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Abstract 

Chinook salmon (Oncorhynchus tshawytscha), following their introduction to the 

Great Lakes, have successfully colonized many tributaries.  Under the hypothesis that 

colonization success is facilitated by intrinsic factors (i.e., preadaptation), I predicted that 

patterns of reproductive timing in an introduced population would show similarities with 

those in their native range.  To test this prediction, attributes of reproductive timing were 

characterized in Chinook salmon from the Sydenham River, Ontario.  In their native 

range, female Chinook salmon exhibit a seasonal decline in reproductive lifespan, a 

decline in fat stores, low egg retention at death (< 0.5%), and spawning at temperatures 

below 12.8°C.  In contrast, Sydenham River Chinook salmon showed no seasonal decline 

in reproductive lifespan or fat stores and nineteen of twenty females had egg retention  

≥ 0.5%.  Also, many individuals (30%) spawned when water temperatures exceeded 

12.8°C.  Thus, individuals do not appear to be pre-adapted in this system.  

 

Keywords: Chinook salmon, reproductive timing, spawning, adaptation, migratory cues 
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Introduction 

Pacific salmon life history 

Pacific salmon of the genus Oncorhynchus are a group of fishes native to the 

North Pacific Ocean (Groot and Margolis 1991).  There are seven species of Pacific 

salmon: Oncorhynchus nerka (sockeye salmon), O. gorbuscha (pink salmon), O. keta 

(chum salmon), O. tshawytscha (Chinook salmon), and O. kisutch (coho salmon) 

compromise the five species that are found in North America. The remaining two species, 

O. masou (masu salmon) and O. rhodurus (amago salmon) can only be found in Asia 

(Kato 1991).  This group can be broadly characterized by being semelparous (die after 

breeding) and anadromous (migrate from salt water to spawn in freshwater).  Life history 

characteristics such as age at maturity, length of freshwater residence, and migration and 

spawning timing vary extensively among and within populations of the same species 

(Willson 1997). 

Chinook salmon populations in North America can be found from Kotzebue 

Sound, Alaska, south to Central California (reviewed in Healey 1991).  Similar to other 

Pacific salmon, Chinook salmon are anadromous, semelparous and display a wide range 

of life history variation throughout their range.  The majority of this variation stems from 

two distinct eco-types defined by the time spent in freshwater at different life history 

stages.  Stream-type Chinook salmon spend longer periods of time in freshwater as 

juveniles before they migrate out to the ocean and adults return to freshwater spawning 

habitat in the spring months before spawning.  Juvenile Chinook salmon of the ocean-

type migrate to the ocean earlier than those of the stream-type and adults return between 

late summer and late fall to spawn shortly after reaching spawning habitat (Healey 1983).  
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Chinook salmon reach maturity between the ages of 2 and 6 years, with the majority of 

variation in age occurring between eco-types (Healey 1991).   

Once mature, Chinook salmon migrate back to their natal waters to spawn. Like 

other Pacific salmon, Chinook salmon are capital breeders and cease feeding prior to 

migrating to spawning areas (Fleming and Reynolds 2004).  They must rely on somatic 

energy stores (fat and lean tissue) to sustain migration and subsequent spawning 

activities.  Migration distance differs greatly among populations, ranging from only few 

kilometers to over 3,000 kilometers for populations that spawn within the Yukon river 

system of Alaska (Healey 1991).  The timing of migration and spawning varies widely 

among populations but is consistent among years, leading to run timing being commonly 

used to differentiate populations (Waples et al. 2001).   

When a female prepares to spawn (the act of depositing eggs) she will first dig a 

redd (nest) and over the course of a few days will repeatedly spawn with a male until all 

or most of her eggs have been deposited and buried in the gravel of the stream bed.  

Chinook salmon females can produce as few as 2,000 eggs or as many as 17,000 eggs 

and fecundity (total number of eggs in body cavity) is typically correlated with size 

(Healey and Heard 1984).  Typical egg retention (eggs remaining in the body cavity as 

counted after death) for Chinook salmon females is around 0.5% of fecundity (Hruska et 

al. 2011). 

After spawning, females remain to guard redds from later-nesting females that 

attempt to reuse high quality nest sites while males seek out additional breeding 

opportunities.  The duration of female defense of a redd varies (6-25 days) among and 

within populations and often shows a seasonal decline (Hendry et al. 2004).  Eggs in the 
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gravel incubate until the following spring when they emerge as alevins.  Emergence 

occurs between February and May with earlier emergence occurring in more southerly 

populations (Healey 1991).  Alevins will remain in freshwater feeding off their yolk sac 

for several weeks and once they begin feeding they are referred to as fry.  Before fry 

migrate out to the ocean they take up residence in freshwater for a period of time ranging 

from a few weeks to up to a year or more (Healey 1983).  During freshwater residence, 

fry set up territories for feeding (reviewed in Healey 1991).  

 

Temperature effects on reproduction 

A literature review conducted by the United States Environmental Protection 

Agency (McCullough 1999) reported typical temperatures for Chinook salmon spawning 

activities.  Chinook salmon in the Columbia river system typically spawn at temperatures 

between 5.6 - 12.8°C (McCullough 1999).  While this review only included Chinook 

salmon in the Columbia river, these temperatures are consistent with those experienced 

elsewhere in their range (Quinn et al. 2002).    When spawning within typical 

temperatures, Chinook salmon can perform normal behaviours and undergo metabolic 

processes without experiencing any thermal stress symptoms (Sullivan et al. 2000).  High 

water temperatures can negatively impact Pacific salmon, and elevated water 

temperatures seem to be the cause of recent losses of migrating sockeye salmon in the 

Pacific Northwest (Mathes et al. 2010).  In addition, high water temperatures have been 

blamed for increased egg retention (Quinn et al. 2007), increased susceptibility to disease 

(Wagner et al. 2005), and decreased reproductive lifespan (Morbey and Ydenberg 2003). 
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Reproductive timing: adaptation 

The timing of migration, arrival at spawning grounds and spawning are key life 

history traits in semelparous salmonid species (Fleming 1998).  Migration and spawning 

timing variation among populations is believed to have evolved in response to water 

temperature and flow during both adult migration to the breeding grounds (Quinn and 

Adams 1996; Jonsson and Jonsson 2009) as well as during juvenile emergence (Beacham 

and Murray 1987; Webb and McLay 1996).  While migration and spawning timing tend 

to vary considerably among populations (Hodgson and Quinn 2002), among years, 

reproductive timing of a given population is highly predictable (Waples et al. 2001).  This 

is partly because the timing of freshwater entry and spawning are highly heritable (h2 = 

0.2 – 0.4) in salmonid populations (Smoker et al. 1998; Stewart et al. 2002; Keefer et al. 

2004).  

It is widely acknowledged that changes in photoperiod trigger initial reproductive 

maturation while adults are still in the ocean (Clarke et al. 1994; Quinn and Adams 

1996).  Freshwater entry and subsequent migration to the spawning habitat is generally 

assumed to be triggered by other environmental cues (e.g., water temperature and flow) 

that correlate with optimal conditions on natal spawning grounds (Jonsson and Jonsson 

2009).  Since there is variation in migration timing among populations within river 

systems that experience similar temperature and flow regimes, populations have evolved 

different responses to the same cues (Hinch et al. 2006).  Responses to cues may vary 

among and within populations because of variability in migration distance, energy 

demands for migration, and river temperature (Hinch et al. 2006).   
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Within populations, successful spawning by females depends upon when 

individuals arrive to the spawning grounds in relation to other arriving females (Morbey 

and Ydenberg 2003).  During breeding, early arrival to spawning habitat allows females 

to obtain the highest quality territories. However, early-arriving females must defend 

their nests longer after spawning to prevent re-use of their nest by later arriving females 

(Morbey and Ydenberg 2003).  Alternatively, later arriving females evolve shorter 

reproductive lifespans because fewer females will arrive later and reuse nests.  Instead, 

these females invest more energy in gonads than somatic stores (Hendry et al. 1999).  

This causes the timing of nest defense to vary within salmonid populations due to 

selection imposed by nest site re-use.  Nest re-use appears to be an important selective 

factor on reproductive timing in many salmon populations (Hendry and Day 2005).  

Reproductive timing has also been shown to evolve rapidly among many taxa in response 

to the seasonal shifts associated with climate change (Bradshaw and Holzapfel 2006).  

 

Reproductive timing: plasticity 

In addition to local adaptation to prevailing temperature and flow regimes, Pacific 

salmon exhibit a high degree of phenotypic plasticity that facilitates immediate changes 

in reproductive timing (arrival timing and reproductive lifespan) in response to changes 

within a season (Crozier et al. 2008; Jonsson and Jonsson 2009).  For example, in fall -

spawning Chinook salmon near Puget Sound, WA, individuals that were moved from the 

Soos Creek population (mean Sept temperature ~ 11°C) to an area of warmer water 

(mean Sept temperature ~19°C), to found the University of Washington Hatchery 

population, had a shift to later spawning in just one generation indicating that timing of 
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spawning is plastic in response to the prevailing temperature (Quinn et al. 2002).  

Increases in water temperature also led to earlier and later shifts in migration timing in a 

population of Chinook salmon in the Columbia River in order for individuals to avoid the 

highest temperatures (Goniea et al. 2006).    However, since there is a genetic component 

of spawning timing in Pacific salmonid populations (Smoker et al. 1998; Stewart et al. 

2002; Keefer et al. 2004), consistent seasonal temperature increases could be shifting 

spawning runs to later in the fall when temperatures are cooler (Quinn and Adams 1996).  

 

Salmonid introductions 

Due to their high value as a food and sport fish, Pacific salmon have been 

introduced to numerous new environments worldwide (Lever 1996).  While introductions 

have been frequent, those resulting in successful establishment are few (Mills et al. 1993; 

Crawford and Muir 2008).  Unsuccessful introductions are typically due to selecting a 

mismatched genetic strain for the new environment (Salmenkova 2008).  However, when 

salmonid introductions are successful and large populations experience new 

environments, traits will diverge rapidly in response to new selective pressures 

(Stockwell et al. 2003; Stearns and Hendry 2004).   

Chinook salmon were taken from their native range and introduced to New 

Zealand and Southern Patagonia in the early 20th century, and to the Great Lakes in the 

1960s.  Populations of reproducing Chinook salmon colonized new locations rapidly in 

all these cases (Becker et al. 2007).  Migration and spawning timing are two life history 

traits that are likely to respond rapidly to selection, and populations of introduced 
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salmonids have been used to test for the divergence of these traits (Quinn et al. 2000; 

Kinnison et al. 2001; Kinnison et al. 2003). 

Documentation of altered reproductive timing in response to new environmental 

seasonality is widespread (Gharrett and Thomason 1987; Quinn et al. 2000; Quinn et al. 

2001; Quinn et al. 2011).  Evidence of introduced salmon populations adapting to new 

local environments has been observed after as few as 9 -13 generations (Gharrett and 

Thomason 1987; Hendry et al. 1998; Hendry 2001).  Extensive studies on introduced 

New Zealand Chinook salmon revealed rapid genetic divergence of multiple traits in 

response to different selective pressures since their recent colonization in the early 20th 

century.  For example, a trade-off in reproductive investment by females (Kinnison et al. 

2001) and divergence in physical characteristics of males (Kinnison et al. 2003) was 

found in response to migratory distance.  Females that migrated further had a higher ratio 

of egg number to egg size (Kinnison et al. 2001) and males that went a similar distance 

showed reduced size in secondary sexual characteristics (hump height and snout size) 

(Kinnison et al. 2003).  In response to temperature, Chinook salmon populations that 

spawned in warmer water returned and matured later than those populations that spawned 

in colder water (Quinn et al. 2000).  Most recently, genetic divergence in spawning date 

(18 days later) was found in response to new environmental seasonality (Quinn et al. 

2011). 

 

Pre-adaptation 

Chinook salmon were introduced into rivers in Patagonia beginning in the early 

20th century and rapidly established anadromous populations in the Pacific and more 



 

 

8 

recently Atlantic river basins (Ciancio et al. 2005).  In general, establishment of 

anadromous populations is less frequent than establishment of resident freshwater 

populations (Pascual and Ciancio 2007).  The success of Chinook salmon in Patagonia 

suggests that they may have already possessed adaptations allowing them to survive and 

reproduce in this novel environment (Ciancio et al. 2005).  This phenomenon is known as 

pre-adaptation.  In other words, traits that Chinook salmon populations evolved in native 

environments could facilitate success in new environments.  Pre-adaptation is a common 

theme in biological invasive plant literature (Jenkins and Keller 2011) and has been 

recently described as a critical component of establishment success of introduced 

amphibians to new environments (Tingley et al. 2011).   Chinook salmon populations 

exhibit a wide array of life history tactics (e.g., timing) that are highly plastic in response 

to environmental conditions, suggesting that pre-adaptation is possible in facilitating 

colonization of novel environments.  

 

Chinook salmon in Lake Huron 

The near extirpation of native Lake Trout (Salvelinus namaycush) in Lake Huron 

led to an increase in prey fish such as invasive alewives (Alosa pseudoharengus).  In 

order to manage the problem levels of prey fish, Chinook salmon (Oncorhynchus 

tshawytscha) were introduced in the late 1960s.  Chinook salmon of the ocean-ecotype, 

from Puget Sound (Green River, WA, U.S.A.) were first successfully introduced into 

Michigan waters of Lake Huron beginning in 1968 and spread to Ontario waters soon 

thereafter (Weeder et al. 2005; Johnson et al. 2010).  This introduction proved successful 

not only for reducing alewife numbers but in stimulating recreational fisheries in the 
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Great Lakes (Kocik and Jones 1999).  Chinook salmon in the Great Lakes are believed to 

have similar life histories as their Puget Sound relatives.  However, having no access to 

salt water makes them adfluvial migrants (fish that live in lakes and migrate to rivers to 

spawn).  Evidence of naturally reproducing Chinook salmon was first found in tributaries 

of Lake Huron in the mid 1980s (reviewed in Crawford 2001).  Adults typically spawn 

between late September through October and fry emerge from the gravel in May and 

remain in streams until late May or June when they migrate to the open lake (Kocik and 

Jones 1999). 

Natural reproduction of Chinook salmon now occurs in at least 17 different Lake 

Huron tributaries (Marklevitz et al. 2011) and populations could now persist through 

natural reproduction alone (Johnson et al. 2010).  The Chinook salmon of Lake Huron 

were important in controlling numbers of invasive prey fish, but recent declines of prey 

fish could be impacting growth and size of the large predatory fish population of the lake 

(Dobiesz et al. 2005).  Recent evidence also indicates that genetic divergence of Lake 

Huron Chinook salmon has occurred in less than 10 generations due to founder effects 

and genetic drift in small populations (Suk et al. 2011).  

Using terms defined by Gross (1998) the Chinook salmon of Lake Huron are 

exotic (not native to the Great Lakes) and naturally reproducing (natural reproduction can 

sustain the population) with some supplementation.  Approximately 3.5 million Chinook 

salmon fry (age 0) are added in the spring each year throughout Ontario and Michigan 

waters (Johnson et al. 2010).  These fry are raised in local hatcheries run by local 

sportsmen clubs.  The gametes are taken primarily from the Mill Dam in Owen Sound, 

Ontario, located on the Sydenham River.  In the Great Lakes, river systems that include 
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both hatchery-reared and wild spawning Pacific salmon are common in areas where fish 

are supplemented to sustain populations.  In effort to sustain natural populations of 

Pacific salmon, well-managed supplementation programs aspire to maintain the 

characteristics of native populations (Brannon et al. 2004).  In other systems, differences 

between hatchery-reared versus wild origin fish have been shown in size (Swain et al. 

1991) and competitive behaviour (Metcalfe et al. 2003). However, hatcheries that are 

originally established from gametes collected from the local population can result in 

hatchery-reared and wild individuals with similar reproductive traits (Schroder et al. 

2008) and overall reproductive success (McGinnity et al. 2004).  

 

Objectives and hypotheses  

Chinook salmon have been reproducing naturally in Lake Huron tributaries for 10 

generations and wild adults make up a majority of the lake wide population. However, 

information is lacking on reproductive success of Chinook salmon in their spawning 

habitat.  The overall objective of this thesis is to determine whether Chinook salmon in 

Lake Huron are pre-adapted to spawn at times within temperatures typically experienced 

in their native range.  Under the hypothesis that Lake Huron Chinook salmon are pre-

adapted to local conditions, spawning timing and measures of reproductive lifespan 

should be similar to what is typical of Chinook salmon in their native range.  I predicted 

that females should have a seasonal decline in reproductive lifespan and corresponding 

decline in fat stores, as occurs in the ancestral population.  In addition, I predicted that 

egg retention by females after spawning should be typical for Chinook salmon in their 

native range and that spawning should occur within temperatures typical for Chinook 
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salmon in their native range.  Since temperatures are likely to decline throughout the fall 

spawning season as the onset of winter approaches, I predicted there would be a negative 

effect of high temperature on egg retention.  Females that spawn earlier in the season 

under higher temperatures should retain a greater number of eggs than females that 

spawn later in the season.  Since differences in size have been found between hatchery-

reared and wild populations (Swain et al. 1991), I predicted that hatchery-reared fish 

should be larger than wild female Chinook salmon, which may cause differences in 

reproductive traits between hatchery-reared and wild fish. 

 

Methods 

 
Study site  

The Sydenham River, located in Grey County in southern Ontario, drains into 

Lake Huron at Owen Sound (Figure 1).  This river is stocked yearly with Chinook salmon 

fry that are raised in a private hatchery facility run by the local sporting and fishing club, 

the Sydenham Sportsman’s Association (SSA).  The SSA collects gametes at the Owen 

Sound Mill Dam (Figure 1) from both wild and hatchery-reared fish.  The gametes are 

then taken back to their private hatchery facility where they are fertilized and raised until 

they reach the appropriate size for release (e.g., the following spring).  Technicians from 

the Ontario Ministry of Natural Resources clip the adipose fin of most fish approximately 

ten days before the release of all hatchery-reared fish.  Since Chinook salmon exhibit 

natal homing and return to their place of birth to spawn (Healey 1991), fry are released 

along a section of the Sydenham River where natural reproduction is known to occur.  
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Figure 1.  Location of the Sydenham River in Southwestern Ontario.  Spawning 
locations are indicated by the black dots.  Female Chinook salmon were tagged at arrival 
to the Mill Dam and are blocked from going further upstream by Inglis Falls.  
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The Owen Sound Mill Dam is located approximately 1 km from the mouth of the 

Sydenham River and controls recreational water levels on the Sydenham River as it 

passes through the city of Owen Sound.  It contains the first fish ladder ever constructed 

in Ontario that allows for the passage of fish.  The ladder contains wooden boards within 

each section that can be added or removed to either decrease or increase the flow of water 

to aid fish in swimming up the ladder.  In the uppermost and largest section of the fish 

ladder a trap can be deployed, which can be used to capture fish for sampling.  A steel 

basket (approximately 1 m3) can be hydraulically lowered into this section.  When 

completely lowered the basket sits entirely below the water level.  Therefore, when the 

fish swim up the ladder they eventually jump into the uppermost section and into the 

basket.  When the trap is fully deployed, a section of aluminum bars are placed just above 

the basket and prevent fish from jumping out.  Once the basket has fish, it can then be 

hydraulically raised to allow easier access to the captured fish for sampling.  The length 

of river accessible to fish upstream from the dam is 6 kilometers; fish are blocked from 

going further upstream by Inglis Falls.   

There are two main areas of suitable spawning habitat downstream of Inglis Falls 

on the Sydenham River (Figure 1).  The majority of Lake Huron Chinook salmon spawn 

in these two main areas from late September through October.  The first is located along 

Harrison Park and the second is a series of artificial spawning channels (2 km in length), 

created and maintained by the SSA. These two areas have streambeds composed of small 

stones and gravel, which are more suitable for spawning, than the bedrock that comprises 

the majority of the natural streambed.  
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Temperature  

 To determine mean temperature along the length of the river accessible to 

spawning fish, temperature sensors were placed throughout the river for the period 2 Sept 

– 24 Oct 2010.  This section of the Sydenham River has not been historically monitored 

for temperature, so a total of eleven temperature sensors were deployed to assess whether 

there were variations in temperature along the river.  The first temperature sensor was 

placed at the dam and each subsequent temperature sensor was approximately 50 – 500 m 

upstream ending 50 m above the spawning channels.  Temperature was recorded every 

fifteen minutes.  Three of the temperature sensors were not used because they became 

dislodged and did not record water temperature accurately.  An Environment Canada 

gauging station (02FB007), located in the Sydenham River upstream of the falls 

(44°31’N, 80°55’ W), has been recording daily discharge rates since 1980.  These public 

data were downloaded from the Environment Canada website1.  Water temperature has 

also been measured at 15-minute intervals at this location since 2009 (Grey Sauble 

Conservation Authority, unpublished data). 

An ANOVA was performed to determine whether mean water temperature from 

the eight temperature sensors were not significantly different. The mean daily 

temperature of the Sydenham River was then calculated from the mean daily temperature 

averaged across all eight temperature sensors for each day of the spawning season.  To 

determine if 2010 was a typical or atypical year, regarding temperature, linear regression 

was used to relate the daily mean temperature of the spawning areas and the daily 

                                                
1http://www.wateroffice.ec.gc.ca 
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temperature collected at the Environment Canada gauging station.  Water discharge, but 

not temperature, has been historically measured at this location.  Since water discharge 

can be correlated with temperature, the temperature collected at the Environment Canada 

gauging station was then related to the daily discharge measured at the same location in 

order to examine historical temperature trends.  

 

Estimation of a fecundity vs. fork length relationship 

Linear regression of fecundity on fork length is frequently used in salmon 

research to obtain fecundity estimates without killing fish (Beacham and Murray 1993; 

Dickerson et al. 2005; Anderson et al. 2010).  To obtain an estimate of average fecundity 

for this population, female Chinook salmon (n = 30) were sampled from fish caught in 

the Owen Sound Salmon Spectacular Fishing Derby.  This annual fishing derby is 

organized by the SSA and took place between 27 Aug and Sep 5 2010.  To be eligible for 

a prize, fish caught must be weighed and measured at an official weigh station.  An 

Ontario Ministry of Natural Resources technician is on hand at each station to gather 

lengths and weights.  The culmination of this event is an annual fish fry from donated 

catch.  All females sampled for lengths and fecundities were obtained from these donated 

fish.  All females donated between 1 Sep and 5 Sep 2010 were measured for fork length 

(cm; tip of snout to the fork of tail) and weight (kg; weight of the whole fish).  Fecundity 

(egg count) was determined by first weighing both ovaries and a subsample of 

approximately 50 eggs.  The eggs in the subsample were then counted.  These values 

were then used to estimate fecundity using Equation 1.   

fecundity = [(total ovary weight)(eggs in subsample)] / (subsample weight)       (1) 
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The data collected from derby-sampled fish were combined with existing fork length and 

fecundity data for Chinook salmon in Lake Huron collected by the Ontario Ministry of 

Natural Resources (OMNR, unpublished data).  To obtain an equation relating fecundity 

to fork length, a least-squares linear regression between fecundity and fork length was 

then performed using R version 2.10.1.  

 

Population sampling 

Female Lake Huron Chinook salmon were sampled daily from 13 Sept – 13 Oct 

2010.  During this time both male and female fish were tagged; however, only females 

were used in this study.  During the beginning of the season the trap was set overnight 

and all fish in the trap were tagged.  Upon completion of tagging all fish in the trap it was 

re-deployed for a period of 3 to 4 hours and any fish in the trap were tagged in the 

afternoon.  During the peak of the run, the trap was not set overnight since large numbers 

(up to 50) of fish could be confined for long periods of time, which caused added stress 

when individuals attempted to jump from the trap.  During the peak of the run the trap 

was deployed (~ 7:00 am) until the trap contained approximately 20 fish (i.e., the 

maximum number we handled in one day).  There was a gap in sampling from 3-8 Oct 

while the SSA was doing their annual gamete collection.  

Fish were removed from the trap and were immediately anaesthetized using a 

mixture of clove oil (2.6 ml) and ethanol (~100 ml) that was mixed vigorously in a large 

cooler filled with water (90 L).  At this clove oil concentration (25 mg/L) fish were 

anaesthetized in less than three minutes and could recover in less than five minutes once 

exposed to fresh water (Taylor and Roberts 1999).   While anaesthetized, fish were 
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tagged at the base of the dorsal fin with a 3 cm, brightly coloured Peterson Disc tag (Floy 

Tag Co., Seattle, WA).  To apply tags a 5” nickel pin was inserted through one Peterson 

Disc and pushed through the dorsal rays at the base of the dorsal fin.  A second Peterson 

Disc was then placed on the opposite side of the fish and the pin was then bent and 

twisted, using needle-nose pliers, in a knot to lie flat against the side of the fish.  These 

tags have been used in many studies examining reproductive behaviour of spawning 

salmon (Quinn and Foote 1994; McPhee and Quinn 1998; Hendry et al. 1999).  Each tag 

had an individual, highly visible, two-letter code that was written in permanent marker.  

All fish were also tagged with a passive integrated transponder (P.I.T.) tag that was used 

for another study.  These tags were inserted into the body cavity through a small incision 

(~2 mm) that was then closed using a few drops of Vet Bond® skin adhesive.  Individual 

Chinook salmon were measured (fork length), weighed and females checked for ripeness 

(reproductive condition) by gently squeezing the abdomen of the fish.  Fish were 

categorized as ripe if eggs were ejected from vent upon squeezing.   

A relative measure of somatic energy stores (fat percent) was estimated using a 

handheld Distell Fish Fatmeter (Distell Inc., West Lothian, Scotland).  This handheld unit 

contains a microwave oscillator that emits a low-powered wave (frequency, 2 Ghz ± 

2,000 Mhz; power, 2mW) that interacts with the water contained in the body tissue at the 

sampling location.  The sensors in the device convert the water concentration to an 

estimate of lipid concentration in the body of the fish.  The meter is pre-programmed with 

a specific calibration function for estimating somatic lipids in Chinook salmon.  

Manufacturers recommend taking eight total readings, four on each side of the fish.  The 

readings are then averaged to determine the average percentage of fat within the 
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individual.  A recent study has found that as little as 2 readings on one side of the fish can 

be just as accurate in estimating percent fat (Crossin and Hinch 2005), even in spawning 

salmon which tend to have much lower levels of fat (Hendry and Beall 2004).  Therefore, 

I took three readings taken above the lateral line on the left side of the fish and this 

significantly decreased handling time.  Analyses used the mean of these three readings. 

Origin (hatchery-reared or wild) was determined for each fish by scanning for the 

presence or absence of an adipose fin.  After sampling, fish were allowed to recover and 

were then released back into the river directly upstream of the dam.  

Fecundity of tagged females was estimated using the predictive model for 

fecundity.  Mean reproductive lifespan and days on nest were determined from the 30 

females observed spawning.  A Kolmogorov-Smirnov one-sample test, suitable for 

testing for differences between cumulative frequency distributions (Zar 1984), was 

performed to determine any difference in the arrival schedule between hatchery-reared 

and wild fish. 

 

Daily observations 

The two main spawning areas were surveyed daily for tagged females. The terrain 

along the riverbank between these two areas was rough and difficult to hike and the 

spawning habitat was poor (e.g., bedrock substrate), therefore it was only walked weekly 

to check for spawning fish.  Female Chinook salmon were surveyed from the riverbank 

using binoculars while wearing polarized sunglasses.  Upon locating a fish, a 2-minute 

behavioural observation was made.  Location of the fish (UTM coordinates obtained 

using GPS), behavioural status (settled or moving), and paired status (settled in one 
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location with a male; yes or no) was recorded.  Additional breeding behaviours including 

digging (female actively moving gravel to prepare nest), defense (aggressive behaviour 

towards other females in area), and spawning (the act of a female and male releasing eggs 

and milt simultaneously) were also recorded.  Nesting females were typically settled 

(stationary in one location during entire 2 minute observation) paired with a male, and 

exhibited defensive behaviours.  Based on these behavioural data as well as arrival day 

(day female was tagged), I determined each female’s settle day (day first seen settled on a 

nest), day of death (day last seen alive), reproductive lifespan (difference between day of 

death and arrival day) and days on nest (difference between day of death and settle day).  

All formerly occupied nests were also observed daily to infer nest success by determining 

nest site re-use.  These nests were recorded as either re-used (scored as 0) or not reused 

(scored as 1) by later arriving females.  Based on observations of spatial distribution of 

spawning pairs in the Sydenham River, nests were considered re-used if there was a 

settled female within 3 m2 of the original female’s nesting location. 

To determine if females showed a typical seasonal decline in reproductive 

lifespan and a corresponding decline in fat stores, linear regressions were used to 

determine the relationships between reproductive lifespan and arrival day, and percent fat 

at arrival and arrival day.  A linear regression between reproductive lifespan and percent 

fat at arrival was also performed to determine whether fat measured at arrival could be 

used to predict how long a female would live.   

Mean daily temperature of the river was used to calculate the mean temperature 

experienced for individuals throughout their reproductive lifespan and while settled on a 

nest.  To determine if females in the Sydenham River experienced higher temperatures 
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than typically experienced in their native range, a Pearson’s chi-square test was used to 

compare observed temperature experienced throughout reproductive lifespan to that 

expected of females in their native range (zero females should spawn above 12.8° C) as 

described by McCullough (1999).  A two-sample t-test was used to determine if mean 

temperature experienced while spawning differed between hatchery-reared and wild fish.    

A backwards stepwise multiple linear regression was used to identify the 

important factors influencing reproductive lifespan and number of days on a nest.  The 

original models included fork length, percent fat at arrival, temperature and origin as 

independent variables and the interactions between the covariate of origin and fork length 

as well as origin and fat. Non-significant interaction terms of the highest order were 

dropped from the model followed by sequentially dropping the non-significant factors 

until only significant factors remained.  

Similar to Hendry et al. (2004), multiple logistic regressions were used to estimate 

selection on reproductive traits (arrival day, settled day, reproductive lifespan and days 

on nest) imposed by nest site re-use.  To test for selection, two backwards stepwise 

multiple logistic regressions were run, each including two reproductive traits.  The first 

included arrival day and reproductive lifespan and the second included breeding day and 

days on nest.  Also included in each model were fork length and origin as independent 

variables and the interactions between origin and all independent variables.  Non-

significant interaction terms were sequentially dropped from the saturated model 

followed by non-significant factors until only significant factors remained. In order to 

standardize the logistic coefficients and their standard errors to make them comparable to 
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other published studies, these values were multiplied by the standard deviations of the 

original factors (Lande and Arnold 1983; Janzen and Stern 1998). 

 

Egg retention   

Many of the tagged females died and then were washed downstream to unknown 

locations or were scavenged before they could be sampled.  Therefore, all dead females 

that were found on the riverbank within 1 day of death (n = 20) were dissected to 

determine egg retention (percent of eggs not released through spawning).  If fewer than 

100 eggs remained, eggs were counted individually.  If greater than 100 eggs remained; 

all eggs were weighed in a Whirlpack® sample bag attached to a 10 g Pesola® scale 

followed by a subsample of a known number of eggs (~ 30) weighed in a similar fashion.  

These values were then used to estimate the total number of eggs remaining.  To 

determine egg retention of tagged females, their fecundity was estimated from the 

fecundity-length relationship.  The percentage of eggs retained for untagged individuals 

was determined using the average fecundity for this population (5504 eggs).  The lengths 

of untagged fish were not recorded since after spawning the tail of females could be 

damaged from digging and would not represent the same measurement as fish tagged at 

the dam.  

Females were categorized as either completely spawned or not, following Hruska 

et al. (2011).  Since it is common for a few eggs to remain trapped in the body cavity 

following spawning, females were categorized as completely spawned if they retained 

less than 0.5% of their eggs.  Females that retained greater than 0.5% of their eggs were 

categorized as not completely spawned.  In native populations, 50% of spawning females 
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are completely spawned before death (Hruska et al. 2011).  To determine if females in the 

Sydenham River experienced greater egg retention than would be expected in their native 

range, a Pearson’s chi-square goodness of fit test was used to compare observed egg 

retention from this population to that expected based on native Chinook salmon (e.g. 50% 

completely spawned).   Egg retention values were arcsine transformed to normalize data 

represented as a percentage (Zar 1984).   

A backwards stepwise multiple regression was done to determine the effect of 

temperature on egg retention.  Temperature experienced by untagged females was 

estimated based on the average reproductive lifespan of tagged females (11 days) and 

river temperatures.    The original model included reproductive lifespan, origin, and the 

interactions between temperature and origin, and between reproductive lifespan and 

origin.  Non-significant interaction terms were sequentially dropped from the model 

followed by sequentially dropping non-significant factors.  Linear regression was also 

used to determine the relationship between egg retention and the day of carcass recovery. 

 

Results 

 
Population sampling 

Between 13 Sept - 13 Oct 2010, 63 females were tagged at the Owen Sound Mill 

Dam.  Based on observations of settled females and the number of untagged females 

observed while observing tagged females, it was estimated that 25% of the females in this 

population that spawned upstream of the dam were tagged.  Hatchery-reared fish 

represented 63.5% of all females tagged.  There were no significant differences in fork 

length (two-sample t-test: t df = 58.33 = -0.22, p = 0.83), weight (two-sample t-test: t df = 40.57 = 
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-0.04, p = 0.97), percent fat (two-sample t-test: t df = 47.95 = -0.96, p = 0.34), or fecundity 

(two-sample t-test: t df = 58.33 = -0.22, p = 0.83) between hatchery-reared and wild females 

(Table 1).  In addition there was no difference between the arrival schedules of hatchery-

reared and wild fish (Kolmogorov-Smirnov: D df = 62 = 0.15, p = 0.88; Figure 2). 

 

Temperature 

 There was no difference among the eight temperature sensors (ANOVA: F7, 448 = 

0.26, p = 0.98) so all were used to calculate mean daily temperature.  The mean daily 

water temperature of the spawning areas was related to the daily water temperature 

collected at the Environment Canada gauging station (regression: F1, 37 = 176.2, r2  = 0.82, 

p < 0.001; Figure 3a).  The daily temperature collected at the Environment Canada 

gauging station was related to the daily discharge measured at the same location but the 

relationship was weak (regression: F1, 55 = 5.2, r2  = 0.07, p = 0.03; Figure 3b).  Water 

discharge for the 2010 spawning season (Sep - Oct) appears to be on the high side 

compared to historical discharge (Figure 4).  The number of tagged females on nests 

tended to increase as the spawning season progressed and as the river temperature 

decreased (Figure 5).  Mean daily temperature during the spawning season was 12.9 ± 

2.8°C and ranged between 7.4°C and 16.1°C (Figure 5).  The number of females who 

were observed spawning at a higher temperature (> 12.8°C) was higher than the expected 

number of zero, since it was hypothesized that no females would spawn above 12.8°C in 

their native range (Pearson’s Chi-Square: χ2 = 8.37, df = 1, p = 0.004; Figure 6).  Mean 

temperature 
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Table 1.  Attributes [mean ± s.e. (n)] of female Chinook salmon sampled between 13 
Sept – 13 Oct 2011. 
 

 Hatchery Wild 

arrival day 17 ± 0.4 (40) 18 ± 0.2 (23) 

fork length (cm) 75.0 ± 0.2 (40) 75.3 ± 0.1 (23) 

weight (kg) 5.2 ± 0.0 (40) 5.2 ± 0.1 (23) 

fat (%) 0.9 ± 0.0 (40) 0.9 ± 0.0 (23) 

fecundity 5490 ± 20.4 (40) 5381 ± 40.1 (23) 

settled day 21 ± 0.4 (21) 21 ± 1.2 (8) 

days on nest  6 ± 0.4 (21) 6 ± 0.2 (9) 

reproductive lifespan (days) 11 ± 0.2 (21) 11 ± 0.2 (8) 

egg retention (%) 35 ± 6.8 (6) 12 ± 3.5 (4) 
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Figure 2.  Cumulative proportion of arrivals for both hatchery (solid line) and wild 
(dotted line) female Chinook salmon tagged at the Owen Sound Mill Dam.  An arrival 
day of one corresponds with the first date of tagging fish (13 September 2010).  The 
cumulative proportion of arrivals did not differ between hatchery-reared and wild 
females.  
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Figure 3.  Panel (a) shows the relationship between the daily mean water temperature 
collected at Chinook salmon spawning locations in 2010 downstream from Inglis falls 
(below falls) and the daily mean water temperature collected from the Environment 
Canada gauging station (02FB007) located just upstream of Inglis Falls (above falls). 
Panel (b) shows the relationship between the daily mean water temperature and daily 
mean water discharge collected at the Environment Canada gauging station.  Both lines 
indicate the results of the least-squares linear regression. 
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Figure 4.  Mean discharge for the Sydenham River from 1980 – 2010 collected from the 
Environment Canada gauging station located above Inglis falls (02FB007).  The solid 
dots connected by the solid lines show the mean discharge for the month of September.  
The open dots connected by the dotted lines show the mean discharge for the month of 
October. 
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Figure 5.  Grey bars show the number of tagged females on a nest for each observation 
date.  The black line shows the mean river temperature on each date.  The dotted line 
represents the upper limit (12.8°C) of temperatures typically experienced by spawning 
Chinook salmon in their native range.  
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Figure 6. Frequency distribution of mean temperatures experienced by female Chinook 
salmon while nesting.  Thirty percent of observed females nested at temperatures above 
the optimal level (shaded bars).  Open bars show the females that nested at temperatures 
within the optimal level. The dotted line represents the upper limit (12.8°C) of 
temperatures typically experienced by spawning Chinook salmon in their native range. 
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experienced during spawning did not differ between hatchery-reared and wild fish 

(Student’s t-test: t df = 18.83 = 0.15, p = 0.88). 

 

Reproductive lifespan 

 Contrary to prediction, there was no seasonal decline in reproductive lifespan 

(regression: F1, 28 = 0.57, r2 = 0.02, p = 0.46; Figure 7a) or percent fat at arrival  

 (regression: F1, 27 = 0.008, r2 = 0.0003, p = 0.93; Figure 7b).  Fish that had higher percent 

fat at arrival lived significantly longer than fish with less fat (regression: F1, 27 = 18.7, r2 = 

0.41, p < 0.001; Figure 7c).  There was no significant relationship between mean 

temperature experienced after tagging and reproductive lifespan (temperature effect in 

ANOVA: F1,28 = 5.06, r2 = 0.22, p = 0.06; Figure 8) when effects of fork length on 

reproductive lifespan were accounted for. 

 

Nest re-use 

 Directional selection resulting from nest re-use favored a later arrival day and 

settling day (Table 2).  However, direct selection on nest re-use was not affected by 

reproductive lifespan or number of days on nest.  Females that arrived earlier in the 

season were more likely to have their nests re-used (multiple logistic regression: z df = 27 = 

2.5, p = 0.01; Figure 9).  There were no indirect effects of fork length (z df = 24 = -0.6, p = 

0.56), reproductive lifespan (z df = 24 = 0.6, p = 0.55), or origin (z df = 24 = -0.3, p = 0.80) on 

nest re-use. 
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Figure 7.  (a) Reproductive lifespan (RLS - number of days between tagging and death) 
as a function of arrival day (day tagged at dam) in wild (solid dots) and hatchery-reared 
(open dots) female Chinook salmon.  No relationship was found between RLS and arrival 
day.  The dotted line represents the seasonal decline of reproductive lifespan that 
typically occurs in native Chinook salmon populations (Hendry and Day 2005). (b) 
Percentage of fat at arrival as a function of arrival day in wild and hatchery-reared female 
Chinook salmon.  No line represents that no relationship was found between percentage 
of fat at arrival and arrival day. (c) RLS as a function of percentage of fat at arrival in 
wild and hatchery-reared female Chinook salmon. The relationship between reproductive 
lifespan and percentage of fat at arrival indicates that individuals that had higher fat 
percentage at arrival lived longer. 
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Figure 8.   The residuals of reproductive lifespan (RLS) and fork length as a function of 
mean temperature experienced during RLS in wild (solid dots) and hatchery-reared (open 
dots) female Chinook salmon. The relationship between the residuals of the relationship 
between fork length and reproductive lifespan and average temperature experienced 
during reproductive lifespan (RLS) was not significant but it was in the expected negative 
direction. 
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Table 2.  Estimates of how nest re-use imposes direct, directional selection on 
reproductive timing.  Two models were run each including two traits.  The coefficients 
from these regressions represent the strength of directional selection acting on each trait.   
 
Trait Logistic coefficient (± s.e.) p-value 
Model 1  
Arrival day 1.807 ± 0.706 0.01 
Reproductive lifespan 0.157 ± 0.458 0.73 
Model 2   
Breeding day 1.678 ± 0.678 0.01 
Days on nest 0.098 ± 0.503 0.88 
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Figure 9.  Logistic regression analysis of the relationship between the probability of nest 
success where 0 = re-used nests (i.e. unsuccessful), and 1 = not re-used nests (i.e. 
successful) and arrival day. Females that arrived earlier were more likely to have their 
nests re-used by later arriving females. An arrival day of one corresponds to the first date 
of tagging fish (13 September 2010). 
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Egg retention 

 Only one of the 20 females for which egg retention data were available (10 

tagged, 10 untagged) was categorized as completely spawned.  The observed percentage 

of females that completely spawned differed significantly from the expectation of 50% 

(Pearson’s Chi-Square: χ2 = 8.03, df = 1, p = 0.005; Figure 10).  However, the percentage 

of females that spawned completely did not differ between hatchery-reared and wild 

females (χ2 = 0.03, df = 1, p = 0.86).  There was no correlation between egg retention and 

average temperature experienced after tagging (regression: F1,18 = 1.86, r2 = 0.09, p = 0.19; 

Figure 11) although small sample size limits the strength of conclusions that can be 

drawn here.  Similarly, there was no correlation between the day of carcass recovery and 

egg retention (regression: F1,18 = 0.003, r2 = 0.06 p = 0.96; Figure 12).  

 

Discussion 

 This study examined the effects of abiotic and biotic factors that influence 

reproductive timing, energy stores and egg retention in an introduced population of 

Chinook salmon.  Since Chinook salmon have been reproducing in Lake Huron for less 

than 10 generations, local adaptation of these traits has most likely not occurred.  

Therefore, success of these rapid colonizers could be due to pre-adaptation.  In the 

Sydenham River no seasonal decline in either reproductive lifespan or fat stores was 

found.  Females had high egg retention and many females nested when water temperature 

was above optimal (>12.8°C). These results indicate that fish are not pre-adapted to their 

novel environment.  Instead, improper response to cues could be causing individuals to 

spawn in suboptimal conditions.  
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Figure 10.  Frequency distribution of the percentage of eggs retained by female Chinook 
salmon (n = 20). The shaded area represents the one fish that was categorized as 
completely spawned (< 0.05% of eggs retained). 
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Figure 11.  Egg retention as a function of mean temperature experienced during 
reproductive lifespan in female Chinook salmon of wild (solid dots), hatchery-reared 
(open dots with x) or unknown origin (open dots). Egg retention was not affected by 
temperature experienced since tagging or origin.   
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Figure 12.  The relationship between egg retention and the day of carcass recovery in 
female Chinook salmon of wild, hatchery-reared, or unknown origin.  The first carcass 
was recovered 13 days after the first female was tagged.  The dotted horizontal line 
represents the upper limit of temperatures typically experienced by spawning Chinook 
salmon.  The solid line shows water temperature (°C) on each day of carcass recovery.  
There was no effect of origin on egg retention so it was dropped from the final model. 
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Population sampling 

 Hatchery-reared and wild Chinook salmon females did not differ significantly in 

fork-length, weight, percent fat, fecundity, or egg retention.  There was also no difference 

in their arrival schedules, breeding day, the number of days spent on nests or reproductive 

lifespan.  While differences between physical characteristics of hatchery-reared and wild 

fish were expected, both hatchery-reared and wild individuals interbreed in this 

population, which could prevent divergence between wild and hatchery-reared fish.  The 

physical and life history similarities indicate that hatchery-reared and wild individuals 

have comparable adult characteristics regardless of the environmental differences 

experienced during incubation and the early stages of life after hatch.  These similarities 

also indicate that data from hatchery-reared and wild individuals can confidently be 

pooled during subsequent analysis.  

 

Temperature 

 The water temperature of the Sydenham River declined throughout the spawning 

season.  Before the arrival of spawning fish, mean water temperature was 20°C (3 Sept) 

and water temperature decreased to as low as 7.2°C by the end of the season (22 Oct).  

The mean water temperature for the spawning period (13 Sept – 24 Oct) was 

approximately 12°C. 

 Mean daily water temperature measured above the falls was highly correlated 

with mean daily water temperature of the spawning areas below the falls.  In addition, 

mean daily temperature of the spawning areas was negatively correlated with water 

discharge measured above the falls.  The negative correlation between discharge and 
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water temperature indicates that high discharge events correspond to lower water 

temperature.  The historical discharge that has been measured since 1980 reveals that in 

September 2010, Chinook salmon spawning in the Sydenham River experienced 

somewhat above average discharge than had been experienced in the previous 23 years.  

Since water temperature negatively correlates with water discharge this indicates that 

water temperature in 2010 may have been lower than temperatures previously 

experienced by spawning Chinook salmon in the Sydenham River.   

The number of females on nests increased as river temperatures decreased over 

the fall.  The mean temperature experienced by spawning females fell within the optimal 

temperature range for Chinook salmon although the number (n = 9) of individuals that 

spawned at temperatures above the optimal range was higher than what was expected (n 

= 0).  Since Chinook salmon are a cold water species, individuals that experienced 

spawning temperatures higher than optimal could experience premature depletion of 

energy stores, increased susceptibility to disease (Wagner et al. 2005), and an increase in 

the percentage of eggs retained after spawning (Fukushima and Smoker 1997).   

The mean daily water temperature did not differ among the eight sensors placed 

throughout the spawning locations, indicating that spawning sections of the river have 

little variation in water temperature.  In using average temperature experienced over 

reproductive lifespan, I assumed that individuals did not use cold-water refuges.  

According to Jonsson and Jonsson (2009), salmonids can exhibit behavioural 

thermoregulation and fish will seek out areas of cooler water during periods of waiting 

before spawning.  In the 2010 spawning season I observed one cold-water flow into the 

spawning channel where many individual males would accumulate.  I never witnessed 
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any females holding in this location which suggests that Chinook salmon of the 

Sydenham River exhibit similar spawning behaviours of their ancestral ocean-ecotype 

which typically spawn shortly after completing migration to spawning habitat (Healey 

1991).  Once a female has settled on a nest, where she will remain throughout spawning 

until death, she does not have the opportunity to seek colder refuges.  Therefore using the 

total average temperature experienced since tagging should be a reliable estimate of the 

temperatures each female experienced while spawning.   

In future studies, individual radio tags with temperature sensors could be used to 

give very accurate measurements of temperature experienced throughout the spawning 

period.  However, not only are these transmitters costly, the use of similar transmitters 

has recently been found to negatively affect reproductive lifespan (Warren and Morbey, 

unpublished data).   Since accurately determining reproductive lifespan was a 

fundamental part of this study, the effects of radio transmitters on reproductive lifespan 

should be examined further to determine if they would be appropriate to use in future 

studies. 

 

Reproductive lifespan and nest site re-use 

Contrary to my original prediction, no seasonal decline in reproductive lifespan 

was found.  The average number of days for a female to defend a nest in the Sydenham 

River was only six days after breeding occurred.  By contrast, Chinook salmon in their 

native range (Nechako River, B.C.), have been found to defend nests from 6 – 25 days, 

with early arriving fish having longer defense times (Neilson and Banford 1983).  This 

seasonal decline in reproductive lifespan is a typical trade off that can be found in most 
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salmon populations (Morbey and Ydenberg 2003; Hendry and Day 2005).  Fish that 

arrive early have access to prime habitat but must contain greater fat stores to fuel the 

defense of their nest from later arriving females since nest re-use is common upon the 

death of defending females.  Females that arrive late in the season may have less of a 

choice in habitat, but do not need to live as long to defend their nest from even later 

arriving females.  This trade off is typical and indicates that fish that arrive later could 

benefit from allocating energy to reproductive investment instead of body fat stores to 

fuel nest defense (Hendry et al. 2004).   

No decline in fat stores with arrival day was found. However, fish that had a 

higher percentage of fat at arrival lived longer than fish with less fat, after controlling for 

arrival day.  This suggests that the fat meter appropriately measured relative energy upon 

arrival to the spawning grounds. This also suggests that in the Sydenham River system, 

individuals may have little stored fat upon arrival to spawning grounds, compared to 

populations in the Pacific Northwest, and are thus unable to sustain long periods of nest 

defense.  It is also possible that individuals may have experienced conditions at some 

point during migration that depleted energy stores.  For example, in a multi-year study of 

kokanee salmon, longer reproductive lifespans were found in the coolest year of the study 

(Morbey and Ydenberg 2003).  Therefore in the Sydenham River, higher temperatures at 

the beginning of the season could be depleting these small finite amounts of energy at a 

faster rate than the later arriving females that experience cooler temperatures.  

Shorter reproductive lifespans than typical of Chinook salmon combined with 

potentially lower percentage of fat upon arrival could imply that there are limiting 

resources available for growth in Lake Huron.  Since Chinook salmon were introduced to 
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Lake Huron in the 1960s there has been a steady decline in the number of prey fish 

available due to large numbers of large predatory fish (Paterson et al. 2009).  Although 

there are no studies that indicate a decline in percentage of fat of individuals throughout 

this period, the decline in prey fish has coincided with an increase in older fish at 

spawning.  This pattern suggests that fewer resources have led to a delay in maturation of 

adult fish (Dobiesz et al. 2005).  In addition, local sport fishermen of the SSA have 

commented anecdotally on the decreased size of adult Chinook salmon in recent years.  

Females that arrived to spawn earlier in the season likely have less successful 

nests because of nest site re-use by later arriving females.  Significant directional 

selection on arrival day and breeding day imposed by nest site re-use was found, 

indicating that at this life-history stage, selection is acting on females to arrive later in the 

season.   However, no significant directional selection was found on reproductive 

lifespan.  

 

Temperature and reproductive lifespan 

There was no significant effect of mean temperature experienced on reproductive 

lifespan.  However, the observed relationship was in the expected negative direction.  

Interestingly, since the historical discharge data suggests that water temperature for the 

2010 spawning season was most likely cooler than previous years, the effect of 

temperature on reproductive lifespan may be more apparent in years where water 

temperature is higher.  It is difficult to compare the effect of temperature within a natural 

environment because all early arriving fish should have the same level of reproductive 

investment as would all of the later fish, because of the trade-off between arrival day and 
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energy allocation for reproduction.  Manipulating the temperature of the river in order to 

have both early arriving and late arriving fish exposed to the same temperatures would 

give more direct insight to how temperature affects reproductive lifespan.  However, in a 

natural spawning setting this would be impractical and logistically very difficult. 

 

Egg retention 

 Egg retention was higher than typically expected of salmon in their native range.  

Only one of twenty individuals had completely spawned in the Sydenham River.  Since 

Chinook salmon females will spawn their eggs in a series of spawning events over a few 

days, higher egg retention could be another consequence of females in the Sydenham 

River not living long enough to complete the necessary spawning events to void all of 

their eggs.  In their native range, female Chinook salmon have been found to have higher 

egg retention when they experience frequent harassment while spawning (Healey 1991).  

The spawning locations in the Sydenham River are located near public parks and people 

and dogs were frequently seen physically disturbing settled Chinook salmon females, 

which could explain why egg retention was higher in this population.  Temperature could 

also affect the percentage of eggs retained, through effects on reproductive lifespan, for 

example females not living long enough to spawn all of their eggs.   

 

Temperature and egg retention 

While higher egg retention has been found when individuals experience warmer 

water temperatures (Fukushima and Smoker 1997), in this study there was no effect of 

temperature experienced after tagging on the number of eggs retained.  However, the low 
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sample size constrains the ability to make a strong conclusion about the effect of 

temperature on egg retention.  This may indicate that another factor such as human 

disturbance might be responsible for the higher than expected number of fish that did not 

spawn completely.  While it was hypothesized that carcasses recovered for egg retention 

later in the season might have lower egg retention, because presumably those fish would 

have spawned at lower temperatures, there was no relationship between day of carcass 

recovery and egg retention.  Temperature could also indirectly affect the percentage of 

eggs retained if higher temperatures reduced reproductive lifespan and individuals did not 

live long enough to spawn all of their eggs.  

 

Cues and spawning conditions 

 Based on the results of this study, Chinook salmon females in the Sydenham 

River do not appear pre-adapted to spawn at the locally appropriate time.  Trade-offs and 

reproductive success typical of Chinook salmon in their native range were not found.  

There was no seasonal decline in reproductive lifespan nor a corresponding decline in fat 

stores, egg retention was higher than that typical of native populations, and many females 

spawned at temperatures higher than that preferred in their native range.  This could 

indicate that the cues that trigger Sydenham River Chinook salmon to migrate upstream 

cause females to experience suboptimal conditions on the spawning grounds.  

A change in photoperiod typically triggers initial migration of Pacific salmonids 

to freshwater (Clarke et al. 1994; Quinn and Adams 1996) and other environmental cues, 

such as water temperature and flow, initiate freshwater entry and subsequent migration to 

spawning habitat (Jonsson and Jonsson 2009).  The cues that Lake Huron Chinook 
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salmon inherited from their Green River ancestors may trigger individuals to begin 

migration at the appropriate time for the Green River population but not for the 

Sydenham River.  

 In a comparison of arrival day and day length between the Green River population 

and the Sydenham River population both mean arrival day and day length are similar 

between the two sites (Quinn et al. 2002; Table 3).  This suggests that Sydenham River 

Chinook salmon could be responding to photoperiod to initiate migration.  Intriguingly, 

when the average temperatures of each location are considered on that shared arrival day, 

the temperature of the Sydenham River is a few degrees warmer than that of the Green 

River.  While this difference is about 3°C, it is important to note that the temperature in 

the Sydenham for the arrival date of 1 Oct is only for 2010.  The discharge data suggests 

that the water temperature for 2010 may be cooler than the temperatures experienced in 

previous years.  In addition, the average annual surface temperature of the Green River is 

only 9.8°C and temperatures do not exceed 15°C at any point during the year (Quinn et 

al. 2002).  Even in 2010, mean Sydenham River temperatures reached 20°C in the 

months preceding spawning.  If individuals in the Sydenham River are responding to the 

proper cues of photoperiod that are similar to their native habitat of the Green River but 

arriving when temperatures are too warm this would negatively affect the reproductive 

success of early arrivals. 

Founder effects from individuals that strayed to spawn in the Sydenham River 

could also account for mistiming of reproduction in this population.  Founder effects are 

common in populations of introduced salmonids either because a small number of 
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Table 3. Mean arrival date, day length on arrival date, and mean temperature at arrival 
for the Green River, WA, USA (ancestral population) and the Sydenham River, ON 
(current study).  
 
 Green River Sydenham River 
Location Auburn, WA Owen Sound, ON 
Latitude, Longitude 47°18’N, 122°12’W 44°34’N, 80°56’W 
Mean arrival date  30 September 1 October 
Day length on arrival date 11 hrs. 41 min. 11hrs. 43 min. 
Temperature on arrival date ~10°C 13.2°C 
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individuals are chosen by hatchery groups from the large native population for 

introduction or because only a few strays may initially colonize a new site (Salmenkova 

2008).  The individuals that were first stocked into the Michigan side of Lake Huron in 

the early 1960s only represented a small portion of the genetic variation of the Green 

River population.  Following the Chinook salmon introduction, evidence of Chinook 

salmon spawning in Lake Huron tributaries was first found in the Sydenham River in the  

early 1980s.  Adults that strayed to spawn in the Sydenham River were assumed 

to be from stocked adults from the Michigan side of Lake Huron since stocking in 

Ontario waters did not begin until the mid 1980s (Crawford 2001; Weeder et al. 2005).  

The founders that strayed to the Sydenham River were probably a small subset of the 

introduced Lake Huron population.  Studies have suggested that initial non-representative 

founders like these could be favoured in populations of rapidly colonizing introduced 

salmonids (Quinn et al. 2001).  For example, traits such as high energy reserves might 

cause initial founders of a newly colonized river with a long migration distance to be 

more successful in that new environment (Quinn et al. 2001).  However, in the Sydenham 

River, if the initial founders were disproportionately early spawners it would cause future 

generations to migrate early as well.  If suboptimal environmental conditions are 

experienced after early arrival that correspond with a decrease in reproductive success, 

selection should favour later arrivals that correspond with optimal spawning conditions 

and increase reproductive success.  Even though salmon are known to rapidly adapt in 

suitable environments since reproductive timing is highly heritable (Smoker et al. 1998; 

Stewart et al. 2002), adaptation of the Sydenham River population of Chinook salmon 
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may be slowed because of ongoing hatchery supplementation, which favours early 

arrival.  

There was no effect of origin (hatchery-reared or wild) on the reproductive 

patterns examined.  However, influences of hatchery-reared fish are common and the 

hatchery practices of the local sport fishing clubs may be inadvertently selecting for 

early-arriving fish.  The Sydenham River is where the majority of the eggs are collected 

to maintain hatchery practices and stocking efforts of Lake Huron.  The local sportsmen’s 

associations that are permitted to take eggs prefer to have their eggs as early in the 

spawning season as possible.  As a result, groups begin collecting gametes as soon as 

consistent numbers of reproductively mature females begin arriving at the Mill Dam.  

The sportsmen’s associations keep collecting eggs until they reach their maximum quota 

that is allowed by the Ontario Ministry of Natural Resources.  In the 2010 spawning 

season, the egg take lasted only six days, beginning on 3 Oct 2010.  Assuming a high 

heritability of spawning timing (Smoker et al. 1998), rearing gametes only from 

individuals that arrive earlier in the season would cause more individuals to inherit the 

trait to arrive earlier to spawn.  Individuals in the wild that arrived too early when 

temperatures are too warm might have lower reproductive success and if they were 

unsuccessful, would not pass on the trait to arrive early to future generations.  While 

higher than optimal temperatures experienced during earlier spawning should be selecting 

for the later arrival of individuals, early gamete collection by hatchery groups opposes 

this selection and ensures that early arrivals are favoured.  There was no significant 

difference in the arrival schedules of hatchery-reared and wild individuals in 2010; 

however, Chinook salmon in Lake Huron have only been reproducing for 10 generations 
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since their introduction (Suk et al. 2011) and hatchery and wild component are mixed.   If 

collection of gametes continues in this manner it could cause a significant shift in 

breeding date in the future or will continue to contribute to poor reproductive success.    

Similar results were shown in a long-term study of the ancestral population that 

examined the breeding date of Chinook salmon in the Green River, Washington USA.  

Results of that study showed that selection imposed by hatchery practices led to a 

significant shift to spawn earlier even though water temperature increases should have 

selected for later spawning (Quinn et al. 2002).  Further studies should compare 

reproductive timing of the Chinook salmon in the Sydenham River to other tributaries 

such as the Nottawasaga River, a tributary that maintains a large successful naturally 

reproducing population with no hatchery influences.  Further study would reveal whether 

or not the hatchery practices in the Sydenham River are negatively affecting the timing of 

individual Chinook salmon in Lake Huron. 

 

Conclusion  

 While it is known that Chinook salmon populations in Lake Huron can reproduce 

in the wild, the population spawning in the Sydenham River does not appear to be 

spawning under optimal conditions.  No seasonal decline in reproductive lifespan or a 

corresponding decline in fat stores, higher egg retention and individuals spawning above 

optimal temperatures indicate that this population is arriving too early to spawn 

successfully.  A mismatch in cues that initiate spawning may contribute to the mis-timing 

of this population.  However, it is likely that hatchery gamete collection also has an effect 
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on the reproductive timing of this population.  Specifically, inadvertent artificial selection 

favouring early arrival is opposing natural selection favouring late arrival.   

While the Sydenham River Chinook salmon population appears to be performing 

sub-optimally at the reproductive stage, other studies have suggested that the majority of 

the Chinook salmon in Lake Huron are the result of natural reproduction.  This could be 

due to higher reproductive output from other Lake Huron tributaries or due to greater 

success at other life history stages (e.g. adult foraging).  Continued investigation on the 

reproductive timing of the Sydenham River Chinook salmon population could give 

further insight into how the combination of environmental factors and hatchery practices 

(e.g. natural and artificial selection) influence the rate of adaptation of reproductive 

timing in newly established populations.  
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Appendix 1. UWO approved animal care protocol (2010-2011) 
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