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ABSTRACT 

 

 Plastics are an integral part of everyday life, and the use of plastic products for 

consumer goods, food packaging, recreational and commercial fishing and medical and 

sanitary applications continues to increase. The durability, low cost, light weight and 

hydrophobic nature of plastic make it a desirable material for numerous applications; 

however, these same characteristics make plastic debris in natural environments a 

pervasive problem. Increases in plastic use and low economic incentive for recovery, 

result in accumulation of debris in marine environments. Degradation of plastics through 

chemical weathering occurs in the open ocean or along shorelines where polymers are 

exposed to seawater and UV radiation. Plastic particles were both experimentally 

degraded, and sampled from beaches on the island of Kauai, Hawaii, U.S.A. and in and 

near Gros Morne National Park, Newfoundland, Canada. Daily accumulation rates of 484 

pieces per day were recorded in Kauai and approximately 6000 plastic particles were 

collected over a 10 day period. Relationships between composition, surface textures and 

level of oxidation were studied using FTIR (Fourier Transform Infrared Spectroscopy) 

and SEM (Scanning Electron Microscopy). Surface textural analysis showed evidence of 

cracks, fractures, flakes, grooves, pits, adhering particles and vermiculate textures. 

Increased surface oxidation of different polymer types was determined by measuring 

increased IR absorbance in the 1710 cm-1 wavenumber region of the IR spectra. Results 

obtained from both analytical techniques indicate a strong relationship between chemical 

and mechanical degradation of plastics, suggesting that plastics degrade most efficiently 

on beaches compared with other natural environments. Vermiculate textures were only 

 iii



present on polyethylene particles sampled from Kauai indicating that biological activity, 

water salinity or temperature may play key roles in the degradation of plastics in 

subtropical climates. Analysis of debris collected from Kauaiian beaches indicates that 

small particles and pellets comprise the largest portion of plastics which is in contrast to 

Newfoundland beaches which have more intact and nearly intact debris relative to the 

overall plastic load. Size distribution of plastic debris closely mimicked natural 

sedimentary grain size distribution in natural environments suggesting that plastics may 

become a significant component of the sedimentary deposit record. 

 

 

 

Keywords: Plastic marine debris, Polyethylene, Polypropylene, SEM, FTIR, Kauai, 

Hawaii, Gros Morne National Park, Newfoundland, UV radiation 
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CHAPTER 1 

INTRODUCTION

1.1 Overview of Plastics Production and Pollution 

 

A great variety of polymer types have been developed since creation of the first 

synthetic polymer known as Bakelite in 1907. During the past 60 years, increased 

applications for plastic have resulted in an exponential increase in its use (Laist 1987; 

Thompson et al. 2009).  Plastic has become the primary choice of manufacturers for 

packaging of food, chemicals, cosmetics, pharmaceuticals and many other consumer 

products due to the low cost of production and physical properties of plastic, including its 

lightweight nature, durability, strength and resistance to water (Laist 1987; Pruter 1987; 

Andrady and Neal 2009). There was a 25-fold increase in global plastics production 

between 1960 and 2000, and as of 2008 there were 65,000 plastic processing facilities in 

China and India, which indicates that the demand for plastic resins continues to grow 

rapidly (Moore 2008). However, due to little economic incentive or limited options for 

re-use, less than 5% of material is recovered (Moore 2008).  

 

Plastic now accounts for 10% of all waste generated, with global use exceeding 

260 million tonnes per annum (Barnes et al. 2009; Thompson et al. 2009). In the United 

States, 50% of waste plastic is sent to municipal waste facilities, 5% is recycled, and 

approximately 20% is re-used in some form as durable goods. The remaining 25% (12.5 
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million tonnes) unaccounted for is a possible source for the increased amount of plastic 

debris entering the natural environment (Moore 2008). Sampling conducted by The 

Algalita Marine Research Foundation (AMRF) at one locality near the Los Angeles and 

San Gabriel Rivers in California, recorded 60 tonnes (representing 2.3 billion pieces) of 

plastic debris >1mm in size travelling towards the ocean over a 3 day period (Moore et al. 

2005). Moore (2008) found a UNEP (2001) report grossly underestimated the amount of 

plastic debris entering the environment at 8 million pieces per day. AMRF data suggest 

that this accounts for only 1% of all plastic pieces travelling out to sea in a single day in 

the Los Angeles area.  

 

Traditionally, marine debris researchers have classified debris sources into two 

categories, 1) land-based or 2) ocean/waterway based, depending on where debris enters 

the water system. Up to 80% of the world’s marine pollution is derived from land-based 

sources (Derraik 2002). These sources generally include metropolitan and urban areas, 

which typically produce plastic debris in the form of packaging materials as well as 

plastic bottles, containers and food wrappers (Derraik 2002; Gregory and Andrady 2003). 

Inappropriately or illegally dumped garbage, littering, open dumpsters, fishermen, 

beachgoers, landfills and processing facilities are considered some of the largest 

contributors to the accumulation of marine debris (Sheavly and Register 2007). Some 

waste reaches appropriate facilities, but with approximately half of the world’s 

population living within 80km of the ocean, significant amounts of lightweight plastic 

garbage often blow or run off into the sea (Moore 2008). There are many dynamic 

linkages between litter sources and sinks (Figure 1.1). Offshore there is an increase in 
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ship-based litter, however, the total litter load decreases with the exception of aggregation 

in mid-ocean gyres (Ryan et al. 2009; Pichel et al. 2007). Litter discarded on streets, 

roads, parking lots and beaches reaches the ocean by wind or through municipal drainage 

systems such as storm water drainage and sewage outlets. However, the majority of 

ocean plastic debris originating inland is carried through natural watercourses such as 

streams and rivers and inevitably becomes deposited on shorelines or in the open ocean 

(Pruter 1987; Williams and Simmons 1997).  

 

Ocean and waterway-based sources can include commercial fishing vessels, 

cruise ships, recreational boats, and military, merchant and research vessels, as well as 

offshore petroleum platforms and the vessels that supply them (Derraik 2002; Lee et al. 

2006; Sheavly and Register 2007). Significant amounts of debris enter the water from 

commercial and recreational fishermen who dump ship-generated garbage overboard or 

neglect to retrieve fishing gear such as nets, ropes, buoys or trawl floats (Sheavly and 

Register 2007). 
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1.2 Detrimental Effects of Plastic Marine Debris 

 

Plastic debris that has entered the marine system has the potential to travel great 

distances and as a consequence has become one of the most common and persistent 

pollutants in ocean waters and on beaches throughout the world. Marine debris is 

composed of 60-80% plastic, and as much as 90-95% in some locations (Derraik 2002; 

Moore 2008). During the last four decades, plastic debris has been recorded in habitats 

from the poles to the equator (Thompson et al. 2004). Plastics are unique when compared 

to other marine litter in that they become the most prominent debris type with distance 

from the source. Denser materials such as glass and metal do not transport as easily as 

plastics, and less dense materials such as paper deteriorate much more quickly in the 

natural environment (Ryan et al. 2009).  

 

Ocean and wind currents transport plastic debris great distances, which results in 

large quantities of plastic particles floating throughout the oceans (Derraik 2002; Moore 

2008). Plastic debris characterizes coastal waters, the open ocean and sediments, but 

inevitably large quantities will be deposited on beaches (USEPA 1992; Derraik 2002). 

Islands are considered sinks for ocean-borne plastic debris and often accumulate 

substantial amounts of plastic fragments and pre-production pellets on their beaches 

(Moore 2008). McDermid and McMullen (2004) sampled 9 Hawaiian beaches and 

collected 19,100 pieces of plastic debris between 1 and 15 mm in size, of which 2100 

pieces were pellets. Moore (2008) collected 2500 plastic particles >1mm on the surface 

of one square foot of beach sand on Kamilo Beach, Hawaii; 20% of the particles 
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collected were pellets. No plastic production facilities are located in the state of Hawaii, 

and therefore the abundance of pellets provides evidence that plastic pollution has far-

reaching implications (McDermid and McMullen 2004; Moore 2008).  

 

The greatest concentration of plastic processors in the United States is in 

California, and a study of Orange County beaches conducted by Moore et al. (2001) 

found beach debris to be comprised of 98% pellets with an estimated count of over 105 

million particles sampled. These findings substantiate a common theory among 

researchers that the west coast of North America is the primary source for plastic marine 

debris in the North Pacific Ocean. 

 

Distribution of plastics in the marine environment poses a serious threat to many 

organisms such as fish, birds, and turtles (Whiting 1998; Gregory and Andrady 2003; 

McDermid and McMullen 2004; Sheavly and Register 2007). Entanglement and 

ingestion are primary concerns as they are most commonly seen in mainstream media and 

affect a large number of marine biota. Additional concerns include drift plastic as a 

possible transport method for invasive species, ingestion and transport of persistent 

organic pollutants (POPs) and the accumulation of plastic debris on the sea floor (Derraik 

2002; Gregory and Andrady 2003; Moore 2008). 
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1.3 Aim of the Study 

 The benefits of plastic and the exponential increase in its use indicate that 

polymers will continue to be important for the foreseeable future. An unfortunate 

circumstance of this trend is that a large quantity of plastic debris will enter Earth’s 

ecosystems. The overall aim of this study is to determine which polymer types are most 

conducive to chemical and mechanical degradation in natural beach environments. 

Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) 

were used to examine samples of polyethylene and polypropylene, which are the most 

prevalent polymer types found in the natural environment. Surface textures, polymer 

composition and level of surface oxidation were examined in order to determine the 

effects of weathering on the breakdown of plastics. Particles were degraded 

experimentally, and samples were collected from subtropical beaches on Kauai, Hawaii, 

U.S.A. and temperate beaches in and near Gros Morne National Park, Newfoundland, 

Canada. These sampling areas were chosen because large quantities of plastic debris 

accumulate on their beaches, and it is anticipated that variations between tropical and 

temperate climates will produce differences in chemical and mechanical weathering 

textures. Compared with Newfoundland plastics, Kauaiian samples are expected to have 

higher levels of oxidation and well defined surface textures associated with increased 

water, air and beach sand temperatures. In addition, plastic samples deposited on 

Hawaiian beaches are believed to primarily originate from distant sources (Moore 2008), 

which would suggest a longer exposure time to chemical and mechanical degradation 

processes while at sea. The temperate climate of Newfoundland is expected to result in 
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lower levels of chemical weathering of plastic debris. The secondary objectives of the 

research are to determine, 1) the major types of plastic debris, 2) distribution and 

depositional patterns of plastic debris on beaches, and 3) an example of a daily 

accumulation rate. 

 

 

1.4 Significance 

 

 This research is the first to provide valuable insight into the chemical and 

mechanical degradation properties of the most commonly used polymer types. Improved 

understanding of the fate of plastic debris in natural beach environments may lead to a 

shift away from use of polymer types with longer sediment residence times. In addition, 

our research will contribute to the literature database concerning the abundance and 

distribution of plastic fragments in the environment. Finally, very few publications deal 

with the behaviour of plastics as part of the sedimentary pile. The present study considers 

plastic particles as sediment grains, rather than fragments of exotic materials. 

 

 

1.5 Relationship to published work 

 

 Part of this thesis has been published in and submitted to two peer reviewed 

journals, presented at four conferences, and displayed at the Gros Morne National Park 

visitor information centre: 

  



       

1) Cooper, D.A., and Corcoran, P.L. 2009. The Beaches of Kauai: A Plastic Paradise. 6th 

Annual Earth Day Colloquium. University of Western Ontario Centre for 

Environment and Sustainability, April, 2009 (Oral presentation). 

 

2) Cooper, D.A., and Corcoran, P.L. 2010. Effects of Chemical and Mechanical 

Processes on the Degradation of Plastic Beach Debris. 7th Annual Earth Day 

Colloquium. University of Western Ontario Centre for Environment and 

Sustainability, April, 2010 (Oral presentation). 

 

3) Cooper, D.A., and Corcoran, P.L. 2010. Effects of mechanical and chemical processes 

on the degradation of plastic beach debris on the island of Kauai, Hawaii. Marine 

Pollution Bulletin, 60: 650-654. 

 

4) Cooper, D.A., and Corcoran, P.L. 2010. Effects of chemical and mechanical  

weathering processes on the degradation of plastic beach debris. Bridging Science 

with Communities SETAC North America 31st Annual Meeting, Abstract Volume 

MP068, Portland, Oregon, November 2010: 9 (Poster Session). 

 

5) Cooper, D.A., and Corcoran, P.L. 2011. Plastic Marine Debris: A New Type of Beach 

Sediment. 8th Annual Earth Day Colloquium. University of Western Ontario Centre 

for Environment and Sustainability, April, 2011 (Oral presentation). 
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6) Cooper, D.A., and Corcoran, P.L. 2011. Plastic beach debris on North America’s  
 

Atlantic coast: A New Type of Sediment? Water, Air and Soil Pollution 

(Submitted). Manuscript number WATE7618. 

 

7) Cooper, D.A., and Corcoran, P.L. (2011) Distribution, deposition, and degradation of  
 

Plastic Beach Debris in and near Gros Morne National Park, Newfoundland,  
 
Canada. Gros Morne National Park Visitor Information Centre park pollution  
 
awareness campaign (Poster). 

 

 

Most of the text in this thesis has been modified from the journal articles, but 

some passages are included verbatim. Certain figures and photos have already been 
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CHAPTER 2 

THREATS OF PLASTIC POLLUTION 

2.1 Entanglement 

 

Wildlife living near, in or on the water is at particular risk to entanglement, as 

nets, ropes, fishing lines and other debris pose a serious threat. When seabirds, seals, 

dolphins, turtles or other marine animals become entangled, they face the risk of 

drowning or strangulation (Laist 1987; Derraik 2002; Sheavly and Register 2007). 

Entanglement can also affect an animal’s mobility, which reduces the ability to eat, 

migrate, or escape possible predator species (Gregory and Andrady 2003). Death due to 

failed predator avoidance, skin lesions and ulcerating wounds, and debilitation due to 

interruption of feeding activities are all biologically harmful effects of entanglement 

(Gregory and Andrady 2003). 

 

Younger, inexperienced, or curious animals such as seals are often attracted to 

floating debris and will roll and play in it (Mattlin and Cawthorn 1986). As they approach 

the plastic debris, seal pups will often poke their heads through loops and holes. The lie 

of their hair allows the plastic to easily slip onto their necks, but at the same time 

prevents the plastic loops from slipping off (Mattlin and Cawthorn 1986). As the seal pup 

grows, the plastic strapping becomes increasingly tighter, eventually severing the seal’s 

arteries or strangling it. Due to its physical properties, the resilient nature of the plastic 
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ring allows for this type of scenario to repeat itself once the animal dies and decomposes 

(Mattlin and Cawthorn 1986).  

 

Derelict or abandoned fishing gear may be deadly to marine species for years 

after being lost. The process known as ghost fishing results when discarded or abandoned 

fishing nets continue to catch and kill marine animals (Laist 1987; Moore 2008). It is 

estimated that 10% of all static fishing gear is lost, which results in a 10% loss of the 

target fish population (FAO 1991). Lost or discarded nets are, at least in part, linked to 

the decrease in population of marine animals such as the northern sea lion, Hawaiian 

monk seal, and northern fur seal (Derraik 2002). Mattlin and Cawthorn (1986) found the 

population of fur seals in the Bering Sea, west of Alaska, that were entangled in plastic 

bands rose from 0 to 38% in just 4 years (1969-1973). As of 1976, the population was 

declining at a rate of 4-6% per annum. Lost or abandoned nets have the ability to 

continually kill large quantities of small fish but have also been identified on the mouths 

and tails of much larger animals such as whales when they surface during feeding (Laist 

1987; Weiskopf 1988; Moore 2008). However, ghost net fishing not only affects surface 

and shallow waters. Trawl gear during the past 20 years has been deployed across sea 

floor surfaces at depths between 500 and 2000m. This netting has the potential to cause 

severe damage to deep water coral reefs, and with little to no ultraviolet radiation may 

continue to ghost fish indefinitely (Watling and Norse 1998). A terrestrial analogy for the 

potential effects of the disturbance to seabed environments would be that of forest clear 

cutting (Watling and Norse 1998). 
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2.2 Ingestion 

 

Few plastic objects are intended to resemble natural food to marine organisms 

with the possible exception of fishing lures. However, with the variations in colour, size 

and shape, plastic fragments can mimic the appearance of naturally occurring food to 

many marine animals (Carpenter et al. 1972; Moser and Lee 1992; Shaw and Day 1994; 

Erikkson and Burton 2003). Plastic pellets resemble fish eggs whereas plastic bags 

submersed in the ocean may look like jellyfish to a feeding turtle (Gregory 2009). 

Research conducted by Moser and Lee (1992) found that seabirds often mistake certain 

plastic shapes and colours as potential prey species. Marine animals mistaking plastic 

fragments for food swallow the items, which then become lodged in their throats or 

digestive tracts (Azzarello and Van Vleet 1987). Debris that remains in the stomach may 

give a false sense of satiation resulting in starvation (Derraik 2002; Gregory and Andrady 

2003; Sheavly and Register 2007; Gregory 2009). Ingested plastic particles in seabirds 

reduce meal size by limiting the ability of the stomach to store food; the result is a limited 

ability to lay down fat deposits which ultimately reduces fitness (Ryan 1988). Other 

physiological effects of plastic ingestion in sea birds include blockage of gastric enzyme 

secretion, lowered steroid hormone levels, delayed ovulation, and reproductive failure 

(Azzarello and Van Vleet 1987). Small fish that ingest plastic fragments can also 

experience internal injury or possibly death due to blockages of the intestinal tract 

(Carpenter et al. 1972; Ryan 1988; Azzarello and Van Vleet 1987; Zitko and Hanlon 

1991).  
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Ingestion of marine plastic debris affects at least 267 species worldwide including 

sea turtles, seabirds and marine mammal species (Laist 1997). Literature focusing on the 

effects of plastic ingestion on marine species is abundant and the issues researched are on 

a global scale (Gregory 2009). Moser and Lee (1992) sampled over 1000 birds off the 

coast of North Carolina, U.S.A. and found plastic particles in the guts of 55% of species 

sampled. Plastic spherules were found in 8 of 14 fish species examined off the coast of 

New England, U.S.A. with some species representing as much as 33% of the 

contaminated individuals (Carpenter et al. 1972). Baird and Hooker (2000) documented 

at least 26 species of crustaceans known to ingest plastic particles and there is evidence 

that the survival of sea turtles is being hindered by plastic debris (Duguy et al. 1998). 

Turtles often mistake polyethylene bags submerged in ocean currents as prey (Mattlin 

and Cawthorn 1986; Bugoni et al. 2001), with young sea turtles being most susceptible 

(Carr 1987). Balazs (1985) reported 79 cases in which various types of plastic debris 

were found in the guts of turtles. A more specific case by O’Hara et al. (1988) found one 

turtle in coastal waters off New York that had ingested 540m of fishing line. Kenyon and 

Kridler (1969) examined 100 albatross carcasses collected from the beaches and reefs of 

Hawaii. Ninety-one birds contained non-food items, 30% of which was plastic debris. 

Albatross rarely ingest food or other items from the shore, therefore it was concluded that 

ingestion of plastic debris by albatross occurred at sea and was passed by parents to their 

young with regurgitated food (Kenyon and Kridler 1969). Despite the abundance of 

published reports, the actual number of animals affected by plastic debris may be 

underestimated, as many are likely eaten by predator species or simply go undiscovered 

in the open ocean (Wolf 1987).  
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2.3 Invasive Species, Ecotoxicology and Seabed Debris 

 

 2.3.1 Invasive Species

 

 The presence of industrial pellets on beaches free from the influence of 

petrochemical facilities and pellet processing plants is an indication of long-range marine 

transport (Costa et al. 2010). Like all natural or artificial floating debris, plastic can 

provide a mechanism for encrusting and fouling organisms to disperse over great 

distances (Winston et al. 1997). Logs, pumice and other flotsam have traversed the open 

ocean for millennia (Gregory 2009), and the introduction of hard plastic debris to the 

marine ecosystem may provide an appealing and alternative substrate for some 

opportunistic colonizers (Gregory and Andrady 2003; Gregory 2009). It is estimated that 

if biotic mixing occurs, global marine species diversity may decrease by up to 58% 

(McKinney 1998). Barnes (2002) estimates the propagation of fauna in the sea has 

doubled in the tropics, and more than tripled at high latitudes (>50 ), due to the input of 

anthropogenic debris. The hard surfaces of plastics provide an ideal substrate for 

opportunistic colonizers. Pelagic plastics are most commonly colonized by bivalve 

molluscs, however, other encrusting organisms include bacteria, diatoms, algae and 

barnacles (Carpenter et al. 1972; Derraik 2002; Gregrory and Andrady 2003; Gregory 

2009, Widmer and Hennemann 2009). Plastic substrates may also contain multispecies 

habitats composed of organisms that would normally inhabit different ecological niches 

(Winston et al. 1997). Drifting plastic debris may also increase the range of certain 

marine organisms or possibly introduce species to new environments which they had 

  

15



       

previously not inhabited (Winston 1982). Sensitive or at-risk littoral, intertidal and 

shoreline ecosystems could be negatively affected by the arrival of unwanted and 

aggressive alien species with potentially damaging environmental consequences 

(Winston et al. 1997; Gregory 1991, 1999, 2009). The absence of biological organisms 

on plastic debris may be an indication that the particles were not present in the marine 

environment long enough for fouling to occur. Instead, these items probably have a more 

local, land-based origin (beachgoers, storm-water drainage), than more heavily encrusted 

debris (Widmer and Hennemann 2009). 

 

 

 2.3.2 Ecotoxicology

 

 Several studies have reported the presence of polychlorinated biphenyls (PCBs) in 

plastic samples collected from the northwestern Atlantic and South Pacific Oceans 

(Carpenter and Smith 1972; Carpenter et al. 1972; Gregory 1978). PCBs used as 

plasticizing additives during the manufacturing process were considered to be the source, 

although adsorption and concentration from ambient seawater was also suggested 

(Carpenter and Smith 1972; Gregory 1978). Over the last decade, adsorption has been 

experimentally confirmed and research indicates that plastic pellets may be both a source 

and transport medium for toxic chemicals in the marine environment (Mato et al. 2001; 

Rios et al. 2007). Ingestion of plastic fragments by seabirds and fish may be the source of 

bioaccumulation of heavy metals, PCBs, dichlorodiphenyltrichloroethane (DDT), and 

other toxins (Ryan 1988). Absorption and transfer of these chemicals by filter feeding 
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organisms and invertebrates may lead to reproductive disorders, disease, altered hormone 

levels, or death at higher trophic levels (Ryan 1988; Ryan et al. 1988; Gregory 1996; Lee 

et al. 2001). 

 

 

 2.3.3 Seabed Debris

 Human factors, geomorphology and hydrodynamics all influence the geographical 

distribution of plastic debris (Barnes et al. 2009). Abundance and distribution is evident 

when assessing plastic debris found at the surface in the open ocean and on beach 

strandlines. However, extensive research into the effects of plastic debris on the seabed 

has been restricted to continental shelves, as access to the seabed has been limited by 

sampling challenges and high costs (Barnes et al. 2009). Therefore, the effects of 

materials resistant to gas and water exchange partially covering the seabed have not been 

fully investigated (Moore 2008). It is widely accepted, however, that the sea floor is 

considered the largest sink for marine debris (e.g. Williams et al. 1993; Goldberg 1997).  

 

 Rapid and heavy fouling by bacteria, algae, animals and accumulated sediment 

can weigh down floating plastic causing debris to sink to the seabed. There may be 

periodic episodes in which grazing organisms ‘clean’ fouled surfaces, thus resulting in 

alternating resurfacing and submergence episodes until permanent seabed settlement 

occurs (Ye and Andrady 1991). Plastics comprise the largest portion of debris found on 

the sea floor in the same way it dominates floating litter and beach debris (Ryan et al. 
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2009). Assessments of plastic on the sea floor have shown that greater than 50% of debris 

is comprised of plastics (Barnes et al. 2009). Similar to stranded debris, sea floor plastic 

debris accumulation is dependant on local sources, topography and location (Galgani et 

al. 2000; Moore and Allen 2000; Barnes et al. 2009). However, patterns in deposition in 

shallow subtidal areas can be significantly different than that of the adjacent strandlines 

(Barnes et al. 2009). For example, Oigman-Pszczol and Creed (2007) found the nearshore 

Brazilian seabed contained a much greater proportion of debris relative to the shore.  

 

The overall effects of plastic debris on the ocean floor are still unclear. 

Notwithstanding, Goldberg (1997) suggested that anoxia and hypoxia induced by 

inhibition of gas exchange between pore and sea water may be a result of the blanket 

effect caused by large deposits of plastic debris on the seabed. Furthermore, pelagic 

plastic weighed down by sediment may accumulate on the seabed leading to a creation of 

artificial hardgrounds (e.g. Harms 1990). Polymers in the marine environment degrade 

through photo- and thermal- oxidation when exposed to heat, UV radiation and 

mechanical abrasion (e.g. Gregory and Andrady 2003; Shah et al. 2008; Sing and Sharma 

2008; Corcoran et al. 2009; Cooper and Corcoran 2010). Such properties are significantly 

decreased or non-existent in the deep ocean, and therefore, plastic debris in these 

environments may persist much longer than the estimated hundreds to thousands of years 

on the ocean surface or on land (Andrady 2000; Barnes et al. 2009). 
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CHAPTER 3 

COMPOSITION AND DEGRADATION OF POLYMERS 

3.1 Polymer Composition

 

 Polyethylene (PE) and Polypropylene (PP), expressed as CnH2n, have a wide 

range of applications and thus have become the two most prominently used polymer 

types (Arutchelvi et al. 2008). PE is a linear molecule produced in a variety of densities 

ranging from 0.91 to 0.97 g/cm3. Density differences among PE are dependant on where 

branching on the carbon backbone occurs. Low density PE has low packing of the 

polymer chains due the randomness of the branching, whereas high density PE has 

minimal branching and is thus more linear, which leads to a higher packing density 

(Figure 3.1) (Arutchelvi et al. 2008). Polypropylene is derived from the monomer, 

propylene, which is obtained as a petrochemical byproduct and was first synthesized by 

Ziegler and Natta in 1956. The various orientation of methyl groups in PP results in three 

possible geometrical orientations, isotactic, syndiotactic and atactic (Figure 3.2) (Rabek 

1996; Arutchelvi et al. 2008). Isotactic structures have all methyl groups (CH3-) on one 

side of the carbon chain, whereas methyl groups on syndiotactic structures alternate from 

one side of the carbon chain to the other. Methyl groups on atactic structures occur in a 

random order on either side of the carbon chain (Arutchelvi et al. 2008). Most 

commercial PP produced has an isotactic configuration due to the physical properties 

associated with its regular structure. The highly crystalline nature of isotactic PP provides 
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CARBON (C) HYDROGEN (H)

HIGH DENSITY POLYETHYLENE (HDPE)

LOW DENSITY POLYETHYLENE (LDPE)

Figure 3.1 Schematic diagram showing steriochemistry differences of, A- low 
  density polyethylene (LDPE) and B- high density polyethylene (HDPE). 
  The more linear allignment of carbon atoms in HDPE allows for a 
  higher packing density. 
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ATACTIC

CARBON (C) HYDROGEN (H)

Figure 3.2 Schematic diagram showing the steriochemistry of polypropylene. The 
  location of methyl groups relative to the carbon backbone result in 
  three possible geometical orientations A- isotactic, B- syndiotactic, 
  and C- atactic.
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the polymer with stiffness, hardness and tensile strength. PP, which is chemically 

resistant, moisture resistant, and has a melting point of 208 C, is stable to heat and light 

(Nishimoto and Kagiya 1992). 

 

The composition of polymers is determined by utilizing FTIR. Spectra from 

polyethylene blanks display characteristic peaks around 2916, 2849, 1471, and 718 cm-1 

wavenumber regions (Figure 3.3A). Polypropylene blanks produce five distinct peaks at 

wavenumbers 2952, 2919, 2870, 2839 and 1652 cm-1 as well as numerous peaks in the 

lower wavenumbers between 631 and 1458 cm-1 on the IR spectra (Figure 3.3B).  
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Figure 3.3  Fourier Transform Infrared Spectroscopy (FTIR) spectra indicating 
  characteristic absorption peaks of pure untreated A- polyethylene 
  and, B- polypropylene.
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3.2 Polymer Degradation

 

Polymer degradation can be categorized as any physical or chemical changes 

resulting from environmental factors, including light, heat, moisture, chemical conditions 

and biological activity. This includes processes which induce changes to polymer 

functionality or deterioration through chemical, biological or physical reactions resulting 

in bond scission and chemical transformations (Shah et al. 2008). An effective way of 

distinguishing between the various modes of polymer degradation is to subdivide them by 

modes of initiation (Hamid et al. 1992). The degradation processes that polymers are 

subjected to in everyday life include: 

 

1. Thermal/thermo-oxidative: Refers to the exposure of the polymer to elevated 

temperatures and the influence of heat, either during processing or use. Chemical 

changes are initiated without the involvement of other compounds. Thermo-oxidative 

degradation differs from thermal degradation in that random scission occurs in the 

polymer backbone rather than randomly and/or at the chain end. 

 

2. Mechanical: Occurs due to the application of physical forces or when subjected to 

shear. 

 

3. Ultrasonic: Polymer chains may vibrate and split when exposed to the application of 

sound at certain frequencies. 
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4. Hydrolytic: When moist or acidic conditions are present in the environment, chain 

scission may occur as a result of hydrolysis of the main chain. Hydrolysis occurs in 

polymers with functional groups that are sensitive to the effects of water. 

 

5. Chemical: Refers to corrosive chemicals, gases or liquids. Ozone, atmospheric 

pollutants, and acids like nitric, sulfuric, and hydrochloric will attack and degrade 

most polymers through chain scission and oxidation. 

 

6. Biological: Specific to only a few polymer types, this is a process where bacteria, 

fungi, yeasts, and enzymes degrade a polymer through an attack of certain functional 

groups such as some stabilizers and plasticizers. 

 

7. Photooxidative/Radiation: The absorption of radiation by polymers, or their impurities, 

due to exposure to sunlight or high energy radiation. The highest energy UV waves of 

the solar spectrum can break the chemical bonds in polymers resulting in 

photodegradation (Allen and Edge 1992; Hamid et al. 1992; Kulshreshtha 1992; 

Pielichowski and Njuguna 2005). 

 

  Of the seven processes described above, the most important degradation routes 

with regards to plastic debris, and the most widely researched, are thermal/thermo-

oxidative, biological, and photooxidative (Allen and Edge 1992; Shah et al. 2008; Singh 

and Sharma 2008). Each degradation route has specific requirements in order for 

degradation to occur and propagate (Table 3.1).  
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Thermal and photo-degradation are similar and are often classified as oxidative 

degradation with the main difference being the initial sequence of steps leading to auto-

oxidation cycle (heat/UV radiation) (Singh and Sharma 2008). Biological degradation is 

the process by which living organisms break down organic structures (Shah et al. 2008).  

 

Rates of degradation of polymers at sea are much slower than those on land. The 

reduction of degradation processes occurring at sea may be attributed to the following: 

 

1. Reduced heat build-up: A significant amount of UV radiation impinging on the 

plastic is absorbed as heat. The plastic may maintain a temperature as much as 30˚ 

C higher than that of the surrounding air depending on the nature of the plastic, 

velocity of air around the plastic and the temperature difference between the 

plastic and its surroundings. However, at sea, bulk temperature increases do not 

occur, which significantly slows rates of degradation. 

 

2. Fouling of samples in sea water: Plastics floating at sea undergo significant 

fouling, which results in coverage of the material by a biofilm. The biofilm 

shields the plastic from exposure to sunlight and yields a slower rate of 

degradation relative to particles on land. In addition, the nonuniformity of surface 

fouling may lead to uneven degradation (Rabek 1996; Gregory and Andrady 

2003). 

  

 

  



       

3.3 Chemical Degradation

 Chemical degradation of polymers is a process that affects the performance of all 

plastic materials used in our daily lives and is a field which has been widely researched 

(Kulshreshtha, 1992). Changes that occur in polymers during degradation are manifested 

differently depending on which degradation processes are involved. Chemical 

degradation results in changes to the chemical structure of the polymer including bond 

scissions and the formation of functional groups (Allen and Edge 1992; Singh and 

Sharma 2008). The most relevant chemical degradation processes to plastic beach debris 

are thermal and photooxidative degradation. Biological degradation is another important 

degradation process for plastics and is closely tied to thermal and photo degradative 

processes, therefore these processes are described in more detail below. 

 

3.3.1 Thermal Degradation

 Thermal degradation of polymers refers to chemical changes affecting polymers 

exposed to elevated temperatures without the simultaneous involvement of any other 

compound (Pielichowski and Njuguna 2005). All polymers can be degraded chemically 

by heat; however polyolefins such as PE and PP are known to be sensitive to thermal 

oxidation because the high temperatures used during manufacturing generate impurities 

in the material (Kulshreshtha 1992; Singh and Sharma 2008). The two different 

mechanisms of polymer degradation are depolymerisation and statistical fragmentation of 
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chains. When heated to the extent of bond rupture, polymers will follow three major 

pathways: side-group elimination, random scission and depolymerisation. Polyolefins 

such as PE and PP do not depolymerise (Kulshreshtha 1992; Pielichowski and Njuguna 

2005) and therefore only random scission and side group elimination will be discussed 

further. 

 

1. Random Scission: Results from the formation of free radicals at some point along 

the backbone of the polymer. This produces small repeating series of oligomers of 

differing chain length (by number of carbons). When free radicals form along PE, 

chain scission occurs, resulting in fragmentation which produces a molecule with 

one unsaturated end and the other with a terminal free radical. Polymers such as 

PE do not depolymerise, therefore thermal stress generally results in fragments, 

which break into smaller fragments. 

 

2.  Side Group Elimination: Generally this takes place in a two stage process. The 

first step involves stripping or elimination of side groups attached to the backbone 

of the polymer, which leaves an unsaturated chain. An unstable polyene 

macromolecule is formed which undergoes further reactions such as scission into 

smaller fragments. PE and PP do not produce any quantitative amount of 

monomers during thermal degradation (Kulshreshtha 1992, Pielichowski and 

Njuguna 2005, Singh and Sharma 2008). 
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 3.3.2 Photo-oxidative Degradation 

 

Photo-oxidative degradation is the process by which the molecular weight of 

polymers is reduced resulting in degradation and embrittlement through exposure to 

sunlight in the presence of air (Kulshreshtha 1992; Singh and Sharma 2008). This is 

considered one of the most important sources of damage exerted on polymers at ambient 

conditions (Gijsman et al. 1999; Singh and Sharma 2008). There are two mechanisms for 

which UV radiation can be absorbed 1) through impurity chromophores and 2) through 

direct absorption by units or groups which form part of the chemical constitution of the 

polymer. Polymers of the first type include polyolefins such as PE and PP (Allen and 

Edge 1992). Most synthetic polymers are susceptible to photo-oxidative degradation, and 

occurs where chromophores, which absorb wavelengths of the solar spectrum on Earth 

(>290nm), are present in the polymer (Gijsman et al. 1999). Chromophores such as 

peroxide, hydro peroxide, and carbonyl groups, catalyst residues and polynuclear 

aromatic impurities are byproducts of the commercial production of polymers which are 

required to control the polymerization reaction processes (Kulshreshtha 1992; Gijsman et 

al. 1999). Absorption of radiation results from the presence of chromophores which are 

of two different types, 1) Type A: Internal or end-chain chromophores which are a result 

of the polymerization process, and/or the products of thermal and/or photo-oxidation, and 

2) Type B: Chromophores which form part of the molecular structure of the polymer 

(Figure 3.4) (Allen and Edge 1992; Rabek 1996). When absorbed, UV radiation in the 

290-400 nm range has sufficient energy to cleave most chemical bonds resulting in 

degradation of the polymer (Gijsman et al. 1999; Kulshreshtha 1992).   
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Figure 3.4  Schematic diagram depicting the possible orientations 
  of chromophores. Type A- internal or end-chain, Type B-
  forming part of the molecular structure in various 
  orientations. (modified from Allen and Edge 1992).
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Changes in physical and optical properties of plastics are a result of 

photodegradation and lead to colour changes (fading, yellowing), loss of mechanical 

properties, embrittlement and changes in molecular weight (Kulshreshtha 1992; Singh 

and Sharma 2008). PE and PP are considered homochain polymers in that they only 

contain C-C and C-H bonds. Carbonyl and hydro peroxide groups are the most important 

species in the photooxidation of these polymers (Allen and Edge 1992). 

 

Carbonyl groups: Carbonyl chromophores are considered to play a more 

important role in the photooxidation of PE than PP and the opposite is true of 

hydro peroxides. Two primary photochemical reactions occur when carbonyl 

groups are present on the molecular backbone of the polymer as ketones. They 

include Norrish type I, in which excited triplet states may cleave the polymer’s 

molecular backbone and form radical pairs, and Norrish Type II, in which pairs of 

saturated and unsaturated chain ends form by hydrogen transfer. 

 

Hydro peroxide groups: Considered to be the most important and most common 

impurity chromophore in polymers containing carbon, hydro peroxides are 

incorporated during polymerization and/or processing. These groups are the major 

photo initiators in PP because they can be quickly produced through an 

intramolecular hydrogen abstraction process (Allen and Edge 1992; Singh and 

Sharma 2008). 
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Photo-oxidative degradation of polymers occurs by free radical mechanisms and 

includes processes such as photo-oxidation, chain scission and crosslinking. 

Photo-oxidation is the result of a radical-based auto-oxidative process and 

includes four stages: initiation, chain propagation, chain branching and 

termination (Figure 3.5) (Rabek 1996; Gijsman et al. 1999; Pielichowski and 

Njuguna 2005; Azuma et al. 2009).  

 

Initiation: Results from the photo dissociation of chemical bonds in the main 

polymer chain through absorption of UV light.  

 

Propagation: All carbon backbone polymers have common propagating reactions, 

the key reaction is the formation of the polymer peroxy radicals (POO·) by the 

reaction of polymer alkyl radicals (P·) with oxygen.  

P· + O2 → POO· 

The next propagation reaction step is the generation of a new polymer alkyl 

radical (P·) and polymer hydro peroxide (POOH) through the extraction of a 

hydrogen atom by the polymer peroxy radical (POO·), which occurs principally 

from the tertiary carbon atoms. 

POO· + PH → P· + POOH 

 

Chain branching: Results in the formation of very reactive polymer oxy radicals. 

(PO·) and hydroxyl radicals (HO·).  

POOH → PO· + ·OH 
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In itia tion -    P H  → P ∙ (o r P ∙ +  P ∙) +  (H ∙) 

C hain  P ropagation  -  P ∙ +  O 2 → P O O ∙ 
 
   P O O ∙ +  P H  → P O O H  +  P ∙ 
    

C hain  B ranching  -  P O O H  → P O ∙ + ∙O H  

   P H  +  ∙O H  → P ∙ +  H 2O  

   P O ∙ → C hain  S ciss ion  Processes  

Term ination  -   P ∙ +  P ∙ →    

   P ∙ +  P O ∙ →     C rosslinking  reactions to                inactive  products  
   P ∙ +  P O O ∙ →   

   P O O ∙ +  PO O ∙ →   
}  

Figure 3.5  Stages of photo-oxidation processes including initiaiton, propagation, 
  branching and termination.
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A hydrogen atom is extracted from the same or nearby polymer (PH) molecule by 

polymer hydroxyl radicals (PO·) and hydroxyl radicals (HO·). 

PO· + PH → POH + P· 

HO· + PH → P· + H2O 

 

Termination: Termination reactions of polymer radicals occur by bimolecular 

recombination. In the presence of high oxygen pressure (ambient conditions), the 

termination reaction occurs almost exclusively by reaction. Termination reactions 

occur naturally by combining free radicals or can be facilitated through the use of 

stabilizers. If polymer peroxy radicals are in neighbouring positions they can 

recombine to form stable molecules, other radicals may combine to produce a 

crosslinked, branched or disproportionate product resulting in a brittle polymer 

network. 

P· + P· → PP 

P· + PO· → POP 

P· + POO· → POOP 

PO· + PO· → POOP 

PO· + POO· → POOOP (or POP + 02) 

POO· + POO· → POO – OOP (or POOP + 02) (Rabek 1996). 
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Main chain scission involves the breaking of the C-C molecular backbone of the 

polymer and may occur from either primary photophysical processes (i.e. direct photo 

dissociation of a bond in the backbone) or as secondary processes ( -scission processes). 

The result is a decrease in the average molecular weight (Figure 3.6A). It is generally 

accepted that photodegradation of most polymers occurs through decomposition of 

alkoxy radicals ( -scission processes) (Rabek 1996). Crosslinking is the formation of new 

intramolecular bonds resulting in the binding of macromolecules (Figure 3.6B). 

Crosslinking is almost always accompanied by scission of the main chain (to some 

extent) during the photodegradation process (Rabek 1996).  

 

 

3.3.2.1 Photodegradation of polymers under marine exposure conditions  

 

If at sea long enough, all polymeric materials exposed to marine conditions will 

invariably undergo some degree of fouling. Microbial biofilms form rapidly on the 

polymer surface as a result of fouling, and over time the biofilm becomes opaque, 

limiting the amount of sunlight available to the plastic for photodegradation (Rabek 1996; 

Lobelle and Cunliffe 2011). Colonization of the plastic surface by macrofoulants such as 

bryozoans and barnacles is indicative of advanced stages of fouling (Figure 3.7). Plastics 

weighed down by macrofoulants, and the debris they entrap, may partially submerge the 

material over time resulting in a slower rate of photodegradation as the ultraviolet portion 

of sunlight is attenuated on passage through seawater (Rabek 1996). Most plastics are 

positively buoyant; however, the buoyancy of plastic debris can be controlled 
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significantly by biofouling which may cause debris to become heavier resulting in 

negative buoyancy (Lobelle and Cunliffe 2011). In addition, the biofilm may block 

damaging UV radiation and may reduce or prevent photodegradation from occurring 

(Figure 3.8). 
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Figure 3.6 Schematic representation of, A- main chain scission in which the carbon 
  backbone of the structure is broken, and B- crosslinking, which is the 
  formation of new intramolecular bonds.  These processes result in lower 
  molecular weight and a brittle polymer network (modified from Rabek
  1996). 

A

B
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Figure 3.7  Digital photographs of A- bryozoan and, B- barnacle 
  growth on plastic beach debris indicating advanced 
  levels of biofouling.
  

A

B
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Figure 3.8  Digital photographs displaying how biofilms may 
  protect polymers against the effects of UV radiation. 
  Red line indicates the division between covered and 
  exposed surfaces.
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3.4 Biological Degradation 

  

 Biological degradation is the process by which organic substances such as 

bacteria, fungi, yeasts and their enzymes break down living organisms or use them as a 

food source (Allen and Edge 1992; Shah et al 2008). Polymers may be potential 

substrates for microorganisms; however factors including polymer characteristics and 

type of organism will govern the level of biodegradation. Polymer characteristics such as 

mobility, tacticity, crystallinity, molecular weight and types of functional groups all play 

important roles in the biodegradation of polymers. Other important factors are the 

addition of plasticizers and additives to the polymer (Shah et al. 2008). The 

biodegradation of polymers requires four steps: 

 

1. Attachment of microorganisms to the polymer surface. 

2. Use of the polymer as the carbon source resulting in growth of the 

microorganism. 

3. Primary polymer degradation.  

4. Ultimate degradation. (Arutchelvi et al. 2008).  

 

Microorganisms can attach to polymers with a hydrophilic surface, however, PE 

and PP have only CH2 groups on their main chains, therefore their surfaces are 

hydrophobic. Most commercial thermoplastics are immune to enzyme attack because the 

long carbon chain backbones of synthetic polyolefins make them non-susceptible to 

degradation by microorganisms (Allen and Edge 1992). However, a study conducted by 
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Yamada-Onodera et al. (2001) showed that polyolefins with low molecular weight could 

be utilized by microorganisms. Therefore it is possible for microbial degradation of these 

polymer types to occur when facilitated by physical and chemical degradation processes, 

which lead to the insertion of hydrophilic groups on the polymer surface (Arutchelvi et 

al. 2008; Shah et al. 2008). The biodegradability of polymers can be determined by 

several important physical and chemical characteristics: 

 

1. Level of hydrophilicity as determined by availability of functional groups. 

2. Polymer size, molecular weight and density. 

3. Amount of amorphous and crystalline regions. 

4. Structural complexity including linearity and amount of branching. 

5. Presence of more easily broken bonds (e.g. ester or amide bonds). 

6. Molecular composition. 

7. Physical form of the polymer e.g. film, pellet, fragment, powder, fiber (Allen and 

Edge 1992). 

 

If the hydrophilicity of the polymer changes, then microorganisms could attach to 

the polymer surface. Upon attaching to the surface, the organism may utilize the polymer 

as a carbon source. This results in a cleavage of the main chain which leads to the 

formation of low-molecular weight fragments. Polymers with high molecular weights 

such as PE and PP do not support the growth of fungi (Allen and Edge 1992). PE and PP 

are polyolefins prone to oxidation; however, these polymer types (particularly PP due to 

its substitution of a methyl group in the  position) are not susceptible to microbial attack 
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(Arutchelvi et al. 2008). The main reasons that synthetic polymers are not degraded 

through biological processes are: 

 

1. The linear structure of the long carbon backbone chain provides high resistivity 

against hydrolysis. 

2. The addition of antioxidants and stabilizers during the manufacturing process 

reduces or prevents atmospheric oxidation of the polymer. 

3. High molecular weight. 

4. High packing density (Arutchelvi et al. 2008).  

 

The ultimate degradation of synthetic polymers through biological degradation 

may take several hundred years, as additives such as antioxidants and stabilizers may 

slow the degradation rate and/or be toxic to organisms (Arutchelvi et al. 2008).  

 

 

3.5 Mechanical Degradation 

 

Mechanical degradation processes acting on plastic debris may occur offshore, 

onshore or once the material is deposited on the beach. At sea, in areas where debris 

density is high and in areas of high vessel traffic, collisions may occur. In the littoral zone 

mechanical degradation features may be produced through the forces of wave action 

placed on plastic, which has been embrittled through chemical degradation. Following 

deposition on beaches, mechanical degradation occurs through interactions of the 
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polymer with natural beach sediment. The transfer of plastic debris across beach 

sediment, and/or the movement of sediment across stationary plastic particles occurs 

through both wind and wave action and results in mechanical degradation features on the 

polymer surface. Very little published information exists concerning mechanical 

degradation of plastics. This aspect of plastics breakdown should be investigated in future 

studies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



       

CHAPTER 4 

REGIONAL SETTING AND METHODOLOGY 

4.1 Regional Setting, Kauai, Hawaii, U.S.A. 

 

 4.1.1 Formation

 

The Hawaiian Islands are located within the North Pacific gyre, an area with an 

estimated three million tonnes of plastic debris (Moore et al. 2001), 96% of which is 

made up of small plastic fragments (Robards et al. 1997). The accumulation of plastic 

debris within the gyre results from the large-scale clockwise rotation of ocean currents 

and high atmospheric pressure (Moore et al. 2001; Moore 2008). The Coreolis effect 

combines with frictional surface currents caused by westerly winds on the north side of 

the gyre and easterly trade winds to the south to produce circulation around a centre of 

high pressure. The complex system of winds and currents results in an accumulation of 

water and debris in the centre of the gyre (Aguado and Burt 2004). The Hawaiian Islands 

work as a sink for ocean debris with large quantities being deposited from passing 

currents (Donohue et al. 2001).  

 

The Hawaiian Archipelago stretches over 2500 km between 18º 54' to 28º 15' N 

latitude and 154º 40' to 178º 25' W longitude across the middle of the Pacific Ocean from 

Kilauea, an active volcano on the big island of Hawaii, northwestward to the atolls of 
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Midway and Kure (Donohue et al. 2001; Blay and Siemers 2004). The Pacific plate has 

migrated westward over the Hawaiian hotspot, a relatively stationary source of magma in 

the mantle, over the past ca. 40 My (Clague and Dalrymple 1988). Eight major islands 

including Hawaii, Kahoolawe, Maui, Lanai, Molokai, Oahu, Kauai, and Niihau (listed 

from youngest to oldest, Figure 4.1) have evolved through pre-shield, shield, post-shield, 

and rejuvenated stages (Clague 1987; Clague and Dalrymple 1987; Blay and Siemers 

2004). There are 132 islands, reefs and shoals comprising the State of Hawaii, however, 

more than 97.5% of the state is submerged under the ocean surface (Blay and Siemers 

2004). Kauai is one of the oldest and most northwestern islands of the principle Hawaiian 

Island chain (Clague and Dalrymple 1988; Reiners et al. 1999). Rejuvenated-stage 

volcanism ceased on the island by approximately 0.52 Ma (Clague and Dalrymple 1988).  

 

Most beaches on Kauai have relatively consistent sediment size and type and are 

comprised of yellowish-orange calcareous sand, which is derived from the breakdown of 

skeletal remains of marine reef plants and animals. These beaches are composed 

primarily of coralline algae and carbonate skeletal material such as coral, foraminifera 

(shelled protozoans) and molluscs (snails and clams) (Blay and Siemers 2004). Beaches 

on the eastern side of the island are composed of 90.9% carbonates (Figure 4.2), which is 

due to the fringing platform reefs of Kauai that are composed mainly of coralline algae 

and are the main source of beach sediment. Abrasion along the nearshore fringing reef 

results in carbonate skeletal material being transported to the shoreline where it is further 

fragmented, rounded and polished (Blay and Siemers 2004).  
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Eastside Beaches

Westside Beaches
Total
Carbonates
61.3%

Total 
Carbonates
90.9%

Figure 4.2 Compositional breakdown of Kauaiian beach sediment.  Carbonate
  comprises the largest proportion of beach material on most 
  beaches (modified from Blay and Siemers 2004).
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4.1.2 Climate and Weather 

Local atmospheric conditions are responsible for the weather that Kauai and the 

other Hawaiian Islands experience. Throughout most of the year, Hawaiian weather is 

controlled primarily by subtropical anticyclones which are the results of descending air 

from Hadley Cell global atmospheric circulation interacting with seasonally variable 

ocean surface temperatures. The North Pacific anticyclone, located northeast of the 

Hawaiian Islands, is the source of the trade winds that reach Hawaii (Aguado and Burt 

2004; Blay and Siemers 2004). Seasonal movement of the North Pacific anticyclone 

results in changes in the Northeast Trade Winds. In summer, the anticyclone moves north 

and winds become stronger, more persistent and primarily travel in a westerly direction 

compared to during winter, when winds are weaker or absent and may originate from the 

east or the west (Figure 4.3) (Blay and Siemers 2004). Pacific Ocean storms move closer 

to the islands during the winter causing a slight disruption in trade winds and weather 

conditions (Schroeder 1993). Northeast Trade Winds control the island’s local weather 

throughout most of the year and also produce short-period wind waves and long-period 

ocean swells that impinge on the eastern and northeastern coast lines (Figure 4.4) (Blay 

and Siemers 2004).  

 

Daily air temperatures in Kauai average 27  C with little variation throughout the 

year. The longest days in Hawaii receive 13.5 hours of daylight and the shortest receive 

11 hours. The relatively uniform day lengths result in small seasonal variations in solar 

radiation and temperature (NOAA 2011). Level ground in Hawaii receives 67% as much 
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Figure 4.3 Seasonal wind pattern changes from summer to winter
  near Kauai. The direction of summer wind patterns are 
  more consistent relative to winter winds (modified from 
  Blay and Siemers 2004).
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Figure 4.4 Image of wind patterns affecting the island of Kauai. During most 
  of the year tradewinds blow in from the northeast (modified from 
  Blay and Siemers 2004).

KAUAI
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solar energy on a clear winter day as it does on a clear summer day, and therefore, 

temperature values between the warmest month (August) and the coolest month 

(February) differ by only 8  C (NOAA 2011; WRCC 2011). 

 

The open ocean around the Hawaiian Islands averages 635 mm of rainfall per 

year, however, precipitation on any one of the major Hawaiian Islands averages 1905–

2285 mm per year (Blay and Siemers 2004). Orographic lifting, in which warm, moist, 

trade-wind driven air is forced up the east/northeastern (windward) side of the island, 

results in a greatly diversified distribution of precipitation across the landscape. The 

combined effects of Kauai’s topography and its position within the Northeast Trade Wind 

Belt results in record amounts of rainfall in the interior of the island (>10,000 mm 

annually), however, beaches on the leeward and windward sides of the island average just 

500 mm and 1200 mm respectively, per year (Blay and Siemers 2004) (Figure 4.5). 
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Kauai

Figure 4.5 Annual rainfall amounts on the island of Kauai.  Orographic lifting results 
  in more rainfall on the eastern side of the island than the west. The centre 
  of Kauai receives record amounts of rainfall each year (modified from 
  Blay and Siemers 2004).
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4.2 Regional Setting, Gros Morne National Park, Newfoundland, Canada 

 

 4.2.1 Formation 

 

 Gros Morne National Park is an 1805 km2 protected area which represents two of 

Canada’s natural regions, the Newfoundland Island Highlands and the St. Lawrence 

Lowlands (Figure 4.6). The park is a National Heritage Site as designated by the United 

Nations Education, Scientific and Cultural Organization (UNESCO) and is one of only 

nine world heritage sites within Canada that have received designation for their natural 

features (UNESCO 2011). Gros Morne National Park received its inception to the 

UNESCO list in 1987 due to its geological and glacial history as well as its dramatic 

scenery just 17 years after gaining national park status (Parks Canada 2011A). 

 

 Gros Morne National Park is considered to be one of the best illustrations of plate 

tectonics anywhere on Earth (UNESCO 2011). Several geological features are prominent 

throughout the park including the Long Range Mountains, which are the remains of a 

large  mountain  range  formed  through  the collision  of  two plates approximately 1200 

MYA. Later, the supercontinent began to separate and steep fractures were filled from 

below with molten rock, eventually cooling into the diabase dykes found in Western 

Brook Pond and Ten Mile Pond (Parks Canada 2011B). Bedrock records indicate that the 

formation and destruction of an ocean basin occurred between 700 and 470 Ma. As sands 

and silts eroded they were deposited in shallow water and formed what is now the top of 

Gros Morne Mountain (Brooks 1993). The current park geomorphology is a result of 
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A
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Figure 4.6  Satellite images (Google Earth) of the island of Newfoundland, 
  and Gros Morne National Park.  A- Orange star indicates the 
  location of Gros Morne National Park.  B- red line displays the 
  boundary of the park.  
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repeated glaciations, deglaciations and sea level changes over the last 2 million years. 

These processes have combined to produce glacial valleys, sheer cliffs, waterfalls, lakes, 

fjords, coastal lowlands, and alpine plateaus (UNESCO; Brooks 1993). Beach sediment is 

primarily sourced from erosion of local rocks and the varied coastline and subsequent 

beach energies result in Gros Morne National Park beaches having a wide variety of 

sediment sizes (Figure 4.7). 

 

4.2.2 Climate and Weather  

 

 Moderate seasonal temperature changes and moisture for abundant precipitation is 

provided to western Newfoundland by winds blowing inshore from the Gulf of St. 

Lawrence (Parks Canada 2011C). Using Rocky Harbour, which has a central location 

within Gros Morne, provides a representative example of weather conditions along the 

western shore of the park. June through September provides the warmest conditions with 

daytime temperatures averaging 13.3  C, and night time temperatures at least 5 degrees 

cooler. Higher elevations can be up to 10 degrees cooler, relative to the shoreline, when 

combined with wind chill. The prevailing winds are from the southwest and average 23-

27 km/h throughout the year on the western shores (Figure 4.8) (Kahn and Iqbal, 2004). 

Winter temperatures average -6.4  C from December through March, but can be as low as 

-20  C at higher elevations (Parks Canada 2011C; Environment Canada 2011). 

Temperatures along the coast fluctuate approximately 20  C between summer and winter 

months, however extreme highs (30  C) and lows (-36  C) have been recorded 
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Figure 4.7 Photos illustrating the wide variety of sediment sizes characterizing 
  Gros Morne National Park beaches. A- Rocky Harbour with fine
  sand and pebbles, and B- Green Point with cobbles and 
  boulders.
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Figure 4.8  Wind map of Newfoundland (m/s) at surface level averaged over 55 years 
  from 1948 to 2003 (modified from Khan and Iqbal 2004).
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Figure 4.9  Sampling locations on the island of Kauai, Hawaii. Closed circles
  indicate beaches where plastic debris was visible to the naked
  eye.  Solid lines represent the shoreline, dashed lines are roads, 
  and thick red lines represent transect lines (modified from
  Cooper and Corcoran 2010).
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each beach parallel to the shoreline. Plastic particles visible to the naked eye were 

collected from 50 cm-wide swaths at 10 m intervals stretching from the water to the 

vegetation lines. A stainless steel tablespoon was used to collect each plastic particle and 

<5 g of surrounding beach sediment. Caution was used in order to avoid scratching the 

surfaces of the plastic during sampling. Kalihiwai, Keaalia, Lydgate, Salt Pond and 

Maha’ulepu beaches were chosen as sampling sites to provide a proportional 

representation of plastic debris deposition on Kauai. Previous research by Corcoran et al. 

(2009) showed that of eighteen beaches sampled, only seven contained plastic debris 

visible to the naked eye, and all were located on the east coast of the island. Maha’ulepu 

beach accumulates large quantities of plastic debris and was chosen as the site to 

determine daily accumulation. Plastics were sampled from a 1 m x 5 m area at a depth of 

<3 cm daily for a period of eleven days from March 9-20, 2009 (Figure 4.10). On day 1 

all plastic was cleared from the sampling site by sifting the top ~3 cm of sand through a 

hand held sifter with a 2 mm sized mesh opening. Each day at approximately 11:00 am 

the area was cleared of any plastic debris using the same procedure. Collected debris was 

placed in a one gallon pail with ocean water, and plastic was then separated from organic 

debris by type: pellet, small fragment (< 1cm2) and large fragment (>1cm2). The plastics 

were air dried and placed in sealed bags for transport back to the University of Western 

Ontario. 
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Figure 4.10  A- schematic diagram of sampling grid location on 
  Maha’ulepu beach, and B- photograph of accumulation grid 
  location on the beach. White box, and rocks at each corner 
  define the perimeter of the grid at 1mx5m.
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(Environment Canada 2011). ‘Total hours’ of bright sunshine, which is representative of 

the most intense sun during the day, averages 1307 hours/year. May through August 

receives the greatest amount of bright sunshine hours with an average of 179 

hours/month. November through February receives considerably less, at an average of 36 

hours/month (Environment Canada 2011). 

 

Proximity to the Gulf of St. Lawrence provides the beaches of Gros Morne 

National Park with abundant precipitation throughout the year. Rainfall averages 898 

mm/year and snow falls at an average of 418 mm/year for a total of 1316 mm/year of 

precipitation. June through September are the only months not to receive snowfall, but 

during these months an average of 107 mm/month of rain falls. The coldest months 

(December through March), receive an average of 33 mm/month of rain and 88 

mm/month of snow (Environment Canada 2011). Gros Morne National Park receives 

typical maritime weather with a temperate climate and moderate temperature changes. 

This location was ideal for providing a variety of climatic conditions including significant 

changes in precipitation, sun, wind, and temperature.  

4.3 Methodology, Kauai, Hawaii, U.S.A.

 

Plastics were sampled from Kauai over an eleven day period during the month of 

March, 2009. Plastic fragments were sampled from five beaches on the northeastern, 

eastern and southern shores of Kauai (Figure 4.9). One 40 m transect line was placed on 
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4.4 Methodology, Gros Morne National Park, Newfoundland, Canada 

 

Two hundred seventy-one samples were collected over a four day period during 

the month of September, 2010. One 40 m transect line was placed on each beach parallel 

to the shoreline. Plastic debris visible to the naked eye was collected from 50 cm-wide 

swaths at 10 m intervals stretching from the water to the vegetation lines. Samples were 

collected using a stainless steel tablespoon with <5 g of surrounding sediment where 

possible. On beaches with coarse-grained sediment, >.5cm samples were collected by 

hand using vinyl gloves. Caution was used in order to avoid scratching plastic surfaces. 

All fragments were placed into sealed labeled containers. 

 

Eight beaches were sampled along the western shore of the park with an aim to 

sample areas receiving debris from potentially different sources, including beaches 

conducive to public use as well as remote beaches with little direct human impact (Figure 

4.11). In addition to usage, beaches with various sediment grades were selected to 

determine the effect of sediment size on the deposition, retention and degradation of 

plastic debris. Cow Head, St. Pauls, Broom Point, Sally’s Cove, Green Point, Rocky 

Harbour, Woody Point and Trout River were chosen because these locations provided 

variations in use, wave energy, sediment type and size, and proximity to residential areas. 
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4.5 Analysis 

 

 In order to remove any loose debris, CaCO3, NaCl or other residues, all samples 

were washed using de-ionized water for 4 minutes in a Branson ultrasonic cleaner, then 

dried in a Thelco precision laboratory oven at 35˚C for 45 minutes. A Bruker IFS55 FTIR 

equipped with a microscopic stage attachment, located at Surface Science Western at the 

University of Western Ontario, was used to perform Fourier transform infrared 

spectroscopy (FTIR). A micro attenuated total reflection (micro-ATR) attachment was 

used to determine the composition of plastics and levels of surface oxidation. The ATR 

attachment allows for information to be collected from the surface of the sample, whereas 

Diffuse and Specular FTIR provide information from the bulk matrix and thin layers. 

Digital photographs of Kauaiian samples were taken at Surface Science Western using a 

Hitachi S-4500 field emission scanning electron microscope (FESEM) with a 10 kV 

electron accelerating voltage and a 30˚ sample tilt to analyze surface textures. All plastic 

samples were treated with a light coating of conductive gold prior to analysis to prevent 

sample charging. Gros Morne National Park samples were treated with a light coating of 

conductive carbon prior to analysis to prevent sample charging. Images were taken using 

a Hitachi SU6600 FEG-SEM field emission scanning electron microscope (FESEM) with 

a 3 kV electron accelerating voltage located in the Department of Earth Sciences at the 

University of Western Ontario.   

 

 

 

  



       

4.5.1 Fourier Transform Infrared Spectroscopy

 

Fourier Transform Infrared Spectroscopy (FTIR) was used to determine levels of 

oxidation and polymer compositions. All molecules possess several energy levels which 

correspond to different vibrational states. The energy of radiation in the infrared region of 

the electromagnetic spectrum corresponds to the spacing between these levels. If 

radiation impinges on a molecule, it is absorbed and converted to molecular vibrational 

and rotational energy. Certain functional groups absorb energy at different frequencies 

specific to the vibrations of those functional groups. There are two main modes of 

vibration, 1) stretching vibrations which produce changes in bond lengths, and 2) bending 

vibrations which produce changes in bond angle (MacManus 1998). FTIR spectroscopy 

utilizes the absorption of radiation in the IR frequency range due to molecular vibrations 

of functional groups within the polymer chain. A plot is obtained of some function of 

radiation intensity against a level of frequency (Hamid et al. 1992). Molecular transitions 

between quantum states of different internal energies results in an infrared spectrum.  

 

Figure 4.12 is a spectrum of untreated PP, which gives characteristic absorbance 

peaks due to C-H stretching and bending vibrations. The 4000-1300 cm-1 range is 

referred to as the functional group region; this region is useful for the determination of 

the presence or absence of functionality. The 1300-600 cm-1 range is the fingerprint 

region and is used for determining the composition of unknown samples by comparing 

spectra with known reference spectra (MacManus 1998). Molecular vibrations 

characteristic of chemical groups such as alkyl, hydroxyl or carbonyl are associated with 
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energy differences related to the frequency of emitted or absorbed radiation. Absorption 

bands between 1850 and 1700 cm-1 indicate carbonyl groups such as carboxylic acids, 

aldehydes, esters and ketones and are associated with the products of degradation which 

relate directly to oxidation. FTIR has been widely used to examine the degradation of 

polymers, especially photooxidation, because weathering effects on polymers are 

concentrated in the surface layers (Hamid et al. 1992). 

 

 

4.5.2 Scanning Electron Microscopy 

 

Scanning Electron Microscopy (SEM) is used to capture images of surface 

features and identify surface textures. SEM is performed on samples coated in some type 

of heavy metal. e.g. gold or carbon which prevents charging. Samples are placed in a 

chamber, above the chamber is a column containing electromagnetic lenses; a tungsten 

filament is the typical electron source at the top of the column (Mahaney 2002). The 

samples are then placed under high vacuum and bombarded with electrons from the 

heated tungsten filament. The electrons leave the filament and are accelerated by 1 to 40 

kV, and then pass through magnetic lenses which reduce the size of the original beam 

from 0.002 inches to 100 Å (Krinsley and Doornkamp 1973; Mahaney 2002). A small 

aperture provides a large depth of field which is beneficial when examining rough 

surfaces. An electron field is scanned raster line by line across the sample by a deflection 

field, and when the secondary electrons are emitted from the surface they are picked up 

by a collector and form a signal. Secondary electrons are used to produce images of 
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surface topography in SEM because of their ability to image detailed surface structures 

(Mahaney 2002). A cathode ray tube is scanned at the same time as the electron beam so 

that each point on the cathode tube corresponds to spots on the item being scanned 

(Krinsley and Doornkamp 1973). The signal varies from point to point on the item 

surface as the number of electrons varies, which results in a variation of brightness or 

contrast on the face of the display tube. A three dimensional picture is obtained through 

the great depth of field, and high resolution is a result of the small probe size (Krinsley 

and Doornkamp 1973). 
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CHAPTER 5 

DISTRIBUTION OF PLASTIC DEBRIS 

5.1 Kauai, Hawaii, U.S.A.

 

Sampling results, supported by research conducted by Corcoran et al. (2009), 

confirm that plastic debris on Kauai is concentrated along the eastern shoreline of the 

island. Results from Corcoran et al. (2009) indicated that beaches on the west, north and 

south portions of the island contain no mm-size macro- or microscopic debris. Our 

findings are also consistent with McDermid and McMullen (2004) who collected small 

plastic debris from 9 beaches throughout the Hawaiian archipelago and identified 17,645 

particles on Cargo Beach located on the north-east (windward) side of Midway Atoll and 

just 6 pieces on Nanakuli Beach Park located on the leeward coast of O’ahu.  

 

 Each sampling location on Kauai contained some measurable quantity of plastic 

debris, however, Kalihiwai, Lydgate and Maha’ulepu beaches all contained large 

quantities (>200 pieces/transect). In contrast, Kealia beach, located on the north shore, 

and Salt Pond beach, on the leeward side of the island, yielded a total of 70 and 2 pieces 

respectively (Figure 5.1). Plastic debris along transect lines at Kalihiwai, Kealia, Lydgate 

and Maha’ulepu beaches displayed similar patterns of distribution with fragments and 

pellets being concentrated along the high tide or storm lines (strandlines) (Figure 5.2). At 

each of these sampling sites, plastic debris was primarily interspersed with organic 
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Figure 5.2  Photographs of plastic fragments intermixed with organic 
  debris along the strandline on Maha’ulepu beach.

2.5 cm
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debris. Areas below the strandline contained little to no fragments and areas above 

contained fewer particles relative to the strandline.  This is an indication that particles 

suspended in the water are being deposited during storm events and/or during each 

receding tide (McDermid and McMullen 2004; Cooper and Corcoran 2011). During 

sampling, we noted several rounded particles and plastic resin pellets being blown up the 

beach, suggesting that wind transport may be another process of deposition at the high 

tide line where particles are caught in organic material. At each sampling locality, plastic 

debris was primarily macroscopic (<5 mm) and limited to the top 3 cm of beach 

sediment.  

 

Quantity, size and distribution of plastic debris on Kauaiian beaches can be 

attributed to an abundance of plastic within the North Pacific Gyre, depositional patterns 

of long-shore currents around the Hawaiian Islands, prevailing western trade winds, and 

trash left by beach-going residents and tourists. The relative abundance of microscopic to 

macroscopic debris is a result of Kauai’s location within the North Pacific Gyre where 

large quantities of virgin resin pellets and fragmented pieces of larger items occur at a 

ratio of 6:1 plankton to plastic mass (Moore et al. 2001). No intact or partially intact 

debris was collected on Kauaiian beaches, as a result of regular beach clean up efforts 

conducted by area residents and organized volunteer groups. 
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5.2 Gros Morne National Park, Newfoundland, Canada

Plastic debris was present on all beaches sampled within, and near Gros Morne 

National Park (Figure 5.3). However, small fragments (<5cm2), when compared to 

similar studies conducted in subtropical climates (see Corcoran et al. 2009; Cooper and 

Corcoran 2010), constituted a smaller portion of debris relative to the overall plastic load. 

High energy beaches with coarse sediment grades contained larger organic debris, such 

as tree branches and kelp, and this type of debris was dispersed throughout the beach but 

concentrated at the high water line (strandline). Plastic fragments were scattered across 

the beaches, but the greatest amount of plastic was located at the strandline where plastics 

were intermixed with organic debris.  

 

Beaches with coarse sediment, including cobbles and boulders, primarily 

contained intact or partially intact plastic items (Table 5.1). Items such as shotgun shell 

casings, lobster tags, plastic bottles and tampon applicators were most common and in 

most cases displayed little visual sign of degradation. Fragmented debris were the 

predominant form of plastic present on finer-grained sandy beaches. However, shotgun 

shells and lobster tags were found on every beach sampled. Sandy beaches contained less 

organic material than coarse grained beaches. 
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Figure 5.3 Satellite image (Google Earth) of Gros Morne National Park.  Green line indicates
  the park boundary. Red dots indicate beaches where plastic debris was collected.
  Graph displays relative abundance of plastic debris collected at each sampling
  locality. A) Broom Point, B) Green Point, C) Sallys Cove, D) Woody Point,
   E) Shallow Bay, F) Rocky Harbour, G) St. Pauls Bay, H) Trout River.
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The distribution of plastic debris closely follows patterns similar to the deposition 

of natural beach sediments. Intact, partially intact and large fragmented debris 

characterize high energy beaches such as those near Green Point and Broom Point. These 

beaches also contain greater quantities and larger varieties of organic debris. Smaller 

fragmented particles were most prevalent on lower energy beaches such as those near 

Shallow Bay and Rocky Harbour, which are more sheltered from strong winds and waves 

(see figure 4.6). The relationship between beach energy, sediment size and particle 

distribution was particularly evident on beaches containing a variety of sediment grades. 
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CHAPTER 6 

COMPOSITION AND OXIDATION OF SAMPLES 

6.1 Composition

 

 6.1.1 Kauai, Hawaii, U.S.A

Compositional analysis of plastic debris sampled from Hawaiian beaches 

indicated that PE and PP were the only polymer types collected. PE constituted a much 

greater proportion of debris relative to PP, with results indicating a ratio of 80:20. The 

composition of sampled PE was indicated by characteristic peaks at wavenumbers 2916, 

2849, 1471, and 718 cm-1. PP samples produced five distinct peaks between 2723 and 

2950 cm-1, which are characteristic of the material (Figures 6.1-6.3, Appendix 1). Debris 

collected from Kauaiian beaches were primarily small fragmented pieces (<11mm) of 

larger items (Table 6.1). 

 

 

6.1.2 Gros Morne National Park, Newfoundland, Canada

Beaches in and near Gros Morne National Park followed a similar trend to 

Hawaiian beaches with compositions of analyzed plastics being 86% PE and 14% PP 

(Table 6.2). Fragmented pieces of larger items represent the main component of debris. 
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P artic le  C om position  S ize (m m ) 
O xidation  

(O P U S ) O xidation  (FTIR ) 
K E 02 P E  10 0  low  
K E 03 P P  6  n .d . h igh  
K E 04 P E  9  0  low  
K E 06 P E  10 0 .20 m ed 
K E 08 P E  5  0 .15 low  
K E 09 P P  7  n .d . low  
K E 10 P E  6  0 .06 low  
K E 13 P P  6  n .d . h igh  
K E 14 P E  4  0  low  
K E 16 P E  5  0 .18 low  
K E 17 P E  11 0 .05 low  
K E 18 P E  7  0 .21 m ed 
K E 19 P E  3  0 .22 m ed 
K E 20 P E  9  0 .21 m ed 
K E 21 P E  4  0 .28 m ed 
LY 01 P E  4  0  low  
LY 03 P P  7  n .d . low  
LY 04 P E  7  0 .23 m ed 
LY 06 P P  9  n .d . h igh  
LY 07 P E  9  0 .19 m ed 
LY 08 P E  5  0 .22 m ed 
LY 09 P E  4  0  low  
LY 10 P E  5  0 .09 low  
LY 12 P E  5  0 .18 m ed 
LY 14 P E  4  0 .10 low  
LY 16 P E  3  0 .13 low  
LY 18 P E  6  0 .16 m ed 
LY 20 P E  4  0 .39 h igh  
LY 21 P E  5  0 .02 low  
M A 01 P E  10 0  low  
M A 02 P E  4  0  low  
M A 03 P E  6  0 .01 low  
M A 04 P P  5  n .d . h igh  
M A 05 P E  5  0  low  
M A 06 P E  8  0 .26 m ed 
M A 07 P P  9  n .d . low  
M A 08 P E  5  0 .19 m ed 
M A 09 P E  4  0 .02 low  
M A 10 P E  6  0  low  
M A 13 P E  6  0 .14 low  
M A 14 P P  7  n .d . m ed 
M A 15 P E  5  0 .33 m ed 
M A 16 P E  5  0 .30 m ed 
M A 18 P E  5  0 .31 m ed 
M A 20 P P  4  n .d . h igh  
M A 21 P E  7  0 .24 m ed 
K A 05 P E  7  0 .12 low  
K A 09 P E  7  0  low  
K A 10 P E  3  0  low  
K A 12 P E  4  0  low  
K A 13 P P  11 n .d . m ed 
K A 15 P E  3  0 .21 m ed 
K A 16 P E  4  0 .38 h igh  
K A 17 P E  4  0  low  
K A 18 P P  6  n .d . h igh  
K A 19 P E  4  0  low  

 

Table 6.1  Representative samples selected for FTIR and SEM analysis illustrating 
  composition, size and oxidation level of debris from Kauaiian beaches. 
  Oxidation levels were calculated using OPUS software, low 0-0.15, 
  medium 0.16-0.30, high >0.31. PE- polyethylene, PP- polypropylene. 
  (Modified from Cooper and Corcoran 2010).
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Sample Compositio
n 

Oxidation 
Level (FTIR)  

Oxidation 
Level (OPUS 

Surface 
textures 

Debris type 

NL-01 PS ND n.d Linear 
fractures 

Bottle cap 

NL-02 PP Low n.d Cracks, 
adhering 
particles 

Lobster trap 
tag 

NL-03 PE Low 0.02 Cracks Fragment 
NL-04 PP Low n.d. Fractures Lobster trap 

tag 
NL-06 PE High 0.38 Fractures, 

granular 
oxidation 

Fragment 

NL-07 PE Low 0.10 Grooves Fragment 
NL-10 PE Low 0.02 Flakes, 

granular 
oxidation 

Lobster trap 
tag 

NL-13 PE Low 0.05 Flakes, 
granular 
oxidation 

Pellet 

NL-14 PE Med 0.19 Porous Shotgun 
shell 

NL-15 PE Low 0.14 ND Fragment 
NL-16 PE Low 0.09 Cracks Cigar tip 
NL-18 PE Low 0 Flakes, 

adhering 
particles 

Bottle 

NL-19 PE Low 0 Grooves, 
flakes 

Lobster trap 
tag 

NL-22 PE Low 0.14 Adhering 
particles, 
grooves 

Toy shovel 

NL-23 PE med 0.22 Flakes Fragment 

Table 6.2  Representative samples selected for FTIR and SEM analysis illustrating 
  composition, surface texture features, type of debris, and oxidation level of 
  debris from Newfoundland beaches. Oxidation levels were calculated using 
  OPUS software, low 0-0.15, medium 0.16-0.30, high >0.31. PE- polyethylene, 
  PP- polypropylene, PS-polystyrene. 
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Composition of sampled debris was indicated by characteristic peaks at wavenumbers 

2916, 2849, 1471, and 718 cm-1 for PE, and characteristic peaks between 2723 and 2950 

cm-1 for PP (Figures 6.4-6.5, Appendix 1). The high proportion of intact, nearly intact 

and large fragmented debris provided for easier identification of debris type relative to 

Kauaiian samples (Table 6.2). Based on composition and visual assessment, sources of 

plastic debris collected from Newfoundland beaches were disseminated into five 

categories, including i) Hunting/Fishing gear, ii) Food packaging, iii) Medical/Sanitary, 

iv) Consumer goods, and v) Indeterminate (fragments) (Figure 6.6). 

 

6.2 Oxidation of samples

 

Increased absorption peaks in FTIR spectra near wavenumber 1711 cm-1 are 

indicative of oxidation. Oxidation levels were classified as low, medium or high, (see 

table 6.1) based on increased peak height at 1711 cm-1 relative to the characteristic peak 

height at 1471 cm-1 when compared against standard blanks (Figure 6.7). Samples 

collected from the islands of Kauai and Newfoundland display varying levels of 

oxidation with relative increase of absorption peaks as indicated in figures 6.1-6.5, tables 

6.1, 6.2, Appendix 1). Eleven PP samples from Kauaiian beaches were examined, 58% of 

these samples exhibited high oxidation levels, compared to 45 PE samples with just 

0.04% being classified with high oxidation levels. This is consistent with data collected 

from experimentally degraded plastics, which indicate that PP is more conducive to 

photo-oxidative degradation relative to PE. 
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Figure 6.7  FTIR spectra illustrating increasing levels of oxidation of 
  samples relative to pure untreated blanks at 
  approximately 1711 cm    wavenumber region as 
  indicated by blue circles, A) PP, B) PE. 

PP blank

PE blank

-1

Low

Medium

High

High

88



       

CHAPTER 7 

DEGRADATION OF SAMPLES 

 

7.1 Chemically Produced Surface Textures 

 

7.1.1 Flakes 
 

 
 Flaking involves the formation of a brittle surface area or layer on the polymer 

surface. This area or layer resembles a skin with a finite thickness that can become very 

brittle and subsequently detach from the polymer surface when exposed to natural 

weathering conditions (Kulshreshtha 1996). Flaking of a polymer can be facilitated by 

mechanically produced features, including fractures and cracks, which provide an ideal 

site for flaking to propagate (Figures 7.1-7.3, Appendix 2). 

 

 

7.2 Mechanically Produced Surface Textures

7.2.1 Grooves

 Grooves result from traction processes when plastic particles are dragged over 

harder materials, such as sand, granules or pebbles. Conversely they may also form when 

sediment grains are transported over stationary plastic debris. Grooves can be either 

curved or straight and are defined as deep elongate depressions or troughs caused by 
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NL 19-2

NL 23-1

NL 18-1

Figure 7.2 SEM images of chemically induced flakes identified on 
  polymer surfaces sampled from Newfoundland beaches.
  A), C) collected from St. Pauls Bay, B) collected from Shallow Bay.
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Figure 7.3 SEM images of chemically induced flakes on surfaces of 
  experimentally degraded polymers. A) Polypropylene, 
  B), C) Polyethylene. 
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some type of stylus (engraving tool). Straight grooves are deeper and distinctly linear 

relative to curved grooves (Mahaney 2002). Surface textural analysis indicates that the 

grooves on samples from both localities vary in width and length, are >100 μm long and 

>3 μm wide, are randomly oriented, and may be smooth or contain vertical notching 

(Figure 7.4, Appendix 2).   

 

 

7.2.2 Fractures 

  

Fractures can be shallow or deep and may occur in linear or conchoidal 

formations. Linear fractures locally grade into conchoidal fractures which are curved and 

have a ribbed appearance similar to that of conch shells (Mahaney 2002). Examination of 

samples from both localities show fractures which are long and thin (1μm x 5-75μm) 

occurring in a linear formation. These surface textures may be an early indication of 

stresses occurring on particles which have been embrittled through photo-

oxidative processes (Figure 7.5, Appendix 2).

7.2.3 Cracks

 

 Analysis of samples from both Kauai and Newfoundland indicate that large, deep 

cracks occur in both linear and random orientations (Figure 7.6, Appendix 2). Average 

sizes ranged from 3-5 μm wide, and 10-250 μm long, however, crack size is dependent 
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Figure 7.5 SEM images of small fractures forming on polymer surfaces. A), B), D), E), and F), are images of 
  polymers degraded experimentally, C) Sample NL 01-1 was collected from Woody Point, 
  Newfoundland.
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Figure 7.6 SEM images of cracks forming on the surfaces of various polymer samples. A), C),
  and E) Samples collected from Maha’ulepu, Lydgate, and Kealia beaches on the island of 
  Kauai.  B), D), Samples collected from Green Point, Newfoundland and F) Sample 
  collected from Broom Point, Newfoundland.
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on fragment size therefore these values represent ranges only. Cracks represent extended 

exposure to degradative processes, primarily photooxidation, and are an extension of 

fractures, which act as stress concentrators and fracture loci (Rabek 1996). Tensile 

stresses are placed on surfaces when polymers are exposed to moisture (e.g. humid air, 

direct rain or dew) and as the absorption of water causes swelling of plastic components. 

Desiccation of the surface layer leads to contraction which is hindered by the swollen 

layers below. This process may result in cracking due to the tensile stresses on the 

polymer surface (Rabek 1996). The growth of cracks can be limited by tie-molecules 

(fibrils) which were most prominent in samples degraded experimentally (Figure 7.7 

A,C,D, Appendix 2), but were also identified on samples collected from Kauai (Figure 

7.7 B, Appendix 2). Tie molecules induce plasticization when mechanical stresses are 

applied and can contribute to necking and elongation of the polymer (Kulshreshtha 

1992). 

 

 

7.2.4 Adhering Particles 

Adhering particles are fragments or particles of other substances, either natural or 

synthetic, which have agglutinated to larger items (Mahaney 2002). The adhesion to 

plastic particles is a result of the cohesiveness of the surfaces. Examination of plastic 

debris from both sampling localities shows that adhering particles were prominent on 

many samples, occurred in random orientations, and were <20 μm in size (Figure 7.8, 

Appendix 2). 
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Figure 7.8 SEM images of adhering particles on polymer surfaces
  indicated by red arrows. A) Sample collected from Maha’ulepu 
  Beach on the island of Kauai, B) Sample collected from Woody
  Point, Newfoundland.
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7.2.5 Pits 

 

 Pits are small impact sites on the polymer surface caused by mechanical forces 

exerted on the particle while at sea, in the surf zone, or once deposited on the beach. Pits 

can form when plastics are hit by hard objects such as hail or sand grains. Analysis of 

sampled debris shows that impact sites are potential areas for increased oxidation, and/or 

mechanisms for transport of biological organisms (Figure 7.9, Appendix 2). Pits were 

identified only on samples from Kauai and were between 40 and 80 μm in diameter.

 

 

7.2.6 Vermiculate textures
 

 
 Vermiculate textures have a burrow-like surface which may extend deeper into 

cracks and crevices. The visual characteristics of this surface texture suggest that it may 

be produced from a biological source, but this could not be confirmed. Vermiculate 

textures were present only on PE particles sampled from beaches on Kauai, Hawaii 

(Figure 7.10, Appendix 2). 
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Figure 7.9  SEM images of pits formed on polymer surfaces of samples collected from Kauaiian 
  beaches. A), B), E), F) Samples collected from Lydgate Beach,  C) Sample collected from 
  Maha’ulepu Beach, D) Sample collected from Kalihiwai Beach. Sample LY 09-5 displays 
  how pits provide sites for oxidation to occur, sample LY 12-4 displays how pits may 
  facilitate transport of microorganisms.
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CHAPTER 8 

EXPERIMENTAL CHAMBER STUDY 

Three commonly used polymer types with various characteristics (Table 8.1) were 

compared and analyzed to clarify which surface textures form through chemical 

weathering in the absence of mechanical erosion. Samples included small (1 cm x 1 cm) 

particles of PE, PP and PS obtained from common household food packaging, as well as 

virgin plastic pellets from Nova Chemicals (Ontario, Canada). Ten pieces of each plastic 

type were placed on a sand base within a chamber maintaining a constant temperature of 

26  C. The samples were irradiated with 366 nm of long wave ultraviolet radiation from a 

Mineralight Multiband hand held ultraviolet wand and were removed at weeks 2, 6, and 

10. A second suite of samples was placed in a Kelvinator chest freezer at -16  C for ten 

weeks. The samples were then analyzed using FTIR and SEM (methods as outlined in 

chapter 4). 

 

 

8.1 Effects of Composition and Time

 

We examined  the effects of UV  irradiation  on PE fragments, PP fragments, PS 

fragments, and PE pellets over a period of 10 weeks. Exposure time was shown to be an 

important factor in the degradation of plastic, as evidenced from the gradual increase in 

crazing (cracking network) from weeks 0 to 10 (Figures 8.1-8.2). White PP and PS 
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exhibited the highest textural degree of degradation, which is supported by the successive 

increase in the level of oxidation as indicated by increased absorption peaks around the 

1713 cm
-1 

wavenumber region on FTIR spectra (Figure 8.3). SEM imagery of PE 

fragments and pellets showed minimal textural changes. Zhao et al. (2007) demonstrated 

that pure PE samples irradiated with UV light for 100 hours undergo little alteration. 

FTIR spectra from this study were determined for PE pellets exposed to 1680 hours of 

UV  light and we  also found no significant increase in oxidation level. Previous research 

conducted by Cooper and Corcoran (2010) suggested that plastic debris sampled from 

subtropical beaches showed PE to be more conducive to chemical weathering relative to 

PP, however SEM imagery of the plastics in our experimental study clearly indicate that 

this is not the case. Instead, the more abundant weathering features in PE fragments from 

the sampled beaches must have experienced greater residence times at sea and/or on the 

beach than the PP types. 

 

 

8.2 Effects of Colour

 

Both PE and PP fragments were used to determine the effects of color on 

degradation.  The results indicate that the coloured fragments display minimal crazing 

compared with the white fragments (Figure 8.4). Coloured PE and PP showed very little 

change in surface textures over 10 weeks of UV exposure. FTIR spectra of coloured 

samples are affected by the paint on the surface of the plastic and therefore these samples 

were excluded from oxidation analysis. 
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8.3 Effects of Scoring

 

Certain plastic fragments were scored (incised) in order to simulate the effects of 

mechanically-produced fractures on the rate of chemical weathering (Figures 8.5-8.6). 

Previous research conducted by Corcoran et al. (2009) and Cooper and Corcoran (2010) 

indicated that mechanically produced fractures and cracks are favourable sites for 

oxidative processes to occur. Artificially scored white PE exhibited little difference in 

degradation relative to non-scored samples (Figure 8.5A), as a result of its chemical 

weathering-resistant nature. However, both white PP and PS show extensive degradation 

within the fractures compared with the non-scored surface (Figure 8.5 B,C). The results 

also indicate that coloured PP and PE, which are preferentially resistant to chemical 

weathering, readily degrade within the incisions (Figure 8.6 D,E). PE pellets are 

homogenous in their composition and, as expected, showed no significant difference in 

degradation within the incision compared with the surface.  

 

 

8.4 Effects of Cold Temperatures

 

Cold  temperatures in the absence of UV radiation for 10 weeks had little effect 

on surface textures of the different plastic types. White PP, white PE, PE pellets and PS 

displayed little to no degradation from week 0 to week 10. Analysis of SEM images 

displayed only minor degradation in specific areas. Coloured PE and PP experienced 

minor flaking as a result of cold exposure (Figure 8.7). Similarly, FTIR spectra of 

samples exposed to cold exhibit no noticeable difference in the level of oxidation. 
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Figure 8.5 SEM images showing the effects of scoring on plastics degradation.
  A-A’) white polyethylene at weeks 2 and 10, B-B’) white polypropylene 
  at weeks 2 and 10, C-C’) polystyrene at weeks 2 and 10. Red arrows 
  point to the gradual increase in surface textures over time. Note that 
  there is no notable difference between white polyethylene between 
  weeks 2 and 10.
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CHAPTER 9 

DISCUSSION 

9.1 Plastic Beach Debris 

  

Kauai is located within the North Pacific Tropical Gyre and the combination of 

geographical location, wind and ocean currents, and the great accumulation of debris 

within the gyre, result in steady deposition of plastic debris on Kauaiian beaches (Cooper 

and Corcoran 2010). Heaviest accumulation of debris occurs on the eastern side of the 

island due to the relationship between longshore ocean currents and northeast trade winds 

(Corcoran et al. 2009; Cooper and Corcoran 2010). Gros Morne National Park is located 

on the western side of Newfoundland and deposition of debris on beaches is primarily 

controlled by winds blowing in from the Gulf of St. Lawrence, and the Labrador Current 

which travels south between  Labrador and Newfoundland (Table 9.1).  

 

Plastic debris deposited on beaches originates from both land and water-based 

sources, however the majority of plastic ocean debris (>80%) is derived from land-based 

sources (Derraik 2002, Gregory and Andrady 2003). Kauai has a population of 58,000 

people, and approximately one million more visit each year (Kauai Highlights 2010), 

however, large quantities of intact or nearly intact debris from beachgoers is minimal. 

The majority of plastics being deposited on Kauaiian beaches are plastic resin pellets and 

small (<1 cm) fragmented pieces of larger items, which is indicative of debris with longer 
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 Kauai Newfoundland Experimental 
Climate    
Primary wind direction W-SW SW N/A 
Average precipitation/year 1200 mm 1316 mm N/A 
Average temperature 
 

27˚C yearly 13.3˚C  summer 
-6.4˚C  winter 

26˚C 

Winter/Summer temperature 
diff. 

8˚C 20˚C N/A 

Plastic Debris    
# of beaches sampled 5 8 N/A 
# of beaches with plastic present 5 8 N/A 
Most prevalent type identified PE PE N/A 
# of particles collected 2541  271 N/A 
Intact debris 0 45 (16.6 %) N/A 
Nearly intact debris 0 26 (9.6 %) N/A 
Large fragments 
>5 cm 

124 (4.9 %) 82 (30.3 %) N/A 

Small fragments 
<5 cm 

2142 (84.3 %) 118 (43.5 %) N/A 

Pellets collected 143 (5.6%) 1 (0.4 %) N/A 
Other (Styrofoam, etc.) 132 (5.2 %) 0 N/A 
Textures present 
on samples 

   

Flakes    
Grooves   X 
Fractures    
Cracks    
Pits   X 
Tie molecules    
Adhering particles   X 
Vermiculate  X X 
Composition    
# of particles examined 56 15 N/A 
# of PE 45 (80.4 %) 12 (80.0 %) N/A 
# of PP 11 (19.6 %) 2 (13.3 %) N/A 
# of PS 0 1 (6.7 %) N/A 
# of high oxidation 8 (14.3 %) 4 (28.5 %) N/A 
# of medium oxidation 19 (33.9 %) 3 (21.4 %) N/A 
# of low oxidation 29 (51.8 %) 7 (50.0 %) N/A 

Table 9.1 Summary of climate, debris characteristics, surface textures, and composition 
  of plastics collected from both sampling localities as well as plastics degraded
  experimentally.
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residence times in the environment, and more distant sources (Moore 2008). Plastic resin 

pellets are commonly found on beaches around the world (Carpenter et al. 1972; Moore 

2008; Costa et al. 2010; Zbyszewski and Corcoran 2011), and comprise a large portion of 

plastic debris collected from Kauai, however, only one pellet was identified on Gros 

Morne beaches (Table 9.1). Beach cleanups on Kauai are organized by several volunteer 

groups including The Kauai Group Sierra Club and The Surfrider Foundation who 

routinely clear the beach of large plastic debris and derelict fishing gear. The regular 

removal of large debris may explain the relative abundance of small particles and pellets 

on the beaches as these items are more difficult to detect, they are present in larger 

quantities, and they are less cost effective to remove.  

 

The proportion of small particles relative to larger items on Kauaiian beaches is in 

contrast to debris types sampled from Gros Morne National Park beaches (Table 9.1). 

Sampling of beaches in, and near the park, displayed a large proportion of intact and 

nearly intact debris which suggests that plastics originate from more local sources. The 

large proportion of macroscopic debris including shot gun shells and lobster trap tags 

suggests plastic waste is being deposited into the waters from nearshore activities such as 

fishing and hunting. Other clearly identifiable debris included tampon applicators and 

food packaging which are likely washed into local ocean waters through streams, rivers 

and storm drains located near more highly populated areas (Figure 9.1).  
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Figure 9.1 Satellite image (Google Earth) of Trout River, showing the proximity of the 
  population to the water, and two rivers feeding into the bay, which result in the 
  deposition of intact and nearly intact debris on the beach.
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Newfoundland has a population exceeding 500,000 people and another 500,000 

people visit the island each year. Annual cleanups of beaches within Gros Morne 

National Park are conducted by Parks Canada as well as other organizations such as The 

Protected Areas Association of Newfoundland and Labrador. Notwithstanding the efforts 

put forward by environmental groups, plastic debris continues to accumulate, due in large 

part to the high rate of deposition. Plastic debris was present on every beach visited in 

both study areas (Table 9.1). Polyethylene and PP are the most widely used polymer 

types, and consequently have become the most prominent polymer types found in the 

natural environment (Arutchelvi et al. 2008, Corcoran et al. 2009; Cooper and Corcoran 

2010; Zbyszewski and Corcoran 2011). Analysis of plastic debris sampled from Kauaiian 

and Newfoundland beaches confirmed the abundance of PE and PP compared with other 

polymer compositions. 

  

Kauaiian beaches are primarily composed of calcareous sands made up of mainly 

coralline algae and coral fragments, which results in a relatively uniform sediment size 

(Blay and Siemers 2004). Plastic debris was evenly distributed along each sampling site 

on Kauai, with the exception of Salt Pond where only two particles were collected.  

Beach sediment on Newfoundland beaches ranges from fine sand to boulders. Plastic 

debris on Newfoundland beaches closely mimicked the deposition of natural sediment 

with large debris and coarse sediment being located on high energy beaches, and smaller 

fragmented debris and finer sediment on low energy beaches. Accumulation of plastics at 

Kauai and Newfoundland sampling locations was most abundant along the high water 

mark where plastics were intermixed with organic debris. The retention of plastics along 
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strandlines indicates that plastics are being deposited when wind and waves are strongest, 

such as at high tide or during storm events. When plastics are deposited at the high water 

mark they are, at least temporarily, removed from the water making them susceptible to 

increased UV irradiation and subsequently increased thermal and photo oxidative 

processes. Return of the particles to the water may occur through many avenues such as 

wind, waves, or rain. Subsequently, the chemically embrittled particles are made more 

susceptible to mechanical degradation processes that occur in the littoral zone. 

 

9.2 Plastics Degradation 

 

  All synthetic polymers will degrade when exposed to the natural environment, 

however the rate of degradation is dependant on environmental conditions such as 

sunlight intensity and temperature as well as polymer type (Gijsman et al. 1999). The 

textural investigations of this study indicate that polymers in the natural environment 

exhibit many of the same surface textural characteristics as natural beach sediments. 

Mechanical erosion processes produced distinct surface textures on debris collected from 

both sampling localities, confirming that mechanical degradation of plastics operates 

comparably in both subtropical and temperate climates (Table 9.1). Chemical degradation 

characteristics were less prominent on Newfoundland samples which may be a result of 

less time at sea, cooler water, air and beach temperatures, and/or decreased exposure to 

UV radiation.  
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Vermiculate textures present on PE particles collected from Kauai were not 

identified on experimentally degraded PE, nor samples collected from Newfoundland. 

The presence of a unique surface texture suggests that polymers in subtropical climates 

may be susceptible to different modes of degradation caused by water salinity and/or 

temperature, biological activity, day length/amount of sunlight, or some combination of 

these factors.  

 

Biological degradation of polymers may take several hundred years, however, 

chemical and mechanical degradative processes appear to facilitate degradation of plastic 

by biological organisms (Arutchelvi et al. 2008). In addition, the adhesion of the 

organism to the polymer may initiate or promote degradation (Figure 9.2). Conversely, 

the presence of a biofilm on debris surfaces may hinder chemical oxidation of the 

polymer surface by blocking harmful UV radiation (Figure 9.3). Samples collected by Dr. 

Patricia Corcoran near Punta Maroma, Mexico (20º 44´ 14” N / 86º 57’ 58” W) displayed 

a significant amount of biological fouling (see Figures 3.7, 3.8, Appendix 3 7-10).This is 

consistent with several Kauaiian samples which were also found to contain biological 

organisms (see Figure 7.9 F, Appendix 2 60-61). No biological organisms were identified 

on Newfoundland samples. Combined with the abundance of organisms associated with 

polymer samples collected from warmer climates, this indicates that air and water 

temperatures play a significant role in biological accumulation on, and degradation of, 

plastic ocean debris. 
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Surface textures on PE samples such as grooves, vermiculate and flakes were not 

present on PP samples which displayed deeper, more well-defined cracks and fractures. 

Analysis confirms that in the natural environment, PE is preferentially degraded relative 

to PP; however, under experimental conditions PP was more susceptible to UV 

irradiation and displayed significantly higher levels of degradation over 10 weeks of 

exposure to UV light. White PP displayed the highest level of degradation whereas 

coloured PP displayed little cracking or fracturing, indicating that colourants are effective 

at protecting polymers from UV radiation. Artificially induced fractures (scoring) 

provided preferential sites for oxidation to occur, and/or propagate which is consistent 

with results obtained from analysis of polymers in the natural environment (see Cooper 

and Corcoran 2010). These factors confirm that mechanical degradation works with 

chemical oxidation to degrade plastic debris most efficiently on beaches, relative to other 

natural settings as suggested Corcoran et al. (2009) and Cooper and Corcoran (2010).  

 

The surface textures of plastic fragments and pellets exposed to UV  radiation 

over certain time periods varied extensively depending on polymer type, colour and 

presence of mechanically-induced fractures. White PS and PP samples displayed a 

significant increase in degradation between weeks 0, 2, 6 and 10 based on SEM imaging. 

FTIR spectra for these plastic types also show increasing oxidation with time. Smaller 

oxidation peaks produced by the white PE indicate that some chemical weathering 

occurred, but it was minimal compared with the PP and PS samples. The PE fragments 

and pellets display minimal surface textures in SEM images, indicating that they are not 

significantly altered by UV radiation. PP with colourants on the surface display little 
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effects of UV radiation when compared with white PP, suggesting that colourants 

protect polymers from chemical degradation. Crazing within the artificial incisions 

(scored surfaces) on both coloured and white PP was similar, supporting the hypothesis 

that mechanical erosion features promote more rapid chemical weathering. Our results 

show that exposure to cold temperatures over a 10 week period did not produce crazing, 

but some flaking occurred in specific spots on coloured PE and PP. Continuing research 

into the mechanical and chemical controls that contribute toward the breakdown of 

commonly used plastics will provide a clearer understanding of the polymers for which 

production and use should be avoided. 
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CHAPTER 10 

SUMMARY AND CONCLUSIONS 

  

 This thesis presents the analysis of plastic debris from the beaches of Kauai, 

Hawaii, U.S.A. and Gros Morne National Park, Newfoundland, Canada, as well as 

experimentally degraded plastic samples of the two most commonly used polymer types. 

The data were used to illustrate which polymer types occur most in natural beach 

environments, the rate at which accumulation occurs, the level of degradation, both 

mechanical and chemical, from subtropical and temperate climates, as well as the 

distribution and deposition of plastic debris on beaches. 

 

 

Composition and sources

PE and PP are the dominant polymer types deposited on beaches. Both sampling 

locations indicate an approximate ratio of 4:1 PE to PP. The abundance of PE and 

PP is consistent with preferred production of these compositions in end-user 

products. 

 

The small size of plastic fragments and large proportion of pellets on Kauaiian 

beaches indicates longer sediment residence times and more distal sources. 

  

125



       

Newfoundland beaches contain a large proportion of intact and nearly intact 

plastic debris which is consistent with debris derived from more local sources. 

 

Particles on Kauaiian beaches are sourced primarily from the North Pacific 

Tropical Gyre. Newfoundland beaches contain debris from several inland sources 

including fishing/hunting, consumer waste, medical/sanitary and food packaging. 

Distribution and accumulation 

 

A total of 6082 pieces of plastic were collected from Maha’ulepu beach at an 

average rate of 484 pieces/day. The first day of sampling yielded 1243 plastic 

particles, and during the following 10 days, approximately 400-600 fragments 

were deposited on the beach daily.

All sample locations on Kauai and Newfoundland contained some measurable 

amount of plastic debris, however, wind and wave patterns, ocean currents, 

proximity to sources and beach clean-up efforts play key roles in the size, 

distribution, accumulation and retention of plastic debris.  

 

Ocean currents, and wind and wave patterns around Kauai, are responsible for the 

distribution and accumulation of plastic debris along the eastern shoreline of the 
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island. Deposition of debris on Newfoundland beaches is controlled by easterly 

winds and the Labrador Current. 

 

Organic material along the strandlines in both study areas was responsible for 

trapping plastic debris. Lower energy beaches with finer sediment typically 

contained smaller organic material and plastic particles concentrated at the 

strandline. High energy beaches contained coarser sediment, and larger organic 

material and plastic debris. The concentration of plastic along the strandline is an 

indication that plastic debris is being deposited when winds are highest such as 

during storm events and/or when tides recede. 

 

Distribution patterns of plastic debris indicate that plastics follow similar 

depositional patterns as natural beach sediments. Plastic debris size on beaches is 

proportional to sediment size suggesting that as plastic degrades it may become a 

significant future component of the sedimentary deposit record. 

 

Degradation 

 

Plastic debris in temperate climates produce less chemically weathered surface 

textures, relative to subtropical climates, which is possibly due to less time at sea, 

cooler water, air and beach temperatures, and/or decreased exposure to UV 

radiation. 
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Plastic particles from beaches in subtropical and temperate climates exhibit 

similar mechanically produced surface textures. 

 

Plastics on beaches are more readily and efficiently degraded, relative to other 

natural settings, due to the combination of mechanical and chemical erosion 

processes.  

 

Experimentally degraded plastics exposed to UV  radiation  display increasing 

surface texture formation relative to exposure time. White PP particles display 

increased levels of degradation relative to other polymer types including coloured 

PP and PE, as well as virgin pellets. 

 

Paints and dyes on plastic surfaces provide protection from UV radiation and 

diminish the extent of photo-oxidation of polymers. Photo-oxidative processes, 

however, were found to degrade polymers when artificial fractures (scoring) were 

induced on coloured polymer surfaces. 

 

The adhesion of biological organisms to polymer surfaces may initiate or promote 

degradation. The presence of these organisms is more prevalent in areas with 

warmer water and air temperatures. 
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• The biofouling of polymer surfaces is more extensive in warmer climates and the 

growth of biological organisms may protect the plastic by restricting the amount 

of UV radiation reaching the polymer surface. 

 

• Mechanically produced cracks, fractures and pits, formed under either natural or 

experimentally produced conditions, provide preferential sites for UV induced 

oxidation to progress. Chemically embrittled debris may be further degraded and 

fragmented through the mechanical degradation processes associated with the 

littoral zones of beaches.  

 

• IR spectra of sampled and experimentally degraded polymers indicate that PP is 

more conducive to photo-oxidative degradation relative to PE. 

 

• SEM indicates that the combined effects of chemical and mechanical degradation 

processes may degrade PE preferentially to PP. 

 

• The calculated regeneration rate of plastics on Kauaiian beaches demonstrates that 

the continued misuse and improper disposal of synthetic polymers will not be 

resolved simply by switching to more rapidly-degrading polymer types. 

 

 

  



 The research conducted for this thesis takes a novel approach to understanding the 

fate of synthetic polymers in the natural environment. Most research in the scientific 

literature focuses on quantity and type of plastic debris, but our research group is the first 

to utilize FTIR and SEM technologies to better understand the effects of chemical and 

mechanical processes on the degradation of plastic debris. The results corroborate 

previous work conducted by our research group which indicates that beaches are the most 

optimal sites for the degradation of synthetic polymers in natural environments. 

 Future work should include further investigations into the adhesion of POPs on 

plastic surfaces and the subsequent effects of pollutant transport, as well as the biological 

implications of theses chemicals to marine species. In addition, in-depth studies into the 

origins of the vermiculate textures may provide an understanding of other possible modes 

of degradation. Simulated mechanical and thermal degradation studies would provide 

valuable information into the roles these processes play in the ultimate degradation of 

plastic debris. Furthermore, determining the fate of microplastics in the environment will 

indicate the effects these particles have on thermal retention and distribution of heat, as 

well as the porosity and permeability of beach sands. 
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APPENDIX 1 

FTIR Spectra of Kauaiian, Experimental chamber study, and Newfoundland 

samples. Spectra 1-44 are from Kauaiian samples, 1-25 have low oxidation, 26-40 have 

medium oxidation and 41-44 have high oxidation. Spectra 45-60 are from experimentally 

degraded samples, 45-58 have low oxidation, 59 has medium oxidation and 60 has high 

oxidation. Spectra 61-74 are from Newfoundland samples, 61-67 have low oxidation, 68-

70 have medium oxidation and 71-74 have high oxidation. 
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APPENDIX 2 

Scanning electron microscope images of plastic particles collected from beaches 

on the island of Kauai, and Newfoundland, as well as experimentally degraded samples. 

Images 1-64 are Kauaiian samples, images 65-139 are experimentally degraded samples, 

and images 140-157 are Newfoundland samples. 
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APPENDIX 3 

 

 Scanning electron microscope images, digital photographs, and FTIR spectra of 

samples collected from beaches near Punta Maroma, Mexico. 1-12 SEM images, 13-32 

are digital photographs of biological organisms on the surface of sampled plastic 

debris,33-43 are FTIR spectra indicating oxidation levels and polymer composition. 
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