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ABSTRACT 
 
 

The supply of nutrients and the removal of waste products play a major role in 

tissue engineering. From all the nutrients necessary for cells seeded on scaffolds for tissue 

regeneration, oxygen is the limiting component due to its low solubility in culture media 

while cells consume five to six moles of oxygen for every mole of monosaccharide.  The 

aim of the present work was to develop different strategies to improve the supply of 

oxygen to human coronary artery smooth muscle cells (HCASMC) seeded on three 

dimensional (3D) porous biostable polyurethane scaffolds. As a springboard for the study, 

the measured value of oxygen diffusivity through porous polyurethane scaffolds, 

fabricated by using pressure differential/particulate leaching technique, was used to 

screen the best polymer concentration. Scaffolds fabricated form 15 wt% polymer 

concentration not only had higher oxygen diffusivity but also have better pore 

interconnectivity as shown by SEM image analysis. Moreover a convective mass transfer 

approach showed an improvement in the infiltration of HCASMCs into the 3D scaffolds. 

An oxygen carrier molecule, perfluorodecalin (PFD), was found to improve dissolved 

oxygen concentration in culture media. PFD was shown to be not only non-toxic to 

HCASMC but also have no significant effect on the morphology of the HCASMCs. 

Therefore, higher cell density and infiltration depth into the polyurethane scaffolds were 

observed when HCASMCs were cultured in a media containing PFD. The final stage of 

this work was to introduce an oxygen vector into the skeleton of polyurethane scaffolds. 

For this reason, inert Zeolite Y particles were fluorinated and shown to enhance the 

amount of dissolved oxygen when suspended in culture media.  Fluorinated Zeolite (FZ) 
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particles were then embedded into polyurethane scaffolds without modifying the porosity 

and morphology of the 3D structures. Subsequently, higher cell density and infiltration 

depths were observed when HCASMCs were cultured on FZ particles embedded 

polyurethane scaffolds in contrast to bare polyurethane scaffolds. Taken together, these 

data show three different but equally advantageous strategies of improving the supply of 

oxygen to HCASMC seeded into the interstices of 3D polyurethane scaffolds.    

 

Keywords: Tissue engineering, polyurethane scaffolds, vascular grafts, oxygen 

diffusivity, vascular smooth muscle cells, oxygen carrier molecules, perfluorodecalin, 

fluorinated Zeolite particles, cell proliferation, cell infiltration,  
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CHAPTER 
         1       
       

1 INTRODUCTION 

 

1.1 Overview 

Cardiovascular disease such as coronary artery occlusion is one of the leading causes of 

death in both Western and non-Western societies.1 Conventional severe medically 

refractory coronary and peripheral artery diseases treatment options such as the use of 

autologous vessels and prosthetic grafts have suboptimal performances.2, 3 Over the past 

15 years, the concept of vascular tissue engineering, representing an interdisciplinary 

effort with considerable potential to treat vascular disease, has emerged to be a viable 

treatment alternative.4 The strategies of in vitro tissue engineering are conceptually 

simple and clinically appealing yet these have proven to be a formidable engineering task. 

Despite rapid advances made in this field, success is still limited due to significant 

knowledge gaps in our ability to regulate tissue formation. Within the context of 

engineering, providing sufficient oxygen mass transport that is vital for cellular 

metabolism is perhaps one of the unmet challenges to fabricate tissues of clinical 

relevance.5, 6 It has long been known that the supply of oxygen and soluble nutrients 

becomes critically limiting for the in vitro culture of 3D tissues.7 The consequence of 

such a limitation is exemplified by early studies showing that cellular spheroids larger 

than 1 mm in diameter generally contain a hypoxic and necrotic center surrounded by a 

rim of viable cells.8 Similar observations beyond depths of 250 µm were reported for a 
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number of cells cultured on 3D scaffolds where a non-homogenous cell distribution is 

reported.9-11 Because engineered blood vessels should be at least 500 µm in wall 

thickness, mass transfer limitations represent one of the challenges to be addressed for 

cell survival. 

 

Unlike what is described above, in vivo mass transfer requirements are facilitated by 

convective transport of hemoglobin-bound oxygen to tissues to the proximity of 

capillaries. In most tissues, cells are no more than 100 µm from these capillaries allowing 

sufficient oxygen to be delivered. The small diameter of capillaries (between 6 and 8 µm) 

ensures a residence time long enough in tissues to permit the radial diffusion of chemical 

species 12. Thus in vivo, cells are constantly perfused with the flowing blood through the 

vasculature. At lower blood plasma concentrations of oxygen in tissues, oxygen 

dissociates from hemoglobin and diffuses into tissues and cells. As the blood vessels 

themselves are made up of cells, they too require sufficient oxygen and nutrients to 

survive. Since the wall of the larger blood vessels is too thick to allow diffusion between 

the blood stream and surrounding tissue of the wall, the adventitial layer of these vessels 

contains small arteries called vasa vasorum that supply the smooth muscle cells and 

fibroblasts within the media and adventitia their nutrient demand. Therefore mass transfer 

within the vascular wall is facilitated by the diffusion of oxygen both from the lumen and 

adventitial side.  
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1.2 Thesis Outline 

In view of the above brief overview, the work presented in this thesis underscores the 

importance of addressing oxygen mass transfer to design and fabricate vascular tissues of 

clinical relevance.  In Chapter 2, pertinent literature review is presented. Although the 

open literature documented far exceeded those cited in this thesis, an effort was made to 

focus on recent advances while equally acknowledging seminal works in the field. In 

Chapter 3, scaffold fabrication, diffusion measurements, and some cell culture data are 

presented. Chapters 4 and 5 describe two different approaches chosen to enhance oxygen 

mass transfer in 3D cell cultures each with specific objectives.13, 14 Finally, the 

significance, contributions, and limitations of the study are presented in Chapter 6.  
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CHAPTER 
         2       
  

2 LITERATURE REVIEW 

Overview: This chapter provides background information on the physiology and diseases 

of coronary arteries, surgical interventions and the need for and the challenges of tissue-

engineered vascular substitutes. Elements of vascular tissue engineering are presented 

with a focus on the delivery of oxygen to engineered tissue constructs. It concludes with a 

statement of study rationale and an outline of specific hypotheses and objectives of this 

study. 

2.1 Anatomy and Physiology of Coronary Arteries  

Coronary arteries, which are the first to branch off from the ascending aorta, supply blood 

to the heart muscle. Both the right and left coronary arteries extend from the aorta to the 

heart walls supplying blood to the atria, ventricles, and septum of the heart. Coronary 

arteries are composed of three concentric tunics (Figure 2.1). The tunica intima forms the 

innermost lining composed of non-thrombogenic monolayer endothelial cells. By 

secreting specific molecules such as nitric oxide, endothelial cells inhibit platelet 

activation and prevent thrombus formation.1, 2 The tunica media is generally composed of 

a dense population of concentrically organized smooth muscle cells and is separated from 

the tunica intima by an internal elastic lamina.3 Under physiological conditions, smooth 

muscle cells possess a quiescent contractile phenotype and control the dilation and 

constriction of blood vessels thus regulating blood flow. Under pathological conditions, 

smooth muscle cells convert to a synthetic and non-contractile phenotype. This synthetic 

phenotype results in the proliferation and increased matrix production in the tunica media 
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resulting vessel stenosis.4 The tunica adventitia (externa) forms the external layer and 

contains a collagenous extracellular matrix and fibroblast cells. Ultimately, tissue-

engineered blood vessels should contain all of these layers for proper functionality.  

 

Figure 2.1: Schematic representation and histology of coronary artery wall 
structure.5  
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2.2 Coronary Artery Diseases 

Coronary artery disease is the most common form of heart disease. Atherosclerosis, 

characterized by a progressive accumulation of lipids and fibrous elements in the lumen, 

is a widely recognized inflammatory disease affecting the vasculature (Figure 2.2). The 

early lesions of atherosclerosis consist of sub-endothelial accumulations of cholesterol-

engorged macrophages, called 'foam cells' which acts as preferred sites for lesion 

formation.  

 

Figure 2.2: Schematic representation of normal and diseased arteries. 

With time, the lesions grow and will reach a point where the artery is so narrow that 

blood flow becomes insufficient to supply the succeeding vessels leading to angina and 

ischemia. The deprivation of blood results in oxygen deficiency in the myocardium, and 

accumulation of carbon dioxide and lactic acid in the tissue.6 Unstable lesions with a thin 

fibrous cap are highly susceptible to plaque rupture and erosion, exposing the necrotic 

core and potentially leading to the formation of a thrombus. Thrombosis results in acute 

artery occlusion leading to potentially fatal heart attack.7 In addition to inflammatory 
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atherosclerotic lesions, congenital anomalies of the coronary artery are found in 1-2% of 

the population.8-10  While the majority of these anomalies do not result in signs, 

symptoms or complications, others such as coronary atresia, coronary hypoplasia, single 

coronary artery and ectopic coronary origin are associated with serious events such as 

myocardial infarction, cardiac arrhythmias, syncope, congestive heart failure and sudden 

death.11-13 

2.3 Surgical Intervention 

In the early stages of the plaque build-up, a minimally invasive coronary balloon 

angioplasty intervention technique is a preferred method to surgery for reopening 

occluded atherosclerotic vessels. Following the intervention, stents are often deployed to 

prevent elastic recoil of the vessel wall.14 However, for advanced atherosclerotic lesions, 

coronary artery bypass grafting (CABG) is the only alternative. Autologous grafts remain 

the primary choice for CABG because of their compliance, immune acceptance, and non-

thrombogenicity. The most commonly used autograft  is the saphenous vein (SV) 15 but 

the internal mammary artery and radial artery are also used.16  The extensive use of SV as 

CABG  is, in part, because it is surgically easier to access and harvest.17 However, its 

performance is not sufficient in large due to the gradual deterioration when exposed to 

high-pressure arterial sites leading to excessive dilation and also due to a combination of 

intimal hyperplasia and accelerated atherosclerosis.18-22 Therefore, further surgical 

revascularization is often required in about 10 years after the initial bypass surgery but the 

availability of SV for second and third bypass surgery is a limitatition.23   
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Even though the preferred bypass vascular substitute is the patient’s own arteries or veins, 

they are generally inadequate or unsuitable for approximately one-third of patients 24, 25 

suggesting the obvious need for alternative grafts.26 Prosthetic grafts have been developed 

as an alternative to autografts and, the most commonly used materials are polyethylene 

terephthalate (PET, Dacron®) and expanded polytetrafluoroethylene (ePTFE, Teflon®). 

Dacron® and Teflon® have been used successfully in the replacing large arteries, 

however, when the vessel diameter is under 5 mm, the clinical outcome is 

disappointing.27, 28 The low patency of synthetic grafts in small diameter artery 

reconstruction is due to lower blood flow velocities resulting from intimal hyperplasia at 

the anastomotic site.13 The development of intimal hyperplasia is attributed to the 

compliance mismatch between the graft and the native vessel, and the thrombogenecity of 

the synthetic surface.29, 30 The difference in elasticity at the anastomotic site creates 

turbulence in the blood flow and damages the endothelial lining, resulting in thrombus 

formation and compliance mismatch as shown in Figure 2.3.31, 32 In order to avoid these 

complications, patients having prosthetic grafts often require extensive anticoagulant 

medications.    

 

Figure 2.3: Schematic drawing showing the compliance mismatch between the 
native tissue and a prosthetic graft leading to hemodynamic changes and thrombus 
formation. 
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In addition to Dacron® and Teflon®, polyurethanes have been tested as vascular graft 

materials due to improved compliance, thromboresistance, and reduced anastomotic 

hyperplasia. 33  Polyurethanes are also reported to promote the ingrowth of living tissues 

in and around the grafts potentially modifying the initial compliance of the graft. 34, 35 

However, their clinical use as prosthetic grafts was limited due to their poor biostability. 

36, 37 To overcome these issues, a newly developed polyurethane graft based on 

polycarbonate soft segment showed improved resistance to biodegradation for a 3 year 

period in a canine model. 38, 39 The presence of the polycarbonate soft segment is 

responsible for the increased resistance to biodegradation in comparison to other soft 

segments. 

2.4 Engineered Vascular Tissues as Functionally Competent Conduits 

As stated above, the disappointing outcome of synthetic vascular grafts and the limited 

supply of autogafts necessitate tissue engineering approaches for constructing autologous 

vessels. Vascular tissue engineering technology holds promise in the design of responsive 

living conduits with properties similar to those of the native tissue40. In tissue engineering 

of blood vessels, synthetic biodegradable, non-degradable or ECM scaffolds are 

infiltrated with vascular cells and cultured under physiological conditions to mature 

before implantation into the patient41-43 (Figure 2.4).  
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Figure 2. 4: Schematic processes in tissue engineering showing the essential stages in 
tissue fabrication 

Tissue-engineered blood vessels thus have specific advantages since they are designed to 

be responsive both mechanically and biologically with respect to the load that changes 

with the hemodynamic environment. The first clinical application of a tissue-engineered 

vascular construct was reported in 2001 for a paediatric patient with congenital single 

ventricle cardiac anomaly.41  This was an exceptional case because no synthetic graft 

could be used with the capacity to grow, repair, and remodel as required with normal 

development. Since then, tissue-engineered conduits have been used for a total of 25 

extracardiac cavopulmonary connections (median patient age 5.5 years) with only two 

late cardiac failure deaths reported.44-47 The success of this procedure can be partially 
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attributed to the relatively low-pressure environment (20 to 30 mmHg during systole) 

found in pulmonary circulation, which is less demanding than pressures found in 

coronary arteries (100 to 140 mmHg during systole). Despite the urgent need for an 

engineered vascular tissue substitute, success is still limited.48 While engineering 

approaches for other tissue substitutes can rely on in vivo remodelling to approach 

functionality with time, tissue-engineered blood vessels must function immediately on 

implantation − a significant challenge that contributed to its limited success.49 The long 

lead time associated with the fabrication of an autologous vascular substitute is 

commonly invoked as a major limitation to widespread clinical use. While this point may 

be valid for emergency coronary artery surgical procedures or critically ischemic limbs, 

in practice, most coronary and distal vascular bypass procedures can be predicted and 

delayed over extended periods, allowing sufficient time for tissue fabrication.48 

Clinical trials of engineered vascular substitutes for the adult population has been initiated 

to examine the use of these grafts as arteriovenous shunts, as well as coronary and lower 

limb bypass grafts.48 The initial clinical trial was focused on the safety of the 

arteriovenous shunt model due to the lack of suitable vein for hemodialysis and the 

deplorable efficacy of synthetic vascular grafts. Although graft failure in this model is 

unlikely to be life or limb-threatening, the high flow rates encountered (ca. 800 ml/min) 

generate considerable hemodynamic loads.48 Notwithstanding both technological and 

regulatory challenges that lie ahead, engineered vascular tissues continued to be the "holy 

grail" of future vascular intervention.50  
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2.5 Engineered Vascular Tissues as Species-specific Predictive Organ Model 

The use of vascular cells and whole sections of a harvested artery in combination with 

animal models to study vascular diseases (e.g. atherosclerosis, post angioplasty restenosis, 

and hypertension) in an attempt to develop therapeutics is not new but employing 

engineered human vascular tissues for this role is a novel concept.51 While conventional 

2D cell cultures are indispensable to our understanding of tissue morphogenesis and 

function in physiological and pathological states, they do not accurately replicate the 3D 

microenvironment of human tissues.52 For example, 2D culturing of vascular cells for 

studying intimal hyperplasia without the arterial wall structure and extracellular matrix 

(ECM) cannot recapitulate the intricate vascular wall mechanics and morphogenesis.53 

Similarly, animal organ cultures and whole animal models do not completely mimic the 

human biology due to the inevitable inter-species difference.54 Studies using closely 

related nonhuman primates are constrained by limited availability, legal restrictions, 

ethical concerns, and high cost making these animal models impractical.55  When 

studying human vascular diseases and therapeutics, a realistic model is a human tissue but 

the inability to experiment directly on human subjects limits this progress. Thus the need 

for an engineered human vascular tissue model to close this gap is of vital importance. 

Engineered human vascular tissues are not likely to replace animal or human subjects; 

however, they have the potential to provide high throughput, substantive, and detailed 

information regarding very specific conditions under controlled environments to study 

disease models and therapeutic outcomes that are not possible with animal-based model. 

The impact of successfully engineered human tissues is, therefore, not only restricted to 

the clinic but also fills a critical gap in the pre-clinical model tool chest between 
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traditional cell culture and whole animal experiments and has the potential to accelerate 

the pace of basic biomedical research.56 A number of important physiological 

characteristics of native tissues appear to be preserved in an engineered tissue; thus 

providing models for specific disease conditions such as elevated contractility of vascular 

smooth muscle cells in hypertension, elevated proliferation in atherosclerosis and post-

angioplasty restenosis and, fibrosis and cardiovascular remodeling.57-61 In this context, 

engineered vascular tissue technology may be used both to validate drug targets and to 

optimize loads. This allows for cardiovascular drug screening in a more controlled and 

efficient way than can be performed using a traditional whole animal approach, thereby 

minimizing the number of laboratory animals used and decreasing the overall cost of 

performing research.56  In recent years, engineered 3D tissue models such as cardiac 

patch62, lung tissue63, cornea64 and solid tumor65, 66 have emerged as powerful tools for 

drug discovery. Although clinical applications of engineered 3D tissues attracted most 

media attention, it is evident that engineered tissue models can serve as platforms for 

tightly controlled, high-content screening of drugs and for pharmacodynamic analyses. 

2.6 Engineered Vascular Tissues in Physiological Genomics Studies 

Physiological genomics is an emerging field that brings together the disciplines of 

genomics and cell, organ and whole animal systems integrative physiology in an effort to 

to link gene products and pathways to phenotypes and physiological systems.56, 67 

Physiological genomics study has traditionally been costly, requiring significant time to 

breed and age animals before initiating expensive and time-consuming phenotyping 

protocols.56 Towards this end, the use of in vitro fabricated 3D tissue systems to reduce 
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the cost and time required for physiological genomic research is a relatively unexplored 

concept (Figure 2.5).   

 

Figure 2.5: Engineered tissue provides an opportunity for obtaining a wide variety 
of phenotypes previously restricted to whole animal studies, including mechanical 
measurements such as force of contraction, in an environment that more closely 
replicates complex native tissue than 2D cell culture. This approach also captures 
practical advantages of 2D culture, including the ability to make high-throughput 
measurements and efficiently manipulate genomes. This unique model has the 
potential to provide a link between whole animal and traditional culture approaches 
to studying physiological genomics.56 

Recent progress in miniaturizing engineered tissues and associated physiological assay 

systems will accelerate our knowledge about interaction of the genome with both the 

phenome and the environment.56  For example, using DNA microarrays with 9600 genes, 

Chien and coworkers68 demonstrated that 77 vascular smooth muscle cells (VSMCs) 

genes were expressed more than twofold and 22 genes were expressed less than one-half 

in 3D matrix when compared with the 2D culture condition.  Specifically, cells in 3D had 

less stress fibers and focal adhesions, and a lower level of tyrosine phosphorylation of 

focal adhesion kinase. The cyclin-dependent kinase inhibitor 1 (p21) was differentially 

upregulated in 3D leading to lower VSMC proliferation. Collagen I expression was also 

higher in 3D suggesting that VSMCs cultured on 3D matrix have increased ECM 

synthesis. In addition, Mequanint and coworkers69 showed upregulation of the elastin 

gene and downregulation of VSMC differentiation marker genes when cultured on 3D 
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scaffolds compared with 2D surfaces. Differential gene expression is not limited to 

vascular cells. Several groups have reported preliminary evidence that gene expression of 

different cells cultured in 3D parallels more closely the in vivo situation.70 Gene 

expression profiling experiments in various cell types clearly demonstrated close 

correlation between engineered and native tissues in tumor cells71, tendon72, bone73, and  

skin74. Collectively, these studies point to engineered tissue as a model system that could 

be used to test gene expression and study the effect of altered gene expression on function 

in vitro. In summary, successful application of these strategies may, in the near future, 

allow investigators to identify the gene or genes responsible for a phenotype or disease 

state in 3D culture rather than depending on the traditional positional cloning approach, 

which often requires years of painstaking breeding and phenotypic studies.56 

2.7 Essential Elements of Tissue Engineering  

For tissue engineering to become a broadly accepted alternative for the treatment of 

diseased or otherwise compromised tissues and organs there are a number of critical 

elements that must still be addressed (Figure 2.6). These elements cover cell biology, 

materials design, bioprocess engineering, and clinical outcome.  In the following sections 

each of the elements will be briefly discussed.  
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Figure 2.6: Essential elements in tissue engineering.75 The fabrication of tissue-
engineered products that meet the needs of clinical efficacy, quality, and regulatory 
requirements, manufacturing facility, and viable distribution mechanism requires 
expertise in each of several basic areas of research and development. These include 
cell sourcing and expansion, designing of biocompatible scaffolds that meet in vitro 
and in vivo tissue growth demands, designing bioreactors and large-scale 
manufacturing and preservation systems to enable cost-effective production and 
distribution. Finally, strategies for solving immunological issues must be developed. 

2.7.1 Cell Sourcing 

In order to engineer a tissue, cells are undoubtedly the starting point that needs to be 

considered.  For vascular tissue engineering, the two main cell types needed are VSMCs 

and endothelial cells (ECs).  VSMCs constitute the main cellular components of the 

tunica media of arterial vessels. In a mature artery, they display a contractile phenotype 

with a very low proliferative activity and produce only small amounts of ECM proteins 76 

while expressing contractile cytoskeletal marker proteins such as smooth muscle α-actin 
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(SM-α-actin), smooth muscle myosin heavy chain (SMMHC), smoothelin-B, h-

caldesmon and calponin; and contract in response to electrical, chemical and mechanical 

stimuli.77, 78 However, VSMCs may also acquire a synthetic phenotype and become 

predominantly proliferative if stimulated under certain biochemical and biomechanical 

conditions. In the synthetic phenotype, VSMCs suppress the expression of genes that 

define the contractile phenotype while rapidly upregulating genes required for 

proliferation including matrix metalloproteinases and l-caldesmon.4, 79-82 During 

vasculogenesis, VSMCs exist largely in the synthetic phenotype and synthesize ECM 

proteins such as elastin, collagens and glycosaminoglycans.83 This phenotype modulation 

is useful to engineer vascular substitutes. VSMCs can be sourced from either the patient 

or a donor but the use of autologous cells is preferable since xenogenic and allogeneic 

cells introduce potential risks for immunorejection.84, 85 One limitation of patient-specific 

differentiated VSMCs is, however, their limited proliferative ability that results in 

extended time for cell expansion.86-88 In order to overcome senescence, ectopic 

expression of telomerase via human telomerase reverse transcriptase (hTERT) gene 

transfection of adult VSMC has been studied.89, 90  Despite robust cell growth that 

populated the scaffolds and resulted in a thick wall of the engineered artery, several issues 

related to the safety of telomerised cells need to be resolved before these cells are 

recommended for tissue engineering. For example, transfection with hTERT might lead 

to uncontrolled growth leading to intimal hyperplasia and possibly tumor development.91 

Recent advances in sourcing VSMCs for fabricating vascular tissues have shifted towards 

stem cell niche with considerable success.92-96 Although VSMCs are the most studied in 

the context of engineered tissue fabrication, ECs play a significant role for the overall 

function of the engineered tissue. As such, a quiescent EC monolayer that regulates 
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contractile VSMCs phenotype is an important requirement for functional tissue-

engineered vascular substitutes.97 ECs have a dynamic nature and interact with the 

underlying VSMCs through direct cell-cell contact or through the synthesis and release of 

mediators into the surrounding medium.98   In this thesis, human primary coronary artery 

smooth muscle cells are used.  

2.7.2 Scaffolds  

With the exception of some studies 99-101, porous scaffolds which mimic the extracellular 

matrix, are required for the 3D growth of cells to form engineered constructs.46, 102 

Depending on the intended application, scaffolds may be designed to be biodegradable so 

that only the native tissue will remain after a given period of culture time or it may be 

biostable such that a composite tissue that provide long-term support could be 

fabricated.42, 46, 103-105 In the case of biodegradable scaffolds, cells will remodel the 

scaffold with their own ECM proteins creating the intended tissue without compromising 

tissue structural integrity. This, however, requires strict coordination of the scaffold 

biodegradation rate with the biosynthetic rate and is one of the major obstacles in the field 

today. In addition, a scaffold must have several required characteristics: biocompatibility, 

appropriate mechanical strength and compliance, optimal porosity for cell seeding, in 

vitro nutrient and oxygen transport, and the ability to bind to cells and release growth 

factors when needed.  Although some of these criteria could be met with existing 

scaffolds, they do not provide biological cues for the cells imbedded in them and do not 

interact with the cells. In the body, cells reside within the ECM, which provides tissues 

with the appropriate architecture as well as signaling pathways that influence key cell 

function such as migration, proliferation, and differentiation. Regeneration of tissues in 
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vitro thus requires that cells be given a more specific level of instruction so that tissue 

regeneration is successful. With the discovery of cell adhesion peptide domains in 

fibronectin, collagen and laminin, the design of synthetic extracellular matrices with 

biological activity has become an area of intense research activity.106-108 Scaffolds affect 

cellular functions such as adhesion, migration, proliferation, differentiation and secretion 

of ECM components.69 

2.7.3 Bioreactors 

 A bioreactor is a dynamic in vitro environment that uses both biochemical and 

mechanical signals to guide and regulate tissue developments.109 The concept of 

bioreactors is neither new nor restricted to tissue engineering since cultivating proteins 

from microbial or mammalian cells for therapeutic or diagnostic applications is well-

known.110, 111 They have been developed in response to static culture limitations and are 

used to distribute cells uniformly on 3D scaffolds, provide the desired concentrations of 

gases and nutrients in the culture medium, maintain efficient mass transfer to the growing 

tissue, and apply a physical stimuli to the developing tissue.112, 113 Several bioreactor 

designs such as rotating-wall, spinner flasks, and perfusion have been developed to 

engineer a variety of tissues (Figure 2.7). In order to properly simulate physiological 

conditions, vascular tissue engineering requires a system that mimics the hemodynamic 

forces experienced by vascular tissues. These mechanical forces include shear stress and 

stresses in the radial, circumferential and longitudinal directions. Shear stresses are 

tangential frictional forces that are directly perceived by endothelial cells and indirectly 

transmitted to smooth muscle cells as a result of interstitial flow and signalling.114-118 

Initial attempts to create engineered blood vessels resulted in the manufacturing of grafts 
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with poor mechanical properties.119 The next generation of tissue engineered vascular 

substitutes had dramatically improved mechanical properties; however, it took several 

months to develop tissue engineered vascular grafts with desired optimal mechanical 

properties.100 Because elastin and collagen are the main two components of ECM that 

determine the biomechanical properties of vascular tissues, dynamic mechanical 

conditioning of the construct accelerates the production of these two proteins. For 

example, the periodical radial distention resulted in accelerated maturation of engineered 

vascular tissues.120, 121 In an in vitro experiment with a rabbit pulmonary artery subjected 

to longitudinal stretch, the rate of elastin and collagen synthesis was related to the 

magnitude of the longitudinal stretch.122 It has been also reported that endothelial cell and 

smooth muscle cell proliferation rates in rabbit carotid arteries increased 50-fold and 15-

fold respectively after three days of longitudinal stretch in vivo.123 These data indicate 

that longitudinal stretch of arteries is an important mechanical force for accelerated cell 

proliferation, production of the ECM, and vascular remodeling.  
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Figure 2.7: Summary of different bioreactors used for tissue fabrication.  

The importance of mechanical forces on developing engineered vascular tissues is not 

fully understood. Most cells persist in the state of dynamic flux where gases and 

diffusible molecules may interact, either directly or indirectly as ligands by binding 

specific receptors on the cell surface, and thus modulating cellular phenotype.124-126 Shear 

forces act in a variety of different ways by acting on the endothelial cell membrane, thus 

indirectly affecting the cell, by acting on the cell as a whole, or by stressing specific 

molecules integrated into the cell membrane and transmit directly via transmembrane 



   23  

 

proteins connecting to the cells interior organelles or indirectly through cell signalling 

cascades which lead to change in gene expression.21, 127, 128 

Blood vessels are permanently subjected to mechanical forces in the form of stretch, 

encompassing cyclic mechanical strain due to the pulsatile nature of blood flow and shear 

stress. Blood pressure is the major determinant of vessel stretching. It creates radial and 

tangential forces which counteract the effects of intraluminal pressure, and which affect 

all cell types in the vessel. In comparison, fluid shear stress results from the friction of 

blood against the vessel wall, and it acts in parallel to the vessel surface. Accordingly, 

shear is sensed principally by endothelial cells located at the interface between the blood 

and the vessel wall.129 Alterations in stretch or shear stress invariably produce 

transformations in the vessel wall that will aim to accommodate the new conditions and to 

ultimately restore basal levels of tensile stress and shear stress  Hence, while acute 

changes in stretch or shear stress correlate with transient adjustments in vessel diameter, 

mediated through the release of vasoactive agonists or change in myogenic tone, 

chronically altered mechanical forces usually instigate important adaptive alterations of 

vessel wall shape and composition. The concept of vascular remodelling has therefore 

been used to describe these transformations that occur in vessels undergoing mechanical 

stresses.126, 130 

2.8 Oxygen Mass Transfer in Tissues  

2.8.1 The Challenges of Oxygen Transfer in Engineered Tissues 

 As discussed above, bioreactors have been developed with the intent to mechanically 

stimulate the growing tissue constructs with physiologically relevant forces and to 
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improve mass transfer within the tissue. Although the former is largely successful, the 

later has shown to be a formidable engineering task. Therefore the delivery of nutrient 

and the removal of metabolic waste materials remained to be a fundamental consideration 

for fabricating engineered tissues. Oxygen delivery, in particular, is a limiting step for 

clinically-relevant size tissues because of it is low solubility in culture media. This is 

further exacerbated by the fact that cells consume five to six moles of oxygen per mole of 

monosaccharide 131-133 according to the following mole balance. 

C6H12O6 + 6O2→6CO2 + 6H2O 

Clearly, the delivery of this much oxygen to cells required the development of oxygen 

delivery system that is more efficient than molecular diffusion alone.  

2.8.2 In Vivo Oxygen Transfer  

In vivo, the above-mentioned limitation is mitigated by two specialized systems. First, the 

presence of the circulatory system carries the oxygen in blood by convection (Table 2.1) 

to the capillaries that are closer to the cells facilitating oxygen diffusion over shorter 

distances.  

Table 2. 1: Peak convection rates of blood in the vasculature.134 

Compartment cm/sec 

Aorta 140±40 

Common carotid 100±20 

Vertebral 36±9 

Femoral 90±13 
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However, at an arterial pO2 (100 mmHg), only 0.3 ml oxygen dissolves in 100 ml plasma. 

Given that a human body needs 250 ml oxygen per minute,134 plasma-dissolved oxygen 

contributes only to 15 ml/min at a cardiac output of 5 L/min. In the absence of an oxygen 

carrier, this translates to a cardiac output of 83 L/min which is impossible. This limitation 

is addressed by a second specialized system in which the oxygen carrier protein, 

hemoglobin, overcomes the very low solubility of oxygen in plasma.  

2.8.3 The Oxygen-hemoglobin Dissociation Curve  

The cooperative binding of oxygen to hemoglobin is described by the oxygen-

hemoglobin dissociation curve. This is an equilibrium curve that expresses the fractional 

occupancy of the hemoglobin oxygen binding sites (Y) at a given oxygen partial pressure 

(pO2) (Figure 2.7).  
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Figure 2.8: Changes in the oxygen-hemoglobin dissociation curve.135 A shift to the 
right is often caused by increased CO2 concentration or a decreased pH. The 
opposite is true for the shift to the left.  

The equilibrium oxygen partial pressure above the solution of blood is related to the 

dissolved oxygen concentration by Henry’s law. 

2yP pO C≡ = Η                   (1) 

In the above equation, H is the Henry constant, which is mmHg0.74
μM

 
 
 

 for oxygen, C is 

the dissolved oxygen concentration (µM) and y is the mole fraction of oxygen in the gas 

phase. It will be important to realize that the pO2 is exerted only by the dissolved oxygen. 

The oxygen bound to the hemoglobin does not affect pO2 but serves only as a source for 

oxygen. With this in mind, hemoglobin bound oxygen is transported by the circulatory 

system to the capillaries where a change in the pO2 levels along the length of the capillary 

causes oxygen to be released. This released oxygen then diffuses across the capillary wall 
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to reach the cells. The binding and releasing of oxygen to hemoglobin is represented by 

Hill’s equation. 

2 n 2Hb(O ) Hb + nO↔                   (2) 

[ ] [ ] [ ][ ]1 2 1 2( ) n
n

d Hb
k Hb O k Hb O

dt −= −               (3) 

Where k1 and  k-1 are the association and dissociation rate constants respectively. 

The overall equation can also be written as: 

[ ] [ ][ ]2 2 1 1( )  ; where   /n
nHb O k Hb O k k k−= =               (4) 

The oxygen demand of a tissue can be calculated through the basic material balances on a 

controlled volume. Let Г represent the tissue metabolic volumetric oxygen consumption 

rate in 





sec
Mµ , Vt is volume of the tissue space (including the capillaries), q is the tissue 

blood perfusion rate (mL of blood /cm3 tissue/min), C is dissolved oxygen in plasma 

(μM), C' the concentration of oxygen in the blood that is bound to the hemoglobin (μM), 

Ct represents the concentration of oxygen dissolved in the interstitial space of the tissue 

(μM), Pc represents the permeability of oxygen through the capillary wall and Sc 

represents the total surface area of the capillaries (cm3). The mass balance in the blood 

will be: 

 0 ( ') ( ') ( )A V c c v tqV C C qV C C P S C C= + − + − −             (5) 

Whereas the mass balance in the tissue is: 
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 0 ( )c c v t tP S C C V= − − Γ               (6)   

Combining equations (5) and (6) the metabolic oxygen consumption is given by, 

            [ ]( ') ( ')A Vq C C C CΓ = + − +               (7) 

At the normal tissue perfusion rate of 0.5 ml of blood /cm3 tissue/min, taking the partial 

pressure of oxygen in arterial and venous blood to be around 100 and 40 mmHg 

respectively, and assuming the density of the tissue ~1g/cm3, Г will be 23 / secMµ . The 

experimentally measured average body oxygen consumption value reported in the 

literatures is in the order of 20 / secMµ  which is in good agreement with the predicted 

value. 136 

2.8.4 Alternative Oxygen Binding Chemicals 

The search for alternative oxygen binding chemicals has been and still remained to be an 

active area of research.137 From a clinical standpoint, this has been fuelled by increasing 

negative public perceptions about blood safety coupled with the potential risk of 

transmitting diseases due to transfusion.138, 139 The use of a blood substitute during 

surgery will reduce patient exposure to donor blood, thereby minimizing disease 

transmission and preventing other unwanted transfusion-related complications especially 

immunomodulatory reactions.139 Alternative oxygen binding chemicals broadly fall in 

one of two categories: i) modified hemoglobin derived either from human and animal 

sources and crosslinked to improve intravascular persistence times or engineered 

genetically using recombinant technology.140, 141 ii) synthetic, inert, perfluorinated 
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compounds (PFC).142 Due to the relevance of PFCs to the work in this thesis, pertinent 

review is presented in the following section.  

2.9 The Chemistry of Perfluorocarbon Compounds 

PFCs are organic compounds whose hydrogen atoms in the carbon network are replaced 

by fluorine atoms. There is no surprise that replacing all the hydrogen atoms by fluorine 

in an organic molecule should bring significant changes in the properties of the resulting 

compound. Since all electrons in fluorine atom are packed in a proportionally less space, 

fluorine has a much denser electron cloud and higher ionization potential compared with 

hydrogen. The thermodynamic stability of PFCs is derived from the enhanced match 

between the carbon and fluorine orbitals as compared to that between carbon and 

hydrogen - leading to the strongest single bond (ca. 530 kJ/mol) found in PFC 

compounds.143 Furthermore, the extreme electron attracting character of fluorine 

enhances the C-C bond energy in the skeleton by "shrinking"’ the orbitals of the carbons. 

These factors are responsible for the inertness of PFCs since there exists no low energy 

molecular orbitals accessible for reaction as the fluorine atoms shield the C-C skeleton 

sterically.143 Given that PFCs are extremely stable and inert to many aggressive 

environments, they are also not metabolized as there are no enzymes able to break them 

down.   

2.9.1 Oxygen Solubility in PFCs 

PFCs have unique characteristics of low water and lipid solubility (i.e hydrophobic and 

lipophobic) but high dissolving power for oxygen and carbon dioxide making them 

attractive for both chemical and biological research.144 Gas solubility is a result of 
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fluorine's low polarizability which translates to low van der Waals intermolecular 

interaction within the PFC molecule.  Since van der Waals interactions are the only 

intermolecular forces that hold non-polar compounds together, these forces are feeble, in 

contrast with their intramolecular bonds. This low cohesive energy density in PFC 

compounds dissolves another low cohesive energy density compound such as oxygen 

(Figure 2.9).  

 

Figure 2.9: Oxygen solubility in different hydrocarbons and fluorocarbons.143 

Oxygen binds to hemoglobin by strong, localized chemical coordinate bond established 

between the oxygen molecule and the iron atom of a heme. In the case of PFC, however, 

there is a physical dissolution of oxygen characterized by loose non-directional van der 

Waals interaction among like materials144. The difference in these interactions reflects the 

difference in oxygen uptake curves as a function of pO2 which is sigmoid for hemoglobin 

and linear for PFC. The linearity is the result of Henry's law in which solubility is directly 

proportional to the gas’s partial pressure, and not a localized chemical binding situation as 
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in hemoglobin. Consequent to this, oxygen can be rapidly and extensively extracted from 

PFCs when needed.  

2.9.2 PFCs as Oxygen Delivery Systems 

Their high oxygen dissolving power and outstanding chemical and biological inertness is 

the basis that made PFCs as candidates for in vivo O2 delivery.143 Although the ability of 

PFC in dissolving larger amounts of gases than any other solvent was already known, 

Clark and Gollan145 were the first to demonstrate that mice could live while breathing an 

O2-saturated liquid PFC without any harm to the animals. As indicated earlier, PFCs are 

both hydrophobic and lipophobic and thus are insoluble in water and lipids - two of the 

most abundant biological fluids. The PFC-water interfacial tension which opposes the 

dispersion of PFCs in water can reach as high as 60 mN/m. In order to effectively use 

them, they must be emulsified  demanding a stable, injectable, small-sized, narrowly 

distributed PFC emulsion (Figure 2.10). The non-ideal nature of the PFC-water solution 

suggests the difficulty to store the emulsion for an extended period of time.  

  

Figure 2.10: Preparation of perfluorocarbon emulsion using surfactants and 
dispersion energy in order to overcome the PFC-water interfacial tension. Terminal 
heat sterilization is achieved in a rotary sterilizer.143 
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The first preparation of a physiologically adjusted PFC emulsion was reported by Sloviter 

and Kamimoto using bovine serum albumin as a surfactant.146 Following this early report, 

a triblock copolymer of poly(ethylene oxide) and poly (propylene oxide), egg yolk 

phospholipids, potassium oleate and fluorinated surfactants or any combination thereof 

have been investigated as emulsifiers.137 Although pure PFCs are not toxic at all, the 

toxicity of PFC emulsions to cultured cells is attributed to the emulsifiers used.  Within 

the context of tissue engineering, PFCs have been shown to enhance oxygen delivery to 

the growing tissue construct, despite some limitation such as droplet settling due to 

density differences.147, 148 

2.10 Diffusion in Porous Media and Its Relevance in Tissue Engineering  

It was stated earlier that one of the essential elements in tissue engineering is a porous 3D 

scaffold with interconnected pores. A porous 3D scaffold mimics the pores present within 

the extracellular fibrous matrix.136 One important parameter in the study of porous 

materials is tortuosity149 which is the ratio of the minimum inter-pore distance between 

two pores to the shortest distance between those pores. The movement of fluid molecule 

in a porous media follows tortuous pathways in the scaffold void space. Fluid flow 

governing equations in porous media can be numerically solved for the individual pores if 

the structures of the pore networks are known. Alternatively, the porous medium could be 

assumed to be a uniform material in a continuum approach and solved by using Darcy's 

law. In this later approach, there are three length scales namely:  the average size (δ) of 

the pore, the distance (L) over which macroscopic change of physical quantities (e.g. fluid 

velocity and pressure) must be considered, and another length ( l ) between L and δ. This 

last length scale is introduced since L is chosen be the characteristic linear dimension of 
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the porous medium (e.g. the size of the scaffold, or the size of the tissue) and is required 

to be at least two orders of magnitude larger than δ.135  To define l , a volume of 

dimension l  in the porous medium is considered. The volume fraction of the void space 

is then the volumetric porosity (ε) and, the volume fraction of the solid phase is equal to 

1- ε. When l  is closer to δ, ε is more sensitive to the value of l . Conversely, when l  is 

selected to be large, the sensitivity decreases. There exists a value of l  beyond which the 

sensitivity is minimal.  In biological tissue mµδ 1.0< , 1l mµ≈  and mL µ100≈  allowing 

transport in biological tissues or scaffolds to be studied with the continuum approach.135 

Fluid transport in scaffolds must also satisfy the conservation of mass. Because both fluid 

production and fluid consumption are present when cells are seeded to scaffolds and 

cultured, the mass balance  

v B Lφ φ∇ = −   (8) 

f B Lvε ϕ ϕ∇ = −   (9) 

Where, v is the fluid average velocity in representative volume, fv is fluid average 

velocity in the volume, Bφ and Lφ are volumetric flow rates per unit volume of porous 

medium in sources and sinks respectively. The values of Bφ and Lφ are determined by 

Starling’s Law. 

v B Lφ φ∇ = −   (10) 

Where Jv is flow rate, S is the surface area, Lp is the hydraulic conductivity, P is the 

hydrostatic pressure and π is the osmotic pressure.  
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It is also possible to express the velocity as follows: 

v K P= − ∇   (11) 

P∇  is the gradient of hydrostatic pressure and K is hydrostatic conductivity. In 

combination with equation (8) 

( ) B LK P φ φ∇ − ∇ = −   
(12) 

 Equations (11) and (12) are the governing equations for fluid flow in porous media. The 

scaffolds interstitial space can be considered a network of channels filled with porous 

media. Fluid flow in such channels may be correctly modeled by Darcy’s law. When the 

specific permeability (k) of the porous media is low, equation (12) become the Brinkman 

equation.  

0V V P
K
µµ∇ − − ∇ =  

 
(13) 

These equations were used to model flow behavior in scaffolds and vascular tissue 

engineering bioreactors.150-152 

2.10.1 Squeeze Flow in Porous Scaffolds  

Squeeze flow refers to the fluid flow caused by the relative movement of solid boundaries 

towards each other. The boundaries can be either external or internal for fluid flow in a 

porous scaffold. Squeeze flow is applicable in the interstitial space of vascular tissue 

engineering scaffolds; because it mimics the compliance of the vasculature in response to 

the pulsatile force generated by the heart.153-155  
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Figure 2.11: Squeeze flow model. The two boundaries are moving to each other at a 
velocity of Vh, and the space between them is 2h. 

 

Squeeze flow is best expressed by equation (13). In a cylindrical coordinate there is no 

pressure gradient in z direction and hence 0=
∂
∂

z
P . With this we have:   

2

2 0r
r

V PV
z k r

µµ ∂ ∂
− − =

∂ ∂
 

 
(14) 

Where k is the specific permeability of the scaffold.  The equation is subject to the 

following boundary conditions: 

hzrV
=

= 0 , and  
0

0
=

=
∂

∂

z

r

r
V  

The solution for (14) is then 

1 2sinh coshr
z z k PV C C

rk k µ
∂   

= + −    ∂   
 

 
(15) 

1

cosh cosh 1r
k P z hV

r k kµ

−  ∂     = −    ∂        
 

 
(16) 
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1 2

2

1sinh coshz
k k z h z P PV

r r rk k kµ

−    − ∂ ∂    = − +       ∂ ∂        
 

 
(17) 

In a cylindrical coordinate system, the continuity equation is written as: 

( )1 0r zrV V
r r z

∂ ∂
+ =

∂ ∂
 

 
(18) 

Subject to the boundary conditions
hzhz VV

=
= , and  

0
0

=
=

zzV , the solution leads to: 

2

2

1

tanh

hV P P
r r rk k h h

k kµ

 ∂ ∂
= + ∂ ∂    −  

  

 
 

(19) 

Thus solving (19) for the second order differential equation will give the pressure 

distribution as:  

2

ln
4
rP A B r C= + +  

 
(20) 

Using the boundary conditions,  

0

0
=

=
∂
∂

rr
P , and  

RroPP
=

=  

2 2( )
4 tanh

h
o

VP P r R
k k h h

k kµ

= + −
   −  

  

 
 

(21) 

Therefore, equations (19-21) provide the fluid velocity and pressure profiles for a squeeze 

flow. The velocity profile will provide the sheer stress distribution in the scaffold which 

is one of the parameters to be considered in dynamic cell culture experiments. The utility 
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of squeeze flow model has been demonstrated in cartilage, bone, and vascular tissue 

engineering strategies.156-160   

2.10.2 Lattice Boltzmann’s Approach for Porous Fluid Flow  

The Lattice–Boltzmann method with computational fluid dynamics has been used to 

simulate the flow conditions within perfused cell-seeded cylindrical scaffolds.161, 162 

Microcomputed tomography imaging is used to define the scaffold micro-architecture for 

the simulations, which produces a 3D fluid velocity field throughout the scaffold porosity. 

Shear stresses are then estimated at various media flow rates by multiplying the 

symmetric part of the gradient of the velocity field by the dynamic viscosity of the cell 

culture media. The shear stress algorithm was validated by modeling flow between 

infinite parallel plates and comparing the calculated shear stress distribution to the 

analytical solution. The simulation results relating to perfusion experiments gave an 

average surface shear stress to correspond to increased cell proliferation, while higher 

shear stresses were associated with upregulation of bone marker genes. Even though  this 

model has been used for cartilage and bone tissue engineering, it is primarily used to 

compare results obtained for different perfusion bioreactor systems or different scaffold 

micro-architectures and may allow specific shear stresses to be determined that optimize 

the amount, type, or distribution of in vitro tissue growth transport. In particular, it is 

applicable and equally usable in vascular tissue engineering with load applied 

bioreactors.163-165 
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2.11 Summary 

In the preceding sections, literature review pertinent to this thesis is presented. Due to 

rapid advances made in tissue engineering, it was not possible to include all aspects of the 

field. However, every effort is made to ensure that seminal works and significant research 

findings are included, with minimal bias, in this Chapter.  Notwithstanding the different 

challenges and opportunities presented by tissue engineering strategies, this thesis will 

only attempt to address oxygen mass transfer limitations in engineered tissue constructs. 

2.12  Hypothesis and Objectives of the Study 

It is hypothesized that 3D polyurethane scaffolds with interconnected pores enhance 

oxygen diffusivity. It is further hypothesized that oxygen delivery strategies using PFC 

enhances mass transfer and human coronary artery smooth muscle cells (HCASMC) 

infiltration when seeded into 3D polyurethane. In order to test the above hypotheses, the 

following objectives were formulated:  

• Fabricating 3D porous poly (carbonate urethane) (PCU) scaffolds using a pressure 

differential/particulate leaching technique at different PCU concentration.  

• Measuring of effective diffusivity of oxygen through PCU 3D scaffolds 

• Developing a mathematical model for oxygen profile on cell seeded 3D scaffold 

and in the lumen channel. 

• Evaluating the supply of oxygen to HCASMC seeded on 3D PCU scaffolds using 

oxygen carrier particles embedded in the scaffold. 
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CHAPTER 
         3     
 
 

3 TISSUE ENGINEERING SCAFFOLD FABRICATION, 

EFFECTIVE DIFFUSION COEFFICIENT AND DYNAMIC CELL 

CULTURE*

 

 

Overview: This chapter discuses scaffolds fabrication procedures with different polymer 

concentrations, measuring oxygen diffusivity of scaffolds and screening them using their 

morphology and oxygen diffusivity, seeding cells on tubular and disk shaped scaffolds, 

culturing cell-seeded scaffolds in perfusion bioreactor, and analyzing the cultured cell 

seeded scaffold using confocal microscopy, hematoxylin and eosin staining, and Western 

blots.  

Summary 

Tubular and disk shaped poly (carbonate urethane) (PCU) scaffolds for in vitro tissue 

engineering of vascular grafts were fabricated by a solvent casting and particulate 

leaching method using NH4Cl as porogen. A better pore interconnectivity and oxygen 

diffusion coefficient were resulted in scaffolds fabricated using 15% PCU in N,N-

dimethylformamide (DMF). Human coronary artery smooth muscle cells (HCASMCs) 

were seeded in these scaffolds and cultured up to 28 days under static or under flow 

conditions in a perfusion bioreactor. For disk-shaped scaffolds, a better cell infiltration 

depth and distribution was observed in the flow condition than static culture controls 

whereas for cell seeded tubular scaffolds, higher number of cells were seeded and cells 
                                    
* A version of this chapter is submitted for publication and is currently under review. 
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infiltrate into the tubular scaffolds and, a uniform distribution of cells throughout the 

scaffold thickness was observed as shown by hematoxylin and eosin staining. Finally, 

Western blot data suggested an upregulation of ECM proteins such as elastin. The results 

demonstrate that scaffolds with low diffusivity were able to successfully integrate 

HCASMCs as a step toward to the development of tissue engineered vascular grafts.  

Keywords: Oxygen diffusivity, 3D scaffolds, perfusion bioreactor, tissue engineering 

3.1 Introduction 

Tissue engineering and regenerative medicine have emerged as promising methods for 

addressing the increasing demand of small-diameter replacements for diseased 

vasculature.1, 2 However, small-diameter arterial reconstructions (inner diameter <6 mm), 

are not available to date.3 Natural or synthetic polymeric scaffolds have been widely used 

in tissue engineering and regenerative medicine.4-6 The optimal scaffold structure is 

selected based upon a combination of mechanical and physical factors, one of which is 

the degree to which oxygen can diffuse though the scaffolds.7, 8 The ability of scaffold to 

support cell growth throughout its thickness is affected by the scaffold oxygen diffusivity. 

In vitro tissue maturation and immediately after surgical implantation until adequate 

vascularisation has occurred, cells seeded into the scaffold mostly depend on the process 

of diffusion for oxygenation.9-11 Therefore, the measurement of oxygen diffusivity in 

scaffolds is a logical method for comparing the ability of scaffolds to support cell 

viability, migration and infiltration within the scaffold.12, 13  
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Tissue-engineered small diameter vascular grafts have the ability to sense hemodynamic 

loading during dynamic culture, speciality when the culture media flows through the 

lumen, and respond through mechanical and biological responses.2, 14, 15 Mechanical 

stimulation of cells seeded in vascular tissue engineering scaffold promotes the 

circumferential orientation of cells as well as the deposition of extracellular matrix. 

Perfusion bioreactors also mimic the physiological conditions of coronary arteries and 

can impose mechanical stimulation to cells and the hemodynamic loading during cultures 

to engineer small diameter vascular grafts.16, 17 

In the present study, scaffolds with different morphology were fabricated by varying the 

PCU concentration, and were screened based on the measured effective oxygen 

diffusivity. Based on morphology and oxygen diffusion coefficient, the best polymer 

concentration for fabricating scaffolds was chosen. In view of developing small diameter 

vascular grafts in vitro, HCASMCs were seeded on PCU scaffolds with disk and tubular 

shapes. The cell seeded scaffolds were cultured in a perfusion bioreactor under 

physiological flow conditions for several days. The advantage of dynamic culture in 

regulating cell proliferation and distribution was evaluated by comparing the results with 

static culture controls.   

3.2 Materials and Methods 

3.2.1 Fabrication of PCU scaffolds 

3D scaffolds were fabricated by a solvent casting and particulate leaching method as 

shown in Figure 3.1.18 Ground and sieved NH4Cl porogens (180-220 µm) were packed 

into a tubular glass mold (6 mm outer diameter, 5 mm inner diameter and 8 cm height) 
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using a pressure differential created from an air supply line (550 kPa) from the top 

pushing and (0.014 kPa) suction applied from the bottom of the assembly. A medical 

grade poly(carbonate urethane) (PCU) (Bionate® 55D) was obtained from DSM 

Biomedical (Berkeley, CA). Different concentration of the PCU solution (15, 20, 25 and 

30 wt%, dissolved in N,N-dimethylformamide) was subsequently poured over the 

porogen bed and pressurized to infiltrate the porogen bed.  Following this, the scaffolds 

were removed from the assembly and the solvent was allowed to evaporate in a fume 

hood. Finally, NH4Cl porogens were leached out using deionized water and, the scaffolds 

were sectioned into 1.5 mm height disks using a microtome. This height (or thickness) of 

the scaffolds was chosen to mimic the thicknesses of many soft tissues that are the subject 

of tissue engineering.  

Tubular scaffolds were made in the same apparatus but with different assembly; a 

cylindrical stainless steel rod (4 mm diameter) was placed at the center of the tubular 

glass mold and the NH4Cl porogens were packed in the space between the rod and the 

glass mold. A polymer solution (15 wt %) was poured and pressurised to infiltrate into the 

porogens bed; the mold is then removed from the assembly and placed in the fume hood 

for 3 days for the solvent to evaporate completely. Finally, the scaffolds were removed 

from the mold and the NH4Cl porogens were leached using deionized water (DI) and the 

rod was removed from the center of the scaffold, the scaffolds were sectioned into 120 

mm length using a microtome.   
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Figure 3.1: Schematic diagram of the assembled, solvent casting and particulate 
leaching, scaffold fabrication method and scaffolds fabricated from PCU. 

3.2.2 Measuring dissolved oxygen and diffusion coefficient    

The diffusion apparatus, built by the University Machine Shop, consisted of two 100 ml 

chambers separated by the test scaffold, which was secured between the glass chambers 

with stainless steel insert and rubber gasket o-rings (Figure 3.2). The opening between the 
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two chambers had an area of 19.625 cm2. Each chamber was filled with 100 ml DI water. 

The DI water in the donor chamber was saturated with ambient air; the DI water in the 

receiver chamber was purged of dissolved oxygen by saturating with 100% nitrogen. To 

approximate a well-mixed system, the solutions in each chamber were stirred throughout 

the experiments. The oxygen concentration in the donor chamber was kept constant by a 

continuous supply of ambient air. Both chambers were maintained at 37oC by an external 

water bath. Fibre optic oxygen sensor model NeoFox (Ocean Optics, Dunedin, FL) 

equipped with NeoFox software was used to measure dissolved oxygen. The oxygen 

sensor was placed in the receiving chamber and measured dissolved oxygen every 10 

seconds.  

 

Figure 3.2: Schematic diagram of the diffusion cell apparatus 

The flux of oxygen in the test scaffold can be calculated by performing a shell material 

balance on the scaffold in one dimension leading to,  

Accumulation = Input  Output + Production  Consumption− −  

in outs s sz z z

CV J A J A PV GV
t +∆

∂
= − + −

∂
            (1) 



   58  

 

Where: 

Vs is volume of the fraction of scaffolds where the mass balance was calculated  

A is the cross sectional area of the scaffold 

inJ is the inlet flux crossing the area 

outJ is the outlet flux crossing the area 

 Z is the thickness of the scaffold, and 

P and G are production and consumption of oxygen per volume of scaffold respectively.  

At a steady state and with no consumption and production of oxygen in the scaffold, the 

above equation reduces to diffusion in the z direction. 

2

2 0eff
d CD
dz

=                 (2) 

Where effD  is the effective diffusivity. 

With both donor and receiver chambers well-mixed, the boundary conditions for (2) are 

the concentration of oxygen in the donor and receiver chambers. Thus,  

BC1: (0)      BC2 : ( ) ( )D RC C C Z C t= =  

Where DC  and RC are the concentration of oxygen in the donor chamber and receiver 

chamber respectively.  

The solution of the diffusion equation (2) will be,  

( )R D
D

C t CC x C
Z
− = + 

 
               (3) 
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Therefore, the flux in the scaffold will be,  

( )R D
eff eff

C t CCJ D D
z Z

−∂  = − = −  ∂  
                        (4) 

Since the mass balance in the receiving chamber will be unsteady state with no 

consumption and production, equation (1) reduces to. 

( )R
R

C tV JA
t

∂
=

∂
                                  (5) 

Where, RV  is the volume of the receiver chamber.  Substituting the flux from (3) and 

solving for the receiver chamber oxygen concentration gives: 

0ln  
( )
R D

eff
R D

C C D t
C t C

ϕ
 −

= − 
                  (6) 

where = RV Z
A

ϕ  

Oxygen concentration was measured as a function of time for each scaffold and plotted as 

a function of time. Using equation (4), the linear slope of the best fit line (as calculated by 

the least-squares method using Sigma Plot Version 10) gives the effective diffusivity, 

effD , of the each scaffolds. 

3.2.3 Cell culture in perfusion bioreactor   

Primary human coronary artery smooth muscle cells (HCASMCs) and smooth muscle 

growth media (SmGM®-2 BulletKit) were purchased from Lonza Walkersville Inc. 

(Walkersville, MD, USA). Cells were cultured according to supplier’s instructions in 

SmGM®-2, supplemented with 100 units/ml penicillin G sodium, and 100 µg/ml 
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streptomycin sulphate (Invitrogen, Burlington, ON, Canada). All cultures were 

maintained in a humidified incubator at 37ºC containing 5% CO2. HCASMCs were 

passaged every 7 days at a split ratio of 1:3 and used between passages 4 to 7. Disk-

shaped scaffolds were affixed to glass coverslips using silicone grease, sterilized with 

70% ethanol for 30 min and allowed to dry under germicidal UV light in tissue culture 

hood for 30 min. After soaking the scaffolds in Hank's Buffered Salt Solution (HBSS, 

Invitrogen, Burlington, ON, Canada), all scaffolds were coated with fibronectin (10 

µg/cm2; Santa Cruz, CA, USA). Cells were seeded into the interstices of fibronectin-

coated PCU scaffolds at an initial cell density of ~3×104 cells/scaffold.  After HCASMCs 

attached to the scaffold for two days in static culture, the cell seeded scaffolds were 

transferred to a perfusion bioreactor and cultured for 4 and 7 days. The culture medium 

was purged through the porous cell seeded scaffold at a flow rate of 40 ml/min. A parallel 

static HCASMCs cultures were carried out as controls for 4 days and 7 days where 

culture medium was changed every other day.  

A similar sterilization and preconditioning steps were used for tubular scaffolds but cells 

were seeded into the lumen of fibronectin-coated PCU tubular scaffolds at an initial cell 

density of ~1×106 cells/scaffold. HCASMCs were statically cultured in a slowly rotating 

glass tube for two days to achieve uniform seeding and attachment to the scaffold. The 

cell-seeded scaffolds were then transferred to a perfusion bioreactor and cultured for a 

further 4 days, 7 days and 14 days at a medium flow rate of 40 ml/min. The calculated 

wall shear stress was (τw= 1.74 dyns/cm2) and it is below the physiological maximum 

shear stress in coronary arteries.10  
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3.2.4 Fluorescence staining and laser scanning confocal microscopy 

HCASMCs were fixed at room temperature for 1h with 4% (w/v) paraformaldehyde 

(EMD Chemicals Inc.) and the tubular scaffolds then sectioned circumferentially using 

microtome and axially using surgical blades.  The cells were permeabilized for 10 min in 

cation-free phosphate buffered saline (PBS) containing 0.1% (v/v) Triton X-100. Cells 

were incubated for 1h at room temperature in 1% BSA/PBS containing AlexaTM Fluor 

488-conjugated phalloidin (1:50 dilution), followed by three washes with PBS. DAPI 

(300nM in PBS; Invitrogen, Burlington, ON, Canada) was used to label nuclei. Samples 

were mounted on slides in SHUR/MountTM (TBS®, NC, USA) and analyzed with a Zeiss 

LSM 410 confocal microscope (Zeiss, Canada) equipped with an argon/neon as well as a 

UV laser. 

3.2.5 Histologocal analysis using haematoxylin and eosin staining  

HCASMCs cultured on PCU scaffolds were washed twice by ice cold PBS and embedded 

in optimum cutting temperature (OCT) media (Tissue-Tek, VWR, Canada) in dry ice bath 

and frozen to -80oC for 12h. The frozen blocks were transferred to cryotome crystat (-

20oC) and allowed the temperature of the frozen blocks to equilibrate to that of the 

cryotome crystat.  50μm thickness samples were sectioned using cryotome and placed on 

glass slides and the slides were heated to 30oC allowing the Tissue-Tek to melt. The 

sectioned samples were carefully washed twice with PBS and fixed using 4% (w/v) 

paraformaldehyde for 5 min, followed by two washes with DI water and then stained first 

with hematoxylin and then with eosin (Sigma-Aldrich) with washes with DI water in the 

intermediate and final stages of staining.  
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3.2.6 Protein extraction and Western blot analysis 

Following prescribed culture times, constructs were washed with ice cold PBS and 

proteins were extracted using lyses buffer. The lysate was collected and spun in a 

centrifuge and the supernatants were collected.  The amount of total protein was 

quantified using BSA protein assay kit (Thermo Scientific, ON, Canada). 50 µg protein 

samples were separated by 10% SDS-PAGE and subsequently transferred at 90 V for 1 

hour at 4ºC to nitrocellulose membrane in a Tris-glycine buffer. Coomassie blue was used 

to stain the total protein in gel. In addition the transfer efficiency and homogeneous 

loading was assessed by Ponceau red stain. Nitrocellulose membranes were blocked with 

5% nonfat dry milk in PBS and incubated overnight at 4ºC with primary antibodies 

(monoclonal mouse anti-elastin at 1:200; anti-SM-α-actin and anti-GAPDH at 1:2000). 

The blots were then labeled with Alexa 680- and IRDye 800-conjugated secondary 

antibody (Invitrogen, Burlington, ON, Canada), and labeled proteins were visualized by 

the Bio-Rad system (Bio-Rad Laboratories, Mississauga, Canada).  

3.2.7 Statistical analysis  

The results for the dissolved oxygen study and effective diffusion study were analyzed by 

Student’s t-test. For all analyses, significance was assigned for p < 0.05. 
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3.3 Results  

3.3.1 Scaffold fabrication  

Tissue engineering scaffolds are required to have high porosity and pore 

interconnectivity, and high surface area to volume ratio for cellular infiltration, matrix 

remodelling, and nutrient transport to take place. In such scaffolds, cell seeding density 

and distribution increases with pore interconnectivity. We therefore sought to examine the 

effect of polymer concentration on porosity and interconnectivity of the scaffolds. 

Different polymer concentrations (15, 20, 25, and 30 wt %, PCU dissolved in N,N-

dimethylformamide) were used to make PCU scaffold and the resulting scaffold were 

characterized using SEM. The strut thickness increased and pore interconnectivity 

decreased as the amount of polymer increased in the polymeric solution as shown in 

Figure 3.3. Scaffolds with lower polymer concentration were tried to fabricate but the 

structures were fragile and difficult to handle. Therefore, 15 wt% polymer concentration 

in DMF has been selected for further cell studies.  
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Figure 3.3: SEM photomicrographs of PCU scaffolds fabricated from different 
polymer concentrations.  15 wt % (A and B), 20 % wt (C and D) 25 % wt (E and F), 
and 30 % wt (G and H) PCU concentration. Scale bars are 250μm for A, C, E G and 
10μm for B, D, F and H. 
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3.3.2 Effective oxygen diffusion coefficient in scaffolds  

Fick's first law of diffusion on the passive transport of dissolved oxygen through the 

thickness of clinically relevant scaffolds within an enclosed, well-mixed system was 

applied to measure effective diffusion coefficient. Effective diffusivity measures the 

resistance or the ability of a material to allow the passage of oxygen through it and Figure 

3.4 show how the effective diffusivity can be calculated using the measured values of 

dissolved oxygen in the receiver chamber by means of equation (6). Scaffolds fabricated 

from 15 wt% polymer concentrations showed lower effective diffusivity than the other 

concentrations (Figure 3.5). As the concentration of polymer used to making scaffold 

increases the effective diffusivity increases as shown in the Figure 3.5. The higher 

effective diffusivity in the scaffold will have higher cell retention and easier to supply 

oxygen to the cells seeded on the scaffold. Therefore, scaffolds fabricated from 15 wt % 

polymer concentration will have less resistance to oxygen supply to the seeded cells. This 

result in combination with the SEM result suggests that 15% PCU concentration to be 

suitable for cell culture and have been chosen for further cell culture studies.    
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Figure 3.4: A) Oxygen concentration detected in the receiver chamber as a function 
of time. Data used to calculate the effective oxygen diffusivity, effD B) for 15% PCU, 
C) 20% PCU, D) 25% PCU and E) 30% PCU. 
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Figure 3.5: Effective oxygen diffusivity (cm2/s) in 3D scaffolds fabricated from 
different PCU concentrations. Data are mean ±SD for 3 independent experiments. 
NS means not significant.  

3.3.3 Fluorescence staining and confocal microscopy 

HCASMC-seeded disk-shaped scaffolds with 1mm thickness were cultured in a perfusion 

bioreactor where the culture media flows through the scaffold. After 4 days of culture, the 

cell-seeded scaffolds were imaged. A diffused red autofluorescence was observed due to 

the PCU scaffolds helped to demonstrate that HCASMCs were penetrating into the 

scaffold, but this did not affect the imaging process. HCASMCs were uniformly 

distributed on the scaffold as shown in Figure 3.6. Comparing with the static culture 

control, the cell density of the dynamic culture appeared to be similar. However, taking a 

series of confocal images with 10 μm apart from the top of the scaffold to the point where 

there are no more HCASMCs encountered, penetration depth to the scaffolds in dynamic 

cultures was considerably higher than the static control cultures (230 μm vs.  120 μm) 

suggesting that dynamic cultures improve cell penetration depths to the scaffolds whereas 
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this is not totally unexpected it does underscore the role of dynamic cultures to enhance 

cell distribution and penetration depth.   

 
Figure 3.6: Confocal microscopy images of HCASMCs cultured on disk shape PCU 
scaffold in static (A-D) and dynamic (E-H) culture conditions. The top of the 
scaffolds are shown in A and E whereas the bottom side are B and F, and the 
orthogonal projections are C and G.  Scale bar for all the images is 200μm. 

In addition, HCASMCs seeded on tubular scaffolds were cultured for 4 days, 7 days, 14 

days, and 28 days in a perfusion bioreactor where the culture medium flows through the 

lumen of the tubular scaffolds.  Cells were seeded from the lumen direction and cultured 

in slowly rotating tubular glass for two days; this seeding approach with the high seeding 

density helped to uniformly distribute throughout the scaffold from the lumen direction. 

Figure 3.7 shows the confocal images of HCASMCs taken from different areas of the 

scaffold. The cytoskeleton of the cells cultured in dynamic environment in the confocal 

images are somewhat diffused in their quality. This is likely due to the topography effect 

since the static cultures were conducted using porous disks whereas the dynamic cultures 

were done using tubular scaffolds. In both cases, however, the high density of cells is 

evident.  
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Figure 3.7: Confocal microscopy images of HCASMCs cultured on tubular PCU 
scaffolds in static (A, C, E and G) and dynamic (B, D, F and H) culture conditions 
for 4 days (A&B) 7days (C&D) 14 days (E& F) and 28 days (G&H).  Scale bar for 
A,B,G and H is 200μm and for C,D,E and F is 100μm. 
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3.3.4 Cross-sectional histological staining  

Homogeneous distribution of HCASMCs in the tubular PCU scaffolds was confirmed by 

means of histological staining with H & E as shown in Figure 3.8 which is consistent with 

confocal images of the fluorescent staining. The high magnification of the H & E staining 

shows a uniformly distributed of HCASMCs throughout the tubular PCU scaffold (B, D 

and E). A high HCASMCs staining with the number of culture days was an indication of 

cell proliferation.        
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Figure 3.8: H&E staining of cross sections of HCASMCs seeded tubular PCU 
scaffolds cultured under dynamic condition for 7 days (B and C), 14 days (E and F) 
and 28 days (G and H). Bare scaffold was stained and imaged as a control (A and B). 
Scale bar for A, C, E and G is 0.2mm and for B, D, F and H is 0.1mm.  
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3.3.5 Western blot analysis 

The total amount of protein from cell lysates cultured in dynamic and static conditions for 

14 and 28 days was quantified using BSA protein assay. An equal amount of protein 

(50μg) in each lane of the PAGE was run and the gel was stained using coomassie blue, 

and subsequently imaged by Bio-RAD camera (Molecular imager Chemi DocTM). The 

intensity of the protein bands in each lane is indicative of the relative amounts of protein 

present.  In the region of 50 kda to 100 kda, most proteins were upregulated in dynamic 

cultures than in static culture controls as shown in Figure 3.9A. Therefore, further 

staining for elastin (molecular weight ~66kda) and Smooth muscle α-actin (molecular 

weight ~42kda) showed an upregulation in dynamic cultures than in static cultures as 

shown in Figure 3.9 B. indicating a more synthetic  phenotype of HCASMCs in dynamic 

than static cultures.  However, a more controlled and detailed experiments need be done 

in order to get a better conclusive result.  

 
Figure 3.9: Western blots of 14 days and 28 day cultures in static and dynamic 
conditions coomassie blue staining and antibody staining of elastin, SM-α-actin and 
GAPDH for 14 days culture.  
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3.4 Discussion  

The effective diffusivity measures the ability of a scaffold to allow the transport of 

oxygen through it. In this study it is shown that 15 wt% polymer concentration has a 

higher diffusion coefficient allowing higher amount of oxygen to be transported; these 

results in higher cell viability, penetration depth into the scaffolds, and proliferation.  

These findings suggest at least a partial dependence of oxygen transport on the polymer 

concentration, porosity, and/or tortuosity of the scaffold. The tortuosity of the scaffold 

were not directly measured in this study but instead incorporated into the effective 

diffusivity variable.19  The SEM results also suggested 15 wt% polymer concentration 

scaffolds resulted in higher pore interconnectivity. Whereas most studies on oxygen 

diffusion through tissue engineering scaffolds focused on numerical analysis 

approaches20-23, there are few studies related to the current work for experimentally 

determining oxygen diffusivity. For example, Valentin et al24 measured oxygen 

diffusivity of small intestine submucosa, urinary bladder submucosa, and Dacron®. Not 

unexpectedly, their data indicated that each scaffold has unique oxygen diffusivity values 

ranging from 2.4x10-6 cm2/s to 6.6x10-6 cm2/s, and these values were dependent on the 

scaffold's ultrastructure. Dacron® had oxygen diffusivity which was one order magnitude 

higher than the ECM scaffolds presumably due to the woven nature of it.  In another 

related study, Androjna et al25 measured the oxygen diffusivity of intestine submucosa, 

human dermis (Alloderm®), and canine fascia lata and reported the effective diffusion 

coefficients of all 3 ECM-based scaffolds to be to be in the order of 7x10-6 cm2/s to 4x10-

5 cm2/s with the intestine submucosa tended to have the lowest oxygen. The differences in 

the reported ranges are likely due to varying matrix structure porosity and tortuosity that 
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is inherent in these tissues. In view of these cited studies, the oxygen diffusivity in all 

PCU scaffolds (Figure 3.5) was comparable to natural ECM scaffolds. More importantly, 

the oxygen diffusivity for 15wt% was better than ECM scaffolds but lower than Dacron®. 

From this comparison it is possible to deduce that our scaffolds transports oxygen higher 

than biological scaffolds but lower than synthetic scaffold Dacron®. To the best of our 

knowledge, this study is the first to show oxygen diffusivity in PCU scaffolds as a 

function of polymer concentration during the fabrication process. 

HCASMCs penetration depth increased in dynamic cultures than the static culture 

controls. This signifies higher cell population in the 3D scaffold, a finding that is also 

supported by prior studies as Chan and Chong showed that perfusion systems increased 

the oxygen profile in the scaffold, which in turn, increased the cell number with uniform 

cell density.26  In addition, HCASMCs penetrated throughout the thickness of the tubular 

scaffold as shown by the H&E staining. These results are consistent with literature reports 

for other types of scaffolds. For instance, using H&E staining, Poot and coworkers 

showed that VSMCs seeded into porous, tubular, flexible, and elastic poly(trimethylene 

carbonate) scaffolds and cultured under perfusion had higher cell numbers. Interestingly 

cell number peaked at day 7 and then decreased at day 14.3, 27 The mechanical properties 

of the scaffolds also increased with culture time suggesting possible matrix deposition.  

Although direct comparison with the above cited work cannot be done as we have not 

specifically stained for ECM components in the histology study, reasonable inferences 

can be drawn from the Western blot data (Figure 3.9B) that HCASMCs started expressing 

elastin, one of the most important ECM component for vascular tissues. Previous studies 
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from our laboratory also demonstrated the biosynthesis of both elastin and collagen by 

HCASMC seeded to PCU scaffolds.28, 29       

Notwithstanding the above, however, endothelialisation of the luminal surface of the 

engineered vascular tissues is an additional requirement that must be satisfied from a 

practical standpoint. Previously, the co-culturing of human coronary artery endothelial 

cells and HCASMCs on scaffolds by using Matrigel coating was reported.2 Matrigel-

coated layer not only was a structural mimic for the basement membrane (internal elastic 

lamina), but also functioned to help chemically anchor other components, such as 

laminins, collagen IV, nidogens (entactin) and heparan sulfate proteoglycan (perlecan).30 

This approach could also be used for endothelialisation of the constructs described in the 

present work. Furthermore, co-culture of endothelial cells and HCASMCs play a role in 

the alignment of HCASMCs along the direction of flow.31 Moreover, co-culturing plays a 

significant role in the phenotype regulation of HCASMCs. Our group showed evidences 

that contact of HCASMCs and endothelial cells is required for the regulating smooth 

muscle cell differentiation.32 .   

3.5 Conclusions  

A new way of screening scaffolds with effective diffusivity led to an observation that 15 

wt% PCU scaffold could be used to engineer vascular grafts with good structures and 

pore interconnectivity. Porous tubular and disk-shaped PCU scaffolds were seeded with 

HCASMCs and subsequently cultured up to 28 days under flow conditions in a bioreactor 

and static conditions. Both confocal and histological studies showed that dynamic culture 

conditions significantly improved HCASMC penetration and uniform distribution 
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throughout the scaffold as compared with static culture controls. The results of this study 

indicated that a potentially useful tissue engineered vascular grafts can be fabricated by 

dynamic culturing of human HCASMCs seeded in porous tubular PCU scaffolds. 
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CHAPTER 
         4       
  

4 EXPERIMENTAL AND MODELING STUDIES OF OXYGEN 

TENSION IN VASCULAR TISSUE ENGINEERING WITH AND 

WITHOUT AN OXYGEN CARRIER*

 

 

Overview: This chapter provides the use of perfluorodecalin (PFD) as oxygen carrier in 

vascular tissue engineering. In doing so the amount of oxygen dissolved in PFD emulsion 

was measured and the toxicity of PFD to vascular smooth muscle cells seeded on 3D 

scaffold were examined and finally a mathematical model was developed for oxygen 

profile in the lumen and 3D scaffold constructs.       

Summary 

The technology of vascular tissue engineering holds promise in the design of responsive 

living conduits with properties similar to those of the native tissue. This approach, 

however, constitutes an important engineering challenge because of the difficulty to grow 

cells in high density, due to mass transfer limitations (delivery of nutrients and removal of 

metabolic waste products). The major mass transfer challenge in tissue engineering arises 

from the inability to deliver sufficient oxygen because of its low solubility and diffusivity 

in culture media. In this work the utility of perfluorodecalin (PFD) as an oxygen carrier to 

enhance oxygen delivery for the growth of human coronary artery smooth muscle cells 

                                    
* A version of this chapter is published: Seifu, D; Mequanint, K. (2011) Experimental and Modeling 
Studies of Oxygen Tension in Vascular Tissue Engineering. Journal of Biomaterials and Tissue Engineering 
1, 49-59 
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(HCASMCs) seeded at high density on porous 3D polyurethane (PCU) scaffolds is 

described. Furthermore, the diffusive and convective lumen and ablumen oxygen 

distribution in engineered vascular tissue constructs is modeled. Both experimental and 

modeling data demonstrated that oxygen tension on 3D scaffolds was improved by using 

PFD as an oxygen carrier. Dissolved oxygen in the culture media with PFD was 

significantly higher than the other fluids tested (p = 0.0017). Furthermore, HCASMC 

number was significantly higher in the presence of PFD than in control scaffolds. Taken 

together, these data suggest that PFD could be used as oxygen delivery vehicle in 

vascular tissue engineering strategies. 

Keywords 

Vascular tissue engineering, oxygen transport, perfluorodecalin  

4.1 Introduction 

The strategy of in vitro vascular tissue fabrication is conceptually simple and appealing 

yet it has proven to be a challenging engineering endeavour. Despite rapid advances made 

in this field, success is still limited. 1 Compared with native tissues, one of the major 

unsolved challenges in engineering three-dimensional (3D) tissues is the lack of 

vascularization resulting in poor oxygen mass transfer.  Oxygen can be supplied to 

vascular cells seeded into a tubular scaffold by radial diffusion from the lumen such that 

the oxygen concentration decreases from the lumen and the outer limit of the construct. 

Oxygen diffusion within the scaffold can be enhanced by increasing the overall diffusion 

coefficient, decreasing the diffusion distance, and increasing convective transport. Since 

tissue engineering is carried out in a bioreactor, hydrodynamic conditions can affect in 
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vitro tissue formation in at least two ways:2 i) by direct effects of hydrodynamic forces on 

cell morphology and function, and ii) by indirect flow-induced changes in mass transfer 

of nutrients and metabolites. In static flask bioreactors, tissues are fixed in place and 

cultured without hydrodynamic shear at tissue surfaces while relying on diffusional 

oxygen transport for cell survival. In spinner flask bioreactors, tissues are fixed in place 

and exposed to the steady turbulent flow of medium, which enhances oxygen mass 

transfer but the level of mixing intensity required often surpasses the shear tolerance of 

the cells.3 In a rotating-wall bioreactor, tissues are dynamically suspended in a laminar, 

rotational flow field, and mass transfer is enhanced by laminar convection due to 

construct settling. However, cell-seeded scaffolds often undergo repeated wall collisions 

in rotating bioreactors, which disrupted tissue formation.4 Further, rotating-wall 

bioreactor provided oxygen transfer only to the outer 100μm thick layer.5 Due to a tubular 

scaffold requirement, none of the aforementioned bioreactor designs are suitable for 

fabricating vascular tissues.   

In order to improve oxygen transfer, oxygen generating scaffolds and perfluorocarbon 

compounds as oxygen carriers has been proposed. For example, in cardiac and tracheal 

tissue engineering, perfluorocarbons have been shown to improve construct oxygenation 

without the above-mentioned adverse effects to the growing constructs.6-8  In this regard, 

a steady state model for oxygen distribution in cardiac tissue constructs with parallel 

channel array mimicking the in vivo capillary tissue bed and PFC compound oxygen 

carrier was developed by Vunjak-Novakovic and co-workers.6 Despite this interesting 

approach, the application of this model is limited to tissues such as cardiac and cartilage 

because of the impracticality to create channel arrays within the cross section of vascular 
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scaffolds. Further, at a wall-to-wall channel spacing of ~370μm, supply of sufficient 

oxygen to seeded cardiomyocytes was not achieved. In vascular tissue engineering, 

culture medium is pulsed and allowed to flow through the lumen which is anticipated to 

cause transmural oxygen diffusion through the construct wall. However, in previous 

studies the oxygen tension in the scaffold cross-section was neither predicted nor 

measured.9, 10 Another reported approach to fabricate vascular tissues is a radial flow 

culture system where oxygen dissolved in the culture medium entered into the lumen at 

one end and forced out through the scaffold wall as transmural flow (by sealing the other 

end of the lumen).11 However, the oxygen distribution in this study was not reported.  In 

fact, it can be argued that bioreactors for vascular tissue engineering have been studied 

primarily for mechnotransduction rather than for oxygen transport studies.12, 13 Recently, 

Bjork and Tranquillo14 reported a novel approach by combining both transmural and axial 

flows to enhance oxygen transfer to rat vascular smooth muscle cells seeded into 3D 

fibrin gel. Their data, however, suggest detrimental effects due to the lumenal pressure 

needed to force transmural flow exceeding the burst pressure of the construct. 

To overcome the aforementioned drawbacks while still at the same time delivering 

sufficient oxygen, we propose a combined approach whereby perfluorodecalin-

supplemented culture medium flows from both the lumen and ablumen sides of the 

construct. In this manuscript we first present experimental evidences on the feasibility of 

perfluorodecalin as an oxygen carrier. This is followed by a mathematical model for the 

lumen and the tissue space oxygen distribution with perfluorodecalin as oxygen carrier in 

a tubular scaffold both in static and in convective transport modes.  
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4.2 Methods 

4.2.1 Fabrication of 3D scaffolds 

A medical grade poly(carbonate urethane) (PCU) (Bionate® 55D), kindly donated by the 

Polymer Technology Group (Berkeley, CA), was used to fabricate 3D scaffolds by a 

solvent casting and particulate leaching method as previously described.15 Briefly, ground 

and sieved NH4Cl porogens (180-250 µm) were packed into a cylindrical infiltration 

chamber, the polymer solution (15 wt% PCU dissolved in N,N-dimethylformamide) was 

subsequently poured over the porogen bed and pressurized to infiltrate the porogen bed.  

Following this, the scaffolds were removed from the assembly and the solvent was 

allowed to evaporate in a fume hood. Finally, NH4Cl porogens were leached out using de-

ionized water to obtain porous vascular scaffolds (Figure 4. 1A).  
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Figure 4.1: SEM and digital image of PCU scaffold (A), tubular construct of porous 
cell-seeded scaffold and mesh alignment of the model (B), perfusion bioreactor 
digital image and schematic flow diagram including the setup (C) 
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4.2.2 Dissolved oxygen measurements  

Fibre optic oxygen probe model NeoFox (Ocean Optics, Dunedin, FL) equipped with 

NeoFox software was used to measure dissolved oxygen. 2% perfluorodecalin (PFD) 

(95% mixture of cis and trans; Sigma-Aldrich) was emulsified in the presence of smooth 

muscle culture medium and continuously stirred at 37°C while the assembly was left open 

to atmospheric air. A 300nm diameter oxygen probe was used to measure the dissolved 

oxygen and a two point calibration, where 20.9% of oxygen at standard temperature and 

pressure and 0% of oxygen in 100% nitrogen, was used.  

4.2.3 Cell culture on 3D scaffolds  

Primary human coronary artery smooth muscle cells (HCASMCs) and smooth muscle 

growth media (SmGM®-2 BulletKit) were purchased from Lonza Walkersville Inc 

(Walkersville, MD, USA). Cells were cultured according to supplier’s instructions in 

smooth muscle growth media (SmGM®-2 BulletKit), supplemented with 100 units/mL 

penicillin G sodium, and 100 µg/mL streptomycin sulphate (Invitrogen, Burlington, ON, 

Canada). All cultures were maintained in a humidified chamber at 37ºC containing 5% 

CO2. HCASMCs were passaged every 7 days at a split ratio of 1:3 and used between 

passages 4 to 7. Scaffolds were sterilized with 70% ethanol for 30 min and allowed to dry 

under UV light in tissue culture hood for 30 min. After socking the scaffolds in Hank's 

Buffered Salt Solution (HBSS, Invitrgen, Burlington, ON, Canada) all scaffolds were 

coated with fibronectin (10 µg/cm2; Santa Cruz, CA, USA). Cells were seeded onto 

fibronectin-coated PCU scaffolds at an initial cell density of ~3×105 cells/scaffold. 

HCASMCs were cultured for 7 days, 14 days, and 21 days. 
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4.2.4 Cytotoxicity assay and cell number quantification 

For colorimetric assays of the metabolic activity of viable cells, 3-(4,5-dimethylthiazol-2-

yl)-2,5-diphenyltetrazolium bromide (MTT) (Invitrogen, Burlington, ON, Canada) was 

used to quantify cytotoxicity following 24 h culture. MTT salts are reduced to a water-

insoluble formazan salt only by metabolically active cells allowing the assay to detect 

viable cells exclusively. After it was solubilized, the formazan formed was quantified by 

a plate reader at 570 nm (maximum absorbance). Negative control experiments were 

carried out by adding MTT to 3D scaffolds and culture medium without cells.  For cell 

proliferation, cells were removed from the scaffolds according to our reported 

methodology16 following specified culture times and counted using a hemocytometer.  

4.2.5 Fluorescence staining and laser scanning confocal microscopy 

HCASMCs were fixed at room temperature for 1 h with 4% (w/v) paraformaldehyde 

(EMD Chemicals Inc.) and permeabilized for 10 min in cation free phosphate buffered 

saline (PBS) containing 0.1% (v/v) Triton X-100. Cells were incubated for 1 h at room 

temperature in 1% BSA/PBS containing Alexa Fluor 488-conjugated phalloidin (1:50 

dilution), followed by 3 washes with PBS. DAPI (300nM in PBS; Invitrogen, Burlington, 

ON, Canada) was used to label nuclei. Samples were mounted on slides in 

SHUR/MountTM (TBS®, NC, USA) and analyzed with a Zeiss LSM 410 confocal 

microscope (Zeiss, Canada) equipped with an argon/neon as well as a UV laser. 
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4.2.6 Mathematical model for lumen oxygen profile 

A cylindrical coordinate as shown in Figure 4.1B is used to model oxygen transfer in cell 

seeded vascular scaffolds. A steady state oxygen balance in the scaffold lumen can be 

described by the conservation equation:17  

[ ]
2
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Z d

DC C CV L LM r
Z r r r Z

 ∂ ∂ ∂ ∂ − + = +   ∂ ∂ ∂ ∂  
                              (1) 

Where VZ is the culture medium velocity, L is the PFD volume fraction, Md is the oxygen 

dissociation constant of PFD, Z is the axial direction, r is the radial direction, effD  is the 

effective oxygen diffusion constant and C is the oxygen concentration. Equation (1) is 

subject to the following boundary and initial conditions:  

0
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The flow of the medium in the lumen is assumed to be fully developed and, the velocity 

profile is given by; 
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Where Vm is the average fluid velocity.  

In order to calculate the effective diffusion coefficient in equation (1), the following 

expression was used.18 
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Where p p

a a

C D
C D

γ = ; aD  is the aqueous phase diffusivity, aC dissolved oxygen in aqueous 

phase, pD  is diffusivity of PFD, and pC is dissolved oxygen in PFD.  

4.2.7 Mathematical model for cell-seeded scaffold oxygen profile 

A homogeneous cell-seeded scaffold, where culture medium flows both from the lumen 

and ablumen, was considered to model the oxygen profile in the tissue space.  The flux of 

oxygen from the lumen and ablumen were calculated with a consumption rate and with 

the effective diffusivity. A steady state differential equation for cell-seeded scaffold will 

have both the diffusion term and a consumption term (as represented by Michaelis-

Menten kinetics) in accordance with following equation:     
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+

                                          (4) 

The boundary conditions for equation 4 are: 
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Dt  is the effective oxygen diffusivity in the tissue space and, the values were adopted 

from Riley et al 19 based on Monte-Carlo simulation. For cell volume fraction 

0.04<ϕ<0.95 in the scaffold: 
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Where Dcell is the diffusivity of oxygen in cells, Do is the diffusivity of oxygen through 

the interstitial fluid space and ϕ is the volume fraction of cells.    

4.2.8 Model parameters  

The mathematical model equations presented above were implemented for the set of 

experimental conditions summarized in Table 4.1. In order to maintain the wall shear 

stress within the reported physiological values of normal coronary arteries 20 and to show 

the effect of flow rates, a flow rate of  15mL/min (τwall = 0.65 dynes/cm2), 23 mL/min 

(τwall  = 1 dynes/cm2),  and 40mL/min (τwall = 1.74 dynes/cm2) were used.  Average 

velocity was calculated based on cross-section area of the lumen. Maximum oxygen 

consumption (Vmax) for vascular smooth muscle cells was taken from literature.21 The 

volume fraction of the circulating PFD molecules was 2%. In addition to the lumen 

oxygen profile, the model was used to predict oxygen concentration profiles for vascular 

tissue constructs of clinically relevant thickness (1mm), flow rates, and cell density 

ranging from 106cell/mL to 5x106cell/mL. The cells were assumed to be uniformly 

distributed throughout the pores of the 3D scaffold. The corresponding volumetric 

maximum oxygen consumption rate (Vmax per unit volume) was calculated for the 

respective cell numbers. Culture medium at the inlet of the construct was assumed to be 

fully saturated with atmospheric oxygen with an oxygen partial pressure of 160 mmHg. 

The partial pressure of oxygen for culture medium supplemented with PFD was measured 

to be 220 mmHg using the reported value of oxygen solubility in PFD 37oC.22 
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4.2.9 Numerical solutions 

The solutions for the model equations were obtained using the PDE toolbox built in 

MatLab R2009a utilizing finite element model. In order to use the toolbox, the boundary 

conditions were modified as follows.  

• ( )e walln D C J∇ =
   (Neumann condition). Since the generalized Neumann condition 

in the PDE toolbox software is ( )en D C∇
 + qC = g, and C depends on r in this 

problem, this boundary condition was expressed as ( ) ( )e walln D C J r∇ =
    

• C = 220 mmHg at the left end of the cylinder (Dirichlet condition).  

• The cylinder axis at r = 0 is not a boundary in the original problem but in 2D 

treatment, due to symmetry, ( ) 0en D C∇ =
 .  

Solving equations (1) and  (4) took up to 1933 successful steps, zero failed attempts, 4053 

evaluated functions, 511 LU decomposition, 4053 solutions of linear systems with 

computation times ranging from 4 to 7 min. 

 

4.2.10 Statistical analysis  

The results for the dissolved oxygen study were analyzed by analysis of variance 

(ANOVA). Student’s t-test was used to analyze the cytotoxicity of PCU scaffold and 

proliferation of HCASMC as a function of culture time. For all analyses, significance was 

assigned for p < 0.05. 
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4.3 Results and discussion 

4.3.1 The effect of PFD on dissolved oxygen in HCASMCs culture medium, cell 

spreading and cell viability.   

In this work the feasibility of PFD to enhance oxygen delivery to vascular smooth muscle 

cells seeded into 3D scaffolds was investigated. The rationale for choosing PFD was 

twofold. Firstly, while dissolving high level of oxygen (ca. 42.3 ml per 100 ml of O2), it is 

reported that PFD has longer tissue retention time which holds promise for a clinical 

application compared with the most widely used perflubron 23. Secondly, unlike 

Oxygent™ whose primary content is perflubron, PFD is not investigated as oxygen 

carrier for tissue engineering applications. Because in vitro cell culture data using PFD is 

not reported, it was first investigated if this molecule could be a candidate to enhance 

oxygen delivery in vascular tissue engineering. Figure 4.2 shows the measured dissolved 

oxygen concentration in PFD-supplemented HCASMC culture medium and other fluids 

at 37oC and atmospheric pressure. There was no statistical significance between DI water, 

PBS and HCASMC culture medium. The oxygen solubility values in these fluids were 

comparable to the calculated value using Henry's law.  However, in comparison to the 

variety of biological fluids tested, there was a highly significant difference when 2% PFD 

was added in HCASMC culture medium (p=0.0017). This data shows that by 

incorporating 2% PFD in culture media, there was a significant increase of dissolved 

oxygen at 37oC. Dissolved gases are transported by perfluorinated compounds due to 

increased solubility in accordance with Henry's Law. The increase is attributed due to the 

existence of loose, non-directional van der Waals interactions leading to low cohesive 

energy densities, which facilitates mutual solubilization of oxygen in the fluorine 
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compound that is bound to the surface of the emulsion.24 To evaluate the possible 

cytotoxic effect of 2% PFD on cultured HCASMC, cells were cultured on coverslips with 

and without PFD for up to 7 days. The phase-contrast microscopy images (2D cultures) 

and confocal microscopy images (3D scaffolds) presented in Figure 4.3 demonstrated that 

the morphology and spreading of cells were not affected by the presence of PFD. The 

MTT assay data presented in Figure 4.4 also affirmed that 2% PFD was not cytotoxic to 

HCASMCs. Although data is not available for vascular smooth muscle cells, 

perfluorocarbon emulsions even at low concentrations are in general considered to be 

cytotoxic and inhibitor to proliferation in cultured human fibroblast cells 25, 26. Figure 4.4, 

on the other hand, demonstrates excellent cell viability which could be due to the 

differences in the type of perfluorocarbon used in our study and in the above-cited 

studies. Based on the feasibility data presented herein, a fixed 2% PFD was used to 

investigate cell growth in 3D scaffolds and to predict oxygen tension in our mathematical 

model. 

 

Figure 4.2: Dissolved oxygen partial pressure in different fluids measured at 37 oC. 
Oxygen concentration was measured using fibre optic probe. Data are mean ± SD 
for experiments conducted in triplicate. * indicates statistical significance. 
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Figure 4.3: Phase contrast images of HCASMC, cultured without PFD 
supplemented medium (A, C and E) and with PFD (B, D and F) for 1 days, 2 days 
and 7 days. Confocal microscopy images of HCASMCs cultured on 3D scaffolds 
with PFD (H) and without PFD supplemented medium (G). 
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4.3.2 HCASMC proliferation when seeded to 3D scaffolds with 2% PFD-

supplemented medium.  

In order to rationalize the modeling approach and to examine the effect of 2% PFD in 

culture medium, HCASMC proliferation on 3D scaffolds was investigated.  The results 

presented in Figure 4.5 demonstrated that cell number significantly increased following 7 

days, 14 days and 21 days of culture with 2% PFD (p < 0.05).  Since equal numbers of 

cells were seeded on all scaffolds and that both scaffolds and PFD were not cytotoxic, the 

significant increase in cell numbers as a function of time indicates that an environment 

conducive for cell growth was established by providing sufficient oxygen tension as will 

be shown in the mathematical model in the next section.   

 

Figure 4.4: HCASMC viability using MTT assay on 3D PCU scaffold cultured with 
and without PFD supplemented medium. Data are mean ±SD for experiments 
conducted in triplicate. * indicates statistical significance 
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Figure 4.5: HCASMC proliferation on 3D scaffolds with and without PFD 
supplemented medium for 7 days (A) 14 days (B) and 21 Days (C). Data are 
mean±SD for experiments conducted in triplicate. * indicates statistical significance. 
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4.3.3 Numerical solution for oxygen profiles in static 3D cultures.  

Diffusion and convection are the two main mass transfer mechanisms in cell seeded 3D 

scaffolds. To establish a baseline, the oxygen profile in both the lumen and tissue space 

was first simulated for static cultures where the lumen is filled by a stagnant culture 

medium. Since cells are seeded only to the scaffolds, there is no lumen oxygen 

consumption in the model equation so the lumen oxygen profile represents this fact. 

Therefore, it is expected that the oxygen distribution within the lumen is governed only 

by diffusion. Due to symmetry, only half of the lumen was modeled and, a representative 

lumen oxygen profile is shown in Figure 4.6A, from which it can be inferred that the 

oxygen partial pressure decreased rapidly as we move from the two ends of the scaffold 

lumen to the centre along the axis of the scaffold. The oxygen flux from the lumen by 

diffusion will be consumed by cells in the scaffold. At a cell density of 2.5x106cells/mL 

which was used to obtain the data for Figure 4.6A, the oxygen profile at the midpoint of 

the scaffold lumenal length (Z = 0) reached zero.  Figure 4.6A also shows that at any 

cross section of the lumen the concentration of oxygen is minimum at the interface 

between the scaffold and culture media and maximum at the center which follows the flux 

as shown by the direction fields (indicated by a series of red arrows in the radial 

direction). To study the effect of cell density, the lumen-scaffold interface oxygen 

concentration was plotted (Figure 4.6B). The model indicates that from all cell densities 

shown, oxygen diffusion from the lumen was sufficient only for low cell seeding density. 

Above 1.5x106 cells/ml diffusion alone was not able to deliver oxygen for cell survival as 

indicated by the corresponding partial pressure that drops to zero. It is to be recognized 

that a minimum oxygen concentration above 20 mmHg must be maintained in the lumen 
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to avoid a necrotic environment in the tissue space.27, 28 In addition to the lumen oxygen 

profile, the tissue space oxygen profile with and without PFD supplement was modeled 

and, the results are presented in Figure 4.7. Without PFD, oxygen partial pressure 

dropped to below 20 mmHg at a scaffold depth of ≈ 0.15  mm (Figures 4.7 A &C). 

Despite the enhancement in the oxygen penetration depth into the tissue space to about 

0.4mm, the presence of 2% PFD does not appear to be sufficient to supply enough 

oxygen to seeded HCASMCs as shown by the rapid depletion of oxygen with increased 

scaffold thickness (Figures 4.7 B &C).  

Table 4.1: Model parameters used to predict oxygen concentration profiles in a 
vascular tissue constructs oxygenated with PFD supplemented culture medium. 
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Figure 4.6: Model prediction of oxygen profile in the lumen at static culture 
condition in 3D plot (A) and a plot of lumen-scaffold interface oxygen partial 
pressure for different cell densities (B). 
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Figure 4.7: Oxygen profile in the scaffold (tissue space) at static condition in 3D plot 
with and without PFD supplemented medium (B, C) and a plot of cross sectional 
oxygen partial pressure for different cell densities (C). 
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4.3.4 Numerical solution for oxygen profiles in 3D cultures with convection 

The second part of the modeling study was done to include convective mass transfer to 

the diffusion. We assumed that the medium flow to be fully developed laminar flow 

which is reasonable because many practical bioreactors including ours have long tubing 

often forming loops from the pulse generator to the tissue construct (Figure 4.1C). Due to 

symmetry, only half of the lumen was modeled and; the concentration of oxygen on the Z 

direction is maximum at the inlet and minimum at the exit (Figure 4. 8A&B). In addition 

to that, Figure 4.8B shows that at any cross section of the lumen, the concentration of 

oxygen is minimum at the interface between the scaffold and culture medium and 

maximum at the center in the direction of the flux. The model prediction shows that the 

best result for oxygen profile in the lumen with 2% PFD is obtained when the flow rate is 

40 ml/min and HCASMCs are seeded at a density of 2.5x106 cells/ml. Although it is 

possible to increase the flow rate to enhance oxygen transfer either for higher cell density 

than the one assumed herein in the scaffolds or for longer scaffolds than the one utilized 

in this model, it should be pointed out that this can be done at the detriment due to 

excessive wall shear stress. At a lumen radius of 3mm, the wall shear stresses calculated 

in this model varied from 0.65 dynes/cm2 (corresponding to 15 ml/min medium flow) to 

1.74 dynes/cm2 (corresponding to 40 ml/min medium flow) which are physiologically 

relevant.20   

To model the oxygen profile in the tissue space, a homogeneous cell-seeded scaffold 

where culture medium flows both from the lumen and ablumen was considered. The 

rationale for the ablumen flow was to mimic the vasa vasorum that supply oxygen to 

smooth muscle and fibroblast cells within the media and adventitia of arteries. The 
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bioreactor in our laboratory is also able to supply essential nutrient from the lumen and 

the ablumen. 

  

Figure 4.8: Oxygen profile in the lumen and in the scaffold at a flow condition. A 3D 
representation of the oxygen partial pressure in half of the lumen (A), a plot of 
lumen-scaffold interface oxygen partial pressure for different cell densities (B), a 3D  
plot of the oxygen partial pressure in scaffold (C) and a plot oxygen partial pressure 
across the cross section of the scaffold for different cell densities (D). 

The flux of oxygen from the lumen and ablumen was calculated with a Michaelis-Menten 

consumption rate and with effective diffusivity and was subsequently used as a boundary 

condition to solve the oxygen profile in the tissue space. The numerical solution of the 

PDE given in equation 1 plotted in Figures 4.8 C&D showed that the concentration of 

oxygen is maximum at the scaffold-lumen interface and minimum at the centerline of the 
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scaffold wall thickness. At concurrent lumen and ablumen flow rate of 40 ml/min, culture 

medium supplemented with 2% PFD provided the necessary oxygen for up to, 3.75x106 

cells/ml. Although the vascular smooth muscle cells density assumed in this study is 

relatively lower compared with the physiologic values,29 it is deemed to be an acceptable 

density for vascular tissue engineering. The plots in Figure 4.8D showed that the oxygen 

partial pressure continuously decreased as one moves from the lumen-scaffold interface 

(thickness = 0) to the scaffold centreline (thickness = 0.5). This was followed by a 

continuous upward swing towards the outer scaffold space, reaching a maximum at 

thickness = 1mm. The oxygen partial pressure values at thickness = 0 and at thickness = 

1mm are not the same because of the differences in the outer and inner radius of the tissue 

space used in the model. Since the total flux is fixed based on oxygen consumption, 

oxygen transfer from the ablumen is higher than the lumen due to increased radius (and 

hence surface area).   

One key design element in tissue engineering is maintaining adequate mass transfer while 

at the same time providing local conducive environment to the differentiated state of 

seeded cells. The mechanism of oxygen transport and consumption in cells is an 

important problem which has received considerable attention in recent years30-32. Hoare 

and coworkers33 reported a window of operation to engineer vascular constructs with 

sufficient oxygen delivery based on convection and diffusion from the lumen. Whereas 

their approach captured the practical aspect of cell density in the construct space and the 

wall shear stress (calculated based on the given critical flow rates), the model 

underestimates both the wall thickness (0.2mm used in the model vs. 0.5mm-1mm for 

typical coronary arteries) and the oxygen consumption of vascular smooth muscle cells. 
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Specifically, the oxygen consumption data used in their model is an order magnitude 

lower than the oxygen demand of vascular smooth muscle cells.14, 21 Due to these 

underestimations, we believe that their prediction will fall short of the physiologic 

relevance in both the wall thickness of the vascular constructs and the oxygen 

consumption of vascular smooth muscle cells. Although the oxygen consumption rate 

data in the work of Bjork and Tranquillo14 is realistic for vascular smooth muscle cells, 

the pressure required  to deliver oxygen via transmural flow was detrimental to the 

growing tissue constructs thus limiting their efforts. In addition, the 0.2 mm wall 

thickness used is lower than typical coronary arteries. By combining a practical wall 

thickness (1 mm), experimentally determined oxygen consumption rate of vascular 

smooth muscle cells, and physiologic wall shear stress, the present study suggests that 

without oxygen carrier molecules, fabrication of tissue engineered vascular constructs 

may be limited by oxygen mass transfer.  This, in turn, could limit the initial mechanical 

functionality and subsequent in vivo function of grafts of clinically relevant size.      

Because of the poor solubility of oxygen in culture media at physiologic temperature, its 

delivery represents one of the most critical issues in engineering clinically relevant 

functional 3D tissues.31 While cells consume approximately six mole of soluble oxygen 

per mole of glucose, the solubility of oxygen in typical culture media is an order 

magnitude lower than the available glucose. As a result, engineered tissues that are more 

than approximately 100-μm-thick and supplied with nutrients solely by diffusion may 

have insufficient oxygen transport to the cells. It has been widely acknowledged that the 

supply of oxygen becomes critically limiting for the in vitro culture of 3D tissues.34 This 

is demonstrated by early studies showing that cellular spheroids larger than 1 mm in 
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diameter generally contain a hypoxic and necrotic center, surrounded by a rim of viable 

cells.35 Similar observations beyond depths of 0.25 mm were reported for hepatocytes, 

osteoblasts and cardiomyocytes cultured on 3D scaffolds under static conditions.36-38 As a 

result, tissue engineered constructs frequently have an inhomogeneous structure 

consisting of a dense layer of cells and extracellular matrix concentrated along the 

periphery, and a necrotic interior region.39 Because engineered blood vessels should be at 

least 0.5 mm in wall thickness, oxygen mass transfer limitations represent a critical 

design issue to be addressed for tissue functionality. 

The metabolic oxygen consumption rate is generally a function of concentration. The 

most common oxygen consumption rate expression (per unit volume per unit time) is the 

Michaelis-Menten equation:  

maxOxygen consumption rate
m

V C
K C

=
+

 

The above equation reduces to zero-order consumption when the available oxygen 

concentration is high (i.e. mC K ) and to first-order kinetics for low oxygen 

concentrations (i.e. mC K ). The zero-order limit is often considered as a reasonable 

approach because the condition mC K is easily met physiologically.  However, in tissue 

engineering, available oxygen quickly depletes and it is equally likely that the condition 

mC K  to be satisfied. In this study the model is tested with all these possibilities 

(Figure 4.9). It is evident that zero-order consumption led to the local oxygen 

concentration to drop to unacceptably low levels, even with 2% PFD. In many instances 
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oxygen delivery to cells is bounded by zero-order and first-order consumption rates in 

accordance with the Michaelis-Menten equation.  

 

Figure 4.9: A plot oxygen partial pressure across the cross section of the scaffold for 
2.5×106 cell/ml density for zero order, Michaelis-Menten and first order kinetics. 
medium flow rate was 40 ml/min. 

Despite oxygen delivery challenges, tissue engineering of vascular constructs have been 

achieved using different bioreactors.10, 14, 29 In many of these instances, the wall shear 

stress due to increased flow rates inadvertently compromised the integrity of the tissue by 

altering cellular responses.  In the present work the use of 2% PFD as oxygen carrier 

allow us to deliver oxygen to tissue constructs at physiologic shear forces and flow rates. 

Further we made use of realistic vascular tissue diameter and wall thickness to model the 

oxygen profile concentration within the engineered tissue. This is expected to improve 
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design optimization in order to ensure long-term viability and functional property 

maintenances for human implantation. 

4.4 Conclusions 

One unsolved problem in tissue engineering is overcoming hypoxia in thick, three-

dimensional engineered tissues, which is caused by the diffusional limitations of oxygen 

in the centre of the scaffold and lack of internal vasculature to facilitate mass transfer.  In 

order to combat this obstacle, a steady state mathematical model was developed to 

simulate transport of oxygen in both the lumen and the tissue space. In this study, a 

mathematical model was developed using PFD as oxygen carrier in 3D tissue engineered 

scaffold. Dissolved oxygen concentration significantly increased in the presence of PFD 

in a culture media. Vascular smooth muscle cell viability was not affected by the presence 

of the PFD and; cell proliferation with PFD was significantly higher than those without 

PFD. Our data suggest that PFD emulsion increase the oxygen tension in 3D tissue 

engineered scaffolds and enhanced oxygen delivery to cells.   
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CHAPTER 
         5     
 

 

5 TISSUE ENGINEERING SCAFFOLDS CONTAINING 

EMBEDDED FLUORINATED-ZEOLITE OXYGEN VECTORS*

 

  

Overview: This chapter provides the use of fluorinated Zeolite particles as oxygen 

delivery vector. Fluorinated Zeolite particles were prepared and examined for their 

ability to dissolve oxygen in aqueous media. The toxicity of these particles was examined 

and embedded into 3D PCU scaffolds. Finally their effect as an oxygen vector was 

investigated by culturing vascular smooth muscle cells on fluorinated Zeolite embedded 

3D PCU scaffolds.   

Summary 

Efficient oxygen supply is a continued challenge for the fabrication of successful tissue 

engineered constructs with clinical relevance. In an effort to enhance oxygen delivery, the 

feasibility of fluorinated-zeolite particles that are embedded into 3D polyurethane 

scaffolds as novel oxygen vectors is reported herein. First, 1H, 1H, 2H, 2H-

perfluorodecyltriethoxysilane was successfully coupled to zeolite framework particles to 

examine the dose-dependent dissolved oxygen concentration. Following this, the 

fluorinated-zeolite (FZ) particles were embedded into 3D tissue engineering polyurethane 

scaffolds. The data demonstrated an even distribution of FZ particles into 3D scaffolds 

                                    
* A version of this chapter is published: Seifu, D.G; Isimjan, T.T; Mequanint, K. (2011) Tissue engineering 
scaffolds containing embedded fluorinated-zeolite oxygen vectors. Acta Biomaterialia 7:  3670–3678 
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without affecting the scaffold porosity and pore sizes. Human coronary artery smooth 

muscle cells (HCASMCs) proliferation on FZ-containing polyurethane (PCU-FZ) 

scaffolds was significantly higher than the control scaffolds (p = 0.05). Remarkably, cell 

infiltration depths on PCU-FZ scaffolds was doubled compared with PCU control 

scaffolds. Taken together, these data suggest the potential of PCU-FZ scaffolds for tissue 

engineering with enhanced oxygen delivery to cells.    

Keywords: Oxygen delivery, 3D scaffolds, zeolite nanoparticles, tissue engineering 

5.1 Introduction 

The biomedical applications of nanomaterials such as drug delivery systems, diagnostic 

imaging agents, and microfluidics are drawing attentions due to the unique features they 

present.1-3 Tissue engineering strategies benefited from advances made in nanomaterials 

specifically on the utility of carbon nanotube scaffolds.4-7 Although progress has been 

made to fabricate engineered tissues in vitro using both conventional and nanomaterials, 

the inability to deliver sufficient oxygen to the growing constructs (due to its poor 

solubility in culture media) remained to be a formidable task.8, 9 This is exemplified by 

early studies showing that cellular spheroids generally contain a hypoxic and necrotic 

center surrounded by a rim of viable cells.10, 11 Similar observations were reported for 

osteoblasts, hepatocytes, and cardiomyocytes cultured in 3D scaffolds under static 

conditions.12-14   

Previous attempts to overcome oxygen transfer limitations in tissue engineering relied on 

perfusion bioreactors where oxygen dissolved in the culture medium diffuses to the 

scaffold’s interior. However, the high flow rate required to maintain adequate oxygen 
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concentration for cell viability often surpasses the shear stress tolerance of the cells.15, 16 

In an alternative, the use of perfluorocarbon (PFC) emulsions as an oxygen carrier in 

tissue engineering has been investigated where the oxygen unloading of PFC emulsion 

was facilitated by the increased surface area provided by the emulsion droplet size.17 In 

spite of the reported encouraging data, the high density of the PFC emulsion meant that 

the droplets could easily settle either in the culture well or in the medium reservoir.18 

This, in turn, implies that PFC emulsions may not be effective oxygen carriers. In view of 

the above, it would be advantageous if the oxygen carrier molecules could be bound to 

the scaffold. In this regard, Harrison and coworkers reported calcium peroxide-based 

oxygen generating particles incorporated into the scaffold to provide a sustained oxygen 

release over an extended period of time.19 The reaction products, namely Ca(OH)2 and 

H2O2  are, however, strong base and strong oxidizing agents respectively, in which the 

drawback could outweigh the benefit. This drawback is exemplified by a recent study 

which demonstrated significant reduction of fibroblast viability when calcium peroxide 

was incorporated to polycaprolactone fibrous scaffolds.20 In addition, the calcium 

peroxide loaded to the scaffold will eventually be depleted making this approach limited 

to short term cultures.   

In this study, a novel approach of enhanced oxygen delivery to cells seeded in 3D 

scaffolds by incorporating fluorinated porous zeolite particles as an integral part of the 

scaffolds is reported.  
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5.2 Materials and Methods 

5.2.1 Preparation of fluorinated-zeolite (FZ)  

Analytical grade chemicals and reagents used for the preparation of FZ were purchased 

from Sigma–Aldrich (Milwaukee, WI) unless otherwise stated and, were used as 

received. Zeolite Y powder was crystallized from a synthetic gel with a molar 

composition of: 4 Na2O : 1 Al2O3 : 6 SiO2 : 200 H2O : 5 (TMA)2O , where (TMA)2O 

designates tetramethylammonium hydroxide (25%, Merck KGaA, Darmstadt, Germany) 

used as a organic template or structural directing agent. The synthetic gel was prepared by 

dissolving appropriate amounts of sodium aluminates (NaAlO2) as Al source and sodium 

hydroxide (NaOH) to a mixture of water and (TMA)2O  under vigorous stirring until a 

homogenous solution was obtained. Silica gel (as Si source) was then added to the 

resulting solution in a 30 ml Teflon reactor and mixed for 10 min. The resulting synthetic 

gel was aged for 48 h under static condition. The zeolite Y product was allowed to 

crystallize from the aged gel at 100oC in an oven for 48 h.  When the reaction was 

completed, the pure crystalline zeolite powders were recovered from the suspension by 

centrifugation at 10,000 rpm. The solid particles were re-dispersed in deionized water and 

centrifuged again. The washing and centrifugation process were repeated three times. The 

solid products were dried at 50oC for 24 h, followed by calcinations at 500oC for 5 h in a 

programmable furnace with the heating and cooling rate of 1oC/min to activate the zeolite 

by removing the organic residues and water. The resulting zeolite-Y was then fluorinated 

with 1 wt % methanol solution of 1H, 1H, 2H, 2H-perfluorodecyltriethoxysilane (PTES) 

for 1 h, filtered and then heated at 140oC for an additional 1 h. The particle sizes of the 

zeolite were in the range of 850 nm-1000 nm. 
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5.2.2 Fabrication of PCU-FZ scaffolds 

A medical grade poly(carbonate urethane) (PCU) (Bionate® 55D) was kindly donated by 

the Polymer Technology Group (Berkeley, CA). 3D scaffolds were fabricated by a 

solvent casting and particulate leaching method as previously described21 with some 

modifications. Ground and sieved NH4Cl porogens (180-250 µm) were packed into a 6 

mm diameter cylindrical infiltration chamber together with 2 wt% FZ nanoparticles and, 

the polymer solution (15 wt% PCU dissolved in N,N-dimethylformamide) was 

subsequently poured over the porogen bed and pressurized to infiltrate the porogen bed.  

Following this, the scaffolds were removed from the assembly and the solvent was 

allowed to evaporate in a fume hood. Finally, NH4Cl porogens were leached out using 

deionized water and, the scaffolds were sectioned into 1.5 mm height disks using a 

microtome. This height (or thickness) of the scaffolds was chosen to mimic the 

thicknesses of many soft tissues such as cartilages,22 skin,23 cardiac,24 and blood vessels25 

that are the subject of tissue engineering . Two different control scaffolds, namely PCU 

scaffolds without FZ particles and, scaffolds that contained non-fluorinated zeolite 

particles, were fabricates in a similar way. 

5.2.3 Dissolved oxygen measurement  

Fibre optic oxygen sensor model NeoFox (Ocean Optics, Dunedin, FL) equipped with 

NeoFox software was used to measure dissolved oxygen. The sensor uses ruthenium (II) 

complexes suspended in a support matrix and attached at the tip of the fiber optic cable. 

When excited by a light emitting diode at 475 nm, the ruthenium complex fluoresces and 

emission occurs at 620 nm. When the excited ruthenium complex encounters an oxygen 
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molecule, the emission is quenched allowing the intensity of the fluorescence to be 

related to the oxygen concentration. Accordingly, the more oxygen that is present, the 

lower the emission intensity and vice-versa. In the absence of oxygen, the maximum 

fluorescent intensity of emitted light is observed. FZ nanoparticles at concentrations of 

0.5%, 1%, and 2% were suspended in deionized water and continuously stirred at 37oC 

while the assembly was left open to atmospheric air. Deionized water and non-fluorinated 

Zeolite particles (non-FZ) suspended in deionized water (at 2% concentration) were used 

as controls. A 300 nm diameter oxygen probe was used to measure the dissolved oxygen 

following a two point calibration with 20.9% of oxygen at standard temperature and 

pressure and 0% oxygen in 100% nitrogen.   

5.2.4 Chemical composition and morphological studies of FZ and PCU-FZ scaffolds  

The crystallinity of the zeolite particles was measured by powder X-ray diffractometer 

(XRD),  (Rigaku RINT 2500, Tokyo, Japan) with Cu K radiation (λ = 1.54Å) at 40 kV 

and 50 mA with a scan rate of 0.02 degrees per second over a 2θ ranges of 2° to 40°. The 

zeolite particle pore size and surface area were determined by a BET (Brunauer, Emmett 

and Teller) method using nitrogen adsorption–desorption isotherms by means of an 

ASAP2010 instrument (Micromeritics Instrument Corporation, Norcross, GA). The 

zeolite pore size was also calculated by the advanced Barrett–Joyner–Halenda (BJH) 

method using the adsorption-desorption branches of the isotherms. Prior to these 

measurements, the samples were degassed at 170oC for 24 h in vacuum. To investigate 

the surface and cross-section morphology of scaffolds, high-resolution scanning electron 

microscope (SEM) images were captured using model FIB/SEM LEO 1540XB 

microscope (Carl Zeiss, Oberkochen, Germany) operating at electron beam voltage of 1 
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kV. Scaffolds were affixed on a carbon sample holder and were coated with 4 nm osmium 

vapor before imaging. In addition, energy dispersive X- ray spectroscopy (EDX) was 

used to map the elemental composition and distribution within the scaffolds. Elemental 

compositions of the fluorinated zeolite praticles and the scaffolds were determined by X-

ray photoelectron spectroscopy (XPS, Perkin Elmer, Waltham, MA) and EDX. The XPS 

analyses were carried out with a Kratos Axis Ultraspectrometer using a monochromatic 

Al Kα source (15 mA, 14 kV). 

5.2.5 Scaffold porosity measurements 

Mercury porosimetry measurements were made using an Autopore IV porosimetery 

(Micromeritics, Norcross, GA). Samples of PCU and PCU-FZ scaffolds were cut into 

cylindrical disks with 1.5 mm hight and 6 mm in diameter, before placing in the 

penetrometer. Care was taken to place adequate sample in the penetrometer to achieve 

significantly measurable intrusion volumes while maintaining unimpeded access by the 

mercury to the entire surface of the samples. Prior to mercury intrusion, the penetrometer 

was degassed to approximately 4kPa to remove air from the system. Mercury filling of 

the penetrometer was performed at 3.5kPa. Logarithmically spaced data points were taken 

at pressures ranging from 0.35kPa to 410kPa. An equilibrium intrusion rate threshold was 

set at 0.003 mL/g/s. For purposes of data analysis, the surface tension of mercury and the 

intrinsic contact angle with the scaffolds were taken to be γHg = 480 N/m and θ = 140o 

respectively. Average pore areas were corrected for deformation of the scaffold under 

elevated pressure, as described elsewhere 26. 
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5.2.6 Cell culture on PCU and PCU-FZ scaffolds  

Primary human coronary artery smooth muscle cells (HCASMCs) and smooth muscle 

growth media (SmGM®-2 BulletKit) were purchased from Lonza Walkersville Inc. 

(Walkersville, MD, USA). Cells were cultured according to supplier’s instructions in 

smooth muscle growth media (SmGM®-2 BulletKit), supplemented with 100 units/ml 

penicillin G sodium, and 100 µg/ml streptomycin sulphate (Invitrogen, Burlington, ON, 

Canada). All cultures were maintained in a humidified incubator at 37ºC containing 5% 

CO2. HCASMCs were passaged every 7 days at a split ratio of 1:3 and used between 

passages 4 to 7. Cylindrical scaffolds were affixed to glass coverslips using silicone 

grease, sterilized with 70% ethanol for 30 min and allowed to dry under germicidal UV 

light in tissue culture hood for 30 min. After socking the scaffolds in Hank's Buffered Salt 

Solution (HBSS, Invitrgen, Burlington, ON, Canada), all scaffolds were coated with 

fibronectin (10 µg/cm2; Santa Cruz, CA, USA). Cells were seeded into the interstices 

fibronectin-coated PCU and PCU-FZ scaffolds at an initial cell density of ~3×104 

cells/scaffold.  This relatively low seeding densisty was chosen such that we can verify 

cell infiltration depths into the scaffold interstices without cells outgrowing from the 

scaffold surface as is the case in high-densisty seeding. HCASMCs were cultured for 4 

days, 7 days, and 14 days and the culture medium was exchanged every other day.  

5.2.7 Cytotoxicity assay 

For colorimetric assays of the metabolic activity of viable cells, 3-(4,5-dimethylthiazol-2-

yl)-2,5-diphenyltetrazolium bromide (MTT) (Invitrogen, Burlington, ON, Canada) was 

used to quantify cytotoxicity and cell proliferation. MTT salts are reduced to a water-
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insoluble formazan salt only by metabolically active cells allowing the assay to detect 

viable cells exclusively. After it was solubilized, the formazan formed was quantified in a 

conventional plate reader at 570 nm (maximum absorbance). PCU-FZ and PCU scaffolds 

were affixed in 96-well culture plates using silicone grease and sterilized with 70% 

ethanol for 30 min. After drying for 30 min, the scaffolds were soaked in HBSS and 

~3x104 HCASMCs were seeded and cultured for 24 h in a humidified chamber at 37ºC 

containing 5% CO2. After changing the culture media, 10μL of MTT was added to each 

well and incubated for 4 h. Then 100μL of sodium dodecyl sulphate (Invitrogen, 

Burlington, ON, Canada) was added and mixed thoroughly and finally incubated for an 

additional 4 h before reading its absorbance at 570nm using a multiplate reader. Two 

different negative control experiments were carried out: (i) by adding MTT to the culture 

medium only and, (ii) by adding MTT to the scaffolds only to rule out the possibility that 

trapped reagents in the scaffold may contribute to background reading. 

5.2.8 Immunofluorescence staining and laser scanning confocal microscopy 

HCASMCs were fixed at room temperature for 1 h with 4% (w/v) paraformaldehyde 

(EMD Chemicals Inc.) and permeabilized for 10 min in cation free phosphate buffered 

saline (PBS) containing 0.1% (v/v) Triton X-100. Cells were incubated for 1 h at room 

temperature in 1% BSA/PBS containing AlexaTM Fluor 488-conjugated phalloidin (1:50 

dilution), followed by three washes with PBS. DAPI (300nM in PBS; Invitrogen, 

Burlington, ON, Canada) was used to label nuclei. Samples were mounted on slides in 

SHUR/MountTM (TBS®, NC, USA) and analyzed with a Zeiss LSM 410 confocal 

microscope (Zeiss, Canada) equipped with an argon/neon as well as a UV laser. 
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5.2.9 Statistical analysis.  

The results for the dissolved oxygen study were analyzed by analysis of variance 

(ANOVA). Student’s t-test was used to analyze the cytotoxicity of PCU-FZ scaffold and 

proliferation of HCASMC as a function of culture time. For all analyses, significance was 

assigned for p < 0.05. 

5.3 Results and Discussion 

5.3.1 Characterization of fluorinated zeolite (FZ) 

In the biomedical field, the use of particles as contrasting agents in imaging and as drug 

delivery vehicles is an emerging area.1-3 In order to expand their potential application for 

tissue engineering scaffolds with oxygen binding capability, porous fluorinated zeolite 

particles with a pore size of ~7.4 Å and surface area of 750 m2/g were prepared. The 

schematic framework structure of zeolite (Y-type) is shown in Figure. 1A. This zeolite 

was fluorinated with a methanol solution of hydrolyzed 1 wt% 1H, 1H, 2H, 2H-

perfluorodecyltriethoxysilane (PTES) (Figure 5.1B). When PTES is attached on the 

surface of zeolite particles, it forms a monolayer at a temperature of 140oC. The XRD 

patterns of the current particles are presented in Figure 5.1C and, are consistent with 

literature data.27 Furthermore, the fluorination step did not affect the crystalline peaks of 

the zeolite particles.  
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Figure 5.1: (A) Framework structure of Zeolite Y, (B) chemical structure of PTES, 
and (C) XRD pattern of the prepared fluorinated Zeolite Y. 
 

5.3.2 Dissolved oxygen concentration in FZ particles 

Measurements of dissolved oxygen concentration in the presence of different weight 

percentage of FZ particles were conducted in deionized water at 37oC and atmospheric 

pressure using a fiber optic oxygen sensor (Figure 5.2). There was no statistical 

significance between the control (0% FZ) and 0.5% FZ. Similarly, there was no statistical 



   122  

 

significance in the amounts of oxygen dissolved between 1% and 2% FZ (p<0.05). 

However there was a significant difference between the other groups of FZ contents 

(p<0.05). These data show that by incorporating 2% FZ in deionized water, there was a 

significant increase of dissolved oxygen at 37oC. It seems that there is a minimum 

threshold of 1% FZ that is needed to increase the dissolved oxygen concentration in a 

significant way. On the other hand, when non-fluorinated zeolite particles were 

suspended in deionized water, there was no difference in the amount of dissolved oxygen 

compared with deionized water alone. As will be shown shortly in Table 5.2, 73% of the 

fluorinated molecules that are responsible for dissolving oxygen were located at the 

surface of the zeolite particles which, in turn, were exposed to the bulk liquid. This is 

contrary to conventional fluorinated emulsions where the oxygen is trapped in the core of 

the particle. Consequently, the probe measures total dissolved oxygen concentrations 

present both in water and in the fluorinated particles. Thus the increased oxygen 

concentration is attributed to the presence of 1H, 1H, 2H, 2H-

perfluorodecyltriethoxysilane at the surface of the zeolite particles. Gases are transported 

by perfluorinated compounds due to increased solubility in accordance with Henry's law. 

The increase is attributed due to the existence of loose, non-directional van der Waals 

interactions leading to low cohesive energy densities,28 which facilitates mutual 

solubilization of oxygen in the fluorine compound that is bound to the surface of the 

particles that are embedded in the scaffold. Oxygen solubility also reflects the very low 

intermolecular interactions (fluorine’s low polarizability translates into low van der Waals 

forces) within a FZ monolayer. Unlike a chemical binding situation known in 

hemoglobin, solubilized oxygen can be rapidly and extensively extracted from the 

perfluorinated molecules when needed. Although FZ above 2-wt% could have been 
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theoretically incorporated in our experiments, inclusion of more than 2% particles into the 

scaffolds was not possible because the fabricated scaffolds lacked mechanical integrity.   

  

Figure 5.2: Dissolved oxygen concentrations in de-ionized water at 37oC, in the 
presence of non-fluorinated Zeolite particles, and in the presence of different weight 
percentages of fluorinated Zeolite particles. Oxygen concentrations were measured 
using a fiber optics probe. Data are means ± SD for experiments conducted in 
triplicate. * indicates statistical significance at p < 0.05.  

5.3.3 FZ modified scaffolds characterization 

Tissue engineering scaffolds are required to have high porosity and pore 

interconnectivity, and high surface area to volume ratio for cellular infiltration, matrix 

remodelling, and nutrient transport to take place. Using MicroCT imaging, our group 

have previously reported PCU scaffolds having a porosity of 84%.29 Therefore the effect 

of FZ incorporation on the porosity of PCU scaffolds was examined. Mercury 

porosimeter analysis of both control scaffolds and those incorporating FZ particles 
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showed porosities of 90% (Table 5.1). These results indicate that the pore area and 

porosity of the scaffolds was not affected by FZ incorporation.  

Table 5.1: Mercury porosimetry analysis data for PCU and PCU-FZ scaffolds. 

    

The pore-size distribution obtained from the mercury prosimetry is shown in Figure 5.3. 

It is clearly shown that the addition of the FZ particles did not affect the pore size 

distribution. It also shows that the differential intrusion volume, which is an indicator of 

the scaffold porosity, was the same for both PCU and PCU-FZ scaffolds. The porosity 

data presented in Table 5.1 affirms this observation. The intrusion and subsequent 

extrusion cycles during the mercury prosimetry experiments resulted in negligible 

hysteresis indicating that scaffold compression at the operating pressures was minimal. 
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Figure 5.3: Scaffold pore size distribution obtained by mercury porosimetry for 
PCU and PCU-FZ scaffolds plotted as a function of differential and cumulative 
intrusion volumes 

The SEM images of scaffolds presented in Figure 5.4A-D shows that the pores were 

open, interconnected, and well-defined. This is needed for cell infiltration and 

unrestricted cell-cell communications. All scaffolds had similar pore sizes, ranging from 

50-200 μm which are ideal for many tissue engineering applications. At high 

magnification, the embedded FZ particles (≈1µm size) in the FZ -containing scaffolds are 

evident (see insert in Figure. C) indicating that the salt leaching process did not affect the 

particles whereas, at the same magnification, control PCU scaffolds showed smooth 

scaffold struts and walls. Furthermore, these images show that the FZ particles were 
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uniformly distributed along the struts and walls of the scaffolds without affecting the 

macroporosity of the scaffolds.  

 

Figure 5.4: SEM and EDX analyses of fluorinated Zeolite-modified PCU scaffolds. 
(A) Control PCU scaffolds; (B) FZ-modified PCU scaffolds; (C) high magnification 
images of the struts in FZ-modified PCU scaffolds (inset: high magnification image 
showing the FZ particles); (D) SEM image of the area where EDX mapping was 
undertaken; (E–J) EDX elemental mapping for (E) Al, (F) C, (G) F, (H) O, (I) Si and 
(J) a combination of all elements; (K) EDX spectrum for FZ-modified PCU 
scaffolds. Images were captured using a Zeiss LEO 1530 SEM microscope at 
working voltages of 1 keV for high magnifications and 5 keV for low magnifications. 
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Given that we have used a solvent casting and particulate leaching method to fabricate 

these scaffolds, it is remarkable that the FZ particles were not affected during the NH4Cl 

leaching step in water. This is very likely to be the result of better interfacial adhesion 

between the polymer and the FZ particles facilitating improved entrapment of the FZ 

particles. Strong adhesive forces between a zeolite coating layer and bone biomaterials 

have been recently suggested to their enhanced in vitro performance.30 Additional 

evidences for the successful incorporation and uniform distribution of the fluorinated 

particles into 3D scaffolds came from elemental mapping using EDX (Figure 5.4 E-K). 

The qualitative distribution of Al, Si, and F, which are only expected from the FZ-

modified 3D scaffolds demonstrate this even distribution (Figure 5.4 E-J).  

The elemental compositions of the FZ particles and the scaffolds were further studied 

using XPS. The position of the fluorine 1s peaks at 686.8 eV in the XPS spectrum is 

indicative of fluorine substitution in the SP3 carbon framework. As can be seen in Table 

2, the FZ particles had 40% fluorine and 23% carbon. Because the FZ particles are largely 

inorganic in their composition, the carbon atom is relatively low. The PCU scaffold 

which is used as a control had no fluorine peak at 686 eV and, a carbon atom of 81% is 

considerably high. This is not unexpected since the constituents of PCU control scaffolds 

are only carbon, oxygen, and nitrogen (as hydrogen cannot be detected using XPS). 

However, PCU scaffolds fabricated by incorporating fluorinated zeolite particles had very 

strong fluorine 1s peak with atomic percentage of 29% which was 73% of the fluorine 

found in the fluorinated zeolite particles. XPS results not only indicate the incorporation 

the fluorinated zeolite particles in the PCU scaffolds, but also revealed that most of the 
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fluorinated zeolite were on the surface of the scaffolds which is crucial for oxygen supply 

to seeded cell. 

Table 5.2: XPS analysis of the fluorine content in FZ particles, PCU scaffolds and 
PCU-FZ scaffolds. The numbers in brackets indicate the corresponding binding 
energies. 

 
 

5.3.4 HCASMC growth on PCU and PCU-FZ scaffolds  

In a previous publication from our laboratory,31 it was shown that PCU scaffolds were not 

cytotoxic to HCASMC and, that cells proliferated without any phenotype modulation.32 

In view of this, the current study used PCU scaffolds as controls to evaluate HCASMC 

viability on PCU-FZ scaffolds using MTT assay. Figure 5.5A showed that PCU scaffolds 

incorporating fluorinated zeolite particles had no cytotoxic effect to seeded HCASMC. 

This cytotoxicity data is consistent with literature reports suggesting the biological 

activity of silicate and aluminosilicate zeolites having no cytotoxic effects to cells.30, 33, 34 

The use of zeolite framework as a biocompatible and anticorrosive coating for titanium 

alloy biomaterials demonstrated pluripotent mouse embryonic stem cells having higher 

adhesion and proliferation on the 3D zeolite microstructure surface compared with a 2D 

glass surface, indicating that the zeolite coatings were highly cytocompatible.30 Zeolites 

have also been demonstrated to be a safe oral contrast agent for clinical magnetic 

resonance imaging without significant adverse effects.35 Moreover, zeolites are good 

adjuvant in anticancer therapy,36 improve skin-whitening by inhibiting melanin 
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production in a dose-dependent manner,34 and demonstrated to decrease TiO2-

photosensitized reactive oxygen species in cultured fibroblasts.33 

To examine the effect of fluorinated zeolite incorporation to 3D scaffolds, HCASMC 

proliferation on PCU-FZ scaffolds was investigated. The results presented in Figure 5.5B 

demonstrated that cell number significantly increased for 4 days and 7 days of culture for 

PCU-FZ scaffolds (p<0.05). As an additional control experiment, cells were also seeded 

into scaffolds with embedded non-fluorinated zeolite particles to rule out the effect of 

surface topography due to the embedded particles. No difference compared with PCU 

scaffolds was observed. Given that we have seeded equal number of cells on both 

scaffolds and that both scaffolds were not cytotoxic, the significant increase in cell 

numbers on PCU-FZ indicates that these scaffolds provided an environment conducive 

for cell growth by providing sufficient oxygen.  The apparent decrease is cell number at 

day 4 culture is explained as follows. The data at day 1 reflects the initial seeding density. 

The slight decrease in cell number at day 4 is likely attributed due to cell retention. Then, 

the retained cells started to proliferate which is clearly demonstrated at day 7. Although 

this study suggested an increase cell number for PCU-FZ scaffolds for up to 7 days 

culture, it is not known at this stage if the amount of dissolved oxygen will be sufficient 

to support longer culture times or higher cell seeding density that we have used. Further 

studies will be required to address these possibilities.     
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Figure 5.5: HCASMC (A) viability and (B) growth on PCU, PCU-FZ, and PCU-non-
FZ 3-D scaffolds. Data are means ± SD for experiments conducted in triplicate. 
*Indicates statistical significance.  

5.3.5 HCASMC morphology and depth of infiltration on PCU-FZ scaffolds  

In addition to the cytotoxicity and cell growth studies, information on the morphology 

and infiltration depths of HCASMCs on 3D PCU-FZ scaffolds is essential. Labeling for 

F-actin and DNA were used to examine cellular morphology following 4, 7 and 14 days 

of culture. Figure 5.6 shows that HCASMCs attached and spread on both scaffolds 
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regardless zeolite incorporation. At higher magnifications, cells making larger contacts on 

both scaffold surfaces are evident.   

 

Figure 5.6: Confocal microscopy images of HCASM cultured on PCU and PCU-FZ 
scaffolds for 4 days(A, B, G, H), 7 days (C, D, I, J) and 14 days (E, F, K, L). 
HCASMC attached to both PCU and PCU-FZ scaffolds had similar morphologies 
but the cell density appeared to be higher on the PCU-FZ scaffolds. Scale bars: (A), 
(C), (E), (G), (I), (K), 200 μm; (B), (D), (F), (H), (J), (L), 100 μm. 

Given that these images are taken at a single plane (cell seeded side), insight into which 

cells infiltrated to the scaffolds is limited. To visualize cell distribution into the center of 

the scaffold, confocal stacks of images were taken such that each image is separated by 

10 μm from the next. The procedure continued to deeper sections of the scaffolds until no 

more cells were detected. The images collected were then binned  into 4 depth ranges 

namely, 0-50 µm; 50-100 µm; 100-150 µm; 150-200 µm and, the results are presented in 
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Figure 5.7.  Interestingly, cells on PCU scaffolds infiltrated only to about 100 µm 

whereas on PCU-FZ scaffolds, infiltration depths doubled to 200 µm during 7 days of 

culture. Since HCASMCs were seeded only on one side of the scaffolds; the observed 

infiltration depths are unlikely to be due to seeding techniques. Furthermore, both 

scaffolds had similar pore sizes and porosity as measured by mercury porosimetery 

(Table 5.2). Therefore, it is believed that enhanced HCASMCs infiltration and uniform 

distribution on PCU-FZ scaffolds is due to the available oxygen at deeper sections of the 

scaffolds. Since cell growth data (Figure 5.5) showed PCU-FZ scaffolds promoted 

HCASMCs proliferation, infiltration appeared to be driven primarily by localized 

proliferation rather than coordinated cellular migration.  
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Figure 5.7: The effect of FZ incorporation on HCASMC spreading and infiltration 
after 4, 7 and 14 days of culture. (A, B, E, F, K, L) PCU scaffolds; (C, D, G–J, M–P) 
PCU-FZ scaffolds. Orthogonal views of the confocal images are shown at the 
bottom. Scale bar: 200 μm. 

Tissue engineering has been motivated by the need to develop novel treatment options for 

the functional restoration of diseased tissues. Despite this, overcoming the diffusion 

barrier that limits the delivery of essential nutrients is a primary obstacle in the 

development of engineered tissues with clinical relevance. As a result, engineered tissues 

that are more than 100 μm-thick and supplied with nutrients solely by diffusion may have 

insufficient transport to and from the cells37 since the cell microenvironment is dependent 

on both nutrient and oxygen availability within the scaffold and the surrounding medium. 

Because of the poor solubility of oxygen in culture media, its delivery represents the most 
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challenge in engineering functional 3D tissues. While cells consume approximately the 

same molar amount of soluble oxygen as glucose, the solubility of oxygen in typical 

culture media is an order magnitude lower than the available glucose. Conversely, an 

excess of oxygen in the medium surrounding the cells without an appropriate carrier such 

as hemoglobin, achieved by using pure oxygen instead of air or by increasing gas 

pressure induces the presence of free radicals, which are cytotoxic.38 Oxygen delivery 

strategies such as perfusion bioreactors have been the most widely investigated where 

flow-induced hydrodynamic conditions were anticipated to increase the mass transport of 

oxygen without cell and tissue damage.39 However, as stated earlier, the high flow rate 

required to maintain an adequate oxygen concentration for cell viability often surpasses 

the shear tolerance of the cells.15, 16 As an alternative, perfluorocarbon emulsions have 

been studied as a means to deliver oxygen to seeded cells.18, 40 In these studies, the 

perfluorocarbon compound was emulsified and added to cell culture medium. However 

their high density (~1.5 to 2 times that of water) make the emulsified particles to easily 

settle thus limiting their full potential. Further, the surfactant used to emulsify is 

considered to be undesirable.41  

Despite the above-stated research efforts, oxygen transport remains one of the main 

limitations in maintaining cell viability and functionality, thus requiring novel approaches 

to deliver sufficient oxygen. The utility of zeolites for biomedical applications in not 

new,27, 30, 33-36 but the idea that fluorinated zeolites could be used as oxygen vector in 

tissue engineering is a novel concept. In this study, the fabrication of 3D porous PCU 

scaffolds with uniformly embedded fluorinated zeolite particles with oxygen delivery 

potential to cells is demonstrated. Furthermore, it is shown that the dissolved oxygen 
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increased with increased fluorinated zeolite particles in water indicating that the oxygen 

dissolving property of 1H, 1H, 2H, 2H-perfluorodecyltriethoxysilane was not affected by 

chemically immobilizing to the zeolite framework. To enhance oxygen transport to 

encapsulated cells, Roberts and coworkers suspended perfluorooctyl bromide and 

perfluorotributylamine to alginate hydrogels as an oxygen vector.42, 43 Although direct 

comparison with the current study is not possible, their results suggest the perfluoro 

compounds within hydrogel membrane improves effective oxygen diffusivity, ensuring 

cell viability and functionality for the encapsulated spheres over extended culture times.  

5.4 Conclusions 

In this study, zeolite particles were successfully fluorinated as an oxygen vector using 1H, 

1H, 2H, 2H-perfluorodecyltriethoxysilane for tissue engineering application. Dissolved 

oxygen concentration significantly increased in the presence of fluorinated zeolite 

particles. The fluorinated particles were then uniformly embedded into 3D polyurethane 

scaffolds during the fabrication process. Vascular smooth muscle cell viability was not 

affected by the presence of the fluorinated zeolite particles and; cell proliferation on 

PCU-FZ scaffolds was significantly higher than the control PCU scaffolds. Cell 

infiltration depths on PCU-FZ scaffolds was doubled compared with PCU scaffolds. 

Taken together, these data suggest the potential of PCU-FZ scaffolds for tissue 

engineering with enhanced oxygen delivery to cells.   
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CHAPTER 
         6       
       

6 GENERAL DISCUSSION AND CONCLUSIONS  
 
Overview: This chapter provides a general summary of the overall work of this thesis 

with specific objectives as mentioned in chapter 2. The strengths and limitations of the 

work are also briefly summarized with few future work directions. Finally a brief 

summary of the overall significance of vascular tissue engineering is included.       

 

6.1 Summary 

 
The main goal of this study was to increase the supply of oxygen to vascular 

smooth muscle cell seeded on 3D PCU scaffolds. The initial step consisted of fabricating 

3D porous PCU scaffolds using a pressure differential/particulate leaching technique.  

NH4Cl was used as a porogen and different concentration of polymer dissolved in DMF 

was used to fabricate disk and tubular shaped scaffolds. SEM micrographs were used to 

characterize the structures and a diffusion apparatus was designed to measure the 

effective diffusivity using of NeoFox oxygen sensor. The measured effective oxygen 

diffusion coefficient and morphology of the scaffold was used to screen the best scaffold 

for the work in this thesis. This helped for assessing scaffolds fabricated from different 

concentrations of PCU for vascular tissue engineering applications. To improve the 

adhesion of HCASMC on PCU scaffolds, scaffolds were modified by adsorbing 

fibronectin on the surface of scaffold. HCASMC seeded scaffolds were cultured in both 

static and flow conditions. Higher cell infiltration and proliferation were resulted in flow 
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conditions than the static culture controls. This is likely due to an improved oxygen 

supply by convective mass transfer in the cell-seed 3D PCU scaffolds.  

 

PFD was used as an oxygen carrier because of its high oxygen solubility. 

Significant increase in the dissolved oxygen was measured when 2% PFD was emulsified 

in the culture media. Furthermore, PFD was found to have no toxicity and have no 

morphological effect on HCASMCs.  This led us to use PFD as an oxygen carrier 

molecule in the culture medium to improve the supply of oxygen to cell-seeded 3D PCU 

scaffolds.  Moreover, a better understanding could be obtained by modeling the oxygen 

profile in the cell-seeded scaffold and in the lumen both at static and flow conditions with 

and without oxygen carrier. Thus, a mathematical model was developed to simulate the 

oxygen in the cell seeded 3D scaffolds.   

 

Anther novel approach to improve the supply of oxygen to cell seeded 3D scaffold 

was developed by embedding oxygen carrier particles into the scaffold.  Micro size 

Zeolite-Y particles were fluorinated using 1H, 1H, 2H, 2H-perfluorodecyltriethoxysilane 

(PFES) and characterized. The surface characterization showed higher fluorine on the 

surface of the particles. The surface modified particles significantly increased the 

dissolved oxygen in the water at 37oC and had no toxicity to HACSMCs. The fluorinated 

particles were successfully embedded into the skeleton of 3D PCU scaffold without any 

modification to the morphology of the scaffold.   Mercury porosimetry results confirmed 

that the porosity and pore distribution of the scaffolds were not affected. A higher cell 

proliferation and penetration depth were observed when HCASMC cultured on scaffolds 

with embedded fluorinated Zeolite particle than HCASMC cultured on PCU control 
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scaffolds. Thus an improvement on the supply of oxygen to cells seeded on 3D PCU 

scaffolds was successfully achieved by embedding fluorinated particles as an oxygen 

vector.   

6.2 Strengths and limitations  

In this study, three significant and equally important strategies of improving the 

supply of oxygen to the cell seeded 3D scaffolds were demonstrated.1, 2  Previous studies 

to improve the supply of oxygen mainly focused on scaffold materials and architecture. 

For example, the use of polymeric hydrogels has been studied and shown to have an 

improved supply of oxygen but week mechanical properties of hydrogels may preclude 

practical applications.3-5 The use of polyurethane vascular grafts may overcome the 

mechanical properties limitation. Moreover, the porous polyurethane scaffold constructs, 

if fabricated from a non-degradable polyurethane, provide additional mechanical support, 

therefore reducing the in vitro maturation time and avoiding problems associated with 

polymer degradation.6, 7 Microfabrication and microfluidics approaches of fabrication 3D 

scaffold showed improvements in the supply of oxygen but the fabrication methods were 

limited to simple structures and, when it comes to tubular and cylindrical structures, 

fabricating scaffolds with microfabrication approach becomes a complicated matter.8-10 

Although, oxygen carriers and channeled scaffolds are reported to improve the supply of 

oxygen,11-13 the practicality of channeling scaffolds with micro size spacing could reduce 

the mechanical property. Furthermore, to supply sufficient oxygen, the spacing should be 

very small which made it challenging to fabricate. The other strength of the study 

documented in this thesis is the use of adult human coronary artery smooth muscle cells 

which addresses the limitations related to species differences and unreliable data 
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extrapolation from animal cell sources to humans. Given that smooth muscle cell 

behavior is highly dependent on patient age and that elderly patients are in most need for 

CABG, the use of adult cells best matches the clinical reality. 

 
Amongst the significant contributions of this work is the use of diffusion chamber 

to determine the effective diffusivity of scaffolds and use this parameter to screen the best 

scaffold for vascular tissue engineering. Further significant contributions of this study are 

the use of PFD as an oxygen carrier and the modeling of oxygen transfer with or without 

oxygen carrier compounds.  Lastly, for the first time, inert Zeolite particles were 

fluorinated and embedded into 3D scaffolds as an oxygen vector for tissue engineering. In 

summation, this work improves the supply of oxygen to cell-seeded scaffolds using three 

different strategies namely: 

• Convective mass transfer using a perfusion bioreactor,  

• Oxygen carrier molecule in the culture media and, 

• An oxygen vector embedded in the 3D scaffold 

 
The main limitation of this study is that detailed histological studies and Western 

blot analyses for dynamic and static cultures were not done. Due to time constraints some 

studies of the dynamic cultures are also missing. Long-term maturation of the engineered 

vascular graft will lead for successful fabrication of vascular constructs.  Overall this 

study attempted to solve one of limitation of tissue engineering which the supply of 

oxygen to 3D constructs and added significant knowledge to the field.   
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6.3 Future direction  

This study sets the ground work for maturing vascular grafts in new and 

automatically controlled perfusion bioreactors with improved oxygen supply. In addition 

to flow conditions these bioreactors have to ability to simulate the physiological 

environment by inducing mechanical stimulation and different kinds of pulsatile flows. 

The load cells help to measure the applied forces like tensile, pulsatile and compression.   

The use of a bioreactor will facilitate long-term culture to mature grafts, while promoting 

cell distribution, cell proliferation, ECM synthesis and deposition, and tissue architecture. 

Future work to fully explore the extent of proliferation of smooth muscle cells seeded 

onto 3D polyurethane scaffolds, and the ability to switch phenotype in response to growth 

factors and mechanical stimulation is strongly recommended. Future work should also 

include the co-culture of endothelial cells and smooth muscle cells with different growth 

factors and the effect of co-culture in cell differentiation, matrix deposition and behaviour 

of smooth muscle cells at physiological conditions.  

6.4 Significance  

This study paves the way for the use of polyurethane scaffolds for fabricating 

tissue-engineered vascular substitutes with improved oxygen supply. The fact that this 

work was focused on vascular tissue engineering does not preclude the approach to be 

equally applicable to other engineer tissue. In general, the strategies of improving the 

supply of oxygen as documented in this thesis is anticipated to alleviate inhomogeneous 

cell distribution and matrix deposition in 3D cultures and help maturing vascular grafts. 

Matured tissue-engineered grafts have the potential to grow, self repair and self remodel 

and these make them very attractive for the treatment of congenital anomalies in pediatric 
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patients and atherosclerosis lesions in adults without immune-rejection. In addition to the 

obvious clinical use, vascular tissue-engineered constructs can also be used as 

pharmacological models to develop new drug candidates and test their toxicity and 

efficacy.     
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