View metadata, citation and similar papers at core.ac.uk brought to you by X{'CORE

provided by Scholarship@Western

Western University

Scholarship@Western

Physics and Astronomy Publications Physics and Astronomy Department
10-8-2009

The Lambert W Function and Quantum Statistics

Sree Ram Valluri

The University of Western Ontario, valluri@uwo.ca

M. Gl
The University of Western Ontario, 8mg48@queensu.ca

D.]. Jeftrey
The University of Western Ontario, djeffrey@uwo.ca

Shantanu Basu
The University of Western Ontario, basu@uwo.ca

Follow this and additional works at: https://ir.lib.uwo.ca/physicspub

b Part of the Applied Mathematics Commons, Astrophysics and Astronomy Commons, and the
Physics Commons

Citation of this paper:

Valluri, Sree Ram; Gil, M.; Jeffrey, D. J.; and Basu, Shantanu, "The Lambert W Function and Quantum Statistics” (2009). Physics and
Astronomy Publications. 8.
https://irlib.uwo.ca/physicspub/8


https://core.ac.uk/display/61631487?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ir.lib.uwo.ca?utm_source=ir.lib.uwo.ca%2Fphysicspub%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/physicspub?utm_source=ir.lib.uwo.ca%2Fphysicspub%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/physics?utm_source=ir.lib.uwo.ca%2Fphysicspub%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/physicspub?utm_source=ir.lib.uwo.ca%2Fphysicspub%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/115?utm_source=ir.lib.uwo.ca%2Fphysicspub%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/123?utm_source=ir.lib.uwo.ca%2Fphysicspub%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=ir.lib.uwo.ca%2Fphysicspub%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/physicspub/8?utm_source=ir.lib.uwo.ca%2Fphysicspub%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages

JOURNAL OF MATHEMATICAL PHYSICS 50, 102103 (2009)

The Lambert W function and quantum statistics

S. R. Valluri,"*® M. Gil,"?? D. J. Jeffrey,2 and Shantanu Basu'
lDepartment of Physics and Astronomy, University of Western Ontario, Ontario N6A 3K7,
Canada

2Deparlment of Applied Mathematics, University of Western Ontario, Ontario N6A 3K7,
Canada

(Received 3 June 2009; accepted 20 August 2009; published online 8 October 2009)

We present some applications of the Lambert W function (W function) to the
formalism of quantum statistics (QS). We consider the problem of finding extrema
in terms of energy for a general QS distribution, which involves the solution of a
transcendental equation in terms of the W function. We then present some applica-
tions of this formula including Bose—Einstein systems in d dimensions, Maxwell—
Boltzmann systems, and black body radiation. We also show that for the appropri-
ate parameter values, this formula reduces to an analytic expression in connection
with Wien’s displacement law that was found in a previous study. In addition, we
show that for Maxwell-Boltzmann and Bose-Einstein systems, the W function
allows us to express the temperature of the system as a function of the thermody-
namically relevant chemical potential, the particle density, and other parameters.
Finally, we explore an indirect relationship of the W function to the polylogarithm
function and to the Lambert transform. © 2009 American Institute of Physics.
[doi:10.1063/1.3230482]

I. INTRODUCTION

It is always astonishing to see a mathematical function appear in seemingly unrelated appli-
cations. The multivalued transcendental W function offers a very interesting example of this
phenomenon. This function has undergone a renaissance in recent years with the advent of com-
puter algebra systems such as MAPLE and MATHEMATICA. It has been called the Lambert W
function due to the fact that it is a logarithm of a special case of the Lambert series."” There is a
richness and diversity of multidisciplinary applications associated with this function.

Some of the earliest applications of the W function relate to the counting of search trees and
graphs,3 which occur in combinatorial applications in computer science as well as other disciplines
including quantum statistics. One of the earliest applications of the W function to physics was in
the resolution of an anomaly in the calculation of exchange forces between two nuclei within the
hydrogen molecular ion.* In Ref. 5, the authors used the W function to elucidate and develop some
of the physics of Lagrangians for two-dimensional gravity. In relation to the work in Ref. 5, Ref.
6 presents a generalization of the W function, which is used to provide exact solutions for general
relativistic self-gravitating N-body systems in (1+ 1) dimensions. Another application to physics is
presented in Ref. 7. The authors used the W function to derive Wien’s displacement law in
connection with the Planck black body spectral distribution and also applied it in the context of
conformal mapping techniques to obtain the fringing fields of a parallel plate capacitor. In Refs. 8
and 9 the W function is applied to problems in statistical mechanics. Germani and Liguorilo
incorporated the W function in their study of the slingshot primordial power spectrum in the
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cosmological slingshot scenario. They computed the cosmic microwave background temperature
and polarization power spectra that are in excellent match with the results of the Wilkinson
microwave anisotropy probe 3-year best fit results.

As stated above, the diversity of applications of the W function are widespread. In electro-
magnetics, numerical algorithms of this function have been incorporated into popular mathemati-
cal computation packages such as MAPLE and MATHEMATICA, allowing for efficient and rapid
solutions and eliminating the need for graphical problem solving techniques.“ The W function has
been applied to semiconductor physics, where it has been used to find a solution to the problem of
inverting the gate voltage versus channel surface potential equation.12 It has also been used in laser
and passive electro-optic systems to obtain a solution of the ladar-lidar equation.13’14 In solar
physics, new views of solar wind have been found with the W function, allowing the analytical
derivation of both the outflow speed and the mass loss rate of the solar wind for certain illustrative
approximations. 15

In the present work, we present yet another application of the W function to mathematical
physics in the context of quantum statistics. We consider the problem of finding analytic formulas
for the critical points in energy of several relevant physical quantities and present some applica-
tions to Bose—Einstein and classical Maxwell-Boltzmann statistics. We note that this analysis is
also relevant for the case of quantum fractional statistics, such as anyon and exclusion statistics.'®
Furthermore, we use the W function to develop inversion formulas for the temperature of the
system as a function of the chemical potential for Bose—Einstein and Maxwell-Boltzmann statis-
tics. The case to Fermi—Dirac statistics has also been considered but will be presented in connec-
tion to another work. The same analysis is also relevant for other cases of specialized two-
dimensional and four-dimensional Bose—Einstein systems.17 In Sec. II of this paper, we introduce
the fundamental quantum statistical equations and define the relevant physical quantities pertain-
ing to our analysis. This is followed by a brief introduction on the W function in Sec. III. Section
IV develops the analytic formula for the energy critical points. In Sec. V, we apply this analysis to
particular distributions. In Sec. VI we present the inversion of temperature as a function of the
chemical potential for Bose—Einstein and Maxwell-Boltzmann statistics. Section VII explores an
indirect relationship of the W function to the Lambert transform and the polylogarithm. Finally,
Sec. VIII presents the conclusions of this work.

Il. QUANTUM STATISTICS

We provide an overview of the statistics that describe a system of noninteracting particles
confined, for example, within a cube of volume V with impenetrable walls at finite temperature 7.
When we consider a system composed by a large number of noninteracting equivalent particles,
we have the following distribution function:'®

() =[exp(BE+ )+ 5T, B=. (n

where E is assumed to be a continuous variable, 7T is the temperature, k is the Boltzmann constant,
and a=-pBu, with B defined as above and u is the chemical potential. The term e =z in (1) is
the fugacity of the system. In the case of classical particles, i.e., Maxwell-Boltzmann statistics, we
have y=0, and the particles are distinguishable. For Bose—Einstein and Fermi—Dirac systems, y
takes on the values —1 and 1, respectively. The particles are taken to be indistinguishable when
their spin is of the form s=n/2, n€{0,1,2,3,...}. For bosons, s=0,+1,+2,..., we have y=—1,
whereas for fermions, s=(2p+1)/2 p {0,1,2,...}, we have y=1. In our analysis, we allow y to
take any rational number in [—1,1] to allow for the possibility of fractional statistics.

We can express the number of particles per unit volume within the energy interval
(E,E+dE), the number density p, and the total internal energy U per unit volume as follows:'®

n(E)

3/2 1/2
d_E_(2s+l)<2_m) E ?

= ———dE
14 47> \h*) exp(BE+a)+7y
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—ljm EdE_(2s+1)(2_m>3/2jm% 3
p—V . n(E)dE = 472 \ K2 o exp(BE+a)+ 7y’ )

U—lfOE (E)dE = (2S+1)<2—m)3/2f e )
v, " 4 \ K2 o exp(BE+a)+ 7y’

with m being the mass of the particles and A=h/24 where h is Planck’s constant.

In a series of remarkable papers, Lee'”? showed a variety of applications of the polyloga-
rithm function to Fermi—Dirac, Bose—Einstein, and classical Maxwell-Boltzmann statistics, which
include a convenient description of physical quantities such as the density, energy, and chemical
potential in terms of this function. For the case of Bose—Einstein statistics, y=—1, the integrals in
the previous equations can be evaluated in the following way. Consider the integral

1= ——dE R*. 5
r fo oPEYa_ | re (5)

Using the transformation x=BE=E/(kT) and multiplying both numerator and denominator by
exp[—(x+a)] we can bring it to the following form:

“ 1
,B_(Hl)f x'e (”“)mdx. (6)
0

For Bose-Einstein systems, the chemical potential u is negative,21 so that x+a >0 for all points
over the region of integration, and we can expand the integrand as a geometric series. Thus we
obtain the following result:

L= B VT (r+ 1)Li,,, (79, (7)

where

F(x)zf e dr
0

is the Gamma function and

<k
Li,(x) = >, al (8)

k=1 K

is the polylogarithm function.”? From the definition of the polylogarithm, we see that it is related
to the Riemann zeta function by the identity {(z)=Li,(1).

The case for y=1 must be treated differently since u can in this case be positive, which
prevents us from simply using the geometric series expansion. However, the closed form solution
turns out to be extremely similar to the one for the Bose—FEinstein case and is given by23

I=—=B "I (r+ 1)Li,, (- ™). )

Although not immediately relevant for our analysis, we include the corresponding expression
when y=0 for completeness:

L=e B (r+1). (10)

From the above results we find, for example, that the density p introduced in Eq. (3) is given by
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oe (2s+1) ( 2m )3/2’8—3/2F (3/2){Li3/2(e‘“), y=-1

4772 ﬁ2 b Li3/2(— e_a), ’y= 1
o (Pt
” *y:—l,
_(25"'1)(2_’")3/2 3/2V/_7—7 =N (11)
o4 \R?

2 i (= ePr)k
- T 3n 7 = 1‘
P k3/2
This result will be used in Sec. VI. In the following section we give a brief introduction to the W
function and some of the mathematical properties that become relevant for this analysis. For a very
thorough treatment of the history, properties, and applications of the W function, see Ref. 24.

lll. THE LAMBERT W FUNCTION

The W function is defined as the multivalued function which solves the following equation:

W(z)exp(W(z))=z, zeC, (12)

or, equivalently, as the multivalued inverse of the function f:z— ze®. Equation (12) always has an
infinite number of solutions, hence the multivaluedness of the W function. These solutions are
indexed by the integer variable j. Thus we say that (12) is solved by the branches of the W
function, W;, for jeZ. Of special relevance to physics and engineering applications are the
solutions of (12) when the argument is purely real. In this case there can be at most two real
solutions, corresponding to the branches W,, and W_;, where W, is the principal branch of the W
function. For real solutions to exist, we must require that z € (=1/e,), in which case Wy(z) e
[-1,%) and W_,(z) € (=,—1]. Moreover, Wy(z) <0 if z € (=1/¢,0) and W,(z) =0 for z € [0, ).
The branches W, and W_; are monotonically increasing and monotonically decreasing, respec-
tively. All other branches of W are always complex.

Besides the theoretical advantages of providing an adequate analytical formalism for a given
problem, another advantage of solving problems in terms of the W function is the availability of
libraries in computer algebra systems, which allows for a convenient way to obtain values, ex-
pansions, plots, etc., of the quantity being solved for.

As a final remark we note that although, to our knowledge, the W function is not connected to
the Lambert transform of a function in a general sense, the results from this work show there exists
a family of functions where an indirect relationship does indeed hold, which is shown in Sec. VII.

L2

|
|
|
-4

FIG. 1. The two real branches of the W function. The solid line represents W, and the dashed line represents W_;.
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FIG. 2. Plots of g, for u=1/10 in units where k7=1.
IV. ENERGY EXTREMA OF QUANTUM STATISTICAL DISTRIBUTIONS
Following a similar approach as in Ref. 18 we can express (3) and (4) as
(2s+1) <2m)3’2r
= + | — E dE, 13
P=Po 42 72 . 81/2( ) (13)
(25 + 1)(2m>3’2r
U= — E)dE, 14
42 72 . g3/2( ) (14)
respectively, where
(B)= g, B=ov (15)
EAR= pEvay v kT

and p, is the density of particles in the ground state with E=0 for Bose—Einstein particles, and is
taken to be O for Fermi—Dirac particles.18 We note that in Ref. 18 the actual definitions are slightly
different.

Now, somewhat more generally, suppose we are interested in some arbitrary physical quantity
M, which we can expressed as

M=A f h(E)dE,
0

where

Ef™

WE)=—Fmr 16

B)= ey (16)

for some real-valued continuous function f:R— R* and A € R. We interpret the quantities M as
generalized moments of the energy. In the case of the density and the energy in the previous
equations, we have h(E)=g,,»(E) and g;,(E), respectively, which we can think of as the 1/2 and
the 3/2 energy moments. Then it will be of primary interest to perform an analysis on the distri-
butions h(E). A natural question that would arise is for what values of the parameters will such
distributions exhibit a peak. However, if we want to find extrema in E we are faced with a
transcendental equation. Although it is not possible to formulate a solution in terms of elementary
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functions, we show that it is in fact possible to find an analytical formula for the values of the
critical points in E over a wide range of the parameters h(E), «, and 7, by using the W function.
In fact, this approach has been used in Ref. 7 to find an expression for the energy extremum of the
Planck spectral black body distribution as a function of the wavelength and temperature. In Sec.
V B we show that the general expression derived in this paper reduces to the result found in Ref.
7 under the relevant parameter values.

Taking E to be a continuous variable and assuming we fix the parameters «, r, y, and
temperature T, we proceed to finding extrema in E interior on (0,%): From (16) we find

oh 1
B m[f(r)Ef (-1 (ePE+e 1 y) — BEDePE ] (17)

where a=—Bu=—u/kT. It is worth noting that here that we are considering cases where we treat
« as an exogenous variable, not directly dependent on E. Also (17) is always defined, since the
only potential complication would arise in E/") for E=0, but this point is not considered in the
analysis. Setting dh/JE=0 and rearranging, we obtain the following:

[BE - £(r)]ePE) = f(r) ye Lo/, (18)

Now we apply the W function to both sides of this equation. Thus we have

E.=KT[f(r) + W,(f(r) ye lo/0))], (19)

where E. denotes the critical point in temperature, and we have substituted 1/8=kT. We observe
that in principle j € 7, though we focus on the cases j € {0,—1} where both the arguments and the
range of W; in Eq. (19) are real. Hence, given the domain of W, and W_; we must satisfy

1
fryyeted = — = (20)

e
Since f(r) =0, it is clear that this will be satisfied for any statistics having y=0. In particular, this
ensures that the expression for the critical point always exists for Fermi—Dirac and Maxwell—-

Boltzmann statistics. Also, when y=0, we will always have the solution in terms of Wy(z).
The W function defines the omega Wright function via the following identity:25

w(z) = W;c(z)(é’z) s (21)

where K(z)=[(m=7J(z))/2m], and |- - -] denotes the floor function. Thus, for x € R we have

w(x) = Wy(e). (22)
Under the assumption that yf(r) >0, we may apply (22) to (19) to obtain

E.=kT(f(r) + o[log(f(r)y) = (a+ f(r)]). (23)
For the case ye[-1,0) it may be useful to express (20) as a constraint on the fugacity z=e™*
Thus,
1 1 /0!
— [t N = -~ 7= v = ——— (24)
e A ()

We also note that the two potential solutions, associated with the branches W, and W_;, may both
in fact correspond to physically relevant situations. This fact arises as a result of two things. First
of all, taking 7> 0, the fact that E> 0 requires us to have
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W(f(r) ye Lo/ > — £(r). (25)

Taking h(E)=g.E) as defined in (15), so that f(r)=r=1, then —f(r)=-1=Wy(z) Vz
e[-1/e,°); hence Wy(z) automatically provides a physically relevant solution whenever the
argument lies in the domain of W(z) as discussed above. Moreover, Vz e [-1/¢,0), W_,(z) € (
—o0,—1), so that as r increases, we will have an increasing region of the domain where W_,(z) will
satisfy (25). Once r is specified it will be necessary to determine whether the region in question
corresponds to physically relevant conditions, as W_;(z) is only defined over z e (—1/¢,0). In
particular, it is necessary but not sufficient that y<<0, as, for example, in Bose—Einstein statistics.

A second source for the possibility of the two-branch solution relates to the idea of negative
temperature. Although traditionally it is always assumed that 7> 0, negative temperature has a
physically sensible interpretation. A system with negative temperature is not cold. It is in fact very
hot, transferring energy to any positive-temperature system in contact with it. 2126 Negative tem-
peratures can be considered for a closed thermodynamic system in thermodynamic equilibrium.
Such systems have an energetic upper limit to their allowed states. This concept is useful in
nuclear spin resonance experiments where isolation of the spin system can be attained.”” If we
allow for such a situation in our analysis, then keeping E>0 requires that we satisfy

W(f(r) ye o) < — £(r). (26)

In this case, and still assuming A(E)=g,(E) with r=1, W,(z) no longer provides a solution at all
[except possibly for the branch point z=—1/e where Wy(=1/e)=W_;(-1/e)=-1] due to —r=-1.
However, for any r>1, there is always a subset of (—=1/¢,0) where W_; does satisfy (26), the
physical significance of which would have to be assessed in each particular case of r. As was
mentioned above this requires y<<0 given the domain of W_,(z). In principle, for u and or T
complex, there is the interesting possibility of other branches W;(z), j# 0,1 providing a solution
in Eq. (19).

V. APPLICATION TO SPECIFIC QUANTUM STATISTICAL DISTRIBUTIONS
Section IV presented an analytic solution for the extremum in energy for the general distri-

bution

E®)

hWE)=—Fr—7.
() eﬁE+a+,y

In this section we consider application of (19) to special cases of such distribution. In particular,

we show that under the appropriate parameters, our solution (19) reduces to the solution given in
Ref. 7 for the analytic derivation of Wien’s constant.

A. Maxwell-Boltzmann distribution

For Maxwell-Boltzmann systems we have 'y=0.18 As was pointed out above, y=0 satisfies the
condition for convergence (20), and g3, corresponds to the distribution for the total internal
energy of the system. Thus, solution (19) becomes

E.=kT[ 3 + W,(0)] = 2k, (27)

which is consistent with the equipartition theorem in statistical mechanics.

B. Wien’s displacement law

In Ref. 7, the authors considered the Planck spectral distribution given by
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8he/\>

_—, 28
exp(hc/NkT) — 1 (28)

p(\,T) =

where A is the wavelength, T is the temperature, ¢ is the speed of light, and k is the Boltzmann
constant. Since this corresponds to a system of photons, we have E=hc/\ so that (28) can be

written as
T =T o (Eiy=—1.a=0) (29)
p B} _(hc)4 85 ,’}’— ’a_ B
and the solution is given by (19) as
E.=kT[5 + Wy(=5¢7)]. (30)

Note that we are using W, since W_; results in E=0. Then

hcelk

AN T=————————=2.893 X 107 m K, 31
xS Wo(— 5e7) m G

which is precisely what was found in Ref. 7.

C. Bose—-Einstein condensates

For the Bose—Einstein distribution we have y=-1, and h(E)=g(E), so that f(r)=r=1. As we
noted above in (24), negative values for 7y place constraints on physically relevant quantities such
as the fugacity e™*. In terms of vy alone, the strongest constraint on the fugacity will then come for
[y/=1, given that this is the minimum of the right hand side of (24). A direct application of Eq.
(19) for the case of Bose—Einstein distributions can be found in Ref. 28. The authors considered
the particle density distribution in relative momentum space and were interested in finding the
maximum of the expression

x2

f3(x,la) =T - s (32)
ertr—1

where x is the relative momentum x=p/py, py=\2mT, and ji=—u/T. By letting x’=BE we find

X, =1+ Wo(=exp[- (@ + 1)), (33)

where we take the positive square root and the W, branch, since p € R*. Since Wy(-1/e)=-1, we
see that, indeed, ,U,—>O:>xﬂ—> 0.

D. Black body radiation in extra dimensions

The extremum formula (19) can be applied to the case of black body radiation with extra
dimensions, which has been considered in the work of Alnes et al.’>*° In Ref. 29 the authors
considered radiation consisting of massless particles moving in a d-dimensional space, where the
particles are described by Bose—Einstein statistics and are in thermal equilibrium at temperature 7.
The energz}; of a particle with momentum k is w,=|k|=k, and the internal energy density can be
written as

QO f ke
- — k. 34
P=ami), # -1 (34)

Using our expression (19), we find that the extremum of such distributions is
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ke=kgTld+ Wi(-de )], jel, (35)

where we used kp to distinguish the Boltzmann constant from the variable k, and 8 above has the
same definition as in the present paper.

For black body radiation, the Helmholtz free energy is proportional to the total radiation
energy U, so that the extremum of the Helmholtz free energy can be found directly from Eq. (19).

This also holds for nonextensive thermodynamics, since such proportionality is maintained.”'?

VI. FURTHER APPLICATIONS OF THE LAMBERT W FUNCTION TO QUANTUM
STATISTICS

In this section we apply the W function to formulate an expression for temperature 7 as a
function of chemical potential u for Maxwell-Boltzmann and Bose—FEinstein systems.

A. Maxwell-Boltzmann systems

For an ideal (perfect) gas, the chemical potential is?!

V( 2amkT\*?
m=—kT In N P s (36)

which can be written as
2
- 5%@ = OT In(®T) = @D 1n(dT),

where ®=(2mmk/h?)(V/N)**>0. Applying the W function to both sides of this equation and
solving for T one obtains

2
T=

(N/V)23 exp{WJ(— ‘—l%(wmm)}, je{o1}. (37)

2amk 3

Or, using the definition of W(z) we can rewrite the solution as
2w ( 4 pwmm 2/%) -l
T=——-—|W\--—(VIN)" , 38
3k [ N3 n? ( (38)

which is more convenient for computations. We have restricted j to the values corresponding to
the purely real branches of the W function, since in the context of classical systems it is assumed
that 7, u,® e R (see Figs. 1 and 2).

B. Bose-Einstein systems

In Sec. II, we have shown that for the Bose—Einstein distribution the density p can be ex-
pressed as

(2s+1)(2m\*? 3/2\“"7_T§ (P
PR \w) P e

k=1

Since w<<0, the first term in the sum provides a sufficiently accurate approximation when
B=1/kT>1. Thus

1
p=A

Wé’ﬁ K, (39)

where
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(2s+ 1>(2_m)E
47> \ h? 27
which can be written as
2 2 p )—2/3
_Z e @mB__Z (P}
1P 3“(A

Applying the W function to both sides we can find T as a function of u:

=2/3\ [-1
=32l e

where the solution is in terms of the complex branches of the W function when u is allowed to be
complex valued. The fact that p and or T can be complex valued has been used in problems of
quantum chromodynamics and Bose—Einstein condensation.***

VIl. CONNECTION TO THE LAMBERT TRANSFORM AND THE POLYLOGARITHM

As mentioned above, the W function is indirectly connected to the Lambert transform and the
polylogarithm function.

A. The Lambert transform

The Lambert transform is defined in Ref. 35 as
“alt
H@:f {?Lm,x>o. (41)
0 € —1

Consider the class of functions a(7)=A#" ) for some A € R and some real-valued, non-negative
function f(r). Then the integrand in the transform is essentially the family of functions h(E=t) as
defined in Eq. (16), where B=x, a=0, and y=-1. So applying the results of (19), we can express
the critical points in ¢ as

(o= 20+ W= e ) )

B. The polylogarithm

The integral representation of the polylogarithm function is given by36

] 1 o7
Lig,(z) = ﬂzf et—zdt, lz] <1, R(s)=-1. (43)
o €

Here the integrand can be identified with the expression g,(y=z,@=0,8=1). Then we can express
the 7-extremum of the integrand defining the polylog as

te=s5+Wizse™), jeZ (44)

VIIl. CONCLUSIONS

In this work, we have considered classical and general statistical distributions and shown that
the W function provides an analytical framework for the analysis of energy extrema. Thermody-
namic quantities of black body radiation such as the Helmholtz free energy, total radiation energy,
entropy, and specific heat are amenable to calculation in this formalism. We have also shown that
the W function provides a convenient inversion formula for the temperature in terms of the
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chemical potential for Bose—Einstein and Maxwell-Boltzmann statistics, and including the Fermi—
Dirac case will be part of subsequent work. Physical considerations have led to the idea that both
chemical potential and temperature can be represented in the complex plane.%’37 The multivalued,
transcendental W function allows for a natural and unified mathematical representation of physical
problems involving such complex variables.

Mathematical functions not only assist the physicist in the analysis of physical phenomena but
may also be the unifying thread which stimulates the discovery of new physics. The Riemann ¢
function is a good example that made its advent in quantum physics in the Planck black body
radiation formula and has been of fundamental importance in quantum field theory. The renais-
sance of the W function and its applicability to the formalism of quantum statistics is likely to be
another example of such phenomena. Moreover, the W function has an indirect connection to the
polylogarithm function, which has shown the underlying logarithmic structure in the quantum
statistics of ideal gases.lg’zo It will not be a surprise to find further diverse applications of the W
function in other topics of mathematical and theoretical physics as well as in other disciplines.
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