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Abstract

This work is concerned with bifurcations and stability in models related to various

aspects of infectious diseases.

First, we study the dynamics of a mathematical model on primary and secondary cy-

totoxic T-lymphocyte (CTL) responses to viral infections by Wodarzet al. This model

has three equilibria and the stability criteria of them are discussed. The system transi-

tions from one equilibrium to the next as the basic reproductive number,R0, increases.

WhenR0 increases even further, we analytically show that periodicsolutions may arise

from the third equilibrium via Hopf bifurcation. Numericalsimulations of the model

agree with the theoretical results and these dynamical behaviours occur within biologi-

cally realistic parameter ranges. Normal form theory is also applied to find amplitude,

phase and stability information on the limit cycles. Biological implications of the re-

sults are discussed.

After studying the single-strain model, we will analyze thebifurcation dynamics of

an in vivo multi-strain model ofPlasmodium falciparum. Main attention of this model

is focused on the dynamics of cross-reactivity from antigenic variation. We apply the

techniques of coupled cell systems to study this model. It isshown that synchrony-

breaking Hopf bifurcation occurs from a nontrivial synchronous equilibrium. In prov-

ing the existence of a Hopf bifurcation, we also discover thecondition under which

possible2-colour synchrony patterns arise from the bifurcation. Dynamics resulting

from the bifurcation are qualitatively similar to known behaviour of antigenic variation.

iii



These results are discussed and illustrated with examples and numerical simulations.

Aside from the bifurcation of anin vivo multi-strain model, we also study the clus-

tering behaviour found in numerous multi-strain transmission models. Numerical solu-

tions of these models have shown that steady-state, periodic, or even chaotic solutions

can be self-organized into clusters. Such clustering behaviour is nota priori expected.

It has been proposed that the cross-protection from multiple strains of pathogens is re-

sponsible for the clustering phenomenon. We show that the steady-state clusterings in

existing models can be analytically predicted. The clusterings occur via semi-simple

double zero bifurcations from the quotient network of the models and the patterns which

follow can be predicted through the stability analysis of the bifurcation. We calculate

the stability criteria for different clustering patterns and show that some patterns are

inherently unstable. Finally, the biological implications of these results are discussed.

Keywords: Immune system; cytotoxic T-lymphocyte response; Hopf bifurcation;

stability; limit cycles; multi-strain infection model; semi-simple double zero bifurca-

tion; clustering.
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Chapter 1

Introduction

Pathogens, such as viruses, bacteria, and parasites, are constantly acting to infect other

organisms to take advantage of the hosts. In response to these threats, many organisms

have evolved defences against the pathogens. Understanding the complicated dynam-

ics of infectious diseases is crucial to enhanc the health ofthe general population. Re-

searchers have built mathematical models to supplement clinical research in hope to

understand the dynamics. In this work, we apply dynamical system techniques to mod-

els of infectious diseases to better understand their behaviour. We provide the basics

of immunology in this chapter and then review the models which are relevant to this

study.

1.1 Overview of Immune Response

Broadly speaking, innate and adaptive immunity are the two different ways the body

defends itself against invading pathogens (Abbas and Litchtman, 2004; Coico and Sun-

shine, 2009). Innate immunity is always present for people with healthy immune sys-

tems and its primary function is to defend against pathogensbefore they can establish

infections within the host.

1



CHAPTER 1. INTRODUCTION 2

When innate immunity fails to prevent pathogens from establishing an infection and

the population of pathogens increases, adaptive immunity will take over in eliminating

the pathogens. The two types of adaptive immunity are humoral and cell-mediated re-

sponses. Humoral responses are established by antibodies released by B-lymphocytes.

These antibodies are responsible for helping with potentially harmful pathogens in the

bloodstream and the mucosal organs and thus preventing themfrom getting into other

tissues in the body and establishing an infection. Cell-mediated response is detailed

below.

1.1.1 Primary and secondary responses

Once the microbes have successfully invaded cells and tissues, the humoral response

is no longer effective against them. At this point, cell-mediated response becomes

activated and cytotoxic T-lymphocytes (CTLs) will try to eliminate the threat. When

threats are detected, some T-cells activate phagocytes to ingest and digest the infected

cells in order to eliminate them, though other T-lymphocytes become target-specific

through the activation process. Upon encountering a particular pathogen for the first

time, naive T-cells differentiate into effector lymphocytes and they become responsible

for eliminating the specific pathogen. This first response tothe pathogen is called the

primary response. Upon elimination of the specific threat, many of these effectors

will die via apoptosis. Surviving effectors may become long-lived memory cells. As

their name suggests, these cells can live in the body for a long time and they provide

continual protection against the specific microbe. Future encounters with the same

microbe will be met with responses from these memory cells. Responses from the

memory cells are called secondary responses and they are quicker and more efficient

than the primary response.
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1.1.2 Antigenic variation

T-cells recognize different pathogens by the surface chemicals, called antigens. Given

that secondary responses are more effective, pathogens have difficulties in establishing

infection if the host has been exposed to the pathogen before. To circumvent this im-

mune mechanism, the pathogens may disguise themselves withmany different antigen

variants on their surfaces. Receptors on the T-cells are specific to the protein struc-

ture, also known as the epitopes, of the antigen. By having variations of the epitopes,

these antigens can avoid detection from the immune system. Aside from being more

effective in establishing infection on exposed hosts, thistype of systemic variation will

also allow the pathogen to stay inside the host longer and thus increase its chances of

infecting another host.

Variations of the same pathogen can arise by different ways.Viruses are prone to

mutation due to imperfection during the replication process (Craig and Scherf, 2003).

These mutations can lead to genotypic as well as phenotypic differences between gen-

erations. If the phenotypic differences include changes tothe epitopes, the immune

system would not recognize this new protein on the surface. This type of antigenic vari-

ation may be observed in the human immunodeficiency virus (HIV) and the influenza

virus. Alternatively, the genotype of the pathogen need notchange for antigenic vari-

ations to occur. Research by Reckeret al. (2011) suggests that pathogens, such as the

malaria causingPlasmodium falciparum, varies its epitopes systematically while keep-

ing the same DNA structure. All strains of the pathogen express different phenotypic

properties using the same genomic information.

As an immune escape strategy, the pathogens using antigenicvariation must meet

several prerequisites in order to be successful (Turner, 2002). Many parasites that

employ this strategy stay within one host for an extended period of time. Given the

adaptive nature of the immune system, a large repertoire of variants is necessary for
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continual evasion and survival in the host. These pathogensmust also not present their

entire arsenal of variants all at once to maximize their advantage against the immune

system. Many scientists hypothesize that there must be a management system for the

appearance of the variations, but the precise mechanism controlling such sequence is

still an open question (Craig and Scherf, 2003)

Shared epitopes are commonly found between antigenic variants of the same pathogen.

Since the acquired immune system identifies each pathogen type by its protein struc-

ture, the specific immune cells for one subtype may be cross-reactive for another sub-

type of pathogen. Given that the protein structures betweensubtypes are not identical,

the binding sites for detection will not match perfectly forimmune detection. Thus,

this cross-protection is usually only partially effective.

1.1.3 Maintenance of strain structure

Given that the strategy of antigenic variation requires many repertoires of the pathogen

to be successful, one might expect that pathogens would evolve to have ever increasing

number of variants and increase the number of variants at an increasing rate. Examples

from clinical observations suggest that these notions are not necessary for the strategy

to succeed and strain structures are often maintained with the host population (Gupta

et al., 1996). For example, switching of dominant strains of influenza occurs seasonally

instead of the timescale which takes to mutate and reproduceclonaly many times over.

Furthermore, theoretical and clinical data both support that there is a controlled and

hierarchical expressions of phenotypic variations forP. falciparum(Reckeret al., 2011;

Turner, 2002). The organized switching of variations suggest that switching rate and

the number of strains may not be the most important factors for the strategy to succeed.

A number of limiting factors have been suggested for the limited appearance of new

strains. In order to reproduce, pathogens can only take advantage of specific cells of the
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host and there are only limited number of protein combinations that would work for the

binding sites on these target cells. For the pathogens that do not change their genome,

there are limited number of variations that are useful. As for other pathogens that derive

new variations from mutations, many new strains may be produced quickly. The sheer

number of new strains imply that there should be more combinations that are suitable

for binding sites. However, this process may also introduceundesired effects and thus

limit the strains that are actually viable. Aside from thesefactors, cross-protective

immunity may also contribute to the observed strain structure for pathogens. A host

may have gained partial immunity from a previous infection.While this protection is

not fully effective, it is enough to give strains that do not share epitopes in the cross-

protection an advantage and establish themselves as the dominant strains within the

host. Having one population dominating will limit the exchange of genetic information

between strains and thus maintain the discrete strain structure.

1.2 Review of Models in Immunology and Infectious Dis-

eases

There exists a vast literature of mathematical models studying the immunological phe-

nomena described in the previous section. Selected literatures relevant to our work are

reviewed here.

Differential equation models of immunology and infectiousdiseases are similar to

the Lotka-Volterra predator-prey models in population dynamics. In the basic in-host

immunological models, the effector class, acting as predator, is responsible for culling

of the pathogens as prey. Similarly, the basic epidemiological model has an infected

class that act as predators and infect the population in the susceptible class. Anderson

and May (1991) provided an overview on the historical development and the biological
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basis of these models.

Many models studyingin vivo single strain dynamics of the immune system are

based on the work established by Nowak and Bangham (1996). The authors established

three minimal models to study different aspects of viral population dynamics: viral

replication, immune responses, and variations in immune responses to different viral

strains. Extending on established models of viral dynamics, Bonhoefferet al. (1997)

added drug treatment to the basic model. By incorporating two classes of virus and

correspondingly, two types of susceptible cells, the authors were able to demonstrate

the dynamics of drug resistance and understand the difficulty in eradicating some viral

population completely.

As mentioned in Section 1.1, the adaptive immune response has effector cells that

are responsible for killing pathogens and memory cells thatare responsible for long

term protection against the same pathogen. Instead of having one general CTL class in

the model, Wodarzet al.(1998) added a class of memory cells to study both primary and

secondary responses. This model established criteria thatwould lead to the exhausting

CTL cells and defeating the immune system by viral infection.

The roles of effectors and precursor cells were further studied in terms of HIV in-

fections in (Wodarz and Nowak, 1999) . Counterintuitively,the authors found that a

deliberate break from drug therapy may stimulate in the immune system and boost

the production level of immune cells. Thus, intentional therapy interruption may en-

hance the innate protection. Given that HIV targets cells ofthe immune system to

replicate, Korthalset al. (2002) improved upon the previous models by adding the dy-

namics of CD4+ helper cells and found that precursors and helper cells do not gener-

ally change the outcome of infection. To study hepatitis C infections, Wodarz (2003)

replaced the precursor class with antibody responses. Thismodel showed that strong

antibody response is necessary to stimulate the CTL response in order to avoid chronic
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infection.

Instead of having only one strain, many pathogens are successful in establishing

infection because they present themselves within-host with many different variants.

Models by Nowaket al. (1990) and Nowaket al. (1991) studied many quasispecies of

HIV-1 in the human immune system. Their results suggested that the antigenic diver-

sity of the HIV populations contributed to the development of AIDS. In 1994, Sasaki

(1994) studied co-evolution of host and pathogen. Instead of focusing on the immune

dynamics of effector cells killing pathogens, the author focused on the genetic drift of

the pathogens caused by interactions with the immune system.

Improving upon previous multi-strain models, Nowak and May(1992) incorporated

strain specific parameter values for individual strains into their model. Coexistence and

competitions between strains were more accurately reflected in this model and this im-

provement led to more general condition for threshold condition in establishing infec-

tion. To describe the genetic variations between strains more precisely, epitopes shar-

ing between strains were explicitly incorporated in modelsby Nowaket al. (1995a,b)

and Bittneret al.(1997). These models showed that the dynamics induced from shared

epitopes and cross-protective immune responses could cause chaotic oscillations.

Multiple strains of pathogen may also affect functions of the immune system. Tak-

ing into account of multiple antigenic variants, Wodarz (2001) studied the effects of

multi-strain infections on memory cells. In this work, the author specifically studied

the immune system to control multiple infections and establishing memory cells. An

assumption in many multi-strain viral models is that a cell can only be infected with

one strain of virus at a time, but it has been shown experimentally that a cell may be si-

multaneously infected by multiple strains of viruses. Wodarz and Levy (2009) created

a model to study coinfection of target cells by HIV-1 to understand these dynamical

contribution to viral escape.
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Other than viruses, parasites may also employ antigenic variations as a strategy. An-

tia et al. (1996) proposed a model specifically for studying parasitemia antigenic vari-

ation. For specific parasites, Lythgoeet al. (2007) and Gjiniet al. (2010) studied anti-

genic variation of the protozoan organismTypanosome brunei. These differential equa-

tion models showed that variant-specific host immunity and density-dependent differ-

entiation rate are key factors in studying antigenic variation of this pathogen. Multi-

strain antigenic variation model ofP. falciparum, another protozoan parasite, was also

studied by Recker and Gupta (2006).

Alternative to predator-prey interpretations of pathogen-immune dynamics, emer-

gence of multiple strains within-host may be considered as an evolutionary phenomenon.

As such, Iwasaet al. (2004) considered the pressure of strain specific immunity on

the evolutionary dynamics of pathogens. Other researchershave considered the multi-

strain within-host system dynamics in lights of coevolution of the pathogens and the

immune system. Sardanyés and Solé (2007) and Dercoleet al. (2010) have studied the

dynamics between the hosts and parasitic pathogens under the Red Queen hypothesis.

Not only do multiple strains affect the within-host dynamics, these additional vari-

ants may also affect the transmission dynamics. Multi-strain epidemiological mod-

els have been used to study the transmission of various common diseases, such as in-

fluenza (Linet al., 1999; Gog and Grenfell, 2002; Casagrandiet al., 2006; Reckeret al.,

2007; Gog, 2008; Minayev and Ferguson, 2009; Omoriet al., 2010), malaria (Mitchell

and Carr, 2010; Childs and Boots, 2010), and dengue fever (Fergusonet al., 1999;

Reckeret al., 2009; Lourenço and Recker, 2010; Wikramaratnaet al., 2010). Oscil-

lating solutions are often the result of the additional pathogen variants and they may

explain seasonal fluctuations observed for some of the diseases.

Unlike many of the aforementioned multi-strain transmission models, the epidemi-

ological models by Guptaet al.(1996) and Gupta and Galvani (1999) explicitly account
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for the effects of shared epitopes between strains and cross-protection at the epidemi-

ological level. These models showed that the discrete strain structure was maintained

in the host population due to cross-protection caused by shared epitopes. Dawes and

Gog (2002) compared several transmission models that included cross-immunity, and

concluded that oscillatory dynamics can occur through a Takens-Bogdanov bifurcation.

Instead of classifying the population based on the history of infection, one could clas-

sify the population based on the status of the infection (Gogand Swinton, 2002). This

status based approach provided results that are qualitatively different from that obtained

using traditional history based approach.

Given that contact is necessary for transmission, geographical information is an

important consideration for transmission of diseases. Buckeeet al. (2007) combined

techniques used in studying complex networks to investigate multi-strain infections.

Another approach to infectious diseases is to combine the kinetics at the cellular level

with epidemiological consequences in one model. Volkovet al. (2010) used a differen-

tial equation system to represent within-host dynamics andthen generalized the results

to the transmission level. In a similar vein, Lange and Ferguson (2009) also incorpo-

rated within-host and intra-host dynamics in one model. With the pathogen reproduc-

tive number as a gauge for fitness, their work showed tradeoffs between transmissibility

and antigenic diversity.

Complexity of many immunological models has grown over the years and authors

of these models often only explored the dynamics numerically. Details of the mod-

els’ analytic properties are often explored by other mathematicians. For example, Ko-

robeinikov and his collaborators investigated asymptoticbehaviour of various within-

host (Korobeinikov, 2004, 2009a,c) and intra-host models (Korobeinikov and Wake,

2002; Korobeinikov, 2006, 2007; Iwamiet al., 2008; Korobeinikov, 2009b; O’Regan

et al., 2010). Global stability of general pathogen-infection model with the loss of
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pathogen was explored by Kajiwara and Sasaki (2010). Similarly, Elaiw (2010) ana-

lyzed the global stability properties of a class of HIV infection models. These methods

have been extended by De Leenheer and Pilyugin (2008) and Souza and Zubelli (2011)

to study global stability in immune response models that include the effects of antigenic

variation.

Beside global asymptotic properties, sustained oscillations through Hopf bifurca-

tion are also analyzed. In 1997, Liu (1997) presented his work on oscillations of im-

mune responses to a single strain of virus. Various authors,such as de Leenheer and

Smith (2003); Muraseet al. (2005); Wanget al. (2006); Song and Neumann (2007);

Jianget al. (2009); Egami (2009) as well as Yang and Xiao (2010), showed that the

infection free equilibria of viral models are generally globally stable and sustained os-

cillations may occur from the infected state through a Hopf bifurcation.

1.3 Methodologies for Model Analysis

In this work, we analyze models of infectious diseases usingvarious techniques and we

describe them in this section.

1.3.1 Stability and bifurcation

Equilibrium dynamics

Homoeostasis is the regulation of biological functions, such as internal temperature

and glucose level, at an optimal operating point. Even slight deviations (e.g. human

body temperature from normal of37 ◦C to 35 ◦C) from these points can be lethal. For

biological dynamics, equilibrium points of dynamical systems are analogous to these

operating points. Given their importance, we first analyze the properties of stability of

the equilibriums for these systems.
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For a given equilibrium point, one finds its local stability by analyzing the eigenval-

ues of its Jacobian matrix. If all the eigenvalues at the equilibrium point have negative

real-part, then the equilibrium is locally asypmtoticallystable. Otherwise, it is unstable.

Equivalently, the roots of the characteristic polynomial provide the same information.

The linear analysis of the Jacobian can only provide local information, so we must

use other methods, such as Lyapunov functions, in order to obtain information on the

global stability of an equilibrium. A suitable Lyapunov function candidateV (x) must

be an unbounded positive definite function and the first derivative of this function, with

respect to time along the system trajectories, must be negative definite, except at the

equilibrium point. If such a function exists for an equilibrium point, then the point is

globally asymptotically stable.

Bifurcations of equilibrium points

Parameters of the system describe the biological considerations for a given model.

Eigenvalues that determine the stability of an equilibriumpoint are functions of these

parameters. As the parameters change to reflect changes in biological conditions, the

eigenvalues change along with them. Some of eigenvalues maymove from the left to

right half of the complex plane. The point at which at least one eigenvalue has zero

real-part is called the bifurcation point. After the eigenvalues completely cross into the

right half plane, the equilibrium point looses its stability and changes to another state.

This process is called bifurcation.

Of the parameters in a system, researchers usually only consider changing of one or

two parameters at a time to understand the effects of specificparameters. Bifurcations

that only involve one parameter are called codimension-onebifurcations. Generically,

codimenion one bifurcations involve the crossing of one specific eigenvalue or a pair

of complex conjugate eigenvalues. One can find the bifurcation points by explicitly
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calculating the eigenvalues.

The task of finding the expressions of eigenvalues is often difficult for high dimen-

sional systems. Instead of using eigenvalues, Liu (1994) developed a criterion for find-

ing simple Hopf bifurcation based on only the Hurwitz determinants calculated from

the characteristic polynomial. Furthermore, Yu (2005) extended the use of Hurwitz de-

terminants to findk-Hopf bifurcations, the crossing of multiple pairs of eigenvalues at

the same time. The advantage in these two methods is that one does not need to solve

the nonlinear characteristic equation to find the bifurcations. These methods only de-

scribe finding bifurcating solutions. We need to apply more advanced techniques, such

as expansion and the center manifold theorem in order to knowthe stability of these

bifurcation solutions.

Beyond center manifold reduction, we could further simplify bifurcating dynamical

systems using normal form theory. While useful, normal forms are often tedious and

difficult to calculate analytically. Yu (1998, 2002) developed techniques using computer

algebra systems, such as Maple, to calculate the normal forms for bifurcations of vector

fields efficiently. Normal forms of dynamical systems often contain higher order terms

that may be further reduced using computationally intensive techniques. The further re-

duced forms are called the simplest normal forms and Yu and Leung (2003) and Yu and

Yuan (2003) developed the theory and computer algorithms for these simplifications.

1.3.2 Coupled cell systems

In Chapters 3 and 4, we analyze immunological models with multiple strains. The

dynamics of each individual strain is compartmentalized into systems of differential

equations. These subsystems are coupled to reflect that the dynamics of different strains

affects each other. While the principles of the techniques mentioned in the previous

section still apply, they can be difficult to use in practice due to the high number of
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dimensions involved. Instead of attacking the problem directly, we take advantage

of the compartmentalized structure of the multi-strain system. We apply the coupled

cell systems based on the groupoid formalism first established by Stewartet al. (2003)

and then refined later by Golubitskyet al. (2005) to analyze the coupled systems of

differential equations. In this subsection, we will summarize the necessary parts of the

formalism for our analysis in the upcoming chapters.

Defining the coupled cell system

The groupoid formalism is a systematic way to represent systems of coupled differen-

tial equations and analyze synchronization patterns. A directed graph, or digraph, is

a convenient way to represent the connections between the subsystems. Each node in

the directed graph is labelled to represent a sets of differential equations. Labels, or the

shapes, of the nodes of the digraph denote specific set of differential equations. Iden-

tical sets of differential equations are represented in thegraph with nodes of the same

shape. Similarly, each directed edge, or arrow, in the graphrepresents the coupling

between different sets of differential equations. Different arrows are used to denote

different kinds of coupling terms between systems. Based onthese considerations, we

can define a coupled cell network as follows (Golubitskyet al., 2005) :

Definition 1.3.1. A coupled cell networkG consists of:

a. A finite setC = {1, . . . , N} of nodes.

b. An equivalence relation∼C on nodes inC. The type of nodec is the ∼C-

equivalence class[c]C of c.

c. A finite setE of edges or arrows.

d. An equivalence relation∼E on edges inE . The type or coupling label of edgee

is the∼E-equivalence class[e]E of e.
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e. Two mapsH : E → C andT : E → C; for e ∈ E H(e) is called the head ofe

andT (e) is called the tail ofe.

f. Equivalent arrows have equivalent tails and heads. That is, if e1, e2 ∈ E and

e1 ∼E e2, then

H(e1) ∼C H(e2) and T (e1) ∼C T (e2).

The terms cell and node are used interchangeably in the mathematical literature

to describe the vertexes in these directed graphs or the differential equation systems

that represent the network. Aside from the phrases “coupledcell network” or “coupled

cell system”, the termcell will be used exclusively for its biological meaning to avoid

confusion.

This definition of coupled cell network by Golubitskyet al. (2005) permits self-

couplings asH(e) = T (e) for a givene. Multiple arrows from one node to another

are also allowed becauseH(e1) = H(e2) andT (e1) = T (e2) are both permitted for

e1 6= e2.

The following definitions allow us to speak of inputs of a nodeas a set and a way

to compare inputs of different nodes.

Definition 1.3.2. If c ∈ C, then the input set ofc is

I(c) = {e ∈ E : H(e) = c}.

An element ofI(c) is called an input edge or input arrow ofc.

Definition 1.3.3. The relation∼I of input equivalence onC is defined byc ∼I d if and
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only if there exists an arrow type preserving bijection

β : I(c) → I(d).

That is, for every input arrowi ∈ I(c)

i ∼E β(i).

Any such bijectionβ is called an input isomorphism from nodec to noded. The set

B(c, d) denotes the collection of all input isomorphisms from nodec to noded. The set

BG =
⋃

c,d∈C B(c, d) is the (symmetry) groupoid of the network. The setB(c, c) is a

permutation group acting on the input setI(c), which we call the vertex group of node

c.

Formed by the input isomorphisms, the groupoid structure underpins the couple cell

systems much like the way symmetry groups are the keys to equivariant bifurcation

theory.

Definition 1.3.4. A homogeneous network is a coupled cell network such thatB(c, d) 6=

∅ for every pair of nodesc, d. A homogeneous network that has one equivalence class of

edges is said to have identical coupling. The valence of an identical coupling network

is the number of arrows in any (and hence every) input set.

Examples of homogenous and non-homogenous coupled cell networks are provided

in Figure 1.1.

Vector fields of coupled cell network

Now that we have described the topological component, we need to describe the suit-

able, oradmissible, dynamics for a given network. LetFP
G denote the class of vector
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(a) A homogenous bi-
directional ring.

(b) A three-node non-
homogenous network with
mixed arrows and node
types.

Figure 1.1: Examples of coupled cell networks.

fields compatible with a given coupled cell networkG. Each node ofG may represent

a system of differential equations, so we associate a phase spacePc and state variables

xc(t) at timet for eachc ∈ C. For this work, the phase space will be a nonzero finite-

dimensional real-vector space. Two equivalent nodes over∼C must satisfy

c ∼C d ⇒ Pc = Pd

and we require the same coordinate systems onPc andPd.

For the coupled cell networkG as a whole, we define thetotal phase spaceto be

P =
∏

c∈C
Pc

and the corresponding coordinate system onP to be

x = (xc)c∈C.

Let D = {d1, . . . , ds} be any ordered subset ofs nodes inC. The same node can

appear in the set more than once. The phase space of this subset of nodes can be defined
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as

PD = Pd1 × · · · × Pds

and forxdj ∈ Pdj , the corresponding coordinate system is

xD = (xd1 , . . . , xds).

For a given nodec, we define theinternal phase spaceto bePc and thecoupling

phase spaceto be

PT (I(c)) = PT (i1) × · · · × PT (is),

whereT (I(c)) denotes the ordered sets of nodes(PT (i1) × · · · × PT (is)) with the edges

ik ∈ I(c). Supposec, d ∈ C andc ∼I d. For anyβ ∈ B(c, d), define the pullback map

β∗ : PT (I(d)) → PT (I(c))

by

(β∗z)T (i) = zT (β(i))

for all i ∈ I(c) andz ∈ PT (I(d)). Now, we are ready to define the class of vector fields

that is suitable for a coupled cell network.

Definition 1.3.5. A vector fieldf : P → P is G-admissible if

a. (domain condition) For allc ∈ C the componentfc(x) depends only on the in-

ternal phase space variablesxc and the coupling phase space variablesxT (I(c));

that is, there existŝfc : Pc × PT (I(c)) → Pc such that

fc(x) = f̂c(xc, xT (I(c))),



CHAPTER 1. INTRODUCTION 18

b. (pullback condition) For allc, d ∈ C andβ ∈ B(c, d),

f̂d
(

xd, xT (I(d))

)

= f̂c
(

xd, β
∗xT (I(d))

)

,

for all x ∈ P .

These two conditions are combined to ensure that a vector field is suitable for a

given network. An admissible vector field along with its coupled cell network is a

coupled cell system.

Balanced equivalence relations and balanced colourings

To study the possible synchrony clusters in a network, the concepts of balanced equiv-

alence relation and balanced colouring in a coupled cell networks are needed. Many

synchronization patterns may occur for a given network paired with a specific vector

field. However, these patterns may not persist under anothervector field for the same

network. We are interested in patterns of synchrony that areinvariant under all admis-

sible vector fields and such subspaces are said to berobust.

To speak of these patterns of synchrony mathematically, we can use equivalence

relations⊲⊳ on the set of nodesC. Such equivalence relation⊲⊳ partitions the nodes

in C into different classes. Obviously, any partition of the nodes will also form an

equivalence relation. The correspondingpolysynchronous subspaceis given by

∆⊲⊳ = {x ∈ P : c ⊲⊳ d ⇒ xc = xd}.

Wheneverc ⊲⊳ d, we can identify variablesxc andxd using equivalence relations

⊲⊳. This restriction is the same as restricting vector fieldf to ∆⊲⊳. Hence, for

c ⊲⊳ d ⇒ fc = fd on ∆⊲⊳
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is a sufficient condition forf ∈ FP
G to be flow-invariant on∆⊲⊳. Reformulating these

ideas using input isomorphisms, we can now state the idea of balanced equivalence

relations.

Definition 1.3.6. An equivalence relation⊲⊳ onC is balanced if for everyc, d ∈ C with

c ⊲⊳ d, there exists an input isomorphismβ ∈ B(c, d) such thatT (i) ⊲⊳ T (β(i)) for all

i ∈ I(c).

This abstract idea of balanced equivalence relations on thenode setC of networkG

may be made concrete graphically. We can colour the nodes inC using the same colour

whenever two nodes are in the same equivalence class. Furthermore, we colour the

tail of each input arrow for each node the same colour of the equivalence class. Then,

input isomorphismβ is colour preservingif T (i) andT (β(i)) share the same colour

for all i ∈ I(c). Then, a pattern of synchrony is balanced if and only if thereexists a

colour-preserving input isomorphismβ : I(c) → I(d) between any two nodes of the

same colour. Figure 1.2 shows examples of networks with balanced colouring patterns.

(a) A balance-coloured bi-
directional ring with a2-
colour pattern, with various
classes of nodes being rep-
resented by black and white.

(b) A balanced four-cell network with a3-
colour pattern, with various classes of nodes
being represented by white, grey, and black.

Figure 1.2: Examples of coupled cell networks with balancedcolourings.

We now connect the idea between balanced colouring and robust pattern of syn-
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chrony with the following theorem.

Theorem 1.3.7.Let ⊲⊳ be an equivalence relation on a coupled cell network. Then⊲⊳

is robustly polysynchronous if and only if⊲⊳ is balanced.

Proof. The proof may be found in the works by Stewartet al. (2003) and Golubitsky

et al. (2005).

Quotient networks

For a coupled cell network, each balanced equivalence relation ⊲⊳, induces a unique

canonical quotient network. It can be shown that every vector field on the canonical

networkG⊲⊳ can be lifted to a corresponding vector field onG. Given a⊲⊳-equivalence

over the nodes of networkG, we can define its quotient network using the following

steps:

1. Let c̄ denote the⊲⊳-equivalence class ofc ∈ C. The nodes inc⊲⊳ are the⊲⊳-

equivalence classes inC; that is,

C⊲⊳ = {c : c ∈ C}.

Thus we obtainC⊲⊳ by forming the quotient ofC by ⊲⊳, that is,C⊲⊳ = C/ ⊲⊳.

2. Define

c̄ ∼C⊲⊳ d̄ ⇔ c ∼C d.

The relation∼C⊲⊳ is well defined since⊲⊳ refines∼C .

3. Let S ⊂ C be a set of nodes consisting of precisely one nodec from each⊲⊳-

equivalence class. The input arrows for a quotient nodec̄ are identified with the

input arrows in nodec, wherec ∈ S, that is,I(c̄) = I(c). When viewing the

arrowi ∈ I(c) as an arrow inI(c̄), we denote that arrow byi. Thus, the arrows in
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the quotient network are the projection of arrows in the original network formed

by the disjoint union

E⊲⊳ =
˙⋃

c∈S
I(c).

The definition of the quotient network structure is independent of the choice of

the representative nodesc ∈ S.

4. Two quotient arrows are equivalent when the original arrows are equivalent. That

is,

ī1 ∼E⊲⊳ ī2 ⇔ i1 ∼E i2,

wherei1 ∈ I(c1), i2 ∈ I(c2), andc1, c2 ∈ S.

5. Define the heads and tails of quotient arrows by

H(̄i) = H(i) and T (̄i) = T (i).

6. It is easy to verify that the quotient network satisfies theconsistency condition in

Definition 1.3.1f. The quotient network is independent of the choice of nodes in

S because⊲⊳ is balanced.

The nodes of the quotient network represent the equivalenceclasses in a balanced

⊲⊳-equivalence relations. In this work, we will lump togethernodes with synchronized

dynamics to simplify the analysis. Examples of quotient networks are shown in Fig-

ure 1.3

1.4 Structure of the Thesis

This chapter has outlined the need for better understandingof the process related to

infectious diseases and the mathematical models that are associated with them. We
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(a) A quotient network corre-
sponding to the balanced colour-
ing shown in Figure 1.2(a).

(b) A quotient network cor-
responding to the balanced
colouring shown in Fig-
ure 1.2(b).

Figure 1.3: Examples of quotient networks, based on balanced colourings shown in
Figure 1.2.

have also introduced the coupled cell system for analyzing models in later chapters of

this thesis. Dynamics at the pathogen level and at the transmission level are intricately

linked and they are complicated to model and difficult to analyze. The rest of this thesis

is devoted to applying dynamical system techniques to differential equation models of

infectious diseases. Our goal is to further our understanding of the model and in turn,

the biological processes that inspired them.

We first analyze the dynamics of anin vivo single strain immunological model

in Chapter 2. Unlike many other immunological models in the literature, this model

takes into account and studies the secondary response of theimmune system. Applying

Lyapunov stability method, we show that the disease free andinfectious equilibria can

be globally asymptotically stable. For the nontrivial equilibrium of the system, we show

that it may be locally stable and a Hopf bifurcation occurs from this equilibrium.

In Chapter 3, instead of having only one strain of pathogen, we analyze a multi-

strainin vivo immunological model. Specifically, this model studies the antigenic vari-

ation ofP. falciparumwithin the human immune system by explicitly accounting forthe

effects of epitopes. Numerical solutions of the model show that sustained oscillations

may cluster together. Recasting the model using the theory of coupled cell system, we
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show that these oscillations occur through a synchrony-breaking Hopf bifurcation of

the proper quotient representation.

Continuing to study the effects of multiple strains of pathogens on infectious dis-

eases, we turn our attention to a family of multi-strain epidemiological models in Chap-

ter 4. These models explore the maintenance of pathogen strain structure at the host

level. Again, we investigate the models as coupled cell systems and show that the

discrete strain structure observed in these models may be mathematically explained

through a synchrony-breaking semi-simple double-zero bifurcation from the trivial

equilibrium of the quotient network.

This work is concluded in Chapter 5 with a look at potential future research.
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Chapter 2

Bifurcation Analysis in a Model of

Cytotoxic T-Lymphocyte Response to

Viral Infections

2.1 Introduction

From the advances in immunology over the last few decades, weare now able to un-

derstand the dynamics of infections at the cellular level. This detailed level of un-

derstanding allows researchers to simulate the interactions between pathogens and the

host immune system using computer models. Of the many different mechanisms of the

immune system, defences against viral infections are of interest because many of the

diseases caused by them, e.g. hepatitis B and AIDS, are chronic and incurable (Male

et al., 2006; Nowak and May, 2000).

A virus cannot replicate on its own and it must take over host cells and use them

in order to replicate. Once invaded by the viruses, these infected cells will cause a cy-

totoxic T-lymphocyte (CTL) response from the immune system. Cells involved in the

33
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CTL response are also known as killer T-cells because they are responsible for apopto-

sis, i.e. programmed cell death, of the infected cells. Through the lysis of the infected

cells, the viruses are prevented from further replicating (Nowak and May, 2000). The

CTL response is also notable because it sometimes damages the body in its attempt to

clear the virus. Over half the tissues damaged in hepatitis are actually caused by the

CTL response (Maleet al., 2006; Wodarz, 2007).

To model the immune response resulting in a viral infection,researchers first con-

sider the basic interactions between the immune system and the virus using the follow-

ing system of differential equations (Anderson and May, 1991; De Boer and Perelson,

1998):

ẋ = λ− dx− βxv,

ẏ = βxv − ay,

v̇ = ky − µv,

(2.1)

where variablesx, y andv represent the density of healthy cells, infected cells, and

virus, respectively. Healthy cells are produced at rateλ and they died out naturally at

ratedx. These cells may come into contact with the virus and become infected cells at

rateβxv. Infected cells would died out naturally at rateay. From the infected cells, the

virus are replicated at rateky and they are cleared naturally at rateµv.

To recover from a viral infection, cytotoxic T-lymphocyteseffectors (CTLe) of the

immune system will clear away the infected cells to prevent further viral replications.

To model these extra dynamics, researchers modified model (2.1) by assuming that the

virus population is at a quasi-steady state, i.e.v = (k/µ)y, and letz represent the CTLe

population to get a simple model of viral interaction with CTL response (De Boer and
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Perelson, 1998; Nowak and Bangham, 1996):

ẋ = λ− dx− βxy,

ẏ = βxy − ay − pyz,

ż = cyz − bz.

(2.2)

Compared to model (2.1), healthy cells in this model become infected cells at rateβxy

and the infected cells are removed by the CTL atpyz. The CTL population increases

nonlinearly at ratecyz and they are removed at ratebz.

After a viral infection, the CTL that were responsible for clearing away the in-

fected cells become cytotoxic T-lymphocytes precursors (CTLp) and they have recep-

tors specifically for detecting the virus from the previous infection (Wodarz, 2007).

Upon contact with the virus during a subsequent infection, the precursors differentiate

and become cytotoxic T-lymphocyte effectors (CTLe) and these cells are again respon-

sible for clearing away the invading virus. Hence, the following model from (Wodarz

et al., 2000) more accurately describes the dynamics of CTL response in the immune

system:

ẋ = λ− dx− βxy

ẏ = βxy − ay − pyz

ẇ = (1− q)cyw − bw

ż = qcyw − hz.

(2.3)

For this system, the healthy cells,x, and infected cells,y, are described similarly as in

system (2.2). Instead of just one class of CTL response, there are the CTLp represented

by w and the CTLe represented byz. These precursors emerge at ratecyw. They

may become effectors at ratecqyw or cleared away naturally at ratebw. Similarly, the
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effectors are created at ratecqyw and cleared at ratehz.

Dynamics of system (2.3) were analyzed mostly by numerical methods in (Wodarz

et al., 2000). In this study, we provide a rigorous analysis of system (2.3) similar to

those done in (Jianget al., 2009; Egami, 2009). To start, we show that the system

is a well-posed biological model in Section 2.2. Local stability of equilibria for sys-

tem (2.3) were partially analyzed in (Wodarzet al., 2000), so we complete the local as

well as global stability analysis in Section 2.3. Aside fromstability, we will analyze

bifurcation dynamics using conditions established by Yu (2005) in Subsection 2.4.2.

We provide some numerical illustrations to the system in Section 2.5. Finally, the bio-

logical significance of the results are discussed in Section2.6.

2.2 Well-posedness of the model

For a biological model to be well-posed, only non-negative initial conditions are con-

sidered and the solution must not be negative. Let the parameters in (2.3) be positive

constants. Directly solving forx, x(t) can be expressed as

x(t) = e−
∫ t

0
(d+βy(s))ds

(

x(0) + λ

∫ t

0

e
∫ t

s
(d+βy(u))duds

)

.

For t > 0 andx(0) ≥ 0, one can see thatx(t) > 0. In a similar fashion, we can show

that the other three variables have solutions as

y(t) = y(0)e
∫ t

0
[βx(s)−a−pz(s)]ds,

w(t) = w(0)e
∫ t

0
[cy(s)(1−q)−b]ds,

and z(t) = e−ht

(

z(0) +

∫ t

0

cqy(s)w(s)ehsds

)

.

All solutions are positive fort > 0 if y(0) > 0, w(0) > 0, andz(0) ≥ 0.
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From the first equation in system (2.3), we see thatẋ ≤ λ−dx, solim sup
t→∞

x(t) ≤ λ

d
.

By adding the first two equations in (2.3), we get

ẋ+ ẏ = λ− dx− ay − pyz

≤ λ− µ̃1(x+ y),

whereµ̃1 = min{a, d}. Thus,lim sup
t→∞

(x(t) + y(t)) ≤ λ

µ̃1

.

Having shown thatx andy are bounded, we will show by contradiction thatw and

z are also bounded. Let us assumez is unbounded. Then from they equation in sys-

tem (2.3), we havelimt→∞ y(t) = 0. It follows from thez equation in system (2.3)

that limt→∞ z(t) = 0. This result is a contradiction to the assumption, soz must be

bounded. Similarly, assume thatw is unbounded. Based on thez equation of sys-

tem (2.3), we again havelimt→∞ y(t) = 0. In this case, we see from thew equation in

system (2.3) thatlimt→∞w(t) = 0 whenlimt→0 y(t) = 0 and we have another contra-

diction. Based on this discussion, we have shown that there exists a bounded positive

invariant region for the system. We define this region asΓ ⊂ R4
+.

For system (2.3), the three equilibria are given by

E0 =

(

λ

d
, 0, 0, 0

)

, (2.4)

E1 =

(

a

β
,
λβ − da

aβ
, 0, 0

)

, and (2.5)

E2 =

(

λ

dR1

,
b

cQ
,

h

pqbcd

(

R0

R1

− 1

)

,
1

pcdQ

(

R0

R1

− 1

))

, (2.6)
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where

Q = (1− q),

R0 =
λβ

ad
,

and R1 = 1 +
βb

cdQ
.

In the next section, we will discuss the stability ofE2 and Hopf bifurcation. The stabil-

ity of the equilibria is based on the Jacobian matrix of (2.3):

J(x, y, w, z) =



















−d − yβ −βx 0 0

yβ −βx− a− pz 0 −py

0 cw(1− q) cy(1− q)− b 0

0 cqw cqy −h



















. (2.7)

2.3 Stability of E0 andE1

2.3.1 Infection-free equilibrium E0

By the way of (2.7), we obtain the characteristic polynomialat the equilibriumE0 as

follow:

ΛE0
(s) = det[λI − J(E0)] = (s+ d)(s+ b)(s+ h)

(

s + a− λβ

d

)

.

For an equilibrium to be locally asymptotically stable, allthe roots of the characteristic

polynomial must be located inC− = {z ∈ C : Re(z) < 0}. Given that all the

parameters of the system are positive, the system is locallyasymptotically stable at this

equilibrium if

λβ − da < 0 or R0 ,
λβ

ad
< 1,
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whereR0 represents the basic reproductive number. To show that thisequilibrium is

globally stable insideΓ, we will follow the method of fluctuation employed by Hirsch

et al. (1985) and Jianget al. (2009). To start, we denote

f∞ = lim inf
t→∞

f(t) and f∞ = lim sup
t→∞

f(t)

for any continuous and bounded functionf : [0,∞) → R. As shown in Section 2.2,

the solutionsx(t), y(t), w(t), andz(t) are always non-negative and bounded from above

for any well-posed initial conditions. Hence,lim inft→∞ andlim supt→∞ always exist

for each component. By the theorems on fluctuations (Thieme,2003), there exists

sequencestn andsn such that iftn → ∞ whenevern → ∞, then

lim
n→∞

x(tn) = x∞, lim
n→∞

ẋ(tn) = 0

lim
n→∞

x(sn) = x∞, lim
n→∞

ẋ(sn) = 0.

(2.8)

Supposet = tn, then the first equation from system (2.3) gives

ẋ(tn) + dx(tn) + βx(tn)y(tn) = λ.

As n → ∞, one can apply identities in (2.8) and the previous equationbecomes

dx∞ ≤ (d+ βy∞)x∞ ≤ λ. (2.9)

By similar arguments on the other equations in system (2.3),we have

ay∞ ≤ (a+ pz∞)y∞ ≤ βx∞y∞, (2.10)

bw∞ ≤ c(1− q)y∞w∞, (2.11)

and hz∞ ≤ cqy∞w∞. (2.12)
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Now, we can derive from equations (2.9) and (2.10) to get

ay∞ ≤ βx∞y∞ ≤ λβ

d
y∞. (2.13)

Supposey∞ > 0, inequality (2.13) implies

1 ≤ λβ

ad
= R0,

which contradictsR0 < 1, and soy∞ = 0. Giveny∞ = 0, Equations (2.11) and (2.12)

imply thatw∞ = 0 andz∞ = 0. Since the solutions are non-negative andlim inf ≤

lim sup, we must havey(t), w(t), z(t) → 0 ast → ∞. Becausey(t) → 0 asymptoti-

cally, the first equation in (2.3) becomesẋ = λ− dx. Similar to the results in (Castillo-

Chavez and Thieme, 1995), the solutionx(t) → λ/d ast → ∞. By the local stability

result established earlier and global attractive propertyshown here, we have proven the

following theorem.

Theorem 2.3.1.WhenR0 < 1, the infection-free equilibriumE0 is globally asymptot-

ically stable inΓ.

2.3.2 Infectious equilibrium without CTL responseE1

WhenR0 > 1, E0 becomes unstable and a new equilibriumE1 emerges. For this

equilibrium solution to be physically meaningful, we must haveR0 > 1. Similarly,

with the aid of (2.7) the characteristic equation atE1 can be obtained as

ΛE1
(s) = det[λI − J(E1)]

=
1

a2β
(s+ h)(as2 + λβs+ βλa− da2) [aβs+ cQ(ad− βλ) + aβb] .
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There are two first-degree factors and one second degree factor. Given that all the

parameters are positive, the first root is obviously stable.For the roots of the second-

degree factor to be inC−, all its coefficients must have the same sign. Hence, its roots

would be stable if and only ifR0 > 1. This condition is same as the condition for

the equilibrium to be biologically meaningful, so we only need to check the remaining

root. This equilibrium is locally stable if and only if

cQ(ad− βλ) + aβb > 0 ⇔ cdQ(R0 − 1)− βb < 0

⇔ R0 − 1− βb

cdQ
< 0,

⇔ R0 < 1 +
βb

cdQ
, R1.

Not only that the system is locally stable at this equilibrium, one can show that this

equilibrium is globally stable.

Theorem 2.3.2.When1 < R0 < R1, the infectious equilibrium without CTL response

(i.e.E1) is globally asymptotically stable inΓ.

Proof. To prove that the system is globally asymptotically stable,we will use Lyapunov

stability theory to show that the system must converge to a region in hyperspace and

upon entering such region, the solutions must converge to the equilibrium asymptoti-

cally. Based on the Lyapunov function candidates suggestedin (Korobeinikov, 2004),

we investigate the system using

V (x, y, w, z) = m

(

x− x1 − x1 ln
x

x1

+ y − y1 − y1 ln
y

y1

)

+ m̃ (w + z) ,

wherem as well asm̃ are positive coefficients yet to be determined, andx1 as well as

y1 are the equilibrium expressions ofx andy atE1. Clearly,V (E1) = 0, which is the

unique global minimum of the function. Now, we need to show that the equilibrium is

globally attractive. The derivative ofV with respect to time along the trajectory of the
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system is

V̇ = m

(

ẋ− x1

x
ẋ+ ẏ − y1

y
ẏ

)

+ m̃ (ẇ + ż)

= m

(

λ +
ad

β
−
(

dx+
λa

βx

)

+

(

λ− ad

β

)

− λβ − ad

a
x− pyz +

λβ − ad

aβ
pz

)

+ m̃(cyw − bw − hz)

= −mλ

(

x1

x
+

x

x1
− 2

)

− (m̃h+mp(y − y1))z + m̃c

(

y − b

c

)

w

= − mλ

xx1

(x− x1)
2 − (m̃h+mp(y − y1))z + m̃c

(

y − b

c

)

w.

For different values ofy relative toy1 and
b

c
, we can define the positive constantsm

and m̃ to scale the different expressions properly to ensure thatV̇ < 0. For most

cases, the scaling can be perform directly based on the bounds on the variables. First,

assumey > y1. In this case, we only need to considery >
b

c
and we need to ensure

that limt→∞ z(t) = 0 does not happen beforelimt→∞w(t) = 0. As z → 0 when

t → 0, the equationẇ + ż = (cy − b)w − hz approachesẇ = (cy − b)w. Given

thaty − b

c
> 0, w will grow unboundedly, which is contradictory to the resultthat the

system is well-posed. Hence, asz approaches zero,w must also approach zero. Hence,

for w > 0, we must havez > 0. For the terms−mp(y − y1)z + m̃c

(

y − b

c

)

w, we

can choosem ≫ m̃, so thatV̇ < 0. This result implies that the trajectory enters the

region bounded byy < y1 + ǫ at some finite timeT1 > 0 and then it will stay in this

region fort ∈ [T1,∞). Noticing that

b

cQ
− y1 =

b

cQ
− λβ − ad

aβ

=
d

β

(

1 +
bβ

cdQ
− λβ

ad

)

=
d

β
(R1 − R0)

> 0 for 1 < R0 < R1,
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we can always select the appropriatem andm̃ to ensure thatb/cQ > y1 > y − ε, i.e.,

y < b/cQ + ε for arbitrary smallε. Hence, at some finite timeT > T1, the solution

must entery ≤ b/cQ and stay in this region fort ∈ [T,∞).

Having shown thaty must be bounded above byb/cQ in finite time, we now pro-

ceed to prove that the solution trajectory will approachE1 asymptotically. Using the

inequality in (2.11), we have

bw∞ ≤ c(1− q)y∞w∞ or

(

b

c
− y∞

)

w∞ ≤ 0. (2.14)

For t ∈ [T,∞), (2.14) will only hold ifw∞ = 0. Asymptotically, system (2.3) has the

same dynamics as

ẋ = λ− dx− βxy

ẏ = βxy − ay

(2.15)

and this subsystem has two equilibria at

Ê0 =

(

λ

d
, 0

)

and Ê1 (x1, y1) .

It can be easily verified that when1 < R0 < R1, subsystem (2.15) is unstable atÊ0 and

locally stable atÊ1. Applying Lyapunov stability theory to the subsystem, we choose

the Lyapunov function as

V̂ (x, y) = x− x1 − x1 ln
x

x1

+ y − y1 − y1 ln
y

y1
.

Then

˙̂
V = − λ

xx1
(x− x1)

2 ≤ 0,

for x 6= x1. For1 < R0 < R1, subsystem (2.15) is globally asymptotically stable atÊ1
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implying that the equilibriumE1 of system (2.3) is globally asymptotically stable.

2.4 Stability of E2 and Hopf bifurcation

2.4.1 Infectious equilibrium with CTL responseE2

AsR0 increases and passesR1, E1 becomes unstable and the system moves to the third

equilibriumE2. By equation (2.7), we obtain the characteristic equation at E2:

ΛE2
(s) = det[λI − J(E2)] = s4 + α1s

3 + α2s
2 + α3s+ α4,

where

α1 = dR1 + h,

α2 = ad
R0

R1
(R1 − 1) + h

[

dR1 + a

(

R0

R1
− 1

)]

,

α3 = ah

[

(b+ dR1)

(

R0

R1
− 1

)

+ d
R0

R1
(R1 − 1)

]

,

and α4 = abdh(R0 − R1).

It is clear that allαi > 0, i = 1, 2, 3, 4 due toR0 > R1 > 1.

Unlike the previous characteristic polynomials at other equilibria, ΛE2
cannot be

easily factored into polynomials of lesser degree. Hence, local stability of this equilib-

rium cannot be as easily identified. Instead, we will use the Routh-Hurwitz criterion

to analyze its local stability. The criterion states that the corresponding equilibrium is

locally asymptotically stable if and only if all the Hurwitzdeterminants of the charac-

teristic polynomial are positive (Pritchard, 2005). For a four dimensional system, the
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relevant Hurwitz determinants are

∆1 = α1,

∆2 = α1α2 − α3,

∆3 = α3∆2 − α2
1α4,

and ∆4 = α4∆3.

Moreover,∆2 and∆3 can be written more explicitly as

∆2 = A2(h− b)2 +B2(h− b) + C2,

∆3 = ah
[

A3(h− b)2 +B3(h− b) + C3

]

,

where

A2 = a

(

R0

R1

− 1

)

+ dR1,

B2 = ab

(

R0

R1
− 1

)

+ d(2b+ dR1)R1,

C2 = d [b(b+ dR1)R1 + adR0(R1 − 1)] ,

A3 = a(b+ dR1)

(

R0

R1
− 1

)2

+ d2R1(R0 −R1) + d2R0(R1 − 1)

+ ad
R0

R1

(R1 − 1)

(

R0

R1

− 1

)

,

B3 = (b+dR1)

[

ab

(

R0

R1

−1

)2

+d2R1(R0−R1)+d2R0(R1−1)

]

+bd
R0

R1
(R1−1)

[

a

(

R0

R1
−1

)

+dR1

]

,

C3 = d2
R0

R1
(R1 − 1) [(b+ dR1) [a(R0 − R1) + bR1] + adR0(R1 − 1)] .

(2.16)

It is easy to see that all the coefficientsAi, Bi andCi are positive for any parameter

values, sinceR0 > R1 > 1 for this case. Therefore,∆2 > 0, ∆3 > 0 as long ash > b.

In other words, the infectious equilibrium with CTL response,E2, is always stable if
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the death rate of the CTLe is higher than that of the CTLp.

In order to obtain more precise stability conditions for theinfectious equilibrium

with CTL responseE2, we first prove the following lemma to show that if both∆2 and

∆3 can become zero (requiringh < b), then∆3 will cross zero before∆2 does.

Lemma 2.4.1.For R0 > R1, ∆2 is positive when∆3 crosses zero for some change in

parameters.

Proof. Suppose∆3 = 0, then we can rewrite the expression as

∆2 =
α2
1α4

α3

.

Since eachαi is positive as long asR0 > R1, we have∆2 > 0. On the other hand,

suppose∆2 = 0, then we have∆3 = −α2
1α4 < 0. The proof is complete.

Thus, to consider the stability ofE2, we only need to consider the possibility of

∆3 = 0. Now, let

∆ = B2
3 − 4A3C3, h∗ = b− B3

2A3
,

h∗
1 = b− B3 +

√
∆

2A3
(∆ > 0), and h∗

2 = b− B3 −
√
∆

2A3
(∆ > 0).

It is easy to see thath∗
1 < h∗ < h∗

2 < b. Then, we have the following theorem.

Theorem 2.4.2.In Γ, the stability of the infectious equilibrium with CTL responseE2

belongs to one of the following cases:

(i) when∆ < 0, E2 is always stable;

(ii) when∆ = 0, E2 is always stable ifh∗ ≤ 0; or is stable forh ∈ (0, h∗)∪ (h∗,∞)

if h∗ > 0;

(iii) when ∆ > 0, E2 is always stable ifh∗
2 ≤ 0, or is stable forh ∈ (h∗

2,∞) if

h∗
2 > 0 > h∗

1, or is stable forh ∈ (0, h∗
1) ∪ (h∗

2,∞) if h∗
1 > 0.
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Proof. The proof is straightforward by considering the sign of the quadratic polynomial

A3(h− b)2 +B3(h− b) + C3, and thus the details are omitted here for brevity.

2.4.2 Hopf bifurcation analysis

In the previous sections, we showed that, asR0 increases,E0 loses its stability and tran-

sitions toE1. AsR0 further increases,E1 would too lose its stability and goes toE2. In

this section, we will show that Hopf bifurcation can occur fromE2 if R0 increases even

further with other conditions on the parameterh. Bifurcations are usually determined

by the eigenvalues of the Jacobian matrix, but they are oftendifficult to determine ex-

plicitly for high dimensional systems. The next theorem states necessary and sufficient

condition for finding Hopf critical point without finding theeigenvalues and its proof

can be found in (Yu, 2005).

Theorem 2.4.3.For x ∈ Rn, µ ∈ R, andf : Rn × R → Rn, assume that the general

nonlinear ordinary differential system

ẋ = f(x, µ)

has a locally asymptotically stable equilibrium. The necessary and sufficient condition

for a Hopf bifurcation to occur from the equilibrium is

∆n−1 = 0,

with αn and∆i > 0, where1 ≤ i ≤ n− 2.

For the present study, this theorem implies that a Hopf bifurcation fromE2 would

occur when∆3 crosses from the positive to the negative and at the same time, ∆1 > 0

and∆2 > 0 hold. From Lemma 2.4.1, we know that the only possible bifurcation which
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can occur from the infectious equilibrium with CTL responseE2 is a Hopf bifurcation

and it may only occur ifh < b. In particular, we have the following theorem.

Theorem 2.4.4.LetRH denote the Hopf critical point. Then,

(i) when∆ < 0, RH = ∞, that is, there is no Hopf bifurcation;

(ii) when ∆ = 0, RH = ∞ if the correspondingh∗ ≤ 0, or RH is finite if the

correspondingh∗ > 0 (which only gives a single value forE2 unstable), so there

is no Hopf bifurcation;

(iii) when∆ > 0, RH = ∞ if the correspondingh∗
2 ≤ 0, giving no Hopf bifurcation;

or there is one finite critical valueRH if the correspondingh∗
2 > 0 > h∗

1, giving

rise to a Hopf bifurcation; or there are two finite critical valuesRH1
andRH2

if

the correspondingh∗
1 > 0, giving rise to two Hopf bifurcations.

Proof. ∆3 = 0 is equivalent to find the roots of the quadratic polynomial equation

A3(h− b)2 − B3(h− b) + C3 = 0, where all the three coefficients are positive and do

not containh. It is clear that when∆ = B2
3 − 4A3C3 < 0, the quadratic polynomial is

positive for any positive parameter values, and thusE2 is always stable, implying that

there is no Hopf bifurcation and so the Hopf critical point isRH = ∞. When∆ = 0,

the quadratic polynomial equation has one root

h− b = − B3

2A3
, or h = b− B3

2A3
≡ h∗ for h > 0.

So ifh∗ ≤ 0, thenE2 is always stable becauseh > 0 and no Hopf bifurcation can occur.

If 0 < h∗ < b, we have a positive solution forh, andE2 is stable except for the point

h = h∗. Thus, the correspondingRH is an isolated point, that is, except for this point,

E2 is always stable. Thus, for∆ = 0, generically there is no Hopf bifurcation. Finally,

for ∆ > 0, it may have three possibilities. The roots of the quadraticpolynomial for



CHAPTER 2. BIFURCATION ANALYSIS OF A SINGLE STRAIN MODEL 49

this case is given by

h− b =
B3 ∓

√
∆

2A3
, or h = b− B3 ±

√
∆

2A3
≡ h∗

1,2 for h > 0.

If h∗
1 < h∗

2 ≤ 0, E2 is always stable (i.e.RH = ∞); if h∗
2 > 0 > h∗

1, thenE2 is stable

for h > h∗
2 and there is a Hopf bifurcation emerging from the pointh = h∗

2 with a finite

RH ; and ifh∗
1 > 0, thenE2 is stable forh ∈ (0, h∗

1) ∪ (h∗
2,∞), and there are two Hopf

bifurcations, which happen at the critical pointh = h∗
1 andh = h∗

2 (the corresponding

values in terms ofR0 equalRH1
andRH2

).

To verify if it is possible to have∆ = 0, rewrite∆ as

∆ =
{R1(dR1 + b)− R0 [d(2R1 − 1) + b]}2

d2R4
1

×
{

b2d2R2
1a

2 − 2dR1

[

bd3R3
1 + βλ

(

−2d(R1 − 1) + b2
)]

a

+ d6R6
1 + 2βλd3R3

1 [b− 2d(R1 − 1)] + β2λ2
[

b2 − 4d2(R1 − 1)R1

]}

.

SinceR1 does not containa, we can solve the above equation∆ = 0 to finda expressed

in terms of other parameters. The first factor gives

a =
λβ
[

d(2R1 − 1) + b
]

dR1(dR1 + b)
,

and the second quadratic polynomial ofa yields

a = dR1

{

bd3R3
1 + βλ

[

−2d(R1 − 1) + b2
]}

± 2d3R2
1

√

λβ(R1 − 1) [λβ(R1 − 1)− bR1(dR1 − b)].

The above expressions show that all the three cases∆ < 0, ∆ = 0 and∆ > 0 are

possible.

The next step is to study the stability of the limit cycles generated from the Hopf
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bifurcations. To achieve this, consider general system

Ẋ = JX+ F (X), X ∈ R
n,

whereJX is the linear part of the system. We must first find the differential equations

on its centre manifold and then reduce the system to its normal form. Without loss of

generality, we assume thatX = 0 is the fixed point of interest for the system.

SupposeJ hasnc eigenvalues with zero real-part andns eigenvalues with negative

real-part andn = nc+ns. Using the eigenvectors ofJ to form a transformation matrix,

the system can be rewritten in block matrix form as

ẋc = Axc + f(xc,xs)

ẋs = Bxs + g(xc,xs)

(xc,xs) ∈ R
nc × R

ns, (2.17)

whereA ∈ R
nc×nc andB ∈ R

ns×ns. With the eigenvalues of zero real-part, the Centre

Manifold Theorem (Guckenheimer and Holmes, 1990) guarantees that there exists a

smooth manifoldWc = {(xc,xs)|xs = q(xc)} near the equilibrium point such that the

local behaviour in the centre direction of the system is qualitatively the same as that

on the manifold. By differentiatingxs = q(xc), we getẋs = Dq(xc)ẋc. Substitut-

ing (2.17) into the previous identity and rearranging the equation, we get

Dq(xc)[Axc + f(xc, q(xc))]− Bg(xc)− g(xc, q(xc)) = 0. (2.18)

By solving forq(xc), we get a function describing the center manifold. In general, q(xc)

cannot be solved explicitly. Instead, substituting a Taylor expansionq(xc) = ax2 +

bx3+O(x4) into (2.18), we can find the coefficients for the expansion by balancing the
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lower order terms. Based onq(xc), we now have a system in the reduced form:

ẋc = Axc + f(xc, q(xc)).

Now we have the system reduced to the centre manifold, we willfind its normal

form of the system associated with the Hopf bifurcation. To transform the reduced sys-

tem, we use nonlinear functionsxc = y + hi(y), where eachhi(y) is an ith-degree

homogenous polynomial (2 ≤ i ≤ s). Given that we are interested in Hopf bifurca-

tion in this paper, we assume thatnc = 2 andxc,y ∈ R2. Then the system can be

transformed to

ẏ = Ay + f2(y) + f3(y) + · · ·+ fns
(y) +DAhns

(y)−Dhns
A(y) +O(|y|ns+1),

wherefi(y) represents theith order terms in the expansion for the functionf . We can

choose the functionshns
such thatfns

(y) = Dhns
A(y)−DAhns

(y). Essential terms

must remain regardless of our choice ofhs (Guckenheimer and Holmes, 1990). Hence,

we can simplify the system up to a finite degree of terms by applying the process repeat-

edly. After a simplification up to third order, the normal form of a system associated

with a Hopf bifurcation is







ẏ1

ẏ2






=







(ν0µ+ ν1(y
2
1 + y22))y1 − (ω + τ0µ+ τ1(y

2
1 + y22))y2

(ω + τ0µ+ τ1((y
2
1 + y22))y1 + (ν0µ+ ν1(y

2
1 + y22))






+O(|y|5).

We transform these two equations to the polar coordinates as

ṙ = r(ν0µ+ ν1r
2) +O(r5)

θ̇ = ω0 + τ0µ+ τ1r
2 +O(r4),

(2.19)
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wherer describes the amplitude andθ represents the phase of the periodic motion.

By constructing a Poincaré map of the polar coordinate system, one can show that the

bifurcating limit cycle is asymptotically stable whenν1 < 0 and unstable whenν1 > 0.

We have described a classical approach on determining the stability of Hopf bi-

furcation here. In order to perform the series of transformations to find the relevant

coefficients, we must first determine the analytic expressions of the eigenvectors for

the Jacobian to diagonalize it. We have not been successful in finding these expres-

sions, thus we will not be able to determine the stability of the Hopf bifurcation found

in Theorem 2.4.4 analytically. An alternative numerical method based on perturbation

expansion is described in (Yu and Huseyin, 1988) and we use the associated algorithm

to investigate stability for our system in the next section.

2.5 Numerical simulations

In this section, we demonstrate the analytic results in the previous sections through

numerical simulations. To show that the system undergoes qualitative changes asR0

increases, we varyR0 by increasingλ and fix the rest of the parameters. The parameter

values are chosen as

β =
3

400
, d = c = h = q =

1

10
, b =

1

5
, a =

1

2
, and p = 1.

Their selections are biologically realistic and are based on (Wodarzet al., 2000; Wang

et al., 2009) and the references therein. With these parameter values, we have

R0 =
3

20
λ and R1 =

7

6
.
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2.5.1 Infection-free equilibrium E0

For0 < λ < 20
3
, λc

1, R0 < 1. Letλ = 3, thenR0 =
9
20
. Analytic expression forE0 is

stated in (2.4). As stated in Theorem 2.3.1,E0 is globally asymptotically stable at these

values. At the chosen parameters, the equilibrium values are (x, y, w, z) = (30, 0, 0, 0).

Numerical simulation for infection-free equilibriumE0 is shown in Figure 2.1 and it

shows that the healthy cells settle to the expected equilibrium value and all other popu-

lations die out after a brief period of time.

Figure 2.1: Simulations of system (2.3) atλ = 3.

2.5.2 Infectious equilibrium without CTL responseE1

Increasingλ further,R0 passes one andE0 loses stability toE1. According to Theo-

rem 2.3.2,E1 remains asymptotically stable when1 ≤ R0 < R1, i.e. λc
1 = 20

3
≤ λ <
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70
9
, λc

2. We chooseλ = 7.5, so that the reproductive number isR0 = 1.125.

Analytic equilibrium expression forE1 is shown in (2.5) and as shown in Figure 2.2,

the dynamics settle to the numerical values of(x, y, w, z) = (66.6, 1.16, 0, 0). The

Figure 2.2: Simulations of system (2.3) atλ = 7.5.

healthy cell population decreased from the previous equilibrium and at the same time,

the infected population increased. As expected from the analytic analysis, the simula-

tion shows that there is no CTL response.

2.5.3 Infectious equilibrium with CTL responseE2

WhenR0 increases and passesR1, E1 loses its stability and the system is then stable

at the third equilibriumE2. The reproductive number will be greater thanR1 when

λ > 70/9. Local stability conditions for this equilibrium were shown in Theorem 2.4.2
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using the Routh-Hurwitz stability theorem. Hence, we shallcheck the conditions for

the theorem numerically. Using the selected parameters, the characteristic equation in

terms ofλ is

ΛE2
(s) = s4 +

13

60
s3 +

(

3λ

400
− 23

600

)

s2 +

(

3λ

1400
− 19

1200

)

s+

(

3λ

20000
− 7

6000

)

.

From the characteristic polynomial, the relevant Hurwitz determinants are

∆2(λ) = − 29

56000
λ+

271

36000
,

and ∆3(λ) = − 87

78400000
λ2 +

5809

336000000
λ− 2783

43200000
.

Solving forλ when∆3 = 0, we find that the roots are

λ1 =
1610

261
≈ 6.17 and λ2 =

847

90
≈ 9.41. (2.20)

Thus,E2 is stable when70/9 < λ < 847/90. We chooseλ = 8. Direct evaluations of

∆2 and the coefficients of the characteristics polynomial atλ = 8 show that they are all

positive. Hence, we have satisfied the local stability criteria from the Routh-Hurwitz

theorem.

According to the formulas given in (2.16), we have

A3 =
27

9800

[

(

λ− 3899

540

)2

+
115199

291600

]

> 0,

B3 =
27

49000

[

(

λ− 22561

3240

)2

+
12175079

10497600

]

> 0,

C3 =
1

5600000
λ(30λ− 133) > 0 for λ >

70

9
,
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which yields

∆ =
29

38416000000
(18λ− 133)2

[

(

λ− 11935

1566

)2

− 1250921

613089

]

.

Hence,∆ = 0 yields

λ =
11935± 98

√
521

1566
,
133

18
,
133

18

≈ 6.192917246, 7.388888889, 7.388888889, 9.049739204.

Let λ∗ = 11935+98
√
521

1566
≈ 9.049739204. Then,∆ < 0 for 70

9
< λ < λ∗, ∆ = 0 for

λ = λ∗, and∆ > 0 for λ > λ∗. Therefore,E2 is always stable for70
9
< λ < λ∗. When

λ = λ∗, we haveh∗ = 2839−25
√
521

43080
≈ 0.05265469799 > 0, soE2 for this numerical

example with the given valueh = 1
10

6= h∗ is stable. Whenλ > λ∗, we have two roots

from the quadratic polynomial as

h∗
1,2 =

29160λ2−436086λ+1615775±5(18λ−133)
√
84564λ2−1288980λ+4739329

(540λ−3899)2+1151199

It can be shown that bothh∗
1,2 > 0 for λ > λ∗. Thus, according to Theorem 2.4.4, we

know thatE2 is stable for(0, h∗
1)∪(h∗

2,∞). Supposeλ = 9.2, thenh∗
1 = 0.03181658398

andh∗
2 = 0.08247353652. The given valueh = 0.10 > h∗

2, implying thatE2 is stable.

If take λ = 10, then we haveh∗
1 = 0.01728507103 andh∗

2 = 0.1270566231, which

indicatesh = 0.10 ∈ (h∗
1, h

∗
2), and soE2 is unstable.

Based on the analytic equilibrium expression ofE2 given by (2.6), there should be

non-zero CTL responses at this equilibrium. In Figure 2.3, the response of each popula-

tion settles to the expected equilibrium values of(x, y, w, z) = (77.14, 2.22, 0.35, 0.8).
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Figure 2.3: Simulations of system (2.3) atλ = 8.

2.5.4 Hopf bifurcation

As stated in Theorem 2.4.4, there will be a Hopf bifurcation for large enoughR0. By

calculations in (2.20),∆3 crosses zero and becomes negative whenλ = 847/90. Hence,

Hopf bifurcation occurs atλH = 847/90. Or in terms of reproductive number, we have

RH = 847/600 ≈ 1.4115. Numerically, the Hurwitz determinants atR0 = RH are

∆2 =
637

240000
, and ∆3 = 0.

To show that∆3 crosses from the positive to the negative, we selectλ = 98/10 ≈

9.8, at which

h∗
1 = 0.01889876185, h∗

2 = 0.1198979582.
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For the given valueh = 0.10, E2 is unstable and limit cycles bifurcating from the Hopf

critical pointR0 = RH . In fact, whenh = 0.10, the relevant Hurwitz determinants

become

∆2 =
883

360000
, and ∆3 = − 677

432000000
.

Comparing the present numeric values to those evaluated earlier, we see that∆3 crosses

from the positive into the negative non-degenerately. By Theorem 2.4.3, one pair of

complex conjugate eigenvalues crosses fromC− into C+ and Hopf bifurcation occurs.

Numerical solutions of the system are plotted in Figure 2.4,showing oscillations for

each variable. In Figure 2.5, a limit cycle among the healthycells, infected cells and

the CTLp populations is observed in the phase space .

Figure 2.4: Simulations of system (2.3) with oscillations at λ = 10 (µ = 53/90).

Stability conditions for the periodic solution can be obtained from method of nor-
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Figure 2.5: Limit cycles of system (2.3) atλ = 10 (µ = 53/90).

mal form theory, Lyapunov-Schmidt reduction or Poincaré-Lindstedt expansion. While

these methods proceed differently, they all require the explicit expressions for the eigen-

values and the eigenvectors from the Jacobian of the system for analytic calculations.

As mentioned earlier, we were unable to obtain the necessaryexpressions for such

analysis, so we turned to a numerical algorithm given by (Yu,1998) to investigate the

stability of the orbits. This algorithm employs the method of multiple time scale to ex-

pand the system in question at a critical Hopf bifurcation point. Solving the perturbed

differential equations, one could determine the constantswhich uniquely determine the

normal form of the system.

We use a Maple implementation of the aforementioned algorithm to determine the

stability at critical pointRH = 847/90. In polar coordinates, the normal form for
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Hopf bifurcations is described in (2.19). Applying to our present situation, we have

µ = λ − λH = 10 − 847/90 = 53/90. The form is uniquely determined by the

constantsν0, ν1, ω0, τ0 and τ1. Imaginary component of the bifurcating eigenvalue

pair is ω0 =
√
2/10. As shown in (Jianget al., 2009), the other constants are also

determined by the Maple implementation from (Yu, 1998) and they are

ν0 =
8370

1006943
, ν1 = − 7159359703000

25412370525507
,

τ0 =
√
2

23400

1006943
, and τ1 = −724938191405000

76237111576521
.

Sinceν1 < 0, the bifurcating limit cycles are stable. Other than stability, we can also

find the amplitude and frequency of the periodic solutions. Based on the previously

deduced parameters, we write the third-order normal form of(2.3) as

ṙ = r

(

8370

1006943
µ− 7159359703000

25412370525507
r2
)

,

θ̇ =

√
2

10
+
√
2

23400

1006943
µ− 724938191405000

76237111576521
r2.

(2.21)

By setting the first equation in (2.21) to zero, the roots are

r = 0 and r =
171

715935970300

√

5171871333929279µ. (2.22)

The non-zero root in (2.22) corresponds to the amplitude of the bifurcation. Further-

more, the frequency of the said solution is given by

ω =
√
2/10 +

(√
2

23400

1006943
− 2022577554019950

7209067137417929

)

µ.
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2.6 Biological Implications

Wodarzet al. (2000) built a model to investigate the interactions between healthy and

infected cells as well as primary and secondary CTL responsecells. In terms of analytic

investigation of the model, the authors only analyzed the structure of the equilibria

and some specific cases. For a higher dimension system, equilibrium behaviour alone

cannot fully describe the full dynamics of the system. Stability and bifurcation analysis

are important for the full range of possibilities. In this work, we fully described the

stability of the infection-free equilibriumE0, the infectious equilibrium without CTL

responseE1, and the infectious equilibrium with CTL responseE2.

Analytically, we showed that when0 < R0 < 1, the infection-free equilibrium is

globally asymptotically stable; when1 < R0 < R1, the infection-free equilibrium be-

comes unstable and the infectious equilibrium without CTL response is globally asymp-

totically stable; whenR1 < R0 < RH , the infectious equilibrium with CTL response

may be locally asymptotically stable; finally, given∆ > 0, there exists a Hopf bifurca-

tion from the infectious equilibrium with CTL response for an appropriate choice of the

system’s parameters. Given thatR0, R1, RH , and∆ are comprised of the parameters

of the system, we have shown how the parameters effect the dynamics of the model.

From Section 2.1, we see that system (2.3) is formed by splitting the CTL class in

system (2.2) into two different response classes. By a direct calculation, one can see

that the basic productive numberR0 for systems (2.2) and (2.3) are the same. Hence, the

parameters in the equations dealing with CTL responses haveno effect onR0. In other

words, the dynamics of the CTL responses do not affect the waysystem transition from

infection-free equilibrium to the infectious equilibria.Given that the CTL cells have

no role in preventing infections, this aspect of the model isconsistent with biological

situation.

Originally, the authors of (Wodarzet al., 2000) only explored aspects of system (2.3)



CHAPTER 2. BIFURCATION ANALYSIS OF A SINGLE STRAIN MODEL 62

numerically. In our analysis, we have identified periodic solutions of the model in a rig-

orous manner. These sustained oscillations stem from the infectious equilibrium with

CTL response. For the immune system, this transition represents a change from homeo-

static states to sustained fluctuations of the cell populations in the model. The sustained

oscillations from the Hopf bifurcation imply that upon primary infection, the pathogen

may not always be cleared entirely with the CTL responses. Asone could see from

Figure 2.4, the number of the infected cells may decrease, but over time, the population

oscillates and cannot be completely eradicated. This phenomenon can be viewed as an

individual having a chronic disease that may flare up from time to time.

Through the expressions obtained from the stability and bifurcation analysis, we are

able to better understand the transition from a homeostaticstate to oscillations triggered

by a Hopf bifurcation. We showed that∆ > 0 is a necessary condition for Hopf bifur-

cation in Theorem 2.4.4. This condition constraints thath < b for sustained oscillations

to occur. These two constants are the decaying rates of the two classes of immune cells.

When effectors have longer life span than precursors (h < b), flare ups of the disease

can occur. On the other hand, when the precursors have longerlife span than the effec-

tors (h > b), the immune system is able to prevent flare ups and control the system at a

steady state. This result, based on expressions obtained from the bifurcation analysis, is

in agreement with the analysis (Luzyaninaet al., 2001). Like system (2.3), this model

of lymphocytic choriomeningitis virus has precursor and effector CTL classes and it

also involves time-delay. These models both predict that the immune system is more

efficient in controlling the disease when the precursors outlive the effectors.

Traditionally, immunologists have ignored the oscillatory behaviour of the immune

system. They considered equilibrium states as the natural states of the immune system

and any other behaviour, such as oscillations, were seen as transitional states between

two equilibria. Studies of the immune system and pathogen interactions show that
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equilibrium states may not be the only consistent behaviourin immune response (Stark

et al., 2007). To model the sustained oscillations in the aforementioned studies using

differential equations, one must look to a model that could incorporate possible Hopf

bifurcations. For in-host virus dynamics, models including intra-cellular delay (Cul-

shawet al., 2003; Luzyaninaet al., 2001) and experimental treatment (Jianget al.,

2009) have shown sustained oscillations. In this paper, we showed that, even without

time-delay, the dynamics from the interactions of precursors and effectors added to the

model of healthy and infected host cells could also produce aHopf bifurcation. Thus,

we have provided another theoretical reason to explain the periodic dynamics in future

research.
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Chapter 3

Synchrony-Breaking Hopf Bifurcation

in a Model of Antigenic Variation

Antigenic variation is a successful strategy for pathogensto evade the immune sys-

tem (Craig and Scherf, 2003). The exact process is not well-understood yet. We first

give a summary of the currently accepted view on the subject here. Precursor cells of

the immune system detect potential pathogens via specific chemical determinants, such

as proteins and carbohydrates, on the surfaces of pathogensor infected cells. These

chemical markers are called epitopes. Once detected, precursor cells may differenti-

ate into effector cells and eliminate the potential threat.In the continual battle between

pathogens and the immune system, some pathogens have evolved to have a wide variety

and seemingly ever changing surface markers. Antigen specific precursors may fail to

recognize them as harmful material immediately. This delayin recognition allows the

pathogen population time to grow so that it can express another surface protein. By the

time the effectors have cleared away one variant, another variant of the same pathogen

would be growing. This strategy of presenting many different variants by the pathogens

for the purpose of evading the immune system is called antigenic variation. Different

variants can arise from point mutations of the pathogen, thus giving rise to new variants

67
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with different genotypes. Alternatively, it can arise fromprogrammed variation of the

surface markers. In this case, the different surface markers are simply expression of the

same genetic structures.

Plasmodium falciparumis a pathogen capable of antigenic variation and it causes

malaria in humans. In this chapter, we will analyze the bifurcation dynamics of an

ordinary differential equation model of this protozoan parasite, originally proposed

by Reckeret al. (2004). Research shows that the variants ofP. falciparumpresented

inside the hosts are different phenotypes stemming from thevar gene (Turner, 2002).

On the surface of these different variants are various epitopes. This model assumes

that there are major epitopes that are unique to each variantand minor epitopes that

are shared across variants. It has been hypothesized that the major epitope from each

variant elicits longterm CTL response that is variant specific. On the other hand, the

minor epitopes that are shared by multiple variants elicit transient CTL response that

will cross-react to any strains which share the minor epitope. The dynamics resulting

from this feature of antigenic variation was the focus in (Reckeret al., 2004) and will

be further examined analytically in this work.

Given that the interactions betweenP. falciparumand the immune system are not

well understood, there are mathematical models in the literature studying the dynam-

ics. Single variant model of the in-host dynamics have been considered by Saul (1998)

and Gravenor and Lloyd (1998). Mutation dynamics of multi-strain pathogens have

been studied in (De Leenheer and Pilyugin, 2008b). Furthermore, stochastic models of

antigenic variation have been reviewed in (Frank and Barbour, 2006). For deterministic

models, Reckeret al. (2004) proposed a differential equation model, which describes

the effects of antigenic variations on immune effectors andpathogens. This aforemen-

tioned model allows one to connect different sets of differential equations to examine

the effects of immune cross-protection incited from sharedepitopes between variants.
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Specific cases from the aforementioned model have been further studied numerically

and analytically in (Blyuss and Gupta, 2009). Mitchell and Carr (2010, 2011) consid-

ered the effects of time delay in the production of cross-reactive immune cells for the

model in (Reckeret al., 2004) in their works.

In this chapter, we will add to the study of antigenic variation models by examining

the bifurcation structure analytically for a general case described in (Blyuss and Gupta,

2009). In Section 3.1, we will describe the model on antigenic variation described

in (Blyuss and Gupta, 2009). Next, we will show that the linear structure for this model

can be studied using the techniques as described by Golubitsky and Lauterbach (2009)

in Section 3.2. In Section 3.3, we use the simplified linear structure and techniques

in (Yu, 2005) to analytically determine the Hopf bifurcation which occurs from the fully

synchronous equilibrium. Numerical simulations showing the earlier analytic results

are provided in Section 3.4. In Section 3.5, we discuss the biological implications

based on insights gained from the mathematical analysis of the model.

3.1 The Model

In 2004, Reckeret al. proposed their multi-variant within-host antigenic variation

model of malaria, which was further studied in (Blyuss and Gupta, 2009) and its charac-

teristics are described here. It is assumed that each variant of the pathogen, represented

by yi, shares minor epitopes with other variants. Each major variant is unique and we

assume that the major epitope belonging to the variant elicits a long-lived immune re-

sponsezi. Similarly, the minor epitopes also bring forth immune responses from the

host, but the responses caused by the minor epitopeswi are assumed to be transient and

cross-reactive. A particular varianti and its interactions with the immune system are
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described by

dyi
dt

= yi(φ− α1zi − α2wi),

dzi
dt

= β1yi − µ1zi,

dwi

dt
= β2

(

yi +
∑

l∼i

yl

)

− µ2wi.

(3.1)

In this model, specific varianti of the pathogen is produced at the constant rateφ,

and this pathogen population is eliminated by the long-lived and transient immune re-

sponses at ratesα1 andα2, respectively. The host immune system produces the long-

lived response at rateβ1 when it is stimulated byyi and it has a natural decaying rate

of µ1. We usel ∼ i to denote the set of all variants that share a minor epitope with

varianti. Given that the transient response is triggered by any variants of the pathogen

that shares a particular minor epitope, the growth rate of the transient response is pro-

portional toyi +
∑

l∼i yl at rateβ2 and it has a natural decaying rate ofµ2.

As shown in (Reckeret al., 2004), this model can be extended to study the effects of

many major variants with numerous minor epitopes. The general case can be difficult to

analyze with analytic methods due to large number of variables. Potentially, there can

be many different configurations based on biological conditions. Mathematically, these

configurations correspond to different coupling structures consisting of system (3.1).

In this chapter, we will study the case proposed in (Blyuss and Gupta, 2009) when

each variant can have two minor epitopes and there are finite number of minor epitope

variants.
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3.2 Antigenic Variation Model as a Product Network

To study the effects of cross-reactivity, one would describe the dynamics of each vari-

ants ofP. falciparumwith the set of differential equations in system (3.1) and couple

these systems based on shared epitopes amongst variants. Asstated in (Blyuss and

Gupta, 2009), the simplest nontrivial case is when each variant of the pathogen has two

different minor epitopes. Even with such few variants and couplings, it is still difficult

to analyze the dynamics of the system analytically. In this section, we will show that

when each variant of theP. falciparumhas only two minor epitopes, the model can be

described as the product network of two all-to-all networksas described in (Golubitsky

and Lauterbach, 2009). By recasting the model in a connectednetwork, we can utilize

the methods of coupled cell systems (Golubitskyet al., 2005) to analyze stability and

bifurcation of equilibria and their dynamics are studied inSection 3.3.

To carry out the analysis, we first describe the theory necessary. In the terminology

employed by Golubitsky and Stewart (2006) and the references therein, acell, or node,

of the directed graph, represents a system of ordinary differential equations and acou-

pled cell systemis a network of nodes coupled with each other. Couplings between the

differential equation systems are graphically represented using a digraph. The shape,

or label, of a node is used to indicate a particular system of differential equations. LetC

denote the set of nodes and∼C denote an equivalence relation of nodes onC. Similarly,

the shape of thearrow, or adirected edge, indicates the type of coupling between two

nodes. LetE denote the set of edges and∼E denote an equivalence relation of edges on

E . For eache ∈ E , the functionsH : E → C andT : E → C denotes the node at the

headandtail of e, respectively. Two arrows are equivalent if they have equivalent tails

and heads(i.e. for e1, e2 ∈ E , e1 ∼E e2 ⇒ H(e1) ∼C H(e2) andT (e1) ∼C T (e2)).

In general, the framework of coupled cell systems allows fordifferent types of

nodes and couplings mixed together in one system. A system that has only one type
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of node is calledhomogenousand similarly, a system with only one type of arrow is

called regular. In other words, a regular homogenousn-node network is composed

of identical systems of differential equations which are coupled together with identical

coupling terms.

Using the method described in (Golubitsky and Lauterbach, 2009), any two coupled

cell systems can be formed as a product network. Suppose thatN1 andN2 are two

regular homogenous coupled cell networks with node setsC = {c1, . . . , cn1
} andD =

{d1, . . . , dn2
}, respectively. We form a product networkN = N1 ⊠ N2 by replacing

each nodeci in N1 by a copy ofN2. Let pij represent the node inN that is from the

jth node in the copy ofN2 which replaces theith node inN1. There is a coupling

from nodepij to plj if and only if there is a coupling fromci to cl in N1. Furthermore,

there is a coupling frompij to pil if and only if there is a coupling fromdj to dl. This

convention for forming a product network allows for the nodes as well as the couplings

from N1 andN2 to be distinct from each network.

Applying the aforementioned theory in the context of the antigenic variation mod-

els (Reckeret al., 2004; Blyuss and Gupta, 2009), each node represents the differential

equations in system (3.1), which in turn describes the dynamics for a particular variant

i of the pathogen. As mentioned earlier, when two major variants share a variant of

the minor epitope, they are coupled with each other. Based onthe third equation in

system (3.1), the coupling between any variants must be the same. Since there is only

one set of differential equations and one kind of couplings,any coupled cell network

formed by coupling copies of system (3.1) together would be aregular homogenous

coupled cell network. For the case when there are two minor epitopes, we suppose that

there aren1 classes with the first minor epitope andn2 classes with the second minor

epitope.

In the next theorem, we will show that the model of antigenic variation can be
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constructed through the product networks of two all-to-allconnected networks. Given

that the digraphs for the networks constructed using the following theorem lack the

self-couplings on each node that are present in the digraphsof the networks shown

in (Blyuss and Gupta, 2009), we will show in Theorem 3.2.2 that the networks are

ODE-equivalent as described in (Dias and Stewart, 2005).

Theorem 3.2.1.Suppose there are two minor epitopes for each variant of the pathogen

and there aren1 andn2 classes for each minor epitope, respectively. LetN1 be an

n1-node all-to-all connected network and similarly letN2 be ann2-node all-to-all con-

nected network. Let nodes inN1 andN2 be represented by system(3.1). Then, the

product networkN = N1⊠N2 satisfies the biological requirement as set out in (Blyuss

and Gupta, 2009). That is, each variant which shares a minor epitope must be coupled.

Proof. We label the nodes ofN1 as c1, . . . , cn1
and those ofN2 as d1, . . . , dn2

. To

constructN = N1 ⊠ N2, we replace theith node inN1 with a copy ofN2. There are

n1n2 nodes inN and we denote these new nodes aspij, with indexi corresponding to

theith node inN1 that has been replaced withN2. The indexj refers to thejth node in

N2 which replaces theith node inN1.

The rule in creating a product network dictates that there isa coupling frompij to

pil if and only if there is a coupling fromdj to dl. This rule implies that all nodes with

the same indexi must have a coupling between them. Since nodes having the same

index i must share the same variant of a minor epitope, this rule and the fact thatN2

is an all-to-all connected network ensure that all nodes sharing a variant of the minor

epitope belonging toN2 are coupled. With the rules regarding the second index, there

is a coupling from nodepij to plj if and only if there is a coupling fromci to cl in

N1. Again, this rule and the fact thatN1 is also an all-to-all connected network ensure

that all nodes sharing the variant of minor epitope inN1 must be coupled. Hence, we

have shown that all nodes that share a variant minor epitope would share a coupling as
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described in (Blyuss and Gupta, 2009).

We provide an example of applying Theorem 3.2.1 in Figure 3.1. Two2-node all-to-

1

2

21

⊠

N1

N2

=

11 12

2221

Figure 3.1: An example of forming a new network with two othernetworks based
on Theorem 3.2.1:N1 andN2 are both2-node all-to-all connected networks; and the
resulting network has four nodes in the network.

all connected networks are combined to represent the dynamics with four variants and

each having two minor epitopes. The same dynamics are described by a different exam-

ple in (Blyuss and Gupta, 2009), but the digraph shown in thatpaper has self-couplings

for each node that are not present in our work. While the representing digraphs differ,

we will show that these two representations are equivalent.

As mentioned by Golubitskyet al.(2005), two different digraphs representing cou-

pled cell systems can have the same admissible vector fields and such networks are

calledODE-equivalent. Letx ∈ R3, then the admissible vector fields for the represen-

tation shown in (Blyuss and Gupta, 2009) have the form

H(x1,x2,x3,x4) =

(h(x1,x1,x2,x4), h(x2,x2,x1,x2), h(x3,x3,x2,x4), h(x4,x4,x3,x1)),

whereh : (R3)4 → R3 is a smooth function. For the system shown in Figure 3.1, the
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admissible vector fields take the form

F (x1,x2,x3,x4) = (f(x1,x2,x4), f(x2,x1,x2), f(x3,x2,x4), f(x4,x3,x1)),

wheref : (R3)4 → R3 is a smooth function. One can see that the set{H} of all H is

the same as the set of{F} of all F . For any givenf , we can seth(xi,xi,xj ,xk) =

f(xi,xj,xk), so clearly{H} ⊆ {F}. Conversely, for any givenh we can set

f(xi,xj,xk) = h(xi,xi,xj,xk), so that{F} ⊆ {H}. Hence we have shown that

{F} = {H} and thus shown that the two formulations of the networks are ODE-

equivalent in the sense of Dias and Stewart (2005). In general, we can summarize the

equivalence between the systems formed in Theorem 3.2.1 andthe networks formed

in (Blyuss and Gupta, 2009) in the next theorem.

Theorem 3.2.2.SupposeN1 andN2 are all-to-all connected networks and each has

n1 andn2 nodes, respectively. Then, any networkN = N1 ⊠ N2 formed using The-

orem 3.2.1 describes the sameSn1
× Sn2

model of antigenic variation as described

in (Blyuss and Gupta, 2009).

Proof. A direct comparison of the digraph representingN and the one representing the

one inSn1
× Sn2

system will show that they only differ by the lack self-couplings in

the digraph representingN . We can repeat our earlier argument for ODE-equivalence

between the examples in Figure 3.1 and the same as the exampleshown in (Blyuss and

Gupta, 2009) for networks of any size. With ODE-equivalenceand each node in the

networks representing the same system (3.1), the system trivially describes the same

model of antigenic variation as needed.

In studying this antigenic variation model,N1 andN2 have the same type of nodes

and coupling structures, soN1 ⊠ N2 is the same asN2 ⊠ N1. For the sake of clarity

and convenience, we introduce new index notations for systems formed under Theo-
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rem 3.2.1. SupposeN = N1 ⊠N2, then we form the system as

dyij
dt

= yij(φ− α1zij − α2wij),

dzij
dt

= β1yij − µ1zij ,

dwij

dt
= β2



yij +

n
∑

l∈Ii

ylj +

m
∑

l∈Jj

yil



− µ2wij,

(3.2)

wherei ∈ {1, . . . , n1} andj ∈ {1, . . . , n2}. Letxij = (yij, zij, wij)
T and letIi andJj

represent index sets consisting of the indices which are connected to nodeij via the first

position and the second position, respectively. We define the functionF : R3 → R3

such that the vector differential equation

dxij

dt
= F (xij,xIi,j,xi,Jj) (3.3)

represents the general network formed in Theorem 3.2.1.

3.3 Stability and Bifurcation Analysis

The system formed based on Theorem 3.2.1 has2n1n2 equilibria (Blyuss and Gupta,

2009). Of all these equilibria, there are two fully synchronous equilibria, given by

x∗
1 = (y∗1, z

∗
1 , w

∗
1)

T = (0, 0, 0)T , and

x∗
2 = (y∗2, z

∗
2 , w

∗
2)

T =

(

φµ1µ2

α1β1µ2 + ncα2β2

,
β1φµ2

α1β1µ2 + ncα2β2

,
β2φµ1

α1β1µ2 + ncα2β2

)T

,

wherex∗
i represents the equilibrium expression for each node andnc = n1 + n2 − 2

denotes the number of connection per node. Clearly,x∗
1 corresponds to trivial dynamics

for a biological model. We will investigate the stability atthese equilibria as well as

possible bifurcations from these equilibria. Stability ofthe synchronous equilibria will
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be analyzed using the product network structure and bifurcations will be analyzed based

on balanced colouring and quotient networks.

3.3.1 Local stability nearx∗
1

To understand the stability of the two synchronous equilibria, we describe the Jaco-

bian structure of a system formed using product networks. SupposeN1 andN2 are

two coupled cells systems withA1 andA2 as the respective adjacency matrix. Based

on the adjacency matrices, linearized internal and coupling dynamics, we can directly

find the expression of the Jacobian at any fully synchronous equilibria (Golubitsky and

Lauterbach, 2009). IfN1 hasn1 nodes andN2 hasn2 nodes, then the Jacobian matrix

for N = N1 ⊠N2 can be written as

J = η ⊗ Ir1 ⊗ Ir2 + γ1 ⊗ A1 ⊗ Ir2 + γ2 ⊗ Ir1 ⊗A2,

where⊗ denotes tensor products between two matrices,η ∈ Rk×k is linearized internal

dynamics ofN2 andγ1, γ2 ∈ Rk×k are the linearized coupling dynamics in networksN1

andN2, respectively. Furthermore, the eigenvalues ofJ are the same as the eigenvalues

of

Mu,v = η + uγ1 + vγ2, (3.4)

whereu ∈ spec(A1) andv ∈ spec(A2). In other words, one knows the entire eigen-

value structure of a product network system by only knowing the linearized internal

dynamics, linearized coupling dynamics, and the eigenvalues of the adjacency matrices

of N1 andN2.

In application to antigenic variation model, we shall now find the linearized internal

dynamics, linearized coupling dynamics, and the eigenvalues of the adjacency matrices

of N1 andN2. Through a direct calculation, the linearized internal dynamics of each
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node is

η = (dF )xij
=













φ− α1z − α2w −α1y −α2y

β1 −µ1 0

β2 0 −µ2













and the linearized coupling dynamics is

γ = (dF )xIi,j
= (dF )xi,Jj

=













0 0 0

0 0 0

β2 0 0













.

As for the eigenvalues of the adjacency matrices, we established in Theorem 3.2.1 that

N1 andN2 must be all-to-all connected networks for the antigenic variation model. An

n-node all-to-all network adjacency matrix has the form

An =

























0 1 1 . . . 1

1 0 1 . . . 1

...
. . .

...

1 . . . 0 1

1 . . . 1 0

























∈ R
n×n.

We now describe the eigenvalues ofAn in the following lemma.

Lemma 3.3.1.The eigenvalues for the adjacency matrix of ann-node all-to-all coupled

are n − 1 and−1. The eigenvaluesn − 1 and−1 have multiplicities1 andn − 1,

respectively.

Proof. Since the row sum for each row inAn isn−1, n−1 is going to be an eigenvalue

with (1, 1, . . . , 1)T as its eigenvector. Furthermore, a direct calculation shows that−1
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is also an eigenvalue and its associatedn− 1 eigenvectors are

































−1

1

0

0

...

0

































,

































−1

0

1

0

...

0

































, · · · ,

































−1

0

0

0

...

1

































.

Therefore, the eigenvaluen− 1 has multiplicity of1 and the eigenvalue−1 has multi-

plicity of n− 1.

Since the linearized coupling forN1 andN2 are the same, we can simplify equa-

tion (3.4) to

Mu,v = η + (u+ v)γ.

In general, eachMu,v block has the form

Mu,v =













φ− α1z − α2w −α1y −α2y

β1 −µ1 0

(1 + u+ v)β2 0 −µ2













. (3.5)

Given that spec(An1
) = {n1 − 1,−1} and spec(An2

) = {n2 − 1,−1}, we only need

to analyze the eigenvalues ofMn1−1,n2−1, Mn1−1,−1, Mn2−1,−1, andM−1,−1 to know

all the eigenvalues forJ at each synchronous equilibrium. Instead of analyzing the

eigenvalues of ann1n2 × n1n2 matrix, we have reduced the analysis to only four3× 3

matrices at a synchronous equilibrium.

Theorem 3.3.2.The trivial equilibriumx∗
1 is always unstable.
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Proof. At x∗
1, the generalMu,v block for our system becomes

Mu,v(x
∗
1) =













φ 0 0

β1 −µ1 0

(1 + u+ v)β2 0 −µ2













.

EachMu,v block is lower triangular, soφ,−µ1 and−µ2 are the roots of the corre-

sponding characteristic polynomial regardless of the value ofu andv. Given that these

constants are positive for a biologically realistic model,there is always an unstable root

φ. Hence, the system is always unstable atx∗
1.

3.3.2 Local stability nearx∗
2

We have shown in Theorem 3.3.2 that the trivial equilibriumx∗
1 is always unstable.

More importantly, we showed that the real part of any eigenvalues cannot be zero at

this equilibrium for biologically realistic conditions (i.e. positive parameters). Hence,

there would be no bifurcation from this equilibrium. In thissection, we show in Theo-

rem 3.3.3 thatx∗
2 can be asymptotically stable.

Theorem 3.3.3.The nontrivial equilibriumx∗
2 is locally asymptotically stable for ap-

propriately small values ofα2β2.

Proof. At x∗
2, theMu,v block becomes

Mu,v(x
∗
2) =













0 −α1y
∗
2 −α2y

∗
2

β1 −µ1 0

(1 + u+ v)β2 0 −µ2













,
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and the corresponding characteristic polynomial is

λ3 + a1λ
2 + a2λ+ a3 = 0,

where

a1 = µ1 + µ2,

a2 = α1β1y
∗
2 + α2β2y

∗
2(1 + u+ v) + µ1µ2,

a3 = α1β1µ2y
∗
2 + α2β2µ1y

∗
2(1 + u+ v).

By the Routh-Hurwitz criterion, the equilibriumx∗
2 is asymptotically stable atx∗

2 if

a1 > 0, a3 > 0, anda1a2 − a3 > 0. Through a direct calculation, the expression

a1a2 − a3 is simplified to

a1a2 − a3 = (α1β1µ1 + (1 + u+ v)α2β2µ2)y
∗
2 + µ1µ2(µ1 + µ2).

Clearly, the expressions fora1, a3, anda1a2−a3 are all positive foru, v, |u+v+1| > 0.

We know from Lemma 3.3.1 thatu ∈ spec(An1
) = {n− 1,−1} andv ∈ spec(An2

) =

{m−1,−1}. For any nontrivial case of the system,Mn1−1,n2−1, Mu,−1, andM−1,v will

always produce eigenvalues with negative real part.

Given that the eigenvalues from the other three blocks must all have negative real

part, we focus onM−1,−1. Whenu, v = −1, a3 anda1a2 − a3 become

a3 = (α1β1µ2 − α2β2µ1)y
∗
2

and

a1a2 − a3 = (α1β1µ1 − α2β2µ2)y
∗
2 + µ1µ2(µ1 + µ2).
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It is easy to see that for small enough combinations ofα2β2µ2, the stability condition

from Routh-Hurwitz criterion are satisfied. Therefore,x∗
2 can be locally asymptotically

stable for small values ofα2β2µ2.

3.3.3 Bifurcation analysis

To analyze the bifurcations from the synchronous nontrivial equilibriumx∗
2, we intro-

duce the concepts of balanced colouring and quotient network from Golubitskyet al.

(2005) to aid the process. The notion of balanced colouring is related to the inputs of

each node and finding patterns of synchrony for the nodes in a coupled cell system. To

start, we need to define the set of inputs for each node in the network.

Definition 3.3.4. For c ∈ C, theinput setof c is

I(c) = {e ∈ E : H(e) = c}.

An element ofI(c) is called an input edge or input arrow ofc.

Definition 3.3.5. The relation∼I of input equivalenceonC is defined byc ∼I d if and

only if there exists an arrow type preserving bijection

β : I(c) → I(d).

That is, for every input arrowi ∈ I(c)

i ∼E β(i).

Any such bijectionβ is called aninput isomorphismfrom nodec to noded.

At a synchronous equilibrium, all the nodes have the same states. When subsets

of nodes are synchronized with each other, these nodes may beequilibria, periodic or
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even chaotic states, forming a pattern of synchrony or apolysynchronous subspace. For

a given polysynchronous subspace, we can define an equivalence relation⊲⊳ such that

the subspace is defined as

∆⊲⊳ = {x ∈ P : c ⊲⊳ d ⇔ xc = xd},

whereP denotes the appropriate phase space forx. This equivalence relation parti-

tions the nodes in synchrony into equivalence classes and itforms the polysynchronous

subspace. We can define a specific type of equivalence relations based on the inputs

received by each node (Golubitskyet al., 2005):

Definition 3.3.6. Suppose a coupled cell system is associated with digraphG. Let the

node setC denote the set of nodes ofG and letE denote the set of edges ofG. An

equivalence relation⊲⊳ on the node setC is balanced if for everyc, d ∈ C with c ⊲⊳ d,

there exists an input isomorphismβ such thatT (i) ⊲⊳ T (β(i)) for i ∈ I(c), whereT (i)

is a function denoting the node at the end of edgei andI denotes the input set forc.

There can be many different equivalence relations for a given network. Based on

a given balanced equivalence relation, one could associatea colour for each class of

nodes. Hence, a balanced relation⊲⊳ with k classes is equivalent to a balancedk-

colouring of a digraph.

The notion of balanced equivalence is important in simplifying a coupled cell sys-

tem. Based on a balanced equivalence relation⊲⊳ on a networkN , we can always

reduce the system to aquotient networkN⊲⊳. The dynamics of the reduced network can

be lifted to the original network (Golubitskyet al., 2005). In other words, finding a

balanced colouring allows one to analyze a reduced quotientsystem and any dynamics

of the simpler system must also be in the original system. Suppose the networkN has

the node setC = {c1, . . . , cn} and⊲⊳ is a balanced equivalence relation onN with m
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classes. We outline the steps to construct the quotient networkN⊲⊳ from N :

1. Let c̄ denote the⊲⊳-equivalence class ofc ∈ C. The nodes inC⊲⊳ are the⊲⊳-

equivalence classes inC; that is,

C⊲⊳ = {c : c ∈ C}.

Thus we obtainC⊲⊳ by forming the quotient ofC by ⊲⊳, that is,C⊲⊳ = C/ ⊲⊳.

2. Define

c̄ ∼C⊲⊳ d̄ ⇔ c ∼C d.

The relation∼C⊲⊳ is well defined since⊲⊳ refines∼C .

3. Let S ⊂ C be a set of nodes consisting of precisely one nodec from each⊲⊳-

equivalence class. The input arrows for a quotient nodec̄ are identified with the

input arrows in nodec, wherec ∈ S, that is,I(c̄) = I(c).

When viewing the arrowi ∈ I(c) as an arrow inI(c̄), we denote that arrow by

i. Thus, the arrows in the quotient network are the projectionof arrows in the

original network formed by the disjoint union

E⊲⊳ =
˙⋃

c∈S
I(c).

The definition of the quotient network structure is independent of the choice of

the representative nodesc ∈ S.

4. Two quotient arrows are equivalent when the original arrows are equivalent. That

is,

ī1 ∼E⊲⊳ ī2 ⇔ i1 ∼E i2,

wherei1 ∈ I(c1), i2 ∈ I(c2), andc1, c2 ∈ S.
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5. Define the heads and tails of quotient arrows by

H(i) = H(i) and T (i) = T (i).

6. For e1, e2 ∈ E⊲⊳, it is easy to verify that the quotient network satisfies that

e1 ∼E⊲⊳ e2 ⇒ H(e1) ∼C H(e2) andT (e1) ∼C T (e2). The quotient network

is independent of the choice of nodes inS because⊲⊳ is balanced.

In the above procedure, one node is chosen from each equivalence class in determin-

ing the arrow structure. Since all nodes in the same class of abalanced relation have

isomorphic input sets, the choice of the nodes in each class of N does not matter. Math-

ematical details of constructing a quotient network from a coupled cell system can be

found in (Golubitskyet al., 2005).

For a given network, there can be many differentk-colourings. For example, the

network in Figure 3.1 can have two different2-colouring patterns and these patterns are

illustrated in Figure 3.2. In general, a network that has been reduced to its2-colouring

11 12

2221

(a)

11 12

2221

(b)

Figure 3.2: Two different2-colouring possible for theS2×S2 formulation of the system
where each node represents system (3.2).

quotient network has the form in Figure 3.3. Given that dynamics of the quotient net-

work lifts to the original network, we will analyze the general 2-colour quotient network

with each node representing system (3.2). We will show that synchrony-breaking Hopf
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m1

m2

s1 s2

Figure 3.3: Minimizing the number of arrows used in the Figure 3.2 withsi representing
the number of self-connections andmi the number of external connections.

bifurcation occurs in the antigenic variation model. Each node of network in Figure 3.3

represents

dyi
dt

= yi(φ− α1zi − α2wi),

dzi
dt

= β1yi − µ1zi,

dwi

dt
= β2 ((si + 1)yi +miyj)− µ2wi,

(3.6)

wherei denotes the index for one node andj denotes the index for the other node in

Figure 3.3. Supposex⊲⊳
i represents the equilibrium expression for each node of the

quotient network. The pointx⊲⊳
1 = (0, 0, 0)T is the synchronous trivial equilibrium and

the synchronous nontrivial equilibrium pointx⊲⊳
2 is given by

x⊲⊳
2 =













y⊲⊳2

z⊲⊳2

w⊲⊳
2













=













φµ1µ2h

φβ1µ2h

φβ2µ1k













,

where

h =
α1β1µ2 + α2β2µ1(s1 + s2 − nc + 1)

α2
1β

2
1µ

2
2 + α1β1µ2α2β2µ1(s1 + s2 + 2) + α2

2β
2
2µ

2
1((s1 + 1)(s2 + 1)−m1m2)

,
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and

k =
α1β1µ2nc + α2β2µ1((s1 + 1)(s2 + 1)−m1m2)

α2
1β

2
1µ

2
2 + α1β1µ2α2β2µ1(s1 + s2 + 2) + α2

2β
2
2µ

2
1((s1 + 1)(s2 + 1)−m1m2)

,

are constants in terms of the parameters of the system. Theseterms are results of the

configuration of the2-colour quotient network.

The nontrivial equilibrium is always positive for the system formed according to

Theorem 3.2.1 because of its configuration, but this property does not hold for all2-

colour quotient networks for the system. With certain combination of the parameters,

the nontrivial equilibrium for the reduced system can have negative components due

to the terms(s1 + s2 − nc + 2) and ((s1 + 1)(s2 + 1) − m1m2) in the expressions

for h andk. Different configuration of systems formed using system (3.2) resulting

in possible negative values for the nontrivial equilibriumis consistent with the results

in (De Leenheer and Pilyugin, 2008a). To keep our analysis biologically realistic, we

assume that the combination of parameters and the number of arrows for the system

produce a positive nontrivial equilibrium. In other words,we now assume that the

choice of parameters and configuration always give positiveh andk.

Based on the aforementioned assumption, we will analyze possible bifurcations for

system (3.6). Conditions for Hopf bifurcation are stated inthe following theorem.

Theorem 3.3.7.For system(3.6), 2-colour synchrony-preserving bifurcations cannot

occur fromx⊲⊳
2 . If

α1β1µ2

α2β2µ1
> nc − (1 + s1 + s2) >

α1β1µ1

α2β2µ2
, (3.7)

then synchrony-breaking Hopf bifurcation occurs fromx⊲⊳
2 when

φ =
µ1 + µ2

h(α2β2µ2(nc − (1 + s1 + s2))− α1β1µ1)
.
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Proof. The Jacobian for the2-colour quotient system is

J =







η + s1γ m1γ

m2γ η + s2γ






,

whereη(x⊲⊳
i , φ) is the matrix of linearized internal dynamics andγ(x⊲⊳

i , φ) is the matrix

of the linearized coupling dynamics. This Jacobian matrix has the same structure as the

case studied in (Golubitskyet al., 2005). We see thatnc = s1 + m1 = s2 + m2. Let

v ∈ R3, then

J







v

v






=







(η + ncγ)v

(η + ncγ)v







and

J







m1v

−m2v






=







(η + (s1 + s2 − nc)γ)m1v

−(η + (s1 + s2 − nc)γ)m2v






.

Hence, the combined eigenvalues ofη+ncγ andη+(s1+s2−nc)γ are the eigenvalues

of J .

Given thatnc, s1 + s2 − nc ∈ Z, we shall study the eigenvalues for the general

matrixη + nγ for anyn ∈ Z. The corresponding characteristic polynomial forη + nγ

block is

λ3 + a1λ
2 + a2λ+ a3 = 0,

where

a1 = µ1 + µ2,

a2 = φµ1µ2h(α1β1 + α2β2(1 + n)) + µ1µ2,

a3 = φµ1µ2h(α1β1µ2 + α2β2µ1(1 + n)).

By the Routh-Hurwitz criterion, thex⊲⊳
2 is asymptotically stable ifa1 > 0, a3 > 0, and
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a1a2 − a3 > 0. Through a direct calculation, the expressiona1a2 − a3 simplifies to

a1a2 − a3 = φµ1µ2h(α1β1µ1 + (1 + n)α2β2µ2) + µ1µ2(µ1 + µ2). (3.8)

Clearly, the expressions fora1, a3, anda1a2 − a3 are all positive forn > 0. For any

formulation of the system, all the eigenvalues of the blockη+ncγ always have negative

real part. Given that(v, v)T ∈ ∆ = {(x,x)T ∈ (R3)2} is the eigenvector associated

with theη + ncγ block, we will not have any synchrony preserving bifurcation from

x⊲⊳
2 .

We now focus our attention on theη + (s1 + s2 − nc)γ block to find possible Hopf

bifurcation. A Hopf bifurcation occurs if the conditionsa1 > 0 anda3 > 0 hold true

while a1a2 − a3 crosses from the positive to the negative as a parameter of the system

varies (Yu, 2005). For all parameter values,a1 is always positive anda3 is positive by

the assumption in the first inequality of (3.7). Hence, the Hurwitz conditions for local

stability are satisfied.

For the bifurcation analysis, we chooseφ as the bifurcation parameter. We see that

for small enoughφ, a1a2 − a3 is necessarily positive. For bifurcation to occur, the

expression

φµ1µ2h(α1β1µ1 + (1 + s1 + s2 − nc)α2β2µ2) + µ1µ2(µ1 + µ2)

must cross from positive to negative. Given that all the parameters of the system are

positive, the previous expression can only be negative if

α1β1µ1

α2β2µ2

< nc − (1 + s1 + s2).

Hence, we require the second inequality of Equation (3.7). Asφ increases, the system
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reaches the critical point whena1a2−a3 = 0. Given thatφ is linear ina1a2−a3, we can

isolateφ in a1a2 − a3 = 0 to obtain the bifurcation condition. Because the eigenvector

associated withη + (s1 + s2 − nc)γ is (m1v,−m2v)
T and it is obviously not part of

the synchrony subspace. Therefore, there can only be synchrony-breaking bifurcation

from x⊲⊳
2 .

For the2-colouring shown in Figure 3.2(a),nc = 2, si = 1 andmi = 1. A direct

calculation shows that2 − (1 + 1 + 1) = −1. Since all the parameters are positive

constants, the necessary condition in (3.7) cannot be satisfied and this pattern does not

occur via Hopf bifurcation. On the other hand, the2-colouring shown in Figure 3.2(b),

nc = 2, si = 0 andmi = 2 and the necessary condition can be satisfied based on

the selection of parameters. The synchrony-breaking Hopf bifurcation fromx⊲⊳
2 to this

pattern will be considered numerically in the next section.

3.4 Numerical Simulations

In this section, we use numerical tools to demonstrate the analytic results obtained in

earlier sections. For any system formed by Theorem 3.2.1, wehave shown in The-

orem 3.3.7 that there exists a2-colour pattern associated with a synchrony-breaking

Hopf bifurcation from the nontrivial synchronous equilibrium. To show these analyt-

ical results, we fix the parameters atα1 = 10−3, α2 = 10−3, β1 = 10−4, β2 = 10−4,

µ1 = 1/100 andµ2 = 1/50 (Blyuss and Gupta, 2009) and useφ as the bifurcation

parameter as shown in Theorem 3.3.7.

3.4.1 System with four strains

In Figure 3.4, we see that forφ = 0.5 the system in Figure 3.2 is at the nontrivial

equilibrium. As we increase the bifurcation value toφ = 1.5, we see that oscillations
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Figure 3.4: Simulated pathogen populations (yij) of the system shown in Figure 3.1 for
φ = 0.5: A nontrivial synchronous equilibrium.
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from synchrony-breaking bifurcation occur as shown in Figure 3.5. Clearly, nodes11

and22 are synchronized and nodes12 and21 are also synchronized. Based on this

configuration, the inequality in (3.7) is satisfied with our selection of parameters. We

also see that these two sets of nodes are out of phase byT/2, whereT is the period of

the periodic solution. These results agree with the synchrony-breaking subspace being

supported by(m1v,−m2v)
T . Given thatm1 = m2 = 2 in this case, the amplitudes of

the oscillations for the nodes are also in agreement of the earlier theoretical results.
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Figure 3.5: Simulated pathogen populations (yij) of the system shown in Figure 3.1 for
φ = 1.5: Hopf bifurcation.
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3.4.2 System with eight strains

To show that the method presented in this chapter works for larger systems, we form a

system withn1 = 2 andn2 = 4. This configuration is depicted in Figure 3.6. Numerical

1 2N1

1 2

3 4

N2

⊠
=

11 12

13 14

21 22

23 24

N

Figure 3.6: A network modelling the eight strains formed by two networks withn1 = 2
andn2 = 4.

simulations of this configuration are shown in Figures 3.7 and 3.8. The solutions shown

in these figures are in periodic synchrony that is in accordance to the configurations in

Figure 3.9(a) and 3.9(b), respectively. The two different colour patterns in Figure 3.9

are produced using different initial conditions.

The two patterns in Figure 3.9 both have the quotient parameters s1 = s2 = 1.

Hence, the number of white nodes coupled to a white node is thesame number of black

nodes coupled to a black node for all the aforementioned patterns. In the numerical

simulations of these cases (Figures 3.9(a) and 3.9(b)), thesolutions for the two classes

are out of phase by half the period. The phase shifted solutions here agree with the

results for the4-strain system as well as the work by Golubitskyet al.(2005, Corollary

9.3).
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Figure 3.7: Simulated pathogen populations (yij) of the system shown in Figure 3.6 for
φ = 1: 2-colour pattern, in agreement with Figure 3.9(a).

3.5 Conclusions and Discussions

In our mathematical analysis, we have shown in Theorem 3.2.1that the general system

described in (Blyuss and Gupta, 2009) can be formulated using the product network

method discussed in (Golubitsky and Lauterbach, 2009). Thedigraphs used in this

chapter to represent the networks are different from those used by Blyuss and Gupta

(2009), but they represent the same system because these systems are equivalent in

the sense of (Dias and Stewart, 2005). The formulation of themodel as two all-to-all

networks allows us to analyze the linear stability at any fully synchronous equilibrium.

Instead of directly dealing with ann1n2 × n1n2 matrix, we have reduced the analysis
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Figure 3.8: Simulated pathogen populations (yij) of the system shown in Figure 3.6 for
φ = 1: 2-colour pattern, in agreement with Figure 3.9(b).

to four 3 × 3 matrices. Analytically, it is difficult to determine the eigenvalues for

large matrices. Our reduction allows one to directly analyze the stability at the trivial

equilibrium. As stated in Theorem 3.3.2, the trivial synchronous equilibrium is always

unstable. This result is important because we have shown that any possible dynamics

from a fully synchronous equilibrium must arise from the nontrivial equilibrium.

We have also obtained the necessary condition in (3.7) for the nontrivial equilib-

rium to be stable and that for Hopf bifurcation to occur in Theorem 3.3.7. In the

proof, we have shown that any type of synchrony-preserving dynamics cannot arise

form the nontrivial synchronous equilibrium through bifurcation. Mathematically, we

have ruled out the possible dynamics. By ruling out synchrony-preserving bifurcation
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Figure 3.9: These are two synchrony patterns consistent with the results found ana-
lytically found in Theorem 3.3.7 and numerical results in Figure 3.7 and 3.8. These
patterns correspond tos1 = s2 = 1 andm1 = m2 = 3 for the 2-colour quotient
network.

in this model, we have shown that the bifurcation dynamics isconsistent with this bi-

ological behaviour for antigenic variation. As stated in (Craig and Scherf, 2003), it is

important that variants are not expressed at the same time for antigenic variation to be a

successful strategy for the pathogen. Our results imply that any synchrony pattern aris-

ing from bifurcation would be consistent with this biological requirement for antigenic

variation.

Other than ruling out synchrony-preserving bifurcation, Theorem 3.3.7 also shows

that synchrony-breaking Hopf bifurcation can arise from this nontrivial equilibrium.

In (Reckeret al., 2004), the authors showed numerically that in some parameter ranges

oscillations occur for the model (3.3) and these oscillations described hierarchies of the

sequential appearance of variants. In this chapter, we haveshowed that the numerical

pattern which corresponds to the hierarchy of sequential immunodominant is a result

of bifurcations and it corresponds to2-colour patterns of synchrony.

Furthermore, for antigenic variation to be a successful immune escape strategy, it is

essential that the pathogen must have the ability for some variants to be expressed while

others stay relatively dormant (Craig and Scherf, 2003). Itmust also be able to switch
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from the actively expressed variants to the dormant variants. Analytically, we have

shown that the increase in growth rate will eventually causethe system to go from the

nontrivial synchronous equilibrium to a synchrony-breaking Hopf bifurcation and the

switching mechanism is the Hopf bifurcation. The peaks and valleys in the oscillations

may correspond to the active and dormant requirement of antigenic variation.

The condition in equation (3.7) shows that not all variants can necessarily be syn-

chronized and synchronization patterns must be based on thesame condition. This

condition is based on the parameters of the system and the number of self-connections

in the2-colour quotient system. We can rule out some patterns directly. For example,

the pattern shown in Figure 3.2(a) corresponds tos1 = s2 = 1 andm1 = m2 = 1 in the

2-colour quotient network. We can see that the inequality in (3.7) cannot be satisfied

for any biologically meaningful parameter values.

As shown by Blyuss and Gupta (2009), the strain space investigated in this work has

Sn1
× Sn2

symmetry. Other authors of intra-host multi-strain models, such as Dawes

and Gog (2002) and Gog and Swinton (2002), have also purposedstrain spaces that

have symmetry in them. This symmetry in the strain space is based on the assumption

that all combination of epitopes are viable. However, only certain combinations of the

epitopes on the pathogens may work for their target cells (Craig and Scherf, 2003).

Thus, the strain space for a given pathogen may not necessarily be symmetric. The

general coupled cell method used here does not require any specific symmetry, so our

approach might be more suitable to investigate more specificbiological scenarios.

Biologically, these2-colour patterns correspond to all variants being synchronized

in two separate groupings. These separate groups are out of phase by half of the period

of the oscillations. The2-colour synchrony-breaking Hopf bifurcation fits requirement

for antigenic variation to occur of expressing variants andat different time as well as

other synchronized variants stay relatively dormant over time oscillating. Given that
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multiple variants are expressed at the same time in a2-colour pattern, it reduces the

potential effectiveness of immune escape. The limitation of two groupings barely fits

the minimum of two variants needed for features of antigenicvariation as outlined

in (Turner, 2002). The framework set out by Golubitskyet al. (2005) can be used to

analyzek-colouring and therefore it is possible to study finite number of variants in

synchrony-breaking patterns in future works.

For future work, we can expand the analysis in this chapter byspecifically analyzing

patterns that may be more biologically relevant. As the number of the major variants in

the model gets higher, there are many more patterns, making it impossible to enumerate

all these patterns. One can certainly take advantage of the framework ofk-colourings

provided in (Golubitskyet al., 2005). We believe that the extension of our work from

2-colour bifurcations tok-colour bifurcation would provide a more realistic analysis

for the model.

One can also further the research by modifying assumptions made in this chapter. In

simplifying the calculations, we have assumed that all strains have identical parameters.

Our analysis can be extended to incorporate different parameters for different strains

by altering the coupled cell representation. Instead of having only one type of nodes

in the digraph, different shapes of nodes can be used to denote strains with different

parameters.

Aside from the identical parameters assumption, we have also restricted the analy-

sis to only2-colourings of the systems. Again, we made this assumption to simplify the

calculations. Since each colour in a colouring pattern corresponds to one cluster, our

analysis can only produce patterns with two different groups of synchrony. A more gen-

eral analysis for larger number of colours in the colouringscan generate more possible

patterns.
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Chapter 4

Bifurcation, Stability, and Cluster

Formation of Multi-Strain Infection

Models

4.1 Introduction

Pathogens, such as viruses and parasites, are detected by the immune system via chemi-

cals on their surface. Based on the chemical detected, the immune system sends specific

antibodies to clear away the pathogen (Coico and Sunshine, 2009). Some pathogens can

present themselves as many different variants in order to avoid detection, prolong in-

fection, and infect another host. Many diseases, such as AIDS (Nowaket al., 1995a),

malaria (Reckeret al., 2004), dengue fever (Reckeret al., 2009), and the common

flu (Omori et al., 2010) are caused by pathogens that present themselves withmany

subtypes.

Each strain or subtype of the pathogen elicits specific immune response from the

immune system. Some of these strains share epitopes, so theycan also incite immune

101
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responses that will target multiple subtypes. Immune responses that target multiple

types of such responses are calledcross-protectiveor cross-reactive. If the host is

infected by one particular subtype, it may be partially protected against another variant.

Scientists have devised various within-host (Nowaket al., 1995a,b; Gjiniet al., 2010)

and epidemiological models (Gog and Grenfell, 2002; Dawes and Gog, 2002; Omori

et al., 2010) to better understand the underlying dynamics of the multi-strain infections.

Separating different strains into subsystems of differential equations is one ap-

proach to modelling pathogens with multiple variations. Guptaet al. (1996) developed

a model that incorporates multiple strain types with sharedallele to understand the dis-

crete strain structures found experimentally. There are two compartments in this model.

For each straini, there is a proportion of the population(zi) which is immune and there

is another portion which is infectious(yi). In this model, the dynamics particular to

each strain are described by

żi = λi(1− zi)− µzi,

ẏi = λi(1− zi)[1− γ(1− φi)]− σyi,

(4.1)

whereφi =
∏

j∼i(1 − zj) andλi = βf(yi, yj). Parameters1/µ and1/σ are respec-

tively the average life expectancy of the host and the average duration of the infections.

Strains that shared allele are denoted in theφi term, wherej ∼ i indicates strainsj andi

share alleles. The strength of cross-protection as a resultof the share allele is measured

by the parameterγ. Transmission parameter,β, along with a suitable recombination

function,f(yi, yj), describe the force of infection,λi.

Guptaet al.(1998) expanded upon model (4.1) to incorporate another compartment:

a portion of the population (wi) which is immune to any strainj that shares allele with

straini. With variableszi andyi similarly defined as in system 4.1, this model has the
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form

żi = λi(1− zi)− µzi,

ẇi = (1− wi)
∑

j∼i

λj − µwi,

ẏi = λi ((1− wi) + (1− γ)(wi − zi))− σyi,

(4.2)

whereλi = βyi and j is indexed over strains which share any allele with straini,

includingi itself. As noted in (Guptaet al., 1998), the behaviour of the model is largely

unaffected by the exact functional form of the force of infection termλi, so we choose

the same form used by Recker and Gupta (2005).

To study the effects of the number of variants shared on immune mediated cross-

protection and strain-structure, Recker and Gupta (2005) added another compartment

to model (4.2). Withzi, wi, andyi similarly defined as in model (4.2), the new class,vi,

denotes the portion of the population that are immune to strains that share more than

one allele with straini. For this model, the system describing the dynamics of each

straini has the form

żi = λi(1− zi)− µzi,

ẇi =
∑

j∼i

λj(1− wi)− µwi,

v̇i =
∑

k∼i

λk(1− vi)− µvi,

ẏi = λi ((1− wi) + (1− γ1)(wi − zi) + (1− γ2)(vi − zi))− σyi,

(4.3)

whereλi = βiyi is the force of infection,j ∼ i indicates the strains which share alleles

with strain i, andk ∼ i indicates the strains which share more than one allele with

straini.

As noticed by Calvezet al. (2005), the solutions of these models and other related
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models (Guptaet al., 1996; Gupta and Galvani, 1999) seem to self-organized intoclus-

ters. In this chapter, we will show that the clustering behaviour found in the model

by Guptaet al. (1998) as well as the model by Recker and Gupta (2005) can be an-

alytically explained by semi-simple double zero bifurcation of their2-colour quotient

networks. For each of the models, we assume the subsystems describing the dynamics

of the strains have the same parameter values.

The paper is organized as follows. In Section 4.2, we outlinethe general approach in

finding and understanding the related bifurcation and clustering patterns resulting from

the bifurcation. Specific calculations related to each model are illustrated in Section 4.3.

In Section 4.4, we numerically demostrate the analytic results found in Section 4.3.

Finally, conclusions and discussions are given in Section 4.5.

4.2 General Approach

As mentioned in Section 4.1, we will show analytically that the clustering solutions

of some multi-strain infection models are the results of semi-simple double zero bifur-

cations of their2-colour quotient networks. Given that the general approachto both

models is the same, we provide our approach to the problem in this section and leave

the specific details to each model in Section 4.3.

4.2.1 Coupled cell network representation

The first step in this analysis is to represent the models of Guptaet al.(1998) and Recker

and Gupta (2005) as coupled cell networks by the formalism introduced by Stewart

et al. (2003) and refined by Golubitskyet al. (2005). This method is a systemic way to

represent systems of coupled differential equations usingdirected graphs and analyze

synchronization patterns resulting from bifurcations. Each node in the directed graph
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represents a specific set of differential equations. Shapesof the nodes denote specific

set of differential equations, so identical sets of differential equations are represented

in the graph with nodes of the same shape. In the two models, the dynamics related

to each strain is described by system (4.2) or (4.3). In each model, all strains have the

same parameter values, so all the nodes in the graph have the same shape.

Similarly, each directed edge, or arrow, in the graph represents the coupling between

different sets of differential equations. In our cases, twosets of differential equations

are coupled if they share alleles. Based on the model by Guptaet al. (1998), there is

only one type of coupling terms, so there would be one type of arrow. As for the model

by Recker and Gupta (2005), there are different types of couplings based on the number

of shared alleles between strains. In this case, two different types of edges represent

different couplings.

Having defined the sets of nodes and edges for each of the model, we now represent

these models as coupled cell networks. For example, if we leteach node in Figure 4.1

represent the differential equations of system (4.2), thenthis directed graph gives a

coupled cell representation of the2 locus-2 allele form of the model by Guptaet al.

(1998). As mentioned before, each strain has identical parameters, so all of them are

ax bx

byay

Figure 4.1: The directed graph representing the coupled cell network of the2 locus-2
allele form of the model by Guptaet al. (1998): Each node represents the differential
equations set in system (4.2) and each arrow represents the coupling between strains
that shares allele; alleles{a, b} are used at the first locus and alleles{x, y} are used at
the second locus.

represented with a circle in the digraph. Given that only onetype of coupling is present
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in the system, there is only one type of arrow. For another example, the3 locus-2 allele

form of the model from Recker and Gupta (2005) is shown in Figure 4.2. Again, based

bmx

bnx bny

bmy

amx

anx any

amy

Figure 4.2: The three-dimensional directed graph representing the coupled cell network
of the 3 locus-2 allele form of the model by Recker and Gupta (2005): Each node repre-
sents the set of differential equations in system (4.3); similarly, dashed arrow represents
the coupling between two strains when they only share one allele and solid arrow rep-
resents the coupling between two strains when they share more than one allele; allele
sets{a, b}, {m,n}, and{x, y} are used respectively at the first, second, and third locus;
double headed arrows, minimizing the number of arrow drawn,are used to indicate that
there is an arrow originating from each node of the pair.

on the identical parameter assumption, we only have one typeof nodes in this figure.

As we can see from system (4.3), there are two types of couplings in this model, so

correspondingly, we have two different types of edges in itscoupled cell network.

4.2.2 Possible2-colouring patterns

To study the possible clustering formations after bifurcation, the concept of balanced

colouring in a coupled cell networks is needed (Golubitskyet al., 2005). We need a way

to indicate patterns of synchrony and this can be achieved rigorously using equivalence

relations to partition the nodes of the system. We can partition the nodes in the directed
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graph according to some equivalence relation⊲⊳. Conversely, any partition of the nodes

will also form an equivalence relation. If all the nodes of the same class receive the

same input sets, then such colouring isbalanced.

We can graphically check whether a particular equivalence relation,⊲⊳, is balanced.

In the directed graph, nodes are of the same colour if they arein the same⊲⊳-equivalence

class. Then, we colour the tails the nodes of these nodes using the same colour as well.

An equivalence relation,⊲⊳, is balanced if and only if the inputs of the nodes in the same

class have isomorphic inputs, i.e. same number of edges thathave the same colour. A

colouring pattern withk colours is ak-colouringof the system. To illustrate balanced

colouring, we have provided a few different2-colourings of the aforementioned 2 locus-

2 allele example in Figure 4.3. We can see that the networks inFigures 4.3(a) and 4.3(b)

ax bx

byay

(a) In this case, each black
node receives one input from a
white node and one input from
a black node. Similarly, each
white node receives one input
from a white node and one in-
put from a black node.

ax bx

byay

(b) In this case, each black
node receives two inputs from
white nodes and no input from
a black node. Similarly, each
white node receives two inputs
from black nodes and no input
from a white node.

ax bx

byay

(c) In this case, there are three
black nodes. Nodebx receives
inputs only from other black
nodes. Nodesax and by re-
ceive inputs from black and
white nodes.

Figure 4.3: Three different possible colouring patterns for the 2 locus-2 allele form of
the model by Guptaet al. (1998), where black and white represent the two possible
classes in each of the coupled cell network.

are balanced while the network in Figure 4.3(c) is not.

The models by Guptaet al.(1998) and Recker and Gupta (2005) can accommodate

finite number of strains of pathogens in the system. Since each node represents the

dynamics generated by one strain of the pathogen, there would be the same number of
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nodes in the coupled cell network. As such, it will not be feasible to study all balanced

k-colourings for all the possiblem locus-n allele forms of the multi-strain models.

Instead of studying all possiblek-colourings, we restrict the scope of this study to only

the possible balanced2-colourings.

4.2.3 Quotient networks

For the generalm locus-n allele form of the multi-strain model, there would bemn

strains. Supposek is the number of differential equations in the system required to

describe the dynamics of each strain. To analyze the possible bifurcation of the model,

we would have to deal with aknm-dimensional system. Instead of directly dealing

with the potentially high-dimensional system, we can use the balanced colourings of

the coupled cell network to reduce the system to its quotientnetwork and analyze a

less complicated network (Golubitskyet al., 2005). Given that we are only interested

in 2-colourings of the system, we only need to study a2k-dimensional system after the

quotient reduction.

From any balanced2-colourings, we can always reduce the systems based on mod-

els to the quotient networks shown in Figures 4.4 and 4.5. Each balanced colouring

induces a canonical quotient network. The nodes of the quotient network represent the

equivalence classes in a balanced⊲⊳-equivalence relation. Because we are interested in

the2-colourings, there would be two nodes in the quotient network. From the balanced

colouring, we pick one node from each colour class to define the parameters of the quo-

tient network. Given that the nodes of the same equivalence class receive isomorphic

inputs, the choice of node for each class does not change the resulting quotient net-

work. For each equivalence class, we define inputs received by the node representing

this class in the quotient network to be identical to the inputs received by the node we

selected in the original network.
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m1

m2

s1 s2

.

Figure 4.4: The directed graph representing the general quotient network for all bal-
anced2-colourings of the model by Guptaet al. (1998): The topological parameters,
si, indicating the number of self-connections for each class,and similarly, the topo-
logical parameters,mi, indicating the number of connections received from the other
class.

To reduce the complexity of the digraph of the quotient network, we denote the

number of inputs on the digraph of the quotient network with their topological param-

eters shown in the figures. Details for constructing quotient networks from balanced

k-colourings can be found in (Golubitskyet al., 2005; Golubitsky and Stewart, 2006).

For example, the colouring pattern in Figure 4.3(a) corresponds to quotient parameters

mi = 1 andsi = 1; similarly, the colouring pattern in Figure 4.3(b) corresponds to

quotient parametersmi = 2 andsi = 0.

4.2.4 The semi-simple double zero bifurcation

After forming the coupled cell networks and quotient reductions, we can now begin the

dynamic analysis. For each of these models, we show that a semi-simple double zero

bifurcation occurs from the trivial equilibrium of the quotient network. At a locally

stable equilibrium, a bifurcation occurs when some of the eigenvalues with negative

real part cross smoothly from the left side of the complex plane into the right side

due to changes in the system parameters. Hence, we must understand the eigenvalue

structure of the Jacobian in order to understand the type of bifurcation occurring.
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m12

m11

s12 s11

m22

s22

m21

s21

Figure 4.5: The directed graph representing the general quotient network for all bal-
anced2-colourings of the model by Recker and Gupta (2005): The parameters,si1 and
si2, indicating respectively the number of dashed and solid self-connections received
for each class, and similarly, the parameter,mi1 andmi2 indicating respectively the
number of dashed and solid connections received from the other class.

Suppose spec(J) = {σ1, . . . , σn}, thenσi is a repeated eigenvalue forJ if there

is a j, such thatσi = σj andi 6= j. Let κi, thealgebraic multiplicity, be the number

of timesσi is repeated and letηi, thegeometric multiplicity, be the number of linearly

independent eigenvectors associated withσi. By the definition of eigenvalues, we must

haveκi ≥ ηi. An eigenvalue is calledsemi-simplewhenκi = ηi. Thus, asemi-simple

double zero bifurcationrefers to the bifurcation of a twice repeated zero eigenvalue

associated with two linearly independent eigenvectors.

4.2.5 Jordan canonical form and center manifold reduction

With a semi-simple double zero bifurcation, we can further simplify the system by

transferring it to its Jordan canonical form. To start, we perform a linear change of

coordinates so that the bifurcation occurs at(x, β̃)T = (0, 0)T ∈ R2k+1, wherex is the

generalized coordinates of the system andβ̃ is the bifurcation parameter.

Let nc andns respectively be the numbers of eigenvalues with zero real-part and

negative real-part of the Jacobian. For this type of bifurcation, there would be two

eigenvalues with zero real part and2k − 2 eigenvalues with negative real part. Using
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the eigenvectors ofJ to form a transformation matrix, the system can be rewrittenin

block matrix form as

ẋc = Axc + f(xc,xs)

ẋs = Bxs + g(xc,xs)

(xc,xs) ∈ R
2 × R

2k−2, (4.4)

whereA ∈ R2×2 andB ∈ R(2k−2)×(2k−2). With the eigenvalues having zero real-part,

the Centre Manifold Theorem guarantees that there exists a smooth manifoldWc =

{(xc,xs)|xs = h(xc)} near the equilibrium point such that the local behaviour in the

centre direction of the system is qualitatively the same as that on the manifold (Wiggins,

2003). The2k − 2 nonessential generalized coordinates are represented on the centre

manifold as

xi+2 = hi = aix
2
1 + bix

2
2 + ciβ̃

2 + dix1x2 + eix1β̃ + fix2β̃ + · · · ,

wherei ∈ {1, . . . , 2k − 2}.

By differentiatingxs = h(xc), we getẋs = Dh(xc)ẋc. Substituting the equations

in (4.4) into the previous identity and rearranging the equation, we get

Dh(xc)[Axc + f (xc,h(xc))]−Bh(xc)− g(xc,h(xc)) = 0. (4.5)

Coefficients of the expansionshi can be explicitly calculated by solving equation (4.5).

Using these coefficients, we can express the dynamics on the centre manifold as

ẋc = Axc + f(xc,h(xc), β̃). (4.6)
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4.2.6 Stability of semi-simple double zero bifurcation

Following the centre manifold reduction, essential dynamics of the model have been

reduced to

ẋ1 = f1(x1, x2, β̃)

ẋ2 = f2(x1, x2, β̃),

(4.7)

wherei ∈ {1, 2} andfi’s are scalar nonlinear functions representing the same dynamics

in equation (4.6). Given that a semi-simple double zero bifurcation occurs, we now

explicitly calculate the stability conditions under whichthe clusterings occur for a given

model (Iooss and Joseph, 1990, Chapter V.8). To proceed, we define a convenient set

of coordinates and their corresponding equations as

x̂i =
xi

β̃
and f̂i =

fi(x1, x2, β̃)

β̃2
= 0. (4.8)

At the bifurcation value of̃β = 0, the equationŝfi0 = f̂i(x̂1, x̂2, 0) are conic sections

and the points of intersections of these two conics are the possible bifurcation solutions.

These conics can have two, three or four intersection points. The trivial solution(0, 0)

is always one of the intersection points. To find the stability of bifurcation solutions, let

J0(x̂1, x̂2) =







∂f̂10(x̂1,x̂2,0)
∂x̂1

∂f̂10(x̂1,x̂2,0)
∂x̂2

∂f̂20(x̂1,x̂2,0)
∂x̂1

∂f̂20(x̂1,x̂2,0)
∂x̂2






(4.9)

andσi0 be the eigenvalues ofJ0. Similarly, letJ be the Jacobian for system (4.7) and

σi be its eigenvalues. Because of the parametrization choosenin equation (4.8), a direct

calculation shows thatJ(β̃) = β̃J0 +O(β̃2). The determinants and the eigenvalues of

J andJ0 are related as

det J = β̃2 det J0 +O(|β̃3|)
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and

σi = β̃σi0 +O(|β̃2|).

For small values of̃β, the determinants and the eigenvalues ofJ andJ0 have the

same sign. Ifdet J0 = σ10σ20 < 0, one ofσ10 or σ20 must be positive and the bifur-

cation must be unstable. Whendet J0 > 0, the real parts ofσ10 andσ20 must have the

same sign. Hence, the bifurcating solution is stable whendet J0 > 0 and both of its

eigenvalues have negative real part. In each of the multi-strain models, we have found

that there are four intersection points for the respective conics. Details pertaining the

stability of each model are presented in Section 4.3

4.3 Stability and Bifurcation Analysis

In the previous section, we outlined the necessary steps to understand the clustering

patterns of the multi-strain models. Specific details on thecalculations are presented

here.

4.3.1 The model by Gupta, Ferguson, and Anderson (1998)

For the generalm locus-n allele form of the model by Guptaet al.(1998), the dynamics

of each strain is described by system (4.2). To understand the possible strain partitions,

we analyze the quotient network obtained from any 2-colour pattern.

Let each node in Figure 4.4 represent system (4.2). Combining the topological

parameters, each node in the2-colour quotient model represents

żi = λi(1− zi)− µzi,

ẇi = ((1 + si)λi +miλj)(1− wi)− µwi,

ẏi = λi ((1− wi) + (1− γ)(wi − zi))− σyi,
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whereλi = βyi andi denotes the index for one of the nodes andj denotes the index

for the other node in Figure 4.4. Equilibrium points of the system are

p1 = (0, 0, . . . , 0)T ,

p2 = (z∗1 , w
∗
1, y

∗
1, 0, w

∗
2, 0)

T ,

p3 = (0, w∗
2, 0, z

∗
1 , w

∗
1, y

∗
1)

T ,

and p4 = (z∗3 , w
∗
3, y

∗
3, z

∗
3 , w

∗
3, y

∗
3)

T ,

wherez∗1 , w
∗
1, y

∗
1, w

∗
2, z

∗
3 , w

∗
3, y

∗
3 are implicit equilibrium expressions.

After transferring the system to its Jordan canonical form at the trivial equilibrium,

the Jacobian at this point is

J =

































β − σ 0 0 0 0 0

0 β − σ 0 0 0 0

0 0 −µ 0 0 0

0 0 0 −µ 0 0

0 0 0 0 −µ 0

0 0 0 0 0 −µ

































.

Given that the parameters of the system are always positive,the system is locally stable

at the equilibrium forβ − σ < 0. To simplify the computation, we substitute the

parameterβ with β̃ , β − σ. Hence, the newly transformed system undergoes a semi-

simple double zero bifurcation at̃β = 0 and the system can be written as

ẋc = Axc + f (xc,xs)

ẋs = Bxs + g(xc,xs)

(xc,xs) ∈ R
2 × R

4, (4.10)



CHAPTER 4. CLUSTER FORMATION OF MULTI -STRAIN INFECTION MODELS 115

where

A =







0 0

0 0






,

B =



















−µ 0 0 0

0 −µ 0 0

0 0 −µ 0

0 0 0 −µ



















,

andf as well asg are nonlinear functions of the system after the transformation.

As described in Section 4.2.5, we can now reduce the system tothe centre manifold.

For i = 1, . . . , 4, let

xi+2 = hi = aix
2
1 + bix

2
2 + ciβ̃

2 + dix1x2 + eix1β̃ + fix2β̃ + · · · . (4.11)

Then,

Dh =



















2a1x1 + d1x2 + e1β̃ 2b1x2 + d1x1 + f1β̃

2a2x1 + d2x2 + e2β̃ 2b2x2 + d2x1 + f2β̃

2a3x1 + d3x2 + e3β̃ 2b3x2 + d3x1 + f3β̃

2a4x1 + d4x2 + e4β̃ 2b4x2 + d4x1 + f4β̃



















. (4.12)

By substituting equations (4.10), (4.11) and (4.12) into equation (4.5), we obtain the

necessary equations to determine the twenty-four coefficients for the expansions and

thus, the centre manifold as well.

After the centre manifold reduction, we find that the two conics necessary to study
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the stability of the possible solutions are

f̂10(x̂1, x̂2) =− σ(s1γ + 1)

m2
x̂2
1 + x̂1 −

σ2 (γm1m2 + (m2γ − 2− 2s1γ))

µm2
x̂1x̂2

+
(m1m2(1 + s2γ) +m2(s2 + 1)(γ − 1)− (s2 + 1)2(1 + s1γ))

m2µ2
x̂2
2

f̂20(x̂1, x̂2) =− γσx̂1x̂2 + x̂2 +
σ2(γ − 1)

µ
x̂2
2.

In this case, the four intersections of the two conics are

x̂∗
1 = (0, 0),

x̂∗
2 =

(

m2

σ(1 + s1γ)
, 0

)

,

x̂∗
3 =

(

1 + s2
σ(1 + s2γ)

,
µ

σ2(1 + s2γ)

)

,

and x̂∗
4 =

(

µ(γ(m2 − s1)− 1)

σ2γ(γ(m1m2 − s1s2)− (s1 + s2)− 1)
,

γ(m2(m1 + 1)− s1(s2 + 1))−m2 − s2 − 1

σ2γ(γ(m1m2 − s1s2)− (s1 + s2)− 1)

)

.

Performing the necessary inverse operations, we find that each x̂∗
i corresponds to

equilibrium pointspi of the quotient system. To check the stability at each point,we

must calculate the determinant found in equation (4.9) and the corresponding eigenval-

ues at each point. A direct calculation shows that the determinants are

D1 = 1,

D2 =
γ(m2 − s1)− 1

1 + s1γ
, (4.13)

D3 =
γ(m1 − s2)− 1

1 + s2γ
, (4.14)

and D4 =
[1 + γ(s2 −m1)][1 + γ(s1 −m2)]

γ2(s1s2 −m1m2) + γ(s1 + s2) + 1
.
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The corresponding sets of eigenvalues ofJ0 at each intersection of the conics are

E1 = {1, 1},

E2 = {−1, D2},

E3 = {−1, D3},

and E4 = {−1, D4}.

As mentioned in Section 4.2.6, the eigenvalues must both be negative while the

determinant remain positive, so we see that the trivial equilibrium is alway unstable

while the other three solutions can be stable depending on the topological parameters

of particular balanced2-colouring and the strain parameters.

4.3.2 The model by Recker and Gupta (2005)

As mentioned in Section 4.1, the model from Recker and Gupta (2005) is an extension

of the model in Guptaet al. (1998). The authors incorporated a new compartment

for individuals being non-susceptible to pathogens strains sharing more than one allele

with a particular straini. This new compartment introduces a new type of coupling and

thus there will be two types of arrows in the coupled cell network representation of the

system. Instead of reducing the system to the quotient network shown in Figure 4.4,

any balanced2-colourings of the system can be reduced to the quotient network shown

in Figure 4.5.



CHAPTER 4. CLUSTER FORMATION OF MULTI -STRAIN INFECTION MODELS 118

Based on the equations in (4.3), each node in Figure 4.5 has the form

żi = λi(1− zi)− µzi,

ẇi = ((1 + si1 + si2)λi + (mi1 +mi2)λj)(1− wi)− µwi,

v̇i = ((1 + si2)λi +mi2λj) (1− vi)− µvi,

ẏi = λi ((1− wi) + (1− γ1)(wi − zi) + (1− γ2)(vi − zi))− σyi,

whereλi = βyi andi denotes the index for one node andj denotes the index for the

other node in Figure 4.5. The equilibrium points of the system are

p1 = (0, 0, . . . , 0)T ,

p2 = (z∗1 , w
∗
1, v

∗
1, y

∗
1, 0, w

∗
2, v

∗
2, 0)

T ,

p3 = (0, w∗
2, v

∗
2, 0, z

∗
1 , w

∗
1, v

∗
1, y

∗
1)

T ,

and p4 = (z∗3 , w
∗
3, v

∗
3, y

∗
3, z

∗
3 , w

∗
3, v

∗
3, y

∗
3)

T ,

wherez∗1 , w
∗
1, v

∗
1, y

∗
1, w

∗
2, v

∗
2, z

∗
3, w

∗
3, v

∗
3, y

∗
3 are implicit equilibrium expressions.

Subsequent to transforming the system to its Jordan canonical form at the trivial

equilibrium, the Jacobian at this point is

J =













































β − σ 0 0 0 0 0 0 0

0 β − σ 0 0 0 0 0 0

0 0 −µ 0 0 0 0 0

0 0 0 −µ 0 0 0 0

0 0 0 0 −µ 0 0 0

0 0 0 0 0 −µ 0 0

0 0 0 0 0 0 −µ 0

0 0 0 0 0 0 0 −µ













































.
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We perform similar simplification as before and transform the parameterβ with β̃ ,

β − σ. With β̃ as the bifurcation parameter, this system also undergoes a semi-simple

double zero bifurcation at̃β = 0 and this system can be written as

ẋc = Axc + f (xc,xs)

ẋs = Bxs + g(xc,xs)

(xc,xs) ∈ R
2 × R

6, (4.15)

where

A =







0 0

0 0






,

B =

































−µ 0 0 0 0 0

0 −µ 0 0 0 0

0 0 −µ 0 0 0

0 0 0 −µ 0 0

0 0 0 0 −µ 0

0 0 0 0 0 −µ

































,

andf as well asg are nonlinear functions of the system after the transformation.

We again follow the method in Section 4.2.5 and reduce the system to its centre

manifold. Fori = 1, . . . , 6, let

xi+2 = hi = aix
2
1 + bix

2
2 + ciβ̃

2 + dix1x2 + eix1β̃ + fix2β̃ + · · · . (4.16)
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Then,

Dh =

































2a1x1 + d1x2 + e1β̃ 2b1x2 + d1x1 + f1β̃

2a2x1 + d2x2 + e2β̃ 2b2x2 + d2x1 + f2β̃

2a3x1 + d3x2 + e3β̃ 2b3x2 + d3x1 + f3β̃

2a4x1 + d4x2 + e4β̃ 2b4x2 + d4x1 + f4β̃

2a5x1 + d5x2 + e5β̃ 2b5x2 + d5x1 + f5β̃

2a6x1 + d6x2 + e6β̃ 2b6x2 + d6x1 + f6β̃

































. (4.17)

By substituting equations (4.15), (4.16) and (4.17) into equation (4.5), we obtain the

necessary equations to determine the thirty-six coefficients for the expansions and thus,

the centre manifold as well.

In this case, we find that the conics for stability calculations are

f̂10(x̂1, x̂2) = − σ2(m21γ1s22 + γ2m22 − γ1m22s21 −m22 +m21γ1)

m22µ
x̂2
1 + x̂1

− σ (γ1m21 + γ2m22)

m22
x̂1x̂2,

f̂20(x̂1, x̂2) = − σ3 ((1 + s22)(1 + s22 +m22)+)

m22µ2
x̂2

− σ2

m22µ
x̂1x̂2 + x̂2 −

σ(1 + s11γ1 + s12γ2)

m22
x̂2
2,

and intersections of these two conics are

x̂∗
1 = (0, 0),

x̂∗
2 =

(

0,
m22

σ(1 + γ1s11 + γ2s12)

)

,

x̂∗
3 =

(

µ

σ2 (1 + γ1s21 + γ2s22)
,

m22

σ (1 + γ1s21 + γ2s22)

)

,

and x̂∗
4 =

(

µ[(m21 − s11)γ1 + (m22 − s12)γ2 − 1]

σ2[B1γ
2
1 +B2γ1 +B3γ1γ2 +B4γ2 +B5γ

2
2 + 1]

,

A1γ1 + A2γ2 +m22 + s22 + 1

σ[B1γ2
1 +B2γ1 +B3γ2 +B4γ1γ2 +B5γ2

2 + 1]

)

,
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where

A1 = (s11 −m21)(1 + s22) +m22(s21 −m11),

A2 = s12 −m22 −m12m22 + s12s22,

B1 = s11s21 −m11m21,

B2 = s11 + s21,

B3 = s12 + s22,

B4 = s12s21 −m12m21 −m11m22 + s22s11,

and B5 = s12s22 −m12m22.

Performing the necessary inverse operations, we find that each x̂∗
i corresponds to

equilibrium pointspi of the quotient system. The relevant determinants corresponding

to the four equilibria are

D1 = 1,

D2 =
γ1(m21 − s11) + γ2(m22 − s12)− 1

1 + γ1s11 + γ2s12
, (4.18)

D3 =
γ1(m11 − s21) + γ2(m12 − s22)− 1

1 + γ1s21 + γ2s22
, (4.19)

and D4 =
C1γ

2
1 + C2γ1 + C3γ1γ2 + C4γ2 + C5γ

2
2

σ[B1γ2
1 +B2γ1 +B3γ2 +B4γ1γ2 +B5γ2

2 + 1]
,
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where

C1 = m11m21 + s11s21 − s21m21 −m11s11,

C2 = s11 −m21 + s21 −m11,

C3 = (m21 − s11)(m12 − s22) +m22(m11 −m21)

C4 = s12 −m22 + s22 −m12,

and C5 = m12m22 + s12s22 − s22m22 −m12s12.

The corresponding eigenvalues ofJ0 at each intersection of the conics are

E1 = {1, 1},

E2 = {−1, D2},

E3 = {−1, D3},

and E4 = {−1, D4}.

Like the previous model, the trivial intersection pointx̂1 is unstable because both

the eigenvalues are always positive. We can see that for suitable choices of parameters,

the constantsDi can be negative.

4.4 Numerical Results

In this section, we numerically demonstrate some possible clustering patterns.
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4.4.1 Numerical results of the model by Guptaet al. (1998)

There are three possible2-colour patterns for the 2 locus-2 allele version of the model

from Guptaet al. (1998) and they are shown in Figure 4.3. Already mentioned inSec-

tion 4.2.2, the pattern shown in Figure 4.3(c) is not a balanced colouring, so it does not

occur numerically. The pattern in Figure 4.3(a) is balancedand in its2-colour quotient

form, the parameters aresi = 1 andmi = 1. Similarly, the pattern in Figure 4.3(b) is

also balanced and in its2-colour quotient form, the parameters aresi = 0 andmi = 2.

Analytically, we calculate from equations (4.13) and (4.14) that for the clustering to be

stable, we must have

mi − sj >
1

γ
. (4.20)

Given thatγ is a positive parameter, a direct calculation shows that thepattern in Fig-

ure 4.3(a) cannot occur and the pattern in Figure 4.3(b) willoccur for appropriate choice

of γ. The numerical results in Figure 4.6 agree with the analyticpredictions. The two

patterns shown are symmetrical to each other and they are induced by choosing differ-

ent initial conditions.

Extending the 2 locus-2 allele form, numerical results and the corresponding2-

colour patterns of the 3 locus-2 allele model are shown in Figures 4.7 and 4.8. Clusters

of numerical solutions found in Figures 4.7(a) and 4.8(a) correspond to the colouring

patterns shown in Figures 4.7(b) and 4.8(b), respectively.We can derive the corre-

sponding parameters for the2-colour quotient network from the balanced colouring.

Combining the topological parameters as well as the system parameters, a direct calcu-

lation shows that the stability condition in equation (4.20) is satisfied.

Based on the stability expressions shown and the numerical results found in Fig-

ures 4.7 and 4.8, we see that different patterns can emerge under identical parameter

conditions. Calvezet al. (2005) noticed the appearance of a particular pattern which

is dependent on initial conditions. The simulation resultsshown in Figures 4.7 and 4.8



CHAPTER 4. CLUSTER FORMATION OF MULTI -STRAIN INFECTION MODELS 124

are simulated with identical parameter values but different initial conditions. This phe-

nomenon is possible because both patterns satisfy the stability condition found for bal-

anced 2-colourings.

On the other hand, we can change the system parameter values such that the clus-

tering no longer occurs. In Figure 4.9, we have decreased thevalue ofγ so that, along

with the topological parameters corresponding to the network in Figure 4.8(b), the in-

equality in equation (4.20) is no longer satisfied. Given that the other three solutions

from the semi-simple double zero bifurcation are unstable,the system converges to the

fourth and fully synchronized solution.

4.4.2 Numerical results of the model by Recker and Gupta (2005)

For the model by Recker and Gupta (2005), the stability criterion obtained from equa-

tions (4.18) and (4.19) is

γ1(mi1 − sj1) + γ2(mi2 − sj2) > 1. (4.21)

For this model, the numerical results and the correspondingbalanced 2-colouring of the

3 locus-2 allele form of the system are shown in Figures 4.10 and 4.11. Applying equa-

tion (4.21) to the topological parameters of the quotient networks in Figures 4.10(b)

and 4.11(b), we see that these patterns are clearly stable.

Like the previous model, we can choose the system parameter values such that the

clustering patterns become unstable. In Figure 4.12, we decreaseγ1 andγ2 so that the

clustering disappears and all the strains are synchronized.
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4.4.3 Periodic and chaotic motions

As shown numerically by authors of Guptaet al. (1998) and Recker and Gupta (2005),

the two models discussed in this work may have cyclical and chaotic solutions for

some parameter values. In this section, we will investigatethese two types of solutions

numerically.

For the model by Recker and Gupta (2005), we can see from Figures 4.13 and 4.14

that periodic solutions of the system correspond to balanced colourings of the networks

in Figure 4.10(b) and 4.11(b). Like our previous results on semi-simple double zero

bifurcations, these different patterns of synchrony can beinduced using different initial

conditions.

While keeping the parameter values same as the periodic solutions, we see from

Figure 4.15(a) that chaotic motions may occur under different initial conditions. Like

the other solutions of the system, the different strains also synchronize with each other

chaotically. The synchrony pattern of the synchronized chaos correspond to the bal-

anced colouring shown in Figure 4.15(b). The correspondingquotient network for this

balanced colouring is shown in Figure 4.15(c). While the numerical solutions in Fig-

ures 4.13, 4.14, and 4.15(a) are all produced using the same parameter values, their

respective balanced colourings do not have the same number of equivalence classes.

This result suggests that, for any given set of parameter values, the basin of attraction

of the system may contain multiple stable regions corresponding to multiple patterns of

balanced colourings.

4.5 Concluding Remarks

As noticed by Calvezet al. (2005), clusters of solutions can be found in multi-strain

infection models, such as those by Guptaet al. (1998) and Recker and Gupta (2005).
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Through the calculations in Section 4.3, the phenomenon canbe explained through

bifurcation and stability analysis of the2-colour quotient networks of the models. For

each of these models, we calculated specific stability criteria for the semi-simple double

zero bifurcation. From the expressions in equations (4.20)and (4.21), we see that the

criteria involve strain specific parameters from systems (4.2) and (4.3) as well as topo-

logical parameters of the quotient networks as shown in Figures 4.4 and 4.5. Hence, the

clustering behaviour of these systems is a result of both strain specific dynamics and

the strength of coupling.

In an earlier paper, Calvezet al. (2005) concluded that the clustering phenomenon

“is intrinsic feature of the strain system itself.” In our analysis, the dynamics corre-

sponding to each strain is treated as a separate subsystem inthe coupled cell network

and the effects of cross-immunity are treated as coupling terms. Given that casting the

model as a coupled cell system relies on the strains being separate subsystems, we must

agree that the clustering is a result of the strain system.

After understanding the mathematical mechanisms of the clustering phenomenon,

we investigate the possible patterns of clustering. To find them, it is necessary to first

translate cross-immunity and other biological considerations into a digraph and find

balanced colourings of these graphs. These multi-strain models are designed to accom-

modate the analysis of any number of strains. The complexities of the coupled cell

network and the number of balanced colourings grow as the number of strains increase.

Thus, it is not feasible to analyze every possible pattern. Rather than an exhaustive

approach, the stability criteria provide a direct method toanalyze a given pattern of

interest. More importantly, we have used these criteria in Section 4.4 to show that not

all possible balanced colourings can occur for a given version of the model.

Calvezet al. (2005) also postulated that clustering is independent of the model

used, but we have shown that this is not entirely true. While clustering is a result of
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modelling the dynamics of various strains as coupled subsystems, the related stability

criteria are dependent on the model parameters. As we mentioned already, expressions

for stable2-colour patterns depend upon both parameters from the topology of the

system as well as model specific parameters. Different coupling terms and system

parameters will produce different patterns in different situations. The authors of Calvez

et al. (2005) also noticed that the patterns are stable once formedand our results agree.

The expression related pattern forming is a direct result ofcalculating the stability of

the related bifurcation.

The transition from one pattern to another can be observed from the differences be-

tween Figures 4.7 and 4.9. As we decrease the system parameter, γ, the stable discrete

strain structure in Figure 4.7(a) is destabilized and the strain structure disappeared.

Based on this observation, we may conclude that strain structure found in the model

by Guptaet al. (1998) is related to the effectiveness of cross-immunity. The more ef-

fective the cross-protection, the more likely the discretestrain structure appears. This

observation is consistent with the idea that discrete strain structure is a result of immune

selection. In a similar fashion, we can destabilize the discrete strain structure found in

the model by Recker and Gupta (2005) by decreasing the parameters,γ1 andγ2. For

this model, the transition from discrete strain structure to no structure can be observed

in Figures 4.10 and 4.12.

As one can see from the Figures 4.1 and 4.2, the topologies of the digraphs in the

coupled cell networks have symmetries. These symmetries are present because we have

assumed that all possible strains of them locus-n allele model are present in the system

and the effects of cross-immunity exist identically and perfectly between strains that

share alleles. Without these assumptions, there may be no symmetry in the topology.

In such situation, our method still applies because the coupled cell formalism does not

require symmetry. In this method, synchronization of strains as clusters may still be
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possible as long as there are suitable balanced colourings of the strain space.

In the future, one can further the research by expanding on assumptions made here.

In simplifying the calculations, we have assumed that all strains have identical parame-

ters. Our analysis here can be extended to incorporate different parameters for different

strains by altering the coupled cell representation. Instead of having only one type

of nodes in the digraph, different shapes of nodes can be usedto denote strains with

different parameters.

Aside from the identical parameters assumption, we have also restricted the analy-

sis to only2-colourings of the systems. Again, we made this assumption to simplify the

calculations. Since each colour in a colouring pattern corresponds to one cluster, our

analysis can only produce patterns with two different groups of synchrony. A more gen-

eral analysis of higher number of colours in the colourings can generate more possible

patterns.
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Figure 4.6: Simulation results of the2 locus-2 allele form of system (4.2) forσ = 10,
γ = 0.85, µ = 0.02, β = 15, showing the clustering patterns ofzi for each strain. The
patterns in these 4.6(a) and 4.6(b) can be obtained by using different initial conditions.
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Figure 4.7: Results for the 3 locus-2 allele version of the model from Guptaet al.
(1998): (a) Simulated time history ofzi for σ = 10, R0 = 1.1, γ = 0.58, µ = 0.02 with
identical initial conditions for strainsany, bnx, bmx andamy; and (b) The balanced
2-colour pattern corresponding to the numerical results, with each dark node receiving
four inputs from white nodes and two from the other dark nodes; similarly, each white
node receiving four inputs from dark nodes and two from the other white nodes, and
the corresponding2-colour quotient network having the parameter valuesmi = 4 and
si = 2.
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Figure 4.8: Results for the 3 locus-2 allele version of the model from Guptaet al.
(1998): (a) Simulated time history ofzi for σ = 10, R0 = 1.1, γ = 0.58, andµ = 0.02
with identical initial conditions for strainsany andbmx; and(b) The balanced2-colour
pattern corresponding to the numerical results and with each dark node receiving six
inputs from white nodes and none from the other dark node; similarly, each white
node receiving one input from dark nodes and five from the other white nodes, and the
corresponding2-colour quotient network having the parameter valuesm1 = 2, s1 =
4, m2 = 6 ands2 = 0.
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Figure 4.9: Results for 3 locus-2 allele version of the modelfrom Guptaet al. (1998):
(a) Simulated time history ofzi for σ = 10, R0 = 1.1, γ = 0.45, µ = 0.02 with mixed
initial conditions are used. (b) The corresponding coupledcell system showing that all
strains being synchronized in identical steady-state.
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Figure 4.10: Results for the 3 locus-2 allele version of the model from Recker and
Gupta (2005): (a) Simulated time history ofzi for σ = 10, R0 = 1.2, γ1 = 0.5, γ2 =
0.8, µ = 0.09 with identical initial conditions for strainsamx, any, bny, andbmx;
and (b) The balanced2-colour pattern corresponding to the numerical results, and the
corresponding2-colour quotient network having the parameter valuesmij = 2 and
sij = 1, for i, j ∈ {1, 2}.
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Figure 4.11: Results for the 3 locus-2 allele version of the model from Recker and
Gupta (2005): (a) Simulated time history ofzi for σ = 10, R0 = 1.2, γ1 = 0.5, γ2 =
0.8, µ = 0.09 with identical initial conditions for strainsamx andbny; and (b) The
balanced2-colour pattern corresponding to the numerical results andthe corresponding
2-colour quotient network having the parameter valuesm1i = 1, m2i = 3, s1i = 2 and
s2i = 0, for i ∈ {1, 2}.
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Figure 4.12: Results for the 3 locus-2 allele version of the model from Recker and
Gupta (2005): (a) Simulated time history ofzi for σ = 10, R0 = 1.2, γ1 = 0.45, γ2 =
0.48, µ = 0.09; and (b) The corresponding coupled cell system showing thatall strains
being synchronized in identical steady-state.
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Figure 4.13: Simulated time history ofzi for σ = 10, R0 = 2, γ1 = 0.65, γ2 =
0.76, µ = 0.09 with identical initial conditions for strainsamx, any, bny, andbmx,
converging to two classes (amx, any, bny, andbmx; bnx, bmy, amy, andanx) of
periodic solutions with the same amplitude but a phase difference of half-period.
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Figure 4.14: Simulated time history ofzi for σ = 10, R0 = 2, γ1 = 0.65, γ2 =
0.76, µ = 0.09 with identical initial conditions for strainsamx andbny, converging
to two classes (amx andbny; any, bnx, bmy, bmx, amy, andanx) of periodic solu-
tions with different amplitudes and phase difference of half-period.
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Figure 4.15: Results for the 3 locus-2 allele version of the model from Recker and
Gupta (2005): (a) Simulated time history ofzi for σ = 10, R0 = 2, γ1 = 0.65, γ2 =
0.76, µ = 0.09 with mixed initial conditions, showing three classes (anx and bmy;
amy and bnx; any, amx, bny, and bmx) of chaotically synchronized motions; (b)
The corresponding coupled cell system with a balanced3-colouring pattern; and (c)
Quotient network of the3-colouring pattern.
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Chapter 5

Conclusions and Future Works

5.1 Conclusions

Dynamics of infectious diseases have been studied by countless researchers from within-

host to the epidemiological level. Some fundamental questions about the mechanisms

at work are still unanswered. The precise role of effectors and memory cells in short

and long term immune defence is not yet known. For the pathogens, mechanisms of

antigenic variation, such as switching rate and hierarchy,are not well understood. In

terms of interactions between hosts and pathogens, the influence of cross-protective

immunity on pathogen survival and evolution is actively researched. Results from this

work show some intriguing properties of models of infectious diseases further the re-

search of the aforementioned topics.

Even for a single strain model, the interplay between virus and the host immune

system is a complicated process, which involves cell production, viral attachment, vi-

ral replication and pathogen clearance. Corresponding to homeostasis states, we have

shown that some infectious can be asymptotically stable under appropriate conditions.

While we have shown that oscillatory patterns can be obtained for a wide range of

parameters in a model, not all of these patterns are necessarily biologically realistic.
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Experimental works to confirm such behaviour are necessary and essential.

Building upon our work in a single-strain model, we have provided several mathe-

matical results for the model of multi-strain pathogen of antigenic variation. We have

shown that synchrony-breaking Hopf bifurcation may occur in such a model and this

dynamical process provides the mechanism for switching in antigenic variation in a de-

terministic system. We have also shown that the different synchrony patterns can occur

in the model with large number of variants. These patterns correspond to the hierarchi-

cal structure of antigenic variation that is present in somePlasmodiumspecies. We have

also illustrated these findings through specific examples and numerical simulations.

Expanding on the work of multi-strain within-host models, we demonstrated the

mathematical details of the cluster formations in two multi-strain transmission models.

These patterns are induced from semi-simple double zero bifurcation of the quotient

coupled cell network representations. Many2-colour patterns are possible for a given

configuration of the network, but not all of them may occur under biologically real-

istic conditions. We showed that parameters of the2-colour patterns must fulfill the

bifurcation and stability conditions.

5.2 Future Work

For future works, we may include different therapeutic options into the models to under-

stand their effects on different types of CTLs and more importantly, the overall health

of the individual. One may also introduce the delay effects of viral gestation in latently

infected cells to provide a more realistic model. These added dynamics will be sure to

make the mathematical model more challenging to analyze.

Instead of limiting the mathematical analysis to patterns of synchrony of only two

colours, we may relax this requirement and analyze the general k-colour case. Further-

more, we have assumed that strains in multi-strain systems have identical parameter
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values. Given that the fitness of different strains may vary,the parameter values to

describe their properties will likely not be identical. We may use different classes of

nodes and edges to more realistically describe these differences.

The self-organized clustering behaviour for multi-strainmodels can be found in

models in different areas of study, such as neuroscience (Rubin and Terman, 2000a,b)

and multi-agents systems (Hu and Hong, 2007; Zhanget al., 2011). Our analysis may

be modified or extended to study those models with suitable mathematical structure.
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