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Abstract

Constant-load pyramidal indentation creep tests and high precision micro-indentation strain
rate change tests were performed to assess the effect of indentation depth, irradiation damage
and temperature on the mechanical anisotropy and local plastic deformation parameters of
the Zr-2.5%Nb CANDU pressure tube material. Polished samples aligned normal to the
transverse (TN), axial (AN) and radial (RN) directions of the pressure tube were irradiated
with 8.5 MeV Zr" ions to simulate the effect of neutron irradiation. Constant-load pyramidal

indentation creep tests performed at 25°C show that the average indentation stress, o, |

increases with decreasing indentation depth and increasing levels of irradiation. The ratio of

Cing_, ON the TN plane relative to that on the AN and RN planes was 1.3 and 1.2 respectively

before irradiation which reduced to 1.04 and 1.08 respectively after irradiation indicating a
decrease in anisotropy as a result of irradiation hardening. The apparent activation energy,

AG,, of the obstacles that limit the rate of dislocation glide during indentation creep at 25°C

does not change with indentation depth and direction but increases with increasing levels of
irradiation damage. Samples irradiated at 300°C with 8.5 MeV Zr" ions show similar changes

in o, ., anisotropy and AG, with increasing levels of irradiation. However the values are

lower than those exposed to Zr" irradiation at 25°C indicating the effect of concurrent
thermal annealing on the accumulation of irradiation damage. Micro-indentation creep tests
performed on the non-irradiated samples over the temperature range from 25 to 400°C show

that the ratio of o;,, ~in the transverse direction relative to that in the radial and axial

directions decreased with increasing temperature. AG, increases with increasing temperature

and is independent of indentation direction. Micro-indentation strain rate change tests show
that the inverse apparent activation area of the deformation process followed a linear,
Cottrell Stokes type, dependence upon the applied stress. The increase in the apparent
activation work indicates that the irradiation induced damage act as strong obstacles to
dislocation glide and thus increase both the magnitude and the strain rate sensitivity of the
yield stress of the Zr-2.5%Nb alloy at 25°C.
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Chapter 1

1 Introduction

Pressure tubes employed in the CANDU (Canadian Deuterium Uranium) nuclear reactor
core are made of Zr-2.5%Nb alloy. Although these pressure tubes have performed
satisfactorily during operation, they develop various microstructural changes (defects)
due to exposure to different operating conditions, such as high stress, temperature and
neutron irradiation. In this research, various micro- and nano-scale pyramidal indentation
test techniques were applied to assess the local variations in the mechanical properties of
the Zr-2.5%Nb pressure tube material with and without the presence of these

microstructural changes.

1.1 Zr-2.5%Nb pressure tube

In CANDU nuclear reactors, cylindrical pressure tubes contain the uranium oxide fuel
bundles and the heavy water (D,O) primary coolant. These pressure tubes are of 6m
length, 103.4mm inside diameter and 4.2mm wall thickness, and operate at about 10 MPa
internal pressure, at a temperature ranging from about 250°C to about 310°C and in a fast
neutron flux of up to about 4x10*" n-m-s™ [1-3]. The ends of the pressure tubes are roll-
joined to stainless steel end fittings. Calandria tubes, made of Zircaloy-2, are located
concentric with the pressure tubes and insulate them from the surrounding cold D,0
moderator. Four central spacers supported by the calandria tube provide separation
between the two tubes and partially support the pressure tube to prevent sagging (Figure
1.1).

Although the CANDU reactors were originally designed to use steel pressure tubes, the
importance of superior neutron economy along with improved corrosion resistance,
dimensional stability and strength led towards the development of zirconium alloys to be

used as pressure tube material. Zircaloy-2 was the first zirconium alloy to be used as
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Figure 1.1: Schematic illustration of a CANDU fuel channel indicating the location
of the pressure tube (Adapted after Plus et al. [1] and Ross-Ross et al.[2])

pressure tube material. However, further development has shown that the stronger Zr-
2.5%Nb pressure tubes not only lowered the neutron absorption of the tube by allowing
reduced wall thickness, but also provided lower hydrogen uptake, lower creep rate and
made tube fabrication easier [4,5]. Thus, since about 1980, Zr-2.5%Nb pressure tubes
have been used for the pressure tube alloy in CANDU nuclear reactors. Chapter 2 of this

thesis contains further descriptions regarding these pressure tubes.

1.2 Rationale for Research

The pressure tubes can be subjected to a total fast neutron fluence of about 3x10% n-m™
over their 30 years expected service lifetime in a CANDU reactor core. This high level of
neutron irradiation causes the Zr atoms of the pressure tube to undergo about 30
displacements per atom (dpa). These atomic displacements cause crystalline point defects
to form and dislocation loops, such as small interstitial and vacancy loops, are produced
from the condensation of the point defects [6-12]. These defects act as obstacle to the

dislocation glide and thus cause hardening of the pressure tube. Other than irradiation



induced defects, scratches, usually caused by debris from the coolant entrapped between
the fuel bundles and the pressure tube wall or by excessive rubbing of fuel bundle bearing
pads against the pressure tube wall, can be produced. The local stress ahead of these
scratches can be high enough to potentially result in premature failure of the tube [13].
During service, high local stress ahead of the scratches on the inside surface of the
pressure tube can cause the precipitation of Zr-hydrides and thus the start of brittle
fracture via a delayed hydride cracking process. It is often observed that brittle failure
does not occur at these scratches and this puzzles researchers/engineers. They
hypothesize that thermal creep in the region of the scratch causes it to blunt and thereby
reduce the local stress ahead of the flaw. However, not much is known about the local
thermal creep of Zr-2.5%Nb when it is with or without irradiation damage. It is therefore
necessary to develop test techniques to predict the local plastic deformation parameters
under the high stress state associated with the sharp scratches on the inside surface of these
pressure tubes in order to make accurate flaw assessments. Also, a proper understanding
for the effect of neutron irradiation hardening on the local thermal creep rate needs to be

gained to accurately predict the deformation of this material in irradiated condition.

One characteristic feature of the indentation test results is the indentation size effect i.e.
depth-dependence of the indentation hardness of metals below indentation depths of
about 10 um. Although the indentation depth dependence of hardness of relatively
isotropic (FCC) metals has been studied widely, it has not been investigated in detail for
mechanically anisotropic metals such as the highly textured Zr-2.5%Nb pressure tube

alloy.

The mechanical properties of the Zr-2.5%Nb pressure tubes are highly anisotropic i.e.,
their properties differ in the three principal directions (axial, radial, transverse) of the
tube. Generally, the mechanical properties of these tubes are determined by the
conventional uniaxial or biaxial loading tests which allow tests only in the axial and
transverse (circumferential) directions of the tube. As the thickness of these pressure
tubes are only about 4 mm, it is impossible to make conventional uniaxial tensile test
specimens aligned parallel to the radial (thickness) direction of the tube. Therefore, it is

essential to develop a method for complete characterization of the mechanical anisotropy



of these pressure tubes. From the viewpoint of the nuclear industry, perhaps the most
important issue related to the mechanical anisotropy of zirconium alloy pressure tubes is
the effect that neutron irradiation has on the degree of the anisotropy. While it is well
established that zirconium alloys undergo significant neutron irradiation hardening, the

anisotropy of this hardening has not been studied in great detail.

Since the service temperature of CANDU pressure tubes is between 250°C and 310°C, it
is also very important to assess the effect of high temperatures on the mechanical
anisotropy of the Zr-2.5%Nb pressure tube material both during irradiation and in non-

irradiated conditions.

1.3 Objectives

To address the aforementioned research needs, the primary theme of this research is to
apply pyramidal indentation test techniques to study the kinetics of local plastic
deformation of Zr-2.5%Nb CANDU pressure tube material both in the as-received
condition and in conditions similar to those inside a nuclear reactor. The specific research

objectives are to:

e Conduct one-hour constant-force pyramidal indentation creep tests at 25°C to

investigate:

— The effect of indentation depth on the mechanism of indentation creep

deformation.

— The effect of Zr" irradiation hardening (as a simulation of neutron

irradiation hardening) on the mechanism of indentation creep deformation.

— The effect of Zr* irradiation damage on the directional anisotropy of the

mechanical properties of Zr-2.5%Nb pressure tubes.

— The effect of temperature during irradiation on the mechanical anisotropy
of Zr-2.5%Nb pressure tube material that was irradiated with Zr* ions at
300°C.



e Apply constant-force pyramidal micro-indentation tests to assess the temperature
dependence of the anisotropy of the plastic deformation parameters of non-
irradiated Zr-2.5%Nb pressure tube material over the temperature range from 25
to 400°C.

e Perform micro-indentation strain rate change tests at 25°C both in irradiated and
as-received conditions to determine the strain rate sensitivity of the flow stress of
Zr-2.5%Nb pressure tube materials under essentially constant structure conditions
and find out the apparent activation area of the dislocation/obstacle interactions

that control the plastic indentation deformation process.

1.4 Benefits and Novelties of the Research

The use of pyramidal indentation test techniques to assess the plastic deformation
properties of Zr-2.5%Nb pressure tube alloy as described in this research is novel and has

potential applications to the solution of various complex problems.

As scratches on the inside surface of CANDU pressure tubes often have geometrical
similarities, for example similar depth and sharpness, to the pyramidal indentations, the
indentation creep tests can be used to simulate the creep deformation around the
scratches. This will provide important information for understanding the fundamentals of
the indentation creep process and establishing basic Kinetic parameters that can be used in
expressions describing the creep rate of material around those scratches. As most of the
indentation creep investigations reported so far were performed on relatively isotropic
materials, findings from this investigation will provide new information on the
deformation parameters of mechanically anisotropic materials, such as the extruded and

cold-drawn Zr-2.5%Nb pressure tube alloy used in this research.

The indentation testing technique has high spatial resolution which allows tests on wide
ranges of sample dimensions with minimal sample preparation. Thus, this testing
technique is potentially very useful to make a complete assessment of the directional

anisotropy of the mechanical properties of Zr-2.5%Nb pressure tubes which is not



possible with the conventional uniaxial tests due to the practical difficulty of preparing

and testing small specimens cut from the 4 mm thick tubes.

Another novelty of this work is the use of Zr" irradiation of the Zr-2.5%Nb pressure tube
material to simulate the microstructural damage resulting from neutron irradiation.
Previous studies have shown that heavy ion bombardment can be used to create
crystallographic damage consisting of dislocation loops similar in size and nature to that
produced by neutron irradiation of metals [14, 15]. The benefit of using Zr" irradiation
for this research is the production of defects without causing significant chemical
composition change to the test material which also stays non-radioactive after irradiation.
Another benefit is the production of damage in very fast rate. It takes about 1.5 to 2 days
for Zr* to produce 30dpa of damage to the top several micron thick layer of Zr-2.5%Nb
material, whereas neutron irradiation takes about 30 years to produce the same amount of
damage. In summary, the benefits of using Zr" irradiation are the production of damage at
a quicker rate without significantly changing the composition of the base metal and

keeping the sample non-radioactive.

This research provides useful information regarding the suitability of indentation test
techniques for measuring local mechanical properties of Zr-2.5%Nb CANDU pressure
tubes as well as other mechanically anisotropic metals. The test data will provide direct
information on the plastic flow properties of Zr-2.5%Nb pressure tube material in the
three principal directions of the tube (i.e. the axial, radial and transverse directions) at as-
received, irradiated and high temperature conditions that could help in the development

of models addressing local stress relaxation at the base of the defects in pressure tubes.

The results of this research can ultimately be used to prescribe more timely pressure tube
replacement strategies for CANDU reactors providing a way to improve the economy of
the reactor by reducing the possibility for unnecessary pressure tube removal and increase
the safety of reactor personnel by limiting unnecessary radiation exposure. In the long
term, specialized indentation based testing techniques can be developed based on the

testing methodologies applied in this research. These methodologies are potentially



useful to a very wide range of engineering applications, thus benefiting the materials

science and engineering community.

1.5 Structure of Thesis

The thesis has been written following the guidelines of the Faculty of Graduate and
Postdoctoral Studies at the University of Western Ontario adopting an integrated-article
format. It contains 8 chapters, 6 of which contain detailed description of different

investigations carried out in this research.

Chapter 2 of this thesis contains a review of relevant published literature on Zr and HCP
crystal structures, fabrication, properties and in-service performance of Zr—2.5%Nb
pressure tube material, and the theory of deformation mechanisms. It also comprises
description of the instrumented indentation test techniques and the testing equipments
used for the experiments described in the subsequent chapters. Descriptions of Zr*
irradiation and indentation based test results of various nuclear materials are also

included in this chapter.

Chapter 3 discusses the effect of indentation depth and ion irradiation hardening (as a
simulation of neutron irradiation hardening) on the mechanism of indentation creep
deformation of the Zr-2.5%Nb pressure tube material. A version this chapter was
published in the Journal of Nuclear Materials [16]. Chapter 4 includes investigations
regarding the mechanical anisotropy of non-irradiated and Zr* ion irradiated pressure
tube material. A version of this chapter was also published in the Journal of Nuclear
Materials [17] and part of it was presented in NuMat 2010: the Nuclear Materials
Conference in Karlsruhe, Germany. In Chapter 5, the effect of irradiation temperature on
the mechanical anisotropy of the Zr* ion irradiated Zr-2.5%Nb was assessed. Part of this
chapter was presented at 2010 MRS Fall Meeting in Boston, MA, USA and was
published in Materials Research Society Symposium Proceedings [18]. The effect of
temperature on the anisotropic deformation of Zr-2.5%Nb pressure tube material during

micro-indentation is described in Chapter 6 and a version of it was published in the



Journal of Nuclear Materials [19]. Chapter 7 describes investigations regarding micro-
indentation strain rate change tests. A version of this chapter is being prepared for journal
submission. Finally, general and specific conclusions drawn from the research study
along with recommendations for future research are presented in Chapter 8.
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Chapter 2

2 Review of the Relevant Literature

This chapter provides a critical overview of the published literature that is relevant to the
objectives of this research. The chapter provides useful information on areas related to
fabrication and properties of Zr-2.5%Nb pressure tube material, Zr and hcp crystal
structures, effects of CANDU reactor operating conditions on the properties of the
pressure tubes, mechanisms of time-dependent creep deformation that are active in this

pressure tube material, indentation test techniques, and the process of Zr* ion irradiation.

2.1 Fabrication Process of Zr-2.5%Nb pressure tubes

The Zr-2.5%Nb pressure tubes are fabricated by extrusion at around 827°C typically with
an 11:1 extrusion ratio followed by cold drawing to about 25-27% and then stress
relieving at 400°C for 24 hours [1,2]. The extrusion temperature corresponds to the
(a+P)-phase field in the Zr-Nb equilibrium phase diagram (Figure 2.1). The resulting
grain structure of the extruded tube consists of elongated hexagonal closed packed (hcp)
a-zirconium grains supersaturated with Nb (0.5-1 wt%) and networks of metastable body
centered cubic (bcc) B-zirconium containing about 20 wt% Nb. Subsequently, the
metastable B-phase partially decomposes and forms a metastable Nb-depleted hcp -
phase precipitate in the remaining Nb enriched (about 40 wt%) bcc B-phase during the
stress relief treatment at 400°C [3-9].

Due to the extrusion process the a-grains are found elongated in the axial direction of the
tube and thinner in the radial and transverse directions. The average grain size is about
usually 0.2, 1 and 5 um in the radial, hoop and axial directions respectively [2]. A typical

chemical composition of the Zr-2.5% Nb pressure tube is given in Table 2.1.
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Figure 2.1: Zr-Nb Equilibrium Phase diagram (Adapted after [6, 9, 10 ]).

Table 2.1: Chemical

composition of Zr-2.5% Nb pressure tubes used in CANDU

reactors (Adapted after [11])
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Element Composition range of current tubes
Niobium (Nb) 2.4 - 2.8 wt%
Oxygen (O) 900-1300 ppm
Nitrogen (N) <65 ppm
Hydrogen (H) <5 ppm

Iron (Fe)

<1300 ppm
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2.2 Zr and HCP Crystal structure

Pure zirconium exhibits two distinct types of crystal structures. For temperatures up to
862°C, the equilibrium phase is a-Zr which has a hexagonal close-packed (hcp) crystal
structure. For temperature above 862°C up to the melting temperature (1845°C), the
material is in the B-Zr phase which has a body-centered cubic (bcc) crystal structure
(Figure 2.1). The crystallography of the a-Zr will be discussed in this section since a-Zr
is the main constituent of the microstructure of the Zr-2.5%Nb pressure tube material
while under normal operating conditions in a CANDU nuclear reactor and, therefore, the
mechanical properties of the a-Zr phase have a strong influence on the plasticity and the

creep behaviour of the pressure tubes.

Figure 2.2: hcp crystal structure of the a-Zr phase.

The positions of the atoms in the hcp unit cell of the a-Zr phase are shown in Figure 2.2.
The cell geometry is described by four axes. Three of the axes are coplanar with aj, a,
and as oriented 120° to one another. The fourth axis, referred to as the c-axis, is

perpendicular to the basal plane containing a;, a; and as. In the hcp unit cell the lengths
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a1, a, asare equal. At room temperature the measured values of ‘c’ and ‘a’ for the a-Zr
phase of Zr-2.5%Nb are 5.147 and 3.323 A respectively [12].

)

Atoms in
Unit Cell

Figure 2.3: Atomic arrangements in the hcp crystal structure (Adapted after [12])

The hcp structure is mechanically anisotropic i.e. the mechanical strength, strain-
hardening capacity, creep resistance and ductility are different when the material is
loaded along the c-axis than when it is loaded along one of the a-axes. For an ideal hcp
structure where the atoms have equal affinity for one another, the ratio c/a would be
1.633. The mechanical anisotropy of Zr is enhanced by a deviation from this ideal ratio
c/a. The c/a ratio for Zr is 1.593, which is significantly less than the ideal ratio and this

deviation affects the deformation behaviour of Zr.
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The stacking sequence of close packed atom planes necessary to create the hcp structure

is shown in Figure 2.3. These planes are stacked one on top of another following an A-B-

A-B-A... sequence. It is this stacking sequence that give rise to the marked anisotropic
properties of the Zr single crystal.
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Figure 2.4: Some Important planes and directions in the hcp system

Some of the planes in the hexagonal crystal structure are particularly significant to the

plastic deformation process and are given special names according to the {hkim} Miller
index notation:

Basal Planes {0001}

Type | prismatic planes {1010}

Type Il prismatic planes {1120}
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Type | pyramidal planes {1011}
Type Il pyramidal planes {1022}

These significant crystal planes, and several significant crystal directions are shown
superimposed upon an hcp unit cell in Figure 2.4. According to Miller index notation,

planes and directions with common indices are orthogonal.

Since plastic deformation occurs in the Zr-2.5%Nb alloy by the mechanism of dislocation
slip upon specific planes, and specific direction on those planes, we can define specific
{hkIm}<hklm> slip systems that are active. The prismatic slip system {1010}<1120> is
the dominating slip system in the Zr-2.5%Nb alloy. The limited number of available
prismatic slip planes means that other dislocation slip systems, of the basal and pyramidal
type, must be also active to accommodate plastic deformation in some loading directions
[38]. It has been observed that the active slip system during tension and compression
along the a-axes is the prismatic slip system whereas pyramidal slip i.e. {1011}<1 123>
slip dominates during tension or compression along c-axis [12, 14-17]. The limited
number of slip systems and the asymmetry of the deformation process are both related to
the mechanical anisotropy of the Zr-2.5%Nb material.

2.3 Anisotropy of the Zr—-2.5%Nb pressure tube material

The mechanical anisotropy displayed by the Zr-2.5%Nb pressure tubes is due both to the
inherent anisotropic properties of the hcp crystal structure of zirconium and the strong

crystallographic textures that results from the process of tube fabrication [1-3,6,7,13]

As a result of the thermo-mechanical extrusion and cold drawing fabrication process, as
described in section 2.1, the majority of the a-phase grains in these pressure tubes are
textured with their <1000> c-axis aligned in the circumferential (transverse) direction and
the <101 0> and <11 20> in the axial and the radial (thickness) directions of the tube
respectively [4,18] as shown in Figure 2.5.
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Figure 2.5: Schematic diagram of the orientation of Zr-crystal in 2.5%Nb pressure
tube

As indicated in section 2.2, deformation occurs by pyramidal slip along the c-axis. The
pyramidal slip plane {1011} requires the motion of dislocations with large Burgers
vectors, containing both ¢ and a components, we refer to these as (c+a) Burgers vectors.
Research has shown that pyramidal slip involving the glide of dislocations with (c+a)
Burgers vector requires the application of multiple times higher critical resolved shear
stress than that required for prismatic slip of Zr. [15]. Thus, the flow stress of the of Zr—

2.5%Nb pressure tube material is highest in the transverse direction of the pressure tube.

This anisotropic behaviour of the pressure tube material also affects the tubes
performance inside the nuclear reactor. A description of the response of this material

under operating conditions is discussed next.
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2.4 Effect of CANDU operating conditions on the properties

of Zr—2.5%Nb pressure tube material

During in-reactor operation, the dimension of the CANDU pressure tubes changes due to

the effects of temperature, neutron irradiation and stress. The dimensional changes in the

pressure tubes during service are [11,19]:

i)

Diametral expansion: The diameter of the pressure tube increases with time.
This happens mainly due to irradiation creep under the action of the hoop
stress resulting from the pressurized D,O coolant. The contribution from
thermal creep and irradiation growth is small at least in the central region of
the pressure tube where the neutron flux, and hence the radiation effects, is
very large. However, it was found that irradiation growth has a negative
component which is beneficial as it tends to decrease the total amount of

diametral expansion.

Axial elongation: The pressure tube elongates due to a combination of
irradiation creep and irradiation growth. This happens due to the anisotropic
crystal structure of Zr and the pronounced crystallographic texture produced
during fabrication. The elongation rate increases with accumulated fast

neutron fluence.

Sag: The pressure tube undergoes sag mainly by irradiation creep from the

weight of the fuel bundles and the heavy water.

Wall thinning: As creep and growth occurs at constant volume, the increase in
diameter and length result in a reduction in the wall thic