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Abstract 

Convection in an infinite horizontal slot subject to a spatially distributed heating has been 

investigated for a wide range of Prandtl numbers. The case of the lower wall subject to 

heating being a sinusoidal function of one of the coordinate is considered in details. The 

mean temperatures of both walls are set to be equal. The primary response of the system 

consists of convection in the form of rolls with axis orthogonal to the heating wave 

vector. When heating wave number  is sufficiently large the convection is found to be 

limited to a layer adjacent to the lower wall. Under such conditions a uniform conductive 

layer emerges at the upper section of the slot. Temperature field in this zone becomes 

independent of the character of the heating and varies in the vertical direction only.  

Conditions leading to the emergence of a secondary convection have been identified 

using the linear stability of the above primary convection. The secondary convection 

gives rise either to the longitudinal rolls, or to the transverse rolls, or to the oblique rolls, 

or to the oscillatory mode of instability at the onset depending on the heating wave 

number. The longitudinal rolls are parallel to the primary rolls and the transverse rolls are 

orthogonal to the primary rolls, and both of them result in striped patterns. The oblique 

rolls lead to the formation of convection cells with aspect ratio dictated by their 

inclination angle. Three mechanisms of instability at the onset have been identified. In 

the case of small and moderate  the parametric resonance leads to the pattern of 

instability that is locked-in with the pattern of the heating by a subharmonic relation. The 

second mechanism is associated with the formation of patterns of vertical temperature 

gradients and patterns of the primary convection currents, operates approximately in the 

same range of  as the parametric resonance and provides direct modulation with 

structure dictated by . The third mechanism operates in the case of large  where the 

instability is driven by the uniform mean vertical temperature gradient created by the 

primary convection and the fluid response becoming similar to that found in the case of a 

uniformly heated wall. Such rolls exhibit weak preference for the transverse orientation. 

The first two mechanisms dominate if the spatial modulation of the flow is sufficiently 

strong while the third one dominates in the case of weak spatial modulation. Competition 
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between the first and second effects gives rise to commensurable and non-

commensurable states in the case of longitudinal rolls and appearance of soliton lattices. 

Competitions between the second and third mechanisms lead to the formation of very 

distorted transverse rolls. A rapid stabilization of the oblique rolls is observed when the 

heating wave number is reduced sufficiently, with the oscillatory mode taking the 

dominant role. As  becomes very small, secondary motions concentrate around the hot 

spots; the corresponding bifurcations may have either the supercritical pitchfork form or 

to the “bifurcation from infinity” form. When an external flow is introduced into the slot, 

the heating assists in reduction of the overall drag.  

It is shown that the heating wave number  plays a role of an effective pattern control 

parameter and its judicious selection provides means for creation of a wide range of flow 

responses. 

 

Keywords: Rayleigh-Benard convection, periodic heating, pattern control, linear 

stability analysis, Chebyshev collocation method, Fourier expansion.     
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1  

Introduction 

1.1 Objectives 

The main objective of this dissertation is to unveil the flow physics and to develop control 

strategies associated with convection driven by spatially distributed heating.   

 

1.2 General introduction  

Thermal convection represents one of the most common forms of fluid flow in the 

Universe. It has a wide range of applications, e.g., industrial appliances, crystallization 

processes, liquid metals, weather prediction, motion of oceans, dynamics of the interiors 

of planets and stars, evolution of galaxies, etc (Pal et al. 2009). Convection in a layer of 

fluid heated uniformly from below represents an idealized version of thermal convection, 

is called Rayleigh-Benard (RB) convection and has been studied for almost a century. 

Convective motion occurs when the so-called Rayleigh number Ra exceeds critical 

conditions. This motion is rotationally invariant in the plane of the layer, has form of rolls 

(striped pattern) and is characterized by a linear neutral stability curve with a well defined 

minimum which identifies the critical Rayleigh number Rac and the critical wave vector 

qc. Various researchers considered different configuration of RB convection and various 

forms of the motion, i.e., patterns, have been observed, see Bodenschatz et al. (2000) for a 

recent review.   
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1.3 Motivation 

Understanding of motions of fluids over geometrically, chemically and thermally 

patterned surfaces is of vital interest in designing microfluidic components and devices 

for biological applications such as cell analyzers. Of particular importance is how 

convective motions develop and, in the case of droplets, how they move along regularly 

structured surfaces (Beltrame et al. 2011). The same issues are relevant in the 

development of hydrophilic surfaces. Beltrame et al. (2011) found seven distinct 

transition regimes for the interface depinning; this diversity shows that in addition to 

requiring a clear understanding of the different kinds of surface heterogeneities that may 

cause the pinning, the complex coupling between pinning force and surface of the fluid 

needs to be taken into account.   

Patterned heating of surfaces offers potential to produce structured convection that 

provides alternative to geometric patterning. The RB convection represents a system with 

finite wave number instabilities. When subject to a spatially-distributed one-dimensional 

forcing, such system may exhibit wave number locking and responses that extend into 

two-spatial dimensions allowing for a wide resonance range even in the case of weak 

forcing (Manor et al. 2008, 2009). The understanding of such systems is still incomplete. 

Patterned heating leads to instability and drop formation in liquid microjets (Furlani and 

Hanchak 2010) by inducing a spatial variation of surface tension along the length of the 

jet to cause deformation of the jet (slight necking in the warmer regions and ballooning in 

the cooler region). The size of drops can be controlled by adjusting the heating. Such jets 

are used recently in integrated microfluidic inkjet devices.     

 

1.4 Related literature survey 

The existing literature on the RB convection can be categorized into two generic groups. 

In the first one, the bottom wall is kept under a uniform heating and in the second one 

various temperature modulations may occur.  Few analyses focused on RB convection 

with modulations are available. Such modulations have been done either by (i) changing 

the geometry of the flow domain, or (ii) using time dependent temperature, or (iii) 
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applying spatial variation of temperature. Usually small amplitude modulations had been 

considered and the analyses had been carried out from the point of view of identification 

of tools for control/alteration of the pattern selection process of the reference RB 

convection. Pattern selection of systems affected by time-dependent forcing are 

considered to be well understood (Arnold 1983). In the forthcoming section we shall 

review the relevant literature according to the modulation techniques. 

 

1.4.1 Modulation using geometry 

We shall begin the review with the modulations created by geometrical effects. Results 

dealing with the RB convection modified by spatially modulated geometry are very 

limited. 

  

McCoy et al. (2008) experimented with spatial modulation created by very thin stripes 

glued on the lower surface (using SF6 (Pr = 0.9) as the working fluid). The periodic 

constraints was characterized by the wave number qm and was applied along a selected 

direction, where qm varied in a small interval around cq . Two-dimensional roll patterns 

with the wave vector qm were observed for Ra<<Rac. Amplitude of these rolls grew with 

Ra until they were destabilized with various mechanisms which depended on the ratio of 

the wave number qm of the imposed modulation and the critical wave number qc of the 

RB convection. The wave vectors of the destabilizing modes typically formed a nonzero 

angle with the modulation wave vector qm resulting in the formation of oblique modes 

producing a variety of three-dimensional patterns. 

 

Seiden et al. (2008) studied (experimentally) the combined effect of the intrinsic 

symmetry breaking due to a gravity-induced shear flow and spatially one-dimensional 

forcing associated with surface strips attached to the bottom plate using CO2 as the 

working fluid. They considered two type of forcing: (i) parallel forcing where surface 

corrugation is aligned parallel to the gravity component, (ii) orthogonal forcing where the 

corrugation is orthogonal. Depending on the inclination angle, they observed longitudinal 

rolls (LR), varicose pattern (VP), subharmonic resonances (SR), periodically spaced kink 
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lines (KL), undulations (UN) and transverse bursts (TB) for parallel forcing, and 

transverse rolls (TR), rhombic pattern (RO), hexarolls (HR), bimodals (BM), scepter-

shaped patterns (SP), and heart-shaped patterns (HP) for orthogonal forcing.  

 
 

 
A 

 
B 

 Figure 1.1. Patterns observed experimentally by Seiden et al. (2008): (A) by parallel 
forcing, (B) by orthogonal forcing. The patterns, starting from the top-left most of 
Fig.1.1A, are longitudinal rolls (LR), varicose pattern (VP), subharmonic resonances 
(SR), periodically spaced kink lines (KL), undulations (UN) and transverse bursts (TB); 
transverse rolls (TR), rhombic pattern (RO), hexarolls (HR), bimodals (BM), scepter-
shaped patterns (SP), and heart-shaped patterns (HP), respectively. 
 
 

1.4.2 Time dependent modulation 

Effects of time dependent modulations were studied by Or and Kelly (1999) who 

considered temperature of either one or both walls to vary periodically in time about the 

reference temperature. They considered fluids with Pr varying between 0.1 and 10. They 

investigated both the anti-symmetric and symmetric boundary temperatures. For 

symmetric modulations, they obtained alternating sequence of synchronous and sub-

harmonic instabilities at low frequency modulations, but found only sub-harmonic 

instabilities at high frequency. In the case of anti-symmetric modulation they observed 

two localized disturbances, each of which was associated with a Stokes layer at the wall.   

 

Or (2001) determined analytically the onset condition for very low modulation frequency. 

Liu (2004) investigated this type of modulation for a second-grade fluid.  Pesch et al. 

(2008) studied convection in a fluid layer which was periodically accelerated in its plane. 
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They found that shaking in a fixed direction broke the original isotropy of the layer. At 

the onset of the convection and at small accelerations, they found longitudinal rolls whose 

axes were aligned parallel to the acceleration direction. With increasing acceleration 

amplitude, a shear instability took over and transverse rolls with their axes perpendicular 

to the shaking direction nucleated at the onset. In the case of circular shaking, the system 

was found to be isotropic in the time average sense and with broken chiral symmetry. The 

onset of convection corresponded to the transverse rolls with the rolls' axis selected 

spontaneously. Their study had been carried out using fluids with Pr = 0.5, 1, 2, and 6. 

Singh and Bajaj (2009) performed linear stability analysis of thermomagnetic convection 

in a ferrofluid layer subjected to time periodic modulation of temperature along the 

horizontal plates in the presence of an external vertical magnetic field.   

 

1.4.3 Spatial temperature modulation 

The effects of spatial variations of temperature were studied by Kelly and Pal (1978) who 

investigated thermal convection in a fluid contained between two rigid walls with 

different mean temperatures with either prescribed spatially periodic temperatures at the 

walls or with surface corrugations at the walls and focused on fluids with Pr = 0.025, 

0.027, 0.71 and 7. The amplitudes of the spatial non-uniformities were assumed to be 

small and the wavelength was set to be equal to the critical wavelength for the onset of 

RB convection. They defined Rayleigh number based on the mean temperature difference 

between the two walls. When values of the Rayleigh number were close to the critical 

value, the effects of the non-uniformities were greatly amplified and the amplitude of 

convection was governed by a cubic equation. This equation yielded three supercritical 

states, but only the state linked to a subcritical state was found to be stable.  

 

Killworth and Manins (1980) analyzed convection in a fluid with Pr > 1 contained in a 

rectangular two-dimensional box resulting from the application of a quadratic temperature 

variation along its lower surface. The other walls were insulated.  They obtained 

similarity solutions for the boundary layers and a separate solution for the interior of the 

box. The buoyancy in the interior and the gross Nusselt number were found to be 



 6

independent of the Prandtl number but functions of the Rayleigh number (based on the 

horizontal length scale). The magnitude of the interior stream function was found to vary 

roughly proportionally to the square root of the Prandtl number in the laminar case, and to 

be insensitive to it in the turbulent case. In either case, magnitudes of the stream function 

within the thermal boundary layer were quite insensitive to changes of the Prandtl 

number.  

 

Hignett et al. (1981) performed an experimental study of convection in a rotating annulus 

by maintaining a radial temperature gradient along the lower horizontal boundary. The 

vertical side walls and the upper horizontal boundary were insulated. They used water  

(Pr =7) and paraffin (Pr = 16.5) as the working fluids and obtained six different flow 

regimes parameterized by the square of the ratio of the non-rotating thermal (or 

buoyancy) depth scale and the Ekman-layer scale. For small values of this parameter the 

flow was only weakly modified by rotation but as the value of this parameter increased 

above unity rotation tended to thicken the thermal layer. Existence of a baroclinic wave 

regime was observed when the magnitude of the controlling parameter increased above a 

certain critical value.  

 

Walton (1982) investigated the onset of thermal convection when the lower wall was 

exposed to either one ‘hot-spot’ or a periodic array of ‘hot-spots’. It was found that 

disturbances had the form of rolls that were largely confined to the neighborhood of the 

‘hot-spots’.  Mancho et al. (1997) studied convection in a container with the upper surface 

open to the air and heated from below using a Gaussian-like temperature distribution. 

They considered both buoyancy and thermo-capillarity effects and used silicon oil with  

Pr = 40.32 as the working fluid. A pair of rolls with the upward motion taking place 

above the heater and the downward motion occurring near the sidewalls was observed. 

An instability forming stationary rolls perpendicular to the primary ones was observed 

when the temperature difference at the origin increased.  

 

To understand the ocean circulation and thermohaline overturning of the oceans Rossby 

(1998) carried out numerical experiments on convection in a insulated square container 



 7

whose bottom wall was exposed either to linear or to non-linear temperature distributions 

and contained fluids with Pr = 1-100. Mullarney et al. (2004) performed both laboratory 

and numerical experiments with the convective circulation that develops in a long channel 

driven by heating and cooling through opposite halves of the horizontal base. They 

considered channel with small aspect ratio, larger Rayleigh numbers and an imposed heat 

flux. The flow was characterized by a vigorous overturning circulation cell filling the 

box.  A stable thermocline formed above the cooled base and was advected over the 

heated part of the base, where it was eroded from below by small-scale three-dimensional 

convection forming a ‘convective mixed layer’. Wang and Huang (2005) studied 

experimentally circulation driven by horizontal differential heating in a tank filled with 

salt water. They maintained linear temperature profile either along the lower or the upper 

boundary. Stable thermal circulation in the form of a shallow cell adjacent to the 

boundary where thermal forcing was applied had been observed. Natarajan et al. (2008) 

performed a parametric study using computer simulations of natural convection inside a 

trapezoidal cavity with the bottom wall either uniformly and non-uniformly heated while 

the two vertical walls were maintained at constant temperatures and the top wall was 

insulated. They considered Rayleigh number O(100) and Pr = 0.07-100. The non-uniform 

heating of the bottom wall was found to produce greater heat transfer at the center of the 

bottom wall as compared to the uniform heating for all Rayleigh numbers but the average 

Nusselt number showed the overall heat transfer rate to be lower for the non-uniform 

heating case. The effect of variations of Prandtl number on the local and average Nusselt 

numbers was found to be more significant for Prandtl numbers in the range 0.07–0.7 than 

10–100. Lyubimova et al. (2009) investigated steady convective flow in a horizontal 

channel of rectangular cross-section subjected to a uniform longitudinal temperature 

gradient imposed along the walls. They found that zero Prandtl number solution 

corresponded to a plane-parallel flow along the channel axis. In this case, the fluid moves 

in the direction of the imposed temperature gradient in the upper part of the channel and 

in the opposite direction in the lower part. At non-zero values of the Prandtl number, such 

solution does not exist. At low values of the Prandtl number the basic state loses its 

stability due to a steady hydrodynamic mode related to the formation of vortices at the 

interface between the both flows. The increase of the Prandtl number results in the strong 
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stabilization of this instability mode and, beyond a certain value of the Prandtl number 

depending on the cross-section aspect ratio, a new steady hydrodynamic instability mode 

became most unstable. This mode was characterized by concentration of perturbations 

near the sidewalls. At higher values of the Prandtl number, the spiral perturbations (rolls 

with axis parallel to the temperature gradient) became most unstable, at first the 

oscillatory spiral perturbations and then the Rayleigh type steady spiral perturbations. 

 
Most recently effects of spatial temperature modulations have been studied by Freund et 

al. (2011) who considered temperature of the lower wall subject to a small-amplitude 

sinusoidal variations about a mean average. The system response consisted of a weak 

primary convection induced by the temperature modulations and instabilities driven by 

the mean temperature gradient. A competition between the pattern induced by the 

modulation and the preferred wave number qc of the RB convection developed. When qm 

 qc, the RB pattern locked in with the modulation and the rolls remained stable for fairly 

large Ra > Rac with the stable zone similar to the Busse balloon. For qm slightly less than 

qc the secondary motion developed in the form of cross-roll and oscillatory instabilities 

(Clever and Busse 1974).  For qm slightly larger than qc skewed-varicose instability 

appeared but the Eckhaus and zig-zag instabilities were suppressed by the modulation. 

Several modes of instability directly associated with the modulation were identified for 

qm away from qc and with Ra  Rac. For qm less than 0.8qc, the instability involved two 

oblique rolls; this response was originally described by Vozovoi and Nepomnyashchy 

(1974) and Pal and Kelly (1979). The same response was found for 1.2 qc < qm< 2qc. 

Longitudinal rolls became dominant for ~2qc < qm < ~2.08qc and were replaced by 

transverse rolls for a still larger qm. Direct numerical simulations identified several 

patterns of saturation states and transitions between them as a function of Ra. 

 

1.5 Overview of the present work 

The present analysis is focused on a form of convection that has yet to be studied. The 

lower wall is subject to a heating distributed in a selected direction with the mean 

temperatures of both walls being kept equal. The heating represents a simple form of one-
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dimensional periodic forcing which is responsible for the system dynamics and the 

pattern selection. In the simplest case of sinusoidal heating the forcing is characterized by 

a wave number and an amplitude, resulting in a two-parameter problem. There is no 

reference wave number as in the case of the modulated RB convection. The wave vector 

of the primary convection is imposed by the external heating. A secondary convection 

may be generated through an instability process. Determination of conditions leading to 

its onset as well as determination of the pattern of this convection and its relation to the 

pattern of the heating are of interest. The convective system being considered can be 

viewed as an example of a more general dynamical system solely driven by a periodic 

forcing and thus the results being presented may be of a wider interest. 

 

1.6 Outline of the dissertation 

The dissertation is organized as follows. Chapter 2 provides description of the primary 

convection resulting from the imposition of the heating. First the primary convection 

problem is formulated, and then various flow characteristics of the primary convection 

are discussed. Chapter 3 is devoted to the formulation of the linear stability problems and 

description of solution methodology that permits identification of conditions leading to 

the onset of the secondary convection. Different forms of instability at the onset are 

discussed in Chapters 4, 5, 6, and 7. In particular, longitudinal rolls are discussed in 

Chapter 4, transverse rolls are discussed in Chapter 5, oblique rolls are discussed in 

Chapter 6, and oscillatory mode of instability is discussed in Chapter 7. Flow bifurcations 

occurring at long wavelength heating are described in Chapter 8. Finally, changes of the 

system response associated with presence of an external flow are elucidated in Chapter 9. 

A short summary of the main conclusions, suggested applications of the results and 

recommendations for the future work are presented in Chapter 10.     



   

2  

Primary Convection 

This chapter deals with the convection due to the presence of the distributed heating. We 

refer to such convection as the ‘primary convection’. In Section 2.1 we discuss about the 

steady convection problem description, Section 2.2 is devoted to devise the governing 

equations, method of solution is described in Section 2.3, and the characters of the flow 

and temperature fields are elucidated in Section 2.4. A short summary of the main 

conclusions is presented in Section 2.5.    

2.1 Steady convection 

Consider steady motion of fluid contained in a slot between two plane parallel plates 

extending to  in the x-direction and placed at a distance 2h apart from each other with 

the gravitational acceleration g acting in the negative y-direction, as shown in Figure 2.1. 

Motion of the fluid is driven by buoyancy forces resulting in the formation of convective 

rolls. The fluid is incompressible, Newtonian, with thermal conductivity kd, specific heat 

c, thermal diffusivity = kd/c, kinematic viscosity , dynamic viscosity , thermal 

expansion coefficient  and variations of the density  follow the Boussinesq 

approximation. All material properties need to be evaluated at the reference temperature 

defined below. The plates are subject to a distributed heating with temperatures of the 

lower (L) and upper (U) plates described by the following relations  

 







n

n

xin)n(
LL e)x( , 






n

n

xin)n(
UU e)x( , (2.1)
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Figure 2.1. Parallel plates subject to spatially distributed heating. 

 

where  stands for the wave number of the heating,  denotes the relative temperature, 

i.e., =T-Tref, T denotes the temperature and Tref denotes the reference temperature. The 

reality condition has the form )*n()n(  where star denote complex conjugates. The 

wavelength of the heating is denoted as = 2/. It is assumed that the mean 

temperatures of the both plates are equal, i.e., 0)0(
L

)0(
U   and this defines the 

reference temperature. 

 

2.2 Problem formulation  

The temperature field is represented as a sum of the conductive field 0 and deviations 1 

associated with the convective effects. We introduce two temperature scales, i.e., we use 

the amplitude of the temperature variations along the plates as the conductive temperature 

scale Td and Tv= Td/ as the convective temperature scale, where Tv/Td=Pr, with Pr= 

denoting the Prandtl number. We select half distance h between the plates as the length 

scale, h/U v   as the (convective) velocity scale and 2
vv UP   as the (dynamic) 

pressure scale.  

 

The complete dimensionless temperature is scaled using the convective scale, i.e., 

 

     y,xy,xPry,x 10
1     (2.2)

 

where the conductive temperature 0 is a solution of the following problem 

-h 

x,u 

y,v 
+h U(x) 

L(x) 

g 
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
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n

n

xin)n(
U0 e1,x  (2.3)

 

and has the form   

 

   
     

 
xin

n

n

)n(
L

)n(
U

)n(
L

)n(
U

n

n

xin)n(
00

e
ncosh2

yncosh

nsinh2

ynsinh

e)y()y,x(












 

















 

 (2.4)

 

with  0)y()0(
0  .  

 

The dimensionless field equations describing motion of the fluid and the resulting 

changes in the temperature field have the form 

 

u
x

p

y

u
v

x

u
u 2












, 

 

(2.5a) 

0
1

1
2 PrRaRav

y

p

y

v
v

x

v
u 










  ,  

 
(2.5b)

1
20011

y
v

x
u

y
v

x
uPr 























,   

 

(2.5c) 

0
y

v

x

u









,   

 
(2.5d)

 

where v = (u,v) denotes the velocity vector, p stands for the pressure, Ra = gh3Td/ is 

the Rayleigh number, 2 denotes the Laplace operator and dissipation effects have been 

neglected in the energy equation. The boundary conditions take the form 

 

      01,01v,01u 1  .   (2.6)
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The reader may note that the above problem represents a forced response problem as the 

motion occurs regardless of the amplitude of heating, i.e., one does not need to meet any 

critical heating conditions as in the case of the classical problem of plates subject to a 

uniform heating. 

 

2.3 Method of solution 

We shall use combination of three techniques in order to determine system response.  

 
 

2.3.1 Method 1: Finite difference-complex notation 

We define the stream function (x,y) in the usual manner, i.e., y/u  , x/v  , 

and eliminate pressure from the momentum equations resulting in the following form of 

the governing equations 

 

   
x

PrRa
x

Ra
yxxy

011422




















  ,  (2.7a)

 

1
20011

yxxyyxxy
Pr 



































.   (2.7b)

 

 

The solution is assumed to be in the form of Fourier expansions, i.e., 

 







n

n

xin)n( e)y( , 





n

n

xin)n(
1 e)y( .   (2.8)

 

Substitution of (2.8) into (2.7) and separation of Fourier components result in the 

following system of ordinary differential equations 
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(2.9a)

 

  
   .0DmnDm
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)m(
0

)mn()mn()m(
0

m

m

)m()mn()mn()m()n(
n



 









 
(2.9b)

 

where -<n<+, D=d/dy and Dn=D2-n22. The required boundary conditions have the 

form  

 

(n)(1)=0, D(n)(1)=0, (n)(1)=0 , for -<n<+ .   (2.10a-c)

 

The system (2.9) together with the boundary conditions (2.10) needs to be solved 

numerically. The solution method uses variable-step-size, finite-difference discretization 

based on the Simpson method with deferred corrections (Kierzenka and Shampine, 2001, 

2008) with the resulting algebraic system being solved using a simplified Newton (chord) 

method with residual control. The value of the residual set at 10-6 was found to be 

sufficient in most of the computations (see Appendix E for discussion of numerical 

accuracy). The selection of the number and distribution of grid points is done 

automatically so that the specified error bounds are met. The number of Fourier modes 

used in the solution was selected through numerical experiments so that the flow 

quantities of interest were determined with at least six digits accuracy.    

 

  

2.3.2 Method 2: Finite difference-real notation 

Technique presented in this section is more efficient as it deals with real numbers and is 

specialized to sinusoidal temperature distributions only. The solution is assumed to be in 

the form of Fourier expansions defined as 
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  
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)n( xnsin)y( ,   




n

0n

)n(
1 xncos)y( .  (2.11)

 

Substitution of (2.11) into (2.7) and separation of Fourier components result in the 

following system of ordinary differential equations 
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(2.12a)
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
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(2.12b)

 
 
where 0<n<+, D=d/dy and Dn=D2-n22. The required boundary conditions have the 

form  

 

(n)(1)=0, D(n)(1)=0, (n)(1)=0 , for 0<n<+ .  (2.13a-c)

 

 

Here the reader may note that Eq. (2.12b) is valid for n>0. The Eq. (2.12b) takes the 

following form for n=0, 

 
 

    0DPrDPrDmD2 )m()m(
0

)m(
m

0m

)m()m(
0

)m()0(
0  




 (2.14)

 
 

The system (2.12)-(2.14) together with the boundary conditions (2.13) needs to be solved 

numerically. The solution method used is the same as described in the previous section.  
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2.3.3 Method 3: Spectral complex notation 

Equation (2.7) is written in the form 

 

ψ
0114 N

x

θ
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θ
Raψ 








  ,   (2.15a)

 

θ0θ11

2 NNPrθ     (2.15b)

 

where terms involving products and nonlinearities are expressed as  
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The solution is assumed to be in the form of Fourier expansions, as discussed in the  

Section 2.3.1, i.e., 
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where )n()n( Du   and  )n()n( inv  . The nonlinear and product terms are also 

expressed in terms of Fourier expansions in the form 
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Substitution of (2.16)-(2.17) into (2.15) and separation of Fourier components result in 

the following system of ordinary differential equations for the modal functions 

 

)n()n(
0

1)n()n(2
n NPrRainRainD 

  , (2.18a)
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where  0n<+,  D=d/dy,   D2=d2/dy2,   Dn=D2-n22
, 

)n()n(22)n(2)n()n( vvDinuvinuvDuuDinN  ,    

)n(

1

)n(

1
)n(

1 vDuinN  ,  

)n(

0

)n(

0
)n(

0 vDuinN  .  

 

The unknown linear terms have been placed on the left hand side, and the nonlinear and 

product terms have been placed on the right hand side. Equations (2.10) provide the 

required boundary conditions. 

  

For the purpose of numerical solution, expansions (2.16)-(2.17) have been truncated after 

NM Fourier modes. The discretization method uses Chebyshev collocation technique 

based on the Gauss-Chebyshev-Lobatto points (Trefethen 2000) whose locations were 

computed from the formula  

 

 
  




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






1N2

k21N
siny

T

T
k ,    k=0,1,2,…NT  (2.19)

        

which is advantageous in the floating-point arithmetic (Weideman and Reddy 2000). The 

resulting nonlinear algebraic system was solved using an iterative technique combined 

with under-relaxation in the form 
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 jcompj1j RF     (2.20)

 

where  )n()n( , , comp denotes the current solution, j  denotes the previous 

solution, 1j  stands for the accepted value of the next iteration and RF denotes the 

relaxation factor.  

 

The solution process starts with solution of (2.18) with the RHS terms assumed to be 

zero. Once solution of this problem has been completed, the first approximation of the 

RHS terms is computed on the basis of the available approximation of the velocity and 

temperature fields and the system (2.18) is resolved with the new approximation of the 

RHS. This process is continued, with the update of the RHS terms taking place after each 

iteration, until a convergence criterion in the form   TOLmax jcomp  is satisfied. 

TOL denotes difference between solutions obtained in two consecutive iterations and its 

value set at 10-6 was found to be sufficient in most of the computations (see Appendix E 

for the discussion on numerical accuracy). The number of collocation points and the 

number of Fourier modes used in the solution were selected through numerical 

experiments so that the flow quantities of interest were determined with at least six digits 

accuracy.  

 

The evaluation of the RHS terms requires evaluation of products of two Fourier series. It 

is more efficient to evaluate these products in the physical space rather than in the Fourier 

space (Canuto et al. 2006). The required flow quantities, i.e., u, v, 1, were computed in 

the physical space on a suitable grid based on the collocation points in the y-direction and 

a uniformly distributed set of points in the x-direction, and the required products were 

evaluated at the grid points. The Fast Fourier Transform (FFT) algorithm was used to 

express these products in terms of Fourier expansions (2.17). The aliasing error was 

controlled using "padding" (Canuto et al. 2006), i.e., using of a discrete FFT transform 

with Np rather than NM points, where Np  3NM / 2. Zeros were added for the additional 

Fourier modes as required.  
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2.4 Description of the flow and temperature fields 

We focus our attention on the simplest reference case as shown in Figure 2.2 where the 

temperature distribution along the bottom plate is expressed by one Fourier mode and the 

temperature of the upper plate is constant and equal to the average temperature of the 

lower plate, i.e.,  

 

  x)cos(2
1xθL  , U (x) = 0.  (2.21)

  

 

Figure 2.2: Parallel plates subject to periodic heating defined by equation (2.21). 

 

We refer the above spatial distribution of heating as “periodic heating”. We know that if 

the heating wave number  is large, the wavelength of heating will be small, and vice 

versa. We shall discuss the pattern of the convection due to the presence of periodic 

heating applied at the bottom wall in two parts depending on the magnitude of the heating 

wave number. In first part, we discuss the “small” wavelength heating which will cover  

  3, and in the second part we discuss the “long” wavelength heating for which    0 

to 0.5. It may be noted that there is no significant change in flow properties in the range 

of the heating wave number 0.5<<3.    

 

2.4.1 Short wavelength heating 

For the arrangement shown in Figure 2.2, the amplitude of temperature variations along 

the lower wall represents the conductive temperature scale Td and this amplitude is 

-1 

x,u 

y,v 
 1 U = 0 

L= 0.5cos(x) 

g 
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expressed in terms of Rayleigh number in the dimensionless formulation. The structure of 

the temperature field in the absence of convection shown in Figure 2.3 demonstrates that 

the space between the plates can be separated into the heated and cooled zones resulting 

in the buoyancy force changing direction along the length of the slot. Such distribution of 

the driving force results in the onset of convection regardless of the amplitude of the 

heating. A more detail physical explanation on how the onset of convection takes place is 

given in the Section 2.4.2.   
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Figure 2.3. Isotherms of the conductive temperature field for the heating wave number  
 = 3.  Solid lines denote positive temperatures (hot) and dashed lines denote negative 
temperature (cold). Temperature magnitudes are multiplied by 1000. 

 

 

Convective motion has a fairly simple topology for this heating, as illustrated in Figures 

2.4-2.5. The fluid rises above the hot zones in the lower wall (due to upward buoyancy 

force at the hot zones) and descends above the cold zones (due to downward buoyancy 

force at the cold zones) forming closed, counter-rotating rolls. When the intensity of the 

heating increases (Ra increases), centers of the rolls move upwards and towards to the hot 

zones. The fluid movement concentrates closer to the lower wall as the heating wave 

number  increases. Increase of the Prandtl number produces the same effect.  

 

It will be shown in the subsequent chapters that the convective rolls are subject to an 

instability for sufficiently high Ra and thus we limit our consideration to Ra<104.  
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                                      A                               B                                C 

Figure 2.4. Flow topology for the heating wave number  = 3 and the Rayleigh numbers 
Ra=1 (dotted lines) and Ra = 10,000 (solid lines). Stream function is normalized with its 
maximum max .  Fig.2.4A corresponds to Pr = 0.01 (max = 0.128, 580.1 for Ra = 1, 
10000),Fig.2.4B corresponds to Pr = 0.71 (max = 0.0017, 10.43 for Ra = 1, 10000), 
Fig.2.4C corresponds to Pr = 1000 (max = 1.22e-6, 7.3e-3 for Ra = 1, 10000). 

 

 

 

  A                                B                                C 

Figure 2.5. Flow topology for the heating wave number  = 10 and the Rayleigh numbers 
Ra = 1 (dotted lines) and Ra = 10,000 (solid lines). Stream function is normalized with its 
maximum max . Fig.2.5A corresponds to Pr = 0.01 (max  =3.38e-3, 26.37 for Ra = 1, 
10000), Fig.2.5B corresponds to Pr = 0.71 (max = 4.77d-5, 0.4683 for Ra = 1, 10000), 
Fig.2.5C corresponds to for Pr = 1000 (max = 3.38e-8, 3.32e-4 for Ra = 1, 10000). 
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 Figure 2.6. Variations of the roll strength (as measured by the maximum of the stream 
function max , Fig.2.6A), and of the location of the coordinate yc of the roll center 
(Fig.2.6B) as a function of the Rayleigh number Ra for selected values of the heating 
wave number . Dash, continuous and dash-dot lines correspond to the Prandtl numbers 
Pr = 0.01, 0.71 and 10, respectively. Data for the last two values of Pr overlap in 
Fig.2.6B.                  
 

 

Results displayed in Figure 2.6A demonstrate that the strength of the rolls, as measured 

by the maximum of the stream function, increases linearly with the Rayleigh number Ra. 

This intensity increases when Prandtl number Pr of the fluid is lowered. Results displayed 

in Figure 2.6B illustrate variations in the location of the vortex center as a function of the 

Rayleigh number Ra. It can be seen that this location remains constant for low values of 

Ra but, once a certain critical value of Ra is reached, the vortex center starts moving 

upwards and reaches to the center of the slot for high enough Ra. Increase of the heating 

wave number  causes this transition to take place at higher values of Ra (see         

Figure 2.6B).  

 

Results displayed in Figure 2.7 illustrate changes in the convection due to variations of 

the heating wave number . It can be see that the strength of the convection decreases 

proportionally to -3 for all values of Ra and Pr of interest, with the convection for the 

lowest value of Pr considered being strongest. The center of the vortex moves downwards 

with an increase of  and it follows an asymptote in the form yc=-1+2.07-1 for large 
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enough  regardless of the values of Ra and Pr. The approach to the asymptote is slowest 

for the smallest value of Pr considered.  
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Figure 2.7. Variations of the roll strength (as measured by the maximum of the stream 
function max , Fig.2.7A) and of the location of the roll center identified by its coordinate 
yc (Fig. 2.7B) as a function of the heating wave number  for selected values of the 
Rayleigh number Ra. Dash, continuous and dash-dot lines correspond to the Prandtl 
numbers Pr = 0.01, 0.71 and 10, respectively. 

    

 
 
We have seen from Figures 2.6A and 2.7A that the strength of the rolls increases linearly 

with Ra (for a fixed ) and decreases proportionally to -3 (for a fixed Ra). To obtain the 

combined effect of Ra and  on the strength of the rolls it is convenient to introduce a 

Rayleigh number Ra based on the heating wavelength where Ra = Ra3. In the limit 

,  max  approaches a constant Ra-dependent value. A simple correlation in the 

form 

 

max  = 0.0467 Ra/3 = 0.0467 Ra  (2.22)

 

describes the strength of convection in this limit for the fluid with Pr = 0.71. The range of 

validity of correlation (2.22) is surprisingly large, as shown in Figure 2.8.  
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Figure 2.8. Variations of the roll strength measured by the stream function maximum 
max as a function of the heating wave number  and the Rayleigh number based the 
heating wavelength Ra = Ra/3 for a fluid with the Prandtl number Pr = 0.71. The dash 
line corresponds to the maximum of Ra being considered. The dotted lines describe 
asymptotes (2.22). Thin solid line identifies conditions where the difference between the 
actual value of  max and the value computed from (2.22) is equal to 1%. 
 

 

The effects of variations of the Prandtl number on the roll strength and on the roll center 

are illustrated explicitly in Figure 2.9. It can be seen that the strength of convection 

decreases linearly with an increase of Pr. Vortex centers are located at the middle of the 

slot for small enough values of Pr and move to a new, Pr-independent location for high 

enough values of Pr (see Figure 2.9B).  This new location is a function of the heating 

wave number . The transition between the two limiting locations occurs for values of Pr 

between ~0.01 and ~0.2.     
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Figure 2.9. Variations of the roll strength as measured by the maximum of the stream 
function max (Fig.2.9A) and of the location of the roll center identified by its coordinate 
yc (Fig.2.9B) as a function of the Prandtl number Pr. All results are for the Rayleigh 
number Ra = 2000 and selected values of the heating wave numbers .    

    

 

The topology of the temperature field is more complex. Figure 2.3 displays conductive 

temperature field. As the heating intensity increases, the convective effects alter this field 

as shown in Figure 2.10A. Further increase of the Rayleigh number Ra leads to the 

formation of saddle points that are already well developed at Ra = 100 (see Figure 

2.10B). Plumes over the heated portions of the wall increase in size and the heated fluid 

occupies most of the space in the slot. Further increase of Ra leads to a re-arrangement in 

the character of the temperature field. Temperature in the top portion of the slot looses         

x-dependence and assumes form associated with conductive heat transfer between walls 

of constant but different temperatures (see Figure 2.10C). Convection is contained in the 

bottom portion of the slot and the temperature here has a strong x-dependence. Further 

increase of Ra leads to the penetration of the convective effects back to the top portion of 

the slot (see Figure 2.10D). While the evolution of the structure of the temperature field 

as a function of Ra is qualitatively similar for different values of the heating wave number 

 and for fluids with different Prandtl numbers Pr, the quantitative differences can be 

significant. In the case of smaller wave numbers, i.e.,  = 3 (see Figure 2.11 A and B), 

the plumes of the heated fluid are more pronounced, cool fluid occupies relatively less 
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space and formation of the conduction-like zone is not observed. In the case of larger 

heating wave numbers, i.e.,  = 10 (see Figure 2.11 C and D), formation of the 

conduction-like zone is observed for much smaller values of Ra with the convection 

contained in a zone very closed to the bottom wall. 
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Figure 2.10. Temperature fields resulting from the heating with the wave number  = 5 
in the case of fluid with the Prandtl number Pr = 0.71. Results displayed in Figs 
2.10A,B,C and D correspond to the amplitude of heating described by the Raleigh 
numbers Ra = 10, 100, 2000 and 10000, respectively. Solid and dash lines correspond to 
the positive and negative values of the temperature, respectively. The temperatures have 
been normalized with the factor (2*Pr)-1 resulting in the displayed values changing 
between -1 and +1. The thickness of the convection layer is denoted as hv. 

 

 

Formation of the conduction-like zone in the upper portion of the slot is illustrated in 

Figure 2.12A which displays the y-derivative of the zero-order modal function in the 

temperature field d(0)/dy. This modal function determines the net heat flow between both 

walls. It can be seen that as the heating wave number  increases, d(0)/dy assumes a 

constant value in the upper portion of the slot. Figure 2.12B displays derivative of the 
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first four modal functions in the temperature field, i.e., d(0)/dy for n=0, 1, 2, 3, for the 

heating wave number  = 5. The corresponding temperature field is shown in Figure 

2.10C. It can be seen that the magnitudes of the modal functions other than d(0)/dy 

quickly decrease as one moves away from the lower wall and thus the dominant heat 

transport in the upper portion of the slot is by conduction and only in the vertical 

direction. The temperature field in the lower portion of the slot is very complex and 

strongly affected by the convective effects. This “convective layer” is seen by the upper 

portion of the slot as a “wall with a constant and uniform temperature” and this leads to 

the heat transport in the upper part of the slot by conduction only.  
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Figure 2.11. Temperature fields resulting from the heating with the wave number  = 3 
(Figs 2.10A and B) and  = 10 (Figs 2.11C and D). Figures 2.11A and C are for Ra = 
100, and 2.10B and D for Ra = 10000. Other parameters as in Fig.2.10. 

 

 

Variations of the thickness of the convective layer hv (see Figure 2.10C) are of interest 

for quantitative description of changes in the temperature field. This thickness is 

determined by comparing heat flow carried by mode zero with the heat flow carried by 
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the remaining modes. Because the heat flow carried by higher modes quickly decreases 

with distance away from the lower wall (see Figure 2.12B), only the first three modes 

have been used in the actual calculations. According to the notation used in Section 2.3.2, 

a quantity E defined below expresses ratio of both heat flows, i.e.,  

 

     )0(
2/12)2()1(2)2()1( D/DD2E     (2.23)

 

with )1()1(
0

1)1( Pr    and location where E = 0.05 has been adopted as the definition 

of the edge of the convective layer. The 5% criterion has been chosen rather arbitrarily 

but it well illustrates evolution of the structure of the temperature field. 
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Figure 2.12.  Derivatives of the zero modal function of the temperature field d(0)/dy for 
selected values of the wall heating wave number (Fig.2.12A) and of the first four modal 
functions for the wave number  = 5 (Fig.2.12B) for the heating amplitude corresponding 
to the Rayleigh number Ra = 2000 for the fluid with the Prandtl number Pr = 0.71. 

   

  

Variations of the thickness hv of the convective layer as a function of the Rayleigh 

number Ra are illustrated in Figure 2.13 for Pr = 0.71. It can be seen that the heat is 

carried by convection in the whole slot for the heating wave numbers <4.5.  A distinct 

conduction layer can be identified for  = 4.5, but only for a finite range of Ra, i.e., for 

Ra(~500,~2500). The range of Ra that gives rise to conduction layer expands towards 
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smaller and larger values as  increases. For  = 10 this range reaches Ra<1 on the low 

end and Ra>104 on the high end. The character of the curves suggest that the conductive 

zone will disappear if Ra reaches a sufficiently high value even for large values of , e.g., 

 = 10. Figure 2.14 illustrates effects of variations of the Prandtl number Pr on the 

thickness of the convection layer hv for Ra = 2000. It can be seen that variations of Pr 

cease to affect the structure of the temperature field for Pr>~0.2 regardless of the value of 

the heating wave number , major changes of the temperature field occur for Pr<~0.2 and 

these changes are more pronounced when  assumes smaller values.  
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Figure 2.13. Variations of the thickness hv of the convection layer as a function of the 
heating wave number  and the heating amplitude expressed in terms of the Rayleigh 
number Ra for the fluid with the Prandtl number Pr = 0.71.  
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Figure 2.14. Variations of the thickness hv of the convection layer as a function of the 
fluid Prandtl number Pr and the heating wave number  for the heating amplitude 
corresponding to the Rayleigh number Ra = 2000. 
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The variations of the net heat flow between the both wall per unit length across the slot as 

a function of the Rayleigh number Ra and the heating wave number  are illustrated in 

Figure 2.15. This heat flow is expressed in terms of Nusselt number defined as 
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and is based on conductive temperature scale.  

 

It can be seen that generally Nu increases when  decreases and when Ra increases. 

Changes of Nu as a function of Ra are more rapid for smaller values of . Lines of 

constant Nu have the form Ra ~ 3, 3, 4 for Pr = 0.01, 0.71, 10, respectively.  

 

To obtain the combined effect of Ra and  on heat transfer we perform the similar 

analysis as the roll strength for the fluid with Pr = 0.71. The system reaches a asymptotic 

state for sufficiently large  where variations of the Nusselt number are described by a 

simple relation in the form  

 

Nu = 0.00192 Ra/3 = 0.00192 Ra.  (2.25)

  

The functional form of this relation is the same as for the strength of convection given by 

(2.22), which is not unexpected as the heat transfer is dominated by convection. The 

range of validity of correlation (2.25) is illustrated in Figure 2.16. 

 

The character of variations of Nu is similar for all values of Pr considered with Nu 

increasing with an increase of Pr. The effects of variations of Pr are explicitly illustrated 

in Figure 2.17. It can be seen that Nu has weak dependence on the Prandtl number for 

Pr>~0.2 in the range of  being considered in this study, however, the heat flow changes 

rapidly for Pr between 10-2 and 10-1. 
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Figure 2.15. Variations of the net heat flow Nu*103 between the lower and upper walls 
per unit length of the slot as a function of the heating wave number  and the heating 
amplitude expressed in terms of the Rayleigh number Ra for the fluid with the Prandtl 
numbers Pr = 0.01 (dash lines), 0.71 (solid lines) and 10 (dash-dot lines). Maxima of 
Nu*103 occur for the conditions corresponding to the upper left corner of the plot and 
take values Numax*103 = 178.7, 258.4, 600.5 for Pr = 0.01, 0.71, 10, respectively. Slopes 
of the lines Nu = const are  = 72, 72 and 76 for Pr = 0.01, 0.71, 10, respectively. 
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Figure 2.16. Variations of the heat flow Nu*103 between the walls per unit length as a 
function of the heating wave number  and the Rayleigh number based the heating 
wavelength Ra = Ra/3 for the fluid with Pr = 0.71. The dash line corresponds to the 
maximum value of Ra being considered. The dotted lines describe asymptotes (2.25). Thin 
solid line identifies conditions where the difference between the actual value of Nu and 
the value computed from Eq. (2.25) is equal to 1%. 
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Figure 2.17. Variations of the heat flow Nu between the lower and upper walls per unit 
length of the slot as a function of the fluid Prandtl number Pr for selected values of the 
heating wave number  for the heating amplitude corresponding to the Rayleigh number 
Ra = 2000. 

 

2.4.2 Long wavelength heating 

Long wavelength heating pattern exhibits different form of response as compared to the 

short wavelength heating. We begin discussion with the formal analysis of the structure of 

primary convection in the limit 0 and focus presentation of results on the fluid with 

the Prandtl number Pr = 0.71.  

2.4.2.1 Asymptotic analysis of the limit 0   

To proceed with the asymptotic analysis for the limiting case 0, we rescale the          

x-coordinate with a length scale L, where h/L = , resulting in the following form of the 

governing equations 
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where X denotes the x-coordinate scaled using the new length scale. For the heating 

pattern considered in (2.21) the conductive temperature field described by (2.4) can be 

approximated in the limit 0 as  
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We assume the flow quantities as asymptotic expansions in terms of   in the form, 
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Substituting the asymptotic expansions in the governing equations (2.26), performing the 

order analysis, we obtain the following reduced form of the asymptotic expansions,  

 

 3
1 OUu  ,  4

2
2 OVv  ,  2

0 OPp  ,  4
2

2
1 O  . (2.29a-d)

 

Substitution of (2.27) and (2.29) into (2.26) and retention of the leading order terms lead 

to the following form of the field equations  
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where (2.30a-d) originate from the y-momentum, x-momentum, continuity and energy 

equations, respectively. The boundary conditions can be easily deduced from (2.6) and 

need to be supplemented by condition expressing zero mass flux in the x-direction. 

Solution of (2.30) has the form 
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The physical interpretation of the asymptotic equations (2.31) state that the flow forcing 

in the form of externally imposed conductive temperature (see (2.27)) generates a 

pressure field as dictated by the y-momentum equation (see (2.30a)), this pressure field 

drives motion in the x-direction as dictated by the x-momentum equation (see (2.30b)), 

the complementary motion in the y-direction is determined by the continuity equation 
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(see (2.30c)), and the overall motion creates a correction in the imposed conductive 

temperature field as dictated by the energy equation (see (2.30d)).  

 

0.2
-0.4

0

-0.40.4 0.4

-0.2
0.4

-0.2
-0.4

-1

-0.5

0

0.5

1



y

x/

0

0.
8

-0
.8

-0.8 0
.4

-0
.40

-0
.4

-0.5 -0.25 0 0.25 0.5 

A 

0.01

0.001

-0.01 -0.01

0 0

0.01
0.010.

00
1

0.
00

1

-0.5 -0.25 0 0.25 0.5
-1

-0.5

0

0.5

1

0.04 -0.04

-0.010.01

0



y

x/

<

>

>

<

 

B 

Figure 2.18. Convection patterns described by the asymptotic solutions (2.27) and (2.31). 
Conductive temperature 4*00 and pressure P0(4Pr/Ra) are shown in Fig.2.18A using 
solid lines with step size 0.4 and dash lines with step size 0.2, respectively. Stream 
function /(Ra/4Pr) and isotherms of the convective temperature 2(32Pr/Ra) are 
displayed in Fig.2.18B using solid lines with step size 0.01 and dash lines with step size 
0.01 (unless otherwise shown), respectively. 
 

 

The conductive temperature field obtained from the asymptotic solution (using (2.27)) is 

illustrated in Figure 2.18A (the plot extends over one wavelength of the heating from       

-/2 to + /2 ). It generates a buoyancy force acting upwards at x = 0 and downwards at   

x = /2; this force is responsible for driving the fluid upwards at x = 0 and downwards at 

x = /2. Since motion in the y-direction is restricted due to the presence of the walls, an 

opposing pressure force is generated which forces the fluid to turn around before reaching 

walls. This leads to the formation of the y- and x-pressure gradients as illustrated in 

Figure 2.18A. The overall flow pattern has the form of rolls depicted in Figure 2.18B. 

Fluid motion transports energy and creates changes in the temperature field displayed in 

Figure 2.18B. It can be seen that hot fluid rises at x = 0 creating positive correction in the 

temperature field. This fluid turns sideways as it approaches the upper wall but still 
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creates positive temperature correction as it flows towards zones with lower conductive 

temperatures. The fluid turns downwards around x = /2 and again creates positive 

temperature correction as it flows in the direction of decreasing conductive temperature. 

The final turn occurs at the lower wall and the fluid flows into the zone of higher 

conductive temperature field creating a negative temperature correction.  

 

2.4.2.2 Range of validity of the asymptotic solution 

The range of validity of the above analytical solution can be determined by comparing it 

to the complete solution determined numerically. Figure 2.19 displays patterns of 

conductive and convective temperature fields, and pressure and velocity fields determined 

numerically for  = 0.5. One can observe that centers of the rolls move closer to the hot 

spots as  increases from   0 (see Figure 2.18) to   0.5 (see Figure 2.19) but 

otherwise the patterns do not change significantly.  
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Figure 2.19. Convection patterns described by the complete field equations for a fluid 
with Prandtl number Pr = 0.71 subject to heating corresponding to the Rayleigh number 
Ra = 400 and the heating wave number  = 0.5. Other  conditions as in Fig.2.18. 
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To provide a quantitative measure of the range of validity of the asymptotic solution, we 

define the relative error of the asymptotic solution as   

 


num

asymnum

1y1
rel maxErr








 (2.32) 

 

where  stands either for u evaluated at x = /4 or for any of the remaining quantities 

evaluated at x = /8, and subscripts "num" and "asym" denote quantities computed on the 

basis of the complete and asymptotic equations, respectively. It is noted that u is 

evaluated at a different point (x = /4) for better resolution. Figure 2.20A illustrates 

variations of the relative error of the asymptotic solution as a function of . It can be seen 

that the relative error is less than 0.1 for   0.2 even when Ra = 400. Variations of the 

relative error as a function of the Rayleigh number Ra for selected values of the heating 

wave number  are illustrated in Figure 2.20B. The error rises with an increase of Ra but 

remains below 0.1 even for  = 0.2 and Ra = 400. 
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Figure 2.20. Variations of the relative error of the asymptotic solution for p, u, v and 1 
for a fluid with Pr = 0.71 as a function of the heating wave number  for selected values 
of the Rayleigh number Ra and as a function of the Rayleigh number Ra for selected 
values of the heating wave number . Solid and dash lines are used for Ra = 50, 400 in 
Fig.2.20A, respectively and for  = 0.01, 0.05 in Fig.2.20A, respectively. The dotted line 
with slope ~ 2 is shown in Fig.2.20A for reference purposes.   
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2.4.2.3 Heat transfer in the asymptotic limit 

The net heat transfer across the slot is expressed by the global (mean) Nusselt number as 

defined in (2.24). For the asymptotic solution, Nusselt number has the following form, 

 

0whenRa
1400

1
Nu 2

asym  . (2.33) 

 

Figure 2.21 illustrates variations of Nu/Ra as a function of  for selected values of Ra. It 

can be seen that variations of Nu can be predicted using asymptotic theory from Section 

2.4.2.1 as long as Ra < 427. When Ra > 427, Nu branches off and approaches other 

asymptotic, Ra-dependent limits as 0. The branching occurs at larger values of  

when the intensity of heating, as measured by the Rayleigh number Ra, increases. The 

branching process results in the formation of two families of solutions that keep 

intersecting each other as  decreases, as illustrated in Figure 2.21B. These families exist 

for all values of Ra > 427 and "distance" between them increases with an increase of Ra, 

but decreases with a decrease of . This distance is non-zero for all finite values of  

considered and the solutions keep intersecting each other as  decreases. 
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Figure 2.21. Variations of the Nusselt number as a function of the heating wave number  
for selected values of the Rayleigh number Ra. Enlargement of the box marked in 
Fig.2.21A is displayed in Fig.2.21B. 
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Analysis of the conductive temperature field in the limit of 0 (shown in (2.27)) 

expressed in terms of the original length scale demonstrates that zones of length O(-1) on 

both sides of hot spots are subject to an almost uniform heating and similar zones 

centered around cold spots are subject to an almost uniform cooling. When the magnitude 

of the heating is sufficiently large, the zones around the hot spots may be subject to the 

RB-type instability. The critical Rayleigh number expressed in terms of thickness of the 

slot for a uniformly heated wall is Rauni = 1708 (Drazin and Reid 1981). This number 

expressed using the present scaling takes value Racr = 427. Results shown in Figure 2.21 

suggest that an instability does take place (as it is evident from the branching of the Nu 

plot). Conditions leading to the onset of such an instability need to be investigated 

numerically, and will be discussed in a separate chapter.  

 

2.5 Summary 

In this chapter the two-dimensional flow response due to the presence of spatially 

distributed heating applied at the bottom wall has been discussed. The mean temperatures 

of both walls are kept the same thus the convection occurs only due to the spatial 

variability of the heating. Spatial distribution of heating is controlled by the heating wave 

number , and intensity (amplitude) of the heating is controlled by the Rayleigh number 

Ra. The case of sinusoidal (periodic) heating has been considered for a wide range of 

Prandtl number varying from 10-3 to 103. It has been found that the convective motion 

occurs regardless of the amplitude of heating (i.e. regardless of the magnitude of the 

Rayleigh number Ra) unlike the RB convection with uniform heating where a critical 

Rayleigh number is needed for initiation of convection. The convection has the form of 

counter rotating rolls with axis orthogonal to the heating wave vector (,0). The 

convective effects give rise to the mean vertical temperature gradient that results in a net 

heat transfer between both walls, with the heat flow being larger for smaller . It is 

shown that convection is limited to a layer adjacent to the lower wall when  is 

sufficiently large. Under such conditions a uniform conductive layer emerges at the upper 

section of the fluid layer with temperature field in this zone becoming independent of the 
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spatial variations of the heating and varying in the vertical direction only. For 0, an 

asymptotic analysis is performed to compute the flow quantities. The trend of the heat 

transfer characteristic at a sufficiently small , i.e., at long wavelength heating, suggests 

that for supercritical values of Ra (Ra>427) some form of RB-type instability may occur.     



   

3  

Onset of Secondary Convection 

In this chapter, we examine stability of the primary convection (discussed in the previous 

chapter). Imposition of small disturbances may initiate instability of the primary 

convection rolls which may give rise to various forms of ‘secondary convection’. 

Conditions that lead to the onset of a secondary convection is determined using the linear 

stability theory. This theory provides a good tool for detecting physical growth 

mechanisms and identifying dominant disturbance types (Schmid and Henningson 2000). 

In Section 3.1 we formulate the two-dimensional stability equations, the three 

dimensional equations are discussed in Section 3.2, the method of solution of the stability 

equations are presented in Section 3.3, a more general form of stability equations are 

shown in Section 3.4, a summary of the stability analysis is given in Section 3.5, and, 

finally, in Section 3.6, various instabilities that have been found in this work are reported.     

 

3.1 Formulation of the two-dimensional stability problem 

The analysis begins with the momentum equations expressed in terms of the stream 

function and energy equation. Unsteady, two-dimensional disturbances are super-imposed 

on the base flow (primary convection) in the form (Floryan 2005)  

 

   ,t,y,xy,x 32   (3.1a)

 

   ,t,y,xy,x 32   (3.1b)

 
where subscripts 2 and 3 refer to the base flow and the disturbance field, respectively. 

The assumed form (3.1) of the flow quantities is substituted into the field equations, the 
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base part (primary convection) is subtracted, and the equations are linearized. The 

resulting disturbance equations have the form 
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and are subject to the homogeneous boundary conditions 3 = 0, 3/y = 0, 3 = 0  at the 

two walls. The partial differential equations (3.2) have coefficients that are functions of y 

and x, with the dependence on the x-coordinate being periodic. Because of that, the time 

dependence can be separated in the usual manner and the x-dependence can be expressed 

as a product of an exponential function and an x-periodic amplitude (Floryan 2005), 

resulting in the solution in the form,     

 

    .c.cey,xt,y,x )tx(i
33   , (3.3a)

 

    .c.cey,xt,y,x )tx(i
33    . (3.3b)

 

The exponent  is real and accounts for the x-periodicity of the disturbance field, 3(x,y) 

and 3(x,y) are the x-periodic amplitude functions expressing modulation of the 

disturbance field by the spatially distributed heating, exponent  is assumed to be 

complex ( = r + ii) and its imaginary part denoted by i and real part denoted by r 

describe the rate of growth and the frequency of disturbances, respectively,  and c.c. 

denotes the complex conjugate. If σi > 0 the disturbance motion is unstable with the 

disturbances growing exponentially, while σi < 0 indicates exponential decay of the 

disturbances to make the motion stable and σi = 0 refers to neutral stability that 

disturbances neither grow nor decay. Whereas r determines the kinematic character of 

the disturbance field. If r  0 then the disturbances have the form of the traveling wave 
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(the speed of this wave in x-direction is equal to r / ). Such disturbances are also called 

the oscillatory ones because at any fixed point is space one observes time-periodic 

modulation of the disturbance amplitude (superimposed on the exponential decay or 

growth). If r = 0 then time variation of the amplitude of disturbances at any space 

location is monotonic (non-oscillatory); such disturbances are sometimes called 

stationary, and their physical structure usually look likes rolls or vortices.        

 

For the problem considered here, (, ) represent eigenvalues for the specified flow 

conditions which are characterized in terms of (Pr, Ra, ), and the relevant eigenvalue 

problem for the partial differential equations describing 3(x,y) and 3(x,y) can be easily 

derived. Rather than solving this problem directly, we take advantage of the periodicity of 

the amplitude functions and represent them as 
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This leads to the following form of the disturbance quantities 
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Substitution of (3.5a-b) into the disturbance equations (3.2a-b) and separation of Fourier 

components result, after a rather lengthy algebra, in a system of linear homogeneous 

ordinary differential equations in the form  
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The boundary conditions take the form 
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3.2 Formulation of the three-dimensional stability problem 

We consider three-dimensional linear stability of the primary convection discussed in the 

previous section. The analysis begins with the governing equations in the form of 

vorticity transport, energy and continuity equations. 
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  

  21Prv
t
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where j  is the unit vector along the vertical (y) direction,  is the vorticity vector, v  is 

the velocity vector, respectively. 

 

Unsteady, three-dimensional disturbances are super-imposed on the base flow in the form 

(Floryan 2003) 
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where subscripts 2 and 3 refer to the base flow and the disturbance field, respectively. 

The assumed form (3.9) of the flow quantities is substituted into the field equations (3.8), 

the base part (primary convection) is subtracted, and the equations are linearized. The 

resulting disturbance equations have the form 
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and are subject to the homogeneous boundary conditions 0,0v 33    at the two 

walls.  

 

The disturbance equations (3.10) have coefficients that are functions of x and y only, with 

the dependence on the x-coordinate being periodic. Thus the solution can be written in the 

following form 
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 . (3.11b)

The exponents  and  are real and account for the x- and z-periodicity of the disturbance 

field. )y,x(G3 and 3(x,y) are the x-periodic disturbance amplitude functions expressing 
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modulation of disturbances by the heating, exponent  is assumed to be complex as 

mention in Section 3.1, and c.c. denotes the complex conjugate. (, , ) represent 

eigenvalues for the specified flow conditions which are characterized in terms of (Pr, Ra, 

). The relevant eigenvalue problem for the partial differential equations (3.10) 

describing )y,x(G3 and 3(x,y) can be easily derived. Rather than solving this problem 

directly, we take advantage of the periodicity of the amplitude functions and represent 

them as 
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This leads to the following form of the disturbance quantities 
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Substitution of (3.13a-b) into the disturbance equations (3.10) and separation of Fourier 

components result, after a rather lengthy algebra, in a system of linear homogeneous 

ordinary differential equations in the form  
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The boundary conditions take the form 
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It may be noted that, in this work, the stability analysis is limited to two-dimensional 

primary convection only. Consequently, the required expressions for the basic state 

(primary convection) to use in (3.14) have the form 
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3.3 Method of solution 

Equations (3.6) (or (3.14)) together with the boundary conditions (3.7) (or (3.15)) are 

truncated after NM modes. The resulting system has a nontrivial solution only for certain 

combinations of parameters Ra, Pr, , ,  and . The required dispersion relation has to 

be determined numerically through solution of the relevant eigenvalue problem. For the 

purposes of calculations, the problem is posed as an eigenvalue problem for . Equations 

(3.6) and (3.14) are discretized with spectral accuracy using Chebyshev collocation 

method with NT collocation points (Canuto et al. 2006). The relevant numerical 

parameters (i.e., NM and NT) have been selected through numerical convergence studies 

as shown in Appendix E.  

 

The above discretization procedure results in a matrix eigenvalue problem in the form 

 
Ωx = 0, (3.17)

  
where Ω(σ) represents the coefficient matrix. This matrix is linear in σ, i.e.,  

 
Ω = Ω0 + Ω1σ,  (3.18)

 

where Ω0 = Ω(0), Ω1 = Ω(1) − Ω0.  

 

Using the property (3.18) of the coefficient matrix, finally we end up with a generalized 

eigenvalue problem in the form,    

 

Ω0x = σΩ1x. (3.19)
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3.3.1 Evaluation of eigenvalue 

From a numerical point of view, there are two general concepts of finding the eigenvalues 

of a discretized stability equation (Schmid and Henningson 2000). The first method, the 

local method, starts with an initial guess of the eigenvalue or the eigenvector, and uses 

iteration procedure to converge to the true eigenvalue or the eigenvector. Local method 

may be employed either by using the Newton-Raphson search method which uses an 

initial guess of the eigenvalue, or by using ‘inverse iteration’ technique which uses 

eigenvector as the initial guess. The second method, the global method, uses complete 

discretized stability equation and computes spectrum of the resulting matrix. The 

advantage of the local method is that it is high in accuracy and requires less 

computational time but it computes only one eigenvalue or one set of eigenvectors, 

whereas the global method is computationally expensive but it computes the full 

spectrum. The virtue of full spectrum computations is that they provide the safest means 

of identifying all possible instability modes. Situations have arisen in the literatures in 

which iterative computations (local method) led to the most important branch of 

eigenvalues being missed (Ding and Kawahara 1998). Of no less significance is the fact 

that full spectrum information aids in the classification of different branches of 

eigenvalue, corresponding to different physical phenomena (Theofilis 2011).  It may be 

noted that full spectrum computations help to assess the effect of grid-resolution (see 

Appendix E). Details of the aforementioned methods are given in Appendix D, in the next 

sections we describe them only briefly. 

 

3.3.2 Full spectrum computation 

The σ-spectrum is determined by solving a general eigenvalue problem (3.19). Since the 

eigenvalues are complex in nature, we use the method described in (Golub and Loan 

1996). From computed eigenvalues, the top 100 eigenvalues are further refined (to test 

their sensitivity) using the ‘inverse iteration’ technique as described in (Saad 2011). 
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3.3.3 Newton-Raphson search method 

In this method, we alter flow conditions and produce an approximation for the eigenvalue 

which is then improved iteratively by searching for the near-by zero of the determinant 

using a Newton–Raphson search procedure (for details see Appendix D). A reasonable 

guess for the unknown eigenvalue is essential for the convergence of this search routine.  

 

3.3.4 Inverse iteration method 

We compute an approximation for the eigenvector a corresponding to the unknown 

eigenvalue a using an iterative process in the form (Ω0 − σ0Ω1)Λ
(n+1) = Ω1Λ

(n) where σ0 

and Λ(0) are the eigenvalue and the eigenvector (an eigenpair) corresponding to the 

unaltered flow. If σa is the eigenvalue closest to σ0, Λ
(n) converges to Λa. The eigenvalue 

σa is evaluated using formula a1
*
aa0

*
aa /   where asterisk denotes the complex 

conjugate transpose. The inverse iterations method was found to be generally more 

efficient.  

 

3.3.5 Eigenvalue tracing 

To produce various stability diagrams we need to trace the eigenvalues in the parameter 

space. For the tracing of the eigenvalues we use a special version of the Newton-Raphson 

search procedure described in Appendix D.  

 

3.4 General stability formulation 

The distributed heating considered so far is one-dimensional, i.e., it varies only in the 

longitudinal direction x.  If we consider a two-dimensional heating pattern, i.e.,  heating 

which varies both in longitudinal (x) and transverse (z) directions, then the primary 

convection has also a three-dimensional character. Therefore, a more general form of 
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stability equations has been derived by considering three-dimensional primary 

convection. Details are shown in Appendix B and C.  

 
 

3.5 Summary of stability analysis 

In this section we summarize the general steps that are used in the stability analysis in the 

pictorial form.  

 
 
 - Stationary Fluid 
 
 - Apply heating at the lower wall  
 
 - Compute the flow quantities by solving  

equations (2.9/2.12/2.18) 
 
 
 
 

  
-Primary convection 
 
- Add small disturbances (2D/3D) 
 
- Linearize the problem  
 
- Determine the eigenvalues by solving  
        equations (3.6/3.14) 
 
- Calculate the eigenfunctions  
         (disturbance field)   
 

 
 

 

Figure 3.1. Summary of general steps used for stability analysis. 

 

Primary convection 

Onset of secondary convection  
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3.6 Types of instability identified 

From chapter 2 we have seen that the primary convection has the form of rolls whose 

topology is tightly coupled to the heating pattern. These rolls are subject to instabilities 

that give rise to various forms of secondary convection. We performed various tests in the 

parameter space to obtain the stability characteristics of the primary convection. We have 

identified that the following four types of instability emerge for the spatially periodic 

heating pattern considered in this work,  

 

i. Longitudinal roll instability, 

ii. Transverse roll instability, 

iii. Oblique roll instability, 

iv. Oscillatory mode of instability. 

     

Details of each of the instabilities will be discussed in the subsequent chapters.   



   

4  

Longitudinal Roll  

In this chapter, we discuss the longitudinal roll instability, i.e., instability that gives rise to 

secondary rolls with axis parallel to the axis of the primary rolls. The onset of the 

longitudinal roll instability can be predicted using the two-dimensional stability theory 

(Floryan 2005) described in Chapter 3 (see Section 3.1). Various test calculations and 

scans through the parameter space suggest that there exist only stationary disturbances of 

such form, i.e., r = 0. No travelling wave disturbances have been found. Characteristics 

of this instability for fluids with the Prandtl number Pr = 0.71 are discussed in Section 

4.1, for Pr = 7 in Section 4.2, for Pr = 0.04 in Section 4.3, for Pr = 0.25 in Section 4.4 and 

for fluids with arbitrary Prandtl numbers in Section 4.5. A short summary is given in 

Section 4.6.   

 

4.1 Fluids with the Prandtl number Pr=0.71 

To discuss the longitudinal roll instability of the fluid with Pr = 0.71 which approximates 

properties of Air, we begin with Figure 4.1 which shows the amplification rate i of the 

longitudinal roll as a function of the heating wave number , and the roll wave number  

for a fixed intensity of the heating corresponding to the Rayleigh number Ra = 3900. It 

can be seen that there exists a finite range of  that results in the instability. The 

instability does not occur if the heating pattern is characterized by a wavelength that is 

either too long or too short. The range of wavelengths of the rolls that may emerge from 

this instability is also finite with the most amplified wave number corresponds to   2. 
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A set of neutral curves (curves corresponding to i = 0) for a sequence of Rayleigh 

numbers is displayed in Figure 4.2. It can be seen that a decrease of the heating intensity 

(decrease of Ra) results in the reduction of the range of the heating patterns (reduction of 

the range of the heating wave numbers) that can lead to the instability and, at the same 

time, reduction in the range of the roll wave numbers  that can be produced by the 

instability. The instability does not occur at all for Ra < ~3100.   
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Figure 4.1.  Variations of the amplification rate i of the longitudinal rolls as a function 
of the heating wave number  and the longitudinal roll wave number  for the Rayleigh 
number Ra = 3900 and fluids with the Prandtl number Pr = 0.71. 
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Figure 4.2.  Variations of the neutral stability conditions defined by i = 0 as a function 
of the heating wave number  and the longitudinal roll wave number  for selected values 
of the Rayleigh number Ra for fluids with the Prandtl number Pr = 0.71.   
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One can identify the upper and lower limits of the unstable range of  for each value of 

Ra and the corresponding values of  to produce plots displayed in Figure 4.3. Such plots 

identify the critical conditions leading to the onset of the longitudinal roll instability. The 

intensity of the heating required to induce roll instability, as measured by Racr, is a strong 

function of the heating wave number . It can be seen that there is a certain minimum 

heating intensity defined by Ramin = RaA = 3031.6 (point A in Figure 4.3A) and a 

corresponding very specific heating pattern corresponding to min = A = 4.03 that are 

required in order to initiate the instability. An increase of Ra above 3031.6 increases the 

range of heating patterns that can induce this instability. The critical curve steeply rises 

when  is reduced below min and, as a matter of fact, this instability does not occur when 

 < lb = 3.72 in the range of Ra considered in this analysis.  An increase of  above     

A = 4.03 results in a gradual increase of the critical value of Racr; when  is big enough, 

the increase of Racr can be approximated by an asymptotic relation obtained numerically 

from the character of change of Racr and the asymptote has the following form 

 

Racr  236 α1.5 as   .    (4.1)

 

In summary, spatial pattern of heating corresponding to min = A = 4.03 is the most 

efficient in inducing instability and any other pattern requires a more intense heating. It 

appears that heating patterns with a small  are unable to create longitudinal rolls at all.   

 

The structure of the disturbance motion, as described by the critical roll wave number cr, 

is also a strong function of the heating wave number  (see  Figure 4.3B). When  < lc 

= 4.2 the heating pattern and the disturbance pattern are locked-in according to the 

relation cr = /2. When  > lc, the lock-in is broken and there is no obvious relation 

between the heating pattern and the disturbance pattern. When , variations of cr 

follow the asymptote in the form cr = 1.56 + 7.05 e-0.85 and, in the limit, the critical 

wave number reaches value of cr = 1.56, which is the same as found in the case of the 

classical RB convection (Drazin and Reid 1981). This result suggests that there is an 

analogy between the periodically heated and the uniformly heated fluids for large . 
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Results presented in Chapter 2 have already demonstrated that periodic heating in the 

limit of  produces uniform mean vertical temperature gradient with spatial 

modulations being confined to a very thin layer adjacent to the lower wall.  As a result, 

the convective effects make the lower wall appear to the fluid above as a wall with a 

uniform temperature. 
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Figure 4.3.  Variations of the critical Rayleigh number Racr (Fig.4.3A) and the critical 
disturbance wave number cr (Fig.4.3B) as functions of the heating wave number  for a 
fluid with the Prandtl number Pr = 0.71 for the longitudinal roll instability. Points A and 
B are located at  (RaA=3031.6, A=4.03, A=2.015), (RaB=3078.3, B=4.2, B=2.1). 
   

 

Selected properties of the basic state (primary convection) evaluated along the critical 

curve are displayed in Figure 4.4. It can be seen that the net heat flow across the wall Nu, 

roll strength max, and thickness of the convection layer hv vary along the critical curve 

according to the asymptotic relation in the form    

 

Nu  0.4531-1.5,  max  12.6 -1.5,   hv  7.2 -0.81  as   .    (4.2a-c)
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The asymptotic relation of Nu (4.2a) can also be obtained by combining variations of Racr 

(4.1) with the correlation (2.25). It also permits to express Ra used in this analysis in 

terms of  the Rayleigh number  Rauni  used to  describe  the classical  RB  convection. The 
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Figure 4.4. Variations of the selected primary convection properties for conditions 
corresponding to the onset of the longitudinal roll instability for Pr = 0.71. Fig.4.4A - roll 
strength as measured by the maximum of the stream function max and location of the 
center of the roll identified by its coordinate yc. Fig.4.4B - net heat flow Nu and thickness 
of the convective layer hv (determined using Eq. 2.23 with E = 0.01). Fig.4.4C- 
Distributions of the 0th modal function of the primary convection temperature (0) for 
selected values of the heating wave number . (Ra,) = (7744.4, 10), (3435.2, 5), 
(3041.8, 4), (3663.4, 3.73). Points A and B in Fig.4.4A,B  correspond to points A and B in 
Fig.4.3. 
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latter one is based on the thickness of the complete layer H = 2h as the length scale and its 

critical value of Rauni = 1708 can be expressed in terms of Ra as 

 

Ra = Rauni (2 Nu)-1 [h/H]3
  = 235.6 1.5 when . (4.3)

      

The relation (4.3) is in good agreement with the relation (4.1). Detail derivation of (4.3) is 

shown in Appendix F.  

 

The form of the critical curve displayed in Figure 4.3A shows rapid flow stabilization 

when the heating wave number  decreases a bit below the lock-in value of lc = 4.2. It is 

to be mentioned that lock-in occurs when the heating pattern and the disturbance pattern 

follow the subharmonic relation cr = /2, i.e., each disturbance roll carries two primary 

rolls. The minimum value of Racr is reached when  = 4.03 and further decreases of  

causes rapid increase of Racr. One could suppose that the tight lock-in of the basic state 

(structure of the primary convection) and the disturbance structures is responsible for the 

rapid stabilization. Another effect that also contributes to the flow stabilization is 

associated with the re-arrangement of the primary temperature field. To understand this 

effect we refer to Figure 2.11 which illustrates large differences in the temperature fields 

associated with different values of ,  and Figure 4.4C which displays variations of the 

mean temperature of the primary convection as a function of  at the onset of the 

longitudinal roll instability. It can be seen that reduction of  results in an increase of 

thickness of the part of the fluid layer that has stable mean temperature gradient and this 

contributes to the flow stabilization.  

 

The occurrence of the lock-in is related to the spatial modulation of the primary 

convection (Manor et al. 2008, 2009). The modulation is very strong when  = O(1); an 

increase of  reduces its strength and eventually leads to the break of the lock-in. The 

break up is not directly related to the appearance of the conductive zone in the primary 

state temperature as results for hv (see Figure 4.4B) clearly show that the convective 

effects persist everywhere in the fluid for up to   5.5 while the lock-in occurs only for 
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< B = 4.2. It may be concluded that the breakup of the lock-in is related to the 

weakening of the spatial flow modulation.  

 

Analysis of results presented in Figures 4.3-4.4 shows that there are two competing 

effects that produce the instability mitigated by changes in the mean vertical temperature 

gradient. In the case of large  the instability is driven by the mean vertical temperature 

difference created by the primary convection. In the case of  = O(1) the secondary 

convection is driven by the spatial parametric-like resonance. The conditions that separate 

the locked-in and unlocked zones (point B in Figures 4.3-4.4) may be considered as an 

approximate boundary between the zones of dominance of either of these two effects.  

 

Pattern of disturbance motion changes considerably with the change of the heating wave 

number. The pattern for the lock-in situation is rather simple and is illustrated in Figure 

4.5 for  = 4.1, which is just below the lock-in value of B = 4.2. The sub-harmonic 

relation between the primary convection and the disturbance pattern is clearly visible.  
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Figure 4.5. Disturbance streamlines (Fig.4.5A) and isotherms (Fig.4.5B) for the heating 
wave number  = 4.1 and the Prandtl number Pr = 0.71 at the onset of the longitudinal 
roll instability, i.e., for Ra = 3042.3. These conditions are marked with letter L in Fig.4.8. 
The primary flow and disturbance quantities are represented using dash and solid lines, 
respectively. The stream functions and the temperatures are normalized with their 
maxima for presentations purposes. The maximum values for the primary convection are 
max = 1.9091 and max = 0.7042. 
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There are many possible disturbance patterns for the unlocked situation as they result 

from an interplay between the disturbance wave number cr and the modulation (heating) 

wave number . These patterns are functions of  and the functional relation is linked to 

the dispersion relation cr = cr(). While this relation has been determined numerically, it 

exhibits properties of a continuous function. In the limit of  the relation assumes a 

very simple form, i.e., cr1.56. The numerical results show that this limit is effectively 

reached for >9. As cr = 1.56 for large , the system may exhibit commensurable 

(periodic) and non-commensurable (quasi-periodic) states; only commensurable states 

can be accessed by the computations. The heating wave number  is the control 

parameter that provides means for re-arrangement of the system states. It is convenient to 

categorize commensurable states using wavelength of the flow system expressed either in 

terms of the number of the disturbance wavelengths N or in terms of the number of the 

heating wavelengths N. The possible system wavelengths can be divided into an infinite 

sequence of bands associated with each value of N. There is an infinite number of N's 

corresponding to each N, i.e., N =  N /1.56 as  can be selected arbitrarily. Since N 

must be integer, it is better to write this relation as  = 1.56 N / N in order to identify 

suitable values of  corresponding to N and N of interest. Results displayed in Figure 

4.6 illustrate the possible periodic states for each  corresponding to N <=39.  
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Figure 4.6. The possible x-periodic states of the system in the "large " regime. The 
wavelength of the system is expressed in terms of the number of disturbance wavelengths  
N . 
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A qualitatively similar situation has been analyzed by Freund et al. (2011) who 

considered modifications of the RB convection near the onset induced by addition of 

periodic temperature modulations of small amplitude imposed at the lower wall. As the 

wave number of modifications increased, they observed a continuous bifurcation to 

longitudinal rolls with the wave number 1.56 followed by bifurcations to transverse rolls 

with the same wave number. The critical value of Rauni slightly decreased as compared 

with the pure RB convection. Results discussed in Chapter 2 demonstrate that 

temperature modulations with large  create an additional mean vertical temperature 

gradient which reinforces the gradient created by the uniform heating. This effect is 

responsible for the reduction of  Rauni required for the onset of the instability reported by 

Freund et al. (2011), i.e., the lower wall looks slightly hotter to the bulk of the fluid due to 

the modulation effect. The imposed spatial modulations are confined to a very thin layer 

and thus give very weak preference to either longitudinal or transverse rolls. The vertical 

temperature gradient in the case of purely periodic heating considered in the present 

analysis is created solely by the nonlinear effects and this requires heating more intense 

than the equivalent uniform heating in order to reach the critical conditions (see equation 

(3.9) and Figure 4.4A). 

 

When  is large  the flow patterns are rather simple as depicted in Figure 4.7 and consist 

of rolls with the wave number cr = 1.56 occupying most of the space between the walls 

with spatial modulations (which dictate the overall system periodicity) confined to a small 

neighborhood of the heated wall. 

 

Application of the heating with the wave number between the lock-in value of B = 4.2 

and the effective "large " limit, i.e.,   9, produces a number of intriguing flow 

structures. Commensurable states are illustrated in Figure 4.8 where N has been 

determined by looking for the lowest common denominator of  and cr (Floryan 1997, 

2005). The structures form bands in the (N, ) plane that can be categorized by looking 

at the corresponding N at the large  limit. The bands have been determined numerically 

and search for the pairs (cr, ) that correspond to the band of interest involves a trial and 

error. Data presented in Figure 4.8 have been determined by varying  with constant step  
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Figure 4.7. Disturbance flow fields in the "large " regime at the onset of the 
longitudinal roll instability. Fig.4.7A: (, cr, Racr) = (10.01, 1.56, 7749), complete layer 
is shown.  Fig. 4.7B,C: (, cr, Racr) = (10, 1.56, 7738), (10.083, 1.56, 7827),respectively; 
only zone next to the lower wall is shown. The contour lines correspond to 3(x,y) =  0, 
0.01, 0.1, 0.3, 0.5, 0.7 of the respective maxima. Conditions in Fig.4.7A, B, C correspond 
to the wavelength bands N = 156, 39, 468 (point E, J, K in Fig.4.8), respectively. 
 

 

sizes of  = 1/100 and  = 1/12. Only certain bands can be reached through such a 

process as the numerical evaluation of cr is done with a finite accuracy. cr had been 

evaluated with an accuracy of four decimal points but only two decimal points were 

retained for evaluation of N. Results displayed in Figure 4.8 clearly show bands starting 

at large  and extending down to the lock-in condition. The bands that have been 

identified by the above process correspond to N = 39, 78, 117, 156, 234, 468, .... The 

same bands correspond to N = 25, 50, 75, 100, 150, 300, ..., i.e., they are linear 
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functions of the heating wave number . The same results also show existence of 

additional bands that do not exist in the large  limit. 
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Figure 4.8. Variations of the wavelength of the disturbance flow structures for the 
longitudinal roll instability as a function of the heating wave number  at the onset 
conditions measured using the number of the disturbance wavelengths N (Fig.4.8A) and 
the number of the heating wavelengths N (Fig.4.8B) for fluids with Pr=0.71. Additional 
information about the structure of the unstable motion corresponding to conditions 
marked with letters A, ..., E is displayed in Fig.4.9, for F, G is displayed in Fig.4.13, for H 
and I in Fig.4.14, for J and K in Fig.4.7, and for L in Fig.4.5. The reader should note 
logarithmic scale on the -axis. 
  

 

Structure of the disturbance field undergoes interesting changes as a function of  for 

each band. Variations of the disturbance stream function 3 for disturbances belonging to 

the band N = 156 demonstrate a "beating" pattern for  slightly above B (Figure 4.9A), 

followed by a pattern that is not easily categorized (Figure 4.9B) for larger , then 

followed by a "wavy" pattern for still larger  (Figure 4.9C), and followed by a still 

another not easily categorized pattern (Figure 4.9D) and leading to a pattern dominated 

by cr for sufficiently high  (Figure 4.9E). While the terms "beating" and "wavy" are 

rather arbitrary, they nevertheless well capture changes in the amplitude of disturbances. 

Streamlines for the "beating"  pattern displayed in Figure 4.10  show that the  disturbance  
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Figure 4.9. Variations of the disturbance stream function S = 3(x,0) at y = 0 for the 
wavelength band corresponding to N = 156 for Pr = 0.71. Results shown in Figs 4.9A, B, 
C, D, E correspond to the onset conditions, i.e., (, cr, Racr) = (4.21, 2.02, 3083), 
(4.5,1.73, 3208), (4.9, 1.67, 3389), (5.51,1.62, 3742) and (10.01,1.56, 7749), respectively, 
and are marked with letters A, B, C, D, E in Fig.4.8, respectively.  
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field consists of rolls of almost the same topology but with their strength changing in a 

periodic manner along the layer. One can easily identify zones with high and low 

intensities of instability. Streamlines for the "wavy" pattern displayed in Figure 4.11 

show that the disturbance flow field consists of pairs of rolls rotating in the opposite 

directions with "opposite" characteristics, i.e., at the beginning of the spatial cycle one 

roll is larger but has less intense motion and the other one is smaller and has more intense 

motion. Their characters are reversed after half cycle, with the smaller roll expanding and 

motion in its interior slowing down and the larger one contracting and motion in its 

interior intensifying. 
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Figure 4.10. Disturbance flow field corresponding to the "beating" pattern at the critical 
point (, cr, Racr) = (4.21, 2.02, 3083) and for the fluid with the Prandtl number 
Pr = 0.71. The contour lines shown correspond to 3(x,y) =  0, 0.01, 0.1, 0.5, 0.7 of its 
maximum. The range of x used for display is marked using symbol 1 in Fig.4.9A. This 
pattern belongs to the wavelength band N = 156. 

 

 

An insight into the patterns is provided by modulations of the phase illustrated using the 

local wave number local determined on the basis of zero's of the disturbance stream 

function displayed in Figure 4.9. One may observe a competition between the locked-in 

wave number cr = /2 and the "large " wave number cr = 1.56. In the case of the 

"beating" pattern (Figure 4.9A,  = 4.21) the system is still strongly influenced by the 

lock-in effect producing wide and flat maxima with  local ~ 2.08 separated by narrow 

minima with local ~ 1.8 giving appearance of a solitary phase modulation (see Figure 
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4.12A). These solitons form a lattice that is parallel to the rolls. Solitons are known to 

mediate transition between the commensurate and non-commensurate patterns and have 

been observed in pattern forming hydrodynamic instabilities, e.g., Lowe and Gollub 

(1985), Seiden et al. (2008) and McCoy et al. (2008). The maxima of local correlate with 

the areas of high intensity motion and the minima correspond to the zones of low 

intensity motion. In the case of the "wavy" pattern (Figure 4.9C,  = 4.9), both effects 

are at par resulting in a continuous and rapid adjustment of local between 1.56 and 1.8 

(see Figure 4.12B) that is repeated periodically in the x-direction and forms a lattice. The 

minima of the amplitude of variations of local correspond to zones where the rolls with 

the clockwise and counter clockwise rotations have similar intensity while maxima 

identify regions with a preferred direction of rotation. In the large alpha zone (Figure 

4.9E) local overlaps with cr = 1.56 within the numerical accuracy. 
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Figure 4.11. Disturbance flow field corresponding to the "wavy" pattern at the critical 
point (, cr, Racr) = (4.9, 1.67, 3389) and for the fluid with  Pr = 0.71. The contour lines 
shown correspond to 3(x,y) =  0, 0.01, 0.1,  0.5, 0.7 of its maximum. Solid and dot lines 
are used to identify rolls rotating in the opposite directions. Results displayed in 
Fig.4.11A and 4.11B correspond to the ranges of x marked with symbols 2 and 3 in 
Fig.4.9C, respectively. This pattern belongs of the wavelength band N = 156. 
 

 

Analysis of disturbance field for disturbances belonging to band N = 78 shows existence 

of structures similar to those found for N = 156. Both the "beating" and the "wavy" 
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patterns are clearly visible in Figure 4.13, however, they have different wavelengths as 

compared with the case of N = 156.  Similar analysis carried out for the band N = 39 

(see Figure 4.14) shows existence of the "wavy" pattern while the "beating" pattern is 

less clear; it is believed that a clear "beating" pattern can be determined using more 

accurate evaluation of the pair (cr, ). These results indicate that the "beating" and 

"wavy" patterns are likely to occur for all bands of N, but with a different spatial 

wavelengths and amplitudes which depend of the particular value of N. This conclusion 

is supported by results obtained for other values of the Prandtl number discussed in the 

following sections.  
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Figure 4.12. Solitary roll structure. Results displayed in Figs 4.12A, B have been 
extracted from the data displayed in Figs 4.9A and C, respectively. 
  

 

Results displayed in Figure 4.9E show that for large  the disturbance pattern around the 

center of the slot is dominated by cr. This pattern is modulated by wall heating, however, 

modulation is contained in a thin layer adjacent to the lower wall. Figure 4.7 displays 

disturbance streamlines for   10 in the zone adjacent to the lower wall for disturbance 

bands corresponding to N = 39 and N = 468. It can be seen that both patterns are very 

similar, despite large difference of N, and cannot be easily categorized. 
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Figure 4.13. Variations of the disturbance stream function S = 3(x,0) at y = 0 for the 
wavelength band corresponding to N = 78 for the fluid with Pr = 0.71. Results shown in 
Figs 4.13A, B correspond to the onset conditions, i.e., (, cr, Racr) = (4.22, 1.98, 3086), 
(4.92, 1.66, 3399), respectively, and are marked with letters F, G in Fig.4.8, respectively.  
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Figure 4.14. Variations of the disturbance stream function S = 3(x,0) at y = 0 for the 
wavelength band corresponding to N = 39 for the fluid with Pr = 0.71. Results shown in 
Figs 4.14A, B correspond to the onset conditions, i.e., (, cr, Racr) = (4.36, 1.8, 3151), 
(5.16, 1.64, 3532), respectively, and are marked with letters H, I in Fig.4.8, respectively.  
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4.2 The Case of Pr=7 

This particular value of the Prandtl number well approximates properties of water. It also 

serves as an example of large Pr fluids as differences found in the stability characteristics 

for fluids with Pr = 7 and Pr = 100 are rather small.  

 

Variations of the critical Rayleigh number Racr and the critical wave number cr as a 

function of the heating wave number  are displayed in Figure 4.15. The forms of these 

curves are qualitatively very similar to the case of Pr = 0.71 shown in Figure 4.3. The 

minimum heating intensity required to initiate the longitudinal roll instability for fluid 

with Pr = 7 is Ramin = RaA = 2901.2 (point A) and it occurs for min = A = 3.93. The 

complete stabilization occurs for  < lb = 3.6 in the range of Ra subject to this 

investigation. The lock-in occurs at point B for  < B = 4.37. The asymptotes for large  

are Racr  236 1.5 and cr  1.56. 
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Figure 4.15. Variations of the critical Rayleigh number Racr (Fig.4.15A) and the critical 
disturbance wave number cr (Fig.4.15B) as functions of the heating wave number  for Pr = 7. 
Points A and B are located at  (RaA=2901.2, A=3.93, A=1.965), (RaB=3100.9, 
B=4.37, B=2.185). 
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After performing the analysis similar to the fluid with Pr = 0.71, the commensurable 

states (in term of N) and the patterns of the disturbance motion for the fluid with Pr = 7 

in the no-lock zone are illustrated in Figures 4.16 and 4.17. It can be seen that for large  

disturbance patterns can be divided into an infinite number of branches with the first five 

corresponding to N = 39, 78, 156, 234, 468, similarly as in the case of Pr = 0.71. These 

branches extend to smaller , up to its lock-in value of lc = 4.37, and exhibit both the 

"beating" and the "wavy" patterns (see Figures 4.17). The reader may observe large 

differences in the amplitudes of these patterns. 
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Figure 4.16. Variations of the wavelength of the disturbance flow structures for the 
longitudinal roll instability as a function of the heating wave number  at the onset 
conditions measured using the number of the disturbance wavelengths N for Pr = 7. 
Additional information about the structure of the unstable motion corresponding to 
conditions marked with letters A, ..., F is displayed in Fig.4.17. The reader should note 
logarithmic scale on the -axis. 
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Figure 4.17. Variations of the disturbance stream function S = 3(x,0) at y = 0 for  
Pr = 7. Results shown in Fig.4.17A,B belong to the wavelength band N = 156 and 
correspond to the onset conditions, i.e., (, cr, Racr) = (4.39, 2.07, 3116.8), (4.95, 1.68, 
3454.1), and are marked with symbols A, B in Fig.4.16, respectively. Results shown in 
Fig.4.17C, D belong to N = 78 and correspond to the onset conditions, i.e., (, cr, Racr) 
= (4.38, 2.14, 3108.9), (4.98, 1.68, 3469.9), and are marked with symbols C, D in 
Fig.4.16, respectively. Results shown in Fig.4.17E, F belong to N = 39 and correspond to 
the onset conditions, i.e., (, cr, Racr) = (4.4, 2.04, 3124.5), (4.96, 1.68, 3459.6), and are 
marked with symbols E, F in Fig.4.16, respectively. 
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4.3 The Case of Pr=0.04 

This particular value of the Prandtl number has been selected to represent low Pr fluids 

and is typical for liquid metals. Variations of the critical Rayleigh number Racr and the 

critical wave number cr as a function of the heating wave number  are displayed in 

Figure 4.18 and demonstrate qualitatively different responses of the system. Two critical 

branches have been identified. The first one describes system response for smaller heating 

wave numbers, i.e.,  < B = 8.76, where rolls that are locked-in with the heating pattern 

according to a sub-harmonic relation in the form cr = /2. The minimum value of Ra for 

this branch is Ramin,1 = RaA = 1087.7 and it occurs at min,1 = B = 4.04. The rolls are fully 

stabilized for  < lb = 3.8 for the range of Ra considered and the critical Rayleigh 

number increases as Racr = 9.83.1 for  The second branch describes critical 

conditions for larger heating wave numbers, i.e.,  > B = 8.76, where the rolls are not 

locked-in with the heating. The minimum value of Ra for this branch is Ramin,2 = RaC = 

6289.4, it corresponds to the minimum value of the disturbance wave number cr = min,2 

= 0.96 and it occurs at min,2 = C = 9.8. The Rayleigh number increases as                   

Racr  2361.5 and cr  1.56 when   . Two different disturbance structures co-

exist at the onset of instability for the heating wave number  = B = 8.76, i.e., the 

locked-in structure characterized by B,1 = 4.38 and the unlocked structure described by 

B,2 = 1.61. 

 

The disturbance velocity and temperature fields for the locked-in patterns (branch one) at 

the onset of instability are illustrated in Figure 4.19 for conditions corresponding to      

A = 4.04 and in Figure 4.20 for conditions corresponding to the intersection of both 

branches, i.e., B = 8.76. The sub-harmonic relation between the primary convection and 

the disturbance field is clearly visible. The emergence of the second layer of rolls at the 

top of the slot for larger heating wave numbers is observed.  

 



 73

Commensurable states (in term of N) of the disturbance field for the second instability 

branch are illustrated in Figure 4.21. These patterns can be divided for large  into an 

infinite number of branches with the first five corresponding to N = 39, 78, 156, 234, 

468, similarly as in the case of Pr = 0.71 and Pr = 7. These branches extend to smaller  

but do not intersect with the locked-in branch. Pattern corresponding to the intersection of 

both branches, i.e., B = 8.76, corresponds to N = 156 and is displayed in Figure 4.22. 

This pattern is markedly different from the branch one pattern at the intersection point 

displayed in Figure 4.20 and its form is difficult to characterize. Increase of  above     

B = 8.76 leads to the appearance of the "beating" patterns for the lowest three branches 

considered, as shown in Figure 4.23. No "wavy" patterns have been found. 
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Figure 4.18. Variations of the critical Rayleigh number Racr (Fig.4.18A) and the critical 
disturbance wave number cr (Fig.4.18B) as functions of the heating wave number  for 
Pr = 0.04. Points A and B are located at  (RaA=1087.7, A=4.04, A=2.02), (RaB=8142.9, 
B=8.76, B,1=4.38, B,2=1.61), (RaC=6289.4, C=9.8, C=0.96). The reader should note 
logarithmic scales on the - and Racr -axes, and two values of B  for Branch 1 and Branch2.  
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Figure 4.19. Disturbance streamlines (Fig.4.19A) and isotherms (Fig.4.19B) for branch 
one of the instability for the heating wave number  = A = 4.04 and the Rayleigh 
number Racr = RaA = 1087.7 for the fluid with the Prandtl number Pr = 0.04. These 
conditions correspond to point A in Fig.4.21. Primary flow and disturbance quantities are 
represented using dash and solid lines, respectively. The stream functions and the 
temperatures are normalized with their maxima for presentations purposes. The maximum 
values for the primary convection are max = 13.13 and max = 12.5. 
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Figure 4.20. Disturbance streamlines (Fig.4.20A) and isotherms (Fig.4.20B) for branch 
one of the instability for conditions corresponding to the intersection of both branches, 
i.e., for the heating wave number  = B =  8.76 and the Rayleigh number Racr = RaB = 
8142.9 for the fluid with the Prandtl number Pr = 0.04. These conditions correspond to 
point B in Fig.4.21. Primary flow and disturbance quantities are represented using dash 
and solid lines, respectively. The stream functions and the temperatures are normalized 
with their maxima for presentations purposes. The maximum values for the primary 
convection are max = 9.828 and max = 12.5. 
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Figure 4.21. Variations of the wavelength of the disturbance flow structures for the 
longitudinal roll instability as a function of the heating wave number  at the onset 
conditions measured using the number of the disturbance wavelengths N for Pr = 0.04. 
Additional information about the structure of the unstable motion corresponding to 
conditions marked with letter A is displayed in Fig.4.19, letter B in Fig.4.20, letter C in 
Fig.4.22 and letters D, E and F in Fig.4.23. 
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Figure 4.22. Disturbance flow field for branch two of the instability for conditions 
corresponding to the intersection of both branches, i.e., for the heating wave number 
 = B = 8.76, the Rayleigh number Racr = RaB = 8142.9 and the critical disturbance 
wave number B,2 = 1.61 for the fluid with the Prandtl number Pr = 0.04. These 
conditions correspond to point C in Fig.4.21 and belong to branch N = 156. The contour 
lines shown correspond to 3(x,y) =  0, 0.01, 0.2, 0.5, 0.9 of its maximum. 
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Figure 4.23. Variations of the disturbance stream function S = 3(x,0) at y = 0 for the 
fluid with Pr = 0.04. Results shown in Figs 4.23 A, B, C belong to the wavelength bands 
N = 156, 78, 39, correspond to the onset conditions, i.e., (, cr, Racr) = (9.01, 1.48, 
7961.4), (9.02, 1.48, 7950.2), (9.0, 1.48, 8013.2), and are marked with letters D, E and F  
in Fig.4.21, respectively.  
 

 

4.4 The Case of Pr = 0.25 

This particular value of Pr has been selected to illustrate the wealth of possible system 

responses. Variations of the critical Rayleigh number Racr and the critical wave number 

cr as a function of the heating wave number  are displayed in Figure 4.24 and 

demonstrate that the lock-in phenomenon does not occur for such fluids. The minimum 

value of the critical Rayleigh number is Ramin = RaA = 2826.8 and it occurs for min = A = 

3.97. The complete stabilization occurs for  < lb = 3.58 in the range of Ra subject to 

this investigation. The asymptotes for large  are Racr  236 1.5 and cr  1.56. 
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Figure 4.24. Variations of the critical Rayleigh number Racr (Fig.4.24A) and the critical 
disturbance wave number cr (Fig.4.24B) as functions of the heating wave number  for 
Pr = 0.25. Point A is located at  (RaA=2826.8, A=3.97, A=1.72).  
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Figure 4.25. Variations of the wavelength of the disturbance flow structures for the 
longitudinal roll instability as a function of the heating wave number  at the onset 
conditions measured using the number of the disturbance wavelengths N for Pr = 0.25. 
Additional information about the structure of the unstable motion corresponding to 
conditions marked with letters A, ..., F is displayed in Fig.4.26. 
 

 

Similar to the previous sections dealing with Pr = 0.71, 7 and 0.04, commensurable states 

of the disturbance motion in terms of N are illustrated in Figure 4.25. It can be seen that 

for large  these patterns can be divided into an infinite number of branches with the first 

five corresponding to N = 39, 78, 156, 234, 468, similarly as for all values of Pr 

discussed so far. These branches extend to smaller values of  and produce patterns 
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different from those identified so far. Branch N = 156 gives rise to the "double-wavy" 

and the "wavy-like" patterns illustrated in Figures 4.26A and 4.26B, respectively. The 

term "double wavy" can be better justified by looking at the enlargement of the pattern 

from Figure 4.26A displayed in Figure 4.27. This pattern involves sets of four rolls as 

shown in Figure 4.28. Each set has one "intense" narrow roll with high intensity of 

motion surrounded by two a bit wider and less "intense" rolls rotating in the opposite 

direction, and bordered by much "wider" rolls with similar intensities of motion, a 

separation bubble at the bottom and rotating in the same direction as the "intense" roll 

(see Figure 4.28A). One of the wide rolls belongs to the next set. After a quarter of the 

spatial cycle, one of the less "intense" rolls becomes wider and slows down while the 

adjacent former "wide" roll narrows down and accelerates producing a double separation 

bubble at the bottom. The other less "intense" roll accelerates (see Figure 4.28B). After 

half spatial cycle the pattern is reversed as compared with the beginning of the cycle but 

the equivalent rolls rotate in the opposite directions (see Figure 4.28C). In the "wavy-

like" pattern the disturbance field consists of sets of two rolls, one narrow and intense and 

the other one wide, less intense and with a separation bubble at the bottom. These rolls 

are subject to modulation along the length of the slot and after half of the spatial cycle 

their characteristics are reversed, i.e., the former narrow roll acquires characteristics of 

the former wide roll and the former wide roll looks like the former narrow roll, as 

illustrated in Figure 4.29. This evolution is qualitatively similar to the "wavy" pattern 

shown in Figures 4.9C and 4.11, but sufficiently different as to justify a different name, 

e.g., compare Figures 4.9C and 4.26B and observe "sharp corners" in the pattern in 

Figure 4.26B. Branch N = 78 gives rise to the "double-parallel" and the "wavy-like" 

patterns illustrated in Figures 4.26C and D. Disturbance field in the "doubly-parallel" 

pattern consists of sets of four rolls repeated sequentially and involving a narrow and 

intense roll surrounded by two less intense rolls rotating in the opposite direction and 

bordered by wide rolls with a separation bubble at the bottom with one of these rolls 

belonging to the next set, as illustrated in Figure 4.30. Branch N = 39 gives rise to the 

"double-wavy" and "wavy-like" patterns illustrated in Figures 4.26E and 4.26F, 

respectively, but with wavelengths and amplitudes different from those associated with 

the other branches. No other patterns have been identified for the branches in question. 
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Figure 4.26. Variations of the disturbance stream function S = 3(x,0) at y = 0 for the 
fluid with Pr = 0.25. Results shown in Fig.4.26 A, B belong to the wavelength band 
N = 156, correspond to the onset conditions, i.e., (, cr, Racr) = (4.31, 2939.3, 1.72), 
(4.91, 3244.2, 1.66), and are marked with letters A, B in Fig.4.25, respectively. Results 
shown in Fig. 4.26 C, D belong to N = 78, correspond to the onset conditions, i.e., (, 
cr, Racr) = (4.3, 2934.8, 1.72), (4.9, 3238.5, 1.66), and are marked with letters C, D  in 
Fig.4.25, respectively. Results shown in Fig. 4.26 E, F belong to N = 39, correspond to 
the onset conditions, i.e., (, cr, Racr) = (4.32, 2943.2, 1.71), (5.12, 3372.2, 1.64), and 
are marked with letters E, F in Fig.4.25, respectively. 
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Figure 4.27. Enlargement of the stream function pattern shown in Fig.4.26A. 
 

130 140 150 160
-1

0

1

y

x
 

A 

225 235 245 255
-1

0

1

y

x
 

B 

280 290 300 310
-1

0

1

y

x
 

C 
Figure 4.28. Disturbance flow field corresponding to the "double wavy" pattern at the 
critical point (, cr, Racr) = (4.31, 2939.3, 1.72) for the fluid with the Prandtl number 
Pr = 0.25. The contour lines shown correspond to 3(x,y) =  0, 0.01, 0.2, 0.5, 0.9 of its 
maximum. Solid and dot lines are used to identify rolls rotating in the opposite directions. 
Results displayed in Fig.4.28A,B,C correspond to the ranges of x marked with symbols 4, 
5 and 6 in Fig.4.26A, respectively. This pattern belongs of the wavelength band 
N  = 156. 
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Figure 4.29. The disturbance flow field corresponding to the "wavy-like" pattern at the 
critical point (, cr, Racr) = (4.91, 3244.2, 1.66)   for the fluid with the Prandtl number 
Pr = 0.25. The contour lines shown correspond to 3(x,y) =  0, 0.01, 0.1,  0.5, 0.9 of its 
maximum. Solid and dot lines are used to identify rolls rotating in the opposite directions. 
Results displayed in Figs 4.29A,B correspond to the ranges of x marked with symbols 7 
and 8 in Fig.4.26B, respectively. This pattern belongs of the wavelength band N = 156. 
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Figure 4.30. The disturbance flow field corresponding to the "double-parallel" pattern at 
the critical point (, cr, Racr) = (4.3, 2934.8, 1.72) for the fluid with the Prandtl number 
Pr = 0.25. The contour lines shown correspond to 3(x,y) =  0, 0.01, 0.1,  0.5, 0.9 of its 
maximum. The range of x used for display is marked as 9 in Fig.4.26C. This pattern 
belongs of the wavelength band N = 78. 
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4.5 Arbitrary Prandtl number 

Discussion presented in the previous sections shows existence of two qualitatively 

different mechanisms of instability motion at the onset of longitudinal roll. In the case of 

medium heating wave numbers the form of the motion is tightly locked-in with the 

structure of the heating and exhibits spatial structure determined by the pattern of heating 

where cr = /2. In the case of large  the pattern of motion is not directly related to the 

pattern of heating and the fluid response is similar to that found in the case of a uniform 

wall heating, i.e., cr  1.56 and Racr2361.5 when  regardless of the value of Pr. 

Transition between these two forms of response takes place somewhere between these 

two limits and precise conditions leading to this transition are determined by the strength 

of spatial flow modulation. This modulation increases with a decrease of the Prandtl 

number as this increases the strength of conduction effects, an increase of the heating 

wave number decreases spatial modulation as convection leads to an increase of mixing, 

and an increase of the Rayleigh number initially decreases spatial modulation while its 

further increase eventually increases spatial modulation (see Figure 2.13). All these 

effects are present simultaneously and thus it is difficult to predict system response 

without detailed analysis of any case of interest.  

 

Analysis of the lock-in conditions, i.e., variations of the lock-in heating wave number lc 

and of the associated critical Rayleigh number Ralc, as a function of the Prandtl number, 

permit identification of four types of response (see Figure 4.31). Type A occurs for        

Pr >~ 0.4 and is characterized by a very weak dependence of Ralc and lc on Pr. Type B 

occurs approximately for Pr  (~0.19, ~0.4) and is characterized by the absence of the 

lock-in. Type C is observed for Pr  (~0.08, ~0.19) and is similar to type A with Ralc 

being a strong function of Pr. Type D is observed for Pr < ~0.08 and is characterized by 

the existence of two branches of the critical curve, with branch one corresponding to the 

locked-in pattern and branch two corresponding to the no locked-in pattern, and both 

patterns co-existing at a specific, Pr-depend value of  (intersection of both branches). 

Type A has been discussed in Sections 4.1 and 4.2 in the context of fluids characterized 
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by Pr = 0.71 and Pr = 7, type B occurs for Pr = 0.25 and has been discussed in Section 

4.4, and type D occurs for Pr = 0.04 and has been discussed in Section 4.3.   
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Figure 4.31. Variations of conditions leading to the occurrence of the lock-in pheno-
menon, i.e., the lock-in heating wave number lc and the critical Rayleigh number at the 
lock-in point Ralc, as a function of the Prandtl number Pr. Triangles identify ends of 
intervals where the lock-in occurs. 
 

 

Critical stability curves for Pr varying between 0.01 and 1000 are displayed in Figure 

4.32. Single, smooth critical curves exist for type A (curves corresponding to Pr 10, 

0.71, 0.5, and 0.4) response where the disturbance pattern is locked-in with the heating 

pattern over a certain range of heating wave numbers  and there is no lock-in over the 

rest of the -range. Type B (curves corresponding to Pr = 0.25 and 0.2) also has single, 

smooth critical curves but its characteristic signature involves curves describing critical 

wave numbers cr which turn downwards (without the presence of any lock-in) in a 

characteristic manner as  decreases (see Figure 4.32B). Type C  (curves corresponding 

to Pr = 0.15, 0.12, 0.1 and 0.08)  is characterized by the critical curves displaying a 

characteristic bump, with the size of this bump increasing and moving towards larger 
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values of  as Pr decreases (see Figure 4.32A). Type D (curves corresponding to           

Pr = 0.07, 0.06, 0.04, 0.03, 0.02 and 0.01) is characterized by the existence of two 

branches of the critical curve as discussed above. 
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Figure 4.32. Variations of the critical Rayleigh number Racr (Fig.4.32A) and the critical 
disturbance wave number cr (Fig.4.32B) as functions of the heating wave number  for 
selected values of the Prandtl number Pr in the range from Pr  (0.01, 1000) for 
longitudinal rolls. Lock-in points are marked with circles and points where two different 
disturbance structures co-exist are marked with diamonds. Curves for Pr = 0.4, 0.5 have 
been omitted from Fig.4.32A as they nearly overlap with the curve for Pr = 0.71. 
 

 

Competition between the locked-in and the no locked-in patterns exists under all 

conditions but is explicitly visible in type C response. When   4.5 the disturbance 

pattern is locked-in with the heating pattern. An increase of  automatically increases cr 

and the difference between this value and the no-lock value of cr  1.56 increases 

continuously. Eventually this difference becomes too large and both patterns may not be 

able to "attract" each other, i.e., one pattern may not be able to morph into the other. The 

case of Pr = 0.08 represents the limiting case where both patterns can morph and the 

relevant critical curves are displayed in Figure 4.33. For large  the pattern is dominated 

by  cr  1.56. A decrease of  to around 6.58 produces minor changes in cr (see Figure 

4.33B). Further decrease of  results in a rapid increase of cr, and at the same time, a 
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rapid decrease of Racr. Point A in Figure 4.33B marks the beginning of the rise of cr and 

corresponds to the "corner" in the plot of Racr in Figure 4.33A. The disturbance flow 

field displayed in Figure 4.34A shows that its pattern is still dominated by cr = 1.56 (due 

to the presence of big envelop-rolls containing small three cells, each pair of the envelop-

roll has wavelength approximately equal to 2/1.56). A decrease of  from 6.57 (point A) 

to 6.56 (point B) shows that the direct disturbance modulation by the heating expands 

rapidly to the complete slot (see Figure 4.34B). This rapid change (increase of cr and 

decrease of Racr) continues until the lock-in occurs (point C in Figure 4.33, lc = 6.51). 

The reader should note that point A in the Racr plot represents a corner within numerical 

accuracy while the same curve around point C has just a large gradient. A decrease of Pr 

from 0.08 to 0.07 breaks the ability of both patterns to morph into each other, as shown in 

Figure 4.32, and leads to the formation of two separate branches of the critical curve. 
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Figure 4.33. Variations of the critical Rayleigh number Racr (Fig.4.33A) and the critical 
disturbance wave number cr (Fig.4.33B) as functions of the heating wave number  for 
Pr = 0.08. Triangles mark computed points between points A and C. Circle marks the 
lock-in point. Hexagon marks the "corner" in the Racr plot. 
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Figure 4.34. The disturbance flow at the critical points (, Racr, cr) = (6.57, 6138.2, 
1.87), (6.56, 5794, 2.45) in Figs 4.34A and B, respectively, for the fluid with the Prandtl 
number Pr = 0.08. The contour lines shown correspond to 3(x,y) = 0, 0.01, 0.1, 0.3, 0.5, 
0.7 of their maxima in Fig.4.34A and to 0, 0.01, 0.1, 0.3, 0.5 in Fig.4.34B, respectively. 
These patterns belong to the wavelength band N = 156. 
 

 

The net heat flow Nu across the slot and the thickness of the convection layer hv along the 

critical curves for selected values of Pr are displayed in Figure 4.35. The characteristic of 

this figure provides a limited insight into the conditions that may lead to the lock-in 

effect. It can be seen that type D response occurs when a sufficiently thick uniform 

conduction layer forms in the upper section of the slot, i.e, when Prandtl number takes 

sufficiently small values. No other explicit correlation can be made between the 

properties of the primary convection and the onset of the lock-in phenomenon.  

 

Figure 4.36 provides information that permits a more accurate identification of 

conditions required for the occurrence of type B response. This figure displays variations 

of the critical disturbance wave number cr as a function of Prandtl number Pr for selected 

values of the heating wave number . It can be seen that the locked-in condition may or 

may not be reached when  decreases from  = 7.15 (largest value displayed) while 

keeping a fixed value of Pr. The locked-in condition is never reached for Pr in the range 

from approximately ~0.19 to approximately ~0.4. 
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Figure 4.35. Variations of the net heat flow Nu between the plates forming the slot and 
thickness of the convective layer hv (determined using Eq.2.23 with E = 0.01) along the 
critical stability curves for selected values of the Prandtl number. Circles mark locations 
of the lock-in points and diamonds identify conditions when two disturbance structures 
co-exist at the instability onset. Curve for Pr = 0.25 has been omitted from the hv plot as it 
mostly overlaps with the curve for Pr = 0.71 (the lock-in does not occur for Pr = 0.25). 
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Figure 4.36. Variations of the critical wave number cr at the onset of the instability as a 
function of the Prandtl number Pr for selected values of the heating wave number . 
Diamonds identify conditions where the locked-in and the no-locked-in structures 
co-exist. Circles denote locations of the lock-in points. 



 88

4.6 Summary 

In this chapter the linear stability of the primary convection for the conditions leading to 

the emergence of the longitudinal roll instability has been presented for the case of 

periodic heating applied at the lower wall. The system response is a strong function of the 

Prandtl number, especially for smaller values of Pr. Two mechanisms of instability at the 

onset have been identified depending on the pattern of the resulting instability motion. 

This pattern can be either directly forced in by the pattern of the heating or can be 

independent of the form of the heating. In the case of moderate  the parametric 

resonance leads to the pattern of instability that is generally locked-in with the pattern of 

the heating according to the relation cr = /2. This resonance may be combined with 

variations in patterns of vertical temperature gradients, and patterns and strength of the 

primary convection currents. The second mechanism is active in the case of large , 

where the instability is driven by the mean vertical temperature gradient created by the 

primary convection with the magnitude of the critical disturbance wave number 

approaching limiting value of cr = 1.56. It has been shown that in this case the critical 

value of Ra increases proportionally to 1.5 for all values of Pr which suggests that under 

such conditions the lower wall acts as a uniformly heated wall. This "conversion" is 

associated with concentration of convective effects in a thin layer next to the lower wall 

and dominance of the uniform conduction in the remaining part of the slot.  

 

The first mechanism referred to above dominates if the spatial modulation of the flow is 

sufficiently strong while the second one occurs for weak spatial modulations. The 

strength of the modulation is a monotonic function of Pr and  but a non-monotonic 

function of Ra. The possible responses for different fluids can be divided into four types. 

In type A, which occurs for fluids with Pr > ~0.4, the pattern of instability is locked-in 

with the pattern of heating for smaller values of   and no direct relation between both 

patterns exists for larger values of . In type B, which occurs for Pr between ~0.4 and 

~0.19, the lock-in does not occur at all. In type C, which occurs for ~0.08 < Pr  < ~0.19, 

the pattern of instability is locked-in with the pattern of the heating for a range of small 
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's and both pattern exhibit no direct relation for large 's, similarly as in type A. The 

difference between types A and C involves rate of change of the lock-in conditions as a 

function of Pr; this change is very rapid for type C and insignificant for type A. In type D, 

which occurs for Pr < 0.08, two critical instability branches have been identified. Branch 

one determines critical conditions for lower values of  and corresponds to disturbances 

whose structure is locked-in with the heating pattern. Branch two determines critical 

conditions for larger values of  and describes disturbance patterns that have no direct 

relation with the heating patterns. Critical conditions when both disturbance patterns, i.e., 

the locked-in and the unlocked-in patterns, co-exist have been identified. Morphing 

between different patterns of instability motion may occur in response to change in the 

heating pattern in types A and C, while such process is not possible in types B and D.  

 

There is a wealth of possible patterns of disturbance motion occurring under the no lock-

in conditions and these patterns can be categorized into distinct branches on the basis of 

asymptotic analysis for  as cr reaches the value of cr = 1.56 in this limit. These 

branches are categorized according to the wavelength of the flow system N measured 

using the disturbance wavelength as a length scale. Branches corresponding to N = 39, 

78, 156, 234 and 468 (i.e., the lowest braches) have been explored in details.  When  is 

large enough the modulation of instability motion is always limited to the zone around the 

lower (heated) wall and the flow structures in the rest of the slot are dominated by cr. A 

decrease of  causes the flow pattern to evolve and this evolution may eventually lead to 

the morphing into the locked-in pattern for certain ranges of Pr. Several characteristic 

patterns associated with this evolution have been identified, i.e., "beating", "wavy", 

"double wavy", "wavy-like" and "double-parallel" patterns. In the case of Pr = 0.71 and 7 

all N-branches produced "beating" and "wavy" patterns but with a wide range of 

amplitudes and wavelengths. More complex patterns are found in fluids with smaller Pr. 

In the case of Pr = 0.25 the complex patterns occur because the lock-in phenomenon does 

not take place at all and the unlocked patterns persist into fairly small values of . The 

case of Pr = 0.08 represents a limiting case where the lock-in still occurs but the 

morphing between the locked-in and unlocked patterns is very rapid due to a large 
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difference between cr = /2 and cr = 1.56 around the lock-in point. In the case of very 

small Pr, e.g., Pr = 0.04, only beating patterns with small amplitudes and wavelengths 

similar for all  N-branches have been found.   



   

5  

Transverse Roll  

This chapter deals with the transverse roll instability, i.e., instability that gives rise to 

secondary rolls with axis perpendicular to the axis of the primary rolls. To predict onset 

of the transverse roll instability we use the three-dimensional stability theory discussed in 

Section 3.2 with  = 0. Only stationary disturbances (r = 0) have been found. 

Characteristics of this instability for fluids with the Prandtl number Pr = 0.71 are 

described in details in Section 5.1, and for Pr = 7 in Section 5.2. Short discussion of 

results for Prandtl numbers Pr = 0.12, 0.08, and 0.06 is given in Section 5.3, 5.4, and 5.5, 

respectively. Section 5.6 is devoted to direct analysis of Prandtl number effects. A short 

summary is given in Section 5.7.   

 

5.1 Fluids with the Prandtl number Pr=0.71 

We start with description of variations of the the amplification rate i of the transverse 

roll instability as a function of the heating wave number  and the roll wave number  for 

a fixed intensity of the heating corresponding to the Rayleigh number Ra = 3980 as 

shown in Figure 5.1. It can be seen that, analogously to the longitudinal rolls, there exists 

a finite range of  that results in the instability. The instability does not occur if the 

heating pattern is characterized by a wavelength that is either too long or too short. The 

wavelengths of the rolls that emerge from this instability also have a finite bandwidth; the 

most amplified wave number corresponds to   1.7. 

 

A set of neutral curves for the transverse roll instability for a sequence of Rayleigh 

numbers is displayed in Figure 5.2. It can be seen that a decrease of the heating intensity 

(decrease of Ra) results in the reduction of the range of heating patterns, i.e., reduction of 
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the range of the heating wave numbers, that can lead to the instability and, at the same 

time, reduction in the range of the roll wave numbers that can be produced by the 

instability. The instability does not occur at all for Ra < ~3200.  
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Figure 5.1. Variations of the amplification rate i of the transverse rolls as a function of 
the heating wave number  and the transverse roll wave number  for the Rayleigh 
number Ra = 3980 and fluids with the Prandtl number Pr = 0.71. 
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Figure 5.2. Variations of the neutral stability conditions as a function of the heating wave 
number  and the transverse roll wave number  for selected values of the Rayleigh 
number Ra for fluids with the Prandtl number Pr = 0.71.   
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Figure 5.3. Variations of the critical Rayleigh number Racr (Fig.5.3A) and the critical 
disturbance wave number cr (Fig.5.3B) as functions of the heating wave number  for 
the fluid with the Prandtl number Pr = 0.71. Thick and thin lines correspond to the 
transverse roll instability and to the longitudinal roll instability, respectively. Points A, B, 
C, D are located at (RaA=8099.0, A=3.72, A=1.59), (RaB=4823.9, B=3.95, B=1.69), 
(RaC=3191.8, C=4.46, C=1.64), (RaD=3188.6, D=4.51, D=1.63), respectively. 

 

   
One can identify the upper and lower limits of the unstable range of  for each value of 

Ra and the corresponding values of  to produce plots displayed in Figure 5.3A. Such 

plots identify the critical conditions leading to the onset of the transverse roll instability. 

The same figure displays critical curves for the longitudinal roll instability studied in 

Chapter 4 for comparison purposes. The minimum heating intensity required to induce 

this instability corresponds to Ramin = RaD = 3188.6 (point D in Figure 5.3A) but the 

instability will occur only if the heating pattern corresponds to  min = D = 4.51. No 

transverse roll instability can be initiated for Ra < 3188.6 regardless of the pattern of 

heating. An increase of Ra above 3188.6 increases the range of heating patterns that can 

induce this instability. The critical curve steeply rises when  is reduced below D = 4.51 

but this rise becomes less extreme for  < ~3.6. An increase of  above D = 4.51 results 

in a gradual increase of the value of Racr; when  is big enough, the increase follows the 

asymptote Racr  236 α1.5 as   . The reader may note that the spatial pattern of the 
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heating corresponding to min = D = 4.51 is the most efficient in inducing transverse roll 

instability and any other pattern requires more intense heating. It appears that patterns 

with small  are not effective at all in producing transverse rolls.   

 

Comparison of the longitudinal roll and the transverse roll instabilities (see Figure 5.3A) 

shows that the transverse roll instability dominates for  < A = 3.72, there is a range of 

alpha (A = 3.72 <  < C = 4.46) where the longitudinal roll instability dominates, and 

the transverse roll instability dominates again for  > C = 4.46. Both types of instability 

have the same asymptotes with Racr  2361.5 as  with the critical values of Racr 

for the transverse rolls being always lower than Racr for the longitudinal rolls at the same 

. A small preference for the transverse rolls was also reported by Freund et al. (2010) in 

the case of the RB convection with high wave number temperature modulations, as 

discussed in the Section 4.1. 

 

The structure of the disturbance motion, as described by the critical transverse roll wave 

number cr, is also a strong function of the heating wave number  (see Figure 5.3B). 

Categorization of these structures is simpler than those associated with the longitudinal 

rolls as they are uniquely determined by cr. One can identify two intervals with 

qualitatively different forms of variations of cr, with a sharp transition at  = B = 3.95 

(point B in Figure 5.3B). Value of cr decreases from the "transitional" value of B = 1.69 

as one moves away from B along the -axis in both directions. No characteristic relation 

can be found between cr and  in either of these directions. This separates the transverse 

roll instability from the longitudinal roll instability (discussed in Chapter 4) where a sub-

harmonic lock-in between the roll wave number and the heating wave number has been 

found for moderate .  When  decreases below B,  cr rapidly decreases suggesting a 

rapid increase in the wavelength of the most unstable transverse rolls, and the 

corresponding value of Racr rapidly increases demonstrating a strong stabilization. When 

 increases above B, the corresponding cr smoothly decreases and in the limit of  
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approaches the limiting value of cr = 1.56, which is the same as for the longitudinal roll 

instability.  

 

The net heat flow (denoted by the Nusselt number) across the slot induced by the primary 

convection at the onset of the transverse roll instability is shown in Figure 5.4. It is found 

that when  the net heat flow changes as Nu  0.4531-1.5. This asymptotic relation 

is the same as the case of the longitudinal roll instability; hence we obtain the same 

asymptotic relation for Racr for both type of instability.   

 

5 10 15 200

0.1

0.2

0.3


2

Nu

0.06

Pr=7

Nu=0.4531-1.5

0.71

0.08
0.12

 

Figure 5.4. Variations of the Nusselt number Nu for the primary convection as a function 
of the heating wave number  for the critical values of the Rayleigh number Racr for the 
transverse roll instability. Circles mark conditions when transition between the different 
characters of variations of the critical roll wave number cr take place.   

   
 

 
Topologies of the disturbance velocity fields and how they change as a function of  at 

the onset are illustrated in Figures 5.5-5.7 using the second invariant of the velocity 

gradient tensor (Dubief and Delcayre 2000) Q defined as 

 

 ijijijij RR
2

1
Q   

(5.1)
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where  i,jj,iij uu
2

1
 ,  i,jj,iij uu

2

1
R  . Explicit form of Q can be written for 

disturbance velocity fields as 
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 (5.2)

  
   
 
The disturbance velocity field has been normalized with the condition max( )0(

ug )=1 for 

display purposes. The same figures display topology of the primary velocity field for 

comparison purposes. When the heating wave number  is large, the primary convection 

at the onset is concentrated very close to the heated wall (Figure 5.5A) and is unable to 

modulate the disturbance velocity field which is centered in the middle of the layer 

(Figure 5.5B). Reduction of  leads to a rapid increase of the strength of the primary 

convection; data shown in Figure 2.7 documents its increase as being proportional to -3 

even while keeping Rayleigh number Ra constant. As a result the secondary rolls are 

pushed upwards by strong up swells above the hot spots and downwards by strong down 

swells above the cold spots (Figure 5.6B). Further reduction of  continues this process, 

i.e., the primary convection becomes stronger and fills in the whole fluid layer (Figure 

5.7A), the up and down swells produce more extreme deformation of the secondary rolls, 

the rolls contract and deform in locations where they are pushed against the walls, the     

z-wavelength of the system increases as a result of these deformations, and cores of the 

rolls expand significantly in the zones where vertical motion is minimal (Figure 5.7B). A 

more intense heating is required to sustain such deformed rolls leading to an rapid 

increase of Racr, as shown in Figure 5.3. 
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Figure 5.5. Flow structures created by the primary convection (Fig.5.5A) and by the 
secondary convection in the form of transverse rolls (Fig.5.5B) generated by the heating 
with the wave number  = 10 at the onset, i.e., for the Rayleigh number Racr = 7667.4. 
The critical roll wave number is cr = 1.56. Iso-surfaces with  Q = 0.1, 0.5 and Q = 0.2, 
0.7 (see Eq.5.2) are displayed in Fig.5.5A and B, respectively. 
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Figure 5.6. Flow structures created by the primary convection (Fig.5.6A) and by the 
secondary convection in the form of transverse rolls (Fig.5.6B) generated by the heating 
with the wave number  = 3.95 at the onset, i.e., for the Rayleigh number Racr = 4823.9. 
The critical roll wave number is cr = 1.69. Iso-surfaces with Q = 0.1, 0.3 and Q = 0.1, 
0.3 (see Eq.5.2)  are displayed in Fig.5.6A and B, respectively. 
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Figure 5.7. Flow structures created by the primary convection (Fig.5.7A) and by the 
secondary convection in the form of transverse rolls (Fig.5.7B) generated by the heating 
with the wave number  = 2.47 at the onset, i.e., for the Rayleigh number Racr = 24166.5. 
The critical roll wave number is cr = 1.35. Iso-surfaces with Q = 0.2, 0.45 and Q = 0.12, 
0.3 (see Eq.5.2) are displayed in Fig.5.7A and B, respectively. 
 
 
 
To visualize the convection patterns in experiments shadowgraph method is generally 

utilized. Patterns observed by experiments may be produced in numerical simulations by 

taking the snapshot of the temperature field in a suitable plane, or by using the vertical 

average of the whole temperature field (Trainoff and Cannel 2002, Paul et al. 2003, 

Jenkins 1988). In the present analysis, we use temperature snapshot at the vertical mid-

plane. Figure 5.8 shows patterns that one may observe in experiments for the flow 

structures shown in Figures 5.5-5.7. The reader may note that the primary convection 

always produce longitudinal rolls, so one will always see the longitudinal striped pattern 

similar to the pattern shown in Figure 5.8A regardless of the heating wave number . For 

disturbance patterns, at large , the topology of the disturbance field looks like straight 

transverse roll (see Figure 5.5B) so the stripes are oriented along the x-direction as 

depicted in Figure 5.8B. As the heating wave number  decreases these rolls are 

modulated and this modulation is clearly visible in the pattern shown in Figure 5.8C.  

With the further reduction of , the rolls become increasingly stretched near the colder 
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regions and, as a result, one does not see continuous stripes along the x-direction but 

dimple-like shapes concentrated at the colder regions. It may be noted that the patterns 

documented in Figures 5.8A-B are similar to the shadowgraph images obtained in 

experiments for longitudinal and transverse rolls, respectively (see Figure 1.1).    

 

 

A 

 

B 

 
C D 

 
Figure 5.8. Snapshots of the temperature field at the mid-plane (y = 0 i.e. x-z plane). 
Darker color corresponds to colder fluid. Figures 5.8A,B,C and D are for conditions of 
Fig.5.6A, Fig 5.5B, Fig.5.6B, and Fig.5.7B, respectively. Figure 5.8A is produced using 
the total temperature field of the primary convection defined by Eq. (2.2), and the 
remaining figures are produced using the disturbance temperature fields. Horizontal 
direction corresponds to the x-axis. The display extends for five heating wavelengths 
along the x-direction and four disturbance wavelengths along the z-direction.  
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The transverse roll instability is driven in the "large " zone by the uniform mean vertical 

temperature created by the primary convection. It appears that the vertical temperature 

gradient still drives the secondary convection in the case of  = O(1), however, this 

gradient is strongly modulated in the x-direction and rolls are exposed to strong,             

x-periodic convection currents. It may be concluded that the transverse rolls are primarily 

driven by the vertical temperature gradients and modulated by a combination of the 

spatial distribution of these gradients and convection currents created by the primary 

convection. Conditions where the character of variations of the critical roll wave number 

cr changes qualitatively (point B in Figure 5.3B) may be considered as a boundary 

between zones of dominance of these two effects. Location of this point shown in Figure 

5.4 supports conclusion that point B approximately corresponds to conditions where the 

primary convection starts to develop a meaningful mean vertical temperature gradient. 

 

 

 

5.2 Fluids with the Prandtl number Pr=7 

This particular value of the Prandtl number well approximates properties of water where 

conductive effects are relatively weaker as compared with the convective effects. The 

critical stability curve shown in Figure 5.9 is qualitatively similar to the critical stability 

curve for Pr = 0.71 (see Figure 5.3). The transition point that separates zones of 

dominance of both instability mechanisms (point B, B = 3.611) is shifted towards 

smaller values of  as the conduction-dominated spatial modulation is weaker. No 

instability occurs for  < A = 3.6 in the range of Ra of interest. The minimum critical 

Rayleigh number is Ramin = RaD = 2859.8 and the corresponding most destabilizing 

heating pattern is described by min = D = 4.18. Longitudinal rolls play the role of critical 

disturbances for   < C = 3.98 while transverse rolls dominate for  > C = 3.98. The 

critical Rayleigh number approaches the same asymptote Racr2361.5 when  but 

more rapidly when compared with the case of Pr = 0.71. The critical roll wave number 

approaches the same limit, i.e., cr1.56 when , but again more rapidly when 

compared with the case of Pr = 0.71. 
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Figure 5.9. Variations of the critical Rayleigh number Racr (Fig.5.9A) and the critical 
disturbance wave number cr (Fig.5.9B) as functions of the heating wave number  for a 
fluid with the Prandtl number Pr = 7. Thick and thin lines correspond to the transverse 
roll instability and to the longitudinal roll instability, respectively. Points A, B, C, D are 
located at (RaA=4472.9, A=3.61, A=1.77), (RaB=4472.9, B=3.61, B=1.77), 
(RaC=2904.4, C=3.98, C=1.66), (RaD=2859.8, D=4.18, D=1.63), respectively. 

   
 

5.3 Fluids with the Prandtl number Pr=0.12 

Reduction of the Prandtl number Pr increases the strength of the spatial modulation. As a 

result, compared with the cases of Pr = 7 and 0.71, the zone of instability at the left end 

shifts towards smaller , and conditions required for the creation of the mean vertical 

temperature gradient to be meaningful shift towards higher . Figure 5.10 displays the 

resulting stability diagram. The critical curve can be divided into two segments, one with 

a minimum at  = A = 2.65 and the other one with a minimum at  = E = 6.46. These 

two segments are joined together at  = D = 5.6 where a qualitative change in the 

character of variations of the critical roll wave number cr takes place (see point D in 

Figure 5.10B). Point D is the transition point and this transition occurs at a higher value 

of  when compared with fluids with higher values of Pr. The modulation mechanism 

dominates under conditions corresponding to the left part of the critical curve                
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(for  < D =5.6) while the effects associated with the mean vertical temperature gradient 

dominate under conditions associated with the right part of the curve (for  > D = 5.6). 

The change in the dominant effects is underscored by the change in the character of 

variations of the Nusselt number Nu of the primary convection (see Figure 5.4) where 

different types of variations are found on both sides of the transition point D = 5.6. The 

reader may also note the emergence of a zone of heating patterns centered around   5 

where neither of the mechanisms is particularly effective. 
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Figure 5.10. Variations of the critical Rayleigh number Racr (Fig.5.10A) and the critical 
disturbance wave number cr (Fig.5.10B) as functions of the heating wave number  for a 
fluid with the Prandtl number Pr = 0.12. Thick line corresponds for the transverse roll 
instability, and the thin line corresponds for the longitudinal roll instability. Points A, B, 
C, D, E, F are located at (RaA=1691.2, A=2.65, A=1.5), (RaB=2902.4, B=3.73, 
B=1.71), (RaC=5232.1, C=4.53, C=1.77), (RaD=9921.8, D=5.6, D=1.48), 
(RaE=5595.3, E=6.46, E=1.57), (RaF=7068.1, F=8.64, F=1.62), respectively. 
   
 
 

The effect of modulation is active over a finite range of the heating wave numbers            

 < D = 5.6 (see Figure 5.10A). It is most effective for the heating pattern corresponding 

to min1 = A = 2.65 resulting in the critical Rayleigh number Ramin1 = RaA = 1691.2. It 

weakens as one moves away from this point in either direction along the -axis. This 

mechanism is not able to destabilize the primary convection for  < b = 2.02 in the range 

of Ra of interest and is overcomed by the mean-temperature-gradient mechanism when  
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increases above D = 5.6. The critical roll wave number starts around cr  1.3 and 

initially increases, it reaches a maximum of cr = C = 1.77 at  = C =4.53, and then 

decreases to cr = D = 1.48 at  = D = 5.6 as one traverses the modulation-dominated 

zone in the direction of increasing  suggesting a rather large change in the wavelength of 

the critical rolls depending on the pattern of heating. 

 
The mean-temperature-gradient mechanism dominates for heating patterns corresponding 

to  > D = 5.6. This mechanism is most effective for min2 = E = 6.46 resulting in the 

critical Rayleigh number Ramin2 = RaE = 5595.3. Variations of Racr follow the same 

asymptote for large values of  as in the cases of Pr = 0.71 and Pr = 7, i.e., Racr2361.5 

when . The critical roll wave number cr varies from cr = D = 1.48 at the beginning 

to the mean-temperature gradient dominated interval, then increases until it reaches 

maximum of cr = F = 1.62 at  = F = 8.64 and monotonically decreases to the 

asymptotic limit of cr1.56 when . This limit is the same as for other values of Pr. 

Changes of the wavelengths of the critical rolls are therefore much smaller than those 

associated with the modulation mechanism and they are centered around the asymptotic 

value of  cr  1.56. 

  

The form of the critical curve shows that the modulation mechanism is centered around   

  2.5 and it shifts towards smaller  with reduction of Pr in direct response to the 

stronger modulation. The location of the most active mean-temperature gradient 

mechanism depends on the overall convection dynamics and it shifts towards higher 

values of  as Pr decreases. It smoothly overlaps with the modulation mechanism for     

Pr = 7 (Figure 5.9), some distinction begins to emerge for Pr = 0.71 (Figure 5.3) and two 

separate zones are clearly visible for Pr = 0.12 (Figure 5.10). We shall come back to this 

question in Section 5.6. 

 

Comparison of the critical curves for the longitudinal and transverse roll instabilities (see 

Figure 5.10) shows that the transverse rolls play critical role when  < B = 3.73 while 

the longitudinal rolls dominate for  > B = 3.73. 
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5.4 Fluids with the Prandtl number Pr=0.08 

The form of the critical curve displayed in Figure 5.11A is similar to that found in the 

case of Pr = 0.12 but distinctions between responses associated with both instability 

mechanisms are more pronounced. The modulation effect becomes stronger as evidenced 

by reduction of the minimum possible Racr, its center identified by the location of the 

Ramin1 = RaA shifts towards smaller  and its reach expands to  as small as b = 1.93. 

The emergence of the mean-temperature gradient occurs at higher  and this pushes the 

transition point (point D) up in . As a results, the zone where neither of the instability 

mechanisms is particularly effective widens and pushes the corresponding Racr = RaD to a 

higher level. 
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Figure 5.11. Variations of the critical Rayleigh number Racr (Fig.5.11A) and the critical 
disturbance wave number cr (Fig.5.11B) as functions of the heating wave number  for a fluid 
with the Prandtl number Pr = 0.08. Thick line corresponds for the transverse roll instability, and 
the thin line corresponds for the longitudinal roll instability. Points A, B, C, D, E, F are 
located at (RaA=1105.8, A=2.56, A=1.5), (RaB=2194.0, B=3.8, B=1.75), 
(RaC=4882.0, C=4.8, C=1.83), (RaD=15588.6, D=6.48, D=1.37), (RaE=6963.1, 
E=7.4, E=1.56), (RaF=8840.4, F=9.95, F=1.64), respectively. 
   
 

The modulation effect dominates for  < D = 6.48, it is most effective for  = A = 2.56 

resulting in the critical Rayleigh number Ramin1 = RaA = 1105.8, and it cannot destabilize 
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the primary convection for  < b = 1.93. The range of variations of cr (Figure 5.11B) 

extends beyond that found for Pr = 0.12.  

 

The mean-temperature gradient mechanism dominates for  > D = 6.48, it is most 

effective for  = E = 7.4 resulting in the critical Rayleigh number Ramin2 = RaE = 6963.1, 

Racr follows the same asymptote and cr approaches the same limit for  as in the 

case of other values of Pr. The range of variations of cr is similar to that found in the case 

of Pr = 0.12. The transverse rolls dominate for  < B = 3.8 while the longitudinal rolls 

play critical role for  > B = 3.8.  

 

5.5 Fluids with the Prandtl number Pr=0.06 

The critical curve displayed in Figure 5.12A has the same qualitative form as in the case 

of Pr = 0.08 but with more pronounced features. The zone where the mean-temperature 

gradient dominates moves further towards higher  and thus widens the zone where the 

modulation mechanism dominates. The modulation effect becomes relatively stronger as 

it can produce the instability at smaller , i.e., down to  = b = 1.87, can reduce Racr 

down to Ramin1 = RaA = 825.6 at min1 = A = 2.53 (point A), and the transition to the 

mean-temperature gradient zone occurs at larger , i.e.,  = D = 7.16, although the last 

effect is more due to the retreat of the mean-temperature gradient mechanism to higher . 

Corresponding variations of cr extend from 1.2 to 1.87 and down to 1.24 (see          

Figure 5.12B) as one traverses this zone in the direction of increasing . The character of 

variations of the critical conditions in the mean-temperature gradient zone remains 

approximately the same as for Pr = 0.08. The zone where neither of the instability 

mechanisms is particularly effective widens and pushes the corresponding Racr up to    

RaD = 34677.1. 
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Figure 5.12. Variations of the critical Rayleigh number Racr (Fig.5.12A) and the critical 
disturbance wave number cr (Fig.5.12B) as functions of the heating wave number  for a fluid 
with the Prandtl number Pr = 0.06. Thick line corresponds for the transverse roll instability, and 
the thin line corresponds for the longitudinal roll instability. Points A, B, C, D, E, F,G are located 
at (RaA=825.6, A=2.53, A=1.5), (RaB=1695.0, B=3.79, B=1.77), (RaC=4468.1, C=4.97, 
C=1.87), (RaD=34667.1, D=7.16, D=1.24), (RaE=8336.1, E=8.06, E=1.56), (RaF=8299.2, 
F=8.26, F=1.58), (RaG=9836.3, G=10.46, G=1.65), respectively.  
   

 

5.6 Fluids with an arbitrary Prandtl number 

Evolution of fluid response as a function of the Prandtl number Pr and the interplay 

between both mechanisms producing secondary convection are illustrated in Figure 5.13. 

The increase of the strength of the modulation effect and its small shift towards smaller  

can be easily followed. At Pr > 2 the zones of activity of both mechanisms overlap 

producing critical curve with one minimum in the range of Ra subject to this 

investigation. A small shift of the modulation effect towards smaller  can be seen at     

Pr = 1 as the small- end of the critical curve starts to bends towards small . This shift 

becomes more pronounced as Pr further decreases with the critical curve acquiring two 

minima at Pr  0.5, one at a smaller  associated with the modulation effect and one at a 

higher  that can be attributed to the mean-temperature gradient effect. The former 

minimum becomes the overall minimum for Pr <~0.25. Further decrease of Pr 
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continuously increases the strength of the modulation effect expanding the zone of 

instability to smaller 's and reducing the corresponding minimum Racr. At the same time 

the mean-temperature gradient effect becomes relatively weaker and retreats towards 

larger ; the corresponding minimum of Racr continuously increases with reduction of Pr. 

The shift of the mean-temperature gradient effect towards larger  is not compensated by 

the equivalent expansion of the modulation effect towards larger  creating a fairly 

stable, in-between zone of heating patterns where the transverse roll instability occurs 

only at a fairly large Racr.   
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Figure 5.13. Variations of the critical Rayleigh number Racr as functions of the heating wave 
number  for selected values of the Prandtl number Pr (Fig.5.13A - Pr=10-0.2, Fig,5.13B 
- Pr=0.2-0.06). 
   
 
 
Evolution of the critical roll wave number cr as a function of Pr is illustrated in      

Figure 5.14. The reader may note formation of the transition point between zones 

dominated by different instability mechanism starting with Pr  0.4 (Figure 5.14B) with 

the distinction increasing with any further decrease of Pr. Another process appears to take 

place when Pr increases above 0.4 as a clear distinction between zones where each 

mechanism plays a leading role disappears (Figure 5.15). Both mechanisms coexists, 

however, modulation effect takes over for a sufficiently large Pr resulting in a rapid drop 
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of cr. This change occurs for large Ra outside the range of interest in the current work as 

other processes not related to the transverse roll instability are likely to dominate the flow 

response. 
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Figure 5.14. Variations of the critical wave number cr as functions of the heating wave 
number  for selected values of the Prandtl number Pr (Fig.5.14A - Pr=10-0.5, Fig.5.14B 
- Pr=0.5-0.06). Enlargement of the box marked in Fig.5.14A is displayed in Fig.5.15. 
Zones between triangles in Fig.5.14B correspond to Racr >104. 
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Figure 5.15. Enlargement of the box marked in Fig.5.14A. Zones to the left of triangles 
correspond to Racr >104. 
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5.7 Summary 

Onset of the transverse roll instability in an infinite slot subject to a sinusoidal heating at 

the lower wall has been considered in this chapter for a wide range of Prandtl numbers Pr. 

Two instability mechanisms contributing to the onset of such convection have been 

identified. The first mechanism is based on effect of the modulation associated with the 

spatial pattern of the heating. This mechanism is active for heating patterns corresponding 

to the heating wave numbers O(1) for all types of fluids considered (with properties 

characterized in terms of the Prandtl number Pr). The second mechanism is associated 

with the mean vertical temperature gradient created by the primary convection and the 

zone where this mechanism is active shifts towards higher values of the heating wave 

number as Pr decreases. The interplay between both mechanisms results in a single-

minimum critical curve for values of Pr where both mechanisms are active in the same 

range of the heating wave numbers, and a two-minimum critical curve where both 

mechanisms are active in distinctly different ranges of the heating wave numbers. A zone 

of a fairly stable primary convection occurs in the latter case for the heating patterns 

corresponding to the heating wave numbers from the in-between zone.  

 

A decrease of Pr produces primary convection with a stronger spatial modulation. As a 

result, the modulation effect mechanism becomes stronger reducing the minimum critical 

Rayleigh number required for the onset of the secondary convection. Because of the 

strong spatial modulation, the formation of the mean vertical temperature gradient shifts 

towards higher values of the heating wave numbers resulting in the higher critical 

Rayleigh numbers required for the onset of the secondary convection under conditions 

when the modulation effect is weak. 

 

 
  

 



6  

Oblique Roll 

In this chapter we shall turn our attention to the secondary rolls with an arbitrary 

orientation, i.e., rolls characterized by the wave vector q = (, ) with the magnitude 

  2122 /q and the inclination angle  =  tan-1(/). According to this notation 

longitudinal rolls correspond to  = 0 and transverse rolls to  = 90. Similar to the 

longitudinal and transverse rolls instabilities, there exist only stationary disturbances, i.e., 

r = 0. No travelling wave disturbances have been found. Characteristics of oblique rolls 

for fluids with the Prandtl number Pr = 0.71 are described in details in Section 6.1 and 

form a reference point. Characteristics of this instability for high Prandtl number fluids, 

e.g., for Pr = 7, 3 and 2 are discussed in Section 6.2. Characteristics for small Prandtl 

number fluids, e.g., Pr = 0.12, 0.08, and 0.06, are discussed in Section 6.3, 6.4, and 6.5, 

respectively. Section 6.6 is devoted to discussion of Prandtl number effects. A short 

summary is given in Section 6.7. The reader may note that the cost of evaluation of 

eigenvalues for the oblique roll instability is considerably higher as one has to consider 

both the x- and z-components of the wave vector (i.e.,  and ) of disturbances.  

 

6.1 Fluids with the Prandtl number Pr=0.71 

All physical mechanisms discussed so far contribute to the dynamics of the oblique rolls, 

including parametric resonance as well as direct modulation by patterns of vertical 

temperature gradients and distribution of convection currents.  

 

We begin our discussion with Figure 6.1 which illustrates the evolution of the neutral 

surfaces in the  ,, qRa  space for selected values of the heating wave number.      
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Figure 6.1A displays neutral surface for  = 10 ("large " zone). It can be seen that the 

minimum of Ra corresponds to 561.q  and  = 90 (transverse rolls). This minimum is 

fairly flat in the  direction with the change of Ra between  = 90 and  = 0 being ~130 

which demonstrates a rather week preference for the transverse rolls. The minimum is 

rather steep in the q direction showing a strong preference for the size of the rolls. 

Reduction of the heating wave number to  = 5 (Figure 6.1B) demonstrates emergence of 

two local minima, one centered at  = 0, 71.q   and the other at  = 90, 61.q . The 

transverse rolls with slightly higher q  continue to play the critical role. Gradients in the 

 and q  directions remain similar showing weak preference for the orientation of the 

rolls but strong preference for the size. Further reduction of the heating wave number to  

 = 4.4 shows existence of similar two local minima but with the minimum at  = 0 

becoming the global minimum and the longitudinal rolls playing the critical role (see 

Figure 6.1C). When the heating wave number reaches value  = 4 (Figure 6.1D) the 

global minimum moves from  = 0 to   8 showing that the oblique rolls begin to play 

the critical role; these rolls become a bit smaller as the corresponding wave number 

increases to 2.1q . Further reduction of the heating wave number to  = 3.5 shows 

existence of a single minimum at   28 and a slight reduction of q (Figure 6.1E). The 

minimum of Racr is reached at  = 2.69 (not shown) and further decrease of the heating 

wave number leads to the  increase of Racr, a small increase of the inclination angle  and 

a fairly large decrease of the roll wave number q  as illustrated in Figure 6.1F for          

 = 2.5. 

 

Variations of the global and local minima as functions of the heating wave number are 

illustrated in Figure 6.2 and identify the critical stability conditions. It can be seen that 

the transverse rolls play the critical role for  > D = 4.46, the longitudinal rolls dominate 

for D = 4.46 >  > B = 4.07 and the oblique rolls become dominant for  < C = 4.03 

(the minimum Rayleigh number point for the longitudinal roll). Reduction of  below         

C = 4.03, i.e., use of heating pattern that gives rise to oblique rolls, leads to the reduction  
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Figure 6.1. Neutral surfaces in the space formed by the roll wave number q , the roll 

inclination angle  and the Rayleigh number Ra for selected values of the heating wave 
number  for the fluid with the Prandtl number Pr=0.71. 
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Figure 6.2. Variations of the critical Rayleigh number Racr (Fig.6.2A,B) and the critical 
wave numbers cr (solid line) and cr (dash-dot lines) (Fig.6.2C) as functions of the heating 
wave number  for the fluid with the Prandtl number Pr = 0.71. Enlargement of the box 
shown in Fig.6.2A is displayed in Fig.6.2B. Curves 1, 2, 3 correspond to the longitudinal, 
transverse and oblique rolls, respectively. Points A, B,C and D are located at (RaA=2411.2, 
A=2.69, A=1.345, A=0.8), (RaB=3043.6, B=4.07, B=2.035, B=0), (RaC=3031.6, 
C=4.03, C=2.015, C=0), and, (RaD=3191.4, D=4.46, D=0, D=1.64). 
 

 

of Racr. The most efficient pattern for formation of oblique rolls corresponds to  = A = 

2.69 and results in Racr = RaA = 2411.2. A rapid stabilization of the primary convection is 

observed when the heating wave number is reduced below   ~2.2 with no instability 
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found for  <~1.75 in the range of Ra considered. This stabilization is remarkable as no 

rolls may appear if  is sufficiently small. A possible reason for elimination of secondary 

rolls is illustrated in Figure 6.3 which displays variations of the mean vertical 

temperature created by the primary convection at the onset. It can be seen that the zone 

with an unstable temperature gradient becomes thinner for smaller  leading to reduction 

of the driving force and, at the same time, increase of the opposing force. 
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Figure 6.3. Distributions of the 0th modal function of the primary convection temperature 
(0) for selected values of the heating wave number  corresponding to the onset of the 
oblique rolls for the fluid with the Prandtl number Pr = 0.71, i.e. (Ra, ) = (3035.7, 4), 
(2863.7, 3.5), (2505.7, 2.5), (5918.9, 2), (14030.3, 1.8).  
 

 

Variations of the critical wave numbers for the longitudinal and transverse rolls have been 

already described in Chapters 4 and 5. When the oblique rolls dominate, the x-component 

of the wave vector is locked-in with the heating wave number according to the relation   

cr = /2 (similar relation exhibits in the case of longitudinal rolls) while the z-component 

does not exhibit any correlation with  (Figure 6.2C). cr increases rapidly from 0 to 

about 0.8 when the heating wave number decreases from B = 4.07 down to   3 

resulting in a rapid rotation of the critical roll up to orientation corresponding to   30 

(see Figure 6.4). Further decrease of  causes small increase of the inclination angle 
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while the roll wave number decreases according to the relation 651./q . 
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Figure 6.4. Variations of the critical roll wave number 
cr

q (dash-dot lines) and the roll 

inclination angle  (solid lines) as a function of the heating wave number  at the onset 
conditions for the fluid with the Prandtl number Pr = 0.71. Lines 1, 2, 3 correspond to 
the longitudinal, transverse and oblique rolls, respectively. 
 

 

Pattern associated with a single oblique roll is similar to the transverse roll shown in 

Figure 5.7B. Since oblique rolls appear in pairs with the wave vectors q1,2 = (cr, cr) 

(Freund et al. 2010, Tao and Busse 2009), the secondary convection takes the form of 

finite cells of rectangular shape rather than the infinite rolls. The aspect ratio x/z of the 

rectangle approaches 0.7 as  decreases. The topology resulting from superposition of 

two oblique rolls is shown in Figure 6.5A where the rectangular cells are clearly visible. 

The length of the rectangular cells in z-direction increases with the increase of the heating 

wave number , and at  = B = 4.07 they form continuous rolls, i.e., they smoothly 

morph into longitudinal rolls as shown in Figure 6.5B. To determine orientation angle of 

the rectangular cells, a snapshot of the disturbance temperature field is shown in     

Figure 6.6.    
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Figure 6.5. Flow structures created by the secondary convection in the form of oblique 
rolls (Fig.6.5A) and longitudinal rolls (Fig.6.5B) generated by the heating with the wave 
numbers  = 3.2 and 4.07 at the onset, i.e., for the Rayleigh number Racr = 2645.7 and 
3043.6, respectively, for the fluid with the Prandtl number Pr = 0.71. The critical roll 
wave numbers are cr = 1.6 and 2.035, cr = 0.841 and 0, respectively. Iso-surfaces with 
Q = 0.05, 0.3 (see Eq.5.2) are displayed in both figures. 
 

 

 

 

Figure 6.6. Snapshot of the disturbance temperature field at the mid-plane (y = 0) for the 
flow conditions shown in Fig.6.5A. Dark color identifies colder fluid and white color 
identifies hotter fluid. Eight disturbance wavelengths were used for plotting in the x-
direction and four disturbance wavelengths were used along the z-direction. 
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6.2 High Prandtl number fluids  

In this section we discuss instability in high Prandtl number fluids, e.g., in fluids with     

Pr = 7, 3, and 2, where conductive effects are weaker than convective effects. The critical 

stability curves are shown in Figure 6.7A-C. It can be seen that the zone where the 

oblique rolls play the critical role expands as Pr decreases, i.e., values of B increase with 

a decrease of Pr. At the same time the critical value of Ra at  = B decreases which 

demonstrates that the oblique rolls become more important for smaller values of Pr. The 

most efficient heating pattern for creation of oblique rolls corresponds to  = A = 2.64 

and remains unchanged for all values of Pr.    

 

Variations of the critical wave numbers are shown in Figure 6.7D. Since the primary 

computed quantities are the x-and z-components of the wave vector cr and cr, we report 

and discuss their variations in this section. We shall discuss the roll wave number q  and 

the inclination angle  in a later section. It is clear that the subharmonic relation cr = /2 

for the critical x-component of the wave vector holds for high Prandtl number fluids. The 

critical z-component of the wave vector cr increases with an increase of the heating wave 

number  unlike the case of Pr = 0.71 where cr rapidly decreased to 0 around  ~4 

causing a smooth transition from the oblique roll to the longitudinal roll. There is no 

smooth transition between various types of rolls for high Prandtl number fluids.     
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Figure 6.7. Variations of the critical Rayleigh number Racr (Fig.6.7A,B,C) and the 
critical wave numbers cr (solid line) and cr (dash-dot lines) (Fig.6.7D) as functions of 
the heating wave number  for fluids with the Prandtl number Pr = 7,3,2, respectively. 
Lines 1, 2, 3 in Fig. 6.7A,B,C correspond to the longitudinal, transverse and oblique 
rolls, respectively. Fig. 6.7D is only for the oblique rolls. Points A and B are located at 
(RaA=14982.36, A=2.64, A=1.32, A=0.712) and (RaB=24497.45, B=3.6, B=1.8, 
B=0.979) for Pr=7(Fig.6.7A); (RaA=7507.28, A=2.64, A=1.32, A= 0.763) and 
(RaB=12245.14, B=3.62, B=1.81, B=1.095) for Pr=3(Fig.6.7B); and (RaA=5369.2, 
A=2.64, A=1.32, A=0.776) and (RaB=6658.62, B=3.64, B=1.82, B=1.023) for 
Pr=2(Fig.6.7C). 
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6.3 Fluids with the Prandtl number Pr=0.12 

We have already pointed out that reduction of the Prandtl number Pr increases the 

strength of the spatial modulation.  Figure 6.8A displays stability diagram for Pr = 0.12. 

Here we observe that the oblique rolls play a dominant role for  < B = 5.79, and no 

instability occurs for  < b = 1.69. The most effective heating pattern to induce the 

oblique roll instability corresponds to  = A = 2.75 and requires heating intensity       

Racr = RaA = 753.9. This intensity is 55% smaller than the intensity required by the 

transverse roll instability created by its most efficient heating pattern.  The critical          

x-component of the disturbance wave vector cr also follows relation cr = /2. The 

critical z-component of the disturbance wave vector cr increases with an increase of the 

heating wave number  which demonstrates that there is no continuous transformation of 

the oblique rolls into the longitudinal rolls.  
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Figure 6.8. Variations of the critical Rayleigh number Racr (Fig.6.8A) and the critical 
wave numbers cr (solid line) and cr (dash-dot lines) (Fig.6.8B) as functions of the 
heating wave number  for a fluid with the Prandtl number Pr = 0.12. Lines 1, 2, 3 in 
Fig.6.8A correspond to the longitudinal, transverse and oblique rolls, respectively. 
Fig.6.8B is only for the oblique rolls. Points A and B are located at (RaA=753.9, 
A=2.75, A=1.375, A=0.87) and (RaB=3990.1, B=5.79, B=2.895, B=1.147). 
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6.4 Fluids with the Prandtl number Pr=0.08 

The form of the critical stability curve displayed in Figure 6.9A is similar to that found 

for the fluid with Pr = 0.12. The zone of dominance of the oblique roll is increased 

compared with the case of Pr = 0.12 as the oblique rolls play the critical role for the 

heating wave numbers up to  = B = 6.97. At the same time the instability can be 

induced by heating with the wave numbers as small as  = b = 0.96. The most efficient 

heating pattern as far as instability is concerned corresponds to  = A = 2.35 with the 

corresponding heating intensity described by Racr = RaA = 521.9. Approximately 53% less 

heating is required to induce the oblique roll instability compared with the transverse roll 

at its most efficient heating patterns. The x-component of the critical disturbance wave 

vector cr follows the same relation as for other values of Pr, i.e., cr = /2. The               

z-component of the critical wave vector cr increases with an increase of the heating wave 

number  and this increase is almost linear for  > B. 
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Figure 6.9. Variations of the critical Rayleigh number Racr (Fig.6.9A) and the critical 
wave numbers cr (solid line) and cr (dash-dot lines) (Fig.6.9B) as functions of the 
heating wave number  for the fluid with the Prandtl number Pr = 0.08. Lines 1, 2, 3 in 
Fig.6.9A correspond to the longitudinal, transverse and oblique rolls, respectively. 
Fig.6.9B is only for the oblique rolls. Points A and B are located at (RaA=521.9, 
A=2.35, A=1.175, A= 0.786) and (RaB=5239.5, B=6.97, B=3.485, B=1.552). 
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6.5 Fluids with the Prandtl number Pr=0.06 

The critical stability curve displayed in Figure 6.10A has the same qualitative 

characteristics as for fluids with Pr = 0.08.  The zone of dominance of the oblique rolls is 

further expanded as now the upper bound for the zone where the oblique rolls play the 

critical role moves to B = 7.91, and the lower bound moves to b = 0.94. The most 

efficient heating pattern corresponds to  = A = 2.31 and the corresponding heating 

intensity is described by Racr = RaA = 387.6. Approximately 53% less heating is required 

to induce the oblique roll instability compared with the transverse roll at its most efficient 

heating patterns. The x-component of the critical disturbance wave vector cr changes 

according to the relation cr = /2. The z-component of the critical disturbance wave 

vector cr increases with an increase of the heating wave number  and this increase is 

linear for  > B. 
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Figure 6.10. Variations of the critical Rayleigh number Racr (Fig.6.10A) and the critical 
wave numbers cr (solid line) and cr (dash-dot lines) (Fig.6.10B) as functions of the 
heating wave number  for the fluid with the Prandtl number Pr = 0.06. Lines 1, 2, 3 in 
Fig.6.10A correspond to the longitudinal, transverse and oblique rolls, respectively. 
Fig.6.10B is only for the oblique rolls. Points A and B are located at (RaA=387.6, 
A=2.31, A=1.155, A=0.8) and (RaB=6035.8, B=7.91, B=3.955, B=1.855). 
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6.6 Fluids with an arbitrary Prandtl number 

Evolution of fluid responses as a function of the Prandtl number Pr are illustrated in 

Figure 6.11A for the zone (i.e., range of ) of dominance of the oblique roll instability. It 

is observed that the zone of dominance gradually increases with a decrease of Pr. Most of 

the increase occurs at the high  end with very small increase at the low  end. The        

x-component of the critical disturbance wave vector cr always changes according to the 

relation cr = /2 regardless of the value of Pr (not shown in the figure). Figure 6.11B 

demonstrates that a smooth and gradual transition from the oblique roll to the longitudinal 

roll (i.e., the oblique roll morphs into the longitudinal roll) occurs for the fluid with 

~0.3<Pr<~1. Above and below this range of Pr there is no smooth transition between 

different types of rolls.      
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Figure 6.11. Variations of the critical Rayleigh number Racr (Fig.6.11A) and the critical 
z-component of the wave vector cr (Fig.6.11B) as functions of the heating wave number 
 for selected values of the Prandtl number Pr for the zone of dominance of the oblique 
roll. Diamond symbols denote the upper bound of the zone of dominance of the oblique 
roll. Note that the critical x-component of the wave vector cr holds the relation ‘cr=/2’ 
for all of the Prandtl numbers considered and not shown in this figure. The variation of 
cr for Pr =2 and 3 are omitted for the clarity of the figure (they are shown in Fig.6.7D).   
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At this point, we focus discuss on the variations of the critical oblique roll wave number 

and its inclination angle as shown in Figure 6.12.  It is observed that for high Pr number 

fluids, e.g., Pr >~2, the inclination angle  varies very little with the change of the heating 

wave number . It varies around ~300 (10) in the range of Pr considered here. For 

moderate Pr number fluids, i.e., ~0.3<Pr<~1, this angle varies from 00 to 350 which 

causes the oblique rolls to morph smoothly into the longitudinal rolls. For low Pr number 

fluids, i.e., Pr <~0.2, the inclination angle varies between 200 and 350 (this range is 

reduced to 250 to 350 for Pr = 0.06).  The critical roll wave number 
cr

q  varies mostly in a 

linear form that can be approximated as 02.055.0 
cr

q  with a branching off around 

the upper end of -zone where oblique rolls play the dominant role. This branching is in 

the upward direction for high Prandtl numbers (Pr >~2), and in the downward direction 

for moderate Prandtl numbers (~0.3<Pr<~1), and is negligible for small Prandtl numbers 

(Pr <~0.2).          
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Figure 6.12. Variations of the roll inclination angle  (Fig. 6.12A) and the critical oblique roll 

wave number 
cr

q (Fig.6.12B) as functions of the heating wave number  for selected 

values of the Prandtl number Pr for the zone of dominance of the oblique roll. In 
Fig.6.12A dash-dotted lines are used for Pr=2,3,7 to distinguish the lines from other Pr.    
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6.7 Summary 

Onset of the secondary rolls oblique to the primary convection rolls in an infinite slot 

subject to a sinusoidal heating at the lower wall has been elucidated in this chapter for a 

wide range of Prandtl numbers Pr. The oblique rolls lead to the formation of convection 

cells with aspect ratio dictated by their inclination angle. It has been found that for fluids 

with Pr = 0.71 these rolls can change orientation from 0 to 30 with respect to the 

primary rolls depending on the heating wave number within the range of Ra being of 

interest. A rapid stabilization of the primary convection is observed when the heating 

wave number is sufficiently small. Analysis of the temperature field created by the 

primary convection at the onset suggests that reduction of the thickness of the zone with 

an unstable temperature gradient is likely responsible for the observed stabilization.  

 

High Prandtl number fluids require substantial amount of heating to induce the oblique 

roll instability. A decrease of Pr reduces the amount of heating required to induce the 

oblique roll instability. The zone of dominance of oblique rolls expands toward larger  

with a decrease of Pr. The x-component of the critical wave vector cr always satisfies 

relation cr = /2 regardless of the value of Pr. A continuous morphing between the 

oblique rolls and the longitudinal rolls occurs only for the fluid with ~0.3<Pr<~1.  

 

 



7  

Oscillatory Mode 

The previous chapters demonstrate that all forms of rolls are stabilized if the heating wave 

number  is reduced sufficiently. The small  regime is characterized by the appearance 

of an oscillatory mode of the secondary convection and description of this mode is the 

main focus of this chapter. Unlike the roll instabilities discussed in the previous chapters, 

the disturbances for the oscillatory mode are not stationary in nature, i.e., r 0, and they 

oscillate in time. The frequency of the oscillation r may have both sign, so the instability 

can manifest itself as a wave travelling in the either direction along the axis of the 

primary rolls or as a standing wave. This type of instability has been found by Busse and 

Clever (1979) in the stability analysis of two-dimensional convective rolls for the case of 

uniformly heated wall for fluids with Prandtl number Pr <~1. We investigate the 

characteristics of this mode for fluids with the Prandtl number Pr = 0.71 only and discuss 

results in Section 7.1. A short summary follows in Section 7.2. The reader may note that 

the cost of computing of characteristics of the oscillatory mode is even higher than the 

cost of computing of characteristics of the oblique rolls (see Appendix E).  

 

7.1 Fluids with the Prandtl number Pr=0.71 

The critical stability conditions for the onset of the oscillatory mode of instability have 

been determined using a process similar to that used in the case of rolls. Variations of the 

critical Rayleigh number displayed in Figure 7.1 show that the oscillatory mode is 

centered around  = A = 0.25 and plays the critical role for  < B = 1.73. Reduction of 

 below this value results in a rapid destabilization with the critical Rayleigh number 

reaching the minimum value of Racr = RaA = 2056.6 at  = A = 0.25. Further reduction of 
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 increases Racr. 
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Figure 7.1. Variations of the critical Rayleigh number Racr as a function of the heating 
wave number for fluids with the Prandtl number Pr = 0.71. Curves 1, 2, 3, 4 correspond to 
the longitudinal, transverse and oblique rolls, and for the oscillatory mode of instability, 
respectively. Points A and B are located at (RaA=2056.6, A=0.25), (RaB=18347, 
B=1.73), respectively. In Fig.7.1B -axis has logarithmic scale in order to magnify the 
small  zone where the oscillatory instability dominates.   
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Figure 7.2. Variations of the critical wave numbers cr and cr as functions of the heating 
wave number  at the onset for fluids with the Prandtl number Pr = 0.71. Curves 1, 2, 3, 4 
in Fig.7.2A correspond to the longitudinal, transverse and oblique rolls, and for the oscillatory 
mode of instability, respectively. Solid and dash-dot lines in Fig.7.2A correspond to cr and cr, 
respectively. Figure 7.2B is only for the oscillatory mode of instability; points A, B are located 
at (A=0.25, A=0, A=1.37), (B=1.73, B=2.595, B=1.57), respectively, and point C is 
located at (C, C, C, RaC)= (0.33, 1.4, 0, 2989.6). 
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Variations of the critical wave numbers at the onset are shown in Figure 7.2. It has been 

found that cr varies according to the relation cr = 3/2 for  >~0.5; for smaller , cr 

starts to decrease and finally reaches the limiting value of  cr = 0 at  = c = 0.33 and 

remains unchanged with any further decrease of . The z-component of the critical wave 

vector cr varies as cr = 1.40.19 for   >~0.7.  Variations of the critical roll wave number  

cr
q  and the roll inclination angle  are shown in Figure 7.3. It is observed that the 

inclination angle  varies from ~300 to 900, i.e., the rolls gradually orients themselves 

along the transverse direction.    
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Figure 7.3. Variations of the critical roll wave number  
cr

q  (dash-dot lines) and the roll 

inclination angle  (solid lines) as functions of the heating wave number  at the onset 
conditions for fluids with the Prandtl number Pr = 0.71. Lines 1, 2, 3, 4 in Fig.7.3A 
correspond to the longitudinal, transverse and oblique rolls, and for the oscillatory mode 
of instability, respectively. Fig.7.3B is only for the oscillatory mode of instability.  
 

 

Variation of frequency of disturbances at the onset of the oscillatory mode of instability is 

illustrated in Figure 7.4. It is apparent from this figure that with the decrease of the 

heating wave number , the magnitude of the frequency r  is reduced. If  is sufficiently 

small, the frequency r  follows the asymptotic relation 81.31.7.     
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Figure 7.4. Variation of the frequency r = Real(cr) for the oscillatory mode of instability as a 
function of the heating wave number  at the onset conditions for the fluid with the Prandtl 
number   Pr = 0.71. Points A, B, and C correspond to the same points as in Fig.7.2. 
 

 

 

The evolution of the disturbance structures at the onset is complex and not easily 

identifiable, especially for  > C. We illustrate qualitative features of this motion using 

the two-dimensional snapshots of the disturbance temperature field as shown in      

Figure 7.5. At relatively high , the oblique roll-like and very distorted structures are 

observed (see Figure 7.5A), whereas at low , simple and easily identifiable structures 

are visible (see Figure 7.5B).  In the latter case, i.e., at sufficiently low , one may notice 

that roll-like structures are formed locally at the hot spots and that these structures are 

aligned horizontally and looking like transverse rolls.          
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A B 
 

Figure 7.5. Snapshots of the disturbance temperature field at the mid-plane (y = 0 i.e. x-z 
plane) for the heating wave number  = 1(Fig.7.5A) and 0.3(Fig.7.5B) at the onset of the 
oscillatory mode of instability. Dark color identifies colder fluid and white color 
identifies hotter fluid. Horizontal direction represents x-axis. Five heating wavelengths 
and four disturbance wavelengths were used for plotting in the x- and z-directions, 
respectively. Flow conditions (, cr, cr, Racr) for Figs 7.5A,B are (1,1.5,1.4,11721.6) 
and (0.3,0,1.42, 2506.8), respectively.  
 

 

7.2 Summary 

Onset of the oscillatory secondary convection in an infinite slot subject to a sinusoidal 

heating at the lower wall has been explored in this chapter. The analysis is limited to 

fluids with the Prandtl number Pr = 0.71. It has been established that the convective 

structures can change orientation from 30 to 90 with respect to the primary rolls, 

depending on the heating wave number, within the range of Ra being of interest. The      

x-component of the critical wave vector cr changes according to the relation cr = 3/2, 

but at sufficiently small , a rapid decrease of cr to zero is observed. The frequency of 

oscillations decreases with reduction of .  At sufficiently small , roll-like structures 

emerge locally around the hot spots suggesting formation of transverse roll-like 

structures.  

 

 



8  

Long Wavelength Heating: Bifurcation*  

The heating pattern dictated by a sufficiently small heating wave number, i.e., long 

wavelength heating, exhibits some interesting phenomena and requires separate 

investigation. Here we summarize key findings. As mentioned in Chapter 2, when the 

wavelength of the heating becomes very large the zones centered around the hot spots are 

subject to an almost uniform heating and similar zones centered around cold spots are 

subject to an almost uniform cooling. If the magnitude of the heating is sufficiently large, 

the zones around the hot spots may be subject to the RB-type instability (the critical 

Rayleigh number in the present scale is Racr = 427). For the “supercritical” values of Ra 

(Ra > 427) multiple solutions of the primary convection exist depending on the history of 

the heating; this history can be controlled by using different initialization conditions, 

different continuation strategies in the parameters space as well as by using different 

numerical solvers presented Section 2.3. Various convective motions are depicted using 

bifurcation diagrams. The mean Nusselt number defined by equation (2.24) is not suitable 

to construct the bifurcation diagrams. A local Nusselt number NuL based on the 

conductive temperature scale and defined as  

 

-1y 0,x

L dy

d
-PrNu




          (8.1)  

 

is used for this purpose. 

 

                                                 
* Some of the material discussed in this chapter is the outcome from the collaborative research between the 
author and Mr. Ali Asgarian who presented it for his M.A.Sc. Dissertation at The University of Western 
Ontario, London, ON, Canada. 



 132

This chapter is organized as follows. In Sections 8.1 we discuss in details bifurcation 

diagrams generated by changing the heating wave number  in (NuL, ) space for fluids 

with the Prandtl number Pr = 0.71. Bifurcation diagrams produced by changing the 

intensity of the heating Ra in (NuL, Ra) space are discussed in Section 8.2. Effects of 

variations of the Prandtl number are considered in Section 8.3. A short summery is 

presented in Section 8.4. Computations are restricted to Ra < 1000 in this chapter. The 

relevant numerical issues are addressed in the Appendix E. 

 

8.1 Bifurcation diagram in (NuL, ) space 

The reader may note that the slot is filled with primary convection rolls regardless of how 

small  is (see Figure 2.18). Strength of these rolls decreases with a decrease of  and 

increases with an increase of Ra. The secondary rolls may emerge only locally around the 

hot spots. These rolls may emerge if  is sufficiently small and at the same time Ra is 

sufficiently large. The former condition is required in order to create a sufficiently long, 

almost uniformly heated segment of the slot so that the edge effects associated with 

longitudinal variations of temperature play no role. The second condition is required in 

order to overcome viscous and thermal dissipations and effects associated with existence 

of the primary rolls.  

 

Variations of NuL for "supercritical" values of Ra, i.e., Ra > 427, are illustrated in    

Figure 8.1. It is observed that when  > 0.3 the solution is unique in the range of Ra 

subject to this analysis. Reduction of  leads to two types of bifurcations depending on 

the value of Ra, i.e., supercritical pitchfork bifurcation for Ra < ~470 and "bifurcation 

from infinity" (Rosenblat and Davis 1979) for larger values of Ra. In this discussion we 

shall refer to direction of decreasing  (increasing wavelength of the heating) as the 

positive direction of the parameter.  
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Figure 8.1. Variations of the local Nusselt number NuL at x = 0, y = -1 as a function of 
the heating wave number α for fluids with the Prandtl number Pr = 0.71 subject to 
heating corresponding to the supercritical values of the Rayleigh number (Ra > 427). 
Enlargements of left and right boxes are displayed in Figs 8.2 and 8.6, respectively. 
Solid, dash-dot, dash-dot-dot, dash, and dot lines correspond to bifurcation branches of 
types 0, 1, 2, 3, and 4, respectively. Open circles identify critical conditions for pitchfork 
bifurcations. Filled circles identify critical conditions for the "bifurcations from infinity". 
Filled diamonds and open squares identify conditions selected for illustration of 
evolution of flow structures for Ra = 450 and 480, respectively. 
 

 

8.1.1 Pitchfork bifurcation 

In this section, we shall elucidate the flow evolution associated with pitchfork 

bifurcations for the case of  Ra = 450 illustrated in Figure 8.2. For convenience we call 

solutions corresponding to the middle, upper and lower branches as branches of type 0, 1 

and 2, respectively, and we focus attention on the segment of the slot on the right side of 

the hot spot located at  x = 0.  

 

Branch of type 0 has a simple topology involving one large flow cell extending over half 

period of heating with the fluid moving upwards above the hot spot as shown in      

Figure 8.3. This topology does not change over a wide range of heating wavelengths (for 
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 <~0.25). This branch loses stability for  < B = 0.093. 
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Figure 8.2. Enlargement of the left box from Fig.8.1: pitchfork bifurcation. 
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Figure 8.3. Evolution of flow structures associated with branch of type 0 for the heating 
wave number  = 0.03 for the heating corresponding to the Rayleigh number Ra = 450. 
Solid and dash lines identify streamlines and isotherms. Plotted values of the stream 
function and temperature correspond to /max = 0, -0.1, -0.3, -0.45, -0.8, -0.9 and 
/max =  0.9, 0.7, 0.5, 0.3, 0.1, 0, unless otherwise noted. Figure displayed here is 
marked with letter C in Fig.8.1 and the flow structures marked by letters A,B in Fig.8.1 
are similar to C.  
 

 

Variations of topology of flow structures associated with branch of type 1 are illustrated 

in Figure 8.4. It can be observed that the flow re-arrangement begins with the formation 

of a small separation bubble at the upper wall above the hot spot which grows to form a 

secondary roll attached to the hot spot, as shown in Figure 8.4A. The reader should note 
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that there is another similar secondary roll on the other side of the hot spot. All 

nomenclature used in this discussion and roll counting starting with Figure 8.4 will refer 

to flow structures on the right side of the hot spot. The secondary roll rotates in the 

conterclockwise direction (opposite to the primary roll) and brings colder fluid into 

contact with the lower wall resulting in an increase of NuL, as shown in Figure 8.2. 

Decrease of  results in firming up of the secondary roll and formation of a new pair of 

rolls. The beginning of the pair formation process is visible for  = 0.084 where one roll 

is being pinched off (with formation of an in-flow stagnation point) and the second one 

arises as a separation bubble at the upper wall away from the hot spot (see Figure 8.4B). 

Formation of this pair is finished when  = 0.08 (Figure 8.4C). Further decrease of  to 

 = 0.05 and then to  = 0.03 results in a sequential formation of additional pairs 

following the process described above. The process of creation of additional pairs 

continues indefinitely with a decrease of  while the size of the already existing rolls 

approaches an asymptotic limit of  = 2.01 (Drazin and Reid 1981) predicted by the RB 

instability in the case of a uniformly heated wall. The characteristic feature of this family 

of solutions is that there is always an odd number of secondary cells, as all new cells with 

exception of the first one are created in pairs. The secondary branches can loose stability 

but this issue has not been investigated during present study. 

 
 

Topology of flow structures associated with branch of type 2 are illustrated in Figure 8.5. 

Formation of secondary rolls begins with the appearance of an inflow stagnation point 

(Figure 8.5A), creation of a small separation bubble at the upper wall away from the hot 

spot at  = 0.091 (Figure 8.5B) and occurence of a distinctive pair of rolls at  = 0.09 

(Figure 8.5C). Roll closests to the hot spot rotates in the clockwise direction (the same as 

the primary roll) and thus brings warmer fluid into contact with the wall resulting in a 

decrease of NuL, as shown in Figure 8.2. Further decrease of  to 0.08 initiates formation 

of a second pair (Figure 8.5D). These rolls are well developed at  = 0.05. Four pairs 

exist at  = 0.03 (Figure 8.5F). Process of creation of additional pairs continues 

indefinitely with a decrease of , similarly as in the case of branch 1, while the size of the 

already existing rolls approach the same asymptotic limit of  = 2.01. The characteristic 
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feature of this family of solutions is that there is always an even number of secondary 

rolls, as all new rolls are created in pairs. The process of formation of rolls is very similar 

to that found in the case of branch 1 with exception of the first roll which accounts for a 

different direction of rotation at the hot spot. 
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Figure 8.4. Evolution of flow structures associated with branch of type 1 as a function of 
the heating wave number  for the Rayleigh number Ra = 450. Flow conditions in Figs 
8.4A-E correspond to  = 0.093, 0.084, 0.08, 0.05, 0.03 and are marked with letters B, D, 
E, F and G in Figs 8.1-8.2, respectively.  denotes length of a single cell. Plot 
parameters as in Fig.8.3. 
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Figure 8.5. Evolution of flow structures associated with branch of type 2 as a function of 
the heating wave number  for the Rayleigh number Ra = 450. Flow conditions in Figs 
8.5A-F correspond to  = 0.093, 0.091, 0.09, 0.08, 0.05, 0.03 and are marked with letters 
B, H, I, J, K and L in Figs8.1-8.2, respectively.  denotes length of a single cell. Plot 
parameters as in Fig.8.3. 
 
 
 
 

8.1.2 Bifurcation from infinity 

We shall now turn our attention to "bifurcations from infinity". This type of bifurcation 

occurs for the higher values of Ra, i.e., Ra > ~470. We shall carry out detailed discussion 

using the case of Ra = 480 illustrated in Figure 8.6 as the reference case. For convenience 

we refer to solutions corresponding to the finite and infinite branches as branches of types 

3 and 4, respectively. 

 
 
Topology of flow structures associated with branch of type 3 are illustrated in Figure 8.7. 

The flow forms one big roll at he left limit of the lower part of this branch (Figure 8.7A). 

Increse of  results in initiation of the formation of a secondary roll rotating in the 



 138

direction opposite to the direction of the primary roll. At  = 0.177 this roll has the form 

of a separation bubble attached to the upper wall (Figure 8.7B). This bubble extends to 

the lower wall at  = 0.178 (Figure 8.7C), increases in size as  changes in the fourth 

digit (plot in Figure 8.7D is for the nominally the same  as plot in Figure 8.7C) and 

increases further in size as  begins to decrease (see Figure 8.7E). Beginning of a 

pinching process that results in the formation of additional rolls is visible at  = 0.12 

(Figure 8.7F) and a new pair of rolls is formed at  = 0.1. This process is repeated 

sequentially with new rolls appearing in pairs. At  = 0.05 two pairs are visible as well as 

beginning of the pinching process that leads to the formation of the third pair. The process 

of formation of new  rolls is similar to  that  observed  in the case of  branch  of  type 1  

resulting in the creation of an odd number of rolls with the size of the rolls approaching 

limit of  = 2.01 when  becomes sufficiently small. The lower part of this branch is 

unstable for  < R = 0.179 (point R in Figure 8.6). 

  

0.16 0.17 0.18 0.19
0.2

0.25

0.3



NuL

Type 4 N

Type 3
U

W

S
T

R

V

Ra=427

480

480

480

 
 

Figure 8.6. Enlargement of the right box of the Fig. 8.1:“bifurcation from infinity”.  
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Figure 8.7. Evolution of flow structures associated with branch of type 3 as a function of 
the heating wave number  for the Rayleigh number Ra = 480. Flow conditions in Figs 
8.7A-H correspond to  = 0.17, 0.177, 0.178, 0.178, 0.17, 0.12, 0.1, 0.05 and are marked 
with letters U, T, S, V, W, X, Y and Z in Figs 8.1 and 8.6, respectively. Plot parameters as 
in Fig. 8.3. 
 

 

Evolution of flow structures associated with branch of type 4 is illustrated in Figure 8.8. 

There is one primary roll when  = 0.25 (Figure 8.8A). Reduction of  to 0.178 results in 

the formation of an inflow stagnation point (Figure 8.8B) and formation of a small 

separation bubble at the upper wall away from the hot spot at  = 0.16 (Figure 8.8C). 

The pinching process results in the formation of a distinct pair of rolls at  = 0.1    

(Figure 8.8D). Further reduction of  results in a sequential formation of additional pairs 

of rolls with three pairs exisitng when  = 0.05 (Figure 8.8E). This process is very 
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similar to that observed in the case of branch of type 2 with the size of the rolls 

approaching limit of      = 2.01 when  becomes sufficiently small.  
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Figure 8.8. Evolution of flow structures associated with branch of type 4 as a function of 
the heating wave number  for the Rayleigh number Ra = 480. Flow conditions in Figs 
8.8A-E correspond to  = 0.25, 0.178, 0.16, 0.1, 0.05 and are marked with letters M, N, 
O, P and Q in Figs 8.1 and 8.6, respectively. Plot parameters as in Fig.8.3. 
 

 

It has been noticed that changes in the net heat transfer between the walls due to 

formation of secondary rolls cannot be demonstrated properly using the local Nusselt 

number defined in (8.1). A mean Nusselt number TNu  associated with the zone where 

most of the activities related to the creation of secondary rolls occur (see Figures 8.4-

8.8), i.e., x  (0, 0.12/)), is found to be better suited to explore the effect of the 

pinching process. Figure 8.9A shows increase of TNu  due to formation of secondary 

rolls in the case of pitchfork bifurcation. Values of TNu  associated with branches of 

types 1 and 2 keep crossing each other in a repetitive manner as  decreases. This type of 

variations is due to the fact that pinching of new pairs of rolls takes place at different 



 141

values of  for both branches and the branch having a larger number of cells at a given  

has generally larger value of TNu . Figure 8.9B shows similar data for Ra = 500 where 

"bifurcation from infinity" takes place. Values of TNu  for the upper part of branch of 

type 3 and for branch of type 4 keep crossing each other in a repetitive manner as  

decreases. This type of variations of TNu  results from pinching off of new rolls at 

different values of  for both branches, similarly as in the case of the pitchfork 

bifurcation. 
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Figure 8.9. Variations of the TNu  (see text for definition) as a function of the heating 
wave number  for the Rayleigh numbers Ra = 450 (Fig.8.9A) and Ra = 500 (Fig.8.9B).  
 

 

8.2 Bifurcation diagram in (NuL, Ra) space  

In the previous section we have discussed the bifurcation process by varying  at fixed 

values of Ra. Here we keep  fixed and vary Ra. This particular strategy could be more 

useful from experimental point of view, where the spatial distribution of heating would be 

fixed and one would be increasing the intensity of heating described in terms of the 

Rayleigh number. Figure 8.10 displays bifurcation diagrams expressed in term of NuL 

resulting from variations of Ra for selected, fixed values of . The forms of the 

bifurcation diagrams are similar to that found in the previous section. Supercritical 
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pitchfork bifurcations exist for  < ~0.14 whereas "bifurcations from infinity" exist for   

 >~ 0.14.  
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Figure 8.10. Variations of the local Nusselt number NuL at x = 0, y = -1 as a function of 
the Rayleigh number Ra  for selected values of the heating wave number α for a fluid 
with the Prandtl number Pr=0.71. Enlargement of box marked in Fig.8.10 is displayed in 
Fig.8.11. Solid, dash-dot, dash-dot-dot, dash, and dot lines correspond to bifurcation 
branches of types 0, 1, 2, 3, and 4, respectively. Open circles identify critical conditions 
for pitchfork bifurcations. Filled circles identify critical conditions for "bifurcations from 
infinity". Filled diamonds and open squares identify conditions selected for illustration of 
evolution of flow structures. 
 

 

Details of a typical pitchfork bifurcation are shown in Figure 8.11 for  = 0.07. This 

bifurcation consists of branch of type 0 passing through points A, B and C, and  branches 

of types 1 and 2 that originate at point B and pass through points D, E, F and G, H, 

respectively. "Bifurcation from infinity", which is illustrated for  = 0.2 (Figure 8.11), 

has two branches, i.e., branch of type 3 passing through points I, J, R, K, L and branch of 

type 4 passing through points N, M, O. The evolution of the flow structures for the 

branches of type 0, 1, 2, 3 and 4 are qualitatively similar to the corresponding branches 

discussed previous section in the Figures 8.3-8.5, 8.6-8.7, respectively. 
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Figure 8.11. Enlargement of the box marked in Fig.8.10. 
 

 

8.3 Effect of Prandtl number 

Analysis of bifurcation diagrams displayed in Figures 8.1 and 8.10 permits identification 

of critical conditions leading to the appearance of new, primary bifurcation branches. At 

this point we investigate how the critical Rayleigh number Racr changes with the change 

of the Prandtl number of the fluid. Figure 8.12 shows the varation of Racr for Pr = 0.71, 

and Pr = 7 as functions of . For both cases the decrease of  results in Racr approaching 

the limit of 427, which agrees with the critical conditions for the RB instability for a 

uniformly heated lower wall (Drazin and Reid 1981). An increase of  leads to the 

primary convection with a strong spatial modulation and results in a rapid increase of 

Racr. Figure 8.12 also demostrates that the critical Rayleigh numbers Racr remain very 

close for both types of fluids. The difference between them decreases as  decreases and 

Racr's for Pr = 0.71 and 7 approach the same asymptotic value.  

 

The complete bifurcation diagram in the (NuL, ) plane for Pr = 7 overlaid with the 

diagram for Pr = 0.71 is displayed in Figure 8.13. The primary bifurcation points remain 

essentially unchanged while the branches corresponding to the saturations states exhibit 
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small differences increasing with distance away from the critical points. It may be 

concluded that the qualitative response of both fluids to the imposed heating is the same 

while quantitative differences remain small.  
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Figure 8.12. Variation of the critical Rayleigh number Racr as a function of the heating 
wave number  for fluids with Pr = 0.71 and Pr = 7. Open circles denote critical 
conditions for the pitchfork bifurcations and filled circles denote the critical points for 
the "bifurcations from infinity". 
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Figure 8.13. Variations of the local Nusselt number NuL as a function of the heating 
wave number  for selected values of the Rayleigh number Ra for fluids with Prandtl 
numbers Pr = 0.71 (dash lines) and 7 (solid lines). 
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Finally, bifurcation diagrams displayed in Figure 8.13 demonstrates explicitely that the 

complex bifurcation patterns identified in this chapter describe phenomena strictly 

associated with the long wavelength heating and not taking place when  = O(1).   

 

 

8.4 Summary  

Natural convection in an infinite slot subject to periodic heating at the lower wall with 

wavelengths that are large when compared with the slot thickness has been studied. 

Secondary motions in the form of rolls aligned in the direction of primary rolls and 

concentrated around the hot spots occur for supercritical values of Ra (Ra > 427). Two 

types of bifurcations have been identified depending on the wave number of the heating  

and on the intensity of the heating Ra.  

 

When the heating intensity is sufficiently small but larger than the critical value, i.e.,    

427 < Ra < ~470, the secondary motions correspond to supercritical pitchfork 

bifurcations and occur only for  < ~0.14, i.e., when  is sufficiently small. One of the 

branches of such bifurcation always has an odd number of secondary rolls per half period, 

with rolls at the hot spots rotating in the direction opposite to the primary rolls. The other 

branch has an even number of secondary rolls per half period, with the rolls at the hot 

spots co-rotating with the primary rolls. The number of rolls increases without limit as  

decreases with new rolls being pinched off in pairs. The pinching process for each branch 

occurs at different 's and as a result the branches alternate in producing larger net heat 

flow.  

 
Increase of the intensity of the heating to Ra > ~470 results in secondary motions 

occurring at larger values of  (for  > ~ 0.14), and bifurcation changing character into 

"bifurcations from infinity". The critical points for such bifurcations move towards higher 

's with increase of Ra. The main branch of this bifurcation is associated with one pair of 

rolls per heating period for  > 0.25 in the range of Ra studied. Decrease of  results in 

the formation of secondary rolls and the rolls at the hot spots co-rotating with the primary 



 146

rolls. The new rolls are always pinched off in pairs having always an even number of rolls 

per half period. The other branch is associated with one pair of rolls per heating period 

when  is very small. Increase of  results in pinching off of rolls counter-rotating with 

the primary rolls at the hot spots resulting in an odd number of rolls per half period.  

 
The bifurcation processes are insensitive to variations of the Prandtl number for Pr = O(1) 

as only small differences have been observed between results for Pr = 0.71 and Pr = 7. It 

has been shown that the observed phenomena are strictly associated with the small wave 

number limit of the external heating. 

 



9  

Primary Convection with External Flow 

So far we have discussed the primary and secondary convections generated solely due to 

the application of periodic heating. In this chapter, we elucidate changes in the primary 

convection due to the presence of an external flow. The external flow considered here has 

the form of a fully developed Poiseuille flow. Only fluid with the Prandtl number           

Pr = 0.71 is considered. The organization of the chapter is as follows. In Section 9.1 we 

reformulate the problem as the formulation presented in Chapter 2 does not contain any 

information about the external flow. Numerical solution procedure is illustrated again in 

Section 9.2. Discussion of the results is presented in Section 9.3. A short summary of the 

main findings is provided in Section 9.4.  

 
 

9.1 Problem formulation 

Consider steady flow of fluid confined in a channel bounded by two parallel walls 

extending to  in the x-direction and placed at a distance 2h apart from each other with 

the gravitational acceleration g acting in the negative y-direction, as shown in Figure 9.1. 

The flow is driven in the positive x-direction by a pressure gradient. The fluid is 

incompressible and Newtonian with thermal conductivity kd, specific heat per unit mass c, 

thermal diffusivity = kd/c, kinematic viscosity , dynamic viscosity , thermal 

expansion coefficient  and variations of the density  that follow the Boussinesq 

approximation.  All material properties are evaluated at the reference temperature defined 

below. The lower wall is subject to a periodic heating with temperatures of the lower (L) 

and upper (U) walls are specified as,   
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 xcos50(x)θL  . ,        0)x(U  ,  (9.1)

 

where  stands for the wave number of the heating (=2/ is the wavelength),  denotes 

the relative temperature, i.e., =T-Tref, T denotes the temperature and Tref denotes the 

reference temperature. It is assumed that the mean temperatures of the both walls are 

equal and this defines the reference temperature. 

 

 
 
 
 
 
 
 
 
 

 
Figure 9.1. Plane Poiseuille flow subject to a periodic heating. 

 

The velocity and pressure fields in the absence of any heating have the form (Poiseuille 

flow) 

 

]0,1[]0),y(u[)y,x( y 2
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where v = (u,v) denotes the velocity vector scaled with the maximum of the x-velocity 

component Up as a velocity scale, p stands for the pressure scaled with the dynamic 

pressure scale Up
2, half-channel height h has been used as the length scale and Reynolds 

number is defined as Re = Uph/. We shall refer to this flow as the reference flow. The 

applied heating produces flow modifications that can be represented in the form 
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In the above, (u2,v2), p2 and 2 denote the complete velocity, pressure and temperature 

fields, respectively, (u1,v1) and p1 denote the velocity and pressure modifications created 

by the heating, respectively, 0 stands for the conductive temperature field and 1 denotes 

deviations from the conductive temperature field induced by convective effects. The 

complete velocity vector and the velocity modifications have been scaled using the 

convective velocity scale h/U v   where Up/Uv = Re, and the pressure modifications 

have been scaled using the convective pressure scale Uv
2. The amplitude of temperature 

variations along the plates is used as the conductive temperature scale Td and Tv = Td/ 

is used as the convective temperature scale, where Tv/Td = Pr and Pr =  denotes the 

Prandtl number.  

 

The conductive temperature field 0 in (9.3) satisfying conditions in (9.1) can be easily 

determined, i.e, 

 

   
     

 
xin

n

0n
n

)n(
L

)n(
U

)n(
L

)n(
U

n

0n
n

xin)n(
00

e
ncosh2

yncosh

nsinh2

ynsinh

e)y()y,x(














 

















 

 (9.4)

 

with 4/1)1(  
L  , 0)n(

L  for 2n   and 0)n(
U   for 1n  . 

 

The dimensionless field equations describing motion of the fluid and changes in the 

temperature field have the form 
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where Ra = gh3Td/ is the Rayleigh number, 2 denotes the Laplace operator and 

dissipation effects in the energy equation have been neglected. The boundary conditions 

take the form 

 

      01,01v,01u 111  . (9.6)

         

The problem specification needs to be closed by specifying additional constraint. The 

presence of heating may alter the resistance that the fluid needs to overcome during its 

motion through the channel. The additional constraint may thus be specified in the form 

of requirement that the flow with or without the heating has to carry the same mass flow 

rate, i.e., fixed mass flow rate constraint. This constraint can be expressed as  
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and its enforcement permits determination of the change in the average pressure gradient 

required in order to maintain the same flow rate. Another constraint of interest is the fixed 

pressure gradient constraint, i.e., the same pressure gradient is available for pushing the 

fluid through the channel with or without the heating. This constraint may be expressed as 
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 (9.8)

             

and permits determination of the change in the mass flow due to the imposition of the 

heating. The complete problem, which consists of the field equations (9.5), the boundary 

conditions (9.6) and either constraint (9.7) or (9.8), needs to be solved numerically. 
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9.2 Numerical Solution  

We define the stream function (x,y) in the usual manner, i.e., y/u1  , 

x/v1  , and eliminate pressure from the momentum equations bringing the 

governing equations to the following form 
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where the nonlinear terms are written in the conservative form, i.e.,  
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The solution is assumed to be in the form of Fourier expansions, i.e., 
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where )n()n(
1 Du   and  )n()n(

1 inv  and Ap denotes pressure gradient modification 

induced by the heating. The nonlinear terms are expressed in terms of Fourier expansions 

in the form 
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Substitution of (9.10) into (9.9) and separation of Fourier components result in the 

following system of ordinary differential equations for the modal functions 
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The linear terms have been placed on the left hand side, and the nonlinear and the known 

terms have been placed on the right hand side. The required boundary conditions for the 

modal functions have the form  

 

D(n)(1)=0, (n)(1)=0 , for -<n<+ .  (9.12a,b)

 

(n)(1)=0,   for n0   (9.12c)

  

(0)(-1)=M1,   (0)(1)=M2 (9.12d,e)
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where the constants M1, M2 can be selected arbitrarily (Floryan 1997). One of these 

constants defines the arbitrary normalization condition in the definition of the stream 

function and the other one follows from a suitably chosen flow constraint. In the case of 

the fixed mass flow rate constraint these constants have been selected in the form 

 

(0)(-1)=0, (0)(1)=0 .   (9.13a,b)

 

In the case of the fixed pressure gradient constraint the closing conditions take the form 

 

(0)(-1)=0,  Ap=0.  (9.14a,b)

 

The system (9.11) together with the boundary conditions (9.12a-c) and either constraints 

(9.13a,b) or (9.14a,b) needs to be solved numerically.  

 

For the purpose of numerical solution, expansions (9.10) have been truncated after NM 

Fourier modes. The discretization method uses Chebyshev collocation technique based on 

NT collocation points. Gauss-Chebyshev-Lobatto points (Trefethen 2000) are used as the 

collocation points and their locations are computed from the following expression  
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which is advantageous in the floating-point arithmetic (Weideman and Reddy 2000). The 

resulting nonlinear algebraic system of equation is solved using an iterative technique 

combined with under-relaxation in the form 

 

 jcompj1j RF    (9.16)

  

where  )n()n( , , comp denotes the current solution, j  denotes the previous 

solution, and 1j  stands for the accepted value of the next iteration and RF denotes the 
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relaxation factor.  

 

The solution process starts with solution of (9.11) with the nonlinear terms on the RHS 

assumed to be zero. Once solution of this problem has been completed, the first 

approximation of the nonlinear terms is computed on the basis of the available 

approximation of the velocity and temperature fields and system (9.11) is resolved with 

the new approximation of the nonlinear terms used on the RHS. This process is 

continued, with the update of the nonlinear terms taking place after each iteration, until a 

convergence criterion in the form  

 

  TOLmax jcomp   (9.17)

  

is satisfied. TOL in (9.17) denotes tolerance at two consecutive iterations. The number of 

collocation points and the number of Fourier modes used in the solution were selected 

through numerical experiments so that the flow quantities of interest were determined 

with at least six digits accuracy.  

 

The evaluation of the non-linear terms requires evaluation of products of two Fourier 

series. It is more efficient to evaluate these product in the physical space rather than in the 

Fourier space (Canuto et al. 2006). The required flow quantities, i.e., u1, v1, 1, are 

computed in the physical space on a suitable grid based on the collocation points in the  

y-direction and a uniformly distributed set of points in the x-direction, and the required 

products are evaluated. The Fast Fourier Transform (FFT) algorithm is used to express 

these products in terms of Fourier expansions (9.10d). The aliasing error is controlled 

using "padding" (Canuto et al. 2006), i.e., using of a discrete FFT transform with Np 

rather than NM points, where Np  3NM / 2. Zeros are added for the additional Fourier 

modes as required.  
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Imposition of the fixed mass flow rate constraint (9.13a,b) is simple. Once the flow field 

has been determined, the pressure field is computed from the momentum equation. 

Insertion of (9.10) into (9.5a) and separation of Fourier modes lead to  
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Equation (9.18a) provides ability for direct evaluation of pressure modal functions for 

n0. Equation (9.18b) can be used for determination of the additional pressure gradient 

required to maintain the mass flux in the heated channel as in the unheated reference 

channel. A form more suitable for computations (Floryan 1997) is obtained by integrating 

this equation between the walls resulting in 
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The missing expression for determination of the 0th modal function in the pressure field 

(see equation 9.10c) is obtained from the y-momentum equation. Substitution of (9.10) 

into (9.5b), extraction of mode zero and integration between both walls result in the 

following expression 

 

  
y
1

)0(

11
)0(

1
)0(

1 vvdyRap + constant (9.20)

  

where the integration constant is arbitrary. 

 

Imposition of the fixed pressure gradient constraint requires enforcement of (9.14a) in the 

same manner as above while imposition of condition (9.14b) is carried out with the help 
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of expression (9.19). The reader may note that the resulting problem is a mixed boundary 

value problem as conditions (9.19) involves quantities from both ends of the solution 

domain. The associated change in the flow rate is evaluated as 

 

)1(3Re/4Q3Re/4dy)uu(RedyuQ )0(

1

1

1

1

1
102   

 

. (9.21)

  

 

9.3 Discussions of results 

Due to the presence of the external flow the present problem becomes a three-parameter 

problem, and the parameters are (i) the heating wave number  which dictates the spatial 

distribution of the heating, (ii) the Rayleigh number Ra which defines the intensity of the 

heating, and (iii) the Reynolds number Re which describes the strength of the external 

flow. The structure of the temperature field in the absence of convection shown in  

Figure 9.2 demonstrates that the space between the walls can be separated into heated 

and cooled zones resulting in the buoyancy force changing direction along the length of 

the channel. Such distribution of the driving force results in the onset of convection 

regardless of the amplitude of the heating.   
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Figure 9.2. Isotherms of the conductive temperature field for the heating wave number 
 = 3. Solid lines denote positive temperatures and dashed lines denote negative 
temperatures. Temperature magnitudes are multiplied by 1000. Note that this figure is 
same as the Fig.2.3 presented in Chapter 2. We show it here again.   
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Convection motion has a fairly simple topology (as we have seen in Chapter 2) when 

there is no external flow, i.e., Re = 0. The fluid rises above the hot zones in the lower wall 

and descends above the cold zones forming pairs of counter-rotating rolls (see         

Figure 9.3A). When the external flow is introduced, flow topology starts to evolve away 

from the counter-rotating rolls. Figure 9.3B displays results for a weak external flow with     

Re = 1 and with the fixed mass constraint. It can be seen that a narrow stream tube has 

been formed. This stream tube separates rolls which are slightly displaced in the flow 

direction (as compared to the no flow case).  The clock-wise rotating rolls are contained 

in the separation bubbles at the lower wall whereas the counter-clock-wise rolls are 

contained in the separation bubbles at the upper wall. If the intensity of the flow is 

increased to Re = 10 (Figure 9.3C), the heights of the separation bubbles are reduced.  

Further increase of the external flow to Re = 20 (Figure 9.3D) eliminates separation 

bubbles at the upper wall while retaining separation bubbles at the lower wall; these 

bubbles are concentrated near the cold regions of the wall. At Re = 100 (Figure 9.3E), no 

separation bubbles are visible at all since the external flow is strong enough to sweep 

them away. The motion of the bulk of the fluid is dominated by the external flow, and the 

influence of the buoyancy forces is limited to a thin zone near to the lower wall. We refer 

to such flow as the ‘nearly parallel flow’. If the intensity of the external flow is further 

increased, the influence of the heating cannot be detected. It is noted that the separation 

bubbles at the lower and upper walls do not form in the same x-locations; usually the 

upper bubbles form above the hot spots while the lower bubbles form above the cold 

spots. 

 

The isotherms corresponding to the above flow conditions are depicted in Figure 9.4. It is 

apparent from these figures that plumes are inclined along the flow direction with the 

inclination increasing with an increase of Re. It is also observed that only a very narrow 

portion (near the lower wall) of the channel remains cold. For low Re (see Figure 9.4A-

C), the plume height covers almost the whole channel height; the size of the plume 

decreases with an increase of Re (Figure 9.4D-E).   
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Figure 9.3. Flow topology for the Rayleigh number Ra = 3500 and the heating wave 
number  = 1. Figures 9.3A-E correspond to the Reynolds number Re = 0,1,10,20,100, 
respectively. Stream function is normalized with its respective maxima. max for Figs 
9.3A-E are 12.78, 13.34, 14.887, 26.667, 133.33, respectively. The dash-dot line in 
Fig.9.3B represents the center of the flow tube, whereas the thicker solid lines represent 
the boundaries of the lower and upper separation bubbles, respectively. 
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Figure 9.4. Isotherms for the flow conditions shown in Fig.9.3. 
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Flow patterns discussed above are usually observed when the heating wave number is low 

to moderate. A different evolution of flow topology is observed for large heating wave 

numbers. We have seen in the Chapter 2 that at Re = 0 the existence of the convection 

rolls was limited to the region near to the lower wall at large heating wave numbers, and 

the upper section of the channel experienced uniform x-independent temperature 

distribution. This phenomenon is shown again in Figures 9.5A and 9.6A. Introduction of 

a weak Poiseuille flow (e.g., Re = 1) into the channel causes the rolls to begin to detach. 

The clockwise rolls form separation bubbles at the lower wall as before, but the counter-

rotating rolls now form separation bubbles inside the flow; we refer to them as ‘bubble-

inside-the-flow’ as shown in Figure 9.5B. Existence of the inflow stagnation points is 

detected. These bubbles divide the flow stream into two sections: one stream flows above 

the bubbles and the other flows below the bubbles. The lower stream meanders, whereas 

the upper stream is almost straight. This type of flow topology is usually observed at large 

heating wave numbers . If the intensity of the external flow is increased to Re = 10 (see 

Figure 9.5C), the bubbles inside the flow disappear but bubbles attached to the lower 

wall remain. Further increase of Re to 40 eliminates the lower bubbles and the flow 

becomes nearly parallel as depicted in Figure 9.5D. It is noted that creation of separation 

bubbles at the upper wall at large heating wave number requires high intensity of the 

heating (e.g., Ra = 5000 at Re = 1 for  = 5). In this case, the flow topology consists of 

three types of bubbles: bubbles at the lower wall, bubbles at the upper wall and ‘bubble-

inside-the-flow’. Figure 9.5E well illustrates such flow topology.            
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Figure 9.5. Flow topology for the heating wave number  = 5. Figs 9.5A-E correspond 
to the Reynolds number Re = 0,1,10,40,1, respectively. The Rayleigh number Ra = 3500 
for Figs 9.5A-D, and 5000 for Fig.9.5E. Stream function is normalized with its respective 
maxima. max for Figs 9.5A-E are 1.248, 1.365, 13.333, 53.333, 1.772, respectively.    
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Figure 9.6. Isotherms for the flow conditions shown in Fig.9.5. 
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In Figure 9.7 we elucidate the relationship between the heating wave number  and the 

Rayleigh number Ra at a fixed value of the Reynolds number Re that guarantees 

existence of various aforementioned flow structures.  For a fixed value of Re, we obtain 

four types of zones. In zone I (which is below the solid lines) no bubbles are formed and 

the flow structure corresponds to the ‘nearly parallel flow’. This zone exists for all  

when either the intensity of the external flow is sufficiently high or the intensity of the 

heating is sufficiently low. In zone II (above the solid line) separation bubbles form at the 

lower wall. Bubbles start to appear at the upper wall when the flow conditions correspond 

to zone III. It is evident from Figure 9.7 that if the upper wall bubbles form, the lower 

wall bubbles must also form; formation of only the upper bubbles is not possible. For 

higher values of , intense heating (higher Ra) needs to be used in order to generate 

bubbles at the upper wall. Lastly, zone IV (above the dash-dot line) emerges when the 

heating is sufficiently high and, at the same time,  is also sufficiently high. Here at      

Re = 1 zone IV does not emerge at all if  ~<3.9.   
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Figure 9.7. Conditions for existence of various separation bubbles for the external flow 
with the Reynolds number Re = 1. Note that above the solid line bubbles at the lower 
wall exists, above the dotted line bubbles at the upper wall exist, and above the dash-dot 
line ‘bubbles-inside-the-flow’ exist. 
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Conditions for the formation of bubbles at the lower and upper walls for selected values 

of Re are illustrated in Figure 9.8. These results demonstrate that in order to create 

bubbles at each of the walls one needs to increase the Reynolds number Re and the 

Rayleigh number Ra at the same time. It is found that for the range of Ra considered in 

this study the upper wall bubbles do not form when Re >~20 whereas the lower wall 

bubbles do not form if Re >~70.    
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Figure 9.8. Conditions for existence of bubbles at the lower wall (Fig. 9.8A) and at the 
upper wall (Fig. 9.8B) for selected values of the Reynolds number Re. Below each of the 
line bubbles do not exit, above each of the lines bubbles do exist.   
 

 

At this point, we focus our attention on the streamwise pressure gradient modifications 

(defined by Eq. 9.19) that may be induced by the applied heating. Figure 9.9 shows the 

variations of the pressure gradient modification Ap as a function of the heating wave 

number  and the intensity of the reference flow Re at a constant intensity of the heating 

Ra. One may note that negative Ap contributes to the increase of drag whereas positive Ap 

contributes to the reduction of the drag experienced by the flow. For the range of 

parameters considered here we always obtain positive values of Ap , and with the increase 

of heating intensity Ra, the value of Ap usually increases.  
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To understand why drag force is reduced, we consider the force balance as follows:  

Shear stress acting on the fluid at the lower wall, 
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Shear stress acting on the fluid at the upper wall, 
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Shear force acting on the fluid at the lower wall per one wavelength of the heating, 

dxF x
0x LSL   

  where,  /2  

 

Shear force acting on the fluid at the upper wall per one wavelength of the heating, 

dxF x
0x USU   

 . 

 

The force balance along the x-direction requires that the total shear force per one 

wavelength ( sUsLs FFF  ) has to be equal to the pressure force acting on surfaces 

perpendicular to the walls placed at a distance equal to one wavelength, i.e., 
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Figure 9.9. Variation of  the streamwise pressure gradient modification induced by the 
heating Ap as functions of the heating wave number , and the Reynolds number Re for 
the Rayleigh numbers Ra=2000(solid line) and 5000(dash-dot lines) for the constant 
mass flux constraint. The maximum values of Ap at Ra=2000 and 5000 are 2.722 (at 
=2) and 8.175 (at =2.25), respectively. 
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Consider situation when Ap takes the maximum value for Ra = 2000, i.e., Re = 6.3 and    

 = 2. The shear force acting on the fluid on both walls and the percentage reduction of 

the drag force  as compared with the non-heated case are shown in Table 9.1.   

 

 
tingwithoutheastingwithoutheasgwithheatins% F/100.FF   (9.22)

  

Table 9.1: Shear force at Re = 6.3,  = 2, Ra = 2000, Ap = 2.722. 

 Lower wall 

(FSL) 

Upper wall 

(FUL) 

Total 

(FS) 

Percentage 

Reduction, (%) 

Without heating -39.58 -39.58 -79.16 

Ra=2000 -14.17 -47.89 -62.06 

21.6 

 

The above results show that presence of the heating results in 21.6% drag reduction. 

 

 
The flow topology and the pressure field for the above conditions are displayed in  

Figure 9.10A. The flow structure contains separation bubbles at the lower and upper 

walls. Here we see that the size of the lower wall bubble is moderate, and the size of the 

upper wall bubble is small. This combination of the bubbles’ size provides maximum 

drag reduction.  It may be noted that if the bubbles’ size is too large drag reduction is very 

small. We shall come to this issue again. 

 

Figure 9.10B illustrates shear stress distributions at the lower and upper walls. Shear 

stress is positive in the separation regions. Because of that, instead of opposing the flow, 

the shear assists the flow as it acts along the flow direction. The overall result is the 

reduction of the total shear force when compared with the non-heated channel.   
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Figure 9.10. Flow structure is shown in Fig.9.10A, and shear stress  distributions at the 
lower wall (solid line) and the upper wall (dotted line) are shown in Fig.9.10B for 
the conditions when the streamwise pressure gradient modification induced by the 
heating Ap is maximum, i.e., Re = 6.3,  = 2, Ra = 2000. Shaded areas in Fig.91.0B 
show the regions of separation bubbles.  
 

 

 
Figure 9.11 depicts velocity profiles at different x-locations over one heating wavelength. 

It is evident that the maximum of the horizontal velocity component is greater than that 

for the unheated flow. This increase of the local velocity is due to the formation of the 

separation zones which reduce the cross-sectional flow area available to the flow.  

 

Figure 9.12 describes distribution of shear stress at the upper and lower walls at selected 

values of the Reynolds number Re. It confirms that the bubble size diminishes with the 

increase of Re, and at high enough Re the bubbles disappear.  
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Figure 9.11. Horizontal velocity profiles at different x-locations for the Reynolds number 
Re = 6.3, the heating wave number  = 2 and the Rayleigh number Ra = 2000. The thick 
dash-dot line shows the velocity profile without heating. Horizontal velocity is 
normalized by the maximum of uref .  
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Figure 9.12. Shear stress  distributions at the lower (Fig.9.12A) and the upper 
(Fig.9.12B) walls for selected values of the Reynolds number Re at the heating wave 
number  = 2 and the Rayleigh number Ra = 2000.  Subscripts L and U are for the lower 
and upper walls, respectively. 
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To identify the heating pattern (i.e., the heating wave number ) which leads to the 

maximum drag reduction, we refer to the plot shown in Figure 9.13. It can be seen that 

the heating pattern defined by  = 2~3 provides the maximum possible drag reduction at 

Reynolds numbers Ra = 2000 and 5000 considered here. The range of the Reynolds 

numbers that provides meaningful drag reduction is identified as Re = 1~20 for the case 

of Ra = 2000; this range increases to Re = 0.5~50 for Ra = 5000. The magnitude of Ap is 

reduced at higher Re because of reduction of the size of the separation zones. It is found 

that at low Re the magnitude of Ap decreases proportionally to the decrease of Re. To 

explain the reduction of Ap at smaller values of Re we explore the flow structures at very 

low Re. A typical example is shown at Figure 9.3B. It is observed that at very low Re, 

the presence of the heating results in large and almost vertical plumes (as the reference 

flow is too weak to tilt them along the flow direction) covering most of the channel height 

resulting in the formation of very big separation bubbles at both walls leaving a very 

narrow meandering flow tube for the fluid to pass through. The overall effect of such flow 

re-arrangement is the reduction of the pressure gradient modification Ap.       
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Figure 9.13. Variation of the streamwise pressure gradient modification induced by the 
heating Ap as a function of the Reynolds number Re for the Rayleigh numbers Ra = 2000 
(solid line) and Ra = 5000 (dash-dot line) for selected values of the heating wave number 
. 
 



 170

Figure 9.14 illustrates variations of the pressure gradient modification Ap with the change 

of the heating intensity Ra at selected values of the flow Reynolds number Re. We 

consider  = 2 and 3 only as these values correspond to the most efficient heating 

patterns. Ap initially increases proportionally to Ra2 but this increase eventually saturates 

and any additional heating does not increase Ap.  
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Figure 9.14. Variation of the streamwise pressure gradient modification induced by the 
heating Ap as a function of the Rayleigh number Ra at selected values of the Reynolds 
number Re for the heating wave numbers  = 2(solid line) and  = 3(dash-dot line).The 
thick dash line represents the relation Ap Ra2.    
 

 

The nonlinear interactions associated with the convection and the reference Poiseuille 

flow give rise to the mean vertical temperature gradient that results in the net heat transfer 

between both walls. The net heat flow between both walls per unit length is expressed in 

terms of the Nusselt number defined as 
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Figure 9.15 shows the net transfer between the walls. It is observed that with the increase 

of the Reynolds number Re, the Nusselt number Nu decreases. This is because the 

external flow dominates the bulk motion of the fluid and the transverse heat transfer is 

limited to conduction only.  
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Figure 9.15. Variation of the heat flow between the walls expressed in terms of the 
Nusselt number Nu as functions of the Reynolds number Re and the heating wave number 
. Solid line corresponds to the Rayleigh number Ra = 2000, and dash-dot line to 
Ra = 5000.  
 

 

9.4 Summary 

Channel flow subject to a periodic heating at the lower wall has been considered. The 

flow has Poiseuille form in the absence of any heating. The flow with the heating exhibits 

five distinct topologies, i.e., (i) nearly parallel flow, (ii) flow with separation bubbles at 

the lower wall, (iii) flow with separation bubbles at the upper wall, (iv) flow with bubble-

inside-the flow, and (v) flow with a combination of the lower, upper and inside bubbles.  

It is found that the pressure gradient modification induced by the heating is always 

positive indicating the reduction of the overall drag. The formation of the separation 

bubbles provides recirculation zones which contribute to the reduction of the wall shear 
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force, and thus to the reduction of the drag. Maximum drag reduction occurs when the 

separation bubbles at the lower and the upper wall exist simultaneously and have 

optimum sizes.  

 
 



10  

Conclusions, Applications and Recommendations 

10.1 Conclusions 

Thermal convection (buoyancy-driven) of a Boussinesq fluid contained in an infinite slot 

has been analyzed. The slot is subject to a spatially distributed heating and the gravity is 

directed across the slot. It is assumed that the mean temperatures of both walls are the 

same and thus the convection occurs only due to the spatial variability of the heating. 

Detailed results are presented for the case of sinusoidal variations of temperature of the 

lower wall while the temperature of the upper wall is kept constant. The spatial pattern of 

the heating is described in terms of the heating wave number  while the intensity of the 

heating (heating amplitude) is expressed in terms of a suitable defined Rayleigh number 

Ra. Fluids with Prandtl numbers in the range 10-2 < Pr < 103 have been considered which 

covers the range of interest in most of potential applications. 

 
The primary response of the system consists of convection in the form of rolls whose 

orientation is determined by the heating wave number  and structure is dictated by the 

particular values of Ra and . Heating with small and moderate values of  results in 

convection spreading throughout the whole fluid domain. When  is sufficiently large, 

convection is confined to a thin zone adjacent to the lower wall and a uniform conductive 

layer with temperature independent of the x-direction emerges above this zone. Sufficient 

increase of Ra causes convection to expand back into the bulk of the fluid. The nonlinear 

interactions associated with convection give rise to the mean vertical temperature gradient 

that results in the net heat transfer between both walls, with the heat flow being larger for 

smaller . The upper section of the fluid layer has always an unstable mean temperature 

gradient with thickness of this zone decreasing with a decrease of . 
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Linear stability of the primary convection has been considered and conditions leading to 

the emergence of secondary convection have been identified. Depending on the heating 

wave number , the secondary convection may take the form of either the longitudinal 

rolls, or the transverse rolls, or the oblique rolls, or have an oscillatory character. The 

longitudinal rolls are parallel to the primary rolls and the transverse rolls are orthogonal to 

the primary rolls, and both of them result in striped patterns. The oblique rolls lead to the 

formation of convection cells with aspect ratio dictated by their inclination angle.  

 
Three mechanisms of instability at the onset have been identified. In the case of small and 

moderate  the parametric resonance leads to the pattern of instability that is locked-in 

with the pattern of the heating according to the relation cr = /2, where cr denotes 

component of the disturbance wave vector parallel to the heating wave vector. This 

resonance may be combined with variations in patterns of vertical temperature gradients, 

and patterns and strength of the primary convection currents. These patterns represent the 

second mechanism which may by itself dominate the form of secondary convection, as in 

the case with the transverse rolls. The third mechanism is active in the case of large , 

where the instability is driven by the mean vertical temperature gradient created by the 

primary convection with the magnitude of the critical disturbance wave vector 

approaching limiting value of cr = 1.56 regardless of the roll orientation. Rolls in this 

limit show weak preference for the transverse orientation and the fluid response is similar 

to that found in the case of a uniformly heated wall. The first two mechanisms dominate 

for small and intermediate values of  where the spatial modulation of the flow is 

sufficiently strong while the third mechanism dominates in the case of weak spatial 

modulation. The strength of the modulation is a monotonic function of Pr and  but a 

non-monotonic function of Ra. 

 
  
In the case of the longitudinal rolls, mechanisms associated with parametric resonance 

and mean vertical temperature gradient, i.e., the first and the third mechanisms, are 

observed. Competition between these mechanisms gives rise to commensurable and non-

commensurable states for the longitudinal rolls. The commensurable states can be 

categorized according to the wavelength of the flow system N measured using the 
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disturbance wavelength as the length scale. Branches corresponding to N = 39, 78, 156, 

234 and 468 have been explored in details for some selected values of Pr. In the "large " 

zone the modulation is always limited to the area around the lower (heated) wall and the 

flow structures in the bulk of the fluid are dominated by cr. Depending on the type of 

fluid, a decrease of  causes flow patterns to morph into the "beating", "wavy", "double 

wavy", "wavy-like", "double-parallel" and other forms that cannot be easily characterized, 

including formation of soliton lattices.  

 
 
The possible system responses in the case of longitudinal rolls can be divided into four 

types depending on the value of Pr. In type A, the pattern of instability is locked-in with 

the pattern of heating for smaller values of  and no direct relation between both patterns 

exists for larger values of . In type B, the lock-in does not occur at all. Type C response 

is similar to Type A, the difference involves only in the rate of change of the lock-in 

conditions as a function of Pr; this change is very rapid for type C and insignificant for 

type A. In type D, two different critical instability branches have been identified. Branch 

one exists for lower values of  and corresponds to disturbances whose structure is 

locked-in with the heating pattern whereas branch two exists for larger values of  and 

describes disturbance patterns that have no direct relation with the heating patterns. 

Morphing between different patterns of instability motion may occur in response to 

change in the heating pattern in types A and C, while such process is not possible in types 

B and D.  

 
 
In the case of the transverse rolls, the main role is played by mechanisms associated with 

spatial modulation and with the mean vertical temperature gradient, i.e., the second and 

the third mechanisms. The modulation mechanism is active for heating patterns 

corresponding to the heating wave numbers O(1) for all values of Pr. Domination of this 

mechanism leads to the formation of very deformed transverse rolls. The zone where the 

other mechanism is active shifts towards higher values of the heating wave number as Pr 

decreases. The interplay between both mechanisms results in two types of fluid response 

depending on Pr. One of them produces a single-minimum critical curve when both 
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mechanisms are active in the same range of heating wave numbers, and the other 

produces a two-minimum critical curve when both mechanisms are active in distinctly 

different ranges of the heating wave numbers. A zone of a fairly stable primary 

convection occurs in the latter case for the heating patterns corresponding to the heating 

wave numbers from the in-between zone.  

 
 
In the case of the oblique rolls, all three mechanisms are active. It has been found that, 

within the range of Ra being of interest, these rolls can change orientation from 0 to 35 

with respect to the primary rolls depending on the heating wave number and the Prandtl 

number of the fluid. A rapid stabilization of the primary convection is observed when the 

heating wave number is sufficiently small. Analysis of temperature field created by the 

primary convection at the onset suggests that reduction of the thickness of zone with an 

unstable temperature gradient is likely responsible for the observed stabilization. The 

zone of dominance of the oblique rolls increases (moves toward “large ” zone) with the 

decrease of Pr. The x-component of the critical disturbance wave vector cr varies as      

cr = /2 for all of the Prandtl numbers considered. Morphing between the oblique and 

longitudinal rolls occurs only for fluids with ~0.3<Pr<~1.  

 
 
In the case of long wavelength heating, secondary motions in the form of longitudinal 

rolls concentrated around the hot spots occur for supercritical values of Ra (Ra > 427). 

Pitchfork bifurcations and "bifurcations from infinity" have been identified depending on 

the wave number of the heating  and on the intensity of the heating Ra. The secondary 

convective motions of each of the bifurcation branches contain either an odd number of 

secondary rolls per half period, with rolls at the hot spots rotating in the direction opposite 

to the primary rolls, or an even number of secondary rolls per half period, with the rolls at 

the hot spots co-rotating with the primary rolls. The number of rolls increases without 

limit as  decreases with new rolls being pinched off in pairs. The pinching process for 

each branch occurs at different 's and as a result the branches alternate in producing 

larger net heat flow. The bifurcation processes are insensitive to variations of the Prandtl 

number for Pr = O(1). 
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The topology of the primary convection changes with the presence of an external flow. 

Five distinct flow compositions have been identified; they include separation bubbles at 

the lower wall, separation bubbles at the upper wall, ‘bubbles-inside-the-flow’, 

combination of the lower, upper and inside flow bubbles, and a nearly parallel flow.  The 

pressure modification gradient induced by the heating always appears to be positive 

indicating reduction of the overall drag. The formation of separation bubbles provides 

some recirculation zones which contribute to the reduction of the wall shear force which 

leads to the reduction of the drag. Maximum drag reduction is achieved when the flow 

contains separation bubbles both at the lower and upper walls with an optimum size.  

 
Overall, it is can be concluded that the heating wave number  can be used as a pattern 

control parameter and its judicious selection provides means for creation of a large range 

of flow responses. 

 
 

10.2 Applications 

The distributed heating or, particularly, the periodic heating in sinusoidal form studied in 

this dissertation provides unevenly heated surfaces. We have seen that this type of heating 

produces convection regardless of the intensity of heating, no matter how small the 

heating amplitude is. Some of the proposed applications are discussed below: 

 

 To create convection and thereby enhance mixing in micro- and nano-devices by 

inserting electrically heated micro- or nano-wires in a suitable interval on the 

surface. 

 

 To contribute to modeling of transport processes in atmosphere where local 

convective motions may be occurring in the presence of unevenly heated surfaces 

(ocean, lake/forest system, urban environment, local fires etc.). Local convection 

may have dominant effect on transport of contaminants, especially in urban 

environment and in sea. 
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  To develop new efficient heat exchangers working with low temperature 

differences between the heat source and the heat target. The primary application 

area would be geothermal heating and cooling. Use of geothermal energy is of 

great interest at present due to concerns associated with environmental pollution, 

greenhouse gases and the cost of traditional sources of energy.  

 

 To help in the analysis of transport processes occurring during transportation of 

petroleum products such as natural gas using pipelines. Pipelines usually extend 

over large distances and thus must be exposed to different temperatures which 

could be modeled using periodic heating. In this sense, this study may be helpful 

in petroleum industry.   

 

 RB convection is suitable for performing thermally activated chemical reactions 

that require temperature cycling. One example that requires frequent changes in 

temperature is the polymerase chain reaction (PCR) that is typically carried out by 

heating and cooling a sample volume repeatedly. Krishnan et al. (2002) conducted 

PCR for DNA amplification using RB convection cell. Various convection cells 

obtained in this study may also be used for such PCR.   

 

 The analysis of the noninvasive measurement of blood perfusion (Liu and Xu 

1999) and the analysis of cancer hyperthermia or thermal comfort (Deng and Liu 

2002) in biological bodies involve the use of spatial sinusoidal heating.  

Consequently, this study may be a potential use for these types of problems. 

 

10.3 Recommendations for future works 

Primary and secondary convection in a fluid layer exposed to a sinusoidal heating at the 

lower wall has been considered for a wide range of Prandtl numbers Pr. The primary 

convection is assumed to be two-dimensional while the secondary convection is assumed 

to be three dimensional. Analysis of the secondary convection is based on the linear 
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stability theory. In order to advance research presented in this dissertation, analysis of the 

following problems may be undertaken in the future: 

 

i) In this dissertation various secondary flow structures have been identified at 

the onset conditions. The next step would be to perform the direct numerical 

simulation (DNS) to obtain saturation states, as saturation properties dictate 

the actual behavior of the system. 

 

ii) The distributed heating defined here may have many forms. The simplest 

pattern described by sinusoidal function has been investigated in details. More 

complex forms of heating can be considered. Examples of possible patterns 

include heating with temperature in the form of a saw-tooth, or in the form of 

a sine-bump, among many others. 

 

iii) The heating pattern considered in this dissertation varies along the length of 

the slot, i.e., f(x). Variations across the slot can be studied by considering 

heating to be function of both dimensions, i.e., f(x,z). In the later case, the 

primary convection will be three-dimensional, and the corresponding linear 

stability will follow formulation presented in Appendix C.  

 

iv) In RB convection a non-linear stability theory is used to obtain final patterns, 

e.g., spiral-defect chaos, etc. (Bodenschatz et al. 2000). Non-linear stability 

theory may be developed to gain further understanding of periodically heated 

systems.  

 

v) This dissertation describes only the primary convection when an external flow 

is present. This analysis can be extended by considering the secondary 

convection in the presence of an external flow. 
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Appendix-A  

 
Calculation of Pressure Field for the Primary Convection 

 

This appendix describes method used to determine the pressure field from the computed 

velocity field for the primary convection described in Section 2.4.2.2.  

The non-dimensional x- and y-momentum equations (2.5a-b) can be written in the 

conservative form as 
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The flow variables u, v and p can be expressed using Fourier expansion as 
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The convective terms can also be expressed in terms of the Fourier expansions as  
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Insertion of the above Fourier expansions into (A.1) and separation of Fourier 

components lead to 
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Equation (A.4a) written for mode n0 provides expression for the evaluation of p(n)(y)  
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The last quantity, i.e., p(0)(y), needs to be computed from the y-momentum equation 

(A.4b). This equation written for mode 0 results in 
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which, after integration, leads to 
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Expressions (A.5) and (A.7) provide the complete pressure field. Integration constant in 

(A.7) is arbitrary and usually taken to be zero.  
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Appendix-B  

 
Formulation of the Field Equations Describing Three-Dimensional Primary 
Convection 
  

In this Appendix we derive the three-dimensional governing equations for the primary 

convection created by spatially distributed heating varying in the longitudinal and 

transverse directions, i.e., f(x,z). The reader may note that this formulation includes 

externally imposed flow.  

 

Consider flow confined in a channel bounded by walls at y = ±1 and extending to ± in 

the x- and z- directions, as shown in Figure B.1. The reference flow is the Poiseuille flow 

directed along the positive x-axis and driven by a pressure gradient. The fluid is 

incompressible and Newtonian. This flow is modified by distributed heating applied at 

the bottom wall resulting in the temperatures of the walls in the form 
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 U(x,z) = 0  (B.1b)

 

where  = 2/x,   = 2/z ,and x and z denote wavelengths in the streamwise and 

spanwise directions, respectively.  denotes the relative temperature, i.e.,  = T-Tref, T 

denotes the temperature and the temperature of the upper wall is selected as the reference 

temperature Tref. 
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The dimensional field equations for a Boussinesq fluid are scaled using two sets of scales, 

i.e., one to characterize the Poiseuille flow and the other to characterize the convective 

structures resulting from the heating. Scales are defined as follows: 

Length scale: h - half channel height;  

Velocity scales: 

i) for Poiseuille flow: Up =  maximum x-velocity component of Poiseuille flow;  

ii) for convective flow: Uv =  /h;   

Temperature scales: 

(i) conductive scale: Td = amplitude of the temperature variations  

ii) convective scale:  /TT dv ,  

Pressure scales: 

(i) for Poiseuille flow: 2
pp UP  , 

(ii) for convective flow: 2
vv UP  , 

Time scale: vU/dt  . 

 

 
 

Figure B.1. Plane Poiseuille flow subject to a spatially distributed wall heating. 
 
 
The resulting non-dimensional parameters are defined as follows: 
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where Re stands for the Reynolds number, Pr denotes the Prandtl number and Ra stands 

for the Rayleigh number. In the above,  is the kinematic viscosity,  is the thermal 
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diffusivity, g stands for acceleration due to gravity,  is the volumetric coefficient of 

expansion and  denotes the density of the fluid.  

 

The velocity and pressure fields associated with the Poiseuille flow have the form 
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The flow quantities are assumed to have the following form 
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where subscript 1 denotes flow modifications due to the heating and 0 is the conduction 

temperature field defined as 
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where uni,0  stands for the part of the temperature field generated by the mean temperature 

difference between the channel walls, i.e., 
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and nun,0  stands for the spatially non-uniform part described by the following problem 
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subject to boundary conditions that can be deduced from (B.1). The solution is assumed 

to be in the form 
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which leads to the analytical expression in the form 
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where 22222
m,n mnk  . 

 

Flow quantities represented by Eq. (B.3) are substituted into the three-dimensional 

Navier-Stokes, continuity and energy equations resulting in the following form of the 

governing equations, 
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To eliminate pressure from the momentum equations, the governing equations have been 

expressed in terms of the wall-normal vorticity ( x/wz/u 11  ), the wall-normal 
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velocity and the temperature (Kim et al. 1987), resulting in a form suitable for 

computations, i.e.,  

wall-normal vorticity () equation: 
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wall-normal velocity (v) equation:  
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energy equation: 
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Here the special symbol ‘<..>’ is used to represent the product terms of the flow 

quantities (u1, v1, w1 and 1). 

 

 

Method of solution 

 

The unknowns are assumed in the form of Fourier expansions 
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Substitution of the above expansion into the governing equations and separation of 

Fourier modes lead to the following system of modal equations: 

wall-normal vorticity () equation: 

 

  )m,n()m,n(
1

0)m,n(
0m,n

)m,n( Nv
dy

du
ReimuReinD

t 

 ,     (B.16) 

wall-normal velocity (v) equation:  
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0
2
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2

m,n
)m,n(
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
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

















  , 

(B.17) 

energy equation: 

 

  )m,n()m,n(1)m,n(
1

)m,n(
0

1
0

)m,n(
1m,n

1
1 10

)m,n(

NNPrPruReinDPr
t 

 

        (B.18) 

where  2
m,n

22
m,n kdy/dD  ,  dy/dD  , 
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)m,n(
u
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)m,n(
11

)m,n(
11

)m,n(
11

)m,n(
v wvimvvDvuinH   , 

)m,n(
11

)m,n(
11

)m,n(
11

)m,n(
w wwimwvDwuinH  . 

 

Various terms present in (B.13-B.15) have been replaced by their Fourier expansions in 

the form 

 

  









n

n

m

m

)mznx(i)m,n( et,yN)t,z,y,x(N  

 

where N stands for N , vN , 
0

N  and 
1

N .  

 

The modal functions )m,n(
1u and )m,n(

1w for velocity components can be computed as 

 

 )m,n()m,n(
1

2
m,n

)m,n(
1 imvDinku   , 

 

 )m,n()m,n(
1

2
m,n

)m,n(
1 inDvimkw   . 

 

The reader may note that the aforementioned two relations are valid for n 0, m 0 and 

special relations are needed for the mode (0,0). Equations for mode (0,0) have been 

derived from equations (B.8-B.12) and have the following form in the Fourier space 
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    p0000000
2 ANuuDvuD

Re

1
   ,       (B.19a) 

   0v00   ,           (B.19b) 

   0w 00   ,          (B.19c) 

  0ND
PrRe

1
0000

2           (B.19d) 

where Ap is the streamwise pressure gradient induced by the heating, and 00Nu  and 

00N are the respective nonlinear terms associated with the mode (0,0). 

  

Equations (B.16-B.18) are subject to the no-slip and no-penetration conditions at both 

walls. The no-slip boundary conditions translate into 0)m,n(  and 0Dv )m,n(
1   to be 

imposed at the walls. No-penetration condition translates into 0v )m,n(
1   to be imposed at 

both walls. The boundary condition for temperature is simply 0)m,n(
1   at both walls. 
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Appendix-C  

 

General Three-Dimensional Stability Equation 

 

In the case of a three-dimensional primary convection described in Appendix B, the 

disturbances have the form  

 

      .c.ce)y(g),y(g),y(gt,z,y,xv
p

p

tz)q(x)p(i)q,p(
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u

q

q
3 









 , (C.1a)

 

         .c.ce)y(gt,z,y,x
p

p

tzqxpi)q,p(
q

q
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


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
  . (C.1b)

 

The disturbance equations (3.14) become 
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where  ikDA 2
q,p

2)q,p( ,     2
q,p

222
q,p

2)q,p( kDikDB  ,  
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 pt p ,  qt q , 2
q

2
p

2
q,p ttk  ,  
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The boundary conditions (3.15) take the form 
 

  01)m,n(  ,    01g )m,n(
v  ,   01Dg )m,n(

v  ,   01g )m,n(    for -<n<+. (C.3)

 
The required expressions for the basic state (3.16) have the form 

 

         zimxin
m

m

)m,n(
w

)m,n(
v

)m,n(
u

n

n
2 eyF,yF,yFz,y,xv 








 , (C.4a)

  

   











m

m

zimxin)m,n(
n

n
2 eyFz,y,x . (C.4b)



 196

Appendix-D  

 

This appendix describes the classical Newton-Raphson and the ‘inverse iteration’ 

methods that are used to evaluate a single eigenvalue as discussed in Section (3.3). It also 

describes the Newton-Raphson search method used for eigenvalue tracing.   

 
D.1 Newton-Raphson search method 
 
To solve the homogeneous system (3.14) together with the boundary conditions (3.15), let 

us take an initial guess of the eigenvalue a. Since all of the boundary conditions are 

homogeneous, we alter one of the boundary conditions to a non-zero value, for example, 

we alter the original boundary condition  

 

    01DgBC )n(
v    to    11gD )n(

v
2  .             (D.1a-b) 

 

Now the system (3.14) with the new boundary condition becomes non-homogeneous and 

can be solved directly. Our goal is to search iteratively for the correct value of  so that 

the original boundary condition is satisfied. We use the Newton-Raphson method for this 

purpose. A suitable relaxation factor (relax) is used to guarantee convergence.   

 

The following form of the Newton-Raphson search procedure has been used for 

computing the eigenvalue,   

 

START: assume, a0  , 01
step
0 S  , 02relax S   

where S1, and S2 are small percentages of 0 , usually (S2<S1). 

  Solve the system using 0 , and store the value of boundary condition as BC0  

Compute step
001  . 
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REPEAT for k=1,2,3… UNTILL BCk <   ( here,  is the tolerance in BC) 

 1) Solve the system with k , and store the value of boundary condition as BCk 

2) Compute 
1kk

step
1kkstep

k BCBC

BC








   

3) If relax
step
k   then, 

      step
krelax

step
k  . 

     End if 

 4) Compute step
kk1k   . 

END. 
 
 

 
D.2 Inverse Iteration method 
 
In this work, the following form of the Inverse Iteration Method has been used: 

 

START:  0 – initial approximation of an eigenvalue 

  z0  – initial approximation of an eigenvector     

  p0 = 0 
 

REPEAPT for k = 0, 1, 2,… 

1) Solve   kk zBwBA  10  

2) Compute 1kp 
1

1,


 kk zw  

3) If  k1k pp , then 

normalize 
2111 /   kkk wwz  

go to step 1 

      Else  

  compute the eigenvalue 1k0 p     

  compute the normalized eigenvector 
211 /  kk wwz  

  STOP 

      End If 

END.  
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D.3 Eigenvalue tracing 
 
To trace the eigenvalue in the parameter space we use the multidimensional Newton-

Raphson method. We use several combinations of parameters for the eigenvalue tracing. 

Here we show one example, iteration on the Rayleigh number Ra and the real part of the 

eigenvalue r keeping the imaginary part of the eigenvalue i constant.  For this case, the 

boundary condition function (D.1a) becomes 

   

   0fRa,BC r  . 

 

Taking the total derivative one obtains  

r
r

f
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f
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, 21
r

i
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

 

    r212121 iRairriff  . 

 

Separating the real and imaginary part, one obtains  

 

 r111 Rarf  , 

 r222 Rarf  . 

 

Solving the above two equations, one obtains 

 

1221

1221

rr

ff
Ra




 , 

1221

2112
r rr

frfr




 . 
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Appendix-E  

 
Numerical Accuracy 

 

This appendix describes testing of the numerical accuracy of solution processes used in 

this dissertation. The numerical accuracy of the primary convection and the secondary 

convection are discussed in Section E.1 and E.2, respectively. 

  

E.1 The primary convection 

 

Various quantities of the primary convection (Chapter 2) are obtained by using three 

different types of numerical solvers, i.e.  (i) finite difference-complex notation (Section 

2.3.1), (ii) finite difference-real notation (Section 2.3.2), and (iii) spectral complex 

notation (Section 2.3.3). Results from each of the solvers are matched. All of the solvers 

give the same accuracy (the error bounds are set at 10-6). Some of the critical points were 

tested with error bounds 10-10 and no significant changes in flow and temperature field 

were observed.  

 

Certain cases have been computed using the finite-volume discretization method applied 

to the governing equations expressed in terms of primitive variables (see equation 2.5) as 

implemented in the FLUENT commercial software package. Use of this method was 

limited due to its cost and the need to change grid structure (and repeat grid convergence 

tests) whenever wave number of heating has been altered. The cost of this method was 

higher by at least 0(100) as compared with the other methods discussed above. 

    

For large wavelength heating (Section 2.4.2) an analytical solution (see equation 2.31) 

using asymptotic expansion has been obtained. This analytical solution well agrees with 

the solution obtained numerically at small values of the heating wave number .   
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E.2 Secondary convection 

 

Results of numerical tests presented in Tables E.1-E.3 assist in identifying the correct 

values of various numerical parameters to be used in the computations. It is evident that 

the primary convection determined using NM = 14 Fourier modes with the error bounds in 

the primary convection solver set at 10-6 permits determination of eigenvalues for the 

secondary convection with accuracy no worse than four digits using NT = 51 Chebyshev 

collocation points and the same number NM = 14 Fourier modes used for discretization of 

the disturbance equations.  

 
 
a) Number of Fourier modes used in the solution of the 

primary convection (error bounds in the solver set at 10-6) 
 

 

Number of Fourier 
modes used to 

represent disturbance 
field 8 11 14 17 

 

 8 0.4821714 0.4822135 0.4822138 0.4822139 
 11 0.4820305 0.4820344 0.4820354 0.4820361 
 14 0.4820282 0.4820327 0.4820333 0.4820333 
 17 0.4820282 0.4820321 0.4820335 0.4820329 

 
b) Number of  

Chebyshev 
collocation 

points 
 

 
 

21 

 
 

31 

 
 

41 

 
 

51 

 
 

61 

 i 
 

0.4820290 0.4820308 0.4820335 
 

0.4820333 
 

0.4820336 
 

Table E.1: Disturbance amplification rate i for =2.1, =1.05, =0.66, Ra=6000 
obtained using (a) number of Chebyshev collocation points NT=51, and (b) number of 
Fourier modes NM=14 to represent both the primary convection and the disturbance field. 
The primary convection has been obtained with the convergence criterion set at 10-6. 
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a) Number of Fourier modes used in the solution of the 
primary convection (error bounds in the solver set at 10-5) 

 
 

Number of Fourier 
modes used to 

represent disturbance 
field 8 11 14 17 

 

 8 0.4821684 0.4822083 0.4822087 0.4822086 
 11 0.4820275 0.4820293 0.4820299 0.4820294 
 14 0.4820255 0.4820271 0.4820271 0.4820276 
 17 0.4820248 0.4820271 0.4820276 0.4820275 

 
b) Number of  

Chebyshev 
collocation 

points 
 

 
 

21 

 
 

31 

 
 

41 

 
 

51 

 
 

61 

 i 
 

0.4820234 0.4820277 0.4820277 
 

0.4820271 
 

0.4820293 
 

Table E.2: Disturbance amplification rate i for =2.1, =1.05, =0.66, Ra=6000 
obtained using (a) number of Chebyshev collocation points NT=51, and (b) number of 
Fourier modes NM=14 to represent both the primary convection and the disturbance field. 
The primary convection has been obtained with the convergence criterion set at 10-5. 
 
 
 
 
a) Number of Fourier modes used in the solution of the 

primary convection (error bounds in the solver set at 10-7) 
 

 

Number of Fourier 
modes used to 

represent disturbance 
field 8 11 14 17 

 

 8 0.4821723 0.4822124 0.4822127 0.4822132 
 11 0.4820316 0.4820332 0.4820344 0.4820337 
 14 0.4820300 0.4820312 0.4820321 0.4820320 
 17 0.4820300 0.4820316 0.4820322 0.4820319 

 
b) Number of  

Chebyshev 
collocation 

points 
 

 
 

21 

 
 

31 

 
 

41 

 
 

51 

 
 

61 

 i 
 

0.4820276 0.4820322 0.4820321 
 

0.4820321 
 

0.4820339 
 

Table E.3: Disturbance amplification rate i for =2.1, =1.05, =0.66, Ra=6000 
obtained using (a) number of Chebyshev collocation points NT=51, and (b) number of 
Fourier modes NM=14 to represent both the primary convection and the disturbance field. 
The primary convection has been obtained with the convergence criterion set at 10-7. 



 202

It is noted that the numerical accuracy presented in the Tables E.1-E.3 are well suited for 

the heating wave numbers 1. Below this limit one has to increase the number of 

Fourier modes for the determination of the primary convection, and hence the secondary 

convection, to get the desired accuracy. Below we present short discussion of the 

numerical accuracy required for the computations in the case of the long wavelength 

heating.  

 
Methods discussed in Section 2.3 are used for determination of stationary states in the 

case of long wavelength heating. The solution procedure uses Fourier expansions in the x-

direction and either finite-difference or collocation discretization in the y-direction. The 

finite-difference scheme has automatic grid adjustment procedure build in to guarantee 

the desired level of accuracy and thus there is no need for further discussion of this 

method. The collocation method provides spectral accuracy and also does not require any 

further discussion. The convergence of the Fourier series represents a limiting factor and 

requires explanation. Figure E.1 displays variations of kinetic energy associated with 

different Fourier modes as a function of the mode number. It can be seen that 

convergence of Fourier series (2.8) is very rapid (exponential) for heating wave numbers 

=0.5 and 0.2. Reduction of the convergence rate for smaller  is clearly visible and is 

associated with the flow bifurcations and the need to resolve very small secondary flow 

structures. Computations require in excess of 100 modes for  < 0.03 which places a 

practical limit on the analysis of secondary structures. 

 

0 20 40 60 80
10-20

10-15

10-10

10-5

100

Mode Number

En

 0.030.5 0.25 0.1 0.093

 
Figure E.1. Variations of kinetic energy associated with different Fourier modes as a 
function of the mode number for fluids with the Prandtl number Pr=0.71 subject to 
heating with the Rayleigh number Ra=450. 
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Appendix-F  

 
This appendix describes derivation of the correlation (4.3) presented in Chapter 4.  
 
 
From the primary convection in Chapter 2 the correlation (2.14) gives  
 

Nu = 0.00192Ra/3  as .       (F.1) 
 

From the secondary convection in Chapter 4,  the asymptotic relation (4.1) provides,  

 

Racr = 236 1.5  as .        (F.2) 

 

Thus, using (F.2) into (F.1) gives, 

  

Nu = 0.00192*236/1.5 = 0.4531-1.5 along the critical curve as .     (F.3) 

 

It may be noted that the asymptotic relation (F.3) is also obtained from the direct 

computation of the Nusselt number Nu for the primary convection along the critical curve 

as shown in Figure 4.4B. 

 

We know that Nu defines the average temperature gradient in the vertical direction for the 

primary convection, i.e., we know how this gradient varies when . We also know 

that thickness of the convection layer hv0 as  (see relation (4.2c) and Figure 

4.4B), which means that thickness of the conduction layer approaches 2 when . 

 

Our definition of the Rayleigh number is 





ˆˆ

T̂ĥˆĝ
Ra d

3

. Definition of the Rayleigh 

number used in the RB convection is 




ˆˆ

T̂Ĥˆĝ
Ra

3

uni  where quantities with ‘hat’ are 

dimensional. Evaluation of ratio of both Rayleigh numbers gives 
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ĥ

Ra

Ra d

3

uni

 

 

3

v
uni

3

d
uni

Ĥ
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Since  hv0,   
2

1

Ĥ

ĥ
 ,  Nu  0.4531-1.5, Rauni = 1708,  

 

we obtain 

5.1
3

5.1

6.235
2

1

4531.0*2
1708Ra 







 
 . 
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