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Abstract

Multiple exercise options may be considered as generalizations of American-style options as

they provide the holder more than one exercise right. Examples of financial derivatives and real

options with these properties have become more prevalent over the past decade and appear in

sectors ranging from insurance to energy industries. Throughout the thesis particular attention

is paid to swing options although the methods described are equally applicable to other types of

multiple exercise options. This thesis presents two novel methods for pricing multiple exercise

option by simulation; the forest of stochastic trees and the forest of stochastic meshes. The

proposed methods are of particular use in cases where there is potentially a large number (≥3)

of assets underlying the contract and/or if a number of risk factors are desirable for modelling

the underlying price process.

These valuation methods result in positively- and negatively-biased estimators for the true

option value. We prove the sign of the estimator bias and show that these estimators are con-

sistent for the true option value. A confidence interval for the true option value is easily con-

structed. Examples confirm that the implementation of these methods is correct and consistent

with the theoretical properties of the estimators.

This thesis also explores in detail a number of methods meant to enhance the effectiveness

of the proposed simulation methods. These include using high performance computing tech-

niques which include both parallel computing techniques on CPU-clusters and General purpose

Graphics Processing Units (GPGPU) that take advantage of relatively inexpensive processors.

Additionally we explore bias-corrected estimators for the option values which attempt to esti-

mate the bias introduced at each time step by the estimator and then subtract this result. These

improvements are desirable due to the computationally intensive nature of both methods.

Keywords: Monte Carlo, Multiple Exercise Options, Dynamic Programming, Stochastic

Optimal Control, High Performance Computing
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Chapter 1

Pricing American-Style Options

An American-style option gives the holder the right but not the obligation to buy or sell the

underlying asset(s) at a prespecified price at any point up to and including the expiry of the

option. As discussed later in this thesis multiple exercise options are a generalization of this

type of financial derivative so this chapter includes an introduction to the pricing of American-

style options with the binomial tree and Monte Carlo methods. These pricing techniques serve

as a basis for pricing algorithms for multiple exercise options, the main focus of this thesis.

1



2 Chapter 1. Pricing American-Style Options

1.1 American-Style Options

An American-style option is a type of financial derivative that gives the holder the right but not

the obligation to buy or sell the underlying asset(s) at a prespecified price at any point up to

and including the expiry of the option. American-style options comprise most of the exchange

traded options in the United States.

The pricing of American options poses a challenging problem due to the fact that the option

may be exercised at any time up to and including its expiry. This means that the pricing problem

is path dependent. Indeed finding the value of an American option involves finding the optimal

exercise rule and using this to compute the expected discounted payoff of the option. As such

the valuation of these options is an example of an optimal stopping time problem.

The broader class of optimal stopping time or early exercise problems includes many im-

portant problems in Management Sciences and Operations Research such as development of

natural resources, project initiation or abandonment, maintenance scheduling, land use deci-

sions, as well as many others. Very few of these types of problems have closed form analytical

solutions, for example the Black-Scholes-Merton formula for pricing European-style options

does not have an American-style option analog. Other approaches such as binomial lattice

methods, PDE methods, variational inequalities and integral equations have been adopted for

pricing these types of derivatives. However all of these methods mentioned are limited in the

number of sources of uncertainty and the dimensionality of the underlying asset that can be

practically incorporated.

Of particular interest to this thesis are the binomial method of Cox et. al. [1] and its ex-

tension to more general diffusion processes [2]. Both have computational costs that grow

exponentially in the number of state variables. Another drawback is that convergence proofs

for lattice based methods are notoriously difficult, in general [3]. A detailed description of the

binomial tree method is given later in this chapter in Section 1.2.

Simulation based methods for asset pricing were introduced in [4] for European-style op-

tions. The generality of these methods allow for a large variety of assets to be handled. Unlike

lattice methods the convergence rates here are independent of the number of state variables.

However, with these methods the speed of computation can be a significant problem. In the

seminal paper of Tilley [5] it was shown that simulation based approaches were suitable for

optimal stopping problems. Prior to this work the major issue with valuing early exercise op-

tions was that they are generally solved via backward in time algorithms due to the optimal

exercise policy being easily determined at expiry. Simulation methods are inherently forward

based approaches where the paths of the state variable are simulated forward in time and then

a pre-specified exercise policy is applied to the state variable trajectory to determine the path
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price. Tilley’s method used a single state variable and at each time period simulated paths are

ordered by asset price and bundled into groups and an optimal exercise decision is estimated

for each group. Drawbacks of this approach are outlined in [5, 6].

Two other simulation methods of particular importance to this thesis are the Stochastic

Tree and Stochastic Mesh methods. In [6, 7] the authors develop and provide theoretical sup-

port for each method. In both cases positively and negatively biased estimators are used to

form upper and lower bounds for the value of an American option with all estimators converg-

ing asymptotically to the true price. The main drawback of the stochastic tree method [6] is

that its computational effort grows exponentially with the number of exercise opportunities.

This results in a method that is only practical with a relatively modest number of exercise op-

portunities. In contrast the stochastic mesh method allows for a larger, but still finite number of

exercise dates to be computationally feasible. This method is linear in the number of exercise

opportunities and quadratic in the size of the mesh. Detailed descriptions of both the Stochastic

Tree and Mesh methods are provided in Section 1.3.

Other simulation methods for pricing American Options include the regression based meth-

ods of [8,9]. These methods all combine simulation with regression on a set of basis functions

to develop low dimensional approximations to high dimensional dynamic problems. Although

the performance of these methods does not decrease with dimensionality, these methods suffer

from other drawbacks. In Least-squares Monte Carlo methods one must select a set of basis

functions on which to regress to estimate continuation values. In general only a complete (in-

finite) set of basis functions results in continuation value estimators that are consistent for the

true option value. In practice, of course, a finite set of basis functions is used and introduces an

approximation error. Continuation value estimators are consistent for the true approximation

value and not the true option value [10, 11].

Duality based methods as in [12] pair an upper bound to a lower bound generated by a

simulation based method and in doing so create an interval estimate for the option value. This

method then inherits the benefits and drawbacks of the simulation method used to generate

its lower bound. An alternative to solving a backward dynamic program are policy iterations

for dynamic programs. Where backward schemes require the calculation of nested conditional

expectations prior to the time 0 value being approximated, iteration methods such as [13] yield

approximations of the time 0 value at each iteration of the dynamic program.

1.1.1 Problem Formulation

Define a process U(t) on 0 ≤ t ≤ T , where T is the expiry time of the option, to represent

the discounted payoff from exercising an American option at time t. If we are to represent the
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set of all possible stopping times in [0,T ] by T the problem is to find the optimal expected

discounted payoff,

sup
τ∈T

E [U(τ)] , (1.1)

which may be considered to be the option price under appropriate conditions [14].

We may specialize this to the case of an American put option with strike price K and a

single underlying asset with the time t price, S (t), and constant risk free rate r. Here the time 0

option value is

sup
τ∈T

E
[
e−rτ (K − S (τ))+] , (1.2)

where, E[·] denotes a risk-neutral expectation and

(x)+ =

 x if x ≥ 0

0 if x < 0.

To obtain numerical approximations for the American option price we typically restrict the

set T to be composed of m fixed exercise opportunities t0 < t1 < . . . < tm. We assume that the

path of the underlying asset is a Markov chain, {S i}, i = 0, . . . ,m, that can be generated given

the interval ti+1 − ti; which is to say that simulated values are not subject to discretization error.

1.1.2 Dynamic Programming Formulation

The option value can now be characterised via dynamic programming. Let the payoff function

for a given timestep ti be denoted by hi and the option value at the same time step be denoted

Bi(s) given that S i = s. The initial option value B0(S 0) recursively computed through

Bm(s) = hm(s)

Bi(s) = max
{
hi(s),E

[
Di+1,i(S i)Bi+1(S i+1)|S i = s

]}
, (1.3)

i = m − 1, . . . , 0.

Here the function Di+1,i(S i) is the discount factor from time ti+1 to ti. More forms of discount-

ing, such as stochastic interest rates, can easily be incorporated into our proposed valuation

methods.

This general form in Equation 1.3 is the basis for most dynamic programming schemes.

This process of computing or estimating the conditional expectations in Equation 1.3 is the

main difficulty in pricing American options with a numerical scheme. This conditional expec-

tation is referred to as the continuation or hold value. In this discrete time setting this is the
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value in holding on to the option’s right to exercise until at least the next exercise opportunity.

An approximation to the continuation value, Ĥi(S i), at time-ti determines a stopping rule

for the option

τ̂ = min
{
ti ∈ T : hi(S i) ≥ Ĥi(S i)

}
. (1.4)

With these formulations of the American option pricing problem and dynamic programing

we dedicate the remainder of this chapter to describing in detail the specific valuation methods

most relevant to this thesis.

1.2 Tree Based Methods

In the case of [1] a binomial tree structure as shown in Figure 1.1 was suggested to describe

the price paths of the underlying asset. Here given a value at the beginning of a time period the

asset may take just one of two values at the end of that period. That is to say that if at some

initial time the asset has a price of S 0 then at the end of the first time period it has a value of

uS 0 or dS 0 where u > 1 + r > d, with r being the risk free rate. If this inequality does not

hold then there would be an arbitrage opportunity involving a riskless bond and the asset. This

process continues to generate all possible paths through the tree.

S 0

dS 0

ddS 0

duS 0

1 − p

uS 0

uuS 0

p

Figure 1.1: Binomial tree with 2 periods

Consider now the initial option value B0 and the option values Bu
1 and Bd

1 after up and down

stock price moves, respectively. A portfolio containing a long position in ∆ shares and a short

position in a single option then we may calculate the value of ∆ which makes this portfolio

riskless. The value after an up move is ∆uS 0 − Bu
1 and after a down move is ∆dS 0 − Bd

1.
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Equating these and solving for ∆ gives

∆ =
Bu

1 − Bd
1

S 0(u − d)
. (1.5)

For this value of ∆ the portfolio is riskless and therefore must grow at the riskfree rate, r

regardless of the change in the asset value. It then follows that S 0∆ − B0 = (uS 0∆ − Bu
1)e−r∆t,

where ∆t is the length of a period. Rearranging gives

B0 = e−r∆t
(
pBu

1 + (1 − p)Bd
1

)
, (1.6)

where,

p =
er∆t − d
u − d

. (1.7)

Here p is interpreted as the risk-neutral probability of an upward move in the asset price.

This method is easily generalized to any number of periods. In Figure 1.1 the option values

at expiry, Buu
2 , B

ud
2 and Bdd

2 , are determined from the payoff function and the remaining option

values at prior time steps are given by

Bu
1 = e−r∆t

(
pBuu

2 + (1 − p)Bud
2

)
, (1.8)

Bd
1 = e−r∆t

(
pBud

2 + (1 − p)Bdd
2

)
, (1.9)

B0 = e−r∆t
(
pBu

1 + (1 − p)Bd
1

)
.

The choice of u and d are in practice determined from the stock price volatility, σ. They

are given by

u = A −
√

A2 − 1, (1.10)

d = A +
√

A2 − 1, (1.11)

where,

A =
1
2

(
e−r∆t + e(r+σ2)∆t

)
(1.12)

To return briefly to our discussion in the previous section regarding Equation 1.3 the time ti,

the conditional expectation seen there is what is being calculated in Equations 1.6, 1.8, and 1.9.

In this case the hold value is being calculated exactly from the underlying binomial model.

As mentioned previously lattice methods like the binomial tree are computationally efficient

compared to simulation based methods for cases of small number of underlyings and one or

two sources of uncertainty. However beyond this these methods become unfeasible. In the case
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of high dimensional underlyings the computational cost grows exponentially with the number

of state variables and in cases with more risk factors or more complicated payoff structures

these methods also become intractable. In these cases simulation based methods such as the

ones described in the following two section become preferable.

1.3 Monte Carlo Methods

1.3.1 Basics of Monte Carlo

Before describing the two simulation based methods for pricing American-style options we first

review some fundamental concepts of Monte Carlo simulation. In their simplest form Monte

Carlo (MC) methods consist of randomly sampling from the universe of possible outcomes and

taking the fraction of these which lie in a given set as an estimate of that set’s volume. Given a

sample size of n, an estimator β̃n is defined as a statistic (a function of the data) that is used to

infer the value of an unknown parameter, β.

The statement of the consistency of an estimator to the unknown parameter is

β̃n
p
→ β as n→ ∞, (1.13)

which is to say that for any ε > 0,

lim
n→∞

P
(∣∣∣β̃n − β

∣∣∣ > ε) = 0. (1.14)

The bias of an estimator is defined as

bias
(
β̃n, β

)
≡ E

[
β̃n

]
− β. (1.15)

An estimator is said to be unbiased if bias
(
β̃n, β

)
= 0, biased high (positive) if, bias

(
β̃n, β

)
> 0

and biased low (negative) if, bias
(
β̃n, β

)
< 0. The bias and its sign play important roles in this

thesis. The combination of high and low biased estimators allow us to construct confidence

intervals for the value of multiple exercise options.

Since this is so crucial to this work we now show that the combination of high and low

estimators can be nearly as effective as a single unbiased estimator. Take β̂+
n (α) and β̂−n (α) to

be sample means of n independent replications, for every value of a simulated parameter α.

Suppose that it can be shown that

E
[
β̂+

n (α)
]
≥ β ≥ E

[
β̂−n (α)

]
, (1.16)
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which is to say that β̂+
n and β̂−n are high and low biased estimators of β. Also suppose that Hn(α)

is the two standard deviation bound of β̂+
n (α) and similarly Ln(α) is the two standard deviation

bound of β̂−n (α), where both bounds go to zero as n→ ∞. Then

β̂+
n (α) ± Hn(α) (1.17)

β̂−n (α) ± Ln(α), (1.18)

define the 95% confidence intervals for E[β̂+
n (α)] and E[β̂−n (α)] respectively.

As shown in [6] by taking the upper limit of the high estimator’s confidence interval and

the lower limit of the low estimator’s confidence interval, we get the interval(
β̂+

n (α) + Hn(α), β̂−n (α) − Ln(α)
)
. (1.19)

which is a conservative 95% confidence interval for the value of β. Hence we are able to

construct a conservative confidence interval by combining the confidence intervals for two

oppositely biased estimators.

In the case of an unbiased estimator the central limit theorem gives us information about

the likely error in the estimate. For a random variable X, an estimator β̃n is the mean of n

independent and identically distributed samples. This is to say that

β̃n =
1
n

n∑
i=1

Xi (1.20)

with E[Xi] = β and Var[Xi] = σ2 < ∞. The central limit theorem asserts that the estimator

(β̃−β)/(σX/
√

n) converges in distribution to a standard normal random variable. Formally this

means that

lim
n→∞

P
(
β̃n − β

sX/
√

n
≤ x

)
= Φ(x) (1.21)

with P(·) the probability of some event occurring, Φ the cumulative standard normal distribu-

tion function and where the standard deviation, σX, is replaced by the sample standard devia-

tion, sX, since the former is rarely known in practice.

Another motivating feature of MC methods that we will mention repeatedly during this

thesis that the convergence of a MC estimator is independent of the dimension of the problem.

A simple illustration of this comes from numerical integration. The integral

β =

∫ b

a
f (x)dx = (b − a)

∫ b

a

f (x)
(b − a)

dx = (b − a)E
[
f (U)

]
(1.22)
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may be represented as the expectation, E
[
f (U)

]
, with U being a uniform random variable (RV)

on [a, b].

If we draw points U1,U2, . . . ,Un independently and evaluate f at these n points then aver-

aging the results and accounting for the volume produces the estimator,

β̃n =
b − a

n

n∑
i=1

f (Ui). (1.23)

The estimator, β̃n, is unbiased and consistent to the true value of the integral β. If f is square

integrable and we set

σ2
f =

∫ b

a
( f (x) − β)2 dx, (1.24)

then the error in the estimate, β̃n − β, by using (1.21) is approximately N
(
0,

σ2
f

n

)
, where N(µ, σ2

describes a random variable that is distributed normally with mean µ and variance σ2. This

implies a square-root convergence rate of the estimate.

Typically σ f would be unknown but could be estimated via the sample standard deviation

s f =

√√
1

n − 1

n∑
i=1

(
(b − a) f (Ui) − β̃n

)2
(1.25)

In comparision even the simple trapezoidal rule of numerical quadrature

β =
b − a

n

 f (a) + f (b)
2

+

n−1∑
i=1

f
(
a +

(b − a)i
n

) , (1.26)

has error O(n−2). So in the case of one-dimensional integrals MC is not competitive with

traditional methods.

However in the case of estimating an integral over [a, b]d the f and σ f change but the error

in the MC estimator is still of the form σ f
√

n . Hence the O(n−1/2) convergence rate holds for all

d whereas the error in the trapezoidal rule goes as O(n−1/d) giving a clear advantage to the MC

approach for d ≥ 3.

A key implication of asset pricing theory is that the value of a derivative security can be

represented as an expected value. Often the dimension of these expectation integrals can be

very large or even infinite.
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1.3.2 Generating Random Numbers

The heart of all MC simulations is a sequence of seemingly random numbers (RN) that are used

in the simulation. Since the computers used to generate these random numbers are inherently

deterministic the sequence of random numbers will not be truly random. However there is

potential for the sequence to mimic true randomness sufficiently for our needs.

A so called uniform pseudo random number generator (PRNG) is used as the basis of MC

simulations to generate a finite sequence of numbers u1, u2, . . . , un which have the following

properties,

(i) ui is U[0, 1],

(ii) ui’s are mutually independent.

The general considerations that should be taken into account are as follows:

Period Length MC simulations generate large volumes of RNs. All PRNGs will eventually

repeat themselves so in order to ensure a quality sequence of numbers it is preferred to

only use a small fraction of the generator’s period. Hence a longer period is desirable.

Speed Again due to the large volume of RNs required the speed at which the sequence can be

generated is paramount to the method being practically useful.

Quality A sequence of RNs is of no use if it does not successfully mimic true randomness.

Therefore the sequence must perform satisfactorily under various statistical tests.

Reproducibility It is often important to rerun a simulation while varying inputs. In this case

it is desirable to be able to use the same sequence of random numbers.

Skipping Ahead Given the great advantages of implementing parallel computing techniques

in MC simulation it is important to be able to skip ahead to different portions of the

sequence while still maintaining independent sequences of RNs.

Portability An algorithm should be able to generate RNs on all computing platforms. For

instance some generators rely on how overflow is handled on particular computers which

limits their portability.

In this thesis two generators in particular are used. The first is the Mersenne-Twister of [15]

which is a twisted generalised feedback shift register generator. The particular implementation

we use is MT19937-64 which has a period of 219937 − 1. This is used in the serial and MPI

versions of our code in Chapters 3 and 4. In Section 4.5 where we consider GPGPU techniques
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we use the method of [16]. This method is shown to be more efficient on GPUs then other

traditional methods.

RNGs generate uniform random numbers however most MC simulations entail sampling

from non-uniform distributions. Of particular interest in financial mathematics is the standard

normal distribution, N(0, 1). The density function of a standard normal is given by

φ(x) =
1
√

2π
e−x2/2, ∞ < x < ∞

and the cumulative distribution function is

Φ(x) =
1
√

2π

∫ x

−∞

e−u2/2du.

If we wish to generate non-standard normal distributions we may use the fact that if Z ∼ N(0, 1)

then µ + σZ ∼ N(µ, σ2).

When generating non-uniform RVs two common methods are inverse transform and acceptance-

rejection. In the case of Normal RVs the lack of a closed form solution for the inverse of the

normal CDF and the relatively slow speed of acceptance-rejection methods have lead to alterna-

tive methods. Although there are many approximation methods, [17], to generate normal RVs,

the method used for this thesis is the Box-Muller algorithm [18]. It generates two independent

bivariate standard normals from two U[0, 1] RVs.

The method is based on the following two properties of independent normal variates;

R = Z2
1 + Z2

2 is exponentially distributed with mean 2; the ordered pair (Z1,Z2) is uniformly dis-

tributed on a circle of radius
√

R centered at the origin. The algorithm begins by generating two

uniform RVs, U1,U2 ∼ U[0, 1]. U1 is used to generate an exponential RV R and U2 is trans-

formed to become V = 2πU2 ∼ U[0, 2π]. The components of the point (
√

R sin V,
√

R cos V)

are then independent normally distributed RVs. The algorithm is as follows,

• Generate two uniform [0,1] RVs, U1,U2

• Calculate R = −2 log U1

• Calculate V = 2πU2

• Calculate Z1 =
√

R sin V and Z2 =
√

R cos V

1.3.3 Sample Path Generation

Being able to generate sample paths of the underlying asset(s) is fundamental to MC methods.

An important stochastic process used in quantitative finance is geometric Brownian motion
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(GBM). GBM is the result of exponentiating Brownian motion (BM) and therefore the methods

for simulating BM are also methods for simulating GBM. Note that the valuation algorithms

in Chapters 3 and 4 accommodate general stochastic processes. Here we describe sample path

generation for GBM.

To review, BM on the interval [0,T ] is a stochastic process {W(t), 0 ≤ t ≤ T } such that,

(i) W(0) = 0.

(ii) the mapping t 7→ W(t) is, with probability one, continuous for all [0,T ].

(iii) the increments W(tm) −W(tm−1), . . . ,W(t1) −W(t0) are independent for all 0 ≤ t0 ≤ · · · ≤

tm ≤ T .

(iv) W(ti+k) −W(ti) ∼ N(0, ti+k − ti) for all 0 ≤ ti ≤ ti+k ≤ T .

From W(t) and constants µ and σ we may construct a process by setting X(t) = µt +σW(t).

This process has the dynamics given by

dX(t) = µdt + σdW(t). (1.27)

Due to the independent increments, simulating the points W(ti) or X(ti) is straightforward.

For independent standard normal random variables Z1, . . . ,Zk and beginning from the initial

value, subsequent path values may be generated as follows

W(ti+1) = W(ti) +
√

ti+1 − tiZi+1, (1.28)

X(ti+1) = X(ti) + µ(ti+1 − ti) +
√

ti+1 − tiZi+1, (1.29)

for i = 1, . . . ,m.

In comparison with a true BM process the values of Equations 1.28–1.29 are exact in that

their joint distributions are exact at the time points t1, . . . , tm.

As a model for prices, S (ti), GBM is more desirable than BM because it does not allow for

negative values and also it is the percentage changes, S (ti+1)−S (ti)
S (ti)

, that are independent in GBM

rather then the absolute changes as in BM.

The dynamics of GBM are typically written as

dS (t)
S (t)

= µdt + σdW(t), (1.30)

where the parameter µ is referred to as the drift parameter and σ is referred to as the volatility

parameter. Using Itô’s lemma it can be shown that the above stochastic differential equation
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has solution

S (t) = S (0) exp
(
(µ −

1
2
σ2)t + σW(t)

)
, (1.31)

where S (0) is the initial value of the process. A simple recursive relation may be used to

generate successive values of this process for 0 ≤ t1 · · · ≤ tm ≤ T ;

S (ti+1) = S (ti) exp
(
(µ −

1
2
σ2)(ti+1 − ti) + σ

√
ti+1 − tiZi+1

)
, (1.32)

for i = 1, . . . ,m − 1 and where Z1, . . . ,Zk are independent standard normal random variables.

This method again introduces no discretization error at times t1, . . . , tm.

1.3.4 Stochastic Tree Method

We now define the vector valued Markov process {S0,S1, . . . ,Sm} on Rd as the vector of under-

lying asset prices, where d is the number of underlyings. The value of the American option

written on the underlyings at time ti is

Bi = max
ti≤τ≤tm

E [hτ(Sτ)] , (1.33)

where hτ(Sτ) is the discounted payoff of the option at time τ. Using dynamic programming this

can be solved by the recursive relation

Bm = hm(Sm), (1.34)

Hi = E
[
Di+1,iBi+1|Zi

]
, (1.35)

Bi = max (hi(Si),Hi) , (1.36)

i = m − 1, . . . , 0, (1.37)

whereZi is the filtration of the system at time-ti and Di+1,i is the discount factor which without

loss of generality we disregard for the remainder of this section. Here Hi is the time-ti hold or

continuation value representing the expected value to the holder if they decided not to exercise

at ti.

The stochastic tree method produces estimates for the value of an American option. Two

main estimators are outlined below, both of which converge to the true option value and may

be used to generate confidence intervals. The requirements for this method are little more than

the ability to generate Markov chains to represent the underlying asset.

The tree itself is constructed beginning at an initial state S1
0 = S0 from which b independent

successor node states (b ≥ 2) are randomly simulated. Then for each time-t1 node, S j1
1 again
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randomly simulate b successor nodes, continuing this process until the mth time step and in

doing so create a tree that recombines with probability zero. A generic node is then represented

by S j1 j2··· ji
i which for convenience we represent as Sj

i to make the notation more compact. The

basic structure of a stochastic tree with 2 timesteps and a branching factor of 3 is shown in

Figure 1.2. As can be seen from this diagram one of the main drawbacks of this method is

that the computational effort is exponential in the number of time steps although it is not in the

number of dimensions.

S0

S0
1

S00
2

S01
2

S02
2

S1
1

S10
2

S11
2

S12
2

S2
1

S20
2

S21
2

S22
2

Figure 1.2: Stochastic Tree at timestep 2, b = 3

The first estimator we discuss is the high-biased estimator, denoted V̂ . Working backward,

the above recursion relation takes the form

V̂ j
m = hm(Sj

m) (1.38)

Ĥj+
i =

1
b

b∑
k=1

V̂k
i+1 (1.39)

V̂ j
i = max

{
hi

(
Sj

i

)
, Ĥj+

i

}
, (1.40)

where k = {j, k} and the + signifies the positive bias of the hold estimator.

Intuitively the high bias of the estimator can be reasoned by the fact that it unfairly looks

into the future when making the decision. This conditioning on future information allows

for better decision than otherwise possible and hence this estimator should give an estimate

greater than the true value. A rigorous proof of the high bias property of this estimator is found

in Theorem 2 of [6] and is restated here due to its importance. In what follows we expand the
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notation to reduce the number of indices that are used and include the branching factor, b, as

an argument for the estimator.

Theorem 1 (Stochastic tree high estimator bias) The stochastic tree high estimator V̂0(b,S0)

is biased high. That is,

E
[
V̂0(b,S0)

]
≥ B0(S0), (1.41)

where B0(S0) is the true value.

The consistency of this estimator is described, and subsequently proven, in Theorem 1

of [6] and again we restate it here.

Theorem 2 (Stochastic tree high estimator consistency) The Stochastic tree high estimator

V̂0(b,S0) converges to the true value B0(S0) in the p-norm as b→ ∞. That is,

‖ E
[
V̂0(b,S0)

]
− B0(S0) ‖p→ 0. (1.42)

An alternative to the high estimator is the low estimator which we denote v̂. As its name

suggest this estimator is biased low. Consider an arbitrary node in the tree with i < m. Then

divide its successor nodes into two disjoint sets X1 and X2 with sample means X̄1 and X̄2. We

then define the exercise decision as

v̂ =

h if X̄1 ≤ h

X̄2 otherwise.
(1.43)

This leads to many possible choices for the exact definition of the low estimator. Here we

have chosen the set X2 to be a single branch; then we average over all b possibilities. This

leads to the iteration scheme

v̂j
m = hm(Sj

m) (1.44)

Ĥj−
il =

1
b − 1

b∑
k=1
k,l

v̂k
i+1 (1.45)

v̂j
il =

hi

(
Sj

i

)
Ĥj−

il ≤ hi

(
Sj

i

)
v̂l

i+1 Ĥj−
il ≥ hi

(
Sj

i

) (1.46)

v̂j
i =

1
b

b∑
l=1

v̂j
il, (1.47)



16 Chapter 1. Pricing American-Style Options

where again k = {j, k} and l = {j, l} and the − represents the negative bias of the hold value

estimator.

The source of its low bias comes from a separation of the exercise decision from the value

received upon continuation which leads to suboptimal decisions. A statement and rigorous

proof of this is shown in Theorem 4 of [6] and restated here. Again we expand our notation for

convenience and include the branching factor, b, as an argument for the estimator.

Theorem 3 (Stochastic tree low estimator bias) The stochastic tree low estimator ν̂0(b,S0) is

biased low. That is,

E [v̂0(b,S0)] ≤ B0(S0), (1.48)

where B0(S0) is the true value.

As with the high biased estimator the low estimator is also consistent. The following theo-

rem is stated and proven in Theorem 3 of [6],

Theorem 4 (Stochastic tree low estimator consistency) The stochastic tree low estimator v̂0(b,S0)

converges to the true value B0(S0) in the p-norm as b→ ∞. That is,

‖ E [v̂0(b,S0)] − B0(S0) ‖p→ 0. (1.49)

A third estimator, the interleaving estimator, may also be considered. It is called the in-

terleaving estimator because it is a blend of the high and low estimators. The implementation

involes applying a backward induction estimate identical to that of the high estimator and then

applying a sub-optimal stopping rule. However in this thesis we do not consider results gen-

erated by this estimator. For details on the implementation of the stochastic tree method refer

to [6] for pseudo code describing a Depth-First Processing approach to the problem.

1.3.5 Bias Reduced Stochastic Tree

As an extension of the stochastic tree described in the previous section the authors of [19]

propose a statistical method for reducing price estimator bias. An approximation for estimator

bias is derived using large sample theory which is easily evaluated in a simulation. Subtract-

ing the bias approximation results in significantly improved bias-corrected estimators at each

exercise opportunity. This unique approach to bias correction is quite useful in that it; retains

the favourable properties of the stochastic tree method; it is relatively simple to implement by

modifying a few lines of code in existing algorithms; it does not increase the computational

time; and it does not increase estimator variance.
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The numerical results displayed in Section 3 of [19] show that the corrected estimators are

always better than the uncorrected versions across all combinations of option moneyness (strike

to spot price ratio), number of exercise opportunities and sample size. In addition it is shown

that, for a desired level of accuracy, the corrected estimators can be computed much faster than

the uncorrected estimators, and for a given amount of computing time, the corrected estima-

tors are much more accurate than the uncorrected estimators. Also, by allowing for a better

tradeoff between decreasing branching factor in exchange for an increased number of runs, the

technique permits increased computational efficiencies over trivial parallel implementations of

existing algorithms.

In Section 2 of [19] the authors derive expressions for the time-ti bias of the high- and low-

biased estimators. Their expressions are in the form of Fi-conditional expectations. By letting

H̄j±
i = E[Ĥj±

i |Fi], where the ± represents the postive and negative bias estimators respectively,

they define the time-ti high- and low-bias as H̄j+
i − Hj

i = E[V̂ j
i+1 − Bj

i+1|Fi] and H̄j−
i − Hj

i =

E[v̂j
i+1 − Bj

i+1|Fi], respectively. Here we have suppressed the l index for the low estimator

because Ĥj−
il , l = 1, . . . , b are iid given Fi and so these statements hold regardless of the choice

of l. In what follows we will continue this practice when it is unambiguous to do so.

Consider the high-biased estimator, expanding the inner terms and then adding and sub-

tracting E[max(H̄j+
i+1, h

j
i+1)|Fi] inside the time-ti bias definition splits this expression into what

the authors refer to as a local (Equation 1.50) and a global (Equation 1.51) component, namely,

E
[
max

(
Ĥj+

i+1, h
j
i+1

)
−max

(
H̄j+

i+1, h
j
i+1

)
|Fi

]
(1.50)

+ E
[
max

(
H̄j+

i+1, h
j
i+1

)
−max

(
Hj

i+1, h
j
j+1

)
|Fi

]
. (1.51)

Focusing on the local component the authors show that the main source of bias is due to

exercising incorrectly. This implies that significant contributions are limited to the region about

the exercise boundary as even poor estimators are unlikely to result in incorrect exercise away

from the boundary. Similar analysis in [19] shows that the low-biased estimator may also be

split into a local and global component and that the local component for the low-estimator

arises from exercising incorrectly. They summarize these contributions in tables which we

reproduce here as Tables 1.1 and 1.2, respectively. Here, Ŷ j±
i = Ĥj±

i − hj
i and Ȳ j±

i = H̄j±
i − hj

i .

From these results it is also evident why the estimators have their respective biases.

Equations involving Ȳ j±
i are not of much use from a numerical perspective as they are

not directly observable and replacing them with the estimators Ŷ j±
j immediately collapses the

bias expressions to zero. It is therefore necessary to incorporate additional knowledge of the

distribution. The time-ti+1 hold value estimators are averages of the time-ti+2 option value

estimators which, for the stochastic tree, are independent and identically distributed conditional
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Held:
Ŷ j+

i+1 > 0
Exercised:
Ŷ j+

i+1 ≤ 0

Should Hold:
Ȳ j+

i+1 > 0 0 −Ŷ j+
i+1

Should Exercise:
Ȳ j+

i+1 ≤ 0 Ŷ j+
i+1 0

Table 1.1: The local error in the time-ti+1 high-biased hold value estimator. Note that this error
is always non-negative.

Held:
Ŷ j−

i+1 > 0
Exercised:
Ŷ j−

i+1 ≤ 0

Should Hold:
Ȳ j−

i+1 > 0 0 −Ȳ j−
i+1

Should Exercise:
Ȳ j−

i+1 ≤ 0 Ȳ j−
i+1 0

Table 1.2: The local error in the time-ti+1 low-biased hold value estimator. Note that this error
is always non-positive.

on Fi+1.

The Central Limit Theorem is used to approximate the distribution of the estimators in

deriving these bias approximations. Assuming that Ŷ j±
i can be replaced with Ŷ j±∗

i which is

normally distributed with mean Ȳ j±
i and variances given by the conditional variances of the

time-ti+2 option value estimators the approximate bias for the high and low biased estimators

are

∣∣∣Ŷ j+∗
i+1

∣∣∣ Φ
 −

∣∣∣Ŷ j+∗
i+1

∣∣∣√
Ŵ j

i+1/b

 (1.52)

and

∣∣∣Ŷ j−∗
i+1

∣∣∣ Φ
 −

∣∣∣Ŷ j−∗
i+1

∣∣∣√
ŵj

i+1/b

 −
√

ŵj
i+1

b
φ


∣∣∣Ŷ j−∗

i+1

∣∣∣√
ŵj

i+1/b

 , (1.53)
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respectively, where Φ(·) and φ(·) are the standard normal cdf and pdf respectively and Ŵ j
i and

ŵj
i are the sample variances given by

Ŵ j
i =

1
b − 1

b∑
k=1

V̂k
i+1 −

1
b

b∑
p=1

V̂p
i+1


2

(1.54)

and

ŵj
il =

1
b − 1

b∑
k=1
k,l

v̂k
i+1 −

1
b

b∑
p=1
p,l

v̂p
i+1


2

, (1.55)

with k = {j, k} and p = {j, p}.

Then replacing the quantities Ȳ j±∗
i with their sample estimates Ŷ j±∗

i Equations 1.52 and 1.53

are subtracted from their corresponding uncorrected estimators yielding

V̂ j
i = max

{
Ĥj+

i , h
j
i

}
−

∣∣∣Ŷ j+
i

∣∣∣ Φ
 −

∣∣∣Ŷ j+
i

∣∣∣√
Ŵ j

i /b

 (1.56)

and

v̂j
i =

1
b

b∑
l=1


hi

(
Sj

i

)
Ĥj−

il ≤ hi

(
Sj

i

)
v̂l

i+1 Ĥj−
il ≥ hi

(
Sj

i

) (1.57)

−
∣∣∣Ŷ l−

i,l

∣∣∣ Φ
 −

∣∣∣Ŷ l−
i,l

∣∣∣√
ŵl

i,l/b

 −
√

ŵl
i,l

b
φ


∣∣∣Ŷ l−

i,l

∣∣∣√
ŵl−

i,l/b


 ,

respectively, where l = {j, l}.

Using these bias-corrected estimators, the time-ti bias becomes

E
[
max

(
Ĥj+

j+1, h
j
i+1

)
−max

(
H̄j+

i+1, h
j
i+1

) ∣∣∣∣∣ Fi

]
(1.58)

+ E
[
max

(
H̄j+

i+1, h
j
i+1

)
−max

(
Hj

i+1, h
j
i+1

) ∣∣∣∣∣ Fi

]
(1.59)

− E

∣∣∣Ŷ j+
i+1

∣∣∣ Φ
 −

∣∣∣Ŷ j+
i+1

∣∣∣√
Ŵ j

i+1/b


∣∣∣∣∣ Fi

 (1.60)
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for the high-biased version and

E
[
IĤj−

i+1>hj
i+1

H̃j−
i+1 + IĤj−

i+1≤hj
i+1

hj
i+1 −max(H̄j−

i+1, h
j
i+1)

∣∣∣∣∣ Fi

]
(1.61)

+ E
[
max

(
H̄j−

i+1, h
j
i+1

)
−max

(
Hj

i+1, h
j
i+1

) ∣∣∣∣∣ Fi

]
(1.62)

− E

∣∣∣Ŷ j−
i+1

∣∣∣ Φ
 −

∣∣∣Ŷ j−
i+1

∣∣∣√
ŵj

i+1/b

 +

√
ŵj

i+1/b φ


∣∣∣Ŷ j

i+1

∣∣∣√
ŵj−

i+1/b


∣∣∣∣∣ Fi

 (1.63)

for the low-biased version, where Equations 1.58 and 1.61, 1.59 and 1.62, and 1.60 and 1.63

are the local bias, global bias and corrections components, respectively.

The local and correction components asymptotically cancel as the sample size gets large,

leaving just the global components. Applying Jensen’s inequality to move the absolute value

inside the expectation and applying the inequality |max(x, y) − max(u, v)| ≤ |x − u| + |y − v| to

the absolute value of the global component gives∣∣∣∣E [
max

(
H̄j±

i+1, h
j
i+1

)
−max

(
Hj

i+1, h
j
i+1

)
|Fi

]∣∣∣∣
≤ E

[∣∣∣H̄j±
i+1 − Hj

i+1

∣∣∣ |Fi

]
= E

[∣∣∣∣E [
Ĥj±

i+1|Fi+1

]
− Hj

i+1

∣∣∣∣ |Fi

]
,

which shows it to be bound by the time-ti+1 bias. Similarly the time-ti+1 bias is bound by the

time-ti+2 bias. Continue in this fashion through to the next-to-last exercise opportunity m−1 and

note that the time-tm−1 hold-value estimator is unbiased. Thus, the global bias is also accounted

for. Specifically, the propagation of bias across exercise opportunities is at most of the same

order as the difference between the local bias and the correction component.

1.3.6 Stochastic Mesh Method

The stochastic mesh is a method for American option pricing and more general optimal stop-

ping time problems. The mesh construction begins with the initial state vector S0 and then the

state transition function is applied to produce state vectors S j
i for j = 1, . . . , b and i = 1, . . . ,m,

where b is the chosen mesh size. This can be seen illustratively on the left in Figure 1.3. The

individual mesh points S j
i and Sk

i+1 are then tied together by a set of weights ω(i,S j
i ,S

k
i+1) = ω

jk
i ,

which are defined below. This is illustrated on the right of Figure 1.3. Following the descrip-

tion given in [22] Section 8.5.2 we now describe how the mesh is generated and the weights

are determined.

Suppose our state space to be a Markov chain (S0,S1, . . . ,Sm) in Rd with transition densities
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Figure 1.3: Stochastic Mesh with 3 timesteps and b = 3

f1, . . . , fm. This is to say that for s ∈ Rd and for A ⊆ Rd, we have that

P {Si ∈ A|Si−1 = s} =

∫
A

fi(s, y)dy, (1.64)

for i = 1, . . . ,m.

Now consider the marginal density of some Si in our chain. For fixed S0 we have the

marginal density for S1, g1(·) = f1(S0, ·). The marginal densities for other Si, i = 2, . . . ,m are

given by,

gi(y) =

∫
gi−1(s) fi(s, y)ds. (1.65)

The true hold value, Hi(s), for an option in state s at time ti is

Hi(s) = E [Bi+1 (Si+1) |Si = s] =

∫
Bi+1(y) fi+1(s, y)dy, (1.66)

and in what follows it is shown that the purpose of the weights as mentioned is to correct for

the discrepancy in how the future time nodes were generated. There are several possible ways

that one could imagine for how these nodes are generated and each way could possibly have

a different weight function associated with it. We now explore some of these possibilities in

order to justify the choice used in [7] and this thesis.

First, suppose that each Sk
i+1 for k = 1, . . . , b is generated independently from all others,

with density g. If we also suppose that we know all the true option values, Bi+1(Sk
i+1) and that g

is the marginal density from our Markov chain then the average over the true option values as

b→ ∞ is

1
b

b∑
k=1

Bi+1(Sk
i+1)→ E

[
Bi+1(Sk

i+1)
]

=

∫
Bi+1(y)g(y)dy,

which is not in general equal to 1.66 and is in fact the unconditional expectation at ti+1 instead
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of the desired conditional expectation.

Here we see the meaning of our previous statement that the weights are meant to correct

for the fact that the mesh nodes were generated from density g instead of density f . If we take

the weight function to be

ω
jk
i =

fi+1(S j
i ,S

k
i+1)

g(Sk
i+1)

, (1.67)

which is the likelihood ratio connecting the transition density to the mesh density, then we have

that

1
b

b∑
k=1

ω
jk
i Bi+1(Sk

i+1)→ E
[
ω

jk
i Bi+1(Sk

i+1)
]

=

∫ fi+1(S j
i , y)

g(y)
Vi+1(y)g(y)dy

=

∫
Vi+1(y) fi+1(S j

i , y)dy

= Hi(S j
i ).

Above we had assumed that all of the nodes were generated independently, however in

our case this is not true. Even so there is still some flexibility in the choice of weights and

construction method.

First we begin by considering the independent path method shown in left panel of Fig-

ure 1.3. Here sequences of asset values (S j
1, . . . ,S

j
m) for j = 1, . . . , b are independent of one

another. Hence for k , j, Sk
i+1 is independent of S j

i and therefore the conditional distribution of

Sk
i+1 given S j

i is just the unconditional distribution which has density gi+1. In the case of k = j

the distribution has the density of the transitional density fi+1 and so no weight is needed. This

means that

ω
jk
i =


fi+1(S j

i ,S
j
i+1)

gi+1(Sk
i+1)

if k , j

1 if k = j
(1.68)

Another mesh construction that may be considered consists of generating nodes at time-ti+1

by randomly selecting nodes at time-ti, with replacements, from which to produce the successor

by sampling from the transition density fi+1(S j
i , ·). This procedure is repeated until all b nodes

are filled. Then given, Si, the nodes at time-ti+1 are i.i.d. with density equal to the average of

the transition densities
1
b

b∑
j=1

fi+1(S j
i , ·), (1.69)
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since each time-ti node is equally likely to be chosen. This gives a weight function of

ω
jk
i =

fi+1(S j
i ,S

k
i+1)

1
b

∑b
l=1 fi+1(Sl

i,S
k
i+1)

. (1.70)

Further consideration of this construction method reveals that if we make the modification

to use stratified sampling over the index j of S j
i , we choose exactly b strata and we draw exactly

one from each stratum then this is exactly the same as the independent path method. As such

the weights in Equation 1.70 are equally applicable to the independent path method.

The authors of [7] make their choice of which mesh construction method and weight func-

tion based on considering the pricing of a European option with the stochastic mesh. It is

important to note that there is no reason to use this method to price a European option, how-

ever, what follows is taken as evidence that their particular choices are beneficial when carried

over to the case of pricing American option.

When considering the pricing of a European option with the mesh, the lack of early exercise

rights leads to the exercise decision at the time prior to expiry collapsing to just the hold value

at that node in the mesh. It can be easily shown that this leads to a option price given by

V̂0 =
1

bm

∑
j1,..., jm

m∏
i=2

ωi−1
ji−1 jihm(Si

m), (1.71)

where ji = 1, . . . , b, and i = 1, . . . ,m. This is simply the average over all bm paths through

the mesh of the payoffs at expiry multiplied by the weights of each of the arcs in those paths.

Rearranging gives

V̂0 =
1
b

b∑
jm=1

hm(S jm
m )

 1
bm−1

∑
j1,..., jm−1

m∏
i=2

ωi−1
ji−1 ji

 . (1.72)

The term in parenthesis has an expected value of 1 when the weight functions are given by

likelihood ratios. Rewriting that term gives

1
b

b∑
jm−1

ω
jm−1, jm
m−1 · · ·

1
b

b∑
j1

ω
j1, j2
m−1 . (1.73)

Returning to Equation 1.70 it is easily seen that

1
b

b∑
j

ω
j,k
i = 1. (1.74)

Therefore choosing weights given by (1.70) leads automatically to the term in the parenthesis
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of Equation 1.70 being identically 1 and a price for the European option being given by

V̂0 =
1
b

b∑
jm=1

hm(S jm
m ), (1.75)

as expected.

With other choices of weights, including those shown above, the term in question is not

necessarily identically equal to 1 and therefore an exponentially growing variance build up

may occur along a trajectory through the mesh as weights are multiplied together.

We may now define the mesh estimator, V̂0, as a positively biased estimate of the option

determined by moving backward in time through the mesh beginning at expiry. Using dynamic

programming the recursive relation for valuation is

V̂ j
m = hm(S j

m) (1.76)

Ĥ j
i =

1
b

b∑
k=1

ω
jk
i V̂k

i+1 (1.77)

V̂ j
i = max

(
hi(S j

i ), Ĥ
j
i

)
, (1.78)

i = m − 1, . . . , 0, (1.79)

where we have neglected a discounting factor without loss of generality.

With this we now have a complete description of the algorithm for the mesh estimator. In

terms of computational intensity the effort involved in generating the state vectors is propor-

tional to b × m. The effort for evaluating the mesh via Equations (1.76)– (1.79) is b2 × m.

Hence the algorithm is quadratic in the mesh parameter b and linear in the number of exercise

opportunities.

There are two key properties of the mesh estimator which we now discuss. The first regards

the bias of the estimator described in Equations (1.76)– (1.79). We restate here for convenience

Theorem 1 from Broadie and Glasserman, 2004,

Theorem 5 (Mesh estimator bias) The mesh estimator V̂0(b,S0) is biased high. That is,

E
[
V̂0(b,S0)

]
≥ B0(S0)

for all b.

For a proof of this theorem refer to [7]. Intuitively the high bias of the estimator can be

reasoned by the fact that it unfairly looks into the future when making the exercise decision.
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This conditioning on future information allows for better decisions than otherwise possible and

hence this estimator is greater then the true value on average.

The second property regards the convergence of the mesh estimator. For a rigorous proof

and assumptions on the density fi(Si,Si+1) we again refer the reader to Broadie and Glasserman,

2004. For convenience we restate Theorem 2 of that paper here.

Theorem 6 (Mesh estimator convergence) Let p̃ > p > 1. Under the assumptions for fi(Si,Si+1),

‖ V̂i(b, s) − Bi(s) ‖→ 0

as b→ ∞, for all s and i.

Here ‖ X ‖= E[|X|p]1/p is the p-norm and p̃ defines moment conditions given in [7].

This convergence in the p-norm implies a convergence in probability of the mesh estimator

to the true value and hence V̂0(b,S0) is a consistent estimator of the option value.

The remaining piece to the stochastic mesh is a second estimator that is biased low, called

the path estimator. The path estimator is constructed by simulating a path {X0,X1, . . . ,Xm},

which is independent of the mesh points S j
i , according to the density function fi(x, ·). The

mesh is used to estimate the path estimator stopping rule. Along the path the optimal policy

chooses to exercise the option at time τ̂ = min{i : hi(Xi) ≥ Ĥi(Xi)} giving a low estimate of the

option value to be v̂ = hτ̂(Xτ̂). An average low estimator which is conditional on the mesh is

calculated by simulating multiple paths independently each of which follows the stopping rule

defined by the mesh.

To evaluate the path estimator we can use the following dynamic programming scheme

v̂ j
m = hm(X j

m) (1.80)

Ĥ j
i =

1
b

b∑
k=1

ω
jk
i V̂k

i+1 (1.81)

v̂ j
i =

v̂ j
i+1 if hi(X j

i ) ≤ Ĥ j
i

hi(X j
i ) if hi(X j

i ) > Ĥ j
i

(1.82)

i = 0, . . . ,m − 1 (1.83)

for j = 1, . . . , np, where np is the number of paths, V̂ i
t is the mesh estimator described in Equa-

tions (1.76)– (1.79) and ω jk
i = ωi(X j

i ,S
k
i+1) is the same weight function previously described

with Si being the set of time-ti mesh points. Again we have suppressed the discounting factor

without a loss of generality.
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To see how to extend the weights, ω jk
i , to this case consider the weight along a path arc

from state x to mesh node Sk
i+1 denoted as ωk

i (x). Take x ∈ Rd but x < Ai as in the description

of the path estimator. Noting that in all choices of mesh construction and weight choices the

current node X j
i appears as an explicit argument of the transition density. Therefore we are

free to extend the arguments to any arbitrary points in Rd.

As in the previous section we now, for convenience, state two theorems from [7] regarding

the path estimator; in that publication Theorem 3 refers to the bias of the path estimator and

Theorem 4 refers to its consistency.

Theorem 7 (Path estimator bias) The path estimator v̂i(b,X0) is biased low. That is,

E [v̂0(b,X0)] ≤ B0(X0)

for all b.

Intuitively the source of the low bias in this estimator can be seen from equation (1.83).

The information used in determining whether to exercise or hold the option is independent of

that which is propagated in the event of a decision to exercise. Hence a suboptimal decision is

expected and therefore a lower valuation for the option is expected because no other policy can

be better then the optimal policy.

Theorem 8 (Path estimator convergence) Suppose the same condition hold as in Theorem 6

and that E[hi(S i)1+ε] < ∞ for all i = 0, . . . ,m, for some ε > 0. Suppose also that P(hi(S i) =

Bi(S i)) = 0 for all i = 0, . . . ,m − 1. Then

E [v̂0(b,X0)]→ B0(X0)

as b→ ∞.

So the path estimator is asymptotically unbiased.

The computational effort for the path estimator in addition to the mesh estimator is np × m

to generate the paths and np × b2 × m to evaluate the dynamic programing scheme in Equa-

tion (1.83).

In comparison with regression methods the mesh requires O(b2) whereas the regression

based methods are O(b). However the mesh will not suffer from approximation error from the

choice of regression basis functions as previously mentioned. In addition the likelihood ratio

method for calculating mesh weights is independent of the payoff of the option and therefore

the weights may be saved and used to price many different options unlike the regression based

methods which require a recalculation of the regression variables with each option being priced.
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Above we have outlined the computational cost associated with both the mesh and path

estimators. Another limitation in using the mesh is that, as described above, there is a need

for a transition density when determining the weights due to the choice of using likelihood

ratios. If the transition densities for the underlying Markov chain are unknown or are not easily

computable then it may be necessary to use approximations to easily computable densities in

order to generate the likelihood ratios.

Although cases where the transition densities are unknown or non-existent are not consid-

ered in this thesis we briefly overview how using a constrained optimization problem can be

used to determine the weights as shown in [20].

Suppose that we have some function G on the state space of the underlying Markov chain.

The conditional expectation

g(s) = E [G(Si+1)|Si = s] (1.84)

is a known function of the state s. If we fix a node S j
i and consider weights ω jk

i , k = 1, . . . , b

satisfying
1
b

b∑
k=1

ω
jk
i G

(
Sk

t+1

)
= g

(
S j

i

)
, (1.85)

then we can see that these are the weights that fix the pricing of the payoff G, to be received

at ti+1, from the perspective of node S j
i . If the option estimates Bi+1 are well approximated

by a linear combination of components of G, then such weights should provide a reasonable

approximation to the continuation value at S j
i .

From all feasible weights the authors of [20] select those that minimize an objective func-

tion of the form
b∑

k=1

C
(
ω

jk
i

)
, (1.86)

for any convex function C. A draw back of this method is that different choices of C will

result in differing sets of weights and therefore differing option values. In [20] it is shown that

either C(x) = x2/2 or C(x) = x log x result in similar price estimates to those produced when

using likelihood ratio weights. They also show that using the quadratic function does lead to a

simpler optimization, however it could produce negative weights whereas the entropy objective

will provide non-negative results if they exist.

Because this method leads to weights that are no longer independent of the payoff function

for the option this method forces us to recalculate the weights for each new type of option we

wish to price. It is shown in [21] that this approach for generating mesh weights through a

constrained optimization problem is closely related to the regression based methods for pricing

American options [8, 9]. The difference being that here the method produces weights that
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depend on S j
i and Sk

i+1 whereas with the regression methods the weights depend on S j
i and Sk

i .



Chapter 2

Introduction to Multiple Exercise Options

This chapter begins our discussion of the focus of thesis, valuation of multiple exercise options.

It includes a detailed description of multiple exercise options along with a summary of previous

methods to value them. It finishes with a detailed look at one particular method, the Forest of

Trees [23].

29



30 Chapter 2. Introduction toMultiple Exercise Options

2.1 Examples of Multiple Exercise Options

Multiple exercise right options are generalizations of American-style options as they provide

the holder more than one exercise right and sometimes control over one or more other variables,

such as the amount exercised. Examples of financial derivatives and real options with these

properties have become more prevalent over the past decade and appear in sectors ranging

from insurance to energy industries. We describe some of these instruments here.

Tolling agreements are a real options example of multiple exercise options from the energy

industry. Power markets have extremely high price volatilities making participants as well

as potential lenders to producers wary of price risk. Other difficulties facing power producers

include the facts that electricity is not a traded asset, generation costs depend on the price of the

underlying physical asset(s), potential emissions costs, and power transmission to consumers.

A tolling agreement is a structured transaction between a plant owner and typically a financial

institution (FI). In the agreement, for an up front premium paid to the plant owner, the buyer is

given the ability to determine when the plant is in operation and to take the electricity output

at a predetermined price. Along with the operational constraints inherent to the plant the buyer

is also often constrained by other contractual obligations. This agreement divides the risks

associated with power generation into operational risks associated with the plant and market

risk associated with the fluctuating prices of the plant’s output. It then leaves the management

of each risk to the party involved which is best suited to handle them. The plant operator is

guaranteed a stable cash flow from a FI with a typically higher credit rating which in turn makes

it easier for the plant to raise capital to fund expansions and improvements, for example. The

buyer of the contract uses the agreement to financially replicate the operation of a power plant

without having to take on the associated operational risk.

In interest rate markets a chooser flexible cap is a multi-exercise interest rate derivative.

These are a variant of an over the counter interest rate cap agreement. An interest rate cap

is a derivative consisting of a series of caplets in which the ith caplet provides the holder at

time ti with a payment of the notional multiplied by the difference in the current interest rate

and a fixed strike rate, if positive, over N time intervals. These derivatives protect the holder,

who may for example be an issuer of floating rate debt, from rises in the short term interest

rates in exchange for an up front premium. A chooser flexible cap is almost identical to a

interest rate cap except it only allows for Ñ < N caplets to be exercised at the holders

discretion. The holder must decide how to optimally allocate the Ñ exercise rights across the

N opportunities. This multiple exercise option was valued in [24].

A Segregated Fund is a type of investment fund administered by insurance companies in the

form of variable life insurance contracts offered to individuals with certain guarantees such as
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reimbursement of capital upon death. Like mutual funds, segregated funds consist of a pool of

investments in securities such as bonds and stocks. The value of the segregated fund varies with

the market value of the underlying securities. Segregated funds do not issue units or shares,

instead, the investor is the holder of a segregated fund contract. The policy holder is given a

number of funds (possibly 10 or more) from which to pick.

The maturity date for a segregated fund contract is the time horizon at which there is a

guarantee to retain some predefined level (typically 75 percent) of initial capital. Holding

periods to reach contract maturity are usually 10 or more years. A death benefit provides

the guarantee if death occurs prior to the time horizon. Many contracts have a reset option

allowing the contract holder to lock in investment gains if the market value of the underlying

fund increases. This resets the contract’s deposit value to the greater of the deposit value or

current market value and extends the maturity date. Contract holders are limited to a certain

number of resets during the lifetime of the contract and at the same time the holder may switch

between underlying investment funds. As of 2009 Canadians owned about $140-billion worth

of these funds.

Another multiple exercise option example is a swing option. Swing options have typically

been used in energy markets to help producers manage the raw materials used in energy pro-

duction in the face of uncertain demand. They allow the holder to have some control over

both the timing and delivery amount of the underlying asset at predetermined prices. A swing

option is typically noted as the swing portion of a base-loaded futures contract that gives a

predetermined price for an amount of a commodity over a given period of time. The swing part

of this overall contract allows for a variable delivery amount of the underlying above or below

the amount determined by the base-loaded contract. However, the two pieces of the contract

can be detached from one another and treated individually for valuation purposes. During the

length of the contract the holder may exercise a given number swing rights. Typically these

rights can only be exercised at a discrete set of times. Upon swinging, the holder can choose

the additional volume bought/sold of the underlying asset. Refer to [26] for a more detailed

discussion on swing options.

2.2 Multiple Exercise Options

As with the pricing of American-style options the valuation of multiple exercise options is a

problem in stochastic optimal control. For American-style options the solution provides both a

value and optimizing exercise rule, or stopping time. For multiple exercise options the solution

also gives both a value and optimizing exercise policy. In the case in which the holder controls

only the exercise times (e.g., chooser flexible cap) the exercise policy is a sequence of stopping
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times. For options in which the holder controls the exercise times and amounts (e.g., swing

options) the exercise policy is a paired sequence of stopping times and exercise amounts. The

policy generalizes to other control variables.

Multiple exercise option-valuation algorithms are generalizations of those used for pricing

American-style options. Most of the work in the literature has focused on swing options. As

such, the remainder of this thesis will focus specifically on the valuation of swing options.

There are continuous-time solutions to both the American-style and swing option valu-

ation problems; these are computed by solving a system of Hamilton-Jacobi-Bellman quasi-

variational inequalities [27]. These methods give more accurate and stable price and sensitivity

estimates than those computed using simpler tools (e.g., trees). However, these methods are

quite complex mathematically and break down in higher dimensions financial examples of

which we consider to be the inclusion of multiple underlying assets and associated risk factors.

Approaches that use dynamic programming to solve a time-discretized version of the opti-

mal control problem are less complex, easier to implement and hence more prevalent than the

continuous-time methods described above. For American-style options standard methods in-

clude tree-based algorithms and numerical solutions of the associated partial differential equa-

tion which require discretization of the state space (coarse in the case of tree based algorithms).

The analogous method for swing option valuation is given by the forest of trees [23,26]. These

methods are extensions of the corresponding methods for pricing American-style options and

have similar properties. One crucial property is that these methods fail as the dimensionality

of the problem increases.

The simulation approach is the obvious tool to overcome the curse of dimensionality, as the

rate of convergence of Monte Carlo estimators is independent of the dimension. As previously

mentioned Tilley [5] was the first to show that the forward-in-time Monte Carlo approach could

be used to solve the backward-in-time dynamic programming problem arising from valuation

of an American-style option. Since this seminal paper, numerous other methods for the Monte

Carlo valuation of American style options have appeared. These include methods that attempt

to parameterize the exercise region [28] and those that discretize the state space [29]. Both

of these approaches, however, also suffer from the curse of dimensionality and do not easily

generalize to arbitrary payoffs and underlying price processes.

Monte Carlo methods that do not break down with the dimensionality and that accom-

modate general payoff and price processes include those that solve the optimal stopping-time

problem through estimation of the hold or continuation value. These include the stochastic

tree and mesh techniques of Broadie and Glasserman [6, 7] and the regression-based approach

first appearing in [8] and the subsequently generalized in [9]. For each of these valuation tech-

niques, high- and low-biased estimators are easily generated, along with a hybrid interleaving
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estimator that has properties of both. Duality-based methods solve the optimal control problem

in the dual space, by approximating an optimal martingale, typically by regression [12, 30].

Methods that parameterize the early-exercise region have been extended to value swing op-

tions by parameterizing the set of exercise level curves [31]. Similarly state space aggregation

methods have been used for swing option valuation [29]. As in American option valuation,

however, these methods deteriorate as the dimension increases and do not easily generalize to

arbitrary payoffs and price processes.

The Least-squares Monte Carlo and duality methods have been modified for the pricing of

swing options in [24, 32], respectively. Although increased dimensionality does not decrease

the performance of these methods, they suffer from other drawbacks. In Least-squares Monte

Carlo methods one must select a set of basis functions on which to run regressions to estimate

continuation values. In general only a complete (infinite) set of basis functions results in con-

tinuation value estimators that are consistent for the true option value. In practice, of course, a

finite set of basis functions is used and introduces an approximation error. Continuation value

estimators are consistent for the true approximation value and not the true option value [10,11].

This approximation error can propagate backwards through the exercise opportunities and pro-

duce high- and low-biased estimators that do not converge to the same value [33].

Duality-based methods typically use regression on a finite set of basis functions to approx-

imate the optimal martingale, implying similar issues as Least-squares Monte Carlo. These

issues persist in extensions of these algorithms to the pricing of swing options. Policy iteration

methods such as [34], yield approximations of the time-0 value at each iteration of the dynamic

program. As with the pricing of American-style options this method is advantageous because it

removes the requirement to calculate nested conditional expectations prior to the time-0 value

being approximated.

In this thesis we propose two new methods, the Forest of Stochastic Trees and the Forest

of Stochastic Meshes, for valuing high-dimensional swing options. The trees used to model

the underlying price process in the forest of trees algorithm [23], are replaced with stochastic

trees [6] and meshes [7]. High and low-biased estimators are constructed which are consistent

for the true option value. Furthermore the methods can accommodate general price processes

and payoffs, multiple risk factors, and a confidence interval for the true value can easily be

constructed. In the case of the forest of stochastic trees the method is limited to only a modest

number of exercise opportunities due to the exponential scaling of the computational effort

described in Chapter 3. The forest of stochastic meshes described in Chapter 4 of this thesis

avoids this exponential scaling and allows for a large number of exercise opportunities.
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2.2.1 Mathematical Description of Swing Options

The type of contract that will be the primary focus of this thesis is a swing option. A swing

option is typically more correctly noted as a swing portion of a base-loaded futures contract

that gives a predetermined price for an amount of a commodity over a given period of time.

The swing part of this overall contract allows for a variable delivery amount of the underlying

above or below the amount determined by the base-loaded contract. However the two pieces

of the contract can be detached from one another and treated individually.

Take 0 to be the time the contract is signed and suppose the option is in effect for time ti ∈

[T1,T2], where 0 ≤ T1 < T2. During the length of the contract the holder may exercise a given

number of up and down swing rights denoted N u and N d respectively. Typically these rights

can only be exercised at discrete set of times {t1, . . . , tm} with T1 ≤ t1 < . . . < tm ≤ T2. Also

the contract may stipulate a holding time of ∆t between successive swings which if imposed

would be greater than ti+1 − ti for all 1 ≤ i ≤ m − 1. In subsequent sections we do not include

this feature, but it can be incorporated into our new valuation algorithms in a straightforward

manner.

In general the act of exercising a swing right can have two different effects on the overall

contract which are broken down into the categories of Local and Global effects. Local effects

change the delivery volume only on the date of the exercise and then for any subsequent de-

liveries the volume reverts back to the original base-loaded volume. Global effect change the

delivery volume on the exercise date and all remaining deliveries unless another swing right

is exercised. In this thesis we consider examples of swing options having only local effects,

though we could also accommodate exercise rights having global effects.

When the holder chooses to swing up or down they may also have a choice of exercise

volumes. These amounts may be continuous or discrete but in either case the volumes at a given

opportunity at τi will take the form [u1
i , u

2
i ] ∪ [u3

i , u
4
i ] for 1 ≤ i ≤ m and u1

i ≤ u2
i ≤ 0 ≤ u3

i ≤ u4
i .

Another feature that is included in some contracts are penalties which restrict the total

volume which may be exercised during the contract. We define the usage level, U, as the net

swing volume above or below the base-loaded volume stipulated by the forward part of the

contract. A contract will then stipulate that U must be in a range [Umin,Umax] for there to be

no penalties incurred at the completion of the contract where Umin and Umax are agreed in the

contract. The penalty function therefore takes the form

φ̃(U) =


P1 if U(T2) < Umin

0 if Umin ≤ U(T2) ≤ Umax

P2 if U(T2) > Umax

(2.1)
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The final aspect of swing options is that of the strike price which specifies the price at which

the underlying asset may be bought or sold. Swing options also include this, but because of the

ability to both buy or sell, these options include both up and down strike prices which may be

functions of time. In general for the up strike price, Ku, and the down strike price, Kd, we have

0 < Kd ≤ Ku.

Given the above conditions if we define the exercise and usage decision variables, σ±i and

u±i as

σ±i =

1 if swing up/down

0 otherwise
(2.2)

u±i =

volume bought/sold if swing up/down

0 otherwise,
(2.3)

then we may list the following set of equations as the precise mathematical definition of a

swing option for all 1 ≤ j < i ≤ m,

0 ≤ σ+
i + σ−i ≤ 1 (2.4)(

σ+
j + σ−j

)
+

(
σ+

i + σ−i
)
≤ 1 +

τi

τ j + ∆τ
(2.5)

0 ≤
m∑

i=1

σ+
i ≤ N u (2.6)

0 ≤
m∑

i=1

σ−i ≤ N d (2.7)

u3
iσ

+
i ≤ u+

i ≤ u4
iσ

+
i (2.8)

u1
iσ
−
i ≤ u−i ≤ u2

iσ
−
i (2.9)

2.3 Forest of Trees

The Forest of Trees method for multiple exercise option valuation [23] is a generalization of the

pricing of American options via trees in regard to both extending the number of trees and the

exercise decision. When pricing an American option using dynamic programming techniques

one can use a single binomial (or trinomial) tree. The Forest of Trees method generalizes

this for swing option valuation to construct a forest which contains a tree for every possible
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combination of swing rights and usage levels.

In order to numerically implement this the dynamic programming algorithm must be modi-

fied so as to not only move backward in time through a tree but also to move throught the forest

beginning on the tree which has no swing rights remaining. An additional restriction which we

set is that the volume choices must be discretized giving the holder a finite list from which to

choose. Even though we are not theoretically limited to the number of choices in the list we

are computationally restricted to keep the list short.

The valuation of multiple exercise options is a stochastic optimal control problem with

three relevant state variables; the underlying state variable (S ) (here restricted to be S ∈ R),

number of exercise rights remaining (N), and usage level (U) assuming some volume control.

At each exercise opportunity and given (S , N ,U), the current values of the state variables, the

holder must choose between

• exercising u units plus continuing with an option havingN − 1 remaining exercise rights

and usage level U + u; and

• continuing with an option havingN exercise rights and usage level U (i.e., no exercise).

Note that with volume control the payoff from exercising u units changes with u (as does the

continuation value of the option). Thus, the holder chooses the value-maximizing u when

deciding to exercise.

Dynamic programming can be used for valuing multiple exercise options. In all variables,

let the subscript i denote time-ti and let Ui be the time-ti set of admissible volume choices

which includes the zero volume choice (ie hold). The recursive equations for the dynamic

program are

Hi(S i,Ni+1,Ui+1) = E[Bi+1(S i,Ni+1,Ui+1)|Zi] and (2.10)

Bi(S i,Ni,Ui) = max
u∈Ui

[
hi(S i, N i,Ui, u) + Hi(S i, N i − I{u,0},Ui + u)

]
, (2.11)

with the terminal conditions

Hm(S m,Nm,Um) = φ̃ (Um) and (2.12)

Bm(S m,Nm,Um) = max
u∈Um

[
hm(S m, N m,Um, u) + Hm(S m, N m − I{u,0},Um + u)

]
, (2.13)

where Hi(S ,N ,U) and Bi(S ,N ,U) are the time-ti, state-Z i continuation and option values,

respectively, hi(S ,N ,U, u) is the payoff from exercising u units where hi(S ,N ,U, 0) = 0, and

Z i is the time-ti information set generated by the paths of (S ,N ,U). This dynamic program
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can be modified in obvious ways to accommodate different multiple exercise option specifi-

cations. For example a swing option contract may specify a certain number of up and down

swing rights, Nu and Nd. Another variation is to allow for multiple rights to be exercised at

each opportunity where each right corresponds to a fixed volume amount [24, 25].

(N ,U)

(N − 1,U + u1) (N − 1,U + u2)

Figure 2.1: Section of a Forest of Trees, N = # of Swing rights remaining, U = usage level.

The Forest of Trees method generalizes the tree method for pricing American options. In

this method, many replications of the tree describing the underlying state variable process are

used, each corresponding to a different state (number of rights remaining, usage level). Only

a discrete finite set of volume choices is allowed, otherwise there would be an infinite number

of trees in the forest. The dynamic program in (2.10)-(2.13) is solved exactly using the trees

to compute the continuation value for each possible state (2.10). Comparing this with the

analogous equation for an American option (1.3) it is easy to see that here we have an extra

term in (2.11) which is due to swing options having multiple exercise rights that may be used

during the contract’s lifetime.

Figure 2.1 is a diagram of a section in a forest with two volume choices, u1 and u2, and

no distinction between up and down rights. It illustrates the nodes in the forest which need

be considered when making an exercise decision. Clearly as the number of volume choices

increases, so does the number of accessible nodes required to compute the option value.



Chapter 3

Forest of Stochastic Trees

This chapter describes the first of two methods developed in this thesis, the Forest of Stochas-

tic Trees. This method, as described, is a generalization of the previously introduced Forest

of Trees [23] method which replaces the binomial trees with stochastic trees [6]. Detailed de-

scriptions of the dynamic program and the properties of the resulting estimators are given. The

chapter ends with numerical results illustrating the method along with a detailed discussion

and more results about a bias corrected version of the forest of stochastic trees.

38
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3.1 Valuation Via Dynamic Programming

To value multiple exercise options using the forest of stochastic trees we use the framework

of [23, 26] and generalize it by replacing their binomial and trinomial trees with stochastic

trees. The stochastic trees are constructed identically as described in Section 1.3.4, however

now we have multiple replications of this stochastic tree, each representing a different state

(i.e., number of exercise rights remaining and usage level).

In the dynamic program for the forest of stochastic trees, the continuation values in Equa-

tions (2.10) and (2.12) are replaced by stochastic tree-type estimators. As with the original

stochastic tree technique, high- and low-biased option value estimators are constructed by us-

ing the analogous high- and low-biased continuation value estimators, respectively, on each

stochastic tree in the forest. The recursive equations for the high-biased estimator are

Ĥi(Sj
i ,Ni+1,Ui+1) =

1
b

b∑
k=1

V̂i+1(Sk
i+1,Nt+1,Ut+1), and (3.1)

V̂i(Sj
i ,Ni,Ui) = max

u∈Ui

[
hi(Sj

i ,Ni,Ui, u) + Ĥi(Sj
i ,Ni − I{u,0},Ui + u)

]
, (3.2)

with the terminal conditions

V̂m(Sj
m,Nm,Um) = max

u∈Um

[
hm(Sj

m,Nm,Um, u) + φ̃ (Um + u)
]
, (3.3)

where Ĥi(S,N ,U) and V̂i(S,N ,U) are the time-ti, state-Zi continuation and option values

estimators, respectively, hi(S,N ,U, u) (with hi(S,N ,U, 0) = 0) is the time-ti, state-Zi payoff

from exercising u units, b is the branching factor, I is an indicator function and φ̃ (Um + u) is

a global penalty term. The superscript j = { j0, j1, . . . , ji} indicates the specific node within a

given stochastic tree and k = {j, k}.
Figure 3.1 is a diagram of a section in a forest of stochastic trees with two volume choices,

u1 and u2. It illustrates the nodes in the forest which need be considered when making an

exercise decision given state (N ,U). The three choices are no exercise, exercise u1 units, and

exercise u2 units.

The low estimator is similarly defined using the low estimator on each stochastic tree via

the dynamic program,

ĝil(Sj
i ,Ni,Ui, u) = hi

(
Sj

i ,Ni,Ui, u
)

+
1

b − 1

b∑
k=1
k,l

v̂i+1(Sk
i+1,Ni − I{u,0},Ui + u), (3.4)

Ĥil(Sj
i ,Ni,Ui) = max

u∈Ui

[
ĝil(Sj

i ,Ni − I{u,0},Ui + u)
]
, (3.5)
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(N ,U)

(N − 1,U + u1) (N − 1,U + u2)

Figure 3.1: Section of a Forest of Trees, N = # of exercise rights remaining, U = usage level.

v̂il(Sj
i ,Ni,Ui) = hi(Sj

i ,Ni,Ui, û∗) + v̂i+1(Sl
i+1,Ni − I{u∗,0},Ui + û∗), and (3.6)

v̂i(Sj
i ,Ni,Ui) =

1
b

b∑
l=1

v̂il(Sj
i ,Ni,Ui) (3.7)

where Ĥil( X j
i ,Ni,Ui) is the l−th leave-one-out hold value estimator and û∗ is the estimated

optimal exercise amount which depends on i and l. The terminal conditions associated with

this dynamic programming scheme are,

v̂m(Sj
m,Nm,Um) = max

u∈Um

[
hm(S j

m,Nm,Um, u) + φ̃ (Um + u)
]
, (3.8)

where φ̃ (Um + u) is a global penalty term.

3.2 Bias of Estimators

In order to justify using the high- and low-biased estimators to define the upper and lower

bounds respectively of our confidence intervals we must prove that indeed the high estimator

is always positively biased and that the low estimator is always negatively biased. In addition

we include a comparison of the estimators which orders their values on any realization of the

simulated forest.
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The theorems that follow are direct extensions of those in [6]. Below, the branching factor,

b, appears as an argument in the estimators. For example, V̂0(b,S0,N0,U0) refers to the time-0,

state-Z0 high-biased estimator with a stochastic tree branching factor of b. This argument has

been suppressed to this point for convenience. We begin with the theorem regarding the bias

of the high estimator.

Theorem 9 (High estimator bias) The high estimator is biased high, i.e.,

E
[
V̂0 (b,S0,N0,U0)

]
≥ B0 (S0,N0,U0) (3.9)

for all b.

Next the theorem stating the bias of the low estimator is as follows.

Theorem 10 (Low estimator bias) The low estimator is biased low, i.e.,

E [v̂0 (b,S0,N0,U0)] ≤ B0 (S0,N0,U0) (3.10)

for all b.

Finally, a comparison of the high and low estimator bias is stated in the following theorem.

Theorem 11 (Comparison of Estimators) On every realization of the forest the low estimator

is less than or equal to the high estimator. That is,

v̂i

(
b,Sj

i ,Ni,Ui

)
≤ V̂i

(
b,Sj

i ,Ni,Ui

)
(3.11)

with probability one for all j, i.

Proofs for all of these theorems are found in Appendix A.

3.3 Convergence of Estimators

An advantage of the stochastic tree method over some other MC valuation methods is that its

estimators are consistent to the true value of the option. This property continues to hold true

for the forest of stochastic trees estimators. In this section we state two theorems; one for the

consistency of the high estimator, and the other for the consistency of the low estimator. Here

convergence is in probability to the true option value and as above the argument b that appears

with the estimators refers to an arbitrary branching factor size of b with convergence being

shown as b→ ∞.
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Theorem 12 (High estimator convergence) Suppose E
[
|hi (Si,Ni,Ui)|p

′
]
< ∞, for all ti, and

some p′ > 1. Then V̂0 (b,S0,N0,U0) converges to B0 (S0,N0,U0) in p-norm for any 0 < p < p′

as b → ∞ with the number of repeated valuations of the forest, R, arbitrary. In particular

V̂0 (b,S0,N0,U0) converges to B0 (S0,N0,U0) in probability and is thus a consistent estimator

of the option value, i.e..

E
[
V̂0 (b,S0,N0,U0)

]
→ B0 (S0,N0,U0) (3.12)

as b→ ∞.

Theorem 13 (Low estimator convergence) Suppose that,

P
[
hi

(
Si,Ni,Ui, u1

)
+ Hi

(
Si,Ni − I{u1,0},Ui + u1

)
, hi

(
Si,Ni,Ui, u2

)
+ Hi

(
Si,Ni − I{u2,0},Ui = u2

)]
= 1,

for u1, u2 ∈ Ui, u1 , u2 and all i. Then Theorem 12 also holds for the low estimator.

The additional condition imposed in Theorem 13 is analogous to that used in Theorem 3 of [6].

This condition says that, with probability one, the optimal exercise policy is never indifferent

between the choices of volumes to exercise (including u = 0). As in [6] imposing this condition

simplifies the analysis of the estimator.

Proofs for these theorems showing estimator convergence are found in Appendix B.

3.4 Numerical Results

Pricing swing contracts involves a large number of parameters and in this section we provide

some results which illustrate the validity of our method across a variety of specifications. We

assume that the underlying assets follow a risk neutral stochastic process, there are no transac-

tion costs and other than penalties, there are no other constraints considered. We also assume a

constant risk free rate of interest and the volatilities of all assets are known constant functions

of time.

The option swing rights may be exercised at discrete times up to and including expiry and

the volume choices given are in discrete amounts. This is to say that at any time that the

holder chooses to exercise one of their rights, they must choose from a finite list of possible

volume amounts. The rational behind allowing all time steps to be exercise opportunities is the

exponential growth in computational time caused by adding intermediate non-exercise times.
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However, the method can easily be modified to incorporate these extra time steps. As previ-

ously mentioned penalties can be implemented globally and are based on the net volume swung

during the contract.

3.4.1 One-dimension

Beginning with the one dimensional case, we have based our simulations on an underlying

asset with a risk neutralized price process that satisfies the following stochastic differential

equation,

dS i = S i [(r − δ) dt + σdZi] . (3.13)

In this equation, r is the riskless interest rate, Zi is a standard Brownian motion process, σ is

a constant volatility parameter and the underlying asset itself pays a continuous dividend yield

δ.

All simulations in this subsection were completed on the SHARCNet cluster Whale. Whale

is located at the University of Waterloo and consists of Opteron 2.2 GHz processors (4 per

node) with a Gigabit Ethernet interconnect. Timing results listed below are given in total cpu

time accumulated which is approximately equal to (program runtime) × (number of processors

used). In this example the following set of parameters is held constant; expiry is 3.0 years, the

risk free rate is r = 0.05, there is a continous dividend yield of δ = 0.1, a base volume of the

underlying, The up and down swing right strikes are Ku = Kd = 40.0, and the volatility of the

asset is σ = 0.2. For comparison purposes the results in this subsection include a binomial

value which is calculated using the forest of trees [23].

In cases where a list of multiple volume choices is given, the volume values are consecutive

integer multiples of the base amount (20 units) and the up and down volumes have the same

magnitude. In addition all tables list the number of repeated valuations, R, and the number of

time steps (exercise opportunities), m.

In Figure 3.2 the swing option being priced consists of 1 up and 1 down swing rights that

may be exercised at 3 opportunities to receive (up right) or sell (down right) 60 units of the

underlying. The initial price is $40, there are no penalties. The results illustrate how the two

estimators are affected by increasing the branching factor. Mainly it illustrates the properties

in the previous section which states the high-biased estimator is positively biased, the low-

biased estimator is negatively biased and both are consistent to the true option value. It shows

a tightening in the spread between the high- and low-estimators which appears consistent with

the result from the forest of trees algorithm.

The results in Table 3.1 show how the estimates vary with moneyness and the effects of

penalties. In these simulations global cash penalties were accrued if the final net usage level



44 Chapter 3. Forest of Stochastic Trees

101.2 101.4 101.6 101.8 102 102.2

590

600

610

620

branching factor (log scale)

O
pt

io
n

es
tim

at
e

$

Single Assets

High
Low

Binomial

Figure 3.2: Option value estimate ($) vs log branching factor. Here R = 32000
(

10
b

)
, where b is

the branching factor and standard error ≈ 0.07% of estimator value

had a magnitude that was greater than 90 units. The option gave the holder the right to swing

up or down 2 times each with a list containing 3 volume choices which, given the base volume

of 20 units, the choices included 20, 40 and 60 units of the asset. The penalty multiplication

factors when included are taken to be Pu = Pd = 10. Average time per row (not including the

binomial forest valuation) for the case with penalties was 5.6 hours and for penalities off was

1.1 hours. The reduction in runtime for the case with no penality can be described as follows. If

there are no constraints (penalities, storage, etc.) on the holder of the option then if a decision

is made to swing it is always optimal for the holder to swing the maximum amount. Therefore

with no penalities the above valuation is equivalent to that of a swing option with no volume

choices and a base volume of 60 units but otherwise identical. The latter has fewer trees in

its forest and is therefore quicker to evaluate. In Table 3.1 we have chosen to exploit this as a

convient way to save computational time. For the binomial method run times were on the order

of a few seconds.

Table 3.2 shows the increase in the estimate of the option value as the number of swing

rights are increased. As can be noted the cases Nu = Nd = 3 and 5 are less than 3 and 5 times

the estimate for the Nu = Nd = 1 case respectively. This result matches with the intuition that

a swing with a given number of rights is less valuable than a basket of American Put and Call

options with otherwise identical parameters and Kd ≤ Ku. Here, for the case of Nu = Nd = 5

the high and low estimator are the same due to the fact that the number of up and down swing
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S0 Penalty High Error Low Error Binomial

60
ON 2271.153 1.418 2240.319 1.378 2259.845
OFF 2422.781 1.576 2392.872 1.523 2411.844

50
ON 1445.468 0.844 1408.843 0.904 1429.645
OFF 1542.053 0.978 1503.963 0.980 1526.055

40
ON 1018.104 0.859 968.793 1.044 989.651
OFF 1156.591 0.911 1134.093 0.903 1145.801

30
ON 1345.556 1.205 1309.214 1.280 1326.266
OFF 1562.347 1.316 1532.854 1.343 1546.055

20
ON 2189.531 0.905 2147.623 1.018 2157.976
OFF 2443.877 0.924 2402.192 1.034 2412.354

Table 3.1: Swing option values as a function of moneyness and penalties. Parameters: Nu =

Nd = 2,Ui = {20, 40, 60}, b = 20, R = 4000, m = 5, Umin = −90, Umax = 90

rights are equal to the number of time steps and the up and down strike prices are the same.

Therefore the holder of the option at each time step would swing either up or down. For the low

estimator if each of the repeated exercise decisions are the same (i.e. all hold or all exercise)

then it becomes equal to the high estimator and that is what is illustrated here.

Figure 3.3 shows a comparison between a basket of American options and a swing option

with a comparable number of exercise rights. For the case of 1 up and 1 down swing right the

basket of American options would contain a single call and a single put option and so forth with

equal strike prices for both types of rights. As expected the graph of the basket of American

options is linear and the graph of the swing option value is less then the values of the American

option when the number of rights is greater then one. This follows from the restriction that only

one swing right may be exercised at an exercise opportunity whereas all American options of

a particular type could be exercised at a given time. In the case of 1 up and 1 down right the

the two are equal since it would never be optimal to exercise both the put and call style rights

at the same time. The low-biased estimator is used for both the basket and swing option priced

in Figure 3.3.

Nu = Nd High Error Low Error Binomial
1 630.054 0.449 605.394 0.453 617.832
3 1573.237 1.449 1559.517 1.437 1567.344
5 1852.788 2.128 1852.788 2.128 1852.627

Table 3.2: Swing option values as a function of the number of exercise rights. Parameters: base
volume = 60 units, S 0 = 40, b = 20, R = 4000, m = 5, no penalties



46 Chapter 3. Forest of Stochastic Trees

0 1 2 3 4 5 6
0

1

2

3

Up and Down Swing Rights

O
pt

io
n

E
st

im
at

e
(×

10
00

)

Option Estimate vs Exercise rights - Single Asset - Low Estimator

Low
Basket

Figure 3.3: Comparing values of a basket of American calls and puts vs swing option value
using the low-biased estimator as a function of the number of exercise rights

3.4.2 Calibrated Forward Curve

As a second example we use the trinomial-tree model given in Figure 5 of [26] from which

price movements are simulated. This model is a 1-factor model with mean reversion that is

seasonally adjusted and calibrated to the forward curve. The option we value is that of [26]

Section 4.2 Example (a), which is a 2 up right swing option with each right allowing the holder

to take delivery of either 1 or 2 MMBTus of natural gas. It is simplified to have 4 exercise

opportunities and 4 months until expiry. Upon exercise the holder gets

max (Ui (AiS i − K) , 0) (3.14)

where Ui is the volume chosen, Ai is the seasonality factor and S i is the deseasonalized spot

price.

In Figure 3.4 we see that, with a branching factor of only 8, the confidence intervals for the

high- and low-biased estimators begin to overlap and quickly become almost indistinguishable

for higher branching factors, numerical illustration of both estimators’ consistency. The num-

ber of realizations used to generate the results shown were 160000
b and the serial computational

times for branching factors of 8 and 32 were approximately 4.5 and 110 seconds respectively

using a 2.1 Ghz Core 2 Duo processor. The results shown in Figure 3.4 are consistent with the

results in [26] but we note that the valuation method in that publication breaks down in higher



3.4. Numerical Results 47

101 102

1.3

1.32

1.34

1.36

1.38

1.4

1.42

branching factor (log scale)

O
pt

io
n

es
tim

at
e

$

Calibrated Forward Curve

High
Low

Trinomial

Figure 3.4: Option-value estimates versus (log) mesh size. Approximate pointwise 95% confi-
dence intervals for each estimate are given by the vertical bars.

dimensions and in cases where the inclusion of more risk factors is desirable.

3.4.3 Five-dimension

Due to the computationally intensive nature of this method it only becomes truly useful in cases

where PDE or tree based methods fail. In this subsection we provide numerical results for the

simplest of these cases, GBM with d underlying assets (d > 3). The payoff function used,

u ×
(

max
k=1,...,d

S k − Ku,Kd − max
k=1,...,d

S k

)+

. (3.15)

in the case of d underlying assets and where u is the exercise volume. This is an extension of

the example given in [6] and [7].

The asset prices are taken to follow a risk neutralized correlated GBM described by the

stochastic differential equation,

dS k
i = S k

i

[(
r − δk

)
dt + σkdZk

i

]
, (3.16)

where Zk
i is a standard Brownian motion process where the correlation between Zk and Z s is

ρks. In all simulated results that follow it is assumed that δk = δ, σk = σ for all k and that

ρks = 0 for all k , s. In addition to this we also take all assets to have the same initial value,
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Figure 3.5 shows that the high- and low-biased estimators appear to be converging to a

common value for the option estimate as the branching factor increases. The swing option

being priced here gives the holder 1 up right and 1 down right to exercise over 3 exercise

opportunities.

The results in Table 3.3 show how the estimates vary with moneyness and the effects of

penalties. In these simulations global cash penalties were accrued if the final net usage level

had a magnitude that was greater than 90 units. The option gave the holder the right to swing

up or down 2 times each with a list containing 3 volume choices which, given the base volume

of 20 units, the choices included 20, 40 and 60 units of the asset. The penalty multiplication

factors when included are taken to be Pu = Pd = 10. Average time per row for penalties ON

was 5.9 hours and for penalities off was 1.5 hours.

Table 3.4 shows the increase in the estimate of the option as the number of swing rights are

increased. The intuition here is the same as that describing Table 3.2

Figure 3.6 shows a comparison between a basket of American options and a swing option

with a comparable number of exercise rights. The intuition here is the same as that describing

the equivalent one-dimensional case.
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S0 Penalty High Error Low Error

60
ON 3577.280 2.864 3517.297 2.845
OFF 3832.050 2.286 3772.123 2.856

50
ON 2246.657 2.280 2197.957 2.259
OFF 2479.081 2.341 2431.065 2.318

40
ON 1221.847 1.595 1189.610 1.564
OFF 1257.171 1.499 1226.370 1.467

30
ON 1105.831 0.453 1087.851 0.447
OFF 1209.179 0.393 1196.255 0.391

20
ON 1937.615 0.445 1930.860 0.472
OFF 2177.194 0.489 2177.031 0.513

Table 3.3: Swing option values as a function of moneyness and penalties. Parameters: Nu =

Nd = 2,Ui = {20, 40, 60}, b = 20, R = 4000, m = 5, Umin = −90, Umax = 90.

Nu = Nd High Error Low Error
1 683.144 0.741 652.481 0.721
3 1728.947 2.279 1709.497 2.248
5 2087.495 3.114 2087.495 3.114

Table 3.4: Swing option values as a function of the number of exercise rights. Parameters:
Ui = {60}, S 0 = 40, b = 20, R = 4000, m = 5, no penalties.

3.5 Algorithmic Enhancements

In this section we describe two methods that may be adopted to increase the efficiency of

the forest of stochastic trees algorithm. The first method described is the implementation of

parallel computing techniques to the existing algorithm to shorten overall run times without

reducing the number of computations required to produce the estimators. The second method

is an extension of the bias corrected estimator method for the stochastic tree method discussed

in 1.3.5. This method successfully reduces the branching factor required to obtain the desired

accuracy for the option value. These enhancements are not mutually exclusive and may both

be applied to further improving the algorithm’s performance. Indeed the results shown at the

end of this section were simulated using a combination of the two as discussed below.

3.5.1 Parallel Processing

One method for enhancing the computational efficiency of this algorithm is by taking advan-

tage of multi-processor computing techniques. The simplest and most obvious implementation

would be to parallelize across repeated valuations of the forest resulting in effectively serial
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Figure 3.6: Comparing values of a basket of American calls and puts vs swing option values
using the low-biased estimator as a function of the number of exercise rights.

farming of the repeated valuations. Since each repeated valuation results in an iid random

value for the option estimate, the generation of all the results may be completed independently

of one another, removing the need for communication between processors. This method is

simple and effective. However we state here without numerical evidence that it results in a

near perfect speed up without the need for expensive interconnections. With this method the

minimum run time that can be produced is determined by the number of processors available,

the number of repeated valuations necessary for the desired accuracy and the run time of a

single forest.

A variation on the aforementioned parallel implementation is to parallelize the forest of

stochastic tree computations internally within the forest. In the results shown in Figure 3.7 the

forest of stochastic trees algorithm has been modified so that the computation of the individual

trees within the forest is done using multiple processors. Here we have begun the paralleliza-

tion after the first time step by dividing up the computation of the remaining subtrees across

different processors. Upon completion the results are gathered and the option value at the initial

time step is determined. In Figure 3.7 we see that this method results in a near perfect speed up

due to the small ratio of communication time versus computational time. This implementation

may be combined with serial farming resulting in further computational time efficiency.

In Figure 3.7 the swing option being priced is identical to the no volume choice swing

option of Section 3.4.3 with a branching factor b = 160. The results found here were generated

using the SHARCNET cluster Hound which comprises 2.2 GHz Opteron processors with 4 GB
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per core and Infini-Band interconnections. Run times are normalized to the run time of a single
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Figure 3.7: Normalized speedup graph using MPI. Forest of Stochastic Trees with branching
factor b = 160. np appearing in the legend is the number of processors

3.5.2 Bias Reduction

In addition to parallel computing techniques the bias reduction techniques discussed in Sec-

tion 1.3.5 are generalizable to the forest of stochastic tree estimators [35]. In doing so we

must account for the possibility of differing volume choices that may be available to the holder

of the multiple exercise option. If we define the time-ti bias analogously to its definition in

Section 1.3.5 then we have that the bias of the high and low estimators are given by

H̄+
i

(
Sj

i ,Ni+1,Ui+1

)
− Hi

(
Sj

i ,Ni+1,Ui+1

)
= E

[
Ĥ+

i

(
Sj

i ,Ni+1,Ui+1

)
|Zi

]
− Hi

(
Sj

i ,Ni+1,Ui+1

)
= E

[
V̂i+1

(
Sj

i+1,Ni+1,Ui+1

)
− Bi+1

(
Sj

i+1,Ni+1,Ui+1

)
|Zi

]
(3.17)

and

H̄−i
(
Sj

i ,Ni+1,Ui+1

)
− Hj

i

(
Sj

i ,Ni+1,Ui+1

)
= E

[
Ĥ−i

(
Sj

i ,Ni+1,Ui+1

)
|Zi

]
− Hi

(
Sj

i ,Ni+1,Ui+1

)
= E

[
v̂i+1

(
Sj

i+1,Ni+1,Ui+1

)
− Bi+1

(
Sj

i+1,Ni+1,Ui+1

)
|Zi

]
(3.18)
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respectively, where the superscript ± denotes the corresponding estimator by whether it is

positively or negatively biased.

As with the bias reduced stochastic tree these biases may be broken down into local and

global components. To demonstrate this consider the high-biased estimator in a case where

there are two available volume choices (i.e. u ∈ Ui = {0, u1, u2}). Then upon expanding the

terms of (3.17) inside the conditional expectation we obtain

E
[
max

{
h(u1) + Ĥ+(u1), h(u2) + Ĥ+(u2), Ĥ+(0)

}
−max

{
h(u1) + H(u1), h(u2) + H(u2),H(0)

}
|Zi

]
, (3.19)

where we have adopted the following condensed notation

h(u) = hi+1(Sj
i+1,Ni+1,Ui+1, u),

Ĥ±(u) = Ĥ±i+1(Sj
i+1,Ni+1 − I{u,0},Ui+1 + u),

H̄±(u) = H̄±i+1(Sj
i+1,Ni+1 − I{u,0},Ui+1 + u).

Adding and subtracting the term

E
[
max

{
h(u1) + H̄+(u1), h(u2) + H̄+(u2), H̄+(0)

}
|Zi

]
(3.20)

splits the expression in (3.19) into a local and global component, given by

E
[
max

{
h(u1) + Ĥ+(u1), h(u2) + Ĥ+(u2), Ĥ+(0)

}
−max

{
h(u1) + H̄+(u1), h(u2) + H̄+(u2), H̄+(0)

}
|Zi

]
(3.21)

and

E
[
max

{
h(u1) + H̄+(u1), h(u2) + H̄+(u2), H̄+(0)

}
−max {h(u1) + H(u1), h(u2) + H(u2),H(0)} |Zi] , (3.22)

respectively. Before proceeding, note that we hold provided

Ĥ±(0) ≥ h(u) + Ĥ±(u),∀u ∈ Ui (3.23)

and exercise u1 units if

h(u1) + Ĥ±(u1) ≥ max
{
h(u1) + Ĥ±(u2), Ĥ±(0)

}
. (3.24)
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Likewise for the bias of the low estimator we can expand the inner terms of Equation 3.18

which results in

E
[
I{0̂≥max{û1,û2}}

Ĥ−(0) + I{û1≥max{0̂,û2}}

(
h(u1) + Ĥ−(u1)

)
(3.25)

+I{û2≥max{0̂,û1}}

(
h(u2) + Ĥ−(u2)

)
− Bi

(
Sj

i+1,Ni+1,Ui+1

)
|Zi

]
, (3.26)

where 0̂, û1, û2 are the potential estimated usage choice decisions. Adding and subtracting

E[max{ū1, ū2, 0̄}|Zi] splits the expression into a local (3.27) and global (3.28) component given

by

E
[
I{0̂≥max{û1,û2}}

Ĥ−(0) + I{û1≥max{0̂,û2}}

(
h(u1) + Ĥ−(u1)

)
+I{û2≥max{0̂,û1}}

(
h(u2) + Ĥ−(u2)

)
−max

{
ū1, ū2, 0̄

}
|Zi

]
(3.27)

+ E
[
max

{
ū1, ū2, 0̄

}
− Bi

(
Sj

i+1,Ni+1,Ui+1

)
|Zi

]
, (3.28)

where 0̄, ū1, ū2 are the potential optimal usage choice decisions. Focusing on the local com-

ponent of the bias it is possible to show that as in the case of an American-style option the

bias is mainly caused by incorrect exercise decisions. For the case of two volume choices we

summarize the contributions to the bias for the high- and low-biased forest of stochastic trees

estimators in Tables 3.5 and 3.6 respectively where we define Ŷ±(u) = Ĥ±(0) − h(u) − Ĥ±(u).

Held Exercised u1 units Exercised u2 units

Should hold 0 −Ŷ+(u1) −Ŷ+(u2)

Should exercise u1
units

Ŷ+(u1) 0 Ŷ+(u1) − Ŷ+(u2)

Should exercise u2
units

Ŷ+(u2) Ŷ+(u2) − Ŷ+(u1) 0

Table 3.5: The local error in the time-ti+1 high-biased hold value estimator. Note that this error
is always non-negative.

In the general case of a z-volume choices swing option we have that u ∈ Ut = {u1, . . . , uz :

z ∈ N}. Equations (3.19)-(3.22) and Equations (3.25)-(3.28) are easily extended to the high-

bias estimator for z-volume choices and as expected the local bias is mainly caused by incorrect



54 Chapter 3. Forest of Stochastic Trees

Held Exercised u1 units Exercised u2 units

Should hold 0 −Ȳ−(u1) −Ȳ−(u2)

Should exercise u1
units

Ȳ−(u1) 0 Ȳ−(u1) − Ȳ−(u2)

Should exercise u2
units

Ȳ−(u2) Ȳ−(u2) − Ȳ−(u1) 0

Table 3.6: The local error in the time-ti+1 low-biased hold value estimator. Note that this error
is always non-positive.

exercise decisions. Tables 3.7and 3.8 list the possible contributions to the bias for the high- and

low-biased estimators respectively.

Held Exercised u1 units . . . Exercised uz units

Should hold 0 −Ŷ+(u1) . . . −Ŷ+(uz)

Should exercise u1
units

Ŷ+(u1) 0 . . . Ŷ+(u1) − Ŷ+(uz)

...
...

...
. . .

...

Should exercise uz

units
Ŷ+(uz) Ŷ+(uz) − Ŷ+(u1) ... 0

Table 3.7: The local error in the time-ti+1 high-biased hold value estimator, z-volume case.
Note that this error is always non-negative.

Equations built from of these bias contributions are not useful in their own right, as the

Ȳ±(u) cannot be observed directly and upon replacing them with the corresponding Ŷ±(u) re-

sults in the expressions collapsing to zero. As in the American option case, it is necessary to

incorporate additional distributional knowledge. The time-ti hold value estimators are averages

of the time-ti+1 option value estimators which given Zi, are independent and identically dis-

tributed. At this point we now employ the Multivariate Central Limit Theorem to govern the

joint (limiting) distribution of Ĥ±(u1), . . . , Ĥ±(uz) and Ĥ±(0). Replacing all Ŷ±(u) with Ŷ±∗(u)
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Held Exercised u1 units . . . Exercised uz units

Should hold 0 −Ȳ−(u1) . . . −Ȳ−(uz)

Should exercise u1
units

Ȳ−(u1) 0 . . . Ȳ−(u1) − Ȳ−(uz)

...
...

...
. . .

...

Should exercise uz

units
Ȳ−(uz) Ȳ−(uz) − Ȳ−(u1) ... 0

Table 3.8: The local error in the time-ti+1 low-biased hold value estimator, z-volume case. Note
that this error is always non-negative.

which is assumed to be normally distributed withZi-conditional mean Ȳ±(u) and variance

Var
[
Ŷ±∗(u)|Zi

]
= Var

[
Ĥ±∗(0) − h(u) − Ĥ±∗(u)|Zi

]
= Var

[
Ĥ±∗(0)|Zi

]
+ Var

[
Ĥ±∗(u)|Zi

]
+ Cov

[
Ĥ±∗(0), Ĥ±∗(u)|Zi

]
This substitution eventually leads to approximations for the z-volume choice local high-bias

being given by

E

 ∑
a∈{u1,...,uz}

I[Ŷ+∗(a)≤min{0,Ŷ+∗(c):c,a}]

[
−Ŷ+∗(a)

]
g
[
Ŷ+∗(u1), . . . , Ŷ+∗(uz), Σ̄+

Y

]
+

∑
a∈{u1,...,uz}

I[0≤min{Ŷ+∗(v1),...,Ŷ+∗(vr)}]

[
Ŷ+∗(a)

]
h
[
Ŷ+∗(c) : c , a, Ŷ+∗(a), Σ̄+

Y

]

+
∑

a,d∈{u1,...,uz}
a,d

I[Ŷ+∗(a)≤min{0,Ŷ+∗(c):c,a}]

[
Ŷ+∗(d) − Ŷ+∗(a)

]
h
[
Ŷ+∗(e) : e , d, Ŷ+∗(d), Σ̄+

Y

] ∣∣∣∣∣ Zi

 ,
(3.29)

where

g
[
Ŷ+∗(u1), . . . , Ŷ+∗(uz), Σ̄+

Y

]
=

∫ ∞

0
· · ·

∫ ∞

0
MVNz

[
ŷ+∗|ȳ+, Σ̄+

Y

]
dȳ1,...,z (3.30)

h
[
Ŷ+∗(uz), . . . , Ŷ+∗(u1), Σ̄+

Y

]
=

∫ 0

−∞

∫ ∞

ŷ+∗(u1)
...

∫ ∞

ŷ+∗(u1)
MVNz

[
ŷ+∗|ȳ+, Σ̄+

Y

]
dȳz,...,1 (3.31)
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MVNz

[
ŷ±∗|ȳ±, Σ̄±Y

]
=

1

(2π)z/2
∣∣∣Σ̄±Y/b∣∣∣1/2 exp

{
−

1
2

(
ŷ±∗ − ȳ±

)′ (
Σ̄±Y/b

)−1 (
ŷ±∗ − ȳ±

)}
, (3.32)

ŷ±∗ =


ŷ±∗(u1)

...

ŷ±∗(uz)

 , ȳ± =


ȳ±(u1)
...

ȳ±(uz)

 and dȳ± = dȳ±(u1) · · · dȳ±(uz). (3.33)

The order of the ŷ+∗(u) arguments of h determines the order of integration of the corresponding

ȳ+(u), i.e. Ŷ+∗(uz) appearing as the first argument of h means Ȳ+(uz) is to be integrated out first.

Similarly, the expression for the z-volume choice local low-bias is

E

 ∑
a∈{u1,...,uz}

I[Ŷ−∗(a)≤min{0,Ŷ−∗(c):c,a}]m
[
−Ȳ−(a), Ŷ−∗(u1), . . . , Ŷ−∗(uz), Σ̄−Y

]
+

∑
a∈{u1,...,uz}

I[0≤min{Ŷ−∗(u1),...,Ŷ−∗(uz)}]n
[
Ȳ−(a), Ŷ−∗(c) : c , a, Ŷ−∗(a), Σ̄−Y

]

+
∑

a,d∈{u1,...,uz}
a,d

I[Ŷ−∗(a)≤min{0,Ŷ−∗(c):c,a}]n
[
Ȳ−(d) − Ȳ−(a), Ŷ−∗(e) : e , d, Ŷ−∗(d), Σ̄−Y

] ∣∣∣∣∣ Zi

 (3.34)

where

m
[
Ȳ−(u1), Ŷ−∗(u1), . . . , Ŷ−∗(uz), Σ̄−Y

]
=

∫ ∞

0
...

∫ ∞

0

[
ȳ−(u1)

]
MVNz

[
ŷ−∗|ȳ−, Σ̄−Y

]
dȳ1,...,z (3.35)

n
[
Ȳ−(u1), Ŷ−∗(uz), . . . , Ŷ−∗(u1), Σ̄−Y

]
=

∫ 0

−∞

∫ ∞

ŷ−∗(u1)
...

∫ ∞

ŷ−∗(u1)

[
ȳ−(u1)

]
MVNz

[
ŷ−∗|ȳ−, Σ̄−Y

]
dȳz,...,1.

(3.36)

It remains to replace the theoretical quantities, Ŷ±∗, Σ̄±Y with their corresponding sample quanti-

ties, Ŷ±, Σ̂±Y in Equations 3.29 and 3.34. To do that we now subtract the modified Equations 3.29

and 3.34 from the uncorrected time-ti estimators in Equations 3.1 and 3.4. This yields the fol-

lowing expressions for the corrected high- and low-biased estimators for the forest of stochastic

trees

V̂ j
i = max

u∈Ui

[
hi(u) + Ĥj

i (u)
]
−

 ∑
a∈{u1,...,uz}

I[Ŷ+(a)≤min{0,Ŷ+(c):c,a}]

[
−Ŷ+(a)

]
g
[
Ŷ+(u1), . . . , Ŷ+(uz), Σ̄+

Y

]
+

∑
a∈{u1,...,uz}

I[0≤min{Ŷ+(u1),...,Ŷ+(uz)}]

[
Ŷ+(a)

]
h
[
Ŷ+(c) : c , a, Ŷ+(a), Σ̄+

Y

]
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+
∑

a,d∈{u1,...,uz}
a,d

I[Ŷ+(a)≤min{0,Ŷ+(c):c,a}]

[
Ŷ+(d) − Ŷ+(a)

]
h
[
Ŷ+(e) : e , d, Ŷ+(d), Σ̄+

Y

] ∣∣∣∣∣ Zi

 ,
(3.37)

and

v̂j
il = hi(û∗) + v̂l

i+1
(
Ni − I{u∗,0}, û∗

)
v̂j

i =
1
b

b∑
l=1

v̂il −
∑

a∈{u1,...,uz}

I[Ŷ−l (a)≤min{0,Ŷ−l (c):c,a}]m
[
−Ȳ−l (a), Ŷ−l (u1), . . . , Ŷ−l (uz), Σ̄−Y

]
+

∑
a∈{u1,...,uz}

I[0≤min{Ŷ−l (u1),...,Ŷ−l (ul)}]n
[
Ȳ−l (a), Ŷ−l (c) : c , a, Ŷ−l (a), Σ̄−Y

]

+
∑

a,d∈{u1,...,uz}
a,d

I[Ŷ−l (a)≤min{0,Ŷ−l (c):c,a}]n
[
Ȳ−l (d) − Ȳ−l (a), Ŷ−l (e) : e , d, Ŷ−l (d), Σ̄−Y

] ∣∣∣∣∣ Zi

 .
(3.38)

Following a inductive argument analogous to that given in [19], it is straightforward to

show that the global components in Equations (3.22) and (3.28) are small compared to the

local component’s bias and correction terms. Note that in these expressions we have assumed

only one type of swing right and that only one right can be used at each exercise opportunity.

Extensions to the case of different types of swing rights and/or to the use of multiple rights at

each exercise opportunity is relatively straightforward.

3.5.3 Example - Bias Reduced

We now show the effectiveness of these corrected estimators in the following example. Begin-

ning with the one dimensional case, we priced a swing option similar to the no volume choice

swing option from Section 3.4.1. That is the underlying asset follows a risk neutralized price

process that satisfies the following stochastic differential equation

dS i = S i [(r − δ) dt + σdZi] , (3.39)

where r is the riskless interest rate, Zi is a standard Brownian motion process, σ is a constant

volatility parameter and the underlying asset itself pays a continuous dividend yield δ.

All simulations in this subsection were completed on the SHARCNet cluster Orca. Orca

consists of AMD Opteron 6174 2.2 GHz processors (12 per socket) with 32 GB of memory (per
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2 sockets) and a QDR InfiniBand interconnect. In this example the following set of parameters

is held constant; expiry is 3.0 years; the risk free rate is r = 0.05; there is a continous dividend

yield of δ = 0.1; a base volume of 10 units of the underlying; the up and down swing right

strikes are K = 100.0; and the volatility of the asset is σ = 0.2. In the one-dimensional example

we include a binomial value, calculated using the forest of trees [23], for comparsion.

The swing option being priced consists of 2 swing rights that may be exercised at 3 opportu-

nities (not including the initial time) and 10 units of the underlying. No option was given to the

holder as to the volume received upon exercise. The payoff upon exercise is 10×max(S i−K, 0).

The initial price is $100 and there are no penalties. The results in Figure 3.8 illustrate how the

bias reduced estimators significantly improve upon the uncorrected estimators. The dip in the

corrected estimator as seen here in Figure 3.8 is reflective of the fact that although the corrected

estimators are guaranteed to be consistent estimators to the true option value the sense of there

bias is not necessarly maintained.
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Figure 3.8: Option value estimate ($) vs log branching factor. Here R = 4194304
(

5
b

)
, run time

for b = 10 is 326s and b = 80 is 24846s and Std. Err.≈$0.04 for all estimators and mesh sizes.

Next we give an example using 5 underlying assets while maintaining all other parameters

as they were in Figure 3.8. The payoff function used is

10 ×
(

max
k=1,...,d

S k − Ku,Kd − max
k=1,...,d

S k

)+

(3.40)

in the case of d underlying assets and where 10 units is the exercise volume. This is an extended

example to that given in [6] and [7].
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The asset prices are taken to follow a risk neutralized correlated GBM described by the

stochastic differential equation

dS k
i = S k

i

[(
r − δk

)
dt + σkdZk

i

]
, (3.41)

where Zk
i is a standard Brownian motion process and where the correlation between Zk and Z s

is ρks. In all simulated results that follow it is assumed that δk = δ, σk = σ for all k and that

ρks = 0 for all k , s. In addition to this we also take all assets to have the same initial value,

S 0. Figure 3.9 plots the corrected and uncorrected estimators as a function of (log) sample

size. As in the 1-dimensional case, the corrected estimators are significantly better than their

uncorrected counterparts.
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Figure 3.9: Option value estimate ($) vs log branching factor. Here R = 4194304
(

5
b

)
, run time

for b = 10 is 447s and b = 80 is 22649s and Std. Err.≈$0.05 for all estimators and mesh sizes.



Chapter 4

Forest of Stochastic Meshes

This chapter describes the second of two methods developed in this thesis, the Forest of

Stochastic Meshes [37]. This method, as described, is a variation of the previously introduced

Forest of Trees [23] method which replaces the binomial trees with stochastic meshes [7]. De-

tailed descriptions of the dynamic program and the properties of the resulting estimators are

given and the implementation of the estimators is justified by numerical results. The chapter

ends by exploring enhancements to the proposed algorithms using HPC techniques [38].

60
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4.1 Dynamic Programming

Similarly to the valuation of multiple exercise options using the forest of stochastic trees given

in Chapter 3 the valuation using the forest of stochastic meshes uses the framework of [23,

26] and generalizes it by replacing their binomial and trinomial trees with stochastic meshes.

The meshes are constructed identically as described in Section 1.3.6, however now we have

multiple meshes each representing a different state (ie number of swing rights remaining and

usage level). In addition to the high-biased mesh estimator we also construct a low-biased path

estimator again in a way analogous to the one previously described.

In the Forest of Stochastic Meshes, the continuation values in (2.10) and (2.12) are replaced

by stochastic mesh-type estimators. As with the original stochastic mesh technique, high-

and low-biased option value estimators are constructed by using the analogous mesh and path

continuation value estimators, respectively, on each mesh in the forest. The recursive equations

for the high-biased mesh estimator are

Ĥ+
i (Sj

i ,Ni+1,Ui+1) =
1
b

b∑
j=1

ω
jk
i V̂i+1(Sk

i+1,Ni+1,Ui+1), and (4.1)

V̂i(S j
i ,Ni,Ui) = max

u∈Ui

[
hi(Sj

i ,Ni,Ui, u) + Ĥ+
i (Sj

i ,Ni − I{u∗,0},Ui + u)
]
, (4.2)

with the terminal conditions

V̂m(Sj
m,Nm,Um) = max

u∈Um

[
hm(Sj

m,Nm,Um, u) + φ̃ (Um + u)
]
, (4.3)

where Ĥ+
i (S,N ,U) and V̂i(S,N ,U) are the time-ti, state-Zi continuation and option values

estimators, respectively and hi(S,N ,U, u) is the time-ti, state-Zi payoff, with hi(S,N ,U, 0) = 0

from exercising u units, b is the mesh size and ω
jk
i are the mesh weights identical to those

described in Section 1.3.6 and φ̃ (Um + u) is a global penalty term.

Figure 4.1 is a diagram of a section in a forest of meshes with two volume choices, u1 and

u2. It illustrates the nodes in the forest which need to be considered when making an exercise

decision given state (N ,U). The three choices are no exercise, exercise u1 units, and exercise

u2 units. The red nodes are the equivalent nodes on the different meshes and the blue nodes are

those which are used to calculate the continuation value estimators for the different exercise

choices.

The path estimator is similarly defined using the path estimator on each mesh. Namely,

ĝi(Xj
i ,Ni+1,Ui+1) = hi(Xj

i ,Ni,Ui, u) +
1
b

b∑
k=1

ω
jk
i V̂i+1(Sk

i+1,Ni+1,Ui+1), (4.4)
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(N ,U)

(N − 1,U + u1) (N − 1,U + u2)

Figure 4.1: Section of a Forest of Meshes,N = # of exercise rights remaining, U = usage level.

Ĥ−i (Xj
i ,Ni,Ui) = max

u∈Ui

[
ĝi(Xj

i ,Ni − I{u,0},Ui + u)
]

and (4.5)

v̂i(X j
i ,Ni,Ui) = hi(Xj

i ,Ni,Ui, û∗) + v̂i+1(Xj
i+1,Ni − I{u,0},Ui + û∗), (4.6)

with the terminal conditions,

v̂m(Xj
m,Nm,Um) = max

u∈Um

[
hm(Xj

m,Nm,Um, u) + φ̃ (Um + u)
]
, (4.7)

where Ĥ−i (Xj
i ,Ni,Ui) is the continuation value, û∗ is the estimated optimal exercise amount, I

is an indicator function and where φ̃(Um + u) is a global penalty factor.

4.2 Bias of Estimators

As with the forest of stochastic trees in order to justify using the mesh and path estimators

to define the upper and lower bounds respectively of our confidence intervals we must prove

that indeed the mesh estimator is positively biased and that the path estimator is negatively

biased. In the theorems that follow the argument b that appears with the estimators refers to an

arbitrary mesh and path size of b. We begin with the theorem regarding the bias of the mesh

estimator.

Theorem 14 (Mesh estimator bias) The mesh estimator V̂0(b,S0,N0,U0) is biased high. That

is,

E
[
V̂0 (b,S0,N0,U0)

]
≥ B0 (S0,N0,U0) (4.8)

for all b.
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A proof of this theorem is found in Appendix C. The next the theorem states that the bias

of the path estimator is non-positive.

Theorem 15 (Path estimator bias) The path estimator v̂0(b,X0,N0,U0) is biased low. That is,

E [v̂0 (b,X0,N0,U0)] ≤ B0 (X0,N0,U0) (4.9)

for all b.

The proof is similar to the proof of the low bias of the path estimator in [7]. Since the

exercise policy that follows from the formulation of the path estimator is not necessarily op-

timal and no policy can be better than the optimal policy then the path estimator defined in

Equation 4.4 must be a lower bound for the option value. Intuitively, the information used

for exercise decisions is independent of the values propagated and hence the estimated exer-

cise policy is not peering into the future along the independant path. Therefore, this estimated

optimal exercise policy is suboptimal along that path.

4.3 Convergence of Estimators

Similarly to the stochastic tree an advantage that the stochastic mesh method for valuing

American-style options has over some other MC methods is that its estimators are consistent

to the true value of the option. This property continues to hold true for the generalization to

the forest of stochastic meshes. In this section we state two theorems; one for the convergence

of the mesh estimator, and the other for the convergence of the path estimator. As above the

argument b that appears with the estimators refers to an arbitrary mesh or path size of b with

convergence being shown as b→ ∞.

In order to state the convergence results for the mesh estimator we require three additional

moment assumptions and some additional notation. First, for i = 1, . . . ,m and k = 0, . . . ,m − i

define

R(ti, ti+k) =

 k−1∏
j=0

fi+ j

(
S1

i+ j,S
1
i+ j+1

)
gi+ j+1

(
S1

i+ j+1

)  hi+k (Si+k,Ni+k,Ui+k, u) . (4.10)

where
∏−1

j=0 ≡ 1. For p̃ > p > 1 we make the following assumptions:

Assumption 4.3.1

E
[(

g (t1,S1)
f (t1,S1)

)
|h2 (S2,N2,U2, u)| p̃

]
< ∞

for all t2 = t1, . . . , tm.
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Assumption 4.3.2
E

[
|R(t1, t2)| p̃

]
< ∞

for all t2 = t1, . . . , tm.

Assumption 4.3.3

E


 f

(
ti, s,S1

i+1

)
gi+1

(
S1

i+1

) 
q < ∞

for all s and i = 0, 1, . . . ,m − 1, for all q ≥ 1.

We now proceed to the statement of the convergence theorems.

Theorem 16 (Mesh estimator convergence) Let p̃ > p > 1. Under Assumptions 4.3.1–4.3.3

E
∥∥∥V̂i (b,Si,Ni,Ui) − Bi (Si,Ni,Ui)

∥∥∥→ 0,

as b → ∞, for all (Si,Ni,Ui) and i. Since convergence in the p-norm implies convergence in

probability, we have that V̂i(b,Si,Ni,Ui) is consistent for Bi(Si,Ni,Ui) for all i, (Si,Ni,Ui).

Taking i = 0 we have that,

E
[
V̂0 (b,S0,N0,U0)

]
→ B0 (S0,N0,U0) ,

implying that the mesh estimator is asymptotically unbiased.

Theorem 17 (Path estimator convergence) Suppose again that Assumptions 4.3.1–4.3.3 hold

and that E[|hi(Xi,Ni,Ui, u)|1+ε] < ∞ for u ∈ Ui and all i = 1, . . . ,m, for some ε > 0. Suppose

also that P[hi(Xi,Ni,Ui, u1) + [Hi(Xi,Ni − I{u1,0},Ui + u1) = hi(Xi,Ni,Ui, u2) + [Hi(Xi,Ni −

I{u2,0},Ui + u2)] = 0 for all u1, u2 ∈ Ui, u1 , u2, (Si,Ni,Ui) and for all i. Then

E [v̂0 (b,X0,N0,U0)]→ B0 (X0,N0,U0)

as b→ ∞, and hence the path estimator is asymptotically unbiased.

Proofs of Theorems 16 and 17 are found in Appendix D. Note that one of the conditions in

Theorem 17 states that the optimal exercise policy is almost surely never indifferent between

the exercise volume choices. This is also assumed in Theorem 13.
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4.4 Numerical Results

4.4.1 One-dimension

Beginning with the one dimensional case, we have based our simulations on an underlying

asset with a risk neutralized price process that satisfies the following stochastic differential

equation

dS i = S i [(r − δ) dt + σdZi] . (4.11)

In this equation, r is the riskless interest rate, Zi is a standard Brownian motion process, σ is

a constant volatility parameter and the underlying asset itself pays a continuous dividend yield

δ.

These simulations were completed on the SHARCNet cluster Whale. Whale is located at

the University of Waterloo and consists of Opteron 2.2 GHz processors (4 per node) with a

Gigabit Ethernet interconnect. In this example the following set of parameters is held constant;

expiry is 1.0 years; the risk free rate is r = 0.05; there is a continous dividend yield of δ = 0.1;

a base volume of the underlying; the up and down swing right strikes are Ku = Kd = 40.0; and

the volatility of the asset is σ = 0.2. For comparison purposes the results in this subsection

include a binomial value which is calculated using the forest of trees [23].

In Figure 4.2 the swing option being priced consists of 2 up and 2 down swing rights that

may be exercised at 6 opportunities to receive (up right) or sell (down right) 1 unit of the

underlying. The initial price is $40, there are no penalties. The results illustrate how the two

estimators are affected by increasing the branching factor. Mainly it illustrates the properties

in the previous section which states the high-biased estimator is positively biased, the low-

biased estimator is negatively biased and both are consistent to the true option value. It shows

a tightening in the spread between the high- and low-estimators which appears consistent with

the result from the forest of trees algorithm.

4.4.2 Calibrated Forward Curve

Here we repeat the same example found in Section 3.4.2 using the forest of stochastic meshes.

This model is a 1-factor model with mean reversion that is seasonally adjusted and calibrated

to the forward curve. The option we value is the first one (a) in Section 4.2 of [26], which is

a 2 up right swing option with each right allowing the holder to take delivery of either 1 or 2

MMBTus of natural gas. It is simplified to have 4 exercise opportunities and 4 months until
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Figure 4.2: Option value estimate ($) vs log branching factor. Here R = 16384
(

1000
b

)
and

standard error ≈ 0.01% of estimator value

expiry. Upon exercise the holder gets

max (V (AiS i − K) , 0) (4.12)

where V is the volume chosen, Ai is the seasonality factor and S i is the deseasonalized spot

price.

In Figure 4.3 we see that with a branching factor of 160 the confidence intervals for the

high- and low-biased estimators begin to overlap and quickly become almost indestinguishable

for higher branching factors. We see that the mesh and path estimators are high- and low-

biased, respectively. Furthermore, we see evidence of estimator convergence as the mesh size

increases. The number of realizations used in order to generate the results show were 160000
b and

the serial computational times for mesh sizes of 160 and 2560 were approximately 45 seconds

and 12 minutes respectively using a 2.1 Ghz Core 2 Duo processor. The results shown in

Figure 4.3 are consistent with the results in [26] however in cases where the inclusion of more

risk factors is desirable we note that the valuation method in that publication breaks down in

higher dimensions.
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Figure 4.3: Mesh and path option-value estimates versus (log) mesh size. Approximate point-
wise 95% confidence intervals for each estimate are given by the vertical bars.

4.4.3 Five-Dimensional Underlying

Here we focus on a high-dimensional example by pricing a swing option whose value depends

on the price evolution of five stocks. This example is an extended version of an example appear-

ing in [6] and [7] illustrating the stochastic tree and mesh techniques for valuing American-style

options. Each asset (stock) price, S k, follows a risk–neutralized geometric Brownian motion

(GBM) described by

dS k
t = S k

t

[(
r − δk

)
dt + σkdZk

t

]
, (4.13)

where r is the risk-free rate of interest, δk is the continuously-paid dividend rate, σk is the

volatility and Zk is a standard Brownian motion. Furthermore, we assume that stock prices

evolve independently and that r, δk and σk are constants. Finally, we assume that all stocks

have the same initial value, S 0.

Upon exercising u units, the payoff of the option is

u ×
(
max(S 1, S 2, . . . , S 5) − Ku,Kd −max(S 1, S 2, . . . , S 5)

)+
, (4.14)

where Ku and Kd are the up and down strike prices respectively. We distinguish between up

and down swing rights with Nu and Nd denoting the number of such rights, respectively.

To completely specify the parameters of this example, we take an option expiry of T = 1

year, r = 0.05, δk = 0.1 and σk = 0.2 for k = 1, . . . , 5. In addition Ku = Kd = 40 there are

no penalties and the volume exercised is held constant at 1 (i.e., take u = 1 in equation (4.14)
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Figure 4.4: Mesh and path option-value estimates versus (log) mesh size.

and the holder has no control over the amount exercised). The number of up and down swing

rights are Nu = Nd = 2 and the number of exercise opportunities is 6.

Using the above parameters the option is valued for different mesh size and number of

repeated valuation pairs, (b,R), with changes to R satisfying R = 16384(1000
b ). These are given

in Table 4.1 along with the approximate CPU time. It is worth noting that the number of

repeated valuations is chosen to produce estimator standard errors of approximately 0.01%.

Furthermore, increasing R has no effect on estimator bias. Only by increasing the mesh size

can estimator bias be reduced with this algorithm.

Figure 4.4 plots the mesh and path option value estimates as a function of the mesh size.

The high-biased mesh estimator decreases with mesh size while the low-biased path estimator

increases with mesh size. Both estimators appear to be converging towards the same value,

numerical evidence of the consistency of the estimators. Due to the scale, confidence intervals

for each estimator are not noticeable in Figure 4.4. With a branching factor of 128,000 the

confidence interval for the true price has a width of approximately $0.18 which represents about

1.3% of the option value (approximately $14.88). Improving this interval estimate of option

value requires increasing the mesh size. Addition numerical results are given in Appendix E.

Simulations for the high dimensional example were completed on the SHARCNET cluster

Hound. Hound consists of Opteron 2.2 GHz processors with 128 GB of memory. Run time

is determined by 3 factors, the calculation time for a single forest, the number of repeated

valuations desired and the number of processors available. The timing results given in the

Serial time column of Table 4.1 are given in total CPU time across all valuations. Serial refers

to serial computing, MPI external refers to a naive parallel implementation (64 CPUs), MPI
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internal refers to an internally parallelized implementation (64 CPUs) with serial processing of

the repeated valuations and GPGPU refers to a graphics processing unit implementation with

serial processing of the repeated valuations. Note that simultaneously doubling b and halving

R results in a doubling of the computational time due to the quadratic scaling of computational

effort with mesh size, implying a tradeoff between computational time (mesh size) and accuracy

(estimator bias).

Table 4.1: Approximate total run time for various combinations of mesh size and number of
repeated valuations (b,R).

(b,R) Serial MPI external MPI internal GPGPU
(4032,1) 105 sec 105 sec 1.9 sec 2.7 sec
(8000,1) 464 sec 464 sec 8.1 sec 10.7 sec

(16000,1) 40.78 min 40.78 min 0.64 min 0.70 min
(32000,1) 174.38 min 174.38 min 2.58 min 2.87 min

(4032,4096) 5 days 113 mins 132 mins 187 mins
(8000,2048) 11 days 248 mins 278 mins 366 mins

(16000,1024) 29 days 11 hrs 11 hrs 12.0 hrs
(32000,512) 62 days 23 hrs 22 hrs 24.5 hrs

4.5 Algorithmic Enhancements

To reduce the run time for the Forest of Stochastic meshes we investigate HPC methods

involving both CPUs and GPGPUs. Our first method of using HPC techniques to decrease

the computational time involved a naive parallel implementation of the repeated valuations

across many CPUs (i.e., essentially serial farming of the independent repeated valuations). No

communication between CPUs is required to evaluate a given forest. Increasing the number of

CPUs by a factor of n decreases the run time by a factor of 1
n . Approximate timing results from

this implementation can be found in the MPI external column of Table 4.1 and is computed by

dividing the serial timing results by 64, the number of processors used. Note that for a single

valuation (b = 1), the run time is the same as that for serial processing and if the number of

repeated valuations is not a multiple of the number of processors then some CPUs will be idle

(see Figure 4.6).

The second method involves only CPUs and we perform an internal parallelization of the

meshes, which requires communication between CPUs, and perform the repeated valuations

by serial processing. There are three major computational components of the simulation i)

generation of the state; ii) computation of the weight denominators; and iii) calculations of
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weights, hold value, and exercise decision at each node in the mesh. In our scheme, CPUs are

assigned tasks in the following manner,

(i) The underlying state vector mesh is generated completely and stored. To generate this

mesh, the sample paths are generated in parallel with a single CPU generating an entire

path from 0 to T . Upon path completion a CPU leapfrogs to the next sample path to be

generated. For example if 256 CPUs are used the sample paths are generated in batches

of 256, one for each available CPU.

(ii) As can be seen from Equation (1.74) all weights going into a given node share the same

denominator. There are b(m − 2) of these denominators (where m is the number of time

steps) as compared to b2m weights. As such the denominators are calculated and stored

prior to the evaluation of the meshes. Here a single processor is given the entire calcula-

tion of an individual denominator. Once this is complete the processor leapfrogs to the

next available denominator calculation. Calculations performed in this way effectively

reduce the computing work for the weights by a factor of 1
b .

(iii) Beginning at expiry the meshes are evaluated. At a given time-step all work to be done

for the ith node on all meshes in the forest is given to a single processor and then that

processor leapfrogs to the next available set of nodes. That is the loop that is parallelized

is the loop over sample paths for the high-biased mesh estimator. The loop over the forest

index (indicating which mesh in the forest) is internal to the loop over sample paths for

the mesh estimator. The work at each node entails: i) computing the weights needed for

the hold value calculation using the stored denominators (not done at expiry); ii) the hold

value calculation (not done at expiry); and iii) the exercise decision.

(iv) The results for a given time step are then collected on all processors using an MPI AllRe-

duce before moving back to the prior time step and repeating.

Figure 4.5 plots the run time (normalized to the run time of a single CPU) against the

number of CPUs for the internal parallelization scheme described above and with (b,R) =

(2000, 1024). There is a near perfect tradeoff between run time and number of processors.

That is, increasing the number of processors by a factor of n reduces the run time by a factor

of 1
n . This is similar to the efficiency gains realized by the naive parallel implementation. The

reason for this is that the communication time is negligible compared to the overall run time

(see Table 4.2). The communication time given in Table 4.2 is the total (across all CPUs)

average waiting time until other CPUs that are working on shared information are finished.

This is a blocking communication protocol. Note that although the run time monotonically
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decreases with the number of processors, the communication time does not. This is due to

delays from system synchronization. The run time for this implementation is given in the

MPI internal column of Table 4.1. For a single valuation there is a significant reduction in

the run time over serial computing and the naive parallel implementation since all processors

are utilized. For example, the internal parallel scheme can perform a single valuation with

b = 32000 in approximately the same time as the naive parallel implementation takes for

b = 4032, producing less biased estimators. Figure 4.6 plots the run time versus number of

repeated valuations for b = 16000 and for 64 CPUs showing that the internal parallelization is

better than the naive implementation over that range of R (though as R increases its advantage

over the naive parallel implementation diminishes due to the communication time). However

due to the algorithm being quadratic in the mesh size versus linear in the number of repeated

valuations the internal parallelization scheme is preferable to the external scheme given that

more is gained by increasing the mesh size as opposed to increasing the number of repeated

valuations.

Table 4.2: Total run time and communication time versus number of processors for an internal
CPU parallelization of the meshes with (b,R) = (2000, 1024).

# procs run time (sec) avg comtime (sec)
2 13875.6 51.7
4 6962.7 58.0
8 3608.0 72.4
16 1858.9 91.0
20 1504.3 128.1
40 798.4 84.9

In our third method, a FirePro V9800 graphics accelerator with 1600 processing elements

is used for valuation, with repeated valuations done in serial. The shared memory on the

GPU allows for communication between processing units, effectively results in an internal

parallelization of the meshes and is implemented by assigning parallel tasks using the OpenCL

framework (an open specification application programming interface) from a single CPU as

described below. Note that many modifications to the code (not detailed here due to space

constraints) have resulted in a highly efficient GPGPU implementation.

(i) The state vector mesh is generated by a single OpenCL kernel call. The approach in [16]

is used to generate the random numbers used for the paths, with care taken to draw unique

numbers across repeated valuations. On GPUs, this method is much more efficient than

other traditional methods (e.g., Mersenne Twister).

(ii) Prior to the evaluation of the meshes the mesh weight denominators (Equation (1.70)) are
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CPU implementations use 64 processors.
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all calculated using an OpenCL kernel. Exploiting the memory hierarchy of the GPU is

crucial to the performance of this phase of computation, particularly by holding batches

of global values. Substantial effort has gone into optimizing how this kernel assign tasks

to compute units and exploiting the particular characteristics of the memory hierarchy,

particularly by performing the memory-intensive summation using fast local memory.

(iii) To evaluate the forest at a particular time step, a hold value kernel is enqueued with three

indices, one each for sample path, estimator type (path/mesh) and mesh. Once the hold

values are computed, an exercise decision kernel compares the hold value on the current

mesh with option value on all other accessible meshes. These two kernels use an in-place

update of a global buffer, requiring concurrent storage only of two time steps of option

values, thus optimizing memory usage. Another kernel is used to process the expiry time

step where all hold values are 0.

The run time for this implementation is given in the GPGPU column of Table 4.1, showing

that in terms of computing time the GPGPU implementation is similar to the internal parallel

method. Hence the above comments about the internal parallel method regarding the bias of an

estimator in a fixed amount of time (e.g., a single valuation) and the right panel of Figure 4.5

also apply. Additionally note that

(i) We have shown that this valuation problem is well-suited for a GPU implementation as

the computing time scales approximately with that of a naive parallel method using no

communication between processors.

(ii) A single GPU costs a few hundred dollars, orders of magnitude less than the cost of CPU

clusters, giving similar computational improvements for a much lower dollar cost.

(iii) Multiple GPUs can be used to perform the repeated valuations in parallel, reducing the

computing time by the reciprocal of the number of GPUs.

This shows that HPC techniques can significantly reduce the run times of the computation-

ally intensive Forest of Stochastic Meshes. The naive parallel, internal parallel and GPGPU

implementations are quite effective and all give approximately the same run time when per-

forming repeated valuations that are a multiple of the number of CPUs used. For a single

valuation, the internal parallel and GPGPU methods give similar computing times and are

much faster than the naive parallel and serial methods. The low cost and ability to use multiple

GPUs suggests this as the method of choice. Note that additional computational efficiencies

can be realized through variance and bias-reduction techniques. The methods presented here

can be combined with these to yield extremely efficient pricing algorithms for multiple exercise

options.



Chapter 5

Conclusions

In this thesis we have introduced two new methods for pricing multiple exercise options. The

thesis concludes with general comments on the effectiveness of these methods, other research

not included in this thesis, and a summary of results.
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In this thesis we have introduce two new methods for pricing multiple exercise options;

the forest of stochastic trees and the forest of stochastic meshes. Multiple exercise options

may be considered as generalizations of American-style options as they provide the holder

more than one exercise right and as such the methods we proposed, and all other currently

available methods, are built off of two well known methods for pricing American-style options.

Examples of multiple exercise options have become more prevalent over the past decade and

appear in sectors ranging from insurance to energy industries. In Chapter 2 we motivated our

discussion by briefly describing some of these specific types of contracts before focusing the

remainder of our discussions on swing options which are a type of multiple exercise option

prevalent in energy markets.

The methods proposed in this thesis are of particular use in cases where there are poten-

tially a large number (≥3) of assets underlying the contract, if a number of risk factors are

desirable for modelling the price process of these assets or if the option has a general pay-

off function. This is a failing point for many of the other proposed methods for pricing these

types of options. Simulation based methods are typically a way to overcome these hurdles.

In these cases the Least-squares Monte Carlo and duality methods have also been modified

for the pricing of swing options in [24, 32], respectively. Although the performance of these

methods does not decrease with dimensionality, these methods suffer from other drawbacks.

In Least-squares Monte Carlo methods one must select a set of basis functions on which to run

regressions to estimate continuation values. In general only a complete (infinite) set of basis

functions results in continuation value estimators that are consistent for the true option value.

In practice, of course, a finite set of basis functions is used and introduces an approximation

error. Continuation value estimators are consistent for the true approximation value and not

the true option value [10, 11]. This approximation error can propagate backwards through the

exercise opportunities and produce high- and low-biased estimators that do not converge to the

same value [33].

Duality-based methods typically use regression on a finite set of basis functions to approx-

imate the optimal martingale, implying similar issues as Least-squares Monte Carlo. These

issues persist in extensions of these algorithms to the pricing of swing options.

In Chapters 3 and 4 we describe in detail the dynamic programming schemes used for the

forest of stochastic trees and forest of stochasic meshes respectively. Both methods proposed

result in the generation of confidence intervals for the true value of the option by utilizing both

positively- and negatively-biased estimators to the true value. Detailed proofs are given in

Appendices A-D to confirm both the bias and consistency of all the estimators proposed. For

the forest of stochastic trees the high- and low-biased estimators are described in Equations 3.1

and 3.4 respectively and for the stochastic forest of meshes the mesh- and path-estimators are
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shown in Equations 4.1 and 4.4 respectively.

Throughout the thesis effective use of examples show confirmation that our numerical im-

plementation of these methods is correct and consistent with theoretical properties of the esti-

mators. In both Chapters 3 and 4 we show results for the pricing of one- and five-dimensional

assets which follow Geometric Brownian motion which underly a swing option with two up

and two down swing rights. The results for the forest of stochastic trees are shown in fig-

ures 3.2, 3.4 and 3.5 and the results for the forest of stochastic meshes are shown in figures 4.3

and 4.4. In the case of the one-dimensional options where we take the true value to be the one

generated from the forest of trees algorithm of [23] we see that all our proposed estimators

have the expected biases and appear to converge to the true value. In the five-dimensional case

where no true value is available we see again that the estimators appear to have appropriate

biases and again seem to be converging to a common value which our analytical arguments

would suggest is the true option value.

A drawback of the methods proposed in this thesis is that they are computationally in-

tensive. For this reason a significant portion of this thesis is devoted to describing algorithmic

enhancements for these methods. These include using high performance computing techniques

which includes both parallel computing techniques on CPU-clusters as well as GPGPU com-

puting techniques that take advantage of relatively inexpensive yet highly parallel graphics

processor available. In Section 3.5 we briefly describe attempts to improve the efficiency of

the forest of stochastic trees algorithm through the use of parallel CPU implementations. The

effectiveness of these methods is obvious from Figure 3.7. Along the same lines in Section 4.5

we describe in detail two implementations of the forest of stochastic meshes, one which uses

traditional parallel CPU techniques like those implemented for the forest of stochastic trees as

well as another method which uses GPGPU computing to take advantage of the highly par-

allelizable internal structure of the stochastic mesh. Table 4.1 displays the significant time

savings that can be found when using these methods. Especially interesting here is the perfor-

mance of the GPGPU implementation for which one graphics processing unit costing on the

order of $1000 is able to give relatively the same performance boost as a 64-processor cluster

which would cost on the order of $30 000.

Additionally we also explore bias-corrected estimators for the option values which attempt

to estimate the bias introduced at each time step by the estimator and then subtract this result

at each exercise opportunity. These result in bias-reduce estimators for the forest of stochastic

trees given by Equations 3.37 and 3.38. Numerical results shown in Figure 3.8 and 3.9 show

that by implementing these estimators that we can significantly reduce the branching factor

necessary to obtain the desired accuracy for the option value without significantly increasing

the computational burden. The combination of the bias reduced estimators along with the HPC
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improvements lead to efficient algorithms for valuing high-dimensional swing options.

Future work on the topics covered in this thesis could include a bias reduced version of the

forest of stochastic meshes algorithm which would further enhance the algorithm’s efficiency.

Another avenue for realizing computational efficiencies is through the use of variance reduction

techniques and these will be explored. There are a few possible GPU implementations for the

forest of stochastic trees, a more detailed study could be conducted to determine the optimal

approach for future implemenation. In terms of risk analysis, these algorithms may be modified

to determine various option hedging parameters.



Appendix A

Proof of Estimator Bias - Forest of
Stochastic Trees

In this appendix we show detailed proofs for the theorems stated in Section 3.2. These theorems

refer to the bias of the estimators for the forest of stochastic trees. In the proofs of Theorems 9–

11 we introduce the following notation. If X is a random variable, we write ||X|| for the p-norm
(E|X|p)1/p of X. The conditional p-norm of X on Zi, (E|X|p|Zi)1/p, is denoted ||X||Zi . Here we

include a summary of notation used for the proofs contained in this appendix as well as all

subsequent appendices.

• Time is indexed by i for ti, i = 0, 1, . . . ,m.

• R is the number of repeated valuations of the forest.

• b is the branching factor (forest of stochastic trees) or mesh size (forest of stochastic

meshes).

• Sj
i is the spot price vector at time ti for branch j = { j0, j1, . . . , ji}. For convenience we

may suppress the superscript if there is no ambiguity in doing so, in these cases S j
i+1

refers to the time ti+1 along the branch path j = { j0, j1, . . . , ji, j}.

• Zi represents the time-ti history of the set of state variables (Sj
i ,Ni,Ui), where we sup-

press the branching history index.

• V̂i

(
b,Sj

i ,Ni,Ui

)
is the time-ti, state-Zi high estimator.

• v̂il(b,Sj
i ,Ni,Ui) is the time-ti, state-Zi leave one out low biased estimator which does not

include node l at time-ti+1.
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• Ĥ il(b,Sj
i ,Ni,Ui, u) is the time-ti, state-Zi leave one out hold value estimator for exercis-

ing u units which does not include node l at time-ti+1,

Ĥ il

(
b,Sj

i ,Ni,Ui, u
)

=
1

b − 1

b∑
k=1
k,l

Di+1v̂k
i+1

(
b,Sk

i+1,Ni − I {u,0} ,Ui + u
)

k = {j, k}

• ĝil(b,Sj
i ,Ni,Ui, u) = hi(Sj

i ,Ni,Ui, u) + Ĥ il(b,Sj
i ,Ni,Ui, u)

• v̂i(b,Sj
i ,Ni,Ui) is the time-ti, state,Zi low estimator,

v̂i =
1
b

b∑
l=1

v̂il

(
b,Sj

i ,Ni,Ui

)
• Ni is the time-ti number of exercise rights remaining.

• Ui is the time-ti cumulative volume.

• Ui is the time-ti discretized set of available volume choices available.

Ui = {u0, u1, u2, . . . , uz : z ∈ N}

where u0 = 0.

• u is the time-ti volume exercised. Here u ∈ Ui.

• Di+1 is the discount factor from ti+1 to ti.

• hi

(
Sj

i ,Ni,Ui, u
)

is the time-ti, state-Zi payoff from exercising u units with hi

(
Sj

i ,Ni,Ui, 0
)

=

0.

• Hi

(
Sj

i ,Ni,Ui

)
is the time-ti, state-Zi true hold value,

Hi

(
Sj

i ,Ni,Ui

)
= E

[
Di+1Bi+1(Sk

i+1,Ni+1,Ui+1)|Zi

]
• Bi(Sj

i ,Ni,Ui) is the time-ti, state-Zi true option value,

Bi(Sj
i ,Ni,Ui) = max

u∈Ui

[
hi

(
Sj

i ,Ni,Ui, u
)

+ Hi

(
Sj

i ,Ni − I {u,0} ,Ui + u
)]

where I{A} is the indicator function for set A.
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We now proceed with the proof of Theorem 9 regarding the bias of the high bias estimator.

Proof (Proof of Theorem 9) Here we prove the more general statement that E [V̂i(b,Sj
i ,Ni,Ui)|Zi] ≥

Bi(Sj
i ,Ni,Ui) for i = 0, 1, . . . ,m. The proof proceeds by backward induction. At expiry the in-

equality holds trivially since V̂m(b,Sj
m,Nm,Um) = Bm(Sj

m,Nm,Um) so that E[V̂m(b,Sj
m,Nm,Um)|Zm] ≥

Bm(Sj
m,Nm,Um). We now assume the inductive hypothesis, E[V̂i+1(b,Sj

i+1,Ni+1,Ui+1)|Zi+1] ≥

Bi+1(Sj
i+1,Ni+1,Ui+1) and proceed to the time-ti case. We have,

E
[
V̂i

(
b,Sj

i ,Ni,Ui

)
|Zi

]
= E

[
max
u∈Ui

[
hi

(
Sj

i ,Ni,Ui, u
)

+ Di+1V̂i+1

(
b,Sk

i+1,Ni − I {u,0} ,Ui + u
) ] ∣∣∣∣∣ Zi

]
≥ max

u∈Ui

[
hi

(
Sj

i ,Ni,Ui, u
)

+ E
[
Di+1V̂i+1

(
b,Sk

i+1,Ni − I {u,0} ,Ui + u
) ∣∣∣∣∣ Zi

]]
= max

u∈Ui

[
hi

(
Sj

i ,Ni,Ui, u
)

+ E
[
Di+1 E

[
V̂i+1

(
b,Sk

i+1,Ni − I {u,0} ,Ui + u
) ∣∣∣∣∣ Zi+1

] ∣∣∣∣∣ Zi

]]
≥ max

u∈Ui

[
hi

(
Sj

i ,Ni,Ui, u
)

+ E
[
Di+1Bi+1

(
Sk

i+1,Ni+1,Ui+1

) ∣∣∣∣∣ Zi

]]
= max

u∈Ui

[
hi

(
Sj

i ,Ni,Ui, u
)

+ Hi

(
Sj

i ,Ni,Ui

)]
= Bi

(
Sj

i ,Ni,Ui

)
,

where the first equality comes from the definition of the high estimator, the first inequality

comes from the conditional Jensen’s inequality and note that Ni+1 = Ni − I{u∗,0} and Ui+1 =

ui + u∗ where u∗ is the value-maximizing volume choice, the second equality uses the tower

law and the fact that Di+1 is Zi-measurable, and the second inequality invokes the inductive

hypothesis.

Next we prove Theorem 10 regarding the bias of the low estimator.

Proof (Proof of Theorem 10) As with the proof of the bias of the high estimator we prove

the more general statement that E [v̂i(b,Sj
i ,Ni,Ui)|Zi] ≤ Bi(Sj

i ,Ni,Ui) for i = 0, 1, . . . ,m by

backward induction. Again at expiry the inequality holds trivially since v̂m(b,Sj
m,Nm,Um)=

Bm(Sj
m,Nm,Um). We now assume the inductive hypothesis, E[v̂i+1(b,Sj

i+1,Ni+1,Ui+1)|Zi+1] ≤

Bi+1(Sj
i+1,Ni+1,Ui+1). We also note that since the v̂il’s are iid we have that, E [v̂i|Zi] = E [v̂il|Zi].

In what follows we define û∗l ∈ Ui to be the volume choice which maximizes a particular v̂il.

That is,

û∗l = arg max
u∈Ui

[
ĝil(b,Sj

i ,Ni,Ui, u)
]
. (A.1)
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Note that ĝil(b,Sj
i ,Ni,Ui, u) is conditionally independent of v̂i+1,l(b,Sl

i+1,Ni+1,Ui+1, u) givenZi

and subsequently û∗l is also independent of v̂i+1,l givenZi since it is a function of ĝil.

Now,

E
[
v̂il

(
b,Sj

i ,Ni,Ui

) ∣∣∣∣∣ Zi

]
= E

[
Di+1v̂i+1,l

(
b,Sk

i+1,Ni,Ui

)
I{û∗l =0}

∣∣∣∣∣ Zi

]
+ E

[ (
hi

(
Sj

i ,Ni,Ui, u1

)
+ Di+1v̂i+1,l

(
b,Sk

i+1,Ni − 1,Ui + u1

) )
I{û∗l =u1}

∣∣∣∣∣ Zi

]
+ . . . + E

[ (
hi

(
Sj

i ,Ni,Ui, uz

)
+ Di+1v̂i+1,l

(
i + 1,Sk

i+1,Ni − 1,Ui + uz

) )
I{û∗l =uz}

∣∣∣∣∣ Zi

]
= E

[
Di+1v̂i+1,l

(
b,Sk

i+1,Ni,Ui

) ∣∣∣∣∣ Zi

]
P
(
û∗l = 0

∣∣∣∣∣ Zi

)
+ hi

(
Sj

i ,Ni,Ui, u1

)
P
(
û∗l = u1

∣∣∣∣∣ Zi

)
+ E

[
Di+1v̂i+1,l

(
b,Sk

i+1,Ni − 1,Ui + u1

) ∣∣∣∣∣ Zi

]
P
(
û∗l = u1

∣∣∣∣∣ Zi

)
+ . . . + hi

(
Sj

i ,Ni,Ui, uz

)
P
(
û∗l = uz

∣∣∣∣∣ Zi

)
+ E

[
Di+1v̂i+1,l

(
b,Sk

i+1,Ni − 1,Ui + uz

) ∣∣∣∣∣ Zi

]
P
(
û∗l = uz

∣∣∣∣∣ Zi

)
= E

[
Di+1v̂i+1,l

(
b,Sk

i+1,Ni,Ui

) ∣∣∣∣∣ Zi

]
p0

+ hi

(
Sj

i ,Ni,Ui, u1

)
p1 + E

[
Di+1v̂i+1,l

(
b,Sk

i+1,Ni − 1,Ui + u1

) ∣∣∣∣∣ Zi

]
p1

+ . . . + hi

(
Sj

i ,Ni,Ui, uz

)
pz + E

[
Di+1v̂i+1,l

(
b,Sk

i+1,Ni − 1,Ui + uz

) ∣∣∣∣∣ Zi

]
pz

where in the second equality we have used the conditional independence of ĝil and v̂i+1,l. Here

p0 = P(û∗l = 0|Zi) and p j = P(û∗l = u j|Zi) for 1 ≤ j ≤ z and p0 + . . . + pz = 1. Thus, using the

tower law, we have,

E
[
v̂i

(
b,Sj

i ,Ni,Ui

) ∣∣∣∣∣ Zi

]
= E

[
v̂il

(
b,Sj

i ,Ni,Ui

) ∣∣∣∣∣ Zi

]
= E

[
Di+1 E

[
v̂i+1,l

(
b,Sk

i+1,Ni,Ui

) ∣∣∣∣∣ Zi+1

] ∣∣∣∣∣ Zi

]
p0

+ hi

(
Sj

i ,Ni,Ui, u1

)
p1 + E

[
Di+1 E

[
v̂i+1,l

(
b,Sk

i+1,Ni − 1,Ui + u1

) ∣∣∣∣∣ Zi+1

] ∣∣∣∣∣ Zi

]
p1

+ . . . + hi

(
Sj

i ,Ni,Ui, uz

)
pz + E

[
Di+1 E

[
v̂i+1,l

(
b,Sk

i+1,Ni − 1,Ui + uz

) ∣∣∣∣∣ Zi+1

] ∣∣∣∣∣ Zi

]
pz

≤ E
[
Di+1Bi+1

(
Sk

i+1,Ni,Ui

) ∣∣∣∣∣ Zi

]
p0
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+ hi

(
Sj

i ,Ni,Ui, u1

)
p1 + E

[
Di+1Bi+1

(
Sk

i+1,Ni − 1,Ui + u1

) ∣∣∣∣∣ Zi

]
p1

+ . . . + hi

(
Sj

i ,Ni,Ui, uz

)
pz + E

[
Di+1Bi+1

(
Sk

i+1,Ni − 1,Ui + uz

) ∣∣∣∣∣ Zi

]
pz

= Hi

(
Sj

i ,Ni,Ui

)
p0 +

(
hi

(
Sj

i ,Ni,Ui, u1

)
+ Hi

(
Sj

i ,Ni − 1,Ui + u1

))
p1

+ . . . +
(
hi

(
Sj

i ,Ni,Ui, uz

)
+ Hi

(
Sj

i ,Ni − 1,Ui + uz

))
pz

≤ max
u∈Ui

[
hi

(
Sj

i ,Ni,Ui, u
)

+ Hi

(
Sj

i ,Ni − I {u,0} ,Ui + u
)]

= Bi(Sj
i ,Ni,Ui)

Where the first inequality follows from the inductive hypothesis and the remaining steps follow

from the definitions for Bi and Hi.

Finally we proceed to the proof of Theorem 11. This theorem justifies that the high estima-

tor is always greater than the low estimator for any realization and any b.

Proof At expiry we have that v̂m(b,Sj
m,Nm,Um) = V̂m(b,Sj

m,Nm,Um) = Bm(Sj
m,Nm,Um) so the

relation holds trivially. We now take the inductive hypothesis to be v̂i+1(b,Sj
i+1,Ni+1,Ui+1) ≤

V̂i+1(b,Sj
i+1,Ni+1,Ui+1) for ji+1 = 1, . . . , b. Using the ĝil as defined above we first consider the

case where for a given tree,

û∗l = arg max
u∈Ui

[
ĝil(b,Sj

i ,Ni,Ui, u)
]
, (A.2)

is the same for all l (i.e., û∗l = û∗, for all l).

Then,

v̂i

(
b,Sj

i ,Ni,Ui

)
=

1
b

b∑
l=1

v̂il

(
b,Sj

i ,Ni,Ui

)
=

1
b

b∑
l=1

[
hi

(
Sj

i ,Ni,Ui, û∗
)

+ Di+1v̂i+1

(
b,Sl

i+1,Ni − I{û∗,0},Ui + û∗
)]

≤
1
b

b∑
l=1

[
hi

(
Sj

i ,Ni,Ui, û∗
)

+ Di+1V̂i+1

(
b,Sl

i+1,Ni − I{û∗,0},Ui + û∗
)]

= hi

(
Sj

i ,Ni,Ui, û∗
)

+
1
b

b∑
l=1

[
Di+1V̂i+1

(
b,Sl

i+1,Ni − I{û∗,0},Ui + û∗
)]

≤ max
u∈Ui

hi

(
Sj

i ,Ni,Ui, u
)

+
1
b

b∑
l=1

[
Di+1V̂i+1

(
b,Sl

i+1,Ni − I{u,0},Ui + u
)]

= V̂i

(
b,Sj

i ,Ni,Ui

)
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where the first inequality comes from the inductive hypothesis and the remaining relations

come from the parameter definitions.

Next consider the case where the low estimator gives two different estimated optimal ex-

ercise amounts, û1, û2, across all l branches where û1 , û2. That is û∗l = û1 or û∗l = û2 for all

l = 1, . . . , b. As above we take û∗l to be the optimal exercise amount determined by the l-th

leave one out estimator, then,

v̂i

(
b,Sj

i ,Ni,Ui

)
=

1
b

b∑
l=1

v̂il

(
b,Sj

i ,Ni,Ui

)
=

1
b

b∑
l=1

[
hi

(
Sj

i ,Ni,Ui, û∗l
)

+ Di+1v̂i+1

(
b,Sl

i+1,Ni − I{û∗l ,0},Ui + û∗l
)]

=
1
b

b∑
l=1

{[
hi

(
Sj

i ,Ni,Ui, û1
)

+ Di+1v̂i+1

(
b,Sl

i+1,Ni − I{û1,0},Ui + û1
)]

I{û∗l =û1}

+
[
hi

(
Sj

i ,Ni,Ui, û2
)

+ Di+1v̂i+1

(
b,Sl

i+1,Ni − I{û2,0},Ui + û2
)]

I{û∗l =û2}

}
=

(
1
b

∑b
l=1 I{û∗l =û1}

)
×

(
1
b

∑b
l=1

[
hi

(
Sj

i ,Ni,Ui, û1
)

+ Di+1v̂i+1

(
b,Sl

i+1,Ni − I{û1,0},Ui + û1
)]

I{û∗l =û1}

)
1
b

∑b
l=1 I{û∗l =û1}

+

(
1
b

∑b
l=1 I{û∗l =û2}

)
×

(
1
b

∑b
l=1

[
hi

(
Sj

i ,Ni,Ui, û2
)

+ Di+1v̂i+1

(
b,Sl

i+1,Ni − I{û2,0},Ui + û2
)]

I{û∗l =û2}

)
1
b

∑b
l=1 I{û∗l =û2}

= p ×
1
b

∑b
l=1

[
hi

(
Sj

i ,Ni,Ui, û1
)

+ Di+1v̂i+1

(
b,Sl

i+1,Ni − I{û1,0},Ui + û1
)]

I{û∗l =û1}

1
b

∑b
l=1 I{û∗l =û1}

+ (1 − p) ×
1
b

∑b
l=1

[
hi

(
Sj

i ,Ni,Ui, û2
)

+ Di+1v̂i+1

(
b,Sl

i+1,Ni − I{û2,0},Ui + û2
)]

I{û∗l =û2}

1
b

∑b
l=1 I{û∗l =û2}

,

where p = 1
b

∑b
l=1 I{û∗l =û1}.

Without loss of generality, suppose that û∗l = û1 for l = 1, . . . , k and û∗l = û2 for l =

k + 1, . . . , b. Then the above ratios become∑k
l=1

[
hi

(
Sj

i ,Ni,Ui, û1
)

+ Di+1v̂i+1

(
b,Sl

i+1,Ni − I{û1,0},Ui + û1
)]

k
(A.3)

and ∑b
l=k+1

[
hi

(
Sj

i ,Ni,Ui, û2
)

+ Di+1v̂i+1

(
b,Sl

i+1,Ni − I{û2,0},Ui + û2
)]

b − k
, (A.4)

respectively. Now for any i∗ ≤ k < j∗ ≤ b we have

ĝii∗
(
b,Sj

i ,Ni,Ui, û1
)
> ĝi j∗

(
b,Sj

i ,Ni,Ui, û1
)
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which from the definition of ĝil, implies that

Di+1v̂i+1

(
b,Si∗

i+1,Ni,Ui + û1
)
≤ Di+1v̂i+1

(
b,Sj∗

i+1,Ni,Ui + û1
)
.

Therefore,

max
1≤a≤k

[
Di+1v̂i+1

(
b,Sa

i+1,Ni,Ui + û1
)]
≤ min

k+1≤a≤b

[
Di+1v̂i+1

(
b,Sa

i+1,Ni,Ui + û1
)]
.

This implies that Equation A.3

1
k

k∑
l=1

[
hi

(
Sj

i ,Ni,Ui, û1
)

+ Di+1v̂i+1

(
b,Sl

i+1,Ni − I{û1,0},Ui + û1
)]

≤
1
b

b∑
l=1

[
hi

(
Sj

i ,Ni,Ui, û1
)

+ Di+1v̂i+1

(
b,Sl

i+1,Ni − I{û1,0},Ui + û1
)]
,

and similarly for Equation A.4

1
b − k

b∑
l=k+1

[
hi

(
Sj

i ,Ni,Ui, û2
)

+ Di+1v̂i+1

(
b,Sl

i+1,Ni − I{û2,0},Ui + û2
)]

≤
1
b

b∑
l=1

[
hi

(
Sj

i ,Ni,Ui, û2
)

+ Di+1v̂i+1

(
b,Sl

i+1,Ni − I{û2,0},Ui + û2
)]
.

Therefore

v̂i

(
b,Sj

i ,Ni,Ui

)
≤ p ×

1
b

b∑
l=1

[
hi

(
Sj

i ,Ni,Ui, û1
)

+ Di+1v̂i+1

(
b,Sl

i+1,Ni − I{û1,0},Ui + û1
)]

+ (1 − p) ×
1
b

b∑
l=1

[
hi

(
Sj

i ,Ni,Ui, û2
)

+ Di+1v̂i+1

(
b,Sl

i+1,Ni − I{û2,0},Ui + û2
)]

≤ p ×
1
b

b∑
l=1

[
hi

(
Sj

i ,Ni,Ui, û1
)

+ Di+1V̂i+1

(
b,Sl

i+1,Ni − I{û1,0},Ui + û1
)]

+ (1 − p) ×
1
b

b∑
l=1

[
hi

(
Sj

i ,Ni,Ui, û2
)

+ Di+1V̂i+1

(
b,Sl

i+1,Ni − I{û2,0},Ui + û2
)]

≤ max

1
b

b∑
l=1

[
hi

(
Sj

i ,Ni,Ui, û1
)

+ Di+1V̂i+1

(
b,Sl

i+1,Ni − I{û1,0},Ui + û1
)]
,

1
b

b∑
l=1

[
hi

(
Sj

i ,Ni,Ui, û2
)

+ Di+1V̂i+1

(
b,Sl

i+1,Ni − I{û2,0},Ui + û2
)]
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≤ max
u∈Ui

1
b

b∑
l=1

[
hi

(
Sj

i ,Ni,Ui, u
)

+ Di+1V̂i+1

(
b,Sl

i+1,Ni − I{u,0},Ui + u
)]

= V̂i(Sj
i ,Ni,Ui),

where the second inequality comes from the inductive hypothesis, the third inequality is an

application of Jensen’s inequality, the fourth inequality comes from maximizing over a larger

set, and the final equality is the definition of the high-biased estimator.

For the cases where the low estimator gives z∗ distinct estimated optimal exercise amounts,

û1, . . . , ûz∗ , across all z branches, z∗ = 3, . . . , z, arguments similar to those given above (for 2

distinct estimated optimal exercise amounts) show that,

v̂i(Sj
i ,Ni,Ui) ≤ V̂i(Sj

i ,Ni,Ui).

Since we restrict the number of volume choices to be finite, the theorem is proven.

This concludes the proofs of Theorems 9–11.



Appendix B

Proof of Estimator Convergence - Forest
of Stochastic Trees

In this appendix we prove Theorems 12 and 13 found in Section 3.3. These proofs verify that

both the high and low bias estimators converge to the true option value as the branching factor

goes to infinity. Refer to Appendix A for notation used here. Prior to proving Theorems 12

and 13 we first state and prove the following two preliminary results.

Lemma B.0.1 If ||hi(Si,Ni,Ui, u)|| < ∞ for all ti, for some p ≥ 1, then the following are true

for all 0 ≤ ti ≤ tk ≤ tm:

‖Bk(Sk,Nk,Uk)‖Zi
< ∞ (B.1)

sup
b

∥∥∥V̂k(b,Sk,Nk,Uk)
∥∥∥
Zi
< ∞ (B.2)

sup
b
‖v̂k(b,Sk,Nk,Uk)‖Zi

< ∞ (B.3)

Proof (Proof of Lemma B.0.1) If every hi(Si,Ni,Ui, u) has finite p-th moment, then each

||hi(Sk,Nk,Uk, u)||Zi is finite. Since the max, discounting, and conditional expectation operators

preserve finiteness of moments then it follows that ||Bk(Sk,Nk,Uk)||Zi and also ||Hk(Sk,Nk,Uk)||Zi

must also be finite.

Proceeding to B.2, fix ti and proceed by backward induction on tk from tm to ti. At expiry B.2

follows from B.1. Then for tk < tm,

sup
b

∥∥∥V̂k(b,Sk,Nk,Uk)
∥∥∥
Zi

= sup
b

∥∥∥∥∥max
u∈Uk

[
hk(Sk,Nk,Uk, u) + Ĥk(b,Sk,Nk − I{u,0},Uk + u)

]∥∥∥∥∥
Zi

= sup
b

∥∥∥∥∥∥∥ max
u∈Uk ,u

hk(Sk,Nk,Uk, u) +
1
b

b∑
j=1

Dk+1V̂k+1(b,S j
k+1,Nk − I{u,0},Uk + u)


∥∥∥∥∥∥∥
Zi

86
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≤ ‖hk(Sk,Nk,Uk, 0)‖Zi
+ sup

b

∥∥∥∥∥∥∥1
b

b∑
j=1

Dk+1V̂k+1(b,S j
k+1,Nk,Uk)

∥∥∥∥∥∥∥
Zi

+ ‖hk(Sk,Nk,Uk, u1)‖Zi
+ sup

b

∥∥∥∥∥∥∥1
b

b∑
j=1

Dk+1V̂k+1(b,S j
k+1,Nk − 1,Uk + u1)

∥∥∥∥∥∥∥
Zi

+ . . . + ‖hk(Sk,Nk,Uk, ur)‖Zi
+ sup

b

∥∥∥∥∥∥∥1
b

b∑
j=1

Dk+1V̂k+1(b,S j
k+1,Nk − 1,Uk + ur)

∥∥∥∥∥∥∥
Zi

≤ sup
b

∥∥∥V̂k+1(b,Sk+1,Nk,Uk)
∥∥∥
Zi

+ ‖hk(Sk,Nk,Uk, u1)‖Zi
+ sup

b

∥∥∥V̂k+1(b,Sk+1,Nk − 1,Uk + u1)
∥∥∥
Zi

+ . . . + ‖hk(Sk+1,Nk,Uk, ur)‖Zi
+ sup

b

∥∥∥V̂k+1(b,Sk+1,Nk − 1,Uk + ur)
∥∥∥
Zi
,

where hk(Sk,Nk,Uk, 0) = 0. This is the sum of a finite number of terms, each of which is finite.

For (iii) the proof is similar to that of (ii).

The second preliminary result that we prove is as follows:

Lemma B.0.2 Let a1, . . . , an, b1, . . . , bn, c1, . . . , cn be real numbers. Then,

An ≡ |max (a1 + b1, . . . , an + bn) −max (a1 + c1, . . . , an + cn)| ≤ 2
n+1∑
i=1

|bi − ci| ≡ Bn. (B.4)

Proof (Proof of Lemma B.0.2) In order to prove Lemma B.0.2 we proceed by induction by

considering the cases for n = 1 and n = 2. For n = 1,

A1 = |max(a1 + b1) −max(a1 + c1)| = |b1 − c1| < B1

therefore A1 ≤ B1. Now, for n = 2

A1 = |max(a1 + b1, a2 + b2) −max(a1 + c1, a2 + c2)|

Consider the following,

(i) a1 + b1 > a2 + b2

(a) a1 + c1 > a2 + c2

Then

A2 = |a1 + b1 − a1 − c1| = |b1 − c1| ≤ B2

(b) a1 + c1 < a2 + c2
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Note that conditions (i) and (b) imply that

b2 − b1 < a1 − a2 < c2 − c1 (B.5)

and we have

A2 = |a1 + b1 − a2 − c2|

= |a1 + b1 − c1 + c1 − a2 − c2|

≤ |b1 − c1| + |(a1 − a2) − (c2 − c1)|

≤ |b1 − c1| + |(b2 − b1) − (c2 − c1)|

= |b1 − c1| + |b2 − c2 − (b1 − c1)|

≤ 2|b1 − c1| + |b2 − c2|

≤ 2|b1 − c1| + 2|b2 − c2|

= B2

where the first inequality comes from the triangle inequality, the second comes from

Inequality B.5 and the third inequality comes from another application of the triangle

inequality.

(ii) a2 + b2 > a1 + b1

(a) a2 + c2 > a1 + c1

Then

A2 = |a2 + b2 − a2 − c2| = |b2 − c2| ≤ B2

(b) a2 + c2 < a1 + c1

Note that conditions (ii) and (b) imply that

b1 − b2 < a2 − a1 < c1 − c2 (B.6)

and we have

A2 = |a2 + b2 − a1 − c1|

= |a2 + b2 − c2 + c2 − a1 − c1|

≤ |b2 − c2| + |(a2 − a1) − (c1 − c2)|

≤ |b2 − c2| + |(b1 − b2) − (c1 − c2)|

= |b2 − c2| + |b1 − c1 − (b2 − c2)|
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≤ 2|b2 − c2| + |b1 − c1|

≤ 2|b2 − c2| + 2|b1 − c1|

= B2

where again the first inequality comes from the triangle inequality, the second comes

from Inequality B.6 and the third inequality comes from another application of the

triangle inequality.

Therefore A2 ≤ B2.

Now assume that the inductive hypothesis An ≤ Bn is true. We need to show that An+1 ≤

Bn+1. First define in and jn such that

ain + bin = max(a1 + b1, . . . , an + bn)

and

ain + cin = max(a1 + c1, . . . , an + cn)

respectively. Now,

An+1 = |max(a1 + b1, . . . , an + bn, an+1 + bn+1) −max(a1 + c1, . . . , an + cn, an+1 + cn+1)|

=
∣∣∣max(ain + bin , an+1 + bn+1) −max(a jn + c jn , an+1 + cn+1)

∣∣∣
Consider the following,

(i) ain + bin > an+1 + bn+1

(a) a jn + c jn > an+1 + cn+1

An+1 = |ain + bin − a jn − c jn |

≤ 2
n∑

i=1

|bi − ci|

≤ 2
n+1∑
i=1

|bi − ci|

= Bn+1

where the first inequality comes from the inductive hypothesis.

(b) a jn + c jn < an+1 + cn+1
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By the definitions of in and jn and (b) we have

ain + cin ≤ a jn + c jn < an+1 + cn+1.

This combined with (i) gives

bn+1 − bin < ain − an+1 < cn+1 − cin (B.7)

Then

An+1 = |ain + bin − an+1 − cn+1|

= |ain + bin − cin + cin − an+1 − cn+1|

≤ |bin − cin | + |(ain − an+1) − (cn+1 − cin)|

≤ |bin − cin | + |(bn+1 − bin) − (cn+1 − cin)|

= |bin − cin | + |bn+1 − cn+1 − (bin − cin)|

≤ 2|bin − cin | + |bn+1 − cn+1|

≤ Bn+1

where again the first inequality comes from the triangle inequality, the second comes

from Inequality B.7 and the third inequality comes from another application of the

triangle inequality.

(ii) ain + bin < an+1 + bn+1

(a) a jn + c jn < an+1 + cn+1

An+1 = |an+1 + bn+1 − an+1 − cn+1|

= |bn+1 − cn+1|

≤ 2
n+1∑
i=1

|bi − ci|

= Bn+1

(b) a jn + c jn > an+1 + cn+1

By the definitions of in and jn and (ii) we have

a jn + b jn ≤ ain + bin < an+1 + bn+1.
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This combined with (b) gives

b jn − bn+1 < an+1 − a jn < c jn − cn+1 (B.8)

Then

An+1 = |an+1 + bn+1 − a jn − c jn |

= |an+1 + bn+1 − cn+1 + cn+1 − a jn − c jn |

≤ |bn+1 − cn+1| + |(an+1 − a jn) − (c jn − cn+1)|

≤ |bn+1 − cn+1| + |(b jn − bn+1) − (c jn − cn+1)|

= |bn+1 − cn+1| + |b jn − c jn − (bn+1 − cn+1)|

≤ 2|bn+1 − cn+1| + |b jn − c jn |

≤ Bn+1

where again the first inequality comes from the triangle inequality, the second comes

from Inequality B.8 and the third inequality comes from another application of the

triangle inequality.

Therefore An+1 ≤ Bn+1 and the Lemma is proven.

We are now able to proceed beginning with the proof of Theorem 12 regarding the conver-

gence of the high bias estimator.

Proof (Proof of Theorem 12) Here we take R = 1 and state that if the convergence holds for

a single realization of the forest then it will hold for the mean of any number of realizations

due to the independence of each repeated valuation. Here we prove by backward induction

the more general statement ‖V̂i(b,Si,Ni,Ui) − Bi(Si,Ni,Ui)‖Zi → 0 for any generic node in

a given tree and for all i = 0, . . . ,m. At expiry the relation holds trivially since at ti = tm

we have that V̂m(b,Sm,Nm,Um) = Bm(Sm,Nm,Um). The inductive hypothesis is taken to be

‖V̂i+1(b,Si+1,Ni+1,Ui+1) − Bi+1(Si+1,Ni+1,Ui+1)‖Zi+1 → 0.

Now,

∥∥∥V̂i(b,Si,Ni,Ui) − Bi(Si,Ni,Ui)
∥∥∥
Zi

=

∥∥∥∥∥∥∥ max
u∈Ui

 hi (Si,Ni,Ui, u) +
1
b

b∑
j=1

Di+1V̂i+1

(
b,S j

i+1,Ni − I {u,0} ,Ui + u
)

− max
u∈Ui

[
hi (Si,Ni,Ui, u) + Hi

(
Si,Ni − I{u,0},Ui + u

)]∥∥∥∥∥
Zi
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=

∥∥∥∥∥∥∥
∣∣∣∣∣∣∣max

u∈Ui

hi (Si,Ni,Ui, u) +
1
b

b∑
j=1

Di+1V̂i+1

(
b,S j

i+1,Ni − I{u,0},Ui + u
)

− max
u∈Ui

[
hi (Si,Ni,Ui, u) + Hi

(
b,S j

i ,Ni − I{u,0},Ui + u
)]∣∣∣∣∣ ∥∥∥∥∥

Zi

≤

∥∥∥∥∥∥∥ 2
z∑

k=0

1
b

∣∣∣∣∣∣∣
b∑

j=1

Di+1V̂i+1

(
b,S j

i+1,Ni − I{uk,0},Ui + uk

)
− Hi

(
Si,Ni − I{uk,0},Ui + uk

)∣∣∣∣∣∣∣
∥∥∥∥∥∥∥
Zi

≤ 2
z∑

k=0

∥∥∥∥∥∥∥1
b

b∑
j=1

Di+1V̂i+1

(
b,S j

i+1,Ni − I{uk,0},Ui + uk

)
− Hi

(
Si,Ni − I{uk,0},Ui + uk

) ∥∥∥∥∥∥∥
Zi

≤ 2
z∑

k=0

∥∥∥∥∥∥∥1
b

b∑
j=1

Di+1

[
V̂i+1

(
i,S j

i+1,Ni − I{uk,0},Ui + uk

)
− Bi+1

(
S j

i+1,Ni − I{uk,0},Ui + uk

)] ∥∥∥∥∥∥∥
Zi

+ 2
z∑

k=0

∥∥∥∥∥Di+1Bi+1

(
S j

i+1,Ni − I{uk,0},Ui + uk

)
− Hi

(
Si,Ni − I{uk,0},Ui + uk

) ∥∥∥∥∥
Zi

= 2
z∑

k=0

(Ek + Ck)

where the first equality comes from the definitions of the estimator and the true value. The

third step comes as a result of Lemma B.0.2, the fourth step comes from a generalization of the

triangle inequality. In the final step we rewrite the expression for convience in what follows.

First we deal with the Ck’s. Given Zi we have that Di+1Bi+1(S j
i+1,Ni − I{uk,0},Ui + uk) for

j = 1, . . . , b and k = 0, . . . , z are iid with means of Hi(Si,Ni− I{uk,0},Ui +uk) and finite p-norms.

Then by Theorem I.4.1 of [36] we have that all Ck’s in the above expression go to zero.

Next we consider the Ek’s. Here we have, by the properties of p-norms and the fact that the

terms being averaged are iid, that

Ek ≤
∥∥∥V̂i+1

(
b,Si+1,Ni − I{uk,0},Ui + uk

)
− Bi+1

(
Si+1,Ni − I{uk,0},Ui + uk

)∥∥∥
Zi

since Ek is bounded by the p-norm of any one of the terms being averaged. By the inductive

hypothesis ∥∥∥V̂i+1 (b,Si+1,Ni+1,Ui+1) − Bi+1 (Si+1,Ni+1,Ui+1)
∥∥∥
Zi+1
→ 0,

Where Ni+1 = Ni − I{uk,0} and Ui+1 = Ui + uk.

Also by a standard condition for uniform integrability (see [36] p178) we have that

∥∥∥V̂i+1 (b,Si+1,Ni+1,Ui+1) − Bi+1 (Si+1,Ni+1,Ui+1)
∥∥∥
Zi
→ 0, (B.9)
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provided

sup
b

E
[∣∣∣V̂i+1 (b,Si+1,Ni+1,Ui+1) − Bi+1 (Si+1,Ni+1,Ui+1)

∣∣∣p+ε
∣∣∣∣∣ Zi

]
< ∞

for some ε. From Lemma B.0.1 we know that

sup
b

E
[∣∣∣V̂i+1 (b,Si+1,Ni+1,Ui+1)

∣∣∣p+ε
∣∣∣∣∣ Zi

]
< ∞

and that

E
[
|Bi+1 (Si+1,Ni+1,Ui+1)|p+ε

∣∣∣∣∣ Zi

]
< ∞.

Thus B.9 holds for each k = 0, . . . , z and hence the result is proven.

The final proof of this appendix is that of Theorem 13 regarding the consistency of the low

biased estimator.

Proof (Proof of Theorem 13) As with the proof of Theorem 12 we proceed by backward

induction. Again at expiry the relation holds trivially since v̂m(b,Sm,Nm,Um) = Bm(Sm,Ni,Ui).

The inductive hypothesis is taken to be ‖v̂i+1(b,Si+1,Ni+1,Ui+1)−Bi+1(Si+1,Ni+1,Ui+1)‖Zi+1 → 0.

Let ĝil(b,Sj
i ,Ni,Ui, u) be as defined at the start of Appendix A and note that, with probabil-

ity one,

hi

(
Sj

i ,Ni,Ui, u1
)

+ Hi

(
Sj

i ,Ni − I{u1,0},Ui + u1
)

, hi

(
Sj

i ,Ni,Ui, u2
)

+ Hi

(
Sj

i ,Ni − I{u2,0},Ui + u2
)
,

for all u1, u2 ∈ Ui, u1 , u2.

Before proceeding, we stop to make three claims:

(i)
∥∥∥∥ 1

b

∑b
l=1 Di+1v̂i+1

(
b,Sl

i+1,Ni − I{u,0},Ui + u
)
− Hi

(
Sj

i ,Ni − I{u,0},Ui + u
)∥∥∥∥
Zi
→ 0

(ii)
∥∥∥∥ĝil(b,Sj

i ,Ni,Ui, u) −
[
hi

(
Sj

i ,Ni,Ui, u
)
− Hi

(
Sj

i ,Ni − I{u,0},Ui + u
)]∥∥∥∥
Zi
→ 0

(iii)
∥∥∥I{û∗l =u} − I{u∗=u}

∥∥∥
Zi
→ 0

for all u ∈ Ui and where

û∗l = arg max
u∈Ui

[
ĝil(b,Sj

i ,Ni,Ui, u)
]

and
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u∗ = arg max
u∈Ui

[
hi

(
Sj

i ,Ni,Ui, u
)
− Hi

(
Sj

i ,Ni − I{u,0},Ui + u
)]

The proof of item (i) is the same as the proof of the corresponding step in Theorem 12. Since

the estimators in (i) and (ii) differ only in the omission of one term in ĝil, similar arguments

prove that (ii) also holds.

Now for (iii), if û∗l = u∗ then the result holds trivially. Now suppose that û∗l = u , u∗ for

some u ∈ Ui. Then,

∥∥∥I{û∗l =u} − I{u∗=u}

∥∥∥
Zi

=
∥∥∥I{û∗l =u}

∥∥∥
Zi

=
[
P
(
û∗l = u|Zi

)] 1
p

=
[
P
(
ĝil(b,Sj

i ,Ni,Ui, u) ≥ hi(Sj
i ,Ni,Ui, u) + Hi(Sj

i ,Ni − I{u,0},Ui + u)
)]1/p

→ 0.

Since (ii) holds and convergence in p-norm implies convergence in probability. Thus (iii) is

proven.

Now proceeding from the definition of the low estimator and the true option value for all

u ∈ Ui,

‖v̂i (b,Si,Ni,Ui) − Bi (Si,Ni,Ui)‖Zi

=

∥∥∥∥∥∥∥1
b

b∑
l=1

v̂il (b,Si,Ni,Ui) − Bi (Si,Ni,Ui)

∥∥∥∥∥∥∥
Zi

=

∥∥∥∥∥∥∥1
b

b∑
l=1

(
Di+1v̂i+1,l

(
b,Sl

i+1,Ni,Ui

)
I{û∗l =0}

+
[

hi (Si,Ni,Ui, u1) + Di+1v̂i+1,l

(
b,Sl

i+1,Ni − 1,Ui + u1

)]
I{û∗l =u1}

+ . . . +

[
hi (Si,Ni,Ui, uz) +Di+1v̂i+1,l

(
b,Sl

i+1,Ni − 1,Ui + uz

)]
I{û∗l =uz}

)
− Bi (Si,Ni,Ui)

∥∥∥∥∥∥
Zi

≤

∥∥∥∥∥∥∥1
b

b∑
l=1

Di+1v̂i+1,l

(
b,Sl

i+1,Ni,Ui

)
I{û∗l =0} − Hi (Si,Ni,Ui) I{u∗=0}

∥∥∥∥∥∥∥
Zi

+

∥∥∥∥∥∥∥1
b

b∑
l=1

Di+1v̂i+1,l

(
b,Sl

i+1,Ni − 1,Ui + u1

)
I{û∗l =u1} − Hi (Si,Ni − 1,Ui + u1) I{u∗=u1}

∥∥∥∥∥∥∥
Zi

+ . . . +

∥∥∥∥∥∥∥1
b

b∑
l=1

Di+1v̂i+1,l

(
b,Sl

i+1,Ni − 1,Ui + uz

)
I{û∗l =uz} − Hi (Si,Ni − 1,Ui + uz) I{u∗=uz}

∥∥∥∥∥∥∥
Zi

+
∥∥∥hi (Si,Ni,Ui, u1) I{û∗l =u1} − hi (Si,Ni,Ui, u1) I{u∗=uz}

∥∥∥
Zi

+ . . . +
∥∥∥hi (Si,Ni,Ui, uz) I{û∗l =uz} − hi (Si,Ni,Ui, uz) I{u∗=uz}

∥∥∥
Zi

(B.10)
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where the inequality in the third step is due to a generalization of the triangle inequality.

The immediate consequence of claim (iii) above is that all terms in Equation B.10 with the

form ∥∥∥hi(Si,Ni,Ui, u)I{û∗l =u} − hi(Si,Ni,Ui, u)I{u∗=u}

∥∥∥
Zi
→ 0

for all u ∈ Ui. Thus

z∑
k=0

∥∥∥hi(Si,Ni,Ui, uk)I{û∗l =uk} − hi(Si,Ni,Ui, uk)I{u∗=uk}

∥∥∥
Zi
→ 0.

It remains to show that the remaining terms in B.10 converge in the p-norm. Taking one of

these terms, that is, fix a u ∈ Ui, we now show this converges in the p-norm to zero.∥∥∥∥∥∥∥1
b

b∑
l=1

Di+1v̂i+1,l

(
b,Sl

i+1,Ni − I{u,0},Ui + u
)

I{û∗=u} − Hi
(
Si,Ni − I{u,0},Ui + u

)
I{u∗l =u}

∥∥∥∥∥∥∥
Zi

=

∥∥∥∥∥∥∥1
b

b∑
l=1

[
Di+1v̂i+i,l

(
b,Sl

i+1,Ni − I{u,0},Ui + u
)

I{û∗l =u} − [Di+1v̂i+1,l

(
b,Sl

i+1,Ni − I{u,0},Ui + u
)

I{u∗=u}

]
+

1
b

b∑
l=1

Di+1v̂i+1,l

(
b,Sl

i+1,Ni − I{u,0},Ui + u
)

I{u∗=u} − Hi
(
Si,Ni − I{u,0},Ui + u

)
I{u∗=u}

∥∥∥∥∥∥∥
Zi

≤

∥∥∥∥∥∥∥1
b

b∑
l=1

[
Di+1v̂i+i,l

(
b,Sl

i+1,Ni − I{u,0},Ui + u
)

I{û∗l =u} − Di+1v̂i+1,l

(
b,Sl

i+1,Ni − I{u,0},Ui + u
)

I{u∗=u}

]∥∥∥∥∥∥∥
+

∥∥∥∥∥∥∥1
b

b∑
l=1

Di+1v̂i+1,l

(
b,Sl

i+1,Ni − I{u,0},Ui + u
)

I{u∗=u} − Hi
(
Si,Ni − I{u,0},Ui + u

)
I{u∗=u}

∥∥∥∥∥∥∥
Zi

≤

∥∥∥∥Di+1v̂i+1,l

(
b,Sl

i+1,Ni − I{u,0},Ui + u
)∥∥∥∥
Zi
·
∥∥∥I{û∗l =u} − I{u∗=u}

∥∥∥
Zi

+
∥∥∥I{u∗=u}

∥∥∥
Zi
·

∥∥∥∥∥∥∥1
b

b∑
l=1

Di+1v̂i+1,l

(
b,Sl

i+1,Ni − I{u,0},Ui + u
)
− Hi

(
Si,Ni − I{u,0},Ui + u

) ∥∥∥∥∥∥∥
Zi

,

where the first step comes from adding and subtracting the same term, the second comes from

applying the triangle inequality and the third step comes from factoring out common terms.

Now by (iii), ∥∥∥I{û∗l =u} − I{û∗=u}

∥∥∥
Zi
→ 0,

by (i), ∥∥∥∥∥∥∥1
b

b∑
l=1

Di+1v̂i+1,l

(
b,Sl

i+1,Ni − I{u,0},Ui + u
)
− Hi

(
Si,Ni − I{u,0},Ui + u

) ∥∥∥∥∥∥∥
Zi

→ 0,
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and we note that

∥∥∥I{u∗=u}

∥∥∥
Zi
< ∞ and∥∥∥∥Di+1v̂i+1,l

(
b,Sl

i+1,Ni − I{u,0},Ui + u
)∥∥∥∥
Zi
< ∞,

by B.3.

Hence we have proven the consistency of the low-biased estimator.



Appendix C

Proof of Estimator Bias - Forest of
Stochastic Meshes

In this appendix we show a detailed proof for Theorem 14 stated in Section 4.2. This theorem

refers to the bias of the mesh estimators for the forest of stochastic meshes. The notation in this

appendix follows from the definitions given in Appendix A. We begin the proof of Theorem 14.

Proof (Proof of Theorem 14) We note that at expiry the relation holds trivially since V̂m(b,Sm,Nm,Um) =

Bm(Sm,Nm,Um). We then proceed by backward induction at time ti < tm with the inductive hy-

pothesis taken to be E[V̂i+1(b,Si+1,Ni+1,Ui+1)|Zi] ≥ Bi+1(Si+1,Ni+1,Ui+1). Now,

E
[
V̂i (b,Si,Ni,Ui)

∣∣∣∣∣ Zi

]
= E

 max
u∈Ui

hi (Si,Ni,Ui, u) +
1
b

b∑
j=1

fi

(
Si,S j

i+1

)
gi

(
S j

i+1

) Di+1V̂i+1

(
b,S j

i+1,Ni − I {u,0} ,Ui + u
) ∣∣∣∣∣ Zi


≥ max

u∈Ui

hi (Si,Ni,Ui, u) + E

1
b

b∑
j=1

fi

(
Si,S j

i+1

)
gi

(
S j

i+1

) Di+1V̂i+1

(
b,S j

i+1,Ni − I {u,0} ,Ui + u
) ∣∣∣∣∣ Zi




= max
u∈Ui

hi (Si,Ni,Ui, u) + E

 fi

(
Si,S1

i+1

)
gi

(
S1

i+1

) Di+1V̂i+1

(
b,S1

i+1,Ni − I {u,0} ,Ui + u
) ∣∣∣∣∣ Zi




= max
u∈Ui

hi (Si,Ni,Ui, u) + E

 fi

(
Si,S1

i+1

)
gi

(
S1

i+1

) E
[
Di+1V̂i+1

(
b,S1

i+1,Ni − I {u,0} ,Ui + u
) ∣∣∣∣∣ Zi+1

] ∣∣∣∣∣ Zi




≥ max
u∈Ui

hi (Si,Ni,Ui, u) + E

 fi

(
Si,S1

i+1

)
gi

(
S1

i+1

) Di+1Bi+1

(
S1

i+1,Ni − I {u,0} ,Ui + u
) ∣∣∣∣∣ Zi




= max
u∈Ui

[
hi (Si,Ni,Ui, u) + Di+1E

[
Bi+1

(
S1

i+1,Ni − I {u,0} ,Ui + u
) ∣∣∣∣∣ Zi

]]
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= Bi (Si,Ni,Ui)

The first three steps come from the definition of the estimator, followed by the use of Jensen’s

inequality and then utilizing the fact that at each time step the mesh points are identically

distributed. Next comes the law of iterative expectations which is followed by the inductive

hypothesis. The sixth step comes from the identity,

E

 fi

(
Si,S1

i+1

)
gi

(
S1

i+1

) Bi+1

(
S1

i+1,Ni − I {u,0} ,Ui + u
) ∣∣∣∣∣ Zi

 =

∫
fi (s, y) Bi+1

(
y,Ni − I{u,0},Ui + u

)
d y ,

and finally the definition of the true option value.



Appendix D

Proof of Estimator Convergence - Forest
of Stochastic Meshes

In this appendix we give proofs of the theorems found in Section 4.3. These proofs verify

that both the mesh and path estimators converge to the true option value in the limit that the

mesh and path sizes go to infinity. For all proceeding results refer to Appendix A for notation.

Prior to showing the proofs for Theorems 16 and 17 we first state and prove the following

preliminary result:

Lemma D.0.3 For any p ≥ 1 if Assumption 4.3.1 holds then,

E
[∣∣∣∣Bi

(
S1

i ,Ni,Ui

)∣∣∣∣p] < ∞ (D.1)

and if Assumption 4.3.2 also holds then,

sup
b≥1

E
[∣∣∣∣V̂i

(
b,S1

i ,Ni,Ui

)∣∣∣∣p] < ∞ (D.2)

Proof (Proof of D.1 and D.2) First consider,

|Bi (Si,Ni,Ui)| =

∣∣∣∣∣∣ max
u∈Ui

[
hi (Si,Ni,Ui, u) + E

[
Di+1Bi+1

(
Si+1,Ni − I {u,0} ,Ui + u

) ∣∣∣∣∣ Zi

]]∣∣∣∣∣∣
≤ max

u∈Ui

[
|hi (Si,Ni,Ui, u)| +

∣∣∣∣∣∣E
[
Di+1Bi+1

(
Si+1,Ni − I {u,0} ,Ui + u

) ∣∣∣∣∣ Zi

]∣∣∣∣∣∣
]

≤
∑

ui∈U i

|hi (Si,Ni,Ui, ui)| +

∣∣∣∣∣∣E
[
Di+1Bi+1 (Si+1,Ni − Ii,Ui + ui)

∣∣∣∣∣ Zi

]∣∣∣∣∣∣ (D.3)

where ui is the volume choice at time-ti, which we have added for reasons that will become
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apparent below, and Ii = I{ui,0}. Now consider,

E
[
Bi+1 (Si+1,Ni − Ii,Ui + ui)

∣∣∣∣∣ Zi

]
= E

[
max

ui+1∈Ui+1

[
hi (Si+1,Ni − Ii,Ui + ui, ui+1)

+E [Di+2Bi+2 (Si+2,Ni − Ii − Ii+1,Ui + ui + ui+1)]
] ∣∣∣∣∣ Zi

]
Then returning to D.3 we have the following.

|Bi (Si,Ni,Ui)| ≤
∑

ui∈U i

 |hi (Si,Ni,Ui, ui)| +
∑

ui+1∈U i+1

[
E

[
|hi (Si+1,Ni − Ii,Ui + ui, ui+1)|

∣∣∣∣∣ Zi

]
+

∣∣∣∣∣∣Di+2E
[
Bi+2 (Si+2,Ni − Ii − Ii+1,Ui + ui + ui+1)

∣∣∣∣∣ Zi

]∣∣∣∣∣∣
]]

≤
∑

ui∈U i

 |hi (Si,Ni,Ui, ui)| +
∑

ui+1∈U i+1

[
E

[
|hi+1 (Si+1,Ni − Ii,Ui + ui, ui+1)|

∣∣∣∣∣ Zi

]

+ . . . +
∑

um∈Um

E


∣∣∣∣∣∣∣hm

Sm,Ni −

m∑
k=i

Ik,Ui +

m−1∑
k=i

uk, um


∣∣∣∣∣∣∣
∣∣∣∣∣ Zi

 · · ·



So Bi(Si,Ni,Ui) has finite p-th absolute moment if each of the terms above do, i.e. if,∫
E

[
|hk(Sk,Nk,Uk, u)|

∣∣∣∣∣ Zi

]p

gi(s)ds < ∞

for all k ≥ i. By Jensen’s inequality we have that,∫
E

[
|hk(Sk,Nk,Uk, u)|

∣∣∣∣∣ Zi

]p

gi(s)ds

≤

∫
E

[
|hk (Sk,Nk,Uk, u)|p

∣∣∣∣∣ Zi

]
gi(s)ds

=

∫
E

[
|hk (Sk,Nk,Uk, u)|p

∣∣∣∣∣ Zi

]
gi(s)

fi(s,Sk)
fi(s,Sk)ds

= E
[
|hk (Sk,Nk,Uk, u)|p

(
gi(Si)

fi(Si,Sk)

)]
< ∞

by Assumption 4.3.1.
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Similarly,

∣∣∣∣V̂m−k

(
b,S1

m−k,Nm−k,Um−k

)∣∣∣∣ ≤ ∑
um−k∈U m−k

[
|hm−k (Sm−k,Nm−k,Um−k, um−k)|

+
∑

um−k+1∈U m−k+1

1
b

b∑
j1=1

∣∣∣∣ω (
m − k,S1

m−k,S
j1
m−k+1

)
hm−k

(
S j1

m−k+1,Nm−k − Im−k,Um−k + um−k, um−k+1

)∣∣∣∣
+ . . . +

1
bk

∑
um∈U m

b∑
j1=1

· · ·

b∑
jk=1

∣∣∣∣∣∣∣ f (m − k,S1
m−k,S

j1
m−k+1)

gm−k+1(S jk
m−k+1)

× · · · ×
fm−1(S jk−1

m−1,S
jk
m )

gm(S jk
m )

hm

S jk
m ,Nm −

m∑
i=m−k

Ii,Ui +

m−1∑
i=m−k

ui, um


∣∣∣∣∣∣∣


The p-norm of any average with identically distributed terms is bounded by any one of the

terms in the average. Thus,

E
[∣∣∣∣V̂m−k

(
b, X1

m−k,Nm−k,Um−k

)∣∣∣∣p]1/p

≤ E
[
|R (m − k,m − k)|p

]1/p
+ . . . + E

[
|R (m − k,m)|p

]1/p

The right hand side is independent of the mesh size b and its finiteness is given by Assump-

tion 4.3.2.

After the proof of Lemma D.0.3 we are in a position to prove Theorem 16 regarding the

convergence of the mesh estimator to the true option value.

Proof (Proof of Theorem 16) We proceed by backward induction beginning with the case at

expiry where the relation holds trivially. We then state the inductive hypothesis to be∥∥∥∥V̂i+1

(
b,S j

i+1,Ni+1,Ui+1

)
− Bi+1 (Si+1,Ni+1,Ui+1)

∥∥∥∥
p′′
→ 0

for all (Si+1,Zi+1,Ui+1) and for some p′′ > p. Now, take any p′ ∈ (p, p′′), then,

∥∥∥V̂i (b,Si,Ni,Ui) − Bi (Si,Ni,Ui)
∥∥∥

p′

=

∥∥∥∥∥∥∥max
u∈Ui

hi (Si,Ni,Ui, u) +
1
b

b∑
j=1

fi(Si,S j
i+1)

gi+1(S j
i+1)

Di+1V̂i+1

(
b,S j

i+1,Ni − I{u,0},Ui + u
)

−max
u∈Ui

[
hi (Si,Ni,Ui, u) + Hi

(
Si,Ni − I{u,0},Ui + u

)]∥∥∥∥∥
p′

≤ 2
∑

ui∈U i

∥∥∥∥∥∥∥1
b

b∑
j=1

fi(Si,S j
i+1)

gi+1(S j
i+1)

Di+1V̂i+1

(
b,S j

i+1,Ni − I{ui,0},Ui + ui

)
− Hi

(
Si,Ni − I{ui,0},Ui + ui

)∥∥∥∥∥∥∥
p′
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≤ 2
∑

ui∈U i

∥∥∥∥∥∥∥1
b

b∑
j=1

fi(Si,S j
i+1)

gi+1(S j
i+1)

Di+1

[
V̂i+1

(
b,S j

i+1,Ni − I{ui,0},Ui + ui

)
− Bi+1

(
S j

i+1,Ni − I{ui,0},Ui + ui

)]∥∥∥∥∥∥∥
p′

+ 2
∑

ui∈U i

∥∥∥∥∥∥∥1
b

b∑
j=1

fi(Si,S j
i+1)

gi+1(S j
i+1)

Bi+1
(
Si+1,Ni − I{ui,0},Ui + ui

)
− E

[
Bi+1

(
Si+1,Ni − I{ui,0},Ui + ui

) ∣∣∣∣∣ Zi

]∥∥∥∥∥∥
p′

= 2
∑

ui∈U i

(
∆

ui
b + ∆ui

)
,

where,

∆
ui
b =

∥∥∥∥∥∥∥1
b

b∑
j=1

fi(Si,S j
i+1)

gi+1(S j
i+1)

Di+1

[
V̂i+1

(
b,S j

i+1,Ni − I{ui,0},Ui + ui

)
− Bi+1

(
S j

i+1,Ni − I{ui,0},Ui + ui

)]∥∥∥∥∥∥∥
p′

and,

∆ui =

∥∥∥∥∥∥∥1
b

b∑
j=1

fi(Si,S j
i+1)

gi+1(S j
i+1)

Bi+1

(
S j

i+1,Ni − I{ui,0},Ui + ui

)
− E

[
Bi+1

(
Si+1,Ni − I{ui,0},Ui + ui

) ∣∣∣∣∣ Zi

]∥∥∥∥∥∥∥
p′

The first inequality above is a result of applying the generalized contraction property Lemma B.0.2.

Since the terms in the summands of ∆
ui
b are identically distributed we have, for any u ∈ Ui,

Ni+1 = Ni − I{u,0}, Ui+1 = Ui + u, and

∆u
b ≤

∥∥∥∥∥∥ fi(Si,S1
i+1)

gi+1(S1
i+1)

Di+1

[
V̂i+1

(
b,S1

i+1,Ni+1,Ui+1

)
− Bi+1

(
S1

i+1,Ni+1,Ui+1

)] ∥∥∥∥∥∥
p′

≤

∥∥∥∥∥∥ fi(St,S1
i+1)

gi(S1
i+1)

∥∥∥∥∥∥ qp′
q−1

∥∥∥∥∥Di+1

[
V̂i+1

(
b,S1

i+1,Ni+1,Ui+1

)
− Bi+1

(
S1

i+1,Ni+1,Ui+1

)] ∥∥∥∥∥
qp′

for any q > 1, where the second inequality comes from applying Hölder’s inequality. Now by

Assumption 4.3.3 the first factor is finite. Also, we can choose a q > 1 such that qp′ < p′′ since

p′ < p′′. From the inductive hypothesis, we have,

E
[∣∣∣∣V̂i+1

(
b,S1

i+1,Ni+1,Ui+1

)
− Bi+1

(
S1

i+1,Ni+1,Ui+1

)∣∣∣∣qp′
∣∣∣∣∣ Zi

]
→ 0, (D.4)

almost surely. Furthermore, for ε > 0 and small enough that p′′(1 + ε) ≤ p̃ (with p̃ as in the
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statement of the theorem),

sup
b≥1

E
(E [∣∣∣∣V̂i+1

(
b,S1

i+1,Ni+1,Ui+1

)
− Bi+1

(
S1

i+1,Ni+1,Ui+1

)∣∣∣∣qp′
∣∣∣∣∣ Zi

])1+ε
≤ sup

b≥1
E

[∣∣∣∣V̂i+1

(
b,S1

i+1,Ni+1,Ui+1

)
− Bi+1

(
S1

i+1,Ni+1,Ui+1

)∣∣∣∣qp′(1+ε)]
≤ sup

b≥1
E

[(
V̂i+1

(
b,S1

i+1,Ni+1,Ui+1

)) p̃
]

+ E
[(

Bi+1

(
S1

i+1,Ni+1,Ui+1

)) p̃
]

< ∞,

where the first inequality comes from Jensen’s and the properties of conditional expectations,

the second inequality is from the definition of p̃ and the properties of p-norms and finiteness is

given by Lemma D.0.3. Thus the sequence in Equation D.4 is uniformly integrable and hence,

E
[∣∣∣∣V̂i+1

(
b,S1

i+1,Ni+1,Ui+1

)
− Bi+1

(
S1

i+1,Ni+1,Ui+1

)∣∣∣∣qp′]
→ 0

as b→ ∞ and therefore ∆u
b → 0 as b→ ∞ for all u ∈ Ui.

We now show that ∆u → 0 for all u ∈ Ui. Note that each of the b terms in the sum are

independent and identically distributed with mean,

E

 fi(Si,S j
i+1)

gi+1(S j
i+1)

Bi+1

(
S j

i+1,Ni+1,Ui+1

)
=

∫
fi(Si, y)
gi+1(y)

Bi+1(y,Ni+1,Ui+1)gi+1(y)dy

=

∫
fi(Si, y)Bi+1(y,Ni+1,Ui+1)dy

= E
[
Bi+1 (Si+1,Ni+1,Ui+1)

∣∣∣∣∣ Zi

]
So we obtain the needed result provided that,

1
b

b∑
j=1

fi(Si,S j
i+1)

gi+1(S j
i+1)

Bi+1

(
S j

i+1,Ni+1,Ui+1

)
converges to its expectation in the p′-norm as b→ ∞. From [36] this holds provided that each

of the terms in the sum have finite p′-norm. By Hölder’s Theorem,

E


∣∣∣∣∣∣∣ fi(Si,S j

i+1)

gi+1(S j
i+1)

Bi+1

(
S j

i+1,Ni+1,Ui+1

)∣∣∣∣∣∣∣
p′
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≤ E


 fi(Si,S j

i+1)

gi+1(S j
i+1)


p̃p′

p̃−p′


p̃−p′
p̃

E
[
Bi+1

(
S j

i+1,Ni+1,Ui+1

)] p′
p̃
. (D.5)

Here the first factor in Equation D.5 is finite by Assumption 4.3.3 and the finiteness of the

second term follows from Equation D.1 in Lemma D.0.3. Thus we have shown that for all

u ∈ Ui, ∑
ui∈Ui

(
∆

ui
b + ∆ui

)
→ 0 as b→ ∞.

The final proof of this appendix is the proof of the convergence of the path estimator as

stated in Theorem 17.

Proof (Proof of Theorem 17) Let (τ̂1
b, û

1
b), . . . , (τ̂Nb , û

N

b ) be the estimated mesh exercise policy

with mesh size b and (τ1, u1), . . . , (τN , uN ) be the optimal exercise policy. Then the estimated

exercise policy differs from the optimal one if and only if (τ̂n
b, û

n
b) , (τn, un) for at least one

n = 1, . . . ,N .

Thus, we show that the probability that the estimated exercise policy differs from the opti-

mal one goes to zero as the mesh size goes to infinity. That is,

P

 N⋃
n=1

[(
τ̂n

b, û
n
b
)
, (τn, un)

]→ 0 as b→ ∞. (D.6)

Note that,

P

 N⋃
n=1

[(
τ̂n

b, û
n
b
)
,

(
τn

b, u
n
b
)] ≤ N∑

n=1

P
[(
τ̂n

b, û
n
b
)
, (τn, un)

]
.

So Equation D.6 holds if P[(τ̂n
b, û

n
b) , (τn, un)]→ 0 for all n = 1, . . . ,N .

Now,

P[(τ̂n
b, û

n
b) , (τn

b, u
n
b)] = P[τ̂n

b , τ
n] + P[τ̂n

b = τn, ûn
b , un

b]

and we now show separately that,

P
[
τ̂n

b , τ
n]→ 0 and, (D.7)

P
[
τ̂n

b = τn, ûn
b , un

b
]
→ 0, (D.8)

as b→ ∞ for all n = 1, . . . ,N .

Note that

P
[
τ̂n

b , τ
n]
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= P
{[

Ĥi (b,Si, n,Ui) < max
u∈Ui\{∅}

[
hi (Si, n,Ui, u) + Ĥi (b,Si, n − 1,Ui + u)

]]
∩

[
Hi (Si, n,Ui) > max

u∈Ui\{∅}
[hi (Si, n,Ui, u) + Hi (Si, n − 1,Ui + u)]

]
, for some i = n, . . . ,m

}
+ P

{[
Ĥi (b,Si, n,Ui) > max

u∈Ui\{∅}

[
hi (Si, n,Ui, u) + Ĥi (b,Si, n − 1,Ui + u)

]]
∩

[
Hi (b,Si, n,Ui) < max

u∈Ui\{∅}
[hi (Si, n,Ui, u) + Hi (Si, n − 1,Ui + u)]

]
, for some i = n, . . . ,m

}
≤

m∑
i=n

P
{[

Ĥi (b,Si, n,Ui) < max
u∈Ui\{∅}

[
hi (Si, n,Ui, u) + Ĥi (b,Si, n − 1,Ui + u)

]]
∩

[
Hi (Si, n,Ui) > max

u∈Ui\{∅}
[hi (Si, n,Ui, u) + Hi (Si, n − 1,Ui + u)]

]}
+

m∑
i=n

P
{[

Ĥi (b,Si, n,Ui) > max
u∈Ui\{∅}

[
hi (Si, n,Ui, u) + Ĥi (b,Si, n − 1,Ui + u)

]]
∩

[
Hi (Si, n,Ui) < max

u∈Ui\{∅}
[hi (Si, n,Ui, u) + Hi (Si, n − 1,Ui + u)]

]}
.

For convience we define

ûi = arg max
u∈Ui\{∅}

[
hi (Si, n,Ui, u) + Ĥi (b,Si, n − 1,Ui)

]
and (D.9)

u∗i = arg max
u∈Ui\{∅}

[hi (Si, n,Ui, u) + Hi (b,Si, n − 1,Ui)] . (D.10)

Then

P
[
τ̂n

b , τ
n]

≤

m∑
i=n

P
{[

Ĥi (b,Si, n,Ui) <
[
hi (Si, n,Ui, ûi) + Ĥi (b,Si, n − 1,Ui + ûi)

]]
∩ [Hi (Si, n,Ui) > [hi (Si, n,Ui, ûi) + Hi (Si, n − 1,Ui + ûi)]]}

+

m∑
i=n

P
{[

Ĥi (b,Si, n,Ui) >
[
hi

(
Si, n,Ui, u∗i

)
+ Ĥi

(
b,Si, n − 1,Ui + u∗i

)]]
∩

[
Hi (Si, n,Ui) <

[
hi

(
Si, n,Ui, u∗i

)
+ Hi

(
Si, n − 1,Ui + u∗i

)]]}
≤

m∑
i=n

∑
u∈Ui\{∅}

P
{[

Ĥi (b,Si, n,Ui) <
[
hi (Si, n,Ui, u) + Ĥi (b,Si, n − 1,Ui + u)

]]
∩ [Hi (Si, n,Ui) > [hi (Si, n,Ui, u) + Hi (Si, n − 1,Ui + u)]]}

+

m∑
i=n

∑
u∈Ui\{∅}

P
{[

Ĥi (b,Si, n,Ui) > hi (Si, n,Ui, u) + Ĥi (b,Si, n − 1,Ui + u)
]
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∩ [Hi (Si, n,Ui) < [hi (Si, n,Ui, u) + Hi (Si, n − 1,Ui + u)]]}

=

m∑
i=n

∑
u∈Ui\{∅}

P
{([

Ĥi (b,Si, n,Ui) <
[
hi (Si, n,Ui, u) + Ĥi (b,Si, n − 1,Ui + u)

]]
∩ [Hi (Si, n,Ui) > [hi (Si, n,Ui, u) + Hi (Si, n − 1,Ui + u)]])

∪
([

Ĥi (b,Si, n,Ui) >
[
hi (Si, n,Ui, u) + Ĥi (b,Si, n − 1,Ui + u)

]]
∩ [Hi (Si, n,Ui) < [hi (Si, n,Ui, u) + Hi (Si, n − 1,Ui + u)]])} .

Under the hypothesis of the theorem, boundaries are hit with probability zero. Therefore

almost surely there exists ε > 0 for which

|Hi (Si, n,Ui) − [hi (Si, n,Ui, u) + Hi (Si, n − 1,Ui + u)]| > ε,

for i = n, . . . ,m, u ∈ Ui\{∅}. If

Hi(Si, n,Ui) > hi(Si, n,Ui, u) + Hi(Si, n − 1,Ui + u)

then

Hi(Si, n,Ui) − Hi(Si, n − 1,Ui + u) − ε > hi(Si, n,Ui, u)

which implies

Ĥi (b,Si, n,Ui) < hi (Si, n,Ui, u) + Ĥi (b,Si, n − 1,Ui + u)

Ĥi (b,Si, n,Ui) < Hi (Si, n,Ui) − Hi (Si, n − 1,Ui + u) − ε + Ĥi (b,Si, n − 1,Ui + u)

⇐⇒ ε < Hi (Si, n,Ui) − Ĥi (b,Si, n,Ui) + Ĥi (b,Si, n − 1,Ui + u) − Hi (Si, n − 1,Ui + u) .

Similarly if

Hi(Si, n,Ui) < hi(Si, n,Ui, u) + Hi(Si, n − 1,Ui + u)

then

hi(Si, n,Ui, u) + Hi(Si, n − 1,Ui + u) − Hi(Si, n,Ui) > ε

implying that

Ĥi (b,Si, n,Ui) > hi (Si, n,Ui, u) + Ĥi (b,Si, n − 1,Ui + u)

Ĥi (b,Si, n,Ui) > Hi (Si, n,Ui) − Hi (Si, n − 1,Ui + u) + ε + Ĥi (b,Si, n − 1,Ui + u)

⇐⇒ ε < Ĥi (b,Si, n,Ui) − Hi (Si, n,Ui) + Hi (Si, n − 1,Ui + u) + Ĥi (b,Si, n − 1,Ui + u) .
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Therefore by combining these results we have,

∣∣∣Ĥi(b,Si, n,Ui) − Hi(Si, n,Ui) + Hi(Si, n − 1,Ui + u) − Ĥi(b,Si, n − 1,Ui + u)
∣∣∣ > ε (D.11)

for i = n, . . . ,m, u ∈ Ui\{∅}.

Therefore,

P
[
τ̂n

b , τ
n]

≤

m∑
i=n

∑
u∈Ui\{∅}

P
{∣∣∣Ĥi(b,Si, n,Ui) − Hi(Si, n,Ui)

+Hi(Si, n − 1,Ui + u) − Ĥi(b,Si, n − 1,Ui + u)
∣∣∣ > ε}

≤

m∑
i=n

∑
u∈Ui\{∅}

P
{∣∣∣Ĥi(b,Si, n,Ui) − Hi(Si, n,Ui)

∣∣∣
+

∣∣∣Hi(Si, n − 1,Ui + u) − Ĥi(b,Si, n − 1,Ui + u)
∣∣∣ > ε}

≤

m∑
i=n

∑
u∈Ui\{∅}

P
{∣∣∣Ĥi(b,Si, n,Ui) − Hi(Si, n,Ui)

∣∣∣ > ε}
+ P

{∣∣∣Hi(Si, n − 1,Ui + u) − Ĥi(b,Si, n − 1,Ui + u)
∣∣∣ > ε} . (D.12)

Note that ε depends on the path (S0,S1, . . . ,Sm) and (n,Ui). Call this information Z̄i and note

that ε is independent of the information used to generate the mesh. Since convergence in p-

norm implies convergence in probability, we have from Theorem 16 that,

P
{∣∣∣Ĥi(b,Si, n,Ui) − Hi(Si, n,Ui)

∣∣∣ > ε ∣∣∣∣∣ Z̄i

}
→ 0 and

P
{∣∣∣Hi(Si, n − 1,Ui + u) − Ĥi(b,Si, n − 1,Ui + u)

∣∣∣ > ε ∣∣∣∣∣ Z̄i

}
→ 0

almost surely for i = n, . . . ,m, u ∈ Ui\{∅}.

The Dominated Convergence Theorem then implies that,

P
{∣∣∣Ĥi(b,Si, n,Ui) − Hi(Si, n,Ui)

∣∣∣ > ε}→ 0 and

P
{∣∣∣Hi(Si, n − 1,Ui + u) − Ĥi(b,Si, n − 1,Ui + u)

∣∣∣ > ε}→ 0

for all i = n, . . . ,m, u ∈ Ui\{∅}.

This together with Equation D.12 proves that

P
[
τ̂n

b , τ
n]→ 0 as b→ ∞.
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for all n = 1, . . . ,N .

Now we show that

P
[
τ̂n

b = τn, ûn
b , un]→ 0.

To begin

P
[
τ̂n

b = τn, ûn
b , un]

= P
{([

Ĥi(b,Si, n,Ui) < max
u∈Ui\{∅}

[
hi(Si, n,Ui, u) + Ĥi(b,Si, n − 1,Ui + u)

]]
∩

[
Hi(Si, n,Ui) < max

u∈Ui\{∅}
[hi(Si, n,Ui, u) + Hi(Si, n − 1,Ui + u)]

]
for i = τn

)
∩

[
ûn

b , un] }
≤ P

{([
Ĥi(b,Si, n,Ui) < max

u∈Ui\{∅}

[
hi(Si, n,Ui, u) + Ĥi(b,Si, n − 1,Ui + u)

]]
∩

[
Hi(Si, n,Ui) < max

u∈Ui\{∅}
[hi(Si, n,Ui, u) + Hi(Si, n − 1,Ui + u)]

]
for some i = n, . . . ,m

)
∩

[
ûn

b , un]}
≤

m∑
i=n

P
{[

Ĥi(b,Si, n,Ui) < hi(Si, n,Ui, ûi) + Ĥi(b,Si, n − 1,Ui + ûi)
]

∩
[
Hi(Si, n,Ui) < hi(Si, n,Ui, u∗i ) + Hi(Si, n − 1,Ui + u∗i )

]
∩

[
ûi , u∗i

]}
≤

m∑
i=n

∑
u,v∈Ui\{∅}

u,v

P
{[

Ĥi(b,Si, n,Ui) < hi(Si, n,Ui, u) + Ĥi(b,Si, n − 1,Ui + u)
]

∩ [Hi(Si, n,Ui) < hi(Si, n,Ui, v) + Hi(Si, n − 1,Ui + v)]

∩
[
hi(Si, n,Ui, u) + Ĥi(b,Si, n − 1,Ui + u) ≥ hi(Si, n,Ui, v) + Ĥi(b,Si, n − 1,Ui + v)

]
∩ [hi(Si, n,Ui, v) + Hi(Si, n − 1,Ui + v) ≥ hi(Si, n,Ui, u) + Hi(Si, n − 1,Ui + u)]}

≤

m∑
i=n

∑
u,v∈Ui\{∅}

u,v

P
{[

hi(Si, n,Ui, u) + Ĥi(b,Si, n − 1,Ui + u)

≥ hi(Si, n,Ui, v) + Ĥi(b,Si, n − 1,Ui + v)
]

∩ [hi(Si, n,Ui, v) + Hi(Si, n − 1,Ui + v) ≥ hi(Si, n,Ui, u) + Hi(Si, n − 1,Ui + u)]} . (D.13)

Again under the hypothesis of the theorem the boundaries are hit with probability zero. So
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there exists some ε > 0 almost surely such that

|hi(Si, n,Ui, v) + Hi(Si, n − 1,Ui + v) − [hi(Si, n,Ui, u) + Hi(Si, n − 1,Ui + u)]| > ε,

for all i = n, . . . ,m and u, v ∈ Ui\{∅}, u , v.

Now if

hi(Si, n,Ui, v) + Hi(Si, n − 1,Ui + v) ≥ hi(Si, n,Ui, u) + Hi(Si, n − 1,Ui + u),

then,

hi(Si, n,Ui, v) − hi(Si, n,Ui, u) > ε + Hi(Si, n − 1,Ui + u) − Hi(Si, n − 1,Ui + v)

⇐⇒ hi(Si, n,Ui, u) − hi(Si, n,Ui, v) < Hi(Si, n − 1,Ui + v) − Hi(Si, n − 1,Ui + u) − ε

and[
hi(Si, n,Ui, u) + Ĥi(b,Si, n − 1,Ui + u) ≥ hi(Si, n,Ui, v) + Ĥi(b,Si, n − 1,Ui + v)

]
=

[
hi(Si, n,Ui, u) − hi(Si, n,Ui, v) ≥ Ĥi(b,Si, n − 1,Ui + v) + Ĥi(b,Si, n − 1,Ui + u)

]
⊂

[
Hi(Si, n − 1,Ui + v) − Hi(Si, n − 1,Ui + u) − ε > Ĥi(b,Si, n − 1,Ui + v) − Ĥi(b,Si, n − 1,Ui + u)

]
=

[
Hi(Si, n − 1,Ui + v) − Ĥi(b,Si, n − 1,Ui + v) + Ĥi(b,Si, n − 1,Ui + u) − Hi(Si, n − 1,Ui + u) > ε

]
⊂

([∣∣∣Hi(Si, n − 1,Ui + v) − Ĥi(b,Si, n − 1,Ui + v)
∣∣∣ > ε]

∪
[∣∣∣Ĥi(b,Si, n − 1,Ui + u) − Hi(Si, n − 1,Ui + u)

∣∣∣ > ε]) .
Thus

P
[
τ̂n

b = τn, ûn
b , un] ≤ m∑

i=n

∑
u,v∈Ui\{∅}

u,v

P
{∣∣∣Hi(Si, n − 1,Ui + v) − Ĥi(b,Si, n − 1,Ui + v)

∣∣∣ > ε}
+ P

{∣∣∣Ĥi(b,Si, n − 1,Ui, u) − Hi(Si, n − 1,Ui + u)
∣∣∣ > ε} . (D.14)

As above, note that ε depends on the path history (S0,S1, . . . ,Sm) and (n,Ui), which we

have previously defined to be Z̄i, but is independent of the mesh. Since convergence in p-

norm implies convergence in probability, we have from Theorem 16 that

P
{∣∣∣Hi(Si, n − 1,Ui + v) − Ĥi(b,Si, n − 1,Ui + v)

∣∣∣ > ε ∣∣∣∣∣ Z̄i

}
→ 0 and

P
{∣∣∣Ĥi(b,Si, n − 1,Ui, u) − Hi(Si, n − 1,Ui + u)

∣∣∣ > ε ∣∣∣∣∣ Z̄i

}
→ 0,
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for all i = n, . . . ,m, u, v ∈ Ui\{∅}, u , v. The Dominated Convergence Theorem then implies

that,

P
{∣∣∣Hi(Si, n − 1,Ui + v) − Ĥi(b,Si, n − 1,Ui + v)

∣∣∣ > ε}→ 0 and

P
{∣∣∣Ĥi(b,Si, n − 1,Ui, u) − Hi(Si, n − 1,Ui + u)

∣∣∣ > ε}→ 0,

for all i = n, . . . ,m, u, v ∈ Ui\{∅}, u , v. This together with Equation D.14 gives

P
[
τ̂n

b = τn, ûn
b , un]→ 0 as b→ ∞,

for all n = 1, . . . ,N . Recall that

P

 N⋃
n=1

[
(τ̂n

b, û
n
b) , (τn, un)

] ≤ N∑
n=1

P
[
(τ̂n

b, û
n
b) , (τn, un)

]
and therefore

P

 N⋃
n=1

[
(τ̂n

b, û
n
b) , (τn, un)

]→ 0 as b→ ∞.

It is left to show the asymptotic unbiasedness of the path estimator. We make the additional

assumption that the payoff functions at the estimated and true optimal exercise times hτ̂n
b

and

hτn , respectively, are non-negative. Following from the low biasedness of the path estimator we

have,

0 ≤ B0(S0,N0,U0) − E [v̂0(b,S0,N0,U0)]

= E

 N0∑
n=1

hτn(Sτn ,Nτn ,Uτn , un) −
N0∑
n=1

hτ̂n
b
(Sτ̂n

b
,Nτ̂n

b
,Uτ̂n

b
, ûn

b)


= E


 N0∑

n=1

hτn(Sτn ,Nτn ,Uτn , un) −
N0∑
n=1

hτ̂n
b
(Sτ̂n

b
,Nτ̂n

b
,Uτ̂n

b
, ûn

b)

 I
{
⋃N0

n=1[(τ̂n
b,û

n
b),(τn,un)]}


≤ E


 N0∑

n=1

hτn(Sτn ,Nτn ,Uτn , un)

 I
{
⋃N0

n=1[(τ̂n
b,û

n
b),(τn,un)]}


≤ E


∣∣∣∣∣∣∣
N0∑
n=1

hτn(Sτn ,Nτn ,Uτn , un)

∣∣∣∣∣∣∣
1+ε

1
1+ε

× P

 N0⋃
n=1

[
(τ̂n

b, û
n
b) , (τn, un)

]
ε

1+ε

≤

 N0∑
n=1

E


∣∣∣∣∣∣∣
N0∑
n=1

hτn(Sτn ,Nτn ,Uτn , un)

∣∣∣∣∣∣∣
1+ε


1

1+ε

× P

 N0⋃
n=1

[
(τ̂n

b, û
n
b) , (τn, un)

]
ε

1+ε

→ 0
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where the first equality comes from the definition of v0 and optimal and estimated exercise

strategies and the second comes from multiplying by the indicator function. The first inequality

comes from the sum of the optimal exercises being greater then the sum of the suboptimal

exercises, the second comes from Hölder’s inequality. On the line each of the terms in the sum

is finite by the assumption in the Theorem and the second was shown to go to zero above.

Therefore we have that E[v̂0(b,S0,N0,U0)]→ B0(S0,N0,U0).



Appendix E

Tables of Results - Forest of Stochastic
Meshes

This Appendix contains data results from a SHARCNet Large Dedicated Resources project.

The swing option priced had the same parameters as the one in Section 4.4.3 unless otherwise

indicated that they have been varied. Run times listed are approximate aggregate time for all

repeated valuations, all results listed were generated using serial farming of repeated valuations

of a serial version of the forest of stochastic meshes on the SharcNet cluster Whale which

consists of 2.2 GHz Opteron processor with 2Gb of memory per processor. Where listed the

memory usage is the approximate memory required during a single valuation of the forest. The

errors listed in the tables that follow are the standard error for each estimator representing one

standard deviation.

We note here that relative to the results of [7] the spread in the high- and low-biased con-

fidence intervals found here are large. This is due to not having implemented similar control

variate techniques used in [7] or any other variance reduction technique. This is not to say

that these enhancements are not applicable to the methods used here, indeed similar techniques

could be incorportated into our algorithm to improve its efficiency.

In Figure E.1 it is observed that the path estimator value actually decreases with the number

of exercise opportunities. This may be explained by considering that the more exercise oppor-

tunities the option has the more chances there is for the path estimator to make suboptimal

decisions. Similarly with the mesh estimator the more exercise opportunities leads to more

chances for the mesh estimator to make better then optimal decisions which leads to the value

increasing. However, it is hard to distinguish this effect for the mesh estimator since the true

price also increases.

112
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Exercise Opps Mesh Error Path Error Point Time (days)
12 35.147 0.005 26.845 0.004 30.996 104
24 42.857 0.006 27.754 0.003 35.306 211
36 51.411 0.007 26.415 0.003 38.913 300
50 59.005 0.008 24.794 0.003 41.900 422

Table E.1: Nu = Nd = 4, b = 8000, R = 2048
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Figure E.1: Mesh and Path Estimators vs Exercise Opportunities: Nu = Nd = 4

Exercise Opps Mesh Error Path Error Point Time (yrs)
12 31.765 0.003 28.567 0.003 30.166 1.0
24 40.970 0.006 28.462 0.004 34.716 2.3
36 49.393 0.007 27.482 0.003 38.438 3.3
50 57.620 0.008 26.168 0.003 41.894 4.8

Table E.2: Nu = Nd = 4, b = 16000, R = 2048

Exercise Opps Mesh Error Path Error Point Time (yrs)
12 31.144 0.003 28.781 0.003 29.963 1.0
24 39.080 0.006 29.004 0.004 34.042 2.2
36 46.868 0.007 28.350 0.003 37.609 3.4
50 55.179 0.009 27.438 0.003 41.309 4.7

Table E.3: Nu = Nd = 4, b = 32000, R = 512, 0.8 Gb of memory for m = 50
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Exercise Opps Mesh Error Path Error Point Time (yrs)
24 70.520 0.009 53.888 0.007 62.204 0.9
36 84.71 0.01 52.403 0.006 68.557 1.1
50 97.78 0.01 49.908 0.005 73.84 1.7

Table E.4: Nu = Nd = 8, b = 8000, R = 2048

Exercise Opps Mesh Error Path Error Point Time (yrs)
24 68.584 0.009 54.948 0.007 61.766 1.7
36 82.12 0.01 54.948 0.007 68.534 2.7
50 95.71 0.01 52.197 0.006 73.954 3.5

Table E.5: Nu = Nd = 4, b = 16000, R = 1024, 1.6 Gb of memory for m = 50
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Figure E.2: Mesh and Path Estimators vs Exercise Rights: b = 16000, m = 24

Exercise Opps Mesh Error Path Error Point Time (yrs)
24 66.629 0.008 55.794 0.006 61.212 2.1

Table E.6: Nu = Nd = 8, b = 32000, R = 512, 1.3 Gb of memory

Exercise Opps Mesh Error Path Error Point Time (yrs)
24 81.79 0.01 66.252 0.008 74.021 1.1
36 98.39 0.01 65.128 0.007 81.759 1.3
50 113.94 0.01 62.444 0.006 88.192 1.8

Table E.7: Nu = Nd = 10, b = 8000, R = 2048, 1.3 Gb of memory for m = 50
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Exercise Opps Mesh Error Path Error Point Time (yrs)
24 79.99 0.01 67.376 0.009 73.683 2.7
36 95.76 0.01 67.054 0.009 81.407 3.1
50 111.60 0.02 65.053 0.007 88.327 4.3

Table E.8: Nu = Nd = 10, b = 16000, R = 1024, 1.7 Gb of memory for m = 50

Exercise Opps Mesh Error Path Error Point Time (yrs)
24 90.20 0.01 79.22 0.01 84.71 2.8
36 108.08 0.02 79.73 0.01 93.91 4.4

Table E.9: Nu = Nd = 12, b = 16000, R = 1024, 1.8 Gb of memory for m = 36
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