
Western University Western University 

Scholarship@Western Scholarship@Western 

Electronic Thesis and Dissertation Repository 

2-15-2012 12:00 AM 

Essays on Financial Return and Volatility Modeling Essays on Financial Return and Volatility Modeling 

Jing Wu 
The University of Western Ontario 

Supervisor 

John Knight 

The University of Western Ontario 

Graduate Program in Economics 

A thesis submitted in partial fulfillment of the requirements for the degree in Doctor of 

Philosophy 

© Jing Wu 2012 

Follow this and additional works at: https://ir.lib.uwo.ca/etd 

 Part of the Econometrics Commons, and the Finance Commons 

Recommended Citation Recommended Citation 
Wu, Jing, "Essays on Financial Return and Volatility Modeling" (2012). Electronic Thesis and Dissertation 
Repository. 389. 
https://ir.lib.uwo.ca/etd/389 

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted 
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F389&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/342?utm_source=ir.lib.uwo.ca%2Fetd%2F389&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/345?utm_source=ir.lib.uwo.ca%2Fetd%2F389&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/389?utm_source=ir.lib.uwo.ca%2Fetd%2F389&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca


ESSAYS ON FINANCIAL RETURN AND

VOLATILITY MODELING

(Spine Title: Financial Return and Volatility)

(Thesis Format: Integrated Article)

by

Jing Wu

Department of Economics

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

SCHOOL OF GRADUATE AND POSTDOCTORAL STUDIES

THE UNIVERSITY OF WESTERN ONTARIO

LONDON, CANADA

2012

c© Jing Wu, 2012



THE UNIVERSITY OF WESTERN ONTARIO

SCHOOL OF GRADUATE AND POSTDOCTORAL STUDIES

CERTIFICATE OF EXAMINATION

Supervisor Examiners

Dr. John Knight Dr. Youngki Shin

Supervisory Committee
Dr. Maria Ponomareva

Dr. Youngki Shin Dr. Reg Kulperger

Dr. Martijn van Hasselt Dr. Dinghai Xu

The thesis by

Jing Wu

entitled

Essays on Financial Return and Volatility Modeling

is accepted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

Date
Chair of the Thesis Examining Board

ii



Abstract

My dissertation consists of three essays focusing on modeling financial asset

return and volatility.

The first essay proposes a threshold GARCH model to describe the regime-

switching in volatility dynamics of financial asset returns. In the threshold

model the switching of regimes is triggered by an observable threshold vari-

able, while volatility follows a GARCH process within each regime. This model

can be viewed as a special case of the random coefficient GARCH model. We

establish theoretical conditions, which ensure that the return process in the

threshold model is strictly stationary, as well as conditions for the existence of

finite variance and fourth moment. A simulation study is further conducted to

examine the finite sample properties of the maximum likelihood estimator.

The second essay extends our study of the threshold GARCH model to an

empirical application. The empirical results support the use of the threshold

variable to identify the regime shifts in the volatility process. Especially when

VIX is used as the threshold, we are able to separate the clustering of volatile

periods corresponding to various financial crises. According to 5 common mea-

sures on forecasting evaluation, the threshold GARCH model provides better

volatility forecasts for stocks as well as currency exchange rates.

The third essay examines the effect of time structure on the estimation

performance of independent component analysis (ICA) models and provides

iii



guidance in applying the ICA model to time series data. We compare the per-

formance of the basic ICA model to the time series ICA model in which the

cross-autocovariances are used as a measure to achieve independence. We con-

duct a simulation study to evaluate the time series ICA model under different

time structure assumptions about the underlying components that generate fi-

nancial time series. Moreover, the empirical results support the use of the time

series ICA model.

Keywords: Regime-Switching Volatility Model, Threshold GARCH Model, Non-

Linear Time Series, Volatility Forecasting, Quasi-Maximum Likelihood, Real-

ized Volatility, Independent Component Analysis.
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Chapter 1

Introduction

My doctoral thesis consists of three essays focusing on financial return and

volatility modeling. The first two essays theoretically and empirically exam-

ine the use of a threshold GARCH model to describe the regime shifts in the

volatility process of financial asset returns. The forecasting performance is

also investigated based on various measures. The third essay studies the effect

of time structure on the estimation performance of ICA models and provides

guidance in applying the ICA model to time series data.

Modeling the temporal dependencies in the volatility of financial time se-

ries has drawn the attention of many econometricians and financial analysts.

For decades, researchers have implemented ARCH and GARCH models with

a regime switching framework to capture non-linearity in the volatility pro-

cess. Hidden Markov models, which assume that states of the world are un-

known, are widely used regime switching models. While estimation is not

difficult, these models often fail to generate accurate predictions due to the

unknown state in the future. In the first essay, aiming to incorporate the non-

linearity and the additional information provided by trading intensity vari-

ables in regime shifts, we model volatility dynamics as a threshold model with

1



2

an observable trigger, while volatility follows a GARCH process within each

regime. This model can be viewed as a special case of the random coefficient

GARCH model. We establish theoretical conditions, which ensure that the

return process in the threshold model is strictly stationary, as well as con-

ditions for the existence of various moments. A simulation study is further

conducted to examine the finite sample properties of the maximum likelihood

estimator. Simulation results reveal that the maximum likelihood estimator

performs well for modest sample sizes when the stationarity conditions hold

and the variance of the return series exists. The endogeneity between volatil-

ity and threshold variables has no effect on the estimation performance, may

even improve it.

The second essay empirically investigates the performance of the thresh-

old GARCH model in identifying regime shifts in the volatility process of asset

returns. Since volatility forecast is a key component in pricing derivative se-

curities and risk management, the success of a volatility model is determined

crucially by its out-of-sample predicting power. We focus on the forecasting

performance of the threshold model. Using VIX as the threshold variable we

apply the threshold GARCH model to 20 stocks from MMI and evaluate the

performance of 250 out-of-sample daily volatility forecasts. The results reveal

an improvement in forecasting accuracy especially when the financial crisis in

2008 is included in the out-of-sample period. The forecasting performance is

improved further when we update the true volatility proxy from the squared

return to a realized volatility using high frequency data of IBM and GE. We

employ stocks from NASDAQ to study the effect of an endogenous threshold

variable on the forecasting performance. Two trading activity variables vol-

ume turnover and number of trades demonstrate their use in identifying the
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regime shifts in the period other than financial crises. The forecasting perfor-

mance of three currency exchange rates also support the use of the threshold

model in volatility forecasting.

Closely related to principal component analysis, independent component

analysis (ICA) is a statistical and computational method for revealing hidden

factors that underlie a set of random variables. The increasing demand of mul-

tivariate modeling in economics and finance as well as the strength of ICA anal-

ysis to extract statistically independent components from multivariate signals

have attracted economists and financial analyst’s attention to ICA. In standard

applications of the ICA model, the components are assumed to be uncorrelated

over time. In contrast to this random components assumption, the autocovari-

ances of independent components in time series are well-defined statistics and

can be used in estimating the ICA model. Therefore, in the last essay, we ex-

amine the effect of time structure on the estimation performance of ICA models

and provide guidance in applying the ICA model to time series data. We com-

pare the performance of the basic ICA model to the time series ICA model in

which the cross-autocovariance is used as a measure to achieve independence.

We conduct a simulation study to evaluate the time series ICA model under

different time structure assumptions about the underlying components that

generate financial time series. Moreover, the empirical study supports the use

of the time series ICA model.
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Chapter 2

Threshold GARCH Model:
Theory and Simulation

2.1 Introduction

In finance, volatility refers to the variation of financial asset returns over time.

It is used to quantify the risk associated with a financial instrument. In many

cases, volatility itself is a risk measure. Therefore volatility is a key concept in

financial economics, as noted by Campbell, Lo and MacKinlay (1997):

“...what distinguishes financial economics is the central role that un-

certainty plays in both financial theory and its empirical implemen-

tation...Indeed in the absence of uncertainty, the problems of finan-

cial economics reduce to exercises in basic microeconomics”.

The well recognized positive trade-off between risk and expected return

makes volatility modeling and forecasting among the most important pursuits

in empirical finance and risk management. Volatility modeling and forecasting

are also very important in making monetary policy.

5



6

The volatility of asset returns is defined as the standard deviation of the re-

turn series, or square root of variance. For convenience we usually refer model-

ing of volatility to modeling of conditional variances. Volatility of financial as-

set return series appears to be time varying and serially correlated. Therefore

modeling the temporal dependencies in the conditional variance of financial

time series has been the interest of many economists and financial analysts.

The most popular approaches are the ARCH model introduced by Engle (1982)

and its extension GARCH model by Bollerslev (1986). ARCH and GARCH mod-

els can well explain the persistence in the conditional variance process, how-

ever they fail to account for the stylized fact that the conditional variance is

often clustering with high volatility in one period and with low volatility in

another period.

To capture the striking feature that asset prices move more rapidly dur-

ing some periods than others, a regime switching framework has been brought

into ARCH and GARCH models. A widely used class of regime switching mod-

els is the hidden Markov model, which assumes that states of the world are

unknown. While estimation is not difficult, these models often fail to generate

accurate predictions due to the unknown state in the future. In this chapter

we employ a different type of regime switching models – the threshold model –

to describe the conditional variance process. In this threshold model, the state

of the world is determined by an observable threshold variable and therefore

known, while conditional variance follows a GARCH process within each state.

This model can be viewed as a special case of the random coefficient GARCH

model. First, we examine the theoretical properties of the threshold model with

an exogenous threshold variable. We establish theoretical conditions, which

ensure that the return process in the threshold model is strictly stationary, as

well as conditions for the existence of various moments. A simulation study is
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then conducted to examine the finite sample properties of the maximum like-

lihood estimator. The simulation results reveal that the accuracy of maximum

likelihood estimation increases as sample size increases1 when the stationarity

conditions hold. We also explore the properties of the threshold GARCH model

when the threshold variable is endogenous through simulation studies.

The outline of the rest of this chapter is as follows. In Section 2.2, we

briefly review the literature on development of time varying volatility models

and volatility volume relationships. In Section 2.3, we introduce the setup of

the threshold GARCH model and derive the theoretical conditions for the exis-

tence of various moments in the return series. Section 2.4 runs various Monte

Carlo experiments to examine the finite sample properties of the maximum

likelihood estimator as well as the forecasting performance of the threshold

GARCH model. A brief conclusion is contained in Section 2.5.

2.2 Literature Review

2.2.1 Regime Shifts in Conditional Variance

In most widely used GARCH models the conditional variance is defined as a

linear function of lagged conditional variances and squared past returns. For-

mally, let rt be a sequence of returns, εt be a series of innovations that are

usually assumed to be independent identically distributed (i.i.d.) zero-mean

random variable, σ2
t be the variance of rt given information at time t, the

GARCH(p, q) model for returns rt is defined as follows:
1We have estimated return data according to sample sizes ranging from 500, 1000, to 2000.



8

rt = σtεt

σ2
t = α0 +

p∑
i=1

βiσ
2
t−i +

q∑
j=1

αjr
2
t−j

where p, q = 0, 1... are integers, i = 1, ...p, j = 1, ...q, εt ∼ i.i.d.N(0, 1). The

parameters must satisfy α0 > 0, αj ≥ 0, βi ≥ 0, and
q∑
j=1

αj +
p∑
i=1

βi < 1 to ensure

that the conditional variance is positive and that the asset return series {rt} is

covariance stationary. Obviously in this process, the variance is a deterministic

function of past variance and squared returns.

Though these models have been proved to be adequate for explaining the

dependence structure in conditional variances, they have several important

limitations, one of which is that they fail to capture the stylized fact that con-

ditional variance tends to be higher after a decrease in return than after an

equal increase. In order to account for this asymmetry many alternative mod-

els have been proposed. The exponential GARCH (EGARCH) introduced by

Nelson (1991) specifies the conditional variance in logarithmic form2:

lnσ2
t = α0 +

p∑
i=1

βilnσ
2
t−i +

q∑
k=1

αk[θZt−k + γ(|Zt−k| − (
2

π
)

1
2 )]

Zt = εt/σt

The threshold GARCH (TGARCH) model proposed by Zakoian (1994) and

GJR GARCH model studied by Glosten, Jagannathan, and Runkle (1993) de-

fine the conditional variance as a linear piecewise function. In TGARCH(1,1),

σ2
t = ω + αr2

t−1 + δDtr
2
t−1 + βσ2

t−1

2The model takes the asymmetry into account while keeping the linear function form of
conditional variance.
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Dt =

1 rt−1 < 0

0 rt−1 ≥ 0

More details of such alternative models can be found in the survey of GARCH

models by Bollerslev, Chou, and Kroner (1992). The above alternative models

are able to characterize some stylized facts better than the GARCH model.

However there is no evidence that any alternative model consistently outper-

forms the GARCH model, for example Hansen and Lunde (2005) claim that

nothing beats a GARCH (1,1) in the analysis of the exchange rate data.

The TGARCH and GJR-GARCH models also relax the linear restriction on

the conditional variance dynamics. Questioning the common finding of a high

degree of persistence to the conditional variance in GARCH model, Lamoureux

and Lastrapes (1990) suggest that such high persistence may be spurious if

there are regime shifts in the volatility process. From then both ARCH and

GARCH models have been implemented with regime switching (RS) frame-

work. The early RS applications, such as Hamilton and Susmel (1994), only

allow a Markov-switching ARCH model to describe the conditional variances.

Gray (1996) and Klaassen (2002), on the other hand, develop a generalized

Markov-switching model, in which a GARCH process in conditional variance is

permitted in each regime.

In comparison to the popular Markov-switching models, threshold models

have clear conceptual advantages while receiving less attention. The Markov-

switching models often fail to generate accurate predictions due to the un-

known state in the future. While in the threshold model, the state is gov-

erned by an observable threshold variable, therefore is predictable. Knight

and Satchell (2011) derive theoretical conditions for the existence of stationary



10

distributions for the threshold models. Based on their work it is now conve-

nient to apply the threshold model to financial time series. To account for the

possible structural changes in the conditional variances, we use a threshold

model to describe regime switches in the conditional variance process. We sim-

ply assume 2 regimes for the conditional variance, which follows a GARCH

process within each regime. Different from Markov-switching models, regimes

are predictable because their shifts are triggered by an observable variable. We

just need to estimate the threshold value which in turn determines the change

of the state. The model is more complex since the parameters controlling the

conditional variances are changing over time, however it is still flexible in the

sense that single regime is a possible outcome in the estimation procedure 3.

2.2.2 Exogenous and Endogenous Threshold Variables

In addition to incorporating the nonlinearity in the threshold GARCH model,

the threshold or trigger variable takes into account the effect of correlation

between conditional variance and other observable variables that represent

trading activities. The use of the threshold model is particularly motivated by

the volatility-volume relationship.

At the time of advancing the volatility modeling, an extensive study on

stock return volatility-volume relation has been developed. Here the term vol-

ume includes any function of raw trading volume. As mentioned in Poon and

Granger (2003) the volatility-volume research may lead to a new and better

way for modeling the return distribution. The early works on the relation-

ship between stock returns and trading volume summarized in Karpoff (1987)

show that volume is positively related to the absolute value of the price change.
3If the estimated threshold value is the minimum or maximum of the trigger.
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Later works further identify the positive contemporaneous correlation between

return volatility and volume (Gallant, Rossi, and Tauchen (1992), and Lam-

oureux and Lastrapes (1990)).

The empirical works establish various relationships between stock returns

and trading volume, yet there is no consensus on how to model the under-

lying generating process theoretically. The favored theoretical explanation

of positive price-volume correlation is the mixture of distribution hypothesis

(MDH), which states that the stock returns and trading volume are driven by

the same underlying latent information variable (Clark (1973), Epps and Epps

(1976), Tauchen and Pitts (1983), Andersen (1996), and Bollerslev and Jubinski

(1999)). One encouraging attempt is Andersen’s (1996) MDH model in which

the joint dynamics of returns and volume is generalized and estimated with a

result of significant reduction in the volatility persistence.

More interestingly, recent findings suggest that the size of the trading vol-

ume, more specifically the above average volume has significant effect on con-

ditional variance (Wagner and Marsh 2004). Intuitively, the price changes in a

stock market can be regarded as a response to arrivals of information, while the

volume of shares traded reflects the arrival rate of information. As mentioned

in many studies stock prices experience volatile periods with high intensity of

information arrivals and tranquil periods accompanied by moderate trading

activities. If we assume that the volatility follows different processes in dif-

ferent regimes, obviously volume provides information about which regime the

volatility is in.

The established volatility-volume relation motivates the use of volume as

the trigger variable in our threshold GARCH model. Since volume and volatil-

ity are highly correlated, volume must be treated as an endogenous threshold
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variable. Nevertheless, other variables that reflect trading activities can also

be accommodated. In this chapter we first choose the Chicago Board Options

Exchange (CBOE) Volatility Index (VIX) as an exogenous threshold variable

since it is a measure of market expectations of near-term volatility and there-

fore has almost no correlation with current volatility but provides information

on the state of the current volatility. The VIX is calculated and disseminated

in real-time by CBOE since 1993. It is a weighted blend of prices for a range of

options on the S&P 500 index. The formula uses a kernel-smoothed estimator

that takes as inputs the current market prices for all near-term and next-term

out-of-the-money calls and puts with at least 8 days left to expiration. The goal

is to estimate the implied volatility of the S&P 500 index over the next 30 days.

Even though the theoretical conditions for an endogenous threshold vari-

able model cannot be derived, we simulate data according to endogenous thresh-

old variables and examine the performance of the maximum likelihood estima-

tors (MLE) based on different endogeneity levels between the threshold vari-

able and volatility. The simulation results reveal that the increase of the endo-

geneity coefficient does not affect the performance of MLE.

2.3 Threshold GARCH Model

The setup of the threshold GARCH model is very similar to that of a threshold

AR (TAR) model. Knight and Satchell (2011) derive the stationary conditions

for TAR models, we follow their approach in deriving the stationary conditions

for the return series accordingly.
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2.3.1 Introduction

The threshold GARCH model we study in this chapter is defined as follows:

rt =σtεt

σ2
t =ωst + αstr

2
t−1 + βstσ

2
t−1

where rt is the series of demeaned returns and σ2
t is the conditional variance

of returns given time t information. We assume that the sequence of

innovations εt follows an independent and identical distribution with mean 0

and variance 1: εt ∼ iidD(0, 1). The parameters {ωSt , αSt , βSt} in the

conditional variance equation depend on a threshold variable yt:

σ2
t = ω0 + α0r

2
t−1 + β0σ

2
t−1 if St = I(yt−1 ≤ y∗) = 0

σ2
t = ω1 + α1r

2
t−1 + β1σ

2
t−1 if St = I(yt−1 > y∗) = 1

where the state or regime of the world St is determined by the threshold

variable yt−1 which can be treated as exogenous or endogenous and the

threshold value y∗ determines the probability p(St = 1) = p(yt−1 > y∗) = π. To

simplify the theoretical derivation, we assume the threshold variable is

independent of σ2
t .

As in the standard GARCH(1,1) model we impose the non-negative con-

straints on all parameters to ensure the conditional variance to be non-negative.

However, the conventional stationary conditions for GARCH model may not ap-

ply here. Since the conditional variance can fall into 2 different regimes, it is

possible that conditional variance is not stationary in one regime but station-

ary in the other.
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For the threshold variable y, we assume that it is a stationary process. This

assumption is not critical. We just want to ensure that given a threshold value,

if we leave one regime, it is possible that we will return to that regime in the

future. If the threshold variable is not stationary, then it is possible that after

a point in time, we will only observe one state of the world. This is not a case

of interest in this study.

The conditional variance dynamics in the threshold GARCH model we de-

fine above is similar to a threshold AR (TAR) model. Knight and Satchell (2011)

derive the stationarity conditions for TAR model following the work of Quinn

(1982). We follow Knight and Satchell (2011) in deriving the stationarity condi-

tions for the conditional variance and the return series accordingly. Proposition

1 gives conditions for the existence of stationary solution of return process as

well as the existence of the mean in the threshold GARCH model. We also ex-

amine the conditions for the existence of higher order moments. Proposition

2 provides conditions for the return process to have a stationary variance and

Proposition 3 presents conditions for the existence of the fourth moment. Since

the return processes experience low autocorrelation but squared returns are

highly correlated, we are also interested in examining the theoretical autocor-

relation structure of the squared return. Proposition 4 expresses the formulas

for the squared return autocovariance and autocorrelation functions.

2.3.2 Conditions for Stationary Return Process

Mean and Variance Stationary Conditions

Given the assumptions that εt is iid distributed variable with D(0, 1) and is

independent of σt, it’s easy to see that the return series is mean stationary
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with E(rt) = 0. To simplify the expression of higher order moments we further

assume that εt ∼ iid N(0, 1). Thus the unconditional variance and the fourth

moment of return are given by E(r2
t ) = E(σ2

t ) and E(r4
t ) = 3E(σ4

t ). Obviously

to examine the stationarity of the return series we need to check the first and

second moments of the conditional variance σ2
t . The following propositions give

the conditions under which the stationary distribution of return, the stationary

variance, the finite fourth moment of return process, and stationary covariance

exist. Proofs of the propositions are provided in Appendix 1-5.

PROPOSITION 1. The return series is strict stationary if ω0 <∞, ω1 <∞,

and:

(1− π)E[ln(ε2
t−mα0 + β0)] + πE[ln(ε2

t−mα1 + β1)] < 0

�

Remark. If we assume that εt ∼ iidN(0, 1), then ε2
t v χ2

(1). We obtain the

following analytical expression for the above strict stationarity condition:

(1− π)E(ln(ε2
t−mα0 + β0)) + πE(ln(ε2

t−mα1 + β1)) < 0⇐⇒

(1− π)F (α0, β0) + πF (α1, β1) < 0

where F (a, b) =

ln(b) +
b

2a
√
π
(−

2(γ + ln
2b

a
)
√
πa

b
− 2
√
π2F2([1, 1]; [

3

2
, 2];

b

2a
) +

2π
3
2

√
a2

b
erfi(

√
b

2a
)

√
b

).

γ is the Euler’s constant = 0.577215665.

2F2(a, b; c, d;x) =
∑∞

n=0

(a)n(b)n
(c)n(d)n

xn

n!
, (a)n = a(a+ 1)...(a+ n− 1)
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erfi(x) = −ierf(ix), erf(x) is the error function.

We can now examine the first order stationarity conditions for the condi-

tional variance process in our threshold GARCH model.

PROPOSITION 2. The return series will be variance stationary if ω0 <∞,

ω1 <∞, and:

[(α0 + β0)(1− π) + (α1 + β1)π] < 1

Then the stationary variance is given by:

V ar(rt) = E(σ2
t ) = σ2 =

ω0(1− π) + ω1π

1− [(α0 + β0)(1− π) + (α1 + β1)π]
.

�

Higher Order Moments and Covariance Stationary Conditions

Examining the second moment of σ2
t , we can obtain the fourth moment of re-

turns.

PROPOSITION 3. If and only if the following conditions hold:

ω0 <∞, ω1 <∞, [(α0 + β0)(1− π) + (α1 + β1)π] < 1 and

A = [(2α2
0 + (α0 + β0)

2)(1− π) + (2α2
1 + (α1 + β1)

2)π] < 1

The fourth moment of the stationary distribution exists for the return process

in our threshold model and is given by
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E(r4
t ) = 3E(σ4

t )

= 3c2
0

1 + a0 + b0

(1− A)(1− (a0 + b0))

+3c1π(1− π)
c1(1− (a0 + b0)) + 2c0(a1 + b1)(1− A)

(1− A)(1− (a0 + b0)

�

Using the results from the first and second moments of σ2
t , we can now

derive the formulas for the autocovariance and autocorrelation functions of

squared returns:

γ(k) = E(r2
t − σ2)(r2

t−k − σ2) and ρ(k) =
γ(k)

γ(0)
.

PROPOSITION 4. If the conditions in proposition 3 hold, and let γ(k) =

Cov(r2
t , r

2
t−k) and ρ(k) =

Cov(r2
t , r

2
t−k)

V ar(r2
t )

. Then, for all k ≥ 2,

γ(k) = (a0 + b0)γ(k − 1) and for all k≥ 1 ρ(k) = (a0 + b0)
k−1ρ(1)

where

ρ(1) =
c2

0[2a0 − 2a0b0A0 + A0(2a
2
1 + (a1 + b1)

2)π(1− π)]
c2

0(2 + A− 3A2
0) + 3c1π(1− π)[c1(1− A0) + 2c0(a1 + b1)(1− A)]

+
(3a0 + b0(1 + 2A0))π(1− π)[c2

1 + 2c0c1(a1 + b1)(1− A)]
c2

0(2 + A− 3A2
0) + 3c1π(1− π)[c1(1− A0) + 2c0(a1 + b1)(1− A)]

with
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A = (2α2
0 + (α0 + β0)

2)(1− π) + (2α2
1 + (α1 + β1)

2)π

A0 = a0 + b0 = (α0 + β0)(1− π) + (α1 + β1)π

�

2.3.3 Range of Parameters under Different Stationary Con-

ditions

We recall that π is the probability that the volatility process is in regime 2, α0,

β0 are parameters in regime 1 and α1, β1 are parameters in regime 2. From

the stationary conditions derived in the previous section, we note that since

the parameter π enters into the conditions, the sum of the parameter values

in each regime is no longer required to be less than one. For example to have

a strict stationary return process, we allow the sum of the parameters in both

regimes to be bigger than one. However, for GARCH type of models we usually

require the finite variance of the return process. To obtain a variance station-

ary process we just need the weighted sum of the sums of parameters in two

regimes to be less than one: [(α0 + β0)(1 − π) + (α1 + β1)π] < 1, therefore we

may have a sum of parameters in one regime to be bigger than one. To exam-

ine the relationship between π and the range of stationary areas, we graph the

stationary areas of parameters in one regime based on different π values for

the fixed parameter values in another regime.

We discuss the stationary areas of α1 and β1 when π varies from 0.1, 0.5, to

0.9 for four sets of parameter values of α0 and β0.4 According to the stationary
4We set {α0, β0} = {0.25, 0.75},{0.25, 0.5}, {0.25, 0.25}, {0.25, 0} respectively.
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conditions we derived in last section, the return series will have a variance

stationary distribution if (α0+β0)(1−π)+(α1+β1)π < 1, and the fourth moment

of return series exists if (2α2
0 + (α0 + β0)

2)(1 − π) + (2α2
1 + (α1 + β1)

2)π < 1. It’s

easy to verify that if π increases, the weight of (α1 +β1) increases, therefore the

range of (α1 + β1) will decrease for all cases where (α0 + β0) < 1. In Figure 2.1

we observe the boundaries of the strict stationary area, the variance stationary

area, and the fourth moment stationary area move towards the origin when π

increases from 0.1 to 0.9. However when (α0 +β0) = 1, there is no clear pattern

for the movement of the stationary areas of (α1 + β1) with different π values.

In Figure 2.15 the areas below the solid, dotted, and dashed lines satisfy the

three stationary restrictions for π varying from 0.1, 0.5, to 0.9 respectively. For

each π value, the areas are shrinking when we impose further restriction on

stationarity. For each π value, it was supposed to have three lines correspond-

ing to three stationarity conditions, however it excludes the strict stationary

condition for π = 0.1 since it has a x-axis intercept beyond 90. It is not very

surprising, since when π = 0.5, the strict stationary requirement for α1 is that

its value less than 3.43 when β1 = 0.1, if probability π is much smaller, the

value of the parameter that satisfies the strict stationary can be very large.

When (α0 + β0) = 1, there is no values of α1 and β1 that satisfy the fourth-

order stationarity condition when π = 0.1. Therefore in Figure 2.2, there are

only 2 solid lines representing strict stationary and variance stationary areas.

Since the sum of parameters in regime one is one, the restriction for variance

stationary distribution requires the sum of parameters in regime two to be less

than 1 regardless of the value of π, so the boundaries for the variance station-

ary distribution in the graph are identical for all different π values (represented
5In the legend of the graph, SS=strict stationary, 2S=variance stationary, 4S=4th order

stationary.
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by the solid blue line in Figure 2.2). When (α0 +β0) = 1,there is also no pattern

for the stationary areas when π changes, the strict stationary area for π = 0.5

is larger than that for π = 0.9, whereas the fourth-order stationary area for

π = 0.9 is larger than that for π = 0.5. Nevertheless for all three cases in which

(α0 + β0) < 1, we observe a clear pattern that when π increases, the stationary

areas shrink.

When {α0, β0} = {0.25, 0.25}, {0.25, 0}, the graphs exhibit a similar pattern

as the graph in Figure 2.1 for {α0, β0} = {0.25, 0.5}.

2.4 Monte Carlo Simulation

Since the threshold GARCH model is set up as a non-linear model, the volatil-

ity process is non-differentiable with respect to the parameters at the point

where regime switches from one to another. The derivation of the asymptotic

distribution of the maximum likelihood estimator is beyond the scope of this

thesis. Instead, we conduct a Monte Carlo simulation study to examine the

finite sample properties of the MLE according to different stationarity condi-

tions.

The simulation study is also implemented to investigate the forecasting per-

formance of the threshold GARCH model because the forecasting performance

is a key element in selecting a volatility model.
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2.4.1 The Simulated Paths of Return Series

In the previous section we derive the stationarity conditions for the return se-

ries described by our threshold GARCH model. Now we proceed with a simula-

tion study to examine the estimation performance of this model under different

stationary conditions.

For the simulation study, we choose 3 sets of parameters for π = 0.1, 0.5, 0.9

respectively. The value of ω0 and ω1 are set to be 0.02 and 0.01 for all cases.

The values of α0 and β0 are fixed at 0.25 and 0.5, then β1 is selected from the

different regions in the stationary areas given α1 = 0.25 as shown in Figure

2.1. We choose the parameters in such a way that the regime 1 is always sta-

tionary, based on different probabilities with which conditional variance shifts

to regime 2, we could have a non-stationary regime 2 but the whole process is

still stationary.

Case 1, π = 0.1:
1.1 Stationary with 4th moment {α1, β1} = {0.25, 1.5}

1.2 V ariance Stationary {α1, β1} = {0.25, 2.5}

1.3 Strict Stationary {α1, β1} = {0.25, 3}

Case 2, π = 0.5:
2.1 Stationary with 4th moment {α1, β1} = {0.25, 0.75}

2.2 V ariance Stationary {α1, β1} = {0.25, 0.9}

2.3 Strict Stationary {α1, β1} = {0.25, 1}

Case 3, π = 0.9:
3.1 Stationary with 4th moment {α1, β1} = {0.25, 0.7}

3.2 V ariance Stationary {α1, β1} = {0.25, 0.75}

3.3 Strict Stationary {α1, β1} = {0.25, 0.9}
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Using Case 1.1 as an example, the data generating process is described as

follows:

rt = σtεt

σ2
t =

0.02 + 0.25r2
t−1 + 0.5σ2

t−1 if yt−1 ≤ y∗

0.01 + 0.25r2
t−1 + 1.5σ2

t−1 if yt−1 > y∗

εt, yt is drawn independently from standard normal distribution, y∗ is chosen

in a way such that p(St = 1) = p(yt > y∗) = 0.1, and σ0 is set to 0. We generate

5000 observations using the specified parameters, and to eliminate the

possible initial value effect, we drop first 3000 observations.

The paths of return series depend crucially on the parameters in volatility

process. Figure 2.3 shows the stationary paths of return series given that pa-

rameters are specified as in Case 1.1.6 In this case we have a stationary return

process even when the sum of parameters is substantially bigger than 1 in one

regime, but in that regime we have only 10% of the observations. To better

describe the volatility process in reality, Figure 2.4 shows the plot of return

series given that parameters are specified as in Case 2.17 in which case the

return series is variance stationary and has equal chance to stay in high or low

volatility regime.

2.4.2 The Performance of MLE

In this section we examine the performance of the maximum likelihood esti-

mator. Given that the return series is conditionally normally distributed, the
6The parameters used in the simulated path are: π = 0.1 {ω0, α0, β0} =

{0.02, 0.25, 0.5} {ω1, α1, β1} = {0.01, 0.25, 1.5}
7The parameters used in the simulated path are: π = 0.5 {ω0, α0, β0} =

{0.02, 0.25, 0.5} {ω1, α1, β1} = {0.01, 0.25, 0.75}
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log likelihood function for a sample of T observations is:

lnLT (θ) = −1/2
T∑
t=1

lnσ2
t − 1/2

T∑
t=1

r2
t

σ2
t

where θ is a vector of parameters in the conditional variance process,

θ = [ω0, ω1, α0, α1, β0, β1].

We know that to estimate θ, we need to estimate the threshold value y∗ so

that the above likelihood function can be formulated. Here we estimate y∗ by

grid search, the threshold variable yt is sorted and for each possible threshold

value y∗ we calculate the corresponding likelihood and the estimated threshold

value is the one which maximizes the likelihood:

θ̂(y∗) = argmax
θ∈Θ

T−1lnLT (θ)

We conduct a simulation study to analyze the finite sample properties of the

maximum likelihood estimator. The maximization problem always converges

to a solution in our simulation study.

First, we present the simulation results for 3 sets of parameters in Case 1

when π = 0.1, considering the sample sizes for 500, 1000, and 2000. The MSE

is defined as mean squared errors of estimators from true parameter values

MSE =
1

T

∑
(θ̂ − θ)2 for θ = [ω0, ω1, α0, α1, β0, β1]. The results are based on 1000

replications. For simplicity we estimate the threshold value by searching over

19 grid points ranging from the 5th percentile to the 95th percentile point of

threshold variable in jumps of 5%.

Table 2.1 presents the simulation results for 3 sets of parameters in Case 1.

When π = 0.1, the probability that the conditional variance changes to regime

2 is small, we just need the sum of parameters to be less than 3.25 to fulfill
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the requirement for a strict stationary distribution in Case 1.3. Moving down

from the upper row section, the sample size increases from 500, 1000, to 2000.

While the columns represent different stationary requirements, from left to

right, the return series are strict stationary with finite fourth moment (1.1),

variance stationary (1.2), and strict stationary (1.3) respectively. The MLE

appears to be consistent with the mean value of the estimates approaching

the true parameter value when the sample size increases from 500 to 2000.

The MSE decrease when sample size increases. We notice that the MSE for

α1 and β1 are substantially larger than that of α0 and β0, this is caused by the

nature of non-stationarity in the corresponding regime and small probability

to enter that regime. When π = 0.1, only 10% of the observations belong to

the regime associated with α1 and β1, it is obvious that we won’t be able to

obtain a good estimate with only 50 to 200 observations. We also note that the

non-existence of moments results in more biased estimators and fatter tails

in the distribution of estimators as we move across the Table 2.1 from left to

right. The left column has finite first, second, and fourth moments, the middle

column has finite first and second moments, while the right column has only

finite first moment. Without the existence of finite variance, the MSE can be

very large, but here the estimates are reasonably good since only small portion

of data is generated by the non-stationary regime.

Figure 2.5-2.7 provide the estimated density of MLE summarized in the

above table. The estimated density is computed using kernel smoothing method.

The MLE is well behaved even when the variance stationarity condition is vi-

olated. As sample size increases from 500 to 2000, the estimates become more

accurate with smaller variances and more concentrated around true parame-

ters. We present the density estimates for sample size of 500, 1000, and 2000

in dotted line, dashed line, and dotted and dashed line respectively, while the
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true parameter values are given by the solid vertical line.

Similar results are obtained for other 2 cases and reported in Table 2.2-2.3.

Table 2.2 presents the simulation results for 3 sets of parameters in Case 2.

The MLE still has a good limiting behavior as sample size increases. We also

observe that the MSE of estimated parameters in each regime are not sub-

stantially different as reported in Table 2.1. It may be due to the fact that

probability that conditional variance stays in each regime is equal, and we

also expect higher MSE for estimated parameters in non-variance stationary

regime. Table 2.3 presents simulation results in Case 3. When the probability

that conditional variance process in regime 2 equals 0.9, even in the variance

stationary case we will no longer have accurate estimates for parameter β0, so

we just report the results for Case 3.1 and 3.2 and skip the strict stationary

Case 3.3. With 90% of the observations in a regime without the finite vari-

ance we don’t expect any reliable estimation result. Since regime 2 is more

volatile regime, here the high probability that the conditional variance is in

such regime may be the reason that we fail to obtain accurate estimators. We

also notice that the estimated parameters in regime 1 turn out to have larger

MSE. It confirms our assertion that the small probability in one regime affects

the estimation performance in that regime.

Figure 2.8-2.10 provide the estimated density of MLE summarized in Table

2.2. While, Figure 2.11-2.12 provide the estimated density of MLE summarized

in Table 2.3.

The threshold value is estimated by the grid search, the limiting behavior

is somehow different. We plot the estimated density for y∗ in Figure 2.13 and

2.14. In Figure 2.13, we plot the estimated density for the estimated threshold

value in the case that the return series has a finite fourth moment when π
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changing from 0.1 to 0.9. While in Figure 2.14, we plot the estimated density

for y∗ in the case that the return series has only finite variance with different

probabilities. The estimation for y∗ is improved when sample size increases.

However when the probability in the volatile regime increases, the estimated

thresholds are less accurate and with fatter tails.

2.4.3 Simulation Study for Endogenous Threshold Vari-

able

The well established volume-volatility relationship inspires the use of volume

as the threshold variable in our threshold GARCH model, however the high

correlation between volume and volatility makes this threshold variable en-

dogenous. The endogeneity of the threshold variable renders the theoretical

derivation of the stationarity conditions impossible. Therefore we design a

simulation study to examine the effect of endogeneity of the threshold variable

on the properties of the return series and the maximum likelihood estimator.

We simply assume that the threshold variable is a linear function of squared

returns with some random error.

Under the threshold GARCH model, the demeaned return series and the

conditional variance are given by:

rt = σtεtσ2
t = ω0 + α0r

2
t−1 + β0σ

2
t−1 if yt−1 ≤ y∗

σ2
t = ω1 + α1r

2
t−1 + β1σ

2
t−1 if yt−1 > y∗

yt = ar2
t + vt
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where εt follows the independent and identical normal distribution with mean

0 and variance 1: εt ∼ iidN(0, 1), and vt is an i.i.d. normal variable with mean

0 and variance σ2
v . εt and vt are independent.

In this simple data generating process the correlation between the squared

return r2
t and the threshold variable yt is governed by the coefficient a when σv

is small.

yt = ar2
t + vt

E(yt) = aE(r2
t )

V ar(yt) = a2V ar(r2
t ) + σ2

v

Cov(r2
t , yt) = E(r2

t yt)− E(r2
t )E(yt)

= E(ar4
t )− E(r2

t )aE(r
2
t )

= aV ar(r2
t )

Corr(r2
t , yt) =

Cov(r2
t , yt)√

V ar(r2
t )V ar(yt)

=
aV ar(r2

t )√
V ar(r2

t )(a
2V ar(r2

t ) + σ2
v)

= (
a2V ar(r2

t )
2

a2V ar(r2
t )

2 + σ2
vV ar(r

2
t )
)1/2

It is obvious that as a → 1 and σv → 0, Corr(r2
t , yt) → 1, and as a → 0,

Corr(r2
t , yt)→ 0.

We choose the value of a = (0.1, 0.2, 0.3, 0.4) and σv = 0.1, the parameter

values in the conditional variance process are set as:

{ω0, ω1, α0, α1, β0, β1} = {0.01, 0.02, 0.1, 0.2, 0.55, 0.75}.
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Corresponding to these parameter values, the average correlation coeffi-

cients between the squared return and the threshold variable are:

{0.09, 0.22, 0.36, 0.51}

for the simulated data sets. We generate 1000 bivariate series each with 4000

observations, the first 2000 observations are dropped to eliminate the initial

value problem.

We use MSE to evaluate the performance of estimators. The MSE is de-

fined as mean squared errors of estimators from true parameter values MSE =
1

T

∑
(θ̂ − θ)2 for θ = [ω0, ω1, α0, α1, β0, β1].

The results are based on 1000 replications. For simplicity we estimate the

threshold value by searching over 19 grid points range from 5th percentile to

95th percentile points of threshold variable.

Table 2.4 presents the results of estimates when correlation coefficient a

ranging from 0.1 to 0.4.

In Table 2.4, we see that the performance of the MLE is improved when

sample size increases. The performance of most estimated parameters is also

improved when the correlation between the squared returns and the threshold

variable increases. When sample size is 1000, the MSE of MLE decreases when

a changes from 0.1 to 0.4, except for one parameter α0. Nevertheless, as the

sample size is 2000, the changes in MSE of α0 become smaller when correlation

coefficient a increases.

The results seem inconsistent at the first glance, usually we fail to obtain

a consistent estimator when dealing with endogenous variables in solving eco-

nomic problems. However here the threshold variable is not an explanatory
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variable in the return or the volatility dynamics, it is an information variable

and the higher the endogeneity the more information provided by the threshold

variable, therefore the better the performance of the estimator.

2.4.4 Simulation Study for Forecasting Performance

In the previous sections we show that the parameters from the threshold GARCH

model can be well estimated. Now we examine the forecasting performance of

the threshold model since the predicting power is critical in determining the

success of a volatility model. First, assuming that the data is generated by a

threshold model we estimate both the threshold model and simple GARCH(1,1)

model, then construct the forecasts based on estimated parameters from two

models, the results are compared according to 5 common measures. Then, we

conduct a model misspecification test. Assuming that data is generated by

GARCH model, but we use estimated parameters from threshold model to fore-

cast volatility.

Forecasting Performance of Threshold Model with Threshold DGP

First, we assume that the return data is generated by the threshold GARCH

model. In previous sections we show that different from GARCH model, thresh-

old model allows the sum of parameters to be greater than one in one regime

but keeps the whole process stationary. Therefore we use two sets of param-

eters to generate stationary return data, one with stationary parameters in

both regimes, another one with non-stationary parameters in one regime but

keeping the process stationary.

We generate 1000 return series given the stationary parameters as follows:



30

ri,t =σi,tεi,t

σ2
i,t = 0.02 + 0.15σ2

i,t−1ε
2
i,t−1 + 0.55σ2

i,t−1 if yt−1 ≤ y∗

σ2
i,t = 0.01 + 0.05σ2

i,t−1ε
2
i,t−1 + 0.90σ2

i,t−1 if yt−1 > y∗

where the innovations εi,t are independently and identically distributed

standard normal random variables, and we use VIX data for the threshold

variable yt with y∗ = mean(yt) = 19.6696 for all return series from i = 1...1000.

We generate 5000 observations for each return series and drop first 2000

observations to eliminate the initial value effect.

In the sample of 3000 observations, the first 2750 observations are used

to estimate the threshold GARCH model, then the estimated parameters and

threshold value are used to construct the one-day ahead forecast for the re-

maining 250 days. In the simulation study, we use the following 5 measures to

compare the forecasting performance for ith replication of return series:

MEi =
1

T

∑
(σ2

i,t − σ̂2
i,t)

MPEi =
1

T

∑
(σ2

i,t − σ̂2
i,t)/σ̂

2
i,t

RMSEi =

√
1

T

∑
(σ2

i,t − σ̂2
i,t)

2

HMSEi =
1

T

∑
(σ2

i,t/σ̂
2
i,t − 1)2

and R2
i obtained from regressing the actual conditional variance σ2

i on the

forecasts σ̂2
i :

σ2
i = a+ bσ̂2

i + ηi
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For each measure we compute the average over 1000 replications and com-

pare with the same measure obtained by the standard GARCH(1,1) model es-

timation. The results are presented in Table 2.5.

The results show that if the data are generated by the threshold GARCH

model, then the forecasting performance of the threshold GARCH model is

much better than that of the standard GARCH model. Figure 2.15 gives an

example of the comparison of the estimated volatility by threshold GARCH

model and GARCH model.

The above estimated results of threshold GARCH model is based on a grid

search of threshold variable over 19 points ranging from the 5th percentile to

the 95th percentile of the threshold variable in jumps of 5%.

In order to obtain an efficient estimator of the threshold value, we should

search over all values in the sample of the threshold variable. Since each grid

search involves a minimization problem, it is very computationally costly to

search over the entire sample of the threshold variable. Due to the compu-

tational burden, we only search the very limited points in the range of the

threshold variable. It is expected that as finer grid intervals are used the per-

formance of the estimator will improve. We also examine this effect of number

of grid points on the estimation performance through a simulation study. Table

2.6 presents the results of estimated parameters over 3 different jump sizes in

the grid points.

It is clear from Table 2.6 that as the finer grid intervals are used, the esti-

mated parameters and threshold value are more closer to that of true param-

eter values. Nevertheless, the estimation results using a coarser grid interval

are not much worse than using a finer grid interval, but the estimation pro-

cess using the finest grid interval requires much more computing time than
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that using a coarser interval. Therefore, in the empirical application we search

over 37 points ranging from the 5th percentile to the 95th percentile point of

threshold variable in jumps of 2.5%.

Since the threshold model allows the parameters to be non-stationary in

one regime while keeping the whole process stationary, we also generate return

data according to the following model:

ri,t =σi,tεi,t

σ2
i,t = 0.02 + 0.15σ2

i,t−1ε
2
i,t−1 + 0.55σ2

i,t−1 if yt−1 ≤ y∗

σ2
i,t = 0.01 + 0.25σ2

i,t−1ε
2
i,t−1 + 0.80σ2

i,t−1 if yt−1 > y∗

where the innovations εi,t are independently and identically distributed

standard normal random variables, and we use VIX data for the threshold

variable yt with y∗ = 31 for all return series from i = 1...1000.

Similarly, we generate 5000 observations for each return series and drop

first 2000 observations to eliminate the initial value effect. In the sample of

3000 observations, the first 2750 observations are used to estimate the thresh-

old GARCH model, then the estimated parameters and threshold value are

used to construct the one-day ahead forecast for the remaining 250 days. Table

2.7 gives the results of forecasting comparison based on 5 measures.

The results show that even if the parameters are non-stationary in one

regime, both models can generate reasonable forecasts based on highR2. Nonethe-

less, the threshold model still performs significantly better than GARCH model.

The return data has only 10% generated by the non-stationary process, which

possibly explains why R2 increases in this case for GARCH model.
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Forecasting Performance of Threshold Model with GARCH DGP

We showed that if the data generating process follows the threshold GARCH

model, the forecasting performance is quite good using the threshold model.

The average R2 from regressing the true volatility on the estimated volatility

over 1000 replication is more than 90%. Now we perform a model misspecifica-

tion test on the forecasting power of the threshold GARCH model. If the data

generating process follows a standard GARCH process, theoretically we will

estimate the model well therefore also forecast well. To examine this property,

we simulate data according to a GARCH process:

ri,t =σi,tεi,t

σ2
i,t = 0.02 + 0.05σ2

i,t−1ε
2
i,t−1 + 0.85σ2

i,t−1

where the innovations εi,t are independently and identically distributed

standard normal random variables, and when estimate the threshold model

we use an independent standard normal variable as the threshold variable yt

for all return series from i = 1...1000.

We generate 5000 observations for each return series and drop first 2000

observations to eliminate the initial value effect. In the remaining sample of

3000 observations, we use 2750 observations for in-sample estimation and the

rest 250 for out-sample forecasting. Table 2.8 shows the average of 5 forecast-

ing measures over 1000 replications.

Clearly if the data are generated by a standard GARCH model, the thresh-

old GARCH model is able to provide accurate forecasts very close to the perfor-

mance of GARCH model.
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Figure 2.16 provides an example of the comparison of the estimated volatil-

ity by threshold GARCH model and GARCH model given the GARCH data

generating process.

2.5 Conclusion

In this chapter, we propose a threshold GARCH model to describe the regime-

switching in the volatility process of financial asset returns. The model as-

sumes that there are two regimes in the volatility dynamics, within each regime

the volatility follows a GARCH process. To validate the use of a threshold

model in finance, we derive various stationarity conditions for the return pro-

cess under the threshold GARCH model. According to different stationarity

conditions, we implement simulation studies to examine the finite sample prop-

erties of the maximum likelihood estimator. The results show that the MLE

performs well when the stationarity conditions hold. We then conduct sim-

ulation experiments to examine the performance of estimators under the as-

sumption that the threshold variable is endogenous. It is suggested that as the

correlation between the return and the threshold variable increases we may

actually obtain more accurate estimators.

The ability to provide accurate volatility forecasts is a very important crite-

rion to test a volatility model. We further examine the forecasting performance

of the threshold GARCH model via simulation studies. The performance of

daily out-of-sample volatility forecasts is evaluated using 5 common measures.

The threshold GARCH model is able to provide good volatility forecasts regard-

less the data is generated by threshold model or not. In the next chapter, we

apply the threshold GARCH model to empirical data.
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2.6 Appendix

Appendix 1: Proof of Proposition 1

We rewrite the conditional variance equation as:

σ2
t =ω0(1−St−1)+ω1St−1+(α0(1−St−1)+α1St−1)r

2
t−1+(β0(1−St−1)+β1St−1)σ

2
t−1

= ω0 + (ω1 − ω0)St−1 + [(α0 + (α1 − α0)St−1)ε
2
t−1 + β0 + (β1 − β0)St−1]σ

2
t−1 (2.1)

Let

c0 = ω0(1− π) + ω1π c1 = ω1 − ω0

a0 = α0(1− π) + α1π a1 = α1 − α0

b0 = β0(1− π) + β1π b1 = β1 − β0

Bt = St − π

Then (2.1) can be rewritten as:

σ2
t = c0 + c1Bt−1 + [ε2

t−1(a0 + a1Bt−1) + b0 + b1Bt−1]σ
2
t−1 (2.2)

The transformation makes the random variables in the coefficient have

mean zero. Back substitution in (2.2) results in:

σ2
t = c0 + c1Bt−1 +

k−1∑
n=1

(c0 + c1Bt−1−n)
n∏

m=1

[ε2
t−m(a0 + a1Bt−m) + b0 + b1Bt−m]

+
k∏

m=1

[ε2
t−m(a0 + a1Bt−m) + b0 + b1Bt−m]σ

2
t−k
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Following Quinn (1982) and Knight and Satchell (2011) and defining Sn(t)

as:

Sn(t) =
n∏

m=1

[ε2
t−m(a0 + a1Bt−m) + b0 + b1Bt−m]

Then we have

ln(Sn(t)) =
n∑

m=1

ln[ε2
t−m(a0 + a1Bt−m) + b0 + b1Bt−m] (2.3)

and

1

n
ln(Sn(t))

a.s.−→ E(ln[ε2
t−m(a0 + a1Bt−m) + b0 + b1Bt−m])

by the strong law of large numbers.

It’s very clear that if

E(ln[ε2
t−m(a0 + a1Bt−m) + b0 + b1Bt−m]) < 0

by the independence assumption between ε and y that is if

(1− π)E(ln(ε2
t−mα0 + β0)) + πE(ln(ε2

t−mα1 + β1)) < 0,

then the terms Sn(t) are geometrically bounded as n increases and equation

(2.2) has the solution:

σ2
t = c0 + c1Bt−1 +

∞∑
n=1

(c0 + c1Bt−1−n)Sn(t) (2.4)



37

Appendix 2: Proof of Proposition 2

Taking expectation on both sides of equation (2.3) we have:

E(σ2
t ) = E(c0 + c1Bt−1) +

∞∑
n=1

E(c0 + c1Bt−1−n)E(Sn(t)) (2.5)

Given that εt and St are independent, we have:

E(Sn(t)) = E[
n∏

m=1

(ε2
t−m(a0 + a1Bt−m) + b0 + b1Bt−m)]

=
n∏

m=1

[E(ε2
t−m(a0 + a1Bt−m)) + E(b0 + b1Bt−m)]

= (a0 + b0)
n

Provided that a0+b0 < 1, that is (α0+β0)(1−π)+(α1+β1)π < 1, the equation

(2.4) becomes:

E(σ2
t ) = E(c0 + c1Bt−1) +

∞∑
n=1

E(c0 + c1Bt−1−n)E(Sn(t))

= c0 + c0

∞∑
n=1

(a0 + b0)
n

= c0

∞∑
n=0

(a0 + b0)
n

=
c0

1− (a0 + b0)

=
ω0(1− π) + ω1π

1− [(α0 + β0)(1− π) + (α1 + β1)π]
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Appendix 3: Proof of Proposition 3

To examine the stationarity conditions for higher order moments of return,

we check the second moment of σ2
t :

E(σ4
t ) = E[(c0 + c1Bt−1) +

∞∑
n=1

(c0 + c1Bt−1−n)Sn(t)]
2

= E(c0 + c1Bt−1)
2 + E[2(c0 + c1Bt−1)

∞∑
n=1

(c0 + c1Bt−1−n)Sn(t)]

+E[
∞∑
n=1

(c0 + c1Bt−1−n)Sn(t)]
2

= c2
0 + c2

1π(1− π) + 2c2
0

∞∑
n=1

E(Sn(t)) + 2c0c1

∞∑
n=1

E(Bt−1−nSn(t))

+2c0c1

∞∑
n=1

E(Bt−1Sn(t)) + 2c2
1E[Bt−1

∞∑
n=1

Bt−1−nSn(t)]

+E[
∞∑
n=1

(c0 + c1Bt−1−n)Sn(t)]
2

Note that

E(Bt−1Sn(t)) = E{Bt−1[ε
2
t−1(a0 + a1Bt−1) + b0 + b1Bt−1]Sn(t− 1)}

= (a1 + b1)π(1− π)(a0 + b0)
n−1

E[
∞∑
n=1

(c0 + c1Bt−1−n)Sn(t)]
2 = E[c0

∞∑
n=1

Sn(t) + c1

∞∑
n=1

Bt−1−nSn(t)]
2

= E[c2
0(
∞∑
n=1

Sn(t))
2] + E[2c0c1

∞∑
n=1

Sn(t)
∞∑
n=1

Bt−1−nSn(t)]

+E[c1

∞∑
n=1

Bt−1−nSn(t)]
2
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E[c2
0(
∞∑
n=1

Sn(t))
2] = c2

0[
∞∑
n=1

E(S2
n(t)) + 2

∞∑
n=1

∞∑
l=n+1

E(Sn(t)Sl(t)]

E[2c0c1

∞∑
n=1

Sn(t)
∞∑
n=1

Bt−1−nSn(t)] = 0

E[c1

∞∑
n=1

Bt−1−nSn(t)]
2 = c2

1[π(1− π)
∞∑
n=1

E(S2
n(t))

+2
∞∑
n=1

∞∑
l=n+1

E(Bt−1−nBt−1−lSn(t)Sl(t)]

where

E(S2
n(t)) = E

n∏
m=1

(ε2
t−m(a0 + a1Bt−m) + b0 + b1Bt−m)

2

= E
n∏

m=1

[ε4
t−m(a0 + a1Bt−m)

2 + 2ε2
t−m(a0 + a1Bt−m)(b0 + b1Bt−m)

+(b0 + b1Bt−m)
2]

= [3a2
0 + a2

1π(1− π) + 2a0b0 + 2a1b1π(1− π) + b2
0 + b2

1π(1− π)]n

= [2a2
0 + (a0 + b0)

2 + (2a2
1 + (a1 + b1)

2)π(1− π)]n

Let A = 2a2
0 + (a0 + b0)

2 + (2a2
1 + (a1 + b1)

2)π(1− π) , then

E(Sn(t)Sl(t) = E[
n∏

m=1

(ε2
t−m(a0 + a1Bt−m) + b0 + b1Bt−m)

2

∞∏
m=n+1

(ε2
t−m(a0 + a1Bt−m) + b0 + b1Bt−m)]

= An(a0 + b0)
l−n

Therefore:
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E[c2
0(
∞∑
n=1

Sn(t))
2] = c2

0(
∞∑
n=1

An + 2
∞∑
n=1

∞∑
l=n+1

An(a0 + b0)
l−n)

E[c1

∞∑
n=1

Bt−1−nSn(t)]
2 = c2

1π(1− π)
∞∑
n=1

An

Provided that

A = 2a2
0 + (a0 + b0)

2 + (2a2
1 + (a1 + b1)

2)π(1− π)

= (2α2
0 + (α0 + β0)

2)(1− π) + (2α2
1 + (α1 + β1)

2)π < 1

The above equations can be simplified as:

E[c2
0(
∞∑
n=1

Sn(t))
2] = c2

0(
∞∑
n=1

An(1 + 2
∞∑
j=1

(a0 + b0)
j))

= c2
0

A(1 + (a0 + b0))

(1− A)(1− (a0 + b0))

E[c1

∞∑
n=1

Bt−1−nSn(t)]
2 = c2

1π(1− π)
∞∑
n=1

An

= c2
1π(1− π)

A

(1− A)

Substitute back to the expression of E(σ4
t ), we have:
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E(σ4
t ) = c2

0 + c2
1π(1− π) + 2c2

0

∞∑
n=1

(a0 + b0)
n + c2

1π(1− π)
A

(1− A)

+2c0c1π(1− π)(a1 + b1)
∞∑
n=1

(a0 + b0)
n−1 + c2

0

A(1 + a0 + b0)

(1− A)(1− (a0 + b0))

= c2
0 + c2

1π(1− π) +
2c2

0(a0 + b0)

1− (a0 + b0)
+ 2c0c1π(1− π)

a1 + b1

1− (a0 + b0)

+c2
0

A(1 + a0 + b0)

(1− A)(1− (a0 + b0))
+ c2

1π(1− π)
A

(1− A)

= c2
0

1 + a0 + b0

(1− A)(1− (a0 + b0))

+c1π(1− π)
c1(1− (a0 + b0)) + 2c0(a1 + b1)(1− A)

(1− A)(1− (a0 + b0)
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Appendix 4: Proof of Proposition 4

We have σ2 = E(r2
t ) =

c0

1− (a0 + b0)
, subtract mean from equation (2.2), we

get:

σ2
t − σ2 = c1Bt−1 + [ε2

t−1(a0 + a1Bt−1) + b0 + b1Bt−1]σ
2
t−1 − σ2(a0 + b0)

= c1Bt−1 + (a0 + a1Bt−1)r
2
t−1 + (b0 + b1Bt−1)σ

2
t−1 − σ2(a0 + b0)

r2
t − σ2 = c1Bt−1 + (a0 + a1Bt−1)r

2
t−1 + (b0 + b1Bt−1)σ

2
t−1 − σ2(a0 + b0)− σ2

t + r2
t

= [a0 + b0 + (a1 + b1)Bt−1](r
2
t−1 − σ2) + (σ2(a1 + b1) + c1)Bt−1

−(b0 + b1Bt−1)(r
2
t−1 − σ2

t−1) + r2
t − σ2

t

= [a0 + b0 + (a1 + b1)Bt−1](r
2
t−1 − σ2) + (σ2(a1 + b1) + c1)Bt−1

+σ2
t (ε

2
t − 1)− (b0 + b1Bt−1)σ

2
t−1(ε

2
t−1 − 1)

The above expression of r2
t − σ2 is very similar to the equation (3.6) in Ding

and Granger (1996). Interestingly, the above expression represents r2
t − σ2 as

an random coefficient ARMA(1,1) process if we write the compound error as an

MA(1) process; letting σ2
t (ε

2
t − 1) = vt:

σ2
t (ε

2
t − 1)− (b0 + b1Bt−1)σ

2
t−1(ε

2
t−1 − 1) = vt − (b0 + b1Bt−1)vt−1

with E(vt) = 0 and E(vtvs) = 0 for all t 6= s . Therefore, without any formal

proof, the information already gives us some idea of the behaviors of the auto

covariances.

Multiply both sides by (r2
t−1 − σ2):
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(r2
t − σ2)(r2

t−1 − σ2) = [a0 + b0 + (a1 + b1)Bt−1](r
2
t−1 − σ2)2

+(σ2(a1 + b1) + c1)Bt−1(r
2
t−1 − σ2) + (r2

t − σ2
t )(r

2
t−1 − σ2)

−(b0 + b1Bt−1)(r
2
t−1 − σ2

t−1)(r
2
t−1 − σ2)

Taking expectation on both sides

E(r2
t − σ2)(r2

t−1 − σ2) = (a0 + b0)E(r
2
t−1 − σ2)2 − b0E(r

2
t−1 − σ2

t−1)(r
2
t−1 − σ2)

+E(r2
t − σ2

t )(r
2
t−1 − σ2)

γ(1) = (a0 + b0)γ(0)− 2b0E(σ
4
t−1)

where γ(1) = E(r2
t − σ2)(r2

t−1 − σ2) is the covariance between r2
t and r2

t−1, and

γ(0) = E(r2
t−1 − σ2)2 is the variance of r2

t−1. If we assume that the second

moment of conditional variance or the fourth moment of residual exists, that

is when the conditions in proposition 3 satisfied, then it can be shown that:

ρ(1) =
c2

0[2a0 − 2a0b0A0 + A0(2a
2
1 + (a1 + b1)

2)π(1− π)]
c2

0(2 + A− 3A2
0) + 3c1π(1− π)[c1(1− A0) + 2c0(a1 + b1)(1− A)]

+
(3a0 + b0(1 + 2A0))π(1− π)[c2

1 + 2c0c1(a1 + b1)(1− A)]
c2

0(2 + A− 3A2
0) + 3c1π(1− π)[c1(1− A0) + 2c0(a1 + b1)(1− A)]

where A0 = a0 + b0

It is easy to show that:

γ(k) = (a0 + b0)γ(k − 1) for k ≥ 2, and ρ(k) = (a0 + b0)
k−1ρ(1)
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Appendix 5:

Figure 2.1: Stationary Areas of α1 and β1 given (α0, β0)=(0.25, 0.5)
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Figure 2.2: Stationary Areas of α1 and β1 given (α0, β0)=(0.25, 0.75)
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Figure 2.3: Simulated Paths of the Return Series in Case 1.1
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Figure 2.4: Simulated Paths of the Return Series in Case 2.1
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Figure 2.11: Kernel Smoothing Density Estimates of MLE (Case 3.1)
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Figure 2.12: Kernel Smoothing Density Estimates of MLE (Case 3.2)
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Figure 2.16: Forecasting Performance based on GARCH DGP
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Table 2.1: The MLE for parameters in Case 1

T Par True
Value
(1.1)

¯̂
θ MSE True

Value
(1.2)

¯̂
θ MSE True

Value
(1.3)

¯̂
θ MSE

ω0 0.02 .0210 .0001 0.02 .0209 .0000 0.02 .0205 .0001

ω1 0.01 .0072 .0045 0.01 .0096 .0077 0.01 .0114 .0094

500 α0 0.25 .2389 .0076 0.25 .2487 .0051 0.25 .2508 .0077

α1 0.25 .2711 .1194 0.25 .3077 .2158 0.25 .3356 .2801

β0 0.5 .4905 .0232 0.5 .4908 .0077 0.5 .4725 .0136

β1 1.5 1.4712 .8277 2.5 2.3337 1.0359 3 2.6001 1.5691

ω0 0.02 .0206 .0000 0.02 .0204 .0000 0.02 .0238 .0131

ω1 0.01 .0097 .0015 0.01 .0107 .0025 0.01 .0136 .0032

1000 α0 0.25 .2474 .0021 0.25 .2527 .0023 0.25 .2555 .0045

α1 0.25 .2569 .0464 0.25 .2843 .0880 0.25 .3160 .1246

β0 0.5 .4949 .0042 0.5 .4929 .0037 0.5 .4776 .0093

β1 1.5 1.4762 .2526 2.5 2.3752 .4346 3 2.6380 .9153

ω0 0.02 .0202 .0000 0.02 .0200 .0000 0.02 .0196 .0000

ω1 0.01 .0094 .0007 0.01 .0100 .0012 0.01 .0127 .0018

2000 α0 0.25 .2479 .0011 0.25 .2513 .0016 0.25 .2525 .0038

α1 0.25 .2519 .0185 0.25 .2700 .0376 0.25 .2910 .0568

β0 0.5 .4993 .0022 0.5 .4952 .0031 0.5 .4780 .0096

β1 1.5 1.4917 .1096 2.5 2.4091 .2396 3 2.6786 .6989
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Table 2.2: The MLE for parameters in Case 2

T Par True
Value
(2.1)

¯̂
θ MSE True

Value
(2.2)

¯̂
θ MSE True

Value
(2.3)

¯̂
θ MSE

ω0 0.02 .0229 .0005 0.02 .0226 .0003 0.02 .0201 .0002

ω1 0.01 .0090 .0010 0.01 .0096 .0005 0.01 .0107 .0004

500 α0 0.25 .2342 .0192 0.25 .2383 .0081 0.25 .2243 .0111

α1 0.25 .2415 .0313 0.25 .2370 .0123 0.25 .2265 .0183

β0 0.5 .4768 .0649 0.5 .4880 .0159 0.5 .4546 .0291

β1 0.75 .7973 .1577 0.9 .9314 .0439 1 .9020 .1091

ω0 0.02 .0212 .0002 0.02 .0209 .0001 0.02 .0194 .0001

ω1 0.01 .0093 .0003 0.01 .0103 .0001 0.01 .0103 .0001

1000 α0 0.25 .2482 .0092 0.25 .2463 .0024 0.25 .2307 .0074

α1 0.25 .2477 .0096 0.25 .2483 .0044 0.25 .2364 .0096

β0 0.5 .4811 .0375 0.5 .4949 .0042 0.5 .4611 .0235

β1 0.75 .7740 .0509 0.9 .9063 .0085 1 .8962 .0914

ω0 0.02 .0207 .0001 0.02 .0204 .0000 0.02 .0203 .0000

ω1 0.01 .0096 .0001 0.01 .0101 .0000 0.01 .0107 .0001

2000 α0 0.25 .2487 .0023 0.25 .2482 .0011 0.25 .2567 .0015

α1 0.25 .2473 .0030 0.25 .2477 .0018 0.25 .2599 .0027

β0 0.5 .4897 .0090 0.5 .4987 .0018 0.5 .5050 .0021

β1 0.75 .7651 .0152 0.9 .9012 .0033 1 .9754 .0061
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Table 2.3: The MLE for parameters in Case 3

T Par True
Value
(3.1)

¯̂
θ MSE True

Value
(3.2)

¯̂
θ MSE

ω0 0.02 .0175 .0007 0.02 .0210 .0009

ω1 0.01 .0118 .0007 0.01 .0123 .0010

500 α0 0.25 .2361 .0257 0.25 .2353 .0215

α1 0.25 .2437 .0304 0.25 .2412 .0236

β0 0.5 .5780 .0973 0.5 .5562 .0528

β1 0.7 .7088 .0988 0.75 .7505 .0658

ω0 0.02 .0179 .0003 0.02 .0185 .0004

ω1 0.01 .0104 .0002 0.01 .0112 .0002

1000 α0 0.25 .2482 .0143 0.25 .2444 .0124

α1 0.25 .2501 .0119 0.25 .2491 .0080

β0 0.5 .5543 .0472 0.5 .5452 .0349

β1 0.7 .7075 .0352 0.75 .7425 .0200

ω0 0.02 .0180 .0002 0.02 .019 .0002

ω1 0.01 .0099 .0001 0.01 .0103 .0001

2000 α0 0.25 .2510 .0069 0.25 .2488 .0051

α1 0.25 .2489 .0040 0.25 .2475 .0019

β0 0.5 .5434 .0264 0.5 .5251 .0156

β1 0.7 .7086 .0151 0.75 .7503 .0060
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Table 2.4: The Performance of MLE with Endogenous Threshold

a = 0.1 a = 0.2 a = 0.3 a = 0.4

T Par True
Value

θ̂ MSE θ̂ MSE θ̂ MSE θ̂ MSE

ω0 .01 .0107 .0001 .0101 .0003 .0102 .0001 .0101 .0001

ω1 .02 .0202 .0007 .0207 .0004 .0224 .0003 .0226 .0003

500 α0 .1 .0894 .0072 .0932 .0087 .0942 .0092 .0951 .0146

α1 .2 .1804 .0330 .1754 .0168 .1788 .0134 .1800 .0098

β0 .55 .5493 .0468 .5566 .0403 .5510 .0316 .5545 .0276

β1 .75 .7695 .3637 .7634 .2016 .7438 .1315 .7311 .0898

ω0 .01 .0101 .0000 .0101 .0000 .0100 .0000 .0100 .0000

ω1 .02 .0208 .0001 .0211 .0001 .0213 .0001 .0214 .0001

1000 α0 .1 .0983 .0016 .0984 .0017 .0993 .0021 .0976 .0028

α1 .2 .1888 .0070 .1903 .0054 .1923 .0046 .1941 .0037

β0 .55 .5489 .0114 .5487 .0096 .5514 .0077 .5530 .0070

β1 .75 .7406 .0551 .7357 .0356 .7336 .0284 .7309 .0188

ω0 .01 .0100 .0000 .0101 .0000 .0101 .0000 .0101 .0000

ω1 .02 .0205 .0000 .0207 .0000 .0205 .0000 .0206 .0000

2000 α0 .1 .1010 .0007 .1008 .0008 .1020 .0010 .1016 .0012

α1 .2 .1961 .0029 .1968 .0023 .1985 .0019 .1987 .0017

β0 .55 .5506 .0044 .5498 .0039 .5490 .0034 .5502 .0030

β1 .75 .7358 .0184 .7370 .0134 .7380 .0094 .7392 .0072
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Table 2.5: Forecasting Performance Based on Threshold GARCH DGP

ME MPE RMSE HMSE R2

TS GARCH -.0004 .0049 .0881 .3949 .9256

GARCH .0075 .0991 .1712 3.9838 .6905

Table 2.6: Estimation Performance with Different Jump Size of Grid Points in
Threshold Variable

True 5% 2.5% 1%

Value θ̂ Std MSE θ̂ Std MSE θ̂ Std MSE

ω0 0.02 .0184 .0061 .0000 .0193 .0061 .0000 .0196 .0059 .0000

ω1 0.01 .0127 .0052 .0000 .0125 .0053 .0000 .0126 .0056 .0000

α0 0.15 .1343 .0348 .0015 .1397 .0346 .0013 .1394 .0346 .0013

α1 0.05 .0530 .0171 .0003 .0524 .0171 .0003 .0517 .0173 .0003

β0 0.55 .5895 .1083 .0133 .5711 .1073 .0119 .5654 .1035 .0110

β1 0.9 .8829 .0370 .0017 .8840 .0382 .0017 .8845 .0394 .0018

y0 19.67 19.87 .4235 .2211 19.81 .4110 .1888 19.81 .3778 .1638
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Table 2.7: Forecasting Performance Based on Threshold GARCH DGP with
Non-Stationary Parameters in One Regime

ME MPE RMSE HMSE R2

TS GARCH .0259 .0363 2.0194 4.0616 .9708

GARCH .2990 .2504 4.7271 38.8685 .8287

Table 2.8: Forecasting Performance Based on GARCH DGP

ME MPE RMSE HMSE R2

TS GARCH -.0001 .0010 .0724 .2079 .9554

GARCH -.0001 .0009 .0719 .2043 .9607
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Chapter 3

Threshold GARCH Model:
Empirical Application

3.1 Introduction

Volatility modeling and forecasting are very important in financial markets,

since volatility is a key component in pricing derivative securities, risk man-

agement, and making monetary policy.

In the previous chapter we propose a threshold GARCH model to describe

the regime shifting in the volatility process of financial asset returns. We de-

rive theoretical conditions for the existence of various moments of return se-

ries and examine the properties of MLE via simulation studies. Now we want

to investigate the performance of the threshold GARCH model via an empir-

ical application. The simulation results reveal that the parameters are very

well estimated when the return series has a finite variance. In this chapter we

show that estimated parameters in all empirical applications satisfy the vari-

ance stationary requirement without imposing restrictions in the estimation

process. The ARCH and GARCH parameters are significantly different from 0

72
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with exogenous or endogenous threshold variables.

The success of a volatility model is determined crucially by its out-of-sample

predicting power. Therefore, extensive research has been devoted to this sub-

ject. In the 2003 survey on the volatility forecasting literature, Poon and

Granger (2003) reviewed 93 published and working papers that study the fore-

casting performance of various volatility models. The comparisons among dif-

ferent forecasting models show a mixed picture. Poon and Granger conclude

that the overall ranking favors ISD (option implied standard deviation) model,

while HISVOL (historical volatility models) and GARCH models are roughly

equal. However, they also mention that the success of the implied volatility

models is benefited from using a larger information set, but they are less prac-

tical due to the availability of options. GARCH models perform well in fore-

casting volatility as described in Hansen and Lunde (2005), they show that

simple GARCH model performs well in forecasting currency exchange rates,

while in analysis of IBM returns, the models that can accommodate a leverage

effect perform better. Taking into account the parameter size in the threshold

model, we compare the forecasting performance of the threshold model with

GARCH(3,2) and GJR(2,1,2) models.

In volatility forecasting literature there is also a big concern on how should

the true volatility be measured. In fact the accuracy of measures of actual

volatility has significant effect on the outcomes in comparing volatility mod-

els. Most of the early works use the daily squared return to proxy actual daily

volatility. However, as shown in Lopez (2001), while squared return is an un-

biased estimator of daily variance, it is a very noisy measure of true variance.

Taking this into account, besides using daily squared return, we also compare

our volatility forecast with realized volatility constructed from intra-day high
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frequency data.

In this chapter we apply the threshold model to empirical data and find good

fit of threshold model in terms of in-sample estimation as well as out-of-sample

forecasting.

The rest of this chapter is organized as follows. Section 3.2 briefly describes

empirical data and different variables used as the threshold to identify regime-

switching in the volatility process. In Section 3.3, we estimate the threshold

GARCH model using stock and currency exchange data. We also employ the

volatility index as an exogenous threshold variable, and the volume turnover

and number of trades as endogenous threshold variables. In Section 3.4 we ex-

amine the forecasting performance of the threshold GARCH model. The fore-

casting performance is evaluated using 5 common measures. A brief conclusion

is contained in the last section.

3.2 Data

The empirical data consists of stocks from MMI and NASDAQ and three cur-

rency exchange rates.

The first data set consists of 20 stocks in the major market index (MMI)1.

We obtain the data of most stocks for the period from Jan. 2, 1970 to Dec.

31, 2008, except for AXP and T. The data for AXP and T start from May 18,

1977 and Jan 2, 1984 respectively. We choose the stocks from MMI because
1The firms in the MMI are American Express (AXP), AT&T (T), Chevron (CHV), Coca-

Cola (KO), Disney (DIS), Dow Chemical (DOW), Du Pont (DD), Eastman Kodak (EK), Exxon
(XOM), General Electric (GE), General Motors (GM), International Business Machines (IBM),
International Paper (IP), Johnson & Johnson (JNJ), McDonald’s (MCD), Merck (MRK), 3M
(MMM), Philip Morris (MO), Procter and Gamble (PG), and Sears (S).
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they are well known and highly capitalized stocks representing a broad range

of industries and they generally exhibit a high level of trading activity. Return

data are obtained from daily stock file of the Center for Research in Security

Prices (CRSP) and accessed from Wharton Research Data Services (WRDS).

The exogenous threshold variable we used in this empirical study is the

Volatility Index (VIX). The Chicago Board Options Exchange (CBOE) Volatility

Index is a key measure of market expectations of near-term (30-day) volatility

conveyed by S&P 500 stock index option prices. It is a weighted blend of prices

for a range of options on the S&P 500 index. The volatility index is calculated

and disseminated in real-time by CBOE. We obtain the data from CBOE web-

site from Jan. 2 1990 to Dec. 31 2008. Since the volatility index measures

the market expectations for the future volatility, it is reasonable to assume the

independence between VIX and the current volatility. It is shown in the data

that the sample correlation coefficient between squared return and VIX for 20

stocks in MMI ranges from 0.03 to 0.09, while average correlation coefficient

between squared return and volume is around 0.5. We can thus treat VIX as a

weakly exogenous variable.

The summary statistics for the returns in MMI are presented in Table 3.1 in

Appendix. The columns report the sample minimum, maximum, mean, stan-

dard deviation, coefficient of skewness, and coefficient of kurtosis. We notice

that all the return series have large kurtosis comparing to a normal distribu-

tion, and most of the returns are negatively skewed.

Since the simulation study of the endogenous threshold model suggests that

the MLE perform reasonably well for large endogeneity coefficient, we also ap-

ply our model to the volume data. In addition, the use of the threshold model
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to describe the conditional variance dynamics is motivated by the volume-

volatility correlation, we want to examine whether the endogenous threshold

variable volume provides more information on the regime shifts in the condi-

tional variance process. Nonetheless the volume variable reveals the trading

activities for the individual stocks, while the VIX variable just gives the infor-

mation for the market as a whole. The volume data are also obtained from

WRDS. To remove the trend in the volume series, we define the adjusted vol-

ume series by taking the log of the trading volume and then removing the 100-

day moving average from the log volume series. The resulting series have an

average correlation coefficient around 0.5. Since the volume series, even with

detrending adjustment, is still very noisy, we also search for other endogenous

threshold variables. Since the adjusted volume does not provide much infor-

mation in regime switching, we didn’t report the estimation results.

To further explore the usefulness of the endogenous threshold, we also ob-

tain the second data set for 4 most active stocks in NASDAQ2, since the number

of trades data is only available for NASDAQ stocks. The number of trades data

is available for most of the stocks from Jan. 03, 1995 to Dec. 31, 2010 except

YHOO and GOOG, they have the number of trades available from Apr. 15,

1996 and Aug. 20, 2004 respectively. There is always concern about the noise

in trading activity variables, volume is one very noisy trading variable. We

tried to adjust the volume series by taking log and removing time trend for

MMI stocks. Here we use another volume variable for NASDAQ stocks. The

volume variable is defined as the ratio of trading volume over the total shares

outstanding (Volume/SHOUT) for the stock. This is actually the turnover of

the daily stock and it is stationary. For the number of trades, if there is a clear
24 most active stocks in NASDAQ: Yahoo! Inc. (YHOO), Apple Inc. (AAPL), Google Inc.

(GOOG), QUALCOMM Incorporated (QCOM).
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time trend, we detrend the series by removing the best straight-line fit from

the series. The data descriptions for return, volume/SHOUT and number of

trades are available in Table 3.2 and Table 3.3 in Appendix.

Since we only obtain the daily price data for MMI and NASDAQ stocks, we

use the squared daily return as a proxy for the actual volatility when evalu-

ating the forecasting performance. In the volatility forecasting literature how

should the true volatility be measured is a big concern. However, it is shown

that the daily squared return is a very noisy measure to approximate the ac-

tual daily volatility, even though the squared return is an unbiased estimator

of daily variance. Taking this into account, besides using daily squared return,

we also compare our volatility forecast with realized volatility constructed from

intra-day high frequency data. Thanks to Dinghai Xu, we are able to obtain

intra-day high frequency data for IBM and GE stocks from Mar. 03, 2005 to

Sep. 24, 2008 as well as three currency exchange rates, namely CAD/USD,

USD/JPY, and GBP/USD. The high-frequency intra-day transaction prices for

currencies are available from Apr. 13, 1998 to July 28, 2006. We summa-

rize the sample statistics for three currency exchange returns and the realized

volatility constructed from HF data in Table 3.4 to Table 3.6.

3.3 Estimation of the Threshold GARCH Model

3.3.1 Exogenous Threshold Variable and MMI Stocks

In this section we first apply the threshold GARCH model to the data set that

contains 20 stocks from MMI. We assume that the return series follows the

threshold GARCH model where the trigger variable is either exogenous (VIX)
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or endogenous (volume).

Since the return series in our threshold GARCH model is assumed to be a

zero mean process, we first remove the mean from the returns. In addition to

a constant we also filter the AR effect to order 5:

rt = Rt − µ−
5∑
j=1

δjRt−j

where Rt is the observed return, µ is the mean, and δj is the coefficient of AR

variables.

The threshold variable (VIX or volume) is given in this threshold GARCH

model, so we also need to determine the threshold value for this variable. Now

the model that needs to be estimated has a set of parameters as a function of

the threshold value.

rt = σtεtσ2
t = ω0 + α0r

2
t−1 + β0σ

2
t−1 if yt−1 ≤ y∗

σ2
t = ω1 + α1r

2
t−1 + β1σ

2
t−1 if yt−1 > y∗

To estimate the threshold value we divide the sample of threshold variable

into 40 intervals and the 39 grid points correspond to 2.5th percentile point

to 97.5th percentile point. We use only the first lag of VIX and volume as the

threshold variable since we believe the most recent observation of them pro-

vides the most up-to-date information on the condition of market and individ-

ual stocks. The robust standard errors we compute for the volatility parame-

ters are Bollerslev-Wooldridge standard errors. Since we use the grid search

to obtain the threshold value y∗, we are not able to compute its standard error.



79

There are other estimation methods available for the threshold model that pro-

vide such statistics. We may explore alternative methods in the future studies.

The estimation results in Table 3.7 are based on 4787 observations from

Jan. 02, 1990 when VIX is available. The estimated threshold value and the

probability that volatility is in regime 2 is given by y∗, for example the esti-

mated threshold is y92.5 for IBM, it means that the threshold value is the 92.5

percentile point of VIX price, so the volatility is in a volatile regime with prob-

ability of 7.5%. The parameters in the threshold GARCH model are significant

for most of the stocks. For some stocks the sum of estimated parameters is

greater than 1 in one regime, but consider the probability π, we will still have

the stationary process. The probability is given by the location of the thresh-

old value in the sample space of the threshold variable, it is very clear in our

estimation results since we use 2.5 percentile as the increment. For exam-

ple the estimated parameters of PG in regime 2 have a sum of 1.0026, but the

threshold value estimated is y80, that means there is only 20% chance that the

conditional variance shifts to the regime 2, therefore with a stationary regime

1 the stationarity condition for return process still holds. We observe that for

some stocks the estimated parameters in 2 regimes are very similar, it is not

surprising because we use VIX as a threshold variable for all 20 stocks in our

sample, some stocks may follow closely with the market, while others may be

less affected by the market conditions. Nonetheless when we use the mar-

ket condition as a threshold, it indeed separates the returns in low volatility

regime from that in the high volatility regime.

We plot the MMM return series in different regimes in Figure 3.1 and 3.2.

Figure 3.1 contains a graph of return series that is divided into 2 regimes,

while Figure 3.2 provides the threshold value of the VIX price to separate two
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regimes.

From Figure 3.1 we see that given the threshold value, the high volatility

regime identifies the 3 periods of clustering of extreme returns. The volatile pe-

riods are separated from the less volatile periods, and the clustering of volatile

periods confirm the presence of the disruptive events during the periods, such

as the clustering of volatile periods at the starting point of the graph corre-

sponds to the 1990-1991 Persian Gulf Crisis, the clustering of volatile periods

at the middle of the graph corresponds to the periods from 1997 Asian crisis

to 2000 dot.com bubble, and the clustering at the end of the graph corresponds

to the 2008 subprime mortgage crisis. The use of the VIX as the threshold

variable enable us to find the periods in which the VIX market and the stock

are volatile since the markets tend to move together, meanwhile we will miss

the stock specific information so that some volatile events are ignored simply

because of the involatile VIX at that point in time. Nevertheless those stock

specific events tend to be non-persistent, we observe that some large negative

returns are not identified as in the high volatility regime simply because it is

a rare event. Figure 3.2 shows the VIX price and regimes divided by the VIX

price. The estimated threshold value for VIX price is 20.17, when the price of

VIX is above the threshold value, people view the market as unstable, there-

fore we observe large price movement in the VIX prices. The empirical results

reveal the potential of the threshold variable to identify the regimes in the

volatility process hence provide better forecast.

3.3.2 The Estimation with Endogenous Threshold Variables

When using volume as the threshold variable, we capture almost all the large

positive or negative returns in the volatile periods, however we fail to identify
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the clustering of the volatile periods. Using MMM as an example, we plot

the regimes in return as well as the threshold value in the adjusted volume

series. In comparison to the previous graph using VIX as the threshold, the

only volatile period confirmed by volume is the 1990-1991 Gulf Crisis. The

reason that volume does not provide better identification of regime switching

may be due to the transformation we made on the volume variable. When we

transform the volume series to a stationary process the important information

may also be removed. We do observe that the volume series is very noisy.

The estimation results question the use of volume as an effective threshold

variable. We now consider other 2 candidates for the endogenous threshold

variables: the number of trades and the volume turnover. Table 3.8 presents

the estimation results for 4 NASDAQ stocks using the two endogenous thresh-

old variables.

The estimated parameters using volume turnovers behave much better than

using adjusted volume as the threshold. Figure 3.5 to 3.8 show how regimes in

QCOM returns are separated by using volume turnover and number of trades

as threshold variable.

It is obvious that for QCOM the volume turnover is more capable of iden-

tifying the volatile periods in the sample. The ratio of volume over shares

outstanding is quite low after 2000 dot.com bubble, therefore labels the period

between 2002 and 2008 as the tranquil period. It is consistent with the smaller

positive and negative outliers in return series during the period. The number

of trades during the same period is also lower than the estimated threshold

value which indicate that the period is less volatile, however the time period

before 2008 crisis is identified as a volatile regime since the number of trades

is substantially large during the period. But, the period is characterized with



82

smaller variation in the return process. It just reminds us there may be noisy

trading activities even when the market is calm.

The volume turnover or number of trades convey information that can be

used to identify the volatility regimes. But the performance of threshold models

depends on how relevant and useful the threshold variable is, we see that VIX

as an indicator of market conditions certainly help us to separate the volatile

regime from a less volatile regime. We also observe the similar effect when

using variables that reveal trading activities of individual stocks. We may find

more variables or the combination of variables that provide even more pre-

cise information on regime shifting. We also present the estimation results of

NASDAQ stocks using VIX as a threshold variable. The estimation results are

shown in Table 3.9. Since the constants are very close to zero for all stocks, we

just exclude the estimates from the estimation results.

The estimated parameters for both sets of stock data appear to be station-

ary and have a finite variance without imposing any restriction in estimation

process. We also estimate the model for three currency exchange rates, for

the currency exchange data, we don’t know which variable will provide help-

ful information in identifying regime shifts. Currency exchange rates may not

follow the move of the stock market closely, so the volatility index may not pro-

vide useful information. Therefore we simply employ the spot price of three ex-

change rates and the volatility index as possible threshold variables. We would

like to investigate which variable contains more information. The results are

presented in Table 3.10, we actually find that the volatility index works well

for GBP/USD, well the spot prices are better indicators for CAD/USD and

USD/JPY series. Of course there are many other good candidates for threshold

variables, such as interest rate, or oil price which are more likely to affect the
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currency exchange rate. But clearly the available variables are quite informa-

tive for separating regimes in currency exchange rates. We plot the regimes in

the CAD/USD series in Figure 3.9.

3.4 Forecasting Performance of the Threshold

Model

We have shown the good in-sample fit of the threshold model. In this section

we test the out-of-sample predicting power of the threshold model. To construct

the volatility forecasts, we estimate the threshold parameters using in-sample

data for MMI and NASDAQ stocks and three currency exchange rates.

Since the detrended log volume does not perform well in estimation, we

only consider using VIX as an exogenous trigger, while volume turnover and

number of trades as endogenous triggers. We construct ten-day-ahead daily

volatility forecasts for 250 days for stocks and 100 days for currency exchange

rates.

3.4.1 Forecasting Evaluation

There are many criteria that have been used in the volatility forecasting liter-

ature. However, there is no consensus on which measure is more appropriate.

The ranking of predicting power of models may be different if different mea-

sures are used in evaluating these models. Therefore, in our empirical study

we choose 5 popular measures instead of only one measure.

The commonly used simple measures in forecasting evaluation include: ME,
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MSE, MPE, and RMSE. The mean error (ME) and mean percentage error

(MPE) are signed measures of error which indicate whether the forecasts are

biased. Or, in other words, are they disproportionately positive or negative.

Both ME and MPE allow the positive and negative errors to cancel each other,

while MPE is a relative measure and a scaled measure. The most commonly

used measure is the mean squared error (MSE) measure. MSE contains both

bias and variance of errors:

E(MSE) = E[(y − ŷ)2] = V ar(y − ŷ) + (E[y]− E[ŷ])2

Usually the root mean squared error (RMSE) is reported rather than MSE,

because the RMSE is measured in the same unit as the data, and is represen-

tative of the size of a typical error.

Bollerslev and Ghysels (1996) further suggest a heteroskadasticity-adjusted

version of MSE called HMSE, where

HMSE =
1

T

∑
(σ2

t+k/σ̂
2
t+k − 1)2

There is also a popular regression-based method for forecasting evaluation.

It measures the explanatory power of the regression of actual series on the

forecasts.

Following most studies, we employ 5 measures in evaluating forecasting

accuracy of the threshold GARCH model. For any given stock i the 5 measures

are:

MEi =
1

T

∑
(σ2

i,t − σ̂2
i,t)

MPEi =
1

T

∑
(σ2

i,t − σ̂2
i,t)/σ̂

2
i,t

RMSEi =

√
1

T

∑
(σ2

i,t − σ̂2
i,t)

2
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HMSEi =
1

T

∑
(σ2

i,t/σ̂
2
i,t − 1)2

and R2
i obtained from regressing the actual conditional variance σ2

i on the

forecasts σ̂2
i :

σ2
i = a+ bσ̂2

i + ηi

3.4.2 Forecasting Results of MMI Stocks Return Volatility

We report the forecasting evaluations in Table 3.11. For 18 out of 20 stocks,

the 2008 financial crisis is included in the out-of-sample forecasting period.

We found in Table 3.11 that the threshold GARCH model outperforms GARCH

model in all 5 measures for 12 out of 18 stocks and provides a better forecast

for the volatility surge in the period of financial crisis. For the remaining 8

stocks the evidence is mixed, 3 stocks with only one measure favoring GARCH

model, and only 1 stock with four measures supporting GARCH model.

Figure 3.10 and 3.11 provide illustrations of the forecasting comparison be-

tween threshold GARCH and GARCH models. It is clear in Figure 3.10 that the

forecasts from threshold GARCH model pick up more variation in squared re-

turns than GARCH model. Also there is a quicker response to volatility spike

by the threshold model forecasts. Even for the stocks with more forecasting

measures against threshold model, for example in Figure 3.11, we have fore-

casts plot for GM, there are still much more changes in squared returns ex-

plained by threshold volatility forecasts than GARCH forecasts. It suggests

that the measures are not always accurate in providing reference on model

comparison. We conclude that the better performance by threshold model

is benefited from a large ARCH effect in the volatile periods. When regime
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changes from low volatility to high volatility in the out-of-sample period, the

volatility forecast is computed using a large ARCH coefficient in the volatile

period, therefore the effect of the increase in the previous day squared return

is magnified in the current day volatility forecast.

We also need to mention that in our experiment only one threshold variable

is used to identify the regime shifting for all 20 stocks, it is possible that some

stocks follow the market more closely than the others, in that case we will get

much better forecasts by using threshold model. On the other hand some stocks

are more likely to be affected by factors other than market risk, in that situa-

tion using VIX as a threshold may not help much in volatility forecasting. But

it is not evidence against the use of the threshold model, we can always search

for variables that provide more information related to the trading activities of

individual stocks.

3.4.3 Realized Volatility as Proxy of Actual Volatility

The empirical results show a better fit of threshold volatility forecast with data

variation. However there is still a large proportion of variation in data not

explained by the threshold model (See Figure 3.10 and 3.11 and low R2 in Table

3.11). With the wider availability of high frequency data, researchers propose

that the poor performance of volatility forecasting models may be caused by

the use of a proxy of actual volatility. In the empirical application we compare

the volatility forecast with squared daily return which is a proxy of actual daily

volatility. Though the squared return is a unbiased estimator of true volatility,

it is a very noisy measure due to the nature of its distribution. Shown by Lopez

(2001), almost 75% of the time the squared de-meaned returns are either 50%

larger or smaller than true variance:
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Let rt = µ+ εt , εt = σtzt ,

given zt ∼ N(0, 1). Then

E(ε2
t |φt−1) = σ2

tE(z
2
t |φt−1) = σ2

t

since z2
t ∼ χ2

(1), we actually can show that:

Prob(ε2
t ∈ [1

2
σ2
t ,

3
2
σ2
t ]) = Prob(z2

t ∈ [1
2
, 3

2
]) = 0.2588

Based on the above discussion we would like to ask if the poor performance

of the volatility forecasts is actually a result of using bad proxy of true volatil-

ity. We use intra-day high frequency data of IBM and GE to construct the daily

realized volatility as a measure of true volatility. The data contains 938 daily

observations from March 03, 2005 to September 24, 2008. Also even though

the GARCH(1,1) model is proved to be a robust volatility model for forecasting,

taking into account that our threshold GARCH model contains more parame-

ters than that of GARCH(1,1), we now use GARCH(3,2):

σ2
t = α0 +

3∑
i=1

βiσ
2
t−i +

2∑
j=1

αjr
2
t−j

and GJR(2,1,2):

σ2
t = α0 +

2∑
i=1

βiσ
2
t−i + δI(rt−1 < 0)r2

t−1 +
2∑
j=1

αjr
2
t−j

models as competing models.

Realized Volatility Estimator and Its Distribution

The realized volatility is defined as the sum of high-frequency intra-day squared

returns in a trading day to approximate the daily quadratic variation of the log

price process.
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Consider a discrete-time model in which the daily asset return is expressed

as:

rt = σtvt

where vt ∼ iidN(0, 1).

For a given trading day t, the prices, Pt,d, d = 1, . . . , D, are observed tick-by-

tick. D refers to the total number of observations in day t. The dth intra-period

return at day t can be calculated by taking the difference between logarithmic

price at d and that at d− 1:

rt,d = log(Pt,d)− log(Pt,d−1)

Assume rt,d = σt,dvt,d where vt,d ∼ iidN(0, 1
D
)

Then, the daily return is the sum of all intra-period returns:

rt = log(Pt,D)− log(Pt,0) =
∑D

d=0 rt,d

and

σt =
1
D

∑D
d=1 σt,d

The squared daily return is:

r2
t =

∑D
d=0 r

2
t,d +

∑D
i 6=j rt,jrt,j

The daily realized volatility (or variance) is computed as:

RVt =
∑D

d=0 r
2
t,d
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If the intra-day returns are uncorrelated, then

V ar(rt) = E(r2
t ) = E(

∑D
d=0 r

2
t,d) + 0 = E(RVt) = σ2

t

Realized volatility is an unbiased estimator for the variance of daily asset

returns. Theoretically, the measure provides a consistent estimator of the la-

tent volatility and becomes more efficient if the most frequent interval is used

to compute the measure. Empirically, due to the inefficiency of the financial

market, the noisy trading activities may bias the realized volatility and the

problem worsens when higher and higher frequencies are used. Here we follow

Andersen and Bollerslev (1998) and employ the empirically optimal sampling

frequency at 5-minute interval. The construction of realized volatility is ex-

plained as follows, given the closing price Ph,t at any 5-minute interval at day

t, the 5-minute return rh,t for h = 1, 2..., H; t = 1, 2, ..., T is defined as:

rh,t = 100(logPh,t − logPh−1,t)

Then, the realized volatility is simply the sum of squared 5-minute returns

in a day:

RVt =
H∑
h=1

r2
h,t

To reduce the effect of noise in the high frequency trading, we further apply

the scaling correction to the above realized volatility measure as proposed by

Martens (2002):

RVt =
H

w
∑
h=1

r2
h,t

where w = 1 + v1
v2

, and
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v1 =
10000

T

T∑
t=1

(logPH,t − logP0,t)
2 v2 =

10000

T

T∑
t=1

(logP0,t − logPH,t−1)
2

The sample statistics for IBM and GE returns and realized volatility are

reported in Table 3.12. The plots of IBM and GE return series and realized

volatility are provided in Figure 3.12-3.15. It is not surprising that the realized

volatility has smaller variance than that of squared returns.

Since the sample size is much smaller than that in the earlier empirical

study, we only forecast 100 daily volatilities using threshold GARCH, GARCH(3,2)

and GJR(2,1,2) models. The estimating and forecasting process is same as in

the previous section. Table 3.13 and Figure 3.16-3.19 present the forecasting

performance of three models.

The use of realized volatility to approximate the latent volatility definitely

improves the forecasting performance of threshold GARCH and other GARCH

models. All 5 measures in Table 3.13 support the threshold GARCH model and

in Figure 3.16-3.19 we are glad to see a much better fit to the data variation

when realized volatility is used. We also confirm that the threshold GARCH

model produces better forecasts when there is a sudden change in market con-

ditions. Our findings are similar to that of realized volatility literature in fore-

casting, theR2 computed from threshold GARCH model is 0.5532, which is more

than 2 times of that obtained by using daily squared returns as true volatility,

0.2026. The improvement of R2 is more significant for other GARCH models,

with a more than 3 times increase from 0.1268 in GARCH(1,1) model to 0.5145

in GJR model. The results are consistent with the findings in Blair, Poon, and

Taylor (2001), they report a three to four times increase of R2 when intra-day

5-minute squared returns are used to approximate the true volatility.
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Forecasting Volatility for Currency Exchange Rates

Since the currency exchange rates experience different patterns in volatility,

comparing with that of stocks the volatility is much volatile during the sam-

ple for three currencies. We plot the returns as well as the realized volatility

constructed from high frequency intra-day data in Figure 3.20-3.25. While the

forecasting performance is shown in Table 3.14 and Figure 3.26-3.31. Though

the performance of the threshold GARCH model is very close to other GARCH

models in some measures, it outperforms GARCH(3,2) and GJR model across

all 5 measures.

3.5 Conclusion and Future Research

In Chapter 2, we propose a threshold GARCH model to explain the time depen-

dencies in volatility dynamics of financial asset returns. We theoretically inves-

tigate the properties of the model as a valid volatility model. In this chapter we

examine the estimation and forecasting performance of the threshold GARCH

model empirically. We employ three sets of data, including MMI stocks, NAS-

DAQ stocks, and currency exchange rates. The estimated parameters are all

significant and satisfy the variance stationary requirement. We use the volatil-

ity index as an exogenous threshold variable, it is proved to be an useful infor-

mation variable in identifying regime shifts in the volatility process. The en-

dogenous threshold variable volume turnover and number of trades may also

help in separating regimes for stocks not following closely to the market. We

further explore the forecasting performance of the threshold GARCH model.

We use 5 measures to evaluate the models. The forecasting performance of the

threshold GARCH model is better than competing models when the financial
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crisis is included in the forecasting period. The threshold GARCH forecasts

are able to pick up the volatility spike faster. When a more accurate volatil-

ity proxy - realized volatility is used in forecasting evaluation, the forecasting

performance of all models improved, while the threshold GARCH model still

performs better across all measures.

The exogenous threshold variable VIX helps in improving the forecasting

performance for many stocks as well as an exchange rate series. There may ex-

ist more variables that can be used in the threshold GARCH model to identify

the regime switching. We assume 2 regimes just for simplicity, it is possible to

extend the model to accommodate more regimes and more threshold variables.

It is showed in our empirical applications that many stocks are moving to-

gether and affected by a single factor that representing the market risk. The

multivariate modeling of parallel financial time series becomes more and more

popular in financial studies. In the next chapter we introduce a new method

to extracting underlying factors from multivariate signals. The method is the

independent component analysis and it may help in financial analysis of mul-

tivariate time series.
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3.6 Appendix
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Figure 3.1: Regime Shifts in MMM Returns
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Figure 3.2: MMM Threshold Value in VIX Price
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Figure 3.3: Regime Shifts in MMM Return
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Figure 3.4: MMM Threshold Value in Volume
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Figure 3.5: Regime Shifts in QCOM Return
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Figure 3.6: QCOM Threshold Value in VOL/SHOUT
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Figure 3.7: Regime Shifts in QCOM Returns
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Figure 3.8: QCOM Threshold Value in Number of Trades
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Figure 3.9: Regime Shifts in CAD/USD Returns
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Figure 3.10: Volatility Forecast MMM
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Figure 3.11: Volatility Forecast GM
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Figure 3.12: IBM Daily Returns
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Figure 3.13: IBM Daily Realized Volatility
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Figure 3.14: GE Daily Returns
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Figure 3.15: GE Daily Realized Volatility
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Figure 3.16: IBM Volatility Forecasts Comparison 1
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Figure 3.17: IBM Volatility Forecasts Comparison 2
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Figure 3.18: GE Volatility Forecasts Comparison 1
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Figure 3.19: GE Volatility Forecasts Comparison 2
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Figure 3.20: CAD/USD Daily Returns
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Figure 3.21: CAD/USD Daily Realized Volatility
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Figure 3.22: USD/JPY Daily Returns
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Figure 3.23: USD/JPY Daily Realized Volatility
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Figure 3.24: GBP/USD Daily Returns
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Figure 3.25: GBP/USD Daily Realized Volatility
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Figure 3.26: CAD/USD Volatility Forecasts Comparison 1
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Figure 3.27: CAD/USD Volatility Forecasts Comparison 2
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Figure 3.28: USD/JPY Volatility Forecasts Comparison 1
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Figure 3.29: USD/JPY Volatility Forecasts Comparison 2
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Figure 3.30: GBP/USD Volatility Forecasts Comparison 1
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Figure 3.31: GBP/USD Volatility Forecasts Comparison 2
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Table 3.1: Descriptive Statistics for MMI Returns

Stocks # of obs min max mean std skewness kurtosis

AXP 7890 -.2623 .1856 5.91e-04 .0215 -.1186 11.0912

T 6274 -.2194 .2025 6.04e-04 .0173 .1174 14.7662

CHV 9845 -.1667 .2085 6.44e-04 .0166 .2082 10.5984

KO 9845 -.2469 .1957 5.70e-04 .0160 -.0172 15.5269

DIS 9845 -.2909 .1910 6.24e-04 .0209 -.1985 13.1012

DOW 9845 -.1932 .1524 5.03e-04 .0181 -.1165 10.0208

DD 9845 -.1827 .1147 4.45e-04 .0166 -.0177 8.1179

EK 9844 -.3024 .2406 1.84e-04 .0191 -.2118 22.0107

XOM 9845 -.2343 .1790 6.77e-04 .0146 .0071 19.2241

GE 9845 -.1749 .1361 5.63e-04 .0164 .0250 9.8170

GM 9844 -.3111 .3511 2.25e-04 .0251 .4792 31.6393

IBM 9842 -.2296 .1316 4.02e-04 .0169 .0614 12.9150

IP 9845 -.2695 .1912 3.37e-04 .0186 -.1214 13.2700

JNJ 9845 -.1835 .1223 5.87e-04 .0155 -.0489 8.9948

MCD 9844 -.1942 .1622 7.35e-04 .0184 0174 9.7235

MRK 9845 -.2678 .1303 5.49e-04 .0166 -.4530 14.5407

MMM 9845 -.2598 .1154 4.49e-04 .0148 -.3594 16.3442

MO 9843 -.2300 .1638 8.36e-04 .0174 -.1798 12.6358

PG 9845 -.3138 .2220 5.85e-04 .0148 -1.1529 42.4104

S 9845 -.2713 .2866 3.47e-04 .0221 -.1551 27.8540
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Table 3.2: Descriptive Statistics for NASDAQ Returns

Stocks # of obs minima maxima mean std skewness kurtosis

AAPL 4027 -.5187 .3323 .0014 .0324 -.4584 25.2202

GOOG 1604 -.1161 .1999 .0014 .0232 .7889 11.0641

QCOM 4027 -.1685 .3871 .0015 .0351 .8636 10.8992

YHOO 3705 -.2184 .4797 .0015 .0413 .7366 11.4068

Table 3.3: Summary Statistics of VOL/SHOUT and Number of Trades of NAS-
DAQ Stocks

Volume/SHOUT Number of Trades

Stocks min max mean min max mean

AAPL .0020 .3974 .0264 477 646258 58606

GOOG .0039 .6385 .0409 6600 227399 38013

QCOM .0011 .2210 .0181 79 437540 40373

YHOO 2.39e-04 .3279 .0242 27 876185 40028



111

Table 3.4: Summary Statistics of CAD/USD Return and Realized Volatility

CAD/USD rt r2
t RV

Mean -0.0164 0.1966 0.2955

Var 0.1964 0.1129 0.0286

Skewness 0.0124 4.3994 2.3822

Kurtosis 3.9254 35.3875 17.0873

ACF1 -0.0589 0.0573 0.5927

ACF2 -0.0089 0.0988 0.5596

ACF3 0.0139 0.0740 0.5159

ACF4 -0.0299 0.0746 0.5081

ACF5 -0.0307 0.1247 0.5225
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Table 3.5: Summary Statistics of GBP/USD Return and Realized Volatility

GBP/USD rt r2
t RV

Mean 0.0099 0.2556 0.3375

Var 0.2550 0.1821 0.0295

Skewness 0.0263 4.2372 5.2897

Kurtosis 3.7833 32.2126 77.1422

ACF1 0.0284 0.0431 0.5127

ACF2 -0.0396 0.028 0.3934

ACF3 -0.0164 0.033 0.3594

ACF4 -0.005 0.0113 0.3531

ACF5 0.0541 0.0737 0.3730
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Table 3.6: Summary Statistics of USD/JPY Return and Realized Volatility

USD/JPY rt r2
t RV

Mean -0.0006 0.514 0.556

Var 0.3962 1.9856 0.2071

Skewness -0.119 9.0588 3.7217

Kurtosis 4.3379 118.7738 23.2468

ACF1 0.0222 0.4375 0.6445

ACF2 0.0254 0.3831 0.584

ACF3 -0.0103 0.4142 0.5827

ACF4 -0.001 0.342 0.5397

ACF5 0.0515 0.3529 0.5343



114

Table 3.7: Estimation Results of MMI Returns Using VIX as Threshold

y∗ α0 α1 β0 β1

AXP y72.5 .0418
.0067

.0997
.0189

.9497
.0081

.8585
.0281

T y65 .0366
.0102

.1269
.0311

.9448
.0137

.7941
.0379

CHV y60 .033
.0098

.0863
.0151

.9276
.0217

.89
.0205

KO y92.5 .0279
0048

.1306
0352

.9704
0051

.8613
.0309

DIS y82.5 .0634
.0180

.1023
.0278

.7402
.0539

.8515
.0307

DOW y67.5 .0523
.0112

.0620
.0120

.9260
.0132

.9375
.0115

DD y77.5 .0194
.004

.1044
.0247

.9757
.0054

.8416
.0381

EK y62.5 .1290
.0552

.2969
.0964

.2063
.1375

.4656
.0897

XOM y95 .028
.007

.0959
.0152

.9588
.01

.8778
.0182

GE y77.5 .0213
.0048

.1207
.0227

.9721
.0059

.8397
.0307

GM y67.5 .0352
.0067

.0916
.0160

.9454
.0120

.9076
.0155

IBM y92.5 .0285
.0056

.1918
.0495

.9694
.0062

.7479
0579

IP y57.5 .0305
.0109

.1276
.0247

.8713
.0321

.8539
.0235

JNJ y85 .0469
.0067

.1629
.0755

.9513
.0070

.7723
.0674

MCD y60 .0335
.0096

.0408
.0095

.9400
.0140

.9516
.0097

MRK y67.5 .0106
.0129

.0726
.0234

.9197
.0327

.8947
.0338

MMM y60 .0321
.0164

.1048
.0281

.7524
.0630

.8191
.1291

MO y15 .0167
.0418

.0514
.0115

.2022
.0199

.9396
.0164

PG y80 .0167
.0042

.1488
.0515

.9809
.0043

.8538
.0385

S y50 .1037
.0223

.1119
.0369

.7863
.0432

.8471
.0313

(The small numbers under the estimates are the estimated standard errors)
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Table 3.8: Estimation Results of NASDAQ Returns Using VOL/SHOUT and
Number of Trades as Threshold

Volume/SHOUT
Stocks y∗ α0 α1 β0 β1

AAPL y95 .0827
0250

.0051
0056

.9319
0191

.8824
0631

GOOG y52.5 .0284
0106

.1550
0717

.9363
1174

.8832
0157

QCOM y70 .1261
024

.0163
0103

.8858
0205

.9699
0167

YHOO y72.5 .0108
0093

.2705
0521

.9123
0330

.8014
0319

Number of Trades

Stocks y∗ α0 α1 β0 β1

AAPL y60 .1437
058

.0441
0113

.7981
0502

.944
0132

GOOG y80 1668
0444

.0866
07

.6073
0702

.0501
2497

QCOM y35 .1515
0508

.0558
0109

.7508
0562

.9336
0132

YHOO y47.5 .1488
0340

.1238
0564

.8300
0358

.8176
0539

(The small numbers under the estimates are the estimated standard errors)
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Table 3.9: Estimation Results of NASDAQ Returns Using VIX as Threshold

Stocks y∗ α0 α1 β0 β1

AAPL y22.5 .1616
079

.0791
025

.172
0202

.9228
1813

GOOG y50 .1059
044

.0464
0152

.815
0637

.9564
0161

QCOM y32.5 .0112
005

.0791
0154

.9878
0072

.9147
0152

YHOO y85 .0051
0026

.1008
0501

.9904
0038

.9030
0362

(The small numbers under the estimates are the estimated standard errors)

Table 3.10: Estimation Results of Exchange Returns

Threshold ω0 ω1 α0 α1 β0 β1

CAD/USD Spot Rate .0243
0225

.0028
0018

.0577
0207

.0362
0098

.7172
2389

.952
0151

GBP/USD VIX .0105
0226

.0042
003

.0466
0247

.0201
0092

.9174
0616

.9626
0186

USD/JPY Spot Rate .0728
0394

.0014
0015

.0998
0439

.0195
0064

.6869
1393

.977
0084

(The small numbers under the estimates are the estimated standard errors)
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Table 3.11: Forecasting Results for 20 MMI Stocks
ME1 MPE RMSE HMSE R2

AXP TS GARCH .0569 .3970* .0090 6.0986* .0722*
GARCH .0404* .4136 .0064* 6.7201 .0413

T TS GARCH -.004* -.3086* .0006* 3.3388 .0111*
GARCH -.0056 -.3472 .0009 2.5066* .0051

CHV TS GARCH .0361* .3499* .0057* 6.2621* .1499*
GARCH .0449 .7507 .0071 21.1730 .0890

KO TS GARCH .0198 .3719* .0031 6.4860* .1346*
GARCH .0167* .5707 .0026* 17.6212 .0591

DIS TS GARCH .0250* .2001* .0039* 5.8526* .0708
GARCH .0349 .5260 .0055 12.2574 .1220*

DOW TS GARCH .0287* .2673* .0046* 10.2805 .0781
GARCH .0322 .3842 .0051 8.7226* .0841*

DD TS GARCH .0196* .1871* .0031* 4.1163* .1390*
GARCH .0413 .7065 .0065 12.1604 .1179

EK TS GARCH .0715* 1.0969* .0113* 18.287* .0072*
GARCH .0768 1.4259 .0121 32.8882 .0059

XOM TS GARCH .0217* .2818* .0034* 5.8539* .1906*
GARCH .0335 .6573 .0053 17.8408 .1026

GE TS GARCH .035* .3401* .0055* 11.405* .1509*
GARCH .0443 .6309 .0070 15.5842 .1280

GM TS GARCH .27 1.0918 .0431 17.3807* .0551*
GARCH .24* 1.0234* .0376* 19.4617 .0509

IBM TS GARCH .0592* .0578* .0001* 2.0658* .1735*
GARCH .0916 .1689 .0014 3.2271 .1392

IP TS GARCH .0235* .2692* .0037* 8.0684* .1122*
GARCH .0562 .6689 .0089 23.5101 .0961

JNJ TS GARCH .0023* .0034* .0004* 3.4455* .1165*
GARCH .0075 .4593 .0012 20.2049 .0705

MCD TS GARCH .0066* .1593* .0011* 5.5311* .1082*
GARCH .0104 .3084 .0016 7.1577 .0655

MRK TS GARCH .0263* .5576* .0042* 27.5117* .0278
GARCH .0488 1.0612 .0077 37.7295 .0340*

MMM TS GARCH .0109* .088* .0017* 2.6553* .1735*
GARCH .0261 .8644 .0041 16.0783 .0916

MO TS GARCH .005* .1373* .0001* 9.0653* .0361*
GARCH .0152 .5348 .0024 24.8221 .0137

PG TS GARCH -.0014* .108* .0002* 3.5269* .01466*
GARCH .0123 .4415 .0019 8.1946 .1006

S TS GARCH .0202 .5497 .0032 54.4468 .0068*
GARCH .0095* .3065* .0015* 27.8286* .0016

(1: The value of ME measure should be multiplied by 0.01.)
*: The model performed better based on a forecasting measure.
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Table 3.12: Sample Statistics of HF IBM and GE Returns

IBM rt r2
t RV

Mean 0.0190 1.498 1.2499

Var 1.5001 14.1777 2.0106

Skewness -0.4659 10.4747 5.0680

Kurtosis 7.3347 176.5405 42.2725

ACF1 -0.0059 0.1132 0.6033

ACF2 0.0243 0.1072 0.5326

ACF3 0.0424 0.1615 0.4434

ACF4 -0.0139 0.093 0.4132

ACF5 -0.0396 0.325 0.3771

GE rt r2
t RV

Mean -0.0302 1.5805 1.4525

Var 1.5813 19.8735 18.8073

Skewness -0.085 7.7857 14.6402

Kurtosis 8.9542 83.9779 289.6924

ACF1 -0.0773 0.2977 0.7208

ACF2 -0.0638 0.4186 0.5376

ACF3 -0.0331 0.2578 0.5611

ACF4 0.0144 0.3978 0.3495

ACF5 -0.0004 0.2047 0.1707
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Table 3.13: Forecasting Performance of IBM and GE

ME MPE RMSE HMSE R2

TS .2534 .1635 2.5337 .3113 .5532

IBM GARCH(3,2) .4289 .1742 4.289 .4494 .3851

GJR(2,1,2) .7464 .3505 7.4636 .7098 .5145

TS 2.0059 .2213 20.059 .9214 .556

GE GARCH(3,2) 2.163 .3069 21.63 .1.2894 .4471

GJR(2,1,2) 2.9807 .6021 29.807 2.1961 .5399
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Table 3.14: Forecasting Performance of Three Currencies

ME MPE RMSE HMSE R2

TS .0567 .2225 .5672 .2021 .1102

CAD/USD GARCH(3,2) .1096 .5688 1.0963 .648 .0729

GJR(2,1,2) .1338 .7255 1.3378 .8828 .10

TS -.0043 -.0204 .0436 .0931 .3556

GBP/USD GARCH(3,2) .0155 .0536 .1547 .1173 .277

GJR(2,1,2) .0447 .1968 .447 .1965 .2315

TS .0773 .2313 .7731 .2767 .2721

USD/JPY GARCH(3,2) .0829 .2549 .8289 .3016 .2324

GJR(2,1,2) .0791 .248 .7908 .2912 .1506
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Chapter 4

Applications of Independent
Component Analysis in Finance:
Does Time Structure Matter?

4.1 Introduction

Independent component analysis (ICA) belongs to a class of blind source sepa-

ration (BSS) methods. ICA is a statistical and computational technique for re-

vealing hidden factors that underlie sets of random variables, measurements,

or signals.

From its introduction in early 1980s, ICA has been widely applied in the

fields of signal processing, artificial networks, statistics, etc. In the late 1990s,

researchers start employing this new technique in the field of finance. The in-

dependent component analysis is closely related to the well known statistical

technique - principal component analysis (PCA), which has many applications

in economics and finance. Both PCA and ICA assume that the observed signals

are linear transformation of components. Given a set of multivariate measure-

ment x, the PCA extracts a smaller set of uncorrelated components that would

125
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represent the original measurements as well as possible. ICA, however, reveals

components with strong property - statistical independence. To obtain uncor-

related components, PCA requires only the information on second order statis-

tics, while in ICA higher order statistics are used to achieve independence.

For Gaussian variables, if they are uncorrelated, then they are also indepen-

dent. Therefore if the components are Gaussian variables, then PCA is capa-

ble of finding them by extracting uncorrelated Gaussian components. Because

of this equivalence between uncorrelatedness and independence for Gaussian

variables, it is usually assumed that the components are non-Gaussian in ICA.

It is now well acknowledged that financial series move together more or

less closely over time and cross markets. Therefore, multivariate modeling

framework has been the subject of extensive academic research. However, sub-

stantial computational difficulties prevent success of such modeling in prac-

tice. The ability of finding the independent components (ICs) from correlated

signals may help us reveal some driving mechanisms that otherwise remain

hidden. Also we know that most of the financial time series are not normally

distributed, thus the underlying sources that generate these time series need

not to be normally distributed. If the sources are not normally distributed,

then we must use ICA instead of PCA to identify them.

The ICA model can be estimated by many approaches such as maximum

likelihood, tensorial methods, and nonlinear decorrelaion. A simple and intu-

itive estimation principle - maximization of non-Gaussianity is described later.

Non-Gaussianity can be achieved by maximizing kurtosis, entropy, or mini-

mizing higher order cross-cumulants. Most applications of ICA in economics

assume the components are randomly distributed such that the order of ele-

ments in each component does not matter, therefore use higher order statistics
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in estimation. However, the signals we deal with in economics are actually time

series that contain more structures than just simple random variables, for ex-

ample, the autocovariances of the independent components are well-defined

statistics and can be used in estimating ICA model. Prior to applying ICA in

financial modeling, we first examine the effect of time structure on estimat-

ing ICA model, and hope to obtain some guidance in choosing appropriate ICA

estimation method for financial application.

The rest of this paper is organized as follows. In Section 4.2 we discuss

the ICA model and its estimation. Section 4.3 presents the empirical results of

comparing the ICA models using stock price data. In Section 4.4 we discuss the

procedure of data generation and present the Monte Carlo experiment results.

A brief conclusion is contained in the last section.

4.2 ICA Model

4.2.1 Introduction

ICA can be viewed as an extension to PCA and factor analysis, but is more

powerful in terms of its capability of finding the independent underlying factors

or sources. In connection with ICA, PCA is a useful preprocessing step.

The basic ICA model is defined as follows. We observe n random variables

x1, x2, ..xn, which are modeled as linear combinations of n random source vari-

ables s1, s2, ..., sn:

xi = ai,1s1 + ai,2s2 + ...+ ai,nsn or x = As

where ai,j, i, j = 1, ..., n and si are some real coefficients and the independent
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components respectively. Here we focus on linear ICA models only, but there

are many non-linear ICA models which may be of interest in future research.

The basic ICA model is identifiable under two restrictions: the independent

components are statistically independent and they must have non-Gaussian

distribution. Usually the mixing matrix A is assumed to be square for

simplicity.

A simple application of ICA is the “cocktail party problem”, where the un-

derlying speech signals are separated from a sample data consisting of peo-

ple talking simultaneously in a room. Each underlying speech signal can be

seen as independent of other speech signals since each person has a distinctive

voice. Therefore, if we record N observations of mixed sound waves from N mi-

crophones in the room, where at most N people are talking in the same time.

Usually the problem is simplified by assuming no time delays or echoes. Then

ICA can extract all distinctive voice signals from the observed mixtures.

In finance we usually observe multivariate time series with correlation, e.g.

the price of stocks in financial market. The price of each stock follows a distinc-

tive price path, at the same time it is correlated with other stocks or market

indexes in some degree. There is a large number of stocks in any financial mar-

ket, however we believe the price movement of any stock is mainly affected by

a small number of factors that represent the underlying market conditions. If

the underlying sources are independent, ICA is certainly a good tool that can

help us to find them.
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4.2.2 Estimation of ICA Model

The method of estimating ICA model described below is based on maximization

of non-Gaussianity. This principle is very intuitive in ICA estimation. The

fundamental idea of the method is motivated by the central limit theorem. It

states that under certain conditions the distribution of a sum of independent

random variables converges to a Gaussian distribution. Therefore if the central

limit theorem applies, even a sum of two independent random variables has a

distribution that is closer to Gaussian than any of of the two original random

variables.

Assume the observed signals x are distributed according to ICA model:x =

As, the invertibility of A ensures:

x = As =⇒ s = A−1x

Thus to estimate one of the ICs, consider a linear combination of the xis,

denoted by y = bTx =
∑

i bixi, where b is a vector to be estimated. Now we have

y as a certain linear combination of the si’s:

y = bTx = bTAs = qT s =
∑

i qisi

Therefore we vary the coefficients in q and see how the distribution of y =

qT s changes. If the central limit theorem applies, a sum of even two indepen-

dent random variables is more Gaussian than any of the original ones, thus

y = qT s is usually more Gaussian than any of the sis and becomes least Gaus-

sian when it in fact equals one of the si. Because qT s = bTx, we can obtain one

estimated IC by maximizing the non-Gaussianity of bTx. The problem turns

out to be a maximization problem.
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Even though the above ICA model can be estimated easily, there always

exist two ambiguities or indeterminacies. First, we cannot determine the vari-

ances of the independent components because the observed signals remain un-

changed if we multiply any source si by a scalar and divide the corresponding

column ai of A by the same scalar, say αi: x =
∑

i(ai, 1/αi)(siαi). We may restrict

each independent component has unit variance, however it still leaves the am-

biguity of sign. Second, we cannot determine the order of the independent

components since change of the order in the sum does not affect the output.

The basic ICA model that is described above assumes a linear mixture of

independent random variables. However in economics or finance, we often deal

with a mixture of time series. If the independent components are time series,

they contain more structures than simple random variables. For instance, the

autocovariances (covariances over different time lags) of the ICs are then well

defined statistics, and therefore can be used to estimate ICA model.

4.2.3 Application of ICA

Back and Weigend(1997) performed the earliest financial application of ICA

in finance. They use the joint approximate diagonalization of eigenmatrices

(JADE) algorithm which assumes the components are random variables and

uses the fourth order cumulants to estimate ICA model. Since then, more at-

tentions are drawn to this new technique. Kiviluoto and Oja (1998) apply ICA

to the cashflow in 40 stores that belong to the same retail chain and identify the

fundamental factors that affect the cashflow. Chin, Weigend, and Zimmermann

(2000) identify the distribution of portfolio returns by approximating the dis-

tributions of independent components, then derive analytic solutions to three

risk measures: VaR,SVaR,and LPM. Subsequent work of ICA application has
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extended to various topics like factor analysis, forecasting, and risk manage-

ment. However, there are still many potential areas that ICA can play a role

and we hope to explore the possibility in improving economic modeling by this

powerful new tool.

4.3 Empirical Study of the Effect of Time Struc-

ture on Estimation of ICA model

Most of the applications of ICA in finance used the basic ICA algorithm, which

assumes the ICs are independent random variables even when the time series

data are analyzed. The ignorance of time structure may affect the results of es-

timation of ICA model, however we don’t know the direction and magnitude of

the effect. Also since the underlying time-dependence structure of the sources

is unknown, and different assumptions on time-dependence structure result in

the use of different ICA methods, there exists a question as to which method

should be used in what situation. Here we apply two ICA algorithms to a sam-

ple of Japanese stock returns, one of them assumes the basic ICA model, while

another considers the ICs as time signals. We want to know how sensitive is

the estimation in response to the consideration of time structure.

4.3.1 Data

To answer the question how does time structure affect estimating ICA model,

we conduct an empirical study on time series data. The ICA model is applied to

a portfolio of stocks from the Tokyo Stock Exchange (TSE). The portfolio con-

sists of 27 largest firms in the TSE from August 1986 to October 1989. We
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choose this data set to compare with the study conducted in Back and Weigend

(1997). The continuous compounded returns of stocks are defined by the differ-

ence of log prices:

x(t) = log(pt)− log(pt−1).

Table 4.1 in Appendix contains the basic descriptions of return data. Figure

4.1 shows the stock prices of the largest company in the TSE, the Bank of

Tokyo-Mitsubishi. Figure 4.2-4.6 shows the prices of the largest 6 stocks in

TSE.

4.3.2 Algorithm

JadeR Algorithm

The JadeR algorithm developed by Cardoso (1993) is designed for the basic

ICA model, which assumes that the ICs are independent random variables

with non-Gaussian distribution. Compared to the other basic ICA algorithms,

JadeR is an efficient version of the standard two-stage procedure approach.

The first stage is performed by computing the sample covariance matrix, giv-

ing the second order statistics of the observed data. From this, a matrix is

computed by eigen-decomposition which whitens the data. The second stage

consists of finding a rotation matrix which jointly diagonalizes eigen-matrices

formed from the fourth order cumulants of the whitened data. It scales the ICs

to unit variance and extracts the ICs in an order that “the most energetically

significant” components appear first.

Statistical independence is achieved and the transformation matrix is found

by minimizing the sum of squared fourth order cross-cumulants of ICs. For the
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zero-mean variables xi, xj, xk, xl the fourth order cross-cumulant is given by:

E(xixjxkxl)−E(xixj)E(xkxl)−E(xixk)E(xjxl)−E(xixl)E(xkxj) ∀i, j, k, l 6= i, i, i, i

The statistical independence is achieved to the degree of the minimization

of the fourth order cross-cumulants (reducing them to the values close to zero).

ThinICA Algorithm

The ThinICA algorithm developed by Cruces and Cichocki (2003) is made for

a time series ICA model, it is considered an extension of the AMUSE (Tong,

1991) and SOBI (Belouchrani et al. 1997) algorithms. The algorithm is based

on the criteria that jointly perform maximization of several cumulants of the

output and/or the second order time delay covariance matrices. The employed

contrast function combines the robustness of the joint approximate diagonal-

ization techniques with the flexibility of the methods for blind signal extrac-

tion.

Instead of the higher order information, for time series data the information

in a time-lagged covariance matrix can be used in estimation of ICA model.

For any independent time series random variable yi, yj, in addition to the zero

instantaneous covariances, the lagged covariances are all zero as well:

E[yi(t)yj(t− τ)] = 0, ∀i, j, τ
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4.3.3 Estimation Comparison of ICA models

Structure of ICs

Assume the returns are generated by ICA model:x(t) = As(t), we then estimate

ICA model according to different assumptions on ICs: random variables or

having time structure, and obtain the estimated ICs using demixing matrix W :

y(t) = Wx(t).

Figure 4.7-4.8 plots the return series of the largest 6 stocks in TSE. While

Figure 4.9 and Figure 4.10 plot the first 6 independent components extracted

by the basic ICA model and the time series ICA model respectively.

The dominant ICs are defined as follows to demonstrate the contributions of

the ICs to any given stocks. Any give stock return xi is just the weighted sum

of the independent components, where the weight vector is the transpose of the

corresponding row of the mixing matrix. The weighted ICs are thus obtained

by multiplying the corresponding row of the mixing matrix with the ICs. Those

ICs with the largest maximum signal amplitudes are dominant ICs. Figure

4.11 and Figure 4.12 provide the weighted ICs obtained from the basic ICA

model and the time series ICA model for the Bank of Tokyo-Mitsubishi.

To compare estimation results from two ICA models, we reconstruct the

returns and therefore the prices by estimated ICs (where mixing matrix A is

obtained by the inverse of demixing matrix W ). For simplicity we assume there

exists the same number of sources as that of observations, so the mixing matrix

is always square and invertible.

x̂i(t) = Ay(t) =
∑n

k=1 ai,kyk(t)

Then we define the weighted ICs for ith stock as:
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yk(t) = ai,kyk(t) k = 1, ..., n

Since x̂i(t) =
∑n

k=1 yk(t), we sort the weighted ICs by their L∞ norms to

demonstrate their contributions to the maximum level change in a given stock.

It is shown from Figure 4.13 and Figure 4.14 that most stocks are well con-

structed by only few dominant weighted ICs.

Estimation Results

We compare two models using the root mean square errors between recon-

structed prices and the original prices:

RMSE =
√

1/NT
∑N

i=1

∑T
t=1(pi,t − p̂i,t)2

We compute RMSE by using 4 and 8 dominant ICs for both basic and time

ICA models in Table 4.2. The results suggest some improvement by using time

structure assumption on ICA estimation.

4.4 Simulation Study on the Effect of Time Struc-

ture on Estimation of ICA model

In order to capture the effect of time structure on estimating ICA model, we

simulate return data according to ICA model where the underlying sources are

generated to contain time structure:

x(t) = As(t)
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The mixing matrix A that we used here is the estimated mixing matrix

(the inverse of the demixing matrix) from previous empirical work. While

the sources s(t) are generated to contain some time structures, like AR pro-

cess. Then ICA models are estimated according to different assumptions on

the sources: random variables or time signals, and the estimation results are

compared. There are 3 different structures of sources considered in the simu-

lation study: AR(1), MA(1), and GARCH(1,1). All the results are based on 1000

replications.

4.4.1 The Sources Are Generated by AR(1) Process

In the first experiment , we consider the case where the sources follow AR(1)

process with normally distributed errors:

si,t = δisi,t−1 + εi,t, for i = 1, .., N and t = 1, .., T

We choose N = 20 and T = 1000, εi is generated independently from stan-

dard normal distribution. The initial value s0 is also normally distributed with

mean 0, the variance σ0 is calculated from the relationship σ0,i = σ/
√
(1− δi2)

to satisfy the stationary condition, while δi is chosen randomly from a uniform

distribution on interval [0.1 0.9]. Use ε and s0, the rest sources are generated

by the recursive formula: si,t = δisi,t−1 + εi,t. For the given underlying sources,

we obtain the return series by ICA model: x(t) = As(t). Then the simulated

data are estimated by ICA model based on the different assumptions of the

sources, and the reconstructed returns using all the estimated ICs and 4 domi-

nant ICs are compared with original returns. The criterion used in comparison

is the root mean square error:

RMSE =
√

1/NT
∑N

i=1

∑T
t=1(xi,t − x̂i,t)2
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4.4.2 The Sources Are Generated by MA(1) Process

In the second experiment , we consider the case where the sources follow MA(1)

process with student t-distributed errors:

si,t = εi,t + δiεi,t−1, for i = 1, .., N , and t = 1, .., T

We choose N = 20 and T = 1000, εi is generated independently from student

t-distribution. As before δi is chosen randomly from a uniform distribution

on interval [0.1 0.9]. Use ε, the rest sources are generated by the recursive for-

mula: si,t = εi,t+δiεi,t−1. Then we generate returns by ICA model and estimation

results are presented for different degrees of freedom of t-distribution.

4.4.3 The Sources Are Generated by GARCH(1,1) Process

In the third experiment , we consider the case where the sources follow GARCH(1,1)

process:

si,t = σi,tzi,t

σ2
i,t = κi + αiσ

2
i,t−1 + βisi,t−1

2 for i = 1, .., N and t = 1, .., T

We choose N = 20 and T = 1000, zi is generated independently from stan-

dard normal distribution. The GARCH parameters κ,α, and β are estimated

from ICs obtained from previous empirical work.

4.4.4 Simulation Results

The simulation results somehow support our conjecture that time structure of

independent components will affect the estimation of ICA models. In the first
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case reported in Table 4.3 when the sources are generated by AR Processes,

the estimation improved when the autocorrelation is considered, however the

improvement is not substantial. The basic model with random ICs performs

reasonably well.

While for the MA sources, except the case where the errors in the MA pro-

cess are t-distributed with degree of freedom 5, in the rest of cases the auto-

correlation of sources improve the estimation of ICA model. The results are

presented in Table 4.4.

In the GARCH case, showed in Table 4.5, however, if the sources are gener-

ated by a GARCH process, then we simply assume that the sources themselves

are not autocorrelated, but squared sources experience high autocorrelations.

Therefore if we use the autocorrelation in the sources to estimated ICA model,

we won’t be able to improve the estimation.

The results show that if the sources contain time dependency structure,

then we must take into account of it when estimating ICA model. The time

structure we assumed on sources is the autocorrelation. If in fact the time

structure of sources are not from sources themselves, but the higher orders of

sources such as described by a GARCH model, then autocorrelation assumption

will not help much in estimating ICA model. There are reasons to search for

estimation methods that deal with more complicated structure than just simple

autocorrelation, maybe the method copes with non-stationary variance could

probably capture more characteristics of financial time series in real life.
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4.5 Conclusion and Extension

The independent component analysis is a statistical method that reveals the

underlying hidden components from a set of multivariate signals. It is widely

used in many field such as signal processing, artificial neural networks, statis-

tics, etc. From the late 1990s, ICA has been applied to problems in economics

and finance. Since there are many situations in which parallel economic and

financial time series are being analyzed, ICA might help us to reveal some driv-

ing mechanisms that otherwise remain hidden. In most of the ICA applications

in finance, the independent components are assumed to be random variables

and the time structure is usually ignored. In this paper we examine the effect

of time structure on the estimation performance of ICA models.

We employ 27 stocks in Tokyo Stock Exchange and estimate the basic ICA

model and time series ICA model. The empirical study shows that very few of

the latent components can be used to reconstruct the original price movement

well. The results also support the use of time series ICA model. However, a

firmer conclusion should be examined through more complicated data generat-

ing process.

In finance we often deal with correlated multivariate time series and we

are very keen to know the underlying factors that generate these data. ICA,

as a statistical method to extracting the underlying latent factors, has a great

potential in financial time series analysis.
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4.6 Appendix

Figure 4.1: The price series of the Bank of Tokyo-Mitsubishi
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Figure 4.2: The price series of the Bank of Toyota Motor
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Figure 4.3: The price series of the Bank of Sumitomo Bank
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Figure 4.4: The price series of the Bank of Fuji Bank
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Figure 4.5: The price series of the Bank of Dai-Ichi Kangyo
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Figure 4.6: The price series of the Industrial Bank of Japan
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Figure 4.7: The return series of largest 3 stocks in the TSE
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Figure 4.8: The return series of the 4th, 5th, and 6th largest stocks in the TSE
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Figure 4.9: The first 6 independent components estimated by the basic ICA
model
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Figure 4.10: The first 6 independent components estimated by the time series
ICA model
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Figure 4.11: The 4 most dominant ICs and the sum of the remaining 23 least
dominant ICs for the returns of the Bank of Tokyo-Mitsubishi estimated by the
basic ICA model
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Figure 4.12: The 4 most dominant ICs and the sum of the remaining 23 least
dominant ICs for the returns of the Bank of Tokyo-Mitsubishi estimated by the
time series ICA model
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Figure 4.13: The reconstructed price series of the Bank of Tokyo-Mitsubishi
using the basic ICA model. The solid line on the top is the original stock price.
The dashed line in the middle is the reconstructed price using the four most dominant
weighted ICs. The dotted line on the bottom is the reconstructed residual stock price
using the sum of the remaining 23 weighted ICs.
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Figure 4.14: The reconstructed price series of the Bank of Tokyo-Mitsubishi
using the time series ICA model. The solid line on the top is the original stock
price. The dashed line in the middle is the reconstructed price using the four most
dominant weighted ICs. The dotted line on the bottom is the reconstructed residual
stock price using the sum of the remaining 23 weighted ICs.
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Table 4.1: The Sample Statistics of TSE Return Data

TSE stocks Mean Variance Skewness Kurtosis

Bank of Tokyo-Mitsubishi .0006 .0004 .31 12.22
Toyota Motor .0008 .0005 -.03 16.32

Sumitomo Bank .0003 .0005 -.37 11.81
Fuji Bank .0007 .0004 -.04 18.22

Dai-Ichi Kangyo .0006 .0003 .06 16.7
Industrial Bank of Japan .001 .0006 .39 10.78

Sanwa Bank .0007 .0004 -.04 12
Matsushita Electric .0004 .0006 .37 10.6

Sakura Bank .0008 .0005 .37 16
Nomura Securities 0 .0005 .57 8.24

Tokyo Electric -.0001 .0005 .29 11.71
Hitachi .0007 .0006 .13 6.49

Mitsubishi Industries .0008 .0006 .31 7.98
Asahi Bank .0007 .0005 -.04 12.62
Tokai Bank .0007 .0004 -.24 19.22

Honda Motor .0006 .0006 .17 13.22
Sony .0011 .0004 .73 6.94

Seibu Railway -.0001 .0008 .41 9.14
Toshiba .0008 .0006 .21 6.13

Ito-Yokado .0001 .0003 -.43 10.83
Kansai Electric .0001 .0006 .33 8.97

Nippon .0011 .0006 .22 6.14
Mitsubishi Trust .0002 .0006 .33 8.9

Nissan Motor .0008 .0005 .57 8.28
Denso .0006 .0005 -.28 12.27

Mitsubishi .0006 .0006 -.27 8.26
Tokyo Marine .0002 .0006 -.31 19.73
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Table 4.2: Empirical results for TSE stocks

Models RMSE(4 ICs) RMSE(8 ICs)

Basic ICA Model 552 442

Time ICA model 437 330

Table 4.3: Results for AR sources

Model RMSE(All ICs) RMSE (4 ICs)

Basic ICA model 2.47e-17 0.024

Time ICA model 2.27e-17 0.020
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Table 4.4: Results for MA sources

df RMSE(All ICs) RMSE(TS)(All ICs) RMSE(4 ICs) RMSE(TS)(4 ICs)

5 9.96e-18 1.0e-17 0.0102 0.0106

6 9.50e-18 9.44e-18 0.01 0.0099

7 9.26e-18 9.1e-18 0.0099 0.0096

8 9.12e-18 8.9e-18 0.0097 0.0093

9 8.97e-18 8.72e-18 0.0096 0.0091

10 8.93e-18 8.66e-18 0.0095 0.009

Table 4.5: Results for GARCH sources

Model RMSE(All ICs) RMSE (4 ICs)

Basic ICA model 1.40e-17 0.014

Time ICA model 1.42e-17 0.015
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Chapter 5

Conclusion

My thesis focuses on the financial asset return and volatility modeling.

In order to explain the regime switching in the volatility dynamics of fi-

nancial asset returns, we propose a threshold GARCH model to utilize the in-

formation provided by an observable threshold variable. In the first essay we

theoretically investigate the usefulness of the threshold model. We derive theo-

retical conditions, which ensure that the return process in the threshold model

is strictly stationary, as well as conditions for the existence of various moments.

A simulation study is further conducted to examine the finite sample proper-

ties of the maximum likelihood estimator. Simulation results reveal that the

maximum likelihood estimator is well behaved for modest sample sizes when

the stationarity conditions hold and the variance of the return series exists.

The second essay investigates the estimation and forecasting performance

of the threshold GARCH model. We find that the volatility index is useful in

identifying the regime shifting in the volatility process for stock returns as well

as currency exchange rates. The variable is especially helpful when there is a

sudden spike in volatility during the forecasting period. We also examine the

159
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forecasting performance for different volatility proxies. The forecasting per-

formance of our threshold model is improved significantly when the realized

volatility is used as a proxy for the actual volatility. The forecasting perfor-

mance of three currency exchange rates also support the use of the threshold

model in volatility forecasting.

The third essay examine the effect of time structure on the estimation per-

formance of ICA models and provide guidance in applying the ICA model to

time series data. We compare the performance of the basic ICA model to the

time series ICA model in which the cross-autocovariances are used as a mea-

sure to achieve independence. We conduct a simulation study to evaluate the

time series ICA model under different time structure assumptions about the

underlying components that generate financial time series. Moreover, the em-

pirical study supports the use of the time series ICA model.
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