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Abstract 

Fabric is important for the interpretation of tectonic evolutions. In the process of 

extrapolating small-scale fabric to tectonics, modeling frameworks are needed. Neither 

the early kinematic models nor the contemporary computational geodynamics are able to 

capture the complexities of the fabric development in natural deformation systems. 

Eshelby proposed a formalism in micro-mechanics, and it is now well understood that 

this formalism works well for the linear viscous deformations. However, given that most 

of the natural rocks are power- law materials, the Eshelby Formalism cannot be directly 

applied to geological problems. This problem was largely solved when Lebensohn and 

Tom é  (1993, Acta Metallurgica et Materialia, vol 41, 2611-2624) incorporated a 

linearization scheme with Eshelby Formalism, known as the Tangent Linearization. The 

purpose of this project is to validate the applicability of the Eshelby Formalism with 

Tangent Linearization (EFTL) or with Secant Linearization (EFSL) to power- law material 

deformations. Two types of simulations are proceeded, one is based on EFTL / EFSL, 

while the other one based on 2D finite difference geodynamic method. Comparisons of 

the two simulations show that even in the most general situation of power- law material 

deformations, EFSL has major differences with the simulated power- law behavior while 

EFTL has only an approximately 10% deviation. Through this project, EFTL is validated 

to be a new, sufficient framework for fabric modeling, which marks a new era of fabric 

interpretation both in theoretical simulations and in field work practice.  
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Chapter 1  

1 Introduction 

Strain localization along shear zones is common on Earth (Brun et al., 1980; Hobbs et al., 

1990; Riggs and Green, 2001). The deformation fabrics, resulting from strain localization, 

include lineations and foliations in rocks that are observed on many different scales 

particularly on outcrops and smaller scale. Such fabrics are of crucial importance for 

structural geologists to unravel the history, mechanism and rheological property of 

lithospheric processes that are many orders of magnitude larger in scale dimension than 

the fabrics themselves (Passchier, 1988, 1990) (Figure 1). Important information of the 

tectonic evolution held by deformation fabrics makes it desirable to theoretically model 

the development of such fabrics during deformation. With these theoretical models, one 

is able to shed light on the tectonic evolution history from the fabric observations. 

However, there are a number of problems facing current approaches in fabric modeling as 

discussed below.  

 

1.1 Scale Gap in Fabric Modeling 

As important as it is, fabric modeling has long been a research focus and captured a large 

number of geologists’ interests (e.g., Ramsay and Graham, 1970; Passchier, 1991; 

Simpson, 1993; Jiang and Williams, 1998). In the process of such modeling, one is faced 

with a problem here referred to as the ‘scale gap’ in this project.  
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Figure 1-1 Fabric in Dynamic Recrystallized Quartz. 

A microscopic sample of the dynamic recrystallized quartz is shown (modified from Li, 

2012). By observing the foliations on the quartz, one is able to interpret the shear sense 

of the shear zone. Shear sense in this mylonite shear zone is top to the west, as indicated 

by the black arrows.   
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The fact that most frequently observed fabrics are in the scale range of meters or even in 

microscopic scale while the tectonic deformation is often tens of thousands of meters 

(Passchier, 1990), forms a scale gap when one intends to interpret the whole tectonic 

process from the fabric observations. Besides the scale gap, the fact that heterogeneity 

and strain partitioning (Jiang and Williams, 2005) existing in deformation fabrics 

introduce great complexity to the relationship between the microscopic fabrics and the 

large-scale rock deformations, making the extrapolation not uniform. Therefore, 

heterogeneity in natural fabrics ultimately makes the scale gap a serious problem in fabric 

models where the relationship between the micro scale and the large scale is complicated.  

To tackle the gap problem in fabric modeling, an extrapolation framework that is able to 

simultaneously address multi-scale situations is needed. Such a framework would serve 

as an information link between the micro-scale fabrics and the large-scale deformations.  

 

1.2 Early Framework: Kinematic Models 

In designing framework for the extrapolation, simple kinematic models are often used to 

gain insight into fabrics in natural shear zones. The early framework first proposed by 

Ramsay and Graham (1970) uses a model that is homogeneous, steady and purely 

kinematic. The primary justification for using this simple model is that a certain scale can 

often be chosen where deformation approximates the homogenous state (Twiss and 

Moores, 1992, p238). In this scale, the rock material is homogenous and the fabric-

defining elements are all of the same order therefore the relationship between the flow 

field and the resulting fabrics is much simpler. Ramsay and Graham’s homogeneous, 
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steady, purely kinematic model was adopted by many for the development of more 

general types of progressive homogeneous deformation (e.g. Ramberg, 1975; Sanderson 

and Marchini, 1984; Simpson and De Paor, 1993; Fossen and Tikoff, 1993; Jiang and 

Williams, 1998; Passchier, 1998).  

However, the kinematic models neglect two important complexities in natural rock 

deformations: heterogeneity and non-steadiness (e.g. Jiang, 1998; Goodwin and Tikoff, 

2002). Such neglects lead to an applicability problem when one uses these kinematic 

models to investigate an important and common type of foliation in nature: transposition 

foliation. Transposition foliations exist in all crustal scale shear zones and are now 

understood as the product from the whole-zone scale progressive deformation of an 

initially heterogeneous rock mass (Williams and Jiang, 2005). The rock units (hereafter 

‘element’) in such crustal scale shear zones are inevitably of different shapes and sizes, 

randomly dispersed and even show hierarchical embedding relationships where some 

elements lie within the other. Such compositionally and texturally heterogeneities in the 

fabrics can no longer be captured by the previous featureless kinematic models. 

Thus, using the existing kinematic models limit the understanding of the specific field 

data. This limitation prompts geologists to find an alternative framework, which can 

address the heterogeneity and non-steadiness in nature deformation, while also being 

based on physical principles. Moreover, it can be applied to multi-scale deformation in a 

deforming system. 
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1.3 Contemporary Framework: Computational 
Geodynamics 

With the rapid development of computers, computational geodynamics has been 

frequently developed in engineering science. The potential to capture the heterogeneous/ 

non-steady complexities in fabric development deformation makes the computational 

geodynamics a newly accepted framework in structural geology field (e.g.,Currie et al., 

2004,2008; Segurado et al., 2012). However, the big question that most of the structural 

geologists want to ask is: to what extent can the geodynamics be a framework qualified 

for fabric development modeling? In order to answer this question, some essential aspects 

of the geodynamics must first be introduced.  

Two current computational geodynamics methods are known as the finite element 

method (FEM) and the finite difference method (FDM). The most manifest characteristic 

of these two methods is that they are both mesh-based. The idea of the mesh basis is to 

divide the whole modeling object into finite meshes. In the modeling process, 

calculations of conservative equations and constitutive equations in each mesh are 

undertaken. This meshing basis helps the improvement of the solution precision; however, 

it also leads to an inevitable computational problem in the following two situations.  

 

1. Multi-Scale Situation 

As mentioned above, to apply a model to the deformation of rocks and the resulting 

fabric development, one must solve the scale gap problem and address multi-scale 

deformation simultaneously. Such multi-scale deformation is the main reason that usually 
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makes the mesh-based geodynamics methods arduous to be applied. Imagine that a 

geodynamics model is built to simulate the deformations of microscopic elements (in 

micrometer scale) within a kilometer-scale matrix simultaneously. The minimum mesh 

size requires being at least in micrometer scale to capture the deformation information of 

the elements. Moreover, most fabrics in geology like lineations and foliations result from 

3D deformation. To model such fabrics, elements in the model must all be 3D to capture 

all the deformation information. Then the whole matrix will need at least 1027 meshes 

( 109  for one dimension, 1027  for three dimensions) to address the kilometer-scale 

deformation. Even if the tedious mesh-generation can be done, the variable-calculation 

on this number of meshes will be a devastating computational challenge.  

Thus, simulating both the large scale and the small scale deformation simultaneously is a 

huge obstacle for the current mesh-based modeling methods.  

 

2. History Tracking Situation 

History tracking is another compulsory work in fabric development modeling. To 

investigate the development of fabrics, certain deformation information of the each fabric 

should be recorded in each deformation time duration (e.g., shape, vorticity or strain rate). 

This recording process is the so-called history tracking process and it is crucial for the 

interpretation of the fabric deformation evolution. However, as important as the history 

tracking process is, it brings technical difficulties to the current mechanics modeling 

methods and such difficulties still remain unsolved. Consider the following example: 

even in a simplest geodynamics model in geology, histories of one or more of the 
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following properties: velocities, pressures, stress, strain rate etc. may be tracked (Jiang, 

2012). This history tracking process will consequently exert an extra pressure on the 

memory allocation of the computer. The situation comes even worse in serialization 

calculation, where in each step in the process of simulation, the system needs to store the 

histories and use them as the initial conditions for the next-step calculation. In such a case, 

not only the availability of memory is the problem, the computational time is also a 

problem that needs to be addressed. For instance, in a specific fabric development model 

where 100 fabric elements dispersed in the deforming body, both the orientation and the 

shape properties of all the fabric elements need to be tracked and these properties are also 

the factors to influence the next step calculations. In such a case, consider each fabric 

contains about 50 mesh points, then in each step at least 10000 extra variables will be 

calculated and must be stored in memory before the next step can be proceeded. This is a 

devastating impact on both memory availability and on CPU power, thus it is 

computationally impossible under contemporary computer conditions.  

In summary, although being able to account for the heterogeneity, non-steadiness 

complexities, the fact that geodynamic mechanics model can only tackle a single-scale 

problem makes it limited to be applied to fabric deformations.  

 

1.4 New Approach in Fabric Modeling – Eshelby 
Inclusion Formalism 

With all the limitations, FDM and FEM are currently not the ideal approach for the fabric 

development problem. Fortunately, a micro-mechanics theory developed several decades 
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ago is gradually accepted as possessing the potential to implement a new approach in 

fabric modeling.  

The deformation of composite material made of one phase (here called inhomogeneity) 

dispersed in another continuous phase (called matrix) with mechanical contrast has been 

researched for over a century in micro-mechanics science and is well understood (Jeffrey, 

1922; Eshelby, 1957,1959; Bilby, 1975; Freeman, 1987; Mancktelow, 2011). A large 

number of questions have been addressed. For instance, how the rigid inhomogeneity 

affects the bulk rheological properties of the matrix (Jeffery, 1922; Samanta, 2002; Jiang, 

2007); how the motion of an inhomogeneity is related to the bulk deformation kinematics 

and strain in 3D deformation (Jeffery, 1922; Eshelby, 1957, 1959; Bilby et al., 1975); and 

what the rotation and interaction are between the inhomogeneities (Ferguson, 1981; 

Mandal et al., 2005) etc.  

Among these theories, Jeffery’s and Eshelby’s theories are most widely used. Jeffery’s 

theory mainly deals with the deformation of a system of rigid inhomogeneities 

surrounded by a matrix and Eshelby theory focuses on a more general situation in which 

the inhomogeneities are also deformable. Since Eshelby theory is more general and 

converges to Jeffery’s theory when the inhomogeneity is set to be close to a rigid body, I 

mainly utilize Eshelby theory in this project.  

 

1.4.1 The ‘Inhomogeneity-Matrix’ System in Eshelby theory 

Eshelby theory (1957) is a set of equations (hereafter called ‘Eshelby Formalism’) 

originally developed to investigate the deformation of an ellipsoidal inclusion whose 
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mechanical properties are the same as the surrounding matrix. Eshelby further discovered 

that inhomogeneity in a matrix can in fact be regarded as an equivalent inclusion. In the 

following context, the term ‘inclusion’ will be denoted by ‘inhomogeneity’. The 

deforming system, where an isolated deformable inhomogeneity disperses in a 

surrounding deformable matrix, is called the ‘inhomogeneity-matrix’ system in this 

project (Figure 1.1).  Eshelby’s (1957,1959) work does not just provide a solution to a 

specific elasticity problem. Far more significantly, he pioneered an approach to relate the 

local deformation field to the whole deformation field. This approach has since been 

developed into a powerful field of continuum mechanics called “micromechanics” (Mura, 

1987; Nemat-Nasser and Hori, 1999). Micromechanics has the great potential for 

numerical simulation of multi-scale fabric development in Earth’s lithosphere (Jiang, 

2012, in review) because it has some major advantages over the computational 

geodynamic approach.  
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Figure 1-2 ‘Inhomogeneity-Matrix’ System in Eshelby Formalism 

The ‘inhomogeneity-matrix’ system is a deformation system where an elliptical 

inhomogeneity embedded in a surrounding matrix. Both the inhomogeneity and the 

matrix are deformable. 
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1.4.2 Advantages of the Eshelby Formalism  

Eshelby Formalism is the main focus of this project because of its great potential to be 

applied to natural fabric deformation problems. First of all, it relates the local 

deformation field to the whole deformation field, which provides an extrapolation 

approach for fabric development models. Second of all, it concentrates on the flow field 

of an element and its surrounding matrix, which allows flow partitioning in the 

‘inhomogeneity-matrix’ system. Third of all, it is mesh-free, making it exempt from the 

multi-scale limitations that lie in meshes. Last but not the least, Eshelby Formalism has 

been applied to a number of material science problems such as metal deformation 

(Withers, 1989; Roatta, 1997) and the crystalline texture development problems 

(Lebensohn and Tomé, 1993). In this literature, the fabrics of the metal and the textures 

are well predicted and reproduced by the Eshelby Formalism. Indeed, given the 

mechanical difference between metal and natural rocks, the applicability of Eshelby 

theory to deformation fabric development still remains to be validated. However, Eshelby 

Formalism has great potential in tackling the geology fabric problems.  

To sum up, the advantages of Eshelby Formalism mainly lie in the following three 

aspects: 

1. It is not mesh-based. Its mesh-free environment enables it to tackle multi-scale 

problems without running into computational difficulties.  

2. It only focuses on the flow characteristics in deformation, unlike the typical modeling 

approaches which take into account all the kinematic, mechanical and even thermal 

properties. Therefore, it is way more computationally efficient, especially in history 

tracking. 
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3. The ability to solve the ‘multiple inhomogeneities’ problem shows Eshelby theory’s 

potential to tackle heterogeneous geological problems. Moreover, non-steady 

deformation can also be addressed by changing the initial velocity settings.  

These three advantages of Eshelby Formalism highlight its importance when applied to 

tackle the heterogeneous, large strain and multi-scale deformation of rocks and the 

accompanying fabric development.  

 

1.5 Extension of Eshelby Formalism to Power-Law 
Materials 

Eshelby Formalism (1957) is originally developed to investigate the ‘inhomogeneity-

matrix’ system where both the matrix and the inhomogeneity are linearly elastic materials 

(mechanical rheology will be further discussed in Chapter 2). Bilby et al. (1975) later 

extended the Eshelby Formalism to perfectly linear viscous materials (the so-called 

Newtonian materials) using the equivalence between the theory of linear elasticity and 

the theory of linear viscosity.  

However, Newtonian material applicability is not enough for geologists because of the 

fact that the majority of natural rocks are Non-Newtonian, to be more specific, power- law 

materials (e.g., Karato, 2008). Since Eshelby Formalism was developed to tackle linear 

elastic and linear viscous materials, when it comes to power- law material situation where 

the constitutive equation is not linear, Eshelby Formalism can no longer be directly 

applied.  
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This incompatibility problem between Eshelby Formalism and power-law material 

deformation is also addressed in a number of material science literature (Molinari et al., 

1987; Lebensohn and Tomé, 1993). Molinari et al. give a solution to the incompatibility 

problem by proposing the ‘Tangent Linearization Scheme’ which uses a Taylor series to 

approximate the power law materials by linear rheology. Several years later Lebensohn 

and Tomé incorporated the Eshelby Formalism with the ‘Tangent Linearization Scheme’ 

(hereafter called the EFTL). By means of the Tangent Linearization Scheme, Eshelby 

Formalism is extended to power-law materials eventually.  

Yet as known to all, Taylor series, the essentials of the Tangent Linearization Scheme, is 

an approximation method that will inevitably bring in errors. Hence, the applicability of 

EFTL to geological long-term deformations still needs to be validated. This validation is 

the main investigation object of this project.  

 

1.6 Objectives and Methodology of this Project 

As mentioned above, the applicability of EFTL to power- law materials remains uncertain, 

which is the main concern of this project. The potential that the Eshelby Formalism might 

be applied to the power- law material deformation is so important in geology modeling 

that, if EFTL can be validated to be reliable, then it will open a door to a brand new world 

in geological modeling. By reliability of EFTL, I imply the following: 

1. Generally, how well can EFTL be used to model the power- law deformations? This 

general question consists of the following aspects: How do I use quantitative terms to 

scale the degree of applicability? What assumptions or mechanical condition 
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requirements should be met when apply EFTL to fabric modeling? What appropriate 

adjustments can be performed to better adjust the EFTL to fabric modeling? 

2. Given that the applicability of EFTL is determined, what are the geological 

implications of these results?  

Answers to the above two questions are of crucial importance in fabrics modeling in 

structural geology. If EFTL can be validated in my project, not only fabric development 

problems, but other related problems like lattice preferred orientations development in 

rocks can also be simulated using the Eshelby Formalism. In fact, Jiang (2012) has 

already taken advantage of the EFTL and gained a brand new view on fabrics in crustal 

scale shear zones. Therefore, validation of EFTL is a milestone step in geology field and 

is what I aim to accomplish in this project.  

In order to achieve such a goal, an approach to compare the EFTL results with results 

based on computational geodynamics is followed. To perform such a comparison, I 

design two types of computations, with one calculating the results of the EFTL, and the 

other simulating the power- law behavior using a finite difference method. Since EFTL is 

formulated in closed mathematical forms, it can be efficiently calculated in all present 

mainstream mathematical calculation codes such as Matlab, Mathcad, or Mathematica. 

Recently, Jiang (2007, 2012 in review) has already developed Mathcad worksheets to 

yield solutions of EFTL. I therefore directly employ them to perform the EFTL 

computation in this project. On the other hand, in order to simulate the power- law 

behavior in nature, I choose one of the conventional geodynamics approach, the finite 

difference code FLAC2D from Itasca Corporation. Introductions about Mathcad as well 

as finite difference method will be given in the following chapter.  



15 

 

To sum up, the procedure of the methodology is illustrated in Figure 1.2. First, I use the 

algorithm and implementation in Mathcad of Jiang (2012, in review) for the EFTL 

computation. The physical model of the ‘inhomogeneity-matrix’ system in the EFTL 

computation is illustrated in Figure 1.3. Second, I simulate the deformation of the same 

system using a traditional FDM code FLAC2D. This process is called the ‘FLAC 

simulation’ in the following context. Finally, I compare the results from the EFTL 

computation and the FLAC simulation, respectively, to evaluate the applicability of the 

EFTL to natural power-law materials.  
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Figure 1-3 Procedure of the methodology in this project. 

EFTL will be carried out in a mathematical code and power-law rheological behavior 

will be simulated in a finite difference program. Through comparisons between the 

solutions from the two can yield the results of the applicability of the EFTL to power-law 

material deformations. 
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Figure 1-4 EFTL Computation design in Mathcad. 

In the EFTL computation, a power-law ellipse is embedded in a power-law matrix. Both 

of them are deformable but have difference in mechanical parameters. Materials of the 

ellipse and the matrix are assigned by the effective viscosity ratio at the reference state 

(usually the initial state where the strain rates of the inhomogeneity and the matrix are 

set equal): 𝑟𝑒𝑓𝑓 =  
𝜂𝑒𝑓𝑓
𝐸

𝜂𝑒𝑓𝑓
𝑀   , where 𝜂𝑒𝑓𝑓𝐸  is the effective viscosity of the ellipse while 𝜂𝑒𝑓𝑓𝑀  

is the effective viscosity of the matrix. Deformation evolution of the ellipse is determined 

by two parameters: the axial ratio and the long-axis orientation. Long axis of the ellipse 

is illustrated as a red line in the figure.  
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1.7 Thesis Outline 

In this thesis, I have now introduced the background of my project, presented the 

objectives and illustrated the methodology as well as the procedure that I am going to 

perform towards my goal. In the next chapter, basic terms and theory background will be 

presented, followed by the modeling designs and simulation setup descriptions in Chapter 

3. After all simulations being introduced, Chapter 4 will analyze the results from these 

simulations, aiming to unveil the implications behind the results. In the final chapter, 

conclusion will be made and suggestion on how to apply my conclusion to geological 

problems will be provided.  
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Chapter 2  

2 Theoretical Background 

Theory background and modeling design involved in this project are introduced in this 

chapter, followed by a detailed discussion on the two types of simulation settings in the 

next chapter.  

 

2.1 Terminology of Continuum Mechanics  

In this section, some basic terms of continuum mechanics are introduced and explained 

before we proceed to the details of the theory using these terms.  

 

2.1.1 Flow Kinematics  

Flow is defined by the velocity field of all material particles within the deforming body. 

The Eulerian velocity gradient tensor L is defined in terms of its components: 

Lij = ∂vi
∂xj

 (i, j = 1, 2, 3)              (2-1) 

where v is the velocity vector field of the particles and x is the coordinate position of the 

particles. Equation (2-1) can be resolved into a symmetric stretching tensor D and an 

antisymmetric vorticity tensor W (Truesdell, 1965; Jiang, 1994a, 1994b, 1999, 2010; Lin 

et al, 1998).  

L = W + D              (2-2) 
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where D = 1
2
 (L + 𝐋𝐓) , W = 1

2
 (L - 𝐋𝐓) and 𝐋𝐓 is the transpose of L. 

Note that if L changes with time, the flow is non-steady, otherwise it is steady flow. 

Furthermore, if L changes in space from particle to particle, the flow is heterogeneous, 

otherwise it is homogeneous. The stretching tensor, D is used to describe the change in 

shape of the deforming body, while the vorticity tensor W denotes the rotation that the 

flow possesses (Means et al., 1980).  

To perform a 2D general shear in this project, the velocity gradient tensor L is designed 

as follows (more details will be given in Chapter 2.1.3): 

𝐿𝑖𝑗 =  ��̇�0
 γ̇ 
−�̇��            (2-3) 

where �̇� is the stretching rate of the deforming body along the x direction (illustrated in 

Figure 2.1), γ̇ is the shear strain rate parallel to the x axis. 

In addition to the vorticity tensor W, Truesdell (1953) proposed the kinematic vorticity 

number Wk as a measure of degree of instantaneous rotation. In this project where the 2D 

general deformation problem is addressed, Wk is defined by the following equation: 

Wk = γ̇
�4�̇�2+γ̇2

                                    (2-4) 

Wk is a commonly used as an indicator for pure shear flow (Wk = 0), simple shear flow 

(Wk = 1) and the general sub-simple shear flow (0 < Wk < 1).  These three flow types will 

be further discussed in the next section.  
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Note that the velocity gradient tensor L and the kinematic vorticity number Wk are two 

important quantities in determining flow types: L is used to control how fast the 

deformation of flow is, while Wk constrains the type of the flow.   
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Figure 2-1 A homogenous domain of 2D general shear used as the flow field in this 

project. 

The figure shows a 2D general shear. The boundaries of the domain are being biaxially 

stretched with stretching rate �̇� while  �̇� is the shear strain rate. These two parameters 

are necessary in calculating the value of Wk. An elliptical inhomogeneity of power-law is 

embedded in the flow field. The deformation history of the inhomogeneity is modeled both 

by FLAC2D and through EFTL. Comparison of the two sets of results is used to evaluate 

the applicability of the EFTL.  
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2.1.2 Strain Ellipsoid and Strain Ellipse 

Strain in three-dimension can be completely described by the strain ellipsoid. The strain 

ellipsoid is the deformed shape of an imaginary sphere with unit radius that is deformed 

along with the rock volume under consideration (Fossen, 2010).  

The strain ellipsoid has three mutually orthogonal planes of symmetry, the principal 

planes of strain, which intersect along three orthogonal axes that are referred to as the 

principal strain axes. Their lengths (values) are called the principal stretches (Figure 2.2).  

 

 

 

Figure 2-2 Strain ellipsoid and its three principal axes.  

The strain ellipsoid in the figure is an imaginary sphere that has been deformed along 

with the rock. It is described by three vectors, e1, e2 and e3, which defines the principal 

axes of strain (X, Y and Z) and the orientation of the ellipsoid.  
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Since the flow in this project is 2D, instead of strain ellipsoid, strain ellipse is used to 

describe strains in two dimensions. The strain ellipse represents the deformed shape of an 

imaginary circle, which is described by a long axis (X) and a short axis (Y).  

 

2.1.3 Flow Types 

Generally, there are three types of shear flows: pure shear, simple shear and sub-simple 

shear (also called general shear).  

Pure shear (Wk = 0) is a perfect coaxial deformation (Figure 2.3). Coaxial deformation 

means that lines along the principal strain axes have the same orientation as they had in 

the undeformed state. Pure shear is a plane strain (2D strain) with no volume change. The 

velocity gradient tensor L of pure shear can be expressed as follows: 

��̇� 0
0 −�̇��              (2-5) 

where �̇� is the stretching rate along the x and - �̇� is the stretching rate along y coordinate 

axis, respectively. Since the total of the diagonal components of L is 0, a constant volume 

deformation is achieved.  

Simple shear (Wk = 1) is another type of constant-volume plane strain deformation 

(Figure 2.3). Unlike pure shear, it is non-coaxial deformation, implying that lines parallel 

to the principal strain axes have rotated away from their initial positions. L for simple 

shear is: 

�0 �̇�
0 0�               (2-6) 
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where �̇� is called the shear strain rate, indicating the strain rate of the internal rotation 

component in the shear.  

Sub-simple shear (0 < Wk < 1), also referred to as general shear, is a type of planar 

deformation between pure shear and simple shear (Figure 2.3). General shear can be 

regarded as a mix of pure shear and simple shear, with less internal rotation involved than 

simple shear. The velocity gradient tensor L for the general shear can be written as a 

combination of the ones for the pure shear and simple shear (see equation (2-3)): 

��̇� �̇�
0 −�̇��               

where �̇� and �̇� are already defined above.  

Equation (2-3) explains the reason this format of the velocity gradient tensor is used in 

this project which aims to perform a 2D general shear.  
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Figure 2-3 Strain resulting from simple shear, general shear and pure shear. 

Modified from (Fossen, 2010). 

This figure illustrates the strain resulting from simple shear, general shear and pure 

shear. It can be seen from the figure that simple shear is a non-coaxial deformation, pure 

shear is a perfect coaxial deformation and general shear is a deformation between pure 

shear and simple shear.   
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2.1.4 Rheology 

Rocks deform in a brittle or a ductile way, where the latter one usually takes place when 

the temperature and the pressure are relatively higher than the former one. When 

discussing rock deformation behaviors, it is necessary to discuss the rheology of 

materials where ideal mechanical behaviors are defined (e.g. elastic, Newtonian, power-

law) and the corresponding relationships between stress and strain (or strain rate) are 

given. This relationship is called rheology and the equations that mathematically describe 

the relationship are called constitutive laws or constitutive equations (e.g., Ranalli, 1986; 

Karato, 2008).  

 

2.1.4.1 Elastic and Newtonian Materials 

Generally, elasticity is the simplest and idealized rheological behavior. When the stress is 

rather small in low temperature and low pressure environment, all rocks deform in this 

manner, where the strain is linearly proportional to the stress applied to the deforming 

body. Ideally, the body returns to its original shape once the applied stress is removed. 

Mathematically, homogeneous isotropic linear elastic materials have constitutive 

equations as follows: 

𝜎0 = 𝑘𝜀𝑘𝑘                (2-7) 

𝜎′𝑖𝑗 = 2𝜇𝜀′𝑖𝑗                                                          (2-8) 
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In equation (2-7), 𝜎0 is the mean normal stress deriving from 1
3
𝜎𝑖𝑖, 𝜀𝑘𝑘  is the volumetric 

deformation and k is the bulk modulus. In equation (2-8), 𝜎′𝑖𝑗  and 𝜀′𝑖𝑗  are the 

components of the deviatoric stress tensor and the strain tensor; 𝜇 is the shear modulus. 

While elastic behavior only applies to very small strains that are common in the upper 

crust rocks, heated rocks under higher pressure in a long-term geologic time tend to flow 

in a ductile way and accumulate permanent strains. In this situation, rheology of rocks is 

described in terms of differential stresses and strain rates. One simple material of this 

kind are the Newtonian fluids whose constitutive equations can be written as: 

σ𝑖𝑗 =  2ηϵ̇𝑖𝑗                  (2-9) 

where σ𝑖𝑗  is the component of the deviatoric stress tensor, ϵ̇ij  is the component of the 

strain rate tensor, and η is a mechanical constant called viscosity for isotropic materials. 

Viscosity is of great importance to indicate Newtonian material’s resistance to 

deformation.  

Both elastic and Newtonian materials have linear rheological relationships. It is also 

important to point out that rheology discussed in this section applies to isotropic elasticity 

and viscosity only.  

 

2.1.4.2 Power-Law Materials 

Other than Newtonian materials, there exist other types of behaviors in which the 

material flows steadily under small stresses, and the constitutive equations are non-linear. 

These are called non-Newtonian materials. Among all non-Newtonian materials, power-
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law creep (slow and continuous flow) is typical in natural rocks (e.g., Ranalli, 1986; 

Karato, 2008). A large number of laboratory experiments have been performed to 

investigate the mechanical properties of rocks and have demonstrated that they behave 

like power law materials (Gleason and Tullis, 1995; Kohlstedt et al., 1995; Behr and Platt, 

2011). Results of these experiments show that the basic form of the constitutive equation 

for power law is written as follows: 

ε̇2 = A1∙ exp (− Q
RT

) ∙ 𝜎2
𝑛            (2-10) 

where ε̇2 is the second invariant of the strain rate tensor, A1 is the material constant, Q is the 

activation energy per mole for the creep process, R is the gas constant, 𝜎2  is second 

variant of the deviatoric stress tensor.  

In my program, this basic form is rewritten as follows to simplify the parameters in use: 

ε̇2 = A𝜎2𝑛                                                                                                                                    (2-11) 

where A is a parameter equal to A1∙ exp (− Q
RT

).  

 

2.2 Eshelby Formalism and Tangent Linearization 
Scheme 

In this section, the theory of Eshelby Formalism and its extension to viscous power- law 

materials using the ‘Tangent Linearization Scheme’ are presented.  
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2.2.1 Eshelby Formalism for linear elastic and viscous materials 

Eshelby Formalism (1957) is a theory to study the flow field and progressive deformation 

of an elliptical inhomogeneity embedded in an infinite elastic matrix. Both the 

inhomogeneity and the encompassing matrix are isotropic and linearly elastic (Figure 1.1). 

Eshelby discovered that although the elastic field in the vicinity outside the 

inhomogeneity is heterogeneous, the elastic field within the inhomogeneity is perfectly 

homogeneous as long as the inhomogeneity is ellipsoidal. 

The theory was then extended by Bilby et al. (1975) to Newtonian materials due to the 

equivalence between the theory of linear elasticity and the theory of Newtonian fluids. 

The essential contribution of the Eshelby theory is the discovery that, as long as the 

element is ellipsoidal, the elastic field within the element remains perfectly homogeneous 

despite that the one in the vicinity outside the element is heterogeneous.  

In the case of isotropic, incompressible Newtonian fluids, the Eshelby Formalism can be 

written into the following equation such that the flow inside the inhomogeneity is related 

with the bulk flow (Jiang, 2012 in review): 

𝜺𝒊 = [𝑱+ (𝑟 − 1)𝑺]−1 ∶  𝜺𝒎           (2-12) 

Where 𝑺 is the Eshelby tensor that relates the flow inside the ellipsoidal inhomogeneity 

with the flow of the matrix; ‘:’ is the colon product of dyads; and  𝑱 is the fourth order 

unit tensor, which is defined as: 

𝑱 =  1
2

 (𝛿𝑖𝑗𝛿𝑘𝑙 + 𝛿𝑖𝑘𝛿𝑗𝑙)                                                                             (2-13) 
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where 𝛿𝑖𝑗 = 1 if i = j; 𝛿𝑖𝑗 = 0 if i≠ j; 

𝜺𝒊 and 𝜺𝒎 are the strain rate tensor of the inhomogeneity and the matrix, respectively; and 

r is the ratio of the viscosity of the inhomogeneity to the viscosity of the matrix. 

Equation (2-12) is the explicit form used by Freeman (1987) and Jiang (2007, 2012 in 

review) in their numerical modeling.  

 

2.2.2 Extension of Eshelby Formalism to Power-Law Materials – 
Tangent Linearization Scheme 

The limitation that Eshelby Formalism can only be directly applied to materials with 

linear constitutive relationship is addressed in a number of micro-mechanics literature. 

The formalism has been extended to power- law rheology by the so-called Tangent 

Linearization Scheme (Molinari et al., 1987; Lebensohn and Tomé , 1993). Here the 

essential theory of two linearization schemes is first introduced so that their applicability 

can be analyzed more clearly in the simulations to follow. 

 

2.2.2.1 A Pseudo-Linearization Scheme: the Secant Linearization 

The solution to apply Eshelby Formalism to power- law material deformation in fact lies 

in finding a linearization scheme.  

It has long been proposed that the constitutive equation of a power- law material can be 

written in a pseudo-linear form as follows (Hutchinson, 1976): 
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𝛆(𝛔) =  𝑴(𝑺)(𝝈): 𝝈            (2-14) 

where 𝑴(𝑺)(𝝈) is the so-called ‘secant viscous compliances’.  

Equation (2-14) can be written in a scalar form as follows: 

ε̇2 = A𝜎2𝑛−1𝜎2             (2-15) 

where all parameters have been defined in equation (2-11).  

The inverse of A𝜎2𝑛−1  is the well-known effective viscosity 𝜂𝑒𝑓𝑓  defined in geology 

literature (e.g., Ranalli, 1986, p79).   

Equation (2-15) suggests that in a certain state, the relation between shear stress and the 

shear strain rate may be approximately linear under some stress systems (Ranalli, 1986, 

p78). Therefore, a pseudo-linearization scheme can be developed on the basis of equation 

(2-15). In such a linearization scheme, the rheology of the material will be calculated by 

equation (2-15) in every single state of stress and strain rate with a certain value of 𝜂𝑒𝑓𝑓 , 

while in the next state,  𝜂𝑒𝑓𝑓  will be updated before equation (2-15) is applied. This 

linearization scheme is called the Secant Linearization in this project, and the Eshelby 

Formalism with the Secant Linearization will be denoted by EFSL. Computation on 

EFSL will also be performed in the following computation process to investigate its 

applicability to power-law materials.  

 



33 

 

2.2.2.2 An Approximation Scheme : the Tangent Linearization 

The pseudo- linear form of power-law constitutive equation is the early try of linearization, 

however, writing the power- law constitutive equation in a pseudo- linear form does not 

actually make it linear. The 𝑴(𝑺)  in equation (2-14) only applies to the exact state of 

stress and strain rate, which makes the equation always remain non- linear no matter how 

small an increment of deformation could be. A linear relation in the vicinity of a stress-

strain rate state is obtained by doing a Taylor expansion of equation (2-14), which defines 

the tangent compliances: 

𝛆(𝛔) =  𝜺(𝝈𝟎) +  
𝝏𝜺
𝝏𝝈

�
𝝈=𝝈𝟎

∶ (𝝈 −𝝈𝟎) 

          = 𝑛𝑴(𝒔)(𝝈𝟎) ∶  𝝈+ (1−𝑛)𝜺(𝝈𝟎) 

          = 𝑴(𝒕)(𝝈𝟎) ∶  𝝈+  𝜺𝟎           (2-16) 

where 𝑴(𝒕) is the tangent compliances tensor with the value of 𝑛𝑴(𝒔) ; 𝜺𝟎  is the back 

extrapolated term and 𝜺𝟎  = (1-n)  𝜺(𝝈𝟎) ; n is the power- law stress exponent for the 

material (Molinari et al., 1987; Lebensohn and Tomé, 1993).  

Taylor approximation is only valid in a small increment of deformation. In such an 

increment, the linear form equation (2-16) can be used as the constitutive equation. In the 

process of computation, a certain step length is assigned, within which both the secant 

and the tangent compliances are determined by the stress state of the certain time duration 

and should be updated at every step when applied. After Molinari et al. propose the 

tangent compliances, Lebensohn and Tom é  accomplish a significant achievement to 
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incorporate the tangent linearization scheme with the Eshelby Formalism, which extends 

the Eshelby Formalism to power- law materials (what I call EFTL). In EFTL where both 

the matrix and the inhomogeneity are incompressible isotropic power- law materials, 

equation (2-16), i.e. the linearization scheme, is applied to Eshelby Formalism and yield 

the following equation for the flow relationship between the inhomogeneity and the 

matrix (Jiang, 2012 in review): 

𝜺𝒊 = [𝑱+ (𝑛𝑚𝑟𝑒𝑓𝑓 − 1)𝑺]−1 ∶  [𝑱+ (𝑛𝑚 − 1)] ∶ 𝜺𝒎       (2-17) 

where reff is the effective viscosity ratio of the inhomogeneity to that of the matrix (see 

Ranalli, 1986 for definition of effective viscosity ratio); nm  is the power- law stress 

exponent for the matrix.  

Note that only nm, the power-law stress exponent for the matrix is included in equation 

(2-17); while nc, the stress exponent for the inhomogeneity, is only used in the iteration 

process to yield the value of reff.  

Special cases exist when 𝑛𝑚 = 1, i.e. the matrix is Newtonian. In these cases, if the 

inhomogeneity is also Newtonian, then 𝑟𝑒𝑓𝑓only needs to be replaced by a constant r. 

Otherwise, if the inhomogeneity is power-law material, equation (2-17) is altered into: 

𝜺𝒊 = [𝑱+ (𝑟𝑒𝑓𝑓 − 1)𝑺]−1 ∶  𝜺𝒎         (2-18) 

It is obvious that equation (2-18) has the same form as the equation (2-17), only with the 

difference that in the power- law-inhomogeneity situation, r needs to be replaced by 

the 𝑟𝑒𝑓𝑓 and should be updated in every incremental deformation step.  
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In summary, the general power- law ‘matrix- inhomogeneity’ system deformation can now 

be solved by the means of the EFTL. It should be emphasized that though the Tangent 

Linearization Scheme linearizes the power- law rheology for the use of Eshelby 

Formalism, the scheme is only an approximation. The reasons are as follows. For one 

thing, Taylor Series, which is the essence of the linearization scheme, is an 

approximation itself. For another, during the deformation, the heterogeneous finite strain 

near the inhomogeneity will result in the non-uniform viscous compliances in the matrix 

material (Jiang, 2012 in review). This non-uniformness in the matrix is against the 

assumption of the Eshelby Formalism and further results in errors in the EFTL 

computation. Therefore, the EFTL is yet to be validated when applied to power- law 

materials’ behavior in geological long-term deformations. By applicability validation, I 

imply: 

1. To investigate the extent to which the EFTL can be applied to power-law materials. 

2. To find out what are the influencing factors for the applicability. 

 

2.3 Mathcad Program 

To perform the EFTL and EFSL computations, a mathematical code is needed. Jiang 

(2007, 2012 in review) successfully developed an algorithm to yield the closed form 

solution based on Eshelby Formalism and implement it in the mathematical program 

Mathcad. In this paper, Jiang’s algorithm and Mathcad worksheet are used. The 

following paragraph will give a brief description of the Mathcad program, while the 

details of the algorithm in the program will further be discussed in the next chapter.  
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Mathcad, Parametric Technology Corporation's (http://www.ptc.com/products/mathcad/) 

engineering calculation program, is primarily intended for the verification, validation, 

documentation and re-use of engineering calculations and now has been developed to 

meet the needs of numerical engineering applications in various disciplines. Mathcad is 

oriented around a worksheet in which equations and expressions are created and 

manipulated in explicit graphical format, basically the same with hand-writing style. In 

the calculation process, data can be displayed, manipulated, analyzed and plotted 

simultaneously. By this means, results accounting for various situations can be instantly 

obtained merely by making minor changes to the input variables.  

 

2.4 Finite Difference Simulations in FLAC 

To validate the applicability of the EFTL and EFSL, it is necessary to seek a reliable 

simulation of power- law material deformation for reference and a comparison between 

the two computations should be performed. What I use in this project is a conventional 

geodynamics approach: the finite difference method. One of the most well-known 

program codes in the market based on this method is called FLAC, short form from Itasca 

(http://www.itascacg.com) for “Fast Lagrangian Analysis of Continua”. I choose this 

program code because FLAC2D (the 2D simulation code of FLAC) has been used in 

structural geology field to solve geological problems (Hobbs et al., 1989; Ord, 1990; 

McKinnon and Barra, 1998) and has shown great accuracy and reliability. Therefore, it is 

believed that FLAC2D can perform a reliable simulation to represent the natural behavior 

of power-law material deformations.  

http://www.ptc.com/products/mathcad/
http://www.itascacg.com/
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The following few paragraphs will provide necessary theoretical background of the finite 

difference method and the FLAC2D program. Such background is discussed for the 

reason that they will better illustrates the potentials of FLAC2D as a reference simulation 

method, and more importantly, to give an explanation of the cause of the technical 

problems I encounter in the simulation process.  

 

2.4.1 Finite Difference 

Together with finite element method, finite difference method is one of the two oldest 

geodynamic techniques used for solving sets of differential equations when given initial 

values and/or boundary conditions (Cundall, P.A., 1976, 1987; Desai, 1977). Both of the 

methods produce a set of algebraic equations to solve, yet they are different in deriving 

the equations. Finite difference method use field variables (e.g. stress) at discrete points 

to take the place of every derivative in the equation set, and these field variables are 

undefined within elements; while finite element method prescribes a central requirement 

that controls the variation of the field variables throughout each element, using specific 

functions controlled by parameters (Nagtegaal et al., 1974).  

 

2.4.2 Grid and Zone Generation 

As mentioned in the first chapter, finite difference is a mesh-based modeling method. In 

FLAC, mesh is described as zone. Hence I adopt this term in the following context.  

In order to perform simulations in FLAC2D, shapes and properties of materials must be 

assigned at the very beginning. Materials are represented by elements, or zones, which 
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form a grid that is adjusted by the user to fit the shape of the object to be modeled (Figure 

2.5). A grid, which is designed in row-column fashion, is defined by specifying the 

number of zones “i” desired in the horizontal (x) direction, and the number of zones “j” 

in the vertical (y) direction. Each zone is further defined by four grid points, which serve 

as the outer boundary points. Any zone in the grid is uniquely identified by a pair of i, j 

indices, so is the case with gridpoints. Note that if there are p  zones in the x direction and 

q zones in the y direction, the number of gridpoints should be (p+1) in x and (q+1) in y, 

respectively. Zones can be modified to different shapes by adding a circle (element 1 in 

Figure 2.5), a line (element 2), an arc (element 3) and simply by adjusting the positions of 

certain grid points to create irregular patterns (elements 4).  
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Figure 2-4 Grid generation in FLAC. 

Zones can be modified to different shapes in order to fit the shape of the model object and 

geometry.  
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2.4.3 FISH Programming Language 

Though FLAC was originally developed for geotechnical and mining engineers, the 

program offers a wide range of capacities to solve complex problems with two useful 

tools. One of them is the built- in constitutive models that permit the simulation of highly 

nonlinear materials to become available. The other one is the programming language 

embedded within FLAC called FISH (FLACish). 

FISH enables the user to define new variables and functions, which can be used to extend 

FLAC’s usefulness or add user-defined features. For example, new variables may be 

plotted or history-tracked, special grid generators may be implemented, self-control may 

be applied to a numerical test, unusual distributions of properties may be specified, and 

user-written constitutive models can also be created.  

FISH programs are written in a typical programming format and embedded in a normal 

FLAC data file, which can be called and invoked during any time period of the modeling 

process. 

In summary, FISH offers a unique capacity to FLAC users who want to tailor their 

analysis to meet specific individual needs. In my project, FISH helps to create grid of 

shape that is not prescribed in FLAC, as well as to specify flexible boundary conditions 

which are modified every n steps during the calculation process. This would be discussed 

later.  
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Chapter 3  

3 Simulation Designs 

With all the related theory background having been discussed, I can proceed to my 

designs for the two simulations: the computations on EFTL and EFSL, and the finite 

difference simulation, respectively. 

 

3.1 Simulation Design for EFTL and EFSL 

As mentioned in the previous chapter, Mathcad is the mathematical program that is 

applied in this project. Since Jiang (2012 in review) has already successfully developed a 

Mathcad worksheet for the EFTL, only a few inputs need to be changed to perform 

different initial settings in the EFTL computation. Such initial settings include the initial 

state of the ellipsoid (orientation and shape) and the material properties. The core 

algorithm to calculate the EFTL solution is mainly based on equation (2-17) in Chapter 2. 

However, since no EFSL worksheet is developed, the ESFL computation will be 

performed on Jiang’s worksheet (2007) with the added adjustment of Secant 

Linearization Module.  

 

3.1.1   Step Length Settings 

In this chapter, the algorithm in the Mathcad worksheet is not given in detail (can be 

viewed in Jiang, 2007, 2012 in review. Added adjustment commands are presented in 

Appendix A), but one critical matter mentioned in Jiang (2012 in review) needs to be 
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mentioned. In the Mathcad worksheet, 𝛿𝑡 is the step length for computation. According 

to Jiang, the choice of 𝛿𝑡 must ensure that each step of the computation represents an 

infinitesimal deformation process, which requires that the following equation be satisfied:  

�Lij�δt  ≪ 1               (3-1) 

where �𝐿𝑖𝑗� is the Euclidean norm of the flow velocity gradient tensor.  

According to Jiang (2012 in review), all computations demands that the equation (3-1) is 

satisfied, so that the local step is small enough to yield a precise result after many 

thousand steps of computation. After a number of experiments, Jiang (2012 in review) 

also proposes that when the value of �Lij�δt  is less than 0.1, the result is reliable. In my 

project, the value of �Lij�δt  is of the magnitude of 10−2 and overall computation steps 

are only 400. Both of the �Lij�δt  value and the total amount of step can guarantee that the 

requirement proposed by Jiang (2012, in review) is met.  

 

3.1.2   2D Plane Strain Deformation Settings 

The code in Jiang’s (2012 in review) worksheet based on EFTL is originally implemented 

for general ellipsoid in 3D flow field. To use it for a 2D planar strain deformation to 

compare with FLAC2D simulation, I use a significantly elongated ellipsoid aligned with 

the z-axis to approximate the elliptical cylinder of a 2D deformation. Test computations 

show that when the relative length parallel to z is over 10 times more than the semi-axis 

lengths in the xy-plane, the strain along the z-axis is negligible. Therefore, I choose a 
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sufficiently large relative length along z-axis (2:1:100) so that there is no significant 

effect of 3D deformation existing in the computations (Figure 3.1).  

 

 

 

 

Figure 3-1 Length change in the z-axis of the elongated ellipsoid during a complete 

computation.  

In this test computation, the strain of the z-axis of the ellipsoid is only 8 × 10−4 during 

the whole deformation. This strain is so infinitesimal that the effect of 3D deformation 

can be neglected.  
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3.2 Design for Finite Difference Simulation 

As mentioned before, FLAC2D has been successfully applied to various geological 

problems. Thus, I will carry out the finite difference simulation in 2D with the FLAC2D 

program in this project. In such a case, it is assumed that there is no deformation in the z-

direction. Also, I use standard unit system in all simulation settings in this project, more 

specifically, meter (m) for length, second (s) for time, mega Pascal (MPa) for stress. 

The general idea of the finite difference simulation in this project is to embed an elliptical 

inhomogeneity in a matrix in FLAC2D. The matrix is assigned properties as a uniform 

material, while the inhomogeneity is assigned as another material with rheological 

contrast to the matrix (Figure 3.1). Then velocity boundary conditions are imposed on the 

‘inhomogeneity-matrix’ system boundaries to form a 2D general deformation. Flow 

characteristics inside the inhomogeneity are the most crucial focus because they 

determine the deformation history and the final state of the inhomogeneity. The evolution 

of the deformation state of the elliptical inhomogeneity is represented by two parameters: 

the orientation and the shape of the ellipse. Orientation of the ellipse is denoted by the 

orientation of the long axis with respect to the x-axis, while the shape is denoted by the 

ratio of the length of the long axis to the length of the short axis. The evolution of the 

state of the inhomogeneity is calculated using EFTL and EFSL. The evolution of the 

elliptical inhomogeneity can also be obtained from the finite difference simulation in 

FLAC2D. By comparing the results, I can draw conclusions on the applicability of EFTL 

/ EFSL to the power-law materials.   
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Figure 3-2 Simulation Design in FLAC. 

An elliptical inhomogeneity embedded in a 2D general shear deformation modeled by 

FLAC2D. Boundaries are assigned with velocity conditions which together with the width 

of the body set up the strain rates. The velocity in x direction is updated continually to 

ensure that constant area is satisfied and the strain rates remain as constant as possible. 

For better visual aid, I greatly lower the density of the grid in this figure, where in my 

actual model, grid density will be 10 times and therefore the ellipse will be smoother. 
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3.2.1 Grid Generation 

Due to the fact that FLAC uses ‘weighted averaging algorithm’ to yield the grid 

mechanical solution from each single zones and gridpoints, it is inevitable that residual 

exists. When the grid is denser, the residual caused by averaging is smaller and the 

solution is more reliable. However, doubling the number of the grid density may cause 

tens or even hundreds of times of the calculation time because all the single properties 

within the zones and the gridpoints are doubled, let alone the user-defined variables and 

the history tracking properties. Therefore, for a given problem, it is of great necessity to 

seek for a best grid density, which will make the residual small enough to be neglected, 

as well as not introduce a computational challenge. I perform a series of test simulations 

to find such an appropriate grid density. These simulations will be elaborated in the next 

chapter when I discuss the simulation process.  

Once the matrix grid is established, I proceed to build the ellipse geometry in FLAC. As 

mentioned earlier in this chapter, FLAC only predefines geometry like square, line, circle 

and arc, which is not sufficient for my need to build an elliptical inhomogeneity. 

Therefore, FISH is adopted to adjust the positions of certain gridpoints to make an ellipse. 

The ellipse boundary is separated into 1000 portions which is necessary to make the 

ellipse as smooth as possible, and assign the positions of each portion in polar coordinate 

system with a loop command (See Appendix B).  

Ellipse equations in the polar coordinate system used in this project are: 

x = a*cos(θ)*cos(ψ)+b*sin(θ)*sin(ψ) 

 y = -a*sin(θ)*cos(ψ)+b*cos(θ)*sin(ψ)         (3-2) 
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where θ is the initial orientation of the ellipse measured by the angle between the long 

axis of the ellipse and the x-axis, ψ is the angle between a certain point on the ellipse 

boundary and the x axis, and a and b are the length of the long axis and the short axis 

respectively.  

These ellipse equations are implemented in a loop command in the FISH. In the loop, 

every polar coordinate system position of the points on the ellipse boundary is stored in a 

TABLE, a specific type of data structure in FLAC. Simply by generating the table, the 

ellipse can be immediately built. Once the ellipse is generated, the whole grid can be 

automatically built as shown in Figure 3.2. 

 

3.2.2 Material Property Assignment 

Given that simulations are focusing on power- law materials, power- law rheological 

properties are therefore assigned to both the matrix and the inhomogeneity, but with 

competence contrasts. As mentioned in the previous chapter, FLAC has a number of 

built- in creep modules comprising the power-law module, making the material property 

assignment highly straightforward. In the built- in power law module, five parameters are 

needed, which are the density, the bulk modulus, the shear modulus, material constant A 

and stress power exponent n (see in Appendix C).  

It is important to mention that, for one thing, material constant A is composed of the 

influences by the certain material’s activation energy, water fugacity, flow temperature 

etc.; for another, power- law stress exponent n can usually vary from 1 to 7.6 in natural 

rocks (Twiss and Moores, 1992, p383). As I am particularly concerned with the 
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applicability of the EFTL to natural deformation of rocks, I wish to assign material 

properties that are as close to natural rocks under natural deformation conditions as much 

as possible so that the rheology of the materials will not be unrealistic or too far from the 

rheology we now know of rocks. Therefore, I assign both the matrix and the 

inhomogeneity with properties of natural rocks references: the matrix being the wet 

quartzite (Gleason and Tullis, 1995) while the inhomogeneity being the dry Maryland 

diabase (Mackwell et al., 1988). Note that using rheology of real material reference is not 

compulsory in this project for the reason that if EFTL can be validated, this validation 

should apply to all material properties as long as the EFTL assumptions are met. In the 

simulation process which will be discussed in the next chapter, the values of A and n will 

be altered to perform a more comprehensive investigation into the subject.  

 

3.2.3 Boundary Conditions 

Once the grid for the simulation is built and material properties are assigned, boundary 

conditions can be set. In order to simulate a steady 2D general shear deformation of the 

matrix, velocity boundary condition is preferable to the stress condition. As shown in 

Figure 3.2, four boundaries are all assigned with initial velocities, where the normal 

velocity, horizontal velocity and the shear velocity together constrain the matrix to 

perform a 2D general shear deformation. As mentioned above, Truesdell’s kinematic 

vorticity number Wk is used to characterize the deformation type of the system. In 

particular, I choose four Wk values to indicate different type of shear deformation, which 

are 0.1, 0.3, 0.6 and 0.9. With Wk = 0.1 being almost pure shear and Wk = 0.9 being 
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almost simple shear, this four values of Wk are able to take into account all typical general 

shear situations in the nature.  

Note that for each experiment with a specific Wk value, Wk needs to stay constant during 

the deformation to maintain the same shear type of deformation. Wk can be calculated as 

follows as mentioned in Chapter 1: 

Wk = γ̇
�4�̇�2+γ̇2

                          (3-3) 

where �̇� is the stretching rate, γ̇ is the shear strain rate as shown in Figure 2.1.  

Hence, Wk  remains constant when �̇� and γ̇ keep unchanged. Furthermore, since both �̇� 

and γ̇ are defined by the velocity gradient tensor L, thus simply keeping L unchanged 

during the whole simulation process can guarantee the constant value of Wk.  

In addition, �̇� and γ̇ can be described in the following velocity terms: 

�̇� =  𝑉𝑛
𝐻(𝑡)

   

�̇� =  𝑉𝛾
𝐾(𝑡)

                                                                                                                          (3-4) 

where 𝑉𝑛 is the vertical velocity in y direction and 𝑉𝛾 is the shear velocity in x direction. 

Consider the horizontal width of the grid as K and the vertical height as H. During the 

deformation, K will be broadened and H will be shortened. Therefore, these two lengths 

are denoted as K(t) and H(t), indicating that their values keep changing with time (Figure 

3.3).  
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Wk is able to remain constant when both �̇� and  �̇�  are kept unchanged throughout the 

whole deformation. In order to keep �̇� and  �̇� constant while K(t) and H(t) are changing 

along with time, Vn and Vγ must also change with time correspondingly. This demands 

that boundary conditions be updated to meet the need of the constant velocity field (See 

Appendix D). 
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Figure 3-3 Velocity boundary conditions of the FLAC model.  

K(t) and H(t) are respectively the horizontal width and the vertical height of the model 

that changes along with time. Vn is the normal velocity, while the combination of the 

horizontal velocity Vp and the shear velocity V𝛾 constitute the total velocity in x direction.  
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3.2.4 Timestep Selection for FLAC modeling 

FLAC allows the user to define a timestep in creep simulation, if the user skips it, then 

the default value for timestep is zero, in which case the program treats the material as 

linearly elastic or elasto-plastic as appropriate. Although the user has this option, the 

setting of timestep is not arbitrary. If the user wants a system to always be in mechanical 

equilibrium in the creep simulation, the time-dependent stress changes produced by the 

constitutive law must not be large compared to the strain-dependent stress changes. 

Otherwise, out-of-balance forces will be large, and inertial effects will affect the solution. 

Therefore, timestep setting should draw more of user’s attention in response to the 

specific creep problem he/she wants to perform. In my project, in order to keep the 

system creeping steadily and the unbalanced force low to maintain system stability, the 

timestep should not exceed the recommended maximum value defined in FLAC. The 

method to find the appropriate timestep is presented below.  

Creep processes are governed by the deviatoric stress state. An estimate for the maximum 

creep timestep for numerical accuracy can be expressed as the ratio of the material 

viscosity to the shear modulus as follows: 

Δ𝑡𝑚𝑎𝑥𝑐𝑟 =  𝜂
𝐺
                  (3-7) 

where 𝜂 is the material viscosity and the G is the shear modulus.  

For power law rheology, viscosity can be estimated as the ratio of the stress 

magnitude, 𝜎�  , to the creep rate, �̇�𝑐𝑟 , therefore the equation above becomes: 

Δ𝑡𝑚𝑎𝑥𝑐𝑟 =  𝜎�
1−𝑛

𝐴𝐺
             (3-8) 
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where the stress magnitude  𝜎�  , also known as the Von Mises stress invariant, can be 

determined by the initial stress state before the creep process begins by using the FISH 

function in FLAC (see Appendix E). The maximum  𝜎�  yielded from the function should 

be used to calculate the maximum timestep Δ𝑡𝑚𝑎𝑥𝑐𝑟  . 

In my simulation, the value of Δ𝑡𝑚𝑎𝑥𝑐𝑟  is calculated as  107  s/step, hence I set the 

appropriate timestep to  105 s/step, which is two orders of magnitude lower than the 

maximum value so as to guarantee the system stability. 

In addition to the appropriate timestep, creep problem time in FLAC represents real time, 

which prompts us to assign velocity conditions in accordance with nature. It is generally 

thought that the strain rate in rock flow is approximately 10−13~10−14  s−1 (e.g., Karato, 

2008). In my model, if strain rate is with magnitude of 10−14  s−1 and the timestep is set 

as 105, it takes 109 steps to perform a 1m displacement. Given that one step takes about 

1s to calculate, in this case it takes over 30 years to perform a small displacement of 1m. 

This is unbearably time-consuming. Therefore, when assigning the velocities, I assign the 

magnitude to be 10−10 , in which case the calculation time can be significantly reduced to 

dozens of hours. Meanwhile, the strain rate in a step is now 10−10 × 105 = 10−5 𝑠−1, 

which is an infinitesimal deformation compared to tectonic deformations. Therefore the 

result will still be reliable.  
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3.2.5 Obtaining Results in FLAC 

Generally, to compare the flow characteristics inside the inhomogeneity between EFTL, 

EFSL and the FLAC simulation, two indicators are chosen. One of them is the orientation 

of the inhomogeneity represented by the orientation of the long axis. The other is the 

axial ratio, to be specific, ratio of the length of the long axis to the length of the short axis. 

The former indicator serves as the orientation change while the latter one indicates the 

shape change of the inhomogeneity.  

Note that both the orientation and the axial ratio can be retrieved. On the one hand, 

orientation of the ellipse is represented by the orientation of the long axis. Since the 

orientation of the long axis can be achieved by locating the position of the long axis and 

applying the trigonometric functions, the orientation seeking problem can be ultimately 

transferred into seeking the position of the two endpoints of the long axis. On the other 

hand, as long as the endpoints of both the long axis and the short axis in the coordinate 

system are obtained, then the lengths of the two axes can be obtained from the distance 

calculating equations. Therefore, both of the two indicators can be retrieved when the 

coordinate position of the endpoints of both the long axis and the short axis are 

constrained. The following paragraph will specify the process to seek for such endpoints 

in FLAC2D.  

First of all, it is necessary to develop an algorithm to distinguish all the gridpoints that are 

on the boundary of the ellipse in FLAC2D. Since I used the data type TABLE to construct 

the boundary of the ellipse, all the points on it has been marked by FLAC. In FISH, a 

simple selection statement can help sort out all the marked points without difficulty. Once 
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all the points on the ellipse boundary are sorted out and stored, distance between the 

origin and each stored point can be calculated by using the distance equations: 

d = �𝑥2 + 𝑦2             (3-9) 

where d is the distance, (x,y) is the coordinate position of the stored point.  

When all d with respect to each point on the ellipse are calculated, the long axis point PL 

(𝑥𝐿, 𝑦𝐿 ) and the short axis point PS (𝑥𝑆, 𝑦𝑆) can be located by finding the largest d and the 

shortest d. Therefore, the two indicators are ready to be obtained when PL and PS are 

constrained.  

For the orientation of the long axis, the angle 𝜃  between the long axis and the x 

coordinate axis can be calculated by: 

𝜃 = arctan 𝑦𝐿
𝑥𝐿

              (3-10) 

By this means, the orientation of the long axis is found, which is represented by the 

angle 𝜃 (Figure 3.4).  
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Figure 3-4 Orientation of the elliptical inhomogeneity. 

Initial orientation is defined by the angle (𝜃) between the long axis and the x axis. 
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Moreover, again by using the distance equation, the axial ratio can be obtained by using 

the following equation: 

R = 
�𝑋𝐿

2+𝑌𝐿
2

�𝑋𝑆
2+𝑌𝑆

2
             (3-11) 

where R is the ratio and the other coefficients have been defined before. 

In FLAC, the three equations from above are also implemented in FISH (See Appendix 

F). FLAGS in the FISH programming language helps to identify the marked gridpoints. 

Then distance between each marked gridpoint on the boundary of the ellipse and the 

origin is calculated. Then loop command is used to compare each two of such distances, 

and iterate the distance comparisons to yield the minimum and the maximum values of 

these distances. This being done, the long axis and the short axis are found, thus the 

orientation and the axial ratio are obtained.  

The histories of the two indicators are tracked throughout the whole process of the 

simulation and can be plotted as curves (Figure 3.5).  
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Figure 3-5 Axial ratio history of an elliptical inhomogeneity modeled in FLAC. 

X axis indicates the total deformation time while y axis is the axial ratio of the elliptical 

inhomogeneity. In this simulation, axial ratio is originally set to be 2, i.e., the length of 

the long axis is twice of the short axis. After 1 million years of deformation, the ellipse 

has been elongated along the long-axis direction and the final-state axial ratio is around 

24 (See Figure 3.6).   
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Figure 3-6 Initial state and final state of the matrix and the elliptical inhomogeneity. 

Figure a) and b) are the initial state and the final state of the matrix. After 1 million 

years of deformation, the model has deformed to 25% of its original height. Figure c) and 

d) are the initial and final state of the inhomogeneity. In figure c), axial ratio of the 

elliptical inhomogeneity is 2 while in the final state the axial ratio is 24.  
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3.3 Optimization in Finite Difference Simulation 

In order to minimize computational time consumption, optimization should first be 

applied before prudently jumping into the process of simulation in FLAC. By 

optimization, I imply that the best parameter selections need to be determined. Such 

settings are designed to be able to guarantee the precision of the solution and take up the 

least computational time cost. Computational time is one of the major concerns in this 

project because some simulations with non-optimized parameters will take over a year to 

complete while some of them will even terminate just after a few steps. These situations 

will be detailed in the following paragraphs.  

In the following few paragraphs, several aspects of optimization are discussed and testing 

simulations on the optimized parameter selections are performed.  

 

3.3.1 Elastic Relaxation Time 

Since the built- in power- law constitutive module in FLAC is the viscoelastic module, 

which takes into account both the power- law viscous behavior and the elastic behavior, it 

is necessary to minimize the elasticity effect when it is used to simulate pure viscous 

deformations. This elasticity effect issue is also addressed by Zhang et al. (2000) who 

discovered that when the strain rate is around 10−14  s−1 the deforming body will behave 

as perfect viscous material, while with the strain rate being 10−6 s−1 the body poses a 

great tendency to act like pure elastic materials. In addition, Shaw (2004) proposed that 

the elastic relaxation time is the key to minimize the elasticity effect. The viscoelastic 

body will have perfect viscous behavior when the overall evolution time is significantly 
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larger than the relaxation time, otherwise the elasticity effect may be large or even 

dominant. The elastic relaxation time is given by:  

𝑇𝑟𝑒𝑙𝑎𝑥 =  𝜂
𝐺
             (3-12) 

where 𝜂 is the viscosity and G is the shear modulus.  

Since the material properties in my simulation is power- law, 𝜂 here will be replaced by 

the effective viscosity, which is derived from the second invariant of the strain rate tensor 

and the second invariant of the stress tensor calculated in the flow. Take the material 

properties from one of my simulations as an example to test the elastic relaxation time. 

The material properties are as follows: 

 

Table 3-1 Material properties Assignment in FLAC2D in one experiment. 

Bulk modulus and shear modulus are in unit of mega Parscal, A is the overall mechanical 

parameter that equals A1∙ 𝑒𝑥𝑝 (− 𝑄
𝑅𝑇

); n is the stress exponent. The material property 

assignment is based on the data of the wet quartzite when deformed in 573K (Gleason 

and Tullis, 1995). 

 

Bulk Modulus 

(MPa) 

Shear Modulus 

(Mpa) 

A 

(𝐌𝐏𝐚−𝐧 ∙ 𝐬−𝟏) 

n 

𝟑 × 𝟏𝟎𝟔 𝟐.𝟐𝟓 × 𝟏𝟎𝟔 𝟒.𝟓𝟒𝟔𝟔× 𝟏𝟎−𝟐𝟏 4 
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Table 3-2 Material property of wet quartzite (Gleason and Tullis, 1995) 

A1 in the table is the material constant, Q is the activation energy, R is the gas constant 

and T is the temperature. Material property data is based on wet quartzite. 

 

A1 (𝑴𝑷𝒂−𝒏 ∙ 𝒔−𝟏) Q (J/mol) R ( 𝑱
𝒎𝒐𝒍  𝑲

) T (K) 

𝟏.𝟒𝟎𝟐𝟗𝟔× 𝟏𝟎−𝟖 137000 8.314 573 

 

Calculation yields that, where L𝑖𝑗 =  �
3 × 10−10 6.03 × 10−11 0

0 −3 × 10−10 0
0 0 0

� , the effective 

viscosity is 1.216 × 1012  MPa ∙ s, therefore the relaxation time is about 4.053 × 105s. 

On the other hand, the total deformation time in this experiment is set to be one million 

year, about 1.4 × 1014s, which considerably exceeds the value of the relaxation time 105. 

Consequently, the elasticity effect in my finite difference model is small enough to avoid 

exerting noticeable impact on the viscous behavior.  

 

3.3.2 Grid Density Selection 

As briefed in the previous chapter, grid density can largely affect the solution and the 

computational efficiency of simulations. On the one hand, higher density leads to higher 

precision in the simulation result. One explanation is that with denser grid, there will be 

more zones to form the inhomogeneity ellipse and more gridpoints on the boundary, 

which will guarantee the long/short axis endpoints a more precise position when being 
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calculated. However on the other hand, denser grid will consequently result in more 

computational time. Therefore, it is of great necessity to seek for the best grid density, 

which is able make the residual small enough to be neglected, as well as not introduce a 

computational challenge.  

I used bracketing to find the optimum grid density as follows: I gradually increase the 

grid density, and plot the results graphically of all simulations. When the results converge, 

the density in the converging result will be the optimum density.  

In my simulations, the matrix area is designed to be 80m×80m, the long axis of the 

inhomogeneity is 5m and the short one is 2.5m. After dozens of attempts, it comes to the 

result that the whole matrix area needs 460×460 zones to make the results reproducible. 

That is to say, the zone density is required to be at least 31.36 zones/𝑚2  to meet the needs 

of the solution precision. This density allows the inhomogeneity ellipse boundary to be 

formed by at least 180 gridpoints, guaranteeing the reliability of the result when the 

endpoints of the axes are calculated. Meanwhile, it takes about 10 hours for a single 

simulation, which is acceptable.  

To further ensure that this density is the optimum one, another extremely time-consuming 

simulation is performed by assigning a grid density to be four times of the resulted 

optimum density. In this grid density, it takes nearly a week for a single simulation to 

complete. Simulation results of both inhomogeneity orientation and in axial ratio are 

perfectly identical (See figure 3.7 and figure 3.8), meaning that the optimum grid density 

is reliable.  
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Figure 3-7 History of the Inhomogeneity orientation for two different grid densities. 

The green curve is the result from the mesh with 460×460 zones and the red one is from 

a mesh with 4 times denser zones. The y axis is the orientation in degree (original 

orientation being 45°) and the x axis represents the deformation time in 10−1 MA. The 

two curves are practically the same. There is no noticeable gain in using the denser grid. 

The ‘steps’ in the curves are errors caused by using the line segment joining the two 

farthest significant points on the ellipse to represent the long axis (See Figure 3.9). This 

type of errors is unavoidable because of discretization of the ellipse. Fortunately theses 

errors are always bounded between two pairs of nearby significant points and never 

accumulate.    
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Figure 3-8 Inhomogeneity axial ratio plot with different grid densities. 

Green curve is the solution from the grid with lower density like in the former figure. 

Initial axial ratio is set to be 2, which means the long axis is 2 times of the short axis. In 

this figure, the two curves once again show perfect identity, implying that the two grid 

density models yield the same solutions. Therefore, grid with 460×460 zones is the 

optimum grid for future experiments.  



67 

 

 



68 

 

Figure 3-9 Error in the calculated long axis. 

a) The red line is the true long axis and the green line is the long axis calculated in 

FISH. However, because the long axis is taken in the computation as the line joining 

two farthest significant points A and B (gridpoints), there will be an inevitable error 

𝛥𝜉.  

b) In a subsequent step of computation, the red line is still the true long axis while the 

farthest gridpoints switch from AB to the nearby pair CD. Consequently the 

calculated long axis will ‘jump’ to the line connecting the new farthest gridpoints and 

a ‘step’ will result in the orientation history curve. However, these errors are always 

bounded between two pairs of nearby significant points (the shady area) and 

therefore never accumulate. The actual evolution curve should pass nearly through 

the mid points at the steps (Figure 3.10).  
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Figure 3-10 Actual Evolution Curve in FLAC simulation.  

The actual evolution curve should pass nearly through the mid points at the steps.  
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3.3.3 The Finite Model Size Effect 

In EFTL and EFSL computations, the matrix is assumed to extend infinitely. However, 

this is not the case in FLAC simulation. Because of the finite size, there will be inevitably 

boundary effects, especially when the strain is large. While we strive to make the model 

large compared to the embedded elliptical inhomogeneity, there is a limit to do so to keep 

the problem a single-scale one with reasonable number of zones manageable by FLAC. 

Therefore, grid area setting and the corresponding boundary effects in FLAC must be 

considered when the grid is generated.  

Mandal (2003) discovered that the inhomogeneity can only interact with the matrix in its 

vicinity area which is within the size of the inhomogeneity itself. That is to say, the 

inhomogeneity cannot ‘feel’ the influence of the matrix that is farther than one 

inhomogeneity’s area. Note that this argument is based on the condition that the materials 

are Newtonian. When it comes to power-law materials, the applicability of Mandal’s 

theory remains unknown and needs to be tested.  

Undoubtedly if the model is extremely large relative to the inhomogeneity, the boundary 

effect will be negligible. However, this will also evoke the computational time cost 

problem. It is already demonstrated in the previous experiments that the grid density 

should be at least 31.36 zones/m2 , which is rather high. Under such a grid density, a 

100m increase in the grid area (rather small in tectonic problems) will cause a million 

more zones, making the computation time last for more than several weeks for a single 

simulation. On the contrary, even if the grid area is only a bit smaller than what it needs 

to be to avoid the boundary effect, with the 2D general deformation going on and the 

vertical boundary being shortened, the negative impacts on the inhomogeneity will 
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considerably accumulate and eventually make the results totally useless. Therefore, it is 

even more crucial to seek for the best grid area value than optimizations on any other 

aspects because of the more significant sensitivity of the system to the grid area setting.  

A series of testing simulations with varying model size are designed. Deformation time is 

assigned to be one million years, same as all the following experiments to be performed. 

Grid area is first set to be 2 times of the inhomogeneity ellipse. Then the area is set to 

increase gradually until the solutions from two contiguous greatly converge. The 

converging grid area 𝐴𝑐  implies that any area value larger than 𝐴𝑐  will not change the 

solutions of the simulations, i.e., the boundary effect can be minimized in such a situation.  

Results from the series of simulations show that the area ratio of the matrix to the 

inhomogeneity should at least be 650:1 to yield consistent results. Particularly in 

numerical models in this project, as the inhomogeneity is 5m long and 2.5m short, the 

matrix is designed to be 80m×80m. In such an area size, the boundary effect is mostly 

minimized and more importantly, each simulation only takes up an acceptable 

computational time (around 2 days). 

 

3.3.4 Boundary Velocity Updating  

As deformation advances, the lengths of the model in both x-direction and y-direction 

change.  This implies the strain rates will change with time unless the imposed boundary 

velocities are changed correspondingly.  In addition, the area of the deforming body will 

not be constant unless boundary velocities change with time.  For this, the boundary 
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velocities are continuously updated every few steps of computation through a FISH 

function (See Chapter 3.2.3).  

The reason that the boundary velocities are updated every few steps rather than every step 

is that with a total of 211600 zones, updating at every single step is a big challenge for 

both the computational efficiency and the memory capacity of the computer. 

Through a series of simulations, it is confirmed that when velocity is updated every 20 

steps of computation, the duration of one experiment will be around 40 hours, which is an 

acceptable amount of computational time. Most importantly, compared to a simulation 

where the boundary velocities are updated at every step, the orientation solution variation 

is only approximately 1°after 0.25 million years of deformation. Such a variation is so 

small that it will not change the pattern the result curve.  
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3.4 Result Post-Processing and Comparisons 

When the EFTL, EFSL computations and the FLAC simulations have been conducted, 

they should each have two sets of curve figures: the first set being for the history of the 

long axis orientation and the second set being for the history of the ellipse’s shape (axial 

ratio). Post-processing work on these curve figures are performed in a vector artwork 

processing software Illustrator from Adobe Corporation (http://www.adobe.com). The 

main work is to merge all the figures from 3 models into one figure, where all three 

curves can be visualized and compared. By this means, the variances between the three 

models can be determined.  

In each composite comparison figure, the green curve is from FLAC simulations 

(indicated by ‘FLAC’); the blue curve is from EFTL (indicated by ‘TL’) and the red 

curve is from EFSL (indicated by ‘SL’) (Figure 3.10). The candidate curve that lies closer 

to the FLAC curve shows better applicability to power-law material deformations.  

  

http://www.adobe.com/
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Figure 3-11 Result curve figure for comparisons. 

An example of simulation results for the orientation history of the long axis orientation. 

Simulation inputs are as follows: Wk = 0.1, normal strain rate is 3 × 10−10  𝑠−1, shear 

strain rate is 6.03 × 10−11  𝑠−1 , initial orientation of the elliptical inhomogeneity is 45°, 

and the initial axial ratio of the ellipse is 2. Details about the mechanical properties in 

this simulation can be viewed in Section 4.1.3. Comparison indicates that EFTL is close 

to the FLAC simulation, suggesting that EFTL is more applicable than EFSL in the 

certain situation.   
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Chapter 4  

4 Simulations and Results 

In this chapter, simulation procedure and results will be presented. By comparing the 

results from the EFTL, EFSL computations with the results from the finite difference 

simulation in FLAC, one is able to shed light on the applicability of the EFTL and EFSL 

as well as to conclude which one is better for the power-law behavior in nature.  

 

4.1 Verification Simulations 

Before running simulations and comparisons for the most general situation of a power 

law inhomogeneity embedded in a power law matrix, it is necessary to run a few 

benchmark simulations to test both the simulation methods and the setups.  I will start 

with the simplest situation of a Newtonian inhomogeneity in a Newtonian matrix, move 

to a power law inhomogeneity in a Newtonian matrix, a Newtonian inhomogeneity in a 

power law matrix, and eventually a power law inhomogeneity in a power law matrix. 

 

4.1.1 A Newtonian Inhomogeneity in a Newtonian Matrix 

The simplest and special situation in my project is that both the matrix and the 

inhomogeneity are Newtonian materials. Given the objective of the project being an 

investigation on power-law materials, one may question the necessity of doing such a 

Newtonian simulation. However, in fact, this is a foremost step in my project, which 

benchmarks on the solution precision of the Eshelby Formalism code in Mathcad as well 
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as the simulation setup in FLAC, the efficiency of the FISH operations and even the 

feasibility of the essential comparison paradigm of the project. If the solutions from the 

EFTL, EFSL computations and the FLAC simulations do not converge in the simplest 

situation, then the code or the program will be inadequate for investigating more complex 

and more general situations.  

Therefore, the verification simulation where a Newtonian inhomogeneity embedded in a 

Newtonian matrix is performed. Before the results of the simulation are discussed, the 

initial conditions are first presented. Note that for all simulations in this project, the flow 

is always 2D general shear and the initial axial ratio of the elliptical inhomogeneity is set 

at 2. Timestep in both FLAC simulation ( 105  s/step) and Eshelby Formalism 

computations (107 s/step) will also stay constant. Other parameters in this simulation are 

presented in Table 3 below.  

 

Table 4-1 Initial Conditions for the verification simulation where a Newtonian 

inhomogeneity is embedded in a Newtonian matrix.  

𝑊𝑘  𝐿𝑖𝑗 Viscosity Ratio 

(inhomogeneity 

to matrix) 

Initial 

Orientation of 

Inhomogeneity  

0.3 
�
3 × 10−10 1.887 × 10−10 0

0 −3 × 10−10 0
0 0 0

� 
1.886 45° 
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As shown in Table 3, matrix and inhomogeneity both are assigned Newtonian materials 

which show viscosity contrasts of 1.886 (viscosity of inhomogeneity to viscosity of 

matrix). Initial orientation of the inhomogeneity is defined by the angle between the 

elliptical long axis and the x axis (See Section 3.2.5). Result curves from the Eshelby 

Formalism and FLAC simulations are compared on Figure 4.1 through the orientation 

history and the shape variation history of the inhomogeneity. As shown in Figure 4.1, 

after a total deformation time of 1 million year, the orientation of the strain ellipse 

becomes 1.383° while the aspect ratio is 11.932. Both histories from the two simulations 

show nearly perfect agreement. The result ensures that both the methodology and the 

simulation setups are reliable, ready for further simulations on power-law materials.  
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Figure 4-1 Results from FLAC and Eshelby Formalism for a Newtonian 

inhomogeneity embedded in a Newtonian matrix. 

Figure 4.1A is the inhomogeneity orientation evolution history over time while Figure 

4.1B is the axial ratio history. Evolution of the aspect ratio of the stain ellipse is 

illustrated in purple dotted line. Figure 4.1C is the initial state and final state of the 

inhomogeneity. One can conclude that in both of Figure 4.1A and Figure 4.1B, the 

results from FLAC and Eshelby Formalism perfectly match each other. 
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4.1.2 A Power-Law Inhomogeneity in a Newtonian Matrix 

In this section, I inspect another special situation in which the inhomogeneity is power-

law material while the matrix remains Newtonian material. This simulation is another 

step to the general situation of a power-law inhomogeneity embedded in a power- law 

matrix.  

The recent work of Mancktelow (2011) was on a power- law inhomogeneity in a 

Newtonian matrix. By taking into account the variations of two parameters: axial ratio 

and the power law stress exponent, he calculated the corresponding variations of the 

effective viscosity ratio in Matlab (http://www.mathworks.com), and plot a 3D graph as 

shown in Figure 4.2.  

Such phenomenological results can be further improved in this project. With the 

assistance of EFTL, one is now able to capture the essence of the deforming system 

where a power-law inhomogeneity embedded in a Newtonian matrix.  

Note that when the matrix is a Newtonian material and the inhomogeneity is ellipsoidal, 

Eshelby Formalism assumptions are completely satisfied regardless of the rheology of the 

inhomogeneity as long as the matrix is isotropic and incompressible (Chapter 2.2), i.e., in 

each infinitesimal step, Eshelby Formalism can be directly applied. Therefore, in this 

case Tangent Linearization Scheme is no longer an approximation.  

http://www.mathworks.com/
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Figure 4-2 Response of effective viscosity ratio in respect to the variations of axial 

ratio and power-law stress exponent of the inhomogeneity. Figure modified from 

Mancktelow (2011). 

Figure shows the response of effective viscosity ratio to the different settings of axial 

ratio and power-law stress exponent in the deformation where the inhomogeneity is 

power-law material while the matrix is Newtonian. The orientation of the inhomogeneity 

is 0° 𝑜𝑟 90° with respect to x-axis. Effective viscosity ratio solution is achieved by using 

Eshelby Formalism. Figure is plotted in Matlab.  
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Initial conditions for this simulation are shown in Table 4 below.  

 

Table 4-2 Initial conditions for the simulation where a power-law inhomogeneity is 

embedded in a Newtonian matrix.  

𝑊𝑘  𝐿𝑖𝑗 Effective 

Viscosity Ratio 

(inhomogeneity 

to matrix) 

Initial 

Orientation of 

Inhomogeneity 

(degree) 

0.3 
�
3 × 10−10 1.887 × 10−10 0

0 −3 × 10−10 0
0 0 0

� 
0.396 45 

 

 

As shown in Figure 4.3, after 1 million years deformation, the aspect ratio of the strain 

ellipse becomes 11.932 and the orientation becomes 1.383°. As expected, result curves 

from the Eshelby Formalism greatly converge to the ones from the FLAC simulation 

(Figure 4.3). This result validates the theory of Eshelby Formalism as well as the Tangent 

theory, and also validates the applicability of my simulation setups in both software 

programs.  

More importantly, this simulation implies that the deforming system where a power- law 

inhomogeneity embedded in a Newtonian matrix finally has a solution based on 



82 

 

mathematical and physical theories, the EFTL. Once the shape, orientation of the 

inhomogeneity and the material properties for the deforming system are known, all the 

flow characteristics in this ‘inhomogeneity-matrix’ system are determined and the whole 

deformation history over an amount of time duration can be obtained.  
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Figure 4-3 Results from FLAC and Eshebly formalism for a power-law 

inhomogeneity embeded in a Newtonian matrix. 

Figure 4.3A is the orientation history while Figure 4.3B is the axial ratio evolution of the 

inhomogeneity. Result curve from Eshelby Formalism is the red one and the green curve 

is the FLAC result. As usual, the purple dotted line is the aspect ratio history of the strain 

ellipse, indicating the total strain of the ‘inhomogeneity-matrix’ system. Figure 4.3C is 

the initial state and the final state of the inhomogeneity simulated in FLAC model. 

Comparisons between Eshelby Formalism result and the FLAC result in Figure 4.3A and 

Figure 4.3B shows that in this simulation, Eshelby Formalism perfectly converges to the 

FLAC model.  
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4.1.3 A Newtonian Inhomogeneity in a Power-Law Matrix 

In this section I proceed to another special case in this project, where the matrix is set to 

be power-law material while the inhomogeneity is set to be Newtonian.  

When the matrix is Newtonian, the viscosity remains constant throughout the matrix and 

the whole deformation time. Thus in this case, regardless of the rheology of the 

inhomogeneity, Eshelby theory assumption is always met and Eshelby Formalism can be 

directly applied. However, it is a completely different situation when the matrix becomes 

power- law material. During such a deformation, the effective viscosity of the matrix 

varies with space and time. Hence Eshelby Formalism can no longer be directly applied 

and the Tangent Linearization Scheme is used as an approximation. Therefore, the 

simulation in this section is the first one so far to test the Tangent Linearization Scheme.  

Initial conditions for this simulation are presented in Table 5 below.  

 

Table 4-3 Initial conditions for the simulation where a Newtonian inhomogeneity is 

embedded in a power-law matrix.  

𝑊𝑘  𝐿𝑖𝑗 Effective 

Viscosity Ratio 

(inhomogeneity 

to matrix) 

Initial 

Orientation of 

Inhomogeneity  

Stress 

Exponent 

of Matrix 

(𝑛𝑚 ) 

0.1 
�
3 × 10−10 6.03 × 10−11 0

0 −3 × 10−10 0
0 0 0

� 
2.439 45° 6 
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After about 0.5 million years deformation, the aspect ratio of the strain ellipse of the bulk 

becomes 4.51 and the orientation is 1.043°. Result curves are shown in Figure 4.4. 

Interpretation from the figure shows that EFTL is without any doubt the better model than 

the EFSL in this simulation. This result also suggests two important points:  

1) Theory on the Secant Scheme is validated. EFSL has noticeable difference from the 

power- law behavior simulated in FLAC in this simulation. The reason is that no 

matter how small the incremental deformation is, the rheology equation for the matrix 

remains non-linear.  

2) EFTL to a great extent converges the power-law behavior simulated in FLAC.  

Clarification should be made on the deformation time in this experiment. The 

deformation time in this simulation is only half of the one in other simulations, which 

leads to the relatively small total strain of the matrix. The cause of this short deformation 

time is that when the mechanical contrasts between the matrix and the inhomogeneity is 

significant, the strain will have a strong tendency to localize, which easily causes ‘bad 

geometry’ in FLAC and terminate the simulations.  



86 

 

 

Figure 4-4 Results from FLAC and Eshelby Formalism for a Newtonian 

inhomogeneity embedded in a power-law matrix. 

Figure 4.4A and Figure 4.4B are the orientation and the axial ratio evolution history of 

the inhomogeneity. EFTL is denoted by TL, EFSL by SL and FLAC simulation by FLAC. 

Figure 4.4C illustrates the deformation evolution of the inhomogeneity simulated in 

FLAC model. Figure 4.4A and figure 4.4B both show that EFTL has a much closer result 

to the FLAC simulation than the EFSL. Total bulk strain is only about half of the 

previous simulations due to the bad geometry existence in FLAC. 
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4.2 Simulations on General Power-law Deformation 

Through a series of verification simulations, it is clear that simulation approaches in this 

project are reliable in both the EFTL, EFSL computations and the FLAC simulations. On 

top of that, EFTL is validated in special cases of power- law deformations. In the 

following paragraph, illustrations will be given on the process in which I perform 

simulations on the general power- law problems, where the matrix and inhomogeneity are 

both power-law materials and exhibit competence contrasts.  

In order to research on this general power- law deformation problem, it is required that all 

the parameters that are responsible for the results are examined one by one. By this 

means, one is able to interpret the parameter effect on the applicability of the EFTL.  

Parameters that have potential influence on the result are listed as follows:  

1. Types of the shear deformation represented by the value of the kinematic vorticity 

number 𝑊𝑘  

2. Initial shape and orientation settings for the inhomogeneity ellipse 

3. Material properties, which specifically are the material coefficient A and the stress 

exponent n   

 

4.2.1 Shear Flow Type Variations 

It has been discussed in Chapter 2 that the Truesdell’s kinematic vorticity number 𝑊𝑘  is a 

representative measure of the instantaneous non-coaxiality as well as an indicator for the 

types of the shear flows. For pure shear flow 𝑊𝑘  = 0, for simple shear flow 𝑊𝑘  = 1 and 

for general shear flow 0 < 𝑊𝑘  < 1.  
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In order to account for all the general shear- flow-type situations in nature, four 

representative 𝑊𝑘  values are chosen: 0.1, 0.3, 0.6 and 0.9, where 0.1 and 0.9 approaches 

the two end members pure shear flow and simple shear flow, while 0.3 and 0.6 takes into 

consideration the common sub-simple shear flow in nature.  

In the simulation process, both the matrix and the inhomogeneity are assigned to be 

power- law materials, and four different 𝑊𝑘  values are applied while other parameters are 

kept unchanged. By this means, one is able to observe the response of the system to 𝑊𝑘  

values.  

Initial conditions for this series of simulations are listed in Table 6.  

Table 4-4  Initial conditions for simulations with shear flow type variations.  

𝑊𝑘  𝐿𝑖𝑗 Effective 

Viscosity 

Ratio 

Initial 

Orientation of 

Inhomogeneity  

Stress 

Exponent 

of Matrix 

(𝑛𝑚 ) 

Stress 

Exponent of 

Inhomogeneity 

(𝑛𝑖) 

0.1 
�
3 × 10−10 6.03 × 10−11 0

0 −3 × 10−10 0
0 0 0

� 
1.581 60° 4.7 2.9 

0.3 
�
3 × 10−10 1.887 × 10−10 0

0 −3 × 10−10 0
0 0 0

� 
1.59 60° 4.7 2.9 

0.6 
�
3 × 10−10 4.5 × 10−10 0

0 −3 × 10−10 0
0 0 0

� 
1.628 60° 4.7 2.9 

0.9 
�
3 × 10−10 1.239 × 10−9 0

0 −3 × 10−10 0
0 0 0

� 
1.763 60° 4.7 2.9 
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A series of four simulations are conducted and results are shown in Figure 4.5. As in the 

previous experiments and in the following, the green curve represents results from FLAC 

simulation, as the red and blue ones are the EFSL curve and the EFTL curve, respectively. 

All of the four figures are result curve of the inhomogeneity axial ratio. The reason is that 

the result curves of the ellipse orientation are always consistent with the corresponding 

axial ratio curves. By ‘consistent’, I mean the relative positions of the EFTL, EFSL and 

the FLAC simulation are in great agreement in the orientation evolution curves and in the 

axial ratio revolution curves. Therefore, the result implication in the two types of curves 

is practically the same, thus only one of them is needed to be presented here.  

One can clearly see several significant points in Figure 4.5: 

1) In the situation where both the matrix and the inhomogeneity are power- law material, 

neither EFSL nor EFTL can perfectly describe the behavior simulated in FLAC 

simulation. Yet the differences between the three curves are not significant, especially 

when the strain is large (aspect ratios of the strain ellipse are around 15 in four 

simulations) and the deformation time is relatively long (1 million years) compared to 

natural rock deformations.  

2) In all of the four simulations, the FLAC result lies in between EFSL and EFTL, where 

EFSL always deforms the fastest and EFTL deforms the slowest. Equation (2-17) 

shows that, in the ‘inhomogeneity-matrix’ deformation system, with higher 

competence contrast (higher effective viscosity ratio), the deformation strain rate of 

the inhomogeneity will be lower. Therefore, in the situation where the inhomogeneity 

is mechanically stronger than the matrix (competence contrast is larger than 1 in 
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Table 6), the result curves in fact imply that EFTL always over-estimates the effective 

viscosity ratio while EFSL always under-estimates it. When the competence contrast 

is reversed, i.e., the inhomogeneity is mechanically weak and the matrix is strong, the 

result will also be reversed (EFTL over-estimates the effective viscosity ratio and 

EFSL under-estimates it). Further details will be given in Section 4.2.3 and Chapter 5.  

3) The fact that all composite curves from the four simulations are in great agreement 

leads to a conclusion that, for different  𝑊𝑘  values, simulations share consistent 

results.  
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Figure 4-5 Results from FLAC and Eshelby Formalism for Wk variation simulations.  

Four types of shear flow are simulated and they yield consistent results. FLAC model 

curve always lies between EFTL and EFSL.  
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4.2.2 Initial Orientation/Shape Variations 

It is implied in Eshelby theory (1957) that different initial shapes and orientations will 

lead to different deformation patterns in shear flow deformation. Simulations with 

different initial shapes and orientations of the inhomogeneity are presented in this section.  

In order to spare some redundant simulations, carrying out simulations on the initial 

orientation variations alone is believed to be sufficient. The reason is that difference in 

the initial orientation will lead to different shape evolution of the inhomogeneity even for 

an identical initial shape. Hence technically, changing the initial orientation of the 

inhomogeneity already considers the effect of the shape variations during deformation. A 

series of simulations with different sets of initial orientations are designed. Further, due 

to the symmetry of the ellipse, one only needs to consider the orientation range between 0° 

and 180°. I will consider 6 different initial orientations for θ to be 0°, 30°, 60°, 

90°, 120°and 150°, to represent all the general situations. Same as the previous series 

of simulations, value of the initial orientations of the inhomogeneity is the only parameter 

that changes, while all other parameters remain constant. In this series of simulations, 𝑊𝑘  

values are all set to be 0.1 and the initial axial ratios are still 2:1.  

Initial conditions for the simulations in this section are presented in Table 7. 

 

 



93 

 

Table 4-5 Initial conditions for simulations on different initial inhomogeneity 

orientations.  

𝑊𝑘  𝐿𝑖𝑗 Effective 

Viscosity 

Ratio 

Stress 

exponent 

of matrix 

Stress 

exponent of 

inhomogeneity 

Initial 

inhomogeneity 

orientation 

0.3 
�
3 × 10−10 1.887 × 10−10 0

0 −3 × 10−10 0
0 0 0

� 
1.59 4.7 2.9 0°, 30°,60°,  

90°, 120°,150° 

 

 

After 1 million years deformation, the aspect ratio of the strain ellipse is 11.932 while the 

orientation is 1.383°.  

Result curves are shown in Figure 4.6. All composite curves again show exact same 

patterns where EFTL deforms the slowest, EFSL the fastest and FLAC simulation in 

between. Therefore, a conclusion can be made that simulation results are consistent for 

all initial inhomogeneity orientations or shapes.    
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Figure 4-6 Axial ratio simulation results from FLAC and Eshelby Formalism with 

initial orientation variations. 

Initial orientation of the inhomogeneity is set at 0°, 30°, 60°, 90°, 120°and 

150°.Figure 4.7A is the evolution of the strain ellipse for all the 6 simulations. Figure 

4.6B includes 6 results from simulations with initial orientation variations of the 

inhomogeneity. The orange ellipses show the initial state and the final state of the 

inhomogeneity for each FLAC simulation. Conclusion can be made from these 

simulations that all initial orientations of the inhomogeneity yield consistent results.   
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4.2.3 Mechanical Property Variations 

In this section, how the mechanical property variations influence the deformation history 

of the ‘inhomogeneity-matrix’ system is investigated, which is one of the major concerns 

of this project. This topic is of great importance because of it will give an answer to the 

question that to what extent the EFTL / EFSL can be applicable to power- law materials. 

This answer is crucial for one to make appropriate adjustments to the computation and 

yield results that are more comparable to rock deformation observed in nature.  

In power law rheology, materials can be mostly distinguished by two mechanical 

properties. They are the material parameter A and the power- law stress exponent n 

referring to equation (2-11), ε̇2 = A𝜎2𝑛. These two properties together define the effective 

viscosity when the stress or strain rate state is known. Either by changing A or changing 

n can ultimately change the effective viscosity of the material at a given stress or strain 

rate state. Plus, only the stress exponent n enters the linearization equation (2-17). 

Therefore, aiming to validate EFTL, only the stress exponent n needs to be investigated, 

regardless of the material parameter A. That is to say, the design of the following 

simulations is to change the value of the power- law stress exponent n, through which the 

deformation evolution response of the ‘inhomogeneity-matrix’ system to the effect of the 

n value variations is explored. According to Twiss and Moores (1992, p383), stress 

exponent only range from 2 to 7.6 in natural rocks. Thus in the following experiments, n 

also ranges from 2 to 7.6.  

The approach adopted in this project on mechanical property experiments is as follows. 

First set the stress exponent of the matrix 𝑛𝑚  at 2. Then make the stress exponent of the 

inhomogeneity 𝑛𝑖  change from 2 to 7.6. While the simulation with the Eshelby 



97 

 

Formalism has no difficulty regardless of the stress exponent, FLAC simulation runs to 

‘bad geometry’ at very low finite strains when the stress exponent of the inhomogeneity, 

𝑛𝑐  , is increased to only  4.  This is because, when the stress exponent of the matrix is 

kept high, even a moderately high inhomogeneity stress exponent will cause significantly 

enhanced strain localization in the matrix in the vicinity of the inhomogeneity, thus 

distorting the zones there to “bad geometries”.  To overcome this difficulty, the matrix 

stress exponent,  𝑛𝑚, is increased to 3. The simulations run much more smoothly and the 

system does not come to the unpleasant bad geometry until 𝑛𝑐  reaches 5.5. 

In all simulations in this section, 𝑊𝑘  is set at 0.3, the velocity gradient tensor is assigned 

as: 𝐿𝑖𝑗 =  �
3 × 10−10 1.887 × 10−10 0

0 −3 × 10−10 0
0 0 0

� and the initial inhomogeneity orientation is 

set at 45°.  Other initial conditions for simulations in this section are presented below in 

Table 8.  

 

Table 4-6 Initial mechanical conditions for simulations on different mechanical 

properties.  

Stress Exponent of 

Inhomogeneity (𝑛𝑖) 

Stress Exponent of Matrix 

(𝑛𝑚 ) 

Effective Viscosity Ratio 

(𝑟𝑒𝑓𝑓) 

4.7 3 0.824 

4.9 3 0.786 
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5.1 3 0.742 

5.4 3 0.725 

 

 

Result curves are shown in Figure 4.7. Only the results from simulations with 𝑛𝑐  ranging 

from 4.7 to 5.4 are illustrated in the figure because it is sufficient to draw conclusions. 

One can observe from the figure that the FLAC curves lie in between the EFTL curves 

and EFSL curves in all simulations, indicating that results are consistent for all 

mechanical properties. Attention should be paid on the deforming strain rate of the three 

curves in the composite figure. When the inhomogeneity is weaker than the matrix 

(effective viscosity ratios in Table 8 are less than 1), the relative position of the three 

curves become reversed of the ones in the previous simulations where the inhomogeneity 

is stronger than the matrix. More specifically, EFTL always deforms the fastest, EFSL the 

slowest and the FLAC simulation in between, implying that EFTL over-estimate the 

compliance of the inhomogeneity while the EFSL under-estimate it.  

In summary, several observations can be obtained from the simulations on general 

power-law deformations.  

1) Result curves from FLAC simulation always lie in between the EFTL curves and the 

EFSL curves. When the inhomogeneity is mechanically stronger than the matrix, 

EFTL always over-estimates the ‘strength’ of the inhomogeneity and consequently 
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uses a higher effective viscosity ratio (𝑟𝑒𝑓𝑓) than necessary, while EFSL under-

estimates the ‘strength’ and uses a lower 𝑟𝑒𝑓𝑓. On contrary, when the inhomogeneity 

is mechanically weaker than the matrix, EFTL will over-estimate this weakness while 

EFSL under-estimates it. Therefore, in general power- law deformations, neither EFTL 

nor EFSL can perfectly match FLAC simulations.  

2) Consistent results are yielded in all simulations. Such results are independent of the 

initial settings of shear flow types, initial orientation/shape of the inhomogeneity or 

mechanical property variations.  

These are only observations from the result curves. More insights and how these insights 

can be applied to future work will be discussed in the following chapter.  
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Figure 4-7 Results from FLAC and Eshelby Formalism on varying power-law stress 

exponent. 

Stress exponent for the matrix is kept constant while the one for the inhomogeneity 

changes from 4.7 to 5.4. Figure A illustrates the initial state and the final state of the 

strain ellipse. Figure B presents three simulations with different stress exponents of the 

inhomogeneity, which are 4.7, 4.9 and 5.4. Initial and final states of the inhomogeneity 

are also illustrated by the orange ellipses. Consistent results are yielded for all settings 

of the varying stress exponents of the inhomogeneity. In these simulations where the 

inhomogeneity is mechanically weaker than the matrix, simulated strain rate of the 

inhomogeneity in EFTL becomes the fastest; the one in EFSL becomes the slowest while 

the one in FLAC simulation again lies in between the above two.  
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Chapter 5  

5 Result Discussions and Conclusions 

With all simulations having been presented in the previous chapters, it is high time to 

summarize the results and interpret the profound meanings of these observations. Such 

interpretations will help one better simulate the deformation fabric development problems.  

 

5.1 Result Summary and Discussions 

There are mainly four results that can be observed from all the simulations in Chapter 4. 

Each of these results is presented and discussed in the following paragraphs.  

 

5.1.1 Newtonian Inhomogeneity in Newtonian Matrix  

In Section 4.1.1 a benchmark simulation is performed on the deformation system where a 

Newtonian inhomogeneity is embedded in a Newtonian matrix. Since Eshelby Formalism 

originally is competent in tackling the Newtonian deformations, this simulation is in fact 

performed to benchmark the simulation setups in FLAC2D. Figure 4.1 shows that the 

result curve of the Eshelby Formalism perfectly matches the one of the FLAC simulation. 

This successful result suggests the accuracy of the simulation setups in both Mathcad and 

in FLAC2D, and implies that the EFTL, EFSL computations and the FLAC simulations 

are adequate for simulating the following power-law deformations.  
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5.1.2 Power-Law Inhomogeneity in Newtonian Matrix 

When the inhomogeneity becomes power- law material and the matrix remains Newtonian, 

Figure 4.3 shows that result curve of Eshelby Formalism again perfectly converges to the 

one of FLAC simulation.  

Explanation of this result is as follows. When the matrix remains Newtonian, viscosity of 

the matrix is not affected by the stress / strain rate state and stays constant throughout the 

deformation. Thus, the assumption of the Eshelby Formalism is met regardless of the 

inhomogeneity material. Therefore, the linearization equation of the Tangent Scheme and 

the Secant Scheme is actually the same, which is equation (2-18). Furthermore, Taylor 

expansion is an exact representation of the rheology of the matrix, not an approximation. 

Therefore, from the theoretical point of view, the result of Eshelby Formalism should be 

in agreement with the result of the finite difference simulation.  

 

5.1.3 Newtonian Inhomogeneity in Power-Law Matrix 

The ‘inhomogeneity-matrix’ system where a Newtonian inhomogeneity is embedded in a 

power- law matrix is another special case. Figure 4.4 shows that, the results of EFTL are 

in great agreement with the results of the FLAC simulation, while the results of EFSL 

have significant deviations. 

In this simulation, when the matrix is no longer linear rheological material, its viscosity is 

affected by the current stress / strain rate state. In the far- field matrix area, since the 

velocity gradient tensor L stays constant throughout the deformation, the viscosities 
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remain unchanged. However, the viscosity of the matrix will continuously change in the 

vicinity of the inhomogeneity because of the heterogeneity caused by the interaction 

between the inhomogeneity and the surrounding matrix. Thus, when the matrix becomes 

power- law material, a linearization scheme is needed. Since Tangent Scheme is just an 

approximation, deviations between the EFTL computation and the FLAC simulation are 

inevitable.  

However, being Newtonian, the inhomogeneity has a constant viscosity leading to 

reduced interaction between the inhomogeneity and the matrix in the vicinity of the 

inhomogeneity. Consequently, heterogeneity in the vicinity of the inhomogeneity 

becomes rather small. Therefore, deviation between the EFTL computation and the 

FLAC simulation also becomes insignificant.  

On the other hand, since the linearization scheme in EFSL is just a pseudo-linear form 

which only applies to the exact state of stress and strain rate, the power- law constitutive 

equation will always remain non- linear no matter how small an increment of deformation 

could be. Therefore, theoretically Secant Scheme is not sufficient to be a good 

approximation of the power- law rheology. This is validated in the simulation in Section 

4.1.3, where the results of EFSL have significant deviations from results of the FLAC 

simulation.  

In summary, in the situation where a Newtonian inhomogeneity is embedded in a power-

law matrix, Tangent Scheme is much better an approximation of the power- law rheology 

than the Secant Scheme.  
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5.1.4 Power-Law Inhomogeneity in Power-Law Matrix 

When it comes to the most general situation where both the inhomogeneity and the 

matrix are power- law materials, neither EFTL nor EFSL can perfectly match the result 

simulated in FLAC2D (Figure 4.5, 4.6, 4.7). However, all the result curves show a 

similar pattern, which is that the curve from FLAC simulation always lies in between the 

EFTL curve and the EFSL curve. This pattern can be further sub-categorized into the 

following two situations:  

1. When the effective viscosity ratio (𝑟𝑒𝑓𝑓) of the inhomogeneity to the matrix is larger 

than 1 (the inhomogeneity is mechanically stronger than the matrix), EFTL always 

deforms the slowest while EFSL consistently deforms the fastest, implying that EFTL 

uses a higher 𝑟𝑒𝑓𝑓  than necessary while EFSL uses a lower one. In other words, the 

strength of the inhomogeneity is overestimated in EFTL and underestimated in EFSL.  

2. When the competence contrast is reversed (the inhomogeneity is weaker than the 

matrix), the previous pattern becomes reversed. To be detailed, EFTL now 

consistently deforms the fastest while EFSL deforms the slowest. Thus, in this case, 

the weakness of the inhomogeneity is again magnified in EFTL and reduced in EFSL.  

Explanation of this pattern is presented as follows. First of all, deviations between EFTL, 

EFSL computations and FLAC simulations are inevitable because they are all 

approximations to power-law rheology. Second of all, it has been proved (Lebensohn and 

Tomé, 1993) that, when the stress exponent of the matrix approaches infinity (𝑛𝑚  → ∞), 

the Tangent approximation tends to a uniform stress state (lower-bound approximation) 
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while the Secant interaction tends to a uniform strain-rate state (upper-bound 

approximation). However, deformations in natural rocks are neither completely stress 

uniform nor completely strain-rate uniform. Therefore, the real power- law behavior 

should lie in between the Tangent Behavior and the Secant Behavior when 𝑛𝑚  → ∞. 

When 𝑛𝑚  is finite, the real power- law behavior should also lie in between the Tangent 

Behavior and the Secant Behavior because the Tangent approximation is always the 

lower-bound approximation while the Secant approximation is always the upper-bound 

one (Figure 5.1).  

  



107 

 

 

Figure 5-1 Schematic strain history of an inhomogeneity modeled by the Secant 

Behavior, Tangent Behavior and the Real Power-law Behavior as 𝒏𝒎  varies.  

Secant Behaviors are denoted by red curves, Tangent Behavior by blue curves and the 

real power-law behavior by a green curve. In both situations where  𝑛𝑚  → ∞  and 

𝑛𝑚 = 3, the real power-law behavior should lie in between the Secant Behavior and the 

Tangent Behavior because the Tangent approximation is always the lower-bound 

approximation while the Secant approximation is always the upper-bound one. 

Deviations between the three behaviors will change with respect to different  𝑛𝑚 .  
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5.2 Applicability of the Eshelby Formalism with 
Tangent Linearization Scheme 

As mentioned in Chapter 1, the validation of the applicability of EFTL is the main goal of 

this project. In this section, the applicability of EFTL is discussed and all the questions 

related to the applicability will be given answers.  

 

5.2.1 Applicability Quantification  

To summarize the soundness of the applicability of EFTL from the simulation 

observations, some quantitative terms should be employed. Here I focus on the axial ratio 

evolution and the orientation evolution of the inhomogeneity.  

Take one simulation in section 4.2.1 as an example for the applicability quantification. 

This simulation is chosen because its result figure suggests the largest deviations between 

EFTL and FLAC simulation compared to other simulations. The initial conditions for this 

simulation are shown in Table 9.  

Table 5-1 Initial conditions for a general power-law simulation.  

𝑊𝑘  𝐿𝑖𝑗 Effective 

Viscosity 

Ratio 

Initial 

Orientation of 

Inhomogeneity  

Stress 

Exponent 

of Matrix 

(𝑛𝑚 ) 

Stress 

Exponent of 

Inhomogeneity 

(𝑛𝑖) 

0.6 
�
3 × 10−10 4.5 × 10−10 0

0 −3 × 10−10 0
0 0 0

� 
1.628 60° 4.7 2.9 
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In this simulation, with a relative large  𝑊𝑘, the aspect ratio of the strain ellipse becomes 

9.658 after 0.8 million years of deformations. The height of the ‘inhomogeneity-matrix’ 

system is shortened from 80m to 2.4m (Figure 5.2). Therefore, the Cauchy strain of the 

system in the y-direction is -0.97. This strain is large enough when compared to natural 

rock transpression deformations.  

 
 

 

Figure 5-2 The ‘inhomogeneity-matrix’ system after 1 million years deformation in 

the example simulation.  

The height of the system along y-axis direction is 2.4m after deformation. The system has 

been shortened 97% in y-axis direction.  

 

Undergone this large strain deformation of the system, the axial ratios / orientations of 

the inhomogeneity simulated in FLAC2D and computed in EFTL, EFSL are listed in 

Table 10 (can also be viewed in Figure 4.5).  

 

Table 5-2 Resulted axial ratios and orientations of the inhomogeneity 

Ratio in FLAC Ratio in EFTL Ratio in EFSL 

5.7 4.8 7.3 
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Orientation in FLAC Orientation in EFTL Orientation in EFSL 

7.4° 7.8886° 6.9015° 

 

 

Following observations can be obtained from Table 10. In the computation of the axial 

ratios, EFTL under-estimates the ratio by 15.8%, while EFSL over-estimates it by 28%. 

On the other hand, in the orientation computation, EFTL under-estimates the spin angle 

by 6.6% while EFSL over-estimates it by 6.7%.  

Note that the deformation time of all the simulations in Chapter 4 is set at 1 million years. 

This corresponds only to the early increment of a typical tectonic deformation which 

usually lasts for more than several million years (e.g., Karato, 2008). Thus, the statistics 

in Table 10 can only represent the deviations in the early period of tectonic deformations. 

As shown in Figure 5.3, when the general shear deformation proceeds to the late period, 

orientation of the inhomogeneity will soon approach the shear plane direction and the 

inhomogeneity will stop spinning. In nature, this phenomenon is in fact the cause of 

tectonic transposition. This phenomenon is also simulated by one of the simulations in 

Section 4.2.2, where the initial orientation of the inhomogeneity set at 0 °.  In the 

composite curve figures of this simulation, the orientation of the inhomogeneity only 

varies in a range of ±0.1° which is possibly caused by errors. More importantly, the 

deviation between the axial ratio simulated in FLAC and the one computed in EFTL is 

only 8.6%. Therefore, it can be concluded that when the deformation proceeds to the late 
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period, the inhomogeneity will soon approach the shear plane direction and stop spinning, 

and therefore the deviations between EFTL / EFSL and FLAC simulations will be smaller 

in the subsequent deformations.  

In the practical fabric-development simulations, since the results are retrieved from the 

late period of deformations, the deviations on axial ratio of the fabric (inhomogeneity) are 

supposed to be only less than 10% between the EFTL computations and the power- law 

deformations in nature; while the deviations on the fabric orientation are negligible. In 

other words, EFTL is able to precisely simulate the orientation evolution of the fabrics, 

and simulate the shape of the fabrics only with a deviation smaller than 10%, which is 

small enough for the extrapolation of the long-term and large-strain tectonic deformations.  
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Figure 5-3 Late-period general shear deformation. 

In late-period general shear deformation, the inhomogeneity orientation is almost 

horizontal. In nature, all fabrics will evolve to be transposition foliations.  
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5.2.2 Mechanical Condition Requirement 

Simulations in this project only accounts for the power- law materials whose stress 

exponent ranges from 2.9 to 5.5. From Section 5.2.1, it is now known that materials 

within the 2.9-5.5 stress exponent range can be modeled by EFTL only with about 10% 

deviations.  

Given that the stress exponents in natural rocks range from 2 to 7.6 according to Twiss 

and Moores (1992, p.383), there is still some range of stress exponents (2-2.9, 5.5-7.6) 

that has not entered the simulations in this project. However, it is believed that this 

leftover range of power- law materials can also be modeled by EFTL for the following 

two reasons: 

1) EFTL has been applied to metal deformations by Lebensohn and Tomé (1993) and 

has well predicted the metal textures. Metals have stress exponents higher than 7.6, 

therefore the leftover range in this project also meets the assumption in the Tangent 

theory.  

2) It is validated in Section 4.2.3 that the relationship between EFTL and FLAC 

simulation remains consistent regardless of the stress exponent variations. Therefore, 

as long as the assumptions in EFTL are not violated, the leftover range of materials 

should also yield consistent result.  

In conclusion, the applicability of EFTL to power- law deformations of natural rocks is 

validated.  
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5.3 Appropriate Modifications 

In order to minimize the inevitable deviations between the Tangent Behavior and the real 

power-law behavior (see Section 5.1.4), appropriate modifications to EFFL can be made.  

Lebensohn and Tomé  proposed a possible modification in the manual of their VPSC 

code. The modification is as follows.  

It is discussed in Chapter 2 that equation (2-17) is the one to calculate the strain rate 

tensor of the inhomogeneity in EFTL: 

𝜺𝒊 = [𝑱+ (𝑛𝑚𝑟𝑒𝑓𝑓 − 1)𝑺]−1 ∶  [𝑱+ (𝑛𝑚 − 1)] ∶ 𝜺𝒎                                                    (5-1) 

As the Secant Linearization amounts to setting 𝑛𝑚 = 1 in the above equation, and as has 

been shown in this project, the real power-law behavior as modeled by FLAC always lies 

between the Secant and Tangent linearizations, a better empirical representation of the 

power- law behavior, as proposed by Lebensohn and Tomé is to introduce an adjustable 

parameter 𝑛𝑒𝑓𝑓  to equation (5-1),  such that 1 < 𝑛𝑒𝑓𝑓 < 𝑛𝑚 and equation (5-1) becomes:  

𝜺𝒊 = [𝑱+ (𝑛𝑒𝑓𝑓𝑟𝑒𝑓𝑓 − 1)𝑺]−1 ∶  [𝑱+ (𝑛𝑒𝑓𝑓 − 1)] ∶ 𝜺𝒎                                               (5-2) 

Note that when 𝑛𝑒𝑓𝑓 = 1, equation (5-2) is in fact equation (2-18), which is the equation 

adopted by EFSL. 𝑛𝑒𝑓𝑓  value lying between 1 and 𝑛𝑚  in fact implies that the real power-

law behavior should lie in between the Secant Behavior and the Tangent Behavior, which 

agrees with all the simulations in this project and the discussions in Section 5.1.4.  
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5.3.1 Practical Implementations 

It is now known that modifications can be made to perfect EFTL. In this section, insight 

into how to make appropriate modifications in practical implementations of EFTL is 

presented.  

Simulations of phenomenological analysis are conducted to yield possible range of the  

𝑛𝑒𝑓𝑓  values. Initial conditions for this simulation are in Table 11.  

 

 

Table 5-3 Initial conditions for simulation on 𝒏𝒆𝒇𝒇  value.  

𝑊𝑘  𝐿𝑖𝑗 Effective 

Viscosity 

Ratio 

Initial 

Orientation of 

Inhomogeneity  

Stress 

Exponent 

of Matrix 

(𝑛𝑚 ) 

Stress 

Exponent of 

Inhomogeneity 

(𝑛𝑖) 

0.3 
�
3 × 10−10 1.887 × 10−10 0

0 −3 × 10−10 0
0 0 0

� 
1.59 60° 4.7 2.9 

 

 

Results are shown in Figure 5.4. When 𝑛𝑒𝑓𝑓  equals  1 and 4.7, implying EFSL and EFTL 

respectively, the result curves exhibit some deviations from the FLAC simulation. After a 

series of test simulations, result shows that when 𝑛𝑒𝑓𝑓  equals 1.5, which meets the 

presumption that 1 < 𝑛𝑒𝑓𝑓 < 𝑛𝑚 , the behavior best fits the power- law deformation 

simulated in FLAC. Therefore, in this case of simulation, 𝑛𝑒𝑓𝑓  should be applied to 

replace the original 𝑛𝑚  and 𝑛𝑒𝑓𝑓  should be 1.5.  
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Note that 𝑛𝑒𝑓𝑓  = 1.5 in the above simulation is only a phenomenological finding. I 

conduct other simulations with original 𝑛𝑚  set at different values. 𝑛𝑒𝑓𝑓  values vary in 

each of these simulations. Thus, the appropriate value of 𝑛𝑒𝑓𝑓  varies correspondingly 

when the 𝑛𝑚  as well as the effective viscosity ratio changes. From a phenomenological 

point of view, the 𝑛𝑒𝑓𝑓  values are within the range of 1.5-2.  

In summary, with the modified 𝑛𝑒𝑓𝑓  taking the place of the original stress exponent of the 

matrix (𝑛𝑚 ), EFTL is potentially able to perfectly simulates power- law deformations in 

nature. However, the determination of the value of 𝑛𝑒𝑓𝑓  requires more knowledge on the 

flow evolution of the matrix especially in the vicinity of the inhomogeneity. This kind of 

knowledge is what we currently lack of thus no further work can be done in this project 

to give a solution of the 𝑛𝑒𝑓𝑓  calculation other than phenomenological analysis.  
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Figure 5-4 Results from Eshelby Formalism and FLAC on  𝒏𝒆𝒇𝒇 .  

Several simulations based on different 𝑛𝑒𝑓𝑓  values are performed in Eshelby Formalism 

model and in FLAC model. In figure A, as usual, the green curve is the result from the 

FLAC model, the purple dotted line is the aspect ratio of the strain ellipse, while the 

other three curves are results from Eshelby Formalism model. When 𝑛𝑒𝑓𝑓  equals 1.5, 

Eshelby Formalism fits the FLAC result best. Figure B shows the evolutions of both the 

shape and the orientation of the inhomogeneity.   
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5.4 Conclusions and Future Work 

The Eshelby Formalism with the Tangent Linearization Scheme (EFTL) provides a 

potentially better framework to simulate fabric development problems compared to the 

early kinematic models and the computational geodynamics. In this project, I propose a 

series of simulations on the ‘inhomogeneity-matrix’ deformation system, aiming to 

validate the applicability of EFTL.  

Main conclusions of the project are as follows: 

1) When the matrix is Newtonian and the inhomogeneity is power- law, EFTL perfectly 

simulates the power-law deformations.  

2) When the matrix is power- law and the inhomogeneity is Newtonian, EFTL can 

simulate the power-law deformations only with slight deviations.  

3) When in general power- law deformation situations, where both the matrix and the 

inhomogeneity are power-law, EFTL poses some deviations from the power- law 

behavior. However, such deviations are rather small in natural rock deformations 

(less than 10% deviations). Therefore, EFTL can still simulate the general power- law 

deformations well enough for long-term geological problems.  

4) A further empirical improvement of the EFTL can be made by using an effective 

stress exponent for the matrix which lies between 1 and the actual stress exponent. 

For natural rocks with stress exponents between 3-5, the effective stress exponent is 

in the range of 1.5-2.  

Through this thesis, the Eshelby Formalism with Tangent Linearization is validated to be 

applicable to power- law materials. By combining the ‘Homogeneous Equivalent Medium’ 
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(HEM) and the ‘self-consistent’ theories (Molinari, 1987; Lebensohn and Tomé, 1993; 

Jiang, 2012 in review), EFTL is now able to tackle the ‘multi-scale’ and ‘multi-

inhomogeneities’ problems and simulate the natural rock deformations without being 

penalized by all the negative effects caused by the conventional mesh-based approaches.  

Further work is suggested to focus on the strain/stress field in the vicinity of the 

inhomogeneity, where the interaction between the inhomogeneity and the matrix is most 

significant. By gaining more insight into such interaction, one may be able to constrain 

the value of the  𝑛𝑒𝑓𝑓   for the appropriate modification to the EFTL.  

Indeed, EFTL is not perfect at this stage, yet it is able to simulate the geological long-

term deformations well enough for fabric development modeling.  
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Appendices  

Appendix A: Added adjustment command to Jiang’s (2012) worksheet in Mathcad 

to assign initial material settings. Through this algorithm the initial effective 

viscosity is calculated.  
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Appendix B: FISH commands to generate ellipse geometry in FLAC2D 

def elli 

ntab = 1 

np=1000 

d_theta=2.0*pi/np 

fi = 45*pi/180 

 

 loop n(1,np) 

 xtable(ntab,n) = 5*cos(fi)*cos(theta)+2.5*sin(fi)*sin(theta) 

 ytable(ntab,n) = -5*sin(fi)*cos(theta)+2.5*cos(fi)*sin(theta) 

 theta=theta+d_theta 

 endloop 

end 

 

elli 

gen table 1 
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Appendix C: Mechanical Property Assignment in Power-Law Model in FLAC2D 

 

group 'matrix' notnull 

 

group 'inhomogeneity' region 75 75 

 

 

 

model power group 'matrix' 

prop  dens 2.95e-5  bulk 4.63e6  shear 3.05e6  a_1=1.8982e-20  n_1=3.0  group 'matrix' 

 

model power group 'clast' 

prop  dens 2.65e-5  bulk 3e6  shear 2.25e6  a_1=7.6226e-26  n_1=5  group 

'inhomogeneity' 
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Appendix D: Velocity Boundary Condition Updating FISH in FLAC2D 

 

def velstep 

    loop n(1,40000) 

      command  

       step 1 

      end_command 

 

; initial_co 

           vx1 = 0.15e-4*x(1,1) + 0.09435e-4*y(1,1) 

           vxvar1 = 0.15e-4*(x(461,1)-x(1,1))  

             vx2 = 0.15e-4*x(1,461) + 0.09435e-4*y(1,461) 

               vxvar2 = 0.15e-4*(x(461,461)-x(1,461))  

                 vx3 = 0.15e-4*x(461,1) + 0.09435e-4*y(461,1) 

                   vxvar3 = vx2-vx1 

                       vxvar4 = 0.15e-4*x(461,461) + 0.09435e-4*y(461,461) - vx3 

                                 

                         vy1 = -0.15e-4*y(1,1) 

                          vy2 = -0.15e-4*y(1,461) 

                           vyvar = vy2 - vy1 

                           

           command 

               apply xvel vx1 var vxvar1,0  from 1,1 to 461,1 

                 apply xvel vx2 var vxvar2,0 from 1,461 to 461,461 

                   apply xvel vx1 var 0,vxvar3  from 1,1 to 1,461 
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                    apply xvel vx3 var 0,vxvar4 from 461,1 to 461,461 

                      apply yvel vy1 from 1,1 to 461,1 

                       apply yvel vy2 from 1,461 to 461,461 

                         apply yvel vy1 var 0,vyvar from 1,1 to 1,461 

                           apply yvel vy1 var 0,vyvar from 461,1 to 461,461 

                                                      

           end_command 

              end_loop  

end 
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Appendix E: Von Mises Stress Invariant Calculation in FISH command by ITASCA 

 

config  extra  1 

def  mises 

;  ---  calculate  and  store  Von  Mises  stress  in  extra  variable  1  --- 

max_mises  =  0.0 

loop  i  (1,izones) 

loop  j  (1,jzones) 

 

mstr  =  (sxx(i,j)  +  syy(i,j)  +  szz(i,j))  /  3. 

dsxx  =  sxx(i,j)  -  mstr 

dsyy  =  syy(i,j)  -  mstr 

dszz  =  szz(i,j)  -  mstr 

dsxy  =  sxy(i,j) 

 

vmstr2  =  1.5  *  (dsxx*dsxx  +  dsyy*dsyy  +  dszz*dszz) 

vmstr2  =  vmstr2  +  3.  *  (dsxy*dsxy) 

 

if  vmstr2  >  0.0  then 

ex_1(i,j)  =  sqrt(vmstr2) 

else 

ex_1(i,j)  =  0.0 

endif 
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max_mises  =  max(max_mises,ex_1(i,j)) 

endloop 

endloop 

end 

mises 

plot  hold  ex_1  zone  fill  alias  ’Von  Mises  Stress’ 
print  max_mises  
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Appendix F: Fish Command to Obtain and History-Tracked  Ellipse Orientation 

and  Axial Ratio 

 

def results 

loop i (1,461) 

  loop j (1,461) 

 

   if and(flags(i,j), 128) = 128 

    ltemp = sqrt(x(i,j)*x(i,j)+y(i,j)*y(i,j)) 

    

 if ltemp>=length 

     length = ltemp 

      xtemp = i 

       ytemp = j 

    endif 

 

    if ltemp<lshort 

     lshort = ltemp  

    endif 

 

  endif 

   

end_loop 

end_loop 
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longaxis = length 

degree = atan(y(xtemp,ytemp)/x(xtemp,ytemp))/pi*180 

 

shortaxis = lshort 

ratio = longaxis/shortaxis 

end 

 

history degree 

history ratio 

 
history unbalance 
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