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Abstract

Answer Set Programming is a declarative modeling paradigm enabling specialists in

diverse disciplines to describe and solve complicated problems. Growth in high perfor-

mance computing is driving ever smarter and more scalable parallel answer set solvers.

To improve on today’s cutting-edge, researchers need to develop increasingly intelligent

methods for analysis of a solver’s runtime information. Reflecting on the solver’s search

state typically pauses its progress until the analysis is complete. This work introduces

methods from the domain of parallel functional programming and immutable type theory

to construct a representation of the search state that is both amenable to introspection and

efficiently scalable across multiple processor cores.

Keywords: Answer set programming, functional languages, parallel programming, sat-

isfiability theory, immutable types, multi-core solvers
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Chapter 1

Introduction

This research centers around a unique confluence among the fields of logic programming,

distributed systems and programming languages. Its driving factors include the advent

of ubiquitous many-core computing, languages designed for parallel processing free of

side effects, and tremendous demand for the benefits of these capabilities from the logic

programming community.

In this context, we examine the most costly aspect of modern solvers, their unit propaga-

tion engines. This thesis presents two concurrent models, each centered around a different

locus of control. The first, based on a clause-locus, represents the most natural extension of

existing implementations into concurrency. The second, based on a variable-locus, draws

inspiration from our ongoing research in the area of enclosed two-watched literal inversion.

The ongoing work seeks to fully enclose the structure of a logic problem using functional

constructs, freeing it from the underlying data. Grounded in lambda calculus, its patterns

of partial application show themselves in the immutable remainders that are the foundation

for this second technique. We comparatively evaluate the merits of both models and outline

their implications for future work.

1



Chapter 1. Introduction 2

1.1 Answer Set Programming

Answer Set Programming (ASP) is a type of declarative logic programming, similar in

syntax to Prolog, that enables its user to describe the domain and constraints of an arbitrary

problem [1]. Once a problem has been described as an input program, it can be solved by

any one of a variety of solvers. The runtime procedure used to satisfy this input program is

decided automatically making use of sophisticated search techniques and heuristics. Some

solvers are optimized for sequential operation on a desktop computer whereas others are

suitable for large scale scientific clusters. In practice, an appropriate solver is selected

based on the expected difficulty (i.e. solving time) of the input program.

1.2 SAT Solving and CNF

An important field of related research is the study of the Boolean Satisfiability Problem, or

SAT problem. Modern SAT and ASP solvers use many of the same techniques to explore

the search space of their problems, and much of the following research is developed using

SAT terminology.

Given a logic formula in conjunctive normal form (CNF), a SAT solver attempts to find

an assignment for variables of the formula so that all clauses in the CNF program can be

satisfied. For every assignment, if some clause of the input program cannot be satisfied,

then the input program is said to be unsatisfiable. For example, we consider two clauses of

the boolean CNF formula (A ∨ B) ∧ (¬B ∨ ¬C ∨ D). For this formula, at least one of the

literals A or B must be true in the first clause. Similarly, at least one of the literals ¬B, ¬C

or D must be true for the second clause.

1.2.1 DIMACS Format

To a SAT solver, input problems are most often represented in the DIMACS CNF format.

Variables of the conjunctive formula are assigned integers in this representation. Where
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literals of the problem appear in clauses, their integer variable is presented with a positive

or negative sign to carry the literal’s polarity. Individual clauses are post-fixed with the

unsigned value 0 in place of the delimiting conjunction operator [2].

The formula (A ∨ B) ∧ (¬B ∨ ¬C ∨ D), above, would be represented in DIMACS as

the sequence 1 2 0 −2 −3 4 0. This representation is important for two reasons. First, it

illustrates the deceptive simplicity of an input SAT problem. Second, this representation is

carried forward into the implementation details of nearly every modern solver’s intermedi-

ate data structures.

1.3 Search

In this context, search techniques are strategies for selecting literal values to assign true

or false in order to satisfy the formula under consideration. Several techniques will be

introduced in the following sections, including DFS, DPLL, CDCL and Parallel CDCL.

1.3.1 Depth First Search

One of the best known algorithms in computer science, depth-first search (DFS) can be used

as a simple method for obtaining these assignments. An example implementation of DFS

might start by assigning variables to true, one at a time, until either some clause cannot be

satisfied or a solution is found. If a clause cannot be satisfied, the specific instance of this

assignment is in conflict. Under conflict, depth-first search will attempt a false assignment

for the most recently assigned variable. If the conflict persists, it will clear that variable

and attempt to falsify the preceding variable of the assignment. Once a conflict has been

resolved, it continues forward with additional true assignments. When the first variable,

or root of the search tree, results in conflicts under both true and false assignments, the

problem is said to be unsatisfiable.

This assignment procedure is illustrated in Figure 1.1, which backtracks when a conflict

is encountered. In this example, DFS is unable to assign the literal D at the leaves of the
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A

A, B

A, B, C

Confl ict: A, B, C, D Confl ict: A, B, C, ¬D

A, B, ¬C

���

Figure 1.1: Depth First Search Assignment

tree under partial assignment {A, B,C}. Given its tree structure, search procedures based on

DFS can be easily implemented recursively.

1.3.2 DPLL

Modern search algorithms are descendants of the well-known Davis-Putnam-Logemann-

Loveland (DPLL) procedure [3][4]. It uses additional information encoded in the structure

of the formula to integrate the consequences of an assignment decision, called unit propa-

gation, discussed further in Section 1.3.3. Based on a depth first search, it is outlined as a

recursive function in the F# programming language below:

l e t rec DPLL a s s i g n m e n t =

i f c o n t a i n s A n U n s a t i s f i a b l e C l a u s e ( ) then f a l s e

e l s e i f i s C o m p l e t e l y A s s i g n e d ( ) then t r u e

e l s e

f o r c l a u s e in u n i t C l a u s e s ( )

p r o p a g a t e ( u n i t L i t e r a l O f c l a u s e )

l e t d e c i s i o n = c h o o s e U n a s s i g n e d ( )

i f DPLL( a s s i g n m e n t + d e c i s i o n ) then t r u e

e l s e DPLL( a s s i g n m e n t + not ( d e c i s i o n ) )
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It recursively assigns values to unassigned variables in the input formula. If a complete

assignment can be made, the problem is solved. It will backtrack each time an assignment

causes a clause of its input formula to become unsatisfiable. It then tries the opposite as-

signment at each level, backtracking further if neither assignment is suitable for a solution.

The notable extension to DPLL from DFS is the propagation of unit literals from unit

clauses on lines five and six of the preceding algorithm. Central aspects of this procedure

are outlined next.

1.3.3 Unit Literals and Propagation

Recall the CNF formula (A∨B)∧ (¬B∨¬C∨D) discussed in Section 1.2. The propagation

of unit literals at each decision is an important aspect of this procedure. A SAT formula in

CNF is the conjunction of all clauses and the disjunction of all literals within each clause.

For this formula to be satisfiable all clauses must be satisfied, but only one literal from

each clause needs to be satisfied. This principle is the basis of unit propagation. If an

assignment has eliminated all but one literal in a clause, the only remaining literal - no

matter how improbable - must be true [5]. This remaining literal is called a unit, and the

process of propagation adds it to the partial assignment.

C ¬A B D

Decision 1 Decision 2

Figure 1.2: Unit Propagation From Partial Assignment

Under assignment {C,¬A}, for instance, we might rewrite the example CNF formula

as simply (B) ∧ (¬B ∨ D). By process of elimination, the literal B becomes a unit literal

of the first clause. It must be true under this assignment, leaving the partial assignment

{C,¬A, B}. Propagating B, consequently reduces the formula to (B) ∧ (D), leaving D as a



Chapter 1. Introduction 6

unit in the second clause. Without further search, unit propagation helps the solver move

from a partial assignment of {C,¬A} to a satisfying assignment of {¬A, B,C,D} for this

formula.

1.3.4 Recursive Clause Rewriting

Some early descriptions of the Davis-Putnam-Logemann-Loveland procedure are defined

recursively such that reduced incremental state is passed forward during search and then

restored on backtracking. Implementations of this type treat input problems as a mathe-

matical set of clauses wherein each clause is a set of literals. Literals are removed from

each clause in which they appear false. Similarly clauses with at least one true literal are

removed from the problem set. This technique is used in the example from Section 1.3.3

when illustrating unit propagation.

These recursive algorithms backtrack when any clause becomes the empty set, having

eliminated all possible literal assignments capable of satisfying that clause. Similarly if the

problem itself becomes the empty set, then all clauses are seen to have been satisfied by

the working assignment. Search would then stop and the resulting assignment would be

returned.

Memory, several times the initial problem size, is required to store intermediate config-

urations and this is an important reason why this approach is not typically used in practice.

It does, however, reduce the working size deep in search by removing from consideration

all clauses and literals whose state has been decided.

This type of rewriting is not used by modern solvers which instead use the two-literal

watch scheme, but its pattern is nonetheless important going forward.

1.3.5 Two-Literal Watch Lists

The use of two-literal watch lists is a technique crucial to high performance unit propa-

gation. It dramatically reduces the computational overhead of detecting both unsatisfiable
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and unit clauses [6].

The procedure for maintaining watches relies on two simple assumptions. First, if a

literal being watched becomes unsatisfied, any other literal of that clause that is not already

unsatisfied will be watched instead. Second, each clause must be watching two different

literals. Watches are placed on lists for each literal, so that a solver will visit only those

clauses whose watches are affected by an assignment.

A A ¬C ...AAAAAAAAAAAAAAAAAAAAAAAAAAA ......¬C ...AAAAAAAAAAAAAAAAAAAAAAAAAAA ......A ¬C .........

w
1

w
2

¬¬¬CCCCCCCCCCCCC¬¬¬¬¬CCCCC

w
1

w
2

w
1

w
2

����������	 
��� �������

Figure 1.3: Reading Two Watches

If these conditions are maintained under this procedure, the state of a clause can be

derived simply by evaluating its two watched literals. The three possible scenarios are

illustrated in Figure 1.3. Having eliminated all other satisfiable or unassigned literals within

the clause, if both watches are left unsatisfied, then the clause is in conflict with the current

assignment. If, however, only one is left unsatisfied then the other watched literal is unit for

that clause. In all other cases, the clause is still satisfiable and requires no further attention

under this assignment.

1.4 Modern CDCL Solvers

Tremendous advancements have been made over the traditional DPLL procedure in the

last decade leading up to today’s conflict-driven clause-learning (CDCL) solvers. Most

important among these breakthroughs is a technique to calculate the sequence of unique

implication points (UIPs) at the moment when an assignment renders some clause unsatis-

fiable [7]. The first UIP of this conflicting assignment enables solvers to construct a new

clause that most precisely describes its source. Consequently, a solver can use this new

clause to back-jump to a much earlier point in the search and avoid future assignments
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leading to this conflict [8].

State-of-the-art solvers continuously generate new conflict clauses to skip over entire

regions of a problem’s search space. To facilitate this, they use sophisticated heuristic

techniques, such as Berkmin [9] and VSIDS [6], to select literals for assignment that are

most frequently involved in conflicts. This can dramatically reduce the time to compute a

solution. While this shift in design de-emphasizes the rigid binary search used by DPLL,

the solver now needs to actively manage a clause database of monotonically increasing size.

This is a fundamental time and space trade-off underscoring the importance of efficient unit

propagation and watch maintenance across the clause database.

As the space required to store clauses grows continuously, modern CDCL solvers em-

ploy various strategies to prune their learned clause database [6]. For practical reasons, a

solver should retain only those learned clauses which prove useful to its ongoing search

efforts. Unfortunately, calculating a clause’s level of abstraction to determine how much of

the search space it defers is computationally difficult. Clause length [10] and literal block

distance (LBD)[11] are common techniques that have met with some empirical success.

Other techniques evaluate the degree to which a clause contributes to the generation of

new conflicts. Clauses that frequently participate in the implication graph leading up to

a conflict and those comprised of literals with high heuristic value are more likely to be

retained.

1.5 Parallel CDCL Solvers

Early parallel solvers based on DPLL focused on distributing the recursive branches of their

search among parallel nodes in order to reduce the time to compute solutions [10][12][13].

This is analogous to the cliché horror movie phenomenon of splitting up to search for a

missing comrade. Although this mode is still supported in modern parallel CDCL solvers

like Claspar, recent work has focused on using competing solver instances with differing

parametric characteristics [14]. Restart policies [15][16][17], heuristics, and clause dele-
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tion strategies [11] can all be modified to give multiple concurrent CDCL solvers different

behaviors when faced with a previously unseen problem. These two major parallel search

strategies are contrasted here in Figure 1.4.

Guiding Path Search Competitive/Portfolio Search

A, ¬B, C

Working Assignment

Workers

A, ¬B, C, ¬D

A, ¬B, C, D

Competitors

A, ¬B, C, ...

A, ¬B, C, ...

A, ¬B, C, ...

10, 0.75, 1500

6, 0.95, 3000

12, 0.42, 700

Parameters

Figure 1.4: Guiding Path vs. Portfolio Search

As a consequence of this competitive portfolio mode, the different behaviors for each

concurrent solver can result in different conflict clauses. Since a learned clause is a problem-

scoped statement about some combination of literals, it is valid no matter where a solver is

in the search space. As a result, cutting-edge CDCL solvers include various mechanisms

for cooperatively exchanging and integrating clauses among competitors [10][14].

Although the potential benefits of clause exchange are clear, numerous challenges ex-

ist. Learned clause databases may largely intersect if concurrent solvers reach similar con-

flicts. Duplication of clauses in memory may also influence the maximum size of a clause

database and consume unnecessary throughput during exchange. Moreover, the rate of dis-

covery for new clauses may exceed the competitor’s ability to successfully transmit them.

Although advanced techniques for selection and flow control exist, the opportunity cost of

selecting, transmitting, and integrating clauses is time a solver would have spent searching

for solutions [18].
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1.6 Summary

Having provided a brief look at the core topics underlying the domain of this research,

a further examination of its motivation will be provided. Further aspects of systems ar-

chitecture, functional languages, logic problem solving and parallel programming will be

introduced as the overall strategy is developed and presented. These core topics will be

expanded and additional literature introduced to support our conclusions as new elements

are brought to the surface. Detailed coverage of the employed methodology will be pro-

vided along with a discussion of the measurements which were taken and the implications

of those results. Finally, a discussion of the unresolved issues as potential future work will

be concluded with an overview of our intended contributions.
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Motivation

The last decade has seen remarkable strides in all three areas surrounding this research:

logic problem solving, functional languages, and multi-core programming. What follows is

a brief introduction to these in order to address the impetus for this research, what changed,

and why this topic becomes important today.

2.1 Systems Architectures

With the recent acquisition of forty-eight-core compute nodes at the University of Western

Ontario, the challenge of coordinating competing solvers within a single process is moti-

vating fundamental changes to the architecture of our parallel solvers. The duplication of

clause databases among competitors and the problem of memory locality and contention to

each of the four twelve-way processing units are key issues influencing this work. In order

to operate effectively on these systems, data structures and the patterns for processing them

need to be carefully studied.

2.1.1 Memory Contention

The problem of memory contention has been a topic of ongoing discussion in the com-

munity for several years. Concrete measurements were published in 2009 illustrating the

11
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magnitude of various memory inefficiencies as they apply to a variety of then-current logic

problem solvers [19].

Today, this problem is magnified as processor manufacturers have multiplied the num-

ber of available cores without correspondingly dramatic expansion in memory access.

Quad-socket Opteron servers, like the compute nodes of Western’s new cluster, provide

four channels to separate banks of system memory. As a consequence, there exists a signif-

icant contention among the CPU cores for access to uncached memory at a ratio of nearly

twelve to one.

Resulting from ongoing work in this area, CDCL solvers aggressively apply heuristics

to prune their clause databases with a preference for those clauses most often involved in

conflicts. The multi-core version of Clasp 2.0 uses this technique in portfolio mode to

maximize its performance by maintaining a small local working set for each of its concur-

rent workers. The intention is to retain as much local solving state in cache as possible

while avoiding clauses that act as dead weight – a strategy which has proven effective in

competition [20].

Multi-core Clasp 2.0 was also studied by our research group as part of a landmark paper

on the patched hybrid-core of Platypus 0.2.8. These studies were carried out on twenty-four

core Magny-Cours Opteron servers in varying configurations. A benchmark summary of

solution time for sequence1-ss1 through sequence4-ss4 from the measurements taken for

this paper appears here in Figure 2.1. It illustrates both that scalability in portfolio search

can be achieved but that the reduction in solving time per core on complex problems can

vary non-linearly with additional compute power.

2.1.2 Multi-core Runtime Analysis

The sophistication of a solver’s runtime analysis and decision-making will grow beyond

just heuristics for clause retention and pruning. Clause exchange, as discussed previously,

is an ongoing area of work. Even more recent work on clause freezing and activation

attempts to take these activities to a new level [21]. On one hand the availability of multi-



Chapter 2. Motivation 13

So
lu

tio
n

Ti
m

e
(s

)

0

20

40

60

80

100

120

1 2 4 8 12 16 24 

# of Cores

Figure 2.1: Multi-core Clasp 2.0 - Sequence Benchmarks

core chips - up to 16 cores for mainstream x86-64 chips - offers plenty of resources for

these tasks. On the other, an unfortunate side-effect of existing solver designs is that the

solver execution must be interrupted for a coherent view of its state. The problem of self-

reflection becomes even more problematic given not just mutation but also concurrency.

2.2 Functional Languages

The selection of an ideal research platform is an important consideration for this kind of

work. Nearly all cutting edge solvers are written in C-derived languages in order to max-

imize performance on their target platforms. To stand out in solver competitions like the

SAT-Race, it is often necessary to compromise aspects of the design in favor of the best

possible speed. Isolating core functions of these solvers for parallelization is problematic

due to unintended side-effects induced by their optimized implementation.

With recent advancements in parallel programming languages, we felt it was impor-
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tant to consider whether the experimental environment should be the same as a production

environment. Moreover, improvements in runtime compilers and optimizations to mem-

ory access and task delegation in these languages offer some compelling advantages to the

research.

We selected F# as a language of interest for a variety of reasons. It is an ML-family

functional language derived from OCaml that is designed to operate on the proven Mi-

crosoft .NET framework [22]. It is also the first fully-integrated functional language in the

Microsoft ecosystem with full platform and tool support. It enables programming free of

side-effects, language features for implicit asynchronous programming, immutable data-

types and a syntax that is both condensed and expressive [23]. Non-blocking compare-and-

swap (CAS) data structures are also available [24]. The .NET framework uses the same

high performance runtime compilers, memory managers and libraries across a variety of

languages including C# [25]. These kinds of environments are not typical choices for SAT

and ASP solvers. However, we feel that once the scalability and characteristics of vari-

ous designs have been established, the precise implementation can be adapted to fit more

conventional C-derived competition solvers.

2.2.1 Multi-threaded Programming

Although we felt that F# represented the most exciting choice for our theoretical research

given its many compelling features, a diverse selection of alternative concurrency platforms

are used by the community to achieve similar goals. For instance, multi-core Clasp 2.0

uses the Intel Threading Building Blocks (TBB) to achieve its high level of concurrent

performance. The TBB library offers many powerful tools and structures to support this

kind of parallel programming [26].

Other recent work towards developing a parallel version of MiniSAT has used Cilk-5

extensions to the C language and its work-stealing scheduler [27] [28]. Additional re-

sources such as Cilk++ provide advanced concurrency to C++ software [29]. Newer work

in this area includes hyper objects, such as reducers, that will enable efficient parallelization
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of competition solvers once appropriate strategies have been developed [30].

Hybrid solvers such as Platypus 0.2.8 which combine MPICH2 for clustered coordi-

nation with local multi-threading adapt their own custom portable threading libraries for

parallel answer set solving. This enabled Platypus to support a wide variety of platforms

after its introduction in 2005 [13].

2.3 MiniSAT Decomposition

A measurement of the solving time for a sampling of problems in serial MiniSat 2.2.0 has

shown approximately 80% of processor cycles are spent during unit propagation and watch

maintenance as opposed to a combined 20% for all other tasks. This observation suggests

that experimental work focused on a scalable unit propagation engine will target the most

costly task of the CDCL search procedure.

aloul-chnl11-13.cnf 91.03 cmu-bmc-barrel6.cnf 67.41

cmu-bmc-longmult15.cnf 76.01 een-tip-sat-texas-tp-5e.cnf 60.87

goldb-heqc-alu4mul.cnf 77.26 goldb-heqc-x1mul.cnf 87.10

hoons-vbmc-lucky7.cnf 68.78 manol-pipe-c6bidw i.cnf 82.19

mizh-sha0-36-3.cnf 79.20 schup-l2s-abp4-1-k31.cnf 81.17

simon-s03-w08-15.cnf 79.03 velev-engi-uns-1.0-4nd.cnf 82.49

Table 2.1: MiniSAT - % Time In Propagation

Moreover, improved unit propagation is thought to be especially important for problems

which require larger clause databases in order to compute solutions with completeness —

as not all problems can be easily solved using a smaller working-set of clauses [31]. If the

cost of maintaining the clause database can be reduced, the size of that database may also

be increased — thus retaining a greater selection of potentially useful clauses.
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Strategy

The approach to this work is largely a comparative study that explores several parallel de-

signs using functional language constructs in deviation from conventional parallel solvers.

The desire is to demonstrate patterns appropriate to this environment and evaluate their

merits.

Existing logic problem solvers written in functional languages tend to fall into two

distinct qualitative categories. Solvers of the first type exhibit the language rather than the

solver. Although they make good use of functional elements, their feature-set as solvers

is often limited to classical Davis-Putman search. They are also typically sequential in

design. Solvers of the second type implement the latest search strategies but with an almost

monastic transcription of design patterns that have proven effective in procedural C-based

competition solvers.

The goal of our research is to focus on the most costly aspect of modern solvers, to

develop strategies for its concurrency and to do so in a manner that is expressed naturally in

a functional paradigm so as to surface the many compelling advantages of these languages

for multi-core problem solving.

16
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3.1 MiniSAT Propagation Procedure

Since the most costly aspect of today’s solvers is unit propagation, we recall that there are

only a few fundamental building blocks for a unit propagation engine:

Variables are the underlying items of assignment, in the set V = {v1, v2, ..., vn} for some

number of variables n, whose values are true, false, or not yet assigned.

Literals are signed occurrences of a variable in the set L, such that ∀vi ∈ V•vi ∈ L∧−vi ∈ L

having |L| = 2|V |. The value of each literal l ∈ L is determined by the underlying

variable’s assignment in two scenarios: 1) v1 = f alse =⇒ l1 = f alse ∧ −l1 = true,

and similarly 2) v1 = true =⇒ l1 = true ∧ −l1 = f alse.

Clauses are sets of literals C = {l1, ..., lc} where ∀li ∈ C • −li < C. Each clause requires at

minimum one literal to be true for a satisfying assignment to exist.

However, two additional components are necessary for unit propagation engines which

implement the two-watched literal scheme.

Watched Literals (two per clause) track variable assignments which may cause that clause

to become satisfied, unsatisfied or unit.

Watch Lists (one per variable) retain an inventory of clauses whose watches depend on a

particular variable’s assignment.

Not all solvers retain the notion of assignment variables. For example, assigning some

variable, say v2, the value true is equivalent to assigning all occurrences of literal l2 the

value true and all occurrences of literal −l2 the value false. It nonetheless remains a useful

abstraction for our purposes in order to maximize watch list length.

The MiniSAT procedure draws unit assignments from a propagation queue which con-

tains new units in the order they were obtained. After drawing a unit, MiniSAT updates

its variable assignment and iterates sequentially over the clauses attached to that variable’s
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Figure 3.1: Watch List Dispatch Under MiniSAT

watch list. Each clause in turn may select new watches, add a unit to the propagation queue

or raise a conflict.

In Figure 3.1, we see that when variable v1 is assigned some value, consequences for

each clause are computed sequentially. New watches are selected in clauses c1 and c2,

but propagation aborts when a conflict is encountered in clause c3 — thus rendering the

problem unsatisfiable under the current assignment.

3.2 Locus of Control

The two-watched literal scheme presents two points of control to a concurrent propagation

engine, namely the pair of watch lists to which a single clause belongs. In order to avoid

locks, it is helpful to provide a single locus of control so that no two concurrent workers

will compute the state of a clause under propagation simultaneously — introducing the risk

of contradictory changes.
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Where should the conceptual focus of asynchronous computation be in a unit propa-

gation engine designed for concurrent execution? To that end, there are two particularly

elegant possibilities: a variable locus and a clause locus. In each, one of the two elements

carries out its tasks concurrently while the other is represented as data.

3.3 Clause Locus

The clause locus technique is a natural extension of the existing mutable design employed

by CDCL solvers such as MiniSAT. Its simplistic approach to parallelism is analogous

to switching the iteration’s foreach statement with Parallel.ForEach, given that adequate

concurrency control measures are in place so that target lists are modified safely.
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Figure 3.2: Watch List Dispatch With Clause Concurrency

As illustrated in Figure 3.2, the solver-core draws variable v1 for assignment from the
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unit propagation queue. All clauses on the watch list are then invited to run their selection

algorithms simultaneously. New units obtained by any clause are enqueued for subsequent

propagation. In this example, however, a conflict is discovered in clause c3 that would

terminate unit propagation and begin conflict analysis. Notice also that both clauses c1 and

c5 have selected v4 as their next watch to replace v1. As a consequence, care must be taken

to guarantee that techniques such as locking or the use of special non-blocking (CAS) data

structures prevent race conditions altering this list.

It is clear from this example that the degree of concurrency is also limited in part by

the length of the watch list for v1. For instance, a sixteen core machine may have limited

work during some propagation steps. In both designs, watch lists are held by assignment

variables instead of literals for this reason. So compared with literal-based designs, we

have simply:

Listv1 = Listl1 + List−l1 =⇒ |Listv1 | = |Listl1 | + |List−l1 |

The clause-centric approach conceptually partitions watch lists for concurrent opera-

tion. It would seem reasonable to expect that better scalability will be achieved on prob-

lems with a higher clause to variable ratio. Moreover, it is worthwhile questioning whether

this approach is natural given typical functional constructs. For instance, the representation

of lists will vary. Although this design extends quite naturally from traditional implemen-

tations, it may or may not be suited for this environment.

3.4 Variable Locus

The proposed variable locus derives from a desire to optimize the unit propagation engine

for immutable types and implicit threading, having studied the strengths and limitations of

the preceding clause locus strategy. In this model, each variable is conceptually indepen-

dent — potentially carrying out tasks concurrent of the others. Communication between

variables is carried out with the assumption of asynchrony, and can be viewed as messag-
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ing between them. Immutable data types, as they appear in F#, will be further discussed in

Section 4.2; however, the theoretical structures are introduced here.

3.4.1 Conflict Detection

A clause of length c will be read from input in DIMACS format as a string of literals,

formally [l1, l2, ..., lc], for some selection of literals up to the length of that clause. Using an

immutable list data-type, this clause can be represented as a sequence of cons cells in the

form 〈l1, 〈l2, 〈..., 〈lc, ε〉〉〉〉. In memory, the list will be stored recursively as a literal element

with a pointer to the next cons element in its sequence. Here ε is used to represent the

empty list — that effectively no further elements exist in the sequence. For each cons cell,

we call the first element the head of the list, and the second element its tail.

Let each clause be identified by a unique integer identifier x corresponding with its

sequence in the input file. In the above representation, we use the immutable tuple (or

ordered pair) data-type to carry the unique identifier for a clause and its immutable list

as (x, 〈l1, 〈l2, 〈..., 〈lc, ε〉〉〉〉). In this form, we will call the immutable list for a clause its

remainder, i.e. for (x, y) where y is an immutable list, y is the remainder.

Suppose further that each clause has exactly one watched literal rather than two — a

supposition to be retracted shortly. Given the recursive nature of the immutable list, it is

simplest to let this watch literal be l1.

The variable locus assumes that variables during unit propagation will be able to operate

independently and simultaneously of each other. If we let v1 be the assignment variable for

l1 and −l1, the single watch assumption allows for a guarantee that any clauses with watches

on l1 or −l1 can be held exclusively on the watch list for v1. Furthermore, the remainder of

every clause on the watch list for v1 contains either l1 or −l1 in its head (or first) position.

When assigning a value of true or false to v1, a reason for the assignment is recorded for

conflict analysis. It is either an assumption or a unit implication from some other clause.

In either case, the following rules apply regarding the watch list:

1. Any clause whose watch literal is true under this variable assignment is dropped.
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These clauses are satisfied under this assignment and require no further consideration

along this line of reasoning.

2. All others are reduced exactly one recursive step. For the remainder of this clause,

we obtain its tail and construct a new tuple with the tail replacing the former remain-

der, such as (x, 〈l2, 〈..., 〈lc, ε〉〉〉). For all clauses thus reduced, a new watch must be

selected. There are precisely two possible patterns for the tail of this tuple:

(x, ε) The remainder is empty. This clause has passed through variables for every

literal in its list and found each literal to be false. As a consequence, there

are no possible assignments along this line of reasoning to any literal in this

clause capable of rendering it satisfiable. A conflict has been obtained and unit

propagation will stop. Control returns to the solver-core to analyze the conflict

on clause x, to invalidate any assumptions and to resume search for satisfying

solutions if possible.

(x, 〈l2, ...〉) Let the new watch literal be l2. Assignment variable v1 asynchronously

sends this new tuple to v2. If v2 has already taken a value, then this watch list

procedure is recursively applied to (x, 〈l2, ...〉) on receipt at v2.

The path of clause x is illustrated in Figure 3.3. Introduced in the first step, it is ex-

changed between v1 and v2 then v2 and v3, as each literal is falsified by assignments to

these variables. It then becomes a source of conflict in the final step as l3 is falsified by

assignment to v3.

The procedure as outlined above is sufficiently powerful as to detect any conflicts during

search, but is inadequate to detect new units. For example, let us introduce the clause

(x, 〈l1, 〈l2, 〈l3, ε〉〉〉). If we falsify v1, x is delivered to v2. If subsequent reasoning falsifies

v3, then the only possible assignment for x is that l2 must be true. However, it is not

efficiently possible under this procedure to detect that the state of clause x on a watch list

for v2 has changed — since v2 remains unassigned at this time.

The solution applied by sequential propagation engines and which was also safe in
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Figure 3.3: Single-Watch Conflict Under Variable Concurrency

the clause-oriented design does not work here as defined. Normally a second watch on a

clause is introduced to detect when all other literals have been eliminated. In the variable

locus, however, this could introduce two points of control which must continuously be

synchronized for each active clause in the program.

3.4.2 Unit Detection

If the complete state of clause x is evaluated at v2 under concurrent execution, it is clear

that all literals preceding l2 have been eliminated. Unclear, however, is whether the state of

literals subsequent to l2 has been decided. Any attempt to evaluate this state from v2 will

be nondeterministic in its result. The value of l3 may be held constant, or may be in a state

of change. A method to safely determine this residual state is needed.

Recall that clauses are introduced to the system in the form (x, 〈l1, 〈l2, 〈..., 〈lc, ε〉〉〉〉).

Let us now introduce a recursive inverse for this same clause so that it traverses variable

assignments in the opposite direction. We simply reverse the cons list so that clause x takes

the form (x, 〈lc, 〈lc−1, 〈..., 〈l1, ε〉〉〉〉) instead. Here, literal lc becomes the watch literal for

clause x and, when falsified, issues the remainder to vc−1.

From our previous example, a clause in this form traverses precisely the sequence of

variables whose state had been nondeterministic, arriving at v2 having eliminated those
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literals as valid assignments.
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Figure 3.4: Two-Watch Unit Under Variable Concurrency

The solution to the requisite two-watch literals pattern, then, is to introduce both clauses

to the system. To detect if clause x is unit at v2, it need only know that both instances of

the clause have been received. This information safely eliminates the possibility that any

other literal might satisfy this clause under the current line of reasoning. Consequently, v2

can immediately take the value which renders l2 true for this clause. Clause x will then be

recorded as the reason for its assignment — to be used for calculating resolvents during

any subsequent conflict analysis.

Illustrated in Figure 3.4, it becomes clear that by traversing the clause from both ends,

v2 is able to eliminate all preceding and succeeding literals to l2.

3.4.3 Speculative Unit Propagation

An exciting advantage to any parallel design of this type is the possibility of speculative

unit propagation. During the propagation of each unit literal across the clause database,

additional unit literals can be discovered that are within scope of the current assignment.

In this event, it will be possible to concurrently delegate these for continuous propagation

without directly waiting for further instructions from the solver core. This reduces idle

time, better balances work load and enables the solver to encounter conflicts faster. More-
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over, a variable-centric design will detect and raise conflicting unit assignments as they

occur since the point of control for a variable’s assignment is safe under concurrency.

3.4.4 Watched Clause Rewriting

In particular, memory usage is an important aspect of this design. Traditional watch man-

agement alters the state of the clause database for all subsequent search without regard to

backtracking. That is, if a watch is moved just prior to a conflict, its change is retained

even after back-jumping has completed. Conventional wisdom regards this as positive,

since watches are cleared along the most-worn path to conflicted areas of the search space.

This fits well with modern heuristics like VSIDS which develop a preference for traversing

highly conflicted literals [6]. The clear opportunity cost, however, is that watches have

been relocated to other literals, which will be encountered as the solver broadens its search.

Moreover, the rapid and flexible changes exhibited by heuristics like Berkmin may further

alter this dynamic [9].

Our proposed design revives aspects of Recursive Clause Rewriting, introduced in Sec-

tion 1.3.4. In particular, the use of immutable data structures offers a compelling, low-cost

restoration of both clauses and watch state on back-jumps. The incremental state accumu-

lated forward of the jump target can be dropped in favor of the target’s prior configuration.

This strategy has several potential advantages in its own right. Watch dispersion be-

comes a function of the ordering for literals in the underlying problem. Dispersion can

remain relatively consistent, even in an environment of rapidly changing assumptions. The

use of immutable types also enables a continuous reduction in the number and size of

clauses as the set of assumptions and consequences grows deeper in search. For systems

with narrow access to memory, such as the Opteron servers discussed previously, the for-

ward reduction in problem size and consistency with regard to the underlying immutable

structure may improve the use of local cache.

Although it might seem that generating watched clause reductions could be costly, im-

mutable types are used whose intermediate state is nothing more than references to inter-
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mediate cons cells of the initial clause. Injection of new clauses is similarly trivial: from

the point of insertion, variables exchange the clauses until the watch configuration settles

into place.

3.4.5 Advanced Search Strategies

Another potential advantage of this immutable design is the ease with which it can be

extended to parallel portfolio and guiding path search. Once the initial program structure

has been loaded, the clauses and variables it defines can be shared directly between workers

without additional memory allocation. Subsequent work by competing solvers is retained

in the local state for each competitor. As a consequence, the initial memory allocation is

small, i.e. exactly one instance of the problem. We compare this with the size needed by

mutable solvers, which is linear in the number of competitors. This is because each mutable

solver continuously alters its underlying clause database according to its state of search.

3.4.6 Considerations

At issue is whether this strategy improves memory access, locality and cache behavior.

Moreover, do its benefits outweigh its costs? Some of these aspects can be evaluated in

terms of overall performance whereas others need more focused measurement.

The degree to which this design is sensitive to the number of variables in the underlying

problem is also a consideration. As compared with the clause locus propagation engine, we

suspect a relationship in the ratio of variables to clauses that may influence the effectiveness

of either strategy.
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Method

In order to ascertain the strengths and weaknesses of the outlined strategies, several aspects

of the methodology need to be established. In particular, it will be necessary to test the

unit propagation algorithms within their underlying functional environment. It is common

practice in the answer set and logic programming community to use benchmarking as a

technique to measure the effectiveness of solvers and engines. In the following sections,

we outline the benchmarking approach adopted for this research. We discuss aspects of the

unit propagation engines to be benchmarked, including some details of the F# functional

language in which they are written. Selected systemic and search measurements will be

reviewed. Moreover, parameters, both those which are varied and those which are specifi-

cally held constant, will be given special consideration. Finally, the tools used for analysis

of the results will be introduced.

4.1 Benchmarking

Benchmarking will involve running several iterations of a reference problem that is pub-

licly available under a variety of configurations. Since the focus of research is on unit

propagation, a full answer set solving engine is unnecessary. Consequently, the unit prop-

agation engines will be benchmarked with DIMACS format CNF satisfiability problems

27
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rather than answer set formats from grounders Lparse or Gringo. In keeping with bench-

marks obtained from Platypus, Claspar and Clasp for a related study, a minimum of five

iterations will be taken per configuration in order to produce results of comparable quality.

The benchmark configurations that follow culminated in thirteen-thousand measured runs

taken over a six month period.

4.1.1 Selections

Suitable DIMACS formatted benchmarks are available from a variety of sources. In addi-

tion to those held in a repository with our colleagues in Potsdam, Germany, SAT compe-

titions publish their benchmarks to the community in order to both maintain transparency

through reproducible measurement but also to help improve the state-of-the-art in logic

problem solvers. In order to maximize the utility of our measurements, we elected to use

problems obtained from SAT competitions in 2002 and 2009 [32].

Detailed profiles of the selected benchmarks appear in Appendix A, including Ta-

ble A.1. Selections were drawn from all three major categories, including application,

crafted and random problems. Generally, the initial problem size among the selected bench-

marks is gradually increasing in terms of both clauses and variables. Outliers were chosen

in order to provide larger initial variable-to-clause and clause-to-variable ratios. The ratio

of initial variables to clauses, which we suspect is an important factor in any comparison

of the variable or clause-centric propagation designs, is illustrated in Figure A.1.

Although the selected benchmarks may seem biased along the diagonal, established

researchers in the field published findings in 1992 regarding the hardness of SAT problems

in terms of over and under specification [33]. They discovered that SAT problems tend

to fall into easy-hard-easy distributions such that either over or under specification of the

boolean constraints imposed by clauses on their variables produce problems which are

easily solved. In specific terms, too many variables and too few clauses constituted under-

constrained problems for which variable assignment is comparatively easy. In contrast,

over-constraining a problem with extensive and intricate clauses will produce a problem
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that can be equally easy, but often unsatisfiable. Challenging problems tend to fall in the

middle, and the selected benchmarks cover a range within that space.

4.1.2 Platform

The proposed designs call for measurements of scalability and performance on the F# run-

time environment. Implementations of the F# runtime exist on both its native Microsoft

Windows, as the .NET Framework, and Unix, as mono. Unfortunately, 64-bit mono 2.10.2

as installed on Western’s forty-eight-way Rocks 5.4 cluster exhibited reliability problems

and was unsuitable for the sheer number of measurements to be taken. These failures oc-

curred in mono’s memory subsystem, primarily its memory allocator, regardless of which

benchmark or engine was being run. In particular, highly concurrent execution with small

units of work as required by the clause-centric design was the most problematic. The

immutable variable-centric design, however, did produce some very compelling measure-

ments which will be discussed in the final results.

For the majority of measurements, a custom multi-CPU system was purchased and as-

sembled in order to demonstrate F# on the platform for which it is designed and optimized.

This machine runs twin eight-core AMD Opteron Mangy-Cours 6128 processors operating

at a peak frequency of 2.0GHz. These sixteen processor cores make use of 128KB Level-1,

512KB Level-2 and 12MB Level-3 cache to improve access to memory. Each core has its

own Level-1 and Level-2 cache, whereas each processor has a shared Level-3 cache. On

the Asus KGPE-D16 motherboard, these processors access four distinct channels to main

memory. The 32GB of installed memory consists of eight 4GB server-grade Kingston

registered ECC DDR3 1333 memory modules. Data between runs is backed by 2TB of

primary storage. To obtain reproducible results, advanced power saving features were dis-

abled and the clock speed of all sixteen cores was locked to the factory-rated 2.0GHz.

The 64-bit version of Windows 7 Ultimate Edition is installed with version 4.0.30319

of the .NET Framework. This edition of Windows supports two CPUs with up to 32 cores

using today’s hardware. All services deemed unnecessary for benchmarking were disabled,



Chapter 4. Method 30

including background update and security software. A Windows PowerShell script was

written to automate sequential execution of the benchmark runs and collect results over the

extended measurement period with several minor revisions over its lifetime.

This highly customized platform remains unchanged during the benchmarking in order

to guarantee consistent results. Having examined the operating platform, we will now

review salient aspects of the F# language employed in this work.

4.2 F# Language

As previous discussed, the F# language is a modern descendant of the ML family of lan-

guages, most closely related to Objective Caml — also called OCaml. OCaml added object-

oriented capabilities in 1996 to the Caml language which debuted a decade earlier. Both

are dialects of ML maintained at the Institut national de recherche en informatique et en

automatique or INRIA [34]. Developed at Microsoft Research starting in 2002, F# inherits

many important features from these languages. As Don Syme describes it, ”F# is a scal-

able, succinct, type-safe, type-inferred, efficiently executing functional/imperative/object-

oriented programming language.” Moreover, it is ”both a parallel and a reactive language.”

[22] It also shares certain features such as sequence expressions and workflows with Haskell

which form the basis of its asynchronous processing. He goes on to say that ”its approach

to type inference, object-oriented programming and dynamic language techniques is sub-

stantially different from all other mainstream functional languages.” [35]

Many of the crucial language features used in the following work will be briefly intro-

duced in order to provide useful background.

4.2.1 Immutable Types

One of the most important aspects of F# as it pertains to this research is its support for

immutable data types. In particular, immutable lists and tuples are used extensively by the

variable-centric unit propagation procedure.
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The most common immutable type in modern languages, such as Java and C#, is the

string. Its contents cannot be directly altered, however, operations on it create new in-

stances which carry the consequences of those operations. In F#, this pattern is extended

to both common collections and end-user classes. Although mutable versions are still

available and supported, immutable types have several important advantages. Most useful

among these is the coherency of concurrent reads. That is, if two threads have references

to an immutable structure, changes derived from that structure result in new instances held

locally to those threads, rather than to any shared state between them. This added safety

eases development of certain types of asynchronous procedures and will be demonstrated

in our implementation of the variable-locus design.

The theoretical model for immutable lists used in our discussion of the variable locus

can be easily translated into F# syntax. Consider the remainder 〈l1, 〈l2, 〈..., 〈lc, ε〉〉〉〉. F#

replaces ε with the empty list []. Cons operations simply apply the :: operator to join an

element to the front of an existing list — possibly an empty one. For example, the syntax

lc :: [] replaces 〈lc, ε〉 in the previous example. This procedure can be repeated until the

remainder is fully constructed, for example l1 :: [l2; ...; lc]. In its final form, the language

would represent the remainder as [l1; l2; ...; lc], however, the underlying linked-list structure

of cons cells remains [35].

The language syntax and representation of the Tuple data-type is exactly the same as

presented in the variable-centric design. The intermediate clause (77, 〈l1, 〈l2, 〈..., 〈lc, ε〉〉〉〉)

can thus be represented as simply (77, [l1; l2; ...; lc]) in F#.

4.2.2 Map and Reduce

Operations on immutable data, then, are as simple as applying a function to some reference

and obtaining the result. A useful example could be the mapping and reduction of clauses

on a watch list as part of unit propagation. For example, the following syntax takes watches

from a watch list and maps them into a collection of results.

let results = (List.map visitWatch watches)
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A function visitWatch defines how a single watch would be processed. List.map simply

applies the visitWatch function to each element in a list of watches to produce a new list of

results. Once all watches have been visited, the collection of results is returned.

If, hypothetically, the results were a count of clauses to be moved - either 1 or 0 for a

single watch - then a simple sum of all movable clauses might be desirable. Similar to map,

reduce can apply the addition function to merge all elements as follows:

let total = (List.reduce (+) counts)

Reduce accepts any binary function which takes two input elements of some type and

returns a single result. It then applies this function repeatedly to the list in order to reduce

it down to a single value.

4.2.3 Recursion and Affinity

As may have become apparent, the usual techniques for iteration of data are largely un-

necessary in F#, although they do exist. Where iteration is desired as part of a program’s

flow-control, however, F# prefers tail recursive functions to imperative iteration. A function

that is recursive includes the keyword rec.

In F# it is possible to require that the program use only certain CPU cores. A bit map of

the desired core assignment is provided to the framework with 1 enabling use of a core and

0 disabling it. To generate this affinity setting for some number of adjacent cores, consider

the following function:

l e t rec g e n e r a t e A f f i n i t y ( c o r e s : i n t ) =

i f c o r e s <= 1 then 1

e l s e 1 + 2 ∗ g e n e r a t e A f f i n i t y ( c o r e s − 1)

The structure of this tail recursive function can be clearly altered by the compiler to

use traditional iteration on the executing machine rather than stack recursion. The result of

this function is used to assign a specific sequential core affinity to the currently executing

process. Requesting only the cores of the first CPU is simple:
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l e t a f f i n i t y = ( g e n e r a t e A f f i n i t y 8 )

l e t c u r r e n t = ( P r o c e s s . G e t C u r r e n t P r o c e s s ( ) )

c u r r e n t . P r o c e s s o r A f f i n i t y <− n a t i v e i n t a f f i n i t y

In the DPLL and CDCL algorithms, there is a tendency to write tree-recursive proce-

dures which explore one possibility and then its alternative. These cannot be optimized

by the runtime [35]. In our experience, deep search of this type will result in stack over-

flows. An immutable stack can be used explicitly with tail recursion to store alternatives

for subsequent processing which can be easily passed into the next cycle.

4.2.4 Closures and λs

As with other functional languages, F# supports closures, partial application, and lambda

functions. In particular, these are used to construct and return new functions with different

values bound to their enclosing environment. Although F# also supports structured classes

and values, these are a clean, simple method for structured computation. Although their

usage in the experimental implementations is sparse, an application of these structures will

be expanded in the discussion of possible future work, especially Section 6.2 on enclosed

two-watch literal inversion.

4.2.5 Async and MailboxProcessors

When executing map and reduce, the program sequentially visited each watch and produced

a collection of results. These results were then reduced to a single value. Using the async

keyword defines special asynchronous workflows in the F# language. Effectively, it is

used to define blocks of work that can be computed later. Suppose we wrap the previous

visitWatch function with async:

let visitWatchAsync (watch) = async { return (visitWatch watch) }
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In this example, visitWatchAsync returns a task which will visit the watch enclosed within

when executed. Mapping the list of watches to asynchronous tasks builds a body of work

that can be scheduled later:

let asyncWatchTasks = (List.map visitWatchAsync watches)

This collection of tasks enables the environment to run all watch functions simultaneously

when asked to do so. The following example executes all watch tasks concurrently, waiting

until they are completed to obtain the results:

let results = (Async.RunS ynchronously (Async.Parallel asyncWatchTasks))

This demonstrates the relative ease with which data can be processed concurrently in F#.

Another important language feature, that of agents, is used in the variable-centric de-

sign for concurrent processing on variables. Conceptually, the agent is implemented as

a worker communicating asynchronously with the outside world through the use of mail-

boxes. This is a familiar pattern in high performance computing, including such popular

platforms as the message passing interface, or MPI, used by solvers such as Platypus and

Claspar [13][14]. Agents are implemented with MailboxProcessors — a higher level fea-

ture detailed further in Chapter 13 of Don Syme’s Expert F# 2.0 [35].

4.3 Unit Propagation Experiments

As demonstrated, the F# language offers a variety of powerful and expressive options for

concise concurrent programming which make it a compelling choice for developing and

testing the proposed unit propagation designs.

4.3.1 Development Plan

Experimentation with the propagation control strategies is implemented in three stages.

After studying the idiosyncrasies of MiniSAT, Platypus and Claspar, our first phase of ex-

perimentation seeks to gain valuable experience developing conflict-driven, clause-learning
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solvers in the Microsoft .NET environment — all while staying close to familiar C-style

syntax. This fully functional C# CDCL solver, derived in part from MiniSAT, provides a

useful baseline for any subsequent F# implementations by demonstrating realistic estimates

of potential performance on top of the .NET framework’s virtual machine.

Expanding the scope of this work, the second phase implements the first of two F# unit

propagation engines. Focusing on the clause-locus, this multi-core implementation ports

and augments the established algorithms for watch management with safe concurrency.

As the first F# implementation, performance studies for mutability and threading gather

additional information about the comparative performance of these components.

The third phase of development implements the second F# unit propagation engine

around the variable-locus. Strengthened by studies from the previous work, it makes con-

scientious use of immutable data-types and asynchronous workflows. To examine the po-

tential for search-state introspection with immutable types, it incorporates guiding path

splitting and portfolio search strategies with minimal alteration to the underlying engine.

4.3.2 Experimental Versions

Benchmarks, solutions, projects and source code for all three solvers as well as some addi-

tional resources from the discussion of future work in Chapter 6 are available with Source

Forge online. Source Forge is a publicly accessible web-based repository for open-source

and research software. Complete version history for all files and folders is maintained in a

Subversion repository with an extensive log of the changes made during the course of this

work. 1

The majority of benchmarks can be carried out on trunk revision 365, with the last sub-

stantial commit revisions to the various projects at earlier sequence numbers. For validation

purposes, check-out of this specific revision will be sufficient; however, researchers intent

on further experimentation will prefer to check-out the head revision of the repository.

1https://mouse-solver.svn.sourceforge.net/svnroot/mouse-solver/
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4.3.3 C#: Mus Musculus

Named after the common house mouse, a more traditional serial solver for the Common

Language Runtime provides a sanity-check for performance measurements taken from the

F# engines. Although a unique solver in its own right, its algorithms have been adapted

specifically from the MiniSAT 2.2.0 solver and redesigned to conform with the abstractions

of the .NET Framework. Measurements from this solver serve to illustrate the approximate

performance one can expect running on the framework’s virtual machine.

As an object-oriented solver, diagrams in Unified Modeling Language, or UML, are

included in Appendix C to illustrate the general structure of this CDCL solver. These dia-

grams are used in conjunction with the code-generation capabilities of Pragsoft UMLStu-

dio 7.2 to dynamically link the C# source files with their UML design models. Specifically,

Figures C.1 and C.2 outline two event-driven data structures and a collection of exten-

sions to Language Integrated Query, or LINQ, for adapting value and set semantics into the

conflict-driven solver. In both cases, the underlying data-types are native to the framework

with extensions focusing on the event-driven behavior needed for watch maintenance and

unit propagation. The solver itself, outlined in Figure C.3, is dramatically simplified in part

due to these additional structures.

The command line pattern for executing this solver is very simple. It accepts a DIMACS

formatted CNF file as its sole argument and uses reasonable defaults for all other options:

Musculus\Mouse\bin\Release > Mouse.exe [problem.cn f ]

4.3.4 F# Clause Locus: Murinae

The first F# implementation is a natural extension of conventional methods for watch man-

agement and propagation. It is a dynamically configurable solver named after the family

of Old World rats and mice. Incorporating the first of two propagation designs, it tests ad-

ditional aspects related to the F# language and runtime in order to ensure the best possible

representation of results and to provide guidance for subsequent work. It explores several
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facets of data-types and concurrency, including measurement of mutable and immutable

implementations of conventional propagation algorithms. Comparison of the implicit con-

currency features of the F# language with an explicit implementation is also included to

better understand and maximize the performance of asynchronous tasks. Mechanisms for

configurable processor core assignment, variable word size and logic program repetition

were further included to study scalability and memory contention.

It can be executed from the command-line by specifying an input problem in DIMACS

format along with a number of additional options to be discussed further:

Murinae [problem.cn f ] [cores] [repetitions] [implicit|explicit] [mutable|immutable]

Affinity

Using a technique similar to the procedure outlined in Section 4.2.3, the processor core

affinity can be adjusted parametrically to obtain measurements in varying configurations of

enabled or disabled CPU cores. From the command-line, the cores option dynamically sets

this value when the solver is started.

Repetitions

As discussed in the overall strategy for the clause-locus propagation engine, it was felt

that the performance of the overall propagation design would depend in part on the length

of the watch lists for each variable. As clauses are learned over time, the average watch

list length will grow. For purposes of determining whether improvements in performance

are due to the extra information provided by these learned clauses or the extended average

length of the watch lists, a simple technique was devised to gauge the overall improvement

in throughput without adding additional information about the search space.

To this end, a feature was implemented for repeating the clauses of the input program in

such a way that the clause database size could be increased without providing new knowl-

edge. In the Murinae solver, this can be controlled through the repetitions parameter. Con-
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sequently, the average watch list length is increased for measurement without altering the

overall flow of search.

For instance, any clause that would normally discover a unit or conflict under a particu-

lar assignment during the propagation stage will be accompanied by other such clauses on

the watch list being processed. As a result, the unit or conflict will still be discovered even

though the number of clauses on the watch list has grown. For all other situations, the num-

ber of clauses to be processed on that watch list is increased without additional conflicts

or units being generated. Although this will not positively improve the search time, it may

potentially increase the measured throughput in terms of clauses propagated per second to

demonstrate the effect of watch-list length on the performance of this design.

Thread Management

Since F# is still a comparatively new language to the .NET framework, it remains unclear

whether the explicit allocation of non-blocking threads attached to functional work queues

or the use of F#’s native asynchronous constructs will lead to better performance. Notably,

the native asynchronous constructs use the framework’s work-stealing thread pool and can

allocate additional threads in the event of a block [24]. Although every effort is made to

avoid unnecessary blocks and allocations, it may or may not be better for memory locality

to use pre-allocated threads attached to lambda queues. The solver can be switched between

these two modes of execution at runtime by specifying either implicit or explicit threading

on the command-line.

Data Structures

Another area of tension in the design is the trade-off between mutable and immutable data

structures. Since F# supports both non-blocking concurrent data structures and pure im-

mutable data types, it is unknown how use of the immutable types will scale. In preliminary

measurements, procedures written for immutability yield nearly equivalent performance,

but the scalability may be better. This dimension will be important to measure for any fu-
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ture work involving these languages. Selecting between these techniques is simply a matter

of specifying the command-line option for immutable or mutable data types.

4.3.5 Concurrent DIMACS Processor

Murinae also introduces a concurrent input file processor to translate DIMACS-formatted

clauses into internal data structures used for search. This processor uses Parallel Language

Integrated Query, or PLINQ, to translate between the two forms. This technique makes use

of partitioning methods and declarative programming to reduce the end-to-end processing

time for input files and improve the overall iteration time between separate benchmarks.

As implemented in Murinae, this entire module is no more than sixty-five lines of F# code.

This input processor is also adapted and used in the second F# design to be discussed next.

As with other factors external to the propagation engine, input-file processing times

are not included in the unit propagation times being measured but are recorded separately.

A simple discussion of the performance improvements from this concurrent reader will,

however, be included in the results.

4.3.6 F# Variable Locus: Apodemus

Setting aside the two previous solvers, a third solver was developed to explore what unit

propagation with two watch literals might look like if it has been developed for this precise

problem and environment from the very start. Named for the European field mouse, this

solver measures our variable-centric design. It also eschews certain language-oriented im-

plementation techniques measured in Murinae that were shown to be less efficient. It has

been further extended to illustrate the ease with which introspection can be performed for

extended search strategies such as parallel guiding path and portfolio search.

It can be executed from the command-line by specifying an input problem to be solved

along with a number of options to be discussed:

Apodemus [problem.cn f ] [strategy] [node] [cores]
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Search Strategy

As with Murinae and Mus Musculus, the Apodemus solver defaults to a unified search

strategy. The solver uses immutable types extensively, however. As a consequence, it can

run guiding path or portfolio search with only minimal alteration. Since a snapshot of any

intermediate clause database can be safely obtained without interrupting existing search,

the portfolio method requires only four additional lines of code to launch any number of

competitors. The parallel guiding path technique requires slightly further modification

due only to its shared delegatable choice queue. This shared queue is used in lieu of the

immutable alternative choice queue employed by the unified and portfolio search strategies.

Apodemus accepts a strategy parameter on the command-line to specify the desired search

technique.

Node Type

Two implementations of variables exist in Apodemus. One is based purely on language

integrated asynchronous workflows, whereas the other uses MailboxProcessors in addition

to the asynchronous workflows, introduced briefly in Section 4.2.5. From the command

line, they appear as Node and Agent options, respectively. Although both are available,

measurements are taken exclusively with the first implementation.

Affinity

Apodemus contains the same options for configurable affinity to dynamically change CPU

core assignment as discussed in Sections 4.2.3 and 4.3.4. This can be configured through

the cores parameter at the command-line with fundamentally the same values as Murinae.

4.4 Measures

A number of measurements are taken during the benchmarking process including both sys-

tem measurements, to identify how the programs interact with their operating environment,
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and search measurements, to estimate how well the programs are performing in their overall

tasks.

4.4.1 Systemic

System measurements are taken from the Windows Management Instrumentation (WMI)

facilities of the operating system. This provides various levels of granularity in its mea-

surements from system-wide performance counters to process and application domain per-

formance counters. This toolset is integrated into all versions of Windows and is a well

established method for measuring system performance.

An important such measure is the program’s memory footprint or allocation size. This

is the Process → Working S et performance counter. Benchmarks include measurements

of the memory consumed at various states of execution. Of initial importance is the mem-

ory allocation after the DIMACS input file has been converted into the engine’s internal

representation but before search artifacts have been constructed around that representation.

Subsequent measurements identify the additional consumption as a consequence of search

operations including intermediate incremental state and growth of learned information as

search progresses.

In addition to the allocation, specialized measurements of system-wide cache behav-

ior are also taken. For these, several iterations provide assurance that other system-level

processing is not influencing the measurements. Specifically, cache faults are of particu-

lar interest to the performance of solvers since they indicate that a pause in execution was

necessary in order to obtain additional information from main memory. In particular, the

performance counter discussed in Section 5.2.2 is Memory→ Cache Faults/s.

4.4.2 Search

Three important search measurements are used to estimate the overall performance of these

engines. In particular, the total number of units propagated, the number of clauses prop-
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agated, and the number of conflicts encountered. The number of units propagated gives

an immediate indication of the efficiency of the unit propagation engine, regardless of how

many clauses are visited on dispatch for each watch list. The number of clauses propagated

counts the number of independent clauses visited during propagation. With these two val-

ues, it is possible to estimate the approximate average length of watch lists in the engine,

since this is just the number of clauses propagated per unit:

Watch Length ≈ Clauses Propagated / Units Propagated

This is an approximate number since unit propagation engines can break traversal of

clauses during watch list dispatch by raising a conflict early in the process. When this

happens, subsequent propagation to clauses also on the list may be skipped. Nonetheless it

is a helpful approximation.

Finally, the number of conflicts encountered provides an additional indication of the

propagation engine’s ability to traverse the search space, subject to certain constants which

will now be discussed.

4.5 Parameters

A large number of factors influence the performance of a propagation engine, and logic

program solvers in general. Some of these parameters are intentionally varied during mea-

surement and others are specifically held constant by design.

4.5.1 Constant

Among the factors held constant during measurement, particular attention is paid to other-

wise nondeterministic aspects of the solver. For instance, most solvers employ a random

component to the decision-making process. More specifically, this plays a role in the choice

of assumptions while solving, i.e. which literals to suppose true or false. Heuristics play an

important role in this choice, in order to drive search towards highly conflicted areas of the
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search space. In all cases where a random factor would normally be involved, the software

being tested will prefer the first applicable choice. In the case of literals or variables, this

choice will be ordinal according to their numeric value, e.g. (1, 2, 3,...). For clauses, the

choice will be made according to the chronology in which they were read or learned. Con-

sequently, all paths taken by the competing unit propagation engines through the search

space will be as similar as possible under the circumstances. The intention is to compara-

tively examine the characteristics of the unit propagation rather than the performance of an

overall solver.

4.5.2 Varied

A number of facets of the unit propagation procedures are varied parametrically through ei-

ther compile-time or command-line options. For instance, the data type and corresponding

algorithms of Murinae are varied between either mutable or immutable types depending

on the command-line option selected. Apodemus is a predominantly immutable design,

whereas the C# reference design is a purely mutable implementation. Threading is implicit

in all designs except Murinae which supports both implicit and explicit experimentally.

Varying between the two threading options is intended to examine aspects of memory lo-

cality and partitioning. Both F# designs accept command-line options for CPU affinity,

which are measured for all combinations up to the available sixteen cores. Finally, Apode-

mus supports three different search strategies, unified, portfolio and guiding path splitting,

with measurements being taken in all three scenarios. Murinae and Mus Musculus are both

designed for a single unified search.

The only compile-time option varied between all three solvers is the word size. Results

varied substantially depending on whether the programs were compiled for 32bit or 64bit

execution, so measurements of both were taken.
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4.6 Tools for Analysis

A variety of tools are used for analysis of the measurements taken during benchmarking.

The output format of the propagation engines is configured for comma-separated values

which can easily be imported into Microsoft SQL Server 2008 R2 databases by way of

Excel spreadsheets. Once in structured relational form, custom presentations of the data are

prepared primarily in Crystal Reports 2008 with additional analysis from Matlab R2010a.

Beyond just the measurements taken during benchmarking, RedGate ANTS Memory

Profiler 5 is employed to access details of memory usage and runtime heap allocations.

During development, ANTS Performance Profiler 5 was used to identify and correct several

limitations of the specific implementations we tested.

Finally, the concurrency profiling tools included with Visual Studio 2010 Ultimate be-

came available very late in the research process. Results from this tool were useful to verify

aspects of concurrent execution, however Visual Studio 2010 Professional is the develop-

ment platform for all tested versions of our software.
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Measurement

5.1 Discussion of Murinae

The benchmark results from Murinae serve two fundamental purposes. On one hand, as-

pects of the language and its environment are being measured to better understand how

they relate to the solver’s overall performance. On the other, its clause-locus design is

being measured to compare with both Mus Musculus, a conventional serial design, and

Apodemus the subsequent implementation based on a variable-locus.

Performance information learned from the various configurations of Murinae within the

F# environment will be used in the Apodemus implementation in order to better focus its

measurements on domain specific problems.

5.1.1 vs. Mus Musculus

As an important initial sanity check, the clause-oriented F# solver is compared with the

C# implementation. Its average unit propagation rate across the full suite of benchmarks is

illustrated in Figure 5.1. Although the clause-oriented functional design is outperformed by

the C# solver, these measurements assume single-core affinity. The reduced performance in

this scenario can be partially attributed to the overhead cost of concurrent execution within

a single-core environment.

45
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Figure 5.1: Unit Propagations Per Second (Single-core Murinae)

Although Mus Musculus, the C# implementation, performs well here, it does not out-

perform Murinae, our first F# solver, in all scenarios. The clause-oriented F# solver mea-

sures substantially better on cryptographic problems such as the AES key-search bench-

mark results depicted in Figure 5.2. These benchmarks have an unusually high rate of

clause participation per literal, which is indicative longer watch lists. Listed in Table A.1,

this specific benchmark also has the highest average clause length among the input logic

programs used.
aes_128_10_keyfind_1.cnf

0 200 400 600 800 1000

Max of @Murinae

Max of @Mus Musculus

aloul-chnl11-13.cnfFigure 5.2: AES 128 10 KeyFind 1.cn f

Having demonstrated that the Murinae solver is loosely within the same order of mag-

nitude as Mus Musculus, a more in depth analysis of its underlying components will help

to further understand its performance.

5.1.2 Threading Techniques and Memory Locality

Among the components varied at runtime, two concurrency techniques are measured to

learn whether an explicit or implicit implementation of multi-threading is desirable. The
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benefits of language-integrated concurrency are compelling, but the potential for higher

memory locality with an explicit handling of asynchronous processing needs to be ex-

plored.

The outcome of these results in the general case is fairly clear. The language-integrated,

implicit asynchrony outperforms the explicit implementation in every scenario as summa-

rized in Figure 5.3.

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Avg of @Explicit Threading

Avg of @Implicit Threading

Figure 5.3: Implicit vs. Explicit Threading (Multi-core Murinae)

A conclusion of this result is that the work-stealing, duplicating queues used by the

language work better here given the way clause dispatch is performed. Notably, any benefit

to explicitly managed data locality in the allocation and use of Murinae’s clause database

is outweighed by the improvements in implicit work dispatch. In its paper on the subject,

Microsoft Research discusses the implementation of these queues in some detail. In Section

6.3 of this paper, the authors obtain a quad-core speedup with duplicating queues of 3.89, at

nearly five-hundred tasks per millisecond, as opposed to the THE protocol which exhibited

a speedup of only 2.78 during concurrent execution [24]. Their ratio of 2.78 : 3.89 is

roughly 0.71. We observe a similar ratio with the duplicating queues of 3k : 4.3k, or just

over 0.69, as compared with non-blocking lambda queues illustrated here. As observed

in this ratio, the slight improvement in non-blocking queue performance may be due to

locality imposed in the underlying structure of the clause database, however the difference

is negligible in practice.

Jumping ahead to look at the full set of results including Mus Musculus, Murinae and

Apodemus, this picture is further reinforced. A summary of the best solvers for each bench-
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mark demonstrates that the explicit-threading technique is not among the configurations

used by any of the three solvers when achieving top scores for the selected benchmarks.

85.0%

15.0%

100.0%

implicit

single

implicit 92.5%

single 7.5%

Total: 100.0%

Figure 5.4: Best Scores - Threading Proportions

It was further observed during our testing with WMI, introduced in Section 4.4.1, that

the Windows scheduler frequently moved the process to execute on cores that are closer

to certain banks of memory in the system architecture. We suspect this behavior is less

costly during execution than moving data across the HyperTransport bus to the currently

executing process. Although this cannot be verified, it may also play a potential role in

these results.

The language-integrated features for dispatching concurrent work outperform the ex-

plicit management techniques used in Murinae despite the potential advantages to locality

from partitioning the database.

5.1.3 Mutable vs. Immutable Procedures

The second key aspect of the F# language, as tested by Murinae, is the representation

of its data, including clauses, watches and variables. Traditional solvers like MiniSAT,

whose source code was studied extensively during the course of this research, use muta-

ble data structures to edit watches in place during watch management. Unit propagation

algorithms can be easily adapted from these competition solvers to use either the mutable

data structures for which they are intended, or immutable data structures. As discussed
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in Section 4.2.1, mutable operations on data can be easily altered to instead produce new

instances of that data with the operation applied.

It is easy to imagine that this approach may not lead to optimal performance for at

least two reasons. First, the previous mutation of any instance in memory now involves

at least two: the source instance being read and the new instance being created. Second,

the frequent recycling of these instances may involve unpredictable penalties for garbage

collection and allocation. These perceived shortcomings are supported quite comfortably

by the benchmark results illustrated in Figure 5.5.

0 1000 2000 3000 4000 5000 6000

Avg of @Immutable Data Types

Avg of @Mutable Data Types

Figure 5.5: Mutable vs. Immutable Data-Types (Multi-core Murinae)

In the results from our benchmarks, it becomes clear quite quickly that the use of im-

mutable data types with existing algorithms is costly. Although we discussed two reasons

why the immutable procedures might perform worse, behind these justifications is an im-

portant fact: an algorithm that relies on continuous, in-place mutation has been applied to

immutable data. This observation is a key impetus to the design and implementation of

variable-centric Apodemus.

5.1.4 Scalability

In spite of the previous results, immutable data types might still be compelling if the bene-

fits for concurrent processing outweigh the initial costs of immutability. Figure 5.6 details

the scalability characteristics of the Murinae solver as the number of allocated CPU cores

is increased. Measurements are grouped according to both the types of data representation

and the threading models. These are averaged across the complete series of benchmarks.
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Figure 5.6: Summary of 64 Bit Murinae

This scalability chart for Murinae shows an overall score in terms of unit propagation

speed. The efficiency of implicit threading still outmatches explicit work dispatch across

the board, with the cost of additional concurrency outweighing its benefits past three and

four allocated cores. Recall that this is partly attributable to watch list length and partly

influenced by the four available channels to memory. The mutability curves generally

follow each other, but in both cases the scalability of immutable data - as applied in Murinae

- peaks earlier and diminishes thereafter.

These summarized distribution curves remain consistent between both 32bit and 64bit

solvers, although individual benchmark results vary. A chart for 32bit Murinae is included

for examination in Figure B.1 of the appendix.

5.1.5 Parallel DIMACS Processing

In order to maximize the timeliness of benchmark runs, Murinae introduced a concurrent

DIMACS processor, discussed briefly in Section 4.3.5, to translate input CNF files into
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internal data structures. To our knowledge this hasn’t been done, so performance measure-

ments were taken for inclusion in this work.
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Figure 5.7: Parallel DIMACS Processing

Using language integrated features for concurrent processing of input data, its scalabil-

ity exhibits results that are similar to the implicit threading techniques previously measured

for this architecture. A summary of this performance gain is illustrated in Figure 5.7. Gen-

erally speaking, the larger the input problem the greater the benefit, with small problems

seeing no benefit from the additional compute power. This observation is supported by

detailed measurements and problem size appearing in Table B.1 of the appendix.

5.1.6 Summary of Murinae

Murinae enabled a high degree of experimentation with the language and environment in

order to learn how the clause-locus - a natural parallel extension of existing unit propaga-

tion procedures - performs in a multi-core system. Several conclusions were drawn about

threading, data types and their interactions. Under these usage scenarios, language inte-

grated features for parallelism outperform explicit techniques for watch management in

spite of the possibility for improved locality. Moreover, the highly mutable clause-locus

procedures give clear preference to mutable data types in virtually all scenarios. Finally,

a concurrent input processor was developed to make use of additional unused CPU cores

during program initialization.
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In spite of these results, important questions were raised. Among these, we recall that

the immutable procedure for watch management in the clause locus under-performs in part

because that algorithm is designed to operate in-place on mutable data. It becomes impor-

tant to ask, what would a concurrent unit propagation procedure look like for immutable

data? In order to address this during our subsequent work, it became necessary to reposi-

tion the locus of concurrent execution from the watched clause and the clause database to

the variables under assignment.

5.2 Discussion of Apodemus

If the rate of mutation can be altered, or even largely eliminated in the case of the proposed

variable locus, then the benefits of immutable processing to concurrent execution become

significant.

Designed to optimize memory behavior in this scenario, the performance of the Apode-

mus engine is compared head-to-head with Murinae and the C# solver, Mus Musculus,

using measurements obtained across the complete set of benchmarks.

5.2.1 vs. Murinae

When each benchmark is measured by both Murinae and Apodemus, we observe a dramatic

shift among top scoring solvers for each problem, illustrated in Figure 5.8. Recall that

mutable versions of Murinae won in every case, whereas Apodemus is designed specifically

for immutable data-types.

A variety of important factors are implemented differently in Apodemus. Although

Murinae optionally uses immutable data types for its watched clause database, its search is

still fundamentally mutable. When backtracking, for instance, its watches retain their new

configuration, whereas Apodemus uses a recursive clause rewriting approach, outlined in

Section 3.4.4. As a consequence, Apodemus never needs to alter its clauses, but simply

moves its references step-wise inward, as specified in Sections 3.4.1 and 3.4.2. Due to this
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Figure 5.8: Best Scores - Data Type Proportions

sliding window approach, issues of garbage collection and allocation are constrained to

references held by the variables rather than the continuously expanding clause database.

5.2.2 Memory

32 and 64 Bit Performance

This reliance on references to intermediate cons cells of the clause remainder makes Apode-

mus significantly more sensitive to the size of its references. In contrast, the size of literals,

where they appear as integers in clauses, plays little to no role in the measured results.

References that are used by these immutable data structures, however, cannot be changed

except by recompiling the program, and their size has a significant influence over the out-

come.

Between the 32 and 64 bit builds of Apodemus, an examination of which revision per-

forms best for each benchmark problem yields an interesting result. Illustrated in Fig-

ure 5.9, individual benchmarks are plotted according to their size in the number of vari-

ables and clauses. This logarithmic scatter plot clearly exposes the divide between the two.

Problems which are solved more easily on 32 bit Apodemus appear in purple, whereas

those that prefer 64 bit Apodemus appear in green.

In general, smaller problems perform better on the 32 bit version than larger problems.

Notably, all instances are capable of executing within the allowed program size for a 32 bit

program, eliminating this as a possible bias. Exceptional outliers depicted in the profile of
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Figure 5.9: Best Solver - 32 vs. 64 Bit

initial benchmark problems, including Figure A.1 and Table A.1 of the appendix, are not

included here.

Normally, execution of native 64 bit instructions will be more responsive, and this is

apparent from many of the larger benchmark problems. In this case, however, we believe

that the 32 bit configuration is the only one in which the entire logic program fits within

cache given a sufficiently small problem. To support this, we examine the largest group

of problems successfully solved by 32 bit Apodemus: the mizh-sha benchmarks listed in

Table B.2. Their profiles in Table A.1 indicate that these problems consist of approximately

210,000 clauses with an average length of 3 literals spread across nearly 50,000 variables.

Since their representation in memory consists of cons cells containing an integer for the
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literal and a reference to the next list element, we obtain approximately 630,000 words for

literals and an additional 630,000 for references. Moreover, the lists exist in both direc-

tions, forward and reverse, so these figures are doubled. These 2.5 million words compose

the immutable clause database itself. As described in Section 4.1.2, the AMD Opteron

6128 CPU has 12 MB of shared L3 cache, approximately 3.1 million 32 bit words. The

remaining 600,000 or so can potentially be used to capture the intermediate remainders ref-

erenced by variable watch lists. To obtain a unit or conflict, the watch list would traverse on

average half of a clause with its reverse traversing half in the opposite direction. Assuming

an average length of 3 literals per clause, a unit can be obtained by moving the forward or

reverse lists a total of 2 positions inward. This intermediate data accounts for an additional

420,000 words in the worst case. The operating system, .NET framework, and the program

itself could easily occupy portions of this space as well. As suggested by these results, the

32 bit representation is the only scenario where the entire problem and its structures fits

within the available shared cache. A native 64 bit version operating entirely in cache would

require problems of roughly half the size in order to compete successfully on level ground.

Initial Allocation Size

Single-core Apodemus and Murinae exhibit similar initial memory allocations despite their

substantially different configurations. The initial memory allocations for a sampling of

benchmark problems is listed in Table 5.1 to illustrate this similarity.

Immutable designs, however, have another significant advantage over mutable ones for

concurrent processing. Apodemus easily implemented three different search strategies that

are described in Section 4.3.6: portfolio, guiding path splitting and unified search. Since

it was known that no worker could unintentionally alter the initial problem, it could be

shared among all concurrent workers. To illustrate the potential up-front cost, an estimated

average memory allocation for sixteen competitors is placed alongside the measured best

allocation size of single-core Murinae for comparison with Apodemus. Unlike the incre-

mental memory acquisition of immutable data, this must be populated up front for each
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competitor without regard for the solving time of a problem. For trivial problems on sys-

tems with more than sixteen cores, this can potentially be quite costly to the critical-path

solving time.

Benchmark Apodemus Murinae x16

aes 128 10 keyfind 1.cnf 113 107 1,830

aloul-chnl11-13.cnf 19 20 337

am 7 7.shuffled-as.sat03-363.cnf 28 30 488

cmu-bmc-longmult15.cnf 34 36 577

countbitsarray04 32.cnf 35 38 592

goldb-heqc-alu4mul.cnf 40 43 677

li-test4-100.shuffled-as.sat03-370.cnf 137 165 2,606

manol-pipe-c6bidw i.cnf 201 244 3,730

rbcl xits 09 unknown.cnf 67 69 1,139

rpoc xits 09 unsat.cnf 73 77 1,201

satisfiable.cnf 17 20 321

simon-s03-w08-15.cnf 331 496 8,629

slp-synthesis-aes-bottom17.cnf 90 96 1,555

smtlib-qfbv-aigs-countbits128-tseitin.cnf 206 215 3,531

velev-engi-uns-1.0-4nd.cnf 61 69 1,085

Table 5.1: Portfolio Allocation Sizes (Mb)

The impact on shared memory cache for modern multi-core architectures is also an

important outcome of this measurement. Recall that the Opteron 6128 CPU, described

in Section 4.1.2 covering the benchmark platform, shares 12MB of L3 cache between its

eight cores. For the twin CPU arrangement used to benchmark this work, there are only

two large caches of this type. In this example, large portions of the shared clause database

on Apodemus can easily be cached, since all references to clause remainders will point

to addresses within this root program. Traditional mutable systems that alter the clause
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database by moving watched literals to the front of a clause as search progresses will suffer

more frequent cache faults as each of their sixteen cores require access to different areas of

memory — a problem to be discussed further in Section 5.2.2.

Progressive Allocation Size

A potential disadvantage of immutability here, is that differential allocation from the base

program takes place during solving and thus represents an ongoing cost. Moreover, this

yields a memory footprint that is no longer purely linear in the number of clauses. Instead,

the depth of search and the degree to which it has applied incremental changes from the

base program also factor into the ongoing allocation requirements.

To illustrate the non-linear memory requirements, the intermediate-sized benchmark

goldb-heqc-alu4mul.cnf has been measured with single-core affinity over the course of a

thirty-minute execution and plotted in Figure 5.10. This figure captures the total allocated

memory as seen from the operating system for a one-to-one comparison of the solvers. In

addition to Apodemus, both the mutable and immutable variants of Murinae are included

for comparison.

Visible in these measurements is the gen-2 garbage collection which takes place at

evenly spaced intervals just over four minutes apart. In the current version of the .net

framework, collection of gen-0 and gen-1 memory occurs on an ongoing basis whereas

the gen-2 collection exhibits this pattern of behavior. For purposes of reproducing these

measurements in any future work, it should be noted that the gen-2 garbage collection will

be revised in the upcoming .net framework version 4.5 to enable concurrent background

operation.

At first glance, these measurements might seem unnerving when compared with a tra-

ditional competition solver, however two important factors need to be considered. First,

a conflict-driven, clause-learning solver continuously prunes its database as introduced in

Section 1.4. As a consequence of this optimizing behavior, the total allocated size will

typically be only a very small portion of the available system memory. Despite the larger
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Figure 5.10: Memory Usage - goldb-heqc-alu4mul

and varying allocation sizes, the variable-locus design for immutable types still only op-

erates on a certain view of its incremental state and thus retains much of the benefits of

cache optimization underlying the current approach to clause management, a result which

will be discussed next. Second, when compared in single-core mode, the overall perfor-

mance of the Apodemus unit propagation engine on this benchmark far exceeds that of both

Murinae and Mus Musculus when averaged across several runs. This result is depicted in

Figure 5.11.

For this particular benchmark, Apodemus runs an average of over thirty-thousand unit

propagations per second as compared with just under two-thousand for Murinae and four-
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Figure 5.11: Performance Comparison - goldb-heqc-alu4mul

thousand for Mus Musculus, the C# serial solver.

Cache Behavior

To further understand the implications of this cache behavior, extensive measurements were

taken of the three solver configurations. Figure 5.12 illustrates the number of cache faults

per second as observed in the middle of a thirty-minute run on the goldb-heqc-alu4mul.cnf

benchmark used in the previous discussions. For this chart, lower numbers of faults are

preferred in order to maximize performance.

Once again, Apodemus is compared with the mutable and immutable variants of Muri-

nae. It consistently demonstrates a greater occurrence of snapshots observing zero cache

faults. The Murinae engine, however, frequently misses and must subsequently obtain that

information from system memory. As mentioned in Sections 2.1.1 and 4.1.2, the Opteron

system used for benchmarking has only four channels to main memory and excessive re-

quests from multiple CPU cores can easily bottleneck here.

As the number of competitors in a portfolio or guiding path search increases, the overall

cost of this problem will magnify. This will become more apparent in Section 5.3 which

looks at the overall multi-core throughput across the complete set of benchmarks.

Over the total thirty minutes of execution, Apodemus snapshots an average of only

1.26 cache faults per second compared with 2.37 faults per second under Murinae. For

this particular execution, immutable Murinae performed slightly better than its mutable

algorithms, potentially due to the locality of its newly modified watches rather than an

arrangement imposed by the order in which clauses are read or learned — although this
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Figure 5.12: Cache Faults - goldb-heqc-alu4mul

speculation is unsupported.

5.2.3 Summary of Apodemus

As a solver, Apodemus shows potential. Its variable-locus implementation addresses cer-

tain control issues that enable some compelling concurrent capabilities, including advanced

search strategies and speculative unit propagation. Its watched clause rewriting pairs ele-

gantly with immutable types to facilitate state introspection. Overall, its characteristics

are different from Murinae and many other conventional solvers. Its sensitivity to word

size and increased allocation in deep search is balanced against its modest initial allocation

size. Concurrency and cache behavior perform reasonably and its program length is com-

paratively smaller than Murinae. Fundamentally at issue is its memory performance and
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whether its unit propagation engine delivers. A more in depth look at overall throughput

compared with the other two solvers will now analyze this aspect of performance.

5.3 Overall Throughput

Most of the measurements discussed so far have focused on specific and narrow aspects of

the comparative performance among the solvers being tested. It is especially interesting,

now, to evaluate the overall performance of the three solvers across the complete set of

benchmarks using anything up to sixteen cores and including all configurable options under

measurement. These include data types, threading models, word size and search strategies.

Results from the full set of over thirteen thousand measured executions are included

in this analysis. In particular, we look at which solver configurations are most successful

for each problem. Detailed results of this comparison are included in Table B.2 of the

Appendix for reference during this discussion. Entries in Table B.2 are sorted according to

increasing problem size in the number of variables.
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Figure 5.13: Best Score Counts - By Solver and Cores

An important aim of this work has been to improve the performance of multi-core

unit propagation using functional language constructs. When reviewing the results for

Murinae in Section 5.1.4, it becomes clear that its best performing configurations peak
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when assigned affinity between three and four cores. This result is especially true when

competing with the other two solvers.

In Figure 5.13, Murinae with its clause locus achieves top propagation performance for

benchmarks when it is using exactly four cores. In all of these scenarios, Murinae is config-

ured for unified search, mutable data-types and implicit threading. Other combinations are

outperformed either by this configuration or some configuration of the Apodemus solver.

Some problems may contain highly sequential structure in their implication graphs. For

these, Murinae will be inefficient due to its concurrent watch dispatch. Mus Musculus, the

C# solver, or Apodemus are the only likely competitors here. In this case, unified search

on Apodemus with single-core affinity produces higher throughput.

For the remainder of problems, guiding path and portfolio search share as top perform-

ers with their configurations. It is interesting to observe that guiding path splitting has a

more right-ward skew in Figure 5.9. Although portfolio search is an area of intensive ongo-

ing work, advocates of parallel guiding path search may have reason to remain optimistic.

Guiding path splitting is a strategy favored by parallel solvers like PaMira and strongly

advocated by its authors [12].

5.4 Final Considerations

Among measurements taken during development, it was observed that CPU utilization de-

pended primarily on the efficiency of memory access, especially with unrestricted affinity.

As a consequence of its memory efficient design, Apodemus demonstrates a clause struc-

ture which performs well for this reason.

Evident in these results, however, no single center of control is clearly or inherently bet-

ter than another but each has its place across a spectrum of diverse problems. Nonetheless,

the variable-centric design used by Apodemus, with its cache-friendly clause representa-

tion and immutable state, enables the highest unit propagation rates on eighty-five percent

of the benchmark files tested. Although this work experimentally tests clause and variable
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locus propagation designs, other centers of control may be identified, at least one of which

will be discussed shortly in Section 6.2.1.
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Future Research

6.1 Watch Dispersion

An important assumption of the immutably-typed variable-locus employed in Apodemus is

that watch references will be moved step-wise inward on the forward and reverse remain-

ders. A consequence of this, clauses prefer initial placement on watch lists in precisely

the order in which these literals appear. A study of watch dispersion patterns in this locus

could distinctively alter the runtime behavior by favoring the front-loading or back-loading

of common literals in this selection procedure. More sophisticated work could evaluate

uniform and non-uniform dispersion to determine whether immutable unit propagation per-

formance is improved in either scenario given current heuristics and search strategies.

6.2 Enclosed Two-Watch Literal Inversion

6.2.1 Inversion

One of the most problematic issues for a monolithic clause-oriented design is that non-

trivial clauses appear simultaneously on two watch lists. This poses a problem for any

operation which may concurrently alter both lists. A desire to avoid blocking data structures
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and this duality of control lead us to try a language-specific solution. In F#, the tuple data-

structure provides an alternative single point-of-control which contains both current watch

literals for a clause, such as (w1,w2). Since the number of literals in most solvers is both

finite and unchanging, the number of watch lists can be approximately squared. The solver

would then use lazy concurrent data structures to generate independent watch lists for each

pairing of literals. As a consequence, all clauses with both active watches on w1 and w2

would appear on the watch list for tuple (w1,w2).

In this model, any given clause is on exactly one watch list at a time. Due to this locus,

the scope of propagation for some literal is the set of all non-empty watch lists in which

that literal appears. By imposing a natural ordering to the tuple and using indexing, we

simplified the process of visiting all watch lists containing a given literal. Despite these

improvements, the sparseness of literal pairs resulted in excessive time spent enumerating

a literal’s watch lists.

6.2.2 Enclosure

If the disadvantages of enumerating sparse watch pairs can be addressed, it would be pos-

sible to develop a literal-free propagation engine built around translation between input

clauses under closure and the procedures which handle watch management. Function com-

position and an immutable model similar to the variable-oriented design presented herein

offer a compelling and natural structure for a functional solver.

The conceptual model is more akin to lambda calculus than contemporary data-oriented

functional languages and would present an interesting theoretical assembly. In particular,

the contents of watch lists would contain lambda functions enclosing the deterministic con-

sequences of invalidating that watched pair. Moreover, if such an assembly could be con-

structed as a translation of the raw DIMACS formatted CNF file, the integer data structures

of today’s solvers could be forgone entirely.
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6.3 Portfolio-Based Heuristic Phasing

A critical impetus to the work on immutability, concurrency and unit propagation for our

research group is our prior experimentation with phased clause exchange. Based on game

theory and international economics, the notion is that competitors in a parallel portfolio

search can exchange clauses the same way nations exchange goods.

Our work in this area focused around biases to the selection heuristics used by CDCL

solvers to make assumptions and to identify highly conflicted space. By developing heuris-

tic biases for the production, exchange and consumption of clauses, a collection of portfolio

competitors could generate synergy through specialization in certain aspects of the prob-

lem. Rather than attempting to assign some value to an arbitrary clause, the clause itself

becomes valuable, in a sense, given the search environment and bias under which it was

created. Clauses which prove useful under exchange, then, can be used as feedback to the

heuristics of both the producer and consumer.

In the same way that two distant countries producing the same goods will be less likely

to engage in trade, the enabled degree of phase between competitors is, in part, a function of

the latency between them. For such a strategy to work, however, two important concurrency

problems have to be solved. First, the frequency between sender and receiver must be

adequately small, so that the receiver will not have had sufficient time to generate the same

clause in spite of its biases. Second, the introspection of solver state, notably its clause

database must not extensively interrupt the competitor from its primary task of searching

for solutions. In our experimentation, increasing the frequency of communication between

sender and receiver crippled the conventional solver’s ability to carry out its primary task.

This deficiency is an important impetus for the research presented herein. With additional

work, this strategy could be retried given the introspection capabilities of immutable data

structures.
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6.4 Application To Competition Solvers

Finally, the long term goal is to improve the state-of-the-art in real-world logic problem

solving software. Whether this entails improving functional language solvers to the point

that overhead penalties of their language and environment are outweighed by the benefits of

executing in that environment, or whether it involves adapting the patterns of this software

to traditional C-type languages remains to be seen. In the near term, adapting a conven-

tional competition solver with design patterns from this work seems a reasonable approach,

but given adequate sophistication, the advantages of a managed functional environment for

competition solving are compelling.



Chapter 7

Summary

Over the course of this thesis, we have introduced the domain of answer set programming

and discussed aspects of its shared ancestry with satisfiability solving. Both implement

derivatives of the Davis-Putnam-Logemann-Loveland procedure to power their search.

DPLL offers unit propagation as a technique to derive the consequences of an assignment

according to the structure of an underlying problem. The modern two-literal watch scheme

is then introduced in order to present a more efficient method for detecting these units.

Next, the structure of CNF satisfiability problems is defined, along with some key benefits

to early recursive implementations. Conflict-driven, clause-learning techniques developed

within the last decade, which are shared between the two logic programming paradigms,

are then presented. These advances, including heuristic search and conflict clause gen-

eration using UIP, empower solvers to bypass areas of search that DPLL would otherwise

explore. Instead, search is focused on highly conflicted areas of the problem space. Finally,

popular parallel coordination strategies, such as guiding path and portfolio search, enable

solvers to operate in today’s high performance computing environments.

In light of emergent languages and multi-core hardware, however, the motivating im-

petus for this research is presented. Systems architecture and, in particular, memory con-

tention combine with a desire to enable more advanced runtime capabilities. Together, they

raise interest in alternative languages and patterns, such as concurrent F# and immutable
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types. In order to explore these opportunities, the most costly aspect of modern solvers is

selected as a focus of research: the unit propagation engine.

After studying the propagation engines of modern solvers such as MiniSAT, it became

apparent that implementing concurrent capabilities within these engines was problematic

for a myriad of reasons. Careful analysis of the underlying procedure and its component

parts identified at least two strategies for implementing parallelism. As a consequence,

two polar techniques are proposed within this work. The first focuses on a natural exten-

sion of the existing mutable algorithms, treating clauses that require watch maintenance as

independent tasks. In contrast, the second revisits conventional algorithms to enable im-

mutability within an alternative center of control. In this case, all operations on variables of

the problem are treated as separate tasks encompassing the clause remainders they control.

To test these models, three solvers are developed for the Microsoft Windows platform.

The first, Mus Musculus, is a CDCL solver written in C# to provide a sanity check for

subsequent work in F#. It establishes an important baseline with which subsequent work

can be compared, given the shared architecture of the .NET Framework’s virtual machine

and libraries.

The second solver, Murinae, implements the clause locus for concurrent propagation

and further enables certain aspects of the F# runtime to be studied in order to narrow the

focus of subsequent work. It also demonstrates the limitations of the mutable unit propaga-

tion procedure as it applies to immutable data types. Moreover, it establishes the preferred

implementation of threading behavior within F# as it pertains to management of the clause

database. As a unique addition, Murinae introduces a parallel DIMACS processor to re-

duce input times. Due to its effectiveness, this feature is then reused in the third solver.

This processor saw meaningful reductions in critical-path time for large problems with no

measurable penalty on trivial benchmarks.

Finally, the Apodemus solver is an implementation of the variable locus. It is devel-

oped to gauge the strengths and weaknesses of the proposed design. Due to its extensive

use of immutable types, it enables parallel portfolio search with merely four additional
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lines of code. Moreover, its guiding path search branches intermediate state from the

clause database on an ongoing basis with a similarly small overhead to introspection. The

cache behavior exhibited by Apodemus is also compelling, yielding a lower overall rate of

cache faults on real world problems while simultaneously improving concurrent propaga-

tion rates.

Over thirteen thousand benchmark executions, across a series of well-known satisfi-

ability problems, measure various aspects of these solvers. In particular, the unit prop-

agation rates and memory behaviors play an important role in the top performing con-

figurations. Although evaluating the results showed no clear winner, the variable-locus

solver exhibits compelling performance both in concurrent execution and cache behavior.

The clause-locus design found itself constrained to very specific configurations and out-

performed Apodemus on only fifteen percent of the selected problems. In contrast, the

variable-locus proved itself to be more versatile, measuring top propagation rates across a

full range of scenarios.

Several ideas for future work are then suggested that raise important implications of

this research, including watch dispersion, two-watch literal inversion, and portfolio-based

heuristic phasing. The benefits of an immutable, concurrent design enable new areas for

research that were previously unreachable. With the hope of delivering positive results

to the logic programming community, future work may apply aspects of this research to

enable high-performance competition solvers to carry out advanced introspection of their

state without impeding ongoing search.
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Profile of Initial Benchmark Problems
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Figure A.1: Variable-Clause Distribution
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Variables Clauses

Clause Length Clauses / Literal

Benchmark µ  max µ  max

 8080  96704  5.58  1.51  8  34.20  30.65  92aes_128_10_keyfind_1.cnf

 286  1742  2.13  1.09  11  1.53  0.53  3aloul-chnl11-13.cnf

 4264  14751  2.71  0.45  3  5.26  0.97  8am_7_7.shuffled-as.sat03-363.cnf

 7807  24351  2.40  0.78  18  4.25  5.84  118cmu-bmc-longmult15.cnf

 8750  25865  2.33  0.47  3  3.91  0.82  8countbitsarray04_32.cnf

 4736  30465  3.38  1.15  16  12.09  37.96  1624goldb-heqc-alu4mul.cnf

 9426  59991  3.38  1.15  32  12.47  46.00  1921goldb-heqc-dalumul.cnf

 3230  20575  3.38  1.15  6  12.53  34.71  913goldb-heqc-frg1mul.cnf

 8760  55571  3.38  1.18  70  12.13  44.25  896goldb-heqc-x1mul.cnf

 8503  25116  2.33  0.47  3  3.29  4.39  51hoons-vbmc-lucky7.cnf

 183325  546914  2.33  0.47  3  4.06  7.58  213hwmcc10-timeframe-expansion-k50-p

dtvisns3p00-tseitin.cnf

 165064  686589  2.57  1.31  12  5.85  9.14  163ibm_fv_2004_rule_batch_30_sat_dat.

k80.cnf

 28147  108436  3.44  4.26  166  7.14  3.19  123li-exam-61.shuffled-as.sat03-366.cnf

 36809  142491  3.93  8.05  172  7.99  4.77  55li-test4-100.shuffled-as.sat03-370.cnf

 96089  283993  2.33  0.47  3  4.14  5.99  329manol-pipe-c6bidw_i.cnf

 65604  273522  2.98  0.92  4  6.97  79.70  20370mizh-md5-47-3.cnf

 65604  273506  2.98  0.92  4  6.97  79.64  20356mizh-md5-47-4.cnf

 66892  279256  2.98  0.92  4  6.98  80.35  20736mizh-md5-48-5.cnf

 48689  204067  2.99  0.91  4  7.03  68.45  15064mizh-sha0-35-3.cnf

 50073  210235  2.99  0.91  4  7.04  69.17  15438mizh-sha0-36-3.cnf

 50073  210235  2.99  0.91  4  7.04  69.12  15427mizh-sha0-36-4.cnf

 95456  477186  2.38  4.13  63  5.94  13.30  161openstacks-sequencedstrips-nonadl-no

nnegated-os-sequencedstrips-p30_1.0

25-notknown.cnf

 1430  79453  2.97  0.21  10  52.08  94.68  379rbcl_xits_09_unknown.cnf

 1430  87044  2.97  0.20  10  52.67  96.64  390rpoc_xits_09_unsat.cnf

 360  1530  3.00  0.00  3  6.96  2.45  15satisfiable.cnf

 14809  48483  2.55  1.01  33  4.49  3.74  36schup-l2s-abp4-1-k31.cnf

 132555  469519  2.44  1.21  15  4.90  5.59  128simon-s03-w08-15.cnf

 32733  109177  2.55  3.43  1080  4.64  8.71  95slp-synthesis-aes-bottom17.cnf

 95810  287045  2.33  0.47  3  4.11  1.30  9smtlib-qfbv-aigs-countbits128-tseitin.

cnf

 257030  769313  2.33  0.47  3  4.00  4.79  258smtlib-qfbv-aigs-vs3-benchmark-s2-ts

eitin.cnf

 153284  2473656  2.28  2.97  78  8.48  13.85  108sokoban-sequential-p145-microban-se

quential.070-notknown.cnf

 175084  2826936  2.28  2.97  78  8.53  13.84  108sokoban-sequential-p145-microban-se

quential.080-sat.cnf

 361125  1254773  2.43  1.99  57  4.65  26.37  1944sortnet-8-ipc5-h19-sat.cnf

 7000  67586  2.83  3.15  58  11.42  35.68  728velev-engi-uns-1.0-4nd.cnf

Table A.1: Clause and Literal Distributions
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Cores: 1 2 3 4

Benchmark 6162 3982 3415 3228

aes_128_10_keyfind_1.cnf 2146 2747 1846 1835 1857

aloul-chnl11-13.cnf 78 83 77 76 75

am_7_7.shuffled-as.sat03-363.cnf 228 296 214 189 178

cmu-bmc-longmult15.cnf 320 425 296 258 248

countbitsarray04_32.cnf 331 442 303 269 255

countbitssrl064.cnf 2647 3614 2314 1939 1756

dp02s02.shuffled.cnf 68 69 67 67 67

een-tip-sat-texas-tp-5e.cnf 655 854 588 495 486

goldb-heqc-alu4mul.cnf 474 644 430 373 364

goldb-heqc-dalumul.cnf 890 1219 816 687 675

goldb-heqc-frg1mul.cnf 336 449 305 274 259

goldb-heqc-x1mul.cnf 822 1127 763 638 606

hoons-vbmc-lucky7.cnf 323 434 295 260 248

hwmcc10-timeframe-expansion-k50-pdtvisns3p00-tseitin.cnf 6507 9010 5913 5140 4714

IBM_FV_2004_rule_batch_30_SAT_dat.k80.cnf 8646 12037 7833 6725 6292

li-exam-61.shuffled-as.sat03-366.cnf 1669 2234 1507 1290 1364

li-test4-100.shuffled-as.sat03-370.cnf 2420 3230 2192 1932 1920

manol-pipe-c6bidw_i.cnf 3308 4644 3027 2585 2309

mizh-md5-47-3.cnf 3590 5061 3254 2744 2566

mizh-md5-47-4.cnf 3583 5052 3249 2756 2543

mizh-md5-48-5.cnf 3693 5172 3357 2826 2678

mizh-sha0-35-3.cnf 2662 3785 2387 2032 1883

mizh-sha0-36-3.cnf 2753 3890 2500 2092 1963

mizh-sha0-36-4.cnf 2748 3894 2486 2087 1949

rbcl_xits_09_UNKNOWN.cnf 1040 1439 956 804 763

rpoc_xits_09_UNSAT.cnf 1129 1567 1027 878 826

Satisfiable.cnf 80 87 77 77 77

schup-l2s-abp4-1-k31.cnf 630 851 576 509 473

simon-s03-w08-15.cnf 5747 7971 5236 4529 4141

slp-synthesis-aes-bottom17.cnf 1346 1889 1237 1030 958

smtlib-qfbv-aigs-countbits128-tseitin.cnf 3299 4648 2979 2533 2360

smtlib-qfbv-aigs-VS3-benchmark-S2-tseitin.cnf 9029 12732 8148 6893 6491

sokoban-sequential-p145-microban-sequential.070-NOTKNOWN.cnf 28976 40590 26037 22246 21224

sokoban-sequential-p145-microban-sequential.080-SAT.cnf 33184 46781 29601 25287 24268

sortnet-8-ipc5-h19-sat.cnf 14896 21031 13279 11550 10658

velev-engi-uns-1.0-4nd.cnf 887 1231 814 689 644

Table B.1: Multi-core F# DIMACS Processing (ms)
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Type Cores RatioBenchmarkDesign V C

Hundreds

Initial Size:

immutable 32  12  6.1aloul-chnl11-13.cnfApodemus Portfolio  3  17

immutable 32  7  2.1dp02s02.shuffled.cnfApodemus Guiding Path  3  7

immutable 32  16  4.3satisfiable.cnfApodemus Guiding Path  4  15

immutable 32  7  55.6rbcl_xits_09_unknown.cnfApodemus Portfolio  14  795

immutable 32  10  60.9rpoc_xits_09_unsat.cnfApodemus Guiding Path  14  870

immutable 64  4  3.9cmu-bmc-barrel6.cnfApodemus Portfolio  23  89

immutable 32  4  6.4goldb-heqc-frg1mul.cnfApodemus Portfolio  32  206

immutable 32  4  3.5am_7_7.shuffled-as.sat03-363.cnfApodemus Guiding Path  43  148

immutable 32  4  6.4goldb-heqc-alu4mul.cnfApodemus Portfolio  47  305

immutable 32  2  9.7velev-engi-uns-1.0-4nd.cnfApodemus Guiding Path  70  676

immutable 32  3  3.1cmu-bmc-longmult15.cnfApodemus Portfolio  78  244

immutable 32  2  12.0aes_128_10_keyfind_1.cnfApodemus Portfolio  81  967

immutable 32  3  3.0hoons-vbmc-lucky7.cnfApodemus Portfolio  85  251

immutable 32  3  3.0countbitsarray04_32.cnfApodemus Portfolio  88  259

immutable 32  3  6.3goldb-heqc-x1mul.cnfApodemus Portfolio  88  556

immutable 32  4  6.4goldb-heqc-dalumul.cnfApodemus Portfolio  94  600

immutable 32  3  3.3schup-l2s-abp4-1-k31.cnfApodemus Portfolio  148  485

immutable 64  4  2.9een-tip-sat-texas-tp-5e.cnfApodemus Portfolio  180  521

mutable 64  4  3.9li-exam-61.shuffled-as.sat03-366.cnfMurinae  281  1084

immutable 32  12  3.3slp-synthesis-aes-bottom17.cnfApodemus Portfolio  327  1092

mutable 64  4  3.9li-test4-100.shuffled-as.sat03-370.cnfMurinae  368  1425

immutable 32  4  4.2mizh-sha0-35-3.cnfApodemus Portfolio  487  2041

immutable 32  4  4.2mizh-sha0-36-3.cnfApodemus Portfolio  501  2102

immutable 32  5  4.2mizh-sha0-36-4.cnfApodemus Portfolio  501  2102

immutable 64  16  4.2mizh-md5-47-4.cnfApodemus Guiding Path  656  2735

immutable 64  6  4.2mizh-md5-47-3.cnfApodemus Guiding Path  656  2735

immutable 64  5  4.2mizh-md5-48-5.cnfApodemus Guiding Path  669  2793

immutable 64  3  3.0countbitssrl064.cnfApodemus Portfolio  751  2251

mutable 64  4  5.0openstacks-sequencedstrips-nonadl-nonneg

ated-os-sequencedstrips-p30_1.025-notkno

wn.cnf

Murinae  955  4772

immutable 64  3  3.0smtlib-qfbv-aigs-countbits128-tseitin.cnfApodemus Guiding Path  958  2870

mutable 64  4  3.0manol-pipe-c6bidw_i.cnfMurinae  961  2840

mutable 64  4  3.5simon-s03-w08-15.cnfMurinae  1326  4695

immutable 64  12  16.1sokoban-sequential-p145-microban-sequen

tial.070-notknown.cnf

Apodemus Portfolio  1533  24737

immutable 64  3  4.5partial-5-11-u.cnfApodemus Portfolio  1642  7307

immutable 64  1  4.2ibm_fv_2004_rule_batch_30_sat_dat.k80.c

nf

Apodemus Unified  1651  6866

immutable 64  1  5.0openstacks-sequencedstrips-nonadl-nonneg

ated-os-sequencedstrips-p30_1.045-notkno

wn.cnf

Apodemus Unified  1717  8588

immutable 64  7  16.1sokoban-sequential-p145-microban-sequen

tial.080-sat.cnf

Apodemus Portfolio  1751  28269

immutable 64  1  3.0hwmcc10-timeframe-expansion-k50-pdtvis

ns3p00-tseitin.cnf

Apodemus Unified  1833  5469

immutable 64  3  3.0smtlib-qfbv-aigs-vs3-benchmark-s2-tseitin.

cnf

Apodemus Portfolio  2570  7693

mutable 64  4  3.5sortnet-8-ipc5-h19-sat.cnfMurinae  3593  12548

Table B.2: Best Solver - For Each Benchmark



Appendix C

Object-Oriented UML Diagrams

Figure C.1: C# Mus Musculus - Structures (1 of 2)
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Figure C.2: C# Mus Musculus - Structures (2 of 2)
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Figure C.3: C# Mus Musculus - CDCL Solver
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