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Abstract 

Instability of thin film structures as buckling and wrinkling are important issues in various 

fields such as skin aging, mechanics of scars, metrology of the material properties of thin 

layers, coating of surfaces and etc. Similar to buckling, highly ordered patterns of wrinkles 

may be developed on the film‒substrate due to compressive stresses. They may cause a 

failure of the system as structural damage or inappropriate operation, however once they are 

well understood, it is possible to control and even use them properly in various systems such 

as the gossamer structures in the space, stretchable electronics, eyelike digital cameras and 

wound healing in surgery. 

In this thesis, the mechanical instability of thin film is considered analytically and 

numerically by solving the eigenvalue problem for the governing equation of the system, and 

the effects of the different factors on the instability parameters such as load, amplitude, wave 

number and length of the wrinkles are studied. Different problems such as wrinkling within 

an area on the film, and buckling and wrinkling of the non‒uniform systems with variable 

geometry and material properties for both of the film and substrate and also 

wrinkling‒folding transition are investigated. It is shown that the effects of the 

non‒uniformity of the system are very significant in localization of the wrinkles on the film; 

however, such a factor has been ignored by many researchers to simplify the problems. In 

fact, for the non‒uniform systems, the wrinkles accumulate around the weakest locations of 

the system with lower stiffness and the wrinkling parameters are highly affected by the 

non‒uniformity effects. Such effects are important especially in thin film technology where 

the thickness of the film is in the order of Micro/Nano scale and the uniformity of the system 

is unrealizable. 

The results of this dissertation are useful in the design and applications of thin solid films 

in science, technology and industry. They consider the relation of the loading and structural 

stiffness with the wrinkling parameters and provide more insight into the physics of the 

localization of the wrinkling on the thin structures, how and why wrinkles are accumulated at 

some positions. Therefore, deliberate application of these results provides appropriate tools 

to control and use the buckling and wrinkling of thin films effectively in different fields.  
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Chapter 1  

1 Introduction 

Buckling and wrinkling of thin solid film structures are considered as one of the 

important instability issues in the film applications for example in sandwich panels, 

aviation, solar sails and stitching of the skin in medical operations. Investigations on the 

buckling and wrinkling of thin films have been pursued by researchers experimentally 

and theoretically. 

1.1 Thin Film Structures, Their Applications and Properties  

Thin solid films are thin layers of materials ranging from nanometer to hundreds of 

microns in thickness that behave like solid structures. The first application of thin films 

originated from ancient Egypt in 3000 B.C. when thin fold of gold with thickness about 

six microns were used to cover the statues, wooden and metallic objects, and jewelry 

technology by skilled workers [James, 1972]. They used layers of thin gold with a 

composite system of leather under excessive pressure to make leaves of gold with the 

thickness of microns and attached them on the objects skillfully.  

Thin films have many applications in Micro/Nano Electro‒Mechanical Systems 

(MEMS/NEMS), electronic devices especially semiconductors and IC technology, solar 

cells, computer memories, optical coatings including mirrors, anti‒reflective coatings, 

solar sails and astronavigation, coatings in tribological applications, wear and 

corrosion‒oxidation resistant of the mechanical components, tooling, biomedical 

implants, magnetic devices and etc. In fact, thin layers on the surface of a substrate lead 

to completely different characteristics of the surface and therefore result in versatile and 

useful applications of thin films in various fields [Freund and Suresh, 2003; Riad and 

Barlow, 1998]. For example, the relatively high hardness of ceramic materials makes 

ceramic thin coating interesting and applicable for protection of the substrate materials 

against corrosion, oxidation and wear. In particular, the use of such coatings on cutting 

tools can extend the life of these parts by several orders of magnitude due to delay in 

fatigue crack growth and propagation. Also, the performance of the optical coatings and 
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anti‒reflectiveness typically increases when the thin film coating consists of multiple 

layers with different thickness and refractive indices. Deposition of the films with 

desirable electrical, mechanical and optical properties on the substrate changes the 

surface properties of the foundation drastically which brings more ability for the 

engineers to design more effective systems with less cost. 

The act of producing a thin film on a surface is called deposition of the film. There 

are various techniques for depositing a thin film of material onto a substrate or previously 

deposited layers which generally fall into two categories, depending on the chemical or 

physical nature of the process. In chemical vapor deposition (CVD), the process of the 

deposition is carried out during a chemical reaction so that the atoms of film and the 

substrate materials chemically react in a reaction chamber. In contrast with the CVD, 

physical vapor deposition (PVD) uses mechanical, electromechanical or thermodynamic 

methods to deposit a thin film of solid on the substrate similar to the formation of frost. 

For example, in thermodynamic method of PVD the material to be deposited is placed in 

a highly energetic entropic environment, so that particles of material are detached from 

the source surface and when they arrive to the cooler surface of target, they lose their 

energy and solidifies on the surface to form a layer. The deposition chamber is vacuumed 

to allow the particles to travel as freely as possible [Ohring, 2002]. 

The thickness of thin film is another issue considered by the researchers. Films with a 

thickness comparable to one or a few atomic layers are categorized as atomically thin 

films. When the thickness of the film is in the order of characteristic micro‒structural size 

scale of the material such as grain size or dislocation cell size, the film is considered to be 

micro‒structurally thin film. A mechanically thin film has a thickness much larger than 

the characteristic micro‒structural length scales. Such structures have tens or hundreds of 

microns in thickness and the continuum mechanics approach for analyzing the stress, 

strain and other mechanical issues are applicable for them [Freund and Suresh, 2003, pp. 

5]. Mechanical properties of these systems and the stresses developed in the films affect 

the behavior and the durability of the systems. 

The material properties of the free standing film or film‒substrate system are 

considered under different conditions. Many experimental works have been directed to 

characterize the material properties of the films. Due to the miniature structure of thin 
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films along the thickness, traditional methods usually are not applicable or produce 

inaccurate results. As an example, the effect of the substrate is dominated on the 

structural stiffness of the system that overwhelms the stiffness of the film. Therefore, the 

necessity of developing new methods was augmented by the researchers. For example, by 

considering the wrinkling of rigid films on elastomeric substrates, Stafford and coworkers 

(2004) introduced an experimental method for measuring the stiffness of the polymeric 

thin films called “strain‒induced elastic buckling instability for mechanical 

measurements method” in which the relation of the wavelength of the wrinkles with other 

characteristics of the system such as thickness and stiffness of the film and substrate are 

developed. Therefore, for a deposited film with unknown modulus on the elastomeric 

foundation with known modulus, by measuring the wrinkle wavelength beyond the 

critical strain, the unknown modulus of the film can be determined. 

In order to predict the mechanical behavior of the system, the material properties of 

the film such as hardness and Young's modulus, and also the residual stresses of the film 

must be known [Ohring, 2002; Freund and Suresh, 2003; Bachmann et al., 2006]. Figure 

1-1 [Freund and Suresh, 2003] shows two traditional tests: Bulge test and Stoney test 

which work based on the force‒deflection monitoring method. In bulge test, by 

monitoring the deformation of the thin film as a function of the applied pressure p on the 

film, the parameters of the size and the material properties of the film are determined. By 

using the Stoney test, one may find the residual stress developed in the thin 

film‒substrate system [Stoney, 1909]. According to the Stoney formula, the residual 

stress of the film depends on the material properties of the film‒substrate and the 

deflection curvature of the system. These stresses develop in the system due to different 

sources such as mismatch of the film and substrate during the deposition process or 

dissimilar material properties of the film and substrate during the application. The 

existence of the residual stresses in films deposited on the substrate, and the effects of 

such stresses on delamination and mechanical behavior of the system are important [Fu et 

al., 2004; Jeon et al., 2005].  
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Figure  1-1: Different experimental methods for mechanical characterization of thin films: 

Bulge test (left‒hand side) and Stoney test (right‒hand side) [Freund and Suresh, 2003] 

 

1.2 Wrinkling of Thin Film Structures 

Wrinkles are defined in the dictionary as small furrows, ridges, or creases on a smooth 

surface, caused by crumpling, folding, or shrinking. In thin solid films, wrinkling causes 

a highly ordered wavy pattern on the film due to local compressive stresses. Similar to 

the buckling of a beam under compressive loading introduced by Leonard Euler in 1757, 

the wrinkling problem is categorized as the instability of the mechanical system. The 

wrinkling of the beam/film supported by an elastic foundation was introduced by Allen 

(1969) for sandwich panels in airplanes and Ker (1974) for welded rail roads under 

thermal expansion. Wrinkling of the thin films has been investigated especially in recent 

years in different fields. Genzer and Groenewold (2006) reviewed different aspects of the 

wrinkling of thin film structures comprehensively. They described various examples from 

everyday life to demonstrate the versatile and useful applications of wrinkling which can 

help in developing new structures and methods beyond its frustrating features on human 

skin studied by Lavker et al. (1989) as the morphology of aged skin. As an example, by 

considering the wrinkling localization around a scar, Cerda (2005) determined the effect 

of background tension of the skin on the formation of the wrinkles around the scar as the 

application of the wrinkling in medical science. In addition to skin aging and wound 

healing, thin film wrinkling can be found in many other fields such as carbon nanotubes 

[Lourie et al. 1998], stretchable connectors [Lacour et al., 2003 and 2004; Sun et al., 

2006; Khang et al., 2009], semiconductor technology [Chen and Hutchinson, 2004; 

Huang et al., 2007], electronics and polymer actuators [Watanabe, 2005; Liu et al., 2010; 
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Zhao et al., 2011; Jia et al., 2012], optical devices [Harrison et al., 2004], Microfluidic 

sieves [Efimenko et al., 2005], Topographic matrices for cell alignment [Teixeira et al., 

2003] in bioengineering, metrology of the material properties [Cerda and Mahadevan, 

2003; Chung et al., 2011; Li et al., 2012], stretched thin sheets [Bouzid and Lecieux, 

2010; Nayyar et al., 2011; Puntel et al., 2011; Kim et al., 2012; Jillella and Peddieson, 

2012], coating of the surfaces [Basu et al., 2005], gossamer structures [Wang et al., 

2009],  solar sails and aeronautical structures in aerospace science [Heald and Potvin, 

2006; Kumar and Pellegrino, 2000; Orszulik et al., 2011], sheet metal forming [Kawka et 

al. 2001; Wang and Cao, 2000; Cao and Boyce, 1997; Yu and Stronge, 1985; Music et 

al., 2010], failure of sandwich structures as face wrinkling [McCormack et al., 2001; 

Cote et al., 2007], patterning and topographical structuring of surfaces [Schweikart and 

Fery, 2009; Kang and Huang, 2011; Lackner et al., 2012] and so on. In these areas, 

wrinkling is either regarded as nuisance to be avoided or an interesting pattern to be 

exploited. Similar to the method proposed by Stafford et al. (2004) to predict the film 

material properties, other researchers have also studied on characterization of the material 

properties of thin film‒substrate system in material science. Wilder et al. (2006) used the 

method proposed by Stafford (2004) to determine the properties of the substrate when the 

properties of the film are known. Cerda et al. (2002) considered the wrinkling of a free 

standing stretched film and derived the scaling law for the wavelength and amplitude of 

the wrinkling in polyethylene sheets, so that by analyzing the pattern of the wrinkles, the 

tension on the film and the material properties of the sheet can be determined. Bernal et 

al. (2007) used a capillary‒type technique to estimate the elastic modulus of the films by 

wrinkle pattern produced by crawling of cells onto elastic membrane due to the 

locomotion of living cells.  

Wrinkles can be developed on the film by various methods. By depositing a film on 

the elastomeric substrate and cooling/heating the entire structure, the developed 

compressive stresses in the film are relieved by wrinkling with a uniform wavelength 

[Bowden et al., 1998 and 1999]. You et al. (2002) applied thermal expansion mismatch 

method to create wrinkling pattern on the film substrate system. Some researchers also 

used other methods to produce wrinkling on the film instead of heating/cooling the 

system [Gilat, 2010]. For example, exposing UV radiation on the surface of some 
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elastomers which changes the stiffness of the substrate locally can create ordered wrinkle 

pattern [Huck et al., 2000]. Volynskii et al. (2000), Lacour et al. (2004) and Watanabe 

(2005) applied mechanical strain to produce uniaxial wrinkling pattern on the deposited 

film on the substrate. For this purpose, the film is usually chosen as a metal such as gold 

or platinum, while the substrate is a polymer such as PDMS, polyethylene and so on. By 

depositing the film on a pre‒stretched substrate and releasing the entire system, an 

ordered wrinkle patterns develop on the system.  

Different buckling and wrinkling patterns of thin films have been reported by 

researchers in literature. Wang et al. (2008) considered the specific ratios of thickness 

and length of the film‒substrate and critical loading on the system under which the global 

buckling or local wrinkling appears on the system. They introduced some relations for 

critical loading of the system analytically, and proposed specific ratios which discretize 

the global buckling and local wrinkling. For wrinkling of a deposited film on the 

substrate, different wrinkling pattern are represented as one dimensional or two 

dimensional patterns. The one‒dimensional uniaxial wrinkling pattern is one of the 

common patterns in which the wrinkles propagate along the film span in one direction. In 

this pattern, the wrinkles are represented by a periodic function with a wave number 

parameter along the film length span [Huang et al., 2005; Hu et al., 2009]. Huang and Im 

(2006) studied the evolution of the wrinkling from initial growth at the onset of instability 

followed by coarsening till final equilibrium. They showed that during coarsening of the 

troughs and crests, the wrinkling amplitude grows exponentially over time with a 

power‒law scaling under uniaxial compression and finally, a uniaxial pattern is obtained, 

while chaotic labyrinth pattern appears under equibiaxial loading at equilibrium. Both of 

the patterns under the loading of the same magnitude have the same average wavelength, 

but different amplitudes. Other two dimensional patterns are also observed for films 

under in‒plane biaxial loading. If the wavelengths of the wrinkling in two directions are 

equal to each other, the pattern is called checkerboard pattern. Other complex patterns 

such as herringbone zigzag patterns were observed due to highly nonlinear nature of the 

system [Chen and Hutchinson, 2004] as shown in figure 1-2. As another example, Yoo 

and Lee (2003) reported a spinodal wrinkling pattern on the system due to nonlinear 

properties of the viscoelastic substrate. 
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Figure  1-2: Various patterns of the wrinkling [Chen and Hutchinson, 2004] 

By using the linear perturbation analysis, Allen (1969) showed that for sandwich 

panels with a soft core between two hard panels subjected to a compressive loading, the 

critical force for wrinkling depends on the stiffness of the substrate. Niu and Talreja 

(1999) proposed a relation for the buckling stress versus thickness and stiffness of the 

core and panels from long to short wavelengths by using Allen’s linear perturbation 

analysis. By using the classical plate theory and minimization of the potential energy, 

Groenewold (2001) proposed relations for wavelength and amplitude of the wrinkling of 

a thin solid film deposited on a soft substrate. Subsequently, Cerda and Mahadevan 

(2003) suggested a set of scaling laws for the wavelength (λ) and amplitude (A) of the 

wrinkles in the film‒substrate system as 

λ ~ ቀ஻
௄
ቁ
భ
ర          (1-1) 

A ~ λ ቀ ∆
ௐ
ቁ
భ
మ         (1-2) 

where B is the bending stiffness of the film, K is the modulus of the substrate and (Δ/W) 

is the applied compressive strain on the system. The above results provide clear 

explanation for wrinkling parameters and form the basis of quantitative wrinkling assay 

for mechanical characterization of thin solid films on the substrate. Pocivavsek et al. 
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(2008) clearly demonstrated the effect of the stiffness of the substrate and floating thin 

film on the wrinkling experimentally. Their results show that for gold film which is much 

thinner than a polymer film floated on the same substrate (e.g. water), the wavelength of 

the wrinkling is several order smaller. On the other hand, for the same polymer film on 

different substrates (e.g. water versus gel), the wavelength of the wrinkling on the softer 

substrate is bigger as predicted by relation (1-1). Some other effects such as the finite 

width of the system on the wrinkling problem were investigated by modifying the 

substrate stiffness. For example, Tarasovs and Anderson (2008) proposed a model for 

substrate with finite width and considered the wrinkling parameters. They showed that 

for small wavelength of the wrinkles with respect to the width of the system, the uniform 

assumption for the substrate stiffness remains valid. 

Recently, some researchers also considered the wrinkling of thin film by using plate 

theory and the minimization of the potential energy to characterize the effective 

parameters of the wrinkling. Chen and Hutchinson (2004) and Song et al. (2008) 

developed analytical approaches to predict one‒dimensional, checkerboard, and ordered 

herringbone patterns for a film under bi‒axial in‒plane loading by introducing 

wavelength and amplitude in terms of the stiffness modulus and the thickness of the film 

and substrate and the applied loading. The results of their analysis showed that for a 

biaxial in‒plane loading on the film, the herringbone pattern has the lowest energy with 

respect to other modes and therefore it was frequently observed in experiments. They 

proposed those classes of materials for high performance electronics with 

two‒dimensional stretchability. Many other researchers used the above methodology to 

investigate different problems in various fields with practical applications. For example, 

Friedl et al. (2000) and Jacques et al. (2005 and 2007) considered the wrinkling of 

stretched strips by using finite element analyses and analytical solution methods. The 

results of their works predict uniaxial wrinkling pattern developed on the thin film strip 

which plays an important role during strip conveying in processing lines. For free 

standing films under tension, the wrinkles appear on the film according to tension filed 

theory discussed in chapter 2. In fact, the effect of tension on the film is introduced as an 

equivalent substrate under the film which leads to wrinkling as studied by Coman (2010) 

analytically and Lecieux and Bouzidi (2010) experimentally and numerically. Wong and 
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Pellegrino (2005) also considered the wrinkling of square membranes subjected to corner 

forces which can be used in controlling the flatness of solar sails, solar collectors, and 

sunshields. They showed that two wrinkling regimes develop diagonally or around the 

corners of the square membrane according to the ratio of applied loading at the corners. 

On the other hand, many analytical results based on the bifurcation theory and the 

instability of the thin plate were provided by the researchers.  For example, wrinkling 

around a point in circular free standing film was considered by Adams (1993) and 

Geminard et al. (2004) by solving equilibrium equations of the film. Coman et al. 

considered the effects of the various torsional and stretching loadings on the wrinkling of 

the film with annular geometry in some successive works from 2006 till 2008. 

Using numerical methods such as finite element technique is another powerful 

method to predict wrinkling patterns of thin films. Many researchers such as Kang and 

Im (1997) and Lu et al. (2001) implemented finite element method in analyzing 

wrinkling problem of membrane under various loading pattern and geometries. They 

developed a continuum theory combined with finite element formulation which resulted 

in explicit expressions for internal forces and stiffness matrix. Wang and Cao (2000) and 

Kawka et al. (2001) simulated the wrinkling of conical cups in sheet metal forming using 

finite element commercial software for both dynamic and static analysis. Lee and Youn 

(2006) developed a finite element code to analyze the large deformation of wrinkled 

membrane. Based on a tensile strain energy concept, the wrinkling directions are 

determined such that the wrinkles alignment maximizes the tensile strain energy. By 

using this method, they considered the torsion of a membrane in a circular disk, Inflation 

of a square airbag and the inflatable reflector of a large lightweight space antenna without 

involving the complexity of analytical solution. 

All of the existing theoretical works on the wrinkling of the substrate‒bonded films 

discussed here used the homogenous assumption for the film material properties with 

uniform thickness all over the domain. The film is usually considered like an infinite 

matter while the wrinkles propagate with uniform amplitude all over the domain. 

However, there is no evidence for these simplifications especially in thin film technology. 

For thin film structure deposited on the substrate by using various deposition techniques, 

the assumption of homogeneity of the film is very flabby due to importance of the 
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microstructure of the small scale system. Here, some concerns may arise about the 

importance of the change of the material properties of the film and the effect of these 

variations on the instability parameters. On the other hand, in thin film technology the 

thickness of the film is tiny and even small variation of the thickness violates the 

assumption of the uniformity of the thickness in classical theory and all the conclusions 

resulted from the analyses. Besides, in real application of thin film system the thickness 

of the film cannot be controlled to be perfectly uniform all over the substrate; hence it is 

necessary to consider the effect of the variations of the film thickness on the critical load 

and pattern (i.e. amplitude and wave number) of the wrinkling to see whether these 

variations in thickness and material properties have any effect on the wrinkling patterns. 

 

1.3 Objectives of the Thesis 

This dissertation considers the mechanical instability of thin solid films, such as buckling 

of a free standing film and wrinkling of a substrate‒bonded film. The main objective of 

the thesis is to predict the buckling and wrinkling parameters such as load and patterns of 

the deformation on the onset of instability and afterwards. The following problems are 

considered to achieve these main objectives: 

1) Considering the wrinkling of the film locally loaded 

2) Studying the wrinkling of the film with finite length in comparison with an 

infinite one 

3) Investigating the effect of the non‒uniformity of the material properties and 

thickness of the film on the buckling/wrinkling load and patterns 

4) Predicting the post-buckling/wrinkling behavior of the film‒substrate system after 

the instability onset and studying the effective parameters on it  

5) Investigating the wrinkling‒folding transition of the film‒substrate system and 

studying the effective parameters on the transition phase 

6) Considering the effect of the non‒uniformity of the substrate on the wrinkling of 

the film 

7) Studying the effect of the surface elasticity and residual stress on the wrinkling of 

Micro/Nanoscale thin films 



11 

 

 In this study, by ignoring the assumptions such as uniformity of the system and 

deformation used by other researchers in wrinkling analysis of thin film structures, an 

interesting behavior of the system is introduced in which wrinkles accumulate around a 

particular area of the film due to the effect of the non‒uniformity. The results of this 

work increase the insight in physics and mechanics of instability of thin film structures 

and open new windows in potential applications of thin film technology in various fields. 

 

1.4 Organization of the Thesis 

By using the classical theories of plate and beam, the film substrate system is modeled 

and the instability of the system including buckling and wrinkling are analyzed. A brief 

description of the chapters of the dissertation is presented as follow. 

In chapter 2, some basic materials on the required concepts and theories are 

described. These materials mainly include stability of a system, bifurcation theory, beam 

and plate theory and finite difference method which are used for numerical analysis in 

other chapters. 

In chapter 3, the wrinkling around an inclusion on a thin solid film is investigated 

using the instability analysis. The film is modeled by using the classical plate theory with 

orthotropic properties and the effect of the inclusion is imposed on the film as a 

compressive loading along the inclusion line. For a decaying function representing the 

wrinkling pattern along the film, the potential energy of the film is minimized and 

parameters of the wrinkling (i.e. load and pattern) are determined. The results are useful 

in characterizing the wrinkling around an inclusion on free standing or deposited films on 

the substrate such as wrinkles due to suturing of the skin in surgical operation in 

mechanics of scars. 

Chapter 4 considers the instability of a functionally graded material (FGM) 

beam/strip as a free standing film or substrate‒bonded film. The stiffness modulus of the 

film is assumed to change exponentially along the length span which leads to the 

softening or stiffening of the film. The buckling of a free standing FGM film is 

investigated analytically. For substrate‒bonded film, the wrinkling load and wrinkling 

pattern are determined numerically. Unlike the homogenous film in which the wrinkles 
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propagated along the entire domain, it is shown that for the FGM film wrinkles 

accumulate around the location with minimum stiffness. 

In chapter 5, the instability of a beam/strip with variable thickness is investigated for 

a free standing film and a deposited film on a substrate. The thickness pattern is assumed 

with a quadratic profile with its minimum at the middle of the length span. For the free 

standing film, the buckling loads and mode shapes are studied analytically by using a 

closed form solution. For substrate‒bonded film, the substrate is modeled by using the 

Winkler foundation and the effects of the non‒uniform thickness and the substrate 

stiffness on the wrinkling parameters are investigated. For the non‒uniform film, it is 

shown that the wrinkles accumulate around the location with minimum thickness along 

the span. 

The effect of the fluctuation of the thickness on the instability parameters of a thin 

film with variable thickness is considered by using a finite difference method in chapter 

6. The thickness profile is modeled with a wavy function and the buckling and wrinkling 

behavior of the system are investigated. The results show that the fluctuations of the 

thickness strongly influence on the buckling and wrinkling parameters. 

Chapter 7 considers the behavior of a beam/strip with uniaxial deformation after 

instability by solving the nonlinear equation of the large deflection theory. For free 

standing film the buckling and postbuckling is considered, while for the deposited film on 

the substrate the fine wavy pattern of wrinkling and post‒wrinkling behavior is 

investigated by using numerical solution of finite difference method for various systems 

such as non‒homogenous material properties and non‒uniform thickness of the film. 

The effects of the surface elasticity and the residual surface stress on the wrinkling of 

the film are investigated in chapter 8. Also, a non‒uniform model for the substrate is 

proposed and the wrinkling of the film on the non‒uniform substrate is investigated. 

Finally, chapter 9 represents an overall review of all the materials presented in the 

previous chapters and discusses the general results and conclusions. 
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Chapter 2  

2 Fundamental Theories and Formulations  

In this chapter, some fundamental concepts and theories required for the thesis are 

described. These materials mainly include stability of a system, bifurcation theory, beam 

and plate theory and finite difference method. 

2.1 Structural Stability of a System 

Stability is defined as the state or quality of being stable as the resistance to change, 

deterioration or displacement. Stability theory mathematically considers the stability of 

solutions of differential equations under small perturbations. In other words, a theorem is 

stable if small changes in the hypothesis result in small variations in the conclusion. This 

concept can be extended to various fields such as numerical stability in numerical 

analysis, probability stability in probability theory, chemical stability, thermal stability, 

ecological stability and so on. For a dynamical system, the Lyapunov stability and the 

structural stability are two main classes categorized in the literature. The Lyapunov 

stability occurs when the system remains stable under perturbations of initial conditions 

such that for all of the points sufficiently near an equilibrium point, the solutions of the 

system stay near the solution of the equilibrium point. Unlike the Lyapunov stability, the 

structural stability considers the perturbations of the system itself, so that the qualitative 

behavior of the structure is unaffected by small perturbations. A. Andronov and L. 

Pontryagin in 1937 introduced the structurally stable systems under the name "systemes 

grossieres" or rough systems and proposed a characterization of rough systems coined as 

Andronov–Pontryagin criterion [Kuznetsov, 2004]. 

For a mechanical system modeled by using a set of differential equations 

mathematically, all the solutions that satisfy the governing differential equation represent 

an admissible domain of the solution and satisfy static or dynamic equilibrium condition. 

The admissible domain is represented by equilibrium paths and the configurations of the 

equilibrium of the system represent the points of these paths. The system is stable at some 

points and at the others it is unstable. “According to the dynamic criterion for loss of 
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stability, an equilibrium configuration is stable if and only if a small perturbation of the 

configuration results in configurations that are confined to the immediate vicinity of the 

equilibrium configuration” [Brush and Almroth, 1975, pp. 15]. 

Leonhard Euler (1707–1783) is known as the founder of the elastic stability, who 

considered the equilibrium equation and buckling load of a compressed elastic column by 

using the theory of calculus of variations, published in 1744 as the appendix “De curvis 

elastics” of his book entitled as “Methodus inveniendi lineas curvas maximi minimive 

proprietate gaudentes”. By developing an energy approach, Joseph–Louis Lagrange 

(1736–1813) studied the mechanical problems and established the fundamental energy 

theorem of minimum total potential energy to be sufficient for the stability analysis. Jules 

H. Poincare (1854–1912) introduced the bifurcation theory and classified the 

singularities. Aleksandr M. Lyapunov (1857–1918) presented the definitions of the 

stability by energy functions and Lev S. Pontryagin (1908–1988) and Aleksandr A. 

Andronov (1901–1952) introduced the topological concept of the structural stability. 

Theodore von Karman (1881–1963) worked on inelastic buckling of columns and 

proposed a model to explain hysteresis loops and plastic deformation of beams. Warner 

T. Koiter (1914–1997) developed the classical nonlinear bifurcation theory followed by 

John W. Hutchinson to propose the nonlinear branching theory of structures in plastic 

range [Wang et al. 2005, pp. 5].  

Stability of a static system can be investigated by considering its potential energy. 

Based on the principle of minimum potential energy, “the system takes a configuration of 

stable equilibrium if and only if the change of the total potential energy corresponding to 

any sufficiently small kinematically admissible displacement is positive. A displacement 

is kinematically admissible if it satisfies certain continuity and boundary conditions” 

[Brush and Almroth, 1975, pp. 15]. 

Therefore, if the change in the potential energy I of the system is represented by ΔI, 

then by using Taylor expansion 

ܫ߂ ൌ ܫ െ ଴ܫ ൌ ܫߜ ൅ ଵ

ଶ!
ܫଶߜ ൅ ଵ

ଷ!
ܫଷߜ ൅  (1-2)       ڮ

in which the first term on the right hand side is the first variation of the potential energy, 

the second term is the second variation of the potential energy and so forth. On the other 

hand, for an infinitesimally small variational displacement, terms on the right hand side 
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are linear, quadratic, etc., respectively. Based on the principle of minimum potential 

energy, the potential energy of the system in the equilibrium configuration is stationary 

which leads to δI = 0. Therefore the sign of ΔI which determines the stability mode 

(stable, neutral or unstable equilibrium) is determined by the sign of the second variation. 

For the positive values of the second variation, the system is in stable mode; while for the 

negative values of the second variation, it is in unstable mode. The vanishing of the 

second variation is defined as the criterion of the loosing stability of the stable systems 

known as Trefftz criterion [Brush and Almroth, 1975, pp. 365]. Adjacent equilibrium 

criterion also leads to the same results of the minimum potential energy criterion for the 

stability of the static conservative structural systems.  

By solving the governing differential equations of the system, an equilibrium 

configuration is established as the primary equilibrium path. The linear equation can be 

used to determine whether an adjacent equilibrium configuration exists at some points of 

the primary path. Existence of such a configuration introduces the points on the 

equilibrium path that multiple configurations are allowed for the system which are called 

bifurcation points. 

 

2.2 Bifurcation, Buckling and Wrinkling 

The bifurcation points or branch points are attributed to the points of the solution domain 

for which multiple equilibrium configurations emerge [Bloom and Coffin, 2001, pp. 7]. 

When the boundary value problem of a static conservative structural system is 

represented in the form of 

,ߣሺܩ ሻݑ ൌ 0         (2-2) 

where λ is a real number corresponding with the loading on the system, u is an element of 

a real Banach space (i.e. a complete vector space with defined norm) corresponding with 

the displacement field and G is a nonlinear mapping representing the governing equation 

of the system, then ordered pair (λ*,u*) which satisfies the equation (2-2) is the solution 

of the governing equation of the system or the primary path which determines the 

behavior of the system. In order to find the nontrivial solution of the system (λ*,u*) ≠ 

(λ*,0) so that when λ approaches λ* then norm of u* goes to a nonzero small value, the 
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bifurcation theory is used. In other words, λ= λ* is a bifurcation point (equivalently a 

branch point) of the equation (2-2) if every neighborhood of (λ*,0) consists a solution 

(λ*,u*) with nonzero norm of u* [Bloom and Coffin, 2001, pp. 8]. 

The bifurcation theory determines the location of the branch points and the relation 

of them with the eigenvalue problem of the differential equation of the system. Also it 

determines how many distinct branches originate from a bifurcation point. According to 

the bifurcation theory, for the nonlinear differential equation (2-2) with an equilibrium 

solution pair (λ*,u*) satisfying the equation, if the linearized mapping GLinear (λ,u) has an 

inverse at (λ*,u*) which is bounded, then (λ*,u*) is unique so that for λ sufficiently near 

to λ*, the pair (λ*,u*) is the only solution of the equation [Bloom and Coffin, 2001].  

Since for the nonlinear mapping G(λ,u) with a bounded invertible GLinear (λ,u) at the 

equilibrium solution (λ*,u*), the solution of the system is unique, one may conclude that 

no branching or bifurcation of the solutions can occur. Consequently, it is concluded that 

bifurcation or branching of the solution can only occur if the linear mapping GLinear (λ,u) 

is singular at (λ*,u*).  

The nonlinear mapping G (λ,u) is usually assumed in a particular form of nonlinear 

differential operator L as  

,ߣሺܩ ሻݑ ൌ ሿݑሾܮ െ ݑߣ ൌ 0        (2-3) 

For linear mapping, the parameters λ and u are the eigenvalue and eigenfunction of the 

eigenvalue problem for the differential equation, which are corresponding with the 

bifurcation point of the system. At a bifurcation point the equilibrium equations of the 

system have multiple solutions and for each solution a new equilibrium path appears on 

the stability diagram which can be followed by the system. Small disturbances at the 

bifurcation point leads that system follows a new stable path or remains on the previous 

one [Bloom and Coffin, 2001].  

Structural instability of the mechanical systems can be categorized in two main 

groups as buckling and wrinkling. The global instability refers to the overall buckling of 

the system under applied loading, while local instability is corresponding with the local 

wrinkling of the system with a fine wavy pattern. In contrast with the global buckling 

with large wavelength, in wrinkling the flexures have tiny wavelength. Therefore, in 

order to investigate the buckling/wrinkling phenomenon, the instability of the system 
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should be considered. The same procedure for analyzing the global buckling of the 

mechanical systems is also used in considering the wrinkling of the system; while for the 

later the number of flexures is increased to create a fine wavy pattern with tiny 

wavelength.  

For a mechanical system, the bifurcation points are related with the vanishing of the 

change of the potential energy of the system in equation (2-1). In fact, at the branch point 

the second variation of the potential energy vanishes for small perturbation around the 

equilibrium position and the critical instability load is attributed to the minimum load in 

which the instability occurs [Jones, 2006]. 

 

2.3 Tension Field Theory 

Other than the instability theory based on the minimum potential energy principle, a 

number of theories have been developed by the researchers over the years. Among these 

theories, one is known as tension field theory which mainly focuses on the shape of the 

wrinkled regions geometrically, while other factors such as amplitude and wavelength of 

the wrinkles remain undetermined. 

Tension field theory, first developed by Wanger in 1929 on airplane wing assumes 

that the structure is too thin to bear any in‒plane compression. By using the concept of 

plane stress field, a state with only tensile stress components is sought and concludes that 

for the membrane with negligible resistance against the compression, the principal stress 

along a wrinkle is tensile [Reissner, 1938]. By introducing a geometrical ray analysis, 

Kondo et al. (1955) and Mansfield (1968, 1970) contributed to the theory by replacing 

the strain energy used in the tension field theory by a suitable relaxed energy density. 

Pipkin (1986) and Steigmann and Pipkin (1989) developed the relaxation strain energy of 

the isotropic elastic membranes with wrinkling deformation which represents the average 

energy per unit initial area over a region containing many wrinkles. Wu (1978) found the 

strains of wrinkled and taut parts separately, and by using the continuity of stresses and 

displacements at the wrinkled/taut transition locations analyzed partly wrinkled 

structures. 
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A membrane can take one of the following states; it can be taut under tensile loading, 

it can be slack or free of stress; or it can be wrinkled when there is a uniaxial state of 

tensile stress [Hornig and Schoop, 2003]. The Stein‒Hedgepeth theory (1961) represents 

that in the wrinkled membranes, all the compressive stresses are eliminated completely 

while the minor principal stress is non‒negative everywhere on the membrane. The 

wrinkles along the directions of the troughs and crests carry the entire tensile load in the 

wrinkled regions and the minor principal stress perpendicular to the load paths are zero. 

The theory based on the principal stresses σ1 and σ2≤ σ1 of the film is represented as 

[Ding and Yang, 2003] 

A. σ2>0: Taut membrane 

B. σ1>0 and σ2≤0: Wrinkled membrane 

C. σ1≤0: Slack membrane 

Similar criteria can be defined based on the principal strains or a combination of the 

principal stress/strain of the membrane. As mentioned before, such theories only provide 

some information for the shape of the wrinkling region based on the geometrical ray 

analysis in which wrinkles propagate along the ray in the direction of the uniaxial tensile 

loading on the film. While, the bifurcation theory determines both the applied load on the 

mechanical system upon instability and the pattern of the wrinkles (i.e. wavelength, 

amplitude). 

 

2.4 Beam and Plate Theory 

Beams and plates are structural elements used commonly in mechanics of deformable 

bodies to describe the relation of the displacement and loading on the system. For these 

elements, by using the simplifying assumptions, the necessity of solving the elasticity 

differential equations of the equilibrium of the structure in the general form is cancelled 

out and the solution is obtained easier. By using the linear and nonlinear theories of 

beam/plate, the small and large deflection of the structures are considered.  

For a beam element in which one dimension is much longer than two other 

dimensions, the basic equations of the system are derived by using kinematic 

assumptions. Based on the zero shear strain assumption for thin structures with small 
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deformation, plane sections remain planar and perpendicular to the neutral axis during 

deformation and hence the moment displacement relation is given by [Timoshenko, 

1940]  

ܯ ൌ  ܫܧ ௗ
మ௪

ௗ௫మ
         (2-4) 

where EI is the flexural rigidity, w is the deflection, x is the longitudinal coordinate and 

M is the bending moment. It is shown that the equilibrium equations of the beam are 

given by 

ܳ ൌ ௗெ

ௗ௫
                    (2-5-A)  

ௗொ

ௗ௫
ൌ െܰ ௗమ௪

ௗ௫మ
െ   (B-5-2)         ݌

while Q is the transverse shear force on the section of the beam subjected to an axial 

compressive force N and a distributed lateral load with intensity p along the beam. 

Substituting (2-4) and (2-5-A) into (2-5-B) leads to the Euler beam equation as 

 
ௗమ

ௗ௫మ
 ቂܫܧ ௗ

మ௪

ௗ௫మ
ቃ ൅ ܰ ௗమ௪

ௗ௫మ
൅ ݌ ൌ 0       (2-6)  

Plates are described as flat structural elements in the mechanical systems in which 

one dimension (i.e. thickness) is much smaller than two other dimensions. In contrast 

with the membrane elements which can support only in‒plane loadings, plates hold the 

moment components too. The displacement components of each point of the plate are 

represented versus displacement field of the mid‒plane of the plate by a kinematic 

assumption. Therefore, a complicated three dimensional system is reduced to a more 

simplified system. For thin plate structures, small and large deflection theories are 

introduced in the literature. Kirchhoff plate theory which holds for small deflection of 

thin plates considers only the effect of the bending and by using plane stress and plane 

strain assumptions, its governing equation is derived for the static isotropic plate by 

[Timoshenko, 1940] 

ݓସ׏ܦ ൌ   (7-2)           ݌

where w is out of plane displacement of the plate (i.e. deflection), D is the bending 

stiffness of the plate and p is the lateral distributed loading on the plate.  

For large deflection of thin plate, von Karman plate theory is represented in which 

the effect of the in‒plane loading is considered on the mid‒plane of the plate. The 

differential equations governing on a von Karman rectangular isotropic plate under the 
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effect of in‒plane forces Nx, Ny and Nxy and lateral distributed loading p are represented 

by [Bloom and Coffin, 2001] 

డேೣ
డ௫

൅
డேೣ೤
డ௬

ൌ 0                     (2-8-A)  

డேೣ೤
డ௫

൅
డே೤
డ௬

ൌ 0           (2-8-B)  

ݓସ׏ܦ െ ௫ܰ
డమ௪

డ௫మ
െ ௬ܰ

డమ௪

డ௬మ
െ 2 ௫ܰ௬

డమ௪

డ௫ డ௬
ൌ   (C-8-2)       ݌

Also the potential energy of the plate is represented by considering bending strain 

energy, stretching strain energy and external work on the plate [Bloom and Coffin, 2001] 

described in the next chapters whenever is needed. There are other theories for plate 

structures developed by other researchers and are found in the literature comprehensively. 

 

2.5 Different Models for the Foundation 

In order to consider the effect of the elastic foundation (i.e. the substrate of the film) on 

the mechanical behavior of the beam/plate, various models have been introduced by the 

researchers reviewed by Wang et al. (2005). Models represent the elastic, viscoelastic 

and plastic behavior of the materials and cover different loading patterns such as 

transverse loading or in‒plane loading on the beam/plate, described as follow. 

2.5.1 Linear Pressure Model 

For short beams on an elastic foundation, the contact pressure is assumed to be uniform 

under symmetric loading. The profile of the contact pressure can also be assumed linear 

for other types of loading. For a plate resting on the foundation, a two dimensional linear 

profile is assumed for the plate‒foundation interaction [Selvadurai, 1979; Wang et al., 

2005]. 

2.5.2 Winkler Model 

In Winkler model, the interaction of the foundation‒beam/plate is modeled with a spring 

system which applies distributed external transverse load on the beam/plate. In other 

words, the contact pressure at any point on the beam/plate is assumed to be proportional 

to the deflection of the system at that position and independent of the deflection at other 
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locations. Therefore, according to the spring model of the Winkler foundation, the 

elements of the film with bigger deflection endure bigger interaction from the foundation. 

The Winkler model can be formulated mathematically as [Winkler, 1867], 

,ݔሺݍ ሻݕ ൌ ,ݔሺݓ ܭ   ሻ        (8-1)ݕ

where the parameter q(x, y) is the imposed contact pressure from the foundation on the 

beam/plate, w(x, y) is the deflection of the beam/plate at the coordinate (x, y) and K is the 

spring stiffness of the Winkler foundation called as the modulus of the foundation. The 

modulus of the Winkler foundation is proportional to the elastic modulus Ef and finite 

depth of the foundation Hf proposed by Allen (1969) as, 

 ~ܭ
ா೑
ு೑

          (8-2)  

Niu (1998) modified the classical definition of Winkler modulus in (8-2) for plane 

stress and plane strain foundations respectively by, 

ܭ ൌ
ா೑

൫ଵି௩೑మ൯ு೑
                 (8-3-A)  

and 

ܭ ൌ
ሺଵି௩೑ሻா೑

ሺଵିଶ௩೑ሻሺଵା௩೑ሻு೑
                (8-3-B)  

where Ef, vf and Hf are Young’s modulus, Poisson’s ratio and thickness of the foundation. 

For thick foundation in wrinkling problem, Hf is replaced by an equivalent thickness 

according to the wrinkling wavelength [Niu and Talreja, 1999]. 

In the above mentioned studies, the Winkler modulus was assumed as a constant 

parameter along the domain for a uniform foundation. While for a non‒uniform 

foundation [Soldrttos and Selvadurau, 1985; Mofid and Noroozi, 2009;  Teodoru and 

Musat, 2008], a variable modulus K(x,y) is assumed  as a function of x and y. 

Besides the linear interaction between the film and the substrate in equation (8-1), a 

nonlinear interaction between the substrate and the beam/plate can be proposed as 

,ݔሺݍ ሻݕ ൌ ݓ ଵܭ ൅   ଷ         (8-4)ݓ ଷܭ

where K1 and K3 are linear and nonlinear (cubic) foundation modulus, respectively [Raju 

and Rao, 1993, Shih and Blotter, 1993; Coskun, 2000; Wasti and Senkaya, 2008]. 
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2.5.3 Two‒Parameters Model 

Two‒parameter foundation models can be considered as the Filonenko–Borodich, 

Pasternak, Hetenyi and Vlasov models [Wang et. al, 2005]. In these models, the in‒plane 

interaction of the foundation and the film is also taken into account so that the 

load‒displacement relation of the interaction is given by [Wang et. al, 2005; Naidu and 

Rao, 1996; Shen, 2000] 

,ݔሺݍ ሻݕ ൌ ,ݔሺݓ ௙ܭ ሻݕ െ ,ݔሺݓଶ׏ ௙ܩ   ሻ      (8-5)ݕ

where q(x, y) is the imposed contact pressure from the foundation on the beam/plate, Kf is 

the Winkler foundation stiffness and Gf is a constant showing the effect of the in‒plane 

interactions on the film, and ׏ଶ is the Laplace operator in x and y. The parameter Gf can 

be represented by tension action on the film in Filonenko–Borodich model or substrate 

shear parameter in Pasternak model. 

In addition, other models have been proposed by Kerr (1964), Reissner (1958) and 

Vlasov & Leontev (1966) which commonly have other parameters in addition to the 

in‒plane interaction parameter Gf. However, the additional parameters improve the 

accuracy of the modeling, but determining those parameters is considered as a difficult 

process [Wang et. al, 2005]. More detailed information about these models can be found 

in the related literatures [Winkler, 1867; Zimmermann, 1930; Hetenyi, 1946; Pasternak, 

1954]. 

 

2.6 Finite Difference Method 

Among various methods to solve the differential equations numerically, finite difference 

method is one of the most important techniques commonly used by the researchers. It is 

simple, versatile and suitable for computer programs with high accuracy in solving 

differential equations. In this method, the differential equation is replaced by difference 

equations and the solution of the problem reduces to the simultaneous solution of a set of 

algebraic equations.  

The finite difference is the discrete analog of the derivative as discussed by 

Hildebrand (1968). In this method, the domain is desctitized by introducing some nodes 

of stencil configuration. A stencil is a geometric arrangement of a nodal group related to 
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the point of interest by using a numerical approximation routine. For example, for a 

five‒point stencil configuration in one dimension, four nodes are located on the 

neighborhood of the central node x0 at the locations {x0‒2h, x0‒h, x0+h, x0+2h}. The 

relation of the finite difference is applied on the nodes of a N‒point stencil configuration 

and the derivatives of the field variable are approximated by the finite differences of the 

values of the field variable at the nodes by using the difference quotient formula 

[Abramowitz and Stegun, 1972]. For a continuous function of x as y=f(x), the first 

forward difference of y at point xn denoted by Δyn is given by [Hildebrand, 1968] 

௡ݕ∆ ൌ ௡ାଵݕ െ ௡ݕ ؆ ݄ ௗ௬

ௗ௫
         (2-9)  

where h= xn+1 ‒ xn is the step size between neighborhood nodes. Similarly, the first 

backward difference of y at point xn denoted by ׏yn is  

௡ݕ׏ ൌ ௡ݕ െ ௡ିଵݕ ؆ ݄ ௗ௬

ௗ௫
         (2-10)  

The central difference method deals with the nodes symmetrically located with 

respect to xn and often results in more accurate approximation than forward and backward 

differences. The first central difference δyn is given by  

δݕ௡ ൌ
ଵ

ଶ
ሺݕ௡ାଵ െ ௡ିଵሻݕ ؆ ݄ ௗ௬

ௗ௫
                (2-11-A) 

The corresponding central differences of higher order are defined by iteration as  

δଶݕ௡ ൌ ௡ାଵݕ െ ௡ݕ2 ൅ ௡ିଵݕ ؆ ݄ଶ ௗ
మ௬

ௗ௫మ
               (2-11-B)  
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ଵ

ଶ
௡ିଶݕ ؆ ݄ଷ ௗ

య௬

ௗ௫య
              (2-11-C)  

δସݕ௡ ൌ ௡ାଶݕ െ ௡ାଵݕ4 ൅ ௡ݕ6 െ ௡ିଵݕ4 ൅ ௡ିଶݕ ؆ ݄ସ ௗ
ర௬

ௗ௫ర
             (2-11-D)  

In order to determine the finite difference coefficients of a k order derivative with an 

arbitrary order of accuracy, two different methods are introduced. The first method uses 

the Taylor expansion formula of the continuous function y=f(x) at xn+h in the 

neighborhood of xn as  

݂ሺݔ௡ ൅ ݄ሻ ൌ ݂ሺݔ௡ሻ ൅
௛

ଵ!

ௗ௙ሺ௫೙ሻ

ௗ௫
൅ ௛మ

ଶ!

ௗమ௙ሺ௫೙ሻ

ௗ௫మ
൅ ൅ڮ ௛ೖ

௞!

ௗೖ௙ሺ௫೙ሻ

ௗ௫ೖ
൅ ܴ௞ାଵሺݔሻ   (2-12)  

where Rk+1 is the remaining term denoting the difference between Taylor expansion of 

degree k and the exact value of the function f(x). For example, for the first order 

approximation of Taylor expansion one may find  
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݂ሺݔ௡ ൅ ݄ሻ ൌ ݂ሺݔ௡ሻ ൅
ௗ௙ሺ௫೙ሻ

ௗ௫
݄ ൅ ܴଶሺݔሻ       (2-13)  

From (2-13) with some algebraic manipulation, the first forward difference in (2-9) is 

derived and the first derivative is approximated by  

ௗ௙ሺ௫೙ሻ

ௗ௫
ൌ ௙ሺ௫೙ା௛ሻି௙ሺ௫೙ሻ

௛
െ ோమሺ௫ሻ

௛
         (2-14)  

The error in approximating the first derivative of function f(x) by using forward finite 

difference in (2-14) is  

ோమሺ௫ሻ

௛
ൌ ଵ

௛
∑ ௛ೖ

௞!

ௗೖ௙ሺ௫೙ሻ

ௗ௫ೖ
∞
୩ୀଶ ؆ ܱሺ݄ሻ        (2-15)  

which is in the order of the step size h. Similar procedure for central method shows that 

the error of the first derivative is in the order of O(h2), so the central method has a higher 

convergence rate than forward and backward methods. 

The second method used to derive the difference formula is based on the 

differentiating the Lagrange polynomials [Abramowitz and Stegun, 1972]. The Lagrange 

polynomials are defined as  

ሻݔ௝ሺܮ ൌ ∏ ௫ି௫೘
௫ೕି௫೘

଴ஸ௠ஸ௞
௠ஷ௝

ൌ ௫ି௫బ
௫ೕି௫బ

…
௫ି௫ೕషభ
௫ೕି௫ೕషభ

௫ି௫ೕశభ
௫ೕି௫ೕశభ

… ௫ି௫ೖ
௫ೕି௫ೖ

     (2-16)  

and the function f(x) is approximated as  

 ݂ሺݔሻ ൌ ∑ ሻݔ௝ሺܮ
௝ୀெ
௝ୀିெ ݂ሺݔ௝ሻ         (2-17)  

where the domain is meshed by an N‒point stencil configuration with N=2M+1 nodes 

(along each direction for multi‒dimensional case). Therefore, the kth order derivative of 

function f(x) is approximated by a weighted linear sum of the function values at 2M+1 

nodes as [Zhao and Wei, 2009] 

ௗೖ

ௗ௫ೖ
݂ሺݔሻ ൌ ∑

ௗೖ௅ೕሺ௫ሻ

ௗ௫ೖ
ெ
௝ୀିெ ݂ሺݔ௝ሻ         (2-18)  

The differentiation of the Lagrange polynomials is carried out analytically. For example, 

for first, second, third and forth order derivatives, one may find  
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           (2-19-D)  

and by substituting the coordinate of each node of the stencil configuration in (2-19-A-

D), the corresponding coefficients of the finite difference approach are obtained [Zhao 

and Wei, 2009].  

There are two sources of error in finite difference method. The first one is the loss of 

precision due to computer rounding of decimal numbers which is called round‒off error. 

The second source is truncation error or discretization error, which is the difference 

between the solution of the finite difference equation and the exact solution of the 

problem. The truncation error deals with the finite difference formulation used to 

approximate the problem which is controlled by handling the number of nodes attributed 

to the system. As mentioned before, the truncation of Taylor expansion leads to the 

remaining term of Rk+1 in (2-12) as [Hildebrand, 1968] 

ܴ௞ାଵሺݔ ൅ ݄ሻ ൌ ଵ

ሺ௞ାଵሻ!

ௗೖశభ௙ሺ௫೙ሻ

ௗ௫ೖశభ
݄௞ାଵ        (2-20)  

which is in the order of hk+1 denoted by O(hk+1) and indicates a quantity that approaches 

zero proportional to hk+1 as h→0. Clearly, for finite difference formulation with higher 

order of O(hk+1), the rate of convergence increases as the number of mesh of the system 

increases too. More nodes in the stencil configuration lead to higher order approximation 

of the finite difference formulation. For example, a central difference formula for a 

stencil configuration with three, five and seven nodes provides an approximation with 

second, fourth, and sixth order of accuracy (i.e. O(h2), O(h4) and O(h6)), respectively.  

The finite difference formulation substitutes the differential equation of the system 

with a set of the algebraic equations system. The values of field variable at the nodes of 

the discretized system are unknowns of the algebraic equations system. On the other 

hand, in order to complete the system of algebraic equations and remove the singularity 

of the system, the boundary conditions are applied. The Dirichlet condition is the 

simplest type of boundary conditions which constrains the field variable on the 

boundaries known as the first type boundary condition. In this case, the values 

corresponding with the variable field are introduced on the boundaries such as fixed ends 

of a solid body. The second type boundary condition known as Neumann condition is 

applied on the derivatives of the filed variable along the boundaries. For the boundary 
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conditions that the derivatives of the function are given (i.e. Neumann or mixed boundary 

condition), imposing the finite difference technique for the problems seems to be difficult 

or inapplicable, because the derivatives of the field variable are represented by using the 

values of the function at the neighbor nodes of the boundaries which include some nodes 

outside the domain. In these cases, by introducing some virtual nodes outside the domain, 

the derivatives of the function are approximated by using the finite difference 

formulation. The values of the field variable on the virtual nodes are defined by using 

some assumptions. For example, symmetric and antisymmetric extensions of the field 

variable on the boundaries provide the values of the field variable at the virtual nodes. 

Such a fictitious domain boundary treatment has successfully handled many boundary 

conditions such as the simply supported, clamped and transversely supported edges in 

structural analysis [Wei, 1999; Zhao and Wei, 2009]. For example, at a clamped edge the 

boundary conditions are given as zero deflection and slop which is represented by using a 

symmetric extension [Wei et al., 2002]. At a simply supported edge, the boundary 

conditions are given as zero deflection and moment and hence, the anti‒symmetric 

extension [Wei et al., 2002] is used. However, for more complex boundary conditions, 

such as Robin condition or the free edge condition, the proposed method cannot maintain 

high‒order accuracy at the boundaries. 

 

2.7 Summary 

In this chapter, essential theories for analyzing the instability of thin solid films are 

introduced. The stability of the mechanical systems is considered by using the potential 

energy of the system. According to the bifurcation theory, the instability of the system 

corresponds with the eigenvalue problem for the differential equation of the system. On 

the other hand, tension field theory proposes a criterion for the onset of wrinkling of the 

films. Other materials such as structural elements of beam and plate used to model the 

film are introduced. Finally, solution techniques for solving the differential equations 

according to finite difference method are reviewed.  
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Chapter 3  

3 Wrinkling Within a Local Region on Thin Film1 

The wrinkling around an inclusion on a thin solid film is investigated using the instability 

analysis. The film is modeled by using the classical plate theory with 

isotropic/orthotropic properties and the effect of the inclusion is imposed on the film as a 

compressive loading along the inclusion line. For a decaying function representing the 

wrinkling pattern along the film, the potential energy of the film is minimized and the 

parameters of the wrinkling (i.e. load and pattern) are determined. The results are useful 

in characterizing the wrinkling around an inclusion on free standing film or deposited 

film on the substrate such as wrinkling due to suturing of the skin in surgical operation in 

mechanics of scars. 

3.1 Introduction 

Local compressive stresses result in highly ordered patterns on thin film structures called 

wrinkling [Genzer and Groenewold, 2006]. In thin film structures, the occurrence of the 

wrinkling is a common phenomenon due to tiny thickness of the film. In these systems, 

the resistance of the film against bending is very low. As a result, the flat film undergoes 

an out–of–plane deformation even under small in–plane compressive loading, and the 

system experiences the mechanical instability as buckling and wrinkling. Wrinkles have 

various sources to initiate and propagate on the films. For example stretching of the film 

in one direction leads to wrinkling in other directions [Jacques et al., 2005]. Applying a 

concentrated force [Adams, 1993], imposing a constraint on the system [Wong and 

Pellegrino, 2005], applying a crumpling mechanical load on the system [Watanabe, 2005] 

or thermal condensation of the film–substrate system [Bowden et al., 1998] develop an 

in–plane compressive stress in the film which leads to the instability of the film as 

buckling and wrinkling [Wang et al., 2008].  

                                                 
1
 The results of this chapter were published as “Wrinkling around an inclusion line on thin film structures” 

in Proceedings of the 23rd Canadian Congress of Applied Mechanics, Vol. 1, 2011, pp. 674–677. 
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On the other hand, studying the formation of the wrinkles around the stitched skin, 

fabrics, and thin layers is a very interesting and challenging topic. Stitching and its 

related issues have attracted great attention of many researchers in different fields. For 

example, in sandwich panels the effect of through the thickness stitching is considered on 

the stiffness and failure strength of the structure [Ma et al., 2011], delamination 

[Whitman et al., 2005], energy absorption and buckling and wrinkling parameters [Raju 

et al., 1999; Sharma et al., 2004; Ghate et al., 2004]. Furthermore, the sewing pattern and 

its effect on fabric and garment products being stitched by professional embroiderers and 

sewing machines [Momsen, 2011] is one of the most important issues for apparel 

manufacturers [Moore, 1995]. Especially, many investigations have been accomplished 

on the wrinkling of the fabric during production and packaging, and some methods have 

been proposed to produce wrinkle–free materials [Robers, 2000] and to avoid wrinkled 

stitches [Seizova, 2004]. Also, stitching of the skin in surgical operations and 

avoiding/controlling the wrinkling of the skin after treatment is another important issue 

that needs extensive investigations [Yamamoto et al., 2001; Cerda, 2005; Bezon et al., 

2006; Genzer and Groenewold, 2006]. Figure 3-1 shows the stitching pattern of the skin 

in surgical operation schematically. The objective of this chapter is to propose a model to 

consider the effective parameters on the localized wrinkling of thin films around the 

regions with locally crumpling load (i.e. inclusion). 

 

Figure  3-1: Stitching of the wound in surgery 

[http://emedicine.medscape.com/article/1824895–overview #a15] 
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An inclusion is defined as a subdomain Ω in a general domain D where eigenstrain ε* 

given in the subdomain Ω is different with the strain in the domain D–Ω (Figure 3-2). It 

is supposed that the material properties of both the subdomain Ω and the domain D–Ω are 

same [Qu and Cherkaoui, 2006]. Therefore, the only difference between these domains is 

related to the eigenstrain in the subdomain Ω. Eigenstrain ε* is introduced to represent 

inelastic strains such as thermal strains, initial strains, residual strains, plastic strains, 

mismatch strains and the likes. This parameter is defined as the difference between total 

strain and mechanical strain [Korsunsky, 2009]. 

 

Figure  3-2: An inclusion with eigenstrain ε* in general domain 

On the interface of the inclusion region, for perfect attachment of the interfaces in 

which there is no gap and no slip between the domains, the displacement field should be 

continuous and also the tractions on the interface which are accounted for holding the 

equilibrium conditions should be same. The continuity of displacement field results that 

the tangential strain components on the interface are equal (i.e. εtt
in= εtt

out), however the 

normal strain component on the interface (i.e. εnn) has a jump due to the eigenstrain ε* 

inside the inclusion as [Qu and Cherkaoui, 2006], 

௡௡௜௡ߝ െ ௡௡௢௨௧ߝ ൌ   (3-1)         כߝݍ

and the balance of tractions concludes that the traction on the interface for both sides, 

inside and outside of the inclusion should be equal as ߪ௡௡௜௡ ൌ ௡௧ߪ ௡௡௢௨௧ andߪ
௜௡ ൌ ௡௧ߪ

௢௨௧, where 

σnn and σnt are components of stress tensor. The condition on the third component of the 

stress tensor σtt is derived by using the constitutive equation of the system as 

௧௧ߪ
௢௨௧ െ ௧௧ߪ

௜௡ ൌ  (3-2)          כߝܳ

where ܳ ൌ ொభభொమమିொభమொమభ
ொభభ

 and ݍ ൌ 1 ൅ ொభమ
ொభభ

 are determined versus the components of the 

stiffness matrix of the film Qij (i,j=1,2). Therefore, the effect of the inclusion on the 
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system is simulated by considering the traction on the interface of the inclusion which is 

created due to eigenstrain ε*.  

An inclusion with shrinking eigenstrain in thin film system leads to the wrinkling of 

the film in the region around the inclusion. The film under compressive loading of the 

inclusion cannot support the deformation in its initial plane; hence based on the 

bifurcation theory, it undergoes new modes of deformation out of its initial plane and 

small size fluctuations (i.e. wrinkles) appear on the film. The stitching pattern in surgical 

operation of the patient’s skin shown in figure 3-1 is modeled by using the concept of the 

inclusion described here. 

 

3.2 Formulation 

The wrinkling of a thin rectangular film around an inclusion is considered for the film 

with thickness h, width b and length L as shown in figure 3-3. The film can be supported 

by a substrate or it can be considered as free standing film. The inclusion is assumed as a 

narrow line on the film illustrated in figure 3-4. This model is similar to the stitching 

pattern in surgical operation of the patient’s skin in figure 3-1. It also models a 

constraining line on a thin film which is similar to the case of point glue on the balloon in 

polar coordinate presented by Cerda (2005).  

The Cartesian coordinate system x0 – y0 in figure 3-4 shows the longitudinal and 

transverse directions of the rectangular plate. Axis x1 is perpendicular to the inclusion line 

while axis y1 is along the inclusion line. On the other hand, x2 – y2 is a coordinate system 

with unknown direction in which wrinkles propagate on the film such that they lay along 

the x2 direction with a periodicity along the y2 direction. The inclusion line is considered 

far from the edges of the film so that the boundary conditions of the edges do not 

influence on the wrinkling region. 
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Figure  3-3: The film on the substrate, dimensions and loading parameters 

 

Figure  3-4: The inclusion line on the film and different coordinate systems 

The film is modeled as a rectangular plate with orthotropic material properties. The 

main axis of the plate is considered to be in an arbitrary direction (i.e. x3 – y3) not 

necessarily on the abovementioned coordinate axes. The bending stiffness matrix of the 

orthotropic plate for off–axis formulation is obtained by using transformation law of the 

different coordinate systems as  

 ሾܦሿ ൌ ൥
ଵܦ ଶܦ ଷܦ
ଶܦ ସܦ ହܦ
ଷܦ ହܦ ଺ܦ

൩        (3-3) 

in which Di’s (i=1…6) are functions of the off–axis direction (called θ3) and main axis 

material properties presented in literature [Ugural, 1999].  

The bending strain energy of the plate is represented versus curvature κ and internal 

bending moment resultant M of the plate as  

ܷ௕ ൌ
ଵ

ଶ
׬ ሼܯሽ்ሼߢሽ஺ ܣ݀   ൌ ଵ

ଶ
׬ ሼߢሽ்ሾܦሿሼߢሽ஺   (4-3)     ܣ݀  



44 

 

According to the classical plate theory, the curvature is a function of the deflection of the 

plate (i.e. w) as 

ሼߢሽ ൌ ൝
௫ߢ
௬ߢ
௫௬ߢ

ൡ ൌ

ە
ۖ
۔

ۖ
ۓ

డమ௪

డ௫మ

డమ௪

డ௬మ

2 డమ௪

డ௫ డ௬ۙ
ۖ
ۘ

ۖ
ۗ

        (3-5)  

The stress field of the plate is represented by considering the effects of the 

longitudinal tension of the film and compression along the inclusion line. The 

longitudinal tension imposes a stress resultant component N0 in x0 – y0 coordinate system 

as  

ሾܰሿ௫బି௬బ ൌ ൤
௫ܰబ ௫ܰబ௬బ

௫ܰబ௬బ ௬ܰబ
൨ ൌ ቂ ଴ܰ 0

0 0
ቃ      (3-6)  

and the inclusion line is assumed to impose a compressive in–plane stress resultant on the 

film with the pattern T(x1) and the magnitude N1, which can be represented in x1 – y1 

coordinate system as  

ሾܰሿ௫భି௬భ ൌ ൤
0 0
0 െ ଵܰܶሺݔଵሻ

൨       (3-7)  

while the dimensionless function T (x) is represented by a descending function as  

ܶሺݔሻ ൌ exp ቀെ
|௫|

௟഑
ቁ ൌ ቐ

exp ቀെ ௫

௟഑
ቁ ݔ      ൐ 0

exp ቀ௫
௟഑
ቁ ݔ         ൏ 0

     (3-8)  

in which lσ is the effective length of the stress distribution around the inclusion line. 

Various magnitudes of lσ simulate different distributions around the inclusion. For tiny 

values of lσ, the function T (x) represents a concentrated stress distribution around the 

inclusion line similar to a Dirac function which vanishes all over the domain except on 

the inclusion line. Also N1 is the stress resultant imposed from the inclusion on the film 

just along the inclusion line. This parameter is represented versus eigenstrain ε* of the 

inclusion as  

ଵܰ ൌ   (3-9)         כߝܳ ݄

which shows that applied force on the film due to inclusion is proportional to the 

eigenstrain of the inclusion according to equation (3-2) [Ugural, 1999]. 
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The abovementioned loading pattern can be represented in any arbitrary coordinate 

system based on the transformation law. For example in x2 – y2 coordinate system in the 

figure 3-4, the components of the in–plane stress resultant are represented as  

ሾܰሿ௫మି௬మ ൌ ܴఏమሾܰሿ௫బି௬బܴఏమ
் ൅ ܴఏమିఏభሾܰሿ௫భି௬భܴఏమିఏభ

்     (3-10)  

in which the first part is corresponding to the longitudinal loading rotated with angle θ2 

and the second part is corresponding to the inclusion loading rotated with angle θ2 – θ1 to 

transform the components of the loading in x2 – y2 coordinate system. And Rα is the 

rotation matrix around the out of plane axis (here z). 

Therefore the total potential energy of the system is represented by  

ܫ ൌ ଵ

ଶ
׬ ൜ሼߢሽ்ሾܦሿሼߢሽ ൅ ௫ܰ ቀ

డ௪

డ௫
ቁ
ଶ
൅ ௬ܰ ቀ

డ௪

డ௬
ቁ
ଶ
൅ 2 ௫ܰ௬

డ௪

డ௫

డ௪

డ௬
൅ ଶൠ஺ݓ௦௨௕ܭ   (11-3) ܣ݀  

where x and y are any arbitrary Cartesian coordinate system and Ksub is the stiffness of the 

Winkler substrate. The configuration of the system in its equilibrium state minimizes the 

total potential energy. The crumpling load of the inclusion leads to the wrinkling of the 

film along the x2 – y2 coordinate system. The wrinkles propagate around the inclusion by 

a sinusoidal pattern in y2 direction, while they decay by getting far from the inclusion as 

x2 increases. The proposed wrinkling pattern is assumed to have the following form  

ݓ ൌ ଶሻݔሺܨ ഥ଴ݓ cosሺݕߚଶሻ        (3-12)  

in which ݓഥ଴ is the amplitude of the wrinkles, ߚ is the wave number of the wrinkling and 

F(x2) is a decaying function shown in figure 3-5 as 

ଶሻݔሺܨ ൌ exp ቀെ
|௫మ|

௟
ቁ ൌ ቐ

exp ቀെ ௫మ
௟
ቁ ݔ      ൐ 0

exp ቀ௫మ
௟
ቁ ݔ         ൏ 0

     (3-13) 

where l stands for the length of the wrinkles in the system along the x2 direction and it is 

supposed that for slender wrinkles l >> lσ in equation (3-8). Also the slenderness of the 

wrinkles is defined by the ratio of the length of the wrinkles (i.e. l) to the transverse 

wavelength of the wrinkles (i.e. λy) as 

ߦ  ൌ ߚ݈ ൌ ߨ2 ௟

ఒ೤
         (3-14) 

The total potential energy of the film–inclusion system for small values of lσ is 

derived consequently by integrating in x2–y2 coordinate system, and by considering the 
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stationary condition of the potential energy of the system in the equilibrium state, the 

expressions for wrinkling parameters are then derived. 

 

Figure  3-5: Decaying function of the wrinkling pattern 

3.3 Results and Discussions 

The results of the wrinkling analysis for thin solid film are presented here. It is shown 

that for slender wrinkles the dominant angle of the wrinkling is perpendicular to the 

inclusion line. The relations are simplified for isotropic films and the effect of the 

substrate on the wave number and length of the wrinkling is considered. 

3.3.1 Wrinkling Perpendicular to the Inclusion Line 

For slender wrinkles by using the principle of minimum potential energy, one can find 

the wave number of the wrinkling of the film as 

ସߚ ൌ ேబ
஽ర௟మ

 cosଶሺߠଶሻ ൅
௄ೞೠ್
஽ర

       (3-15)  

which is the well known relation for wave number of wrinkling in the literature [Cerda 

and Mahadevan, 2003; Birman and Bert, 2004; Jacques and Potier–Ferry, 2005]. Also the 

crumpling load of the inclusion in general form is derived versus angles θ1 and θ2, 

material properties, loading and wrinkling parameters. Among the entire solution domain, 

the solution set which minimizes the crumpling load of the inclusion is sought. 

Equivalently, minimizing the potential energy with respect to the wrinkling direction (i.e. 

angle θ2) represents the expression of the wrinkling direction. Figure 3-6 shows the 

diagram of the potential energy of an isotropic film versus angle of the wrinkling (i.e. θ2) 

which takes its minimum at two main directions for the wrinkles, one of them in the 

longitudinal direction with θ2=0 and the other one is perpendicular to the inclusion line 

(i.e. θ2 = θ1). For an orthotropic film, a similar diagram as figure 3-6 is obtained. 
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Figure  3-6: Total potential energy versus various wrinkling angles for isotropic 

materials with Poisson’s ratio v=1/3 

For the case in which wrinkles are perpendicular to the inclusion line (i.e. θ1= θ2= θ), 

the x2–y2 coordinate system in figure 3-4 coincides on the x1–y1 coordinate system, and 

the crumpling load of the inclusion is derived as 

2Λ݈ఙ ଵܰ ൌ
ఉ

క
ቄቀܦସ ൅

ேబ ୱ୧୬మሺఏሻ

ఉమ
൅ ௄ೞೠ್

ఉర
ቁ ଶߦ ൅ ଺ܦ4 െ ଶܦ2 ൅

ேబୡ୭ୱమሺఏሻ

ఉమ
ቅ  (3-16)  

in which  

Λ ൌ ଵ

௟഑
׬ ܶሺݔሻ
௟
௫ୀ଴  ൫ܨሺݔሻ൯

ଶ
  (17-3)       ݔ݀ 

and Λ determines the distribution coefficient of the loading model of the film. 

Substituting T (x) and F (x) in (3-17) leads to the analytical expression of Λ as  

Λ ൌ ଵ

ଵାଶ݈݈ߪ

          (3-18)  

which is shown in figure 3-7. For concentrated loading with 
௟഑
௟
ื 0, the parameter Λ=1, 

while for a uniform distributed of stress resultant T(x)=1, then Λ takes its lower bound as 

ଵ

ଶ
. 
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Figure  3-7: Distribution coefficient for various loading patterns 

Finally, the wave number β, the length l and the slenderness ratio ξ= βl are 

determined from simultaneous solution of equations (3-15) and (3-16) versus loading on 

the film and material properties of the system. 

3.3.2 Free Standing Film 

For a free standing film, by ignoring the substrate effect the abovementioned relations are 

simplified analytically. The wave number of the wrinkling is given by 

ସߚ ൌ ேబ
஽ర௟మ

 cosଶሺߠሻ        (3-19)  

and the slenderness ratio ξ is introduced as 

ߦ ൌ ݈ߚ ൌ ଵ

୲ୟ୬ሺఏሻ 
ඥ2ሺΓ െ 1ሻ       (3-20)  

where Γ is the loading parameter of the inclusion on the free standing film defined by  

Γ ൌ ௟഑ேభ
ඥேబ஽ర

ଵ

ୡ୭ୱሺఏሻ
           (3-21)  

For a free standing isotropic film in which the material properties are independent of 

the direction, the bending stiffness matrix of the isotropic film is given by 

ሾܦሿ ൌ ܦ ቎

1 ݒ 0
ݒ 1 0
0 0 ଵି௩

ଶ

቏        (3-22)  

where D is the bending stiffness modulus of the film with thickness h, Young’s modulus 

E and Poisson’s ratio v given by ܦ ൌ ா௛య

ଵଶሺଵି௩మሻ
. Therefore, the wave number β and the 

loading parameter Γ are represented by replacing D4 with D in equations (3-19) and (3-

21). 
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For loading parameter Γ bigger than the threshold value (Γ=1), wrinkles propagate in 

the system. In other words, for thick and stiff films with high stiffness bending D under 

small crumpling load when Γ<1, wrinkles do not appear in the system (as expected). In 

this case, the effective compressive loading on the film cannot overcome the bending 

resistance of the film to form the wrinkles.  

Figure 3-8 shows the slenderness ratio of the wrinkles versus loading parameter of 

the inclusion (i.e. Γ) in equation (3-21) for a free standing isotropic film. Obviously, for 

higher magnitudes of the loading parameter Γ (i.e. by increasing the crumpling loading or 

decreasing bending rigidity D of the film) the length of the wrinkles increases. Also for 

bigger values of parameter θ, the slenderness ratio of the wrinkles decreases because the 

effective crumpling load on the film decreases. For θ = 0o the wrinkles propagate over the 

entire length span. In this case, the inclusion line is along the transverse direction of the 

rectangular film, and the length of the wrinkles on the free standing film approaches to 

infinity mathematically from equation (3-20), and physically the length of the wrinkles is 

restricted by the length of the film. By increasing θ the length of the wrinkles decreases 

so that for θ = 90o where the inclusion line is along the longitudinal direction, the length 

of the wrinkles approaches to its minimum value (almost zero according to equation 3-

20) as expected. 

 

Figure  3-8: Slenderness ratio of the wrinkles versus various loading for isotropic 

materials with Poisson’s ratio v=1/3 
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Similar to the isotropic films, for orthotropic films with transversely isotropic plane 

in which the stiffness parameters are functions of θ2 and main axis angle θ3, the wrinkles 

propagate almost perpendicular to the inclusion line independent of the loading direction 

(Figure 3-6); however, some negligible deviations are seen due to the change of the 

principal axis orientation of the orthotropic film (Figure 3-9). In fact, the change in the 

orientation of the material principle direction is effective on the length and wave number 

of the wrinkles which both of them correspond to 
ଵ

ඥ஽ర
 according to equations (3-19) and 

(3-21). Hence, by decreasing the bending stiffness D4 of the film, the wave number and 

the length of the wrinkles increase (as expected).  

 

Figure  3-9: Variation of the wrinkling direction versus change in the principal 

direction of a typical orthotropic film 

 

3.3.3 Film Deposited on the Substrate 

For taut substrates, when the effect of the substrate stiffness is more important than 

stretching loads, the relations are simplified by ignoring the first term of (3-15) as 

ସߚ ൌ ௄ೞೠ್
஽ర

           (3-23) 

And 

Λ݈ఙ ଵܰ ൌ
ఉ

క
ቄቀܦସ ൅

ேబ ୱ୧୬మሺఏሻ

ଶఉమ
ቁ ଶߦ ൅ ଺ܦ2 െ ଶܦ ൅

ேబୡ୭ୱమሺఏሻ

ଶఉమ
ቅ   (3-24)  

The quadratic equation (3-24) directly leads to the relation of the slenderness ratio ξ to 

the loading and stiffness parameters as  

ߦ ൌ ൛1݌ ൅ ඥ1 െ ൟݍ ؆   (25-3)       ݌2
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where 

݌ ൌ Λ௟഑ேభ
ଶఉ஽ర

          (3-26)  

ݍ ൌ ଵ

௣஽ర
ቄ2ܦ଺ െ ଶܦ ൅

ேబ௖௢௦మሺఏሻ

ଶఉమ
ቅ       (3-27)  

According to equations (3-23, 3-26), increasing the substrate stiffness Ksub increases 

the wave number of the wrinkles and decreases the slenderness ratio and the length of the 

wrinkles as ߦ ן ଵ

ඥ௄ೞೠ್
ర  and ݈ ן ଵ

ඥ௄ೞೠ್
, respectively. Therefore, by increasing the substrate 

stiffness, the number of the wrinkles increases while their length decreases (as expected). 

The results provide adequate insights in physics of the wrinkling and develop appropriate 

tools for controlling of the wrinkling around an inclusion. 

 

3.4 Summary 

The wrinkling of thin film structures is an important area with a lot of applications in 

various fields in everyday life, fabric industry, health science and surgical operation, thin 

film science and technology and so on. The wrinkles appear on the film due to 

compressive stresses from various sources such as inclusion. The wrinkles around the 

inclusion are affected by the inclusion eigenstrain and film properties. By modeling the 

solid film with thin plate theory and minimizing the total potential energy of the system, 

the effect of the inclusion on the instability behavior of the film was investigated. The 

wrinkling parameters including wave number and length of the wrinkles are derived for 

the isotropic/ orthotropic film as free standing/deposited film on the substrate and it is 

shown that the wrinkles propagate almost perpendicular to the inclusion line. The results 

of the work provide adequate insights to understand the wrinkling phenomenon and to 

control the wrinkles effectively in the design and operation of thin film structures. 
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Chapter 4  

4 Instability of a Functionally Graded Material (FGM) Thin 
Film1 

The instability of a functionally graded material (FGM) strip as a free standing film or a 

substrate‒bonded film is studied in this chapter, in which the stiffness of the film is 

assumed to change exponentially along the length. The buckling load and the buckling 

mode shapes for the free standing FGM film are determined analytically. For the 

substrate‒bonded film, the substrate is modeled as a Winkler foundation and the 

wrinkling load and wrinkling pattern are determined numerically by using a finite 

difference method and a series solution. In contrast with the wrinkling of homogenous 

thin films in which the wrinkles propagate in the entire domain, the wrinkles of the FGM 

films accumulate around the location with the least bending rigidity. The results of this 

work show that the sensitivity of the wrinkle accumulation around the weak locations of 

the system with lower stiffness is very high. This work is expected to provide a better 

understanding for localization of wrinkles around a region of substrate –bonded thin films 

in thin film technology. 

4.1 Introduction 

The instability problem of a mechanical system (i.e. buckling and wrinkling) is studied 

using the bifurcation theory [Bloom and Coffin, 2001] as finding the eigenvalues of the 

differential equation of the system. Free standing films under compressive loading 

undergo buckling, while for deposited films on the substrate a fine wavy pattern 

dominates on the film called wrinkling [Genzer and Groenewold, 2006]. Many patterns 

for wrinkling of a deposited film on the substrate are considered [Wang et al., 2008] 

among them uniaxial wrinkling is a common pattern in which wrinkles propagate on the 

film span uniaxially [Huang and Im, 2006]. 

                                                 
1
 The results of this chapter were accepted to publish as “Buckling and wrinkling of a functionally graded 

material (FGM) thin film” in International Journal of Applied Mechanics, D‒12‒00013R1, Accepted 17 
March 2012. 
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Most of the existing theoretical works on the substrate‒bonded films used the 

homogenous material properties for the film with a uniform wrinkling pattern along the 

entire span. For example, Cerda and Mahadevan [2003], Chen and Hutchinson [2004] 

and Niu and Talreja [1999] determined the wavelength and amplitude of sinusoidal 

wrinkles by using the uniform amplitude assumption for the wrinkles all over the span 

without considering the boundary effects. However, for thin film structure with finite 

length, the effect of the boundary conditions of the edge of the film disturbs the 

uniformity of the wrinkling pattern along the span. On the other hand, in thin film 

structures deposited on the substrate by using various deposition techniques, the 

assumption of the material homogeneity of the film is very flabby due to the importance 

of the microstructure at the small scale. Besides, techniques such as doping of the film 

with dopant elements or other impurities which locally alter the properties of the system 

attract especial attention in thin film technology [Chen et al., 2007; Stashans, 2004]. 

Therefore, some concerns may arise about the importance of the variation of the material 

properties of the film and its effect on the wrinkling of the film‒substrate system, which 

need further investigation.  

In order to consider the effect of the variable material properties on the mechanical 

behavior of the film, a model of a functionally graded material (FGM) is used here, 

which has been commonly adopted by many researchers to investigate the behavior of 

functionally graded beams and plates in static, vibration and buckling analyses [Yang and 

Chen, 2008; Ke et al., 2010; Zenkour, 2010; Shen and Wang, 2010]. In contrast with 

sandwich composite structures made by reinforcing fibbers in the matrix, the 

microstructure of the FGM changes gradually so that there is no clear distinction or 

border in the domain. Hence the material properties vary continuously with position due 

to the gradual change of the material composition. In other words, the gradually change 

of the volume fraction of the materials results in corresponding changes in the material 

properties continuously. In coating technology, the residual stress of the thin film may 

lead to the failure of the film and detachment from the substrate due to the material 

mismatch from the substrates. Using the FGM film with gradual change of the material 

properties through the thickness leads to decreasing the residual stresses and safe‒failure 

design of the system [Khor et al., 2000; Teixeira, 2001; Zhao et al., 2008].  However, to 



57 

 

the author’s knowledge, the effect of the material gradient of the film along the length 

span upon the wrinkling behavior has not been investigated for a substrate‒bonded film 

with a finite length thus far. Therefore, the current work focuses on the assumptions of 

the finite length of the film, non‒uniformity of the wrinkling pattern along the span and 

non‒uniformity of the film properties, which have been ignored by the other researchers.  

In this chapter, the buckling and uniaxial wrinkling problem of an FGM film with 

finite length is considered. To make the problem more mathematical tractable, an 

exponential profile is assumed for the elastic modulus of the film, which demonstrates the 

softening or stiffening of the film along the length span. The buckling problem of the free 

standing film is investigated by proposing a closed form analytical solution. For the 

substrate‒bonded film, the eigenvalue problem of the differential equation of the system 

is solved by using a finite difference method and a series solution. The effect of the 

material gradient of the film and the substrate stiffness are considered on the instability 

parameters (i.e. load and pattern). A regression analysis is also conducted for parametric 

studies, which provides explicit expressions for the instability parameters. In contrast 

with the other works in the instability of thin film with homogenous material properties, 

the results of this work show that the effect of the material gradient along the length span 

is very significant in wrinkling localization. For a FGM film deposited on a substrate, it is 

shown that the wrinkles accumulate around the weakest location of the film which has the 

lowest stiffness. The importance of the problem increases especially in thin film 

technology, where the homogeneity of the film is uncontrollable due to effect of the 

microstructure of the system. The results of the analysis are expected to be helpful in the 

instability analysis of the non‒homogenous film‒substrate systems and their potential 

applications. 

4.2 Modeling 

The problem envisaged is a functionally graded thin film deposited on an elastic substrate 

subjected to a constant in‒plane load ഥܰ௫ as shown in figure 4-1, where t, b and L 

represent the thickness, width and length of the film, respectively. In order to characterize 

the instability of the system, the classical beam/strip theory with small deformation is 

used to model the film. The substrate is modeled as a Winkler foundation [Birman and 
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Bert, 2004; Cerda and Mahadevan, 2003; Niu and Talreja, 1999], in which the interaction 

between the film and the foundation is represented by a linear spring system with the 

stiffness ܭഥ. The substrate should be thick enough and also compliant in order to apply 

Winkler model. For this uniaxial deformation of the film, the governing equation is given 

as [Ugural, 1999, pp. 298],  

ௗమ

ௗ௫మ
 ቂܦ ௗమ௪ഥ

ௗ௫మ
ቃ ൅ ഥܰ௫

ௗమ௪ഥ

ௗ௫మ
൅ ഥݓഥܭܾ ൌ 0      (4-1)  

where ݓഥ  is the out‒of‒plane displacement and D refers to the bending stiffness of the 

film defined by, 

ܦ ൌ ଵ

ଵଶ
  ଷ           (4-2)ݐതܾܧ

where ܧത=E/(1‒v2) with E and v being the Young’s modulus and the Poisson’s ratio. In 

this work, the Young’s modulus of the FGM film is assumed to vary along the length 

span as,   

ሻݔതሺܧ ൌ   ሻ         (4-3)ݔሺܧ ത଴ܧ

and ܧത଴ is a constant Young’s modulus of the film when x=0 and and E(x) is the shape 

function of the varying Young’s modulus along the length span x such that E(x=0) =1. 

Correspondingly, the bending stiffness of the film is rewritten as,  

ܦ ൌ   ሻ         (4-4)ݔሺܧ଴ܦ

where ܦ଴ ൌ
ଵ

ଵଶ
 ଷ. By Substituting equation (4-4) into (4-1) and introducing theݐ ത଴ܾܧ

non‒dimensional variable ξ defined as ξ = x/L and the normalized deflection ݓ ൌ
௪ഥ

ெ௔௫ ሺ௪ഥሻ
, the dimensionless governing equation in (4-1) is derived as,  

ሾܧሺߦሻ ሿ ௗ
ర௪

ௗకర
൅ ቂ2  ௗ

ௗక
ሻ ቃߦሺܧ ௗ

య௪

ௗకయ
൅ ቂ  ௗ

మ

ௗకమ
ሻߦሺܧ ൅ ܰቃ ௗ

మ௪

ௗకమ
൅ ݓܭ ൌ 0  (4-5)  

in which  

ܰ ൌ ேഥೣ௅మ

஽బ
                    (4-6-A)  

and  

ܭ ൌ ௄ഥ ௕௅ర

஽బ
          (4-6-B)  

The Young’s modulus of the FGM film may have an arbitrary distribution pattern 

along the length span. In the current work, the stiffness stiffening and softening effects on 

the buckling and wrinkling of the FGM film will be investigated in comparison with the 
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homogenous film. Among various patterns proposed for the varying Young’s modulus of 

an isotropic FGM in literature [Yang and Chen, 2008; Ke et al., 2010], the exponential 

function is a common pattern that is used here to describe the stiffening or softening of 

the film, i.e., 

ሻߦሺܧ ൌ EXPሺߦߙሻ         (4-7)  

Obviously, a positive value of material gradient α stiffens the film gradually along the 

length span, while a negative one softens the film along the span. For a homogenous film, 

the material properties are constant along the entire span of the film corresponding to α = 

0 (Figure 4-2). 

 

Figure  4-1: A substrate‒bonded FGM film under compressive in‒plane loading 

 

Figure  4-2: The profile of the elastic modulus of the film along the length span 
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4.3 Buckling 

For a free standing FGM film, the governing equation of the instability reduces to 

ௗమ

ௗకమ
ቂܧሺߦሻ ௗ

మ௪

ௗకమ
ቃ ൅ ܰ ௗమ௪

ௗకమ
ൌ 0         (4-8)  

where E(ξ) is the Young’s modulus pattern assumed with the exponential function in 

equation (4-7). For α≠0, the manipulation of the forth order differential equation in (4-8) 

by using a change of variable as ݑ ൌ ටସே

ఈమ
EXPሺെߦߙሻ results in the Bessel differential 

equation as [Abramowitz and Stegun, 1972, pp. 358], 

ଶݑ ௗ
మ௪

ௗ௨మ
൅ ݑ ௗ௪

ௗ௨
൅ ሺݑଶ െ ݓଶሻ݌ ൌ 0       (4-9)  

with parameter p = 0. Therefore, a closed form analytical solution for the differential 

equation in (4-8) is derived for α ≠ 0 as  

ሻߦሺݓ ൌ ݉ଵܬሺߦሻ ൅ ݉ଶܻሺߦሻ ൅ ݉ଷߦ ൅ ݉ସ       (4-10)  

where mi (i=1...4) are unknown constants and  

ሻߦሺܬ ൌ ଴ܬ ቆට
ସே

ఈమ
 EXPሺെߦߙሻቇ               (4-11-A)  

ܻሺߦሻ ൌ ଴ܻ ቆට
ସே

ఈమ
 EXPሺെߦߙሻቇ               (4-11-B)  

with J0(ξ) and Y0(ξ) being Bessel functions of the first and second type of order zero, 

respectively. For the case of a homogenous free standing film, the solution of the 

governing equation (4-8) is derived by replacing J(ξ) and Y(ξ) by sin ሺߦ√ܰሻ and 

cosሺߦ√ܰሻ in equation (4-10).  

In order to find the unknown constants mi (i=1...4) in equation (4-10), boundary 

conditions of the film are imposed. The clamped‒clamped boundary conditions at the 

edges ξ=0 and ξ=1 are given as  

ݓ ൌ 0 and  ௗ௪
ௗక
ൌ 0        (4-12)  

By imposing these boundary conditions into equation (4-10) and after some mathematical 

treatments, the characteristic equations and mode shapes of the buckling of the film are 

obtained respectively by the following equations, 

௃ሺଵሻି௃ሺ଴ሻି ௃ᇲሺ଴ሻ

 ௃ᇲሺଵሻି ௃ᇲሺ଴ሻ
ൌ ௒ሺଵሻି௒ሺ଴ሻି ௒ᇲሺ଴ሻ

௒ᇲሺଵሻି ௒ᇲሺ଴ሻ
                (4-13-A)  
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ݓ ൌ ௃ሺకሻି௃ሺ଴ሻିక ௃ᇲሺ଴ሻ

 ௃ᇲሺଵሻି ௃ᇲሺ଴ሻ
െ ௒ሺకሻି௒ሺ଴ሻିక ௒ᇲሺ଴ሻ

௒ᇲሺଵሻି ௒ᇲሺ଴ሻ
               (4-13-B)  

Alternatively, these equations can be written in terms of Bessel functions as  

௃బቆට
రಿ
ഀమ
 EXPሺିఈሻቇି௃బቆට

రಿ
ഀమ
 ቇ–ఈට ಿ

ഀమ
  ௃భቆට

రಿ
ഀమ
 ቇ

௃భቆට
రಿ
ഀమ
 EXPሺିఈሻ ቇ–௃భቆට

రಿ
ഀమ
 ቇ

ൌ
௒బቆට

రಿ
ഀమ
 EXPሺିఈሻቇି௒బቆට

రಿ
ഀమ
 ቇ–ఈට ಿ

ഀమ
  ௒భቆට

రಿ
ഀమ
 ቇ

௒భቆට
రಿ
ഀమ
 EXPሺିఈሻ ቇ–௒భቆට

రಿ
ഀమ
 ቇ

  

                   (4-14-A)  
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  ௒భቆට
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 ቇ
  

                   (4-14-B)  

By solving these equations, the corresponding buckling load N and mode shapes are 

obtained.  

Particularly, for the case of a homogenous free standing film (α = 0), the 

characteristic buckling equation for clamped‒clamped film is represented as,  

sin൫0.5√ܰ൯ ൣtan൫0.5√ܰ൯ െ 0.5√ܰ ൧ ൌ 0      (4-15)  

which leads to the symmetric and antisymmetric buckling modes with buckling loads and 

mode shapes presented in table 4-1. 

Table  4-1: The buckling parameters for homogenous film with clamped edges 

Buckling mode Characteristic equation Critical load Mode shape 

Symmetric sin൫0.5√ܰ൯ ൌ 0 N =4 π2 1 ൅ cos൫√ܰߦ൯ 

Anti-symmetric tan൫0.5√ܰ൯ ൌ 0.5√ܰ N =8.183 π2 sin൫√ܰߦ൯ െ ߦ2 sin൫0.5√ܰ൯
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4.4 Wrinkling 

The governing equation (4-5) of the system is a forth order linear ordinary differential 

equation with variable coefficients which has no closed form analytical solution even for 

simple functions of E(ξ). Hence, approximate analytical solutions as well as numerical 

methods are pursued to characterize the wrinkling problem of the FGM film.  

4.4.1 Series Solution 

In order to get the approximate analytical solution for the governing equation (4-5) of the 

FGM film‒substrate system, a series solution is constructed with power functions of ߟm 

and unknowns coefficients cm as,   

ሻߟሺݓ ൌ ∑ ܿ௠ ߟ௠௠՜ஶ
௠ୀ଴         (4-16)  

where η = ξ‒0.5 such that ‒0.5≤ η ≤0.5. The proposed power series is a convergent series 

because η does not exceed the radius of convergence which is unit (i.e. │η│< 1).  

On the other hand, a power series for the Young’s modulus E(η) based on Taylor 

expansion is introduced by  

ሻߟሺܧ ൌ ∑ ௠௠՜ஶߟ ௠ܧ
௠ୀ଴         (4-17)  

where  

௠ܧ ൌ ఈ೘

௠!
 EXPሺఈ

ଶ
ሻ         (4-18)  

By plugging w(η) and E(η) from equations (4-16) and (4-17) into differential equation (4-

5) and using the recurrence relations, the coefficients cm (m=4,5,…) can be determined in 

terms of c0, c1, c2 and c3. Hence, the wrinkling pattern is represented as  

ሻߟሺݓ  ൌ ߮଴ሺߙ, ,ܭ ܰ, ሻܿ଴ߟ ൅ ߮ଵሺߙ, ,ܭ ܰ, ሻܿଵߟ ൅ ߮ଶሺߙ, ,ܰ,ܭ ሻܿଶߟ ൅ ߮ଷሺߙ, ,ܭ ܰ,   ሻܿଷߟ

(4-19)  

In the current study, the clamped‒clamped boundary conditions are imposed at the 

edges of the film as, 

ߟሺݓ ൌ േ0.5ሻ ൌ ௗ௪

ௗఎ
ሺߟ ൌ േ0.5ሻ ൌ 0      (4-20)  

Using these boundary conditions, the eigenvalue problem of the system is derived and the 

characteristic wrinkling equation and wrinkling pattern of the system are determined in 

terms of the material parameters (i.e. K and α ) of the substrate and film.  
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4.4.2 Finite Difference Method (FDM) 

The finite difference method (FDM) discretizes the domain by introducing nodes as 

shown in figure 4-3. The derivatives of the field variable (here deflection w) are 

approximated by the finite differences of the variable using the difference quotient 

formula [Hildebrand, 1968]. Here the central difference approach with 6th order of 

accuracy is used to solve the problem. By using an N‒point stencil configuration (here 

N=9), one can obtain the finite difference formula for a 2M‒order central finite difference 

approximation (here M=3) [Zhao and Wei, 2009]. The approximated derivatives of any 

function are represented by the values of the function at the neighborhood nodes (the 

stencil points) with coefficients given in table 4-2. For example, the second derivative of 

function G(u) is represented by,  

ௗమ

ௗ௨మ
ሻݑሺܩ ൌ

భ
వబ
 ீ೔షయି

య
మబ
ீ೔షమା

య
మ
 ீ೔షభି

రవ
భఴ
 ீ೔ା

య
మ
ீ೔శభି

య
మబ
ீ೔శమା

భ
వబ
ீ೔శయ

௛మ
൅ ܱሺ݄଺ሻ  (4-21)  

where ݄ ൌ ௜ାଵݑ െ ௜ܩ ௜   is the grid spacing andݑ ൌ  ௜ሻ refers to the exact value of theݑሺܩ

function G(u) at node i. 

 

Figure  4-3: Discretized length span of the film by introducing nodes for finite difference 

analysis 

Table  4-2: Finite difference coefficients of the 6th order of accuracy 

Derivative i-4 i-3 i-2 i-1 i i+1 i+2 i+3 i+4 

1 0 ‒1/60 3/20 ‒3/4 0 3/4 ‒3/20 1/60 0 

2 0 1/90 ‒3/20 3/2 ‒49/18 3/2 ‒3/20 1/90 0 

3 ‒7/240 3/10 ‒169/120 61/30 0 ‒61/30 169/120 ‒3/10 7/240

4 7/240 ‒2/5 169/60 ‒122/15 91/8 ‒122/15 169/60 ‒2/5 7/240
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Applying the difference formulas into the governing equation of the system in 

equation (4-5) represents the equation of the node i as,  

ܴ௜ିସ
ሺ௜ሻ ௜ିସݓ  ൅ ܴ௜ିଷ

ሺ௜ሻ ௜ିଷݓ ൅ ܴ௜ିଶ
ሺ௜ሻ ௜ିଶݓ  ൅ ܴ௜ିଵ

ሺ௜ሻ ௜ିଵݓ ൅ ܴ௜
ሺ௜ሻݓ௜ ൅ ܴ௜ାଵ

ሺ௜ሻ ௜ାଵݓ ൅ ܴ௜ାଶ
ሺ௜ሻ ௜ାଶݓ ൅

ܴ௜ାଷ
ሺ௜ሻ ௜ାଷݓ ൅ ܴ௜ାସ

ሺ௜ሻ ௜ାସݓ ൌ 0        (4-22)  

while i covers all of the internal nodes of the system (i.e. i=2,3,…n‒1) and coefficients Rα 

are obtained from the finite difference formula and differential equation (4-5).  

On the other hand, applying the boundary conditions introduces the displacement 

value for the boundary nodes i=1 and i=n and also the virtual nodes i=0, ‒1, ‒2, … and 

n+1, n+2,… in figure 4-3. For the clamped edge, the symmetric extension assumption is 

applied on the boundaries [Zhao and Wei, 2009] which leads to w1= wn= 0, w0= w2 and 

wn+1= wn-1 and so on.  

Applying Equation (4-22) to all of the nodes and incorporating the boundary 

conditions, an algebraic system of equations for the governing equation of the system is 

derived as, 

ሾܣሿሼݓሽ ൅ ܰሾܤ ሿሼݓሽ ൌ 0          (4-23) 

in which ሼݓሽ ൌ ሼݓଵ,…  ௡ሽT is the vector of the nodal displacement, [A] and [B] areݓ,

square matrices. This is a general eigenvalue problem with the eigenvalues corresponding 

to the wrinkling loads of the system and the eigenvectors representing the pattern of the 

wrinkling. 

 

4.5 Results and Discussions 

In this section, the results obtained from the analytical and numerical methods presented 

in the previous chapters for the buckling of a free standing FGM film and the wrinkling 

of a FGM film deposited on the substrate are discussed. The effect of the gradient of the 

FGM film on the instability parameters (load, buckling mode shapes, wrinkling wave 

number …) is considered and compared with the instability of a homogenous film. 

4.5.1 Buckling of a Free Standing Film 

The buckling loads and mode shapes of the free standing FGM film are investigated to 

see the material gradient effect. Figure 4-4 plots the variation of the normalized buckling 
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load N/N0
B with the material gradient α, where N0

B =4π2 is the critical buckling load of a 

free standing homogenous film. Both the first and the second buckling loads increase 

with the material gradient α. When the material gradient α is approaching zero, the first 

and second buckling loads are obtained as the corresponding buckling loads of the 

homogenous film in table 4-1 as expected. Similar to the buckling of a homogeneous 

beam structure discussed by Timoshenko and Gere [1961], it is understood that the 

second buckling mode may be produced for a very slender FGM film by applying 

external constraints at the inflection points to prevent lateral deflection. Otherwise such a 

higher mode of buckling is unstable because the structure develops large deflection when 

the first (lower) buckling load is reached. For positive values of the material gradient α, 

the stiffness of the film increases, hence the buckling load of the FGM film is bigger than 

the buckling load of a homogenous film. On the other hand, for negative values of the 

parameter α, the compliance of the system increases which leads to decreasing of the 

buckling loads with respect to the buckling load of a homogenous film.  

 

Figure  4-4: Variation of the first and the second normalized buckling load N/ N0
B of 

the free standing film with the material gradient α 

In order to propose an explicit expression for the critical buckling load of the FGM 

film with exponential material distribution, a regression analysis [Kahane, 2008] is 

performed on the buckling load data obtained from buckling analysis. The critical 

buckling load Ncr. is shown to follow an exponential relation with the material gradient α 

as, 
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௖ܰ௥. ൌ Bܰ
଴ EXPሺ݉଴ߙሻ        (4-24)  

where m0 is a constant parameter to be determined by the regression analysis. The results 

of the regression analysis for 50 datapoints with R2 =0.995 and standard error less than 

0.5% are presented in table 4-3 which shows a high accuracy for the proposed relation in 

(4-24) for a range of ‒5< α <5. For α outside this range, the change in the material 

properties of the FGM film is too big (i.e. in the order of magnitude bigger than EXP (5) 

≈ 150) which is not physically meaningful, and therefore it is ignored in the analysis. 

Table  4-3: Regression analysis for the critical buckling load of the system  

in relation (4-24) 

Parameter Estimate Std. Error

95% Confidence Interval 

R2 

Lower Bound Upper Bound 

m0 .418 .002 .415 .422 0.995 

On the other hand, the first and the second buckling mode shapes are shown in figures 4-

5-A and B, respectively for different material gradient parameters α. For a homogenous 

film (α = 0) the mode shapes are symmetric or antisymmetric according to the results in 

table 4-1. However, for a FGM film (α≠0), the position of the maximum amplitude 

moves toward the softer end along the span with increasing of the material gradient α as 

shown in the figures for both mode shapes. Also, for the second buckling mode the peak 

near the softer region grows while the other one diminishes as figure 4-5-B shows. 

    

A) First mode shape   B) Second mode shape 

Figure  4-5: Buckling mode shapes of a free standing FGM film 
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4.5.2 Wrinkling of a Substrate‒bonded Film 

For a homogenous isotropic film in which the stiffness is uniformly distributed along the 

entire span (α=0), the governing equation of the film‒substrate system in (4-5) is 

simplified to a forth order differential equation with constant coefficients. For a clamped‒ 

clamped beam on a soft foundation [Ratzerdorfer, 1936; CRCJ, 1971, pp. A‒1‒27], the 

wavelength of the flexures is not tiny and the corresponding critical compressive load is 

represented as the combination of the Euler buckling load and the substrate effect, i.e.  

N= N0
B+2√ܭ where N0

B=4π2. Obviously, by increasing the substrate stiffness parameter 

K defined in (4-6-B) which is a function of the foundation stiffness ܭഥ and slender ratio of 

the film (i.e. L/t), especially for thin film structure with tiny thickness, the effect of the 

substrate is several orders of magnitude bigger than the Euler buckling load N0
B. 

Therefore, the critical compressive load N0
W and wave number β0

W of the wrinkling are 

represented in terms of the non‒dimensional substrate stiffness K as  

ܰW
଴ ൌ   (25-4)         ܭ√2

Wߚ
଴ ൌ రܭ√           (4-26)  

These relations are the well‒known relations of the wrinkling of a thin film deposited on 

a substrate in the literature [CRCJ, 1971, pp. A‒1‒27; Cerda and Mahadevan, 2003; 

Birman and Bert, 2004; Pocivavsek et al., 2008]. The finite difference analysis and series 

solution method lead to exactly the same results for wrinkling load and wave number. 

The critical load of the homogenous film on the substrate form the finite difference 

solution and the analytical formula of Ratzerdorfer [1936] are shown in figure 4-6. 

 

Figure  4-6: The critical load N of the homogenous film deposited on the substrate with 

stiffness K from Finite difference solution compared with analytical formula 

[Ratzerdorfer, 1936] 
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In contrast with the buckling of a free standing film which is influenced by the 

boundary conditions, the wrinkling load and wave number of the wrinkled homogenous 

film are influenced only by the substrate stiffness according to the equations (4-25) and 

(4-26). However, the boundary conditions of the film change the wrinkling pattern of the 

system. For a film‒substrate system with very long or infinite length, the wrinkles 

propagate uniformly all over the domain and the effects of the boundary conditions are 

completely vanished [Cerda and Mahadevan, 2003; Chen and Hutchinson, 2004; Niu and 

Talreja, 1999] as shown in figure 4-7-A. While for a film‒substrate system with finite 

length, the boundary conditions of the film affect the wrinkling pattern. For example, 

figure 4-7-B shows the wrinkling pattern of a homogenous film with clamped‒clamped 

edges, in which the wrinkling amplitude decreases with the approach of the edges. 

           

A) Infinite length   B) Finite length model with clamped edges  

Figure  4-7: Diagram of the wrinkling pattern of a homogenous film deposited on the 

substrate 

For a FGM film deposited on the substrate, the critical wrinkling load are calculated 

for various values of the substrate stiffness K and gradient modulus α and are compared 

with the results of the homogenous film. For different substrate stiffness Kn (Kn = 10‒9K), 

figure 4-8 plots the normalized wrinkling load ܨ௡ ൌ
ே

ேW
బ  of the FGM film‒substrate 

system versus material gradient α, where N0
W is the wrinkling load for a homogenous 

film‒substrate system in equation (4-25). It is observed in the figure that for a stiffening 

film (α>0), the normalized wrinkling load Fn (i.e. The wrinkling load of the FGM film 

relative to the wrinkling load of a homogenous film) is greater than one and decreases 

with the increasing of the substrate stiffness. However the wrinkling load itself increases 

for stiffer substrate, while with a lower rate than a homogeneous film bonded to the 

substrate. In addition, the dependence of the critical buckling load on the material 
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gradient α becomes less sensitive for a stiffer substrate as indicated by the flatter curves 

in figure 4-8 when Kn is getting bigger. Increasing the material gradient α stiffens the 

system and hence the normalized wrinkling load increases with an ascending function. In 

addition, for softer substrate with lower Kn, the wrinkling load of the FGM film decreases 

similar to the case of the homogenous film in equation (4-25) but with a faster rate, 

consequently the normalized critical wrinkling load increases in figure 4-8. On the other 

hand, for a softening film (α<0) the substrate stiffness has negligible effect on the 

wrinkling load  of the FGM film‒substrate, which is less than the wrinkling load of the 

homogenous film‒substrate system (as expected). 

These observations help to propose an appropriate relation between the normalized 

wrinkling load and the material gradient α for stiffening and softening films respectively 

by,  

௡ܨ
ሺఈவ଴ሻ ൌ 1 ൅݉ଵܭ௡

ି௠మ ߙ௠య                (4-27-A)  

௡ܨ
ሺఈழ଴ሻ ൌ EXPሺ݉ସߙሻ                 (4-27-B)  

where the constant parameters m1, m2, m3 and m4 could be obtained from a regression 

analysis [Kahane, 2008]. The results of the regression analysis with 60 and 75 datapoints 

of the FDM solution for 0< α <5 and ‒5< α <0, respectively, within the range of 

0.01<Kn<10 are shown in table 4-4. The constant parameters in equations (4-27-A,B) are 

determined with a high accuracy as R2= 0.99 and a standard error less than ± 1% for the 

estimated parameters. Obviously, imposing α = 0 in relations (4-27-A,B) leads to Fn =1 

corresponding with the wrinkling load of a homogenous film. For values of K and α 

outside the above range, the stiffness of the substrate and film are too large or too small, 

which are not considered in this work. The series solution method leads to almost similar 

results obtained from finite difference analysis. 
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Table  4-4: The parameters of the relations (4-27-A, B) for wrinkling load obtained from 

regression analysis 

Model Summary R2= 0.99 

Parameter Estimate Std. Error

95% Confidence Interval 

Lower Bound Upper Bound 

m1 .059 .000 .058 .059 

m2 .174 .001 .172 .176 

m3 .692 .004 .684 .699 

m4 .450 .004 .442 .458 

 

 

Figure  4-8: Normalized wrinkling load Fn versus gradient modulus α for different 

substrate stiffness Kn 
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Similarly, the wrinkling pattern of the FGM film bonded to the substrate is found to 

be affected by the material gradient of the FGM film as shown in figures 4-9-A-E from 

the FDM solution. For a homogenous film with uniform stiffness, the wrinkles propagate 

all over the length span; while for the case of a FGM film where the stiffness is variable 

along the span, the wrinkles accumulate around the weakest location of the system. In 

order to characterize the wrinkling pattern two parameters are introduced: the footprint of 

the wrinkling that shows the size of the region on the film influenced by the wrinkles and 

the wave number of the wrinkles which shows the number of the wrinkles in the affected 

area. More wave number on shorter footprint indicates a denser wrinkling pattern. The 

variation of the stiffness of the film accumulates wrinkles around the location with 

minimum stiffness, and by increasing the material gradient α as figures 4-9-B-E show, 

the footprint of the wrinkles decreases and the number of wrinkles decreases as well. 

 
A) Homogenous film α =0 

         
B) Softening FGM film α = ‒0.1  C) Stiffening FGM film α = 0.1 

        
D) Softening FGM film α = ‒1  E) Stiffening FGM film α = 1 

Figure  4-9: Wrinkling pattern of the FGM film with variable stiffness on the same 

substrate 
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The normalized wave number ߚ௡ ൌ
ఉ

ఉW
బ  of the wrinkling for the FGM film‒substrate 

system versus the material gradient α for different substrate stiffness K is plotted in figure 

4-10 from the finite difference solution, where β0
W is the wrinkling wave number for a 

homogenous film‒substrate system in equation (4-26). Obviously, all the curves approach 

to βn =1 for a homogenous film corresponding with α =0. For positive and negative 

values of the material gradient α, the curves of the normalized wave number in this figure 

are almost symmetric. With the increasing of the material gradient α, the normalized 

wave number decreases, which indicates the accumulative effect of the wrinkling with 

less wave number. For stiffer substrates, the wave number of the wrinkling of the FGM 

film increases with slower rate compared to that of the homogenous film in Equation (4-

26), therefore, the normalized wave number decreases as shown in figure 4-10. 

 

Figure  4-10: Normalized wave number βn versus material gradient α for different 

substrate stiffness Kn 

From the numerical simulation results of the finite difference method, the normalized 

wave number of the wrinkling for the FGM film‒substrate system is proposed as a 

function of the substrate stiffness K and material gradient α in the following format,  

௡ߚ ൌ EXPሺെ݉ଵ|α|௠మሻ ܭ௡
ି ௠యሾଵିEXPሺ ௠ర|α| ೘ఱሻሿ      (4-28)  

where mi (i=1...5) are constant parameters and “│α│” is the absolute value of the 

material gradient α. The best approximation of the normalized wave number in (4-28) is 
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obtained numerically by using m4= ‒8 and m5= 0.5. Hence, the equation (4-28) is 

rewritten as  

௡ߚ ൌ EXPሺെ݉ଵ|α|௠మሻ ܭ௡
ି ௠యቂଵିEXPቀି଼ඥ|α|ቁቃ

     (4-29)  

Clearly, equation (4-29) reduces to the result for a homogenous film with β0
W = β0 in (4-

26) by substituting α = 0. With the increase of the material gradient α, the normalized 

wave number of the wrinkling decreases exponentially as represented by equation (4-29) 

and figure 4-10. Applying a regression analysis with 65 datapoints for ‒1.5< α <3 and 

0.01< Kn <10, the constant parameters m1, m2 and m3 in (4-29) are determined, which are 

given in table 4-5. These results show a high accuracy for the proposed relation of the 

wave number in equation (4-29) with R2=0.975 and a standard error about ± 4% for 

estimated parameters. 

Table  4-5: The parameters of the equation (4-29) for normalized wave number βn 

obtained from a regression analysis 

Model Summary R2 = 0.975 

Parameter Estimate Std. Error

95% Confidence Interval 

Lower Bound Upper Bound 

m1 1.262 .027 1.207 1.317 

m2 .423 .014 .395 .450 

m3 .154 .007 .140 .168 

The plot of the equation (4-29) in figure 4-11 shows that the variation of the material 

properties along the length span has a significant effect on the wave number of the 

wrinkling, which is more effective than the substrate stiffness on the wrinkling pattern 

due to accumulative effect imposed on the system. In other words, the effect of the first 

exponential term corresponding with the FGM gradient α in the equation (4-29) is more 

important than the second power term of substrate stiffness K. 
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Figure  4-11: The normalized wave number βn of the wrinkling versus material gradient α 

and the substrate stiffness K 

Figure 4-12 shows the observed values of the wave number obtained from the finite 

difference solution of the eigenvalue problem versus the predicted values from (4-29), 

and histogram of the residual errors is plotted in figure 4-13. From these figures, it is 

concluded that the presented relation in (4-29) predicts the wrinkling wave number very 

well.  

The normalized wave number predicted by finite difference method is compared with 

that from the series solution in figure 4-14 for a sample substrate stiffness K. It is 

observed that the finite difference method proposes a stiffer film with less wave number. 

The difference between the results increases especially with the increasing of the material 

gradient α for stiffer substrate with higher values of K. This may caused by the truncation 

error due to the discretization of the domain by finite difference formulation, which is 

intensified by growing α and K. Using the finite difference formulation with higher 

accuracy will decrease the truncation error. 
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Figure  4-12: Normalized wave number compared with the predicted values from the 

proposed relation in (4-29) 

 

Figure  4-13: Histogram of the residual errors of the relation (4-29) for predicting the 

wave number 
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Figure  4-14: Comparison of the finite difference and series solution for the normalized 

wave number βn of the wrinkling versus material gradient α 

The change of the substrate stiffness K and material gradient α not only affects on the 

wave number of the wrinkling of the film, but also changes the effective length along the 

span which undergoes wrinkling. As discussed in figures 4-9-A-E, wrinkles accumulate 

at the location with minimum stiffness (the softer edge of the film). In order to consider 

the localization of the wrinkles along the length span, a non‒dimensional parameter is 

introduced as the footprint of the wrinkles on the film which represents the effective 

length of the film influenced by the wrinkles. The footprint of the wrinkling is defined as 

the ratio of the length of the film subjected by the wrinkles to the entire length of the 

film, which varies from zero to one.  When the footprint equals to one, the entire length 

span of the film is affected by the wrinkles corresponding to the case of the wrinkling of 

a homogenous film (α = 0).  

A regression analysis for the relation between the footprint and the wave number of 

the wrinkles shows that these parameters are proportional to each other by a linear 

function as  

Footprint= m0 βn         (4-30)  

The regression analysis between the footprint and the normalized wave number proposes 

estimation for the coefficient m0 as presented in table 4-6, which is very close to unity. 

The footprint parameter versus the corresponding normalized wave number for 75 

datapoints from FDM solution is plotted in figure 4-15, in which datapoints are located 
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around the reference line in (4-30). This result indicates that the relation between the 

footprint and the wave number agrees well with the proposed relation. 

Table  4-6: The regression analysis results for linear relation of the footprint with 

normalized wave number 

Model summary R2 = 0.974 

Parameter Estimate Std. Error

95% Confidence Interval 

Lower Bound Upper Bound 

m0 .979 .009 .961 .998 

 

Figure  4-15: The linear relation between footprint and normalized wave number βn of the 

wrinkling 

The high sensitivity of the footprint parameter (as well as wrinkling wave number) 

with respect to the variation of the stiffness (i.e. material gradient α) indicates that even 

with small disturbances of the uniformity of the film stiffness, wrinkles accumulate 

densely at the weakest location along the length span (Figure 4-16). On the other hand, 

the importance of the microstructure of thin film systems besides the limitations of the 
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manufacturing process increases the effects of the mechanical properties variation which 

intensifies the abovementioned accumulative effect. Therefore, the wrinkles behave 

completely different in comparison with the uniform wrinkling of the system with 

homogenous material properties. Hence, this study is expected to be helpful for 

understanding the wrinkling phenomenon of a non‒homogeneous film‒substrate system. 

 

Figure  4-16: Footprint of the wrinkling versus material gradient α 

4.6 Summary 

The buckling of a free standing FGM film and the uniaxial wrinkling of a deposited FGM 

film on the Winkler substrate with finite length are investigated. Critical load and pattern 

at the onset of instability are derived according to the characteristic parameters of the 

system (i.e. substrate stiffness and variation of the film stiffness). The eigenvalue 

problem of the differential equation of the film‒substrate system is solved by using finite 

difference method and series solution. It is observed that for a homogenous film the 

wrinkles propagate the entire length span, while for the FGM film the wrinkles 

accumulate around the weakest location of the film with the lowest stiffness. In 

comparison with a homogenous film, for stiffer substrate and higher material gradient of 

the FGM film, the rate of the increasing of the wave number and wrinkling load 

decreases and the wrinkles shrink more around the weakest location of the FGM film. 

The results of this analysis are expected to help in predicting and controlling the wrinkle 

pattern in experimental works, MEMS/NEMS applications and sensor/actuator systems. 
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Chapter 5  

5 Buckling and Wrinkling of a Thin Solid Film with 
Quadratic Thickness Pattern 

The instability of a beam/strip with variable thickness as a free standing film or a 

deposited film on the substrate is investigated. The thickness pattern is assumed with a 

quadratic profile with its minimum at the middle of the length span. For the free standing 

film, the buckling loads and mode shapes are derived analytically by using a closed form 

solution. For the substrate‒bonded film, the substrate is modeled by using Winkler 

foundation and the effect of the non‒uniform thickness of the film on the wrinkling 

parameters is considered. Unlike the film with uniform thickness, the wrinkles 

accumulate around the location with the minimum thickness along the span of the film 

with non‒uniform thickness. 

5.1 Introduction 

Buckling and wrinkling of thin solid film structures under compressive loading are 

categorized as mechanical instability of the system first introduced by Leonard Euler for 

buckling of columns. The instability of the system is considered by using the bifurcation 

theory, such that the branch points (or equivalently bifurcation points) at the instability 

onset are corresponding with the eigenvalues and eigenfunctions of the eigenvalue 

problem for the differential equation of the system [Bloom and Coffin, 2001]. Different 

patterns have been introduced to study the wrinkling of thin films [Huang and Im, 2006; 

Wang et al. 2008], among which uniaxial wrinkling pattern attracts great attention from 

many researchers [Chen and Hutchinson, 2004]. 

In literature, the uniform thickness assumption of the film is mostly used for the 

wrinkling problem of films. Among others, Cerda and Mahadevan (2003), Chen and 

Hutchinson (2004) and Niu and Talreja (1999) calculated the wavelength and amplitude 

of the sinusoidal wrinkling by assuming the uniform amplitude for the wrinkles all over 

the span, but several questions remained unanswered. In thin film structures that the 

thickness of the film is tiny, even small variations of the thickness attract a lot of 

concerns about the effect of the thickness variation on the system. In contrast with the 
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uniform thickness film, during deposition of the film on the substrate, the thickness 

cannot be attributed uniformly all over the span, hence it is necessary to consider the 

effect of the film thickness variations on the critical load and pattern (i.e. amplitude and 

wave number) of the wrinkling.  

In this chapter, the buckling and uniaxial wrinkling problem of a film with variable 

thickness deposited on a Winkler substrate is considered. By modeling the profile of the 

film thickness with a quadratic profile, the eigenvalue problem for the differential 

equation of the system is solved and the corresponding parameters of the wrinkling (i.e. 

load and pattern) are determined. The effect of the substrate stiffness and variation of the 

film thickness on the instability parameters are considered. In contrast with other works 

of the instability of the thin films which usually assume a uniform thickness for the film 

and neglect the effect of the thickness variation, the current work shows that this effect is 

very important in wrinkling localization. The tiny thickness of the film increases the 

importance of the problem in which the uniformity of the thickness of the film is 

uncontrollable. 

5.2 Modeling 

The buckling of a free standing film and the uniaxial wrinkling of a thin film deposited 

on the substrate are investigated with the classical beam/strip theory with small 

deformation. The non‒uniform film deposited on a Winkler substrate with modulus ܭഥ 

under an in‒plane loading ഥܰ௫ is shown in figure 5-1 with thickness t(x), width b and 

length L. The substrate should be thick enough and also compliant in order to apply 

Winkler model [Birman and Bert, 2004; Cerda and Mahadevan, 2003; Niu and Talreja, 

1999]. The governing equation for a film under a uniaxial deformation like a strip is 

given as [Ugural, 1999, pp. 298]  

ௗమ

ௗ௫మ
 ቂܦ ௗమ௪ഥ

ௗ௫మ
ቃ ൅ ഥܰ௫

ௗమ௪ഥ

ௗ௫మ
൅ ഥݓഥܭܾ ൌ 0      (5-1)  

in which ݓഥ  is the deflection and D is the bending stiffness of the film as  

ܦ ൌ ଵ

ଵଶ
  ଷ           (5-2)ݐതܾܧ
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where ܧത is the elastic modulus E for a plane stress beam or E/(1‒v2) for a plane strain 

strip with v being the Poisson’s ratio. In the current work, the thickness is considered as a 

variable parameter along the length span of the strip/beam and is defined by   

ݐ ൌ ଴൫1ݐ ൅ є ݂ሺݔሻ൯        (5-3)  

where t0 is the minimum thickness of the film, є is the amplitude of the variation of the 

thickness introduced as the amplitude parameter and f(x) is the shape function of the 

variation of the thickness along the length span x such that Max [f(x)] = 1. 

Correspondingly, the bending stiffness is rewritten as 

ܦ ൌ ሻݔሺܦ଴ܦ ൌ ଴൫1ܦ ൅ є ݂ሺݔሻ൯
ଷ
       (5-4)  

where ܦ଴ ൌ
ଵ

ଵଶ
 ଴ଷ. Imposing (5-4) into (5-1) and introducing the non‒dimensionalݐതܾܧ

variable ξ defined as ξ = x/L and the normalized deflection ݓ ൌ ௪ഥ

ெ௔௫ ሺ௪ഥሻ
 leads to the 

dimensionless equation of (5-1) as   

ሾܦሺߦሻ ሿ ௗ
ర௪

ௗకర
൅ ቂ2  ௗ

ௗక
ሻ ቃߦሺܦ ௗ

య௪

ௗకయ
൅ ቂ  ௗ

మ

ௗకమ
ሻߦሺܦ ൅ ܰቃ ௗ

మ௪

ௗకమ
൅ ݓܭ ൌ 0   (5-5)  

in which ܦሺߦሻ ൌ ൫1 ൅ є ݂ሺߦሻ൯
ଷ
 is the bending stiffness modulus profile and   

ܰ ൌ ேഥೣ
஽బ
  ଶ                    (5-6-A)ܮ

and  

ܭ ൌ ௄ഥ

஽బ
  ସ         (5-6-B)ܮܾ

For simulation purpose, a quadratic function is assumed as the profile of the 

thickness pattern with its minimum located at the middle of the span as shown in figure 

5-2. In the following, the effect of the thickness variation of the film is considered on the 

buckling and wrinkling parameters (load and pattern) and the results are compared with 

the results of a classical film with uniform thickness. 
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Figure  5-1: Deposited film with variable thickness on the substrate 

 

Figure  5-2: The profile of the thickness of the film along the length span 

 

5.3 Buckling Analysis 

For a free standing film with variable thickness, the governing equation of the system at 

the onset of buckling is represented by  

ௗమ

ௗకమ
ቂܦሺߦሻ ௗ

మ௪

ௗకమ
ቃ ൅ ܰ ௗమ௪

ௗకమ
ൌ 0         (5-7)  

while D(ξ) is the bending stiffness modulus profile. For the non‒uniform thickness film 

(є ≠ 0), the manipulation of the forth order differential equation (5-7) by using a change 

of variable ݑ ൌ ଵ

ඥଵା є కమ
 results in the algebraic form of the Mathieu differential equation 

as [Abramowitz and Stegun, 1972]  

ሺ1 െ ଶሻݑ ௗ
మ௪

ௗ௨మ
െ ݑ ୢ௪

ୢ௨
൅ ሾܽ ൅ ሺ1ݍ 2 െ ݓ ଶሻሿݑ2 ൌ 0             (5-8-A)  

which can be converted to the canonical form of Mathieu differential equation by 

substituting u=cos(η) as 
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ௗమ௪

ௗఎమ
൅ ሾܽ െ ݍ 2 cosሺ2ߟሻሿ ݓ ൌ 0                (5-8-B)  

where ܽ ൌ 1 ൅ ே

ଶ є
 and ݍ ൌ െ ே

ସ є
. It should be noted that MathieuC (a, q, η) and MathieuS 

(a, q, η), the even and odd Mathieu functions of parameter η, are solutions of the Mathieu 

differential equation in (5-8-A,B). Furthermore, MathieuC and MathieuS are normalized 

such that MathieuC (a, q, 0) = 1 and 
ௗ

ௗఎ
MathieuS (a, q, η=0) = 1 [Abramowitz and 

Stegun, 1972]. Therefore, the governing equation (5-7) has a general solution as  

ሻߦሺݓ ൌ ݉ଵCሺߦሻ ൅ ݉ଶSሺߦሻ ൅ ݉ଷߦ ൅ ݉ସ       (5-9)  

in which Cሺߦሻ and Sሺߦሻ are even and odd functions as 

Cሺߦሻ ൌ ඥ1 ൅ є ߦଶ MathieuC  ቂ1 ൅ ே

ଶ є
  , െ  ே

ସ є
, arctan൫ߦ√є൯ቃ            (5-10-A)  

Sሺߦሻ ൌ ඥ1 ൅ є ߦଶ MathieuS  ቂ1 ൅ ே

ଶ є
, െ  ே

ସ є
, arctan൫ߦ√є൯ቃ            (5-10-B)  

and mi (i=1...4) are unknown constants to be determined from the boundary conditions. 

For the case of a free standing film with uniform thickness (є=0), the solution of the 

governing equation of the buckling problem is represented by substituting sin ሺߦ√ܰሻ and 

cosሺߦ√ܰሻ to replace functions Sሺߦሻ and Cሺߦሻ in (5-9), respectively.  

The boundary conditions of the film are applied for clamped‒clamped edges at ξ= 

±½ to determine the unknown constants mi (i=1...4) in equation (5-9) as 

ݓ ൌ 0 and  ௗ௪
ௗక
ൌ 0        (5-11)  

Therefore, the characteristic equations and mode shapes of the buckling of the film are 

obtained for symmetric and antisymmetric modes, respectively as  

Cᇱ ቀଵ
ଶ
ቁ ቂSᇱ ቀଵ

ଶ
ቁ െ  S ቀଵ

ଶ
ቁቃ ൌ 0                (5-12-A)  
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                (5-12-B)  

Alternatively, these equations are rewritten in terms of Mathieu functions as 

ቂ√єMC ቀߦ ൌ
ଵ

ଶ
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86 

 

where MCሺ. ሻ and MSሺ. ሻ are used for MathieuC ቂ1 ൅ ே

ଶ є
  , െ  ே

ସ є
, arctan൫ߦ√є൯ቃ and 

MathieuS ቂ1 ൅ ே

ଶ є
  , െ  ே

ସ є
, arctan൫ߦ√є൯ቃ in (5-13-A,B) respectively and ( )' stands for the 

derivative of MathieuC(a, q, η) and MathieuS(a, q, η)  with respect to η. Therefore, the 

corresponding buckling load N and mode shapes are obtained in terms of the parameter є 

numerically.  

Particularly, for the film with uniform thickness (є = 0), the characteristic buckling 

equation for the boundary conditions of both clamped edges is represented as  

sin൫0.5√ܰ൯ ൣtan൫0.5√ܰ൯ െ 0.5√ܰ ൧ ൌ 0      (5-14)  

which leads to the symmetric and antisymmetric buckling modes with buckling loads and 

mode shapes being presented in table 5-1. 

Table  5-1: The buckling parameters for homogenous film with clamped edges 

Buckling mode Characteristic equation Critical load Mode shape 

Symmetric sin൫0.5√ܰ൯ ൌ 0 N =4 π2 1 ൅ cos൫√ܰߦ൯ 

Anti-symmetric tan൫0.5√ܰ൯ ൌ 0.5√ܰ N =8.183 π2 sin൫√ܰߦ൯ െ ߦ2 sin൫0.5√ܰ൯

 

5.4 Wrinkling Analysis 

The governing equation of the film‒substrate system in equation (5-5) is a forth order 

linear ordinary differential equation with variable coefficients which has no analytical 

closed form solution even for simple functions of f(ξ); hence semi‒analytical or 

numerical methods are used to solve the equation.  

5.4.1 Series Solution Method 

In order to solve the forth order differential equation (5-5), a series solution is constructed 

with power functions of ξi and unknowns coefficients ci as   

ሻߦሺݓ ൌ ෌ ܿ௜ ߦ௜
௜՜∞

௜ୀ଴
        (5-15)  
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Plugging w(ξ) from (5-15) into differential equation (5-5), making shift on the power and 

index of the terms and rearranging them with the same power leads to the recurrence 

relations of the differential equation as  

ܿସ ൌ ଴ܿܭ଴ሺ4ሻሾ݌ ൅ ሺ12є൅ 2ܰሻܿଶሿ              (5-16-A)  

ܿହ ൌ ଵܿܭ଴ሺ5ሻሾ݌ ൅ ሺ108є൅ 6ܰሻܿଷሿ              (5-16-B)  

ܿ௜ ൌ ଵሺ݅݌଴ሺ݅ሻሾ݌ െ 2ሻܿ௜ିଶ ൅ ଶሺ݅݌ െ 4ሻܿ௜ିସ ൅ ଷሺ݅݌ െ 6ሻܿ௜ି଺ሿ           (5-16-C)  

where parameters p0(i), p1(i), p2(i) and p3(i) are introduced by  

଴ሺ݅ሻ݌ ൌ
ିଵ

௜రି଺௜యାଵଵ௜మି଺௜
                (5-17-A)  

ଵሺ݅ሻ݌ ൌ 3ሺ݅ଶ െ ݅ሻଶ є൅ ሺ݅ଶ െ ݅ሻܰ              (5-17-B)  

ଶሺ݅ሻ݌ ൌ ܭ ൅ 3݅ሺ݅ ൅ 2ሻሺ݅ଶ െ 1ሻ єଶ              (5-17-C)  

ଷሺ݅ሻ݌ ൌ ሺ݅ସ ൅ 6݅ଷ ൅ 5݅ଶ െ 12݅ሻ єଷ              (5-17-D)  

For a symmetric solution of the wrinkling pattern, it is concluded that all the 

coefficients ci with the odd index vanish and only the even index coefficients 

corresponding with the terms with even power remain. Thus, by using the recurrence 

relations (5-16-A, B and C), all of the coefficients can be determined versus c0 and c2 and 

the symmetric wrinkling pattern is represented as  

ሻߦሺݓ ൌ ߮଴ሺє, ,ܭ ܰ, ሻܿ଴ߦ ൅ ߮ଶሺє, ,ܭ ܰ,   ሻܿଶ     (5-18)ߦ

Also, the boundary conditions of the system for clamped edges are represented as  

ߦሺݓ ൌ േ0.5ሻ ൌ ௗ௪

ௗక
ሺߦ ൌ േ0.5ሻ ൌ 0      (5-19)  

where the conditions ݓሺߦ ൌ െ0.5ሻ ൌ 0 and 
ௗ௪

ௗక
ሺߦ ൌ െ0.5ሻ ൌ 0 are already satisfied for 

the symmetric pattern by ignoring odd index coefficients in (5-15). By substituting w(ξ) 

from (5-18) into the boundary conditions (5-19), the characteristic wrinkling equation of 

the system and wrinkling pattern are derived versus the critical wrinkling load N and 

structural parameters (i.e. K and є). 

5.4.2 Finite Difference Method 

The finite difference method is used to solve the differential equation (5-5) numerically. 

The domain is discretized by introducing some nodes (Figure 5-3). By using the central 

difference method with 2nd order of accuracy, the approximated derivatives of a function 

G(u) are defined as [Hildebrand, 1968; Timoshenko, 1940] 
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ௗ

ௗ௨
ሻݑሺܩ ൌ ீ೔శభିீ೔షభ

ଶ௛
൅ ܱሺ݄ଶሻ               (5-20-A)  

ௗమ

ௗ௨మ
ሻݑሺܩ ൌ ீ೔శభିଶீ೔ାீ೔షభ

௛మ
൅ ܱሺ݄ଶሻ              (5-20-B)  

ௗయ

ௗ௨య
ሻݑሺܩ ൌ ீ೔శమିଶீ೔శభାଶீ೔షభିீ೔షమ

ଶ௛య
൅ ܱሺ݄ଶሻ              (5-20-C)  

ௗర

ௗ௨ర
ሻݑሺܩ ൌ ீ೔శమିସீ೔శభା଺ீ೔ିସீ೔షభାீ೔షమ

௛ర
൅ ܱሺ݄ଶሻ              (5-20-D)  

where ݄ ൌ ௜ାଵݑ െ ௜ܩ ௜   is the length step between two neighbourhood nodes andݑ ൌ

 ௜ሻ refers to the exact value of function G(u) at node i while i=1,2,…n is the numberݑሺܩ

of the nodes of the system. 

 

Figure  5-3: Discretized length span of the film in finite difference method 

Imposing the difference formulas from (5-20) into the differential equation (5-5) 

represents the governing equation of the node i (i=2,3,…n‒1) as  

ܴ௜ିଶ
ሺ௜ሻ ௜ିଶݓ  ൅ ܴ௜ିଵ

ሺ௜ሻ ௜ିଵݓ ൅ ܴ௜
ሺ௜ሻݓ௜ ൅ ܴ௜ାଵ

ሺ௜ሻ ௜ାଵݓ ൅ ܴ௜ାଶ
ሺ௜ሻ ௜ାଶݓ ൌ 0   (5-21)  

where coefficients Rα are obtained from the governing equation and finite difference 

formula. 

On the other hand, the boundary conditions of the system provide the information of 

the deflection of the boundary nodes (i=1,n) and virtual nodes (i=0,n+1). For the 

clamped‒clamped film, according to the symmetrical extension of the domain it is 

inferred that w1= wn= 0, w0= w2 and wn+1= wn-1. 

     In this way, a set of algebraic equations is replaced for the governing equation of 

the system as  

ሾܣሿሼݓሽ ൅ ܰሾܤ ሿሼݓሽ ൌ 0          (5-22)  

in which ሼݓሽ ൌ ሼݓ଴, ,ଵݓ … , ,௡ݓ  ௡ାଵሽT is the vector of the nodal displacement of nodesݓ

i=0,1,…n+1 and [A] and [B] are square matrices. This general eigenvalue problem with 

eigenvector {w} and eigenvalue parameter N has a straight forward solution. The 

eigenvalues of the problem correspond to the wrinkling loads, while the eigenvectors 

represent the wrinkling pattern of the system. 
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5.5 Results and Discussions 

In this section, for the free standing film, the buckling loads and mode shapes are 

determined analytically and for the deposited film on the substrate the wrinkling load of 

the system is determined from finite difference and series solution methods. The 

parameters (i.e. load and wrinkle pattern) corresponding with the first eigenvalue and 

eigenfunction of the eigenvalue problem of the differential equation are considered as the 

critical parameters of the instability. The effects of the change in the thickness of the film 

and stiffness of the substrate on the wrinkling are also investigated. 

5.5.1 Buckling of a Free Standing Film 

The buckling loads of the free standing film with variable thickness for symmetric and 

antisymmetric buckling modes numerically calculated are shown in figure 5-4 for various 

amplitude parameters є. The critical buckling mode corresponding with the symmetric 

mode has smaller buckling loads than the antisymmetric mode. Both of the symmetric 

and antisymmetric buckling loads are ascending versus the amplitude parameter є. When 

the amplitude parameter є approaches zero, the symmetric and antisymmetric buckling 

loads approach to the corresponding buckling load of the uniform thickness film in table 

5-1 as expected (i.e. N=4π2 and N=8.18π2 for the symmetric and antisymmetric modes, 

respectively). 

 

Figure  5-4: Symmetric and antisymmetric buckling load of the clamped‒clamped free 

standing film from analytical and finite difference (F.D.) solution 



90 

 

The critical buckling load of the free standing film with variable thickness in figure 

5-4 follows a linear relation with the amplitude parameter є as 

ܰ ൌ ஻ܰ
଴ሺ1 ൅݉଴єሻ        (5-23)  

where N0
B=4π2 is the critical buckling load of the clamped‒clamped film with uniform 

thickness (є=0) and m0 = 1.273 ± 0.008 is a constant parameter determined by a 

regression analysis [Kahane, 2008]. The results of the regression analysis for 50 

datapoints with R2 =0.999 and standard error less than 1% show a high accuracy for the 

proposed linear relation in equation (5-23) for 0< є <1.  

On the other hand, the symmetric buckling mode shapes are shown in figure 5-5 for 

different amplitude parameters є. For the film with uniform thickness (є = 0), the results 

in the figure 5-5 correspond with the symmetric buckling mode in table 5-1. By 

increasing the amplitude parameter є, the film thickness at the edges increases which 

leads to increasing the stiffness of the system, so that the mode shapes are compressed 

with less deflection at the edges. 

 

Figure  5-5: Symmetric buckling mode shapes of the free standing film 
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5.5.2 Wrinkling of a Substrate‒bonded Film 

For a film with uniform thickness (є= 0) on a substrate, the governing equation of the 

film‒substrate system is simplified to a forth order differential equation with constant 

coefficients. For a clamped‒clamped beam on a soft foundation [Ratzerdorfer, 1936; 

CRCJ, 1971, pp. A‒1‒27], the wavelength of the flexures is not tiny and the 

corresponding critical compressive load is represented as the combination of the Euler 

buckling load N0
B and the substrate effect, i.e. N= N0

B+2√ܭ where N0
B=4π2. Obviously, 

for a stiff substrate with larger foundation stiffness ܭഥ and thin film structure with tiny 

thickness and big slender ratio (i.e. L/t), the stiffness parameter K defined in (5-6-B) 

increases so that the effect of the substrate is several orders of magnitude bigger than the 

Euler buckling load N0
B. Therefore, the critical compressive load N0

W and wave number 

β0
W of the wrinkling are independent of the boundary conditions of the film, which can be 

expressed in terms of the non‒dimensional substrate stiffness K as  

ܰௐ
଴ ൌ   (24-5)         ܭ√2

ௐߚ
଴ ൌ రܭ√           (5-25)  

Similar results are obtained in the work of Cerda and Mahadevan [2003], Birman and 

Bert [2004] and Pocivavsek [2008]. For this special case, our finite difference analysis 

and series solution method lead to the same results for the load and the wave number of 

the wrinkling. However, the effect of the boundary conditions of the film influences the 

wrinkling pattern in a different manner. 

For a film‒substrate system with infinite length, the wrinkles propagate uniformly all 

over the domain and the effects of the boundary conditions completely vanish [Chen and 

Hutchinson, 2004; Niu and Talreja, 1999] as shown in figure 5-6-A. While for a 

film‒substrate system with finite length, the boundary conditions of the edges of the film 

affect the wrinkling amplitude. Figure 5-6-B shows the wrinkling pattern on the film with 

uniform thickness for clamped‒clamped boundary conditions, in which the effect of the 

clamped boundary conditions on the edges of the film is obvious.  
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A) Infinite length model  B) Finite length model with clamped edges 

Figure  5-6: The wrinkling pattern of a film with uniform thickness (є = 0) deposited on 

the substrate 

For the film with variable thickness, the critical load of the wrinkling is calculated for 

various values of the substrate stiffness K and amplitude parameter є and compared with 

the wrinkling load of the film with uniform thickness. For different substrate stiffness Kn 

(Kn=10‒9K), the wrinkling load N is normalized with the wrinkling load of a uniform film 

N0
W in equation (5-24) as ܨ௡ ൌ

ே

ேೈ
బ  and shown in figure 5-7. According to this figure, the 

variation of the wrinkling load N is negligible for most values of parameters Kn and є, 

while some deviations from Fn =1 occur for very soft substrates. For films with uniform 

thickness, the critical load of the system decreases with the decreasing of the substrate 

stiffness K, while the corresponding deviation is slightly intensified for non‒uniform 

film. By considering these small deviations, a relation for the normalized wrinkling load 

is proposed as  

௡ܨ ൌ 1 ൅݉ଵܭ௡
ି௠మ є௠య         (5-26)  

where the constant parameters m1, m2 and m3 are obtained from a regression analysis 

[Kahane, 2008]. The results of the regression analysis with 85 datapoints for 0< є <1 and 

0.001<Kn<100 are shown in table 5-2 and the constant parameters in (5-26) are 

determined with a high accuracy as R2=0.99 and a standard error less than ± 4% for the 

estimated parameters. Clearly, imposing є=0 in equation (5-26) leads to Fn =1 

corresponding with the wrinkling load of a film with uniform thickness. For values of K 

outside the above range, the substrate stiffness is too large or too small corresponding to 

the solid or too flabby substrates which are not considered in this work. The finite 
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difference method and series solution method lead to the same results as shown in figure 

5-8. 

Table  5-2: The parameters of the relation (5-26) for wrinkling load obtained from 

regression analysis 

 

 

Figure  5-7: Normalized wrinkling load Fn versus amplitude parameter є and 

logarithmic substrate stiffness Kn 

Model Summary R2 = 0.99 

Parameter Estimate Std. Error

95% Confidence Interval 

Lower Bound Upper Bound 

m1 .024 .001 .022 .025 

m2 .213 .004 .206 .220 

m3 .775 .020 .736 .814 
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Figure  5-8: Normalized wrinkling load Fn versus amplitude parameter є from finite 

difference method and series solution 

In contrast with the critical load which remains slightly changed under the variation 

of the thickness and substrate stiffness, the pattern of the wrinkling changes highly as 

shown in figures 5-9-A-C. For a film with uniform thickness, the wrinkles propagate all 

over the length span, while for the films with variable thickness the wrinkles accumulate 

around the weakest location of the system with minimum thickness (at the middle of the 

length span). The wrinkling pattern is characterized by monitoring two parameters: the 

wave number of the wrinkling and the footprint of the wrinkling that shows the size of 

the region on the film influenced by the wrinkles. The accumulative effect of the 

wrinkling on the non‒uniform film is intensified by increasing the thickness amplitude 

parameter є such that the wrinkles are compressed more and the wrinkle number becomes 

less (Figures 5-9-A-C). 
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A) Wrinkling on the uniform thickness film є =0 

 

B) Wrinkling on the variable thickness film with є =0.2 

 

C) Wrinkling on the variable thickness film with є =0.8 

Figure  5-9: Wrinkling of the film with variable thickness and the effect of the different 

amplitude parameters є 

The normalized wave number ߚ௡ ൌ
ఉ

ఉೈ
బ  of the wrinkling versus the substrate stiffness 

K and amplitude parameter є is shown in figure 5-10, where β0
W is the wrinkling wave 

number for a uniform thickness film (є =0) in equation (5-25). Obviously, the wave 

number is highly affected by the change of the parameters K and є especially the later 

one. Similar to the case of a uniform thickness film based on equation (5-25), the wave 
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number of the wrinkling of a non‒uniform film increases with the increasing of the 

substrate stiffness. However, the rate of the change of the wave number with parameter K 

for the uniform thickness film is much faster than that for the film with variable 

thickness. Therefore, the normalized wave number βn decreases by increasing K as shown 

in figure 5-10. On the other hand, by increasing the amplitude parameter є of the variable 

thickness, the wave number of the wrinkles decreases effectively and they accumulate 

around the weakest position of the film as discussed in figures 5-9-A-C. 

 

Figure  5-10: Normalized wave number βn versus substrate stiffness K and amplitude 

parameter є 

The abovementioned observation proposes an explicit relation for the normalized 

wave number of the wrinkling as  

௡ߚ ൌ EXPሺെ݉ଵє
௠మሻܭ௡

ି ሺ௠యє
೘రሻ        (5-27)  

where mi (i=1...4) are constant parameters. The best approximation of the normalized 

wave number in (5-27) is introduced by choosing m4= 1/3. Hence, the equation (5-27) is 

rewritten as  

௡ߚ ൌ EXPሺെ݉ଵє
௠మሻ ܭ௡

ି ሺ௠య √є
య ሻ       (5-28)  
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Clearly, imposing є=0 in equation (5-28) simplifies it to the case of a uniform thickness 

pattern with β = β0
W. On the other hand, the effect of the amplitude parameter є is more 

important than the substrate stiffness K on the normalized wave number (Figure 5-10). 

Thus, the corresponding term with the power of Kn in equation (5-28) could be ignored 

for a simpler approximation. 

By using a regression analysis with 68 datapoints for 0< є <1 and 0.01< Kn <10, the 

constant parameters m1, m2 and m3 in equation (5-28) are determined. The results of the 

regression analysis presented in table 5-3 show a high accuracy for the proposed relation 

of the wave number in equation (5-28) with R2=0.98 and a standard error about ± 3% for 

the estimated parameters. The predicted values of the equation (5-28) are compared with 

the observed normalized wave number in figure 5-11 with a reference line. Also, figure 

5-12 shows the histogram of the residual errors of the regression analysis. The error in 

counting the number of the wrinkles along the film span, attributing a natural number to 

them and predicting the discrete wave number of the wrinkles by a continuous function 

are considered as sources of error. 

Table  5-3: The parameters of the equation (5-28) for wave number obtained from a 

regression analysis 

Model Summary R2 = 0.980 

Parameter Estimate Std. Error

95% Confidence Interval 

Lower Bound Upper Bound 

m1 .841 .017 .808 .874 

m2 .470 .015 .440 .500 

m3 .122 .004 .114 .130 
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Figure  5-11: Normalized wave number βn compared with the predicted values obtained 

from the proposed relation in (5-28) 

 

Figure  5-12: Histogram of the residual errors of the equation (5-28) for predicting the 

wave number 
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Figures 5-13-A,B show the normalized wave number from the finite difference 

method compared with the series solution. The finite difference method proposes a stiffer 

film with less wave number accumulated more densely around the middle of the film. 

Using the finite difference formulation with higher accuracy decreases the truncation 

error and hence the results get more compatible with the results of the series solution 

method. 

   

A) Film on a stiff substrate    B) Film on a soft substrate  

Figure  5-13: Comparison of the finite difference and series solution for the wrinkling 

wave number 

Not only the wave number of the wrinkling of the film, but also the footprint of the 

wrinkles is influenced by the substrate stiffness K and amplitude parameter є. Increasing 

the amplitude parameter є accumulate the wrinkles at the location with minimum 

thickness (here, at the middle of the system) as figures 5-9-A-C show. The footprint of 

the wrinkles defined as the effective length of the film influenced by the wrinkles 

changes between zero and one. For wrinkling of the film with uniform thickness (є=0), 

the footprint equals to one and the whole length span is affected by the wrinkles. 

A regression analysis for the relation between the footprint and the normalized wave 

number of the wrinkling shows that these parameters are strongly proportional to each 

other linearly as  

Footprint = m0 + m1 βn        (5-29)  

Figure 5-14 shows the footprint parameter versus the corresponding normalized 

wavenumebrs for 60 datapoints. The datapoints are located around the reference line in 

equation (5-29) which shows that the footprint and wave number parameters identically 
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follow the same behavior. The regression analysis between the footprint and the 

normalized wave number yield the values of the parameters m0 and m1 which are 

presented in table 5-4. 

The finite difference method proposes a stiffer system with more compressed 

wrinkles. Based on the finite difference results, the footprint parameter is obtained to 

follow exactly the wave number pattern with the relation of Footprint= βn with R2=0.99 

for the available database with 60 datapoints. According to the abovementioned results, 

by increasing the wave number of the wrinkling along the film span, the effective length 

of the film subjected to the wrinkling increases. 

Table  5-4: The regression analysis results for linear relation of the footprint versus wave 

number 

Model Summary R2 = 0.958 

Parameter Estimate Std. Error

95% Confidence Interval 

Lower Bound Upper Bound 

m0 .268 .015 .238 .298 

m1 .736 .020 .696 .777 
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Figure  5-14: The linear relation between footprint and normalized wave number βn 

High sensitivity of the footprint parameter with respect to the amplitude parameter є 

as shown in figure 5-15 indicates that even under small disturbances in the uniformity of 

the film thickness, wrinkles accumulate densely at the weakest location of the film (i.e., 

the middle of the length span which is the thinnest location). Also, the tiny thickness of 

the thin film increases the importance of the thickness variation of the film and intensifies 

the abovementioned accumulative effect. Therefore, it is concluded that for the deposited 

film on the substrate, the small variation of the thickness of the film which unavoidably 

exist on the film due to limitations of the manufacturing process may lead to the 

accumulation of the wrinkles around a region. Hence, the wrinkles behave completely 

different from the uniform wrinkling of a film with uniform thickness.  
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Figure  5-15: Footprint of the wrinkles versus thickness variation parameter 

 

5.6 Summary 

The buckling of a free standing film and the uniaxial wrinkling of a substrate‒bonded 

film were investigated. The thickness of the homogenous isotropic film was assumed 

with a quadratic pattern with a minimum located at the middle of the length span. The 

buckling problem was solved analytically and it was shown that the variation of the 

thickness linearly changes the buckling load. For the wrinkling of a film with variable 

thickness, the results of both the finite difference method and the series solution show 

that in contrast with a film with uniform thickness in which the wrinkles propagate along 

the entire length span, the wrinkles accumulate around the weakest location with 

minimum thickness. Stiffer substrate and higher thickness variation shrink wrinkles even 

more around the thinnest location on the film. The high sensitivity of the wrinkling 

accumulation around the thin locations of the system especially for thin film structures in 

which controlling the uniformity of the thickness is very difficult opens new avenues in 

the application of thin solid films. The results of this analysis bring more insights into the 

physics of wrinkling in science and provide effective tools for the development of the 

wrinkling applications in different fields such as MEMS technology and sensor/actuator 

systems. 
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Chapter 6  

6 Buckling and Wrinkling of Thin Film with Wavy 
Thickness Pattern 

The effect of the fluctuation of the thickness on the instability parameters of a thin film 

with variable thickness is considered by using a finite difference method. The thickness 

profile is modeled with a wavy function and the buckling and wrinkling behavior of the 

system are investigated. According to the results of the instability analysis, the 

fluctuations of the thickness strongly influence on the buckling and wrinkling parameters. 

6.1 Introduction 

The instability problem of a thin solid film structure under compressive loading is 

considered and the buckling/wrinkling loads, buckling mode shape and wrinkling pattern 

are determined. The profile of the thickness is modeled as a wavy pattern with multiple 

crests and troughs completely different from the quadratic pattern discussed in chapter 5. 

Therefore, the effect of the fluctuation of the thickness on the instability parameters is 

studied. The instability of the film is considered for the uniaxial pattern in which the 

buckling modes/wrinkling pattern develop on the film in one direction.  

In order to analyze the instability problem, the eigenvalue problem of the differential 

equation of the system is solved by using the finite difference method similar to the 

previous chapters. The buckling load and buckling mode shapes are determined for a free 

standing film. For a film‒substrate system with uniform thickness, a highly ordered 

pattern develops uniformly on the system, however for the case of a film with variable 

thickness such as the one in chapter 5, the thickness profile affects on the wrinkling 

pattern along the span. This chapter deals with the cases in which the thickness of the 

film fluctuates along the length span, and considers the effect of the fluctuation profiles 

on the instability behavior.  

Obviously, the importance of this chapter is not limited to a purposely‒made wavy 

thickness film. In fact, there are many unavoidable factors during the manufacturing 

processes and applications of films that influence the uniformity of the thickness which 

are known as flaws or defects of the system. These defects are intensified especially in 
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thin film technology when the thickness of the film is tiny. The results of this chapter 

show the importance of considering the non‒uniformity of film thickness on the 

instability (i.e. buckling/wrinkling) of the thin film system. 

6.2 Formulation 

For a film with variable thickness, it was shown in chapter 5 that under uniaxial 

buckling/wrinkling the governing equation of the system follows a differential equation 

as  

ሾܦሺߦሻ ሿ ௗ
ర௪

ௗకర
൅ ቂ2  ௗ
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ௗకమ
ሻߦሺܦ ൅ ܰቃ ௗ
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ௗకమ
൅ ݓܭ ൌ 0  (6-1)  

in which w is the normalized deflection, K is the non‒dimensional Winkler modulus of 

the substrate stiffness and N is the non‒dimensional compressive in‒plane load on the 

film which is constant, and 0<ξ<1 is the longitudinal coordinate of the film. Parameter D 

refers to the bending stiffness of the film represented by  

ሻߦሺܦ ൌ ൫1 ൅ є ݂ሺߦሻ൯
ଷ
        (6-2)  

while the thickness changes along the length span is assumed to follow with a profile as   

ݐ ൌ ଴൫1ݐ ൅ є ݂ሺߦሻ൯        (6-3)  

where t0 is the average thickness of the film, є is introduced as the amplitude parameter 

representing the variation of the thickness amplitude and f(ξ) is the shape function of the 

variations of the thickness along the length span such that Max [f(ξ)] = 1.  

Figure 6-1 shows different wavy patterns for the thickness of the film by using a sine 

function as f(ξ) = sin (Pπξ) for P= 2, 3, 6 and 10.  For different fluctuation parameters P 

in the figure, different numbers of the fluctuation appear on the film, while the amplitude 

of all these configurations is assumed same as each other.  

By considering the eigenvalue problem of the differential equation of the system 

using the finite difference method described in chapter 5, the buckling/wrinkling load and 

pattern are obtained and the effects of the film thickness variation parameters and 

substrate stiffness on the instability parameters are studied.  
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Figure  6-1: The profile of the variable thickness film along the length span 

 

6.3 Results and Discussions 

The buckling of a free standing film and the wrinkling of a substrate‒bonded film are 

considered for the film with wavy thickness. The effect of the thickness fluctuation (i.e. 

the amplitude parameter є and the fluctuation number P) on the instability load and mode 

shapes is studied.  

6.3.1 Buckling of a Free Standing Film 

With the increase of the amplitude parameter є, the localized compliance at some 

locations along the film length span increases as expected from equation (6-2), numerical 

results of the buckling analysis show that for a free standing film with variable thickness, 

the buckling load decreases. In addition, the variation of the thickness affects on the 

mode shapes of the system such that the buckling profiles tend to accumulate to weaker 

areas where the system has less thickness and less bending rigidity. It is also found that a 

buckling mode is replaced with another one on the film due to the wavy thickness. The 
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change of the buckling modes results in the large variation of buckling load of the 

system. Following cases exemplify two samples to describe this behavior.  

For a free standing film with fluctuation number P=2 in figure 6-1, the numerical 

results show that the buckling load of the film with clamped‒clamped edges follows a 

quadratic relation to mode number n like the Euler buckling formula N= N0
B n2 EP=2(є) 

where N0
B=4π2 is the critical buckling load of a uniform thickness film (є=0) and EP=2(є) 

is a descending function of the amplitude parameter є. The normalized critical buckling 

load N/N0
B versus the amplitude parameter є is shown in the figure 6-2, which indicates 

that this buckling load decreases smoothly by increasing the amplitude parameter є. In 

fact, decreasing the bending rigidity of the system for bigger amplitude parameter є leads 

to the decreasing of the critical buckling load as expected. According to figure 6-3, the 

first mode shape has one peak similar to the half‒sine pattern; however the position of the 

maximum deflection approaches to the location with the minimum thickness with the 

increasing of the amplitude parameter є. 

 

Figure  6-2: The buckling load of the film with P=2 versus amplitude parameter є 

 

Figure  6-3: First mode shape of the film with P=2 for different amplitude parameters є 
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Similarly, for the system with two crests and one trough corresponding with P=3 in 

figure 6-1, the buckling load of a clamped‒clamped strip (or beam) follows the similar 

relation of the Euler buckling formula as N= N0
B n2 EP=3(є) where EP=3(є) is a function of 

the parameter є. The function EP=3(є) versus amplitude parameter є is shown in figure 6-4 

which has a fall off behavior. For example, when є<0.3 the function EP=3(є) is almost 

constant, then increases with є to reach a maximum value, while decreases with the 

increasing of є when є >0.5. These different regimes in this figure are in agreement with 

the mode shapes of the system in figures 6-5-A,B. For є <0.5 the first mode shape of the 

system is a half‒sine with single crest, while for є >0.5 it is a full‒sine with a crest and a 

trough (Figure 6-5-A). The second mode shape has an opposite behavior such that it has a 

full‒sine pattern for є <0.5, while a half‒sine pattern for є >0.5 (Figure 6-5-B). 

 

Figure  6-4: The normalized critical buckling load N/N0
B versus amplitude parameter є for 

P=3 

    

A) The first mode shape  B) The second mode shape 

Figure  6-5: The buckling mode shapes of the variable thickness film with P=3 
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When the fluctuation number P of the wavy thickness changes (under constant 

parameter є), the critical buckling load undergoes some variations. Figure 6-6 shows the 

normalized critical buckling load N/N0
B for different odd and even fluctuation numbers P 

with є=0.3. In general, the critical buckling load of the system increases with the 

increasing of the fluctuation number P. It is found that for both odd and even fluctuation 

numbers P, the critical buckling loads follow a quadratic relation. When the fluctuation 

number P is sufficient large, the curves according to odd and even fluctuation numbers 

coincide with each other (as expected). 

 

Figure  6-6: The normalized critical buckling load N/N0
B versus fluctuation number P for  

є =0.3 

 

6.3.2 Wrinkling of a Substrate‒bonded Film 

For a thin film with uniform thickness on a compliant substrate, wrinkles propagated 

along the length span under a wrinkling load N0
W with a wave number β0

W as explained in 

pervious chapters, given by 

ܰௐ
଴ ൌ   (4-6)         ܭ√2

ௐߚ
଴ ൌ రܭ√           (6-5)  

For a non‒uniform film with the fluctuation number P=3 deposited on a substrate, the 

effect of the amplitude parameter є on the wrinkling pattern is shown in figure 6-7. 

Obviously the wrinkles accumulate where the film has less bending rigidity, i.e., the 

positions with smallest thickness (for fluctuation number P=3 wrinkles accumulate at the 
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middle length span of the film). This accumulative effect is intensified by increasing the 

amplitude parameter є.  

 

Figure  6-7: Wrinkling pattern for a variable thickness film with the fluctuation number 

P=3 

Figure 6-8 shows the wrinkling patterns of the film deposited on the substrate for 

different fluctuation numbers P. Unlike the strip (or beam) with uniform thickness in 

which wrinkles propagate all over the length span, the fluctuation of the thickness leads 

to the localization of wrinkles at the positions with less thickness where the bending 

rigidity of the film is smaller than other positions. Hence these special locations along the 

length span are vulnerable to the wrinkling. For odd fluctuation numbers P wrinkles 

accumulate symmetrically over the length span at the thinner positions, while for even 

values of  P (P>2) they propagate on the narrowest positions along the film span except 

the nearest trough to the edges. When P=2, wrinkles accumulate around the single trough 

of the film.  
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Figure  6-8: Wrinkling pattern for odd and even fluctuation number P for є = 0.1 

In comparison with a film of uniform thickness, the wrinkling load and wave number 

of a film with variable thickness are also affected by the amplitude parameter є and 

fluctuation number P in addition to the substrate stiffness as shown in equations (6-4) and 

(6-5). Numerical results in figure 6-9 suggest that the wave number of the wrinkling is a 

descending function of the amplitude parameter є which follows an exponential relation. 

High sensitivity of the wave number with respect to the amplitude parameter є leads that 

even for small variation of the thickness, the wave number changes significantly.  
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Figure  6-9: The normalized wave number β/β0
W versus amplitude parameter є 

Similarly, it is shown that the normalized wave number β/β0
W follows a power 

function of the substrate stiffness K. For the case of P=3 with one trough at the middle of 

the length span, the wave number of the wrinkling is approximated by  

ఉሺPసయሻ
ఉೈ
బ ൌ EXPሺെ݉ଵ є௠మሻ ିܭ௠య є೘ర       (6-6)  

where β0
W is the wave number of the uniform thickness film in the equation (6-5). By 

performing a regression analysis using the data of the numerical analysis, the constant 

parameters mi (i=1..4) are obtained as presented in table 6-1 with a high accuracy as R2= 

0.95 for 70 data‒points. Obviously, imposing є=0 in equation (6-6) leads to β = β
0
W as 

expected for a uniform film. Figure 6-10 shows the diagram of the predicted values of the 

equation (6-6) in comparison with the numerical data of the normalized wave number 

β/β0
W for 70 records. The predicted values clearly follow the observed values from 

numerical calculation. 

For the case of P>3, the wave number of the wrinkling is easily obtained from the 

wave number of the P=3 in equatin (6-6) combined with the effect of P, therefore, for odd 

and even flactuation numbers P the wave number are simply multiplied by factors 

(P‒1)/2 and P/2‒1, respectively as shown in figure 6-8.  
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Table  6-1: The results of the regression analysis for normalized wave number in equation 

(6-6) 

Model Summary R2 = 0.95 

Parameter Estimate Std. Error

95% Confidence Interval 

Lower Bound Upper Bound 

m1 1.885 .086 1.712 2.057 

m2 .352 .018 .316 .388 

m3 .183 .029 .124 .242 

m4 .167 .037 .093 .242 

 

Figure  6-10: The plot of the normalized wave number versus predicted values of  

equation (6-6) 

On the other hand, the effect of the substrate stiffness K, the amplitude parameter є 

and the fluctuation number P on the wrinkling load of the system is considered as  shown 

in figures 6-11, 12 and 13. Similar to the uniform film with wrinkling load N0
W in 

equation (6-4), it is found in figure 6-11 that for stiffer substrate with bigger stiffness K, 
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the wrinkling load increases. On the other hand, by increasing the amplitude parameter є 

the critical wrinkling load decreases, which is also shown by the normalized wrinkling 

load N/N0
W in figure 6-12. From these figures, it is found that the normalized wrinkling 

load linearly decreases with the amplitude parameter є, while it is independent of the 

substrate stiffness K as  

ே

ேೈ
బ ൌ 1 െ   ሺPሻє                    (6-7-A)ܥ

where C(P) is a function of the fluctuatuin number P. Note that the sensitivity of the 

wrinkling load for big fluctuation numbers P is diminished exponentially as shown in 

figure 6-13, an exponential function is proposed for C(P) as  

ሺܲሻܥ ൌ ݉ଵሾ1 ൅ EXPሺ݉ଶ െ ݉ଷܲሻሿ      (6-7-B)  

where m1, m2 and m3 are constant parameters. The results of the regression analysis for 

100 datapoints in the range of 2<P<150 and 0.1<є<0.8 propose m1=0.215 and m2=1.55 

and m3=0.008 with a high accuracy as R2=0.98 as shown in figure 6-14.  

 

Figure  6-11: The wrinkling load N versus substrate stiffness K for P=3 

 

Figure  6-12: The normalized wrinkling load N/N0
W versus the amplitude parameter є for 

P=3 
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Figure  6-13: The normalized wrinkling load N/N0
W versus various fluctuation number P 

and amplitude parameter є 

 

Figure  6-14: The plot of the normalized wrinkling load N/N0
W versus predicted values of 

equation (6-7-A,B) 
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6.3.3 Convergence Criterion 

In order to obtain an acceptable solution for the numerical analysis, a convergence 

criterion is monitored. Here, the number of the nodes of the finite difference method is 

controlled such that the outputs of the system (i.e. the load and mode shape) reach to a 

stable condition with small variation. With the sufficient number of the nodes attributed 

to the system, both of the load and mode shapes converge to the stable conditions, 

however increasing the nodes of the system increases the stiffness of the mathematical 

model as the result of the numerical errors.  

For the buckling of a free standing film, the critical buckling load converges to the 

objective value by increasing the number of the nodes in system. The normalized 

buckling load (with respect to the objective value of the load) is plotted versus the 

number of the nodes per trough in figure 6-15 for various cases. Clearly, there is a lower 

limit for the number of the nodes for which the convergent solution is achieved. 

Therefore, for the buckling of the free standing film, the convergence criterion can be 

satisfied by controlling the number of the nodes of the system.  

 

Figure  6-15: Convergence of the finite difference method for buckling analysis  

In the wrinkling problem, the number of the nodes per trough should be much bigger 

than the number of the wrinkling fluctuations. Because the number of the wrinkles for 

each trough is proportional with K1/4, then a lower limit for the number of the nodes is 

introduced. The lower bound decreases highly by increasing the amplitude parameter є 

due to the accumulative effect. By controlling the number of the nodes, the convergence 

critetion is satisfied and the accuracy of the numerical solution is garaunteed. 
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6.4 Summary 

The instability of a free standing film/deposited film on the substrate is investigated for 

uniaxial pattern while the thickness of the film fluctuates by a sine pattern. The 

eigenvalue problem for the differential equation of the system is solved by using a finite 

difference method. The results of the buckling analysis show that the critical load 

decreases by increasing the amplitude of the thickness variation. For film‒substrate 

system, the fluctuation of the thickness accumulates the wrinkles at the positions with 

minimum thickness along the span. By growing the amplitude of the thickness variation, 

the wave number of the wrinkling decreases exponentially and the wrinkling load 

decreases linearly. For large fluctuation of the thickness, the sensitivity of the wrinkling 

with respect to the number of the fluctuations diminishes. The results of this chapter 

which consider the instability of the film with a wavy thickness generalize the results of 

the chapter 5 in which the thickness of the film undergoes only a local minimum. The 

results provide better understanding on the instability of the thin solid films when the 

thickness of the film cannot be assumed as a uniform pattern and promise more 

improvements in controlling and using of thin film technology effectively in applications. 
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Chapter 7  

7 Post‒Instability of a Thin Solid Film 

The behavior of a beam/strip under a uniaxial deformation after the instability onset is 

considered by solving the nonlinear equation of large deflection theory. For a free 

standing film the buckling and postbuckling are considered, while for a deposited film on 

a substrate the wrinkling and post‒wrinkling behavior are investigated by using 

numerical solution of finite difference method. Different issues such as wrinkling‒folding 

transition and non‒uniformity of the film are studied. 

7.1 Introduction 

The governing equation of the system around a bifurcation point corresponds with an 

eigenvalue problem of the differential equation which leads to the loads and modes at the 

instability onset [Bloom and Coffin, 2001]. For post‒instability of the system, the large 

deformation theory is used to consider the nonlinear behavior of the structure. Two types 

of nonlinearities commonly encountered in the literature are geometric and material 

nonlinearity [Sathyamoorthy, 1998]. Geometric nonlinearity comes from the nonlinear 

strain‒displacement relations due to large deformation of the structure. When the 

deflection/amplitude of the film is not small enough, then the geometric nonlinearity of 

the stretching causes the stretching of the median plane so that nonlinear terms appear in 

the differential equation of the system. On the other hand, material nonlinearity comes 

from nonlinear stress‒strain relation such as plastic or viscoelastic behavior of the 

material of the film.  

Linear instability problem of the film is considered by using the small deformation 

theory. Many researchers studied the wrinkling of a homogenous film with uniform 

thickness and infinite length using the linear instability analysis with a uniform amplitude 

sinusoidal pattern [Cerda and Mahadevan, 2003; Chen and Hutchinson, 2004]. 

Furthermore, the effect of the variation of the thickness and material properties of the 

film‒substrate system on the wrinkling parameters was considered in the previous 

chapters. 
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On the other hand, the nonlinear analysis of the postbuckling has been commonly 

discussed in the literature [Timoshenko and Gere, 1961; Sathyamoorthy, 1998] by 

considering the geometric nonlinearity of the median plane stretching [Fertis, 1999]. As 

an example, Fang and Wickert (1994) considered the buckling and postbuckling behavior 

of a beam with both clamped boundary conditions. In contrast with the postbuckling 

problem which is usually represented by a closed form analytical solution from an elliptic 

integral [Wang et al., 1997], the post‒wrinkling of the film‒substrate systems needs more 

investigations to be understood completely. For post‒wrinkling case, usually there is no 

analytical solution (except for simple cases of uniform wrinkling pattern) and the 

toughness of the nonlinear analysis is intensified in accompany with the singularity of the 

mathematical model near the bifurcation point. Singh et al. (2009) developed a procedure 

for the nonlinear instability problem and applied it with a finite element method to 

propose a quadratic relation for load‒amplitude relation of composite plates on a shear 

foundation. In some cases, the researchers restrain the amplitude of the beam/film by 

using external constrains [Cao and Boyce, 1997; Zhang et al., 2010] which leads to 

wrinkling. Some other investigations were carried out on the instability of the composite 

beams analytically and numerically for infinite long system [Leotoing, 2002; Li et al., 

2009]. It was also found in literature [Pocivavsek et al., 2008] that the wrinkling of a thin 

elastic film on a substrate is usually followed by folding such that all the wrinkles vanish 

on the film except on some positions that folds grow. However, the wrinkling of the 

systems with finite length with non‒uniform thickness/stiffness needs more investigation.  

In this chapter, the uniaxial buckling of a free standing film and the uniaxial 

wrinkling of a film deposited on a Winkler substrate are considered. By using a finite 

difference method combined with a successive procedure for solving the eigenvalue 

problem for a nonlinear differential equation, the buckling and wrinkling problems are 

investigated and the critical loads/mode shapes at the onset of instability and the load‒ 

amplitude relation of the post‒instability phase are determined. The effect of the 

non‒uniform material properties and variable thickness of the film on the instability 

parameters are discussed. The results of the buckling analysis including the buckling 

loads and mode shapes are consistent with the results in literature. For the film‒substrate 

system, the wrinkles accumulate around the softest/thinnest position of the system with a 
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non‒uniform pattern, and the effect of the substrate stiffness and film characteristics on 

the post‒wrinkling behavior is discussed. It is shown that for buckling and wrinkling 

problem, the relation of the load‒amplitude of the film after instability is quadratic. For a 

free standing film at the end of the post‒buckling region, the stiffness of the system 

diminishes so that according to literature, the film undergoes a sudden failure mode, 

while for the film‒substrate system the post‒wrinkling region undergoes a folding phase 

in which the load‒amplitude does not follow the quadratic relation and the wrinkling 

pattern changes correspondingly. 

 

7.2 Modeling 

In order to characterize the buckling/wrinkling of a thin film deposited on a substrate, the 

instability problem of the film‒substrate system is investigated. For uniaxial 

buckling/wrinkling, the large deformation beam/strip theory is used to model the thin 

film. In wrinkling problem, the substrate is modeled by using a Winkler foundation such 

that the interaction between the film and the substrate is modeled by a spring system 

[Birman and Bert, 2004]. Therefore, the effect of the substrate is applied on the film as an 

external loading corresponding with the stiffness of the substrate and deflection of the 

film. Figure 7-1 shows a deposited film with non‒uniform material properties and 

variable thickness on a substrate with length L, width b and thickness t. The loading is 

applied along the longitudinal direction x in which direction film undergoes a uniaxial 

deformation.  

 

Figure  7-1: The film‒substrate system under uniaxial loading 



121 

 

Figure 7-2 shows a deformed element of the beam/film with forces and moments 

acting on it, where N and Q are the longitudinal (i.e. axial) and transverse (i.e. shear) 

components of the force on a cross section and M is the bending moment. The changes in 

these parameters are shown by sign Δ as ΔN, ΔQ and ΔM and the deflection of the 

beam/film at each point in z direction is denoted by w. On the other hand, the external 

loading on the element is shown by distributed forces fx and fz and distributed moment m. 

By using a finite rotation around the y‒axis perpendicular to the plane of the element, 

these components are introduced in curvilinear coordinate system along the centerline of 

the element and perpendicular to it, respectively shown by ft and fn. 

 

Figure  7-2: Free body diagram of an element of the beam/film in deformed configuration 

For the element shown in figure 7-2, the assumption of neglecting the shear strain for 

thin elastic beam/film leads to a relation between the rotation angle θ and deflection w as 

θ ൌ tanିଵ ቀௗ௪
ௗ௫
ቁ         (7-1)  

The equilibrium equations of the beam/film for a slightly deformed configuration in 

figure 7-2 are derived as,  
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In the absence of external distributed moment m, by substituting shear component Q from 

(7-2-C) into (7-2-B) one may find the governing equation of the system versus θ as 
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On the other hand, based on the geometry of the deformed element, when R is the radius 

of curvature at each point and ds is the length of the element, it is clear that ds = ± R dθ  

and (ds)2=(dx)2+(dw)2. Therefore, by using the equation (7-1) the curvature of the beam 

at each point is given by 
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where EI is the bending rigidity of the beam/strip. Substituting M and θ versus w in the 

equation (7-3) results in the governing equation of the system in terms of the deflection w 

and its derivatives as 
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Also the balance of the forces in tangential direction along the beam in equation (7-2-A) 

concludes that for the free external in‒plane loading (i.e.  ft =0), the in‒plane force N 

along the beam/film is constant and its variation due to higher order term ܳ ௗ஘

ௗ௫
ൌ

cos θ ௗெ

ௗ௫

ௗ஘

ௗ௫
 is negligible.  

Note that when large deformation of the system is considered, the geometric 

nonlinearity affects on the moment‒curvature relation and the longitudinal force due to 

stretching of the median plane of the system [Sathyamoorthy, 1998]. As shown in 

equation (7-4), due to the large deformation of the film, the parameter 
ௗ௪

ௗ௫
 is not negligible 

and the moment ‒curvature nonlinearity appears in the governing equation of the system 

in equation (7-5). Obviously, for small values of parameter 
ௗ௪

ௗ௫
 corresponding with the 

small deformation of the beam, the equations (7-4) and (7-5) are simplified to the linear 

equations by ignoring ቀௗ௪
ௗ௫
ቁ
ଶ
and nonlinearity of the moment‒curvature relationship 

vanishes.  

The geometric nonlinearity due to stretching occurs when the neutral axis of the 

beam/strip is stretched; hence, the relation between the strain and displacement becomes 

nonlinear. For a beam with length L0 in its initial flat configuration before loading, 

applying compressive axial force leads to an axial deformation of the beam to length L1 < 
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L0. At the critical state of the compression, beam does not hold the axial configuration 

and deflects transversely and instability occurs. The length of the beam in the new 

deflected configuration is obtained by 

ଶܮ ൌ ׬ ට1 ൅ ቀௗ௪
ௗ௫
ቁ
ଶ௅భ

௫ୀ଴   (6-7)         ݔ݀ 

Therefore, the decreasing of the length of the beam in the deflected configuration with 

respect to the neutral state is given by 

଴ܮ െ ଶܮ ൌ ଴ܮ െ ׬ ට1 ൅ ቀௗ௪
ௗ௫
ቁ
ଶ௅భ

௫ୀ଴ ݔ݀  ൌ ଴ܮ െ ଵܮ െ ׬ ቆට1 ൅ ቀௗ௪
ௗ௫
ቁ
ଶ
െ 1ቇ

௅భ
௫ୀ଴    ݔ݀ 

           (7-7)  

By changing the upper domain of integral to L0 for small values of compression 

parameter L0 – L1, the change of the length of the system is obtained, and hence from the 

axial strain one can find the axial force on the system as 

ܰ ൌ ܲ െ ଴ܮ/ܣܧ ቈ׬ ቆට1 ൅ ቀௗ௪
ௗ௫
ቁ
ଶ
െ 1ቇ݀ݔ

௅బ
௫ୀ଴ ቉     (7-8)  

where P= EA(1‒L1/L0) is the applied axial force and EA is the compressive rigidity of the 

beam.  

Therefore, the governing equation of the beam/film undergoing a large deformation 

is obtained from equations (7-5) and (7-8) where the first one contributes the nonlinearity 

in the moment‒curvature relation and the second one represents the nonlinear effect of 

the stretching of the neutral axis of the film. In buckling analysis of the system, 

researchers usually ignore the nonlinearity effect of the moment‒curvature relation and 

only consider the stretching of the neutral axis [Fang and Wickert, 1994]. However, in 

wrinkling problem where a highly ordered wavy pattern dominates along the span, the 

variation of the curvature gets more important and needs to be considered.  

For interaction of the beam/film and the substrate, the Winkler model is commonly 

used by many researchers, in which the substrate imposes a distributed loading on the 

film with an equivalent spring model. The force is applied perpendicular to the beam/film 

median plane so that there is no shear between the beam/film and its substrate. Therefore, 

the tangential component of the film‒substrate interaction is neglected corresponding 
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with ft =0 (due to zero shear) and the normal component perpendicular to the beam/film 

median plane is given by fn =bKw where K is the Winkler foundation modulus.  

Finally, the governing equation of the system is normalized by substituting w by δw* 

where δ is the maximum amplitude and w* is the normalized mode shape (i.e. Max [w*] 

= 1). Furthermore, non‒dimensional parameters with superscript “*” are introduced as 

x*=x/L, δ*= δ/L and EI*= EI/EI0 where EI0 is the bending stiffness modulus for a 

uniform system and EI* is a function of the length coordinate x* corresponding with the 

variation of the bending stiffness modulus due to the change in thickness and/or material 

properties along the length span. Also N*=NL2/EI0 and K*=bKL4/EI0 are the 

dimensionless axial loading and Winkler foundation modulus of the substrate. Therefore, 

the governing equation of the beam/strip under uniaxial deformation in equation (7-5) is 

normalized as  

ௗ

ௗ௫כ
൮

ଵ

ටଵାஔכమቀ೏ೢכ
೏ೣכ

ቁ
మ
  ௗ
ௗ௫כ

ቌכܫܧሺכݔሻ
೏మೢכ

೏ೣכమ

൬ଵାஔכమቀ೏ೢכ
೏ೣכ

ቁ
మ
൰
భ.ఱቍ൲ െ כܰ

೏మೢכ

೏ೣכమ

ଵାஔכమቀ೏ೢכ
೏ೣכ

ቁ
మ ൅ כݓכܭ ൌ 0  

           (7-9)  

where the dimensionless axial load is derived from equation (7-8) as 

כܰ ൌ כܲ െ ா஺௅మ

ாூబ
ቈ׬ ቆට1 ൅ δכଶ ቀௗ௪

כ

ௗ௫כ
ቁ
ଶ
െ 1 ቇ כݔ݀ 

ଵ
௫כୀ଴ ቉    (7-10)  

and P*=PL2/EI0 is the dimensionless applied axial load on the system in the 

postbuckling/ post‒wrinkling configuration. Solving the equation (7-9) leads to a relation 

between the amplitude of the system (i.e. δ*) after instability and the loading parameter 

N*, while the equation (7-10) provides the external loading P* required to produce the 

corresponding amplitude on the system. 
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7.3 Solution Approach 

For a system with small deformation, the assumption of 1+ δכଶ ቀௗ௪כ
ௗ௫כ

ቁ
ଶ
≈ 1 is applied to 

linearize the governing equations of the system in (7-9) and (7-10) as 

  ௗ
మ

ௗ௫כమ
ቀכܫܧሺכݔሻ ௗ

మ௪כ

ௗ௫כమ
ቁ െ כܰ ௗ

మ௪כ

ௗ௫כమ
൅ כݓכܭ ൌ 0       (7-11)  

while N* is a constant parameter equal to the external in‒plane loading applied at the 

edges of the system (i.e. N*=P*). Solving the eigenvalue problem for this linear forth 

order differential equation determines the onset of the instability.  

The buckling problem of a free standing film under a large deformation is analyzed 

by simplifying the equation (7-9) to (7-11) by ignoring the effect of the 

moment‒curvature nonlinearity, while keeping the nonlinearity due to the stretching of 

the neutral axis of the beam/strip [Sathyamoorthy, 1998; Fang and Wickert, 1994]. 

Therefore, by solving the eigenvalue problem in equation (7-11) one may find the 

buckling loads and mode shapes of the system. Consequently, the postbuckling behavior 

of the system is considered by using the relation of the applied external load P* and 

amplitude δ*in equation (7-10).  

The wrinkling problem of a film‒substrate system is studied at the onset of instability 

when the deflection and its variation are small. Hence, the nonlinear equation (7-9) is 

simplified to the linear eigenvalue equation (7-11) with a constant parameter N*. 

However, in order to consider the post‒wrinkling behavior of the system, first the 

equation (7-9) is solved and after finding the parameter N* versus δ*, the external applied 

load P* is obtained from equation (7-10).  

Equation (7-11) is the eigenvalue problem for linear differential equation at the onset 

of instability. As discussed in pervious chapters, for uniform and non‒uniform films 

deposited on the substrate, where finding an analytical solution seems to be hard or 

impossible, numerical methods are used to solve the equation. By solving the equation, 

the eigenvalues and eigenfunctions corresponding with the buckling/wrinkling loads and 

mode shapes are determined. Finding the external load P* is straight forward by 

substituting the parameters N* and w* into equation (7-10) represented by 

P*= N*+C δ*2          (7-12)  
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where P* and δ* follow a quadratic relation as reported by other researchers in literature 

[Timoshenko and Gere,1961; Brush and Almroth, 1975], and C is the constant curvature.  

Equation (7-9) for post‒wrinkling analysis is solved by a successive method in which 

the nonlinear terms are approximated with the known deflection obtained from the 

previous step [Singh et al., 2009]. Therefore, the nonlinear problem is changed to a linear 

one with straight forward solution. The procedure for solving the equation is described in 

the following steps: 

 

1) The linear eigenvalue problem of the system is solved. The linear equation (7-11) 

is obtained by ignoring all the nonlinear coefficients in the nonlinear problem. 

The eigenvalues and eigenfunctions of the linear problem represent the wrinkling 

load and pattern on the onset of instability. 

2) The nonlinear coefficients are estimated by substituting the mode shape values 

from the linear analysis of the previous step for a specific amplitude δ*. Therefore 

the nonlinear equation changes to a linear differential equation. 

3) The eigenvalue problem for the modified linear differential equation is solved and 

the new eigenvalues and eigenfunctions are obtained. 

4) By comparing the eigenfunctions of the successive steps, the convergence 

criterion is considered. If the difference between these eigenfunctions exceeds the 

convergence criterion, then the steps (2) and (3) are repeated iteratively for a new 

modified eigenfunction until the convergence criterion is satisfied. The fulfillment 

of the convergence condition provides an eigenvalue and eigenfunction that 

satisfy the nonlinear equation corresponding with the specific value of the 

amplitude parameter δ*. 

5) The eigenvalue and eigenfunction obtained from the analysis for the specific δ* 

are launched into the equation of stretching in (7-10) to find the corresponding 

applied external load P*. 

6) The procedure is repeated for another parameter of δ*. 
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     By following the successive procedure, the eigenvalue problem for the nonlinear 

differential equation is solved numerically. The equivalent equation in step 2 is given 

with a linear equation as 

ௗ

ௗ௫כ
ቆ ଵ݂  

ௗ

ௗ௫כ
ቀ ଶ݂

ௗమ௪כ

ௗ௫כమ
ቁቇ െ ଷ݂ܰכ ௗ

మ௪כ

ௗ௫כమ
൅ כݓכܭ ൌ 0              (7-13-A)  

where f1, f2 and f3 are obtained by substituting w* from the linear analysis of the previous 

step by 

ଵ݂ ൌ
ଵ

ටଵାஔכమቀ೏ೢכ
೏ೣכ

ቁ
మ
                 (7-13-B)  
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൰
భ.ఱ                  (7-13-C)  

ଷ݂ ൌ
ଵ

ଵାஔכమቀ೏ೢכ
೏ೣכ

ቁ
మ                   (7-13-D)  

The procedure is stopped when the convergence criterion is satisfied. The convergence 

criterion is defined as the condition that the eigenfunction obtained from the solution at 

each step does not differ a lot in comparison with the previous step. For example the 

norm of the difference between the current eigenfunction and the previous one should be 

less than a number (i.e. 0.1%). Fulfilling this condition ensures that the solution of the 

nonlinear problem converges to the exact solution of the problem which satisfies the 

governing equation.  

Therefore, the external loading on the system after instability is derived according to 

equation (7-10) as 

כܲ ൌ כܰ ൅ ா஺௅మ

ாூబ
Φכ                 (7-14-A)  

where N* is directly obtained from the linearized eigenvalue problem and Φ* is given by 

Φכ ൌ ׬ ቆට1 ൅ δכଶ ቀௗ௪
כ

ௗ௫כ
ቁ
ଶ
െ 1ቇ

ଵ
௫כୀ଴   (B-7-14)              כݔ݀ 

which can also be approximated by using Taylor expansion for small variations of the 

amplitude as 

Φכ ൌ δכଶ ׬
ଵ

ଶ
ቀௗ௪

כ

ௗ௫כ
ቁ
ଶଵ

௫כୀ଴   (C-7-14)                כݔ݀ 

Substituting parameters N* and Φ* into (7-14-A) leads to the relation between the 

applied load P* with the amplitude of the system after the onset of instability.  
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In order to solve the differential equations numerically, a finite difference method 

with central difference formulation of 6th order of accuracy is used similar to the previous 

chapters [Hildebrand, 1968; Timoshenko and Gere, 1961]. Applying the difference 

formulation into the governing equation of the system discretizes the differential equation 

and replaces it by a set of algebraic equations. By imposing the boundary conditions, a 

complete system of the algebraic equations is derived as 

ሾܣሿሼכݓሽ ൅ ሽכݓሿሼ ܤሾכܰ ൌ 0         (7-15)  

in which ሼכݓሽ ൌ ሼݓଵ
,כ …  ሽT is the vector of the nodal displacement and [A] and [B] areכ௡ݓ,

square matrices. This general eigenvalue problem with eigenvector {w*} and eigenvalue 

parameter N* has a straight forward solution. The eigenvalues of the problem correspond 

with the buckling/wrinkling loads and the eigenvectors represent the buckling mode 

shapes/wrinkling pattern of the system. 

 

7.4 Results and Discussions 

7.4.1 Buckling Problem 

For a free standing film under uniaxial compressive in‒plane loading, the system 

undergoes a buckling mode based on Euler buckling theory. The critical buckling load of 

the system with clamped edges at the onset of buckling is determined as NB* =4π2 

corresponding with the mode shape w*= ½ [1‒cos (2π x*)] for 0<x*<1.  

The postbuckling behavior of the clamped beam was investigated analytically by 

many researchers [Timoshenko and Gere,1961; Brush and Almroth, 1975]. The effect of 

the curvature‒moment nonlinearity is usually ignored and only the stretching nonlinearity 

of the neutral axis is considered [Fang and Wickert, 1994]. Ignoring the 

curvature‒moment nonlinearity corresponds with the relation 1 ൅ δכଶ ቀௗ௪כ
ௗ௫כ

ቁ
ଶ
؆ 1 in 

equations (7-13-A-D) which leads to f1= f3=1 and f2=EI*, while the stretching 

nonlinearity in relations (7-14-A-C) remains unchanged. According to this simplification, 

by imposing the mode shape w*= ½ [1‒cos (2π x*)] in equations (7-13) and (7-14) one 

may find 
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כܲ ൌ ஻ܰ
כ ൅ ଶߩ ா஺௅

మ

ாூబ
δכଶ                 (7-16-A)  

where ߩ comes from the integration of the stretching nonlinearity (i.e. Φ*) in equation (7-

14-B,C). Since NB* =4π2, equation (7-16-A) can be equivalently rewritten as, 

δכ ൌ ஠

ଶఘ
ටቀ ସ௉

గమா஺
െ ଵ଺ூబ

஺௅మ
ቁ                (7-16-B)  

which is derived by Fang and Wickert (1994) with an equivalent strain denoted by 

ε=P/EA. The quadratic relation between the loading and amplitude of the beam is derived 

as reported in literature [Timoshenko and Gere, 1961]. 

In order to check the accuracy and applicability of the finite difference code and the 

successive procedure for solving the nonlinear problem, the values of NB* and ߩ  are 

solved numerically when only the stretching nonlinearity (i.e. for f1= f3=1 and f2=EI*=1) 

is considered and approximated by the first order Taylor expansion, which are 4π2 and 

0.99π/2, respectively.  For the same problem, values of NB* and ߩ were derived as 4π2 

and π/2 analytically by Fang and Wickert (1994). These numerical results show a good 

agreement with the analytical solutions, which demonstrates the accuracy and 

applicability of the current numerical procedure. However, by using the equation (7-14-

B) without considering the Taylor expansion approximation, the parameter ߩ is calculated 

as 0.92=ߩ π/2 which represents a difference of 7% with the approximate solution. 

On the other hand, considering the effect of the bending nonlinearity (i.e. f1, f2 and f3) 

in equations (7-13-A-D) by using the finite difference method results in a small deviation 

in the parameters N* and Φ*. These parameters also follow a quadratic relation as 

ேכ

ேಳ
כ ൌ 1 ൅   ଶ                (7-17-A)כଶδߨ 0.215

Φכ ൌ   ଶ                (7-17-B)כଶδߨ 0.219

which leads to  

כܲ ൌ ஻ܰ
כ ൅ ቀ0.215 ஻ܰ

כ ൅ 0.219  ா஺௅
మ

ாூబ
ቁ   ଶ              (7-17-C)כଶδߨ

Usually 
ா஺௅మ

ாூబ
ب ஻ܰ

 ignoring the first term in the parentheses in (7-17-C) and comparing ,כ

it with the equation (7-16-A) represents the equivalent ߩ in this case as (0.219π2)0.5=0.94 

π/2 which has a 2% stiffening effect due to including the bending stiffness nonlinearity in 
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the postbuckling problem. . Due to the small difference, this nonlinearity was ignored in 

the postbuckling analysis by most researchers in literature. 

For a buckled film, any small increase in the loading leads to a large amplitude of the 

system. Finally, the resistance of the post‒buckled system against loading vanishes and 

the ascending quadratic relation of P‒δ is replaced with a descending relation so that 

system collapses suddenly by the transition of the stable postbuckling phase to the 

unstable collapse phase [Timoshenko and Gere, 1961, page80; Singer et al., 1998, page 

134].  

7.4.2 Wrinkling of an Infinite Length Beam/Film 

For a homogenous isotropic film with uniform thickness, the bending stiffness modulus is 

constant all over the span (i.e. EI*=1). For the film with constant bending stiffness 

modulus and infinite length, it is shown that the wrinkles propagate uniformly all over the 

domain with the same amplitude and a periodic function like w*= cos (β0* x*). The wave 

number of the wrinkling and the wrinkling load versus the substrate stiffness K* is given 

by [Cerda and Mahadevan, 2003] 

଴ߚ
כ ൌ రכܭ√           (7-18)  

଴ܰ
כ ൌ   (7-19)         כܭ√2

In post‒wrinkling phase, substituting w*, β0* and N0* in equations (7-14-A,C) leads 

to the relation of the applied loading P* with the amplitude of the wrinkling δ* as  

כܲ ൌ ଴ܰ
כ  ቀ1 ൅ ா஺௅మ

଼ாூబ
δכଶቁ                (7-20-A)  

Equivalently, the amplitude of the wrinkles is given in terms of the applied loading by 

δכ ൌ ට଼ாூబ
ா஺௅మ

ටቀ
௉כ

ேబ
כ െ 1ቁ                (7-20-B)  

According to the equation (7-20-B), for external load P* less than the critical wrinkling 

load N0* in (7-19) the amplitude of the wrinkling is zero as expected for pre‒wrinkling 

flat configuration. However, for the applied loading P* bigger than the critical load, the 

nonzero amplitude of the wrinkles describes the post‒wrinkling behavior of the system. 

Pocivavsek et al. (2008) and other researchers also showed that the amplitude of the 

wrinkles is the square root of the compressive loading. 
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7.4.3 Wrinkling of a Uniform Beam/Film with Finite Length  

For a finite homogenous isotropic beam/film with uniform thickness (i.e. EI*=1) 

deposited on a substrate, by using the finite difference method, it is shown that the forth 

order differential equation with constant coefficients in (7-11) undergoes a wavy pattern 

at the onset of wrinkling as discussed in the previous chapters. The wave number of the 

wavy pattern and the corresponding critical load of the wrinkling are obtained same as 

the equations (7-18) and (7-19) for various boundary conditions. In contrast with the 

buckling of a free standing film which is dominated by the boundary conditions, for the 

wrinkling of the film, the critical wrinkling load N0*and wave number β0* only depend 

on the substrate stiffness K* in equations (7-18) and (7-19), since the substrate effect is 

more dominant than the boundary constraint as discussed in chapters 4 and 5. However, 

the boundary constraints influence the wrinkling pattern amplitude, for example the 

amplitude of the wrinkles is not uniform throughout the length span and is constrained to 

zero at the clamped ends. 

In order to investigate the post‒wrinkling behavior of the system, the finite difference 

method combined with the successive procedure is used to solve the eigenvalue problem 

for the nonlinear differential equation (7-9). The results of the linear analysis at the onset 

of the wrinkling are plugged into the nonlinear eigenvalue equation, and after solving the 

equation, the results of each step are used for running the next step for various values of 

amplitude δ* and substrate stiffness parameter K* to determine N* and Φ* in equations 

(7-14-A,B). The plots of these parameters for a fixed K* are shown in figures 7-3-A and 

7-3-B. As figures show, both parameters N* and Φ* firstly increase quadratically with the 

amplitude parameter δ* starting from N*=N0* and Φ*=0 at the bifurcation point. The 

quadratic region is limited by an upper bound resulting in the decrease of N* and Φ* after 

this point. This ascending‒descending behavior is completely in agreement with the 

postbuckling behavior of the beams considered by Timoshenko and Gere (1961, page 80) 

as discussed before. 
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A) Loading parameter 
ேכ

ேబ
 כB) Loading parameter Φ          כ

Figure  7-3: Loading parameters versus amplitude obtained from nonlinear analysis 

Before the upper bound for N* (and also Φ*) is reached, the relation between the 

loading parameters N* (and Φ*) and δ* is quadratic, and coefficients are determined by 

using a regression analysis [Kahane, 2008] for a set of substrate parameters K*as, 

ேכ

ேబ
כ ൌ 1 ൅ כேδܥ

ଶ                 (7-21-A)  

Φכ ൌ כ஍ δܥ
ଶ                 (7-21-B)  

where ଴ܰ
כ ൌ  is the critical wrinkling load in equation (7-19) and CN, CΦ are כܭ√2

coefficients depending on the substrate stiffness K*. The regression analysis provides an 

expression for the coefficients CN and CΦ in terms of the square root of K* with an R2 ≈ 

0.99. By introducing another parameter λ*= π/β0*= λ/L for wrinkling wavelength λ, 

equations (7-21-A,B) are rewritten as, 
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                (7-22-A)  
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ቁ
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                 (7-22-B)  

where CN* and CΦ* are constant post‒wrinkling coefficients independent of the substrate 

stiffness parameters K*, which are presented in table 7-1 with a high accuracy of R2 ≈ 

0.995 and an standard error less than 2%.  
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Table  7-1: The post‒wrinkling coefficients in the equations (7-22) obtained from a 

regression analysis 

Model Summary R2 = 0.995 

Parameter Estimate Std. Error

95% Confidence Interval 

Lower Bound Upper Bound 

CN
* .221 .004 .210 .230 

CΦ
* .184 .002 .180 .190 

Similar to the postbuckling of a free standing beam/film in which a small increase of 

the applied load above the critical buckling load results in a large amplitude of the 

buckled profile, the post‒wrinkling path in figures 7-3-A,B demonstrates the same trend. 

By substituting equations (7-22-A,B) in equation (7-14-A), one may find the applied 

external loading on the post‒wrinkling of the system versus amplitude‒wavelength ratio 

for the post‒wrinkling path as, 

௉כ

ேబ
כ ൌ 1 ൅ ଶߨ ቄܥே

כ ൅ ா஺௅మ

ாூబேబ
כ ஍ܥ

כ ቅ ቀஔ
כ

஛כ
ቁ
ଶ
      (7-23)  

According to equation (7-23) the curvature of 
௉כ

ேబ
כ െ ቀஔ

כ

஛כ
ቁ depends on both the stretching 

and bending nonlinearity coefficients CΦ* and CN*. In contrast with the buckling problem 

in equation (7-17-C), where 
ா஺௅మ

ாூబேబ
 is several order of magnitude bigger than one and the כ

effect of the bending nonlinearity is negligible in comparison with the stretching 

nonlinearity, in wrinkling problem the order of magnitude of 
ா஺௅మ

ாூబ
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ቀ஛
כ

௧כ
ቁ
ଶ
 (i.e. t*=t/L) and therefore, for small wavelength of the wrinkling both of the 

bending and stretching nonlinearity sources need to be taken into account.  

On the other hand, the analytical solution (7-20-A) for infinite length beam/film by 

ignoring the bending nonlinearity introduces the curvature of the 
௉כ

ேబ
כ െ ቀஔ

כ

஛כ
ቁ as 
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ாூబ√௄כ
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and proposes the equivalent CΦ* as ¼ (compare with the numerical results of CΦ* in table 
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7-1). Besides, the curvature of Φ*െஔכ

஛כ
 for wrinkling of a finite length film is given by 

π2CΦ
*=0.184 π2 ± 1%, which is similar to the curvature of Φ*‒ δ* in buckling problem 

equal to 0.219 π2 in equation (7-17-B). The similar magnitude of the curvature for 

post‒wrinkling and postbuckling suggests that each wrinkle flexure can be treated as an 

equivalent beam with the effective length equal with the wavelength of the wrinkling.  

In both of the postbuckling and post‒wrinkling cases, there is an upper bound for 

load‒amplitude of the postbuckling/post‒wrinkling region. When the amplitude exceeds 

this upper bound, the loading parameters decrease and the corresponding mode shape 

obtained from numerical solution differs from the mode shape pattern on the onset of 

instability. In the buckling of a free standing beam/strip, the decrease of the applied load 

by increasing the amplitude results in the failure of the system [Timoshenko and 

Gere,1961; Singer et al., 1998]. While in the wrinkling of substrate‒bonded film, the 

wavy wrinkling pattern vanishes so that the amplitude of the wrinkles goes to zero all 

over the span except at some positions, where the amplitude increases and a fold initiates 

to grow. Pocivavsek et al. (2008) considered the transition between the wrinkling and the 

folding experimentally, such that, when the compression of the system increases more 

than a threshold value, a transition from the wrinkling to the folding occurs. Here, the 

threshold value is sought based on the numerical analysis by using the end point of the 

quadratic region in figure 7-3 for various parameters of K*. The amplitude and loading 

parameters at the onset of transition phase (i.e. wrinkling to folding transition) follow the 

equations (7-22-A, B) with the parameters introduced in table 7-1. These threshold 

parameters depend on the substrate stiffness K* from numerical results given by 
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where CN
*Tr., CΦ

*Tr. and Cδ
*Tr. are transition coefficients obtained from a regression 

analysis [Kahane, 2008] and are presented in table 7-2. Equations (7-24-A,B,C) define 

the conditions for the threshold value of wrinkling‒folding transition, such that when the 

corresponding parameters of the system satisfy these equations, the system holds a 
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wrinkling profile, and when the equations (7-24) are violated, then the folds appear on the 

system. The condition for wrinkling‒folding transition can be developed and derived for 

applied load P* by substituting CN
*Tr., CΦ

*Tr. in equation 7-23. The equations (7-24-

A,B,C) are consistent such that any of them results in two other pairs by using the 

equations (7-22-A,B). On the other hand, combining equations (7-24-A,B,C) with (7-22-

A,B) leads to a relation between the transition coefficients CN
*Tr., CΦ

*Tr. and Cδ
*Tr. and the 

post‒wrinkling coefficients CN* and CΦ* as 

஼ಿ
.೅ೝכ
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௥.൯்כ
ଶ
       (7-25)  

Comparing the numerical results from regression analysis in tables 7-1 and 7-2 verifies 

numerically the equation (7-25) which is the relation between threshold parameters of the 

transition at the end of the quadratic region and the post‒wrinkling coefficients (i.e. the 

curvature of the quadratic curve). 

Table  7-2: The post‒wrinkling coefficients in the equations (7-24) obtained from 

regression analysis 

Model Summary R2 = 0.98 

Parameter Estimate Std. Error

95% Confidence Interval 

Lower Bound Upper Bound 

CN
*Tr. 657.58 25.39 597.53 717.63 

CΦ
*Tr. 562.24 22.99 505.98 618.50 

Cδ
*Tr. 12.60 .27 11.96 13.23 

Figure 7-4 shows the threshold transition parameters versus the substrate stiffness 

K*. For loading or amplitude under the curves in figure 7-4, the wrinkling regime 

dominates on the system such that the values of N*,Φ* and δ* satisfy the equations (7-

24-A,B,C), while for the area on top of the curves the system undergoes folding and 

relations (7-24-A,B,C) are not satisfied.  
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The above results for the effective parameters of the transition are in good agreement 

with the experimental work presented by other researchers. Pocivavsek et al. (2008) 

considered the wrinkling‒folding transition experimentally and proposed the parameters 

for the transition. They considered a polymer thin film on the water under compression 

which undergoes wrinkling by a wavelength equal to λ=1.6 cm. They compared the 

amplitude of the adjacent wrinkle flexures and deduced that for a critical amplitude ratio 

equal to δ/λ=0.06 under compressive strain 0.1 shown in figure 2 of their work, the 

wrinkling‒folding transition starts such that the amplitude of the adjacent wrinkles 

diverge from each other. According to abovementioned data for polymer film on the 

water, by using the wavelength of the wrinkles one may find the stiffness modulus of the 

substrate approximately as K*≈1.5×109, which corresponds with the threshold amplitude 

ஔ೅ೝ.
כ

஛כ
 =0.064 from equation (7-24-A-C) and figure 7-4. This prediction agrees very well 

with δ/λ=0.06 in the work of Pocivavsek et al. (2008). 

 

Figure  7-4: Threshold loading and amplitude parameters of wrinkling‒folding transition 
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7.4.4 Wrinkling of a Non‒Uniform Beam/Film with Finite Length  

When the thickness of the beam/strip is not uniform or the material properties of the 

system changes along the span like the functionally graded materials (FGM), the bending 

stiffness modulus of the film varies along the span. Here, the bending stiffness modulus 

EI* along the system is assumed as a function in continuity class C2 along the entire span 

and the numerical finite difference method is used to find the instability parameters (i.e. 

load and pattern). 

The results of chapter 4 for a FGM film and chapter 5 and 6 for a non‒uniform 

thickness film show that for a film with variable bending stiffness modulus, the wrinkles 

accumulate around the positions with less bending rigidity, while for a film with uniform 

bending stiffness, the wrinkles propagate all over the span. The change in the wrinkling 

pattern effectively changes the wave number and footprint of the wrinkling. 

On the other hand, the effect of the wrinkling accumulation on the post‒wrinkling 

behavior is considered for the film with variable thickness in figure 7-5 and 

load‒amplitude relation and wrinkling‒folding transition parameters are studied. For this 

purpose, the results of the linear analysis from chapter 5 are imposed in the finite 

difference method combined with the successive procedure to find the relation between 

the wrinkle amplitude and the applied loading on the system.  

 

Figure  7-5: Thickness profile of the film 

For a variable thickness beam/strip deposited on a substrate in which the wrinkles 

accumulate around the thinnest location of the film with the lowest bending rigidity, the 

loading‒amplitude relation of the post‒wrinkling system follows the same equations (7-

21 and 22) shown in figure 7-3 with an ascending quadratic curve followed by a 

descending curve. However, the post‒wrinkling coefficients CN* and CΦ* are functions 
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of the substrate stiffness K* (Kn*=10‒9 K*) and the thickness amplitude parameter є 

proposed by 

ேܥ
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where mi’s (i=1,2,3 for corresponding subscripts N and Φ) are constants presented in 

table 7-3 which are obtained from a regression analysis. Obviously, imposing the 

parameter є =0 into the coefficients CN* and CΦ* in equations (7-26-A,B) leads to the 

constant parameters in equation (7-22) for a film with uniform thickness. 

Figures 7-6-A and B show the coefficients CN* and CΦ* in equations (7-26-A,B) 

versus parameters K* and є. Obviously, the variation of the parameter CN* for various 

values of K* and є is small so that it can be approximated by a constant (i.e. mN,1 in table 

7-3), which has the same value of CN* for uniform thickness film in table 7-1. However, 

the other post‒wrinkling coefficient CΦ* in equation (7-26-B) drastically changes with 

the variation of the thickness (i.e. Figure 7-6-B). Once again, the constant coefficient mΦ,1 

is very close to the corresponding parameter CΦ* in table 7-1 for a film with uniform 

thickness. 

Table  7-3: The parameters of the equation (7-26) for wrinkling load obtained from a 

regression analysis 

Parameter Estimate Std. Error

95% Confidence Interval 

R2 

Lower Bound Upper Bound 

mN,1 .220 .002 .216 .225 

0.93 mN,2 31.89 4.10 22.96 40.82 

mN,3 ‒.258 0.044 ‒.355 ‒.162 

mΦ,1 .181 .003 .174 .188 

0.99 mΦ,2 .238 .001 .238 .239 

mΦ,3 .092 .050 ‒.019 .203 
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A) Coefficient CN*    B) Coefficient CΦ* 

Figure  7-6: The post‒wrinkling coefficients CN* and CΦ* versus amplitude parameter є 

and substrate stiffness K* for variable thickness film deposited on a substrate 

By assuming CN* as a constant parameter (i.e. mN,1 in table 7-3), the variation in the 

applied loading on the system (i.e. P*) versus parameters K* and є is dictated by the 

variation of CΦ*. As shown in figure 7-6-B, by increasing the thickness amplitude 

parameter є, the coefficient CΦ* increases, while stiffening of the substrate decreases the 

coefficient CΦ*. 

On the other hand, similar to the case of a uniform thickness film, the transition point 

is defined at which the mode shape of the system does not resemble the mode shape 

pattern at the onset of wrinkling and the critical wrinkling load starts to decrease at the 

end of the quadratic relation region in the load‒amplitude curve. The threshold amplitude 

for various values of the substrate stiffness K* and thickness amplitude parameter є is 

shown in figure 7-7. The corresponding graphs for parameter 
ே೅ೝ.
כ

ேబ
כ  are also shown in 

figures 7-8-A and B, while Φ* has similar pattern which changes between 0 and 0.08 

along the vertical axis. According to these figures, increasing the substrate stiffness leads 

to the decreasing of the transition load and the transition amplitude similar to the uniform 

thickness film (є=0). Therefore, for stiffer substrate with finer wrinkling pattern, the 

threshold amplitude of the wrinkling decreases as well. However, for higher values of the 

thickness amplitude parameter є which intensifies the accumulating effect, the threshold 
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amplitude of the wrinkle flexure increases so that the wrinkling pattern holds longer on 

the film before changing its pattern and transiting to the folding phase.  

 

Figure  7-7: The threshold amplitude for various values of substrate stiffness and 

thickness amplitude parameter 

      

A) Different amplitude parameter    B) Different substrate stiffness 

Figure  7-8: The normalized transition load 
ே೅ೝ.
כ

ேబ
כ  versus (A) substrate stiffness K* and (B) 

amplitude parameter є 
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The relation between the threshold amplitude and the structural parameters K* and є 

is given by 

ஔ೅ೝ.
כ
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where Fє =0(K*) is corresponding with the threshold amplitude of the uniform thickness 

film presented in (7-24-C) and G(K*,є) is a function of the parameters K* (Kn*=10‒9 K*) 

and є refers to the accumulation effect. The functions Fє =0(K*) and G(K*,є)  are proposed 

as 
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where mi
δ’s (i=1,2,3) are determined by using a regression analysis presented in table 7-4, 

while Cδ
*Tr. is obtained similar to the reported value in table 7-2. Obviously, imposing 

є=0 in equations (7-27-A,C) leads to the same relation for the uniform thickness film in 

equation (7-24). 

Table  7-4: The parameters of the relation (7-24) for wrinkling‒folding transition 

amplitude obtained from a regression analysis 

Model Summary R2 = 0.92 

Parameter Estimate Std. Error

95% Confidence Interval 

Lower Bound Upper Bound 

Cδ
*Tr. 12.022 1.190 9.575 14.468 

m1
δ .228 .016 .196 .260 

m2
δ .329 .053 .220 .438 

m3
δ .097 .015 .065 .128 
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Combining equations (7-27) with (7-22), (7-24) and (7-26) leads to the relations of 

the threshold loading versus the amplitude and the other parameters of the system (i.e. K* 

and є) as 
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where CN
*Tr., CΦ

*Tr. and Cδ
*Tr. follow the equation (7-25) and table 7-2. When the 

equations (7-28) are violated, a folding profile is replaced for the wrinkling pattern on the 

film. Figures 7-9 and 7-10 show the numerical data of N*Tr. and Φ*Tr. from finite 

difference method versus the predicted values from equations (7-28-A,B). It is concluded 

that the loading parameters also change with the thickness amplitude parameter є and 

substrate stiffness K* exponentially and with a power law as equations (7-28-A,B) and 

figures (7-8-A,B) show.  

 

Figure  7-9: Predicted values of parameter 
ே೅ೝ.
כ

ேబ
כ  from equation (7-28-A) versus numerical 

data of the finite difference solution 
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Figure  7-10: Predicted values of parameter Φ*Tr. from equation (7-28-B) versus 

numerical data of the finite difference solution 

The above results show that in comparison with the uniform thickness film, the 

variation of the thickness which leads to the accumulation of the wrinkles around the 

thinnest location of the system postpones the wrinkling‒folding transition by increasing 

the corresponding threshold parameters. In other words, accumulated wrinkles strengthen 

the wrinkling pattern against folding in which all the flexures of the wrinkles are 

vanished and replaced with one fold flexure. 

 

7.5 Summary 

The instability problem of a free standing film/deposited film on a Winkler substrate is 

investigated under uniaxial buckling/wrinkling pattern with large deformation theory and 

finite difference method. Critical load and pattern versus the structural parameters of the 

system (i.e. substrate stiffness and film characteristics) are investigated by solving the 

eigenvalue problem of the differential equation. For the free standing film, the buckling 

and postbuckling analysis provided the critical load and mode shapes and also 

load‒amplitude relation after buckling. For substrate‒bonded film, the wrinkling 
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parameters such as load and wave number are studied. The post‒wrinkling of the system 

is considered and a quadratic relation for loading‒amplitude relation is proposed 

followed by folding. The parameters of post‒wrinkling and folding are studied 

numerically and the effects of the system characteristics on the wrinkling/post‒wrinkling 

are investigated. It is shown that for wrinkling problem, the wavelength of the wrinkles 

plays an important role in characterizing the post‒instability parameters. On the other 

hand, unlike the free standing film in which the postbuckling follows by the failure of the 

system, for substrate‒bonded film the post‒wrinkling changes to folding pattern on the 

film and the parameters of the transition are studied and compared with literature. 
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Chapter 8  

8 The Substrate‒Film Interaction 

In this chapter, the effects of the surface elasticity and residual surface stress on the 

wrinkling of the film are considered. Also, a non‒uniform model for the substrate is 

proposed and wrinkling of the film on the non‒uniform substrate is investigated. 

8.1 Introduction 

In order to study the effect of a foundation on the beam/plate, various models have been 

developed by the researchers to analyze the mechanical behavior of the substrate‒bonded 

film for statics, dynamics and stability problems. The models simplify the problem by 

proposing an equivalent model for the foundation. These equivalent models represent the 

effect of the substrate on the beam/plate with an external load. Many researchers used the 

equivalent spring system for the interaction of the beam/plate and the foundation. The 

spring system is assumed to behave linearly or nonlinearly in a single layer or several 

layers composition to model various properties of the foundation such as elastic, 

viscoelastic and plastic foundation [Winkler, 1867; Kerr, 1964; Wang et al., 2005]. A 

brief review of the elastic foundation models is introduced in chapter 2. 

When the characteristic size of the materials and devices approaches microns or 

nanometers, the aspect ratio of the surface/interface area to volume increases and hence, 

the surface effects play an important role in the mechanical behavior of the system 

[Miller and Shenoy, 2000; Huang et. al, 2007; Huang, 2008]. The size effect leads the 

fact that the mechanical properties of the micro/nanosize structures differ from those 

predicted for their bulk counterparts by conventional continuum mechanics modeling. 

For example, Fleck et al. (1994) observed that the torsional hardening of a micro‒wire 

increases by a factor of three as the wire diameter decreases from 170 to 12 μm. Ma et al. 

(1995) reported that the indentation hardness of the silver single crystal in 

micro‒indentation test increases by a factor of two as the penetration depth of the 

indenter decreases from 2.0 to 0.1 μm. McFarland et al. (2005) observed that the stiffness 

values of the micro‒cantilevers in the micro‒bending testing are four times larger than 



147 

 

the stiffness predicted by classical beam theory. Other experiments lead to the similar 

results on the properties of the systems due to the size effect [Chong and Lam, 1999; 

Stolken and Evans, 1998]. Many researchers focused on understanding these differences 

and their effects on the mechanical behavior of the systems to evaluate and improve the 

performance of the micro/nanoelectromechanical systems [Beskou et. al, 2003; Huang et. 

al, 2007]. For example, Kong et. al (2008), Wang and Feng (2007 and 2009) considered 

the influence of surface effects on the dynamic and stability of the micro/nano beams. 

The surface effect is a significant issue especially for micro/nano structures when the 

size of the system is comparable with the characteristic length of the system which can be 

defined by the ratio of the surface to the volume of the system. In this case, due to the 

different conditions experienced by the atoms on the surface with respect to the atoms in 

the bulk of the material, different environmental effects appear on the atoms known as 

the surface stress on the system. The surface effect of the micro/nano structures was first 

studied by Lagowski et al. in 1975. They considered the influence of the residual surface 

stress on the vibration of thin crystals modeled with a compressive axial force. However, 

Gurtin et al. (1976) improved the compressive axial force model of Lagowski (1975) by 

contributing a distributed traction over the surface. Recently, Wang and Feng (2007) 

considered the effect of the surface elasticity and residual surface stress on the natural 

frequency of micro‒beams. They used the theory of surface elasticity of Gurtin et. al 

(1998) in which the surface has a tiny thickness with a finite surface elastic modulus. 

Therefore, the effective properties of the system changes according to the surface effect 

by modifying the parameters such as the bending rigidity of the beam. 

On the other hand, the residual surface stress is imposed on the film by different 

loading patterns such as concentrated or distributed axial force and moment [Zhang et. al, 

2004; McFarland et. al, 2005]. For a bending film, according to the generalized 

Laplace‒Young equation, the stress jump across a surface is related to the curvature of 

the surface and surface stress. Therefore, by considering the deformation of the system 

due to bending, the surface effects on the film‒substrate system are considered later in 

this chapter.  
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8.2 Effect of Surface Elasticity and Residual Surface Stress 
on the Wrinkling of the Thin Film 

The instability of thin film systems especially Micro/Nano structures may be affected by 

the size effect issues. Hence, the effect of surface stress, including surface elasticity and 

residual surface stress, on the instability behavior of the system needs to be considered. 

According to the theory of surface elasticity of Gurtin et. al (1998), the surface is 

assumed with a tiny thickness hSur. and a finite surface elastic modulus (i.e. ES= 

EhSur.=constant as thickness hSur. goes to zero). Therefore, the effective bending stiffness 

modulus DEff. of a beam/film with thickness t, width b and bending stiffness modulus of 

the bulk material DBulk is defined by [Wang and Feng, 2007] 

.ா௙௙ܦ ൌ ஻௨௟௞ܦ ൅
ଵ

ସ
  ଶ        (8-6)ݐௌܾܧ

As a result, the surface elasticity effect contributes in the problem by modifying the 

bending stiffness modulus of the beam/plate. By introducing the surface elasticity 

parameter as ߙௌ ൌ
ଵ

ସ
 ஻௨௟௞, the effective bending modulus is represented asܦ/ଶݐௌܾܧ

.ா௙௙ܦ ൌ ஻௨௟௞ ሺ1ܦ ൅   ௌሻ         (8-7)ߙ

In wrinkling problem, the wrinkling parameters such as wave number β and 

wrinkling load NW for an infinite long film without the surface effect have been 

commonly proposed by the researchers in literature as [Cerda and Mahadevan, 2003; 

Birman and Bert, 2004], 

ܰௐ ൌ 2ඥܾܭഥ(8-8)         ܦ 
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஽

ర
          (8-9) 

where ܭഥ is the substrate stiffness. Without considering the residual surface stress, 

replacing parameter D by the effective bending modulus from equation (8-7), the 

effective wrinkling load NS and wave number βS are modified for the surface elasticity 

effect as, 

ௌܰ ൌ ܰௐඥ1 ൅  ௌ         (8-10)ߙ
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Also, for the film with non‒uniform properties studied in the previous chapters of 

this thesis, same relations can be derived as equations (8-10) and (8-11). In all of the 

relations for the non‒uniform film, the effect of the surface elasticity influences the 

bending modulus of the film, and wrinkling load and wave number follow similar 

relations versus surface elasticity parameter αS. Figure 8-1 shows the effect of the surface 

elasticity parameter αS on the wrinkling load NS and wave number βS for a beam with 

surface elasticity effects, which are normalized by the corresponding wrinkling load and 

wave number for a beam without the consideration of the surface elasticity effect (i.e. NW 

and β in relations 8-8 and 8-9). 

 

 

Figure  8-1: The effective bending modulus DEff. and wrinkling load NS and wave number 

βS versus surface elasticity parameter αS 

On the other hand, in order to consider the residual surface stress in micro/nano 

structures, different loading patterns are proposed by the researchers. By using 

concentrated force and moment at the tip of the beam/film or simulating the residual 

surface stress as distributed transverse loading, researchers studied different mechanical 

behaviors of the systems from both the static or dynamic perspectives [Zhang et. al, 

2004; McFarland et. al, 2005]. The most commonly used method considering the residual 

surface stress is to exert a distributed transverse loading across the film surface (i.e. p) 
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due to the traction jump based on the generalized Laplace‒Young equations, which 

relates the transverse distributed loading to the bending curvature κ of the surface and the 

total residual surface stress σS as, 

݌ ൌ   ௌ         (8-12)ߪߢ2ܾ

where the curvature of the surface is approximated by κ= d2w/dx2 for small deflection w 

of the beam/film. Hence, the effect of the residual surface stress is contributed in the film 

problem with an external transverse load applied on the system according to equation (8-

12). The modified governing equation of the beam/film with deflection w and the 

effective bending modulus DEff. under compressive in‒plane load ഥܰ௫ on a Winkler 

substrate with modulus ܭഥ is represented by  

ௗమ
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which concludes that the residual surface stress directly affects on the axial loading of the 

film. Mathematically, this model is in analog with the problem of a film deposited on a 

substrate represented by a two‒parameter foundation model, such as Filonenko‒Borodich 

or Pasternak foundation with equivalent parameter Gf = σS according to equation (8-5). A 

compressive residual surface stress (σS<0) intensifies the effect of the in‒plane loading on 

the system such that less values of the external compressive load ഥܰ௫ is needed for the 

wrinkling of the film; while for a tensile residual surface stress (σS>0), more external 

in‒plane load is required to achieve a wrinkling state. The external compressive load ഥܰ௫ 

which leads to the wrinkling of the film is given by 

ഥܰ௫ ൌ ௌܰ ൅   ௌ         (8-14)ߪ2ܾ

where NS is the wrinkling load of the system from equation (8-10). 
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8.3 Wrinkling of a Film on a Non‒uniform Substrate 

In this section, the wrinkling of a thin film on a non‒uniform substrate with variable 

stiffness is considered. It is shown that for locally softened/stiffened substrate, the 

wrinkling pattern is completely different from that of the uniform substrate‒film system, 

i.e., the wrinkles accumulate around the soft locations of the system with less substrate 

rigidity. The results of this work are promising in characterizing and controlling the 

wrinkles on thin film structures and corresponding applications. 

8.3.1 Formulation of the Problem 

For a homogenous isotropic film in figure 8-2 with uniform thickness t, width b, length L 

and Young’s modulus E, deposited on a Winkler foundation with variable modulus ܭഥ 

under the effect of in‒plane compressive load ഥܰ௫ and uniaxial deformation with 

deflection ݓഥ , the governing equation is represented by [Timoshenko, 1940] 

ௗమ

ௗ௫మ
 ቂܦ ௗమ௪ഥ

ௗ௫మ
ቃ ൅ ഥܰ௫

ௗమ௪ഥ

ௗ௫మ
൅ ഥݓഥܭܾ ൌ 0      (8-15)  

where D refers to the bending rigidity of the film represented by ܦ ൌ ଵ

ଵଶ
 ଷwhich isݐܾܧ

constant along the span x. Introducing a non‒dimensional variable ξ defined as ξ = 

x/L‒0.5 (i.e. ‒0.5<ξ<0.5) and normalized deflection ݓ ൌ ௪ഥ

ெ௔௫ ሺ௪ഥሻ
 lead to the 

dimensionless form of the equation (8-15) as, 

ௗర௪

ௗకర
൅ ܰ ௗమ௪

ௗకమ
൅ ݓܭ ൌ 0          (8-16)  

where 

ܰ ൌ ேഥೣ ௅మ

஽
                  (8-17-A) 

and 

ܭ ൌ ௕௅ర௄ഥ

஽
                  (8-17-B) 

For the classical Winkler substrate, the Winkler modulus K is assumed constant 

along the span. In this section, the effect of the non‒uniform substrate is considered on 

the film with a variable substrate stiffness K(ξ)  along the span. The variation of the 

substrate stiffness K(ξ) is modeled with a continuous function of class C0 like a 

symmetric bell curve similar to a Gaussian function shown in the figure 8-3 [Abramowitz 
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and Stegun, 1972]. The maximum amplitude of the function, the position of the peak of 

the function and the parameter of the widening of the function are shown in the figure 

with є, μ and σ, respectively. Increasing the amplitude of the Gaussian function (i.e. 

parameter є) raises the magnitude of the variation of the substrate stiffness. Also 

increasing the smoothness parameter σ increases the width of the bell curve and expands 

the non‒uniform area. Far from the peak position of the Gaussian function, the function 

goes to zero and the variation of the substrate stiffness is neglected. Here, the peak of the 

variation of the substrate stiffness K(ξ) is positioned at the middle of the length span (i.e. 

ξ =0) corresponding with μ=0 in the figure 8-3. The analytical Gaussian function for 

modeling the stiffening/softening of the substrate by magnitude parameter є and 

smoothness parameter σ is introduced by 

ሻߦሺܭ ൌ ଴ܭ ቂ1 ൅ є EXP ቀെ కమ

ଶఙమ
ቁቃ       (8-18) 

where K0 is the characteristic substrate stiffness. And for stiffening and softening 

substrate, the amplitude parameter є is given by a positive and negative value, 

respectively. For a uniform film‒substrate, the substrate stiffness is constant along the 

entire span corresponding with the case of є = 0. 

 

Figure  8-2: Deposited film on the non‒uniform substrate 
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Figure  8-3: Gaussian function of the substrate stiffness 

In order to solve the eigenvalue problem of the film‒substrate system in equation (8-

16) a series solution is constructed as  

ሻߦሺݓ ൌ ෌ ܿ௜ ߦ௜
௜՜∞

௜ୀ଴
        (8-19) 

Also, the Taylor expansion of the function K(ξ) is given by 

ሻߦሺܭ ൌ ∑ ݇௠ ߦ௠௠՜∞
௠ୀ଴         (8-20) 

Plugging w(ξ) and K(ξ) from (8-19) and (8-20) into differential equation (8-16), and 

using the recurrence relations of the series solution leads to the wrinkling pattern of the 

film as 

ሻߦሺݓ ൌ ∑ ܿ௠߮௠ሺє, ,ߪ ,଴ܭ ܰ, ሻସߦ
௠ୀ଴       (8-21) 

By applying the clamped conditions on both edges of the film and normalizing the 

deflection of the film, one can find the characteristic equation of the system and 

determine the wrinkling pattern and the critical load N versus structural parameters of the 

system K0, σ and є. 

On the other hand, a finite difference method similar to the pervious chapters is used 

to solve the eigenvalue problem of the wrinkling of the film. Here the central difference 

approach with 6th order of accuracy is used to solve the problem. Applying the difference 

formulas into the governing equation of the system in (8-16) discretizes the differential 

equation and replaces it by a set of algebraic equations as  

ሾܣሿሼݓሽ ൅ ܰሾܤ ሿሼݓሽ ൌ 0          (8-22) 
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in which [A] and [B] are square matrices. This general eigenvalue problem with 

eigenvector {w} and eigenvalue parameter N has a straight forward solution. The 

eigenvalues of the problem correspond with the wrinkling loads of the system and the 

eigenvectors represent the wrinkling pattern. 

 

8.3.2 Results and Discussions 

The effect of the non‒uniform substrate on the instability parameters (load, wrinkling 

pattern …) is presented and compared with the instability of the film on the uniform 

substrate by using the finite difference method which leads to similar results of the series 

solution approach. 

For a long film on the uniform substrate (i.e. є =0 and K=K0), the critical 

compressive load and wave number of the wrinkling are represented versus 

non‒dimensional substrate stiffness K0 in the equation (8-17-B) as [Cerda and 

Mahadevan, 2003; Birman and Bert, 2004] 

଴ܰ ൌ 2ඥܭ଴         (8-23) 

଴ߚ ൌ ඥܭ଴
ర           (8-24) 

However, for the film on the non‒uniform substrate, the wrinkling load and wave number 

are affected by the substrate parameters K0, є and σ. 

The wrinkling load N normalized by N0 in equation (8-23) versus parameters є and K 

is shown in figure (8-4) for two different values of σ obtained from finite difference 

method. Clearly, the effect of the parameter K0 is negligible on the wrinkling load except 

for very soft substrates, while the magnitude parameter є dominates the normalized load 

and changes it effectively. For locally softening substrate (є<0), the wrinkling load 

according to different parameters K and σ follows the same pattern with an exponential 

relation as 

 
ே

ேబ
ൌ 1 ൅݉ଵሾ1 െ EXPሺെ݉ଶєሻሿ       (8-25) 

where the constant parameters m1 and m2 are obtained from a regression analysis of the 

numerical data as m1= 0.56 ± 0.09 and m2= 0.81 ± 0.10 with R2=0.99. Clearly, imposing 

є=0 in equation (8-25) leads to N = N0 corresponding to the wrinkling load of the 
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film‒substrate with uniform stiffness. On the other hand, for locally stiffening film with 

є>0, the wrinkling load increases due to increasing the stiffness of the system as 

expected. In this case, the wrinkling load follows a relation as (8-25) while parameters m1 

and m2 are functions of smoothness parameter σ. The solution of finite difference is 

compared with that of series solution method in figure 8-5. Similar to pervious chapters, 

the wrinkling load obtained from both methods are similar.  

 

Figure  8-4: Normalized wrinkling load N/N0 versus parameter є and K0 for σ=0.05 and 

0.3 

 

Figure  8-5: Normalized wrinkling load N/N0 versus parameter є for σ=0.05 and K0=109 

obtained from finite difference method and series solution  
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The non‒uniformity of the substrate also changes the wrinkling pattern on the film. 

For a film‒substrate with uniform stiffness (i.e. є=0), whole length span undergoes 

wrinkling as shown in figure 8-6-A; while for locally softening substrates (є<0), wrinkles 

accumulate at the position with minimum stiffness (here, at the middle of the length span 

according to equation 8-18) which is shown in figures 8-6-B and 8-6-C. Increasing the 

magnitude parameter є compresses the wrinkles even more and decreases their number. 

On the other hand, for locally stiffening film (є>0), wrinkles propagate on both sides of 

the location with higher stiffness (here, the middle of the film) as shown in figure 8-6-D. 

In order to characterize the wrinkling pattern, two parameters are introduced; the wave 

number of the wrinkling which shows the number of the wrinkles in the affected area and 

the footprint of the wrinkling that represents the size of the region on the film influenced 

by the wrinkles which are discussed as follows. 

     

A- є =0     B- є = ‒0.3 

  

C- є = ‒0.7     D- є =+0.5 
Figure  8-6: Wrinkling of the film on the non‒uniform substrate and the effect of the 

various magnitude parameters є on the wrinkling pattern 

Figures 8-7-A and B show the wave number of the wrinkling normalized by β0 in 

equation (8-24), for two cases of smoothness parameters σ =0.05 and 0.3. Obviously, the 

wave number is highly affected by the change of the magnitude parameter є. A regression 

analysis shows that the normalized wave number follows an exponential relation of 



157 

 

magnitude parameter є as EXP (‒m є) where m is a function of parameter σ. By 

increasing the substrate stiffness K0, similar to the case of the film on the uniform 

substrate in equation (8-24), the wave number of the wrinkling increases. However, the 

increasing rate of the wave number of the film‒substrate with uniform stiffness is faster 

than the corresponding value of the film‒substrate with variable stiffness. Therefore, the 

normalized wave number β/β0 decreases by increasing K0 as figures 8-7-A and B show.  

    

A- Negative magnitude parameter є<0 B- Positive magnitude parameter є>0  

Figure  8-7: Normalized wave number β/β0 versus substrate stiffness K0 and magnitude 

parameter є for smoothness parameters σ =0.05 and 0.3 

In order to consider the localization of the wrinkles along the length span, a 

non‒dimensional parameter is introduced as the footprint of the wrinkling which 

represents the effective length of the film span undergoing wrinkling. The footprint 

changes between zero and one, such that when the footprint is equal to one, the whole 

length span is affected by the wrinkles corresponding to the case of the wrinkling of the 

film with uniform substrate (i.e. є=0). A regression analysis between footprint and wave 

number of the wrinkling shows that these parameters are strongly proportional to each 

other linearly so that footprint follows the same pattern as normalized wave number 

discussed above. Figure 8-8 shows the footprint parameter versus corresponding 

normalized wave number for 60 datapoints around the reference line Y= m0+ m1X.  
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Figure  8-8: The linear relation between footprint and normalized wave number β/β0 of the 

wrinkling 

High sensitivity of the footprint parameter with respect to the magnitude parameter є 

of the substrate stiffness as shown in figure 8-9 concludes that even under small 

disturbances in the uniformity of the substrate, wrinkles accumulate densely at the 

particular locations of the film. On the other hand, the microstructure of the substrate in 

thin film technology increases the importance of considering the variation of the substrate 

stiffness so that it intensifies the abovementioned accumulative effect too. The 

non‒uniformity of the system which accumulates wrinkles around a region leads that the 

behavior of the wrinkled system to be completely different in a non‒uniform system 

compared to a uniform one. 
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Figure  8-9: Footprint of the wrinkling versus substrate stiffness magnitude parameter є 

 

8.3.3 Conclusion 

For deposited film on the substrate, the uniaxial wrinkling problem was investigated and 

the effect of the variable substrate stiffness on the load and pattern of the wrinkling was 

studied. Numerical results show that for a film on the uniform substrate, the wrinkles 

propagate on the entire length span, while for the case of the non‒uniform substrate, they 

accumulate around the soft locations of the system with less substrate stiffness. For 

locally stiffened films, the wrinkles develop on both sides of the stiffened location such 

that film undergoes an internal clamped boundary condition at the location of the 

stiffening. Increasing the variation of the substrate stiffness shrinks wrinkles more on the 

soft locations of the substrate. On the other hand, the wrinkling load changes for 

non‒uniform substrate such that for softened substrate, the load decreases while for 

stiffened substrate the wrinkling load increases. The results of this analysis are promising 

in predicting and controlling the wrinkling pattern in experimental works, MEMS 

applications and sensor/actuator systems. 
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8.4 Summary 

In this chapter, the effect of the substrate on the wrinkling pattern of the thin solid film 

was considered. The effects of the surface elasticity and residual surface stress on the 

wrinkling of the film with micro and nanometer thickness were described. It was shown 

that the surface elasticity changes the effective bending stiffness of the film, which 

eventually influences the wrinkling load and pattern. On the other hand, the effect of the 

residual surface stress was considered in analog with a two‒parameter foundation model 

and it shows how the compressive and tensile residual surface stresses affect on the 

wrinkling load. In addition, the effect of the non‒uniformity of the substrate was 

investigated on the localization of the wrinkling. The non‒uniform substrate accumulates 

the wrinkles at particular locations of the system (i.e. the soft positions on the substrate) 

which affects the wrinkling pattern, the wave number and the effective length of the 

system undergone wrinkling. 
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Chapter 9  

9 General Discussion and Conclusions  

Besides the conclusion section for each part of the thesis in chapters 3, 4, 5, 6, 7 and 8, 

the current chapter summarizes all of the results of the different chapters of the 

dissertation and provides an overall conclusion about the thesis. It also introduces some 

useful applications of the results of the thesis which provides more understanding about 

the importance of the project.  

9.1 Overview of the Different Chapters 

In this thesis, the mechanical instability of thin film structure including buckling and 

wrinkling is investigated under applied compressive loading on the film. The effects of 

the loading on the system, the change in material properties of the film and substrate, the 

geometrical non‒uniformity of the system and other similar factors on the wrinkling 

pattern and its characteristic parameters such as wave number of the wrinkles and length 

of the wrinkles are considered. A summary of the results of different chapters are 

concluded in the following. 

In chapter 3, the wrinkling of the film around an inclusion is considered. The 

inclusion is defined as a region on the film which applies compressive eigenstrain on the 

system locally and wrinkles develop around that region. For the inclusion line on the free 

standing film and deposited film on the substrate, it is shown that wrinkles develop on the 

film perpendicular to the inclusion line. The wrinkling parameters such as length and 

wave number of the wrinkles are derived in terms of loading parameters and material 

properties of the film/substrate. The results provide physical insight in modeling the 

suturing of the wound in surgical operations, the effect of the glue or other constraints on 

thin structures and so on. 

Chapters 4, 5 and 6 mainly focus on the non‒uniformity of the system with finite 

length. The non‒uniformity arises due to the variation of the material properties as 

discussed in chapter 4, or the variation of the thickness of the film as presented in 

chapters 5 and 6. In fact, they show that for a non‒uniform film, wrinkles accumulate at 
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some specific locations while the other regions of the film remain unwrinkled. These 

specific locations of the film with accumulated wrinkles are the weakest locations of the 

system with thinner thickness or lower stiffness. Chapter 4 shows that unlike the 

homogenous films in which the wrinkles propagated along the entire domain, for a 

functionally graded material (FGM) film where the stiffness of the film changes with a 

continuous function along the length span of the film, wrinkles accumulate around the 

softest region of the film. It also provides simple explicit expressions for the wrinkling 

parameters such as wave number and effective length of the film influenced by the 

wrinkles. High sensitivity of the wrinkling parameters with the FGM gradient parameter 

shows the importance of the proposed model in this work. Chapters 5 and 6 represent 

similar results for wrinkling of a non‒uniform film with variable thickness. They show 

that for different profiles of the film thickness, the wrinkles accumulate at the thinnest 

position (or positions) of the system. This conclusion becomes more significant for thin 

film systems where the uniformity of the film cannot be guaranteed due to the tiny 

thickness of the system. High sensitivity of the wrinkling accumulation around the thin 

positions of the system intensifies the importance of the analysis. 

On the other hand, in contrast with other works in the literature, the effect of finite 

length of the film has not been considered on the wrinkling pattern based on the best 

knowledge of the author. In fact, researchers focus on the wrinkling of the film with 

infinite length while the wrinkles propagate uniformly all over the system. However, the 

results of this thesis show that for a finite length film, the wrinkles are constrained at the 

edges of the film and the pattern of the wrinkling drastically changes. The finite length 

model proposed in this work provides more compatibility with real applications of the 

wrinkling in thin film technology. 

In order to investigate the amplitude of the wrinkling after instability, a nonlinear 

analysis is presented in chapter 7. The post‒wrinkling analysis shows how the amplitude 

of the wrinkles increases by increasing the applied compressive load on the wrinkled 

film. Moreover, it illustrates that there is a threshold for amplitude and compressive load 

on the film such that, beyond the threshold value, the wrinkling is substituted by folding 

of the film at some special points. The post‒wrinkling parameters and the effect of 
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non‒uniformity of the system on accelerating the wrinkling‒folding transition phase are 

investigated. 

Chapter 8 considers the effect of the substrate on the wrinkling pattern of the film. 

The effects of the surface elasticity and residual surface stress are considered on the 

wrinkling of the film. Also, a non‒uniform model for the substrate is proposed and the 

accumulative effect of the wrinkling on the soft regions of the substrate is considered. 

The results of different chapters represent some clear insights in the physics of 

wrinkling of thin film structures. They consider the effect of the non‒uniformity of the 

system with finite length on the wrinkling parameters by proposing explicit expressions 

in terms of the loading and structural parameters and show the accumulation of the 

wrinkles at some special positions. In other words, they provide adequate insight in the 

physics and mechanics of wrinkling of thin film structures. 

 

9.2 Contribution of the Research 

In this work, the instability of thin film structures as buckling and wrinkling are 

considered and the loading parameters and mode shape of the film at the instability onset 

and after that are determined. Other works on the wrinkling of the substrate‒bonded films 

mainly use the homogenous assumption for the film material properties with uniform 

thickness all over the domain and ignore the effect of non‒uniformity of the film and 

substrate and boundary conditions of the system with finite length. However, in this work 

such issues are focused and their effects on the load and pattern of the instability are 

studied. In contrast with the other works, the assumption of the uniformity of the periodic 

pattern of the wrinkled film is neglected and various parameters such as the 

non‒uniformity of the film and substrate including the geometrical and material 

non‒uniformity for films with finite and infinite length under compressive loading are 

studied on the wrinkling load and pattern. The results of the work show that the 

non‒uniformity of the film‒substrate has a significant effect on the wrinkling parameters 

such that wrinkles accumulate at thinner and softer positions with smaller bending 

rigidity of the film. In comparison with other works, the wrinkling pattern is not uniform 

along the span and is affected by the non‒uniformity and boundary conditions of the film. 
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In addition, post‒wrinkling of the system which determines the behavior of the wrinkling 

amplitude is investigated and it is shown that the amplitude of the wrinkles grows by 

increasing the loading on the system. Consequently, by increasing the amplitude, a 

wrinkling‒folding transition appears such that the wrinkles of the film are substituted by 

one or few folds on the film. The threshold parameters of wrinkling‒folding transition are 

considered in this work and compared by other experimental works. These results 

propose new criteria for wrinkling‒folding transition in thin film structures. Moreover, 

considering the effect of the surface elasticity and residual stress on the wrinkling of 

Micro/Nano‒scale thin films provides better understanding in wrinkling of 

MEMS/NEMS. The results of this research are expected to increase the insight in the 

physics and mechanics of instability of thin film structures and open new windows in 

potential applications of thin film technology in various fields. 

 

9.3 Future Research Directions  

The thesis was motivated by the idea that non‒uniformity in the system induces specific 

effects on the wrinkling of the thin film structure. It was shown that the wrinkling pattern 

changes effectively for a non‒uniform film when the thickness or the mechanical 

properties of the system vary such that wrinkles accumulate at some particular locations. 

Accordingly, the wrinkling load of the system and wave number of the wrinkles also 

change. This idea was demonstrated for different systems with different sources of 

non‒uniformity in the system for one dimensional model. This non‒uniformity issue can 

also be explored for two dimensional models with different non‒uniformity effects on the 

system in different directions. As expectation, the wrinkles of the film accumulate at 

some specific locations, and the wavelength of the two dimensional wrinkling in each 

direction is affected by the non‒uniformity of the whole system depending on the 

modeling assumptions. On the other hand, the extension of the problem for Micro/Nano 

systems attracts great attention since for those systems the microstructure and thickness 

of the layers cannot be assumed as uniform. High non‒uniformity of such systems 

violates all the results obtained by the researchers for the wrinkling problem of the 

ultra‒thin layers based on the uniform assumption. These investigations need accurate 
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experimental works in laboratories which open new insight in physics of the wrinkling of 

the surfaces. Another important issue is the surface effects on the two‒dimensional 

buckling of thin film/film‒substrate structures, which needs further investigation for the 

full potential applications of nanofilm‒based devices in NEMS. 

In addition, many applications are introduced based on the results obtained from this 

thesis for wrinkling of a system. According to the results, the wrinkling load and 

wrinkling pattern of the film can be controlled by imposing special effects on the system. 

Doping of the film at some specific positions changes the material properties of the layer 

so that the stiffness of the film varies consequently. Carving the film at some positions or 

using special profile for etching of the film during deposition techniques also changes the 

thickness of the film. Hence, the wrinkles of the film accumulate around some particular 

positions of the non‒uniform film as shown in this work. This technique provides 

appropriate tools for controlling the wrinkling of the film. Consequently, controlling the 

wrinkling of the film is a promising tool in developing new tools and techniques in 

various fields such as sensor and actuators, elastomers in deformable electronics know as 

stretchable electronics and stretchable interconnectors [Wanger et al., 2004; Lacour et al., 

2003 and 2006; Watanabe et al., 2002], semiconductor devices [Yin et al., 2002], 

sandwich panel structures [Birman and Bert, 2004], biological assays [Cerda et al., 2002] 

and cell locomotion [Harris et al., 1980; Teixeira et al., 2003], microelectromechanical 

systems (MEMS) and nanoelectromechanical systems (NEMS) [Fu et al., 2006], 

metrology methods [Wilder et al., 2006], solar sails and gossamer spacecrafts [Imhof, 

1997], micro/nano structures and technologies [Schmid et al., 2003], and all the other 

fields related to physics and mechanics of wrinkling in science and technology.  
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