
Western University Western University 

Scholarship@Western Scholarship@Western 

Electronic Thesis and Dissertation Repository 

5-4-2012 12:00 AM 

Anti-Foundational Categorical Structuralism Anti-Foundational Categorical Structuralism 

Darren McDonald 
The University of Western Ontario 

Supervisor 

John L. Bell 

The University of Western Ontario 

Graduate Program in Philosophy 

A thesis submitted in partial fulfillment of the requirements for the degree in Doctor of 

Philosophy 

© Darren McDonald 2012 

Follow this and additional works at: https://ir.lib.uwo.ca/etd 

 Part of the Logic and Foundations of Mathematics Commons 

Recommended Citation Recommended Citation 
McDonald, Darren, "Anti-Foundational Categorical Structuralism" (2012). Electronic Thesis and 
Dissertation Repository. 533. 
https://ir.lib.uwo.ca/etd/533 

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted 
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarship@Western

https://core.ac.uk/display/61632745?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F533&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/532?utm_source=ir.lib.uwo.ca%2Fetd%2F533&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/533?utm_source=ir.lib.uwo.ca%2Fetd%2F533&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca


Anti-Foundational Categorical Structuralism

by

Darren McDonald

Graduate Program in Philosophy

A thesis submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

The School of Graduate and Postdoctoral Studies

The University of Western Ontario

London, Ontario, Canada

c© Darren McDonald 2012



THE UNIVERSITY OF WESTERN ONTARIO

School of Graduate and Postdoctoral Studies

CERTIFICATE OF EXAMINATION

Supervisor Examiners

Dr. John L. Bell Dr. Wayne Myrvold

Dr. Robert DiSalle

Dr. Mike Dawes

Dr. David DeVidi

The thesis by

Darren Joseph McDonald

entitled:

Anti-Foundational Categorical Structuralism

is accepted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

Date Chair of the Thesis Examination

Board

ii



Abstract

The aim of this dissertation is to outline and defend the view here dubbed

“anti-foundational categorical structuralism” (henceforth AFCS). The pro-

gram put forth is intended to provide an answer the question “what is math-

ematics?”. The answer here on offer adopts the structuralist view of math-

ematics, in that mathematics is taken to be “the science of structure” ex-

pressed in the language of category theory, a language argued to accurately

capture the notion of a structural property. In characterizing mathematical

theorems as both conditional and schematic in form, the program is forced

to give up claims to securing the truth of its theorems, as well as give up a

semantics which involves reference to special, distinguished “mathematical

objects”, or which involves quantification over a fixed domain of such ob-

jects. One who wishes—contrary to the AFCS view—to inject mathematics

with a “standard” semantics, and to provide a secure epistemic foundation

for the theorems of mathematics, in short, one who wishes for a foundation

for mathematics, will surely find this view lacking. However, I argue that a

satisfactory development of the structuralist view, couched in the language of

category theory, accurately represents our best understanding of the content

of mathematical theorems and thereby obviates the need for any foundational

program.

Keywords: category theory, philosophy, foundations of mathematics,

structuralism, properties, schema, conditional, mathematical truth
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1

Chapter 1

Foundations

Let us now try, guided by the axiomatic concept, to look over the

whole of the mathematical universe. [15, p. 228]

As the name suggests, anti-foundational categorical structuralism (hence-

forth AFCS1), combines a number of the principles and perspectives that

have risen to prominence in contemporary philosophy of mathematics, in

particular

1. the idea that mathematics concerns structure,

2. the move away from foundational approaches in the philosophy of

mathematics, and

3. the notion of a (mathematical) category.

The aim of this chapter is to elucidate the sense in which the program to be

proposed in this work is anti-foundational. Indeed, it is rather presumptuous

to label the program anti-foundational at this stage, as the program may

be seen to potentially satisfy some notions of a foundation for mathematics,

while failing to satisfy others. As the notions of foundation for mathemat-

ics which the program fails to satisfy are those of principal importance in

1This program has also been called top-down categorical structuralism in [2, 48].
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philosophical enquiries into the foundations of mathematics, I expect that

the label will be recognized as appropriate.

1.1 Axiomatic Systems

Crucial to a contemporary discussion of the foundations of mathematics is

the notion of an axiomatic system. Here the term axiomatic system will

be used in a deliberately loose sense, including both formal and informal

systems, with or without an explicit specification of the admissible rules of

inference.2 This work will focus primarily on formal axiomatic systems, and

informal systems will be assumed formalizable. When a formal system is

under consideration, I take it that the logical operators are given their usual

interpretation.3 The rise to prominence of the methods of formal represen-

tation and symbolic manipulation in mathematics—in some sense a recent

development—has brought about a dramatic change in the way that math-

ematics is typically characterized. The formal methods that emerged from

the late 19th and early 20th century developments in logic and set theory

are now taken to be an essential, and perhaps principal, component of any

philosophical account of contemporary mathematics.

With the increased expressive powers of the various languages of first–

and higher-order logic, a number of grand philosophies of mathematics came

to the fore. In Frege’s logicist program, it was hoped that these new lan-

guages would be able to bridge the seemingly close-set gap between logic

and mathematics, and, in so doing, ultimately free arithmetic from its sup-

posed intuitive foundation. A quite different approach, also dependent on

recently developed formal methods, can be found in Hilbert’s formalist pro-

gram, according to which it was hoped that appeal to pure intuition could

2When no specification is given, the background logic will be assumed to be first-order
(classical) logic, unless the axioms require formulation in a second– or higher-order system,
or require a restricted set of inference rules (intuitionistic, etc.).

3Such a system can be called semiformal, as in [18].
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be removed, this time to be replaced, at the metamathematical level, by

perceptual intuitions concerning the manipulations of concrete objects.

Unfortunately, as the familiar story goes, both of these programs met

with failure; indeed, the result which is usually take to signal the defeat

of Hilbert’s program was itself a significant development in the application

of formal techniques.4 However, despite the failure of these two ambitious

programs, formal languages and the associated formal methods developed in

the study of these programs have undoubted been instrumental in leading

us to the current state of contemporary mathematics. Nowhere has this

shift been more apparent than in the contemporary emphasis on axiomatics,

particularly formal axiomatics in a mathematical context.

1.1.1 Assertory Axioms

The axiomatic method, of course, dates back to antiquity, with one of the

better known instances found in the Common Notions and Postulates of Eu-

clid’s Elements. These Common Notions and Postulates are usually viewed

as having been intended as self evident or obviously true. As such, the axioms

were truth-apt, contentful expressions, what we might now call statements

or propositions.5 The formal axioms of Frege’s 1893 Grundgesetze [30] were

such contentful expressions; the basic laws of thought were taken to be “the

most general laws, which prescribe universally the way in which one ought to

think if one is to think at all” [30, p. 12]. Indeed, Frege himself observes that

his methods might properly be considered Euclidean, insofar as he clearly

identifies those propositions (i.e., axioms) which are not to be proved [30,

4Incidentally, Gödel’s result concerned the system of Russell’s Principia Mathematica,
a system born out of the failure of that system proposed by Frege in his ill-fated Grundge-
setze. Of course, Gödel’s result applies to a more general type of formal system of which
Russell’s is but one example.

5The distinction between statements, i.e., declarative sentences, and propositions, which
may correspond to a number of distinct declarative sentences, will not concern us here,
and one may choose either to be the bearers of truth values for the purposes of this work.
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p. 2].6 Following the terminology adopted in some recent writings in the

foundations of mathematics [37, 38, 79], systems of this sort—in which the

axioms are taken to be propositions—will be called assertory.

1.1.2 Algebraic Axioms

A second important class of axioms are algebraic axioms7, which, unlike

assertory axioms, are not propositions, and so not meant to be taken as

true simpliciter. Instead, they are typically taken as definitions of a type

of structure; the classic example of such axioms are those for rings, groups,

fields, topological spaces, etc., of the sort typically found in modern algebra

textbooks. Axioms used in this way define a type of object at the meta level.

The axioms are propositional schemata, and any model in which the axioms

are true is thereby an object of the sort defined. Thus, in a mathematical

context, algebraic axioms require some sort of (typically informal) model

theory. The following example is typical:

A group is an ordered pair (G, ?), where G is a set and ? is a

binary operation satisfying the following axioms:

(i) (a ? b) ? c = a ? (b ? c) for all a, b, c ∈ G, i.e., ? is associative,

(ii) there exists an element e in G, called an identity of G, such

that for all a ∈ G we have a ? e = e ? a = a,

(iii) for each a ∈ G there is an element a−1 of G, called an inverse

of a, such that a ? a−1 = a−1 ? a = e. [27, p. 16–17]

Such a definition immediately raises meta-theoretic questions of satisfia-

bility : are there any groups, rings, fields, etc.? If so, how many, and what

are the relationships that obtain between such entities? Further, once such

6Frege notes, however, that his approach extends that of Euclid’s in that he also pro-
vides a specification of the admissible rules of inference.

7These axioms are sometimes also called formal or schematic [38].
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a move to meta-theoretic questions is made, what is the framework in which

we conduct our meta-theoretic investigations? Finally, does this type of ax-

iomatic presentation function correctly as a definition? In answering these

questions, it will be useful to compare the preceding definition of a group

with the definition of the type of structure with which this work will be

primarily concerned: categories.

1.2 Category Theory

Following roughly the treatment found in [60], a category is a collection

of objects A,B,C, . . . and arrows f, g, h, . . ., where each arrow f has an

associated domain and codomain (sometimes called the source and target,

respectively), represented as f : A → B. Arrows f, g are composable pro-

vided dom(g) = cod(f), and for any such composable pair f : A → B and

g : B → C there is an arrow g ◦ f : A → C such that the diagram shown

below commutes, i.e., the arrows obtained by composition on any connected

path depend only on the endpoints of that path.

Composition

B
g

��
A

f
??

g◦f
// C

Identity

For each object A there is a (unique) arrow 1A : A → A such that the

diagrams below commute for any f : A → B and g : B → A. (For a given
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object A, 1A will sometimes be represented in diagrams by A.)

A
1A

��
B

g
??

g
// A

A
f

��
A

1A

??

f
// B

Associativity

For any f, g, h as shown, the diagram below commutes.

B
g

��

f◦g // D

A

h

??

g◦h
// C

f

>>

When giving a first-order axiomatization of category theory it is custom-

ary to use a typed first-order language (with object and arrow types), but this

can be dispensed with either by the familiar technique of introducing predi-

cates and rendering the axioms as conditionals, or by giving an “arrows-only”

presentation.8 It is initially useful to think of the arrows as functions and

the objects as sets, where a category is then a collection of sets and functions

defined on those sets. With this sort of picture in mind, category theory can

be roughly described as “the mathematical study of (abstract) algebras of

functions” [3, p. 1]9. However, the connection between category theory and

set theory will require closer examination, and for the moment it is perhaps

more useful to view the category axioms as the axioms of an uninterpreted

first-order theory. Consequently, the objects and arrows need not be viewed

as elements of, for example, the cumulative hierarchy.

Some familiar types of mathematical objects are very easily described

in the language of category theory. For example, a monoid is standardly

8For details on the arrows-only definitions, see [52, p. 9].
9“Abstract” because “the objects do not have to be sets and the arrows need not be

functions” [3, p. 5].
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presented as a set of objects with an associative binary operation and a dis-

tinguished identity element. So, 〈N,+, 0〉 is a monoid, as addition on the

natural numbers is associative, with 0 functioning as the (additive) identity.

Similarly, 〈N,×, 1〉 is also a monoid with the binary operation of multiplica-

tion and 1 as the multiplicative identity. In the language of category theory,

a monoid is simply a category with one object. Elements of the monoid

corresponds to arrows from that single object to itself, and the associativity

of arrow composition corresponds to the associativity of the monoid opera-

tion, with the identity arrow serving to represent the identity element of the

monoid. Thus, categories can be viewed as generalized monoids.

Other important types of mathematical structures10 also have natural

definitions in categorical terms. A preorder on a collection of elements is a

reflexive, transitive relation. In categorical terms, a preorder is a category in

which every pair of objects A and B have at most one arrow from A to B11,

where A ≤ B iff there is an arrow f : A→ B. Associativity of arrows yields

transitivity, and identity arrows yield reflexivity. Similarly, a partial order on

a collection of elements is a reflexive, transitive, antisymmetric relation. In

categorical terms, a partial ordering on a collection of elements corresponds

to a category in which every pair of objects A and B have at most one arrow

between them, where A ≤ B iff there is an arrow f : A → B as before.

Transitivity and reflexivity follow as before, and any arrows f : A→ B and

g : B → A must be identical by the condition on arrows, and so A = B.

Thus, the arrows f and g must both be 1A, the unique arrow from A to A.

The closed well-formed formulae of a system of first-order logic can be taken

as objects in a category, where the arrows f : A → B are derivations of B

from A. Taking as objects the positive integers we can form a category by

taking n ×m real-valued matrices as arrows f : n → m, where composition

10The term structure will come to be used in a more precise sense later in this chapter,
but the usage here will agree with that later definition.

11Note that the ordering of the domain and codomain of the arrow is important here,
as we are allowing the case where there are distinct arrows f : A→ B and g : B → A.
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corresponds to matrix multiplication. More obvious examples of categories

include the category of sets and functions, groups and group homomorphisms,

and the category of continuous functions f : R → R. A wealth of similar

examples can be found in [3, 52].

1.3 Foundations for Mathematics

There are a number of senses in which one can speak of a foundation for

mathematics, and, unfortunately, debates concerning the merits of one or

another proposed foundation often suffer from this plurality. Thus, Putnam

declares that

I don’t think mathematics is unclear; I don’t think mathematics

has a crisis in its foundations; indeed, I do not believe mathemat-

ics either has or needs “foundations.” [67, p. 5]

while Mayberry declares that

. . . mathematics not only needs, but in fact has, foundations.

Mathematics can no more lack foundations than a building can:

wherever a building touches the ground, there, for good or ill, its

foundations are to be discovered. Those foundations may have

been carelessly laid, they may be shaky or unsound, the whole

edifice may threaten to collapse about our ears; but it cannot lack

foundations. [57, p. 17–18]

In an attempt to map out the various notions of foundations for mathematics,

Marquis in [53] identifies no less than six separate—but interrelated—senses

of the term, and provides examples of single authors shifting their emphasis

from one sense to another.

Before exploring the various senses of foundation for mathematics it will

be convenient to introduce the notion of a framework, where a framework is an
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axiomatic system, algebraic or assertory, and either formalized or presented

informally.12 Zermelo-Fraenkel set theory (with or without the axiom of

choice) constitutes a framework, both as an informal system and, for example,

as a formal first-order system. Clearly the interpreted system and the formal

system are suited to different tasks, and so we may expect to observe a

difference in their suitability to various of the possible foundational roles.

1.3.1 Organizational Frameworks

As a tentative account of a foundation for mathematics, consider the view

that Lawvere offers in “The Category of Categories as a Foundation for Math-

ematics”, wherein “. . . by “foundation” we mean a single system of first-order

axioms in which all usual mathematical objects can be defined and all their

usual properties proved” [50, p. 1]. The type of foundation Lawvere con-

siders would allow one to characterize mathematics as the investigation of

the consequences of those axioms. Let us call a framework that allows for

the formulation of definitions (and, given a suitable logic, the production of

proofs) that arguably captures all of mathematics an organizational frame-

work.13 Is an axiomatic system that constitutes an organizational framework

sufficient as a philosophically adequate foundation for mathematics?

One important observation about such an approach to foundations is that

it yields an account of mathematics. As a very rough initial approximation,

we might identify mathematics as the subject matter mathematicians are

concerned to investigate: groups, rings, fields, functions, geometry, statistics,

probability, analysis, computability, graph theory, and a myriad of other ar-

eas of mathematical enquiry. However, the inadequacy of lists of this sort

highlights one of the important roles that a framework for mathematics might

play: provide the criteria according to which an area of research counts as

12The term framework is approximately equivalent to the notion of linguistic framework
as found in [20] and discussed in [47].

13This formulation of the notion of an organizational framework does not involve the
restriction to first-order systems.
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mathematics. Given a set of axioms of the sort envisioned by Lawvere, a

research project counts as mathematics to the extent that it involves explor-

ing the deductive consequences of definitions (either new or preexisting) in

the language of the theory. A first-order axiomatization of ZFC may be ar-

gued to provide a framework of this sort, and similarities between the sort

of foundation characterized by Lawvere and that offered by a framework like

first-order ZFC serve to highlight some important philosophically-motivated

concerns about the merits of such an approach.

1.3.2 Epistemology, Semantics, and Ontology

Benacerraf’s seminal paper entitled “Mathematical Truth” serves to illustrate

two desiderata that I take to be characteristic of the philosophical notion of

a foundation for mathematics. In that paper Benacerraf presents his well-

known argument that

. . . two quite distinct kind of concerns have separately motivated

accounts of the nature of mathematical truth: (1) the concern for

having a homogeneous semantical theory in which semantics for

the propositions of mathematics parallel the semantics for the rest

of the language, and (2) the concern that the account of mathe-

matical truth mesh with a reasonable epistemology. . . . almost all

accounts of the concept of mathematical truth can be identified

with serving one or another of these masters at the expense of

the other. [11, p. 661]

For those accounts that emphasize the semantical aspect, there is the problem

of explaining how we can come to know anything of the seemingly unusual

(typically atemporal, acausal) mathematical objects. Those accounts that

emphasize the epistemological aspect—for example, a framework couched in

some familiar (formal) logical structure—are also faced with a serious diffi-

culty. Views of this sort (which Benacerraf calls combinatorial) are subject



CHAPTER 1. FOUNDATIONS 11

to the objection that, while having established a way to come to (apparent)

mathematical knowledge, it is not clear that a claim’s derivability within a

particular formal system is sufficient to warrant the judgment that the given

statement is true. Within a particular deductive system L, a separate ar-

gument is required to establish the connection between derivability in L (or

L-truth) and the concept of truth as it is otherwise understood. Thus, if

we accept Benacerraf’s request for what he calls a “Tarskian” semantics, a

view like that suggested in Lawvere’s remark must be supplemented (if in-

deed the theorems deduced are meant to be taken as true) by an account

of the objects—categories—the axioms purportedly describe. What justifies

our taking the axioms of Lawvere’s system as true of all such categories? The

difficulty involved in providing such an account seems particularly imposing

given Lawvere’s own description of the means by which he arrived at the

axioms for his framework:

The author believes, in fact, that the most reasonable way to

arrive at a foundation meeting these requirements [defining the

usual objects of mathematics and proving their usual properties]

is simply to write down axioms descriptive of properties which

the intuitively-conceived category of all categories has until an

intuitively-adequate list is attained; that is essentially how the

theory described below was arrived at. [50, p. 1]

Of course, an organizational framework of the sort Lawvere aims to provide

does serve to clearly define the semantic and epistemological target for any

philosophical account of the sort Benacerraf identifies; the organizational

framework clearly identifies the sentences whose epistemology is to be ac-

counted for, and the sentences whose semantics is to be unpacked. In this

way, the construction of an organizational framework is necessary for the

development of a characterization of mathematics that accounts for the se-

mantic content of mathematical statements, together with an account of the

truth of mathematical statements wherein we appeal to “. . . the theoretical
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apparatus employed by Tarski in providing truth definitions, i.e., the anal-

ysis of truth in terms of the “referential” concepts of naming, predication,

satisfaction, and quantification” [11, p. 677].

Thus, for the purpose of this work, the following three criteria will be

taken to be necessary (and sufficient)14 conditions on any framework that

constitutes a philosophically acceptable foundation for mathematics.

1. The framework is an organizational framework, and thereby identifies

what counts as mathematics.

2. The framework can be linked to an account of the epistemology of

mathematical statements, providing a characterization of the features

in virtue of which mathematical statements are, and can be, known to

be true.

3. The framework accounts for the semantics of mathematical statements,

and proceeds to do so via the theoretical apparatus “of naming, predi-

cation, satisfaction, and quantification”.

1.4 Classical Approaches to Foundations

The most influential programs of the past century in the philosophical foun-

dations of mathematics can each be seen to present an account aimed at

satisfying the three criteria identified above. A brief account of two of these

programs, Hilbert’s finitist program, as well as Frege and Russell’s logicist

program, will be useful when later we come to explore features of the AFCS

program.

14While I take these conditions to be sufficient to identify a foundation for mathematics,
necessity is all that is required for the purpose of establishing that the program I aim to
defend does indeed fail to count as a foundation.
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1.4.1 Finitism

Consider Hilbert’s finitist program, in which an (informally presented) frame-

work was provided by the (assertory) axioms of finitary proof theory. Hilbert

took this system to play an important justificatory role with respect to math-

ematical statements. The meta-theoretic methods of finitary proof theory

were taken by Hilbert to justify the use of axiomatic systems at the object

level, and this justification proceeded in two steps. First, axiomatic systems

of the various branches of mathematics were shown to have an interpretation

in arithmetic. Consequently, the consistency of any such system in question

was guaranteed, provided the system of arithmetic could itself be shown con-

sistent. The second step, then, involved using the methods of finitary proof

theory to establish the consistency of the formalized theory of arithmetic.15

Mathematics could then be characterized as the investigation of formal sys-

tems which could be shown to be consistent by those methods, satisfying the

first criterion for foundational programs identified above. As Hilbert notes

after presenting a sketch of the system of formal arithmetic, “we are now in

a position to carry out our theory of proof and to construct the system of

provable formulae, i.e., mathematics” [43, p. 199].

Hilbert’s account of the semantics and epistemology of mathematics (by

which he satisfies the second and third criteria for foundational programs)

proceeds via appeal to the direct, perceptual intuition of concrete symbols:

. . . something must be given in conception, viz., certain extralog-

ical concrete objects which are intuited as directly experienced

prior to all thinking. For logical deduction to be certain, we must

be able to see every aspect of these objects, and their proper-

ties, differences, sequences, and contiguities must be given, to-

gether with the objects themselves, as something which cannot

be reduced to something else and which requires no reduction.

15It is generally agreed that Gödel’s incompleteness result [33] show this second step to
be impossible, see [84] for a discussion.
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This is the basic philosophy which I find necessary, not just for

mathematics, but for all scientific thinking, understanding, and

communicating. The subject matter of mathematics is, in accor-

dance with this theory, the concrete symbols themselves whose

structure is immediately clear and recognizable. [43, p. 192]

A formal deductive system for arithmetic, shown to be consistent via finitary

proof theory, was taken to be epistemically sound insofar as the theorems

are true when interpreted as claims about the realm of finite, immediately

presented concrete symbols.16 A proof of the consistency of the system of

arithmetic would thereby justify reasoning involving other formal systems,

as, for such systems, “proof of consistency is effected by reducing their con-

sistency to that of the axioms of arithmetic” [43, p. 200]. The investigation of

other axiomatic systems would be warranted insofar as their theorems could

be interpreted as true statements concerning the intuitively given concrete

symbols. Finally, in addition to the realm of concrete symbols, ideal elements

of systems (such as infinite cardinals and the points at infinity of projective

geometry), could also taken to exist, as Hilbert describes in correspondence

with Frege:

. . . if the arbitrarily given axioms do not contradict each other

with all their consequences, then they are true and the things

defined by them exist. This is for me the criterion of truth and

existence. [79, quoted on p. 69]17

Thus, via the framework of finitary proof theory, Hilbert’s program aimed

to characterize the objects of mathematics (and thereby account for the se-

mantic properties of mathematical statements), account for the means by

16Hilbert had been particularly interested to justify the use of ideal objects in number
theory, as most famously advocated in [43].

17Note that this quotation is from early in Hilbert’s career, but that he maintained such
a view (against instrumentalist readings) in his later writings has been argued in [34].
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which we can acquire mathematical knowledge (through proofs in consis-

tent axiomatic systems, grounded in the immediately-intuited structure of

the concrete objects of mathematics), and identify mathematics as the disci-

pline concerned with the construction of proofs in those consistent axiomatic

systems.

1.4.2 Logicism

Frege claims that one of his aims in Die Grundlagen der Arithmetik is to show

that—contra Kant—synthetic a priori judgements are not required in order

to secure the truths of cardinal arithmetic.18 After having defined numbers

as extensions of concepts and deriving several important theorems19, Frege

writes

I hope I may claim in the present work to have made it probable

that the laws of arithmetic are analytic judgements and conse-

quently a priori. Arithmetic thus becomes simply a development

of logic, and every proposition of arithmetic a law of logic, albeit

a derivative one. [32, p. 99]

The logical formalism Frege pioneered in the Begriffsschrift [31] finally al-

lowed for the formulation of the view that logic and mathematics were not

simply closely related (as had long been held), but that the truths of math-

ematics were in fact logical truths. The claim that mathematics is, in some

sense, reducible to logic taken along with suitable definitions of the objects

of mathematics is the characteristic tenet of the logicist view, and both Frege

and Russell’s developments in pursuing that view have shaped much of the

debate in the philosophy of mathematics for more than a century.

18While Frege may have emphasized this aim in the Grundlagen, it has been argued
that focus on this aspect of his program does not do justice to the full scope of the logicist
program, see [21].

19One, the derivation of the Peano axioms from a tentative early definition of number
that has come to be called Hume’s Principle, forms the core of the neo-Fregean view
advocated by Hale and Wright, see [83].
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While a great deal of attention is given to their work in arithmetic, the

reduction of mathematics to logic was meant to encompass all of mathe-

matics. As Russell boldly claims in the Introduction to The Principles of

Mathematics,

By the help of ten general principles of deduction and ten other

premises of a general logical nature (e.g., “implication is a re-

lation”), all mathematics can be strictly and formally deduced;

and all the entities that occur in mathematics can be defined in

terms of those that occur in the above twenty premises. In this

statement, Mathematics includes not only Arithmetic and Anal-

ysis, but also Geometry, Euclidean and non-Euclidean, rational

Dynamics, and an indefinite number of other studies still unborn

or in their infancy. The fact that all Mathematics is Symbolic

Logic is one of the greatest discoveries of our age. . . [73, p. 4–5]

While the “discovery” Russell claims in the quote above never saw the light of

day20 and the aims of the program were never realized, the logicist program

is perhaps the program which most clearly set out to meet the foundational

criteria identified here. The logical systems Frege and Russell developed were

explicitly taken to provide “organizational frameworks” for the logical truths,

insofar as these systems were taken to permit all definitions involving only

logical constants, and yield all proofs that proceed only by the most general

principles of inference. As Frege explains, “Everything necessary for a cor-

rect inference is expressed in full, but what is not necessary is generally not

indicated; nothing is left to guesswork” [31, p. 12]. While Russell outlines

a syntactic distinction that could be drawn between mathematics and logic

(casting mathematical truths as a subset of the logical truths with a given

form), “But for the desire to adhere to usage, we might identify mathemat-

20Gödel’s undecidability result in [33], can be taken to have shown the program unten-
able, as some mathematical truths “escape capture” in systems of the sort Russell had
proposed.
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ics and logic” [73, p. 9]. Thus, a framework which permitted derivations of

all and only the truths of pure logic was thereby a framework that identi-

fied mathematics—that same set of truths, or a syntactically distinguishable

subset of them—as well.

In providing for the semantics of mathematical statements, both Russell

and Frege identified a distinguished collection of logical objects. Frege in-

voked the notion of the extension of a concept, while Russell made use of the

notion of a class.21 In either case, mathematical objects, such as cardinal

numbers, were defined as classes (of classes) or extensions of concepts, and

the true mathematical propositions expressed truths about those distinctly

logical (and, hence, mathematical) objects, in accordance with the third

foundational criterion. Similarly, the logical systems on offer were taken to

represent the most general rules of inference, and so they provide a secure

route to mathematical knowledge, yielding inferences from the definitions

of the purely logical (mathematical) objects to truths about those objects.

Thus, the successful reduction of mathematics to logic in accordance with

the logicist program, taken along with the seemingly secure epistemic and

ontological features of the logical systems in question, yields each of the three

criteria offered as characteristic of a foundation for mathematics.

We turn now to outline the principal features of a philosophical position,

AFCS, which does not satisfy those criteria. What, then, can an advocate of

such a position hope to accomplish?

1.5 The AFCS Program

To illustrate one aspect of the AFCS view, consider again the definition of a

group presented in Section 1.1.2. One can prove from these axioms that, for

21Russell would later abandon the primacy of the concept of a class in favour of that of
a propositional function.
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any elements a, b, c of a given group,

(a ? b ? c)−1 = c−1 ? b−1 ? a−1

This result could be described as a theorem of first-order logic (with function

symbols) that is conditional in form, taking as antecedent the conjunction of

(the universally quantified versions of) the axioms defining a group, and the

formula above as consequent. However, as Shapiro observes,

Say that a theory is ‘Fregean’ if it is intended to be about a spe-

cific subject matter, and that a theory is ‘Hilbertian’ if it consists

of taking the logical consequences of an axiomatization regarded

as an implicit definition of a type of structure. Contemporary

group theory and ring theory are not pursued, for more than a

few minutes, in this Hilbertian manner. Rather, the group the-

orist studies all groups, developing relationships between them

and with other structures. [79, p. 67 ff]

While not strictly required by the group-theoretic theorem above, one might

render that theorem as one whose subject matter is any group, and so, a

theorem of the form “In any group G. . . ”. However, if our starting point

is the first-order group axioms, some standard mathematical results about

groups will require what might be called the “model-theoretic” perspective.

For example, the result that the kernel of a group homomorphism f : G→ H

is a subgroup of G cannot be rendered simply as a first-order consequence of

the universally-quantified axioms, as this theorem involves explicit reference

to the group(s) involved in the group homomorphism. Similarly, there are

existence theorems, for example, the theorem that, given any two groups G

and H, there is at least one group homomorphism f : G → H. One who

aims to account for mathematical truths in a manner that appeals to no-

tions of naming, satisfaction, and quantification, has then the task of saying

something about those objects, be they groups, sets, or categories. Are there
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product groups for every pair of groups, powersets for every set, enough ar-

rows for our categories? The axioms which define a category, and similarly

the axioms which define a group, do not assert anything about the exis-

tence of the categories or groups, but some standard results in mathematics,

as with the kernel theorem, seem to involve quantification over groups and

other purportedly mathematical objects. Taking mathematical propositions

of this sort as true, then, seems to lead us to the familiar problem Benacerraf

highlights: how can we provide a “Tarskian” semantics for our propositions

(which would then involve some account of the mathematical objects that

figure in those propositions) while at the same time ensuring that our proofs

have the epistemic features necessary to secure their truth?

In Awodey’s “An Answer to Hellman’s Question: Does Category Theory

Provide a Framework for Mathematical Stucturalism?”, we find a presenta-

tion of a view Awodey dubs “top-down” structuralism, and his character-

ization of mathematical propositions as both schematic and conditional in

form is adopted in the AFCS proposal. Unlike those views that identify

a privileged class of objects (for example, pure sets, classes, or extensions

of concepts), and then “build up” the entities of the various branches of

mathematics from those objects, the top-down perspective

. . . is based instead on the idea of specifying, for a given theo-

rem or theory only the required relevant degree of information

or structure, the essential features of a given situation, for the

purpose at hand, without assuming some ultimate knowledge,

specification, or determination of the ‘objects’ involved.

Thus according to our view, there is neither a once-and-for-all

universe of all mathematical objects, nor a once-and-for-all sys-

tem of all mathematical inferences. [2, p. 56]

In virtue of this perspective, all the theorems of mathematics are all taken

to be conditional in form, with an antecedent condition which functions as
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a partial specification of context, providing that “relevant degree of informa-

tion”.

Every mathematical theorem is of the form ‘if such-and-such is

the case, then so-and-so holds’. That is, the ‘things’ referred to

are assumed to have certain properties, and then it is shown,

using the tacitly assumed methods of reasoning, that they also

have some other properties. . . . Of course, many theorems do not

literally have this form, but every theorem has some conditions

under which it obtains. [2, p. 58].

It might then be thought that mathematical claims on this view should be

taken as universally quantified expressions. Considering the group-theoretic

results discussed earlier, we might take it that the theorem concerning the

existence of a (group) homomorphism between any two groups is of the form

“For all objects G and H, if G is a group and H is a group then there exists a

(group) homomorphism from G to H”. However, if we ask whether the theo-

rem is true, and adopt the usual semantic treatment of expressions involving

the universal quantifier, we are left wondering whether there are any groups,

and whether the theorem might simply be vacuously true. A description

of the features of a group via the axioms appearing in the antecedent of a

theorem in elementary group theory does not suffice to determine whether or

not there are any groups, nor does it give any indication as to how we might

try to make this determination. As Awodey explains,

This lack of specificity or determination is not an accidental fea-

ture of mathematics, to be described as universal quantification

over all particular instances in a specific foundational system as

the foundationalist would have it. . . rather it is characteristic of

mathematical statements that the particular nature of the enti-

ties involved plays no role, but rather their relations, operations,

etc.—the structures that they bear—are related, connected, and

described in the statements and proofs of theorems.
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The ‘schematic’ element in mathematical theorems, definitions,

and even proofs is not captured by treating the indeterminate

objects involved as universally quantified variables, as quantifica-

tion requires a fixed domain over which the range of the variable

is restricted. [2, p. 59]

In adopting this distinction, it seems problematic to account for the truth

of a mathematical theorem in terms of the “Tarskian” apparatus required by

our third criterion for a foundation. Note that the view of mathematical

theorems as conditional in form is not to be understood as identifying those

theorems with trivial claims of the form “Assuming that we are given an

object (or objects) of the following description and that all the steps in the

given proof are legitimate, then such and such follows”. Instead, the con-

tent of a mathematical theorem is taken solely to concern properties of the

object(s) described : groups, continuous real-valued functions, objects in a

category, and the vast array of other objects treated as singular terms in the

various branches of mathematics. Briefly, the theorems of mathematics are

not taken to embed the conditions of their proof in the antecedent.22 The

proof, of course, does involve steps which lead from the antecedent to the

conclusion, and how are we to know that such rules which permit such steps

are sound, given objects of the sort that might satisfy the antecedent? Is it

legitimate to appeal to the law of excluded middle, or the axiom of choice,

when reasoning about the basis of a vector space? In short, the deliberate si-

lence on the status of the objects that might satisfy the description contained

in the antecedent precludes any response to concerns about the legitimacy

of particular rules of inference employed in a proof. We are led, then, to

another view that will feature in the development of the AFCS program: a

proof provides grounds for the assertibility of a theorem, but does not suffice

for the claim that the theorem is true.

22This allows there to be more than one proof of the same theorem.
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Thus, when considering whether the AFCS program constitutes a foun-

dation for mathematics, we see that it fails to satisfy the second criterion,

which required an account of the way in which mathematical statements can

be known to be true. If, contrary to the AFCS proposal, we pack the rules

of inference employed in the proof of that theorem into the antecedent of

the conditional corresponding to that theorem, then take the theorem as a

universally quantified proposition, we obtain a trivial truth, but one which is

certainly of little interest, and, on the AFCS view, one which does not cor-

rectly represent the content of the theorem. As the AFCS view takes mathe-

matical statements to be assertible in virtue of a proof, but not demonstrated

to be true by that same ground, this second criterion is not satisfied. Fur-

ther, the third criterion also fails to be satisfied within the AFCS program,

insofar as mathematical theorems are taken to be schematic in form, and so

the semantics of such statements does not proceed solely via the semantic

apparatus identified in the third criterion. Given that the second and third

criteria for a foundation fail to be satisfied on the AFCS view, does the view

offer an organizational framework? Here the answer is yes, but the manner

in which the view satisfies this criterion differs from the manner in which

the logicist or formalist views satisfy the criterion. It is in describing how

the view aims to offer an organizational framework that we have the (long

overdue!) appearance of the notion of a category, the use of which will also

show the program to be a type of mathematical structuralism.

As Shapiro remarks, “The slogan of structuralism is that mathematics

is the science of structure” [79, p. 61]. While there are a number of ways

in which one might proceed in developing this viewpoint (several of which

will feature in Chapter 2), it will be argued that the correct rendering of

the insights that motivate the structuralist views of mathematics is not to

focus our attention on special, intrinsically featureless objects that bear only

relational properties, but instead to focus on structural properties, those prop-

erties which are common to all instances of the same structure. The language
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of category theory has the property that (in a manner to be made precise in

the coming chapters), objects with the same structure have the same proper-

ties expressible in that language. The language of category, then, is capable

of expressing properties with the “right level of detail”, in contrast to, for

example, the language of set theory. Consequently, if mathematics is a “sci-

ence of structure”, and this involves shifting attention away from special sorts

of objects to structural properties, the language of category theory will be

shown to be particularly well-suited to the task.

So, on this initial sketch of the AFCS view, a mathematical theorem

will be argued to be best represented as a schematic conditional, and the

correct account of the content of that conditional will be argued to involve a

claim about objects with a particular sort of structure: that of a group, field,

topological space, etc., and the structural properties of any such objects will

be argued to be best captured using the language of category theory. Unlike

either the logicist or finitist programs, the AFCS program does not identify

a single privileged framework of assertory axioms with a special justificatory

role. In the case of the logicist program, a system of ramified type theory,

for example, was taken to be a framework in which all of the mathematical

(logical) objects could be defined, and all of the theorems about those objects

could be proved. In the case of the finitist program, finitary proof theory was

taken to confer legitimacy on the axiomatic systems of the various branches of

mathematics via consistency proofs. The axioms defining a category are not

meant to offer a “bedrock” framework of this sort. Thus, while the language

of category theory provides a linguistic framework arguably well suited to

reflect the structural properties of interest, it constitutes an organizational

framework in a manner quite different from that of programs which adopt

assertory axioms. Mathematics is identified as the science of structure, and

more specifically, the science of structural properties. Structural properties,

as will be argued, are best rendered in the language of category theory.
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Having outlined the AFCS program, one aspect of the program bears

emphasis. The view that mathematical theorems are conditional in form,

and involve no commitment to a special class of mathematical objects is not

adopted in virtue of a prior commitment to nominalism. Rather, the view is

very closely aligned with that expressed by Russell when he claims

What pure mathematics asserts is merely that the Euclidean

propositions follow from the Euclidean axioms—i.e. it asserts an

implication: any space which has such and such properties has

also such and such other properties. Thus, as dealt with in pure

mathematics, the Euclidean and non-Euclidean Geometries are

equally true: in each nothing is affirmed except implications. All

propositions as to what actually exists, like the space we live in,

belong to experimental or empirical science, not to mathemat-

ics; when they belong to applied mathematics, they arise from

giving to one or more of the variables in a proposition of pure

mathematics some constant value satisfying the hypothesis, and

thus enabling us, for that value of the variable, actually to assert

both the hypothesis and consequent instead of asserting merely

the implication. [73, p. 5]

Whether abstract entities are admitted into one’s ontology or not, math-

ematical theorems apply in either case—mathematics is not the arbiter of

existence. If one considers a cube and is willing to speak of the symmetries

of the cube as objects, those symmetries constitute a group of 24 elements.

If one is willing to speak of the squares of a chessboard as objects, and the

possible moves of a knight on the chessboard as arrows, the collection of

such objects and arrows yields a category. Whether or not such objects are

admitted is not a question that one’s mathematical program should settle.

This view immediately allows the proponent of AFCS to reply to one line

of criticism. Consider Hellman’s claim that category theory is inadequate

given its failure to address the “problem of mathematical existence”,
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This problem as it confronts category theory can be put very

simply: the question really just does not seem to be addressed!

(We might dub this the problem of the ‘home address’ : where do

categories come from and where do they live? ) [38, p. 136]23

If one aims at a foundational program of the sort envisioned by the logicists

or finitists, this is a reasonable request: if a framework is to account for

the truth of mathematical statements (and retains the “face-value” seman-

tics which involves reference to mathematical objects), then there must be

enough such mathematical objects to ensure theorems about the existence

of exactly two four-element groups (up to isomorphism), the infinity of the

natural numbers, and the uncountability of the real numbers. However, if

one aims not at a foundation by instead at what might be called a purely

organizational framework, this issue is avoided. If, further, it is correct to

hold that mathematics should remain ontologically neutral, it would in fact

be a mark of deficiency for the view to imply, or require, the existence of any

objects, distinctly mathematical or otherwise.

To summarize, the AFCS program involves the following claims.

1. The structuralist view that “mathematics is the science of structure”,

is best expanded as the claim that “mathematics is the science of struc-

tural properties”.

2. Mathematical theorems are both conditional and schematic in form.

3. Mathematics is taken not to concern any particular, determinate col-

lection of objects, distinctly mathematical or otherwise; mathematical

theorems involve no commitment to objects of any sort, structures in-

cluded.

23Hellman’s own program of modal structuralism, as presented in [35], addresses this
concern via axioms that stipulates the possibility of, for example, a model of the (second-
order) Peano axioms. If the ontological neutrality of mathematics is to be taken seriously,
though, it might naturally be taken that mathematics should no more make claims about
possible existence than it makes claims about actual existence.
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4. The language of category theory is better suited to express structural

properties than available alternatives.

The AFCS view embodies a number of ideas that have been variously ex-

pressed in recent work in the philosophy of mathematics, particularly Awodey

[2], Bell [5], and Landry and Marquis [48]. The details of this view will be

explored in the chapters to follow, and concerns of the sort raised in Shapiro

[79], Hellman [38], and Feferman [29] will be addressed. The development of

the AFCS will now proceed via an analysis of the notion of structure—and

in particular, the notion of a structural property—in Chapter 2.
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Chapter 2

Structures and Structural

Properties

The central dogma of the axiomatic method is this: isomorphic

structures are mathematically indistinguishable in their essential

properties. [57, p. 19–20]

Category theory is the most elaborate and successful instance of

an axiomatized theory allowing for a systematic characterization

and analysis of the different structures, and the recurring mathe-

matical phenomena that come forward in the latter. [23, p. 12]

While the claim that mathematics is correctly viewed as the “science of struc-

ture” has received considerable attention in recent work in the philosophy of

mathematics1, the proponents of the view each offer distinct—and sometimes

incompatible—accounts of their various structuralist projects. In this chap-

ter I will be concerned to distinguish the structuralist element of the AFCS

program, and to consider the way in which the category-theoretic account

of structure, via structural properties, captures what can be identified as the

key insight of the structuralist perspective in mathematics. This chapter

1See, for example, Shapiro [78], Hellman [35], and Resnik [69].
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concludes with a comparison of the category-theoretic treatment of structure

to that of two alternative structuralist programs.

2.1 Early Structuralism

An important early work that can be taken to illustrate several of the key

structuralist insights is Dedekind’s 1888 essay on “The Nature and Meaning

of Numbers” [24]. In that work Dedekind introduces his construction of the

natural numbers, achieved through a characterization of what would now

be called an ω-sequence. This definition of an ω-sequence will be reviewed

here and then used to illustrate and motivate a number of the insights that

reemerge in contemporary structuralist views in the philosophy of mathe-

matics.

Working against a background of informal set theory, Dedekind takes the

range of objects in his framework to consist of “every object of our thought”,

and these objects can be collected up into “systems”, where “a system S (an

aggregate, a manifold, a totality) as an object of our thought is likewise a

thing” [24, p. 21]. Against this informal set-theoretic background, Dedekind

appeals to the notion of a transformation, where “By a transformation φ of

a system S we understand a law according to which to every determinate

element s of S there belongs a determinate thing which is called the trans-

form of s and denoted by φ(s)” [24, p. 24]. Thus, in modern terminology

Dedekind provides an informal set-theoretic framework along with the notion

of a function defined on a set S. A transformation φ, which maps S to φ(S)

is similar provided it is injective, in which case it has an inverse, φ, mapping

φ(S) to S. Two systems S and R are said to be “similar” when there exists

a similar transformation φ such that φ(S) = R, that is, when there exists a

function φ mapping S to R that is a bijection. With these notions Dedekind

is able to introduce his now familiar definition of an infinite set: a set is

infinite (now commonly referred to as “Dedekind-infinite”) provided there is



CHAPTER 2. STRUCTURES AND STRUCTURAL PROPERTIES 29

a similar (i.e., injective) function φ which maps S to a proper part of itself.

The final ingredient of Dedekind’s definition of a simply infinite system—

in modern terms, an ω-sequence—involves the definition of a chain. A set S

is a chain (relative to a function φ) provided φ(S) ⊆ S. Give a subset A of S

and a function φ (where S is a chain relative to φ), the chain of A (relative

to φ) is defined to be the intersection of all chains containing A. In essence,

the chain of A is the minimal closure of A under φ.2 With this definition at

hand, Dedekind defines a simply infinite system:

A system N is said to be simply infinite when there exists a

similar transformation φ of N in itself such that N appears as

chain of an element not contained in φ(N). We call this element,

which we shall denote in what follows by the symbol 1, the base-

element of N and say the simply infinite system N is set in order

by this transformation φ. [24, p. 33]

Using modern terminology, a set N is simply infinite provided there exists

an injective function φ mapping N to a proper subset of itself, for which one

of the elements a ∈ N \φ(N) is such that the minimal closure of {a} under φ

is N itself.3 Consequently, any such N is an ω-sequence, and can be shown

to satisfy the Peano axioms.4

2.1.1 Structuralist Perspectives

There are two key features of Dedekind’s treatment of simply infinite systems

that can be described as structural. First, the elements of any simply infinite

system N are described in solely in terms of their relational properties ; that

2That is, if A0 is the chain of A under φ, then A ⊆ A0 and for all a ∈ A0 we have
φ(a) ∈ A0, where A0 is the smallest set with this property.

3Here we might observe that Dedekind is not distinguishing between an element and
its singleton, as chains have only been defined for sets.

4Indeed, Dedekind effectively shows that the Peano axioms hold of any such N , one
year prior to the paper in which Peano presents these axioms.
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is, the elements of such a simply infinite system N are not required to have

any particular intrinsic properties. Indeed, given a simply infinite system N

(relative to a function φ) with base-element b and an element a not in N , we

can simply define a function

ψ(x) =

{
φ(b) if x = a,

φ(x) otherwise.

to get a simply infinite system N ′ (with a replacing b, and which is now

relative to the function ψ). Compare this situation to one in which, instead

of simply infinite systems N , we consider systems C of objects of the same

colour. We cannot, for a given such system C—say, a system of red objects—

replace one such red object with an arbitrarily selected object not already in

the system and produce a new system of objects all of the same colour. Any

object can play the role of a base-element (or similarly, any other element)

in a simply infinite system, but this is not true of objects in a system of

similarly coloured objects. An element of a system of red objects must be

red, and replacing it with an object of another colour yields a system which

is no longer a system of similarly coloured objects.

A second structural feature of Dedekind’s approach concerns not the ar-

bitrary interchangeability of the elements of a system, but instead concerns

the interchangeability of the systems themselves. In an investigation of the

properties of simply infinite systems, we might say, with Benacerraf, that

“any old ω-sequence would do” [12, p. 189]. The particular features of a

given simply infinite system N , such as the particular elements of which it is

composed, are irrelevant to the role of N qua simply infinite system; the ele-

ments of any such N can be used in counting, arithmetic, and so forth. Any

simply infinite system could be taken as the natural numbers (or taken as a

convenient surrogate), and the theorems of arithmetic, purportedly about the

natural numbers, would apply equally to the elements of that simply infinite

system. As Dedekind puts it



CHAPTER 2. STRUCTURES AND STRUCTURAL PROPERTIES 31

. . . it is clear that every theorem regarding numbers, i.e., regard-

ing the elements n of the simply infinite system N set in order by

the transformation φ, and indeed every theorem in which we leave

entirely out of consideration the special character of the elements

n and discuss only such notions as arise from the arrangement φ,

possesses perfectly general validity for every other simply infinite

system Ω set in order by a transformation θ and its elements ν

[24, p. 48]

Both of these perspectives reflect the structuralist focus, which involves

not the intrinsic properties of elements or systems themselves, but involves

instead the relational properties, i.e., the relational structure of the entities

in question. In effect, these two different perspectives amount to a difference

in emphasis, and are taken here to characterize the structuralist view of

mathematics. These perspectives are roughly

1. The particular elements of a system don’t matter, only their standing

in relations of the right sort is of mathematical concern—any suitably-

related elements would do.

2. The particular system of elements doesn’t matter, only that the sys-

tem’s elements stand in certain relations—any suitably-structured sys-

tem would do.

To illustrate these differences in perspective, consider the case of a jeweller

who has grouped emeralds according to colour. If asked to explain to a po-

tential customer the variability permitted within colour groupings, we may

suppose that any group of similarly coloured stones would suffice. However,

it is clearly not the case that a gemstone in one collection could be arbi-

trarily replaced with a gemstone from another—the colour would be wrong.

In this circumstance, then, we have variability of the second sort, but not

of the first: any group of gemstones would serve to illustrate the variability
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permitted within a group, but we cannot arbitrarily replace individual gem-

stones in one group with those of another. Now imagine that the jeweller has

created several different piles of emeralds on a table, with different numbers

of emeralds in each pile, and a customer has requested that a necklace be

made with exactly five gemstones. If our jeweller identifies a group of five

gemstones, then we have variability of the first sort, but not the second. Any

of the individual gemstones in the selected group of five could be switched

with a gemstone taken from another group (as there would then remain five

gemstones in the selected group), but other groups may not suffice, as some

contain more than or less than five gemstones. The structuralist approach

in mathematics can be viewed as highlighting the insensitivity—for mathe-

matical purposes—of both sorts: insensitivity to the particular elements in

a system of a given type, and insensitivity to the particular system of that

given type.

While Dedekind’s remarks cited earlier may suggest that he favoured the

second of these perspectives, other remarks suggest that instead he favoured

this first perspective, and indeed it is this first perspective that leads him to

a view that

If in the consideration of a simply infinite systemN set in order by

a transformation φ we entirely neglect the special character of the

elements; simply retaining their distinguishability and taking into

account only the relations to one another in which they are placed

by the order-setting transformation φ, then are these elements

called natural numbers or ordinal numbers or simply numbers

[24, p. 33]

This passage from Dedekind can be read in two ways. First, it may be read

as suggesting that, attending only the the relational properties of a system’s

elements, any simply infinite system could serve as the natural numbers.

Alternatively, it can be read as suggesting that one proceed by a process of
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abstraction5 to arrive at the natural numbers, which have only those proper-

ties common to all ω-sequences, i.e., they have only the structural properties

possessed in virtue of being an ω-sequence. In support of this latter reading

of Dedekind, Dedekind writes in a letter to Heinrich Weber that

I should still advise that by number. . . there be understood not

the class (the system of all mutually similar finite systems), but

rather something new (corresponding to this class), which the

mind creates. We are of divine species and without doubt pos-

sess creative power not merely in material things (railroads, tele-

graphs), but quite specially in intellectual things. [80, p. 248,

quoting from an 1888 letter found in Dedekind’s Gesammelte

Mathematische Werke]

Of course, placing emphasis on this first perspective need not lead to a com-

mitment to a special sort of “purely relational” (mathematical) object, pos-

sessing no intrinsic properties, and we will consider modern structuralist

programs that do not involve commitment to objects of this sort.6

These structuralist perspectives account for the ease with which struc-

turalist programs may account for the application of mathematics in, for

example, the sciences. Given that, as Dedekind notes, the theorems of arith-

metic will apply to any simply infinite system, there is a clear link between

the pure mathematics of arithmetic—effectively the study of any simply in-

finite system—and the applied mathematics of arithmetic, which arises from

the (extra-mathematical) determination that a given system of objects counts

as a simply infinite system, and that the objects in view can serve as ele-

ments in a simply infinite system. This naturally fits with the schematic,

conditional view of mathematics adopted on the AFCS view. Given the

determination that a system can be taken to satisfy the axioms defining a

5This abstraction process is dubbed “Dedekind abstraction” in [81].
6Although, as well shall see, Shapiro’s ante rem program does invoke such a commit-

ment.
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type of structure (thereby satisfying the antecedent of the conditional of a

theorem), the consequent of that theorem, having been proven to hold for

structures of the relevant sort, is also true of the given system. As the theo-

rem is schematic, there is no mathematical constraint on the sorts of entities

that can be viewed as systems, nor the sort of entities that can be viewed

as elements of systems. Therein lies the key to the universal applicability

of mathematics; one willing to treat forces as objects will discover that they

can then be fruitfully studied as vectors, one willing to treat symmetries of

regular polygons as objects can appeal to the results of group theory. There

are no mathematical prohibitions which concern what can count as a system,

or what can serve as an object in a system.

Dedekind’s well-known attempt to prove the existence of infinite systems

is generally taken to have been inadequate. Recall Dedekind’s claim that

My own realm of thoughts, i.e., the totality S of all things, which

can be objects of my thought, is infinite. For if S signifies an

element of S, then is the thought s′, that S can be object of my

thought, itself an element of S. If we regard this as transform

φ(s) of the element S then has the transformation φ of S, thus

determined, the property that the transform S ′ is part of S; and

S ′ is certainly proper part of S, because there are elements in S

(e. g., my own ego) which are different from such thought S ′ and

therefore are not contained in S ′. Finally it is clear that if a, b

are different elements of S, their transforms a′, b′ are also dif-

ferent, that therefore the transformation φ is a distinct (similar)

transformation. Hence S is infinite, which was to be proved. [24,

p. 31]

As Hellman rightly notes,

. . . there were at least two flaws in Dedekind’s “proof”: first, there

was the problem of meaningfully iterating a “the thought that. . . ”
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operator an arbitrary finite number of times, obtaining a new

object at each stage. And, second, there was the need to collect all

such objects via some comprehension principle, which Dedekind

did not explicitly articulate. [35, p. 29]

However, the failure of Dedekind’s argument as a proof of the existence of

infinite systems does not prevent him from using the results of his math-

ematical framework to investigate the simply infinite system generated by

taking a particular thought a, and considering the minimal closure of {a}
under φ. If he is willing to speak in this manner (though we may not be in-

clined to follow), he can then produce the prime factorization of a particular

such element, (secure in the thought that such a factorization is unique up

to ordering), or use those elements to create and solve equations.

Before moving to consider recent structuralist programs in the philosophy

of mathematics, one further feature of Dedekind’s approach bears mention,

and it will be a feature that plays a prominent role in category-theoretic

approaches to structuralism. There is another sense in which a system N

counting as a simply infinite system depends on an external feature, one

that is not intrinsic to the system N (nor is this feature intrinsic to the

elements of such a system): whether or not a system N counts as simply

infinite depends crucially on the existence of a function φ, a function which

“sets N in order”. Thus, one can conceive of a system of objects that would

count as a simply infinite system, but for a poverty of functions. While

Dedekind says little about the ontological assumptions governing functions,

he notes (in article 21) that there are identity functions for any system S, that

function composition is defined for all composable pairs (article 25), and that

function composition is associative (article 25). That is, Dedekind establishes

that taking functions as arrows and systems as objects yields a category.

Whatever the elements of the structures are taken to be, the systems of

such elements are described throughout Dedekind’s essay entirely in terms

of the properties of functions acting on those systems; whether a system
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is finite, infinite, simply infinite, and so forth depends not on the specific

nature of the elements of the system, but instead depends on the “external”

characterization of those elements via the functions defined on those systems.

Dedekind’s treatment of simply infinite systems is quite naturally expressed

in the language of the category theory, and the distinctions Dedekind makes

concerning the cardinality of his systems—the objects of this category—

depends entirely on the features of this ambient category. We will have an

opportunity to pursue this account of Dedekind when we explore category-

theoretic, or categorical, structuralism. Now we will briefly consider how

some of Dedekind’s structuralist approach within mathematics emerged in

the modern structuralist approach within the philosophy of mathematics.

2.2 Modern Structuralism

The structuralist perspective came to the fore in philosophical circles with

Benacerraf’s seminal “What Numbers Could Not Be” [10]. Benacerraf in

this familiar paper presents the situation of Johnny and Ernie, one of whom

is taught, within a set-theoretic framework, the Zermelo definition of the

finite ordinals, while the other is taught the von Neumann definition.7 Dis-

cussing their rival accounts of the numbers, Johnny and Ernie notice that

their accounts are incompatible; on the Zermelo version, for instance, it can

be proven that all finite ordinals are singletons, a result that is (obviously

and provably) false on the von Neumann account. Benacerraf’s assessment

of the problem is that “the accounts differ at places where there is no connec-

tion between features of the accounts and our uses of the words in question”

[10, p. 62]. Benacerraf’s response to this observation is to claim that any ω-

7On the von Neumann definition (now the standard choice) the finite ordinals begin
with ∅ and each element in the sequence is the set of all its predecessors, so the sequence
is ∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}, . . . , while the Zermelo definition also begins with
∅, but then takes each successive element to be the singleton of its predecessor, giving the
sequence ∅, {∅}, {{∅}}, {{{∅}}}, . . . .
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sequence can be taken to play the role of the natural numbers,8 but that the

natural numbers are not to be identified with any particular such collection

of objects. Numbers cannot be sets because when presented with incompat-

ible set-theoretic accounts of the numbers we have no criteria to which we

can appeal in breaking the tie. Further, numbers can’t be objects on Benac-

erraf’s view for essentially the same reason: the numbers are characterized

only in relational terms, and so an object might play the role of the number

3, but to claim that an object is the number 3 is to predicate a non-relational

property of that object, and so any attempt to identify an object as this or

that particular number can do so only by smuggling in some inappropriately

intrinsic features. Arithmetic, for example, is then “the science that elabo-

rates the abstract structure that all progressions have in common merely in

virtue of being progressions” [10, p. 70].

Benacerraf’s discussion of the problem of identifying the natural numbers

informs many of the debates concerning contemporary structuralist views.

Benacerraf’s remark that “any ω-sequence will do” invites one to consider

the sense in which this claim is intended: any ω-sequence will do for what

purpose? Benacerraf notes that “For arithmetical purposes the properties of

numbers which do not stem from the relations they bear to one another in

virtue of being arranged in a progression are of no consequence whatsoever”

[10, p. 69–70]. Recalling Dedekind’s observation that any theorem we arrive

at having ignored “the special character of the elements” of a particular sim-

ply infinite system N will also be true of any other simply infinite system

M , it is clear that “any ω-sequence will do” is intended in the sense that any

properties of mathematical interest are common to all ω-sequences. Provided

we appeal only to properties possessed by a system in virtue of being a sys-

tem of that type our theorems will be true of all such systems. Enlarging the

target from arithmetic to all branches of mathematics and agreeing to call

8Benacerraf originally required that the sequence in question have a recursive order
relation, and supplied a confused argument to that effect, but has since retracted that
additional requirement in [12].
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such properties of mathematical interest structural properties (as they are

common to all systems of a particular type, i.e., all systems of a particular

structure), we can express the key structuralist insight, reflected in the two

structuralist perspectives, as follows: mathematics is concerned only with

the study of structural properties—mathematics is the science of structural

properties. The particular objects in a given simply infinite system don’t

matter (any objects “will do”), because their intrinsic properties are irrel-

evant to the mathematical study of that system; the properties of interest,

those the elements exhibit simply in virtue of featuring in a system of that

sort, do not involve any intrinsic properties of the elements. The particular

system does not matter precisely because all of its properties of mathemati-

cal interest—the structural properties it possesses simply in virtue of being

a system of the relevant sort—are common to any system of that sort. Thus

we arrive at a positive proposal that captures the central insight of the two

(negative) structuralist perspectives identified earlier. Clearly some care is

required to articulate precisely what is meant by a structural property, and

the next section will be concerned to articulate and assess the merits of the

category-theoretic account of structural properties.

2.3 Structural Properties

In sharpening the notion of a structural property, focus on the natural num-

bers (via ω-sequences) has the unfortunate consequence that two distinct ap-

proaches to identifying structural properties run together. First there is the

view that structural properties are those that a system has in virtue of being

a system of a given type. So, in the case of the natural numbers, character-

ized by, say, the second-order Peano axioms9, the structural properties could

9Informally these axioms state: (1) every number has a successor; (2) the successor
of a number is unique; (3) for any numbers x and y, if the successor of x is equal to the
successor of y, then x equals y; (4) there exists a number which is not a successor of any
number; and (5) the principle of induction holds. The second-order formulation differs
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be taken to be exactly those which are consequences of the axioms. Writing

N and M to represent models10 〈N, s, 0〉 and 〈M, s′, 0′〉 of the second-order

Peano axioms, for any closed sentence A in the (second-order) language of

arithmetic, we have

N � A⇔M � A.11

As any such A holds (or fails to hold) in both N and M, structural prop-

erties might then be identified with those which correspond to the logical

consequences of the Peano axioms. Restricting attention to the first-order

case12, which admits of non-standard models, we may still make this identi-

fication, as the (now first-order) consequences of the axioms will still hold of

any model of the axioms; any properties that serve to distinguish the models

may then be deemed non-structural. Thus, for example, any model of the

Peano axioms is such that (the interpretation of) the sentences “2 + 3 = 5”

and “1 + 4 6= 7” both hold, and so those formulae corresponds to structural

properties, while the property of “having cardinality ℵ0” will not count as a

structural property.13

Second, we have the view that the structural properties of a given sys-

tem are those which are true of all models of the same sort. Slightly more

precisely, a property may be deemed structural provided it holds in all iso-

morphic models. Given that all models of the second-order Peano axioms are

isomorphic,14 when the theory in question is that of natural number arith-

from the first-order formulation in that (5) can, in the second-order formulation, be taken
as a single axiom, while it must be taken as an axiom schema in the first-order formulation.
PA2 will be used to indicate the (conjunction of the) second-order Peano axioms.

10It is important to note that the notion of model invoked here is not meant to involve
any restriction to, for example, models constructed in a privileged set-theoretic framework.
The notion of model invoked will be discussed in detail in Chapter 3.

11This is a consequence of the (second-order) categoricity result. For details, see [75,
p. 82–83].

12First-order presentations of the Peano axioms typically incorporate additional axioms
that recursively define addition and multiplication.

13The existence of models of the first-order Peano axioms having cardinality > ℵ0 is an
immediate consequence of the (upward) Löwenheim-Skolem theorem; see [9, p. 82].

14The details of this proof are essentially due to Dedekind, and can be found in [75,
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metic this account of structural properties collapses into the first account.

If a property is a logical consequence of the Peano axioms then it holds in

all models, and so a fortiori in all isomorphic models. Conversely, if a prop-

erty holds in all isomorphic models of the Peano axioms then it holds in all

models (as they are all isomorphic), and so it is a logical consequence of the

Peano axioms.15

Consider, however, the notion of a group (see Section 1.1.2). The axioms

of a group are not categorical, and so, unlike the case with ω-sequences, the

two preliminary accounts of structural properties come apart. On the second

account, where structural properties are those true (or false) in all isomorphic

models, “having a commutative group operation”16, “having order 5”, and

“being generated by a single element” all count as structural properties.

However, all of these properties are such that there are both groups that

exhibit those properties and groups that do not. Hence, on the first account of

structural properties, all of these properties would fail to count as structural.

There are three reasons to favour pursuit of this second account of struc-

tural properties. The first is a purely pragmatic consideration: when mathe-

maticians study groups, they are typically interested in studying exactly the

sorts of properties listed above: commutativity, generators, order, subgroups,

etc., and all of these are preserved under (group) isomorphism. Second, those

properties that would count as structural on the first proposal also count as

structural on the second proposal. So, no properties are “lost” in pursuing

the second account. Finally, and most importantly, by restricting attention

to groups in a particular isomorphism class (rather than taking into account

all groups) the two structuralist perspectives are preserved. The particular

elements don’t matter, as it is possible to redefine the group operation in

p. 82–83].
15It is worth noting that such a property may not be derivable from the Peano axioms

in a chosen deductive system, as “full” second-order logic is not recursively axiomatizable.
Details are covered in [75].

16A commutative group operation is one for which a ? b = b ? a for all a, b ∈ G. A group
with a commutative group operation is called an Abelian group.
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such a way as to permit any object to replace a given object in a particular

group,17 and it is possible to do so in a manner that yields a group isomor-

phic to the original. Similarly, by definition these properties are exhibited by

all groups in the isomorphism class, and so the particular group selected for

study doesn’t matter—any group from the isomorphism class will do. Thus,

the second approach to structural properties is consistent with mathematical

practice, subsumes the first candidate approach, and preserves both struc-

turalist perspectives. We now turn to examine an account of the notion of a

structural property cast in the language of category theory.

2.4 Structural Properties in the Language of

Category Theory

2.4.1 The Language of Category Theory

Consider a typed first-order language L, with lowercase letters x, y, z, . . .

used for terms of the first type (arrow type terms) and uppercase letters

A,B,C, . . . used for terms of the second type (object type terms).18 As is

usually the case, letters from the first part of the alphabet are typically used

for constants of their respective types, though context will usually suffice to

distinguish constants from variables of either type. There are two primitive

unary function symbols Dom and Cod which take arguments of arrow type

and yield objects, one primitive unary function symbol 1− which takes an

object as argument and yields an arrow, one binary relation symbol = which

accommodates arguments of either type, and one binary function symbol ◦
which takes two arguments of arrow type and yields an object of arrow type.

17This is accomplished simply by introducing a new group operation defined in terms
of the previous one, as was done with ω-sequences in Section 2.1.1.

18This presentation of the language of elementary (first-order) category theory is a
modified version of that found in [50]. In this case, composition of arrows, ◦, is taken as a
(partially-defined) function on arrows, Lawvere makes use of a primitive ternary relation
Γxyz, corresponding to y ◦ x = z.
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Note that f ◦ g is only defined when Cod(g) = Dom(f), and so ◦ is a partial

function on the class of arrows. The following clauses then determine the

well-formed formulae (wffs) of the language L.

1. For any term of arrow type x and term of object type A, Dom(x) = A

and Cod(x) = A are wffs.

2. For any terms of arrow type x, y, and z, x ◦ y is a term of arrow type,

and x ◦ y = z is a wff.

3. For any terms x, y of arrow type and A,B of object type, x = y and

A = B are wffs.

4. For any wffs φ and ψ, ¬φ, φ ∧ ψ, φ ∨ ψ, and φ→ ψ are wffs.

5. Where a wff φ has a free variable x of arrow type, ∀xφ and ∃xφ are

wffs; similarly for φ with a free variable F of object type.

Given such a language L and using the usual abbreviations, one can form

expressions such as

∀A∃!x(Dom(x) = A ∧ Cod(x) = B),

which expresses the claim that B is a terminal object,19 and

∀x, y((Cod(x) = Cod(y) ∧Dom(x) = Dom(y))→ (z ◦ x = z ◦ y → x = y)),

which expresses that z is a monic.20

2.4.2 Axioms and Definitions in Category Theory

The axioms that define a category were presented in Section 1.2 are here

repeated, now presented as formulae in the language L.

19Terminal objects are the category-theoretic analogue of a singleton set.
20Monic arrows are the category-theoretic analogue of an injective function.
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1. ∀x∃A,B(Dom(x) = A ∧ Cod(x) = B)

2. ∀x, y((Dom(x) = Cod(y)) → (Dom(x ◦ y) = Dom(y) ∧ Cod(x ◦ y) =

Cod(x))).

3. ∀A((Dom(1A) = A = Cod(1A)) ∧ (∀z((Cod(z) = A → 1A ◦ z = z) ∧
(Dom(z) = A→ z ◦ 1A = z))))

4. ∀x, y, z((x ◦ y) ◦ z = x ◦ (y ◦ z))

As the notion of isomorphism will play a critical role here, we will need

to introduce the category-theoretic rendering of this notion. Objects A and

B in a category are said to be isomorphic provided there is an arrow between

them (in fact, a pair of arrows) with a particular property. Arrows of three

types play an important role in category theory. For the sake of brevity, these

definitions are presented informally, rather than as formulae in L. Note that

two arrows with the same domain and codomain are said to be parallel.

• An arrow f : A → B is monic (represented by f : A � B) provided,

given any T and parallel arrows g : T → A and h : T → A, f ◦g = f ◦h
implies g = h.

• An arrow f : A → B is epic (represented by f : A � B) provided,

given any T and parallel arrows g : B → T and h : B → T , g◦f = h◦f
implies g = h.

• An arrow f : A → B is iso (represented by f : A
∼→ B) provided

there is an arrow g : B → A such that f ◦ g = 1B and g ◦ f = 1A. If

f : A → B is iso, we will sometimes write A
f∼ B, or simply A ∼ B.

Such an arrow g is unique, and so typically represented as f−1.

Monics are the category-theoretic analogue of injective functions; if two par-

allel functions h, j : T → A are distinct then they disagree on some value

t ∈ T , then h(t) 6= g(t), and so (for an injective function f) f(h(t)) 6= f(g(t)),
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i.e., f ◦ h 6= g ◦ h. The converse of this result is reflected in the definition of

a monic. Epic arrows are akin to surjective functions, although the analogy

is less fitting in this case; as McLarty explains “It is better to think of an

epic as ‘covering enough of B’ that any two different arrows out of B must

disagree somewhere within the part covered by f” [60, p. 15].21 Every iso is

both epic and monic, but the converse holds only in balanced categories.22

As arrows in a category need not be functions23, it is important to note that

these examples are merely suggestive. Monics, epics, and isos are defined in

terms of properties of arrows in a category, and arrows are primitive.

2.4.3 The Structural Properties Theorem

The question of principal interest, then, is given an object A in some cat-

egory, which predicates expressible in L correspond to structural properties

of A? Recalling the two structuralist perspectives (see Section 2.1.1), those

properties which depend on particular elements and particular systems are

ruled out. In the case of ω-sequences 〈N, s, 0〉 and 〈N ′, s′, 0′〉, we would not

want to consider, for example, “having successor function equal to s” as a

structural property; ω-sequences are required to have a successor relation,

but not to have the same successor relation. Similarly, having a particular

base-element a, or for the system to contain a particular element b, should

not count as structural properties, those particular elements are not essen-

tial, we merely require elements that play the same role. This leads to the

first restriction on predicates corresponding to structural properties in L:

structural properties should not involve names of particular elements, i.e.,

constants, in their formulation.

21In the category of rings and ring homomorphisms, the inclusion f : Z → Q is monic
and epic, but not iso.

22In an arbitrary category, an arrow is iso iff it is both monic and split epic, where an
arrow f : A→ B is split epic provided there is some arrow g : B → A such that f ◦g = 1B .
The details will not concern us here.

23Recall the examples given in Section 1.2. For example, taking positive integers as
objects and n×m real-valued matrices as arrows f : n→ m.
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The first restriction leads directly to a second restriction that shares the

same motivation. If we allow parameters—unquantified variables—in the

formulae meant to correspond to structural properties, then the problem we

hoped to avoid by prohibiting constants would reemerge. Again considering

ω-sequences A = 〈N, s, 0〉 and B = 〈N ′, s′, 0′〉, take a formula with vari-

ables Z, x, and y such as “x is the base-element of the ω-sequence Z and

has immediate successor y”. Representing this formula as F (Zxy), consider

the formula obtained by existentially quantifying over x and leaving y free,

∃xF (Zxy). Structural properties are meant to hold of all models of the

same sort—in this case, all ω-sequences—but while all ω-sequences have a

base-element (which then has a particular successor element), the successor

element of the base-element in one sequence may not be that of the base-

element in another. Thus, if a is the successor of the base-element 0 in the

ω-sequence A and b is the successor of the base-element 0′ in the sequence

B, then, provided a 6= b, we have one sequence that satisfies ∃xF (Zxa) and

another that does not. In short, allowing parameters permits the substitu-

tion of particular elements into formulae, which may then yield predicates

corresponding to properties that depend on those particular elements, and

so would not count as structural. In summary, the structuralist perspectives

yield an account of (the predicates corresponding to) structural properties

that prohibits constants and parameters. We now proceed to establish a

result that shows the language of category theory to be particularly well

suited to express structural properties: given any object A in a category, all

formulae in L which do not involve constants or parameters correspond to

structural properties of A. That is,

Structural Properties Theorem. If Φ is a formula in L with one free

variable of object type and no constants or parameters, then if A and B are

isomorphic objects in some category C,

ΦA⇔ ΦB.
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Proof. (sketch)24 Fix a category C and objects A and B such that u : A
∼→ B.

The proof proceeds by structural induction on Φ, and makes use of a mapping

F , a function taking objects to objects and arrows to arrows defined as

follows.

Let F (A) = B, F (B) = A, and F (C) = C for any object C 6= A,B.

Thus, F exchanges objects A and B, and leaves all other objects unaltered.

Note that F is a bijection on objects, as F is clearly surjective, and for any

object X of C, FF (X) = X.

The action of F on arrows depends on whether the arrow has either of A

or B as domain or codomain. Analogous to the case with objects, the action

of F on arrows will be to swap to roles of A and B, leaving other objects

fixed. For any f : X → Y such that X, Y 6= A,B, let F (f) = f . When either

A or B feature in an arrow, composition with either u or u−1 will be used

to yield an arrow which exchanges A and B. The clauses that determine the

action of F on such arrows are given in the table below.

For any X, Y 6= A,B,

f : X → A 7→ u ◦ f : X → B

f : X → B 7→ u−1 ◦ f : X → A

f : A→ X 7→ f ◦ u−1 : B → X

f : B → X 7→ f ◦ u : A→ X

f : A→ B 7→ u−1 ◦ f ◦ u−1 : B → A

f : B → A 7→ u ◦ f ◦ u : A→ B

f : A→ A 7→ u ◦ f ◦ u−1 : B → A

f : B → B 7→ u−1 ◦ f ◦ u : A→ B

A long, but straightforward case analysis suffices to show that, for any arrow

f we have FF (f) = f , the latter following by the definition of F taken

along with the associativity of composition and properties of u and u−1. For

24This proof follows the technique presented in [61], in which McLarty establishes a
result specific to natural number objects in a category of sets (a category with additional
axioms appropriate to the specific case investigated in that article). In particular, the core
of this proof, the definition of the functor F , carries over from McLarty’s proof.
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example, consider an arrow f : A→ X as above. We get

FF (f) = F (f ◦ u−1) by the definition of F,

= (f ◦ u−1) ◦ u as f ◦ u−1 : B → X,

= f ◦ (u−1 ◦ u) by associativity,

= f as desired.

The other cases follow similarly. Again, routine case analysis shows F to be

surjective (the pre-image of any f can be built up using appropriately chosen

composites with u and u−1), and so F is a bijection on arrows.

The strategy is now to use structural induction to establish that

Φ(A)⇔ Φ(A)F , (2.1)

where, for a given formula Ψ, the formula ΨF is obtained by replacing every

object term X with F (X) and every arrow term f with F (f). As F is

a permutation on the objects and arrows of C, there existing an arrow f

(or object X) satisfying some condition is equivalent to there existing an

arrow F (f) (or object F (X)) satisfying that same condition, similarly for

universally quantified expressions. As the only constant term appearing in

the formula Φ(A) in (2.1) is, by assumption, A, (2.1) would then simplify to

Φ(A)⇔ Φ(B). (2.2)

For the base case of the inductive proof, the atomic formulae are of the

form x = y or X = Y for arrow terms or object terms, respectively. Here

again, treating cases is lengthy but straightforward. It can be shown that F

respects domains, codomains, identities, and composites.25 That is, for any

25These are precisely the conditions that establish that F is a functor F : C → C,
which is an arrow in the category of categories.
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arrows f and g and any object X,

Dom(F (f)) = F (Dom(f)), (2.3)

Cod(F (f)) = F (Cod(f)), (2.4)

F (1X) = 1F (X), and (2.5)

F (f ◦ g) = F (f) ◦ F (g). (2.6)

For example, consider the following case of (2.6), with g : X → A and

f : A→ B, where X 6= A,B. Then we have

F (f ◦ g) = u−1 ◦ (f ◦ g) as f ◦ g : X → B,

= u−1 ◦ f ◦ u−1 ◦ u ◦ g as u−1 ◦ u = 1A,

= (u−1 ◦ f ◦ u−1) ◦ (u ◦ g) by associativity,

= F (f) ◦ F (g).

The other 26 cases of (2.6) follow similarly.

The inductive step of the proof then follows from the earlier observation

that quantification is unaffected by “exponentiation by F”, and that expo-

nentiation by F leaves the logical operators of a formula unchanged.

Structural properties are, on one approach, those that do not depend on

the features of particular elements or particular systems. This view is re-

flected in the (negative) structural perspectives identified in Section 2.1.1,

and leads to a prohibition against constants or parameters appearing in any

formula corresponding to a structural property. Second, in attempting to

sharpen the notion of a structural property, those properties were tentatively

identified as those which are shared by any system of a given type, where

two systems N and M being of a given type was identified with their being

isomorphic. The theorem above establishes that the language of category

theory unifies these views: all predicates without names or parameters cor-

respond to structural properties, in the sense that any predicate of that sort
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corresponds to a property common to all isomorphic objects in a category.

Certainly some important questions need to be addressed in order to

properly assess the merits of this feature of the language of category theory.

If, for example, one is interested in establishing a theorem concerning cyclic

groups, one might take cyclic groups as objects in a category, where the

arrows in that category are group homomorphisms. But which groups are

there? And how are these groups related; i.e., which homomorphisms are

there? A homomorphism between groups can be represented as an arrow

between those groups in a category, but is there a homomorphism between

two particular groups G and F? Also, should our category C perhaps contain

all groups, or all finitely generated groups? Recall that textbooks in group

theory typically identify groups as sets26, and so it may be more natural to

take the language for expressing the structural properties of groups to be the

language of some set theory, say, ZFC. The language of ZFC has the further

advantage of offering a uniform treatment of all its subject matter: groups

are sets, functions between groups are sets, elements of groups are sets.27

One way to describe these concerns is via a comparison to the language of

set theory: does category theory afford one the same expressive resources as

the language of set theory?

Exploring the AFCS account of models of an axiomatic system will be

postponed until Chapter 3, but recall that one aspect of the AFCS view

is a deliberate silence on Hellman’s problem of the “home address”, save

for advocating the language of category theory as particularly well-suited to

capture the notion of structural property.28 Any specification of the particular

objects taken to compose models, and, indeed, the nature of the models

themselves, is, so to speak, in the hands of the applied mathematician, the

physicist, and those who make use of the schematic, conditional theorems of

26See the definition cited in Section 1.1.2.
27This is a minor complaint against the category-theoretic approach, as an “arrows-only”

definition of a category is also available, see [52].
28See the discussion in Section 1.5.
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mathematics. This view will be further explored in the next chapter.

There is, however, a separate, related issue that merits investigation. It

is well known that considerable work has gone into establishing the adequacy

of the language of set theory for the purpose of describing the objects of all

branches of contemporary mathematics. Set-theoretic models of axiomatic

theories—for example, the theory of rings—can be described directly within

the language of set theory. That is, one can translate the axioms for a ring

into the language of set theory, then construct a formula in the language of

set theory that says “x is a ring”, or “z is a (ring) homomorphism between

the rings x and y”. For all that has been said about the expressive resources

of the language of category theory thus far, one might worry whether the

language of category theory has this ability, or whether the language of cat-

egory theory must necessarily reside “one level up” from languages like that

of set theory. Must one first define the objects of mathematics (and their

associated morphisms) in the language of set theory, and then “ascend” to

describe them as objects (and arrows) in the language of category theory?

Note that this concern is distinct from the problem of the “home address”;

the concern here is not that the objects must be shown to exist in some other

theory, but that they must first be described in some other theory. While

the observations contained in Section 2.5 might be taken to show that sort

of translation to be not entirely without benefit, such a “set theory first”

approach will be seen to be unnecessary.29

A proponent of the AFCS program may, of course, observe that the lan-

guage of set theory is intended to describe sets30, and this restriction runs

counter to the tenets of AFCS program: one may hold the the rigid mo-

29Should further conditions need to be imposed for the purposes of defining the objects
of interest (existence of products, function spaces, etc.), they can be added directly within
the language of category theory, as will come to light in the discussion of the elementary
theory of the category of sets.

30Here the less common set theories which admit urelements are not being considered,
but one might observe that, while such elements may be present in the theory, there is
little sense to the claim that a set theory is equipped to describe such elements.
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tions of a tetrahedron form a group, but rigid motions are not sets (although

the group of rigid motions may be expected to be isomorphic to some set-

theoretic group). The particular nature of the models of a given axiomatic

system is deliberately unspecified within mathematics, a feature that may

help to explain the applicability of mathematics in novel contexts such as

may be required by a newly developed physical theory.

However, concerns about the expressive resources of the language of cat-

egory theory as compared to the language of set theory can be addressed

directly, and here a particularly strong result obtains. In [49] Lawvere in-

troduces his elementary theory of the category of sets (henceforth ETCS).

The language of ETCS can be taken to be the language L described ear-

lier, and eight axioms are added to the axioms that determine a category.

It can then be shown that the theory ETCS is inter-interpretable with the

theory of BZC, Zermelo set theory with the axiom of choice and the axiom

of (bounded) separation.31 Further, McLarty shows in [62] that an axiom

scheme of replacement can be added to yield a theory ETCS+R, which he

shows to be inter-interpretable with full ZFC. One who wants to pursue

set-theoretic reconstructions of mathematical objects thus finds that the lan-

guage of category theory has much to offer, but it offers a “function-based”

set theory as opposed to the “membership-based” theory like that of ZFC.

The technical details will not be pursued here, but the results of the Struc-

tural Properties Theorem carry over to ETCS+R; as McLarty notes

The theory ETCS is structural in the sense that each ETCS set

provably has all the same properties as any set isomorphic to it.

An ETCS formula can only specify a set up to isomorphism. [62,

p. 48]

Some delicacy is required when assessing the inter-interpretation results.

One concern is whether the interpretations involved are homophonic: are the

31See [62] for details.
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sets and functions of one theory interpreted as sets and functions of the other?

Interpreting ETCS+R in ZFC proves relatively straightforward, with the

objects of ETCS+R interpreted as sets in ZFC, and the arrows interpreted

as (set) functions. However, the interpretation of ZFC in ETCS+R proves

more challenging. The homophonic interpretation is partial: many formulae

which involve membership in an essential way are not directly interpretable

in ETCS+R. As McLarty explains

For example there is no homophonic interpretation of the ZF

empty-set axiom: There is a set ∅ such that no set A has A ∈ ∅.

This relies directly on membership of sets. But consider this ZF

theorem: There is a set ∅ such that for every set A there is ex-

actly one function ∅→ A. This is homophonically interpretable,

and is also a theorem of ETCS. Indeed all isomorphism-invariant

theorems of ZF have homophonic interpretation. [62, p. 46]

There is also a total interpretation that is not homophonic, which involves

the notion of a set’s membership tree. A set is represented as the bottom node

of a tree diagram, with its members corresponding to the base of each branch

directly above that bottom node node, and similarly for those members.32

The details of this interpretation will not be explored here, but the reader is

again referred to [62] for additional sources.

Of particular importance for the purpose of this chapter is McLarty’s re-

mark that, on the homophonic interpretation of ZF in ETCS, all isomorphism-

invariant theorems of ZF have homophonic interpretation in ETCS. What

of the theorems of ZF that are not isomorphism invariant? On the face of

it such theorems would seem to be of little interest to the structuralist—

structural properties are isomorphism invariant—and this remark highlights

an important distinction between the language of set theory and the language

of category theory that warrants investigation.

32“Moving down” one level in the tree corresponds to “adding brackets”, collecting the
elements directly above that node, with each branch ending at the top with ∅.
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2.5 Structural Properties in a Set-Theoretic

Setting

Despite the similarity between the category-theoretic (“function-based”) and

set-theoretic (“membership-based”) theories of collections discussed above,

for the purpose of the structuralist these theories are crucially different. Con-

sider now the language of ZF, which consists of variables of only one type, two

primitive binary relation symbols ∈ and =, and no constant symbols. How

are the structural properties of its objects to be characterized? As structural

properties were viewed as those which did not depend on particular objects

(and so in this context, those which do not depend on particular sets), one

might expect that again those predicates with no parameters and no constant

terms would be those which correspond to structural properties. This view of

structural properties was seen to be motivated by the two structuralist per-

spectives (See Section 2.1.1). Unfortunately, a problem with this approach

emerges when one considers the other characterization of structural proper-

ties: those which are common to all isomorphic objects (where the objects

in question are sets in the present case). On the category-theoretic approach

these views were shown to coincide. Unfortunately, these two conceptions of

structural properties do not coincide in the language of set theory.

Given that set functions can be described directly in the language of set

theory33, one may consider a simple case, where two sets are taken to be

isomorphic exactly when they stand in bijective correspondence. Already

in this case we see the two conceptions of structural property come apart.

Consider (using the usual abbreviations) the predicate

Φ(x) =df ∀y(y ∈ x→ ∃!z(z ∈ y)),

which corresponds to the property of “having only singleton members”, and

33Where an n-ary function is a set of ordered (n + 1)-tuples satisfying the standard
uniqueness condition.
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take the sets A = {1} and B = {2}.34 Note that Φ involves no constant

terms and no parameters, so exemplifies the first conception of a structural

property. Both A and B are themselves singletons, and so isomorphic in

the simple sense of being in bijective correspondence. However, the single

element of B has two members, and so Φ(B) fails while Φ(A) holds; 2 is not

a singleton, and so Φ is not preserved under isomorphism.

This example illustrates a difficulty inherent to the set-theoretic frame-

work that is similar to the problem of identifying the natural numbers that

Benacerraf describes in [10]. In the case considered above, the language

of set theory allows us to distinguish—using (predicates corresponding to)

properties that do not involve particular elements—two isomorphic sets, but

this distinction is irrelevant to their role35 as singletons. Qua singletons, set

A serves us just as well as set B, but the language of set theory is, in a

sense, too fine grained: it allows for the formulation of predicates that are

structural in the sense of not depending upon particular objects (and so not

involving constants or parameters), but which are not structural in the sense

of being common to all isomorphic sets. Further, this result can be taken

to show that the characterization of structural properties as those which do

not involve particular objects is inappropriate with respect to the language

of set theory—the properties identified by that criterion are not structural.

The situation is no better when we take into account more complicated

structures along with their associated isomorphisms, as in the case of the

ω-sequences that feature in Benacerraf’s discussion [10]. In that case, the

von Neumann and Zermelo finite ordinals are equivalent as ω-sequences, but

differ with respect to their set-theoretic properties. Benacerraf’s complaint

is that, while the Zermelo and the von Neumann finite ordinals both stand

as candidates for the title the natural numbers, “the accounts differ at places

where there is no connection between features of the accounts and our uses

34Here taking the von Neumann definitions: 1 =df {∅} and 2 =df {∅, {∅}}.
35The role of these sets can be taken to be either identified implicitly by the isomorphism

type, or subject to some prior specification which then determines the isomorphism type.
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of the words in question” [10, p. 62]. The formula Φ constructed in the

example above serves to illustrate one of the inconsequential differences be-

tween ω-sequences that can be expressed in the language of set theory. One

aspect of this difficulty is due to the language of set theory itself, as the lan-

guage permits the expression of non-structural properties. In contrast, the

category theoretic framework can be augmented by axioms (all expressed

in the language L) that allow for the definition of a natural number object,

the category-theoretic analogue of an ω-sequence. In fact, given one such

natural number object, there are provably infinitely many such objects.36

The category theoretic account of an isomorphism remains as before: two

objects A and B are isomorphic provided there exists an iso f : A
∼→ B.

Again here, it is provable that (continuing to restrict attention to predicates

that do not involve constants or parameters) “All natural number objects

are indiscernible in this theory. They provably have all the same properties”

[61, p. 494]. Thus, taking the first account of structural property, distinct

natural number objects share all structural properties when expressed in the

language of category theory. Further, framed in the language of category

theory, the first and second accounts of structural property coincide; those

properties without constants or parameters are common to all isomorphic

objects.37

To summarize, structural properties on one view may be taken to cor-

respond to those predicates in which particular objects do not feature (so

no constants, no parameters), or they can be taken to be those which are

common to all isomorphic objects. These two views coincide in the language

36One proof of this result proceeds by taking different successor relations defined on the
same object, see [61, p. 493].

37McLarty considers the more complicated case where systems of objects and one or more
arrow are taken into consideration, and so the structural properties are not represented
by predicates with a single free variable, but also include variables for any number of
distinguished arrows as well. In the case of natural number objects, two distinguished
arrows are admitted, one corresponding to the successor operation and one to the selection
of a base-element. In [61] McLarty establishes a more complicated Structural Properties
Theorem involving these natural number objects.
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of category theory: all predicates in which there are no constants and no

parameters correspond to structural properties—they are common to all iso-

morphic objects. In the language of set theory, these two views come apart;

predicates not involving constants or parameters do not all correspond to

structural properties. In the language of set theory, we have recourse only to

the account that identifies structural properties as those properties common

to all isomorphic structures. But which are those?

In the language of category theory, there is a syntactic criterion to which

we can appeal in identifying (predicates corresponding to) structural proper-

ties. In the language of set theory, a predicate’s avoidance of constant terms

and parameters is, as we have seen, not sufficient to guarantee its preserva-

tion under isomorphism. The structuralist who appeals to the language of

category theory finds that—rather than having to rely on the language of set

theory in order to describe the mathematically relevant features of the ob-

jects under consideration—it is the language of category theory which serves

to separate the wheat from the chaff, yielding only isomorphism-invariant

properties. And it is exactly the isomorphism-invariant properties that are

of interest to the structuralist.

It is worth remarking here that the problem facing the structuralist who

adopts a set-theoretic framework is not addressed merely by producing a

criterion according to which properties of the language can be identified

as being preserved under isomorphism. That structuralist faces a further

question: why use a language which so readily allows for the formulation of

(predicates corresponding to) properties not preserved under isomorphism?

If such properties are of no interest to the structuralist, why should they be

admitted at all into the framework of a structuralist program?
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2.6 Alternative Structuralist Programs

Given the suitability of the language of category theory to the structuralist

view, it is perhaps surprising to note that some key proponents of structural-

ism have not adopted, and, in some cases, have actively resisted the use of

the language of category theory in developing their programs. In this final

section of the chapter, we will consider the features of two current structural-

ist programs, and explore their alternatives to structuralist programs framed

in the language of category theory.

Before considering alternative structuralist programs it will be useful to

observe that the programs do not use the term “structure” univocally. One

may follow Shapiro and use “structure” as a sortal concept, where a structure

is taken to be a sort of object, or one may adopt the view that an object

has or exhibits a particular structure, as when one speaks of the finite von

Neumann ordinals exhibiting the structure of an ω-sequence. Denoting these

two options structure1 and structure2, Benacerraf notes that

. . . the Empire State Building, although a paradigmatic concrete

object, is an imposing structure1, as is the union of the Rα for all

α < ℵω, as is R, the structure1 of the real numbers between 0 and

1; whereas it is also true that the structure2 of the Empire State

Building has never been repeated in any other building. . . [12,

p. 184]

On the AFCS program, “structure” is used in the sense of structure2, and

proponents of the AFCS program satisfy Benacerraf’s description of those

who

. . . represent mathematical theories as being about structures2—

the structural or relational features that systems of “objects”

might exhibit, without any special concern about whether there

are or could be any systems of objects that indeed exhibit them. . . [12,

p. 185]
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Thus “structure” will typically be used here in the sense of structure2. How-

ever, both Hellman and Shapiro use the term “structure” in the sense of

structure1
38; context should suffice to disambiguate. Despite this difference

in usage, all parties endorse the slogan that “mathematics is the science of

structure”, although the terminological differences point to their differing

motivations and goals in the development of these alternative structuralist

programs.

2.6.1 Shapiro’s Ante Rem Structuralism

Shapiro’s structuralist program is a foundational program according to the

criteria presented in Section 1.3.2. As Shapiro notes, “My structuralist pro-

gram is a realism in ontology and a realism in truth-value. . . ” [76, p. 72].

The “realism in ontology” points to Shapiro’s aiming to satisfy the third

foundational criterion, as

. . . the ante rem structuralist interprets statements of arithmetic,

analysis, set theory, and the like, at face value. What appear to

be singular terms are in fact singular terms that denote bona fide

objects. [76, p. 11]

Given the view that mathematical theorems are true, Shapiro endeavours

to describe the manner by which we come to know that the theorems of

mathematics are true (Chapter 4 of [76]), thereby satisfying the second foun-

dational criterion. Finally, his structuralist perspective, and particularly the

structure theory he presents (Chapter 3 of [76]), provides a unified view of

mathematics, and thereby aims to satisfy the first foundational criterion. In

short,

38Although their usages do not entirely coincide either, with Hellman’s structure corre-
sponding roughly to Shapiro’s system. Hellman, for example, speaks of distinct structures
potentially being “pairwise isomorphic” [35, p. 19], while on Shapiro’s view it is distinct
systems that may be pairwise isomorphic. On Shapiro’s view, provided all systems of a
given sort are pairwise isomorphic (i.e., the axioms defining the system type are categori-
cal) they determine a structure, and any isomorphic structures are identical [76, p. 93].
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I [Shapiro] try to say what mathematics is about, how we come to

know mathematical statements, and how we come to know about

mathematical objects. [76, p. 8]

One of the key features of Shapiro’s structuralist program is the dis-

tinction between “places-are-offices” and “places-are-objects” perspectives.

Consider, for example, the white queen’s bishop in the game of chess. Differ-

ent physical objects have played the role of the white queen’s bishop, so the

usage of the term “white queen’s bishop” can be associated with the role of

that chess piece. Taking terms of this sort to indicate a role is to adopt the

places-are-offices perspective. Alternatively,

When we say that the Speaker presides over the House and that

a bishop moves on a diagonal, the terms “Speaker” and “bishop”

are singular terms, at least grammatically. Prima facie, they de-

note the offices themselves, independent of any objects or people

that may occupy the offices. This is the places-are-objects per-

spective. [76, p. 10]

Considering the natural numbers, number terms may designate places-as-

offices: both the Zermelo {{∅}} and the von Neumann {∅, {∅}} occupy the

“office” of the number 2, insofar as they occupy the corresponding position

in their respective ω-sequences.

One central feature of Shapiro’s program is that he holds that there is a

sort of canonical occupant of some roles; in the case of the natural numbers,

for example, there is an object uniquely suited to the title the number 2.

One way to articulate the view is to consider how Shapiro characterizes the

structure vs. system distinction. Both the Zermelo finite ordinals and the

von Neumann are systems, where a system is taken to be a collection of

objects and relations on those objects [76, p. 73]. A system can be thought

of as a model of some set of axioms, and—provided the set of axioms is

coherent—to each isomorphism class of models of a particular collection of
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axioms there corresponds a structure. Structures, however, are not to be

viewed as equivalence classes of systems, instead they are best viewed as

involving a shift from the places-are-offices perspective to the places-are-

objects perspective, a shift that is considered legitimate when the axioms are

both categorical and coherent.

Coherence is, by Shapiro’s admission, a difficult notion to capture, and

cannot be identified with deductive consistency, as there are consistent second-

order theories that are not satisfiable.39 Instead, coherence is taken to be

“something more like satisfiability” [76, p. 95]. To complete the picture,

Shapiro’s adopts a stipulation concerning when structures are to be identi-

fied: “we stipulate that two structures are identical if they are isomorphic”

[76, p. 93]. Thus, Shapiro’s view is that

A purported implicit definition characterizes at most one struc-

ture if it is categorical—if any two models of it are isomorphic to

each other. A purported implicit definition characterizes at least

one structure if it is coherent [76, p. 73]

As the axioms of (second-order) Peano arithmetic are taken to be both cate-

gorical and coherent, they serve to characterize a unique structure answering

to the title the natural numbers, and at the appropriate position in this struc-

ture we find the number 2, an office as far as other systems are concerned,

but an object in the structure of natural numbers. Shapiro dubs his view

ante rem structuralism after the ancient view of universals which holds that

universals exist independently of any particular instantiation, just as struc-

39Shapiro offers the following example

Let P be the conjunction of the second-order axioms for Peano arithmetic
and let G be a standard Gödel sentence that states the consistency of P .
By the incompleteness theorem, P & ¬G is consistent, but it has no models.
Indeed, because every model of P is isomorphic to the natural numbers, G is
true in all models of P . Clearly, P & ¬G is not a coherent implicit definition
of a structure, despite its deductive consistency. [76, p. 135]
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tures are taken to exist independently of whether there are any systems that

exemplify them (see [76, p. 9]).

Concerns raised about certain features of Shapiro’s program will for the

most part be ignored here, as our focus here will be solely on those aspects of

Shapiro’s program that involve explicit rejection of some of the central tenets

of the AFCS program. A first such concern that needs to be addressed in-

volves Shapiro claims concerning the view he calls eliminative structuralism:

a structuralist view which acknowledges only the legitimacy of talk of systems

of some sort, avoiding the reification of structures and avoiding the “places-

are-objects” perspective. The AFCS program is of this sort. Furthermore,

Shapiro argues that eliminative structuralists are pushed to adopt ontological

assumptions in order to “make sense of a substantial part of mathematics”

[76, p. 86]. As the proponent of the AFCS view considers such ontological

assumptions to be misplaced if taken to be part of mathematics, it will be

necessary to reply to Shapiro’s arguments in support of this view.

Shapiro’s reason for concern about the ontological commitment required

by the eliminative structuralist involves the proposed interpretation of math-

ematical theorems as involving (implicit) quantification over systems. If Φ is

a sentence in the language of arithmetic, for example, “2 + 3 = 5”, then

According to eliminative structuralism, Φ amounts to something

in the form:

(Φ′) for any system S, if S exemplifies the natural-number struc-

ture, then Φ[S],

where Φ[S] is obtained from Φ by interpreting the nonlogical ter-

minology and restricting the variables to the objects in S. If the

background ontology is finite, then there are no systems that ex-

emplify the natural-number structure, and so Φ′ and (¬Φ)′ are

both true. Because mathematics is not vacuous, this is unaccept-

able. [76, p. 86]
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This concern is also presented earlier in [76], where Shapiro claims that

. . . eliminative structuralism requires a background ontology to

fill the places of the various structures. Suppose, for example,

that there are only finitely many objects in the universe. Then

there are no natural-number systems, and every sentence in the

language of arithmetic turns out to be true. For example, the

above rendering of “2 + 3 = 5” [as a conditional in the form of

Φ′] is true because there are no natural-number systems, but the

renderings of “2 + 3 = 0” and “2 + 3 6= 5” are also true. If

the background ontology is not big enough, then mathematical

theories will collapse into vacuity. [76, p. 9]

This concern is echoed in Parsons [66], who also uses this line of argument

to illustrate a seemingly fatal problem for eliminative structuralism. Taking

a formula like Φ′ to give the “canonical” representation of a mathematical

theorem of arithmetic,

. . . on the eliminative reading, if there are no simply infinite sys-

tems, then for any [natural number system] N, 0, S the state-

ment. . . giving the ‘canonical form’ of an arithmetic statement A

is vacuously true. But then both A and ¬A have true canonical

forms, which amounts to the inconsistency of arithmetic. [66,

p. 310]

The proponent of the AFCS program does not take the program to be in

any way dependent on the number of objects in the universe, much less a

program that leads to an inconsistent arithmetic!

The obvious response to these concerns involves a discussion of the notion

of a system or model of a collection of axioms, such as the Peano axioms (in

either their first– or second-order formulation). Recall that the proponent of

the AFCS version aims to remain neutral on questions concerning models.

Are they sets? Are there many of them? Do any of them “contain” infinitely
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many elements? All of these questions are treated on the AFCS program as

questions concerning not mathematics proper, but the application of mathe-

matics. In keeping with this view, the proponent of the AFCS program treats

such claims about models of the Peano axioms as not involving quantification

over models, but instead treats talk of models as schematic. This is related

to the failure of mathematical theorems, read as conditional and schematic,

to be true. These key aspects of the AFCS program will be explored in more

detail in Chapter 4.

For present purposes, it suffices to note that the proponent of the AFCS

program speaks of systems or models as Benacerraf suggests: “without any

special concern about whether there are or could be any” such entities [12,

p. 185]. If indeed there were no models of the axiomatic systems that char-

acterize the subject matter of the various branches of mathematics—if there

are no groups, no ω-sequences, no topological spaces, it would indeed be

remarkable, but that would be a concern for the physicist and the applied

mathematician, not for the pure mathematician, nor for the proponent of the

AFCS program. The proponent of the AFCS program denies that mathemat-

ical theorems typically involve vacuous antecedents, while refraining from af-

firming that there are models that satisfy the antecedent specification. There

is simply no commitment to any ontological claims about models.

Shapiro, however, does take it to be necessary for his (foundational) pro-

gram to account for an ontology of structures, and that is the role of his

structure theory, which stipulates the existence of certain key structures (via

an axiom of Infinity) and stipulates principles that allow for new structures to

be built up from others (via axioms like Replacement and “Powerstructure”)

(see Chapter 3 of [76]). “In effect, structure theory is a reworking of second-

order Zermelo-Fraenkel set theory” [76, p. 95]. It is curious that Shapiro’s

concern about the existence of mathematical systems can be addressed within

his own program by laying down an axiom that simply asserts the existence

of the structures (each of which also counts as a system) required! However,



CHAPTER 2. STRUCTURES AND STRUCTURAL PROPERTIES 64

Shapiro’s metaphysical view (and other metaphysical views) can be accom-

modated on the AFCS program. Shapiro has no concerns about vacuity

because his structure theory asserts the existence of the structures he re-

quires, a set theorist may happily assert that both the von Neumann finite

ordinals and the Zermelo finite ordinals establish that the Peano axioms have

a model, and Dedekind may be content to assert his thoughts suffice to show

the existence of ω-sequences. The nominalist may hesitate to commit to an

infinite totality, and some branches of mathematics may have no applica-

tions on the nominalistic conception. This is not to say that those branches

are any less “mathematical” than those accepted by the nominalist. A child

may refuse to eat vegetables, but that child cannot legitimately claim that

vegetables are not food, or that recipes for ratatouille have no place in a

cookbook.

There is, however, another response to the problem identified by Shapiro,

and that is to note that the canonical representation Φ′ does not quite cap-

ture all aspects of the AFCS program (or, presumably, other eliminative

structuralist programs). The relationship between the antecedent and the

consequent in a conditional taken to correspond to a mathematical theo-

rem is not captured solely by the truth-functional behaviour of the material

conditional—the antecedent is meant to be related to the consequent by the

availability of a proof. The difference is rather like that of the following two

sentences of first-order logic

1. ∀x((Fx ∧Gx)→ Fx), and

2. ∀x((Fx ∧Gx)→ ¬Fx).

An interpretation I of the first-order language may be such that no elements

x in the universe of the interpretation satisfy Gx, and so both statements are

“true-in-I”. However, formula 1 will easily be recognized as having a feature

that distinguishes it from formula 2: formula 1 is a first-order theorem,40

40Here the logical framework has been left unspecified, but this particular theorem holds
in, for example, classical and intuitionistic logic. The distinctions between systems will be
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while formula 2 is not. Thus, considering, for example, a system of first-

order classical logic, we have

` ∀x((Fx ∧Gx)→ Fx), but

0 ∀x((Fx ∧Gx)→ ¬Fx).

A (semantic) proof of ∀x((Fx ∧ Gx) → ¬Fx) would require that, for any

interpretation and any a in the associated universe of discourse, if Fa ∧ Ga
holds, then so does ¬Fa. All—except possibly the dialethic logician—would

hold such a circumstance to be impossible. Formula 1 can be asserted (per-

haps as a schematic conditional, “For any properties F and G. . . ”) not solely

because of its truth-conditional behaviour, but because of the availability of

a proof. Formula 2 does not share this feature, and its assertibility depends

on the particular properties taken to be represented by F and G, along with

the features of the objects in the universe of discourse.

While the proponent of the AFCS program aims not to identify a single,

privileged framework in which to prove theorems, we may nevertheless abuse

the turnstile notation41 to observe that, again taking Φ to stand for the

sentence “2 + 3 = 5”, the theorem is characterized on the AFCS view as

` (if N � PA then N � Φ), (2.7)

and a rather unremarkable proof suffices to establish this result. However,

we do not have

` (if N � PA then N � ¬Φ).

In order to obtain this result, one would need either a proof that models of the

Peano axioms are impossible (for example, if the Peano axioms were incon-

sistent), or a proof that Φ fails in all models of the Peano axioms. As neither

Shapiro nor Parsons provide such a result, even the eliminative structuralist

of no consequence here.
41Here the turnstile is used to indicate provability simpliciter, without the specification

of a proof system. Provability will be discussed in more detail in Chapter 4.
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seems to have available a consistent arithmetic. Note that using the standard

model-theoretic notation (though continuing to abuse the turnstile), we can

express (2.7) as

` (PA � Φ), (2.8)

and so we might more succinctly express our reply as noting that the AFCS

program takes the conditional expressions corresponding to mathematical

theorems as meta-theoretic, involving the notion of entailment rather than

the notion of implication.

A further aspect of Shapiro’s system that bears on the AFCS program

concerns his treatment of the structuralist perspectives identified in Sec-

tion 2.1.1. Shapiro makes a number of remarks that clearly indicate his

endorsement of these perspectives. The “particular elements of a system

don’t matter” perspective is reflected in his remark that “. . . anything at

all can “be” 2—anything can occupy that place in a system exemplifying

the natural-number structure. The Zermelo 2 ({{∅}}), the von Neumann 2

({∅, {∅}}), and even Julius Caesar can each play that role” [76, p. 80]. That

“the particular system doesn’t matter” perspective (and his recognition of

the importance of the notion of isomorphism) is reflected in his remark that

No matter how it is to be articulated, structuralism depends on a

notion of two systems that exemplify the “same” structure. That

is its point. Even if one eschews structures [treated as objects]

themselves, we still need to articulate a relation among systems

that amounts to “have the same structure.” [76, p. 90]

As remarked above, in Shapiro’s structure theory he takes isomorphic

structures (structures1) to be identical (although systems that exhibit that

same structure2 are not identified). Do structures (in the sense of structures1

here) have all the same structural properties? Certainly they do given Shapiro’s

identification of isomorphic structures—isomorphic structures share the same

properties because they are, in virtue of the isomorphism, identical. The
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same is not to be said of isomorphic systems, though, and Shapiro’s struc-

ture theory treats both systems and structures. Consider the “Subclass”

axiom, for example, which states that

If S is a structure and c is a subclass of the places of S, then

there is a structure isomorphic to the system that consists of c

but with no relations and functions. [76, p. 94]

While Shapiro does not give a completely formalized presentation of the

axioms of his structure theory, axioms such as “Powerstructure” involve set-

theoretic notions. The “Powerstructure” axiom asserts

Let S be a structure and s its collection of places. Then there is

a structure T and a binary relation R such that for each subset

s′ ⊆ s there is a place x of T such that ∀z(z ∈ s′ ≡ Rxz). [76,

p. 94]

Thus, structure theory treats both structures and systems, where a system

may be isomorphic to, but distinct from, the structure it exemplifies. Of

note, within structure theory the systems are “constructed” out of the places

of structures. As Shapiro explains,

Because structures, places, relations, and functions are the only

items in the ontology [of structure theory], everything else must

be constructed from those items. Thus, a system is defined to be

a collection of places from one or more structures, together with

some relations and functions on those places. For example, the

even-number places of the natural-number structure constitute a

system, and on this system, a “successor” function could be de-

fined that would make the system exemplify the natural-number

structure. The “successor” of n would be n + 2. Similarly, the

finite von Neumann ordinals are a system that consists of places

in the set-theoretic hierarchy structure, and this system also ex-

emplifies the natural-number structure [76, p. 93–94]
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Now we find exactly the ingredients of the problem faced in develop-

ing versions of the structuralist program in membership-based set theory—

there is a difficulty in articulating the notion of a structural property. Struc-

ture theory permits structures (structures1) and distinct isomorphic systems.

Their being isomorphic is important because the isomorphism ensures that

they have all the same properties of interest—the structural (in the sense of

structure2) properties. But which are those?

Given the finite von Neumann ordinals, the Subclass axiom suggests that

there are systems A = {1} and B = {2} (and, as a consequence of that

axiom, a single structure isomorphic to both). The language of set theory

(in particular, the membership relation appearing in the “Powerstructure”

axiom) permits the construction of the formula

Φ(x) =df ∀y(y ∈ x→ ∃!z(z ∈ y)),

shown in Section 2.5, which does not involve constants or parameters but

which serves to distinguish isomorphic systems A and B, and which therefore

counts as non-structural. The problems of the set-theoretic approach, then,

seem to have been inherited by the structure theory proposed by Shapiro. If

isomorphic systems (structures1 among them) are interchangeable in virtue

of their exhibiting the same properties of interest, why use a language that

serves to carve out their irrelevant properties?

2.6.2 Hellman’s Modal Structuralism

In [76] Shapiro identifies a third alternative to the eliminative and ante

rem varieties of structuralism: modal structuralism. Like eliminative struc-

turalism, modal structuralism avoids commitment to a realm of structures

(structures1) or, indeed, to any special class of objects particular to math-

ematics. However, unlike the eliminative programs, the modal program is

committed to asserting the possibility of there being systems that exemplify
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certain of the key mathematical structures. Shapiro holds that the modal

structural option fares better than eliminative programs like AFCS, in at

least the respect that “there is an attenuated threat of vacuity” [76, p. 10],

given that the modal translations of sentences of, for example, arithmetic

come out to something of the form “In every possible natural-number sys-

tem. . . ”, and so are vacuous not merely in the case that natural-number

systems fail to exist, but are vacuous only in the case that such systems are

impossible.

The most detailed account of modal structuralism is given in Hellman’s

Mathematics Without Numbers [35]. Interestingly, Hellman’s program is not

obviously a foundational program according to the criteria of Section 1.3.2.

On the “realist” view that Hellman proposes, mathematical theorems are

taken to be true, and objectively so: “mathematical discourse is understood

as consisting of statements or propositions that have determinate truth value,

independent of our minds” [35, p. 2]. In accordance with this view, Hellman

does explicitly aim to satisfy the second criterion for a foundational program,

in that “a philosophical interpretation of mathematics ought to admit of an

extension that reasonably accounts for how we come to know or justify that

mathematics which we can reasonably be claimed to know or be capable of

knowing” [35, p. 3].

With respect to the first criterion, Hellman aims to tackle a project whose

origins he attribute to Putnam42, which Hellman describes as aiming

. . . to develop explicit translation patterns of mathematical the-

ories into suitable modal theories—capable of standing indepen-

dently of set theory—and then to justify these as “equivalent for

mathematical purposes.” Like structuralism, the idea of “math-

ematics as modal logic” has remained at the level of some seem-

ingly promising suggestions, but it has not been developed even

to the point at which a serious philosophical assessment would

42Hellman cites Putnam’s view as presented in [67].
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become possible. One of our goals in what follows has been to

remedy this situation. [35, p. 8]

Thus Hellman’s program is, in some respects, like that proposed in Rus-

sell’s The Principles of Mathematics ([73], see Section 1.4.2) insofar as it

locates mathematics within a type of logic: modal logic in Hellman’s pro-

gram, the theory of classes in Russell’s. Hellman may thus be considered to

aim at satisfying the first criterion for a foundational program: mathematics

is identified, identified as a part of a system of (second-order) modal logic.

Of course, some axioms adopted in Hellman’s framework explicitly assert

principles (for example, one asserts the “logico-mathematical” possibility of

an ω-sequence), that are not offered as purely logical truths. Like Russell,

Hellman does not aim at a clear separation between mathematics and logic.

As Hellman clarifies,

. . . in employing the phrase “second-order logic”, we are referring

to a well-known notation and its metatheory; we are not commit-

ted to the view that it is “genuine logic”. Nor are we committed

to any particular way of drawing a line between logic and math-

ematics. As we see it, structuralism does not need to draw such

a line. [35, p. 21]

Thus, while reluctant to draw a line between mathematics and logic, unlike

Russell, Hellman does not explicitly adopt the view that mathematical theo-

rems can be characterized as logical truths. Indeed, it is the modal notion that

features in Hellman’s program that most clearly prevents such an identifica-

tion. In the presentation of [35] the (primitive) modal notion is itself a partly

mathematical notion—a “logico-mathematical modality” [35, p. 15]—and so

any specification of the modal framework (prior to the introduction of axioms

explicitly postulating the possibility of ω-sequences, complete ordered fields,

etc.) may be thought to already embed mathematical content. Mathematics,

then, is not reduced to modal logic; rather, mathematics is already a part
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of the modal framework employed. Interestingly, in later writings Hellman

drops the “mathematico-” qualification, describing the strategy as involving

“taking a logical modality as primitive” [36, p. 103], and similarly, involving

the “use of a primitive modal operator, for (second-order) logical possibil-

ity” [37, p. 198]. Thus, Hellman’s more recent approach leaves open the

possibility of defending his program as a sort of contemporary “modal logi-

cism”, although Hellman does note that in some cases—like that of modal

set theory—“the assumption of logical possibility is a reasonable working

hypothesis” [37, p. 204], and so not likely to be defended as a logical truth.

More difficult to assess, though, is whether Hellman’s program accounts

for the truth of a mathematical theorem via the mechanisms of “naming,

predication, satisfaction, and quantification”. Hellman aims at developing a

theory that is nominalistically acceptable, and the second-order quantifiers

and the modal language he requires both need to be given nominalistically

acceptable readings. Hellman notes that he wants

. . . to avoid literal quantification over abstract structures, possi-

ble worlds, or intensions, in order to provide a genuine alterna-

tive to objects-platonism [which involves commitment to abstract

(mathematical) objects], in which literal reference to such objects

is eliminated [35, p. 16]

It is useful to outline the key methods of Hellman’s program in order

to identify the features he hopes will avoid “literal reference” to abstract

objects.43 As Hellman explains (here discussing the special case of natural

number arithmetic),

Beginning with the standard Peano-Dedekind axioms for the nat-

ural numbers, PA2, involving just successor, ′, and the second-

order statement of mathematical induction, we treat an arbitrary

43Abstract objects of the sort that feature so prominently in Shapiro’s program.
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sentence S of first– or second-order arithmetic (in which any func-

tion constants have been eliminated by means of definitions in

terms of ′) as elliptical for the modal conditional

�∀X∀f [∧PA2 → S]X(′/f),

in which a unary function variable f replaces ′ throughout and

the superscript X indicates relativization of all quantifiers to the

domain X. This is a direct, modal, second-order statement to

the effect that ‘S holds in any model of PA2 there might be’. [36,

p. 105]

To this translation scheme for sentences of natural number arithmetic, Hell-

man adds a modal existence postulate,44

♦∃X∃f [PA2]X(′/f),

asserting the possibility of an ω-sequence. Real analysis and Zermelo-Fraenkel

set theory are given an analogous treatment in [35]: a translation scheme is

provided, along with a modal existence postulate of the relevant sort.

The key, then, to Hellman’s avoiding commitment to abstract objects it

taken to lie in the modal element of his program. When Hellman provides

the translation of the modal conditional for a mathematical theorem, say S

of natural number arithmetic, the necessity operator distinguishes between

the intended ‘S holds in any model of PA2 there might be’ as distinct from

the (non-modal) ‘S holds in any model of PA2 there (actually) is ’. While

this manoeuvre may avoid explicit commitment to ω-sequences and other

mathematical entities, there is the additional concern about the second-order

machinery: does second-order logic commit one to an ontology of sets, or

set-like entities over which the second-order quantifiers range? Here Hellman

44Exponentiation with respect to X and the substitution of f for ′ are as in the trans-
lation scheme.
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goes on to develop a sophisticated program that involves an appeal to the

notions of plural quantification45 and mereology, the details of which will not

concern us here.46

Granting Hellman’s claim to have provided a nominalistically acceptable

way of reading the second-order quantifiers, what of the modal notion em-

ployed? As Burgess and Rosen observe, a nominalist who appeals to modal-

ities as a way of avoiding reference to abstract objects must defend “prim-

itivism”, the “acceptance of modal logical distinctions [involving possibility

and necessity ] as undefined” [16, p. 124]. The modal structuralist who is also

a nominalist cannot give the necessity and possibility operators an interpre-

tation involving non-actual possible worlds, and the possibilia (possible, but

non-actual objects) that inhabit such non-actual worlds. Causally isolated

from us and abstract by any account, one can hardly think of a better ex-

ample of exactly the sort of entity to which the nominalist wishes to avoid

commitment! Similarly, Hellman wishes to avoid any dependence on a prior

theory of sets, given that the modal machinery he develops is going to be used

to show, among other things, how a nominalistically acceptable set theory

can be developed. Hellman, aware of these concerns, notes in his discussion

of modal set theory that

. . . possibilia are not recognized as objects. . . we do not quantify

over possible worlds or intensions; we simply use modal opera-

tors. . .

We are accustomed to giving set-theoretical semantics for modali-

ties, and for a variety of logical purposes this is perfectly in order.

But the msi [modal structural interpretation] of set theory, while

aiming to respect such semantics as part of set theory, never-

theless, requires that its notion of logical possibility stand on its

own. It functions as a primitive notion, and must not be thought

45The notion of plural quantification is developed in Boolos [13].
46See, e.g., [35, 36].
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of as requiring a set-theoretical semantics in order for it to be

intelligible. Instead, of course, we may give modal axioms. [35,

p. 59–60]

Despite the prospects of having outlined a nominalistically acceptable

modality for his purposes, in so doing Hellman has blocked himself off from

an account of the truth of mathematical theorems using the “referential”

semantic apparatus called for in the third foundational criterion identified in

Section 1.3.2. Hellman’s noministically-motivated need to treat the modal

notion as primitive requires, for example, that the modal existence postulate

♦∃X∃f [PA2]X(′/f)

is not simply understood as a claim about objects in an accessible possible

world, true because entities among the possibilia satisfy the matrix of existen-

tially quantified expression. The possible world account of the modal terms

is unavailable to the nominalist, and so the reading of the modal existence

postulate as true in virtue of such (possibly non-actual) entities is unavail-

able. Given its set-theoretic characterization, a Kripke-style semantics is also

unavailable. In virtue of the necessarily primitive modality, Hellman’s modal

structuralist program cannot account for the truth of mathematical theorems

appealing only to the resources Benacerraf identifies in [11].

Here the proponent of the AFCS program can simply agree with Hell-

man’s remark that “modal primitives for mathematics are problematic” [37,

p. 205]. Of course, the AFCS program itself fails to count as a foundational

program according to the criteria of Section 1.3.2, and so it provides little

grounds for criticism! As was the case when considering Shapiro’s ante rem

structuralist program, our concern here will be to consider any of Hellman’s

claims that conflict with the principles of the AFCS program, and to consider

the extent to which Hellman’s program adequately captures the notion of a

structural property.
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Among the most obvious differences between the AFCS and modal struc-

turalist programs is the appeal to a (primitive) modality. Hellman does not

argue explicitly for the view that modal notions should be invoked in ac-

counting for our understanding of mathematical theorems, instead he takes

up the view that “mathematics is the free exploration of structural possibil-

ities, pursued by (more or less) rigorous deductive means” [35, p. 6], and

then proceeds to argue that such a view satisfies certain of his desiderata

concerning philosophical accounts of mathematics. Some of the desiderata

clearly point toward what is here considered a foundational program: ac-

counting for the a priori, objective truth of mathematical theorems, etc. As

such, these features of the program are of little interest to the proponent of

AFCS, who aims to offer a similarly structured argument: given the AFCS

account of mathematics, treating theorems as schematic and conditional in

form, assertible rather than true, etc., is anything further required?47

However, the modal structuralist48 and the proponent of the AFCS pro-

gram do both aim at an eliminative structuralism; one that does not involve

commitment to actual structures (structures1). Save for the modal operator,

the “hypothetical component”49 bears some resemblance to that suggested

on the AFCS proposal, but the AFCS proposal does not endorse any principle

resembling what Hellman terms the “categorical component” of his transla-

tion scheme: the claim that a system of the relevant sort is possible.50 What,

then, is the role of this categorical component?

As Hellman explains, the categorical component corresponds to “an in-

dispensable “working hypothesis” of underlying mathematical practice” [35,

p. 27]: given such a categorical assumption in the modal reconstruction of

47And of those features which may be prima facie thought required, can they in fact be
provided?

48Hellman’s modal structuralism is the only modal view considered here, and so the
references to modal structuralism can be assumed to refer to Hellman’s program.

49The hypotheticals in question are the conditionals of which �∀X∀f [∧PA2 → S]X(′/f)
is one example.

50Here, ♦∃X∃f [PA2]X(′/f) is one example.
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mathematics, one can view the categorical component as corresponding to a

step in, for example, a proof in arithmetic: informally put, “Assume an ω-

sequence” [35, p. 27]. Of course, such an informal claim might also be taken

to correspond to an assumption that begins a conditional proof, discharged

when the conditional itself is introduced. However, Hellman offers another

reason for adopting categorical claims of this sort, and it has a now familiar

form:

. . . a categorical assumption to the effect that “ω-sequences are

possible” is indispensable and of fundamental importance. With-

out it, we would have a species of “if-thenism”, i.e. a modal

if-thenism, and this would be open to quite decisive objections,

analogous to those which can be brought against a näıve, non-

modal if-then interpretation. . . the very same situation would ob-

tain in the case of modal conditionals if ω-sequences were not

possible, i.e. if there could (logically) be no standard realiza-

tion of the PA2 axioms. . . In that case, the translation scheme

would not respect negation: all the original sentences A would be

translated as true. Thus, it is absolutely essential to affirm, cat-

egorically, an appropriate version of [the categorical component

for ω-sequences] [35, p. 26–27]

To the familiar problem, then, the familiar solution. Again we note that the

proponent of the AFCS program takes the analogous conditionals to involve

reference to models, and so the conditional is at the level of the metatheory,

involving the notions of model, interpretation, and satisfaction. The necessi-

tated, universally quantified conditional in the hypothetical component of the

modal structuralist program corresponds to a non-modal, schematic, meta-

theoretic conditional on the AFCS program. Again, entailment rather than

implication is involved, and the schematic element—reflecting a deliberate

neutrality on the status of models—prevents51 treatment of the conditional

51As will be discussed in the coming chapters.
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as true.

In developing the modal approach Hellman comes to advocate, he does

consider (quite early on in his discussion, which may hint at the “naturalness”

of such an approach), an attempt to render the hypothetical component of

his translation procedure using notions invoked in the AFCS translation.

Hellman offers this move as one way to address the concern to “respect the

full, classical truth-determinateness of the mathematical theory [arithmetic

at this stage] in question” [35, p. 16]. Then,

. . . one way of accomplishing this would be simply to use the

language of set theory, since we know how to express both “ω-

sequence” and “satisfies” in terms of set membership; (1.1) [the

natural language expression of the hypothetical component] could

then be made precise by

�∀X(X � ∧PA2 ⊃ X � S),

. . . One disadvantage of this choice is that the translates all be-

come metalinguistic, and this is surely an awkwardness, if not a

fatal misrepresentation of arithmetic discourse. But even more

serious is the problem that the structuralist programme, so artic-

ulated, becomes just a piece of modal set theory. . . [35, p. 18]

Hellman holds that branches of mathematics like natural number arithmetic

should be capable of a development independent of set theory, and the propo-

nent of the AFCS program is sympathetic to this view. However, one might

note that talk of models or satisfaction need not be given a set-theoretic treat-

ment. This line of thought will be pursued in Chapter 3. Further, it seems

that a structuralist might naturally adopt this metalinguistic translation as

exactly in keeping with the modal structural program: Hellman endorses the

characteristic structuralist slogan—“Any ω-sequence will do” [35, p. 18]—

and what is an ω-sequence if not a model of the (full, second-order) Peano
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axioms? In avoiding model-theoretic notions, Hellman instead represents the

Peano axioms and their “models” directly in the modal, second-order lan-

guage of his chosen framework, exploiting the second-order machinery that

permits quantified variables ranging over functions and those ranging over

predicates, along with the possibility of using relativized quantifiers.

As established in the preceding section, the proponent of the AFCS pro-

gram can avoid commitment to actual or possible ω-sequences, and still avoid

the threat of vacuity. Appealing to a schematic, meta-theoretic rendering of a

mathematical theorem, neither assumptions concerning the actual existence

or the possible existence of mathematical objects are required to avoid the

threat of vacuity. Of course, this will be seen to come at the cost of treat-

ing mathematical theorems as true, but subsequent chapters may suffice to

allay any concerns on that point. In disallowing meta-theoretic notions in

the modally bound, quantified conditionals of Hellman’s hypothetical com-

ponents, Hellman does indeed require the categorical assumptions to guard

against vacuity. But are ω-sequences possible? Are any infinite collections

possible? Can an adequate account of mathematics avoid even these seem-

ingly modest ontological claims?52

Turning now to the role of category theory in articulating those insights

of the structuralist view, Hellman has been a vocal opponent of the suit-

ability of category-theoretic approaches to structuralism [38, 40]. Many of

Hellman’s objections are raised against category theory as part of a foun-

dational program, and as such those objections will not be considered here.

Others (for example, dealing with the notions required in order to understand

category theory) will be taken up in later chapters. For the moment, then,

we turn to consider the treatment of structural properties available on the

52In Hellman’s appeal to mereology, from which he is able to derive claims like the
categorical component for arithmetic, Hellman is driven to assert a mereological axiom
of infinity, an assertion concerning the possibility of infinitely many individuals. We are
then left to wonder with Hellman: “What sort of evidence can we have for the various
modal-existence postulates arising in mathematics. . . ?” [39, p. 556].
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modal structuralist program.

That Hellman acknowledges the importance of the relation between iso-

morphic systems and the preservation of structural properties is clear: the

system Hellman proposes suffices for the derivation of a categoricity theo-

rem53 for arithmetic—all “possible” ω-sequences are isomorphic—but Hell-

man goes on to note that

. . . one may be tempted to suppose that, in recovering the cate-

goricity of PA2, the structuralist has accomplished whatever could

reasonably be demanded by way of an internal justification for

the translation schemes. For (1.11) [the categoricity theorem] is

a direct way of saying, within the second-order framework, that

our axioms characterize a unique type of mathematical structure;

obviously, then, it does not matter “which one” we are “talking

about” when we are doing the mathematics of such structures.

Isn’t our justification complete?

It would be pleasant to conclude this, but overly sanguine. For,

while the inference just drawn from (1.11) may indeed be in-

tuitively obvious, really it demands a proof. For the inference

pertains to language used to describe the structures, viz. the

sentences of L(PA); yet (1.11) itself says nothing about these

sentences. And, remember, it is a translation scheme—a repre-

sentation of sentences of a given mathematical language—that is

to be justified. There is thus a further step, from categoricity to

a claim involving language, that needs to be taken. [35, p. 40]

Thus, Hellman is led to produce his Elementary Equivalence Theorem (see

[35, p. 41]) a modal analogue of the Structural Properties Theorem for ω-

53We return now to using the term “categorical” to describe axiomatic systems for which
all models are isomorphic.
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sequences: roughly, all ω-sequences exhibit the same structural properties.54

However, any optimism this result may encourage is short-lived, as axioms for

categorical systems (natural number systems and the system of real numbers,

being two prominent, important examples) are the exception rather than

the rule. Groups, fields, topological spaces, and so on, are decidedly non-

categorical in their axiomatic presentations, and constitute an important part

of contemporary mathematics. What of their structural properties?

One might expect here that, given the reconstruction of ZF set theory

in the modal framework, the mathematical objects of the various branches

of mathematics might be recovered in this modal set theory, and so the

argument that the language of set theory is ill-suited to the structuralist

program would carry over to the modal structural program. Such a view is

encouraged by Hellman’s remark that

. . . set theory represents both a great opportunity and a challenge

to the [modal structural] approach; an opportunity since, as is

well known, so much mathematics can be represented within set

theory. In so far as set theory yields to a ms [modal structural]

treatment, so does all set-theoretically representable mathemat-

ics. (Thus, model theory—of special interest to logicians, but

not directly representable in the second-order framework of the

msi [modal structural interpretation]—would become available,

at least indirectly.) [35, p. 53–54]

However, Hellman seems to deny this view in later work, noting that in his

Mathematics Without Numbers

. . . it was left open how to treat generally some of the most im-

portant structures or spaces in mathematics, e.g., metric spaces,

topological spaces, differentiable manifolds, and so forth. This

54The categorical version of this theorem presented by McLarty in [61], explicitly con-
cerned with natural number structures, is a particularly good category-theoretic match
for Hellman’s result.
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may have left the impression that such structures would have to

be conceived as embedded in models of set theory, whose modal-

structural interpretation depends on a rather bold conjecture,

e.g., the logical possibility of full models of the second-order ZF

axioms. [36, p. 100]

Perhaps, then, such structures are to be conceived as independent of any

set-theoretic reconstruction55, instead treated in the manner of ω-sequences:

translate the axioms and theorems into necessitated, quantified second-order

conditionals, and adopt a possible existence postulate. For non-categorical

theories like group theory, such an approach is clearly inadequate: asserting

the possibility of a group doesn’t satisfy the modal structuralist’s concern

about vacuity. Is the assumed group Abelian? If not, theorems about Abelian

groups collapse into vacuity. Is the assumed group finite? If not, theorems

concerning finite groups collapse into vacuity. It seems then, we must assume

a group for every (group) isomorphism type in order to secure the standard

group theoretic results, and, moreover, since such results often concern claims

about all groups (for example, their each being isomorphic to some group

of permutations), we are pushed to assume them “simultaneously”, as it

were. On a standard model-theoretic account in a set theory like ZF, even

assuming a single group for each isomorphism type would involve a proper

class of (possible) groups—quite a number of objects to assume!

It seems, then, that a recovery of branches of mathematics involving non-

categorical axiomatic presentations within Hellman’s program does require a

retreat to model theory, a model theory recovered via the modal structural

treatment of set theory.56 As these are typically “membership-based” theo-

ries, we arrive once more at the uncomfortable position in which isomorphic

objects (groups, etc.) can be distinguished in the set-theoretic language,

55A point of agreement with the AFCS program.
56The theories which are treated in Hellman’s [36] are treated in higher-order analysis,

and so built up from, e.g., sets of sets of reals. Algebraic theories such as those at issue
here are not discussed.
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while such distinctions are deemed, on the structuralist view, to be irrele-

vant. Why take on this extra baggage? One might expect, here, that a modal

structural recovery of a “function-based” set theory, like that of ETCS, may

offer a way out, and this is indeed an interesting possibility. However, grant-

ing that the threat of vacuity is not threatening on the AFCS view, one might

want to continue exploring an option that does not enter into the difficulties

faced by an appeal to a primitive modality.
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Chapter 3

Definitions and Primitive

Notions

. . . it will be found, in what follows, that the definitions are what

is most important, and what most deserves the reader’s prolonged

attention. [74, p. 12]

. . . nothing in the axioms says functions are not ducks [61, p. 491]

There are at least two senses in which one might speak of fundamental

mathematical notions :1

1. notions that play a central role within mathematics (such as the notions

of a limit or a field), and

2. notions required in order to understand those notions used within math-

ematics (possibly including, for example, the notions of a rule or a

property).

1Here the term “notion” is used in approximately the sense of concept. The term
“notion” is used here to highlight the fact that the arguments of this chapter are taken to
be independent of any particular account of the nature of concepts.
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Determining whether a given notion falls into one or the other category may

not be a straightforward task, as some of the notions that play a central role

in mathematics are used (prima facie without change in meaning) outside

of mathematics proper. For example, of which sort is the notion of a set?

Is the informal, extra-mathematical notion required in order to understand

that notion codified in ZFC? Similarly, at least some notions of the second

sort will have to be taken as primitive, and it may be argued that certain

notions cannot properly be taken as such.

In identifying a framework for mathematics, one will either implicitly or

explicitly classify notions as being of one or the other sort, and some debates

relevant to the defence of category theory as a framework for mathematical

structuralism turn on issues related to exactly this project of classification.

Feferman, for example, has argued that on the view of the categorical struc-

turalist one must inappropriately

presume as understood the ideas of operation and collection. . . at

each step we must make use of the unstructured notions of opera-

tion and collection to explain the structural notions to be studied.

It follows that a theory whose objects are supposed to be highly

structured and which does not explicitly reveal assumptions about

operations and collections cannot claim to constitute a foundation

for mathematics, simply because those assumptions are unexam-

ined. [29, p. 150]

While Feferman is explicitly concerned with foundational programs, the scope

of his concern can be take to present a difficulty for frameworks more gen-

erally. One interpretation of Feferman’s critique, in light of the distinc-

tion between the two types of fundamental notions, is to view the cate-

gorical structuralist as having (perhaps unknowingly) wrongly classified the

notions of operation and collection: if they are notions of the first sort—

distinctly mathematical notions to be explained by a philosophical account
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of mathematics—it is a mistake to treat them as notions of the second sort.

Alternatively, Feferman may be content to class operation and collection as

notions of the second sort, but view it as inappropriate to take them as

primitive—given their seemingly essential role in developing the categorical

structuralist program, failing to provide a detailed account of those notions

may be considered a serious omission.

This chapter offers a response to Feferman’s concern, a response which

provides a background against which to later develop the schematic treat-

ment of mathematical theorems offered on the AFCS program.

3.1 Models

Expanding on the concern about operations and collections, Feferman notes

that, for example,

. . . we say that a group consists of a collection of objects to-

gether with a binary operation satisfying such and such condi-

tions. Next, when explaining the notion of homomorphism for

groups or functor for categories, etc., we must again understand

the concept of operation. . . The logical and psychological priority

if not primacy of the notions of operation and collection is thus

evident. [29, p. 150]

Thus, one can read Feferman’s concern as applying generally to axiomatic

definitions : given a collection of axioms, be they axioms taken to characterize

a group, ring, ordered field, etc., simply understanding the manner in which

such axioms are meant to serve as definitions requires a prior understanding

of operation and collection.

In developing a reply to Ferferman’s concern it will be necessary to first

clarify the intended sense of “logical” and “psychological” priority. In speak-

ing of “logical priority” Feferman notes that “My use of ‘logical priority’



CHAPTER 3. DEFINITIONS AND PRIMITIVE NOTIONS 86

refers. . . to order of definition of concepts, in the cases where certain of these

must be defined before others” [29, p. 152], whereas “psychological priority”

“has to do with the “natural order of understanding” [29, p. 152]. As Fefer-

man grants that the notion of “psychological priority” is somewhat unclear,2

here we will only be concerned to deal with the claim involving “logical pri-

ority”.

The strategy of the AFCS program is to concede Feferman’s claim that

that definition of a category presupposes the notions of operation and col-

lection, but to deny the claim that this presupposition is illegitimate. The

proponent of the AFCS program holds that the notions of operation and col-

lection are so ubiquitous that any attempt to present a view that avoids the

presupposition of those notions is doomed to failure. For example, the mech-

anisms involved in understanding the truth of a proposition in some natural

language may plausibly be taken to presuppose both of these notions. Under-

standing that the statement “Everyone here likes the smell of freshly-brewed

coffee” is true can be taken to involve a number of such presuppositions.

Understanding that the statement comes out true is a given situation may

plausibly be taken to involve an operation, mapping the term “here” to some

location, as well as a collection, the people3 over which the quantifier is taken

to range. There may be an additional function invoked in accounting for the

role of the quantifier in this expression: the notion of a valuation, mapping

the variable ranging over people that figures in this expression to an element

of the collection of people that constitute the universe of discourse for this

expression. Indeed, the expression bound by the quantifier can be viewed

as a propositional function, yielding a proposition whenever the name of an

object in the universe of discourse is substituted into the open sentence cor-

2In response to an objection from Mac Lane, Feferman concedes that psychological
priority “. . . is admittedly ‘fuzzy’ but not always ‘exceedingly’ so” [29, p. 152].

3The interpretation could instead be taken to involve a collection of, for example,
objects in a room, in which case the proposition would then be relativised to a class of
people in the usual way.
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responding to the matrix of the quantified expression. One’s understanding

of the role of the quantifier in this expression could then be taken to proceed

via an appeal to the notion of a further operation, that corresponding to

substitution into a propositional function.

Of course, one might object that here we have merely described language-

related understanding in terms of operation and collection, but we have not

argued against there being a necessary order of dependence. This much

may be conceded, but the example above should serve to indicate that the

extremely general notions of operation and collection easily transcend their

treatment in any theory specifically concerned with their use in mathematics,

and appealing to a prior understanding of these notions in developing a math-

ematical framework is as legitimate as appealing to a prior understanding of

some of the most general features of language.

The advocate of the AFCS program can be somewhat more specific about

those notions the program takes as primitive. In particular, the program

takes the notion of a model as primitive, and so presupposes any of those

notions necessary to understand the notion of a model. A model can be char-

acterized in terms of the notion of an interpretation of some collection S of

statements in given formal language.4 An interpretation of a given formal

language is understood as involving a collection (the universe of discourse)

and some number of properties and relations defined on the universe of dis-

course, corresponding to predicate and relation symbols, respectively, of the

language. The interpretation of constant symbols or function symbols may

also be required, and each of which is taken to correspond to an element of

the universe of discourse or a function defined on the universe of discourse,

respectively. For a given collection S of statements in the formal language, a

model M of S consists of a universe of discourse, properties, relations, and

designated functions and elements of the universe of discourse, corresponding

4While the first-order case is treated here, the type of formal language is left unspecified,
and additional clauses required to interpret higher-order vocabulary are to be added as
needed.
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to an interpretation in which each statement in S is true. Thus, the notion

of truth is also presupposed. On the AFCS view, a model is taken to be an

object, which may then legitimately serve as the referent of a singular term.

Of course, any reader familiar with the “standard” set-theoretic seman-

tics for a first-order language will be familiar with these notions, and may

worry that they presuppose a considerable amount of set theory—itself a

prominent branch of mathematics, and so there may be a concern about cir-

cularity. Here, unfortunately, the categorical structuralist can offer little in

the way of a direct reply to this concern. The program takes as primitive

those notions—whatever they may be—required in order to understand that

“Everyone thinks highly of Palin” is a substitution instance of an expression

of the form “∀xHxp”, a statement which is true in a circumstance where the

quantifier is taken to range over all the people in a particular room, each of

whom happens to think highly of the individual named “Palin”. The “set-

theoretic” presuppositions fall short of requiring anything akin to the Axiom

of Infinity or the Axiom of Choice, and whatever fragment of the set-theoretic

machinery is, in fact, required in order to understand this notion of a model

is accepted as necessary.5 Prima facie, the “thinks highly of” relation does

not require any “extensional” account—involving a set of ordered pairs, for

example—in order to be correctly understood by a speaker of the English

language, and similarly it may be possible to dispense with some of the other

informal set-theoretic notions typically invoked when defining components

involved in the notion of a model. An interpretation of “Fa” in which the

universe of discourse is taken to be the collection of all films, “F” is taken

to be the property is a modern classic, and “a” represents the film L̊at den

r̊atte komma in yields a model of “Fa”, and any notions or principles in-

volved in recognizing this situation to obtain are taken as primitive on the

AFCS program. Insofar as these notions are plausibly taken to be involved

in the more general understanding of any natural language, this element of

5The set-theoretic notions required can be found in, e.g., §2.4 of [8].
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the AFCS program should be deemed unproblematic.

3.2 Category-Theoretic Definitions

The notion of a model of some set of axioms—like those that form the familiar

definition of a group—is taken to be primitive. In accordance with the view

developed in Chapter 2, such models are to be treated as objects in a category,

as the language of category theory has been shown to be particularly well-

suited to the structuralist’s focus on structural properties.

On this picture, then, the following two questions arise:

1. Which other models feature in the ambient (background) category?

2. Given a category of models, how can these models be manipulated to

yield other models of the same (or of a different) sort?

The deliberately lack of specificity inherent in taking the notion of a model

as primitive affords a great deal of flexibility in addressing this first ques-

tion. In essence, the ambient category provides the context of the study of

the mathematical objects under consideration, and there are no restrictions

placed on contexts admitted as legitimate on the AFCS view. Consider again

the study of the mathematical notion of a group. The ambient category for

models of the group axioms may be that consisting of monoids as objects

and monoid homomorphisms as arrows, in which case the ambient category

contains objects which are not themselves models of the group axioms. Al-

ternatively, the ambient category may be that containing (only) groups as

objects and group homomorphisms as arrows, where groups are, for example,

identified as sets in ZFC. As a third option, groups may instead be identified

themselves as categories,6 where the ambient category is taken to be that of,

6A group can be defined as a category with one object for which every arrow is iso.
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for example, all small categories,7 with functors8 as arrows. In this latter

case again we have objects in the ambient category which are not models of

the axioms in question.

3.2.1 Products, Equalizers, and Coequalizers

In addressing the second question concerning the manipulation of objects

in a category, the suitability of the language of category theory to the ex-

pression of some of the principal techniques of mathematical definition be-

comes apparent. Take, for example, the notion of forming a product of two

mathematical objects. Considering first the Cartesian product of two sets

in a set-theoretic framework, one may proceed by defining, for example, the

Kuratowski ordered pair, where the ordered pair 〈x, y〉 =def {{x}, {x, y}}.
Given two sets A and B, their product, symbolized as A×B, can be defined

as {〈x, y〉|x ∈ A and y ∈ B}. Of course, other definitions of the ordered

pair are possible, for example, 〈x, y〉 =def {x, {x, y}}. For mathematical pur-

poses, the choice between these alternative definitions of ordered pair is of

no consequence, as both exhibit the essential feature that

〈x1, y1〉 = 〈x2, y2〉 ⇔ x1 = x2 and y1 = y2.

The categorical treatment of the notion of a product is most naturally

expressed by means of a diagram. Given objects A and B, a product diagram

for A and B is an object P and arrows p1 and p2 (called projections)

A Pp1
oo

p2
// B

such that, for any object T and arrows j and h with A
j← T

h→ B, there is a

7A category is small provided its collection of arrows is a set.
8Briefly, a functor F is a function between categories that maps objects to objects and

arrows to arrows while respecting domains, codomains, identities and composites. For
example, the F which appears in the Structural Properties Theorem is a functor.
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unique arrow u such that the diagram below commutes.

T
j

��

h

��
u
��

A Pp1
oo

p2
// B

For two objects A and B in a category, there may be no product for A and

B, or any number of products. Given any two distinct products

A
p1← P

p2→ B and A
q1← Q

q2→ B

for objects A and B, it is a routine exercise to show that P and Q are nec-

essarily isomorphic. As Awodey observes, “The categorical definition of a

product. . . is one of the first examples of category theory being used to give

a purely structural characterization of an important basic mathematical no-

tion” [1, p. 220 ff]. In the present context, one might interpret Awodey’s

remark as highlighting the definition’s embodiment of the two structuralist

perspectives identified in Section 2.1.1. The particular elements of objects

A and B of a category are not explicitly involved in the definition of the

product, and, indeed, there may be no such elements. For example, the

category-theoretic definition of a product applies in the case where the cate-

gory is a partially-ordered collection,9 in which case a product of two objects

A and B is the greatest lower bound of the two elements. Similarly, the

particular system—in this context, the particular product diagram—is of no

consequence, as, given a pair of elements A and B in a category, all products

for A and B are isomorphic.

When there is product diagram for objects A and B in a category it is

customary to denote a selected product diagram by A
p1← A× B p2→ B, and,

given any diagram A
j← T

h→ B, the unique u : T → A × B will typically

9Partially ordered collections can be treated as categories with an arrow from A to B
iff A ≤ B. See the discussion in Section 1.2.



CHAPTER 3. DEFINITIONS AND PRIMITIVE NOTIONS 92

denoted by 〈j, h〉. The commuting diagram in the definition of a product

then becomes

T
j

{{

h

##
〈j,h〉
��

A A×Bp1
oo

p2
// B

The definition of a product in a category is noteworthy for the following

feature:

. . . one and the same categorical definition describes also products

of topological spaces, groups, vector bundles on a smooth mani-

fold, or whatever. The definition. . . provides a uniform, structural

characterization of a product of two objects in terms of their re-

lations to other objects and morphisms [arrows] in a category,

in contrast to ‘material’ set-theoretic definitions which depend

on specific and often irrelevant features of the objects involved,

introducing unwanted additional structure. [1, p. 220]

Notice that the definition of the (Cartesian) product of two sets does not

extend directly to, for example, the product of two groups on the set-theoretic

definition of a group. In a set-theoretic framework, the Cartesian product of

the groups 〈G, ?〉 and 〈G′, ?′〉 is not an ordered pair, and so, a fortiori, not a

group.

Other standard techniques for providing definitions of mathematical ob-

jects can also be characterized in the language of category theory. Consider

the notion of an equationally defined subset, and the notion of the kernel

of a homomorphism. These notions are both generalized by the category-

theoretic notion of an equalizer. Given parallel arrows f, g : A→ B (arrows

with the same domain and codomain), an arrow e : E → A equalizes f and

g provided f ◦ e = g ◦ e. Given such f, g, E, and e, the arrow e is an equalizer

for f and g provided e equalizes f and g, and for any h : T → A which

equalizes f and g, there is a unique u : T → E such that e◦u = h. That is, e
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is an equalizer for f and g provided, given any other arrow h that equalizes

f and g, there is a unique arrow u : T → E such that the following diagram

commutes.

T
h

��
u
��
E e

// A
f //

g
// B

It is useful to consider the definition of an equalizer in the set-theoretic

case, in a category where the objects are sets and the arrows set functions.

For two functions f, g : A → B, a function h that equalizes f and g is one

whose range is contained in the set of elements a ∈ A such that f(a) = g(a).

Of course, a function that equalizes f and g may not map onto the entire set

{a|a ∈ A and f(a) = g(a)}; however, the “universal” condition on an equal-

izer e : E → A, ensures that any such equalizer is maximal in this sense. One

equalizer is given by taking E =def {a|a ∈ A and f(a) = g(a)} and taking e

to be the corresponding inclusion map e : E ↪→ A. Of course, such equalizers

are not unique in this context; any set F in bijective correspondence with E

will yield another equalizer; if d : F → E is a bijection, then e ◦ d : F → A

is also an equalizer.

The dual of a category-theoretic statement is given by reversing arrows

(and so, reversing composites and exchanging domains/codomains). The

dual of the definition of an equalizer yields the definition of a coequalizer,

which can be considered a generalization of the notion of a quotient by an

equivalence relation. A coequalizer for a pair of parallel arrows f, g : A→ B

is an arrow c : B → C such that c ◦ f = c ◦ g, and for any arrow h : B → H

such that h ◦ f = h ◦ g, there is a unique arrow u : C → H such that the
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following diagram commutes.

A
f //

g
// B

h ��

c // C

u
��
T

Again, it is useful to consider this definition in the context of a category

whose objects are sets and whose arrows are set functions. For a given

equivalence relation R defined over the elements of some set B (and so,

R ⊆ B × B), consider the two projections r1 : 〈a, b〉 7→ a and r2 : 〈a, b〉 7→ b,

with ri : R→ B. The coequalizer for r1 and r2 is then c : B → B/R, with c :

b 7→ [b]R. In the context of a category of groups and group homomorphisms,

consider the coequalizer of any homomorphism f : G → H and the trivial

homomorphism g : G → H which maps every element of G to the identity

element of H. Letting K be the kernel of f , the function c : H → H/K is a

coequalizer of f and g.

In general, given parallel arrows f, g : A → B in a category of sets and

set functions, a coequalizer c : B → C for f and g can be constructed

by considering the equivalence relation ∼ on elements of B generated by

{〈f(a), g(a)〉|a ∈ A}.10 Take C = B/∼, and let c : B → C be defined by

c : b 7→ [b]∼. For any a ∈ A we have f(a) ∼ g(a), and so [f(a)]∼ = [g(a)]∼,

i.e., (c◦f)(a) = (c◦ g)(a). Thus we get c◦f = c◦ g as desired. Now consider

any h : B → T such that h ◦ f = h ◦ g. Let u : C → T be defined by

u : [b]∼ 7→ h(b). It can be shown that u is well defined, and that u ◦ c = h.

As c is onto11 we also get that u is the unique function with the property

that u ◦ c = h. Thus, c is a coequalizer for f and g.

10Note that B ×B is an equivalence relation, and so the equivalence relation generated
is a subset of B ×B, and is also such that elements not in the image of A through f nor
in the image of A through g are related only to themselves.

11In categorical terms, c is epic.
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3.2.2 Elements and Subobjects

In considering examples of the products, equalizers, and coequalizers involv-

ing categories of sets and (set) functions, we have frequently appealed to

the notion of an element of an object, i.e., a member of a set. While the

category-theoretic treatment of products, equalizers, and coequalizers ab-

stracts from—and so does not appeal to—the notion of an element of an

object, it is nevertheless possible to introduce this notion directly within the

language of category theory. The notation used in modified diagram of the

product,

T
j

{{

h

##
〈j,h〉
��

A A×Bp1
oo

p2
// B

is motivated by the method for recovering the notion of an element of an

object.

A terminal object in a category is an object A such that every object in

the category has exactly one arrow to A. In a category with sets as objects

and set functions as arrows, terminal objects correspond to singleton sets,

and it is useful to think of terminal objects as abstract singletons. A category

may have any number of terminal objects, and any two terminal objects are

isomorphic.12 Arrows from terminal objects are easily shown to be monic,13

and so the elements of a set S (viewed as an object in a category of sets) are in

one-to-one correspondence with the arrows from any terminal object to that

set. Since all terminal objects are isomorphic, it is customary to represent

a selected terminal object as 1, in which case the elements x ∈ S can be

identified with the arrows x : 1 → S. As the definition of a terminal object

12The composite of the unique arrows between two terminal objects A and B is, without
loss of generality, the unique arrow f : A → A in the category, which must then be the
identity arrow for A.

13See the definitions in Section 2.4.2.
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can be presented entirely in the language of category theory,14 categories that

have a terminal object, 1, allow elements of a object S to be identified with

arrows x : 1→ S.15

Not all categories have terminal objects, and some of those that do are

such that other features of the category prevent the arrows from terminal ob-

jects being treated as elements in the manner described above. A one-element

group is terminal in the category of groups and group homomorphisms, but

one-element groups are also initial objects. An initial object I is the dual

of a terminal object: every object A in the category has exactly one arrow

f : I → A from a given initial object. Clearly, then, terminal objects which

are also initial (called zero objects) do not stand in one-to-one correspondence

with the elements of an arbitrary object. Thus the elements of a group, in

the category of groups and group homomorphisms, cannot be identified with

arrows from a one-element group, as one-element groups are zero objects in

the category of groups and group homomorphisms.16

Of course, if one aims to treat elements of groups, it is possible to use the

language of category theory to provide an alternative definition of a group as

a type of object in an arbitrary category, and this method of defining a group

does allow elements of groups to be identified with arrows from a terminal

object. To accomplish this, is is useful to first introduce the notion of a

subobject. If A is an object in a category, then any monic arrow f : B → A

can be viewed as identifying a “part” of A. Monic arrows correspond to

injective functions in a category of sets and set functions, and the images

of such functions (and so, in this sense, the functions themselves) determine

14See the examples at the end of Section 2.4.1.
15In addition to elements in a category with domain 1, any arrow x : T → S can be

viewed as a generalized element of S, sometimes denoted x ∈T S. Arrows x : 1 → S
are sometimes called global elements. Henceforth, the notation x ∈ S will be used to
abbreviate global elements x ∈1 S.

16While arrows from terminal objects in the category of groups and group homomor-
phisms don’t suffice for identifying the elements of a group G, the arrows from any group
isomorphic to the integers to G do suffice. See [55, p. 103–104].
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subsets of A. The treatment of arrows as subobjects may be viewed as a

natural generalization of this feature of injective functions. For an element

x : 1 → A and subobject i : B → A, x ∈ i provided x “factors through” i,

that is, when there exists an arrow j : 1 → B such that i ◦ j = x, i.e., such

that the following diagram commutes.

1
j //
��

x ��

B
��
i
��
A

A relation of inclusion, ⊆, can be defined on subobjects i, j of a given object

A; if i : A � C17 and j : B � C, i is included in j (represented as i ⊆ j)

provided there is an s : A→ B such that the diagram below commutes.

A
s //

��

i ��

B
��

j��
C

Such an s is unique and monic. If both i ⊆ j and j ⊆ i, then i and j are

said to be equivalent (represented as i ≡ j), in which case their domains

are isomorphic. Note that the category-theoretic treatment of subobjects in

a “function-based” set theory differs in several ways from the treatment of

subsets in a “membership-based” theory like ZFC. In the category-theoretic

treatment, elements x : 1 → A are identified with their singletons, and

elements are not themselves objects, in particular, an object A in a category

is not an element of any other object. However, fundamental results, such as

the result that, if i ⊆ j, then for all x, x ∈ i⇒ x ∈ j, are available.18

Relations, then, can be viewed as subobjects of the relevant product. A

binary relation defined over the elements of an object A is simply a monic

17Henceforth, the usual convention of denoting a monic using an arrow with a “tail”,
�, (both in diagrams and arrow descriptions), will be adopted.

18Note that the converse may fail, and must be added as an additional axiom if needed.
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arrow r : R � A×A. Note that, for any elements x, y : 1→ A, the ordered

pair 〈x, y〉 is an element of A×A. Monic arrows from a product A×A to A

can be viewed as binary operations defined on (pairs of elements of) A.

With these category-theoretic notions to hand, we now return to explore

the characterization of a group as an object with associated arrows in a

category. Assuming the category to have a terminal object and products, an

objectG of the category is a group provided there is an element e : 1→ G (the

identity element), an arrow m : G × G → G (the multiplication operation),

and an arrow ·−1 : G → G (the inverse operator), such that e is an identity

with respect to m, m is associative, and ·−1 yields an inverse for any element

of the group. All of the conditions on e,m, and ·−1 can be expressed via

commuting diagrams. Following the presentation of Chapter 3 of [60]19, G is

a group provided each of the diagrams below commutes.20

G
〈e,1G〉 //

1G
''

G×G
m
��
G

G
〈1G,·−1〉 //

e◦!G
''

G×G
m
��

G
〈·−1,1G〉oo

e◦!G
ww

G

G× (G×G)

��

1G×m // G×G

m

��

(G×G)×G
m×1G

��
G×G m

// G

The commutativity of these diagrams corresponds to (proceeding clock-

wise from the upper left) e serving as a unit with respect to m, ·−1 mapping

an element to its inverse (again with respect to m), and the associativity

19A similar treatment can be found in Chapter 4 of [3].
20Here, !G : G → 1 is the (unique) arrow from G to the terminal object 1, and the

unlabelled arrow fromG×(G×G) to (G×G)×G is an arrow that witnesses the associativity
of the product (such arrows exist for any finite product, and are iso).



CHAPTER 3. DEFINITIONS AND PRIMITIVE NOTIONS 99

of m, respectively. Other algebraic structures (for example, rings) can be

treated analogously.

Thus, we see that it is possible to define a group as an object with associ-

ated arrows in any category with a terminal object and products for any pair

of objects. While the AFCS view does not require that groups be defined in

this (or any other) particular manner, this example serves to further illus-

trate some of the familiar definitions that can be cast entirely in the language

of category theory.

3.2.3 Natural Numbers and Beyond

Following McLarty’s treatment in [61] (which in turn draws on Lawvere’s

treatment in [49]), the collection of natural numbers can be characterized

as an object N in a category, taken along with arrows s : N → N (the

successor arrow) and 0 : 1 � N (the zero arrow) such that N “supports

recursive definition”. That is, for any f : A → A, and q : 1 � A, there is a

unique arrow u : N → A such that the following diagram commutes.

1 // 0 //
��

q ��

N

u
��

s // N

u
��

A
f
// A

Intuitively, u is the unique function on N defined by the recursion data q

and f , i.e., we set u(0) = q, and for (global) elements x of N we have

u(s(x)) = f(u(x)).

The ambient category in which natural number objects are typically iden-

tified has, in addition to the usual axioms of category theory,

1. an axiom positing the existence of a terminal object 1,

2. products, equalizers, and coproducts for each pair of objects,
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3. an axiom of non-triviality, which gives that, where 1
i1→ 1 + 1

i2← 1 is a

coproduct diagram, the arrows i1 and i2 are distinct,21

4. an axiom that establishes the ambient category to be well-pointed (this

axiom is sometimes called “1 Generates”), which yields that subobjects

are determined by (global) membership,22 and,

5. an axiom which asserts the existence of a stable natural number object,

which is a natural number object that supports recursive definition with

parameters.23

All these axioms save the last are satisfied if the ambient category is a

type of category called a well-pointed topos, and in such a topos any natural

number object will be stable (though the existence of natural number objects

is independent of the axioms determining a well-pointed topos). A topos can

be roughly characterized as a category with properties akin to those of a

set theory like ZFC; “toposes are categories which allow the constructions

used in ordinary mathematics” [60, p. 6]. Toposes have proved a fruitful

topic of research, and are studied in detail in, e.g., [6, 60].24 For present

purposes, it suffices to note that all toposes have terminal objects, products

(and coproducts) for all pairs of objects, as well equalizers and coequalizers

for all parallel arrows.

For an ambient category that satisfies the axioms identified above, it

can be proved that a natural number object satisfies (suitably translated

21Coproducts are the category-theoretic dual of products, and can be informally thought
of as an abstraction of the set-theoretic notion of a disjoint union.

22For subobjects i and j of an object A, if i ⊆ j, then any x : 1 → A is such that
x ∈ i ⇒ x ∈ j, although the converse may fail. This axiom expresses the converse. Note
that subobjects in any category are always determined by generalized membership. (See
note 15.)

23This last axiom of stability is required in order to allow for the standard inductive
definitions of addition and multiplication, which involve parameters.

24Bell’s [6], in particular, highlights the close relationship between toposes and set the-
ories in developing the formal systems of local set theory ; toposes are shown to be (in a
sense that can be made precise) the natural models of local set theories.
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versions of) the Peano axioms, that any two natural number objects N, s, 0

and N ′, s′, 0′ are isomorphic, that there are infinitely many natural number

objects, and, most importantly, that any two natural number objects have all

the same structural properties. This last result lies at the heart of McLarty’s

[61], and his argument for this result has been adapted to yield the Structural

Properties Theorem of Section 2.4.3.

The axioms above (and, a fortiori, the axioms for a well-pointed topos,

taken with the axiom stipulating the existence of a stable natural number

object), also permit the construction of other familiar number systems, in the

standard manner. As described in [62], one can use the definition of addition

for a given natural number object N along with the relevant products, to pro-

duce a pair of arrows f, g : (N×N)×(N×N)→ N with f : 〈m,n,m′, n′〉 7→
m+n′, and g : 〈m,n,m′, n′〉 7→ m′+n. Taking an equalizer for this pair of ar-

rows yields a subobject of s : S → (N×N)× (N×N), the elements of which

are ordered 4-tuples 〈m,n,m′, n′〉 with m+n′ = m′+n. We can then consider

the two projections s1, s2 : S → N ×N , with s1 : 〈m,n,m′, n′〉 7→ 〈m,n〉 and

s2 : 〈m,n,m′, n′〉 7→ 〈m′, n′〉. The coequalizer z : N × N → Z for arrows s1

and s2 then yields the integers, Z, as (N ×N)/∼, where (a, b) ∼ (c, d) pro-

vided a+d = c+b, i.e., a−b = c−d. The existence of the relevant products,

equalizers, and coequalizers, is thus seen to permit the usual construction of

the integers from the natural numbers, and the rational numbers can be sim-

ilarly constructed. The real numbers can be constructed by Dedekind cuts or

Cauchy sequences, although in some contexts the results are not equivalent.25

3.3 The Lens of Category Theory

As was the case with groups, the AFCS program does not require that the

natural numbers, rationals, reals, etc., be given the category-theoretic treat-

25In [6] Bell establishes the result (attributed to Johnstone, see [44]) that “Dedekind
cuts within a local set theory need not be (conditionally) order-complete” [6, p. 226].
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ment described above, nor does it require they be given any other particular

account. Indeed, the related aspect of the AFCS proposal is simply that the

models of the axioms that define some type of system be treated as objects

within a category-theoretic framework, as the language of category theory has

been shown to effectively isolate the structural properties of any such objects.

There is no requirement that the models are categories, no requirement that

the models be defined in—or otherwise recovered in—a fixed, predetermined

category of some sort (for example, a well-pointed topos), and no require-

ment that the models belong to a particular, fixed collection of categories,

such as the collection of toposes.26

The aim in introducing the various category-theoretic methods of def-

inition and demonstrating their use in constructing familiar mathematical

objects is to further illustrate the expressive power of the language of cat-

egory theory. In Chapter 2, the language of category theory was shown to

be well-suited to capturing the notion of (mathematical) structure, as the

language of category theory preserves the structural properties of isomorphic

objects. When those objects are models of some type of system, the lan-

guage of category theory can be used to capture the mathematically relevant

features of those objects, independently of that object’s “internal” compo-

sition. Models may be conceived as consisting of spacial points, sequences

of thoughts, rotations of objects, etc., but the language of category theory

sharpens the focus, permitting one to isolate and study only those properties

shared by all models isomorphic to a selected model, i.e., only the struc-

tural properties. In this chapter, the expressive resources of the language

of category theory have been further explored, and it has been observed

that, starting with some given collection of models of a given type, framed

in the language of category theory, one may appeal to the standard means

26Other approaches, aimed at developing foundational programs using the resources of
category theory, are often led to constrain the realm of mathematical objects in this way,
and the results of this chapter are of particular importance to such programs (see, e.g.,
[6, 50, 49, 62]).
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of mathematical definition and construction in producing other models, of

either the same type or of a different type. Such techniques permit the fa-

miliar construction of product groups, equationally-defined subsets, kernels

of morphisms, quotients, and combinations thereof.

Category theory is thus capable of “standing on its own”, in at least the

sense that it does not dependent on the expressive resources of a membership-

based set theory in order to characterize standard mathematical construc-

tions on mathematical objects. This observation serves to address a concern

related to that raised by Feferman with which we began the chapter. Hell-

man, for example, has worried that category theory has yet to be shown

. . . autonomous from set theory in a strong sense: not only is

its primitive basis capable of standing on its own and sufficient

for some recovery of ordinary mathematics, even if via a detour

through set-theoretic constructions. . . but, without any such de-

tour, it can achieve a genuinely distinctive, intelligible conceptual

development throughout, not just in its initial stages. . . . unless

and until it [strong autonomy] is achieved, the charge that cate-

gory theory is ‘parasitic’ on set theory in its recovery of ordinary

mathematics will surely linger. [38, p. 133]

Of course, the call for a “distinctive, intelligible conceptual development” is

difficult to clearly address. Are the methods and notions of category theory

sufficiently distinct (presumably from a membership-based set theory)? Are

the methods and notions sufficiently intelligible? This concern is reminiscent

of Feferman’s call for “psychological priority”, and here Hellman is led to

admit that his request is “not a precise distinction”, and that “perhaps we

would only recognize ‘strong autonomy’ if we saw it” [38, p. 133].

While Hellman’s concerns may be at least partially addressed within this

chapter, a group of related concerns merit further examination. Recall Fe-

ferman’s worry about the notions of operation and collection, which were

seen to be focused on the role of the axiomatic method in understanding
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the axioms of category theory, or, indeed, axiomatic systems more generally.

The response offered here was to observe that, insofar as the mechanisms

involved are so ubiquitous as to be plausibly involved in the understanding

of any natural language, demanding an account of these features from a phi-

losophy of mathematics—foundational or otherwise—is inappropriate. We

see this request again in Hellman’s discussion of McLarty’s (foundational)

proposal to pursue an account of “a (meta) category of categories”,27 about

which Hellman remarks that

when we speak of the “objects” and “arrows” of a metacate-

gory of categories as categories and functors, respectively, what

we really mean is “structures (or at least “interrelated things”)

satisfying the algebraic axioms of CT [category theory]”, i.e.

we are using “satisfaction” which is normally understood set-

theoretically. . . clearly there is some dependence on a background

that explicates satisfaction of sentences by structures, and this

background is not “category theory” itself. . . [40, p. 157]

While this concern should also have been addressed by the foregoing (and, in-

deed, it was again a concern raised in discussion of foundational programs),

it does suggest that other metatheoretic issues merit some attention. In

turning his attention to Awodey’s anti-foundational proposal,28 very close in

spirit to the AFCS view considered here, Hellman worries that such programs

are faced with a dilemma: either the language of category theory arrives at

the meanings of its terms (arrows and objects)29 via the notion of satisfac-

tion (and so “falling back on prima facie set-theoretic notions after all” [40,

p. 159]), or

. . . what we are really presented with is a kind of formalism, in

27See [62, 63].
28See [2].
29Since “arrows-only” presentations of the axioms of category theory are possible, Hell-

man restricts his attention to the notion of an arrow or “morphism.” See [52, p. 9].



CHAPTER 3. DEFINITIONS AND PRIMITIVE NOTIONS 105

which theorems in conditional form, together with definitions, are

all there is to mathematics, that is, we just give up on the no-

tion of mathematical truth as anything beyond deductive logical

validity. [40, p. 158]

While the first horn of this dilemma should now be sufficiently dulled, it

remains to consider the status of mathematical truth on the AFCS view, and

it is to that discussion that we now turn in Chapter 4.
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Chapter 4

Domains, Truth, and Proof

. . . nothing capable of proof ought to be accepted without proof.

[24, p. 14]

Mathematics is “correct” but not “true” [51, p. 443]

To hope to do justice to an account of roles of proof, truth, and domains

in mathematics—over the course of a single chapter—is optimistic at best,

foolish at worst. Thus, this chapter is best viewed as a sketch of the accounts

of these notions either best suited to, or required by, the central tenets of the

AFCS program.

4.1 Theorems as Conditionals

Recalling the discussion of Section 1.5, the AFCS program adopts Awodey’s

characterization of mathematical theorems as both schematic and condi-

tional. Of the claim about the conditional form of mathematical theorems,

Awodey asserts that mathematical theorems are such that

. . . the ‘things’ referred to are assumed to have certain properties,

and then it is shown, using the tacitly assumed methods of rea-

soning, that they also have some other properties. . . . Of course,
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many theorems do not literally have this form, but every theorem

has some conditions under which it obtains. [2, p. 58].

A quick glance over results established in a variety of textbooks in math-

ematics offers support for this view. Examples of theorems presented in this

form abound, and the following two examples are typical. A recent textbook

on abstract algebra contains the theorem that “In a ring with identity every

proper ideal is contained in a maximal ideal” [27, p. 254]. A classic textbook

in real analysis states Minkowski’s inequality as the theorem

Minkowski’s Inequality. Let E be a measurable set and 1 ≤ p ≤ ∞. If

the functions f and g belong to LP (E), then so does their sum f + g, and,

moreover,

‖f + g‖p ≤ ‖f‖p + ‖g‖p.1

At least prima facie, Awodey’s claim seems plausible as a descriptive

claim about the form of many theorems in contemporary presentations of

mathematical results. However, some well-known worries (aimed at nomi-

nalistic philosophies of mathematics) seemingly become relevant when one

considers those theorems which “do not literally have this form”, and so

which require rewriting as conditionals. Is it legitimate to rewrite the the-

orem that there are infinitely many primes as the theorem that in any ω-

sequence, there are infinitely many primes? Is it legitimate to rewrite the

theorem that there are exactly two groups of order 4 as the theorem that for

any group G, if G has order 4 then G is isomorphic to a cyclic group of order

4 or G is isomorphic to the product of two cyclic groups of order 2 ? The ini-

tial expressions of these theorems seem to embed ontological commitments

that do not appear in their conditional translations; do such translations

accurately represent the content of the original theorems?

At least one aspect of this question of representation of content can be

safely ignored: what did the mathematician who produced the result believe

1See [72, p. 141].
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him or herself to have established? Did he or she regard the statement as

involving a commitment to abstract objects, be they numbers, groups, or

the like? That, when presented with theorems in the original forms above,

whose grammatical structure is such that they “appear to assert the existence

of mathematical objects, and to be true only if such objects exist”, many

mathematicians “assent verbally to them [theorems with apparent existential

commitment] without conscious silent reservations” seems wholly irrelevant

to the question of the correct representation of the mathematical content

of such theorems [71, p. 516]. If these results are indeed theorems, and

not, for example, a mathematician’s conjectures, the concern of both the

mathematician and the philosopher of mathematics is to investigate how to

best represent the mathematical content of those theorems, not to capture

any aspect of the mathematician’s attitude towards those theorems.

In aiming to understand how to best express the content of any such

theorem, one is naturally led to consider the warrant for the assertion of

that theorem. Mathematics is a unique area of research in that the warrant

for asserting a mathematical claim is provided by a proof of that claim;

“Mathematics differs from all other sciences in requiring that its propositions

be proved” [58, p. 3]. The proof of a mathematical theorem then yields

information about the correct description of that proof, i.e., the statement

of the theorem that has been proven. A proof of the infinity of the primes

may be taken by the mathematician who produced the result to describe a

feature of the natural numbers, but the methods employed in the proof will

be readily seen to apply to a whole class of systems, even in the special case of

those systems which admit of a categorical2 description. Such a procedure is

typical of contemporary mathematics, and, indeed, is at the core of both the

axiomatic method and the structuralist view of mathematics. As Mayberry

notes,

2Here, categorical is used to describe an axiomatic system for which all models are
isomorphic.
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. . . in the axiomatic approach there is no unique, particular

system of natural numbers; there is instead an absolutely infinite

species of mutually isomorphic simply infinite systems . . .

. . . the axiomatic method allows us to dispense with the “math-

ematical objects” of tradition. [58, p. 194–195]

Thus, while a mathematician may envision having proved a result that holds

for a particular system of objects—the natural numbers, for example—the

methods employed in the proof typically generalize, and so apply to a whole

class of systems.

Of course, it would be disingenuous to represent, for example, Euclid’s

proof of the infinity of the primes as a general claim about ω-sequences (or,

indeed, to present this theorem in its more general, ring-theoretic version).

However, proponents of the AFCS program (and those, like Awodey, who

would endorse at least some of its central tenets) need not view the procedure

of rendering a theorem in conditional form as a process of translation—aimed

at preserving the content of the original theorem—but may instead view the

rendering in conditional form as reflecting the contemporary mathematical

concern to produce a sharper, more accurate, more general, and ultimately

more useful version of the original theorem. The aim of the AFCS condi-

tional rendering is not simply to capture the original or originally intended

content of a mathematical theorem, but instead to properly reflect our cur-

rent best understanding of that theorem. This contemporary understanding

of a theorem will typically be informed by a study of the methods employed

in proving the theorem, and may be motivated by an aim towards increasing

the scope of applicability of the theorem, to better identify the conditions

under which it obtains, and so to more precisely identify the types of sys-

tems to which it applies. One need not claim to have accurately represented

the original theorem, but instead to have distilled and sharpened the origi-

nal result in order to better display the generality permitted in view of the

methods employed in establishing that initial result.
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Here we may observe that the structuralist perspectives identified in Sec-

tion 2.1.1 motivate the rendering of mathematical theorems in conditional

form. The particular objects of a system don’t matter, only that they stand in

the relations specified in the conditions given in the theorem. The particular

system—the model of the antecedent conditions specified in the theorem—

doesn’t matter: the proof establishes that the results of the theorem apply

to any system satisfying those conditions. The ubiquity of the structural-

ist perspectives among the mathematical community, along with the rise of

the axiomatic method which so naturally accommodates those perspectives,

may also explain why many of the results of contemporary mathematics are

already expressed in conditional form.

4.2 Theorems as Schematic

Recalling the discussion of Section 1.5, a further aspect of the AFCS program

is the view that mathematical theorems are best expressed as schematic in

form, i.e., the variables ranging over models which appear in (conditional)

mathematical theorems are not taken to fall within the scope of a universal

quantifier ranging over a fixed domain of objects. The reasons offered for

adopting this view of mathematical theorems as schematic may also serve

to clarify some otherwise curious features of mathematical discourse. In

this section, we consider why the treatment of mathematical theorems as

schematic squares well with the AFCS view, and reflects some of the original

structuralist motivations. In the next section we will explore in greater detail

some potential alternatives to the schematic approach, and establish why

these alternatives are unworkable on the AFCS program.

Consider the above-mentioned ring-theoretic result that any ring with

identity is such that every proper ideal is contained in a maximal ideal.3 In

3A ring is an additive Abelian group with a multiplication operation that is associative
and which distributes over addition. A ring with identity has an element a such that
ar = ra = r for all elements r of R, i.e., a ring with identity has a multiplicative identity in
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accordance with the view developed in Section 2.6.1,4 the theorem is taken

to involve a claim about rings, and as rings are simply identified as models

of the ring axioms, the conditional theorem is metatheoretic, insofar as it

concerns the properties of models of a collection of axioms.5 As a schematic

conditional, this theorem may be represented as6

if (R � the ring axioms, and has an identity)

then (any ideal I of R is contained in some maximal ideal J of R) (4.1)

Before moving to consider reasons for regarding this theorem as best un-

derstood to involve treating the variables7 ranging over rings as schematic, it

is helpful to consider why the apparent reference to rings should be treated

as metatheoretic: involving the notions of a model, satisfaction, and truth,

as discussed in Section 3.1. Contrary to this view, in pursuing his modal

structuralist program Hellman deliberately rejects a (modal) translation of

the theorems of arithmetic into a form that invokes metalinguistic treatments

of, e.g., ω-sequence and satisfaction,8 claiming that such a translation “. . . is

surely an awkwardness, if not a fatal misrepresentation of arithmetic dis-

course” [35, p. 18].9 Hellman does not expand on his reasons for this assess-

ment, but this metalinguistic translation, which invokes the metatheoretic

notions of model and satisfaction, seems entirely fitting given the structural-

addition to the additive identity coming from the group axioms. Note that some definitions
of ring require that a ring has a multiplicative identity (in which case the additional
qualification in this theorem is unnecessary).

4See especially the discussion surrounding formula 2.8.
5Here the axioms that determine a ring (with identity) are first order and finite in

number, but this need not be the case in general.
6Here we again use the standard symbols for metatheoretic notions as outlined in

Section 2.6.1. Note that an ideal of a ring R is itself a ring.
7The ideals of a ring are subrings, provided one uses a definition of ring that does not

require that rings have a multiplicative identity.
8Accounts which proceed via the usual set-theoretic treatment.
9See Section 2.6.2.
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ist perspectives. Recall Dedekind’s observations that10

. . . it is clear that every theorem regarding numbers, i.e., regard-

ing the elements n of the simply infinite system N set in order

by the transformation φ,. . . possesses perfectly general validity for

every other simply infinite system Ω set in order by a transfor-

mation θ and its elements ν [24, p. 48]

Dedekind, of course, considered only (informally treated) sets as candidate

simply infinite systems, but he was also content to allow that his infamous

sequence of thoughts could be taken to constitute such a system. While

a contemporary structuralist may not follow Dedekind in taking Dedekind’s

thoughts to constitute a set in the contemporary sense of the term, his accom-

modating view is carried forward to the AFCS program, and any model that

one is willing to sanction may count as a system of the relevant sort. For ex-

ample, the mathematical theorems of arithmetic will apply to any ω-sequence

one is willing to admit, no matter what its constitution. As ω-sequences are

identified as models of the second-order Peano axioms, a structuralist is natu-

rally led to adopt, even in the case of “the” natural numbers, a metatheoretic

view.

Hellman, however, does not dispense with the notions of, e.g., satisfaction,

he instead prefers to avoid treating these notions as metatheoretic in order to

avoid their usual, set-theoretic construal.11 Thus, despite Hellman’s earlier

remark about the “awkwardness” of the translation involving metatheoretic

notions, instead he rejects such a translation for reasons related to the typical

set-theoretic account of metatheoretic notions like satisfaction. First, such a

translation makes, for example,

. . . number theory dependent on set theory in a way that, from

a mathematical point of view, it would be desirable to avoid.

10See Section 2.1.1.
11Hellman instead uses the resources of second-order logic to express satisfaction directly

in the object language.
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There is good motivation for understanding number theory and

analysis as capable of standing on their own. Surely we should

resist saddling them—as basic mathematical theories—with the

problem associated with “Cantor’s universe” [35, p. 14]

If—as suggested on the AFCS program—it is legitimate to take the notion

of a model as primitive,12 Hellman’s concern on this point is acknowledged,

and the problem avoided. However, Hellman is also concerned that, on a

set-theoretic approach, the objects of mathematics must then be recovered

as sets, in which case

What will be missed is the full generality of structuralism: arith-

metic or analysis investigates relations holding within arbitrary

structures of the appropriate type—not just within those that

happen to be recognized in a weak set theory. [35, p. 14]

In keeping with the general structuralist perspective, any system should suf-

fice, not simply those which are sets.

While taking the notion of model (and related notions) as primitive goes

some way toward addressing Hellman’s second concern as well, sensitivity to

this concern is also reflected in the AFCS treatment of mathematical theo-

rems as conditional and schematic. First, in treating the theorems as con-

ditionals (as Hellman himself does in his preferred modal framework), there

is no commitment to the actual satisfaction, or, indeed, the satisfiability, of

the antecedent conditions—involving objects like rings, metric or topological

spaces—featuring in those conditional statements.13 This ontological neu-

trality goes some way towards accommodating the view that there should

12Taking associated notions, such as satisfaction, as primitive as well. See the discussion
in Section 3.1.

13Recall that Hellman’s modal structural approach does later involve explicitly asserting
that w -sequences, etc., are possible, a manoeuvre aimed at tempering the threat of vacuity.
See the discussion in Section 2.6.2 concerning Hellman’s program and see Section 2.6.1 for
a response to concerns about vacuity within the AFCS program.
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be no restrictions placed on the sorts of objects that may count as groups,

ω-sequences, etc.

Unfortunately, the apparent gain afforded by the treatment of theorems

as conditional in form is lost if the conditional is treated as governed by a

universal quantifier ranging over models. Recall Awodey’s remark that

The ‘schematic’ element in mathematical theorems, definitions,

and even proofs is not captured by treating the indeterminate

objects involved as universally quantified variables, as quantifica-

tion requires a fixed domain over which the range of the variable

is restricted. [2, p. 59]

Thus, the “generality of structuralism” is reflected in the AFCS program

by treating any variables (like R in theorem 4.1) which could be viewed as

ranging over groups, ω-sequences, metric spaces, and the like—ranging over

the “indeterminate objects” that feature in the (conditional) theorems—as

schematic, thereby avoiding the treatment of those variables as ranging over

a fixed domain of given objects. Groups need not be sets, and they need not

be recovered as elements of some other, privileged collection serving as the

domain of quantification.

In rejecting a single, fixed universe of mathematical objects, the AFCS

proposal resembles that program proposed by Bell in [5, 6], which is also

framed in the language of category theory, and which also seeks to permit

variability in the range of acceptable universes of mathematical discourse.

Bell notes that

From the set-theoretical point of view, the term “group” signifies

a set (equipped with a couple of operations) satisfying certain

elementary axioms in terms of the elements of the set. Thus the

set-theoretical interpretation of this concept is always referred to

the same framework, the universe of sets. [5, p. 410–411]
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Bell’s suggested program can be described as accommodating the “generality

of structuralism” via a loosening of this restriction on the class of models:

instead of being limited to the universe of sets,14 one may instead appeal to

the universe provided by a topos.

Any topos may be regarded as a mathematical domain of dis-

course or ‘world’ in which mathematical concepts can be inter-

preted and mathematical constructions performed. [6, p. 238]

The topos of sets, then, is but one possible universe of mathematical ob-

jects, and Bell’s proposed program allows for groups, rings, and other types

of objects to be recovered in any topos universe, not just the topos of sets.

Groups, for example, can be interpreted on Bell’s view as objects with suit-

able arrows in any topos, where a group may be characterized in an arbitrary

category (and so, a fortiori, an arbitrary topos) in the manner described in

Section 3.2.2. However, recall that the AFCS proposal is to require only that

a group be treated as

1. a model of the appropriate sort (in this case, a model of the group

axioms), and

2. an object in a category.

When the category-theoretic method of characterizing a group was pre-

sented in Section 3.2.2, it was noted15 that such an approach was permitted,

but not required on the AFCS view. Requiring that, for example, models

of the group axioms are objects with associated arrows in a topos fares no

better in respecting the open-ended nature of the structuralist perspectives

than requiring that a model of the group axioms be a particular sort of set.

14Bell also notes that there is also a sense in which “the” cumulative hierarchy of sets
admits (or suffers from, depending one one’s aims!) a degree of variability—as witnessed
by, e.g., the Löwenheim-Skolem theorem, or Cohen’s independence results. See [5, 6] for
a discussion.

15See the discussion in Section 3.3.
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In taking models as primitive, the AFCS proposal necessarily treats models

of axioms—groups, topological spaces, ordered fields, etc.—as in some sense

opaque. Whatever their origins, whatever their “home address”, an essential

component of the AFCS view is that models be framed in the language of

category theory in order to best capture their structural properties, the prop-

erties of mathematical interest. Taking models as primitive, as described in

Chapter 3, is intended to accommodate any sort of “internal structure” that

may be supposed for the model(s) in question.

4.3 Domains

The AFCS program agrees with Hellman’s aim to respect the “full generality

of structuralism”, and seeks to do so by

1. not restricting the sorts of entities which can be viewed as models of the

various axiomatic systems, and so not committing to a single, definitive

universe of such models, as well as

2. not restricting the universes—the collections of models—which may

provide the context for the interpretation of a conditional, schematic

theorem of mathematics.

The purpose of this section is to further examine the reasons for, and conse-

quences of, these two aspects of the AFCS view.

4.3.1 The Single Domain Option

Concerning this first aspect we are again reminded of Dedekind’s approach,

which could be viewed as leading away from the study of the natural numbers

to the study of simply infinite systems. Where before there may have been

thought to be a single, definite object satisfying a given axiomatic definition,

the mathematician is led to recognize the potential for a multitude of distinct
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objects satisfying that definition; the definition alone does not suffice to fix

a single model. This process of replacing the constant with the variable

has been identified by Bell as leading naturally to the category-theoretic

approach, which “may be said to bear the same relation to abstract algebra

as the latter does to elementary algebra” [5, p. 409]. For the purpose of the

current discussion, it suffices to note that one might consider the replacement

of constancy with variability to be a hallmark of the structuralist approach

to mathematics, and so a view which purports to be a structuralist view, but

which characterizes mathematics as the study of a fixed collection of objects

(models, in the present case) seems prima facie at odds with the structuralist

position. In the case under consideration, why should variability stop at the

level of models?

It is useful here to contrast the AFCS view with the set-theoretic struc-

turalist view (STS) considered by Hellman in [39]. On such a view, systems

(groups, fields, etc., and so models) are identified as types of sets, and one

may hold that, for example, the cumulative hierarchy is the universe of all

models. However, adopting this view is then to deny that the structuralist

perspectives should be applied to the set-theoretic framework that functions

at the meta-level.16 As Hellman explains,

Here we encounter a massive exception to the structuralist point

of view, in that, on its face-value interpretation, set theory it-

self is not treated structurally: its axioms are not understood

as defining conditions on structures of interest but are taken as

assertions of truths in an absolute sense. [39, p. 540]

Of course, those who defend set-theoretic structuralist programs are often

clear on this point. Mayberry, for example, observes that on his view

. . . the logical dependence of axiomatics on the set-theoretical con-

cept of mathematical structure requires that set theory already

16See [79] for a discussion of the issues associated with the shift from algebraic axioms
at the object level to assertory axioms at the meta-level.
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be in place before an account of the axiomatic method, under-

stood in the modern sense of axiomatic definition, can be given.

It follows necessarily, therefore, that we cannot use the modern

axiomatic method to establish the theory of sets. [58, p. 7]

As a consequence of this view, the theory of sets developed by Mayberry

constitutes only “. . . a partial description of the absolute universe of sets in

which all conventional structures, including all models . . . are to be found”

[58, p. 243].

A set-theoretic structuralist view might, at the very least, be hoped to at

least partially reflect the “open-ended” aspect of the structuralist perspec-

tives, evident in some of the earliest versions of structuralism. Recall that

Dedekind opens [24] with the sentence “In what follows I understand by thing

every object of our thought”, and he goes on to claim that

It very frequently happens that different things, a, b, c, . . . for

some reason can be considered from a common point of view,

can be associated in the mind, and we say that they form a sys-

tem S; we call the things a, b, c, . . . elements of the system S, they

are contained in S; conversely, S consists of these elements. Such

a system S (an aggregate, a manifold, a totality) as an object of

our thought is likewise a thing. . . [24, p. 21]

The view that any entity—any thing—can feature as an object in a system,

and that any suitably-structured system can count as a simply infinite sys-

tem, a group, metric space, etc., lies at the heart of the structuralist view

as characterized in Section 2.1.1. One who accepts the structuralist perspec-

tives, then, should prefer a program that preserves these principles—as the

AFCS program seeks to do—to any that do not.

Unfortunately, the familiar logical and set-theoretic paradoxes point to

our having to tread carefully when treating a single, all encompassing uni-

verse that would then be expected to contain all models. Such a universe is
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typically barred from being treated as an element of itself, on pain of con-

tradiction, and so it seems that the universe, which was intended to be all

encompassing, must instead be restricted. Naive comprehension is replaced

with restricted comprehension; some collections may be deemed “too large”

to be considered sets, and terms like species or proper class may be intro-

duced. Such restrictions, already at odds with the structuralist motivations,

introduce a further tension between the principles encoded in typical charac-

terizations of the universe of sets—the universe of models—and the universe

itself. On a theory such as ZFC, the axiom (schema) of comprehension is

restricted in such a way that some problematic totalities are not deemed sets.

Thus, Hellman is led to wonder “. . . what prevents the “collectibility” of “all

sets”. . . . And why aren’t such collections subject to operations analogous to

those of set theory itself, including formation of singletons, power collections,

and so on?” [39, p. 540]. As Mac Lane remarks,

Understanding Mathematical operations leads repeatedly to the

formation of totalities: The collection of all prime numbers. . . the

manifold of all lines in 3-space. . . the set of all power series expan-

sions for a function (its Riemannian surface) or the category of all

topological spaces. There are no upper limits. . . . This is the idea

of a totality, and these are some of its many formulations. After

each careful delimitation, bigger totalities appear. No set theory

and no category theory can encompass them all—and they are

needed to grasp what Mathematics does. [51, p. 390]

Accounts of a single universe of mathematical objects, typically a universe

of sets (which in the case at hand, would be treated as a category of sets),

are generally required to draw boundaries around their proposed universe for

reasons of consistency, but it is the presence of the boundaries themselves that

is at odds with the generality present in the key structuralist perspectives.
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4.3.2 The Multiple Domain Option

Perhaps this generality can be obtained in following Bell to admit not a

single universe of models, but rather a whole class of such universes. On the

single domain option, it was observed that there was a tension between the

AFCS aim—motivated by the structuralist perspectives—to allow anything

one was willing to sanction to stand as a model of some axiomatic definition,

and the restrictions required in order to articulate a single domain view that

does not lead to inconsistency. It may be hoped that allowing variability

in the domains might permit one to preserve the intended generality of the

notion of model intended on the AFCS view. Dedekind’s thoughts may yield

a model of the second-order Peano axioms, and the symmetries of the cube

should be able to stand as a model of the group axioms. While no one, single

domain may contain both these as well as all other models, allowing multiple

domains, none of which are held to contain all models, may yet permit the

intended generality.

On Bell’s program, each topos provides a mathematical universe, and the

models of various axiomatic systems, the groups, rings, natural numbers sys-

tems, etc., can be recovered in these topos universes,17 with no one, privileged

universe. Note, however, that the AFCS program does not use categories in

the way that Bell uses toposes in developing his view.18 In particular, on

the AFCS view the language of category theory is not used in defining the

objects of mathematical interest (models of axioms characterizing groups,

vector spaces, and so forth), it is instead taken as a framework in which to

relate those entities, whatever their origins. A group, for example, on the

AFCS view is a model of the group axioms, but is not necessarily a set, nor

necessarily an object with associated arrows in a topos. Given a particular

collection of models meant to serve as the background for the interpretation

17Note that the existence of a natural number object is independent of the other topos
axioms. See the discussion in Section 3.2.3.

18See [6] for details of the approach via the notion of a local set theory.
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of a mathematical theorem, the AFCS view requires only that those models

be treated as objects in a category. The ambient category for the interpre-

tation of a theorem in group theory might be a category of groups where

each group is a set in ZFC, or a category of monoids, where each monoid is a

string rewriting system, etc., but no constraints are placed on the description

of the internal structure of such entities, save their being (candidate) models

of the relevant sort.

Given that the AFCS view requires that models be treated as objects in

a category (and so, that variables like R in theorem 4.1 range over objects

in a category), each “universe” on the AFCS would then be a category (of

models). A multiple domain view appropriate to the AFCS program would

thus involve providing some characterization of the “realm” of categories. To

this end, the theory of multiple domains appropriate to the AFCS program

might be expected to resemble the category of categories proposed by Lawvere

in [50], and further refined in, e.g., McLarty’s [59]. Of course, one need not

be committed to the view that all categories may serve as categories of

objects that are models of some axiomatic definition, but certainly those

categories which can be viewed as categories of models would be expected to

be contained in the category of all categories.

A category of categories is a category whose objects are themselves cat-

egories, and whose arrows are functors19 between categories. Assuming the

availability of an identity functor for each category and the ability to form

functor composites, it is an immediate consequence of the definition of a

functor that functors between categories satisfy the conditions on arrows in

a category (where the categories themselves are taken as objects), and thus

a collection of categories and functors between them together constitute a

category of categories.

Some of the remarks made in the presentation of Lawvere’s [50] suggest

19Recall again that a functor F is a function between categories that maps objects to
objects and arrows to arrows while respecting domains, codomains, identities and com-
posites.
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that the intended generality concerning the composition of models may in-

deed be available in a category of categories, as “By a category we of course

understand (intuitively) any structure which is an interpretation of the ele-

mentary theory of abstract categories” [50, p. 4].20 Thus, it would seem we

are permitted in granting that a category of (models of the axioms for) groups

may contain the group of symmetries of a cube, or whatever else we are in-

clined to admit as a candidate model of the group axioms. However, such

optimism is short-lived, as the move away from the “intuitive” conception

to the more definite (axiomatic) presentation of the category of categories

requires that one abandon at least some of these intuitions. As in the single

domain theory, the danger of paradox requires modifications that are at odds

with the desired generality. The category of categories is, after all, a category.

Is it an object of itself ? As Hellman observes, “we certainly had better avoid

such things as ‘the category of exactly the non-self-applicable categories’ !”

[40, p. 157]. McLarty offers a reply to Hellman’s concerns21 about the axioms

Lawvere presents in [50], “The Category of Categories as a Foundation for

Mathematics”, (sometimes referred to as the CCAF axioms)22 but his reply

to these concerns does not bode well for the preservation of the generality

sought on the AFCS program.

When we axiomatize a metacategory of categories by the axioms

CCAF, the categories are not ‘anything satisfying the algebraic

axioms of category theory’. . . They are anything whose existence

follows from the CCAF axioms. [63, p. 52]

Such a position may be required for consistency (although it is not imme-

diately clear that, for example, admitting a category of all categories as an

object in the category of categories would lead to inconsistency).23 However,

20Lawvere’s elementary theory of abstract categories consists of the (first-order) axioms
that define a category.

21These concerns are also raised in [38].
22See also McLarty’s strengthening of those axioms as presented in [59].
23See McLarty’s brief remarks in [63, p. 52] and [59, p. 1243], in which he speculates
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McLarty goes on to note that, “even if there is such a category [of “all”

categories] it will not be the category of absolutely all categories” [63, p. 52].

Again, then, we are faced with boundaries that run contrary to the generality

that motivates the AFCS view.

What, then, of any category containing the group of symmetries of the

cube? Such a category should stand as a possible background for the in-

terpretation of a theorem concerning groups. Clearly such a category is not

something “whose existence follows from the CCAF axioms”, as the axioms

say nothing about the nature of the objects involved in any category whose

existence can be established on their basis. It seems the best one may hope

for is that, for a given category C of models of the group axioms that con-

tains the group of symmetries of the cube, there is some category C′, whose

existence does follow from the CCAF axioms, such that C is isomorphic to

C′. That is, we do not have the existence of C as an element of the category

of categories, but we may get the existence of the next best thing, a category

C′, isomorphic to C. This situation seems at least partly in keeping with the

structuralist perspectives of Section 2.1.1; if we view the given category C of

groups as a system, that our system involves an element (i.e., an object) that

is the group of symmetries of the cube shouldn’t matter: another similarly

structured system, with a different element playing the “role” of the group

of symmetries of the cube, should suffice. Doesn’t the Structural Properties

Theorem establish that we can just as easily work with C′ instead of C?

There is, however, a crucial distinction between the group axioms that

serve to define what counts as a group, and the category axioms which serve

to organize the framework in which models of the group axioms are to be

considered. Once the axioms for a type of structure—like the axioms for a

group—have been provided, models of those axioms may be taken to have any

“internal” structure that one is inclined to admit. For example, one might be

that a category of categories may be admitted in the manner in which a “set of all sets”
can be admitted in Quine’s New Foundations axioms [68].
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interested in groups recovered as sets in ZFC, or one might consider groups

recovered as rigid motions of platonic solids. In either case, one might then

take these objects, along with their associated homomorphisms as arrows, as

the background framework—the ambient category—for the interpretation of

some group-theoretic result. Once this choice of background framework has

been fixed, the structural properties of the objects have also been fixed. The

categories in question are categories whose objects are particular sorts of mod-

els, and the structural properties of these models are given by interpreting

the language of category theory with respect to the chosen framework. In the

language of category theory, an object A having a single non-identity arrow

f : A→ A corresponds to a structural property of an object A, as it can be

expressed in the language of category theory without names or parameters.

In the case where our groups are taken to be sets in ZFC, the corresponding

property is one concerning non-trivial automorphisms, where an automor-

phism is a particular sort of function mapping sets to sets. If our ambient

category is instead that in which groups are taken to be rigid motions of the

platonic solids, the claim again concerns automorphisms, where in this case

the automorphisms are functions mapping rigid motions of a solid to rigid

motions of a solid. In the former case, the structural properties concern sets,

in the latter case, the structural properties concern rigid motions of platonic

solids. In short, the language of category theory must be interpreted in the

chosen ambient category in order to determine the structural properties : dif-

ferent ambient categories yield different structural properties. Even though

there may be an ambient category of groups in ZFC that is isomorphic, as a

category, to the ambient category of groups of rigid motions of the platonic

solids, each ambient category determines distinct structural properties. In

moving from C to C′, then, we change the subject.

Of course, while the structural properties of two distinct ambient cate-

gories may themselves be distinct, if the categories in question are isomor-

phic, those structural properties lie in a natural correspondence given by the
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representation of those properties in the language of category theory. In the

cases discussed above, we would be able to move from structural properties

of groups consisting of sets to structural properties of groups consisting of

rigid motions via the representation of those properties in the language of

category theory. As outlined above, the structural property corresponding

to an expression in the language of category theory concerning the existence

of a single non-identity arrow for an object A can be interpreted in one am-

bient category or another. Consequently, the representation in the language

of category theory of the properties in question thereby allow us to identify

properties in one category that correspond to property in another. Perhaps,

then, it doesn’t matter that the move from C to C′ “changes the subject”;

we may be able to translate back to our original category. Again, doesn’t

the Structural Properties Theorem license exactly this sort of move?

A reply to this question gets to the heart of the problem with the multiple

domains approach via a category of categories. Taking C and C′ as above,

The application of the Structural Properties Theorem requires that both C

and C′ are objects in the same (ambient) category. That theorem establishes

a connection between objects that are isomorphic in the (ambient) category,

and the structural properties (determined by that ambient category) of those

objects. If the ambient category is taken to be the category of categories,

then we are prevented from applying the theorem: the shift from C to C′

was suggested precisely because C is presumed not to be an element of the

category of categories! This situation is much like the difficulty in working

with ZFC to establish a theorem about (pure) sets, and then hoping to appeal

to that theorem when discussing the set of books on a desk.24

Would it be legitimate simply to add this category C to the category of

categories? This new, extended category of categories would then contain

all categories in question, and in similar circumstances involving other cate-

24Perhaps something akin to the use of urelements in set theory could also be used with
the category of categories, but it is not immediately clear that this method, if possible,
would address the present concern.
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gories we might simply add categories as needed. This option, of course, is

untenable. The axioms for the category of categories were proposed in order

to circumscribe our intuitive understanding of the universe of categories, and

were initially proposed as a part of a foundational approach aimed at produc-

ing “a single system of first-order axioms in which all the usual mathematical

objects can be defined and all their usual properties proved” [50, p. 1]. De-

spite Lawvere’s admitted foundational concerns (shared by McLarty), such

a systematization is directly relevant to the multiple domain approach on

the AFCS program, which requires an answer to the question “what are

the categories of models?”. In order to maintain the AFCS commitment to

strict neutrality with respect to the sorts of entities that can be models, this

question concerning categories of models is necessarily subsumed under the

question: “what are the categories?”. Any answer to this question, of course,

is aimed at sharpening and improving upon on our intuitive conception. The

well-known difficulties encountered when trying to tame naive views in devel-

oping early systems of modern logic and set theory show just how carefully

these systems must be developed, and just how cautious we must be when

working with intuitive views. It runs counter to the principal aim of these

related projects—projects aimed at producing a more precise, systematic ap-

proach to address the delicate questions of category-theoretic existence—if

we are simply to ignore the systems that have been developed and return to

the intuitive conception whenever it proves convenient!

It seems, then, the proponent of the AFCS view is unable to accept

either the single domain view or the multiple domain view. Granting that

quantification must be quantification over a fixed domain, the situation may

be expressed as follows. A mathematical theorem, like that in theorem 4.1,

involving a variable R, can be represented as having the form

if R � Ring + Id then R �M, 25

25Recall the discussion involving expression 2.7 in Section 2.6.1.
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which may be more succinctly represented as

F (R)→ G(R), (4.2)

with the obvious definitions of F and G. Accordingly, the single domain

option involves treating the variableR as ranging over a single, fixed universe

of all models, in which case we might represent the theorem as having the

form

∀R(F (R)→ G(R)).

On the AFCS program, that single domain would be a category, and so a

category of all models. Calling this category of all models M, we can then

describe the theorem as being of the form

∀R in M(F (R)→ G(R)). (4.3)

The truth of (4.3) would then involve a claim about all models, but the

difficulty in respecting the AFCS silence on what counts as a model, along

with the familiar difficulties associated with providing a consistent account

of such totalities (in particular, the difficulty in providing an account that

avoids drawing boundaries running contrary to the open-ended character

of mathematics highlighted by Mac Lane and Hellman), seems to leave us

without a characterization of M sufficient to justify (4.3). That is, without

the ability to make substantial claims about M, it is difficult to see what

might justify the assertion that (4.3) is true.

On the multiple domain view, we attempt to remedy this situation by

allowing M to vary. As each such M is taken to be a category of models,

M in (4.3) can be treated as a variable, ranging over the collection of all

categories of models. A mathematical theorem, then, might be represented

as having the form

∀M(∀R in M(F (R)→ G(R))). (4.4)
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Again, the AFCS program’s neutrality on the status of models requires that

we instead investigate the collection of all possible categories (as we lack any

prior criteria according to which we may distinguish those categories which

can be viewed as categories of models), independently of the nature of their

objects, which leads us to appeal to an account of the category of categories.

Here too we find that concessions required to carefully articulate the (pre-

sumed) characteristics of the category of categories prevent us from achieving

the desired generality in the interpretation of mathematical theorems, and

we are led to reject (4.4) as properly reflecting the content of a mathematical

theorem on the AFCS view.

Having rejected both (4.3) and (4.4), we are left to treat mathematical

theorems as having the schematic form of (4.2). If instead we were to treat

theorems as instead involving a quantifier ranging over all models, and as-

suming that the interpretation of quantified expressions involves appeal to a

fixed domain over which the quantifier ranges,26 we would arrive at the form

shown in (4.3), which was rejected in virtue of the incompatibility of the

AFCS program and the single domain view. If instead we pursue the multi-

ple domain view, which again admits quantification over the (now varying)

domains, a theorem would have the general form shown in (4.4), which was

rejected in virtue of the incompatibility of the AFCS program and the mul-

tiple domain view.

Note that, had the single domain view proved acceptable, theorems hav-

ing the form of (4.3) could have been ascribed a truth value in accordance

with the standard semantic account. Similarly, had the multiple domain view

proved tenable, theorems of the form (4.4) could also have been ascribed a

truth value. The situation is somewhat analogous to treating a first-order

expression of the form Fx → Gx. If we introduce a quantifier to form the

expression ∀x(Fx → Gx), then with a fixed domain, and on the intended

26It remains to be investigated whether or not this claim is legitimate: does the intelli-
gibility of a quantifier always require a fixed domain over which the quantifier is taken to
range?
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interpretation, that closed formula would express a statement, and so would

obtain a truth value. On this analogy, the multiple domain view corresponds

to allowing the interpretations to vary, in which case we may have been

able to identify those sentences which are true on every interpretation, i.e.,

the logical truths, corresponding to the statement “On all interpretations,

∀x(Fx→ Gx) is true”.

Given, then, that the AFCS view leads to the treatment of mathematical

theorems as schematic, can they be ascribed a truth value? If not, what

exactly is established by a mathematical proof ?

4.4 Truth and Proof

Chapter 3 concluded with Hellman’s claim that category theory either falls

back on a set-theoretic account of satisfaction, or “. . . we just give up on the

notion of mathematical truth as anything beyond deductive logical validity”

[40, p. 158]. It was argued in Chapter 3 that we may legitimately take the

notion of model (and so, the notion of satisfaction on which it depends) as

primitive, but the status of the notion of mathematical truth remains to be

explored.

Recall that taking the notion of model as primitive on the AFCS program

is intended to best capture what could be called the metaphysical neutrality

of the structuralist perspectives identified in Section 2.1.1. The proponent of

the AFCS program takes mathematics to be concerned with the structural

properties of any model one is willing to admit, and so any principles which

either implicitly or explicitly serve to limit the class of models that can

be treated on the AFCS view are to be avoided. We arrive, then, at an

immediate difficulty in trying to unpack the notion of “deductive logical

validity”: deductive validity in which system of logic?

Note that deductive validity is here being applied to the conditional sen-

tence corresponding to a mathematical theorem (and so, being applied to a
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sentence rather than an argument). For present purposes, one may assume

that deductive validity is framed in terms of the notion of “following from”,

which Beall and Restall express in their principle (V) (where “V” is used for

validity).

(V) A conclusion, A, follows from premises, Σ, if and only if any

case in which each premise in Σ is true is also a case in which

A is true. [4, p. 476]

A valid argument is then taken to be a collection of sentences Σ along with

a sentence A for which condition (V) obtains, and a sentence A is taken to

be valid provided the argument from no premises to A is valid, i.e, provided

A is true in all cases. A logic, then, involves a specification of the relevant

sorts of cases to be considered:

To use (V) to develop a logic you must specify the cases over

which (V) quantifies, and you must tell some kind of story about

which kinds of claims are true in what sorts of cases. For example,

you might give an account in which cases are possible worlds . . . On

the other hand, you might spell out such cases as set-theoretic

constructions such as models of some sort. [4, p. 477]

Of course, in light of the earlier arguments of this chapter, the AFCS program

requires that deductive validity not be characterized as involving quantifica-

tion over all models, and so an account of validity appropriate to the program

must be given in some other manner.

Already in the course of developing the AFCS program we have had

occasion to discuss first- and second-order classical logic, as well as modal

logic (the latter surfacing in Hellman’s structuralist program). The system

of intuitionistic logic, initially motivated by Brouwer’s Intuitionist program

in the philosophy of mathematics, is another familiar option. Unfortunately,

as debates between intuitionistic, classical, and mathematicians inclined to

even more exotic systems have made clear, these systems themselves may
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be held to embed metaphysical principles that the AFCS program seeks to

avoid. As Heyting’s Int. remarks to the classical mathematician, “Your

argument [for excluded middle] is metaphysical in nature. . . It cannot be the

task of mathematics to investigate this meaning or to decide whether it is

tenable or not” [42, p. 2].

Nonetheless, given the variety of logical systems on offer, one might hope

that some particularly weak logic (perhaps some system of free minimal logic)

may be able to accommodate the strict neutrality requirements of the AFCS

program. Thus, it may be possible to admit certain mathematical theorems

(for example, the theorem that in any group G, the identity element of G

is unique may be one such theorem) as valid, i.e., logically true, but such

metaphysically neutral theorems will be expected to be the exception, rather

than the rule.

Consider, for example, the ring-theoretic theorem discussed earlier: “In

a ring with identity every proper ideal is contained in a maximal ideal” [27,

p. 254]. A proof of this result will go some way to clarifying the sense—if

any—in which this may be considered a logical truth, and there are several

things to note about the proof of theorem. The proof found in [27] runs

essentially as follows.

Proof. Consider a ring R with identity and I a proper ideal of R. Let S be

the set of all proper ideals of R containing I. S is non-empty (as I ∈ S) and

is partially ordered by inclusion. If C is a chain in S, then let J =
⋃
A∈C A.

Then for any elements a, b ∈ J , there are ideals A and B in C such that

a ∈ A and b ∈ B, where either A ⊆ B or B ⊆ A. Without loss of generality,

assume A ⊆ B, then as a, b ∈ B and B is an ideal, we have a − b ∈ B, and

so a− b ∈ J . A similar argument establishes that J is closed under (left and

right) multiplication by elements of R, and so J itself is an ideal. Further,

J is proper, as if 1 ∈ J again we must have some B ∈ C such that 1 ∈ B,

contrary to the definition of S (as B ∈ C ⊆ S). Consequently, J ∈ S, and is

clearly an upper bound for C. Thus, any chain C in S has an upper bound,
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and so by Zorn’s Lemma27 there is a maximal ideal in S (which is thus a

proper ideal containing I), as desired.

Of note, this proof has the following characteristics.

1. It is informal (and the logical system unspecified).

2. It makes use of Zorn’s Lemma, a principle (classically) equivalent to

the Axiom of Choice.28

3. It uses various set-theoretic principles (and notation) without clarifi-

cation, and so potentially with imprecision. For instance, if a ring is

intended to be treated as an ordered triple 〈R,+, ∗〉, then the definition

of J does not yield a ring (and so, does not yield an ideal), as a union

of ordered triples is not itself an ordered triple.

Each of these characteristics is an obstacle to the treatment of this theorem

as valid. An unfortunate observation for those wishing to treat mathemat-

ical proofs as valid, then, is that proofs with characteristics of this sort are

standard fare in mathematics.

Certainly one course of action is to seek to remove these obstacles. For

example, the use of Zorn’s Lemma in the proof suggests that Zorn’s Lemma

could simply be incorporated into the antecedent of the conditional form of

this theorem. Such a move may indeed be held to yield a more accurate

statement of the theorem (for those keen to track the use of Zorn’s Lemma),

as the domain of applicability of the theorem is then more clearly stated. Of

course, Zorn’s Lemma is likely selected for such a move because of its link to

the Axiom of Choice, but the thought that moving all such “controversial”

27Zorn’s Lemma states that if P is a non-empty, partially ordered set in which every
chain has an upper bound then P has a maximal element.

28Interestingly, the principle is not intuitionistically equivalent to the Axiom of Choice
(which is objectionable to Intuitionists as it implies the law of excluded middle). Indeed,
Zorn’s Lemma can be shown to have, in a precise sense, no “non-constructive” logical
consequences. See [7, p. 12].
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principles into the antecedent of the conditional (thereby serving as a restric-

tion on the range of applicability of the theorem) allows all mathematical

theorems to be characterized as logical truths again depends on the viability

of a neutral logical framework in which to construct the proof connecting the

antecedent to the consequent. Further, if we are to recover the bulk of mod-

ern mathematics as logical truths in this manner, the logical system must

also have sufficient expressive power to encode the relevant mathematical

notions. While such a system may be possible, the considerable difficulties

in even being able to clearly state the requirements for such a system render

this option unappealing at best.

In some sense, then, the state of contemporary mathematics may be de-

scribed as particularly hostile to this sort of recovery of mathematical theo-

rems as logical truths. As Awodey remarks,

The laws, rules, and axioms involved in a particular piece of

reasoning, or a field of mathematics, may vary from one to the

next, or even from one mathematician or epoch to another. The

statement of the inferential machinery involved thus becomes a

(tacit) part of the mathematics; functional analysis makes heavy

use of abstract functions and the axiom of choice, some the-

orems in algebra rely on the continuum hypothesis; many ar-

guments in homology theory are purely algebraic, once given

the non-algebraic objects that they deal with; theorems in con-

structive analysis avoid impredicative constructions; nineteenth-

century analysis employed other methods than modern-day anal-

ysis, and so on. The methods of reasoning involved in different

parts of mathematics are not ‘global’ and uniform across fields

or even between different theorems, but are themselves ‘local’ or

relative. [2, p. 56]

Given the difficulties faced in attempting to recover mathematical theorems

as logical truths, which options remain? One way of framing the difficulty
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encountered in this chapter is to note that there is a discrepancy between the

mathematical methodology—proof—and the anticipated use of the resulting

proven theorems. A fundamentally structuralist aspect of the AFCS view is

that, while the theorems themselves involve no commitments to the existence

of groups, sets, topological spaces, etc., those theorems can be used to yield

correct results in their application, that is, when one supposes a model. While

the theorem above involves no commitment to the existence of rings, one who

is concerned to study the integers constructed, for example, as sets in ZFC,

can correctly conclude that every ideal in the ring of integers is contained

in some maximal ideal. If points in physical space can be taken to model

the axioms for a particular type of metric space, then the area of a region

can be correctly calculated using the methods of calculus. Truth does enter

the picture, then, but only as part of the application of a mathematical

theorem: one takes it to be true that there exists a model of a certain sort, and

concludes that such a model has the property that features in the consequent

of the theorem.

The AFCS program takes seriously the possibility that our ends exceed

our means, and so theorems once thought proven may need to be rejected.

If we were able to produce a ring with identity and an ideal of that ring not

contained in a proper ideal, we would have reason to return to study the

supposed proof of that theorem in the hopes of understanding how our rea-

soning failed in the case at hand. The proof of a mathematical theorem is not

simply produced, then filed away never to be viewed again, the theorem sim-

ply added to the list of those that have been proved. A previously accepted

proof may be shown to be flawed, and unanticipated cases may also lead us

to scrutinize theorems that had otherwise seemed correct. This picture of

mathematical development has been persuasively presented by Lakatos in his

Proofs and Refutations [46], in which he charts the development of Euler’s

Formula. Euler’s Formula states that, for all polyhedra, V −E+F = 2, where

V is the number of vertices, E the number of edges, and F the number of
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faces.29 The picture of the evolution of a mathematical theorem is precisely

in keeping with the AFCS view, and the process of “updating” mathematical

theorems30 to best reflect our current, best understanding of that theorem

fits well with the view Lakatos presents.

Another way to characterize the AFCS perspective on the status of math-

ematical truth and mathematical proof is to borrow Dummett’s notion of the

harmony, as presented in [26], which concerns a sort of balance between the

introduction and elimination rules for a logical constant. As Dummett ex-

plains,

Any one given logical constant, considered as governed by some

set of logical laws, will satisfy the criterion for harmony provided

that it is never possible, by appeal to those laws, to derive from

premisses not containing that constant a conclusion not contain-

ing it and not attainable from those premisses by other laws that

we accept. [26, p. 219]

Thus, harmony for a logical constant is a property related to that constant’s

behaving as a conservative extension of the language. Relevant to the dis-

cussion here, Dummett goes on to remark that

The requirement that this criterion for harmony be satisfied con-

forms to our fundamental conception of what deductive inference

accomplishes. An argument or proof convinces us because we

construe it as showing that, given that the premisses hold good

according to our ordinary criteria, the conclusion must also hold

according to the criteria we already have for its holding. [26,

p. 219]

29It is perhaps worth note that I first encountered this theorem in a course on graph
theory, the theorem having been recast to concern planar graphs, with not a polyhedron
in sight!

30As described in Section 4.1.
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With this account of deductive inference to hand, we see why the proponent of

the AFCS program may be required to abandon the claim that mathematical

theorems are logical truths : the proof that establishes a theorem may not

necessarily secure the conclusions warranted by that theorem’s usage in every

context in which it may be used. Despite deliberate silence on the status of

models, there remains the possibility that implicit assumptions figuring in

the proof of a theorem may not be legitimate for the models figuring in some

application of the theorem.

Such tacit assumptions may appear in a proof, and identifying those as-

sumptions may be made more difficult by the informal presentation of the

proof itself. It is intended that a mathematical theorem be broadly appli-

cable: establishing that, for example, a result holds for all rings, whatever

their “internal constitution”, but the methods employed in producing the

proof may have implicitly restricted the domain of applicability. Do the clas-

sical rules of inference employed in a proof apply to all rings treated in any

category? When appealing to the Axiom of Choice in the course of a proof,

do we implicitly restrict our theorem, or does the theorem remain “univer-

sally” applicable? In short, the silence on the status of models adopted on

the AFCS view seems to prevent one from being justified in claiming that a

proof secures the unrestricted scope of applicability of a mathematical the-

orem. Silence is maintained in order to admit models of any sort, but this

silence also appears to prevent one from claiming that proof techniques are

sound with respect to reasoning about models of any sort.

Much of the preceding discussion has not involved the notion of a cate-

gory: how do categories fit into the discussion of this section? One of the

central claims of this work is that the language of category theory is par-

ticularly well-suited to express the content of a mathematical theorem from

the perspective of the structuralist. It is important to note that this need

not involve rewriting theorems so that they are expressed in the language

of category theory; the view is not “revolutionary” in this sense. What in-
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stead is being suggested is that, given a mathematical theorem, our current

best account of the structuralist view of the content of that theorem is ex-

pressed in language of category theory. The language of category theory is

thus employed in expressing the content of a mathematical theorem, but the

theorems themselves need not be translated into that language.

It is likely that the most unpalatable aspect of the view sketched here

is the apparent inability to secure the truth of the theorems of mathemat-

ics. Happily, this is one aspect of the view that is most readily abandoned.

The view that mathematical theorems cannot be taken to be true is a view

that seems to be a consequence of the deliberate neutrality on the status of

models. As it is common for accounts of validity to proceed via an appeal to

models (typically sets in a some naive set theory), it is not surprising that

a view which aims to maintain neutrality on the status of models encoun-

ters difficulties with the notion of validity. There is, perhaps, some comfort

to be found in the observation that some prominent mathematicians (and,

certainly, one of the most prominent category theorists) of the past century

also held the view that mathematical theorems are not true. On Mac Lane’s

view, mathematical theorems can be correct, but not true. Mac Lane holds

that

This view means that the philosophy of Mathematics need not in-

volve questions about epistemology or ontology. If Mathematical

theorems do not assert truths about the world, we need not in-

quire as to how we know or would come to know such truths. (We

of course do need to inquire how we recognize a correct proof, but

getting the recognition is a major part of advanced education in

Mathematics, and is usually not considered as part of epistemol-

ogy.) This observation means that the philosophy of Mathematics

cannot be much advanced by many of the books entitled ”Math-

ematical Knowledge”, in view of the observation that such a title

usually covers a book which appears to involve little knowledge
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of Mathematics and much discussion of how Mathematicians can

(or cannot) know the truth. [51, p. 443–444]

The proponent of the AFCS view, then, is at least in good company!

Many, of course, will not be satisfied with a view that cannot recover an

account of mathematical truth, and will consider this shortcoming a sort of

reductio ad absurdum of the AFCS view. Those who do not feel as though

they have gone too far down the rabbit hole, though, may wonder: if we

refrain from calling our mathematical theorems true, are they any less useful?

If mathematical theorems are not true, is the science of mathematics in any

way diminished?
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Chapter 5

Conclusion

In the mathematical development of recent decades one sees clearly

the rise of the conviction that the relevant properties of mathe-

matical objects are those which can be stated in terms of their

abstract structure rather than in terms of the elements which the

objects were thought to be made of. [50, p. 1]

We have no objection against a mathematician privately admit-

ting any metaphysical theory he likes. . . [42, p. 2]

What is mathematics? The preceding chapters contain one articulation of a

structuralist response to this question: mathematics is the science of struc-

ture. The particular sharpening of the structuralist position on offer here

is that mathematics is the science of structural properties, and the partic-

ular program developed here has been dubbed anti-foundational categorical

structuralism.

The structure of this work can be roughly considered to involve an ac-

count of each of the terms in the name of the program. The rise of the use of

axiomatic definitions in characterizing mathematical terms leads naturally to

the key structuralist perspectives identified in Section 2.1.1. Axiomatic defi-

nitions allow for multiple instantiations, many instances of the sort of entity
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defined. However, it not clearly required that we recover those entities, i.e.,

those models, as objects of a particular sort: as sets, as physical objects, as

entities of any other restricted collection. Attempts to constrain the admissi-

ble collection of models often encounter technical difficulties, but even if this

were this not the case any such constraints are in tension with the generality

that is, in part, characteristic of the structuralist perspective. Indeed, part of

the success of the axiomatic method is a consequence of exactly this lack of

specificity: we leave open the possibility of applying theorems in unexpected

areas, in contexts that had not been anticipated when those axiomatic defini-

tions were produced. In preserving this open-ended aspect of the structuralist

view, the notion of model is taken to be primitive. In understanding what

mathematics concerns, then, we are led away from a description in terms

of a privileged subject matter, and instead to talk of mathematical descrip-

tions, or mathematical features, of otherwise non-mathematical aspects of

the world. These features of mathematical interest are identified here as the

structural properties, and the language of category theory has been shown, via

the Structural Properties Theorem, to be particularly well suited to encode

those structural properties.

However, in order to best preserve the open-ended aspect of the struc-

turalist view, it has been seen necessary to reject (or, at the very least, it

has been seen exceedingly difficult to preserve) other features that have been

variously defended as essential components of any philosophical account of

mathematics. In taking the notion of model as primitive is has been seen to

be difficult to recover a suitable notion of (mathematical) truth, as the link

between the methods of mathematical proof and the structural properties of

models those proofs are taken to concern is difficult to establish, given the

program’s deliberate silence on the nature of those models. In abandoning

mathematical truth, the AFCS program is seen not to count as a foundation

for mathematics, in accordance with the criteria presented in Section 1.3.

Given these aspects of the AFCS program, is the AFCS program accept-
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able as a philosophical account of mathematics? The program is here offered

as an explication of mathematics, from the structuralist perspective, where

an explication “consists in transforming a given more or less inexact con-

cept into an exact one or, rather, in replacing the first by the second” [19,

p. 3]. Following Carnap, a successful explicatum can be taken to “fulfil to

a sufficient degree” four criteria: similarity to the explicandum, exactness,

fruitfulness, and simplicity [19, p. 5]. How, then, does the AFCS proposal

fare as an explication of mathematics?

Certainly one criterion, that of fruitfulness, is clearly satisfied by a com-

ponent of the AFCS program: the language of category theory. As Awodey

remarks, “category theory provides a framework (indeed, the currently dom-

inant one) for the practice of modern abstract mathematics” [2, p. 54], and

Corry claims (as cited at the beginning of Chapter 2) that

Category theory is the most elaborate and successful instance of

an axiomatized theory allowing for a systematic characterization

and analysis of the different structures, and the recurring math-

ematical phenomena that come forward in the latter. [23, p. 12]

It is less clear how well the program fares with respect to the other crite-

ria. While the characterization of the notion of a structural property via the

language of category theory may be considered exact, Carnap holds that an

explicatum is exact insofar as the necessary definitions are incorporated “into

a well-constructed system of scientific either logicomathematical or empirical

concepts” [19, p. 3]. Given that the AFCS view does not acknowledge a sin-

gle, privileged system of proof for mathematical theorems, is the proposed

program sufficiently exact? In taking the notion of model as primitive, can

the resulting program be considered particularly simple? Of course, candi-

date explicatums for mathematics are to be assessed relative to one another,

and the arguments contained in this work are taken to establish that the

AFCS program fares better than those other structuralist programs explic-

itly considered.
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Ultimately, the language of category theory may not be uniquely suited,

or even best suited, to precisely express the notion of a structural property,

and consequently the AFCS program may not best suit the development of

the structuralist view. Instead, the proponent of the AFCS program offers a

pragmatic line of argument, aimed at establishing, in part, that the crucial

structural properties are well rendered within the program, but leaving open

the possibility that the language of category theory may be surpassed by

some other means of description, in the way that, within mathematics, the

language of category theory has gone some way to replace the language of set

theory that was its precursor. The AFCS program is not expected to be the

final stage in the development of the structuralist view in mathematics, but

the arrows of category theory may serve to point us in the right direction.
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