technique may yield unwanted deformations or mechanical failure. This 

suggests the operation of the jets at low flow rates particularly for moderate heat fluxes. 

This decrease in operating flow rate may also lead to reduction in the size of auxiliary 

elements such as pump and condenser in the cooling circuit.      

Jets can be produced from either a rectangular or a circular orifice. Jet impingement 

cooling might be used in three different forms: (i) free jet (jets in vapor/gas), (ii) 

submerged jet (jet flow in the ambient liquid) and (iii) confined jet (jet axis is positioned 

in parallel with the heated wall) [13-17]. The present study is focused only on free 

circular jets. Here, the circular jet strikes the heated target and forms a radial liquid sheet. 

As a general principal, a high momentum jet may improve the contact between the 

coolant and the heated target around the impingement zone. Typically, for the low or 



95 

 

95 

 

moderate heat flux ranges, the momentum of the liquid sheet is high enough to sweep the 

generated vapor bubbles away from the target; thus the contact between the liquid and 

vapor is mostly preserved for a large range of superheats. By increasing the heat flux, the 

generated vapor next to the heated surface may blow through the liquid sheet rupturing it 

and creating several holes in it. This eventually leads to the formation of semi-dry spots 

around the rim of the heater. With a further increase in the heat flux, several dry regions 

may propagate inwards towards the impingement zone and the liquid sheet can be 

splashed away in the form of micro-droplets. Under these conditions, the liquid sheet is 

divided into two identifiable portions. One portion is a spray of micro droplets, which 

acquires significant surface energy and fly upward from the sheet at a some angle with 

respect to the heated wall plane. The other portion is the original sheet which remains 

mostly attached to the target and moves horizontally in a radial direction [18]. At a high 

enough heat flux, but slightly below the burnout condition, the contact of the original 

liquid sheet is preserved, the droplets become finer and their upward departure angle 

slightly increases. At burnout, the liquid sheet is suddenly interrupted since the kinetic 

energy of the bulk liquid is not enough to supply an adequate liquid to preserve its 

balance with the rate of evaporation and upward micro-droplet formation. Thus, the 

sprayed droplets become coarser and the liquid sheet no longer maintains its contact with 

the heated target. This picture of the burnout (the critical heat flux (CHF) regime) has 

been verified both theoretically and experimentally at comparatively high flow rates 

[7,8,9].    

Several studies have been performed to investigate the influence of the free jet 

parameters on CHF [4,5,18] at comparatively high flow rates. Based on these studies, 

various authors have correlated the saturated critical heat flux with the relevant 

dimensionless groups:   
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Further modifications were carried out by Haramura and Katto [6] to adopt Eq.(1) to 

consider the effect of liquid subcooling. Their proposed model, based on the burnout 

picture described earlier, has shown remarkable success in correlating the data of high 

velocity impingement jets (0.5 m/s to 12 m/s). In the course of generalizing the CHF 

correlation, Monde and Okuma [8] recognized two distinct regimes (i) V-regime: high 

impingement velocity with small target and (ii) L-regime: jets with low impingement 

velocity and comparatively large heated targets.  

The theoretical model based on the Mechanical Energy Stability Criterion (MESC) 

proposed by Lienhard and Eichhorn [18] predicted that the CHF for the V-regime varies 

with the cube root of the velocity, while for the L-regime the CHF is linearly proportional 

to the impingement velocity. The theoretical model was verified for both ranges by 

slightly perturbing the exponents to 0.343 and -0.364 for the V-regime which were 

originally 1/3 and -1/3 in the theoretical model. They also found boundaries for the two 

different correlations between the L- and V-regimes. Sharan and Lienhard [9] also 

proposed a more complicated unified correlation for both L and V-regimes based on the 

MESC. The unified correlation provides the same accuracy ~ ±20% for both L- and V- 

regimes. 

 In the case of free falling jets with a small impingement velocity the boiling 

characteristic is rather complicated. The thickness and the stability of the liquid sheet are 

the two most important factors that play a pivotal role, particularly at the CHF regime. 

Although the heat transfer coefficient is inversely proportional to the thickness of the 

film, the thinner film is more likely to be ruptured in multi locations due to the 

hydrodynamic instabilities. Several semi-dry spots can be created at even small 

superheats due to such instabilities, which may lower the magnitude of the CHF. These 

qualitative observations suggest that both film thickness and the layer stability determine 

the boiling curve characteristics.  

A complication for low speed jets is that the cross sectional area of the free falling jet is 

influenced by gravity/surface tension interactions at low flow rates. As the jet length 

increases, the liquid volume is accelerated by the gravitational force and since the flow 
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rate is constant, the cross sectional area reduces. It is expected that the jet length 

determines the boiling curves since both velocity and jet diameter change. In the previous 

studies, authors did not consider such an effect since the jets were typically operated at 

high flow rates, so that the cross section and velocity of the jet were not affected by 

gravity/surface tension interaction. For high momentum jets, gravity /surface interaction 

is dominated by the jet inertia. 

The reduction of the cross section and increase in velocity of a free falling circular jet can 

be analytically obtained by applying Bernoulli’s theorem between the exit point and a 

desired axial position z. Considering a circular jet with radius rext and exit velocity of Vext 

of a liquid with mass density of ρ and surface tension σ, one may find an expression for 

velocity increase in the z direction as: 
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By rearranging the above equation and considering the Froude and Weber numbers, 
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= , the following expression for velocity variation in axial 

direction can be obtained: 
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At a given jet length, S, it is useful to define the reduction coefficient as Γ=r(S)/rext. Since 

the mass flow rate is continuous in the free falling jet, the cross section of the jet due to 

the gravitational acceleration can be expressed as: 
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In this derivation, the jets were assumed to be hydrodynamically stable and z is smaller 

than the critical length, where the jet becomes unstable, zcrit. The normalized critical 

length of the jet can be obtained by dimensional analysis: 
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For the present volumetric flow rates, the minimum critical length for the falling jets is 

calculated to be 70 mm, which is larger than the largest jet length of this study.   

For high-speed jets, both the Froude and Weber numbers tend to infinity. According to 

Eq. (4-a), the falling jet shows no significant change in its diameter since the inertia force 

is dominant. In contrast, for low speed jets, the cross sectional area may be decreased 

since both Froude and Weber numbers take moderate values. 

The effect of jet length might be more understandable if one considers an extreme case, 

where the jet length is large enough so that the capillary-driven instability (Plateau-

Rayleigh instability) of the falling jet forms mono-dispersed droplets from the continuous 

jet. Boiling curves obtained for a mono-dispersed stream of droplets impacted on a heated 

target differ from that of a continuous jet and other dimensionless groups might be used 

to predict the measured CHF. However, one may find several commonalities between the 

jet impingement and the mono-dispersed droplet cooling technique [19, 20]. In mono-

dispersed cooling, both the film thickness after the impact and the hydrodynamic stability 

of the film contribute in determining the CHF. For instance, for increased impact velocity 

one may expect CHF enhancement due to the convection enhancement. However, 

significantly reduced CHF has been reported due to the hydrodynamic instabilities of the 

resulting liquid film at higher impact velocity [19].    
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Figure 1 (a): Radial spreading of an impingement jet striking on an upward facing 

disk at (low) volumetric flow rates 20 cc/min and (b)(high) flow rates 60 cc/min. (c) 

Figurative description of the effect of the jet length at different flow rates. 

 

Figure 2: Falling jets of HFE7100 at different jet lengths. Hydraulic jump position 

varies by varying the jet length. Jet lengths are: (a) 5 mm, (b) 10 mm (c) 20 mm at 

20 cc/min volumetric flow rate using 15g needle as nozzle.  
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For low speed jets, an additional complexity arises due to the development of the circular 

hydraulic jump over the heated target (see Figs.1 and 2) [10,11,12]. As qualitatively 

shown, the circular hydraulic jump position in a falling jet varies for different jet lengths.  

 It has been proven that applying the standard theory of the hydraulic jump to the uniform 

supercritical flow model may lead to large disagreements in predicting the 

hydrodynamics of the circular hydraulic jumps [12]. Unlike the classical theory of the 

hydraulic jump in open channels, which can be found in fluid mechanics textbooks, one 

cannot find a complete analytical model for circular hydraulic jump resulting from 

impingement jets. The complete mathematical model should include several physical 

effects describing both the upstream and downstream flow evolution including velocity 

of the jet, jet diameter, local and overall Froude numbers, jump position, possible flow 

separations and parameters describing the stability of the jump surface and the jump 

types [12].  

In general, for high-speed jets striking on small targets, the circular hydraulic jump does 

not occur within the heater area. For moderate and high-speed jets, the thickness of the 

liquid sheet is approximately uniform since the hydraulic jump occurs typically at radial 

distances larger than the target size. The hydraulic jump formation within the heater size 

may suddenly increase the liquid layer thickness. The complexities in flow patterns in the 

hydraulic jump region may significantly change the boiling characteristics. For example, 

the recirculation that occurs within a hydraulic jump may decrease the heat transfer.  

Since the jet length may determine the location of the hydraulic jump, the boiling curves 

may be considerably influenced due to the changing distance between the jet and target.   

The literature review suggests that the two-phase characteristics of free falling jets at very 

low flow rates has not been extensively studied. This is mainly because the previous 

studies have been more interested in maximizing the heat transfer by increasing the jet 

velocity. However, as mentioned earlier, increasing the momentum of the jet can 

introduce several drawbacks including aggressive mechanical stress. In this case, it 

makes more sense to consider a less aggressive cooling method in which the dielectric 

coolant is directly used to cool down the heat sources. The direct method is advantageous 
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since the heat sink and its bonding thickness is eliminated and thus the thermal resistance 

and the temperature increase across their thickness can be reduced significantly. This is 

especially important for high power solid-state devices in which high densities of 

generated heat should be dissipated at low operating temperatures.   

To the best of the knowledge of the authors, the effect of jet length at low flow rates has 

not been yet considered. This paper is intended to demonstrate the importance of jet 

length in determining the CHF at low volumetric flow rates. The boiling curves of the 

free falling circular jets of HFE7100 striking on an upward facing disk were obtained at 

different volumetric flow rates and jet lengths. The ranges of jet length and flow rates 

were chosen so that the jet remains continuous. The mono-dispersed droplet generation 

mode was avoided for all of the boiling curves presented in this paper. The dielectric 

fluid HFE7100 was selected as the working fluid since it possesses relatively good 

thermophysical properties and its low electrical conductivity makes it a reasonable 

candidate for direct electronic cooling applications. In order to understand the 

experimental results, some flow visualization of the jets is also presented. In order to 

include the effect of the length of the falling jets at low flow rates, the previous CHF 

correlation [9] was adjusted for the variable cross sectional area obtained by the 

analytical model. The current CHF results were predicted with the revised correlation.  

 

4.2 Experimental setup and procedure  

The experimental setup was designed to determine the heat transfer from a horizontal, 

upward-facing, heated disk impacted by the jets. The experimental apparatus consisted of 

three major components: (I) heat surface, (II) measurement system and instrumentation 

(III) fluid delivery system. The schematic diagram of the experimental circuit is 

presented in Fig.3-a.  The heat transfer surface was circular and consisted of nickel-plated 

copper base joined to a heated cylinder. The heated cylinder was made of copper, coated 

with a protective layer of 30 micron nickel. The heat transfer surface was fully polished 
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and coated with an additional layer of 25 µm nickel. Surface measurement after the 

coating process showed its arithmetic average roughness was less than 200 nm.  

 

Figure 3: Schematic view of experimental setup 
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Four identical cavities were drilled in the cylinder and four identical 300 W-cartridge 

WATLOW heaters were inserted axially into the cavities, connected in parallel and 

supplied with a programmable power supply (QuadTech Model:42000). The upper end of 

the heated cylinder was tapered to a smaller diameter (8 mm) to increase the surface heat 

flux and this formed the heat transfer surface.  The effective heat transfer area was a disk 

with a diameter of 8 mm. It was instrumented with 12 calibrated K-type thermocouples 

with a 0.25 mm bead (Omega K-type thermocouples 0.25 mm- 5SRTC series Kapton®). 

The calibrations estimated the fixed and bias errors of each thermocouple. The calibration 

was performed in a constant-temperature water bath for 50–100 ºC. During the 

calibration, the constant temperature bath was maintained at the calibration temperature 

to within ±0.05 ºC using PT100 thermocouples. The bath temperature was measured by a 

thermistor diode. The thermocouples to be calibrated were immersed simultaneously in 

the water bath and were kept close to the probe and the temperature measured by each 

thermocouple was recorded by a Data Acquisition System for 30 min maintaining a span 

of 10 s between two successive readings. The entire process was repeated one more time, 

and the average of the two readings was taken. The difference between the actual water 

bath temperature and the average of the measured temperatures gave the bias error. 

Precision error was estimated as twice the standard deviation of the thermocouple 

readings. The average values of precision and bias errors for all thermocouples used in 

the experiments were 2σ=0.06 and 0.1 ºC, respectively, where σ is the standard deviation. 

The thermocouples were embedded in the neck of the heat transfer surface and fixed 

using a mixture of ultrafine copper powder and high thermal conductive adhesive epoxy 

(OMEGABOND 200®). The heated cylinder was inserted into a Teflon block to 

minimize the heat losses. Extra slag wool with thermal conductivity ~ 0.04 W/m.K was 

used in the neck region to reduce the radial heat transfer. 

The heated surface was fitted to a truncated Teflon ring to seal the neck of the heat 

transfer surface and to direct the excess liquid to the drain. The rim of the impacted 

surface was insulated using a conical ceramic connection and sealed with a thin strip of a 
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high temperature resistant silicone rubber. An adjustable holder was used to precisely 

align the heated surface in x-y-z direction.  

 

 

In order to examine the uniformity of temperature over the heated surface at different 

levels and to allow accurate heat flux calculation, the 12 calibrated thermocouples were 

placed at three different levels and in four different radial depths and peripheral angles, 

and connected to a 16-channel data acquisition system NI-DAQ 9213.  A LABVIEW 

code was developed to calculate the heat flux and surface temperature from the 

thermocouple readings. The average heat flux was calculated from 1-D steady state 

Fourier’s law of conduction for the cylinder neck. The reported heat transfer and surface 

temperature were obtained by averaging the calculated heat fluxes and thermocouple 

readings. The surface temperature was obtained by linear extrapolation. The 

thermophysical properties of saturated HFE7100 are presented in Table. I. The 

volumetric flow rate of the jet was measured using pre-calibrated rotameters. A CCD 

camera was used for the visualization and measurement of the jet cross section variation 

along the axial direction.  

The fluid delivery system consisted of a recycling circuit with the following components: 

hydrostatic pressurized reservoir with a closed loop heating circuit, pressure vessel, 

universal nozzle holder, standard hypodermic needles, and fine thread needle valves. The 
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coolant in the reservoir was preheated to around saturation temperature by an immersed 

helical heat exchanger. The reservoir was thermally isolated with a layer of slag wool. 

The temperature of the liquid in the reservoir was monitored at three different levels. In 

order to avoid cavitation at the nozzle, the coolant was heated to 59oC±1 (~2oC below the 

saturation). The saturated liquid was directed to the nozzle holder by pressurizing the 

reservoir. The jets were formed by directing the working fluid through two different 

hypodermic needles 15g and 20g having inner diameters of 1.37 mm and 0.41 mm, 

respectively. A thermocouple was inserted into the Teflon block and fixed at the needle 

wall 2-mm away from its tip to measure the inlet coolant temperature. The nozzle holder 

was equipped with a universal fitting to easily mount the various needles and center them 

above the heat transfer surface. An axial guide was designed to vary the distance between 

the tip of the nozzle and heated target.  

Before starting heat transfer experiments, the target was aligned and leveled, and the jet 

was applied. The radial symmetry of the flow field over the target was visually examined.   

The experiments were started by applying a low heating power of about 20 W, while the 

thermocouple readings were recorded in 1 second intervals. The heating power was 

gradually increased. It was assumed that the steady-state was reached at the heated 

surface when the calculated time-spaced averaged surface temperature changed by < 0.1o 

C over a 30 s period. It took generally less than 5 s per 1 W input power increment to 

reach the steady-state condition. After reaching steady-state condition, the space-time 

averaged heat flux and surface temperature were recorded for a 30-second period. The 

data acquisition process was initiated when the surface temperature reached around the 

steady-state saturation temperature. By increasing the electrical power, the surface 

temperature increased and heat transfer showed a relatively sharp increase due to the 

initiation of the boiling process. By further increasing the input power, the heat transfer 

increases in the nucleation boiling regime, the heat flux approaches a maximum value 

and is followed by a steep decrease and rapid temperature rise. After reaching the post-

CHF boiling regime, the electrical power was switched off and the heated surface and 

insulation was allowed to cool down. The procedure was repeated for the next run. The 

coolant flow rate and the quality of the jet were monitored periodically during the test. 
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All of the experiments were repeated three times to verify the reproducibility of the 

results.  

4.3 Experimental uncertainty and error analysis 

Three sources of error contribute to the heat flux calculation: errors in thermocouple 

readings, uncertainty in thermal conductivity of copper, and uncertainty in thermocouple 

locations. The propagation equation of Kline-McClintock for heat flux calculation can be 

expressed as: 
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The precision errors,
ixU , associated with the various measured quantities, ix , are 

summarized in Table II. The bias errors for the thermocouples, pressure gauge, and 

rotameter were assumed to be negligible, because they had been calibrated.  The theory 

of the propagation of uncertainty was applied to evaluate the 95% confidence uncertainty 

of the average heat fluxes. The maximum uncertainties associated with the heat flux were 

obtained to be 4% at 50 W/cm2 and 3% at 100 W/cm2. Heat flux calculation based on one-

dimensional heat conduction assumption was generally 5% lower than the net power 

supplied to the heater cartridges. It is consistent with expected losses due to the free 

convection from the heated surface.  

4.4 Results and discussion 

4.4.1 In the absence of electric field  

Flow visualization may reveal the difference between the liquid sheets at small and large 

jet lengths. Fig. 4 shows photographs of the jet of HFE7100 striking the upward facing 

heated disk at different surface temperatures. In this case the saturated jet is issued from a 

15g needle at 20 cc/min volumetric flow rate. The jet length is small (only 5 mm.) The 
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calculated exit velocity is about 0.23 m/s and the measured diameter decreases to 91%. 

This corresponds to an increase in the axial velocity of less than 10%.   For such a small 

jet length, the thin liquid sheet is developed in a limited area around the stagnation point. 

This small region around the stagnation zone with the thin sheet is followed by a 

suddenly thick layer region generated by the circular hydraulic jump formation. The 

position of the hydraulic jump moves towards the center of the target as the surface 

temperature increases. The generated vapor bubbles in the nucleation boiling process 

around the rim of the disk serve as a physical barrier and boost the hydraulic jump with a 

larger increase in thickness. By increasing the surface temperature, as more nucleation 

sites are activated, the number of bubbles increases and this physical barrier extends to 

the center of the heater. Thus, the hydraulic jump occurs at smaller radial distances. At 

the CHF regime, the coolant layer around the rim is comparatively thick and the liquid 

sheet momentum is not large enough to push the bubbles off the target. 

 

 

Figure 4: Photographs of saturated  jet of HFE7100  issued from 15g needle striking 
a heated disk at different surface temperatures. The volumetric flow rate is 20 
cc/min and the jet length is 5 mm. The heat transfer area is 8 mm. 
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Fig.ure 5: Photographs of saturated jet of HFE7100 issued from 15g needle  striking 

a heated disk at different surface temperatures. The volumetric flow rate is 20 

cc/min and the separation between the jet and heated disk is 50 mm.  

Fig.5 shows photographs of a saturated jet of HFE7100 striking the disk with ten times 

larger jet length (50 mm) at different surface temperatures. All the experimental 

conditions were identical except the distance between the jet and heated target. The 

measured effective diameter of the falling jet over the target shows a 53% decrease with 

respect to the exit jet diameter at a volumetric flow rate of 20 cc/min. This corresponds to 

increase in impingement velocity of more than 400%. These measured reductions in the 

cross sections were consistent with the theoretical expectations presented in Eq. (4-a). In 

general, a clear difference between the appearance of the liquid sheet presented in Fig.4 

and Fig.5 is noticeable. For the large jet lengths, the effective diameter of the jet is 

considerably reduced and the effective velocity of the striking jet becomes higher. This 

may result in thin sheets with high momentum. Since the momentum in the sheet is 

comparatively large, the circular hydraulic jump occurs at radial distances larger than the 

heater diameter for a wide range of surface temperature and has virtually no effect on the 

boiling characteristic curves. Thin sheets resulting from the jets with large lengths are 

hydrodynamically unstable. The thin films are more likely to be ruptured, particularly 

around the rim of the target. This leads to the local formation of several semi-dry spots 

and early burnout at low superheats. As another qualitative difference, for jets with large 

lengths, their associated liquid sheet escapes off the heated target and creates a spray of 

tiny droplets, while for the small lengths the excess liquid smoothly flows off the heated 

surface.  

Fig.6 presents the boiling characteristics of falling jet of HFE7100 issued from a 15g 

needle for various jet lengths ranging between 5 to 50 mm at 20 cc/min volumetric flow 
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rate. Variation of the jet length from 5 mm to 50 mm shows only a slight change in 

boiling curves at low superheats. However, the boiling curves in both the nucleation and 

CHF regimes varies for different jet lengths. For example, the CHF as high as 50 W/cm2 

at 90 oC can be achieved at 5 mm jet length. By increasing the jet length to 50 mm, the 

CHF decreases to 28 W/cm2 and occurs at 86 oC. For instance, comparing the CHF 

measured for 5 mm –length jet with the CHF of 50 mm-length jet shows that the CHF 

enhances 78% for reduced length at 20 cc/min flow rate.   

In order to study the effect of jet length on boiling characteristics, the volumetric flow 

rate was slightly increased to 30 cc/min. Fig.7 shows the boiling curves for HFE7100 jets 

produced by a 15g needle with different jet length at higher volumetric flow rate. 

 

Figure 6: HFE7100 Boiling curves obtained by 15g needle for different jet lengths at 

20 cc/min. 
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Figure 7: HFE7100 Boiling curves of falling jets issued by 15g needles for different 

jet lengths at 30 cc/min. 

Decreasing the jet length leads to CHF enhancements of about 40% for identical length 

reductions (from 50 mm to 5 mm) at 30 cc/min. By increasing the flow rate the CHF 

enhancement due to the effect of reduced jet length decreases. In order to explain this 

decrease in CHF enhancement for increased flow rates, one should note that the effect of 

cross section reduction due to the gravitational acceleration becomes smaller. Moreover, 

since the heated target area is typically small, the hydraulic jump occurs at radial 

distances larger than the heater diameter for all jet lengths. Therefore, the thickness of the 

liquid sheet shows only small changes for various tested range of jet lengths. 

Consequently, the CHF enhancement due to the jet length variation is smaller at higher 

flow rates. According to this explanation, it is expected that the boiling curves show no 

appreciable change by variation of jet length at high enough flow rates.      
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Figure 8: HFE7100 Boiling curves of jets issued by 15g needle for different jet 

lengths at 60 cc/min. 

In order to test the above hypothesis, the experiments were repeated at 60 cc/min 

volumetric flow rate and the boiling curves obtained are given in Fig. 8.  For such high 

volumetric flow rate, the boiling curves fall approximately on a universal graph for 

different jet lengths thus the CHF regime is clearly not sensitive to the jet length. Visual 

observations of the liquid sheet at these high flow rates show that the liquid sheet 

uniformity is qualitatively not a function of jet length. This is expected since the inertia of 

the high momentum jet is dominant and the cross section of the falling jet shows no 

measurable change. Accordingly, the boiling curves become approximately identical for 

all different jet lengths. The burnout mechanism elaborated in [18] is consistent with our 

current observations at 60 cc/min.  

Fig. 9 presents the boiling curves of the HFE7100 jet issued from a smaller needle 

diameter (20g) for various jet lengths at 20 cc/min. The boiling curves for all jet lengths 

ranging from S=5mm to 50 mm fall on a universal graph. The cross section of the jet 

produced by a 20g needle is not affected by gravity/surface tension interactions and it 

cannot be considered as a “ free-falling jet”, thus, the boiling curves corresponding to the 
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jet are not influenced by variation of jet length. Therefore, we use the term “impingement 

jet” instead of “falling jet” for such circular high-speed jets.     

 

Figure 9: HFE7100 Boiling curves of jets issued by 20g needle for different jet 

lengths at 20 cc/min. 

 

Figure 10: Effect of jet lengths on measured CHF at different volumetric flow rates 

using 15g needle. 
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Fig.10 summarizes the measured CHFs for different jet lengths at different volumetric 

flow rates. As expected, the slope of the variation at lower flow rates is steeper than that 

of higher flow rates. The impinging jet behavior at low flow rates is similar to the falling 

jets and its velocity and cross section are affected by gravity/surface tension interaction. 

In contrast, for higher flow rates, the inertia of the jet becomes significant so that the 

effect of gravity/surface tension interaction becomes negligible for the tested jet heights. 

In order to compare the current results with the previous studies, the Sharan and Lienhard 

correlation (S-L) [9] was selected. The correlation was able to predict extensive sets of 

previous measured CHF within ±20% of accuracy.  

In order to consider the effect of jet length in S-L correlation, the cross sectional jet 

radius reduction coefficient, Γrext, is used instead of the exit jet radius, rext as:  
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where r= ρf /ρg. For HF7100 working fluid the value of A was calculated to be 0.299. It 

should be noted that the increase in velocity magnitude is not included in the correlation 

given by Eq. (6). If one includes the velocity increase factor of Γ-1/2, the CHF becomes 

proportional to Γ-0.76. With this analysis, the CHF is expected to increase by increasing 

the jet length. However, the experimental observations revealed that the CHF decreases 

by increasing the jet length. In order to resolve this inconsistency with the S-L 

correlation, it was postulated that the effective ratio of the jet diameter to the heater 

diameter is of first order importance and the velocity is second order parameter for very 

small flow rates. This postulation comes from the presented earlier observation and 

measurements. For instance, for jets with large lengths the increase in the impact velocity 

due to the cross sectional reduction was reported to be more than 400%. According to the 

Lienhard and Eichhorn model [18] one may expect CHF enhancement in the order of 

400%, while measured CHF for large lengths showed more than 70% suppression. This 

highlights the effect of cross sectional area reduction for large lengths and its impact on 

( ) ( )32 ln00362.0ln0378.0ln06052.0486.0 rrrA +−+=
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liquid sheet stability. Based on this discussion, the reduction coefficient is only applied 

for 
heater

ext

r

rΓ
. For this case, the CHF is proportional to Γ

1/3, where Γ ≤ 1, and the correlation 

is consistent with the observations.    

The earlier postulation of the effect of hydraulic jump intervention in affecting the 

boiling characteristics can be further confirmed by comparing the current results and the 

adjusted S-L correlation.  Referring to Fig. 3, for volumetric flow rates of 20 cc/min, the 

hydraulic jump occurs within the diameter of the disk for jet length smaller than 20 mm. 

For jet lengths of 20 mm and longer, the hydraulic jump position is located at the rim. For 

all the flow rates, by increasing the jet length to the values larger than 25 mm, the 

hydraulic jump occurs virtually beyond of the test section, thus it has no effect on the 

boiling characteristics. As shown in Fig. 11, the measured CHF of jets with lengths 

smaller than 25 mm can be predicted by the adjusted correlation within 20% of accuracy 

with more than 97% confidence. However, for jet lengths larger than 25 mm and flow 

rates smaller than 40 cc/min, the CHF predictions show larger disagreement. The 

measured values of CHF in the presence of hydraulic jump are also found to be 

systematically lower than that of predicted by the S-L correlations.  

This may support the earlier postulation that the hydraulic jump increases the liquid sheet 

thickness around the impingement zone and this may lead to heat transfer suppression. 

Moreover, the liquid sheet instability rather than radial velocity plays the primary role in 

determining the CHF magnitude for low flow rate jets with large lengths. Thus, the S-L 

correlation must be further revised for large jet lengths at low flow rates with a more 

complicated model including the upstream stability of the film and the hydraulic jump 

effect. The hydraulic jump issue may cause significant suppression in CHF for larger 

heater diameters at moderate or even high flow rates. Therefore, similarly to Sharan and 

Lienhard’s semi-empirical approach, one may develop a more complicated model and 

consider the effect of upstream liquid sheet instability and hydraulic jump effect in the 

energy balance equation to determine the kinetic energy of the liquid sheet upstream and 

downstream of the sheet over the heated target.   
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Figure 11: Comparison between all measured CHFs in the present work and the 

adjusted correlation Eq. (6). 

4.4.2 Effect of electric field on CHF for jet impingements 

According to the our experimental observations for falling jets, as burnout is approached, 

the horizontal sheet of liquid around the rim of circular disk remains intact and spray 

above the liquid sheet is fine. The horizontal flow suddenly stops and spray above the 

sheet becomes coarse, and the angle between the plate and the spray increases. The liquid 

sheet ceases to absorb kinetic energy and to protect the heated surface, which is insulated 

by the vapor around its periphery.  

Supplying kinetic energy to the edges of the circular liquid sheet around the rim of the 

disk is essential to enhance the critical heat flux. As shown above, a simple way to 

increase the momentum of liquid sheet around the rim is to increase the volumetric flow 

rate. Increasing the flow rate may cause critical heat flux deferral, however, the main 

drawback of the mass flow rate increment is increasing the size and dimensions of the 

cooling circuit elements such as pumps and condenser and wasting a large volume of 
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the momentum of the liquid sheet around the edge is to introduce EHD forces.  A 

visualization of the boiling heat transfer in the presence of electric field is presented in 

Fig. 12. Here EHD flow helps to enhance the momentum transportation to the rim of 

heated target and improve the rewetting process. As it can be observed in Fig. 12, in the 

pre-CHF regime (at surface temperatures around 92 ℃), the electrostatic forces tend to 

keep the coolant over the heated surface by establishing a cone-shape structure over the 

heated disk. Compared with the case that the electric field is absent, the hydraulic jump 

effect does not appear and the coolant layer is more uniform.  Fig. 13 compares typical 

boiling curves in the presence and absence of electric field for the jet lengths of 4 mm at 

6 cc/min volumetric flow rate.  In the presence of electric field, CHF shows more than 

100% enhancements at applied voltage about 11 kV. Moreover, the CHF occurs at higher 

superheats of about 92 ℃. Comparing Fig. 13 with Figs. 6 and 7 shows that 

approximately the same CHF enhancements (achieved by applying electric field) can be 

obtained by supplying two to three times larger volumetric flow rates of the coolant.  It is 

worthy to note that although higher heat transfer enhancements may be expected for 

thinner liquid films over the surface, these results show that the more hydrodynamically 

stable liquid films, which are typically thicker, cause significant heat transfer 

enhancements for the CHF regime. Vigorous rewetting of the heated surface in the 

presence of electric field is believed to be the main mechanism for electric field-assisted 

CHF enhancements. The present results are consistent with the previous results for mono-

dispersed droplet cooling. Rewetting of the surface with thick layer of coolant is of 

primary importance in CHF heat transfer enhancement rather than developing thinner 

films over the heated target.  

Fig. 14 shows the effect of electrostatic forces on heat transfer enhancement at CHF 

regime. By increasing the volumetric flow rate, the effect of electrostatic forces in heat 

transfer enhancement is reduced. This is attributed to the fact that the main flow resulting 

from the jet is dominant at high flow rates and the electrostatic forces cannot further 

intervene in hydrodynamics of the jet. Therefore, the CHF heat transfer enhancement in 

the presence of electrostatic forces is only promising for relatively small or intermediate 

range of volumetric flow rates.      
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Figure 12: Experimental visualization of boiling heat transfer enhancement of HFE-

7100 in the presence of strong electric field. The needle was 15g hypodermic needle. 

The volumetric flow rate was 6 cc/min. Applied voltage is 9 kV DC and separation 

between electrode was measured to be 4 mm. 

 

Figure 13: Boiling curves of HFE-7100 at different applied voltages. Jets were issued 

using 15g hypodermic needle. The separation between the target and jet was 4 mm 

and volumetric flow rate kept constant at 6 cc/min.  
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Figure 14: Variation of CHF with applied voltage at different volumetric flow rates. 

Jets were issued using 15g hypodermic needle. The separation between the target 

and jet was 4 mm. 

4.5 Conclusions 

The effect of jet length on two phase free falling circular jet of HFE7100 striking on an 

upward-facing heated disk was experimentally investigated. It was demonstrated that for 

low speed jets, the jet length is a key parameter in determining the boiling curve, 

particularly at the CHF regime. By increasing the jet length at low flow rates, the cross 

section of the jet reduces due to surface tension/gravity interactions while the effective 

velocity increases and this may result in thinner liquid sheets. The thinner sheet can be 

ruptured more easily and this may lead in a pre-mature CHF. For high-speed jets, the jet 

cross section and axial velocity do not show measurable change for various jet lengths. In 

this case, Γ~1 and the original S-L correlation and the revised correlation are identical. 

Comparing the present measured values of CHF with the previous correlation revealed 

that good agreement can be achieved by considering the cross sectional reduction 

coefficient in the correlation; however, for those CHF results where the hydraulic jump 

occurs within the heater diameter, the S-L correlation systematically predicts higher 

CHFs. This suggests that the S-L correlation must be revised based a new model 

including the hydraulic jump suppression effect. The electrostatic effect showed 
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significant effect on the hydrodynamics of the falling jet and the amount of heat removal 

at relatively low flow rates. More than 100% CHF enhancement was achieved with 10.8 

kV applied voltage at 6 cc/min volumetric flow rate.  The electric field heat transfer 

enhancement effect reduces by increasing the flow rate. This suggests that the EHD 

enhancement through electric field for falling jets is more effective at low flow rates. 
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Chapter 5 

Study of Electrohydrodynamic Micropumping Through 

Conduction Phenomenon 

5.1 Introduction 

The operation of electrohydrodynamic (EHD) micropumps is based on the interaction 

between electric fields and electric charges in a dielectric fluid. The electric body force ±� 
in a dielectric liquid that results from an imposed electric field ² � can be expressed as [1]: 


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       (1) 

where ρc is volume charge density, ε is the fluid permittivity and ρ is the fluid density, T 

is the fluid temperature.   

The first term on the right hand side of the Eq.(1) is the electrophoretic, or Coulombic, 

force that results from the net free space charges in the fluid. The second term, known as 

the dielectrophoretic force, arises from the permittivity gradient. The last term, called the 

electrostrictive force, is important only for compressible fluids and two phase flows. Free 

space charges in dielectric liquids can be generated by three different mechanisms. I) 

Induction: occurs in dielectric liquid with variable electrical conductivity, which can be 

caused due to the presence of a thermal gradient, or in two or multi phase flows, II) 

Conduction: through dissociation-recombination reactions in the areas adjacent to the 

electrodes, III) Injection: by direct charge injection from the solid/liquid interface. These 

three distinctive mechanisms for free space charge generation can be exploited to create 

induction, conduction and injection EHD pumping effects [4].  

For an isothermal single phase dielectric liquid, the last two terms of Eq.(1) vanish and 

EHD pumping operation requires the existence of net space charge in the presence of an 

electric field to produce a Coulombic force. Because an induction EHD pump requires a 

fluid non-homogeneity for its operation, it cannot be utilized for isothermal single phase 
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liquid pumping purposes. Therefore, there are only two possibilities to produce free space 

charge: ion injection and dissociation mechanisms. Ion drag pumps are based on direct 

ion injection from a charged electrode surface to the liquid. As a main disadvantage, 

these pumps cause degeneration of the working fluid and its electrical properties, thus, 

they are not reliable for long term operation [2].  The typical electrode life time in ion 

injection pump was reported to be less than one hour [3]. The chemical reactions cause 

serious electrode damages, which affect the static head generation produced by the 

micropump. In contrast, conduction pumping is based on interaction between the electric 

field and charge carriers, which result from the dissociation-recombination reactions 

around the electrodes submerged in a low conductivity dielectric liquid. A similar effect 

in liquids with high electrical conductivity, such as electrolytes, is called electroosmosis. 

The feasibility of conduction pumps has been proven for non-isothermal liquids and two 

phase flow applications [4]. Elimination of the direct ion injection and their operation in 

both isothermal and non-isothermal dielectric liquids makes them potentially attractive in 

many applications. 

The conduction mechanism in weakly conductive dielectric liquids is a complicated 

phenomenon. When a relatively small electric field (below 0.1V/µm) is established 

between a low potential and a high potential electrode immersed in a dielectric liquid, the 

ion injection is negligible, but the liquid impurities adjacent to the electrodes may begin 

to dissociate. The process of dissociation of the neutral species and recombination of the 

created ion pairs can be schematically written as follows [5]: 

                                              −+−+ + BABA    (2) 

By increasing the applied voltage, but before reaching some threshold value of electric 

field (approximately 0.1 V/µm), the existing ions due to the dissociation of neutral 

species experience strong enough electrical Coulomb force, which concentrates the 

positive and negative ions around counter-polarized electrodes. The concentrated ions 

around each electrode form charge layers around them.  The ion density distributions in 

the dielectric liquid bulk can be determined on the basis of the conservation law of 

neutral species. The attraction between the electrodes and the charges results in a net 
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fluid flow from the blunt electrode towards the electrode having smaller radii of 

curvature. The conduction mechanism in this regime is mainly due to the ionic 

dissociation and is referred to as EHD conduction pumping. Further increasing of the 

electric field (in the order of 10V/µm, depending on the liquid characteristics and 

impurity concentration), results in ion injection from the liquid/metal interface and 

produces a reverse pressure. Beyond this threshold, the ion-injection pumping mechanism 

will be dominant [6] and the pumping direction is reversed. 

The concept of the charge generation through the dissociation phenomenon has been 

known for long time [1], but the idea of using this phenomenon for pumping dielectric 

liquids is comparatively new [20]. Several theoretical [6,17], numerical [12,15,18,19] and 

experimental works [5,13,21,16] were carried out to determine the feasibility of EHD 

pumping through the conduction phenomenon. In all of the previous studies, commercial 

refrigerants R-123, R-134a and N-Hexane were introduced as working fluids to a single 

or multi-stage pump with the electrode spacing in the order of millimeter and the steady-

state static pressure generation of the pump was determined. Furthermore, several 

geometries for high voltage electrodes were investigated to increase pressure generation 

[21]. The initiation of a typical macro-scale conduction pumping for R-123 was observed 

for voltages in the order of 5 kV DC. 

The main motivation in miniaturization of the EHD pumps is to shrink the separation 

between the electrodes in order to generate an intense electric field over a small volume 

of the working fluid even with reduced applied voltage for lab-on-a-chip applications. In 

this article, an EHD micropump is referred to a device with an electrode spacing, d, in the 

order of d ≤ 10��m. Typically, scaling down an EHD pump electrode spacing from 

macro- to micro-scale reduces the level of applied voltage required for the operation as 

much as one or even two orders of magnitude. This significant change in the operating 

voltage eliminates the need for a high voltage power supply. Moreover, EHD pumping of 

the dielectric liquids used for heat transfer, such as high Prandtl number liquids 

(transformer oils), fluorinert dielectric liquids [10] with low boiling temperature and high 

latent heat of vaporization, cryogenic liquids [32] and other commercial refrigerants, 
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shows promising performance in recent advanced cooling systems. Accordingly, scaling 

of the EHD pumps to smaller sizes can be potentially attractive in microfluidic devices. 

A survey of the literature for micro-scale EHD pumps shows that the miniaturization of 

ion drag pumps has been the subject of many investigations [28,33]. Bart et al. [7] and 

Richter et al. [8] proposed preliminary designs for an ion injection micropump. Ahn [9] 

studied an ion drag micropump with 30-mm channel length and a planar electrode pair on 

a glass substrate. Two different designs with emitter-collector spacing of 100 and 200µm 

were fabricated. The device was operated in the range of applied voltages between 20 and 

130 V DC. Static pressure heads up to 200 Pa at 110 V applied voltage was achieved with 

100µm gap spacing using ethylene glycol. Darabi et al. [10] developed an ion drag pump 

consisting of 50-90 pumping stages with 100 µm electrode gaps fabricated on an alumina 

substrate. They used HFE-7100 (3M Co.) as a dielectric working fluid and obtained static 

pressure heads up to 700 Pa at 300 V applied voltage. Recently, several attempts were 

carried out to find a suitable high resistivity material to protect the electrodes and 

working fluid against oxidation and aging due to the ion injection at the solid-liquid 

interface. Yang et al. [3] fabricated an ion drag micropump with indium-tin oxide (ITO) 

as a material resistant against corrosion for the electrodes instead of using conventional 

electrode materials, such as evaporated Cr/Au [10]. More stable operation of the 

micropump without visible damages of the ITO electrodes was initially observed and 

looked promising. However, in subsequent tests the life-time of the electrodes at 15 V 

DC applied voltage was only 6 minutes. This short life-time of the electrodes and 

deterioration of the thermophysical properties of the working fluid due to the significant 

electrochemical effects during the operation [2] are the main disadvantages of the ion 

drag micropumps and recently fewer investigations have been carried out to improve 

such designs. 

Although there have been these several attempts to scale down the ion injection pumps 

and decrease the operating voltage level, there were no similar attempts to miniaturize the 

conduction pumps mainly because they have been proposed just recently.  Also, to the 

best of the authors’ knowledge, few investigations have been carried out to match the 

experimental results and the numerical simulations for the conduction pumping [14]. 
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Moreover, in all of the numerical and experimental studies, the effect of conduction 

pumping has been reported with only three dielectric liquids, R-123, R-134a and N-

Hexane [15, 17-21,16]. In the present work, an axisymmetric single-stage micro-scale 

conduction pump in the vertical configuration was designed, fabricated and tested using 

three different working fluids: 10-GBN Nynas and Shell Diala AX transformer oils, and 

N-hexane. At steady-state operation and in the absence of the fluid flow, the static 

generated pressure and electric current of the device were measured at different applied 

voltages. In order to find an estimate for the charge density distribution and the electric 

field variation in the micropump, and further verify the experimental results, a numerical 

study based on the double-species bipolar conduction model was performed. The pressure 

generation was predicted numerically and compared with experimental results at different 

applied voltages.  

5.2 Electrode design for a conduction micropump 

In order to exploit charge carriers generated by the conduction mechanism for pumping 

purposes, the electrode geometry should be designed properly to form an effective 

hetero-charge layer. For conduction pumping, high voltage electrodes are needed to 

provide a large projected area perpendicular to the flow direction or pressure gradient 

[21]. Moreover, in order to mitigate the ion injection effect at the metal/liquid interface, 

sharp edges should be avoided.  If an imposed electric field is applied to a pair of 

parallel-plates, a hetero-charge layer is formed adjacent to both electrodes. The 

Coulombic forces exerted on the heterocharge layers near both electrodes are balanced. 

Therefore, net flow cannot be produced in this geometry [6]. However, by implementing 

some small changes in the configuration of the electrodes, one may increase the projected 

area and achieve a conduction pumping effect. For example, the high voltage electrode 

may have the form of a series of concentric annuli, fixed parallel to the planar grounded 

electrode, which is immersed in a dielectric liquid, a section of which is shown in Fig. 1. 

Heterocharge layers, adjacent to each electrode, are formed and the non-uniform field 

distribution near the high voltage electrode creates an attraction toward the upper 

electrode. In this particular configuration, the radial component of the electric force 

exerted on the hetero-charge layer is balanced and the axial component of the electric 
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force generates a pressure gradient, eventually causing a net flow in the axial direction. 

Since the electric field is more intense near the edges of the annuli, the thickness of the 

corresponding heterocharge layer will be larger and the static pressure across it will be 

high. Therefore, the flow direction in the micropump is from the grounded electrode 

towards high-voltage electrode.  

 

Figure 1: Qualitative description of electrode design 

In this study, the proposed conduction micropump consists of four components: high 

voltage electrode, grounded electrode, insulator spacer, and inlet/outlet ports. The printed 

circuit board technology (PCB) was adapted to pattern the electrode geometries for the 

micropump. The PCB technology was recently implemented to fabricate several devices 

such as a magnetic fluxgate sensor [23], RF switch [35] and microfluidic devices [22, 

34]. The schematic configuration of the high voltage electrode and grounded electrode of 
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the micropump patterned on the two substrates are presented in Fig. 2. 

 

Figure 2: Top view of (a) high voltage annulus electrodes and (b) grounded 

electrode patterned on two separate substrates. (Not scaled) 
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The high voltage electrode, shown in Fig. 2a, consists of a series of concentric annulus 

rings patterned on a commercial Liquid Crystal Polymer (LCP) substrate coated with 

copper cladding using standard lithographic techniques. 

A total of 75 concentric annuli each 25µm wide and spaced 75µm apart, were electrically 

connected together. Considering the 75 ring structures with a thickness of 30µm as a high 

voltage electrode provides the projected area perpendicular to the axial direction in the 

order of 1cm2. Furthermore, this radial symmetric electrode design helps to minimize the 

number of sharp points and edges, which are usually encountered in a rectangular planar 

electrode design, thus minimizing any undesired ion injection.  A disc-shaped grounded 

electrode was patterned on another piece of LCP substrate with the cladding using the 

same technique. A 230µm thick annulus LCP spacer was utilized to position the two 

substrates parallel to each other. In order to seal the micropump, a layer of resin epoxy 

was used on both sides of the spacer. The final spacing between the two electrodes and 

the total volume of the fluid in the micropump was measured to be d=286 µm and 0.8 μL, 

respectively. Comparing the electrode separation of this device (d < 0.3	%%) with 

previous macro-scale design (d~2 mm), the current device is expected to operate at one 

order of magnitude smaller applied voltage.  Two identical holes on both substrates, 2-

mm in diameter, serve as inlet/outlet ports.  The details of the geometry and dimensions 

are shown in Fig. 3. The performance of EHD micropumps is temperature dependent. 

Temperature rise in the pumping volume can be induced by Joule heating of the working 

fluid particularly at higher applied voltages. Therefore, one should be cautious about the 

thermal effects which may significantly affect the performance of EHD pump. For the 

presented packaged device, since the total surface area of the pump is comparatively 

large (~60 cm2) with respect to the total volume of the micropump, the temperature rise 

in working fluid is expected to be small. Therefore, in the present work, the variation of 

ion mobility, permittivity, and electrical conductivity of the working fluid due to thermal 

effects was assumed to be negligible.  
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Figure 3: Details of packaged conduction micropump  
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5.3 Experimental apparatus and procedure 

The packaged micropump was investigated using three different working fluids. The two 

transformer oils mentioned earlier were selected due to their low electrical conductivity.  

Commercial grade Normal Hexane (N-hexane) was also used and it was chosen because 

it showed no significant pumping effect in the previous macro-scale studies. The V-I 

characteristics and the magnitude of generated pressure for this micropump were 

obtained for each of the different working fluids. The electrical and thermophysical 

properties of the fluids are tabulated in Table I. 

 

The charge relaxation time of the dielectric liquids used in this study is typically long. 

Therefore, the mobility of ions [11], charge density distribution, electric field variation 

and resultant pressure of the device may be affected by even a weak streaming of the 

fluid. The vertical positioning of the micropump enabled us to minimize the impact of 

disturbance and to measure the static pressure generation in the absence of fluid flow. 

The grounded side of the micropump was positioned at the bottom of a bath of working 

fluid and the HV side of the pump with the patterned ring structures was positioned at the 

top.  

The micropump was completely submerged in the bath of working fluid and a 

hypodermic syringe was used to fill it. A variable 0- 3600 V DC power supply with a 

resolution of 10 V was connected to the upper electrode to provide the necessary voltage 

for the operation of the micropump.  A microammeter was connected between the lower 

electrode and ground to measure the electric current. In the present work, only the static 
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operation of the micropump at steady-state condition has been investigated; therefore, no 

mass flow rate measurement was carried out. In order to measure the generated static 

pressure at different values of applied voltage, a transparent tube 2mm in diameter and 

20mm long was perpendicularly connected to the pump outlet. After reaching the steady-

state condition, the column of working fluid is at a position where the electric body force 

is balanced with the weight of the column. Both the column rise due to the capillary 

action and conduction pumping were measured for different working fluids at different 

applied voltages with a CCD camera. Before starting the image processing, the 

measurement system was calibrated using an external object with known sizes. Its size in 

pixels, both in vertical and horizontal directions, was obtained at a specific focal length. 

In order to minimize the optical aberration, the liquid column is adjusted to be at the 

center of the image. A MATLAB code was used to convert the number of pixels directly 

to the liquid height and static pressure. In order to find the net liquid column rise due to 

EHD conduction pumping, the experimental column rise due to the capillary action was 

subtracted from the generated head (H=	hµ¶·¶K¸¹¶I − h�). The total static pressure 

generation was calculated from the equation P = ρgH.The measured column rise due to 

the capillary action was approximately 2mm, 3mm, and 3.5mm for N-hexane, Shell Diala 

AX and 10 GBN Nynas, respectively. In order to verify the experimental observation of 

liquid column rise due to the capillary forces, the height of liquid was calculated for a 

narrow tube from the relation grhc ργ /2= , where γ  is the surface tension and r  is radius 

of the tube. The comparison showed consistency between experimental observation and 

the formula with ±0.5	mm difference.  

The experimental uncertainty of the calculated pressure generation was mainly due to the 

column level measurement. Although the conduction pressure generation relies on the 

electrical and thermophysical properties of the working fluid, which may vary 

significantly with small changes in concentration of contaminants, in the present study, 

the numerical values of these properties were obtained from the literature (Table I).The 

uncertainties associated with the measured parameters are summarized in Table II. The 

electrical permittivity of other materials used in this study is presented in Table III. Each 



133 

 

133 

 

experiment was repeated three times to ensure the repeatability of experiments and error 

bars are affixed to all the data in the graphs presented.  

 

5.4 Numerical analysis  

In this study, the system of governing equations is formulated based on the previous 

assumptions [12]. The electric field, *E , around the electrodes, which is responsible for 

the charge generation, is distorted by the net free charges, 
∗

cρ ,  in the dielectric liquid 

and is governed by Poisson’s equation: 

 

∗∗ =⋅∇ coCE ρ*                                             (3) 
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where: 

    

                       ∗∗∗ −= npcρ  and ∗∗∗ −∇= ϕE
r

                                   (4) 

 p∗ and n∗ are positive and negative charge densities, respectively.       

The charge transport equations of positive and negative charge carriers for the simplest 

conduction model [5] are: 

          ( )∗∗∗∗∗∗ −=






 ∇−⋅∇ npCpEp o 12* α                                             (5) 

         ( )∗∗∗∗∗ −=
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
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 ∇+⋅∇− npCnEn o 12** α                                             (6) 

oC  in Eqs.(5) and (6) is a non-dimensional conduction parameter which can be 

interpreted as ratio of charge relaxation time, σετ /=T , to charge transit time, bEd /=τ , 
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o VbdVdnC =≈= . The subscript eq indicates thermal equilibrium 

condition. The momentum balance equation can be expressed as: 

         0** =++∇− ∗∗∗∗ gECP co ρρ                                                      (7) 

where ρ∗	and	P∗ are dimensionless mass density and the generated pressure, respectively.  

The definition of the dimensionless parameters appearing in the above equations are 
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The diffusion coefficient α  in (5) and (6) is equal to 
VeV

kT

bV
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40

1≈= .  

The order of magnitude analysis shows that the contribution of the hydrodynamic 

convection and diffusion terms are negligible compared with that of the electric body 

force at steady state condition and static operation of the device. This assumption is 

consistent with the previous numerical model proposed by Atten and Yagoobi [5], and 

Jeong et al. [12]. Therefore, the charge convection terms in (5) and (6) can be neglected. 

The applied boundary conditions are summarized in Table IV.  

Table. IV Summary of boundary conditions 

 

An unstructured triangular mesh with increased mesh density in the area of the intense 

electric field around the high voltage electrodes and in the hetero-charge layer region 

around the grounded electrodes was used. In order to ensure that the numerical results are 

independent of the computational grid, a grid sensitivity analysis was performed for 

different working fluids at different applied voltages. The criterion for the grid 

independency analysis was that the total pressure generation calculations were to be 

constant to the second decimal.   
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5.5 Results and discussion 

Fig. 4 shows a photograph of the micropump submerged in a bath of 10-GBN Nynas 

transformer oil during its operation. By increasing the applied voltage and before 

reaching the steady-state conditions, the electric current passing through the micropump 

increases and a liquid column rise is generated in the vertical direction. In all experiments 

before reaching steady-state conditions, the direction of the net flow was from the 

grounded (blunt) electrode towards the high voltage electrode, which confirms that the 

current micropump predominantly operates based on conduction phenomenon. It takes a 

few seconds, depending on the magnitude of applied voltage, to reach the steady-state 

conditions. At the steady state conditions, the electric current of the micropump shows no 

measurable fluctuation and the liquid column rise in the capillary tube remains static. 

Both the electric current and static pressure generation measurements presented in this 

paper were performed at the steady-state conditions.  

The presented device was tested at 1500VDC for a 14 hour continuous operation and the 

static generated pressure and electric current were monitored frequently. No appreciable 

change was observed in the pressure and electric current during the time. This suggests 

that the chemical reaction in the electrode/liquid interface due to the direct ion injection is 

not appreciable and the electrodes remain relatively unchanged during this period. 

Comparing the direct ion injection micropump and conduction pumping, one can 

conclude that the conduction micropumps are remarkably reliable and suitable for long 

term operations.    

By increasing the applied voltage, the current through the conduction micropump 

increases. Fig. 5 shows V-I characteristics for the micropump with 10-GBN Nynas and 

Shell Diala AX transformer oils. At the fixed gap spacing between the electrodes of 

286µm, the level of applied voltage for initiation of the conduction pumping is reduced to 

a few hundred volts. Changing the working fluid results in only small variations in the   

V-I characteristics, because the electrical properties of these two fluids are very similar.  
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Figure 4: Demonstration of the column rise for a conduction micropump in a bath 

of 10-GBN Nynas transformer oil at V=0 (a) and V=1500 VDC applied voltages (b). 

 

Figure 5: V-I characteristics for conduction micropump measured for two different 

working fluids.  

The numerically calculated equipotential lines for the conduction micropump submerged 

in the bath of 10 GBN Nynas transformer oil are depicted in Fig. 6. Potential difference 

between two adjacent lines is 50V. The equipotential lines are distorted by the charge 

distribution near to the electrodes and they are closer to each other adjacent to the high 

voltage and grounded electrodes. 
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Figure 6: Distribution of equipotential lines of micro-scale conduction pumping 

calculated for 10-GBN Nynas at 1500 VDC applied voltage. Potential difference 

between two adjacent lines is 50V. 

The solution of the charge transport equations yields the spatial variation of charge 

carriers. Fig. 7 shows the numerical results for the concentration of positive and negative 

charges at 300 and1500 VDC applied voltage with 10-GBN Nynas transformer oil as the 

working fluid. Because the thermophysical properties of the two the transformer oils are 

very similar, the distribution of charges for Shell Diala AX is not presented. It can be 

seen that the hetero-charge layers extend into entire the gap spacing at both lowest and 

highest applied voltages.  

Figure 8 shows the electric field distribution between the electrodes for 10 GBN and N-

hexane.  The integration of electric field along a given path between the two electrodes 

should be equal to the electric potential difference, V, because the applied voltage is 

constant. Therefore, the model predicts electric field enhancement in the whole space 

over the electrode gap especially adjacent to the electrodes due to the existence of charge 

excluding a depression in a narrow band in the equilibrium region. 
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Figure 7: Calculated positive and negative charge densities in micro-scale 

conduction pump with 10GBN-Nynas oil transformer. 

 

 

Figure 8: Axial electric field in micro-scale conduction pump calculated for different 

working fluids. 
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A much smaller enhancement of the electric field near both electrodes can be observed 

for N-hexane due to its lower concentration of charges.  

 

Figure 9: Comparison of calculated and experimental static pressures for 

conduction micropump using 10GBN-Nynas oil transformer. 

The comparison between the numerical results and experimental pressure generation for 

10-GBN Nynas as the working fluid is presented in Fig. 9. The conduction pumping 

effect was started at the average field strength of 1V/µm and a maximum 101 Pa pressure 

was achieved at the average field strength of 5.24V/µm.  The comparison between 

numerical prediction and experimental results for pressure generation shows a good 

agreement with an average 8% deviation. The numerical results fall in the band of 

experimental uncertainty except at highest applied voltage. It is of interest to note that at 

1500 VDC the pressure generation of the device is overestimated.  This corresponds to 

the average field strength of 5.24 V/µm, a condition where the ion injection phenomenon 

may produce a back pressure, reducing the pressure generated by the conduction 

micropump. This interpretation is confirmed when it is realized that the local field 

strength around the high voltage electrode is approximately twice as that of the average 

value of field strength and is in the order of the theoretical threshold, 10 V/µm, where ion 

injection can occur.  
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Figure 10: Comparison of calculated and experimental static pressures for 

conduction micropump using Shell Diala AX oil transformer. 

Figure 10 shows the comparison between the experimental and numerical results for the 

pressure generation of the micro-pump using Shell Diala AX indicating a good agreement 

with an average deviation of 12%. Similarly to the 10GBN Nynas, the numerical model 

overestimates the pressure generation.  Comparing the numerical results of the pressure 

generation in micro-scale for 10-GBN Nynas and Shell Diala AX shows that there is a 

small difference between the experimental and numerical results. The main reason for 

this difference is believed to be the uncertainty associated with the ion mobility 

calculation. In this study, the ion mobilities of negative and positive charges were 

assumed to be identical and calculated based on Walden’s rule, which relates the ion 

mobility to dynamic viscosity. Referring to the thermophysical and electrical properties 

of these two working fluids shows that the electrical properties of the fluids are very 

similar, whereas there is appreciable difference between their dynamic viscosities and ion 

mobilities. It should be noted that the dynamic viscosity of both transformer oils are 

exponential function of temperature and small changes in temperature may significantly 

change their viscosity and ion mobility [24,26]. It should be noted that in the present 

numerical analysis, the field enhancement coefficient was assumed to be negligible. This 
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assumption is particularly valid at low-field regimes (E<4 V/µm). However, it was shown 

that neglecting the field enhancement coefficient for even moderate electric fields (4-6 

V/µm) still provides good agreements between experimental and numerical pressure 

generation [6].    

By submerging the micropump in the bath of N-Hexane and applying the voltage, an 

electric current was measured, but no appreciable pressure generation was produced. A 

similar effect has been reported in the literature for a macro-scale conduction pump with 

N-Hexane as working fluid using various configurations of the electrodes [5]. Because of 

its shorter relaxation time, thicker hetero-charge layer and the associated enhancement of 

the electric field in the gap, one should expect higher numerical pressure generation for 

N-Hexane based on the thermophysical properties tabulated in Table. I. However, N-

Hexane is proven to be particularly sensitive to the effect of contaminations and the 

electrical conductivity of values on the order of 10-8 to 10-17 (nine orders of magnitude 

difference) can be found throughout the literature [5,25,31]. Implementing the tabulated 

value of conductivity, σ=63.9×10-12 S/m, agreement between experimental and numerical 

pressure generation cannot be achieved.   In order to obtain agreement, a numerical value 

of σ=1×10-12 S/m for electrical conductivity of N-Hexane must be assumed. The 

dimensionless positive and negative charge densities and the electric field were 

calculated and shown in Fig. 11. The charge distribution is very similar to that of 10-

GBN Nynas, but the N-hexane charge distribution profile is more diffusive due to its two 

order of magnitude higher ion mobility. Assuming the numerical value for electrical 

conductivity σ=1×10-12 S/m, the thermal equilibrium charge density for N-hexane, 

neq=4.17×10-5 C/m3, becomes two order of magnitude lower than neq=1.91×10-4C/m3  for 

10-GBN Nynas. With this assumed value of electrical conductivity for N-Hexane the 

numerical solution predicts pressure generations about 0.1Pa at applied voltages up to 

1500 kV, which is consistent with the experimental observations of negligible column 

rise. 
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Figure 11: Distribution of positive and negative charge densities in micro-scale 

conduction pump calculated for N-Hexane. 

A typical distribution of charge density over the micro-scale gap for a given dielectric 

fluid spacing slightly differs from that of macro-scale spacing. By increasing the applied 

voltage, the weakly conductive liquid around the electrodes experiences the bipolar 

ionization and heterocharge layers develop. By further increasing the electric field 

strength, the heterocharge layers extend over the entire gap spacing. Generally, at macro-

scale the gap is larger than the thickness of the heterocharge layer. The conduction 

parameter, Co, determines the regime of charge concentration distribution. The different 

regimes of heterocharge layer distribution are demonstrated in Fig. 12.  

In order to show the impact of Co on the charge distribution patterns, the growth of the 

heterocharge layer is qualitatively demonstrated at different scales of Co for macro-scale 

gap spacing (Figs. 12a and 12b) and for micro-scale gap spacing (Figs. 12c and 12d).  

The conduction parameter is a function of the electric field strength, thermophysical 

properties of dielectric fluid and the square of electrode spacing. By decreasing the gap 

space from order of centimeters to microns, Co becomes very small. Thus, depending on 
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the dielectric fluid properties, the heterocharge layers around the opposite polarity 

electrodes extend to the gap spacing and no definitive equilibrium region can be 

identified. For the operating voltage of 300-1500 VD, the Co varies between 10-4 < 

Co<10-3 for transformer oils and 1×10-2 < Co<5×10-2 for N-hexane. Therefore, the 

operation of the device falls in the regime depicted in Fig. 12d. Moreover, by shrinking 

the distance between the electrodes, the required voltage to initiation of the conduction 

pumping effect decreases. Because the diffusion coefficient is inversely proportional to 

the applied voltage, it becomes one or two order of magnitude higher for the micro-scale 

device.    

It should be noted that the theoretical static pressure generation obtained for a macro-

scale conduction pump overestimates the resulted static pressure generation of the 

micropump. The quadratic relation between the pressure generation and the electric 

field,	P = 0.85ε V& d&⁄ , was derived by Feng and Yagoobi[6] for a conduction pump 

with macro-space separation between the electrodes, where λ<<d. This cannot be applied 

for the device tested here with micro-scale gap spacing, where λ is in the order of ~d. 

This equation can be applied only for the conduction macro pump, where the thickness of 

the heterocharge layer near the electrode is smaller (or much smaller) than the electrode 

spacing (see Fig. 12 -a).  In the present conduction micropump with an electrode gap 

spacing in the order of few hundred microns, the heterocharge layers, formed around two 

opposite charged electrodes, extend to the entire gap spacing (compare Fig. 12 -a and 12-

d). Therefore, the theoretical analysis based on the simplifications due to the small 

heterocharge layer thickness is not applicable to the present study. Furthermore, in the 

previous theoretical model, it has been assumed that ion diffusion has a negligible 

contribution in the carrier transport process. According to the discussion given by Atten 

and Yagoobi [5], the ion diffusion term should be taken in to account for V < 2500	
.A. 

Therefore, P = 0.85ε V& d&⁄  cannot describe the static pressure generation at micro-scale 

gap spacing with heterocharge layers extended to the length of electrode separation. 
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Figure 12: Space charge density and electric field in macro- and micro-gaps and (b)-

impact of space averaged conduction parameter on formation of hetero-charge 

layers in parallel plate geometry filled with a low conductive dielectric liquid, (c) 

Extension of hetero-charge to the length of gap spacing for micro-scale gap spacing 

in parallel plate geometry filled with low conductive electrodes at comparatively 

lower applied voltages, (d) hetero-charge extension for micro-scale gap spacing in 

parallel plate geometry filled with low conductive electrodes at comparatively 

higher applied voltages.  
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5.6 Conclusions 

In the present work, an axisymmetric EHD conduction micropump with 286µm gap 

spacing between electrodes was proposed. The micropump was tested in the vertical 

configuration with three different working fluids: two transformer oils and N-Hexane. 

The static pressure generation due to the conduction pumping was measured at different 

applied voltages. As an important result, the initiation of conduction pumping was 

reduced to 300 VDC applied voltage, which is one order of magnitude lower than that of 

the typical macro-scale conduction pumps. In order to verify the experimental results, the 

2D axisymmetric model of the micropump was developed based on a double species 

conduction model. The static pressure generations were calculated and compared with the 

experimental results in steady-state static operation at different applied voltages. The 

numerical static pressure generations of the device are generally in a good agreement 

with the experimental data except for an overestimation at 10 V/µm local field strength 

(1500 VDC). This overestimation is believed to be related to the reversed pressure 

generation due to the initiation of the direct ion injection at the corresponding field 

strength threshold predicted by the theory.  
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Chapter 6 

Spreading of a dielectric droplet through 

an interfacial electric pressure 

6.1 Introduction 

Spreading of a liquid droplet over a solid surface is important for a wide variety of 

applications, such as coating and deposition processes [1-3], spray cooling of heated 

surfaces [4,5] and thin film evaporation [6]. The active control of the droplet deposition 

process is still challenging and the current techniques highly depend on the fluid 

properties and surface condition. The conventional way to increase the spreading ratio of 

a droplet is to increase the impact velocity. However, high speed impact causes some 

drawbacks, such as non-uniformity of the resulting film thickness, micro-satellite droplet 

formation due to violent breakup, and recoiling/rebounding phenomenon. In most of the 

listed above applications, the droplet spreading process needs to be uniform since the 

non-uniform film thickness leads to other complications [7,8]. Moreover, preserving the 

contact between the resulting liquid film and the solid surface during the spreading 

process leads to efficient deposition with reduced material wastage and environmental 

pollution. Therefore, new methods are demanded to enhance the deposition efficiency 

and mitigate the drawbacks of high speed droplet impact.   

The corona discharge process has been found to be advantageous for several scientific 

and industrial applications. It creates a partially ionized gaseous medium with free space 

charge carriers drifting towards a grounded electrode. These free charge carriers can be 

deposited as surface charge on the targets. Although the corona discharge has been 

extensively applied to create net motion in gaseous media, little effort has been expended 

to obtain a net flow in dielectric liquids. Recently, perpendicular corona discharge was 

applied to liquid/vapor interface to investigate a new type of interfacial 

electrohydrodynamic instability, which is so-called rose-window instability [9, 10]. The 

dielectric liquid was placed in a container and charge carriers injected through the 

gaseous phase towards the dielectric interface using a high voltage corona needle 
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electrode fixed at some height above the liquid surface. The surface charge density 

accumulates on the interface and creates strong electrical pressure, so that the thickness 

of dielectric layer locally reduces. Subsequently, the electric field in the thin film region 

increases and the surface charge easily migrates to the ground electrode due to 

conduction phenomenon. The charge migration mitigates the electrical pressure and the 

local thickness of the liquid film increases. The process is resumed by charge 

accumulation over the interface and rose-window instability patterns are generated. 

Although several experimental and theoretical studies have focused on understanding the 

interaction of corona discharge with dielectric liquid interface and the induced 

instabilities [11, 12], no effort can be found in literature to generate a net pressure 

gradient through interfacial corona discharge exposure.   

In the present work, a new technique for  forced spreading of a dielectric droplet over a 

conductive substrate is proposed. In order to generate a strong enough electrical pressure, 

the droplet interface was exposed to a corona discharge. The interfacial electrical 

pressure resulting from the ion deposition on the liquid/vapor interface was used to 

actively control the liquid film spreading process. In order to understand the physics of 

spreading in the presence of corona discharge, a simplified mathematical model based on 

theoretical postulations is proposed. In this model, the dynamic expansion of the droplet 

is correlated to the corona discharge parameters, physical/electrical properties of the 

dielectric liquid and gaseous medium, in which the discharge occurs. The theoretical 

postulations of the mathematical model were verified through further demonstrative 

experiments. A comparison between theoretical predictions and measured spreading 

dynamics is provided. 

 

6.2 Experimental setup and procedure  

A schematic view of the experimental setup is shown in Fig. 1. In order to develop the 

perpendicular corona discharge, a universal fitting with a precise adjustable mechanism 

was constructed. This fitting was electrically insulated and connected to a XYZ holder. 
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The position of the substrate with respect to the high voltage electrodes was adjusted 

using a laser pointer and the XYZ holder.  

 

Figure 1: Schematic view of the experimental setup and a sample of Fizeau fringes 

observed after 6min (a) and 60min (b) corona discharge exposure.  

In order to confirm the pivotal role of the ion injection process due to corona discharge in 

the film spreading phenomenon, two sets of experiments were performed with two 

different electrode configurations (i) parallel plate geometry and (ii) needle-plate 

geometry. For parallel plate electrode experiments, a mirror finished stainless steel disk 

was chosen and all the sharp edges, including the rim of electrode, were rounded and 

fully finished to minimize the back corona discharge. For needle-plate experiments, two 

standard hypodermic needles, 15g and 22g, were selected as emitter electrodes. The inner 

and outer diameters for 15g were 1.37 mm and 1.83 mm, respectively. For 22g, the inner 

diameter was measured to be 0.41 mm and the outer diameter was 0.72 mm. The length 

of both needles was identical and chosen to be 40 mm. The tips of needles were cut off 

perpendicularly to their axis with a laser cutter. No particular irregularity in the needle 

cross section was found after the preparation process.  
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The needles were connected to a positive polarity of a dc high voltage power supply 

(Spellman Model: SL-600) and the substrate was grounded. The unipolar ion injection 

strength was controlled through variation of the applied voltage using these two emitter 

electrodes. Since oxidation due to the ozone generation may affect the sharpness of 

electrodes, the V-I characteristics for both needles was monitored. The corona discharge 

characteristics for these emitter electrodes was found to be stable during the experiments.  

The substrate was a mirror-finished stainless steel plate. In the present study, silicone oil 

was chosen to be the main dielectric working fluid. The dielectric droplet was gently 

deposited on the grounded substrate using a micro-syringe. A few additional qualitative 

experiments were performed using glycerin, deionized water and solution of silicone oil 

with different concentrations of di-2-ethylhexyl sodium sulfosuccinate (AOT).  

The initial size of the deposited droplet, oD , was evaluated by converting the droplet 

weight to its equivalent spherical size. Droplets with different sizes were obtained using 

the two different hypodermic needles and with various injected volumes. It should be 

noted that immediately after the droplet deposition, some spontaneous spreading occurs 

due to its own weight and capillary effects. Thirty seconds after deposition, the high 

voltage power supply was switched on and the droplet evolution was recorded using a 

digital camera (SONY DCR-SX43) at 30 fps. A typical set of photographic sequential 

frames for a silicone oil droplet shown in Fig. 2(a) were used to plot the dynamic 

evolution of the film diameter, D(t) (Fig. 2(b)). The measurement system converts the 

number of pixels directly to the dimensions of the spreading film. In order to check the 

uniformity of expansion, the film diameters were measured at different peripheral angles. 

The non-uniformity of the measured droplet spreading ratio, 
oD

tD )(=β , never exceeded 

1%. In order to diagnose the onset of any interfacial deformation due to the ion injection, 

an additional optical system including a laser beam and photodiode detector was used. 

For a fixed incident angle, any changes in the mirror angle simply produce a detectable 

electric signal. All the experiments were repeated three times to ensure the 

reproducibility of the experimental data.  
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Figure 2: Typical photographic sequence of a silicone oil spreading process on a 
mirror finished stainless steel grounded substrate in the presence of corona 
discharge (a). Typical evolution diagram obtained from the above photographic 
sequential frames (b). The corona discharge emitter electrode was 15g hypodermic 
needle separated 40 mm from the grounded substrate. The initial diameter of the oil 
droplet was 3.78 mm. (c) Figurative explanation of the dielectric liquid spreading 
phenomenon in the presence of corona discharge.  
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6.3 Results and discussion 

In order to prove that interfacial charging is responsible for the spreading phenomenon, 

we studied the spreading behavior of a silicone oil droplet in a uniform and strong 

electric field in the absence of ion injection. Two parallel disks with smooth rounded 

edges enabled us to achieve high electric field close to the air breakdown limit with 

negligible ion injections. For this extreme case, where the principal radii of curvature of 

the high voltage electrodes tend to infinity, monitoring the oil droplet shape using laser 

diode and photodiode detectors showed no noticeable change in its surface or the contact 

line. The range of applied voltage was 0 to 40 kV dc and no measurable electric current 

was recorded during these experiments. This shows that the Laplacian electric field in the 

absence of corona discharge yields no changes either in droplet shape or contact line 

position. Therefore, the electrical pressure generation due to the permittivity and static 

field difference across an air/dielectric liquid interface does not influence the deposited 

droplet shape. However, by introducing a series of mini-grooves on the high voltage 

electrode and repeating the experiment, a weak corona discharge was established between 

the parallel plates and a noticeable electric current in the order of ~0.1 µA was measured 

at the highest possible applied voltage, which was close to the breakdown limit. At these 

conditions, a minor depression on the droplet interface was detected. These observations 

suggest that the spreading mechanism is governed by ion deposition on the droplet 

surface. In order to obtain significant film spreading, one should locally enhance the 

strength of ion injection to create localized surface charge density and electric field on the 

droplet interface. The needle-plate configuration was adopted to provide more significant 

spreading.    

The typical evolution of a silicone oil droplet exposed to the corona discharge (applied 

voltage V=15 kV and total corona current of I=15 µA) is shown in Fig. 2(b). It can be 

observed that the droplet is squeezed to a pancake shape and spreads axisymmetrically in 

the radial direction. The expansion process is uniform and the spreading ratio increases 

monotonically with the discharge exposure time.  
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It is noticeable that the evolution process involves two distinct regimes:  short and long 

time. In the short term evolution (for t<10 s), when the ratio of the film diameter to the 

film thickness is moderate, the spreading proceeds very rapidly, but its rate decreases 

quickly with time. For the long term exposure (for t>10 s), as the diameter of the 

squeezed droplet increases and the liquid film thickness dramatically decreases, the 

spreading rate becomes significantly slower. 

 The mechanism of droplet spreading in the presence of unipolar ion injection is rather 

complicated. A figurative explanation of the spreading mechanism is shown in Fig. 2(c). 

The electric charge carriers are generated due to the locally intense electric field.  The 

charge cloud drifts towards the liquid layer and grounded electrode. The surface charge 

density, sρ  , accumulates over the liquid interface until it asymptotically saturates. Under 

the quasi-steady state conditions, the supplied and migrated charges reach equilibrium. 

The normal component of the electric field produces an interfacial electrophoretic 

pressure, Esρ , acting towards the substrate. This electric pressure, resulting from the 

surface charge/electric field interaction, creates a uniform pressure gradient in the radial 

direction. The net visible effect of this phenomenon is the axisymmetric radial spreading 

of the droplet. This hypothetical explanation of the spreading mechanism will be 

discussed through various experiments in this paper. 

In order to investigate the effect of ion injection strength on the spreading process, two 

different hypodermic needles were used to create different corona currents at the same 

gap spacing. Fig. 3 shows a comparison between the V-I characteristics obtained for the 

modified 15g and 22g hypodermic needles with S=25 mm electrode gap spacing. Since 

the sum of the two principal radii of the corona electrode curvature affects the strength of 

ion injection and corona current, the V-I characteristics of both needles at a given 

electrode separation are different. It should be noted that the V-I characteristics does not 

show measurable changes in the presence and absence of a thin dielectric film. Therefore, 

Fig. 3 represents universal V-I characteristics for all experimental data presented in this 

paper.  
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Figure 3: V-I characteristics of needle-plate geometry using 15g and 22g 

hypodermic emitter electrode with S=25 mm gap spacing.   

Figure 4 shows the dynamic evolution of a large and medium silicone oil droplet in the 

presence of corona discharge for both the 15g and 22g hypodermic needles. According to  

Fig. 4, a significant expansion can be achieved at 15 kV applied voltage using both 

needles. Comparing the corona characteristics for these needles at the same applied 

voltage and electrode gap spacing, one can notice that the corona current becomes almost 

double when the 22g electrode is used. Therefore, using a fine needle at a fixed applied 

voltage leads to a higher electric field, increased ion injection strength and thus a larger 

corona current, which corresponds to a larger rate of interfacial charge accumulation and 

droplet spreading ratio. As it was shown before, the spreading process for both needles 

has two distinct regions, (i) rapid expansion at the beginning of discharge exposure and 

(ii) long term evolution, which is remarkably slower. The experimental observations 

revealed that the fine emitter needle, 22g, gives faster expansion rate in both regions, 

while the coarser needle, 15g, results in a lower rate of expansion.  
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Figure 4: Dynamic evolution of medium (Do=2.6 mm) and large (Do=3.8 mm) 

silicone oil droplets in the presence of corona discharge at V=15 kV. The electrode 

separation in both cases was S=62 mm. The corona currents for 15g and 22g are 7.5 

µA and 13 µA, respectively.  

 

6.31 Effect of electric field strength 

The effect of electric field strength on droplet spreading dynamics is shown in Fig. 5. The 

electrode voltage was kept constant (V=15 kV) during the experiment and the electrode 

spacing was varied between 25 mm to 62 mm. As it can be seen in Fig. 5, decreasing the 

electrode separation results in faster spreading process. Here the enhanced electric field 

increases the current, elevates the rate of interfacial charging, produces higher electrical 

pressure and increases spreading rate. However, since for the reduced gap spacing, the 

effective region of discharge (corona cone) becomes narrower, the electric field and 

surface charge deposition is more concentrated around the center region (Warburg’s law 

[13, 14]), and weaker at the rim of the film [15]. Therefore, it may be expected that the 
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corona discharge at reduced gap spacing leads to a less uniform expanded films. 

Qualitative observation of Fizeau interferograms confirmed that for the larger gap 

spacing, the fringe patterns become more regular and a more uniform film spreading was 

obtained. Furthermore, for the smaller electrode separations (S<25 mm), the random 

irregularities of the high voltage emitter electrode and its associated non-uniformities in 

electric field presumably become of increasing importance and the resulting film is more 

likely to be non-uniform.  

 

Figure 5: Dynamic evolution of large silicone oil droplet (Do=3.8 mm) in the 

presence of corona discharge for various gap spacings. The emitter electrode was 

22g needle and its voltage was kept constant at 15 kV.  

6.3.2 Effect of droplet size and electrical conductivity on the 

spreading process 

Figures 6 and 7 depict the dynamic evolution of droplets with different sizes at different 

electric field strengths. Since the capillary length, gc ρσ=l  , is approximately 1.5 mm, 

droplets with initial size mmDo 3>   can be classified as large droplets. In order to 
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investigate the effect of droplet dimension, small, medium and large droplets were 

generated and expanded. The spreading ratio of different size droplets falls approximately 

on a universal curve for both electric field strengths. This means that the spreading rate in 

the presence of corona discharge is not sensitive to the droplet volume. Later, we will 

revisit this experimental observation analytically.  

 

Figure 6: Dynamic spreading ratio of silicone oil droplets with different initial sizes 

in the presence of corona discharge (V=15 kV, I=13 µA , S=62 mm). 

In order to investigate the importance of the physical properties of the dielectric liquid, 

such as electrical conductivity and viscosity some additional demonstrative experiments 

were performed. To increase the electrical conductivity of silicone oil from 5.5×10-9 S/m 

to ~5×10-5 S/m, a solution of silicone oil and 10-1 mol di-2-ethylhexyl sodium 

sulfosuccinate (AOT) was prepared. When using 22g electrode at V=15 kV, I=23 µA, 

S=40 mm, only a minor depression over the droplet interface was observed, but the 

droplet contact line remained unchanged and no spreading was recorded. 
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Figure 7: Dynamic spreading ratio of silicone oil droplets with different initial sizes 

in the presence of corona discharge (V=15 kV, I=23 µA , S=40 mm). 

The minor depression of interface at the center region can be an indication of a slight 

electrical pressure, which weakly affects the semi-conductive liquid interface. Repeating 

the above experiment using silicone oil solution with 10-2 mol AOT (σ~1×10-6 S/m), one 

can obtain very slow film spreading. As shown in Fig. 8, the spreading rate in both short 

term and long term regimes is significantly slower than that of pure oil with the same 

corona discharge parameters. These observations confirm the effect of elevated electrical 

conductivity on scaling down the electrical pressure generation and reduced rate of 

spreading explained earlier. The same experiment was repeated with a glycerin droplet, 

which has a viscosity one order of magnitude higher than that of silicone oil and its 

electrical conductivity is near the conductivity of 10-2 mol AOT solution. The corona 

discharge at 15 kV showed no change of glycerin droplet interface. However, after 

increasing the applied voltage to 18 kV, a similar minor interfacial depression was 

detected and contact line position was slightly changed. For an extreme case, where the 
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liquid is electrically conductive (water droplet), even the strongest corona discharge 

showed no measurable interfacial distortion. 

 

Figure 8. Dynamic spreading ratio of silicone oil droplet and drop of silicone oil with 

surfactant in the presence of corona discharge (V=15 kV, I=23 µA , S=40 mm). Open 

circle-symbols represent the dynamic evolution of silicone oil solution with 0.01 mol 

surfactant (electrical conductivity σ~1×10-6 S/m) and squares are for silicone oil 

(σ~5.5×10-9 S/m). 

As observed with the glycerin droplet, both electrical conductivity and viscosity of the 

liquid play important roles in determining the spreading rate of a film exposed to the 

corona discharge. All of these evidences confirm the effect of elevated electrical 

conductivity on scaling down the electrical pressure generation and reducing rate of 

spreading as postulated earlier.  
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6.3.4 Mathematical model  

In order to understand the spreading mechanism, the hydrodynamics of the droplet 

distortion in the presence of corona discharge was simplified to the classical Stefan’s 

squeezing flow of a fluid between two parallel disks through an external force [16]. An 

analogy between the current problem and classical squeeze flow can be made by 

replacing the external mechanical pressure with the electric pressure (see Fig. 9). One 

minor difference is the boundary condition imposed at the droplet interface. For the 

classical Stefan problem, no-slip conditions are applied over both plates, whereas in the 

current problem the boundary conditions at the interface can be primarily assumed to be 

free boundary conditions (stress free boundary). Due to the symmetry of the squeezing 

flow between parallel disks, all other aspects of both problems can be considered 

identical. The simplifying assumptions are as follows: 

1 – the film thickness h(t) is uniform in the radial direction, 

2 - according to the approximation normally assumed in lubrication theory, the spreading 

process is quasi-steady [17], 

3 - the electric pressure, Esρ ,  is uniformly distributed over the liquid surface and is 

treated as an external pressure exerted on the liquid film interface.  

4 - all the edge effects, including the effect of surface charge migration from the contact 

line to the ground, are neglected,  

5 - convection terms are assumed to be negligible,   

6 - the inertia effect is important for large droplets only in short time evolution,  

7 - in the first approximation, the effect of surface tension and droplet interfacial 

curvature are assumed to be negligible, 

8 - the electrohydrodynamic instabilities due to the surface charge are neglected, 



165 

 

165 

 

9- the film thickness was assumed to be very small with respect to the gap length during 

the evolution process. However, the corona discharge over the interface was assumed to 

be strong enough, so that the current density change due to the film thickness variation 

becomes negligible. Applying both conditions, the implicit current density expression 

presented in [18] is reduced to well-known Mott's steady-state space-charge-limited 

conduction [19],   

10- the electric pressure has two components. (i) electric pressure due to the surface 

charge (electrophoretic component) and (ii) electric pressure due to the interfacial jump 

in 221 Eε   (dielectrophoretic component). According to the observations, since the 

electrostatic field in the absence of ion injection does not influence the interface, the 

dielectrophoretic component was neglected,  

11- the main voltage drop is assumed to occur in air gap. Since the liquid layer is thin, the 

voltage drop across the dielectric film is assumed to be small with respect to that of 

electrode spacing.  

 

Figure 9:  The similarity of the investigated problem to the squeeze flow between 

two parallel disks (Stefan’s classical problem).  

The Stephan’s equation for squeezing flow assuming a constant force F, Newtonian 

liquid of viscosity µ and a constant volume V0, and partially filled between two parallel 

disks with separation h is as follows [20]: 
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The differential Eq.(1) has been obtained from the simplified lubrication theory for quasi-

steady state neglecting the inertia effects [21]. Assuming that the net electric pressure, 

nsEρ , resulting from the surface charge density,sρ , and the normal electric field, nE , are 

uniform, and considering the hydrodynamic analogy between the mechanical and 

electrical pressures: 
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hV
Ens π

µρ =                          (2) 

Since the droplet volume, 0V  , is constant during the evolution, the dynamic spreading 

diameter, )(tD , can be obtained as: 

s
ns

o D
tE

DtD += 6
9

2)(
µ

ρ            (3) 

Knowing the electric pressure exerted on the interface and maximum spontaneous 

spreading of the droplet deposited over the solid substrate, sD , the dynamic behavior of 

the droplet having an initial diameter of oD  can be predicted from Eq.(3). However, 

estimation of the electric pressure is difficult since a portion of the deposited surface 

charge density migrates towards the grounded substrate through the conduction 

mechanism as the liquid was assumed to be an ohmic (“leaky”) dielectric. Moreover, the 

current density, surface charge and electric field have a non-uniform distribution over the 

interface. An additional difficulty is the fact that the thickness of dielectric layer may 

affect this distribution. As a first approximation, the surface charge density distribution 

can be assumed to be uniform over the interface (see Appendix A). For moderate or 

strong ion injections, the interfacial charge and current density rapidly reach the 

saturation level and become constant. This regime is so-called space charge limited 

current regime (SCLC [18]). Since the voltage drop mainly occurs across the air gap, the 

voltage drop in the thin film is assumed to be much smaller than that across the air gap. 

Therefore, the effect of film thickness on the current density and electric pressure can be 

neglected. This assumption is particularly valid for thin dielectric liquid films (h<<S), 

which are exposed to stronger corona discharge at larger electrode separations [19] (See 
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Appendix B). Current density, surface charge density and electric field in the presence of 

uniform electric field are saturated and they can be expressed as [18, 19]: 
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where V  is the voltage applied to the corona electrode, S is electrode gap spacing,  aK  

and aε are ion mobility of the positive ions and electrical permittivity of the air, 

respectively, and fσ  is electrical conductivity of the dielectric liquid. The electric field 

enhancement coefficient, α equals to 1 for strong uniform ion injection in an infinite film 

layer (Mott's steady-state space-charge-limited conduction [18,19]). Substituting the 

surface charge density and the electric field expressions into Eq.(4), the dynamic 

behavior of the film diameter can be expressed as:  

sDttD +Γ= 61)(                            (7) 
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The spreading ratio can be calculated as:  

stt ββ +Γ= 61')(                                 (8) 
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According to Eq.(8), the dynamic spreading ratio is not function of the droplet initial size. 

This conclusion is consistent with the universal spreading ratio for different droplet sizes 

presented earlier in Figs. 6 and 7.  

6.3.5 Analytical results versus experimental measurements 

A typical comparison between the analytical and experimental behavior of the film 

diameter, D(t), is presented in Fig. 10. The predicted trend of the dynamic evolution of 

the film diameter is very similar to the experimental results. The comparison between the 

analytical and experimental diameters for the long term regime shows a maximum 4% 

difference, while for the short term the deviation is less than 16%. The analytical 

overestimation of the film diameter in the short term range is believed to be due to the 

fact that Eq.(7) is sensitive to the model simplifications at the very beginning of evolution 

process. These assumptions are for instance, neglecting of the surface tension force and 

dynamic contact angle effects, temporal/convective inertia, spatial variation of surface 

charge density and electric field and the effect of dielectric film thickness (which is larger 

in the early stage of spreading). It should be also mentioned that the electric pressure is 

slightly overestimated due to neglecting the voltage drop across the film. This leads to an 

overestimation of current density, and consequently electric pressure and dynamic 

spreading, particularly when the dielectric layer is comparatively thicker. Better 

agreement could be found by applying the Vega’s and Pérez’s approach [19] for current 

density and interfacial charge estimation at the very beginning of evolution (t<5 s). 

Considering so many idealizations of the model, the analytical expression shows 

relatively good agreement with the experimental results and supports the above spreading 

mechanism hypothesis.   
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Figure 10: Evolution of the diameter of a silicone oil droplet exposed to corona 

discharge. The circles represent the measured expansion of film diameter. The 

dashed line represents the theoretical predictions of droplet evolution given by Eq. 

(7). The electrical conductivity of the oil was measured to be σ~5.5×10-9 S/m. The 

kinematic viscosity of the silicone oil was 50 cSt.  The calculated field enhancement 

parameter was calculated to be 25.2=α . The experimental error bars are smaller 

than the symbol size.  

6.4 Conclusions 

A corona discharge-assisted technique for uniform spreading of a dielectric droplet is 

reported. The mechanism of the spreading process was investigated through several 

qualitative and quantitative experiments. It was found that the spreading process is 

governed by the interfacial charge accumulation resulting from the imposed corona 

discharge. We also demonstrated that the current problem is analogous to the classical 

Stefan’s lubrication theory for squeezing liquid flow between parallel disks. Using this 

analogy, dynamic spreading ratio was correlated to the electrical pressure and the 

electrical/thermophysical properties of the fluids. The analytical model showed good 
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agreement with the experimental results especially for long term film expansion and 

supports the postulated spreading mechanism.   

Appendix A 

Mathematical model for spreading of a dielectric droplet 

through an interfacial electric pressure  

The dynamic spreading of a droplet in the presence of corona discharge can be predicted 

through understanding the analogy between the investigated problem and the classical 

squeezing liquid flow between two parallel disks (Stefan’s problem [16]). Figs. A-1 (a) 

and (b) depict the schematic of a realistic and simplified model of the spreading process 

in the presence of corona discharge, respectively.  

 

Figure A1:  Schematics of the dielectric liquid spreading in the presence of corona discharge. (a) Realistic model before 

simplifications (b) Simplified model for current analysis.  

 

The simplifying assumptions are as follows: 

1 - film thickness h(t) is uniform in the radial direction, 

2 - according to lubrication approximation theory, the spreading process is assumed to be 

quasi-steady, 
Appendix A was published in Proc. R Soc. A 2011 (467) pp.3257-3271 as a supplementary document. 
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3 -   electric pressure, ρ¾E,  is uniformly distributed over the liquid surface. It will be 

treated as an external pressure exerted on the liquid film interface. This consequently 

creates a pressure gradient in the radial direction, which is responsible for a flow field in 

the liquid volume. Moreover, the volume charge density is assumed to be negligible; this 

is particularly valid when the film thickness is very small, 

4 - all the edge effects, including the effect of surface charge migration from the contact 

line to the ground, are neglected,  

5 - convection terms are assumed to be negligible (full analysis of this assumption is 

given in chapter 6),   

6 - the inertia effect is important for large films in short time evolution; the validity of the 

assumption will be discussed, 

7 - in the first approximation, the effect of surface tension and droplet interfacial 

curvature are assumed to be negligible (This is valid when the interface curvature tends to 

infinity. This assumption is not true for the short term evolution, where the curvature is 

finite around the rim. It can be relevant for long term hydrodynamically stable spreading 

process), 

8 - the electrohydrodynamic instabilities due to the surface charge are neglected, 

9- the film thickness is assumed to be very small with respect to the gap length during the 

evolution process. However, the corona discharge over the interface was assumed to be 

strong enough, so that the current density change due to the film thickness variation 

becomes negligible. Applying both conditions, the implicit current density expression 

presented in [19] is reduced to well-known Mott's steady-state space-charge-limited 

conduction [18],   

10- the electric pressure has two components. (i) electric pressure due to the surface 

charge (electrophoretic component) and (ii) electric pressure due to the interfacial jump 

in 0.5>²& (dielectrophoretic component). According to the observations, since the 
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electrostatic field in the absence of ion injection does not influence the interface, the 

dielectrophoretic component was neglected,  

11- The main voltage drop is assumed to occur in the air gap. Since the liquid layer is 

thin, the voltage drop across the dielectric film is assumed to be small with respect to that 

of electrode spacing.  

The spreading phenomenon through interfacial electric pressure is analogous to the 

classical problem of squeezing flow between parallel disks, the so-called Stefan problem 

[16]. Fig. 2 presents a figurative explanation of this analogy. The solutions of the velocity 

and pressure fields for the Stefan problem have been derived by several authors [20, 21]. 

This has been the interest of rheologists to obtain the response of a given liquid between 

two parallel disks for either Newtonian or non-Newtonian fluids under a constant force or 

constant velocity disk movement. The details of a model for the squeezing of a 

Newtonian liquid between parallel disks with constant force can be found in [21]. Fig. 3 

demonstrates the geometry of the simplified model used in this study.  

 

 

Figure A-2: The similarity of the investigated problem to the squeeze flow between two parallel disks (Stefan’s 

classical problem).  
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Fig.  A-3 Idealized model in the cylindrical coordinates assumed in the present analytical approach 

Starting with the conservation of mass equation in cylindrical coordinates: 

				1r ∂∂r (ruK) + ∂uÁ∂z = 0																																																																																													(1) 

The problem depends on two spatial dimensions, r and z. The r-dependence can be 

eliminated by applying von Karman similarity transformation: 

																		Ψ	(r, z, t) = r&G(z, t),				and		uK
= r ∂G(z, t)∂z 																																																																																														(2)											 

Substituting (2) in the continuity Eq.(1), we have: 

2 ∂G(z, t)∂z + ∂uÁ∂z = 0																																																																																																		(3) 

uÁ = −2G(z, t)																																																																																																													(4) 

Assuming the temporal inertia is negligible, the r-momentum balance equation can be 

written as: 

uK ∂uK∂r + uÁ ∂uK∂z = μρ Å∇&uK − uKr&Æ − 1ρ ∂p∂r 																(5 − a) 
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By performing order of magnitude analysis and considering the liquid film thickness is 

very small, the convective terms are found to be as small as O(ÈÉÊ
Ë ), while the viscous 

force is in the order of  O(ÈÉÌÊ). Neglecting the convection terms, the r-momentum balance 

equation can be expressed as: 

μρ _∂&uK∂z& ` = 1ρ ∂p∂r 																																																							(5 − b) 

Using the von Karman similarity transformations, the balance equation in r-direction 

reduces to the following ordinary linear differential equation: 

μGÍÍÍ(z, t) = 1r ∂p∂r 																																																																						(5 − c) 

The boundary conditions can be expressed as: 

- at z=0 (the film surface), GÍÍ(z, t) = 0 

- at z = h(t) (substrate), GÍ(z, t) = G(z, t) = 0. 

The general solution of Eq.(5-c) can be obtained as: 

G(z, t) = 3 1μr ∂p∂r6 z�
6 + C�z& + C&z + C�															(6 − a) 

Using three boundary conditions, the unknown coefficients C1, C2 and C3 can be 

calculated as: 

C� = 0																																																																										(6 − b) 

C& = − 3 1μr ∂p∂r6 h(t)&
2 																																												(6 − c) 

C� = 3 1μr ∂p∂r6 h(t)�
3 																																																				(6 − d) 

The radial velocity is equal to: 
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	uK = h&
2μ 3∂p∂r6 3ÅzhÆ& − 16																																								(6 − e) 

In order to find the pressure field in the liquid film, we used the integral form of the mass 

continuity: 

P uK
Ì

R dz = P P uÁ
K

R r	drdθ&Ð
R 																																		(7) 

The velocity in the z-direction, uÁ = −2G(z, t), is not a function of r. Since the film 

thickness was assumed to be uniform (assumption 1) and substituting uÁ = hÑ , the 

integration of the continuity equation gives:  

P P uK
Ì

R rdθdz&Ð
R = πr&hÑ 																																										(8) 

P P h&
2μ 3∂p∂r6 3ÅzhÆ& − 16Ì

R rdθdz&Ð
R = πr&h	Ñ 									(9) 

2h�
3μ 3∂p∂r6 = rhÑ 																																																														(10) 

3∂p∂r6 = 3μrhÑ2h� 																																																																(11) 
p = 3μr&hÑ4h� + PV																																																												(12) 

 PV can be found by applying the contact line condition: at r = R(t),  P = P̧ ¹Ó 

P̧ ¹Ó = 3μR&hÑ4h� + PV																																																						(13) 
P(r, t) = 3μR&hÑ4h� 3ÅrRÆ& − 16 +P̧ ¹Ó																										(14) 
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P ρ¾E dA = P(P − P̧ ¹Ó)dA = P P 3μR&hÑ4h� 3ÅrRÆ& − 16Ë
R rdrdθ&Ð

R 								(15) 

If we assume that the electric pressure, ρ¾E, is uniformly distributed over the droplet 

surface, then the above differential equation provides the evolution of film thickness: 

ρ¾EπR& = −2π 3μR�hÑ4h� 																																																																																					(16) 

Equation (16) is exactly the same as the Stefan’s equation for squeezing flow exerting 

constant force to the parallel disks.  

− ρ¾EdtμRV� = dhh�  

− P ρ¾EμRV� dt¹
¹8RÔ = P h��dhÌ

ÌÕ
 

ρ¾EtμRV� = 13h� + C																																																																																																		(17) 
where ℎ; is the film thickness of droplet, spontaneously expanded on the substrate at  

t = 0Ö. The constant C can be determined by applying the initial conditions: 

h(t) = 1
×3ρ¾EtμRV�
Ø + 1h¾

																																																																																						(18) 

The evolution of R(t) can be obtained assuming the volume of the droplet is kept constant 

during the evolution process: R&h = �� RV�  

R(t) = ×43 RV		� 			×3ρ¾EtμRV�
Ù + R¾																																	(19) 
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R(t) = 2Ro			×ρ¾Et9μÙ + R¾ 

D(t) = 2DV			×ρ¾Et9μÙ + D¾																																								(20) 
 

 

Figure A-4:  Distribution of current density in the point-plane corona discharge. For thin film liquid, h ≪ S, deposited 

on the substrate, the current density distribution is similar to the Warburg law. The current density variations in the 

radial direction can be assumed to be negligible for relatively small droplet spreading ratios. 

Equation (20) describes the dynamic evolution of a deposited droplet on a grounded 

substrate in the presence of corona discharge. An analytical expression for the interfacial 

electric pressure, ρ¾E, can be obtained by considering several simplifications. The initial 

condition, t = 0Ö, is defined as an arbitrary instant of time, when the film thickness is 

measured after a spontaneous spreading process due to the inertia effect. Therefore, initial 

conditions for h¾ and D¾ can be obtained experimentally.  
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Since the electrical pressure calculation is difficult due to the complicated physics and 

non-uniform distribution of surface charge density and electric field, additional 

idealizations based on experimental observation are necessary. The experimental 

observation revealed that at quasi steady-state conditions the corona current density and 

measured total corona current remain approximately unchanged in the presence of the 

film regardless of its dimensions.  

�/ÜeÝ,EÞß = �¦�7�àá,EÞß																																															(21) 

This observation is consistent with conservation of charge density and saturation 

condition derived in [19]. Also, it can be proven from Warburg’s law that for S>4R(t), 

the current density distribution on the surface of substrate and liquid film varies slightly 

(15% variations) [13-15] and it can be assumed constant over the dielectric interface (see 

Fig. 4). Assuming a strong ion injection, the maximum charge density at 5 = 0 and its 

neighborhood can be approximated as [14,18]:  

âÝáÞ = 9|'á>á8 _
&
¯�`																																															(22) 

 

where α  is a function of electrode shape. For parallel plate geometry α equals to 1, which 

corresponds to the well-known Mott's steady-state space-charge-limited conduction 

[18,19]. For a specific emitter electrode, the coefficient  α in Eq.(22) can be determined 

by integrating the current density over the grounded electrode. Therefore, the field 

enhancement coefficient is correlated to the experimental value of the total corona current 

Iexp: 

 

P âÝáÞ äåæ�S4� = P 9|'á>á8 _
&
¯�` äåæ�S4� = �EÞß 
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According to [19], the current density saturates rapidly and remains constant at quasi-

steady state condition. For ohmic dielectric liquid, the accumulated surface charge 

density and resulting electric field can be obtained as: 

 

«; = 9|'á>á&
8­/ _
&

¯�`																																																				(23) 
 

²à = 9|'á>á&
8­/>/ _
&

¯�`																																																					(24) 
 

Substituting the surface charge density and the electric field, the dynamic behavior of the 

film diameter can be expressed as:  

 

.(ç) = èç� éê + .;				, è� 	= 3|'á>á&
­/i�>/ _
&

¯�` .��																	(25)	
 

According to Eq.(25), the dynamic evolution of the droplet depends on the strength of the 

ion injection, the medium in which the unipolar ion injection occurs, the strength of the 

electric field, permittivity, electrical conductivity and viscosity of the dielectric fluid.   
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Appendix-B 

Validity of the hydrodynamic model 

 The essence of droplet spreading in the presence of corona discharge introduces two 

different length scales, the film thickness, h, and spreading diameter, D. These two length 

scales are used to normalize the governing equation as follows: 
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The velocity field can be normalized by the radial velocity as following: 
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The normalized pressure and time can be expressed as: 
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The left-hand side in the last equation is in the order of )( 2hO . As an initial 

approximation, the LHS (temporal inertia and convective inertia) can be assumed 

negligible and viscous force is balanced only with the pressure gradient in the radial 

direction. However, the effect of inertia becomes important, particularly for the short 

term evolution studies. Temporal inertia becomes important and the convective inertia 

might be ignored, when 0Re →∗ and 1* ≥ξ . This condition corresponds to nt
h

/1

2

≥
υ

(very beginning of the slow evolution process). For the limiting case 0→∗ξ and 1Re ≥∗ , 

the convective term should be considered and temporal convection can be neglected. This 

corresponds to the long term behavior investigation of a relatively rapid evolution. For 

short term behavior, 
υ

2

/1

h
t n ≤ , where the evolution is rapid, 

2h

D
U

υ≥∗ , both convective 

inertia and temporal inertia effects should be considered. Therefore, the previous model 

more accurately describes the long term evolution behavior.  
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Chapter 7 

Different regimes of corona discharge spreading of dielectric 
liquid films 

1.2 Introduction 

Dielectric liquid films are encountered in numerous industrial and scientific applications, 

such as coating, deposition, wetting and adhesion, nano-lubrication of ultra-fast rotary 

systems [1], recent thin film electronic devices in molecular electronics [2,3], and several 

biological processes [4].  Fundamental study in the characterization of the thermophysical 

and electrical properties of these thin films may lead to better understanding of both the 

energy and charge carrier transport processes across the films in the listed applications 

[5,6]. An important first step for such studies would be the study of the deposition of such 

as dielectric thin films on a substrate.  Since the number of techniques for spreading of 

dielectric liquids is limited, new techniques for liquid film deposition and control over the 

substrate could be of great interest.   

It has been demonstrated that the electrostatic forces can be used for spreading of 

dielectric layers [7,8]. Recently, several studies were performed to show the spreading of 

the liquid layers using an external electric field. It was found that both interfacial 

components of the electrostatic forces, normal and tangential, can be used to produce 

liquid films over a substrate. A selective spreading of a dielectric liquid due to the 

tangential component of electric forces was demonstrated which accompanies with 

formation of a Taylor cone and periodic jetting occurring during the process [7]. Very 

recently, it was demonstrated that a dielectric droplet exposed to a perpendicular corona 

discharge expands uniformly over the grounded substrate due to the normal component of 

the electric pressure. The corona discharge moves the ionic cloud towards the substrate 

and develops a surface charge over the droplet interface. The normal component of 

electric field produces a squeezing electric pressure over the dielectric interface and the 

droplet expands uniformly over the substrate in the radial direction. It was found that the 

dynamics of the liquid film formation for intermediate corona discharge exposure time 

obeys D(t) ~ t1/6 law, where D(t) is the diameter of the film and t is the corona discharge 
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exposure time. In this case, the ohmic conduction model was assumed to be a valid 

charge transport mechanism across the film whose thickness was comparatively thick (in 

the order of 10-4-10-5 m).  

 

Figure 1: Silicone oil film spreading over a conductive substrate through corona 

discharge exposure. Different regimes of spreading are depicted using different size 

of droplets. (a) Regime I (transient corona charging): 2ms after corona discharge 

exposure (b) Regime II (quasi-steady state corona charging): after 300 sec corona 

discharge exposure. (c) Regime III (hetero-charge interaction): after 1000 sec 

exposure. (d) Regime IV (corona accelerated precursor film): (d-1) silicone oil film 

after 2400 sec, (d-2) after 7200 sec (d-3) after 1.7×105 seconds of corona discharge 

exposure. The electrode was a modified needle and the separation between the 

corona needle and substrate for all cases was 25 mm. The corona voltage and total 

current was measured to be 17 kV and 40 µA, respectively. 
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Figure 2: (a-d) Figurative description of charge carrier transport and (e) qualitative 

demonstration of dielectric film spreading ratio variation, β(t), versus corona 

discharge exposure time. Four different regimes of spreading are identified.  
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In the present work, we demonstrate that the corona discharge spreading technique can be 

effectively used to produce uniform ultra thin films. Four different regimes in the film 

spreading due to the long term corona exposure have been identified and characterized 

(see Figs. 1 and 2). Since the charge transport mechanism across the film determines the 

dynamics of expansion, different regimes of charge carrier transport have been postulated 

and implemented into the analytical expansion model. These postulated charge transport 

mechanisms were confirmed experimentally and theoretically. For each regime, a 

theoretical hydrodynamic model along with a description of the charge carrier transport 

mechanism have been proposed to predict the observed dynamics of spreading. Fig. 2 (a-

d) shows a figurative description of the different regimes and the charge transport 

mechanism across the liquid thin films.  The regimes of liquid film spreading are 

summarized in Fig. 2-e. The measured spreading dynamics for these different regimes 

was verified by these mathematical models. At the very beginning of the corona exposure 

(Regime I), the dielectric film expansion is governed by the transient surface charge 

accumulation. After the interfacial charging of the dielectric layer reaches a quasi-steady 

state, the spreading enters the second regime, which was discussed in detail in [8]. In this 

regime, the film expands monotonically with D(t) ~ t1/6 and the thickness of the film 

decreases. When the thickness of the film reaches some specific value, a transition to 

Regime III is observed and the spreading is accelerated. The acceleration is found to be 

related to the electrostatic component of the disjoining pressure due to the hetero-charge 

layer attraction force. The transition to the fourth and most interesting regime appears 

when the corona discharge exposure time is extended further and the thickness of the 

liquid film reaches sub-micrometer levels. In this regime, a new type of “precursor film” 

with thicknesses in the order of nanometer occurs ahead of the main film. This precursor 

film is diffused and rapidly expands from the main film over the substrate due to the 

electrostatic component of the disjoining pressure until it reaches the area, where the 

corona discharge is no longer effective (beyond the corona cone region). This is the first 

time that we report formation of a precursor film due to the electrostatic forces, as all 

previously reported precursor films were created due to the dispersion component of 

disjoining pressure due to van der Waals forces [16-18]. The expansion rate of the new 

precursor film is much faster than the previous one and it can cover much larger area 
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depending on the size of the corona cone. Deposition of such nanometer thin films 

through the corona discharge forced-spreading may create a platform for further 

fundamental studies, such as dielectric phenomena in thin films, hydrodynamics of the 

thin films, accelerated wetting process, and coating and deposition. Several industrial 

applications may benefit from such investigations.       

7.2 Experimental setup and procedure 

The schematic diagram of the experimental setup is depicted in Fig. 3. All the 

experiments start with the deposition of a single silicone oil droplet over a dry and clean 

mirror-finished stainless steel substrate. In order to generate a corona discharge over the 

droplet interface, a modified hypodermic needle was used as a high voltage electrode. 

The end of this  needle was cut flush and connected to the positive polarity 0-50 kV DC 

power supply and the stainless steel substrate with the deposited droplet was grounded. 

The hypodermic needle was centered with respect to the deposited droplet using a precise 

XYZ holder. The corona discharge voltage and the current were measured using a pre-

calibrated voltmeter (80K-40 Fluke high voltage probe) and electrometer 

(Keithley electrometer Model 602). In order to record the liquid film spreading dynamics 

at the early stages of corona discharge exposure, a high speed CCD camera was used. An 

additional camera was used to record the liquid film spreading for intermediate and long 

term corona discharge exposures. An image-processing code was developed for post-

processing of the collected frame-shots. In order to estimate the thickness of the dielectric 

thin films smaller than 5µm, a monochromatic interferometer with an extended sodium 

light source was employed. For film thicknesses below 2 µm, a white light interferometer 

was pre-calibrated using the monochromatic interferometer. In order to measure the 

thicknesses below 1 µm and to further verify the accuracy of the film thickness 

measurements with interferometers, an automated Variable Angle Spectroscopic 

Ellipsometer (VASE) M2000V was employed.  
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Figure 3: Schematic view of the experimental setup 

Since the different regimes of the film spreading may be linked to the charge carrier 

transport across the thin film, an additional experimental setup was prepared (see Fig. 4) 

to determine the relationship between the surface potential and local current density 

across the film. For this additional setup, another mirror-finished stainless steel substrate 

with a hole at its center was fabricated. A stainless steel wire with 0.9 mm diameter was 

inserted into the hole and it was electrically insulated from the substrate. The wire, which 

serves as a probe for local current measurement, was connected to the electrometer. The 

dielectric droplet was deposited at the center of the wire and the corona discharge high 

voltage needle was mounted perpendicular above the droplet interface and the center of 

the wire. The corona discharge was applied and the thin film was expanded over the 

substrate. When the film reached a desired thickness, the corona current across the film 

was measured. For thin liquid films with thicknesses less than 10 µm, the corona current 

measurements showed only minor changes with respect to the case when the substrate is 

clean. In order to confirm the local current density measurement procedure, the radial 

distribution of the current density was obtained and compared with Warburg’s law.    

7.3 Experimental procedure 

To fully characterize the charge transport characteristics across the thin film, the surface 

potential of the dielectric film subjected to the corona discharge should also be 
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determined. It is rather difficult to measure the surface electric potential in the presence 

of corona discharge. In order to estimate this potential, a probe was constructed by micro-

welding a zinc particle with diameter equal to the thickness of the film to the top of the 

stainless steel wire. This was electrically insulated  using a solution of 95% plastic paint - 

5% n-Heptane. A small droplet of this solution was applied to the wire and particle and 

the corona discharge was applied to cover the dielectric layer uniformly over the probe. A 

sharp needle was used to scratch the coating off the particle tip which is needed for 

surface potential measurements. Choosing a small particle is advantageous since it 

minimizes the physical size of the measurement probe and reduces the level of the 

interference in the surface potential measurement and hydrodynamics of the film. 

(Schematic details are shown in Fig 4.)  In order to measure the interfacial electric 

potential, a variable 0-100 V DC power supply (QuadTech Model: 42000) was used to 

apply a bias voltage to the probe. An electrometer was used to measure the small currents 

in the circuit.  The bias voltage was applied to the probe and increased until the measured 

current in the circuit reached approximately zero. At this condition, the bias voltage 

applied to the probe was assumed to equal the surface potential of the liquid film.  In 

practice, for the surface potential measurements, a silicone oil droplet was placed over 

the center of the probe and the perpendicular corona discharge was applied. The dielectric 

film of silicone oil was established over the probe and substrate due to the electrostatic 

forces. At the beginning, the tip of the probe is totally immersed in the oil and the 

measured voltages were very small. When the thickness of the thin film reached the 

probe height, a jump in the potential measurement was detected. The jump corresponds to 

the enhancement of the electric field due to presence of the interface and the deposited 

interfacial charge over the surface through the corona discharge. Moreover, in order to 

further confirm that the film thickness reached the height of the zinc particle probe, a 

simple setup with a laser diode and detector was employed. When the tip of the zinc 

particle was immersed in the oil film, no specific signal can be detected. When the film 

thickness reached to the height of the zinc particle, the reflected light is scattered and a 

signal could be detected. This signal corresponds to the jump in bias voltage and 

confirmed that the film thickness equals to the height of the probe. Immediately after the 

jump was detected, the bias voltage applied to the probe was adjusted so that the current 
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through the probe tends to zero. This bias voltage was assumed to be equal to the air-oil 

film interfacial electric potential. The thickness of the film was also monitored through 

the interferometer. All the experiments were repeated at least twice to ensure the 

repeatability of the experiments. The room temperature, absolute pressure and the relative 

humidity were monitored frequently during the tests at 1 m distance from the 

experimental test section. The uncertainty of the collected experimental data was smaller 

than the symbols shown in all graphs.  

 

Figure 4: Schematics of additional experimental setup for measurement of the 

surface potential of the oil interface subjected to corona discharge. (a) The 

schematics of the experimental setup. (b) The laser irradiation is compeletly 

reflected from the liquid surface while the liquid film thickness is larger than the 

height of the probe. (c) The reflected laser irradiation from the surface reduces due 

to the beam scattering when the thickness of the liquid becomes smaller than the 

height of the probe.      

 

 

(a) 

(b) 

(c) 
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7.4 Results and discussion  

7.4.1 Regime I and Regime II: Ohmic conduction across the 

liquid film 

High speed imaging of the silicone oil droplet spreading with different initial sizes 

enabled us to detect the earliest stage of the corona discharge-assisted spreading process. 

Immediately after corona discharge exposure, the droplet expansion is much more rapid. 

Fig. 5 depicts the spreading dynamics of two different size silicone oil droplets subjected 

to the corona discharge for an intermediate exposure time. 

 

Figure 5: Spreading dynamics of two different silicone oil droplets subjected to the 

corona discharge. The initial size of the droplet is Do=1.44 mm (green) and  Do=2.64  

mm (red). The applied voltage is 17 kV and total corona current 40 µA. The gap 

spacing was kept constant at S=25 mm.    
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At the beginning of the corona discharge exposure (Regime I), the expansion is fast and it 

is governed by a D(t)~t1/2 law. However, after about 4 milliseconds of exposure, the 

spreading ratio shows a cross-over to Regime II where the rate of spreading becomes 

much slower. The dynamic spreading ratio of Regime II is governed by D(t)~t1/6, and  

was studied in detail in our previous paper [8]. The crossover time relaxation was found 

to be equal to the charge relaxation time of Silicone oil (τË = εë
σë~ 4 ms) (see Fig. 5). Since 

the crossover time is comparable with the charge relaxation time, we postulated that the 

Regime I occurs due to the transient interfacial charging. Based on this postulation, the 

previous model [8] is no longer valid since the charge transport across the film was 

assumed to be steady state. This assumption is only valid for longer corona discharge 

exposure (Regime II), but it might be questioned for earliest stages exposure times, for 

example, milliseconds after exposure (Regime I). In order to understand the early stages 

of the expansion and confirm this hypothesis, a simplified mathematical model based on 

an energy balance approach was developed. In order to validate the new energy balance 

approach, the energy balance approach was first applied for steady state charge transport 

across the film (Regime II). The spreading law derived with the new approach was shown 

to be identical to the previous spreading law presented in [8]. After the validation, the 

proposed energy balance approach is applied to the Regime I where the interfacial 

charging of the silicone oil film is transient and the dynamic spreading ratio is calculated 

immediately after the corona discharge exposure. Based on the analysis, it was found that 

the spreading law for the Regime I obeys D(t)~t1/2. The mathematical model predicts the 

spreading rates of the droplet expansion in Regime I and further confirms the 

hypothetical explanation of transient charging of the droplet interface at the earliest stage 

of the spreading. In the next section, the energy balance approach is presented and 

discussed.        

7.4.2 Energy balance approach: Verification 

Using energy balance is an alternative analytical technique to investigate the dynamic 

spreading of a droplet subjected to corona discharge. Assuming the liquid film after 

expansion is uniform and the evaporation is negligible: 
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O4 .(ç)&ℎ(ç) = 16 O.�� = Açì	(45åíBìç	îåB+%ì)										(1) 

.(ç)& = 23ℎ .��																																																																				(2) 
where the diameter of the film, .(ç), and its thickness, ℎ(ç), are both functions of time. It 

is also assumed the dielectric liquid is not volatile and the droplet preserves a thin 

cylindrical shape during evolution.  

The derivative of the eq. (1) provides the rate of expansion (contact line velocity) and the 

rate of thickness variation. 

2..Ñ ℎ + .&ℎÑ = 0									(3) 

.Ñ = −.ℎÑ2ℎ 																								(4) 
The negative sign in Eq.(4) is due to the fact, that when D increases, h must decrease 

(.Ñ > 0 and ℎÑ < 0). 

The contact line velocity is: 

+ = .Ñ2 = −.ℎÑ4ℎ 																																																	(5) 

+ = .Ñ2 = −.ℎÑ4ℎ = − _.��
24 `�/& ℎÑℎ�/& 															(6) 

Since the droplet is deposited over the substrate, the initial kinetic energy of the droplet is 

zero, '²1 = 0. The potential energy of the droplet in state 1 is 

C²1 = O.�&­ 

The potential energy of the droplet in state 2 is: 
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C²2 = O4 .(ç)&	­(1 − äåæ	S) 

The electrical energy can be expressed as: 

#² = 12 >/(²à)& 316 O.��6 

According to the [8], the electric field can be calculated from the formula 

²à = 9|'á>á&
8­/>/ _
&

¯�`																												(7) 
During the expansion process, a portion of energy is lost due to the viscous dissipation. 

The viscous dissipation function, ï, can be expressed as [9]: 

ï~� Å+ñÆ& 																																																																	(8) 
where L and u are length scale and characteristic velocity, respectively. The dimension of 

the function is [W/m3]. If we assume that the resulting film is thin, it would be relevant to 

assume characteristic velocity and length scales as + and ℎ, respectively. Energy loss due 

to the viscous dissipation can be estimated as: 

²ñ = ï 316 O.��6 ç~� Å+ℎÆ& 316 O.��6 ç														(9) 

The energy balance equation can be expressed as: 

C²1 + #² = C²2 + ²ñ 

O.�&­ + 12 >/ 3
�ℎ 6& 316 O.��6 = O4 .(ç)&	­(1 − Aåæ	S) + � Å+ℎÆ& 316 O.��6 ç 
By conducting an order of magnitude analysis, the surface tension energy can be 

neglected. 
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O.�&­ + �& >/ Åòóô Æ& Å�é O.��Æ = Q� .(ç)&	­(1 − Aåæ	S) + � ÅXôÆ& Å�é O.��Æ ç 

 

The second terms in LHS and RHS have the same order of magnitude and it can be 

assumed these terms are balanced particularly in our experiments, where the surface 

tension is small and the substrate is a complete-wetting surface. By substituting the 

velocity and converting .(ç) to ℎ(ç) using the mass continuity we have: 

 
�& >/ _õö÷øùøÊ

úûcùc ÅòÊ
üØÆ`& Å�é O.��Æ ≈ � Å9óØ

&� Æ ôÑ Ê
ôþ Å�é O.��Æ ç																											(10) 

The equation above is an ordinary differential equation. In simplified form we have: 

>/ �9|'á>á&
8­/>/ _
&

¯�`�& ≈ � _.��
12 ` ℎÑ &ℎ� ç																																																																		(11) 

The solution of the above ordinary-first order differential is as follows  

ℎ(ç) = 1
�24>/�.�� _|'á>á&­/>/ 3
&¯�6`&��/� ç� �⁄ + 1ℎ;

																																																(12) 

Substituting Eqn. (1) to the above formula, the dynamic spreading of the droplet can be 

obtained as: 

.(ç) = Γç� éê + .;				�ℎì5ì					Γ� 	= 3|'�>�2
­±��>± �
2

¯3�.å3																																																													(13) 
This analysis of the dynamics of the spreading using an energy balance method gives a 

similar result as presented in [8].  

 7.4.3 Energy balance approach: Regime I 

�(ℎ�&) �(ℎ�&) 
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In order of obtain the dynamics of spreading of a dielectric film subjected to corona 

discharge for the Regime II, it was assumed the surface charge is immediately developed 

over the dielectric liquid interface. Experimental observations revealed that the film 

expansion at the very beginning of the expansion shows deviation from the t1/6 law (Fig. 

5). One reason for such deviation may be due to the naive assumption of “immediate 

constant surface charge”. It would be interesting to investigate the effect of the “transient 

charging” of the dielectric interface instead of assuming the surface charge density as a 

step function. The Taylor expansion of the surface charge density around t=0 yields: 

«; = «;� + 4«;4ç 	ç + 4&«;4ç& ç& + 4�«;4ç� ç� + ⋯ 																													(14) 
For a dielectric layer without corona discharge exposure, the initial surface charge 

density at the oil-air interface,	«;�, is negligible and can be assumed to be zero. Then: 

«; = A	ç + A�ç& + A�ç� + ⋯ 																																													(15) 

As a first-order approximation, the surface charge density can be estimated as: 

«;=A	ç																																																																				(16) 

Assuming the film thickness is small enough, the constant A can be calculated as: 

A = 1	 4�,R
		.		P â. 4�,

R 																																								(17) 
The electric field jump across the dielectric film can be related to the accumulation of 

surface charge density:  

>á²á − >/²/ = «;																																															(18) 

Immediately after the corona discharge is exposed to the film, the electric field on the oil 

side of interface can be assumed to be smaller than the external electric field due to the 

corona discharge. Therefore: 

>á²á = «;																																																														(19) 
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The electric field on the air side of interface can be estimated as: 

²á = «;>á 																																																															(20) 

=		 p 1>á�		.		P â. 4�,
R s ç																																											(21) 

In order to obtain the approximation for total current 	 â. 4�,R , the current density profile 

can be considered to have Warburg’s law distribution.  

â = âÝáÞ cos�(S) − ­/ ²/																																							(22) 
âÝáÞ can be obtained experimentally as [19]: 

âÝáÞ = 
'á>á 
(
 − 
�à;E�)¯� 																																(23) 

where 
  is a scaling factor and it varies for different configurations of electrodes. For a 

uniform corona discharge generated by mesh-like electrode 
 approximately equals to 1. 

For sharp needles typically 
 > 1.  Current density can be expressed as: 

â = 
'á>á 
(
 − 
�à;E�)¯� cos�(S) − ­/²/																																						(24) 
Therefore, the electrical pressure can be obtained as: 

«;² = � 1
>á 	 4�,R

		.		P 
3
'á>á 
(
 − 
�à;E�)¯� cos�(S)6,
R

− ­/²/� . 4��& 		ç&																																								(25) 

Accordingly, the electric pressure over the interface at the beginning is quadratic function 

of time: 
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«;² = iA� 	ç&																																																																																(26) 
Assuming the surface charge density migration to the ground for ç ≪ 1 is small, the 

second term tends to zero: 

A� = � 1
>á 	 4�,R

		.		P 3
'á>á 
(
 − 
�à;E�)¯� cos�(S)6 . 4�,
R �� 				(27) 

From the energy balance equation: 

12 >/A� 	ç& 316 O.��6 = 12 «+& 316 O.��6																																		(28) 

�F>/A� 	çG4ç = ×� _.��
12 ` ℎ��/&4ℎ																																							(29) 

ℎ = −.� _ �18>/A�`
�/� ç�� + ℎ;																																															(30) 

From Eqn. (1), the dynamic size of the film can be determined as:  

.(ç) = .� _16>/A�3� `
�é √ç + .;																																												(31) 

and the spreading ratio, ©(ç) = 9(�)9ó  , is: 

©(ç) = _16>/A�3� `
�é √ç + ©;																																																		(32) 

Eqn. (32) describes the dynamic spreading of the droplet at the early stages of corona 

discharge exposure for an insulating liquid with a very small electrical conductivity, 

­/ ≪ 1. 
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The present energy balance approach based on the transient surface charge accumulation 

may predict the law of D(t)~t1/2 for earlier stages of corona discharge exposure (Regime 

I) which is in agreement with experimental observations (Fig. 5). Moreover, similarly to 

Regime II, the spreading ratio in Regime I shows universal behavior for all droplet sizes, 

which is consistent with the experimental results. Previously, it was found that the law 

ç�/é overestimates the dynamics of spreading immediately after exposure. This can be 

attributed to the assumption in the derivation [8] that the surface charging immediately 

reaches to the steady state condition, which is not realistic immediately after the 

discharge exposure. In the current model, the surface charging was assumed to be 

transient and first order analysis predicts slower law of ç�/& at ç ≪ 1. Compared with 

experimental results, the theoretical prediction is in agreement with for exposure times 

smaller than the dielectric liquid relaxation time t < �Ë = εë
σë ~4	%æ. This is believed to 

confirm that the first regime of corona discharge spreading occurs due to the transient 

charging of the interface.  It is worthy to note that the conduction mechanism across the 

liquid film in the first two regimes is mainly due to ohmic conduction. In these cases, the 

liquid layer thickness is comparatively thick and since the voltage drop in the dielectric 

film is smaller than that of electrode separation (particularly in Regime I), the charge 

transport mechanism across the thin film remains ohmic conduction. In order to support 

this postulation, it is useful to calculate the conduction parameter [20, 21], which is the 

ratio of ion transit time, �[, to relaxation time, ��: 

A� = 12 �[�� = _ ℎ2'/²` _>/­/` ~ ­/ℎ&
2'/>/
�� 																(33) 

Substitution of the experimental values for interface potential, film thickness, ion 

mobility, permittivity and the measured electrical conductivity of the bulk liquid, one 

may obtain typically of A�~�(10&). For A� ≫ 1, the conduction mechanism remains in 

slightly perturbed equilibrium condition where the ohmic conduction model can be 

applied confidently [21].  
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7.4.4 Regime III: Field-enhanced Dissociation conduction 

regime 

When the corona discharge exposure is continued for a longer period of time, another 

cross-over may be observed. Figs. 6-8 show the spreading dynamics of the liquid film 

subjected to corona discharge for three different droplet sizes. For all tested droplets, by 

increasing the time of the corona discharge exposure, the liquid film expanded and the 

film thickness monotonically decreases. As just shown for the intermediate corona 

discharge exposure time, the spreading dynamics obeys D(t)~t1/6 law. 

 

Figure 6: Spreading dynamics of a silicone oil film subjected to corona discharge. 

The film was produced by expansion of a silicone oil droplet with initial size of 

Do=1.89 mm.  Second and third regimes of expansion are mapped to the ohmic 

conduction and enhanced dissociation conduction mechanism, respectively. The 

applied voltage was 17 kV and the total corona current was 40 µA. The gap spacing 

was kept constant at S=25 mm.    
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Figure 7: Spreading dynamics of a silicone oil film produced by expansion of a small 

droplet with initial diameter of Do=1.44 mm. The applied voltage was 17 kV and the 

total corona current was 40 µA. The gap spacing was kept constant at S=25 mm.    

 

Figure 8: Spreading dynamics of a silicone oil film produced by expansion of a very 

small droplet with initial diameter of Do=0.99 mm. The applied voltage was 17 kV 

and the total corona current was 40 µA. The gap spacing was kept constant at S=25 

mm.    
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However, when the film thickness reaches a critical thickness in the order of ~2 µm, the 

spreading law is accelerated and starts deviating from the t1/6 law. This mode of droplet 

spreading is called Regime III. According to the experimental observations, transition to 

the this Regime starts after reaching almost an identical critical film thickness for all 

droplet sizes, but the spreading dynamics is no longer universal and the rate of expansion 

for smaller droplets is faster. For instance, after 104s of exposure, the spreading law for 

Do=1.89 mm is D(t)~t0.237, while for the smallest tested droplet with an initial diameter of 

0.99 mm, the spreading law becomes D(t)~t0.354. This indicates that below the critical 

thickness, the thickness of the film may affect the spreading dynamics. In the previous 

regimes of expansion (Regimes I and II) it has been confirmed from experimental and 

theoretical investigations that the spreading dynamics is universal for all droplet sizes.  

This suggests that for Regimes I and II the variation of film thickness is not important in 

the spreading process, while in Regime III thickness of the film determines the spreading 

law.  

It has been realized that different conduction mechanisms may simultaneously contribute 

to charge carrier transport across the thin films [12, 13].  When ohmic conduction is the 

dominant charge transport mechanism, the spreading dynamics gives universal behavior 

for all droplet sizes (Fig. 5 and [8]). This is due to the fact that the ohmic conduction 

charge transport is not a function of film thickness and the spreading dynamics is similar 

for different droplet sizes. However, as seen in Figs. 6-8, below the critical thickness, the 

spreading dynamics is no longer universal and it depends on the initial size of the droplet. 

This may imply that the conduction mechanism across the thin film deviates from ohmic 

conduction since the film thickness becomes important and the ohmic model cannot 

describe the carrier transport in such a case. This surprising behavior of the nature of the 

spreading dynamics below the critical film thickness in Regime III might be attributed to 

a deviation in the charge carrier transport mechanism across the thin film. We examine 

this hypothesis through experimental observations and mathematical modeling. In the 

mathematical model, it is postulated that the field-enhanced dissociation conduction 

model can describe the transport mechanism across the film here and this hypothesis will 

be examined experimentally and theoretically.  
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In the thermodynamic equilibrium state where the electric field is absent, neutral 

electrolyte impurities dissolved in dielectric liquids dissociate into counter-ions, while the 

dissociated ions can recombine back into the neutral electrolyte. There is an equilibrium 

between the dissociation and recombination processes anywhere in the liquid except 

close to the interfaces. Due to the electrochemical effects adjacent to the interfaces, the 

space charge layers, known as the double-layer, are established where their thickness is 

approximately equal to the Debye length. When the external electric field is established 

across the dielectric liquid, these dissociated ions experience an electric force. Close to 

the interfaces, the ions with the interface polarity are repelled due to the Coulomb force 

and concentrate the positive and negative ions around the counter-polarity interfaces. 

These space charge layers are known as hetero-charge layers; a gradient of space charge 

exists in these layers (Fig. 9) and the thermodynamic equilibrium is destroyed. The 

hetero-charge layers can be considered in dielectric liquid when their thickness is higher 

than the Debye length [10, 20, 21]. For the low-electric field regime, the hetero-charge 

layers are so thin than the net charge in the bulk might be assumed to be zero and only 

ohmic conduction need be considered [21]. However, when the interfaces approach each 

other, which may happen for larger electric fields in thin films, the hetero-charge layers 

may extend into the bulk. For such a regime, the ohmic model is no longer valid since a 

net charge exists in the bulk [10].  

In the field-enhanced dissociation conduction model, the relation between current density 

and applied electric field is more complicated. According to [14], the current density 

varies exponentially with square root of applied electric field: 

( ) }{ )34(/4/2exp2)(2 2/12/3 TkEeUchDhEcDJ Boroo επε+−==  

where oD is the dissociation coefficient at E=0 (thermal equilibrium). 

In the Regime III, where the thickness of the film is below some critical value, 

experimental results suggested that the spreading dynamics may depend on thickness of 

the film (Figs. 6-8). Based on the field-enhanced dissociation model, the thickness of the 

film, h, appears in the current density-applied field relation Eq. (34).  This indicates that 
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the field-enhanced dissociation conduction model is an appropriate mechanism for carrier 

transport across the film [10,11]. 

 

Figure 9: Demonstration of hetero-charge layers formation around the solid/liquid 

and liquid/air interfaces. 

 

Figure 10:  log J- √� characteristics  obtained for a 2µm-thick silicone oil film. 
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In order to confirm that the conduction mechanism across the thin film is due to the 

dissociation model, log J was plotted versus the square root of surface potential √
  for 

2µm-thick silicone oil film at different corona discharge strengths (Fig. 10). The current 

density across the film and the surface potential of the interface were measured through 

the additional experimental setup presented in Fig. 3 and the procedure explained in the 

previous section. A broad range of current densities was obtained through applying 

various corona discharge voltages to the corona needle at various electrode separations. 

This combination enabled us to cover two orders of magnitude variation in the current 

density across the film. It can be noticed from Fig. 10 that the current density,	�, is 

proportional to exp	(√
) and the slope of variation is ~1.376.  Substituting the 

experimental values into the Eq. (34) the theoretical slope is ~1.261. Thus the theoretical 

slope of variation in the field-enhanced dissociation model agrees with the experimental 

results within 10%. Moreover, calculation of the conduction parameter	A� using the 

experimental measured values immediately after the transition (Vo~1 V and h~2�%) 

gives magnitudes in the order of unity. This may suggest that the ion transit time across 

the thin film becomes in the same order as the charge relaxation time (�[)~�(��) at the 

critical film thicknesses. At the initiation of the deviation, the calculated hetero-charge 

layer thickness (D~'/��²) is in the order of 1 µm. Therefore, the hetero-charge thickness 

becomes comparable with the film thickness at the regime transition point. These 

evidences may further support the postulated field-enhanced dissociation charge transport 

mechanism across the thin film [10,11].  

In order to explain the accelerated expansion observed in Regime III, it was postulated 

that the attraction of the hetero-charge layers developed around both interfaces is 

responsible for such accelerated spreading (Fig. 9). This attractive force in the dielectric 

film may create a new electrostatic component of disjoining pressure. The analysis is 

similar to that of aqueous solution of salts or electrolytes. In an electrolyte solution, the 

attraction in the electric double layers created adjacent to the interfaces may result in an 

electrostatic component of disjoining pressure [15]. However, for weak electrolytes or 

dielectric liquids, the ion diffusion coefficient, D, is very small 

(. = ÷c��[E ~10���	%&æ��) and the double layer thickness ( τDDL ~ ~ m710− ) is 
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typically thinner that the hetero-charge layer thickness. Therefore, it is reasonable to 

consider hetero-charge layer attraction as the electrostatic component of disjoining 

pressure in dielectric liquids.  

The Standard Thin Film Model (TFM) [15] along with the concept of disjoining pressure 

due to the hetero-charge layer attraction was employed to investigate the proposed 

spreading mechanism in Regime III. Let’s assume the extreme case where only the 

substrate interactions govern the spreading. The mass continuity equation can be derived 

from lubrication theory [16,18]: 

)35(
3

1 3 








∂
∂∏

∂
∂−=

∂
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r

h

dh

d
rh

rrt

h

η                  
 

where  Π is the disjoining pressure in the film. In general, disjoining pressure in dielectric 

films may have two components: 

Π = Π��� + Π¶�                                       
The first component, Π���, is dispersion component of the disjoining pressure due to the 

van der Waals (VVW) force and second component, Π¶�  is the electrostatic component 

of the disjoining pressure due to the attraction of the hetero-charge layer. It should be 

noted that the disjoining pressure due to the van der Waals force interactions can be 

neglected for the thin films in the order of few microns [22].       

If the thickness of the film is close to that of the hetero-charge layer, the disjoining 

pressure has only the electrostatic component due to the attraction between the hetero-

charge layers. Moreover, since below the critical thickness, the relationship between the 

current density and electric field across the film is exponential, small changes in surface 

potential correspond to a large change in current density. According to the log J -√
 

characteristics presented in Fig. 10, it was confirmed that the surface potential shows 

small variations during the expansion process in regime III. Therefore, the electrostatic 

component of disjoining pressure can be calculated as:  
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where α>1 is an enhancement coefficient. The detailed calculation of electric field 

enhancement coefficient due to the presence of hetero-charge layers can be found in [21]. 

For a detailed derivation of the electrostatic component of disjoining pressure see the ref 

[22]. Considering the Eq.(36), the conservation equation becomes: 
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Based on the field-enhanced dissociation conduction model, at fixed ion injection 

conditions (constant corona discharge voltage and gap spacing), after decreasing the film 

thickness the changes in surface potential might not be significant (see also Fig. 10). For 

instance, for 10 times thinner film, the surface potential changes less than 10%.  

Therefore, the mass conservation equation can be simplified to: 
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Considering the non-dimensional parameters: 

χ
η
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Eq.(38) can be written as:
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In order to find the similarity solution for the spreading dynamics due to the hetero-

charge layer attraction let us consider the following parameter: 

)(tfr=Ω  
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where )(tf is an unknown function. Since the volume of the film is constant during the 

evolution, then: 

( ) )40(1
)(
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The tested dielectric liquid (silicone oil) is not volatile and the volume of the film is 

preserved during the expansion process thus the above equation should not be a function 

of time. Therefore, 

ctetftR =)()(  and          ( )2)()( tfgh Ω=  

Considering ( )2)()( tfgh Ω=  as a similarity solution for governing equation and using 

)(tf
r

Ω= , the governing equation becomes: 
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 From eq. (41), the following differential equation can be derived: 

4f
td

fd
f −=  or 3f

td

fd −=  

Therefore: 

2/1*~)( −tctf  

Since ctetftR =)()(  

)42()( 2/1* tCtR =  
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Figure 11: Radial distribution of the relative current density for the hypodermic 

needle used in this study. The applied voltage was 17 kV and the total corona 

current was 40 µA. The gap spacing was kept constant at S=25 mm.    

The spreading law of  ç�/& has been predicted by considering the electrostatic component 

of hetero-charge layer. For comparatively larger droplets, it was found experimentally 

that the transition occurs smoothly and the exponent of the law increases slowly 

(compare Fig. 6 with Fig. 8). This might be due to the fact that the transition to Regime 

III starts when the initial film size is large and the local corona current density shows 

only slight variation in radial direction. This corresponds to slight variation in surface 

potential that was theoretically assumed to be constant earlier. In order to confirm this 

hypothesis, the same experiments were repeated with droplets whose initial diameter was 

one order of magnitude smaller. In this case, the theoretical assumption of uniform 

surface potential is more likely to be met since the expansion of the film for such small 

droplets occurs well within the corona cone and the spreading dynamics is closer to the 

predicted law of ç�/&. For instance, for droplet Do=0.99 mm (Fig. 8), the spreading 

dynamics in Regime III was measured to be t0.354 while for largest tested droplet of 

Do=1.89 mm (Fig. 6) the spreading law of t0.237 was obtained. According to the measured 
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current density profile presented in Fig. 11, the current density variation within the size of 

the film is about 40%, which corresponds to the surface potential variation of below 15%.  

Based on this analysis, it has been confirmed that the substrate interactions due to 

attraction of hetero-charge layer may accelerate the spreading process in Regime III. It is 

important to note that as the film thickness decreases below the critical thickness, the 

interaction with the substrate due to the hetero-charge layers attraction become more 

significant and the spreading law approaches the predicted law of ç�/&. At the beginning 

of the transition, the spreading law is governed by the interfacial electric pressure, while 

below the critical thickness when the carrier transport mechanism due to the enhanced-

dissociation becomes dominant, the substrate interaction may govern the spreading 

dynamics due to the attraction of hetero-charge layer. Since the transition is smooth, the 

spreading dynamics law is observed to be bounded between the t1/6 and t1/2(See Appendix 

C-2). More general solutions for the Regime II, Regime III and Regime IV can be 

obtained in Appendices C-1 C-2 and C-3, respectively. 

7.4.5 Regime IV: “Precursor film” 

Continuing the corona discharge exposure to the accelerated film in Regime III reveals an 

additional interesting regime of the film spreading. It was observed that when the 

dielectric film reaches sub-micron thicknesses, an ultra-thin film in the order of tens of 

nm diffuses from the main film, and spreads ahead of the apparent contact line. The 

appearance of the thin film resembles the previously reported precursor film expanding 

ahead of the main film during long term spontaneous spreading [24]. Fig. 1-d shows a 

dielectric droplet with initial size of 0.5 mm after 40 and 500 and 2500 minutes of corona 

discharge exposure with 17 kV applied voltage and total corona current of 40 µA. The 

blue dark fringe in right side of the main film corresponds to sub-micron liquid film 

thickness. The thickness of ultra-thin film is so small that the white light interferometry 

shows only a gray fringe in this regime. It should be noted that the slight non-uniformity 

in the thickness of the main film results in asymmetric ultra-thin film formation around 

the main film. Uniform thin films with such thicknesses are difficult to achieve since it 

depends on several factors such as precise adjustment of needle with respect to the center 

of the film, micro-irregularities on the tip of the needle, etc. Moreover, small local 
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impurities in the dielectric volume may result in such non-uniformities. It was observed 

that the dynamics of the ultra-thin film is de-coupled from the main film and it spreads 

much faster than the main film. According to our ellipsometry studies, the thickness of 

the secondary diffusive film is tens of nanometers (Fig.12).  

 

Figure 12: Ellipsometric measurement of silicone oil film thickness after 1.7×105 

seconds of corona discharge exposure. The measurement performed at two different 

peripheral angles. The applied voltage was 17 kV and the total corona current was 

40 µA. The gap spacing was kept constant at S=25 mm.    

Compared with the normal precursor film formation around the main film under 

spontaneous spreading in the absence of corona discharge, the length of the film created 

by the forced spreading corona discharge-assisted technique is typically two orders of 

magnitude faster, but the thickness of the film is in the same order of magnitude. Due to 

the several commonalities between the observed thin film and the conventional 
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previously reported precursor film [15-16], we use a similar terminology, “accelerated 

electrostatic precursor film”, for the present observed film resulting from the post-forced–

spreading corona discharge assisted technique  

The process of the precursor film formation is complicated. The attraction between the 

hetero-charge layers accelerates the spreading process until the film thickness becomes 

sub-micron. For regions with submicron thicknesses, a transition from Regime III to 

Regime IV occurs due to the stronger substrate interactions. In Regime IV, the van de 

Waals force might contribute in initiating of the precursor film, whose thickness is 

typically five times smaller than the main film. In this stage, according to the field- 

enhanced dissociation conduction model, the surface potential is expected to show only 

minor changes, which corresponds to an electric field enhancement of at least 5 times 

larger as compared with that of the main film. Since the electrostatic component of 

disjoining pressure is scaled with E2, this abrupt variation in electric field across the thin 

film may lead to a significant gradient in disjoining pressure, which accelerates the 

expansion of the precursor film.  

In order to mathematically describe the film expansion in regime IV and further confirm 

the above postulated mechanism, let us consider the standard Thin Film Model (TFM) 

and assume that the expansion of the film is based on two components of disjoining 

pressure: (i) dispersion component, Π��� (ii) electrostatic component, Π¶� [22]: 

Π = Π��� +Π¶�																								(43) 
 

Using the first approximation of the direct summation of all molecular interaction in the 

thin film, the dispersion component of the disjoining pressure can be simplified as: 

Π = Π��� = A�6πh� 																	(44) 
where AH is referred to as the Hamaker constant. According to the lubrication 

approximation: 
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The diffusion coefficient has two components as: 
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Assuming the precursor film thickness starts at ℎ(5, ç) = ℎ; ]16[ , the similarity solution 

yields:  

)47(
3

4

3
)(

2/1

t
h

A
tr

s

H








+=

µ
χ

πµ
 

In the absence of corona discharge χ is zero and the above equation becomes: 
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The above analysis of the spreading dynamics in the absence of corona discharge was 

obtained theoretically in [16,23] and experimentally confirmed in [17]. Eq. (47) predicts 

that the spreading length of the precursor film in the presence of corona discharge is 

much faster than the previously reported precursor films produced only due to the 

dispersion component of the disjoining pressure (spontaneous spreading). For example, 

typical spreading of the precursor film of a silicone oil droplet in the spontaneous mode is 

in the order of 100 µm after about three days.  This shows that precursor film spreading 

through spontaneous spreading can take a very long time (perhaps in the order of years or 

more [16]). However, in the presence of corona discharge, the spreading length for the 

precursor film was demonstrated to be in the orders of tens of millimeters after only a day 

of corona discharge exposure. This suggests that the precursor film spreading is mainly 

governed by electrostatic forces and it is accelerated by electrostatic component of 

disjoining pressure rather than the presence of the dispersion component of disjoining 

pressure. This can be qualitatively confirmed by discontinuing the corona discharge 

exposure and monitoring the rate of spreading. It was observed that when the spreading 
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was interrupted by disconnecting the corona discharge voltage no visible precursor film 

expansion was recorded during two days of monitoring. The importance of the 

electrostatic component of disjoining pressure can be further confirmed by repeating the 

experiments for an identical test period in the presence of corona discharge. It was 

observed that the precursor film is monotonically expanded and it can be extended to 

radial distances equal to the distances where the corona discharge is no longer effective 

(corona cone). The expansion of the precursor film within the corona cone region 

confirms the role of corona discharge in the expansion of the precursor film. 

The above experimental observations and the explained mechanism for precursor film 

spreading can be further confirmed by evaluation of the diffusion coefficients. The 

diffusion coefficient due to the dispersion component of disjoining pressure (assuming 

thicknesses hs=10-7 m) , De(h), is in the order of 10-12 m2/s, while the diffusion coefficient 

due to the electrostatic component of the disjoining pressure is in the order of 10-9 m2/s.  

As it is depicted in Fig. 13, the best fit power law curve for the experimental data using 1-

D precursor film length measurements, reveal that the experimental value of the diffusion 

coefficient should be in the order of 10-9 m2/s, which is very close to the calculated 

electrostatic component of the disjoining pressure. This further confirms the pivotal role 

of the electrostatic component of disjoining pressure in acceleration of the precursor film. 

It is worthy to note that, in the proposed mathematical model, we only considered the 

long-range attractive component of van der Waals forces. The short-range repulsive 

component of the van der Waals forces becomes important when the thickness of the film 

goes below the typical thicknesses of 5 nm. Such small thicknesses may only occur at the 

early stages of the precursor film development. Since we neglected the early stages of the 

precursor film dynamics, repulsive short-range van der Waals forces are not effective. 

Note that the short-range repulsive van der Waasl force may act only on few molecules 

adjacent to the interfaces. In the present work, the typically reported thickness was 30 nm 

where the repulsive forces have negligible contribution in film spreading dynamics. 
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Figure 13: Fit line of the experimental data (circles) for the dynamics of the 

accelerated precursor film. The curve is in the form of n
o trtr δ=−)( . When n fixed 

at 0.5, the fitness parameter and the standard errors are as following:
2/162/15 /1006.2/1074.7 smsm −− ×±×=δ which corresponds to  diffusion coefficients of  

smDe /1001.3 29−×= sm /107.1 212−×± . The equation is valid for times after 40 min of 

corona discharge exposure where the accelerated precursor film length was 

measured to be mmr 53
0 1032.410556.2 −− ×±×−= .  

7.6 Conclusions 

In the present work, we demonstrated four different regimes of dielectric film expansion, 

when it is subjected to the corona discharge. It was found that the spreading dynamics in 

the different regimes is related to the charge transport mechanism across the film. For the 

two first regimes, the interfacial electric pressure squeezes the dielectric film and the 

charge carrier transport follows ohmic conduction. Below some critical layer thickness, 

where the hetero-charge layer thickness is comparable to that of the dielectric film, a 
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transition to the third regime occurs and the attractive force resulting from the 

electrostatic component of disjoining pressure in the dielectric film accelerates the 

expansion. In this case, the charge transport mechanism deviates from the ohmic 

conduction model and it is governed by the field-enhanced dissociation conduction 

mechanism. By extending the corona discharge exposure time, a fourth regime of 

expansion was observed, where the precursor film is ejected from the main film. This 

precursor film is found to be accelerated due to the electrostatic component of disjoining 

pressure. Although the precursor film expansion shows commonalities with traditional 

precursor film dynamics, resulting from the dispersion component of disjoining pressure, 

its expansion is much faster. It was also demonstrated that the precursor film having 

thickness of the order of nanometers may cover a large area of the substrate within the 

corona discharge effective region, which is in the order of tens of millimeters. Further 

study of the new precursor film is required to understand its formation and dynamics of 

spreading.  The results of the current work could be useful for several scientific and 

industrial applications.       
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Appendix C 

In appendix C, we are looking for a more general solution for the different regimes of 

spreading II, III, IV. The regime I cannot be included in this approach since it arises from 

dynamic surface charging and highly transient disjoining pressure.  

If we define the disjoining pressure in the following form: 

)1()(
nel h

B
h =∏=∏  

The case considered here is to the final stage of the spreading of a film in which the 

substrate is completely wetted. The film profile can be described as: 
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The conservation equation becomes: 
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Considering the non-dimensional parameters: 
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In order to find the similarity solution for the spreading dynamics due to the hetero-

charge layer attraction let us consider the following parameter: 

)(tfr=Ω  
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where )(tf is an unknown function. Since the volume of the film is constant during the 

evolution, then: 
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The tested dielectric liquid (silicone oil) is not volatile and the volume of the film is 

preserved during the expansion process thus the above equation should not be a function 

of time. Therefore, 

ctetftR =)()(       and          ( )2
)()( tfgh Ω=  

Considering ( )2
)()( tfgh Ω=  as a similarity solution for governing equation and using 

)(tf
r

Ω= , the governing equation becomes: 
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 Since the above equation should not be a function of time: 

( ) n
f
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Therefore: 

( )ntctf 26/1*~)( +−  

Since ctetftR =)()(  

( ) )7()( 26/1* ntCtR −=  
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substituting the ( )ntctf 26/1*~)( +− , Eq.(6) becomes in the following form: 
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Therefore, the profile of the film can be obtained by the following differential equation: 

Ω
−=Ω −

d

dg
g n1  

Let us construct the concept of disjoining pressure for the charged liquid interfaces. The 

disjoining pressure can be defined as the negative derivative of the Helmholtz free 

energy. The excess Helmholtz free energy can be caused by excess charge at the 

interface. 
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Therefore, the disjoining pressure due to adding excess charge over the liquid interface 

can be defined as: 
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The disjoining pressure can be simplified as: 

2

2

h

V f

fε=∏  

 

The presented concept of disjoining pressure helps to apply the general solution 

conveniently. 

C-1 Similarity solution for Regime II 

In the regime (II), the conduction mechanism mainly remains in the ohmic regime. Since 

the current density is constant during the spreading process, the electric field must remain 

constant. In this case, electric pressure is constant and hV f ∝ , therefore, n in equation 

(1) must equal to zero. 

According to Eq.(7), the spreading dynamics obeys: 

( )ntCtR 26/1*)( −=  

Substituting 0=n : 

6/1*)( tCtR =  

This is the spreading law we obtained previously by two different methods: (i) Stephan’s 

analogy (ii) energy balance method.  

 

C-2 Similarity solution for Regime III 

For Regime III, the relationship between the surface potential and thickness variation is 

more difficult. Based on the experimental results, the J-V characteristics shows 

reasonable agreement with Onsagar’s model.   
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As it can be implied, at a given corona discharge condition (constant applied voltage and 

electrode separation), the current density is constant and: 

( )
h

Ea
Η=exp  

Since the V-J measurements for thin liquid film is difficult, from the existing data for the 

range of thicknesses m76 108104 −− ×−× , the following inequalities can be written based 

on the experimental data: 
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Therefore, the electrostatic component of disjoining pressure due to the interfacial excess 

charge is bonded between 1/h and 1/h2.  

2
21

h

B

h

B
<∏<  

Therefore, the spreading dynamics can be calculated by Eq.(7) by substituting n=1 for 

lower value and upper value n=2. The spreading dynamics can be varied between: 

2/14/1
)( ttRt <<  

C-3 Similarity solution for Regime IV 

Reconsidering the late stage of the spreading of a film which the substrate is completely 

wetted by the precursor film: 
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In this regime, the change in surface potential during the spreading process becomes 

negligible and the liquid interface tends to adapt intermediate values of electric potential 

between zero (at solid conductive substrate) and a finite value of surface potential at 

slightly above the solid boundary where the interface is located. Therefore, thin film 

tends to creep along the substrate and conserve surface potential at a finite value of *fV
 
. 

This is thermodynamically preferable since the jump from finite voltage to zero is not 

physical and creeping along the solid interface with reduced thicknesses may minimize 

the energy in the film. For this case, it would be reasonable to consider the electrostatic 

disjoining pressure as following: 

)2(~*

2

2*

cteVwhere
h

V
f

f
fε−=∏  

Considering the van der Waals disjoining pressure: 
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Let’s assume the case where the electrostatic forces are absent. 

The diffusion coefficient for van der Waals forces: 
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Assuming the precursor film thickness is cut at shtrh =),( ,  
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The solution of Eq.(6) becomes in the following form: 

 )7()( 2/1* tCtR =  

The classical solution for precursor film in the presence of repulsive van der Waals forces 

is:  
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Considering the molecular length scale, 
πγ6

A
a = , the cut thickness, sh ,  can be 

calculated as 
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Substituting the Eq.(9) to Eq.(8), the constant *C  in eq.(7) is determined. The solution 

presented in eq.(7) presents the dynamics of conventional diffusive precursor films.  
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Chapter 8 

Retraction control of an impacted dielectric droplet through 
electric pressure 

 

8.1Introduction 

Controlling the deposition of impacted droplets on a non-wetting solid substrate is 

important for numerous industrial and scientific applications, such as deposition and 

coating techniques, ink jet printing, rapid spray cooling of a heated target, thin film 

evaporation, and pharmaceutical processes [1,2]. High-speed droplets colliding with a 

non-wetting substrate expand and subsequently retract [5,11,15] (see Fig.1a). Compared 

with the expansion phase investigations [17,18], the retraction dynamics have received 

less attention in the literature, primarily due to the complexity of the fluid dynamics 

[14,16]. It was recently demonstrated that polymer additives in water [5,12] significantly 

slow down the retraction rate through the non-Newtonian rheological effects [6,11]. 

Although adding such agents is remarkably successful in suppressing the retraction 

phenomenon for water droplets, these polymers are not soluble in dielectric liquids, thus 

new techniques for retraction inhibition of such liquids are potentially of interest.  

When a deposited dielectric droplet is exposed to a strong enough unipolar ion injection 

in a gaseous medium, an electric pressure can be developed over its interface. At and 

above the onset of corona discharge, the charge carriers, generated due to the ionization 

process, drift towards the grounded substrate and the deposited dielectric droplet (see Fig. 

1b). Interaction of the strong electric field and the surface charges deposited on the 

droplet creates an interfacial electrical pressure. The electrical pressure exerts a net 

squeezing force towards the substrate and the droplet spreads axisymmetrically in the 

radial direction [13]. This positive interfacial electric force creates a resistance against the 

capillary forces acting to retract the impacted droplet.  
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Figure 1: Stages of droplet evolution in the absence of corona discharge (a) and in 

the presence of corona discharge (b).  
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Figure 2: Schematics of experimental setup 

The charging of a dielectric film through unipolar ion injection is a transient 

phenomenon, but in the quasi-equilibrium condition, where the surface charge 

asymptotically reaches its saturation limit, the electric pressure over a dielectric interface 

can be estimated from a simplified model as [7,13]: 

«;²à = 1>/	­/& _9|'á>á&
8		 `& _
�

¯é`																	(1) 
where 
 is the voltage applied to the corona electrode, S is electrode gap spacing,  'á and 

>á	are ion mobility of the positive ions and electrical permittivity of the air, respectively, 

and ­/ is electrical conductivity of the dielectric liquid. The electric field enhancement 
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coefficient | equals 1 for strong uniform ion injection in an infinite film layer (Mott's 

steady-state space-charge-limited conduction [7,8]), but it has higher values for sharp 

emitter electrodes.  

In the presence of a moderate or strong corona discharge, a typical value of the capillary 

force, cF
r

, and electric force, EPF
r

,  resulting from the electrical pressure, Esρ , established 

over a dielectric interface with the electrical conductivity of ~10-9 S/m can be estimated 

as: 

 !�¦ = 2O�(ç)"#1 − cos(S�)$ = 2 × 3.14159 × (1 − 2 × 10�	&	%) × (20 ×
10��*%�	�) × #1 − cos ≈ 90°$~�(10�	�−10�	�	*)    

 !�%d = «;²	�;
≈ (10�	é − 10�	�A	%�	&) × (10� − 10é	*	A�	�) × 3.14159
× (1 − 2 × 10�	&	%)~�(10�	� − 10�&	*) 

This crude order of magnitude analysis suggests that the interfacial electric forces and 

capillary forces are of the same order at a moderate corona discharge. For an intense 

unipolar ion injection, the interfacial electric force can be even an order of magnitude 

stronger than the capillary force. This implies that the electric force may be strong 

enough to intervene in interfacial capillary-driven retraction phenomena.  

Although conventional passive retraction inhibition techniques for aqueous droplets on 

hydrophobic surfaces have been the subject of several theoretical and experimental works 

[5,6,11,12], to the best of the author’s knowledge the corona discharge inhibition 

technique for dielectric liquid droplet has not been considered. In this paper, we propose 

a new active technique to suppress, or inhibit, the retraction of a dielectric droplet 

impacted on a non-wetting solid dry substrate. Different dielectric liquids, silicone oil, 

ISOPAR-L and its solution with a surfactant, were used to demonstrate the effectiveness 

of the proposed technique. The prominent feature of the proposed method is that the 
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retraction speed can be actively controlled by changing the ion injection strength through 

variation of the electric field.  

 

8.2 Experimental Setup 

The schematic diagram of the experimental setup is presented in Fig. 2. The two different 

fluids, silicone oil and ISOPAR-L, were chosen for this study based on their electrical 

and thermophysical properties as summarized in Table. I. The non-wetting substrate was 

developed by applying a solution of silica nanoparticles and n-Heptane over the mirror 

finished stainless steel substrate.  

Table.I Electrical and thermophysical properties of the working fluids used in this study at 296.7 K. 

 

 In the normal situation, the droplet strikes the surface, spreads out and subsequently 

undergoes rapid retraction. The initial size of the droplet, Do, and its impact velocity were 

measured to be ~ 3.3 mm and 2.8 m/s, respectively. Both the initial droplet size and 

impact velocity were kept constant during all the experiments. The corona discharge was 

generated between a high voltage emitter electrode and grounded substrate. The high 

voltage emitter electrode was a stainless steel needle with a well-defined hyperbolic tip 

profile with a radius of 50 µm. The high voltage emitter electrode was mounted 

perpendicularly above the grounded substrate with a separation of 38 mm. The axis of 

emitter electrode was adjusted 5 mm off the center of the landing spot over the substrate. 

The applied voltage and corona current were measured using a high voltage voltmeter 

(80K-40 Fluke high voltage probe) and a Keithley® 610B electrometer. An extended light 
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source, an optical diffuser, and a high-speed CCD camera were used to record the 

dynamics of the droplet behavior during and after the impact process. The accuracy of the 

dynamic film diameter measurements was determined to be +/- 0.2 mm. All the 

experiments were repeated at least twice to ensure the reproducibility of the presented 

results.     

 

8.3 Results  

Fig. 3 shows examples of the photographic sequences of evolution of different dielectric 

droplets obtained after the droplet impact at different applied voltages. For the silicone oil 

droplet in the absence of corona discharge (V=0), the expansion stage takes place during 

~5 ms after the impact. This stage is followed by retraction of the droplet, which typically 

starts a few tens of milliseconds after the impact. Compared with the expansion stage, the 

rate of retraction stage is an order of magnitude slower than the expansion stage.  

The effect of moderate and strong corona discharge on dynamic spreading ratio, 

oDtDt )()( =β , of the impacted droplet is presented in Fig. 4. By increasing the corona 

voltage to V=12.5 kV, a total corona current of 9 µA was measured, the electric pressure 

increases and the droplet retraction is eliminated. By further increasing the applied 

voltage to 16 kV, the current increases to 18 µA and not only is the droplet retraction 

prevented, but also further spreading can be achieved. This is attributed to the fact that 

increased applied voltage causes more ionization adjacent to the high voltage electrode 

and elevates the rate of charging due to the increased corona current. Compared with the 

electrical pressure given by Eq.(1) at the onset of corona discharge, the calculated 

electrical pressure is augmented at least 50 times at 16 kV, assuming that the field 

enhancement coefficient is identical at both applied voltages. Consequently, this 

impressive augmentation of electrical pressure at 16 kV applied voltage would explain 

the continued droplet spreading without retraction. 
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Figure 3:  Comparison of droplet spreading using different fluids at different 

applied voltages and corona currents. The electrode spacing was 38 mm. 
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Figure 4: Dynamic spreading ratio of an impacted silicone oil droplet in the 

presence of corona discharge 

Fig.5 presents the results for ISOPAR-L whose molecular viscosity is 25 times lower 

than the silicone oil, while both the surface tension and electrical conductivity are in the 

same order of magnitude (See the Table. I). Compared with silicone oil, the retraction 

process for ISOPAR-L in the absence of corona discharge is one order of magnitude 

faster since its molecular viscosity is one order of magnitude lower and the surface 

tension of both liquids is approximately the same.  
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Fig. 5 Dynamic spreading ratio for ISOPAR-L at different applied voltages. Droplet 

spreading ratio & = ''( versus time in the presence of corona discharge.    

Similarly to the silicone oil, by increasing the corona voltage the retraction process is 

suppressed. However, for ISOPAR-L, a comparatively larger electric pressure is required 

to mitigate the retraction process. For instance, by increasing the applied voltage to 16 

kV, the retraction speed is still significant. By further increasing the applied voltage to 20 

kV, the ion injection is strengthened and the corona current increases to I=33µA, so that 

the retraction is completely inhibited. These results show that higher applied voltage and 

interfacial electric pressure are required to overcome the capillary forces, when the 

retraction resistance due to the viscous force is weaker. Moreover, the experimental 

observations for both liquids revealed that the corona discharge has no appreciable effect 

on the droplet expansion phase. This implies that during the expansion stage the impacted 
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droplet remains practically unchanged. The inertia force is the only dominant force 

during the expansion and contribution of the interfacial electric force is not appreciable at 

the very beginning of the evolution, where the instantaneous surface charge magnitude is 

likely to be far below the saturation limit. This hypothesis will be revisited later in more 

detail.  

 

Fig. 6 Dynamic spreading ratio of ISOPAR-L droplet with 3.3×10-3 M AOT additive 

in the presence and absence of corona discharge.  

In order to further examine the theoretical postulations, the electrical conductivity of 

ISOPAR-L was elevated by dissolving low concentrations of di-2-ethylhexyl sodium 

sulfosuccinate (AOT) in ISOPAR-L. For this solution other thermophysical properties 

remain approximately unchanged [10]. Fig. 6 compares the dynamic evolution of pure 

ISOPAR-L and the solution of ISOPAR-L with 3.3×10-3 M AOT in the absence and 

presence of corona discharge. Comparison of the evolution characteristics confirms that 
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the thermophysical properties of the liquid do not show any significant changes. For pure 

ISOPAR-L the retraction can be eliminated at 20 kV (Fig. 5). For the doped material, the 

droplet retraction is somewhat suppressed at 20 kV, but it is still significant. By further 

increasing the applied voltage up to 24 kV (I=54 µA), the retraction is remarkably 

suppressed although some slight retraction can still be observed. As it can be inferred 

from both the experiments and the theoretical postulation presented in Eq.(1), the 

elevated conductivity of the ISOPAR-L solution results in scaling down the accumulated 

surface charges, interfacial electric pressure, and consequently the resistance against the 

droplet retraction. The observations for conductive liquid droplets exposed to the corona 

discharge showed that the dynamics of evolution is not influenced by the ionic discharge. 

For this extreme case, since the electrical pressure is inversely proportional to electrical 

conductivity the surface charge may not be developed over the interface and the electrical 

pressure is not appreciable to suppress retraction for an impacted aqueous droplet 

evolution.  

Fig. 7 shows the contact line speed at onset of the droplet retraction (slope of the 

spreading characteristics curves) as a function of applied voltage for all experimental 

cases. At voltages below the onset of corona discharge, where the discharge current is 

zero, there is no influence of the electric field. At the corona discharge threshold V~ 6 

kV, the corona current was I=1 µA and the retraction process shows no measurable 

changes. By increasing the applied voltage to 8 kV (I=2 µA), the rate of interfacial 

charging is almost doubled and the interfacial electric force becomes strong enough to 

slightly suppress the retraction. By increasing the applied voltage to 16 kV (I=17 µA), 

corona discharge completely eliminates the retraction stage for silicone oil and 

suppresses the retraction rate for the ISOPAR-L droplet more than 500%. For the solution 

with elevated electrical conductivity, the retraction rate is suppressed less than 200%. 

These results show that for liquids with higher electrical conductivity, one must apply 

stronger ion injection (corona voltage and corona current) to compensate for the 

interfacial charge reduction due to the conduction phenomenon. This observation is 

consistent with previous explanations and confirms the pivotal role of electrical 

conductivity in determining the electrical pressure magnitude and the retraction rate at a 

given corona voltage.  
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Figure 7: Retraction speed versus applied voltage. 
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When the corona discharge is absent, the dynamics of an impacted droplet during early 

stages of the impact and the expansion is governed by two dimensionless numbers, 

Reynolds (ratio of inertia to viscous force), �ìÜÝ = )òó9* , and Weber (ratio of inertia to 

surface tension force),	#ìÜÝ = )òóÊ9û . Whereas for the retraction stage, the inertia force is 

less important and the process is primarily governed by Capillary number A�7E� = òab+*û ,  

which relates the competition between the viscous forces and surface tension. In the 

retraction phase, the capillary forces accelerate the retraction, while the viscous forces 

create resistance against it and decelerate the process [5].  

In order to understand the effect of corona discharge on the droplet deposition process in 

both the expansion and retraction phases, an order of magnitude analysis based on 

relevant dimensionless numbers can be informative. Since the droplet spreading of an 

impacted droplet during the expansion phase is governed by Reynolds, Re¾~, and Weber 

numbers, We¾~, both numbers are defined based on the initial droplet diameter and the 

impact velocity. For the retraction stage, these two dimensionless numbers and the 

Capillary number are defined based on retraction speed and film diameter at the onset of 

retraction. Introducing a new dimensionless number based on electrical pressure can be 

beneficial to compare the electric force with the other forces during these two phases. In 

order to compare the contribution of the electric pressure generated by the corona 

discharge, the ratio of dimensionless numbers in the presence and absence of corona 

discharge should be compared. For the expansion stage, in the absence of corona 

discharge, the ratios of the Reynolds and Weber numbers are: Re¾~ ReK¶¹⁄ ≈ �RRR.�  , 

We¾~ WeK¶¹⁄ ≈ úRRR.R�.	Comparing these ratios, it can be concluded that the inertia effect in 

the spreading stage significantly dominates over both viscous and capillary forces. Since 

the inertia forces have only a small effect on the retraction process, we consider the 

Capillary number. For our experiments in the absence of discharge, the retraction 

Capillary number is very small  A�7E� = òab+*û ≈ R.RRR�R.R& ≪ 1. This suggests that the 

capillary forces are dominant. The Electro-capillary number for the expanded film 

exposed to the corona discharge can be defined as: 
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A�% = ,3-./Ù69
û  where 
 is 3õö÷øùøÊ

ú		ùc	ûc 6&
                     (1) 

 Substituting experimental values of the imposed corona discharge parameters (V=12.5 

kV, S=38 mm) for silicone oil, it can be concluded that the electric force is comparable 

with the capillary forces A�% ≈ R.R�R.R& = 1.5. Since the Capillary number is very small, it is 

clear that the electric force is significantly larger than the viscous forces. This can be 

examined by comparing the Capillary number for retraction and electrically inhibited 

retraction Capillary number: 
�á0,ab+�áab+ = ,3-./Ù69

òab+* ≈ R.R�R.RRR�� ≫ 1. Therefore, the retraction of 

silicone droplet is expected to be suppressed at this specific applied voltage and electrode 

separation. For silicone oil at V=16 kV, the electro-Capillary number,  A�% ≈ R.&�R.R& ~10, 

shows one order of magnitude increase. At this applied voltage, electric force is dominant 

and the retraction is inhibited (see Fig.4).   

Comparison of the inertia force with the interfacial electric force during the expansion 

stage is also informative. During the expansion phase, we showed that the inertia force is 

104 times larger than the capillary forces, while the electric force is only 10 times larger 

than the capillary force. This infers that the inertia force is 103 times larger than the 

electric force during the expansion stage and the inertia is dominant force even assuming 

the maximum charge accumulation over the droplet interface at saturation limit. These 

results further support the previous experimental evidence that the corona discharge has 

no visible influence during the expansion phase.  

It should be noted that, in this analysis, any net charging of the droplet during its flight 

time and charge leakage during the collision are neglected. This assumption may be 

particularly valid for liquids with lower electrical conductivity [9], higher droplet 

velocities and shorter electrode gap spacings. Therefore, including these realistic 

conditions in a simplified model may add unnecessary complexity to the problem. 

However, in order to practically minimize the error due to these effects, the electrode 

separation and droplet flight path in this analysis were set to be identical for all 

experiments. 
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8.5 Conclusions 

We have demonstrated that for low conductivity droplets the retraction can be suppressed 

even at moderate levels of corona discharges. It has been shown that for an impacted 

dielectric droplet at strong enough corona discharge, not only is the sequential droplet 

retraction eliminated, but also the initial expansion stage can be followed by a monotonic 

film expansion. For higher electrical conductivities, more intense corona discharge is 

required to decelerate the retraction stage. It can be concluded that the unipolar ion 

injection has no effect at the early stage of the droplet impact since the inertia is the 

dominant force in the expansion stage. The proposed technique is only applicable for 

dielectric liquids and is not effective for conductive impacted droplets.  
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Chapter 9 

Summary of the thesis 

9.1 Summary 

The effect of electrostatic forces on various heat transfer and mass transport problems in 

gaseous and dielectric liquid media were investigated and a new corona-discharge 

assisted technique for controlling of the spread of liquid films was proposed. As 

described in Chapter 1, EHD effects may enhance the transport phenomena in both 

micro-scale and macro-scale by contributing to the momentum balance. The 

investigations conducted in this study were presented in seven chapters. In the first four 

chapters, electric field and EHD effects were used in the bulk of the gas and dielectric 

fluid to enhance heat transfer or mass transport. In the last three chapters, we put forth a 

new concept of net flow motion through interfacial electric pressure over the dielectric 

liquid/vapor interface. It was demonstrated that corona discharge bombardment of the 

droplet/film interface may induce net electrostatic interfacial pressure, which can be 

effectively used to control droplet spreading dynamics or the retraction phase of 

impacting droplets. It was also demonstrated that ultra thin films of dielectric liquids, 

whose thickness is in nanometer scale, can be deposited over a metallic substrate by the 

same technique. The main contributions of the current study presented in each chapter are 

summarized below.  

 

9.1.1 Effect of corona discharge on natural convection heat 

transfer 

Natural convection heat transfer enhancement through corona wind has been the subject 

of extensive studies for more than 50 years. The previous authors used the energy balance 

method to predict average EHD heat transfer enhancements for various shapes of external 

objects. However, there has been little knowledge about the local heat transfer 
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enhancements. In Chapter 1, an interferometric study of corona discharge heat transfer 

enhancement from a horizontal isothermal cylinder was performed. The corona emitter 

electrode was a sharp blade electrode while the collector electrode was the grounded 

heated cylinder. An optically-large plate Mach-Zehnder interferometer was used to 

visualize the thermal boundary layer around the cylinder and further quantify the heat 

transfer measurements. For the first time, the local heat transfer was extracted from the 

interferograms and compared with numerical simulation results. By applying 17 kV 

voltage to a blade corona electrode, a maximum 100% local heat transfer enhancement at 

the lower stagnation point of the heated cylinder was obtained at relatively low Rayleigh 

numbers. Also, for voltages above	15.5	kV and currents above 6	µA, the numerical results 

showed that the electric body force becomes strong enough to produce high velocity 

gradients near the blade. This strong velocity gradient results in a recirculation zone 

established below the cylinder. The recirculation zone causes an insufficient entrainment 

of the cool fresh air into the thermal boundary layer at  0° < S < 80° and results a 

decrease in local Nusselt number at the same location. Stronger recirculation is produced 

by higher corona currents. It was also found that the corona wind is more effective at low 

Rayleigh numbers, where the buoyancy-driven flow is weaker.  

9.1.2 Mono-dispersed droplet cooling  

In Chapter 2, two-phase cooling of free-falling mono-dispersed water droplets impacting 

on a smooth upward-facing horizontal heated disk at pre-CHF regimes was revisited. The 

main reasons of this reinvestigation were: (i) the existing droplet cooling correlations are 

not applicable for Weber numbers less than 50 (ii) several complications were found in 

the experimental setups of the previous studies, which made their results and their 

proposed correlations unreliable (iii) it was intended to explore the potential application 

of the imposed electric field on boiling enhancement of the droplet cooling technique. 

Extensive sets of experiments with a corrected experimental setup were performed to find 

the effect of droplet size and impacting frequency on boiling curves and CHF in the 

absence of electric field. Two different regimes, low Weber number (We<50) and very 

low Weber number (We<20) were identified. Two different correlations were proposed to 

predict the experimental CHF at these different regimes. The experiments in the presence 
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of electric field were not as successful because the imposed electric field significantly 

changed the path of the falling droplets. Moreover, the sporadic jetting and random 

Taylor cone formation re-directed the main volume of the coolant off the heated surface. 

These results show that for this particular situation there is no advantage to using electric 

fields to enhance the droplet cooling effect.  

9.1.3 Jet impingement boiling heat transfer 

Direct jet impingement boiling heat transfer operating at low flow rates is of great interest 

for controlling localized moderate heat fluxes in equipment having delicate mechanical 

structures, where aggressive techniques, such as high-speed jets, are not suitable. Boiling 

heat transfer from an upward facing disk targeted by a falling jet was studied 

experimentally at different volumetric flow rates and various jet lengths. The working 

fluid was chosen to be the dielectric liquid HFE7100 and the heated spot was an 8-mm 

diameter disk. Using previous CHF correlations in their original form, valid at very low 

volumetric flow rates, result in large disagreements since it was found that variation in 

the jet length changes the boiling characteristics. It was demonstrated that although the 

circular hydraulic jump formation within the heater diameter may suppress the heat 

transfer under certain conditions, moving the jet closer to the target may significantly 

improve the boiling curves at the critical heat flux (CHF) regime. 

At low flow rates, the CHF increases as the jet length decreases, while for moderate and 

high flow rates the boiling curves show approximately a universal behavior for different 

jet lengths. For such low flow rates, the effect of jet length on boiling curves was shown 

to be related to the variation of the cross section of the falling jet and the formation of the 

hydraulic jump at radial distances smaller than the heater diameter. The current CHF 

experimental data for different jet lengths are correlated by including the effect of jet 

length in the previous correlation proposed by Sharan and Lienhard.   

In the absence of electric field, a simple way to increase the momentum of the liquid 

sheet around the rim is increasing the flow rate. An alternative way to enhance the 

momentum of the liquid sheet around the edge is to introduce EHD forces. It was 
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demonstrated that imposing voltages about 11 kV with jet separations about 4 mm at the 

lowest flow rate of 6 cc/min causes CHF enhancements of more than 100%. Unlike the 

droplet cooling case the presence of an imposed electric field, the imposed electric field 

to falling jets is promising.      

9.1.4 Conduction micropumping 

Shrinking the dimensions of EHD pumps has been a subject of great interest, since it may 

reduce the range of operating voltage and the size of the power supply. Although one 

may find several micro-scale designs for ion injection and induction pumps, very limited 

work has been conducted to scale-down the conduction pumps. This may be due to the 

fact that conduction pumping has only been proposed very recently. Since conduction 

pumping eliminates the direct ion injection from the solid/ liquid interface, it preserves 

the thermophysical and electrical properties of the liquid. This interesting feature of the 

conduction pumps makes them interesting for long-term and sensitive applications, where 

a reliable operation of the EHD pump is needed. Moreover, study of the conduction 

pumping in thin dielectric liquid layers confined between electrodes provides intuitive 

understanding about the charge transport mechanism and pressure generation across the 

dielectric films. 

 In Chapter 4, a single-stage axisymmetric conduction micropump in the vertical 

configuration has been proposed. This micropump consists of four components: high 

voltage ring electrode, grounded disk-shaped electrode, insulator spacer and inlet/outlet 

ports. The high voltage electrode and grounded electrode of the device were etched on 

two separate commercial Liquid Crystal Polymer substrates with 30µm copper cladding 

using standard lithographic techniques. The final spacing between the two electrodes and 

the overall size of the device were measured to be 286 µm and 50 mm×70 mm× 5mm, 

respectively. The static pressure generation of the micropump was measured at different 

applied voltage using three different dielectric liquids, 10-GBN Nynas and Shell Diala 

AX transformer oils, and N-hexane. The range of applied voltages was reduced one order 

of magnitude with respect to a similar macro-scale design. The range of operating voltage 

fell between 300 to 1500 VDC and a maximum pressure generation up to 100Pa was 
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achieved at 1500 VDC applied voltage. In order to further verify the experimental results, 

a numerical simulation was also performed. The pressure head generation was predicted 

numerically and compared with experimental results at different applied voltages. Several 

considerations for reducing the electrode separation in micro-scale design of the 

conduction pump were highlighted. 

9.1.5 Concept of droplet spreading 

A corona discharge-assisted technique for spreading of a gently deposited dielectric 

droplet into a uniform thin film over a dry isothermal conductive substrate is proposed 

here for the first time. It was shown that the droplet expansion process can be controlled 

through variation of the corona discharge parameters and/or discharge exposure time. The 

proposed explanation of the corona discharge-assisted spreading was confirmed by 

several qualitative and quantitative experiments. It was confirmed that the interaction of 

the surface charge density and intense electric field generates an interfacial electrical 

pressure and leads to a uniform axisymmetric spreading of the droplet in the radial 

direction. It was also demonstrated that the proposed technique can be analogous to the 

classical Stefan’s squeezing liquid flow between two separated parallel disks. Through 

several simplifications, a mathematical model based on this analogy was developed. The 

dynamics of the film spreading due to the corona discharge can be predicted through a 

simplified analytical model based on this analogy. It was found that the dynamics of the 

liquid film formation for intermediate corona discharge exposure time obeys D(t) ~ t1/6 

law, where D(t) is the diameter of the film and t is the corona discharge exposure time. 

9.1.6 Different regimes of spreading 

The studies in Chapter 5 were extended and are the subject of Chapter 6, which answers 

the following questions: What will happen if the droplet is exposed to corona discharge 

for long time? Is it possible to obtain ultra-thin film of a liquid through the proposed 

technique? 

In this chapter, it has been demonstrated that the corona discharge spreading technique 

can be effectively used to produce uniform ultra thin films. Four different regimes of film 
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spreading have been identified and characterized. Since the charge transport mechanism 

across the film determines the dynamics of spreading, different regimes of charge carrier 

transport have been postulated and implemented to predict the rate of spreading. These 

mechanisms were confirmed both experimentally and theoretically. For each regime, a 

theoretical hydrodynamic model along with a description of the charge carrier transport 

mechanism has been proposed to predict the observed dynamics of spreading.  

At the very beginning of the corona exposure (Regime I), the dielectric film expansion is 

governed by the transient surface charge accumulation and obeys the law D(t) ~ t1/2 . 

After the interfacial charging of the dielectric layer reaches a quasi-steady state, the 

spreading enters into Regime II, which was discussed in detail in Chapter 5. In this 

regime, the film expands monotonically with D(t) ~ t1/6 and the thickness of the film 

decreases. When the thickness of the film reaches some specific value in the order of 

hetero-charge layer thickness, a transition to Regime III is observed and the spreading is 

accelerated. The acceleration is found to be related to the electrostatic component of the 

disjoining pressure due to the hetero-charge layer attractive force. The transition to 

Regime IV, the most interesting regime, appears when the corona discharge exposure 

time is extended further and the thickness of the liquid film reaches sub-micrometer 

levels. In this regime, a new type of precursor film with thicknesses in the order of 

hundreds of Angstrom appears around the apparent contact line to the main film. The 

behavior of the precursor film is diffusive and rapidly expands ahead of the main film 

over the substrate due to the electrostatic component of the disjoining pressure. The 

observed accelerated precursor film is reminiscent of the conventional molecular 

precursor films, but its rate of expansion is significantly more rapid. A mathematical 

model is proposed to understand this electrostatically accelerated precursor film. 

9.1.7 Droplet retraction inhibition 

High-speed droplets colliding with a non-wetting substrate expand and subsequently 

retract. Suppressing the retraction phase is one of the most challenging problems in liquid 

film coating and impacting droplets over a non-wetting surface since it is encountered in 

several important applications. For the first time, a new active technique, based on the 
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corona discharge-assisted spreading concept, is proposed to control the deposition 

process of an impacted dielectric droplet over a non-wetting grounded substrate. An 

electric pressure resulting from the electric surface charge produced by the corona 

discharge squeezes the droplet interface towards the grounded substrate and generates a 

resistance against the droplet retraction. It is demonstrated that the electrical pressure 

effectively suppresses the droplet retraction at voltages above the corona discharge 

threshold. Applying stronger corona discharge voltages, it was demonstrated that not only 

is the droplet retraction prevented, but also further spreading can be achieved. 

9.2 Proposal for future works 

The presented work may suggest several applications as described below.  

9.2.1 Ionic discharge heat exchangers 

The natural convection heat transfer enhancement technique can be used for 

commercialized ionic heat exchangers. Particularly for microgravity conditions, where 

the energy management is of great concern, the corona discharge enhanced heat 

exchangers may find great interest since the energy consumption is small in the order of 

few miliwatts per meter of the heat exchanger tube. The electric field can replace the 

gravitational field to simulate natural convection in microgravity condition. Therefore, a 

detailed study of corona wind effect of an array of tubes rather than a single tube might 

be of great interest in outer space applications. 

9.2.2 Conduction pumping: a candidate for heat removal 

element 

Although the static pressure generation of a single-stage conduction pump is not 

significant, stacking micropumps to create large static pressure generation seems to be 

feasible. The multi-stage conduction micropump may find applications as a pumping 

element in heat management circuits.   
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9.2.3 Thin film evaporator 

Thin film evaporation is an efficient technique for heat transfer and mass transport in 

several important applications including oil refinery and drying technologies. The corona 

discharge spreading technique can be used to create thin films for heat/mass transport 

enhancement purposes particularly the evaporation rate of the volatile liquids. This may 

find several applications in which wettability of the solid surface is of the great concern.  

9.2.4 Metal Coating: monolayer deposition 

The conventional coating techniques exploit high pressure atomization techniques for 

deposition of dielectric liquids on metallic substrates. The traditional techniques 

introduce significant amounts of pollution in the form of toxic mist-particles and micro-

satellite droplets due to the high velocity impacting droplets over the substrate.  Dielectric 

coating of conductive substrates through corona discharge may significantly suppress or 

even eliminate the unwanted particles or micro-droplets. The thickness of the dielectric 

coating generated by corona discharge assisted technique can be controlled from 

millimeters to nanometers. As main advantages of the technique, the corona discharge-

assisted technique may reduce the energy consumption to 1000 times lower values and 

minimize the coating material wastage. Both features of the new technique, low energy 

consumption and optimization of coating material wastage, may help minimizing the 

greenhouse gas emissions directly and/or indirectly. 
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