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Abstract and Key Words 

 
A second generation catalyst for the Mukaiyama oxidative cyclization for the formation 

of trans-THF rings is described. Co(nmp)2, displays increased stability to the reaction 

conditions, resulting in lower catalyst loadings, lower reaction temperatures, and 

significantly higher purity and yields of the products. Three procedures have been 

developed with this new water-soluble catalyst that greatly simplifies the post-reaction 

purification, making this procedure the premier method of forming trans-THF rings.  

This new catalyst has been applied towards the total synthesis of the potently bioactive 

macrocycle, Amphidinolide C. Herein we report the successful synthesis of several 

fragments of the natural product, and our attempts at coupling them to complete the 

synthesis. The C(1)-C(9) was achieved via two routes, both utilizing the highly effective 

oxidation catalyst Co(nmp)2 to form the methyl substituted trans-THF ring. Synthetic 

highlights include a regioselective Shi epoxidation, and the design and introduction of a 

novel Lewis acid (BF2OBnOEt2) to facilitate a stereoselective reductive epoxide 

opening. The C(18)-C(34) fragment was also achieved via two routes, culminating in 

both the shortest (11 steps) and highest yielding (26% overall yield) approaches to this 

segment. Synthetic highlights of this fragment include a selective methylation of a diyne, 

and a highly selective alkynylation of a THF aldehyde, achieving excellent dr (>20:1) 

without the addition of an external chiral compound. Advanced intermediates comprising 

the entirety of the carbon backbone of the molecule have been synthesized, which in 

theory could complete the total synthesis in as few as two bond forming steps. 

 

Key Words: Natural Product Synthesis, trans-THF, Amphidinolide, Mukaiyama 

Oxidative Cyclization, Macrocycle, Umpolung Chemistry, Synthetic Methodology, 

Asymmetric Alkynlation, Asymmetric Dihydroxylation, Water Soluble Catalyst 
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Chapter 1 – The Mukaiyama Oxidative Cyclization and Amphidinolide C 

 

Section 1.1 – Importance of Total Synthesis 

 

Synthetic organic chemistry has had a wide impact on the world around us.  Everything 

from pharmaceuticals, high-tech materials, fertilizers, pesticides, polymers, personal care 

products, and even our food has been impacted by organic chemistry.  At the heart of all 

these applications lies the ability to assemble complex molecules from commercially 

available chemicals. 

When isolation chemists find natural products with interesting biological activity, the 

structure of the molecule is determined using imperfect characterization methods (NMR, 

IR, HRMS).  While the structure of the compound is assigned correctly more often than 

not, the only way to determine the structure of the compound with absolute certainty is 

through total synthesis. 

Since most natural products can only be isolated in miniscule amounts, and are often very 

difficult to obtain, accessing them through synthetic means can be tremendously useful.  

A completed total synthesis not only provides a blueprint towards making this molecule 

on laboratory scale, but also a venue for the synthesis of derivatives of the natural 

product.  This flexibility is the basis for drug design, allowing for selective 

functionalization of molecules to manipulate its properties, such as bioactivity, half-life, 

and minimization of side effects. 

Perhaps the most important opportunity that total synthesis provides is the venue to 

discover new chemistry and new methodologies.  During the course of a total synthesis 

you will inevitably encounter difficulty with a synthetic transformation for which there is 

no solution reported in the literature.  Through the rigorous process of a total synthesis, 

chemists will discover novel and innovative transformations that will help them to 

achieve their goal.  These solutions are added to the pool of chemical knowledge that has 

been developed over several hundred years, which furthers our understanding of 

chemistry and propels the field of synthetic chemistry forward. 
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Section 1.2 – The History of the Mukaiyama Oxidative Cyclization  

 

The ubiquitous nature of tetrahydrofuran (THF) rings in a wide variety of biologically 

active natural products has inspired the development of methods for their synthesis and 

derivatization.1 In particular, the ability to form 2,5-trans-THF rings in an efficient and 

diastereoselective manner is essential for the synthesis of many natural products 

containing this structural motif. Numerous methods have been utilized to access trans-

THF rings, however, most of them suffer from poor yields or low diastereoselectivity.2 

Recently, the Mukaiyama oxidative cyclization has emerged as a powerful synthetic tool 

that uses molecular oxygen as the stoichiometric oxidant to convert pentenols to trans-

THF rings with >99:1 trans:cis diastereoselectivity and good to excellent yields (Scheme 

1.1). The paramagnetic nature of the catalysts has led to very little mechanistic studies of 

the reaction, but some pioneering mechanistic investigations have been reported by 

Hartung.3 

 

 
Scheme 1.1. Representative Muykaiyama aerobic oxidative cyclization 

 

The oxidative cyclization was first discovered by Mukaiyama in 1990,4 when he utilized 

several different cobalt (III) complexes (oxidized in situ from the parent Co(II) complex 

using a peroxide) to achieve the cyclization in low to moderate yields. His original 

conditions to complex the acac-type ligands to form the Co(II) precatalysts (1-1, 1-2, and 

1-3) used aqueous alkaline conditions (CoCl2, NaOH, H2O), resulting in brown 

amorphous solids of dubious purity, which undoubtedly decreased the yield of the 

cyclization reactions (Scheme 1.2). In an attempt to improve the procedure for use in total 

synthesis, our group endeavoured to modify the complexation conditions to create 

catalysts of higher purity. We replaced the cobalt source (CoCl2) with Co(2-ethyl-
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hexanoate)2, allowing us to conduct the complexation reaction in organic solvents. The 

result, for the traditional catalyst Co(modp)2 (1-1), was a lower yielding reaction that 

produced higher purity catalyst, which we isolated as a tan solid. The same complexation 

conditions were used for other first generation catalysts, Co(piper)2 (1-2), and Co(dibn)2 

(1-3), also resulting in tan solids.  

 

Scheme 1.2. Our improved synthesis of the first generation catalyst 
 

Over time, crystals were grown of both Co(II) and Co(III) complexes, providing 

invaluable information regarding the structure of the catalysts.5 We found that the Co(II) 

complex is comprised of three cobalt atoms, each separated by 4.870 Å (Figure 1.1). The 

two outer cobalt atoms are each surrounded by three dioxoamide ligands, and their 

negative charge is balanced by a central Co(II)(H2O)6.  

 
Figure 1.1. Crystal structures of a Co(II) complex: [(C21H22NO3)3Co]2–Co(H2O)6 
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Upon oxidation to the Co(III) complex, ligand redistribution resulted in a binuclear 

cluster where the two central cobalt atoms are bridged by two hydroxyl groups (Figure 

1.2). Both cobalt atoms are surrounded by two chelating ligands, maintaining the 

empirical formula CoL2.  

 

 
Figure 1.2. Crystal structures of a Co(III) complex: [(C34H32NO3)3Co]2(µ–OH)2 

 

The superior quality of the catalysts generated via our new procedure resulted in an 

increase in both yield and purity of the reactions, with the average yield of the cyclization 

reaction being 70-80%.  

 

Section 1.2.2 – The Mukaiyama Oxidation in Total Synthesis 

 

Using our higher quality first generation catalyst, the Pagenkopf group set out to 

synthesize multiple trans-THF containing natural products. In 2006, Hongda Zhao 

reported the total synthesis of bullatacin (1-6),6 and a year later the synthesis of 

aplysiallene (1-7) was completed by Jian Wang (Figure 1.3).7  
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Figure 1.3. Two trans-THF containing natural products made in the Pagenkopf lab 

 

Access to the trans-THF cores of these molecules started from the di-epoxide 1-8 and its 

enantiomer ent-1-8, which was opened using either allyl or vinyl grignard to give di-

pentenols 1-9 or 1-12 (Scheme 1.3). Both diols were then desymmetrized via mono-

acylation and subjected to the oxidative cyclization using Co(modp)2 (1-1). Following 

protection of the resulting primary alcohol and removal of the acyl groups, a second 

Muykaiyama reaction was performed to give either the fused bis-THF 1-11 of 

aplysiallene, or the bridged bis-THF 1-14 found in bullatacin. Further manipulation of the 

fragments eventually led to the total synthesis of the natural products.  

 

 
Scheme 1.3. Synthesis of the cores of Bullatacin (1-6) and Aplysiallene (1-7) 

 

Although the catalysts performed admirably in the total syntheses, with perfect 

diastereoselectivity and excellent yields, the oxidative cyclization still suffered from a 

significant setback when dealing with post-reaction purification. It was found that during 

the course of the oxidation, the catalyst decomposed into a multitude of catalytically 
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active complexes of varying Rf values. These residues significantly complicate 

purification by column chromatography, often resulting in impure trans-THF products, 

which are uncharacterizable by NMR due to the paramagnetic nature of the cobalt 

contaminants.  

 

Section 1.2.3 – A Water Soluble Variant of the Mukaiyama Catalyst 

 

To circumvent the difficulties associated with purification by column chromatography, 

we set out to synthesize a second generation catalyst that retains high efficiency but also 

exhibits increased polarity. This and related strategies have seen great success with EDC, 

water-soluble ligands, sulfonated phosphines, fluorous phases, and ionic liquids.8 Using 

the first generation catalysts as a blueprint, we deigned two possible ligands, both 

containing a polar tri-substituted amine. The two ligands were assigned the abbreviations 

dipr (after the di-isopropyl subunit) and nmp (after the N-methyl piperazine subunit). The 

synthesis of the new ligands began with the reaction of ethyloxalyl chloride with the 

corresponding secondary amine 1-15 or 1-18 (Scheme 1.4). Subsequent Claisen 

condensation with pinacolone followed by non-aqueous acidic quench9 (HOAc, CH2Cl2) 

furnished the dipr (1-17) and nmp (1-20) ligands in excellent overall yields.  

 

N
H

EtO

O

O

Cl+ EtO

O

O

N
Et3N, CH2Cl2

(95%)

OH

O

N

O
pinacolone

tBuOK, THF

(93%)

N
H

Me
N

EtO

O

O

Cl+

EtO

O

O

N

NMe OH

O

N

NMeOEt3N, CH2Cl2

(99%)

pinacolone
tBuOK, THF

(85%)

1-15 1-16 1-17

1-18 1-19 1-20  
Scheme 1.4. Synthesis of the second generation ligands dipr (1-17) and nmp (1-20) 

 

Several attempts were made at complexion of the dipr ligand (1-17) with Co(2-ethyl-

hexanoate)2, however successful precipitation the catalyst was never achieved (Scheme 

1.5). Initial complexation reactions using the nmp ligand 1-20 provided trace amounts of 

a purple solid (<10% yield) that performed poorly in oxidative cyclization reactions. 
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Eventually, given the unusual color of the catalyst (purple, not tan), and the x-ray data of 

first generation catalysts that clearly showed the incorporation of water in the structures, 

we rationalized that the complexation yield would benefit from being run in aqueous 

benzene. Indeed, the addition of four equivalents of water in the complexation reaction 

gave a nearly quantitative yield of Co(nmp)2 (1-21) as a tan solid, which was isolated by 

centrifugation of the mixture.  

 

 
Scheme 1.5. Complexation of the ligands to form the Co(II) pre-catalysts 

 

Gratifyingly, Co(nmp)2 (1-21) displayed remarkable improvement in the yield of the 

oxidative cyclization process (Table 1.1, entries 1-6). The reason, as we later discovered, 

was that the catalyst displayed outstanding stability under the reaction conditions leading 

to increased catalyst longevity. Also, the longevity of the catalyst circumvented undesired 

side reactions which typically resulted in over oxidation or protocyclization products, 

resulting in cleaner crude reaction mixtures. Using a simple TBS protected pentenol 1-22 

we showed that, for the first time, complete conversion of starting material could be 

achieved with catalyst loadings as low as 5% (Table 1.1, entry 7). Reactions using 

catalyst loadings lower than 5% (Table 1.1, entry 8) did not progress to completion, but 

still gave excellent yields based on recovered starting material.  
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Table 1.1. Comparison of Co(nmp)2 (1-21) performance to the first generation catalysts

 

 

 

Entry  Catalyst Catalyst loading 
(mol %) 

Yield (%) 

1  Co(modp)
2

5 47a 

2  Co(modp)
2

10 65 

3  Co(modp)
2

15 68 

4  Co(dibn)
2
 10 68 

5  Co(piper)
2
 10 70 

6  Co(nmp)
2
 10 97 

7  Co(nmp)
2
 5 93 

8  Co(nmp)
2
 3 57 (93)b 

a All starting material was consumed. b Based on recovered starting material 
 

With regards to product purification, we initially accomplished complete removal of the 

cobalt residues from the trans-THF products via aqueous workup by washing the organic 

layer with a pH 4 phosphate buffer solution. Understanding that a pH 4 workup 

procedure may be incompatible with some acid-sensitive substrates, an alternative 

procedure of quaternization of the tertiary amine using methyl iodide was developed. 

While both procedures performed well, removing all traces of the catalyst and retaining 

high isolated yields of purified product, we recognized that they both had substantial 

drawbacks. The acidic workup would be obviously incompatible with a variety of 

functionalities and protecting groups, while the overnight methylation of the catalyst was 

time consuming, and also had the potential of substrate compatibility issues. So, a third 

workup procedure was invented, after the highly polar nature of the oxidized catalyst was 

realized (Rf 100% EtOAc: 0.00). Upon completion of the reaction, all traces of iso-

propanol were removed by rotary evaporation, followed by high vacuum (0.01 mmHg, 10 

min) with rigorous stirring. The crude green oil was then diluted with ethyl acetate and 

filtered through a thin pad of silica on celite to provide the trans-THF product with no 

traces of cobalt residues.  

Our work on the Mukaiyama oxidative cyclization reaction resulted in a dramatic 

improvement in yields and purities of the trans-THF products. We have also reported a 

second-generation catalyst, Co(nmp)2, and demonstrated the improvement with regard to 
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post-reaction purification, replacing a difficult and costly column chromatography with 

an aqueous workup, or simple filtration. The catalyst can be easily synthesized on gram 

scale in nearly quantitative yield with centrifugation as the only means of purification. 

Given the improvements that we have pioneered, we believe that this procedure is now 

the premier method for forming trans-THF rings, and set out to showcase its utility in the 

total synthesis of a complex natural product. 

 

Section 1.3 – Amphidinolide C: A Potently Bioactive Macrocyclic Lactone 

 

The Amphidinolides are a series of 34 macrolactides and 8 linear polyketides isolated 

from laboratory-cultured marine dinoflagellates Amphidinium sp. possessing unique 

structural features and varying degrees of biological activity.10 The five most cytotoxic 

members of the family are amphidinolides B, C, G, H, and N (Figure 1.4, brackets 

contain IC50 (µg/mL) values towards murine lymphoma and human epimeroid cancer 

cells respectively)11, four of which have been synthesized in a laboratory. In 2006, 

Nicolaou completed the synthesis of amphidinolide N,12 Fürstner finished amphidinolide 

G and H in 2007,13 and most recently, in 2008, Carter achieved in the total synthesis of 

amphidinolide B.14  

 
Figure 1.4. The five most cytotoxic members of the amphidinolide family 
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The absolute stereochemistry of amphidinolide C (1-24) was established by Kobayashi in 

2001.15 Somewhat surprisingly, it has yet to be completed by total synthesis, which is a 

reflection of the complexity of the natural product.16 The 25-membered macrocycle 

includes 12 chiral centers, five of which are contained in two trans-THF rings, and 

several vicinally located one-carbon branches (Figure 1.5).  

 

O
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O Me
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O
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Me

HOH
H

OH
Me

H

H

Me
OH O

24 28

34

18

1

9

15

11

40 41

35

36

37

38

39

amphidinolide C (1-24)  
Figure 1.5. Amphidinolide C, and the numbering of the natural product 

 

Other key aspects of the structure include the 1,4-diketone species from C(15)-C(18) and 

the unusually substituted diene system from C(9)-C(11). These unique structural features, 

combined with the potent cytotoxicity, have attracted the synthetic attention of many 

research groups, including our own. We believe that our recent work on the Mukaiyama 

oxidative cyclization and the improved catalyst Co(nmp)2 could provide expedient access 

to the trans-THF rings, and lead to a concise total synthesis of amphidinolide C. 

 

Section 1.4 – Previous Synthesis of the Amphidinolide C Fragments 

 

Section 1.4.1 – Roush’s Synthesis of the C(1)-C(9) and C(11)-C(29) Fragment  

 

One of the earliest reports on progress towards the synthesis of amphidinolide C was 

from the Roush group. In 2004 he reported the synthesis of the C(11)-C(29) fragment of 

amphidinolide F14h (which is nearly identical to the C(11)-C(29) fragment of 

amphidinolide C), followed thereafter by his report of the synthesis of the C(1)-C(9) 

fragment in 2008.14f In his work, Roush relies on the diastereoselective [3+2]-annulation 

reaction of allylsilanes and aldehydes, pioneered by Panek,17 to prepare the key trans-
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THF rings. His initial retrosynthetic disconnections resulted in the C(1)-C(9) fragment (1-

26) being attached via a Stille cross-coupling reaction,18 and macrolactonization (Figure 

1.6). Roush’s retrosynthesis also entails forming the C(14)-C(15) bond via a 2 step boron 

mediated aldol/Evans-Tishchenko reduction procedure.  

 

 

Figure 1.6. Roush’s key retrosynthetic disconnections of amphidinolide C and F 

 

Roush’s synthetic efforts towards the C(11)-C(29) fragment began with known aldehyde 

1-29, which was silylallylborated with a (+)-pinene-derived allyl borane, followed by 

TBS protection to afford allylsilane 1-30 in 57% yield and 91% ee (Scheme 1.6).  

 

 
Scheme 1.6. Synthesis of the silyl substituted trans-THF ring via [3+2] annulation 

 



12 
 

This silane then underwent the aforementioned tin-mediated annulation reaction with 

ethyl glyoxylate to give the silyl substituted THF 1-31 in 62% yield and excellent dr. The 

THF ring was then converted into the iodide 1-32 via a 3-step procedure in 92% yield, 

and that iodide was displaced by dithiane 1-33 (which was derived from Roche ester)19 

and treated with TBAF to give the silylated C(15)-C(26) fragment 1-35. 

The protiodesilylation of 1-35 proved to be a troublesome reaction, but optimized 

conditions were eventually found (TBAF, THF/DMF, 85 °C, 24h) that allowed for a 90% 

yield of the desilylated product 1-36 (Scheme 1.7). After TBS protection of the secondary 

alcohol, conversion of the primary PMB ether to the corresponding aldehyde 1-27 was 

achieved, setting the stage for their aldol/Evans-Tishchenko reaction sequence. Using 

dicyclohexylchloroborane, aldol reaction between aldehyde 1-27 and ketone 1-37 was 

accomplished with perfect diastereoselectivity, followed by the Evans-Tishchenko 

reaction which proceeded with 11:1 dr to give 1-40.  

 

 

Scheme 1.7. Roush’s aldol/Evans-Tishchenko strategy 
 

To complete the synthesis of the fragment, the secondary alcohol 1-40 was protected as 

the TIPS ether prior to regioselective hydro-stannylation of the alkyne and subsequent 

displacement of the stannane with iodide in 79% yield over 3 steps (Scheme 1.8). Iodide 

1-41 was then coupled with stannane 1-42, thereby completing the synthesis of the C(11)-

C(29) fragment of amphidinolide F (1-25). Presumably, by altering their choice of 
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stannane, they could use the same intermediate (1-41) in the total synthesis of 

amphidinolide C. 

 

 
Scheme 1.8. Completion of the C(11)-C(29) fragment of amphidinolide F 

 

In a separate communication on the synthesis of the C(1)-C(9) fragment,14f Roush applied 

the same [3+2] annulation reaction to form the methyl substituted THF ring of 

amphidinolide C (Scheme 1.9), utilizing allyl silane 1-44 (made in four steps from 1-43). 

The THF-ester 1-46 was converted to an iodide via a 3-step procedure, which was 

displaced by 1,3-dithiane to give 1-47 in 70% over 4 steps. The ring was protiodesilylated 

with concurrent deprotection of the TBS ether, using TBAF and tBuOK in a 

DMSO/water/18-crown-6 solvent mixture, which was followed by oxidation of the 

alcohol to aldehyde 1-48.  
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Scheme 1.9. Roush’s synthesis of THF-aldehyde 1-48 

 

To complete the synthesis, aldehyde 1-48 was treated with a custom made allylboration 

reagent, resulting in a 47% yield of a 6:1 diastereomeric ratio of diol 1-49 (Scheme 1.10). 

Diol protection, dithiane deprotection and aldehyde oxidation/esterification resulted in 
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ester 1-50 in 70% yield over three steps. Ozonolysis of the alkene 1-50 revealed aldehyde 

1-51 which, presumably, could be elaborated into the C(9)-C(11) diene portion of 

amphidinolides C and F.  

 

 
Scheme 1.10. Roush’s completion of the C(1)-C(9) fragment 

 

Section 1.4.2 – Carter’s Synthesis of the C(7)-C(20) Fragment 

 

Carter’s work towards amphidinolide C was unique because unlike the other reports, they 

did not address the formation of the trans-THF rings.14d His retrosynthesis of the C(7)-

C(20) fragment had two key disconnections, a sulfone (1-53) alkylation to form the 

C(14)-C(15) bond, and an organolithium addition/olefination sequence utilizing 1-54 and 

1-55 to access the C(9)-C(11) diene (Figure 1.7).  

 

 
Figure 1.7. Carter’s retrosynthesis of the C(7)-C(20) fragment 
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In the forward direction, malonate 1-56 was elaborated into iodoalkene 1-57 via a six step 

sequence, followed by Sharpless epoxidation to form epoxide 1-58 in 87% yield and 95% 

ee (Scheme 1.11). To install the methyl group in a stereoselective manner, the alcohol 

was protected as the TBS ether before being treated with trimethylaluminum to give 

alcohol 1-59 in 95% yield as a single diastereomer. To complete the C(9)-C(11) diene, 

the secondary alcohol 1-59 was protected prior to lithium-halogen exchange of the 

iodoalkene and addition of the resulting anion into Weinreb amide 1-55, to give enone 1-

60. Subsequent olefination via the Petasis reagent completed formation of the diene 

subunit, and the primary TBS ether was converted to the corresponding iodide 1-52 for 

fragment coupling.  

 

 
Scheme 1.11. Synthesis of the C(7)-C(14) fragment via metallation/olefination 

 

To complete the synthesis of the fragment, the C(15)-C(20) subunit 1-53 was prepared 

from iodide 1-61 via a six-step procedure (Scheme 1.12). The sulfone 1-53 was then 

lithiated and treated with iodide 1-52, resulting in an 86% yield of an inconsequential 3:1 

ratio of diastereomers at C(15). The sulfone (1-62) was then converted to the desired 

ketone oxidation state by treatment with TMS peroxide and LDA in THF/DMPU, 

completing the synthesis of the C(7)-C(20) fragment (1-63) of amphidinolides C and F. 
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Scheme 1.12. Carter’s completion of the C(7)-C(20) fragment 

 

Section 1.4.3 – Figadére Synthesis of the C(1)-C(9) Fragment 

 

Most recently, Figadére reported his synthesis of the C(1)-C(9) fragment, again taking 

advantage of the popular cross-coupling disconnection between the C(9)-C(10) bond and 

a macrolactonization to form the ring (Figure 1.8).14c To form the C(1)-C(9) fragment he 

used a vinylogous Mukaiyama aldol between chiral aldehyde 1-66 and siloxyfuran 1-67 

followed by a C-glycosylation with N-acetyl-oxazolidinethione 1-68.  

 

Figure 1.8. Figadére’s retrosynthesis of the C(1)-C(9) fragment 

 
Figadére’s synthesis began with a TMSOTf catalyzed vinylogous aldol reaction between 

siloxyfuran 1-67 and aldehyde 1-66, resulting in a 3:1 ratio of diastereomers of 1-69 in 

80% yield (Scheme 1.13). Catalytic hydrogenation of the major diastereomer of 1-69 in 
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acidic methanol afforded a triol which was converted to the tri-TBS ether 1-70 in 73% 

yield over 2 steps. Lactone 1-70 was then converted into 1-71 by one-pot reduction and 

acylation in 96% yield, and was then C-glycosylated with the titanium enolate of 

oxazolidinethione 1-72.  

 

 
Scheme 1.13. Figadére’s synthesis of the C(1)-C(9) fragment 

 

With all the stereogenic centers installed, attention was directed towards functionalization 

of the left side of the fragment for cross-coupling (Scheme 1.14). The primary TBS ether 

1-72 was selectively cleaved using HFpyridine, and oxidized with TEMPO using 

trichloroisocyanuric acid as a co-oxidant. The resulting aldehyde 1-74 was converted into 

alkyne 1-75 using the Bestmann-Ohira reagent in 64% yield, and a regioselective 

hydrostannylation afforded the stannane 1-64 as a 4:1 mixture of separable regioisomers.  

 

 

Scheme 1.14. Figadére’s functionalization of the C(1)-C(9) fragment 
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Section 1.5 – Experimental 

 

To a solution of di-iso-propylamine (1-15) (1.40 mL, 10 mmol, 1 eq) and 

triethyl amine (1.39 mL, 10 mmol, 1 eq) in CH2Cl2 (25 mL) at 0 °C was 

added ethyl oxalyl chloride (1.12 mL, 10 mmol, 1 eq). The ice bath was 

removed and the reaction was allowed to warm to rt and stirred for 16 h. The resulting 

heterogeneous mixture was quenched with a solution of half saturated NaHCO3 (100 mL) 

and the phases were separated. The aqueous phase was extracted with CH2Cl2 (3 x 50 

mL), then the organic phases were combined and washed with brine (50 mL), dried over 

MgSO4 and concentrated under reduced pressure to afford 1-16 as an orange oil (2.01 g, 

9.5 mmol, 95%) which was used without further purification. 1H NMR (400 MHz, 

CDCl3) δ 4.28 (q, J = 7.0 Hz, 2H), 3.67 (quin, J = 6.6 Hz, 1H), 3.48 (quin, J = 6.6 Hz, 

1H), 1.42 (d, J = 7.0 Hz, 6H), 1.33 (t, J = 7.0 Hz, 3H), 1.22 (d, J = 7.0 Hz, 6H). 13C NMR 

(100 MHz, CDCl3) δ 175.0, 163.4, 161.6, 61.6, 50.6, 45.9, 20.6, 20.0, 14.0. 
 

 

A 0 °C solution of t-BuOK (1.79 g, 16 mmol, 2 eq) in THF (30 mL) 

was added to a 0 °C solution of pinacolone (1.0 mL, 8 mmol, 1 eq) 

and 1-16 (4.00 g, 20 mmol, 1 eq) in THF (20 mL) via cannula. Upon 

completion of the addition, the solution was warmed to rt and stirred for 16 hours before 

treated with 20 mL of 1N HOAc in CH2Cl2. After stirring for 30 minutes the slurry was 

filtered through a pad of celite and the filtrate was concentrated under reduced pressure to 

afford 1-17 as an orange solid (2.04 g, 93%), which was used without further purification 

Rf 0.10 (66% EtOAc/Hex); 1H NMR (400 MHz, CDCl3) δ 5.80 (s, 0.75H), 4.10 (quin, J = 

6.6 Hz, 0.25H), 3.96 (s, 0.5H), 3.93 (quin, J = 6.6 Hz, 0.75H), 3.53-3.43 (m, 1H), 1.44 (d, 

J = 7.0 Hz, 4.75 H), 1.40 (d, J = 7.0 Hz, 1.25H), 1.23 (d, J = 7.0 Hz, 1.25H), 1.20 (d, J = 

7.0 Hz, 4.75H), 1.18 (s, 7.25 H), 1.15 (s, 1.75H). 13C NMR (100 MHz, CDCl3) δ 199.9, 

187.5, 165.4, 94.1, 50.2, 49.8, 47.9, 46.0, 45.9, 38.8, 27.3, 27.2, 25.9, 20.8, 20.4, 20.2, 

19.9. 
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To a solution of N-methylpiperazine (1-18) (22.2 mL, 200 mmol, 1 eq) 

and triethyl amine (27.8 mL, 200 mmol, 1 eq) in CH2Cl2 (200 mL) at 0 

°C was added ethyl oxalyl chloride (22.4 mL, 200 mmol, 1 eq). The ice 

bath was removed and the reaction was allowed to warm to rt and stirred for 16 h. The 

resulting heterogeneous mixture was quenched with a solution of half saturated NaHCO3 

(200 mL) and the phases were separated. The aqueous phase was extracted with CH2Cl2 

(3 x 100 mL), then the organic phases were combined and washed with brine (200 mL), 

dried over MgSO4 and concentrated under reduced pressure to afford 1-19 as an orange 

oil (39.6 g, 99%) which was used without further purification. Rf 0.10 (66% EtOAc/Hex); 
1H NMR (400 MHz, CDCl3) δ 4.30 (q, J = 7.2 Hz, 2H), 3.64-3.61 (m, 2H), 3.43-3.41 (m, 

2H), 2.42-2.40 (m, 4H), 2.29 (s, 3H), 1.33 (t, J = 7.1 Hz, 3H). 13C NMR (100 MHz, 

CDCl3) δ 162.9, 160.3, 62.3, 55.1, 54.3, 46.2, 41.4, 14.2; HRMS m/z calcd for 

C9H16N2O3 [M+H+]: 200.1161, found: 200.1163. 
 

 

A 0 °C solution of t-BuOK (4.48 g, 40 mmol, 2 eq) in THF (100 

mL) was added to a 0 °C solution of pinacolone (2.50 mL, 20 

mmol, 1 eq) and 1-19 (4.00 g, 20 mmol, 1 eq) in THF (20 mL) via 

cannula. Upon completion of the addition, the solution was warmed to rt and stirred for 

16 hours before treated with 40 mL of 1N HOAc in CH2Cl2. After stirring for 30 minutes 

the slurry was filtered through a pad of celite and the filtrate was concentrated under 

reduced pressure to afford 1-20 as an orange syrup (4.32 g, 85%), which was used 

without further purification. Rf 0.15 (5% MeOH/EtOAc); 1H NMR (400 MHz, CDCl3) δ 

5.97 (s, 1H), 3.66-3.58 (m, 4H), 2.46-2.43 (m, 4H), 2.31 (s, 3H), 1.19 (s, 9H). 13C NMR 

(100 MHz, CDCl3) δ 200.9, 185.3, 163.8, 95.3, 55.1, 54.3, 45.8, 41.6, 27.2; HRMS m/z 

calcd for C13H22N2O3 [M+H+]: 254.1630, found: 254.1644. 
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To a solution of nmp ligand 1-20 (2.54 g, 10 mmol, 2 eq) in 

benzene (50 mL) was added Co(II) ethylhexanoate (65 wt% 

solution, 1.88 M in mineral spirits, 5 mmol, 1 eq). The 

reaction was stirred for 30 min before water (720 mg, 40 mmol, 4 eq) was added and the 

reaction stirred for 16 h at room temperature. Hexanes (200 mL) was added and the tan 

solids were separated by centrifugation. The solvent was decanted and the catalyst was 

washed by the addition of hexanes. This slurry was centrifuged again, and the solids were 

washed an additional three times. The product was then transferred to a flask and the 

remaining solvent was removed under reduced pressure to afford the Co(nmp)2 catalyst 

1-21 (2.69 g, 95%) as a tan solid. LRMS: m/z [M + Na]+ calc. for C78Co3H126 N12NaO18: 

1718.72; found: 1718.8; combustion analysis: calc. for Co(nmp)2·(H2O)3.5, C 49.68, H 

7.86, N 8.91; found: C 49.58%, H 7.53%, N 8.84%. Based on crystal structures we have 

previously obtained of related compounds,20 we believe that the structure of the catalyst 

is similar, comprising of three cobalt atoms and six ligands per unit cell. Two outer cobalt 

atoms, each surrounded by three ligands, flank an inner cobalt atom. Inclusion of water in 

the crystal structure is likely, as elemental analysis of samples after prolonged drying 

over P2O5 in a drying pistol results in data that requires 3.5 water molecules per cobalt 

atom. 
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Chapter 2 – First Generation Approach to Amphidinolide C 

 

Section 2.1 – Initial Retrosynthetic Approach 

 

Given the size and complexity of amphidinolide C (1-24), we decided that the most 

prudent course of action was to pursue a highly convergent route that would break the 

molecule into several pieces. In so doing, we would limit the number of linear steps that 

material would be carried through, and also ensure that potential problems encountered in 

the later stages of the synthesis could be easily addressed by modification of a fragment.  

Figure 2.1. Initially planned fragments of amphidinolide C 
 

Our initial retrosynthetic disconnections included a macrolactonization, which is a mild 

and reliable method of closing macrocyclic natural products,1 and a dithiane alkylation to 

form the C(17)-C(18) bond (Figure 2.1). The North-Eastern half of amphidinolide C was 

envisioned to be formed via an asymmetric alkynylation of aldehyde 2-1 with alkyne 2-2 

to form the C(24)-C(25) bond. The South-Western fragment would utilize a Stille cross-

coupling to form the C(9)-C(10) bond, which has been thoroughly studied by Fürstner 

during his total synthesis of amphidinolides G and H.2 The resulting four pieces from 

these disconnections were THF-aldehyde 2-1, ene-yne 2-2, substituted trans-THF 2-3, 

and alkyne 2-4, henceforth referred to as the Northern, Eastern, Southern and Western 

fragments of amphidinolide C. 
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Section 2.2 – Synthesis of the Northern-Eastern Fragment 

 
Section 2.2.1 – Formation of the trans-THF Ring via Oxidative Cyclization 

 
The synthesis began with the opening of known epoxide 2-5 (which can be accessed on 

large scale via Jacobsen’s hydrolytic kinetic resolution procedure) 3 with allyl Grignard to 

provide the cyclization precursor (1-22) in near quantitative yield (Scheme 2.1). Using 

our second generation water soluble catalyst Co(nmp)2 (1-21) and previously optimized 

conditions (see section 1.1.3) the trans-THF ring 1-23 was formed in 97% yield, utilizing 

filtration as the purification method to remove the cobalt residues.  

 

 
Scheme 2.1. Synthesis of the Northern fragment via Mukaiyama oxidative cyclization 

 

Synthesis of the Northern fragment was completed by oxidation of the primary alcohol 

(1-23) to THF aldehyde 2-1 using Swern conditions (oxalyl chloride/DMSO) in 85% 

yield, thereby setting the stage for coupling to the Eastern fragment. 

 

Section 2.2.2 – First Generation Synthesis of the Eastern Fragment  

 

The Eastern fragment was initially envisioned to be formed via a concise route involving 

the selective methylation of diyne 2-6 (Figure 2.2), which would be formed by 

asymmetric alkynlation of 2-methylenehexenal4 (2-7) with triethylsilyldiyne (2-8).  

 

 
Figure 2.2. Initial retrosynthetic analysis of the Eastern fragment 2-2 
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Initial results utilizing the Carreira alkynlation reaction5 were derailed by inconsistent 

conversions and yields, so the ee of the product 2-6 was never determined. Fortuitously, 

the Trost procedure6 provided a much more reliable and reproducible method of forming 

2-6 in a respectable 85% yield and 90% ee as determined by Mosher ester analysis 

(Scheme 2.2).7 At the time, this was the first reported example of a diyne being used in 

the Trost procedure, but other reports have been published since.8 Attempts to access 2-6 

utilizing an alternative 3-step procedure of non-selective addition, oxidation using MnO2, 

and reduction using a chiral reducing reagent gave disappointing results, where 30% was 

the highest ee obtained (using CBS reagent). As we later realized, this phenomenon is 

well documented throughout the literature.9 This is fairly surprising, as these diyne 

ketones look to be model substrates for asymmetric reducing reagents that rely on size 

differential of the ketone substitutions.  

 

 
Scheme 2.2. Stereoselective synthesis of diyne 2-6 

 

All that remained to complete the Eastern fragment was selective methylation at one of 

the four positions along diyne 2-6. To accomplish this transformation we utilized a 

procedure described by Hale in 2005,10 where he reported the hydroxyl-directed radical 

stannylation of propargyl alcohols which proceeded through a sterically unhindered 

transition state to form a cis-stannane (Scheme 2.3). In his pioneering work, Hale reports 

that use of the smaller and less expensive tributyltinhydride in the place of the bulky 

triphenyltinhydride resulted in decreased regioselectivity, leading to a mixture of cis- and 

trans- products.  

 



27 
 

 
Scheme 2.3. Hale’s mechanism for hydroxyl-directed radical stannylation 

 

Our substrate performed admirably in the stannylation reaction, resulting in a 71% yield 

of the triphenyl stannane 2-10 as a single regioisomer (Scheme 2.4). Contrary to Hale’s 

initial report, we found that reactions using tributyltin hydride maintained perfect 

regioselectivity, while proceeding in an improved yield. Not only did reaction with the 

tributyltinhydride result in a higher yield, it also facilitated a mild and quantitative 

conversion of the stannane to the iodide by treatment with I2 at low temperatures. The 

result was a one-pot conversion of diyne 2-6 to iodide 2-11 using readily available 

Bu3SnH and sub-stoichiometric amounts of a trialkyl borane in an impressive 97% yield.  

 

 

Scheme 2.4. Hydroxyl-directed radical stannylation of diyne 2-6 
 

To the best of our knowledge, this is the first reported example of a selective 

stannylation/iodination sequence on a 5-hydroxy-1,3-diyne, and this procedure provides 

an attractive alternative to accessing these types of highly unsaturated systems.11 

A surprisingly difficult TBS protection of alcohol 2-11 was accomplished using TBSOTf 

when milder conditions failed, was followed by a Stille cross coupling using 

tetramethyltin to afford 2-12 in a modest 46% yield over 2 steps (Scheme 2.5). The 
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terminal alkyne was revealed under basic conditions (MeOH/K2CO3) thus completing the 

synthesis of the Eastern fragment (2-2) in a concise 6 steps and 34% overall yield from 

commercially available hexanal.  

 
OH

TES

1) TBSOTf, Et3N (72%)

2) PdCl2(MeCN)2,
Me4Sn (64%)

K2CO3, MeOH

(95%)

2-11

2-2

OTBS

MeTES

2-12

I

OTBS

Me

 
Scheme 2.5. Completion of the Eastern fragment 2-2 

 

While we were pleased with the relatively short and high yielding synthesis of 2-2, 

difficulties were encountered upon scale-up of the synthesis to access gram quantities of 

the material. Although the Trost asymmetric alkynylation reaction performed 

exceptionally well on small scale to provide 2-6, difficulties with scalability and the 

prohibitively high cost of dimethyl zinc urged us to pursue a route that was not reliant on 

asymmetric alkynlation chemistry. 

 

Section 2.2.3 – Second Generation Synthesis of the Eastern Fragment  

 

Although attempts to access diyne 2-6 via asymmetric reduction of the parent ketone 

were thwarted by inexplicably low ee’s, the reduction of propargyl alcohols using the 

same reducing reagents has been reported to proceed with ee’s in the 90’s. Thus, our 

second generation route also started with 2-methylenehexenal 2-7 which was elaborated 

through a three-step procedure consisting of a racemic acetylide addition, oxidation of the 

resulting alcohol to the ketone, and subsequent CBS reduction (Scheme 2.6). Alcohol 2-

14 was obtained in a 90% ee, even while using a high catalyst loading of the CBS reagent 

(10 mol %). This level of selectivity is relatively low when compared to many other CBS 

reductions,12 but is consistent with other reported asymmetric reductions of propargyl 

ketones.13 Alcohol 2-14 could also be accessed via the Trost-asymmetric alkynylation 

procedure, resulting in a comparable 90% ee and 85% yield.  
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Scheme 2.6. Synthesis of propargyl alcohol 2-14 

 

The secondary alcohol was then protected as a TBS ether (TBSCl/imidazole) and the 

alkyne was deprotected using basic conditions (MeOH/K2CO3) to give propargyl ether 2-

15 (Scheme 2.7). From this point, a second alkyne could have been added to converge the 

material with the first generation stannylation route, but the relatively low yield of the 

subsequent steps compelled us to install the methyl group using an alternative method. 

Ultimately, we discovered that the conversion of the propargyl ether to a Michael 

acceptor followed by treatment with methyl Grignard provided 2-17 via a copper 

catalyzed Michael addition in an excellent 85% yield over 2 steps. Having installed the 

desired methyl group regioselectivly, the desired terminal alkyne was formed via 3-step 

conversion of the isopropyl ester to the aldehyde (DIBAL-H, then MnO2), followed by 

Corey-Fuchs conditions (CBr4/PPh3, then nBuLi) to afford alkyne 2-2 in 76% yield.  

 

 
Scheme 2.7. Second generation synthesis of the Eastern fragment 2-2 
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Overall, the second generation route towards the Eastern fragment was considerably 

longer (11 steps) but higher yielding (46% overall yield), but most importantly, provided 

access to multi-gram quantities of 2-2. 

 

Section 2.2.4 – Coupling of the North and Eastern Fragments  

 

With a cost effective and scalable route to both the Northern and Eastern fragments and 

grams of material in hand, efforts were made to couple the two fragments 

stereoselectively. Originally, it was envisioned that an asymmetric method could be used 

to enhance the diastereoselectivity of the addition, given our previous success with this 

strategy.14 Unfortunately, after initial attempts proved unsuccessful using both the Trost 

and Carreira alkynylation methods, we turned to traditional substrate controlled 

diastereoselective additions (Table 2.1). In this regard, a variety of solvents, additives and 

counter ions were explored. In each case, the desired syn diastereomer was never 

observed as the major product, which was indicative of non-chelation Felkin-Ahn 

addition. Also, attempts to oxidize the secondary alcohol to the ketone and perform an 

asymmetric reduction resulted in poor dr’s.15  

Table 2.1. Coupling of ene-yne 2-2 and THF-aldehyde 2-1 

 
 

entry conditions yield (%)a anti:syn 
1 toluene, -78 °C 95 1.5:1 
2 DME, -78 °C 83 2.5:1 
3 THF, -78 °C 87 3:1 
4 Et2O, -78 °C 98 4:1 
5 Et2O, 3 eq LiCl,-78 °C 86 5:1 
6 toluene, Et2AlCl, -78 °C 68 1.5:1 
7 Et2O, Ti(OiPr)3Cl, -78 °C 72 2:1 
8 MTBE, -78 °C 92b 8:1 
9 MTBE, -90 °C 93b 20:1 

a) 0.1 mmol scale b) 2.0 mmol scale 
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Initial reactions in toluene, dimethoxyethane and THF (Table 2.1, entries 1-3) provided at 

best a 3:1 selectivity for the anti diastereomer 2-19. Performing the reaction in diethyl 

ether provided a modest increase in dr (Table 2.1, entry 4), while adding 3 or more 

equivalents of dry LiCl increased selectivity to 5:1 (Table 2.1, entry 5). Transmetallation 

of the acetylide to the aluminum or titanium derivative has been shown to increase dr in 

alkynylation reactions of this type;16 however a drop in selectivity and yield was 

observed (Table 2.1, entries 6-7). After a seemingly endless number of other conditions 

were screened, we were relieved to find treatment of the lithium acetylide of 2-2 with 

THF-aldehyde 2-1 in dry methyl-tert-butyl ether (MTBE) resulted in a promising 8:1 dr. 

Ultimately, it was discovered that cooling the reaction to -90 °C prior to aldehyde 

addition resulted in an increase in selectivity to 20:1 for 2-19 (Table 2.1, entries 8-9), 

which proved reproducible over multiple runs on gram scale. It was later discovered that 

the purity of the starting materials was essential for obtaining a high dr, and as such the 

aldehyde 2-1 was purified by column chromatography immediately before use in the 

coupling reaction.  

 

 
Scheme 2.8. Completion of the North-Eastern fragment 2-21 

 

To complete the synthesis of the North-Eastern fragment (2-21), the alcohol at C(24) was 

inverted using standard Mitsunobu conditions (DIAD, 4-nitrobenzoic acid, PPh3) to give 

the desired syn configuration in 90% yield (Scheme 2.8). Finally, treatment of 2-20 with 

Red-Al concurrently removed the artifact benzoyl group and reduced the alkyne via a 

trans-selective hydro-alumination to provide 2-21 in 89% yield. 
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Section 2.3 – Synthesis of the Western Fragment 

 

Section 2.3.1 - Formation of Western Fragment  

 

The originally envisioned disconnection of the Western fragment 2-4 was an alkylation of 

epoxide 2-22 with dithiane 2-23 which can be accessed in expedient fashion from 

commercially available Roche ester 2-24 (Figure 2.3).  

 

 
Figure 2.3. Further retrosynthesis of the Western fragment 2-4 

 

First, alcohol 2-24 was protected as a TBS ether using standard conditions (TBSCl, 

imidazole), followed by reduction to alcohol 2-26 in 91% yield over 2 steps (Scheme 

2.9). The alcohol was then converted into the corresponding aldehyde, followed by 

dithianation using 1,3-propanedithiol in the presence of catalytic BF3OEt2 to form 

dithiane 2-23 in 89% yield over 2 steps.  

 
Scheme 2.9. Preparation of the dithiane 2-23 

 

The coupling partner was accessed in five steps from known Sharpless epoxide 2-2517 

(Scheme 2.10). Epoxide 2-25 was opened using TMS acetylene to give the diol as a 3:1 

mixture of regioisomers, the primary alcohol of which was selectively protected 
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(TBSCl/imidazole) and separated via column chromatography to give 2-28 as a single 

diastereomer in 70% yield. The secondary alcohol was then converted to mesylate 2-29 

(MsCl/Et3N) followed by acidic removal of the TBS group (10-CSA) to give the epoxide 

precursor 2-30 in 95% yield over 2 steps. Formation of the epoxide proved to be a fickle 

procedure, complicated by the volatility of the product epoxide (2-22, boiling point ~80-

100 °C). Eventually, it was found that the addition of excess KI facilitated the formation 

of the epoxide in 67% yield, presumably by reversible ion exchange to give the 

potassium alkoxide, which would be more likely to displace the mesylate.  

 

 
Scheme 2.10. Preparation of the epoxide 2-22 

 

Unfortunately, our initial attempts at alkylating the epoxide 2-22 with dithiane 2-24 were 

immediately met with failure. The result of the alkylation was instantaneous and 

quantitative deprotonation of the epoxide to give unsaturated alcohol 2-31 (Scheme 2.11).  

 

 
Scheme 2.11. Failed alkylation attempts of epoxide 2-22 

 

In an attempt to circumvent the acidity of the epoxide, we converted 2-22 into iodohydrin 

2-32 (Bu4NI, TFA) in a modest 50% yield, followed by protection of the resulting alcohol 

as the MOM ether (DMM, PTSA) in 70% yield (Scheme 2.12).  
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Scheme 2.12. Conversion of epoxide 2-22 to protected iodohydrin 2-33 

 

To our relief, protected iodohydrin 2-33 underwent clean alkylation by dithiane 2-24 to 

furnish the carbon backbone of the Western fragment (2-4) in 80% yield (Scheme 2.13).  

 

 

Scheme 2.13. Completion of the Western fragment 2-4 
 

Our excitement over the successful formation of 2-4 was tempered by the terrible yield of 

the conversion of epoxide 2-22 to protected iodohydrin 2-33 (2 steps, 35% yield), and the 

difficulties associated with the formation and handling of epoxide 2-22. The epoxide 

opening was eventually streamlined to a one pot procedure (Bu4NI/TFA then 

DMM/P2O5), which avoided isolation of the unstable unprotected iodohydrin, and 

improved the yield of the procedure to 79% (Scheme 2.14). However, the procedure to 

form the highly volatile epoxide 2-22 proved to be too inconsistent upon scale-up to be a 

viable route towards the required amount of material.  

 

 
Scheme 2.14. Improvement of the epoxide opening procedure to a one-pot reaction 

 

A second synthesis was designed to access protected iodohydrin 2-33, starting from a 

commercially available and inexpensive amino acid, threonine (Scheme 2.15). Using a 

literature procedure,18 2-34 was converted to epoxide 2-35 (3 steps, 50% overall yield), 

which was opened with TMS acetylene to give 2-36 as a single diastereomer in 75% 

yield. Protection of the secondary alcohol (MOMCl, iPr2NEt) to give 2-37, followed by 
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reduction of the ester to the alcohol (LiAlH4) and 2-step conversion to the corresponding 

iodide (MsCl then NaI) provided the iodohydrin 2-33 via a more reliable and scalable 

procedure.  

 

 
Scheme 2.15. Alternative synthesis of protected iodohydrin 2-33 

 

Section 2.3.2 – Functionalization of the Western Fragment for Assembly 

 

Although the majority of the Western fragment material was stored as the stable and fully 

protected 2-4, we decided to test functionalization of both ends for eventual coupling to 

both the North-Eastern and Southern fragment. The order of fragment assembly had not 

yet been determined, so we felt that being able to functionalize both sides of the 

fragment, in either order, would provide valuable flexibility for fragment assembly. 

Selective removal of the primary TBS despite the presence of the sensitive MOM group 

was achieved using a carefully monitored acidic reaction (10-CSA, MeOH, 10 min) to 

give alcohol 2-38 (Scheme 2.16). This alcohol could then be converted to an appropriate 

leaving group, either a mesylate (2-39) in 91% yield, or an iodide (2-40) in a 90% yield. 

The hope was that this leaving group could be displaced by the North-Eastern fragment to 

form the C(17)-C(18) bond of amphidinolide C.  
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Scheme 2.16. Functionalization of the right side of the Western fragment (2-4) 

 

We anticipated difficulties with carbo-metalation of the alkyne on the left side of 2-4, as 

the literature evidence for reaction of such hindered alkynes was sparse.19 Indeed, any 

attempts at Negishi’s zirconium catalyzed carboalumination20 (Cp2ZrCl2, Me3Al) of 2-41 

resulted in recovered starting material, including using stoichiometric zirconocene 

dichloride, forcing conditions (refluxing DCE), and water accelerated carbo-metalation 

(Scheme 2.17). 21 Presumably, the steric bulk of the substrate prevented the di-metallic 

species formed in situ from reacting with the alkyne.  

 

 

Our attention was turned to alternative methods, and we found success using higher order 

cuprates in the copper catalyzed stannylation of alkynes. Initial reactions utilizing cuprate 

(Bu3Sn)(Bu)CuCNLi2 were performed at −78 °C, resulting in acceptable yields (ca. 70% 

BORSM) and 10:1 selectivity for the desired regioisomer. To improve the selectivity, the 

metalation reaction was be run at 0 °C, which afforded a single regioisomer as the 

product, while maintaining a respectable yield of 68% (78% BORSM).22 The reaction 

 
Scheme 2.17. Functionalization of the left side of the Western fragment (2-4) 
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never went to completion, due to the well documented side reaction involving the 

deprotonation of the acetylene by the relatively basic metalation reagent.23 To accomplish 

the eventual cross coupling reaction, the stannane could be quantitatively converted to the 

corresponding iodide 2-42 by titration with I2 in CH2Cl2 at -78 °C. Having accomplished 

these transformations, we believed that we had given ourselves considerable flexibility 

with regard to the order that the fragments could be assembled. 

 

Section 2.4 – Synthesis of the Southern Fragment 

 

Section 2.4.1 – Synthesis of the trans-THF ring via Epoxide Opening 

 

We viewed the formation of the methyl substituted trans-THF (2-43) ring as the key 

reaction in the completion of the Southern fragment, and envisioned the use of our 

improved Co(nmp)2 in the oxidative cyclization as the key step (Figure 2.4). The 

cyclization precursor in this case would be methyl substituted pentenol 2-44, which at 

first glance appeared to be a straightforward piece to make, but upon further research we 

realized that the isolated chiral centers would not be easily achievable.  

 

 
Figure 2.4. Further retrosynthesis of the methyl substituted trans-THF 2-43 

 

Our first attempt at the cyclization precursor (2-44) involved a regio- and stereoselective 

epoxidation of the trisubstituted olefin in diene 2-48 followed by a regio- and 

stereoselective reductive epoxide opening. Diene 2-47 was achieved via a 1,2-metallate 

rearrangement reaction of dihydrofuran (2-46) in a one pot procedure,24 followed by 

protection of the alcohol as PMB ether 2-48 (PMBBr, NaH) which was accomplished in 

90% yield (Scheme 2.18).  
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Scheme 2.18. Synthesis of skipped diene 2-48 via 1,2-metallate rearrangement 

 

The stage was then set for a selective epoxidation of the tri-substituted olefin contained in 

diene 2-48. To achieve this transformation we envisioned the use of the Shi epoxidation 

catalyst, which is a fructose derived catalyst that epoxidizes unactivated olefins, with a 

slight preference for the more substituted/electron rich olefins.25 Model studies and 

literature reports suggested that the unnatural enantiomer of the Shi’s catalyst (ent-49) 

would be required, which is considerably more expensive than the natural isomer (49) 

($526/g vs. $29/g)26 and notoriously difficult to make from commercially available 

starting materials (Figure 2.5).27  

 

 
Figure 2.5. The natural (49) and unnatural (ent-49) enantiomer of the Shi catalyst 

 

Undaunted, we performed optimization studies using the inexpensive natural enantiomer 

49. Initial reactions using the standard conditions resulted in a disappointing 45% yield 

and dismal 2:1 ratio of desired mono-epoxide 2-45 to diepoxide 2-50 (Table 2.2, entry 1). 

By increasing the addition time of the oxidant and base to 4 hours, we were able to 

increase the selectivity to a more respectable 7:1 ratio, while an even longer addition time 

maintained the excellent ratio but suffered from a decrease in conversion (Table 2.2, 

entries 2-3). Attempts to lower the catalyst loading to 25 mol % also resulted in a lower 

conversion (Table 2.2, entry 4), which was unsurprising considering that the catalyst 49 is 

known to slowly decompose during the course of the reaction.  

Given the incomplete conversions at longer reaction times, we reasoned that the catalyst 

was decomposing within the first few hours, essentially causing the conversion to cease. 

However, longer reaction times were shown to increase selectivity, which presented us 

with a difficult compromise. Eventually, we decided that we would maintain the longer 



39 
 

reaction times to achieve the desired selectivity, but would add the catalyst portion-wise 

over the course of the reaction to ensure that active catalyst was present throughout. 

Gratifyingly, the reaction proceeded to complete conversion, while maintaining a 

respectable 7:1 selectivity for the mono-epoxide 2-45 (Table 2.2, entry 5). Through 

further optimization, we discovered that the yield and selectivity could be maintained 

with catalyst loadings as low as 25 mol % (Table 2.2, entry 6). Yield and selectivity were 

maintained while using the correct enantiomer of the catalyst (ent-49), and the ee of the 

product was determined to be an acceptable 85%. 

 

Table 2.2. Optimization of the Shi epoxidation of diene 2-48 

 
 

Entry Oxone (eq) 49 
(eq) 

Addition 
Time (h) 

2-45 
(%) 

2-50 
(%) 

Recovered 
2-48 (%) 

1 1.14 0.35 2 45 22 32 
2 1.14 0.35 4 54 9 34 
3 1.14 0.35 8 16 3 66 
4 1.14 0.25 4 35 6 49 
5 1.14 0.35a 4 75 10 0 
6 1.14 0.25a 4 74 11 0 

a catalyst was added in four equal portions at the beginning of every hour. 

To affect the conversion of mono-epoxide 2-45 to alcohol 2-44 required a regio-selective 

hydride delivery at the more hindered carbon. To achieve this transformation we 

envisioned using the Hutchin’s protocol, which has been reported to proceed via SN2 

reaction with inversion of stereochemistry.28 Unfortunately, upon treatment of epoxide 2-

45 to Hutchin’s conditions (BF3OEt2, NaCNBH3), a variety of products were isolated 

that indicated premature epoxide opening to give a formal carbocation, resulting in either 

SN1 hydride delivery to give an unfavorable mixture of diastereomers, or pinacol-like 

hydride shift (Table 2.3, entries 1-5).  The tertiary carbocation that results from premature 

epoxide opening can theoretically be stabilized by the olefin in a similar manner to the 

stabilization of a methyl cyclopropane primary cation. 

A variety of Lewis acids (Table 2.3, entries 6-7) were screened to achieve the desired 

transformation, without success. Ultimately, we decided that the best course of action 

was to modify BF3OEt2 by attenuating its Lewis acidity through an anionic redistribution 
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reaction to replace one of the fluorines with a less electronegative group. We had 

previously seen success with this strategy when we generated the highly Lewis acidic 

BF2OTfOEt2 and BF2OMsOEt2, which were used in the direct reduction of esters to 

ethers.29  

Table 2.3. Optimization of the epoxide opening procedure, use of BF2OBnOEt2 (2-51) 

 

Entry Lewis Acid 
(4 eq) 

Addition Time 
(h) 

Yield 
(%) 

d.r 
(anti:syn) 

1 BF3OEt2 - 23 2:1 
2 BF3OEt2 0.5 51 2:1 
3 BF3OEt2 3 66 2:1 
4 BF3OEt2 4 90 2:1 
5 BF3OEt2 4 0a - 
6 InBr - 0b - 
7 BEt3 4 0b - 
8 BF2OBnOEt2 (2-51) 4 91 >20:1 

a only product observed was ketone formed by pinacol-like hydride shift  

b starting material recovered 

 

Thus, treatment of BF3OEt2 with TMSOBn generated the modified Lewis acid 

BF2OBnOEt2 (2-51) that displayed a characteristic 19F NMR peak at -151.3 ppm, which 

is consistent with lower Lewis acidity than the parent compound.30 Gratifyingly, this new 

Lewis acid (2-51) displayed sufficient Lewis acidity to facilitate the desired SN2 reaction, 

without promoting the undesired side reactions originally encountered with the use of 

BF3OEt2 (Table 2.3, entry 8).  

While pleased with the synthesis of cyclization precursor 2-44, which was achieved in 

only 4 steps and 52% yield from inexpensive dihydrofuran, this route required 

considerable amounts (25 mol %) of the expensive unnatural enantiomer of the Shi 

catalyst (ent-49). Having determined this in the initial retrosynthesis, an alternative route 

was concurrently explored that would provide gram quantities of 2-44, while avoiding the 

use of expensive materials.  
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Section 2.4.2 – Alternative Synthesis via Homologation Route 

 

The second generation route began with opening of known epoxide 2-52 using allyl 

Grignard followed by conversion of the resulting alcohol into silyl ether 2-53 (Scheme 

2.19). The primary alcohol was then deprotected using DDQ and oxidized to the 

corresponding aldehyde (2-54), which was homologated via a 2-step procedure; 

conversion of the aldehyde to the enol ether by Wittig reaction followed by hydrolysis to 

give aldehyde 2-55 in 62% yield.31 The homologated aldehyde (2-55) was reduced using 

DIBAL-H to give the primary alcohol (2-56), which was protected as the PMB ether. 

Finally, treatment of 2-57 with catalytic 10-CSA in methanol completed the second route 

towards pentenol 2-44. Although this process is longer (9 vs. 4 steps) and lower yielding 

(41% vs 52%), it is inexpensive, easily scalable and successfully provided multi-gram 

quantities of 2-44.  

 

  

Scheme 2.19. Second generation route towards cyclization precursor 2-44 

 
With a cost effective and scalable route to pentenol 2-44, attention was given to the 

oxidative cyclization to form trans-THF ring 2-43 (Table 2.4). The first generation 

catalyst Co(modp)2 (1-1) has been previously shown to be incompatible with the easily 

oxidized PMB group,32 and attempts to cyclize 2-44 were unsuccessful as expected 

(Table 2.4, entry 1). Using the standard oxidation conditions, the second generation 

Co(nmp)2 (2-21) also afforded little success (Table 2.4, entry 2). In an attempt to reduce 
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the amount of over-oxidation byproducts formed during the course of the reaction, lower 

reaction temperatures were examined and an optimal yield of 81% was obtained at 35 °C. 

It is noteworthy that even at room temperature a comparable yield of 85% BORSM was 

obtained (Table 2.4, entries 3-5). Exasperatingly, upon scale-up of the lower temperature 

cyclizations, yields were found to be uncharacteristically erratic and we speculated that 

the peroxide used during catalyst activation could be contributing to the over-oxidation 

byproducts.  

Table 2.4. Optimization of oxidative cyclization of 2-44 

 
Entry Catalyst Loading 

(mol %) 
Temp 
(°C) 

Time 
(h) 

Yield 
(%) 

1 Co(modp)2 15 55 16 0 
2 Co(nmp)2 15 55 16 10 
3 Co(nmp)2 15 45 16 55 
4 Co(nmp)2 15 35 16 81 
5 Co(nmp)2 15 22 16 67 (85a) 
6 Co(nmp)2

b 15 35 16 80 
7 Co(nmp)2

b 15 55 1 91 
8 Co(nmp)2

b 10 55 1 94c 
9 Co(nmp)2

b 5 55 16 77 (92a) 
a yields based on recovered starting material b catalyst was pre-activated  
c reaction performed on a 15 mmol scale 

 

Thus, an alternative protocol was performed to activate the catalyst in a separate flask, to 

ensure no peroxides were present upon addition of the pentenol. Initial reactions using 

this pre-activated 1-21 provided significant advantages in terms of yield reproducibility 

(Table 2.4, entry 6), although prolonged reaction times were still leading to over-

oxidation. Eventually, careful monitoring of the reactions by aliquot resulted in a 

surprising finding: the reaction was complete after 1 h (Table 2.4, entry 7). Further 

optimization showed that a lower catalyst loading of 10 mol % resulted in the highest 

yield (94%) and the cleanest reactions, with further lowering of catalyst loading leading 

to incomplete conversions (Table 2.4, entries 8-9). These optimized conditions proved 

reproducible over multiple runs on multi-gram scale. 
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Section 2.4.3 – Completion of the Southern Fragment 

 

To complete the synthesis, alcohol 2-43 was subjected to Parikh-Doering oxidation 

conditions (SO3Pyr, DMSO) to furnish aldehyde 2-58, which was treated with a Still-

Gennari phosphonate to give the cis α,β-unsaturated ester 2-59 with 14:1 cis:trans 

selectivity (Scheme 2.20).33 The ester was dihydroxylated via Sharpless asymmetric 

dihydroxylation (using (DHQD)2PYR as a ligand)34 to give the diol as a 5:1 ratio of 

diastereomers, which were protected as acetonide. This completed the synthesis of 2-60 

which contained all of the carbons and stereocenters of the Southern fragment.  

 

 
Scheme 2.20. Assembly of the C(7)-C(8) diol via asymmetric dihydroxylation 

 

As before, the bulk of material was stored as the fully protected and stable 2-60, but to 

prepare for fragment assembly, a small amount of material was functionalized to allow 

for flexibility in the order of fragment assembly. Ester 2-60 was converted to the terminal 

alkyne (2-62) in a 4-step procedure. First, reduction of the ester (DIBAL) followed by 

oxidation to aldehyde 2-61 in 85% yield over 2 steps, and then a Corey-Fuchs reaction 

(CBr4/PPh3 then nBuLi) furnished the alkyne in 85% yield (Scheme 2.21). The PMB 

ether 2-62 was deprotected using standard conditions to reveal alcohol 2-63 in 86% yield, 

which was oxidized to the acid and quantitatively methylated to give methyl ester 2-3. 

The bis-siylated derivative (2-66) has been previously shown to undergo regioselective 

hydro-stannylation, thereby setting the stage for coupling to the Western fragment.35  

 



44 
 

 
Scheme 2.21. Completion of the Western fragment 2-3 

 

To ensure that we had made the correct diastereomer at C(7)-C(8) diol, which was 

previously determined solely by literature analogy, we converted a small amount of 

acetonide 2-3 to the known bis-silylated species (2-66).35 To that end, 2-3 was subjected 

to acidic conditions to remove the acetonide, followed by treatment of diol 2-65 with 2 

equivalents of TBSCl to form 2-66 in 94% yield over 2 steps (Scheme 2.22). The spectral 

data of 2-66 matched the reported spectra exactly, confirming that we had made the 

correct diastereomer.35 

 

 
Scheme 2.22. Conversion of 2-3 to known compound to confirm stereochemistry 

 

With successful routes to the North-Eastern, Western and Southern fragments, and grams 

of the fragments and their precursors in hand, the completion of amphidinolide C 

appeared to be within reach, and our attention turned to final fragment coupling. 
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Section 2.5 – Attempted Fragment Assembly 

 

Section 2.5.1 – Assembly Attempts via Dithiane Alkylation 

 

Our initial retrosynthesis concluded that the easiest way to join the North-Eastern and 

Western fragment would be a dithiane displacement of a suitable leaving group. 

Dithianes have historically been one of the most effective ways of achieving umpolung 

reactivity of carbonyls.36 An added bonus would be the streamlining of the synthesis, 

having both carbonyls in the natural product protected as dithianes. Accordingly, the 

secondary alcohol on the North-Eastern fragment 2-21 was protected as the PMB ether 

before the primary TBS ether was selectively deprotected (PPTS/EtOH) in 90% yield 

over 2 steps (Scheme 2.23). Primary alcohol 2-67 was cleanly oxidized to aldehyde 2-68 

using Parikh-Doering conditions (SO3Pyr/DMSO) in 89% yield.  

 

 
Scheme 2.23. Preparation of the North-Eastern fragment 2-21 for coupling 

 

The remaining reaction, conversion of the aldehyde to dithiane 2-69, proved to be a 

troublesome transformation. Fluorine based reagents (BF3OEt2) caused complications 

resulting from TBS removal, whereas mild Lewis acids (MgBr2, ZnCl2) resulted in 

recovered starting material, and harsh Lewis acids (TiCl4, SnCl4) led to product 

decomposition. Eventually, it was found that 1,3-propanedithiol and Yb(OTf)3 could 

affect the transformation, albeit in only trace yields of the desired dithiane 2-69 (Scheme 

2.24). By replacing the 1,3-propanedithiol with the disilylated equivalent in the same 

reaction, it was found that the yield was improved significantly to 63%. A major side 

product of the reaction (ca. 10-20%) was a product with similar NMR characteristics, and 

upon careful review of the   literature,37 we have tentatively assigned it as the cis-THF 
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equivalent of 2-69, caused by retro-Michael ring opening and recycliczation in the cis 

configuration. Regardless of the modest yield of the dithianation, we proceeded to 

attempt coupling of the North-Eastern dithiane 2-69 and the Western fragment.  

 

 
Scheme 2.24. Completion of the fully functionalized North-Eastern fragment 2-69 

 

Disappointingly, all attempts to alkylate the Western fragment as either iodide 2-40 or 

mesylate 2-39 were met with failure (Scheme 2.25). In all cases, the two components of 

the reaction were recovered upon protic quench of the reaction mixture. Deuterated 

quench (using D2O) confirmed that the dithiane anion was being formed, so we 

rationalized that the problem lay in the steric bulk surrounding the electrophile, which 

was too highly congested to allow SN2 reaction of a bulky nucleophile such as a dithiane.  

 

 
Scheme 2.25. Attempts at joining the North-Eastern (2-69) and Western fragment 

 

Additives such as HMPA, DMPU and LiCl have been shown to facilitate troublesome 

alkylation reactions by breaking up aggregates, but in this case had no effect (LiCl), or 

resulted in decomposition of the nucleophile (HMPA, DMPU). Harsher alkylation 

temperatures were explored (increased reaction temperature) that also led primarily to 

decomposition of the dithiane 2-69. In an attempt to probe the extent of the steric 

hindrance around the alkyl iodide Western fragment 2-40, we attempted to add smaller 
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nucleophiles. Exasperatingly, even a miniscule MeLi did not add into the congested 

Western fragment, leading us to abandon its use as an SN2 electrophile. 

 

Section 2.5.2 –Attempts at Joining the Fragments via Bailey Reaction 

 

With the Western fragment too hindered to act as an electrophile, it was decided that we 

would attempt to lithiate the alkyl iodide, to form a stable primary anion which could add 

into the modified North-Eastern fragment. Utilizing Bailey’s reaction conditions (2 eq 

tBuLi, -78 °C)38, a model alkyl iodide 2-70 was added into the aldehyde derivative of the 

North-Eastern fragment 2-68, in an inconsequential 3:1 dr, and an undetermined, but 

encouraging yield (Scheme 2.26).  

 

Scheme 2.26. A model study of the proposed Bailey reaction 
 

Unfortunately, when the actual Western fragment (2-40) was used, the reaction yielded a 

complex mixture of products, the overwhelming number of which persuaded us to 

abandon this route (Scheme 2.27).   

 

 
Scheme 2.27. Failure to join the two fragments using the Bailey reaction 

 

This was not a completely unexpected outcome, as this lithiation chemistry generates a 

relatively unstable and highly reactive primary anion, so is typically performed on simple 

substrates, and with great excess and subsequent loss of the alkyl iodide. 
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Section 2.5.3 – Nitro-Aldol Attempts to Join the Fragments 

 
In a final attempt to utilize the North-Eastern and Western material that we had prepared, 

we turned to the Henry (or nitro-aldol) reaction. Our hope was that by changing the 

nature of the electrophile (from alkyl iodide to aldehyde), the Bürgi–Dunitz angle of 

attack would be altered, which could circumvent the steric hindrance around that 

position. The result of a successful nitro-aldol, upon elimination, would be a nitro alkene 

which could be converted into an oxime, an uncommon ketone protecting group (Figure 

2.6). This strategy was previously utilized and recommended by Dr. Beauchemin when 

similar difficulties with a dithiane alkylation were experienced.39 

 

Figure 2.6. A general depiction of joining the fragments via the Henry reaction 
 

Thus, a nitro-derivative of the Northern fragment 2-72 was prepared. Starting with 

alcohol 2-67, treatment with PPh3 and I2, yielded the alkyl iodide, which was converted 

to the nitro compound 2-72 in a modest 48% yield over 2 steps (Scheme 2.28).  

 

 

Scheme 2.28. Preparation of the nitro derivative of the North-Eastern fragment 2-72 
 

Again, we were ultimately met with disappointment, as a variety of conditions were 

screened to effect the desired aldol reaction without success (Scheme 2.29). Indeed, the 

electrophile again proved to be the problem, when simple nitro ethane proved an 

ineffective nucleophile for reactions with 2-40 under all reaction conditions.  
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Scheme 2.29. Failed attempts to join the fragments using the Henry reaction 

 

Section 2.5.4 – Summary of Western-Northern-Eastern Fragment 

 
By the end of our attempts, it was becoming increasingly clear that the initial synthetic 

disconnection would not lead to the completion of Amphidinolide C. We had planned an 

SN2 nucleophilic attack into a center that was far too hindered, and approaching neo-

pentyl in terms of steric bulk. Changing the nature of the nucleophile to another acyl-

anion equivalent seemed futile, as the problem lay in the steric bulk of the electrophile. 

Attempts to decrease the steric bulk of the Western fragment were also considered but 

ultimately dismissed, as we felt that adding further manipulations to an already lengthy 

synthesis would be indicative of poor planning, and reduce the overall elegance of the 

synthesis. The overall steps required to construct the current Western and North-Eastern 

fragment was approaching 30 steps, which would bring the total number well over 50 

once the Southern fragment was included in the synthesis. We strongly felt that given the 

knowledge we have obtained thus far in the project, a revision of strategy could lead to a 

significantly shorter and more elegant route, although it would require starting over 

“from scratch”. 
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Section 2.6 – Experimental 

 
To a 50 mL round bottom flask charged with (S,S)-Co(salen) complex 

(450 mg, 0.74 mmol, 0.0075 eq) in wet toluene (10 mL) was added acetic 

acid (1.36 mL). The reaction was allowed to stir at rt for 30 min before the volatiles were 

removed under reduced pressure (1 mmHg). Racemic epoxide40 (±)-2-5 (20 g, 98.94 

mmol, 1 eq) was added neat, followed by distilled water (0.98 g, 54.41 mmol, 0.55 eq), 

and the reaction was allowed to stir at rt for 18h. A distillation apparatus was attached to 

the flask and the resolved epoxide was distilled under reduced pressure (1 mmHg, 40 °C) 

to give the enantiopure epoxide (9.32 g, 46.10 mmol, 46% yield). The spectral data of 

this compound match previously reported literature.41 [α]20
D = ‒6.47° (c 1.0, CHCl3).  

 

 

A 250 mL round bottom flask equipped with a reflux condenser was 

charged with freshly made allyl magnesium bromide (1.0 M solution 

in diethyl ether, 60 mL, 60 mmol, 1.3 eq) and cooled to 0 °C using a 

water-ice bath. Neat epoxide 2-5 (9.32 g, 46.1 mmol, 1 eq) was added through the reflux 

condenser via syringe at a rate sufficient to maintain a steady reflux of the strongly 

exothermic reaction. Once the addition was complete the inside of the condenser was 

rinsed with 10 mL of dry diethyl ether, the ice bath was removed and the reaction was 

stirred at room temperature for 10 min. The reaction was poured into a solution of half 

saturated NH4Cl (200 mL), the aqueous layer was extracted with ethyl acetate (3 x 40 

mL) and the combined organics were washed with brine, dried with MgSO4 and filtered 

through a pad of celite. Solvent was removed under reduced pressure, to afford 1-22 as a 

colorless oil (11.2 g, 45.9 mmol, 99% yield) which was used without further purification. 

Rf 0.60 (33% EtOAc/Hex); 1H NMR (400 MHz, CDCl3) δ 5.88-5.78 (ddd, J = 17.05, 

10.31, 6.64 Hz, 1H), 5.08-4.92 (m, 2H), 3.92-3.78 (m, 3H), 3.45 (bs, 1H), 2.25-2.05 (m, 

2H), 1.72-1.48 (m, 4H), 0.89 (s, 9H), 0.07 (s, 6H); 13C NMR (100 MHz, CDCl3) δ 138.7, 

114.5, 71.6, 62.8, 38.2, 36.6, 29.8, 25.8, 18.1, -5.5.; HRMS m/z 243.9947 (calcd for 

C13H28O2Si, 244.1859). 
 

 

 

OH

TBSO

1-22
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The cyclization precursor 1-22 (2.44 g, 10 mmol, 1.0 eq) was 

added as a solution in 100 mL iPrOH to a flask charged with 

Co(nmp)2 (1-21) (565 mg, 1.0 mmol, 0.1 eq) under 1 atm of O2 

(via balloon). At room temperature, tert-butyl hydrogen peroxide (5.33 M in isooctane, 

0.19 mL, 1.0 mmol, 0.1 eq) was added in one portion, and the resulting solution was 

heated to 55 °C for 16 h. The flask was then cooled to room temperature, purged with 

argon and methyl iodide (0.62 mL, 1.0 mmol, 1.0 eq) was added to the reaction mixture 

at room temperature and stirred for 24 h. The solution was concentrated under reduced 

pressure (0.1 mm Hg) to remove all traces of iPrOH, and the residue was dissolved in 

water (100 mL) and CH2Cl2 (200 mL). The heterogeneous mixture was separated and the 

aqueous layer was extracted with CH2Cl2 (4 x 50 mL). The combined organic layers were 

washed with brine, dried (MgSO4), filtered through a thin pad of silica on top of a thin 

pad of celite and concentrated under reduced pressure to yield 1-23 as a yellow oil (2.52 

g, 9.7 mmol, 97%) which was used without further purification. The spectral data of the 

compound matches that previously reported.42 [α]20
D = ‒14.4° (c 1.0, CHCl3); literature: -

14° at c 1.0; Rf 0.33 (33% EtOAc/Hex); 1H NMR (400 MHz, CDCl3) δ 4.07-3.98 (m, 

2H), 3.65 (t, J = 6.3 Hz), 3.57-3.54 (dd, J = 11.3, 3.04 Hz), 3.45-3.41 (dd, J = 11.6, 6.21 

Hz), 2.55 (bs, 1H), 2.04-1.88 (m, 2H), 1.79-1.71 (dt, J = 13.3, 5.8 Hz, 1H), 1.66-1.47 (m, 

2H), 0.84 (s, 9H), 0.00 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 78.8, 76.4, 64.9, 60.3, 

38.6, 32.1, 27.5, 25.8, 18.2, -5.4; HRMS m/z 260.1809 (calcd for C13H28O3Si, 260.1808). 
 

 

A 250 mL round bottom flask containing oxalyl chloride (1.0 mL, 12 

mmol, 1.2 eq) in 90 mL of CH2Cl2 was cooled to -78 °C and DMSO 

(1.7 mL, 24 mmol, 2.4 eq) in 30 mL CH2Cl2 was added slowly portion wise over 20 min. 

After stirring for 45 min, alcohol 1-23 (2.60 g, 10 mmol, 1 eq) was added in 10 mL 

CH2Cl2 over 5 min slowly drop wise. After stirring for 1.5 h at -78 °C, triethylamine (7 

mL, 50 mmol, 5 eq) was added portion wise over 5 min. After stirring for 15 min the dry 

ice/acetone bath was replaced with a water ice/ice bath and the reaction was allowed to 

warm to 0 °C, and stirred for 15 min. The reaction was poured into 10% HCl (200 mL), 

extracted with CH2Cl2 (3 x 50 mL), and the combined organic layers were washed with 

saturated sodium bicarbonate (100 mL), brine (100 mL) and dried over MgSO4. Excess 

OH H
TBSO

H

O2-1

OH H

OH
TBSO

1-23
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solvent was removed under reduced pressure, giving the crude oil which was 

immediately purified by column chromatography (20% EtOAc/Hex) to give 2-1 as a 

yellow oil (2.19 g, 8.5 mmol, 85% yield) which was used in the next step immediately. 

Epimerization of the THF ring was not observed, but slow decomposition took place over 

time. Rf 0.20 (20% EtOAc/Hex); 1H NMR (400 MHz, CDCl3) δ 9.65 (d, J = 1.76 Hz, 

1H), 4.29 (dt, J = 6.44, 2.3 Hz, 1H), 4.14 (tt, J = 7.76, 5.4 Hz, 1H), 3.73 (dd, J = 7.03, 5.9 

Hz, 2H), 2.21-2.16 (m, 1H), 2.07-2.02 (m, 1H), 1.98-1.92 (m, 1H), 1.85-1.80 (m, 1H), 

1.75-1.70 (m, 1H), 1.59 (dq, J = 12.1, 8.5 Hz, 1H), 0.88 (s, 9H), 0.04 (d, J = 2.3 Hz, 6H); 
13C NMR (100 MHz, CDCl3) δ 203.0, 82.2, 78.2, 60.2, 38.4, 31.3, 27.2, 25.9, 18.2, -5.4. 
 

 

To a 100 mL round bottom flask containing dimethylzinc (8.33 

mL, 1.2 M in toluene, 10 mmol, 3 eq) in toluene (20 mL) was 

added diyne 2-643 (1.52 g, 9.32 mmol, 2.8 eq). The mixture was 

allowed to stand at rt for 90 min without stirring, after which the solution was transferred 

to a 100 mL round bottom flask with (R,R) ligand 2-9 (201 mg, 0.333 mmol, 0.1 eq). 

After bubbling had ceased (ca. 10 min), aldehyde 2-7 (373 mg, 3.3 mmol, 1 eq) was 

added neat. The reaction was stirred at 0 °C for 48 h, after which it was poured into a 

solution of half saturated NH4Cl, the aqueous layer was extracted with EtOAc (3 x 20 

mL) and the combined organics were washed with brine, dried with MgSO4 and filtered 

through a thin pad of celite. Solvent was removed under reduced pressure, and the crude 

mixture was purified by column chromatography (10% EtOAc/Hex) to afford 2-6 as a 

yellow oil (786 mg, 2.84 mmol, 85% yield) which was used without further purification. 

Absolute stereochemistry of the secondary alcohol was assigned by analogy, using 

reported examples in the literature.44 The ee of the alcohol was determined to be 90% by 

Mosher’s ester analysis using (S)-(+)-α-Methoxy-α-trifluoromethylphenylacetyl chloride: 
19F NMR (376 MHz, CDCl3) δ -72.0 (S enantiomer), -72.2 (R enantiomer); Rf 0.37 (10% 

EtOAc/Hex); 1H NMR (400 MHz, CDCl3) δ 5.26 (s, 1H), 4.97 (s, 1H), 4.87 (d, J = 6.5 

Hz, 1H), 2.18 (td, J = 8.4, 7.2 Hz, 2H), 1.92 (d, J = 6.4 Hz, 1H), 1.52-1.44 (m, 2H), 1.35 

(dq, J = 14.9, 7.2 Hz, 2H), 0.99 (t, J = 7.8 Hz, 9H), 0.92 (t, J = 7.2 Hz, 3H), 0.62 (q, J = 

7.8 Hz, 6H); 13C NMR (100 MHz, CDCl3) 147.7, 112.1, 88.4, 86.6, 76.2, 71.2, 66.2, 21.8, 

30.2, 22.7, 14.2, 7.6, 4.4; HRMS m/z 276.1909 (calcd for C17H28OSi, 276.1904).  
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To a 10 mL round bottom flask containing diyne 2-6 (90 mg, 

0.336 mmol. 1 eq) in toluene (3.5 mL) was added 

triphenyltinhydride (177 mg, 0.505 mmol, 1.5 eq) followed 

by triethylborane in toluene (1.0 M, 0.04 mL, 0.034 mmol, 0.1 eq), and air (1 mL). The 

reaction was stirred and monitored by aliquot until completion (~24 h). Solvent was 

removed under reduced pressure, and the crude mixture was purified by column 

chromatography (10% EtOAc/Hex) to afford 2-10 as a yellow oil (145 mg, 0.238 mmol, 

71% yield). Rf 0.35 (10% EtOAc/Hex); 1H NMR (400 MHz, CDCl3) δ 7.62-7.59 (m, 5H), 

7.36-7.30 (m, 10H), 6.67 (d, J = 1.4 Hz, 1H), 4.76 (s, 1H), 4.73 (bs, 1H), 4.71 (s, 1H), 

1.84 (q, J = 7.2 Hz, 2H), 1.73 (bs, 1H), 1.32-1.20 (m, 4H), 1.01 (t, J = 7.9 Hz, 1H), 0.92 

(q, J = 7.7 Hz, 1H), 0.66 (t, J = 7.8 Hz, 9H), 0.19 (q, J = 7.9 Hz, 6H). 
 

 

To a 10 mL round bottom flask containing diyne 2-6 (317 mg, 

1.15 mmol. 1 eq) in toluene (5 mL) was added 

tributyltinhydride (502 mg, 1.72 mmol, 1.5 eq) followed by 

triethylborane in toluene (1.0 M, 0.35 mL, 0.345 mmol, 0.3 eq), and air (1 mL). The 

reaction was stirred and monitored by aliquot until completion (~24 h). Volatiles were 

removed under reduced pressure (0.1 mm Hg, 5 min), and the crude stannane was 

dissolved in THF (20 mL), cooled to -78 °C, and iodine (350 mg, 1.38 mmol, 1.2 eq) was 

added in one portion. The reaction was stirred at -78 °C for 15 min, the dry ice/acetone 

bath was removed and was replaced with a water ice bath and the reaction was stirred at 0 

°C for 5 min. A saturated solution of sodium sulfite was added until the iodine color 

dissipated, and the solution was diluted with EtOAc (50 mL) and water (20 mL). The 

aqueous layer was extracted with EtOAc (3 x 20 mL) and the combined organics were 

washed with brine, dried with MgSO4 and filtered through a pad of celite. Solvent was 

removed under reduced pressure, and the crude mixture was purified by column 

chromatography (10% EtOAc/Hex) to afford 2-11 as a yellow oil (452 mg, 1.12 mmol, 

97% yield) which was used without further purification. Rf 0.26 (10% EtOAc/Hex); 1H 

NMR (400 MHz, CDCl3) δ 6.49 (d, J = 0.98 Hz, 1H), 5.21 (s, 1H), 5.08 (s, 1H), 4.41 (s, 

1H), 2.03-1.98 (m, 3H), 1.43-1.39 (m, 2H), 1.35-1.29 (m, 2H), 1.03 (t, J = 7.8 Hz, 9), 

OH

IEt3Si

2-11
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0.90 (t, J = 7.0 Hz, 3H), 0.65 (q, J = 7.8 Hz, 6H); 13C NMR (100 MHz, CDCl3) 147.7, 

123.6, 119.4, 112.6, 105.1, 99.6, 80.7, 31.6, 29.9, 22.5, 14.0, 7.5, 4.3; HRMS m/z 

404.1030 (calcd for C17H29IOSi, 404.1032). 
 

 

To iodide 2-11 (447 mg, 1.10 mmol, 1 eq) and triethylamine 

(0.5 mL, 4.4 mmol, 4 eq) in CH2Cl2 (20 mL) was added 

TBSOTf (0.5 mL, 1.65 mmol, 1.5 eq), and the reaction was 

stirred at rt for 16 h. The reaction was poured into a solution of half saturated NH4Cl, the 

aqueous layer was extracted with CH2Cl2 (3 x 20 mL) and the combined organics were 

washed with brine, dried with MgSO4 and filtered through a thin pad of celite. Solvent 

was removed under reduced pressure to afford 2-12 as a yellow oil (413 mg, 0.8 mmol, 

72% yield) which was used without further purification. Rf 0.78 (10% EtOAc/Hex); 1H 

NMR (400 MHz, CDCl3) δ 6.51 (d, J = 1.37 Hz, 1H), 5.15 (s, 1H), 4.99 (d, J = 1.37 Hz, 

1H), 4.52 (s, 1H), 1.98-1.91 (m, 1H), 1.85-1.77 (m, 1H), 1.43-1.37 (m, 2H), 1.30-1.26 

(m, 2H), 1.03 (t, J = 7.9 Hz, 9), 0.89 (s, 9H), 0.89 (t, J = 7.8 Hz, 3H), 0.65 (q, J = 7.9 Hz, 

6H), 0.04 (d, J = 14.2 Hz, 6H); 13C NMR (100 MHz, CDCl3) 147.6, 124.0, 117.8, 113.4, 

105.7, 98.6, 82.7, 29.8, 29.4, 25.8, 22.6, 18.2, 14.0, 7.5, 4.3; HRMS m/z 519.1966 (calcd 

for C23H43IOSi2, 518.1897). 
 

 

To a solution of iodide 2-12 (165 mg, 0.318 mmol, 1 eq), in 

DMF (4 mL) and triethylamine (0.3 mL, 3.18 mmol, 10 eq) 

was added Me4Sn (169 mg, 0.342 mmol, 3 eq), CuI (5.8 mg, 

0.0318 mmol, 0.1 eq), Ph3As (9.7 mg, 0.0318 mmol, 0.1 eq), and PdCl2(MeCN)2 (8.3 mg, 

0.0318 mmol, 0.1 eq). The solution was thoroughly degassed with argon before being 

heated to 130 °C overnight (16 h). The reaction was then allowed to cool before being 

poured into water (20 mL) and diluted with EtOAc (20 mL). The aqueous layer was 

extracted with EtOAc (5 x 20 mL) and the combined organics were washed with brine, 

dried with MgSO4 and filtered through a pad of celite. Solvent was removed under 

reduced pressure, and the crude mixture was purified by column chromatography (100% 

Hex) to afford 2-12a as a yellow oil (77.7 mg, 0.203 mmol, 64% yield) which was used 

without further purification. Rf 0.47 (10% EtOAc/Hex); 1H NMR (400 MHz, CDCl3) δ 

OTBS
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5.66 (s, 1H), 5.06 (s, 1H), 4.86 (s, 1H), 4.43 (s, 1H), 1.92 (m, 1H), 1.78 (m, 1H), 1.74 (s, 

3H), 1.41-1.35 (m, 2H), 1.30 (ap, J = 7.0 Hz, 2H), 1.00 (t, J = 8.9 Hz, 9), 0.89 (s, 9H), 

0.89 (t, J = 7.8 Hz, 3H), 0.62 (q, J = 8.0 Hz, 6H), 0.02 (d, J = 6.4 Hz, 6H); 13C NMR (100 

MHz, CDCl3) 152.9, 149.2, 110.8, 105.7, 104.4, 95.3, 80.1, 29.9, 29.8, 25.8, 22.6, 18.3, 

15.4, 14.0, 7.5, 4.5, -5.0, -5.1; HRMS m/z 406.3082 (calcd for C24H46IOSi2, 406.3087). 
 

 

To a solution of silane 2-12a (57.7 mg, 0.141 mmol, 1 eq) in wet 

MeOH:THF (1 mL:1 mL) was added K2CO3 (20 mg, 1.42 mmol, 

10 eq), and the solution was stirred for 24 h at room temperature. 

Upon completion, the volatiles were removed under reduced pressure, and the residue 

was dissolved in water (20 mL) and EtOAc (20 mL). The aqueous layer was extracted 

with EtOAc (2 x 20 mL) and the combined organics were washed with brine, dried with 

MgSO4 and filtered through celite. Solvent was removed under reduced pressure to afford 

2-2 as a yellow oil (39.4 mg, 0.133 mmol, 95% yield) which was used without further 

purification. [α]20
D = +7.09° (c 1.0, CHCl3); Rf 0.40 (100% Hex); 1H NMR (400 MHz, 

CDCl3) δ 5.63 (dt, J = 2.34, 1.17 Hz, 1H), 5.06 (s, 1H), 4.88 (d, J = 1.56 Hz, 1H), 4.43 (s, 

1H), 3.07 (d, J = 2.34 Hz, 1H), 1.95-1.87 (m, 1H), 1.80-1.73 (m, 1H), 1.74 (s, 3H), 1.41-

1.24 (m, 4H), 0.88 (t, J = 8.7 Hz, 3H), 0.88 (s, 9H), 0.02 (d, J = 2.54 Hz, 6H); 13C NMR 

(100 MHz, CDCl3) δ 153.8, 149.0, 111.0, 104.3, 81.5, 80.7, 80.0, 29.9, 29.7, 25.7, 22.6, 

18.3, 15.2, 14.0, -5.0, -5.1; HRMS m/z 292.2222 (calcd for C18H32OSi, 292.2222). 
 

 

Via Trost A-A: To a 10 mL round bottom flask containing 

dimethylzinc (0.83 mL, 1.2 M in toluene, 1 mmol, 3 eq) in toluene 

(2 mL) was added TMS acetylene (91.3 mg, 0.333 mmol, 2.8 eq). 

The mixture was allowed to stand at rt for 90 min without stirring, after which the 

solution was transferred to a 10 mL round bottom flask with (R,R) ligand 2-9 (20.1 mg, 

0.033 mmol, 0.1 eq). After bubbling had ceased (ca. 10 min), aldehyde 2-7 (37.3 mg, 

0.33 mmol, 1 eq) was added neat. The reaction was stirred at 0 °C for 48 h, after which it 

was poured into a solution of half saturated NH4Cl (20 mL), the aqueous layer was 

extracted with EtOAc (3 x 20 mL) and the combined organics were washed with brine, 

dried with MgSO4 and filtered through a thin pad of celite. Solvent was removed under 

OH

TMS
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reduced pressure, and the crude mixture was purified by column chromatography (10% 

EtOAc/Hex) to afford 2-14 as a yellow oil (48 mg, 0.231 mmol, 70% yield) which was 

used without further purification. Absolute stereochemistry of the secondary alcohol was 

assigned by analogy, using reported examples in the literature.45 Rf 0.37 (10% 

EtOAc/Hex); 1H NMR (400 MHz, CDCl3) δ 5.26 (s, 1H), 4.94 (s, 1H), 4.80 (s, 1H), 2.18 

(t, J = 8.0 Hz, 2H), 2.10 (bs, 1H), 1.51-1.45 (m, 2H), 1.35 (dq, J = 14.9, 7.2 Hz, 2H), 0.92 

(t, J = 7.2 Hz, 3H), 0.17 (s, 9H); 13C NMR (100 MHz, CDCl3) δ 148.0, 11.2, 104.7, 90.6, 

65.9, 31.4, 30.0, 22.4, 13.9, -0.3; HRMS m/z 210.1444 (calcd for C12H22OSi, 210.1440). 

The ee of the alcohol was determined to be 90% by Mosher’s ester analysis using (S)-(+)-

α-Methoxy-α-trifluoromethylphenylacetyl chloride: 19F NMR (376 MHz, CDCl3) δ -71.7 

(R enantiomer), -71.9 (S enantiomer). 
 

 

To a 250 mL flask containing TMS acetylene (3.41 mL, 24.7 mmol, 

1.05 eq), in THF (50 mL) cooled to 0 °C was added nBuLi (2.55 M, 

9.21 mL, 23.5 mmol, 1 eq) portion wise over 10 min, and the 

reaction was stirred at 0 °C for 10 min. To the flask was added aldehyde 2-7 (2.64 g, 23.5 

mmol, 1 eq) drop wise. The reaction was stirred for 15 min, and was then poured into half 

saturated solution of NH4Cl (100 mL), the aqueous layer was extracted with EtOAc (3 x 

50 mL) and the combined organics were washed with brine, and dried with MgSO4. 

Solvent was removed under reduced pressure to afford a yellow oil (5.14 g, 24.4 mmol, 

99% yield) which was used without further purification. Rf 0.37 (10% EtOAc/Hex); 1H 

NMR (400 MHz, CDCl3) δ 5.26 (s, 1H), 4.94 (s, 1H), 4.80 (s, 1H), 2.18 (t, J = 8.0 Hz, 

2H), 2.10 (bs, 1H), 1.54-1.45 (m, 2H), 1.35 (dq, J = 14.9, 7.2 Hz, 2H), 0.92 (t, J = 7.2 Hz, 

3H), 0.17 (s, 9H); 13C NMR (100 MHz, CDCl3) δ 148.0, 11.2, 104.7, 90.6, 65.9, 31.4, 

30.0, 22.4, 13.9, -0.3; HRMS m/z 210.1444 (calcd for C12H22OSi, 210.1440). 
 

 

To a 500 mL flask containing propargyl alcohol (±)-2-14 (4.93 g, 

23.4 mmol, 1 eq) in CH2Cl2 was added 20 g of powdered 4Å 

molecular sieves, and activated manganese dioxide (16.3 g, 234.2 

mmol, 10 eq). The reaction was heated to reflux and stirred overnight (ca. 16 h) after 

which the reaction was cooled, filtered through a pad of celite and concentrated under 
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reduced pressure, to afford the propargyl ketone 2-14a as yellow oil (3.99 g, 19.2 mmol, 

82% yield). The ketone was of sufficient purity to use in the next step without 

purification, and was found to decompose on silica gel. Rf 0.72 (10% EtOAc/Hex); 1H 

NMR (400 MHz, CDCl3) δ 6.50 (s, 1H), 5.98 (s, 1H), 2.28 (t, J = 7.2 Hz, 2H), 1.41-1.31 

(m, 4H), 0.89 (t, J = 7.0 Hz, 3H), 0.25 (s, 9H); 13C NMR (100 MHz, CDCl3) δ 179.6, 

149.2, 130.5, 100.3, 98.2, 30.2, 29.0, 22.3, 13.8, -0.7; HRMS m/z 208.1283 (calcd for 

C12H20OSi, 208.1283). 
 

 

To a solution of ketone 2-14a (3.12 g, 15 mmol, 1 eq) in THF (40 

mL) at -30 °C was added (S)-CBS catalyst (0.33 M, 6.77 mL, 2.25 

mmol, 0.15 eq), followed by drop wise addition of BH3·THF (1.0 

M, 18 mL, 18 mmol, 1.2 eq) over 40 min. The reaction was stirred at -30 °C for 2 h until 

completion, indicated by TLC. To the reaction mixture was added MeOH (20 mL) at -30 

°C, followed by pouring the solution into a half saturated solution of NH4Cl (100 mL), 

the aqueous layer was extracted with EtOAc (3x50 mL) and the combined organics were 

washed with brine, and dried with MgSO4. Solvent was removed under reduced pressure 

to afford 2-14 as a yellow oil (3.15 g, 15 mmol, 100% yield) which was used without 

further purification. The absolute stereochemistry of the secondary alcohol was assigned 

by analogy, using reported examples in the literature.46 The ee of the alcohol was 

determined to be 90% by Mosher’s ester analysis using (S)-(+)-α-Methoxy-α-

trifluoromethylphenylacetyl chloride: 19F NMR (376 MHz, CDCl3) δ -71.7 (R 

enantiomer), -71.9 (S enantiomer).  
 

 

A 100 mL round bottom flask was charged with tert-

butylsilylchloride (1.94 g, 12.9 mmol, 1 eq), diluted with CH2Cl2 

(50 mL) and cooled to 0 °C. Imidazole (1.75 g, 25.8 mmol, 2 eq) 

was added in one portion, followed by a catalytic amount of DMAP, and alcohol 2-14 

(2.71 g, 12.9 mmol, 1 eq). The ice bath was removed and the reaction was stirred at rt 

overnight (approx. 16 h). The reaction was poured into a half-saturated solution of NH4Cl 

(100 mL), the aqueous layer was extracted with CH2Cl2 (3x30 mL) and the combined 

organics were washed with brine, and dried with MgSO4. Solvent was removed under 
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reduced pressure, to afford 2-14b as a colorless oil (3.65 g, 11.2 mmol, 87% yield) which 

was used without further purification. Rf 0.90 (10% EtOAc/Hex); 1H NMR (400 MHz, 

CDCl3) δ 5.22 (s, 1H), 4.86 (s, 1H), 4.79 (s, 1H), 2.14 (t, J = 7.6 Hz, 2H), 1.47 (asex, J = 

7.2 Hz, 2H), 1.33 (asex, J = 7.2 Hz, 2H), 0.91 (t, J = 7.2 Hz, 3H), 0.91 (s, 9H), 0.15 (s, 

6H); HRMS m/z 324.2305 (calcd for C18H36OSi2, 324.2305).  
 

 

A 100 mL round bottom flask was cooled to 0 °C and charged with 

TBS alcohol (2-14b) (3.65 g, 11.2 mmol, 1 eq) and diluted with wet 

MeOH (50 mL). K2CO3 (5 g, excess) was added in one portion and the 

reaction was stirred at 0 °C until judged complete by TLC (approx. 3h). The reaction was 

poured through a thin pad of celite and washed with 100 mL of CH2Cl2. The reaction was 

poured into a half-saturated solution of NH4Cl (100 mL), the aqueous layer was extracted 

with CH2Cl2 (3 x 30 mL) and the combined organics were washed with brine, and dried 

with MgSO4. Solvent was removed under reduced pressure, to afford 2-15 as a colorless 

oil (2.68 g, 10.62 mmol, 95% yield) which was used without further purification. Rf 0.85 

(10% EtOAc/Hex); 1H NMR (400 MHz, CDCl3) δ 5.21 (s, 1H), 4.88 (s, 1H), 4.80 (s, 

1H), 2.44 (d, J = 2.3 Hz, 2H), 2.16 (q, J = 6.0 Hz, 2H), 1.47 (m, 2H), 1.34 (dq, J = 14.8, 

7.2 Hz, 2H), 0.91 (t, J = 7.2 Hz, 3H), 0.91 (s, 9H), 0.12 (d, J = 10.5 Hz, 6H); 13C NMR 

(100 MHz, CDCl3) δ 148.3, 110.2, 84.1, 72.8, 65.9, 31.1, 29.9, 25.8, 22.5, 18.3, 14.0, -

4.7, -5.1.  
 

 

A 250 mL round bottom flask was charged with alkyne 2-15 (2.68 

g, 10.6 mmol, 1 eq), diluted with THF (60 mL) and cooled to -78 

°C. Then, nBuLi (2.50 M, 5.5 mL, 13.8 mmol, 1.5 eq) was added 

over 10 min drop wise. The reaction was stirred for 15 min, at which point 

isopropylchloroformate was added (1.0 M, 11.9 mL, 11.9 mmol, 1.3 eq) drop wise over 

10 min. The reaction was stirred at -78 °C for 1 h and warmed to 0 °C using a water ice 

bath. The reaction was poured slowly into a half-saturated solution of NH4Cl (100 mL), 

the aqueous layer was extracted with EtOAc (3 x 30 mL) and the combined organics 

were washed with brine, and dried with MgSO4. Solvent was removed under reduced 

pressure, to afford 2-16 as a colorless oil (3.90 g, 10.5 mmol, 99% yield) which was used 

OTBS
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without further purification. Rf 0.61 (10% EtOAc/Hex); 1H NMR (400 MHz, CDCl3) δ 

5.20 (s, 1H), 5.07 (dt, J = 12.5, 6.2 Hz, 1H), 4.90 (d, J = 10.8 Hz, 2H), 2.14 (q, J = 7.4 

Hz, 2H), 1.47 (m, 2H), 1.34 (m, 2H), 1.27 (d, J = 6.2 Hz, 6H), 0.90 (t, J = 7.8 Hz, 3H), 

0.90 (s, 9H), 0.13 (d, J = 16.0 Hz, 6H); 13C NMR (100 MHz, CDCl3) δ 148.3, 147.0, 

138.0, 111.4, 110.2, 86.6, 84.0, 72.8, 69.9, 66.0, 65.9, 31.0, 29.9, 25.7, 25.7, 22.5, 22.5, 

21.6, 18.3, 18.2, 14.0, -4.8, -5.1; HRMS m/z 337.2197 (calcd for C19H34O3Si, 338.2277). 
 

 

A 500 mL round bottom flask was charged with CuI (11.6 g, 61.4 

mmol, 3 eq), diluted with THF (200 mL) and cooled to -40 °C. 

Methyl magnesium bromide (3.0 M in ether, 40.9 mL, 122.8 

mmol, 6 eq) was added slowly drop wise, and the reaction was stirred for 15 min before 

cooling to -78 °C. Alkyne 2-16 (6.93 g, 20.47 mmol, 1 eq) in THF (50 mL) was added 

drop wise over 15 min. The reaction was stirred at -78 °C for 2 h, at which point the dry 

ice bath was allowed to evaporate, and the reaction was allowed to slowly warm to rt 

overnight (ca 16 h). The reaction was poured into a half-saturated solution of NH4Cl (500 

mL), the aqueous layer was extracted with EtOAc (3 x 100 mL) and the combined 

organics were washed with brine, and dried with MgSO4. Solvent was removed under 

reduced pressure, and the crude product was purified by column chromatography (5% 

EtOAc/Hex) to afford methylated product 2-17 as a yellow oil (6.25 g, 17.6 mmol, 86% 

yield). [α]20
D = +5.30° (c 1.0, CHCl3); Rf 0.63 (10% EtOAc/Hex); 1H NMR (400 MHz, 

CDCl3) δ 5.94 (t, J = 1.4 Hz, 1H), 5.11 (s, 1H), 5.03 (dt, J = 12.6, 6.2 Hz, 1H), 4.91 (d, J 

= 1.4 Hz, 1H), 4.42 (s, 1H), 1.97 (s, 3H), 1.97-1.88 (m, 1H), 1.84-1.72 (m, 1H), 1.40-1.28 

(m, 4H), 1.26 (dd, J = 6.25, 1.76 Hz, 6H), 0.89 (s, 9H), 0.87 (t, J = 7.8 Hz, 3H), 0.02 (d, J 

= 1.76 Hz, 6H); 13C NMR (100 MHz, CDCl3) δ 166.5, 158.0, 148.5, 116.2, 111.5, 80.9, 

66.9, 29.9, 29.8, 25.8, 22.5, 22.0, 18.3, 14.4, 14.0, -5.0, -5.1; HRMS m/z 355.2683 (calcd 

for C20H38O3Si, 354.2590). 
 

 

A 250 mL round bottom flask was charged with ester 2-17 (2.49 g, 

7.02 mmol, 1 eq), diluted with CH2Cl2 (100 mL) and cooled to -78 

°C. A solution of DIBAL-H (1.0 M, 24.6 mL, 24.6 mmol, 3.5 eq) 

was added portion wise over 10 min. The reaction was stirred for 1 h at -78 °C before it 
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was warmed to 0 °C using a water ice bath, and stirred for 1 h. The reaction was slowly 

poured into a half-saturated solution of NH4Cl (200 mL), and a saturated solution of 

Rochelle’s salt was added (200 mL), and the slurry was stirred vigorously overnight (ca. 

16 h). The aqueous layer was extracted with CH2Cl2 (3 x 100 mL) and the combined 

organics were washed with brine, and dried with MgSO4. Solvent was removed under 

reduced pressure, and the crude product was purified by column chromatography (20% 

EtOAc/Hex) to afford alcohol 2-17a as a yellow oil (2.05 g, 6.87 mmol, 98% yield). Rf 

0.24 (10% EtOAc/Hex); 1H NMR (400 MHz, CDCl3) δ 5.66 (tt, J = 6.64, 1.25 Hz, 1H), 

5.10 (s, 1H), 4.84 (s, 1H), 4.37 (s, 1H), 4.19 (d, J = 6.64 Hz, 2H), 1.92-1.73 (m, 2H), 1.49 

(s, 3H), 1.42-1.23 (m, 7H), 0.87 (s, 9H), 0.01 (d, J = 3.13 Hz, 6H); 13C NMR (100 MHz, 

CDCl3) δ 149.3, 139.4, 124.8, 109.9, 80.4, 59.4, 30.7, 30.0, 25.8, 22.6, 18.3, 14.0, 11.5, -

5.0; HRMS m/z 299.2412 (calcd for C17H34O2Si, 298.2328). 
 

 

To a 100 mL flask containing alcohol 2-17a (2.05 g, 6.87 mmol, 1 

eq) in CH2Cl2 was added 100 g of powdered 4Å molecular sieves, 

and activated manganese dioxide (6.09 g, 70.0 mmol, 10 eq). The 

reaction was heated to reflux and stirred overnight (ca. 16 h) after which the reaction was 

cooled, filtered through a pad of celite and concentrated under reduced pressure, to afford 

the α,β-unsaturated aldehyde 2-18 as yellow oil which was used immediately in the next 

step without further purification. The spectral data of the compound matches the racemic 

compound previously reported.47 Rf 0.39 (10% EtOAc/Hex); 1H NMR (400 MHz, CDCl3) 

δ 10.03, (d, J = 8.01 Hz, 1H), 6.18 (d, J = 8.21, 1.37 Hz, 1H), 5.13 (s, 1H), 4.96 (s, 1H), 

4.49 (s, 1H), 2.01 (s, 1H), 1.91 (dt, J = 15.87, 7.79 Hz, 1H), 1.75 (dt, J = 15.87, 7.79 Hz, 

1H), 1.40-1.24 (m, 4H), 0.89 (t, J =7.8 Hz, 3H), 0.89 (s, 9H), 0.02 (s, 6H); 13C NMR (100 

MHz, CDCl3) δ 191.7, 148.1, 126.3, 112.2, 80.6, 29.9, 29.8, 25.7, 22.5, 18.2, 14.0, 13.1, -

5.0, -5.2; HRMS m/z 297.2238 (calcd for C17H32O2Si, 296.2172).  
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A 250 mL flask was charged with triphenylphosphine (4.60 g, 

17.55 mmol, 2.5 eq) and CH2Cl2 (100 mL) and was cooled to 0 

°C. The septum was temporarily removed to add carbon 

tetrabromide (3.02 g, 9.13 mmol, 1.3 eq) in one portion. The ice bath was removed and 

the reaction was stirred at room temperature for 30 min, after which it was re-cooled to 0 

°C. The above crude aldehyde 2-18 (~2.03 g, ~6.87 mmol, ~1 eq) was added in one 

portion and the reaction was stirred for 30 min, at which point it was judged complete by 

TLC. Hexanes (100 mL) was added, and the reaction was allowed to warm to rt, at which 

point it was filtered through celite, and concentrated to dryness. To the crude oil was 

added more hexanes (100 mL), filtered, and concentrated. This procedure was repeated 

for a total of 3 filtrations at which point the crude oil was purified by column 

chromatography (100% Hexanes) to afford 2-18b as a yellow oil (2.48 g, 5.49 mmol, 

78% yield). Rf 0.85 (10% EtOAc/Hex); 1H NMR (400 MHz, CDCl3) δ 7.13 (d, J = 10.55 

Hz, 1H), 6.21 (dt, J = 10.6, 1.34 Hz, 1H), 5.08 (s, 1H), 4.88 (s, 1H), 4.40 (s, 1H), 1.94-

1.86 (m, 1H), 1.81-1.73 (m, 1H), 1.58 (d, J = 1.37 Hz, 3H), 1.42-1.25 (m, 4H), 0.89 (t, J 

= 8.7 Hz, 3H), 0.89 (s, 9H), 0.02 (s, 6H); 13C NMR (100 MHz, CDCl3) δ 149.0, 143.8, 

133.3, 121.9, 110.8, 90.9, 80.6, 30.1, 30.0, 25.8, 22.6, 18.3, 14.0, 13.5, -5.0; HRMS m/z 

450.0580 (calcd for C18H32Br2OSi, 450.0589). 
 

 

A 250 mL flask was charged with dibromde 2-18b (2.48 g, 5.49 

mmol, 1 eq), diluted with THF (100 mL) and cooled to -78 °C. 

nBuLi (2.50 M, 5.48 mL, 13.70 mmol, 2.5 eq) was added slowly 

drop wise over 15 min. The reaction was stirred at -78 °C for 1 h at which point it was 

judged complete by TLC. The reaction was slowly poured into a half-saturated solution 

of NH4Cl (50 mL), the aqueous layer was extracted with CH2Cl2 (3 x 30 mL) and the 

combined organics were washed with brine, and dried with MgSO4. Solvent was removed 

under reduced pressure, and the crude product was purified by column chromatography 

(2% EtOAc/Hex) to afford alkyne 2-2 as a yellow oil (1.57 g, 5.38 mmol, 98% yield). 

Characterization data was identical to alkyne 2-2 made previously. 
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To a solution of alkyne 2-2 (890 mg, 3.04 mmol, 

1.3 eq) in MTBE (21 mL) at 0 °C was added 

nBuLi (2.66 M, 1.14 mL, 3.04 mmol, 1.3 eq), and 

the reaction was stirred at 0 °C for 1 h before being cooled to -90 °C using a liquid 

nitrogen/hexanes bath. After stirring for 15 min at -90 °C, freshly purified aldehyde 2-1 

(664 mg, 2.34 mmol, 1 eq) dissolved in a minimal amount of MTBE was added over 15 

min drop wise. The slow addition, low temperature of the reaction and the purity of both 

2-2 and 2-1 were essential conditions to ensure a high dr. After stirring at -90 °C for 4 h, 

the reaction was treated at -90 °C with 20 mL of saturated NH4Cl, before being allowed 

to warm to rt and diluted with water (50 mL) and EtOAc (50 mL). The aqueous layer was 

extracted with EtOAc (3 x 50 mL) and the combined organics were washed with brine, 

and dried with MgSO4. Solvent was removed under reduced pressure, and the crude 

product was purified by column chromatography (20% EtOAc/Hex) to afford recovered 

alkyne (180 mg) and alkynlation adduct as a single diastereomer 2-19 as a yellow oil 

(1.19 g, 2.17 mmol, 93% yield). The addition of acetylides to THF aldehydes are well 

documented to result in an anti relationship with the corresponding alcohol.48 [α]20
D = 

+8.97° (c 1.0, CHCl3); Rf 0.22 (10% EtOAc/Hex); 1H NMR (600 MHz, CDCl3) δ 5.63 (s, 

1H), 5.05 (s, 1H), 4.86 (s, 1H), 4.60 (bs, 1H), 4.42 (s, 1H), 4.19 (ap, J = 6.26 Hz, 1H), 

4.14 (dt, J = 7.32, 3.51 Hz, 1H), 3.70 (adt, J = 6.21, 2.66 Hz, 2H), 2.41 (bd, J = 5.27 Hz, 

1H), 2.10 (dt, J = 11.56, 6.15 Hz, 1H), 2.05-2.01 (m, 2H), 1.89 (dt, J = 15.81, 7.90 Hz, 

1H), 1.81-1.73 (m, 2H), 1.70 (s, 3H), 1.70-1.63 (m, 1H), 1.57 (dq, J = 11.93, 8.51 Hz, 

1H), 1.39-1.34 (m, 2H), 1.28 (dt, J = 16.64, 7.32 Hz, 2H), 0.87 (t, J = 7.8 Hz, 3H), 0.87 

(s, 18H), 0.03 (s, 6H), 0.00 (d, J = 1.17 Hz, 6H); 13C NMR (100 MHz, CDCl3) δ 152.3, 

149.1, 110.8, 104.8, 90.6, 83.6, 80.8, 80.0, 78.0, 65.2, 60.4, 38.9, 32.3, 29.9, 29.8, 26.7, 

25.9, 25.8, 22.6, 18.3, 18.2, 15.2, 14.0, -5.0, -5.1, -5.3; HRMS m/z 550.3853 (calcd for 

C31H58O4Si2, 550.3874).  
 

 

Attempts at Forming 2-19 via Asymmetric Reduction: After initial failures of 

asymmetric alkynlation of 2-1 and 2-2, and exhaustive efforts at achieving substrate 

controlled diastereoselective additions (prior to success using MTBE), it was envisioned 

that a facial selective reduction of the ketone could be a viable option. Literature 
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precedent of this reaction was abundant,49 with some examples coming from our own lab. 

However, in previous studies we had found that the dr of the reduction was unusually 

dependent on remote protecting groups.50 Alkylation adduct 2-19 was oxidized to the 

corresponding propargylic ketone using activated manganese dioxide. Several attempts at 

asymmetric reduction were made using L-selectride and (R)-CBS reagent at low 

temperatures and a disappointing mixture of inseparable diastereomers was achieved in 

all cases. The most successful reagent was L-selectride, which at -78 °C gave a near 

quantitative yield of a 2:1 ratio of separable diastereomers. Although this route could 

conceivably give us access to enantiopure material after careful column chromatography, 

our initial alkylation attempts gave a comparable dr in one step. Gratifyingly, further 

optimization of the alkylation led to conditions that resulted in a single diastereomer 

(MTBE, -90 °C).  
 

 

A 250 mL round bottom flask was charged with 

4-nitro benzoic acid (1.91 g, 11.48 mmol, 4 eq), 

triphenylphosphine (3.01g, 11.48 mmol, 4 eq), 

alcohol 2-19 (1. 58 g, 2.87 mmol, 1 eq), diluted 

with THF (80 mL) and cooled to 0 °C. DIAD 

(2.25 mL, 11.48 mmol, 4 eq) was added drop wise over 10 min, and the ice bath was 

removed. The reaction monitored by TLC and upon completion (ca. 2h) was slowly 

poured into a half-saturated solution of sodium bicarbonate (100 mL). The aqueous layer 

was extracted with EtOAc (3 x 50 mL) and the combined organics were washed with 

brine, and dried with MgSO4. Solvent was removed under reduced pressure, and the 

crude product was purified by filtration through a thin plug of silica gel (10% 

EtOAc/Hex) to afford 2-20 as a yellow oil (1.81 g, 2.58 mmol, 90% yield). Rf 0.70 (20% 

EtOAc/Hex); 1H NMR (600MHz, CDCl3) δ 8.28-8.23 (m, 4H), 5.73 (d, J = 7.6 Hz, 1H), 

5.64 (s, 1H), 5.04 (s, 1H), 4.87 (s, 1H), 4.42 (s, 1H), 4.35 (q, J = 7.2 Hz, 1H), 4.12-4.08 

(m, 1H), 3.66-3.63 (m, 2H), 2.25-2.20 (m, 1H), 2.14-2.09 (m, 1H), 2.02-1.95 (m, 1H), 

1.89 (dt, J = 15.8, 7.9 Hz, 1H), 1.79-1.73 (m, 2H), 1.73-1.65 (m, 1H), 1.72 (s, 3H), 1.60 

(dq, J = 12.1, 8.9 Hz, 2H), 1.40-1.32 (m, 3H), 1.30-1.24 (m, 4H), 0.87 (t, J = 7.8 Hz, 3H), 

0.87 (s, 9H), 0.84 (s, 9H), 0.00 (d, J = 2.3 Hz, 6H), -0.02 (s, 6H); 13C NMR (150MHz, 
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CDCl3) δ 163.8, 153.7, 150.6, 148.9, 135.5, 131.0, 123.4, 111.1, 104.1, 87.1, 84.7, 80.0, 

79.2, 68.7, 60.3, 38.5, 31.9, 29.9, 29.7, 28.7, 25.9, 25.8, 22.6, 18.2, 15.5, 14.0, -5.0, -5.2, -

5.4. 
 

 

A 250 mL round bottom flask was charged with 2-

20 (1.88 g, 2.68 mmol, 1 eq), diluted with ether 

(80 mL) and cooled to 0 °C. Red-Al (65% w/w in 

toluene, 3.33 g, 10.72 mmol, 4 eq) was added drop wise over 10 min. The ice bath was 

removed and the reaction was stirred for 30 min at rt before being slowly poured into a 

half-saturated solution of NH4Cl (100 mL), and a saturated solution of Rochelle’s salt 

was added (100 mL), and the slurry was stirred vigorously for 30 min. The aqueous layer 

was extracted with EtOAc (3 x 50 mL) and the combined organics were washed with 

brine, and dried with MgSO4. Solvent was removed under reduced pressure, and the 

crude product was purified by column chromatography (10% EtOAc/Hex) to afford 

alcohol 2-21 as a yellow oil (1.36 g, 2.38 mmol, 89% yield). [α]20
D = ‒5.25° (c 1.0, 

CHCl3); Rf 0.48 (20% EtOAc/Hex); 1H NMR (600MHz, CDCl3) δ 6.53 (dd, J = 14.93, 

10.83 Hz, 1H), 6.05 (d, J = 11.2 Hz, 1H), 5.57 (dd, J = 15.22, 7.03 Hz, 1H), 5.09 (s, 1H), 

4.84 (s, 1H), 4.38 (s, 1H), 4.09-4.05 (m, 1H), 3.95 (t, J = 7.32 Hz, 1H), 3.86 (q, J = 7.03 

Hz, 1 H), 3.71 (t, J = 6.44 Hz, 2H), 2.61 (bs, 1H), 2. 08-2.03 (m, 1H), 1.88-1.94 (m, 1H), 

1.90-1.85 (m, 1H), 1.80-1.75 (m, 2H), 1.72-1.65 (m, 2H), 1.61-1.53 (m, 1H), 1.59 (s, 

3H), 1.41-1.33 (m, 2H), 1.32-1.25 (m, 2H), 0.890 (s, 9H), 0.88 (s, 9H), 0.87 (t, J = 7.8 

Hz, 3H), 0.04 (d, J = 2.93 Hz, 6H), 0.00 (d, J = 9.95 Hz, 6H); 13C NMR (151MHz, 

CDCl3) δ 149.6, 139.6, 130.4, 128.8, 124.8, 109.7, 81.7, 80.7, 76.4, 75.5, 60.4, 38.7, 32.3, 

30.7, 30.0, 28.1, 25.9, 25.8, 22.6, 18.3, 14.0, 12.1, -5.0, -5.1, -5.3; HRMS m/z 552.4019 

(calcd for C31H60O4Si2, 552.4030). 
 

 

To a solution of TMS acetylene (13.7 mL, 99.8 mmol, 2.2 eq) in 

toluene (180 mL) cooled to 0 °C was added nBuLi (2.57M, 35.3 mL, 

90.8 mmol, 2.0 eq) drop wise over 10 min. The reaction was allowed 

to stir for 15 min at which point Et2AlCl (1.80M, 50.44 mL, 90.8 mmol, 2.0 eq) was 

added drop wise over 10 min. The reaction was allowed to stir for 1 hour while 

OH

OH

TMS

2-25a
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maintaining a temperature of 0 °C, after which epoxide 2-2551 (4.0 g, 45.4 mmol, 1 eq) 

was added in one portion. The ice-water bath was removed, allowing the reaction to 

warm to room temperature, and was allowed to stir overnight (ca. 16h). The reaction was 

quenched by pouring into half saturated solution of NH4Cl (400 mL) and diluted with 

EtOAc (100 mL), the aqueous layer was extracted with EtOAc (3 x 100 mL) and the 

combined organics were washed with brine, and dried with MgSO4. Solvent was removed 

under reduced pressure, to afford a yellow oil, which was purified by column 

chromatography (70% EtOAc). The reaction yields the expected product 2-25a (6.08 g, 

32.68 mmol, 72% yield), as well as the regioisomer (2.03 g, 10.90 mmol, 24% yield) as 

an inseparable mixture.  
 

 

To a solution of the above regioisomers (8.11g, 43.58 mmol, 1 eq) 

in CH2Cl2 (150 mL) was added imidazole (6.22 g, 91.58 mmol, 2.2 

eq), followed by TBSCl (6.56 g, 43.58 mmol, 1 eq), and a catalytic 

amount of DMAP. The reaction was allowed to stir for 3h, and upon completion by TLC 

analysis, the reaction was poured into half saturated solution of NH4Cl (300 mL) and 

diluted with CH2Cl2 (50 mL), the aqueous layer was extracted with CH2Cl2 (3 x 100 mL) 

and the combined organics were washed with brine, and dried with MgSO4. Solvent was 

removed under reduced pressure, to afford a yellow oil, which was purified by column 

chromatography (10% EtOAc). The reaction yields diol 2-28 (9.62 g, 32.02 mmol, 73% 

yield), and the regioisomer (3.21g, 10.62 mmol, 24% yield), which were separable by 

column chromatography. The overall yield of diol 2-28 from epoxide 2-25 was 70.5% 

over 2 steps. Rf 0.37 (10% EtOAc/Hex); 1H NMR (400 MHz, CDCl3) δ 3.83 (dd, J = 

10.0, 3.5 Hz, 1H), 3.72 (dd, J = 5.9, 5.9 Hz, 1H), 3.47-3.42 (m, 1H), 2.56-2.49 (m, 1H), 

2.47 (d, J = 5.5 Hz, 1H), 1.25 (d, J = 7.0 Hz, 3H), 0.90 (s, 9H), 0.13 (s, 9H), 0.08 (d, J = 

2.2 Hz, 6H); 13C NMR (100 MHz, CDCl3) δ 108.2, 64.4, 74.7, 65.0, 30.2, 25.9, 18.3, 

17.2, 0.1, -5.4; HRMS m/z calcd for C15H32O2Si2 [M+H+]: 301.1941, found: 301.2025.  
 

 

OH

OTBS

TMS

2-28
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To a solution of diol 2-28 (4.0 g, 13.32 mmol, 1 eq) in CH2Cl2 (50 

mL) was added triethylamine (2.0 mL, 19.98 mmol, 1.5 eq) and 

methanesulfonyl chloride (1.05 mL, 13.58 mmol, 1.02 eq). The 

reaction was allowed to stir at rt overnight (ca. 16 h). The reaction was poured into half 

saturated solution of NH4Cl (200 mL) and diluted with CH2Cl2 (50 mL), the aqueous 

layer was extracted with CH2Cl2 (3 x 50 mL) and the combined organics were washed 

with brine, and dried with MgSO4. Solvent was removed under reduced pressure, to 

afford 2-29 as a yellow oil, which was used in the next step without purification. Rf 0.344 

(10% EtOAc/Hex); 1H NMR (400 MHz, CDCl3) δ 4.54 (td, J = 7.2, 3.5 Hz, 1H), 4.01 

(dd, J = 11.5, 3.5 Hz, 1H), 3.86 (dd, J = 11.5, 6.7 Hz, 1H), 3.09 (s, 3H), 2.82 (p, J = 7.2 

Hz, 1H), 1.27 (d, J = 7.0 Hz, 3H), 0.90 (s, 9H), 0.13 (s, 9H), 0.08 (d, J = 1.9 Hz, 6H). 13C 

NMR (100 MHz, CDCl3) δ 106.1, 87.4, 85.7, 63.4, 38.8, 28.4, 25.8, 18.3, 16.8, -0.1, -5.5; 

HRMS m/z calcd for C16H34O4SSi2 [M+H+]: 379.1716, found: 379.1785.  

 

To a solution of the crude mesylate from above 2-29 in wet methanol 

(150 mL) was added 10-CSA (0.2 g, catalytic). The reaction was 

allowed to stir at rt until completion by TLC analysis (ca. 4h). The 

reaction was poured into half saturated solution of sodium bicarbonate (200 mL) and 

diluted with CH2Cl2 (100 mL), the aqueous layer was extracted with CH2Cl2 (5 x 100 

mL) and the combined organics were washed with brine, and dried with MgSO4. Solvent 

was removed under reduced pressure to afford a yellow oil, which was purified by 

column chromatography (50% EtOAc) to afford 2-30 a yellow oil (3.38 g, 12.78 mmol, 

96% yield over 2 steps). Rf 0.47 (50% EtOAc/Hex); 1H NMR (400 MHz, CDCl3) δ 4.58 

(td, J = 7.1, 2.9 Hz, 1H), 3.99 (dd, J = 11.5, 3.5 Hz, 1H), 3.85 (dd, J = 11.5, 6.7 Hz, 1H), 

3.11 (s, 3H), 2.84 (p, J = 7.1 Hz, 1H), 2.64 (bs, 1H), 1.28 (d, J = 7.0 Hz, 3H), 0.13 (s, 

9H). 13C NMR (100 MHz, CDCl3) δ 105.3, 88.1, 85.2, 63.1, 38.7, 28.9, 17.2, -0.1; HRMS 

m/z calcd for C10H20O4SSi [M+H+]: 265.0852, found: 265.0927. 
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To a solution of NaH (100% stored in a glovebox, 1.54 g, 64.4 mmol, 5 

eq) in diethyl ether (130 mL) was added mesylate 2-30 (3.40 g, 12.88 

mmol, 1 eq) in one portion. The reaction was stirred for 15 min at rt 

before KI (2.17 g, 12.9 mmol, 1 eq) was added in one portion under a cone of nitrogen. 

The reaction was allowed to stir at rt for 24h, at which point it was carefully poured onto 

a half saturated solution of NH4Cl (100 mL) and water ice (100 g). The solution diluted 

with (200 mL) and the aqueous layer was extracted with diethyl ether (3 x 50 mL) and 

the combined organics were washed with brine, dried with MgSO4 and filtered through a 

thin pad of celite. Solvent was cautiously removed under reduced pressure (100 mmHg, 

water bath at 25°C) to afford 2-22 as a yellow oil, which was used crude in the next 

reaction immediately (1.45 g, 8.63 mmol, 67% yield). Extreme care must be taken to not 

lose the highly volatile product. Rf 0.354 (10% EtOAc/Hex); 1H NMR (400 MHz, CDCl3) 

δ 2.99 (ddd, J = 5.0, 3.9, 2.5 Hz, 1H), 2.75 (dd, J = 5.0, 3.8 Hz, 1H), 2.69 (dd, J = 5.0, 2.3 

Hz, 1H), 2.63 (qd, J = 7.1, 5.0 Hz, 1H), 1.22 (d, J = 7.1 Hz, 3H), 0.14 (s, 9H). 13C NMR 

(100 MHz, CDCl3) δ 106.1, 86.4, 54.4, 45.6, 29.1, 16.8, 0.1. 
 

 

To a solution of dithiane 2-24 (336 mg, 1.15 mmol, 2 eq) in THF (10 

mL) at 0 °C was added nBuLi (2.55 M, 0.45 mL, 1.15 mmol, 2 eq) 

drop wise. The solution was allowed to stir at 0 °C for 10 min before a 

catalytic amount of HMPA (3 drops) was added, followed by epoxide 2-22 (97 mg, 0.58 

mmol, 1eq) in a minimal amount of THF. The reaction was allowed to stir at 0 °C for 1 h 

before being poured into a half saturated solution of NH4Cl and diluted with EtOAc (10 

mL), the aqueous layer was extracted with EtOAc (3 x 30 mL) and the combined 

organics were washed with brine, dried with MgSO4 and filtered through a thin pad of 

celite. Solvent was removed under reduced pressure and the crude oil was purified by 

column chromatography to give alcohol 2-31 (95 mg, 0.57 mmol, 99%) as a yellow oil. 

Rf 0.40 (10% EtOAc/Hex); 1H NMR (400 MHz, CDCl3) δ 6.04 (tq, J = 8.6, 1.5 Hz, 1H), 

4.20 (d, J = 6.6 Hz, 2H), 1.81 (d, J = 1.4 Hz, 3H), 0.17 (s, 9H) 13C NMR (100 MHz, 

CDCl3) δ 136.4, 120.8, 107.3, 92.2, 59.2, 17.4, 0.0. 
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To a solution of epoxide 2-22 (71.6 mg, 0.453 mmol, 1 eq) in wet 

CHCl3 (1.5 mL) was added tetrabutylammonium iodide (500 mg, 1.36 

mmol, 3 eq) and trifluoroacetic acid (0.05 mL, 0.679 mmol, 1.5 eq). 

The reaction was allowed to stir at room temperature for 1 h, at which time the solution 

changes color from yellow to orange. The reaction was quenched by pouring into half 

saturated sodium bicarbonate (10 mL) and diluted with EtOAc (10 mL) the aqueous layer 

was extracted with EtOAc (3 x 10 mL) and the combined organics were washed with 

brine, and dried with MgSO4. Solvent was removed under reduced pressure to afford 2-

32 as a yellow oil which was used crude in the next reaction. Note: The yellow oil 

contains the product iodohydrin 2-32 and tetrabutylammonium species. To obtain a pure 

sample of 2-32, the EtOAc in the workup can be replaced by hexanes. Doing so results in 

a slight drop in yield, but an organic layer free of contaminants. Rf 0.35 (10% 

EtOAc/Hex); 1H NMR (400 MHz, CDCl3) δ 3.51-3.47 (m, 1H), 3.37 (d, J = 9.9, 5.3 Hz, 

1H), 3.27 (dd, J = 10.1, 6.4 Hz, 1H), 2.90 (qd, J = 7.1, 4.4 Hz, 1H), 2.25 (d, J = 7.0 Hz, 

1H), 1.21 (d, J = 7.0 Hz, 3H), 0.15 (s, 9H). 13C NMR (100 MHz, CDCl3) δ 105.5, 88.7, 

73.3, 33.2, 17.4, 10.4, 0.0; HRMS m/z calcd for C9H17IOSi: 296.0093, found: 296.0088.  
 

 

From iodohydrin 2-32: The crude iodohydrin 2-32 above was 

dissolved in CHCl3 (1 mL) and dimethoxymethane (3 mL), and in one 

portion P2O5 (257 mg, 0.91 mmol, 2 eq) was added. The reaction was 

allowed to stir at room temperature and monitored by TLC upon completion (ca. 2 h). 

The reaction was then poured into half saturated solution of NH4Cl (20 mL) and ice (10 

mL) and diluted with hexanes (10 mL), the aqueous layer was extracted with hexanes (5 

x 10 mL) and the combined organics were washed with brine, and dried with MgSO4. 

Solvent was removed under reduced pressure to afford a crude yellow oil which can be 

purified by column chromatography (10% EtOAc) to give pure 2-33 (81 mg, 0.240 

mmol, 53% yield over 2 steps).  

As a one pot procedure from epoxide 2-22: To a solution of epoxide 2-22 (71.6 mg, 

0.453 mmol, 1 eq) in wet CHCl3 (1.5 mL) was added tetrabutylammonium iodide (500 

mg, 1.36 mmol, 3 eq) and trifluoroacetic acid (0.05 mL, 0.679 mmol, 1.5 eq). The 

reaction was allowed to stir at room temperature for 1 h, at which time the solution 
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changes color from yellow to orange. Dimethoxymethane (3 mL) was added, follow by 

the addition of P2O5 (257 mg, 0.91 mmol, 2 eq) in one portion. The reaction was allowed 

to stir at room temperature and monitored by TLC upon completion (ca. 2 hours). The 

reaction was then poured into half saturated solution of NH4Cl (20 mL) and ice (10 mL) 

and diluted with hexanes (10 mL), the aqueous layer was extracted with hexanes (5 x 10 

mL) and the combined organics were washed with brine, and dried with MgSO4. Solvent 

was removed under reduced pressure to afford a yellow oil which can be purified by 

column chromatography (10% EtOAc) to give pure 2-33 (121 mg, 0.358 mmol, 79% 

yield over 2 steps). Rf 0.45 (10% EtOAc/Hex); 1H NMR (400 MHz, CDCl3) δ 4.74 (s, 

2H), 3.56-3.47 (m, 2H), 3.43 (s, 3H), 3.29 (dd, J = 10.0, 5.4 Hz, 1H), 2.97 (p, J = 7.1 Hz, 

1H), 1.16 (d, J = 7.0 Hz, 3H), 0.14 (s, 9H). 13C NMR (100 MHz, CDCl3) δ 107.1, 96.7, 

86.6, 79.6, 56.1, 31.7, 15.8, 7.2, 0.1; HRMS m/z calcd for C11H21IO2Si: 340.0356, found: 

340.0360. 
 

 

To a solution of dithiane 2-24 (336 mg, 1.15 mmol, 2 eq) in 

THF (10 mL) at 0 °C was added nBuLi (2.55 M, 0.45 mL, 

1.15 mmol, 2 eq) drop wise. The solution was allowed to stir 

at 0 °C for 10 min before a catalytic amount of HMPA (3 

drops) was added, followed by iodide 2-33 (196 mg, 0.58 mmol, 1eq) in a minimal 

amount of THF. The reaction was allowed to stir at 0 °C for 24 h before being poured 

into a half saturated solution of NH4Cl and diluted with EtOAc (10 mL), the aqueous 

layer was extracted with EtOAc (3 x 30 mL) and the combined organics were washed 

with brine, dried with MgSO4 and filtered through a thin pad of celite. Solvent was 

removed under reduced pressure to afford a yellow oil which was used without 

purification in the next step. The product 2-4 co-elutes with excess dithiane 2-24. 
 

 

To a flask charged with TMS acetylene (6.37 g, 65 mmol, 2.0 eq) in 

toluene (200 mL) cooled to 0 °C was added nBuLi (2.2 M, 30 mL, 65 

mmol, 2.0 eq) drop wise. The reaction was allowed to stir 10 min 

before diethyl aluminum chloride (1.8 M in toluene, 36.1 mL, 65 mmol, 2.0 eq) was 

added over 10 min. The reaction was stirred for 30 min before being cooled to -40 °C. 
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Epoxide 2-35 (2.86 g, 32.5 mmol, 1.0 eq) was added drop wise over 10 min. The cooling 

bath was replaced with an ice water bath and the reaction was allowed to stir at 0 °C for 

30 min before being poured into a half saturated solution of ammonium chloride (200 

mL) and diluted with EtOAc (100 mL). The aqueous layer was extracted with EtOAc (3 x 

50 mL) and the combined organics were washed with brine, dried with MgSO4 and 

filtered through a thin pad of celite. Solvent was removed under reduced pressure to 

afford a yellow oil which was purified by column chromatography to afford alcohol 2-36 

as a yellow oil (4.53 g, 24.4 mmol, 75%). Rf 0.58 (30% EtOAc/Hex); 1H NMR (600 

MHz, CDCl3) δ 4.06 (d, J = 3.1 Hz, 1H), 3.79 (s, 3H), 2.99 (qd, J = 7.1, 3.3 Hz, 1H), 1.28 

(d, J = 7.0 Hz, 3H), 0.12 (s, 9H); 13C NMR (100 MHz, CDCl3) δ 173.3, 104.9, 87.9, 73.4, 

52.6, 32.2, 17.2, 0.0. 
 

 

To a flask charged with alcohol 2-36 (3.45 g, 16.1 mmol, 1.0 eq), 

Hunig’s base (10.2 g, 80.5 mmol, 5.0 eq) diluted with CH2Cl2 (100 

mL) and equipped with a reflux condenser was added MOMCl (3.24 

g, 40.2 mmol, 2.5 eq) drop wise over 10 min. The reaction was heated to reflux overnight 

(ca. 16h). The reaction was cooled before being poured into a half saturated solution of 

sodium bicarbonate (200 mL) and diluted with CH2Cl2 (100 mL). The aqueous layer was 

extracted with CH2Cl2 (3 x 50 mL) and the combined organics were washed with brine, 

dried with MgSO4 and filtered through a thin pad of celite. Solvent was removed under 

reduced pressure to afford a yellow oil which dissolved in EtOAc (200 mL) and diluted 

with water (100 mL). The aqueous layer was extracted with EtOAc (3 x 50 mL) and the 

combined organics were washed with brine, dried with MgSO4 and filtered through a thin 

pad of celite. Solvent was removed under reduced pressure to afford 2-37 as a yellow oil 

(3.95 g, 15.3 mmol, 95%) which was used without further purification. Rf 0.60 (30% 

EtOAc/Hex); 1H NMR (600 MHz, CDCl3) δ 4.70 (s, 2H), 4.06 (d, J = 7.0 Hz, 1H), 3.74 

(s, 3H), 3.39 (s, 3H), 2.99 (quin, J = 7.0, 1H), 1.19 (d, J = 7.0 Hz, 3H), 0.12 (s, 9H); 13C 

NMR (100 MHz, CDCl3) δ 171.1, 106.5, 96.3, 86.4, 78.3, 56.1, 51.9, 30.6, 16.7, 0.0. 
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To a flask charged with LiAlH4 (872 mg, 22.9 mmol, 1.5 eq) and 

diluted with diethyl ether (100 mL) cooled to 0 °C was added ester 2-

37 (3.95 g, 15.3 mmol, 1.0 eq) drop wise over 10 min. The reaction 

was monitored by TLC until complete (~1h) before being poured into a half saturated 

solution of ammonium chloride (200 mL) and diluted with EtOAc (100 mL). The 

aqueous layer was extracted with EtOAc (3 x 50 mL) and the combined organics were 

washed with brine, dried with MgSO4 and filtered through a thin pad of celite. Solvent 

was removed under reduced pressure to afford alcohol 2-37a as a yellow oil (3.17 g, 13.8 

mmol, 90%) which was used without further purification. Rf 0.34 (30% EtOAc/Hex); 1H 

NMR (600 MHz, CDCl3) δ 4.74 (q, J = 7.8 Hz, 2H), 3.76 (ABd, 7.0, 2.7 Hz, 1H), 3.65 

(ABd, J = 7.0, 2.7 Hz, 1H), 3.58-3.54 (m, 1H), 3.43 (s, 3H), 2.78 (qd, J = 7.0, 5.5 Hz, 

1H), 1.17 (d, J = 7.0 Hz, 3H), 0.13 (s, 9H); 13C NMR (100 MHz, CDCl3) δ 97.3, 86.2, 

83.3, 63.3, 55.8, 41.9, 29.6, 16.3, 0.1. 
 

 

To a flask charged with alcohol 2-37a (3.0 g, 13.0 mmol, 1.0 eq), 

triethylamine (2.60 g, 26.0 mmol, 2.0 eq), diluted with CH2Cl2 (50 

mL) and cooled to 0 °C was added methanesulfonyl chloride (1.63 g, 

14.3 mmol, 1.1 eq) drop wise. The reaction was allowed to stir at rt for 30 min before 

being poured into a half saturated solution of ammonium chloride (100 mL) and diluted 

with CH2Cl2 (500 mL). The aqueous layer was extracted with CH2Cl2 (3 x 50 mL) and 

the combined organics were washed with brine, dried with MgSO4 and filtered through a 

thin pad of celite. Solvent was removed under reduced pressure to afford mesylate 2-37b 

as a yellow oil (4.0 g, 13.0 mmol, 100%) which was used without further purification. Rf 

0.42 (30% EtOAc/Hex); 1H NMR (600 MHz, CDCl3) δ 4.71 (s, 2H), 4.44 (dd, J = 10.5, 

3.9 Hz, 1H), 4.28 (dd, J = 10.7, 6.4 Hz, 1H), 3.82 (ddd, J = 6.2, 5.1, 3.9 Hz, 1H), 3.40 (s, 

3H), 3.03 (s, 3H), 2.87 (qd, J = 7.1, 5.1 Hz, 1H), 1.20 (d, J = 7.0 Hz, 1H), 0.13 (s, 3H); 
13C NMR (100 MHz, CDCl3) δ 106.5, 96.7, 87.2, 69.6, 55.9, 27.4, 29.2, 15.7, 0.0. 
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To a flask charged with mesylate 2-37b (4.0 g, 13.0 mmol, 1 eq) in wet 

acetone (50 mL) equipped with a reflux condenser was added NaI (5.85 

g, 39.0 mmol, 3.0 eq). The reaction was heated to vigorous reflux and 

allowed to stir overnight (ca. 16h) before being cooled to 0 °C and filtered through a thin 

pad of silica over celite. Solvent was removed under reduced pressure to afford a yellow 

oil which was purified by column chromatography (10% EtOAc/Hex) to afford 2-33 

(4.07 g, 12.0 mmol, 92%) as a yellow oil. Rf 0.45 (10% EtOAc/Hex); 1H NMR (400 

MHz, CDCl3) δ 4.74 (s, 2H), 3.56-3.47 (m, 2H), 3.43 (s, 3H), 3.29 (dd, J = 10.0, 5.4 Hz, 

1H), 2.97 (p, J = 7.1 Hz, 1H), 1.16 (d, J = 7.0 Hz, 3H), 0.14 (s, 9H). 13C NMR (100 MHz, 

CDCl3) δ 107.1, 96.7, 86.6, 79.6, 56.1, 31.7, 15.8, 7.2, 0.1; HRMS m/z calcd for 

C11H21IO2Si: 340.0356, found: 340.0360. 
 

 

To a solution of TBS ether 2-4 (600 mg, 1.19 mmol, 1 eq) in 

wet methanol (20 mL) was added a catalytic amount of 10-

champhorsulfonic acid. The reaction was allowed to stir at rt for 

15 min before being poured into a half saturated solution of 

sodium bicarbonate (50 mL) and diluted with EtOAc (50 mL). The aqueous layer was 

extracted with EtOAc (3 x 30 mL) and the combined organics were washed with brine, 

dried with MgSO4 and filtered through a thin pad of celite. Solvent was removed under 

reduced pressure to afford a yellow oil which was purified by column chromatography 

(20% EtOAc/Hex) to give the product alcohol 2-38 (316 mg, 0.81 mmol, 68% yield). Rf 

0.45 (40% EtOAc/Hex); 1H NMR (400 MHz, CDCl3) δ 4.77 (d, J = 7.0 Hz, 1H), 4.59 (d, 

J = 7.0 Hz, 1H), 4.12-4.10 (m, 1H), 3.96 (dd, J = 11.7, 5.3 Hz, 1H), 3.77 (dd, J = 11.4, 

5.0 Hz, 1H), 3.33 (s, 3H), 3.07-3.02 (m, 1H), 3.01-2.97 (m, 1H), 2.95-2.89 (m, 1H), 2.67-

2.63 (m, 1H), 2.49 (d, J =15.2 Hz, 1H), 2.46 (bs, 1H), 2.33 (q, J = 6.4 Hz, 1H), 2.10 (dd, 

J = 15.5, 9.1 Hz, 1H), 1.99-1.94 (m, 1H), 1.92-1.88 (m, 1H), 1.18 (d, J = 7.0 Hz, 3H), 

1.13 (d, J = 6.4 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 109.2, 97.5, 86.5, 65.6, 56.6, 

56.1, 42.2, 35.5, 31.7, 26.0, 25.7, 25.1, 13.8, 12.7, 0.1. 
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To a solution of alcohol 2-38 (35.7 mg, 0.0913 mmol, 1 eq) in 

CH2Cl2 (1 mL) at rt was added triethylamine (36 mg, 0.365 

mmol, 4 eq) followed by methanesulfonyl chloride (20.8 mg, 

0.183 mmol, 2 eq). The reaction was stirred at rt until complete 

as indicated by TLC (ca. 15 min) before being poured into a half saturated solution of 

NH4Cl (20 mL) and diluted with EtOAc (20 mL). The aqueous layer was extracted with 

EtOAc (3 x 30 mL) and the combined organics were washed with brine, dried with 

MgSO4 and filtered through a thin pad of celite. Solvent was removed under reduced 

pressure to afford mesylate 2-39 as a yellow oil which was used without further 

purification (38.7 mg, 0.0825 mmol, 91% yield). Rf 0.20 (20% EtOAc/Hex); 1H NMR 

(400 MHz, CDCl3) δ 4.92 (dd, J = 10.0, 2.9 Hz, 1H), 4.75 (d, J = 6.4 Hz, 1H), 4.60 (d, J 

= 7.0 Hz, 1H), 4.21 (t, J = 6.7 Hz, 1H), 4.14 (dd, J = 8.8, 2.9 Hz, 1H), 3.35 (s, 3H), 3.06-

3.01 (m, 2H), 3.01 (s, 3H), 2.95-2.90 (m, 1H), 2.78-2.75 (m, 1H), 2.63-2.59 (m, 1H), 

2.51-2.48 (m, 2H), 2.14 (dd, J = 15.8, 9.4 Hz, 1H), 2.04-1.95 (m, 1H), 1.99-1.85 (m, 1H), 

1.23 (d, J = 7.0 Hz, 3H), 1.20 (d, J = 7.0 Hz, 3H), 0.12 (s, 9H); 13C NMR (100 MHz, 

CDCl3) δ 109.2, 97.4, 86.5, 79.2, 73.8, 56.2, 55.8, 40.4, 47.2, 35.2, 31.4, 25.8, 25.7, 25.0, 

13.7, 12.3, 0.1. 
 

 

To a solution of alcohol 2-39 (30 mg, 0.0768 mmol, 1.0 eq) in 

toluene (2 mL) cooled to 0 °C was added triphenylphosphine (26.2 

mg, 0.1 mmol, 1.3 eq), followed by imidazole (8 mg, 0.115 mmol, 

1.5 eq), and iodine (30 mg, 0.119 mmol, 1.55 eq). The reaction 

was monitored by TLC until completion (ca. 1 h) before being poured into a half 

saturated solution of sodium thiosulfate (20 mL) and diluted with EtOAc (20 mL). The 

aqueous layer was extracted with EtOAc (3 x 30 mL) and the combined organics were 

washed with brine, dried with MgSO4 and filtered through a thin pad of celite. Solvent 

was removed under reduced pressure to afford iodide 2-40 as a yellow oil which was 

used without further purification (34.6 mg, 0.069 mmol, 90% yield). Rf 0.48 (10% 

EtOAc/Hex); 1H NMR (400 MHz, CDCl3) δ 4.75 (d, J = 7.0 Hz, 1H), 4.60 (d, J = 7.0 Hz, 

1H), 4.16 (d, J = 9.4 Hz, 1H), 4.13-4.11 (dd, J = 8.5, 3.2 Hz, 1H), 3.37 (s, 3H), 3.10 (t, J 

= 10.0 Hz, 1H), 3.06-3.02 (m, 1H), 3.02-2.97 (m, 1H), 2.91-2.87 (m, 1H), 2.81-2.75 (m, 
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1H), 2.67-2.60 (m, 1H), 2.13 (dd, J = 15.5, 9.1 Hz, 1H), 1.98-1.93 (m, 1H), 1.89-1.84 (m, 

1H), 1.33 (d, J = 7.0 Hz, 3H), 1.18 (d, J = 7.0 Hz, 3H), 0.13 (s, 9H). 
 

 

The crude TMS alkyne 2-4 (ca. 1.15 mmol) was dissolved in wet 

methanol (20 mL), and a K2CO3 was added (317 mg, 2.30 mmol, 2 

eq). The reaction was stirred at 0 °C for 10 h before being filtered 

through a pad of celite into a solution of half saturated NH4Cl (100 

mL). The celite pad was washed with EtOAc (50 mL) and the filtrate was transferred to a 

separatory funnel, and the aqueous layer was extracted with EtOAc (3 x 30 mL) and the 

combined organics were washed with brine, dried with MgSO4 and filtered through a thin 

pad of celite. Solvent was removed under reduced pressure to afford a yellow oil which 

was purified by column chromatography (5-10% EtOAc/Hex) to give the product 2-41 

(162 mg, 0.38 mmol, 65% yield). Rf 0.43 (10% EtOAc/Hex); 1H NMR (400 MHz, 

CDCl3) δ 4.81 (d, J = 6.4 Hz, 1H), 4.62 (d, J = 6.4 Hz, 1H), 4.17 (dd, J = 9.6, 3.2 Hz, 

1H), 4.05 (dt, J = 9.6, 3.2 Hz, 1H), 3.60 (t, J = 8.8 Hz, 1H), 3.37 (s, 3H), 3.05 (dt, J = 6.9, 

3.3 Hz, 1H), 2.91 (ddd, J = 14.2, 8.9, 3.2 Hz, 1H), 2.85-2.81 (m, 1H), 2.80-2.75 (m, 1H), 

2.71-2.65 (ddd, J = 14.3, 7.2, 2.9 Hz, 1H), 2.40 (dd, J = 15.5, 2.6 Hz, 1H), 2.25-2.20 (m, 

1H), 2.12 (dd, J = 8.9, 7.3, 1H), 2.11 (d, J = 2.4 Hz, 1), 1.95-1.90 (m, 2H), 1.23 (d, J = 

7.0 Hz, 3H), (1.17 (d, J = 7.0 Hz, 3H), 0.89 s, 9H), 0.05 (s, 6H). 13C NMR (100 MHz, 

CDCl3) δ97.3, 86.4, 78.7, 70.3, 65.2, 56.1, 45.6, 42.1, 36.8, 31.2, 29.7, 26.0, 25.1, 18.3, 

14.8, 12.5, 8.5, -5.2; HRMS m/z calcd: 432.2188, found: 432.2190. 
 

 

To a solution of hexabutylditin (650 mg, 1.16 mmol, 4 eq) in 

THF (10 mL) cooled to -20 °C was added nBuLi (1.90 M, 

0.61 mL, 1.16 mmol, 4 eq) drop wise. The reaction was 

allowed to stir at -20 °C for 10 min followed by the drop 

wise addition of freshly prepared MeMgI (1.0 M in ether, 1.16 mL, 1.16 mmol, 4 eq). 

The reaction was stirred another 10 min before CuCN (104 mg, 1.16 mmol, 4 eq) was 

added in one portion. The reaction was stirred another 5 min at -20 °C before alkyne 2-41 

(126 mg, 0.292 mmol, 1 eq) was added in one portion. After 20 min of stirring at -20 °C, 

MeI (0.18 mL, 2.92 mmol, 20 eq) was added and the cooling bath was removed to allow 
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the reaction to warm to rt, where it was allowed to stir for an additional 10 min before 

being poured into a half saturated solution of NH4Cl (50 mL) and diluted with EtOAc (50 

mL). The aqueous layer was extracted with EtOAc (3 x 30 mL) and the combined 

organics were washed with brine, dried with MgSO4 and filtered through a thin pad of 

celite. Solvent was removed under reduced pressure to afford a yellow oil which was 

purified by column chromatography (5% EtOAc/Hex) to give the product stannane 2-41a 

(146 mg, 0.198 mmol, 68% yield) as a single regioisomer and recovered starting material 

2-41 (12.5 mg, 0.029 mmol, 10% yield). Rf 0.37 (5% EtOAc/Hex); 1H NMR (400 MHz, 

CDCl3) δ 5.63 (s, 1H), 4.82 (d, J = 7.0 Hz, 1H), 4.68 (d, J = 7.0 Hz, 1H), 4.18 (d, J = 9.9, 

3.5 Hz, 1H), 4.12-4.09 (m, 1H), 3.47 (t, J = 9.7 Hz, 1H), 3.40 (s, 3H), 2.76-2.59 (m, 5H), 

2.25-2.21 (m, 1H), 1.97-1.95 (m, 1H), 1.89 (s, 3H), 1.89-1.84 (m, 2H), 1.50-1.45 (m, 

5H), 1.32-1.25 (m, 8H), 1.16 (d, J = 7.0 Hz, 3H), 1.08 (d, J = 6.4 Hz, 3H), 0.90-0.86 (m, 

26H), 0.04 (s, 6H).  
 

 

To a solution of stannane 2-41a (11 mg, 0.015 mmol, 1 eq) in 

CH2Cl2 (1 mL) cooled to 0 °C was added a solution of I2 (1.0 M 

in CH2Cl2) drop wise until the color persisted (ca. 0.1 mL). The 

reaction was allowed to stir at 0 °C for 10 min before being 

poured into a half saturated solution of sodium thiosulfate (20 mL) and diluted with 

CH2Cl2 (10 mL). The aqueous layer was extracted with CH2Cl2 (3 x 10 mL) and the 

combined organics were washed with brine, dried with MgSO4 and filtered through a thin 

pad of celite. Solvent was removed under reduced pressure to afford iodide 2-42 as a 

yellow oil (8.8 mg, 0.015 mmol, 99% yield) which was used without further purification. 

The product co-eluted with excess tin compounds, so it was treated with excess TBAF 

and characterized as the alcohol. Rf 0.40 (45% EtOAc/Hex); 1H NMR (600 MHz, CDCl3) 

δ 6.06 (s, 1H), 4.80 (d, J = 7.0 Hz, 1H), 4.66 (d, J = 7.0 Hz, 1H), 4.06 (d, J = 6.1, 3.2 Hz, 

1H), 3.92 (dd, J = 11.4, 5.6 Hz, 1H), 3.73 (dd, J = 11.7, 5.3 Hz, 1H), 2.85-2.77 (m, 3H), 

2.70-2.62 (m, 2H), 2.28 (q, J = 7.0 Hz, 1H), 2.07-2.03 (m, 1H), 1.94 (s, 3H), 1.89-1.85 

(m, 1H), 1.14 (d, J = 7.0 Hz, 3H), 1.11 (d, J = 7.0 Hz, 3H); 13C NMR (100 MHz, CDCl3) 

δ 149.4, 97.3, 77.8, 77.6, 65.5, 56.5, 56.3, 47.1, 41.7, 35.5, 26.1, 25.6, 25.0, 12.8, 11.9. 
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To a suspension of NaH (780 mg, 32.5 mmol, 1.3 eq) in THF (150 

mL) at 0 °C was added freshly prepared PMBBr (6.53 g, 32.5 mmol, 

1.3 eq), followed by alcohol 2-4752 (2.15 g, 25 mmol, 1.0 eq). The ice-bath was removed 

and after ca. 16 h the reaction was poured into a half saturated solution NH4Cl (100 mL) 

in water ice (200 mL) and stirred for 5 min, after which the aqueous layer was extracted 

with EtOAc (150 mL x 3). The combined organics were washed with brine, dried over 

MgSO4, and filtered through a thin pad of packed celite. Solvent was removed under 

reduced pressure and the crude oil was purified by flash chromatography (10% 

EtOAc/Hex) to yield the PMB ether (2-48) as a colorless oil (5.54 g, 22.5 mmol, 90%). Rf 

0.42 (10% EtOAc/Hex); 1H NMR (600 MHz, CDCl3) δ 7.25 (d, J = 8.8 Hz, 2H), 6.87 (d, 

J = 8.8 Hz, 2H), 5.72 (ddt, J = 16.7, 10.1, 6.4 Hz, 1H), 5.22 (t, J = 6.7 Hz, 1H), 5.03-4.96 

(m, 1H), 4.44 (s, 2H), 3.78 (s, 3H), 3.42 (t, J = 7.0 Hz, 2H), 2.76 (d, J = 6.4 Hz, 2H), 2.31 

(q, J = 7.0 Hz, 2H), 1.68 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 159.1, 135.9, 135.1, 

130.6, 129.2, 121.8, 115.2, 113.7, 72.5, 69.8, 55.3, 36.5, 28.5, 23.4.  
 

 

To a flask charged with diene 2-48 (2.46 g, 10 mmol, 1.0 eq) was 

added dimethoxymethane (100 mL), acetonitrile (50 mL), buffer53 

(100 mL), ent-2-49 (157 mg), and Bu4NH2SO4 (50 mg, catalytic) 

and the flask was cooled to 0 °C. A syringe pump was fitted with two 60 mL syringes, 

one charged with K2CO3 (6.90 g) in distilled water (60 mL), the second charged with 

oxone® (6.90 g) in distilled water (60 mL). The syringes were added to the rigorously 

stirred solution over 4 h, and (ent-2-49) was added portion-wise at the 1 h, 2 h and 3 h 

time mark (157 mg per addition, 630 mg total, 2.50 mmol, 0.25 eq). The reaction was 

stirred for 15 min after additions of the base and oxone® were complete, at which point 

hexanes (200 mL) was added. The solution was transferred to a separatory funnel and the 

aqueous layer was extracted with hexanes (100 mL x 4). The combined organics were 

washed with brine, dried over MgSO4, and filtered through a thin pad of celite. Solvent 

was removed under reduced pressure and the crude oil was purified by column 

chromatography (20% EtOAc/Hex) to yield the mono-epoxide 2-45 (1.93 g, 7.40 mmol, 

74%) and the di-epoxide 2-50 (305 mg, 1.10 mmol, 11%) as yellow oils. Rf 0.17 (10% 

EtOAc/Hex); 1H NMR (400 MHz, CDCl3) δ 7.24 (d, J = 8.6 Hz, 2H), 6.85 (d, J = 8.6 Hz, 
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2H), 5.77 (ddt, J = 17.2, 10.2, 7.0 Hz, 1H), 5.10-5.05 (m, 2H), 4.43 (ABd, J = 11.7 Hz, 

2H), 3.59-3.56 (m, 2H), 2.86 (dd, J = 7.4, 4.7 Hz, 1H), 2.30 (dd, J = 7.0, 7.0 Hz, 1H), 

2.18 (dd, J = 7.0, 7.0 Hz, 1H), 1.98-1.89 (m, 1H), 1.77-1.68 (m, 1H), 1.25 (s, 3H); 13C 

NMR (100 MHz, CDCl3) δ 159.2, 133.5, 130.4, 129.3, 117.8, 113.8, 72.8, 67.3, 61.9, 

60.1, 55.3, 37.9, 29.4, 22.1. HRMS m/z 262.1576 (calcd for C16H22O3, 262.1569). 
 

 

 To a vigorously stirred solution of TMSOBn (1.90 g, 10.5 mmol, 1.05 eq) 

in diethyl ether (100 mL) was added BF3OEt2 (1.26 mL, 10 mmol, 1.0 eq). 

The septum was pierced with a 20.5 gauge needle to allow release of argon from a 

balloon over the solution fitted with a 20.5 gauge needle. The argon balloon was replaced 

as necessary to ensure the flask was always under an inert, positive pressure 

atmosphere.54 The solution was allowed to evaporate to dryness (ca. 1 h), and the argon 

flow was continued for an additional 10 min. To the residual yellow oil was added an 

additional portion of diethyl ether (10 mL) to give a 1.0 M solution of BF2OBnOEt2 (2-

51).55 It may be necessary to repeat the evaporation process, see footnote 6. The solution 

displays remarkable stability (no decrease in concentration over 2 weeks, sealed, stored in 

a refrigerator (-20 °C) or at rt). Solvents other than diethyl ether caused decomposition of 

the Lewis acid. Characterization of 2-51 and reactions employing 2-51 must be run in 

diethyl ether. 19F NMR (375 MHz, Et2O) δ -151.5 ppm. Trifluorotoluene (-63.9 ppm) was 

used as an internal standard. 
 

 

To a flask charged with NaCNBH3 (255 mg, 4.0 mmol, 4.0 eq) in 

diethyl ether (15 mL) was added epoxide 2-45 (262 mg, 1.0 mmol, 

1.0 eq). A solution of BF2OBnOEt2 (1.0 M, 4.0 mL, 4.0 mmol, 4.0 

eq) was added to the vigorously stirred solution via syringe pump over 4 h. After the 

addition was complete, the reaction was stirred for 15 min before being poured into a half 

saturated solution of sodium bicarbonate (100 mL). The solution was transferred to a 

separatory funnel and the aqueous layer was extracted with EtOAc (50 mL x 3). The 

combined organics were washed with brine, dried over MgSO4, and filtered through a 

thin pad of packed celite. Solvent was removed under reduced pressure and the crude oil 

was purified by flash chromatography (30% EtOAc/Hex) to yield alcohol 2-44 (240 mg, 
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0.91 mmol, 91%) as a yellow oil. Rf 0.50 (40% EtOAc/Hex); 1H NMR (600 MHz, 

CDCl3) δ 7.24 (d, J = 8.7 Hz, 2H), 6.86 (d, J = 8.7 Hz, 2H), 5.79 (ddt, J = 17.3, 10.0, 7.1 

Hz, 1H), 5.04-4.97 (m, 2H), 4.45 (m, 2H), 4.45 (s, 2H), 3.79 (s, 3H), 3.71 (dt, J = 9.5, 4.9 

Hz, 1H), 3.61 (q, J = 6.4 Hz, 2H), 3.00 (d, J = 2.3 Hz, 1H), 2.30-2.26 (m, 1H), 1.90 (dt, J 

= 13.9, 8.3 Hz, 1H), 1.73-1.70 (m, 2H), 1.64-1.59 (m, 1H), 0.86 (d, J = 6.4 Hz, 3H); 13C 

NMR (150 MHz, CDCl3) δ 159.3, 137.6, 130.0, 129.3, 115.8, 113.8, 75.2, 73.0, 69.4, 

55.3, 38.6, 36.9, 32.8, 15.1. HRMS m/z 264.1725 (calcd for C16H24O3, 264.1725). [α]20
D 

= +1.73° (c 1.0, CHCl3).
 The ee was determined to be 85% by (R)-Mosher’s analysis. 

 

 

To a 500 mL round bottom flask containing 200 g of activated 4Å 

molecular sieves was added CH2Cl2 (250 mL), and the flask was placed in 

a -20 °C cooling bath. (+)-Diethyl tartrate (1.73 g, 8.4 mmol, 0.06 eq) was added, 

followed by Ti(OiPr)4 (2.05 mL, 7 mmol, 0.05 eq), and cis-butenol (10 g, 140 mmol, 1 

eq). After 1 h, tBuOOH (5.33 M, 52.5 mL, 280 mmol, 2 eq) was added portion wise over 

30 min. After 24 h the septum was removed and dimethylsulfide (20.7 mL, 280 mmol, 2 

eq) was added. The reaction was stirred open to atmosphere for another 24 h before being 

filtered through a thin pad of packed celite, and washed with CH2Cl2 (500 mL). Solvent 

was removed under reduced pressure and the crude oil purified by flash chromatography 

(100% hexanes, 1 L, followed by 70% EtOAc/Hex) to give pure epoxide (2-51a) (9.47 g, 

107.8 mmol, 77% yield) as a yellow oil. Spectral data matches literature values, [α]20
D = -

4.28° (c 1.0, CHCl3); literature [α]20
D = -4.26° (c 1.0, CHCl3).

56 
 

 

To a solution of NaH (2.3 g, 95.7 mmol, 1.1 eq) in DMF (200 mL) 

cooled to 0 °C was added 4-methoxybenzyl bromide (20.3 g, 100.8 

mmol, 1.16 eq), followed by drop wise addition of epoxide 2-51a (7.7 g, 87 mmol, 1 eq). 

The reaction was warmed to rt and after 30 min, at which time it was judged to be 

complete by TLC analysis. The reaction mixture was carefully poured into a solution of 

saturated NH4Cl (200 mL) in water ice (500 mL) and stirred for 10 min, after which the 

aqueous layer was extracted with EtOAc (300 mL x 3). The combined organics were 

washed with brine, dried over MgSO4, and filtered through a thin pad of packed celite. 

Solvent was removed under reduced pressure and the crude oil was purified by flash 
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chromatography (20% EtOAc/Hex) to yield 2-52 (15.6 g, 74.8 mmol, 86%) as a yellow 

oil. Rf 0.40 (30% EtOAc/Hex); 1H NMR (CDCl3, 600 MHz): δ 7.27 (d, J = 8.7 Hz, 2H), 

6.87 (d, J = 8.7 Hz, 2H), 4.51 (ABd, J = 11.7 Hz, 2H), 3.79 (s, 3H), 3.63 (dd, J = 10.5, 

4.7 Hz, 1H), 3.53 (dd, J = 11.3, 6.4 Hz, 1H), 3.14 (dt, J = 6.2, 4.2 Hz, 1H), 3.08 (pent, J = 

5.1 Hz, 1H), 1.25 (d, J = 5.9 Hz, 3H); 13C NMR (150 MHz, CDCl3) δ 159.2, 129.9, 

129.4, 113.9, 72.9, 67.7, 55.2, 55.0, 51.7, 13.3. HRMS m/z 208.1099 (calcd for C12H16O3, 

208.1099). 
 

 

To a freshly prepared solution of allyl Grignard (1.0 M in ether, 90 

mL, 90 mmol, 1.5 eq) was added to a flask charged with CuI (1.12 g, 

5.88 mmol, 0.1 eq) cooled to -78 °C. The cuperate was stirred for 30 

min at -78 °C before epoxide 2-52 (12.26 g, 58.9 mmol, 1 eq) was added neat. The 

cooling bath was packed with dry ice and the reaction was allowed to warm to rt 

overnight (ca. 16 h). The reaction mixture was carefully poured into a half saturated 

solution NH4Cl (200 mL) in water ice (400 mL) and stirred for 30 min, after which the 

aqueous layer was extracted with EtOAc (300 mL x 3). The combined organics were 

washed with brine, dried over MgSO4, and filtered through a thin pad of packed celite. 

Solvent was removed under reduced pressure and the crude oil was purified by flash 

chromatography (20% EtOAc/Hex) to yield the major diastereomer 2-52a (12.06 g, 48.2 

mmol, 85%) as a yellow oil and the minor diastereomer (1.34 g, 5.36 mmol, 9%) as a 

yellow oil. Rf 0.28 (20% EtOAc/Hex); 1H NMR (400 MHz, CDCl3) δ 7.25 (d, J = 9.0 Hz, 

2H), 6.88 (d, J = 9.0 Hz, 2H), 5.77 (dddd, J = 16.9, 10.2, 7.8, 6.4 Hz, 1H), 5.03-4.99 (m, 

2H), 4.48 (d, J = 1.6 Hz, 2H) 3.79 (s, 3H), 3.56-3.53 (m, 1H), 3.39-3.35 (m, 1H), 2.42 

(bs, 1H), 2.37-2.31 (m, 1H), 1.98-1.89 (m, 1H), 1.73-1.63 (m, 1H), 0.85 (d, J = 6.6 Hz, 

3H); 13C NMR (100 MHz, CDCl3) δ 159.2, 137.0, 130.0, 129.2, 116.0, 113.7, 73.6, 72.9, 

72.1, 55.1, 36.9, 35.7, 15.1. HRMS m/z 250.1572 (calcd for C15H22O3, 250.1569). 
 

 

 

To a solution of alcohol (2-52a) (10.7 g, 42.6 mmol, 1 eq) in DMF 

(300 mL) was added imidazole (5.8 g, 85.2 mmol, 2 eq), followed by 

TBSCl (6.6 g, 42.6 mmol, 1 eq) and DMAP (50 mg, catalytic). The 

reaction was stirred overnight (ca. 16 h) before being poured into a half saturated solution 

OPMB

Me

OTBS

2-53
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of NH4Cl, and the aqeous layer was extracted with CH2Cl2 (5 x 200 mL) and the 

combined organics were washed with brine and dried over MgSO4. Solvent was removed 

under reduced pressure to give the TBS alcohol, which was purified by flash 

chromatography (5% EtOAc/Hex) to give the pure alcohol (2-53) as a yellow oil (15.3 g, 

42.2 mmol, 99% yield). Rf 0.53 (10% EtOAc/Hex); 1H NMR (600 MHz, CDCl3) δ 7.25 

(d, J = 8.8 Hz, 2H), 6.88 (d, J = 8.8 Hz, 2H), 5.80-5.75 (m, 1H), 5.01-4.97 (m, 2H), 4.44 

(q, J = 9.4 Hz, 2H), 3.80 (s, 3H), 3.71 (q, J = 4.8 Hz, 1H), 3.46 (dd, J = 9.7, 5.0 Hz, 1H), 

3.37 (dd, J = 9.7, 6.2 Hz, 1H), 2.25-2.21 (m, 1H), 1.87-1.82 (m, 1H), 1.79-1.72 (m, 1H), 

0.89 (s, 3H), 0.89 (s, 9H), 0.06 (s, 6H); 13C NMR (150 MHz, CDCl3) δ 159.0, 138.0, 

130.5, 129.2, 115.5, 113.6, 75.1, 72.9, 72.5, 55.2, 36.5, 36.0, 25.9, 18.2, 15.9, -4.2, -4.9. 

HRMS m/z 363.2341 (calcd for C21H36O3Si, 364.2434). [α]20
D = +4.11° (c 1.0, CHCl3). 

 

 

PMB alcohol (2-53) (6.89 g, 18.9 mmol, 1 eq) was dissolved in CH2Cl2 

(140 mL), water (35 mL) and saturated sodium bicarbonate (10 mL). 

DDQ (8.58 g, 37.8 mmol, 2 eq) was added in one portion and the 

reaction was rigorouly stirred for 1.5 h at which point the reaction was judged to be 

complete by TLC analysis. The reaction mixture was poured into a rapidly stirring 

solution of half saturated sodium bicarbonate (100 mL) and half saturated sodium 

thiosulfate (200 mL), and the aqeous layer was extracted with CH2Cl2 (5 x 200 mL) and 

the combined organics were washed with brine and dried over MgSO4. Solvent was 

removed under reduced pressure to give the cude alcohol, which was purified by flash 

chromatography (10% EtOAc/Hex) to give the pure alcohol 2-53a as a yellow oil (4.24 g, 

17.4 mmol, 92% yield). Rf 0.51 (20% EtOAc/Hex); 1H NMR (600 MHz, CDCl3) δ 5.74 

(ddd, J = 17.0, 10.1, 7.0 Hz, 1H), 5.03-4.98 (m, 2H), 3.59-3.55 (m, 3H), 2.25-2.21 (m, 

1H) 1.84-1.77 (m, 3H), 0.90 (s, 9H), 0.87 (s, J = 7.0 Hz, 3H), 0.06 (s, 6H); 13C NMR 

(150 MHz, CDCl3) δ 137.3, 115.9, 76.2, 63.5, 37.2, 36.3, 25.8, 18.1, 14.9, -4.4, -4.5. 

HRMS m/z 245.1942 (calcd for C13H28O2Si, 244.1859). [α]20
D = -4.36°, (c 1.0, CHCl3). 
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Alchol (2-53a) (4.02 g, 16.4 mmol, 1 eq) was disolved in wet EtOAc 

(120 mL), and IBX (9.2 g, 32.9 mmol. 2 eq) was added. The suspension 

was stirred at 80 °C for 5 h, at which point the reaction was judged 

complete by TLC analysis. The flask was removed from the heat and allowed to cool to rt 

before the solution was filtered through a thin pad of silica over a pad of packed celite, 

and the filter cake was washed with 400 mL EtOAc. Solvent was removed under reduced 

pressure to give the pure aldehyde 2-54 (3.97 g, 16.3 mmol, 99% yield), which was used 

in the next step without further purification. Rf 0.72 (20% EtOAc/Hex); 1H NMR (400 

MHz, CDCl3) δ 9.61 (d, J = 2.0 Hz, 1H), 5.69 (ddd, J = 17.0, 10.0, 7.2 Hz, 1H), 5.05-4.99 

(m, 2H), 3.79 (dd, J = 4.3, 2.0 Hz, 1H), 2.26-2.20 (m, 1H) 2.05-1.89 (m, 2H), 0.95 (s, 

9H), 0.92 (d, J = 6.6 Hz, 3H), 0.06 (s, 6H); 13C NMR (100 MHz, CDCl3) δ 205.0, 136.9, 

116.8, 81.2, 37.3, 35.8, 25.7, 18.2, 16.1, -4.5, -4.6.  
 

 

To a solution of tBuOK (3.90 g, 34.8 mmol, 2.0 eq) in THF (200 mL) 

was added Ph3PCH2OMeCl (13.1 g, 38.3 mmol, 2.2 eq) in one 

portion, and the red solution was stirred at rt for 1 h. To the red 

solution was added crude aldehyde (2-54) (3.97 g, 16.4 mmol, 1 eq) in a minimal 

ammount of THF (ca. 20 mL). After 16 h the crude reaction was poured into a rapidly 

stirring solution of half saturated NH4Cl (300 mL), and the aqeous layer was extracted 

with CH2Cl2 (3 x 200 mL) and the combined organics were washed with brine, dried over 

MgSO4 and filtered through a thin pad of packed celite/silica. Solvent was removed under 

reduced pressure to give the crude enol ether (2-54a) which was contaminated with some 

Wittig byproducts, and the crude mixture was used in the next reaction without further 

purification.  
 

 

The crude mixture of enol ether and Wittig byproducts was dissolved in 

wet THF (300 mL) and water (30 mL), and Hg(OAc)2 (7.84 g, 24.6 

mmol, 1.5 eq) was added in one portion. The solution was stirred at rt 

for 1.5 h at which point disapearance of the enol ether was confirmed by TLC analysis. 

Tetrabutylammonium iodide (18.1 g, 49.2 mmol, 3 eq) was added in one portion, and the 

reaction was stirred for 1 h at rt before being poured into a rapidly stirring solution of half 

2-55Me

OTBS

O
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saturated KI (100 mL) and half saturated sodium thiosulfate (200 mL), and the aqeous 

layer was extracted with CH2Cl2 (4 x 200 mL) and the combined organics were washed 

with brine dried over MgSO4 and filtered through a thin pad of packed celite. Solvent was 

removed under reduced pressure to give the cude aldehyde, which was purified by flash 

chromatography (20% EtOAc/Hex) to give the pure aldehyde 2-55 (2.60 g, 10.2 mmol, 

62% yield over 2 steps). Rf 0.50 (10% EtOAc/Hex); 1H NMR (400 MHz, CDCl3) δ 9.79 

(s, 1H), 5.78-5.71 (m, 1H), 5.02-5.00 (m, 2H), 4.14 (dt, J = 8.2, 4.1 Hz, 1H), 2.54-2.49 

(m, 1H), 2.42-2.26 (m, 1H), 2.11-2.07 (m, 1H), 1.85 (dt, J = 14.3, 7.5 Hz, 1H), 1.74 (dt, J 

= 12.9, 6.4 Hz, 1H), 0.88 (d, J = 7.0 Hz, 3H), 0.86 (s, 9H), 0.04 (d, J = 17.5 Hz, 6H); 13C 

NMR (100 MHz, CDCl3) δ 202.5, 136.8, 116.2, 71.0, 46.5, 39.1, 37.4, 25.7, 18.0, 14.0, -

4.5, -4.6.  
 

 

To a round bottom flask cooled to 0 °C and charged with DIBAL-H 

(1.0 M, 82 mL, 82 mmol, 2.0 eq) in CH2Cl2 (200 mL) was added 

aldehyde (2-55) (10.5 g, 41 mmol, 1 eq) portion-wise over 10 min. The 

reaction was stirred at rt until completion by TLC analysis (ca. 0.5h). The reaction was 

poured into half saturated solution of NH4Cl (200 mL) and a solution of Rochelle’s salt 

(25 g in 100 mL water), and CH2Cl2 was added. The solution was stirred vigorously until 

it became homogenous (ca. 16 h), after which the aqueous layer was extracted with 

CH2Cl2 (3x 100 mL) and the combined organics were washed with brine, and dried with 

MgSO4. Solvent was removed under reduced pressure to afford the crude product which 

was purified by flash chromatography (10% EtOAc/Hex) to give alcohol (2-56) as a 

yellow oil (9.85 g, 38.1 mmol, 93% yield). Rf 0.46 (20% EtOAc/Hex); 1H NMR (600 

MHz, CDCl3) δ 5.74 (ddt, J = 17.3, 10.0, 7.1 Hz, 1H), 5.01-4.97 (m, 2H), 3.79-c.71 (m, 

3H), 2.21 (bt, J = 4.9 Hz, 1H), 2.13-2.06 (m, 1H), 1.85-1.75 (m, 1H), 1.74-1.68 (m, 1H), 

1.68-1.61 (m, 2H), 0.88 (s, 9H), 0.85 (d, J = 6.6 Hz, 3H), 0.06 (d, J = 3.9 Hz, 6H); 13C 

NMR (150 MHz, CDCl3) δ 137.3, 115.8, 74.4, 60.7, 38.4, 37.8, 33.3, 25.8, 18.0, 13.8, -

4.4, -4.6. HRMS m/z 259.2085 (calcd for C14H30O2Si, 258.2015). 
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To a solution of freshly prepared imidate (9.0 g, 31.9 mmol, 1.5 eq) 

in toluene (150 mL) was added alcohol (2-56) (5.50 g, 21.3 mmol, 1 

eq) followed by Yb(OTf)3 (20 mg, catalytic). The reaction was 

stirred at rt until completion by TLC analysis (ca. 0.5 h). Solvent was removed under 

reduced pressure to afford the crude product, which was purified by flash 

chromatography (2% EtOAc/Hex) to yield (2-57) as a yellow oil (7.89 g, 20.8 mmol, 

98% yield). Rf 0.71 (20% EtOAc/Hex); 1H NMR (400 MHz, CDCl3) δ 7.24 (d, J = 8.6 

Hz, 2H), 6.86 (d, J = 8.6 Hz, 2H), 5.75 (ddt, J = 17.0, 10.0, 7.2 Hz, 1H), 5.01-4.95 (m, 

2H), 4.40 (ABd, J = 11/7 Hz, 2H), 3.80 (s, 3H), 3.72 (dt, J = 8.1, 4.0 Hz, 1H), 3.50 (sex, 

J = 7.4 Hz, 2H), 2.13-2.07 (m, 1H), 1.85-1.78 (m, 1H), 1.71-1.63 (m, 2H), 0.86 (s, 9H), 

0.83 (d, J = 6.6 Hz, 3H), 0.00 (d, J = 3.9 Hz, 6H); 13C NMR (100 MHz, CDCl3) δ 159.1, 

137.7, 130.7, 129.2, 115.5, 113.7, 72.5, 72.4, 67.3, 55.2, 38.7, 37.3, 32.1, 25.9, 18.1, 14.1, 

-4.4, -4.6. HRMS m/z 377.2524 (calcd for C22H38O3Si, 378.2590). 
 

 

To a solution of PMB ether (2-57) (3.06 g, 8.08 mmol, 1 eq) in 

MeOH (150 mL) was added 10-CSA (100 mg, catalytic). The 

reaction was stirred at rt until completion by TLC analysis (ca. 1 h). 

The reaction was poured into half saturated solution of sodium bicarbonate (200 mL) and 

diluted with EtOAc (200 mL), the aqueous layer was extracted with EtOAc (4 x100 mL) 

and the combined organics were washed with brine, and dried with MgSO4. Solvent was 

removed under reduced pressure to afford 2-44 as a yellow oil, which was used without 

further purification (2.03 g, 7.70 mmol, 95% yield). Spectral data was identical to 2-44 

produced from 2-45 (vide supra). [α]20
D = -2.14° (c 1.0, CHCl3). 

 

 

Procedure to pre-activate Co(nmp)2: To a flask charged with 

Co(nmp)2 (1-21) (452 mg, 0.8 mmol, 0.1 eq) and iPrOH (100 mL) 

was added tBuOOH (5.33 M, 0.2 mL, 1.08 mmol, 0.14 eq). The 

reaction was heated to 55 °C under an oxygen atmosphere for 1 h, and solvent was 

removed under reduced pressure. The activated Co(nmp)2 was dried under high vacuum 

(0.1 mmHg) for 5 min to ensure that any remaining peroxide was been removed. 

Cyclization: The pre-activated Co(nmp)2 (1-21) (prepared above, 0.8 mmol, 0.1 eq) was 
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diluted with 100 mL iPrOH and alcohol 2-44 was added (2.06 g, 7.8 mmol, 1 eq). The 

reaction was heated to 55 °C under an oxygen atmosphere for exactly 1 h, and allowed to 

cool to rt. Solvent was removed under reduced pressure, followed by high vacuum (0.1 

mmHg) to remove all traces of iPrOH. The crude mixture was diluted with EtOAc (40 

mL) and filtered through a thin pad of silica (<1 cm) over packed celite to remove the 

catalyst. The pad was washed with EtOAc (400 mL) and the filtrate was concentrated 

under reduced pressure to give THF-alcohol 2-43 (2.05 g, 7.34 mmol, 94%) as a yellow 

oil, which was used without further purification. The product rapidly decomposes, and 

the decomposition product characteristically results in broad peaks at 3.65 and 3.45 ppm. 

The presence of the decomposition product leads to the loss of fine splitting and peaks 

were reported as multiplets. 1H NMR (600 MHz, CDCl3) δ 7.25 (d, J = 8.6 Hz, 2H), 6.87 

(d, J = 8.6 Hz, 2H), 4.43 (d, J = 2.0 Hz, 2H), 4.06 (ddt, J = 9.4, 6.2, 3.1 Hz, 1H), 3.79 (s, 

3H), 3.62 – 3.48 (m, 4H), 2.09-2.03 (m, 1H), 1.94-1.85 (m, 2H), 1.73-1.65 (m, 1H), 1.37-

1.29 (m, 1H), 1.01 (d, J = 6.6 Hz, 3H); 13C NMR (150 MHz, CDCl3) δ 159.1, 130.6, 

129.2, 113.7, 82.4, 78.3, 72.6, 67.4, 65.2, 55.3, 40.1, 36.6, 34.3, 16.4. HRMS m/z 

280.1667 (calcd for C16H24O4, 280.1675). 
 

 

A flask charged with freshly prepared alcohol 2-43 (2.24 g, 8 

mmol, 1 eq), and DMSO (3.12 g, 40 mmol, 5 eq) in CH2Cl2 (120 

mL) was cooled to 0 °C and Hünig’s base (9.6 mL, 56 mmol, 7 eq) 

was added. The reaction was stirred for 5 min before sulfur trioxide pyridine complex 

(3.82 g, 24 mmol, 3 eq) was added in one portion. The reaction was stirred at 0 °C for 2 h 

before being poured into half saturated solution of sodium bicarbonate (150 mL) and 

diluted with CH2Cl2 (100 mL), the aqueous layer was extracted with CH2Cl2 (3 x 50 mL) 

and the combined organics were washed with brine, and dried with MgSO4. Solvent was 

removed under reduced pressure to afford the crude product which was purified by flash 

chromatography (40% EtOAc/Hex) to yield aldehyde 2-58 (2.0 g, 7.4 mmol, 90% yield) 

as a yellow oil. Rf 0.62 (70% EtOAc/Hex); 1H NMR (600 MHz, CDCl3) δ 9.63 (s, 1H), 

7.25 (d, J = 8.6 Hz, 2H), 6.87 (d, J = 8.6 Hz, 2H), 4.44 (s, 2H), 4.26-4.23 (m, 1H), 3.79 

(s, 3H), 3.63-3.56 (m, 3H), 2.33 (dt, J = 12.9, 7.6 Hz, 1H), 1.95-1.89 (m, 2H), 1.73 (dt, J 

= 14.3, 5.9 Hz, 1H), 1.58-1.53 (m, 1H), 1.00 (d, J = 7.0 Hz, 3H); 13C NMR (150 MHz, 
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CDCl3) δ 203.0, 159.1, 130.5, 129.2, 113.7, 84.2, 81.6, 72.7, 67.1, 55.2, 39.3, 36.0, 34.0, 

16.2. HRMS m/z 278.1510 (calcd for C16H22O4, 278.1518). 
 

 

To a solution of the Still-Gennari phosphonate (5.10 g, 16.0 mmol, 

1.5 eq) in THF (60 mL) and 18-crown-6 ether (11.3 g, 42.8 mmol, 

4.0 eq) cooled to -78 °C was added KHMDS (0.91 M, 17.6 mL, 

16.0 mmol, 1.5 eq) drop wise over 5 min. The reaction was stirred at -78 °C for 20 min 

before a solution of aldehyde 2-58 (2.98 g, 10.7 mmol, 1.0 eq) in THF (20 mL) was 

added drop wise over 10 min. The reaction was stirred at rt for 3 h at -78 °C, warmed to 

rt and stirred for an additional 10 min before being poured into a half saturated solution 

NH4Cl (150 mL). The aqueous layer was extracted with EtOAc (50 mL x 3), and the 

combined organics were washed with brine, dried over MgSO4, and filtered through a 

thin pad of packed celite. Solvent was removed under reduced pressure and the crude oil 

was purified by flash chromatography (20% EtOAc/Hex) to yield 2-59 (2.79 g, 8.35 

mmol, 78%) as a yellow oil. Rf 0.68 (50% EtOAc/Hex); 1H NMR (400 MHz, CDCl3) δ 

7.27 (d, J = 8.6 Hz, 2H), 6.86 (d, J = 8.6 Hz, 2H), 6.29 (dd, J = 11.5, 7.2 Hz, 1H), 5.73 

(dd, J = 11.5, 1.5 Hz, 1H), 5.38 (ddd, J = 13.8, 9.8, 1.5 Hz, 1H), 4.43 (s, 2H), 3.79 (s, 

3H), 3.68 (s, 3H), 3.63-3.52 (m, 3H), 2.49 (dt, J = 12.7, 6.5 Hz, 1H), 1.98-1.85 (m, 2H), 

1.76 (m, 2H), 1.31-1.23 (m, 1H), 1.00 (d, J = 6.2 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 

166.3, 159.1, 152.4, 130.7, 129.2, 118.2, 113.7, 82.9, 74.8, 72.6, 67.4, 55.2, 51.2, 41.2, 

40.0, 34.3, 16.4. HRMS m/z 334.1773 (calcd for C19H26O5, 334.1780). 
 

 

To a solution of alkene 2-59 (1.32 g, 4.0 mmol, 1 eq) in tBuOH 

(15 mL) and distilled water (15 mL) cooled to 0 °C was added 

AD-mix (5.6 g), K2OsO4 (140 mg, 0.12 mmol, 0.06 eq), and 

(DHQD)2PYR (104 mg, 0.06 mmol, 0.03 eq). The reaction was stirred at 0 °C and 

monitored by TLC analysis until complete (ca. 3 days). Upon completion, the contents 

were poured into a solution consisting of half saturated NH4Cl (50 mL), half saturated 

sodium thiosulfate (50 mL), and water (50 mL). The reaction was stirred rigorously for 

10 min, diluted with CH2Cl2 (100 mL), and the aqueous layer was extracted with CH2Cl2 

(50 mL x 4), and the combined organics were washed with brine, dried over MgSO4, and 
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filtered through a thin pad of packed celite. Solvent was removed under reduced pressure 

and the crude oil (2-59a) was used in the next reaction without further purification. Rf 

0.73 (75% EtOAc/Hex); 1H NMR (400 MHz, CDCl3, major diastereomer) δ 7.22 (d, J = 

8.7 Hz, 2H), 6.85 (d, J = 8.7 Hz, 2H), 4.40 (s, 2H), 4.25 (dd, J = 8.2, 4.1 Hz, 1H), 4.01 

(ddd, J = 9.7, 6.2, 2.9 Hz, 1H), 3.77 (s, 3H), 3.74 (s, 3H), 3.75-3.68 (m, 1H), 3.56-3.48 

(m, 3H), 3.41 (d, J = 9.4 Hz, 1H), 2.70 (d, J = 7.6 Hz, 1H), 2.04 (dt, J = 12.4, 6.4 Hz, 

1H), 1.89-1.82 (m, 2H), 1.65-1.57 (m, 2H), 1.00 (d, J = 6.4, 3H).  
 

 

The crude diol 2-59a was dissolved in 2,2-dimethoxy propane 

(50 mL), and p-toluene sulfonic acid (50 mg, catalytic) was 

added in one portion. The reaction was stirred at rt overnight (ca. 

16 h) before being poured into a half saturated solution NaHCO3 

(100 mL). The aqueous layer was extracted with EtOAc (50 mL x 3), and the combined 

organics were washed with brine, dried over MgSO4, and filtered through a thin pad of 

packed celite. Solvent was removed under reduced pressure and the crude oil was 

purified by flash chromatography (50% EtOAc/Hex) to yield 2-60 as an inseparable 

mixture of diastereomers (1.55 g, 3.80 mmol, 95%) as a yellow oil. Rf 0.73 (75% 

EtOAc/Hex); 1H NMR (400 MHz, CDCl3, major diastereomer) δ 7.25 (d, J = 8.8 Hz, 

2H), 6.86 (d, J = 8.8 Hz, 2H), 4.55 (d, J = 7.0 Hz, 1H), 4.42 (ABd, J = 11.1 Hz, 2H), 4.26 

(dd, J = 7.0, 4.7 Hz, 1H), 4.05 (ddd, J = 8.8, 6.7, 5.0 Hz, 1H), 3.79 (s, 3H), 3.68 (s, 3H), 

3.60-3.48 (m, 3H), 2.17 (dt, J = 12.1, 7.1 Hz, 1H), 1.86-1.83 (m, 2H), 1.68-1.61 (m, 1H), 

1.59 (s, 3H), 1.56 (d, J = 13.5 Hz, 1H), 1.52-1.46 (m, 1H), 1.41 (s, 1H), 1.38 (s, 3H) 1.01 

(d, J = 6.4 Hz, 3H); HRMS m/z 408.2152 (calcd for C22H32O7, 408.2148).  
 

 

To a solution of DIBAL-H (1.0 M, 7.60 mL, 7.60 mmol, 2.0 eq) 

in CH2Cl2 (20 mL) cooled to 0 °C was added the mixture of 

diastereomeric esters 2-60 (1.55 g, 3.80 mmol, 1 eq) in CH2Cl2 

(10 mL) portion-wise over 10 min. The reaction was stirred at rt 

until complete by TLC analysis (ca. 3 h). The reaction was poured into half saturated 

solution of NH4Cl (100 mL) and a solution of Rochelle’s salt (10 g in 50 mL water), and 

CH2Cl2 (100 mL) was added. The solution was stirred vigorously until it became 
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homogenous (ca. 16 h), after which the aqueous layer was extracted with CH2Cl2 (3 x 50 

mL) and the combined organics were washed with brine, and dried with MgSO4. Solvent 

was removed under reduced pressure to afford the crude product which was purified by 

flash chromatography (50% EtOAc/Hex) to give alcohol 2-60a as a yellow oil (1.14 g, 

3.01 mmol, 79% yield) and the diastereomer (285 mg, 0.75 mmol, 19%). Rf 0.22 (50% 

EtOAc/Hex); 1H NMR (400 MHz, CDCl3) δ 7.25 (d, J = 8.2 Hz, 2H), 6.85 (d, J = 8.2Hz, 

2H), 4.42 (ABd, J = 11.1 Hz, 2H), 4.17-4.12 (m, 2H), 4.07-4.05 (dd, J = 6.4, 3.5 Hz, 1H), 

3.79 (s, 3H), 3.72-3.64 (m, 3H), 3.61-3.57 (m, 1H), 3.57-3.51 (m, 1H), 3.21 (dd, J = 8.8, 

4.7 Hz, 1H), 2.15 (dt, J = 12.3, 6.7 Hz, 1H), 1.92-1.87 (m, 2H), 1.71-1.63 (m, 2H), 1.49 

(s, 3H), 1.36 (s, 3H), 1.02 (d, J = 7.0 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 159.1, 

130.6, 129.3, 113.7, 108.4, 83.5, 78.9, 77.5, 75.0, 72.7, 67.4, 61.5, 55.2, 39.6, 27.9, 34.0, 

27.4, 25.6, 15.8. HRMS m/z 380.2198 (calcd for C21H32O6, 380.2199). 
 

 

Alcohol 2-60a was oxidized to the corresponding aldehyde using 

a procedure analogous to that used for 2-58, on a 0.344 mmol 

scale resulting in aldehyde 2-61 (130 mg, 0.344 mmol, 100%) 

which was used without further purification. Rf 0.19 (20% 

EtOAc/Hex); 1H NMR (400 MHz, CDCl3) δ 9.59 (d, J = 2.3 Hz, 1H), 7.24 (d, J = 8.8 Hz, 

2H), 6.85 (d, J = 8.8 Hz, 2H), 4.41 (s, 2H), 4.32 (dd, J = 4.1, 2.3 Hz, 2H), 4.05 (ddd, J = 

9.0, 6.7, 2.9 Hz, 1H), 3.78 (s, 3H), 3.59 (td, J = 9.2, 2.6 Hz, 1H), 3.55 (ddd, J = 9.2, 7.2, 

4.7 Hz, 1H), 3.52-3.48 (m, 1H), 2.10 (dt, J = 12.0, 7.5 Hz, 1H), 1.87-1.80 (m, 2H), 1.63-

1.58 (m, 2H), 1.55 (s, 3H), 1.38 (s, 3H), 0.99 (d, J = 6.4 Hz, 3H). 13C NMR (100 MHz, 

CDCl3) δ 201.6, 159.1, 130.7, 129.2, 113.7, 111.0, 83.3, 81.7, 81.2, 74.4, 72.7, 67.5, 55.2, 

40.3, 36.5, 33.9, 26.9, 25.2, 15.8. 
 

 

A 25 mL flask was charged with triphenylphosphine (186 mg, 

0.714 mmol, 2.5 eq) and CH2Cl2 (10 mL) and was cooled to 0 °C. 

The septum was temporarily removed to add carbon tetrabromide 

(123 mg, 0.371 mmol, 1.3 eq) in one portion. The ice bath was 

removed and the reaction was stirred at room temperature for 30 min, after which it was 

re-cooled to 0 °C. The above crude aldehyde 2-61 (108 mg, 0.277 mmol, 1 eq) was added 
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in one portion and the reaction was stirred for 30 min, at which point it was judged 

complete by TLC. Hexanes (50 mL) was added, and the reaction was allowed to warm to 

rt, at which point it was filtered through celite, and concentrated to dryness. To the crude 

oil was added more hexanes (100 mL), filtered, and concentrated. This procedure was 

repeated for a total of 3 filtrations at which point the crude oil was purified by column 

chromatography (20% EtOAc/Hex) to afford the dibromide as a yellow oil (133 mg, 

0.249 mmol, 90% yield). A 25 mL flask was charged with dibromde (133 mg, 0.249 

mmol, 1 eq), diluted with THF (10 mL) and cooled to -78 °C. nBuLi (2.50 M, 0.25 mL, 

0.62 mmol, 2.5 eq) was added slowly drop wise over 15 min. The reaction was stirred at -

78 °C for 1 h at which point it was judged complete by TLC. The reaction was slowly 

poured into a half-saturated solution of NH4Cl (20 mL), the aqueous layer was extracted 

with CH2Cl2 (3 x 30 mL) and the combined organics were washed with brine, and dried 

with MgSO4. Solvent was removed under reduced pressure, and the crude product was 

purified by column chromatography (2% EtOAc/Hex) to afford alkyne 2-62 as a yellow 

oil (88 mg, 0.236 mmol, 95% yield). Rf 0.57 (50% EtOAc/Hex); 1H NMR (400 MHz, 

CDCl3) δ 7.25 (d, J = 8.6 Hz, 2H), 6.86 (d, J = 8.6 Hz, 2H), 4.66 (dd, J = 5.5, 2.3 Hz, 

1H), 4.42 (s, 2H), 4.23 (td, J = 8.8, 6.2 Hz, 1H), 3.97 (dd, J = 8.4, 5.7 Hz, 1H), 3.79 (s, 

3H), 3.67-3.55 (m, 3H), 2.47 (d, J = 1.9 Hz, 1H), 2.33 (dt, J = 12.4, 6.5 Hz, 1H), 2.02-

1.93 (m, 1H), 1.89 (ddd, J = 14.3, 7.2, 3.1 Hz, 1H), 1.84-1.77 (m, 1H), 1.57 (s, 3H), 1.38 

(s, 3H), 1.24-1.13 (m, 2H), 1.02 (d, J = 6.6 Hz, 3H). 13C NMR (100 MHz, CDCl3) δ 

159.1, 130.7, 129.2, 113.7, 111.5, 83.1, 81.4, 80.1, 77.8, 75.4, 72.6, 67.3, 66.7, 55.2, 39.3, 

37.7, 33.8, 29.7, 27.8, 26.3, 16.5. 
 

 

PMB alcohol (2-62) (53 mg, 0.141 mmol, 1 eq) was dissolved in 

CH2Cl2 (4 mL), water (0.5 mL) and saturated sodium bicarbonate 

(0.5 mL). DDQ (64 g, 0.282 mmol, 2 eq) was added in one portion 

and the reaction was rigorouly stirred for 1.5 h at which point the reaction was judged to 

be complete by TLC analysis. The reaction mixture was poured into a rapidly stirring 

solution of half saturated sodium bicarbonate (30 mL) and half saturated sodium 

thiosulfate (30 mL), and the aqeous layer was extracted with CH2Cl2 (5 x 30 mL) and the 

combined organics were washed with brine and dried over MgSO4. Solvent was removed 
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under reduced pressure to give the cude alcohol, which was purified by flash 

chromatography (50% EtOAc/Hex) to give the pure alcohol 2-63 as a yellow oil (31.1 

mg, 0.122 mmol, 86% yield). Rf 0.22 (50% EtOAc/Hex); 1H NMR (400 MHz, CDCl3) δ 

4.69 (dd, J = 5.8, 2.3 Hz, 1H), 4.26 (dt, J = 9.1, 6.9 Hz, 1H), 3.98 (dd, J = 7.6, 5.9 Hz, 

1H), 3.82-3.75 (m, 2H), 3.63 (td, J = 8.6, 3.2 Hz, 1H), 2.79 (bs, 1H), 2.50 (d, J = 2.3 Hz, 

1H), 2.31 (dt, J = 5.9, 5.9 Hz, 1H), 2.00-1.95 (m, 1H), 1.90-1.85 (m, 1H), 1.72-1.66 (m, 

1H), 1.53 (s, 3H), 1.35 (s, 3H), 1.27-1.22 (m, 1H), 1.01 (d, J = 6.4 Hz, 3H). 13C NMR 

(100 MHz, CDCl3) δ 111.1, 85.2, 80.8, 79.8, 77.7, 75.6, 66.7, 60.9, 39.4, 37.2, 35.3, 29.6, 

27.5, 26.0, 16.0 
 

 

Alcohol 2-63 was oxidized to the corresponding aldehyde using a 

procedure analogous to that used for 2-58, on a 0.108 mmol scale 

resulting in the aldehyde (22.4 mg, 0.089 mmol, 83%) which was 

used without further purification. To the crude aldehyde (22.4 

mg, 0.089 mmol, 1.0 eq) and 2-methyl-2-butene (24 mg, 0.35 mmol, 4 eq) in tBuOH (1 

mL) and pH 7 buffer (0.67M, 0.3 mL) was added NaClO2 (24 mg, 0.218 mmol, 2.5 eq) in 

water (0.37 mL). The reaction was monitored by TLC until completion (ca. 30 min) at 

which point it was poured into a half saturated solution of sodium sulfate (10 mL) and 

acidified with HCl (2M solution, 1 mL). The aqueous layer was extracted with CH2Cl2 (5 

x 20 mL) and the combined organics were washed with brine and dried over MgSO4. 

Solvent was removed under reduced pressure, and the crude oil was dissolved in MeOH 

(10 mL) and CH2Cl2 (10 mL) and a stir bar was added. To the solution was added TMS-

diazomethane (1.0 M solution) drop wise until the yellow color persists (ca. 0.1 mL). The 

reaction was stirred an additional 5 min before excess acetic acid (1 mL) was added in 

one portion and the color dissipates. Volatiles were removed under reduced pressure and 

the oil was purified by flash chromatography (20% EtOAc/Hex) to give pure methyl ester 

2-3 (16.1 mg, 0.058, 65%). Rf 0.32 (50% EtOAc/Hex); 1H NMR (400 MHz, CDCl3) δ 

4.66 (dd, J = 5.6, 2.0 Hz, 1H), 4.26 (dd, J = 15.2, 8.8 Hz, 1H), 3.99 (dd, J = 8.2, 5.9 Hz, 

1H), 3.93 (dt, J = 8.5, 6.0 Hz, 1H), 3.66 (s, 3H), 2.66 (dd, J = 15.5, 6.1 Hz, 1H), 2.51 (dd, 

J = 15.5, 6.1 Hz, 1H), 2.48 (d, J = 2.3 Hz, 1H), 2.36 (dt, J = 12.4, 6.4 Hz, 1H), 2.10-2.04 

(m, 1H), 1.55 (s, 3H), 1.36 (s, 3H), 1.25-1.19 (m, 1H), 1.02 (d, J = 7.0 Hz, 3H). 
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To 5 mL round bottom flask charged with acetonide 2-3 (24.5 mg, 

0.087 mmol, 1 eq) was added wet methanol (2 mL) and a catalytic 

amount of PPTS was added in one portion. The reaction was 

monitered by TLC until complete (ca 6 h), at which point it was diluted with water (30 

mL) and EtOAc (30 mL). The aqueous layer was extracted with EtOAc (3 x 20 mL) and 

the combined organics were washed with brine, and dried with MgSO4. Solvent was 

removed under reduced pressure, and the crude product was purified by column 

chromatography (50% EtOAc/Hex) to afford alcohol 2-65 as a yellow oil (17.7 mg, 0.073 

mmol, 84.3% yield). Rf 0.73 (60% EtOAc/Hex); 1H NMR (600 MHz, CDCl3) δ 4.51-4.43 

(m, 2H), 3.87 (td, J = 8.9, 3.7 Hz, 1H), 3.68 (s, 3H), 3.56-3.54 (m, 1H), 3.49 (bd, J = 9.8 

Hz, 1H), 2.82 (bd, J = 8.2 Hz, 1H), 2.59-2.52 (m, 2H), 2.48-2.42 (m, 1H), 2.12 (dt, J = 

14.0, 6.1 Hz, 1H), 2.01-1.89 (m, 1H), 1.80-1.72 (m, 1H), 1.05 (d, J = 6.6 Hz, 3H). 13C 

NMR (100 MHz, CDCl3) δ 171.5, 115.3, 111.5, 81.8, 81.7, 81.2, 81.1, 79.9, 78.0, 75.6, 

75.5, 66.7, 66.6, 51.6, 51.5, 39.5, 38.9, 38.8, 38.8, 37.4, 27.6, 26.2, 26.2, 16.6. 
 

 

To a solution of alcohol 2-65 (17.7 mg, 0.073 mmol, 1 eq) in 

DMF (2 mL) was added imidazole (25 mg, 0.365 mmol, 5.0 eq), 

followed by TBSCl (28.4 mg, 0.182 mmol, 2.5 eq) and DMAP 

(5 mg, catalytic). The reaction was heated to 60 °C allowed to stir overnight (ca. 16h) 

before being cooled to rt and poured into a half saturated solution of NH4Cl (20 mL), and 

the aqeous layer was extracted with CH2Cl2 (3 x 30 mL) and the combined organics were 

washed with brine and dried over MgSO4. Solvent was removed under reduced pressure 

to give the TBS alcohol 2-66, which was purified by column chromatography (5% 

EtOAc/Hex) to give the pure alcohol as a yellow oil (33.4 mg, 0.071 mmol, 97% yield). 

Spectral data was identical to the reported literature.57 
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A 250 mL round bottom flask was charged with 2-

21 (3.60 g, 6.50 mmol, 1 eq) and diluted with 

toluene (100 mL). The PMB-imine (2.75 g, 9.78 

mmol, 1.5 eq) was added in one portion followed by a catalytic amount of Yb(OTf)3. The 

reaction was stirred for 30 min, at rt at which point it was judge complete by TLC, before 

being slowly poured into a half-saturated solution of sodium bicarbonate (100 mL), and 

diluted with EtOAc (100 mL). The aqueous layer was extracted with EtOAc (3 x 50 mL) 

and the combined organics were washed with brine, and dried with MgSO4. Solvent was 

removed under reduced pressure, and the crude product was purified by column 

chromatography (10% EtOAc/Hex) to afford alcohol 2-67 as a yellow oil (3.83 g, 5.98 

mmol, 92% yield). Rf 0.53 (20% EtOAc/Hex); 1H NMR (600 MHz, CDCl3) δ 7.27 (d, J = 

8.8 Hz, 2H), 6.84 (d, J = 8.8 Hz, 2H), 6.42 (dd, J = 15.5, 10.8 Hz, 1H), 6.09 (d, J = 10.0 

Hz, 1H), 5.57 (dd, J = 15.2, 8.2 Hz, 1H), 5.10 (s, 1H), 4.86 (s, 1H), 4.58 (d, J = 11.7 Hz, 

1H), 4.41 (s, 1H), 4.40 (d, J = 11.7 Hz, 1H), 4.06-4.00 (m, 2H), 3.79 (s, 1H), 3.77 (at, J = 

7.0 Hz, 1H), 3.74-3.67 (m, 2H), 2.00-1.96 (m, 1H), 1.93-1.85 (m, 2H), 1.84-1.78 (m, 2H), 

1.72-1.62 (m, 2H), 1.59 (s, 3H), 1.52-1.47 (m, 1H), 1.43-1.36 (m, 2H), 1.32-1.26 (m, 

3H), 0.89 (s, 9H), 0.88 (s, 9H), 0.88 (at, J = 8.8 Hz, 3H), 0.04 (s, 6H), 0.01 (d, J = 9.4 Hz, 

6H); 13C NMR (100 MHz, CDCl3) δ 158.9, 149.6, 139.2, 131.0, 129.9, 129.7, 129.2, 

124.8, 113.6, 109.8, 81.9, 80.7, 77.2, 76.8, 70.0, 60.6, 55.2, 38.9, 32.1, 30.7, 30.1, 28.1, 

26.0, 25.8, 22.6, 18.3, 14.0, 12.2, -5.0, -5.3.  
 

 

To 250 mL round bottom flask charged with TBS 

alcohol 2-66a (2.18 g, 3.40 mmol, 1 eq) was added 

wet ethanol (100 mL) and PPTS (1.02 g, 4.08 mmol, 

1.2 eq) was added in one portion. The reaction was monitered by TLC until complete (ca. 

2-4 h), at which point it was diluted with water (100 mL) and EtOAc (100 mL). The 

aqueous layer was extracted with EtOAc (3 x 50 mL) and the combined organics were 

washed with brine, and dried with MgSO4. Solvent was removed under reduced pressure, 

and the crude product was purified by column chromatography (40% EtOAc/Hex) to 

afford alcohol 2-67 as a yellow oil (1.85 g, 3.33 mmol, 98% yield). Rf 0.36 (50% 

EtOAc/Hex); 1H NMR (600 MHz, CDCl3) δ 7.24 (d, J = 8.6 Hz, 2H), 6.85 (d, J = 8.6 Hz, 

2-66a
OPMB

O
HH

Me
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2H), 6.42 (dd, J = 15.2, 11.1 Hz, 1H), 6.09 (d, J = 10.5 Hz, 1H), 5.55 (dd, J = 15.2, 7.6 

Hz, 1H), 5.10 (s, 1H), 4.85 (s, 1H), 4.57 (d, J = 11.7 Hz, 1H), 4.40 (s, 1H), 4.36 (d, J = 

11.7 Hz, 3H), 4.10-4.06 (m, 2H), 3.78 (s, 3H), 3.78-3.74 (m, 3H), 2.02-1.98 (m, 1H), 

1.91-1.87 (m, 2H), 1.85-1.77 (m, 1H), 1.75-1.65 (m, 4H), 1.57-1.51 (m, 1H), 1.41-1.36 

(m, 2H), 1.31-1.26 (m, 2H), 0.89 (s, 9H), 0.88 (s, 9H), 0.01 (d, J = 9.4 Hz, 6H); 13C NMR 

(150 MHz, CDCl3) δ 159.0, 149.5, 139.5, 130.7, 130.1, 129.2, 124.7, 113.6, 109.8, 81.5, 

81.0, 80.6, 79.6, 69.9, 61.9, 55.2, 37.3, 32.2, 30.7, 30.1, 27.7, 25.8, 22.5, 18.3, 14.0, 12.1, 

-5.0.  
 

 

A 250 mL round bottom flask was charged with 

alcohol 2-67 (1.92 g, 3.44 mmol, 1 eq), diluted with 

CH2Cl2 (70 mL) and cooled to 0 °C. DMSO (1.4 g, 

17.9 mmol, 5 eq) was added, followed by Hunig’s base (3.2 g, 25.0 mmol, 7 eq). The 

reaction mixture was allowed to stir for 10 min before SO3•Pyr (1.20 g, 10.7 mmol, 3 eq) 

was added portion wise over 5 min. The reaction was monitored by TLC until completion 

(ca. 2h) before being slowly poured into a half-saturated solution of sodium bicarbonate 

(100 mL), and diluted with CH2Cl2 (100 mL). The aqueous layer was extracted with 

CH2Cl2 (3 x 50 mL) and the combined organics were washed with brine, and dried with 

MgSO4. Solvent was removed under reduced pressure, and the crude residue was 

dissolved in EtOAc (100 mL) and water (100 mL). The aqueous layer was extracted with 

EtOAc (3 x 50 mL) and the combined organics were washed with brine, and dried with 

MgSO4. Solvent was removed under reduced pressure, to afford a 2-68 as a yellow oil 

(1.36 g, 2.38 mmol, 89% yield) which was used without further purification. The second 

extraction using EtOAc removes oxidation byproducts from the reaction without using 

column chromatography, which was shown to epimerize the aldehyde. Rf 0.73 (50% 

EtOAc/Hex) 1H NMR (400 MHz, CDCl3) δ 9.80 (s, 1H), 7.25 (d, J = 8.8 Hz, 2H), 6.85 

(d, J = 8.8 Hz, 2H), 6.42 (dd, J = 15.2, 11.1 Hz, 1H), 6.09 (d, J = 11.1 Hz, 1H), 5.55 (dd, 

J = 15.2, 8.2 Hz, 1H), 5.10 (s, 1H), 4.85 (s, 1H), 4.59 (d, J = 11.7 Hz, 1H), 4.40 (s, 1H), 

4.37 (d, J = 11.7 Hz, 1H), 4.39-4.33 (m, 1H), 4.10 (q, J = 7.0 Hz, 1H), 3.79 (s, 3H), 3.76 

(dd, J = 7.6, 6.4 Hz, 1H), 2.72-2.68 (m, 1H), 2.57-2.53 (m, 1H), 2.13- 2.08 (m, 1H), 1.93-

1.86 (m, 2H), 1.83-1.72 (m, 2H), 1.59 (s, 3H), 1.53-1.49 (m, 1H), 1.50-1.35 (m, 2H), 
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1.32-1.27 (m, 2H), 0.89 (s, 9H), 0.87 (t, J = 8.7 Hz, 3H), 0.01 (d, J = 7.0 Hz, 6H).  
 

 

A 25 mL round bottom flask was charged with 

aldehyde 2-68 (20 mg, 0.036 mmol, 1 eq) and diluted 

with diethyl ether (1 mL). Silylated propanedithiol 

(13.5 mg, 0.053 mmol, 1.5 eq) was added followed by 

anhydrous ZnCl2 (5 mg, 0.036 mmol, 1 eq). The reaction was monitored by TLC until 

completion (ca. 2h) before being slowly poured into a half-saturated solution of sodium 

bicarbonate (10 mL), and diluted with EtOAc (10 mL). The aqueous layer was extracted 

with EtOAc (3 x 10 mL) and the combined organics were washed with brine, and dried 

with MgSO4. Solvent was removed under reduced pressure, and the crude product was 

purified by column chromatography (10% EtOAc/Hex) to afford dithiane 2-69 as a 

yellow film (16 mg, 0.025 mmol, 70% yield). The yield and purity of the final product 

was found to be inconsistent for larger scale reactions. Rf 0.47 (20% EtOAc/Hex); 1H 

NMR (600 MHz, CDCl3) δ 7.27 (d, J = 8.8 Hz, 2H), 6.86 (d, J = 8.8 Hz, 2H), 6.40 (dd, J 

= 15.5, 10.8 Hz, 1H), 6.09 (d, J = 10.8 Hz, 1H), 5.54 (dd, J = 15.5, 8.2 Hz, 1H), 5.09 (s, 

1H), 4.85 (s, 1H), 4.60 (d, J = 11.7 Hz, 1H), 4.43 (d, J = 11.7 Hz, 1H), 4.40 (s, 1H), 4.23-

4.20 (m, 1H), 4.07 (q, J = 6.6 Hz, 1H), 2.92-2.85 (m, 2H), 2.85-2.79 (m, 2H), 2.15-2.09 

(m, 1H), 2.02-1.97 (m, 2H), 1.93-1.87 (m, 3H), 1.82-1.79 (m, 2H), 1.71-1.68 (m, 1H), 

1.59 (s, 3H), 1.50-1.47 (m, 1H), 1.41-1.36 (m, 2H), 1.32-1.25 (m, 2H), 0.89 (s, 12H), 

0.00 (d, J = 6.4 Hz, 6H).  
 

 

A 10 mL round bottom flask was charged 

with iodide 2-70 (14.9 mg, 0.047 mmol, 1 

eq), diluted with diethyl ether (2.5 mL) and 

cooled to -78 °C. Then, tBuLi (1.50 M, 0.14 

mL, 0.095 mmol, 2 eq) was added drop wise and the reaction was stirred at -78 °C for 10 

min before aldehyde 2-68 (26 mg, 0.047 mmol, 1 eq) was added in minimal ether. The 

reaction was stirred for 30 min before being quenched with a half saturated solution of 

NH4Cl (30 mL), and diluted with EtOAc (30 mL). The aqueous layer was extracted with 

EtOAc (3 x 30 mL) and the combined organics were washed with brine, and dried with 
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MgSO4. Solvent was removed under reduced pressure, and the crude product was 

purified by column chromatography (30% EtOAc/Hex) to afford 2-71 as a yellow film 

(undetermined yield). 1H NMR (600 MHz, CDCl3) δ 7.25 (d, J = 8.8 Hz, 2H), 6.86 (d, J 

= 8.8 Hz, 2H), 6.43 (dd, J = 15.2, 10.5 Hz, 1H), 6.09 (d, J = 11.1 Hz, 1H), 5.54 (dd, J = 

15.5, 8.0 Hz, 1H), 5.10 (s, 1H), 4.86 (s, 1H), 4.57 (d, J = 11.7 Hz, 1H), 4.41 (s, 1H), 4.36 

(d, J = 11.7 Hz, 1H), 4.12-4.07 (m, 3H), 3.80-3.75 (m, 3H), 3.79 (s, 3H), 3.60 (dd, J = 

9.9, 4.7 Hz, 1H), 3.42 (dd, J = 9.9, 7.6 Hz, 1H), 2.60-2.52 (m, 2H), 2.24 (dd, J = 15.8, 6.4 

Hz, 1H), 2.03-1.98 (m, 1H), 1.94-1.88 (m, 2H), 1.84-1.79 (m, 1H), 1.76-1.70 (m, 2H), 

1.56-1.50 (m, 4H), 1.41-1.36 (m, 4H), 1.35-1.24 (m, 4H), 0.96 (d, J = 6.4 Hz, 3H), 0.88 

(s, 18H), 0.06 (d, J = 2.9 Hz, 6H), 0.01 (d, J = 9.4 Hz, 6H). 
 

 

A 100 mL round bottom flask flask was charged 

with alcohol 2-67 (550 mg, 1.0 mmol, 1 eq) and 

diluted with CH2Cl2 (30 mL). Triethylamine (400 

mg, 4.0 mmol, 4 eq) was added followed by methanesulfonyl chloride (229 mg, 2.0 

mmol, 2 eq). The reaction was monitored by TLC until complete (ca. 30 min) at which 

point it was poured into a half-saturated solution of NH4Cl (100 mL), and diluted with 

CH2Cl2 (100 mL). The aqueous layer was extracted with CH2Cl2 (3 x 50 mL) and the 

combined organics were washed with brine, and dried with MgSO4. Solvent was removed 

under reduced pressure to afford mesylate 2-71a (600 mg, 0.98 mmol, 98% yield) as a 

yellow oil which was used without further purification. Rf 0.47 (50% EtOAc/Hex); 1H 

NMR (400 MHz, CDCl3) δ 7.24 (d, J = 8.6 Hz, 2H), 6.85 (d, J = 8.6 Hz, 2H), 6.41 (dd, J 

= 15.2, 10.9 Hz, 1H), 6.10 (d, J = 10.9 Hz, 1H), 5.54 (dd, J = 15.2, 8.2 Hz, 1H), 5.10 (s, 

1H), 4.85 (s, 1H), 4.57 (d, J = 11.7 Hz, 1H), 4.41 (s, 1H), 4.36-4.33 (m, 3H), 4.07-4.02 

(m, 2H), 3.78 (s, 3H), 3.73 (dd, J = 7.8, 5.9 Hz, 1H), 2.97 (s, 3H), 2.05-2.00 (m, 2H), 

1.95-.187 (m, 4H), 1.86-1.80 (m, 1H), 1.77-1.70 (m, 1H), 1.59 (s, 3H), 1.52-1.47 (m,1H), 

1.43-1.35 (m, 2H), 1.35-1.24 (m 2H), 0.89 (s, 9H), 0.87 (t, J = 8.7 Hz, 3H), 0.01 (d, J = 

5.9 Hz, 6H); 13C NMR (100 MHz , CDCl3) δ = 159.0, 149.5, 139.7, 130.7, 130.3, 129.2, 

124.5, 113.7, 109.9, 81.8, 81.0, 80.6, 77.3, 76.7, 75.4, 69.9, 68.0, 55.2, 37.1, 35.0, 31.9, 

31.5, 30.7, 30.1, 28.1, 25.8, 22.5, 18.3, 14.0, 12.2, 1.0, -5.0.  
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A 50 mL round bottom flask was charged with 

mesylate 2-71a (311 mg, 0.5 mmol, 1 eq) and diluted 

with acetone (20 mL). Sodium iodide (450 mg, 1.5 

mmol, 3 eq) was added and the reaction was heated to a vigorous reflux. The reaction 

was monitored by TLC until complete (ca. 2 h) at which point it was cooled and filtered 

through a thin pad of celite into a half saturated solution of sodium bicarbonate (50 mL). 

The pad was washed with EtOAc (100 mL) and the filtrate was transferred to a 

separatory funnel. The aqueous layer was extracted with EtOAc (3 x 50 mL) and the 

combined organics were washed with brine, and dried with MgSO4. Solvent was removed 

under reduced pressure and the curde oil was purified by column chromatography (20% 

EtOAc/Hex) to afford iodide 2-71b (291 mg, 0.445 mmol, 89% yield) as a yellow oil. Rf 

0.58 (20% EtOAc/Hex); 1H NMR (400 MHz, CDCl3) δ 7.27 (d, J = 8.8 Hz, 2H), 6.86 (d, 

J = 8.8 Hz, 2H), 6.42 (dd, J = 11.1, 15.2 Hz, 1H), 6.10 (d, J = 11.1 Hz, 1H), 5.55 (dd, J = 

8.2, 15.2 Hz, 1H), 5.10 (s, 1H), 4.86 (s, 1H), 4.60 (d, J = 12.3 Hz, 1H), 4.41 (s, 1H), 4.40 

(d, J = 12.3 Hz, 1H), 4.05 (q, J = 7.0 Hz, 1H), 4.00-3.94 (m, 1H), 3.79 (s, 3 H), 3.73 - 

3.79 (m, 1H), 3.30-3.22 (m, 2H), 2.05 (dt, J = 7.0, 14.1 Hz, 2H), 2.02-1.95 (m, 2H), 1.95-

1.86 (m, 2H), 1.85- 1.80 (m, 1H), 1.76-1.68 (m, 1H), 1.60 (s, 3H), 1.51-1.44 (m, 1H), 

1.43-1.35 (m, 3H), 1.33-1.26 (m, 3H), 0.89 (s, 9H), 0.88 (t, J = 8.7 Hz, 1H), 0.01 (d, J = 

5.9 Hz, 6H); 13C NMR (100 MHz, CDCl3) δ = 163.6, 153.7, 150.5, 148.9, 135.6, 131.0, 

123.4, 111.1, 104.1, 87.1, 84.7, 80.0, 79.1, 77.3, 76.7, 76.5, 68.6, 52.6, 44.6, 41.5, 33.6, 

32.6, 29.9, 29.6, 28.7, 26.3, 26.2, 25.9, 25.7, 25.0, 22.5, 19.2, 18.3, 18.2, 15.5, 14.0, -5.0, 

-5.2, -5.3. 
 

 

To a solution of iodide 2-71b (55.6 mg, 0.083 

mmol, 1 eq) in dry DMSO (1.5 mL) was added 

urea (35 mg, 0.581 mmol, 7 eq) followed by 

NaNO2 (11.5 mg, 0.166 mmol, 2 eq). The reaction was allowed to stir until complete as 

indicated by TLC (ca. 1h) at which point it was poured into a brine solution (10 mL). The 

aqueous layer was extracted with EtOAc (3 x 10 mL) and the combined organics were 
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dried with MgSO4. Solvent was removed under reduced pressure to afford a yellow oil 

which was purified by column chromatography (15% EtOAc/Hex) to afford 2-72 (26.2 

mg, 0.045 mmol, 54% yield) as a yellow oil. Rf 0.31 (20% EtOAc/Hex); 1H NMR (400 

MHz, CDCl3) δ 7.25 (d, J = 8.6 Hz, 2H), 6.86 (d, J = 8.6 Hz, 2H), 6.41 (dd, J = 15.0, 11.1 

Hz, 1H), 6.10 (d, J = 11.1 Hz, 1H), 5.55 (dd, J = 15.2, 8.2, Hz, 1H), 5.10 (s, 1H), 4.86 (s, 

1H), 4.58 (d, J = 11.7 Hz, 1H), 4.51 (t, J = 7.0 Hz, 2H), 4.41 (s, 1H), 4.36 (d, J = 11.7 Hz, 

1H), 4.05 (q, J = 6.77 Hz, 1H), 4.00-3.94 (m, 1H), 3.80 (s, 3 H), 3.73 (dd, J = 7.8, 6.2 Hz, 

1H), 2.28-2.20 (m, 1H), 2.15-2.00 (m, 2H), 1.95-1.87 (m, 2H), 1.85-1.70 (m, 2H), 1.60 

(s, 3H), 1.54-1.47 (m, 1H), 1.45-1.35 (m, 2H), 1.33-1.25 (m, 2H), 0.89 (s, 9H), 0.88 (t, J 

= 8.7 Hz, 1H), 0.01 (d, J = 5.9 Hz, 6H). 
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Chapter 3 – Second Generation Approach to Amphidinolide C 

 

Section 3.1 – Alternative Approach to the Western-Northern-Eastern Fragment 

 

In our second generation retrosynthesis, the initial disconnection was modified from a 

dithiane alkylation to form the C(17)-C(18) bond, to a dithiane alkylation to form the 

C(18)-C(19) bond (Figure 3.1).  
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Figure 3.1. Revision of the initial retrosynthetic disconnections 
 

The perceived improvements were three-fold; first and foremost, the alkylation step 

would no longer be retarded by hindrance, as the electrophile in this case would be 

sterically accessible. Other advantages would be the early formation of the troublesome 

1,4-diketone subunit from C(15)-C(18), and the increased flexibility in the order of 

assembly on the new Northern fragment (3-2) using familiar pieces. The protected 

iodohydrin (2-44) and the unchanged Eastern fragment (2-2) would both be utilized, both 

of which we had in ample quantities. 
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Section 3.1.1 – Synthesis of the 3-Carbon Homologated Northern Fragment 

 

With the aim of forming the troublesome C(17)-C(18) bond early in the synthesis to 

make the 1,4-diketone, we homologated alkyl iodide 2-70 (derived in 3 steps from Roche 

ester)1 with 1,3-dithiane (3-3) (Scheme 3.1). The dithiane was then lithiated and treated 

with enantiopure epoxide 3-4 which was commercially available, and resolved using 

Jacobsen’s hydrolytic kinetic resolution procedure,2 to give cyclization precursor 3-5 in 

91% yield over 2 steps. Using pre-activated Co(nmp)2 to avoid the potential oxidation of 

the dithiane by excess peroxide, the pentenol 3-5 was successfully cyclized in 81% yield.  

 

 
Scheme 3.1. Synthesis of the homologated Northern fragment 3-6 

 

THF alcohol 3-6 was a key intermediate in our retrosynthesis, and could either be 

functionalized first at the left side to include the remainder of the Western fragment, or 

the right side to introduce the Eastern fragment. 

 

Section 3.1.2 – Synthesis of the New North-Eastern Fragment 

 

Our initial plan was to connect the Eastern fragment 2-2 first, which began with a Parikh-

Doering oxidation (SO3Pyr/DMSO) of 3-6 to the corresponding aldehyde in 95% yield 

(Scheme 3.2). Using our previously optimized conditions (MTBE/nBuLi at −90 °C), we 

were thrilled to find that the excellent dr was retained in the alkynlation reaction joining 

the THF-aldehyde 3-7 and the Eastern fragment 2-2, yielding the homologated North-

Eastern fragment (3-8) in 75% yield and 15:1 dr.  
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Scheme 3.2. Coupling of the homologated Northern (3-7) and Eastern fragment 2-2 

 

As previously, the anti configuration was the major diastereomer, so a Mitsunobu 

reaction was performed to invert the stereocenter (DIAD/p-nitrobenzoic acid) resulting in 

the desired syn conformation (Scheme 3.3). Treatment with RED-Al concurrently 

deprotected the alcohol and reduced the ene-yne to furnish the carbon backbone, and the 

alcohol (3-9) was protected as a PMB ether (PMBBr/NaH) to give 3-10 in 99% yield. 

The primary TBS group was selectively removed under acidic conditions (PPTS/EtOH) 

followed by oxidation to the corresponding aldehyde 3-12 in 95% yield over 2 steps. All 

that remained was conversion of the aldehyde to a dithiane, and use of that dithiane to 

alkylate protected iodohydrin 2-44 to complete the C(15)-C(34) fragment.  

 

Scheme 3.3. Completion of aldehyde 3-12 
 

Unfortunately, we were unable to form the dithiane under all attempted conditions. 

Attempts with unprotected 1,3-propanedithiol and mild Lewis acids (MgBr2, ZnCl2) gave 
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no reaction, whereas strong Lewis acids (BF3OEt2, TiCl4, Yb(OTf)3, Sc(OTf)3) led to 

substrate decomposition (Scheme 3.4). The exact nature of the decomposition was not 

determined, but shifting and/or disappearance of signals in the 1H NMR indicative of the 

Eastern fragment protons suggested that the skipped triene may be involved in the 

decomposition process.  

 

 

Scheme 3.4. Failed attempts at forming a dithiane using 1,3-propanedithiol 
 

Previously, success had been achieved in the use of a milder silylated 1,3-propanedithiol 

with either Yb(OTf)3 or Sc(OTf)3 as Lewis acids. However, in the case of aldehyde 3-12 

the most common result of dithianation attempts using the silylated propanedithiol 

resulted in the isolation of a partially protected carbonyl compound 3-13, presumably a 

stable intermediate formed during the protection process (Scheme 3.5). One can easily 

envision the completion of the protection, by attack of the thiol and loss of the silylated 

oxygen, forming the dithiane, but in the case of this particular substrate, the protection 

does not proceed to completion. Irritatingly, it appeared that again steric bulk was to 

blame, as the only difference between this compound (3-12) and aldehyde 2-68 was the 

presence of the methyl group at C(16).  

 

 
Scheme 3.5. Isolation of a silyl-thioacetal intermediate (3-13) 

 

All attempts to convert thioacetal 3-13 to the dithiane were unsuccessful, and it was 

becoming clear that to form a dithiane at C(15), a more aggressive Lewis acid and 
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unprotected propanedithiol must be used, with which the skipped triene on the Eastern 

fragment appears incompatible. To that end, we endeavored to first functionalize the left 

side of the new Northern fragment 3-6 before adding the Eastern fragment. Starting from 

THF-alcohol 3-6 we capped the right hand side of the molecule as a 

tertbutyldiphenylsilyl ether (TBDPSCl, DMF) allowing for selective removal of the 

primary TBS group (10-CSA/MeOH) in 90% yield over 2 steps (Scheme 3.6). The 

alcohol 3-14 was then oxidized to the corresponding aldehyde 3-15 using Parikh-Doering 

conditions (SO3Pyr/DMSO) in 91% yield. This time, using harsh conditions that resulted 

in decomposition of the skipped triene on aldehyde 3-12 (propanedithiol, Yb(OTf)3, 

MeCN), the dithiane 3-2 was finally formed in 70% yield.  

 

Scheme 3.6. Conversion of the homologated Northern fragment to dithiane 3-. 
 

To complete the North-Western fragment, dithiane 3-2 would need to be coupled to 

protected iodohydrin 2-44, which we expected to proceed smoothly, given previous 

success with a similar dithiane. Astonishingly, we were unable to perform the alkylation 

under a variety of conditions, which was confounding considering the similarity between 

the Roche ester derived dithiane 2-24 that did work, and the 1,4-di-dithiane 3-2 that 

didn’t work (Scheme 3.7).  
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Scheme 3.7. A comparison of the failed and successful alkylations of 2-44 
 

Exasperated at the constant failures to perform key dithiane alkylations in multiple steps, 

and with dithiane related nightmares haunting my dreams, we turned our attention to the 

literature for inspiration.  

 
Section 3.1.3 – Formation of the North-Western Fragment via Aldol Strategy 

 
As reported earlier, Roush reported the successful completion of the C(11)-C(29) 

fragment of Amphidinolide C via an aldol/Evans-Tishchenko reaction, setting the desired 

stereochemistry at C(13) by means of an intramolecular reduction.3 We felt as though this 

strategy could be easily applied to our substrate, given the similarities of the compounds. 

To facilitate late stage deprotection, THF-alcohol 3-6 was protected as the PMB ether (3-

16) (PMBBr/NaH) in 85% yield (Scheme 3.8). The TBS was cleaved (10-CSA/MeOH) 

and the resulting primary alcohol was oxidized to the aldehyde (3-17) (SO3Pyr/DMSO) 

in 95% yield over 2 steps, setting the stage for the boron-mediated aldol reaction.  

 

 
Scheme 3.8. Prepareation of aldehyde 3-17 for the aldol reaction 

 

Initial reactions using dicyclohexylchloroborane resulted in poor dr (ca. 4:1), which was 
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improved upon by using (−)-diisopinocamphenylchloroborane,4 resulting in a 20:1 dr and 

89% yield of the aldol product 3-19 (Scheme 3.9). Evans-Tishchenko reduction 

proceeded smoothly (PhCHO, SmI2) ensuing in 90% yield of 3-20 as a 11:1 ratio of 

inseparable diastereomers at C(13). The secondary alcohol was protected as a TBS ether 

in 99% yield, and the primary alcohol was selectively deprotected under acidic conditions 

(PPTS/EtOH) in 98% yield. The primary alcohol 3-21 was oxidized to the aldehyde (3-

22) before being converted to the dibromoalkene (PPh3/CBr4). Treatment with excess 

nBuLi simultaneously formed the alkyne while removing the benzoyl group to afford 

alcohol 3-23 in 99% yield without any TBS migration.  

 

Scheme 3.9. Formation of the North-Western fragment via aldol/Evans-Tishchenko  
 

Our original plan was to oxidize the alcohol (3-23) at C(15) to the desired carbonyl 

oxidation state and protect it until the end-game deprotection. Several methods of 

oxidation were attempted with no success,5 so we decided to protect it with an orthogonal 

protecting group, with the goal of a late stage oxidation in mind. Conditions that required 

deprotonation of the alcohol (NaH and either PMBBr or MOMCl) resulted in TBS 

migration, and Lewis acid catalyzed reactions (PMBTCA, Yb(OTf)3) resulted in product 

decomposition (Scheme 3.10). Ultimately, we settled on using a highly labile TMS group 

(3-24), which is not typically used as a protecting group due to its instability, but in this 

case we were hoping that the steric bulk around the TMS group would work in our favor 

to increase its longevity.  
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Scheme 3.10. Attempts at protecting the alcohol at C(15) of alkyne 3-23 
 

Now that the alcohol was protected, we turned our attention to functionalization of the 

alkyne, using the carbo-stannylation method formerly utilized. The alkyne 3-24 was 

converted into stannane using our previously optimized conditions resulting in a 94% 

yield (BORSM) of a single regioisomer (Scheme 3.11). The stannane was carefully 

converted to the iodide 3-25 at -78°C, as increased temperatures resulted in deprotection 

of the TMS group. Then, to prepare for the addition of the Eastern fragment (2-2), the 

PMB group was removed using buffered conditions (DDQ/Na2CO3) and the primary 

alcohol was oxidized to the aldehyde 3-26 (SO3Pyr/DMSO) in 91% yield over 2 steps. 

 

 

Scheme 3.11. Preparation of aldehyde 3-26 for fragment coupling 
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We were pleased to see that the excellent selectivity was again maintained in the coupling 

reaction, resulting in an anti- product 3-27 in a 85% yield and 10:1 dr utilizing the 

previously optimized conditions (Scheme 3.12). Mitsunobu inversion of the secondary 

alcohol furnished the desired syn- configuration in 59% yield, and one of the few 

remaining steps was concurrent benzoyl deprotection and hydroalumination of the alkyne 

to complete the C(25)-C(28) diene, with either LiAlH4 or RED-Al.  

 

 

Scheme 3.12. Coupling of 2-2 and 3-26 
 

Unfortunately, all attempts to hydroaluminate 3-28 resulted in the isolation of protonated 

product 3-30 (Scheme 3.13). It was reasoned that 3-30 was formed upon protic quench of 

the unisolated intermediate 3-29, a product that would be formed upon removal of the 

benzoyl group, hydroalumination of the alkyne, and metal-halogen exchange of the vinyl 

iodide.  
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Scheme 3.13. Protonated product 3-30 formed via protonation of intermediate 3-29 
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We considered several options to circumvent this problem. Our first thought was to limit 

the amount of aluminum hydride in the reaction hoping for selectivity through a rate 

difference of the two alumination reactions; however initial attempts concluded that there 

was no exploitable rate difference. We briefly considered quenching the reaction with 

iodine, which would regenerate the iodoalkene at C(10).6 However, we realized that the 

iodine quench would result in a second iodoalkene at C(26), which we would have to 

remove, so that idea was abandoned as well. Lastly, we considered utilizing the alkene-

aluminum compound 3-29 directly in cross coupling without isolation,7 and hope that 

there would be some selectivity for cross coupling at C(10) over C(26). Given the 

reported sensitivity of the uniquely substituted diene system that would be formed, this 

thought was also quickly abandoned.  

Alternative aluminum hydrides were considered, but literature reports of hydro-

aluminations using reagents other than the standard DIBAL-H, LiAlH4, and RED-Al 

were scarce, and offered no suggestion that the iodoalkene would survive the reaction.8 

Finally, we considered alternative hydroxyl-directed hydrometallations 

(hydrostannylation, hydrosiliconation, hydroboration, hydrotelluration, etc), but literature 

evidence of the potential advantages of using other metal hydrides was sparse.9 In the 

end, we decided that leaving the C(10) end of the molecule as either a TMS alkyne or a 

unprotected alkyne would be the easiest way to circumvent the metal-halogen 

exchange.10 To that end, the previously formed alkyne 3-24 was deprotonated and 

protected as the TMS alkyne 3-31 in 95% yield (Scheme 3.14). Subsequent deprotection 

of the PMB ether and oxidation to the aldehyde 3-32 furnished the new coupling partner 

in 66% yield.  
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O
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H H
TBSO OTMS 3-24 3-31

1) DDQ, Na2CO3
2) SO3Pyr, DMSO

(66%, 2 steps)
3-32

nBuLi, THF, -78°C

then TMSCl (95%)
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O
OPMB

H H
TBSO OTMSTMS
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O
H

H H
TBSO OTMSTMS O

10

 

Scheme 3.14. Formation of the new coupling partner 3-32 
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Again, the addition of the Eastern fragment proceeded with excellent yield and selectivity 

(86% and 10:1 dr) to give 3-33, and Mitsunobu inversion cleanly provided the syn 

configuration (Scheme 3.15). As expected, the unactivated TMS protected alkyne did not 

undergo hydroalumination, and the diene 3-34 was formed in 99% yield. 

 

Scheme 3.15. Successful hydroalumination to form the diene 3-34 
 

Basic deprotection of the alkyne (K2CO3, MeOH) followed by selective TMS re-

protection of the alcohols (TMSCl, Et3N) furnished alkyne 3-35 in an undetermined yield 

over 2 steps (Scheme 3.16). Unfortunately, the amount and purity of 3-35 was 

insufficient to perform the carbostannylation reaction with confidence. Making the 

assumption that the reaction would proceed as planned, more material is currently being 

brought up with the intention of completing the total synthesis.  

 

 
Scheme 3.16. Proposed completion of the North-Eastern-Western fragment 3-36 
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Section 3.2 – Experimental 

 

To a 250 mL round bottom flask charged with dithiane (2.78 g, 

9.08 mmol, 1.3 eq) diluted with THF (50 mL) and HMPA (5 

mL) and cooled to -25 °C was added nBuLi (1.48 M, 6.14 mL, 

9.08 mmol, 1.3 eq) drop wise over 10 min. The reaction was allowed to stir for 30 min 

before being cooled to -50 °C, after which epoxide 3-4 (696 mg, 7.0 mmol, 1.0 eq) was 

added in one portion and the reaction was allowed to warm to 0 °C and stirred for 2 h. 

The reaction mixture was poured into a half saturated solution of NH4Cl (200 mL) and 

diluted with EtOAc (100 mL). The aqueous layer was extracted with EtOAc (3 x 50 mL) 

and the combined organics were washed with brine, and dried with MgSO4. Solvent was 

removed under reduced pressure, and the crude product was purified by column 

chromatography (15% EtOAc/Hex) to afford alcohol 3-5 as a yellow oil (2.58 g, 6.4 

mmol, 91% yield; Rf 0.46 (20% EtOAc/Hex); 1H NMR (400 MHz, CDCl3) δ 5.83 (ddt, J 

= 17.0, 10.2, 6.9 Hz, 1H), 5.05-4.95 (m, 2H), 4.03-3.98 (m, 1H), 3.57 (bs, 1H), 3.40 (d, J 

= 6.4 Hz, 2H), 3.03-2.90 (m, 2H), 2.81-2.74 (m, 2H), 2.36 (dd, J = 15.2, 9.4 Hz, 1H, 

2.26-2.10 (m, 2H), 2.05 (dd, J = 14.6, 3.5 Hz, 1H), 2.04-1.97 (m, 1H), 1.97-1.85 (m, 3H), 

1.70 (dd, J = 14.9, 6.7 Hz, 1H), 1.62-1.56 (m, 1H), 1.56-1.42 (m, 1H), 1.03 (dd, J = 6.4 

Hz, 3H), 0.88 (s, 9H), 0.03 (s, 6H); 13C NMR (100 MHz, CDCl3) δ 138.5, 114.6, 68.7, 

67.8, 52.6, 45.6, 43.2, 36.9, 32.4, 27.8, 26.7, 26.3, 26.0, 24.7, 19.4, -5.3. HRMS m/z 

404.2240 (calcd for C20H40O2S2Si, 404.2239). 
 

 

Prep to pre-activate Co(nmp)2: To a flask charged with 

Co(nmp)2 (1-21) (354 mg, 0.63 mmol, 0.1 eq) and iPrOH (60 

mL) was added tBuOOH (5.33 M, 0.12 mL, 0.63 mmol, 0.1 

eq). The reaction was heated to 55 °C under oxygen for 1h, 

and solvent was removed under reduced pressure. The activated Co(nmp)2 was dried 

under highvac (0.1 mmHg) for 5 min to ensure that all traces of peroxide have been 

removed. Cyclization:The pre-activated Co(nmp)2 (prepared above, 0.63 mmol, 0.1 eq) 

was diluted with 60 mL iPrOH and alcohol (3-5) was added (2.54 g, 6.30 mmol, 1 eq). 

The reaction was heated to 55 °C under an oxygen atmosphere for 16 h, and allowed to 
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cool to rt. Solvent was removed under reduced pressure, followed by highvac (0.1 

mmHg) to remove all traces of iPrOH. The crude mixture was diluted with EtOAc (30 

mL) and filtered through a thin pad of silica (<1 cm) over celite to remove the catalyst. 

The pad was washed with EtOAc (300 mL) and the filtrate was concentrated under 

reduced pressure to give THF-alcohol (3-6) (2.14 g, 5.10 mmol, 81%) as a yellow oil, 

which was used without further purification. Rf 0.39 (50% EtOAc/Hex); 1H NMR (400 

MHz, CDCl3) δ 4.25-4.19 (m, 1H), 4.11-4.06 (m, 1H), 3.59-3.55 (m, 1H), 3.47-3.38 (m, 

3H), 2.88-2.71 (m, 4H), 2.25-2.05 (m, 5H), 1.97-1.87 (m, 4H), 1.70-1.52 (m, 3H), 1.00 

(d, J = 6.4 Hz), 0.87 (s, 9H), 0.02 (s, 6H); 13C NMR (100 MHz, CDCl3) δ 78.7, 75.8, 

68.6, 64.9, 52.9, 45.1, 42.0, 33.9, 32.6, 27.4, 26.3, 25.9, 25.0, 19.3, 18.3, -5.4.  
 

 

A 250 mL round bottom flask was charged with alcohol 3-6 

(1.00 g, 2.38 mmol, 1 eq), diluted with CH2Cl2 (70 mL) and 

cooled to 0 °C. DMSO (556 mg, 7.14 mmol, 3 eq) was added, 

followed by Hunig’s base (1.51 mL, 11.9 mmol, 5 eq). The reaction mixture was allowed 

to stir for 10 min before SO3•Pyr (760 mg, 4.76 mmol, 2 eq) was added portion wise over 

5 min. The reaction was monitored by TLC until completion (ca. 2h) before being slowly 

poured into a half-saturated solution of sodium bicarbonate (100 mL), and diluted with 

CH2Cl2 (100 mL). The aqueous layer was extracted with CH2Cl2 (3 x 50 mL) and the 

combined organics were washed with brine, and dried with MgSO4. Solvent was removed 

under reduced pressure, and the crude residue was dissolved in EtOAc (100 mL) and 

water (100 mL). The aqueous layer was extracted with EtOAc (3 x 50 mL) and the 

combined organics were washed with brine, and dried with MgSO4. Solvent was removed 

under reduced pressure, to afford 3-7 as a yellow oil (944 mg, 2.26 mmol, 95% yield) 

which was used without further purification. The second extraction using EtOAc removes 

oxidation byproducts from the reaction without using column chromatography. Rf 0.61 

(50% EtOAc/Hex); 1H NMR (600 MHz, CDCl3) δ 9.66 (d, J = 2.3 Hz, 1H), 4.35-4.29 (m, 

1H), 4.28 (dt, J = 11.7, 6.4, 5.8 Hz, 1H), 3.48-3.42 (m, 2H), 2.88-2.74 (m, 5H), 2.39-2.27 

(m, 1H), 2.21-2.14 (m, 4H), 1.70 (dd, J = 14.6, 5.8, 1H), 1.63-1.59 (m, 1H), 1.01 (d, J = 

6.4 Hz, 3H), 0.88 (s, 9H), 0.03 (s, 6H); 13C NMR (100 MHz, CDCl3) 203.5, 82.3, 77.9, 

68.6, 52.7, 45.0, 42.0, 33.1, 32.7, 27.3, 26.4, 26.0, 25.0, 19.4, -5.3.  
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To a solution of alkyne 2-2 (1.16 g, 4.0 

mmol, 2 eq) in MTBE (20 mL) at 0 °C was 

added nBuLi (2.07 M, 2.0 mL, 4.0 mmol, 2 

eq), and the reaction was stirred at 0 °C for 

30 min before being cooled to -90 °C using a liquid nitrogen/hexanes bath. After stirring 

for 15 min at -90 °C, freshly purified aldehyde 3-7 (850 mg, 2.03 mmol, 1 eq) dissolved 

in a minimal amount of MTBE was added over 15 min drop wise. The slow addition, low 

temperature of the reaction and the purity of both 2-2 and 3-7 were essential conditions to 

ensure a high dr. After stirring at -90 °C for 3 h, the reaction was treated at -90 °C with 

20 mL of saturated NH4Cl, before allowing to warm to rt and being diluted with water 

(50 mL) and EtOAc (50 mL). The aqueous layer was extracted with EtOAc (3 x 50 mL) 

and the combined organics were washed with brine, and dried with MgSO4. Solvent was 

removed under reduced pressure, and the crude product was purified by column 

chromatography (20% EtOAc/Hex) to afford recovered alkyne (600 mg) and alkynlation 

adduct 3-8 as a 10:1 ratio of diastereomers as a yellow oil (1.07 g, 1.50 mmol, 75% 

yield). Rf 0.48 (20% EtOAc/Hex); 1H NMR (400 MHz, CDCl3) δ 5.63 (s, 1H), 5.05 (s, 

1H), 4.86 (s, 1H), 4.61 (bs, 1H), 4.41 (s, 1H), 4.41-4.39 (m, 1H), 4.16 (dt, J = 7.6, 3.5 Hz, 

1H), 3.48 (d, J = 5.6, 3.5 Hz, 1H), 3.41 (d, J = 5.6, 3.5 Hz, 1H), 2.86-2.73 (m, 4H), 2.50 

(d, J = 5.3 Hz, 1H), 2.28-2.17 (m, 3H), 2.16-2.07 (m, 2H), 2.06-2.02 (m, 1H), 1.97-1.87 

(m, 3H), 1.78-1.75 (m, 1H), 1.71 (s, 3H), 1.71-1.67 (m, 1H), 1.63-1.58 (m, 1H), 1.40-

1.34 (m, 2H), 1.28 (q, J = 7.3 Hz, 2H), 1.00 (d, J = 6.4 Hz, 3H), 0.89 (s, 9H), 0.87 (s, 

9H), 0.87 (at, J = 8.2 Hz, 3H), 0.03 (s, 6H), 0.00 (d, J = 2.3 Hz, 6H); 13C NMR (100 

MHz, CDCl3) δ 152.2, 149.1, 110.7, 104.8, 90.5, 83.6, 80.8, 80.0, 77.5, 68.7, 65.0, 52.8, 

45.1, 42.0, 41.7, 33.9, 32.6, 29.9, 29.8, 28.2, 26.5, 26.3, 26.0, 25.8, 25.0, 22.6, 19.4, 18.3, 

18.2, 15.3, 14.0, -5.1, -5.3.  
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A 250 mL round bottom flask was charged 

with 4-nitro benzoic acid (400 mg, 2.36 

mmol, 4 eq), triphenylphosphine (616 mg, 

2.36 mmol, 4 eq), alcohol 3-8 (420 mg, 

0.588 mmol, 1 eq), diluted with THF (30 

mL) and cooled to 0 °C. DIAD (280 mg, 

2.36 mmol, 4 eq) was added drop wise over 10 min, and the ice bath was removed. The 

reaction was stirred overnight (ca. 16 h) before being slowly poured into a half-saturated 

solution of sodium bicarbonate (50 mL). The aqueous layer was extracted with EtOAc (3 

x 50 mL) and the combined organics were washed with brine, and dried with MgSO4. 

Solvent was removed under reduced pressure, and the crude product was purified by 

filtration through a thin plug of silica gel (20% EtOAc/Hex) to afford 3-8a as a yellow oil 

(394 mg, 0.46 mmol, 78% yield). Rf 0.56 (20% EtOAc/Hex); 1H NMR (400 MHz, 

CDCl3) δ 8.25 (s, 4H), 5.73 (d, J = 7.4 Hz, 1H), 5.64 (s, 1H), 5.04 (s, 1H), 4.86 (s, 1H), 

4.41 (s, 1H), 4.36 (q, J = 7.0 Hz, 1H), 4.28 (dq, J = 9.5, 5.0 Hz, 1H), 3.42 (dd, J = 9.6, 5.7 

Hz, 1H), 3.30 (dd, J = 9.4, 6.6 Hz, 1H), 2.80-2.67 (m, 4H), 2.28-2.17 (m, 3H), 2.14-2.02 

(m, 2H), 1.95-1.86 (m, 4H), 1.77-1.73 (m, 1H), 1.70 (s, 3H), 1.65-1.58 (m, 2H), 1.40-

1.32 (m, 2H), 1.32-1.23 (m, 2H), 0.88 (at, J = 8.2 Hz, 3H), 0.86 (s, 12H), 0.85 (s, 9H), -

0.01 (s, 12H); 13C NMR (100 MHz, CDCl3) δ 163.6, 153.7, 150.5, 148.9, 135.6, 131.0, 

123.4, 111.1, 104.1, 87.1, 84.7, 80.0, 79.1, 76.5, 68.6, 52.6, 44.6, 41.5, 33.6, 32.6, 29.9, 

29.6, 28.7, 26.3, 26.2, 25.9, 25.8, 25.0, 22.6, 19.2, 18.3, 18.2, 15.5, 14.0, -5.0, -5.2, -5.3. 

HRMS m/z 859.4359 (calcd for C45H73NO7S2Si2, 859.4367). 
 

 

A 250 mL round bottom flask was charged 

with 3-8a (342 mg, 0.397 mmol, 1 eq), 

diluted with ether (30 mL) and cooled to 0 

°C. Red-Al (65% w/w in toluene, 620 mg, 

2.0 mmol, 5 eq) was added drop wise over 10 min. The ice bath was removed and the 

reaction was stirred for 30 min at rt before being slowly poured into a half-saturated 

solution of NH4Cl (50 mL), and a saturated solution of Rochelle’s salt was added (50 
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mL), and the slurry was stirred vigorously for 30 min. The aqueous layer was extracted 

with EtOAc (3 x 50 mL) and the combined organics were washed with brine, and dried 

with MgSO4. Solvent was removed under reduced pressure, and the crude product was 

purified by column chromatography (10% EtOAc/Hex) to afford alcohol 3-9 as a yellow 

oil (251 mg, 0.353 mmol, 89% yield). Rf 0.50 (20% EtOAc/Hex); 1H NMR (400 MHz, 

CDCl3) δ 6.52, (dd, J = 15.2, 11.1, 1H), 6.05 (d, J = 11.1 Hz, 1H), 5.55 (dd, J = 15.2, 6.4 

Hz, 1H), 5.09 (s, 1H), 4.83 (s, 1H), 4.38 (s, 1H), 4.23-4.19 (m, 1H), 3.96 (t, J = 7.3 Hz, 

1H), 3.86 (q, J = 7.0 Hz, 1H), 3.45 (ABd, J = 11.4, 6.1 Hz, 1H), 3.42 (ABd, J = 11.4, 6.1 

Hz, 1H), 2.87-2.75 (m, 4H), 2.74 (bs, 1H), 2.27 (dd, J = 15.2, 6.4 Hz, 1H), 2.17-2.12 (m, 

2H), 2.08 (dd, J = 14.9, 3.8 Hz, 1H), 1.98-1.90 (m, 4H), 1.90-1.85 (m, 1H), 1.80-1.75 (m, 

1H), 1.70 (dd, J = 14.6, 5.9, 1H), 1.65-1.60 (m, 1H), 1.58 (s, 3H), 1.39-1.33 (m, 2H), 

1.30-1.24 (m, 2H), 1.01 (d, J = 7.0 Hz, 3H), 0.89 (s, 9H), 0.87 (s, 9H), 0.04 (s, 6H), 0.00 

(d, J = 9.4 Hz, 6H); 13C NMR (100 MHz, CDCl3) δ 149.6, 139.5, 130.2, 128.8, 124.8, 

109.7, 81.7, 80.6, 75.7, 75.2, 68.7, 52.9, 44.8, 42.2, 33.9, 32.7, 30.7, 30.0, 27.9, 26.4, 

26.0, 25.8, 25.0, 22.5, 19.4, 18.4, 18.3, 14.0, 12.0, -5.0, -5.1. HRMS m/z 712.4432 (calcd 

for C38H72O4S2Si2, 712.4411). 
 

 

A 50 mL round bottom flask was charged 

sodium hydride (27 mg, 1.12 mmol, 4.0 eq) 

and diluted with THF (3 mL) and DMF (3 

mL). To that solution was added PMB-Br 

(58.8 mg, 0.28 mmol, 1.0 eq) followed by alcohol 3-9 (200 mg, 0.28 mmol, 1 eq). The 

reaction was allowed to stir overnight (ca. 16 h) before being slowly poured into a half-

saturated solution of NH4Cl (50 mL). The aqueous layer was extracted with EtOAc (3 x 

50 mL) and the combined organics were washed with brine, and dried with MgSO4. 

Solvent was removed under reduced pressure, and the crude product was purified by 

column chromatography (10% EtOAc/Hex) to afford alcohol 3-10 as a yellow oil (230 

mg, 0.277 mmol, 99% yield). Rf 0.26 (10% EtOAc/Hex); 1H NMR (600 MHz, CDCl3) δ 

7.27 (d, J = 8.8 Hz, 2H), 6.84 (d, J = 8.8 Hz, 2H), 6.42 (dd, J = 15.2, 11.1 Hz, 1H), 6.08 

(d, J = 11.1 Hz, 1H), 5.55 (dd, J = 15.2, 7.6 Hz), 5.11 (s, 1H), 4.86 (s, 1H), 4.61 (d, J = 

11.7 Hz, 1H), 4.43 (d, J = 11.7 Hz, 1H), 4.40 (s, 1H), 4.21-4.17 (m, 1H), 4.06 (aq, J = 7.6 
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Hz, 1H), 3.81-3.78 (m, 1H), 3.78 (s, 3H), 3.50 (dd, J = 6.7, 5.6 Hz, 1H), 3.41 (dd, J = 9.4, 

6.4 Hz, 1H), 2.83-2.79 (m, 4H), 2.32 (dd, J = 14.9, 5.6 Hz), 2.15-2.08 (m, 2H), 2.02-1.94 

(m, 1H), 1.93-1.87 (m, 3H), 1.84-1.78 (m, 1H), 1.71-1.65 (m, 2H), 1.59 (s, 3H), 1.56-

1.52 (m, 1H), 1.42-1.36 (m, 2H), 1.33-1.28 (m, 2H), 1.03 (d, J = 6.4 Hz, 3H), 0.90 (s, 

9H), 0.89 (s, 9H), 0.88 (at, J = 8.2 Hz, 3H), 0.04 (s, 6H), 0.03 (d, J = 6.4 Hz, 6H); 13C 

NMR (100 MHz, CDCl3) δ 158.9, 149.6, 139.1, 131.0, 129.8, 129.6, 129.2, 124.8, 113.6, 

109.7, 81.9, 80.6, 80.6, 76.2, 70.0, 68.7, 55.2, 52.8, 45.0, 41.9, 33.9, 32.6, 30.8, 30.1, 

28.2, 26.3, 26.3, 25.0, 25.8, 25.1, 22.5, 19.4, 18.3, 18.3, 14.0, 12.1, -5.0, -5.3. HRMS m/z 

832.4966 (calcd for C46H80O5S2Si2, 832.4986). 
 

 

To 25 mL round bottom flask charged with 

TBS alcohol 3-10 (35 mg, 0.042 mmol, 1 eq) 

was added wet ethanol (20 mL) and a catalytic 

amount of PPTS was added in one portion. 

The reaction was monitored by TLC until complete (ca. 2-4 h), at which point it was 

diluted with water (30 mL) and EtOAc (30 mL). The aqueous layer was extracted with 

EtOAc (3 x 20 mL) and the combined organics were washed with brine, and dried with 

MgSO4. Solvent was removed under reduced pressure, and the crude product was 

purified by column chromatography (40% EtOAc/Hex) to afford alcohol 3-11 as a yellow 

oil (30.2 mg, 0.042 mmol, 100% yield). Rf 0.33 (40% EtOAc/Hex); 1H NMR (600 MHz, 

CDCl3) δ 7.27 (d, J = 8.8 Hz, 2H), 6.84 (d, J = 8.8Hz, 2H), 6.41 (d, J =15.2, 11.1 Hz, 

1H), 6.08 (d, J = 11.1 Hz, 1H), 5.53 (dd, J = 15.2, 7.6 Hz, 1H), 5.10 (s, 1H), 4.85 (s, 1H), 

4.58 (d,J = 11.7 Hz, 1H), 4.41 (d, J = 11.7 Hz, 1H), 4.40 (s, 1H), 4.42-4.18 (m, 1H), 4.06 

(q, J = 6.6 Hz, 1H), 3.79-3.77 (, 1H), 3.78 (s, 3H), 3.51-3.48 (m, 2H), 2.89-2.84 (m, 1H), 

2.81-2.75 (m, 3H), 2.25 (dd, J = 6.4, 5.9 Hz, 1H), 2.18 (td, J = 14.6, 4.7 Hz, 2H), 2.11-

2.03 (m, 2H), 1.96-1.85 (m, 4H), 1.83-1.76 (m, 2H) 1.67-1.62 (m, 1H), 1.58 (s, 3H), 

1.56-1.51 (m, 1H), 1.41-1.35 (m, 2H), 1.30-1.26 (m, 2H), 1.03 (d, J = 7.0 Hz, 3H), 0.89 

(t, J = 8.7 Hz, 3H), 0.89 (s, 9H), 0.01 (d, J = 5.9 Hz, 6H); 13C NMR (100 MHz, CDCl3) δ 

158.9, 149.6, 139.3, 130.9, 130.0, 129.4, 129.2, 124.8, 113.6, 109.8, 82.0, 80.7, 80.6, 

76.2, 70.0, 68.6, 55.2, 52.8, 45.1, 42.9, 33.9, 32.6, 30.7, 30.1, 28.2, 26.4, 26.2, 25.8, 25.0, 

22.5, 19.5, 18.3, 14.0, 12.1, -5.0.  
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A 50 mL round bottom flask was charged with 

alcohol 3-11 (76.7 mg, 0.106 mmol, 1 eq), 

diluted with CH2Cl2 (2 mL) and cooled to 0 °C. 

DMSO (24 mg, 0.3 mmol, 3 eq) was added, 

followed by Hunig’s base (63.5 mg, 0.5 mmol, 5 eq). The reaction mixture was allowed 

to stir for 10 min before SO3•Pyr (32 mg, 0.2 mmol, 2 eq) was added. The reaction was 

monitored by TLC until completion (ca. 2h) before being slowly poured into a half-

saturated solution of sodium bicarbonate (10 mL), and diluted with CH2Cl2 (10 mL). The 

aqueous layer was extracted with CH2Cl2 (3 x 20 mL) and the combined organics were 

washed with brine, and dried with MgSO4. Solvent was removed under reduced pressure, 

and the crude residue was dissolved in EtOAc (50 mL) and water (50 mL). The aqueous 

layer was extracted with EtOAc (3 x 50 mL) and the combined organics were washed 

with brine, and dried with MgSO4. Solvent was removed under reduced pressure, to 

afford 3-12 as a yellow oil (71.1 mg, 0.098 mmol, 93% yield) which was used without 

further purification. The second extraction using EtOAc removes oxidation byproducts 

from the reaction without using column chromatography, which was shown to epimerize 

the aldehyde. Rf 0.41 (20% EtOAc/Hex); 1H NMR (600 MHz, CDCl3) δ 9.76 (s, 1H), 

7.25 (d, J = 8.2, 1H), 6.84 (d, J = 8.2 Hz, 2H), 6.42 (dd, J = 15.2, 11.1 Hz, 1H), 6.08 (d, J 

= 10.5 Hz, 1H), 5.54 (dd, J = 15.2, 8.2 Hz, 1H), 5.10 (s, 1H), 4.85 (s, 1H) 4.56 (d, J = 

11.7 Hz, 1H), 4.40 (s, 1H), 4.36 (d, J = 11.7 Hz, 1H), 4.27-4.24 (m, 1H), 4.04 (q, J = 6.6 

Hz, 1H), 3.78 (s, 3H), 3.78-3.76 (m, 1H), 2.95-2.87 (m, 2H), 2.80-2.70 (m, 4H), 2.69-

2.56 (m, 1H), 2.13-1.97 (m, 5H), 1.92-1.78 (m, 4H), 1.67-1.62 (m, 1H), 1.59 (s, 3H), 

1.52-1.46 (m, 1H), 1.42-1.35 (m, 2H), 1.32-1.25 (m, 2H), 1.06 (d, J = 7.0 Hz, 3H), 0.89 

(s, 9H), 0.87 (t, J = 8.8 Hz, 3H), 0.01 (d, J = 6.4 Hz, 6H); 13C NMR (100 MHz, CDCl3) 

δ204.2, 159.0, 149.5, 139.4, 130.8, 130.0, 129.5, 129.2, 124.6, 113.6, 109.8, 82.2, 81.1, 

80.6, 75.0, 70.0, 55.2, 51.8, 45.2, 43.3, 41.7, 40.3, 36.7, 33.7, 30.7, 30.1, 27.9, 26.3, 26.0, 

25.8, 24.9, 22.5, 18.3, 16.0, 14.0, 12.1, -5.0.  
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To a solution of aldehyde 3-12 (15.2 mg, 

0.021 mmol, 1 eq) in diethyl ether (1 mL) 

was added silylated propanedithiol (3 drops, 

excess) and ZnI2 (10 mg, excess). The 

reaction mixture was stirred overnight (ca. 16 h) before being poured into a half-saturated 

solution of sodium bicarbonate (10 mL), and diluted with EtOAc (10 mL). The aqueous 

layer was extracted with EtOAc (3 x 20 mL) and the combined organics were washed 

with brine, and dried with MgSO4. Solvent was removed under reduced pressure, and the 

crude yellow oil which was purified by column chromatography to afford 3-13 (10 mg, 

0.010 mmol, 50% yield). 1H NMR (600 MHz, CDCl3) δ 7.27 (d, J = 8.8 Hz, 2H), 6.85 (d, 

J = 8.2 Hz, 2H), 6.41 (dd, J = 15.2, 11.1 Hz, 1H), 6.08 (d, J = 10.5 Hz, 1H), 5.54 (dd, J = 

15.2, 7.6 Hz, 1H), 5.10 (s, 1H), 4.85 (s, 1H), 4.82 (d, J = 4.1 Hz, 1H), 4.59 (d, J = 11.7 

Hz, 1H), 4.43 (d, J = 11.7 Hz, 1H), 4.40 (s, 1H), 4.20-4.17 (m, 1H), 4.05 (q, J = 6.4 Hz, 

1H), 3.78 (s, 4H), 2.83-2.79 (m, 4H), 2.73-2.65 (m, 2H), 2.64-2.60 (m, 2H), 2.36-2.28 

(m, 2H), 2.22-2.17 (m, 1H), 2.15-2.10 (m, 1H), 2.08-2.05 (m, 1H), 1.85-1.78 (m, 1H), 

1.71 (dd, J = 14.9, 6.7 Hz, 1H), 1.70-1.64 (m, 1H), 1.58 (s, 3H), 1.56-1.49 (m, 1H), 1.41-

1.33 (m, 4H), 1.30-1.27 (m, 2H), 1.14 (d, J = 7.0 Hz, 3H), 0.89 (s, 9H), 0.87 (t, J = 8.7 

Hz, 3H), 0.18 (s, 9H), 0.02 (d, J = 6.4 Hz, 6H). 
 

 

A flask was charged with alcohol 3-6 (4.2 g, 10 mmol, 

1.0 eq), diluted with DMF (100 mL) and imidazole (2.04 

g, 30 mmol, 3.0 eq) was added in one portion. The 

reaction was allowed to stir for 2 min before TBDPSCl (4.12 g, 15 mmol, 1.5 eq) was 

added followed by a catalytic amount of DMAP. The flask was equipped with a reflux 

condenser, heated to 50 °C and stirred overnight (ca. 16 h). The flask was cooled to rt 

before the contents were poured into a half-saturated solution of NH4Cl (100 mL), and 

diluted with EtOAc (100 mL). The aqueous layer was extracted with EtOAc (3 x 50 mL) 

and the combined organics were washed with brine, and dried with MgSO4. Solvent was 

removed under reduced pressure to afford 3-13a as a yellow oil (6.2 g, 9.5 mmol, 95% 

yield) which was used without further purification. Rf 0.61 (50% EtOAc/Hex); 1H NMR 

(600 MHz, CDCl3) δ 7.71-7.66 (m, 4H), 7.42-7.34 (m, 6H), 4.27 (dd, J = 8.6, 4.7 Hz, 
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1H), 4.14-4.08 (m, 1H), 3.62 (dq, J = 5.1, 4.7 Hz, 2H), 3.50 (dd, J = 9.6, 5.7 Hz, 1H), 

3.38 (dd, J = 7.0, 6.6 Hz, 1H), 2.82-2.78 (m, 4H), 2.29-2.24 (m, 1H), 2.20-2.08 (m, 3H), 

2.01-1.87 (m, 4H), 1.83-1.76 (m, 1H), 1.71 (dd, J = 14.9, 5.5, 1H), 1.62-1.52 (m, 1H), 

1.04 (s, 9H), 1.00 (d, J = 7.0, 3H), 0.08 (s, 9H), 0.02 (s, 6H). 
 

 

To a flask charged with TBS ether 3-13a (659 mg, 1.0 

mmol, 1 eq) was added wet MeOH (10 mL) and THF (3 

mL). The mixture was stirred for 10 min to allow complete 

dissolution of the alcohol into the solution, before 10-CSA was added (10 mg, catalytic). 

After exactly 10 min, the contents were poured into a half-saturated solution of sodium 

bicarbonate (50 mL), and diluted with EtOAc (50 mL). The aqueous layer was extracted 

with EtOAc (3 x 50 mL) and the combined organics were washed with brine, and dried 

with MgSO4. Solvent was removed under reduced pressure to afford 3-14 as a yellow oil 

(424 mg, 0.78 mmol, 78% yield) which was used without further purification. Rf 0.69 

(20% EtOAc/Hex); 1H NMR (400 MHz, CDCl3) δ 7.71-7.67 (m, 4H), 7.43-7.35 (m, 6H), 

4.3404.27 (m, 1H), 4.16-4.10 (m, 1H), 3.64 (d, J = 4.7 Hz, 2H), 3.50 (d, J = 5.9 Hz, 1H), 

2.87-2.78 (m, 4H), 2.28-2.14 (m, 4H), 2.09-1.86 (m, 5H), 1.85-1.77 (m, 2H), 1.63-1.53 

(m, 1H), 1.05 (s, 9H), 1.03 (d, J = 6.6 Hz, 3H) ; 13C NMR (100 MHz, CDCl3) δ 135.6, 

135.6, 133.6, 129.5, 127.6, 78.9, 76.2, 68.6, 66.5, 52.7, 45.3, 42.7, 41.7, 33.9, 32.6, 28.0, 

26.8, 26.3, 26.2, 25.0, 19.4, 19.2.  
 

 

Alcohol 3-14 was oxidized using an analogous procedure to 

that of 3-12 on a 1 mmol scale, resulting in a 98% yield of 3-

15 which was used without purification. Rf 0.46 (20% 

EtOAc/Hex); 1H NMR (400 MHz, CDCl3) δ 9.76 (d, J = 2.4 Hz, 1H), 7.70-7.66 (m, 4H), 

7.43-7.35 (m, 6H), 4.33 (ddt, J = 12.4, 5.6, 3.7 Hz, 1H), 4.11 (tt, J = 7.1, 4.6 Hz, 1H), 

3.65-3.58 (m, 2H), 2.98-2.87 (m, 2H), 2.82-2.69 (m, 3H), 2.61-2.56 (m, 1H), 2.14-2.05 

(m, 3H), 2.03-1.94 (m, 2H), 1.88-1.81 (m, 1H), 1.80-1.74 (m, 1H), 1.59-1.49 (m, 1H), 

1.04 (d, J = 7.0 Hz, 3H), 1.04 (s, 9H); 13C NMR (100 MHz, CDCl3) δ 204.2, 135.6, 

133.6, 129.5, 127.6, 79.4, 75.0, 66.6, 51.8, 45.4, 43.4, 41.8, 40.2, 33.8, 27.8, 26.8, 26.3, 

26.0, 24.8, 19.2, 16.0.  
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To a flask charged with aldehyde 3-2 (143 mg, 0.264 mmol, 

1 eq) and diluted with wet MeCN (3 mL) was added 1,3-

propanedithiol (0.04 mL, 0.395 mmol, 1.5 eq) in one 

portion, followed by Yb(OTf)3 (10 mg, catalytic). The 

reaction was stirred at rt for 48 h before the contents were poured into a half-saturated 

solution of sodium bicarbonate (30 mL), and diluted with EtOAc (30 mL). The aqueous 

layer was extracted with EtOAc (3 x 30 mL) and the combined organics were washed 

with brine, and dried with MgSO4. Solvent was removed under reduced pressure and the 

crude oil was purified by column chromatography (10% EtOAc/Hex) to afford 3-2 as a 

yellow oil (106 mg, 0.167 mmol, 63.4% yield) and recovered aldehyde 3-15 (15.2 mg, 

0.0028 mmol, 10.6% yield). Rf 0.43 (20% EtOAc/Hex); 1H NMR (400 MHz, CDCl3) δ 

7.70-7.66 (m, 4H), 7.42-7.34 (m, 6H), 4.48 (d, J = 3.1 Hz, 1H), 4.32-4.26 (m, 1H), 4.11 

(tt, J = 7.1, 4.8 Hz, 1H), 3.66-3.58 (m, 2H), 2.96-2.76 (m, 8H), 2.53 (dd, J = 15.2, 5.5 Hz, 

1H), 2.35-2.28 (m, 1H), 2.26 (dd, J = 15.0, 6.4 Hz, 1H) 2.20-2.05 (m, 3H), 2.00-1.90 (m, 

3H), 1.87-1.75 (m, 3H), 1.62-1.54 (m, 1H), 1.16 (d, J = 7.0 Hz, 3H), 1.04 (s, 9H); 13C 

NMR (100 MHz, CDCl3) δ 135.6, 133.7, 129.5, 127.6, 78.9, 75.9, 66.6, 56.7, 52.7, 45.3, 

42.7, 35.6, 33.9, 31.4, 30.,8 28.1, 26.8, 26.5, 26.3, 25.0, 19.2, 19.0. 
 

 

To a suspension of NaH (45 mg, 3.72 mmol, 2.0 eq) in THF 

(40 mL) and DMF (10 mL) at 0 °C was added freshly 

prepared PMBBr (373 mg, 1.86 mmol, 1.0 eq), followed by 

alcohol 3-6 (781 mg, 1.86 mmol, 1.0 eq). The ice-bath was removed and after ca. 16 h the 

reaction was poured into a half saturated solution NH4Cl (50 mL) in water ice (50 mL) 

and stirred for 5 min, after which the aqueous layer was extracted with EtOAc (50 mL x 

3). The combined organics were washed with brine, dried over MgSO4, and filtered 

through a thin pad of packed celite. Solvent was removed under reduced pressure and the 

crude oil was purified by flash chromatography (10% EtOAc/Hex) to yield the PMB 

ether (3-16) as a colorless oil (853 mg, 1.58 mmol, 85%). Rf 0.51 (20% EtOAc/Hex); 
1H NMR (400 MHz, CDCl3) δ 7.26 (d, J = 8.6 Hz, 2H), 6.85 (d, J = 8.6 Hz, 2H), 4.50 (q, 

J = 7.8 Hz, 2H), 4.23 (dq, J = 8.1, 5.3 Hz, 1H), 4.15 (quin, J = 6.1 Hz, 1H), 3.79 (s, 4H), 
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3.50-3.44 (m, 2H), 3.43-3.36 (m, 2H), 2.82-2.77 (m, 4H), 2.29 (dd, J = 15.0, 5.6 Hz, 1H), 

2.19-2.06 (m, 3H), 2.03-1.88 (m, 4H), 1.70-1.51 (m, 3H), 1.01 (d, J = 7.0 Hz, 3H), 0.88 

(s, 9H), 0.03 (s, 6H). 13C NMR (100 MHz, CDCl3) δ 159.1, 130.6, 129.2, 113.7, 77.4, 

76.1, 72.8, 72.7, 68.7, 55.2, 52.9, 45.3, 42.0, 33.8, 32.6, 29.0, 26.3, 26.0, 25.0, 19.4, 18.3, 

-5.3. 
 

 

To a solution of PMB ether (3-16) (548 mg, 1.0 mmol, 1 eq) 

in MeOH (20 mL) was added 10-CSA (10 mg, catalytic). The 

reaction was stirred at rt until completion by TLC analysis 

(ca. 1 h). The reaction was poured into half saturated solution of sodium bicarbonate (50 

mL) and diluted with EtOAc (50 mL), the aqueous layer was extracted with EtOAc (4 x 

30 mL) and the combined organics were washed with brine, and dried with MgSO4. 

Solvent was removed under reduced pressure to afford 3-16a as a yellow oil, which was 

used without further purification (408 mg, 0.96 mmol, 96% yield). Rf 0.25 (40% 

EtOAc/Hex); 1H NMR (600 MHz, CDCl3) δ 7.25 (d, J = 8.2 Hz, 2H), 6.84 (d, J = 8.2 Hz, 

2H), 4.49 (q, J = 12.3 Hz, 2H), 4.26-4.21 (m, 1H), 4.17-4.13 (m, 1H), 3.77 (s, 3H), 3.48 

(d, J = 4.7 Hz, 2H), 3.34-3.41 (m, 1H), 3.40-3.36 (m, 1H), 2.85-2.75 (m, 4H), 2.25-2.22 

(m, 1H), 2.18-2.14 (m, 3H), 2.03-1.90 (m, 6H), 1.75 (dd, J = 15.2, 5.3 Hz, 1H), 1.65-1.54 

(m, 2H), 1.03 (d, J = 6.4 Hz, 3H). 13C NMR (100 MHz, CDCl3) δ 159.0, 130.5, 129.2, 

113.6, 77.4, 76.0, 72.9, 72.6, 68.5, 55.2, 52.6, 45.2, 42.8, 33.7, 32.6, 28.7, 26.3, 26.2, 

24.9, 19.4. 
 

 

A 250 mL round bottom flask was charged with alcohol 3-16a 

(409 mg, 0.96 mmol, 1 eq), diluted with CH2Cl2 (15 mL) and 

cooled to 0 °C. DMSO (374 mg, 4.80 mmol, 5 eq) was added, 

followed by Hunig’s base (868 mg, 6.73 mmol, 7 eq). The reaction mixture was allowed 

to stir for 10 min before SO3•Pyr (449 mg, 2.88 mmol, 3 eq) was added portion wise over 

5 min. The reaction was monitored by TLC until completion (ca. 1h) before being slowly 

poured into a half-saturated solution of sodium bicarbonate (50 mL), and diluted with 

CH2Cl2 (50 mL). The aqueous layer was extracted with CH2Cl2 (3 x 30 mL) and the 

combined organics were washed with brine, and dried with MgSO4. Solvent was removed 
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under reduced pressure, and the crude residue was dissolved in EtOAc (100 mL) and 

water (100 mL). The aqueous layer was extracted with EtOAc (3 x 50 mL) and the 

combined organics were washed with brine, and dried with MgSO4. Solvent was removed 

under reduced pressure, to afford 3-17 as a yellow oil (406 mg, 0.96 mmol, 99% yield) 

which was used without further purification. Rf 0.59 (40% EtOAc/Hex); 1H NMR (600 

MHz, CDCl3) δ 9.76 (d, J = 2.3 Hz, 1H), 7.24 (d, J = 8.8 Hz, 2H), 6.85 (d, J = 8.8 Hz, 

2H), 4.47 (q, J = 8.2 Hz, 2H), 4.29-4.25 (m, 1H), 4.14 (dt, J = 12.3, 6.1 Hz, 1H), 3.78 (s, 

3H), 3.34 (ABd, J = 5.9, 4.1 Hz, 1H), 3.39 (ABd, J = 5.9, 4.1 Hz, 1H), 2.95-2.87 (m, 2H), 

2.80-2.68 (m, 3H), 2.57 (ddd, J = 14.0, 6.4, 2.9 Hz, 1H), 2.13-2.06 (m, 3H), 2.04-1.95 

(m, 4H), 1.89-1.82 (m, 1H), 1.64-1.58 (m, 1H), 1.56-1.49 (m, 1H), 1.07 (d, J = 7.0 Hz, 

3H). 13C NMR (100 MHz, CDCl3) δ 204.1, 159.1, 130.4, 129.2, 113.7, 77.8, 74.8, 72.9, 

72.7, 55.2, 51.7, 45.3, 43.3, 40.3, 33.6, 28.5, 26.3, 26.0, 24.8, 16.0. 
 

 

To a solution of ketone 3-18 (540 mg, 2.5 mmol, 

2.5 eq) in diethyl ether (15 mL) cooled to -78 °C 

was added (+)-(iPc)2BCl (1.6 M, 1.5 mL, 2.4 

mmol, 2.4 eq) drop wise, followed by triethylamine 

(0.55 mL, 4.0 mmol, 4.0 eq) drop wise. The reaction was stirred for 1 h at -78 °C before 

aldehyde 3-17 (424 mg, 1.0 mmol, 1.0 eq) was added drop wise over 10 min. The 

reaction was stirred an additional 30 min before methanol (10 mL) was added and the 

cooling back was removed and the reaction warmed to rt, at which point pH 7 buffer (20 

mL) was added and the mixture was stirred for an additional 30 min. The mixture was 

diluted with EtOAc (20 mL) and the aqueous layer was extracted with EtOAc (3 x 50 

mL) and the combined organics were washed with brine, and dried with MgSO4. Solvent 

was removed under reduced pressure to afford the crude oil which was purified by 

column chromatography (20-40% EtOAc/Hex) to afford 3-19 as a yellow oil (570 mg, 

0.89 mmol, 89% yield). Rf 0.32 (30% EtOAc/Hex); 1H NMR (600 MHz, CDCl3) δ 7.24 

(d, J = 8.2 Hz, 2H), 6.84 (d, J = 8.2 Hz, 2H), 4.49 (dd, J = 15.8, 10.1 Hz, 2H), 4.23 (dd, J 

= 8.5, 5.6 Hz, 1H), 4.14 (t, J = 5.9 Hz, 1H), 3.77 (s, 3H), 3.69 (dd, J = 9.7, 7.9 Hz, 1H), 

3.61 (dd, J = 6.0, 5.3 Hz, 1H), 3.43 (abd, J = 9.9, 5.3 Hz, 1H), 3.37 (abd, J = 9.9, 5.3 Hz, 

1H), 3.03 (d, J = 2.3 Hz, 1H), 2.82-2.74 (m, 5H), 2.63-2.56 (m, 2H), 2.37 (dd, J = 14.9, 
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3.8 Hz, 1H), 2.27 (dd, J = 14.9, 5.6 Hz, 1H), 2.18-2.13 (m, 1H), 2.08 (dd, J = 14.9, 5.0 

Hz, 1H), 2.00-1.95 (m, 1H), 1.95-1.87 (m, 3H), 1.70 (dd, J = 15.2, 5.3 Hz, 1H), 1.65-1.50 

(m, 3H), 0.99 (dd, J = 7.0, 5.3 Hz, 6H), 0.84 (s, 9H), 0.01 (d, J = 7.6 Hz, 6H); 13C NMR 

(100 MHz, CDCl3) δ 214.9, 158.8, 130.3, 129.0, 113.4, 77.2, 75.8, 72.7, 72.4, 70.6, 65.4, 

55.0, 52.8, 48.7, 46.2, 45.1, 41.9, 34.2, 33.6, 34.2, 33.6, 28.6, 26.0, 25.6, 24.8, 18.0, 16.2, 

12.5, -5.8 
 

 

To a solution of alcohol 3-19 (568 mg, 0.89 mmol, 

1.0 eq) and benzaldehyde (470 mg, 4.43 mmol, 5.0 

eq) in THF (10 mL) cooled to -20 °C was added a 

freshly prepared solution of samarium iodide11 (0.1 

M, 2.66 mL, 0.27 mmol, 0.3 eq) drop wise over 20 min. The reaction was stirred for 30 

min at -20 °C before being pourted into a half saturated solution of sodium bicarbonate 

(50 mL) and diluted with EtOAc (30 mL). The aqueous layer was extracted with EtOAc 

(3 x 50 mL) and the combined organics were washed with brine, and dried with MgSO4. 

Solvent was removed under reduced pressure to afford the crude oil which was purified 

by column chromatography (20% EtOAc/Hex) to afford 3-20 as a yellow oil (585 mg, 

0.80 mmol, 90.2% yield). Rf 0.44 (30% EtOAc/Hex); 1H NMR (600 MHz, CDCl3) δ 8.04 

(d, J = 7.0 Hz, 2H), 7.54 (t, J = 7.0 Hz, 1H), 7.42 (t, J = 7.0 Hz, 2H), 7.23 (d, J = 8.2 Hz, 

2H), 6.84 (d, J = 8.2 Hz, 2H), 5.44 (d, J = 10.5 Hz, 1H), 4.49 (dd, J = 15.8, 10.1 Hz, 2H), 

4.20 (dd, J = 8.2, 5.3 Hz, 1H), 4.10 (quin, J = 6.3 Hz, 1H), 3.78 (s, 3H), 3.70 (dd, J = 9.9, 

4.7 Hz, 1H), 3.58-3.56 (m, 2H), 3.50-3.46 (m, 1H), 3.38 (ABd, J = 9.9, 5.3 Hz, 1H), 3.31 

(ABd, J = 9.9, 5.3 Hz, 1H), 2.82-2.71 (m, 4H), 2.28-2.19 (m, 2H), 2.11-2.06 (m, 2H), 

1.95-1.90 (m, 1H), 1.90-1.85 (m, 3H), 1.79 (dd, J = 14.6, 5.3 Hz, 1H), 1.73-1.64 (m, 2H), 

1.60-1.47 (m, 2H), 1.20 (d, J = 6.4 Hz, 3H), 0.88 (d, J = 7.0 Hz, 3H), 0.80 (s, 9H), -0.01 

(s, 6H). 13C NMR (100 MHz, CDCl3) δ 167.1, 159.0, 132.9, 130.6, 130.3, 129.8, 129.2, 

128.3, 113.7, 77.4, 76.4, 75.9, 72.9, 72.6, 70.4, 66.3, 55.2, 52.8, 45.2, 42.6, 40.4, 36.9, 

34.1, 33.7, 29.7, 28.9, 26.4, 25.8, 24.9, 19.1, 17.0, 13.5, -5.6. 

 

 

 



128 
 

 

 

To a solution of alcohol (3-20) (10.7 g, 42.6 mmol, 

1 eq) in DMF (300 mL) was added imidazole (5.8 

g, 85.2 mmol, 2 eq), followed by TBSCl (6.6 g, 

42.6 mmol, 1 eq) and DMAP (50 mg, catalytic). 

The reaction was stirred overnight (ca. 16 h) before being poured into a half saturated 

solution of NH4Cl, and the aqeous layer was extracted with CH2Cl2 (5 x 200 mL) and the 

combined organics were washed with brine and dried over MgSO4. Solvent was removed 

under reduced pressure to give the TBS alcohol, which was purified by flash 

chromatography (5% EtOAc/Hex) to give the pure alcohol (3-20a) as a yellow oil (15.3 

g, 42.2 mmol, 99% yield). Rf 0.47 (20% EtOAc/Hex); 1H NMR (600 MHz, CDCl3) δ 8.02 

(d, J = 7.0 Hz, 2H), 7.51 (t, J = 7.0 Hz, 1H), 7.39 (t, J = 7.0 Hz, 2H), 7.24 (d, J = 8.2 Hz, 

2H), 6.85 (d, J = 8.2 Hz, 2H), 5.24 (d, J = 10.2 Hz, 1H), 4.49 (dd, J = 15.8, 10.1 Hz, 2H), 

4.18 (dd, J = 8.0, 5.3 Hz, 1H), 4.07 (quin, J = 6.3 Hz, 1H), 3.90 (dd, J = 6.6, 3.2 Hz, 1H), 

3.78 (s, 3H), 3.49-3.42 (m, 2H), 3.38 (ABd, J = 9.9, 5.3 Hz, 1H), 3.30 (ABd, J = 9.9, 5.3 

Hz, 1H), 2.82-2.58 (m, 5H), 2.35 (d, J = 14.8 Hz, 1H), 2.30-2.20 (m, 2H), 2.06-1.72 (m, 

8H), 1.62-1.41 (m, 4H), 1.15 (d, J = 6.6 Hz, 3H), 0.88 (s, 9H), 0.80 (s, 9H), 0.02 (d, J = 

5.1 Hz, 6H), -0.01 (s, 6H). 13C NMR (100 MHz, CDCl3) δ 166.2, 159.0, 132.6, 130.9, 

130.6, 129.6, 129.2, 128.2, 113.7, 75.8, 72.9, 72.7, 69.6, 65.2, 55.2, 55.7, 45.4, 42.0, 41.8, 

41.5, 33.9, 33.8, 33.0, 29.7, 29.0, 26.3, 26.0, 25.8, 25.7, 24.9, 18.1, 18.1, 17.8, 10.7, -2.9, 

-4.3, -4.6, -5.4, -5.5. 
 

 

To a solution of TBS ether (3-20a) (134 mg, 0.162 

mmol, 1 eq) in wet EtOH (5 mL) was added PPTS 

(10 mg, catalytic). The reaction was stirred overnight 

(ca. 16 h) at rt before being poured into a half 

saturated solution of sodium bicarbonate (50 mL) and diluted with EtOAc (50 mL), the 

aqueous layer was extracted with EtOAc (4 x 20 mL) and the combined organics were 

washed with brine, and dried with MgSO4. Solvent was removed under reduced pressure 

to afford 3-21 as a yellow oil, which was used without further purification (118 mg, 0.159 

mmol, 98% yield). Rf 0.26 (30% EtOAc/Hex); 1H NMR (600 MHz, CDCl3) δ 8.01 (d, J = 
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7.6 Hz, 2H), 7.53 (t, J = 7.3 Hz, 1H), 7.41 (t, J = 7.6 Hz, 2H), 7.23 (d, J = 8.8 Hz, 2H), 

6.85 (d, J = 8.8 Hz, 2H), 5.19 (bs, 1H), 4.44 (q, J = 11.7 Hz, 2H), 4.19-4.15 (m, 1H), 4.09 

(q, J = 7.0 Hz, 1H), 3.86-3.85 (m, 2H), 3.78 (s, 3H), 3.54-3.52 (m, 1H), 3.37 (ABd, J = 

9.9, 5.3 Hz, 1H), 3.31 (ABd, J = 9.9, 5.3 Hz, 1H), 2.79-2.68 (m, 4H), 2.36 (bs, 1H), 2.29 

(d, J = 14.6 Hz, 1H), 2.25 (bs, 1H), 2.18-2.17 (m, 1H), 2.07-1.98 (m, 3H), 1.94-1.83 (m, 

4H), 1.82-1.73 (m, 2H), 1.57-1.50 (m, 1H), 1.50-1.44 (m, 1H), 1.18 (d, J = 7.0 Hz, 3H), 

1.01 (d, J = 7.0 Hz, 3H), 0.88 (s, 9H), 0.07 (d, J = 10.5 Hz, 6H). 13C NMR (100 MHz, 

CDCl3) δ 166.2, 159.1, 132.8, 130.6, 129.5, 129.2, 128.3, 113.7, 77.4, 76.6, 75.8, 73.6, 

72.9, 72.6, 64.6, 55.2, 52.8, 45.5, 42.0, 39.1, 35.8, 33.7, 33.1, 29.7, 28.8, 26.3, 25.9, 24.9, 

17.9, 17.0, 13.9, -4.4, -4.6.  
 

 

A 25 mL round bottom flask was charged with 

alcohol 3-21 (484 g, 0.661 mmol, 1 eq), diluted with 

CH2Cl2 (10 mL) and cooled to 0 °C. DMSO (257 mg, 

3.30 mmol, 5 eq) was added, followed by Hunig’s base (600 mg, 4.63 mmol, 7 eq). The 

reaction mixture was allowed to stir for 10 min before SO3•Pyr (309 mg, 1.98 mmol, 3 

eq) was added. The reaction was monitored by TLC until completion (ca. 1h) before 

being slowly poured into a half-saturated solution of sodium bicarbonate (100 mL), and 

diluted with CH2Cl2 (50 mL). The aqueous layer was extracted with CH2Cl2 (3 x 50 mL) 

and the combined organics were washed with brine, and dried with MgSO4. Solvent was 

removed under reduced pressure, and the crude residue was dissolved in EtOAc (100 mL) 

and water (100 mL). The aqueous layer was extracted with EtOAc (3 x 50 mL) and the 

combined organics were washed with brine, and dried with MgSO4. Solvent was removed 

under reduced pressure, to afford 3-22 as a yellow oil which was used without further 

purification. Rf 0.38 (30% EtOAc/Hex); 1H NMR (600 MHz, CDCl3) δ 9.76 (s, 1H), 8.05 

(d, J = 7.0 Hz, 1H), 7.55 (t, J = 6.8 Hz, 1H), 7.44 (t, J = 6.8 Hz, 2H), 7.25 (d, J = 8.6 Hz, 

2H), 6.86 (d, J = 8.6 Hz, 2H), 5.29-5.25 (m, 1H), 4.47 (q, J = 7.0 Hz, 2H), 4.22-4.16 (m, 

1H), 4.14-4.08 (m, 2H), 3.80 (s, 3H), 3.40 (ABd, J = 9.9, 5.3 Hz, 1H), 3.33 (ABd, J = 

9.9, 5.3 Hz, 1H), 2.83-2.64 (m, 4H), 2.35-2.27 (m, 2H), 2.20 (dd, J = 15.0, 5.6 Hz, 1H), 

2.09-2.01 (m, 2H), 1.95-1.82 (m, 4H), 1.76-1.71 (m, 1H), 1.58-1.44 (m, 2H), 1.17 (d, J = 

7.0 Hz, 3H), 1.13 (d, J = 7.0 Hz, 3H), 0.88 (s, 9H), 0.06 (d, J = 18.7 Hz, 6H). 13C NMR 



130 
 

(100 MHz, CDCl3) δ 205.8, 166.1, 159.0, 132.8, 130.5, 129.6, 129.2, 128.3, 113.6, 77.4, 

76.2, 75.8, 82.9, 72.6, 69.8, 63.0, 55.2, 52.7, 52.0, 45.4, 41.8, 41.7, 36.1, 33.7, 33.4, 28.9, 

26.3, 26.2, 25.8, 24.8, 19.4, 18.0, 17.4, 9.3, -4.5.  
 

 

A 25 mL flask was charged with 

triphenylphosphine (866 mg, 3.30 mmol, 5.0 eq) 

and CH2Cl2 (10 mL) and was cooled to 0 °C. The 

septum was temporarily removed to add carbon 

tetrabromide (540 mg, 1.65 mmol, 2.5 eq) in one portion. The ice bath was removed and 

the reaction was stirred at room temperature for 30 min, after which it was re-cooled to 0 

°C. The above crude aldehyde 3-22 from above (~477 mg, ~0.661 mmol, ~1 eq) was 

added in one portion in minimal CH2Cl2. The reaction was monitored by TLC until 

completion (ca. 10 min) before being slowly poured into a half-saturated solution of 

sodium bicarbonate (50 mL), and diluted with CH2Cl2 (50 mL). The aqueous layer was 

extracted with CH2Cl2 (3 x 50 mL) and the combined organics were washed with brine, 

and dried with MgSO4. Solvent was removed under reduced pressure, and the crude oil 

was purified by column chromatography (20% EtOAc/Hex) to afford 3-22a as a yellow 

oil (520 mg, 0.58 mmol, 88% yield over 2 steps). Rf 0.54 (30% EtOAc/Hex); 1H NMR 

(600 MHz, CDCl3) δ 8.03 (d, J = 7.0 Hz, 2H), 7.54 (t, J = 7.0 Hz, 1H), 7.42 (t, J = 7.6 

Hz, 2H), 7.24 (d, J = 8.8 Hz, 2H), 6.85 (d, J = 8.8 Hz, 2H), 6.37 (d, J = 9.4 Hz, 1H), 5.19 

(dt, J = 9.1, 3.4 Hz, 1H), 4.46 (q, J = 11.7 Hz, 2H), 4.19-4.15 (m, 1H), 4.09 (dt, J = 12.6, 

6.0 Hz, 1H), 3.79 (s, 3H), 3.73-3.70 (m, 1H), 3.40 (dd, J = 9.9, 5.9 Hz, 1H), 3.32 (dd, J = 

9.9, 5.9 Hz, 1H), 2.84-2.59 (m, 5H), 2.33 (dd, J = 14.6, 2.3 Hz, 1H), 2.25 (dd, J = 9.8, 

6.6, 2.9 Hz, 1H), 2.21 (dd, J = 14.9, 5.6 Hz, 1H), 2.07-2.03 (m, 1H), 2.00 (dd, J = 14.9, 

5.0 Hz, 1H), 1.94-1.84 (m, 3H), 1.78-1.66 (m, 3H), 1.55-1.43 (m, 2H), 1.16 (d, J = 7.0 

Hz, 3H), 1.00 (d, J = 6.4 Hz, 3H), 0.89 (s, 9H), 0.05 (d, J = 12.9 Hz, 6H). 13C NMR (100 

MHz, CDCl3) δ 166.1, 159.0, 140.1, 132.7, 130.6, 129.6, 129.2, 128.3, 113.6, 89.0, 77.3, 

76.6, 75.8, 72.9, 72.6, 71.2, 55.2, 52.7, 45.4, 44.1, 41.7, 36.0, 33.7, 33.5, 28.9, 26.4, 26.3, 

25.9, 24.9, 18.0, 17.4, 14.3, -4.4. 
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 A 50 mL flask was charged with dibromde 3-22a 

(520 mg, 0.58 mmol, 1 eq), diluted with THF (10 mL) 

and cooled to -78 °C. nBuLi (2.10 M, 1.40 mL, 2.88 

mmol, 5.0 eq) was added slowly drop wise over 15 min. The reaction was stirred at -78 

°C for 30 min at which point it was judged complete by TLC. The reaction was slowly 

poured into a half-saturated solution of NH4Cl (50 mL), the aqueous layer was extracted 

with CH2Cl2 (3 x 30 mL) and the combined organics were washed with brine, and dried 

with MgSO4. Solvent was removed under reduced pressure, and the crude product was 

purified by column chromatography (20% EtOAc/Hex) to afford alkyne 3-23 as a yellow 

oil (360 mg, 0.57 mmol, 99% yield). Rf 0.14 (20% EtOAc/Hex); 1H NMR (600 MHz, 

CDCl3) δ 7.25 (d, J = 8.6 Hz, 2H), 6.85 (d, J = 8.6 Hz, 2H), 4.50 (q, J = 7.0 Hz, 2H), 

4.27-4.21 (m, 1H), 4.17-4.12 (quin, J = 6.1 Hz, 1H), 3.98 (ddd, J = 7.7, 5.0, 2.9 Hz, 1H), 

3.88-3.86 (m, 1H), 3.78 (s, 3H), 3.44 (ABd, J = 6.6, 5.9 Hz, 1H), 3.37 (ABd, J = 6.6, 5.9 

Hz, 1H), 2.85-2.78 (m, 4H), 2.69 (ddd, J = 7.1, 4.8, 2.5 Hz, 1H), 2.35 (dd, J = 15.0, 4.1 

Hz, 1H), 2.27 (dd, J = 15.0, 5.7 Hz, 1H), 2.21 (d, J = 4.3 Hz, 1H), 2.19-2.08 (m, 2H), 

2.05 (d, J = 2.3 Hz, 1H), 2.01-1.89 (m, 4H), 1.73-1.48 (m, 5H), 1.14 (d, J = 7.0 Hz, 3H), 

0.99 (d, J = 7.0 Hz, 3H), 0.88 (s, 9H), 0.09 (d, J = 7.0 Hz, 6H). 13C NMR (100 MHz, 

CDCl3) δ 159.1, 130.6, 129.2, 113.7, 86.7, 77.4, 76.0, 72.9, 72.6, 72.0, 71.6, 70.0, 55.2, 

52.9, 45.4, 42.2, 35.9, 35.5, 33.8, 32.1, 28.9, 26.3, 26.2, 25.8, 24.9, 18.0, 16.6, 15.1, -4.5, 

-4.6.  
 

 

To a solution of alcohol 3-23 (360 mg, 0.57 mmol, 1 

eq) in CH2Cl2 (10 mL) and Et3N (291 mg, 2.99 mmol, 

5.0 eq) was added TMSCl (0.18 mL, 1.44 mmol, 2.5 

eq) drop wise followed by 4-DMAP (2 mg, catalytic). The reaction was monitored by 

TLC until completion (ca. 30 min) before being slowly poured into a half-saturated 

solution of sodium bicarbonate (50 mL), and diluted with CH2Cl2 (50 mL). The aqueous 

layer was extracted with CH2Cl2 (3 x 50 mL) and the combined organics were washed 

with brine, and dried with MgSO4. Solvent was removed under reduced pressure, and the 

crude oil was purified by column chromatography (20% EtOAc/Hex) to afford 3-24 as a 

yellow oil (375 mg, 0.53 mmol, 93%). Rf 0.57 (30% EtOAc/Hex); 1H NMR (600 MHz, 
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CDCl3) δ 7.25 (d, J = 8.6 Hz, 2H), 6.85 (d, J = 8.6 Hz, 2H), 4.50 (q, J = 6.2 Hz, 2H), 

4.25-4.19 (m, 1H), 4.15 (quin, J = 6.5 Hz, 1H), 3.78 (s, 3H), 3.72 (td, J = 6.5, 2.3 Hz, 

1H), 3.67 (td, J = 6.1, 2.7 Hz, 1H), 3.45 (ABd, J = 6.6, 5.9 Hz, 1H), 3.37 (ABd, J = 6.6, 

5.9 Hz, 1H), 2.88-2.69 (m, 5H), 2.31 (dd, J = 14.8, 5.1 Hz, 1H), 2.22-2.14 (m, 2H), 2.09 

(dd, J = 15.0, 5.7 Hz, 1H), 2.03 (d, J = 2.7 Hz, 1H), 2.04-1.98 (m, 1H), 1.96-1.80 (m, 

4H), 1.69-1.54 (m, 4H), 1.15 (d, J = 7.0 Hz, 3H), 0.99 (d, J = 7.0 Hz, 3H), 0.88 (s, 9H), 

0.13 (s, 9H), 0.07 (d, J = 11.3 Hz, 6H). 13C NMR (100 MHz, CDCl3) δ 159.1, 130.6, 

129.2, 113.7, 85.8, 76.3, 74.8, 72.9, 72.7, 72.1, 69.8, 55.2, 53.4, 45.8, 42.9, 39.2, 34.6, 

33.9, 32.0, 29.1, 26.3, 26.3, 25.8, 25.0, 18.1, 16.4, 16.0, 0.9, -4.0, -4.3.  
 

 

 To a solution of hexabutylditin (700 mg, 1.25 

mmol, 4 eq) in THF (10 mL) cooled to -20 °C was 

added nBuLi (2.10 M, 0.60 mL, 1.26 mmol, 4 eq) 

drop wise. The reaction was allowed to stir at -20 

°C for 10 min followed by the drop wise addition of freshly prepared MeMgI (1.0 M in 

ether, 1.25 mL, 1.25 mmol, 4 eq). The reaction was stirred another 10 min before CuCN 

(28 mg, 0.31 mmol, 4 eq) was added in one portion. The reaction was stirred another 5 

min at -20 °C before alkyne 3-24 (221 mg, 0.31 mmol, 1 eq) was added in one portion. 

After 20 min of stirring at -20 °C, MeI (0.39 mL, 6.20 mmol, 20 eq) was added and the 

cooling bath was removed to allow the reaction to warm to rt, where it was allowed to stir 

for an additional 10 min before being poured into a half saturated solution of NH4Cl (50 

mL) and diluted with EtOAc (50 mL). The aqueous layer was extracted with EtOAc (3 x 

30 mL) and the combined organics were washed with brine, dried with MgSO4 and 

filtered through a thin pad of celite. Solvent was removed under reduced pressure to 

afford a yellow oil which was purified by column chromatography (10% EtOAc/Hex) to 

give the product stannane (3-24a) (118 mg, 0.12 mmol, 37% yield, 94% BORSM) as a 

single regioisomer and recovered starting material (3-24) (133 mg, 0.19 mmol, 60% 

yield). Rf 0.47 (20% EtOAc/Hex); 1H NMR (600 MHz, CDCl3) δ 7.25 (d, J = 8.8 Hz, 

2H), 6.84 (d, J = 8.8 Hz, 2H), 5.55 (s, 1H), 4.49 (q, J = 13.5 Hz, 2H), 4.24-4.20 (m, 1H), 

4.14 (dt, J = 12.4, 6.4 Hz, 1H), 3.78 (s, 3H), 3.71 (bs, 1H), 3.45 (ABd, J = 9.9, 5.3 Hz, 

1H), 3.37 (ABd, J = 9.9, 5.3 Hz, 1H), 2.82-2.77 (m, 4H), 2.47 (dd, J = 7.0, 2.9 Hz, 1H), 
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2.31 (dd, J = 14.9, 5.0 Hz, 1H), 2.22-2.15 (m, 2H), 2.06-1.98 (m, 2H), 1.92-1.84 (m, 3H), 

1.78 (s, 3H), 1.67-1.55 (m, 3H), 1.50-1.41 (m, 8H), 1.29 (q, J = 7.6 Hz, 6H), 1.01 (d, J = 

7.0 Hz, 3H), 0.96 (d, J = 7.0 Hz, 3H), 0.88 (s, 9H), 0.87 (t, J = 7.6 Hz, 9H), 0.09 (s, 9H), 

0.08 (d, J = 7.0 Hz, 6H). 13C NMR (100 MHz, CDCl3) δ 159.1, 156.2, 130.6, 129.2, 

123.4, 113.7, 76.2, 75.0, 72.9, 72.7, 55.2, 53.3, 49.4, 45.8, 42.7, 38.1, 34.8, 33.9, 29.2, 

27.3, 26.3, 26.3, 25.9, 25.1, 24.4, 18.1, 16.6, 14.6, 13.7, 10.1, 1.0, -4.1, -4.1.  
 

 

To a solution of stannane 3-24a (118 mg, 0.117 

mmol, 1 eq) in THF (5 mL) cooled to -78 °C was 

added a solution of I2 (1.0 M in CH2Cl2) drop wise 

until the color persisted (ca. 0.15 mL). The reaction 

was allowed to stir at 0 °C for 10 min before being poured into a half saturated solution 

of sodium thiosulfate (20 mL) and diluted with EtOAc (10 mL). The aqueous layer was 

extracted with EtOAc (3 x 10 mL) and the combined organics were washed with brine, 

dried with MgSO4 and filtered through a thin pad of celite. Solvent was removed under 

reduced pressure and the crude oil was purified by flash chromatography (10% 

EtOAc/Hex) to afford iodide 3-25 as a yellow oil (97.3 mg, 0.114 mmol, 98% yield) 

which was used without further purification. Rf 0.45 (20% EtOAc/Hex); 1H NMR (600 

MHz, CDCl3) δ 7.25 (d, J = 8.7 Hz, 2H), 6.84 (d, J = 8.8 Hz, 2H), 6.04 (s, 1H), 4.49 (q, J 

= 11.7 Hz, 2H), 4.25-4.18 (m, 1H), 4.14 (t, J = 6.1 Hz, 1H), 3.78 (s, 3H), 3.69 (d, J = 7.6 

Hz, 1H), 3.45 (ABd, J = 9.9, 5.3 Hz, 1H), 3.36 (ABd, J = 9.9, 5.3 Hz, 1H), 2.86-2.67 (m, 

5H), 2.29 (dd, J = 14.9, 5.0 Hz, 1H), 2.21-2.18 (m, 2H), 2.09 (dd, J = 14.9, 5.6 Hz, 1H), 

2.01-1.99 (m, 1H), 1.92-1.83 (m, 3H), 1.85 (s, 3H), 1.66-1.44 (m, 5H), 1.31-1.24 (m, 

2H), 1.04 (d, J = 7.0 Hz, 3H), 0.95 (d, J = 7.0 Hz, 3H), 0.87 (s, 9H), 0.10 (s, 9H), 0.07 (d, 

J = 5.3 Hz, 6H). 13C NMR (100 MHz, CDCl3) δ 159.1, 149. 9, 130.6, 129.2, 113.7, 77.5, 

76.3, 74.5, 72.9, 72.9, 72.7, 55.2, 53.5, 47.5, 45.8, 42.8, 39.0, 34.0, 33.9, 29.7, 29.2, 26.3, 

26.3, 25.9, 25.0, 23.1, 19.4, 18.0, 16.5, 15.6, 13.7, 8.2, 0.9, -4.1, -4.4.  
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PMB alcohol (3-25) (97.3 mg, 0.114 mmol, 1 eq) was 

dissolved in CH2Cl2 (4 mL), water (1 mL) and saturated 

sodium bicarbonate (0.5 mL). DDQ (65 mg, 0.286 

mmol, 2.5 eq) was added in one portion and the reaction 

was rigorouly stirred for 2 h at which point the reaction was judged to be complete by 

TLC analysis. The reaction mixture was poured into a rapidly stirring solution of half 

saturated sodium bicarbonate (50 mL) and half saturated sodium thiosulfate (20 mL), and 

the aqeous layer was extracted with CH2Cl2 (5 x 20 mL) and the combined organics were 

washed with brine and dried over MgSO4. Solvent was removed under reduced pressure 

to give the cude alcohol, which was purified by flash chromatography (30% EtOAc/Hex) 

to give the pure alcohol 3-25a as a yellow oil (77 mg, 0.105 mmol, 92% yield). Rf 0.17 

(20% EtOAc/Hex); 1H NMR (600 MHz, CDCl3) δ 6.06 (s, 1H), 3.25-3.24 (m, 1H), 4.15-

4.10 (m, 1H), 3.7 (bs, 2H), 3.61 (d, J = 9.9 Hz, 1H), 3.48 (dd, J = 10.8, 6.1 Hz, 1H), 2.88-

2.80 (m, 4H), 2.68 (d, J = 4.1 Hz, 1H), 2.27-2.24 (m, 2H), 2.18-2.13 (m, 2H), 2.0- 1.85 

(m, 5H), 1.87 (s, 3H), 1.70-1.50 (m, 5H), 1.07 (d, J = 6.4 Hz, 3H), 0.98 (d, J = 7.0 Hz, 

3H), 0.90 (s, 9H), 0.13 (s, 9H), 0.08 (d, J = 5.9 Hz, 6H). 13C NMR (100 MHz, CDCl3) δ 

149.8, 78.7, 77.6, 76.1, 74.6, 72.8, 64.9, 53.6, 47.6, 45.7, 42.7, 38.7, 34.2, 34.0, 27.6, 

26.4, 26.3, 25.9, 25.0, 23.2, 18.0, 16.7, 15.4, 0.9, -4.1, -4.4.  
 

 

A 10 mL round bottom flask was charged with alcohol 3-

25a (57.8 mg, 0.079 mmol, 1 eq), diluted with CH2Cl2 (3 

mL) and cooled to 0 °C. DMSO (31 mg, 0.396 mmol, 5 

eq) was added, followed by Hunig’s base (71 mg, 0.554 

mmol, 7 eq). The reaction mixture was allowed to stir for 10 min before SO3•Pyr (37 mg, 

0.237 mmol, 3 eq) was added. The reaction was monitored by TLC until completion (ca. 

2 h) before being slowly poured into a half-saturated solution of sodium bicarbonate (50 

mL), and diluted with CH2Cl2 (50 mL). The aqueous layer was extracted with CH2Cl2 (3 

x 20 mL) and the combined organics were washed with brine, and dried with MgSO4. 

Solvent was removed under reduced pressure, and the crude residue was dissolved in 

EtOAc (100 mL) and water (100 mL). The aqueous layer was extracted with EtOAc (3 x 



135 
 

30 mL) and the combined organics were washed with brine, and dried with MgSO4. 

Solvent was removed under reduced pressure, to afford 3-26 as a yellow oil (57 mg, 

0.079 mmol, 99% yield) which was used without further purification. Rf 0.46 (30% 

EtOAc/Hex). 
 

 

To a solution of alkyne 2-2 (110 mg, 

0.38 mmol, 5 eq) in MTBE (3 mL) at 0 

°C was added nBuLi (2.05 M, 0.19 mL, 

0.38 mmol, 5 eq), and the reaction was 

stirred at 0 °C for 1 h before being cooled to -90 °C using a liquid nitrogen/hexanes bath. 

After stirring for 15 min at -90 °C, aldehyde 3-26 (110 mg, 0.076 mmol, 1 eq) dissolved 

in a minimal amount of MTBE was added over 15 min drop wise. After stirring at -90 °C 

for 2 h, the reaction was treated at -90 °C with 20 mL of saturated NH4Cl, before being 

allowed to warm to rt and diluted with water (50 mL) and EtOAc (50 mL). The aqueous 

layer was extracted with EtOAc (3 x 50 mL) and the combined organics were washed 

with brine, and dried with MgSO4. Solvent was removed under reduced pressure, and the 

crude product was purified by column chromatography (10% EtOAc/Hex) to afford 

recovered alkyne (88 mg) and alkynlation adduct 3-27 as a 10:1 ratio of diastereomers as 

a yellow oil (66 mg, 0.065 mmol, 85% yield). Rf 0.47 (20% EtOAc/Hex); 1H NMR (600 

MHz, CDCl3) δ 6.04 (s, 1H), 5.63 (s, 1H), 5.05 (s, 1H), 4.86 (s, 1H), 4.63 (s, 1H), 4.41 (s, 

1H), 4.41-4.36 (m, 1H), 4.18-4.15 (m, 1H), 3.70-3.68 (m, 2H), 2.83-2.76 (m, 4H), 2.66 

(dd, J = 7.0, 3.1 Hz, 1H), 2.39 (bs, 1H), 2.25-2.18 (m, 3H), 2.11-2.00 (m, 3H), 1.97-1.85 

(m, 4H), 1.85 (s, 3H), 1.80-.170 (m, 2H), 1.70 (s, 3H), 1.66-1.47 (m, 6H), 1.40-1.24 (m, 

8H), 1.05 (d, J = 6.6 Hz, 3H), 0.95 (s, 3H), 0.87 (s, 21 H), 0.11 (s, 9H), 0.06 (d, J = 3.6 

Hz, 6H), 0.00 (s, 6H). 13C NMR (100 MHz, CDCl3) δ 152.3, 149.9, 149.1, 110.8, 104.8, 

90.4, 83.7, 80.8, 80.0, 77.9, 77.6, 74.5, 72.9, 64.9, 53.6, 47.6, 45.8, 42.9, 41.8, 38.8, 34.2, 

34.0,29.9, 29.8, 29.7, 26.5, 26.4, 26.3, 25.9, 25.8, 25.0, 23.2, 22.6, 19.4, 18.2, 18.0, 16.6, 

15.5, 15.3, 14.0, 0.9, -4.0, -4.4, -5.0, -5.1. 
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A 10 mL round bottom flask was 

charged with 4-nitro benzoic acid (19.3 

mg, 0.116 mmol, 3 eq), PPh3 (30.4 mg, 

0.116 mmol, 3 eq), alcohol 3-27 (39.1 

mg, 0.039 mmol, 1 eq), diluted with 

THF (3 mL) and cooled to 0 °C. DIAD 

(23.4 mg, 0.116 mmol, 3 eq) was added drop wise over 10 min, and the ice bath was 

removed. The reaction monitored by TLC and upon completion (ca. 2h) was slowly 

poured into a half-saturated solution of sodium bicarbonate (50 mL). The aqueous layer 

was extracted with EtOAc (3 x 20 mL) and the combined organics were washed with 

brine, and dried with MgSO4. Solvent was removed under reduced pressure, and the 

crude product was purified by flash chromatography (10% EtOAc/Hex) to afford 3-28 as 

a yellow oil (26.8 mg, 0.023 mmol, 59% yield). Rf 0.41 (10% EtOAc/Hex); 1H NMR 

(600 MHz, CDCl3) δ 8.26 (d, J = 5.3 Hz, 4H), 6.03 (s, 1H), 5.75 (d, J = 7.6 Hz, 1H), 5.65 

(s, 1H), 5.05 (s, 1H), 4.87 (s, 1H), 4.42 (s, 1H), 4.37 (q, J = 7.2 Hz, 1H), 4.25 (dd, J = 

8.8, 5.3 Hz, 1H), 3.69-3.65 (m, 2H), 2.77-2.71 (m, 4H), 2.65 (dd, J = 7.0, 2.9 Hz, 1H), 

2.31-2.33 (m, 3H), 2.17-2.14 (m, 1H), 2.06 (dd, J = 14.6, 5.9 Hz, 1H), 2.01-1.97 (m, 1H), 

1.93-1.85 (m, 3H), 1.85 (s, 3H), 1.80-1.71 (m, 2H), 1.71 (s, 3H), 1.70-1.62 (m, 2H), 1.55-

1.51 (dd, J = 14.9, 5.6 Hz, 1H), 1.50-1.43 (m, 2H), 1.40-1.33 (m, 2H), 1.30-1.26 (aq, 7.6 

Hz, 4H), 1.04 (d, J = 7.0 Hz, 3H), 0.87 (m, 24H), 0.09 (s, 9H), 0.05 (s, 6H), 0.00 (d, J = 

2.3 Hz, 6H). 13C NMR (100 MHz, CDCl3) δ 163.6, 153.7, 150.5, 149.9, 149.0, 135.6, 

131.0, 123.4, 111.0, 104.1, 87.0, 84.8, 80.0, 78.9, 77.5, 74.4, 72.9, 68.5, 53.0, 47.6, 45.2, 

42.6, 41.8, 38.8, 34.0, 33.8, 29.9, 29.7, 29.7, 29.0, 26.4, 25.9, 25.8, 25.0, 23.1, 22.6, 18.2, 

18.0, 16.4, 15.6, 14.0, 0.9, -4.1, -4.4, -5.0, -5.1. 
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A 10 mL round bottom flask was 

charged with 3-28 (26.8 mg, 0.023 

mmol, 1 eq), diluted with diethyl ether 

(3 mL) and cooled to 0 °C. LiAlH4 (4 

mg, 0.200 mmol, 4 eq) was added. The reaction was stirred for 30 min at 0 °C before 

being slowly poured into a half-saturated solution of NH4Cl (20 mL), and a saturated 

solution of Rochelle’s salt was added (10 mL), and the slurry was stirred vigorously for 

30 min. The aqueous layer was extracted with EtOAc (3 x 30 mL) and the combined 

organics were washed with brine, and dried with MgSO4. Solvent was removed under 

reduced pressure, and the crude product was purified by column chromatography (10% 

EtOAc/Hex) to afford alcohol 3-30 as a yellow oil (19.4 mg, 0.216 mmol, 94% yield). 

The NMR showed a mixture of the ene-yne and diene, integration of a peak indicative of 

the two protons on the 1,1-disubstituted alkene suggested 100% conversion of the 

iodoalkene. Rf 0.22 (10% EtOAc/Hex); 1H NMR (600 MHz, CDCl3) δ Key peaks: 6.55 

(dd, J = 15.2, 11.1 Hz, 1H), 6.07 (dd, J = 10.5 Hz, 1H), 5.57 (dd, J = 15.2, 7.0 Hz, 1H), 

5.11 (s, 1H), 4.86 (s, 1H), 4.83 (s, 1H), 4.79 (s, 1H), 4.40 (s, 1H). 
 

 

To a solution of alkyne 3-24 (133 mg, 0.187 

mmol, 1 eq) in THF (5 mL) cooled to -78 °C was 

added nBuLi (2.0 M, 0.122 mL, 0.244 mmol, 1.3 

eq) drop wise. After stirring for 30 min at -78 °C, 

TMSCl (50 mg, 0.47 mmol, 2.5 eq) was added in one portion and the reaction was stirred 

until completion as indicated by TLC (ca. 30 min). The solution was poured into a half 

saturated solution of NH4Cl (40 mL), and diluted with EtOAc (40 mL). The aqueous 

layer was extracted with EtOAc (3 x 30 mL) and the combined organics were washed 

with brine, and dried with MgSO4. Solvent was removed under reduced pressure, and the 

crude product was purified by column chromatography (10% EtOAc/Hex) to afford 

alkyne 3-31 as a yellow oil (137 mg, 0.176 mmol, 94% yield). Rf 0.17 (10% EtOAc/Hex); 
1H NMR (600 MHz, CDCl3) δ 7.25 (d, J = 7.6 Hz, 2H), 6.86 (d, J = 7.6 Hz, 2H), 4.50 (q, 

J = 14.0 Hz, 2H), 4.23-4.21 (m, 1H), 4.16-4.14 (m, 1H), 3.79 (s, 3H), 3.70-3.65 (m, 2H), 
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3.46 (dd, J = 9.4, 4.7 Hz, 1H), 3.36 (dd, J = 9.4, 4.7 Hz, 1H), 2.85-2.75 (m, 4H), 2.68 (d, 

J = 6.4 Hz, 1H), 2.31 (dd, J = 14.6, 4.7 Hz, 1H), 2.23 (d, J = 14.6 Hz, 1H), 2.19 (bs, 1H), 

2.07 (dd, J = 14.9, 5.6 Hz, 1H), 2.04-1.99 (m, 1H), 1.95-1.81 (m, 5H), 1.68-1.54 (m, 5H), 

1.12 (d, J = 6.4 Hz, 3H), 0.99 (d, J = 6.4 Hz, 3H), 0.88 (s, 9H), 0.14 (s, 9H), 0.13 (s, 9H), 

0.07 (d, J = 19.9 Hz, 6H).13C NMR (100 MHz, CDCl3) δ 159.1, 130.6, 129.2, 113.7, 

108.9, 85.8, 77.3, 76.3, 74.8, 72.9, 72.7, 72.3, 55.2, 53.4, 45.8, 42.7, 39.0, 34.7, 33.9, 

33.2, 29.2, 26.3, 26.3, 26.0, 25.8, 25.0, 18.1, 16.5, 15.9, 1.0, 0.9, 0.2, -4.0, -4.2. 
 

 

PMB alcohol (3-31) (107 g, 0.137 mmol, 1 eq) was 

dissolved in CH2Cl2 (4 mL), water (0.5 mL) and 

saturated sodium bicarbonate (0.5 mL). DDQ (193 

mg, 0.455 mmol, 2.5 eq) was added in one portion 

and the reaction was rigorouly stirred for 1.5 h at which point the reaction was judged to 

be complete by TLC analysis. The reaction mixture was poured into a rapidly stirring 

solution of half saturated sodium bicarbonate (10 mL) and half saturated sodium 

thiosulfate (20 mL), and the aqeous layer was extracted with CH2Cl2 (5 x 20 mL) and the 

combined organics were washed with brine and dried over MgSO4. Solvent was removed 

under reduced pressure to give the cude alcohol, which was purified by flash 

chromatography (10% EtOAc/Hex) to give the pure alcohol 3-31a as a yellow oil (60 mg, 

0.091 mmol, 66% yield). Rf 0.17 (20% EtOAc/Hex); 1H NMR (600 MHz, CDCl3) δ 4.21 

(dd, J = 7.8, 5.1 Hz, 1H), 4.09 (dd, J = 6.6, 3.5 Hz, 1H), 3.70-3.65 (m, 2H), 3.60-3.57 (m, 

1H), 3.48-3.44 (m, 1H), 2.79 (dt, J = 13.5, 5.7 Hz, 4H), 2.66 (qd, J = 7.1, 2.9 Hz, 1H), 

2.27-2.20 (m, 2H), 2.17-2.12 (1H), 2.08 (dd, J = 15.0, 4.5 Hz, 1H), 2.04-1.99 (m, 1H), 

1.97-1.85 (m, 4H), 1.85-1.77 (m, 1H), 1.67-1.50 (m, 4H), 1.12 (d, J = 7.0 Hz, 3H), 0.98 

(d, J = 7.0 Hz, 3H), 0.87 (s, 9H), 0.13 (s, 9H), 0.12 (s, 9H), 0.06 (d, J = 13.3 Hz, 6H). 13C 

NMR (100 MHz, CDCl3) δ 108.9, 85.8, 78.7, 76.0, 74.8, 72.3, 64.9, 55.5, 45.6, 42.6, 

38.8, 34.9, 34.0, 33.3, 27.5, 26.4, 26.3, 26.0, 25.8, 25.0, 18.1, 16.6, 15.8, 0.9, 0.9, 0.2, -

4.0, -4.2. 
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A 10 mL round bottom flask was charged with 

alcohol 3-31a (60 mg, 0.091 mmol, 1 eq), diluted 

with CH2Cl2 (3 mL) and cooled to 0 °C. DMSO (35 

mg, 0.45 mmol, 5 eq) was added, followed by 

Hunig’s base (81 mg, 0.634 mmol, 7 eq). The reaction mixture was allowed to stir for 10 

min before SO3•Pyr (42 mg, 0.272 mmol, 3 eq) was added portion wise over 5 min. The 

reaction was monitored by TLC until completion (ca. 2h) before being slowly poured into 

a half-saturated solution of sodium bicarbonate (10 mL), and diluted with CH2Cl2 (10 

mL). The aqueous layer was extracted with CH2Cl2 (3 x 20 mL) and the combined 

organics were washed with brine, and dried with MgSO4. Solvent was removed under 

reduced pressure, and the crude residue was dissolved in EtOAc (50 mL) and water (100 

mL). The aqueous layer was extracted with EtOAc (3 x 20 mL) and the combined 

organics were washed with brine, and dried with MgSO4. Solvent was removed under 

reduced pressure, to afford a 3-32 as a yellow oil (59.7 mg, 0.091 mmol, 100% yield) 

which was used without further purification. Rf 0.37 (20% EtOAc/Hex). 
 

 

To a solution of alkyne 2-2 (132.4 

mg, 0.453 mmol, 5.0 eq) in MTBE 

(3 mL) at 0 °C was added nBuLi 

(2.75 M, 0.165 mL, 0.453 mmol, 

5.0 eq), and the reaction was stirred at 0 °C for 1 h before being cooled to -90 °C using a 

liquid nitrogen/hexanes bath. After stirring for 15 min at -90 °C, aldehyde 3-32 (59.7 mg, 

0.091 mmol, 1 eq) dissolved in a minimal amount of MTBE was added over 15 min drop 

wise. After stirring at -90 °C for 2 h, the reaction was treated at -90 °C with 20 mL of 

saturated NH4Cl, before being allowed to warm to rt and diluted with water (50 mL) and 

EtOAc (50 mL). The aqueous layer was extracted with EtOAc (3 x 50 mL) and the 

combined organics were washed with brine, and dried with MgSO4. Solvent was removed 

under reduced pressure, and the crude product was purified by column chromatography 

(20% EtOAc/Hex) to afford recovered alkyne (ca. 100 mg) and alkynlation adduct as a 

single diastereomer 3-33 as a yellow oil (74 mg, 0.078 mmol, 86% yield). Rf 0.19 (10% 

EtOAc/Hex); 1H NMR (600 MHz, CDCl3) δ 5.63 (s, 1H), 5.05 (s, 1H), 4.86 (s, 1H), 4.64 
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(bs, 1H), 4.42 (s, 1H), 4.42-4.36 (m, 1H), 4.17-4.14 (m, 1H), 3.68-3.67 (m, 2H), 2.78 (dt, 

J = 17.6, 5.6 Hz, 4H), 2.67 (dd, J = 7.0, 2.9 Hz, 1H), 2.43 (bs, 1H), 2.25-2.20 (m, 3H), 

2.08-2.00 (m, 3H), 1.94-1.87 (m, 4H), 1.83 (dd, J = 13.5, 6.4 Hz, 1H), 1.78-1.72 (m, 2H), 

1.71 (s, 3H), 1.64-1.56 (m, 2H), 1.56-1.52 (m, 1H), 1.40-1.34 (m, 2H), 1.30-1.26 (m, 

3H), 1.12 (d, J = 7.0 Hz, 3H), 0.98 (d, J = 7.0 Hz, 3H), 0.89 (t, J = 7.0 Hz, 3H), 0.89 (s, 

18H), 0.14 (s, 9H), 0.12 (s, 9H), 0.06 (d, J = 19.9 Hz, 6H), 0.00 (d, J = 2.3, 6H). 13C 

NMR (100 MHz, CDCl3) δ 152.3, 149.1, 110.8, 108.9, 104.8, 90.4, 85.8, 83.6, 80.7, 80.0, 

77.9, 74.8, 72.3, 64.9, 53.5, 45.8, 42.8, 39.0, 34.9, 34.0, 33.2, 29.9, 29.8, 29.7, 26.5, 26.4, 

26.3, 26.0, 25.8, 25.8, 25.0, 22.6, 18.2, 18.1, 16.6, 15.9, 15.3, 14.0, 1.0, 0.9, 0.2, -4.0, -

4.2, -5.0, -5.1. 
 

 

A 10 mL round bottom flask was 

charged with 4-nitro benzoic acid 

(24 mg, 0.141 mmol, 3 eq), 

triphenylphosphine (37 mg, 0.141 

mmol, 3 eq), alcohol 3-33 (44.8 

mg, 0.0471 mmol, 1 eq), diluted 

with THF (30 mL) and cooled to 0 °C. DIAD (29 mg, 0.141 mmol, 3 eq) was added drop 

wise over 10 min, and the ice bath was removed. The reaction monitored by TLC and 

upon completion (ca. 1h) was poured into a half-saturated solution of sodium bicarbonate 

(10 mL). The aqueous layer was extracted with EtOAc (3 x 30 mL) and the combined 

organics were washed with brine, and dried with MgSO4. Solvent was removed under 

reduced pressure, and the crude product was purified by filtration through a thin plug of 

silica gel (10% EtOAc/Hex) to afford 3-33a as a yellow oil (36.2 mg, 0.033 mmol, 70% 

yield). Rf 0.39 (10% EtOAc/Hex); 1H NMR (600 MHz, CDCl3) δ 8.26 (d, J = 4.1 Hz, 

4H), 5.74 (d, J = 7.0 Hz, 1H), 5.85 (s, 1H), 5.05 (s, 1H), 4.87 (s, 1H), 4.42 (s, 1H), 4.36 

(q, J = 7.0 Hz, 1H), 4.27 (dd, J = 8.8, 5.3 Hz, 1H), 3.70-3.60 (m, 1H), 2.78-2.73 (m, 4H), 

2.66 (dd, J = 6.7, 2.6 Hz, 1H), 2.31-2.22 (m, 3H), 2.18 (d, J = 14.6 Hz, 1H), 2.03 (dd, J = 

14.6, 5.9 Hz, 1H), 1.99-1.96 (m, 1H), 1.92-1.85 (m, 3H), 1.83-1.79 (m, 2H), 1.75 (dd, J = 

16.7, 8.5 Hz, 1H), 1.73 (s, 3H), 1.66-1.61 (m, 1H), 1.57 (dd, J = 14.9, 6.1 Hz, 1H), 1.53-

1.49 (m, 1H), 1.38-1.34 (m, 2H), 1.28 (dd, J = 14.3, 7.3 Hz, 2H), 1.11 (d, J = 7.0 Hz, 
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3H), 0.90 (d, J = 7.0 Hz, 3H), 0.87 (t, J = 7.0 Hz, 3H), 0.87 (s, 18H), 0.12 (s, 9H), 0.11 (s, 

9H), 0.05 (d, J = 15.2 Hz, 6H), 0.01 (d, J = 2.9 Hz, 6H).  
 

 

A 5 mL round bottom flask was 

charged with 3-33a (36.2 mg, 0.33 

mmol, 1 eq), diluted with diethyl 

ether (3 mL) and cooled to 0 °C. LiAlH4 (9 mg, 0.235 mmol, 5.0 eq) was added. The 

reaction was stirred for 1h at 0 °C before being poured into a half-saturated solution of 

NH4Cl (10 mL). The aqueous layer was extracted with EtOAc (3 x 20 mL) and the 

combined organics were washed with brine, and dried with MgSO4. Solvent was removed 

under reduced pressure, and the crude product was purified by column chromatography 

(10% EtOAc/Hex) to afford alcohol 3-34 as a yellow oil (31 mg, 0.032 mmol, 99% 

yield). There were several peaks indicating the presence of benzoyl-deprotected ene-yne, 

indicative of complete benzoyl deprotection of the starting material (3-33a), but 

incomplete hydroalumination of the ene-yne. Rf 0.17 (10% EtOAc/Hex) 
 

 

The mixture from above (3-34) (ca. 

0.032 mmol) was dissolved in wet 

methanol (10 mL), and a K2CO3 was 

added (10 mg, catalytic). The reaction was stirred at rt for 1 day before being filtered 

through a pad of celite into a solution of half saturated NH4Cl (100 mL). The celite pad 

was washed with EtOAc (50 mL) and the filtrate was transferred to a separatory funnel, 

and the aqueous layer was extracted with EtOAc (3 x 30 mL) and the combined organics 

were washed with brine, dried with MgSO4 and filtered through a thin pad of celite. 

Solvent was removed under reduced pressure to afford (3-34a) a yellow oil (20 mg) 

which was used in the next step without purification.  
 

 

The crude mixture from above was dissolved in CH2Cl2 (5 mL) and Et3N (1 mL) and 
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TMSCl was added (10 drops, excess) followed by DMAP (1mg, catalytic). The reaction 

was stirred for 30 min before being poured into a half-saturated solution of sodium 

bicarbonate (10 mL). The aqueous layer was extracted with CH2Cl2 (3 x 20 mL) and the 

combined organics were washed with brine, and dried with MgSO4. Solvent was removed 

under reduced pressure, and the crude product was purified by column chromatography 

(10% EtOAc/Hex) to afford TMS ether 3-35 as a yellow film. Key and integrations led us 

to believe that the reaction was successful to form 3-35, but the amount of material (~10 

mg, ca. 0.01 mmol) and the dubious purity was determined insufficient to run subsequent 

reactions. Rf 0.50 (10% EtOAc/Hex). 1H NMR (400 MHz, CDCl3) δ 6.55 (dd, J = 14.7, 

11.1 Hz, 1H), 6.07 (d, J = 10.6 Hz, 1H), 5.57 (dd, J = 15.2, 7.0 Hz, 1H), 5.11 (s, 1H), 

4.86 (s, 1H), 4.40 (s, 1H), 4.25-4.21 (m, 1H), 4.02-3.97 (m, 2H), 3.91-3.87 (m, 2H), 2.85-

2.80 (m, 5H), 2.74-2.71 (m, 1H), 2.38 (dd, J = 15.0, 3.8 Hz, 1H), 2.27 (dd, J = 15.0, 6.7 

Hz, 1H), 2.18-2.13 (m, 3H), 2.09 (s, 1H), 2.00-1.87 (m, 5H), 1.82-1.78 (m, 1H), 1.76-

1.71 (m, 2H), 1.68-1.63 (m, 2H), 1.60 (s, 3H), 1.57-1.53 (m, 1H), 1.42-1.36 (m, 2H), 

1.32-1.28 (m, 2H), 1.16 (d, J  = 7.0 Hz, 3H), 1.02 (d, J = 7.0 Hz, 3H), 0.91 (s, 9H), 0.90 

(s, 9H), 0.89 (t, J = 7.0 Hz, 3H), 0.12 (d, J = 11.7 Hz, 6H), 0.02 (d, J = 9.9 Hz, 6H). 13C 

NMR (100 MHz, CDCl3) δ 149.5, 139.4, 130.2, 129.7, 124.7, 109.7, 86.6, 81.8, 80.6, 

75.7, 75.2, 72.0, 71.7, 70.0, 53.1, 44.7, 42.3, 35.8, 35.5, 33.9, 32.0, 30.7, 30.0, 27.8, 26.4, 

26.3, 25.8, 25.8, 24.9, 22.5, 18.2, 18.0, 16.6, 15.0, 14.0, 12.0, -4.5, 4.6, -5.0, -5.1. 
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Chapter 4 – Summary and Outlook 

 

Section 4.1 – Summary of Progress 

 
Our initial retrosynthesis of amphidinolide C led to the Northern (2-1), Eastern (2-2), 

Southern (2-3), and Western (2-4) fragments, which were achieved in laboratory with 

some notable transformation achieved in the process.    

 

Figure 4.1. Initially synthesized fragments of amphidinolide C 
 

Difficulties associated with the large scale post-reaction purification of Mukaiyama 

oxidative cyclization reactions towards the Northern fragment (2-1) led to the design and 

synthesis of a second generation, water-soluble catalyst, Co(nmp)2 (1-21) (Figure 4.2).  

This catalyst displayed increase longevity in the cyclization reaction, which allowed for 

lower catalyst loadings, lower reaction temperature and times, and greatly improved 

yields in all cases.  We believe that Co(nmp)2 now stands alone as the premier method of 

forming trans-THF rings, giving the desired products in perfect cis/trans ratio, excellent 

yields, and high purity from easily accessed pentenols.  
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The Eastern fragment (2-2) was synthesized using two routes, one of which demonstrated 

the use of diyne functionalization resulting in ene-yne systems found in a variety of 

natural products (Figure 4.3).   

 

 
Figure 4.2. Summary of the Northern fragment (2-1) synthesis. 

 

We have demonstrated that the regioselective hydrostannylation reaction pioneered by 

Hale can be modified for diyne systems to use the commercially available and 

inexpensive tributyltinhydride in place of the more expensive triphenyltinhydride.  We 

also showed that the tin moiety can be displaced with an iodine in a one-pot procedure to 

give the vinyl iodide. 

 

 

Figure 4.3. Summary of the Eastern fragment (2-2) syntheses. 
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The southern fragment (2-3) was also achieved via two routes, one of which exploited a 

remarkably selective Shi epoxidation, followed by a modified reductive epoxide opening 

reaction.  The achieve perfect selectivity in the epoxide opening reaction, a novel Lewis 

acid, BF2OBnOEt2 (2-51), was designed and synthesized, which showed attenuated 

Lewic acidity compared to that of the parent compound BF3OEt2. This modification 

introduces an intriguing possibility of synthesizing a library of electronically fine-tuned 

boron based Lewis acids to suit specific needs.  As with the Northern fragment (2-1), 

Co(nmp)2 (1-21) was used in the Mukaiyama oxidative cyclization and again showed 

tremendously improved yields when compared to the first generation catalysts.    

 

 
Figure 4.4. Summary of the Southern fragment (2-3) synthesis. 

 

The western fragment (2-4) was synthesized from easily accessible precursors, and led to 

a novel one-pot conversion of terminal epoxides to protected iodohydrins (Figure 4.5).  

The utility of a copper-stannylation reaction was shown to provide a working alternative 

to typically used carbo-metallation reactions for the functionalization of alkynes.   
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Figure 4.5. Summary of the Western fragment (2-4) synthesis. 

 

After extensive studies towards fragment couplings, a novel procedure for the highly 

selective alkynylation of THF aldehydes has been developed (Figure 4.6).  By careful 

choice of reaction conditions (MTBE, -90 °C), the Eastern fragment (2-2) has been 

shown to add into a handful of differentially functionalized trans-THF aldehydes, with a 

high level of selectivity and excellent yields.  The diastereoselectivity achieved from 

these reactions is a tremendous accomplishment considering the operationally simple 

procedure and lack of externally added chiral element to influence the facial selectivity.  
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Figure 4.6. Summary of the North-Eastern fragment couplings. 

 

Although the total synthesis of amphidinolide C has not yet been achieved, several 

important contributions have been made to the literature that are a direct result of work 

on this project.   

 

Section 4.2 – Future Completion of Amphidinolide C 

 

Due to time constraints and dwindling amounts of material, progress was halted at this 

point. In the near future, large amounts of the fully functionalized North-Eastern-Western 

fragment 3-36 will be made, and combined with the Southern fragment 2-3, to complete 

the total synthesis of amphidinolide C. The remaining steps are envisioned to include a 

Stille cross coupling of iodide 3-36 with stannane 2-3, followed by saponification of the 

methyl ester and concurrent TMS deprotection to form the open, protected, carboxylic 

acid form of Amphidinolide C (4-1) (Figure 4.7). We are then hoping that the steric 

hindrance around the alcohol at C(15) will work in our favor to allow selective 

macrolactonization at the desired alcohol on C(24), resulting in macrocycle 4-2.  
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Figure 4.7. The six remaining steps envisioned to complete amphidinolide C 

 

To complete the synthesis from macrocycle 4-2, we would oxidize the secondary alcohol 

at C(15) to the desired ketone oxidation state, followed by dithiane removal and global 

acidic deprotection to furnish amphidinolide C (1-24). Time permitting; the chemistry 

can be reproduced using similar pieces to complete the total synthesis of amphidinolide 

F. 
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Appendix 1 – Spectra for Chapter 1 Compounds 
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Appendix 2 – Spectra for Chapter 2 Compounds 



157 
 



158 
 



159 
 



160 
 

 
 
 
 
 
 



161 
 



162 
 



163 
 



164 
 



165 
 



166 
 



167 
 



168 
 



169 
 



170 
 



171 
 



172 
 



173 
 



174 
 



175 
 



176 
 



177 
 



178 
 



179 
 



180 
 



181 
 



182 
 



183 
 



184 
 



185 
 



186 
 



187 
 



188 
 



189 
 



190 
 

 
 
 
 
 
 



191 
 



192 
 

 
 
 
 
 



193 
 



194 
 



195 
 



196 
 

 
 
 
 
 



197 
 



198 
 



199 
 



200 
 



201 
 



202 
 



203 
 



204 
 



205 
 



206 
 



207 
 



208 
 



209 
 

 
 
 

 
 



210 
 

 
 
 



211 
 

 
 
 

 



212 
 



213 
 

 
 

 



214 
 

 
 

 



215 
 



216 
 



217 
 



218 
 



219 
 

 
 
 
 
 



220 
 

 



221 
 



222 
 

 
  



223 
 

 
 
 
 
 
 
 
 

Appendix 3 – Spectra for Chapter 3 Compounds 
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