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ABSTRACT

Multiple linear regression analysis is used widely to evaluate how an outcome or re-

sponse variable is related to a set of predictors. Once a final model is specified, the inter-

pretation of predictors can be achieved by assessing the relative importance of predictors.

A common approach to predictor importance is to compare the increase in squared

multiple correlation for a given model when one predictor is added to the increase when

another predictor is added to the same model.

This thesis proposes asymmetric confidence-intervals for a difference between two cor-

related squared multiple correlation coefficients of non-nested models. These new proce-

dures are developed by recovering variance estimates needed for the difference from asym-

metric confidence limits for single squared multiple correlation coefficients. Simulation

results show that the new procedure based on confidence limits obtained from the two-

moment scaled central F approximation performs much better than the traditional Wald

approach. Two examples are used to illustrate the methodology. The application of the

procedure in dominance analysis and commonality analysis is discussed.

KEYWORDS: Coefficient of determination; Multiple correlation coefficient; Domi-

nance analysis; Commonality analysis.
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Chapter 1

INTRODUCTION

Multiple linear regression model is one of the most frequently used tools for evaluating

how an outcome or response variable is related to a set of predictors. To quantify the per-

formance of the model, the coefficient of determination is commonly used. All statistical

computer packages provide values of R2 automatically, but without mentioning statistical

inference for its population parameter (ρ2). It is well-known that testing ρ2 = 0 can be

achieved using an F-test. However, confidence interval construction for ρ2 is rarely men-

tioned even though confidence intervals are more informative. The primary goal of this

thesis is to develop inference procedures for quantifying the importance of predictors using

confidence intervals for changes in ρ2. Specifically, we focus on the increase in ρ2 for a

given model when one predictor is added as compared to the increase in ρ2 for the same

model when another predictor is added.

1.1 Inferences for a single squared multiple correlation

The coefficient of determination has several definitions. Generally, R2 is defined as the

proportion of “variability” (measured by the sum of squares) in a data set accounted for

by a multiple regression model (e.g., Steel and Torrie, 1960, pg. 187, 287). This interpre-

tation is usually presented at the conclusion of a multiple regression analysis. R2 is also

defined as the sample squared correlation coefficient between the response variable and its

corresponding predicted value from the regression model (e.g., Cohen et al., 2003).

Based on the definition, R2 is a widely used goodness-of-fit statistic for the overall
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performance of a multiple regression model. A coefficient of determination can represent

a measure of how well the regression line approximates the observed data points. It lies

between 0 and 1. The closer it is to 1, the better is the linear relationship between the

response variable and predictors. The closer it is to 0, the worse is the linear relationship.

The correlation coefficient of 0 indicates no linear relationship between variables, although

nonlinear relationship may exist. However, there also exists some controversy regarding R2

as a goodness of fit statistic (Hagquist and Stenbeck, 1998). One argument is that the value

of R2 always increases even when a non-predictive regressor is added in a linear regression

model; this can be dealt with by adjusting the R-squared. By including a penalty for the

number of predictors in a model, the adjusted R-squared increases only if the added predic-

tor improves the model more than would be expected by chance (Ezekiel, 1930). Another

argument is that correlation does not imply causation, since correlation between two vari-

ables may exist due to common causes, confounding variables or coincidences (Aldrich,

1995). Moreover, even if the causal relationships between the outcome and predictors in

two regression models are identical, the value of R2 may differ greatly between different

samples. R2 is regarded as more meaningful as a point estimate of population ρ2 only for a

data set with random regressors (Helland, 1987). For a model with random regressors, the

accuracy of R2 depends on not only the sample size, but also the assumed distribution of

predictors.

Besides evaluating the overall performance of a multiple regression model, R-squared

also can be served as a general measure of determining the relative importance of predictors

in multiple regression analysis (Budescu, 1993). After having built a multiple regression

model with a chosen set of predictors, one may want to know a relatively important subset

of predictors, or rank the predictors according to their contributions in predicting the out-

come. Hence, it is an important issue in multiple regression analysis to choose an intuitive

and meaningful index of importance for any predictor. There were three classes of measures

of importance including slope-based measures such as regression coefficients, standardized

regression coefficients and the products of the mean of a predictor and the corresponding
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regression coefficient, correlational measures such as the correlation, the squared corre-

lation and the squared partial correlation (The coefficient of partial correlation is defined

as the correlation coefficient between two sets of variables keeping a third set of variable

constant.), and measures based on a combination of the regression coefficients and the cor-

relations such as the product of the correlation between a predictor and the outcome and the

corresponding standard regression coefficient (Azen and Budescu, 2003; Budescu, 1993).

However, all these measures do not offer an intuitive and universal interpretation of im-

portance which leads to different orderings of the predictors’ importance and confusion on

the meaning of importance. Budescu (1993) suggested that an appropriately general mea-

sure of importance should satisfy the following three conditions: “(a) Importance should

be defined in terms of a variable’s ‘reduction of error’ in predicting the outcome; (b) The

method should allow for direct comparison of relative importance instead of relying on

inferred measures; (c) Importance should reflect a variable’s direct effect, total effect and

partial effect.” According to these criteria, Budescu (1993) developed a new methodology

– dominance analysis, in which a predictor is considered to be dominant or more important

than another predictor if its additional contribution in the prediction of the response vari-

able defined as the squared semipartial correlation (i.e., the difference between two squared

multiple correlations from nested models), is greater than the competitor’s for all possible

subset models. In a word, one can identify the relative importance of predictors through a

series of pairwise comparisons of squared multiple correlations from all submodels.

1.1.1 Fixed and random regressors

Depending on whether regressors are fixed or random, inference procedures for ρ2 are dif-

ferent. A key distinction with respect to ρ2 between fixed-score and random-score multiple

regression models is that ρ2 is constant for fixed-score regression models, while population

ρ2 can be made arbitrarily small and large when regressors are random.

For a multiple regression model having p fixed predictors and sample size n, statisti-

cal inferences on population squared multiple correlations are relatively easy. In partic-
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ular, when testing for the null hypothesis H0 : ρ2 = 0, one usually construct a statistic
R2/p

(1−R2)/(n−p−1)
. Under H0, the statistic follows a central F distribution with degrees of

freedom p and n− p−1. When ρ 6= 0, the statistic follows a noncentral F distribution with

degrees of freedom p and n− p−1 and a noncentrality parameter.

In this study, attention is restricted to inference procedures for models with random

regressors. Since inference for ρ2 arising from fixed regressors can be easily done on the

basis of the noncentral F distribution with degrees of freedom independent of ρ2. For ran-

dom regressors, the same central F-distributed statistic can be used for testing significance,

because when the null hypothesis is true, the sampling distribution for R2 does not change

for fixed or random regressors (Smithson, 2003). However, this is not a case if we are inter-

ested in confidence intervals for ρ2 in models with random regressors. Since for nonzero

cases, the noncentrality parameter is a function of regressors, the unconditional distribu-

tion of R2 highly depends on the assumed distributions of those regressors. Hence, when

constructing confidence intervals for ρ2, many statistical inference procedures suitable for

fixed regressors only can provide conditional confidence intervals on particular values of

random regressors observed in the sample. In fact, since the random regressors themselves

take account of sampling error, the confidence intervals for ρ2 from fixed regressors models

are much narrower than those from random regressors models (Smithson, 2003). Hence, a

unconditional confidence interval-based inference for ρ2 in models with random regressors

is preferred.

1.1.2 Point estimation for a single squared multiple correlation

It is well known that R2 is defined as the ratio of regression sum of squares and the total

sum of squares. According to this definition, one can calculate the value of R2 from the

fitted model. Almost all statistical softwares automatically provide the value of R-squared

for a multiple regression model.

Under the assumption that the joint distribution of the outcome and predictors is mul-

tivariate normal, R2 is approximately unbiased as a sample size approaches to infinity
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(Hagquist and Stenbeck, 1998). However, R2 usually has a positive bias as an estimate

of ρ2, especially when the number of regressors are moderate or large. Many researchers

have developed various alternatives that reduce the bias (see Raju et al., 1997). A com-

monly used estimator is the R2 adjusted by replacing the sum of squares with the mean

square by (Ezekiel, 1930). Alf and Graf (2002) compared R2 and eight other estimates of

ρ2, which includes Smith’s estimator (Ezekiel, 1929), an estimator proposed by Wherry

(1931), the adjusted R2 (Ezekiel, 1930), a unbiased estimator (Olkin and Pratt, 1958) and

its two approximate versions proposed by Pratt and presented in Claudy (1978) and by

Herzberg (1969), a empirically based estimate (Claudy, 1978), and the maximum likeli-

hood estimate (Alf and Graf, 2002). The first two have similar modifications to the adjusted

R2 by including a penalty for the number of predictors in a model, and the other five estima-

tors involving the unbiased estimate provided by Olkin and Pratt (1958) are derived from

models with random regressors. Alf and Graf (2002) found that: ‘the adjusted R2 (Ezekiel,

1930) was unbiased only when ρ2 is 0’; Olkin and Pratt (1958)’s estimator is unbiased over

all the values of the sample size n and ρ2, but involves a complex hypergeometric func-

tion; and the remaining estimators (including R2 and a maximum likelihood estimate of ρ2

derived from its exact density function) were biased for all the values of n and ρ2.

Another way to compute the R2 of a regression model requires the sample simple cor-

relations among the dependent variable and predictors within the model. According to the

definition (Pearson and Filon, 1898), a multiple correlation coefficient can be mathemati-

cally represented as a function of simple and/or partial correlation coefficients, while partial

correlations are also functions of simple correlations. Correspondingly, as a sample squared

multiple correlation coefficient, R2 can be represented as a function of sample simple cor-

relation coefficients. This relationship also can be represented in matrix form. That is, R2

can be represented as a function of several determinants of matrices of the sample simple

correlations between variables included in the model (Olkin and Siotani, 1976). These for-

mulas based on correlation matrices are easily used to estimate ρ2 of a regression model

with small number of predictors.
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1.1.3 Confidence interval estimation for a single squared multiple correlation

Several confidence interval procedures for a single ρ2 in random scores models have ap-

peared in the literature. These procedures include a Wald-type confidence interval, a confi-

dence interval based on Fisher’s R2-to-z transformation, a confidence interval derived from

the exact density of R2, asymptotic confidence intervals based on various approximations

to the density of R2, and bootstrap confidence intervals which do not assume multivariate

normality for the outcome and regressors.

With an estimator of the asymptotic variance of R2 provided by Wishart (1931), the

Wald method can be used to construct a symmetric confidence interval of ρ2. However,

the forced symmetry of the Wald-type confidence interval is questionable, since the sam-

pling distribution of R2 is skewed and converges very slowly to normality (Algina, 1999).

Furthermore, this Wald-type confidence interval constructed by using ordinary R2 and its

variance estimate may be out of range of 0 to 1. Meanwhile, if one uses the adjusted R2 and

its variance estimate instead of ordinary R2 and its variance estimate, since the adjusted R2

has a much bigger variance estimate than R2 does, the resulting lower Wald-type confidence

limit for ρ2 may be negative, which is inconsistent with that of the associated F test.

Fisher’s z transformation which is commonly used for inferences on simple correlations

has been applied to make inferences on squared multiple correlations. The confidence limits

for ρ2 can be represented as a monotone increasing function of confidence limits of Fisher’s

z statistic, which is assumed to be approximately normally distributed. However, Fisher’s

statistic, since it takes only non-negative values, has a more positive skewed distribution

than R2 (Algina, 1999). Therefore, it is not recommended that Fisher’s transformation is

used for constructing confidence intervals for ρ2.

Under the multivariate normality assumption, Fisher (1928) derived the exact density

function of R2. Due to the complex form of the density, it is impossible to derive an an-

alytical confidence interval for ρ2 from the density, although lower confidence limits for

ρ2 in particular cases based on the exact density has been tabulated (see Kramer, 1963;
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Lee, 1972). Various asymptotic confidence intervals for ρ2 have been proposed through

approximating a transformed variable R2/(1−R2) to be scaled central F distributed (Gur-

land, 1968; Helland, 1987), scaled noncentral F distributed (Lee, 1971), and relocated and

rescaled central F distributed (Lee, 1971). The comparison between the exact and three ap-

proximate density functions of R-square shows that the scaled noncentral F approximation

which requires the estimation of the noncentrality parameter performs much better than that

of the relocated and rescaled central F approximation, while slightly better than that of the

scaled central F approximation.

Bootstrap methods first proposed by Efron (1979) may be thought to provide a univer-

sal solution to inference, especially for those estimators having an unknown or complicated

distribution. The bootstrap aims to use computer-based re-sampling to approximate the

sampling distribution of the estimate of the parameter. Common bootstrap methods for

constructing confidence intervals are the percentile (Schenker, 1985), the bias-corrected

(BC) (Efron, 1981), the bias-corrected and accelerated (BCa) (Efron, 1987), bootstrap-t

(Efron, 1979), and the approximate bootstrap confidence intervals (ABC) (Efron and Tib-

shirani, 1993). However, there are limitations to these bootstrap methods (Efron, 1987;

Efron and Tibshirani, 1993). For example, the percentile interval performs well only for

unbiased statistics having a symmetric sampling distribution; the BC method requires the

existence of a normalizing transformation and stabilized variance, and is applicable only

for large samples; the validity of the BCa method highly depends on the accuracy of esti-

mating an extra acceleration constant; the bootstrap-t method requires an accurate estimate

of the standard error of the statistic and often yields a very wide confidence interval; the

ABC is applicable for smoothly defined parameters in exponential families and also re-

quires an estimate of the nonlinearity parameter. Furthermore, nonparametric methods like

jackknifing and bootstrapping are more sensitive to the sample size than valid parametric

methods. A cautionary example shows that all jackknife and bootstrap confidence intervals

of ρ2 perform too poorly to be trusted for a data set with small sample size and relatively

large number of predictors (SAS, 2010). In addition, all these bootstrap confidence inter-



8

vals require intensive computations, hence, as Efron (1988) stated, the bootstrap can be an

alternative method only when there is no any suitable parametric methods.

In summary, the scaled central F approximation (Gurland, 1968; Helland, 1987) and

the scaled noncentral F approximation (Lee, 1971) may be good choices to construct con-

fidence interval for a single squared multiple correlation coefficient. Furthermore, the con-

fidence intervals based on these two approximations are easily obtained by respectively

implementing existing statistical package programs, such as SAS PROC CANCORR, a

SAS macro or an SPSS syntax provided by (Zou, 2007).

1.2 Inferences for a difference between two squared multiple correlations

As mentioned before, a squared multiple correlation is an important measure for quantify-

ing the overall performance of a model, and also for quantifying the importance of a set

of predictors. Explicitly, comparisons of R2s from all possible linear regression submodels

involving various sets of predictor, are made to identify a relatively important subset of

predictors, or rank the predictors according to their contributions in predicting the response

variable. Both are the final objectives of two popular research fields (Azen and Budescu,

2003; Hedges and Olkin, 1981), dominance analysis (Budescu, 1993) and commonality

analysis (Kerlinger and Pedhazur, 1973).

The exact sampling distribution of a single R2 is already highly complex, so we may

have to resort to the joint asymptotic distribution theory of two or more squared multiple

correlations. For models with random regressors, the joint distribution of simple correla-

tions or functions of correlations (e.g., squared multiple correlation) among the response

variable and regressors highly depends on the distribution of the depended variable and

independents.

When the outcome and regressors are assumed to be multivariate normal, most litera-

tures have presented the asymptotic joint distributions of functions of correlations including

the vector of sample simple correlations between variables (Pearson and Filon, 1898), de-



9

terminants of correlation matrices (Olkin and Siotani, 1976), squared multiple correlations

(Hedges and Olkin, 1981), any sets of partial and/or multiple correlations (Hedges and

Olkin, 1983), and so on. Each of these joint distributions is asymptotically multivariate

normal by applying the central limit theorem. However, these asymptotic joint distribu-

tions are only applicable for very large samples, since the exact joint distribution of two

correlated R2s is probably still extremely skewed.

Without the multivariate normality assumption for a vector variate of interest, Steiger

and Hakstian (1982) presented an asymptotic joint distribution of simple correlations among

variables involving the kurtosis of a vector of variables. In particular, when the joint distri-

bution of variables belongs to elliptical family, the asymptotic variance-covariance matrix

of correlations can be obtained through multiplying the asymptotic variance-covariance

matrix derived under the multivariate normality assumption (Olkin and Siotani, 1976) by a

relative kurtosis. This relative kurtosis is equal to 1 when the variables have a multivariate

normal distribution. The coefficient of multivariate kurtosis can be estimated by using the

algorithm provided by Mardia and Zemroch (1975). According to this asymptotic theory,

Steiger and Browne (1984) presented a series of chi-square tests for linear combinations of

partial correlations, independent or correlated multiple correlations, and canonical correla-

tions, with or without the assumption of multivariate normality. However, this asymptotic

theory is complicated except for particular cases, for example, elliptical families.

It has been known that confidence intervals can provide us a quantitative measure of an

effect, not just a qualitative impression, that is, whether the effect is statistically significant.

Hence, we are interested in not only whether the differences between two squared multiple

correlations is positive or negative, but also the confidence intervals for the difference.

The relationships between any two regression models can be classified into three cate-

gories: independent, nested (i.e., all predictors within a model are a part of the predictors

of another model), and overlapped but non-nested (i.e., two models have a common subset

of predictors). Hence, inferences for differences between two R2s should be made in the

following three cases.
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A comparison of R2s from two models without any common predictors or from two

independent populations is the simplest case due to the independence between two R2s.

Based on inference procedures for a single R2, one can easily extend to inferences for dif-

ferences between two independent population ρ2s. Because a single R2 has a positively

skewed density, the distribution of a difference between two independent R2s is probably

still skewed. Hence, the Wald-type interval estimation for the difference of two indepen-

dent R2s presented in Olkin and Finn (1995) still has its inherent deficiency (see Algina,

1999), which forces a confidence interval to be symmetric for those parameters whose

sample estimates having skewed distributions. Later, Chan (2009) described a bootstrap

confidence interval about a difference between two independent R2s which involves inten-

sive computations. Zou (2007) proposed simple and direct confidence interval construction

for a difference between two independent R2s by using a recovered variance estimate from

confidence limits for each R2. The rationale behind this method is termed the Method of

Variance Estimates Recovery (MOVER) (Zou, 2008). Given confidence limits for each of

two parameters and their correlation coefficient, as a general approach, the MOVER can be

used to construct confidence intervals for the difference, the sum or the ratio of those two

parameters. This approach takes into account the skewness of some sampling distributions,

so that the MOVER performs well for a wide range of parameters in terms of both coverage

rate and interval width, even for small to moderate sample sizes.

Other two cases including the comparisons of two R2s from nested or non-nested mod-

els need to consider the correlation between two R2s. Olkin and Siotani (1976) derived

asymptotic covariance estimates between any two simple correlation coefficients. Using

these asymptotic covariance estimates, Olkin and Finn (1995) suggested a Wald-type con-

fidence interval for differences between two correlated squared multiple correlations or a

squared partial and a squared multiple correlation. Consider the difference between two

squared multiple correlations: first, any difference between two R2s can be represented as

a function of sample simple correlation coefficients, since a multiple correlation can be

written as a function of simple correlations; second, given the variance-covariance matrix
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for the sample simple correlation coefficients involved in the function, one can obtain the

asymptotic variance estimate of the difference by using the delta method; finally, according

to the central limit theorem, one can construct a Wald-type confidence interval for this dif-

ference between two correlated R2s. Graf and Alf (1999) improved Olkin and Finn (1995)’s

approaches for further simplification. Through a simulation study, Azen and Sass (2008)

examined the performance of the Wald-type confidence interval for differences between

two R2s from non-nested models proposed by Olkin and Finn (1995) and found that this

asymptotic confidence interval is acceptable in terms of coverage rate only for large sample

size (> 200).

1.3 Objective of the thesis

The poor performance of existing confidence interval procedures for differences between

two correlated squared multiple correlation coefficients may lead us to wrong conclusions

on the relative importance of predictors. The main reason is that the existing Wald-type

confidence interval constructions proposed by Olkin and Finn (1995) ignore the potential

skewness of the sampling distribution for a comparison of R2s. Furthermore, this procedure

based on the central limit theorem has been shown to be accepted only for large samples

(> 200).

The objective of this study is to provide a simple and efficient inference procedure for

differences between two correlated R2s from non-nested models. In particular, under the

multivariate normality assumption, we propose a closed-form confidence interval for the

comparison of the changes in R2 when each of two predictors is added to a model with

some essential predictors.

Inspired by the good performance of the MOVER proposed by Zou (2008) applied in

constructing a confidence interval about a difference between two independent ρ2 (Zou,

2007), our proposed procedure will employ the MOVER to construct a confidence interval

for a difference between two ρ2s from non-nested models. The MOVER does not force
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confidence intervals to be symmetric and also not require the normality assumption of sam-

ple estimate of parameter of interest, and thus may improve the performances of the existing

confidence intervals for differences between two correlated ρ2s from non-nested models.

The performance of the proposed confidence interval will also be evaluated and com-

pared to that of the existing Wald-type confidence interval provided by Olkin and Finn

(1995).

1.4 Organization of the thesis

In this study, Chapter 2 reviews background on determining the relative importance of pre-

dictors, as well as literatures regarding inferences procedures for a single squared multiple

regression and differences between two squared multiple regression. Chapter 3 first de-

scribes the MOVER proposed in the paper of Zou (2008), then presents a new confidence

interval construction for differences between two correlated squared multiple correlations

from non-nested models. In Chapter 4, a simulation study compares the performance of our

proposed confidence interval to that of the existing Wald-type confidence interval proposed

by Olkin and Finn (1995). Finally, Chapter 5 provides some discussion and suggests future

work.
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Chapter 2

LITERATURE REVIEW

2.1 Introduction

As outlined in Chapter 1, changes in squared multiple correlation may be used to evaluate

the relative importance of predictors in multiple linear regression models. In this chapter,

we first review predictor importance in the context of multiple linear regressions, then de-

scribe some main approaches for constructing confidence intervals for a single R2 and for

differences between two independent and correlated R2s.

2.2 Predictor importance in multiple linear regressions

With data of a sample of a response variable and a large set of potential predictors, we may

build a model using a two-stage process (see Azen et al., 2001; Budescu, 1993). First, we

identify a subset of predictors that can adequately describe the relationship between the de-

pendent variable and predictors. This stage is usually referred to as model selection. Once

a model is selected, we may proceed to interpret the model by comparisons of predictor

importance.

In the model selection stage, there are two general approaches termed explanation and

prediction (Pedhazur, 1982). The explanation approach may also be regarded as the con-

ception of causation. Based on previous theory or substantive research, those predictors

which are conceived to be associated with the dependent variable are identified and then

included in the model. The prediction approach aims to find the most predictive model, re-

gardless of the underlying mechanism of how the predictors affect the response. A variety

of selection principles have been suggested for this purpose, such as the Akaike Informa-
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tion Criterion (AIC) (Akaike, 1974) and the Bayesian Information Criterion (BIC) (Akaike,

1977).

Having built a model with a chosen set of predictors, we may then assess a relatively

important subset of predictors, or rank the predictors according to their contributions in

predicting the response variable. They are the final objective of dominant analysis and

commonality analysis, respectively (Azen and Budescu, 2003; Hedges and Olkin, 1981).

2.2.1 Dominant analysis

In order to identify the most important set of predictors from p potential independent vari-

ables, we can compare all 2p−1 regression models with each model involving a subset of

p predictors and a dependent variable in terms of certain indices. These indices include

simple correlations, regression weights, partial and semi-partial correlations, and squared

multiple correlations. Among them, the squared multiple correlation R2 for a multiple re-

gression model is shown to preferable (Budescu, 1993).

Budescu (1993) proposed dominance analysis as a new approach to evaluate the rela-

tive importance of predictors in multiple linear regression. Here, dominance is a pairwise

relationship, indicating that one predictor dominates another if it is more useful than its

competitor in all regressions. Explicitly, given a model with a set of essential predictors,

it is defined that a set of additional potential predictors is more important than the other

sets, if it increases the model’s R2 more than the other sets do. After estimating the sam-

ple squared multiple correlations, R2s, for all 2p−1 regression models, then comparing all

these R2s, we can identify the relative important set of predictors. In particular, suppose

that in a model with X1 and X2 as essential predictors, to determine the dominance of X3

and X4, we can compare the R2 increase when X3 is added to the model to that when X4 is

added.
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2.2.2 Commonality analysis

The objective of commonality analysis is to partition the variance of the response variable

accounted for into the unique and combined contributions a predictor makes. It assesses

the individual and collective effects of a set of predictors on a single dependent variable,

such as the individual and collective effects of school and social background on educational

achievement. Its description can be found in many textbooks on regression analysis in the

social sciences, such as Kerlinger and Pedhazur (1973).

After the equality of educational opportunity report (Coleman et al., 1966) created the

controversy that there was no general methods of assessing the relative importance of cor-

related predictors, many papers dealt with methods of assessing or describing the relative

contribution of correlated predictors. Commonality analysis was first advocated by Mood

(1971) as a tool for developing learning models. It has been used in educational research

such as school effect studies (Pedhazur, 1975), teaching studies (Dunkin, 1978). Later,

Newton and Spurrell (1969a,b) developed this technique in industrial sciences and called it

“element analysis”.

Commonality analyses can be illustrated as follows. Suppose we are given the squared

multiple correlation of a model with the response variable Y and two predictors X1 and X2,

ρY ·X1X2
2, then we can partition ρY ·X1X2

2 into three parts: γ1, γ2 and γ12. We have

γ j = the unique contribution of X j to ρY ·X1X2
2, j = 1,2,

γ12 = the common contribution of X1 and X2 to ρY ·X1X2
2,

where the last term γ12 is called the commonality of X1 and X2. The above definitions lead

to the following system of equations:

ρY ·X1X2
2 = γ1 + γ2 + γ12

ρY X1
2 = γ1 + γ12,

ρY X2
2 = γ2 + γ12,
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where ρY X1
2 and ρY X2

2 are squared multiple correlation of a model predicting Y from a

single predictor X1 or X2, respectively.

It was suggested that the rule of selecting predictors should be based on large unique

components and small commonalities (Newton and Spurrell, 1969a,b; Mood, 1971). Hence,

from the perspective of commonality analysis, a series of comparisons of R2s is an impor-

tant tool of determining predictor importance (Hedges and Olkin, 1981).

2.3 Inference procedures for a single ρ2

Before presenting procedures for the comparison of R2s, we describe inference procedures

for a single ρ2. In particular, we start with point estimators of a single population squared

multiple correlation ρ2, including R2 and other estimators which are designed to reduce the

potential bias of R2 as an estimator of population parameter ρ2. This parameter also can

be estimated in terms of simple and/or partial correlations, which is easily calculated by

using a handy calculator for small number of predictors, given the correlation matrix for

a dependent variable and predictors. We then introduce five procedures for constructing a

confidence interval for ρ2. These procedures include the Wald-type symmetric confidence

interval based on the asymptotic variance, a confidence interval based on the Fisher’s exact

density of ρ2 (Fisher, 1928), confidence intervals based on various approximated density of

ρ2, a bootstrap confidence interval, and a confidence interval developed by Gurland (1968)

and Helland (1987).

2.3.1 Point estimator of a single ρ2

Consider a multiple linear regression model

y = 1β0 +xβ+ε,

where y = (y1,y2, . . . ,yn)
′, a n×1 vector 1 = (1,1, . . . ,1)′, β0 and β = (β1,β2, . . . ,βp)

′ are

unknown, ε= (ε1,ε2, . . . ,εn)
′ is a vector of independent errors with mean 0 and variance σ2
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(When regressors are random, the mean and variance of ε are conditional on x), and each

row of n× p matrix x is a sample of a vector consisting of p predictors X = (X1,X2, . . .Xp),

Let Ȳ and X̄ respectively be the sample mean of dependent variable Y and the vector X,

and let x̃ = x−1X̄, then the least square estimators for β0 and β are

β̂0 = Ȳ − X̄β̂,

β̂ =
(
x̃′x̃
)−1 x̃′y,

and the predicted vector is given by

ŷ = 1β̂0 +xβ̂.

The population multiple correlation coefficient ρ2 can be defined as the correlation

between Y and Xβ, since Xβ is the linear combination of variables X1,X2, . . .Xp that has

maximal correlation with Y (Pearson, 1912). Since Y = β0 +Xβ+ ε and ε is independent

of X, according to the definition, ρ2 can be written as

ρ
2 =

[cov(Y,Xβ)]2

var(Y)var(Xβ)

=
var(Xβ)

var(Y)
.

When regressors are random, we usually assume that X has a multivariate normal distribu-

tion with mean µx and variance-covariance matrix Σx.

ρ
2 =

β′Σxβ

σ2 +β′Σxβ
. (2.1)

The total, regression and error sums of squares are respectively presented by

SST =
n

∑
i=1

(yi− Ȳ )2
= (y−1Ȳ )′(y−1Ȳ ),

SSR =
n

∑
i=1

(ŷi− Ȳ )2
= (ŷ−1Ȳ )′(ŷ−1Ȳ ) = β̂′x̃′x̃β̂,

SSE = SST−SSR = (y− ŷ)′ (y− ŷ) = y′y− ŷ′ŷ,
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and the coefficient of determination is defined by

R2 =
SSR
SST

.

Because

σ̂
2 =

SSE
n− p

is a unbiased estimator of σ2 and

Sx =
1

n−1
x̃′x̃ =

1
n−1

(x−1X̄)′(x−1X̄)

is an unbiased estimator of Σx, then R2 becomes

R2 =
(n−1)β̂′Sxβ̂

(n− p)σ̂2 +(n−1)β̂′Sxβ̂
.

Due to the similarity of this representation and the formula (2.1), Helland (1987) concluded

that only for random regressors, can R2 be treated as a estimator of ρ2. This conclusion

is based on the multivariate normality assumption for random regressors, so it is not suit-

able for models with fixed regressors. Although most articles described the R2 in computer

programmes as an estimator of population ρ2, Helland (1987) clearly pointed out the pre-

condition of this usage.

R2 has a positive bias as an estimator of population ρ2, especially when the number

of regressors are moderate or large. To correct for the bias in R2, at least eight alternative

estimators have been proposed in the literature.

1. Smith’s estimator ρ̂2
S (Ezekiel, 1929) has a form of

ρ̂
2
S = 1−

(
1−R2) n

n− p
.

ρ̂2
S shrinks a lot, but it increases as more predictors are added.

2. By replacing σ2 and Σx in the formula (2.1) with their respective unbiased estimators

σ̂2 and Sx, Wherry (1931) defined ρ̂2
W as

ρ̂
2
W = 1−

(
1−R2) n−1

n− p
.
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However, this replacement does not make ρ̂2
W unbiased as an estimator of ρ2; it has

been shown that ρ̂2
W overestimates ρ2 (Wherry, 1931).

3. Ezekiel (1930) proposed adjusting R2 by replacing sum of squares with mean squares

in ordinary R2, giving

R2
ad j = 1−

(
1−R2) n−1

n− p−1
.

Huberty and Mourad (1980) found that R2
ad j adequately estimated ρ2. Hence, R2

ad j

is a commonly used alternative of R2, and is provided by most statistical computer

packages.

4. Based on a random regressor model, Olkin and Pratt (1958) provided an unbiased

estimator of ρ2 as

ρ̂
2
OP = 1−

(
1−R2) n−3

n− p−1
F
[

1,1;
n− p+1

2
;(1−R2)

]
,

where F(·) is the hypergeometric function. This estimator can be written in a closed

form as

ρ̂
2
OP = 1−

(
1−R2) n−3

n− p−1

[
1+

2(1−R2)

n− p+1
+

8(1−R2)2

(n− p−1)(n− p+3)

]
.

5. By approximating to the hypergeometric function F , Pratt developed an estimator

ρ2
P, which is also presented in Claudy (1978) as

ρ̂
2
P = 1−

(
1−R2) n−3

n− p−1

[
1+

2(1−R2)

n− p−2.3

]
.

Claudy (1978) found that ρ2
P underestimates ρ2.

6. Herzberg (1969) also gave another approximate estimator

ρ̂
2
H = 1−

(
1−R2) n−3

n− p−1

[
1+

2(1−R2)

n− p+1

]
.

Comparing to ρ̂2
OP, Claudy (1978) found that ρ2

H overestimates ρ2.
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7. Claudy (1978) developed an empirical estimate as

ρ̂
2
CL = 1−

(
1−R2) n−4

n− p−1

[
1+

2(1−R2)

n− p+1

]
,

while Raju et al. (1997) found that ρ̂2
CL is biased for estimating ρ2.

8. For fixed n, p and R2, Alf and Graf (2002) obtained the maximum likelihood estimate

of ρ2, ρ̂2
MLE , by maximizing the exact density function of R2 (Fisher, 1928).

Alf and Graf (2002) compared R2 and other eight versions of estimates of ρ2. They

found that the estimator provided by Olkin and Pratt (1958) performed well over a wide

range of values for n and ρ2; the adjusted estimator for ρ2 (Ezekiel, 1930) was unbiased

only when the population ρ2 was 0, and the remaining estimators including R2 and ρ̂2
MLE

were biased for all the values of n and ρ2. The above evaluations are based on the as-

sumption that the joint distribution of independent and dependent variables is multivariate

normal. If the normality assumption is violated, the evaluations become very complex (see

Drasgow and Dorans, 1982).

The multiple correlation coefficient can be represented as a function of simple and par-

tial correlation coefficients. Therefore, once we know the correlation matrix for a response

variable and predictors, we can estimate any multiple correlation coefficient.

Let ρY ·X1X2...Xp be a population multiple correlation, which measures the strength of

the linear relationship between a dependent variable Y and a set of independent variables

X1,X2, . . . ,Xp. In other words, it also can be explained as the maximum correlation coef-

ficient between Y and all linear combinations of X1,X2, . . . ,Xp (Pearson, 1912). Squared

multiple correlations can then be mathematically represented as functions of simple and/or

partial correlations (Pearson, 1912; Olkin and Siotani, 1976). For example, the coefficients

of multiple correlation involving the first two or three variables, denoted as ρY ·X1X2 and

ρY ·X1X2X3 respectively, are given by

1−ρY ·X1X2
2 =

(
1−ρY X1

2)(1−ρY X2·X1
2) (2.2)

1−ρY ·X1X2X3
2 =

(
1−ρY X1

2)(1−ρY X2·X1
2)(1−ρY X3·X1X2

2)
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where ρY X2·X1 and ρY X3·X1X2 are two partial correlations. A partial correlation is also referred

to as adjusted correlation. For example, ρY X2·X1 is the correlation of variables Y and X2, after

removing the association of each with X1, given by

ρY X2·X1 =
ρY X2−ρY X1ρX2X1√

(1−ρY X1
2)(1−ρX2X1

2)
(2.3)

ρY X3·X1X2 is the partial correlation of variables Y and X3 keeping variables X1 and X2 con-

stant, then

ρY X3·X1X2 =
ρY X3·X2−ρY X1·X2ρX3X1·X2√
(1−ρY X1·X2

2)(1−ρX3X1·X2
2)

=
ρY X3·X1−ρY X2·X1ρX3X2·X1√
(1−ρY X2·X1

2)(1−ρX3X2·X1
2)

Combining equations 2.2 and 2.3, we have

ρY ·X1X2
2 = ρY X1

2 +ρY X2·X1
2 (1−ρY X1

2)
=

ρY X1
2 +ρY X2

2−2ρY X1ρY X2ρX1X2

1−ρX1X2
2

The relationships among correlations also can be easily represented in matrix form

(Olkin and Siotani, 1976). Let Σ(S) = Σ(s1,s2, . . . ,sm) and Σ̂(S) = Σ̂(s1,s2, . . . ,sm) repre-

sent the population and sample correlation matrices for variables Xs1 , . . ., Xsm , respectively.

Let ρY ·Xα

2 be the population squared multiple correlation between Y and a set of variables

with subscripts α; ρY X1·Xα

2 be the population squared partial correlation between Y and X1

for fixed variables with subscripts α; ρY Xα ·Xβ

2 be the population squared partial-multiple

correlation between Y and a set of variables with subscripts α while keeping a set of vari-

ables with subscripts β fixed, then

ρY ·Xα

2 = 1− |Σ(0,α)|
|Σ(α)|

ρY X1·Xα

2 =
|Σ(0,1,α)|√

|Σ(0,α)| · |Σ(1,α)|

ρY Xα ·Xβ

2 =
|Σ(β )| · |Σ(0,α,β )|
|Σ(α)| · |Σ(0,β )|
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where α and β are two sets of subscripts, |Σ(α)| is the determinant of the population

correlation matrix for variables with subscripts α , |Σ(0,α)|=
∣∣(ρi j)

∣∣ is the determinant of

the population correlation matrix for the response variable Y and variables with subscripts

α . Similar definitions for other determinants of population correlation matrices.

Note that these formula are also suitable for sample correlations by replacing ρ and Σ

with sample correlation coefficients r and matrix Σ̂, respectively.

2.3.2 Confidence interval construction for a single ρ2

There are several approaches to constructing confidence interval for a single ρ2. These ap-

proaches can be classified into five categories. Herein, these five categories of approaches

are presented respectively as follows. Among these five approaches, a confidence interval

developed by Gurland (1968) and Helland (1987) based on a scaled central F approxima-

tions to the density of R2/(1−R2) performs well.

2.3.2.1 Wald-type method

The variance of R2 was originally derived by Wishart (1931), given as

var(R2) =
4ρ2 (1−ρ2)2

(n− p−1)2

(n2−1)(n+3)
.

When n is large, the variance can be approximated by

var(R2) ≈ 4
n

ρ
2 (1−ρ

2)2
(

1− 2p+5
n

)
.

If 2p+5 is small relative to n, the expression reduces further to

var(R2) ≈
4ρ2 (1−ρ2)2

n
. (2.4)

Hence, 100(1−α)% confidence limits for ρ2 by using the Wald method is given by

R2± zα/2
√

v̂ar(R2), where v̂ar(R2) is the sample estimate of var(R2) with ρ2 replaced by

R2, zα/2 is the 100 ·α/2 upper percentile point of a standard normal distribution.
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From equation (2.4), we can see that when ρ2 = 0, the variance estimate of R2 is 0, so

that the Wald method cannot be used. The method is more suitable for cases with symmetric

sampling distributions, but not for ρ2, since the sampling distribution of R2 is skewed and

converges very slowly to normality (Algina, 1999). Furthermore, this method may give

confidence limits out of range of 0 to 1.

2.3.2.2 Fisher’s R2-to-z transformation

Another method of interval estimation for ρ2 is based on Fisher’s z transformation of R2

rather than r (see Olkin and Finn, 1995). Fisher’z statistic

z = log
(

1+R
1−R

)
= log

(
1+
√

R2

1−
√

R2

)
is approximately normally distributed with mean E(z) = ζ = log[(1+

√
ρ2)/(1−

√
ρ2)]

and variance 4/n (Algina, 1999). Then the confidence limits of z, lz and uz, have forms

log

(
1+
√

R2

1−
√

R2

)
± zα/2

√
4/n.

Since z is a monotone increasing function of R2, if both lz and uz are non-negative then the

confidence limits for ρ2 are given by(
exp(lz)−1
exp(lz)+1

)2

,

(
exp(uz)−1
exp(uz)+1

)2

and if lz < 0 then the lower confidence limit for ρ2 is 0.

Note that the confidence interval based on Fisher’s z transformation performs more

poorly than others (Algina, 1999). The main reason is that the limiting distribution of

Fisher’s transformation on R2 failed to approach normality asymptotically (Gajjar, 1967).

As R2 ranges from 0 to 1, the transformed values of Fisher’s z only covers the range from

0 to plus infinity. Therefore, Alf and Graf (1999) pointed out that, “Fisher’s z values are

severely truncated in the lower tail, resulting in a distribution that is even more positively

skewed than is the original distribution of squared multiple correlations” (p. 74). In addi-

tion, the approximate variance 4/n for z breaks down when ρ2 is near 0 (Algina, 1999).
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2.3.2.3 Exact method

Based on the geometrical interpretation of multiple correlations, Fisher (1928) gave the

exact density function of R2, which is later written in the following form (Lee, 1972)

fR2(x) = B(p/2,n1/2)−1 (1−ρ
2)(n−1)/2

(x)p/2−1 (1− x)n1/2−1

F
(
(n−1)/2,(n−1)/2; p/2;ρ

2x
)

(2.5)

where B(.) and F(.) respectively denote the beta and Gaussian hypergeometric functions,

n1 = n− p−1, n being the sample size.

We know that both beta and Gaussian hypergeometric functions are complicated in-

tegrands or series. There is also no closed formula for calculating the exact cumulative

distribution function of R2. Therefore, the calculation of exact confidence limits requires

iterations on computing the percentiles of the integral of density fR2(x). Based on this

distribution, Kramer (1963) and Lee (1972) tabulated only upper percentage points of the

distribution of ρ2 and limited to confidence levels 5% and 1% in particular cases. A stand-

alone program, “R2”, available at http://www.statpower.net , has been developed for

obtaining the confidence limits based on this distribution (Steiger and Fouladi, 1992).

2.3.2.4 Approximation methods based on the density of R2

Due to the complexity of the exact density of R2, many researchers developed various

methods of obtaining approximate confidence intervals for ρ2, through asymptotically ex-

panding or approximating the density function of R2. Several asymptotic procedures have

appeared in the literature, including a two-moments scaled central F approximation pro-

posed by Khatri (1966), a three-moments scaled noncentral F approximation and a three-

moments relocated and rescaled central F approximation proposed by Lee (1971).

The development is based on R2

1−R2 denoted as R̃2. The distribution of R̃2 can be repre-

sented as (Lee, 1971)

R̃2 =
(ρ̃χn−1 + z)2 +χ2

p−1

χ2
n−p−1

http://www.statpower.net
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where ρ̃ is the square root of ρ̃2 = ρ2/(1−ρ2), n denotes the sample size, z is a standard

normal variable, χ f and χ2
f are respectively chi and chi-square distributed variables having

f degrees of freedom, and all included variables are independent from each other.

Through expansion of the characteristic function of the variable (ρ̃χn−1 + z)2 + χ2
p−1,

the density function of R̃2 can be asymptotically represented as a linear combination of

non-central F distributed variables, and the density function of R2 can be rewritten ap-

proximately in terms of non-central beta distributed variables (Lee, 1971). Furthermore,

the non-central F distribution is reasonably well approximated by the central F distribu-

tion. Hence, R̃2 may be further approximated in terms of a noncentral or even central

F-distributed variable.

2.3.2.4.1 A scaled central F approximation

Khatri (1966) proposed approximating the distribution of R̃2 by a scaled noncentral or cen-

tral F distribution. Later, both Gurland (1968) and Helland (1987) described and examined

the scaled central F approximation. The unknown scale coefficient and degree of free-

dom of the scaled central F variable are determined by fitting the first two moments of

the numerator of R̃2. Derived from this F approximation, one can obtain an asymptotic

confidence interval for the population ρ2 by using an iterative procedure. The following

combines all the findings from the papers of Gurland (1968) and Helland (1987).

Given the multivariate normality assumption for random regressors, R̃2 also can be rep-

resented as the ratio of a noncentral chi-square distributed variable χ2
p−1(∆) having degrees

of freedom p−1 and noncentrality parameter ∆, and a central chi-squared distributed vari-

able χ2
n−p−1 having degrees of freedom n− p−1 independently of the numerator χ2

p−1(∆),

that is,

R̃2 =
χ2

p−1(∆)

χ2
n−p−1

. (2.6)

The noncentrality parameter ∆ is given by

∆ =
β′X̃′X̃β

σ2 , (2.7)
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from which we can see that the noncentrality parameter highly depends on the design matrix

X. For fixed regressors, ∆ is a constant, and R̃2 follows a noncentral F distribution with

degrees of freedom p− 1 and n− p− 1, and a constant noncentrality parameter ∆. When

the regressors are random, ∆ is a random variable which has the same distribution as the

variable ρ̃2χ2
n , so the variable R̃2 no longer follows a noncentral F distribution, except

when ρ = 0.

According to the definition of ρ2 presented in equation (2.1), equation (2.7) becomes

∆ =
β′Σxβ

σ2 χ
2
n−1 =

ρ2

1−ρ2 χ
2
n−1. (2.8)

Inserting equation (2.8) into the numerator of R̃2 shown in equation (2.6), one can obtain

the exact density function of R̃2 as given by Fisher (1928).

Given random regressors, one can easily approximate the numerator of R̃2 by a scaled

central chi-square distributed variable, that is, χ2
p(∆) is approximated by aχ2

v , where the

constants

a =
(n−1)ρ̃2(ρ̃2 +2)+ p

(n−1)ρ̃2 + p

and

v =

[
(n−1)ρ̃2 + p

]2
(n−1)ρ̃2(ρ̃2 +2)+ p

are determined by using methods of moment, that is, through equating the first two mo-

ments of aχ2
v to those of χ2

p(∆).

By using this approximation, we have

R̃2 ≈ aχ2
v

χ2
n−p−1

=
av

n− p−1
Fv,n−p−1

=
(n− p−1)ρ2 + p
(n− p−1)(1−ρ2)

Fv,n−p−1, (2.9)



27

where Fv,n−p−1 has a central F distribution with v and n− p−1 degrees of freedom. This

asymptotic form of R̃2 is a monotone increasing function of R2, so we can obtain the fol-

lowing approximate 100(1−α)% confidence interval for ρ2,[
ρ

2
L,ρ

2
U
]
,

where the lower limit is

ρ
2
L =

(n− p−1)R2−
(
1−R2) pF1−α/2;v,(n−p−1)

(n− p−1)
[
R2 +(1−R2)F1−α/2;v,(n−p−1)

] (2.10)

and the upper limit is

ρ
2
U =

(n− p−1)R2−
(
1−R2) pFα/2;v,(n−p−1)

(n− p−1)
[
R2 +(1−R2)Fα/2;v,(n−p−1)

] , (2.11)

in which, Fα/2;v,(n−p−1) and F1−α/2;v,(n−p−1) are the 100α/2 and 100(1−α/2) percentile

points of the central F distribution with v and n− p− 1 degrees of freedom, respectively.

Although the parameter v is still a function of ρ2, one can calculate it by applying an

iterative procedure with the sample estimate R2 as the starting value. The inference pro-

cedure based on the scaled central F approximation can be implemented by SAS PROC

CANCORR with the option SMC (which stands for squared multiple correlations), given a

series of observations on the outcome and predictors.

When ρ2
L = ρ2

U = 0, v = p and equation (2.9) reduces to a commonly used statistic for

testing the null hypothesis H0 : ρ2 = 0, namely

R̃2 =
p

(n− p−1)
Fp,n−p−1,

which depends on a central F distributed variable. It implies that the usual test for the

hypothesis is consistent with the test found from the asymptotical confidence interval for

ρ2.

From equations (2.10) and (2.11), it follows that when Fα/2 < 1< F1−α/2 = 1/Fα/2, the

confidence interval
[
ρ2

L,ρ
2
U
]

always covers the adjusted coefficient of determination R2
ad j.

Moreover, it has been shown by Helland (1987) that this approximate confidence inter-

val for ρ2 performs very well, compared to those from the tabulated results by Lee (1972).
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2.3.2.4.2 A scaled noncentral F approximation

Similar to the approach for the scaled central F approximation, Lee (1971) proposed to

approximate R̃2 by a scaled noncentral F distributed variable or a relocated and rescaled

central F distributed variable.

Lee (1971) approximated the numerator of R̃2, (ρ̃χn−1 + z)2 + χ2
p−1, by a scaled non-

central chi-squared variable gχ2
w(λ ), where g, w, λ are determined by equating the first

three moments of the numerator to those of variate gχ2
w(λ ), having the following forms

g =

[
φ2−

√
φ 2

2 −φ1φ3

]
/φ1,

w =
[
φ2−2ρ̃

2
γ
√

(n−1)(n− p−1)
]
/g2,

λ = ρ̃
2
γ
√
(n−1)(n− p−1)/g2,

where

γ
2 = 1/(1−ρ

2)

and

φ j = (n−1)
(
γ

2 j−1
)
+ p, j = 1,2,3. (2.12)

Hence, R̃2 may be approximated by a scaled noncentral F variate, which satisfies

R̃2 ≈ gw
n− p−1

Fw,n−p−1(λ ). (2.13)

The confidence interval for ρ2 derived from this scaled noncentral F approximation

can be obtained by using a bisection method implemented by statistical software programs.

For example, a SAS macro and SPSS syntax for constructing an asymptotic confidence

interval based on the scaled noncentral F approximation by Zou (2007) are available at

http://dx.doi.org/10.1037/1082-989x.12.4.399.supp . The program requires as

input only the sample estimate R2, the sample size and the number of predictors.

http://dx.doi.org/10.1037/1082-989x.12.4.399.supp
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2.3.2.4.3 A relocated and rescaled central F approximation

R̃2 also can be approximated by a relocated and rescaled central F variate, which satisfies

R̃2 ≈ c(Fq,n−p−1 +a), (2.14)

where q, a and c are determined by equating the first three moments and can be written as

q =
1
2
(n− p−3)[

√
E/(E−4)−1],

c =
q

(n− p−1)(n− p+2q−3)
(H/K),

a = [(φ1/c)− (n− p)]/(n− p−2),

where

H = 2φ
3
1 +3φ1φ2(n− p−3)+φ3(n− p−3)2,

K = φ
2
1 +φ2(n− p−3),

E = H2/K3

and φ j, j = 1,2, . . . is defined by equation (2.12).

Similarly, one can construct an asymptotic confidence interval for ρ2 by using a bisec-

tion method based on this relocated and rescaled central F approximation.

Lee (1971) evaluated the accuracy of these three approximations by comparing the ab-

solute differences between each approximation and the exact density of R2 in some partic-

ular cases. These three approximations are the scaled central F approximation presented in

equation (2.9) (Gurland, 1968), the scaled noncentral F approximation presented in equa-

tion (2.13) and the relocated and rescaled central F approximation presented in equation

(2.14) (Lee, 1971). The results showed that the three-moment scaled noncentral F approx-

imation performs better than other two approximations but its evaluation is more compli-

cated due to a noncentrality parameter. The relocated and rescaled central F approximation

performs well only when φ1 is large. Hence, the scaled central F approximation seems to

be a simple and good procedure to construct an asymptotic confidence interval for a single

ρ2.
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2.3.2.5 Bootstrap method

The bootstrap methods have also been applied to construct confidence intervals for ρ2 (e.g.,

Ohtani, 2000).

The bootstrap is a nonparametric approach obtained by applying a series of intensive

computer-based re-sampling to approximate the sampling distribution of an estimate of a

parameter of interest θ . Then, a confidence interval for this parameter based on the boot-

strap can be constructed by calculating its confidence limits from the bootstrap distribution

of the sample estimate of the parameter θ .

There are several bootstrap methods for constructing confidence intervals. The ones

in common use are percentile, bias-corrected method (BC), bias-corrected and accelerated

(BCa), bootstrap-t, and approximate bootstrap confidence intervals (ABC).

As a simple and direct bootstrap method, the α/2 and 1−α/2 percentiles of the boot-

strap distribution are respectively taken as the 100(1−α) percentile bootstrap lower and

upper confidence limits. However, the percentile bootstrap method performs well only for

unbiased statistics having a symmetric sampling distribution Schenker (1985).

To correct the percentile interval for median bias, the BC method (Efron, 1981) con-

structed a confidence interval based on the similarity between the histogram of bootstrap

replications of standardized θ and a standard normal density function. This method as-

sumes that there exists a monotonic increasing function g such that g(θ̂)− g(θ) has a

normal distribution with stabilized variance for all θ . It also has been shown that the BC

method breaks down even for moderate sample sizes (Schenker, 1985).

As an improvement, Efron (1987) proposed the BCa method, which incorporates an

extra constant related to the skewness of the sampling distribution, termed an acceler-

ated constant. The BCa method requires that only the function g(·) to be a normalizing

transformation, not necessary variance stabilizing. The performance of the BCa bootstrap

confidence interval highly depends on the accuracy of estimating the acceleration. How-

ever, there are also no simple approaches to accurately estimating the bias-correction factor
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and acceleration constant, even if one can show the existence of the transformation (Shao,

1995). Furthermore, the length of the BCa interval does not increase as the size of the

significance level increases (Hall, 1992, pp 134-135, 137).

The bootstrap-t method (Efron, 1979) aims to estimate the percentiles of the standard-

ized θ by bootstrapping. It is conceptually simpler than the BCa method, and also has a

better second order properties. But it only works well under an accurate estimate of the

standard error of a statistic of interest. It is also numerically unstable, sometimes yielding

very long confidence intervals (DiCiccio and Efron, 1996).

The ABC method is an analytic version of BCa, only applicable for smoothly defined

parameters in exponential families (Efron and Tibshirani, 1993). It does not involve the

bootstrap cumulative distribution function, but it requires an estimate of the nonlinearity

parameter.

All these bootstrap confidence intervals require complex and intensive computation,

hence, as Efron (1988) stated, the bootstrap can be an alternative method only when there

is no suitable parametric methods.

2.4 Inference procedures for differences between two ρ2s

Comparisons of squared multiple correlations may arise in the following three cases (Alf

and Graf, 1999). Case 1 represents comparisons of two independent R2s; case 2 represents

comparisons of two R2s arising from nested models, and case 3 represents comparisons of

two R2s arising two non-nested models.

Case 1: Examining if a given set of predictors performs equally in two separate pop-

ulations or groups: ρI
2− ρII

2. This comparison shows whether a given set of predictors

(X1,X2, . . . ,Xk) performs equally well in two separate, independent populations.

Case 2: Determining whether an additional predictor provides an significant improve-

ment in prediction of the response: ρ12
2− ρ1

2. It means whether an additional variable

X2 provides improvement over X1 alone in predicting y. Equivalently, the equality of the
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squared multiple correlation ρ12
2 and the squared simple correlation ρ1

2 is commonly

tested with an F statistic by comparing a full model with a reduced model in regression

analysis.

Case 3: Deciding which of two predictors adds significantly more to the model already

including a set of predictors: ρ12
2−ρ13

2. This comparison shows which pair of predictors

X1 and X2 or X1 and X3 is more effective in predicting outcome Y .

2.4.1 Case 1: Differences between two independent R2s

Due to independence, Case 1 is the simplest among the three cases. There exists a large

amount of literature on statistical inferences for differences between two independent R2.

For example, Olkin and Finn (1995) suggested two inference procedures. Both of them are

constructed by using the Wald method through equating the sum of the variance estimates

of RI
2 and RII

2 from two independent populations to the variance estimate of RI
2−RII

2.

For the first method, each variance of RI
2 and RII

2 is estimated by using equation (2.4).

Therefore, a Wald-type confidence interval can be constructed for changes in population

squared multiple correlation ∆ρ2 from two separate populations. The second method ap-

plies Fisher’s z transformation on RI
2 and RII

2. Each transformed variable has a variance

of 4/n, then the variance of the difference between Fisher’s z transformation on RI
2 and

Fisher’s z transformation on RII
2 is 2/n. However, this method is not applicable for con-

structing a confidence interval for ρI
2− ρII

2, and can only serve to test the hypothesis

H0 : ρI
2 = ρII

2, because the difference between two Fisher’s z transformations on ρ2s is not

a monotone function of ρI
2−ρII

2.

Simulation results (Algina and Keselman, 1999) show that the coverage rates of these

two confidence intervals were inadequate for the unequal allocation of the sample sizes and

the multiple correlation coefficients in two populations. These two methods also required

larger sample sizes when the number of predictors are large.

Chan (2009) suggested a confidence interval for this case based on bootstrap methods

as an alternative, which performs well for normal data and non-normal data as well, but
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involving a large amount of computations. Moreover, the performance of the confidence

interval based on bootstrap methods is also not good for small sample sizes (e.g., n=50)

(Chan, 2009).

Zou (2007) proposed a simple confidence interval construction for differences between

two independent R2 by using recovery variance estimators differently from the lower and

upper limits for each R2. This approach can account for the skewness of the sampling

distribution of R2. Simulation results have shown that this method performs better than the

Wald method (Zou, 2007).

2.4.2 Case 2: Differences between two ρ2s from nested models

In Case 2, the confidence interval construction for an increase in squared multiple correla-

tions, ρα,β
2−ρ2

α , also termed as squared semi-partial correlations, is discussed previously,

in which, α , β denote subsets of subscripts of predictors.

The best way to describe an unknown parameter of interest is to obtain the density func-

tion of the parameter. However, when comparing two R2s, it is hard to obtain the exact joint

distribution of the corresponding two population squared multiple correlations, because the

exact marginal distribution for a multiple correlation (Fisher, 1928) is already extremely

complex. Many researchers provide asymptotic solutions for the joint distribution of mul-

tiple correlations. For example, Olkin and Siotani (1976) provided the asymptotic distribu-

tion of functions of correlation matrices. Hedges and Olkin (1981) extended their results to

obtain the asymptotic joint distribution of all 2p−1 squared multiple correlations. Hedges

and Olkin (1983) further obtained the asymptotic joint distributions of any sets of partial,

multiple and partial-multiple correlations. From the central limit theorem, all these joint

distributions are approximately multivariate normal. However, the sampling distribution of

a single R2 has been known to be so skewed that the asymptotical multivariate normality of

the joint distribution of two or more R2s is suitable only for very large samples.

It has been well known that a confidence interval for a unknown parameter is the most

important index when making statistical inferences on this parameter. Olkin and Finn
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(1995) suggested Wald-type confidence intervals for differences between two ρ2s, which is

constructed through directly estimating the variance of the difference between R2s.

Herein, the Wald-type confidence interval for ρα,β
2−ρα

2 is given by

Rα,β
2−Rα

2± zα/2σ̂1/
√

n,

where σ1 is the asymptotic standard error of the difference Rα,β
2 − Rα

2 and σ̂1 is the

sample estimate of σ1 with population correlations replaced by their corresponding sample

correlations, given by

σ̂1 =
√

v̂ar
(
Rα,β

2−Rα
2).

The standard error estimator σ̂1 can be obtained using the delta method as suggested by

Olkin and Finn (1995).

Specifically, assuming that a difference between two R2s denoted as ∆R2 is written as a

function ( f ) of a vector of simple correlations related to k predictors r = (r1,r2, . . . ,rk,r12,

. . . ,r1k, . . . ,rk−1,k
)
, where ri is the correlation of y and Xi, and ri j is the correlation of Xi

and X j . That is, ∆R2 = f (r). Applying the delta methods,

var(∆R2) = aΦ1,...,ka′

where matrix Φ1,...,k is the variance and covariance matrix of r, vector a consists of partial

derivatives of the form

a =
d f
dr

=

(
∂ f
∂ r1

,
∂ f
∂ r2

, . . . ,
∂ f

∂ rk−1,k

)
.

Hence, estimating the variance-covariance matrix of a vector of sample simple correlations

Φ1,...,k, and calculating the partial derivatives in a, are required.

First, let us consider the estimation of the variance-covariance matrix of sample simple

correlations. Pearson and Filon (1898) first derived the asymptotic covariances between

any two sample simple correlation coefficients. Similar results have also been derived by
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Hotelling (1953) and Olkin and Siotani (1976). These asymptotic variances and covari-

ances among sample correlations are presented as follows: In general, the covariance of

two correlations ri j and rkl without any variables in common is given by

cov(ri j,rkl) =
1
n

[
1
2

ρi jρkl
(
ρik

2 +ρil
2 +ρ jk

2 +ρ jl
2)+ρikρ jl +ρilρ jk

−
(
ρi jρikρil +ρ jiρ jkρ jl +ρkiρk jρkl +ρliρl jρlk

)]
.

For cases with a common variable Xi, the expression reduces to

cov(ri j,rik) =
1
n

[
1
2
(
2ρ jk−ρi jρik

)(
1−ρi j

2−ρik
2−ρ jk

2)+ρ
3
jk

]
,

which further reduces to

var(ri j) =
1
n

(
1−ρi j

2)2
,

when k = j.

To easily calculate a, Graf and Alf (1999) provided computer programmes having an-

alytic derivatives substituted by numerical derivatives by using the method of numerical

differentiation (Scarborough, 1966). Through representing a multiple correlation as a sim-

ple correlation of a response variable and a weighted sum of involved predictors, Alf and

Graf (1999) further improved Graf and Alf (1999)’s computation procedures by presenting

a simpler form of asymptotic confidence limits for ∆ρ2.

Although Olkin and Finn (1995) noticed that the Wald confidence interval for a single

ρ2 is not applicable due to its forced symmetry, Olkin and Finn (1995)’s procedures still

provide a symmetric Wald-type confidence interval for differences between two ρ2s, while

the sampling distribution of ∆R2 is probably skewed. Furthermore, since Olkin and Finn

(1995)’s approaches are based on the central limit theorem, it is not surprising that they

found that their procedure is good only for large samples (n > 200). Hence, a better interval

estimation for ∆R2 is expected.
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2.4.3 Case 3: Differences between two ρ2s from non-nested models

The aboved approach can also be applied to the case of differences between two ρ2s from

non-nested models, i.e., ρα,β
2− ρα,γ

2, in which α , β and γ denote subsets of subscripts

of predictors. The differences can also be represented as a comparison of two squared

semi-partial correlations, which satisfies

ρα,β
2−ρα,γ

2 =
(
ρα,β

2−ρα
2)− (ρα,γ

2−ρα
2)

Thus, the Wald-type confidence interval for ∆ρ2 from non-nested models is written as

Rα,β
2−Rα,γ

2± zα/2σ̂2/
√

n

where

σ̂2 =
√

v̂ar
(
Rα,β

2−Rα,γ
2).

Similarly, after representing ∆ρ2 as a function of simple correlations, the Wald-type confi-

dence interval for ∆ρ2 can be obtained by applying the procedure proposed by Olkin and

Finn (1995) presented in last section.

Azen and Budescu (2003) assessed qualitatively the stability of dominance relation-

ships in terms of ∆R2 across repeated sampling from the bootstrapping. Azen and Sass

(2008) investigated the performance of the asymptotic procedure proposed by Olkin and

Finn (1995) for comparing the R2s from non-nested models. They found that the Wald-

type confidence interval for ∆ρ2 from non-nested models provides the expected coverage

rates for large sample sizes (n > 200) but not for small and moderate samples.

2.5 Summary

In this review chapter, we started with the basic task of determining the relative importance

of predictors in multiple regression models. We pointed out that the basic approach is to

construct a good confidence interval for the difference of two population squared multiple

correlations (∆ρ2) from non-nested models.
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Among a large number of confidence interval estimations for a single ρ2, we showed

that a simple and reliable construction is the one based on the density of R2/(1−R2) ap-

proximated by a scaled central F distribution proposed by Gurland (1968) and Helland

(1987).

In contrast, there is little literature available on inference procedures for ∆ρ2 from non-

nested models. Although Olkin and Finn (1995) proposed a general approach to confidence

interval construction for various ∆ρ2, it has been shown that this asymptotic procedure pro-

vides the expected coverage rates only for large sample sizes (n > 200). This conclusion

is not surprising, because the asymptotic procedure proposed by Olkin and Finn (1995) is

derived from the central limit theorem, and uses a Wald-type confidence interval. It has

been known that a Wald-type confidence interval performs poorly due to its forced symme-

try. Furthermore, the exact joint distribution of squared multiple correlation coefficients is

intractable. The asymptotic joint distribution of ∆ρ2 presented by Hedges and Olkin (1983)

is so complex that it is hard to obtain an analytic form of confidence interval estimation for

∆ρ2.

Therefore, our purpose here is to propose a new method for constructing a confidence

interval for ∆ρ2 from non-nested models. It is expected that the resulting confidence inter-

val procedure will perform well in practical sample sizes. Based on the good performance

of the method of variance estimate recovery (MOVER) proposed by Zou and Donner (2008)

for other applications, it is expected that MOVER is applicable for providing a better con-

fidence interval estimation on ∆ρ2 from non-nested models than the Wald method.
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Chapter 3

CONFIDENCE INTERVAL FOR A DIFFERENCE BETWEEN TWO

SQUARED MULTIPLE CORRELATION COEFFICIENTS FROM

NON-NESTED MODELS

3.1 Introduction

As we have discussed in last Chapter, the existing Wald-type confidence interval proce-

dure for changes in R-squared from non-nested models may not perform well, because

it enforces symmetry to the sampling distribution for two R2s even though they are left

skewed. To deal with this issue, we use the method of variance estimates recovery, known

as the MOVER (Zou, 2008). The MOVER approach recovers variance estimates from the

lower and upper limits separately and thus does not require the sampling distribution to be

symmetric. We begin this chapter with a description of the MOVER.

3.2 The MOVER

The MOVER is a general approach to constructing confidence intervals for simple func-

tions of parameters, including sums, differences and ratios. In contrast to the Wald-type

methods, it relaxes the symmetry assumption for the sampling distribution. The central

idea of the MOVER is to obtain the variance estimator of each parameter component sep-

arately for the lower and upper confidence limits of the parameter in their corresponding

neighborhoods. Hence, this method only requires the confidence limits for each parameter

component and the correlation coefficient estimates between any two estimators of the pa-

rameter components. Note that, we use the term “MOVER” (method of variance estimates
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recovery) named by Zou (2008), rather than other terms such as ‘modified large sample’

(Burdick and Graybill, 1992), ‘square-and-add’ (Newcombe, 2011), because the key step is

to recover the variances estimates from confidence limits for each of two or more parameter

components.

As pointed out by Zou and Donner (2008), ideas similar to the MOVER can be traced

back to Howe (1974) who applied the Cornish-Fisher expansion to obtain approximate

confidence limits for the sum of two independent normal means. Newcombe (1998) used

the same idea for constructing a confidence interval for a difference between two propor-

tions by first obtaining separate confidence limits for single proportions using the Wilson

procedure. However, neither these two articles give analytic justification for its general

applicability.

Zou (2007) derived a closed-form expression for the confidence interval for a difference

between two parameters constructed by using recovery variance estimators separately from

the lower and upper limits for each parameter. The results were applied to differences be-

tween two correlations and two independent R2s. Simulation results show that the proposed

procedure performs much better than the traditional Wald method in terms of both overall

coverage and tail errors.

The MOVER has been extended to constructing confidence intervals for a ratio of two

parameters (Li et al., 2010) and any linear combination of parameters (Newcombe, 2011).

Here, we summarize the rationale of the MOVER and its extensions and applications as

follow.

First, consider the construction of an approximate two-sided 100(1−α)% confidence

interval (L,U) for a sum θ1 + θ2, given θ̂i and (li,ui), i = 1,2, as point estimator and a

two-sided 100(1−α)% confidence interval for θ1 and θ2, respectively, we have according

to the central limit theorem,

(li,ui) = θ̂i∓ zα/2

√
v̂ar(θ̂i), i = 1,2,

(L,U) = θ̂1 + θ̂2∓ zα/2

√
var(θ̂1 + θ̂2)
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= θ̂1 + θ̂2∓ zα/2

[
var(θ̂1)+var(θ̂2)+2cov(θ̂1, θ̂2)

]1/2
, (3.1)

where zα/2 is the upper α/2 quantile of the standard normal distribution.

Conventional Wald-type methods assume that the variance var(θ̂i) is constant for all

values of θi, so resulting in a symmetric confidence interval. To improve the performance of

conventional methods which do not account for the potential asymmetry of the underlying

sampling distributions of θ̂1 and θ̂2, Zou (2008) proposed to obtain the variance estimator

v̂ar(θ̂i) at the neighborhood of the confidence limits L and U separately. Confidence limits

li and ui can be regarded as the minimum and maximum values of θ1 +θ2 that satisfy

[(θ̂1 + θ̂2)− (θ1 +θ2)]
2

v̂ar(θ̂1 + θ̂2)
< z2

α/2.

It is easy to show that the distance between l1 + l2 and L given by

zα/2

∥∥∥∥√var(θ̂1 + θ̂2)−
[√

var(θ̂1)+

√
var(θ̂2)

]∥∥∥∥
is smaller than that between the point estimator θ̂1 + θ̂2 and L, which is given by

zα/2

∥∥∥∥√var(θ̂1 + θ̂2)

∥∥∥∥ .
Likewise, u1 + u2 is closer to U than θ̂1 + θ̂2. Therefore, it is reasonable to estimate the

variance var(θ̂i) at θi = li and θi = ui, i = 1,2, respectively for obtaining L and U .

As shown in Figure 3.1, the variance estimate v̂ar(θ̂i) is equal to

v̂ar(θ̂i) = (θ̂i− li)2/z2
α/2

at θi = li, and

v̂ar(θ̂i) = (ui− θ̂i)
2/z2

α/2

at θi = ui. Furthermore, the correlation between θ̂1 and θ̂2 can be estimated as

ρ̂ =
cov(θ̂1, θ̂2)√

v̂ar(θ̂1)v̂ar(θ̂2)
(3.2)
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Figure 3.1: Confidence limits li and ui for θi. The point estimator θ̂i is the 100 · (1−α/2)
quantile of the normal distribution with mean li and variance (θ̂i− li)2/z2

α/2, and is also the

100 ·α/2 quantile of the normal distribution with mean ui and variance (ui− θ̂i)
2/z2

α/2.

Substituting the corresponding variance estimates at θ1 = l1 and θ2 = u2 for L and at

θ1 = u1 and θ2 = l2 for U into equations (3.1) and (3.2), we have

L = θ̂1 + θ̂2− zα/2

√
v̂ar(θ̂1)+ v̂ar(θ̂2)+2ρ̂

√
v̂ar(θ̂1)v̂ar(θ̂2)

= θ̂1 + θ̂2− zα/2

√
(θ̂1− l1)2/z2

α/2 +(θ̂2− l2)2/z2
α/2 +2ρ̂(θ̂1− l1)(θ̂2− l2)/z2

α/2

= θ̂1 + θ̂2−
√

(θ̂1− l1)2 +(θ̂2− l2)2 +2ρ̂(θ̂1− l1)(θ̂2− l2) (3.3)

and similarly,

U = θ̂1 + θ̂2 +

√
(u1− θ̂1)2 +(u2− θ̂2)2 +2ρ̂(u1− θ̂1)(u2− θ̂2) (3.4)

In fact, the Wald method being applied for the sum of two parameters is a special case

of the MOVER when the confidence limits of each parameter are obtained by using the



42

Wald method. This also highlights the superiority of the MOVER: It acknowledges the

asymmetric nature of the sampling distributions for a single parameter, whereas the Wald

method ignores this fact.

This method can be applied for constructing the confidence interval for a difference

between two parameters (Zou, 2007). The difference θ1−θ2 can be rewritten as θ1+(−θ2),

while the confidence interval for −θ2 is (−u2,−l2), through replacing θ2, l2 and u2 in

equations (3.3) and (3.4) respectively by −θ2, −u2 and −l2, then the confidence limits for

θ1−θ2 are:

L = θ̂1− θ̂2−
√
(θ̂1− l1)2 +(u2− θ̂2)2−2ρ̂(θ̂1− l1)(u2− θ̂2) (3.5)

U = θ̂1− θ̂2 +

√
(u1− θ̂1)2 +(θ̂2− l2)2−2ρ̂(u1− θ̂1)(θ̂2− l2) (3.6)

Figure 3.2: Geometric illustration of margins of errors as obtained using the MOVER for
θ1−θ2 and θ1 +θ2 which are identical to that by the Pythagorean theorem.
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When θ̂1 and θ̂2 are independent, i.e., ρ = 0, the MOVER can be geometrically illus-

trated in Figure 3.2. Note that the lower and upper confidence limits of a parameter are

written as [point estimate-lower margin of error, point estimate+upper margin of error].

Thus, the margins of errors for the difference θ1−θ2 and the sum θ1 +θ2 obtained by us-

ing the MOVER are identical to that by using the Pythagorean theorem. In general, these

confidence limits are asymmetric, unless confidence limits for θi, i = 1,2, are symmet-

ric. It also reflects that the MOVER does not enforce symmetry for confidence interval

construction for a parameter of interest.

The above procedures can also be generalized to obtain the confidence interval for any

a linear combination of K parameters ∑
K
i=1 ciθi (Zou, 2008), when the sample estimators of

θ1, . . . ,θK are independent, given by

L =
K

∑
i=1

ciθ̂i−

√
K

∑
i=1

[
ciθ̂i−min(cili,ciui)

]2

U =
K

∑
i=1

ciθ̂i +

√
K

∑
i=1

[
ciθ̂i−max(cili,ciui)

]2

For a ratio of two parameters θ1/θ2, there are two approaches to constructing its con-

fidence interval. One way is only applicable to positive parameter components and simply

use a logarithmic transformation (Zou and Donner, 2008). That is, constructing the confi-

dence interval for log(θ1)− log(θ2) is done by applying the MOVER then exponentiating

the limits. A more general way is to apply a generalization of Fieller’s theorem proposed

by Zou and Donner (2010), that is, a confidence interval for R = θ1/θ2 can be constructed

by setting the resulting confidence limits for θ1−Rθ2 obtained by using the MOVER to be

zero, because R must satisfy θ1−Rθ2 = 0 to be a ratio of θ1/θ2.

The MOVER has been widely applied in confidence interval construction for parame-

ters in many fields. It has been applied for a difference between two parameters including

kappa statistics (Donner and Zou, 2002), product-moment correlations and independent

R2s (Zou, 2007), dependent intraclass correlation coefficients (Ramasundarahettige et al.,

2009), normal means (Wang and Chow, 2002) and lognormal means (Zou, Huo and Tale-
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ban, 2009).

It also has been applied to simple functions of parameters, including effect measures

such as the relative risk (Zou and Donner, 2008) and that obtained by using counterfactuals

(Zou, 2010), additive interaction (Zou, 2008), lognormal means (Zou and Donner, 2008;

Zou, Huo and Taleban, 2009) and other lognormal data (Zou, Taleban and Huo, 2009), lin-

ear functions of binomial proportions (Zou, Huang and Zhang, 2009) or negative binomial

proportions under inverse sampling (Zou, 2010), functions of normal means and standard

deviations (including the area under the receiver operating characteristic curve for quanti-

fying the ability of a biomarker to correctly classify individuals into two groups) (Li et al.,

2010), the Bland-Altman limits of agreement with multiple observations per individual as

a standard for assessing agreement between different methods measuring the same quantity

(Zou, 2011), the normal distribution percentiles, the coefficient of variation and Cohen’s

effect size (Donner and Zou, 2010). It has also been extended to conducting simultaneous

confidence intervals for multiple contrasts of proportions (Donner and Zou, 2011).

3.3 Application of MOVER to differences between two ρ2s from non-nested models

The purpose of this study is to construct a confidence interval for differences between

two R2s from non-nested models by using the MOVER. However, we first have to obtain

confidence limits for each R2 and the correlation coefficient between the two R2s.

As mentioned in last chapter, an asymptotic confidence interval for a squared multiple

correlation coefficient ρ2 can be constructed by using a scaled central F distribution (Gur-

land, 1968; Helland, 1987) or a scaled noncentral F distribution (Lee, 1971) approximated

to the density of R2/(1−R2).

For a multiple regression model with n samples and p predictors, if the variable R̃2 =

R2/(1−R2) is assumed to be approximated to be scaled central F distributed, we have

R̃2 ≈ (n− p−1)ρ2 + p
(n− p−1)(1−ρ2)

Fv,n−p−1.
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Thus an asymptotic confidence interval for ρ2,
[
ρ2

L,ρ
2
U
]
, is given by

ρ
2
L =

(n− p−1)R2−
(
1−R2) pF1−α/2;v,(n−p−1)

(n− p−1)
[
R2 +(1−R2)F1−α/2;v,(n−p−1)

] (3.7)

ρ
2
U =

(n− p−1)R2−
(
1−R2) pFα/2;v,(n−p−1)

(n− p−1)
[
R2 +(1−R2)Fα/2;v,(n−p−1)

] , (3.8)

where

v =

[
(n−1)ρ̃2 + p

]2
(n−1)ρ̃2(ρ̃2 +2)+ p

(3.9)

and Fα/2;v,(n−p−1) and F1−α/2;v,(n−p−1) are respectively the 100 ·α/2 and 100 · (1−α/2)

percentile points of the central F distribution having v and n− p− 1 degrees of freedom.

Since the parameter v is still a function of ρ2, the inference procedure requires an iterative

process between equations 3.7 (or 3.8) and 3.9. Given a series of observations on the out-

come and predictors, the whole process is easily implemented by SAS PROC CANCORR

with the option SMC.

The variable R̃2 can also be assumed to be approximately scaled noncentral F dis-

tributed, given by

R̃2 ≈ gw
n− p−1

Fw,n−p−1(λ ),

where

g =

[
φ2−

√
φ2

2−φ1φ3

]
/φ1,

w =
[
φ2−2ρ̃

2
γ
√

(n−1)(n− p−1)
]
/g2,

λ = ρ̃
2
γ
√

(n−1)(n− p−1)/g2,

ρ̃
2 = ρ

2/(1−ρ
2)

γ = 1/(1−ρ
2)

φ j = (n−1)
(
γ

2 j−1
)
+ p, j = 1,2,3.

The above steps required to obtain a confidence interval for ρ2 has been implemented

by Zou (2007) in a SAS macro and an SPSS syntax publicly available at http://dx.

http://dx.doi.org/10.1037/1082-989x.12.4.399.supp
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doi.org/10.1037/1082-989x.12.4.399.supp . The programmes only need to input

the sample estimate R2, the sample size and the number of predictors.

Assume that we are interested in inference for the difference between two squared mul-

tiple correlation coefficients between the outcome y and different sets of predictors from

non-nested models, ρα,β
2−ρα,γ

2, in which α , β and γ are three sets of subscripts of pre-

dictors.

According to the definition, the point estimates of ρα,β
2 and ρα,γ

2, denoted as Rα,β
2

and Rα,γ
2 can be calculated by

Rα,β
2 = 1−

∣∣∣Σ̂(0,α,β )
∣∣∣∣∣∣Σ̂(α,β )
∣∣∣ , (3.10)

Rα,γ
2 = 1−

∣∣∣Σ̂(0,α,γ)
∣∣∣∣∣∣Σ̂(α,γ)
∣∣∣ , (3.11)

where Σ̂ indicates the sample estimate of population correlation matrices Σ. For example,

|Σ̂(0,α,β )| is the determinant of the matrix of sample correlations among the response

variable y and predictors with subscripts α and β , and |Σ̂(α,β )| is the determinant of the

matrix of sample correlations among predictors with subscripts α and β .

By using the delta method, the covariance between these two sample squared multiple

correlation coefficients from non-nested models is given by (Hedges and Olkin, 1983)

cov
(
Rα,β

2,Rα,γ
2) =

cov
(
|Σ̂(0,α,β )|, |Σ̂(0,α,γ)|

)
|Σ(α,β )||Σ(α,γ)|

+
|Σ(0,α,β )||Σ(0,α,γ)|
|Σ(α,β )|2|Σ(α,γ)|2

cov
(
|Σ̂(α,β )|, |Σ̂(α,γ)|

)
− |Σ(0,α,β )|
|Σ(α,β )|2|Σ(α,γ)|

cov
(
|Σ̂(α,β )|, |Σ̂(0,α,γ)|

)
− |Σ(0,α,γ)|
|Σ(α,β )||Σ(α,γ)|2

cov
(
|Σ̂(0,α,β )|, |Σ̂(α,γ)|

)
(3.12)

Furthermore, it is easy to show that any matrix of correlations among variables with sub-

http://dx.doi.org/10.1037/1082-989x.12.4.399.supp
http://dx.doi.org/10.1037/1082-989x.12.4.399.supp
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scripts ξ , Σ(ξ ), satisfies

∂ |Σ(ξ )|
∂ρi j

= |Σ(ξ )|ρ i j, if i, j ∈ ξ ,

∂ |Σ(ξ )|
∂ρi j

= 0, if i, j 6∈ ξ ,

where ρ i j is the (i, j)th element of the inverse of the correlation matrix Σ(ξ )= (ρi j), and the

asymptotic covariance between two sample simple correlations (Olkin and Siotani, 1976)

is given by

cov(ri j,rkl) =
1
n

[
1
2

ρi jρkl
(
ρik

2 +ρil
2 +ρ jk

2 +ρ jl
2)+ρikρ jl +ρilρ jk

−
(
ρi jρikρil +ρ jiρ jkρ jl +ρkiρk jρkl +ρliρl jρlk

)]
.

Thus the covariance terms between two determinants of sample correlation matrices can be

estimated as (Hedges and Olkin, 1981)

cov
(
|Σ̂(ξ )|, |Σ̂(η)|

)
= ∑

i, j∈ξ

∑
k,l∈η

∂ |Σ(ξ )|
∂ρi j

∂ |Σ(η)|
∂ρkl

cov(ri j,rkl)

=
1
n
|Σ(ξ )||Σ(η)| ∑

i, j∈ξ

∑
k,l∈η

ρ
i j

ρ
kl

{
1
2

ρi jρkl(ρik
2 +ρil

2 +ρ jk
2 +ρ jl

2)+ρikρ jl +ρilρ jk

−ρi jρikρil−ρ jiρ jkρ jl−ρkiρk jρkl−ρliρl jρlk
}

=
2
n
|Σ(ξ )||Σ(η)|tr{

(
Σ(ξ )−1− I

)
Ψ(ξ ,η)(

Σ(η)−1− I
)

Ψ
′(ξ ,η)}, (3.13)

where ρ i j and ρkl are respectively the elements of the inverse of two population correlation

matrices Σ(ξ ) = (ri j)i, j∈ξ and Σ(η) = (rkl)k,l∈η , Ψ(ξ ,η) = (rst)s∈ξ ,t∈η , ‘tr ’ denotes the

trace and I is an identity matrix.

By choosing ξ and η from four sets of subscripts {0,α,β}, {α,β}, {0,α,γ} and

{α,γ}, and plugging equation (3.13) into equation (3.12), the covariance cov
(
Rα,β

2,Rα,γ
2)

can be written as a function of simple correlation coefficients among the outcome and pre-

dictors. Its sample estimate ĉov
(
Rα,β

2,Rα,γ
2) also can be obtained with all population

correlations (ρ) replaced by sample correlations (r).
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As an illustration, considering a difference between two population squared multiple

correlations from non-nested models, ρ1
2−ρ2

2, in which ρ1
2 is from a model with outcome

y and two predictors x1 and x2, and ρ2
2 is from a model with the identical outcome y and

predictor x1 but a different additional predictor x3. Given the sample correlation matrix for

a vector (x1,x2,x3,y) denoted as Σ̂ = (ri j)4×4. According to equations (3.10) and (3.11),

R1
2 and R2

2 are given by

R1
2 = 1− |Σ̂(1,2,4)|

|Σ̂(1,2)|

=
r14

2 + r24
2−2r14r24r12

1− r122 , (3.14)

R2
2 = 1− |Σ̂(1,3,4)|

|Σ̂(1,3)|

=
r14

2 + r34
2−2r14r34r13

1− r132 . (3.15)

Applying equations (3.12) and (3.13) results in

ĉov
(
R1

2,R2
2) =

ĉov
(
|Σ̂(1,2,4)|, |Σ̂(1,3,4)|

)
|Σ̂(1,2)||Σ̂(1,3)|

+
|Σ̂(1,2,4)||Σ̂(1,3,4)|
|Σ̂(1,2)|2|Σ̂(1,3)|2

ĉov
(
|Σ̂(1,2)|, |Σ̂(1,3)|

)
− |Σ̂(1,2,4)|
|Σ̂(1,2)|2|Σ̂(1,3)|

ĉov
(
|Σ̂(1,2)|, |Σ̂(1,3,4)|

)
− |Σ̂(1,3,4)|
|Σ̂(1,2)||Σ̂(1,3)|2

ĉov
(
|Σ̂(1,2,4)|, |Σ̂(1,3)|

)
=

(1+2r14r24r12− r12
2− r14

2− r24
2)(1+2r14r24r13− r13

2− r14
2− r34

2)

n(1− r122)(1− r132)(
∑

i, j∈{1,2,4}
− ∑

i, j∈{1,2}

)(
∑

k,l∈{1,3,4}
− ∑

k,l∈{1,3}

)
ri jrkl

{
1
2

ri jrkl(rik
2 + ril

2 + r jk
2 + r jl

2)+ rikr jl + rilr jk

−ri jrikril− r jir jkr jl− rkirk jrkl− rlirl jrlk
}
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=
2(1+2r14r24r12− r12

2− r14
2− r24

2)(1+2r14r24r13− r13
2− r14

2− r34
2)

n(1− r122)(1− r132){
tr
[(

Σ(1,2,4)−1− I3×3
)

Ψ({1,2,4},{1,3,4})(
Σ(1,3,4)−1− I3×3

)
Ψ
′({1,2,4},{1,3,4})

]
+

tr
[(

Σ(1,2)−1− I2×2
)

Ψ({1,2},{1,3})(
Σ(1,3)−1− I2×2

)
Ψ
′({1,2},{1,3})

]
−

tr
[(

Σ(1,2,4)−1− I3×3
)

Ψ({1,2,4},{1,3})(
Σ(1,3)−1− I2×2

)
Ψ
′({1,2,4},{1,3})

]
−

tr
[(

Σ(1,2)−1− I2×2
)

Ψ({1,2},{1,3,4})(
Σ(1,3,4)−1− I3×3

)
Ψ
′({1,2},{1,3,4})

]}
.

Since the asymptotic variance of R2 is given by

var(R2) ≈
4ρ2 (1−ρ2)2

n
,

then the correlation between R1
2 and R2

2 can be estimated as

ĉorr
(
R1

2,R2
2) =

ĉov
(
R1

2,R2
2)√

var(R1
2)var(R2

2)

=

√
(1− r122)(1− r132)

2
√

(r142 + r342−2r14r34r13)(r142 + r242−2r14r24r12){
tr
[(

Σ(1,2,4)−1− I3×3
)

Ψ({1,2,4},{1,3,4})(
Σ(1,3,4)−1− I3×3

)
Ψ
′({1,2,4},{1,3,4})

]
+

tr
[(

Σ(1,2)−1− I2×2
)

Ψ({1,2},{1,3})(
Σ(1,3)−1− I2×2

)
Ψ
′({1,2},{1,3})

]
−

tr
[(

Σ(1,2,4)−1− I3×3
)

Ψ({1,2,4},{1,3})(
Σ(1,3)−1− I2×2

)
Ψ
′({1,2,4},{1,3})

]
−

tr
[(

Σ(1,2)−1− I2×2
)

Ψ({1,2},{1,3,4})(
Σ(1,3,4)−1− I3×3

)
Ψ
′({1,2},{1,3,4})

]}
. (3.16)
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Now, R1
2 and R2

2 can be calculated by formula (3.14) and (3.15). Based on a scaled

central or non-central F approximation, we can obtain the asymptotic confidence limits for

each ρi
2 denoted as (li,ui) , i = 1,2. Moreover, the correlation between R1

2 and R2
2 also

can be estimated by equation (3.16). The next step is to generate a confidence interval for

∆ρ2 = ρ1
2−ρ2

2 using the MOVER. Applying the formula (3.5), we have the confidence

limits for ρ1
2−ρ2

2 given by

L = R1
2−R2

2−
√
(R1

2− l1)2 +(u2−R2
2)2−2ĉorr

(
R1

2,R2
2)(R1

2− l1)(u2−R2
2),

U = R1
2−R2

2 +
√

(u1−R1
2)2 +(R2

2− l2)2−2ĉorr
(
R1

2,R2
2)(u1−R1

2)(R2
2− l2).

3.4 Summary

In this chapter, we proposed a new confidence interval constructed for a difference between

two population squared multiple correlation from non-nested models by using the MOVER.

The proposed confidence interval accounts for the potential asymmetry of the sampling

distribution of the difference between two correlated R2s using the MOVER. Since the

MOVER in principle is derived by applying the central limit theorem, the procedure for

differences between two R2s is asymptotic in nature. Thus, properties in practical sample

sizes must be evaluated.
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Chapter 4

SIMULATION STUDY

4.1 Introduction

We have presented three versions of approximate confidence intervals (CIs) for differences

between two squared multiple correlation coefficients arising from non-nested models in

the previous chapter. These include the Wald method and two procedures based on a scaled

central or noncentral F approximation and the MOVER. The validity of all procedures rely

on the central limit theorem. Therefore, we need to evaluate their performance before they

are applied in practice.

The lower and upper 100 ·(1−α)% confidence limits for parameter θ , lθ and uθ , are de-

fined by P(lθ < θ < uθ )= 1−α . Accordingly, we assess the performance of the confidence

interval procedures in terms of coverage rate, balance of tail error rates and average inter-

val width. The empirical coverage rate (CV) was estimated by the proportion of confidence

intervals that cover the true value of the parameter among a large number of replications.

Ideally, the empirical coverage rates should be matched with the nominal confidence level

of 100(1−α)%. In practice, three criteria for acceptable deviation from the nominal con-

fidence level commonly seen in literature (Bradley, 1978; Robey and Barcikowski, 1992)

were adopted: strict criterion, 94.5%−95.5%; moderate criterion, 93.75%−96.25%; and

liberal criterion, 92.5%− 97.5%. Furthermore, an often neglected but important measure

for evaluating confidence intervals is that the lower and upper tail error rates from two-sided

confidence intervals are equal. Tail error rates were estimated by the proportion of confi-

dence intervals lying completely to the left of the true value of parameter (missing from

left, ML) and those lying completely to the right of the true value of parameter (missing
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from right, MR). The rates of ML and MR should be asymptotically balanced and equal

to α/2. An additional criterion is that the such that the more narrow the average interval

width (WD), the better.

4.2 Study design

Without loss of generality, we considered the case where it is of interest in determining

whether a predictor X2 or X3 adds more to a model that already contains a predictor X1

and the outcome Y . Explicitly, we evaluated the confidence intervals constructed for a

difference between two squared multiple correlation coefficients from non-nested models

denoted as ∆ρ2 = ρ1
2−ρ2

2, where ρ1
2 comes from the model predicting the outcome Y

from predictors {X1,X2} and ρ2
2 comes from the model predicting the identical response

variable Y from predictors {X1,X3}.

Based on discussions presented in the previous chapter, it was found that all three ver-

sions of asymptotic confidence intervals (CIs) constructed for a difference between two

correlated R2s highly depend on the correlations among the involved variables. Therefore,

depending on the correlation matrix of a vector of involved predictors and the outcome, the

same difference between ρ2s could lead to very different confidence intervals. Hence, to

investigate the performance of inference procedures for a wide variety of possible cases,

we conducted a simulation study by using various population correlation matrices, as well

as different values of ∆ρ2.

Denote Σ as the population correlation matrix for a vector of the response variable and

all three predictors [X1,X2,X3,Y ]. In this simulation study, we considered a total of 50 typ-

ical parameter combinations (10Σ×5n), where ten population correlation matrices (Σ =A,

B, . . ., J) are shown in Table 4.1 and sample size n =50, 75, 100, 150 and 300. These ten

correlation matrices were selected to represent a variety of common values of ∆ρ2 rang-

ing from 0 to 0.30 and moderate values of ρY ·X1X2X3
2 for the full model predicting Y from

predictors {X1,X2,X3}. Among 10 matrices, to better represent generality of parameter se-
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lection, matrices with the same value of ∆ρ2 (e.g., 0.10, 0.15 or 0.20) but different values

of ρ1
2 and ρ2

2 were involved. For example, both matrix C and matrix D result in the same

value of ∆ρ2 = 0.10, but the values of ρ1
2 and ρ2

2 calculated from matrix D are almost

twice than those from matrix C.

We assume that the vector [X1,X2,X3,Y ] follows a multivariate normal distribution, for

each of ten population correlation matrices, we generated multivariate normal data with

sample size n, then calculated the sample estimator of ∆ρ2 and constructed its confidence

intervals by separately applying three versions of procedures. Finally, the performance of

these three procedures were evaluated through simulating 1000 data sets.

Since our general idea is to obtain a CI for a difference using confidence limits for

single parameters, we also evaluated the performance of procedures for constructing CIs

for a single squared multiple correlation coefficient. For each of ten correlation matrices,

the resulting values of ρ1
2 and ρ2

2 were calculated as shown in Table 4.1. For example,

the ten correlation matrices led to the values of ρ1
2 ranging from 0.31 to 0.68, which are

common in practice. For each of the resulting values of ρ1
2, sample size and replication,

the Wald CI and the two CIs based on a scaled central/noncentral F approximation for ρ1
2

were constructed.

For each of ten population correlation matrix, the performance of three asymptotic infer-

ence procedures for a single ρ2 and a difference between two ρ2s from non-nested models

was evaluated by the following process.

1. For each selected correlation matrix Σ, three population squared multiple correlation

coefficients ρ1
2 for predicting Y from X1 and X2, ρ2

2 for predicting Y from X1 and

X3 and ρY ·X1X2X3
2 for predicting Y from X1, X2 and X3, as well as the difference

∆ρ2 = ρ1
2−ρ2

2, were calculated according to their definitions and shown in Table

4.1. For example, ρY ·X1X2
2 = 1−|Σ(1,2,4)|/|Σ(1,2)|, where |Σ(1,2,4)| and |Σ(1,2)|

are respectively the principle minors of the determinant of the specified correlation

matrix for vector [X1,X2,Y ] and [X1,X2].
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2. Drawing a random sample of n observations of vector [X1,X2,X3,Y ] from a multi-

variate normal distribution with a specified population correlation matrix Σ, where

the sample size n was varied from 50, 75, 100, 150, 300. For a given population cor-

relation matrix Σ and sample size n, a n×4 matrix A was first generated as n samples

of 4 independent standard normal variables. The desired data sets were then ob-

tained as AU , in which U is the upper triangular matrix which satisfies the Cholesky

decomposition UTU = Σ, where the superscript T denotes the transpose of a matrix.

3. For each simulated data set, computing the sample correlation matrix of vector [X1,X2,

X3,Y ] denoted as Σ̂ by using SAS PROC CORR. This matrix Σ̂ was then used to

compute all sample squared multiple correlation coefficients by using SAS PROC

RSQUARE, which include the sample estimates of ρ1
2 and ρ2

2 denoted by R1
2 and

R2
2.

4. Estimating the asymptotic variances of R1
2 and R2

2, as well as their covariance by

using the formula presented in equations (3.14), (3.15) and (3.16) in last chapter,

which are denoted by v̂ar(R1
2), v̂ar(R2

2) and ĉov(R1
2,R2

2). Then, from the formula

corr(R1
2,R2

2) = cov(R1
2,R2

2)/
√

var(R1
2)var(R2

2), the sample correlation coeffi-

cient between R1
2 and R2

2 denoted by ĉorr(R1
2,R2

2) was also calculated.

5. Constructing three approximate confidence intervals for two single squared multiple

correlation coefficients including ρ1
2 and ρ2

2, respectively by applying the Wald

method, a scaled central or noncentral F approximation.

• The two-sided 100(1−α)% Wald confidence intervals for ρi
2 denoted by (liW ,

uiW ), i = 1,2, were constructed by (liW ,uiW ) = Ri
2∓ zα/2

√
v̂ar(Ri

2);

• Given a simulated data set, the approximate confidence intervals for ρ1
2 and

ρ2
2 based on a scaled central F approximation were constructed by using SAS
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PROC CANCORR with the option SMC, which were denoted by (l1F ,u1F) and

(l2F ,u2F);

• By inputting the values of R1
2 and R2

2, we obtained the approximate confidence

intervals for ρ1
2 and ρ2

2 based on a scaled noncentral F approximation imple-

mented by Zou (2007), which were denoted by (l1NF ,u1NF) and (l2NF ,u2NF).

6. Calculating the sample estimate of the difference ∆ρ2 = ρ1
2−ρ2

2 by using ∆R2 =

R1
2−R2

2.

7. Three corresponding confidence intervals for the difference can then be obtained by

applying the MOVER formula given by

L = R1
2−R2

2−
√

(R1
2− l1)2 +(u2−R2

2)2−2ĉorr
(
R1

2,R2
2)(R1

2− l1)(u2−R2
2),

U = R1
2−R2

2 +
√

(u1−R1
2)2 +(R2

2− l2)2−2ĉorr
(
R1

2,R2
2)(u1−R1

2)(R2
2− l2),

where the confidence interval for ρi
2, (li,ui), is equal to (liW ,uiW ), (liF ,uiF) or (liNF ,

uiNF), i = 1,2 for each procedure respectively.

These above steps were repeated 1000 times for each parameter combination. The

following results were recorded: (a) the empirical expected value of ∆ρ2 or the average

value of ∆R2 over 1000 replications; (b) the coverage rate(CV) of confidence intervals

constructed respectively for ρ1
2, ρ2

2 and ∆ρ2; c) tail error rates including missing from

left (ML) and missing from right (MR) of confidence intervals constructed for ρ1
2, ρ2

2 and

∆ρ2, respectively; d) the average interval widths (WD) respectively for ρ1
2, ρ2

2 and ∆ρ2

over 1000 replications; e) the power (P), defined as the proportion of confidence intervals

for ∆ρ2 that did not contain 0 for non-null cases (∆ρ2 6= 0).

Since α was set at 5%, the coverage rates were expected to be 95%. The rates of missing

from left and missing from right of confidence intervals were expected to be balanced and

equal to 2.5%. For a procedure maintaining a given α level, the higher power the better.
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4.3 Results

4.3.1 Results for Point Estimation

Table 4.2 presents sample estimates of the parameter (∆ρ2). The results show that, in gen-

eral, as sample size increases the discrepancy between the estimate and the true parameter

value decreases and the estimates are reasonably close to the true parameter value.

4.3.2 Confidence intervals for a single ρ2

The performance of three procedures for constructing two-sided 95% confidence intervals

for ρ1
2 is presented in Table 4.3. Here, the performance of procedures for ρ2

2 is not shown

in the table, since it showed similar trends to that for ρ1
2.

From Table 4.3, it can be seen that the Wald method resulted in a coverage rate within

the range of 94.5%− 95.5%, specified by Bradley’s strict criterion (Bradley, 1978), only

for 9 parameter combinations. Among those outside the range, all fell below 94.5%, even

when the sample size was as large as 150. In light of the moderate criterion (93.75%−

96.25%), the Wald method still provided adequate coverage only in 20 of 50 parameter

combinations. The two procedures based on a central/noncentral F approximation provided

coverage within the range of the strict criterion in 42 of 50 parameter combinations. Among

those outside this range, all but one case showed coverage within the range of the moderate

criterion. Moreover, two procedures based on a central/noncentral F approximation led to

well balanced tail errors, while the Wald method resulted in the upper tail errors more than

twice than the corresponding lower tail errors. In addition, all three procedures had very

similar interval widthes for all cases. Hence, the poor performance of the Wald method is

consistent with previous evaluations (Algina, 1999).

Table 4.3 also shows the close performance of two procedures based on a central or

noncentral F approximation. For the eight moderate values of ρ2, which are 0.31, 0.38,

0.45, 0.50, 0.54, 0.58, 0.65 and 0.68, both provided similar coverage rates and interval

width, but the noncentral F approximation having relatively larger lower tail error rates
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resulted in less balanced tail errors than the central F approximation did. This suggests

that the procedure based on a two-moment scaled central F approximation for a single

ρ2 performs adequately, despite Lee (1971)’s argument that a two-moment scaled central

F approximation ‘seems reasonable though rather crude’. Furthermore, the theory and

usage of a two-moment scaled central F approximation is slightly simpler than that of

a three-moment scaled noncentral F approximation. Hence, for a single squared multiple

correlation coefficient, we recommend the procedure based on a two-moment scaled central

F approximation, as implemented in SAS PROC CANCORR.

4.3.3 Differences between two ρ2s from non-nested models

In this simulation study, three procedures were separately employed to construct two-sided

95% confidence intervals for ∆ρ2, including those based on the Wald-type procedure, a

scaled central F approximation and the MOVER (referred to as the ‘FM’ procedure for

short), or a scaled noncentral F approximation and the MOVER (referred to as the ‘NFM’

procedure for short).

For the null case (Matrix A), the proportion of confidence intervals that did not contain

0 represents Type I error rate, which was set at 5% here. The performance of three pro-

cedures in terms of coverage rate, tail errors, average interval width and Type I error rate

are shown in Table 4.4 for samples of size 50, 75, 100, 150, and 300. Using the range of

Bradley’s strict criterion 94.5% to 95.5% as acceptable for empirical results, the Wald-type

procedure appears to control Type I error rate reasonably well and slightly better than other

two procedures, even for small sample sizes. However, the discrepancy among three pro-

cedures was so small that all three procedures became acceptable when adopting Bradley’s

liberal criterion 92.5− 97.5%. Note that the coverage rate in the null case is simply one

minus the Type I error rate. In addition, the three procedures provided balanced tail errors

and similar interval width for the null case.

For all nine non-null cases (matrix B-J), the performance of three procedures in terms

of coverage rate, tail errors, average interval width and power rate over 1000 replications
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was presented in Table 4.5. A visual representation of coverage rates and power rates for

three procedures is provided in Figures 4.1-4.6, respectively.

In the first three figures of describing coverage rates, the solid line represents the ex-

pected coverage rate (95%), the dotted lines represent the limits of Bradley’s strict criterion

(94.5−95.5%), and the dot-dashed lines represent the limits of Bradley’s liberal criterion

(92.5−97.5%).

Figure 4.1 suggests that the Wald-type procedure resulted in a coverage rate within the

range of Bradley’s strict criterion, only for 7 parameter combinations. Among those out-

side the range, all fell below 94.5%, even with sample size as large as 300. By the identical

strict criterion, as shown in Figures 4.2 and 4.3, the ‘FM’ and ‘NFM’ procedures resulted

in a similar coverage rate within the range respectively in 18 of 45 and 19 of 45 param-

eter combinations, even for some cases with small sample size. For example, for matrix

B (i.e., ∆ρ2 = 0.05 and ρ1
2 = 0.54) and sample size n = 300, the Wald-type procedure

provided a coverage of only 93.4% less than the strict criterion of 94.5%, while the ‘FM’

procedure provided a coverage of 95.2% and the ‘NFM’ procedure provided a coverage

of 95.5%. Another example with small sample size n = 50, for matrix I (i.e., ∆ρ2 = 0.25

and ρ1
2 = 0.50), the coverage rates from the ‘FM’ and ‘NFM’ procedures with the values

of 94.6% and 95.3% were very closed to the nominal level, while for the Wald-type pro-

cedure, it was only 92.7%, far falling short of 94.5%. As the sample size increases, the

coverage rates from the Wald-type procedure tend to reach the nominal level from below,

rather than hovering around the expected coverage rate as those from the ‘FM’ and ‘NFM’

procedures. In summary, according to Bradley’s strict criterion (94.5−95.5%), the Wald-

type procedure did not provide adequate coverage percentage even with a sample sizes as

large as 300, while both the ‘FM’ and ‘NFM’ procedures provided adequate coverage even

for small sample size (n = 50).

Even with the liberal criterion of 92.5% to 97.5%, the Wald-type procedure failed in 11

of 45 parameter combinations, all but one occurred at values of ρ1
2 above 0.45 (such as

matrix B, F, H, J) and small sample size n = 50 and 75. In contrast, the ‘FM’ and ‘NFM’
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procedure provided adequate coverage in 41 of 45 parameter combinations. Almost all

cases outside the range of liberal criterion occurred at small values of ∆ρ2 (0.05) with

small sample sizes of 50 and 75. For these cases, the coverage rates from the Wald-type

procedure even went further away from the expected coverage rate (95%). Hence, accord-

ing to Bradley’s liberal criterion, we can conclude that the ‘FM’ and ‘NFM’ procedures

provide better coverage than the Wald-type procedure for all non-null cases (∆ρ2 6= 0).

Table 4.5 also shows tail error rates of non-null cases. These results show that the

Wald-type procedure provided less balanced tail error rates than the ‘FM’ and ‘NFM’ pro-

cedures, and the ‘NFM’ procedure provided slightly more balanced tail error rates than

the ‘FM’ procedure, especially when the difference between ∆ρ2 and ρ1
2 was above 0.50.

For example, for matrix D with ∆ρ2 = 0.10 and ρ1
2 = 0.68, the mean difference between

lower and upper tail error rates for all sample sizes considered was equal to 2.34 for the

Wald-type procedure, 0.38 for the ‘FM’ procedure and 0.1 for the ‘NFM’ procedure. Fur-

thermore, these three procedures had very similar average interval width for all correlation

matrices and sample sizes considered.

Based on the above results for coverage rate, tail error rates and average interval width,

the Wald-type procedure performed much worse than the ‘FM’ and ‘NFM’ procedures. The

‘NFM’ procedure was shown to perform slightly better than the ‘FM’ procedure in terms

of balanced tail error rates.

The observed (empirical) power rates from three procedures for non-null cases were

also compared as shown in column (‘P%’) of Table 4.5 and Figures 4.4, 4.5 and 4.6. For

each of three procedures, power increases with sample size as expected for all parameter

combinations considered. The powers from the Wald-type procedure were larger than other

two procedures at all cases. In practice, due to the poor performance of the Wald-type

procedure in terms of coverage probability and balanced tail error rates, the resulting power

values were not valid. Furthermore, the powers of the ‘FM’ procedure were slightly higher

than those of the ‘NFM’ procedure at all cases considered. It is well known that the power

in non-null cases is simply one minus Type II error. To control Type I and II errors in the
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hypothesis test H0 : ∆ρ2 = 0, the ‘FM’ procedure seems to be the best choice. Hence, for a

difference between two squared multiple correlation coefficients from non-nested models,

we recommend applying the MOVER with the scaled central F approximation for single

R-squares.

4.4 Discussion

The simulation results we conducted led to two general conclusions. First, to construct

a confidence interval for a single squared multiple correlation coefficient, the procedure

based on a two-moment scaled central F approximation performed best among three pro-

cedures. Second, through a series of evaluations of the performance of three procedures

for constructing confidence intervals for a difference between two squared multiple cor-

relation coefficients from non-nested models, the Wald-type procedure was shown to be

clearly inappropriate. In contrast, the MOVER procedure with the two-moment scaled cen-

tral F approximation for single R-squares is the best choice. The procedure based on the

three-moment scaled noncentral F approximation is a viable alternative.

The purpose of this simulation study was to serve as a preliminary evaluation of the

performance of three asymptotic procedures using 50 typical parameter combinations and

a relatively simple R2 comparison. However, the general patterns observed in this study

should readily generalize to R2 comparisons with any a population correlation matrix of a

vector of the response and more than three predictor variables.
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Table 4.1: Population correlation matrices (Σ) of the vector of three predictors and the out-

come [X1,X2,X3,Y ] used in simulation studies and the resulting population squared multiple

correlation coefficients including ρ1
2 = ρY ·X1X2

2, ρ2
2 = ρY ·X1X3

2 and ρY ·X1X2X3
2, as well as

the values of ∆ρ2 = ρ1
2−ρ2

2.

Population correlation matrix (Σ) ∆ρ2 ρY ·X1X2
2 ρY ·X1X3

2 ρY ·X1X2X3
2

A X1 X2 X3 Y 0 .39 .39 .47

X1 1.0

X2 .3 1.0

X3 .3 .3 1.0

Y .5 .5 .5 1.0

B .05 .54 .49 .55

X1 1.0

X2 .1 1.0

X3 .5 .1 1.0

Y .7 .3 .3 1.0

C .10 .38 .28 .52

X1 1.0

X2 .3 1.0

X3 .5 .5 1.0

Y .5 .5 .1 1.0

D .10 .68 .58 .69

X1 1.0

X2 .1 1.0

X3 .3 .5 1.0

Continued on next page
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Table 4.1 – Continued

Population correlation matrix (Σ) ∆ρ2 ρY ·X1X2
2 ρY ·X1X3

2 ρY ·X1X2X3
2

Y .7 .5 .5 1.0

E .15 .31 .16 .37

X1 1.0

X1 .1 1.0

X2 .1 .1 1.0

Y .3 .5 .3 1.0

F .15 .65 .50 .66

X1 1.0

X1 .5 1.0

X2 .3 .5 1.0

Y .7 .7 .3 1.0

G .20 .31 .11 .34

X1 1.0

X2 .1 1.0

X3 .7 .1 1.0

Y .3 .5 .1 1.0

H .20 .45 .25 .46

X1 1.0

X2 .1 1.0

X3 .3 .1 1.0

Y .5 .5 .1 1.0

I .25 .50 .25 .53

X1 1.0

Continued on next page
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Table 4.1 – Continued

Population correlation matrix (Σ) ∆ρ2 ρY ·X1X2
2 ρY ·X1X3

2 ρY ·X1X2X3
2

X2 .3 1.0

X3 .1 .5 1.0

Y .1 .7 .5 1.0

J .30 .58 .28 .60

X1 1.0

X2 .3 1.0

X3 .5 .1 1.0

Y .5 .7 .1 1.0



64

Table 4.2: Sample estimates of the difference ∆ρ2 averaged over 1000 replications by

sample size of 50, 75, 100, 150, and 300.

PPPPPPPPPPP
Sample size

Matrix A B C D E F G H I J

(0.00) (0.05) (0.10) (0.10) (0.15) (0.15) (0.20) (0.20) (0.25) (0.30)

50 0.00 0.05 0.10 0.10 0.14 0.15 0.19 0.19 0.24 0.29

75 0.00 0.05 0.10 0.10 0.14 0.15 0.19 0.20 0.24 0.29

100 0.00 0.05 0.10 0.10 0.15 0.15 0.20 0.20 0.24 0.30

150 0.00 0.05 0.10 0.10 0.15 0.15 0.20 0.20 0.25 0.30

300 0.00 0.05 0.10 0.10 0.15 0.15 0.20 0.20 0.25 0.30

Note: Numbers in bold and brackets indicate the population parameters.
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Table 4.3: Performance of procedures for constructing two-sided 95% confidence intervals

for a single squared multiple correlation coefficient (ρ1
2) over 1000 replications, by sample

size.

ρ1
2 SS Wald Central F approximation Noncentral F approximation

CV (ML, MR)% WD CV (ML, MR)% WD CV (ML, MR)% WD

0.31 50 91.0 (3.1, 5.9) 0.41 95.2 (2.5, 2.3) 0.40 90.1 (3.4, 6.5) 0.38

75 92.3 (2.4, 5.3) 0.34 95.0 (2.2, 2.8) 0.33 94.9 (2.8, 2.3) 0.34

100 93.5 (2.0, 4.5) 0.30 95.1 (2.0, 2.9) 0.29 95.0 (2.4, 2.6) 0.29

150 94.0 (2.1, 3.9) 0.24 95.1 (2.1, 2.8) 0.24 94.7 (3.0, 2.3) 0.24

300 94.7 (2.2, 3.1) 0.17 94.9 (2.2, 2.9) 0.17 94.6 (2.6, 2.8) 0.17

0.38 50 91.5 (2.6, 5.9) 0.41 95.2 (2.6, 2.2) 0.41 94.6 (3.5, 1.9) 0.40

75 92.3 (2.6, 5.1) 0.34 95.1 (2.7, 2.2) 0.34 94.8 (3.5, 1.7) 0.34

100 94.5 (1.8, 3.7) 0.29 96.0 (2.1, 1.9) 0.29 95.8 (2.4, 1.8) 0.30

150 93.0 (2.5, 4.5) 0.24 94.4 (2.7, 2.9) 0.24 94.4 (3.1, 2.5) 0.24

300 95.2 (2.0, 2.8) 0.17 95.5 (2.2, 2.3) 0.17 95.3 (2.8, 1.9) 0.17

0.45 50 91.0 (1.8, 7.2) 0.39 95.4 (2.2, 2.4) 0.40 95.5 (2.8, 1.7) 0.40

75 92.8 (1.8, 5.4) 0.32 95.5 (2.4, 2.1) 0.33 95.4 (2.8, 1.8) 0.33

100 94.1 (1.5, 4.4) 0.28 95.4 (2.0, 2.6) 0.28 95.1 (2.5, 2.4) 0.29

150 94.7 (1.8, 3.5) 0.23 94.8 (2.5, 2.7) 0.23 94.7 (2.8, 2.5) 0.24

300 94.7 (1.9, 3.4) 0.17 95.0 (2.6, 2.4) 0.17 95.1 (2.7, 2.2) 0.17

0.50 50 92.3 (1.9, 5.8) 0.38 95.3 (2.4, 2.3) 0.38 95.3 (3.1, 1.6) 0.39

75 92.3 (1.8, 5.9) 0.31 94.3 (3.1, 2.6) 0.32 94.5 (3.3, 2.2) 0.32

100 92.8 (2.1, 5.1) 0.27 94.5 (2.8, 2.7) 0.27 94.4 (3.1, 2.5) 0.28

150 93.8 (1.9, 4.3) 0.22 95.5 (2.0, 2.5) 0.23 95.4 (2.6, 2.0) 0.23

300 94.5 (2.1, 3.4) 0.16 94.5 (3.0, 2.5) 0.16 94.5 (3.2, 2.3) 0.16

0.54 50 91.0 (1.6, 7.4) 0.36 94.9 (2.3, 2.8) 0.37 95.1 (3.0, 1.9) 0.38

75 93.6 (1.2, 5.2) 0.30 95.7 (2.2, 2.1) 0.30 95.7 (2.5, 1.8) 0.31

100 93.1 (1.6, 5.3) 0.26 95.1 (2.6, 2.3) 0.26 95.5 (2.8, 1.7) 0.27

Continued on next page
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Table 4.3 – Continued

ρ1
2 SS Wald Central F approximation Noncentral F approximation

CV (ML, MR)% WD CV (ML, MR)% WD CV (ML, MR)% WD

150 94.2 (1.8, 4.0) 0.21 94.9 (2.7, 2.4) 0.22 94.9 (3.1, 2.0) 0.22

300 94.7 (1.8, 3.5) 0.15 95.8 (2.3, 1.9) 0.15 95.7 (2.5, 1.8) 0.15

0.58 50 92.2 (1.2, 6.6) 0.34 95.3 (2.5, 2.2) 0.36 94.9 (3.3, 1.8) 0.36

75 92.8 (1.3, 5.9) 0.28 95.6 (2.2, 2.2) 0.29 95.4 (2.7, 1.9) 0.29

100 94.2 (0.8, 5.0) 0.25 95.7 (1.9, 2.4) 0.25 95.8 (2.3, 1.9) 0.25

150 93.9 (1.7, 4.4) 0.20 95.2 (2.6, 2.2) 0.21 95.1 (2.8, 2.1) 0.21

300 95.0 (1.7, 3.3) 0.14 95.4 (2.3, 2.3) 0.14 95.4 (2.4, 2.2) 0.15

0.65 50 92.1 (0.6, 7.3) 0.30 95.4 (2.5, 2.1) 0.32 95.2 (3.1, 1.7) 0.33

75 93.6 (0.8, 5.6) 0.25 95.7 (2.2, 2.1) 0.26 95.8 (2.5, 1.7) 0.26

100 93.9 (0.9, 5.2) 0.22 95.2 (2.4, 2.4) 0.22 95.5 (2.6, 1.9) 0.22

150 94.2 (1.4, 4.4) 0.18 94.8 (2.9, 2.3) 0.18 95.1 (3.0, 1.9) 0.18

300 94.4 (1.6, 4.0) 0.13 95.6 (2.5, 1.9) 0.13 95.3 (2.9, 1.8) 0.13

0.68 50 91.8 (0.8, 7.4) 0.29 95.3 (2.7, 2.0) 0.31 94.7 (3.4, 1.9) 0.31

75 93.6 (0.5, 5.9) 0.24 96.2 (1.7, 2.1) 0.25 95.9 (2.3, 1.8) 0.25

100 93.8 (1.0, 5.2) 0.21 94.7 (2.8, 2.5) 0.21 95.0 (2.9, 2.1) 0.21

150 93.9 (1.4, 4.7) 0.17 95.1 (2.5, 2.4) 0.17 95.3 (2.7, 2.0) 0.17

300 95.1 (1.1, 3.8) 0.12 94.8 (2.7, 2.5) 0.12 94.6 (3.2, 2.2) 0.12 1

1Note: ρ1
2 = ρY ·X1X2

2 denotes the selected population squared multiple correlation coefficient for predict-
ing Y from X1 and X2; ‘SS’ denotes sample size; ‘CV’ denotes the coverage rate; ‘ML’ and ‘MR’ denote
that the confidence interval misses the true value of parameter from the left and the right, respectively;
‘WD’ denotes the average interval width over 1000 replications.
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Table 4.4: Null case: the performance of 3 procedures for constructing two-sided 95%

confidence intervals for a difference between two ρ2s from non-nested models (∆ρ2 =

ρ1
2−ρ2

2) over 1000 replications, by sample size.

Σ SS Wald MOVER and central F MOVER and noncentral F

CV (ML, MR)% WD E% CV (ML, MR)% WD E% CV (ML, MR)% WD E%

A 50 95.0 (2.4, 2.6) 0.36 5.0 96.7 (1.7, 1.6) 0.37 3.3 96.9 (1.5, 1.6) 0.39 3.1

(∆ρ2 = 0) 75 94.8 (2.7, 2.5) 0.30 5.2 96.3 (1.9, 1.8) 0.31 3.7 96.6 (1.7, 1.7) 0.32 3.4

100 95.4 (1.9, 2.7) 0.26 4.6 95.9 (1.7, 2.4) 0.27 4.1 96.3 (1.6, 2.1) 0.27 3.7

150 95.2 (2.0, 2.8) 0.22 4.8 95.8 (1.8, 2.4) 0.22 4.2 95.9 (1.8, 2.3) 0.22 4.1

300 94.8 (2.6, 2.6) 0.15 5.2 95.0 (2.5, 2.5) 0.15 5.0 95.2 (2.3, 2.5) 0.15 4.8

Note: Σ denotes the specified population correlation matrix of a vector of 3 predictors and the outcome

presented in Table 4.1; ‘SS’ denotes sample size; ‘CV’ denotes the coverage rate; ‘ML’ and ‘MR’ denote

that the interval misses the true value of parameter from the left and the right, respectively; ‘WD’ denotes the

average interval width over 1000 replications; ‘E’ denotes the Type I error rate.
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Table 4.5: Non-null cases: the performance of procedures for constructing two-sided 95%

confidence intervals for a difference between two ρ2s from non-nested models (∆ρ2 =

ρ1
2−ρ2

2) over 1000 replications, by population correlation matrix and sample size.

Σ SS Wald MOVER and central F MOVER and noncentral F

CV (ML, MR)% WD P% CV (ML, MR)% WD P% CV (ML, MR)% WD P%

B 50 90.0 (9.2, 0.8) 0.19 5.9 99.1 (0.4, 0.5) 0.24 4.1 99.3 (0.3, 0.4) 0.27 2.6

75 90.3 (8.9, 0.8) 0.15 11.0 98.1 (1.3, 0.6) 0.18 8.0 99.0 (0.4, 0.6) 0.20 6.9

100 91.5 (8.1, 0.4) 0.13 21.0 97.2 (2.4, 0.4) 0.15 16.2 98.3 (1.3, 0.4) 0.16 13.6

150 92.8 (6.8, 0.4) 0.11 40.8 96.3 (3.3, 0.4) 0.12 35.5 97.2 (2.4, 0.4) 0.12 31.3

300 93.4 (5.5, 1.1) 0.07 80.1 95.2 (3.7, 1.1) 0.08 76.6 95.5 (3.4, 1.1) 0.08 74.7

C 50 93.8 (4.0, 2.2) 0.38 17.9 95.1 (3.4, 1.5) 0.38 14.9 95.7 (3.1, 1.2) 0.41 13.3

75 93.6 (3.7, 2.7) 0.31 26.4 94.7 (3.3, 2.0) 0.31 24.0 95.1 (3.0, 1.9) 0.32 22.6

100 94.0 (3.7, 2.3) 0.27 34.2 94.8 (3.6, 1.6) 0.27 31.7 95.0 (3.5, 1.5) 0.28 30.4

150 93.1 (3.6, 3.3) 0.22 46.1 94.0 (3.5, 2.5) 0.23 43.9 94.2 (3.4, 2.4) 0.23 43.1

300 94.2 (3.2, 2.6) 0.16 71.0 94.5 (3.2, 2.3) 0.16 70.5 94.6 (3.2, 2.2) 0.16 70.1

D 50 93.5 (4.8, 1.8) 0.24 27.2 96.8 (1.4, 1.8) 0.29 24.0 97.5 (0.9, 1.6) 0.31 21.4

75 94.3 (4.6, 1.1) 0.20 43.0 96.5 (1.9, 1.6) 0.22 40.1 96.7 (1.7, 1.6) 0.23 36.9

100 93.4 (5.0, 1.6) 0.17 56.1 96.1 (2.2, 1.7) 0.19 53.6 96.5 (1.8, 1.7) 0.20 51.7

150 95.2 (3.5, 1.3) 0.14 76.4 95.4 (2.5, 2.1) 0.15 74.5 95.8 (2.1, 2.1) 0.15 72.7

300 94.5 (3.6, 1.9) 0.10 97.2 95.1 (3.0, 1.9) 0.10 96.7 95.2 (2.8, 2.0) 0.10 96.5

E 50 93.4 (4.0, 2.6) 0.44 25.5 94.5 (4.3, 1.2) 0.42 21.4 95.8 (3.2, 1.0) 0.47 20.1

75 93.6 (4.1, 2.3) 0.36 34.5 94.5 (4.2, 1.3) 0.36 31.4 94.9 (3.8, 1.3) 0.37 30.5

100 95.0 (2.7, 2.3) 0.32 43.7 95.2 (3.0, 1.8) 0.31 40.3 95.4 (2.8, 1.8) 0.32 39.9

150 94.0 (3.3, 2.7) 0.26 58.5 94.5 (3.7, 2.1) 0.26 57.7 94.3 (3.6, 2.1) 0.26 56.8

300 94.3 (3.0, 2.7) 0.19 86.1 94.6 (3.2, 2.2) 0.18 85.8 94.7 (3.2, 2.1) 0.19 85.7

F 50 91.1 (8.1, 0.8) 0.25 70.8 96.5 (2.6, 0.9) 0.29 62.3 97.7 (1.5, 0.8) 0.31 56.4

75 91.0 (8.5, 0.5) 0.20 92.4 96.7 (2.8, 0.5) 0.23 88.5 97.2 (2.2, 0.6) 0.24 84.8

100 91.5 (7.5, 1.0) 0.18 98.5 95.4 (3.5, 1.1) 0.19 97.5 96.3 (2.6, 1.1) 0.20 96.8

Continued on next page
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Table 4.5 – Continued

Σ SS Wald MOVER and central F MOVER and noncentral F

CV (ML, MR)% WD P% CV (ML, MR)% WD P% CV (ML, MR)% WD P%

150 93.4 (5.7, 0.9) 0.15 100.0 95.2 (3.3, 1.5) 0.15 100.0 95.7 (2.8, 1.5) 0.16 100.0

300 93.1 (4.8, 2.1) 0.10 100.0 94.3 (3.4, 2.3) 0.11 100.0 94.8 (2.9, 2.3) 0.11 100.0

G 50 92.4 (5.4, 2.2) 0.42 43.1 93.0 (6.0, 1.0) 0.40 37.2 95.1 (3.9, 1.0) 0.47 34.4

75 92.5 (5.0, 2.5) 0.34 59.5 93.1 (5.4, 1.5) 0.33 57.2 93.9 (4.7, 1.4) 0.37 56.0

100 93.2 (4.7, 2.1) 0.30 73.2 93.4 (5.3, 1.3) 0.29 71.3 94.0 (4.8, 1.2) 0.31 70.3

150 92.8 (4.0, 3.2) 0.24 87.6 93.8 (4.9, 1.6) 0.24 87.5 93.4 (5.0, 1.6) 0.24 86.9

300 95.0 (3.2, 1.8) 0.17 99.3 95.3 (3.5, 1.2) 0.17 99.3 95.3 (3.5, 1.2) 0.17 99.3

H 50 91.0 (7.2, 1.8) 0.35 57.1 92.9 (6.3, 0.8) 0.35 50.7 93.9 (5.3, 0.8) 0.39 46.6

75 91.6 (6.7, 1.7) 0.29 82.1 93.0 (6.3, 0.7) 0.29 78.7 93.3 (6.0, 0.7) 0.30 76.2

100 93.2 (5.8, 1.0) 0.25 92.8 93.7 (5.7, 0.6) 0.25 91.5 94.5 (4.9, 0.6) 0.26 90.6

150 93.0 (5.3, 1.7) 0.20 98.4 93.2 (5.5, 1.3) 0.20 98.4 93.5 (5.2, 1.3) 0.21 98.0

300 94.1 (4.0, 1.9) 0.14 100.0 94.3 (4.2, 1.5) 0.14 100.0 94.4 (4.1, 1.5) 0.15 100.0

I 50 92.7 (3.9, 3.4) 0.44 56.5 94.6 (3.6, 1.8) 0.44 50.6 95.3 (2.9, 1.8) 0.47 48.2

75 94.0 (3.3, 2.7) 0.37 73.0 95.1 (3.2, 1.7) 0.37 70.0 95.7 (2.5, 1.8) 0.38 69.1

100 93.6 (3.2, 3.2) 0.32 83.6 94.6 (3.4, 2.0) 0.32 82.0 94.7 (3.2, 2.1) 0.33 81.8

150 94.5 (2.9, 2.6) 0.26 95.5 94.9 (3.2, 2.0) 0.26 94.8 95.1 (2.8, 2.1) 0.27 94.6

300 94.9 (2.7, 2.4) 0.19 100.0 95.1 (2.8, 2.1) 0.19 100.0 95.0 (2.8, 2.2) 0.19 100.0

J 50 92.3 (5.4, 2.3) 0.39 83.2 94.2 (4.7, 1.1) 0.40 79.4 94.5 (4.2, 1.3) 0.43 78.3

75 91.7 (5.4, 2.9) 0.32 94.9 93.5 (4.8, 1.7) 0.33 94.2 93.7 (4.5, 1.8) 0.34 94.0

100 93.2 (5.2, 1.6) 0.28 98.6 93.8 (5.0, 1.2) 0.28 98.5 94.1 (4.7, 1.2) 0.29 98.5

150 93.5 (4.2, 2.3) 0.23 99.8 94.1 (4.0, 1.9) 0.23 99.7 94.5 (3.3, 2.2) 0.24 99.7

300 94.5 (3.6, 1.9) 0.16 100.0 95.1 (3.4, 1.5) 0.16 100.0 95.0 (3.4, 1.6) 0.17 100.0 2

2Note: Σ denotes the specified population correlation matrix of a vector of 3 predictors and the outcome
presented in Table 4.1; ‘SS’ denotes sample size; ‘CV’ denotes the coverage rate; ‘ML’ and ‘MR’ denote
that the interval misses the true value of parameter from the left and the right, respectively; ‘WD’ denotes
the average interval width over 1000 replications; ‘P’ denotes the power rate, defined as the proportion of
confidence intervals that did not contain 0.
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Figure 4.1: Coverage rates of 95% confidence intervals over 1000 replications using the
Wald-type procedure, by sample size.
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Figure 4.2: Coverage rates of 95% confidence intervals over 1000 replications based on a
scaled central F approximation and the MOVER, by sample size.
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Figure 4.3: Coverage rates of 95% confidence intervals over 1000 replications based on a
scaled noncentral F approximation and the MOVER, by sample size.
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Figure 4.4: Power (null hypothesis rejection) rates over 1000 replications using the Wald-
type procedure, by sample size.
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Figure 4.5: Power (null hypothesis rejection) rates over 1000 replications based on a scaled
central F approximation and the MOVER, by sample size.
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Figure 4.6: Power (null hypothesis rejection) rates over 1000 replications based on a scaled
noncentral F approximation and the MOVER, by sample size.
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Chapter 5

WORKED EXAMPLES

5.1 Introductory remark

Simulation results presented in the previous chapter have shown that procedures based on

the MOVER for confidence intervals for differences between two squared multiple corre-

lations from nonnested models perform better than the Wald-type methods. For illustrative

purposes, we present two examples by applying the proposed procedures to determine the

relative importance of predictors (Budescu, 1993; Hedges and Olkin, 1981).

The definition of relative importance of predictors in the context of dominance analysis

and commonality analysis can be summarized as follows. Consider a multiple regression

model with p predictors, dominance is defined as a pairwise relationship examined for all

p(p− 1)/2 pairs of predictors. Consider Xi and X j, and let Xβ stands for any subset of

the remaining p−2 variables excluding Xi and X j. Define variable Xi to dominant variable

X j denoted by the notation Xi D X j if, and only if the squared multiple correlations for

predicting the outcome Y from predictors Xi and Xβ is larger than those from predictors X j

and Xβ , that is,

ρY ·Xβ Xi
2 > ρY ·Xβ X j

2,

for all possible selections of Xβ , including the null set.

Taking p = 3 for example, Table 5.1 presents the dominance analysis for three pre-

dictors. The first column identifies the predictors included in each of seven submodels

including the null model (a model without any predictors). The second column describes

the corresponding squared multiple correlation coefficient. The next three columns describe
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change in squared multiple correlation as a result of the addition of each predictor. For ex-

ample, the second row describes the degree to which a model consisting of X1 is improved

by adding to it an additional predictor X2 or X3. To determine pairwise dominance rela-

tionships, we compare each pair of nonzero contributions of predictors (columns) across

all submodels (row). For example, when comparing X1 and X2, we need to examine their

direct contributions (ρY ·X1
2 vs. ρY ·X2

2) and their additional contributions to the model in-

cluding X3 (ρY ·X1X3
2 vs. ρY ·X2X3

2). If there is evidence to support that both differences are

positive, a dominance is established (X1 D X2).

We considered two examples below. The first example arising from data of breakfast

cereals involving 3 predictors and sample size of n = 76. The second example contains

4 predictors and a larger sample size, n = 315. Our goal is to identify the importance of

predictors by applying the proposed procedures.

5.2 Breakfast cereals

The breakfast cereals data is publically available at Statlib Data and Story Library (DASL)

at CMU (http://lib.stat.cmu.edu/DASL/Stories/HealthyBreakfast.html) . Data

was collected on the nutritional information and consumer rating of 76 brand-name break-

fast cereals. For each cereal, observations of 16 variables were collected: cereal name,

cereal manufacturer, type (hot or cold), number of calories per serving, grams of protein,

grams of fat, milligrams of sodium, grams of fiber, grams of carbohydrates, grams of sug-

ars, milligrams of potassium, typical percentage of the FDA recommended vitamins and

minerals, the weight of one serving, the number of cups in one serving, the shelf location,

and a rating calculated by consumer reports.

Each of the last 13 numerical variables as a univariate predictor and ‘rating’ as the

response variable was found to be significant with grams of sugars, fiber and fat resulting in

largest R-Squared values. A multiple linear model with these three predictors has an overall

R-square of 0.868. We now perform a dominance analysis using these three predictors.

http://lib.stat.cmu.edu/DASL/Stories/HealthyBreakfast.html
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Table 5.2 presents the sample correlation matrix among contents of grams of sugars,

fiber and fat, and rating. These values show that grams of sugar and fat are negatively

correlated with rating, while grams of fiber is positively correlated with rating. Correlations

among predictors are relatively smaller.

For three predictors, the resulting coefficients of determination of seven submodels are

shown in the second column of Table 5.3. Also shown are the corresponding confidence

intervals obtained by using the Wald method, a scaled central/noncentral F approximation,

respectively. It is apparent that the confidence intervals based on a scaled central/noncentral

F approximation are virtually identical but very different from that by the Wald method,

which we have seen in the last chapter to perform poorly.

Table 5.4 summarizes the calculation of asymptotical confidence intervals for all three

pairs of predictors including X1−X2, X1−X3 and X2−X3. These results suggest that the

dominance relationship among three predictors is that: sugar seems to dominate fiber and

fat, and fiber seems to dominate fat. The last three columns show the 95% asymptotic

confidence intervals based on the Wald procedure, the MOVER and a scaled central or

noncentral F approximation denoted by the ‘FM’ and ‘NFM’ procedures. Note that the

difference between two independent R2s is the special case of the difference between two

R2s from non-nested models. All three confidence intervals support the inferiority of fat

to sugar. However, the comparisons of grams of sugar vs. fiber, and fiber vs. fat are

inconclusive, since both the confidence intervals for ρY ·X1X2
2−ρY ·X1X3

2 and that for ρY ·X2
2−

ρY ·X3
2 contain 0. Thus, there is no evidence that grams of sugar is the most important

predictor. Similarly, grams of fat is not more important than fiber.

From Table 5.4, we also found that confidence intervals based on the ‘FM’ and ‘NFM’

procedures were almost identical, but very different from those based on the Wald proce-

dure. As we concluded at the end of the previous chapter, the Wald confidence interval is

not acceptable, especially for small sample size.
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5.3 Plasma concentrations of beta-carotene

Plasma concentrations of the micronutrients like retinol, beta-carotene, or other carotenoids

vary widely from subject to subject. Observation studies have suggested that low plasma

concentrations of beta-carotene might be associated with increased risk of developing cer-

tain types of cancer (Nierenberg et al., 1989). The data set for this example arose from a

cross-sectional study investigating the effects of personal characteristics and dietary factors

on plasma concentrations of beta-carotene (Stukel, 2003). This study enrolled 315 patients

who had an elective surgical procedure during a three-year period to biospy or remove a

lesion of the lung, colon, breast, skin, ovary or uterus that was found to be non-cancerous.

For each patient, the data contains eleven variables, including age, gender, smoking status

(1=never, 2=former smoker, 3=current smoker), quetelet (weight/(height2)), vitamin use

(1=Yes, fairly often, 2=Yes, not often, 3=No), number of calories consumed per day, grams

of fat consumed per day, grams of fiber consumed per day, number of alcoholic drinks con-

sumed per week, cholesterol consumed (mg per day) and dietary beta-carotene consumed

(mcg per day). This raw data set is publically available at Statlib Data and Story Library

(DASL) at CMU (http://lib.stat.cmu.edu/datasets/Plasma_Retinol) .

A related study of plasma beta-carotene levels found that dietary beta-carotene intake

and female sex were positively associated with beta-carotene levels to a statistically sig-

nificant extent, while smoking status and quetelet index had significantly negative effects

(Nierenberg et al., 1989). Furthermore, the sampling distributions of plasma beta-carotene

level and dietary beta-carotene intake are positively skewed (Nierenberg et al., 1989).

Hence, we analyzed the reduced model considering Y = log(plasma beta-carotene levels)

as the outcome and X1 = log(dietary beta-carotene intake), X2=gender, X3=quetelet and

X4=smoking status as the only four predictors. This final reduced model will be used for

illustrating complicated dominance analysis.

Table 5.5 presents the sample correlation matrix for the four predictors and the outcome

Y . These values show that smoking status and quetelet index are negatively correlated with

http://lib.stat.cmu.edu/datasets/Plasma_Retinol
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log plasma beta-carotene levels, while log dietary beta-carotene intake and female gender

are positively correlated with log plasma beta-carotene levels, which is consistent with

previous studies (Nierenberg et al., 1989). The correlations among predictors are relatively

smaller.

The 24−1 = 15 coefficients of determination for all possible submodels are presented

in Table 5.6. Also shown are the confidence intervals obtained by using the Wald method,

a scaled central/noncentral F approximation, respectively. It is clear that the confidence

intervals based on a scaled central/noncentral F approximation are very closed to each

other but very different from those based on the Wald method.

Table 5.7 summarizes the calculation of asymptotical confidence intervals for all six

pairs of predictors including X1−X2, X1−X3, X1−X4, X2−X3, X2−X4 and X3−X4. The

differences between the relevant squared multiple correlations are calculated and presented

in the second column of Table 5.7. According to the signs of those differences, it appears

that the dominance relationship among three predictors is that: quetelet index seems to

dominate log dietary beta-carotene intake and smoking status, and log dietary beta-carotene

intake and smoking status seems to dominate gender. The last three columns show the

95% confidence intervals based on the Wald, ‘FM’ and ‘NFM’ procedures, respectively.

However, it is inconclusive regarding their dominance relationship. For example, gender is

a better predictor than quetelet index in the presence of smoking status or both log dietary

beta-carotene intake and smoking status; but we can not determine the relative importance

between gender and quetelet index by itself and in the presence of log dietary beta-carotene

intake. Except this pair, the confidence intervals for all other pairs presented in the table

contain 0. Hence, there is no evidence that any one of those four predictors is better or more

important than the other. This suggests that the four predictors cannot be ordered and that

their relative importance cannot be determined. Note that the confidence intervals based on

the ‘FM’ and ‘NFM’ procedures are almost identical, but very different from those based

on the Wald procedure.
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5.4 Summary

In this chapter, we have presented two examples that illustrate the proposed procedures

based on the MOVER with a scaled central/noncentral F approximation for single R-

squares being applied for determining the relative importance of predictors. By consid-

ering different number of predictors and sample size, it has been shown that the proposed

procedures can be readily applied in dominance analysis and commonality analysis.
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Table 5.1: Dominance analysis for three predictors.

Contribution of

Variable(s) ρ2 X1 X2 X3

- 0 ρY ·X1
2 ρY ·X2

2 ρY ·X3
2

X1 ρY ·X1
2 - ρY ·X1X2

2−ρY ·X1
2 ρY ·X1X3

2−ρY ·X1
2

X2 ρY ·X2
2 ρY ·X1X2

2−ρY ·X2
2 - ρY ·X2X3

2−ρY ·X2
2

X3 ρY ·X3
2 ρY ·X1X3

2−ρY ·X3
2 ρY ·X2X3

2−ρY ·X3
2 -

X1, X2 ρY ·X1X2
2 - - ρY ·X1X2X3

2−ρY ·X1X2
2

X1, X3 ρY ·X1X3
2 - ρY ·X1X2X3

2−ρY ·X1X3
2 -

X2, X3 ρY ·X2X3
2 ρY ·X1X2X3

2−ρY ·X2X3
2 - -
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Table 5.2: Sample correlation matrix in example of breakfast cereals (n = 76).

Variable

Variable sugar (X1) fiber (X2) fat (X3) rating (Y )

sugars (X1) 1

fiber (X2) -0.1388 1

fat (X3) 0.3025 0.0138 1

rating (Y ) -0.7639 0.5839 -0.4205 1

Note: Three predictors are X1 = grams of sugars, X2 = grams of fiber and X3 = grams of fat. The outcome is

Y = a rating of cereal.
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Table 5.3: Squared multiple correlation coefficients and their asymptotic 95% confidence

intervals in example of breakfast cereal with 3 predictors (n = 76).

Confidence interval based on

Predictors R2 Wald central F noncentral F

X1 0.584 (0.441, 0.727) (0.419, 0.709) (0.420, 0.709)

X2 0.341 (0.168, 0.514) (0.168, 0.508) (0.168, 0.508)

X3 0.177 (0.021, 0.332) (0.046, 0.345) (0.046, 0.345)

X1, X2 0.816 (0.742, 0.891) (0.718, 0.877) (0.718, 0.877)

X1, X3 0.623 (0.489, 0.757) (0.459, 0.736) (0.460, 0.736)

X2, X3 0.525 (0.370, 0.679) (0.343, 0.659) (0.344, 0.659)

X1, X2, X3 0.868 (0.813, 0.923) (0.791, 0.911) (0.791, 0.911)

Note: Three predictors are X1 = grams of sugars, X2 = grams of fiber and X3 = grams of fat. The outcome is

Y = a rating of cereal.
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Table 5.4: Asymptotic 95% confidence intervals for all pairwise differences of ρ2s in ex-

ample of breakfast cereal with 3 predictors (n = 76).

Confidence interval based on

Variable ∆R2 Wald ‘FM’ ‘NFM’

X1−X2 RY ·X1
2−RY ·X2

2 = 0.243 (0.018, 0.467) (0.008, 0.456) (0.009, 0.456)

RY ·X1X3
2−RY ·X2X3

2 = 0.098 (-0.089, 0.285) (-0.095, 0.296) (-0.095, 0.295)

X1−X3 RY ·X1
2−RY ·X3

2 = 0.407 (0.195, 0.618) (0.172, 0.588) (0.172, 0.588)

RY ·X1X2
2−RY ·X2X3

2 = 0.292 (0.144, 0.440) (0.154, 0.463) (0.154, 0.462)

X2−X3 RY ·X2
2−RY ·X3

2 = 0.164 (-0.069, 0.397) (-0.077, 0.376) (-0.077, 0.376)

RY ·X1X2
2−RY ·X1X3

2 = 0.193 (0.077, 0.309) (0.087, 0.337) (0.087, 0.336)

Note: Three predictors are X1 = grams of sugars, X2 = grams of fiber and X3 = grams of fat. The outcome

is Y = a rating of cereal. ‘FM’ indicates the MOVER with a scaled central F approximation for single

R-squares. ‘NFM’ indicates the MOVER with a scaled noncentral F approximation for single R-squares.
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Table 5.5: Sample correlation matrix for five variables in example of plasma beta-carotene

levels (n = 315).

Variable

Variables logbetadiet gender quetelet smokstat logbetaplasma

logbetadiet (X1) 1

gender(X2) -0.047 1

quetelet(X3) 0.009 -0.007 1

smokstat(X4) -0.098 -0.121 -0.113 1

logbetaplasma (X5) 0.187 0.135 -0.280 -0.191 1

Note: Four predictors are X1 = log dietary beta-carotene consumed, X2 = gender, X3 = quetelet

(weight/(height2)), X4 = cmoking status. The outcome is Y = log plasma beta-carotene level.
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Table 5.6: Squared multiple correlation coefficients and their asymptotic 95% confidence

intervals in example of plasma beta-carotene levels with 4 predictors (n = 315).

Confidence interval based on

Predictors R2 Wald central F noncentral F

X1 0.035 (-.005, 0.075) (0.006, 0.085) (0.006, 0.085)

X2 0.018 (-.011, 0.048) (0.001, 0.058) (0.000, 0.058)

X3 0.078 (0.021, 0.135) (0.030, 0.143) (0.030, 0.143)

X4 0.037 (-.004, 0.077) (0.007, 0.087) (0.007, 0.087)

X1, X2 0.056 (0.007, 0.105) (0.014, 0.111) (0.014, 0.111)

X1, X3 0.114 (0.048, 0.181) (0.053, 0.184) (0.053, 0.184)

X1, X4 0.065 (0.013, 0.118) (0.020, 0.123) (0.020, 0.123)

X2, X3 0.096 (0.034, 0.158) (0.040, 0.162) (0.040, 0.162)

X2, X4 0.049 (0.003, 0.096) (0.011, 0.102) (0.011, 0.102)

X3, X4 0.129 (0.060, 0.198) (0.064, 0.200) (0.064, 0.201)

X1, X2, X3 0.135 (0.065, 0.205) (0.066, 0.205) (0.066, 0.204)

X1, X2, X4 0.081 (0.023, 0.138) (0.027, 0.139) (0.027, 0.139)

X1, X3, X4 0.157 (0.083, 0.231) (0.084, 0.230) (0.084, 0.230)

X2, X3, X4 0.140 (0.069, 0.211) (0.070, 0.210) (0.070, 0.211)

X1, X2, X3 X4 0.171 (0.095, 0.247) (0.092, 0.242) (0.093, 0.243)

Note: Four predictors are X1 = log dietary beta-carotene consumed, X2 = gender, X3 = quetelet

(weight/(height2)), X4 = smoking status. The outcome is Y = log plasma beta-carotene level.
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Table 5.7: Asymptotic 95% confidence intervals for all pairwise differences of ρ2s in ex-

ample of plasma beta-carotene levels with four predictors (n = 315).

Confidence interval based on

Variables ∆R2 Wald ‘FM’ ‘NFM’

X1−X2 RY ·X1
2−RY ·X2

2 = 0.017 (-0.033, 0.066) (-0.033, 0.070) (-0.033, 0.070)

RY ·X1X3
2−RY ·X2X3

2 = 0.018 (-0.031, 0.067) (-0.030, 0.068) (-0.030, 0.068)

RY ·X1X4
2−RY ·X2X4

2 = 0.016 (-0.028, 0.060) (-0.028, 0.062) (-0.028, 0.062)

RY ·X1X3X4
2−RY ·X2X3X4

2 = 0.017 (-0.024, 0.058) (-0.024, 0.058) (-0.024, 0.058)

X1−X3 RY ·X1
2−RY ·X3

2 =−0.043 (-0.113, 0.026) (-0.114, 0.026) (-0.114, 0.026)

RY ·X1X2
2−RY ·X2X3

2 =−0.040 (-0.111, 0.030) (-0.110, 0.030) (-0.110, 0.030)

RY ·X1X4
2−RY ·X3X4

2 =−0.063 (-0.134, 0.007) (-0.133, 0.006) (-0.133, 0.006)

RY ·X1X2X4
2−RY ·X2X3X4

2 =−0.060 (-0.130, 0.010) (-0.128, 0.010) (-0.128, 0.010)

X1−X4 RY ·X1
2−RY ·X4

2 =−0.002 (-0.059, 0.055) (-0.060, 0.056) (-0.060, 0.057)

RY ·X1X2
2−RY ·X2X4

2 = 0.007 (-0.046, 0.059) (-0.046, 0.060) (-0.046, 0.060)

RY ·X1X3
2−RY ·X3X4

2 =−0.014 (-0.072, 0.043) (-0.071, 0.043) (-0.071, 0.042)

RY ·X1X2X3
2−RY ·X2X3X4

2 =−0.005 (-0.061, 0.050) (-0.060, 0.049) (-0.060, 0.049)

X2−X3 RY ·X2
2−RY ·X3

2 =−0.060 (-0.124, 0.004) (-0.127, 0.002) (-0.127, 0.002)

RY ·X1X2
2−RY ·X1X3

2 =−0.059 (-0.123, 0.006) (-0.124, 0.005) (-0.123, 0.005)

RY ·X2X4
2−RY ·X3X4

2 =−0.079 (-0.144, -0.015) (-0.144, -0.016) (-0.144, -0.016)

RY ·X1X2X4
2−RY ·X1X3X4

2 =−0.077 (-0.141, -0.013) (-0.139, -0.012) (-0.139, -0.013)

X2−X4 RY ·X2
2−RY ·X4

2 =−0.018 (-0.069, 0.032) (-0.072, 0.032) (-0.072, 0.032)

RY ·X1X2
2−RY ·X1X4

2 =−0.009 (-0.054, 0.035) (-0.055, 0.035) (-0.055, 0.035)

RY ·X2X3
2−RY ·X3X4

2 =−0.033 (-0.083, 0.018) (-0.083, 0.017) (-0.084, 0.017)

RY ·X1X2X3
2−RY ·X1X3X4

2 =−0.023 (-0.070, 0.025) (-0.069, 0.025) (-0.069, 0.025)

X3−X4 RY ·X3
2−RY ·X4

2 = 0.042 (-0.028, 0.112) (-0.028, 0.113) (-0.028, 0.113)

RY ·X1X3
2−RY ·X1X4

2 = 0.049 (-0.022, 0.120) (-0.021, 0.120) (-0.021, 0.120)

RY ·X2X3
2−RY ·X2X4

2 = 0.047 (-0.025, 0.118) (-0.024, 0.118) (-0.024, 0.118)

RY ·X1X2X3
2−RY ·X1X2X4

2 = 0.054 (-0.014, 0.122) (-0.014, 0.121) (-0.014, 0.121)

Note: Four predictors are X1 = log dietary beta-carotene consumed, X2 = gender, X3 = quetelet

(weight/(height2)), X4 = smoking status. The outcome is Y = log plasma beta-carotene level.
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Chapter 6

SUMMARY AND DISCUSSION

This thesis provided a simple and efficient inference procedure for differences between

two correlated squared multiple correlations from non-nested models (∆ρ2). Specifically,

we proposed a closed-form confidence interval for the comparison of the changes in R2

when each of two sets of predictors is added to a model.

The Wald approach to confidence interval construction for ∆ρ2 (Olkin and Finn, 1995)

ignores the skewness of the distribution of single R-squares. This method is valid only

for large sample size (> 200) (Azen and Sass, 2008). As an alternative, we proposed

two procedures based on the MOVER (Zou, 2008) with the scaled central or noncentral F

approximation for single R-squares.

Comparing these three procedures through simulation studies and the worked examples,

we can make two general conclusions. First, the confidence interval for single squared mul-

tiple correlations based on the two-moment scaled central F approximation performs better

than the Wald method and the method based on the three-moment scaled noncentral F ap-

proximation. Second, as for the confidence interval for differences between two squared

multiple correlation coefficients from non-nested models, the Wald-type procedure per-

forms poorly in terms of overall coverage and balanced tail errors. In contrast, the MOVER

procedure with the scaled central F approximation for single R-squares performs much

better, even with sample sizes as small as 50.

Although we considered the simplest case with three predictors and ten correlation

matrices in simulation studies, the results can be extended straightforwardly to other general

cases as illustrated in the worked examples.

The proposed procedure provides an efficient way for implementing dominance and
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commonality analysis (Budescu, 1993; Kerlinger and Pedhazur, 1973). It has been sug-

gested that R-squared can serve as a general measure of determining the relative impor-

tance of predictors in multiple regression analysis (Budescu, 1993). Thus, according to the

rationale of dominance and commonality analysis, the procedure can be used to rank the

predictors according to their contributions in predicting the response variable through a se-

ries of pairwise comparisons of squared multiple correlations from all possible submodels.

This thesis also provides an general approach to investigate a multivariate regression model

by identifying the best subset of predictors.

The results from this research rely on the assumption of the raw data following mul-

tivariate normality, which may not be appropriate in practice. Even if the assumption be-

comes unreasonable, the proposed procedure would still be applicable by replacing suit-

able confidence limits if available, since the derivation of MOVER itself does not require

the normality assumption for the raw data. It suggests that the validity of the proposed

procedure depends on that of the confidence limits for single squared multiple correlations.

The discussions in this thesis focus on inference on differences between two correlated

ρ2s from non-nested models. Whereas for differences between two correlated ρ2s from

nested models, the differences have a constrained parameter space, the method proposed

here may not work well.

The coefficient of determination (R2) has been extendedly used in the class of expo-

nential family regression models (Cameron and Windmeijer, 1997). Different from its

application to linear regression models, the values of generalized R2 in nonlinear models

have different interpretation, may lie outside the [0,1] interval and decrease as regressors

are added. To assess the relative importance of predictors in such models, future work is

needed.
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