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Abstract 

Conventional needle positioning techniques for small animal microinjections are 

fraught with issues of repeatability and targeting accuracy.  To improve the outcomes of 

these interventions a small animal needle positioning system guided by micro-computed 

tomography (micro-CT) imaging was developed.  A phantom was developed to calibrate the 

geometric accuracy of micro-CT scanners to a traceable standard of measurement.  Use of the 

phantom ensures the geometric fidelity of micro-CT images for use in image-guided 

interventions or other demanding quantitative applications.  The design of a robot is 

described which features a remote center of motion architecture and is compact enough to 

operate within a micro-CT bore.   Methods to calibrate the robot and register it to a micro-CT 

scanner are introduced.  The performance of the robot is characterized and a mean targeting 

accuracy of 149 ± 41 µm estimated.  The robot is finally demonstrated by completing an in 

vivo biomedical application.     

 

Keywords 

medical robotics, image-guided interventions, small animal imaging, x-ray micro-computed 

tomography, imaging phantom design and construction  
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Chapter 1  

1 Introduction 

1.1 Medical Robotics 

1.1.1 Clinical Role of Medical Robotics 

The first demonstration of using a robot to complete a medical intervention was in 

1985 at the Memorial Medical Center of Long Beach [1].  An off-the-shelf Puma 200 

industrial robot was used to complete the biopsy of a suspicious brain lesion.  The robotic 

procedure was an attempt to complete an existing procedure faster with higher reliability 

and accuracy.  Conventionally, the biopsy procedure had been completed using a 

stereotactic frame based on technology first introduced in 1908 [2].  The stereotactic 

frame had been integrated with an x-ray computed tomography (CT) scanner.  To 

complete the stereotactic frame procedure, the patient was first scanned using the CT 

scanner and the position of the lesion localized in the image.  A computer then calculated 

four angular settings of the stereotactic frame and the depth required to position a needle 

tip at the lesion based upon the position of the lesion in the image.  The stereotactic frame 

was then manually adjusted to match the calculated settings.  Unfortunately, the process 

required to manually adjust the stereotactic frame was found to be tedious, subject to 

operator error and lack flexibility.  To address these limitations, the Puma 200 robot was 

placed on the scanner bed.  The robot was able to quickly and automatically position a 

needle bushing to correspond with the brain lesion based on a CT image.  A surgeon then 

used the bushing to insert the needle into the lesion and successfully complete a biopsy.  

Although promising, this initial line of research was halted by the manufacturer of the 

Puma 200 on the basis that an industrial robot was unsafe for surgical applications [3]. 

The field of medical robotics has undergone tremendous growth since its 

beginnings.  The number of yearly publications on the topic has experienced exponential 

growth since the early 1990s.  In 2005 alone, new publications on medical robotics 

numbered over 600 [4].   This growth is demonstrated in the da Vinci robotic system 

(Intuitive Surgical, Sunnyvale, CA).  The da Vinci is the most successful medical robot 
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system developed.  According to its manufacturer, an installed base of over 1700 systems 

completed 278,000 procedures worldwide in 2010.  This represented a growth of over 

220% compared to the procedures completed in 2008 [5].  Furthermore, use of the da 

Vinci system is increasingly becoming the standard of care for completing procedures 

such as radical prostatectomies [6]. Along with the da Vinci, dozens of other unique 

robotic systems exist to complete a wide-range of medical procedures [7].    The breadth 

and ubiquity of medical robotics makes a concise study of the topic challenging. 

A study of the nomenclature of medical robotics is one method for developing an 

understanding of the current-state of the field.  Unfortunately, the nomenclature of 

medical robotics lacks convention.   Authors may classify systems with a wide range of 

options such as mechanical design, level of autonomy or intended application [7].  

Depending upon the classification system, the resulting nomenclature may become quite 

complicated and fractured.   A useful high-level system for classifying medical robots 

was introduced by Camarillo et al. which categorizes robots based on their role in the 

medical procedure [8].  This nomenclature divides devices into three role categories: 

passive, restricted and active. The passive role consists of systems that have a limited role 

in the procedure or are involved in lower risk procedures.  Restricted role systems are 

involved in higher risk procedures, but are restricted to a specific task of the procedure.  

Active role systems are a critical component of the procedure and are responsible for 

high-risk tasks.  Furthermore, the authors note that each of these role categories 

represents an inverse trend of procedure risk to robot autonomy.  Passive role systems 

with the lowest risk generally have the highest degree of autonomy, while active role 

systems with the highest risk generally have the lowest autonomy and remain under 

direct supervision by a surgeon.  This relationship arises from the same safety concerns 

that in 1985 led to the end of research with the Puma 200 for brain lesion biopsy.  

Robotic systems that have drifted away from this trade-off between robot autonomy and 

procedure risk have seen little success [3,9]. 

Commercially available examples are provided by Camarillo et al. to illustrate 

this method of robot categorization.  Throughout these examples, the trend of increasing 

risk with decreasing robot autonomy is evident.  The CyberKnife (Accuray Inc., 
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Sunnyvale, CA) is a robotic system developed to complete radiosurgery [10].  Mounted 

onto the CyberKnife is an x-ray linear accelerator for radiotherapy of cancer.  The 

CyberKnife automatically sets up and registers a radiation treatment plan developed by a 

radiotherapist to the position of a patient using intra-operative images.    The CyberKnife 

then autonomously positions the x-ray linear accelerator to complete the plans.  During 

the procedure the CyberKnife never physically contacts the patient and the interaction is 

considered to be lower risk.  As a result, the system is categorized as a passive role 

system.  The next example in the restricted role is the RoboDoc (Curexo Technology 

Corporation, Fremont, CA) system [11].  The RoboDoc is used for orthopedic 

applications which require bone-milling, typically, total hip replacement [12]. Since 

RoboDoc is in direct contact with the patient, the procedure is higher risk.  RoboDoc 

autonomously mills the bone based on a path developed by the surgeon using pre-

operative CT images.  However, RoboDoc is not responsible for the entire orthopedic 

procedure.  Rather, RoboDoc is only used for a very specific portion of procedure and 

only carries out the single specific task of milling.  Unlike the CyberKnife, the initial 

setup and plan registration to the patient is completed manually by the surgeon, limiting 

RoboDoc’s autonomy.  The higher risk and limited scope of the RoboDoc leads to its 

restricted categorization.  The previously discussed da Vinci robot serves as the final 

example [13].  The da Vinci is a telerobot which operates using a slave-master system.  A 

surgeon sits at the master console of the da Vinci system, which contains controls and a 

stereoscopic display.  The surgeon uses the console to control the robotic arms of the 

slave system in real time during procedures.  As a result, the da Vinci systems possess 

very little autonomy.  The da Vinci is typically used to carry out entire minimally 

invasive procedures during which it is in constant physical contact with the patient, thus 

creating a high risk.  The critical role of the da Vinci in completing high risk procedures 

places it in the active role category.  These examples serve to demonstrate the range of 

roles medical robotics can fulfill with varying levels of autonomy and risk. 

1.1.2 Medical Robot Architecture 

A large range of potential architectures exist for robotic systems.  Of these 

architectures, the remote center of motion or RCM has become one of the most 
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successful in medical robotics [7,14].  The RCM was first introduced to medical robotics 

in 1995 by Taylor et al. [15].  In an RCM design, the translational motion of a tool 

mounted onto the robot is decoupled from the rotational motion at a fixed point in space.  

In other words, both translational and rotational motion can be performed independently 

of one another.  The RCM allows a tool to pivot about the fixed point in space, which is 

an extremely useful capability for medical applications.  For example, the first RCM-

based robot developed by Taylor et al. was developed to position tools, such as a camera, 

during laparoscopic surgery.  In laparoscopic surgery, tools most pass through small 

cannulas to enter the abdomen.  The translational motion of tools passing through these 

entry points must be constrained to avoid injury to the patient.  The use of an RCM 

provides a perfect solution to this required constraint.  The RCM can be positioned to 

correspond with the cannula, creating a fulcrum at the point of entry.  The tool can then 

be freely inserted or retracted and rotated while inserted into the patient without danger of 

translation and injury.  The RCM represents a very practical and useful robot architecture 

for medical applications.    

An RCM point is created at the common intersection point of all the rotational 

axes of a robot.  If all the rotational axes of a robot do not intersect, an RCM will not be 

formed.  The RCM can be created through either active or passive means.  The RCM can 

be created actively through programming of the robot to coordinate motion of all the 

joints to intersect their rotational axes at a common point [16].  However, the RCM is 

typically achieved passively through mechanical design and the resulting kinematics, 

which constrain the rotational axes to intersect at a point.  A number of different 

mechanical designs can be used to achieve a passive RCM.  A review of RCM robot 

designs finds the parallel-bar linkage to be the most popular mechanical design [7]. Other 

mechanical designs that have been used to create RCMs include the goniometric arc [17] 

and spherical linkage [18].  The mechanical design selected may vary depending on the 

application and user preference.  A schematic drawing of a spherical linkage based RCM 

design is shown in Chapter 3 of this thesis in Figure 3.1. 
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1.2 Small Animal Needle Interventions 

Small animal models in preclinical research are critically important to expanding 

medical knowledge and to the development new of treatments and therapies for human 

disease [19].  From a regulatory standpoint, animal models are a typical requirement to 

demonstrate the efficacy of new treatments and therapies before clinical trials [20].  

Needle interventions are a common procedure performed during the course of preclinical 

research.  These needle interventions may be performed to inject a variety of compounds 

such as imaging contrast agents [21], cancer or stem cells [22,23], and other biological or 

therapeutic agents [24,25].  Interventions may also be required to position needle-like 

measurement probes within small animals for data collection [26].  Conventionally, non-

robotic, manual techniques are used to complete these interventions.  Typical manual 

interventions used to complete these interventions include: surgical exposure of the 

target, percutaneous injections through the skin or the use of a stereotactic device.  Each 

of these conventional techniques possesses drawbacks that could be improved upon with 

the use of robotics. 

Surgical exposure of targets during needle interventions allows for direct visual 

localization of targets.  Examples of targets for surgical exposure include the pancreas 

[27], intestine [28], thymus [29] and heart [23].   Surgical exposure is typically reserved 

for interventions requiring high positioning accuracy due to the ability to visually 

localized targets during surgery.  To improve target localization, microscopy may be used 

during needle positioning [28]. Unfortunately, surgical exposure has a number of 

drawbacks.  Completion of the surgery is time consuming and requires highly trained 

personnel.  The procedure is also subject to human error and operator variability.  

Surgery is highly invasive and may result in morbidity or mortality of the animal.  Even 

if successful, surgery may still impose pain and distress on the animal causing potential 

immune dysfunction, behavioral changes and other negative physiological changes [30].  

These changes may confound research results and make it difficult to discern the effects 

of the experimental procedure from the surgical side-effects. 

Percutaneous injections involve the positioning of a needle through the skin 

without direct visual localization of the target.  Percutaneous injections are simpler to 
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carry out and are less invasive than surgical exposure.  As a result, the use of 

percutaneous injections is seen as a preferred alternative to surgical exposure when 

completing interventions.  The visual target localization provided by surgery has been 

replaced with both anatomical landmarks [29] and ultrasound imaging [23,31] to localize 

targets during percutaneous injections.  Although percutaneous injections reduce the side 

effects of procedures, they are still subject to the same issues of operator error and 

repeatability.  For example, injections into the tail vein are perhaps one of the most 

common percutaneous injection procedures completed.  However, no standard methods 

exist to quantify operator competence or the success of a tail vein injection.  Therefore, 

the success and effectiveness of the common tail vein injection is poorly monitored and 

the failure rate potentially underestimated [32].  

Stereotactic frames are typically used for positioning needles or probes within the 

skull.  The design of most modern stereotactic frames is based off the Horsley-Clarke 

apparatus developed in 1908 [2].  Anatomical atlases, such as the Paxinos atlas for mice 

[33], are typically used for needle guidance during stereotactic procedures.  The atlases 

provide information to determine an appropriate needle insertion point in the skull and to 

localize a specific anatomical landmark within the brain.  The Cartesian coordinate 

system of the stereotactic frame is then manually adjusted to locate the needle at the 

position specified by the atlas.  The manual adjustment of the frame is vulnerable to 

operator error and positioning errors.  As previously discussed, the potential for errors in 

manual adjustment of stereotactic frames was a driving factor in the development of the 

first clinical robotic intervention in 1985 [1].   Furthermore, deviations of the true animal 

anatomy from an atlas can occur with different strains of animals [34] or animals of 

varying sizes [35].  These deviations can result in the erroneous localization of targets for 

interventions. 

1.3 Preclinical Robotic Needle Positioning Systems 

1.3.1 Current Preclinical Needle Positioning Systems 

A number of image-guided robotic needle positioning systems have been 

developed to complete small animal needle intervention techniques.   The robotic systems 
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seek to complete needle interventions with greater reliability, accuracy and repeatability 

over the conventional techniques.  To achieve these goals, the positioning systems take 

advantage of the wide range of commercially available small-animal imaging systems 

[21].   The robots are coupled with these specialized imaging systems to accurately and 

non-invasively localize targets.  Although similar clinical robotic systems exist, small-

animal preclinical systems are unique amongst medical robots.    Typical clinical image-

guide needle positioning systems are required to achieve targeting accuracies on the scale 

of 1-2 mm [36].  Preclinical needle positioning systems may be required to achieve an 

order of magnitude finer targeting accuracies of < 200 µm to reach some targets [38].   

The preclinical systems also defy the traditional trade-off between autonomy and risk 

found in clinical robotic systems.  The developed preclinical systems perform high risk 

procedures with a high level of autonomy.  The robots are fully responsible for 

positioning needles into target positions localized by the user.  The high targeting 

accuracy requirements and unique role of the preclinical robots prevents direct translation 

of existing medical robotic systems for the application.  Rather, unique robotic needle 

positioning systems must be developed.  

Table 1.1 summarizes the current literature of preclinical robotic needle 

positioning systems.  The table serves to highlight that the field is in its infancy.  Robotic 

systems for small-animal applications have only emerged in the past decade and appeared 

Table 1.1-Summary of existing image-guided small animal needle positioning systems. 

Initial 

Author 
Year 

Mechanical 

Design 
DOF RCM? 

Imaging 

Modality 

Mean Free-Space 

Positioning Accuracy 

(µm)  

Mean Image-Guided 

Positioning Accuracy 

(µm) 

Ref. 

Huang et al. 2006 
Commercial 
desktop robot 

4 Translational 
 
1 Rotational 

No MR/PET 50 ± 12 1200 ± 390 [37] 

Waspe et al. 2007 
Custom parallel 
four-bar linkage 

4 Translational 
 
2 Rotational 
 

Yes CT/US 

54 ± 12 (Pitch axis 
plane) 
 
91 ± 21 (Roll axis 
plane) 

157 ± 113 (CT) 
 
550 ± 112 (US) 

[38],[39], 
[40] 

Kazanzides 
et al. 

2007 

Custom design 
using 
commercial 
linear stages 

4 Translational No PET 

48 ± 7 (3 Translational  
Axes) 
 
75 ± 30 (1 
Translational Axis) 

 < 400 (overall) 
 
200 (near registration 
fiducials) 
 

[41],[42] 

Nicolau et 

al. 
2007 

Industrial 
articulated arm 
robot 

6 Rotational No CT N/A N/A [43],[44] 

Ramrath et 

al. 
2008 

Custom 
stereotactic 
frame/ 
goniometric arc 

3 Translational 
 
2 Rotational 
 

Yes N/A 32 ± 11 N/A [45],[46] 

Bebek et al. 2008 
Custom parallel 
gimbal joints 

5 Rotational No N/A 419 ± 166 N/A [47], 48] 



 

 

8

nearly 20 years after the first clinical robotic systems.  Many of the robots remain works-

in-progress and their performance has yet to be characterized when coupled with small-

animal imaging systems.  The number of preclinical robots developed is also small 

compared to the dozens of available clinical systems [7].  Similar to early clinical 

robotics, many of the preclinical systems implement off-the-shelf commercial or 

industrial robots.  The use of the RCM architecture has carried over from clinical robots 

in several of the custom-designed preclinical robots.  Generally, the workflow for 

completing interventions using these preclinical robotic systems can be divided into three 

discrete steps: needle calibration, robot registration to the imaging modality and finally 

needle placement.  The process for completing each of these steps and the metrics used to 

evaluate their success are discussed in the following sections.   

1.4 Preclinical Robot Workflow 

1.4.1 Needle Calibration 

Needle calibration is the process of ensuring the true position of the needle tip 

matches as closely as possible its expected position based on robot kinematics.  Needle 

calibration must be performed on a semi-regular basis whenever a new needle or tool is 

placed on the robot.  Currently, no standardized method or metric exists to complete and 

characterize needle-tip calibration.  Rather, each robotic system has its own unique 

calibration process and method for characterizing the results.  However, optical based 

methods have been the preferred choice for completing the calibrations.  The calibration 

methods can also be sub-divided between robots with an RCM design and robots with a 

non-RCM design.  Differences between the RCM and non-RCM architectures dictate 

slightly different calibration methods.  The focus of this discussion will be on calibration 

of RCM designs. 

The purpose of the RCM architecture is to constrain the motion of a needle-like 

tool to a single fulcrum point in space.  To achieve this goal, the tool tip of an RCM-

based robot design must as closely as possible correspond with the RCM point in space.  

If the tool does not correspond with the RCM, undesirable translation of the tool will 

occur.  Therefore, the process of calibration in RCM designs is the process of matching 
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the tool with the robot RCM.  When perfectly calibrated, a desired point on the tool 

should remain stationary in space as the robot’s rotational axes are adjusted.  The two 

identified RCM robot designs of Waspe et al. [38] and Ramrath et al. [45] take somewhat 

similar approaches to needle calibration.  The methods recognize that an RCM design 

constrains the motion of a tool tip to a near sphere when it is at an assumed RCM point 

with a centre of rotation at the true RCM.  The larger the radius of the sphere, the further 

the tool is from the RCM point and the larger the calibration error.  Central to both 

calibration methods is measurement of the needle centre of rotation.  The centre can be 

measured by calculating the travel of the needle throughout the robot’s full rotational 

range of motion.  In both calibration methods, the positions of the needle are determined 

using cameras.   

The method of Ramrath et al. uses two cameras positioned 90 degrees apart.  The 

cameras concurrently collect images of a microelectrode tip mounted onto the robot.  The 

two rotational axes of the robot are independently adjusted at predefined angles.  The 

resulting motion of the needle for each of the angular adjustments is measured by 

segmenting the needle tip using an unspecified edge detection algorithm.  Using the 

measured needle motions, appropriate offset corrections can be calculated using least 

squares to position the needle back to the RCM.  Thus, when the tool tip is rotated the 

offset corrections are simultaneously applied to match the tip to the RCM.   

Unfortunately, no metric is provided to evaluate the effectiveness of the calibration.  

Only the total positioning accuracy of robot of 32 ± 11 µm in free space is provided, 

which incorporates multiple error sources including the calibration error [45].     

The method developed by Waspe et al. uses a camera to photograph a needle in 

two planes 90 degrees apart and perpendicular to each of the robot’s rotational axes.  In 

each plane, the needle is again photographed at a set of predetermined angles along each 

of the rotational axes.  The needle is then segmented in each of the photographs using a 

Sobel edge detector.  Unlike Ramrath et al., the needle centerline was calculated in the 

photographs rather then the tip.  In each plane, the centerlines are assumed to be 

tangential to a circle with the RCM at the centre.  The radius of the circle represents the 

calibration error.  An iterative process of adjusting and re-photographing the needle is 
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used until the radius of the circle in both planes is minimized.  Unsurprisingly, the 

iterative process is time consuming and may require one hour to calibrate the robot.  The 

calibration was evaluated by reporting the radius of circles in each plane: ∆x = 35 ± 14 

µm,  ∆y =  8 ± 21 µm and  ∆z =  8 ± 11 µm [38].  Where ∆x is the horizontal distance for 

the pitch axis, ∆y is the horizontal distance for the roll axis and ∆z is the vertical distance 

for both axes.  Figures illustrating these axes can be found in figures 2 and 5 of Waspe et 

al. [38]. 

Non-RCM robot designs cannot make the same assumptions regarding inherent 

constraints on the motion of the needle as in RCM designs.  As a result, the calibration 

methods used are slightly different from RCM designs.  However, similar to RCM 

designs, the use of optical methods remains a popular option for calibration.  The robotic 

systems by Bebek et al. [48] and Nicolau et al. [44,49] both implement optical solutions 

for calibration. 

1.4.2 Robot to Imaging Modality Registration 

Registration is the step that integrates the robotic system with an imaging system 

for guidance.  Development of a registration process is a particularly challenging step in 

robot development.  This is demonstrated by Table 1.1, which shows only half of the 

existing robot systems have been demonstrated using image-guidance.    The registration 

process determines how to best transform a coordinate in the image to match the same 

point in space in robot coordinates.  Once the transform is calculated, it can then be used 

to direct the robotically manipulated tool to a target localized within the image.  The 

registration between the two coordinate systems is calculated using sets of fiducials.  

Within the current context, a fiducial is a point of reference whose position can be 

determined in both image and robot coordinates.  A set of two corresponding coordinates 

for a group of fiducials enables the transformation between the image and robot 

coordinate systems to be calculated.  The registration process uses several standardized 

metrics for evaluating the quality of the registration.  Although current work on 

preclinical robot to image registration has been limited, several different approaches have 

been taken to complete the registration process for several imaging modalities.  Two 
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methods of particular interest are by Kazanzides et al. and Waspe et al. to register a 

robotic system to CT imaging systems. 

The first step in the registration process is localizing the two sets of coordinates 

for fiducials.  The two techniques take very different approaches for localizing fiducials.  

Kazanzides et al. [41] developed a registration process which claims to be compatible 

with all imaging systems including PET, SPECT, CT and MRI.  However, the process 

has only been demonstrated using PET imaging.  The registration process uses a bed onto 

which animals are secured.  The animal bed contains four small hemispherical fiducial 

markers.  The markers contain an appropriate contrast agent for the imaging modality.  

The animal bed is imaged with the fiducials and the position of the high contrast fiducials 

in the image measured using an unspecified image processing algorithm.  The animal bed 

is next placed in the robot workspace.  The user then manually determines the position of 

the markers in robot coordinates by moving the robot until a probe contacts the marker.  

Waspe et al. [39] developed a registration technique specific for CT.  The CT registration 

is performed by instructing the robot to position a needle at several specified positions in 

a gel phantom.  The needle is then slowly retracted from the gel at each position while it 

injects barium, an x-ray contrast agent, into the needle track.  The coordinates of the 

barium in robot coordinates are assumed to match the needle path.  The barium tracks are 

then imaged using the CT scanner.  Within the image, each track was segmented slice-by-

slice using a 2-D threshold based region growing.  Points along each needle track in the 

image were calculated by determining the centroid of the tracks in each image slice.      

The second step of the registration process is determining the transformation 

between the two sets of fiducials coordinates.  Kazanzides et al. and Waspe et al. both 

used a point-based rigid-body registration to determine the transformation.  “Point-based” 

implies that the registrations are calculated using points rather than other shapes or 

surfaces.  “Rigid-body” registration assumes that the transformation between the two 

coordinate systems consists of only translation and rotation.  The rigid-body registration 

consists of six degrees of freedom: 3 translational and 3 rotational.   Although a large 

number of different registration methods exist, the rigid body registration appears to be 

the most popular in the few existing preclinical robotic systems.  Kazanzides et al. 
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calculated the rigid body registration using a least-square fit [50].  The fit was calculated 

by determining the transformation that minimized the difference between the known 

fiducial robot coordinates and the fiducial image coordinates after transformation into 

robot coordinates.   Waspe et al. required the slightly different method of using the 

iterative close point (ICP) algorithm for calculating the rigid body registration [51].  A 

different method was required since a direct one-to-one correspondence between the two 

sets of coordinates no longer existed.  Rather, a set of segmented image points was 

registered to the line of the needle track in robot coordinates.  The ICP algorithm 

iteratively uses a least-squares fit between the set of image points to the nearest 

neighboring point on the robot track line.  The iterative algorithm is repeated until the 

change in error from registration to registration is minimized.  The user must also 

manually initialize the ICP algorithm with an initial rigid-body registration.    

The final step in registration is evaluating the quality of the registration.  The 

three metrics generally used to characterize a registration are: fiducial localization error 

(FLE), fiducial registration error (FRE) and target registration error (TRE) [52].  FLE 

represents the error in measuring the coordinates of the fiducials, i.e., how accurately the 

two sets of fiducial coordinates were measured.  FRE is the root-mean-square distance 

between the transformed coordinate of a fiducial and its known corresponding coordinate 

in that new coordinate system, i.e., how well the transformation predicts the position of 

fiducials.  The transformation of a registration is calculated by definition to minimize 

FRE.  The FRE is dependent on the number of fiducials used in the registration and the 

FLE.  However, FRE is not dependent on the fiducial configuration.  FRE is considered 

to be a somewhat unreliable metric that may report a small error for a poor registration 

[53].  As a result, TRE is considered to be a more reliable metric for evaluating 

registrations and more representative of the quality of the registration. TRE is similar to 

FRE, however, it is the root-mean-square distance for points which were not used as 

fiducials in calculating the transformation.  In addition to being dependent on the fiducial 

number and FLE, TRE is also dependent on the fiducial configuration [53].   TRE can be 

reduced by increasing the fiducial number and by spreading fiducials apart with the 

centroid of the configuration near the desired target point [54].   For CT registration, 

Waspe et al. reported an FRE and TRE of 96 µm and 210 µm, respectively.  For PET 
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registration, Kazanzides et al. reported an FRE and TRE of 240 µm and 290 ± 100 µm, 

respectively. 

1.4.3 Needle Placement 

The final step in the small-animal image-guided robot workflow is positioning of 

the needle to the target.   The animal is first imaged by a small-animal imaging system.  

Generally, the robots are too large to operate within the bore of these imaging systems.  

As a result, the animals must be affixed to custom beds that can fit in the imaging system 

and then be transported to the robot workspace following imaging [39,41].  The location 

of the target is identified in the image and the transformation from the registration used to 

determine the corresponding target position in robot coordinates.  The robot is then used 

to position the needle to the target. 

Currently, only three of the existing preclinical robotic systems have been 

demonstrated using image-guidance to position a needle to a target.  The targeting 

accuracy in the three systems was evaluated by measuring the mean error between the 

location of the needle and the desired target.  Huang et al. used MR image guidance to 

position a needle to targets in a gel phantom.  The authors reported a targeting accuracy 

of 1200 ± 390 µm [37].  However, the method used to quantify the accuracy was not 

described.  Kazanzides et al. used PET guidance to position a probe in air at holes drilled 

into a Delrin plastic phantom.  The robot positioned the probe to the center of the holes 

using their expected position from the registration.  The robot was then manually adjusted 

as needed, using visual magnification, until the probe actually corresponded with the 

center of the hole.  The targeting error was then defined as the distance required to 

manually adjust the probe to the hole center. Using this method, a targeting accuracy of 

under 400 µm was measured [41].  The final measurement of robot positioning accuracy 

was described by Waspe et al. for both CT and ultrasound.  For both cases, a tissue-

mimicking phantom was created with an intersecting grid of air tubes.  The intersection 

points of the air tubes were selected as targets and their position localized using either CT 

or ultrasound.  Using a registration to determine the appropriate robot coordinate, the 

robot then inserted a needle to the phantom at each target.  The needle was then retracted 

while injecting barium, an x-ray contrast agent, to fill the needle track.  Following the 
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experiment, both the CT-guided and ultrasound-guided phantoms were imaged using CT.  

The targeting accuracy was then measured as the distance of the barium-filled needle 

track to the air-tube intersection target.  This method yielded targeting accuracies for CT 

and ultrasound guidance of 157 ± 113 µm and 550 ± 112 µm respectively [39,40]. 

1.5 Drawbacks of Current Preclinical Systems 

To achieve popular use, image-guided small animal needle positioning systems 

must achieve two objectives. First, the systems must possess an ideal targeting error of < 

200 µm [38] with high repeatability.   Second, the systems must make the completion of 

an intervention as quick and user-friendly as possible.  Without a high level of accuracy 

and repeatability, the robotic systems are no better than the conventional manually 

techniques they are meant to replace.  Poor usability and user-friendliness would render 

the systems unwieldy, cumbersome and avoided by their potential users.  As previously 

discussed, the development of specialized small animal preclinical robots is in its infancy.  

As a result, a number of potential refinements exist to improve the robotic systems in 

achieving these goals. 

The existing robot calibration methods, particularly for RCM designs, have 

achieved impressive calibration results.  Ramrath et al. developed a method which 

allowed their system to achieve a positioning error of 32 ± 11 µm in free space.  Waspe et 

al. was able to achieve a total calibration error of under 50 µm.  These calibration 

methods are very capable of allowing a robotic system to achieve a 200 µm targeting 

error.  However, the methods lack user-friendliness.  The method by Waspe et al. 

requires an iterative calibration that requires approximately one hour to complete. 

Ramrath et al. do not specify a length of time to complete calibration.  However, this 

method also requires multiple iterations of adjusting a needle angle and measuring the 

resulting movement.  Finally, both methods require possession of additional photography 

equipment and specialized software to complete the calibration.  Although existing 

calibration methods achieve impressive results, room for improvement exists in reducing 

the amount of time and additional equipment required to complete the calibration.  
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The current methods to integrate and register robots with small-animal imaging 

systems have tended to include inherent sources of variability such as opportunities for 

operator error or the detachment and reattachment of animal beds.  This variability 

ultimately impacts the robot targeting accuracy and repeatability.  None of robots which 

have been demonstrated using image guidance have been compact enough to operate 

within the bore of a preclinical imaging system [37,39,41].  As a result, these systems 

have required the use of custom animal beds which are first attached to the scanner, then 

detached after imaging and finally attached to the robot.  The animal bed attachment 

process introduces variability to both the registration and targeting process [39].  The 

transportation process can cause the shifting of fiducials and targets between imaging and 

robot interventions.  The individual registration processes also possess their own unique 

sources of variability.  Kazanzides et al. require that the user manually guide the robot to 

fiducials during registration, introducing operator error and variability which the robotic 

systems are attempting to reduce.  Waspe et al. uses needle tracks filled with barium in a 

tissue-mimicking to perform the registration.  This process introduces a number of 

sources of variability such as needle deflection and inconsistencies in barium flow within 

the needle track. These sources of variability will result in variations in registration 

quality.  Variation in quality between registrations will lead to issues of repeatability and 

consistently in comparing the targeting results between the same interventions completed 

with different registrations.  

Achieving a targeting accuracy of less than 200 µm using image guidance 

remains a challenge within the small-animal robots.  The system developed by Waspe et 

al. is the only one to have demonstrated this desired level of performance.  Using CT 

image-guidance, a targeting accuracy of 157 ± 113 µm was achieved.  Unfortunately, 

although the mean error was under 200 µm, this system still suffers from issues of 

repeatability as demonstrated by the large standard deviation of 113 µm.  This variation 

can be attributed to a wide range of sources inherent to the robot including calibration 

error, registration error, needle deflection and mechanical design.  A lack of rigidity in 

mechanical design can result in deflection of the robot frame and variability in targeting 

accuracy.  The variation can also be attributed to the method of evaluating the targeting 

accuracy.  The accuracy was determined by measuring the distance of barium filled 
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needle tracks to targets in a tissue-mimicking phantom.  Variability in barium flow and 

how it filled the needle track would have also introduced variability into the targeting 

error.  Achieving a targeting accuracy of < 200 µm without significant variations in the 

accuracy remains a significant challenge to small-animal image guided needle positioning 

systems. 

1.6 X-Ray Computed Tomography 

Within this thesis, particular interest is placed on the use of CT imaging for 

guidance in small animal interventions.  The forerunner of CT imaging was planar x-ray 

imaging.  Planar x-ray imaging is the earliest medical imaging modality.  The first 

clinical uses of planar x-ray images were within days of Wilhelm Conrad Röntgen 

publicly announcing his discovery of x-rays in 1895 [55].  Planar x-ray images are created 

by irradiating a specimen of interest.  The intensity of the x-rays beams are attenuated as 

they pass through the specimen.  The attenuation is the result of the specimen absorbing 

and scattering the x-rays.  The amount of attenuation is predicted by the attenuation 

coefficient of the respective tissues within the specimen.  The value of the attenuation 

coefficient increases with tissue density and atomic number and decreases with the x-ray 

energy.  A detector can then be placed opposite the x-ray source on the other side of the 

tissue.  The detector measures the intensity of the attenuated x-ray beams to create an 

image which displays the measured beam intensities [56].  The best visualized tissues 

with the greatest contrast in x-ray images are highly attenuating tissues such as bone and 

poorly attenuating tissue such as air-filled lung. 

In 1972, x-ray imaging underwent a revolutionary change with the introduction of 

the first CT imaging systems [57].   The significance of the advancement led to the 

inventors of CT being awarded the Nobel prize in 1979.  In planar x-ray imaging, the 

position of the x-ray source and detector remain fixed and acquire a single x-ray 

projection of the specimen.  In CT-imaging, the x-ray source and detector are mounted 

onto a rotating gantry.  The rotating gantry allows the acquisition of x-ray projections 

360° around the specimen.  A computer is then used to reconstruct the acquired data into 

tomographic images of the specimen, typically using a filtered back-projection algorithm 

[58,59].  A 3-dimensional CT image represents the attenuation of the x-rays for 
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individual sample volumes, called voxels, within the specimen.  This is in comparison to 

planar x-ray images, which represent the total attenuation of the x-rays along a line 

passing through the complete specimen.  Within CT images, the attenuation values are 

typically scaled to the Hounsfield scale (HU) [57].  In the Hounsfield scale, water is 

scaled to 0 HU and air to -1000 HU.  Soft tissues typically range from -100 HU to 100 

HU and bone is typically approximately 1000 HU. 

The initial impact of CT technology was limited in the field of small animal 

imaging.  Images acquired by typical clinical CT systems yield isotropic voxel sizes on 

the magnitude of 1 mm.  However, the size of small-animals when compared to humans 

in clinical applications requires a scaling down of voxel sizes to achieve equivalence of 

images.  Small-animal imaging applications required an order of magnitude finer 

isotropic voxel size of 100 µm or less [60].  This issue was solved with the introduction 

of the first micro-CT system with µm scale voxel sizes in 1982 [61].  Micro-CT has since 

developed into a popular research tool experiencing exponential growth in yearly 

publications and commercial availability from at least a dozen manufacturers [62].  

Typical scanners are available with voxel sizes ranging from 5 µm to 450 µm and trans-

axial fields of view ranging from 1 to 20 cm [63]. 

A critical consideration for using micro-CT in image-guided small animal 

interventions is the geometric accuracy of the images.  Geometric inaccuracy in the 

images will result in incorrect target localization and a poor targeting accuracy.  

Previously, micro-CT scanners have been reported as possessing in-plane geometric 

inaccuracies of 0.2% [64] and 0.3% [65]. Over a 2 cm robot range of motion, these 

reported inaccuracies correspond with a 40 µm to 60 µm error.  Such an error would 

reduce the ability of a small-animal robotic system in achieving the desired overall 

targeting error of < 200 µm.  The ability to quickly validate the geometric accuracy of 

micro-CT scanners is an important tool for end users to ensure the best performance of 

small animal image-guided robotic systems.  Two quality assurance phantoms by Du et 

al. [64] and Perelli et al. [66] have been previously developed to characterize the 

geometric errors of micro-CT scanners.  Unfortunately, these phantoms have a number of 

drawbacks including: not being verified to a traceable standard, no method to correct 
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detected errors in the image and are too large to be easily integrated into the design of a 

robot. Therefore, at present, the ability of robot system users to validate the micro-CT 

geometric accuracy is limited.  

1.7 Technical Objectives 

The objective of this research is the development of a micro-CT guided small-

animal robotic needle positioning system to improve the outcomes and efficiency of 

small animal needle interventions.   The system must be able to achieve a mean targeting 

accuracy of under 200 µm with high repeatability to ensure successfully interventions.  

Equally important, the system must be user-friendly.  Use of the system must be as quick 

and easy as possible to encourage its adoption by preclinical researchers and to maximize 

potential efficiency gains from use of the system.  The specific objectives of this thesis 

are: 

1. Develop a method which can quickly characterize the geometric accuracy 

of micro-CT scanners to a traceable standard and provide geometric 

corrections as needed. 

 

2. Demonstrate a micro-CT guided robotic system capable of completing 

needle interventions. This includes: developing a method to calibrate the 

system, integrating and registering the robot with an imaging system, 

characterizing the targeting accuracy of the system and demonstrating the 

use of the system to complete an in vivo biomedical application.   
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1.8 Outline of Thesis 

1.8.1 Chapter 2: Traceable Micro-CT Geometric Accuracy 
Phantom for Applications Requiring Exact Measurement of 
Distances or Volumes 

This chapter describes the design and construction of a calibration phantom for 

the routine evaluation of the geometric accuracy of micro-CT scanners.  The phantom 

consists of six fiducials whose positions have been measured to a known and traceable 

standard of measurement. Software is described to evaluate the geometric accuracy of 

micro-CT scanners by comparing the known positions of the fiducials to their positions in 

micro-CT images.  The software calculates correction factors for each of the scanner’s 

three axes using a least squares solution to minimize the geometric error of the fiducial 

positions.  The correction factors are then applied to images of a second validation 

phantom to evaluate their ability in reducing the geometric error of images independently 

of the calibration phantom.   The calibration phantom is used to characterize the 

geometric accuracy of five different micro-CT scanners representing four different micro-

CT models. Statistical analysis is performed to evaluate the performance of the 

calibration phantom and to describe the nature of the geometric errors encountered.    

 

1.8.2 Chapter 3: 3D Image-Guided Robotic Needle Positioning 
System for Small Animal Interventions  

This chapter describes the design, construction, characterization and biomedical 

application of a micro-CT guided small animal needle positioning system.  The 

mechanical design of the system is based upon a spherical linkage previously used in 

clinical applications [18].  The spherical linkage design is compact enough to allow the 

robot to perform interventions entirely within the micro-CT bore.  A method to calibrate 

the robot needle is introduced which greatly reduces the time requirements of calibration 

compared to previous designs.  A dual mode registration process is introduced to 

integrate the robot with a micro-CT scanner. The dual registration modes allow the user 

to balance registration accuracy with the time required to perform the registration 
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depending on the specific application.  The targeting accuracy of the robot is then 

characterized using tissue-mimicking phantoms.  Finally, use of the robot for a selected 

biomedical application is demonstrated. 
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Chapter 2  

2 Traceable Micro-CT Geometric Accuracy Phantom for 
Applications Requiring Exact Measurement of 
Distances or Volumes 

2.1 Introduction 

Volumetric x-ray micro-computed tomography (micro-CT) is an increasingly 

important tool for research requiring imaging of small specimens or animals [1].  The 

growing importance of micro-CT is reflected in the exponential growth of publications 

since the early 1980s on the topic of small animal micro-CT imaging and the availability 

of a variety of micro-CT scanners from at least a dozen manufacturers [2].  Although 

often used for qualitative research applications, micro-CT has also developed into a 

useful tool for a wide-range of quantitative applications.  Micro-CT has been used for 

quantitative measurements in small-animal imaging applications such bone volume and 

roughness [3], tracking of tumor progression and volume [4], and quantification of whole 

body composition [5].  Micro-CT has been employed for quantitative assessment of 

medical devices such as characterization of ion chambers [6] and measurement of wear in 

replacement joints [7].  Micro-CT images have also been used to guide mechatronic 

devices to complete preclinical micro-injection procedures [8,9].  The success and utility 

of these applications depends on the geometric fidelity of images produced by micro-CT 

scanners. In applications that demand the highest geometric fidelity, such as 

characterization of ion chambers or guidance of devices, the ability to characterize the 

geometric accuracy of micro-CT scanners to a traceable standard [10] would ensure the 

highest quality results. 

In-plane geometric inaccuracies of 0.2% [11] and 0.3% [12] have been previously 

reported for micro-CT scanners.  These percentages represent the error in calibration of 

the micro-CT voxel size.  The reported errors correspond to an error of 20 to 30 µm per 

centimeter of distance in an image.  Although these errors are relatively small, they can 

still exert a noticeable negative influence on quantitative results.  For instance, micro-CT 
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image-guided microinjection procedures may require a needle-positioning error of < 200 

µm to reach small targets [8].  The demanding requirements of these procedures challenge 

the limits of micro-CT scanners.  The previously reported geometric inaccuracies of 

micro-CT scanners would result in an error of approximately 50 µm, or at least one 

fourth of the allowable positioning error, when applied over an insertion distance of 20 

mm.  Geometric inaccuracies in micro-CT images are an error source that cannot be 

neglected and should be minimized for such demanding applications. 

Previous quality assurance phantoms have only partially addressed the 

considerations relevant to ensuring the geometric accuracy of micro-CT scanners.  Perilli 

et al. developed a phantom consisting of aluminum inserts of known geometry embedded 

in a cylinder of polymethylmethacrylate to evaluate imaging parameters for trabecular 

bone imaging applications [13,14].  The known geometries of the inserts were compared 

to their geometry in the micro-CT images to evaluate the geometric accuracy of the 

scanner.  However, the geometry of the inserts was never qualified to a traceable standard 

and the phantom did not offer a method to correct detected geometric inaccuracies in 

images.   Du et al. developed a quality assurance phantom to assess a number of 

parameters related to image quality, including geometric accuracy [7].  The phantom 

assessed geometric accuracy by comparing the known separations of five beads to their 

positions in micro-CT images.  However, again, the bead separations were never 

qualified to a traceable standard. The phantom also only provided a measurement of in-

plane geometric accuracy. 

In this paper, a compact quality assurance phantom qualified to a traceable 

standard is presented along with an automated image processing algorithm to characterize 

the geometric accuracy of micro-CT scanners and calculate correction factors to reduce 

the geometric error of images.  The phantom and algorithm are used to evaluate the 

geometric accuracy of five micro-CT scanners representing four different models of 

micro-CT systems.  The calculated correction factors are applied to measurements of 

fiducial markers in each of the five scanners to evaluate their ability to improve fiducial 

localization.  The techniques developed in this study will allow micro-CT end users to 
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guarantee the highest level of geometric fidelity and to calibrate images to a traceable 

standard.   

2.2 Methods 

2.2.1 Calibration Phantom Construction 

 A calibration phantom was custom-built to evaluate the geometric accuracy of 

micro-CT scanners. The physical size of the phantom is approximately 45 mm × 25 mm 

× 40 mm.  The small size of the phantom enables it to be easily integrated onto a 

mechatronic device and allows it to fit within a wide range of micro-CT bore sizes.  The 

calibration phantom contains six fiducial markers, which are 6.35 mm (¼") diameter 

borosilicate spherical beads (8996K25, McMaster-Carr, Cleveland, OH).  The fiducials 

are fixed in position using a frame constructed onto a 6.35 mm diameter carbon fiber 

shaft backbone.  Three custom-made Delrin plastic clamps are attached to the carbon 

fiber backbone.  Each of the three clamps supports a 15 mm length of 6.35 mm diameter 

carbon fiber rod to which the borosilicate bead fiducials are attached using cyanoacrylate 

glue.  A micro-CT surface rendering of the completed calibration phantom is provided in 

Figure 2.1.   

The phantom design was carefully developed to ensure the phantom is compact, 

possesses high dimensional stability, and the fiducials can be easily segmented and their 

centroid calculated in micro-CT images.  Delrin plastic and carbon fiber were selected for 

frame construction due to their high rigidity and low x-ray attenuation.  Rigidity is a key 

material property since high dimensional stability of bead locations is required; shifts in 

bead positions would cause overestimation of image geometric error.  For the frame, low 

x-ray attenuation is also a key material property to avoid micro-CT imaging artifacts and 

ease segmentation and centroiding of the borosilicate beads.  The borosilicate beads 

selected as fiducials possess a precise sphericity of 2.54 µm for the bead diameter.  The 

sphericity of each bead was validated to a traceable standard using gauge blocks (Grade 

B-18, Mitutoyo Canada Inc., Toronto, ON, Canada) and an indicator (Model 24165-10, 

Starrett, Waite Park, MN).  The high sphericity of the beads ensures accuracy in phantom 

construction and in centroiding the beads in micro-CT images. 
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2.2.2 Measurement of Bead Positions within Calibration Phantom 

The calibration phantom was used to evaluate the geometric accuracy of micro-

CT scanners by comparing the known positions of beads within the phantom to the 

position of the beads in a micro-CT image.  The dimensional accuracy of the calibration 

phantom is therefore critical to enable detection and correction of geometric errors of < 

1% of the voxel dimensions of micro-CT scanners.  Therefore, a method was developed 

to measure the bead positions to a known and traceable standard. 

The position of each bead in the phantom was measured using a calibrated XYZ 

positioning stage (M-462-XYZ-SD Series, Newport, Irvine, CA) with an attached dial 

indicator (Model 24165-10, Starrett, Waite Park, MN) mounted onto a granite surface 

plate (Grade B, Starrett, Waite Park, MN).  The phantom was suspended above the 

granite surface plate by clamping its carbon fiber backbone to a V-block (Model 228, 

Starrett, Wait Park, MN).  Gauge blocks (Grade B-18, Mitutoyo Canada Inc., Toronto, 

ON, Canada) with certified, traceable dimensional accuracy were stacked onto the granite 

surface plate. The height of the stacked gauge blocks was compared to the height of a 

 

(a) (b) 

Figure 2.1-Micro-CT surface rendering of the a) calibration phantom and b) validation phantom. 
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single bead above the granite surface using the XYZ positioning stage and attached 

indicator.  The height of the gauge blocks was iteratively adjusted until the dial indicator 

showed no difference between the stack height and bead height.  The dial indicator 

provided a distance resolution of 2.54 µm.  The distance measurement process was 

completed for each of the six fiducial beads.  The distance of each bead from the granite 

surface plate was then measured twice more in the two directions orthogonal to the 

original measurement.  The orthogonal distances were measured by rotating the V-block 

on the granite surface plate and repeating the iterative measurement process for each 

bead.  The orthogonality of the V-block was measured by the same XYZ stage and 

attached indicator to be < 2.54 µm over 2.0 cm of travel.  The phantom and measurement 

tools are shown in Figure 2.2.  Using this method, the three-dimensional position of each 

bead in the phantom was determined relative to a known and traceable standard of 

measurement.  The mean and standard deviation of the bead separations in the phantom 

was 24.14 ± 7.51 mm. 

 

Figure 2.2- Calibration and validation phantom with measurement equipment. 
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2.2.3 Imaging the Calibration Phantom 

The calibration phantom was used to evaluate the geometric accuracy of five 

volumetric x-ray micro-CT scanners manufactured by General Electric Healthcare 

Biosciences (London, ON, Canada).  The scanners evaluated included two eXplore Ultra 

Locus scanners and one of each of eXplore speCZT, eXplore CT 120 and eXplore RS 

scanner models.  These scanners represent a range of commercially available micro-CT 

scanning equipment commonly employed in research laboratories, with a range of voxel 

spacing (0.05 mm to 0.15 mm) and transaxial field-of-view (70 mm to 150 mm). 

 A single common calibration phantom was imaged by all five scanners.  The 

calibration phantom was scanned by each scanner five times at the approximate scanner 

isocenter.  The phantom was removed from the micro-CT bore and repositioned between 

each scan.  For both the eXplore Ultra Locus, in addition to five additional scans at the  

isocenter, five scans were taken at a position offset from the scanner isocenter by 

approximately 70 mm,  for a total of 10 scans.  The phantom was not scanned at a second 

position in the three remaining scanners since it almost fully occupied these scanners’ 

maximum trans axial field-of-view.  The imaging parameters used for each scanner are 

summarized in Table 2.1. 

Table 2.1-Summary of the micro-CT scan parameters used for imaging the phantoms. 

Scanner 

 

Tube 
Voltage 
(kVp) 

Tube 
Current 

(mA) 
Views 

View 
Exposure 
Time (ms) 

Total Scan 
Time 

Nominal Voxel 
Size (µm) 

eXplore Locus 

Ultra  
140 20 1000 16 16 seconds 153.9 

eXplore 

SpecZT 
110 32 900 16 5 minutes 49.8 

eXplore CT 

120 
110 32 900 16 5 minutes 49.7 

eXplore RS 80 45 900 400 120 minutes 45.4 
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2.2.4 Geometric Correction Calculation 

An automated algorithm was developed using MATLAB (The Mathworks, Inc., 

Natick, MA) to compare the known position of beads in the phantom to their positions in 

the micro-CT images.  The algorithm determines the position of the phantom’s 

borosilicate beads in the images by using a multi-step localization technique.   Beads 

were first segmented using a threshold-based region growing algorithm.  The threshold 

level was calculated using an iterative algorithm to determine the threshold that yielded 

an average segmented volume of the beads to within 0.1% of the known volume.  The 

center of the segmented bead was then calculated using a squared-intensity-weighted 

centroiding algorithm that has an accuracy of < 5% of the nominal image voxel size in 

localizing 3D centroid positions in simulated images [15].  Since distance is measured 

between pairs of bead centroids, the worst-case distance error is double the centroiding 

error. 

The distance of each bead to all other beads in the phantom was measured for a 

total of 15 distances per image.  The 3D separation of each pair of beads in the image was 

scaled to the known bead separations using the equation: 

222 )/()/()/( zimgyimgximgKnown CFZCFYCFXDist ++=     (2.1) 

where Ximg , Yimg , and Zimg are the components of the bead distance in the images along 

the respective axes of the scanner and CFx, CFy, and CFz are correction factors for each 

scanner axis that transform the bead separations in the images to the known bead 

separations.   Equation 2.1 for each of the 15 bead distances was combined to form the 

system of equations: 
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The least-squares solution of Equation 2.2 was determined to calculate values for each of 

the correction factors. 
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2.2.5 Validation Phantom Construction 

 A second phantom was constructed to validate the correction factors measured by 

the calibration phantom.  The validation phantom is an independent verification that the 

calculated correction factors are not unique to the calibration phantom and generally 

correct images produced by the micro-CT scanner.   The validation phantom, like the 

calibration phantom, contains six 6.35 mm (¼") diameter borosilicate spherical beads 

acting as fiducial markers that are secured to a 6.35 mm diameter carbon fiber shaft 

backbone using Delrin clamps.  The positions of the beads in the validation phantom 

differed from the bead positions in the calibration phantom.  Different bead positions 

were obtained by changing the angle of the Delrin clamps relative to the phantom 

backbone and by increasing the lengths of carbon fiber rods used to mount the beads to 

25.4 mm.  Once the validation phantom was constructed, the bead positions within the 

phantom were measured using the method described in Section 2.2.2. A micro-CT 

surface rending of the validation phantom is shown in Figure 2.1.  The mean and 

standard deviation separation between the pairs of beads was 39.41 ± 12.99 mm 

 A rigid-body registration was computed between the measured bead positions of 

the calibration and validation phantoms.  The registration was calculated to ensure that 

the bead positions in the validation phantom were truly independent of the calibration 

phantom.  A large rigid-body registration, as demonstrated by a large fiducial registration 

error (FRE) [16], would indicate that the validation phantom bead arrangement was 

different from the calibration phantom arrangement.  An FRE > 6.35 mm (or 

approximately one bead diameter) was assumed to indicate a sufficiently different bead 

arrangement.  The smallest FRE of the rigid body registration of the measured calibration 

bead locations to the validation phantom bed locations was 18.4 ± 6.3 mm, or 

approximately three fiducial bead diameters. 

 The validation phantom was imaged once at the isocenter of each scanner.  Again 

for both the eXplore Ultra Locus scanners, the phantom was imaged at an additional 

position offset from the isocenter.  For each scanner, the same scan parameters (Table 

2.1) were used for the validation phantom.  The validation phantom beads were 

segmented and centroided using the algorithm described in Section 2.2.4.  The distances 
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between each bead pair in the validation phantom was calculated with and without 

applying the correction factors calculated for each scanner using the calibration phantom. 

2.2.6 Data Analysis 

 The three correction factors for each scanner were compared using ANOVA and 

Tukey tests at a significance level at p < 0.05 to determine if any statistically significant 

differences exist for the correction factors along the X, Y and Z axes of each scanner.  

This comparison was performed to determine if the geometric error of each scanner was 

isotropic or anisotropic.  If the correction factors are not significantly different (i.e. 

indicating an isotropic error) a single averaged correction factor could be used for each 

axis.  For the two eXplore Locus Ultra scanners, pairs of correction factors from the 

isocenter and offset position for each axis were compared using a two-tailed paired t-test 

with p < 0.05 to determine if any significant difference exists for each respective 

correction factor at the two positions.  If correction factors from the two positions are 

significantly different, it may indicate that the values of the correction factors are 

dependent on position within the scanner bore.   

The effectiveness of the correction factors for improving the geometric accuracy 

of micro-CT scanners was also evaluated.  The separations among beads within the 

calibration and validation phantoms were calculated with and without using the 

correction factors.  For each bead separation in each image, the geometric error was 

determined using the gauge block measurements as a gold standard.  The error of the 

uncompensated and corrected separations was compared using a two-tailed paired t-test 

at p < 0.05 to determine if the correction factors significantly reduced the error.  

Reductions in the error of the bead separations in the images that are both statistically 

significant and large enough to be practically meaningful would demonstrate the efficacy 

of the geometric correction procedure.   
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The eXplore CT 120, eXplore speCZT and eXplore RS all yielded images with a 

voxel size of approximately 50 µm.  The corrected and uncorrected errors of these three 

scanners were compared using ANOVA and Tukey tests with p < 0.05 to see if errors 

were consistent across three scanners with images of similar voxel sizes.   Finally, the 

corrected and uncorrected errors of the two positions of the two eXplore Locus Ultra 

scanners were also compared using a two-tailed paired t-test to determine if scanners of 

the same model possess similar errors. 

2.3 Results 

2.3.1 Correction Factor Values 

The mean and standard deviation of the correction factors for each axis of each 

scanner is summarized in Table 2.2.  In addition, an average volumetric correction factor 

is provided to characterize the correction in voxel volume for each scanner arising from 

the linear axis correction factors.  A correction factor > 1 indicates that distances in the 

uncorrected micro-CT images overestimated the true dimensions.  There was no clear 

pattern to the magnitudes or directions (over or under estimation) of the errors along the 

Table 2.2- Calculated average scanner correction factors for each axis. 

Scanner 

 

X-Axis Correction 
Factor 

Y-Axis Correction 
Factor 

Z-Axis Correction 
Factor 

Volumetric 
Correction Factor 

eXplore Locus 
Ultra Isocenter 
Scanner One 

0.9998 ± 0.00006 1.0009 ± 0.00012 1.0002 ± 0.00021 1.0008 ± 0.00034 

eXplore Locus 
Ultra Offset 
Scanner One 

1.0008 ± 0.00063 0.9968 ± 0.00018 0.9987 ± 0.00040 0.9962 ± 0.00063 

eXplore Locus 
Ultra Isocenter 
Scanner Two 

1.0033 ± 0.00013 0.9981 ± 0.00012 0.9978 ± 0.00014 1.0020 ± 0.00012 

eXplore Locus 
Ultra Offset 
Scanner Two 

1.0022 ± 0.00010 0.9999 ± 0.00009 0.9998 ± 0.00008 0.9993 ± 0.00012 

eXplore SpecZT 1.0011 ± 0.00007 1.0008 ± 0.00002 0.9990 ± 0.00004 1.0009 ± 0.00043 

eXplore CT 120 1.0027 ± 0.00006 1.0031 ± 0.00103 1.0005 ± 0.00014 1.0064 ± 0.00133 

eXplore RS 0.9963 ± 0.00021 0.9965 ± 0.00069 0.9957 ± 0.00025 0.9886 ± 0.00092 
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three axes.  A statistically significant difference was found between the correction factors 

in the X (p = 0.043 and p < 0.001), Y (p < 0.001 for both scanners) and Z (p < 0.001 for 

both scanners) axes at the two bore positions in both eXplore Locus Ultra scanners.  

These results suggest that the calibration phantom should ideally be placed as close as 

possible in the bore to the anticipated location of targets. 

The results of Tukey tests comparing the correction factors for each scanner are 

summarized in Table 2.3.  For three out of four scanner models, no significant difference 

was found between the X and Y correction factors for the scanners, indicating a single 

average correction factor can be used for the in-plane direction.  The X and Y correction 

factors were significantly different for the two eXplore Locus Ultra scanners.  However, 

for these two scanners the absolute difference was still < 1%.   In 11 out of 14 cases, the 

X and Y correction factors were generally significantly different from the Z correction 

Table 2.3-Results of Tukey test ( p <0.05) for differences in the mean correction factors for each pair of scanner axes. 

Scanner 

 
X and Y X and Z Y and Z 

eXplore Locus Ultra Isocenter 
Scanner One 

Yes No Yes 

eXplore Locus Ultra Offset Scanner 
One 

Yes Yes No 

eXplore Locus Ultra Isocentre 
Scanner Two 

Yes Yes Yes 

eXplore Locus Ultra Offset  Scanner 
Two 

Yes Yes Yes 

eXplore SpecZT No Yes Yes 

eXplore CT 120 No Yes Yes 

eXplore RS No No Yes 
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factors, which suggest the out-of-plane correction factor is unique from the in-plane 

correction factors. 

2.3.2 Geometric Correction to Calibration Phantom 

 The corrected and uncorrected bead separations within the calibration phantom 

are summarized in Table 2.4.   Application of the correction factors significantly reduced 

the error in bead separations for in five out of seven image sets.  In six out of the seven 

image sets, the corrected and uncorrected errors were found to be significantly different.  

The mean difference in corrected and uncorrected errors ranged from ≤ 1 µm to 83 µm in 

absolute terms or from 0.005% to 0.338% in relative terms.   

Table 2.4-Uncorrected and corrected bead separation errors for the calibration phantom.  Each error is described with 
a mean and standard deviation in both an absolute value of µm and as a percent of total bead separation.  The p-value 
of the t-tests comparing the corrected and uncorrected errors of each scanner are provided. 

Scanner 
Uncorrected  
Error (µm) 

Corrected  
Error (µm) 

Uncorrected  
Error (%) 

Corrected Error 
(%) 

p-Value 

eXplore Locus Ultra 
Isocenter Scanner One 

22 ± 2 22 ± 3 0.096 ± 0.013 0.101 ± 0.016 p = 0.03 

eXplore Locus Ultra 
Offset Scanner One 

38 ± 3 31 ± 4 0.172 ± 0.014 0.148 ± 0.014 p = 0.002 

eXplore Locus Ultra 
Isocentre Scanner Two 

19 ± 1 7 ± 1 0.078± 0.006 0.031± 0.007 p < 0.001 

eXplore Locus Ultra 
Offset  Scanner Two 

36 ± 1 35 ± 1 0.146± 0.003 0.150± 0.003 p = 0.16 

eXplore SpecZT 18 ± 4 11 ± 3 0.080 ± 0.016 0.054 ± 0.014 p < 0.001 

Explore CT 120 50 ± 7 7 ± 1 0.200 ± 0.027 0.007 ± 0.001 p = 0.001 

eXplore RS 92 ± 6 9 ± 2 0.380 ± 0.027 0.042 ± 0.011 p < 0.001 
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2.3.3 Geometric Correction to Validation Phantom 

 The average error in bead separation within the validation phantom for all sets of 

images was calculated with and without application of the correction factors calculated 

from the calibration phantom.  The corrected and uncorrected bead separations and the p-

values for the two-tailed t-tests between the corrected and uncorrected errors are 

summarized in Table 2.5.  In three scanners with minimal ( < 50 µm) geometric accuracy 

errors, application of the correction factors slightly increased the geometric errors of the 

images.  However, this increase was not statistically significantly except for the offset 

position of the second eXplore Locus Ultra scanner.  For the two scanners with > 60 µm 

uncorrected error, application of the correction factors significantly improved the 

geometric accuracy of the images.  

 

Table 2.5-Uncorrected and corrected bead separation errors for the validation phantom.   Each error is described 
with a mean and standard deviation in both an absolute value of µm and as a percent of total bead separation.  The 
p-value of the t-tests comparing the corrected and uncorrected errors of each scanner are provided.    

Scanner 
Uncorrected  
Error (µm) 

Corrected  
Error (µm) 

Uncorrected  
Error (%) 

Corrected Error 
(%) 

p-Value 

eXplore Locus Ultra 
Isocenter Scanner One 

37 ± 27 38 ± 26 0.100 ± 0.080 0.101 ± 0.074 p=0.46 

eXplore Locus Ultra 
Offset Scanner One 

44 ± 36 54 ± 41 0.132 ±0.138 0.163 ±0.158 p=0.26 

eXplore Locus Ultra 
Isocentre Scanner Two 

27 ± 15 29 ± 15 0.077 ± 0.068 0.084 ± 0.056 p=0.69 

eXplore Locus Ultra 
Offset  Scanner Two 

44 ± 22 80 ± 54 0.132 ± 0.117 0.215 ± 0.145 p= 0.01 

eXplore SpecZT 15 ± 10 19 ± 13 0.047 ±0.041 0.049 ±0.033 p=0.35 

eXplore CT 120 67 ± 27 22 ± 16 0.168 ± 0.037 0.052 ± 0.025 p<0.001 

eXplore RS 148 ± 61 27 ± 19 0.370 ± 0.086 0.074 ± 0.054 p<0.001 
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2.3.4 Comparison of Validation Phantom Errors 

 The eXplore CT 120, eXplore speCZT and eXplore RS all yielded images with a 

voxel size of approximately 50 µm.  The uncorrected errors of all three scanners were 

significantly different, but, the corrected errors of the three scanners were not 

significantly different.  This result indicates scanners will possess similar accuracies 

when corrected by the phantom.   The uncorrected errors for each of the two eXplore 

Locus Ultra scanners were not significantly different from each other at both the 

isocenter (p = 0.29) and offset (p = 0.94) positions.  Similarly, the corrected isocenter (p 

= 0.23) and offset (p = 0.21) positions of each of the two eXplore Locus Ultra scanners 

were also not significantly different from each other. 

2.4 Discussion 

 We have designed and demonstrated the use of a specialized calibration phantom 

to measure and correct the geometric accuracy of five different micro-CT scanners 

spanning four model types.  The calibration phantom can be used to calculate traceable 

correction factors that improve the localization of fiducials in micro-CT images whose 

positions are independent of the initial calibration phantom.   

In two of the five scanners tested, the eXplore CT 120 and eXplore RS, 

application of the correction factors significantly improved fiducial localization.  For 

these two scanners, the mean geometric error of the images measured by the calibration 

phantom was reduced from 0.20% and 0.38% to 0.01% and 0.04% respectively.   

Although the reduction in geometric error is small in absolute terms, the correction 

factors can provide a significant and meaningful improvement for completing image-

guided micro-injection procedures.  For the worst-case scanner, the mean error in fiducial 

localization for the validation phantom was reduced from 0.370% of the bead separation 

to 0.074% of bead separation.  Over a 20 mm distance that a typical small-animal needle 

positioning device may travel, this represents a reduction of error from 74 to 15 µm.  An 

improvement of 59 µm provides a considerable benefit towards achieving a desirable 

positioning error < 200 µm for a mechatronic device.  In addition, the linear correction 

factors of each scanner axis multiply to produce a larger volumetric correction. The 
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greatest volumetric correction was obtained for the eXplore RS and was approximately 

1.14%.  These results suggest measurement, and if need be, correction of the geometric 

inaccuracies in micro-CT images may be beneficial for image-guided interventions or 

other applications that demand high geometric fidelity of images.  

The small size of the calibration phantom allows it to fit within the bore of a wide 

range of micro-CT scanners and to be easily incorporated into the designs of mechatronic 

devices.  The use of an automated algorithm allows the correction factors to be calculated 

quickly.  The most significant interruption to the work flow of mechatronic micro-

injection procedures would be the time required to scan and reconstruct images of the 

calibration phantom.  However, micro-CT mechatronic devices typically require a scan at 

the start of interventions to register the device with the micro-CT scanner.  Measurement 

and correction of scanner geometric inaccuracies could be incorporated into the 

registration process of mechatronic devices and would only minimally increase the time 

required for registration.  The end user is then assured that localization errors resulting 

from geometric errors have been minimized and will not impact on the success of their 

interventions.  Calculation and application of geometric correction factors should 

therefore be incorporated into all procedures using a micro-CT guided mechatronic 

device.         

Statistical analysis of the correction factors suggests the geometric inaccuracy of 

micro-CT scanners can be slightly anisotropic in nature.  Although the observed 

anisotropy was statistically significant, it was extremely small.  The largest percent 

difference between the mean scaling factors of an axis of a scanner was approximately 

0.5% for the isocenter of the second eXplore Locus Ultra scanner.   The X and Y 

correction factors were generally not significantly different from each other but were 

generally significantly different from the Z correction factor.  These results are not 

surprising.  In the scanners tested, the same x-ray detector pixel spacing is used for 

measurement of the in-plane direction along the X and Y axes but not along the Z axes.  

These results suggest a single averaged value of the X and Y correction factors can be 

used along these axes.  When exceptions existed for this trend, the absolute difference 

between these two correction factors remained quite small (< 0.5 %), suggesting an 
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average correction factor can still be used.  Between the isocenter and offset positions of 

the two eXplore Locus Ultra scanners a significant difference in correction factors was 

found along all three axes.  These results suggest the geometric accuracy of micro-CT 

scanners may vary with location in the bore.  The calibration phantom should therefore 

be placed as near targets as possible.         

 Interesting inferences can be made from the calculated corrected and uncorrected 

errors across the micro-CT scanners.  The eXplore CT 120, eXplore speCZT and eXplore 

RS all yielded images with an isotropic voxel size of approximately 50 µm.  The eXplore 

speCZT had a small geometric error indicating it was already well-calibrated for 

geometric accuracy.  Whereas, the eXplore CT 120 and eXplore RS possessed 

correctable initial geometric errors. A Tukey test found these three scanners to have 

statistically significant difference in uncorrected errors.  However, the corrected errors of 

these three scanners were not significantly different and are all approximately the same.  

These results suggest use of the calibration phantom can correct the geometric accuracy 

of poorly calibrated micro-CT scanners to correspond with the accuracy of an already 

well calibrated scanner of equivalent voxel size.  Similarly, both eXplore Locus Ultra 

scanners were well calibrated and possessed a similar small geometric error.  Between 

these two scanners, no significant difference was found between the uncorrected and 

corrected errors.  The eXplore Locus Ultra results again suggest scanners of the same 

voxel size will possess similar geometric errors when calibrated. 

 Previous studies have measured in-plane geometric errors similar to those 

reported here for both the eXplore Locus Ultra and eXplore CT 120.  Du et al. [11] 

reported a 0.2% error for the eXplore Locus Ultra,  which comparable to the   0.10 ± 

0.01% and 0.08 ± 0.01% errors detected by our calibration phantom at the isocenter of 

the Locus Ultra and 0.17 ± 0.01% and 0.15 ± 0.01% errors detected offset from the 

isocenter.  Bahri et al. [12] reported a 0.3% error for the eXplore CT 120, which is 

comparable to the 0.20 ± 0.03% error detected using our calibration phantom.  Consistent 

with these previously reported results, our phantom found both the eXplore Locus Ultra 

and eXplore CT 120 to yield undersized voxels compared to the manufacturer’s 

specification.  
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2.5 Conclusion 

 We have designed and developed a traceable calibration phantom and a technique 

to evaluate the geometric accuracy of micro-CT scanners.  The geometric errors detected 

by this new phantom are in-line with the previous errors reported using non-traceable 

phantom designs.  In two of the five scanners evaluated using the new phantom design, 

statistically significant correction factors were derived to improve the scanner geometric 

accuracy.  However, for many applications, the impact of these correction factors would 

be small.  These results suggest that a non-traceable phantom design is sufficient for the 

geometric calibration of micro-CT scanners for the majority of applications.  Use of a 

traceable calibration phantom may be useful for applications demanding the very highest 

geometric fidelity of images, such as small animal image-guided interventions or the 

characterization of medical devices.  In any case, the use of a geometric calibration 

phantom, traceable or not, is an easily implemented assurance to micro-CT end users of 

the geometric fidelity of their images.  
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Chapter 3  

3 3D Image-Guided Robotic Needle Positioning System 
for Small Animal Interventions 

3.1 Introduction 

Clinical medical robotics is a mature field and dozens of clinical robotic systems 

have been developed for use in a wide range of interventional applications [1].  Today, 

use of medical robotics is increasingly becoming part of routine procedures; for example, 

the da Vinci robot by Intuitive Surgical for radical prostatectomy [2].  This growing use 

and importance of medical robotic systems is a stark contrast to the state of robotics for 

use with small animals in preclinical research.  A particular preclinical application, which 

could greatly benefit from the use of robotics, is the development of an image-guided 

robotic system for needle interventions.  Although a number of systems have been 

developed for image-guided clinical needle interventions [3]; no such systems are in use 

for routine preclinical use.  Rather, sub-optimal non-robotic and non-image-guided 

techniques remain the norm for small animal needle interventions.  Techniques typically 

used for small animal needle interventions require surgical exposure of targets [4-7], 

percutaneous injections through the skin [4,8] or stereotactic devices [9].  Surgical 

exposure suffers from associated surgical mortality and morbidity, which may confound 

research results.  Both percutaneous and surgical techniques are, ultimately, highly 

dependent on the ability of a human operator to correctly place a needle and suffer from 

problems of accuracy and repeatability.  Stereotactic devices are limited to interventions 

within the skull and are limited by the accuracy of anatomic atlases and localization of 

external landmarks. The current methods typically used for small animal needle 

interventions are relatively unsophisticated in comparison to clinical methods. 

Imaging technology has outperformed robotics in the development of specialized 

small-animal systems for preclinical research.  Analogous small-animal imaging systems 

have been developed for all the major clinical imaging modalities including: Computed 

Tomography (CT), Magnetic Resonance (MR), Positron Emission Tomography (PET), 

Single-Photon Emission Computed Tomography (SPECT) and Ultrasound.  These small-
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animal imaging systems have achieved popular use and are considered to have greatly 

contributed to preclinical research [10].  CT imaging developed for use with small-

animals, commonly referred to as micro-CT, is a particular imaging modality of interest.  

Micro-CT scanners are available from at least a dozen manufactures [11] with typical 

voxel sizes ranging from 5 µm to 450 µm and trans-axial fields of view ranging from 1 to 

20 cm [12, 13]. 

To ameliorate small animal needle interventions, a number of previous efforts 

have been made to integrate robotic devices with micro-CT imaging systems to perform 

image-guided needle interventions [14-17].  In addition, several devices not explicitly 

intended for imaging-guidance have also been developed for small needle interventions 

and could be potentially integrated with micro-CT imaging [18,19].  The development of 

these systems combines the accurate and non-invasive target localization of imaging with 

the positioning accuracy and repeatability of robotic systems. The design requirements 

that these devices must satisfy are demanding.  A needle positioning error of < 200 µm 

may be required to successfully complete small animal needle interventions [17].  

Furthermore, the design of these devices must be extremely compact to allow them to be 

fully integrated into the small bores of micro-CT imaging systems.   

Five previous efforts for potential small animal micro-CT robotic needle 

intervention systems have been identified.  Unfortunately, none of these systems are 

ideal.  The system developed by Waspe et al. [17] is the most sophisticated and best 

characterized of these devices.   The system was successfully integrated with a micro-CT 

scanner and achieved a mean targeting error of 154 ± 113 µm in a tissue mimicking 

phantom.  The system was also able to successfully inject tungsten beads into a rat brain.  

However, the system was too large to fit within a micro-CT bore and required transport 

of the animal to the robot workspace following imaging.   The system also suffered from 

variations in targeting accuracy as evident by the large standard deviation in targeting 

error.  The four remaining systems also suffer from a number of drawbacks.  The three 

systems developed by Kazanzides et al. [14], Hwang et al. [18] and Ramrath et al. [19] 

all lack a demonstrated technique to register the robotic devices with a micro-CT imaging 

system.  The accuracy of these three systems was only evaluated in air rather than using 
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tissue mimicking phantoms.  Ramrath et al. achieved an impressive mean positioning 

accuracy of 32 µm; however, the robot is based on a stereotactic device and is limited to 

interventions in the skull.  Kazanzides et al. and Hwang et al. achieved poorer mean 

targeting accuracies of 0.4 mm and 2 mm respectively.  The fourth system developed by 

Nicolau et al. [15] did not have its overall targeting accuracy characterized, but the 

authors demonstrated the ability to localize the needle tip to within 0.7 mm.  None of the 

aforementioned authors evaluated the ability of their robot to operate within a micro-CT 

bore.   

This paper presents the design of a micro-CT guided small animal robotic needle 

positioning system and demonstrates the ability to perform needle interventions within 

the bore of the scanner with a targeting accuracy of < 200 µm.   The robotic system 

implements a spherical linkage design, based on the miniaturization of previous clinical 

systems used for prostate [20] and breast biopsy [21].  The spherical linkages of the robot 

are designed to create a Remote Center of Motion (RCM) [22].  In order to simplify the 

robotic design and maintain a small targeting error, a novel implementation of the RCM 

is used in the system. The positioning error of the robotic system is quantified using 

targeting experiments in tissue mimicking phantoms.  In vivo experiments were 

performed to test the robotic system’s ability to direct a needle to a specified target in a 

xenograft mouse model and to assist with tumour interstitial fluid pressure (IFP) under 

image guidance. 

3.2 Methods 

3.2.1 Mechatronic System Design 

3.2.1.1 Kinematic Frame Design 

High rigidity is the critical factor in the success of a kinematic frame design used 

for high targeting accuracy.  The rigidity of the kinematic frame can be most easily 

improved by miniaturizing the size of the mechanism.  Decreasing the size of the frame 

by half would increase its rigidity by eight times. In addition, a smaller frame will also 

allow the robotic system to operate within a micro-CT bore and complete interventions 

without the need to relocate the animal.  Not requiring relocation of the animal during 
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interventions reduces opportunities for target motion and improves targeting accuracy.  

The kinematic frame design must therefore be as compact as possible. 

The use of a robot architecture based on a fixed remote center of motion (RCM) is 

best suited for completing a specific task in a confined workspace [1].  The RCM 

architecture is well established within clinical robotic systems [22].  In a RCM based 

robot architecture all of the rotational axes of the robot intersect at a common point in 3D 

space.  This architecture allows for higher angular mobility in a confined space such as a 

scanner bore.  An RCM design also has the added advantage of allowing needle 

translation and orientation to be decoupled when positioning the needle for interventions.  

The decoupling of translation and orientation no longer makes it necessary to 

simultaneously control multiple degrees of freedom during the most delicate part of 

procedures: needle insertion. 

A comparative analysis was performed to determine the RCM architecture best-

suited for the kinematic frame.  The designs considered were: the double parallelogram 

linkage [17], the goniometric arc [19] and the spherical linkage [18,20]. The double-

parallelogram design was found to be unsuitable for this application because of its size 

and number of components required. The goniometric arc is a simpler design then the 

double-parallelogram. However, it is difficult to manufacture a linear bearing from CT 

compatible materials to support the tool in a goniometric arc design.  The ferrous 

materials typically used in most linear bearings will generate streak artifacts because of 

high attenuation and non-ferric CT compatible materials typically lack rigidity, which 

results in bearing deflection and friction. The spherical linkage was found to be 

advantageous over the other two options due to its simplicity of design.  The spherical 

linkage design also allows for ease in adjustability and calibration to create a precise 

RCM independent of the manufacturing tolerances in each part of the linkage. The RCM 

adjustment is accomplished by splitting the base link (Figure 3.1) into two parts to 

control the orientation of each hinged connection in the linkage.  The orientation of the 

hinged connections can then be calibrated to intersect at the RCM.  A spherical linkage 

was selected for the kinematic frame of the system due to its simplicity and ability to 

achieve a precise RCM. 
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Figure 3.1-  A schematic representation of the proposed RCM linkage design which consists of two parts: 
a forward (labeled L1 through L5) and a rear spherical linkage (labeled l1-l4). The forward spherical 
linkage consists of five links (L1-L5) supporting the needle driver and five hinged connections (R1-R5) 
pinned to the base (L0).  The rear linkage is a mirror image of the forward linkage and consists of four 
linkage elements (l1-l5) and four hinged connections (r1-r4).  The extra pinned connection (R5) in the 
forward assembly is used to adjust the axis of each pinned connection (R3 and R4) in the base link (L1 
and L5) to create a precise RCM.  The linkage functions as a pantograph to constrain the rear linkage to 
counterbalance the forward linkage and payload using the brass weights attached to the rear spherical 
linkage.  The two encoders are mounted to the base (L0), and record the angle of each rotational axis.  
The needle is mounted to the link L3 and its axis is aligned along the rotational axis R5.  The spherical 
linkages can be manipulated using either motors or through manual manipulation of a handle mounted to 
the rear spherical linkage.  The axis of each hinged connection in the spherical linkages converges to a 
common point in space to from a remote center of motion: (RCM) at the forward spherical linkage and 
(rcm) at the rear linkage  
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3.2.1.2 Mechatronic System Description 

The mechatronic system contains a total of 6 degrees of freedom.  Two degrees of 

freedom are contained within the systems spherical linkages, which form two rotational 

axes: roll and pitch.  The rotational axes control needle orientation during interventions.  

Three degrees of freedom are contained in a custom-built 3-axis XYZ linear stage, which 

supports the spherical linkage (Figure 3.2).  The linear stage controls needle translation 

during interventions.  The stage provides 3 cm of stroke along the X and Y axes and 1.5 

cm along the Z-axis with an accuracy 2.54 µm in each axis.  The position of the stage 

along each axis is tracked using three optical encoders.  Finally, the system consists of a 

one degree of freedom linear needle driver.  The needle driver is used to insert and retract 

the needle during interventions.  Both the mouse bed and robotic system are secured 

directly to the couch of the micro-CT scanner (Figure 3.2). The entire system is compact 

enough to operate entirely within the micro-CT bore.   

The spherical linkage assembly consists of two parts: a forward and a rear linkage 

(Figure 3.1). The forward and rear linkages are coupled together through an elongated 

shaft assembly.  The shaft assembly and associated linkage functions as a pantograph to 

allow the rear linkage to counterbalance the forward linkage and payload.  The forward 

spherical linkage contains an encoder (RM22SC001 2B30F1C00, Renishaw, 

Gloucestershire U.K.) for each of the two rotational axes.  The two encoders are mounted 

to the base of the spherical linkage and record the angle of each rotational axis. The 

encoders allow for real-time monitoring and display of each rotational axes angle. The 

spherical linkages can be manipulated using either motors or through manual 

manipulation of a joystick mounted to the rear spherical linkage.  The axis of each hinged 

connection in the spherical linkage converges to a common point in space to from an 

RCM.   The angle between each hinged connection in the spherical linkage defines the 

size and shape of the operating envelope of the kinematics frame. The base link (Figure 

3.1, L1) defines the reference axis of the rotational coordinate system, which is fixed at 

the RCM.  The encoders mounted on the robot base are used to measure the relative 

angles between: the two successive linkages (Figure 3.1, links: L1 and L2) and between 

the links L1 and base respectively. 
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Figure 3.2- (Top):  Photograph of the robotic apparatus mounted on the CT scanner animal 
couch and control system. The mechatronic apparatus consists of an XYZ linear stage which 
supports the spherical linkage. (Bottom) Photograph of the forward spherical linkage and 
attached needle driver. The needle driver is mounted such that the axis of the needle intersects 
the RCM of the spherical linkage. The mouse bed is attached to a double ball joint which in turn 
is clamped to the animal couch via a pair of hollow aluminum rails giving a total of 6 degrees of 
freedom. The fiducials mounted to the aluminum shaft below the mouse bed are used to register 
the robot to the CT scanner. This registration will account and correct for the variability 
introduced when the robot was reattached to the micro-CT. 
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The forward spherical linkage consists of six links and five hinged connections 

supporting the needle driver. The rear linkage is a mirror image of the forward linkage 

and consists of five linkage elements and four hinged connections. The extra pinned 

connection in the forward assembly is used to adjust the axis of each pinned connection 

in the base link to create a precise RCM.  Figure 3.1 shows a schematic representation of 

the RCM linkage design. 

To determine the stability of the RCM, a precision tooling ball (6.35mm diameter, 

part 29011, Jergens Inc., Cleveland, OH) was attached to the linkage and aligned to the 

RCM. The tooling ball displacement throughout the spherical linkages full range of 

motion was measured using a calibrated XYZ stage (M-462, Newport Corp., Irvine, CA) 

and attached indicator (Model 25164-10, The L.S. Starrett Company, Waite Park, MN). 

The measured tooling ball deviation was < 12.5 µm along the X-, Y- and Z-axis. 

 The motorized needle driver is mounted to the forward spherical linkage to insert 

and retract the needle (Figure 3.2).  The needle driver is mounted such that the axis of 

the needle intersects the RCM of the spherical linkage.  The robot implements the RCM 

in a unique fashion compared to previous designs for small animal interventions.  The 

RCM of the system is positioned at the target location within the animal using the 3-axis 

XYZ linear stage.  Next, the needle driver inserts the needle to the RCM location, which 

also corresponds with the target.  This is a clear divergence from previous robotic designs 

were the RCM is typically placed on the skin surface.  The RCM is positioned at the 

target rather then the skin to improve targeting accuracy through simplification of the 

needle driver design.  The needle driver is not required to position the needle tip at a 

range of depths.  Rather, the needle driver only needs to position the needle tip in either 

an inserted or retracted position. The use of a hard stop to control the needle’s inserted 

position eliminates the need for encoders to track the driver position. As part of the robot 

calibration procedure, the needle is adjusted to locate the inserted needle tip position at 

the RCM of the robot’s linkages. 

 The electronics of the robot are divided into two separate control systems: one 

system for the XYZ stage and one system for the spherical linkage and needle driver.  
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The spherical linkage and needle driver are driven by stepper motors controlled by a 

multi-axis dual-loop controller (MAXNet, Pro-Dex Oregon Micro Systems, Oregon, 

WA) and stepper motor drivers (BSD-01v2, Interinar Electronics, Tampa, FL).  The XYZ 

stage is powered by three stepper motors coupled to lead screws.  The stepper motors are 

controlled by a multi-axis controller with integrated stepper motor drivers (DMC2133 

with SDM-20242, Galil Motion Controls, Rocklin, CA).  Each axis of the XYZ stage 

contains a linear encoder, which feeds into the multi-axis controller.  Custom closed-loop 

software on the controller monitors the encoders to compare the target position of each 

axis against their desired position. Both control systems are interfaced to a host PC via an 

Ethernet hub.  Custom software on the host PC sends programs and commands to each of 

the controllers.  The user enters the desired position and orientation of the needle into the 

PC. The software then uses appropriate inverse kinematic equations to calculate the 

appropriate commands to send to each controller. 

3.2.2 Robot Calibration 

3.2.2.1 Coordinate System Calibration 

The coordinate system of the robot was calibrated to ensure accurate control of 

the robot position.  The coordinate system of the robot is aligned to the 3-axes of the 

XYZ linear stage and tracks the position of the device's RCM. The RCM position was 

calibrated by repositioning the XYZ linear stage at 7.5 mm increments along each axis: 

covering a total range of ±15.0 mm, ±15.0 mm and ±7.5 mm. At each position, the 

encoder count for each of the XYZ linear stage’s three axes was recorded using a depth 

gauge (Model 2776S, Mitutyo Canada, Toronto, ON) mounted onto a calibrated manual 

XYZ stage (M-462, Newport Corp., Irvine, CA).  The encoder step size for the XYZ 

linear stage was calculated by averaging the measurements along each axis. The flatness, 

straightness and perpendicularity of each axis of the XYZ linear stage were also verified 

using a granite surface plate (Grade B-18, The L.S. Starrett Company, Waite Park. MN), 

indicator (Model 25164-10, The L.S. Starrett Company, Waite Park, MN) and the same 

calibrated manual XYZ stage used earlier to determine the stability of the RCM.  Flatness 

was evaluated by running the indicator along the surface of the stage for each of the three 

translational axes and recording any deviations.  Straightness was evaluated by placing 
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the indicator onto a surface perpendicular to a translational axis.  The stage was then 

advanced a known distance along the axis and this distance compared to the distance 

measured by the indicator.  The straightness measurement was completed three times; 

once for each of the translational axes. The perpendicularity was evaluated by placing the 

indicator against surfaces parallel to a translational axis.  The stage was then advanced 

along the axis and the indicator recorded for any motion. The deviation of the flatness, 

straightness and perpendicularity was: ≤ 1.81 µm, ≤ 0.77 µm and ≤ 74.4 µrad 

respectively. These values were all measured over 20 mm of stroke. 

 The angular orientation of each of the two arms in the forward spherical linkages 

was also calibrated.  The robotic system was first placed onto a granite surface plate, 

which served as a reference plane. Each of the two arms was independently orientated so 

that one arm was in a plane perpendicular and one arm was in a plane parallel to the 

granite surface.  Each arm was adjusted to within 2.5 µm of the perpendicular or parallel 

plane using the same calibrated manual XYZ stage and indicator as earlier.  The encoder 

values of the two encoders in the spherical linkage were recorded with the arms in this 

orientation.  The two arms where then rotated 90 degrees once. The encoder values of the 

second orientation were recorded giving the step size and absolute reference of the 

encoder home position. 

3.2.2.2 Optical-Based Needle Calibration to RCM 

To complete an intervention the RCM of the robot is translated to correspond with 

the localized position of the target.  It is therefore of the utmost importance that the 

needle tip reaches the RCM when it is at the inserted position.  Thus, a method to 

accurately calibrate the needle tip to the RCM is critical to the success of the robotic 

system.  Waspe et al. previously developed a method to evaluate the RCM calibration of 

a needle in a robotic system for small animal interventions [17].  The method involved 

photographing the needle tip using a high-resolution macro lens.  The camera was fixed 

in two planes perpendicular to each of the robots rotational axes.  In each plane a 23G 

needle was photographed at predetermined angles throughout the respective axes full 

range of motion.  In each photograph the needle was then segmented and its center line 

calculated.  Using the center lines, the location of the RCM was calculated by 
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determining the center of rotation of the needle axes.  The calibration error was 

determined by calculating the distance of the needle axes from the RCM point.  

Unfortunately, this calibration method is limited given our robotic system RCM 

implementation.  The method by Waspe et al. only accounts for the location of the needle 

axis and not the needle tip.  The needle axis may travel very closely to the RCM; but, the 

needle tip may be much further from the RCM depending upon its insertion depth.  Thus, 

the needle may miss the target even through the reported calibration error was quite 

small.  To avoid this problem, the calibration method of Waspe et al. was modified to 

account for the needle tip position. 

 Calibration of the robot was again completed using a CCD camera (EOS-1D 

Mark IV, Canon Canada Inc., Mississauga, ON) and a high-resolution macro lens (MP-E 

65 mm f/2.8 1-5x, Canon Canada Inc., Mississauga, ON).  The pixel size of the images 

captured using this camera and lens was approximated to be 1.0 µm.  A length of 27 

gauge drill stock (Model 3009A239, McMaster-Carr, Aurora, OH) sharpened to form a 

conical tip was mounted onto the needle driver.  The insertion depth of the needle was 

adjusted using a set-screw on the needle driver.  The set-screw was iteratively adjusted 

until the magnitude of tip motion in both rotational axes was minimized in the camera 

viewfinder.  The needle was then photographed in two planes perpendicular to each of 

the rotational axes.  For each plane the needle was photograph five times at 

approximately equally spaced angular positions.  In the pitch axis the needle was 

photographed over a range of: 60 degrees.  In the roll axis the needle was photographed 

over a range of: 120 degrees.  

 Once all the photographs had been acquired, the needle tip was segmented in each 

image using a semi-automated algorithm developed in MATLAB (The Mathworks Inc., 

Natick, MA).  A Sobel edge detector was first applied to the needle tip images.  The 

identified edge points from the Sobel edge detector, which followed the outer edge of the 

needle tip were detected based on a user initialization.  A linear least squares regression 

was applied to the detected points to determine the lines of best fit for each of the two 

edges of the needle tip.  The bisector of the two lines of best fit was then calculated.  The 

needle tip location was finally determined by calculating the intersection of the bisector 
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with the detected points of the needle edge.  This process was repeated for each 

photograph to yield a set of tip positions for each of the planes.  The calibration error in 

each plane was then calculated by determining the total range of movement of the needle 

tip over the full range of motion in the two rotational axes. 

3.2.2.3 Fixture-Based Needle Calibration to RCM 

A calibration fixture was introduced to simplify the needle tip calibration process.   

The fixture consists of a Delrin plastic block with a flatness verified to within 25.4 µm 

(Figure 3.3).  The calibration fixture was itself verified to ensure its top surface matched 

the RCM position.  The fixture was mounted to the robot using two 6.35 aluminum shafts 

(Figure 3.3).  The shafts were machined to have an approximate 200 µm eccentricity in 

its diameter.  By rotating the aluminum shaft, the top surface of the calibration fixture can 

be adjusted upwards and downwards to match the RCM location.  The correct height of 

the block was determined by mounting the fixture to the robot and advancing the needle 

driver to the fully inserted position.  A needle was then placed into the loosened needle 

holder of the driver. The needle was slowly lowered in the holder until its tip was at the 

surface of the Delrin block.  The needle tip was identified as being at the block surface by 

lightly sliding a 25.4 µm steel shim back and fourth while lowering the needle.  The 

needle tip caught the shim and no longer allowed it to slide freely when in contact with 

the needle tip.  The needle holder was then tightened to fix the inserted needle tip to 

correspond with the block surface.  The calibration block was then detached from the 

robot and the needle tip observed using the viewfinder of the camera and macro lens.  

This process underwent several iterations of adjusting the calibration fixture until needle 

motion was minimized in the camera viewfinder.  With needle motion minimized, the 

eccentric shaft was fixed with a set-screw to maintain the appropriate calibration fixture 

position.  The calibration fixture can then be mounted to the robot and used to calibrate 

the needle tip as needed. 
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 The calibration fixture possesses the advantage of reducing the time required to 

complete needle calibration.  Optical calibration of the needle with a camera requires an 

iterative process of adjusting the needle insertion depth every time the needle is 

calibrated.  Iterative calibration is time consuming and requires approximately 30 minutes 

to complete.  On the other hand, use of the calibration fixture requires only one iterative 

calibration of the fixture itself.  Once the fixture itself is calibrated, it can be mounted to 

the robot and used to calibrate the needle tip in less than five minutes.   The results of the 

calibration using the fixture were validated using the camera and macro lens.  The needle 

was again imaged at 5 approximately equally spaced positions in planes perpendicular to 

the roll and pitch axes.  The needle tips were then localized in each of the photographs 

using the previously described technique.  The calibration error was calculated by 

determining the total range of movement of the needle tip in each plane.  The calibration 

 

Figure 3.3- Photograph of the calibration fixture used to set the needle tip position at the RCM when the needle 
driver is in its forward position.  The fixture consists of a Delrin plastic block which is mounted to the robot via 
two aluminum shafts, one attached to the block and one attached to the robot (same shaft supporting the 
fiducials visible in Figure 3.2). The needle height was set by slowly lowering the loosened needle its tip was at 
the surface of the shim on top of the Delrin block. 
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results of the calibration fixture where compared to the iterative optical calibration results 

to determine the difference in the accuracy of the two methods. 

3.2.2.4 Needle Tip Repeatability 

The repeatability of the needle driver was characterized to ensure the stability of 

the needle tip calibration.  The needle tip will quickly become un-calibrated if the needle 

driver does not consistently and reproducibly place the needle tip to the correct depth, 

which corresponds with the RCM.  To characterize the needle driver repeatability, the 

needle orientation was adjusted to be fully upright using the spherical linkage encoders.  

The needle was then inserted and retracted a total of nine times while maintaining a 

constant needle orientation.  Each time the needle was inserted, it was photographed 

using the high-resolution macro lens.  The location of the tip was calculated in each of 

the nine photographs using the needle tip localization technique described during RCM 

calibration.  The repeatability was characterized by determining the standard deviation of 

the needle tip position in the photographs. 

3.2.3 Robot to micro-CT Registration 

3.2.3.1 Registration Process 

A two-stage registration process was developed to register the coordinate system 

of the robot to the micro-CT scanner (eXplore Ultra Locus, General Electric Healthcare 

Biosciences London, ON, Canada).  The two-stage registration was developed to achieve 

a balance between attaining a high quality registration with the time requirements of the 

end user to complete a pre-clinical intervention.  Completion of the primary first step of 

the registration requires that a removable 6.35 mm borosilicate fiducial bead be mounted 

onto the device at the RCM (McMaster-Carr, Cleveland, OH).   In addition, an array of 6 

more borosilicate bead secondary fiducials was mounted onto the robot below the animal 

bed (fiducial array visible in Figure 3.2).  With the RCM fiducial bead attached, the 

robot was positioned at four different locations within the micro-CT bore and a CT image 

was obtained each time.  Using registration software developed in MATLAB (The 

Mathworks Inc., Natick, MA), the rigid body transformation between the two sets of 

coordinates was calculated by comparing the position of the RCM fiducial in robot 
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coordinates to its position in each of the four images.  This primary registration can be 

used alone to guide to the robot to targets in micro-CT images.   However, if the robotic 

system is removed and then reattached to the micro-CT bed, this primary registration is 

no longer valid due to variability in robot reattachment [16].  Unfortunately, repeating the 

primary registration each time the robot is reattached to the micro-CT to complete an 

intervention would be time consuming and laborious.  To avoid constant repetition of the 

primary registration a secondary registration was developed. 

The secondary registration takes advantage of the 6 borosilicate secondary 

fiducials attached to the robot below the animal bed (Figure 3.2).  During primary 

registration, these six secondary fiducials are imaged along with the RCM fiducial bead.  

One of the scans acquired for the primary registration is of the robot at its home position.  

To complete the secondary registration, the reattached robot and six secondary fiducials 

are imaged with the robot at its home position.  The registration software is then used to 

calculate the rigid body transformation using the six secondary fiducial positions in the 

primary registration home scan and the secondary fiducial positions in the secondary 

registration home scan.  This secondary registration will account for and correct the 

variability introduced when the robot is reattached to the micro-CT scanner.  A target in 

the micro-CT images can then be localized in robot coordinates by applying both 

registrations.  Through the secondary registration, the end user is only required to acquire 

one image at the initiation of an intervention rather then four.  Furthermore, imaging of 

the fiducials for secondary registration can be simultaneously acquired while imaging the 

small animal to localize targets. Since the small animal must always be imaged, the 

secondary registration does not increase the total number of scans required and allows for 

the primary registration to be reused across multiple interventions.  Unfortunately, use of 

the secondary registration will also reduce overall targeting accuracy since two 

registration errors, from the primary and secondary, will be combined.  The primary 

registration can be used by itself to improve targeting accuracy; however, this will be at 

the expense of increasing total registration time.  Use of the combined registration 

reduces time for procedures at the expense of accuracy.  The end-user must determine 

which registration process will best suit their application needs. 
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3.2.3.2 Registration Software 

  The fiducial bead mounted onto the robot RCM was segmented and its centroid 

was determined in each of the four images acquired for the primary registration.  

Segmentation was accomplished through a threshold based region-growing.  The center 

of the segmented RCM fiducial was then calculated using a squared-intensity-weighted 

centroiding.  The centroiding algorithm used was found in simulated images to have an 

error of < 5% of the image voxel size in localizing 3D centroids [23].   The RCM fiducial 

centroid positions were then rigidly registered to their homologous robot coordinates 

using a least squares algorithm [24].  The results of the primary registration represented 

the translation and rotation required to align the coordinate system of the micro-CT 

scanner with the robotic system.   

 The secondary registration first required that on the day of the primary 

registration, with the robot at its home position, the centroids of the six secondary fiducial 

beads be determined using the technique previously described.  On the day of the 

secondary registration, again with the robot at its home position, these six secondary 

fiducials are reimaged and their centroids determined.  The two sets of centroids are then 

registered using a rigid body transformation.  This secondary registration represents the 

transformation required to realign the robot axes on the day of the intervention with the 

robot axes on the day of the primary registration.  The errors of the primary, secondary 

and combined registration were characterized by calculation of the fiducial registration 

error (FRE) and target registration error (TRE) [25].  The TRE of the primary registration 

was calculated by acquiring five additional images, not used in the registration, of the 

RCM fiducial at positions in the robots full range of motion.  The secondary and 

combined TREs was calculated by attaching and reattaching the robot to the micro-CT 

scanner bed five times with the RCM fiducial still attached.  In each image, five of the six 

secondary fiducials were used to calculate the secondary registration.  The sixth 

secondary fiducial in each of the five images was used to calculate the secondary TRE.  

The combined TRE in these five images was calculated using the position of the RCM 

fiducial in the images following robot reattachment to the scanner bed. 
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3.2.4 Robot Targeting Accuracy 

3.2.4.1 Targeting Accuracy Phantom Design 

 Tissue-mimicking phantoms were used to quantify the targeting accuracy of the 

robotic device.  The phantoms consist of a 15% by weight gelatin solution (Porcine Skin 

Type A, Sigma-Aldrich, St. Louis, MO) which forms a cross-linked matrix [26].    

3.2.4.2 Targeting Accuracy Experiment 

 Two separate sets of targeting experiments were completed.  The first set used the 

combined registration process to guide the robot to targets in tissue-mimicking phantoms.  

The second set used only the primary registration to guide the robot. For each set, the 

targeting phantoms was first secured to the phantom holder of the robotic device and the 

robot inserted into the bore of the eXplore Locus Ultra micro-CT scanner.  The phantom 

was then imaged using a 16 second anatomical scan at 140 kVp and 20 mAs.  The image 

was reconstructed to yield an image with 153.9 µm isotropic voxel size (example shown 

in Figure 3.4).  The image of the phantom was then visualized within MATLAB.  Ten 

image voxel coordinates within the phantom were manually localized and selected as 

target positions.  For each set, the location of each of the 10 target voxel coordinates 

within robot coordinates was calculated using either a combined registration or a primary 

only registration.   For each target, the robot RCM was placed at the target location, the 

needle inserted and an image acquired.  Throughout the targeting experiments the needle 

angulation remained constant at approximately 90 degrees in the roll axis and 45 degrees 

in the pitch.   Needle angulation was maintained constant to allow targeting accuracy to 

be quantified independently of angle. 

For each acquired image, the distance of the needle from target voxel coordinates 

was determined by first segmenting the inserted needle using a threshold-based region 

growing algorithm.  The center line of the needle in the image was estimated using 

principal components analysis (PCA) to fit a 3D line to the segmented needle.  The 

targeting accuracy was quantified by calculating the distance of each 3D fitted line to the 

target voxel.  The distance of the line to the target voxel represents the accumulation of 
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error from a number of sources including: robot positioning error, registration error, 

needle calibration error and needle deflection.    

3.2.4.3 Needle Angulation Accuracy 

We used a gelatin phantom to evaluate the variation in needle positioning over the 

full range of needle angulation.  The gelatin phantom was placed onto the animal bed of 

the robot and the robot was then oriented in seven different positions (see Table 3.2) 

covering the angular range of the robot motion.  At each orientation the needle was 

inserted into the gelatin phantom and imaged by the micro-CT scanner.   In each image, 

the needle center-line was calculated using the same technique previously described.  

Ideally, all seven center-lines should intersect at a common point in space (i.e., the RCM) 

if no variation in needle positioning is present with angulation.  An iterative solution was 

used to calculate the point in space with the smallest sum of squares distance from each 

 

Figure 3.4- View of reconstructed CT image used for the needle targeting experiment. For each target, 
the robot RCM was placed at the target location, the needle inserted and an image acquired. For each 
acquired image, the distance of the needle from target voxel coordinates was determined by first 
segmenting the inserted needle using a threshold-based region growing algorithm.  The center line of 
the needle in the image was estimated using principal components analysis (PCA) to fit a 3D line to 
the segmented needle. 
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of the centerlines.  The variation in needle positioning over the full range of needle 

angulation was then quantified by calculating the distance of each center-line to the point 

of best fit.  

3.2.5 Preclinical Application 

 All in vivo imaging was performed under a protocol approved by the University 

Health Network Animal Care and Use Committee. Measurements where performed in 

two female SCID mice, each bearing a single subcutaneous human cervix carcinoma 

tumour (ME180).  A tumour was established in the first mouse by suturing a 2–3 mm3 

tumor fragment along with a 1.5 mm radio-opaque pellet (Beekley Co., Bristol, CT) into 

the dorsal subcutaneous tissue. A tumour was established in the second mouse by 

suturing a 2–3 mm3 tumor fragment into the subcutaneous tissue of the hind limb. The 

experiment was performed once the tumours reached approximately 1 cm in diameter. 

The mice were anesthetized using a 2% by volume isoflurane-oxygen mixture, the hair 

removed from their tumours’ areas, and immobilized in a supine position with their front 

and back paws taped to a custom built mouse platform mounted on the robot. The mice 

were imaged using a standard anatomical imaging protocol consisting of a 16 second scan 

with an 80 kVp and 60 mAs.  The images were reconstructed to yield a 153.9 µm isotropic 

voxel size.  

 The mouse bearing the dorsal tumour with the implanted radio-opaque pellet was 

used to evaluate the robot’s ability to perform image guided needle placement in vivo. 

Similar to in vitro experiments, a 23G needle was mounted on the needle driver. The 

tumour was immobilized by taping it onto a plastic block and surrounding it with pieces 

of rigid foam. A pre-needle insertion CT scan was performed to visualize the radio-

opaque pellet. The robot RCM was placed at the centre of mass (CM) of the radio-opaque 

pellet and the needle was inserted. A post-needle insertion scan was acquired to confirm 

successful contact with the target. This process was repeated for 3 angles of insertion 

chosen randomly and the distance between the needle tip and surface of the radio-opaque 

pellet measured. 
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 IFP measurements were performed in the mouse bearing the hind limb 

subcutaneous tumour using the wick-in-needle technique [27].  Measurements were made 

using a 23G needle containing both a front and side port connected to a pressure 

transducer (Model P23XL, Harvard Apparatus, Canada), which in turn was connected to 

a data acquisition system (PowerLab 4/35 with LabChart Pro, ADInstruments Pty Ltd., 

USA) through 50 cm of PE20 polyethylene tubing (Becton Dickinson, Franklin Lakes, 

NJ, USA). The entire system was flushed with a heparin sulphate/saline solution (1:10). 

A pre needle insertion scan was performed, the tumour indentified, and a position chosen 

such that the side port of the needle would be inside the tumour volume, while the front 

port would be in healthy tissue.  IFP measurements where made as the needle was 

inserted and maintained for 30 sec after reaching the target location. A post-needle 

injection scan was performed to confirm the location of the needle inside the tumour. The 

needle was then retracted by approximately 3 mm while continuously monitoring IFP. 

These two positions were chosen to demonstrate the importance of correctly needle 

placement on stable IFP measurements.   

3.3 Results 

Table 3.1 provides a summary of the results obtained for each of the experiments 

described in the methods. 

3.3.1 Robot Calibration 

3.3.1.1 Error in Optical-Based Needle Calibration to RCM 

The RCM calibration error represents the range of motion of the needle tip as the 

robots rotational axes are moved through its full range of motion.   In the roll plane, the 

RCM calibration error range was found to be ∆x= 43 µm and ∆y= 28 µm, where the x- 

and y-axis represent the horizontal and vertical axis orientated perpendicular to the z-axis 

which represents the long axis of the CT bore.  In the pitch direction the RCM calibration 

error was ∆y= 69 µm and ∆z= 30 µm.  Added in quadrature the total errors were 

ErrorRoll= 51 µm and ErrorPitch= 75 µm.  The maximum calibration error is expected to 

occur at the extremes of the rotational axes.  Figure 3.5 displays a composite photo of the 

calibration photos and the segmented needle tip locations. 
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3.3.1.2 Error in Fixture Based Needle Calibration to RCM 

 RCM calibration was also completed using a precision calibration block.   In the 

roll plane, the RCM calibration error was ∆x= 36 µm ∆y= 70 µm.   In the pitch plane the 

RCM calibration error was ∆y= 11 µm and ∆z= 5 µm.  Added in quadrature the total 

errors were ErrorRoll= 75 µm and ErrorPitch= 12 µm.   

Table 3.1-Summary of the results obtained for each experiment. 

 Error (µm) 

3.2.2.2 Error in Optical-Based Needle Calibration 
Error to RCM  

 

 Roll plane  
 ∆x 43 
 ∆y 28 

 Pitch plane  

 ∆y 69 
 ∆z 30 

3.2.2.3  Error in Fixture-Based Needle Calibration 
Error to RCM 

 

 Roll plane  
 ∆x  36 
 ∆y 70 

 Pitch plane  

 ∆y 11 
 ∆z 5 

3.3.1.3 Needle Driver Repeatability  
 σneedle ± 9 

3.3.1.4  Robot Registration  
 Primary  

 FREprimary 21 ± 6 
 TREprimary 31 ± 21 

 Secondary  

 FREsecondary  70 ± 25 
 TREsecondary 79 ± 14 

 Combined  

 TREcombined 139 ± 63 

3.3.2  Robot Positioning Accuracy  
Primary Registration Positioning Accuracy   
 Totalerror 131 ± 25 
Combined Registration Positioning Accuracy  

 Totalerror 206 ± 20 

3.3.2.3 Needle Angulation Accuracy  
 σangle (< 50° ) 72 ± 62 
 σangle (< 30° ) 51 ± 31 
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3.3.1.3 Needle Driver Repeatability 

 The needle driver must consistently position the needle tip at the same location in 

space following repeated insertions and retractions.  Significant variations in needle 

positioning by the needle driver will reduce the ability of the system to maintain 

calibration.  The needle driver repeatability is the standard deviation of needle depth in 

multiple insertion procedures.  The needle driver repeatability was found to be σneedle= ±9 

µm. 

3.3.1.4 Robot to micro-CT Registration 

 The primary robot registration is the transformation required to convert the micro-

CT scanner coordinate system to the robot coordinate system, and was calculated using 

the location of the fiducial bead at the RCM of the robot. The fiducial localization and 

registration errors were found to be FREprimary=
 21 ± 6 µm and TREprimary=

 31 ± 12 µm. 

 

Figure 3.5- Composite photographs of the calibration photos showing the pitch (Top Left) and roll (Top Right) 
of the needle throughout its full range of motion.  The bottom two photographs shows a close-up view of the 

segmented needle tip locations in the- pitch (Bottom Left) and roll (Bottom Right) directions. 
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 The secondary robot registration is the transformation required to relate the robot 

coordinate system on the day of an intervention to the day of the primary registration, and 

was calculated using fiducials fixed to the robot frame. The fiducial localization and 

registration errors were found to be FREsecondary=
 70 ± 25 µm and TREsecondary=

 79 ± 14 

µm. 

 The combined registration is the combined transformations performed in the 

primary and secondary registrations.  The combined registration error represents the total 

error of the complete registration process.  Since the combined registration itself has no 

fiducials, there is no fiducial registration error to report.  For the combined registration 

the TREcombined=139 ± 63 µm. 

3.3.2 Robot Positioning Accuracy 

3.3.2.1 Combined Registration Positioning Accuracy 

The needle positioning accuracy is the distance of the segmented needle track in 

the gelatin phantom from the target pixel in a micro-CT image.  The targeting 

experiments were completed with the rotational axes of the robot approximately constant: 

with the needle pose at 90 degrees in the roll plane and 45 degrees to the CT bore as seen 

in the pitch plane.  The calculated mean targeting errors along the three images axes 

were: Xerror=194 ± 16 µm, Yerror=33 ± 17 µm and Zerror=57 ± 19 µm.  The total mean error 

of the needle position was Totalerror= 206 ± 20 µm.  An ANOVA test (p = 0.05) found a 

significant difference between the mean targeting errors of each axis.  A Tukey test (p = 

0.05) found the errors of all axes to be significantly different from each other. 

3.3.2.2 Primary Registration Positioning Accuracy 

 A second set of targeting experiments were completed using only the primary 

registration.   The calculated mean targeting errors along the three images axes were: 

Xerror=119 ± 22 µm, Yerror=19 ± 10 µm and Zerror=46 ± 24 µm.  The total mean error of 

the needle position was Totalerror= 131 ± 25 µm. An ANOVA test (p = 0.05) found a 

significant difference in the mean targeting errors of each axis.  A Tukey test (p = 0.05) 

found the errors of all axes to be significantly different from each other. 
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3.3.2.3 Needle Angulation Accuracy 

 The consistency of needle accuracy was evaluated by inserting the needle 

multiple times to the same position in space at varying angles of attack (10 - 50 degrees).  

The results for these experiments are given in Table 3.2 showing that the average normal 

distance from each axis to the fixed target was determined to be: Errorangle = 72±62 µm.  

3.3.3 Preclinical Application 

The experimental setup used in each of the small animal experiments is shown in 

Figure 3.6. Robot guided IFP measurements were made at two locations in the 

subcutaneous hind limb tumour. In the first location the post-needle insertion CT scan 

demonstrated that the front port of the needle was straddling the boundary between 

tumour and healthy tissue, and the side port was located in the centre of the tumour 

(Figure 3.7a).  The needle was then retracted 3 mm and a CT scan showed that both the 

front and side ports of the needle were inside the tumour volume (Figure 3.7b). The 

accuracy and stability of the wick-in-needle technique requires that both ports of the 

needle are exposed to a similar external pressure. If the pressure at one port is 

substantially lower than the other, fluid flow is directed out of the IFP system and a 

decreasing pressure is measured. Region III of Figure 3.7c demonstrates this effect. 

When the needle was retracted to the second position shown in Figure 3.7b, the IFP 

measurement stabilized (Figure 3.7b, region IV). This highlights the important of using 

an accurate position system under image guidance to perform reliable IFP measurements.  

Table 3.2-Summary of needle angulations used to test needle deflection at different angles of attack.  
The variables α and β represent the angle of the primary and secondary crank measured by the encoders. 
The angle of attack represents the angle between the needle axis and the normal vector to the surface of 
the phantom. 

Scan α° β° 
Angle of attack 

(degrees) 
Error 
(µm) 

1 45 135 11 34 

2 25 155 14 51 

3 25 115 21 24 

4 66 155 21 110 

5 -5 114 30 34 

6 60 178 25 56 

7 105 172 50 189 
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The robot was used to target a radio-opaque pellet implanted in a subcutaneous 

dorsal tumour under image guidance. Post needle insertion CT projection images showed 

that the needle was successfully delivered to the target (Figure 3.8). Measurement of the 

distance between the needle tip and the surface of the pellet was difficult due partial 

volume effects and beam hardening artifacts caused by the radio-opaque pellet and steel 

needle. The measured distance between the needle tip and pellet surface was 0.41 ± 0.12 

mm. The CM of the radio-opaque pellet shifted 0.85 ± 0.28 mm relative to its pre-needle 

insertion position. A real time cine-CT scan of the last needle placement showed that the 

shift in pellet position was due to contact with the needle as well as tissue deformation 

during needle insertion. 

 
(a) 

 
(b) 

Figure 3.6- Photograph of the experimental setup used for the animal interventions (a) 
outside, and (b) inside of the bore of the CT scanner. The only part of the apparatus 
that resides inside of the scanner is the mouse bed and part of the needle driver to 

minimize artifacts in the image. 
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(c) 

Figure 3.7- Wick-in-needle measurements of IFP demonstrating the importance of needle placement for stable and 
accurate results. (a) shows the front port of the IFP needle straddling the tumour boundary (outline), while the side port 
is in the centre. (b) both the front and side ports are within the tumour boundary (outline). (c) Results of IFP 
measurements showing: (I) the pre needle insertion baseline; (II) the signal as the needle is inserted; (III) the measured 
IFP at the position shown in (a); and (IV) the measured IFP at the position shown in (b).  

 

Front 
Port 

Tumour 
Boundary 

Side 
Port 



 

 

74 

3.4 Discussion 

3.4.1 Robot Calibration 

During the initial setup of the robot linkages, the RCM of the robot was found to 

remain relatively fixed in space with a maximum deviation of 12.5 µm.  As a result, the 

calibrated needle tip would be expected to track a path corresponding closely to the 

surface of a sphere when the robot is adjusted through its full range of motion.  The 

center of the sphere is the RCM position and the radius of the sphere is the needle 

calibration error.  The calibration error is quantified by measuring the range of pixels the 

needle travels along each axis in each plane.  As shown in Figure 3.5, the ∆x and ∆z errors 

should be equal and the two ∆y errors should both be equal to half this value.  Furthermore, 

the segmented needle tips in both planes should form a circular path.  However, this is 

not true for the obtained results.  A number of sources of error exist in the methods used 

 

  

(a) (b) 
Figure 3.8- Projection views obtained from two sequential CT scans which demonstrate the ability to perform image-
guided needle placement in vivo. (a) A pre needle insertion image highlighting the location of the needle, the tumour 
(red outline), and the radio-opaque pellet (fiducial). (b) A post needle insertion image showing the needle making 
contact with the radio-opaque pellet. 
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to cause the measured calibration error to deviate from this ideal case.  First, the use of 

photography to validate the calibration results in a 3-dimensional path being projected 

onto a 2-dimensional plane.  Errors in positioning the camera truly perpendicular to each 

of the rotational axes will result in the needle paths failing to track a circular path.  

Secondly, to measure the radius of the sphere, the needle tip must track a path of at least 

90 degrees or greater.  In the roll axis, the needle traveled approximately 120 degrees 

allowing the sphere to be correctly characterized.  In the pitch direction the robots range 

of motion is limited to approximately 60 degrees.  The track measured in the pitch axis 

travels a smaller sector of the sphere compared to the roll axis.  The errors measured in 

the pitch axis will inherently underestimate the calibration error.  The roll axis results 

therefore are a better characterization of the needle calibration errors. 

 The calibration results demonstrated that the roll axis has the largest error as 

expected.  However, for the optical calibration, the pitch axis contains the largest errors 

even though the pitch error should be inherently less.  The likely cause of this aberration 

is deflection in the shaft of needle itself.  Deflections inherent to any needle will result in 

overestimates of calibration error as the distance traveled by the needle will be amplified 

by deflection.  Depending on how the needle is mounted, this error may occur in the roll 

plane, the pitch plane or some combination of the two.  Two different needles were used 

for the optical calibration and the fixture calibration.  The needle selected for the optical 

calibration likely deflected in the pitch direction resulting in an unexpectedly large pitch 

calibration error.  Needle deflection along with the previously discussed sources of error 

cause the calibration results to deviate from their expected results.    

 The radius of the calibration error sphere, or the true calibration error, is shrouded 

behind a number of other unavoidable error sources.  However, an estimate of the 

independent needle tip calibration error can be distilled from reported results.  As 

discussed, the pitch axis lacks sufficient range of motion to accurately estimate the sphere 

radius.  An estimate must therefore come from the roll results.  Two potential cases exist 

for the roll results: either needle deflection occurred in the roll plane or deflection did not 

occur in the roll plane.  If no deflection errors exist in the roll plane, the ∆y measured in 

the roll direction should be approximately half ∆x.  This case is true for the optical calibration 
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results.  The radius of the calibration error sphere is therefore approximately equal to the 

mean of ∆y and half of ∆x or 25 um.  If deflection did occur, the relationship between ∆x 

and ∆y no longer holds true.  For the fixture calibration, deflection is evident with ∆y much 

larger then ∆x.  In the deflection case, the most reasonable estimate of the sphere radius is 

half of ∆x.  ∆x is the most reasonable estimate since it corresponds with the calibrated needle 

axis.   For the calibration fixture, the radius can be estimate to be approximately 18 um.  The 

expected standard deviation of both calibration errors is the needle driver repeatability of 

9.1 um. 

 The two estimates of the calibration errors for the optical method and fixture 

method are extremely close and less than one standard deviation apart.   The results 

suggest that the calibration obtained using these two methods are equivalent.  However, 

calibration can be completed much faster using the fixture rather than the iterative optical 

method.  Therefore, the calibration fixture should be the preferred method of completing 

calibration.  

3.4.2  Robot Registration 

 For the primary registration (robot coordinates to fiducial bead centroids in micro-

CT images), the robot coordinates are measured with high accuracy using a calibrated 

XYZ positioning stage with a measurement resolution of 0.1 µm.  However, the 

secondary registration is a registration of fiducial bead centroids from two different 

micro-CT images.  The secondary registration therefore has the centroiding error in both 

sets of coordinates; whereas, the primary only possesses the error in one coordinate set.  

The secondary registration would therefore be expected to have twice the fiducial 

centroiding error of the primary registration.  However, the mean TRE of the secondary 

registration is approximately 2.5x larger than the TRE of the primary registration.  This 

suggests that much of the TRE arises from Fiducial Localization Error (FLE) in the 

centroiding of fiducials in the micro-CT images.  The registration errors would therefore 

be expected to be reduced if using a scanner with higher resolution.  

 Either the primary registration alone or the combined registration can be used to 

guide the robotic device for interventions.  Use of the primary registration would be 
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expected to result in much higher targeting accuracy with greater repeatability than the 

combined registration.  The combined registration contains the accumulation of many 

more error sources then the primary registration.  The combined registration contains 

errors from both the primary and secondary registrations along with errors resulting from 

attaching and detaching the robot from the micro-CT scanner bed.  As a result, the 

primary registration offers the advantage of nearly a fifth of the TRE of the combined 

registration and a much smaller standard deviation.  Unfortunately, the primary 

registration is more time consuming then the combined registration.  Four scans are 

required to complete the primary registration and they must be repeated every time the 

robotic system is removed from the scanner bed.   In contrast, the combined registration 

can be completed with a single image, which can be acquired simultaneously with 

imaging of the small animal.  Depending on the application, the end user must determine 

the ideal balance between time requirements and accuracy. 

 Waspe et al. [16] is the only other method developed to register a robotic system 

with a micro-CT imaging system.  The reported FRE and TRE of the registration process 

were 96 µm and 210 µm respectively.  Both the primary and combined registrations offer 

a reduction in error over this method. 

3.4.3 Robot Positioning Accuracy  

The 153.9 µm micro-CT voxel size is relatively large in relation to the desired 

needle targeting accuracy of 200 µm.  Therefore, in order to be able to use the micro-CT 

to meaningfully quantify targeting error, a technique capable of sub-voxel accuracy is 

required.  Unfortunately, the needle tip cannot be localized to sub-voxel accuracy.  

Rather, to achieve the desired measurement accuracy, the needle must be segmented and 

a line of best fit calculated to determine the needle axis in the micro-CT image.  The 

metric used to calculate targeting accuracy is the shortest distance of the needle axis to 

the target.  Unfortunately, this metric does not provide any information about the error in 

needle depth or its associated variability.  Furthermore, the reported errors were measured 

at a constant angle and do not account for variation in targeting accuracy due to needle 

angulation.   The reported targeting errors therefore underestimate the true targeting error.  

The measured targeting errors can be corrected to better represent the true targeting error 
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by using the errors measured during needle calibration and needle angulation testing, 

which do account for these other factors.  Since these errors are all independent their 

means and standard deviations can be added in quadrature to estimate the true targeting 

error. 

 The RCM deviation is known to be a maximum of 12.5 µm through the robots 

full range of motion.  In comparison, the mean error from the point of best for the robot 

angulation testing was 72 ± 62 µm.  Therefore, the variation in angular targeting accuracy 

is largely not the result of mechanical errors.  Rather, this error would largely be due to 

needle tip calibration error and needle deflection in the tissue-mimicking phantom.   Error 

resulting from needle tip calibration error is constant and should remain near constant 

with respect to needle angulation.  The large standard deviation observed in needle 

angulation accuracy is likely the result of needle deflection.  As shown in Table 3.2, the 

error was the smallest for angles of attack less than 30 degrees from the normal.  For 

these small angles the mean error was 51 ± 31 µm.  The error tended to increase with 

larger angles of attack.  For the example illustrated in Figure 3.9, for the maximum angle 

* 

 
Figure 3.9-  A composite image of the needle tracks from the needle angulation accuracy experiment (Section 
3.2.4.3)  All of the needle tracks with exception to one track approached the target point with an angle of attack 
(from the normal) of less than 30 degrees. The one track labeled as (*) illustrates an exaggerated needle 
deflection with the needle approaching the target at 70 degrees from the normal, where the needle is 
perpendicular to the phantom surface. 
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tested of 50 degrees the error increased to 188 µm.  These results are not surprising: the 

larger the angle of attack, the more obliquely the needle penetrated the phantom surface 

and the greater the proportion of the needle within the phantom.  Both of these conditions 

are conducive to needle deflection.  Targeting error increases with the angle of attack of 

the robot is largely the result of needle deflection. 

 A source of error typically neglected in the literature is the rearward deflection of 

the robot itself during needle insertion.  This error is neither accounted for in the robot 

targeting error or calibration error.  The robot deflection is the result of the entire 

machine shifting due to reactionary forces acting on the needle driver as it advances the 

needle through the tissue. To determine the magnitude of this deflection in our design, a 

brass weight, which exerted 10 N of force was mounted to the robot RCM.  The 

deflection of the robot with the brass weight was measured using an indicator to be 151 

µm.  However, the needle driver is capable of delivering a maximum force of 2 N, which 

corresponds with a rearward robot deflection of 30 µm. This illustrates the need to make 

the robot as rigid as possible.  Although our system is suitable for inserting needles into 

soft tissue, the rigidity of this device would need to be improved for applications like 

drilling into harder materials like bone. 

 Combining the measured targeting error with the tip calibration error and 

angulation error the resultant targeting error for both the primary and combined 

registration techniques would be: 142 ± 41 µm and 213 ± 38 µm.  Including the presence 

of a 2 N axial load the targeting error would be 149 ± 41 µm and 218 ± 38 µm.  These 

estimates of targeting error are better representative of the true targeting error of the 

robotic system.  Even with the inclusion of additional error sources the targeting accuracy 

of the robot is approximately equal to the imaging voxel size of 153.9 µm.  This targeting 

accuracy makes the robot potentially useful for targeting small vessels with a high degree 

of confidence. Use of the secondary registration to reduce the time requirements of 

interventions results in a poorer targeting accuracy which is greater than the image voxel 

size. This method would be useful for targeting larger structures like the left or right 

ventricle of a mouse’s heart or a large tumor.  Since the variability in targeting is 

relatively low in comparison to the mean error, the targeting accuracy could be further 
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improved to achieve finer targeting accuracies using micro-CT scanners with smaller 

voxel sizes.  One approach to improve the targeting accuracy is introduced by Ramrath et 

al. [19] to measure the magnitude and direction of needle misalignment using a high-

resolution camera.   An appropriate correction can then be applied when positioning the 

needle to reduce error from needle misalignment. 

3.4.4 Preclinical Application 

Under image-guidance, the robot was able to successful target a 23G needle to a 

1.5mm radio-opaque pellet implanted in a subcutaneous tumour. Tissue deformation was 

observed during the initial penetration and retraction of the needle, and could potentially 

result in missing the intended target. While the effect of tissue deformation was 

negligible when the target was a 1.5 mm radio-opaque pellet, it will likely worsen with 

smaller targets and when the target is close to the skin (where the observed tissue 

deformation was the largest). Using real-time image guidance it may be possible to 

reduce, if not eliminate, the effect of tissue deformation.  

 The wick-in-needle technique requires proper placement of the needle for reliable 

IFP measurements in small tumours. Both the front and side ports of the IFP needle must 

be inside the tumour volume, which becomes difficult in small animal tumours with 

diameters between 5 to 10 mm. The average distance between the front and side port of 

our IFP needle was approximately 5 mm. Therefore, a great deal of uncertainty in 

manually placing the IFP needle in mouse tumours < 10 mm is expected. For example, 

we have found that performing repeated manual needle placement in an intra-muscular 

ME180 tumour 7mm in diameter results in IFP values that differ by a factor of 5. In this 

study, we have shown that the robotic position system in combination with image 

guidance provides an accurate method to guide needle placement, and reliably perform 

IFP measurements. Additionally, the design of the robot allows for spatially mapping of 

IFP over the tumour volume and is an application we plan to explore in the future. 

3.5 Conclusion 

 The design of a micro-CT guided needle positioning system for small animal 

interventions has been presented.  The system has been developed with the objective of 
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achieving a mean targeting error of < 200 µm while maintaining a high degree of user-

friendliness.  The robot is compact enough to operate within the micro-CT bore.  Small-

animals can be imaged and the intervention performed without the need to transport the 

animal from one workspace to another.  Not requiring transport of the animal reduces 

opportunities for targets to shift from their localized position in the image and simplifies 

the work-flow of interventions.  An improved method of needle calibration is presented 

which better characterizes the calibration using the position of the needle tip in 

photographs rather then the needle axis.  A calibration fixture was also introduced which 

dramatically reduces the time requirements of calibration while maintaining calibration 

accuracy.  Two registration modes have been developed to match the robot coordinate 

system with the coordinate system of the micro-CT scanner.  The two registration modes 

offer a balance between the time required to complete a registration and the overall 

registration accuracy.   The development of slow 'high' accuracy and fast 'low' accuracy 

registration modes provides the user with a degree of flexibility in selecting a registration 

mode best suited for their application.  The errors of the 'high' accuracy primary 

registration were FREprimary=
 21 ± 6 µm and TREprimary=

 31 ± 12 µm.  The error in the 'low' 

accuracy combined registration was TREcombined= 139 ± 63 µm.  Both registration modes are 

therefore suitable for small-animal needle interventions.  The targeting accuracy of the 

robotic system was then characterized using targeting experiments in tissue-mimicking 

gelatin phantoms.  The results of the targeting experiments were combined with the known 

calibration and needle deflection errors to provide a more meaningful measure of the needle 

positioning accuracy of the system.  The combined targeting errors of the system were 149 ± 

41 µm and 218 ± 38 µm using the primary and combined registrations respectively.  Finally, 

pilot in vivo experiments were completed to demonstrate the performance of the system in a 

biomedical application. 
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Chapter 4  

4 Summary and Future Work 

4.1 Summary 

The purpose of this research project was the development of an image-guided 

small animal needle positioning robot and its integration with an x-ray micro-computed 

tomography scanner.  The system was developed with the specific goal of surpassing 

previous efforts for small animal robots in targeting repeatability and user-friendliness 

while achieving a mean targeting accuracy < 200 µm and being compact enough to 

operate within a micro-CT bore.  The principal technical developments are summarized 

below. 

4.1.1 Chapter 2: Traceable Micro-CT Geometric Accuracy Phantom 
for Applications Requiring Exact Measurement of Distances or 
Volumes 

The topic of this chapter was the development of a calibration phantom for the 

routine evaluation of micro-CT geometric accuracy to a traceable standard.  The 

development of the calibration phantom is an important tool for ensuring the success of 

micro-CT guided small animal robots; such as the system introduced in Chapter 3.  

Geometric errors in micro-CT images will result in incorrect target localization and limit 

the potential targeting accuracy of these devices.  The development of a calibration 

phantom allows micro-CT users to ensure the highest geometric fidelity in images. 

The phantom was constructed from carbon fiber shafts, custom Delrin plastic 

clamps and 6.35 mm diameter borosilicate beads.  A method was developed using gauge 

blocks which allowed the geometry of the borosilicate beads to be measured to a known 

and traceable standard of measurement.  The phantom was then used to evaluate the 

geometric accuracy of micro-CT scanners by comparing the bead geometry measured 

using the gauge blocks to the bead geometry in micro-CT images.  The centre of each 

bead in the micro-CT images was calculated by segmenting the beads using a threshold-

based region growing followed by a squared-intensity-weighted centroiding algorithm.  A 
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least-squares solution was then used to calculate scaling factors along each of the 

scanners three axes to minimize any geometric inaccuracies present in the micro-CT 

scanners. 

The phantom was used to evaluate five micro-CT scanners of four different 

scanner models. Images of the calibration phantom were processed to calculate the 

geometric accuracy and appropriate correction factors.  To ensure the correction factors 

were not unique to the calibration phantom, a second validation phantom was 

constructed.  The validation phantom was constructed and measured using the same 

materials and techniques as the calibration phantom.  However, the bead configuration of 

the validation phantom was different from the calibration phantom.  The validation 

phantom was imaged by each scanner and its beads localized using the correction factors 

calculated using the calibration phantom.  Two of the five scanners were found to have a 

statistically significant correctable geometric error.  For the poorest scanner, the mean 

geometric error in images of the validation phantom was reduced from a 0.37% to 0.07%.  

Although this error is small in absolute terms, this correction could be important for 

applications with demanding geometric accuracy requirements.  Regardless of whether a 

scanner possessed a correctable error, use of the calibration phantom allowed for 

traceable calibration of the scanner along all three axes. 

The principal contribution of this chapter was the development of a phantom 

design and algorithm which is capable of calibrating the geometric accuracy of all three 

axes of a micro-CT scanner to a known and traceable standard of measurement.  Chapter 

2 is the basis of a paper in preparation for submission to the peer reviewed journal 

Medical Physics. 

4.1.2 Chapter 3: 3D Image-Guided Robotic Needle Positioning 
System for Small Animal Interventions  

This chapter describes the design of a robotic needle positioning systems, its 

integration with a commercial micro-CT scanner and the characterization of the system’s 

performance.    The robot contains a total of 6 degrees of freedom that consist of 3 linear 

translational axes, 2 rotational axes and a linear needle driver.  The two rotational axes 
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are created using a kinematic frame based on a spherical linkage design.  The rotational 

axes intersect at a common point in space known as a remote centre of motion (RCM).  

The entire system mounts onto the bed of the micro-CT scanner and is fully capable of 

completing interventions within the scanner bore. 

A method was developed to calibrate a needle tip to the RCM of the robot. The 

calibration was accomplished using a calibration fixture. The calibration was validated 

with photography using a camera equipped with a macro lens.  The calibration error was 

measured to be ∆x=36 µm, ∆y=70 µm in the roll plane and ∆y=11 µm and ∆z=5 µm in the 

pitch plane.  The repeatability of the needle driver in positioning the needle tip was 

σneedle=±9.1 µm. 

 A registration process with two different registration methods was developed to 

register the robot to the micro-CT scanner.  The primary registration is the most accurate 

registration but also takes the most time to perform.  The primary registration is also no 

longer accurate if the robot is removed from the micro-CT scanner bed.  To allow a 

primary registration to be reused after the robot is removed from the micro-CT bed, it can 

be combined with a secondary registration.  The secondary registration can be calculated 

quickly with only a single image but at the expense of registration quality. The primary 

registration errors were FREprimary=
 21 ± 6 µm and TREprimary=

 31 ± 12 µm.  The 

secondary registration errors were FREsecondary=
 70 ± 25 µm and TREsecondary=

 79 ± 14 µm.  

The error of a combined primary and secondary registration was TREcombined=139 ± 63 

µm. 

 The targeting accuracy of the robot was next characterized using tissue-

mimicking gelatin phantoms.  The first set of targeting experiments consisted of targeting 

points in the phantom at a fixed needle angle.  The accuracy was calculated by measuring 

the distance of the needle axis to the desired target in micro-CT images.  The targeting 

accuracy using a primary registration was 131 ± 25 µm.  The targeting accuracy using a 

combined registration was 206 ± 20 µm.  The second targeting experiment consisted of 

fixing the translational axes of the robot, inserting a needle into the phantom at angles 

over the robot’s angular range of motion and imaging the needles using micro-CT.  The 
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distance of the needle axes to a point of best fit was calculated.  The mean distance of the 

needle axes to the point of best fit was 71 µm with a smallest distance of 24 µm and largest 

distance of 189 µm.  These targeting accuracies were combined with one another and the 

other measured sources of error to approximate the overall targeting accuracy of the system 

to be 149 ± 41 um using a primary registration and 218 ± 38 um using a combined 

registration. 

 The chapter finally demonstrates the capability of the robot to complete selected 

biomedical applications.  The robot was able to successfully position a probe under image 

guidance to perform interstitial tissue pressure measurements in a mouse tumour.  The 

robot was also able to successfully position a needle under image guidance to contact a 

1.5 mm bead implanted in dorsal subcutaneous tissue of a mouse. 

The principal contribution of chapter 3 was the development of a small-animal 

robot compact enough to operate within a micro-CT bore and the associated methods to 

calibrate the robot and register it with the micro-CT scanner.  Chapter 3 is the basis of a 

paper in preparation for submission to the peer reviewed journal Medical Physics. 

4.2 Conclusion 

The field of small animal image-guided robotic systems is in its infancy.  The 

previously developed systems in the field consist largely of initial prototypes which have 

seen limited adoption by their target audience of preclinical researchers.  The preceding 

chapters have attempted to introduce a number of refinements to small animal robots to 

better facilitate their adoption among preclinical researchers.  The focus of these 

refinements was achievement of a desirable targeting accuracy with minimal variability 

within a user friendly system. 

 A phantom was developed that allows for the routine evaluation of micro-CT 

scanners.   The phantom allows for the user of the robot to quickly evaluate the geometric 

accuracy of a micro-CT scanner to a traceable standard and apply corrections as 

necessary.  No other small animal image-guided robotic system has validated the 

geometric accuracy of its selected imaging modality. Use of the phantom provides an 
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important foundation towards the successful completion of image-guided interventions.   

Although the phantom was initially developed for use with image-guided interventions, it 

should prove equally useful for a wide range of micro-CT applications such as the 

characterization of medical devices. 

 The robotic system introduced in this thesis offers a number of benefits over 

previous designs.  The robot is compact enough to operate entirely within the micro-CT 

bore.  Specimens are not required to be moved between the imaging and robot workspace 

as in previous designs.   This reduces the time required to complete interventions and 

reduces errors associated with detaching and reattaching beds.  A calibration fixture was 

developed that allows the robot to be calibrated in a fraction of the time required to 

calibrate other designs. A dual mode registration method was introduced to offer the user 

greater flexibility between the time requirements of completing registration and the 

registration accuracy depending on the requirements of the application.  Finally, the robot 

was demonstrated as achieving the desired < 200 µm targeting accuracy with reduced 

variability then previous designs. 

4.3 Future Work 

 A number of refinements to small animal image-guided robotic systems were 

introduced in this thesis.  However, a number of potential avenues exist that could further 

improve the utility of these devices.  Several of these avenues are discussed below. 

4.3.1 Improved Software Integration and Intervention Planning 

 Much of the focus of this thesis has been on the development of new processes 

and procedures for image-guide small animal robotics.  As a result, the software 

developed has the potential for a number of improvements.  Currently, several discrete 

software programs exist to complete an intervention.  The user first calculates the robot to 

micro-CT registration using one program.  The results of the registration must then be 

loaded into a program that displays micro-CT images and allows target localization in 

robot coordinates.   The user must then manually enter the target coordinates into a third 

program to position the needle at the target.  The discrete nature of the software increases 
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the time required to complete an intervention and opportunities for user error to occur. 

Integration of the software into a single graphical user interface (GUI) would eliminate 

these issues.   

 The intervention planning software could benefit from a number of 

improvements.  Currently, the user visualizes the micro-CT image slice-by-slice in 2D. 

The user then selects the desired voxel in the image to target and uses a registration to 

determine the appropriate robot coordinate for the target voxel.  Within the software, the 

user cannot visualize the image in 3D to select a target.  The software also does not 

provide visualization of needle trajectory or the ability to calculate appropriate 

angulations of the robot for a desired trajectory.  Rather, needle trajectory is manually 

controlled by the user who adjusts the trajectory by eye.  Improvements to image and 

needle trajectory visualization would give the system capabilities similar to clinical 

systems previously developed within the Fenster laboratory [1]. 

4.3.2 Integration of Robot with Alternative Imaging Modalities 

 In addition to micro-CT, the robotic system could be integrated with additional 

small animal imaging systems.  Two modalities of particular interest are magnetic 

resonance (MR) and ultrasound.  Each of these modalities offers distinct benefits when 

compared to micro-CT imaging [2].    Integration of the robot with ultrasound would 

require limited modification of the robot mechanical design.  However, the registration 

technique developed for micro-CT could not be applied for ultrasound guidance.  

Development of a method to register the robot presents the primary challenge to 

integration with ultrasound.  Work within the lab has been initiated to develop a 

registration technique based upon the techniques developed by Waspe et al. for small 

animal interventions [3].  Integration of the robot with MR imaging presents the opposite 

challenge to ultrasound.  The micro-CT registration technique should be translatable to 

MR with the selection of an appropriate fiducial with high MR contrast.  However, the 

mechanical design and materials of the robot would require modification to attain MR 

compatibility.  A preliminary design has been developed within the lab for an MR 

compatible robot consisting of non-magnetic materials and powered by ceramic motors. 
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4.4 Final Remarks 

As the capabilities and usability of image-guided robots for small-animal 

applications grow, the field of preclinical research can be expected to reap a number of 

benefits.   Robots extend the abilities of preclinical researchers by offering the ability to 

position needles with greater repeatability and accuracy while reducing invasiveness over 

conventional techniques.  Furthermore, robots offer an improvement to the overall 

efficiency of preclinical research by allowing interventions to be completed with less cost 

and time.  The device and techniques developed in this research project offer a number of 

refinements to improve the performance and user-friendliness of image-guided small 

animal robots.  None the less, small animal image-guided robotics remains a field in its 

infancy and much future work exists before the full potential of these benefits is 

experienced.   
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