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ABSTRACT 

 

This thesis was undertaken to examine the physiological mechanisms that interact to 

govern the adjustment of O2 uptake (VO2) during the on-transient of moderate-intensity 

exercise as well as during incremental exercise, using non-invasive measures. Particular 

emphasis was placed on the information provided by pairing breath-by-breath pulmonary 

VO2 measures with near-infrared spectroscopy (NIRS)-derived measures to investigate 

the role of local muscle O2 delivery in the determination of VO2 during various exercise 

challenges. 

The main findings were that: 1) local muscle O2 delivery likely plays a rate-

limiting role in the determination of τVO2p (at least when τVO2p is greater than ~20 s), 

even in young, healthy adults; 2) τVO2p can be reduced by augmenting local muscle O2 

delivery (with heavy-intensity ‘priming’ exercise) and increased by impairing local 

muscle O2 delivery (with acute, mild hypoxia); 3) the relative slowing of the VO2 on-

kinetics response when moderate-intensity exercise is initiated from an elevated baseline 

WR does not appear to be the result of reduced local muscle O2 delivery in older adults; 

4) whereas the effects of moderate-intensity work rate (WR) increment were 

heterogeneous with respect to τVO2p in those with fast versus slow VO2 kinetics, 

increasing WR increments were associated with increasing O2 costs (i.e., functional gain; 

G = ∆VO2/∆WR) regardless of the rate of adjustment; this suggests that τVO2p and 

functional G may be dissociated; and 5) the appropriateness of a sigmoid regression to 

characterize the overall ∆[HHb] response to incremental exercise (at least for comparative 

purposes) was challenged, and a ‘double-linear’ model was proposed as an alternative.  

Keywords: near-infrared spectroscopy, muscle O2 distribution, sigmoid.  
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CHAPTER I: Introduction 

 

Except during periods of quiet rest, the activities of daily living involve voluntary skeletal 

muscle contractions (i.e., muscular exercise); these contractions are supported by the 

breakdown of the high-energy compound, adenosine triphosphate (ATP). Regardless of 

the specific nature of this exercise – be it a constant load or incrementally more intense 

with increasing duration – in order for exercise to continue, this ATP must be re-

synthesized by the body’s energy systems. Whereas the non-aerobic energy systems (i.e., 

ATP-PCr and anaerobic glycolysis) are both capacity-limited, the aerobic energy system 

(i.e., that relying on the consumption of O2; VO2) is rate-limited. Of particular interest, 

therefore, are the factors that limit the adjustment of VO2 at exercise onset and the factors 

that govern the maximum rate at which O2 can be consumed in the mitochondria of the 

exercising muscle.  

 

VO2 KINETICS 

Upon a “step” increase in work rate (WR), there is an instantaneous increase in ATP 

demand. Yet, the adjustment of oxidative phosphorylation (i.e., VO2 kinetics) towards the 

new steady-state requirement is exponential, rather than immediate (Linnarsson 1974; 

Whipp and Wasserman 1972). Whether the rate of this adjustment is limited by factors 

related to insufficient O2 delivery to the active muscle fibers during the exercise on-

transient (Hughson et al. 2001; Murias et al. 2011b), or factors related to insufficient 

provision of metabolic substrates other than O2 (Grassi 2001; Poole et al. 2008) resulting 

from a ‘sluggish’ activation of the intracellular “metabolic machinery” (termed 

“metabolic inertia”) is controversial and remains somewhat unclear. Recently it has been 
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proposed that, even within an individual, both an O2 delivery limitation and a metabolic 

substrate provision limitation are possible (Poole and Musch 2010); however, this 

hypothesis supposes that, for a given exercise intensity transition, only one of these 

factors can impose a rate-limiting effect. 

Different methodological approaches have been used to measure VO2 kinetics in 

humans. Grassi et al. (1996) used the thermodilution technique to measure muscle limb 

blood flow directly and arterial and venous sampling for a-vO2diff in order to derive 

muscle VO2 in the exercising limb. This technique is invasive in nature and yet the 

venous O2 content readings only provide an estimate of active muscle O2 extraction in 

that the measurement includes blood returning to the venous circulation from both active 

and inactive fibers. Another technique used commonly to infer the rate of adjustment for 

muscle VO2 requires measurements of [PCr] breakdown by 31-phosphorous magnetic 

resonance spectroscopy (31P-MRS) (McCreary et al. 1996; Rossiter et al. 1999). 

However, limitations in terms of equipment requirements and exercise modalities during 

testing are evident.  

 

NON-INVASIVE EXPERIMENTAL TECHNIQUES IN VO2 KINETCIS 

RESEARCH 

Breath-by-breath gas exchange 

A viable alternative to these costly and/or invasive techniques is to monitor changes in 

VO2 (i.e., VO2 kinetics) using breath-by-breath gas exchange measurements. In this 

sense, the adjustment of pulmonary VO2 (VO2p) can provide non-invasive insights into 

changes in VO2 within the exercising muscle (Rossiter et al. 1999). Indeed, the 

assessment of changes in VO2p is the most commonly used technique for measurement of 
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VO2 kinetics because it is non-invasive, relatively accessible for most exercise physiology 

laboratories, and permits measurement of VO2 while performing different exercise 

modalities. 

The on-transient VO2p signal consists of three distinct phases (Whipp et al. 1982): 

phase I (i.e., “cardiodynamic phase”) is characterized by a rapid increase in VO2p 

resulting from an increase in pulmonary circulation (secondary to an increased cardiac 

output (Q) and venous return). However, this increase in VO2p does not reflect changes in 

muscle VO2 (which are reflected by an increase in O2 extraction (i.e., greater 

deoxygenation) in the exercising muscles), but rather, the circulatory time delay between 

exercise-induced muscle deoxygenation and its reflection in the pulmonary circulation. 

Phase II (or the “fundamental phase”) of VO2p is characterized by a mono-exponential 

increase in VO2p that closely reflects (within 10%) the exponential adjustment of muscle 

VO2 (Grassi et al. 1996; Rossiter et al. 1999). Finally, Phase III represents the attainment 

of a VO2p steady-state during exercise performed in the moderate-intensity domain, and 

reflects the fact that the ATP requirement is being met through oxidative phosphorylation; 

when exercise is performed in the heavy- or very heavy-intensity domain (i.e., above the 

estimated lactate threshold; θL), phase III is characterized by a secondary rise in VO2p 

(i.e., “VO2 slow component”) such that VO2p exceeds that predicted by the VO2-to-WR 

relationship in moderate-intensity exercise. 

The rate of adjustment of VO2p is described quantitatively by the phase II VO2p 

time constant (τVO2p); this value, which is derived from the exponential regression model 

used to describe the response profile, represents the time required for VO2p to attain 63% 

of the increase in its amplitude towards its new steady-state (at least during exercise 

performed in the moderate-intensity domain). Another feature commonly used to describe 
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the VO2 on-kinetics response is the VO2 functional gain (G; ∆VO2/∆WR), which 

essentially describes the efficiency (or its inverse) of a given exercise intensity transition. 

A number of variables that potentially alter either the τVO2p or functional G 

responses (or both) have been investigated in order that a better understanding of the 

factors that govern these responses under “control” conditions might be achieved. These 

include (but are not limited to) i) aging; ii) pre-transition WR (and metabolic rate) and 

transition magnitude; iii) heavy-intensity ‘priming’ exercise; and iv) acute hypoxia; these 

factors are discussed below. 

Near-infrared spectroscopy 

Near-infrared spectroscopy (NIRS) is a non-invasive optical method used for measuring 

tissue oxygenation. Measurements are based primarily on the absorption of light at 

wavelengths in the NIR range (700-900 nm), because oxygenated hemoglobin (HbO2) 

and deoxygenated haemoglobin (HHb) display different light absorption characteristics. 

Specifically, NIR light is transmitted from an emitting diode to a light-detecting optode 

after passage through tissue, where the penetration depth is approximately half the 

distance of the inter-optode spacing (Kalliokoski et al. 2006). Because HbO2 and HHb 

display these different light absorption characteristics, by emitting light at several specific 

wavelengths in the NIR range of the spectrum and detecting changes in these received 

signal (i.e., after passing through tissue), precise separation and quantification of changes 

in these compounds is made possible.  

The microcirculation can be isolated because the light emitted into the larger 

vessels (arteries and veins) is almost completely absorbed by the larger relative molar 

concentration of haemoglobin (Hb), and thus any detectable changes in absorption can be 

attributed to the microcirculation. One limitation of the NIRS technique is the 
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overlapping absorption spectra of muscle myoglobin (Mb) and Hb; this makes separation 

of these absorbers difficult. However, the contribution of Mb to light absorption changes 

is estimated to be ~10%, which lends to the interpretation that light absorption changes 

with NIRS are attributable mainly to the oxygenation status of Hb (Kalliokoski et al. 

2006).  

By precisely separating and quantifying changes in [HbO2] and [HHb] (i.e., 

∆[HbO2] and ∆[HHb] from an arbitrary baseline), NIRS has been used to provide an 

index of O2 extraction during exercise in humans. Importantly, Grassi et al. (2003) 

pointed out the “striking similarities” between increases in [HHb] and decreases in the 

microvascular partial pressure of O2 (PO2mv) during the exercise on-transient. 

Nevertheless, because the precise contributions of arterial and venous circulations within 

the microvasculature cannot be known, NIRS does not provide a quantitative estimate of 

arterio-venous O2 content difference (a-vO2diff). When paired with measures of O2 

utilization (i.e., VO2), NIRS provides insights into the balance between local muscle O2 

delivery to O2 utilization; specific studies in which NIRS was used in this way are 

discussed below. 

 

EFFECTS OF AGING ON VO2 KINETICS 

Advanced age has been linked to a slowed VO2p response at moderate-intensity exercise 

onset (Babcock et al. 1994; Bell et al. 1999; DeLorey et al. 2004a; Murias et al. 2010a, b; 

Scheuermann et al. 2002). Whereas τVO2p values of ~20-30 s are commonly observed in 

young adults, typically older adults have presented with τVO2p values of ~40 s or greater. 

It is important to note that, while older adults tend to have slower VO2 kinetics, there are 

some healthy, young adults with similarly slow VO2 kinetics responses (i.e., τVO2p values 
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upwards of 70 s), and, likewise, some older adults who have very fast VO2 kinetics 

responses (i.e., τVO2p values of ~20 s). Thus, while aging clearly plays a contributory role 

in the determination of τVO2p, aging per se, does not determine an individual’s VO2 

kinetics response. Nevertheless, when viewed in the context of slower VO2p kinetics 

being associated with greater reliance on substrate-level phosphorylation, this implies that 

the elderly may be susceptible to earlier fatigue and reduced exercise tolerance in 

comparison to younger individuals. 

 That older adults tend to present with slower VO2p kinetics has offered researchers 

an avenue to explore the physiological mechanisms that determine τVO2p; that is, 

identifying the root of this age-related slowing might provide important clues as to the 

locus of metabolic control at exercise onset. DeLorey et al. (2007) provided a complete 

review of how aging might affect VO2 kinetics, and in particular τVO2p. There has been 

some suggestion that muscle oxidative capacity declines with advancing age (Conley et 

al. 2000); yet, evidence of a link between (possible) declines in muscle oxidative capacity 

and an overall slowing of the VO2 kinetics response with aging is scant. Thus, much of 

the DeLorey et al. (2007) review focused on the matching of O2 delivery to O2 utilization 

during the exercise on-transient. Age-related adaptations affecting both central and 

peripheral (“bulk”) O2 delivery include reductions in maximal heart rate (HR) (Paterson 

and Cunningham 1999; Stathokostas et al. 2004), reduced left ventricular function 

(Lakatta and Levy 2003a; Thomas et al. 1993), and increased total peripheral resistance 

(Lakatta and Levy 2003b); furthermore, a reduced capillary density (Coggan et al. 1992), 

altered capillary hemodynamics (Russell et al. 2003) and diminishing endothelial function 

(Muller-Delp 2006) might contribute to age-related declines in O2 delivery during the 

exercise on-transient.  



7 

 

Most recently, Murias et al. (2010b) used a combination of NIRS-derived muscle 

deoxygenation (∆[HHb]) and VO2p to investigate the chief determinant of τVO2p in a 

group of young and older men and women who underwent 12 weeks of endurance 

training. Briefly, the ∆[HHb] signal is believed to provide a temporally accurate 

indication of changes in tissue O2 extraction throughout the exercise on-transient. Thus, 

by normalizing both the ∆[HHb] and VO2p signals (in order to remove any confounding 

effect of the responses’ amplitudes), the time course of adjustment for both O2 utilization 

and O2 extraction can be directly compared. Any period during the on-transient during 

which the normalized ∆[HHb] signal is in excess of (i.e., and therefore dissociated from) 

the normalized VO2 signal suggests a period of increased reliance on (i.e., an 

“overshoot”) O2 extraction to support a given VO2, and therefore implies a transiently 

insufficient local muscle O2 delivery. Such a mismatch in local muscle O2 delivery to O2 

utilization (as indicated by the transiently increased reliance on O2 extraction) implies that 

the O2 “driving pressure” (i.e., diffusion gradient) into these active muscle fibers would 

be reduced. That such an “overshoot” was observed in both young and older men pre-

training, but that it was abolished in young and attenuated in older adults with as little as 

3 weeks of training suggests that: i) the age-related slowing of VO2 kinetics is related to 

an exaggerated on-transient local muscle O2 delivery limitation and ii) endurance training 

promotes an improved matching of local muscle O2 delivery to O2 utilization in both 

young and older adults. 
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EFFECTS OF PRE-TRANSITION WR AND TRANSITION WR MAGNITUDE 

ON VO2 KINETICS 

A general, overall slowing of the VO2 kinetics response when moderate-intensity exercise 

was initiated from an elevated pre-transition WR has been reported in young adults 

(Bowen et al. 2011; Brittain et al. 2001; Hughson and Morrissey 1982; MacPhee et al. 

2005); in general, this increase in τVO2p has been associated with a concomitant increase 

in functional G. The origin of this slowing (and increase O2 cost) has been the focus of 

these studies; as a result, three potential explanations have emerged. Hughson and 

Morrissey (1983) proposed that the slowing was related to an insufficient O2 delivery, 

secondary to a greater contribution of sympathetic activation (which is slower than 

parasympathetic withdrawal, which would be expected at lower pre-transition WRs). This 

hypothesis was later supported by MacPhee et al. (2005), based upon findings of a slowed 

adjustment of leg blood flow (i.e., at the femoral (conduit) artery). A hierarchical 

recruitment pattern favouring recruitment of the fastest kinetic, most efficient fibers to 

perform small WR transitions, leaving only those inherently slower kinetic, less efficient 

fibers to address the demands of a subsequent increase in WR was proposed by Brittain et 

al. (2001); such a system would allow for an ‘intermediate’ rate of adjustment of VO2 and 

O2 cost (per unit increase in WR) during larger WR transitions. Finally, the influence of a 

potentially less favourable energetic status (i.e., less negative changes in Gibb’s free 

energy; ∆GATP) resulting from either an elevated metabolic rate per se (i.e., irrespective of 

initial WR) (Glancy et al. 2008; Kemp 2008) or the fact that ∆GATP becomes 

progressively less negative throughout the transient (as [ADP] and [Pi] rise and [PCr] fall 



9 

 

dynamically) and therefore demands an ATP turnover that continues to rise until the 

steady state is reached was favoured by Bowen et al. (2011).  

 The effects of initiating moderate-intensity exercise from an elevated pre-

transition WR have not previously been examined in older individuals. Consideration of 

this exercise challenge in older adults is relevant because this population tends to have 

slower VO2 kinetics, and thus, may not be as susceptible to further slowing. Supposing 

that the trend identified in younger adults persists in older adults, important insights into 

the origin of such a slowing might be gleaned by considering both the VO2p and ∆[HHb] 

responses. 

 In addition to the effects of pre-transition WR, there has been some suggestion 

that transition WR magnitude per se may affect both τVO2p and the functional G. Indeed, 

the WR independence of the VO2p kinetics parameters has been challenged by the 

findings of several studies that have used a “double step” protocol (Brittain et al. 2001; 

Hughson and Morrissey 1982; MacPhee et al. 2005). As noted above, a feature shared 

amongst these studies is the observation of a greater τVO2p values (i.e., slower 

adjustments) and greater functional G when exercise is initiated from an elevated WR, 

even within the moderate-intensity domain. Importantly, however, a consistent finding 

that has received somewhat less attention in the aforementioned studies was the principal 

cause of the trend (though not always significant) for smaller τVO2p values (i.e., faster 

adjustments) and smaller functional G when the WR increment is smaller (where the pre-

transition WR was constant and relatively low (i.e., rest or 20 W)); that is, in each of 

these studies, a “lower step” (i.e., generally to a WR corresponding to ~45% of θL) was 

compared to a “full step” (i.e., generally to a WR corresponding to ~90% of θL) where 

transitions were initiated from identical (low) baseline WRs. Whereas Wilkerson et al. 
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(2004) have described the effects of transition WR magnitude on phase II τVO2p and 

functional G across a broad range of exercise intensity domains (i.e., from 60%θL to 

120% of peak VO2), the effects of WR on VO2 kinetic parameters within the moderate-

intensity domain have not yet been thoroughly described. 

 

EFFECTS OF HEAVY-INTENSITY ‘PRIMING’ EXERCISE ON VO2 KINETICS 

Heavy-intensity ‘priming’ exercise (HVY) is an exercise intervention noted for speeding 

the VO2 on-kinetics response to moderate-intensity exercise; its usefulness in this manner 

was first noted in older (DeLorey et al. 2004b; Scheuermann et al. 2002), but not young 

adults (Burnley et al. 2000; DeLorey et al. 2004b; Gerbino et al. 1996). More recently, 

studies from our laboratory have identified a reduction in τVO2p following HVY in young 

adults as well (Gurd et al. 2006; Gurd et al. 2005; Murias et al. 2011a). 

 Whereas the HVY intervention clearly affects the τVO2p response, the 

physiological mechanisms that underlie the altered response remain somewhat unclear. 

Gurd et al. (2005) reported a reduced τVO2p in association with improved local muscle 

oxygenation (derived from NIRS) following HVY. This observation was supported by 

Murias et al. (2011a) who reported that the rate of NIRS-derived muscle deoxygenation 

(∆[HHb] or [HHb] depending upon the NIRS system used; a proxy for tissue O2 

extraction) was faster than that of VO2 without HVY, causing a period of greater reliance 

on O2 extraction for a given VO2, and thus a transient mismatch in local muscle O2 

delivery to O2 utilization (represented as a transient “overshoot” in the normalized 

∆[HHb]-to-VO2 ratio); τVO2p was significantly reduced and this transient ∆[HHb]/VO2 

overshoot was abolished with HVY. However, Gurd et al. (2006) reported that the HVY 

intervention was also associated with elevated activity of the mitochondrial pyruvate 
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dehydrogenase complex (PDH). Whereas both elevated bulk (i.e., increased heart rate 

(HR) following HVY and throughout subsequent MOD) and local muscle O2 delivery and 

mitochondrial PDH activity have been implicated following HVY, isolating the precise 

mechanism(s) responsible for the reduced τVO2p has proven difficult. 

 

EFFECTS OF ACUTE HYPOXIA ON VO2 KINETICS 

Several studies have attempted to determine the effects of impairing O2 delivery on the 

VO2p kinetics response to moderate-intensity exercise. Indeed, performing exercise in the 

supine position (MacDonald et al. 1998) and under acute β-adrenergic blockade (Hughson 

1984; Hughson and Kowalchuk 1991) results in a reduced O2 delivery and a slowing of 

the VO2p on-kinetics response. Similarly, impairing O2 delivery by acute hypoxia 

(HYPO), which reduces the arterial partial pressure of O2 (PaO2), has been employed to 

slow τVO2p during transitions within the moderate-intensity domain (Engelen et al. 1996; 

Hughson and Kowalchuk 1995; Murphy et al. 1989; Perrey et al. 2005; Xing et al. 1991). 

In addition to the reduced PaO2, however, it seems as though acute hypoxic (FiO2 = 12%) 

exposure may also induce a compensatory increase in resting (but not steady-state 

exercise) HR and leg (i.e., “bulk” femoral conduit artery) blood flow (DeLorey et al. 

2004c). Further, exposure to acute hypoxia during the exercise on-transient has been 

associated with a slowed activation of PDH, which some suggest may play a rate-limiting 

role in the determination of τVO2p. While many studies have shown a slowing of τVO2p 

with acute hypoxia, the precise mechanism responsible for this slowing remains to be 

elucidated. 
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INCREMENTAL EXERCISE TESTING 

Since A.V. Hill’s famous observation of a ‘plateau’ in the VO2 response to exercise, 

despite progressive increases in WR (i.e., the notion of a “maximal O2 uptake rate”; 

VO2max), incremental exercise tests have been a common feature in exercise physiology 

laboratories the world over. Considering that as WR progressively increases, so too does 

the need for ATP re-synthesis within the exercising muscle, but that there seems to be a 

maximum rate at which this ATP can be supplied aerobically, a basic question that has 

arisen is centred on the chief limitation of VO2max. In light of the fact that both convective 

and diffusive O2 transport have been implicated as possible limitations to VO2max, the 

pairing of VO2p and ∆[HHb] measures offers the potential for important insights into the 

role of O2 delivery as a limitation to VO2max. 

Several recent studies have attempted to describe the overall ∆[HHb] response to 

incremental exercise using various regression models. Based upon comparisons to a 

hyperbolic model (which has a theoretical basis in physiology), Ferreira et al. (2007b) 

concluded that the overall ∆[HHb] response to ramp incremental exercise was best 

described using a sigmoid regression model (based upon laboratory observations). Using 

similar comparisons between hyperbolic and sigmoid models, this conclusion has been 

supported in trained individuals (Boone et al. 2009), adolescents (McNarry et al. 2011), 

various body positions (DiMenna et al. 2010), at different measurement sites within the 

quadriceps muscle group (Chin et al. In Press) and in response to incremental step 

exercise (Boone et al. 2010). To date, all attempts to describe the ∆[HHb] response to 

incremental exercise have used functions which characterize the overall response (i.e., 

either the hyperbolic or sigmoid functions); an inherent limitation of this approach is that 

accurate characterization of one portion of the response may jeopardize the ability to 
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accurately characterize other portions. Indeed, whereas the sigmoid model used in 

previous studies presumes (or implies) that the lower and upper curvatures are 

“symmetrical,” DiMenna et al. (2010) illustrated that this was not the case in their data; 

further, they acknowledged that there is no physiological basis for such a notion and that 

this particular sigmoid function likely represents a “fit of convenience.”  

Given the potential uncertainty about whether the ∆[HHb] response to incremental 

exercise is being appropriately characterized, at least for comparative purposes, and the 

physiological implications of inappropriate characterization, it seems that further study on 

this topic is warranted. 

 

OVERVIEW OF STUDIES 

Although several studies have been conducted in an attempt to determine the mechanisms 

responsible for limiting the rate of adjustment of VO2 during the transition to moderate-

intensity exercise, as well as the mechanisms responsible for determining the maximum 

rate at which O2 can be utilized, controversy persists regarding these fundamental issues 

of exercise physiology. Furthermore, many of these previous studies have failed to take 

full advantage of NIRS technology so that physiological inferences about O2 delivery 

could be gleaned from within the exercising muscle. Thus, the present thesis was 

undertaken to examine the mechanisms explaining the adjustment of VO2 during the on-

transient of moderate-intensity exercise as well as incremental exercise, with particular 

emphasis on the information provided by NIRS technology regarding local muscle O2 

delivery. 

Chapter II considers the effect of pre-transition WR on the VO2 and ∆[HHb] 

kinetics responses in older adults performing moderate-intensity exercise. It was 
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hypothesized that: 1) the adjustment of VO2p following a small increase in WR within the 

moderate-intensity domain from an elevated baseline WR would be slower and have a 

larger VO2 functional G than either large or small magnitude changes in WR performed 

from a low baseline WR; 2) small WR transitions performed from a low baseline WR 

would result in faster VO2p kinetics and a smaller VO2 functional G than large WR 

transitions performed from an identical low baseline WR; 3) the adjustment of ∆[HHb] 

would be slower in response to transitions performed from an elevated baseline compared 

to a lower baseline metabolic and work rate. 

 Chapter III examines the independent and combined effects of HVY and HYPO 

on the VO2 and ∆[HHb] kinetics responses to moderate-intensity exercise. Based on 

previous results from studies using these interventions, we tested the hypothesis that 

resolution of potential intracellular metabolic substrate provision or enzyme activation 

limitations alone would not speed τVO2p. 

 In chapter IV the focus was to systematically examine the role of WR increment 

(when initiated from a constant low WR of 20 W to five different moderate-intensity 

WRs between 50 and 130 W) on both τVO2p and functional G in a group of healthy, 

young adults. Further, with the hypothesis of both smaller τVO2p and functional G during 

transitions to lower WRs, we sought to investigate the potential mechanism(s) using 

measures of local muscle deoxygenation (to assess the balance between O2 delivery and 

O2 utilization), and to determine whether this mechanism differed between those 

individuals who presented with fast compared to slow VO2p kinetics. 

 Finally, chapter V sought to re-examine the profile of muscle deoxygenation 

during ramp incremental cycling exercise in a group of young men and to assess the 

physiological implications of the various models and parameter estimates. Specifically, 
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we examined whether the profile of the ∆[HHb] response as a function of either WR or 

VO2 should be characterized as i) a sigmoid which considers the entire response or ii) 

three distinct ‘phases’ in which the predominant rise in ∆[HHb] is approximately linear, 

as is the ‘plateau’ which follows.  

 The overall goal of this thesis was to use non-invasive methodologies to examine 

the role of local muscle O2 delivery as a possible limitation to the adjustment of VO2p at 

moderate-intensity exercise onset as well as its role as a possible limitation to VO2max.  
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CHAPTER II: Pulmonary O2 uptake and muscle deoxygenation kinetics are slowed 

in the upper compared with lower region of the moderate-intensity exercise domain 

in older men 

 

INTRODUCTION 

An approximately linear relationship exists between work rate (WR) and oxygen 

consumption during steady state, constant load exercise performed within the moderate-

intensity domain; yet it is during non-steady state transitions between WRs, when this 

linear relationship is temporarily challenged (Hughson et al. 2001; Poole et al. 2007; 

Whipp and Wasserman 1972), where insights can be gained into the control mechanisms 

governing the delivery and consumption of oxygen (VO2). Thus, the study of pulmonary 

VO2 (VO2p) kinetics has become an area of interest for exercise physiologists. Following 

an abrupt increase in WR within the moderate-intensity domain (i.e., below the lactate 

threshold), VO2p exhibits an exponential increase, after a brief period (i.e., the 

“cardiodynamic” phase), eventually resulting in the attainment and maintenance of a 

steady-state VO2p (Whipp and Ward 1990; Whipp and Wasserman 1972). Outside of 

these tightly controlled laboratory situations however, humans rarely perform prolonged 

bouts of constant WR exercise, but instead experience frequent fluctuations in exercise 

intensity and metabolic rate even during activities of daily living. As such, both the WR 

prior to a transition and the magnitude of the change in WR are practical concerns that 

have been considered within the literature. Several studies (Brittain et al. 2001; Hughson 

and Morrissey 1982; MacPhee et al. 2005) have demonstrated a slowed VO2p adjustment 

and increased O2 cost per unit increase in WR (VO2 gain; ∆VO2p/∆WR) in young adults 

when transitions were performed in the upper (i.e., from an elevated initial WR and 
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metabolic rate) compared with the lower region of the moderate-intensity exercise 

domain. 

Hughson and Morrissey (1982) proposed a model whereby the slowed VO2p 

adjustment observed in transitions performed from a higher initial WR was limited by 

bulk O2 delivery. Specifically, a rapid withdrawal of parasympathetic neural activity 

would explain similarly rapid adjustments in the heart rate (HR) response during rest-to-

work transitions, whereas the relatively slower sympathetic activation during work-to-

work transitions may underlie the observation of slower HR adjustments. A role for O2 

transport in limiting the adjustment of muscle O2 utilization in the upper region of the 

moderate-intensity domain was further supported by the findings of MacPhee et al. 

(2005), who reported slowed femoral (conduit) artery blood flow and slowed HR kinetics 

in transitions performed from an elevated compared to a lower baseline metabolic and 

work rate. Whether this suggested relationship between slowed bulk delivery of O2 and 

slowed adjustment of VO2p has implications for the matching of O2 distribution within the 

microvasculature, however, remains unclear. In addition to slowed VO2p kinetics in the 

upper region of the moderate-intensity domain, MacPhee et al. also observed a greater 

mean response time for near-infrared spectroscopy (NIRS) derived muscle deoxygenation 

(∆[HHb]), reflecting the balance between O2 delivery and O2 utilization within the 

microvasculature, possibly suggesting that local muscle O2 delivery was improved 

relative to metabolic demand and that a greater reliance on O2 extraction was not required 

to meet the O2 requirements of the muscle. This latter observation of  a slowed ∆[HHb] 

adjustment from an elevated baseline may, in fact, support the proposal of Brittain et al. 

(2001), that a hierarchical recruitment pattern exists which favours recruitment of the 

most efficient (i.e., lowest VO2 gain) fibers with inherently fast kinetics during transitions 
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from low pre-transition WRs, and therefore only less efficient, slower adjusting fibers are 

available to address the added demands of a subsequent transition to a higher WR within 

the moderate-intensity domain. It is conceivable that the faster and slower VO2p profiles 

observed in the lower and upper regions of the moderate-intensity domain respectively 

are governed by independent physiological mechanisms. 

Advanced age has been linked to a slowed VO2p response during moderate-

intensity exercise transitions (Babcock et al. 1994; Bell et al. 1999; DeLorey et al. 2004; 

Murias et al. 2010; Scheuermann et al. 2002).  At present it is unknown whether the 

already slowed VO2p kinetics in older adults are further slowed when transitions are 

performed from an elevated initial WR as is the case in younger adults. Such a response 

could potentially result in a greater accumulated O2 deficit and disruption to cellular 

metabolic stability (Zoladz et al. 2006), which may compromise exercise tolerance. From 

a practical perspective in older adults, it may be that transitioning from near rest, to a 

lower moderate-intensity (functionally serving as a low-intensity “warm-up”) and then to 

a higher moderate-intensity of exercise may not be beneficial, particularly if the work in 

the higher ranges of the moderate-intensity domain is performed by fibers that had not 

previously been recruited; on the other hand, it may also be that this type of incremental 

“warm-up” exercise may favour improved local muscle blood flow and O2 delivery. 

Therefore, the purpose of the present study was to investigate the effect of the pre-

transition WR and metabolic rate (which were not dissociated from one another in the 

present study), and WR transition magnitude (i.e., a “full step” to 90% of lactate threshold 

versus two “half steps” to the same end-exercise WR) on the parameters of VO2p and 

∆[HHb] kinetics in older men. It was hypothesized that: 1) the adjustment of VO2p 

following a small increase in WR within the moderate-intensity domain from an elevated 
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baseline WR would be slower and have a larger VO2 gain than either large or small 

magnitude changes in WR performed from a low baseline WR; 2) small WR transitions 

performed from a low baseline WR would result in faster VO2p kinetics and a smaller 

VO2 gain than large WR transitions performed from an identical low baseline WR; 3) the 

adjustment of ∆[HHb] would be slower in response to transitions performed from an 

elevated baseline compared to a lower baseline metabolic and work rate. 

 

METHODS 

Participants: Seven older men (69 ± 5 yr; mean ± SD; Table 2.1) volunteered and gave 

written consent to participate in the study. All procedures were approved by The 

University of Western Ontario Research Ethics Board for Health Sciences Research 

Involving Human Subjects. All participants were recreationally active and non-smokers. 

Additionally, no participants were taking medications that would affect the 

cardiorespiratory or hemodynamic responses to exercise. 

Protocol: On day one, participants reported to the laboratory to perform a ramp 

incremental test (20-25 W/min) to the limit of tolerance on a cycle ergometer (model: H-

300-R Lode; Lode B.V., Groningen, Holland) for determination of peak VO2 (VO2peak) 

and the estimated lactate threshold (θL). θL was determined by visual inspection as the 

VO2 at which CO2 output (VCO2) began to increase out of proportion in relation to VO2 

with a systematic rise in minute ventilation-to-VO2 ratio and end-tidal PO2 whereas 

minute ventilation-to-VCO2 ratio and end-tidal PCO2 were stable (Beaver et al. 1986).  

Subsequent to the incremental test, participants completed four to six square-wave 

transitions within the moderate-intensity domain in each of two upright leg cycling 

exercise protocols (Figure 2.1). One of these protocols required participants to perform 
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transitions consisting of 6 min of baseline cycling at 20 W, followed by 2 equal 6 min 

step-transitions (lower step, LS; upper step, US) to a final WR corresponding to 90% θL 

(n = 6 repetitions of this protocol) while the second protocol required participants to 

perform 6 min transitions from 20 W to a WR corresponding to 90% θL (full step, FS; n = 

4 repetitions of this protocol). Each visit to the laboratory was separated by at least 24 

hours. 

Measurements: Gas exchange measurements were similar to those previously described 

(Babcock et al. 1994). Briefly, inspired and expired flow rates were measured using a low 

dead space (90 mL) bidirectional turbine (Alpha Technologies VMM 110) which was 

calibrated before each test using a syringe of known volume. Inspired and expired gases 

were continuously sampled (50 Hz) at the mouth and analyzed for concentrations of O2, 

CO2, and N2 by mass spectrometry (Innovision, AMIS 2000, Lindvedvej, Denmark) after 

calibration with precision-analyzed gas mixtures. Changes in gas concentrations were 

aligned with gas volumes by measuring the time delay for a square-wave bolus of gas 

passing the turbine to the resulting changes in fractional gas concentrations as measured 

by the mass spectrometer. Data were transferred to a computer, which aligned 

concentrations with volume information to build a profile of each breath. Breath-by-

breath alveolar gas exchange was calculated by using algorithms of Beaver et al. (1981). 

HR was monitored continuously by electrocardiogram (three-lead arrangement) 

using PowerLab (ML132/ML880; ADInstruments, Colorado Springs, CO). Data were 

recorded using LabChart v4.2 (ADInstruments, Colorado Springs, CO) on a separate 

computer. 

Local muscle deoxygenation profiles of the quadriceps vastus lateralis muscle 

were made with NIRS (Hamamatsu NIRO 300, Hamamatsu Photonics, Hamamatsu, 
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Japan). Optodes were placed on the belly of the muscle midway between the lateral 

epicondyle and greater trochanter of the femur. The optodes were housed in an optically-

dense plastic holder and secured on the skin surface with tape and then covered with an 

optically-dense, black vinyl sheet, thus minimizing the intrusion of extraneous light. The 

thigh was wrapped with an elastic bandage to minimize movement of the optodes. 

The physical principles of tissue spectroscopy and the manner in which these are 

applied have been explained by DeLorey et al. (2003). Briefly, one fiber optic bundle 

carried the NIR-light produced by the laser diodes to the tissue of interest while a second 

fiber optic bundle (interoptode spacing = 5 cm) returned the transmitted light from the 

tissue to a photon detector (photomultiplier tube) in the spectrometer. Four laser diodes (λ 

= 775, 810, 850, and 910 nm) were pulsed in a rapid succession and the light was detected 

by the photomultiplier tube for online estimation and display of the concentration changes 

from the resting baseline for oxyhaemoglobin (∆[HbO2]), ∆[HHb], and total haemoglobin 

(∆[Hbtot]). Changes in light intensities were recorded continuously at 2 Hz and transferred 

to a computer for later analysis. The NIRS-derived signal was zero set with the subject 

sitting in a resting steady-state on the cycle ergometer prior to the onset of baseline 

exercise and changes in the concentration are reported as a delta (∆) in arbitrary units 

(a.u.). 

Data analysis: VO2p and HR data were filtered by removing aberrant data points that lay 

outside 4 SD of the local mean. Data for each repetition of a similar protocol were then 

linearly interpolated to 1 s intervals, time-aligned such that time zero represented the first 

transition and ensemble-averaged to yield a single averaged response for each subject for 

a given exercise protocol. These averaged responses were further time-averaged into 5 s 
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bins. The on-transient responses for VO2p and HR were modelled using the following 

equation:  

Y(t) = YBSLN + A (1 – e-(t-TD)/τ); [Equation 1] 

where Y(t) represents the VO2p or HR at any given time (t); YBSLN is the steady state 

baseline value of Y before an increase in WR; A is the amplitude of the increase in Y 

above YBSLN; τ represents the time required to attain 63% of the steady-state amplitude; 

and TD represents the mathematically generated time delay through which the 

exponential model is predicted to intersect the baseline. After excluding the initial 20 s of 

data from the model, while still allowing TD to vary freely (in order to optimize accuracy 

of parameter estimates), VO2p data were modeled to the end of the 6 min exercise 

transition; HR data were modeled from the first datum after a transition to the end of the 6 

min exercise transition. The model parameters were estimated by least-squares nonlinear 

regression (Origin, OriginLab Corp., Northampton, MA, USA) in which the best fit was 

defined by minimization of the residual sum of squares and minimal variation of residuals 

around the Y-axis (Y = 0). The 95% confidence interval (CI95) for the estimated time 

constant was determined after preliminary fit of the data with YBSLN, A, and TD 

constrained to the best-fit values and the τ allowed to vary. In addition, a value for the 

mean response time (Linnarsson 1974) or effective response time (Whipp and Ward 

1990) of VO2p (τ’VO2p) was estimated using the function described in Equation 1, but 

with data from the initial 20 s following exercise onset included in the model and TD 

constrained to 0 s. This approach characterizes the entire response (i.e., Phases I, II and 

III) and allows for an accurate estimate of the O2 deficit (Rossiter et al. 1999), computed 

as the product of τ’VO2p and the amplitude of the VO2p response from this alternate 

model (A’).  
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The ∆[HHb] profile has been described to consist of a time delay at the onset of 

exercise, followed by an increase in the signal with an “exponential-like” time-course. 

The time delay for the ∆[HHb] response (TD ∆[HHb]) was determined using second-by-

second data (DeLorey et al. 2003) and corresponded to the time, after the onset of 

exercise, at which the ∆[HHb] signal began a systematic increase from its nadir value. 

Determination of the TD ∆[HHb] was made on individual trials and averaged to yield 

three values (i.e., LS, US, FS) for each individual. The ∆[HHb] data were modeled using 

Equation 1; the fitting window for the “exponential” response spanned from the end of 

the TD ∆[HHb] to 90 s into each transition. As described previously (duManoir et al. 

2010), different fitting strategies ranging from 90-180 s into a transition resulted in 

minimal differences in estimates of τ[HHb]. The early exponential increase in ∆[HHb] 

was well-characterized in the 90 s following exercise onset in participants from the 

present study whereas longer fitting windows risked poorer fitting of the early transient. 

Baseline ∆[HHb] (∆[HHb]BSLN) values were computed as the mean value in the 60 s prior 

to a transition, and ∆[HHb]BSLN for the US were calculated independently from the 

steady-state predicted by the exponential fit from the LS. Whereas the τ∆[HHb] described 

the time course for the increase in ∆[HHb], the overall change of the effective ∆[HHb] 

(τ’∆[HHb] = TD ∆[HHb] + τ∆[HHb]) described the overall time course of the ∆[HHb] 

from the onset of each step transition. 

Statistics: Data are presented as means ± SD. Repeated measures analyses of variance 

(ANOVA) were used to determine statistical significance for the dependent variables. A 

Tukey post-hoc analysis was used when significant differences were found for the main 

effects of each dependent variable. All statistical analyses were performed using SPSS 
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Version 16.0, (SPSS Inc., Chicago, IL). Statistical significance was declared when p < 

0.05. 

 

RESULTS 

Figures 2.2 and 2.3 display the VO2p and ∆[HHb] responses, respectively, to each of the 

two exercise protocols from a representative subject. Group mean parameter estimates for 

VO2p, HR and ∆[HHb] kinetics are presented in Table 2.2. τVO2p was greater (p < 0.05) 

in the US (53 ± 17 s) and FS (44 ± 11 s) compared to the LS (37 ± 9 s); τVO2p for the US 

also trended towards being greater (p = 0.05) than the FS.  The trend of smallest, 

intermediate and greatest τVO2p values in the LS, FS and US, respectively was observed 

in six of seven participants (Figure 2.4). The VO2p gain in the US (9.97 ± 0.41 

mL/min/W) was greater (p < 0.05) than that observed in the FS (9.13 ± 0.54 mL/min/W; 

p < 0.05) and trended towards being greater (p = 0.06) than in the LS (9.06 ± 1.17 

mL/min/W). By design, the US was initiated from an elevated VO2p baseline (VO2pBSLN; 

1.07 ± 0.09 L/min) compared to the FS (0.85 ± 0.09 L/min) and LS (0.83 ± 0.06 L/min). 

The steady-state VO2p (VO2pSS) attained in the US and FS was identical (1.32 ± 0.17 and 

1.32 ± 0.18 L/min, respectively), while the VO2pSS (1.07 ± 0.09 L/min; Table 2.2) 

required by the LS was lower (p < 0.05). The O2 deficit (τ’VO2p·A’) was greater (p < 

0.05) in the US (0.25 ± 0.08 L) compared to the LS (0.19 ± 0.06 L; Figure 2.5); this was 

observed in all seven participants. The ‘accumulated O2 deficit’ (0.44 ± 0.13 L), 

calculated as the sum of the O2 deficit from the LS and US, was not different from the O2 

deficit calculated for the FS (0.42 ± 0.13 L).  

The HR response was similar to that of VO2p in that differences in HRBSLN, 

HRAMP and HRSS were identified depending on the condition (Table 2.2); yet, τHR 
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remained unchanged across the three different exercise intensity transitions (p = 0.11; 

Table 2.2).  

The adjustment of muscle deoxygenation was slowest (p < 0.05) in the US; 

specifically, τ∆[HHb] was greater (p < 0.05) in the US (22 ± 10 s) compared to the FS (13 

± 4 s) or the LS (11 ± 5 s), and τ’∆[HHb] was greater (p < 0.05) in the US (36 ± 12 s) 

than the FS (26 ± 4 s) and trended towards being greater (p = 0.07) than the LS (27 ± 6 s). 

Finally, the index of the steady-state ∆[HHb] amplitude (∆[HHb]AMP) to VO2p amplitude 

(VO2pAMP) did not differ amongst the three conditions (LS: 14.3 ± 11.8; US: 12.5 ± 8.9; 

FS: 13.1 ± 9.3). 
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Table 2.1. Subject Characteristics 

 

 Age  

(yrs) 

Mass  

(kg) 

Height  

(cm) 

VO2peak  

(L/min) 

Peak PO  

(W) 

PO @ 90% θθθθL  

(W) 

Mean 69 87 174 2.4 204 72 
SD 5 12 4 0.4 31 17 
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Table 2.2. Parameter estimates for VO2p, HR and ∆[HHb] kinetics for LS, US and FS.   

 

 LS US FS 

∆WR (W) 26 ± 9 26 ± 9 52 ± 17*† 

End-exercise WR (W) 46 ± 9 72 ± 17* 72 ± 17* 

VO2pBSLN (L/min) 0.83 ± 0.06 1.07 ± 0.09* 0.85 ± 0.09† 

VO2pAMP (L/min) 0.23 ± 0.08 0.26 ± 0.09 0.47 ± 0.18*† 

VO2pSS (L/min) 1.07 ± 0.09 1.32 ± 0.17* 1.32 ± 0.18* 

VO2p Gain (mL/min/W) 9.06 ± 1.17 9.97 ± 0.41§ 9.13 ± 0.54† 

τVO2p (s) 37 ± 9 53 ± 17* 44 ± 9*‡ 

CI95 τVO2p (s) 8 ± 2 8 ± 3 6 ± 3*† 

TD VO2p (s) 12 ± 4 6 ± 11 8 ± 7 

HRBSLN (beats/min) 91.1 ± 6.4 99.0 ± 6.2* 90.2 ± 8.4† 

HRAMP (beats/min) 7.9 ± 1.5 9.9 ± 1.4* 16.6 ± 3.7*† 

HRSS (beats/min) 99.0 ± 6.3 108.9 ± 6.7* 106.7 ± 8.2*† 

τHR (s) 56 ± 28 69 ± 22 54 ± 12 

CI95 τHR (s) 6 ± 4 4 ± 1 3 ± 1 

TD HR (s) -1 ± 9 -2 ± 4 1 ± 5 

∆[HHb]BSLN (a.u.) -1.1 ± 2.8 2.1 ± 3.3* -1.0 ± 2.5† 

∆[HHb]AMP (a.u.) 2.9 ± 2.3 2.9 ± 2.0 5.7 ± 4.0*† 

τ∆[HHb] (s) 11.1 ± 5.4 22.3 ± 9.9* 12.5 ± 3.8† 

CI95 τ∆[HHb] (s) 2 ± 1 2 ± 2 1 ± 0 

Calculated TD ∆[HHb] (s) 16 ± 3 14 ± 3 13 ± 1 

τ'∆[HHb] (s) 27 ± 6 36 ± 12# 26 ± 4† 

 

Values are mean ± SD. *, p < 0.05 from LS; †, p < 0.05 from US; ‡, p = 0.05 from US; §, p 

= 0.06 from LS; #, p = 0.07 from LS. 
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Figure 2.1. Schematic diagram of exercise protocols. A) Subjects performed two equal (lower step, LS; upper step, US) six minute 

step-transitions from 20 W to a WR corresponding to 90% θL. B) Subjects performed a single six minute step-transition (full step, FS) 

from 20 W to a WR corresponding to 90% θL. 

 

20 W                        LS                        US                                         20 W              FS 

A)                         90% θL          B)           90% θL 
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Figure 2.2. VO2p (○) response (5 s average) in a representative subject with mono-

exponentional models superimposed. Residuals to the fitted functions are shown as 

fluctuating “randomly” around zero error. A) displays a response to the two-step protocol 

depicted in Figure 1A); B) displays a response to the FS protocol depicted in Figure 1B). 

Dashed line represents the beginning of new WR. 
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Figure 2.3. ∆[HHb] (○) response (5 s average) in a representative subject with mono-

exponentional models superimposed. A) displays a response to the two-step protocol 

depicted in Figure 1A); B) displays a response to the FS protocol depicted in Figure 1B). 

Dashed line represents the beginning of new WR. 
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Figure 2.4. Comparison of individual (○) and mean (●) τVO2p values from A) Lower Step vs. Full Step; B) Upper Step vs. Full Step; 

and C) Upper Step vs. lower step; error bars are SD. The line of identity is represented by the dotted line. 
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Figure 2.5. O2 deficit for LS, US, Accumulated (i.e. LS + US) and FS. *, p < 0.05 from 

LS; †, p < 0.05 from US. 

 

 

*    *†          *† 
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DISCUSSION 

This study investigated the effects of the pre-transition WR and metabolic rate, and WR 

transition magnitude on the adjustment of VO2p, ∆[HHb] and HR during the exercise on-

transient in a group of older men. The main findings were as follows: 1) moderate-

intensity step transitions initiated from an elevated baseline WR and metabolic rate (i.e., 

US) resulted in a greater τVO2p and greater VO2 gain than step transitions initiated from a 

baseline WR of 20 W (i.e., LS and FS); 2) the slowed VO2p kinetics of the US were 

accompanied by a slowed adjustment of ∆[HHb] in comparison to the LS and FS; 3) the 

‘accumulated O2 deficit’ for two equal step transitions did not differ from the O2 deficit 

incurred for a single step transition to the same end-exercise WR despite being elevated in 

the US compared to LS. Collectively, these findings suggest that the physiological 

response of older adults to these perturbations may comprise: 1) an improved local blood 

flow or O2 availability during the US; 2) a systematic, hierarchal recruitment pattern that 

favours recruitment of highest efficiency, fastest kinetic fibers to perform the work 

demanded by the LS, with lower efficiency, slower kinetic fibers to address the energy 

demands of the US, and a mixture of these fibers (with intermediate efficiency and kinetic 

properties) to perform the work required by the FS; and 3) no net effect on the proportion 

of energy that is derived through non-aerobic pathways. 

The participants tested in the present study were comparable to similar groups of 

older men tested in our laboratory; the τVO2p values in the full step (44 ± 11 s), which are 

greater than those generally reported for healthy younger adults (~20-30 s) (DeLorey et 

al. 2004; Gurd et al. 2006, 2008; Murias et al. 2010), are similar to pre-training values 

recently reported (43 ± 11 s) by Murias et al. (2010) in a study of older men of the same 

age and fitness (age: 68 ± 7 yrs, VO2peak: 2.3 ± 0.5 L/min). Therefore, in agreement with 
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the stated hypothesis, despite the already slowed VO2p kinetics in these older men 

(compared to the ~25 s τVO2p values observed in younger adults), the adjustment of VO2p 

in response to the US was slowed even further and with a larger VO2p gain than in either 

the FS or LS in this group of older men; yet, as stated, the cumulative effect of this slow, 

inefficient adjustment is negated by the more rapid and efficient response to the LS, such 

that the accumulated O2 deficit did not differ from the O2 deficit accrued in the FS. These 

results also agree with those reported in younger individuals who performed similar 

exercise protocols (Brittain et al. 2001; Hughson and Morrissey 1982; MacPhee et al. 

2005).  

Historically, the major hypotheses presented to explain the primary limitation to 

VO2 kinetics are i) that the rate of adjustment of VO2 at exercise onset is limited by the 

availability of O2 at active muscle sites (Tschakovsky and Hughson 1999), and ii) that 

VO2 kinetics is limited by a ‘sluggish’ activation of metabolic pathways and availability 

of metabolic substrates (other than O2) to the mitochondria (previously referred to as a 

“metabolic inertia” (Grassi 2001; Poole et al. 2007)). The ‘double-step’ exercise protocol 

employed in the present study has been used to investigate the mechanisms that govern 

the rate of adjustment of muscle O2 utilization (as reflected by the phase II pulmonary O2 

uptake) under conditions of different metabolic demand. Participants in the present study 

attained identical VO2pSS in both the US and FS; however, the τVO2p in the US was ~ 10 s 

greater than in the FS, suggesting that even within an individual there may not be a single 

“rate-limiting factor” that governs this response under differing conditions. 

The focus of studies using the ‘double-step’ protocol has been the slowed VO2p 

adjustment in the US compared to the LS.  While this slower response was observed in 

the US compared to the LS in the present study, it also should be emphasized that when 
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exercise was initiated from the same starting WR (and metabolic rate), τVO2p was 

appreciably faster in the LS than in the FS. Hughson and Morrissey (1982; 1983) 

suggested that the reduced τVO2p in the LS was likely the result of a faster adjustment of 

bulk O2 delivery (i.e., faster HR kinetics); this idea was supported by MacPhee et al. 

(2005) who observed both faster HR and femoral (conduit) artery blood flow kinetics in 

the LS compared to US during knee-extension exercise. Contrary to these observations in 

young adults, in the present study no differences were observed in τHR amongst the three 

conditions in older men. When taken together, the altered τVO2p values across the three 

conditions, combined with the unaffected τHR estimates reinforces the idea that central, 

bulk, delivery of O2 does not appear to limit the Phase II VO2p response to moderate-

intensity exercise. This statement assumes that τHR approximates the time course of 

adjustment for cardiac output which was not measured. 

Brittain et al. (2001) discussed the possibility that higher-efficiency muscle fibers 

(i.e., smallest VO2 gain) with inherently faster kinetic properties (i.e., smallest τVO2p) 

may be preferentially recruited over lower-efficiency, slower kinetic fibers. As such, 

supposing that the most efficient fibers with the fastest kinetics were recruited to perform 

the work required by the LS, only those fibers with a greater VO2 gain and τVO2p would 

be available to address the additional metabolic demands imposed by the US. In this 

model, the work demanded by the FS would be accomplished by a mixture of fibers with 

these properties, thereby resulting in an intermediate VO2p kinetics profile relative to the 

LS and US. Indeed, data from the present study could be used to support this suggestion, 

as the τVO2p was fastest in the LS, intermediate in the FS and slowest in the US, while 

the VO2 gain also tended to conform to the proposed model.  
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The notion that fibre recruitment patterns might underlie the slowed VO2 kinetics 

(and increased VO2 gain) observed in the US has recently been examined by DiMenna et 

al. (2010). These authors reported similar phase II τVO2p values when transitioning from 

a raised metabolic rate (approximating 95% of θL) but not a raised pre-transition WR (i.e., 

following an incomplete recovery from a prior bout of heavy-intensity exercise) as 

compared to a control bout of heavy-intensity exercise; this finding was in opposition to 

the condition in which the transition to heavy-intensity exercise was initiated from both a 

raised metabolic rate and WR which yielded a markedly slower response. Given that the 

theoretical model described above would allow for recruitment of muscle fibers from the 

same pool in both the control condition and the raised metabolic rate condition, but not 

the raised WR condition, owing to the fact that exercise was initiated from the same pre-

transition WR in the first two, these results seem to lend support to the notion of a 

hierarchal recruitment pattern. The impact of these conclusions on the interpretation of 

the present data is unclear, however, due to the fact that the exercise bouts spanned two 

different intensity domains. An important consideration, for instance, is the notion that 

during the initial heavy-intensity exercise bout, the onset of muscle fatigue may occur 

within the first minute (Sargeant and Dolan 1987), thereby potentially altering 

recruitment patterns in the subsequent bout. 

Another possible explanation for the relatively slowed adjustment of VO2p (and 

presumably muscle VO2) of the US is a potentially less favourable energetic status at the 

transition onset in comparison to the LS or FS. The elevated pre-transition WR 

characteristic of the US is associated with a reduced cellular energetic state in active 

fibers (i.e., reduced PO2 and [PCr], increased [ADP], and less negative ∆GATP) which has 

the potential to slow the VO2p on-transient response to any subsequent increase in energy 



46 
 

 

demand (Barstow et al. 1994; Kemp 2008). Further, that a trend for a greater VO2 gain 

was observed in the US compared to LS – two steps of equal WR magnitude, likely 

requiring the same change in ATP demand – suggests the possibility of a lower P/O ratio 

of oxidative phosphorylation (ATP produced per atom of O2 reduced). A reduced P/O 

ratio would indicate reduced efficiency within the mitochondria during the on-transient of 

the US; this along with the reduced cellular energetic state in active fibers could 

potentially lead to both higher τVO2p and VO2 gain values which are consistent with the 

findings in the present study. However, it also is possible that the ATP requirement for 

the same change in WR is not the same, but instead was greater in the US compared to LS 

due to the accumulation of metabolites and fall in free energy release with ATP 

hydrolysis (Zoladz et al. 2006). In this case, the P/O would be similar in the LS and US, 

and the greater O2 requirement (perhaps relating to a slower adjustment) for a given 

change in WR would be a consequence of the greater ATP requirement. 

The overall adjustment of muscle deoxygenation (as assessed by τ’∆[HHb]) was 

slower in the US compared to either the LS (p = 0.07) or FS (p < 0.05). The TD ∆[HHb] 

remained unchanged amongst the three transition types, likely indicating that an early 

increase in local blood flow (and O2 availability) resulting from contributions of the 

muscle pump and some rapid vasodilation (Tschakovsky and Hughson 1999; 

Tschakovsky et al. 2004) shared a similar time-course in all conditions. As such, the 

differences observed in τ’∆[HHb] can be explained by underlying differences in the 

τ∆[HHb] response across the three conditions. Other studies from our laboratory have 

consistently shown τ’∆[HHb] values of ~20-25 s (as was observed in the LS and FS) in 

older adults during upright cycling (DeLorey et al. 2004; Murias et al. 2010), so the 

lengthened response observed in the US is intriguing. Whereas differences were observed 
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with respect to the time-course of the ∆[HHb] adjustment, no differences were seen in the 

steady-state reliance on O2 extraction for a given VO2p as indicated by the similar 

∆[HHb]AMP/VO2pAMP amongst the three conditions; this differs from the greater 

∆[HHb]AMP/VO2pAMP  in the US compared to LS that was reported by MacPhee et al. 

(2005) in young adults performing knee-extension exercise. A similar index of 

∆[HHb]AMP/VO2pAMP amongst the three conditions implies that the steady-state reliance 

on O2 extraction for a given metabolic demand is stable across conditions; so, for 

example, transitions requiring a greater VO2 gain are accomplished in part by a greater O2 

extraction. However, because the time-course of adjustment of ∆[HHb] relative to VO2 

may differ during the on-transient, this relationship can be described as unstable during 

that period of adjustment. To this end, the present data, reinforce the notion that it is 

during the non-steady-state on-transient where considering differences in the adjustments 

of VO2p and ∆[HHb] may be useful in providing meaningful insights into the 

physiological mechanisms underlying the regulation of oxidative phosphorylation. 

The slower adjustment of ∆[HHb] observed in the US may suggest an improved 

O2 availability prior to and throughout the transition relative to metabolic demand. The 

∆[HHb] profile is thought to mirror the drop in the microvascular PO2 (PO2mv) at exercise 

onset, and as such, a slow fall in  PO2mv (or ∆[HHb]) might be expected with an 

attenuated reliance on O2 extraction, a consequence of convective O2 delivery being in 

excess relative to the metabolic demand. Such a scenario is conceivable if the local 

matching of O2 delivery to O2 demand (i.e., microvascular O2 distribution) during the 

steady-state in the LS was poor, thereby creating a condition where adequate O2 supply to 

active fibers was accomplished by over-perfusing the muscle as a whole. In such a 

scenario, availability of O2 would necessarily be adequate to inactive fibers as well as 
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active fibers; thus, upon initiation of the US, those fibers that were not recruited to 

perform the work required of the LS would have to supply all of the metabolic substrates 

other than O2 (i.e., ADP, Pi, NADH, H+). This interpretation of the ∆[HHb] data has 

implications for the greater τVO2p observed in the US. Given that a slowed ∆[HHb] 

adjustment (perhaps reflecting a slowed adjustment of PO2mv and therefore a preserved O2 

driving pressure) would be expected when convective O2 delivery at exercise onset was in 

excess of O2 demand, the fact that τVO2p in the US was greater than that observed in the 

LS implies that O2 availability may not play a rate-limiting role in the regulation of VO2 

kinetics under conditions of elevated pre-transition metabolic and work rates. Using this 

rationale, and particularly when also considering the greater VO2 gain values observed in 

the US, the present data support the model proposed by Brittain et al. (2001) which 

suggests that higher-efficiency muscle fibers (i.e., smallest VO2 gain) with inherently 

faster kinetic properties (i.e., smallest τVO2p) may be preferentially recruited over lower-

efficiency, slower kinetic fibers. 

The trend for speeded and slowed VO2p kinetics in the LS and US (relative to the 

FS), respectively, persisted when the VO2p data were modeled with TD VO2p constrained 

to 0 s. The product of greater τ’VO2p and A’ values in the US compared to the LS resulted 

in a greater O2 deficit in the US. Because the O2 deficit closely reflects the contribution of 

non-oxidative energy sources, an inflated O2 deficit would necessarily imply a greater 

accumulation of metabolic by-product and greater disturbance of intracellular 

homeostasis. As first reported by Brittain et al. (2001) in younger adults, the 

‘accumulated O2 deficit,’ calculated as the sum of the O2 deficit conferred in the LS and 

US, did not differ from that observed in the FS in the present study. This finding may 
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suggest that ‘progressive’ warm-up activities offer little cardiovascular benefit to older 

adults when they are performing exercise within the moderate-intensity domain. 

It is important to recognize potential limitations associated with the methodology 

used in the present study. When modeling the on-transient VO2p response, the confidence 

in parameter estimates is largely dependent upon the underlying signal-to-noise ratio. 

Small magnitude WR increments, which are to be expected in older adults, but which 

were exacerbated in the present study’s “double-step” protocol, are likely to give rise to 

physiological responses with small amplitudes, and as a result, the potentially low signal-

to-noise ratio must be considered. In an effort to address potential concerns, several 

repeats were performed for each of the two exercise protocols (four for FS and six for LS 

+ US). We have recently determined that at least three repetitions are required for young 

adults exercising in the moderate-intensity domain to effectively improve day-to-day 

reproducibility of both τVO2p and τ’∆[HHb] (Spencer et al. 2010). Given the smaller 

amplitude of response in older adults, a fourth repetition was added for FS data, and six 

repetitions were performed for protocols involving the smaller steps (i.e., LS and US). 

The consistency of findings within subjects resulted in statistically significant findings 

when comparing the different step-transitions. Secondly, concerns may arise regarding 

the appropriate selection of WRs. Although blood lactate measures were not made in the 

present study, careful inspection of individual data confirmed the absence of a VO2p slow 

component (which would be expected had exercise been performed within the heavy-

intensity domain). For each individual, a 20 s average taken from t = 4τ was used to 

predict end-exercise VO2p values by dividing by 0.98 (i.e., given that 4τ represents the 

time required to attain ~98% of steady-state amplitude). These ‘predicted end-exercise’ 

values were then compared to the observed 20 s end-exercise values. This resulted in 
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individual differences that ranged from -0.057 mL/min (indicating a “decrease” from 

predicted end-exercise values) to 0.026 mL/min (mean = -0.017 ± 0.026 mL/min). As 

such we are confident that all transitions were within the moderate-intensity domain. 

In conclusion, this study showed that despite presenting with slowed VO2p 

kinetics (in the FS compared to values typically reported for healthy, young adults), the 

VO2p kinetics in older men were slowed even further during exercise transitions in the 

US, and that compared to the FS, the VO2 kinetics was faster in the LS. Additionally, the 

VO2 gain tended to be greater in the US compared to the LS (p = 0.06) and FS (p < 0.05). 

Consequently, the O2 deficit was greater in the US compared to LS, but the overall 

‘accumulated O2 deficit’ (from LS and US) was similar to the resultant O2 deficit 

conferred by the FS. Interestingly, the combination of slowed ∆[HHb] and VO2p 

adjustments that were observed in the US may suggest that local O2 availability does not 

limit VO2p kinetics in this unique condition. Collectively, these data support the proposed 

model of preferential recruitment of the most efficient fibers with inherently fast kinetic 

properties during the LS, and thus only less efficient, slower adjusting fibers are available 

to meet the demands of the US. 
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CHAPTER III: Regulation of VO2 kinetics by O2 delivery: insights from acute 

hypoxia and heavy-intensity priming exercise in young men 

 

INTRODUCTION 

The fundamental adjustment of pulmonary oxygen uptake (VO2p kinetics) displays an 

exponential profile during the on-transient to moderate-intensity exercise (MOD). 

Whether the rate of this adjustment, given by the VO2p time constant (τVO2p), is limited 

by factors related to local muscle O2 availability, intracellular factors related to metabolic 

substrate provision and enzyme activation or a combination of both remains a topic of 

debate. To this end, Poole et al. (2008) have proposed that there is a “point” beyond 

which VO2 kinetics is O2 dependent such that the provision of O2 becomes limiting and 

thus τVO2 is lengthened. While this proposal has received much attention within the 

literature, it has yet to be demonstrated that provision of ‘additional’ O2 resolves any 

potential O2 delivery limitation. In contrast to this possibility, Grassi et al. showed that 

augmenting convective (1998a) or diffusive (1998b) O2 delivery did not speed the 

adjustment of VO2 in isolated in situ canine gastrocnemius muscle during electrically 

stimulated contractions eliciting 60-70% of maximal VO2.  

While the studies of Grassi et al. (1998a; 1998b) cannot be replicated in exercising 

humans, one intervention that does appear to improve O2 availability during the on-

transient of MOD in humans is heavy-intensity ‘priming’ exercise (HVY). To this end, 

HVY has previously been shown to speed the subsequent MOD on-transient VO2p 

response in older (DeLorey et al. 2004a; Scheuermann et al. 2002) and young (Gurd et al. 

2006; Gurd et al. 2005) men. Gurd et al. (2005) reported a reduced τVO2p in association 

with improved local muscle oxygenation (derived from near-infrared spectroscopy; 
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NIRS) following HVY. This observation was supported by Murias et al. (2011a) who 

reported that the rate of NIRS-derived muscle deoxygenation (∆[HHb] or [HHb] 

depending upon the NIRS system used; a proxy for tissue O2 extraction) was faster than 

that of VO2 without HVY, causing a period of greater reliance on O2 extraction for a 

given VO2, and thus a transient mismatch in local muscle O2 delivery to O2 utilization 

(represented as a transient “overshoot” in the normalized ∆[HHb]-to-VO2 ratio); τVO2p 

was significantly reduced and this transient ∆[HHb]/VO2 overshoot was abolished with 

HVY. However, Gurd et al. (2006) reported that the HVY intervention was also 

associated with elevated activity of the mitochondrial pyruvate dehydrogenase complex 

(PDH). Whereas both elevated bulk (i.e., increased heart rate (HR) following HVY and 

throughout subsequent MOD) and local muscle O2 delivery and mitochondrial PDH 

activity have been implicated following HVY, isolating the precise mechanism(s) 

responsible for the reduced τVO2p has proven difficult. While activation of PDH by 

administration of dichloroacetate, in the absence of augmented O2 delivery, has failed to 

demonstrate significant reductions in τVO2p during upright cycling (Koppo et al. 2004; 

Rossiter et al. 2003), this does not preclude the possibility that some metabolic substrate 

provision or enzyme activation limitation other than PDH activation may be responsible 

for regulating τVO2p. As such, in order to investigate the independent effects of a possible 

metabolic substrate or enzyme activation limitation, an intervention that ‘primes’ factors 

affecting metabolic substrate provision and/or enzyme activation without also priming 

local muscle O2 delivery is required. 

Whereas HVY is generally used to speed τVO2p, impairing O2 delivery by acute 

hypoxia (HYPO), which reduces the arterial partial pressure of O2 (PaO2), has been 

employed to slow τVO2p during transitions within the moderate-intensity domain 
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(Engelen et al. 1996; Hughson and Kowalchuk 1995; Murphy et al. 1989; Perrey et al. 

2005; Xing et al. 1991). In addition to the reduced PaO2, it seems as though acute hypoxic 

(FiO2 = 12%) exposure may also induce a compensatory increase in resting (but not 

steady-state exercise) HR and leg (i.e., “bulk” femoral conduit artery) blood flow 

(DeLorey et al. 2004b). Nevertheless, by combining the HVY intervention (which is 

expected to augment both convective and diffusive O2 delivery) with HYPO (which is 

expected to impair O2 delivery by reducing PaO2), factors influencing metabolic substrate 

provision and enzyme activation (in the absence of improved O2 availability assuming 

that the reduced PaO2 blunts the increased perfusion associated with HVY) are essentially 

isolated.  

The aim of the present study was to examine the separate and combined effects of 

HVY and HYPO on VO2p kinetics and the [HHb]/VO2 ratio during MOD to test the 

hypothesis that resolution of potential intracellular metabolic substrate provision or 

enzyme activation limitations alone will not speed τVO2p.  

 

METHODS 

Participants: 10 young, healthy men (23 ± 4 yr; mean ± SD; Table 3.1) volunteered and 

gave written consent to participate in this study. All procedures were approved by The 

University of Western Ontario Research Ethics Board for Health Sciences Research 

Involving Human Subjects. All participants were recreationally active and non-smokers. 

Additionally, no participants were taking medications that would affect the 

cardiorespiratory or hemodynamic responses to exercise. 

Protocol: On day one, participants reported to the laboratory to perform a ramp 

incremental test (25 W/min) to the limit of tolerance on a cycle ergometer (model: H-300-
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R Lode; Lode B.V., Groningen, Holland) for determination of peak VO2 (VO2peak) and the 

estimated lactate threshold (θL); the ramp portion of the protocol was initiated following 4 

minutes of cycling at 20 W. θL was determined by visual inspection as the VO2 at which 

CO2 output (VCO2) began to increase out of proportion in relation to VO2, with a 

systematic rise in minute ventilation-to-VO2 ratio and end-tidal PO2 whereas minute 

ventilation-to-VCO2 ratio and end-tidal PCO2 were stable (Beaver et al. 1986).  

From the results of this ramp test, a moderate-intensity work rate (WR) was 

selected to elicit a VO2 equivalent to ~80% of the VO2 at θL, and a heavy-intensity WR 

was selected to elicit a VO2 corresponding to an intensity given as the sum of θL and 50% 

of the difference between the VO2 at θL and VO2peak (∆50%), as described by 

Scheuermann et al. (2002). Based on previous findings (Hughson et al. 1995; Yoshida et 

al. 1989), a WR corresponding to ~80% of the VO2 at θL was expected to still reside in 

the moderate-intensity domain when performed in HYPO; this was confirmed in the 

present study by the identical estimated steady-state VO2p values observed in normoxia 

and hypoxia (without previous HVY), and thus the absence of a VO2p slow-component 

under hypoxic conditions. Thus, following the ramp incremental test and on separate 

days, subjects completed three repetitions of each of three different exercise protocols 

(Figure 3.1). For two study conditions, subjects completed three repetitions of MOD1-

HVY-MOD2 protocol where each of the 6 minutes (MOD or HVY) leg-cycling bouts 

were preceded by 6 minutes at 20 W. In previous studies employing this exercise 

protocol, MOD1 has generally been treated as a control condition, HVY as the 

intervention and MOD2 as the experimental condition; while this characterization 

remains true for the present study, this study also sought to examine the effects of HYPO 

following HVY. Thus, for three of the MOD1-HVY-MOD2 repetitions, MOD2 was 
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performed in HYPO (i.e., “MOD2+HYPO”) by administering hypoxic gas mixture (FiO2 

= 15%) 4 minutes prior to its onset. In order to blind subjects to which testing condition 

they were completing, a normoxic gas mixture (i.e., “sham”; FiO2 = 20.9%) was 

administered to subjects 4 minutes prior to MOD2 onset in the three normoxic trials (i.e., 

“MOD2-N”; pilot testing confirmed that the kinetics of VO2p, [HHb] and heart rate (HR) 

were unaffected by inspiration of dry normoxic gas compared to room air). In addition to 

the MOD1-HVY-MOD2 protocols, subjects also completed three repetitions of a HYPO 

control condition (i.e., “MOD1+HYPO”) that involved cycling at 20 W for 6 minutes, 

followed immediately by 6 minutes at ~80% of VO2 at θL with HYPO administered after 

2 minutes of baseline cycling in room air. The hypoxic and “sham” gas mixtures were 

administered by turning a two-way valve so that subjects were breathing from a Douglas 

bag which was being fed continuously by a compressed gas cylinder containing the 

desired fractional concentrations of O2. Pilot testing also confirmed that 4 minutes of 

hypoxic exposure prior to an exercise-intensity transition produced similar kinetic profiles 

compared to longer (i.e., 20 minute) pre-transition exposures. Each visit to the laboratory 

was separated by at least 24 hours.  

Measurements: Gas exchange measurements were similar to those previously described 

(Babcock et al. 1994). Briefly, inspired and expired flow rates were measured using a low 

dead space (90 mL) bidirectional turbine (Alpha Technologies VMM 110) which was 

calibrated before each test using a syringe of known volume. Inspired and expired gases 

were continuously sampled (50 Hz) at the mouth and analyzed for concentrations of O2, 

CO2, and N2 by mass spectrometry (Innovision, AMIS 2000, Lindvedvej, Denmark) after 

calibration with precision-analyzed gas mixtures. Changes in gas concentrations were 

aligned with gas volumes by measuring the time delay for a square-wave bolus of gas 
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passing the turbine to the resulting changes in fractional gas concentrations as measured 

by the mass spectrometer. Data were transferred to a computer, which aligned 

concentrations with volume information to build a profile of each breath. Breath-by-

breath alveolar gas exchange was calculated by using algorithms of Beaver et al. (1981). 

HR was monitored continuously by electrocardiogram (three-lead arrangement) 

using PowerLab (ML132/ML880; ADInstruments, Colorado Springs, CO) and was 

calculated (using a 5 s rolling average) based upon the R-R interval; arterial O2 saturation 

(O2Sat) was monitored by finger pulse oximetry (Nonin 8600, Plymouth, Minnesota, 

USA). Data were recorded using LabChart v6.1 (ADInstruments, Colorado Springs, CO) 

on a separate computer. 

Local muscle deoxygenation ([HHb]) of the quadriceps vastus lateralis muscle 

was monitored continuously with a frequency-domain multi-distance NIRS system 

(Oxiplex TS, Model 95205, ISS, Champaign, IL, USA). The arrangement for the present 

study included a single channel consisting of eight laser diodes operating at two 

wavelengths (λ = 690 and 828 nm, four at each wavelength) which were pulsed in a rapid 

succession (frequency modulation of laser intensity was 110 MHz) and a photomultiplier 

tube. The lightweight plastic NIRS probe (connected to laser diodes and photomultiplier 

tube by optical fibers) consisted of two parallel rows of light emitter fibers and one 

detector fiber bundle; the source-detector separations for this probe were 2.0, 2.5, 3.0, and 

3.5 cm for both wavelengths. The probe was placed on the belly of the muscle midway 

between the lateral epicondyle and greater trochanter of the femur; it was secured in place 

with an elastic strap tightened to prevent movement. This allowed for continuous 

measurement of absolute concentration changes (µM) of oxyhaemoglobin ([HbO2]) and 

[HHb]. The area of interrogation was covered with an optically-dense, black vinyl sheet, 
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thus minimizing the intrusion of extraneous light. The thigh was wrapped with an elastic 

bandage to further minimize intrusion of extraneous light and movement of the probe. 

NIRS measurements were collected continuously for the entire duration of each trial. 

The near-infrared spectrometer was calibrated at the beginning of each testing 

session following a warm-up period of at least 20 min. The calibration was done with the 

probe placed on a calibration block (phantom) with absorption (µA) and reduced 

scattering coefficients (µs’) previously measured; thus, correction factors were determined 

and were automatically implemented by the manufacturer’s software for the calculation 

of the µA and µs’ for each wavelength during the data collection. Calculation of [HHb] 

reflected continuous measurements of µs’ made throughout each testing session (i.e., 

constant scattering value not assumed). Data were stored online at an output frequency of 

25 Hz, but were reduced to 1 s bins for all subsequent analyses within the present study. 

Data analysis: VO2p and HR data were filtered by removing aberrant data points that lay 

outside 4 SD of the local mean. Data for each repetition of a similar protocol were then 

linearly interpolated to 1 s intervals, time-aligned such that time zero represented the first 

transition and ensemble-averaged to yield a single averaged response for each subject for 

a given exercise protocol. These averaged responses were further time-averaged into 5 s 

bins. The on-transient responses for VO2p and HR were modelled using the following 

equation:  

Y(t) = YBSLN + A (1 – e-(t-TD)/τ); [Equation 1] 

where Y(t) represents the VO2p or HR at any given time (t); YBSLN is the steady state 

baseline value of Y before an increase in WR; A is the amplitude of the increase in Y 

above YBSLN (given as the average Y value in the 75-15 s “window” prior to a transition); 

τ represents the time required to attain 63% of the steady-state amplitude; and TD 
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represents the mathematically generated time delay through which the exponential model 

is predicted to intersect YBSLN. After excluding the initial 20 s of data from the model 

(which, while not necessarily reflecting the exact duration of Phase I VO2p in each 

individual, is most likely to avoid inclusion of data points from Phase I VO2p in the fitting 

of Phase II VO2p (Murias et al. 2011b)), while still allowing TD to vary freely (in order to 

optimize accuracy of parameter estimates), VO2p data were modeled to 4 min (240 s) of 

the step-transition; this ensured that each subject had attained a VO2p steady-state, yet did 

not bias the model fit during the on-transient (Bell et al. 2001). HR data were modeled 

from exercise onset to the end of the 6 min exercise transition with TD constrained to ≥ 0 

s and baseline fixed as described above (i.e., 60 s average during the 75-15 s “window” 

prior to a transition). The model parameters were estimated by least-squares nonlinear 

regression (Origin, OriginLab Corp., Northampton, MA, USA) in which the best fit was 

defined by minimization of the residual sum of squares and minimal variation of residuals 

around the Y-axis (Y = 0). The 95% confidence interval (CI95) for the estimated time 

constant was determined after preliminary fit of the data with YBSLN, A, and TD 

constrained to the best-fit values and the τ allowed to vary. In addition, a value for the 

mean response time (Linnarsson 1974) or effective response time (Whipp and Ward 

1990) of VO2p (τ’VO2p) was estimated using the function described in Equation 1, but 

with data from the initial 20 s following exercise onset included in the model and TD 

constrained to 0 s. This approach characterizes the entire response (i.e., Phases I, II and 

III) and allows for an accurate estimate of the O2 deficit (Rossiter et al. 1999), computed 

as the product of τ’VO2p (·60 s-1) and the amplitude of the VO2p response from this 

alternate model (A’). 
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 Baseline and steady-state O2Sat were calculated for each individual in each 

condition as the mean value observed over the final 60 s at a given work rate (i.e., 20 W 

baseline, MOD or HVY). 

The [HHb] profile has been described to consist of a time delay at the onset of 

exercise, followed by an increase in the signal with an “exponential-like” time-course 

(DeLorey et al. 2003). The time delay for the [HHb] response (TD [HHb]) was 

determined using second-by-second data and corresponded to the time, after the onset of 

exercise, at which the [HHb] signal began a systematic increase from its nadir value. 

Determination of the TD [HHb] was made on individual trials and averaged to yield 

condition-specific values for each individual. The [HHb] data were ensemble- and time-

averaged (i.e., 5 s bins) as described above for VO2p and HR and were then modeled 

using Equation 1; the fitting window for the “exponential” response spanned from the end 

of the TD [HHb] to 90 s into each transition. As described previously (duManoir et al. 

2010), different fitting strategies ranging from 90-180 s into a transition resulted in 

minimal differences in estimates of τ∆[HHb]. The early exponential increase in [HHb] 

was well-characterized in the 90 s following exercise onset in all conditions within the 

present study, whereas longer fitting windows risked poorer fitting of the early transient 

(see below for further explanation). As was the case with both VO2p and HR, baseline 

[HHb] ([HHb]BSLN) values were fixed as the mean value in the 75-15 s “window” leading 

up to a transition. Whereas the τ[HHb] described the time course for the increase in 

[HHb], the overall change of the effective [HHb] (τ’[HHb] = TD [HHb] + τ[HHb]) 

described the overall time course of the [HHb] from the onset of each step transition. 

The second-by-second [HHb] and VO2p data were normalized for each subject (0%, 

representing the 20 W baseline value, and 100%, representing the post-transition steady-
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state of the response). The normalized VO2p was left-shifted by 20 s to account for the 

phase I-phase II transition so that the onset of exercise coincided with the beginning of 

phase II VO2p (Murias et al. 2011b), which has been previously described to coincide 

with muscle VO2 within 10% (Grassi et al. 1996; Rossiter et al. 1999). Data were further 

averaged into 5 s bins for statistical comparison of possible dissociations in the dynamic 

adjustments of [HHb] and VO2p. Additionally, an overall [HHb]/VO2 ratio for the 

adjustment during the exercise on-transient was derived for each individual as the average 

value from 20-120 s into the transition. The start point was selected to be 20 s to begin the 

analysis at the time region when the [HHb] and VO2p signals meet, reflecting the TD 

[HHb] and early adjustment of [HHb]. During these early seconds of the on-transient, it is 

very likely that the muscle blood flow response is “bi-phasic” with an initial rapid 

increase representing the activity of the muscle pump and/or rapid vasodilation 

(Tschakovsky and Sheriff 2004), followed thereafter by a slower exponential increase 

related to increased cardiac output and distribution of blood flow to the exercising 

muscle. Very early in exercise (i.e., those initial ~20 s), the blood flow response (and O2 

delivery) is sufficient to support early increases in VO2, and as such, the [HHb]/VO2 ratio 

is not attempting to characterize this portion of the response. An end point of 120 s was 

selected as the time point at which the [HHb]/VO2 ratio had reached a steady-state value 

of 1.0 in all subjects. Given the inherent (breath-to-breath) variability in the VO2p 

response, it is impractical to attempt to identify the precise occasion where the two 

signals become matched. In this sense, the [HHb]/VO2 ratio is somewhat “biased” 

towards a value of 1.0; that is, if anything this 120 s end-point is biasing this result 

towards a lesser, not a greater “overshoot” (which may, in fact, exist). Thus, the 120 s 

value was chosen to err on the side of caution. While the [HHb]/VO2 ratio is not an 



66 
 

 

attempt to “re-arrange” the terms in the Fick equation (indeed, [HHb] ≠ arterio-venous O2 

content difference (a-vO2diff)), it does permit insights into the dynamic matching (or 

mismatching) of O2 delivery to O2 utilization by identifying when the signals are 

(temporarily) dissociated. Two specific advantages of the present approach for pairing the 

[HHb] response with the VO2p response are that: i) “actual” rather than modeled data are 

used; ii) full account of the TD [HHb] (which is a physiological, rather than mathematical 

in nature) is taken; that is, a ratio of τ[HHb]/τVO2 ignores the effects of TD [HHb], and 

likewise, by computing τ’[HHb]/τVO2, the impact of TD [HHb] is quadrupled (assuming 

that 4τ = steady state). 

Statistics: Data are presented as means ± SD. The within-subjects design of the present 

study demanded the use of repeated measures analyses of variance (ANOVA) to 

determine statistical significance for the dependent variables; the three distinct 

interventions (MOD2-N, MOD2+HYPO, MOD1+HYPO) were treated as different 

measurement occasions. This statistical model was selected over a two-way repeated 

measures ANOVA, as this latter model necessarily implies that MOD1+HYPO was 

somehow sequentially linked to (i.e., preceded) MOD2+HYPO; this was not the case. A 

Tukey post-hoc analysis was used when significant differences were found for the main 

effects of each dependent variable. Determination of whether an [HHb]/VO2 ratio 

overshoot was significant was based upon a comparison (t-test) of the condition-specific 

mean with a value of 1.0 (with no associated error). All statistical analyses were 

performed using SPSS Version 18.0, (SPSS Inc., Chicago, IL). Statistical significance 

was declared when p<0.05. 
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RESULTS 

Subject characteristics are displayed in Table 3.1. Kinetic parameter estimates for VO2p, 

[HHb] and HR during MOD1 were similar (p>0.05) regardless of which condition it 

preceded (i.e., MOD2-N or MOD2+HYPO); as such, these responses were merged (i.e., 

data from all “MOD1” transitions were time aligned, ensemble-averaged, and modeled as 

described in Methods section) and are henceforth referred to as “Control.” This 

“merging” procedure improved confidence in kinetic parameter estimates; thus, 

comparisons with the three “experimental conditions” were strengthened. Table 3.2 

depicts kinetics parameters for VO2p, [HHb] and the [HHb]/VO2 ratio.  

Phase II τVO2p (Control = 26 ± 7 s) was reduced (p<0.05) during MOD2-N (20 ± 

5 s), but lengthened (p<0.05) in both MOD1+HYPO (34 ± 14 s) and MOD2+HYPO (30 ± 

8 s); τVO2p was similar (p>0.05) between MOD1+HYPO and MOD2+HYPO conditions. 

Figure 3.2 depicts the dispersion of individual τVO2p values around the group mean for 

each condition. The MOD2-N and MOD2+HYPO conditions were both associated with 

an increase in baseline VO2p (VO2pBSLN; 1.20 ± 0.16 and 1.27 ± 0.21 L·min-1, 

respectively) compared to either Control (1.07 ± 0.18 L·min-1) or MOD1+HYPO (1.05 ± 

0.19 L·min-1; p<0.05); this contributed to the elevated steady-state VO2p (VO2pSS) 

response during MOD2+HYPO (2.17 ± 0.23 L·min-1) compared to both Control (2.02 ± 

0.23 L·min-1) and MOD1+HYPO (2.02 ± 0.21 L·min-1; p<0.05). Importantly, compared to 

Control (638 ± 144 mL), the estimated O2 deficit was reduced during MOD2-N (529 ± 

196 mL; p<0.05), enlarged during MOD1+HYPO (783 ± 184 mL; p<0.05), but was 

virtually unchanged in MOD2+HYPO (643 ± 193 mL; p>0.05; Table 3.2). 

All of MOD2-N, MOD2+HYPO and MOD1+HYPO were associated with larger 

τ[HHb] compared to Control (p<0.05); yet, the TD [HHb] was shorter in either MOD2-N 
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or MOD2+HYPO compared to Control (p<0.05) and MOD1+HYPO (p=0.05). 

Consequently, the τ’[HHb] was similar across all conditions (p>0.05).  

The group mean normalized (i.e., 0-100%) adjustments of [HHb] and VO2 are 

illustrated in Figure 3.3. The overall [HHb]/VO2 ratio was calculated to quantify the 

“excess” (relative to the steady-state values) O2 extraction for a given VO2 during the on-

transient of each MOD (i.e., values > 1.0 represent a period during the on-transient 

displaying a greater reliance on fractional O2 extraction compared to the steady-state 

(values = 1.0), and reflects a local O2 delivery to muscle O2 utilization mismatch in the 

area of the NIRS probe). A modest but significant (i.e., p<0.05 from 1.0) [HHb]/VO2 

overshoot was observed in Control (1.06 ± 0.04; Table 3.2; Figure 3.3). This overshoot 

was abolished in MOD2-N (1.00 ± 0.05; p<0.05 from all other conditions; p>0.05 from 

1.0), but persisted with both MOD2+HYPO (1.09 ± 0.07; p>0.05 from Control; p<0.05 

from 1.0) and MOD1+HYPO (1.10 ± 0.09; p=0.13 from Control; p<0.05 from 1.0). 

 The [HHb]BSLN was lower prior to MOD2-N (20.1 ± 10.8 µM) compared to 

Control (24.2 ± 12.0 µM; p<0.05); MOD1+HYPO was associated with an elevated 

[HHb]BSLN (25.7 ± 12.1 µM) compared to all other conditions (p<0.05). Despite these 

differences in [HHb]BSLN, the steady-state [HHb] ([HHb]SS) asymptote derived from the 

mono-exponential fit was similar (p>0.05) across all conditions. Figure 3.4 displays the 

normalized (i.e., 0-100%) second-by-second group mean [HHb] response along with the 

second-by-second arterial O2 saturation (O2Sat; %) for each of the three exercise protocols. 

The exaggerated drop (p<0.05; Table 3.3; Figure 3.4) in O2Sat once HYPO was combined 

with exercise (i.e., MOD1+HYPO or MOD2+HYPO), was essentially mirrored by the 

gradual and continual increase in the [HHb] response following its early exponential 

adjustment. That the [HHb] response did not attain a steady-state plateau in HYPO 
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(i.e., neither MOD1+HYPO nor MOD2+HYPO), as it did during MODs performed under 

normoxic conditions, confirms the decision to limit the fitting window for [HHb] to 90 s 

into the transitions. 

Both the MOD2-N and MOD2+HYPO conditions were associated with elevated 

baseline HR values (HRBSLN; 109 ± 13 and 112 ± 14 bpm, respectively) when compared 

to Control (89 ± 10 bpm) and MOD1+HYPO (91 ± 11 bpm; p<0.05); that HRBSLN did not 

differ (p>0.05) between Control and MOD1+HYPO suggests that the heavy-intensity 

‘priming’ exercise alone was primarily responsible for this trend (Table 3.3); that is, acute 

hypoxia alone did not elicit an increase in HRBSLN, yet the HVY intervention was 

consistently associated with elevated HRBSLN. Steady-state HR (HRSS) was lower 

(p<0.05) in Control conditions (117 ± 12 bpm) compared to all experimental conditions; 

the MOD2+HYPO intervention led to a greater HRSS (139 ± 15 bpm) compared to 

MOD2-N (130 ± 15 bpm) or MOD1+HYPO (125 ± 13 bpm). Finally, HR adjusted fastest 

under Control conditions (τHR = 28 ± 11 s; p<0.05 for all other conditions), and adjusted 

faster during MOD1+HYPO (34 ± 14 s) compared to MOD2+HYPO (44 ± 18 s; p<0.05); 

τHR did not differ (p>0.05) between MOD2-N (44 ± 18 s) and MOD2+HYPO.  
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Table 3.1. Subject Characteristics 

 Age 
(yr) 

Mass 
(kg) 

Height 
(m) 

VO2max 
(mL·kg-1·min-1) 

Lactate 
Threshold 
(L·min-1) 

Peak 
PO 
(W) 

MOD 
PO 
(W) 

HVY 
PO 
(W) 

MEAN 23 79 1.81 51.9 2.2 351 112 225 
SD 4 10 0.06 5.7 0.3 47 18 27 
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Table 3.2. Kinetic parameter estimates for VO2p and [HHb]  

  Intervention 

 Control MOD2-N MOD1+HYPO MOD2+HYPO 

τVO2p (s) 26 ± 7 20 ± 5* 34 ± 14*† 30 ± 8*† 

TD VO2p (s) 12 ± 6 14 ± 3 9 ± 8 10 ± 8 

CI95 τVO2p (s) 2 ± 1 3 ± 1 3 ± 1 3 ± 1 

VO2pBSLN (L·min-1) 1.07 ± 0.18 1.20 ± 0.16* 1.05 ± 0.19† 1.27 ± 0.21*‡ 

VO2pAMP (L·min-1) 0.95 ± 0.22 0.89 ± 0.24* 0.97 ± 0.23† 0.90 ± 0.24‡ 

VO2pSS (L·min-1) 2.02 ± 0.23 2.09 ± 0.19 2.02 ± 0.21 2.17 ± 0.23*‡ 

O2 Deficit (mL) 638 ± 144 529 ± 196* 783 ± 184*† 643 ± 193†‡ 

τ[HHb] (s) 12 ± 4 17 ± 5* 15 ± 3* 17 ± 4* 

TD [HHb] (s) 10 ± 2 7 ± 3* 10 ± 2 8 ± 3* 

τ'[HHb] (s) 22 ± 6 24 ± 7 25 ± 3 24 ± 5 

CI95 τ[HHb] (s) 1 ± 1 1 ± 1 2 ± 1 1 ± 1 

[HHb]BSLN (µM) 24.2 ± 12.0 20.1 ± 10.8* 25.7 ± 12.1*† 22.4 ± 10.6‡ 

[HHb]AMP (µM) 9.5 ± 9.3 16.3 ± 14.1* 10.3 ± 8.3† 14.7 ± 13.6* 

[HHb]SS (µM) 33.8 ± 19.8 36.4 ± 21.4 36.1 ± 19.2 37.1 ± 21.5 

[HHb]/VO2 Ratio 1.06 ± 0.04 1.00 ± 0.05* 1.10 ± 0.09† 1.09 ± 0.07† 

 
Values are means ± SD; τVO2p, phase II VO2p time constant; TD VO2p, time delay VO2p; 

CI95 τVO2p, 95% confidence interval for τVO2p; VO2pBSLN, VO2p baseline; VO2pAMP, VO2p 

amplitude; VO2pSS, steady-state VO2p; τ[HHb], [HHb] time constant; TD [HHb], 

calculated time delay for [HHb]; τ’[HHb], effective response time for [HHb] (calculated 

as τ∆[HHb]+TD [HHb]); CI95 [HHb], 95% confidence interval for [HHb]; [HHb]BSLN, 

[HHb] baseline; [HHb]AMP, [HHb] amplitude; [HHb]SS, steady-state [HHb]; *, p<0.05 

from Control; †, p<0.05 from MOD2-N; ‡, p<0.05 from MOD1+HYPO. 
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Table 3.3. Kinetic parameter estimates for HR and O2Sat 

  Intervention 

 Control MOD2-N MOD1+HYPO MOD2+HYPO 

τHR (s) 28 ± 11 44 ± 25* 34 ± 14* 44 ± 18*‡ 

CI95 τHR (s) 2 ± 1 4 ± 1 4 ± 2 4 ± 2 

HRBSLN (bpm) 89 ± 10 109 ± 13* 91 ± 11† 112 ± 14*‡ 

HRAMP (bpm) 28 ± 8 21 ± 8* 34 ± 9*† 27 ± 9†‡ 

HRSS (bpm) 117 ± 12 130 ± 15* 125 ± 13* 139 ± 15*†‡ 

O2SatBSLN (%) 97 ± 1 97 ± 1 91 ± 3*† 91 ± 2*† 

O2SatSS (%) 97 ± 1 97 ± 1 87± 4*†§ 87 ± 3*†§ 

 
Values are means ± SD; τHR, HR time constant; CI95 τHR, 95% confidence interval for 

τHR; HRBSLN, HR baseline; HRAMP, HR amplitude; HRSS, steady-state HR; O2SatBSLN, 

baseline arterial O2 saturation; O2SatSS, steady-state arterial O2 saturation; *, p<0.05 from 

Control; †, p<0.05 from MOD2-N; ‡, p<0.05 from MOD1+HYPO; §, p<0.05 from 

condition-specific O2SatBSLN. 
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Figure 3.1. Schematic of three exercise protocols: MOD1-HVY-MOD2-N; MOD1+HYPO; and MOD1-HVY-MOD2+HYPO. Gas 

switch denoted by vertical dashed line. 
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Figure 3.2. Comparison of individual (○) and mean (●) τVO2p values for MOD2-N vs. Control; MOD1+HYPO vs. Control; and 

MOD2+HYPO vs. Control. Error bars are SD. The line of identity is represented by the dashed line. 
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Figure 3.3. Group mean (± SD) adjustments of [HHb] (○) and VO2 (∆) (Panel 1; 

normalized % response) and [HHb]/VO2 (○) (Panel 2) during the on-transient to MOD 

averaged across subjects during Control, MOD2-N, MOD1+HYPO, and MOD2+HYPO. 

Filled circles in Panel 1 denote a significantly greater percent of adjustment for [HHb] 

compared to VO2 at a given time-point (p<0.05). Dashed vertical lines denote the 

beginning and end of mismatch between (%) [HHb] and VO2. 
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Figure 3.4. Normalized (i.e., 0-100% of MOD1) second-by-second group mean [HHb] 

response (solid dark line) along with the second-by-second arterial O2 saturation (O2Sat; 

%; dashed light line) for each of MOD1-HVY-MOD2-N (FiO2 = 20.9%); MOD1+HYPO 

(FiO2 = 15%); and MOD1-HVY-MOD2+HYPO (FiO2 = 15%). 
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DISCUSSION 

This study sought to examine the separate and combined effects of heavy-intensity 

‘priming’ exercise (HVY) and acute, mild hypoxia (HYPO; FiO2 = 15%) on VO2p 

kinetics and the [HHb]/VO2 ratio during the on-transient of a subsequent bout of 

moderate-intensity exercise (MOD). The main findings were that: 1) HVY improved the 

matching of local O2 delivery to O2 utilization (i.e., abolished the significant [HHb]/VO2 

overshoot observed in Control) such that τVO2p was reduced from ~26 s under control 

conditions to ~20 s following HVY; 2) HYPO slowed the adjustment of VO2p at the onset 

of MOD; this was associated with a significant overshoot in the [HHb]/VO2 ratio 

(implying an appreciable mismatch between local O2 delivery and O2 utilization); 3) the 

present data (unchanged O2 deficit and [HHb]/VO2 overshoot in MOD2+HYPO 

compared to Control) do not support a role for either augmented metabolic substrate 

provision nor enzyme activation in the reductions in τVO2p commonly observed with 

HVY alone; 4) cumulatively, the present study suggests that local muscle O2 delivery 

plays a determining role of τVO2p under control conditions in young, healthy humans 

(when τVO2p > ~20 s). 

Precisely which mechanism(s) limit the rate of adjustment of VO2p at the onset of 

MOD in healthy, young humans performing upright cycling exercise remains a topic of 

debate in current literature. The possible factors most often considered include O2 

availability and metabolic substrate provision and enzyme activation. Poole et al. (2008) 

have proposed that there is a point beyond which VO2 kinetics is O2 dependent such that 

the provision of O2 becomes limiting and thus τVO2 is lengthened; yet, this proposal has 
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yet to be fully confirmed by a demonstration that provision of ‘additional’ O2 resolves 

any potential O2 delivery limitation. 

In recent years, NIRS-derived ∆[HHb] (and [HHb]), a proxy for tissue O2 

extraction, has been used to advance understanding of the balance between local muscle 

O2 delivery to O2 utilization. Specifically, Murias et al. (2010) demonstrated that 

speeding of τVO2p following 3 weeks of endurance training in young men was related to 

an improved O2 distribution within the peripheral microvasculature. This position was 

supported by the abolishment of the transient ∆[HHb]/VO2 overshoot (indicating 

increased reliance on O2 extraction for a given VO2) observed pre-training; importantly, 

once τVO2p values were reduced to ~20 s, no further speeding of VO2 kinetics was 

observed despite 9 weeks of additional training. More recently, we demonstrated in a 

group of young men that those individuals with the greatest τVO2p values also presented 

with the largest mismatch between microvascular O2 delivery and O2 utilization, again 

represented as the greatest ∆[HHb]/VO2 overshoot (Murias et al. 2011c). Furthermore, no 

∆[HHb]/VO2 overshoot was observed when data from those with τVO2p < 21 s were 

grouped. Most recently (Murias et al. 2011a), we demonstrated that the reduction in 

τVO2p (to ~20 s) following HVY is well correlated with the abolishment of a modest but 

significant ∆[HHb]/VO2 overshoot observed under control conditions. Nevertheless, 

because a role for augmented intracellular metabolic substrate provision in the 

determination of τVO2p was not explicitly precluded by Murias et al. (2011a), the specific 

role of “enhanced” local muscle (and bulk) O2 delivery remain somewhat in question. As 

a result, we sought to examine both the separate and combined effects of HVY and 

HYPO on the adjustment of VO2p during MOD. 
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Independent effects of heavy ‘priming’ exercise on VO2 kinetics:  

In the present study, under Control conditions, τVO2p was ~26 s and was 

associated (r = 0.79) with a modest, but significant [HHb]/VO2 overshoot (1.06 ± 0.04). 

Heavy-intensity ‘priming’ exercise simultaneously abolished this [HHb]/VO2 overshoot 

(1.00 ± 0.05) and reduced τVO2p to ~20 s (in MOD2-N). As such, the present study 

confirms the findings reported previously by Murias et al. (2010; 2011a; 2011c) and 

directly supports the notion of an O2 delivery dependence/independence “threshold” for 

the determination of τVO2p. Furthermore, the present data suggest that this “threshold” 

likely resides near τVO2p ~20 s. A recent study by Grassi et al. (2011) nicely illustrates 

the mechanism likely limiting τVO2p once an O2 delivery limitation has been removed (or 

was absent); that a significantly faster adjustment of VO2 was observed under acute CK 

inhibition in an in situ, pump-perfused canine skeletal muscle preparation suggests that 

the CK-catalyzed breakdown of PCr at the onset of exercise attenuates the rise in ADP 

concentration such that activation of oxidative phosphorylation is slowed. It remains 

likely that factors related to both metabolic substrate provision and O2 transport are 

interacting to regulate the rate of adjustment of VO2; nevertheless, when τVO2p > ~20 s in 

young, healthy men, the present data suggest that the rate of adjustment of VO2 is 

primarily limited by provision of O2. 

Importantly, in addition to the abolished [HHb]/VO2 overshoot in MOD2-N 

(suggesting an improved matching of O2 delivery to O2 utilization during the exercise on-

transient), the present study also demonstrated higher HRBSLN and HRSS values as well as 

lower [HHb]BSLN in MOD2-N (compared to Control). Whereas the former observations 

(i.e., increased HRBSLN and HRSS) strongly suggest augmented “bulk” O2 delivery 
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(though neither cardiac output nor leg blood flow were specifically measured) as a result 

of the HVY intervention, the latter observation implies improved local muscle O2 

delivery as well. A lower reliance on microvascular O2 extraction immediately prior to 

the onset of MOD2-N (i.e., lower [HHb]BSLN) necessarily implies enhanced local O2 

delivery, particularly when considering the incomplete recovery of VO2p in the 6 minutes 

following HVY (Table 3.2). Cumulatively, these findings demonstrate that both bulk and 

local muscle O2 delivery were augmented as a result of the HVY intervention (i.e., in 

MOD2-N). Although markers of intracellular metabolic substrate provision and enzyme 

activation were not directly measured in the present study, to date the only paper that has 

shown an association between the HVY intervention and elevated metabolic activity is 

that of Gurd et al. (2006); importantly, the increased enzyme activity (PDH) was not 

correlated to changes in τVO2p. 

Independent effects of acute hypoxia on VO2 kinetics: 

Acute hypoxia acts to reduce the PaO2 by reducing the diffusion gradient across 

the pulmonary capillary membrane. Depending upon the severity of the hypoxic exposure 

(i.e., FiO2), a compensatory increase in bulk blood flow may be expected; indeed, 

DeLorey et al. (2004b) reported a trend for increased leg blood flow under hypoxic 

conditions (FiO2 = 12%) in a group of healthy, young individuals. Though neither leg 

blood flow nor cardiac output were measured in the present study, changes in HR were 

used to provide insights into changes in bulk O2 delivery; it must be noted that changes in 

bulk O2 delivery can result from active redistribution, even in the absence of changes to 

HR. Interestingly, despite a significant reduction in O2SatBSLN (reflecting a drop in PaO2) 

in MOD1+HYPO compared to Control, no compensatory increase in HRBSLN was 
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observed; cumulatively, these data suggest that bulk O2 delivery was, indeed, reduced by 

HYPO (during 20 W baseline cycling). Further, the observation of a significantly greater 

[HHb]BSLN value concomitant with an unchanged VO2pBSLN provides strong evidence that 

in addition to bulk O2 delivery, local muscle O2 delivery was also reduced prior to the 

exercise on-transient. 

In agreement with several previous studies (Engelen et al. 1996; Hughson and 

Kowalchuk 1995; Murphy et al. 1989; Perrey et al. 2005; Xing et al. 1991), the present 

data demonstrate that HYPO slows τVO2p during the on-transient of MOD. In addition to 

the inflated τVO2p values observed in MOD1+HYPO (34 ± 14 s) compared to Control 

(26 ± 7 s), this conclusion was further corroborated by the significant increase in the 

magnitude of the O2 deficit (from 638 ± 144 mL to 783 ± 184 mL) with HYPO. Further, 

the [HHb]/VO2 ratio tended (p=0.13) to be greater in MOD1+HYPO (1.10 ± 0.09) than in 

Control (1.06 ± 0.04), suggesting that the dynamic matching of O2 delivery to O2 

utilization was poorer during the MOD1+HYPO exercise on-transient as compared to 

Control. This interpretation is congruent with other interventions that impair O2 delivery 

(e.g., β-adrenergic blockade (Hughson 1984; Hughson and Kowalchuk 1991); exercise in 

the supine position (MacDonald et al. 1998)). 

Parolin et al. (2000) reported that HYPO was associated with a slowed activation 

of PDH during the exercise on-transient; thus, some may question whether the HYPO-

related slowing of τVO2p was a result of diminished O2 availability or slowed enzyme 

activation. It could be suggested that the modest but significant slowing of τ[HHb] 

(despite unchanged TD [HHb] and τ’[HHb]) in MOD1+HYPO compared to Control 

points to a slower intracellular metabolic adjustment; yet, given that τ[HHb] is still more 
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than twice as fast as τVO2p in this experimental condition, a role for insufficient 

metabolic substrate provision or slowed enzyme activation in the determination of τVO2p 

is far from established. Indeed, prior activation of PDH (through administration of 

dichloroacetate) has failed to demonstrate significant reductions in τVO2p during upright 

cycling (Koppo et al. 2004; Rossiter et al. 2003), and when elevated PDH activity was 

reported following HVY, the correlation between PDH activity and τVO2p was non-

significant (Gurd et al. 2006); thus, evidence for PDH playing a rate-limiting role in the 

determination of τVO2p is nonexistent. Notwithstanding the conclusions of Parolin et al. 

(2000), the trend for a greater [HHb]/VO2 overshoot observed during MOD1+HYPO 

compared to Control in the present study suggests that an exaggerated O2 delivery 

limitation was present. Thus, while the present study confirms the findings of many 

others (Engelen et al. 1996; Hughson and Kowalchuk 1995; Murphy et al. 1989; Perrey et 

al. 2005; Xing et al. 1991), it also suggests that the HYPO-associated slowing in the 

adjustment of VO2p was related to poorer O2 availability, and not necessarily a slowed 

activation of PDH. 

Combined effects of heavy ‘priming’ exercise and acute hypoxia on VO2 kinetics: 

A primary aim of the present study design was to isolate augmented “intracellular 

factors” related to metabolic substrate provision and enzyme activation, in the absence of 

improved O2 availability. The combination of HYPO and HVY interventions should be 

expected to isolate any possible metabolic substrate provision or metabolic enzyme 

activation limitations, in the absence of improved O2 delivery, provided that the HYPO 

was not too severe; that is, the effects of HYPO (i.e., reduced PaO2) would act to blunt the 

increased perfusion that resulted from HVY.  



84 

 

Prior to MOD2+HYPO, the HRBSLN was significantly greater than under Control 

conditions; yet, the nearly identical HRBSLN responses in MOD2-N and MOD2+HYPO 

implies that the increase from Control was the result of the HVY intervention, with no 

added effect of HYPO. Thus, in light of the significantly lower O2SatBSLN in 

MOD2+HYPO compared to MOD2-N, it is clear that the MOD2+HYPO intervention 

was at least somewhat effective at blunting the overall bulk O2 delivery response 

compared to the MOD2-N intervention alone. Based solely upon HR (and not cardiac 

output or leg blood flow measures), it would be imprudent to attempt to compare the bulk 

delivery under Control and MOD2+HYPO conditions. This is untrue, however, of the 

local muscle O2 delivery, where inferences can be drawn by considering the [HHb] 

signals. That [HHb]BSLN was similar between Control and MOD2+HYPO (Table 2, 

Figure 4) suggests that the increased perfusion (supported by the elevated HRBSLN and 

HRSS) associated with the HVY intervention was, indeed, essentially “nullified” by the 

lower O2 content resulting from HYPO such that local muscle O2 delivery was potentially 

similar to that present in Control.  

Given the probable (or at the very least possible) similarities in local muscle O2 

delivery when considering the Control and MOD2+HYPO conditions, it seems 

reasonable to conclude that any speeding of τVO2p in the latter condition (relative to the 

former) would be the result of augmented metabolic substrate provision or elevated 

enzyme activity. Indeed, if the HVY intervention alone (i.e., MOD2-N) was acting to 

speed τVO2p primarily by improving these “intracellular factors” (rather than by 

improving O2 delivery), then the addition of HYPO following HVY (i.e., MOD2+HYPO) 

would not be expected to alter the reduction in τVO2p commonly associated with HVY 
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alone (i.e., τVO2p should be similarly reduced in the MOD2-N and MOD2+HYPO 

conditions). In contrast, however, the present data provided no evidence of an “O2 

delivery independent” speeding of τVO2p. While τVO2p was, in fact, slowed during 

MOD2+HYPO (compared to Control), examination of Figure 2C reveals that in 7 of 10 

subjects the change in τVO2p from Control was ≤ 3 s. That the O2 deficit was virtually 

identical when comparing the Control and MOD2+HYPO conditions only strengthens 

support of the present conclusions. Finally, though the [HHb]/VO2 ratio may “appear” 

larger in the MOD2+HYPO condition (compared to Control), this difference was not 

significant; this finding suggests that the dynamic matching of O2 delivery to O2 

utilization was similar during the on-transients of Control and MOD2+HYPO. 

Conclusions: 

The present paper has confirmed previous findings that, when presented 

independently, HYPO and HVY slow and speed the adjustment of VO2p, respectively. 

Specifically, the present data suggest that the HVY intervention causes a reduction in 

τVO2p by improving the matching of local O2 delivery with muscle O2 utilization. 

Furthermore, this study has shown that the HYPO-related slowing of τVO2p is likely as a 

result of impaired O2 delivery rather than a slowed activation of PDH. The present study 

was unable to provide any evidence of an O2 delivery independent speeding of τVO2p 

when these two interventions were combined; that is, ‘priming’ metabolic substrate 

provision or enzyme activation in the absence of improved O2 availability does not speed 

the adjustment of VO2p. As such, this novel condition indirectly implicates a critical role 

for augmented local muscle O2 delivery as the underlying cause of speeding of τVO2p 

when HVY is presented alone. This contention is supported by the abolishment of the 
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significant [HHb]/VO2 overshoot in Control compared to MOD2-N and a reduction in 

τVO2p from ~26 s to ~20 s. These findings confirm those of Murias et al. (2011a) and 

support the notion of an O2 delivery dependence/independence threshold for the 

determination of τVO2p which resides near τVO2p = 20 s (Murias et al. 2010; Murias et al. 

2011c). The recent findings of Grassi et al. (2011)  suggest that when an O2 delivery 

limitation is either rectified or altogether absent, τVO2p is limited by accumulation of 

ADP which is governed by the CK-catalyzed breakdown of PCr at exercise onset.  

The recent series of studies from our laboratory complement the “tipping point” 

model (Poole and Musch 2010) by illustrating that 1) impairments in O2 delivery appear 

to cause an additive increase in τVO2p beyond that imposed by the fundamental limitation 

of τVO2p (likely regulated by CK-catalyzed PCr hydrolysis); 2) provision of ‘additional’ 

O2 (through HVY) is capable of resolving an O2 delivery limitation and is responsible for 

the reduction in τVO2p; 3) this O2 delivery dependence limitation point exists very near to 

τVO2p = 20 s in a young, healthy population; and 4) young, healthy individuals are 

susceptible to this O2 delivery dependence limitation of τVO2p along with the diseased 

and the elderly.  
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CHAPTER IV: Effect of moderate-intensity work rate increment on phase II τVO2 

and functional gain 

 

INTRODUCTION 

An abrupt increase in work rate (WR) produces an instantaneous increase in adenosine 

triphosphate (ATP) hydrolysis and thus the requirement for ATP re-synthesis; however, 

the adjustment of oxidative phosphorylation (i.e., VO2 kinetics) towards the new steady-

state requirement is exponential, rather than immediate (Linnarsson 1974; Whipp and 

Wasserman 1972). This exponential adjustment is generally characterized by both its rate 

(quantified as the phase II pulmonary VO2 time constant; τVO2p) and the VO2p amplitude 

(i.e., ∆VO2p from baseline to steady-state VO2p) or VO2p functional gain (G = 

∆VO2p/∆WR). Based on early observations of similar τVO2p values (Whipp 1971) in 

response to different WR transitions within the moderate-intensity domain (i.e., below the 

estimated lactate threshold; θL) as well as on-/off-transient symmetry (Griffiths et al. 

1986; Paterson and Whipp 1991) in response to a single moderate-intensity exercise 

transition, it was believed that the characteristics of the VO2p kinetic response were 

independent of WR within the moderate-intensity domain (Linnarsson 1974; Whipp and 

Wasserman 1972).  

 The notion that the parameters describing VO2p kinetics within the moderate-

intensity domain are “WR independent” has not been thoroughly assessed.  The WR 

independence of the VO2p kinetics parameters has been challenged by the findings of 

several studies that have used a “double step” protocol in both young (Brittain et al. 2001; 

Hughson and Morrissey 1982; MacPhee et al. 2005) and older (Spencer et al. 2011a) 

adults. A feature shared amongst these studies is the observation of a greater τVO2p 

values (i.e., slower adjustments) and greater functional G when exercise is initiated from 
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an elevated WR, even within the moderate-intensity domain. As such, the primary focus 

of these studies (as well as that of Bowen et al. (2011)) was to elucidate the underlying 

cause of this slowing. Importantly, however, a consistent finding that has received 

somewhat less attention in the aforementioned studies was the principal cause of the 

trend (though not always significant) for smaller τVO2p values (i.e., faster adjustments) 

and smaller functional G when the WR increment is smaller (where the pre-transition 

WR was constant and relatively low (i.e., rest or 20 W)); that is, in each of these studies, 

a “lower step” (i.e., generally to a WR corresponding to ~45% of θL) was compared to a 

“full step” (i.e., generally to a WR corresponding to ~90% of θL) where transitions were 

initiated from identical (low) baseline WRs. A concern with these results is the 

particularly small WR increment of the “lower step” and whether the lower step VO2p 

kinetics parameters are accurate given the low signal-to-noise of the data. Wilkerson et 

al. (2004) have described the effects of WR on phase II τVO2p and functional G across a 

broad range of exercise intensity domains (i.e., from 60%θL to 120% of peak VO2), 

however, the effects of WR on VO2 kinetic parameters within the moderate-intensity 

domain have not yet been thoroughly described. Thus, the purpose of the present study 

was to systematically examine the role of WR increment (when initiated from a constant 

low WR of 20 W to five different moderate-intensity WRs between 50 and 130 W) on 

both τVO2p and functional G in a group of healthy, young adults. Further, with the 

hypothesis of both smaller τVO2p and functional G during transitions to lower WRs, we 

sought to investigate the potential mechanism(s) using measures of local muscle 

deoxygenation (to assess the balance between O2 delivery and O2 utilization), and to 
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determine whether this mechanism differed between those individuals who presented 

with fast compared to slow VO2p kinetics. 

METHODS 

Subjects: Fourteen young men (24 ± 5 yr; 80 ± 12 kg; 180 ± 6 cm; mean ± SD) 

volunteered and gave written consent to participate in the study. All procedures were 

approved by The University of Western Ontario Research Ethics Board for Health 

Sciences Research Involving Human Subjects. All subjects were non-smokers and were 

physically active. Additionally, no subjects were taking medications that would affect the 

cardiorespiratory or hemodynamic responses to exercise. 

Protocol: Initially, subjects reported to the laboratory to perform a ramp incremental test 

(25 W/min) to the limit of tolerance on a cycle ergometer (model: H-300-R Lode; Lode 

B.V., Groningen, Holland) for determination of peak VO2 (VO2peak) and θL. θL was 

defined as the VO2 at which CO2 output (VCO2) began to increase out of proportion to 

VO2 with a systematic rise in minute ventilation-to-VO2 ratio and end-tidal PO2 whereas 

minute ventilation-to-VCO2 ratio and end-tidal PCO2 were stable. Subsequent to the 

incremental test, subjects returned to the laboratory on 6 occasions during which a total 

of 4 repetitions of “step” changes in WR were completed per visit. During each visit, 

subjects completed a pair of successive moderate-intensity leg cycling transitions from a 

6 minute baseline WR of 20 W to 6 minute at a WR corresponding to one of 50 W, 70 W, 

90 W, 110 W or 130 W separated by 6 minutes of 20 W cycling; following 20 minutes of 

seated recovery, subjects continued on to complete a second pair of identical transitions. 

For each individual, the step transitions from 20 W to 130 W were performed first to 

verify that this WR was within the moderate-intensity domain (with the absence of a 
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VO2p slow component); after this visit, the order of the WR transitions was randomized. 

For the 20 W to 50 W transitions, a total of 8 repetitions (i.e., 2 visits) were performed, as 

smaller WR transitions have been associated with reduced signal-to-noise ratios and thus 

(perhaps) less confidence in parameter estimates; for all other WRs, 4 transitions (i.e., 1 

visit) were performed. We have previously shown that the effect of previous moderate-

intensity transitions on the VO2p kinetics response of subsequent moderate-intensity 

transitions is negligible (Spencer et al. 2011b). Each visit to the laboratory was separated 

by at least 24 hours. 

Measurements: Gas-exchange measurements were similar to those previously described 

(Babcock et al. 1994). Briefly, inspired and expired flow rates were measured using a low 

dead space (90 mL) bidirectional turbine (Alpha Technologies VMM 110) which was 

calibrated before each test using a syringe of known volume. Inspired and expired gases 

were continuously sampled (50 Hz) at the mouth and analyzed for concentrations of O2, 

CO2, and N2 by mass spectrometry (Innovision, AMIS 2000, Lindvedvej, Denmark) after 

calibration with precision-analyzed gas mixtures. Changes in gas concentrations were 

aligned with gas volumes by measuring the time delay for a square-wave bolus of gas 

passing the turbine to the resulting changes in fractional gas concentrations as measured 

by the mass spectrometer. Data were transferred to a computer, which aligned 

concentrations with volume information to build a profile of each breath. Breath-by-

breath alveolar gas exchange was calculated by using algorithms of Beaver et al. (1981). 

Local muscle deoxygenation profiles of the quadriceps vastus lateralis muscle 

were made with NIRS (Hamamatsu NIRO 300, Hamamatsu Photonics, Hamamatsu, 

Japan). Optodes were placed on the belly of the muscle midway between the lateral 
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epicondyle and greater trochanter of the femur. The optodes were housed in an optically-

dense plastic holder and secured on the skin surface with tape and then covered with an 

optically-dense, black vinyl sheet, thus minimizing the intrusion of extraneous light. The 

thigh was wrapped with an elastic bandage to minimize movement of the optodes. 

 The physical principles of tissue spectroscopy and the manner in which these are 

applied have been explained by DeLorey et al. (2003). Briefly, optodes were placed on 

the belly of the muscle midway between the lateral epicondyle and greater trochanter of 

the femur. The system consisted of both an emission probe that carries NIR light from the 

laser diodes and detector probe (interoptode spacing = 5 cm); optodes were housed in an 

optically-dense plastic holder and secured on the skin surface with tape and then covered 

with an optically-dense, black vinyl sheet, thus minimizing the intrusion of extraneous 

light. The thigh was wrapped with an elastic bandage to minimize movement of the 

optodes. Four laser diodes (λ = 775, 810, 850, and 910 nm) were pulsed in a rapid 

succession and the light returning from the tissue was detected by the photodiode for 

online estimation and display of the concentration changes from the resting baseline for 

oxyhaemoglobin (∆[HbO2]), deoxyhaemoglobin (∆[HHb]), and total haemoglobin 

(∆[Hbtot]). Changes in light intensities were recorded continuously at 2 Hz and 

transferred to a computer for later analysis. The NIRS-derived signal was zero set with 

the subject sitting in a resting steady-state on the cycle ergometer prior to the onset of 

baseline exercise and changes in the concentration are reported as a delta (∆) in arbitrary 

units (a.u.). 

Data analysis: VO2p data were filtered by removing aberrant data points that lay outside 4 

SD of the local mean; the justification for this filtering process was provided by Lamarra 
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et al. (1987), who demonstrated that “noise” observed within the VO2p signal conformed 

to a predictable Gaussian distribution, independent of WR. The data for each transition 

were linearly-interpolated to 1 s intervals and time-aligned such that time zero 

represented the onset of exercise. Data from all same-WR transitions were ensemble-

averaged to yield five averaged responses for each subject (i.e., one for each WR). These 

transitions were further time-averaged into 5 s bins to provide five time-averaged 

responses for each subject. (Ensemble- and time-averaged responses for 20 W to 50 W 

transitions using only 4 and only 6 transitions were also generated in addition to that 

generated using all 8 transitions.) Baseline VO2p (VO2pBSLN) was calculated as the 

average VO2p collected in the 2 minutes before an increase in WR. The on-transient 

responses for VO2p were modeled using the following equation:  

Y(t) = YB + A (1 – e-(t-TD)/τ); [Equation 1] 

where Y(t) represents the VO2p for any given time; YB is the VO2p at baseline; A is the 

amplitude of the VO2p response; t is a given amount of time; τ represents the time 

required to attain 63% of the steady-state amplitude; and TD represents the time delay.   

After excluding the initial 20 s of data (which, while not necessarily reflecting the 

exact duration of the ‘cardiodynamic phase’ in each individual, is most likely to avoid 

inclusion of data points from Phase I VO2p in the fitting of Phase II VO2p (Murias et al. 

2011a)), while still allowing TD to vary freely (in order to optimize accuracy of 

parameter estimates), VO2p data were modeled from 20 s to 4 min (240 s) of the step-

transition; this ensured that each subject had attained a VO2p steady-state (VO2pSS), yet 

did not bias the model fit during the on-transient (Bell et al. 2001; Murias et al. 2011a). 

The model parameters were estimated by least-squares nonlinear regression (Origin, 
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OriginLab Corp., Northampton, MA, USA) in which the best fit was defined by 

minimization of the residual sum of squares and minimal variation of residuals around 

the Y-axis (Y = 0). The 95% confidence interval of for the estimated time constant (CI95 

τVO2p) was determined after preliminary fit of the data with YB, A, and TD constrained 

to the best-fit values and the τ allowed to vary. 

In order to investigate whether the changes in τVO2p and functional G (and the 

mechanism(s) underlying these changes) differed between those individuals who 

presented with fast compared to slower VO2p kinetics, the sample was sub-divided into 

two groups. A “cut-off” of τVO2p = 25 s (during transitions to 130 W) was selected to 

separate the two groups. 

Five NIRS-derived ∆[HHb] responses (i.e., one for each WR) were generated for 

each subject. The ∆[HHb] profile has been described to consist of a time delay at the 

onset of exercise, followed by an increase in the signal with an “exponential-like” time-

course (DeLorey et al. 2003). The time delay for the ∆[HHb] response (TD ∆[HHb]) was 

determined using second-by-second data and corresponded to the time, after the onset of 

exercise, at which the ∆[HHb] signal began a systematic increase from its nadir value. 

Determination of the TD ∆[HHb] was made on individual trials and averaged to yield a 

value for each individual in each of the five “conditions.” The ∆[HHb] data were 

modeled from the end of the TD ∆[HHb] to 90 s of the transition using an exponential 

model as described in Equation 1. As previously described by duManoir et al. (2010), 

different fitting strategies (i.e. 90-180 s) resulted in minimal differences (< 2 s) in 

estimates of the ∆[HHb] time constant (τ∆[HHb]) and the early exponential increase in 

∆[HHb] was well-characterized in the 90 s following exercise onset. The τ∆[HHb] 
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described the time course for the increase in ∆[HHb], while the overall change of the 

effective ∆[HHb] (τ’∆[HHb] = TD ∆[HHb] + τ∆[HHb]) described the overall time course 

of the ∆[HHb] from the onset of exercise. 

Additionally, the second-by-second ∆[HHb] and VO2p data were normalized for 

each subject (0%, representing the 20 W baseline value, and 100%, representing the post-

transition steady-state of the response). The normalized VO2p was left shifted by 20 s to 

account for the approximate phase I-phase II transition so that the onset of exercise 

coincided with the beginning of phase II VO2p (Murias et al. 2011c), which has been 

previously described to coincide with muscle VO2 within 10% (Grassi et al. 1996). 

Following normalization and time-alignment, data were further averaged into 5 s bins for 

statistical comparison of the rate of adjustment for ∆[HHb] and VO2p. Additionally, an 

overall ∆[HHb]/VO2 ratio for the adjustment during the exercise on-transient was derived 

for each individual as the average value from 20-120 s into the transition. The start point 

was selected to be 20 s to begin the analysis at the time region when the ∆[HHb] and 

VO2p signals meet, reflecting the TD ∆[HHb] and early adjustment of ∆[HHb]. An end 

point of 120 s was selected as the time point at which the ∆[HHb]/VO2 ratio had reached 

a steady-state value of 1.0.  

Statistics: Data are presented as means ± SD. Independent samples t-tests were used to 

detect between group differences in subject characteristics. Two-way (WR and group) 

repeated measures analyses of variance (ANOVA) were used to determine statistical 

significance for the dependent variables (i.e., VO2p and ∆[HHb] kinetic parameter 

estimates). Tukey’s post-hoc analysis was used when significant differences were 

detected for the main effects of each dependent variable. Determination of whether a 
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∆[HHb]/VO2 ratio overshoot was significant was based upon a comparison (t-test) of the 

WR- or WR*group-specific mean with a value of 1.0 (with no associated error). 

Pearson’s product-moment correlation coefficients were used to quantify the strength of 

relationships between variables. All statistical analyses were performed using SPSS 

Version 19.0, (SPSS Inc., Chicago, IL).  Statistical significance was declared when 

p<0.05. 

 

RESULTS 

Subject characteristics are presented in Table 4.1. Subjects’ peak WR was 361 ± 37 W, 

which yielded a VO2peak of 4.13 ± 0.40 L·min-1. When the sample (n=14) was sub-divided 

into those with Fast (τVO2p at 130 W < 25 s; n = 6) and Slower (τVO2p at 130 W > 25 s; 

n = 8) VO2p kinetics, no between-group differences (p>0.05) were observed among any 

of these characteristics. 

 Figure 4.1 depicts the mean VO2p kinetic parameter estimates for each of the five 

constant load WRs. VO2pBSLN was consistent both amongst WRs and between groups 

(p>0.05). Whereas no between-group differences were observed in the VO2p amplitude 

(VO2pAMP) response, there was a significant main effect of WR (p<0.05) such that each 

progressive increase in WR yielded a significantly greater VO2pAMP response. A 

consequence of invariant VO2pBSLN values, along with progressively increasing VO2pAMP 

values with increasing WRs, was a progressively increasing VO2pSS response (p<0.05; not 

depicted in Figure 4.1); this response did not differ between Fast and Slower groups 

(p>0.05). There was a significant increase (p<0.05) in functional G during transitions to 

increasing WRs within the moderate-intensity domain; this finding was not associated 
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with any between-group differences (p>0.05). When considered as a single group, there 

was no main effect of WR on τVO2p; however, both a main effect for group (i.e., Fast vs. 

Slower, p<0.05) and a WR*group interaction (p<0.05) were observed. Post-hoc 

comparisons revealed significantly greater τVO2p during transitions to 110 and 130 W 

(by design) in the Slower group, but not for transitions to 50, 70, and 90 W; these 

findings suggest a trend for increasing τVO2p values during transitions to a higher WR in 

the Slower group which was absent in the Fast group (or decreasing τVO2p values during 

transitions to a higher WR in the Fast group which was absent in the Slower group); 

subsequent one-way ANOVA with repeated measures analyses were underpowered to 

detect significant differences within either group. Transitions to greater WRs were 

associated with decreased 95% confidence intervals for τVO2p (CI95 τVO2p; p<0.05). 

 The effects of transition WR magnitude on ∆[HHb] kinetic parameter estimates 

are displayed in Figure 4.2. As was the case with the VO2p response, there was no main 

effect (p>0.05) of WR on baseline ∆[HHb] (∆[HHb]BSLN); the between group difference 

observed (p<0.05) is of little consequence, since the (∆) units are arbitrary. Greater WR 

transitions were associated with reduced 95% confidence intervals for the τ∆[HHb] (CI95 

τ∆[HHb]; p<0.05), as well as greater (p<0.05) ∆[HHb] amplitudes (∆[HHb]AMP) and 

steady-state ∆[HHb] (∆[HHb]SS) responses; again, the between group differences 

(∆[HHb]AMP and ∆[HHb]SS; p<0.05) and WR*group interaction (∆[HHb]AMP; p<0.05) are 

inconsequential. Modest but significant reductions in both τ∆[HHb] and TD ∆[HHb] 

were observed with increasing WR transitions (p<0.05); as a result, reductions in 

τ’∆[HHb] were also observed with increasing WR transitions (p<0.05). Whereas a main 

effect of group was observed for τ∆[HHb] (with Slower having a greater τ∆[HHb] 
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response), this between group difference was absent in both the TD ∆[HHb] and 

τ’∆[HHb] responses. 

 No effect of WR was observed with respect to the ∆[HHb]/VO2 ratio (p>0.05); a 

main effect of group was identified (p<0.05) such that the Slower group had a 

significantly greater ∆[HHb]/VO2 ratio than the Fast group. Furthermore, the 

∆[HHb]/VO2 ratio observed in the Fast group did not differ (p>0.05) from 1.0 during 

transitions to any WR. Cumulatively, these findings suggest that whereas the Slower and 

Fast groups may have differences in their reliance on O2 extraction to support a given 

VO2 (with greater and lesser “overshoots” in the ∆[HHb]/VO2 ratio, respectively) during 

the exercise on-transient (and therefore, τVO2p may be limited by a different mechanism), 

there is no influence of WR on this relationship. 

Table 4.2 illustrates the effects of performing “additional” repetitions of small 

WR transitions (e.g., 20 W to 50 W) on VO2p kinetic parameter estimates. Briefly, no 

differences (p>0.05) in any of VO2pBSLN, VO2pAMP, VO2pSS, functional G and τVO2p were 

observed when parameters were derived from the average of 4, 6 or 8 repetitions. 

Performing either 6 or 8 repetitions yielded significant reductions in the CI95 τVO2p 

compared to performing only 4  (p<0.05; p=0.13 between 6 and 8 repetitions). Indeed, as 

shown in Figure 4.1, even with 8 repetitions the confidence in the τVO2p, (and τ∆[HHb] 

as shown in Figure 4.2) is 2 to 3 fold greater for the 50 W WR versus WRs above 100 W. 
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Table 4.1. Subject characteristics 

 ALL (n=14) Fast (n=6) Slower (n=8) 

Age (yrs) 24 ± 5 27 ± 7 22 ± 2 

Mass (kg) 80 ± 12 76 ± 6 83 ± 14 

Height (m) 1.80 ± 0.06 1.81 ± 0.07 1.80 ± 0.05 

VO2peak (L·min-1) 4.13 ± 0.40 4.28 ± 0.21 4.03 ± 0.48 

Peak WR (W) 361 ± 37 374 ± 17 352 ± 46 

θL (L·min-1) 2.41 ± 0.20 2.43 ± 0.05 2.39 ± 0.27 

WR at θL (W) 159 ± 18 162 ± 5 158 ± 24 

 
Values are mean ± SD. 
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Table 4.2. VO2p kinetic parameter estimates for 20 W to 50 W transitions when 4, 6 or 8 

transitions were ensemble-averaged. 

 Number of repetitions 

 4 6 8 

VO2pBSLN (L·min-1) 0.92 ± 0.08 0.92 ± 0.09 0.92 ± 0.09 

VO2pAMP (L·min-1) 0.26 ± 0.04 0.26 ± 0.04 0.26 ± 0.04 

VO2pSS (L·min-1) 1.19 ± 0.09 1.18 ± 0.09 1.18 ± 0.08 

G (mL·min-1·W-1) 8.7 ± 1.3 8.5 ± 1.3 8.6 ± 1.4 

τVO2p (s) 31.3 ± 14.1 27.2 ± 10.6 28.1 ± 9.3 

CI τVO2p (s) 8.3 ± 2.4 6.6 ± 1.4* 6.1 ± 1.4*† 

TD VO2p (s) 5.3 ± 10.2 10.4 ± 6.2* 10.2 ± 5.9* 

 
Values are mean ± SD. *, p < 0.05 from 4 repetitions; †, p = 0.13 from 6 repetitions. 
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Figure 4.1. Mean (±SD) VO2p kinetic parameter estimates for transitions from 20 W to 

50, 70, 90, 110 and 130 W in All subjects (●). *, p<0.05 from 50 W; #, p<0.05 from 70 

W; †, p<0.05 from 90 W; ‡, p<0.05 from 110 W. Fast (∆) and Slow (□) groups are 

depicted when main effect of GROUP ($, p<0.05) or WR*GROUP interaction (§, p<0.05) 

were detected. 
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Figure 4.2. Mean (±SD) ∆[HHb] kinetic parameter estimates for transitions from 20 W to 

50, 70, 90, 110 and 130 W in All subjects (●). *, p<0.05 from 50 W; #, p<0.05 from 70 

W; †, p<0.05 from 90 W; ‡, p<0.05 from 110 W. Fast (∆) and Slow (□) groups are 
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depicted when main effect of GROUP ($, p<0.05) or WR*GROUP interaction (§, p<0.05) 

were detected. 
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DISCUSSION 

The present study sought to systematically examine the role of WR increment (when 

initiated from a constant low WR of 20 W) on both τVO2p and functional G in a group of 

healthy, young adults. Further, with the hypothesis of both smaller τVO2p and functional 

G during transitions to lower WRs, we sought to investigate the potential mechanism, and 

to determine whether this mechanism differed between those individuals who presented 

with fast compared to slow VO2p kinetics. The main findings of the study were that: 1) 

during transitions to different WRs within the moderate-intensity domain, no differences 

in τVO2p were observed in this group of subjects (τVO2p ≈ 27 s); 2) when the sample was 

sub-divided into two groups, there was an interaction between WR increment and group 

such that the τVO2p responses were divergent between the Fast and Slower groups, with 

only the Slower group showing evidence of conformity to WR-dependent alterations in 

τVO2p previously reported in the literature (i.e., in studies comparing a “lower step” to a 

“full step”); 3) the ∆[HHb]/VO2 ratio was smaller in the Fast compared to Slower group 

(suggesting that the primary determinant of τVO2p differs between groups), but was not 

affected by WR (suggesting that the divergent τVO2p responses between Fast and Slower 

groups may not have been the result of O2 availability during the exercise on-transient); 

4) functional G was progressively greater during transitions of increasing WR increment; 

this was true for (and similar between) both the Fast and Slower groups, possibly 

suggesting that the mechanism(s) controlling the magnitude and the rate of the VO2p 

response to a given WR transition may be dissociated; and 5) performing either 6 or 8 

compared to 4 repetitions of small (i.e., 20 W to 50 W) WR transitions improved the 
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confidence in the estimation of τVO2p, yet, there were no changes in other key VO2p 

kinetic parameter estimates. 

 The present study was designed to elicit like VO2pBSLN values amongst the 

different (WR) conditions, as well as progressively greater VO2pAMP and VO2pSS values 

during transitions to greater WRs; as such, these findings reported in Figure 5.1 were to 

be expected. Thus, this discussion attempts to sort out the interrelations among three 

important findings of the present study, namely: i) divergent τVO2p responses between 

Fast and Slower groups with respect to WR; ii) increasing functional G with increasing 

WR increments (irrespective of group); and iii) group differences in the ∆[HHb]/VO2 

ratio, but with no influence of WR. As mentioned, previous studies examining the effects 

of either WR increment or pre-transition WR have focused much of their attention on 

discussing the slower adjustment and greater functional G observed when work is 

initiated from either an elevated WR (Brittain et al. 2001; Hughson and Morrissey 1982; 

MacPhee et al. 2005; Spencer et al. 2011a) or an elevated metabolic rate (Bowen et al. 

2011); nevertheless, these discussions have identified three potential causes for these 

trends which will form the basis for the present discussion:  

i) an insufficient O2 delivery, leading to a slowing of the VO2 response during the 

exercise on-transient, was favoured by Hughson and Morrissey (1982) and later 

supported by MacPhee et al. (2005), but was largely refuted by the findings of 

Spencer et al. (2011a);  

ii) a hierarchical recruitment pattern favouring recruitment of the fastest kinetic, 

most efficient fibers to perform small WR transitions, leaving only those 

inherently slower kinetic, less efficient fibers to address the demands of a 
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subsequent increase in WR was proposed by Brittain et al. (2001); such a system 

would allow for an ‘intermediate’ rate of adjustment of VO2 and O2 cost (per unit 

increase in WR) during larger WR transitions;  

iii) the influence of a potentially less favourable energetic status (i.e., less negative 

changes in Gibb’s free energy; ∆GATP) resulting from either an elevated metabolic 

rate per se (i.e., irrespective of initial WR) (Glancy et al. 2008; Kemp 2008) or 

the fact that ∆GATP becomes progressively less negative throughout the transient 

(as [ADP] and [Pi] rise and [PCr] fall dynamically) and therefore demands an 

ATP turnover that continues to rise until the steady state is reached was favoured 

by Bowen et al. (2011).  

 Considering the well-established trend for smaller τVO2p values during “half-

steps” compared to “full-step” WR transitions within the moderate-intensity domain 

(when performed from a constant, low baseline WR) (Bowen et al. 2011; Brittain et al. 

2001; Hughson and Morrissey 1982; MacPhee et al. 2005; Spencer et al. 2011a), the 

finding of invariant τVO2p values in response to different moderate-intensity WRs in the 

present study was somewhat unexpected. However, when the present sample was sub-

divided to create Fast and Slower VO2 kinetics groups, their respective responses (with 

respect to increasing WR increment) were divergent. In this sense, the Slower group 

tended to conform to the trend established by previous studies. Indeed, in the studies of 

Brittain et al. (2001) and Spencer et al. (2011a), where ‘slow’ VO2 kinetics (τVO2p > 30 

s) were reported during large WR transitions within the moderate-intensity domain (90% 

of θL), significant reductions of τVO2p were reported during smaller WR transitions. In 

the study of MacPhee et al. (2005), in which the group mean τVO2p in response to a large 
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moderate-intensity WR increment was 28 ± 2 s (i.e., somewhat fast relative to those 

mentioned immediately above), a trend for faster adjustment (to τVO2p = 24 ± 3 s) during 

smaller WR increment transitions may be inferred, but this trend did not reach the level 

of statistical significance. In contrast, in a group with relatively fast VO2 kinetics, 

Wilkerson et al. (2004) reported no differences in τVO2p values derived from transitions 

to 60%θL (23.2±2.1 s) compared to 90%θL (21.8±2.3 s). Thus, in agreement with 

previous findings (albeit from different studies), the divergent responses between Fast 

and Slower groups suggest that if or when the adjustment of VO2p is already somewhat 

fast, there may be a reduced potential for further speeding (with smaller WR increments). 

The subject group of Bowen et al. (2011) might be characterized as “intermediate”, 

neither fast nor slow (τVO2p = 26 s), but did show a significantly reduced τVO2p (to 20 s) 

when the WR increment was small compared to large.     

 Dynamic changes in near infrared spectroscopy (NIRS) derived muscle 

deoxygenation (∆[HHb]) have been used extensively to provide insights into the balance 

between local muscle O2 availability and O2 utilization during exercise. During WR 

transitions in which ∆[HHb] adjusts more rapidly than VO2, what results is a transient 

period characterized by an increased (relative) reliance on O2 extraction to support a 

given metabolic rate; this temporary dissociation between the adjustments of ∆[HHb] and 

VO2 suggests a transient O2 delivery insufficiency. Thus, recent studies from our 

laboratory (Murias et al. 2010; Murias et al. 2011a; Murias et al. 2011c; Spencer et al. 

2012) have used the normalized ∆[HHb]/VO2 ratio as an index of the matching (and 

mismatching) of O2 delivery to O2 utilization during the exercise on-transient. 

Cumulatively, these studies suggest that when τVO2p < ~20 s, increases in τVO2p are the 
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result of progressively more severe O2 delivery limitations. In this light, it is not 

surprising that the ∆[HHb]/VO2 ratio was significantly different between the Fast and 

Slower groups. The present data do not support a role for an O2 delivery dependence 

limitation of τVO2p in the Fast group (where the ∆[HHb]/VO2 ratio is not significantly 

different from 1.0, implying no “mismatch” of O2 delivery to O2 utilization), but do 

support such a role in the Slower group (where the ∆[HHb]/VO2 ratio is significantly 

greater than 1.0, implying an appreciable “mismatch” between  O2 delivery to O2 

utilization); these findings are in agreement with our previous studies on the topic 

(Murias et al. 2010; Murias et al. 2011a; Murias et al. 2011c; Spencer et al. 2012). 

In the present study, the adjustment of ∆[HHb] (both τ∆[HHb] and τ’∆[HHb]) 

became progressively faster with increasing WR increments, and importantly, became 

faster than τVO2p for a given WR. As a result, we expected to observe a significantly 

greater mismatch between O2 delivery and O2 utilization (as reflected with a greater 

∆[HHb]/VO2 ratio) as WR increment increased. In fact, changes in the ∆[HHb]/VO2 ratio 

were not observed. The small changes in τVO2p and “noise” in the ∆[HHb]/VO2 ratio 

may make the index too insensitive to detect differences. Indeed, across all WR the 

“overall” relationship between the ∆[HHb]/VO2 ratio and τVO2p was robust (r = 0.71) 

and even stronger at the higher WRs (110 W, r = 0.88; 130 W, r = 0.91).  Nevertheless, 

the present data cannot be taken as supporting a role for O2 delivery as an explanation for 

the divergent τVO2p responses observed in the Fast and Slower groups; that is, implied 

increases in τVO2p with increasing WR increment (in the Slower group) are likely not 

related to increasingly insufficient O2 delivery. By essentially ‘ruling out’ a determining 

effect of O2 delivery on (potentially) changing τVO2p values, what remains are the 
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hypotheses related to fibre recruitment pattern or altered ATP turnover properties oweing 

to ∆GATP becoming progressively less negative throughout the transient. The present data 

do not permit us to speculate which of these two hypotheses are more likely.  

 In the present study, increasing WR increments were associated with increasing 

functional G; interestingly, whereas the τVO2p responses in the Fast and Slower groups 

were different (i.e., main effect of group) and divergent (i.e., WR*group interaction 

observed), the functional G showed no such influence of group. When considered in light 

of the group- but not WR-mediated differences in the ∆[HHb]/VO2 ratio, it seems clear 

that local muscle O2 delivery to O2 utilization dynamics do not explain the altered 

functional G in response to differing WRs. Again, this leaves either an orderly, 

hierarchical recruitment pattern or the fact that ∆GATP becomes progressively less 

negative throughout the transient as possible explanations for the WR-mediated 

differences in functional G. Taken alone, it is difficult to discern whether one of these 

two hypotheses is more likely to underlie the WR-mediated differences in functional G; 

however, neither hypothesis can presently accommodate both invariant τVO2p and 

simultaneous changes in functional G during transitions to different moderate-intensity 

WRs. The present data suggest, perhaps for the first time, that factors which determine 

τVO2p may be independent from factors which determine the functional G during 

moderate-intensity WR transitions of different magnitudes. 

 One potential problem in evaluating the role of WR transitions on the kinetics 

parameters is that smaller WR transitions are likely to have reduced signal-to-noise 

ratios, and thus, potentially reduced confidence in parameter estimates. Indeed, the 

present study confirmed the idea that transitions to progressively greater WRs (i.e., those 
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with a greater signal-to-noise ratio (Lamarra et al. 1987)) were associated with improved 

confidence in estimates of τVO2p (and τ∆[HHb], as reflected by the reduced CI95 for both 

τVO2p and τ∆[HHb]). To this end, Lamarra et al. (1987) were the first to establish that the 

effect of interbreath fluctuations (i.e., “noise”) could be dampened by averaging multiple 

transitions together when characterizing a signal with an inherently low sampling 

frequency (i.e., breath-by-breath gas exchange). Given that during small WR transitions, 

the VO2p “signal” is essentially fixed, the only available strategy for improving 

confidence in kinetic parameter estimates is to have subjects perform multiple repetitions 

in order to reduce the “noise”; however, to date, the precise number of transitions 

required for accurate characterization of small WR transitions has not been described. 

The present data illustrate that the inclusion of either 2 or 4 “additional” repetitions of 20 

W to 50 W transitions does not significantly affect any of the key VO2p kinetic 

parameters; yet, the inclusion of 2 “additional” (to a total of 6) repetitions significantly 

reduced the CI95 τVO2p, with no further reduction (p=0.13) by ensemble-averaging 8 

transitions. These findings add to those previously reported by our laboratory, showing 

that during transitions of ~100 W (i.e., 20 W to 120 W), the day-to-day reproducibility of 

τVO2p was not improved by averaging more than 3 repetitions (Spencer et al. 2011b).  

 In conclusion, this study presented novel data demonstrating a non-uniform effect 

of moderate-intensity WR increment on τVO2p, depending upon whether the entire group 

response was considered or if the divergent responses of the Fast and Slower groups were 

considered. Furthermore, this study demonstrated that increasing moderate-intensity WR 

increments elicits an increased functional G, regardless of the τVO2p response. Neither 

the divergent τVO2p responses nor the functional G appear to be related to the dynamic 
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matching of O2 delivery to O2 utilization during the exercise on-transient; yet, the 

observation of invariant τVO2p values with simultaneously increasing functional G in the 

overall (i.e., not group specific) response suggests that these features of the VO2 response 

may be controlled by separate mechanisms. 
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CHAPTER V: Characterizing the profile of muscle deoxygenation during ramp 

incremental exercise in young men 

 

INTRODUCTION 

The steady-state relationship between whole body cardiac output (Q) and whole body 

oxygen consumption (VO2) is presumed to be linear during constant load exercise when 

performed across a wide range of exercise intensities, such that a 1 L·min-1 increase in 

VO2 is accompanied by an approximately 5 L·min-1 increase in Q (above the ~5 L·min-1 

“intercept”) (Rowell 1986). Consequently, when plotted as a function of either increasing 

power output (PO), or increasing VO2, the profile of arterial-venous oxygen (O2) content 

difference (a-vO2diff) across the same range of exercise intensities would be expected to 

demonstrate a hyperbolic increase, since VO2 = Q·a-vO2diff. Yet, in contrast to constant 

load steady-state exercise, the notion of a linear Q-to-VO2 relationship has been 

challenged during ramp incremental exercise with the suggestion that it is, in fact, a-

vO2diff that demonstrates linearity as a function of increasing VO2 (Stringer et al. 1997; 

Stringer et al. 2005). 

 Irrespective of the whole body responses of Q and a-vO2diff, the adjustments of 

muscle blood flow and O2 extraction during exercise may be different in the periphery as 

a result of factors contributing to redistribution of blood flow. The use of near-infrared 

spectroscopy (NIRS) in exercising humans provides insights into the dynamic balance 

between local O2 delivery and O2 utilization within the microvasculature. In particular, 

changes in tissue deoxygenation (∆[HHb]) are considered a proxy for microvascular O2 

extraction (DeLorey et al. 2003). Most recently, Koga et al. (2011) illustrated the 

temporal similarities (measured as mean response time; MRT) in changes in 

microvascular partial pressure of O2 (PO2mv) and NIRS-derived [HHb] during electrically 
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stimulated contractions in the rat gastrocnemius. So, whereas the ∆[HHb] signal is 

thought to provide insights into the temporal characteristics of changes in microvascular 

O2 extraction during exercise, inferences into temporal changes in a-vO2diff can be 

reasonably made. While the NIRS derived ∆[HHb] signal is not measuring changes in a-

vO2diff, and therefore cannot be used as a substitute for a-vO2diff (because the 

proportional contributions of arterial and venous blood to the overall signal are 

unknown), the two have been shown to be related (Mancini et al. 1994).  

 In addition to the ∆[HHb] signal, virtually all commercially available NIRS 

systems offer continuous monitoring of tissue O2 saturation (Tissue Oxygenation Index; 

TOI), which is a ratio of the total oxyhaemaglobin ([HbO2]) to the sum of [HbO2 + HHb] 

(Ferrari et al. 2011). Characterization of the TOI signal using spatially resolved 

spectroscopy (SRS) does not depend upon the optical path length (as determination of 

∆[HHb] and ∆[HbO2] do). As such, the TOI signal provides a reliable estimate of the 

dynamic balance between O2 supply and O2 consumption in the area of interrogation, 

even in SRS systems (compared to the more costly time-resolved systems). 

Ferreira et al. (2007b) were the first to describe the ∆[HHb] response to ramp 

incremental exercise by considering a hyperbolic function, based upon the possibility of 

the linear whole body Q-to-VO2 relationship persisting within the periphery, and a 

sigmoid function, based upon laboratory observations. Whereas a hyperbolic response 

profile of dynamic changes in ∆[HHb] (as a function of PO or VO2) throughout ramp 

incremental exercise implies that the relationship between Q and VO2 within the 

microvasculature is linear, a sigmoid response is purported to offer insights into the non-

linear (i.e., inverse sigmoid) Q-to-VO2 relationship within the peripheral 
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microvasculature. Based upon comparisons to a hyperbolic model, Ferreira et al. (2007b) 

concluded that the overall ∆[HHb] response to ramp exercise was best described using 

the sigmoid model. Using similar comparisons between hyperbolic and sigmoid models, 

this conclusion has been supported in trained individuals (Boone et al. 2009), adolescents 

(McNarry et al. 2011), various body positions (DiMenna et al. 2010), at different 

measurement sites within the quadriceps muscle group (Chin et al. 2011) and in response 

to incremental step exercise (Boone et al. 2010).  

To date, all attempts to describe the ∆[HHb] response to incremental exercise 

have used functions which characterize the overall response (i.e., either the hyperbolic or 

sigmoid functions); an inherent limitation of this approach is that accurate 

characterization of one portion of the response may jeopardize the ability to accurately 

characterize other portions. Indeed, whereas the sigmoid model used in previous studies 

presumes (or implies) that the lower and upper curvatures are “symmetrical,” DiMenna et 

al. (2010) illustrated that this was not the case in their data; further, they acknowledged 

that there is no physiological basis for such a notion and that this particular sigmoid 

function likely represents a “fit of convenience.” As such, the purpose of the present 

paper was to re-examine the profile of muscle deoxygenation during ramp incremental 

cycling exercise in a group of young men and to assess the physiological implications of 

the various models and parameter estimates. Specifically, we examined whether the 

profile of the ∆[HHb] response as a function of either PO or VO2 should be characterized 

as i) a sigmoid which considers the entire response or ii) three distinct ‘phases’ in which 

the predominant rise in ∆[HHb] is approximately linear, as is the ‘plateau’ which follows. 



126 

 

Furthermore, we examined the profile of the TOI response (relative to PO and VO2) to 

determine whether it could be characterized by either of the proposed models. 

METHODS 

Subjects: Eight young men (24 ± 5 yr; 82 ± 10 kg; mean ± SD) volunteered and gave 

written consent to participate in the present study. All procedures were approved by The 

University of Western Ontario Research Ethics Board for Health Sciences Research 

Involving Human Subjects. All subjects were recreationally active, non-obese (body mass 

index ≤ 30 kg/m2), non-smokers, and were not taking medications that would affect the 

cardiorespiratory or hemodynamic responses to exercise. 

Protocol: On two separate days, subjects reported to the laboratory to perform a fatigue-

limited ramp incremental test (20 W/min) on a cycle ergometer (model: Lode Corival 

400; Lode B.V., Groningen, Holland) for determination of peak VO2 (VO2peak) and peak 

PO (POpeak). Prior to the incremental increase in PO, subjects cycled at 20 W for a period 

of 4 minutes. Visits were separated by at least 48 hours, but not more than 2 weeks. 

Measurements: Local muscle deoxygenation profiles of the quadriceps vastus lateralis 

muscle were made with NIRS (Hamamatsu NIRO 300, Hamamatsu Photonics, 

Hamamatsu, Japan) throughout exercise.  

The physical principles of tissue spectroscopy and the manner in which these are 

applied have been explained by DeLorey et al. (2003). Briefly, optodes were placed on 

the belly of the muscle midway between the lateral epicondyle and greater trochanter of 

the femur. The system consisted of both an emission probe that carries NIR light from the 

laser diodes and detector probe (interoptode spacing = 5 cm); optodes were housed in an 

optically-dense plastic holder and secured on the skin surface with tape and then covered 
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with an optically-dense, black vinyl sheet, thus minimizing the intrusion of extraneous 

light. The thigh was wrapped with an elastic bandage to minimize movement of the 

optodes. Four laser diodes (λ = 775, 810, 850, and 910 nm) were pulsed in a rapid 

succession and the light returning from the tissue was detected by the photodiode for 

online estimation and display of the concentration changes from the resting baseline for 

∆[HbO2], ∆[HHb], and total haemoglobin (∆[Hbtot]). Furthermore, TOI 

(HbO2/(HbO2+HHb)x100) was monitored continuously. The TOI signal reflects the 

dynamic balance between O2 supply and O2 consumption and it is independent of the 

optical path length of the NIR photons in the muscle tissue. Changes in light intensities 

were recorded continuously at 2 Hz and transferred to a computer for later analysis. The 

NIRS-derived signal was zero set with the subject sitting at rest on the cycle ergometer 

prior to the onset of baseline (i.e., 20 W) exercise. Given the uncertainty of the optical 

path length in the vastus lateralis at rest and during exercise, ∆[HHb] data are presented 

as normalized delta (%∆; see below for normalization procedures) units; TOI data are 

presented as %. Whereas Ferreira et al. (2007a) have illustrated the effects of assuming a 

constant scattering coefficient (as is the case when deriving the ∆[HHb] signal using the 

present equipment), the effects of this assumption should largely be blunted once data are 

normalized; indeed, both DiMenna et al. (2010) and McNarry et al. (2011) acquired 

∆[HHb] profiles using machines that assume a constant scattering coefficient.  

Breath-by-breath gas-exchange measurements similar to those previously 

described (Babcock et al. 1994) were also made continuously during each exercise 

protocol. Briefly, inspired and expired flow rates were measured using a low dead space 

(90 mL) bidirectional turbine (Alpha Technologies VMM 110) which was calibrated 
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before each test using a syringe of known volume. Inspired and expired gases were 

continuously sampled (50 Hz) at the mouth and analyzed for concentrations of O2, CO2, 

and N2 by mass spectrometry (Perkin Elmer MGA-1100) after calibration with precision-

analyzed gas mixtures. Changes in gas concentrations were aligned with gas volumes by 

measuring the time delay for a square-wave bolus of gas passing the turbine to the 

resulting changes in fractional gas concentrations as measured by the mass spectrometer. 

Data were transferred to a computer, which aligned concentrations with volume 

information to build a profile of each breath. Breath-by-breath alveolar gas exchange was 

calculated by using algorithms of Beaver et al. (1981). 

Data analysis: Pulmonary VO2 (VO2p) data were filtered by removing aberrant data 

points that lay outside 4 SD of the local mean and then linearly interpolated to 1 s 

intervals. The second-by-second VO2p data from tests one and two were time-aligned and 

ensemble-averaged to yield a single averaged response for each subject for the ramp 

incremental exercise protocol; the second-by-second ∆[HHb] data were time-aligned and 

ensemble-averaged in the same manner. As described by Boone et al. (2010), VO2p data 

were left-shifted by 20 s to account for the circulatory transit delay between muscle and 

lung; this was undertaken so that changes in “muscle VO2” (represented by VO2p) were 

aligned with changes in the ∆[HHb] signal. Though this 20 s value may not precisely 

match the circulatory time lag in all individuals, our laboratory has recently described the 

limitations and challenges associated with its determination (Murias et al. 2011), and 

overall, this 20 s value represents a reasonable estimate for the group tested. These 

averaged and time-aligned VO2p and ∆[HHb] responses were then normalized such that 

0% represented the respective steady-state values observed during 20 W cycling and 
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100% represented the highest average (i.e., VO2peak and ∆[HHb]peak) value observed in 

any continuous 20 s of exercise. These averaged, normalized responses for each 

individual were further time-averaged into 10 s bins (for comparisons of the %∆[HHb] 

response as a function of absolute PO (POABS) as performed by Ferreira et al. (2007b)) or 

reduced into 100 equal bins (for comparisons of the %∆[HHb] response as a function of 

either normalized PO (%PO; similar to Boone et al. (2009)) or normalized VO2p 

(%VO2)). These binning procedures did not affect parameter estimates in any of the 

subsequent regression analyses, but were required in order to allow for direct 

comparisons amongst individual subjects despite inter-individual differences in test 

duration. Except for normalization to baseline and peak values, the same procedures were 

repeated with the TOI data to generate three distinct TOI profiles (i.e., as a function of 

%VO2, %PO, and POABS) for each individual. 

Two approaches to characterizing the profile of the %∆[HHb] and TOI responses 

(plotted as a function of POABS, %PO or %VO2) were tested and compared in the present 

study. First, the entire %∆[HHb] and TOI response was modeled from the onset of ramp 

exercise until exercise cessation using the following sigmoid function:  

y = ƒ0 + A / (1 + e-(-c+dx)); [equation 1] 

where ƒ0 represents the baseline %∆[HHb] or TOI; A is the amplitude of the response, d 

is the slope of the sigmoid, c is a constant that is dependent on d where c/d is the x-value 

corresponding to 50% of the total amplitude. Secondly, the predominant increase in 

%∆[HHb] or TOI observed throughout the middle portion of the exercise protocol 

(beginning at the point where the %∆[HHb] signal began a systematic increase above 

baseline, and TOI began a systematic decrease below baseline as determined by visual 
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inspection) and the ‘plateau’ which followed were characterized by a piecewise equation 

that included two linear segments (hereafter referred to as ‘double-linear’): 

y = segment1(x) = (y1*(BP-x) + y2*(x-x1))/(BP-x1); 

segment2(x) = (y2*(x2-x) + y3*(x-BP))/(x2-BP) 

f = if (x ≤ BP, segment1(x); else, segment2(x)) 

where x1 and x2 represent the minimum and maximum x-values, respectively; y1 and y3 

represent the predicted %∆[HHb] or TOI at x1 and x2, respectively; BP represents the x-

value at the break point between the two segments; and y2 represents the predicted 

%∆[HHb] or TOI at BP (i.e., y2 = %∆[HHb] or TOI where segments intersect). Thus, 

this ‘double-linear’ analysis yields: 

y = m1·x + b1     for x < BP 

y = m2·x + b2     for x > BP 

where m represents the slope and b is the y-intercept value. The model parameters were 

estimated by least-squares nonlinear (sigmoid; Origin, OriginLab Corp., Northampton, 

MA, USA) or linear regression (‘double-linear’; SigmaPlot 10.0, Systat Software, Inc., 

Point Richmond, CA, USA) in which the best fit was defined by minimization of the 

residual sum of squares and minimal variation of residuals around the y-axis (y = 0).  

Statistics: Descriptive data are presented as mean ± SD. The sigmoid and ‘double-linear’ 

models were compared by computing the change in corrected Akaike Information 

Criterion (Akaike 1974; Burnham and Anderson 2004) scores (∆AICC). For each model: 

AICC = N·ln(RSS/N) + 2K + [(2K(K+1))/(N-K-1)] 

where N is the number of data points used in the analysis for that subject, RSS is the 

residual sum of squares from the regression analysis, and K is the number of parameters 
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in the fitted model + 1. Both the sigmoid and ‘double-linear’ regressions include four 

parameters; however, N is variable in the ‘double-linear’ analyses and when %∆[HHb] or 

TOI is expressed as a function of POABS. The ∆AICC score was computed by subtracting 

“AICC’double-linear’” from “AICCsigmoid”; since the model with the lower AICC is more likely 

to be correct, a positive ∆AICC score favours the ‘double-linear’ model. This technique 

was chosen for two reasons: i) neither model is nested within the other; ii) there is a 

possibility of different N within a subject. Considering these circumstances, the F-test 

would not be appropriate. 

 

RESULTS 

Subjects’ POpeak was 328 ± 30 W, which yielded a VO2peak of 4.4 ± 0.4 L·min-1. Figure 

5.1 depicts the second-by-second response of ∆[HHb], ∆[HbO2], ∆[Hb]total and TOI 

during baseline and ramp incremental cycling in a representative subject. Group mean 

parameter estimates from the sigmoid and linear models of the %∆[HHb] profile as a 

function of %VO2, %PO and POABS are displayed in Table 5.1.  

 Whereas the sigmoid regression analyses attempted to characterize the overall 

response by considering all data points for a given response, the ‘double-linear’ 

regression analyses describing the predominant increase in %∆[HHb] and the ‘plateau’ 

that followed considered 90 ± 8 (%VO2), 87 ± 12 (%PO) and 82 ± 17 (POABS) data 

points, with the BP occurring at 77.0 ± 9.0% (%VO2), 82.6 ± 4.1% (%PO), and 166.0 ± 

20.7 W (POABS).  

 Group mean parameter estimates from the sigmoid and ‘double-linear’ models of 

the TOI profile as a function of %VO2, %PO and POABS are displayed in Table 5.2. As 
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with the %∆[HHb] data, the ‘double-linear’ regression analyses did not attempt to 

describe the portion of the response before a systematic decrease below baseline values 

was observed. 

Individual ∆AICC values for both %∆[HHb] and TOI are presented in Table 5.2. 

With respect to the %∆[HHb] response: when plotted as a function of either %VO2 or 

POABS, the ‘double-linear’ regression was favoured in 7 of 8 subjects compared to the 

sigmoid regression based upon a positive ∆AICC score; the ‘double-linear’ 

characterization of the %∆[HHb] profile as a function of %PO was favoured in 6 of 8 

subjects. Three of the four instances in which the sigmoid regressions were favoured 

occurred in a single subject, but in each case the ∆AICC score was close to 0 (i.e., ∆AICC 

> -4). Similarly, the ‘double-linear’ regression was generally favoured over the sigmoid 

regression for characterizing the TOI response to incremental exercise. When plotted as a 

function of either %VO2 or POABS, the ‘double-linear’ was preferred in 6 of 8 subjects; 

when considered as a function of %PO in all 8 subjects, the TOI response was better 

described with the ‘double-linear’ model than the sigmoid model. 

Estimates of the %VO2, %PO or POABS at which %∆[HHb] = 50% were not 

different (p>0.05; Table 5.1) when derived from the ‘double-linear’ function (i.e., y50) as 

compared to the sigmoid regression (i.e., c/d). Similarly, estimates of the %VO2, %PO or 

POABS at which the change in TOI = 50% of total (i.e., halfway between baseline and 

end-exercise) were not different (p>0.05; Table 5.2) when derived from the ‘double-

linear’ function (i.e., ƒ∆50) as compared to the sigmoid regression (i.e., c/d). 

 Figure 5.2 illustrates both the ‘double-linear’ and sigmoid regressions as a 

function of %VO2, along with the averaged, normalized ∆[HHb] data for three subjects. 
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These subjects were selected specifically to illustrate responses that demonstrated a brief, 

intermediate and pronounced ‘plateau’ at end-exercise, respectively. Similarly, Figure 5.3 

shows the %∆[HHb] response as a function of POABS in the same three subjects. 

 Figures 5.4, 5.5 and 5.6 depict the grand mean response (created by averaging the 

point-by-point binned responses from each of the 8 subjects) along with the ‘double-

linear’ and sigmoid modeled responses generated using the mean parameter estimates 

reported in Table 5.1 when plotted as a function of %VO2, %PO and POABS, respectively. 

Though the response in many subjects is reasonably well characterized by a sigmoid 

regression model (see: Figures 5.2B, 5.2C, 5.3B and 5.3C), Figures 4-6 demonstrate that 

this approach to modelling data may be inappropriate for the comparative purposes; 

indeed, regardless of whether plotted as a function of %VO2, %PO or POABS, these 

sigmoid models systematically underestimate the grand mean %∆[HHb] response early in 

exercise, systematically overestimate the grand mean response later in exercise, and are 

unable to accurately discern the end-exercise ‘plateau’ in %∆[HHb]. In much the same 

way, Figure 5.7 illustrates the grand mean TOI response with the ‘double-linear’ and 

sigmoid models superimposed. Again, the sigmoid model is less accurately characterizing 

the overall response, particularly early and late in the incremental exercise, regardless of 

whether the TOI data are presented relative to %VO2, %PO or POABS. 
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Table 5.1. Parameter estimates for ‘double-linear’ and sigmoid models of the normalized 

∆[HHb] (%∆[HHb]) profile plotted as a function of %VO2, %PO and POABS  

  %VO2 %PO POABS (W) 

m1 1.43 ± 0.29 1.44 ± 0.28 0.51 ± 0.11 

b1 -11.15 ± 14.44 -21.61 ± 22.03 -35.30 ± 23.30 

m2 97.80 ± 31.81 94.54 ± 39.12 94.49 ± 40.89 

b2 0.01 ± 0.35 0.04 ± 0.42 0.01 ± 0.14 

BP 77.0 ± 9.0 82.6 ± 4.1 261.4 ± 30.1 

ƒ50 42.8 ± 5.2 % 49.1 ± 5.3 % 166.0 ± 20.7 W 

R2 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 

RSS 1395 ± 751 1081 ± 769 881 ± 587 

‘D
o
u

b
le

-L
in

ea
r’

 

Data Points (#) 90 ± 8 87 ± 12 82 ± 17 

ƒ0 -22.0 ± 31.6 -12.8 ± 16.1 -13.1 ± 16.6 

A 136.3 ± 48.6 126.1 ± 25.0 126.7 ± 25.9 

c 2.24 ± 0.89 2.88 ± 1.01 3.28 ± 1.17 

d 0.05 ± 0.02 0.06 ± 0.02 0.02 ± 0.01 

c/d 40.2 ± 7.0 % 48.3 ± 8.0 % 167.0 ± 21.2 W 

Projected peak 114.3 ± 17.5 113.3 ± 9.5 113.5 ± 9.8 

R2 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 

RSS 1848 ± 1078 1540 ± 1016 1407 ± 817 

S
ig

m
o
id

 

Data Points (#) 100 100 93 ± 10 

 
Values are means ± SD; m1 and m2 = slope of linear regression before and after BP, 

respectively; b1 and b2 = y-intercept of linear regression before and after BP, respectively; 

BP = break point; ƒ50 = x-value corresponding to y = 50%; R2 = coefficient of 

determination; RSS = residual sum of squares; ƒ0 = baseline (i.e., 20 W) %∆[HHb]; A = 

%∆[HHb] amplitude; d = slope of sigmoid regression; c = constant dependent upon d 

where: c/d = x-value corresponding to 50% of A; Projected peak = ƒ0 + A. 
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Table 5.2. Parameter estimates for ‘double-linear’ and sigmoid models of the TOI (%) 

profile plotted as a function of %VO2, %PO and POABS  

  %VO2 %PO POABS (W) 

m1 -0.24 ± 0.12 -0.25 ± 0.16 -0.08 ± 0.04 

b1 68.91 ± 7.41 71.02 ± 6.75 71.23 ± 6.49 

m2 -0.01 ± 0.05 -0.04 ± 0.08 -0.01 ± 0.03 

b2 52.75 ± 13.22 56.06 ± 16.46 56.34 ± 16.55 

BP 69.6 ± 15.1 % 67.7 ± 17.0 % 229.1 ± 53.8 W 

ƒ∆50 37.8 ± 9.1 % 42.6 ± 11.9 % 148.4 ± 31.4 W 

R2 0.93 ± 0.08 0.93 ± 0.08 0.94 ± 0.06 

RSS 105 ± 61 102 ± 54 86 ± 47 

‘D
o
u

b
le

-L
in

ea
r’

 

Data Points (#) 94 ± 11 95 ± 2 87 ± 11 

ƒ0 76.2 ± 16.1 70.7 ± 6.9 71.4 ± 7.9 

A -27.2 ± 26.5 -20.9 ± 14.0 -21.9 ± 16.4 

c 2.02 ± 1.24 2.82 ± 1.36 3.38 ± 1.64 

d 0.06 ± 0.03 0.07 ± 0.03 0.02 ± 0.01 

c/d 30.9 ± 22.4 43.3 ± 14.5 149.6 ± 44.6 

R2 0.96 ± 0.04 0.97 ± 0.04 0.97 ± 0.03 

RSS 127 ± 56 119 ± 53 101 ± 50 

S
ig

m
o
id

 

Data Points (#) 100 100 91 ± 10 

 
Values are means ± SD; m1 and m2 = slope of linear regression before and after BP, 

respectively; b1 and b2 = y-intercept of linear regression before and after BP, respectively; 

BP = break point; ƒ∆50 = x-value corresponding to 50% of ∆TOI; R2 = coefficient of 

determination; RSS = residual sum of squares; ƒ0 = baseline (i.e., 20 W) %TOI; A = TOI 

amplitude; d = slope of sigmoid regression; c = constant dependent upon d where: c/d = 

x-value corresponding to 50% of A; Projected peak = ƒ0 + A. 
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Table 5.3. Individual ∆AICC values derived from comparisons between the ‘double-

linear’ and sigmoid regression models for the normalized ∆[HHb] (%∆[HHb]) and TOI 

profiles plotted as a function of %VO2, %PO and POABS. 

 %∆[HHb] TOI 

 %VO2 %PO POABS %VO2 %PO POABS 

Subject 1 55.4 79.4 53.1 18.5 3.9 14.1 

Subject 2 38.6 68.0 67.1 39.0 21.6 34.3 

Subject 3 51.2 155.5 125.6 -22.8 18.7 -13.0 

Subject 4 25.4 11.8 8.9 2.5 2.0 2.4 

Subject 5 -1.8 -2.8 -3.8 3.0 2.8 4.2 

Subject 6 104.7 92.7 113.2 -6.2 4.9 -14.5 

Subject 7 44.2 -35.6 56.6 8.1 21.4 12.7 

Subject 8 52.3 107.6 87.1 72.3 50.4 56.1 
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Figure 5.1. Second-by-second response of (A) ∆[HHb] (arbitrary units; a.u.); (B) ∆[HbO2]; (C) ∆[Hb]total; and (D) TOI (%) during 

baseline and ramp incremental cycling in a representative subject. Dashed vertical line represents beginning of (20 W·min-1) ramp 

protocol. 
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Figure 5.2. Normalized ∆[HHb] (%∆[HHb]) responses (○)  as a function of normalized 

VO2 (%VO2) in three representative subjects demonstrating a brief, intermediate and 

pronounced ‘plateau’ at end-exercise. Sigmoid and ‘double-linear’ regression models 

superimposed on the data; associated regression coefficients are included on each panel 

(pre-BP above, post-BP below).  
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Figure 5.3. Normalized ∆[HHb] (%∆[HHb]) responses (○)  as a function of absolute PO 

(W) in three representative subjects (same subjects as Figure 1). Sigmoid and ‘double-

linear’ regression models superimposed on the data; associated regression coefficients are 

included on each panel (pre-BP above, post-BP below).  
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Figure 5.4. Grand mean normalized ∆[HHb] (%∆[HHb]) response (○) as a function of 

normalized VO2 (%VO2)  with linear (panel A; pre-BP above, post-BP below) and 

sigmoid (panel B) regression models superimposed. Regression models were generated 

using group mean values from Table 1.  

 

y = -22.0 + 136.3/(1+e-(-2.24+0.05x)) 

y = 1.43x – 11.15 
BP = 77.0 
y = 0.01x + 97.80 

A 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 
 

 

 
 

 

 

 

 

B 



141 
 

 

-20

0

20

40

60

80

100

120

0 20 40 60 80 100

%
∆

[H
H

b
]

%PO

-20

0

20

40

60

80

100

120

0 20 40 60 80 100

%
∆

[H
H

b
]

%PO

 
Figure 5.5. Grand mean normalized ∆[HHb] (%∆[HHb]) response (○) as a function of 

normalized PO (%PO)  with linear (panel A; pre-BP above, post-BP below) and sigmoid 

(panel B) regression models superimposed. Regression models were generated using 

group mean values from Table 1.  
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Figure 5.6. Grand mean normalized ∆[HHb] (%∆[HHb]) response (○) as a function of 

absolute PO (POABS)  with linear (panel A; pre-BP above, post-BP below) and sigmoid 

(panel B) regression models superimposed. Regression models were generated using 

group mean values from Table 1. 
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Figure 5.7. Grand mean TOI (%) response (○) as a function of normalized VO2 (%VO2; left), normalized PO (%PO; middle), and 

absolute PO (POABS; right) with linear (Top; pre-BP above, post-BP below) and sigmoid (Bottom) regression models superimposed. 

Given that the TOI responses were not normalized (as %∆[HHb] data were), and thus the inter-individual responses were variable, the 

mean (± SD) end-exercise value (●) is presented. Regression models were generated using group mean values from Table 2. 
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DISCUSSION 

The present study sought to characterize the profile of normalized ∆[HHb] (%∆[HHb]), a 

surrogate for tissue O2 extraction that provides insights into a-vO2diff within the muscle 

microvasculature, as a function of normalized VO2 (%VO2) and of absolute and 

normalized PO (POABS and %PO, respectively) during ramp incremental exercise in 

young men. Further, the profile of TOI, a non-invasive estimation of tissue 

oxyhaemoglobin saturation, was also characterized in the present study. Individual 

%∆[HHb] and TOI responses were modeled as either a sigmoid (that described the 

overall response) or a single piecewise ‘double-linear’ model that considered the 

predominant increase in %∆[HHb] observed during the ramp protocol and the ‘plateau’ 

that followed. It was determined that the ‘double-linear’ function was favoured over the 

sigmoid model in ~85% of cases when %∆[HHb] or TOI were plotted as a function of 

%VO2, %PO or POABS based on a smaller AICC score. 

Whereas previous investigations into the profile of the %∆[HHb] (Boone et al. 

2009, 2010; DiMenna et al. 2010; Ferreira et al. 2007b; McNarry et al. 2011) (or [HHb]; 

Chin et al. 2011) response to incremental exercise have relied on comparisons between a 

sigmoid model and a hyperbolic model, the present study proposes that the latter two (of 

three) components of the response can be described with a piecewise ‘double-linear’ 

function. In each of the previous papers published on this subject, the sigmoid model has 

proven superior to the hyperbolic model; thus, the present paper is not intended to 

question the findings or implications of those studies. 

In spite of the virtually identical R2 values (possibly implying similar model 

quality) when comparing the ‘double-linear’ and sigmoid regressions as a function of 

%VO2, %PO or POABS, it is clear based upon visual inspection of Figures 5.4-5.6 that the 
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sigmoid models are less able to accurately characterize the grand mean %∆[HHb] 

responses. Specifically, early in exercise, the sigmoid model systematically 

underestimates the (grand mean) reliance on O2 extraction, and later in exercise, 

systematically overestimates the reliance on O2 extraction. Importantly, when group mean 

parameters are used to generate a “representative” sigmoid model, it seems incapable of 

discerning (or depicting) the end-exercise ‘plateau’ in the %∆[HHb] response. Yet, this 

sigmoid model has been used to draw inferences regarding the rate of adjustment of Q 

relative to VO2 in the periphery (Boone et al. 2009; Ferreira et al. 2007b). If the sigmoid 

regression model was accurately describing these respective responses for each 

individual, it should be expected that the model generated using the group mean 

parameters (presented in Table 5.1) would accurately characterize the grand mean 

response (as is seen with the linear regression models).  

A conspicuous feature of the sigmoid function that has not been formally 

addressed within the literature is that ƒ0 ≠ 0% and the projected peak (ƒ0 + A) ≠100%, 

despite the fact that the ∆[HHb] signal had previously been normalized to 0-100% of the 

response. Indeed, the underlying explanation for the ‘poor’ sigmoid group mean models 

(Figure 5.4-5.6)  is that in over half of all cases, the projected peak of the response 

exceeded 110%; in one subject the projected peak consistently exceed 135% regardless of 

whether expressed as a function of %VO2, %PO or POABS (see: Figures 5.2A and 5.3A). 

While a “goodness of fit” statistic (e.g., R2) may be important when considering the 

quality of a model, it is critical to also consider whether the associated parameter 

estimates are realistically describing the underlying (physiological) response. For 

example, the sigmoid model displayed in Figure 5.2A included estimates for ƒ0 and A of -
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96.9 and 250.9, respectively; the result was a projected peak response of 154% %∆[HHb]. 

Considering that Figure 5.2A (‘double-linear’) illustrates the attainment of a brief plateau 

(at ~100% of the %∆[HHb] response; 85% of the %VO2 response) following the 

‘increasing linear’ portion (i.e., at BP) of the exercise test, it seems clear that in some 

subjects the sigmoid model is incapable of discerning the end-exercise response, which 

may be somewhat independent of the approximately linear increase which preceded it. 

Indeed, Figures 5.2 and 5.3 indicate that in subjects with lower BPs (as identified using 

the ‘double-linear’ regression), lower projected peaks also tended to be observed (r = 

0.43, p < 0.05). In aggregate, however, Figures 5.2 and 5.3 primarily reinforce the fact 

that complex individual physiological responses to the same external stimulus can vary 

widely, and as a result require careful consideration when being described by 

mathematical functions. 

 Whereas characterizing the overall %∆[HHb] response to ramp incremental 

exercise using a sigmoid function offers some potential practical advantages in research 

(e.g., comparing parameter estimates amongst subjects or conditions), the present study 

illustrates that this approach does not always characterize the underlying response well in 

all subjects. Given this uncertainty, it seems reasonable to question whether this model 

offers a sound basis for comparisons between or among individuals. Since neither ƒ0 nor 

the projected peak (and therefore A) reflect 0 and 100% of the %∆[HHb] response, 

respectively (as would be expected after normalization), it seems that d (i.e., the ‘slope’ of 

the sigmoid regression) and c (i.e., a constant that is dependent on d where c/d is the x-

value corresponding to 50% of the total amplitude) are the terms which might provide a 

basis for inter-individual comparisons. Yet, it should be recognized that estimates of c/d 
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did not differ from “ƒ50” (Table 5.1), which was derived from the ‘double-linear’ 

regression. While we acknowledge that each of ƒ0, A, and the projected peak are 

“projections” that do not necessarily reflect the data contained within the bounds of the 

fitting window, these parameters offer a basis for comparisons between, among or within 

individuals. That two of the parameters in the sigmoid regression yield ‘unrealistic’ 

estimates, and the remaining two parameters yield information that can essentially be 

gleaned from the ‘double-linear’ regression, may offer further support for the ‘double-

linear’ model that has been proposed. 

As an alternative to a single sigmoid regression that is intended to describe the 

overall response, the adjustment of %∆[HHb] may be comprised of three distinct and 

separate phases. In the initial brief phase (i.e., “phase A”), which occurs at the onset of 

the ramp incremental protocol, increases in POABS, %PO or %VO2p are accomplished in 

the absence of any appreciable increase in %∆[HHb]. Preliminary analyses (not reported 

in Results section) determined that this ‘delayed increase’ in %∆[HHb] was not well-

characterized by a linear function; this may be, at least in part, due to its limited duration 

(i.e., too few data points to accurately characterize the response). The physiological 

implications of “phase A” are that there is a period of time early in ramp incremental 

exercise in which local O2 delivery is well-matched with or perhaps even in excess of O2 

utilization; a similar phenomenon is observed in the ∆[HHb] response to a square-wave 

transition in exercise intensity. What follows is a phase characterized by an 

approximately linear increase in %∆[HHb] (i.e., “phase B”) relative to changes in 

%VO2p, %PO or POABS. A steeper (i.e., greater) slope of the %∆[HHb]-to-%VO2p, 

%∆[HHb]-to-%PO or %∆[HHb]-to-POABS relationship during “phase B” would suggest 
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an increased reliance on changes in O2 extraction and perhaps a decreased reliance on 

changes in convective O2 delivery relative to metabolic demand. The final phase 

represents a period of very little change in %∆[HHb] despite continued increases in 

POABS, %PO or %VO2p. That the linear slope (m2) of %∆[HHb] as a function of %VO2p, 

%PO or POABS during “phase C“ did not significantly differ from 0 (Table 5.1) indicates 

that there was (or appears to have been) a ‘plateau’ in the %∆[HHb] response at the end 

of the ramp incremental exercise. Such a plateau in the %∆[HHb]-to-%VO2 data 

necessarily implies that O2 extraction (a-vO2diff) has an upper limit during dynamic, 

rhythmic exercise and that beyond this limit, increases in VO2 within the exercising 

muscle could only be accomplished by increasing blood flow through the capillaries. 

However, given the increase in intramuscular pressure during higher intensity 

contractions (i.e., near end-exercise), it may be unlikely that the blood flow through the 

capillary increases during this period. Thus, an alternative explanation of this relationship 

is that the increasing VO2p (i.e., whole body VO2) may simply reflect an increase in the 

metabolic requirements of other (e.g., respiratory, other leg muscles) regions. Indeed, if 

capillary blood flow was being continuously increased, one might expect increases in the 

end-exercise TOI response (supposing that the increase in flow would necessarily 

implicate an increase in HbO2, since HHb had ‘plateaued’); such an increase in the end-

exercise TOI response was absent (see m2, Table 5.2 and Figure 5.7). 

 Ferreira et al. (2007b) were the first to propose that the %∆[HHb] response to 

ramp incremental exercise was best characterized by a sigmoid function. This observation 

was based upon direct comparisons between the sigmoid function and a hyperbolic 

function (which would be expected if the linear steady-state relationship between whole 

body Q and VO2 were preserved in the microvasculature) when considering %∆[HHb] as 
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a function of POABS (see: Figures 5.3 and 5.6). While the profile of the %∆[HHb] 

response to ramp incremental exercise is surely governed (at least in part) by POABS 

within an individual, comparisons amongst individuals or groups may be more 

appropriate if the relative intensity of exercise is considered. For example, directly 

comparing healthy controls and diseased or elderly subjects at the same absolute work 

rate (e.g., 150 W) is likely to provide somewhat misleading conclusions; the healthy 

controls may be performing exercise within the moderate-intensity domain whereas the 

diseased or elderly subjects could be approaching their peak. As a result, it is unlikely that 

POABS provides the basis for insightful inter-individual comparisons of the %∆[HHb] 

response to ramp incremental exercise.  

More recently, Boone et al. (2009, 2010), DiMenna et al. (2010), and McNarry et 

al. (2011) concluded that a sigmoid model was more appropriate than a hyperbolic model 

for describing the %∆[HHb] response to incremental exercise as a function of %PO. To 

our knowledge, the present study is the first to consider the %∆[HHb] response to ramp 

incremental exercise as a function of %VO2 as well. An important consideration is that 

early in exercise (i.e., during cycling at very low work rates as discussed by Boone et al. 

(2009)), or when nearing the end of ramp incremental exercise, the PO-to-VO2 

relationship can become non-linear. At near-peak work rates, for example, a plateau is 

observed in the VO2 response in some subjects in spite of continued increases PO. As a 

result, the proposed “phase C” comprises a greater proportion of the overall response (i.e., 

a more distinctive ‘plateau’) when expressed relative to %VO2 compared to %PO. In 

those subjects with relatively brief “phase A” and “phase C” responses (e.g., Figure 

5.2A), the error associated with estimates of c and d (i.e., slope) is likely to be much less 

than that expected in an individual with more substantial “phase A” and “phase C” 
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responses (where ƒ0 and A are more likely to have smaller error terms). Thus, for 

example, the accuracy of a c/d estimate (and its physiological implications) may be 

largely dependent upon portions of the overall %∆[HHb] response where little change is 

occurring. 

As was the case with the %∆[HHb] (Table 5.1; Figures 5.4-5.6) response profiles, 

Figure 5.7 reinforces the notion that parameter estimates generated using a sigmoid 

regression of TOI may be inappropriate for comparative purposes. Systematic over- and 

under-estimation of the baseline and end-exercise responses, respectively, call into 

question whether the amplitude of a given response is accurately being described; if not, 

then using a potentially misleading value could lead to erroneous conclusions. 

Furthermore, estimates of “ƒ∆50” and “c/d” did not differ when TOI was expressed as a 

function of %VO2, %PO or POABS. Finally, Table 3 demonstrates that the smaller AICC 

scores (reflected as positive ∆) favoured the ‘double-linear’ model over the sigmoid 

regression in ~83% of all cases. To our knowledge, this is the first study to characterize 

the TOI response to incremental exercise. 

Limitations: In addition to generating differing profiles when expressed as a function of 

%VO2, %PO and POABS, this response may also be susceptible to changes based upon the 

work rate from which ramp exercise is initiated, as well as the slope of the ramp itself 

(Boone et al. 2009). Given each of these potential “confounders”, it is clear that the 

%∆[HHb] response to ramp incremental exercise is complex and often specific to an 

individual and a given exercise protocol. As a result, any attempt to characterize a wide 

range of possible response profiles using mathematical modeling is likely to have some 

associated limitations. Though not observed in the present study, we are aware of subjects 
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who do not demonstrate a ‘plateau’ at end-exercise; this response pattern is potentially 

“problematic” when using either a sigmoid or ‘double-linear’ regression. In the case of 

the ‘double-linear’ regression, simply characterizing the predominant rise in %∆[HHb] 

using a single linear regression (and then including it in the average of “phase B”) is a 

possible solution, though a “solution”, per se, is not necessary for the sigmoid model. 

 In conclusion, this study demonstrated that a ‘double-linear’ regression was 

favoured over a sigmoid regression in ~85% of cases, regardless of whether the 

%∆[HHb] or TOI response to ramp incremental exercise was plotted as a function of 

%VO2, %PO or POABS. Consideration of ƒ0 and A estimates for the %∆[HHb] response, 

and the assumption that the response must be symmetrical, in particular suggest that the 

sigmoid regression model does not accurately describe the underlying physiological 

responses in all subjects. As an alternative, the present study proposes that the profile of 

the %∆[HHb] and TOI responses during ramp incremental exercise may be more 

accurately described as consisting of three distinct phases, in which the latter two are 

approximately linear. Importantly, this paper reinforces the idea that parameter estimates 

and their physiological implications must be considered when judging model quality. 
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CHAPTER VI: Summary, limitations and future directions 

 

SUMMARY 

The overall goal of this thesis was to use non-invasive methodologies to examine the role 

of local muscle O2 delivery as a possible limitation to the adjustment of VO2p at 

moderate-intensity exercise onset as well as its role as a possible limitation to VO2max. 

Chapters II, III and IV were each designed to further elucidate the role of local muscle O2 

delivery in the determination of τVO2p at the onset of moderate-intensity exercise; 

Chapter V was somewhat more methodological in its focus, but nevertheless was 

designed to further understanding of the role that local muscle O2 delivery may play as a 

possible limitation of VO2max.  

Chapter II considered the effect pre-transition work rate (WR) on τVO2p and 

functional G in a group of older men. Previous studies had reported a slowed VO2 

kinetics response and increased functional G when exercise was initiated from an elevated 

pre-transition WR in young adults (Brittain et al. 2001; Hughson and Morrissey 1982; 

MacPhee et al. 2005); yet, studies considering this intervention in older adults, who 

generally tend to have slower VO2 kinetics than their younger counterparts (Babcock et 

al. 1994; Bell et al. 1999; Chilibeck et al. 1996; DeLorey et al. 2004; Murias et al. 2010a, 

b), are absent from the literature.  

The main findings from chapter II were that: 1) moderate-intensity step transitions 

initiated from an elevated baseline WR and metabolic rate (i.e., upper step; US) resulted 

in a greater τVO2p and greater VO2 gain than step transitions initiated from a baseline WR 

of 20 W (i.e., lower step and full step; LS and FS); 2) the slowed VO2p kinetics of the US 

were accompanied by a slowed adjustment of ∆[HHb] in comparison to the LS and FS, 
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suggesting an improved local blood flow or O2 availability during the US; 3) the 

‘accumulated O2 deficit’ for two equal step transitions did not differ from the O2 deficit 

incurred for a single step transition to the same end-exercise WR despite being elevated in 

the US compared to LS, implying that there was no net effect on the proportion of energy 

that is derived through non-aerobic pathways. 

Based upon previous studies showing a tendency for heavy-intensity ‘priming’ 

exercise (HVY) to speed the VO2 on-kinetics response (Gurd et al. 2006; Gurd et al. 

2005; Murias et al. 2011), even in young, healthy individuals, along with the findings of a 

slowed VO2 kinetics response under conditions of acute, mild hypoxia (HYPO) (Engelen 

et al. 1996; Hughson and Kowalchuk 1995; Murphy et al. 1989; Perrey et al. 2005; Xing 

et al. 1991), we sought to examine the separate and combined effects of  HVY and HYPO 

on the kinetics of VO2p and ∆[HHb] during the on-transient to moderate-intensity 

exercise. We expected that by combining these interventions and presenting them to 

subjects simultaneously, that the likely increase in blood flow resulting from HVY would 

be blunted by the reduced O2 content secondary to a reduced PaO2 from HYPO; in this 

case, what would remain is any possible elevated metabolic substrate supply or enzyme 

activation, but in the absence of concomitant increase in O2 delivery. Thus, the study 

presented in Chapter III tested the hypothesis that resolution of potential intracellular 

metabolic substrate provision or enzyme activation limitations alone will not speed 

τVO2p.  

The conclusions from chapter III were as follows: 1) HVY improved the matching 

of local O2 delivery to O2 utilization (i.e., abolished the significant [HHb]/VO2 overshoot 

observed under control conditions) such that τVO2p was reduced from ~26 s under control 

conditions to ~20 s following HVY; 2) HYPO slowed the adjustment of VO2p at the onset 
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of moderate-intensity exercise; this was associated with a significant overshoot in the 

[HHb]/VO2 ratio (implying an appreciable mismatch between local O2 delivery and O2 

utilization); 3) the present data (unchanged O2 deficit and [HHb]/VO2 overshoot in 

MOD2+HYPO compared to Control) do not support a role for either augmented 

metabolic substrate provision nor enzyme activation in the reductions in τVO2p 

commonly observed with HVY alone; 4) cumulatively, the present study suggests that 

local muscle O2 delivery plays a determining role of τVO2p under control conditions in 

young, healthy humans (when τVO2p > ~20 s). 

In chapter IV, we attempted to address a question that arose, in part, from the 

study described in Chapter II; notably, a trend had emerged from that study as well as 

others using the “double-step” protocol, that small WR transitions within the moderate-

intensity domain appeared to be characterized by faster VO2 kinetics and with smaller 

functional G than larger WR transitions (Bowen et al. 2011; Brittain et al. 2001; MacPhee 

et al. 2005; Spencer et al. 2011). As a result, we sought to systematically examine the role 

of WR increment (when initiated from a constant low WR of 20 W to five different 

moderate-intensity WRs between 50 and 130 W) on both τVO2p and functional G in a 

group of healthy, young adults. Further, with the hypothesis of both smaller τVO2p and 

functional G during transitions to lower WRs, we sought to investigate the potential 

mechanism(s) using measures of local muscle deoxygenation (to assess the balance 

between O2 delivery and O2 utilization), and to determine whether this mechanism 

differed between those individuals who presented with fast compared to slow VO2p 

kinetics (based upon the findings from the study described in Chapter III). 

In chapter IV it was concluded that: 1) during transitions to different WRs within 

the moderate-intensity domain, no differences in τVO2p were observed in this group of 
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subjects (τVO2p ≈ 27 s); 2) when the sample was sub-divided into two groups (i.e., Fast 

and Slow VO2 kinetics), there was an interaction between WR increment and group such 

that the τVO2p responses were divergent between the Fast and Slow groups, with only the 

Slow group showing evidence of conformity to WR-dependent alterations in τVO2p 

previously reported in the literature (i.e., in studies comparing a “lower step” to a “full 

step”); 3) the ∆[HHb]/VO2 ratio was smaller in the Fast compared to Slow group 

(suggesting that the primary determinant of τVO2p differs between groups), but was not 

affected by WR (suggesting that the divergent τVO2p responses between Fast and Slow 

groups may not have been the result of O2 availability during the exercise on-transient); 

4) functional G was progressively greater during transitions of increasing WR increment; 

this was true for (and similar between) both the Fast and Slow groups, possibly 

suggesting that the mechanism(s) controlling the magnitude and the rate of the VO2p 

response to a given WR transition may be dissociated. 

Chapter V was a departure from the study of VO2 kinetics within the moderate-

intensity exercise domain, but maintained the central theme of using non-invasive 

methodologies to investigate the role of local muscle O2 delivery as a potential limitation 

of VO2 during incremental exercise to volitional fatigue. Given some uncertainty 

regarding the appropriateness of a single, sigmoid regression model to describe the 

∆[HHb] response during incremental exercise (DiMenna et al. 2010), the purpose of the 

study described in Chapter V was to re-examine the profile of muscle deoxygenation 

during ramp incremental cycling exercise in a group of young men and to assess the 

physiological implications of the various models and parameter estimates. Specifically, 

we examined whether the profile of the ∆[HHb] response as a function of either PO or 
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VO2 should be characterized as i) a sigmoid which considers the entire response or ii) 

three distinct ‘phases’ in which the predominant rise in ∆[HHb] is approximately linear, 

as is the ‘plateau’ which follows. 

The key finding from Chapter V was that the ‘double-linear’ function which 

described the predominant rise in ∆[HHb], as well as the approximately linear ‘plateau’ 

which followed, was favoured over the sigmoid model in ~85% of cases when %∆[HHb] 

was plotted as a function of normalized VO2 or PO, or absolute PO. This study should 

allow for appropriate comparisons of ∆[HHb] responses to incremental exercise, thereby 

furthering an understanding of the role of local muscle O2 delivery throughout 

incremental exercise, as well as at volitional fatigue.  

In summary, this series of studies demonstrated that local muscle O2 delivery is 

likely playing a rate-limiting role in the determination of τVO2p under “control 

conditions” when τVO2p > ~20 s, even in healthy, young individuals. This threshold for 

an O2 delivery dependent determination of τVO2p may be dissociated from changes in 

functional G with moderate-intensity WR transitions of different intensities, but does not 

appear to play a role in the slowed VO2 kinetics associated with transitions performed 

from an elevated WR. Finally, the appropriateness of a sigmoid regression to characterize 

the ∆[HHb] response to incremental exercise (at least for comparative purposes) was 

challenged, and a ‘double-linear’ model was proposed as an alternative. 

 

LIMITATIONS 

One limitation in this set of studies is related to the use of NIRS in that the area of muscle 

“interrogation” represents only a small region over the surface of the active muscle 

(quadriceps) to examine the rate of adjustment of ∆[HHb]. Although some studies have 
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shown that the magnitude and time-course of the ∆[HHb] signal remain unaltered within 

different portions of the vastus lateralis muscle (duManoir et al. 2010), heterogeneities 

have been shown to exist from one site of inspection to another (Koga et al. 2007). 

Additionally, with the NIRS system used in the studies presented in Chapters II, IV and 

V, we were restricted to assumptions of the optical path length of the near-infrared light 

(which may be affected by local blood flow and cellular volume and ionic changes 

occurring during muscle contractions (Hamaoka et al. 2007)). As such, data were 

expressed in arbitrary units. Nevertheless, this limitation was minimized by the fact that 

the ∆[HHb] data were normalized for each individual as a proportion of the full-scale 

amplitude of the signal from the loadless cycling to steady-state for comparison of its 

dynamic adjustment. 

In the studies in chapters III and IV, observations were made in terms of an 

improved matching of muscle O2 delivery to muscle VO2. These observations rely on the 

interpretation of the ∆[HHb]/VO2 data. We used ∆[HHb] as a proxy variable for muscle 

O2 extraction, thus reflecting changes in the a-vO2diff. Changes in the rate of adjustment of 

the normalized VO2p (representing muscle VO2) in relation to the responses of the rate of 

adjustment of the normalized ∆[HHb] are likely determined by changes in the rate of 

adjustment of muscle blood flow. However, no direct measurements of muscle O2 

delivery were made. 

It was proposed that O2 distribution within the active muscles plays an important 

role in the rate of adjustment of VO2, especially in those subjects displaying a τVO2p 

larger than ~20 s. Also, it was suggested that the fundamental control of VO2 kinetics 

may reside intracellularly. However, no measurements were taken during the on-transient 
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of exercise that could provide with a better understanding of what those intracellular 

components could be.  

 

FUTURE DIRECTIONS 

The studies described in chapters III and IV suggest that muscle O2 distribution is a key 

factor determining the rate of adjustment of VO2 kinetics (at least when τVO2p is larger 

than ~20 s). Based upon recent studies which consider spatial heterogeneities in the 

[HHb] response to exercise, a logical progression would be to re-examine the effects of 

HVY, HYPO and WR increment on VO2 and [HHb] kinetics using a multi-channel, time-

resolved spectroscopy NIRS (TRS-NIRS) system. This would address concerns about 

both the limited “area of interrogation” of a single-site NIRS measurement, as well as the 

use of VO2p, which may not be providing a precise characterization of the adjustment of 

VO2 within active muscle fibers. Further, the description of a ‘double-linear’ regression 

model to characterize the ∆[HHb] response to incremental exercise in a way that allows 

for appropriate comparisons opens the door for numerous studies that either attempt to 

alter local muscle O2 delivery during incremental exercise, or compare the responses 

among populations with suspected local muscle O2 delivery differences (e.g., diseased, 

elderly). 
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APPENDIX II: Copy of letter of information and consent form 

LETTER OF INFORMATION 
 

VO2 kinetics and muscle deoxygenation in older adults in the upper compared with 
lower range of the moderate-intensity exercise domain 
Principal Investigator: Donald H Paterson, PhD 
PhD Student: Matthew D Spencer, MSc 
 
 
Purpose of Study: 
 
You are being invited to participate in a research study that examines the rate at which oxygen 
(O2) is taken up and utilized by the body to generate energy for exercise.  During the transition 
from rest or light-intensity exercise to higher intensities, the rate of adaptation of O2 uptake 
(called “VO2 kinetics”) in the muscle may depend on how rapidly certain enzymes in the muscle 
are activated or on how quickly blood flow increases to supply O2 to the active muscle.  When 
this transition occurs from moderate-intensity (rather than rest or light-intensity) to higher 
intensities, the adaptation has been shown to be slowed in young adults.  It is not clear how 
these transitions from moderate-intensity exercise affect the speed of adaptation in older 
adults.  Therefore, the purpose of this study is to examine the effects of prior moderate-
intensity exercise on VO2 kinetics. 
 
Participation in this study involves visits to the research laboratory at the Canadian Centre for 
Activity and Aging (Arthur and Sonia Labatt Health Science Centre, Room 313) on a maximum 
of 13 different occasions, with each visit taking a maximum of 1.5 hours.  Prior to beginning the 
study, you will undergo medical screening and a fatigue-limited exercise stress test under the 
supervision of a physician. 
 
A total of 8 older male adults will be invited to participate in this study.  In order to participate 
you must be between 60-85 years of age and healthy.  You will not be able to participate in the 
study if you have been previously diagnosed with any respiratory, cardiovascular, metabolic or 
musculoskeletal disease; or you are currently on medication affecting cardiovascular responses 
to exercise; or you are a smoker; or you respond to the exercise protocol in an irregular manner 
or cannot tolerate the exercise protocol.  If you are participating in another study at this time, 
please inform the investigator right away to determine if it is appropriate for you to participate in 
this study. 
 
Research Testing Protocol: 
 
During the first visit to the laboratory, you will complete an incremental exercise test to your 
limit of tolerance until you will be physically unable to continue exercising because the intensity 
is either too high or too uncomfortable.  The exercise will consist of leg cycling on a cycle 
ergometer (a stationary bicycle) while in the upright, seated position.  The test will begin with 
the exercise intensity being very light and easy (very little resistance).  After several minutes 
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the exercise intensity will increase steadily until you are unable to continue because of fatigue, 
or until you wish to stop.  This visit should last approximately 1 hour. 
 
On each of the remaining approximately 10-12 visits, you will perform exercise on the cycle 
ergometer, with each test lasting approximately 20-25 minutes.  There are 2 separate 
conditions in this study, which you will repeat up to 6 times for each condition:  
 

1) Control 
You will complete a single-step cycle workload test within the moderate-intensity 
domain. 

2) ‘Elevated baseline’ 
You will complete a double-step cycle workload test within the moderate-intensity 
domain. 

 
Each testing session will begin with 6 minutes of leg cycling at a very light work rate (i.e., 20 
W).  During the “single-step” tests, this initial 6 minutes will be followed by an instantaneous 
increase in work rate to the higher ranges of moderate-intensity exercise for 6 minutes, and 
back down to the very light work rate for 6 minutes.  During the “double-step” tests, the 6 
minutes of exercise at a very light work rate will be followed by an “initial step” increase in work 
rate to the lower ranges of moderate-intensity exercise (light work) for 6 minutes and then a 
“second step” increase in work rate to the higher ranges of moderate-intensity exercise 
(moderate work); with this protocol, the increase in work from very light to light is the same as 
light to moderate.  The test will be completed with 6 minutes exercise at the very light work rate.  
The diagram below may be useful in understanding the two protocols.   
 
  “DOUBLE-STEP”            “SINGLE-STEP” 
 
                                             MODERATE                        MODERATE 

         
                              LIGHT 

  
 VERY LIGHT        VERY LIGHT                VERY LIGHT                       VERY LIGHT 

  
        6 min            6 min             6 min            6 min                                  6 min            6 min            6 min 

 
At the end of this part of the protocol you will move to a chair and, after a brief period of rest 
(approximately 10 minutes) you will be asked to perform a maximal voluntary contraction 
(MVC). The MVC will involve a maximal contraction of your leg where you will try to “push” your 
foot into the floor as hard as possible until the investigator tells you to relax. This maneuver will 
allow us to measure the highest and lowest levels of oxygen within your thigh muscle. 
 
Research Procedures: 
 
During each of the exercise tests you will be required to wear a nose-clip (to prevent you from 
breathing through your nose) and a rubber mouthpiece (similar to breathing through a snorkel 
or diving mask); nose-clips and mouthpieces are disinfected before each test.  This will enable 
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us to measure the volume of air that you breathe in and out, and measure the gas 
concentration in that air. 
  
During each of the exercise tests, the relative oxygenation of your leg muscle will be measured 
using a technique known as near-infrared spectroscopy (NIRS), which projects light into a 
specific location of your leg muscles and measures the amount of light coming out at another 
location.  Two probes will be secured to your leg at approximately midway between your hip 
and knee.  The probes will be kept in place by tape, covered to prevent other light from entering 
or leaving the area, and bound with a tensor band to minimize movement of the probes. 
  
Possible Risks and Discomforts: 
 
You may experience some minor discomfort from wearing the nose-clip and rubber 
mouthpiece, and by having the NIRS probes secured to your leg during the exercise period.  
These sensations often become less noticeable with time during the exercise. 
 
Any exercise carries a slight risk of a heart attack (less than approximately 6:10,000) or may be 
uncomfortable if you are unfit or not used to exercise.  There may be some minor discomfort 
during the exercise testing.  You may experience increased awareness of breathing, muscle 
fatigue and soreness, increased sweating, or a general feeling of fatigue or nausea, none of 
which are unexpected consequences of exercise. 
 
All testing procedures will only be conducted when a lab technician or research assistant that is 
certified in CPR is present.  In the case of an emergency, 911 will be called using the telephone 
located in the testing laboratory.  An automatic external defibrillator is also available within the 

testing building.  If a heavy pressure sensation or pain develops in your chest or down your left 
arm it is important that you discontinue the exercise immediately and report these sensations to 
the exercise supervisor, or seek medical attention if you have left the exercise area. 
 
Benefits of Participation: 
 
This is a basic physiology/biochemistry study and, as such, there will be no direct health-related 
benefits received as a consequence of participating in the study.  
 
Confidentiality: 
 
Records from the study are confidential and will be stored securely at the testing facility.  Your 
records are listed according to an identification number rather than by your name.  Published 
reports resulting from this study will never identify you by name and no information that 
discloses your identity will be released or published.  While we will do our best to protect your 
information, there is no guarantee that we will be able to do so.   
 
Representatives of The University of Western Ontario Health Sciences Research Ethics Board 
may require access to your study-related records or may follow up with you to monitor the 
conduct of the research. 
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Voluntary Participation: 
 
Participation in this study is voluntary.  You are encouraged to ask questions regarding the 
purpose of the study, specific measures or outcomes of your exercise tests, or overall findings 
and conclusions from this research study.  You may refuse to participate, refuse to answer any 
questions or withdraw from the study at any time with no penalty.  You do not waive any legal 
rights by signing the consent form.    
  
You will be given a copy of this letter of information once the consent form has been signed.  If 
you have any questions regarding the study please contact Matthew Spencer (661-1646) or Dr. 
Donald Paterson (661-1606) at the Canadian Centre for Activity and Aging, Arthur & Sonia 
Labatt Health Sciences Building, The University of Western Ontario, London.  If you have any 
questions about your rights as a research participant or the conduct of the study you may 
contact The Office of Research Ethics at (519) 661-3036 or by email at ethics@uwo.ca.  
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LETTER OF INFORMED CONSENT 
 
VO2 kinetics and muscle deoxygenation in older adults in the upper compared with 
lower range of the moderate-intensity exercise domain 

 
Principle Investigator: Donald H Paterson, PhD 
PhD Student: Matthew D Spencer, MSc 
 
 
 
I have read the Letter of Information, have had the nature of this study explained to me and 
I agree to participate.  All questions have been answered to my satisfaction. 
 
 
 
Participant: 
 
 
____________________________   ___________________________ 
 Name (please print)     Signature 
 
 
________________________ 
 Date 
 
 
 
 
 
Investigator (i.e. Person Responsible for Obtaining Informed Consent): 
 
 
____________________________   ___________________________ 
 Name (please print)                                                    Signature 
 
 
________________________ 
 Date 
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LETTER OF INFORMATION 

 
Does prior exercise speed VO2 kinetics even in the presence of acute hypoxia in older and 
young men?  
Principal Investigator: Donald H Paterson, PhD 
PhD Student: Matthew D Spencer, MSc 
 
 
 
Purpose of Study: 
 
You are being invited to participate in a research study that examines the rate at which oxygen 
(O2) is utilized by the body to generate energy for exercise. During the transition from rest or 
light-intensity exercise to higher intensities, the rate of adjustment of O2 use (called “VO2 
kinetics”) may depend on how rapidly certain enzymes in the muscle are activated or on how 
quickly blood flow increases to supply O2 to the active muscle. In general, VO2 kinetics is 
slower in older adults compared to young adults. However, in most older adults and even in 
some young adults, VO2 kinetics can be made faster if a “heavy-intensity warm-up” is 
performed first. The theory is that the warm-up exercise may help certain enzymes in the 
muscle become activated more quickly and the supply of O2 to the muscles may be improved 
by having a higher rate of blood flow. Furthermore, it has been shown that when people 
breathe in (“inspire”) air that contains a smaller percentage of O2 (known as “hypoxia”) than that 
found in “normal air” (approximately 21%) during the transition to higher exercise intensities, 
the VO2 kinetics are slower (because less O2 gets delivered to the muscle). This study will 
examine the effect of hypoxia plus heavy-intensity warm-up exercise on VO2 kinetics with the 
idea that the hypoxia will effectively “cancel out” the improved O2 delivery expected because of 
the warm-up; this leaves only the possible improvements to the muscle enzymes to affect VO2 
kinetics. 
 
Participation in this study involves visits to the research laboratory at the Canadian Centre for 
Activity and Aging (Arthur and Sonia Labatt Health Science Centre, Room 313) on a maximum 
of 13 different occasions (total time commitment = approximately 8.5 hours). Each exercise visit 
is expected to take no longer than 45 minutes to complete. 
 
Up to 10 young and 10 older adult men will be invited to participate in this study.  In order to 
participate you must be between 18-40 (young) or 60-85 (older) years of age and healthy.  You 
will not be able to participate in the study if you have been previously diagnosed with any 
respiratory, cardiovascular, metabolic or musculoskeletal disease; or you are currently on 
medication affecting cardiovascular responses to exercise; or you are a smoker; or you 
respond to the exercise protocol in an irregular manner or cannot tolerate the exercise protocol. 
If you are participating in another study at this time, please inform the investigator right away to 
determine if it is appropriate for you to participate in this study. 
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Prior to entry into the investigation all older subjects must undergo a fatigue-limited exercise 
stress test under the supervision of a physician (Dr. R. Petrella, Medical Director, Canadian 
Centre for Activity and Aging). This test will be conducted at Parkwood Hospital (London, ON) 
and is not expected to take longer than approximately 45 minutes. Upon successful completion 
of this test, and with the approval of the physician, you will be allowed to participate in the 
investigation. In the event that this test determines that you are not allowed to participate in the 
investigation, you will be contacted by Dr. Petrella’s office and the test outcomes will be 
described to you.  
 
Research Testing Protocol: 
 
During the first visit to the laboratory, you will complete an incremental exercise test to your 
limit of tolerance until you will be physically unable to continue exercising because the intensity 
is either too high or too uncomfortable.  The exercise will consist of leg cycling on a cycle 
ergometer (a stationary bicycle) while in the upright, seated position.  The test will begin with 
the exercise intensity being very light (very little resistance).  After several minutes the exercise 
intensity will increase steadily until you are unable to continue because of fatigue, or until you 
wish to stop. 
 
In addition to this test and on 12 separate days, you will perform a series of exercise protocols 
on the cycle ergometer that involve transitions from very light work (i.e., 20 watts; an intensity 
similar to slow walking) to moderate intensity (exercise in the moderate domain could 
theoretically be performed indefinitely and should not produce signs of fatigue) and/or 
transitions from very light work to heavy intensity (approximately 70% of your performance on 
the incremental exercise test). Although more intense than the exercise you performed during 
the moderate intensity transitions, this exercise intensity is expected to produce fatigue only 
after approximately 1-2 hours of exercise. These exercise transitions will always appear in the 
following order:  
 

“MOD1” – “HVY” – “MOD2” 
6 minutes at 20 watts + 6 minutes at moderate intensity (called “MOD1”) 

6 minutes at 20 watts + 6 minutes at heavy intensity (called “HVY”) 
6 minutes at 20 watts + 6 minutes at moderate intensity (called “MOD2”) 
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Condition 1: During 4 visits you will complete the whole exercise protocol (“MOD1” – “HVY” – 
“MOD2”) while inspiring normal room air, which contains approximately 21% O2. 
Condition 2: During 4 visits you will complete both the “MOD1” and “HVY” protocols while 
inspiring normal room air. Two (2) minutes after the end of “HVY” you will begin to inspire air 
that contains approximately 15% O2 (this will occur during the “very light (20 watts)” part of 
“MOD2”). A valve will allow the researcher switch between having you inspire either directly 
from the room or from a bag that is filled with the air mixture with less O2. 
Condition 3: During 4 visits you will only complete the “MOD1” protocol (and not the “HVY” or 
“MOD2” protocols), but you will do this while inspiring the air mixture with less O2. 
 
Repeat testing of each of the conditions is required in order to ensure the accuracy and 
reliability of the data.   During the testing sessions, height and weight measurements will be 
taken. 
 
Research Procedures: 
 
During each of the exercise tests you will be required to wear a nose-clip (to prevent you from 
breathing through your nose) and a rubber mouthpiece (similar to breathing through a snorkel 
or diving mask); nose-clips and mouthpieces are disinfected before each test.  This will enable 
us to measure the volume of air that you breathe in and out, and measure the gas 
concentration in that air. 
  
During each of the exercise tests, the oxygenation of your leg muscle will be measured using 
near-infrared spectroscopy which projects light into a specific location of your leg muscles and 
measures the amount of light coming out at another location. A small piece of equipment will be 
placed on your leg approximately midway between your hip and your knee. It will be secured 
with tape, covered to prevent light from entering or leaving the area, and bound with elastic 
bandage to minimize movement. You might experience a bit of discomfort by having this 
equipment secured to your leg during the exercise period. However, this is a non-invasive 
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procedure. Additionally, oxygenation of your blood will be measured using infrared oximetry (a 
non-invasive measure similar to that performed by nurses when you go to visit a doctor at the 
hospital) with the probe clipped onto your earlobe or finger. This procedure is not associated 
with any risks or discomfort. 
 
Heart rate and rhythm will be continuously monitored by electrocardiogram. One electrode will 
be placed on each of the following areas: left chest, right chest, and left side under your ribs 
and connected to an electrocardiograph.  The electrodes use adhesive tape to secure to the 
skin.  There are no known risks or discomforts associated with this procedure. 
 
Possible Risks and Discomforts: 
 
You may experience some minor discomfort from wearing the nose-clip and rubber 
mouthpiece, and by having the NIRS probes secured to your leg during the exercise period.  
These sensations often become less noticeable with time during the exercise. 
 
Any exercise carries a slight risk of a heart attack (less than approximately 6:10,000) or may be 
uncomfortable if you are unfit or not used to exercise.  There may be some minor discomfort 
during the exercise testing.  You may experience increased awareness of breathing, muscle 
fatigue and soreness, increased sweating, or a general feeling of fatigue or nausea, none of 
which are unexpected consequences of exercise. During the moderate intensity exercise in 
which you are inspiring the air containing a lower percentage of O2, some of these feelings of 
discomfort may be more apparent, but these feelings are expected to disappear shortly after 
exercise is stopped. 
 
All testing procedures will only be conducted when a lab technician or research assistant that is 
certified in CPR is present.  In the case of an emergency, 911 will be called using the telephone 
located in the testing laboratory.  An automatic external defibrillator is also available within the 
testing building and the lab technician and/or research assistant(s) will have been trained in its 
operation.  If a heavy pressure sensation or pain develops in your chest or down your left arm it 
is important that you discontinue the exercise immediately and report these sensations to the 
exercise supervisor, or seek medical attention if you have left the exercise area. 
 
Participation in this study requires a time commitment which may be inconvenient for you at 
some point during the study. 
 
Benefits of Participation: 
 
This is a basic physiology/biochemistry study and, as such, there will be no direct benefits 
received as a consequence of participating in the study. If you are interested, the rational for 
conducting the research and theory and significance of each of the tests will be explained, as 
will your individual results from each of the tests. You will also have the opportunity to learn 
about and better understand your physiological responses to an exercise situation. 
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Confidentiality: 
 
Records from this study are confidential and will be stored securely at the Canadian Centre for 
Activity and Aging, Sonia Arthur Labatt Health Sciences Building.  Your records will 
be identified by a number rather than your name. The data will be available for analysis within 
the research group.  Published reports resulting from this study will not identify you by name. 
We would like to keep and use your data in the future for as of yet unknown analyses. There is 
a check box on the consent form to indicate your choice.  You will be able to withdraw your 
data at any time by contacting the Principal Investigator, Dr, Donald H. Paterson at 519-661-
1606.  Representatives of the University of Western Ontario Health Sciences Research Ethics 
Board may contact you or require access to your study-related records to monitor the conduct 
of the research. You do not waive any legal rights by signing the consent form. 
 
Voluntary Participation: 
 
Participation in this study is voluntary. You may refuse to participate, refuse to answer any 
questions or withdraw from the study at any time with no effect on your academic or 
employment status. 
 
You will be given a copy of this letter of information and signed consent forms. You do not 
waive any legal rights by signing the consent form. If you have any questions regarding this 
study please contact Dr. Donald Paterson (519-661-1606) at the Canadian Centre for Activity 
and Aging, Sonia and Arthur Labatt Health Sciences Building, The University of Western 
Ontario, London. If you have any question about the conduct of this study or your rights as a 
research subject you may contact the Director of the Office of Research Ethics, The University 
of Western Ontario, 519-661-3036 (ethics@uwo.ca). 
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LETTER OF INFORMED CONSENT 
 
Does prior exercise speed VO2 kinetics even in the presence of acute hypoxia in older and 
young men?  
Principal Investigator: Donald H Paterson, PhD 
PhD Student: Matthew D Spencer, MSc 
 
 
 
 
I have read the Letter of Information, have had the nature of this study explained to me and 
I agree to participate.  All questions have been answered to my satisfaction. 
 
� I consent to having my data kept for future as of yet unknown analyses. 
 
� I do not consent to having my data kept for future as of yet unknown analyses. 
 
 
Participant: 
 
 
____________________________   ___________________________ 
 Name (please print)     Signature 
 
 
________________________ 
 Date 
 
 
 
 
Investigator (i.e. Person Responsible for Obtaining Informed Consent): 
 
 
____________________________   ___________________________ 
 Name (please print)                                                     Signature 
 
 
________________________ 
 Date 
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LETTER OF INFORMATION 
 

Do VO2 kinetics vary in response to differing moderate-intensity power outputs or following 
acute exercise in young men?  
Principal Investigator: Donald H Paterson, PhD 
PhD Students: Matthew D Spencer, MSc; Juan M Murias, MSc 
 
 
 
Purpose of Study: 
 
You are being invited to participate in a research study that examines the rate at which oxygen 
(O2) is utilized by the body to generate energy for exercise.  During the transition from rest or 
light-intensity exercise to higher intensities, the rate of adjustment of O2 use (called “VO2 
kinetics”) may depend on how rapidly certain enzymes in the muscle are activated or on how 
quickly blood flow increases to supply O2 to the active muscle.  Furthermore, it has been 
suggested that those who take longer to adjust may be limited differently than those who adjust 
more quickly.  Previous studies have shown that the intensity of the exercise may affect the 
speed at which the body adjusts.  Therefore, the purpose of Phase I of this study is to compare 
the VO2 kinetics at different moderate intensities of exercise in young, healthy men with either 
faster or slower kinetics.   
 
Additionally, those individuals found to have slower VO2 kinetics will be invited to participate in 
a second phase of testing.  By agreeing to participate in Phase I of this study, you are not 
agreeing to participate in Phase II.  If you are eligible for Phase II, you will be asked to provide 
your consent separately from Phase I.  It is believed that in this group of people, the key 
limitation to VO2 kinetics may be related to how quickly blood flow increases to supply O2 to the 
active muscle once exercise begins.  Previous studies in animals have shown that the body’s 
ability to direct O2 to the active muscle cells may be improved for up to 24 hours following a 
single exercise session.  Since this exercise session would not be expected to elevate the 
activity of the enzymes in the muscle for the same amount of time, this phase of the study could 
provide important information about whether VO2 kinetics is limited by O2 supply or not.   
 
Participation in this study involves visits to the research laboratory at the Canadian Centre for 
Activity and Aging (Arthur and Sonia Labatt Health Science Centre, Room 313) on a maximum 
of 15 different occasions, with 7 of these visits designated for exercise testing in Phase I (total 
time commitment = 8.5 hours), and the remaining 8 will be dedicated to Phase II of the study 
(total time commitment = 9.5 hours).  Each exercise visit is expected to take no longer than 75 
minutes (1h:15min) to complete. 
 
Up to 24 adult men will be invited to participate in this study.  In order to participate you must be 
between 18-40 years of age and healthy.  You will not be able to participate in the study if you 
have been previously diagnosed with any respiratory, cardiovascular, metabolic or 
musculoskeletal disease; or you are currently on medication affecting cardiovascular responses 
to exercise; or you are a smoker; or you respond to the exercise protocol in an irregular manner 
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or cannot tolerate the exercise protocol.  If you are participating in another study at this time, 
please inform the investigator right away to determine if it is appropriate for you to participate in 
this study. 
 
Research Testing Protocol: 
 
During the first visit to the laboratory, you will complete an incremental exercise test to your 
limit of tolerance until you will be physically unable to continue exercising because the intensity 
is either too high or too uncomfortable.  The exercise will consist of leg cycling on a cycle 
ergometer (a stationary bicycle) while in the upright, seated position.  The test will begin with 
the exercise intensity being very light (very little resistance).  After several minutes the exercise 
intensity will increase steadily until you are unable to continue because of fatigue, or until you 
wish to stop.  This visit should last approximately 1 hour. 
 
In addition to this test and on 6 separate days, you will perform a series of transitions from very 
light work (i.e. 20 watts; an intensity similar to slow walking) to moderate intensity (exercise in 
the moderate domain could theoretically be performed indefinitely and should not produce 
signs of fatigue) cycling on the cycle ergometer. These “moderate intensity transitions” will 
always be completed as a pair, which will last 24 min (6 minutes at 20 watts + 6 minutes at 
moderate intensity + 6 minutes at 20 watts + 6 minutes at moderate intensity).  After two 
transitions are performed, a resting time of approximately 20 minutes will be provided before 
starting the next two transitions.  Note that the second pair will not always be at the same 
intensity as the first pair.  Repeat testing is required in order to ensure the accuracy and 
reliability of the data.  The specific intensities that will be tested in this study are 50 (4 pairs), 
70, 90, 110 and 130 watts (2 pairs each).  During the testing sessions, body size 
measurements (i.e., height and weight) will be taken. Testing for Phase I will take place as 
follows: 
 

PHASE I 
Incremental Cycle Exercise Test (day 1) 

↓ 
Moderate Intensity Transitions (6 separate days; 4 performed per visit) 

 
At the beginning of Phase II of this study you will come to the lab 3 times in a single day 
(morning, afternoon and night) to perform two pairs of transitions similar to those performed in 
Phase I, but rather than a pre-determined intensity, the intensity will be specifically prescribed 
for each individual (based on information from the incremental exercise test).  This intensity will 
be at a level considered to be “moderate” (exercise in the moderate domain could theoretically 
be performed indefinitely and should not produce signs of fatigue).  Following this series of 
tests, and on a separate day, you will perform 45 minutes of continuous cycling exercise (on 
the cycle ergometer) in the early morning hours (aiming to finish by 9:00am).  This exercise 
session will be at a higher intensity than your previous testing sessions (approximately 70% of 
your performance on the incremental exercise test). Although more intense than the exercise 
you performed during the moderate-intensity tests, this exercise intensity is expected to 
produce fatigue only after approximately 1-2 hours of exercise.  Following this exercise session, 
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you will then be asked to return to the laboratory 6 hours, 12 hours, 24 hours and 48 hours later 
for moderate-intensity exercise transitions similar to those performed at the start of testing for 
Phase II.  Each of these visits will involve two pairs of transitions, and there will be 
approximately a 20 minute break between the pairs, just as in Phase I. Testing for Phase II will 
take place as follows: 
 

PHASE II (example times used) 
Visit 1 - Pre-Exercise Intervention - Friday 

Moderate Intensity Transitions (9:00am; 4 performed per visit) 

↓ 
Visit 2 - Pre-Exercise Intervention - Friday 

Moderate Intensity Transitions (3:00pm; 4 performed per visit) 

↓ 
Visit 3 - Pre-Exercise Intervention - Friday 

Moderate Intensity Transitions (9:00pm; 4 performed per visit) 

↓ 
Visit 4 - Exercise Intervention - Monday 

45 min stationary cycling @ 70% VO2max (8:15am; 4 performed per visit) 

↓ 
Visit 5 - 6 hours Post-Exercise Intervention - Monday 

Moderate Intensity Transitions (3:00pm; 4 performed per visit) 

↓ 
Visit 6 - 12 hours Post-Exercise Intervention - Monday 

Moderate Intensity Transitions (9:00pm; 4 performed per visit) 

↓ 
Visit 7 - 24 hours Post-Exercise Intervention - Tuesday 

Moderate Intensity Transitions (9:00am; 4 performed per visit) 

↓ 
Visit 8 - 48 hours Post-Exercise Intervention - Wednesday 

Moderate Intensity Transitions (9:00am; 4 performed per visit) 
 
Research Procedures: 
 
During each of the exercise tests you will be required to wear a nose-clip (to prevent you from 
breathing through your nose) and a rubber mouthpiece (similar to breathing through a snorkel 
or diving mask); nose-clips and mouthpieces are disinfected before each test.  This will enable 
us to measure the volume of air that you breathe in and out, and measure the gas 
concentration in that air. 
  
During each of the exercise tests, the oxygenation of your leg muscle will be measured using 
near-infrared spectroscopy which projects light into a specific location of your leg muscles and 
measures the amount of light coming out at another location. A small piece of equipment will be 
placed on your leg approximately midway between your hip and your knee. It will be secured 
with tape, covered to prevent light from entering or leaving the area, and bound with elastic 
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bandage to minimize movement. You might experience a bit of discomfort by having this 
equipment secured to your leg during the exercise period. However, this is a non-invasive 
procedure. Additionally, oxygenation of your blood will be measured using infrared oximetry (a 
non-invasive measure similar to that performed by nurses when you go to visit a doctor at the 
hospital) with the probe clipped onto your earlobe or finger. 
 
Heart rate and rhythm will be continuously monitored by electrocardiogram. One electrode will 
be placed on each of the following areas: left chest, right chest, and left side under your ribs 
and connected to an electrocardiograph.  The electrodes use adhesive tape to secure to the 
skin.  There are no known risks or discomforts associated with this procedure. 
 
Possible Risks and Discomforts: 
 
You may experience some minor discomfort from wearing the nose-clip and rubber 
mouthpiece, and by having the NIRS probes secured to your leg during the exercise period.  
These sensations often become less noticeable with time during the exercise. 
 
Any exercise carries a slight risk of a heart attack (less than approximately 6:10,000) or may be 
uncomfortable if you are unfit or not used to exercise.  There may be some minor discomfort 
during the exercise testing.  You may experience increased awareness of breathing, muscle 
fatigue and soreness, increased sweating, or a general feeling of fatigue or nausea, none of 
which are unexpected consequences of exercise. 
 
All testing procedures will only be conducted when a lab technician or research assistant that is 
certified in CPR is present.  In the case of an emergency, 911 will be called using the telephone 
located in the testing laboratory.  An automatic external defibrillator is also available within the 
testing building.  If a heavy pressure sensation or pain develops in your chest or down your left 
arm it is important that you discontinue the exercise immediately and report these sensations to 
the exercise supervisor, or seek medical attention if you have left the exercise area. 
 
Participation in this study requires a time commitment which may be inconvenient for you at 
some point during the study. 
 
Benefits of Participation: 
 
This is a basic physiology/biochemistry study and, as such, there will be no direct benefits 
received as a consequence of participating in the study. If you are interested, the rational for 
conducting the research and theory and significance of each of the tests will be explained, as 
will your individual results from each of the tests. You will also have the opportunity to learn 
about and better understand your physiological responses to an exercise situation. 
 
Confidentiality: 
 
Records from this study are confidential and will be stored securely at the Canadian Centre for 
Activity and Aging, Sonia Arthur Labatt Health Sciences Building.  Your records will 
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be identified by a number rather than your name. The data will be available for analysis within 
the research group.  Published reports resulting from this study will not identify you by name. 
We would like to keep and use your data in the future, for as of yet unknown analyses. There is 
a check box on the consent form to indicate your choice.  You will be able to withdraw your 
data at any time by contacting the Principal Investigator, Dr, Donald H. Paterson at 519-661-
1606.  Representatives of the University of Western Ontario Health Sciences Research Ethics 
Board may contact you or require access to your study-related records to monitor the conduct 
of the research.  
 
Voluntary Participation: 
 
Participation in this study is voluntary. You may refuse to participate, refuse to answer any 
questions or withdraw from the study at any time with no effect on your academic status. 
 
You will be given a copy of this letter of information and signed consent forms. You do not 
waive any legal rights by signing the consent form. If you have any questions regarding this 
study please contact Dr. Donald Paterson (519-661-1606) at the Canadian Centre for Activity 
and Aging, Sonia and Arthur Labatt Health Sciences Building, The University of Western 
Ontario, London. If you have any question about the conduct of this study or your rights as a 
research subject you may contact the Office of Research Ethics, The University of Western 
Ontario, 519-661-3036 (ethics@uwo.ca). 
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LETTER OF INFORMED CONSENT 
 
Do VO2 kinetics vary in response to differing moderate-intensity power outputs or following 
acute exercise in young men?  
Principal Investigator: Donald H Paterson, PhD 
PhD Students: Matthew D Spencer, MSc; Juan M Murias, MSc 
 

PHASE I 
 
 
 
I have read the Letter of Information, have had the nature of this study explained to me and 
I agree to participate.  All questions have been answered to my satisfaction. 
 
� I consent to having my data kept for future as of yet unknown analyses. 
 
� I do not consent to having my data kept for future as of yet unknown analyses. 
 
 
Participant: 
 
 
____________________________   ___________________________ 
 Name (please print)     Signature 
 
 
________________________ 
 Date 
 
 
 
 
Investigator (i.e. Person Responsible for Obtaining Informed Consent): 
 
 
____________________________   ___________________________ 
 Name (please print)                                                  Signature 
 
 
________________________ 
  Date 
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LETTER OF INFORMATION 
 

Systemic and local blood flow and oxygen extraction adaptations during incremental 

cycling tests. 

 
Principal Investigator: Donald H. Paterson, PhD 

 
Purpose of the Study: 

 
You are being invited to participate in a study that examines the relationship between how 
much blood is pumped out from the heart to the muscles and how much of the oxygen 
carried in the blood is used by your active muscles. Healthy young men and women (18-
40 yr old) are invited to take part of this study. 
 
Participation in this study requires you to visit the research laboratory at the Canadian 
Centre for Activity and Aging (Arthur and Sonia Labatt Health Science Centre, Room 
313) on two different occasions with each visit separated by at least 48 hs but no longer 
than 2 weeks. Each one of the testing sessions will not last approximately 50 to 80 
minutes. 
 
A total of 16-20 young adults (8-10 men and 8-10 women) will be invited to participate in 
this study. In order to participate you must be between 18-40 years of age and healthy. 
You will not be able to participate in the study if you have been diagnosed previously 
with any respiratory (i.e. chronic obstructive pulmonary disease), cardiovascular (i.e. 
coronary heart disease), metabolic (i.e. diabetes) or neurological (i.e. Parkinson’s disease) 
disease; or you are currently taking prescribed medication that may affect your 
cardiovascular responses to exercise; or you are a smoker; or you respond to the exercise 
protocol in an irregular manner (i.e. chest pains, nausea, dizziness, shortness of breath, 
excessive awareness of breathing, or inability to maintain required pedal cadence – 
represented by the revolutions per minute at which the cycle pedals spin while you 
exercise); or cannot tolerate the exercise protocol. 
 
Research Testing Protocol: 

 
The first visit to the laboratory will start with resting measurements of your oxygen 
consumption (the amount of oxygen your tissues utilize) and cardiac output (the amount 
of blood expelled by the heart to the rest of the body). After that, you will complete an 
incremental test on a stationary bicycle, which is a test to measure your maximal aerobic 
fitness level. In an incremental test the intensity of exercise increases gradually 
throughout the test until you are physically unable to continue exercising because the 
intensity is either too high or too uncomfortable. The test will begin with the exercise 
intensity being very light and easy (very little resistance) and then, the exercise intensity 
will gradually and continuously increase until you are unable to continue because of 
fatigue, or until  you wish to stop. During this test, cardiac output measurements will be 
taken at baseline and every second minute throughout the protocol (either at the end of 
“odd” or “even” minutes), and the oxygenation of your vastus lateralis (the most active 
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muscle of your leg during cycling exercise) will be monitored continuously. This visit 
should last less than 1 hour. 
 
During the second visit, you will repeat the same procedures as on day 1 with the only 
two differences being: 1) Cardiac output measurements during the test will be performed 
again every second minute but this time at the end of the minute before or after it was 
done before (i.e., if on day one the measurements were taking at the end of minute 1, 3, 5, 
and so on, on the second visit the measurements will be performed at the end of minute 2, 
4, 6, and so on); 2) At the end of this visit you will move to a chair and, after a brief 
period of rest (approximately 10 minutes) you will be asked to perform a maximal 
voluntary contraction (MVC). The MVC will involve a maximal contraction of your leg 
where you will try to “push” your foot against a resistance as hard as possible until the 
investigator tells you to relax. This maneuver will allow us to measure the highest and 
lowest levels of oxygen within your thigh muscle. This visit should last less than 80 
minutes. 
 

Research Procedures: 

 
During each of the exercise tests you will be required to wear a nose-clip (to prevent you 
from breathing through your nose) and a rubber mouthpiece (similar to breathing through 
a snorkel or diving mask). This will enable us to measure the air that you breathe in and 
out. You may experience some initial discomfort from wearing the nose-clip and 
mouthpiece. 
 
During each of the exercise tests the oxygenation of your leg muscle will be measured 
using near-infrared spectroscopy which projects light into a specific location of your leg 
muscles and measures the amount of light coming out at another location. A small piece 
of equipment will be placed on your leg approximately midway between your hip and 
your knee. It will be secured with tape, covered to prevent light from entering or leaving 
the area, and bound with elastic bandage to minimize movement. You might experience a 
bit of discomfort by having this equipment secured to your leg during the exercise period. 
However, this is a non-invasive procedure. 
 
During the study, cardiac output (i.e. the amount of blood pumped out by your heart over 
a given period of time) will be measured non-invasively at rest and during exercise using 
the acetylene (C2H2) open-circuit techniques. You will complete approximately 10 
breathing cycles inhaling from a bag containing a known concentration of gases and 
exhaling to the room.  
 
Heart rate will be continuously monitored by electrocardiogram. One electrode will be 
placed on each of the following areas: left chest, right chest, and left side under your ribs 
and connected to an electrocardiograph.  The electrodes use adhesive tape to secure to the 
skin.  There are no known risks or discomforts associated with this procedure. 
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Possible Risks and Discomforts: 

 
Any exercise carries a slight risk of heart attack or may be uncomfortable if you are unfit 
or not used to exercise. The risk of a cardiac event (heart attack, dysrhythmias, etc.) in a 
mixed subject population (healthy low risk and unhealthy high risk patients together) is 
approximately 6:10,000; however, the risk decreases in a previously healthy (i.e. young 
moderately active) population (adapted from ACSM’s Guidelines for Exercise Testing 
and Prescription). There might be some minor discomfort during the exercise testing. You 
may experience increased awareness of breathing, muscle pain and/or fatigue, increased 
sweating, or a general feeling of fatigue or nausea, all of which are not unexpected 
consequences of exercise. 
 
Benefits of Participation: 

 
This is a basic physiology/biochemistry study and, as such, there will be no direct benefits 
received as a consequence of participating in the study. If you are interested, the rational 
for conducting the research and theory and significance of each of the tests will be 
explained, as will your individual results from each of the tests. You will also have the 
opportunity to learn about and better understand your physiological responses to an 
exercise situation. 
 
Other Pertinent Information: 

 
You are encouraged to ask questions regarding the purpose of the study, specific 
measures or outcomes of your exercise test, or overall findings and conclusions from this 
research study. 
 
Confidentiality: 
 
Records from the study are confidential and will be stored securely at the testing facility. 
They will be available for analysis within the research group. No other agencies or 
individuals will have access to the collected data. Your records are listed according to an 
identification number rather than by your name. Published reports resulting from this 
study will not identify you by name. 
 
Voluntary Participation: 

 
Participation in this study is voluntary. You may refuse to participate or withdraw from 
the study at any time with no effect on your future care and/or academic or employment 
status. 
 
You will be given a copy of this letter of information and signed consent forms. You do 
not waive any legal rights by signing the consent form. If you have any questions 
regarding this study please contact Dr. Donald Paterson (519-661-1606) at the Canadian 
Centre for Activity and Aging, Sonia and Arthur Labatt Health Sciences Building, The 
University of Western Ontario, London. If you have any question about the conduct of 
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this study or your rights as a research subject you may contact the Director of the Office 
of Research Ethics, The University of Western Ontario, 519-661-3036 (ethics@uwo.ca). 
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LETTER OF INFORMED CONSENT 
 

Systemic and local blood flow and oxygen extraction adaptations during incremental 

cycling tests. 

 
Principal Investigator: Donald H. Paterson, PhD 

 
I have read the Letter of Information, have had the nature of the study explained to me 
and I agree to participate. All questions have been answered to my satisfaction. 
 
 
Participant: 
 
 
 
_____________________________  ________________________ 
 Name (please print)   Signature 
 
 
 
 
_____________________________ 
 Date 
 
 
 
Investigator (Person Responsible for Obtaining Informed Consent): 
 
 
 
 
_____________________________  ________________________ 
 Name (please print)   Signature 
 
 
 
 
_____________________________ 
 Date 
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APPENDIX III: Permission to reproduce previously published material 

 
Chapter II:  

 
 
Chapter III: 

Written permission not required from this publisher if the purpose of the reproduction is 
defence of a thesis. (Information obtained through the Copyright Clearance Centre 
operated by RightsLink). 
 
Chapter IV: 

Not yet published. 
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Chapter V: 
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