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ABSTRACT 

Bio-fuels are renewable and clean which can be used as alternatives to fossil fuels or can 

be used in combination with them. Biomass is a main source of bio-fuels production: it is 

a renewable resource and its conversion to energy releases no net CO2 to the 

environment.  

Bio-oil, the valuable liquid product obtained from biomass through pyrolysis, may be 

either combusted to generate carbon-neutral electricity or converted to a synthesis gas 

from which chemicals or clean fuels can be produced. Producing bio-oil from biomass 

and then converting the bio-oil to syngas has several advantages: The bio-oil may be 

generated in distributed or mobile plants and then shipped to a central facility for 

conversion to syngas, thus avoiding the expensive transportation of bulky and perishable 

biomass. The syngas produced from bio-oil is cleaner than syngas produced directly 

through biomass gasification. Finally, valuable green chemicals may be extracted from 

the bio-oil before it is converted to syngas. 

This thesis focuses on investigation of syngas production from bio-oil through thermal 

and catalytic reactions. Low bio-oil conversion and syngas yield were achieved from 

thermal cracking experiments in a pilot plant bubbling fluidized bed at moderate 

temperatures. A novel induction heated batch-wise micro reactor was designed and 

developed to test catalysts for bio-oil gasification. Catalytic gasification of bio-oils in this 

micro reactor revealed that a syngas with desired yield can be produced from bio-oil with 

maximum conversion provided there is a suitable catalyst and sufficient operating 

conditions such as temperature, residence time and steam in the reactor.  

 KEYWORDS: Biomass, Bio-oil, Gasification, Syngas, Hydrogen, Fluidized bed, 

Thermal cracking, Catalytic cracking, Catalyst, Jiggle Bed Reactor, JBR, Vibration, 

Pneumatic actuator, Induction heating, Amplitude and Frequency, Image processing, 

Signal processing, Acetic acid, Thermodynamic, Equilibrium, Olivine, Calcination. 
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OVERVIEW 

Fossil fuels including petroleum oil, natural gas and coal are the most common fuels. However, 

such fuels are not renewable and many countries have to resort to imports to meet their energy 

needs. Another challenge with these fuels is that they are sources of large amount of pollutants 

such as nitrogen oxides, sulfur dioxide, volatile organic compounds and etc that create human 

health problems and CO2 which caused global warming.  Many governments have chosen to 

promote new technologies to substitute renewable fuels for fossil fuels to reduce greenhouse gas 

emissions, adhere to environmental regulations, provide some security of supply, and reduce 

imports. 

Bio-fuels are renewable and clean and can be used as alternatives to fossil fuels or can be used in 

combination with them. Another advantage of using bio-fuels would be in regards to economical 

interests in the agricultural sector. In addition, bio-fuels can be upgraded to value added 

chemicals for a variety of applications. Biomass, agricultural and forestry residue, is a main 

source of bio-fuels production: it is a renewable resource and its conversion to energy releases no 

net CO2 to the environment. In fact, it can be carbon negative: Biomass converted to bio-oils 

produces carbon-rich bio-char as a co-product; if bio-char was dispersed into the ground, it 

would represent a stable form of carbon sequestration. In the case of an increase in the price of 

fossil fuels or depletion of their resources, biomass can be counted as a safe and reliable resource 

of energy.  

Bio-oil is the liquid product of the fast pyrolysis of biomass, which is a renewable source of 

energy and fuels. Bio-oil can be either used directly as a fuel or it can be upgraded to some 

chemicals for different applications. Since the late 1990s, this liquid has been considered as a 

source of syngas (H2+CO) and, in particular, for hydrogen production. Syngas can be produced 

also through direct gasification of biomass. However, biomass is produced over wide areas; it is 

seasonal and not available at a constant rate, and its transportation is expensive because it has a 

low density, it is bulky and polluting. Conversion of biomass to syngas is, therefore, problematic 

and impractical as both biomass and syngas are not easily transportable. On the other hand, 

conversion into a high density easily transportable material (bio-oil) at the site of production of 

the biomass and at the time of its availability would make more sense.  The bio-oil would then be 
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gasified at a centralized processing plant where it will be utilized as a building block for 

production of high value chemicals. 

To expand the knowledge and commercial opportunities in this field, this thesis focuses on 

investigation of syngas production from bio-oil through thermal and catalytic reactions in the 

novel fluidized bed reactors.  

This thesis is divided into seven chapters describing the research as follows: 

Chapter 1: Production of Syngas from Bio-oil and its Model Compounds- A Literature Review. 

Due to the special chemical and physical properties of bio-oil and the dependence of its 

composition on the original biomass, gasification results would be different from a bio-oil to 

another under similar operating conditions, so it is important to critically analyze and integrate 

findings in literature to obtain a comprehensive understanding of the recent developments in this 

field. Chapter 1 is a literature review about the importance of bio-oil for syngas production, 

illustrating the chemical and physical properties of bio-oils, the kinetics of chemical gasification 

reactions of bio-oil and its model compounds, and finally the effect of reactor design, operating 

conditions and catalyst composition on the syngas yield.  

Chapter 2: Effects of Residence Time and Temperature on the Thermal Cracking of Bio-oil for 

Syngas Production.  A fluidized bed reactor operating in the bubbling regime has been used for 

the conversion of bio-oil to syngas. The reactor consists of a 3 inch I.D. bed, with an expanded 

freeboard, whose volume can be adjusted to vary the gas residence time.  This reactor has been 

used to carry out either thermal or catalytic cracking/reforming of bio-oil. A gas-atomized 

injector has been especially developed to feed bio-oil, which may be viscous and contaminated 

with small ash and char particles, allowing it to remain cool until coming in contact with the 

fluidized particles inside the bed. This chapter presents the product yields and compositions 

obtained by thermally cracking the bio-oil at various temperatures and gas residence times. The 

bed temperature was varied from 500 ºC to 700 ºC and the vapor residence time ranged from 7.8 

to 27.6 seconds. Effect of particle size and mass of bed was also investigated. The conversion of 

bio-oil to gas increased with increasing temperature and residence time.  
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Chapter 3: A Novel Fluidized and Induction Heated Micro Reactor for Catalyst Testing. The 

jiggle bed reactor is a state-of-the-art batch fluidized micro reactor designed and developed to 

test catalysts for endothermic reactions. The solid particles in the micro reactor are mechanically 

fluidized by agitating the reactor using a linear pneumatic actuator. An external induction field 

heats up vertical metal wires installed inside the reactor bed to generate heat rapidly and 

uniformly within the bed of solid particles, while eliminating hot spots and large temperature 

gradients. Image and signal processing techniques were utilized to investigate how the 

fluidization dynamics of the solid particles are affected by the amplitude and frequency of the 

vibrations, the size distribution and the mass of the particles. The results show that the micro 

reactor is very flexible: operating conditions can be optimized to successfully fluidize any type 

of catalyst.   

The preliminary results of the heat transfer studies indicate that induction heating allows for 

responsive and accurate temperature control of the catalyst bed while eliminating hot spots and 

greatly reducing temperature gradients.  

Chapter 4: Non-catalytic and Catalytic Steam Reforming of Acetic Acid in the Jiggle Bed 

Reactor. In order to evaluate the performance of the jiggle bed reactor in producing reliable and 

reproducible data and its functionality in relation to changes in operating parameters, non-

catalytic and catalytic steam reforming of acetic acid (model compound) was investigated. Silica 

sand was used as the bed material for non-catalytic tests and a commercial steam reforming 

catalyst was used for the catalytic tests. Testin parameters included temperatures between 650°C 

and 750°C, residence times between 10s and 90s and molar steam to carbon ratio (S/C) equal to 

0, 3 and 6.  Atmospheric pressure was used in all experiments.  

Analysis of the product gas yield shows that the jiggle bed reactor allows for a series of precise 

experiments over a short period of time in a small scale setup. In addition, the effects of 

operating parameters, such as temperature, residence time, S/C ratio as well as type and mass of 

the bed particles on product gas yields, were clearly observed and reliable consistency between 

trends from the JBR data and the literature was confirmed.  



 

4 

 

Non-catalytic experiments achieved a high carbon conversion of acetic acid, but the hydrogen 

yield was very low. Complete carbon conversion and high hydrogen yield were achieved in the 

catalytic experiments. Catalytic steam reforming data reveal that maximizing the hydrogen yield 

and the H2/CO ratio requires the appropriate molar S/C ratio and catalyst mass.   

Chapter 5: Thermal and Catalytic Gasification of Bio-oils in the Jiggle Bed Reactor for Syngas 

Production. Thermal and catalytic gasification of two bio-oils were then carried out in the jiggle 

bed reactor to investigate carbon conversion of the bio-oils and the syngas yield as functions of 

catalyst type and mass, residence time and temperature. Two commercial nickel based steam 

reforming catalysts were used. Temperature ranged from 700 °C to 800 °C and residence times 

varied between 10 and 30s.  

In thermal gasification, both carbon conversion and hydrogen yield increase with increasing 

temperature, but both remained relatively low.  Production of CO was relatively quite high, so 

that the molar H2/CO ratios were below 2.  

The catalyst X gave better results in terms of carbon conversion of bio-oils and hydrogen yield at 

800°C.  Catalytic experiments showed that increasing the temperature decreases the molar 

H2/CO ratio because of a lack of steam, while it increases the carbon conversion. Therefore, 

either steam should be added to the gasification reactor or a secondary water gas shift reactor 

should be used downstream of the gasification reactor to maximize the H2/CO ratio.  

Chapter 6: Development of a Thermodynamic Model to Predict the Equilibrium Concentration 

of Gases from Bio-oil Gasification with Sand or Olivine Catalyst. In order to investigate the 

catalytic activity for bio-oil gasification to syngas, pretreated olivine (calcined with air at 850°C 

and 1000°C and reduced with hydrogen at 800°C) as well as silica sand were tested in the jiggle 

bed reactor. Temperature was 800°C and residence time ranged from 10 to 240s. A 

thermodynamic model was developed based on the equilibrium constants of the independent 

reactions between the final gasification products to predict the product mole fraction at various 

operating conditions. This model can be applied for any feedstock that contains carbon, 

hydrogen and oxygen, regardless of its molecular composition.  
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Results show that olivine is an active catalyst for bio-oil gasification when it is reduced with 

hydrogen, providing complete bio-oil conversion as well as maximum syngas yield. However, 

calcined olivine is inappropriate, as it releases oxygen that reacts with the combustible products. 

Thermodynamic analysis showed that mole fractions of the product gases would reach predicted 

equilibrium values when the reduced olivine was the material of the catalytic bed; on the other 

hand, when calcined olivines were the catalytic bed materials, product gas would tend to reach a 

new equilibrium state.   

Chapter 7: Conclusions and Recommendations. Main conclusions from the experimental and 

theoretical work of the thesis are listed in this chapter. In addition, there are some 

recommendations in this chapter as guidelines for the future work in related and similar projects.  
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CHAPTER 1: 
 

Production of Syngas from Bio-oil and its Model 

Compounds - A Literature Review 

  



 

7 

 

1.1. Introduction 
An increase in energy demand is seen in the recent decades in different sectors of society. 

Between 1990 and 2008, total energy consumption in the transportation sector increased from 

10,051 to 12,510 peta joules in Canada and from 89,312 to 104,875 peta joules in the United 

States [1]. Fossil fuels have been the main source of energy supply. For example, fossil fuel 

consumption in Canada and the United States were respectively 75.1% and 84.4% of the total 

fuel used in 2010 [2]. There is also a big dependence on this energy source. For example, 

Consumption of petroleum was about 19 million barrel per day in 2010 in the United States 

while 49% of this consumption was supplied from imports [3]. Another challenge with these 

fuels is that they are sources of large amount of pollutants that create human health problems and 

global warming.  Similar patterns of fossil fuel consumption can be seen in many other countries.  

Many governments have chosen to promote new technologies to substitute fossil fuels with 

renewable fuels to reduce greenhouse gas emissions, adhere to environmental regulations, 

provide some security of supply, and reduce imports. 

Bio-fuel is a type of fuel whose energy content is as a result of CO2 conversion to organic 

compounds by living organisms. Bio-fuels are renewable and clean and can be used as 

alternatives to fossil fuels or can be used in combination with them. Another advantage of using 

bio-fuels relates to the economical interests of the agricultural sector. In addition, bio-fuels can 

be upgraded to value added chemicals for a variety of applications. Biomass is a main source of 

bio-fuels production which can be animal waste or plant residue such as forestry and agricultural 

residues. Throughout this thesis, biomass is assumed to be a plant residue. Biomass is a 

renewable resource and its conversion to energy releases no net CO2 to the environment and in 

the case of an increase in the price of fossil fuels or depletion of their resources, biomass can be 

counted as a safe and reliable resource of energy.  

A common method for the conversion of biomass to a gas, a liquid bio-oil or a solid bio-char is 

pyrolysis; i.e., thermal cracking in the absence of oxygen. Fast pyrolysis, which is conducted 

under a high heat transfer rate and short reaction time gives better products than slow pyrolysis 

which can take several hours and is appropriate for bio-char production[4, 5].  Bio-char is a 
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product that may have value and recent research is suggesting a varity of uses of bio-char (or, 

better, bio-carbon), ranging from soil amendment and fertilizer (bio-char) to energy (bio-coal and 

bio-coke) to advanced materials (catalysts, adsorbents, strengthening agents for composites, 

etc.). The gaseous product stream contains hydrogen, carbon monoxide, carbon dioxide, and 

light hydrocarbons such as methane, ethane and ethylene. These gases can be either recycled and 

combusted to supply required energy for the pyrolysis or collected and transported to another 

process that can use them. Bio-oil has great potential to be upgraded to supply either renewable 

energy resources or further chemicals. Similar to pyrolysis or gasification of biomass, the 

gasification of bio-oil also leads to the production of syngas (H2+CO), CO2, CH4 and to some 

extent C2H4 and C2H6.  Biomass is produced over wide areas; it is seasonal and not available at a 

constant rate, and its transportation is expensive because it has a low density, it is bulky and 

polluting. Conversion of biomass to syngas is, therefore, problematic and impractical as both 

biomass and syngas are not easily transportable. On the other hand, conversion into a high 

density easily transportable material (bio-oil) at the site of production of the biomass and at the 

time of its availability would make more sense.  The bio-oil would then be gasified at a 

centralized processing plant where it will be utilized as a building block for production of high 

value chemicals. 

Syngas, which is also called producer gas, town gas, and blue water gas, can be produced from 

different resources such as natural gas, naphtha, residual oil, petroleum coke, coal, and biomass. 

The H2/CO ratio depends on the feedstock and the applied technology [6]. Syngas is a very 

valuable chemical mixture representing a key building block in petrochemical industries, and 

many chemicals and fuels can be produced from this mixture. Figure 1.1 illustrates different 

processes through which syngas can be converted into new products.  
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Figure 1.1. Diagram of syngas conversion processes taken from [7] 
 

Hydrogen has many applications in industry; it is also considered as a clean and environmentally 

reliable source of energy in combination with fuel cells. Hydrogen, however, is mainly produced 

by steam reforming of natural gas according to the block flow diagram in Figure 1.2. Methane 

reacts with steam to produce hydrogen and carbon monoxide followed by the water-gas shift 

reaction: 

molkcalHCOHOHCH /3.493 224       (1.1) 
 

molkcalHCOHOHCO /8.9222        (1.2) 
 

 

Figure 1.2. Block flow diagram of Hydrogen via Steam Methane Reforming taken from [6] 
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Many researchers across the world are working on the development of reliable and economic 

processes to produce hydrogen from biomass and its fractions. Demirbas reviewed current 

technologies related to renewable biomass derived energy resources such as bioethanol, 

biodiesel, biomethanol and bio-oil [8, 9]. Balat reviewed different thermochemical routes 

reported in the literature from which hydrogen can be produced from biomass, such as pyrolysis, 

gasification and steam gasification of biomass as well as steam gasification of bio-oil. Yield of 

hydrogen versus cost of the process is briefly compared for each thermochemical process [10]. 

Digman et al. reviewed available pyrolysis and gasification technologies to convert biomass to 

energy value added products [11].  

Production of hydrogen from biomass is not yet industrialized on a large scale, but according to 

the projections shown in Figure 1.3, hydrogen and biofuels can potentially play a significant role 

in fuel consumption in the transportation sector in the future. The hydrogen content of biomass is 

less than that of natural gas, so co-reforming of bio-oil and natural gas may be an economic 

option at the moment. 

 

Figure 1.3. Shares of alternative fuels in total fuel consumption in the world taken from [8] 
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Recent literature about the direct production of syngas from biomass has been reviewed by 

several authors [12-18]. Another route of syngas production from biomass is the indirect process 

through which biomass is first converted to bio-oil and then the bio-oil is gasified to produce 

syngas with or without steam. However, there is not such a comprehensive review about these 

technologies available in literature to help future researchers perceive an overall image of the 

advances, challenges and future potentials to do with syngas production through the bio-oil 

gasification. This report tries to address this need.  

Due to limitations caused by the lack of consistency, physical and chemical complexities of bio-

oils produced from different feedstocks, production of syngas from representative model 

compounds of bio-oils haves been investigated more than than from actual bio-oils. However, 

Results of such research help narrowing on the optimal operating conditions, type of catalyst and 

design of the reactor for bio-oil gasification. There are many publications in literature dealing 

with steam reforming of bio-oil model compounds, but due to the fact that they have similar 

subjects and similar operating conditions, only some of them are reviewed in detail in this 

chapter. On the other hand, a limited number of reports are available in literature treating the 

subject of gasification/steam reforming of the whole bio-oil. 

There are more severe challenges with gasification of whole bio-oil because it contains heavy 

molecules that are difficult to crack. For example, due to the physical and chemical properties of 

the lignin fraction of the bio-oil, cracking and gasification would require a higher temperature 

and more steam than what can be generated based on the water content of the bio-oil. Also, the 

composition of each bio-oil depends on the original biomass and operating conditions used for 

the pyrolysis process. In addition, bio-oil is a mixture of different oxygenates, organic 

compounds containing oxygen, with individual chemical and physical properties. Therefore, 

optimum operating conditions for a bio-oil can be different for another type of bio-oil. 

Furthermore, each bio-oil can have different interactions with a catalyst.  
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1.2. Bio-oil gasification reaction and kinetics  
 
1.2.1. Biomass 

Although hydrogen is a clean source of energy, for instance, during its combustion, it is currently 

mostly produced from sources such as natural gas, naphtha, and coal, with co-production of 

carbon dioxide. However, biomass is a renewable and alternative source for hydrogen that results 

in no net greenhouse gas emissions. 

Biomass is a general term which is used to define any kind of solid renewable organic residue, 

like animal waste or plant residue such as forestry and agricultural residues, when its major 

elemental composition includes carbon, hydrogen and oxygen. Analysis of the molecular 

structure of the plant biomass shows that it consists of water, cellulose, hemicellulose and lignin 

[19].  

1.2.2. Bio-oil 

Bio-oil is the valuable liquid product obtained from biomass fast pyrolysis.  It may be either 

combusted to generate carbon-neutral electricity, upgraded to value added chemicals, or 

converted to syngas, from which high value chemicals or clean advanced fuels can be produced. 

Constituents of bio-oils are different in their chemical composition depending on the original 

biomass, pyrolysis conditions, and whether or not a catalyst was used to produce the bio-oil. 

However, all bio-oils usually have a series of characteristic and similar constituents.  Bio-oils 

contain organic/ligning phase, which insoluble in water, and aqueous phase; depending on the 

original biomass and the pyrolysis process, these phase could be either mixed homogenatly or 

separate and distinguishable. Table 1.1 depicts four samples of bio-oils with the composition of 

their constituents.  
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Table 1.1. Composition of different bio-oils (Yields in wt % of dry biomass). Adapted from [20]  

 

Fluidized bed 
(University of Waterloo) 

Vortex 
(NREL) 

Poplar 
(504°C) 

Maple 
(508°C) 

Spruce 
(500°C) 

Oak 
(~500°C) 

Acetic acid 5.4 5.8 3.9 5.0 
Formic acid 3.1 6.4 7.2 3.3 

Hydroxyacetaldehyde 10.0 7.6 7.7 4.3 
Glyoxal 2.2 1.8 2.5 3.0 

Methylglyoxal - 0.65 - - 
Formaldehyde - 1.2 - 2.2 

Acetol 1.4 1.2 1.2 1.8 
Ethylene glycol 1.1 0.6 0.9 - 
Levoglucosan 3.0 2.8 4.0 3.8 

1.6-anhydroglucofuranoze 2.4 - - - 
Fructose 1.3 1.5 2.3 - 
Xylose - - - 0.9 
Glucose 0.4 0.6 1.0 - 

Cellobiosan 1.3 1.6 2.5 - 
Oligosaccharides 0.7 - - - 
Pyrolytic lignin 16.2 20.9 20.6 24.9 

Unidentified 11.9 17.1 12.9 5.8 
Oil 65.8 67.9 66.5 55.3 

Water 12.2 9.8 11.6 10.4 
Char 7.7 13.7 12.2 12.4 
Gas 10.8 9.8 7.8 12.2 

Mass closure 96.5 101.2 97.7 90.3 

 

According to Basagiannis and Verykios [21] and Takanabe et al. [22] major components of bio-

oils are oxygenates belonging to the following groups: acids, aldehydes, alcohols, ketones and 

substituted furans derived from cellulose and hemi-cellulose, and phenolic and cyclic oxygenates 

derived from lignin. About 300 different molecules have been identified in an aqueous fraction 

of bio-oil, which contains components with low molecular weight like acids, aldehydes and 

alcohols. Lignin-derived products contribute to 25– 30% of the whole bio-oil. A typical 

composition of wood oil includes water (20–30%), lignin fragments (15–30%), aldehydes (10– 

20%), carboxylic acids, carbohydrates (5–10%), and phenols (2– 5%) [23]. 
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Direct usage of bio-oil as a fuel has been reported to be difficult because of the physico-chemical 

properties of bio-oils, especially, their high thermal instability [23]. Bio-oil is stable at room 

temperature, but it polymerizes after being heated up even to moderate temperatures (around 

80°C). Bio-oil is decomposed to a new structure of molecules at higher temperatures. Even at 

low temperatures, some of the molecules of bio-oil may not be stable and composition of bio-oil 

can be influenced by aging phenomena [21, 22]. Chaala et al. [24] worked on the identification 

of colloidal properties of a bio-oil produced from softwood bark. They identified a multiphase 

complex colloidal system composed of solid particles, three-dimensional structures, and droplets. 

It was realized that the main colloidal properties of bio-oil are due to an upper layer of bio-oil 

containing dispersed droplets which includes waxy materials, like fatty and resin acids, as well as 

water-insoluble compounds. Bio-oil has high viscosity and non-Newtonian behavior at low 

temperatures, because of the presence of waxy materials. When these materials reach their 

melting point, bio-oil no longer has high viscosity and non-Newtonian properties. 

The dependence of bio-oil physical and chemical properties on temperature is a challenge for 

storage and transportation. In addition, challenges arise during the injection of bio-oil into themal 

processing units, such as gasifiers, because the temperature of injection nozzles is typically high 

enough to influence the bio-oil stability and reactivity even before it is sprayed into the reactor. 

Consequently, bio-oil tends to solidify and plug the nozzles. This issue has been tackled by using 

a specially designed gas atomized nozzle [25].  

Czernik et al. [26] developed a conceptual process to produce syngas from the aqueous fraction 

of bio-oil; i.e. during the fast pyrolysis of biomass, bio-char, bio-oil and product gases are being 

produced. By adding water to bio-oil it can be separated to two phases: a lignin fraction can be 

used for phenol substitution and an aqueous fraction which mainly contains hydrocarbons can be 

used for hydrogen production. Figure 1.4 illustrates the process of syngas production from 

aqueous fraction of bio-oil.  
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Figure 1.4. Syngas production from an aqueous fraction of bio-oil taken from [26] 

 
1.2.3. Steam reforming reactions of bio-oil and its model compounds: 

Although bio-oils contain 20 to 30 wt% water, almost all researchers used additional steam to 

increase bio-oil conversion and yield of hydrogen production. Due to the fact that carbon, 

hydrogen and oxygen are abundant elements of bio-oil, a general formula like CnHmOk is usually 

considered for a bio-oil. 

The steam reforming reaction of any oxygenated organic compound proceeds according to the 

reaction 1.3 [26]: 

  22 2
Hk

m
nnCOOHknOHC kmn 














        (1.3) 

In other words, 1+m/2n-k/n moles of hydrogen are obtained from one mole of carbon. 

Another main reaction during steam reforming reactions is a water gas shift reaction, in which 

carbon monoxide reacts with steam and produces carbon dioxide and hydrogen: 
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222 nHnCOOnHnCO          (1.4) 

Steam reforming reactions (like reaction 1.3) are very endothermic, but the water gas shift 

reaction is an exothermic reaction which releases heat inside the reactor. For example, consumed 

and released heat during steam reforming of methane can be evaluated according to the reactions 

1.5 and 1.6:   

molkJHHCOOHCH /2513 224         (1.5) 
 

molkJHHCOOHCO /42222         (1.6) 

Therefore, an optimum temperature should be found for the reaction at which a required ratio of 

H2/CO can be obtained. 

According to reaction 1.7, as soon as bio-oil is sprayed into the reactor, bio-oil is partially 

decomposed to other forms of oxygenated molecules (CxHyOz), some permanent gases and coke 

[26]. Besides, since CO, CO2 and coke are available inside the reactor, the Boudouard reaction 

(reaction 1.8) is another important reaction which can affect the CO/CO2 ratio in the final 

product gases.  

  cokeCHCOCOHHgasesOHCOHC zyxKmn  ,...,,,, 4222     (1.7) 

 
CCOCO  22           (1.8) 

Acetic acid, one of the typical bio-oil model compounds, has been used by many investigators 

for syngas production. Basagiannis et al. [21] described all possible reactions during acetic acid 

steam reforming (reactions 1.9-1.17). These reactions can take place during steam reforming of 

any other oxygenated feedstock, but with different stoichiometric multipliers.    

Complete steam reforming: 
 

2223 422 HCOOHCOOHCH          (1.9) 

 
Steam reforming: 
 

224 3HCOOHCH           (1.10) 
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Thermal decomposition: 
  

2223 HCOCOOHCH           (1.11) 
 

243 COCHCOOHCH           (1.12) 

 
,...,,, 4362423 cokeHCHCHCCOOHCH         (1.13) 

 
Ketonization: 
 

  22233 COOHCOCHCOOHCH         (1.14) 

 
Water–gas shift: 
 

222 HCOOHCO           (1.15) 
 
Methanation: 
 

OHCHHCO 2423             (1.16) 
 

OHCHHCO 2422 24          (1.17) 
 

Takanabe et al. [22] reported that methane formation by the hydrogenation of carbon monoxide 

(forward direction of reaction 1.16) is kinetically much slower than the methane consumption 

(backward direction of reaction 1.16). Thus, observed methane during the catalytic steam 

reforming of acetic acid is an initial product that resulted from acetic acid decomposition, not 

from secondary hydrogenation of carbon monoxide. 

Acetone is another model compound which has been used for steam reforming studies [22]: 

22233 835 HCOOHCOCHCH         (1.18) 

 

Carbon deposition on the surface of a catalyst is a key issue in bio-oil steam reforming, which 

should be controlled to enhance total efficiency of the gasification process. Davidian et al. [23] 

proposed a two-step strategy of continuous cracking and regeneration reactors to decrease carbon 

deposition on the catalyst surface (reactions 1.19 and 1.20).   
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Cracking   24 2HCCH catalyst        (1.19) 
 
Regeneration   22 COOC        (1.20) 
 

In order to operate this process, there should be at least two parallel reactors, so that in one 

reactor cracking reaction occurs while in another reactor the regeneration process is carried out. 

In addition, it is required to have a switching possibility between reactors from the cracking 

mode to the regeneration mode and vice versa, or to move the catalyst between reactor and 

regenerator. Through the cracking step, coke is deposited on the surface of catalysts as a result of 

cracking a molecule of hydrocarbons like CH4, or an oxygenated compound to carbon and 

hydrogen. However, at the same time and in the regenerating reactor, the deposited carbon on the 

surface of a catalyst is burned by a flow of air and then the catalyst can be used for further 

gasification reactions on its surface. This cyclic process has been used already in butane 

dehydrogenation in the fluidized bed reactors [23].  

Wang et al. [27] claimed that coke formation during catalytic steam reforming of acetic acid is 

due to the adsorbed acetate molecules that decarboxylate to form the coke precursor (CH1-3)abs . 

Solid carbon formation on the surface of a catalyst may be whiskers, encapsulating deposits 

(polymers) and pyrolytic carbon. In addition, sulfur content of the feedstock is poisonous for the 

catalyst and can deactivate it, but due to small traces of sulfur in bio-oil compared to that in 

hydrocarbons, there is no need to use a desulphurization unit before bio-oil gasification [20]. 

Czernik et al. [26] pointed out one major property of bio-oil that facilitates more carbon 

deposition on the catalyst; there are carbon-oxygen bonds in bio-oil which make the molecules of 

bio-oil more reactive when compared to hydrocarbons. Thus, some components like furans, 

phenols and carbohydrates which are unstable at high temperatures contribute to carbon 

deposition. 
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1.2.4. Thermodynamics of gasification 

Cracking reactions of oxygenate molecules are irreversible, but reactions between permanent 

gases such as hydrogen, CO, CO2, CH4, H2O and carbon are reversible. Therefore, there is 

always a potential for these gases to reach thermodynamic equilibrium inside the gasification 

reactor.  

Wang et al. [20] used ASPEN plus software to model the equilibrium yield of hydrogen from 

different oxygenated feeds versus temperature and molar S/C ratio. According to data in Table 

1.2, which presents the equilibrium yield of hydrogen from water free poplar bio-oil with general 

formula of CH1.33O0.53, the yield of hydrogen is increased by temperature. In addition, additional 

steam looks to be very influential to maximize the yield of hydrogen which indicates the 

importance of having a separate water-gas shift reactor after the gasification reactor.  

Table 1.2. Stoichiometric yield of H2 at equilibrium from steam reforming of a water free poplar 
bio-oil with formula of CH1.33O0.53. Adapted from [20] 

Operating 
temperature, °C 

% yield of H2 

S/C= 5 S/C= 10 

500 57.0 76.3 
600 76.9 90.4 
700 84.6 92.8 
800 84.7 91.7 
900 82.8 89.9 

 

Vagia and Lemonidou [28] investigated the equilibrium yields of steam reforming of major 

components of bio-oil such as acetic acid, ethylene glycol and acetone, within a temperature 

range between 400K and 1300K, molar steam to carbon ratio of 1to 3, and pressure range of 1-20 

atm. The equilibrium model was contructed by the Aspen plus software based on the minimum 

Gibbs free energy of the system. Hydrogen, carbon monoxide, carbon dioxide, methane and solid 

carbon were assumed as the final products at equilibrium. 

In the case of acetic acid, their results showed that around 400K acetic acid was decomposed to 

only methane and carbon dioxide. However, hydrogen reached maximum mole fraction at 900K 
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while methane fraction at this temperature was around zero. CO was also increased versus 

temperature while CO2 was decreased. 

In the case of acetone and ethylene glycol steam reforming, results were similar to the case of 

acetic acid. At lower temperatures (400K) methane was the predominant product, while it 

decreaseed to zero at higher temperatures. Hydrogen reached its maximum fraction at 

temperatures above 900K, CO production rose with temperature while CO2 declined. 

Regarding the steam to carbon ratio, in the case of acetic acid, the mole fraction of hydrogen 

grew at all temperatures with increasing molar S/C ratio. The CO mole fraction was not affected 

by the molar S/C ratio below 700K, but at higher temperatures, it decreased when molar S/C 

ratio increased. Methane was only affected by this ratio between 400K-900K and its mole 

fraction decreased with increasing molar S/C ratio. The CO2 mole fraction declined with a rise in 

molar S/C ratio up to 800K, and then the trend was reversed. It is interesting that the solid carbon 

product was almost zero at high molar S/C ratios. 

In the case of acetone and ethylene glycol steam reforming, the only difference with respect to 

the acetic acid equilibrium data was that the CO2 mole fraction first rose with increasing molar 

S/C ratio where it reached a maximum amount at temperatures about 600K-700K, and then 

declined. 

The effect of pressure of ethylene glycol steam reforming showed that the hydrogen mole 

fraction was higher at low pressures (1 atm) rather than at high pressures (20 atm). This effect on 

CO and CO2 was negligible, but methane formation was larger at higher pressures.  

As illustrated in Table 1.3, Vagia and Lemonidou [28] suggested the optimum operating 

conditions estimated by the equilibrium model for steam reforming of acetic acid, acetone and 

ethylene glycol.  
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Table 1.3. Estimated optimum conditions for steam reforming of model compounds. Adapted 
from [28] 

Operating variable Acetic acid 
SR 

Acetone 
SR 

Ethylene 
glycol SR 

S/F ratio (S/C ratio) 6/1 (3/1) 9/1 (3/1) 6/1 (3/1) 
Reactor Temperature, K 900 900 900 
Reactor pressure, atm 1 1 1 
Conversion, % 100 100 100 
Yield, % (based on carbon)    
H2 (based on stoichiometric H2) 84.76 79.46 84.44 
CO 24.01 32.23 27.34 
CO2 74.37 62.14 69.77 
CH4 1.62 5.63 2.89 

 
 
1.2.5. Gasification kinetics 

In the literature there are no reports about the kinetic studies of reactions involved in bio-oil 

gasification. Yet, there are many reports about the kinetic study of biomass pyrolysis and 

gasification, coal gasification and methane steam reforming and kinetic models are reported for 

the reactions involved in such processes.  

Hajaligol et al. [29] worked on the effect of temperature, residence time and heating rate on the 

rapid pyrolysis of cellulose, and reported Arrhenius kinetic data for first order formation of 

pyrolysis products. Nunn et al. [30] reported kinetic data for the generation of the major products 

of rapid pyrolysis of sweet gum hardwood under conditions of constant residence time and 

heating rate but temperature was varied between 600K-1400K. Muhlen et al. [31] worked on 

steam gasification of char in the presence of hydrogen, carbon monoxide and carbon dioxide and 

derived an empirical model to describe carbon conversion rate as a function of temperature. 

Neogi et al. [32] studied thermal gasification of coal with steam and developed a predictive 

model for a reaction network of devolatilization of coke, char gasification and water-gas shift 

reactions. Brown et al. [33] developed a mathematical model to simulate an entrained flow 

gasification process which was used to convert four types of coal to syngas. Boroson et al. [34] 

worked specifically on the cracking of tar and reported kinetic data to predict the generation of 

product gases. Their proposed kinetic model is a first order kinetic equation which is similar to 
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models by Hajaligol et al. [29] and Nunn et al. [30]. This kinetic model is helpful as it is a good 

tool to predict the yield of gases produced due to tar cracking.  

Xu and Froment [35] worked on catalytic steam reforming of methane. They used Ni/MgAl2O4 

as the catalyst and considered possible reactions in methane steam reforming; then proposed a 

mechanism of catalytic reactions to derive the rate of methane steam reforming, methanation and 

water-gas shift reactions. These models are very useful for catalytic reactions, but they need to 

be modified according to the operating conditions and the type of catalyst. Donnot et al. [36] 

used decarbonated and recarbonated dolomites as well as some commercial catalysts to find the 

highest yield of cracking of tar produced from wood pyrolysis. They developed kinetic models 

and then found activation energy, rate constants and unit volume of catalysts. Adjaye and 

Bakhshi [37] studied catalytic conversion of bio-oil over HZSM catalyst in a fixed bed reactor. 

They proposed kinetic data for conversion of volatile and nonvolatile parts of oil as well as 

kinetic data for the formation of gas, coke and residue; however, their model does not predict the 

distribution of product gases. Biggs and Agarwal [38] developed a mathematical model for a 

combustion fluidized bed in which char particles react with oxygen, and then they studied the 

effect of CO/CO2 ratio on the process. Encinar et al. [39] pyrolyzed maize, sunflower, grape and 

tobacco residues for different residence times and temperatures and then proposed a kinetic 

model for the production of gases. Fletcher et al. [40] developed a computational fluid dynamics 

model for a biomass combustion system. They assumed that biomass was totally converted to the 

gas phase, so only reactions between char, methane, hydrogen, steam, carbon monoxide and 

carbon dioxide were considered. Di Blasi and Branca [41] used the thermogravimetric technique 

to estimate the kinetic parameters of wood pyrolysis primary products. Fagbemi et al. [42] 

worked on pyrolysis of wood, coconut shell and straw and compared the product yield of these 

three types of biomass. They also developed a kinetic model for tar thermal cracking. Fiaschi and 

Michelini [43] used a two phase one dimensional model for biomass gasification in a bubbling 

fluidized bed to predict the concentration of gases along the reactor. They considered the effect 

of mass transfer between the bubble phase and dense phase along with kinetic reactions. Hamel 

and Krumm [44] also developed a mathematical model which predicts gasification of lab scale 

and industrial scale gasification processes of coal and biomass. Among reactions that they 
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considered, they assumed that tar reacts with oxygen and steam and produces hydrogen, carbon 

monoxide, carbon dioxide and methane. 

Wurzenberger et al. [45] developed a comprehensive model for biomass gasification. They 

considered biomass drying step, homogeneous and heterogeneous reactions of biomass and tar 

cracking to make sure any kind of reaction has been assumed in the model. Then they solved 

derived equations out of momentum, heat and mass transfer relations. Liu and Gibbs [46] 

developed a model for a circulation biomass gasification process. They considered emissions of 

NH3 and HCN which are produced in the process. Having considered a reaction network of 40 

reactions, they used all kinetic models from literature but tried to modify some of them according 

to their model. Kersten et al. [47] reported their review of available kinetic models for biomass 

pyrolysis in literature. They point out that there is not such a good compromise between models 

and engineering cases. Corella and Sanz [48] developed their rigorous model for biomass 

circulation fluidized bed gasifiers. They tried to include in their model as many available 

reactions as possible and to consider heat and mass transfer effects. They reported that it was 

difficult to consider the process hydrodynamics because biomasses are very different and make it 

hard for the model to be flexible for any biomass.  

Radmanesh et al. [49] worked on biomass pyrolysis and gasification. They simulated a bubbling 

fluidized bed reactor by considering hydrodynamics of the process. Their model predicts the 

concentration of gasification products in bed and in freeboard. Lee et al. [50] estimated the yield 

of product gases of biomass pyrolysis through the combination of thermodynamic and kinetic 

models. They used a soft ware which generates all chemical equilibrium reactions to measure the 

equilibrium yield of gases. Then they used latter results as kinetic limitations to apply to their 

kinetic models in which they considered all elementary reactions between final gaseous products 

of pyrolysis. Patel and Oant [51] developed kinetic models for catalytic steam reforming of 

methanol over Cu/Zn/Al2O3 catalyst. Yu et al. [52] developed a comprehensive model which 

predicts syngas production from coal in an entrained flow gasifier. They considered heat and 

mass transfer effects on the gasification process. They modified kinetic models by Xu and 

Froment [35] according to the calcium catalyst that they used.  
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Other than reaction 1.7 which considers the thermal decomposition of bio-oil upon its injection 

into the reactor, gasification reactions are similar to those in biomass, coal and methane gasifiers 

and their available kinetic models should be applicable to the kinetic study of bio-oil 

gasification.  

Similar to bio-oil evaporation, an initial thermal decomposition reaction (reaction 1.7) takes 

place inside the pyrolysis and gasification reactors for any kind of feedstock with a CmHnOk 

general formula such as biomass and tar. Fortunately, some kinetic models have been estimated 

for biomass and tar thermal decomposition. Hajaligol et al. [29], Nunn et al. [30] and Boroson et 

al. [34] proposed a single first order reaction kinetic model for the production of gases due to 

thermal decomposition of biomass, but for different biomasses (cellulose, sweet gum hardwood 

and wood respectively):  

ୢ୚౟
ୢ୲
ൌ k଴୧exp ቀെ

୉౟
ୖ୘
ቁ ሺV୧

∗ െ V୧ሻ, i: tar	, CO, COଶ,ܪଶ, ,ସܪܥ  ଶܱ,…     (1.21)ܪ

 

Vi
* is the ultimate attainable yield of each component at the longest residence time and highest 

temperature. E and k0 are activation energy and reaction constant of the arhenius kinetic 

equation. In Table 1.5, kinetic data reported in literature are listed. 

Table 1.5. Kinetic data for thermal decomposition of biomass and tar 

 Log k0i, s
-1 Ei, kcal/mol V*, wt% 

Reference [29] [30] [34] [29] [30] [34] [29] [30] [34] 

Biomass 
weight loss 

8.30 16.5 - 31.79 4.53 - 94.08 92.97 - 

Total gases - 11.8 - - 2.88 - - 41.01 - 
Tar - - 4.98 - - 99.3 - - 5.79 
H2 6.17 - 6.64 27.29 - 129 1.16 - 1.09 
CO 11.75 14.6 4.66 52.74 3.36 87.9 21.64 17.05 36.33 
CH4 13.0 16.6 4.89 60.04 3.79 94.2 2.41 1.91 5.83 

CO2 5.39 14.3 2.55 23.42 3.77 49.0 3.08 5.97 13.2 

H2O 6.71 11.5 - 24.62 3.35 - 8.04 5.14 - 
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Wurzenberger et al. [45] assumed tar is cracked into CO, CO2, CH4, H2 and inert tar into the gas 

phase: 

tarCO CO(g) + CO2CO2(g) + CH4CH4 + H2H2(g) + inert tartarinert    (1.22) 
   

Regarding the relative stoichiometry of each component compared to the tar feed, the rate of 

formation of each component was suggested to be estimated by equation 1.23:  

r୧ ൌ ϑ୧. 10ସ.ଽ଼. expሺെ99.3/RTሻ. ൫W୥,୲ୟ୰. ρ୥൯       
 (1.23)      

Wg,tar is the mass fraction of tar and (Wg,tar.ρg) is the mass of tar per volume of reactor in the gas 

phase. This equation has been deduced from models developed by Hajaligol et al., Nunn et al. 

and Boroson et al.  

Similar models have been reported for tar cracking during coal gasification. For example, Yu et 

al. [52] considered cracking of tar produced during coal gasification according to reaction 1.24 

and used kinetic model proposed by Brown et al. [33]: 

Tar CO CO(g)+ CO2CO2(g)+ CH4CH4+H2H2(g)+ C2H6C2H6+C2H4C2H4+H2S 
H2S+NH3NH3+inert tartartar          (1.24) 

          

r୧ ൌ .௜ߴ 3.7 ൈ 10ହ exp ቀെ ଶହ଴ଵ଼

்
ቁ . ሺݎܽݐሻ଴.ଶ         (1.25) 

 

The most important operating parameters in bio-oil gasification are temperature, molar steam to 

carbon ratio (S/C), residence time and catalyst to feed ratio. Since steam reforming is an 

endothermic reaction and needs more heat, high temperature and excess steam (regarding 

equilibrium conditions of the reaction) favorably shifts the direction of the reaction towards 

increasing the rate of hydrogen production. A catalyst to feed ratio in a continuous flow reactor 

is explained by gas hourly space velocity (GHSV), which is defined as the ratio between feed 

flow rate and volume of the catalyst. This parameter helps to compare catalyst activity per unit 

carbon in the complex feedstocks like bio-oil. Some researchers changed GHSV by changing the 
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mass of the catalyst while some researchers changed the flow of the feed by keeping the mass of 

the catalyst untouched.   

1.3. Review of experimental results from gasification of bio-oil and 
its model compounds 
 
1.3.1. Experimental objectives and setups 
 
1.3.1.1. Bio-oil model compounds 

Wang et al. [20] worked on catalytic steam reforming of oxygenated liquids which represent 

different constituents of bio-oil such as acids, ketones, alcohols, aldehydes, phenols and furans. 

They investigated the effects of temperature, molar S/C ratio, gas hourly space velocity and 

residence time on the conversion of the model compounds and yield of hydrogen. Experiments 

were carried out in a vertical, dual-bed quartz reactor. The mass of the catalyst is not reported, 

but the catalyst was mixed with chips of quartz if its mass had to be less than 0.25g.  

Marquevich et al. [53] investigated catalytic steam reforming of acetic acid as an acid, m-cresol 

and dibenzyl ether as two aromatic compounds, and xylose, glucose and sucrose as sugar 

compounds. Experiments were carried out in two fixed bed reactors: a larger reactor (2.64cm 

I.D. and 41cm length) packed with 100g catalyst and a smaller reactor (1.27cm O.D. and 28cm 

length) packed with 10g catalyst. The larger reactor had a nozzle injector to spray from the top of 

the reactor high boiling point or thermally unstable compounds, in particular, sugars,. Water and 

oxygenated liquids were pumped by two HPLC metering pumps, while water was superheated to 

300°C-400°C and model compounds were vaporized and mixed with steam and nitrogen at the 

reactor inlet at the top.  

Rioche et al. [54] studied steam reforming of acetic acid, phenol, acetone, ethanol and bio-oil at 

the temperatures between 650°C and 950°C with  catalysts synthesized by Pt, Pd and Rh as 

active metals supported on alumina and ceria–zirconia sample. The bio-oil was produced from 

beech wood with a general formula of CH1.32O0.54 with 29 wt% water content. Bio-oil and water 

were injected through two syringe pumps from the top of the reactor. The needle of the bio-oil 

pump was cool enough to prevent bio-oil polymerization before contact with catalysts. The fixed 
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bed reactor consisted of a quartz tube with 1.8cm O.D., 1.5 cm I.D. and 30cm height. The 

catalytic bed contained 100-200mg of catalyst and 1000mg of the inert cordierite filler. 

Galdamez et al. [55] investigated non catalytic and catalytic steam reforming of acetic acid in a 

fluidized bed reactor. Molar steam to carbon ratio was 5.58 and total mass of bed material was 

200g (sand and catalyst) in all experiments, while mass of catalyst was 2g in catalytic 

experiments. Non catalytic tests were carried out over 450°C-700°C and their catalytic 

experiments were conducted at 650°C.  The internal cross section area of the fluidized bed 

reactor was 13.14cm2. The solution of acetic acid in water (representing molar S/C ratio of 5.58) 

was fed into the reactor by a HPLC metering pump with a flow rate of 5ml/min.  

Basagiannis and Verykios [21] investigated catalytic steam reforming of acetic acid and its 

reaction network as a model compound of bio-oil between 200°C and800°C. Their reactor 

consisted of a quartz cell with 8 mm O.D in between two 6 mm O.D. quartz tubes as the inlet and 

the outlet tubes.  The total length of the reactor was 32 cm. 

Takanabe et al. [56] investigated deactivation of the Pt/ZrO2 catalyst during steam reforming of 

acetic acid. About 50-200mg of the catalyst were placed in the fixed bed reactor (dimension is 

not reported). The aqueous solution of the feed (molar S/C=5) was injected to the reactor by a 

micro feeder equipped with a syringe. The GHSV of 40000h-1 was supplied by a flow of argon in 

the inlet and temperature was 875K. Deposited coke on the surface of catalyst was detected by 

burning the coke in a thermogravimetry system. 

Ramos et al. [57] studied non catalytic and catalytic steam reforming of acetol with experimental 

setup and operating conditions similar to that reported in [55]. 

Medrano et al. [58] investigated the effects of catalyst calcination temperature and additional 

oxygen to increase the conversion of acetic acid during its catalytic steam reforming in a 

fluidized bed reactor at 650°C with Ni/Al catalysts. The catalytic bed was a mixture of sand and 

catalyst with an equal size distribution of 160µm-320µm forming the height of 7cm so that mass 

of catalyst was 1.1 g. The solution of acetic acid and water (molar S/C= 5.58) was injected to the 
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bottom of the reactor with a peristaltic pump through a cooled spray nozzle with GHSV of 

6800h-1. 

Vagia et al. [59] studied catalytic and non catalytic steam reforming of acetic acid and acetone in 

a fixed bed reactor over 550°C-750°C. The molar steam to carbon ratio was 3 for all 

experiments. They used quartz particles for the non catalytic tests.  0.05g of catalyst was diluted 

with 0.1g of quartz particles for the catalytic runs. The O.D. of the reaction zone was 10mm and 

the O.D. of the pre and post reaction zones was 6mm. Solutions of acetic acid and acetone in 

water were prepared to represent required molar S/C ratio of 3 and were fed into the reactor by a 

HPLC pump with flow rates of 6 and 4.5 cm3/h for acetic acid and acetone, respectively.  

Davidian et al. [60, 61] worked on catalytic cracking of acetic acid with their proposed 

sequential cracking/regeneration cycles in their reactor system in the absence of steam. 

According to Figure 1.5, they proposed a system of two parallel acetic acid 

cracking/regeneration cycles which includescracking/purging/regeneration/purging steps for time 

intervals of 15/2/10/3 minutes in each reactor. Although less hydrogen is produced by cracking 

of the acetic acid compared to steam reforming of the acetic acid, less energy input is required in 

the cracking reactor according to their calculations. It has been claimed that catalytic activity loss 

on the proposed process is prevented because of the presence of the regeneration step.  

 

Figure 1.5. Sketch of the two parallel reactors performing acetic acid cracking/regeneration 
sequences in opposition for continuous hydrogen production taken from [60] 
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1.3.1.2. Bio-oil 

Garcia et al. [62] studied catalytic steam reforming of aqueous fraction of bio-oil. The original 

bio-oil was produced from poplar wood and contained 46.8wt% carbon, 7.4wt% hydrogen and 

45.8 wt% oxygen, while its water content was 19wt%. To separate the aqueous fraction from the 

lignin fraction, water was added to bio-oil with mass ratio of 2 so that the final obtained aqueous 

fraction contained 22.9wt% organics with a general formula of CH1.34O0.81 and 77.1wt% water 

presenting a molar S/C ratio of 4.92. The experiments were conducted in a dual bed reactor made 

of quartz with I.D. of 0.785 cm. The feed was injected by a syringe pump into the fixed bed 

reactor. 

Czernik et al. [26] worked on catalytic steam reforming of the aqueous phase of bio-oil produced 

from pine sawdust in a fluidized bed reactor. They also investigated co-steam reforming of bio-

oil and natural gas. Elemental composition of the bio-oil was 47.7wt% carbon, 7.4wt% hydrogen 

and 44.8wt% oxygen with 26.7wt% water content. Water was added to the bio-oil with a mass 

ratio of 2 to separate aqueous fraction from the lignin fraction of bio-oil; the resulted aqueous 

solution contained 21.8% organics with general formula of CH1.25O0.55 and 78.2% water (molar 

S/C=7).  An aqueous solution of bio-oil was injected by a water cooled injector into the reactor 

and steam was flowing into the reactor though the distributor as both fluidization medium and 

reactant. Reactions were conducted at temperatures 800°C and 850°C, and with molar S/C ratio 

of 7-9 as well as GHSV in the range of 700 to1000 h-1. The commercial steam reforming 

catalyst,C11-NK, from Sud-Chemie was crushed to reach average size of 300µm-500µm suitable 

for a fluidized bed. The bubbling fluidized bed reactor with 2 inch diameter made of inconel was 

used for the following reasons: 

 In the fluidized bed reactor, there is very good mixing between the feed and the catalyst 
particles. 

 In the fluidized bed reactor, deposited carbon is more exposed to steam to be gasified, so 
the regeneration time for the catalyst is shorter. 
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Panigrahi et al. [63] investigated the effect of residence time on gasification of bio-oil in the 

absence of catalyst to produce syngas and high Btu gaseous fuel, like methane and olefins. The 

bio-oil was produced at Dynamotive Technologies Inc. Vancouver (Table 1.6).  

Table 1.6. Properties of Dynamotive’s bio-oil. Adapted from [63] 

Property of bio-oil Value 
C, wt% 43.6 
H, wt% 8.5 
N, wt% 0.5 
O, wt% (by difference) 47.9 
pH 2.5 
Water content, wt% 21.5 
Lignin content, wt% 25.0 
Ash content, wt% 0.16 
Density, g/cm3 1.8-1.24 
Calorific value, MJ/kg 17.5-19.1
Kinematic viscosity, cSt at 20°C 110 
Kinematic viscosity, cSt at 80°C 45.6 

 

Experiments were conducted at temperatures between 650°C and 800°C in a vertical fixed bed 

downward flow micro reactor with an I.D. of 12.7 mm and 500 mm high. About 5g of quartz 

chip were placed in between the quartz wool to maintain a good temperature and flow 

distribution and prevent a large pressure drop. Bio-oil was pumped by a syringe pump towards 

the reactor top and then was carried by a nitrogen flow to be atomized to the reactor. Each 

experiment took about 30-45 minutes. After any experiment the reactor was weighed to measure 

the coke yield.  

Panigrahi et al. [64] investigated non-catalytic gasification of bio-oil with CO2 (CO2/N2), H2 

(H2/N2) and steam (H2O/N2) in the absence of hydrogen at 800°C in a similar experimental 

setup. Flow rate of carbon dioxide and hydrogen varied between 0 and 18 ml/min, but the total 

flow rate of each gas plus nitrogen was set at 30ml/min. During steam reforming tests, the flow 

rate of nitrogen was 30ml/min while flow rate of steam was 2.5 to10 g/h. Flow rate of bio-oil 

was 5g/h in all experiments.   
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Kechagiopoulos et al. [65] worked on catalytic steam reforming of bio-oil model compounds and 

also aqueous fraction of bio-oil in a fixed bed reactor. The fixed bed reactor had a length of 71.2 

cm and I.D. of 1.25cm. Experiments with an equimolar mixture of acetone, acetic acid and 

ethylene glycol were conducted at 650°C-750°C, molar S/C ratio of 3-6 and GHSV of  

1500 h-1.  Water was added to the bio-oil, which was produced from catalytic fast pyrolysis of 

beech wood, with a mass ratio of 2 to separate aqueous fraction from the lignin fraction. The 

resulted aqueous fraction, representing molar S/C ratio of 8.2, contained 16 wt% organics with 

general formula of CH2.48O0.94. Liquid feeds and water were injected to the reactor by two 

syringe pumps. 

Davidian et al. [23] developed the idea of having a continuous sequential catalytic gasification 

process having one reactor in which bio-oil was cracked during the cracking step and then 

catalyst was regenerated during the regeneration step (similar to their proposed process in [60, 

61]). The bio-oil studied was made from beech wood residues with a general formula of 

CH2.3O1.04N0.01 including 28.8wt% water content with some impurities like chlorine, sulphur and 

traces of metals like K, Mg and Ca. A double envelop reactor (the configuration of the reactor 

has not been reported) was used equipped with a water cooled capillary nozzle through which 

bio-oil pumped by a syringe pump (5 ml/h) was injected to the top of the catalyst bed. An 

automated two position switching valve was used to inject the bio-oil to the reactor during the 

cracking step and to a collector tank during the regeneration step. An inert gas was used to purge 

out the gases inside the reactor during cracking and regeneration steps. The catalysts were 

reduced with hydrogen at 650°C before start up of the experiments.  

Czernik et al. [66] used a fluidized bed reactor (with 5cm diameter) to produce hydrogen by 

catalytic steam reforming of Dynamotive bio-oil. They had added 10 wt% methanol to the bio-

oil to reduce its viscosity, so the elemental composition of the final mixture was 36.5 wt% 

carbon, 8.4 wt% hydrogen and 55.0 wt% oxygen. The experiments were carried out at 850 °C 

while mass of the catalytic bed was 250 g , molar S/C ratio was 5.8 and the methane-equivalent 

space velocity was 920 h-1. 
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Van Rossum et al. [67] worked on non catalytic and catalytic steam gasification of bio-oil in a 

fluidized bed reactor. Their goal was to convert the whole bio-oil to produce a clean syngas free 

of hydrocarbons and with the lowest tar content. They used bio-oils produced from pine wood 

and beech wood at the BTG in Netherlands. Elemental composition and water content of the bio-

oils are listed in Table 1.7.  

Table 1.7. Elemental analysis and water content of BTG bio-oils. Adapted from [67] 

(wt%) Beech wood bio-oil Pine wood bio-oil
C 30.4-37.7 38.1-39.9 
H 7.6-7.9 7.9-8.3 
O 54.4-61.7 51.6-53.7 
N <0.01-0.27 0.13-0.16 
S <0.01 <0.01 

H2O 32.5-43.7 29.7-30.4 
 

The fluidized bed reactor had an I.D. of 10.8cm and a height of 72cm, and 4-9 kg of the bed 

material was loaded inside. There was also an additional free board with a 19.6cm I.D. and 33cm 

height to minimize loss of the bed material. However, less than 0.2wt% of sand was elutriated 

from the bed at each run and this value was higher when catalyst was the bed material (no 

number is reported). Instead of using a perforated plate, the lower section of the reactor was 

conical to provide spouting behavior while bio-oil, steam and other gases were being introduced 

upward from the bottom. Before atomizing the bio-oil into the reactor by nitrogen, the 

temperature of the bio-oil line was kept at 80°C to avoid any thermal decomposition of the bio-

oil before reaching the bed material inside the reactor.  

Van Rossum et al. [68] developed the idea of using a staged gasification setup consisting of a 

fluidized bed reactor with inert bed material, to initially gasify/vaporize the bio-oil, followed by 

a fixed bed of nickel based steam reforming catalysts (K23 and K46 supplied by the Johnson 

Matthey) above the fluidized bed to produce a syngas stream with no methane, C2-C3 and tar 

content (Figure 1.6).  
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Figure 1.6. Schematic overview of the staged setup; taken from [68] 

 

Wu et al. [69] developed the idea of hydrogen production from the sawdust bio-oil via steam 

reforming in a two stage catalytic fixed bed reactor. In order to reduce deactivation of the nickel 

based catalysts, the dolomite, calcined at 950°C for 5h, was used in the first fixed bed reactor for 

a primary steam reforming of bio-oil.  A commercial Ni/MgO catalyst, reduced by 5vol% 

hydrogen flow at 500°C for 8h, was used in the second fixed bed reactor in which further 

catalytic steam reforming reactions between product gases of the previous stage took place, to 

increase conversion of hydrocarbons and yield of hydrogen.  

Marda et al. [70] investigated non-catalytic partial oxidation (NPOX) of the bio-oil produced 

from the poplar wood. Additional oxygen was introduced to an empty tubular reactor while the 

bio-oil was sprayed from the top through an ultrasonic nozzle. The elemental composition of the 

bio-oil was 48.2wt% carbon, 7.2wt% hydrogen and wt44.6% oxygen including its 17% water 

content (CH1.32O0.46.0.23H2O). No additional steam was used. Their idea was to maximize 

conversion of the carbon content of the bio-oil to gaseous products through the NPOX process, 

and then to increase the yield of hydrogen in a catalytic reactor where lower temperature and less 

load of catalyst is required.  The poplar bio-oil had been stored since 1997 at a temperature of 
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4°C. Due to the aging issues, they had to add methanol for a 50:50 mass ratio to be able to pump 

the bio-oil by a syringe pump and then spray it through the ultrasonic nozzle.  

Sakaguchi et al. [71] investigated non-catalytic and catalytic steam gasification of bio-oil and 

bio-oil/bio-char slurry in a fluidized bed reactor. The bio-oil and the bio-char were products of 

the fast pyrolysis plant of the Dynamotive Energy Systems Corporation of Canada. Water 

content of the bio-oil was 25.2 wt%. Elemental composition of these feedstocks is listed in Table 

1.8: 

Table 1.8. Elemental analysis of Dynamotive’s bio-oil and bio-char. Adapted from [71] 

Sample C, wt% H, wt% N, wt% S, wt% O, wt% 

Bio-oil 42.5 7.2 <0.3 <0.3 49.7 

Bio-char 76.5 3.7 <0.3 <0.3 19.2 

  

The fluidized reactor had an I.D. of 7.79cm and a height of 80cm. The steam generated by a 

steam generator was used to fluidize the bed material through a perforated plate. The bed 

material occupied 0.6L of the reactor volume. The feed was pumped by a peristaltic pump and 

atomized into the reactor from the side by an atomizer nozzle. The temperature on the surface of 

the nozzle was kept at 80°C to prevent the bio-oil to be thermally decomposed inside the nozzle 

and plug it. The gasification experiments were carried out at temperatures of 747°C to 803°C, 

molar steam to carbon ratios of 2.7-7.5, and GHSV between 210 and 400 h-1.  

Following their research on catalytic steam reforming of bio-oil in a fluidized bed reactor with 

the Ni/MgO catalyst [72], Lan et al. [73] conducted catalytic steam reforming of bio-oil in a 

fixed bed reactor and in a fluidized bed reactor. The dimensions of the reactor are not reported. 

The bio-oil was produced from rice husk with 40.71 wt% water content (Table 1.9). 

Table 1.9. Elemental composition of rice husk bio-oil. Adapted from [73] 

Water content, 
wt% 

Kinematic viscosity (20°C), 
mm2s-1 

C, 
wt% 

H, 
wt% 

O, 
wt% 

N, 
wt% 

S, 
wt% 

40.71 6.45 56.64 7.97 33.06 1.69 0.64 
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A mixture of bio-oil and steam was transferred by a syringe pump to the top of the fixed bed 

reactor. In the fluidized bed reactor bio-oil was pushed by an electromagnetic drive pump and 

then mixed with steam through a nozzle at the bottom. Experiments were conducted at 650°C-

950°C in the fixed bed reactor and 500°C-800°C in the fluidized bed reactor for 1 hr. Although 

they compared the results of fixed bed and fluid bed reactors, operating conditions were not 

similar. For example, molar S/C ratio changed between 3 and 15 in the fixed bed reactor, while it 

was between 8 and 20 in the fluidized reactor. Also, the mass of the catalyst was 1g in the fixed 

bed and 100g in the fluid bed.  

Medrano et al. [74] continued their work on catalytic steam reforming of bio-oil model 

compounds with Ni/Al catalysts in a fluidized bed reactor for aqueous phase of bio-oil at 650°C. 

Either 0.5g or 1.1g catalyst were mixed with a 7 cm height of sand in a quartz fluidized bed with 

2.54cm I.D. (u/umf = 10). They added water to the bio-oil produced from pine wood by mass 

ratio of 2 to separate the aqueous phase of the bio-oil from its lignin phase. The solution 

contained 84 wt% water, representing a steam to carbon ratio of 7.64 in the reactor (Table 1.10).  

 

Table 1.10. Elemental composition of pine wood bio-oil. Adapted from [74] 

 Bio-oil 
Aqueous solution 

of bio-oil 
C, wt% 36.1 7.4 
H, wt% 8.4 10.8 
N, wt% 0.1 0.0 
O, wt% 55.4 81.8 
pH 2.6 2.5 
Water content, wt% 36 84 

 

Seyedyn-Azad et al. [75] worked on catalytic steam reforming of bio-oil in a tubular fixed bed 

reactor to investigate the effect of catalyst composition, molar S/C ratio, temperature and GHSV. 

I.D. and height of the reactor were 1cm and 43cm, respectively. The bio-oil was produced by 

Biomass Technology Group (BTG) in the Netherlands (Table 1.11).  
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Table 1.11. Bio-oil characteristics supplied by the BTG. Adapted from [75] 

C,wt% H,wt% N.wt% O,wt% Water,wt% pH Density, kg/m3 HHV,MJ/kg 
45.83 7.15 0.87 46.15 23.1 2.1 1225.00 17.5 

 

Droplets of bio-oil and water were fed from the top of the reactor by two syringe pumps and 

capillary tubes. The flow rate of bio-oil was 2.3ml/h and flow rate of water changed between 1.2 

and 13.8 ml/h to supply the desired molar S/C ratio. The GHSV varied between 9 and 26 hr-1.  

1.3.1.3. Summary  

Different setups of fixed bed and fluidized bed reactors have been used to gasify bio-oil and its 

model compounds.Fluidized bed reactors have been shown to be more efficient in term of less 

coke deposition on the catalyst. However, catalyst loss is a problem in fluidized bed reactors.  

In order to inject bio-oil and its model compounds continuously into the reactor, several injectors 

have been developed.  

Acetic acid has been the most common bio-oil model compound used. On the other hand, bio-

oils produced from different biomasses, and therefore, with different elemental composition, 

have been gasified. In addition, tested operating parameters such as molar S/C ratio, temperature, 

residence time and feed flow rate as well as the catalysts type and mass were different. 

Therefore, it is not easy to sort out the experimental results in literature versus bio-oil types and 

operating parameters. However, an accurate image of the overall effect of catalyst mass and type 

as well as operating parameters on the syngas yield and bio-oil conversion can be achieved.   

1.3.2. Composition and effect of the catalysts 
 
1.3.2.1. Bio-oil model compounds 

Composition of the synthesized and commercial nickel based catalysts and the Cu/Zn shift 

catalyst used by Wang et al. [20] for the steam reforming of model compounds are listed in 
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Table 1.12. All catalysts were crushed and sieved for the size of 250µm-355µm. Nickel catalysts 

were reduced at 600°C and the shift catalyst was reduced at 350°C by a 20% flow of hydrogen. 

Table 1.12. Catalysts used in screening tests. Adapted from [20] 

ID Catalyst name Manufacturer Composition 

A S.U. Sherbrook Univ. NiO, Al2O3, Cr2O3, La2O3, MgO 

B UCI G-90C United catalysts Inc. 15% Ni, ceramic carrier (70-76% Al2O3, 5-8% CaO) 

C ICI 25-4M Imperial Chemical Industries 
15% NiO, 70% Al2O3, 13% CaO, 1.5% K2O 
promoted 

D ICI 46-1 Imperial Chemical Industries 10-25% NiO refractory carrier, 1.5% K2O promoted 

E UCI G-90B United Catalysts Inc. 11% Ni, ceramic carrier (76-82% Al2O3, 6-9% CaO) 

F UCI C18HC United Catalysts Inc. 42% CuO, 47% ZnO, 10% Al2O3 

G BASF g1-25S BASF 15% Ni, ceramic carrier 

H ICI 46-4 Imperial Chemical Industries NiO, CaO, Al2O3, ZrO2 

I UCI G-91 United Catalysts Inc. 
11% Ni, ceramic carrier (76-82% Al2O3, 6-9% CaO), 
K2O promoted 

J Ni-Mg Univ. of Zaragoza NiO, MgO, Al2O3 

 

Catalysts were screened for steam reforming of some model compounds such as methanol, acetic 

acid, hydroxyacetaldehyde, and ADP/methanol mixture at 700°C, molar S/C=5, GHSV=6725h-1 

and residence time 0.01s. According to Table 1.13, conversions higher than 99.5% were 

achieved for all feeds, except for ADP/methanol mixture where conversion of ADP with ICI 46-

1 catalyst was about 96%. Regarding the yield of hydrogen, catalysts did not show any 

significant differences, so that an average hydrogen yield of 89% was achieved with all the tested 

catalysts. It is reported that the shift catalyst was not suitable for steam reforming tests especially 

for temperatures above 400°C.   
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Table 1.13. Conversion (%) of model compounds by catalytic steam reforming. Adapted from 
[20]. Experimental conditions: 700°C, S/C= 5, GHSV= 6725 h-1 and t= 0.01s 

Catalyst 
ID 

MeOH AA HAA 
ADP/MeOH MeOH 

repeat 
ADP MeOH

A 99.5 99.85 99.95 99.95 99.7 99.95 

E 99.95 99.95 99.8 99.6 99.7 99.92 
G 99.91 99.95 99.95 99.7 99.95 99.8 
D #1 99.95 99.95 99.95 98.0 99.4 99.95 
D #2 99395 99.95 99.95 95.9 98.3 99.88 
C #1 99.95 99.95 99.95 99.95 99.95 99.95 
C #2 99.5 99.9 99.7 99.3 99.5 99.5 
B #1 99.95 99.95 99.95 99.95 99.95 99.95 
B #2 99.95 99.95 99.90 99.8 99.95 99.95 
B #3 99.95 99.95     

 

Rioche et al. [54] conducted catalytic steam reforming of model compounds with noble metal 

containing synthesized catalysts and summarized the general activity trend of the catalysts. 

Although having different activities, the catalysts were effective to increase carbon conversion 

and yield of hydrogen. In comparison with their non-catalytic results, methane formation was 

significantly reduced by using the catalysts; this shows that catalysts were effective to steam 

reform the methane to hydrogen and carbon monoxide. In addition, each catalyst resulted in 

different yields of hydrogen, CO/CO2 ratio and methane for each model compound. For example, 

in the case of the 1% Rh-CeZrO2 catalyst, production of methane was about 1-2% during steam 

reforming of acetic acid, acetone and ethanol, but it was about 5-8% during steam reforming of 

phenol. Also, the CO/CO2 ratio was higher than 1 for steam reforming of acetic acid, acetone and 

ethanol, but this ratio for phenol steam reforming was close to zero. Tables 1.14 and 1.15 present 

general yield range of product gases resulted from steam reforming of the model compounds 

versus the synthesized noble catalysts obtained at applied operating conditions. 
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Table 1.14. Activity of various catalysts for steam reforming of model compounds in term of COx 
yield; adapted from [54]: (-) 20-40%; (0) 40-60%; (+) 60-80%; (++) >80% 

Catalyst 
CO+CO2 yield (%) 

Acetic acid Acetone Ethanol Phenol 
1% Pt-Al2O3 + + - ++ 
1% Rh-Al2O3 ++ ++ ++ ++ 
1% Pd-Al2O3 + ++ ++ + 
1% Pt-ZrO2 + ++ + ++ 
1% Rh-ZrO2 + ++ ++ ++ 
1% Pd-ZrO2 0 ++ 0 ++ 

 

 

Table 1.15. Activity of various catalysts for steam reforming of model compounds in term of 
hydrogen yield; adapted from [54]: (--) <20%; (-) 20-40%; (0) 40-60%; (+) 60-80%; (++) >80% 

Catalyst 
Hydrogen yield (%) 

Acetic acid Acetone Ethanol Phenol 
1% Pt-Al2O3 - - - ++ 
1% Rh-Al2O3 0 + + ++ 
1% Pd-Al2O3 - - 0 0 
1% Pt-ZrO2 + + 0 ++ 
1% Rh-ZrO2 + + + ++ 
1% Pd-ZrO2 0 0 - ++ 

  

In general they concluded that ceria-zirconia based catalysts are more active than alumina based 

catalysts and result in larger conversion of model compounds and yield of hydrogen so that the 

trend of efficient catalysts was: 1% Rh-CeZrO2 > 1% Pt-CeZrO2 ≈ 1% Rh- Al2O3 > 1% Pd-

CeZrO2 > 1% Pt-Al2O3 > 1% Pd-Al2O3.  

They investigated the effect of their synthesized catalysts on bio-oil steam reforming at 860°C 

with molar S/C ratio of 10.8 and GHSV of 3090h-1; again, zirconium based catalysts showed 

better activities than alumina based showed. However, Pt, in comparison with Rh, on zirconium 

resulted in a higher yield of hydrogen and carbon conversion; also, CO/CO2 ratio, although less 

than 1, was larger. In addition, the yield of hydrogen was decreased versus time from about 78% 

to about 62% after 2h by 1% Rh-CeZrO2 while it was constant at about 70% by the 1% Pt-

CeZrO2 catalyst.  To test the durability of the optimum catalyst at 830°C with molar S/C ratio of 

5 and GHSV of 3090h-1, it was observed that the yield of hydrogen production was decreased 

from 60% to 50% after 9 hours by the 1% Pt-CeZrO2 catalyst. 
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Galdamez et al. [55] carried out catalytic steam reforming of acetic acid with catalytic beds of 

reduced and non reduced fresh catalysts (reduction by hydrogen). The catalyst was synthesized 

by a Ni/Al molar ratio of ½. The reduced catalyst was reduced with a flow of H2/N2 (1:10) at 

650C for 1h.  During catalytic tests with either of the reduced and non reduced catalysts, in 

comparison to data of non catalytic tests, the yield of hydrogen and CO2 was increased whereas 

the yield of CO, methane and C2 hydrocarbons declined. In other words, water gas shift reaction 

led to the production of hydrogen and CO2 and also some steam reacted with hydrocarbons to 

produce more hydrogen and CO (although the net CO production had a reducing trend). 

However, when the catalyst was reduced, the composition of product gases was very close to the 

predicted equilibrium compositions (Figures 1.7 and 1.8). Also, catalytic deactivation was not 

observed after 1h period of each test.  

 

 

Figure 1.7. H2 and total gas yields obtained with and without previous reduction of the catalyst. 
Bold symbols correspond to yields with reduction and open symbols correspond to yields without 

reduction taken from [55] 
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Figure 1.8. CO and CO2 yields obtained with and without previous reduction of the catalyst. Bold 
symbols correspond to yields with reduction and open symbols correspond to yields without 

reduction taken from [55] 

 

Galdamez et al. [55] investigated also the effect of lanthanum in their catalyst formulation with 

8wt% and 12wt% mass fractions (Table 1.14). Although lanthanum has been proven to have a 

promoter role in decreasing the amount of coke formation on the catalyst, their results showed 

that the catalyst with a larger amount of this promoter (12wt%) caused lower total gas 

production, yield of hydrogen and CO2, while the yield of methane and C2 increased. The trend 

of CO was not clear. This could be because dispersion of Ni and Al becomes limited by the 

excess presence of lanthanum. Also, according to TPR analysis, the catalyst with a larger mass of 

La experiences a lower reduction by hydrogen under similar reduction conditions. Investigation 

on the effect of mass of catalyst revealed that a lower mass of catalyst decreases total gas 

production, hydrogen and CO2 yields, but the yield of methane and C2 are increased while the 

yield of CO is almost unaffected by mass of the catalyst (Table 1.16). 
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Table 1.16. Results of Catalytic Steam Reforming: Influence of Catalyst Composition and W/ma 
Ratio. Adapted from [55]  

Catalyst Ni-Al-La 
(12%) #1 

Ni-Al-La 
(12%) #2 

Ni-Al-La 
(8%) #1 

Ni-Al-La 
(8%) #2 

Ni-Al 
#1 

Ni-Al 
#2 

Ni-Al 
#3 

Ni-Al 
#4 

Temperature, °C 650 650 650 650 650 650 650 650 
S/C (mol/mol) 5.58 5.58 5.58 5.58 5.58 5.58 5.58 5.58 
Catalyst weight, g 1.29 0.78 1.29 0.80 1.29 0.80 0.50 0.28 
g catalyst/g acetic acid 3.12 1.93 3.02 1.89 3.19 2.02 1.23 0.67 
GHSV, h-1 13354 21588 13796 22044 13061 20626 33873 62185 
Liquid feeding rate, g/min 1.80 1.76 1.86 1.85 1.77 1.73 1.79 1.8 
Time, min 56.3 55.6 64 55.1 59.1 55.5 55.6 55.3 
Total acetic acid, g 23.3 22.5 27.4 23.4 24 22.9 22.9 22.9 
Yields, g/g         
Total gas/ (AA+water) 0.2211 0.2510 0.2684 0.2705 0.3166 0.312 0.2982 0.2463 
Total gas/acetic acid 0.9614 1.0911 1.1670 1.1759 1.3767 1.3566 1.2951 1.0710 
Gas yields, g/g acetic acid         

H2 0.077 0.060 0.090 0.078 0.136 0.120 0.084 0.057 
CO 0.296 0.313 0.293 0.316 0.352 0.299 0.349 0.372 
CO2 0.484 0.547 0.651 0.617 0.805 0.854 0.716 0.475 
CH4 0.097 0.153 0.126 0.151 0.083 0.100 0.138 0.149 
C2 0.007 0.018 0.007 0.013 0.002 0.004 0.009 0.018 

 

Basagiannis and Verykios [21] prepared different catalysts such as Al2O3, La2O3, Al2O3/ La2O3, 

and Ni/Al2O3/ La2O3 for catalytic steam reforming of acetic acid. The nickel based catalyst was 

reduced by hydrogen at 500 °C for 2h. Generally, they found that at intermediate temperatures 

(between 300°C and 500°C) thermal decomposition reactions are the dominant reactions which 

favor production of CH4 and other hydrocarbons, while at higher temperatures, hydrogen, carbon 

monoxide and carbon dioxide are the main products. They also studied carbon deposition with 

different catalysts and concluded that catalyst composition affects the amount of coke formation; 

for example, alumina which has more acidity properties makes more carbon deposition 

compared to lanthana. In addition, they reported that disregarding the composition of the 

catalyst, less coke was deposited on the catalyst at higher temperatures (Table 1.17).   
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Table 1.17. Carbon deposition with respect to the catalyst composition and temperature. Adapted 
from [21]; Ratio of H2O/AA= 3 

Catalysts 
Percentage of carbon deposited 
T= 500°C T= 700°C 

Quarz bed 2.2/5.1a 1.6/3.2a 
Al2O3 27.4 47.2 
La2O3 7.8 1.32 
Ni/La2O3/Al2O3 6.7 0.43 
Ni/La2O3/Al2O3 9.5b - 
a In the absence of water in reactant mixture 
b Ratio of H2O/AA= 1.5 

 

Takanabe et al. [56] synthesized the Pt/ZrO2 catalyst and reduced it by a flow of 5% hydrogen in 

nitrogen at 925 K for 1h. Earlier experiments of acetic acid steam reforming which were carried 

out for 5h showed that, although conversion of acetic acid was about 100% and yield of 

hydrogen was more than 80% during the initial 3h of the operation, conversion of acetic acid and 

hydrogen started to drop dramatically until they reached 50% and 45% respectively after 5h of 

the operation. In the meantime, it was observed that acetone formation started after 2h of 

operation, reached a maximum yield of 8% after 3h of the operation and disappeared completely 

after 5h. Therefore, the researchers realized that there must be a relation between the catalyst 

deactivation and the acetone presence in the system, so they studied steam reforming of acetic 

acid and acetone and compared their conversion and yield of product gases. According to Figure 

1.9, deactivation of the catalyst by acetone steam reforming occurred sooner than that by acetic 

acid steam reforming which proves the negative effect of acetone on the catalyst deactivation. It 

is known that acetone can be converted to mesityl oxide, ketene and isobutene which can be 

converted to larger hydrocarbons and some aromatics which deposit on the acidic catalysts like 

the Pt/ZrO2 catalyst [76].     
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Figure 1.9. Comparison of conversion and H2 yields between steam reforming of acetic acid and 
acetone over Pt/ZrO2 catalyst (875K, S/C=5, GHSV=40000h-1; diamond: coversion; circle: yield; 

taken from [56] 

Based on the facts observed during steam reforming of acetic acid and acetone, researches 

proposed a pathway through which catalyst deactivation occurs as shown in the Figure 1.10: 

towards the right hand side of the figure, undesirable dehydrogenation reactions take place; for 

example, acetic acid loses H2O to form acetone, and acetone loses another H2O to form mesityl 

oxide, so finally C-C bonds in the form of oligomers and coke appear on the surface of the 

catalyst. Hence, the researchers concluded that this route should be minimized by enhancing the 

activation of water to overcome dehydration reaction in order to enhance catalyst life.  

 

Figure 1.10. Diagram for the possible reactions of acetic acid (and acetone) over ZrO2 catalyst 
taken from [56] 
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Ramos et al. [57] prepared Ni-Al catalysts with promoters of  La (4 and 8 wt%) and Co (molar 

Co/Ni ratios of 0.25 and 0.025) to investigate the composition effect of the catalyst on catalytic 

steam reforming of acetol. Their investigation of the effect of the catalyst mass with Ni-Al at 

650°C and molar S/C=4.6 showed that when the mass ratio of Ni/Al changed from 2.27 to 8.57, 

carbon conversion increased from 87.06% to 100%. Also, composition of the product gases 

during catalytic tests became very close to the equilibrium conditions; i.e. in comparison with 

non catalytic data, yield of H2 and CO2 increased while yields of CO, CH4 and C2 were 

decreased. In other words, the catalysts helped the steam reforming reactions of hydrocarbons as 

well as the water gas shift to proceed toward production of more hydrogen.  Their investigations 

on the catalyst composition and effect of the promoter was carried out at 650°C and molar  

S/C =4.6. According to the data in Table 1.18, more loads of Lanthanum on Ni-Al-La catalysts 

resulted in more carbon conversion (from 81.58% to 92.75%) and larger productions of CH4, 

CO2 and C2 but less production of hydrogen. In contrast, cobalt contents in Ni-Al-Co catalyst 

resulted in lowest carbon conversions (82.22% and 82.96%); however, cobalt increased the yield 

of hydrogen and the highest hydrogen production was detected by the catalyst with Co/Ni ratio 

of 0.025.  
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Table 1.18. Results of Acetol Catalytic Steam Reforming: Influence of Catalyst Composition at 
650°C. Adapted from [57] 

Catalyst Ni-Al Ni-Al-Laa Ni-Al-Lab Ni-Al-Lac Ni-Co-Ald Ni-Co-Ale equ 

Temperature, °C 650 650 650 650 650 650 650 
S/C (mol/mol) 4.6 4.6 4.6 4.6 4.6 4.6  
Catalyst weight, g 1.2 1.2 1.2 1.2 1.2 1.2  
g catalyst/g acetol 3.41 3.41 3.41 3.41 3.41 3.41  
GHSV, h-1 14860 14860 14860 14860 14860 14860  
Liquid feeding rate, g/min 1.53 1.53 1.53 1.53 1.53 1.53  
Time, min 65 65 65 65 65 65  
Total acetol fed, g 22.9 22.9 22.9 22.9 22.9 22.9  
Carbon conversion, % 87.22 81.58 95.18 92.75 82.96 82.22 100 
Yields, g/g        
Total gas/ (acetol+water) 0.292 0.277 0.311 0.317 0.281 0.295 0.416 
Total gas/acetol 1.268 1.203 1.354 1.378 1.221 1.284 1.81 
Gas yields, g/g acetol        

H2 0.134 0.121 0.120 0.118 0.126 0.0134 0.171 
CH4 0.082 0.080 0.100 0.087 0.081 0.072 0.001 
CO 0.427 0.348 0.423 0.360 0.358 0.311 0.254 
CO2 0.609 0.638 0.689 0.796 0.638 0.761 1.381 
C2 0.016 0.016 0.022 0.017 0.018 0.006 0 

a 4wt% La2O3, 
b 8wt% La2O3, 

c 12wt% La2O3, 
d Co/Ni= 0.025, e Co/Ni= 0.25 

 

Medrano et al. [58] calcined their synthesized Ni/Al catalysts by air at 750°C, 850°C and 900°C 

before reduction by hydrogen. Then, the catalyst was reduced in situ by a flow of 10% hydrogen 

at 650°C for 1h. The highest calcination temperature resulted in the lowest carbon conversion 

(i.e. 87.15% for calcinations at 900°C compared to 98.87% for calcinations at 750°C) and yield 

of hydrogen (i.e. 0.106 g/g of acetic acid for calcinations at 900°C compared to 0.130 g/g of 

acetic acid for calcinations at 750°C). Results from experiments conducted for 2h showed that 

yield of product gases and total carbon conversion were similar and almost constant versus time 

with the catalysts calcined at 750°C and 850°C; however, with the catalyst calcined at 900°C, 

although they were initially similar to the yields obtained by other two catalysts, yields of 

hydrogen and carbon dioxide were decreased versus time from 0.13 g/g to 0.07 g/g and from 

1.2g/g to about 0.9 g/g, respectively whereas yield of CO was increased versus time from 

0.10g/g to about 0.25g/g and then was decreased to a stable yield of 0.18g/g. In addition, total 
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carbon conversion was dropped versus time from 100% to about 80%. These observations 

indicate that the catalyst calcined at 900°C was not as active as the other two catalysts to drive 

the water gas shift reaction to increase production of hydrogen and CO2 because less free Ni 

metals were likely available on the surface of the catalyst due to high calcinations temperature.  

Following their research on steam reforming of acetic acid and acetol in a fluidized bed reactor 

with Ni/Al catalysts, Medrano et al. [77] investigated the effect of magnesium and calcium as 

promoters on the Ni/Al catalyst. They realized that loading these promoters improves attrition 

resistant of the catalyst in the fluidized bed reactor. When the molar ratio of magnesium over 

aluminum content on the catalyst was more than 0.12, no catalyst deactivation was observed. 

The Mg/Al molar ratio of 0.26 resulted in maximum yield of hydrogen (0.1158g/g) and carbon 

conversion (99.85%) during 2h steam reforming of acetic acid. However, presence of Ca on the 

catalyst increased production of CO and methane and caused less carbon conversion and 

hydrogen yield for both acetic acid and acetol. For example, during steam reforming of acetic 

acid, with molar Ca/Al ratio of 0.26, yield of hydrogen was 0.086 g/g and carbon conversion was 

78.73%. 

Vagia and Lemonidou [59] synthesized a variety of catalysts with 5wt% nickel and 0.5wt% 

noble metals (Rh and Ir) on two supports of calcium aluminates (CaO.2Al2O3 and 

12CaO.7Al2O3) to investigate the effect of the active metal and the support composition on 

hydrogen yield and coke deposition for steam reforming of the acetic acid and acetone. The 

catalysts were reduced at 750°C for 1hr with 25% hydrogen flow after synthesis and calcination 

with air at 600°C and 900°C for 4hr and 6hr, respectively. Results of steam reforming with the 

calcium aluminate support (without active metals on the support) at 750°C with molar S/C ratio 

of 3 showed that conversion of acetic acid was raised to about 45% at the first hour, but it 

declined to about 20% at the third hour. For the case of acetone, the conversion was 90% 

initially, but it was about 70% after three hours. In general, a decreasing trend versus time was 

observed for the production of gases. Yield of hydrogen was between 10% and 2% for acetic 

acid (14% in thermal cracking) and between 40% and 25% for acetone (9% in thermal cracking). 
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CO2 and CH4 were the main product gases of acetic acid steam reforming and CH4 and CO were 

the main gases of the acetone steam reforming.  

Steam reforming of acetic acid between 550°C and750°C with molar S/C ratio of 3 with 5wt% 

and 10wt% loads of nickel on the CaO.2Al2O3 and 12CaO.7Al2O3 supports revealed that 

conversion of acetic acid and yield of hydrogen was higher with larger mass of nickel, 

especially, when the support is the CaO.2Al2O3 (conversion of acetic acid was 100% and yield of 

hydrogen was 90% at 650°C and 750°C). During 1h of each test, no catalyst deactivation was 

observed.  The lower observed activity of the catalyst with the support of 12CaO.7Al2O3 was due 

to the less reducibility of Ni+2 because more nickel particles were incorporated in the bulk of the 

12CaO.7Al2O3 . It was notable that CO2/CO ratio increased by load of nickel which shows its 

influence on the water gas shift reaction. Estimation of coke formation (mol/mol of C in acetic 

acid) was conducted by CHN elemental analyzer. Although nickel catalysts led to the highest 

conversion of acetic acid, more coke was also produced even compared to thermal cracking 

results in which acetic acid is partly decomposed to solid carbon (0.28, 0.1, 0.18 and 0.03 for 

10wt%Ni/Ca2Al, 5wt%Ni/Ca2Al, 5wt%Ni/12Ca7Al and quartz, respectively).  

Steam reforming of acetone at 550°C-750°C with molar S/C ratio of 3 with 5wt%Ni/Ca2Al2O3 

and 0.5wt%Rh/ Ca2Al2O3 resulted in 100% conversion of acetone at 750°C. However, Ru 

showed better catalytic activity to increase yield of hydrogen: considering much lower load of 

the Ru than that of the Ni, yield of hydrogen was 82% with Rh while it was about 70% with Ni. 

Composition of methane was about 10% with nickel but it was about 1% with Ru. However, a 

similar amount of coke was formed with two catalysts (0.03 mol/mol of C in acetone).  

Davidian et al. [60,61] used two nickel based catalysts and some noble metal based (Pt, Rh, Ru 

and Pd) catalysts for catalytic gasification of acetic acid on their proposed cracking/regeneration 

system without injecting steam: a laboratorial 10wt% Ni/Al2O3 catalyst and a commercial 

4wt%Ni.2wt% K/La2O3-Al2O3 catalyst as well as catalysts with 1 wt% of the noble metal 

supported on Al2O3. The nickel based catalysts were reduced with a flow of 30% hydrogen 

(100ml/min) at 650°C for 1h. The reduction temperature for the noble based catalysts was 350°C 

while flow and composition of hydrogen was similar. During the experiments, mass of the 



 

49 

 

catalyst was 200mg and flow rate of the acetic acid was 100ml/min (5vol% acetic acid in argon). 

Their initial tests of activity evaluation of the catalysts showed that conversion of acetic acid 

increased and yield of hydrogen was closer to equilibrium condition with the nickel based 

catalysts over the temperature range of 600°C-800°C compared to noble based catalysts.  

Experiments with catalytic cracking/regeneration cycles of acetic acid at 700°C using the 

commercial nickel catalyst revealed that after 18 minutes of the cracking step, production of CH4 

was increased and a trace of acetone was detected among the product gases, which was an 

indication of catalyst deactivation after that period of time. So, they set cracking step to be 

conducted for 15 minutes, then after purging the gases by argon, regeneration step started in the 

reactor by a flow of oxygen. Comparison of the product gases composition at different 

temperatures with the Ni/Al2O3 catalyst showed that less hydrogen and a larger ratio of CO/CO2 

was obtained at higher temperatures. This could be due to a lack of required steam to drive the 

water gas shift reaction towards hydrogen production. They reported that carbon deposition on 

the surface of the Ni/Al2O3 catalyst which was measured by the amount of CO and CO2 

produced during the regeneration step was less at higher temperatures. The nickel based catalysts 

showed a satisfactory level of stable activity over investigated temperatures because production 

of gases was reproducible at each cycle of the cracking/regeneration. However, the commercial 

catalyst had more selectivity towards hydrogen and better resistance against coke formation 

which should be due to the presence of K and La promoters on the commercial catalyst. Due to 

less Ni content on the commercial catalyst compared to the synthesized one, a little more 

methane was seen with the commercial catalyst. 

They investigated the required amount of oxygen for the regeneration steps by using inert gas 

flows containing 5% to 20% of oxygen. Larger content of oxygen led to faster regeneration, a 

higher CO2/CO ratio and greater temperature increase; however, regeneration step took less than 

1 minute for all tested oxygen mixtures.    

Davidian et al. [60, 61] also studied reduction and oxidation of the nickel catalysts 

comprehensively during cracking/regeneration cycles of the catalytic acetic acid cracking at 

700°C. Their experimental results had shown that the production rate of gases at each cracking 
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step was similar. Whereas, the catalyst was expected to be less active after each regeneration step 

due to conversion of Ni0 on the catalyst to NiO. They conducted transient isotopic experiments 

on their cracking/regeneration system and used 18O2 instead of 16O2. They prepared samples of 

the fresh, coked, regenerated and re-reduced laboratorial 10wt% Ni/Al2O3 and commercial 

4wt%Ni.2wt% K/La2O3-Al2O3 catalysts to screen and measure Ni0 and NiO on their surfaces at 

different conditions. The results of their screening process revealed that there was a larger 

fraction of Ni0 present on the catalysts at the end of the cracking step compared to a freshly 

reduced catalyst (49wt% vs 16% for Ni/Al2O3 and 92% vs 79% for Ni.K/La2O3-Al2O3) which 

means the nickel in the bulk spinal is extracted progressively during cracking steps. Also, they 

found out that there is an in-situ reduction mechanism for Ni during each cracking step because 

the deposited carbon and CO react with NiO at the beginning of the cracking step like an in-situ 

reduction of Ni during each cracking step: 

ሺ௦ሻܥ ൅ 2ܱܰ݅ → ଶܱܥ ൅ ܰ݅          (1.26) 
 

ܱܥ ൅ ܱܰ݅ → ଶܱܥ ൅ ܰ݅          (1.27) 

 

In addition, initial produced hydrogen reduces NiO by reacting with its oxygen and converting to 

H2O. It is noteworthy that during the regeneration step, the catalyst is fully oxidized and there is 

an abundance of NiO on the catalysts while there is a very low fraction of Ni0 on the surface of 

both commercial and laboratorial catalysts. The mechanism of reduction/oxidation of the nickel 

catalysts during the cracking/regeneration process of the acetic acid cracking is summarized in 

Figure 1.11: 
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Figure 1.11. Schematic structural evolution of Ni/Al2O3 catalyst during repeated 
cracking/regeneration sequences taken from [60] 

 
1.3.2.2. Bio-oil 

Garcia et al. [62] performed catalytic experiments of the aqueous fraction of bio-oil with nickel 

based commercial and synthesized catalysts supported with α-Al2O3 (Table 1.19).  

The synthesized catalysts contained magnesium, lanthanum, cobalt and chromium other than 

nickel because:  

 Magnesium has the advantage of enhancing steam adsorption on catalyst and minimizing the 
catalyst sintering. 

 Lanthanum decreases carbon formation on the surface of catalyst and improves stability of 
the catalyst.  

 Chromium improves stability of Ni/Al2O3 catalyst, but does not increase activity of the 
catalyst 

 Cobalt has more activity than nickel and helps to resist against deactivation of the Ni/Al2O3 

catalysts by reducing the formation of the filamental carbon on the catalyst.  
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Table 1.19. Commercial and laboratory catalysts and surface areas. Adapted from [62] 

Catalyst Surface area,  (m2/g) 

Carrier G-90 (-Al2O3) 2.5 
G-91 16.0 
ICI 46-1 12.8 
ICI 46-4 11.8 
C11-NK 17.7 
Ni/Al2O3 2.7 
Ni/MgO-Al2O3 3.1 
Ni/MgO-La2O3-Al2O3 3.6 
Ni-Co/MgO-La2O3-Al2O3 4.1 
Ni-Cr/MgO-La2O3-Al2O3 4.9 
MgO-Al2O3 2.9 
MgO-La2O3-Al2O3 3.1 

 

To measure the effectiveness of the synthesized catalysts and commercial nickel based catalysts, 

similar steam reforming reactions were carried out with the Ni/Al2O3 catalyst as the reference 

catalyst. Yield of hydrogen versus time as a function of the catalyst composition is illustrated in 

Figure 1.12 for commercial and synthesized catalysts during 25 minutes. Deactivation of catalyst 

versus time is very clear because the yield of hydrogen has a reducing trend. However, the 

reference catalyst caused the lowest yield of hydrogen. Therefore, it was concluded that 

modifications to the reference catalyst had a significant effect to reduce the deactivation of the 

catalyst over the time. After 25 minutes of the operation, hydrogen yield was decreased from 

about 80%-90% to 65% and 55% by commercial catalysts and research catalysts, respectively. 

This difference which is a measure for the effectiveness of the catalysts was claimed to be due to 

the larger surface area and lower Ni/Al ratio on the surface of commercial catalysts because 

either of these reasons increases steam adsorption on the catalyst, then steam reacts with carbon 

deposits on the catalyst surface. In between the synthesized catalysts, the Ni-Co/MgO-La2O3-

Al2O3 and Ni-Cr/MgO-La2O3-Al2O3 catalysts showed the best performance regarding the yield of 

hydrogen. 

Effectiveness of the commercial and synthesized catalysts on the conversion of bio-oil to total 

CO and CO2 was found to be similar to the trend observed for the yield of hydrogen.  
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Since catalysts were not capable of being stable for a long enough production time, researches 

suggested regeneration-reduction of the catalysts must be carried out frequently during the 

operation.   

 

Figure 1.12. Hydrogen yield obtained by catalytic steam reforming of bio-oil aqueous fraction. 
Reference catalyst: ×; (a) commercial catalysts; (b) research catalysts; T=825°C, S/C= 4.92, 

GC1HSV= 126000 h-1. Taken from [62] 
 

Due to the fact that production of hydrogen from natural gas is more efficient than that from 

biomass in term of economy, Czernik et al. [26] investigated co-reforming of bio-oil and natural 

gas which can be beneficial from an environment point of view. The aqueous phase of bio-oil 

mixed with water (molar S/C=4.6) and compressed natural gas were fed with rates of 45 L/min 

(STP) and 120 g/h, respectively at 850°C over 56 hours. As illustrated in Figure 1.13 that shows 

yield of hydrogen versus time, the operation mode was alternated between bio-oil steam 

reforming mode and co-feeding steam reforming mode. During the bio-oil steam reforming 

mode, the catalyst started to be deactivated because of excess steam, but after injecting natural 

gas during the co-feeding mode, activation of the catalyst was restored because of its reduction 

by high content of hydrogen in natural gas. The average yield of hydrogen was 80% of the 
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stoichiometric value. It was claimed that 23% of the produced hydrogen was from bio-oil 

fraction and the rest was from natural gas. 

 

Figure 1.13. Yield of hydrogen from co-reforming of bio-oil fraction with natural gas at 850°C, 
S/C=4.6 and GC1HSV=1000 h-1. Taken from [26] 

 

Kechagiopoulos et al. [65] used the commercial nickel based catalyst (C11-NK) supplied from 

Sud-Chemie for catalytic steam reforming of bio-oil aqueous fraction and also catalytic steam 

reforming of an equimolar mixture of acetic acid, acetone and ethylene glycol. The catalyst was 

crushed and sieved to the size distribution of 180µm-500µm and then was reduced by hydrogen 

in-situ at 750°C for 1 h before starting the reaction. TGA-DSC was used to examine deposited 

coke on the catalyst. Catalysts were also burned in-situ by air at 700°C to estimate the amount of 

coke by measuring the released CO and CO2. Steam reforming of the model compounds mixture 

resulted in product gases with compositions very close to the equilibrium composition. The yield 

of hydrogen was above 80% of the stoichiometric value at all temperatures and molar S/C ratios. 

CO/CO2 ratio was increased versus temperature whereas this ratio was decreased versus molar 

S/C ratio which presents effect of water gas shift reaction. According to Figure 1.14, an extended 

run of steam reforming of the model compounds mixture showed that the catalyst was stable for 

the first 4h as the hydrogen yield was constant, but then the catalyst started to be deactivated 
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until its activity was lost after 17h. As shown in Figure 1.14, although carbon to gas conversion 

was reduced over time, the molar concentration of the gases did not change.  

 

Figure 1.14. Time-dependent concentration profiles (% mole fraction) and H2 yield (% 
stoichiometric) during reforming of the three component mixture at 750°C and H2O/C=6. Taken 

from [65] 
 

Non-catalytic gasification of the bio-oil solution at temperatures between 650°C-900°C resulted 

in carbon conversion from 12% at 650°C to 60% at 850°C and about 12%-20% of the inlet 

carbon was deposited inside the reactor. Hydrogen production was very low and could not be 

detected by the used GC. According to Figure 1.15, the maximum attainable hydrogen yield 

during the catalytic gasification of bio-oil solution was about 60% of the stoichiometric value 

which was far from the equilibrium yield (90%). Due to the fact that the yield of hydrogen 

during the catalytic steam reforming of the model compounds mixture was at equilibrium, this 

difference was claimed to be because of increased coke deposition, 30wt%, on the surface of the 

catalyst during catalytic gasification of bio-oil solution. In addition, analyses of the deposited 

cokes on the catalyst samples revealed that structure of the coke from bio-oil solution 

gasification was aromatic while the structure of the coke from gasification of the model 

compounds mixture was graphitic.  
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Figure 1.15. Effect of reaction temperature on H2 yield and gas proct compositions. Black symbols 
for GHSV=300 h-1 and White symbols for GHSV=600 h-1 .Taken from [65] 

 

It was commented by the researchers that their fixed bed reactor favored formation of the coke 

due to its limitations, in particular, for complex bio-oils. Thus, there should be a good and quick 

contact between molecules and catalysts to reduce the coke formation. Therefore, using a well-

designed fluidized bed which facilitates internal gasification of coke with steam and carbon 

dioxide will be important. However, the catalyst must be capable of dealing with conditions 

inside a fluidized bed.  

Davidian et al. [23] used 600mg of a synthesized 10 wt% Ni/Al2O3 catalyst and of the 

commercial 4wt%Ni-2wt%K/La2O3-Al2O3 catalyst from Johnson Matthey for the catalytic 

gasification of bio-oil in their cyclic cracking/regeneration system. 

Figure 1.16 shows the rate of formation of product gases as a function of time during one 

sequence of the proposed process of bio-oil gasification with Ni-K/La2O3-Al2O3 catalyst. They 

suggested that the operating condition could be adjusted so that there would be an equal timing 

between the cracking and the regeneration steps; then it would be feasible to use two parallel 

reactors where the cracking step would be conducted in one reactor while a catalyst could be 

regenerated in another reactor and vice versa.  
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Bio-oil cracking data at 700°C showed that the composition of hydrogen obtained by the 

commercial catalyst (49.2%) was higher than that by the synthesized catalyst (about 40%). In 

addition, a larger amount of CO and less amount of methane and CO2 was produced by the 

commercial catalyst. Furthermore, the concentration of product gases obtained by the 

commercial catalyst was very close to the predicted equilibrium compositions. TPO analysis on 

the catalysts showed that although a similar amount of coke deposition was formed on both 

catalysts measured by TGA, the type of the carbons are different: bi-dimensional carbon covered 

the surface of the commercial catalysts whereas stable graphitized carbon whiskers were formed 

on the surface of the laboratorial catalyst.  

 

Figure 1.16. Gaseous product formation during a single cracking/regeneration sequence on Ni-
K/La2-O3-Al2O3 (600 mg catalyst, T= 700°C). Taken from [23] 

 

The heat of the cracking and regeneration steps were estimated with simulation of bio-oil 

composition (CH2.3O1.04) using model compounds: endothermic heat of the cracking step and 

exothermic heat of the regeneration step were estimated to be +1.22 kJ and -1.32 kJ; therefore, it 

was concluded that the heat released by combusting the carbon deposits can be used for 

reforming/cracking step to provide an autothermal process. 
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They also tested thermal cracking of bio-oil by injecting the bio-oil into a blank reactor to see the 

effects of a catalyst on syngas production: 

Catalytic reactions compete with thermal cracking reactions and finally a product stream with 

higher hydrogen, CO and CO2 and less methane is formed compared to when no catalyst is used. 

Conversion of bio-oil to product gases is more when a catalyst is used while a significant portion 

of bio-oil is converted to coke/soot during the thermal cracking.  

Regarding the regeneration of the catalyst, they have reported that NiO is formed on the surface 

of the catalyst, but after bio-oil is injected to the reactor, the catalyst is reduced by initial thermal 

decomposition products quickly (Ni0 is formed on the surface) and then the catalyst works as a 

fresh catalyst in the process similar to their report for catalytic gasification of acetic acid [61]. 

Comparing the laboratorial catalyst and commercial steam reforming catalyst, both catalysts 

showed stable catalytic activity, but some Ni was lost from the surface of the laboratorial 

catalyst. They have reported the following reasons: 

 Presence of K and La on the commercial catalyst prevents Ni to be sintered 

 Load of Ni on the laboratorial catalysts was more, so not enough Ni0 is probably formed 

after reduction.  

The researchers proposed a reaction network of catalytic bio-oil gasification to syngas according 

to Figure 1.17: At first, bio-oil is decomposed thermally to the CO2, H2, CO, CH4 , light 

hydrocarbons and soot-type carbon which can be 20% of the carbon in bio-oil, then due to water 

content of bio-oil and presence of CO2, steam reforming, dry reforming and water gas shift 

reactions take place on the surface of the catalyst resulting in higher production of hydrogen and 

carbon monoxide. The type of the deposited carbon versus the type of catalyst was investigated: 

the Ni/Al2O3 catalyst forms whisker deposits while Ni-K/La2O3-Al2O3 catalyst forms amorphous 

deposits. Amorphous carbon is more active and can be removed by combustion at lower 

temperatures.  
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Figure 1.17. Proposed reaction network during the bio-oil cracking . Taken from [23] 
 

Czernik et al. [66] used commercial and synthesized catalysts for catalytic steam reforming of 

bio-oil in a fluidized bed reactor. The naphtha steam reforming catalyst produced by Sud-Chemie 

(C11-NK) was crushed to the size distribution of 300µm-500 µm to be used in the fluidized bed 

reactor. They also synthesized four nickel based catalysts to compare their activity with the 

commercial one, but they did not report the composition of the catalysts. The catalyst bed was 

reduced by a flow of H2/N2 at the reaction temperature for 2 h before reforming.  

The C11-NK catalyst showed great reforming results after 18 h because composition of the main 

products H2, CO and CO2 did not change significantly, 95% of the bio-oil carbon content was 

converted to the gases and the yield of hydrogen was about 94% of the stoichiometric value. 

However, due to attrition of the catalyst, catalyst loss of 1.1 wt%/h was observed.   

The synthesized catalysts showed less activity compared to the C11-NK catalyst: the catalysts 

started to be deactivated faster and composition of the main product gases was not constant 

during 10 h runs. Also, yield of hydrogen was 70-80% of the stoichiometric value. They 

admitted that less nickel and the lower surface area of the synthesized catalysts compared to the 

C11-NK catalyst was the main reason to get less yield of hydrogen. On the other hand, the 

catalyst loss was 0.15 wt%/h which shows their synthesized catalyst has a superior attrition 

resistance.   
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Van Rossum et al. [67] used two nickel based catalysts for catalytic steam reforming of bio-oil 

and sand for non catalytic tests. The commercial nickel based catalysts were supplied by Johnson 

Matthey (K23 for methane reforming and K46 for naphtha reforming) and a fluidizable catalyst 

developed through an EU project (FB) which was composed of Ni-K/La on alumina were used 

for catalytic runs. The size distribution of the bed material was 200µm-300 µm. When the 

catalyst was the bed material, a flow of N2/H2 was maintained in the bed for 2hr at 500°C to 

activate the catalyst by reduction. After each experiment, alcohol was flushed to the reactor to 

clean the internal line of the feed nozzle and then a flow of steam or air was used to burn the 

deposited carbon on the surface of the bed material.  

Results of the non-catalytic cracking of pine wood bio-oil showed that the composition of CO 

was larger than the composition of hydrogen, CO2, CH4 and C2-C3 hydrocarbons. However, 

concentrations of CH4 and C2-C3 gases were considerably high. The carbon to gas conversion of 

65% was achieved at 790°C and molar S/C ratio of 1.9. Their investigation showed that molar 

S/C ratio was not very effective to increase the carbon conversion. However, they realized that 

injecting additional oxygen into the reactor increases the carbon to gas conversion so that 

compositions of hydrogen and methane are lowered while those of CO and CO2 are increased.  

More production of hydrogen and CO2 and less production of CH4 and C2-C3 gases were 

achieved when catalysts were used as the bed material. Activity loss of the FB catalyst was the 

issue during the catalytic cracking experiments; the catalyst had initial activity, but its activity 

dropped by time until it reached stability after 1hr. Table 1.20 compares results of a catalytic 

cracking of bio-oil when a catalyst was fresh and when a catalyst was used after 1hr.  

Table 1.20. Effect of catalytic activity on the concentration of product gases. Adapted from [67] 

 H2 CO CH4 CO2 C2-C3 
Fresh catalyst 62.7% 14.3% 1.9% 20.9% 0.2% 
Catalyst after 1hr 54.5% 11% 7.5% 23.7% 1.1% 

 

 After each experiment, steam was added to the bed of the catalyst to partly gasify the deposited 

carbon and then air was used to burn off the carbonaceous materials completely and to reactivate 
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the catalyst. Although the catalyst was reactivated, its activity dropped again after a while. After 

many reactivation cycles, the catalyst reached an equilibrium activity after which its initial 

activity did not drop after reactivation. The problem of initial activity loss was also observed 

with commercial steam reforming catalysts (K43 and 46), but it was very gradual by time. 

Having the equilibrium catalyst of FB, conversion of bio-oil to product gases increased by 

temperature. Also, C2-C3 gases were decreased significantly. However, the catalyst was unable to 

minimize production of methane and secondary and tertiary tars. They changed the mass of the 

catalyst between 4 and 9 kg, but results were similar. As a result, they have proposed a fixed bed 

reactor should be used loaded by active commercial steam reforming catalysts after the fluidized 

bed gasification reactor to convert methane and tars to permanent gases and obtain a clean 

syngas with the lowest amount of tars.  

Sakaguchi et al. [71] used a commercial naphtha steam reforming catalyst, RK-212, supplied 

from Haldor-Topsoe for catalytic experiments and silica sand for non-catalytic experiments of 

bio-oil and bio-oil/bio-char slurry. Size distribution of the solid particles was 180µm-355µm. 

Compositions of the catalyst and sand are listed in the Table 1.21. 

Table 1.21. Metal Analysis of the Catalyst (RK-212) and the Sand. Adapted from [71] 

 RK-212 sand unit 

Al2O3 60.99 0.64 wt% 
CaO 3.36 0.04  
Fe2O3 0.15 0.15  
K2O 1.32 0.27  
MgO 13.98 0.02  
MnO <0.01 <0.01  
Na2O 0.85 0.08  
P2O5 0.04 0.01  
SO3 0.14 0.01  
SiO2 2.50 98.14  
TiO2 0.01 0.05  
Ni 140200 41 ppm(wt) 
Ba, V, Cr, Sr 569 187  
LOI at 1000°C 2.00 0.26 wt% 
SUM 99.36 99.67 wt% 
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According to Figure 1.18a and 1.18b, the maximum carbon conversion for the production of CO, 

CO2, CH4, and C2-C4 in the thermal cracking runs was less than 70% at 832°C while carbon 

conversion of about 90% was achieved in the catalytic experiments at 725°C. In addition, 

composition of produced CO at thermal cracking experiments was significantly larger than 

composition of CO2 whereas CO2 constituted the largest carbonaceous product gas at the 

catalytic runs. Production of hydrogen compared to other hydrogen containing gases (CH4, C2-

C4) was not significantly different at thermal cracking experiments conducted at temperatures 

between 747°C and 832°C, but it was almost 4 times as high as that during catalytic experiments 

at temperature of 773°C.   

 

Figure 1.18. Effect of catalysis on (a) carbon yield (mol %, atomic) as CO, CO2, CH4, and 
hydrocarbons (C2-C4) and (b) hydrogen yield (mol %, atomic) as H2, CH4, and hydrocarbons (C2-

C4) on the dry feed stock basis; under steam gasification, H2O/C ≈ 5.5, and GC1HSV ≈ 340 h-1. 
Taken from [71] 

 

Comparison of the gasification results of the bio-oil and of the bio-oil/bio-char slurry (Figure 

1.19a and 1.19b) shows that bio-oil is converted to product gases more than the bio-oil/bio-char 

mixture is during catalytic cracking experiments. However, the catalyst also had a significant 

role to increase conversion of the bio-oil/bio-char mixture compared to similar operating 

conditions of the thermal cracking of the bio-oil/bio-char slurry.  
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Figure 1.19. Comparison of feedstock under catalytic and noncatalytic steam gasification on (a) 
carbon yield (mol %, atomic) as CO, CO2, CH4, and hydrocarbons (C2-C4) and (b) hydrogen yield 

(mol %, atomic) as H2, CH4, and hydrocarbons (C2-C4) at H2O/C ≈ 5.6 and GC1HSV ≈ 320 h-1. 
Taken from [71] 

 

They reported 3% catalyst loss and 1% sand loss from the reactor after 1 hr. Regarding the 

catalyst activity, they found out that carbon conversion was decreased from about 95% at 842°C 

to about 90% at 847°C after 250 min of run although the deposited coke was burned four times 

by air after each run. Also, CO/CO2 increased and yield of hydrogen declined to about 37%. In 

other words, regeneration of the catalyst by air was not enough after each run, and deactivation 

of the catalyst decreased the impact of the water gas shift reaction, so the catalyst must have been 

reduced by flow of hydrogen after regeneration by air.  

Lan et al. [73] synthesized a catalyst with formulation of 18wt%Ni/10wt%MgO-10wt%La2O3-

Al2O3 for catalytic gasification of the rice husk bio-oil in the fixed bed and in the fluid bed 

reactors. The catalyst was reduced by a 5 vol% flow of hydrogen at 700°C before starting the 

tests. Yields of hydrogen, CO and CO2 were increased in both reactors with temperature while 

the yield of CH4 was decreasing. The maximum yield of hydrogen and carbon to gas conversion 

were about 50% and 80% at 950°C in the fixed bed reactor (molar S/C=5) while they were about 

60% and 95% at 800°C in the fluid bed (molar S/C=15). In other words, the fluidized bed reactor 

provided better mixing and catalytic contact to gain higher yield at lower temperatures. The 

carbon content on the surface of the catalyst was estimated by thermogravimetry. The carbon 
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deposition was decreased by temperature; however, at similar temperatures, the amount of the 

produced coke in the fluid bed reactor was less than that in the fixed bed reactor. For example, at 

650°C, carbon content of the catalyst was about 2.35 wt% in the fixed bed reactor and about 0.7 

wt% in the fluid bed. 

Medrano et al. [74] prepared Ni/Al catalysts with Mg (Mg/Al molar ratio of 0.26) and Ca (Ca/Al 

molar ratios of 0.12) promoters for catalytic steam reforming of pine wood bio-oil. The catalysts 

were calcined at 750°C for 3hr and then reduced by 10vol% hydrogen at 650°C for 1 h. 

The magnesium added Ni/Al catalyst resulted in the highest carbon to gas conversion (81.01%) 

compared to the Ni/Al catalyst (73.5%) and the Calcium added Ni/Al catalyst (65.78%) at 

650°C. The yield of hydrogen had similar trends with the catalysts: 0.1065, 0.0965 and 0.0774, 

respectively (g/g of oil). Although the Ca/Ni/Al catalyst showed the poorest gasification activity, 

the lowest carbon deposition was formed in comparison with the Ni/Al and Mg/Ni/Al catalysts: 

141, 174 and 162, respectively (mg of C/g of catalyst).  

Regardless of the type of catalyst, the production rate of the gases was not constant versus time: 

yield of hydrogen and CO2 had a reducing trend while yield of CO and CH4 had an increasing 

trend. However, the trend of carbon deposition was almost constant. This trend of catalyst 

activity loss shows the effect of the carbon deposition on the catalyst surface.  

They increased the mass of magnesium catalyst twice as high as initial tests: the carbon 

conversion did not significantly increase (from 81.01% to 83.26%). On the other hand, the yield 

of hydrogen and CO2 were raised a little bit: from 0.1056 to 0.1328 for hydrogen and from 

0.8961 to 1.1469 for CO2 (g/g of oil) while the yields of CO, methane and C2 were decreased. 

Therefore, the additional mass of the catalyst favored a water gas shift reaction and steam 

reforming of the hydrocarbons. Also, carbon deposition was reduced from 162 to only 149 (mg 

of C/g of catalyst). The trends of production rate of the gases were moderated by using additional 

catalysts; however, they were not still constant versus time.  
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Seyedeyn-Azad et al. [75] synthesized Ni/Al2O3 catalysts containing nickel between 0 and 18 

wt% for catalytic steam reforming of bio-oil. Before each experiment, the catalyst was reduced 

by a 400STP ml/min flow of 50 vol% hydrogen at 850°C for 1hr. Due to slow pulsed mechanism 

of the feed injection, composition of the product gases versus time was very fluctuating, so they 

had to consider the average value of their data to compare the effect of tested parameters. Testing 

the catalyst at 850°C and molar S/C=5 for a period of 1hr showed that the catalyst with 14.1 wt% 

nickel was the best catalyst in terms of higher total carbon to gas conversion, production of 

hydrogen and CO2 and lower production of CO and hydrocarbons. The maximum carbon to gas 

conversion at such operating conditions though was about 70%-75%. Tests with longer runs 

revealed that the best catalyst tended to become significantly deactivated after 1 h.   

1.3.2.3. Summary 

Hydrogen yield and carbon conversion increases drastically in the presence of an appropriate 

catalyst in the reactor. Nickel based catalysts have been the most common used catalysts, in 

particular, with the alumina based supports in steam reforming/gasification of the bio-oil and its 

model compounds. However, formation of coke on the surface of such catalysts, which causes 

catalyst deactivation, is a major issue. The type of the coke differs depending on the type of feed, 

catalyst composition and reactor (fixed bed or fluidized bed). Reports from steam reforming of 

the bio-oil model compounds reveal that promoters such as Mg, Ca, La and Co help to minimize 

the coke deposition and to stabilize performance of the catalyst; on the other hand, each promoter 

has a different effect.  Noble metals also showed very good activities with less mass compared to 

nickel in terms of less coke deposition and larger hydrogen yield and carbon conversion; 

however, they are expensive. Other than the active metal, the type of the catalyst support can 

also influence the yield of syngas and the carbon conversion. 

The mass fraction of the active metal is important to increase activity of the catalyst; for 

instance, a large mass fraction of the active metal can prevent its sufficient reducibility, which is 

required to become an activate catalyst. 

Although different catalysts have been synthesized in the labs to maximize hydrogen yield and 

carbon conversion and minimize coke deposition and production of hydrocarbons, the 
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commercial catalysts have shown better activities than the laboratorial catalysts.  Despite some 

success in development of stable catalysts, stability of the synthesized catalysts have been poor 

for the long experimental runs.    

 1.3.3. Effect of temperature 

1.3.3.1. Bio-oil model compounds 

According to Wang et al. [20], generally, it was observed that catalytic conversion of model 

compounds can reach 99% at temperatures above 600°C.  

Rioche et al. [54] also reported that carbon conversion and yield of hydrogen increase with 

temperature, but in the absence of catalyst, yields are very low. They used inert cordierite fillers 

for non-catalytic tests for steam reforming of model compounds. As an example for non catalytic 

tests, highest conversion of acetic acid at 688°C and 779°C was 2% and 21% when molar S/C 

ratio was 5 and GHSV was 860h-1. Non catalytic ethanol conversion between 677°C and 770°C 

was constant at about 3% for molar S/C ratio of 3 and GHSV of 880h-1. It was also noticeable 

that methane was the main product gas of non catalytic tests. In other words, temperature 

increased conversion of the model compounds, but it is not enough to gain full conversions.  

Non catalytic steam reforming of acetic acid conducted by Galdamez et al. [55] showed that 

although 100% carbon to gas conversion is achieved above 650°C, the composition of product 

gases was very far from the equilibrium conditions and yield of hydrogen was very low (0.052 

g/g of AA compared to 0.120 g/g of AA at equilibrium at 700°C). It was noticeable that non 

catalytic conversion of acetic acid at 450°C was 8.05%.  Composition of hydrogen and CO was 

increased versus temperature while composition of CO2 and CH4 had decreasing trends versus 

temperature; in other words, steam reforming of methane was favored at higher temperatures to 

produce hydrogen and CO.  

Ramos et al. [57] carried out non catalytic steam reforming of acetol at 450°C-650°C with molar 

S/C=4.6. Conversion of acetol to product gases increased versus temperature from 36.9% at 

450°C to 87.09% at 650°C. Interestingly, although the yield of product gases (g/g of acetol) 

increased versus temperature, the overall concentration of gases was almost similar: H2 52%, 
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CH4 10.5%, CO 32%, CO2 3.5% and C2 2%. Also, the concentrations were very far from 

predicted equilibrium conditions. 

1.3.3.2. Bio-oil 

Garcia et al. [62] conducted catalytic steam reforming of aqueous fraction of bio-oil at 825°C 

and 875°C, but they reported that temperature did not have an effect on the trend of yield of 

product gases obtained from different compositions of the tested catalysts. 

Czernik et al. [26] found that, at 800°C, the yield of hydrogen decreased from 85% to 77% after 

12 hours continuous reforming of bio-oil showing that catalyst particles were being deactivated 

by deposits of carbon. At 850°C and over 90 hours of steam reforming process, it was found that 

the yield of hydrogen had improved and reached 80% which is significant compared to the latter 

temperature. In addition to hydrogen, CO, CO2 and small traces of methane and ethylene were 

produced. Methane formation was increased to 2.5% and then leveled off over the time showing 

that the catalyst was losing its activity. 90% of the feed carbon was converted to gas. The 

deposited carbon on the catalyst was minimal.  

Van Rossum et al. [68] investigated different temperature configurations in their staged non 

catalytic fluid bed-catalytic fixed bed gasification setup to find optimum temperatures inside the 

reactor for maximum bio-oil conversion. The catalysts were not crushed.  Their initial 

investigations showed that K23 and K46 catalysts had similar activities. They found out there 

should be enough load of catalyst in the fixed bed (5kg in their reactor) to completely convert the 

methane and C2-C3 to syngas. Therefore, three different temperature configurations in their 

reactor setup were investigated:  

Fluid bed temperature and fixed bed temperatures at about 800 °C: the carbon content of the bio-

oil is converted to coke, permanent gases and tars (primary, secondary and tertiary tars) in the 

fluid bed. Permanent gases and tars are converted to syngas in the catalytic fixed bed. At these 

conditions, a clean flow of syngas was produced. 
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Fluid bed temperature > 630°C and fixed bed temperature between 670°C and 830°C: the fixed 

bed temperature varied to find an optimum temperature at which carbon contents are fully 

converted to syngas. The optimum required temperature for this purpose was realized to be 

800°C or higher. Concentration of product gases after the fixed bed was at equilibrium and no 

methane and C2-C3 were detected. 

Fluid bed temperature between 430°C and 500°C and fixed bed temperatures between 530°C and 

690°C: instead of converting to permanent gases, the bio-oil is initially converted mainly to a 

vapor containing primary tars in the fluidized bed reactor. Due to higher reactivity of the tars 

than hydrocarbons, they investigated an optimum low temperature in the fixed bed reactor. When 

the temperature of the fluidized bed was 496°C and the temperature of the fixed bed was 690°C, 

carbon to gas conversion and yield of hydrogen were obtained at larger values compared to when 

the fluid bed was 788°C and the fixed bed was 828°C. Although a very low production of 

methane was detected (0.1 vol%), the produced syngas was C2-C3 free.  Table 1.22 illustrates the 

composition of the product gases according to the temperatures applied inside the reactors. 
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Table 1.22. Gasification results done at different temperatures of the staged system. Adapted from 
[68] 

Feed type Pine Pine 

Liquid feed, kg/h 0.51 0.62 
Bed type, sand fluid, kg 5.0 5.0 
Inert fied, kg 3.6 3.6 
K46 fixed, kg 5.0 5.0 
K23 fixed, kg 0.0 0.0 
T fluid bed, C 496 788 
T fixed bed, C 690 828 
S/C 2.6 2.2 
Carbon to gas, % 70 61 
H2 yield, % 64 58 
Gas production, Nm3/kg   
H2 1.28 1.16 
CH4 0.00 0.00 
CO 0.28 0.25 
CO2 0.39 0.33 
C2-C3 0.00 0.00 
Gas composition, vol%   
H2 63.8 62.7 
CH4 0.1 0.0 
CO 14.0 13.7 
CO2 19.3 18.0 
C2-C3 0.0 0.0 

 

Seyedeyn-Azad et al. [75] conducted catalytic bio-oil steam reforming over temperatures 

between 650°C and 955°C with the 14.1wt%  Ni/Al2O3 catalyst. Their result showed that yield of 

hydrogen and CO2 increased by temperature which indicates an effect of the catalyst on the 

water gas shift reaction. Carbon to gas conversion of about 80% was reached at 955°C; however, 

traces of methane (2%-5%) were observed at all temperatures.   

1.3.3.3. Summary 

Hydrogen yield and carbon conversion increase with temperature; however, the extend of the 

effect depends on the presence of catalyst and on additional flows, such as steam. For instance, 

in addition to the effect of temperature, variation of CO/CO2 ratio through the water gas shift 

reaction is highly influenced by the presence of catalyst and steam.    
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1.3.4. Effect of residence time and GHSV 

1.3.4.1. Bio-oil model compounds 

Wang et al. [20] varied residence time from 0.04s to 0.15s at 600°C and constant GHSV 1680 h-1 

with UCI G-90C catalyst. Their result showed that residence time has no net effect on mole 

fraction of hydrogen in the product stream. 

Medrano et al. [77] investigated the effect of gas hourly space velocity on catalytic steam 

reforming of acetol by increasing the mass of the Ni/Al catalyst. According to the data in Table 

1.23, when GHSV decreased, carbon conversion of acetol increased from 26.36% to 100%. In 

addition, yield of hydrogen and CO2 were increased while yield of CO and hydrocarbons were 

decreased. In other words, more mass of the catalyst which provided more catalyst-gas contact 

surface was very influential on activating the steam reforming of hydrocarbons and the water gas 

shift reaction in favor of higher production of hydrogen and CO2.   

Table 1.23. Experimental results of acetol steam reforming at 650 °C with Ni/Al catalyst, 
S/C=5.58, 2 h reaction time. Adapted [77] 

Run # 9 10 11 12 13 

g catalyst min/g acetol 0 0.985 1.982 3.464 6.144 
GHSV, h-1 ∞ 51459 25561 14628 8247 
Liquid feeding rate, ml/min 0.51 0.51 0.51 0.50 0.50 
Carbon conversion, % 26.36 78.56 94.57 100.79 101.96 
Total gas/ (acetol+water), g/g 0.047 0.216 0.299 0.343 0.352
Gas yields, g/g acetol      

H2 0.0047 0.0822 0.1342 0.1624 0.1664 
CO 0.1575 0.2950 0.2864 0.2685 0.2556 
CO2 0.0022 0.6047 1.0265 1.2739 1.3367 
CH4 0.0270 0.0378 0.0258 0.0180 0.0162 
C2H4 0.0434 0.0631 0.0357 0.0119 0.0080 
C2H6 0.0032 0.0105 0.0093 0.0051 0.0036 

Gas composition, %      
H2 20.53 58.32 64.58 66.85 67.02 
CO 49.56 15.07 9.88 7.90 7.36 
CO2 0.44 19.51 22.44 23.84 24.48 
CH4 14.87 3.41 1.57 0.93 0.82 
C2H4 13.61 3.20 1.23 0.35 0.23 
C2H6 0.93 0.50 0.30 0.14 0.10 
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1.3.4.2. Bio-oil 

To investigate the effect of residence time, Panigrahi et al. [63] changed the nitrogen flow rate as 

the carrier gas between 18 and 54 ml/min, while the bio-oil flow rate was 4.5g/h, In accordance 

with Table 1.21, at most tested temperatures, conversion of bio-oil increased with the nitrogen 

flow rate up to 30 ml/min while this trend was descending between 30ml/min and 42 ml/min. 

Flow rate of bio-oil between 42ml/min and 54 ml/min did not have significant effect on the bio-

oil conversion. On the other hand, production of gases increased versus nitrogen flow rate at 

each temperature. For example, volume of product gases was raised from 400ml to 980ml at 

600°C and from 900ml to 1780ml at 800°C (Table 1.24).  

Table 1.24. Conversion of bio-oil and Volume of Product Gas Formed over a Period of 30 min at 
different Temperatures and Nitrogen Flow Rates at bio-oil Flow Rate of 4.5 g/h. Adapted from 

[63] 

N2, 
ml/min 

18  30 
 

42  54 

Temp, 
°C 

Conv., 
% 

Prod.gas, 
ml 

 
 

Conv., %
Prod.gas, 

Ml 
Conv., %

Prod.gas, 
ml 

 
Conv., 

% 
Prod.gas, 

ml 
650 48 500  57 730 60 740  62 980 
700 60 820  75 900 60 950  59 1020 
750 72 880  79 1020 68 1010  69 1200 
800 76 900  83 1040 81 1140  80 17800 

 

Interesting results were also reported for the effect of residence time (nitrogen flow rate) on the 

yield of the gases at 800°C: total concentration of syngas increased from 22% to 65% versus 

nitrogen flow rate from 18ml/min to 54ml/min. Production of methane at the longest residence 

time (nitrogen flow rate of 18ml/min) was about 30% while it reached about 22% at the shortest 

residence time. Production of ethylene and propylene was also reduced versus flow rate of 

nitrogen: 31.8% and 3.8% to 6.8% to 0.1% for ethylene and propylene, respectively; this can be 

due to secondary thermal decomposition of cellulosic and lignin fractions of bio-oil at the longest 

residence time at 800°C.   

Sakaguchi et al. [71] investigated the effect of the GHSV on the thermal cracking of bio-oil. As 

it can be seen on Figures 1.20a and 1.20b, variation of the gas hourly space velocity did not 
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significantly affect the yield of product gases during thermal cracking of bio-oil. They have not 

reported the effect of the GC1HSV on catalytic cracking experiments.  

 

Figure 1.20. Effect of space velocity on (a) carbon yield (mol %, atomic) as CO, CO2, CH4, and 
hydrocarbons (C2-C4) and (b) hydrogen yield (mol %, atomic) asH2, CH4, and hydrocarbons (C2-

C4) on the dry feed stock basis at T ≈ 800°C and GHSV ≈ 320 h-1 under noncatalytic steam 
gasification. Taken from [71]  

 

Lan et al. [73] investigated the effect of the bio-oil flow rate on the gasification yield of the rice 

husk bio-oil: T=800°C and molar S/C=9 in the fixed bed reactor and T= 750°C and molar 

S/C=18 in the fluid bed reactor. According to the Figures 1.21a and 1.21b, due to effect of the 

bio-oil flow rate on shortening the residence time, in general, when flow rate is added up, yields 

of hydrogen and CO2 were decreased, yield of CO was decreased and then became stable, yield 

of methane was raised and total carbon to gas conversion had a reducing trend.   
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Figure 1.21. Steam reforming of bio-oil at different LHSV. (a) Fixed bed, experimental conditions: 
1 g catalyst, T = 800 °C, S/C = 9.8, reaction time = 60 min. (b) Fluidized bed, experimental 
conditions: 100 g catalyst, T = 750 °C, S/C = 18, reaction time = 60 min. Taken from [73] 

 

Investigations by Seyedeyn-Azad et al. [75] for catalytic steam reforming of bio-oil showed that 

lowering the mass of catalyst caused a decrease in production of hydrogen and CO2 as well as 

carbon to gas conversion; in addition, deposited coke on the surface of the catalyst was 

increased.  
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1.3.4.3. Summary 

Different concepts of residence have been defined in literature: (1) flow rate of the total gas flow 

rate divided by volume of the reactor and (2) flow rate of feed divided by volume of the bed 

(catalyst or inert material) which is also definition of the GHSV.  

Based on the first definition, there are very limited reports in literature which indicate either 

syngas yield and bio-oil conversion were not affected by residence time or they increased with 

shorter residence time. 

Based on the second definition, larger gas hourly space velocity (either larger feed flow rate or 

less catalyst mass) causes less production of syngas and carbon conversion and rate of coke 

deposition is increased.  

1.3.5. Effect of excess steam, hydrogen and CO2 

1.3.5.1. Bio-oil model compounds 

Wang et al. [20] changed molar S/C ratio from 4.5 to 7.5 at 600°C and constant GHSV 1680 h-1 

with UCI G-90C catalyst, but they found that molar S/C ratio has no net effect on mole fraction 

of hydrogen in product stream. 

Marquevich et al. [53] showed that model compounds of bio-oil depending on their molecular 

structure and physical properties need different molar S/C ratios to be completely converted to 

product gases.  

Catalytic tests of acetic acid were conducted between 500°C-750°C, molar S/C of 3 and 6 and 

GHSV of 67mol.h-1.L-1 in the larger reactor and 244 and 232 67mol.h-1.L-1 in the smaller reactor. 

Commercial nickel based UC G-90C catalyst manufactured by United Catalyst Inc was used for 

steam reforming of the acetic acid and aromatics and commercial nickel based ICI 46-1 catalyst 

manufactured by ICI Katalco was used for steam reforming of sugars. The catalysts were 

crushed and sieved for size distributions of 2.4mm-4.0mm or 1.0mm-2.0mm depending on the 

size of reactor. The catalysts were reduced in-situ at 600°C for 4h with a constant 0.8SLM flow 

of 50% hydrogen. Before each test of catalytic steam reforming of the sugars, the catalytic bed 
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was regenerated by steam for 4h (12-15 g/min) to gasify deposited coke on the surface of 

catalysts from previous tests, and then it was reduced by flow of hydrogen with composition and 

flow similar to that used for fresh catalysts for 3h. When molar S/C ratio was 6, carbon 

conversion was 73% at 500°C but it was almost 100% at temperatures above 600°C in the larger 

reactor. However, maximum carbon conversion in the smaller reactor was about 95% at 750°C. 

Yield of hydrogen was increased versus temperature in both reactors but it was less than 80%. 

When molar S/C ratio was 3, carbon conversion was about 86% at all temperatures. This lower 

conversion can be attributed to the activity of the catalyst which could not reform all acetic acid 

because partial pressure of steam was lower.  It is reported that concentration of gases at all 

operating conditions were very close to equilibrium concentrations.  

m-Cresol catalytic steam reforming were carried out in the small reactor at 725°C, 800°C and 

875°C with molar S/C ratio of 3 and 6 and GHSV of 8650h-1. Carbon conversion was between 

97% and 100% at all temperatures and molar S/C ratios. Stoichiometric yield of hydrogen was 

between 74%-77% for molar S/C ratio of 6 but it was between 67%-71% for molar S/C ratio of 

3. On the other hand, concentrations of all gases were found to be very close to equilibrium at all 

operating conditions.  

Benzyl ether experiments were conducted at operating conditions similar to those for m-Cresol 

but GHSV was 11800h-1. Carbon conversion was 100% and stoichiometric yield of hydrogen 

was about 83% and 67% for molar S/C ratios of 6 and 3, respectively. Gas concentrations were 

close to equilibrium for molar S/C ratio of 6, but when molar S/C ratio was 3, concentrations of 

hydrogen and CO2 were below the equilibrium while concentration of CO was above the 

equilibrium.  

Catalytic steam reforming of sugars were conducted at high molar S/C ratios because they are 

pyrolysed upon injection into the reactor and char is formed, so high enough ratio of molar S/C 

which favors gasification of char was needed. Operating condition and results of steam 

reforming of glucose, xylose and sucrose are presented in Table 1.25. Glucose conversion at 

molar S/C ratio of 7 was 78% and it reached 98% with molar S/C ratio of 47. Xylose was 
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converted to gases completely at all tested molar S/C ratios. However, Sucrose was very difficult 

to be converted to gas because its conversion was 88% at 835°C with molar S/C ratio of 34.   

Table 1.25. Steam Reforming of Mono- and Disaccharides Using the ICI 46/1 Catalyst; 
Experimental Conditions, Carbon Balance, and Hydrogen Yields. Adapted from [53] 

Sugar 
S/C ratio, 
mol/mol 

GHSV, h-1 T, °C 
Carbon balance, 

% of feed 
H2 yield, 

% of stoichiometric H2 

Glucose 

47 717 843 98 82 

32 717 860 102 89 

17 627 897 92 80 

7 538 869 78 67 

      

Xylose 

37 806 787 100 84 

27 739 806 103 89 

14 739 860 105 90 

      

Sucrose 34 851 835 88 72 

 

Takanabe et al. [22] studied mechanism of steam reforming reactions of acetic acid on the 

Pt/ZrO2 catalyst in a fixed bed reactor. The synthesized catalyst was reduced by a flow of 5% 

hydrogen in nitrogen at 775 K for 1h. Aqueous samples of acetic acid and acetone (molar S/C=5) 

were prepared for experiments at 625K .  

They injected pulses of acetic acid with and without steam to find the role of steam in acetic acid 

reforming. It was discovered that steam has a clear role to react with and gasify the deposits on 

the surface of catalyst from the previous pulses; hence, the yield of hydrogen was almost similar 

for each pulse of injection whereas when pulses of acetic acid without steam was injected, the 

yield of hydrogen was reducing consequently at each pulse.  

In order to investigate selective removal of carbon deposits on different catalysts, duration of 

catalysts activity, formation of hydroxyl groups by steam on the catalyst and probable secondary 

reactions, pulse injections of acetic acid and continuous steam reforming of acetic were 
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conducted on different combination of catalysts (Pt/ZrO2, and ZrO2). Then, the nature of the 

deposited carbon was detected by TPO (temperature-programmed oxidation) measurements, and 

then it was burnt by oxygen to estimate the coke quantitatively. Finally, a bifunctional 

mechanism was proposed for steam reforming of the acetic acid on the Pt/ZrO2 catalyst:  

As illustrated in Figure 1.22, acetic acid is decomposed to acetate and acyl groups on the Pt. 

Then, these two groups are decomposed to CO2, CO and CH3 so that methyl groups adsorb 

hydrogen to form CH4. Methyl groups, in addition, may be graphitized and oligomerized to 

block surface of Pt. On the other hand, steam gasifies methyl groups on Pt to form hydrogen and 

carbon dioxide because steam becomes activated on the surface of ZrO2 to form hydroxyl 

groups; then, these groups react with methyl groups on the boundary between Pt and ZrO2. 

Therefore, it was concluded that the boundary of catalyst is very important and in order to 

regenerate the catalyst, carbon removal from the boundary between Pt and ZrO2 must be taken 

into account.  

 

Figure 1.22. Pathway for the steam reforming of AcOH involving bi-functional catalysts of Pt/ZrO2 
. Taken from [22] 

 

Ramos et al. [57] changed the molar S/C ratio from 1.3 to 6 for catalytic steam reforming of 

acetol at 650°C with Ni-Al catalyst. As it can be seen in the Table 1.26, carbon conversion was 

increased from 75.88% to 93.5%. Also, larger molar S/C ratio increased production of hydrogen 

and CO2 , but yield of CO fluctuated between 0.474 and 0.380. Although it is expected to see 
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that yields of hydrocarbons were decreased versus molar S/C ratio, yields of CH4 and C2 were 

almost constant.   

Table  1.26. Results of Acetol Catalytic Steam Reforming: Influence of S/C Ratio at 650°C Using 
Ni-Al Catalyst. Adapted from [57] 

Run # 13 7 14 15 16 17 18 

Temperature, °C 650 650 650 650 650 650 650 
S/C (mol/mol) 6 4.6 3.3 3.3 2 1.3 1.3 
Catalyst weight, g 1.2 1.2 1.52 1.2 1.2 2.7 1.2 
g catalyst/g acetol 4.22 3.41 3.40 2.68 1.90 3.40 1.51 
GHSV, h-1 12008 14860 14904 18908 26670 14904 33558 
Liquid feeding rate, g/min 1.53 1.53 1.54 1.54 1.55 1.56 1.56 
Time, min 65 65 65 65 65 65 65 
Total acetol fed, g 18.46 22.9 29.06 29.06 41.02 51.54 51.54 
Carbon conversion, % 93.50 87.22 86.68 81.46 75.24 72.33 75.88 
Yields, g/g        
Total gas/ (acetol+water) 0.256 0.292 0.350 0.337 0.429 0.518 0.510 
Total gas/acetol 1.379 1.268 1.208 1.161 1.057 1.022 1.007 
Gas yields, g/g acetol        

H2 0.134 0.134 0.113 0.112 0.094 0.095 0.090 
CH4 0.093 0.082 0.099 0.082 0.074 0.060 0.080 
CO 0.384 0.427 0.415 0.396 0.388 0.407 0.474 
CO2 0.749 0.609 0.562 0.555 0.488 0.448 0.351 
C2 0.019 0.016 0.019 0.016 0.013 0.012 0.012 

 

Vagia and Lemonidou [59] carried out non catalytic gasification of acetic acid and acetone at 

750°C for 1h with and without steam with residence time of 4.5ms. Conversion of acetic acid 

and acetone were, respectively, 23% and 65% with steam and 29.7% and 70.6% without steam. 

It was commented that the lower gained conversion at the presence of steam was probably due to 

the stabilization effect of steam and lower partial pressure of acetic acid and acetone. Higher 

conversion of acetone than that of acetic acid, in general, indicated higher instability of acetone 

at 750°C. They have reported that conversion of acetone in the absence of steam was reduced 

from 70% to 40% during the third hour of the experiment while the conversion rate was stable in 

the presence of steam.  
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1.3.5.2. Bio-oil 

Panigrahi et al. [64] reported interesting results to do with effect of inlet CO2, hydrogen and 

steam on non catalytic gasification of bio-oil. Bio-oil conversion was reduced from 83 wt% to 68 

wt%, while total volume of product gases was increased from about 2100 ml/h to about 2400 

ml/h when the concentration of CO2 was increased from 0 to 0.6 in the inlet CO2/N2 mixture. As 

presented in Table 1.27, the concentrations of hydrogen and CO are increased by increasing the 

inlet CO2 concentration whereas the concentration of hydrocarbons drops significantly. In other 

words, inlet CO2 favors CO2 reforming and partial oxidation reactions of the hydrocarbons.   

Table 1.27. Product Gas Composition as a Function of CO2 Concentration in a Feed Gas Mixture 
of N2 and CO2 at a bio-oil Flow Rate of 5.0 g/h at 800 °C. Adapted from Panigrahi et al. [64] 

Component, 
mol% 

N2: 30ml/min 
N2: 24ml/min 
CO2: 6ml/min 

N2: 18ml/min 
CO2: 12ml/min 

N2: 12ml/min 
CO2: 18ml/min 

H2 12.8 15.0 37.4 54.6 
CO 7.7 51.9 25.2 23.6 
CO2 2.6 0.01 0.02 0.01 
CH4 27.4 15.2 17.1 12.5 
C2H4 31.1 10.1 13.4 7.4 
C2H6 5.5 2.2 2.8 1.0 
C3H6 3.1 1.8 2.0 0.06 
C3H8 0.6 0.1 0.5 0.0 
C4+ 9.2 3.3 1.2 0.5 

 

The presence of hydrogen in the inlet nitrogen did not change the conversion of bio-oil, but the 

total volume of product gases, in general, was increased. According to data in Table 1.28, a 

higher concentration of hydrogen in the inlet flow of nitrogen led to a larger production of 

hydrogen (it is not reported if the inlet hydrogen was included) and carbon monoxide so that 

syngas mole fraction increased from 20% to 83% while production of hydrocarbons was 

significantly lowered which means hydrogen facilitated conversion of hydrocarbon to produce 

hydrogen and CO.  
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Table 1.28. Product Gas Composition as a Function of H2 Concentration in a Feed Gas Mixture of 
N2 and H2 at a bio-oil Flow Rate of 5.0 g/h and at 800 °C. Adapted from [64] 

Component, 
mol% 

N2: 30ml/min 
N2: 4ml/min 
H2: 6ml/min 

N2: 18ml/min 
H2: 12ml/min 

N2: 12ml/min 
H2: 18ml/min 

H2 12.8 33.3 59.2 47.8 
CO 7.7 29.0 24.6 32.1 
CO2 2.6 4.9 3.4 4.0 
CH4 27.4 17.0 10.9 13.9 
C2H4 31.1 14.0 1.3 1.6 
C2H6 5.5 0.7 0 0.1 
C3H6 3.1 0.2 0 0.1 
C3H8 0.6 0.0 0 0 
C4+ 9.2 0.9 0.6 0.4 

 

Regarding steam reforming reactions, conversion of bio-oil increased from 67 wt% to 81 wt% 

versus steam flow rate from 2.5 g/h to 10 g/h. In addition, syngas was increased from 20 to 79 

mol% in product stream. Since methane and other hydrocarbons react with steam, it was seen 

that the yield of hydrocarbons decreased with increasing steam flow rate (Table 1.29).  

Table 1.29. Product Gas Composition as a Function of Steam Flow Rate at a Nitrogen Flow Rate 
of 30 mL/min and BDO Flow Rate of 5.0 g/h at 800 °C. Adapted from [64] 

Component, 
mol% 

Steam flow rate, g/h 

0 2.5 5 7.5 10 
H2 12.8 47.0 47.3 47.3 49 
CO 7.7 26.6 27.0 29.5 30.2 
CO2 2.6 5.9 4.0 4.4 0.4 
CH4 27.4 16.2 13.6 12.8 13.4 
C2H4 31.1 3.0 5.6 5.1 5.4 
C2H6 5.5 0.2 0.3 0.2 0.2 
C3H6 3.1 0 0 0 0 
C3H8 0.6 0 0 0 0 
C4+ 9.2 1.3 2.2 0.7 1.4 

 

Wu et al. [69] conducted staged catalytic steam reforming of bio-oil in the two fixed bed reactors 

at temperatures between 700°C and 900°C and molar S/C ratio from 1 to 16. Although yield of 

product gases increased by temperature, the effect of temperature at the lowest values of molar 
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S/C ratio was not significant. The maximum yield of hydrogen was observed at molar S/C ratios 

higher than 16 at 850°C (57.2% of the potential hydrogen). Molar S/C ratio did not influence 

production of CO at temperatures lower than 800°C, but at higher temperatures, production of 

CO was decreased by molar S/C ratio. Opposite to the production of CO, the yield of CO2 was 

raised by molar S/C ratio indicating the effect of the catalyst on driving the water gas shift 

reaction. CH4 was observed at all conditions. Production of CH4 increased by temperature, but 

low values of methane was obtained at higher molar S/C ratios.  

In order to see the effect of dolomite in the first fixed bed reactor on the ultimate yield of the 

product gases, inert porcelain chips were used instead at similar conditions. It was realized that 

presence of dolomite influenced higher yield of hydrogen and CO2 and decreased yield of CO, 

but yield of methane was similar. 

Sakaguchi et al. [71] investigated the effect of molar S/C ratio on thermal cracking of bio-oil. 

Although steam was used in the gasification runs, only about 3% of the inlet steam was 

converted in thermal cracking experiments at 836°C while steam conversion was about 15% at 

803°C in catalytic experiments. As a result, molar S/C ratio did not affect bio-oil conversion and 

yield of product gases during thermal cracking experiments. They have not reported the effect of 

molar S/C ratio on catalytic cracking experiments. 

Lan et al. [73] investigated the effect of molar S/C ratio at 800°C in the fixed bed reactor and at 

750°C in the fluid bed reactor for catalytic steam reforming of the rice husk bio-oil. Their results 

showed that when this ratio is raised, yields of hydrogen and CO2 are raised while yields of CO 

and CH4 decline. However, a higher yield of hydrogen and carbon to gas conversion was 

observed in the fluid bed at lower temperatures compared to those in the fixed bed reactor 

(Figures 1.23a and 1.23b).   
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Figure 1.23. Steam reforming of bio-oil at different rates of steam to carbon. (a) Fixed bed, 
experimental conditions: 1 g catalyst, T = 800 °C, LHSV = 1.8 h–1, reaction time = 60 min. (b) 

Fluidized bed, experimental conditions: 100 g catalyst, T = 750 °C, LHSV = 0.8 h–1, reaction time = 
60 min. Taken from [73] 

 

Seyedeyn-Azad et al. [75] changed molar S/C ratio between 2 and 5 at 850°C for catalytic bio-

oil steam reforming with the 14.1wt% Ni/Al2O3 catalyst. A lower yield of hydrogen and CO2 and 

a higher yield of CO were observed at molar S/C ratio less than 2, indicating that the steam was 

not enough for the water gas shift reaction and the majority of the available steam was being 
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used for steam reforming reactions. A maximum carbon to gas conversion was obtained at molar 

S/C ratios between 2 and 5 and the yield of hydrogen did not change beyond molar S/C=5.  

1.3.5.3. Summary 

For the case of catalyst absence in the reactor, there are different reports about the effect of steam 

on the yield of syngas and on conversion of bio-oil and its model compounds: steam can either 

have stabilization effects and decrease the carbon conversion, can have negligible effects, or can 

increase yield of syngas and carbon conversion depending on the molar S/C ratio, type of bio-oil 

or its model compound and temperature.  

In general, in the presence of sufficient steam in a catalytic process at a given temperature and 

for the specific feed, yield of hydrogen and CO2 as well as carbon conversion increase. The 

optimum amount of steam should be investigated for a type of bio-oil for a given catalyst and 

temperature. 

Additional CO2 and hydrogen as inlet streams to the reactor would have positive effect to 

increase yield of hydrogen and carbon conversion of bio-oil.  

1.3.6. Effect of oxygen 

1.3.6.1. Bio-oil model compounds 

Rioche et al. [54] investigated auto thermal conditions for bio-oil steam reforming at 830°C with 

molar S/C ratio of 10.8 and GHSV of 3090h-1 with the 1% Pt-CeZrO2 catalyst while O/C ratio 

varied between 0.54, 0.69, 0.92 and 1.31. It was found that the yield of hydrogen decreased from 

70% (without excess oxygen) to 30% (O/C= 1.31). In addition, it was found that the catalyst was 

deactivated 50% faster when oxygen was used in the reactor although the rate of the carbon 

deposition on the catalyst decreased significantly. So, deactivation of the catalyst can be due to 

sintering of Pt on the catalyst because less coke was deposited on the catalyst in presence of 

oxygen.  

Medrano et al. [58] studied the effect of additional stoichiometric oxygen in the reactor for 2h on 

the yield of product gases from acetic acid steam reforming with the Ni/Al catalyst primarily 
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calcined at 750°C (Table 1.30). It was realized that burning the feed with above the 8% of the 

stoichiometric oxygen will lead to less production of hydrogen and CO2 while production of CO 

and CH4 is raised. Optimum oxygen for the period of 6h tests was found to be 4% because the 

yield of hydrogen remained almost constant at 0.12 g/g over the time while less coke was 

deposited on the catalyst. However, it was noticed that carbon conversion with 4% additional 

stoichiometric oxygen was decreased from 100% and remained almost constant at about 92%.   

Table 1.30. Experimental results at 650°C, with a catalyst weight of 1.1 g of Ni/Al catalyst calcined 
at 750°C with oxygen addition. Adapted from [58] 

Run # 1 5 6 7 8 9 

Reaction time, h 2 2 2 2 6 6 
O2 addition, % 0 2 4 8 0 4 
Liquid feeding rate, ml/min 0.76 0.76 0.77 0.75 0.75 0.74 
g catalyst min/g AA 6.152 6.096 6.026 6.179 6.205 6.246 
       
GHSV, h-1 6772 6835 6914 6743 6715 6670 
Total gas/ (AA+water), g/g 0.343 0.344 0.344 0.330 0.339 0.351 
Liquid yield, g/g 0.672 0.620 0.667 0.693 0.689 0.688 
Recovery 1.014 0.964 1.011 1.024 1.028 1.039
Carbon conversion, % 98.87 99.83 100.27 100.52 98.09 102.64
Gas yields, g/g AA       

H2 0.1303 0.1224 0.1203 0.1096 0.1255 0.1233 
CO 0.1533 0.1595 0.1704 0.2467 0.1546 0.1775 
CO2 1.2053 1.2134 1.2028 1.0764 1.1908 1.2246 
CH4 0.0014 0.0000 0.0000 0.0037 0.0017 0.0007 

Gas composition, %       
H2 66.42 64.78 64.30 62.07 65.75 64.28 
CO 5.58 6.03 6.50 9.97 5.78 6.65 
CO2 27.92 29.19 29.20 27.70 28.36 29.03 
CH4 0.09 0.00 0.00 0.26 0.11 0.05 

  
 
1.3.6.2. Bio-oil 

Marda et al. [77] conducted non-catalytic partial oxidation (NPOX) of the poplar wood bio-oil at 

temperatures varied from 625°C to 850°C and molar oxygen to carbon ratio (O/C) changed 

between 0.7 and 1.6. They realized that at low O/C ratios, the conversion of bio-oil was 

dependent on the temperature, so that higher conversion was achieved at higher temperature. 

However, the trend of conversion did not change with temperature at O/C ratios of 1.5 and 1.6. 
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Conversion of bio-oil to the permanent gases, such as hydrogen, CO, CO2 and CH4 accounted for 

85-95% at the highest O/C ratio. Residual carbon and aromatic gases like benzene constituted the 

remaining balance. Their results showed that production of CO was way more than production of 

hydrogen, CO2 and CH4 indicating that the water-gas shift catalytic reactor is required to 

condition this composition to favor hydrogen and CO2.   

Medrano et al. [74] tried introducing 4% of the stoichiometric oxygen to their fluid bed reactor 

containing the Mg/Ni/Al catalyst. It was revealed that, although there were slight differences in 

the concentration of the product gases, the carbon to gas conversion at 650°C increased from 

83.26% to 85.23% and carbon deposition decreased from 149 to 73 mg of C/g of catalyst (Table 

1.31). 

Table 1.31. Experimental results of pyrolysis liquid aqueous phase steam reforming at 650 °C, 
u/umf =10, 2 h reaction time, catalyst MgAl 0.26. Adapted from Medrano et al. [74] 

Run # 2 4 5 

g catalyst min/g organics 4.110 8.971 8.954 
GHSV, h-1 11809 8971 8954 
Liquid feeding rate, ml/min 0.75 0.75 0.76 
Carbon conversion, % 81.01 83.26 85.23 
Total gas/ (liquid feed), g/g 0.201 0.227 0.229 
Deposited carbon, mg C/g 
catalyst 

162 149 73 

Gas yields, g/g organics    
H2 0.1056 0.1328 0.1284 
CO 0.2250 0.1449 0.1774 
CO2 0.8961 1.1469 1.1297 
CH4 0.0276 0.0113 0.0121 
C2H4 0.0185 0.0054 0.0046 

Gas composition, %    
H2 63.13 67.37 66.07 
CO 9.65 5.26 6.56 
CO2 24.34 26.45 26.41 
CH4 2.07 0.72 0.79 

 C2H4  0.79 0.20 0.17 
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1.3.6.3. Summary 

The addition of oxygen has been investigated to either supply some part of the required heat for 

the endothermic reactions through an auto thermal process, or increase conversion of bio-oil by 

burning some fractions of large molecules of bio-oil. 

Oxygen helps to minimize coke deposition on the catalyst and increase carbon conversion of bio-

oil and its model compounds. However, it might deactivate the catalyst and lower the syngas 

yield. Thus, an optimum O/C ratio must be investigated by which required production of syngas 

can be achieved with low detrimental effect on the catalyst activity. 

1.4. Critical review 
In general, it is perceived from the literature review that the gasification of model compounds 

has been much easier than that of bio-oil in terms of feeding operation and conversion rate. For 

example, some researchers had to separate and only operate with the aqueous phase of bio-oil 

[26, 62, 65]. Fortunately, the technique of injecting bio-oil through a water cooled nozzle has 

overcome the issue of bio-oil polymerization in the nozzle [23, 25, 67, 71].   

Due to the fact that most tested bio-oil model compounds were light compounds, such as acetic 

acid, acetone, acetol and ethylene glycol, which are found in the aqueous fraction of bio-oil, 

complete conversion of these model compounds has been achieved by applying appropriate 

operating conditions in a catalytic bed reactor. On the other hand, with similar reactor setups, 

complete conversion of bio-oil was hard to achieve because of the heavy and complex 

compounds such as the lignin phase of bio-oil.  According to Marquevich et al. [53], quite high 

steam to carbon ratios were needed to catalytically crack the sugar compounds of bio-oil. 

Therefore, some researchers proposed to use two reactors in series to increase the conversion of 

bio-oil and the yield of hydrogen. For example, Van Rossum et al. [68] suggested that bio-oil 

should be vaporized initially in a fluidized bed of sand to produce a stream of tars that would 

then be converted in a catalytic fixed bed reactor to a stream with high concentration of syngas 

and minimum concentration of hydrocarbons.  As an another example, Wu et al. [69] proposed 

two fixed bed reactors that could be used so that bio-oil undergoes a primary gasification in the 
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first fixed bed filled with dolomite and then the outlet gases are carried to the second fixed bed 

reactor filled with nickel catalysts for further catalytic steam reforming reactions.  

Gasification results reveal that, although from a thermodynamic point of view bio-oil and its 

model compounds can be fully converted to permanent gases and the maximum yield of 

hydrogen and carbon monoxide can be achieved in equilibrium at temperatures above 700°C 

[20,59], conducting thermal steam gasification at high temperatures is not enough to reach 

complete conversion of the feed and maximize the yield of syngas [54-55,57,59, 63,65,71]. In 

other words, an appropriate catalyst is needed to expedite the conversion and to condition the 

composition of the permanent gases in order for the syngas to be produced at the desired rate.  

A big portion of the research on the gasification of bio-oil and its model compounds has been 

dedicated to test laboratory and commercial catalysts to increase feed conversion and syngas 

yield. Nickel has been the most commonly used active metal on the surface of catalysts because 

it has been already been proven in natural gas steam reforming processes that this metal is very 

active for steam reforming reactions and, in particular, drives the water gas shift reaction towards 

the production of hydrogen and CO2. Steam gasification of bio-oil model compounds has also 

shown that nickel based catalysts are very promising to maximize the conversion of the feed and 

the yield of hydrogen and CO2 while the yield of hydrocarbons, CH4 in particular, is minimized. 

The yield of CO has usually been less than the yield of CO2 in the catalytic steam reforming 

reactors.  

The catalysts were usually reduced by hydrogen to convert NiO to Ni0 because nickel is active in 

its free metal form. Galdamez et al. [55] reported that the compositions of product gases from 

steam reforming of acetic acid, compared to results with the non reduced catalyst, were closer to 

the equilibrium compositions when a catalyst was initially reduced by hydrogen, and also, the 

catalyst activity was stable after 1h. Sakaguchi et al. [71] reported the issue of low activity of the 

commercial catalyst since it was not initially reduced by hydrogen. 

A major problem observed with nickel based catalysts was the deactivation of the catalyst, 

especially, after long time runs due to the coke deposition. Formation of coke can be because of 
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different reasons such as composition of the catalyst [21, 23, 28, 60-61], intermediate products 

[56] and composition of the bio-oil and its model compounds [65, 71].  In addition, coke can be 

formed with different structures which can directly affect the gasification yields.  For instance, 

Davidian et al. [23] reported that the coke formed on commercial catalysts was bi-dimensional 

carbon while the coke on the laboratorial catalyst was stable graphitized carbon whiskers. 

Kechagiopoulos et al. [65] showed that, at similar operating conditions and catalyst, the 

conversion of bio-oil was less than the conversion of the mixture of the model compounds and 

the mass of the deposited coke was larger; in addition, the coke formed from bio-oil had 

aromatic compounds while the coke from model compounds was graphitic.   

The reviewed literature indicates that the commercial nickel based catalysts have been more 

active and stable than synthesized catalysts [23, 62, 66, 67, 60] due to the presence of promoters 

on these catalysts. Therefore, researchers investigated the addition of some metal promoters like 

Mg, Co, La and Ca on the surface of the catalysts to improve the activity and stability of the 

catalysts to maximize feed conversion and hydrogen yield [55, 57, 62, 74]. Medrano et al. [77] 

reported that Mg and Ca strengthen the nickel based catalysts against attrition in the fluidized 

bed reactors, but the catalyst with Mg was more active that the catalyst with Ca. Medrano et al. 

[58] showed that the calcination temperature of the catalyst during its synthesis was effective on 

conversion of acetic acid and yield of hydrogen. Some researchers loaded different masses of 

nickel on their catalysts, but in contrast to their expectations, excess load of nickel make the 

catalyst less reducible by hydrogen and, as a result, activity of the catalyst was lower [23, 75]. 

Limitation of mass of the metal was also reported for the metal promoters [55]. Vagia and 

Lemonidou [59] implied that composition of the support can also make the active metal less 

reducible and therefore less active due to incorporation of the active metal in the bulk of support.  

Davidian et al. [23, 60-61] proposed their cracking/regeneration system in which coke deposits 

are burned and catalyst is reactivated frequently and as a result conversion of bio-oil is increased.  

Some researchers realized that the rate of coke formation in the fixed bed reactors is high and a 

fluidized reactor is required to enhance contact with the catalyst surface through effective 

agitation of the catalytic bed [65, 73]. Some researchers reported a catalyst loss in fluidized bed 
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reactors because of attrition of the catalysts; actually, they used commercial nickel based 

catalysts which were designed originally for fixed bed reactors of natural gas steam reforming 

[65, 71]. Czernik et al. [65] developed four nickel based catalysts which were not as active as the 

commercial catalyst, but resisted attrition better and the rate of the catalyst loss from the 

fluidized bed reactor was low.   

Noble metals have also been tested for gasification of bio-oil and its model compounds. Vagia 

and Lemonidou [59] reported that the catalyst with 0.5wt% Rh, in term of yield of hydrogen, was 

more active than the catalyst with 5wt% Ni in steam reforming of acetone although the coke 

deposition rates on these catalysts were similar. Rioche et al. [54] showed that their synthesized 

catalysts with 1wt% of noble metals were very active for the gasification of bio-oil model 

compounds. They also showed that the catalysts with a ceria-zirconium support were more active 

than catalysts with an alumina support. However, the catalysts were not stable as the yield of 

hydrogen was decreased from 60% to 90% during 9h steam gasification of bio-oil at 830°C with 

a steam to carbon ratio of 5 and a GHSV of 3090h-1 with the Pt-CeZrO2 catalyst, which was the 

most active catalyst of the noble metal based catalysts. They have reported that sintering of the 

Pt was the main reason of the catalyst deactivation because coke deposition was not the issue on 

the catalyst. On the contrary, Davidian et al. [60] reported that their nickel based catalysts were 

more active than the noble metal based catalysts in terms of acetic acid conversion and yield of 

hydrogen.  

Temperature is a key operating parameter in bio-oil gasification.  Reaction 1.3 is endothermic 

and an increase in temperature drives this reaction towards the production of hydrogen and CO.  

In addition, the decomposition reaction 1.7 is more active at high temperatures towards the 

production of lighter compounds and permanent gases. So, assuming that there is enough steam, 

produced hydrocarbons can be steam reformed according to reaction 1.3. Reported results proved 

that bio-oil conversion and syngas yield increased with temperature. Nonetheless, it has been 

reported that non catalytic conversion of bio-oil is lower than catalytic conversion even at high 

temperature and steam to carbon ratio [54, 67, 71].  However, there have been some 

contradicting reports. For instance, Ramos et al. [57] claimed they accomplished a high 
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conversion of 87.09% of acetol through thermal cracking at 650°C. Also, Galdamez et al. [55] 

reported that they could reach 100% conversion of acetic acid at temperatures above 650°C 

although compositions of the gases were far from equilibrium.  

A sort of misunderstanding in the literature results the definitions of the gas hourly space 

velocity (GHSV) and residence time. GHSV is defined as the ratio between flow rate of the feed 

and volume of the bed whereas residence time is defined as the ratio between total flow rate of 

the gases and volume of the reactor. In a continuous reactor, feed is usually atomized through a 

nozzle to the reactor. Atomization is supplied by an inert gas like nitrogen and argon. Other than 

atomization gas, a carrier inert gas is also usually used to flush the product gases out of the 

reactor. Residence time is dependent on the flow of the atomization and carrier inert gases. It has 

been noticed that most researchers have not emphasized residence time in their reactor, but the 

GHSV has been well specified.  

Wang et al. [20] conducted their catalytic steam reforming reactions at very short residence 

times (0.15 - 0.4 s), but they did not see any change on the composition of their product gases. 

Panigrahi et al. [63] reported an effect of flow rate of the carrier gas on bio-oil gasification 

yields, but the exact residence time was not reported. They claimed that bio-oil conversion 

decreased at longer residence times and then stabilized at longer residence times. In addition, 

composition of the syngas was decreased at shorter residence times. A decline of conversion at 

longer residence can be attributed to a lack of enough steam and a catalyst. Increase in syngas at 

shorter residence times might be justified by production of CO because CO can react with steam 

at longer residence times.  

GHSV can be changed by either changing the mass of the catalyst or flow rate of the feed. Some 

researchers reported that conversion of the feed and yields of hydrogen and CO2 increased with 

decreasing GHSV [71, 73, 77], but some researchers pointed out that they did not see any effect 

of the GHSV on their gasification results [71].  

Steam is also a key reactant in bio-oil gasification as it plays a significant role in the steam 

reforming of hydrocarbons as well as in the water gas shift reactions; therefore, bio-oil 
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conversion and hydrogen yield are expected to increase with increasing steam to carbon ratio. 

Review of the literature showed that most researchers managed to increase bio-oil conversion 

and hydrogen yield by increasing the steam flowrate, especially when an appropriate catalyst was 

present. The effect of the steam to carbon ratio was not greatly pronounced in non catalytic 

gasification tests [71]. Vagia and Lemonidou [59] found out that for non catalytic conversion of 

acetic acid and acetone, the presence of steam was less than when there was no steam in the 

reactor which can be because of the stabilization effect of steam and lower partial pressure of the 

model compounds.      

Due to the fact that steam reacts with CO in the water gas shift reaction, the production of CO is 

limited in favor of the production of hydrogen. The CO/CO2 ratio is not, however, only 

controlled by the water gas shift reaction because, for instance, the Boudouard reaction is also 

effective. Furthermore, the activity of the bed material and its influence on production of CO and 

CO2 must be taken into account. During thermal cracking tests, in general, yield of CO has been 

more than yield of CO2 while this trend was reversed during catalytic tests. This is because a 

water gas shift is not very active in the absence of a catalyst at thermal cracking experiments. 

Some researchers used oxygen in the gasification reactor either to minimize the formation of the 

coke on the surface of the catalyst [55] or to increase conversion of bio-oil by burning heavy 

compounds of bio-oil [74, 77]. It is expected that the concentration of CO2 should be increased 

by burning the bio-oil and its model compounds.  According to Panigrahi et al. [64], CO2 can 

react with hydrocarbons (dry reforming) for the production of CO and hydrogen. Medrano et al. 

[58] reported that burning acetic acid with oxygen at the presence of Ni/Al catalyst increased the 

yield of CO and CH4 while the yields of hydrogen and CO2 were decreased; this can be because 

initial high concentration of CO2 derived the water gas shift reaction towards reverse direction in 

favor of CO production. Also, CO2 may have reacted with solid carbon on the surface of catalyst 

according to the Boudouard reaction. Marda et al. [77] also, reported that the concentration of 

CO was higher than the concentration of other product gases.  
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1.5. Thesis objectives 

The number of publications concerning syngas production, and, in particular, hydrogen 

production from bio-oil and its model compounds has increased significantly in the past decade; 

however, the number of such reports in literature is still limited.  In addition, the research work 

on gasification/steam reforming using bio-oil model compounds greatly exceeds that utilizing 

bio-oil. Moreover, due to the physical and chemical properties of bio-oil, syngas production from 

the aqueous fraction of bio-oil hasattracted more interest. Therefore, there are very few 

publications dealing with the gasification of whole bio-oil, given the fact that the composition of 

bio-oil depends greatly on the primary biomass resource and the pyrolysis process from which 

bio-oil is produced. Furthermore, the reported experimental data have been generated from 

different operating setups.   

Therefore, it is important to develop techniques and experimental setups to be able to 

systematically investigate the conversion of different bio-oils, in the form of whole bio-oil, as a 

function of different operating parameters, such as temperature, residence time and inlet steam to 

carbon ratio as well as composition and mass of the catalysts. Such experimental setup facilitates 

the evaluation of the effects of each operating parameter and catalyst as functions of the 

composition of bio-oils, and to identify the optimal conditions required to maximize the 

conversion of a given bio-oil for syngas production.  

The main objective of this thesis was to design and develop fluidized bed reactors suitable to 

carry out thermal and catalytic gasification experiments to achieve optimal conversion of whole 

mass of a bio-oil and maximum production of syngas as functions of operating conditions, such 

as temperature, residence time and steam. Due to the fact that bio-oil supply is limited and in 

order to save operation costs and time, as the sub-objective of this thesis, a novel batch-wise 

micro fluidized bed reactor was designed and developed to test the effects of catalysts, in terms 

of mass and type, on bio-oil gasification. The advantage of such a unique setup is that the best 

catalyst and operating conditions can be investigated very quickly and at a minimal cost for 

different bio-oils; and then, these optimum findings can be re-tested in a continuous bench-scale 

reactor to study operating conditions in continuous processes such as gas hourly space velocity, 
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optimum condition for a auto thermal process and stability of the optimum catalyst during long 

experimental runs.      
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 2.1. Introduction 
Syngas can be produced from different resources such as natural gas, naphtha, residual oil, 

petroleum coke, coal, and biomass [1]. Syngas is an important chemical building block from 

which valuable products can be produced, such as methanol, ethanol, olefins, and paraffins. 

While biomass contains less hydrogen than resources such as natural gas, it is a renewable 

resource that releases net zero greenhouse gases to the atmosphere [2].  

Biomass may be converted to syngas either directly, through a gasification process, or indirectly 

in two steps:  biomass is first pyrolyzed to produce primarily liquid bio-oil, which is then 

gasified to syngas. The indirect route has several advantages.  The bio-oil may be generated in 

decentralized production facilities or mobile plants in the vicinity of the biomass sources, and 

then shipped to a central facility for conversion to syngas, avoiding the expensive transportation 

of bulky and perishable biomass.  Also, the syngas produced from bio-oil is cleaner because less 

tar compounds are produced in comparison with direct biomass gasification [37]; tar has 

detrimental effects in the downstream processes. Finally, valuable green chemicals may be 

extracted from the bio-oil before it is converted to syngas. For example, the lignin fraction of the 

bio-oil could be used in producing phenol-formaldehyde adhesives or high-octane gasoline-

blending components [3].  

A typical biomass consists of water, cellulose, hemicellulose and lignin. Bio-oil composition 

depends on the biomass from which it was pyrolyzed, the pyrolysis conditions and whether 

catalyst was used in the process. However, all bio-oils have usually similar constituents as they 

are generally oxygenated compounds like acids, aldehydes, alcohols, and ketones [5-8]. Bio-oil 

is reasonably stable at room temperature, but polymerizes even at moderate temperatures (around 

80°C), and, at higher temperatures, it decomposes. Some of molecules of bio-oil may not even be 

stable at ambient temperatures [5,7,9].  

The gasification of model compounds representing the major constituents of bio-oil has been 

studied to identify reaction mechanisms and the impact of reaction conditions and of the 
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presence of various catalysts. Although these results do not represent real bio-oil gasification, 

they provide useful information [4-7,10-29].    

 Publications on the gasification or steam reforming of actual bio-oils are less numerous than for 

model compounds. Because of physical properties of bio-oil such as its quick solidification 

inside the hot injection nozzles, there had been challenges to gasify whole bio-oils, so aquoues 

fraction of bio-oil which was separated from the lignin fraction by adding excess water was 

tested for syngas production taking advantage of high water content in the solution [3,30-32].  

During the recent years, utilization of whole bio-oil has been considered to produce syngas [33- 

42]. Most of the published literature so far dealt with catalytic steam reforming of the bio-oils. 

Thermal cracking of bio-oil was considered as a route to produce product gases with high heat 

values [33,34], but the limited publications about bio-oil thermal gasification reported low bio-

oil conversion and syngas yield in the absence of catalyst [36,37,40].  

As the first step of the experimental work of this thesis, thermal cracking of whole bio-oil was 

investigated. The objective of this work was to investigate a practical process for the conversion 

of whole bio-oil into syngas, using a fluidized bed of inexpensive, attrition-resistant silica sand, 

and operating at low pressure and temperatures (500°C to 700°C) with varied vapor residence 

time (8s to 28s) to understand whether it is possible to increase bio-oil conversion through a 

thermal cracking process. There was not any literature report of gasifying the whole bio-oil at the 

time, so this investigation included designing an efficient bio-oil feeder for long run continuous 

experiments and a downstream separation system to maximize separation of the condensable 

products in a condenser and separate the fine oil droplets from the stream of the permanent 

ptoduct gases which do not stay in the condenser. Results of this research enable us to identify 

strategies to improve the gasification process in terms of operating conditions, catalysis, and 

reactor configurations.  

2.2. Pilot plant set-up 
The Institute for Chemicals and Fuels from Alternative Resources (ICFAR) has recently 

designed and set up a fluidized bed reactor, operating in the bubbling regime, for the conversion 



 

102 

 

of bio-oil to syngas. The reactor consists of a 0.076m I.D. bed column made of stainless steel, 

with an expanded freeboard, whose volume may be adjusted to vary the gas residence time.  This 

reactor can be used to carry out either thermal cracking or catalytic cracking/reforming of bio-

oil. Figure 2.1 shows a schematic diagram of the gasification pilot plant. In order to feed bio-oil 

at a continuous and fixed flow rate into the reactor, a special hydraulic pumping system is used 

in which there is a reciprocating piston inside a cylinder. Hydraulic oil is pumped by a fixed flow 

rate to push bottom of the piston upward so that bio-oil that is stored at top of cylinder is fed into 

the reactor. During normal operation of the pilot plant, the pressure supplied by the pump is 

about 60 psig. Figure 2.2 shows this hydraulic system.  

A spray nozzle was designed to address two conflicting concerns:  thermal degradation of the 

bio-oil and excessive cooling of the fluidized bed near the injection zone.  An initial design of a 

water-cooled nozzle resulted in cooling not only of the nozzle but also of the fluidized bed, 

whose local bed temperature dropped by 20 to 30 °C. Experiments without cooling water showed 

the bio-oil temperature never rose past 200 ºC in the nozzle.  On the other hand, thermal stability 

experiments showed that, in the presence of oxygen, bio-oil quickly degraded at temperatures as 

low as 100 ºC.  However, there was no degradation of the bio-oil at 200 ºC under a nitrogen 

blanket. The spray nozzle was, therefore, used without water cooling and with nitrogen as 

atomization gas.  

Either nitrogen or steam can be preheated by furnaces and then used as atomization and 

fluidization medium. In case of steam reforming, still water passes through the furnace and then 

is superheated up to 300 °C. In this work, nitrogen was only used as fluidization and atomization 

gas. Atomization nitrogen was not preheated and was mixed with bio-oil at the nozzle tip. Sugar 

solution with physical characteristics of density and viscosity similar to bio-oil was used to test 

flow rate of nitrogen versus quality of spray. The appropriate flow rate of nitrogen required to 

efficiently spray the sugar solution was about 5 standard liters per minute. Figure 2.2 shows how 

the nozzle was designed. The central tube of the nozzle through which bio-oil was pumped to 

reactor had an I.D. of 0.015m. Fluidizing nitrogen was heated up to reactor temperature inside 
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reactor windbox and then passed through a grid to fluidize bed material. Feed injection point was 

0.18m above the grid.  

If bio-oil stays stagnant inside the nozzle, it can plug the nozzle easily because of two reasons: it 

either sticks to solid particles or it burns with air and then coke is formed along the tube of the 

feeding nozzle. In order to avoid having this problem, after each run the nozzle was flushed with 

an ethanol flow to wash the remaining bio-oil into reactor, followed by a flow of nitrogen. Also, 

before starting to pump bio-oil towards the nozzle, a continuous flow of nitrogen inside central 

tube of the nozzle prevented solids from entering and plugging the nozzle.  

The reactor consisted of a cylindrical section with an I.D. of 0.078m and a height of 0.52m, 

topped by an expanded section whose diameter and height were varied to obtain different 

residence times of gases inside the reactor. Band heaters were used to heat up and keep the 

reactor at the desired reaction temperature and thermocouples were used to measure the reactor 

temperature at different levels. The reactor was surrounded by two 0.05m thick layers of 

insulation: an inner layer of FiberFrax and an external layer of covered glass wool. 

Product gas entered a cyclonic condenser, immersed in an iced water tank, where water and bio-

oil liquids including tars were condensed. Condenser was made of aluminum with I.D. of 0.076m 

and height of 0.91m. Since the condenser was immersed completely inside a cold water tank, its 

wall temperature was as cold as equilibrium temperature of the tank. Outlet vapors from reactor 

entered condenser from top through a short tube (0.01m I.D. and 0.05m downward from top bent 

with a 45° angle), therefore gases hit internal wall of the condenser at top and started a spiral 

flow until they arrived at the bottom of condenser. Non condensable gases would leave the 

condenser through another 0.01m I.D. tube which was hanged from top and its bottom had 

0.013m distance from the bottom of condenser. This design helped fast condensation of gases 

and easy separation of liquid products from non-condensable gases (Figure 1.1). There was also 

one by-pass condenser which was used before running an experiment. After non-condensable 

gases exited the condenser, fine liquid droplets were recovered with an electrostatic precipitator 

(ESP). More details of the design of the ESP can be found elsewhere [43]. Gases exiting the ESP 

were further filtered and then either vented or collected in Tedlar gas sampling bags for 
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subsequent analysis. An HP 5890 gas chromatograph with a thermal conductivity detector was 

used to analyze the product gas (H2, CO, CO2, CH4 and N2). Nitrogen was used as an internal 

standard gas to determine the flowrate of product gases. During experiments designed to 

investigate the effects of residence time on gasification yield, a 2 m long RESTEK Shin Carbon 

ST (micro packed) column with 0.001m ID and 0.0016 cm OD was used, with argon as the 

carrier ga--s, in the gas chromatograph. When studying the effect of temperature on thermal 

cracking of bio-oil, a molecular sieve column followed by a silica gel column in series was used, 

with helium as carrier gas, and an automatic Valco valve changed the direction of the gas flow 

through the columns to detect all gas components. The molecular sieve column was used for 

detecting H2, N2, CH4 and CO while the silica gel column was used to detect CO2. The Valco 

valve was programmed to switch the carrier gas flow from the the silica gel-molecular sieve 

direction to the moleculr sieve-silica gel direction direction after the CO was completely eluted.    
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Figure 2.1. Schematic diagram of the bubbling fluidized bed set-up 
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Figure 2.2. Hydraulic pumping system and nozzle to feed bio-oil into reactor 

 
2.3. Experimental procedure 
Nitrogen was used to fluidize reactor particles and to spray-atomize bio-oil into reactor bed. The 

nitrogen flowrate could be adjusted by mass flow meters. The fluidized bed provided very good 

contact of bio-oil droplets with hot solid particles to achieve high rates of heat and mass transfer; 

also solids backmixing within the bed ensured a uniform bed temperature.  After each run, coke 

deposits on the bed particles could be easily burned off with air. 

Silica sand (ρp=2650 kg/m3) was used as the bed material. As per Geldart's solid particles 

classification, bubble properties within the fluidized bed, and, hence, heat and mass transfer are 

greatly different for groups A and B. Two different silica sands were, therefore, used to 

determine that there were no significant mass or heat transfer limitations: sand with a Sauter 
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mean diameter of 80 μm representing group A particles and sand with a Sauter mean diameter of 

200 μm representing group B particles.  

A bed mass of 1.5 kg of silica sand was used for most experiments. Silica sand is not a porous 

solid and it is mainly used as inert bed material for good mixing and heat transfer purposes. To 

check for possible catalytic activity of the sand, some selected experiments were repeated with 

3.0 kg of silica sand.  

The thermal cracking experiments were conducted over the temperature range between 500°C 

and 700°C. The lowest temperature, 500°C, was the temperature that was used to produce the 

bio-oil from hardwood pyrolysis.   The highest temperature, 700°C, corresponds to the maximum 

temperature that could be achieved with a reactor build of inexpensive steel.  The reactor 

pressure was just above atmospheric pressure. 

While the reactor was being heated up to the set-point temperature, air was used to keep the bed 

at the minimum fluidizing condition. Furthermore, to prevent plugging of the spray nozzle with 

solids, air flow was maintained through atomization and internal feeding tube of the nozzle. At 

the start of a run, all air streams were switched to nitrogen. While the by-pass condenser was in 

operation, injection of bio-oil started to avoid collecting liquids in the main condenser in case of 

likely malfunction of the bio-oil nozzle. After proper bio-oil injection was ensured, the product 

gas stream was switched from the by-pass condenser to the main condenser. After each 

experiment, the product stream was switched back to the by-pass condenser and bio-oil was 

replaced by ethanol to clean the feeding system. 

2.4. Gasification reactions 
Bio-oil is a complex mixture of oxygenated compounds, such as acids, alcohols, aldehydes, 

esters and ketones. Its water content varies between 20 and 30 wt%. Including its water content, 

bio-oil can be represented by a general formula such as CHmOk. Syngas production processes are 

also called steam reforming processes, because steam is added to the reactor to react with the 

feed at sufficiently high temperatures to produce hydrogen and carbon monoxide. To increase the 

steam concentration in the reacting gases, additional steam can be added as fluidization medium, 
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beyond the water naturally contained in the bio-oil. In the current study, however, no additional 

steam flow was used and the only steam present in the reactor came from the water contained in 

the injected bio-oil. 

In the presence of steam, bio-oil with general formula of CHmOk (neglecting the nitrogen 

content) can be converted to syngas (H2+CO) according to reaction 2.1 which is an endothermic 

reaction:  

௠ܱ௞ܪܥ ൅ ሺ1 െ ݇ሻܪଶܱ → ܱܥ ൅ ൫1 ൅݉
2ൗ െ ݇൯ܪଶ       (2.1) 

If there was enough steam in the reactor, the produced CO would react with steam through the 

water-gas shift reaction to produce more hydrogen: 

ଶܱܪ ൅ ܱܥ ↔ ଶܪ ൅  ଶ         (2.2)ܱܥ

Therefore, summing up reactions 2.1 and 2.2, the overall steam reforming of bio-oil can be 

expressed by reaction 2.3:  

௠ܱ௞ܪܥ ൅ ൫2—݇൯ܪଶܱ → ଶܱܥ ൅ ൫2 ൅ ݉
2ൗ െ ݇൯ܪଶ      (2.3) 

There are a number of other reactions taking place after bio-oil is injected into the reactor. For 

example, As soon as bio-oil is entered into the reactor, it decomposes thermally to other forms of 

the oxygenated molecules (CHyOz) as well as some permanent gases (hydrogen, steam, CO, CO2 

and light hydrocarbons) and coke (reaction 2.4). Czernik et al (2002) claim that the carbon-

oxygen bonds of bio-oil make it more reactive when compared to hydrocarbons. Thus, some 

components, like furans, phenols and carbohydrates, which are unstable at high temperatures, 

react with carbon deposition [3]. Besides, since CO, CO2 and coke are available inside the 

reactor, the Boudouard reaction (reaction 2.5) is another important reaction which can affect the 

CO/CO2 ratio in the final product gases.  

௠ܱ௞ܪܥ → ௬ܪܥ ௭ܱ ൅ ,ଶܪሺ	ݏ݁ݏܽ݃ ,ଶܱܪ ,ܱܥ ,ଶܱܥ …,ସܪܥ ሻ ൅  (2.4)     ݁݇݋ܿ
 
ܱܥ2 ↔ ܥ ൅  ଶ          (2.5)ܱܥ
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In addition, in the presence of steam, the produced hydrocarbons undergo steam reforming 

reactions towards production of hydrogen and carbon monoxide. For example, reactions 2.6 and 

2.7 illustrate how methane can be converted to syngas: 

ସܪܥ ൅ ଶܱܪ → ܱܥ ൅  ଶ          (2.6)ܪ3
 
ସܪܥ ൅ ଶܱܪ2 → ଶܱܥ ൅  ଶ          (2.7)ܪ4

 At higher temperatures methane production is decreased. Also, the partial pressure of steam 

affects the conversion of methane to syngas. 

2.5. Results and discussion 
Results presented here were obtained by thermal gasification of a bio-oil that was produced by 

pyrolysis of hardwood at moderate temperatures, in the absence of oxygen, at the Dynamotive 

Energy Systems Corporation in Canada. Table 1.1 lists elemental analysis, general formula and 

high heat value of this bio-oil. 

Table 2.1. Elemental analysis and HHV of bio-oil 

C, wt% H, wt% O, wt% CHmOk HHV, kJ/kg 

41.67 7.20 51.13 CH2.07O0.92 15,696 

 

The nitrogen flowrates were the same for atomization and fluidization, at 4.5 standard liters per 

minute at reactor conditions. In order to keep the same residence time for all experiments, the 

flowrate of nitrogen was adjusted according to the temperature of each run. The voltage applied 

to the ESP was 1.8 kV to collect all mists from the product gas.   

Initial experiments were carried out to investigate the effect of vapors residence time on the yield 

of bio-oil gasification products. Then, once the most appropriate vapors residence time was 

identified, the effect of temperature on product yields was investigated.  
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2.5.1. Effect of residence time  

The effect of residence time was studied by changing the freeboard volume. Three residence 

times were investigated: 7.8, 11.4 and 27.6 seconds. Flow rate of bio-oil was 2 ml/min. 

Experiments were conducted at 600°C and 700°C for 10 minutes and the product gas was 

sampled at the end of each test. The preliminary tests had shown that composition of the product 

gases did not change within the initial 10 minutes.  

Figures 2.3 to 2.5 show that residence time plays an important role in syngas production. Total 

gas production (H2, CO, CO2 and CH4) increases with longer residence times. The yield of 

(H2+CO) at the longest residence time is almost doubled when compared to that achieved at the 

shortest residence time. Figure 2.5 shows that longer the residence time has also a very beneficial 

effect on the molar H2/CO ratio. The effect of longer residence times at higher temperatures is 

even more significant. This means that there are more thermally unstable compounds at elevated 

temperatures and when they are staying longer inside reactor, the rate of thermal cracking 

increases in favor of hydrogen production. 

As a result, the next series of experiments designed to investigate effect of temperature on bio-oil 

gasification were conducted at a residence time 27.6 seconds.  
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Figure 2.3. Yield of total gas production versus versus residence time as moles produced per 
injected grams of bio-oil; Mass of the sand bed: 1.5kg, sauter mean diameter of the sand: 200μm 

 

 

Figure2.4. Yield of syngas production versus residence time as moles produced per injected grams 
of bio-oil; Mass of the sand bed: 1.5kg, sauter mean diameter of the sand: 200μm 
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Figure 2.5. Yield of molar H2/CO versus residence time; Mass of the sand bed: 1.5kg, sauter mean 
diameter of the sand: 200μm 

 
2.5.2. Effect of temperature  

Preliminary experiments have shown that the composition of product gas evolves with time 

during long runs.  There are two possible reasons: the sand may have catalytic activity and 

becomes deactivated by coke deposits, or the coke deposits themselves may have a catalytic 

activity.  It was, therefore, decided to run each test for one hour to clearly characterize the 

evolution in gas production and gas composition: bio-oil flow rate was 4 ml/min for these 

experiments. The product gas was sampled after 5, 30, and 60 minutes. Bed samples showed 

negligible coke deposits after 5 minutes while, after 60 minutes, the bed particles were 

completely covered with coke. 

Figures 2.6 to 2.9 present the yield of permanent gases as produced moles of each component per 

grams of injected bio-oil over the temperature range of 500°C to 700°C during one hour of 

operation for group B (average size cut of 200μm) and group A (average size cut of 80μm) 

solids. The hydrogen yield is similar for group B and group A sands, confirming that there are no 

significant heat or mass transfer limitations. As suggested by equation 2.1, higher temperatures 
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increase hydrogen production. At all temperatures, there is a dramatic drop of hydrogen 

production with time. 

 

Figure 2.6. Yield of hydrogen as moles produced per injected grams of bio-oil; Mass of the sand bed 
1.5kg, sauter mean diameter of the sand: (a) 200μm, (b) 80μm 
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Figure 2.7. Yield of CO as moles produced per injected grams of bio-oil; Mass of the sand bed 
1.5kg, sauter mean diameter of the sand: (a) 200μm, (b) 80μm 

 

Figure 2.8. Yield of CO2 as moles produced per injected grams of bio-oil; Mass of the sand bed 
1.5kg, sauter mean diameter of the sand: (a) 200μm, (b) 80μm 

 

The yield of carbon monoxide also increases with temperatures (Figure 2.7). It seems difficult to 

determine how CO production evolves with time. Results show that at higher temperatures CO 

production increases with time while at lower temperatures, this trend is reversed. There is also a 

difference between group A and B solids at intermediate temperatures.  
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Carbon dioxide follows the same trends as hydrogen production (Figure 2.8). More carbon 

dioxide is produced at higher temperatures. Carbon dioxide production also drops dramatically 

with time.  

 

Figure 2.9. Yield of CH4 as moles produced per injected grams of bio-oil; Mass of the sand bed 
1.5kg, sauter mean diameter of the sand: (a) 200μm, (b) 80μm  

 

Methane production increases with increasing temperature (Figure 2.9). There is no definitive 

evolution of methane production with time.  

The positive effect of temperature on the production yield of all gases indicates that kinetics 

rather than thermodynamics control the reaction. For example, the water gas-shift reaction is 

exothermic, and, if there was thermodynamic control, increasing the temperature should reduce 

the production of CO and increase the production of H2 and CO2.  The reverse results were 

observed.  Results indicate complexity of kinetics of the chemical reaction requiring further 

investigation in the future. 

Figure 2.10 depicts the total mass yield of the dry gases (H2, CO, CO2 and CH4). The total gas 

production decreases with time, and increases with increasing temperature. The maximum yield 

is about 42 % for both solid sands at 700°C, the highest temperature, and it drops to 37-38 % 

after one hour.  
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After each experiment, condenser and ESP were weighed to measure the mass of liquid collected 

in one hour. More liquid was collected in the condenser than in the ESP, as shown in Figure 

2.11. The condenser liquid is mainly aqueous and has a dark brownish color at lower 

temperatures and becomes lighter at higher temperatures, indicating the concentration of very 

heavy compounds decreases at higher temperatures. One the other hand, the ESP liquid is an oil 

phase.  Figure 2.11 shows that similar results were obtained for group A and B beds, suggesting 

that liquid conversion was not significantly affected by any heat or mass transfer limitation.  

 

Figure 2.10. Yield of total gas production as grams produced per injected grams of bio-oil; Mass of 
the sand bed 1.5kg, sauter mean diameter of the sand: (a) 200μm, (b) 80μm 

 

Figure 2.11. Yield of liquid production as grams produced per injected grams of bio-oil; Mass of 
the sand bed 1.5kg, sauter mean diameter of the sand: (a) 200μm, (b) 80μm 
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 It has been estimated that between 20 wt% and 30 wt% of bio-oil injected is converted into 

coke. It can be concluded that coke formation is a main cause of the reduction with time of the 

yield of total gases.  

2.5.3. Effect of bed mass  

Because the freeboard temperature was the same as the bed temperature, thermal cracking 

occurred equally in the bed or the freeboard.  Doubling the bed mass should, therefore, only 

affect catalytic cracking.  Figures 2.12 to 2.16 show the results of gasification experiments 

performed at 600°C, 650°C and 700°C with a sand mass of 3.0 kg. The trends were the same as 

with the lower bed mass. 

Doubling the bed mass did not greatly increase the total yield of dry gases.  At 700 C, for 

example, this total gas yield was only increased by around 3%. This confirms the results 

obtained with the two particle sizes, since increasing the specific surface of the sand particles by 

a factor of 2.5 did not greatly affect gas production. Therefore, the sand particles did not have a 

significant catalytic effect.  Since fine coke particles were distributed through the freeboard, it is 

likely that the dramatic drop in reactor performance with time was caused by a detrimental 

catalytic effect of the coke particles. 
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Figure 2.12. Yield of hydrogen as moles produced per injected grams of bio-oil; Mass of the sand 
bed 3.0kg, sauter mean diameter of the sand: (a) 200μm, (b) 80μm 

 

 

Figure 2.13. Yield of CO as moles produced per injected grams of bio-oil; Mass of the sand bed 
3.0kg, sauter mean diameter of the sand: (a) 200μm, (b) 80μm 
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Figure 2.14. Yield of CO2 as moles produced per injected grams of bio-oil; Mass of the sand bed 
3.0kg, sauter mean diameter of the sand: (a) 200μm, (b) 80μm 

 

 

Figure 2.15. Yield of CH4 as moles produced per injected grams of bio-oil; Mass of the sand bed 
3.0kg, sauter mean diameter of the sand: (a) 200μm, (b) 80μm 
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Figure 2.16. Yield of total gas production as grams produced per injected grams of bio-oil; Mass of 
the sand bed 3.0kg, sauter mean diameter of the sand: (a) 200μm, (b) 80μm 

 

2.5.4. Effect of particle size 

As discussed, two different solid sand sizes were used to determine whether there were 

significant heat or mass transfer limitations, since heat and mass transfer rates are much higher 

with the smaller particles [44]. Figure 2.17 compares the total initial gasification yield for all 

experiments with the two types of sand. Although there are minor differences, results obtained 

with group B and group A solids are very similar. Therefore, it can be concluded that there were 

no significant heat or mass transfer limitations. 
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Figure 2.17. Effect of sauter mean diameter of the sand on total yield of gasification. Empty 
symbols: mass of bed 1.5kg, bold symbols: mass of bed 3.0kg 

 

In addition, Figure 2.17 illustrates that, at the best condition, total conversion of bio-oil to 

gaseous products was less that 45%; therefore, in order to increase conversion of bio-oil to 

gaseous products, the effect of additional steam, of elevated temperatures and of appropriate 

catalysts must be investigated.  

2.5.5. Syngas (H2+CO) production  

The two gases of economic interest for conversion to other products are hydrogen and carbon 

monoxide.  This section reports the total production of these two gases and its quality, as 

determined by the molar H2/CO ratio. Figure 2.18 shows that the rate of syngas production 

increases with increasing temperature.  It also decreases moderately with time.  

The molar H2/CO ratio is usually an important parameter in reforming processes and all 

processes would require ratios higher than that obtained in this study. Figure 2.19 shows that this 

ratio dropped dramatically with time; as it was seen before, concentration of CO tends to 
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increase by time while concentration of hydrogen reduces by time. Bed mass also had little effect 

on the molar H2/CO ratio 

 

Figure 2.18. Yield of syngas production as moles produced per injected grams of bio-oil; solid lines: 
mass of bed 1.5kg, dashed lines: mass of bed 3.0kg; sauter mean diameter of the sand: 200μm 
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.  

Figure 2.19. Yield of molar H2/CO ratio; solid lines mass of bed: 1.5kg, dashed lines mass of bed: 
3.0kg; sauter mean diameter of the sand: 200μm 

 

2.6. Conclusions 
Thermal cracking of whole of bio-oil was investigated in a bubbling fluidized pilot plant over 

temperature range of 500°C-700°C. The effects of gas residence time, temperature, bed mass and 

particle size on thermal cracking of bio-oil were studied. Longer residence times promote more 

cracking in the reactor and, as a result, more syngas is produced and the H2/CO ratio is higher. 

Coke must have a detrimental effect on the kinetics of the gasification because higher yield of 

gasification was obtained at the beginning of experimental runs when deposition of coke in the 

bed was negligible, but, with time that coke is deposited on the surface of the sand, the yield of 

gasification declines. Higher temperatures always favor gasification yields, especially during the 

initial times of operation. In addition, liquid yields show that at low temperatures, bio-oil 

conversion is very poor. At the operating conditions studied, kinetics always control the thermal 

cracking reactions and the system is far from thermodynamic equilibrium. Total yield of 

gasification was increased, not significantly though, after the bed mass was doubled which is 

probably due to the fact that mass ratio of deposited coke to sand became less and, as a result, the 
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detrimental effect of coke on the gasification kinetics was reduced. Results obtained using either 

group B and group A sand were very similar, indicating no heat and mass transfer limitations in 

the bed.  
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3.1. Introduction 
Gasification processes are conducted at very high temperatures [1] where the feedstock is 

cracked to produce hydrogen and carbon monoxide, which constitute a syngas, the key building 

block mixture for the production of many valuable chemicals in the petrochemical industry. 

Steam reforming of natural gas and coal are very common gasification processes. Recent 

developments of renewable energy resources, like biomass conversion, have opened up new 

pathways to produce syngas. For example, biomass can be directly converted to syngas. Also, 

bio-oil, which is the liquid product of biomass pyrolysis, can be gasified to syngas. 

Gas-solid fluidized bed reactors offer some advantages when used for gasification reactions due 

to higher rates of mass and heat transfer when compared to fixed bed reactors. Bench scale and 

pilot plant scale reactors represent appropriate options to investigate the effect of some operating 

parameters [2] such as temperature, pressure, residence time, steam-to-carbon ratio and carbon-

to-catalyst ratio. However, such reactors are not ideal to test new catalyst formulations for the 

gasification process, since they require relatively large amounts of catalyst.  On the other hand, 

suitable micro reactors may help reducing the cost of testing various catalyst preparations under 

ideal conditions.  

Currently, available micro reactors have some drawbacks. For instance, due to temperature 

gradients, poor mixing, and unrealistic catalyst on stream times, traditional fixed bed micro 

reactors may not be able to truly mimic the operating conditions of the industrial reactors. 

Similar drawbacks are associated with the very limited fluidized bed micro reactor technologies 

available in the market. For example, although the SCT-RT is a micro reactor which operates 

batch-wise, it is designed specifically to test catalysts of processes which require very short 

residence time like the FCC process [3]. The Berty-style recycle reactors suffer from axial coke 

profile due to high recycle rates [4]. The riser simulator developed by de Lasa’s group [5], 

overcomes the problem of Berty-style reactors by intense gas-solid mixing provided by an 

internal impeller above the basket of catalysts. However, a major problem with such micro 

reactors is the heating method. Gasification processes are endothermic, so enough heat must be 

supplied to provide heat for the endothermic chemical reactions. In traditional reactors, an 
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external heater is provided for this purpose, where heat is transferred through the wall of the 

reactor and then to the gases and solids inside the reactor. Therefore, the temperature on the wall 

of the reactor must be kept at a higher level than that in the core of the reactor. As a result, hot 

spots are formed next to the wall of the reactor. In addition, since heat is transferred from a wall 

to a gas, the heat transfer coefficient is low and, consequently, the wall temperature must be 

maintained significantly higher than the temperature of the core of the reactor. In addition, the 

volume of the catalyst bed in the riser simulator is much smaller than its total internal volume.  

Therefore, for a given residence time, a significant fraction of reactions proceed in the non 

catalytic, hot section of the reactor. Moreover, using an impeller operating at high temperature to 

provide mixing of the solids increases the potential of gas leakage through the mechanical seals. 

Some heating techniques have been employed to attempt to gain information about the 

temperature profiles inside the test reactors which are similar to those in commercial reactors, 

such as single pulse shock-tube [6], light irradiation [7] and resistive heating [8].  The single 

pulse shock tube essentially works based on bursting a diaphragm located between a high 

pressure and a low pressure gas sections. Not only the apparatus should be large, but the shock 

tube system does not seem to be able to maintain the constant temperature for a long residence 

time i.e. more than a few milliseconds. Also, the burst diaphragm must be replaced each time 

with a new one. The light irradiation setup is designed for thermo gravimetric studies only in 

which a concentrated flux of light is beamed to a mass in the focal point of an elliptical mirror. 

Since each material has different reflectivity and absorptive properties, these optical parameters 

must be known to estimate the required flux of the light. Also, since small values of the flux are 

needed, the short duration of the light pulses must be very well controlled. An alternating current 

through a wire mesh supplies heat in the resistive heating method; however, this apparatus is also 

designed for thermo gravimetric studies of pyrolysis. A thermocouple is attached to the wire 

mesh, but the temperature difference between the wire mesh and the gases in the reactor is not 

reported. 



 

130 

 

Induction heating is a heating technique which has been utilized for several applications such as 

hardening, melting and welding of conductive materials. The advantage of this heating system is 

that it is clean, indirect, non-contact, very fast and precisely controllable. 

Induction heating is used to heat up conductive materials with high frequency electrical power 

where an AC current passes through a copper coil attached to a power supply [9,10]. Due to the 

high frequency of the power, the direction of the produced magnetic field around the copper coil 

alternates very rapidly. The magnetic field induces current on the surface of the conductive 

material which is inside the coil. Varying the direction of the magnetic field also changes the 

direction of the induced current alternatively, which generates heat. Two types of current can be 

induced on the surface of the conductive material: the eddy current and hysteresis current. The 

alternating magnetic field induces eddy currents within the material, whether the material is 

ferromagnetic or paramagnetic. However, if the conductive material is ferromagnetic and its 

temperature is below its Curie point, a hysteresis current is also formed:  the alternating magnetic 

field magnetizes and de-magnetizes the material crystals, and this rapid switching of magnetic 

properties causes considerable friction and heating inside the material. The size of the coil and 

position of the conductive material are important factors to make an effective induction couple to 

achieve maximum efficiency of the induction heating [11].  

There are very few reports on the application of induction heating to chemical reactors. Rastogi 

et al. developed a batch micro reactor to study the kinetics of propane pyrolysis. To minimize the 

temperature gradient, ferromagnetic wires with different Curie temperatures were provided 

inside a magnetic field. These researchers demonstrated that the temperature of the micro reactor 

rapidly reached the Curie point of the corresponding ferromagnetic wire and then remained 

constant over the period of induction heating [12]. Tsai et al. used induction to heat up a tubular 

stainless steel reactor in which biomass pyrolysis was taking place. However, they did not report 

the temperature difference between the reactor wall and its contents [13].  

Initial developments by Rohani et al. indicated that an external induction field can heat up 

vertical Inconel wires inside a fluidized bed. As a result, the heat is very rapidly generated inside 

the catalyst bed and efficiently and uniformly distributed throughout the solid particles which are 
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being fluidized, thus avoiding the creation of hot spots and high temperature gradients [14]. To 

prevent shielding of the induction field, the body of reactor cannot be metallic and it must be 

made of ceramic.  

An efficient heat and mass transfer can be achieved by mixing the catalytic bed in a gas fluidized 

bed reactor; however, such a reactor can not be used for a batch-wise reactor unless the 

fluidizing gas is circulated by a mechanical force. Rather than using a fluidizing gas, the catalyst 

particles can be fluidized mechanically [15, 16].  For example, the novel reactor presented in this 

study uses a linear pneumatic actuator to vertically mix the bed of solids. A major advantage of 

this method is that it is non-invasive. There are reports of some other applications of mechanical 

vibration used to enhance the performance of chemical reactors. Klusacek et al. achieved a 

CSTR condition in their reactor with a piston vibrating at 20Hz with a 3mm amplitude, which 

was generated by a commercial loud speaker and an amplifier [17]. Richter et al. used an 

electromotor attached to a shaft to vibrate their CSTR reactor, but they did not report the 

frequency and the amplitude of their vibrator [18]. The disadvantage of using an electromotor is 

that other than being expensive, it is not very flexible, since it is difficult to adjust its frequency 

and amplitude of the vibrations. Electromagnetic vibrators have also been used for some 

chemical reactor applications. Squires used an electromagnetic vibrator to investigate axial gas 

dispersion in laboratory gas-solid reactors [19]. Nelson et al. used an electromagnetic vibrator to 

fluidize titania-based catalysts for the photo catalytic oxidation of methanol [20]. Although it has 

been proven that vibrations are an effective technique for fluidization, due to the fact that 

electromagnetic vibrators operate at very high frequencies of about 20-40Hz and short 

amplitudes of 2-4mm, beds of solid catalyst do not expand entirely inside the reactor. Therefore, 

secondary reactions would take place in the catalyst-free portion of the reactor.  In batch 

systems, it is desirable to fluidize the catalysts over the entire length of the reactor.  It is, 

therefore, essential to adjust the amplitude and frequency of the vibrations to ensure that the 

catalyst moves between the two ends of the reactor. In addition, the frequency must be high 

enough to provide intense mixing of the catalyst with the gas phase and to avoid segregation of 

particles with different physical characteristics.   
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The objectives of the work described in this paper were the design, construction, operation and 

optimization of the fluidization dynamics of a novel mechanically mixed “jiggle bed” reactor 

suitable for gasification catalyst testing, and, secondly, the characterization of the performance of 

its heating system.  

3.2. Equipment 
 
3.2.1. The Jiggle Bed Reactor 

The objective of the design of the new jiggle bed reactor (JBR) was to provide a well controlled 

reactor for testing gasification catalysts in a fluidized gas-solid system, where mixing of the 

catalysts was created by a vibrating motion and the required heat for the endothermic reactions 

was supplied by induction heating. The jiggle reactor includes three sections:  the linear 

pneumatic actuator, the reaction zone, and the induction heating system. The main structure of 

the JBR is shown in Figure 3.1.   

The gasification reactions take place batch-wise in the JBR. Before injecting the feed, inert gas 

flushes away any air from the reactor. The feed is then introduced in the reactor through an air 

lock.  At the end of each run, the lower inlet valve and the outlet valve are opened (lower valve 1 

and valve 9 in Figure 3.1), and the reaction products are flushed out by a flow of inert gas into a 

gas sampling bag.  

Since induction heating is used to supply the required heat, the reaction chamber is made of a 

non-conductive material to prevent shielding of the magnetic field. In addition, it is necessary to 

ensure that it can withstand temperatures as high as 900 °C. Moreover, the material must be non-

porous and strong enough to sustain the vibrating conditions. Therefore, a non-porous ceramic 

crucible made of 99.8% alumina is utilized. The crucible has an I.D. of 2.54 cm and a height of 

7.3 cm (Figure 3.2a).  

Catalyst particles are fluidized inside the ceramic crucible due to the alternating vertical motion 

of a linear pneumatic actuator installed below the crucible. This vibrating motion is transferred to 

the crucible through a scalloped shape stainless steel on top, three stainless steel threaded support 
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rods and a round aluminum seat underneath the crucible, which is mounted directly on the air 

cylinder of the actuator.  

As shown in Figure 3.2b, the heating element of the JBR is an assembly of eight Inconel wires 

with a 0.32 cm diameter and a 7.0 cm length, which are attached symmetrically to a round disk 

made of Inconel. This assembly is inserted from the top, inside the ceramic crucible. When a 

high frequency current is applied through the copper coil (item 11 in Figure 3.1), the associated 

magnetic field induces a current through the Inconel wires. Due to the high frequency of the 

magnetic field, the energy of the induced currents is lost rapidly in the form of heat which is 

uniformly transferred from the surface of the wires into the bed of catalyst particles.   
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Figure 3.1. Diagram of the jiggle reactor: 1. on/off feed valves 2. Inlet of carrier gas 3. 
Thermocouple 4. Inlet of feed and carrier gas 5. Ceramic crucible with insulation 6. Insulation disk 
7. Insulation disk 8. Linear pneumatic actuator 9. Outlet gas valve 10. Stainless steel support rods 

11. Copper coil 12. Copper disk 13. Aluminum disk mounted on the actuator 14. Stainless steel 
scalloped disk 
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Figure 3.2. Reaction chamber of the jiggle bed reactor: a) ceramic crucible b) heating element 
assembly (dimensions are in mm) 

 
 
3.2.2. The Motion system 

In order to provide good mixing between the solids and gases over the entire length of the 

ceramic crucible, a linear pneumatic actuator was designed to vibrate the reaction chamber of the 

JBR with the appropriate frequency and amplitude. This reciprocating motion is transferred to 

the solid particles inside the ceramic crucible, fluidizing them.  The linear pneumatic actuator 

consists of the following parts (Figure 3.3): 

1. Compressed air line  
 

2. A double acting BIMBA FLAT-II air cylinder with dual piston rods and a rod end block 
to ensure that the rods work in tandem.  
 

3. Two BIMBA reed switches (RS) attached on the external surface of the air cylinder to 
control the motion of the piston.  
 

4. A 2 position, 3 way solenoid valve to alternate the direction of the compressed air flow 
between extension and retraction modes.  

 
5. Two air flow controllers to adjust the flow rate of the compressed air.  

 
6. Tubing between the solenoid valve and the air cylinder.  
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7. A programmed logic controller (PLC) to start up and shut down the actuator and also to 
actuate the solenoid valve to alternate the direction of the compressed air flow between 
extension and retraction modes 

 

Figure 3.3. Schematic of the linear pneumatic actuator  

 

Having dual piston rods in the air cylinder eliminated the need for an external guide to align the 

movement of the reactor and prevent torsion. A magnet was inserted on the piston so that the 

reed switches could sense the position of the piston inside the air cylinder.  

To find the optimum size of the air cylinder which could  produce vibrations of the desired 

frequency and amplitude, the effect of mass of the reaction zone of the JBR, distance between 

the reed switches (RSD) and bore size of the air cylinder were investigated (see appendix A). An 

air cylinder with a 2.7 cm bore size and a 10.16 cm stroke length was, thus, selected as the core 

of the pneumatic actuator. 

3.2.3. The induction heating system 

A 9 kW Ameritherm EASY HEAT 7590LI power supply was used to provide high frequency 

current through the copper coil. The power supply works with a voltage of 187-230 VAC and its 

normal achievable frequency is 140kHz-400 kHz, depending on the size of its capacitors as well 
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as the size and design of the induction coil and of the type of conductive metals inside the coil. 

Cooling water flows through the coil and then discharges from the power supply to prevent the 

coil to be melted by the high frequency and amperage of the current that flows through it. A 

UP550 YOKOGAWA controller was used to adjust the output power of the power supply to 

maintain the desired temperature setpoint within the reactor, which is measured with a type K 

thermocouple. 

The copper coil was made of 6 turns of a tube with 0.64 cm O.D.. Both coil diameter and height 

were 7.6 cm. An insulation sleeve for electricity was used to cover the external surface of the 

coil for safety reasons. A high temperature sleeve was used for the lower turn of the coil where it 

is in contact with very hot surfaces. 

 Although the JBR has a fast vibrating motion, the final design implemented included a coil that 

moved with the ceramic crucible, eliminating any motion between the coil and the internal 

Inconel wires. This design was selected to avoid any possible variability of the magnetic field 

which would lead to a non-uniform heating of the internal Inconel wires. Therefore, in order to 

deliver the electrical current from the power supply to the vibrating coil, two insulated, 

conductive flexible tubes with a 91cm length and a 0.64 cm I.D. connected the coil to the power 

supply.  

3.3. Optimization of fluidization dynamics - Cold study 
 
3.3.1. Particle mixing in the jiggle bed reactor 

Mixing of the catalyst particles inside the ceramic crucible is induced by the vertical alternating 

motion of the linear pneumatic actuator. As a result of this motion, the catalyst bed alternately 

expands and contracts. 

When the catalyst bed expands over the entire length of the crucible, the majority of the gas in 

the upper part of the crucible is displaced downward.  When the bed contracts downward, the gas 

in the lower regions of the crucible is displaced upward.  Thus, the alternating 

expansion/contraction of the catalyst bed induces intense axial and radial mixing of the gas and 
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solid phases.  It also promotes heat and mass transfer between the gas and the catalyst particles.  

Some sequences of the particles mixing are illustrated in Figure 3.4 when a transparent crucible 

was used.  

 

Figure 3.4. Sequences of mixing of catalyst particles in the jiggle bed reactor: (a) bed expansion 
during downward actuator retraction (b) bed contraction during upward actuator extension  

 

To achieve intense mixing, the actuator must be operating with a sufficiently high frequency and 

amplitude to mix the catalyst particles over the entire length of the ceramic crucible.  A 

systematic study was, therefore, conducted to identify the operating conditions resultingin the 

catalyst bed expanding over the entire length of the crucible and, overall, in a good mixing 

throughout the micro reactor volume. 

3.3.2. Experimental set-up 

A visual set-up with a transparent crucible was developed to investigate the uniform distribution 

of catalyst particles over the entire length of the crucible as a function of the amplitude and 

frequency of the pneumatic actuator (Figure 3.5).  

Sand particles with mass of 5 g, 10 g and 20 g and size distributions of 75-149 µm, 149-212 µm, 

and 212-355 µm were loaded in a transparent crucible with dimensions similar to those of the 

ceramic crucible, to form a bed of particles. The pressure of the air driving the actuator was 

varied between 138 kPa and 690 kPa to adjust the actuator frequency between 3 and 6Hz. The 

amplitude of the pneumatic actuator motion was varied between 6.4 and 8.9 cm.  
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A CASIO EX-FS10 high speed video recording camera, located in front of the transparent 

crucible (Figure 5) recorded the bed motion. The camera was attached to the crucible frame, so 

that there was no relative motion between the crucible and the camera. The recording rate of the 

videos was 210 frames per second. The distance between the camera and the crucible was 

13.5 cm. To enhance the contrast of the video recordings, the back of the transparent crucible 

was wrapped in black tape to provide a dark background contrasting with the light colour of the 

sand particles. In addition, two 500 W lights illuminated the front of the transparent crucible to 

improve the video quality.  

 

 

Figure 3.5. Visual set-up to investigate mixing of sand particles in a transparent crucible 
 

Viewing the videos in slow motion shows that the catalyst bed reaches its minimum height when 

the actuator is in its full extension mode. On the other hand, the catalyst bed expands quickly in 
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the crucible when the actuator is in retraction mode. This behavior is caused by the inertia of the 

catalyst particles. In addition, the videos show that the speed of the bed expansion-retraction 

does not follow the speed of the actuator so that particles are mixed faster. 

3.3.3. Image processing methodology 

A video to picture conversion software was used to convert the recorded videos, originally in 

AVI format, to a series of successive pictures, in JPEG format. Pictures showed the catalyst bed 

every 1/210th of a second. 

A MATLAB program was developed to upload the pictures in the RGB (red, green and blue) 

color mode and then convert them to the gray mode. In the gray mode, a single pixel of the 

picture is described by one gray value between 1 and 256 levels, where 1 corresponds to black 

and 256 corresponds to white.  

For each run, 3000 pictures of a test were uploaded and converted in MATLAB, which 

corresponds to about 15 seconds. To gain pictures containing the area of the crucible and its 

content of the sand particles only, a frame around the crucible was cropped from the first picture 

and then the same area was cropped from other pictures automatically by the program. Since the 

high speed camera was attached to the crucible stand and did not move relative to the crucible, 

the coordinates of the area of the cropped frames were the same. The program converted the 

cropped frame of each picture to a matrix.  

In order to develop a methodology to interpret uniform distribution and fluidization enhancement 

of the sand particles by image processing, the coefficient of variation of the pixel gray values 

was obtained in both space and time coordinates: 
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where i is the index for space and j is the index for time. 

To estimate ܥ ௦ܸ௣௔௖௘ of each cropped frame, the program first calculated ܥ ௦ܸ௣௔௖௘ for each column 

of the matrix corresponding to the cropped frame. Then, the average of ܥ ௦ܸ௣௔௖௘ for all the matrix 

columns was considered as the ܥ ௦ܸ௣௔௖௘ of the related frame.    

Preliminary tests showed that ܥ ௧ܸ௜௠௘ is a useful indicator of local mixing versus time, but it does 

not seem to be related to the fluidization of the solid particles along the reactor.  On the other 

hand, ܥ ௦ܸ௣௔௖௘ is a useful indicator to quantify the motion of the catalyst bed along the length of 

the crucible. As the catalyst bed moves, ܥ ௦ܸ௣௔௖௘ fluctuates and its minimum value 

ܥ ௦ܸ௣௔௖௘,௠௜௡	corresponds to the maximum bed expansion.  Values of  ܥ ௦ܸ௣௔௖௘,௠௜௡  larger than 

0.15 were obtained when the catalyst bed does not expand over the entire length of the crucible. 

On the other hand, when the catalyst bed reaches the top of the crucible, ܥ ௦ܸ௣௔௖௘,௠௜௡ becomes 

smaller than 0.15.   

Figures 3.6a and 3.6b present digitized gray pictures of the sand particles with a mass of 10 g and 

size distribution of 149-212 µm at two extremes: when the bed is retracted to its minimum height 

(Figure 3.6a) and when the bed is expanded over the entire length of the crucible (Figure 3.6b). 

Figure 3.6c presents the corresponding vertical profiles of the horizontal average of pixel gray 

values. Figure 3.6c shows the uniform distribution of solids over the crucible length when the 

bed is fully expanded, while, when the bed is retracted, the sharp drop in pixel gray value from 

120 to below 60 corresponds to the volume above the dense bed.  
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Figure 3.6. Digitized gray pictures for a bed of the sand particles with 10 g mass and size 
distribution of 149-212 µm. Actuator frequency 4Hz: a) Retracted bed b) Expanded bed c) 

Variation of the horizontally averaged gray value along the crucible length. 
 

The variation of ܥ ௦ܸ௣௔௖௘ with time is illustrated in Figure 3.7 for 10 g of sand particles with size 

distribution of 149-212 µm and actuator frequency of 4Hz. The variation with time of ܥ ௦ܸ௣௔௖௘, 

therefore, makes it possible to monitor the motion of the catalyst bed.   

Therefore, a signal processing program, using the Fourier transform, was used to obtain the 

power spectrum from the variation with time of 	ܥ ௦ܸ௣௔௖௘, at different amplitudes and frequencies. 

The power spectrum of the bed motion versus frequency of the bed motion, which was calculated 

from the variation with time of 	ܥ ௦ܸ௣௔௖௘, is shown for different pneumatic air pressures in Figure 

3.8. For each pressure, there is a clear dominant frequency. The dominant frequency provided the 

frequency of the catalyst bed motion.  The power for the dominant frequency indicated the 

fluidization intensity.  It can be seen that, although the frequency of the bed motion increases as 

the actuator air pressure is increased, the maximum power does not follow this trend and there is 

an optimum actuator air pressure (representing an actuator frequency) at which the maximum 

power, and hence the mixing intensity, can be achieved.  
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Figure 3.7. Variation of ࢋࢉࢇ࢖࢙ࢂ࡯ versus time; sand particles 10 g, size distribution of 149-212 µm, 
air pressure of 345 kPa 

 

 

Figure 3.8. Power spectrum of the bed motion; sand particles 10 g, size distribution of 149-212 µm; 
amplitude 6.4 cm 
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3.3.4. Results and discussion 
 
3.3.4.1. Relation between the air pressure and the frequency of the actuator  

To estimate frequency of the alternating motion of the pneumatic actuator, the cycles were 

identified from the produced frames, and the frequency was estimated using Equation 3.3: 

௔݂௖௧௨௔௧௢௥ሺݖܪሻ ൌ 	
ே௢.௢௙	௖௢௠௣௟௘௧௘	௖௬௖௟௘௦	

ே௢.௢௙	௙௥௔௠௘௦
ൈ		ቀ௙௥௔௠௘

௦௘௖௢௡ௗ
ቁ         (3.3) 

 

Figure 3.9 shows variation of the frequency with the air pressure applied to the actuator piston, at 

amplitudes of 6.4, 7.6 and 8.9 cm. As is expected, at a given air pressure, the frequency is lower 

for a longer amplitude. The frequency initially increases sharply with increasing air pressure and 

then plateaus at higher pressures.  For the largest amplitude (8.9 cm), the frequency even 

decreases when the air pressure is increased beyond 600 kPa.    

 

 

Figure 3.9. Variation of frequency of the pneumatic actuator versus air pressure.   
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3.3.4.2. Frequency of the actuator versus frequency of the bed   

The dominant frequency of the bed, which is its significant frequency, is compared with the 

frequency of the actuator in Figure 3.10. As is shown, the bed vibrates with larger frequency than 

the frequency of the actuator at a given air pressure. In addition, there is a linear relation between 

the two frequencies. However, it is surprisingly noticeable that, despite some insignificant 

differences, the relation between the frequency of the bed and the frequency of the actuator is 

independent of the mass and size distribution of the particles inside the reactor according to the 

results displayed in Figures 3.10a and 3.10b.     

 

Figure 3.10. Frequency of bed of the sand particles versus frequency of the actuator; (a) effect of 
mass; size 149-212 µm (b) effect of size distribution; mass 10g 

 

3.3.4.3. Effect of amplitude of the pneumatic actuator motion on fluidization 

Figure 3.11 shows that ܥ ௦ܸ௣௔௖௘,௠௜௡ becomes less than 0.15 when the air pressure applied to the 

actuator piston is increased beyond 140 kPa, for all the tested amplitudes and frequencies.  This 

indicates that there is good mixing of the particles as long as the air pressure was above 140 kPa.   

Figure 3.12 compares the variation of the power of the ܥ ௦ܸ௣௔௖௘ signal with air pressure, for 

different amplitudes. As the pressure is increased, this power at first increases, peaks and then 

decreases.  As the amplitude is increased, the pressure at which the power peaks increases, while 



 

146 

 

the peak power decreases.  This suggests that moderate amplitudes may be best to ensure intense 

mixing. 

 

 

Figure 3.11. Effect of amplitude on variation of  ࢔࢏࢓,ࢋࢉࢇ࢖࢙ࢂ࡯ versus air pressure; sand particles: 
mass 10 g and size 149-212 µm  
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Figure 3.12. Comparison of power of dominant frequencies versus air pressure and amplitude; 
sand particles: mass 10 g and size 149-212 µm  

 
3.3.4.4. Effect of mass and size distribution of the catalyst particles 

Samples of the sand particles were prepared with size distributions of 75-149 µm, 149-212 µm 

and 212-355 µm and were filled in the crucible with masses of 5, 10 and 20 g. The amplitude of 

the pneumatic actuator was set at 7.0 cm and its frequency was adjusted by varying the air 

pressure.  

There was no significant effect of bed mass of the sand particles on the variation of ௦ܸ௣௔௖௘,௠௜௡ 

with the air pressure applied to the actuator piston.  This means that the results of Figure 3.11 are 

valid for all the tested bed masses.   

However, the bed mass had a significant impact on the fluidization dynamics, as shown in Figure 

3.13. The power of the ܥ ௦ܸ௣௔௖௘ signal at its dominant frequency changed dramatically with the 

bed mass.  This variation was non monotonic, with the highest power being achieved for the 

intermediate bed mass of 10 g, for all particle size distributions. 
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Figure 3.13. Effect of mass of the particles on dominant frequency power of the particle mixing; 
sand particles with size of (a) 212-355 µm, (b) 149-212 µm and (c) 75-149 µm 

 

The size distribution of the bed particles also had a significant impact on the fluidization 

dynamics, as shown in Figure 3.14. The power of the ܥ ௦ܸ௣௔௖௘ signal at its dominant frequency 

varied with size distribution of the bed particles.  The highest power was obtained for the 

intermediate particle size distributions of 149 – 212 μm. 

The conclusions that can be drawn from the results illustrated in Figures 3.13 and 3.14 is that it is 

best to use a bed of 10 g with a 149 – 212 μm particle size distribution.  It is also preferable to 

operate the actuator piston with an air pressure slightly above 200 kPa.       
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Figure 3.14. Effect of size distribution of the sand particles on dominant frequency power of the 
particle mixing; mass of sand particles: (a) 5 g, (b) 10 g and (c) 20 g 

 

 
3.4. Optimization of fluidization dynamics- Heat transfer study 
One of the main problems of the micro reactors that are currently used to test catalysts is that, 

with endothermic reactions, poor heat transfer results in metal heat transfer surfaces that are at a 

much higher temperature than the catalyst bed, causing undesirable parasitic thermal cracking 

reactions.  It is, therefore, important to check that in the JBR, the temperature difference between 

the heating surfaces and the catalyst bed is minimized without compromising the ability to 

transfer the heat.   
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The ceramic crucible was loaded with 10 g of silica sand with a size distribution of 149-212 µm. 

The actuator was operated at air pressures of 138, 207 and 276 kPa and reactor was heated up to 

800 °C by induction heating.  The power supply was then switched off to let JBR cool down 

while the air cylinder was still vibrating.  

3.4.1. Heat transfer modeling 

When the power supply is switched off, the temperature of the catalyst bed drops quickly due to 

heat loss from the reactor: 

 ݉௦ܥ௉,௦
ௗ ೞ்

ௗ௧
ൌ െ݄௢ܣ௢ሺ ௦ܶ െ ஶܶሻ           (3.4) 

The temperature of the sand particles can be estimated by integrating Equation 3.4: 
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Therefore,  

ೞ்ି ಮ்

ೞ்,బି ಮ்
ൌ ݐ൫െܽሺ݌ݔ݁ െ  ଴ሻ൯          (3.8)ݐ

During heating up of the catalyst bed in the JBR, the metal wires are heated by induction and 

heat is then transferred from the wires to the bed, where P is the power transferred to the bed.  

Heat is lost through the reactor wall, as during cooling: 

	݉௦ܥ௉,௦
ௗ ೞ்

ௗ௧
ൌ ܲ െ ݄௢ܣ௢ሺ ௦ܶ െ ஶܶሻ         (3.9) 

Estimation of ௦ܶ during the heating step can be achieved by integrating Equation 3.9: 
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 , Equation 3.11 can be rearranged and integrated to form Equation 3.12: 
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Therefore,  

௦ܶ ൌ ஶܶ ൅ ܾ ൅ ൫ ௦ܶ,଴ െ ஶܶ െ ܾ൯݁݌ݔ൫െܽሺݐ െ  ଴ሻ൯       (3.13)ݐ

Parameters ܽ and ܾ can be estimated by regression of the temperature data during cooling and 

heating steps. Parameters ݄௢ and ܲ can then be found from a and b. The heat transfer coefficient, 

hw, from the heating wires to the bed can be estimated from the power transferred from the wires 

to the bed with Equation 3.14: 

ܲ ൌ ݄௪ܣ௪ሺ ௪ܶ െ ௦ܶሻ           (3.14) 
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To calculate the heat transfer coefficient hw, however, the temperature difference between the 

wires and sand particles must be known. A label temperature indicator whose color turns into 

black color at a rated temperature was applied to one of the wires, and the reactor was heated up 

to temperatures below the rated temperature of the label, changing the reactor temperature with 

one degree Celsius intervals between successive experiments. Experiments were conducted until 

the label color turned black. The difference between the achieved reactor temperature and the 

rated temperature of the wire label was used in Equation 3.14 to calculate the heat transfer 

coefficient between the heating wires and the catalyst bed.    
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3.4.2. Results and discussion 

3.4.2.1. Effect of the delivered power 

Induction heating is a very fast heating method. However, if the power supply delivered its full 

power to the induction coil, the internal wires of the reactor could reach a very high temperature 

after a few seconds, resulting in a large temperature difference between the wires and the sand 

particles inside the reactor.  To minimize the thermal stress on the reactor, especially, the 

ceramic crucible, reduced power should be delivered to heat up the reactor to reach the desired 

temperature.  

Figure 3.15 shows how quickly the catalyst bed could be heated, starting from an initial 

temperature of 100°C. The controller was set in the open loop mode to see the effect of the 

power outlet of the power supply on heat transfer inside the ceramic crucible. The power level 

was varied between 10 and 20 % of the maximum power. The reactor was vibrated at actuator air 

pressure of 207 kPa with an amplitude of 6.4 cm. Figure 3.15 indicates that reaching a reactor 

temperature of 800 C requires a power of about 20% of maximum power.  
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Figure 3.15. Effect of power outlet of the power supply on rate of heating of the sand particles; 
mass 10 g, size 149-212 µm, air pressure 207kPa, amplitude 6.4cm 

 

Table 1 lists the heat capacity and mass of bed of sand particles as well as the dimensions of the 

heating surfaces. Regarding the 8 wires inside the crucible, it can be concluded from the data in 

Table 3.1 that the total surface area of the wires is less than the external surface area of the 

crucible.   

Table 3.1. Required data for heat transfer calculations 

Sand particles ܣ௢ሺ݉ଶሻ ൌ ௪ሺ݉ଶሻܣ 0.023 ൌ 0.00614 

௉,௦ܥ ൬
ܬ

.݃ܭ ܥ°
൰ 830 ݀௢ሺ݉ሻ 0.0635 ݀௪ሺ݉ሻ 0.0032 

݉௦ሺ݇݃ሻ 0.01 ݈௢ሺ݉ሻ 0.083 ݈௪ሺ݉ሻ 0.0762 

 

Table 3.2 shows the measured temperatures of the catalyst bed and of the surface of the heating 

wires for various power levels. The temperature difference between the wires and the bed was 
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quite small, indicating that heat transfer was very effective.  Surprisingly, the temperature 

difference between the wires and the bed decreased as the power level was increased.  This may 

be caused by the controller scheme.  When the power level is 10%, the induction system does not 

deliver a constant power of 10% of its maximum power; instead, it delivers full power for 10% 

of the time.  The intermittent nature of the power delivery is, therefore, exacerbated when the 

nominal power level is low.  Since the method used in this study measured the maximum 

temperature reached by the wires over a whole run, the wire temperature will be overestimated 

by a larger margin as heating becomes more intermittent.  

Table 3.2. Measured temperatures on the surface of wires and inside the reactor 

Power level (%) ௦ܶ (°C) ௪ܶ (°C) ሺ ௪ܶ െ ௦ܶሻ (°C) 

10 198 204 6 

12 205 210 5 

15 246 249 3 

20 247 249 2 

 

Figure 3.16 shows that there is a linear relationship	ሺܴଶ ൌ 0.9962ሻ between the power level, i.e. 

the power supplied to the induction coil, and the power actually transferred from the heating 

wires to the catalyst bed.  This confirms that the model and calculation procedure used to 

estimate the power transferred from the wires to the bed gave consistent results.  

The heat transfer coefficients for the heat losses and between the heating wires and the bed were 

calculated from the experimental data for various power levels, using the method described 

earlier (Table 3.3).  As expected, the heat transfer coefficient for the heat losses is independent of 

the power level.   

The heat transfer coefficient between the heating wires and the bed increased dramatically with 

the power level (Table 3.3). As discussed earlier, the wire temperature would be overestimated 

by a larger margin at lower power levels, which would then result in an erroneous heat transfer 
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coefficient.  The heat transfer coefficient obtained at the higher power level of 20% is more 

realistic and is more relevant to this study, since it provided a steady state temperature of around 

800 C, a typical temperature for gasification reactions.  According to the correlation from 

Molerus et al [21] for heat transfer between a tube and a fluidized bed, the heat transfer 

coefficient obtained at a power level of 20% would correspond to a ratio of fluidization velocity 

to minimum fluidization velocity of about 30, which is typical of a well-bubbling fluidized bed. 

This confirms the excellent quality of the fluidization achieved with the JBR.  

Table 3.3. Consumed power, heat loss heat transfer coefficient and heat transfer coefficient 
between wires and bed; air pressure 207 kPa, sand particles 10 g 

Power level (%) ݄଴ ቀ
ݓ

݉ଶ. ܥ°
ቁ ܲ ሺݓሻ ݄௪ ቀ

ݓ
݉ଶ. ܥ°

ቁ 

10 0.265 1.671 45 

12 0.257 2.462 80 

15 0.270 4.063 220 

20 0.269 6.058 493 
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Figure 3.16. Consumed power inside the reactor versus partial power outlet of the power supply 
 

3.4.2.2. Effect of frequency of the pneumatic actuator 

Figure 3.17 shows how quickly the bed temperature increased for different air pressures applied 

to the actuator piston.  The temperature rose more slowly at higher air pressures.  Since, as 

shown in Figure 3.9, the frequency at which the bed level fluctuated increased with the air 

pressure, this suggests that operating with a lower frequency of bed pulsations would maximize 

heat transfer between heating wires and bed. 

The results shown in Figure 3.17 are confirmed in Table 3.4, which shows that the heat transfer 

coefficient between the wires and the bed decreased slightly as the air pressure and, hence, the 

bed frequency increased. Interestingly, this means that the heat transfer coefficient between the 

wires and the bed is at its maximum when the bed agitation is maximized: Figure 3.13b shows 

that for the bed mass and particle size distribution used in the heat transfer experiments, bed 

agitation was obtained at an air pressure of just above 200kPa.   

On the other hand, Figure 3.18 shows that the air pressure had little effect on the rate at which 

the bed temperature dropped once heating had been switched off.  This indicates that, as 
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expected, the heat losses are controlled by the external heat transfer between the outer crucible 

wall and the ambient air, and are practically independent of the heat transfer coefficient between 

the bed and the inner crucible wall. 

 

Figure 3.17. Effect of the actuator air pressure on the rate of temperature rise inside the reactor 
during the heating step; power outlet 20%, mass of sand particles 10 g, amplitude 6.4 cm 
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Figure 3.18. Effect of air pressure of the actuator on rate of temperature drop inside the reactor 
during the cooling step; power outlet 20%, mass of sand particles 10 g, amplitude 6.4 cm 

 
 

Table 3.4. Consumed power, heat loss heat transfer coefficient and heat transfer coefficient 
between wires and sand particles; power outlet 20%, sand particles 10 g, amplitude 6.4 cm 

Air pressure (kPa) h୭ ቀ
w

mଶ. °C
ቁ P ሺwሻ h୵ ቀ

w
mଶ. °C

ቁ 

207 0.269 6.058 493.27 

276 0.290 6.054 492.91 

345 0.299 5.969 486.06 

 

In order to investigate whether the induction heating system implemented on the JBR is effective 

and rapid enough to compensate the heat consumed by the endothermic reactions, water injection 

was used for testing, since its vaporization is endothermic, 4 mg droplets of water were injected 

into the reactor to simulate heat consumption by the endothermic reactions. As shown on Figure 

3.19, the bed temperature dropped by less than 2°C each time water was injected and then it took 
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less than 5 seconds for the bed to recover its initial temperature.  The negligible temperature drop 

and the fast recovery observed prove that the developed induction heating technique is very 

effective for the study of gasification reactions.   

 

Figure 3.19. Temperature recovery for endothermic reactions taking place in the JBR 
 

 
3.5. Conclusions 
The jiggle bed reactor (JBR) is a batch micro reactor with performance characteristics that make 

it suitable to test gasification catalysts. A linear pneumatic actuator was successfully designed to 

achieve fluidization conditions in the reaction zone of the JBR, without using any fluidization 

gas. A new induction heating system was designed and implemented to provide a uniform 

distribution of heat to the bed with a very small temperature difference between the heating 

surface and the bed. Fluidization and heating of the catalyst bed can, thus, be achieved in a 

completely non-invasive manner. 
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A new image processing technique was developed to monitor the fluidization dynamics of the 

catalyst bed. A signal processing technique was used to optimize amplitude and frequency of the 

pneumatic actuator to achieve the best fluidization conditions.  The size distribution and mass of 

the catalyst particles was also optimized to enhanced fluidization.  

Heat transfer studies showed that induction heating provides a minimum temperature difference 

between the heating wires and the catalyst bed. The maximum fluidization intensity of the bed 

corresponds to the highest heat transfer coefficient between the heating wires and the catalyst 

bed. 
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Nomenclature 
 amplitude ሺܿ݉ሻ :ܣ
 ௢: external surface area of the ceramic crucible ሺ݉ଶሻܣ
 ௉: cross section area of the piston ሺ݉ଶሻܣ
 ௥௢ௗ: cross section area of one rod ሺ݉ଶሻܣ
 ௪: surface area of an internal inconel wire ሺ݉ሻܣ
ܽ௉,௘௫௧: acceleration of the piston during extension mode ሺ௠

௦మ
ሻ 

ܽ௉,௥௘௧: acceleration of the piston during retraction mode ሺ௠
௦మ
ሻ 

௉,௦: specific heat of the sand particles ቀܥ ௃

௞௚.°஼
ቁ 

 
ܥ ௦ܸ௣௔௖௘: coefficient of variation of colour change of pixels on picture ݅ at time ݆ 
ܥ ௧ܸ௜௠௘: coefficient of variation of colour change of pixel ݅ on all pictures during the time 
period of  ݆ 
ܥ ௦ܸ௣௔௖௘,௠௜௡: Maximum uniform distribution of the particles in the entire length of the 
reactor 
݀௢: O.D. of the ceramic crucible ሺ݉ሻ 
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݀௪: diameter of an internal inconel wire ሺ݉ሻ 
 force ሺܰሻ :ܨ
௔݂௖௧௨௔௧௢௥: frequency of the actuatorሺݖܪሻ 
௕݂௘ௗ: frequency of the bedሺݖܪሻ 
௕݂௘ௗ,ௗ: dominant frequency of the bedሺݖܪሻ 
݃: 9.806 acceleration constant of the ground ሺ௠

௦మ
ሻ 

݄௢: heat transfer coefficient of heat loss through wall of the ceramic crucible ቀ ௪

௠మ.Ԩ
ቁ 

݄௪: heat transfer coefficient between internal inconel wires and bed of the sand particles 

ቀ ௪

௠మ.Ԩ
ቁ 

∆݄: distance between the reed switches 
݈௢: external length of the ceramic crucible ሺ݉ሻ 
݈௪: length of an internal inconel diameter ሺ݉ሻ 
݉ : mass of sand particles ሺ݃ሻ 
݉ோ: mass of the reaction zone ሺ݇݃ሻ 
݉௦: mass of bed of the sand particles ሺ݇݃ሻ 
௜ܰ: number of pixels in picture ݅ 
௝ܰ: number of pictures in time period ݆ 
ܲ: power consumed to heat up internal inconel wires 
௔ܲ௜௥: pressure of compressed air ሺܲܽሻ 
തܲ௔௜௥: average pressure of the compressed air during the piston brake ሺܲܽሻ 
௦ܶ: temperature of bed of the sand particles ሺԨሻ 
௪ܶ: temperature of surface of the internal inconel wiresሺԨሻ 
ஶܶ: room temperature ሺԨሻ 
௉,௘௫௧: velocity of the piston during extension mode ሺ௠ݒ

௦
ሻ 

௉,௥௘௧: velocity of the piston during retraction mode ሺ௠ݒ
௦
ሻ 

  ௘௫௧: brake length at the end of extension mode ሺ݉ሻݔ∆
 ௥௘௧: brake length at the end of retraction mode ሺ݉ሻݔ∆
 ݆ ௜,௝: color value of a pixel in picture ݅ at timeݕ
Greek notations 
 standard deviation of color value :ߪ
 average of color value :ߤ
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Appendix A. Sizing the air cylinder 
The frequency of the pneumatic actuator is a function of internal volume of the air cylinder, flow 

rate of the air, alternation timing of the solenoid valve and weight of the reaction zone at given 

amplitude.  In addition, amplitude of the pneumatic actuator must be long enough for the solid 

particles to be fluidized in the entire length of the ceramic crucible. Maximum achievable 

amplitude is, however, limited by two ends of the air cylinder which is determined by the 

maximum possible distance between the reed switches. It has been seen in practice that, in 

contrary to general expectation, distance between the reed switches must be way less than the 

desired length of the amplitude so that the piston does not hit the air cylinder. In other words, 

although the piston is supposed to be stopped where a reed switch senses the magnet on the 

piston, due to fast speed of the piston and delay time of the alternation action by the solenoid 

valve, the piston tends to keep moving farther beyond the point in front of the reed switch until it 

either faces the opposite entering compressed air or hits the cylinder. We call this action “the 

piston brake” and the extra distance travelled beyond the reed switch is called “the brake length” 

(Figure 3.A1) which is an important design parameter to size the air cylinder. Therefore, it is 

crucial to know the distance between the reed switches on the external surface of the air cylinder 

to control the amplitude of vibration.  
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The brake length at the end of extension mode and retraction mode can be estimated from the 

equations below: 

௘௫௧ݔ∆ ൌ െ
௩ು,೐ೣ೟
మ

ଶ௔ು,೐ೣ೟
          (3.E1) 

௥௘௧ݔ∆ ൌ
௩ು,ೝ೐೟
మ

ଶ௔ು,ೝ೐೟
           (3.E2) 

 ௉ is estimated from the thermodynamics’ first law (assuming weight of the piston is negligible)ݒ

when the stagnant piston in front of a reed switch is pushed or pulled and then travels the length 

between the reed switches ሺ∆݄ሻ: 

݉ோ݃∆݄ ൅
ଵ

ଶ
݉ோݒ௉

ଶ ൌ  (E3.3)         ݄∆ܨ

Where at extension mode: 

ܨ ൌ ௔ܲ௜௥ܣ௉ െ ݉ோ݃          (3.E4) 

While at retraction mode: 

ܨ ൌ ௔ܲ௜௥൫ܣ௣ െ ௥௢ௗ൯ܣ2 ൅ ݉ோ݃        (3.E5) 

During the piston brake, pressure of air reduces dramatically until it becomes zero because its 

flow is stopped. Applying the Newton’s second law for the brake length, ܽ௉ can be estimated as 

below: 

At extension mode: 

ሺ ௔ܲ௜௥ܣ௉ െ ݉ோ݃ሻ݀ݐ ൌ ݉ோ݀ݒ௣,௘௫௧        (3.E6) 

Assuming ܲ௔௜௥ as the average value of the reducing pressure of compressed air,  

ܽ௉,௘௫௧ ൌ
௉ೌ೔ೝ஺ುି௠ೃ௚

௠ೃ
          (3.E7) 

Similarly, at retraction mode: 

ሺ ௔ܲ௜௥ሺܣ௉ െ ௥௢ௗሻܣ2 ൅ ݉ோ݃ሻ݀ݐ ൌ ݉ோ݀ݒ௣,௥௘௧       (3.E8) 
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ܽ௉,௥௘௧ ൌ
௉ೌ೔ೝሺ஺ುିଶ஺ೝ೚೏ሻା௠ೃ௚

௠ೃ
         (3.E9) 

Finally, if we assume that ܲ௔௜௥ is almost zero in equations 3.E7 and 3.E9 which is a true 

assumption, the brake lengths will be calculated from the equations below: 

௘௫௧ݔ∆  ൌ െ
ሺ௉ೌ೔ೝ஺ି௠ೃ௚ሻ∆௛ି௠ೃ௚∆௛

௠ೃ௚
       (3.E10) 

 

௥௘௧ݔ∆ ൌ
ሺ௉ೌ೔ೝሺ஺ିଶ஺ೝ೚೏ሻି௠ೃ௚ሻ∆௛ି௠ೃ௚∆௛

௠ೃ௚
       (3.E11) 

Equations 3.E10 and 3.E11 illustrate that the brake lengths are dependent on mass of the reaction 

zone, distance between the reed switches and bore size of the air cylinder at a given pressure of 

the compressed air. Effect of these parameters on the brake lengths were investigated to find the 

optimum size of the air cylinder.  

 

Figure 3.A1. Schematic of the flat air cylinder with the dual rods presenting position of the reed 
switches (RS) and the brake length (∆x) at the end of extension (left) and retraction (right) modes  
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CHAPTER 4: 

 
 
 

Non-catalytic and Catalytic Steam Reforming of 

Acetic Acid in the Jiggle Bed Reactor 
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4.1. Introduction   
Since bio-oil contains C-H-O compounds, it is a potentially attractive feedstock for syngas 

production. However, it is crucial to find the required operating parameters to maximize bio-oil 

conversion and syngas yield. For example, gasification of bio-oil in a bubbling fluidized bed 

reactor in the absence of catalyst gave a poor bio-oil conversion to gas and a low hydrogen yield 

[1]. Before testing different catalysts in such a large scale reactor, it would be beneficial having 

an appropriate micro reactor to carry out small scale testing of the catalysts to find out the 

optimum catalyst for bio-oil conversion and syngas production. The jiggle bed reactor (JBR) is a 

novel micro reactor that was designed and developed at the Institute for Chemical and Fuels 

from Alternative Resources (ICFAR) to test catalysts for endothermic reactions such as bio-oil 

gasification. This is a batch reactor in which catalyst particles are fluidized by vibration and the 

required heat is supplied by induction [2].  

Fluidization dynamics and heat transfer in the jiggle bed reactor were studied earlier [2]. Such 

study demonstrated that excellent fluidization and mixing of the solid particles can be achieved 

with the appropriate frequency and amplitude of the linear actuator which is providing the 

required level of agitation. In addition, the induction heating mechanism provides fast response 

and supplies the heat required by endothermic reactions in the jiggle bed reactor with a heating 

surface temperature that is only a few degrees higher than the bed temperature, thus avoiding 

undesirable thermal cracking reactions.  

The next step in the development of the jiggle bed reactor was to test with a model reaction that 

is representative of typical gasification reactions. Since acetic acid is a model compound of bio-

oil, its non-catalytic and catalytic steam reforming was performed in the jiggle bed reactor for a 

wide range of operating variables such as temperature, residence time, molar S/C ratio, bed 

material, and mass of catalyst.  

Catalytic steam reforming of bio-oil model compounds, which has been studied by many 

researchers, is a standard procedure to examine the effect of the operating parameters as well as 

the type of the catalyst which are important factors in conversion of bio-oil for production of 
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syngas. Although setups with different configurations have been used for steam reforming 

reactions, all setups have been continuous systems. Also, catalysts with different compositions 

were tested. 

Wang et al. worked on the catalytic steam reforming of oxygenated liquids that represent 

different constituents of bio-oil such as acids, ketones, alcohols, aldehydes, phenols and furans in 

a dual-bed quartz reactor. They investigated the effects of temperature, molar S/C ratio, gas 

hourly space velocity and residence time on the conversion of the model compounds and the 

yield of hydrogen [3]. Marquevich et al. investigated catalytic steam reforming of acetic acid as 

an acid, m-cresol and dibenzyl ether as two aromatic compounds and xylose, glucose and sucrose 

as sugar compounds in fixed bed reactors [4]. Rioche et al. studied steam reforming of acetic 

acid, phenol, acetone, ethanol and bio-oil at the temperatures between 650°C–950°C with  

catalysts synthesized by Pt, Pd and Rh as active metals supported on alumina and ceria–zirconia 

sample [5]. Galdamez et al. investigated catalytic steam reforming of acetic acid in a fluidized 

bed reactor at 450°C-700°C [6]. Basagiannis and Verykios investigated catalytic steam 

reforming of acetic acid and its reaction network as a model compound of bio-oil between 

200°C-800°C. Their reactor consisted of a quartz cell with 8 mm O.D in between two 6 mm O.D. 

quartz tubes as the inlet and the outlet tubes.  The total length of the reactor was 32 cm [7]. 

Takanabe et al. investigated deactivation of the Pt/ZrO2 catalyst during steam reforming of acetic 

acidat temperature 875K [8]. Ramos et al. studied non catalytic and catalytic steam reforming of 

acetol in a bubbling fluidized bed reactor [9]. Medrano et al. investigated the effects of catalyst 

calcination temperature and additional oxygen to increase the conversion of acetic acid during its 

catalytic steam reforming in a fluidized bed reactor at 650°C with Ni/Al catalysts [10]. Vagia et 

al. studied steam reforming of acetic acid and acetone in a fixed bed reactor over 550°C-750°C 

[11]. Davidian et al. worked on catalytic cracking of acetic acid with their proposed sequential 

cracking/regeneration cycles in their reactor system in the absence of steam [12, 13].  Medrano et 

al. eveloped Ni/Al catalysts modified with Ca and Mg with different Ca/Al and Mg/Al ratios for 

steam reforming of acetic acid and acetol in a fluidized bed reactor at 650°C with a S/C ratio of 

5.58. They have reported that the magnesium modified catalysts showed better activities in terms 

of highest hydrogen yield and carbon conversion when compared to the calcium modified 
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catalysts [14]. Guell et al. carried out steam reforming of acetic acid with Pt/ZrO2 and Pt/CeO2 

catalysts. They also measured the effect of additional oxygen on catalyst activity. They have 

proposed that using a catalyst with redox properties as well as additional oxygen in the reactor 

can help minimize coke deposition on the catalyst [15]. Hu and Lu carried out steam reforming 

of acetic acid, ethylene glycol, acetone, ethyl acetate, m-xylene, and glucose at temperatures 

from 300°C to 800°C with molar S/C ratios of 1 to 9 with a Ni/Al2O3 catalyst with 30wt% nickel 

content. They have reported that coke formation on the catalyst surface can depend on the 

feedstock [16]. Hu and Lu compared the activity of catalysts synthesized with transitional metals 

(Ni, Co, Fe or Cu) supported by Al2O3 in acetic acid steam reforming at temperatures between 

300°C and 600°C with molar S/C ratio of 7.5 [17]. They also studied whether promoters such as 

Ce and La can increase the activity of the Co/alumina catalyst which had shown good selectivity 

for hydrogen production. Both promoters increased conversion of acetic acid and stability of the 

catalyst against metallic oxidation and coke formation [18]. Vagia and Lemonidou investigated 

presence of Ni and Rh on catalysts with Ceria-zirconia supports to maximize hydrogen 

production in steam reforming experiments of acetic acid at 550°C-750°C with molar S/C ratio 

of 3. They also investigated effect of such metals on the type of coke formed on the catalyst 

surface [19]. Thaicharoensutcharitthama et al. synthesized nickel based catalysts with different 

nickel loadings on different supports such as -Al2O3, Ce0.75Zr0.25O2, and MgO at 650°C with 

molar S/C ratios of 1, 3 and 6 in steam reforming of acetic acid. They have reported that the 

catalyst with 15 wt% nickel on the Ce0.75Zr0.25O2 support had the highest activity in term of 

carbon conversion and such catalyst support showed the best stability against the coke formation 

[20]. Lu et al. developed Ni/γ-Al2O3 catalysts with different nickel loadings to investigate coke 

deposition and its structure during steam reforming of acetic acid at 600°C and molar S/C ratio 

of 2 [21]. Li et al. developed Ni/La2O3 catalysts with different nickel loadings and used them in 

steam reforming of acetic acid to find the operating catalyst and operating conditions that 

maximize the hydrogen yield [22].  

The main goal of acetic acid steam reforming in the jiggle bed reactor was to investigate 

functionality of the reactor to change in operating conditions such as temperature, residence time 

and molar S/C ratio while reliable and reproducible data are generated.  



 

170 

 

4.2. Experimental setup and procedure 
To investigate the relative effects of the catalyst, non-catalytic experiments were initially 

performed. Since, according to the literature data, the nickel based catalysts are promising for 

steam reforming reactions, a commercial nickel based steam reforming catalyst (called catalyst X 

in this chapter) was used for the catalytic steam reforming of acetic acid in this research. Molar 

S/C ratios of 0, 3 and 6 were tested. Temperature was varied between 650°C, 700°C and 750°C 

and the residence time ranged from 10s to 90s for non-catalytic experiments; the longest 

residence time was tested to investigate whether acetic acid conversion and hydrogen yield can 

be maximized in the absence of catalyst. Catalytic experiments were carried out at 700°C and 

residence times between 10s and 30s. 

The jiggle bed reactor is a batch fluidized bed micro reactor where the required heat is supplied 

by induction heating. Solid particles including the catalyst are fluidized in a ceramic crucible by 

vibration that is provided by a linear pneumatic actuator. The actuator frequency is 3 Hz and its 

amplitude is 10 cm. There is a copper coil around the ceramic crucible. A high voltage current 

through the coil provides a magnetic field; as a result, hysteresis and eddy currents are induced 

on the surface of wires inside the crucible. Direction of the magnetic field and the induced 

currents are alternated with a frequency of about 250 kHz; therefore, energy is released in the 

form of heat. Solid particles can be easily fluidized in the jiggle bed reactor and induction 

heating provides heat for the endothermic reactions while with a very small temperature 

difference between heating surface and reactor bed, preventing parasitic thermal cracking 

reactions on the heating surface [2].  

The original design of the jiggle bed reactor was utilized for hydrodynamic studies [2].  Such 

design had to be modified to carry out the gasification experiments. For example, the ceramic 

crucible was attached to the top lid with a suitable high temperature gasket to prevent any leak at 

gasification temperatures. In addition, an in-situ system for reduction and regeneration of the 

catalytic bed was set up.   The new design of the ceramic crucible replaces sharp edges with 

smooth edges and its top flange is flatter to provide for a bigger gasket between the crucible and 

the top lid. The metal heating wires were welded directly to the top lid.  Figure 4.1 shows new 
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design and dimensions of the ceramic crucible which was manufactured by the KYOCERA 

group. Ceramic material can withstand temperatures of up to 1500°C. 

 

Figure 4.1. Design and dimensions of the ceramic crucible 

 

A stainless steel clamp was designed to hold the ceramic crucible and its metal lid together. A 

high temperature gasket was placed between the upper surface of the flange and the metal lid and 

one another gasket was placed between the clamp and lower surface of the flange to avoid 

breaking the ceramic with the applied torque required for tightening the bolts. A torque wrench 

was used to equally tighten the bolts. Two different gaskets, Thermiculite and Garlock, were 

tested and performed well. Figure 4.2 shows how the ceramic crucible is held by the clamp on 

the metal lid.  
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Figure 4.2. Configuration of the ceramic crucible and clamp on the jiggle bed reactor 

 

One of the main advantages of the jiggle bed reactor is its ability to perform in-situ reduction and 

regeneration of the catalytic bed, which saves time. In other words, instead of reducing the 

catalyst sample with hydrogen and passivating it with oxygen in a separate unit, a tube reaching 

the bottom of the ceramic crucible is used to introduce the desired gas into the catalyst bed. The 

catalyst bed can, thus, be easily regenerated and reduced after each test in preparation for the 

next test. This tube is also used to flush all air from the reactor, which is essential. Figure 4.3 

shows the location of the tube as well as the configuration of the welded heating wires inside the 

ceramic crucible. 
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Figure 4.3. Position of the in-situ tube and internal heating wires in the jiggle bed reactor 

 

A schematic of the experimental setup is shown in Figure 4.4. There is an aluminum extrusion on 

which the jiggle bed reactor setup is mounted. The setup is comprised of moving and stationary 

parts. The moving part includes the ceramic crucible setup (as shown in Figure 4.2), the 

surrounding copper coil as well as the valves V1, V2 and V3.  The copper coil is insulated with an 

electrical insulation sleeve. Fiberfrax thermal insulation covers the whole ceramic crucible. As 

cooling water flows through the copper coil, the Fiberfrax insulation was placed between the 

ceramic crucible and the copper coil.  The stationary part includes the induction heating power 

supply, the temperature controller, the pneumatic actuator, the coil style condenser, the gas 

sampling bag, the flow meters and the valves V4 and V5. Flexible tubes and wires connect the 

moving and stationary parts. The air cylinder of the pneumatic actuator which vibrates the 

ceramic crucible setup with a frequency of 3 Hz and amplitude of 10 cm is attached to the 

aluminum extrusion.  

Solutions of acetic acid and water representing a molar steam to carbon ratios of 0, 3 and 6 were 

prepared for the gasification tests. Since the jiggle bed reactor is a batch setup for injecting micro 

liters of the liquid feed, the Drummond capillary tubes with a 4µl volume were used to inject 

precise amounts of solution into the reactor.  
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Due to very small volume of the liquid feed injection, presence of air in the reactor may lead to 

combustion of the gasification products, so it is very crucial to make sure that air is completely 

purged before each experiment. Because of its larger molecular weight, argon was introduced 

from valve V2 to the reactor as inert carrier gas to flush air out through valves V1 and V3 

alternatively. In other words, all gasification reactions took place in an argon environment. 

Before injection of the liquid feed, valves V2 and V3 are open and while there is a flow of argon 

outwards, the vacuumed gas sampling bag is connected to the condenser. Then, valve V3 is 

closed and valve V1 is opened to drop the capillary tube containing the liquid feed into the 

reactor; then, valves V1 and V2 are closed. Once the desired residence time is reached, valve V3 

and then valve V2 are open to sweep away all the product gases with argon and collect them in 

the gas sampling bag.  

A Varian micro GC CP4900 instrument was used to analyze the product gases H2, CH4, CO, 

CO2, C2H4 and C2H6. This micro GC was equipped with three columns 10m MS5A, 10m PPU 

and 8m 5CB. Helium was used as the carrier gas in the micro GC. Since the product gases were 

diluted with argon in the gas sampling bag, their concentration was very low. Therefore, the 

sensitivity of the TCD was set at a high level and the sampling time was set at 500 ms to be able 

to observe peaks of the product gases. GC runs were conducted for 3 minutes.  

In order to calculate the number of moles of the product gases and the total carbon conversion, 

an external standard gas with known volume was needed in the mixture of the product gases. 

Although it would have been ideal to use an inert gas such as N2, it was impossible because there 

were minute amounts of air contaminating the gas bag through the fittings when the bag was 

connected to the micro GC. Therefore, 500µl of normal C4H10 was injected into the vacuumed 

gas sampling bag with a gas tight syringe as the external standard gas. Despite the fact that the 

product gases are mixed with the external standard gas during the gas collection in the gas 

sampling bag after the test, the gas sampling bag was also squeezed manually for several times to 

ensure good mixing between the standard and product gases. Several tests were conducted to 

verify that normal C4H10 was never produced during the gasification tests. Experiments were 

repeated for 3 times to check out data reproducibility.   
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Figure 4.4. Schematic of the JBR experimental setup for the catalytic gasification tests 
 

 
4.3. Catalyst preparation 
A nickel-based steam reforming catalyst for steam reforming of light hydrocarbons, catalyst X, 

was used. Pellets of the catalyst were crushed and sieved to obtain particles between 220 and 

350µm. Since the fresh catalyst is provided in the non-reduced form, a 10 g batch of the catalyst 

was initially reduced in-situ in the JBR setup with a flow of 100 ml/min of pure hydrogen at 600 

°C for 6 hours. Since the reduced catalyst is pyrophoric, the catalytic bed was exposed to steam 

for an hour before discharge to get passivated; the prepared passivated catalyst was then kept 

inside the desiccators.   
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The desired mass of the prepared catalyst was mixed with silica sand with size distribution of 

106µ-220µ for the gasification tests in the reactor so that the total mass of the solid particles was 

10g for all experiments. Before starting the experiments, the catalytic bed was reduced in-situ 

again with a 100 ml/min flow of pure hydrogen at the reaction temperature for 1 hour to make 

sure that nickel on the surface of catalyst are in the form of free nickel (Ni0) with no NiO on the 

surface. A larger size distribution of the catalyst particles was chosen to be able to separate them 

from the silica sand particles after the experiments. Although silica sand and catalyst particles 

were with different size distributions, segregation was not observed after mixing these solids 

together. 

4.4. Catalyst characterization  
Surface area analysis of the fresh catalyst was carried out with the instrument ASAP 2010 

through adsorption of N2 at 77.35 K. According to Table 4.1, the BET surface area of the catalyst 

is 15.37m2/g, the average pore size is 130.05 A° and the total pore volume is 0.05 cm3/g.  

Table 4.1. Surface and pore analysis of the catalyst X 

Catalyst 
BET surface 
area, m2/g 

Average pore 

size, A° 

Total pore 

volume, cm3/g 

Fresh 
catalyst 

15.375 130.049 0.0502 


Adsorption Average Pore Diameter (4V/A° by BET) 


Single Point Adsorption Total Pore Volume of pores less than 775.52 A° 

Diameter at P/P0= 0.974 

 

X-Ray Fluorescence (XRF) analysis of the fresh catalyst is presented in Table 4.2. Estimated 

nickel content of the catalyst that is supported on calcium aluminate is 11.61 wt%.  However, 

TPR-TPO analysis on the fresh catalyst was carried out by the AutoChem II 2920 to measure 

how much nickel is present on the surface of the catalyst for the catalytic gasification reactions: 

A sample of the fresh catalyst was oxidized completely with air to convert all the elemental 

nickel to nickel oxide. Then the TPR analysis was started with a flow of hydrogen of 50 cm3 

STP/min with the rate of 10 °C/min until 750 °C when the catalyst was completely reduced. In 
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the next step, the TPO analysis was performed on the reduced catalyst with a flow of oxygen of 

50 cm3 STP/min until 410 °C when the catalyst was completely oxidized. At the end of the TPR 

analysis, NiO on the surface of catalyst is converted to Ni0 according to reaction 4.1: 

ܱܰ݅ ൅ ଶܪ → ܰ݅଴ ൅  ଶܱ         (4.1)ܪ

Also, at the end of the TPO analysis, Ni0 on the surface of the catalyst is converted to NiO 

according to reaction 4.2: 

ܰ݅଴ ൅ ଵ

ଶ
ܱଶ → ܱܰ݅           (4.2) 

Knowing the consumption of hydrogen and oxygen during the TPR and TPO analyses, 

respectively, it was estimated that the nickel content of the catalyst on its surface available for 

the catalytic reactions was between 4.05 wt% and 5.31 wt% (Table 4.3). Similarly, the TPR-TPO 

analyses were conducted on the reduced catalyst. As presented in Table 4.3, the nickel content on 

the surface of the reduced catalyst was between 4.35 wt% and 5.46 wt%. In other words, other 

than activating the catalyst, reduction of the catalyst caused a little amount of the elemental 

nickel in the bulk of the catalyst to move to the surface.   
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Table 4.2. XRF analysis data of the steam reforming catalyst X 

Compound Mass, wt% Element Mass, wt% 

Al2O3 63.66 Al 33.69 

NiO 14.78 Ni 11.61 

CaO 12.66 Ca 9.05 

SiO2 1.06 Si 0.494 

MgO 0.492 Mg 0.297 

P2O5 0.0574 Px 0.0250 

Fe2O3 0.0472 Fe 0.0330 

La2O3 0.0251 La 0.0214 

Sc2O3 0.0039 Sc 0.0025 

 
 

Table 4.3. TPR-TPO analysis results on the fresh and reduced catalyst X 

Catalyst 
Available Ni0 on the 
catalyst surface, wt% 

Fresh catalyst 4.05-5.31 

Reduced catalyst 4.35-5.46 

 
 

X-Ray powder Diffraction (XRD) of the fresh and reduced samples of the catalyst is shown in 

Figure 4.5. Phases of the NiO have disappeared on the reduced catalyst except at 2 of 43.29°, 

which can be due to oxidation of the nickel on the surface because of its exposure to the room 

air. It is noteworthy that phases of Ni0 appeared on the surface of the catalyst after its reduction 

with hydrogen which shows this catalyst has become active for the catalytic reactions. Other than 

peaks of the NiO and Ni0 phases, structures of the other phases on both fresh and reduced 
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catalysts are similar, but it is clear that after reduction, intensity of the peaks has become larger 

and the catalyst has gain a better crystal shape.  

 

Figure 4.5. XRD graphs of the fresh (a) and reduced (b) catalyst. Square symbols () present phases 
of NiO and diamond symbols ()present phases of Ni0  

 

 
4.5. Experimental results and discussion 
Non-catalytic and catalytic steam reforming of acetic acid were performed with different 

operating parameters such as temperature, residence time, molar steam to carbon ratio (S/C) and 

mass of the catalyst in the jiggle bed reactor. In order to maintain atmospheric pressure in the 

reactor, the total volume of the injected liquid (acetic acid + water) was 4 µl. The residence time 

was taken as the time between the feed injection and the flushing of the product gases by argon 

into the gas sampling bag. For the non-catalytic experiments, 10 g of silica sand was used as the 

bed material. For the catalytic experiments, 0.25g, 0.5g or 1.0g of catalyst was mixed with the 

silica sand to give a total mass of 10g.  
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Steam reforming of the oxygenated molecules (CnHmOk) to produce syngas (H2+CO) can be 

described by the following equation: 

௠ܱ௞ܪ௡ܥ ൅ ሺ݊ െ ݇ሻܪଶܱ → ܱܥ݊ ൅ ൫݊ ൅݉
2ൗ െ ݇൯ܪଶ      (4.3) 

So, Equation 4.3 suggests that acetic acid could be converted to syngas with no need for steam: 

ܪܱܱܥଷܪܥ → ܱܥ2 ൅  ଶ          (4.4)ܪ2
 

However, at the presence of steam, steam reacts with CO through the water-gas shift reaction to 

produce more hydrogen: 

ଶܱܪ2 ൅ ܱܥ2 ↔ ଶܪ2 ൅  ଶ        (4.5)ܱܥ2
 

Therefore, combining Equations 4.4 and 4.5, the overall steam reforming of the acetic acid can 

be shown by Equation 4.6, for a steam to carbon ratio of 1: 

ܪܱܱܥଷܪܥ ൅ ଶܱܪ2 → ଶܱܥ2 ൅  ଶ        (4.6)ܪ4
 

Although acetic acid could ideally convert completely to syngas through the reactions 4.4 and 

4.5, there can be other product gases as well as coke as gasification by-products. For example, 

according to reactions 4.7 and 4.8, thermal decomposition of acetic acid can produce syngas, 

steam, light hydrocarbons and coke. Besides, since CO, CO2 and coke are present inside the 

reactor, the Boudouard reaction (reaction 4.9) is another important reaction which can affect the 

CO/CO2 ratio in the final product gases.  

243 COCHCOOHCH           (4.7) 

 
,...,,,,,,, 4362422223 cokeHCHCHCOHCOCOHCOOHCH      (4.8) 

 
CCOCO  22           (4.9) 
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In addition, In the presence of steam, the produced hydrocarbons undergo steam reforming 

reactions towards production of hydrogen and carbon monoxide. For example, reaction 4.10 

illustrates how methane can be converted to syngas: 

ସܪܥ ൅ ଶܱܪ → ܱܥ ൅  ଶ          (4.10)ܪ3
 

The stoichiometric yield of hydrogen corresponds to the maximum moles of hydrogen which can 

be produced from complete conversion of acetic acid only through Equation 6; this maximum 

number of moles could theoretically have been reached with the experiments with a molar S/C of 

3 or 6. The yield of hydrogen was defined as the ratio of moles of produced hydrogen in the 

experiment to the stoichiometric hydrogen yield: 

  
ே௢.௢௙	௠௢௟௘௦	௢௙	௣௥௢ௗ௨௖௘ௗ	௛௬ௗ௥௢௚௘௡

ௌ௧௢௜௖௛௜௢௠௘௧௥௜௖	௬௜௘௟ௗ	௢௙	௛௬ௗ௥௢௚௘௡
ൌ

ሾுమሿ

ସൈሾ஼ுయ஼ைைுሿ
       (4.11) 

 

Molar yields of CO, CO2, CH4 were calculated as:  

௠௢௟௘௦	௢௙	௣௥௢ௗ௨௖௧

ଶൈ௠௢௟௘௦	௢௙	௔௖௘௧௜௖	௔௖௜ௗ
            (4.12) 

 

And molar yields of C2H4 and C2H6 were calculated as: 

௠௢௟௘௦	௢௙	௣௥௢ௗ௨௖௧

௠௢௟௘௦	௢௙	௔௖௘௧௜௖	௔௖௜ௗ
           (4.13) 

 

One advantage of the jiggle bed reactor is that it is very convenient to perform a complete test 

(from feed injection to gas analysis) over a very short period of time i.e. 10 minutes, so it is 

possible to repeat a test to check out reproducibility of the data and conduct tests under different 

operating conditions while saving considerable time. However, it must be taken into account that 

coke as the solid product of the reaction remains in the reactor which must be removed before 

conducting a new test; otherwise, coke can be gasified during the next test and has a detrimental 
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effect on the calculation of gasification yields. Therefore, after each test, the catalytic bed was 

regenerated and reduced according to the following in-situ procedure: 

1. Coke was burned off with air for 30 seconds 

2. Argon was introduced to the reactor for 30 seconds to flush out all air  

 

3. Hydrogen was introduced to the reactor for 5 minutes to remove oxygen adsorbed on the 

surface and reducing the catalyst 

4. Argon was introduced to flush out hydrogen from the reactor for 2 minutes 

5. The procedure above was carried out even for non-catalytic tests where there was only 

silica sand in the reactor.  

 

 
4.5.1. Non-catalytic results of the acetic acid steam reforming 

4.5.1.1. Effect of molar S/C ratio and residence time  

Figure 4.6 presents data of non-catalytic steam reforming of acetic acid which was carried out to 

investigate effect of the steam to carbon ratio (0, 3 and 6) versus residence time (10 s to 90 s) on 

the yield of the product gases and the total carbon conversion of acetic acid. The temperature 

used for all tests was 700 °C.  

The trend of the yields of product gases versus molar S/C ratio is as expected according to the 

reactions 4.4 to 4.10 discussed earlier.  When only acetic acid is injected to the reactor (molar 

S/C=0), acetic acid is decomposed to final products, such as hydrogen, carbon monoxide, carbon 

dioxide, methane and, perhaps, some steam (reaction 4.8). In the absence of sufficient steam, the 

water gas shift reaction (reaction 4.5) cannot proceed to produce hydrogen and carbon dioxide. 

In addition, steam reforming reaction of the hydrocarbons (such as reaction 4.10) cannot take 

place in the absence of sufficient steam. So, it is expected that yields of CO and hydrocarbons 

should be largest when molar S/C is zero and decrease with increasing  molar S/C. Figure 4.6 

confirm that yields of methane, C2 hydrocarbons and carbon monoxide decrease with increasing 

molar S/C, while yields of hydrogen and carbon dioxide increase.  
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However, the maximum yield of hydrogen is 0.23, obtained with a 20 s residence time and a 

molar S/C ratio of 6.  Therefore, non-catalytic gasification is not suitable to produce high yields 

of hydrogen.  On the other hand, it might be suitable to produce methane, since the yield of 

methane is quite high when steam is not present in the reactor; it ranged between 0.14 and 0.25. 

Methane is a very stable hydrocarbon: although its yield dropped significantly at a molar S/C of 

6, it is not possible to convert all methane to syngas in the absence of an appropriate catalyst. 

According to Figure 4.6, increasing molar S/C is also very effective to increase the carbon 

conversion of acetic acid. In the absence of steam, conversion is 52% at a 10 s residence time 

and its maximum value is 82% at a 90 s residence time, while, with a molar S/C ratio of 6, it is 

83% at a 10 s residence time and reaches 100% at a 90 s residence time.   

The product gas yield increases with increasing residence time and stabilizes for residence times 

larger than 30 s. At residence times larger than 30s, hydrocarbons are converted to hydrogen, CO 

and CO2. Generally, longer residence time does not affect the yields of hydrogen and CO2. For 

instance, the yield of hydrogen can not increase beyond 0.23 even at a residence time of 90s.  

Figure 4.6 shows a strongly non-monotonic variation of the CO yield with molar S/C.  CO is 

probably produced through the thermal cracking of acetic acid, reforming reactions and the 

Boudouard reaction and then is consumed through the water gas shift and the Boudouard 

reactions.  
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Figure 4.6. Non-catalytic steam reforming of acetic acid. Effect of S/C ratio versus residence time; 
T= 700 °C  
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4.5.1.2. Effect of temperature  

Non-catalytic steam reforming of acetic acid was also carried out at 600°C and 750°C with a 30 s 

residence time to investigate the effect of temperature on product gas yields and on carbon 

conversion of acetic acid at different temperatures. Results are presented in Figure 4.7. It is seen 

that the Steam to Carbon ratio has a similar effect on the yield of the product gases at all tested 

temperatures i.e. yields of hydrogen and CO2 increase with increasing molar S/C ratio whereas 

yields of CO (in relative to CO2) and hydrocarbons decrease.  

Yields of hydrogen and CO increase at higher temperatures. The CO2 yield decreases with 

increasing temperature. Production of methane increases with temperature. Yield of C2 

hydrocarbons also increases with temperature for all tested molar S/C ratios. As a result, carbon 

conversion of acetic acid increases with temperature so that complete conversion is achieved at 

750°C when steam is present in the reactor.  

In general, by taking yields of CO, CO2 and hydrocarbons in consideration, results of non-

catalytic experiments reveal that the rate of decomposition of the acetic acid (like reactions 4.7 

and 4.8) is higher than that of steam reforming and water gas shift reactions because a very low 

yield of hydrogen is obtained. For example, the maximum yield of hydrogen which was achieved 

at temperature 750°C and molar S/C ratio of 6 was 0.29. Since high production of hydrogen is a 

main objective in the steam reforming reactions, it is concluded that the non-catalytic steam 

reforming process is not a suitable path to hydrogen. An appropriate catalyst must thus be used 

to drive reforming and water gas shift reactions towards maximum production of hydrogen.  

Other than individual yields of hydrogen and CO, the molar H2/CO ratio is also an important 

consideration. The molar H2/CO ratio is less than one when acetic acid is gasified in the reactor 

in the absence of steam. The maximum value of H2/CO ratio, which is 5.3, is achieved at 700°C 

with a molar S/C ratio of 6. 
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Figure 4.7. Non-catalytic steam reforming of acetic acid. Effect of temperature.  Residence time= 
30s. Left, middle and right hand side bars present data of S/C ratios of 0, 3 and 6, respectively 

 
 
4.5.2. Catalytic results of the acetic acid steam reforming 

Catalytic steam reforming of acetic acid in the jiggle bed reactor was carried out at 700°C with 

0.25, 0.5 and 1g of the catalyst X mixed with silica sand so that the total solids mass was 10 g. 

Molar S/C ratios were 0, 3 and 6. The residence time ranged from 10 to 30 s.    

4.5.2.1. Effect of molar S/C ratio and residence time  

Figure 4.8 depict the effect of the molar S/C ratio on yields of the product gases and carbon 

conversion of acetic acid as functions of residence time at 700°C when the mass of catalyst was 

0.5 g. Comparing results in Figure 4.8 with the results in Figure 4.6 shows that the catalyst 

caused steam reforming and water gas shift reactions to become dominant reactions. Compared 

to non-catalytic experiments, For instance, a significant increase in yield of hydrogen is achieved 

when catalyst is used (as compared in Figure 4.8).  

Taking yields of hydrogen, CO and CO2 versus molar S/C ratio in consideration, it can be 

concluded that the catalyst promotes significantly the water gas shift reaction, because the yields 
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of hydrogen and CO2 increase dramatically with larger molar S/C ratios, while the yield of CO 

decreases. In addition to an appropriate catalyst, it is realized that a minimum amount of steam is 

required to maximize the hydrogen yield. In the absence of steam, the maximum hydrogen yield 

that could theoretically be achieved is 0.5. 

The yields of methane and C2 hydrocarbons are dramatically reduced by the presence of catalyst 

so that C2 hydrocarbons were not detected. The effect of steam on catalytic steam reforming of 

methane can be also seen since the yield of methane which is 0.08 in the absence of steam drops 

to 0.06 with a molar S/C ratio of 6 at a 10 s residence time.  In contrast to the non-catalytic 

results, a nearly complete carbon conversion of acetic acid is achieved at 700°C. In the absence 
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of steam, onversion is almost 98% for all residence times.   

 

Figure 4.8. Catalytic steam reforming of acetic acid. Effect of S/C ratio versus residence time; T= 
700 °C, catalyst mass= 0.5 g. In case of hydrogen yield: empty symbols present catalytic yields and 

bold symbols present the non catalytic yields 
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4.5.2.2. Effect of catalyst mass 

It was seen in the previous section that catalytic steam reforming of acetic acid led to high 

production of hydrogen through the reforming and water gas shift reactions; however, methane 

was still present in the reactor. To investigate the effect of catalyst mass on conversion of acetic 

acid and hydrocarbons as well as on yield of syngas, the mass of catalyst was changed between 

0.25 g, 0.5 g and 1 g at 10 s residence time for molar S/C ratios of 0, 3 and 6. The results 

obtained are presented in Figure 4.9.  

It is clear that yield of hydrogen has a direct relationship with the mass of catalyst as it increases 

when mass of catalyst is increased. However, this relation is not linear; for example, when mass 

of catalyst is doubled, yield of hydrogen is only slightly increased.  

For a molar S/C ratio of zero, the yield of CO increased when catalyst mass was increased from 

0.25 g to 0.5 g, but it declined when catalyst mass was 1 g. This is likely because CO, which was 

produced through the reforming reactions, was initially consumed less in the water gas shift 

reaction, but rate of water gas shift reaction increased when catalyst mass was increased to 1 g. 

Decrease in yield of CO2 can be attributed to the role of the Boudouard reaction in which CO2 

reacts with coke in favor of CO production. It is seen in the Table 4.4 that carbon conversion of 

acetic acid in the absence of steam was not complete, so the remaining carbon should have been 

stayed in the reactor as coke. Although production of methane decreased with the extra mass of 

catalyst, its full conversion was not achieved without steam in the reactor. However, C2 

hydrocarbons which were produced for a catalyst mass of 0.25 g, were completely converted 

with larger masses of catalyst.  

For a molar S/C ratio of 3, the yield of CO showed declining trend as a function of the mass of 

catalyst, whereas yield of CO2 had increasing trend. This showed that water gas shift reaction 

was a dominant reaction at this condition so that CO was consumed towards production of 

hydrogen and CO2. It is also noteworthy that methane was converted more by increasing the 

mass of catalyst, and it was finally converted completely when mass of catalyst was 1 g. In 

addition, no C2 hydrocarbon was produced. Despite the case where the catalyst mass was 0.25 g, 

the carbon conversion was complete for larger masses of catalyst (Table 4.4).  
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For a molar S/C ratio of 6, an interesting effect of the catalyst mass was seen regarding the yields 

of CO and CO2. When the catalyst mass increased from 0.25 g to 0.5 g, the yield of CO 

increased while the yield of CO2 dropped, although a different trend was expected. Probably, it 

can be said that, for a catalyst mass of 0.5 g, the rate of production of CO due to reforming 

reactions was faster than rate of its consumption through the water gas shift reaction. On the 

other hand, when the catalyst mass was 1 g, the rate of the water gas shift reaction increased, so 

that yield of CO2 increased and the yield of CO decreased. It is interesting that the conversion of 

acetic acid was complete for a molar S/C ratio of 6 for all tested masses of catalyst (Table 4.4). 

In addition, no hydrocarbon was among the final products when a catalyst mass of 1g was used.  

As illustrated in Table 4.4, the molar H2/CO ratio was a function of catalyst mass and molar S/C 

ratio. However, molar S/C ratio had significantly more impact on the molar H2/CO ratio. When 

molar S/C ratio was either zero or 3, the molar H2/CO changed almost following the same order 

of magnitude as the mass of catalyst. In the case of molar S/C ratio of zero, the molar H2/CO was 

between 1.11 and 1.35. This ratio was between 5.61 and 5.88 when molar S/C ratio was 3. On 

the other hand, the effect of catalyst mass on the molar H2/CO was very effective when molar 

S/C ratio was 6. When the catalyst mass was 1 g and molar S/C ratio was 6, the H2/CO ratio was 

15.1, which implies that a significant catalytic activity drives the water gas shift reaction to 

consume CO and produce hydrogen and CO2.   

Overall, it is realized that the presence of enough steam and the availability of sufficient catalyst 

must be optimized to reach a high yield of hydrogen and the required H2/CO ratio. For instance, 

given that a H2/CO ratio of 2 is required for the downstream unit when molar S/C ratio is 3 in the 

stream reforming process, it would be likely possible to produce hydrogen with a lower yield 

and, instead, to produce CO with a high yield, if the catalyst mass is lower than 0.25 g, which is 

the lowest mass tested in this research.  
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Figure 4.9. Catalytic steam reforming of acetic acid. Effect of catalyst mass on gas yields. Residence 
time= 10s, Temperature= 700°C 

 
 

Table 4.4. Carbon conversion, molar H2/CO and CO/CO2 ratios as a function of catalyst mass and 
S/C ratio 

 
S/C= 0 S/C= 3 S/C= 6 

0.25g 0.5g 1g 0.25g 0.5g 1g 0.25g 0.5g 1g 

Conversion 0.925 0.974 0.944 0.931 1.007 1.006 1.004 1.005 1.005 

H2/CO 1.160 1.107 1.354 5.880 5.611 5.690 8.851 9.279 15.091 

CO/CO2 1.432 2.089 2.069 0.457 0.421 0.387 0.242 0.319 0.130 
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4.5.3. Comparison with literature data  

It was not possible to find data in literature that could be compared with our research data 

because the available literature data were generated with different setups and operating 

conditions. For example, although nickel based catalysts have been used for steam reforming of 

acetic acid, they are synthesized with different compositions and physical properties.  

The average value of yields obtained in this research from different catalyst masses for a molar 

S/C ratio of 6 is compared with data reported by Medrano et al. [14], who studied the effects of 

calcium and magnesium on nickel/aluminium catalysts for catalytic steam reforming of acetic 

acid at 650°C with a molar S/C ratio of 5.58. According to the data in Table 4.5, the yields of 

product gases and the carbon conversion are very dependent on the catalyst composition. 

However, a good consistency of trend of the yields is observed between our experimental data 

and data by Medrano et al. . Since the temperature was 700°C in our experiments, complete 

carbon conversion was achieved.   

Vagia and Lemonidou [11] reported their experimental data from three different nickel based 

catalysts performed at 750°C and molar S/C ratio of 3 which are also compared with average 

value of yields obtained in this research from different catalyst masses for molar S/C ratio of 3 in 

Table 4.5. Given that their experiments were carried out at 750°C, a higher hydrogen yield was 

achieved in their work; regardless, the compositions of the product gases in their work and in this 

study are consistent. 

Therefore, the jiggle bed reactor is an efficient reactor setup which produces reliable data for 

different operating conditions in addition to the advantage of performing a series of experiments 

within a short period of time and at a low cost.  
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Table 4.5. Comparison between catalytic experimental data from this study and literature data 

 Medrano et al. [14] 
This 
study 

Vagia and Lemonidou [11] 
This 
study 

Catalyst Ni/Al,Ca0.5 Ni/Al,Mg0.2 X 5%Ni 10%Ni-1 10%Ni-2 X 

H2 0.8445 0.868 0.843 0.88 0.83 0.87 0.776 

CO 0.177 0.142 0.176 0.27 0.30 0.31 0.271 

CO2 0.713 0.854 0.787 0.73 0.67 0.69 0.648 

CH4 0.006 0.002 0.040 0.00 0.03 0.00 0.0583 

C2H4+C2H6 0.000 0.000 0.000 0.00 0.00 0.00 0.002 

Conversion 0.896 0.999 1.004 1.000 1.000 1.000 1.007 

  
 
4.6. Conclusions 
Non-catalytic and catalytic steam reforming of acetic acid was performed in the jiggle bed 

reactor. Experiments were repeated 3 times and results were reproducible with less than a 5% 

error.   In addition, changes in operating conditions such as temperature, residence time, molar 

steam-to-carbon (S/C) ratio and bed material resulted in clear, reproducible and logical changes 

in the yields of the product gases. 

In non-catalytic experiments, the thermal decomposition reactions predominated over the 

reforming and water gas shift reactions, and the carbon conversion of acetic acid was quite high, 

while the hydrogen yield was low for all tested molar S/C ratios, temperatures and residence 

times.  

Catalytic steam reforming experiments were conducted at 700°C. Even in the absence of steam, 

complete carbon conversion of acetic acid was achieved. The hydrogen yield , significantly 

increased compared to non-catalytic data under similar operating conditions. The reforming and 

water gas shift reactions were dominant reactions and the hydrogen yield increased with 
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increasing residence time. Increasing molar S/C ratio and the catalyst mass helped increase the 

acetic acid conversion and the hydrogen yield. On the other hand, CO is also a main product of 

the steam reforming processes; therefore, an optimum molar S/C ratio and catalyst mass must be 

selected to maximize the hydrogen yield while achieving the molar H2/CO ratio that may be 

required by downstream processes.  

Experimental data of the acetic acid catalytic steam reforming were compared with similar data 

in literature and a satisfactory consistency between the experimental data of this research and 

those in literature were observed. Therefore, it is realized that the jiggle bed reactor is an 

efficient novel reactor setup which produces reliable data for different operating conditions in 

addition to the advantage of performing a series of experiments within a short period of time and 

at a minimum cost.  
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5.1. Introduction 
An increase in energy demand has been seen in the recent decades in different sectors of society. 

Between 1990 and 2008, total energy consumption in the transportation section increased from 

10,051 to 12,510 peta joules in Canada and from 89,312 to 104,875 peta joules in the United 

States [1]. Fossil fuels have been the main source of energy supply. For example, fossil fuel 

consumption in Canada and the United States were respectively 75.1% and 84.4% of the total 

fuel used in 2010 [2]. There is also a big dependence on this energy source. For example, 

consumption of petroleum was about 19 million barrel per day in 2010 in the United States while 

49% of this consumption was supplied from imports [3]. Another challenge with these fuels is 

that they are sources of large amount of pollutants that create human health problems and global 

warming.  Similar patterns of fossil fuel consumption can be seen in many other countries.  

Many governments have chosen to promote new technologies to substitute renewable fuels for 

fossil fuels to reduce greenhouse gas emissions, adhere to environmental regulations, provide 

some security of supply, and reduce imports. 

Natural gas, bio-fuels and hydrogen are well known fuel alternatives. These fuel alternatives can 

be either used directly or converted to other types of fuels. For example, syngas, a mixture of 

hydrogen and carbon monoxide that can be produced from steam reforming of natural gas, can 

be converted to paraffins and olefins through Fischer-Tropsch Synthesis process [4].  Syngas is 

also a building-block from which a variety of platform chemicals such as methanol or DME can 

be produced.   

Bio-fuels are considered as renewable and clean sources of energy because, when used to 

substitute fossil fuels, they greatly reduce greenhouse gas emissions and, in some cases, can be 

``carbon-negative``. Biomass is a bio-fuel source which has been studied significantly as a fuel 

alternative for different applications [5-15]. Advancement of biomass technologies can benefit 

agricultural sectors as well. Biomass is also an appropriate feedstock for syngas production due 

to its carbon, hydrogen and oxygen contents. Conversion of biomass inside a gasifier in the 

presence of air or steam directly leads to the production of hydrogen and carbon monoxide [16-

19].  
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There are several advantages in the indirect conversion of biomass to syngas where biomass is 

firstly pyrolyzed to bio-oil and then bio-oil is gasified to syngas.  For example, biomass could be 

converted to bio-oil in local fields and the bio-oil, which has a much higher energy density than 

the original biomass, could be transported to a central gasification plant, greatly reducing 

transportation costs. An additional advantage is that most of the minerals in the original biomass 

could be locally recycled as pyrolytic biochar, which can be used as a soil amendment or as a 

source of valuable bio-carbon for a variety of other applications (bio-coal, bio-coke and bio-

carbon-based materials – such as catalysts, adsorbents, carbon for composites, bio-cement 

additives etc.). In addition, valuable biochemicals can be extracted from the raw bio-oil before it 

is converted to syngas.  

Bio-oil is a diverse mixture of oxygenated compounds such as acids, aldehydes, alcohols, 

ketones, substituted furans derived from cellulose and hemi-cellulose as well as phenolic and 

cyclic oxygenates derived from lignin.  The composition of bio-oil depends on the original 

biomass and the operating conditions of the fast pyrolysis. As a result, the optimum operating 

conditions of the gasification process for bio-oil conversion to syngas will likely vary depending 

upon the type of the original biomass and the pyrolysis conditions. Conversion of bio-oil model 

compounds to syngas has been studied extensively with different catalysts and operating 

conditions [20].  

Publications on the gasification or steam reforming of actual bio-oils are less numerous than for 

model compounds. Because of physical properties of bio-oil such as its quick solidification 

inside the hot injection nozzles, there had been challenges to gasify whole bio-oils, so earlier 

studies of bio-oil gasification were conducted with the aqueous fraction of bio-oil. By adding 

water to bio-oil, the aqueous fraction can be separated from the lignin-derived fraction. Since the 

aqueous fraction contains enough water, high hydrogen yields and carbon conversions can be 

achieved by gasifying the aqueous fraction. The lignin fraction can also be used to produce 

different chemical such as adhesives. Garcia et al. studied the catalytic steam reforming of the 

aqueous fraction of bio-oil produced from poplar wood. They used nickel based commercial and 

synthesized catalysts supported with α-Al2O3. The influence of magnesium, lanthanum, cobalt 
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and chromium on the performance of the synthesized catalysts was studied [21]. Czernik et al. 

worked on the catalytic steam reforming of the aqueous phase of bio-oil produced from pine 

sawdust in a fluidized bed reactor, as well as co-steam reforming of bio-oil and natural gas. They 

used a commercial steam reforming catalyst [22]. Kechagiopoulos et al. worked on the catalytic 

steam reforming of bio-oil model compounds and also the aqueous fraction of beech wood bio-

oil in a fixed bed reactor with a commercial steam reforming catalyst. Lower carbon conversions 

and hydrogen yields were obtained from the gasification of the aqueous fraction of bio-oil than 

with the steam reforming of the model compounds. Their investigation revealed that the type of 

deposited coke from gasification of model compounds was graphitic while the type produced 

from the aqueous fraction of bio-oil was aromatic [23]. Medrano et al. investigated the catalytic 

steam reforming of the aqueous fraction of pine wood bio-oil model compounds in a fluidized 

bed reactor. They prepared Ni/Al catalysts with Mg and Ca and obtained larger carbon 

conversions and hydrogen yields with the catalyst enriched in magnesium [24]. Some 

developments have been reported to inject whole bio-oil to the gasification reactor in continuous 

setups. For example, a water cooled spray nozzle was designed and developed through which 

whole bio-oil can be atomized to a bubbling bed reactor [25].  

Fluidized bed reactors have shown better results in term of less coke formation on the catalyst; 

however, there are some challenges with such reactors such as catalyst attrition. Czernik et al. 

developed a catalyst for fluidized bed reactors to produce hydrogen by catalytic steam reforming 

of hardwood bio-oil. The developed catalyst was less active than the tested commercial steam 

reforming catalyst, but displayed an improved attrition resistance [26]. Sakaguchi et al. 

compared non-catalytic and catalytic steam gasification of hardwood bio-oil and bio-oil/bio-char 

slurry in a fluidized bed reactor with a commercial steam reforming catalyst. They reported that 

larger carbon conversions were obtained from bio-oil gasification than from bio-oil/bio-char 

gasification. Although a 3 wt% catalyst loss from the bubbling bed was observed, carbon 

conversion dropped by 5% after 250 minutes in bio-oil gasification [27]. Seyedyn-Azad et al. 

worked on catalytic steam reforming of a bio-oil in a tubular fixed bed reactor to investigate the 

effect of catalyst composition and operating conditions. They synthesized Ni/Al2O3 catalysts 

containing nickel between 0 and 18 wt%. Their catalyst with 14.1 wt% nickel content showed 
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the highest carbon conversion and hydrogen yield, but it became significantly deactivated after 

1h [28].  

Other than testing catalysts, different gasification processes have been also investigated in order 

to maximize carbon conversion of bio-oil and hydrogen yield and to minimize coke deposition. 

Davidian et al. developed the idea of having a continuous sequential catalytic gasification 

process having one reactor in which beech wood bio-oil was cracked during the cracking step 

and then catalyst was regenerated during the regeneration step. They tested a synthesized 10 wt% 

Ni/Al2O3 catalyst and a commercial steam reforming catalyst with composition of 4wt%Ni-

2wt%K/La2O3-Al2O3. The synthesized catalyst showed less activity and was sintered. They have 

reported that different types of coke were formed on the tested catalysts: whisker deposits on the 

Ni/Al2O3 catalyst and amorphous carbon on the Ni-K/La2O3-Al2O3 catalyst. The amorphous 

deposit is more active and can be removed by combustion at lower temperatures [29]. Van 

Rossum et al. worked on non catalytic and catalytic steam gasification of beech wood and pine 

wood bio-oils in a fluidized bed reactor; their goal was to convert the whole bio-oil to produce a 

clean syngas, free of hydrocarbons, and with the lowest tar content. They used a Ni-K/La 

laboratorial catalyst supported on alumina and two commercial steam reforming catalysts. There 

were problems due to activity loss of the laboratorial catalyst and production of methane as well 

as secondary and tertiary tars in the fluidized bed reactor. They proposed that it is better to have 

two reactors in series: a fluidized bed reactor which is loaded with their synthesized catalyst and 

then a fixed bed reactor loaded with commercial catalysts [30-31]. Wu et al. developed the idea 

of hydrogen production from the sawdust bio-oil via steam reforming in a two-stage catalytic 

fixed bed reactor to reduce deactivation of the nickel based catalysts and increase carbon 

conversion and hydrogen yield. The calcined dolomite was used in the first fixed bed reactor for 

a primary steam reforming of bio-oil and then the commercial Ni/MgO catalyst was used in the 

second fixed bed reactor in which further catalytic steam reforming reactions between product 

gases of the previous stage took place [32]. Marda et al. investigated non-catalytic partial 

oxidation (NPOX) of the bio-oil produced from the poplar wood. Their idea was to maximize 

carbon conversion of the bio-oil to gaseous products through the NPOX process and then to 

increase the hydrogen yield of in a catalytic reactor where lower temperature and less load of 
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catalyst is required. [33]. Lan et al. synthesized a catalyst with formulation of 

18wt%Ni/10wt%MgO-10wt%La2O3-Al2O3 to investigate catalytic steam reforming of bio-oil 

produced from rice husk in a fixed bed reactor and in a fluidized bed reactor. They gained larger 

yield of hydrogen and carbon conversion as well as less coke formation on the catalyst in the 

fluidized bed reactor [34]. 

Panigrahi et al. investigated the effect of residence time on the gasification of hardwood bio-oil 

in the absence of catalyst to produce syngas and high Btu gases such as methane and olefins. 

They also studied effect of extra flows of CO2 (CO2/N2), H2 (H2/N2) and steam (H2O/N2) on the 

final yield of the product gases [35-36].    

It is realized from the scattering findings in literature that a suitable experimental system would 

be very helpful to comprehensively study the conversion of different bio-oils to syngas under 

similar operating conditions. Instead of testing catalysts under different operating conditions in 

large scale reactor setups, having an appropriate micro reactor to perform similar experiments in 

a small scale well controlled setup would be beneficial, both in terms of time and money, to 

investigate the optimum catalyst for bio-oil conversion and production of syngas. The jiggle bed 

reactor (JBR) is such a novel micro reactor that was designed and developed at the Institute for 

Chemical and Fuels from Alternative Resources (ICFAR) to test catalysts for bio-oil gasification. 

This reactor operates as a batch reactor in which catalyst particles are fluidized by vibration and 

the required heat is supplied by the induction heating method [37]. Promising results were 

obtained in preliminary experiments of non-catalytic and catalytic steam reforming of acetic acid 

in the jiggle bed reactor [38]. 

The objective of this chapter was performing thermal and catalytic gasification of two bio-oils in 

the jiggle bed reactor to investigate optimum operating conditions such as temperature and 

residence time as well as catalyst type and mass for maximum production of syngas and bio-oil 

conversion. In addition, since bio-oils were produced from different biomasses, effect of 

chemical composition on bio-oil conversion and yield of product gases was investigated.   
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5.2. Experimental setup and procedure 
As the first step of testing bio-oils in the jiggle bed reactor, thermal and catalytic gasification of 

two fast pyrolysis bio-oils were investigated: a hardwood bio-oil produced by Dynamotive 

Energy Systems Corporation (Canada) and a birch wood bio-oil produced at ICFAR at 475°C.  

No additional steam was used in the reactor; nevertheless, different water content of the bio-oils 

made it possible to study the effect of steam in maximizing carbon conversion of bio-oils and 

yield of syngas. In order to examine the effects of catalyst (type and mass) on bio-oil gasification 

as a function of residence time and temperature, two commercial steam reforming nickel based 

catalystswere tested in the JBR setup: the catalyst X manufactured for steam reforming of light 

hydrocarbons, and the catalyst Y, manufactured for steam reforming of natural gas. The 

residence time ranged from 10 to 30 s and the temperature was varied between 700 and 800 °C. 

The jiggle bed reactor is a batch fluidized bed micro reactor where the heat required by the 

gasification reactions is supplied by induction heating. Solid particles are fluidized in a ceramic 

crucible by vibration which is provided by a linear pneumatic actuator. Frequency of the actuator 

is 3 Hz and the amplitude of its motion is 0.1 m; these conditions provide smooth fluidization of 

the bed particles. There is a copper coil around the ceramic crucible. A high voltage current 

passing on the surface of the coil provides a magnetic field; as a result, hysteresis and eddy 

currents are induced on the surface of wires inside the crucible. Direction of the magnetic field 

and direction of the induced currents are alternated with a frequency of about 250 kHz. There is a 

very small temperature difference between the heating surface and the catalyst bed, which 

minimizes the parasitic thermal reactions that occur in other reactors [37].  

A schematic of the experimental setup is shown in Figure 5.1. Details may be found elsewhere 

[38].  

Since the jiggle bed reactor is a batch setup for injecting micro liters of the liquid feed, 

Drummond capillary tubes with 4µl volume were used to inject precise amount of the bio-oil to 

the reactor. 
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A Varian micro GC CP4900 instrument was used to analyze the product gases H2, CH4, CO, 

CO2, C2H4 and C2H6. This micro GC was equipped with three columns 10 m MS5A, 10 m PPU 

and 8 m 5CB. Helium was used as the carrier gas in the micro GC. Since the product gases were 

diluted with argon in the gas sampling bag, their concentration was very low. Therefore, the 

sensitivity of the TCD was set at high level and sampling time was set at 500 ms to be able to 

observe the peaks of the product gases on the output of the GC analysis. Because the GC did not 

detect the steam in the product gases, water measurement and, hence, elemental balances could 

not be performed. GC runs were conducted for 3 minutes.  

In order to calculate the yields of the product gases and total carbon conversion, a known volume 

of an external standard gas was added to the mixture of product gases. Although nitrogen could 

have been used, it was not ideal because of the risk of contamination from air. Therefore, 500 µl 

of normal C4H10 was injected into the vacuumed gas sampling bag with a gas tight syringe as the 

external standard gas.  C4H10 was never produced during the gasification tests and was, thus, a 

suitable external standard gas. Despite the fact that the product gases are mixed with the external 

standard gas during the gas collection in the gas sampling bag after the test, the gas sampling bag 

was also squeezed manually for several times to ensure good mixing between the standard gas 

and the product gases. Experiments were repeated for 3 times to check the reproducibility of the 

data.   
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Figure 5.1. Schematic of the JBR experimental setup for the catalytic gasification tests 
 

 
5.3. Bio-oils 
Two different bio-oils were used in this research. The DMB was a bio-oil produced by fast 

pyrolysis of hardwood at moderate temperatures, in the absence of oxygen, at the Dynamotive 

Energy Systems Corporation in Canada. This bio-oil had been stored in the lab for three years. 

As presented in Table 5.1, the elemental composition of the fresh bio-oil is changed and 

therefore is different from that of the old bio-oil after 3 years so that hydrogen, oxygen and water 

contents were increased and the carbon content was reduced. Gasification experiments were 

carried out with the old DBM. The BWB is another bio-oil that was produced at ICFAR through 

the fast pyrolysis of birch wood in a bubbling fluidized bed reactor at 475°C.  The elemental 
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composition of the BWB is also presented in Table 5.1. Despite the fact that DMB and BWB 

should have different composition of the organic compounds, the water content of the BWB is 

almost twice as large as the water content of the DMB. 

Table 5.1. Elemental analysis of Dynamotive (DMB) and ICFAR (BWB) bio-oils 

 
Fresh DMB Old DMB BWB 

H, wt% 7.20 8.04 9.43 

C, wt% 41.67 36.30 25.83 

N, wt% 0.27 0.30 0.62 

O, wt% (balance) 51.13 55.36 64.13 

Water content, wt% 24.34 27.52 49.85 

General formula CH2.071O0.920N0.005 CH2.624O1.121N0.007 CH4.326O1.827N0.019

C/H, mol/mol 0.48 0.38 0.23 

C/O, mol/mol 1.09 0.87 0.55 

 

 
5.4. Preparation of the bed material 
Pellets of each catalyst were crushed and sieved to achieve a size distribution of 220-350 µm. 

Since the fresh catalysts were provided in non-reduced form, a 10 g batch of them was initially 

reduced in-situ in the JBR setup with a flow of 100 ml/min of pure hydrogen for 6 hours at 

600 °C for the catalyst X and at 700 °C for the catalyst Y according to the reduction procedures 

recommended by the manufacturers. Since the reduced catalysts were pyrophoric, the catalytic 

bed of each catalyst was exposed to steam for an hour before discharge to get passivated; the 

prepared passivated catalyst was then kept inside desiccators.   

The desired mass of a prepared catalyst was mixed with silica sand with a size distribution of 

106-220 µm for the gasification tests in the reactor, so that the total mass of the solid particles 

was 10 g for all experiments. Before starting the experiments, the catalytic bed was reduced in-

situ again with a 100 ml/min flow of pure hydrogen at the reaction temperature for 1 hour to 
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make sure that nickels on the surface of catalysts were in the form of free nickel (Ni0) with no 

NiO on the surface. The size distribution of the catalyst particles was selected to allow for 

separation from the silica sand particles after the experiments. Although silica sand and catalyst 

particles had different size distributions, segregation was not observed in the reactor. 

5.5. Catalyst characterization  
Surface area analysis of the fresh catalysts was carried out by a surface area analyzer (ASAP 

2010) through adsorption of N2 at 77.35 K. According to Table 2, the catalyst X provides a little 

larger surface area and pore volume for the catalytic reactions compared to the catalyst Y.  

Table 5.2. Surface and pore analysis of the steam reforming catalysts 

Catalyst 
BET surface 
area, m2/g 

Average pore 
size, A° 

Total pore 
volume, cm3/g 

Fresh 
catalyst X 

15.375 130.049 0.0502 

Fresh 
catalyst Y 

12.390 100.731 0.0319 


Adsorption Average Pore Diameter (4V/A° by BET) 


Single Point Adsorption Total Pore Volume of pores less than 775.52 A° 

Diameter at P/P0= 0.974 
 

Data of the X-Ray Fluorescence (XRF) analysis of the fresh catalysts are presented in Table 5.3. 

The catalysts X and Y include almost similar elements, but they are different in their 

compositions. Nickel, calcium and lanthanum have noticeable composition differences in the 

catalysts.  For example, estimated total nickel content of the catalysts is X 11.61 wt% while the 

catalyst Y contains 12 wt% of nickel. The concentration of calcium in the catalyst X is larger 

than that in the catalyst Y (9 wt% versus 3.4 wt%) whereas the catalyst Y contains 2.12 wt% 

lanthanum compared to 0.02 wt% lanthanum in the catalyst X.  

Nickel is the most important metal in the catalysts designed for the gasification reactions that 

produce syngas. Although XRF data give an estimation of the total nickel content of the 

catalysts, it is useful to know how much of the nickel is present on the surface of the catalyst 

which acts as the active portion of the nickel involved in the catalytic reactions.  Therefore, TPR-
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TPO analyses on the fresh catalysts were carried out by the AutoChem II 2920 equipment: a 

sample of the fresh catalyst was oxidized completely by air to convert all nickel elements to 

nickel oxide. Then, the TPR analysis was started with a flow of hydrogen of 50 cm3 STP/min 

with the rate of 10 °C/min until 750 °C when the catalyst was completely reduced. In the next 

step, the TPO analysis was performed on the reduced catalyst with a flow of oxygen of 50 cm3 

STP/min until 410 °C when the catalyst was completely oxidized. At the end of the TPR 

analysis, NiO on the surface of catalyst is converted to Ni0 according to reaction 5.1: 

ܱܰ݅ ൅ ଶܪ → ܰ݅଴ ൅  ଶܱ         (5.1)ܪ
 

Also, at the end of the TPO analysis, Ni0 on the surface of the catalyst is converted to NiO 

according to reaction 5.2: 

ܰ݅଴ ൅ ଵ

ଶ
ܱଶ → ܱܰ݅           (5.2) 

 

Knowing the consumption of hydrogen and oxygen during the TPR and TPO analyses, 

respectively, the nickel content on the surface of the catalyst was estimated. Similarly, the TPR-

TPO analyses were conducted on the reduced catalysts.  Results are presented in Table 5.4. It is 

realized from the TPR-TPO analyses data that, other than activating the catalyst, reduction of the 

catalyst has caused a little amount of the nickel element in the bulk of catalyst to move to the 

surface, so that the available Ni0 on the surface of catalysts has increased. However, it is 

important to note that the active portion of nickel is less than half of the total estimated nickel 

content that takes part in the catalytic reactions. Furthermore, the active portion of the catalyst Y 

is larger than that in the catalyst X in both fresh and reduced forms.  
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Table 5.3. XRF analysis data of the steam reforming catalysts X and Y 

Compound Mass, wt% Element Mass, wt% 

 X Y  X Y 

Al2O3 63.66 68.48 Al 33.69 36.24 

NiO 14.78 15.31 Ni 11.61 12.03 

CaO 12.66 4.74 Ca 9.05 3.39 

SiO2 1.06 1.59 Si 0.494 0.746 

MgO 0.492 0.788 Mg 0.297 0.475 

P2O5 0.0574 0.0520 Px 0.0250 0.0227 

Fe2O3 0.0472 0.159 Fe 0.0330 0.111 

La2O3 0.0251 2.49 La 0.0214 2.12 

Sc2O3 0.0039  Sc 0.0025  

Lu2O3  0.0069 Na  0.164 

MnO  0.0024 Lu  0.0061 

 
 
 

Table 5.4. Estimated Ni0 on the catalyst surface by TPR-TPO analysis (wt%) 

Catalyst X Y 

Fresh catalyst 4.05-5.31 5.97-6.61 

Reduced catalyst 4.35-5.46 6.28-6.60 

 

X-Ray powder Diffraction (XRD) patterns of the fresh and reduced samples of the catalysts X 

and Y are shown in Figure 5.2. Although similar phases of Ni0 and NiO have been found, 

different patterns of the powder diffraction have been identified with both catalysts.  
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The effect of catalyst reduction is clear on the XRD patterns. Phases of NiO have been 

disappeared on the reduced catalyst except at 2 of 43.29°, possibly due to the oxidation of the 

nickel on the surface when it was exposed to the ambient air. On the other hand, it is noteworthy 

that phases of active Ni0 appeared on the surface of the catalyst after its reduction with hydrogen, 

showing that this catalyst has become active for the catalytic reactions. Other than peaks of NiO 

and Ni0 phases, structures of the other phases on both fresh and reduced catalysts are similar. 

Regarding the catalyst X, the intensity of the peaks is increased after reduction, although it did 

not change significantly after reduction for the catalyst Y.  
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Figure 5.2. XRD patterns of the catalysts X and Y: (a) fresh catalyst (b) reduced catalyst; square 
symbols () presents phases of NiO and diamond symbols () presents phases of Ni0  

 

 
5.6. Experimental results and discussion 
Non-catalytic and catalytic gasification of the DMB and the BWB bio-oils in the jiggle bed 

reactor were investigated. The residence time was calculated as the time span from the time the 

feed was injected until the product gases were flushed by argon into the gas sampling bag. The 
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mass of bed material was 10 g for all experiments. Silica sand was the bed material for non-

catalytic tests. In catalytic tests, either 0.5 or 1 g of catalyst was mixed with silica sand.  

The Drummond capillary tubes with 4 µl volume were used to introduce the bio-oil into the 

reactor. This volume was chosen to maintain close-to-atmospheric pressure in the reactor. Since 

it is important to know the mass of the feed bio-oil for yield and conversion calculations, five 

capillary tubes were filled with a bio-oil and then the average mass of bio-oil in those tubes was 

considered as the mass of that bio-oil equivalent to 4 µl volume. To make sure the experimental 

data were reproducible, experiments were repeated 3 times. Average value of the obtained yield 

data is reported in this paper. Maximum spread between the replicate data was ±4%. 

In the presence of steam, bio-oil with general formula of CHmOk (neglecting the nitrogen 

content) can be converted to syngas (H2+CO) according to reaction 5.3:  

௠ܱ௞ܪܥ ൅ ሺ1 െ ݇ሻܪଶܱ → ܱܥ ൅ ൫1 ൅݉
2ൗ െ ݇൯ܪଶ       (5.3) 

 

If there is enough steam in the reactor, the produced CO would react with steam through the 

water-gas shift reaction to produce more hydrogen: 

ଶܱܪ ൅ ܱܥ ↔ ଶܪ ൅  ଶ         (5.4)ܱܥ
 

Therefore, summing up reactions 5.3 and 5.4, the overall steam reforming of bio-oil can be 

expressed by reaction 5.5:  

௠ܱ௞ܪܥ ൅ ൫2—݇൯ܪଶܱ → ଶܱܥ ൅ ൫2 ൅ ݉
2ൗ െ ݇൯ܪଶ      (5.5) 

 

There are a number of other reactions taking place after bio-oil is injected into the reactor. For 

example, As soon as bio-oil enters the reactor, it decomposes thermally to other forms of the 

oxygenated molecules (CHyOz) as well as some permanent gases (hydrogen, steam, CO, CO2 and 

light hydrocarbons) and coke (reaction 5.6). Besides, since CO, CO2 and coke are available 

inside the reactor, the Boudouard reaction (reaction 5.7) is another important reaction which can 

affect the CO/CO2 ratio in the final product gases.  
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௠ܱ௞ܪܥ → ௬ܪܥ ௭ܱ ൅ ,ଶܪሺ	ݏ݁ݏܽ݃ ,ଶܱܪ ,ܱܥ ,ଶܱܥ …,ସܪܥ ሻ ൅  (5.6)     ݁݇݋ܿ
 
ܱܥ2 ↔ ܥ ൅  ଶ          (5.7)ܱܥ
 

In addition, in the presence of steam, the produced hydrocarbons undergo steam reforming 

reactions towards production of hydrogen and carbon monoxide. For example, reaction 10 

illustrates how methane can be converted to syngas: 

ସܪܥ ൅ ଶܱܪ → ܱܥ ൅  ଶ          (5.8)ܪ3
 

In this research we did not add additional water because in industry, the practice is to use a 

separate water-gas shift reactor, downstream of the gasification reactor, which can be operated at 

a temperature and with a catalyst optimized for the water-gas shift reaction. In other words, our 

goal was to maximize the conversion of bio-oil to product gases and conversion of the hydrogen 

contained in the raw bio-oil, including its own water, to hydrogen gas (H2). Therefore, the yield 

of produced hydrogen was defined according to equation 5.9: 

ுܻమሺ
௚

௚
ሻ ൌ ௠௔௦௦	௢௙	௛௬ௗ௥௢௚௘௡	௔௦	ுమ	௜௡	௣௥௢ௗ௨௖௧	௚௔௦

௠௔௦௦	௢௙	ு	௜௡	௧௛௘	௥௔௪	௕௜௢ି௢௜௟
       (5.9) 

 

To estimate the number of moles of the bio-oil, bio-oil with a general formula of CHmOk was 

assumed from its elemental composition [28]. Since a maximum of 1 mol of a product gas like 

CO, CO2 and CH4 can be produced per 1 mole of the injected bio-oil, yield of these gases were 

estimated as: 

஼ܻை,஼ைమ,஼ுరሺ
௠௢௟

௠௢௟
ሻ ൌ ௠௢௟௘௦	௢௙	௧௛௘	௣௥௢ௗ௨௖௧	௚௔௦

௠௢௟௘௦	௢௙	௧௛௘	௕௜௢ି௢௜௟
        (5.10) 

 

Accordingly, yields of C2H4 and C2H6 hydrocarbons were estimated by equation 5.11: 

஼ܻమுర,஼మுలሺ
௠௢௟

௠௢௟
ሻ ൌ ௠௢௟௘௦	௢௙	௧௛௘	௣௥௢ௗ௨௖௧	௚௔௦

଴.ହൈ௠௢௟௘௦	௢௙	௧௛௘	௕௜௢ି௢௜௟
        (5.11) 
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The carbon conversion was calculated by summing up the yields of carbon containing product 

gases.  

One advantage of the jiggle bed reactor is that it is very convenient to perform a complete test 

(from feed injection until end of the gas analysis) for a very short period of time i.e. 10 minutes, 

so it is possible to repeat a test to check out reproducibility of the data and conduct tests with 

different operating conditions while a great deal of time is saved. However, it must be taken into 

account that coke as the solid product of the reaction remains in the reactor which must be 

removed before conducting a new test; otherwise, coke can be gasified during the next test and 

have a detrimental effect on the calculation of gasification yields. Therefore, after each test, the 

catalytic bed was regenerated and reduced according to the following in-situ procedure: 

1. Coke was burned off with air for 30 seconds 

2. Argon was introduced to the reactor for 30 seconds to flush out air molecules  

3. Hydrogen was introduced to the reactor for 5 minutes to remove oxygen molecules on the 

surface of the catalysts and make them reduced 

4. Argon was introduced to flush out hydrogen molecules in the reactor for 2 minutes 

5. The procedure above was carried out even for non-catalytic tests where there was only silica 

sand in the reactor.  

 
5.6.1. Thermal cracking of the bio-oils 

Thermal cracking of DMB and BWB bio-oils, i.e. without using any catalyst, was carried out in 

the jiggle bed reactor at temperatures of 700, 750 and 800 C for a residence time of 30 s. Such a 

long residence time was chosen as an extreme condition to investigate whether the absence of 

catalyst could be compensated with a long residence time.  The mass of silica sand was 10 g for 

all experiments.  

The effect of temperature on the yield of the product gases is shown in Figure 5.3. In addition, 

molar ratios of H2/CO and CO/CO2 are compared in Figure 5.4. Complete carbon conversion 

could not be achieved for either bio-oil. Carbon conversion of the DMB was between 48% at 

700°C and 64% at 800°C, and carbon conversion of the BWB was between 52% at 700°C and 
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72% at 800°C. Not only were carbon conversions low, but also the yield of hydrocarbons was 

quite high, especially, at lower temperatures.  

The hydrogen yield increased with increasing temperature. Hydrogen can be produced through 

steam reforming of the organic compounds (reaction 5.5), thermal decomposition (reaction 5.6) 

and steam reforming of the produced hydrocarbons (e.g. reaction 5.8). The hydrogen yield was 

low between 0.17 and 0.48 from the DMB and between 0.19 and 0.36 from the BWB over the 

tested temperature range. The larger hydrogen yield of the DMB compared to that of the BWB, 

which has higher water content (Table 5.1), implies that the rate of hydrogen production through 

the pathways such as the thermal decomposition of organic compounds was faster than rate of 

steam reforming reactions in thermal cracking of the DMB. 

The methane yield was quite high at 700°C: 0.14 and 0.09 for DMB and BWB, respectively. 

Figure 5.3 shows that the methane yield decreased with increasing temperature, which indicates 

an increasing conversion of the produced methane through the steam reforming reaction 

(reaction 5.8).  Complete conversion of methane was not achieved even at 800°C, which can be 

due to either insufficient steam or the absence of catalyst.  

Figure 5.3 shows that the yield of C2 hydrocarbons was the lowest among the product gases, and 

increased with increasing temperature. The only unique trend is seen for the BWB thermal 

cracking, where the yield of C2 hydrocarbons decreased slightly between 750 and 800 °C.   

CO was the main product among the carbon containing gases. As it is illustrated in Figure 5.4, 

the molar CO/CO2 ratio was always larger than one, probably because there was not enough 

steam in the reactor to react with CO through the water gas shift reaction to produce CO2 and 

extra hydrogen. For instance, considering the water content of the bio-oils in Table 5.1, it is clear 

from the data in Figure 5.4 that the molar CO/CO2 ratio of BWB thermal cracking was lower 

than that of DMB thermal cracking at similar temperatures. The largest difference between the 

molar CO/CO2 ratios of the DMB and the BWB thermal cracking is found at a temperature of 

800°C with the yield of CO2significantly larger in thermal cracking of the BWB, possibly due to 

a greater influence of the water gas shift reaction for this bio-oil at 800°C. 
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According to Figure 5.4, the H2/CO ratio increased with increasing temperature. Although lower 

yields of hydrogen were achieved from the BWB, larger molar H2/CO ratios were obtained 

during its thermal cracking. Given the larger water content of the BWB, it is realized that more 

CO should have been converted to CO2 through the water gas shift reaction.  

 

 

Figure 5.3. Yield of product gases from thermal cracking of the DMB and the BWB versus 
temperature. Residence time= 30 s 

 

 

Figure 5.4. Yield of molar H2/CO and CO/CO2 ratios from thermal cracking of the DMB and the 
BWB; Residence time= 30 s 
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5.6.2. Catalytic cracking of the bio-oils 

The catalysts X and Y were tested to determine the yield of the product gases as a function of 

catalyst type and mass, residence time, and temperature, to find out how the hydrogen yield and 

the carbon conversion can be maximized. Since the DMB and the BWB bio-oils have different 

elemental compositions and water contents, it is interesting to study how the applied operating 

conditions can result in different yields of the product gases from the gasification of the tested 

bio-oils.  

5.6.2.1. Effect of catalyst type and mass 

The effects of catalyst type and mass on yields of product gases and carbon conversion from the 

gasification of the DMB and the BWB bio-oils were investigated with the catalysts X and Y. The 

catalyst mass ranged from 0 (thermal cracking) to 1 g. Figures 5.5 and 5.6 illustrate the yields of 

the product gases and the carbon conversion for the experiments conducted at a temperature of 

800°C and a residence time of 30 s.   

The yields of hydrogen, CO and CO2 increased with increasing catalyst mass (Figure 5.5). The 

methane yield initially increased because of increased conversion of bio-oils to methane and then 

decreased with larger catalyst masses that helped convert methane to other gases. The yield of C2 

hydrocarbons was also decreased as the catalyst mass increased. Both catalysts X and Y 

increased the carbon conversion (Figure 5.6). Thus, the catalysts were effective to convert 

condensable and large organic compounds in the bio-oils, which could not be cracked in the 

thermal cracking tests, to permanent gases.   

The catalyst X gave higher yields of hydrogen and CO than the catalyst Y. On the other hand, 

lower yields of hydrocarbons were observed with the catalyst X. This indicates that the catalyst 

X was more active than the catalyst Y in steam reforming and water gas shift reactions.  

Given similar operating conditions and catalyst, the yields of product gases depend on the 

composition of the organic compounds and the water content of the bio-oils. For example, as 

with the thermal cracking results of Figure 5.3, although the BWB had larger water content, 
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higher yields of hydrogen were achieved in catalytic gasification of the DMB as shown in Figure 

5.5. On the other hand, the influence of steam reforming and water gas shift reactions should 

have been greater during catalytic gasification of the BWB bio-oil because of presence of more 

steam in the reactor. For instance, slightly lower yields of CO and larger yields of CO2 obtained 

from the BWB than those from the DMB should indicate the effect of its larger water content. 

Figure 5.5 shows that the yield of CO2 decreases between 0.5 g and 1 g catalyst mass for the 

DMB, while it increases for the BWB, which could be due to progress of the water gas shift 

reaction. Nevertheless, it is noteworthy that, since hydrogen of the water content was considered 

to calculate the hydrogen yield, such large yields of hydrogen indicate that the bio-oil water was 

consumed in the catalytic experiments.  

Regardless of the type of bio-oil, and under similar conditions, the CO yield was larger than the 

CO2 yield: this can be due to low amount of steam in the reactor and, as a result, relatively low 

rate of the water gas shift reaction. In other words, if sufficient steam could be available in the 

reactor, the produced CO would partly react with it in favor of higher production of hydrogen 

and CO2.  

The yield of methane from the BWB cracking drops significantly with 1 g mass of the catalyst X, 

but there is a very slight decrease with a similar mass of the catalyst Y. It seems that the BWB 

contains heavy molecules which the catalyst Y is unable to convert directly to hydrogen and CO; 

therefore, instead, these heavy molecules are probably catalytically cracked to hydrocarbons like 

methane.   

Overall, the catalyst X showed the best performance in terms of larger production of hydrogen 

and CO as well as carbon conversion of the bio-oils. Although, according to Table 5.4, 

availability of the nickel on the surface of the catalyst Y was larger, better performance of the 

catalyst X should be attributed to the larger BET surface area (Table 5.2), and its larger calcium 

content (Table 5.3).     
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Figure 5.5. Effect of the catalyst type and mass on yield of product gases from catalytic gasification 
of the DMB and the BWB, temperature= 800°C, residence time= 30 s. Full and dashed lines 

represent trend of yields with the catalysts X and Y, respectively.  
 

 

Figure 5.6. Effect of the catalyst type and mass on carbon conversion from catalytic gasification of 
the DMB and the BWB, temperature= 800°C, residence time= 30 s. Full and dashed lines represent 

trend of yields with the catalysts X and Y, respectively. 
 

 
5.6.2.2. Effect of residence time   

Catalytic gasification of both the DMB and the BWB bio-oils was carried out at 800°C and 

residence times between 10 s and 30 s. Figure 5.7 shows how the yields of the product gases 

varied with the residence time when 1 g of the catalyst X was used. The results show that a 

longer residence time helped increase the yields of hydrogen, CO and CO2, while hydrocarbons 

were converted to permanent gases.  
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A comparison of Figures 5.5 and 5.7 shows that the impact of the catalyst mass on the yield of 

hydrogen was larger than that of residence time at 800°C.  

 

Figure 5.7. Effect of residence time on yield of product gases from catalytic gasification of the DMB 
and the BWB, temperature= 800°C, mass of the catalyst X= 1 g 

 
 
5.6.2.3. Effect of temperature  

Catalytic gasification of both the DMB and the BWB was conducted with the catalyst X at 

700°C, 750°C and 800°C at residence time of 30 s to investigate maximum conversion of the 

bio-oils and yield of syngas as a function of temperature. The mass of catalyst was 0.5 g and 1 g. 

The yield of the product gases is illustrated in Figure 5.8. In addition, molar ratios of H2/CO and 

CO/CO2 are compared in Figure 5.9.  

In comparison with thermal cracking experiments, Figure 5.3, it is realized from Figure 5.8 that a 

larger carbon conversion of the bio-oils was achieved in presence of catalyst at all temperatures. 

In other words, regardless of the composition of the product gases, the catalyst provided good 

enough conditions for those heavy organic compounds, which did not crack in the absence of 

catalyst, to be cracked and be converted to permanent product gases. Furthermore, the larger 

carbon conversions can also be attributed to gasification of deposited coke in the presence of 

catalyst. Overall, as shown in Figure 5.8, not only total carbon conversion of the bio-oils in the 

catalytic gasification experiments was larger than that obtained in the thermal cracking 

experiments, under similar conditions, but it also increased with both temperature and catalyst.  
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It seen in Figure 5.8 that in opposite to larger water content of the BWB, its carbon conversion, 

was not noticeably larger than carbon conversion of the DMB; in other words, it was sometimes 

less, especially at lower temperatures. For example, the carbon conversion of the BWB was 67% 

and 75% whereas the carbon conversion of the DMB was 69% and 77% at 700°C with 0.5 g and 

1 g of catalyst, respectively, which is likely due to some heavier organic compounds in the BWB 

that could not be converted to the product gases through steam reforming reactions despite 

having larger water content. 

Similarly to the carbon conversion of the bio-oils, at all temperatures, the yield of hydrogen 

significantly increased in the presence of catalyst compared to the thermal cracking experiments. 

The yield of hydrogen was also a function of the catalyst mass. On the other hand, the yield of 

hydrogen did not change significantly as a function of temperature, especially at lower 

temperatures and lower catalyst mass. It is interesting to note that, at similar temperature and 

with the same catalyst mass, larger yields of hydrogen were achieved in the DMB catalytic 

experiments than in the BWB experiments, despite the larger water content of the BWB, 

indicating alternate pathways of hydrogen production other than stream reforming and water gas 

shift reactions, such as thermal decomposition reactions.  

CO displayed the largest yield among the carbon containing product gases at all temperatures. Its 

yield increased with temperature and with the mass of catalyst. Therefore, within the tested 

temperatures, it can be concluded that the steam reforming reactions, such as reactions 5.3 and 

5.8, and the Boudoard reaction were the dominant catalytic reactions leading to CO production.  

The variation of CO2 yield as a function of temperature, especially for catalytic gasification of 

the DMB, is not monotonic. This is probably because the rate of consumption of CO2 in 

reactions like the Boudouard reaction is higher than its production rate. It is noteworthy that the 

maximum yield of CO2 shown in Figure 5.8 is achieved with the catalytic gasification of the 

BWB at 800°C where, compared to its yield at the lower temperatures, the rate of its production 

through the water gas shift reaction should have been larger than its rate of consumption. 
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According to Figure 5.9, the molar CO/CO2 ratio increased with temperature. At similar 

temperatures, larger molar CO/CO2 ratios were obtained in catalytic gasification of the DMB 

than that of the BWB. Such results indicate that, in the absence of sufficient steam in the reactor, 

the rate of water gas shift reaction is low and therefore less hydrogen can be produced; therefore, 

for instance, larger molar H2/CO ratios were obtained with the catalytic gasification of the BWB. 

However, it is noteworthy that along with CO, the production of CO2 increased accordingly with 

increasing the catalyst mass because the molar CO/CO2 ratios did not change significantly as a 

function of the amount of catalyst. In other words, the larger mass of catalyst was influential to 

activate the water gas shift reaction.     

In comparison with the thermal cracking results, lower yields of methane and C2 hydrocarbons 

were obtained in the catalytic gasification of the bio-oils. Taking into consideration that carbon 

conversion was also higher in the catalytic tests, it can be concluded that the rate of conversion 

of hydrocarbons greatly increased in the presence of catalyst.  

The yield of hydrocarbons was dependant on the catalyst mass. It is clear from the data presented 

in Figure 5.8 that the production of hydrocarbons increased as a function of temperature when 

the catalyst mass was 0.5 g; on the other hand, the production of C2 was zero and the production 

of methane decreased with temperature at all tested temperatures when the catalyst mass was 1 g.  
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Figure 5.8. Yield of product gases from catalytic cracking of the DMB and the BWB versus 
temperature. Residence time= 30s; left hand side bars: mass of the catalyst X= 0.5 g; right hand 

side bars: mass of the catalyst X= 1 g. Yield of hydrogen is shown with continuous and dashed lines 
for 0.5 g and 1 g catalyst masses, respectively 

 

 

Figure 5.9. Yield of molar H2/CO and CO/CO2 ratios from catalytic cracking of the DMB and the 
BWB; residence time= 30 s. Mass of the catalyst X= 0.5g (continuous lines) and 1g (dashed lines) 

 

The molar H2/CO ratio is a key parameter which needs to be optimized for the downstream 

processes. As illustrated in Figure 5.9, the molar H2/CO ratios obtained from the catalytic 

gasification experiments are larger than those obtained from the thermal cracking tests (Figure 

5.4). However, the molar H2/CO ratios decreased with temperature due to the larger production 
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of CO than the production of hydrogen at higher temperatures. This ratio also decreased with 

larger catalyst masses.   

Given that the carbon conversion of the bio-oils increased with temperature, contrary to trend of 

the molar H2/CO ratio, an optimization is required to decide between larger carbon conversion 

and larger molar H2/CO ratios. For example, in relation to the catalytic gasification of the DMB 

in the absence of steam, the molar H2/CO ratio was lower than 2 at 800°C; hence, if a molar 

H2/CO ratio of 2 was required for the downstream process, a water gas shift reactor could be 

used after the gasification reactor to convert CO to CO2 in favor of hydrogen production to 

increase the value of the molar H2/CO ratio.  

By comparing the molar H2/CO ratios obtained from catalytic gasification of the DMB and the 

BWB in Figure 5.9, it is evident that larger values of the molar H2/CO were achieved with the 

BWB. Given the fact that the BWB had larger water content, it is understood that sufficient 

presence of steam in the gasification reactor helps to gain high enough value of the molar H2/CO 

ratio to avoid having a water gas shift reactor after the gasification reactor.  

5.7. Conclusions 
Thermal and catalytic gasification of the hardwood bio-oil (DMB) and Birchwood bio-oil 

(BWB) were carried out in the jiggle bed reactor.  Despite the larger water content of the BWB, 

larger hydrogen yields were achieved from thermal and catalytic cracking of the DMB, which 

can be attributed to the type of the organic compounds of the DMB and its significant reaction 

pathways, such as thermal decomposition. 

The results of the thermal cracking experiments which were conducted with a residence time of  

30 s showed that the total carbon conversion of the bio-oils and yield of hydrogen increased with 

temperature. The maximum carbon conversion achieved for the DMB and the BWB was 64% 

and 72%, respectively. The large production of CO and low production of hydrogen in thermal 

cracking of the bio-oils resulted in the molar H2/CO ratios less than 2.  
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The catalyst X had less nickel on its surface, but it showed a better performance than the catalyst 

Y in terms of maximum production of syngas, minimum production of hydrocarbons and 

maximum carbon conversion of the bio-oils. This improved performance can be attributed to the 

larger surface area of the catalyst X and its higher calcium content.      

In the presence of both catalysts, the yield of hydrogen and the total carbon conversion of the 

bio-oils significantly increased. In addition, the yield of hydrocarbons declined noticeably in the 

catalytic experiments. Overall, the yield of product gases increased with residence time. Yields 

of hydrogen and CO increased also with catalyst mass at similar residence times.  

The yield of hydrogen and the carbon conversion also increased with temperature. On the other 

hand, the molar H2/CO ratios obtained in the catalytic tests decreased with temperature. 

Therefore, an optimization is required to choose a temperature at which maximum carbon 

conversion and the required molar H2/CO ratio can be achieved.   

Since in the absence of excess steam, low value of the molar H2/CO ratio can be obtained, either 

additional steam must be used in the gasification reactor or a secondary water gas shift reactor 

must be used after the gasification reactor to convert CO to CO2 and produce extra hydrogen 

through the water gas shift reaction.  
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6.1. Introduction 
Fossil fuels including petroleum oil, natural gas and coal are the most common fuels. However, 

such fuels are not renewable and many countries have to resort to imports to meet their energy 

needs. Another challenge with these fuels is that they are sources of large amount of pollutants 

that create human health problems and global warming.  Many governments have chosen to 

promote new technologies to substitute renewable fuels for fossil fuels to reduce greenhouse gas 

emissions, adhere to environmental regulations, provide some security of supply, and reduce 

imports [1-3]. 

Biomass is an attractive renewable source of fuel and energy. Thermochemical processes can 

convert biomass to a liquid bio-oil or to a syngas [4-18]. Bio-oil can be used directly as a fuel or 

upgraded to chemicals or fuels. Syngas, which is a mixture of hydrogen and carbon monoxide 

[19] can be also produced from gasification of bio-oil [20-39]. The advantage of using bio-oil as 

an intermediate is that, in contrast with both raw biomass and gas, it can easily be produced in 

small distributed units, stored and transported.  Not only can platform chemicals and clean fuels 

be produced from syngas, but hydrogen is itself an alternative fuel.  A high hydrogen production 

is usually desired:  for example, methanol production requires a syngas with a molar H2/CO ratio 

of 2. Therefore, maximum hydrogen production has been a major objective in steam 

reforming/gasification of bio-oil. 

Bio-oil is a diverse mixture of oxygenated compounds such as acids, aldehydes, alcohols, 

ketones, substituted furans derived from cellulose and hemi-cellulose as well as phenolic and 

cyclic oxygenates derived from lignin.  The bio-oil composition depends on the original biomass 

and the pyrolysis conditions. As a result, the optimum operating conditions of the gasification 

process will likely vary with the original biomass and the pyrolysis conditions. 

An appropriate catalyst is one of the most important operating factors in syngas production. 

Olivine is a mineral material that has been used by several researchers [40-48] in biomass 

gasification to crack tars in the product gases. Olivine (with general formula of (Mg,Fe)2SiO4) 

has been proven to be attrition resistant in fluidized bed reactors and has catalytic activities in 
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gasification processes because of its iron content [40-42, 44, 45, 47]: It has been stressed in the 

mentioned  references that pre-treatment of olivine is crucial to make it catalytically active. In 

particular, effect of calcination temperature on the catalytic activity of olivine has been 

investigated. For example, extensive analytical and experimental studies with olivine and nickel 

loaded olivine, which were calcined at temperatures between 400°C and 1400°C, reported that 

the catalytic activity of such materials depends on the calcination temperature because, 

afterwards, these catalysts can be reduced in the gasification reactor, and at the optimum 

calcination temperature, maximum amount of iron oxide is extracted from the bulk of olivine.  In 

other words, it has been claimed that iron content of olivine must be in the form of iron oxide 

when it is introduced in the gasification reactor; gases such as hydrogen and carbon monoxide, 

which are produced in gasification reactors, reduce the iron oxide to metal iron (Fe0) that is an 

active catalyst of gasification reactions.  

The objectives of this study are, first to compare bio-oil gasification with inert sand and with 

olivine with different pretreatments, and, second, to determine whether a model based on 

thermodynamic equilibrium can predict mole fraction of product gases at different operating 

conditions.  

6.2. Equilibrium model for bio-oil gasification 

There are two different approaches to estimate the equilibrium mole fraction of gasification 

products [49]. One approach minimizes the Gibbs free energy of the gasification products and 

does not need to consider independent equilibrium reactions between products. The second 

approach uses the equilibrium constants of the independent reactions to predict the 

concentrations of the gasification products. Both approaches provide the same results. There are 

thermodynamic models available in literature to predict the equilibrium yields of gasification 

products of natural gas and coal using either of the equilibrium approaches [50-57].  

The challenge in thermodynamic analysis of products of a gasification process where the feed is 

a C-H-O mixture like bio-oil is that there are many molecules in the feed with unknown 

concentrations.  Commercial simulation packages such as HYSYS and ASPEN PLUS have been 
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used to simulate equilibrium conditions of model compounds of bio-oil [58-61], but the 

drawback of the simulators is that the bio-oil composition must be known. This prevents their 

application to actual bio-oils, since the general consensus is that at least half of the compounds in 

a bio-oil cannot be identified with current analytical methods [62].  

Li et al. [63 and 64] developed a thermodynamic model to predict the equilibrium yield of 

products of coal and biomass gasification based on the minimization of the Gibbs free energy. 

Ho et al. [65] used a HSC Chemistry simulator, which uses a similar approach, to predict the 

equilibrium yield of the gasification products of some biomasses.   

This paper introduces a thermodynamic methodology that uses the equilibrium constants of the 

independent reactions. This model can be applied for equilibrium analysis of gasification of any 

feedstock that contains carbon, hydrogen and oxygen. The model solves a set of non-linear 

equations that includes atomic mass balance equations as well as equilibrium equations.  

To apply this model for the gasification of feedstocks such as biomass and bio-oil that have 

unknown constituents, a general molecular formula is assumed for the feedstock, such as CHmOn 

where m and n represent the elemental composition of the feedstock. The goal is to develop a 

model that is able to predict the effects of temperature, pressure, feedstock elemental 

composition and steam to carbon ratio on the equilibrium mole fraction of gasification products 

including solid carbon. Once the equilibrium mole fractions are known, the energy requirement 

of the gasification process can also be estimated. 

6.2.1. Development of equations   

It is assumed that products of gasification at equilibrium conditions are hydrogen, carbon 

monoxide, carbon dioxide, steam, coke, methane, ethane, ethylene, propane and propylene. 

Therefore, conversion of a CHmOn feed to gasification products can be summarized by equation 

6.1: 

௠ܪܥ ௡ܱ ൅ ܾଵܪଶܱ ൅ ܾଶܱଶ → ܽଵܪଶ ൅ ܽଶܱܥ ൅ ܽଷܱܥଶ ൅ ܽସܪܥସ ൅ ܽହܪଶܱሺ௚ሻ ൅ ܽ଺ܥ ൅ ܽ଻ܥଶܪ଺ ൅
ସܪଶܥ଼ܽ ൅ ܽଽܥଷܪଵ଴ ൅ ܽଵ଴ܥଷ(6.1)         ଼ܪ 
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Stoichiometric parameters in equation 6.1 represent the number of moles of consumed/produced 

compounds per one mole of CHmOn. Since nitrogen does not participate in gasification reactions, 

oxygen is included in the equation instead of air. Also, coke is assumed to be produced as pure 

carbon.  

Parameters b1 and b2 are inlet and known variables which indicate molar steam to carbon ratio 

(S/C) and molar oxygen to carbon ratio (O/C) depending on the gasification process. These 

parameters indicate the amounts of the additional oxygen and steam that are required to obtain 

certain concentration of the product gases from the gasification reactor. Parameters a1 through a10 

are unknown variables which should be calculated by the equilibrium model. With the 

equilibrium constant modeling approach, independent reactions between product gases should be 

found first; then equilibrium constant equations should be developed for each independent 

reaction. Also, three mass balance equations should be developed for carbon, hydrogen and 

oxygen elements.     

Mass balance equations for carbon, hydrogen and oxygen atoms result in equations 6.2 through 

6.4: 

:ܥ	݉݋ݐܽ 1 ൌ 	ܽଶ ൅ ܽଷ ൅ ܽସ ൅ ܽ଺ ൅ 2ܽ଻ ൅ 2଼ܽ ൅ 3ܽଽ ൅ 3ܽଵ଴     (6.2) 
 
݉:ܪ	݉݋ݐܽ ൅ 2ܾଵ ൌ 2ܽଵ ൅ 4ܽସ ൅ 2ܽହ ൅ 6ܽ଻ ൅ 4଼ܽ ൅ 10ܽଽ ൅ 8ܽଵ଴   (6.3) 
 
:ܱ	݉݋ݐܽ ݊ ൅ ܾଵ ൅ 2ܾଶ ൌ ܽଶ ൅ 2ܽଷ ൅ ܽହ       (6.4) 
 

Independent reactions between product gases at equilibrium are according to equations 6.5 

through 6.11. These reactions are steam reforming reactions of hydrocarbons and solid carbon as 

well as water gas shift reaction. Solid carbon is the only species in solid phase while other 

species are in gas phase at equilibrium. 

ସܪܥ ൅ ଶܪ ሺܱ௚ሻ ↔ ܱܥ ൅  ଶ         (6.5)ܪ3
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଺ܪଶܥ ൅ ଶܱሺ௚ሻܪ2 ↔ ܱܥ2 ൅  ଶ        (6.6)ܪ5
 
ସܪଶܥ ൅ ଶܱሺ௚ሻܪ2 ↔ ܱܥ2 ൅  ଶ        (6.7)ܪ4
 
଼ܪଷܥ ൅ ଶܱሺ௚ሻܪ3 ↔ ܱܥ3 ൅  ଶ        (6.8)ܪ7
 
଺ܪଷܥ ൅ ଶܱሺ௚ሻܪ3 ↔ ܱܥ3 ൅  ଶ        (6.9)ܪ6
 
ܱܥ ൅ ଶܪ ሺܱ௚ሻ ↔ ଶܱܥ ൅  ଶ         (6.10)ܪ
 
ܥ ൅ ଶܪ ሺܱ௚ሻ ↔ ܱܥ ൅  ଶ         (6.11)ܪ
 

The relation between equilibrium constant and concentration of reactants and products for 

reaction j can be found with the fugacity of species and the standard Gibbs energy of the reaction 

j: 

௝ܭ ൌ ൬∏ ൬
௙ഢ෡

௙೔
∘൰
ఔ೔
൰
௝
ൌ ቆ݁݌ݔ ቀെ୼ீ°

ோ்
ቁቇ

௝

       (6.12) 

 

Where ܭ௝  is the equilibrium constant of reaction j, ప݂෡
 is the fugacity of species i among gases at 

equilibrium, ௜݂
°is the fugacity of pure species i at standard conditions, νi is the stoichiometric 

coefficient of species i in reaction j (negative for reactants and positive for products), ΔG୨
° is the 

standard Gibbs energy of reaction j, T is the temperature in Kelvin and R is the universal 

constant for gases (8.314 Joule/mole/K).  

 ప݂෡ can be estimated from equation 6.13: 
 

ప݂
෡ ൌ ప߮ෝ             (6.13)	௜ܲݕ
 

Where ప߮ෝ  is the fugacity coefficient of species i at equilibrium mixture, yi is the mole fraction of 

species i and P is the equilibrium pressure inside the reactor. ప߮ෝ  is assumed unity because the 

temperature of gasification processes is very high and pressure is almost atmospheric [49], so it 

can be assumed that there is an ideal mixture of gases inside the gasification reactor. 
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Furthermore, it is assumed that ௜݂
°  is equal to standard pressure of pure species i. Therefore, by 

some manipulation left term of equation 12 can be written as: 

௝ܭ ൌ ቀቀ௉
௉°
ቁ
ఔ
. ௜ఔ೔ቁݕ∏

௝
          (6.14)  

 

Where: 

ሺߥሻ௝ ൌ ሺ∑  ௜ሻ௝           (6.15)ߥ
 

And, the mole fraction of species i is: 

௜ݕ ൌ
௔೔
∑௔೔

           (6.16)    

 

Equation 6.14 illustrates how pressure inside the reactor relates to equilibrium constant of 

reaction j; however, P/P° is a dimensionless ratio. 

 Standard Gibbs energy of reaction j in equation 6.12 is calculated by equation 6.17: 

ቀ୼ீ
°

ோ்
ൌ ∆ீೝ°ି∆ுೝ°

ோ ೝ்
൅ ∆ுೝ°

ோ்
൅ ଵ

ோ்
׬ ܶ݀°௣ܥ∆
்

ೝ்
െ ଵ

ோ
׬ °௣ܥ∆
்

ೝ்

ௗ்

்
ቁ
௝
     (6.17) 

 

Where ሺ∆ܩ௥°ሻ௝,and ሺ∆ܪ௥°ሻ௝ are the standard Gibbs energy change and the standard enthalpy 

change, respectively, of reaction j at the reference temperature and are estimated from the Gibbs 

energy and enthalpy of formation of the species of that reaction : 

൫∆ܩ௥° ൌ ௥,௜ܩ௜ߥ∑
° ൯

௝
           (6.18) 

 
൫∆ܪ௥° ൌ ௥,௜ܪ௜ߥ∑

° ൯
௝
           (6.19) 

 

Temperature reference, Tr, is 298.15 K. Standard Gibbs energy and enthalpy of formation of the 

species at equilibrium are presented in Table 6.1. 
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Table 6.1. Gibbs energy and enthalpy of formation of products at equilibrium [67] 

Product H୰°, jol/mol G୰° , jol/mol 

Methane െ7.84 ൈ 104 െ5.10 ൈ 104 

Ethane െ8.74 ൈ 104 െ3.29 ൈ 104 

Ethylene 5.23 ൈ 104 6.81 ൈ 104 

Propane െ1.04 ൈ 105 െ2.35 ൈ 105 

Propylene 2.04 ൈ 10ସ 6.27 ൈ 10ସ 

H2 0.00 0.00 

CO െ1.11 ൈ 105 െ1.37 ൈ 105 

CO2 െ3.94 ൈ 105 െ3.94 ൈ 105 

Water െ2.42 ൈ 105 െ2.29 ൈ 105 

C 0.00 0.00 

 

There are two integration terms inside equation 6.17 corresponding to the change in heat 

capacity of the species involved in reaction j. The heat capacities of species in the Chemical 

Properties Handbook [67] are reported as a function of temperature with the form of: 

.ଵି݈݋݉.݈݋௣ሺ݆ܥ ଵሻିܭ ൌ ܣ ൅ ܶܤ ൅ ଶܶܥ ൅ ଷܶܦ ൅  ସ     (6.20)ܶܧ
 

Table 6.2 lists the heat capacity coefficients for the gasification products [68]. 
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Table 6.2. Coefficients for the special heat capacity of gasification products 

.ଵି݈݋݉.݈݋௣ሺ݆ܥ[68] ଵሻିܭ ൌ ܣ ൅ ܶܤ ൅ ଶܶܥ ൅ ଷܶܦ ൅  ସܶܧ
Product A B C D E 

Methane 34.92 െ4.00 ൈ 10െ2 1.92 ൈ 10െ4 െ1.53 ൈ 10െ7 3.93 ൈ 10െ11 
Ethane 28.17 4.34 ൈ 10െ2 1.89 ൈ 10െ4 െ1.91 ൈ 10െ7 5.35 ൈ 10െ11 
Ethylene 32.08 െ1.48 ൈ 10െ2 2.47 ൈ 10െ4 െ2.37 ൈ 10െ7 6.83 ൈ 10െ11 
Propane 28.28 1.16 ൈ 10െ1 1.96 ൈ 10െ4 െ2.33 ൈ 10െ7 6.87 ൈ 10െ11 
Propylene 31.30 7.25 ൈ 10െ2 1.95 ൈ 10െ4 െ2.16 ൈ 10െ7 6.30 ൈ 10െ11 
H2 25.40 2.02 ൈ 10െ2 െ3.85 ൈ 10െ5 3.19 ൈ 10െ8 െ8.76 ൈ 10െ12 
CO 29.56 െ6.58 ൈ 10െ3 2.01 ൈ 10െ5 െ1.22 ൈ 10െ8 2.26 ൈ 10െ12 
CO2 27.44 4.23 ൈ 10െ2 െ1.96 ൈ 10െ5 4.00 ൈ 10െ9 െ2.99 ൈ 10െ13 
Water 33.93 െ8.42 ൈ 10െ3 2.99 ൈ 10െ5 െ1.78 ൈ 10െ8 3.69 ൈ 10െ12 
C െ0.83 3.48 ൈ 10െ2 െ1.32 ൈ 10െ5 0.00 0.00 

 

From equation 6.20 and ߬ ൌ ܶ/ ௥ܶ: 

൬׬ Δܥ௣°݀ܶ ൌ Δܣ ௥ܶሺ߬ െ 1ሻ ൅ ୼஻

ଶ ௥ܶ
ଶሺ߬ଶ െ 1ሻ ൅ ୼஼

ଷ ௥ܶ
ଷ்

ೝ்
ሺ߬ଷ െ 1ሻ ൅ ୼஽

ସ ௥ܶ
ସሺ߬ସ െ 1ሻ ൅ ୼ா

ହ ௥ܶ
ହሺ߬ହ െ

1ሻ൰
௝
            (6.21) 

൬׬ Δܥ௣°
ௗ்

்
ൌ Δ݈݊ܣሺ߬ሻ ൅ Δܤ ௥ܶ ൫߬ െ 1൯ ൅ ୼஼

ଶ ௥ܶ
ଶ்

ೝ்
ሺ߬ଶ െ 1ሻ ൅ ୼஽

ଷ ௥ܶ
ଷሺ߬ଷ െ 1ሻ ൅ ୼ா

ସ ௥ܶ
ସሺ߬ସ െ 1ሻ൰

௝
 

            (6.22) 

Where: 

ሺΔܣ ൌ 	∑  ௜ሻ୨           (6.23)ܣ௜ߥ
 
ሺΔB ൌ 	∑  ௜ሻ୨           (6.24)ܤ௜ߥ
 
ሺΔC ൌ 	∑  ௜ሻ୨          (6.25)ܥ௜ߥ
 
ሺΔD ൌ 	∑  ௜ሻ୨           (6.26)ܦ௜ߥ
 
ሺΔܧ ൌ 	∑  ௜ሻ୨           (6.27)ܧ௜ߥ
 

Substituting equations 6.14 and 6.17 into equation 6.12 provides a new relationship for each 

reaction j which associates the molar concentration of gasification products with thermodynamic 
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properties such as temperature, pressure, special heat capacity, Gibbs energy and enthalpy of 

formation of the species involved in the reaction j. 

6.2.2. Development of the solving program 

Three mass balance equations and seven equilibrium constant equations developed above form a 

set of ten non-linear equations to solve ten unknown variables (a1 through a10). One advantage of 

the developed equilibrium model is its ability to predict the number of moles of coke at 

equilibrium. A MATLAB program applying the “fsolve” command from optimization toolbox 

was developed to solve this set of non-linear equations.  A constraint has been defined in the 

program that none of the values must be negative.   

6.2.3. Validation of the equilibrium model 

In order to validate the ability of the developed equilibrium model to identify the mole fraction 

of gasification products, this model was tested for wood and palm oil waste for which 

equilibrium mole fractions of gasification were predicted using simulators.  Results of our model 

were then compared to the results reported in the references [65] and [66]. Table 6.3 illustrates 

these comparisons according to equation 6.1. It should be pointed out that equilibrium value of 

C2 and C3 hydrocarbons were estimated to be zero by our developed thermodynamic model 

considering the operating conditions listed in this table. As shown, there is a very good 

agreement between reported results in literature and estimated results by our equilibrium model. 

Therefore, it is verified that the developed equilibrium model is able to predict the equilibrium 

mole fractions of gasification of any C-H-O feed provided its elemental analysis is known.  
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Table 6.3. Comparison of results between equilibrium model and references data 

௠ܪܥ ௡ܱ ൅ ܾଵܪଶܱ ൅ ܾଶܱଶ → ܽଵܪଶ ൅ ܽଶܱܥ ൅ ܽଷܱܥଶ ൅ ܽସܪܥସ ൅ ܽହܪଶܱ ൅ ܽ଺ܥ 

b1 b2 a1 a2 a3 a4 a5 a6 

Wood [66]: CH1.4O0.59 
Temperature: 913 K; Pressure: 1 bar 

Model 
0 0 

0.430 0.183 0.130 0.062 0.146 0.625 

Reference 0.44 0.17 0.13 0.005 0.15 0.64 

Temperature: 927 K; Pressure: 1 bar 
Model 

0.51 0.21 
0.777 0.526 0.361 0.080 0.273 0.034 

Reference 0.78 0.5 0.37 0.07 0.29 0.06 

Temperature: 1200 K; Pressure: 1 bar 
Model 

0 0.3 
0.606 0.902 0.097 0.0003 0.093 0.000 

Reference 0.61 0.9 0.1 0.0003 0.09 0 

Palm oil waste [65]: CH1.69O0.54 
Temperature:  833 K-1173 K; Pressure: 1 bar 

Model 
0 0 

0.682 0.357 0.054 0.044 0.074 0.544 

Reference 0.69 0.35 0.05 0.03 0.08 0.56 

 

 
6.3. Experimental setup and procedures 
The jiggle bed reactor is a batch fluidized bed micro-reactor where heat required by the 

gasification reactions is supplied by induction heating. Solid particles are fluidized in a ceramic 

crucible by the fast alternating vertical motion provided by a linear pneumatic actuator. The 

frequency of the actuator is 3 Hz and the amplitude of its motion is 0.1 m; these conditions 

provide smooth fluidization of the bed particles. There is a copper coil around the ceramic 

crucible. A high voltage current passing through the coil provides a magnetic field that induces 

hysteresis and eddy currents within the wires inside the crucible. The directions of the magnetic 

field and induced currents are alternated with a frequency of about 250 kHz. There is a very 

small temperature difference between the heating surface and the catalyst bed, which minimizes 

the parasitic thermal reactions that occur in other reactors [69].  
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A schematic of the experimental setup is shown in Figure 6.1.  Details may be found elsewhere 

[70]. 

The Drummond capillary tubes with 4µl volume were used to inject precise amount of the bio-oil 

into the batch reactor.  

A Varian micro GC CP4900 instrument was used to analyze the product gases H2, CH4, CO, 

CO2, C2H4 and C2H6. This micro GC was equipped with three columns 10m MS5A, 10m PPU 

and 8m 5CB. Helium was used as the carrier gas in the micro GC. Since the product gases were 

diluted with argon in the gas sampling bag, their concentration was very low, requiring a high 

sensitivity setting of the TCD and a sampling time of 500 ms. Because the GC did not detect the 

steam in the product gases, water measurement and , hence, elemental balances could not be 

performed. GC runs were conducted for 3 minutes.  

In order to calculate the number of moles of the product gases and the total carbon conversion, a 

known volume of an external standard gas was added to the mixture of product gases: 500µl of 

normal C4H10 was injected into the vacuumed gas sampling bag with a gas tight syringe.  C4H10 

was never produced during the gasification tests and was, thus, a suitable external standard gas. 

The gas sampling bag was squeezed manually for several times to ensure good mixing between 

the standard gas and the product gases. Experiments were repeated for 3 times to check the 

reproducibility of the data.   



 

241 

 

 

Figure 6.1. Schematic of the JBR experimental setup for the catalytic gasification tests 
 

 
6.4. Experimental materials  
 
6.4.1. Bio-oil characteristics 

The bio-oil used in this research was produced by fast pyrolysis of hardwood at moderate 

temperatures, in the absence of oxygen, at the Dynamotive Energy Systems Corporation in 

Canada. This bio-oil had been stored in the lab for three years. As presented in table 6.4, 

elemental composition of the fresh bio-oil is changed and therefore different from that of the old 

bio-oil after 3 years so that hydrogen and oxygen contents were increased with regard to carbon 

content. Gasification experimental work was carried out with the old bio-oil.  
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Table 6.4. Elemental analysis of the Dynamotive bio-oils 

 
Fresh bio-oil Old bio-oil 

H, wt% 7.20 8.04 

C, wt% 41.67 36.30 

N, wt% 0.27 0.30 

O, wt% (balance) 51.13 55.36 

Water content, wt% 24.34 27.52 

General formula CH2.071O0.920N0.0053 CH2.624O1.121N0.0065 

C/H, mol/mol 0.48 0.38 

C/O, mol/mol 1.09 0.87 

 
 
6.4.2. Preparation of the bed material 

Silica sand and olivine were used as the bed materials with a size distribution of 106-212 µm. 

Two samples of olivine calcined at 850°C and 1000°C each for 24 hours and one sample of 

olivine reduced with hydrogen at 800°C for 24 hours were investigated as the bed materials in 

the jiggle bed reactor to find out whether metallic iron (Fe0) or iron oxides are suitable for bio-oil 

gasification. The calcined samples of olivine had been placed inside a furnace to be calcined 

whereas the third sample had been placed in the jiggle bed reactor and was reduced in situ by a 

100ml/min flow of hydrogen. Since experiments were carried out at 800°C, calcination 

temperatures were chosen to be higher than the reaction temperature in order to obtain particles 

with a stable structure in the reactor. The bed mass was 10g in all experiments.  

6.4.3. Catalyst characterization  

Surface area analyses of the original and the reduced olivine were carried out by the instrument 

ASAP 2010 through adsorption of N2 at 77.35 K. According to Table 6.5, reduction of olivine 

with hydrogen did not significantly change the surface properties of the original olivine. In 

addition, their BET surface area is very low with very little volume of the pores. In other words, 

olivine looks like a non-porous material.  
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Table 6.5. Surface and pore analysis of olivine 

Catalyst 
BET surface 
area, m2/g 

Average pore 

size, nm 

Total pore 

volume, cm3/g 

Original 
Olivine 

2.734 3.751 0.0026 

Reduced 
Olivine 

2.144 3.878 0.0021 


Adsorption Average Pore Diameter (4V/A° by BET) 


Single Point Adsorption Total Pore Volume of pores less than 81.06 nm 

Diameter at P/P0= 0.976 

 

To determine the composition of the olivine, Fusion X-Ray Fluorescence (XRF) analysis of the 

original olivine was carried out. According to Table 6.6, silicate, magnesium and iron are the 

main components of the olivine although there are traces of other metals.  

To estimate the mass of the active metals on the surface of olivine, attempts were made to 

measure the H2 consumption of the olivine by TPR and H2 chemisorption, but it was not 

possible. Probably because the dominant phase is a silicate, this phase is not reduced easily nor 

reduced at all at the tested conditions (below 750°C). 

Table 6.6. XRF analysis data of fresh olivine 

Component oxide Composition, wt% 
SiO2 42.15 
TiO2 < 0.01 
Al2O3 0.15 
Fe2O3 7.43 
MnO 0.1 
MgO 49.74 
CaO 0.02 
K2O 0.01 
Na2O 0.1 
P2O5 < 0.01 
Cr2O3 0.47 
LOI 0.45 
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X-Ray powder Diffraction (XRD) patterns of the samples of the original olivine, the calcined 

olivine at 850°C with air, the calcined at 1000°C with air and the reduced olivine with hydrogen 

are shown in Figure 6.2. Interpretation of the defraction lines has been done according to the 

information in literature [40, 42].The main lines of the graphs belonging to the original olivine 

correspond to phases of (Mg,Fe)2SiO4. Also, phases of estatite MgSiO3 and serpentine 

Mg3Si2O5(OH)4 are detected on the original Olivine.  It is clear that the intensity of these silicate 

phases has been changed and they are different from the pre-treated samples of olivine due to the 

thermal conditions of the pre-treatments.  

No iron oxide phase was detected on the original olivine and the calcined olivine at 850°C.  

However, a phase of iron oxide (-Fe2O3) at 2 of about 33° is available on the sample calcined 

at 1000°C, which means olivine has gained oxygen in its structure during the calcination.   

Although not detected on the olivine calcined at 850°C, it is expected that iron oxide should be 

formed in this sample as well. Regarding the olivine reduced with hydrogen, it is noticeable that 

there is a phase of metallic iron; in other words, either some iron oxide on the surface of the 

olivine was reduced or some iron managed to leave bulk of the olivine and stayed on the surface 

ready for the catalytic reactions.  
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Figure 6.2. XRD patterns of the (a) original Olivine (b) Olivine calcined at 850°C (c) Olivine 
calcined at 1000°C and (d) Olivine reduced with hydrogen.   presents phases of (Mg,Fe)2SiO4,  

presents phase of MgSiO3, ∆ presents phase of Mg,Si2O5, presents phase of -Fe2O3 and  
presents phases of metallic iron (Fe0) 

 

 
6.5. Experimental results and discussion 
Gasification of bio-oil in the jiggle bed reactor was investigated at 800°C. The effect of the 

residence time was tested at 10s, 20s, 30s, 60s 120s and 240s, where the residence time was the 

time between the feed injection and the flushing with argon of the product gases into the gas 

sampling bag. In order to determine the effect of the bed material on bio-oil conversion and 

product gases yields, silica sand and pre-treated olivine samples were used in the reactor. The 

Drummond capillary tubes with 4µl volume were used to introduce the bio-oil into the reactor, 

which did not change significantly the reactor pressure. Since it is important to know mass of the 

feed bio-oil for yield and conversion calculations, five capillary tubes were filled with bio-oil 

and then the average mass of bio-oil content in those tubes was considered as the mass of bio-oil 

equivalent to a 4 µl volume. To make sure experimental data were reproducible, experiments 
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were repeated 3 times. Average value of the obtained yield data is reported in this paper. 

Maximum spread between the replicate data was ±4%. 

In the presence of steam, bio-oil with general formula of CHmOk (neglecting the nitrogen 

content) can be converted to syngas (H2+CO) according to reaction 6.28:  

௠ܱ௞ܪܥ ൅ ሺ1 െ ݇ሻܪଶܱ → ܱܥ ൅ ൫1 ൅݉
2ൗ െ ݇൯ܪଶ       (6.28) 

 

If there was enough steam in the reactor, the produced CO would react with steam through the 

water-gas shift reaction to produce more hydrogen: 

ଶܱܪ ൅ ܱܥ ↔ ଶܪ ൅  ଶ         (6.29)ܱܥ
 

Therefore, summing up reactions 6.28 and 6.29, the overall steam reforming of bio-oil can be 

expressed by reaction 6.30:  

௠ܱ௞ܪܥ ൅ ൫2—݇൯ܪଶܱ → ଶܱܥ ൅ ൫2 ൅ ݉
2ൗ െ ݇൯ܪଶ      (6.30) 

 

There are a number of other reactions taking place after bio-oil is injected into the reactor. For 

example, As soon as bio-oil is entered into the reactor, it decomposes thermally to other forms of 

the oxygenated molecules (CHyOz) as well as some permanent gases (hydrogen, steam, CO, CO2 

and light hydrocarbons) and coke (reaction 6.31). Besides, since CO, CO2 and coke are available 

inside the reactor, the Boudouard reaction (reaction 6.32) is another important reaction which 

can affect the CO/CO2 ratio in the final product gases.  

௠ܱ௞ܪܥ → ௬ܪܥ ௭ܱ ൅ ,ଶܪሺ	ݏ݁ݏܽ݃ ,ଶܱܪ ,ܱܥ ,ଶܱܥ …,ସܪܥ ሻ ൅  (6.31)     ݁݇݋ܿ
 
ܱܥ2 ↔ ܥ ൅  ଶ          (6.32)ܱܥ
 

In addition, in the presence of steam, the produced hydrocarbons undergo steam reforming 

reactions towards production of hydrogen and carbon monoxide. For example, reaction 6.33 

illustrates how methane can be converted to syngas: 
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ସܪܥ ൅ ଶܱܪ → ܱܥ ൅  ଶ          (6.33)ܪ3
 

In this research we did not add additional water because in industry, the practice is to use a 

separate water-gas shift reactor, downstream of the gasification reactor, which can be operated 

with a temperature and a catalyst that are optimized for the water-gas shift reaction. In other 

words, our goal was to maximize the conversion of bio-oil to product gases and conversion of 

the hydrogen contained in the raw bio-oil, including its own water, to hydrogen gas (H2). 

Therefore, the yield of produced hydrogen was defined according to equation 6.34: 

ுܻమሺ
௚

௚
ሻ ൌ ௠௔௦௦	௢௙	௛௬ௗ௥௢௚௘௡	௔௦	ுమ	௜௡	௣௥௢ௗ௨௖௧	௚௔௦

௠௔௦௦	௢௙	ு	௜௡	௧௛௘	௥௔௪	௕௜௢ି௢௜௟
       (6.34) 

 

To estimate the number of moles of the bio-oil, bio-oil with a general formula of CHmOk was 

assumed from its elemental composition. Since maximum 1 mol of a product gas like CO, CO2 

and CH4 can be produced per 1 mole of the injected bio-oil, yield of these gases were estimated 

as: 

஼ܻை,஼ைమ,஼ுరሺ
௠௢௟

௠௢௟
ሻ ൌ ௠௢௟௘௦	௢௙	௧௛௘	௣௥௢ௗ௨௖௧	௚௔௦

௠௢௟௘௦	௢௙	௧௛௘	௕௜௢ି௢௜௟
        (6.35) 

 
Accordingly, yields of C2H4 and C2H6 hydrocarbons were estimated by equation 6.36: 
 

஼ܻమுర,஼మுలሺ
௠௢௟

௠௢௟
ሻ ൌ ௠௢௟௘௦	௢௙	௧௛௘	௣௥௢ௗ௨௖௧	௚௔௦

଴.ହൈ௠௢௟௘௦	௢௙	௧௛௘	௕௜௢ି௢௜௟
        (6.36) 

 

The carbon conversion was calculated by summing up the yields of carbon containing product 

gases.  

Mole fraction of the product gases was assumed as their concentration in the mixture of the 

detected product gases for the thermodynamic analyses.   

One advantage of the jiggle bed reactor is that it is very convenient to perform a complete test 

(from feed injection until end of the gas analysis) for a very short period of time i.e. 10 minutes, 

so it is possible to repeat a test to check out reproducibility of the data and conduct tests with 

different operating conditions while a great deal of time is saved. However, it must be taken into 
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account that coke as the solid product of the reaction remains in the reactor which must be 

removed before conducting a new test; otherwise, coke can be gasified during the next test and 

have a detrimental effect on the calculation of gasification yields. Therefore, after each test, the 

catalytic bed was regenerated and reduced according to the following in-situ procedure: 

1. Coke was burned off with air for 30 seconds 

2. Argon was introduced to the reactor for 30 seconds to flush out air  

3. Hydrogen was introduced into the reactor for 5 minutes to remove oxygen from the surface 

of the catalysts and reduce the catalyst 

4. Argon was introduced for 2 minutes to flush out hydrogen from the reactor  

The above procedure was carried out even for non-catalytic tests where there was only silica 

sand in the reactor.  

6.5.1. Equilibrium composition of the product gases versus experimental data  

The thermodynamic model developed in this research was used to compare the mole fraction of 

the product gases obtained with different bed materials at the same operating conditions with the 

equivalent predicted equilibrium mole fractions.  

Figures 6.3 to 6.7 illustrate the evolution with residence time of the experimental mole fraction 

of the product gases, with different bed materials. Also, equilibrium mole fractions calculated by 

the model are indicated by a horizontal line. It must be pointed out that the estimated equilibrium 

mole fractions of the product gases are expressed on a dry basis to be able to compare them with 

the experimental data. With the exception of the silica sand for which experiments were 

conducted also at a residence time of 600s, experiments were carried out at residence times of 

10s, 20s, 30s, 60s, 120s and 240s for all the tested bed materials.  

With the reduced olivine, it is clear that the product gases reach mole fractions near the 

equilibrium values even at the shortest residence times. This means the reduced olivine acted as 

an active and effective catalyst that greatly speeded up the reactions. 
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With sand, the mole fractions of the product gases reached their equilibrium values, but at much 

longer residence times. A residence time of 600s was, then, required to reach the mole fractions 

that were achieved in about 20s with the reduced olivine. 

With the calcined olivines, the mole fractions of the product gases, especially, hydrogen, CO and 

CO2 were far from the equilibrium values. It is seen that the mole fractions of hydrogen, CO and 

hydrocarbons decrease with increasing residence time and drop below the equilibrium mole 

fractions whereas the mole fraction of CO2 increases with increasing residence time and is 

always above the equilibrium mole fraction. Since the equilibrium mole fractions were 

calculated according to the elemental composition of the raw bio-oil, this suggests that the 

calcined olivine acts as an extra source of oxygen in the reactor, which can lead to a large 

production of CO2 and steam. This hypothesis is confirmed by the XRD plots of Figure 6.2, 

which show that -Fe2O3 was formed on the olivine calcined at 1000°C. Such oxide phases 

should have been also formed on the olivine calcined at 800°C although it was not detected by 

XRD; therefore, in the presence of reducing gases such as hydrogen in the reactor, iron oxides 

can be reduced, providing an additional source of elemental oxygen. Elemental analysis of the 

original olivine, the olivine calcined at 800°C and the olivine calcined at 1000°C by a CHNOS 

elemental analyzer showed that oxygen content of the calcined olivines had increased relatively 

compared to the original olivine so that the largest oxygen content was in the olivine calcined at 

1000°C.  It seems that the calcined olivine works like an oxygen sponge so that the released 

oxygen reacts with the combustible product gases. 

As it can be seen from evolution of the product gas mole fractions versus time with the calcined 

olivines, it seems that mole fractions tend to reach a new equilibrium at longer residence times. 

In order to investigate such a new equilibrium condition, the developed model was used to 

estimate how much oxygen should have been released from the calcined olivines to provide the 

new equilibrium mole fraction: the stoichiometric factor b2 in equation 6.1 was changed to reach 

mole fractions which are close to the experimental data. For instance, as shown in Table 6.7, 

experimental mole fractions of the product gases from the olivine calcined with air at 800°C 

obtained after a residence time of 240s are compared with the estimated equilibrium mole 
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fractions where b2 in equation 6.1 was assumed to be 1.1; in other words, an extra oxygen mass 

1.96 times as large as oxygen mass in the injected bio-oil should have been consumed in the 

reactor to reach the considered experimental mole fractions.   

Table 6.7. Comparison between estimated equilibrium and experimental mole fractions (dry 
basis) from olivine calcined at 1000°C. Temperature: 800°C, Residence time: 240s 

 H2 CO CO2 CH4 C2H4+C2H6 

Equilibrium 
mole fraction 

0.091 0.071 0.837 1.1310-7 0.000 

Experimental 
mole fraction 

0.032 0.056 0.823 0.078 6.5710-3 

 

Regarding the positive effect reported in the literature for calcined olivine in continuous 

processes, it may be that the calcined olivines were inapropriate catalysts in our batch jiggle bed 

reactor because of the small bio-oil to catalyst ratio. 
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Figure 6.3. Measured mole fraction of hydrogen compared to its predicted equilibrium mole 

fraction, on a dry basis. Bed materials: olivine and sand. Temperature: 800°C 
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Figure 6.4. Measured mole fraction of CO compared to its predicted equilibrium mole fraction, on 
a dry basis.. Bed materials: olivine and sand. Temperature: 800°C 
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Figure 6.5. Measured mole fraction of CO2 compared to its predicted equilibrium mole fraction, on 
a dry basis. Bed materials: olivine and sand. Temperature: 800°C 
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Figure 6.6. Measured mole fraction of CH4 compared to its predicted equilibrium mole fraction, on 
a dry basis. Bed materials: olivine and sand. Temperature: 800°C 
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Figure 6.7. Measured mole fraction of (C2H6+C2H4) compared to its predicted equilibrium mole 
fraction, on a dry basis. Bed materials: olivine and sand. Temperature: 800°C 

 

Since the molar H2/CO ratio is a key parameter that is essential for downstream processes, the 

equilibrium model is a useful tool to predict this ratio on the basis of elemental analysis of the 

feedstock. Figure 6.8 illustrates the predicted molar H2/CO ratio at equilibrium that is expected 

from gasification of the Dynamotive bio-oil. It was reached in 30s with the reduced olivine and 

in 60s with the inert sand.  However, a residence time of 60s would not be suitable with sand 

because full carbon conversion of the bio-oil might not be obtained even at much longer 

residence times (Figure 6.10). 

The predicted molar H2/CO ratio was 1.65 without the addition of extra steam.  The addition of 

steam would be required if a high value of the molar H2/CO ratio, such as 2, was required for the 

downstream process. According to the developed thermodynamic model, it was estimated that a 

molar H2/CO ratio of 2 can be obtained at 800°C when additional 0.344g steam per g of bio-oil is 

injected into the reactor.  
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Figure 6.8. Experimental molar H2/CO ratio versus predicted molar H2/CO ratio at equilibrium.  
Bed materials: olivine  and sand. Temperature: 800 °C 

 
 
6.5.2. Effect of the bed material on hydrogen yield and bio-oil carbon 
conversion 

Figure 6.9 depicts hydrogen yield versus residence time for the different bed materials used in 

the jiggle bed reactor. Figure 6.10 also presents carbon conversion of the Dynamotive bio-oil. 

Silica sand is known to be inert in term of catalytic activity, so this material is a good basis to 

compare catalytic activity of the pre-treated samples of olivine.  

As it can be seen in Figure 6.9, yield of hydrogen was increasing versus residence time for the 

reduced olivine and silica sand while it had decreasing trend for the calcined olivines. It is also 

noteworthy that production of hydrogen was quite stable at longer residence times for all the bed 

materials. In case of the reduced olivine, 83 wt% of hydrogen in bio-oil was converted to 

hydrogen gas at residence time of 10s and for a 60s residence time, the produced hydrogen gas 

comprised 93 wt% of the bio-oil hydrogen content. Similar trend of hydrogen yield versus 

residence time is observed in case of silica sand where the hydrogen yield increased from 0.35 at 

a residence time of 10s to a maximum hydrogen yield of 0.55 at a residence time of 60s. This 
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indicates that provided enough residence time is available, high hydrogen yields can be achieved 

through the thermal cracking reactions.  

By comparing the reduced olivine and silica sand, it is realized that the reduced olivine was an 

active catalyst that dramatically reduced the residence time required to reach a desired high 

hydrogen yield. On the other hand, the hydrogen yield decreased with increasing residence time 

with calcined olivines, because of the additional oxygen brought by the calcined olivines. 

Carbon conversion of bio-oil with the reduced olivine was 96% at the lowest residence time and 

complete conversion was achieved at longer residence times. Compared to carbon conversion 

with silica sand where maximum conversion of 66% was gained, it is understood that the 

reduced olivine was also very effective to crack large molecules inside bio-oil and enhanced 

reaction between oxygenated molecules and steam according to reaction 6.28.  

Although calcination of olivine was found ineffective to increase the yields of hydrogen and CO 

in this research, the advantage of its oxygen storage can be investigated in cracking complex 

molecules where an optimum mass of the calcined olivine might be used to partially burn off the 

heavy molecules to facilitate formation of lighter molecules which can be converted to syngas 

easier than the original feedstock.  
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Figure 6.9. Yield of hydrogen versus residence time. Bed materials: olivine and sand, Temperature 
800°C 

Residence time, s

50 100 150 200 250

C
ar

bo
n 

co
nv

er
si

on

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Sand 
Olivine, Tcalcin= 850oC 

Olivine, Tcalcin= 1000oC 

Olivine, Treduc= 800oC 

 

Figure 6.10. Bio-oil carbon conversion versus residence time. Bed materials: olivine and sand. 
Temperature 800°C 
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6.6. Conclusions 
Gasification of the Dynamotive bio-oil was carried out in the jiggled bed reactor, which is a 

batch-wise fluidized bed micro reactor. Pretreated samples of olivine (calcined with air at 850°C 

and 1000°C and reduced with hydrogen at 800°C) as well as silica sand were tested as the bed 

materials.  

Despite the literature reports claiming that calcined olivine is a promising biomass gasification 

catalyst to crack tars and to achieve a high hydrogen yield, experimental data in this research 

revealed that calcined olivines were inappropriate because oxygen is released from such olivines 

under gasification conditions. On the other hand, it was discovered that if olivine was reduced in-

situ with hydrogen, free iron metals are on the olivine that make it a very active catalyst that 

results in complete carbon conversion of the bio-oil and a high hydrogen yield at relatively short 

residence times.  

The developed thermodynamic model confirmed that calcined olivines were inappropriate in bio-

oil gasification.  Product gases produced with the reduced olivine and silica sand, on the other 

hand, reached the predicted equilibrium concentrations. Since the reduced olivine is a very active 

catalyst, equilibrium was reached quickly, but took a much longer time with the inert silica sand.   

It was also estimated by the thermodynamic model that maximum molar H2/CO ratio that can be 

achieved through gasification of the Dynamotive bio-oil in the absence of additional steam is 

1.65. According to the model, to reach a molar H2/CO ratio of 2 would require the addition of 

0.344g of additional water per g of bio-oil. 

Nomenclatures: 
Indices 
݅ Index of gasification species 
݆ Index of independent equilibrium reactions 
∆  Change of a parameter or a property 
 
Symbols 
  Coefficient of special heat capacity relation versus temperature ܣ
 Change of coefficient A of all species involved in reaction j at equilibrium ܣ∆
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  Coefficient of special heat capacity relation versus temperature ܤ
 Change of coefficient B of all species involved in reaction j at equilibrium ܤ∆
  Coefficient of special heat capacity relation versus temperature ܥ
    Change of coefficient C of all species involved in reaction j at equilibrium ܥ∆
  Coefficient of special heat capacity relation versus temperature ܦ
   Change of coefficient D of all species involved in reaction j at equilibrium ܦ∆
  Coefficient of special heat capacity relation versus temperature ܧ
 Change of coefficient E of all species involved in reaction j at equilibrium ܧ∆
ܽ௜ Number of moles of species i at equilibrium  
ܾଵ Number of moles of consumed steam per one mole of atom carbon 
ܾଶ Number of moles of consumed oxygen per one mole of atom carbon 
 ௣,௜  Special heat capacity of species iܥ

ప݂
෡  Fugacity of species i at gaseous mixture at equilibrium 

௜݂
°  Fugacity of pure species i at standard conditions 
ΔG୨

°  Standard Gibbs energy of reaction j at equilibrium 
ሺ∆ܩ௥°ሻ௝ Standard Gibbs energy change of reaction j at reference temperature 
  ௥°  Standard formation Gibbs energy of species iܩ
ሺ∆ܪ௥°ሻ௝ Standard enthalpy change of reaction j at reference temperature 
°௥ܪ   Standard formation enthalpy of species i  

 ,஼ Combustion energy of a reactionܪ∆
௝௢௟

௠௢௟
 

 ,High heat value of bio-oil ܸܪܪ
௝௢௟

௚௥
 

 ௝ Equilibrium constant of independent reaction jܭ
݉  Number of moles of atom hydrogen per one mole of carbon atom on the C-H-O feed 
݊ Number of moles of atom oxygen per one mole of carbon atom on the C-H-O feed 
 ,௪,௜ Molecular weight of species iܯ

௚௥

௠௢௟
 

 Molar oxygen to carbon ratio  ܥ/ܱ
ܲ Pressure, bar 
ܲ° Standard pressure, bar 
ܳ  External energy required for gasification product to reach equilibrium per 1 mole of 

CHmOn, 
௝௢௟

௠௢௟
 

ܴ Univeral sonstant of gases, 8.314 
௝௢௟௘

௠௢௟.°௄
 

 Molar steam to carbon ratio  ܥ/ܵ
ܶ Temperature, K 
௥ܶ Reference temperature, 298.15 °ܭ 

௜ܻ         Yield of species i 
  ௜ Mole fraction of species iݕ
ప߮ෝ  Fugacity coefficient of species i in equilibrium mixture 

 ௜  Stoichiometric coefficient of species iߥ
߬ Ratio between equilibrium temperature and reference temperature 
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7.1. Conclusions  

Chapter 2 investigates the effects of gas residence time, temperature, bed mass and particle size 

on the thermal cracking of whole bio-oil in the absence of excess steam in a bubbling fluidized 

pilot plant. Longer residence times increased vapor phase cracking, producing more syngas with 

a higher H2/CO ratio. The results showed that sand had an initial activity which caused higher 

gasification yields, but, as coke was deposited on the sand, kinetics of the thermal cracking 

changed and, as a result, gasification yield declined. Higher temperatures always favored 

gasification, especially at the lower vapor residence times, and bio-oil conversion was very poor 

at low temperatures. Under all the operating conditions studied in this work, kinetics always 

controled the thermal cracking reactions and the system was far from thermodynamic 

equilibrium. Results obtained with Group B and Group A sands were very similar, indicating that 

mass transfer was not limiting. 

Overall, the maximum bio-oil conversion to product gases was less than 45 wt% with thermal 

cracking, and it was obtained at the maximum temperature of 700 °C and at the maximum vapor 

residence time of 27 s. Therefore, increasing conversion required either a higher bed temperature 

or an appropriate catalyst. Effect of excess steam should be investigated to see whether bio-oil 

conversion would significantly increase. 

Since experimental catalyst supply is limited and experimental work with a pilot scale reactor is 

expensive and time-consuming, a micro test reactor was designed and developed to test the 

effects of catalyst composition and mass as well as the effect of operating conditions.  This 

unique mechanically agitated small scale setup, defined as “jiggle bed reactor” (JBR), is a batch 

fluidized micro reactor. As shown in chapter 3, a linear pneumatic actuator was successfully 

implemented to achieve fluidization conditions in the reaction zone of the JBR, without using 

any fluidization gas. A new induction heating system was designed and installed to provide a 

uniform distribution of heat to the bed with a very small temperature difference between the 

heating surface and the bed. Fluidization and heating of the catalyst bed can, thus, be achieved in 

a completely non-invasive manner. 
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A new image processing technique was developed to monitor the fluidization dynamics of the 

catalyst bed in the JBR. A signal processing technique was used to optimize amplitude and 

frequency of the pneumatic actuator to achieve the best fluidization conditions. Size distribution 

and mass of the catalyst particles were optimized with image and signal analyses to enhance 

fluidization in the JBR.   

Heat transfer studies in the JBR showed that induction heating and mechanical fluidization 

provide a minimum temperature difference between the heating wires and the catalyst bed. 

Results showed that the maximum fluidization intensity of the bed corresponded to the highest 

heat transfer coefficient between the heating wires and the catalyst bed. 

The JBR was used to conduct precise and reproducible gasification tests over short periods of 

time. Chapter 4 presented the results of the thermal and catalytic steam reforming of acetic acid, 

used as model compound, and validated the use of the JBR for the testing of gasification 

catalysts. Experiments were repeated for 3 times and results were reproducible within 5% data 

replica. In addition, changes in operating conditions such as temperature, residence time, molar 

steam-to-carbon ratio and bed material resulted in clear, reproducible and logical changes in the 

yields of the product gases.  

In non-catalytic experiments of acetic acid steam reforming, the thermal decomposition reactions 

predominated over the reforming and water gas shift reactions, and the carbon conversion of 

acetic acid was quite high while the hydrogen yield was low for all tested steam-to-carbon ratios, 

temperatures and residence times.  

Complete carbon conversion of acetic acid was achieved in catalytic experiments even in the 

absence of steam. The hydrogen yield was significantly increased compared to non-catalytic data 

at similar operating conditions. The reforming and water gas shift reactions were dominant 

reactions and the hydrogen yield increased with increasing residence time. Increasing the molar 

steam-to-carbon ratio and the catalyst mass helped increase the acetic acid conversion and the 

hydrogen yield. On the other hand, CO was also a main product of the steam reforming 

processes; therefore, an optimum steam-to-carbon ratio and catalyst mass must be selected to 
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maximize the hydrogen yield while achieving the molar H2/CO ratio that may be required by 

downstream processes.  

Experimental data of the acetic acid catalytic steam reforming were compared with similar data 

in literature and a satisfactory consistency between the experimental data of this research and 

those in literature were observed. Therefore, it was realized that the jiggle bed reactor is an 

efficient newly developed reactor setup which produces reliable data for different operating 

conditions in addition to the advantage of performing a series of experiments within a short 

period of time with the minimum cost.  

Gasification of actual bio-oils, from hardwood and birchwood, was carried out in the jiggle bed 

reactor to investigate their conversion into syngas.  In Chapter 5, the effects of catalyst type and 

mass as well as temperature and residence time were studied. Despite the larger water content of 

the birchwood bio-oil, higher hydrogen yields were achieved from the thermal and catalytic 

cracking of the hardwood bio-oil, as a result of the type of organic compounds of the DMB. 

The results of the thermal cracking experiments, which were conducted at 30 s residence time, 

showed that both the total carbon conversion and the hydrogen yield increased with temperature. 

The maximum carbon conversions achieved with the hardwood and the birchwood bio-oils were 

64% and 72%, respectively.  A large production of CO and a low production of hydrogen 

resulted in molar H2/CO ratios less than 2.  

The catalysts X and Y were tested for the catalytic gasification of both bio-oils. The catalyst X 

had less nickel on its surface, but it showed a better performance than the catalyst Y in terms of 

maximum production of syngas, minimum production of hydrocarbons, and maximum carbon 

conversion of the bio-oils.  This better performance was attributed to the larger surface area of 

the catalyst X and its higher calcium content.      

In the presence of both catalysts, the yield of hydrogen and total carbon conversion of the bio-

oils significantly increased. In addition, the yield of hydrocarbons declined noticeably in the 
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catalytic experiments. In overall, the yield of product gases increased with residence time. The 

yields of hydrogen and CO increased also with catalyst mass at similar residence times.  

The yield of hydrogen and the carbon conversion also increased with temperature. On the other 

hand, the molar H2/CO ratios obtained in the catalytic tests decreased with temperature. 

Therefore, an optimization is required to choose a temperature at which maximum carbon 

conversion and the required molar H2/CO ratio can be achieved.   

Since in the absence of excess steam, low values of the molar H2/CO ratios can be obtained, 

either additional steam must be used in the gasification reactor or a secondary water gas shift 

reactor must be used downstream of the gasification reactor to convert CO to CO2 and produce 

extra hydrogen through the water gas shift reaction.  

In chapter 6, a comprehensive thermodynamic model was introduced, based on the evaluation of 

equilibrium constants for the independent reactions between the gasification products. This 

model can be used to investigate the mole fraction of gasification products at equilibrium for any 

feedstock with given carbon, hydrogen and oxygen contents. Predictions from this 

thermodynamic model were compared to experimental results obtained in the jiggle bed reactor, 

with olivine pretreated under different conditions (calcined with air or reduced with hydrogen).  

Despite the literature reports claiming that calcined olivine was a promising biomass gasification 

catalyst to crack tars and achieve a high hydrogen yield, the experimental data in this research 

revealed that calcined olivine was actually inappropriate, because oxygen was released from 

such olivine under gasification conditions. On the other hand, when olivine was reduced in-situ 

with hydrogen, free iron metal would form on the olivine and make it a very active catalyst 

resulting in complete carbon conversion of the bio-oil and a high hydrogen yield at relatively 

short residence times.  

The proposed thermodynamic model confirmed that calcined olivine was inappropriate in bio-oil 

gasification.  Product gases produced with the reduced olivine and silica sand, on the other hand, 
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reached the predicted equilibrium concentrations. Equilibrium was reached quickly with the very 

active reduced olivine catalyst, and much more slowly with the inert silica sand.   

The thermodynamic model estimated that the maximum molar H2/CO ratio that can be achieved 

through gasification of the hardwood bio-oil in the absence of additional steam was 1.65. 

According to the model, reaching a molar H2/CO ratio of 2 would require the addition of 0.34g 

of additional water per g of bio-oil. 

Overall, it is concluded from the experimental work on this thesis that an appropriate catalyst is 

essential to convert bio-oil to syngas with a high yield at moderate temperatures and residence 

times. Depending on the required molar H2/CO ratio for the downstream processes, the model 

developed in this thesis can be used to predict the optimum amount of excess steam that can be 

injected either into the gasification reactor or into a secondary water-gas shift reactor.    

7.2. Recommendations 

Since a good heat transfer and mass transfer can be achieved in a gas-solid fluidized bed, the 

bubbling bed reactor is a suitable setup for catalytic bio-oil gasification in a continuous flow 

process, in particular, because less coke can be produced in the bed which deactivates the 

catalyst in opposite to the fixed bed reactors. It is recommended catalytic experiments should be 

implemented in the bubbling bed reactor with the optimized catalyst found with jiggle bed 

reactor to compare the results with the thermal cracking results and to study lifetime of the 

catalyst during long run experiments.   

In this thesis, thermal cracking of whole bio-oil, in the bubbling bed, was conducted in the 

absence of excess steam. In literature, there are contradicting reports about positive effect of 

steam to maximize bio-oil conversion and syngas yield through the thermal cracking only. It is 

recommended some experiments should be performed to prove whether or not thermal steam 

gasification is a suitable path to increase bio-oil conversion and syngas yield without catalyst.  
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It is also recommended to study auto thermal bio-oil gasification in the bubbling bed which can 

be achieved by partly burning the bio-oil with air. Although production of CO2 would increase, 

the required heat for the gasification might be supplied through the combustion and, as a result, a 

considerable amount of electric power could be saved.  Having said that, effect of oxygen on the 

catalyst activity should be investigated.   

The jiggle bed reactor is a suitable setup to systematically test gasification catalysts synthesized 

in the lab at the shortest time and minimum cost. Other than bio-oil gasification tests, the jiggle 

bed reactor can be easily configured for other applications such as biomass 

pyrolysis/gasification, coal gasification, pyrolysis of conventional oils and so on. Moreover, the 

jiggle bed reactor can be used for kinetic studies. In fact, design of the jiggle bed reactor 

facilitates testing gasification catalysts with different sizes, shapes and masses, as well, with 

different compositions.  

In this thesis, two commercial nickel based steam reforming catalysts were tested. It was also 

understood through the jiggle bed reactor that iron content of the natural olivine was active for 

bio-oil gasification. It is recommended some catalysts should be synthesized with olivine as the 

support and nickel as the deposited active metal with different proportions to investigate 

integrated effect of iron and nickel on bio-oil conversion and syngas yield. Effect of additional 

promoters such as lanthanum, magnesium and etc can also be tested on such synthesized 

catalysts.  

In this thesis, activity of olivine was assumed to be mainly due to its iron content according to 

literature reports. However, Magnesium is also available in olivine. It is suggested three types of 

catalysts with iron, magnesium and iron/magnesium (with proportions similar to that in olivine) 

should be synthesized and their catalytic activities be compared with olivine to understand in 

more detail that which metal is the main active metal and what is the role of each metal in the 

catalytic gasification tests. 

Catalytic experiments in the jiggle bed reactor were conducted for the whole bio-oils, but not 

with excess steam. It is recommended steam catalytic gasification of bio-oil should be performed 
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to investigate at what steam to carbon ratio, maximum yield of hydrogen with the desired molar 

H2/CO can be achieved. Also, it should be investigated whether excess steam is worth adding to 

the gasification reactor or to a secondary water-gas shift reactor operating at a lower temperature.  

The induction heating system was used in a batch-wise reactor in this research. A similar setup 

can be designed for continuous reactors. 

The thermodynamic model developed in this research to predict equilibrium mole fraction of 

gasification products works with carbon, hydrogen and oxygen elelemntal composition of the 

feedstock; however, this model can be easily improved for feadstocks containing other elements 

such as nitrogen and sulphur. It should be investigated whether ash contents can be also 

predicted with such a thermodynamic model which is based on the equilibrium constants. It is 

recommended the thermodynamic model on the basis of minimum free Gibb’s energy can be 

used for complex systems with different elements; however, a good solver program including 

appropriate initial guesses must be developed to get the accurate conversion of the results.  

The following improvements of the jiggle bed reactor setup are recommended: 

1. An online gas analysis system would facilitate the generation of more experimental data. It is 

recommended to check out if water can be detected by an online GC or another equipment is 

required.  

2. The operation and the performance of the jiggle bed reactor could be improved by automating 

the opening of inlet and outlet valves with appropriate timers and by developing a feedstock 

injection system that could be operated while the reactor is vibrating.  

3. The pneumatic actuator has been very effective in achieving the required frequency and 

amplitudes of the vibrations of the jiggle bed reactor. An electric linear actuator with a stepper 

motor sized for the maximum required frequency and amplitude as well as the mass of the jiggle 

bed reactor can be also a good alternative to the pneumatic actuator. Such a linear actuator is 
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more expensive than a pneumatic actuator, but it is more efficient and user friendly in terms of 

mechanical life time, accuracy, and strength. 
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Abstract. The increased interest in alternative energy sources has led to significant developments in the area 
of biomass gasification and pyrolysis.  However, the advances made in this area are limited by the difficulty 
presented by the testing of the many types of feedstocks, operating conditions and catalysts.  With traditional 
methods of testing, such as the use of pilot plants, the determination of ideal operating parameters requires a 
great deal of time and money.  The use of currently available microreactors also presents several drawbacks.  
Due to temperature gradients, poor mixing and unrealistic catalyst on stream times, the product distributions 
obtained from tests carried out in microreactors are not representative of those obtained in large-scale reactors.  
Temperature gradients, in particular, present a major problem with gasification reactions due to their highly 
endothermic nature.  When the bed is heated through the walls, as is the case with most microreactors, the 
walls must be kept at a higher temperature than that required at the core to compensate for the heat lost to the 
reaction. In this study, the construction and validation of a novel microreactor, which minimizes temperature 
gradients, was carried out.  The fluidized bed employed high-frequency induction heating of metal wires 
placed directly in the bed.  The use of inner heating of the bed by wires improved heat transfer, minimized 
temperature gradients, and also allowed for the temperature of the bed to be kept constant at the Curie point of 
the wires.  A series of tests were carried out in a bed filled with engine oil to determine the number, 
configuration and diameter of the wires to be used in the bed.  Based on the tests, a 25.4 mm diameter bed, 
consisting of 12 wires with a diameter 2.5 mm placed in a circle, was constructed.  The ability of the system to 
support endothermic gasification reactions was determined by simulating endothermic reactions through the 
addition of water to a fluidized bed of sand.  A bed of fluidized sand particles with diameters ranging between 
206 and 250 μm was heated to the Curie point of the carbon steel wires (~680°C) and pulses of water were 
then injected. A heat transfer coefficient of 473 W/m2 K between the wires and the bed was measured thereby 
demonstrating the ability to maintain a constant temperature in the presence of endothermic reactions.  
 
 
Key-words. biomass gasification, microreactor, induction heating 

 
I.1. INTRODUCTION  
The depletion of traditional fuel sources and their increased costs, along with the growing concerns related to 
greenhouse gases, have led to an increase in research and development in the field of alternative energy sources.  
The gasification of biomass is one alternative source of energy which has great potential because it not only 
provides a renewable source of energy, but it also makes use of by-products from agricultural processes, thereby 
reducing agricultural waste. 
 
One of the challenges associated with catalytic biomass gasification is related to the diversity of feedstocks, catalysts 
and operating conditions to be used.  A need exists for a fast and cost effective means of accurately testing out 
different catalysts under various operating conditions.  
 
Up to date, the most common tests used are those carried out in pilot plants or those using fixed-bed reactors and 
fixed fluid-bed reactors (Imhof et al., 2004).  Despite the extensive research dedicated to improving the ability of 
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these methods of evaluation to mimic commercial units, the existing methods continue to suffer from numerous 
drawbacks such as long injection times, long residence times and their inability to simulate mixed-zone kinetics 
(Corella et al., 1986; Imhof et al., 2004).  Alternatively, pilot plants can more accurately mimic full scale operations, 
but are not as fast, nor as cost effective as the microreactors.   
 
Kraemer at al. (1988) listed several characteristics which a reactor should possess in order to be able to accurately 
model commercial-scale units.  First, the reactor should be able to match the hydrocarbon-catalyst contact time, 
reactor temperature and catalyst-to-oil ratio of commercial units.  Second, axial coke profiles should be minimized 
to best mimic commercial units.  A great deal of research has been carried out to develop reactors meeting these 
requirements.  The Riser Simulator, for example, overcomes the problem of coke profiles present in traditional 
reactors, such as Berty-style recycle reactors, by generating intense gas-solids mixing through fluidization of the bed 
(Kraemer et al., 1988). 
 
Another major consideration for a reactor used for the testing of gasification catalysts, which is the focus of this 
study, is the reactor’s ability to minimize unrealistic thermal cracking.  Due to the highly endothermic nature of 
gasification reactions, excessive thermal cracking often occurs at the walls of the reactor.  Traditional test reactors 
suffer from temperature gradients (Rastogi et al., 1988).  When reactors heat the gas through the walls of the reactor, 
the walls must be kept at a significantly higher temperature than that required at the core of the reactor in order to 
compensate for the heat consumed by the reaction, thereby creating a temperature gradient.  Because heat is 
transferred from a wall to a gas, the heat transfer coefficient is low and the wall temperature must be much higher 
than the gas temperature.  Though some groups have attempted to address this concern by performing runs with inert 
particles to show the absence of extensive thermal cracking, such results are not adequate to show that thermal 
cracking does not occur when an endothermic reaction is taking place inside, greatly increasing the need for heat 
from the walls and, therefore, resulting in a much higher wall temperature. 
 
In pursuing the aim of generating temperature profiles more closely resembling the actual temperature profile, a 
variety of heating techniques have been employed, including: shock-tube (Ozturk and Merklin, 1995), light 
irradiation (Boutin et al., 1998), arc, resistive heating (Drummond and Drummond, 1996) and high-frequency 
induction heating (Tsai et al., 2006).   
 
I.2.EXPERIMENTAL APPROACH 
 
In the present study, a fluidized bed reactor, employing high-frequency induction heating, was developed.  Heating 
of the bed was achieved through induction heating of carbon steel wires placed directly in the bed, instead of the 
lateral heating through the walls that is commonly used.  The choice in the method of heating was made based on 
the following reasons: 

1)  Inner heating of the bed is much more efficient than heating through the walls due to direct contact 
between the heating surface and the fluidized bed.  Due to this enhanced heat transfer, the temperature 
gradient between the core of the reactor and the walls is dramatically reduced.   

2) The available area for heat transfer can be increased by using wires.   
3) Due to an electromagnetic property of magnetic materials, temperature regulation is facilitated.  Magnetic 

materials can be heated through induction heating up to a temperature known as the Curie point, above 
which the material loses its ferromagnetic property.  As such, in the bed, the wires are heated until they 
reach their Curie point.  At this point, the wires no longer absorb power.  As they lose heat to the bed, the 
temperature of the wires drops below the Curie point, and they again absorb power and generate heat.  
Through this process, the bed is kept at a constant temperature.  Since the Curie point is unique to each type 
of material, by choosing the appropriate material, the bed can be maintained at the desired target 
temperature. 

  
Due to the novelty of the idea, a series of experiments were first carried out to determine the position, number and 
size of the wires which would optimize the heating of the bed.  Once the design was completed, the ability of the 
reactor to maintain the bed at the reaction temperature in the presence of endothermic reactions was tested.   
 
 



 

278 

 

 
I.3.EXPERIMENTAL EQUIPMENT AND TECHNIQUES 
 
Part I - Design of the Microreactor 
 
The first set of experiments, used to determine the bed 
configuration, was carried out in a 30.5 cm long ceramic tube 
with a diameter of 3.2 cm (see Figure 1). The tube was 
supported by a stainless steel base.  A high frequency power 
supply (HFPS) was used to provide a high-power, high-
frequency alternating output voltage to the induction coil which 
was cooled by circulating water through the copper tubing.  The 
coil was used to induce current in carbon steel wires placed in 
the bed.  The wires, with diameters ranging from 1.5 to 3.5 mm, 
were arranged in various configurations and were held in place 
by a concrete base.  The concrete base was placed at the bottom 
of the ceramic tube, on the stainless steel base, and the column 
was filled with engine oil so that a thermocouple could be 
placed inside to measure the temperature of the oil as a function 
of time.  The K-type thermocouple was placed in the engine oil 
a few centimeters above the induction coil to ensure that the 
magnetic field created by the induction coil would not affect 
the thermocouple’s ability to measure the temperature.  The oil 
was mixed by bubbling nitrogen.  Due to the mixing, the 
temperature in the column could be assumed to be close to uniform.  A data acquisition system was used to record 
the data from the thermocouple.  The system was first set to begin recording the temperature, the cooling water was 
turned on and then the induction heating system was turned on.  Once the oil temperature reached 250 °C, the 
system was shut off to prevent the oil from boiling and spilling over.  The data was plotted to generate a graph 
depicting the temperature of the oil as a function of time.  In order to compare the ability of different wires and wire 
configurations to heat up the bed, the slopes of the graphs, which corresponded to the change in temperature over 
time, were compared. 
 
Part II - Validation of the Novel Microreactor for Fluidized Beds with 
Liquid Injection 
 
The next set of experiments was carried out in the reactor shown in 
Figure 2.  The system consisted of a Mullite thermocouple protector 
with an I.D. of 2.54 cm and a length of 30.48 cm, supplied by Arklay S. 
Richards Company (New Highlands, Massachusetts).   The ceramic 
tube was insulated using FiberFrax to minimize heat losses.  Silica sand 
particles with diameters between 206 and 250 μm were fluidized with 
air flowing through a sparger at a velocity just above the minimum 
fluidization velocity. The bed was heated by induction heating of rods 
suspended from a stainless steel disk attached to the sparger tube.  The 
number and configuration of the rods were determined through the first 
set of experiments. The temperature of the bed was measured by a 
thermocouple placed inside of the bed, above the induction heating coil.  
 
Water was injected into the bed using a syringe.  The injection of water 
took place once the bed had reached a steady-state temperature (of 
around 680°C).  
 
 
 

Figure 3 . Experimental set-up employed 

in Part I 

Figure 4 . Experimental set-up employed in
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I.4.RESULTS AND DISCUSSION 
 
Part I - Design of the Microeactor   
 
The Effect of the Wire Diameter  
 
For high-frequency induction heating of cylinders, 
heating can be maximized by setting the ratio between 
the workpiece diameter and the reference depth of the 
eddy currents induced in the workpiece at a value of 
4.5:1.  Increasing the ratio beyond this value, either 
by increasing the workpiece diameter, or by reducing 
the reference depth of the eddy currents by changing 
the frequency, results in little improvement in heating. 
(Davies, 1990).   
 
In the current study, the frequency of the system, and 
therefore the depth of the eddy currents, were set at a 
constant value.  Therefore, increasing the diameter of 
the wires directly increased the ratio between the 
workpiece diameter and the reference depth of the 
eddy currents.  As Figure 3 shows, the rate of heating 
was observed to increase with the diameter of the 
wires over the range of 1– 2.5 mm, but then seemed to 
level off. These observations are in agreement with 
past findings which have stated that there is little benefit in increasing the workpiece diameter to a value larger than 
4.5 times the reference depth.   
 
The Effect of the Number of Wires 
 
As the number of wires in the bed is varied, the heating rate changes.  In the current experiment, the wires were 
placed in a circle halfway between the centre and walls of the bed.  As Figure 4 shows, the rate of heating was 
observed to increase linearly with the number of wires in the circle: there was no interference between wires. 

Figure 5 . Effect of the wire diameter on the heating 

rate 

Figure 4 . Effect of the number of wires in the bed on

the heating rate 

Figure 5 .  Effect of the position of a wire on the 

heating rate 
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The Effect of the Position of the Wires 
In order to determine where the wires should be placed in the reactor, the rate at which the bed was heated when a 
single wire was placed in the centre of the bed was compared to the heating rate when the wire was placed at the 
edge of the bed.  As Figure 5 shows, the position of the wire seems to have no effect on the rate of heating.  Between 
100 and 150 ºC, the wire in the centre and the wire heat the oil by 1.84 and 1.85 ºC/s, respectively.  The current 
findings are in agreement with those reported in previous works (Duquenne, 1994).   
 
The Effect of Shielding of Wires 
Though the position of a wire was shown to have no 
effect on the rate of heating for the case with a 
single wire in the bed, the position of a wire in a 
bed with numerous wires does affect the rate of 
heating due to a phenomenon known as shielding.  
As previously shown, when all wires are placed in a 
circle, the rate of heating increases linearly with the 
number of wires.  However, with large wires 
(diameters > 1.83 mm), if a wire is added to the 
centre of a bed consisting of wires arranged in a 
circle, the increase in the heating rate due to the 
added wire is almost negligible.  This is because the 
wire placed in the centre is shielded by those around 
it.  To measure the amount of shielding, six wires 
were placed in a circle.  One wire was then added to 
the centre of the bed.  If there were no shielding, the 
rate of heating of six wires in a circle and one in the 
centre of the bed would be equivalent to the rate of heating of seven wires placed in a circle in the bed.  However, 
this was not the case.  The seventh wire, placed in the centre of the bed, in experiments with wires with diameters of 
2.24 mm and 2.5 mm, generated only around 50 and 20 percent of the heat expected, respectively.  Figure 6 shows 
the % shielding for wires with diameters between 1.5 to 2.5 mm.  The shielding % is defined as the fraction of the 
theoretical amount of heat a wire should add if there were no shielding generated by the addition of a wire to the 
centre.  As Figure 5 shows, the effect of shielding was seen to be most pronounced for wires with larger diameters.   
 
The Effect of Configuration of Wires 
 
Three different configurations of wires were also tested out: triangular, circular and square.  The results showed no 
significant difference between the various configurations.  
 
I.5.Overall Design 
 
Based on the results, 2.5 mm diameter wires were chosen.  Because heating increases linearly with the number of 
wires, in order to achieve good heating, the number of wires was chosen to be twelve.  More wires could have been 
used, however, they would have reduced the bed volume and twelve was found to provide sufficient heating.  The 
wires were placed in a circle in order to avoid shielding.  
 
Part II - Validation of the Novel Microreactor for Fluidized Beds with Liquid Injection 
 
After having determined the optimum configuration of the rods in the bed, the ability of the system to heat up a bed 
of fluidized sand and to support endothermic reactions was tested.  Figure 7 shows the temperature profile of the 
fluidized bed of sand, which was heated until it reached a constant temperature of 680 °C.  A pulse of 0.15 mL of 
water was then injected into the bed, and the system showed a small and short drop in temperature.   
 
A model was developed in order to calculate the heat transfer coefficient between the wires and the bed.  The 
following energy balance equation, which neglects heat losses from the bed, was used: 

Figure 6 . Shielding effect for 6 
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( ) b
w b s p

dT
hA T T M c

dt
    [1] 

Where  h is the effective heat transfer coefficient 
 A is the heat transfer area 
 Tw, Tb are the wire and bed temperatures 
 Ms is the mass of sand in the bed 
 Cp is the specific heat capacity of sand 
 
The following model, developed from equation [1] 
was obtained: 

0( )*exp( )b w w b
s p

hA
T T T T t

M c
    

From equation [2], the heat transfer coefficient was estimated to 
be 473 W/m2 K based on minimization of the sum of the squares 
of the error between the measured bed temperature and the 
calculated bed temperature.   
 
I.6.CONCLUSIONS AND SUMMARY 
The design of a novel microreactor employing high-frequency 
induction heating was carried out.  Based on the findings, a bed 
with twelve wires with diameters of 2.5 mm arranged in a circle 
was created.  Water was injected into the bed and a heat transfer 
coefficient of 473 W/m2 K between the wires and the bed was 
obtained. 
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Figure 7. Temperature evolution of the reactor with 
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APPENDIX II 

Characterization of Moisture Distribution in a Fluidized bed 
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II.1. Introduction 

The performance of several important industrial processes, such as fluid coking or fluid catalytic 

cracking, is dependent on the good distribution of liquid feed sprayed into a fluidized bed of hot 

inert or catalytic solid particles, respectively. In the fluid coking process, which operates at about 

550oC, bitumen is spray-atomized with steam and injected into a fluidized bed of hot coke 

particles providing the heat required to crack heavy hydrocarbons into lighter products. The 

quality of the liquid injection has a significant impact on agglomerate formation and on the yield 

of valuable liquid (Knapper et al., 2003). Imperfect liquid distribution results in the formation of 

agglomerates that hinder heat transfer to the reacting liquid, slowing the cracking reactions, 

increasing coke formation, and causing fouling of coker internals.  

The objective of this study was the development of simple and reliable methods for the 

determination of the moisture distribution in a fluidized bed.  In particular, the study aimed at the 

investigation and optimization of the liquid distribution in a cold fluidized bed, using water and 

sand, for example, to simulate the spraying of hot bitumen on hot coke particles in industrial 

fluid cokers. McDougall et al. (2004) have shown that the water-sand system is a good room 

temperature simulator the hot bitumen-coke system, as there is nearly perfect wettability of the 

solids by the liquids in both cases. 

Fluidization quality is strongly affected by the presence of liquid. As a fluidized bed gets wetter, 

its cohesivity increases and this reduces bed fluidity. McDougall et al. (2004) examined different 

methods to evaluate the fluidization quality, such as a falling ball to measure the bed viscosity, a 

funnel to measure the gravity flow time of a bed sample, a movable column top to determine the 

Transport Disengaging Height (TDH), and pressure transducers to monitor the kinetics of bed 

de-aeration. 

Several researchers have monitored bed fluidity with pressure fluctuations. When a liquid is 

sprayed into a fluidized bed, the fluidization quality can degrade to the extent of affecting the 

bed pressure drop, which Tardos et al. (1985), Stusch et al. (2001) and McLaughlin et al. (2001) 

used to assess de-stabilization and de-fluidization in wet fluidized beds. Briens et al. (2003) were 
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able to detect the more subtle degradation in bed fluidity, which occurs at lower liquid 

concentrations, by analyzing the signals from dynamic pressure transducers.  

McDougall et al. (2004) showed that, as a fluidized bed becomes wet and agglomerates form, the 

flux of entrained particles above the TDH decreases and their size distribution changes.   Benoni 

et al. (1994) had observed similar results when particles agglomerated due to electrostatic 

effects. 

The falling ball method was applied by McDougall et al. (2004) and Kai et al. (1991) to measure 

the apparent viscosity of a wet fluidized bed. McDougall et al. (2004) showed that the velocity of 

a ball falling through a fluidized bed was affected by the presence of liquid in the bed.   

Renganathan et al. (2005) monitored the fluctuations of the local voidage in a fluidized bed by 

applying a conductance method. They showed that the maximum of the Root Mean Square 

(RMS) of voidage fluctuations can be related to the average bed voidage. 

The injection of liquids into fluidize solids may create agglomerates of particles bound together 

by the liquid. The additional objective of this study is to develop and evaluate several 

experimental tools to measure the various types of moisture in fluidized beds:  i) free moisture, 

or water coating individual particles; (ii) micro-agglomerates, which are fluidized; and (iii) 

macro-agglomerates, which are too large to remain fluidized and, consequently, settle to the 

bottom of the bed.  These tools can be applied to evaluate the performance of liquid spray 

nozzles in fluidized beds. 

II.2. Equipment  

The experiments were performed in a Plexiglas fluidized bed column with a rectangular cross 

section 0.5 m in length and 0.1 m wide.  The bed material used in this study was Barco 71 silica 

sand from Opta minerals with a Sauter diameter of 200 m and a density of 2650 kg/m3. In each 

experiment, the bed was filled with 45 kg of dry sand.   
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In order to fluidize the bed uniformly, a porous plate distributor was used. The fluidization 

velocity was set at 0.12 m/s during liquid injection and then reduced to 0.07 m/s.  The 

fluidization air flowrate was controlled and measured with a calibrated 1.4 mm sonic orifice  

This unit was equipped with a liquid line, to inject the water into the fluidized bed, and an air 

line, to atomize the liquid into small droplets and, consequently, increase the interaction area 

between liquid and solid. The atomization air was supplied from a high pressure cylinder at a 

constant pressure controlled by a pressure regulator. A calibrated sonic orifice, with a diameter 

of 1.4 mm, was used to measure the air flowrate.    A simple type of pre-mixer, called Bilateral 

Flow Conditioner (BFC) (McCracken et al., 2005) was used to efficiently mix liquid and 

atomizing air upstream of the spray nozzle. 

Two types of spray nozzles were used in this study.  The first nozzle, called TEB, is shown in 

Figure II.1.  It is a scaled down version of industrial spray nozzles patented by Base et al. (1999).  

In industrial processes, the flowrate of atomization gas must be minimized; for example, in the 

Fluid Coking process, the flowrate of atomization steam must be minimized to reduce energy 

costs, increase the coker capacity and reduce wastewater flows. The ratio of the atomization gas 

mass flowrate to the liquid mass flowrate, or “Air to Liquid Ratio” (ALR), typically ranges from 

0.5 to 2 %. With such ALR values, the liquid distribution is far from perfect, and agglomerates 

are typically formed in the fluidized bed.  The second type of nozzle used in this work was a 

“high ALR nozzle” (Figure II.2), consisting of a 3.6 mm diameter hollow cylinder and operating 

with an ALR of 50 %. 

 

Figure II.1: TEB Spray Nozzle geometry 
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Figure 0II.2: “High ALR” hollow cylinder shaped nozzle 

Preliminary experiments used a method first developed by House et al. (2008) to show that no 

agglomerates were formed when liquid was injected into the fluidized bed with the high ALR 

nozzle. This method was originally used to characterize the initial liquid-solid contact in a 

fluidized bed by injection of a sugar solution. After an injection of such solution, the bed was 

defluidized and allowed to slowly dry. The sugar would act as binder and maintain the integrity 

of granules formed during the initial contact of the injected liquid with the sand particles. 

Similarly to House et al. (2008), a solution of 22 wt% sucrose and 8 wt% glucose was used to 

match the viscosity of bitumen at the injection temperature used in industry. Figure II.3 shows 

that no agglomerates were formed when the “high ALR nozzle” was used. 

 

Figure 0II.3: a sample of bed collected sand after spray with “high ALR” nozzle 
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II.3. Types of Moisture Distribution in a Fluidized Bed 

Preliminary studies showed that, when liquid is spray-atomized into a fluidized bed, the  

moisture is distributed throughout the bed in three different forms, (a) free moisture, (b) micro-

agglomerates, and (c) macro-agglomerates, as illustrated in Figure II.4. Figure II.4a shows the 

ideal case, when all the liquid injected spreads on the surface of individual particles, without 

forming any agglomerate. Such liquid is called “free moisture”.  This does not occur with 

practical spray nozzles, since a fraction of the injected liquid always forms agglomerates.  

Micro-agglomerates refer to the small and light agglomerates that remain suspended within a 

fluidized bed under normal operating conditions (Figure II.4b). Such agglomerates can be found 

in samples taken through the wall of the fluidized bed. Figure II.5 shows an example of micro-

agglomerates sampled from a fluidized bed; these agglomerates were solidified by using the 

sugar injection and drying method, based on the method developed by House et al. (2008).  The 

proportion of the injected liquid which is trapped within micro-agglomerates is called “micro-

agglomerate moisture”. 

 

Figure 0II.4: a) Free moisture b) Micro-agglomerates c) Macro-agglomerates 
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Figure II.5: Micro-agglomerates from experiments with injection of sugar solutions 

The third type of moisture is trapped within macro-agglomerates (Figure II.4c). The density and 

size of the macro-agglomerates is such that they cannot be fluidized and, therefore, sink to the 

bottom of the bed above the gas distributor. Such agglomerates will not be present in samples 

taken through the wall of the fluidized bed. Figure II.6 shows an example of macro-agglomerates 

recovered from the bottom of a fluidized bed, which were collected with the sugar injection and 

drying method.  The proportion of the injected liquid which is trapped within macro-

agglomerates is called “macro-agglomerate moisture”. 
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Figure 0II.6: Macro-agglomerates from sugar experiments 

 

II.4. Quantitative methods for the Evaluation of the Moisture 

Distribution in a Fluidized Bed 

Three different types of measurement were conducted in this study: 

1) The overall moisture of the fluidized bed (X1), i.e. the total amount of water present in 

the fluidized bed, was obtained by mass balance. 

2) Fluidized solids were sampled through the wall of the fluidized bed and the total moisture 

of the sample was measured (X2). 

3) The free moisture (X3) was measured either from measurements performed directly in 

the fluidized bed or from sampled bed material. 

The micro-agglomerate moisture can be obtained from (X2 – X3) while the macro-agglomerate 

moisture can be estimated from (X1 – X2). 
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II.4.1 Total Bed Moisture  

The overall moisture of the fluidized bed, i.e. the total amount of water present in the fluidized 

bed, was obtained by mass balance, knowing the mass of injected water at the start of the 

experiment and the mass of water evaporated since then, which was calculated from the bed 

temperature and relative humidity of the fluidization gas leaving the bed.  Preliminary 

experiments indicated that the gas leaving the bed was saturated in water vapor.  

 

II.4.2. Total Sample Moisture  

Two methods, Karl Fischer titrations and evaporative weight loss measurements, were used to 

obtain the total free moisture of a sample of bed solids. 

II.4.2.1 Karl Fischer Titration 

Karl Fischer titration was invented in 1935 by the German chemist Karl Fischer. It uses a 

volumetric titration to determine the amount of water in a sample.  

In this study, known amounts of wet solids and dry methanol were mixed.  The mixture was then 

centrifuged to obtain a particle-free sample of the wet methanol solution, which was titrated to 

determine its water content. 

Unfortunately, our tests indicated that the Karl Fischer titration is not sensitive enough for the 

accurate determinate of the moisture content of in solids samples with a liquid to solid ratio 

below 0.12wt%.  

II.4.2.2 Evaporative Weight Loss 

Another way to measure the moisture content of a sample of wet solids is to use a moisture 

analyzer. This type of analyzer is a balance that is equipped with a heating system that is able to 

vaporize the water from a sample: this increases the accuracy of the standard weight loss method 

by reducing the number of manipulations. In this work, a moisture balance (HG63 Halogen 

Moisture Analyzer from Mettler Toledo) has been used. 
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II.4.3. Free Moisture  

Several methods were investigated for the determination of the free moisture of a solid sample.  

Several samples were prepared with a known amount of water, using a mechanical blender to 

eliminate any agglomerate, so that all the sample moisture was in the form of free moisture.  The 

free moisture of each sample was characterized as the liquid to solid mass ratio (L/S) and 

experimentally measured using the following methods: 

II.4.3.1 Funnel flow 

This method is based on the assumption that free moisture makes particles cohesive and that this 

cohesivity slows gravity flow through a funnel.  For these experiments, two different funnels 

with included angles of 60 degrees and spout diameters of 4 mm and 12 mm were chosen.  

Figures II.7 and II.8 show that the free moisture greatly affected the time required for 70 g of 

solids to flow through the funnel.  However, this method can only determine the effects of free 

moisture on flowing time over a narrow range of values: below L/S values of 0.8 %, there was no 

effect of free moisture on the flow time while, above 0.12%, particles would not flow through 

the funnel.   
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Figure 0II.7: L/S versus funnel flowing time –funnel with 12 mm spout, 70 g sample 

 

 

Figure II.8: L/S versus funnel flowing time –funnel with 4 mm spout, 70 g sample  
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II.4.3.2 Avalanche test 

A revolution powder analyzer determines the cohesivity of a powder from its avalanching 

behavior. The equipment contains a rotating drum, a video camera that captures the resulting 

avalanches and software that characterizes the avalanches.  In this work, a Revolution powder 

analyzer from Mercury Scientific (Rev 2007) was used. Figure II.9 shows that the avalanching 

behavior of a wet sample is completely different from that of a dry sample. This study 

considered three different avalanche characteristics: the avalanche time, the avalanche power 

standard deviation and the surface fractal.   

The avalanche time is the average time interval between avalanches: it normally increases as a 

powder becomes more cohesive.  Figure II.10 shows that the avalanche time increases with 

increasing free moisture.  However, the avalanche time is not sensitive enough for free moistures 

greater than 0.07 % (Figure II.10).   
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Figure 0II.9: Images from the Revolution powder analyzer: (a) Wet sand with L/S = 0.1%, 

(b) Dry sand 

The power of each avalanche is the difference between the beginning height of the avalanche to 

the ending height of the avalanche; as a powder becomes more cohesive, avalanches become less 

regular and the standard deviation of the avalanche power increases.  Figure II.11 shows results 

similar to those obtained with the avalanche time: a higher sensitivity at low moistures and a 

poor sensitivity for free moistures greater than 0.07%.  

The surface fractal is the fractal dimension of the surface of the powder and characterizes the 

irregularity of the powder surface; as a powder becomes more cohesive, its surface becomes less 

regular and its surface fractal increases.  Figure II.12 shows that, in contrast with the previous 

two avalanche characteristics, the fractal dimension can provide sufficient sensitivity for an 

accurate determination of free moistures greater than 0.07 %. 
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Figure 0.10: Avalanche time vs. free moisture 

 

 

Based on these results, the recommendations is to first use the avalanche power standard 

deviation to estimate the free moisture of the sample.  If the estimated moisture is greater than 

0.07 %, then the surface fractal can be used to get more accurate moisture. 

 

 



 

297 

 

 

Figure 0II.11: Avalanche power standard deviation vs. free moisture 

 

Figure 0II.12: Surface fractal vs. free moisture 
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II.4.3.3 Angle of Repose 

The angle of repose is the angle that a powder forms at rest with a horizontal plane. The angle of 

repose increases as a powder becomes more cohesive.   

Figure II.13 shows that the angle of repose cannot be used to determine free moistures smaller 

than 0.08 %.  On the other hand, it is sensitive at higher moistures.   

The bulk density of a powder can be determined from angle of repose experiments, using the 

radius r and the height h of the angle formed when a mass m of powder is poured: 

 6/2hr

m
b


 

        [II.1] 

 

 

Figure 0II.13: Angle of repose 
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Figure II.14 shows that the bulk density varies with the free moisture, but this method is not a 

very sensitive.   

 

 

Figure II.14: Powder density as determined from the angle of repose measurements 

 

II.4.3.4. Hausner ratio 

One important characteristic to evaluate powder cohesivity is the Hausner ratio, defined as the 

ratio of tapped bulk density to bulk loose density. The Hausner ratio increases as a 

powder becomes more cohesive.  Figure II.15 shows that it cannot be used to determine the free 

moisture, probably because its measurement is not accurate enough to detect the very small 

changes caused by the free moisture. 
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Figure II.15: HR vs. L/S (%) 

 

II.4.3.5. Electrical conductance method  

The electrical conductance method was developed by Portoghese et al. (2008) to evaluate the 

distribution of sprayed liquid in a gas-solid fluidized bed. Leach et al. (2009) adapted the 

electrical conductance method to study the impact of spray nozzle geometry on liquid 

distribution in fluid beds. It was found that the presence of water increased the electrical 

conductance of a defluidized, packed bed and that, as the liquid spreads through the bed; it 

provides additional pathways for the electrical current, increasing the bed conductance (Leach et 

al., 2008).  Portoghese et al. (2008) and Leach et al. (2009) found that more stable and accurate 

measurements of the liquid distribution in a fluidized bed could be achieved by defluidizing the 

bed just before measuring its conductance. 
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In this study, the electrical conductance method is first applied to wet solids samples prepared 

with a mechanical blender.  It is then used in a fluidized bed, following the method developed by 

Portoghese et al. (2008) and Leach et al. (2009). 

II.4.3.5.1. Preliminary tests in a small cell  

A wet solids sample was prepared with a mechanical blender, as for the other tests.  This sample 

was poured in a small, custom-built 11 cm x 11 cm cell, where it was packed.  Electrodes on the 

walls were connected to a signal generator that provided a sinusoidal, 100 Hz current with a 

constant voltage of 7.74 V (Vapp).  A small, 100 KΩ resistor (R1) was inserted in series along 

the electrical circuit: the voltage drop across this resistor (Vm) provided the intensity of the 

current flowing through the circuit. 

The following equation shows how the conductance can be calculated by applying the 

Kirchhoff’s current law. 

11 R

V

RR

V
I m

bed

app 



         [II.2] 

Then this can be rearranged in following equation. 

       [II.3] 

The inverse of this expression is defined as the bed conductance. 

        [II.4] 

The instantaneous bed conductance could then be measured from the two voltages Vapp and Vm, 

which were acquired with a data acquisition system and a Labview program. 

Preliminary tests were conducted by adding wet micro-agglomerates and macro-agglomerates to 

the solids in the cell.  They showed that the agglomerates did not have a detectable effect on the 

electrical conductance (although after a long time, there was some detectable impact as water 
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slowly diffused out of the agglomerates and into the bed material contained in the cell). This 

method can, therefore, be used to measure the free moisture.  

Figure II.16 shows that free moistures larger than 0.05 % can be accurately measured with the 

electrical conductance.  The moderate scatter that was observed with replicate experiments may 

result from the difficulty of achieving an identical packing of the powder in the cell: performing 

measurements directly in the fluidized bed would eliminate this error, as well as any sampling 

error. 

 

Figure II.16: Small cell conductance result 

 

II.4.3.5.2. Fluidized bed measurements 

The conductance measurements in the fluidized bed used an experimental procedure similar to 

the procedures developed by Portoghese et al. (2008) and Leach et al. (2009).  First, the 

fluidization velocity was set at 12 cm/s and then 162 ml of water were injected over about 40 s 

with the “high ALR” spray nozzle.  With this nozzle and this low flowrate, no agglomerates were 
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formed. After 90 s, the fluidization is shut off. Some experiments were conducted with a longer 

fluidization time to verify that no agglomerates had been formed, as agglomerates would be 

broken over a longer fluidization time. 

Five electrodes were placed at different heights on one side wall of bed. These electrodes were 5 

cm x 20 cm metal strips and their location is shown in Figure II.17. A large, common electrode 

covered the opposite wall.  The electrical circuit is shown in Figure II.18 and the local bed 

conductance was evaluated with the same equations used for the small cell. 

 

Figure 0II.17: Electrodes locations 
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Figure 0II.18: Circuit diagram 

 

Figure II.19 shows how the bed conductance varied during a typical experiment with a regular 

spray nozzle, which produced agglomerates.  During the water injection in the fluidized bed, 

there was a rapid increase in conductance due to the increased concentration of electrical 

conductive water.  The bed was then defluidized: the bed conductance first increased quickly as 

the bed slumped and then increased slowly as water slowly diffused from wet agglomerates.  

During the subsequent refluidization period, the conductance first dropped quickly as the bed 

expanded, it then increased slightly, peaked and decreased: at first, the free moisture increased as 

the free moisture generated by agglomerates breakup predominated while at the end, the free 

moisture decreased as drying by the fluidization gas became predominant.  Figure II.19 shows 

the results obtained with the high ALR nozzle:  the main difference is that, during the 

refluidization period, there was no peak in free moisture since, in the absence of agglomerates, 

there was no free moisture generated from agglomerates breakup. 
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Figure II.19: Bed conductance variation with time, for a regular spray nozzle 

 

Leach et al. (1988) proposed to use the variation of the bed conductance with time to 

characterize the distribution of liquid sprayed into a fluidized bed.  They defined two “Nozzle 

Performance Indices”.  The first index, “NPI1”, is the average of the conductance of the 

defluidized bed, between the times of 0 s and 150 s, after the end of the liquid injection. If the 

liquid is well distributed and the free moisture is high, the average bed conductance will be high, 

as shown by the experiments in the small cell.  The second index, “NPI3”, is the slope of the bed 

conductance vs. the logarithm of the time, taken few seconds after the end of the liquid injection.  

It is a measurement of the rate at which liquid spreads by diffusion from the micro-agglomerates 

when the bed is defluidized.  The small cell experiments show that if the liquid is perfectly 

distributed as free moisture, NPI3 will be 0: it is therefore unsuitable for the determination of the 

free moisture. 

A calibration curve was obtained by using the high ALR spray nozzle conductance results, as 

illustrated in Figure II.20. The x axis shows the bed conductance measured a few seconds after 
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the start of the defluidization period, thus resulting from the initial liquid solid contact and not 

affected by diffusion.  
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Figure II.20: 95% confidence calibration curve, bed conductance vs. free moisture 

 

Agglomerates were not formed when the high ALR nozzle was used to spray water into the 

fluidized bed. Figure II.21 shows that when the high ALR spray nozzle was used, the 

conductance of the defluidized bed (between 100 and 150 s) did not change significantly with 

time.  This is in contrast with the results obtained with a regular spray nozzle, for which the 

conductance increased with time as water slowly diffused out of the agglomerates (Figure II.19).  

The absence of agglomerates with the high ALR nozzle was verified by performing the sugar test 

under the same operating conditions. As the sugar dried under defluidized conditions, it would 

have preserved any agglomerate. After drying, the bed was emptied and no agglomerate was 

found, as shown in Figure II.3. 
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Figure II.21: Variation with time of the bed conductance when using the high ALR nozzle 

 

II.4.3.6. Variations in Bed Height 

Free moisture makes the particles cohesive and affects the fluidization quality, while micro-

agglomerates and macro-agglomerates have a negligible effect on fluidization quality.  

Quantifying the fluidization quality can, thus, be used to determine the free moisture.  The 

variation of the bed height as liquid was injected in the fluidized bed, as the bed was defluidized 

and, finally, as the bed was refluidized, provides a way to quantify the fluidization quality, the 

cohesivity of the bed particles and, therefore, the free moisture. 

A video recording of the fluidized bed was taken through its transparent Plexiglas wall, using a 

camera operating at a speed of 29 frames/s.  An image analysis procedure was then used to 

determine the instantaneous bed height from this recording.  

The movie was first converted to individual pictures. For example, for a 120 second movie, 3479 

pictures were created. A dedicated Matlab program analyzed these pictures and calculated the 
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coefficient of variation (standard deviation / mean) of each pixel in the pictures. When a bed is 

fluidized, the bed surface fluctuates and the bed height can thus be obtained at every lateral 

location from the pixel where the coefficient of variation is highest, as shown in Figure II.22. 
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Figure 0II.22: Coefficient of variation vs. height 

 

Figure II.23 shows that the variation of the bed height with time was completely different for a 

dry bed and a bed wetted with liquid injected with the high ALR nozzle.  The same procedure 

was used as for the conductance measurements: first, the fluidization velocity was set at 12 cm/s 

and then 162 ml of water were injected over about 40 s with the high ALR spray nozzle; after 90 

s, the fluidization was interrupted.  In both cases, the initial fluidized bed height was about 65 

cm.  When the dry bed was defluidized, its height dropped to about 59 cm.  When the high ALR 

nozzle was used to inject water into the bed, the bed height gradually increased to a maximum of 

about 73 cm and then slowly decreased to a defluidized height of 68 cm. 
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Figure II.23: Bed height changes as the bed is defluidized, for 2 cases: a dry bed and a bed 

wetted with the high ALR nozzle  

 

Figure II.24 shows how the free moisture could be obtained from the maximum fluidized bed 

height.  Accurate values can be obtained for free moistures ranging from 0.07 to 0.18 %.  Below 

0.07%, the change in cohesivity cannot be detected.  Above 0.2%, the bed becomes completely 

bogged. 

Similar results were obtained from the defluidized bed height, as shown in Figure II.25.  The 

defluidized bed height seems a more sensitive method at the low moistures, but the 

reproducibility seems worse. 
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Figure II.24: Maximum fluidized bed height changes with free moisture 



 

311 

 

Defluidized bed height(cm)

58 60 62 64 66 68 70

L/
S

(%
)

0.0

0.1

0.2

0.3

0.4

 

Figure II.25: Maximum de-fluidized bed height changes with free moisture 

II.5. Effect of the Atomization Gas Flowrate on the Moisture Distribution in a Fluidized 
Bed 

A small regular nozzle (TEB) (see Figure II.1) was tested with air-to-liquid ratio (ALR) values 

ranging from 0 to 2%. This range of ALR values is typical for industrial nozzles of the same type 

as the TEB nozzle. The objective of these tests was to demonstrate how the experimental 

methods developed in this paper can be used to quantify the effect of the ALR on the distribution 

of the bed moisture among free moisture, micro-agglomerates and macro agglomerates.  

The conductance method described in section 1.4.3.5.2 was found to be the most convenient and 

accurate method to determine the free moisture and, therefore, it was used in this work. 

The moisture in macro-agglomerates was obtained by considering that the macro-agglomerates 

segregate and, as such, they are only present in the bottom region of the bed.  Figure II.19 

indicates how the drying time was obtained from the bed conductance measurements. Figure 

II.26 shows the difference between the drying time (t1) of the solids in the top region of the bed, 

measured with electrode #1, and the drying time (t5) of the solids in the bottom region of the 
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bed, measured by electrode #5.  The time t5 is much longer than the time t1 because macro-

agglomerates dry and break up much more slowly than the micro-agglomerates present in the 

upper part of the bed.   Drying takes place in two stages: in the first stage, there is significant free 

moisture in the bed, which results from the original free moisture and from micro-agglomerates, 

while in the second stage, most of the bed is dry and the macro-agglomerates are slowly drying 

out.   

Separate measurements indicated that the air leaving the fluidized bed, during drying, was 

saturated with water vapor.  Its temperature was approximately constant during the drying 

period.  Therefore, the time t5 is proportional to the total moisture while the time t1 is 

proportional to the sum of the free moisture and the moisture contained in micro-agglomerates.   

The fraction of the injected water that is contained in macro-agglomerates can thus be obtained 

from the following equation:  

[II.5]
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Figure 0II.26: The difference between drying time of Elec#1 and Elce#5 
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This method for the determination of the moisture contained in macro-agglomerates was 

validated by conducting experiments where the water was injected into the fluidized bed as in the 

regular experiments.  Once the bed had been defluidized, however, most of the solids were 

carefully vacuumed out, leaving only a layer of about 10 cm at the bottom of the bed.  The solids 

in this bottom layer were weighed, dried in an oven and weighed again to obtain their total 

moisture.  This provided a direct measurement of the moisture contained in the macro-

agglomerates, assuming the free and micro-agglomerate moistures are the same in the bottom 

layer as in the rest of the bed.  Table 1 shows that there was a reasonably good agreement 

between the two measurement methods.   

 

Table 0II.1: Macro-agglomerates moisture measurements with two different methods  

  

 

 

 

 

Figure II.27 shows that the ALR of the TEB spray nozzle has a strong impact of the distribution 

of the injected water in the fluidized bed.  The macro-agglomerate moisture dropped with 

increasing ALR while the free moisture increased.  Figure II.27 also indicates that, even at a 2% 

ALR, the TEB nozzle provides a distribution that is far from perfect, since over 50% of the 

injected liquid is contained in macro-agglomerates.   

ALR 
Macro-agglomerates 

moisture from drying time 

Macro-agglomerates from 
the bottom layer drying 

experiments 

0 67% 70% 

1 52% 50% 

2 53% 51% 
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Figure 0II.27: Effect of the ALR on the moisture distribution, using the TEB nozzle 

Conclusions 

Of all the methods that were investigated, to measure how a liquid injected into a fluidized bed is 

distributed on the fluidized particles, the methods based on the in-situ measurements of the bed 

conductance have been demonstrated to be the most convenient and accurate.  Bed conductance 

measurements in the top region of the bed provide the free moisture, i.e. the liquid distributed on 

individual particles, while conductance measurements in the bottom region provide the moisture 

trapped in macro-agglomerates. 

These methods were applied to the study of the effect of the atomization gas flowrate on the 

performance of a scaled-down nozzle, of a type used in industrial applications.  Increasing the 

atomization gas flowrate increased the free moisture and reduced the moisture trapped in macro-

agglomerates.   
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