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ABSTRACT 
 
 

The feedback based integrated assessment model ANEMI represents the society-biosphere-

climate-economy-energy system of the earth and biosphere. The development of ANEMI model 

is done using the system dynamics simulation approach that (a) allows understanding and 

modeling of complex global change and (b) assists in the investigation of possible policy options 

for mitigating, and/or adopting to global changing conditions, within an integrated assessment 

modeling framework. This report presents ANEMI model and its nine individual sectors: 

climate, carbon cycle, land-use, population, food production, hydrologic cycle, water demand, 

water quality, and energy-economy. Two versions of the model are developed and presented in 

the report. The first one represents the society-biosphere-climate-economy-energy system on a 

global level. The second one is developed for regional presentation of Canada. The 

development of Canada model is based on the top down approach and various disaggregation 

techniques. To evaluate market and nonmarket costs and benefits of climate change, ANEMI 

model integrates an economic approach, with a focus on the international energy stock and 

fuel price, with climate interrelations and temperature change. The market clearance 

mechanism of economy sector introduces optimization within the simulation framework, which 

makes the model unique and different from any other integrated assessment model available in 

the published literature. The model takes account of all major greenhouse gases (GHG) 

influencing global temperature and sea-level variation.  

 

Several of the model sectors are built from the basic structure of the previous version of 

ANEMI. However, they are integrated in a novel way, the water sectors in particular. The 

integration of optimization within the simulation framework of the ANEMI model is timely, as 

recognition of the importance of energy based economic activities in determining long-term 

Earth-system behaviour grows. Experimentation with different policy scenarios demonstrated 

their consequences on future behaviour of the society-biosphere-climate-economy-energy 



ii 

system through feedback based interactions. The use of ANEMI model improves both, scientific 

understanding and socio-economic policy development strategy.  

 

This report describes the model structure in details and illustrates its use through the analysis 

of three policy scenarios.  

 

  

Keywords: system dynamics simulation; feedback; climate change; integrated assessment 

modeling; society-biosphere-climate-economy-energy system ; Earth-system model; water 

resources management; disaggregation 
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1 INTRODUCTION 
 

This report presents the second version of a dynamic integrated assessment model of the 

social-economic-climatic system - ANEMI. It builds on the previous version of ANEMI model 

(Davies, 2007; Davies and Simonovic, 2008; 2009; 2010; 2011). The model development is done 

using the feedback based system dynamics simulation package, Vensim DSS (Ventana System, 

2010a). In this version a very significant modeling change has been implemenetd in order to 

integrate a new economy-energy sector with other model sectors. System dynamics simulation 

with imbedded optimization is used that makes ANEMI an original integrated assessment tool.  

Integration process is supported through the use of MATLAB (Math Works, 2011) and Visual 

studio (Microsoft, 1998) programming tools.   

 

Chapter 2 describes all individual model sectors in terms of theory, causal loop diagram and 

mathematical formulation. This chapter also holds a nice and brief description of the energy-

economy sector and its own calibration procedure which is based on the use of optimization 

approach within the simulation model. The inter connections between different sectors with 

feedback loops are also presented in this part of the report. The model simulation results are 

compared with available literature and field measurements data in order to verify model 

performance.  

 

Chapter 3 presents the regionalization of the global model.  Both, temporal and spatial 

disaggregation methods are introduced.  This chapter reviews each model sector from the 

disaggregation point of view.  

 

Chapter 4 describes the implementation of the ANEMI model in policy analyses.  The first 

section describes the policy scenarios with their background information.  The second section 

describes the use of ANEMI for policy analyses. The global version of the ANEMI model is used 

first. The third section discusses the same policy experimentation in the context of Canada 

regional version of the model.  
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The detailed ANEMI user’s manual is provided as a separate document (Akhtar et al, 2011).   
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2  GLOBAL MODEL DESCRIPTION 
 

This model is an integrated assessment model, which describes the major characteristics of the 

climate, carbon cycle, land-use, water demand, water quality, natural hydrologic cycle, food 

production, energy-economy, and population subsystems of the larger society-biosphere-

climate-economy-energy system.  

 

In this version of the ANEMI model, all of the key processes of model sectors, whether socio-

economic or physical, are modelled at the global scale. The simulated values are based on the 

spatially aggregated behaviour of model components. Caution is required in downscaling 

simulated aggregate behaviour to local or regional scales. It is clear that global population, 

economic growth, temperature change, and atmospheric carbon dioxide concentration are 

global variables in the ANEMI and therefore they do not capture important regional or local 

differences.  

 

Within each individual sector or sub-sector, the model describes the relevant dynamics of 

individual system elements. At the intersectoral level of ANEMI, the individual model sectors 

are linked through mathematical feedbacks in order to describe the existing important 

dynamics of the Earth-system. The model simulation period starts from 1980 to 2100. The 

model time step is one year, providing a long-term view of the feedback effects of global 

change, sacrificing daily and seasonal variation. Several components of the model are original 

and several are based on available relevant models.   

 

2.1 Individual Model Sectors 
 

The main focus of ANEMI model is to capture the level of behavioural complexity by combining 

different sectors of socio-economic-climatic system through feedback mechanisms.  The 

representation of all these sectors follows a structural approach, reproduces the important 

elements or processes of the physical system in question rather than simulating its behaviour 
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through mathematical, pattern-matching type behaviour. The structural approach allows for 

representation of the feedback relationships in a more scientific fashion. 

 

 Version 2 of the ANEMI model represents each sector either in zero-dimension or one-

dimensional form. Dimensionality refers to the degree of aggregation in a sector. Zero-

dimensional sectors model important characteristics and processes at a global-aggregate level, 

while one-dimensional sectors have one spatial direction. For example, the food production 

and population sectors produce single, global-aggregate values, and so are considered zero-

dimensional. The oceans are modelled using vertical layers, and the terrestrial biomes are 

separated into six components, and so are one-dimensional sectors of the model.    

 

The model consists of nine sectors: climate, carbon cycle, energy-economy, land-use, food 

production, population, hydrologic cycle, water demand, and water quality, which are of 

various levels of complexity.  For example, the land-use and population sectors are relatively 

simple, while the carbon cycle and water-related sectors have much more complex structure. A 

very sophisticated energy-economy sector makes the model quite different from the 

conventional integrated assessment models.   All the sectors of the ANEMI model are shown in 

Figure 2.1. The detailed description of all sectors follows. 
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Figure 2.1: ANEMI model structure 

 

2.1.1 The Climate Sector  

 

The climate sector of the ANEMI model simulates the atmospheric and oceanic temperature 

changes due to the increase in anthropogenic CO2 concentration. The climate sector is based on 

the upwelling-diffusion energy-balance model (UD/EBM) that builds on the Box Advection-

Diffusion (BAD) model of Harvey and Schneider (1985a). Similar to other box-diffusion models, 

the BAD model focuses on the role of oceans in determining the global surface temperature 

response to climatic forcing, such as changes in anthropogenic greenhouse gas (GHG) 

emissions. The basic principles behind the energy balance model and box-model is available in 

McGuffie and Henderson-Sellers (2005). 

 

The BAD model includes the important solar and terrestrial radiative energy exchanges 

between outer space, the atmosphere, and the oceanic surface layer; the infrared radiative, 
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and latent and sensible heat flows between the earth’s surface and the atmosphere; and the 

diffusive and advective energy transfers within the ocean. As one dimensional model, BAD 

calculates energy transfers, and thus temperature differences, between the atmosphere, ocean 

surface (mixed layer), and various ocean depths. The temperature profile it generates at steady 

state – when external forcing are assumed equal to zero – matches that of the observed 

oceanic profile quite well. The BAD model also matches closely to the global surface 

temperature changes, which are predicted by GCMs and other complex models under climatic 

forcing (Harvey and Schneider, 1985a). For example, BAD has a climate sensitivity of roughly 

1.8°C for atmospheric doubling of CO2, or 2xCO2, concentrations, and uses a value of 4 W/m2 

for radiative forcing at 2xCO2. This climate sensitivity lies near the middle of a 1.0°C - 4.1°C 

temperature-change spectrum (Forster and Gregory, 2006). Therefore, if necessary, the forcing 

response in the climate sector can be adjusted easily through the model’s reaction to radiative 

forcing. For example, the climate sensitivity becomes 2.0°C for a radiative forcing value of 4.37 

W/m2, as used in the IPCC SAR, or 1.7 °C for forcing of 3.7 W/m2 or 3.80 ± 0.33 W/m2, as 

recommended by the IPCC TAR (Houghton et al., 2001), and the IPCC AR4 (Meehl et al., 2007), 

respectively. 

 

The version of BAD used in this research applies the constant values of oceanic thermal 

diffusivity, K, and advection velocity, w, suggested by Harvey and Schneider (1985a). There is 

one important difference between this version of the model and the original: the system 

dynamics-based stock-and-flow structure of the model necessitates the conversion of the 

climate sector from Harvey and Schneider’s (1985a) temperature based equations, using dT/dt, 

to an energy-based approach, with energy stocks and flows, or E and dE/dt, measured in Joules, 

and Joules yr-1. Several modifications to K and w are described in Harvey and Schneider (1985a), 

while structural changes exist in other upwelling-diffusion models (see Harvey and Huang, 

2001, and Joos et al., 1997, for example). However, they are significantly more complicated 

than BAD and prove essentially irrelevant to the behaviour of the model as a whole, as 

determined by a Monte Carlo sensitivity analysis described in Davies and Simonovic (2008; 

2010). 
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Climate sector of the ANEMI model version 2 described in this report has a ‘switch’, by which 

modeller can choose the complexity of the climate sector setup. The comprehensive one is 

adopted from the BAD model and includes detailed information, such as: longwave radiation, 

shortwave radiation, temperature at different depth of the ocean, latent heat fluxes and so on 

(Figure 2.2). The second option includes simplified setup (Figure 2.3) for computing 

atmospheric and oceanic temperature, based on DICE model (Nordhaus, 1994). 

 

 

Figure 2.2: Model structure of the comprehensive climate sector   

 

Nordhaus (1994) used a second-order, linear system, with three negative feedback loops. The 

first loop describes worming of the ocean while the remaining two transmit heat from the 

atmosphere and ocean surface. Deep ocean warming is a slow process, because the ocean has 

a large heat capacity. In this model structure radiative forcing from CO2 is expressed as a 

logarithmic function of the atmospheric CO2 concentration, while forcing from other gases are 

considered as exogenous variables based on the IPCC assumptions from the DICE model 
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(Nordhaus, 1994). The equilibrium temperature response to a change in radiative forcing is 

determined by the radiative forcing coefficient and the climate feedback parameter. 

 

 

Figure 2.3: Model structure of the simplified climate sector (after Nordhaus, 1994) 

 

Causal Structure of the ANEMI Model Climate Sector 

The causal loop diagram for the climate sector is presented in Error! Reference source not found. 

(Comprehensive version) and Figure 2.5 (simplified version). In the ANEMI model, the 

comprehensive climate structure computes the atmospheric temperature from radiation 

absorbed by earth surface, latent heat flux, upward surface radiation. In this setup the ocean 

has 20 layers and the heat is transmitted through advective (heat flow represents global water 

upwelling) and diffusive (flow carries heat downwards into colder parts) processes. 

 

The simpler structure of the climate sector transmits the heat from the atmosphere and upper 

ocean layer to the deep ocean based on temperature gradient and heat absorption capacity of 

the deep ocean. For the simplicity, here the model consists of only 2 layers, one for the 

atmosphere and upper ocean and the other for the deep ocean. In both cases the 

forcing/radiative forcing is one of the main contributors of atmospheric and upper ocean layer’s 

temperature change, where the radiative forcing is produced from CO2 and other GHG gas 

including CH4 (methane), NO2 (nitrous oxide), and CFC (chlorofluorocarbon). 
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Figure 2.4: Causal loop diagram of the comprehensive climate sector 

 

 

 

Figure 2.5: Causal loop diagram of the simplified climate sector 

 

Carbon Sector

Carbon Sector
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Mathematical Description of the ANEMI Climate Sector 

The major equations of the ANEMI climate sector, and the values of their associated 

parameters, are provided in this section.  The comprehensive version of climate sector 

description is based on the work of Harvey and Schneider (1985a).   

 

 The governing equation for the heat content of the atmosphere is: 

 

    ∫(  
                   )                                                                            (   ) 

 

where    is the heat content of the atmosphere measured in Joules, with an initial value given 

by RA·SAE ·TA,0 , or the atmospheric heat capacity RA, 1.02 x 107 J m-2 K-1, multiplied by the 

surface area of the Earth SAE, 5.1 x 1014 m2, and the initial temperature of the atmosphere TA,0, 

287.5 K. The other variables are the shortwave (solar) radiation absorbed by the atmosphere, 

QA*, the upward emitted surface longwave (planetary) radiation, L↑, the downward emitted 

longwave radiation, L↓, the longwave radiation emitted to space from the top of the 

atmosphere, Lout, and the turbulent sensible and latent heat fluxes, H and LE, respectively. The 

value used for the shortwave radiation is a constant 66.9 W/m2, while the other flows are 

calculated according to the following equations. All flows are measured in J yr-1. Note that the 

last term, F, represents the radiative forcing from anthropogenic greenhouse gases, given by, 

 

   (
  

   
⁄ )                                                                                                                                  (    ) 

 

where F is the climate forcing in W/m2, S is a  ‘climate sensitivity’ constant that relates the 

change in atmospheric CO2 concentrations to F, and is set to 4 W/m2, and CA and CA0 represent 

the current and initial atmospheric carbon dioxide concentrations, respectively. Since equation 

(2.2) represents an intersectoral feedback, its full explanation is provided in the intersectoral 

feedback section of the text. 
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For the downward longwave radiation emitted by the atmosphere, Harvey and Schneider 

(1985a) use the Angström formula, which has the following form, 

 

      
 [        (         )]                                                                                                        (   )  

 

 

where σ is the Stefan-Boltzman constant, 5.67 x 10-8 J m-2 K-2, TA is the current atmospheric 

temperature in Kelvin, and ea is the atmospheric vapour pressure, measured in mbar. 

 

The upward longwave radiation calculation is modelled as the blackbody radiation from the 

Earth’s surface, 

 

      
                                                                                                                                                    (    )  

  

where TS is the surface temperature, also referred to as an ‘equivalent mixed layer’(EML). 

Harvey and Schneider (1985a) used an EML depth of 30 m as the surface thermal inertia; this 

value is obtained by choosing a globally averaged mixed layer depth of 70 m (based on Manabe 

and Stouffer, 1980) and a thermal inertia equivalent to 1.7 m of water (Harvey and Schneider, 

1985b), and taking an approximately equal weighting of the arithmetic and harmonic means of 

these two depths (for more details see Thompson and Schneider, 1979).  

 

The longwave radiation to space is given by, 

 

                                                                                                                              (   )                                                                                                        

 

which, is a parameterization of the more complex blackbody form. Here, A is set to -251 W/m2, 

B equals 1.8 W/(m2 K), C is 1.73 W/(m2 K), FCL represents the area-weighted mean annual cloud 

amount, set to 0.531, and ΔTS,CL is the surface to cloud-top temperature difference, set to 

32.34K. 

 

The sensible and latent heat fluxes are based on drag laws, and have the following form, 
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    (     )                                                                                                                                      (    ) 

 

     (     )                                                                                                                                    (    ) 

 

where C1 equals 12.57 W/(m2 K), C2 is 11.75 W/m2 per mbar, es is the surface saturation vapour 

pressure at surface temperature TS, and ea is the atmospheric vapour pressure using a fixed 

relative humidity of 0.71. The vapour pressures, es and ea, are multiplied by factors of 1.39 and 

1.31, respectively, to account for nonlinearity in the Clausius-Clapeyron relation. Base values for 

the two vapour pressures were taken from the “Goff-Gratch exact results” for the Clausius-

Clapeyron relation, as suggested by Lowe (1977). 

 

The equation that governs the mixed-layer in the ANEMI model differs slightly from the 

equation provided by Harvey and Schneider (1985a), although the effect is the same. The heat 

balance of the mixed-layer is given by, 

 

    ∫(  
                       )                                                                    (   ) 

 

where HM is the heat content of the mixed-layer measured in Joules, with an initial value given 

by,                   , or the density of sea water   , 1030 kg m-3, multiplied by the specific 

heat capacity of water at constant pressure Cp, 4218 J kg-1 K-1, the surface area of the ocean SA0, 

3.8 x 1014 m2, the equivalent mixed-layer depth, 30 m, and the initial surface temperature TS,0, 

289.1 K. The new flows included in the equation are the solar radiation absorbed at the Earth’s 

surface, QS*, with a constant value of 168.95 W/m2, the upward advective heat flow in the 

oceans, Fadv, and the downward diffusive heat flow in the oceans, Fdiff. 

 

In the oceans, advective heat flow represents global water upwelling, while the diffusive flow 

carries heat downwards into colder layers. Essentially, diffusive flow would homogenize the 

temperature of the oceans over a long period of time, so that the bottom and surface water 
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would eventually have the same temperature, while advection maintains a temperature 

gradient between the surface and the bottom of the ocean. Both, advective and diffusive heat 

transfers decrease with depth as the temperature gradient between isothermal oceanic ‘layers’ 

becomes less steep. 

 

The heat balance for each ocean layer in the model is given by, 

 

  ( )   ∫ [(          )   
 (          )   

]                                                                (   ) 

 

where HO(h) is the heat content of the selected oceanic layer, h, while the subscripts of the 

brackets around the pairs of flows on the right-hand side represent heat outflows from the 

current layer, h, to the colder, deeper layer, h+1, and heat inflows to the current layer, h, from 

the warmer, shallower layer, h-1. Recall that advective flows carry heat upwards in the ocean, 

while diffusive flows transport it downwards. 

 

Advective flows between adjacent isothermal layers take the following general form, 

 

    ( )             ( ( )    )                                                                                          (    )  

 

where w is the constant advection velocity, which is set to 4 m yr-1,  ( ) is the oceanic 

temperature at the current depth, h, and    is the constant temperature of ‘bottom water’, set 

to 274.35 K. Note that a constant advection velocity is assumed in most other upwelling-

diffusion models as well – see, for example, Hoffert et al. (1981) and Siegenthaler and Joos 

(1992). 

 

Diffusive flows between adjacent isothermal layers occur according to the following equation, 

 

     ( )         
( (   )  ( ))

 ( )
                                                                                                  (    )  
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where K is a diffusivity constant modified from the version of κ used by Harvey and Schneider 

(1985a) and set here to 2000 m2 yr-1 – the K used here equals        , or 8.224 x 109 W/(m2 

K)– while  (   ) is the oceanic temperature in Kelvin for the adjacent, colder, deeper oceanic 

layer,  ( ) is the temperature of the current layer, and d(h) is the depth of the current layer, 

which is variable, as explained below. Note that equation (2.11) must be multiplied by the 

number of seconds per year for correct units. 

 

For calculation purposes, the ocean is represented by twenty layers. Where the temperature 

gradient is steepest, near the ocean surface, the isothermal layers are made very thin; in the 

deep ocean, where the temperature change between isothermal layers is small, the layers were 

left much thicker. Thus, the mixed layer and the next four layers are each 30 m deep, the sixth 

layer is 50 m deep, bringing the depth to 200 m so far, and then eight layers of 100 m depth 

followed. From 1000 m-depth, there are two layers of 250 m, three layers of 500 m, and a final 

layer of 792 m, which gives a total oceanic depth of 3792 m. The behaviour of the diffusion and 

advection schemes, as modelled here and provided above, is tested by Davies and Simonovic 

(2008), against an ocean with eighty, equal thickness, isothermal layers to ensure that the 

equations used did not result in inaccurate oceanic temperatures. 

 

Finally, temperature values are expressed in Kelvin, and their calculations for the atmosphere 

and the oceans take the following forms. For the atmosphere, temperature is given by, 

 

   
  

      
                                                                                                                                         (    ) 

 

while, the equation for the mixed-layer and ocean temperatures is given by, 

 

 ( )  
  ( )

      ( )
                                                                                                                              (    ) 
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where  ( ) equals TS, and m0 (h) is the mass of the current oceanic layer, calculated from 

      d(h) 

 

It is already mentioned that there is a switch in the climate sector by which user can choose the 

level of complexity of the sector. The above equations are adopted from BAD model, which has 

a higher level of complexity. The remaining section is describing the simplified version of the 

climate model, adopted from Nordhaus (1994). 

 

The transformation of GHG (specifically CO2) to equivalent temperature is calculated by, 

 

         
    (

  
    

)

    ( )
                                                                                                                               (    ) 

 

where        refers to equilibrium temperature,    is atmospheric CO2 concentration,      is 

preindustrial atmospheric CO2 concentration,   is radiative forcing coefficient, and λ is climate 

feedback parameter.  

 

While computing the temperature for different layers, unlike BAD model it only consists of two 

layers (atmosphere and upper ocean, and deep ocean). The temperature of the atmosphere 

and upper ocean is given by  

 

     ∫                                                                                                                                     (    ) 

 

where temperature of atmosphere and upper ocean is expressed as TAUO , and CTAUO  is the 

change in atmosphere and upper ocean  temperature. 
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 Deep ocean temperature is calculated by Nordhaus (1994) as  

 

    ∫                                                                                                                                        (    ) 

 

where TDO is the temperature of the deep ocean and CTDO  is the change of temperature in deep 

ocean. 

Temperature change at the atmosphere and upper ocean is computed with the help of 

radiative forcing, heat transfer and heat capacity of the atmosphere and upper ocean, as below 

 

      
       

     
                                                                                                                          (    ) 

 

where CTAUO is the temperature change at the atmosphere and upper ocean, F is for radiative 

forcing, fH is the feedback from heating, HT is for heat transfer from the atmosphere and upper 

ocean to the deep ocean, and HCAUO denotes the heat capacity at atmosphere and upper ocean.  

Whereas, temperature change in the deep ocean is only dependent on heat capacity of the 

deep ocean and heat transfer rate between the atmosphere & upper ocean to the deep ocean 

 

     
  

    
                                                                                                                                        (    ) 
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where CTDO is the temperature change in deep ocean, HT is  heat transfer from the atmosphere 

and upper ocean to the deep ocean, and HCDO is the heat capacity of the deep ocean. 

Heat capacity of the deep ocean is calculated by the following equation 

 

                                                                                                                                              (    ) 

 

where HCDO is the heat capacity of the deep ocean, RHC is the heat capacity ration and CHT stands 

for heat transfer coefficient.  

 

Heat transfer between the atmosphere and upper ocean and the deep ocean mainly depends 

on the temperature gradient, heat transfer coefficient and heat absorption capacity, which is 

computed by  

 

   (        )  
    
   

                                                                                                               (    ) 

 

where HT is the heat transfer from the atmosphere and upper ocean to the deep ocean, TAUO  

and TDO denotes the temperature at atmosphere & upper ocean and deep ocean respectively. 

CHT is for heat transfer coefficient and HCDO stands for deep ocean heat capacity. 

The initial temperatures for the atmosphere and for each of the ocean layers are given in  
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Table 2.1, below. The temperature values are given in degrees Celsius for convenience, and 

depth measurements are in meters. 

 

Table 2.1: Initial temperatures and configuration of ocean layers (°C and m, respectively) 

Layer TA TS θ(1) θ(2) θ(3) θ(4) θ(5) θ(6) θ(7) θ(8) θ(9) 

Temperature 14.0 15.90 15.04 14.23 13.47 12.75 11.87 10.44 8.86 7.56 6.48 

Depth (top) N/A 0 30 60 90 120 150 200 300 400 500 

Depth (bottom) N/A 30 60 90 120 150 200 300 400 500 600 

 

Layer θ(10) θ(11) θ(12) θ(13) θ(14) θ(15) θ(16) θ(17) θ(18) θB 

Temperature 5.59 4.85 4.23 3.72 3.07 2.44 1.90 1.52 1.32 1.2 

Depth (top) 600 700 800 900 1000 1250 1500 2000 2500 3000 

Depth (bottom) 700 800 900 1000 1250 1500 2000 2500 3000 3792 

 
 

2.1.2 The Carbon Sector 

 

The earlier modeling of carbon cycle was primarily focused on the oceanic component.  In rare 

cases both, the ocean and the land surface are included in the model. However, terrestrial 

modeling within the carbon cycle is becoming important because of the vital role of biosphere 

as a carbon source and/or sink.  Such terrestrial models range in scale from single trees to the 

entire globe (Harvey, 2000). Some complex form of model like Dynamic Global Vegetation 

Model (DGVM), focused exclusively on the terrestrial biosphere with high resolution 

representation of biomass. For more details, see - Quillet et al (2010). At the global scale, the 

carbon cycle modeling is using simpler representation of carbon exchange process within and 

between the ocean and terrestrial biomes. 

 

 

Carbon sector of the ANEMI model version 2 is based on the model developed by Goudriaan 

and Ketner (1984) and later modified with Fiddaman’s (1997; 2002) oceanic component (Figure 
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2.6). In the ANEMI model, the terrestrial biosphere consists of six biomes: tropical and 

temperate/boreal forests, grasslands and agricultural lands, deserts/tundra, and settled areas. 

Living biomass is divided into, leaves, branches, stems, and roots, and dead biomass into three 

soil-carbon pools, litter, humus, and charcoal/decay-resistant humus. Important biological 

processes simulated by the carbon cycle include biomass growth, litter fall, and litter and soil 

decomposition. The model also includes the effects of increased atmospheric carbon dioxide 

concentrations on biomass growth rates, through the somewhat controversial CO2-fertilization, 

or β-factor, approach (Davies and Simonovic, 2008).  This model simulates carbon flow among 

the atmosphere, the terrestrial biosphere, and the oceans.  

 

 

Figure 2.6: Model structure of the ANEMI model carbon sector 

 

Note that, in any model of the carbon cycle, significant uncertainties in the carbon cycle come 

into play (Falkowski et al., 2000; Geider et al., 2001). Although frequently included in carbon 

cycle models in the form of Q10 factors (Harvey, 2000), the effects of climate change on soil 

decomposition rates are also controversial, and the model does not by default include the 

influences of temperature change on microbial respiration – a feedback to the climate sector- 
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in keeping with the approach used by Goudriaan and Ketner (1984). A Monte Carlo sensitivity 

analyses performed with the model, which tested different Q10-effect strengths, revealed the 

greater importance of other factors in determining simulation results.  

 

CO2 is easily dissolved in seawater and the solubility is temperature dependant. Figure 2.7 

illustrates the CO2 solubility of ocean water between 0.5 to 100MPa, with a wide range of 

temperature (0 to 10 degree Celsius). Colder water can dissolve more CO2 and higher water 

temperature reduces the solubility according to Henry’s Law.  

 

 
Figure 2.7: CO2 solubility of ocean water (after Larryn et al., 2003) 

 

Henry’s Law says that CO2 is in equilibrium between air and water at 25 0C when approximately 

1/50 of the gas is in the air and the remaining gas is dissolved in the water. If 50 units of gas are 

added to the air 49 units will be dissolved into the water. Solubility effect of CO2 in water due to 

temperature increase is also implemented in this sector which will influence the carbon 

absorption rate of ocean. 

 

Causal Structure of the ANEMI Carbon Sector 

The causal loop diagram for the climate sector is presented in Figure 2.8, based on Goudriaan 

and Ketner (1984) with some required modification. In the carbon sector of the ANEMI model, 
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atmospheric carbon is working as a reservoir where all the major variables are contributing 

except mixed ocean layer. Change in land-use and human induced emission from fossil fuel and 

industry is controlling the amount of the atmospheric carbon, which are coming from the other 

sectors of the ANEMI model. The amount of atmospheric carbon absorbed by the plants are 

relaying on available biome area through net primary productivity (NPP). Biomass is converted 

to litter when the leaves are falling from the plants. However those are returning back to the 

atmosphere by root decay and forest burning. The remaining litter is converted to the humus 

and stable humus and charcoal. A fraction of these are returning to the atmosphere when they 

are decayed. Humus stores carbon through unburnt wood and humification from biomass and 

litter respectively. At the same time humus also looses carbon by decay and carbonization 

process. Such carbonization process helps stable humus and charcoal layer to accumulate more 

carbon. Stable humus and charcoal, is also collecting carbon from biomass and litter through 

burnt/unburnt process and finally releases carbon to the atmosphere with the decay process. 

 

 

Figure 2.8: Causal loop diagram of the ANEMI carbon sector 

 

Energy-Economy
Sector
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Mathematical Description of the ANEMI Carbon Sector 

All the equations of the carbon cycle, and the values of their associated parameters, are 

provided in this section, beginning with the atmosphere. Again, the equations for the terrestrial 

biosphere and the atmosphere are based on Goudriaan and Ketner (1984), while the oceanic 

carbon absorption is based on Fiddaman (1997; 2002). 

 

The reservoirs of carbon, or the carbon stocks, in the ANEMI model are measured in gigatons 

(109 t) of carbon, written as Gt C. The corresponding measurement of the carbon flows is  Gt C 

yr-1. To translate the mass of carbon into a parts-permillion-volume (ppmv, or more simply 

ppm) measurement, the following equation is used, 

 

                                                                                                                                                  (    ) 

 

where    is the carbon dioxide concentration in the atmosphere, in ppm, and NA is the mass of 

carbon in the atmosphere, in Gt C. 

 

The accumulation of carbon in the atmosphere is governed by the following equation, 

 

   ∫(                          )                                                   (    ) 

 

where DB, DL, DH, and DK are the releases of organic matter from the terrestrial biomass, litter, 

humus, and charcoal, respectively, to the atmosphere through decomposition, NPP is the net 

primary productivity (the difference between photosynthesis and respiration, and always 

positive in value), BB and BL are the biomass burning from land-use and land-use change – these 

two variables are also involved in an intersectoral feedback equation, as described in the 

intersectoral feedback section below – E is the industrial emission as a result of economic 

activity, and FO is the carbon absorption by the oceans. 
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Industrial emission is calculated in the energy-economic sector of the model, according to the 

following equation, 

 

   (    )                                                                                                                                   (    )  

 

where E is the industrial emission level in Gt C yr-1, μ represents the effects of emissions control 

measures, such as carbon tax, and is expressed as a fraction, σ is the ratio of emissions to 

output, also called the emissions intensity, measured in t/$1000, and Q is the global-aggregate 

economic output, in $1012 yr-1. Further information on industrial emissions is provided in the 

intersectoral feedbacks section of the report, below. 

 

The equations for the terrestrial biosphere are the most complicated in the carbon cycle model 

sector, since they incorporate the processes of net primary productivity, litter fall, 

decomposition, and land-use and land-use change. Net primary productivity drives the model 

according to the following equation, 

 

             (    )                                                                                                          (    ) 

 

where NPPjk refers to the biome type (j) and the biomass component (k), pjk is the fraction of 

biomass partitioned to component k of biome j, where  (∑    
 
       (    ) is the surface 

density of net primary productivity in biome type j, measured in g C m-2 yr-1, and Aj is the 

current area of biome j, measured in m2. The last term, 1 x 1015 converts between grams and 

gigatons. In other words, the equation specifies the amount of the total NPP allotted to each 

component k of each biome j, so that NPPjk has twenty-four components. Biomass partition 

values, pjk, along with other parameters of the carbon flows through the terrestrial biosphere, 

are given in Table 2.2, which has been reproduced from  

 

Table 2.1 of Goudriaan and Ketner (1984: 178).  

 



 

24 

To represent the contentious issue of CO2-fertilization, Goudriaan and Ketner (1984) modify a 

base σ(NPP) value for each biome according to the current atmospheric carbon dioxide 

concentration as compared with the initial value. The equation used for the variable surface 

density of net primary productivity in each biome, σ(NPPj), is, 

 

 (    )   (    )  (      (
  

   
⁄ ))                                                                         (    )                                                                                       

 

where σ(NPPj)0 is the base surface density of net primary productivity for biome j, β is the CO2-

fertilization factor, set to 0.5, and CA and CA0 are the current and initial carbon dioxide 

concentrations in the atmosphere, respectively. Values for σ(NPPj)0 are given in Error! Reference 

source not found.. 

 

Table 2.2: Parameters of the flow through the terrestrial biosphere 

 Tropical 
Forest 

Temperate 
Forest 

Grassland Agricultural 
Land 

Human 
Settled 

Area 

Tundra and 
Semi-
desert 

Partitioning (Pjk)       
Leaf 0.3 0.3 0.6 0.8 0.3 0.5 
Branch 0.2 0.2 0 0 0.2 0.1 
Stem 0.3 0.3 0 0 0.3 0.1 
Root 0.2 0.2 0.4 0.2 0.2 0.3 
       
Life Span (τ)       
Leaf 1 2 1 1 1 1 
Branch 10 10 10 10 10 10 
Stem 30 60 50 50 50 50 
Root 10 10 1 1 10 2 
Litter 1 2 2 1 2 2 
Humus 10 50 40 25 50 50 
Charcoal 550 550 550 550 550 550 
       
Humification Factor (λ) 0.4 0.55 0.55 0.2 0.5 0.55 
       
Carbonization Factor (Ψφ) 0.05 0.05 0.05 0.05 0.05 0.05 
       
Carbonization factor (  ) on burning of leaves is 0.15, of branches 0.25, of stems 0.35 and of litter  (  ) is 0.3 
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Table 2.3: Initial carbon stock and base surface density of NPP, σ(NPPj)0, values 

 Tropical 
Forest 

Temperate 
Forest 

Grassland Agricultural 
Land 

Human-
Settled 

Area 

Tundra and 
Semi-
Desert 

Biomass (Gt C)       
Leaves 8.34 5.2 6.43 5.98 0.06 1.04 
Branches 55.6 17.3 0 0 0.4 2.08 
Stems 250.2 156.1 0 0 3.0 10.4 
Roots 55.6 17.3 4.29 1.5 0.4 1.25 
       
Litter (Gt C) 22.23 13.7 11.5 3.99 0.30 2.92 
Humus (Gt C) 111.19 260.0 257.0 37.41 5.0 63 
Charcoal (Gt C) 277.97 130.05 160.74 37.41 5.0 31.5 
       
Base Surface Density of  770 510 570 430 100 70 
NPP (g C m-2 Yr-1)       

 

In the same fashion as NPPjk, biomass has twenty-four components, in the form of carbon 

stocks, which consist of the four biomass components in each of the six biome types. The 

accumulation of biomass in each of these twenty four stocks has the following form, 

 

       (                                                )                                         (    ) 

 

where Bjk is the biomass in each of component, k, of each of the biomes, j, FLBjk is the amount of 

litter falling from the biomass to the litter layer of the soil, FHBjk is the direct decay of biomass 

material to humus, FKBjk is the burning of biomass directly to charcoal, BBjk is the burning of 

biomass from human land-use and land-use change, and UBjk is the unburned remainder of 

biomass after land-use change that becomes part of the humus layer of soil. 

 

The litter stock has only six components, with one component for each of the biomes. Its 

equation is given by, 

 

   ∫(∑                 

 

   

           )                                                                 (    ) 
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where Lj is the mass of litter in each of the six terrestrial biomes, ΣFLB jk is the total litter fall 

from all four components, k, of biome j to litter stock j (some of these flows are clearly zero, 

since roots do not create leaf litter, for example), DLj is the flow of carbon from litter to the 

atmosphere through decomposition, FHLj is the decomposition of litter into humus, BLj is the 

carbon flow from litter to the atmosphere through litter burning as a result of land-use and 

land-use change, and FLKj is the carbon flow from litter directly to charcoal through litter 

burning, again as a result of land-use and land-use change. 

 

The humus stock also has six components, and its equation is given by, 

 

   ∫(∑                  

 

   

      ∑    

 

   

      )                                      (    ) 

 

where Hj is the mass of humus in each of the six terrestrial biomes, ΣFHBjk is the direct decay of 

biomass to humus, FHLj is the decomposition of litter to humus, FKHj is the decomposition of 

humus to charcoal, DHj is the decay of humus to the atmosphere, ΣUBjk  is the unburned 

remainder of biomass after land-use change that becomes part of the humus layer of soil, and 

FHHj is an internal flow of humus from one biome to another that results from land-use change, 

since humus remains in the soil after a portion of one biome has become part of another 

biome. 

 

Finally, the stable humus and charcoal stock (generally referred here as the ‘charcoal stock’) has 

six components as well, and its equation has the following form, 

 

   ∫(           ∑       

 

   

            )                                                            (    ) 

 

where Kj is the mass of charcoal in each of the six biomes, FKHj is the flow of carbon from humus 

to charcoal, DKj is the decay of charcoal to the atmosphere through decomposition, ΣFKBjk is the 



 

27 

burning of biomass directly to charcoal, FKLj is the carbon flow from litter directly to charcoal 

through litter burning, and FKKj is an internal flow of charcoal from one biome to another that 

results from land-use change, since charcoal remains in the soil after a portion of one biome 

has become part of another biome. Initial values for each of the terrestrial stocks are provided 

in  

Table 2.3, which also gives the base surface density of net primary productivity values from 

Table 2.2 of Goudriaan and Ketner (1984: 178). 

 

Equations (2.26) to (2.29) deal with the terrestrial biosphere stocks, and list the flows that 

change these stock values. The equations for the carbon cycle in the oceans are provided later 

in this section. The subscripts on the flows are j and k, the flows have twenty-four components; 

however, when only the subscript j is present, there are six flows associated with the equation 

– one for each of the six biomes. 

 

The computation of NPP is conducted according to Equation (2.24). The presentation of the 

remainder of the flows that affect the terrestrial biomass in Equation (2.26) begins with litter 

fall, FLBjk, which has the form, 

 

      
   

    
                                                                                                                                           (     )                                                            

 

where Bjk is the amount of biomass in component k of biome j, and τ(Bjk) is the life-span, or 

‘residence time’, for biomass component k of biome j. Note that roots, the fourth component 

of biomass, do not generate litter, so FLBj4 is 0 Gt C yr-1. The values for τ(Bjk) are provided in 

Table 2.2. 

 

The equation for the direct decay of biomass material to humus, FHBjk, is the same as Equation 

(2.30) above, 
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                                                                                                                                        (    )   

 

except that FHBjk for all above-ground biomass components (k = 1, 2, 3) is 0 Gt C yr-1, and only 

the decay of roots (k = 4) generates humus directly – in other words, all other biomass 

components become humus through litter, as in Equation (2.30). 

 

The next member of Equation (2.26), the burning of biomass directly to charcoal, or FKBjk, is 

more complicated than the other flows, because it involves a land-use ‘transfer matrix’. 

 

This matrix, TMij, represents clearing and burning within a terrestrial biome, and land-use 

conversions that establish new land-cover in the place of the previous vegetation. A brief 

description of TMij follows, although more information is provided in the intersectoral 

feedbacks section of the report. 

 

In TMij, the subscripts represent rows i and columns j, where column headings j mean ‘from 

biome type’ and row headings i mean ‘to biome type’. Clearing and burning within a particular 

biome is represented in equation (2.32) by the diagonal matrix entries, i = j, while land-use 

conversions are represented by the remaining entries. Since there are six terrestrial biomes, the 

transfer matrix has 6 x 6 = 36 entries. Its equation is given in algorithmic form as, 

 

     

  
 = for all (i,j): 

If (i=j) 

    .    ,                                                                                                                                  (2.32) 

else (r.    ) 
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where TMij is measured in Mha yr-1, and r is the annual global-aggregate population growth 

rate. Since the transfer matrix connects the carbon cycle, land-use and population sectors, 

further details are provided in the next section of the report. 

 

Now the biomass-to-charcoal equation can be formulated. It takes the form, 

 

      =   .σ (   ).∑     
 
   .1.                                                                                                    (     )  

 

where εk is the carbonization fraction of component k on burning, which has a non-zero value 

for k ≠ 4, σ(Bjk) is the surface density of biomass component k of biome j, which is measured in 

g C m-2 yr-1, ΣTMji represents a flow of burned biomass from all biomes i to the current biome, j, 

as a result of biomass burning.  The idea is that some fraction of the biomass that was part of 

any of the previous biomes i ≠ j prior to their conversion to the new biome, j, burns because of 

land-use change. The final constant, 1 x 10-5, results from the conversion of g to Gt and m2 to 

Mha. 

 

Each σ(X) term – for σ(Bjk), σ(Lj), σ(Hj), and σ(Kj), in their respective equations – is a calculated 

value, which is based on the following equation, 

 

σ (  ( )) =   ( )     ⁄                                                                                                                       (     ) 

 

where σ(X) is the surface density of a B, L, H, or K component of the terrestrial biosphere, 

measured in g C m-2 yr-1, Xj(k) is a carbon stock that has either six (L, H, and K) or twenty-four 

parts (B), and Aj is the current area of biome j, in Mha here. The constant is for unit conversion. 

 

The biomass burning, BBjk, is related to Equation (2.33), is expresses in the form, 

 

      = (    ).σ (   ).∑     
 
   .1.     for k=1,2 
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      = (        ).σ (   ).∑     
 
   .1.                                                                              (     ) 

      = 0 

 

where the fraction of biomass that does not become charcoal (actually much higher than the 

fraction that does burn to charcoal – see Error! Reference source not found.) burns and is 

released to the atmosphere for k = 1 and 2, or the ‘leaves and branches’. Variables in the 

equation include the carbonization fraction, εk, from Equation (2.33), the surface density, σ(Bjk), 

which is based on Equation (2.34), and the transfer matrix ΣTMji function as in Equation (2.32). 

In the case of the stems, k = 3, some fraction (εk) burns to charcoal, another fraction is released 

to the atmosphere through this equation (1 – εk – 0.5), and the last half (0.5) of the stems is left 

on the land surface after the land-use change and becomes humus. The last biomass 

component, which is the roots (k = 4), does not burn, but is instead transferred directly to the 

humus pool of the new biome as in Equation (2.36), below. 

 

The last flow in Equation (2.27) pertains to the portion of biomass that does not burn in a land-

use change from one biome to another. This unburned biomass, UBjk, is calculated from the 

following equation, 

 

     = 0 for k=1,2 

          (   )  ∑     
 
                                                                                               (     )  

      (   )  ∑    

 

   

        

 

where all leaves and branches (k = 1 and 2) are burned and released to either the atmosphere 

or to the charcoal layer of the soil, and so the unburned fraction is zero, whereas the unburned 

fraction (0.5) of the stems (k = 3), as well the entire mass of the roots, become humus. 
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The first flow in Equation (2.27), for the litter stock, is the litter fall from Equation (2.30). The 

next flow in Equation (2.27) is the decay of litter to the atmosphere, DLj, which is given by, 

 

    =(1-  )      (   )⁄                                                                                                                          (     ) 

 

where λj is the humification fraction – or the fraction of litter that becomes humus – for biome 

j, and τ(Lj) is the turnover time, or ‘residence time’, for litter in biome j, which typically has a 

value of only one to two years. See Table 2.2 for the values for τ(Lj). 

 

The equation for the decomposition of litter to humus, FHLj, is the complement to Equation 

(2.37), and is given by, 

 

         (   )⁄                                                                                                                                   (    ) 

 

where the same variable and constant definitions apply as in Equation (2.37). 

 

The carbon flow from litter to the atmosphere as a result of litter burning via land-use and land-

use change is analogous to Equation (2.35), for the burning of biomass. For the burnt litter flow, 

BLj, the equation is, 

 

    = (    ).σ (  ).∑     
 
   .1.                                                                                                 (2.39) 

 

where εL is the carbonization fraction of litter upon burning, σ(Lj) is the surface density of litter 

in biome j, as defined in Equation (2.34), and ΣTMji represents the transfer matrix measured in 

Mha, where land-use change results in a flow of burned litter from the area of all the biomes i 

that was converted to the current biome, j. The final constant is, again, the result of a unit 

conversion. 
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The last flow in Equation (2.27), FLKj, represents the carbon flow from litter directly to charcoal 

through litter burning, again as a result of land-use and land-use change. Its equation is, 

 

     =   .σ (  ).∑     
 
   .1.                                                                                                          (2.40) 

 

which is the complement to Equation (2.39). In other words, the small amount of litter that is 

not released directly to the atmosphere through burning joins the charcoal stock instead. 

 

Several of the flows associated with the humus stock, as listed in Equation (2.28), have already 

been defined above: FHBjk, FHLj, and UBjk. Equations for the remaining flows are provided below, 

beginning with the decomposition of humus to charcoal, FKHj, 

 

     =       (   )                                                                                                                            (     )⁄  

 

where φj is the carbonization fraction of humus through decomposition, and τ(Hj) is the 

turnover time, or ‘residence time’, for humus in biome j. 

 

Decomposition of humus and its release to the atmosphere, DHj, is the complement to Equation 

(2.41), so that, 

 

    =(    )      (   )⁄                                                                                                                    (    ) 

 

where the same variable and constant definitions apply as in Equation (2.41). 

 

The final flow in Equation (2.28) is FHHj, which represents an internal flow of humus from one 

biome to another as a result of land-use change. It equation is given by, 

 

      (  )  [∑      ∑     
 
   

 
   ]                                                                    (    )  
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where σ(Hj) is the surface density of humus in biome j, as defined in Equation (2.34), ΣiTMji is 

the sum of all land-use conversions from biome i to j, and ΣiTMji is the sum of all land-use 

conversions from biome j to different biomes i. The expression in the brackets determines the 

net change in biome area over the past time step – for tropical forests and some others, the 

change will be negative, while for agricultural land and others, the change will be positive. The 

constant is for unit conversions, and the logical statement (for all i ≠ j) ensures that only land-

use conversions are considered here. 

 

In the case of the final stock, charcoal and stable humus from Equation (2.29), only two 

equations have not been provided. The equation for the decomposition of charcoal to the 

atmosphere is similar to the other equations for decomposition, and is given by, 

 

    =    (   )⁄                                                                                                                                       (    ) 

 

where τ(Kj) is the turnover time, or ‘residence time’, for charcoal in biome j. 

 

The more complicated equation for FKKj, which is an internal flow of charcoal from one biome 

to another that results from land-use change and is analogous to FHHj in Equation (2.43), takes 

the following form, 

 

     =σ (  ).[∑     
 
    ∑     

 
   ].1x                                                                          (     ) 

 

where σ(Kj) is the surface density of charcoal in biome j, as calculated in Equation (2.34), and 

the rest of the terms are the same as in Equation (2.43). 

 

The equations for the oceanic component of the carbon cycle are based on work by Fiddaman 

(1997), and are broken into two parts: the mixed-layer, and the deep oceans. 
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For the mixed-layer carbon stock, the equation is, 

 

   = (       ( ))                                                                                                                     (     ) 

 

where CML is the amount of carbon in the oceanic mixed-layer, with an initial value of 769 Gt C, 

FOA is the absorption of carbon dioxide by the mixed-layer from the atmosphere, and DFO(0) is 

the diffusive flow of carbon dioxide to the deep ocean. The flows in the ocean are measured in 

Gt C yr-1. 

 

For the absorption of carbon dioxide from the atmosphere, the equation is, 

 

   =(         )                                                                                                                         (     ) 

 

where CMLeq is the equilibrium mixed-layer carbon content, CML is given by Equation (2.46), and 

τML is the ‘mixing time’ for the mixed-layer, set to 1.5 yr. 

 

The equation for the diffusive flows takes the following form, 
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where the top equation calculates the diffusive flow from the mixed-layer to the first deep 

ocean layer, layer 0, and the bottom equation governs carbon flows between deep ocean 

layers. Therefore, in Equation (2.48), δe is the eddy diffusivity coefficient, which is set to of 4000 

m2 yr-1, dML is the depth of the mixed-layer, which is 75 m, CML/dML is the concentration of 
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carbon in the mixed-layer, conc(0) is the concentration of carbon in the first deep ocean layer, 

calculated by CO(0)/d(0), and the denominator (with the ‘2’ moved to the numerator) 

determines the average distance of heat diffusion from the centre of one oceanic stock to the 

next. For the bottom equation, conc(h+1) is the concentration of carbon in the layer above the 

current layer, h, conc(h) is the concentration in the current layer, and d(h+1) and d(h) are the 

thicknesses of the two layers. Again, the concentrations are calculated by CO(h)/d(h). 

 

The equilibrium mixed-layer carbon content, CMLeq, is calculated according to the following 

equation, 

 

           (
  

   
⁄ )

 
 ⁄

                                                                                                               (    )  

                

where CML0 is the pre-industrial mixed-layer carbon content, set to the initial value for CML, CA is 

the current atmospheric carbon dioxide concentration, from Equation (2.21), and CA0 is the 

initial carbon dioxide concentration, from equation (2.25). The buffer factor,  , is also a 

calculated value, and comes from the following equation, 

 

          (
  

   
⁄ )                                                                                                                   (    )      

 

where all the terms are parameters, except for CA. The reference buffer value, ξ0, is set to 10, 

while buffer coefficient, ξc, is set to 4.05. Finally, the reference carbon dioxide in the 

atmosphere at the base buffer value, CAξ, is 760 Gt C. 

 

For the deep ocean carbon stock, the equation is, 
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where CO(h) represents the carbon content of ocean layer h, DFO(h) is the diffusive flow of 

carbon from the layer above to the current layer, and DFO(h+1) is the diffusive flow to the layer 

below from the current layer – see Equation (2.48), above. In this model of the ocean based on 

Fiddaman (1997), there are ten layers of unequal depth, with each of the top five layers having 

a thickness of 200 m, and the bottom five layers having a thickness of 560 m each. 

2.1.3 The Energy-Economy Sector 

 

The energy-economy sector of the ANEMI model version 2 describes the world’s energy 

resources, and how prices move to equate the global demand and supply of energy. It’s an 

extension of the traditional (Solow) neoclassical growth model. The novel part of the model is 

the energy piece governing the allocation of energy production across fossil fuels, hydro, 

nuclear, and alternative energy sources.  

 

The model follows common practice in macroeconomics, assuming that the global economy 

consists of a representative household and a representative firm. The household has 

preferences over an aggregate consumption good and supplies labour services inelastically to 

the firm each period. The firm takes labour, capital, and energy services as inputs in a Cobb-

Douglas production function, and produces the final good which is used for consumption and 

investment. Investment is determined by a Solow rule where a fraction   of output is invested 

into new capital each period. There is no trade in the model. 

 

‘Energy services’ is modeled as a composite good aggregated from heat energy and electric 

energy. Heat energy is produced from fossil fuels and alternative energy sources. Electric 

energy is produced from fossil fuels, nuclear, and hydro power. 

 

The production of output is negatively affected by climate damages. The global mean 

temperature represents a negative impact to the economic system from industrial emissions 

through climate damages. 
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The energy data for the global energy economy is from the U.S. Energy Information 

Administration (EIA) and the World Bank’s World Development Indicators (WDI). Fossil fuel 

reserves, fossil fuel discoveries, total energy produced from fossil fuel, and total electricity 

produced from nuclear and hydro power data are collected from EIA database (EIA, 2006). WDI 

database (http://databank.worldbank.org, last accessed August 2011) is used for the 

production of electricity from fossil fuels. An important input into the model is the path of 

future discoveries for oil and natural gas. The uncertainty associated with the size of 

undiscovered reserves in the Arctic is but one factor. Perhaps of greater uncertainty is the 

future developments in technology and prices which may allow for extraction of resources 

considered unrecoverable today. The U.S. Geological Survey estimates that there are about 3.4 

trillion barrels of heavy oil in the world; however, only 450 billion barrels are recoverable given 

today’s technology and price level. For the benchmark calibration it is assumed that future 

‘discoveries’ will be around 1.3 trillion barrels. Similar assumption is made for natural gas. The 

implicit assumption is that higher fossil fuel prices will motivate technological progress and 

make extraction of heavy oil and shale gas economically viable. 

 

Causal Structure of the ANEMI Energy-Economy Sector 

The causal structure diagram for the energy-economy sector is presented in Error! Reference 

source not found.. In the ANEMI model version 2, the energy-economy sector takes global mean 

temperature and population as inputs. The climate damage relationship is from Nordaus 

(2000), and is represented by a quadratic function in global mean temperature. Changes to 

population levels and demographics impacts the productive capacity of the economy as the 

labour input for the firm is assumed to be the working age share of the world population. 

 

The available energy resources are primitives in the model. In this model the available fossil fuel 

reserves and the technology available to produce nuclear, hydro, and alternative energy are 

presumed. The output produced from the energy-economy sector is industrial emissions and 

the world’s gross domestic product. Industrial emissions are calculated from the burning of 

http://databank.worldbank.org/
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fossil fuels in producing energy services. Gross domestic product is equal to final output, and 

depends on the world’s capital stock, labour force, and energy resources. It may be noted that 

energy production in the model is an intermediate good. 

 

 

Figure 2.9: Causal loop diagram of ANEMI energy-economy sector 

 

Mathematical Description of the ANEMI Energy-Economy Sector 

Under this sub-section a detailed description of the variables and equations of the energy-

economy sector are presented. The assumptions made about the representative household, 

the representative firm, and the choices available to them, given the world’s energy resources 

are presented too.  

 

The world’s population is assumed to be represented by a stand-in household whose 

preferences can be represented by the utility function 

 

 ( )    ( )                                                                                                                                 (     )                                                                                                    

 

where   is a generic consumption good. The household supplies labour,  , inelastically to the 

market. It is assumed that the household owns the world’s capital stock and natural resources. 
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Thus, the consumer rents the capital to the firm, earning income   , where   is the interest 

rate and   is the aggregate capital stock in the economy. The consumer also sells energy 

services to the firm, earning income    , where E is aggregate of energy services, and    is the 

price of aggregate energy services. 

 

Investment,  , is assumed to follow a Sollow investment rule where a fraction s of output,  , is 

invested into new capital each period. Given prices, the household tries to maximize the utility 

subject to its budget constraint. Each period the household’s optimization problem is: 

 

       ( ) 

           

           ̅                                                                                                                  (     )                                                                

     

  ∑    
 

 

 

The world’s production of final output is represented by a stand-in firm which employs a Cobb-

Douglas production technology. The firm hires labour, capital, and energy services from the 

stand in household and produces the generic consumption goods. 

The aggregate production function is: 

 

                                                                                                                                           (    ) 
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where  , is total factor productivity (TFP),   is the aggregate capital stock in the economy,   is 

the labour force, and   is the Nordhaus damage coefficient.     and    are the parameters of 

damage function. The damage coefficient is a function of  , global mean temperature. TFP is 

assumed to increase at a decreasing rate. TFP growth in 2005 is 1.6%, 0.9% in 2050, and 0.6% in 

2100. The sum of the share parameters from the aggregate production function,   and  , are 

assumed to decrease over time. This assumption implies that the share of energy services in 

final output is decreasing. The assumption here is that technology improvements reduce the 

energy intensity of the economy as a whole. 

 

The formulation used in this report assumed that there is a government in the model that can 

implement carbon taxes on energy consumption. The government is exogenous to the model, 

and tax revenues are transferred as a lump-sum to the household. We assume a set of fuel 

specific taxes,   , which depend on the emission intensity of each fuel type i. Finally,  ̅ is the 

sum of tax revenues from carbon emission. Then,      ̅ is the household’s income from 

selling energy services to the firm net of taxes. 

 

It is assumed that representative firms produce heat energy and electric energy from CES 

production functions. Aggregate energy services, E, is modeled as a composite good produced 

from heat energy and electric energy. 

 

Electric energy is produced from fossil fuels, nuclear and hydro power. Here, nuclear and hydro 

power are assumed policy variables, and are exogenous to the firm. For each period the 

representative firm solves the following optimization problem: 
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) , for i=1,2,3. 

 

That is, given the capital stocks for fossil fuels and the nuclear and hydro power available, the 

representative firm chooses {                             } to minimize the average total cost of 

electricity. Here,     is a productivity term specific to electricity production,       is the fuel 

input used for fuel type   in electricity production,        is the average total cost of electric 

energy,    ̅̅ ̅̅   is the threshold value for electric energy,      is the price of electric energy and   is 

the CES elasticity parameter (implies elasticity of substitution of    
 
(   )⁄ ). 

 

The functions   , for the fossil fuels, are decreasing in the fuel-to-capital ratio. Inside a period 

this assumption implies diminishing returns, as capital is a fixed factor. The parameters    and 

   are fixed. The parameters   and    are used to calibrate the relative levels of fossil fuels in 

electricity production. 
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The structure for production of heat energy is symmetric to the production of electric energy. It 

is assumed that heat energy is produced from fossil fuels and alternative energy sources. In 

each period the representative firm solves the following optimization problem: 

 

       
    (                                 )      

subject to 

     ̅̅̅̅    

                                                                                                                                                      (    ) 

where,  

     (         
          

              
          

 )
 
 ⁄  

 

There is no capital in the heat energy sector. The capital for heat energy comprises part of the 

aggregate capital for the economy. The firm chooses {                                 }  to 

minimize the average total cost of heat energy. Here,    is a productivity term specific to heat 

energy production,      is the input of fuel type i for heat energy production,    is the CES 

weight for fuel type i,      is the average total cost of heat energy,   ̅̅̅̅   is the threshold value 

for heat energy,     is the heat energy service,    is the price of heat energy services, and   is 

the CES elasticity parameter. 

 

    and   is assumed to grow linearly. Implicit productivity increases are embedded in the 

assumptions on fossil fuel discoveries, the price function of alternative heat energy, and the 

share parameters in the aggregate production function. Currently,    and   are arbitrarily set 

equal to 0.5. 
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The fossil fuel price functions are increasing in the ratio of the reserve value at its base year 

relative to its current value. 

 

                     (
                      

         
)

 

                                                            (    ) 

 

where subscripts i and t refer to the fossil fuel type and the year respectively.       is the fuel 

price,      is the fuel specific carbon tax,            is the price of fuel at the base year (1980), 

     is the current reserve level,          , is the base year reserve level, and      is the new 

discovery value.       and      
is extraction of fuel for electricity and heat energy production 

respectively.     is an elasticity parameter. 

 

It is clear that the fossil fuel price decreases when the current reserve value falls relative to the 

base year. That is, the more fuel extracted the higher the price becomes. New discoveries of 

fossil fuel reduce the price of fossil fuel, holding everything else constant. The paths for new 

fossil fuel discoveries are prescribed. The elasticity parameter for the fossil fuel price 

functions,  , is set to -0.4. A lower value would make fossil fuel prices more responsive to 

depletion of the fossil fuel reserves. The parameter value and the functional form for the price 

functions are from the ANEMI version 1.2 energy-economy sector (Davies and Simonovic, 

2009).  

 

The price of alternative heat energy is represented by the function: 

                       
                                                                                                                       (    ) 
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where      is the price, and         is the quantity of alternative fuel used in heat energy 

production.    and    are parameters. It is assumed that they are decreasing, representing 

decrease of the alternative fuel price over time. 

 

The initial values for the parameters for the alternative energy price function,    and   , are 

assumed equal to 3 and 5 respectively. The parameters decrease linearly over time 

representing decrease in the price of alternative energy over time as technology improves. For 

the calibration we had a target of 3% alternative heat energy in 2005. The energy demand side 

is derived from the aggregate production function.  

For one period problem the capital and labour inputs are fixed. Demand for aggregate energy 

services can be expressed as:  

 

  (
(     )     

  
)

 
(   )⁄

                                                                                                    (    ) 

 

where   is the representative firm’s demand for aggregate energy services,  is aggregate 

capital,   is the world’s labour force, and    is the price of aggregate energy services.   and   

are the share parameters from the aggregate production function. 

 

Heat energy and electric energy are combined into aggregate energy services by a CES function: 

 

  (   
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where EH is the total heat energy produced, and EEl is the total electricity produced. The 

elasticity of substitution is determined by the parameter  , and   is the CES share parameter. 

The elasticity parameter in aggregation of electricity and heat energy,  , is also set to 0.5, 

whereas the share parameter γ in the CES aggregator for heat an electric energy is set to  0.9.  

 

Investment into new capital for electricity production follows an average cost investment rule 

and is allocated by a built-in function of the Vensim system dynamics simulation software called 

‘Allocate-by-priority’ (Ventana, 2010b). 

The available supply of investments funds for electricity production is assumed to follow a 

Solow rule. That is, each period IEl is available to invest in new electricity capital: 

 

       (
∑    

  ∑    
)                                                                                                                           (    ) 

 

where Ki is the current capital stock used to produce electricity from energy source  , which 

could be either a fossil fuel, nuclear or hydro power.   without a subscript   is the aggregate 

capital stock for the economy. 

 

For the investment into electricity capital in the energy sector, the allocate-by-priority (ABP) 

function serves the purpose of a market clearing mechanism. The ABP function in Vensim is 

based on the William T. Wood algorithm for allocating a resource in scarce supply to competing 

orders or ‘requests’ (Ventana Systems, 2010b). The allocate-by-priority function takes as inputs 

the supply of available investment funds to be allocated, and the ‘capacity’ and the ‘priority’ of 

each order, representing the size and competitiveness of the orders respectively.  
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The ABP function has a ‘width’ parameter which determines how exclusively the available 

investment funds will be allocated. The width-parameter can take any positive value. The lower 

the value of the width the more responsive is the allocation to differences in order priority. For 

example, if two orders have similar capacitates and priorities, then a high width will produce a 

very even allocation. On the other hand, as the width parameter decreases, the allocation of 

investment funds will be shifted towards the order with the higher priority. 

 

Given the fixed quantity of investment funds available inside a period, the market allocation 

depends on (a) the size of the request, (b) the relative priority given to each sector, and (c) the 

width parameter. After testing multiple approaches, it has been decided to set the priorities for 

the sectors equal to each other, and only focus on the request dimension. The intention behind 

this decision is to simplify the calibration and to make the investment function more 

transparent. More information about the ABP function in Vensim can be found in the Vensim 

manual and the supporting documentation online (http://www.vensim.com/allocp.html, last 

accessed August 2011). 

 

The demand for new investment funds for each energy source used in electricity production is 

based on an average cost investment rule where the allocation is determined by the ABP 

function. Given a fixed priority across energy sources, the ‘request’ function takes the following 

form: 

 

               (
  

∑    
) (

     
    

)                                                                                                 (    ) 

 

http://www.vensim.com/allocp.html
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The request for new investment funds (    ) is a function of ‘replacement capital’ and the 

current capital share of the sector scaled by its relative average total cost. Each period a share   

of existing capital depreciates, and an assumption is made that all sectors will ask for that 

capital to be replaced. The parameter   is a weighting factor that will reduce the request for 

replacement capital if the average total cost exceeds some threshold value. The second term is 

the relative size of the current capital stock (Ki) for energy source   multiplied by its relative 

average cost. This implies that sectors with a lower average cost will have higher requests. 

      is the average total cost of electricity, and      is the average total cost of energy source 

 . 

 

The value of φ is set to 0.5 which means that if the condition is true, then the request for 

replacement capital is only half of the depreciated capital. The intuition behind this parameter 

is to improve the adjustment process of the capital stock in electricity production from fossil 

fuels in response to average cost changes. 

 

Note that as the path for nuclear and hydro power is given exogenously, the capital stock used 

in production of nuclear and hydro power is also prescribed. The amount needed for new 

capital for nuclear and hydro power is first subtracted from the total amount available for 

investment into electricity capital; what is left over is allocated to the fossil fuel capital stocks 

using the ABP function. 

 

In the ANEMI model, the consumed portion of the fossil fuel specific energy resources is 

converted into the respective carbon emission mass. This approach is in-line with the 

recommendations from the IPCC (2006: Vol. 2, Ch. 2, Pg. 2.11) for calculating tier one 

emissions. 
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Carbon emissions are calculated as follows: 

 

Coal:  

The energy content of coal is, on average, 21.213 GJ tcoal
-1, which means that combustion of 1 

ton of coal releases:  

1. 0.518 tons of carbon, for an emission factor of 0.518 tC tcoal 
-1 (EIA, 2008); or  

2. 0.541 tons of carbon, for an emission factor of 0.541 tC tcoal 
-1 (IPCC, 2008 [using 26 tC TJ-

1, 98% combustion]. 

 

                       
         

    
            

         

    
                                                  (    )  

 

where       is the emission for the coal,          is the combustion amount out of 1 unit,       

is the emission factor of coal.          
 represents the amount of coal depleted from the 

reserve or used in energy production. 

 

 

Oil: 

The energy content of oil is, on average, 6205 MJ bbl-1, which means that combustion of 1 

barrel of crude oil releases;  

1. 0.119 tons of carbon, for an emission factor of 0.119 tC bbl-1 (EIA, 2008); or  

2. 0.125 tons of carbon, for an emission factor of 0.125 tC bbl-1 (IPCC, 2008) [using 20.5 tC      

TJ-1, 99% combustion]. 

 

                   
        

    
            

        

    
                                                               (    ) 
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where      is the emission for the oil,          is the combustion amount out of 1 unit,      is 

the emission factor of oil.         
 represents the amount of oil depleted from the reserve or 

used in energy production. 

 

 

Natural gas: 

The energy content of natural gas is, on average, 38.264 MJ m-3, which means that combustion 

of 1 m3 of natural gas releases 

1. 5.246 x 10-4 tons of carbon, for an emission factor of 0.0005246 tC m-3 (EIA, 2008); or 

2. 5.796 x 10-4 tons of carbon, for an emission factor of 0.0005796 tC m-3 (IPCC, 2008) 

[using 15.3 tC TJ-1, 99% combustion]. 

 

 

                                       
                           

               (    ) 

 

 

where          is the emission for the Natural Gas,          is the combustion amount out of 1 

unit,          is the emission factor of Natural Gas.             
 represents the amount of 

natural gas depleted from the reserve or used in energy production. 

 

ANEMI model used the first-listed emission factors for each of the three fossil fuels, because 

they give the closest correspondence to historical emission values, as shown in the next section. 

The combustion factor, which states that the combustion process uses 99% of the fuel, also 

corresponds to the data. 

 

For simplicity it is assumed that future fossil fuel discoveries are known at the beginning of the 

time horizon. The sum of the total discoveries is added to the initial reserve value in the base 

year. This assumption makes global fossil fuel price movement smooth, which is helpful as the 

price paths are used as inputs to the energy-economy sector of the Canada regional model. 
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The initial reserve values for the base year are noted in the Table 2.4 Error! Reference source not 

found., where, the first column shows the initial reserve value used in the baseline model. It is 

calculated as the sum of observed 1980 reserves, observed discoveries from 1980-2005 of EIA 

(2006), and assumed discoveries after 2006. 

 

Table 2.4: Initial fossil fuel reserve (in trillion GJ) 

 1980  
Assumed Initial 
Reserves 

1980 Reserves 
(EIA) 

1980-2005 
Discoveries (EIA) 

2006 - 
Assumed 
Discoveries 

Coal 20  20 - - 
Oil 21  3.9 6.8 10.3 
Natural Gas 18 2.7 5.7 9.6 

 

Numerical Solution of the ANEMI Energy-Economy Sector 

The ANEMI model version 2 is developed using Vensim system dynamics simulation software 

(Ventana Systems, 2010a). The model structure allows for analyses of numerous feedback 

relationships within each sector and between different sectors. However, the economic model 

presented above involves optimization of problems in Equations (2.53), (2.56) and (2.57). In 

macroeconomics, the most common way to solve these optimization problems computationally 

is by employing various iterative nonlinear optimization algorithms. 

 

The scope for optimization within Vensim, the system dynamics simulation software package, is 

limited. As a consequence, the energy-economy sector is employing MATLAB software 

otpimization package subroutine. In each simulation time step, Vensim sends information to 

MATLAB which solves the one-period optimization problem for the energy-economy. 

Specifically, at each time-step, Vensim sends the global mean temperature, the capital stocks of 

energy production, and the population data to MATLAB. MATLAB is then used to solve a non-

linear system of equations which represents the optimal solution to the one-period 
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optimization problem in the energy-economy sector. The solution to that problem is the 

production allocation, the optimal energy use across energy sources in production, which then 

is sent back to the Vensim simulation model. Based on the energy consumption Vensim can run 

the next time-step, calculating emissions based on energy consumption which then is used to 

calculate global mean temperature. This value is then used by other sectors of the ANEMI 

model. 

 

The current modeling approach allows for a market clearing mechanism in the energy-

economy, where energy prices move to equate supply and demand. The main drawback of this 

approach is the increase in the model’s computation time.  

 

2.1.4 The Food Production Sector 

 

The fundamental assumption of the food production sector is that the global amount of food 

that can be produced each year is limited. It’s proven that the proper allocation of the physical 

resources (water, fertilizer, suitable land and etc) can enhance the food production, but they 

are not abundant. One can argue that the technological innovations may lead to a very high 

yield within the same agricultural area. However, it’s evident that there are decreasing returns 

to technology’s ability to increase land yield by diverting other limited resources input into the 

agriculture sector (Meadows et al., 1974).  

 

Food is not only produced by cultivation of arable land, although land cultivation is at present 

by far the most important source of food production for human consumption. Other sources of 

food are the oceans and the world’s grazing lands. However, the analyses of FAO data 

(AQUASTAT, 2010) established that only 7.4% of the total amount of food product is coming 

from animal product (Figure 2.10). 
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Figure 2.10: Yearly food production (billion veg-eq-kg) 

 

Besides, the current and potential food output, from fisheries and from livestock feeding on 

grazing land, is small compared to the food output from the cultivation of arable land 

(Meadows et al., 1992). Therefore, these other sources of food are relatively insignificant and 

will remain so. It has been decided to neglect food obtained from oceans and grazing lands in 

the ANEMI model version 2. The world’s grazing lands currently cover 3.6 billion hectares, an 

area somewhat larger than the potentially arable land of 3.2 billion hectares. The average 

carrying capacity of the world’s grazing lands is roughly 1 animal unit per 20 hectares, where 1 

animal unit is equivalent to the production of 100 kilograms of meat per year (Meadows et al., 

1974). If it is assumed that 7 kilograms of vegetable crops are needed to produce 1 kilogram of 

meat, this yield amount of 35 vegetable-equivalent kilograms per hectare-year. Thus the 

vegetable-equivalent food yield from grazing lands is low when compared with the traditional 

yield of 600 vegetable-equivalent kilograms per hectare-year that can typically be obtained 

from arable land without the use of modern agricultural inputs. The grazing land yield is only 

about 2 percent of the world average cultivated land yield of around 2,000 vegetable-

equivalent kilograms per hectare-year. In summary, the food output from grazing land is of 

relatively lower importance (Meadows et al., 1974). 
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Food production sector of the ANEMI model version 2 (Figure 2.11) is developed based on the 

WORLD3 model (Meadows et al., 1974).  In the model, the capital investments in agriculture 

can increase total food production in two ways: (a) by increasing the stock of arable land 

through land development, and (b) by increasing land yield through the application of modern 

agricultural inputs. The agriculture sector also distinguishes between two phenomena that can 

reduce overall food production. The first one,  ‘land erosion’ is included, as an irreversible 

process taking place over centuries, that physically removes land from production. The rate at 

which land erodes can be large or small, depending on the human actions taken to control the 

erosion rate, but it is assumed that the direction of land movement cannot be changed. The 

erosion rate could be zero, but it will never become negative. The second assumption is that 

the total food output can be reduced through a reduction in land yield caused by lower land 

fertility, a reduction in the humus and nutrient content of the soil. This is a reversible process, 

as degradation of the land’s fertility occurs only when insufficient resources are allocated to the 

enhancement of the natural soil regeneration mechanisms; thus the regeneration forces do not 

manage to keep up with the continually occurring degradation forces. In the ANEMI model all 

types of arable land are included in a single stock, so the model reflects in a single quantity, the 

aggregate of all different lands with the varying cultivation characteristics. 

 

Figure 2.11: Model structure of the ANEMI food production sector 
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Technological change affects relationships in the agriculture sector in a variety of ways. Some of 

the effects of advances in technological capability are included endogenously in the food 

production sector. For instance, it is assumed that the allocation of more investment to 

increasing land yield will have roughly the same success in the total global agricultural system. 

Such an assumption implies that the regional variations posed by different soils, climates, and 

traditional cultivation procedures will be eliminated by the advancement of technology. In the 

same manner it is also assumed that the investment in land maintenance, regeneration of land 

fertility, will always succeed. 

 

Causal Structure of the ANEMI Food Production Sector 

The causal loop diagram for the food production sector is presented in Figure 2.12 based on the 

WORLD3 model of Meadows et al. (1974).  This figure represents a simplified representation of 

the causal loop structure of the food production sector.  The complex land yield is obtained 

from the land fertility, water-stress, capital investment, where all of these variables are 

connected with positive polarity.  The total amount of produced food depends on the land 

yield, availability of the agricultural land, availability of the water for irrigation, and so on. In 

this diagram food ratio is working as a thermostat, by which extra investment is pumped in the 

food production sector, when the ratio is below the threshold level. The extra investment is 

used to improve the land fertility and technological development is used to enhance the food 

production by increasing the land yield. Unplanned agricultural activity increases the land 

erosion and decreases the land fertility.  They are controlled by decrease in the suitable 

agricultural activity. Two most essential parameters of this sector; water-stress and arable land 

are coming from the other sectors of the ANEMI model. Population, which is the product of the 

population sector, is used in the computation of the per capita food production to assess the 

requirements for further investment.  
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Figure 2.12: Causal loop diagram of the ANEMI food production sector 

 

Mathematical Description of the ANEMI Food Production Sector 

The important equations of the food production sector, and the values of their associated 

parameters, are provided in this section.  The food production sector description is based on 

the work of Meadows et al. (1974).   

 

The total annual food production is assumed to be the function of cultivated land and land 

yield. Labour force is not included in this calculation assuming that there will not be any 

shortage of labour force. Moreover, with the technological improvement the requirement for 

the labour force will be decreased day-by-day. Thus the food output is calculated simply as the 

output per hectare of harvested land times the total cultivated land area. 

 

             (    )                                                                                                                  (    )                                                                 

 

where    is the amount of food production,     is the land yield. The net arable land, land 

fraction under harvesting and processing loss is denoted by    ,     and    respectively. Here, 

the processing loss is assumed as 10%. 

Energy-Economy 
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The land yield Ly is the average total weight of crop production on a hectare of land per year. In 

the ANEMI version 2 model land yield is partly computed by the land fertility, which is defined 

as the weight of crop that land will produce using only traditional inputs such as human or 

animal energy and natural fertilizers, such as manure. The land yield, Ly, can be increased 

significantly above the land fertility by the use of modern agricultural inputs. 

 

                                                                                                                                   (    ) 

 

where     is the land yield factor,       is the land fertiality, and       is the land yield 

multiplier from capital. Availability of water resources is a vital component of the land yield, 

therefore water-stress to land yield factor (    ) is introduced in the Equation (2.68). 

 

The land fertility (     ) is the average ability of one hectare of net arable land (  ) to produce 

crops without the use of modern agricultural input. The fertility of the land is a complex 

function of the organic and inorganic content of the soil, the climate, and the incident solar 

radiation. Any process that interferes with soil chemistry, water holding capacity of the soil is 

likely to change the soil fertility. There are many such processes, some with positive influence 

tending to regenerate soil fertility and some tending to degrade it. In a simplified way the land 

fertility can be defined as: 

 

       ∫(       )                                                                                                                      (    ) 
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where     and      stand for land fertility regeneration and land fertility degradation, 

respectively.  

 

Calculation of the net arable land (  )  combines different inputs including impacted 

agricultural land due to sea-level rise. It represents the net cultivated area which is dedicatedly 

used for the direct human food production. Therefore, it excludes the land area used for the 

production of fodder and animal crop (   ), and can be expressed as: 

 

    (        )                                                                                                              (    ) 

 

where    and      represent the arable land and net erodible land, respectively. Obstacle to 

land conversion is defined as      and impacted agricultural land is denoted as     . 

 

2.1.5 The Land-Use Sector  

 

Land-use change can be considered one of the factors contributing to the increase in CO2 

concentration in the atmosphere. Therefore, the land-use change plays a key role in 

determining the atmospheric level of carbon dioxide over the long period of time. It is 

estimated that an added extra 1.6  ± 0.8 Gt C/year was released in the atmosphere in 1990’s 

due to conversion of forests to agricultural land (Watson et al., 2000), while anthropogenic 

greenhouse emissions contributed 6.7 Gt C (Marland et al, 2008) in 2000. 

 

The ANEMI model version 2 represents land-use and land-use change in the same fashion as in 

Goudriaan and Ketner (1984), as shown in Figure 2.13.  The transfer matrix simulates both 

conversions of one of the six biome-types to another (such as the conversion of tropical forest 
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to agricultural land), and human interference within a single biome type (such as forest fire, 

burning of grassland or agricultural land after harvesting). The transfer matrix is only 

considering the human intervention, assuming that the ecosystem is resilient to natural 

disturbance. 

 

 

Figure 2.13: Model structure of the ANEMI land-use sector 

 

The transfer matrix does not include actual spatial data. It describes the total extent of one 

biome and its change over time in an abstract fashion. Finally, it also does not specify the actual 

cause of change in biome area. Any change is modelled simply as a result of population change 

– an intersectoral feedback. However, despite its simplicity, the approach models human 

impacts on biome extent acceptably, given the limited understanding of the direct impacts of 

land-use change (Lambin et al., 2001; Veldkamp and Lambin, 2001). 
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The initial values for the transfer matrix and biome areas are shown in Table 2.5.  Note, that 

these values match 1980 values in Table 2.2 and Table 2.5 in Goudriaan and Ketner (1984: 

178,180), when the model incorporates a feedback from the population sector.  

 

Table 2.5: Transfer matrix of area between ecosystems (Mha yr-1) in 1980 

           From (j): 
 
To (i): 

Tropical 
Forest 

Temperate 
Forest 

Grassland Agricultural 
Land 

Human Area Semi-Desert 
and Tundra 

Tropical Forest 15 0 0 0 0 0 
Temperate Forest 0 2 0 0 0 0 
Grassland 6 1 400 0 0 0 
Agricultural Land 6 0 0 400 0 2 
Human Area 0.5 0.5 1 1 0 0 
Semi-Desert and Tundra 0 0 0 0 0 0 
1980 Area 3610 1705 1880 1745 200 2970 

 

Causal Structure of the ANEMI Land-Use Sector 

The causal structure of the land-use sector is presented in Error! Reference source not found. 

based on Goudriaan and Ketner (1984).  This is a simplified representation of the basic causal 

loop structure of the land-use sector.  The intensity of shifting cultivation and burning are 

related to human population size, but this relationship is less than proportional, because of 

increased urbanization. Temperature change is also treated as a minor factor of land transfer, 

as in many places increased temperature could make desertification more rapid but at the 

same time it could open the opportunity for the agricultural activities in the northern 

hemisphere. In the ANEMI, the main driving force, population growth, is the outcome of the 

population sector, whereas temperature change is computed in the climate sector. However, 

loss or gain of the each biome area in each year is determined on the basis of the transfer 

matrix.  The current biome area is basically the total area under each biome type at any specific 

time.  So it’s a current balance of biome accounting system. Current biome area serves as a 

checking mechanism for the unrealistic land transfer, when any of the biome types reaches 

almost zero value by completely converting to other types of biome. 
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Figure 2.14: Causal loop diagram of the ANEMI land-use sector 

 

Mathematical Description of the ANEMI Land-Use Sector 

The land-use sector is represented by a very simple model structure, where the provided land 

transfer matrix (by Goudriaan and Ketner, 1984) is only influenced by the population growth 

and minor impact of temperature change. 

 

It is assumed that the land transfer rate outside the diagonal direction of the transfer matrix 

(see Table 2.5) is proportional to the population growth rate, but that burning and shifting 

cultivation which represented by the diagonal direction, grow with the square root of 

‘population growth rate’. Therefore, the land transfer rate can be expressed as: 

 

       (       )                                                                                                                    (     )                                

 

where the land transfer rate in non-diagonal direction is       (       ) ,      is transfer matrix  

and   denotes population growth rate.  

 

Climate Sector

Population Sector
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In case of land transfer along diagonal direction, the transfer rate (       (   )) can be describes 

as: 

 

       (   )      ( )                                                                                                                (     )                                

 

Transfer matrix is working as a reservoir where inflow is land transfer rate and outflow is drain 

transfer value (    ). The drain transfer value is used in the model to avoid negative term. The 

following equation represents the generic form of ‘transfer matrix’ calculation, which can be 

used for both diagonal and non-diagonal matrix entities.  

 

    ∫(           )                                                                                                                   (    ) 

 

The area Aj of ecosystem j changes as: 

 

   

  
  ∑(       )                                                                                                                           (    )

 

   

 

 

where    is the area of ecosystem j,       is the rate of transition of area from ecosystem j to 

ecosystem i. 
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2.1.6 The Population Sector  

 

Two basic dynamics of the society-biosphere-climate-economy-energy system of the Earth and 

biosphere are exhibited by all human populations tendency towards exponential growth, and a 

long delay in the population’s adaptive response to changing external conditions (Meadows et 

al., 1974). The actual rate of growth, the nature of the adaptive response, and the length of 

delay, vary, depending on many factors in the total system. When any biological population 

grows, the pattern of growth over time tends to be exponential. In the twentieth century, rapid 

exponential growth has been exhibited not only by the global human population but by nearly 

every national and regional population as well (Meadows et al., 1974).  The total increase in the 

population during any time period must be at least partially determined by the size of the 

population of reproductive age in that time period. For the global population, migration is not a 

factor, as there is no consideration of spatial distribution of the population. 

 

Demographic responses to new external conditions, through changed birth and death rates, are 

often significantly delayed. The two major sources of the delay are the age structure of the 

population and the inherent slowness of social change. It takes at least 15 years for a newborn 

child to mature and become a parent (Figure 2.15). There is a delay of more than 50 years 

before the child reaches the age of highest probability of death. The long delays inherent  in the 

biological processes of maturation and aging give every human population a strong momentum 

- a tendency to keep following the same dynamic behaviour it has followed in the past 

(Meadows et al., 1974).   Because of the momentum, a population that has been growing 

rapidly will continue to grow for decades, even after fertility has fallen to the equivalent of two 

surviving children per married couple. Similarly, a population that has experienced fertility 

lower than the replacement level may continue to decrease for some time after fertility has 

risen to the replacement level. 
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The population sector includes a four-level population model, which means the population is 

divided into 4 age groups (0 to 14 yr; 15 to 44yr; 45 to 60yr; and 60 to 60 plus). As initial stocks 

values, the UN data (DESA, 2011) of 1980 is used. 

 

 

Figure 2.15: Model structure of the ANEMI population sector 

 

Causal Structure of the ANEMI Population Sector 

The population sector of the ANEMI model version 2 is based on the WORLD3 population 

model (Meadows et al., 1974). It represents continuous dynamic interactions among the human 

population, climate and global resources (Figure 2.16). The population sector model contains 

numerous feedback loops representing demographic and technological-economic means of 

achieving a favourable balance between the population size and the supply of resources.  In this 

model crowding, pollution, availability of food, and household income are affecting the life 

expectancy. The life expectancy and extreme temperature are determining the population 

death rate.  Fertility is determined based on the fertility control effectiveness, the capital 

allocation, desired family size, and so on. Birth and death rates are only two direct variables 

used in the population computation.   
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Figure 2.16: Causal loop structure of the ANEMI population sector 

 

Mathematical Description of the ANEMI Population Sector 

Many factors are affecting the population’s average level of health or life expectancy. It is by no 

means easy to assess the role of various factors that are working to increase or decrease the 

mortality. When one variable of interest seems to depend on a number of other variables, 

statistical interface techniques are usually required to find out the relative importance of each 

individual contributing factor. In case of life expectancy, Kusukawa (1967) carried out a 

statistical analysis. The empirical relationship between food per capita, and life expectancy is 

adopted from Meadows et al (1974); and Keyfitz and Flieger (1971).  

 

Four factors: (i) food, (ii) health services, (iii) crowding, and (iv) pollution are incorporated in the 

equation for life expectancy as modifiers, or multipliers, of a ‘normal’ life expectancy. The 

normal life expectancy can be set at any arbitrary value as long as the four multipliers are all 

defined properly with respect to that value. 

Energy- Economy
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                                                                                                                            (    ) 

 

where LE is the life expectancy, LEN is the life expectancy normal, and LMF is the lifetime 

multiplier from food. Lifetime multiplier from health service, persistent pollution, and crowding 

are represented as LMHS, LMP, and LMC , respectively. 

 

In the population sector the number of deaths per year (   ) is expressed as the total number 

of people of a specific age group (    )   multiplied by the mortality (    ) of the same group. 

 

                                                                                                                                                 (    ) 

 

where mortality is a function of life expectancy and the functional relationship is available from 

Meadows et al (1974, page 170-172) as:  

 

      (  )                                                                                                                                          (    ) 

 

The thermal stress related mortality should increase due to the climate change.  It has been 

established that 16 to 30 degree Celsius is the comfortable temperature zone. One percent 

increase in the death rate could happen for 1 degree drop in temperature below 16 degree 

Celsius. On the other hand 1.4 percent increase in the death rate may be experienced per 

degree temperature rise above 30 degree Celsius. As children’s and aged people (above 65 

years of age) are mainly vulnerable to extreme climate, so the temperature related death is 
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incorporated in the ANEMI model for 2 age categories (0-14 and 65 plus). So the Equation 

(2.75) changes as follows:  

 

                                                                                                                                    (    ) 

 

The Equation (2.75) is still valid for the population between 15 to 64 years of age. The number 

of births per year (   ) is calculated from a purely demographic factor, the number of fertile 

women in the population (assumed, half of the total population between 15 to 44 age group), 

and from a socio-economic factor, the average number of births per women per year. 

 

           
          

     
                                                                                                                  (    ) 

 

where         is the total fertility,       is the reproductive lifetime of 30 years, and        is the 

total population between age 15 and 44. 

 

Total fertility is computed from the maximum total fertility (       ) , desired total 

fertility (       ) and fertility control effectiveness (      ): 

 

          (                       (        )                )                                          (    ) 

 

 

 



 

67 

2.1.7 The Water Resources Sectors 

 

The representation of the global water resources in the ANEMI model version 2 includes: 

hydrologic cycle, water demand, and water quality sectors. Global hydrologic cycle and water 

demand sectors can be found in many models like: WaterGAP2 (Alcamo et al, 2003a), Water 

balance model (Vörösmarty, 2002b), Macro-PDM (Arnel, 1999a) and etc.  Simonovic (2002), 

also enhanced the existing WORLD3 (Medows et al., 1992) by adding the water sectors. Even 

though with those improvements, the water sectors of those models are not dynamic in nature.  

Davies and Simonovic (2008) for the first time, successfully introduced a detailed water 

resources component in the ANEMI model version 1. The version 2 of ANEMI model extends 

the work of Davies and Simonovic (2008; 2010; 2011) in an attempt to capture the dynamics of 

the water resources in respect to both, quality and quantity of water. 

 

2.1.7.1 Hydrologic Cycle Sector 

Water is the only natural resource that exists in three forms: liquid, solid (snow, ice) and gas 

(clouds). Unlike most mineral resources, it is renewable. Water reservoirs in the global 

hydrologic cycle include the oceans, the land surface, groundwater, ice sheets, and the 

atmosphere, which can be separated into marine and terrestrial components (Chahine, 1992). 

Transfers between these reservoirs include the processes of evaporation and 

evapotranspiration, advection, precipitation (both solid and liquid), snow and ice melting, 

groundwater percolation into, and base flow from aquifers, and surface runoff to the oceans 

(Chahine, 1992; Gleick, 2000b; Shiklomanov, 2000). Being a cycle, it has no specific beginning or 

ending. Rather, liquid water from the Earth’s surface, particularly the oceans, is evaporated into 

a gaseous form and enters the atmosphere as water vapour (clouds). The atmospheric moisture 

is eventually returned to the Earth’s surface in the form of rain or snow. The liquid fresh water 

moves over the land surface on its journey back to the ocean (Figure 2.17). During its overland 

journey, it creates rivers, lakes, wetlands and/or groundwater aquifers. This cycle comprises 

nature’s method of replenishing, redistributing and purifying the world’s natural water 

resources (William D. Williams, 2001). 
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Figure 2.17: Model structure of the ANEMI hydrologic cycle sector    

 

Shiklomanov (2000) estimates the annual runoff of close to 42,750 km3/year. All the water is 

not stable or controlled by the natural hydrologic cycle because of human interception.  The 

ANEMI model reaches a steady-state at the stock and flow values given in Table 2.6 and Table 

2.7, which lie within the range of values provided by Shiklomanov and Rodda (2003: 13), Gleick 

(2000b: 21) and Chahine (1992). Table 2.6 compares the range of stock values provided in the 

literature with the values used in the ANEMI model; where values differ between the sources, 

the most recent figures available have been used. 

 

The initial, steady-state flow values used in the ANEMI model simulations are close to the  

values available in the literature, as shown in Table 2.7, where no values are available, the flow 

in question is marked as ‘Not available’. 
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Table 2.6: Major stocks of water, and values used in the ANEMI model (in km3) 

Name of Stock Literature Value Model Values 

Marine Atmosphere 9.4-11 x 10
3
 9.4 x 10

3
 

Terrestrial Atmosphere 4.0-4.5 x 10
3
 4.0 x 10

3
 

Oceanic Water Content 1338 x 10
6
 1338 x 10

6
 

Land Surface Water 118-360 x 10
3
 200 x 10

3
 

Ice and Permanent Snow 24-43 x 10
6
 24.5 x 10

6
 

Groundwater Content 10.5-23.4 x 10
6
 10.6 x 10

6
 

 

 

 

Table 2.7: Hydrologic flows and initial flow values used in the ANEMI model (in km3 yr-1) 

Name of Flow Literature Value Model Values 

Rainfall over Land 107000-180151 115019 
Terrestrial Evapotranspiration 71000-126631 73320 
Snowfall over Ice Sheets 2474 2625 
Advection (Marine to Terrestrial) 36000-53520 45375 
Precipitation over Oceans 398000-481680 489825 
Evaporation from Oceans 434000-535200 535200 
Melting of Ice Sheets (to Oceans) 2474 2625 
Percolation to Groundwater Not available 2312 
Groundwater Discharge Not available 2002 
Streamflow 36000 39090 
Total Renewable Flow 42750 41091 

 

 

Note that the most sensitive values in the model are the base flows rather than stock values. 

However, the terrestrial atmosphere is an exception. It has the smallest volume of any of the 

stocks, and is affected by very large flow values. Particularly uncertain values in the model are 

the groundwater recharge, base flow, ice melt, and snowfall over ice sheets. 

 

Causal Structure of the ANEMI Hydrologic Cycle Sector 

Ocean is the vast reservoir of water and it works as a collector. Ocean receives water by rainfall, 

snow melt, surface flow and ground water discharge from marine atmosphere, land ice, land 

surface and ground water reserve respectively (Error! Reference source not found.). Ocean also 

releases water to the marine atmosphere through the evaporation process. This water travels 

to the terrestrial atmosphere through the advection process. While traveling over the land the 



 

70 

water vapour condense and produce either snow or rainfall. Over the years the snow hardens 

and converts into ice. On the other hand, after touching the land surface raindrops flow over 

the land into the river as a surface flow. Some part of the rainwater is absorbed by the soil 

through a percolation process and recharges the groundwater reserve. However, a portion of 

the rainfall is stored in low-lying areas and reservoirs. Plants also use water for food production 

and release the excess water through transpiration. Through evaporation some water returns 

to the atmosphere mainly from open water bodies.   

 

 

Figure 2.18: Causal loop diagram of the ANEMI hydrologic cycle sector 

 

Mathematical Description of the Hydrologic Cycle Sector of ANEMI Model 

The main process of the natural hydraulic cycle is already discussed, whereas this section lists 

the major stock and flow equations of the hydrologic cycle sector. 

 

Climate Sector
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The equations for the marine and terrestrial atmospheric components are given by, 

 

      (              )                                                                                                        (     ) 

and, 

   ∫(            )                                                                                                       (    ) 

 

where AM and AL are the atmospheric water contents over the ocean and land, respectively,  

measured in km3 and with the initial values given in Table 2.6. EM is the evaporation from the 

oceans to the marine atmosphere, Adv is the advective flow of moisture from the marine 

atmosphere to the terrestrial atmosphere, PO is precipitation over the oceans, ET is 

evapotranspiration from the land surface to the terrestrial atmosphere, PR is precipitation over 

land in the form of rain, and PS is precipitation in the form of snow, which accumulates on ice 

sheets and in glaciers. 

 

The equation for the land surface has the following form, 

 

     ∫(           )                                                                                                       (    ) 

 

where LS represents the water storage in the terrestrial environment, SF is the surface flow of 

water to the oceans, and GP is percolation of water from the land surface into longer-term 

storage in groundwater. 

 

The oceans are governed by the following equation, 

 

     (                      )                                                                                   (     )  

 

where O is the water storage in the oceans, GD is the discharge of groundwater to surface flow, 

which then flows to the oceans, and M is the melting of ice sheets into the oceans. 
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Groundwater storage, GS, is determined by, 

 

      (      )                                                                                                                         (    )  

 

and ice storage, IS, is given by, 

 

      (      )                                                                                                                            (2.85) 

 

The evaporation from the ocean to the marine atmosphere is provided as: 

 

                                                                                                                                            (     ) 

 

where EM0 is the initial evaporation, set to 535,200 km3 yr-1, as in Table 2.7, and Tfeedback is a 

multiplier that represents the effect of climate change on the global hydrologic cycle. Tfeedback 

increases evaporation, evapotranspiration, snowfall, and melting rates by the fixed percentage 

for every degree of warming, and its value is based on two equations, 

 

            (
     

   ⁄ )                                                                                                           (    )       

                                                                           

                                                                                                                                            (    )                                                                                            

 

where Tfeedback is the temperature multiplier, and Pmult is the percentage increase calculated by 

equation (2.88), in which Pmult, base is its base value, set to 3.4% K-1.  Pmult depends on the change 

in surface temperature between initial and current conditions, which is represented by the ΔTS 

term and is calculated in the model’s climate sector. Since these two equations represent the 

main components of the intersectoral feedbacks of the ANEMI model, they are described in 

greater detail below. 
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The equation for advection from the marine atmosphere to the terrestrial atmosphere is given 

by, 

 

           (  
    

   ⁄ )                                                                                                       (    )                                                                                      

 

where Adv0 is the initial advection value, set to 45,375 km3 yr-1, as in Table 2.7, and δadv is the 

percent change in advection due to changes in the gradient that drives moisture from the 

marine atmosphere into the terrestrial atmosphere. The calculation of the percent change in 

advection, δadv, is given by, 

 

         
[(
  

    
⁄  

  
    
⁄ ) (

   
    
⁄  

   
    
⁄ )]

(
   

    
⁄  

   
    
⁄ )

                                                                 (    )                                                    

 

where AM0 and AL0 are the initial water contents of the marine and terrestrial atmospheres, 

respectively, as in Table 2.6, SAO% is the percent of the Earth’s surface that is covered by oceans, 

and is set to 67%, while SAL% is the percent of the Earth’s surface covered by land.  

 

The equation that governs precipitation over the oceans, PO, is, 

 

        
  

   
⁄                                                                                                                                   (    ) 

 

where       is the initial precipitation over the oceans, given in Table 2.7. 

 

From the flows in equation (2.81), the equation for evapotranspiration, ET, is 

 

       
  

   
⁄                                                                                                       (    ) 
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where ET0 is the initial evapotranspiration from the earth’s surface, given in Table 2.7, LS0 is the 

initial water content of the land surface, given in Table 2.6, Tfeedback is given by equation (2.87), 

Eres is the evaporation from human-made reservoirs, explained below, and Cwa is the 

evaporation from consumptive water uses to the atmosphere, also explained in this section, 

below. 

 

Precipitation over the land surface is broken into three components, PR, PS, and total 

precipitation, PL. Precipitation in the form of rain over the land surface is governed by the 

following equation, 

 

                                                                                                                                         (2.93) 

 

where PL is the total precipitation over land, given by equation (2.94), and Cwl is the addition to 

the land surface because of irrigation-based water-logging – note that Cwl is added to PR for 

convenience only and is not intended to represent a component of the actual physical process 

of precipitation (recall that stocks can be influenced only through their flows). The total 

precipitation over land is given by, 

 

       
  

   
⁄                                                                                                                                  (2.94) 

 

where the initial total precipitation over land, PL0, is given in Table 2.7. Finally, the equation for 

precipitation in the form of snow is, 

 

   

(    
  

   
⁄ )

         

⁄
                                                                                                           (2.95) 
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where PS0 is the initial precipitation in the form of snow, which is given in Table 2.7. The effect 

of climate change represented by the division by Tfeedback rather than multiplication is 

introduced to decrease the amount of snow.  

 

Several flows to and from the land surface, in equation (2.82), have already been defined. The 

surface flow equation is more complicated than most in this section, and takes the form, 

 

       (
  

   
⁄ )

 

                                                                            (     ) 

 

where SF0 is the initial surface flow, given in Table 2.7, the land surface content comparison is 

raised to the exponent 2 to model a non-linear increase in surface flow to the oceans as land 

storage increases, Cgw represents the seepage of withdrawn surface water to groundwater, and 

Closs is the long-term, or permanent, loss of water from the hydrologic cycle because of its 

incorporation into manufactured goods, and so on. The other consumptive flows, Cwa and Cwl, 

are explained in Equations (2.92) and (2.93), respectively. 

 

The last flow in Equation (2.82) models the percolation of water from the land surface into 

groundwater storage. The equation for percolation is given by, 

 

       
  

   
⁄                                                                                                                        (     ) 

 

where GP0 is the initial percolation of land surface water into groundwater, see Table 2.7. 

 

The equation for groundwater discharge is, 

 

       
  

   
⁄                                                                                                                      (    ) 
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where GD0 is the initial groundwater discharge from Table 2.6, GS0 is the initial groundwater 

storage also from Table 2.6, and GW is the groundwater withdrawal, explained below. Note 

that, like    in Equation (2.93), GW is added to GD for convenience only and is not intended to 

represent a component of the actual physical process of groundwater discharge (again, recall 

that stocks can be influenced only through their flows). 

 

Melting of ice occurs according to the following equation, 

 

     
  

   
⁄           

                                                                                                                  (    ) 

 

where M0 is the initial rate of ice melt, given in Table 2.7, IS0 is the initial water content of ice 

sheets and glaciers, given in Table 2.5, and the Tfeedback is explained in the intersectoral feedbacks 

section, below. Note that the exponent on Tfeedback means that melting accelerates with 

changing temperature. 

 

2.1.7.2 Water Demand Sector 

Anthropogenic water withdrawals and consumption depend on overall surface water 

availability. The first requirement in computing the anthropogenic water use, is to determine a 

stable, or steady-state, runoff value, which occurs at some fraction of the total average runoff. 

Shiklomanov (2000: 18) sets this steady-state value at 37% of the total volume, while Simonovic 

(2002) and Alcamo et al. (2003a) use similar values of 33% and 32%, respectively. In this model, 

the available surface water is set to 37% of the total runoff, giving a base value of roughly 

16000 km3 yr-1, as in Shiklomanov (2000). 

 

The available surface water can be allocated to two forms of human water use: water 

withdrawals and water consumption. These two terms require definitions because of 

differences in terminology from one study to another. According to Gleick (2000b: 41), the term 

‘withdrawal’ refers to water removed from a source and used for human needs. Some of this 
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water may be returned to the original source with changes in the quantity and quality of the 

water. ‘Water consumption’ on the other hand refers to water withdrawn from a source and 

made unusable for reuse in the same basin, through evaporation, seepage to a saline sink, or 

through contamination (Gleick, 2000b: 41). In other words, water withdrawal is the sum of 

water consumption and returnable water. Note that the water returned after use to the surface 

flows, or the returnable water, may cause surface water to become polluted, which has 

important effect on the availability of surface water (Shiklomanov, 2000; Simonovic, 2002). 

 

Both water withdrawals and water consumption have three components – domestic, industrial, 

and agricultural – as in other water models, such as those developed by Alcamo et al. (2003a), 

Simonovic (2002), and Vörösmarty et al. (2000). Each of these components has different 

drivers, which are related to the quantitative elements of anthropogenic water demand. 

 

In this ANEMI model water use for domestic sector is based on per capita water requirement 

(Figure 2.19). Again per capita water consumption is not a fixed value, rather it depends on 

standard of living as well as technological improvement. Technological improvement covers the 

area of efficiency of municipal water supply as well as water consumption by the daily use 

commodities. Alcamo et al. (2003a) introduced the term “structural change”, which combines 

standard of living and municipal water system efficiency. However, in the global version of the 

ANEMI model version 2, an aggregate value of water system efficiency and standard of living on 

a global scale is used. 

 

The industrial sector is more efficiency driven compared to the previous one. The drivers 

include: 1) ongoing changes in the approach to cooling power generation plants, in an effect 

called structural change, and 2) changes in water use efficiency per unit of energy required for 

industrial production via technological change (Alcamo et al., 2003a). Industrial water demand 

is modelled on an energy-intensity basis (m3 water MWhenergy
-1), which provides a connection to 
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a simple power generation sector in the model, while the level of structural change is driven by 

the economic sector (Davies and Simonovic., 2008). In terms of the first industrial sector driver, 

water use depends on the transition from once-through flow to circulating water supply 

systems for power generation, and on the development of dry technologies in the 

manufacturing industries (Shiklomanov, 2000). The most important result of a switch from 

once-through flow to circulating water systems for industrial cooling is that water withdrawals 

decrease strongly, while water consumption levels increase. Technological change, the second 

driver, “almost always leads to improvements in the efficiency of water use and the decrease in 

water intensity” (Alcamo et al., 2003a: 322), unlike structural changes which can either increase 

or decrease water intensity. 

 

 

Figure 2.19: Model structure of the ANEMI water demand sector 

 

Agriculture sector continues to demand the major share of water supply throughout the world. 

Around 70% of water is consumed for agricultural purpose. The fresh water used for agriculture 
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sector is becoming increasingly scarce, because of increasing population and climate change. 

Although water-stress seems somewhat localized problem, the impact of agricultural water 

consumption is not, as its far reaching and global in nature.  In this model the main drivers of 

water use are total irrigated area, change in temperature and technological change. The 

irrigated area expanded rapidly between 1950s and 1970s in both, developed and developing 

countries. After 1970s the expansion slowed down, because of very high cost of irrigation 

system construction, soil salinization, depletion of water resources, and environmental 

protection problems (Davies and Simonovic., 2008). According to Postel (1999: 60), “irrigation 

has simply begun to reach diminishing returns. In most areas, the best and easiest sites are 

already developed.” Anthropogenic climate change does not only affect available water 

resources but also water demand.  Using a new global irrigation model, with a spatial resolution 

of 0.50 by 0.50, the first global analysis of the impact of climate change and climate variability 

on irrigation water requirements was done by Döll (2002).  This work shows that the computed 

long-term average irrigation requirements might change under the climatic conditions of the 

2020s and the 2070s, and relate these changes to the variations in irrigation requirements 

caused by long-term and interannual climate variability in the 20th century. Döll study shows 

clearly that there is every possibility of increased irrigation water requirements with the 

projected climate change scenarios. The last agricultural driver, technological change, affects 

the specific water intake value, or base irrigation water requirement per hectare of irrigated 

land (Shiklomanov, 2000), used in the model. To model the effects of technological change, it is 

important to recognize that the overall efficiency of irrigation worldwide may be as low as 40% 

presently, and that certain advanced irrigation techniques can increase efficiency quite 

significantly (Gleick, 2000a). 

 

Causal Structure of the ANEMI Water Demand Sector 

It’s already mentioned that the surface water use can be classified as consumption and 

withdrawal. After Alcamo et al. (2003a), Simonovic (2002), and Vörösmarty et al. (2000), both 

water withdrawals and water consumption are classified in to three components based on the 

usages – domestic, industrial, and agricultural. Both, domestic water withdrawals and 
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consumption are based on the technological efficiency, GDP, population and etc. (Figure 2.20). 

In case of industrial water, energy production is playing a major role by dominating the 

‘industrial structural water intensity’. However, the agricultural water withdrawal and 

consumption are bit different. 

   

  

 

Figure 2.20: Causal loop diagram of the ANEMI model water demand sector 

 

Mathematical Description of the Water Demand Sector of ANEMI Model 

Desired surface water withdrawal (  ) is the total withdrawal by all three types of water 

usage. In this case, desired domestic, industrial and agricultural water withdrawal are denoted 

by    ,     , and     respectively. 

 

                                                                                                                                (     ) 

 

Energy-Economy 
Sector

Land-Use 
Sector Climate Sector

Population 
Sector
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The desired surface water consumption is calculated in the same fashion as Equation (2.100).   

                                                                                                                                  (     ) 

 

where      is desired domestic water consumption,     is industrial water consumption, and 

    is agricultural water consumption. 

 

Domestic water withdrawals and consumption are both dependent on the population size 

(      ) and its water requirement. However, the amount of desired industrial water withdrawal 

is reduced by the reuse of treated water (     ) and desalinated water (     ). 

 

                                                                                                                 (     ) 

                                                                                                                                           (     ) 

 

where      and      represents the per capita water withdrawal and consumption 

respectively. 

 

Desired industrial water withdrawal and consumption are basically dependent on the industrial 

structural water intensity (ISWI), technological change and a function of electricity production 

(  ) . However, for the calculation of ‘industrial water withdrawal’, treated industrial water for 

reuse (     ) needs to be subtracted. 

 

     (  )                                                                                                             (     ) 
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     (  )                                                                                                                        (     ) 

 

Desired agricultural water withdrawal and consumption are calculated based on the irrigated 

land (     ), per hectare water withdrawal (    ) and consumption (    ). In case of 

agricultural activities, a significant portion of water is coming from the treated wastewater 

(     ), as well as from ground water withdrawal (    ). 

 

                                                                                                                  (     ) 

                                                                                                                                          (     ) 

 

where desired agricultural water withdrawal and consumption are denoted by    , and     

respectively. 

 

2.1.7.3 Water Quality Sector 

In the ANEMI model version 2 surface water is mainly considered, in modeling water quality 

and subsequently water availability. While dealing with water pollution sources; domestic, 

industrial and agriculture use are counted as the main sources of wastewater (Error! Reference 

source not found.).  

 

Shiklomanov (2000) stated that every cubic meter of contaminated wastewater discharged into 

the water bodies and streams renders eight to ten cubic meters of clean water unsuitable for 

use. Falkenmark (2005), Miller (2006), and Gleick (2000a) also recognized the importance of 

inclusion of polluted water while accessing the availability of surface water. Simonovic (2002: 
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263), who includes wastewater effects in his model, states that “the main conclusion of [his] 

research is that water pollution is the most important future water issue on the global scale.”  

 

To include the effects of wastewater on surface water availability, it is important to separate 

the water use types (domestic, industrial, and agricultural), since each has different 

characteristics (Davies and Simonovic, 2008). In the domestic sector, all returnable water 

require treatment (Gleick, 2000b), while in the industrial sector, only the wastewater from 

manufacturing processes requires treatment, since thermal power plants do not generate 

chemical pollution (Vassolo and Döll, 2005). In the agricultural sector, returnable water comes 

from broadly distributed fields and cannot be treated, despite the presence of fertilizers and 

toxic chemicals (Postel, 1999).  

 

 

Figure 2.21: Model structure of the ANEMI water quality sector 
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Human withdrawal of water from the natural resources along with pollution and dilution 

requirements makes fresh water scarce in many places around the world. Water scarcity is 

often measured using an indicator called ‘water-stress’, which “is a measure of the degree of 

pressure put on water resources by users of the resources, including municipalities, industries, 

power plants and agricultural users” (Alcamo and Henrichs, 2002: 353). The most commonly 

used indicator of water-stress is the annual withdrawals-to-availability (wta) ratio, although per 

capita measures are also available (Arnell, 1999b). Alcamo and Henrichs (2002) write that ‘wta’ 

values of 0.2 indicate ‘mid-stress’ and that values of 0.4 and higher indicate ‘severe stress’, and 

Vörösmarty et al. (2000) use a similar scale. Indicator values of 0.2 or higher suggest that water-

stress is likely to limit development (Arnell, 1999b). The concept of water scarcity is most 

meaningful at the watershed or sub-watershed level. Identifying water-stressed nations may 

not be overly meaningful (Davies and Simonovic, 2008). In this study, the measurement of 

water-stress is on global scale because each connected sector is aggregated separately in a 

single global value. If the model shows water scarcity at a global scale, it doesn’t necessarily 

mean that every part of the globe is under water-stress, which is one of the limitations of this 

global version of ANEMI model. However, the individual sector based fresh water requirement 

to dilute polluted water to an acceptable level makes the model unique. 

 

As per the literature (Gleick, 2000a; Gleick, 2000b; Simonovic, 2002), water reuse offers  means 

to reduce the water-stress in many of regions of the world, such as the United States, Southern 

Africa, Israel, and the Middle East. The ANEMI model version 2 has adapted such mechanism 

into its modeling structure. With increasing water-stress indicator, the level of wastewater 

treatment is unlikely to increase for low stress condition (less than 0.4). For moderate to high 

water-stress condition (values above 0.4), the model will certainly trigger the rate of 

wastewater treatment and reuse, with some delay. Therefore, the treated wastewater reuse 

will increase over time and according to Gleick (2000b), irrigation sector will receive most of the 

treated water followed by industrial and domestic uses. Unfortunately this model feature can’t 

be tested fully because of water reuse data unavailability. 
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In the ANEMI version 2 model, the amount of treated wastewater reuse increases over time, 

with the rate of increase dependent on (a) the level of global water-stress, (b) the parameter 

that represents a real-world infrastructure, and (c)the decision-based delay. The effect of water 

reuse is to reduce the desired surface water withdrawal volume from each water use sector by 

the volume of treated wastewater used. According to Gleick (2000b), irrigation generally 

receives the most treated wastewater for reuse, followed by industrial and domestic uses. 

Unfortunately, wastewater reuse figures are generally anecdotal, so it is difficult to determine 

actual usage, particularly at a global level – the values in Table 2.8 are assumed to be 

representative, at present. 

 

Table 2.8: Treated wastewater resue allocations to water use sectors 

Parameter Name Sector Source 

Domestic Industrial Agricultural 

Treated Wastewater Reuse 10% 30% 60% Gleick (2000b) 

 

Causal Structure of the ANEMI Water Quality Sector 

Water-stress measures the level of pressure on water resources. In other words, it expresses 

how much water is left for the ecosystem health. It accounts for the water withdrawal as well 

as return of unused water to the water resources (Figure 2.22). It also consideres the amount of 

fresh water required to dilute the wastewater, so that the discharged water quality can be 

within the acceptable range.   
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Figure 2.22: Causal loop diagram of the ANEMI model water quality sector 

Mathematical Description of the Water Quality Sector of ANEMI Model 

According to the usual ratio, water-stress equals the total withdrawal over the surface water 

availability, or,  

 

    
  

(     )                                                                                                                       (     )⁄  

 

where    is the actual surface water withdrawal and (SF+GD) is the total surface runoff 

available for human use; however, Hoekstra et al. (1997) argue that this total runoff approach 

leads to overestimation of surface water availability. They recommend instead that water 

availability be considered as a portion of the total runoff. 

 

In this model, water-stress is altered in two ways to take water pollution into account by using 

effective, rather than actual, withdrawal, as explained above and a reduction fraction of the 

total runoff, called   . This modification gives water-stress the following form, 

 

Water Demand 
Sector

Hydrologic Cycle 
Sector
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⁄                                                                                                                             (     ) 

 

where     is now the effective surface water withdrawal,    , divided by the available runoff 

volume,   . The result is a much higher value of water-stress than is calculated in the general 

fashion. 

 

Incorporation of the Green Water Consumption 

Green water consumption in global agriculture sector is incorporated to reflect the water 

quality effects on water-stress for rainfed cropland runoff.  The ANEMI model computes the 

volume of runoff from rainfed cropland and pasture as an area-weighted fraction of the total 

runoff from the land surface. Later, fresh water requirement to dilute agrochemicals (used on 

the rainfed cropland) are computed by multiplying the “rainfed cropland runoff” with the 

“green water” dilution multiplier.  

 

In some regions, food production almost entirely depends on the green water (>95% in sub-

Saharan Africa). Green water is also important for irrigated land, as blue water is supplied there 

only to the amount that precipitation water is not sufficient for ensuring optimal crop growth. 

Hence, the global agricultural water consumption is much higher than suggested by figures that 

refer to blue water only. The outstanding importance of the green water is demonstrated by 

Rost et al (2008).  Their work strengthens the need for including green water flows in the 

assessments of global water resources and water scarcity. The green water can be broadly 

classified into green crop water and green pasture water. Green crop water is basically the 

overland flow/runoff that is coming from the agricultural areas which are not under irrigation 

(rain feed agricultural area) and the green pasture water is the flow from the pasture land.  
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In the simple way the rainfed crop land (    ) can be computed by deducting the irrigated area 

(     ) from the total agricultural land (       ) as, 

 

                                                                                                                                        (     )  

 

while for computing the rainfed cropland runoff, area-weighted method is chosen considering 

the equal distribution of runoff over the total biome area. Therefore, the rainfed cropland 

runoff (    ) is   

        (
    

     
)                                                                                                                           (     ) 

 

where    is the total renewable flow, and       is the total biome area. 

 

The green crop water dilution requirement is the amount of fresh water required to dilute the 

polluted crop water. On the basis of the study done by Chapagain et al (2006), and Dabrowski 

et al. (2009), the dilution requirement of the green crop water is assumed to be 1:1. So, the 

green crop water dilution requirement (      ) can be formulated as follows, 

 

                                                                                                                                        (     ) 

 

Since, as mentioned earlier, the green crop water dilution requirement factor (     ) is 

considered as 1, the above equation can be rewritten as 
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                                                                                                                                                (     ) 

  

However, the computation of the green water from the pasture land is not as straightforward 

as for rainfed cropland, because of the complexity in determining the total pasture land. In the 

ANEMI model version 2 the pasture land is calculated based on the requirements for increased 

animal production as a portion of the food supply for growing population. Therefore the 

pasture land productivity is a function of increase in human food production (       ) and 

Pasture area (   ) calculation takes the following form 

  

    
( (       ))        

    
⁄                                                                                                       (     )  

where      is the average yield from pasture land. 

Runoff over the pasture land is computed in the similar fashion as crop land. So the simplified 

form of the pasture land runoff (    ) calculation formula is   

 

        (
   

     
)                                                                                                                           (     ) 

 

where    is the total renewable flow, and       is the total biome area. 

 

The green pasture water is relatively less polluted than the runoff from the crop land. In this 

study it’s assumed to be 1/10 of the crop land. The green pasture water dilution requirement 

(      ) can be then written as 
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                                                                                                                                   (     ) 

 

As the green crop water dilution requirement is only 10% of the (     )  polluted water, so the 

dilution requirement (     )   will be 0.1 and the simplified form of the above equation will be 

 

                                                                                                                                       (     ) 

 

2.1.8 Sea-Level Rise 

 

 Another important water-related sector is incorporated in the ANEMI model version 2 dealing 

with global and regional water resources - the sea-level rise. It is introduced into the ANEMI 

model to understand the feedback relationships between climate, water, and land-use sectors. 

 

Processes in several nonlinearly coupled components of the Earth system contribute to sea-

level change, and understanding these processes is therefore of high importance. The climate 

change on decadal and longer time scales, alters the volume of water in the global ocean by: (i) 

thermal expansion, and (ii) the exchange of water between other reservoirs (glaciers and ice 

caps, ice sheets and other land water reservoirs) and oceans (IPCC, 2007c). Vertical land 

movements such as glacial isostatic adjustment, tectonics, subsidence and sedimentation, 

influence local sea-level but do not alter the ocean water volume. 

 

Global sea-level rose by about 120m during the several millennia of the last ice age 

(approximately 21,000 years ago), and stabilised between 3000 and 2000 years ago (IPCC, 

2007c). Different indicators such as: marine deposits and lower boundary of mangrove growth, 

show that the global sea-level did not change significantly from then until the late 19th century. 

Estimates for the 20th century showed that global average sea-level rose at a rate of about 1.7 

mm/yr. It is believed that on average, over the period from 1961 to 2003, thermal expansion 
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contributed about half of the observed sea-level rise, while melting of the land ice accounted 

for less than half, although there is some uncertainty in these estimates. 

 

Understanding global sea-level change is not an easy task, rather a difficult scientific problem. It 

includes complex mechanisms and large number of feedback relationships.  Significant 

uncertainties are still present, even in the projection of thermal expansion. In such a situation, 

semi-empirical model can provide a pragmatic alternative to estimate the sea-level response. 

 

In the ANEMI model version 2, global average near surface air temperature is considered as the 

driver for the sea-level change.  As per Rahmstorf (2007), sea-level is rising as the ocean takes 

up heat and ice starts to melt until (asymptotically) a new equilibrium sea-level is reached. 

Paleoclimatic data suggest that changes in the final equilibrium level may be very large; sea-

level at the last glacial maximum, about 20000 years ago, was 120 m lower than the current 

level, where global mean temperature was 40 to 70 C lower. Three million years ago, during 

Pliocene, the average climate was about 20 to 30 C warmer and sea-level was 25 to 35 m higher 

than today’s value. These data suggest changes in sea-level on the order of 10 to 30 m per 0C. 

 

The initial rate of rise is mainly to be proportional to the temperature increase, 

 

  

  
   (    )                                                                                                                                 (     )

 

 

where H is the global mean sea-level, t is time,   is the proportionality constant, T is the global 

mean temperature, and    is the previous equilibrium temperature value. The equilibration 

time scale is expected to be in the order of millennia. As long as the linear approximation holds, 

the sea-level rise from the previous equilibrium state can be computed by the following 

equation: 

 

 ( )   ∫ ( (  )    )                                                                                                                (     )
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where    is the time variable.  

 

Rahmstorf (2007) established a highly significant correlation of global temperature and sea-

level rise (r=0.88, P=1.6 x 10-8) with a slope of a = 3.4 mm/year per oC. The baseline 

temperature T0, at which sea-level rise is zero, is 0.5 0C below the mean temperature of the 

period 1951-1980. 

 

Till now, only a few research groups worked on the impact analysis of sea-level rise at a global 

scale utilizing satellite and remote sensing data in GIS environment.  Nicholls et al. (1999), 

Nicholls (2002 and 2004), and Nicholls and Tol (2006) examined the potential impacts of global 

sea-level rise on coastal flooding. Their analyses are at the scale of coastal countries and are 

limited by the assumptions that the coastal country polygons have a constant slope and that 

the population distribution within the polygons is uniform. On the other hand, Dasgupta et al. 

(2009) considered only 84 developing countries in their impact analyses, leaving developed 

countries out of calculation. After a while, Xingong et al (2009) published their research paper 

on the sea-level rise on global scale where they used GIS methods to assess and visualize the 

global impacts of potential inundation using the best available global datasets. 

 

Inundated Area by the Sea-Level Rise 

Sea-level rise (SLR) due to climate change is a serious threat to the low lying countries with 

densely populated coastal regions that are also used for significant level of economic activity. 

Geographic Information System (GIS) software is used to overlay the best available, spatially 

disaggregated global population and land use, with the inundation zones corresponding to 

projected for 1- 6 m sea-level rise.  The inundation data sets are collected from the Center for 

Remote Sensing of Ice Sheets (CReSIS), a Science and Technology Center established by the 

National Science Foundation (NSF) in 2005 (https://www.cresis.ku.edu/, last accessed August 

2011 ).  

http://www.nsf.gov/
https://www.cresis.ku.edu/
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CReSIS used the Global Land One-km Base Elevation (GLOBE) digital elevation model (DEM), a 

raster elevation dataset covering the entire world to calculate the inundation area. Cells in 

GLOBE have a spatial resolution of 30 arc seconds of latitude and longitude (approximately one 

kilometre at the equator), with each land cell in the grid assigned an elevation value (meters) in 

whole number increments. Potentially inundated areas are computed based on elevation and 

proximity to the current ocean shoreline. In simple form, to determine an inundation area for a 

sea-level increase of one meter above the current sea-level, all cells in the DEM that are 

adjacent to the ocean and that have a value less than or equal to one are selected and 

converted to water (i.e., they are inundated in the resulting output).  

 

Impact on Agricultural Land 

Agricultural area coverage data is collected from the International Centre for Tropical 

Agriculture (CIAT) and overlaid CReSIS based inundation map. The data are in ARC GRID format, 

in decimal degrees and datum WGS84 (World Geodetic System). They are derived from the 

NASA SRTM data (http://www2.jpl.nasa.gov/srtm/, last accessed August 2011). International 

Centre for Tropical Agriculture (CIAT) has processed this data to provide seamless continuous 

topographical surfaces. Areas with regions with no data in the original SRTM data have been 

filled in using interpolation methods. 

 

There is a widespread perception that there is very little new land to bring under agriculture 

production.  This perception may be well grounded for specific land-scarce locations such as 

Japan, South Asia and the Near East/North Africa. However, this perception may be wrong for 

other parts of the world. There are large tracts of land with varying degrees of agricultural 

potential in several countries, most of them in Sub-Saharan Africa and Latin America, and some 

in East Asia. In reality, expansion of agricultural land takes place all the time in countries with 

growing needs for food production. It is also evident that most of the low laying coastal areas 

http://www2.jpl.nasa.gov/srtm/
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with fertile land are already used for agricultural activities. Thus, the rate of increase in 

agricultural area is very small, even though the global expansion may not be insignificant. This 

restricted the ANEMI model version 2 reliance on forecasted global average agricultural land 

expansion rate. The modeling process involves selection of year 1990 as the base year for 

agricultural land estimate, and after that, the expansion of agricultural land in the low lying 

coastal belt is considered negligent.  

 

Impact on Population  

Using an innovative approach with Geographic Information System and remote sensing data, 

the Oak Ridge National Laboratory (ORNL) produced LandScan population distribution database 

of the global population distribution (http://www.ornl.gov/sci/landscan/, last accessed August 

2011). The model uses annual mid-year sub-national population estimates from the Geographic 

Studies Branch, US Bureau of Census to allocate population counts within administrative units. 

The LandScan model uses spatial data and imagery analysis technologies and a multi-variable 

dasymetric modeling approach to disaggregate census counts within an administrative 

boundary. Since no single population distribution model can account for the differences in 

spatial data availability, quality, scale, and accuracy as well as the differences in cultural 

settlement practices, LandScan population distribution models are tailored to match the data 

conditions and geographic nature of each individual country and region.  

 

The binary raster format dataset is used for this analysis, which consists of 20,880 rows and 

43,200 columns covering North 84 degrees to South 90 degrees and West 180 degrees to East 

180 degrees. The values of the cells are integer population counts representing an average 

population distribution.  The dataset has a spatial resolution of 30 arc-seconds and is output in 

a geographical coordinate system - World Geodetic System (WGS) 84 datum. The 30 arc-second 

cell, or 0.008333333 decimal degrees, represent approximately 1 km2 near the equator. Since 

the data is in a spherical coordinate system, cell width decreases in a relationship that varies 

with the cosine of the latitude of the cell. Thus a cell at 60 degrees latitude would have a width 

http://www.ornl.gov/sci/landscan/
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that is half that of a cell at the equator (cos60 = 0.5). The height of the cells does not vary. The 

values of the cells are integer population counts, not population density, since the cells vary in 

size.  

 

 

2.2  Intersectoral Feedbacks  
 

In the past years water as well as energy resources management received increased attention 

due to their role in socio-economic development, energy security and fight against global 

warming. It became clear, though, that water as well as energy resources cannot be evaluated 

independently of the rest of the economic and social processes, and therefore understanding of 

intersectoral feedback effects in the ANEMI model is important. Integrated Assessment Models 

(IAMs), have recently been employed in order to study the effects of climate change policy 

options. Such modeling framework unveils direct and indirect feedback effects of certain policy 

choices across various model sectors. ANEMI model version 2 is thus well suited for the study of 

complex society-biosphere-climate-energy-economy system. The model contains many closed-

loop feedback relationships among nine model sectors. All of the major elements of the system 

are endogenous or included explicitly, so that the dynamic behaviour of the model arises from 

the system structure rather than input data.  

 

In Error! Reference source not found., each arrow indicates the connection between the two 

connecting model sectors and title associated with the arrow identifies the element/elements 

by which those sectors are connected. The positive and negative polarity associated with each 

arrow specifies the direction of change in two model sectors connected by the arrow. Here, 

positive sign represents change of connected variables in the same direction (increase/decrease 

in one variable causes an increase/decrease in the other). In case of negative sign, the change 

occurs in the opposite directions (increase in one variable causes a decrease in the other).  



 

96 

In a brief descriptive way the connections between different sectors of ANEMI model (Error! 

Reference source not found.) are:  

 The carbon and climate sectors through atmospheric CO2 concentrations; 

 The carbon and food production sectors through emission index; 

 The carbon and population sectors through population index; 

 The climate and hydrologic cycle sectors through surface temperature change; 

 The climate and energy-economy sectors through surface temperature change; 

 The climate and population sectors through surface temperature change; 

 The hydrologic cycle and water demand sectors through surface water availability; 

 The hydrologic cycle and population sectors through water-stress; 

 The water demand and hydrologic cycle sectors through water consumption; 

 The water demand and water quality sectors through wastewater treatment; 

 The water demand and food production sectors through water-stress; 

 The water quality and water demand sectors through wastewater reuse; 

 The population and water demand sectors through total water demand; 

 The population and land-use sectors through forest and grassland clearing and burning; 

 The population and energy-economy sectors through consumption per capita and 

labour; 

 The energy-economy and water demand sectors through economic output (GDP), water 

use efficiency and electricity production; 

 The energy-economy and population sectors through GDP allocation for fertility control; 

 The energy-economy and food production sectors through GDP allocation for 

agriculture; 

 The energy-economy and carbon sectors through industrial emissions; 

 The land-use and carbon sectors through land-use emissions; 

 The land-use and food production sectors through arable land; and, 

 The food production and population sectors through per capita food availability. 
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The following two sub-sections are divided based on the feedback descriptions of water and 

non-water sectors – since the water demand, water quality, and hydrologic cycle (water 

quantity) sectors are interdependent and essentially inseparable.  

 

 

2.2.1 Feedbacks within the ANEMI Model Water Sectors 

 

The hydrologic cycle, water demand, and water quality sectors are very tightly linked with each 

other through total available water, water consumption and withdrawal, polluted waste water 

and water-stress, and waste water treatment and reuse.  Thus they form a closed loop system 

with following feedback relations: 

 High intensity of water use requires high amount of water withdrawal from the available 

water sources; 

 Increased evaporation reduces the amount of available water from soil and open water 

body; 

 Decrease of snowmelt can lead to less stream flow and therefore lower amount of 

available water; 

 Decrease in the amount of available water and high water withdrawals lead to higher 

water-stress; 

 High water-stress leads to other alternative choices including: larger groundwater 

withdrawals, introduction of desalination, and wastewater treatment and reuse. 

The tight structure of water sectors, compared to other sectors of the model, requires the 

introduction of more feedback relationships as shown in Figure 2.23. The major links of each 

sector are discussed further.  
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Figure 2.23: Feedback loops within ANEMI model water sectors 

 

The water-stress is a measure of water scarcity, and is calculated as the ratio between the 

effective withdrawal (including effective blue water withdrawal and withdrawals for dilution 

requirement) and the total renewable flow. 

 

    
   

  
⁄                                                                                                                                   (     )   

 

where     represents the total water withdrawal for domestic, industrial and agricultural use 

along with the water required for dilution purpose.    is the total renewable flow for human 
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use, measured in km3 yr-1, which is the sum of the global annual surface flow and groundwater 

discharge. 

 

In the ANEMI model version 2, non-renewable or fossil ground water extraction is treated as 

ground water withdrawal. When the water demand exceeds the available renewable surface 

water resources an additional 8.4 km3 yr-1 can be taken from the non-renewable groundwater 

resources (Simonovic, 2002). Therefore, the non-renewable water withdrawal is expressed as:  

 

           

  
      (            )  

(                 )
       

⁄                                                                                  (     ) 

      (            )  

 

where GWfraction is the current fraction (0.0 to 1.0) of the global maximum of groundwater 

withdrawal and tpump is the delay in introducing additional groundwater pumping capacity, set 

to 10 yr. 

 

Even though, the above expression is very simple, it changes the ground water extraction 

amount exponentially. The upper limit of the allowable non-renewable groundwater will 

restrict further fossil ground water withdrawal irrespective of the water-stress. The annual 

extraction volume of non-renewable water is the product of current fraction of the global 

maximum of groundwater withdrawal and maximum allowable withdrawal volume. 

 

                                                                                                                                      (     ) 



 

100 

 

where      is the annual volume of groundwater extraction and         is the capped-

maximum value. 

 

Desalination in the water sectors is modeled in a similar way as groundwater withdrawal, which 

means that with the increase of the water-stress, a certain percent of water will be desalinated 

(Davies, 2007; Davies and Simonovic, 2008).   

 

The reuse of treated wastewater is never been a first choice. With the increased water-stress 

level, people are forced to reuse treated wastewater. The reuse trend is exponential:   

 

           

  
   (              )  

  
(              )

      
⁄                                                                                        (     ) 

      (              ) 

 

where             represents the global percentage of treated wastewater reuse,      water-

stress, and          is the time required to plan and institute treated wastewater reuse 

programs. 

 

Treated wastewater is then allocated to the domestic, industrial, or agricultural sector for 

reuse. The percent allocation to each sector is set to 10%, 30% and 60% respectively for the 

domestic, industrial and agricultural sectors, based on anecdotal information from the 

literature (Davies and Simonovic, 2008).  
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         ⌊      ⌋   (
          

   ⁄ ) (
               ⌊      ⌋

   
⁄ )                            (     )  

 

where          ⌊      ⌋ is the amount of treated wastewater allocated to each sector, the 

‘⌊      ⌋’ term counts a three-member array of domestic, industrial and agricultural uses, 

            is reuse  in percent, and             is the amount of treated wastewater. 

 

From the above equation it is found that there is a scope for re-using wastewater for various 

purposes, which could potentially reduce the water withdrawal and ultimately reduce the 

excess pressure on the global water resources. Therefore, the modified/ultimate withdrawal 

(  ) would be, 

  

                                                                                                                                      (     )      

      

While calculating the dilution requirement to bring wastewater in a acceptable range before 

disposing it into water body, three main parameters are considered: Nitrogen (total N), 

Phosphorous (total P), and 5-day Biochemical Oxygen Demand (BOD5). The ANEMI model 

version 2 is not structured to produce individual components of wastewater quality. Rather, it 

provides the total volume of wastewater. Therefore, very standard values are adopted from 

Metcalf and Eddy Inc. (2003, pp186) for domestic and industrial waste water.  The model is 

calculating dilution requirement for each type of water use and then considers the maximum 

value for further calculation:  
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   (
       [      ]

       [      ]
)      [      ]           [      ]                                                             (     ) 

 

where       [      ] and       [      ] staend for the typical concentration of pollutants from 

the different sectors and allowable concentration, respectively.  The total amount of fresh 

water required          [      ]   to dilute the     [      ] amount of wastewater from different 

sectors. 

 

In case of computing dilution requirement for agricultural sector, a different method is selected 

(Dabrowski et al., 2009). Two water quality variables are considered in case of dilution 

requirement for the agricultural sector: nitrogen and phosphorus. Estimates of the total 

amount of fertilizer (as mass of total P or N) applied and loss of chemicals (in tonnes) from each 

crop area are obtained from Dabrowski et al (2009). Nitrogen and phosphorus losses from 

agriculture were assumed to be in the form of soluble nitrate (NO3) and phosphate (PO4), 

respectively.  

 

Agricultural water quality is based on the principal of allocatable water quality (Awq): 

 

Awq = Targeti –Backgroundi                                                                                                                                                                    (2.127) 

 

where Targeti is the maximum allowable concentration  for the water quality variable (i), and 

Backgroundi is the background concentration of that variable in the source water. For the 

simplicity, prescribed values for Targeti (3.38 mg/l and 0.07 mg/l for nitrogen and phosphorus 

respectively), and Backgroundi (0.62 mg/l and 0.06 mg/l for nitrogen and phosphorus 

respectively) are taken from Dabrowski et al (2009).   
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The amount of water required (      ) to dilute the estimated quantities of nutrients down to 

the maximum allocatable water quality concentration is calculated according to the following 

equation: 

 

       (
          

 

   
)                                                                                                                (     ) 

 

where        is the total amount of chemical (i) lost (tonnes) to surface water per year. 

 

While computing the dilution requirement for the agricultural sector, three assumptions are 

considered: (i) water quality guideline established for South Africa’s water resources is used for 

the whole world; (ii) average fertilizer application rate (computed for maize, wheat, sugarcane 

and citrus) is used for all types of crops; and (iii) only irrigated agricultural areas are taken into 

count, while calculating dilution requirement. These assumptions are introduced due to the 

unavailability of information related to total fertilizer use in agriculture. 

 

2.2.2 Feedbacks in the ANEMI Model Non-Water Sectors 

 

The carbon sector has two major feedbacks, which are producing radiative forcing that leads to 

increase in temperature.  In climate sector atmospheric CO2 is translated in the radiative forcing 

with the forcing equation. The other sources of radiative forcing are computed from other 

gases: methane, nitrous oxide, chlorofluorocarbons and other Montreal protocol gases. All the 

forcings are then added together to feed into the climate sector as an input variable.  
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   (
  

   
⁄ )

  ( )
                                                                                                                      (     ) 

 

                                                                                                                         (     ) 

 

where        is for total forcing in W m-2,     ,     ,      stands for radiative forcing from 

carbon-dioxide, chlorofluorocarbon and nitrous oxide respectively.     represents Montreal 

Protocol and other gases, while CA and CA0 denote the current and initial atmospheric carbon 

dioxide concentrations respectively. 

 

Climate sector plays a very important role in the ANEMI model, where its product, temperature 

change, impacts almost all the sectors of the model.  The population, food production, 

hydrologic cycle, land-use, water demand, and water quality sectors are connected with the 

climate sector through the global temperature. In many cases the temperature rise may have 

more negative than positive effects. Increased temperature could boost the evaporation from a 

water body and increase the water-stress by lowering the stock of available water. However, 

there is a chance that some countries of the northern hemisphere, like Canada could be able to 

expand its agricultural area further north, if the temperature change takes place. On the other 

hand, the increase in temperature could potentially increase the irrigation demand, which may 

act as a constraint for agricultural land expansion. 

 

For estimating the impact in the energy-economic sector based on current trend of climate 

change, the climate damage function is introduced, assuming a relationship between economic 

damage and the extent of warming. According to Nordhaus and Boyer (2000), the specific 
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relationship between global temperature increase and income loss is expressed by damage 

function in quadratic form:    

 

                
                                                                                                                      (2.132) 

 

where    is the damage from climate change, as a fraction of output and     atmospheric 

temperature increase (in degree Celsius) over year 1900 level, and        are parameters of 

the damage function. 

 

Increase in temperature is affecting the global hydrologic cycle by changing the intensity of 

evaporation, precipitation pattern, starting day of snow melt, and etc. The simplest way of 

introducing the effect of temperature change in the hydrologic cycle is by defining a fixed 

temperature multiplier.  In many cases, this linear relationship may not be valid because of 

nonlinear feedback effects.  Current understanding of Arctic ice melt is an interesting example.   

Light covered surfaces such as ice and snow reflect the incoming solar radiation back into outer 

space, while dark covered surfaces such as oceans and land absorb the incoming radiation, 

which increases the temperature and contributes to further warming. The higher global 

temperature triggers the melting of Arctic sea-ice and as the sea-ice melts there is less ice to 

reflect the incoming solar radiation and more open ocean to absorb the solar energy. This 

absorbed energy triggers a positive feedback that warms the ocean further causing more ice to 

melt faster. Huntington (2006) stated that global precipitation is energy rather than moisture 

limited, and so precipitation is expected to rise by 3.4% per 1  surface temperature increase. 

This leads to the following functional relationship: 

 

                                                                                                                                           (     ) 
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            (
     

   ⁄ )                                                                                                        (     ) 

 

where            is the temperature multiplier, which takes its value from       , the 

precipitation multiplier      is measured in Kelvin, which denotes the change in surface 

temperature;               is a fixed value of 3.4% K-1. 

 

This simple relationship is used to establish feedback link between climate, water use, water 

demand, and evaporation calculation. To model the effects of climate change on irrigation 

water requirements, the “per hectare water withdrawals” and “per hectare water 

consumption” are multiplied by the same ‘temperature multiplier’. Carbon sector of the ANEMI 

model version 2 is taking care of the total carbon balance at global scale, even though a 

significant portion of carbon is produced in another sector (energy-economy sector).  

 

Population sector is linked to the land-use sector, based on the approach of Goudriaan and 

Ketner (1984). Significant land conversion, or change of land-use, is driven by expansion of 

human population. Therefore, yearly conversion from one biome type to another follows the 

rate of population growth.  Clearing and burning, a conventional way of converting forest area 

into agricultural land is also linked to population. It follows the same trend but as a square-root 

of the population growth (Goudriaan and Ketner, 1984). 

 

In the ANEMI model version 2, the land-use sector is represented by a 6x6 transfer matrix, TMij, 

row = i and column = j subscripts, where column headings j mean ‘from biome type’ and row 

headings i mean ‘to biome type’. Thus, in case of Table 2.5, TM31 means a change in land-use 

from tropical forest to grassland. Transfer matrix entries, of which there are 6 x 6 = 36, can be 

either zero (24 in total) or non-zero (12 in total) and are measured in biome area use or transfer 
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of Mha yr-1. To determine changes in the land area of a biome, there are two equations; one is 

applicable to diagonal components and other is valid for the rest of the transfer matrix 

elements. For all i= j (the diagonal members for cultivation and burning within the tropical 

biome): 

 

     

  
  

 
 ⁄                                                                                                                                      (     )  

 

while for i   (which represents a change of biome area from type   to type  ): 

 

     

  
                                                                                                                                         (     ) 

 

where 
     

  
  and 

     

  
  represent the change in the annual cultivation and burning within a 

biome and change in biome area, respectively, while   is the annual population growth rate. 

The logical form of the above equation can be represented as: 

 

     

  
         (   )                                                                                                                      (     )   

   (   )  

           

     (      ) 

 

The ‘for’ condition requires the above equation to run thirty-six times, once for each separate 

combination of i and j, since       . Land-use via shifting cultivation and burning produces 

a large portion of biomass and litter, which are directly released into the atmosphere.  
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Emission from the energy-economy sector is directly imported and added to the carbon sector.  

Carbon emissions from each type of energy source are calculated based on energy consumption 

and carbon content. The following equation is computing the CO2 emission in 10
6
 tons C. 

 

                                                                                                                                           (     )          

 

where    = annual production in 106 tons of fossil fuel equivalent (  approx. 11.2%), FOi stands 

for effective fraction oxidized in the year of production and Ci for carbon content in tons C per 

ton coal equivalent/ tons C per thousand 1012 joules . The conversion factor used for 1 ppmv of 

atmosphere CO2 = 2.13 Gt C. 

 

All the three water related sectors are linked with both, food production and population sector, 

through the ‘water-stress’ variable. Water link to social development is captured by the water 

impacts on health. Without safe drinking water, humans cannot survive. Water transmitted 

diseases are amongst the most common causes of illness and death, and the majority of people 

affected by them are living in developing countries.  With the increase in population, it is 

required to find a way to add a huge amount of water to the global water supply in each year. 

In addition, some areas are expected to get the lower amount of rainfall due to climate change 

and therefore these areas  will face an alarming level of ‘water-stress’. Human life expectancy is 

therefore expressed as an inverse function of ‘water-stress’ level. 

 

Agricultural sector fully depends on water supply in many regions of the world. While irrigation 

is continuing to play a crucial role in agricultural, the global amount of available water becomes 
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a limit. The limitation in water availability is serving as one of the constraints for increase of the 

agricultural land. The agricultural sector is inversely related to water-stress.  

 

2.2.3 Summary  

 

In this section of the report the feedbacks are differentiated as: intersectoral feedbacks within 

the water sectors; and intersectoral feedbacks with rest of the sectors.  This section is intended 

to help the reader in tracing the effects of change in a variable in one sector and subsequent 

reaction/changes occurring in other sectors.  

 

Error! Reference source not found. and Figure 2.23 facilitates the understanding of the basic 

structure of the model and can guide the reader through the identification of feedback polarity, 

as well as the polarity of feedback loops that are connecting different sectors of the model.  

 

2.3 Global Model Performance  
 

Traditional model calibration is a process, which consists of changing values of model input 

parameters to match the observed behaviour within some acceptable criteria. However, 

calibration in the context of global change research faces a key limitation: there is only one 

Earth, and therefore only one set of globally-aggregated data available. Model calibration 

therefore proceeded in several steps here: 1) parameters were adjusted in individual sectors 

first, 2) the individually-calibrated sectors were checked against historical data and against data 

from other models, and 3) the sectors were integrated and model output was again tested 

against other sources. Since many of the model sectors are based on previous modelling work, 

they use the same parameter values as other models. Furthermore, where parameters were 

based on well-established, quantifiable, and measurable characteristics, the values obtained 

here were checked against real-world data. However, when the parameters had no strong 
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physical basis, the effects of parameter variations on whole-model behaviour were checked 

through sensitivity analysis.  

  

Validating the models requires comparing variable estimated by the model to historical data. 

Model verification can be defined as the process of determining, is the logic that describes the 

underlying mechanics of the model, as specified by the modeller, faithfully capturing 

/representing the near world situation. Therefore, model validation is considered to be the 

process of determining to what extent the model’s underlying fundamental rules and 

relationships are able to adequately capture the targeted emergent behaviour, as specified 

within the relevant theory and as demonstrated by field data.  

 

Model performance and calibration/validation are evaluated through qualitative and 

quantitative measures, involving graphical comparisons and statistical tests. For the ANEMI 

model version 2, a satisfactory number of comparisons are performed on yearly basis, based on 

the data availability. Simulated values in Table 2.9 to Table 2.20 provide information on model 

performance.  

 

The individual sectors are first developed and calibrated before combining all the sectors 

together. Once the individual sectors demonstrated satisfactory performance with reasonable 

parameter values, the next step of integration took place. During the isolated runs the 

intersectoral feedbacks are not activated, rather they are in predefined path/value. With the 

establishment of the feedback relationships, model showed a deviation from the performance 

obtained through the simulation of individual sectors, requiring further adjustments of model 

parameters. It is worthwhile to mention that this society-biosphere-climate-energy-economy 

system model is not meant to predict the future, rather it aims to help understanding the 

system behaviour and to understand the behavioural consequences of various policy options. 
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This section demonstrates the performance of a feedback based fully integrated society-

biosphere-climate-economy-energy system through analyses of the model’s base run.   The 

individual sectors of the fully integrated version of the ANEMI model is tested against 

measurements and literature data from 1980 to 2010 (Table 2.9 to Table 2.20). Even with a small 

number of exogenous inputs (mainly future fossil fuel discovery) this comprehensive feedback 

based integrated modeling system proves its superiority by producing a very close agreement 

with the real world data. 

 

2.3.1 Water Use  

 

Water use has been growing rapidly in the last hundred years due to increasing water demand 

and population growth. Such enormous change (nearly 5 times) is mainly caused by a significant 

increase of water use in agricultural sector. In the ANEMI model version 2, water consumption 

and withdrawal are calculated for three individual groups (domestic, industry and agriculture). 

The model results are compared to IHP (2000) data, projections by Simonovic (2002), Alcamo et 

al (2003b), and Cosgrove and Rijsberman (2000).   The calibrated ANEMI model version 2 shows 

a good agreement with the historical data (Table 2.9) and projections available in the literature 

(Table 2.10). 
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Table 2.9: Assessed global water withdrawals and consumption (in km3/yr) 

Year 1980 1990 1995 

IHP(2000)    

Domestic Withdrawals 219 305 344 

Domestic Consumption 38.3 45.0 49.8 

Industrial Withdrawal 713 735 752 

Industrial Consumption 70.9 78.8 82.6 

Agricultural Withdrawal 2112 2425 2504 

Agricultural Consumption 1445 1691 1753 

    

Simulated Value    

Domestic Withdrawals 210 315 349 

Domestic Consumption 39 48 53 

Industrial Withdrawal 560 570 615 

Industrial Consumption 57 62 70 

Agricultural Withdrawal 2100 2600 2800 

Agricultural Consumption 1440 1880 1980 

 

Table 2.10: Projected global water withdrawals and consumption (in km3/yr) 

Year 2000 2010 2025 

IHP(2000)    
Domestic Withdrawals 384 472 607 
Domestic Consumption 52.8 60.8 74.1 
Industrial Withdrawal 776 908 1170 
Industrial Consumption 84 120 167 
Agricultural Withdrawal 2605 2817 3189 
Agricultural Consumption 1834 1987 2252 
    
Simonovic (2002)    
Domestic Withdrawals - - 723 
Industrial Withdrawals - - 520 
Agricultural Withdrawals - - 3554 
    
Cosgrove and Rijsberman(2000)    
Domestic Withdrawals - - 900 
Domestic Consumption - - 100 
Industrial Withdrawal - - 900 
Industrial Consumption - - 120 
Agricultural Withdrawal - - 2300 
Agricultural Consumption - - 1700 
    
Simulated Values    
Domestic Withdrawals 413 572 752 
Domestic Consumption 62 80 93 
Industrial Withdrawal 690 880 987 
Industrial Consumption 80 90 105 
Agricultural Withdrawal 2900 3100 3300 
Agricultural Consumption 2070 2210 2350 
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2.3.2 Sea-Level Rise 

 

Inundated Area by Sea-Level Rise 

For the global inundated land area calculation, Xingong et al (2009) used the GLOBE dataset 

because of its improved version of the GTOPO30 data, which is compiled from the best global 

and regional raster and vector elevation datasets available at the time of compilation (Hastings 

and Dunbar, 1998). On the other hand, Dasgupta et al (2009) used WVS (World Vector 

Shoreline) dataset of NASA ( http://gcmd.nasa.gov/records/GCMD_WVS_DMA_NIMA.html, last 

accessed Aug, 2011). ANEMI model version 2 is using a lookup table, is produced from Xingong 

et al (2009) to calculate total inundated area from different level of sea-level rise. Utilizing the 

lookup table ANEMI model show that 1,098,000 Km2 area will be inundated at the end of 21st 

century when the sea-level rises to 1.15 meter, and by 2092-93 sea-level may rise by one 

meter.  

 

Sea Level Rise Impact on Agricultural Land 

The ANEMI model version 2 requires percentage value of impacted agricultural land for 

calculation of the impact of sea level rise on the agricultural land, which is extracted from 

Xingong et al (2009). Simulated results show that the total impacted agricultural area would be 

46,095 Km2 at the end of 21st century. 

 

Sea Level Rise Impact on Population  

In the ANEMI model version 2, the computation of the affected population is done exogenously 

because of insufficient data and global nature of the population structure in the model (no 

spatial distribution along the coast lines). To overcome this constraint, a combined approach is 

carried out where an average percentage of impacted population is computed from Dasgupta 

et al (2009) and Xingong et al (2009). This process is carried out for each level of sea-level rise. 

The computed value of 171 million impacted people is obtained for 1-meter sea-level rise.  

 

http://gcmd.nasa.gov/records/GCMD_WVS_DMA_NIMA.html
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Nicholls (2002) estimated that the number of people exposed to flooding by storm surges in 

2100 would range between 503 and 755 million people at 96 cm sea-level rise. The ANEMI 

model is only considering the sea-level rise as a consequence of ocean thermal expansion and 

ice melt, but not the storm surges.  

 

2.3.3 Global Population  

 

The United Nations (UN) Population Division provides population data over the period of 1950 

to 2050 out of which projected data started from 2005. The UN Population Division is under the 

United Nations Department of Economic and Social Affairs (UNESA), which is responsible for 

monitoring and appraisal of the broad range of areas in the field of population. International 

Institute for Applied Systems Analysis (IIASA) also provides 100 year population projection, last 

time revised in 2007. This is an international research organization that conducts policy-

oriented research into problems that are too large or too complex to be solved by a single 

country or academic discipline. Scenarios used for global change, such as Nakicenovic and Swart 

(hereafter, IPCC 2000), Alcamo et al (1996) and RCPs (Moss et al, 2008) provide figures of 

population growth into the future.  Nordhaus (2007) used the DICE model to simulate the 

future population which is a well-accepted result by the integrated assessment modeling 

communities. 

 

It is observed from the historical global population comparison (Table 2.11) that the global 

version 2 of the ANEMI model is capable of generating an acceptable trend in population close 

to historical data (UNESA, 2006). The simulated population value from the version 1 of the 

model (Davies and Simonovc, 2008) is also included for comparison.   

 

Compare of simulated future population values is performed using data from various sources 

various projection scenarios (Table 2.12, and Figure 2.24 ). In a few cases, the global population 
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starts to decline after 2075 but in most of the projections the population growth rate declines 

but not the total population. The simulated result from the ANEMI model is showing the same 

tendency of lower population growth rate.   

 

Table 2.11: Comparison of historical global population (in billions) 

Year 1980 1985 1990 1995 2000 2005 

UNESA (2006) 4.45 4.86 5.30 5.72 6.12 6.51 
Davies and Simonovic (2008) 4.51 4.91 5.31 5.7 6.09 6.47 
ANEMI simulated population 4.44 4.75 5.13 5.52 5.91 6.32 

 

 

Table 2.12: Comparison of future global population (in billions) 

Year 2010 2025 2050 2075 2100 

UNESA (2006) 6.91 8.01 9.15   
IPCC (2000) Scenario A1B - 7.66 8.70 - 7.10 
IPCC (2000) Scenario A2 - 8.81 11.3 - 15.10 
IPCC (2000) Scenario B1 - 7.82 8.70 - 7.00 
RCP8.5 (Riahi et al,2007) 7.0 8.30 10.2 11.80 12.02 
RCP6 (Fujino et al, 2006; and Hijioka et 
al, 2008) 

7.0 7.95 9.04 9.095 9.09 

RCP4.5 (Clarke et al, 2007; Smith et al, 
2006; and Wise et al, 2009) 

7.0 7.95 9.01 9.030 9.025 

RCP3-PD (van Vuuren et al, 2006; 2007) 7.0 7.95 8.095 9.00 8.060 
Alcamo et al (1996), Base A 7.11 - 10.10 - 11.50 
Alcamo et al (1996), Base B 6.70 - 7.84 - 6.43 
Fiddaman (1997) 7.23 8.41 9.98 11.10 11.80 
Nordhaus and Boyer (2000) 6.88 7.96 9.29 10.20 10.70 
DICE_2007 (Nordhaus, 2007) 6.93 8.02 8.55 8.67 8.69 
Davies and Simonovic (2008) 6.84 7.87 9.36 10.60 11.70 
IIASA (low) 6.74 7.44 7.78 7.15 6.16 
IIASA (medium) 6.82 7.79 8.75 8.87 8.39 
IIASA (high) 6.88 8.16 9.90 10.80 11.05 
ANEMI simulated population 6.77 7.98 9.32 9.97 10.53 
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Figure 2.24: Comparison of global population projection 

 

2.3.4 CO2 Emissions from Energy Production 

 

The two main sources of CO2 emissions are: energy production, and land-use change (which 

affects the radiative forcing).  The emissions from the fossil fuel burning represent the most 

significant contribution.  Therefore, the extent of future climate change is heavily dependent on 

the fossil fuel burning rate for energy (both heat and electric energy) production. The ANEMI 

model version 2 is extremely sensitive to fossil fuel price and follows market clearing 

mechanism (a simplifying assumption made by the new classical school of economics that 

markets always go where the quantity supplied equals the quantity demanded; or the process 

of getting there via price adjustment). The IPCC (2000) and Marland et al (2008) data show a 

good match with the ANEMI simulated results  with some level of overestimation from 1980 to 

2000 (Table 2.13, and Figure 2.25).    
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Table 2.13: Comparison of historical industrial emissions (in Gt C/yr) 

Year 1980 1985 1990 1995 2000 2005 

IPCC (2000) Scenario A1B - - 6.0 - - - 
IPCC (2000) Scenario A2 - - 6.0 - - - 
IPCC (2000) Scenario B1 - - 6.0 - - - 
Marland et al (2008) 5.35 5.44 6.16 6.4 6.75 7.99 
Davies and Simonovic (2008) 5.11 - 5.96 6.32 6.77 - 
ANEMI simulated emissions 5.38 5.78 6.21 6.68 7.21 7.86 

 

 

In case of simulated future emissions, the model behaves in a logical fashion till 2050 and the 

results are compliant with most of the projections from IPCC (2000), Alcamo et al (1996) 

Nordhaus and Boyer (2000), Goudriaan and Ketner (1984) and RCPs (Moss et al, 2008). While, 

after 2050 the emission production from the energy sector starts to decline and emissions 

follow a very different path than other projections available in the literature. Whereas, 2007 

version of DICE model (Nordhaus, 2007) showed, incremental rates of emission till the end of 

this century (Figure 2.25).  By the end of this century the ANEMI version 2 simulation results are 

showing almost zero emissions (Table 2.14). Such behaviour is not unexpected, since the in-

depth investigation reviles that the world would be out of available known fossil fuel reserves 

by 2100, if the present extraction trend continues. Therefore, the industrial emissions approach 

zero value.  It is assumed that the nuclear, hydro and alternative energy sources will take care 

of the future energy demand leaving almost zero fossil fuel energy based emissions to the 

atmosphere.  

 

Figure 2.25: Comparison of industrial carbon emission 
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Table 2.14: Simulated industrial emissions (in Gt C/yr) 

Year 2010 2020 2025 2030 2050 2075 2100 

IPCC (2000) Scenario A1B - 12.1 - - 16.0 - 13.1 

IPCC (2000) Scenario A2 - 11.0 - - 16.5 - 28.9 

IPCC (2000) Scenario B1 - 10 - - 11.7 - 5.2 

RCP8.5 (Riahi et al,2007) 8.926 11.538 - 13.839 20.205 26.684 28.740 

RCP6 (Fujino et al, 2006; and 
Hijioka et al, 2008) 

8.512 8.95 - 9.995 13.044 16.894 13.753 

RCP4.5 (Clarke et al, 2007; 
Smith et al, 2006; and Wise et 
al, 2009) 

8.607 9.872 - 10.953 11.031 5.65 4.203 

RCP3-PD (van Vuuren et al, 
2006; 2007) 

8.821 9.288 - 7.157 3.186   

Alcamo et al (1996), Base A 11 13 - 14 15.5 18.0 22.0 

Alcamo et al (1996), Base B 8 10 - 9.5 9.0 8.0 8.0 

Goudriaan and Ketner (1984), 
Low Emission 

- - - 8.9 - - - 

Goudriaan and Ketner (1984), 
High Emission 

- - - 16.2 - - - 

DICE _2007 (Nordhaus, 2007) 8.2 9.5 10.0 10.7 13.0 16.0 19.0 

Davies and Simonovic (2008) 7.54 8.19 - 8.82 10.11 11.93 13.98 
ANEMI simulated emissions 8.18 8.82 9.4 9.92 10.49 7.35 8.3 

 

 

2.3.5 Gross Domestic Product (GDP) 

 

The gross domestic product (GDP) is the most commonly used indicator to express the 

economic wealth of a region at a global or regional scale. Total dollar value of all goods and 

services of a specific time can be represented by GDP. Therefore, the monetary value of all the 

finished goods and services produced within a country's borders in a specific time period, 

though GDP is usually calculated on an annual basis. It includes all of private and public 

consumption, government outlays, investments and exports less imports that occur within a 

defined territory. Nordhaus (2007) used the DICE model to simulate the future GDP which is a 

well-accepted result by the global communities. The simulated GDP from the ANEMI model 

version 2 shows a very close match Error! Reference source not found.Figure 2.26) with the 

Nordhaus (2007), which proves its satisfactory representation of the global energy-economy 

sector.  
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Figure 2.26: Comparison of GDP per capita 

 

2.3.6 Physical Characteristics of the Earth System 

 

The physical characteristics of the Earth system include atmosphere, biosphere, hydrosphere, 

and geosphere.  The following is the detailed analyses of the ANEMI model version 2 surface 

temperature, atmospheric CO2 concentration, and net primary productivity (NPP) results.  

 

Surface Temperature  

The global mean surface temperature increased by around 1 0F (0.55556 0C) since 1880, which 

is established by the measurements from land stations and ocean vessels.  These 

measurements also indicate a near level trend in temperatures from 1880 to about 1910, a rise 

to 1945, a slight decline to about 1975, and a rise to the present (NRC, 2006). Based on the 

observations of increases in global average air and ocean temperatures, widespread melting of 

snow and ice, and rising global average sea-level, the Intergovernmental Panel on Climate 

Change (IPCC) stated  that warming of the climate system is now “unequivocal,” (IPCC, 2007a). 

The IPCC also concluded that most of the observed warming in global average surface 
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temperature that has occurred since the mid-20th century is very likely a result of human 

activities.  

 

Vinnikov et al (2006) analyzed the satellite data and concluded that the global surface 

temperatures changed by 0.2°C per decade between 1978 and 2004. This value is also 

consistent with the studies by Brohan et al (2006) and Smith and Reynolds (2005).  They 

calculated temperature anomalies based on the deviation, in degree Celsius, from a long-term 

1961-1990 temperature average. Nordhaus and Boyer (2000) calculated their temperature 

anomaly based on the pre-industrial average surface temperature, so that their starting, 1995 

value for the temperature anomaly is 0.43°C.  Davies and Simonovic (2008) corrected that by 

subtracting 0.15°C from their calculated values, since 1960 was roughly 0.15°C warmer than 

1900. .  Davies and Simonovic (2008) also used the ANEMI model version 1 results to calculate 

the temperature anomaly based on the difference between simulated values for the years in 

question (1960, 1970, and so on) from the simulated 1961-1990 average surface temperature.  

 

The basic Goddard Institute for Space Studies (GISS) temperature analysis scheme is defined in 

the late 1970s by James Hansen. Prior temperature analyses covered only 20-90°N latitudes. 

The first published result (Hansen et al. 1981) of NASA (National Aeronautics and Space 

Administration) showed that, contrary to impressions from northern latitudes, global cooling 

after 1940 was small, and there was a net global warming of about 0.4°C between the 1880s 

and 1970s. Some improvements in the analysis were made several years ago (Hansen et al 

1999;  2001), including use of satellite-observed night lights to determine which stations in the 

United States are located in urban and pre-urban areas, the long-term trends of those stations 

are being adjusted to agree with the long-term trends of nearby rural stations. In the ANEMI 

model version 2, the average temperature (14.0066 0C) is calculated based on the NASA data 

(from 1961 to 1990), as the model simulation starts from 1980 

(http://data.giss.nasa.gov/gistemp/, last accessed Aug, 2011). The anomaly for this model is of 

course higher than the values provided by Davies and Simonovic (2008), as radiative forcing 

http://data.giss.nasa.gov/gistemp/
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from the other gases except CO2 were not considered by the ANEMI version 1 model (Table 

2.15).  

 

Table 2.15: Global surface temperature change (in oC) 

Year 1980 1985 1990 1995 2000 2005 

Brohan et al (2006) 0.05 - 0.15 0.25 0.35 0.45 
Smith and Reynolds (2005) 0.10 - 0.18 0.25 0.38 0.45 
Nordhause and Boyer (2000) - - - 0.28 - 0.34 
NASA 0.17 0.04 0.36 0.36 0.32 0.61 
Davies and Simonovic (2008) .01 - .07 .11 .14 .19 
ANEMI simulated values -0.01 0.10 0.21 0.33 0.44 0.56 

 

 

IPCC models estimated that the Earth will warm between two and six degree Celsius over the 

next century, depending on how fast carbon dioxide emission increases. Scenarios which 

assume that people will burn more and more fossil fuel provide the estimates at the upper end 

of the temperature range, while scenarios that assume that greenhouse gas emissions will grow 

slowly gave lower temperature predictions. Based on the Fourth Assessment Report of the 

IPCC, Meehl et al. (2007) produced an ‘average climate period’ of 1980-1999 and presented 20 

year averages of surface temperature anomalies over three periods of 20st century: 2011-2030, 

2046-2065, and 2080-2099, which are used to verify the performance ANEMI model version 2.  

The future anomaly values calculated by the ANEMI model version 2 are again at the upper 

bound of the published values (Table 2.16). Such behaviour is not unusual, because of the 

higher fossil fuel based energy consumption till mid of the 21st century.   

 

Table 2.16:  Future global surface temperature change (in oC) 

Year 2011 – 2030 2046 – 2065 2080 - 2099 

Meehl et al (2007), SRES A2 0.64 1.65 3.13 
Meehl et al (2007), SRES A1B 0.69 1.75 2.65 
Meehl et a. (2007), SRES B1 0.66 1.29 1.79 
Alcamo et al (1996), Base A 0.80 1.60 2.60 
Alcamo et al (1996), Base B 0.50 1.10 1.45 
Nordhaus  and Boyer (2000) 0.34 1.05 1.76 
Davies and Simonovic (2008) 0.27 0.70 1.28 
ANEMI simulated anomaly 0.85 1.7 2.5 
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Atmospheric Carbon Dioxide Concentration 

Carbon dioxide (CO2) is emitted into atmosphere naturally through the carbon cycle and 

through human activities, like the burning of fossil fuels. Natural CO2 is circulating within the 

carbon cycle where billions of tons of atmospheric CO2 being absorbed from the atmosphere by 

oceans and forests, and discharged back into the atmosphere through natural processes. Under 

the balanced conditions, the total carbon dioxide emissions and removals from the entire 

carbon cycle remains roughly equal. Ice core analyses data revel that during the past 1000 

years, until about the year 1800, atmospheric CO2 was fairly stable at levels between 270 and 

290 ppm.  The 1994 value of 358 ppm is higher than any CO2 level observed over the past 

220,000 years (Schimel et al, 1994). 

 

 

Carbon dioxide and its concentration in the atmosphere is the core of climate change theory 

and policy, because of its large share in radiative forcing. The scientific consensus is that we 

must limit the release of carbon dioxide and similar greenhouse gases if we are going to reduce 

the antropogenic impacts on the climate. It’s not true that human activities are the only sources 

of atmospheric CO2 concentration. Even though, compared to the natural sources, human 

contribution is not the only factor, it is more than enough to hamper the delicate balance. The 

rise of atmospheric CO2 closely parallels the emissions history from fossil fuels and land use 

changes (Schimel et al, 1994). The average annual increase in CO2 went up from, about 0.9 

ppm/year during the 1960s to about 1.5 ppm/year during the 1980s. 

 

The computed CO2 concentration can be verified with the observed and projected CO2 

concentrations reported in the literature. Mauna Loa Observatory (MLO) is a premier 

atmospheric research facility that has been continuously monitoring and collecting data related 

to atmospheric change since the 1950's 

(http://www.esrl.noaa.gov/gmd/obop/mlo/livedata/livedata.html, last accessed Aug, 2011). 

The undisturbed air, remote location, and minimal influences of vegetation and human activity 

at MLO are ideal for monitoring constituents in the atmosphere that can cause climate change.  

http://www.esrl.noaa.gov/gmd/obop/mlo/livedata/livedata.html
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Other model results from the literature which are considered for the comparison are: Alcamo 

et al (1994), Nordhaus and Boyer (2000), Goudriaan and Ketner (1984) and Davies and 

Simonovic (2008). The ANEMI model version 2 generated CO2 concentrations produces a 

comparable result to the available observations and published values in the literature (Table 

2.17). 

 

Table 2.17: Global atmospheric CO2 concentration (ppm) 

Year 1980 1990 1995 2000 2004 

Alcamo et al (1994) 340 358 - - - 
Goudriaan and Ketner (1984) 340 - - - - 
Mauna Loa observations 339 354 361 369 377 
Nordhaus and Boyer (2000) -  349 - 369 
Davies and Simonovic (2008) 322 337 345 354 361 
ANEMI simulated value 339 358 367 376 383 

 

The atmospheric concentration of carbon dioxide in 2005 exceeds by far the natural range over 

the last 650,000 years (180 to 300 ppm) as determined from the ice cores (IPCC, 2007a). As 

fossil fuel is the main source of CO2 emissions, it is expected that future CO2 emission levels will 

depend primarily on the total energy consumption and the structure of energy supply. In the 

ANEMI model version 2, the total energy consumption is driven by population size, 

technological development, environmental concerns, and other factors. The composition of 

energy supply is determined by the fossil fuel reserves, price and efficiency. Emissions from gas 

flaring, cement production are much lower in comparison with energy-related emissions. In 

1990, the global emissions from cement made up about 2.5% of the total global CO2 emissions 

(Houghton et al, 1995).  

 

SRES scenarios cover a wide range of annual emissions, and the uncertainties in future emission 

levels increase with time. Up to about the 2040s and the 2050s, emissions tend to rise in all 

scenarios, but at different rate. By 2050, the emissions range covered by the 40 SRES scenarios 

from 9 to 27 Gt C, with the mean and median values equal to about 15 Gt C. The range between 

the 25th and 75th percentiles of emissions (the "central tendencies") extends from 12 to 18 GtC 

(i.e. from twice to three times that of 1990). Beyond 2050, the uncertainties in energy and 
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industrial CO2 emissions continue to increase. By 2100, the range of emissions across the 40 

SRES scenarios is between 3 and 37 GtC, which reflects either a decrease to half of the 1990 

levels or an increase by a factor of six. Emissions between the 25th and 75th percentiles range 

from 9 to 24 GtC, while the range of the four marker scenarios is even wider, 5 to 29 GtC. The 

2100 median and mean of all 40 scenarios are 15.5 and 17 GtC, respectively (IPCC, 2000). 

 

 The following projected CO2 values (in ppm) from the literature: IMAGE 2.1 simulations 

(Alcamo et al, 1996), a coupled climate-carbon model called IPSL (Berthelot et al, 2002), A2 

scenario (IPCC, 2000), STERN review (Stern, 2007), and Goudriaan and Ketner (1984) are 

introduced for the ANEMI model verification purposes. Other model results from Davies and 

Simonovic (2008), and Nordhaus and Boyer (2000) are also included in the following table 

(Table 2.18). Davies and Simonovic (2008) converted the value of  Berthelot et al (2002)  to be 

in the same units, assuming a base atmospheric CO2 content in 1860 of 595 Gt C (283 ppm).  

 

Table 2.18: Future global atmospheric CO2 concentration (ppm) 

Year 2010 2020 2030 2050 2075 2100 

IPCC (2000) Scenario A1 - - -  - - 

IPCC (2000) Scenario A2 - - -  - - 

IPCC (2000) Scenario B2 - - -  - - 

RCP3-PD (van Vuuren et al,  
2006; 2007) 

389.29 412.07 430.78 442.70 434.55 420.90 

RCP4.5 (Clarke et al, 2007; Smith 
 et al, 2006; and Wise et al, 2009) 

389.13 411.13 435.05 486.54 527.72 538.35 

RCP6 (Fujino et al, 2006; 
 and Hijioka et al, 2008) 

389.07 409.36 428.88 477.67 572.04 669.72 

RCP8.5 (Riahi et al,2007) 389.32 415.78 448.84 540.54 717.63 935.87 

Alcamo et al (1996), Base A 400 425 460 510 610 745 

Alcamo et al (1996), Base B 390 410 420 450 480 515 

Goudriaan and Ketner (1984),  
Low Emission 

- - 431 - - - 

Goudriaan and Ketner (1984), 
High Emission 

- - 482 - - - 

Berthelot et al (2002), Coupled 383 414 445 502 616 782 

Berthelot et al (2002), Fertilization 373 397 426 485 573 700 

Nordhaus and Boyer (2000) - -   502  

Davies and Simonovic (2008) 373 393 415 462 534 624 

ANEMI simulated value 395 417 445 502 553 575 
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From Tables 2.15 to 2.18 and Figure 2.27, it can be concluded that the ANEMI model version 2 

shows a reasonable match with the observed values as well as with other values from the 

literature. 

 

 

Figure 2.27: Comparison of Atmospheric CO2 concentration 

 

Net Primary Productivity 

Net Primary Productivity (NPP) is an essential component of the global carbon budget, which is 

used as an indicator of the ecosystem function. NPP is the rate at which vegetation fixes CO2 

from the atmosphere (gross primary productivity, GPP) minus the rate at which the vegetation 

returns CO2 to the atmosphere through plant respiration. Only a small part of the carbon fixed 

through NPP is retained for a significant time, and NPP is only one component of the full carbon 

cycle of terrestrial ecosystems (IGBP, 1998). The total NPP is influenced by various climatic 

factors such as: atmospheric CO2 concentration, rainfall, cloud cover, and the temperature. 

Approximately, a seventh of total atmospheric carbon dioxide is passed into vegetation 

annually. 

 

There are many ways to estimate terrestrial NPP from field data that depend on the type of 

plants and available measurements. However, due to measurement complexity it is not 

possible to get an accurate value of global NPP. IPCC is using NPP value from a study that was 
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done in 1979 (Atjay et al, 1979).  Dynamic Global Vegetation Models (DGVM) are mostly used in 

computing the global NPP value.  Cramer et al (1999) experimented with sixteen different 

DGVMs using long-term average monthly climate values and base atmospheric CO2 

concentrations. Average NPP value of 54.9 Pg C per year was calculated, assuming base global 

atmospheric CO2 concentration of 340-360 ppm. In continuation of that study Cramer et al 

(2001), utilized six DGVMs based on IPCC IS92a emission scenarios to derive NPP values, which 

were between 45 and 60 Pg C per year.  Some other published NPP values are available from 

Berthelot et al (2002), Cox et al (2000), Goldewijk et al (1994), Cramer et al (2001), Goudriaan 

and Ketner (1984), and so on. Simulated result of the ANEMI model version 2 show satisfactory 

agreement with the other literature values, even though they are following the lower bound of 

the various study results (Table 2.19). 

 

Table 2.19:  Historical net primary productivity (NPP), 1980-2005 

Year 1980 1990 1995 2000 2005 

Berthelot et al (2002), Coupled 63 65 66 67.5 67.5 
Berthelot et al (2002), Fertiliz 63 65 66 67.5 68 
Cramer et al (2001), CO2+ΔT - - - 61 - 
Goudriaan and Ketner (1984) 61.9  - - - 
Goldewijk et al(1994)  60.6 -   
Davies and Simonovic (2008) 58.1 59.0 59.4 59.5 60.3 
ANEMI simulated value 60.0 61.6 62.2 62.7 63.3 

 

It is clear that NPP is not dependent only on a single parameter, rather it depends on human 

consumption, related environmental impacts, policy options, degree of deforestation and so 

on.  The following two major sources of uncertainty exist in projecting NPP under climate 

change: (a) uncertainty with respect to the description of dependence of NPP on climate; and 

(b) uncertainty with respect to climate predictions. 

 

A summarized NNP values produced by the previously research are stated in the Table 2.20. 

Comparison with Nordhaus and Boyer (2000) and Fiddaman (1997) are not possible because of 

differences in representation of the carbon cycle (Nordhaus and Boyer, 2000), or no explicitly 

presentation of NPP values (Fiddaman, 1997).  
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Table 2.20: Future net primary productivity (NPP) 

Year 2010 2025 2030 2050 2075 2100 

Berthelot et al (2002), Coupled 68 70 71 74 78 82 
Berthelot et al (2002), Fertiliz 68 72 73 79 85 94 
Cramer et al (2001), CO2+ΔT - - - 75 - 84 
Goudriaan and Ketner (1984) - - 65.3 - - - 
Goldewijk et al (1994) - - - 82.5 - - 
Davies and Simonovic (2008) 60.8 61.9 62.3 63.4 64.6 65.3 
ANEMI simulated value 63.8 65 65.4 66.7 66.8 65.1 

 

2.3.7  Discussion 

 

In this report, the global version of the ANEMI version 2 model-simulated results are compared 

with the available historical observations and future projections of different models available in 

the literature. The comparison results showed a very promising features of ANEMI feedback 

based society-biosphere-climate-economy-energy system model. In case of future temperature 

simulations the ANEMI results are close to the upper boundary of the comparable values. 

Overall model performance is very encouraging, as this is a feedback based dynamic integrated 

assessment model, where no prescribed or endogenous data is used to navigate the model.  

 

This ANEMI version 2 model, with a significant number of parameters, requires systematic way 

of parameter calibration. The individual sectors are calibrated first before assembling the whole 

model. In spite of the individual sectoral calibration, the combined model simulation values 

converge very fast.   

 

The developed model also provides good simulation results of the future system behaviour. The 

satisfactory reproduction of the historical behaviour along with reasonable future simulations 

proves the model’s robustness for use in climate change policy analyses. It is anticipated that 

the developed model is able to successfully handle different policy/scenario analyses by 

revelling its feedback mechanism while mimicking the near real-world system behaviour. This 

modeling effort is intended to capture the future behaviour under changing climate but not to 

forecast the exact magnitude of change.       
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2.4  Conclusions 

 

The ANEMI version 2 model has nine sectors. Even though some of the sectors are taken from 

the earlier work, the closed loop feedback concept of nine sectors that forms endogenous 

model structure makes the model different from other Integrated Assessment Models.  

 

The ANEMI model is unique in this field. Basically every integrated assessment model has its 

own area of focus, which dominates the model behaviour> In the case of ANEMI,  water, 

energy-economy, and population sectors play dominant roles, where availability of water and 

climate change influence most of the other sectors. 

 

It can be concluded that the ANEMI version 2 model describes the society-biosphere-climate-

economy-energy system very closely and its simulations reproduce available observations and 

values from the literature to high level of satisfaction. Therefore, we conclude that there is a 

high utility of the closed feedback based model over the imposed exogenous trends based 

conventional models in the analyses of climate change policy options.       
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3 REGIONAL MODEL DESCRIPTION 
 

The ANEMI version 2 model is replica that combines simplified representations of the 

socioeconomic determinants of greenhouse gas emissions, the atmosphere and oceans, and 

impacts on human activities and ecosystems on a global scale. The model is developed using a 

system dynamics simulation approach and version 2 has nine major sectors, all of which 

interact with one another through feedback relationships. The ANEMI version 2 shares 

important characteristics with climate-economy models, integrated assessment models, and 

hydrologic models at a global scale. 

 

The major limitation of the global model is its inability to answer questions of importance at the 

regional and/or local scales. Development of climate-change adaptation and mitigation 

strategies for different regions of the world requires appropriate spatial resolution of the model 

that will be able to describe regional and local impacts of climate change.  The second objective 

of the work presented in the report is regionalization of the global version of the ANEMI model. 

Focus of the regionalization effort was on the development of the regional version of ANEMI 

that allows investigation of global climate change effects on regional water resources, 

economic performance, energy supply and demand, population and land-use. The regional 

version of the model allows assessment of regional policy options for stabilizing global climate. 

The particular emphasis is on Canada. The regional version of ANEMI model separates Canada 

from the rest of the world (ROW). The climate, carbon and a portion of the hydrologic cycle 

sectors are dealing with global processes and remain on a global scale.   

 

There are two different modelling approaches that can be used for downscaling global model to 

regional scale: bottom-up and top-down. The typical bottom-up approach focuses on individual 

sectors, not on the relationships within the combined system. Therefore, the implementation 

of such a model is relatively simple. The top-down modeling approach considers the system as 
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a whole irrespective of the number of sectors and subsectors by counting different imputes 

across the model domain. In this case top-down approach is followed while regionalizing the 

global ANEMI version 2 model. 

 

In the next few sections of the report, the detailed explanation of the structure of each 

regionalized sector is provided. The presentation includes populations, land-use, water, food 

production, and energy-economy sectors. The focus of the regional model presentation is only 

on the main concepts and feedbacks since the rest of the details are already provided in the 

global model description. In order to address integration of sectors that function on the global 

scale with sectors on the regional scale, the presentation of implemented disaggregation 

procedure is provided. The chapter ends with the presentation of regional model performance.  

 

3.1 Population Sector 
 

Population sector represents the growth or decline of regional population under the influence 

of other sectors. The population change is derived from birth rate, death rate, and migration. In 

this model, fertility and life expectancy are affected by water-stress, defined as the ratio of 

‘desired surface water’ and ‘available surface water’. 

 

The regional ANEMI model simulations start from 1980 and therefore initial regional 

distribution of the global population is required. The population sector initial value (1980) is 

regionalized based on the UN population data (DESA, 2011). The initial population growth rates 

for the two ANEMI model regions, Canada and ROW, are calculated based on the population 

growth from 1975 to 1980. The only external input to this sector is the water availability and 

the water-stress. They are the outputs of the water quality sector. The regionalized population 

sector simulates population distribution that matches UN predictions (up to 2050). 

International migration (between Canada and ROW) is also incorporated in the regional version 
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of ANEMI model, as the population in-migration to Canada a vital source of labour force. The 

model also has the capability of handling the environmental refugee/migration inflow based on 

the Canadian immigration policy. 

 

The structure for the population sector in the regional version of ANEMI model is exactly the 

same as in the global model (presented in section 2.1.6). Therefore, the same governing 

equations and most of the parameter values are valid for both versions of the model. The initial 

values of the population in 1980 are shown in  

Table 3.1.  

 

Table 3.1: Population by age-group of 1980 (DESA, 2011) 

Age group (year) 0-14 15-44 45-64 65 to 65+ 

Canada (population in millions) 5.575 12.00 4.637 2.305 

Rest of the world (population in millions) 1560 1940 6520 259 

 

3.2 Land-Use Sector 
 

The land-use sector is highly influenced by the population sector via forest clearing and burning 

activities. The land transfer rate is proportional to the population growth and highly dependent 

on the policy and population awareness of various environmental issues. In the model, only the 

population growth is considered as the variable that affects the change of existing land-use 

pattern.   

 

In the regionalization process the main determining factor, population growth is directly 

connected with the regional version of the land-use sector. Therefore, the regionalization of the 

land transfer matrix is required. The regional transfer matrix is derived from the global value 
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(provided by Goudrian and Ketner, 1994) and available land area for each region. So the simple 

assumption used in the regionalization of land-use sector is that the land transformation rate is 

only the function of regional total land area. This type of regionalization inherits some setbacks, 

as the data limitation at the regional scale introduced uncertainty into the land transfer matrix. 

However, the reduction in uncertainty has been obtained through multiple attempts made to 

calibrate the model output.  

 

In the regional model, the land-use model structure and parameter values remain unchanged 

from the global model (presented in section 2.1.5), except the initial transfer matrix, which is 

given in Table 3.2. This matrix is calculated based on the ratio of land area of Canada and the 

world. Therefore, the land transfer matrix for the ROW is obtained by deducting the land 

transfer value in Table 3.2 from the value in Table 2.5.  

 

Table 3.2:  Initial land transfer matrix for Canada (Mha yr-1, in 1980) 

                       From( j): 
 
To (i): 

Tropical 
Forest 

Temperate 
Forest 

Grassland Agricultural 
Land 

Human 
Area 

Semi-Desert 
and Tundra 

Tropical Forest 0.814148 0 0 0 0 0 
Temperate Forest 0 0.1 0 0 0 0 
Grassland 0.05 0.05 21.7106 0 0 0 
Agricultural Land 0.12 0 0 21.7106 0 0.015 
Human Area 0.01 0.01 0.04828 0.04828 0 0 
Semi-Desert and 
Tundra 

0 0 0 0 0 0 

       

 

3.3 Water Sectors 
 

One of the main strengths of ANEMI is presence of three water sectors that (a) link climate 

change with other socio-economic sectors and (b) provide for assessment of impacts caused by 

water deficiency and quality degradation on population, industrial output, and food production. 
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Three major water sectors incorporated in the ANEMI model dealing with global and regional 

water resources include: hydrologic cycle, water demand, and water quality.  

3.3.1 Hydrologic Cycle 

 

This sector is basically dealing with hydrologic cycle that describes the interactions among land, 

water and atmosphere.  The objective of the hydrologic cycle sector is also to estimate the 

balance between water supply and water demand within each region, and the effects of water 

deficiency on other sectors. The current version of the regional ANEMI model is not well 

equipped to address the effects of excess water (flooding) on other socio-economic sectors. 

 

The atmospheric and oceanic portions of the hydrologic cycle (except precipitation) are the 

same as in the global version of the model.   The regionalization of this sector is not able to 

produce regional atmospheric water content but it’s definitely able to disaggregate regional 

discharge/surface water availability based on long term observations of rainfall and land 

characteristics. As the atmospheric water content and temperature cannot be separated for 

Canada and ROW, the disaggregation is done based on historical data. The rainfall and 

temperature are disaggregated using outputs of 17 GCM models (discussed in section 3.7).  

However, the ANEMI model is not able to capture the expected shifting of rainfall pattern at 

desired spatial resolution over the globe. 

 

3.3.2 Water Demand 

 

The main sources of water demand are industrial use, agricultural use and municipal use. The 

water demand sector is closely linked with the population, energy-economy, hydrologic cycle, 

and water quality sectors by water demand, consumption, water use intensity, wastewater 

treatment and water availability respectively. 
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Regionalization of the water demand sector is carried out in a simple way.  Waste-water 

treatment and desalination capacity are playing a big role in the water demand part, where 

water is a scare resource. The regional distribution of the desalinated water supply capacity is 

obtained from the World’s Water 2006-2007 (Pacific Institute, 2007). While distributing the 

capacity, only those countries/regions are considered which posses more than one percent of 

the world’s desalination capacity. Waste water treatment data is not available from all 

countries/regions and this report relies on the data from FAO database (http://faostat.fao.org/, 

last accessed August 2011).  

 

In respect to water demand sector structure and relevant equations both the regional and 

global versions are the same except the initial conditions for the irrigated area and electricity 

production (presented in section 2.1.7.2). The irrigated area for 1980 is calculated based on the 

information published in World’s Water 2008-2009 (Pacific Institute, 2009). The electricity 

production for Canada and ROW is obtained from EIA database (EIA, 2006). The initial 

information used in the regional model is shown in Table 3.3. For Canada, no desalination 

capacity is considered up to the present time, but the model has the capability to incorporate 

the desalination facilities if required. 

 

Table 3.3: Initial value for irrigated area and electricity production (1980) 

 Irrigated area (thousand hectare) Electricity Production (billion KWh) 

Canada 573.703 367.8 

Rest of the world 208430 2649.56 

 

3.3.3 Water Quality 

 

Problems related to the quality of water are aggravated in industrially developed and densely 

populated regions of the world where no efficient wastewater treatment takes place. The 

http://faostat.fao.org/
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water quality sector of the regional version of ANEMI model needs to describe the dynamic 

influence of water quality on human life on a regional scale. However, comprehensive chemical 

composition, and other local scale characteristics of water quality are not modeled, as their 

local effects are of low significance on the regional scale. Hence, the regional version of ANEMI 

model is not capable to handling any local issue, such as: local industrial pollution, algae bloom 

and so on, but at regional scale it is able to point out the overall health of the water resources 

including the availability of sufficient water supply for human survival with the ‘water stress’ 

parameter. In general ‘water quality’ sector deals with the water quality issues those are 

addressed by determining the necessary clean water requirement to maintain the standard 

water quality, dilution requirement. 

 

Water quality sector is connected with the water demand sector by negative causal 

relationship.  The modeling comprises of domestic, industrial and agricultural wastewater 

components. In the regionalization of this sector, the initial industrial treatment percentage is 

considered the same for all the regions (no data is available). Initial Irrigated area (in 1980) for 

each region is calculated from World Bank online database (http://databank.worldbank.org/, 

last accessed August 2011).  

 

The structure of the regional ANEMI model water quality sector remains the same as the global 

model (presented in section 2.1.7.3).  In the regional model, most of the parameter values are 

the same as in the global model, except initial treatment percentage. The values for Canada 

are: for domestic waste 70% and industrial waste 65%. The values for the ‘rest of the world’ are 

the same as in the global model. 

 

3.4 Food Production Sector 
 

http://databank.worldbank.org/
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Food production sector of the regional ANEMI model is connected to the large number of other 

sectors, which makes this sector more interactive and complex. On the contrary, the 

regionalization of the sector is not very complex, as most of the inputs are obtained from other 

sectors already as regional values. Therefore, the sector model structure remains the same as 

the global model structure (presented in section 2.1.4). The parameter values from connected 

sectors are determining the regional model behaviour. Other initial stocks like ‘initial total 

erodible land’ do not require regionalization, as they are starting with zero value. However, for 

‘land yield technological development’ two initial parameter values of 1.5 and 1.25 are used for 

Canada and ROW, respectively.   

 

3.5 Energy-Economy Sector 
 

The energy-economy sector of the regional ANEMI model is considering two regions: Canada 

and RWO.  Canada region is considered as a small open economy that takes energy prices and 

the global mean temperature as given. That is, fossil fuel prices and the global mean 

temperature are endogenous variables in the ROW region, but exogenous to the Canada region 

energy-economy sector. It is assumed that the energy consumption and greenhouse gas 

emissions of Canada do not impact the world, as Canada contributes about 2% of total global 

greenhouse gas emissions. The structure of the Canada region is almost identical to the global 

energy economy sector. The main difference is that the regional energy economy allows for a 

simple representation of trade in fossil fuels. 

 

The extraction decision in the regional energy economy is based on the fossil fuel price 

functions from the global version of the ANEMI energy sector. As the price of fossil fuel is 

assumed exogenous to Canada, the desired amount of fossil fuel to extract by finding the 

inverse of the price functions: 
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where       is the total extraction of fossil fuel type   at time  , given the current world 

price   ̅̅ ̅   .      is the current reserve value,           is the reserve value at the base year,      is 

new discoveries, and            is the world price of fossil fuel   at the base year.   is an 

elasticity parameter, and     is a calibration parameter adjusting the level of extraction. 

 

Given the exogenous world price, demand for fossil fuels in the regional model is given. It is 

assumed that net exports of fossil fuel i,      , is the difference between demand and total 

extraction each period. That is, net exports of fossil fuel type i is equal to total extraction minus 

fuel used for the production of heat energy and electric energy: 

 

                                                                                                                                           (   ) 

 

The structure for the production of energy in the regional model is exactly the same as in the 

global model (presented in section 2.1.3). The model uses the same production functions for 

heat energy and electricity production, and aggregation into total energy services. Given the 

world price, the representative firms’ demand for fossil fuels can be derived. 

 

Given that the prices of fossil fuels are exogenous, there is no mechanism to clear the market 

for fossil fuels in the regional energy economy. Demand and supply are determined separately. 

If supply is greater than demand, the excess supply is exported. Vice versa, the excess demand 

is met with imports. 
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In the regional model, the parameter values for the production functions of energy and energy 

aggregation are the same as in the global model. The differences in parameter values are in the 

reserve values and discoveries of fossil fuel sources, and the price functions for fossil fuel 

sources. As in the global ANEMI model version of the energy economy the assumed future 

discovery of fossil fuels in Canada is presented in Table 3.4. 

 

Table 3.4: Assumed future fossil fuel discovery (Canada) in billion GJ 

 1980 
Assumed Initial 
Reserves 

1980 Reserves 
(EIA & Statistics 
Canada) 

1980-2005 
Discoveries (EIA & 
Statistics Canada) 

2006 - 
Assumed 
Discoveries 

Coal 140 90 50 - 
Oil 2500 40 1180 1280 
Natural Gas 400 77  133 190 

 

Canada has a vast reserve of oil sands; however, economical, political, and technological 

constraints make it very difficult to make a prediction about what share of the oil sands will 

actually be extracted. Given these constraints, it is assume here that the total recoverable oil in 

Canada is about 410 billion barrels -  approximately 25% of the oil estimated to be in the 

Alberta’s oil sands (conversion factor from the EIA is 1 barrel of oil = 6.119 GJ). In 2007, the 

Alberta Energy and Utilities Board estimated that about 10% of the oil was recoverable given 

the economic conditions and technology available at that time. The natural gas discoveries 

follow a similar assumption about improvement in technology or increase in prices. 

 

3.6 Disaggregation Procedure  
 

Climate change processes are interacting over various temporal and spatial scales. One of the 

main requirements of the integrated assessment modelling is their ability to model various 

impacts across various scales.  Disaggregation methodologies are used very often to assist in 

the process of transferring information across the scales.    Harms and Campbell (1967) were 
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among the first researchers to formalize the disaggregation approach and apply it to temporal 

disaggregation of streamflow. Lane (1979) was among the first to transfer the same 

dissagreggation principles into the spatial domain. Regionalization of ANEMI model requires 

disaggregation of spatial and temporal information. The implemented procedures are described 

in the following sections of the report. 

 

3.6.1 Temporal Disaggregation 

 

The main objective of any disaggregation technique is to allow the prevention of the statistical 

properties at more than one level (for example maintaining statistical properties of the annual 

streamflow data in generating monthly streamflow for water resources management 

purposes). Mean, variances, probability distribution and covariance’s can be designated as 

desired statistical properties in this type of disaggregation approach. In addition, the 

disaggregation allows reduction in the number of parameters with little or no corresponding 

loss of desirable properties in the generated data. 

 

Because disaggregation is one step beyond the very basic time series modeling, such as 

autoregressive (AR) modeling, its application is more difficult. However, disaggregation 

approaches do eliminate many common problems that practitioners have with the 

stochastically generated data.  The added benefits are well worth the effort required (Salas et 

al, 2009). 

 

Disaggregation process provides new time series based on the available data series. The 

generation of disaggregated series (monthly or daily data, for example), based on the original 

series may be done with the help of a linear model designed to preserve important statistical 

properties of the original series. Disaggregation can be implemented in time and space.   
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In general all disaggregation models can be articulated in terms of linear dependence model as: 

 

                                                                                                                                                    (   )                 

where   is the current observation of the time series that will be generated,   is the original 

series or independent series, ε represents  the current value from a completely random series 

(stochastic term).    and   are matrices of parameters. 

 

It should be noted that in this approach each of the time series that make up   and   must 

follow the normal distribution with zero mean. This condition could be secured by taking the 

original data series and transforming the individual values to normally distributed values and 

then subtracting the mean from the transformed values. The stochastic terms in matrix ε are 

assumed to be normal with zero mean and variance of one. The advantage of this 

disaggregation model is its very clean structure. 

Mejia et al, (1976) introduced the following form of temporal disaggregation procedure: 

 

                                                                                                                                            (   )           

 

where   is a parameter matrix with the same dimensions as  ,   is a column matrix containing 

monthly values from the previous year. 

From the above equation, Lane (1979) developed a condensed form of disaggregation model, 

where numbers of parameters are reduced by declaring zero value to the unimportant 

parameters. The condensed model can be expressed as:  

 

                                                                                                                                        (   )           
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where   and     denotes the current time and immediate previous year respectively. 

 

3.6.2 Spatial Disaggregation 

 

Disaggregation provides an easy to apply and very efficient method for developing high 

resolution data (regional level) for climate change impact analyses. The disaggregation methods 

usually keep the overall patterns and are less likely to alter the original global data. The ANEMI 

version 2 model is a lumped model with a complex and sophisticated climate sector that are 

not easy to apply in regional impacts and policy experimentation.  Hay et al (1992) proposed a 

disaggregation approach, which can be used to study regional impacts of climate change.  

 

In the regionalization of ANEMI model, the disaggregation approach of Lane (1979) is used to 

establish a link between global and regional scales. The mathematical description of the 

disaggregation process is: 

 

                                                                                                                                          (   ) 

 

where V is a column matrix of regional values being generated, U is a column matrix of current 

global values, W is a column matrix of the previous regional values. E, F, and G are parameter 

matrices. 

 

The approach is designed to preserve directly three sets of moments: lag-zero moments among 

the regions, lag-one moments among the regions and lag-zero moments between the global 

and regional values (Salas et al, 2009). Like the temporal disaggregation approach, the spatial 
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disaggregation can be staged in different steps. So, the global value can be disaggregated into 

regional value in the first step and then can be further disaggregated to local value.  

 

3.6.3 Disaggregation Data Description 

 

As the climate sector of the ANEMI version 2 model remains global, the current version of the 
model is not able to provide regional temperature change. In this study both, regional rainfall 

and temperature change need to be computed, since they are the driving force for other 
sectors, such as: economy-energy, hydrologic cycle, food production, etc.  An attempt is taken 
to establish a relationship between global and regional temperature and rainfall data based 

the results from various GCM models. Due to the scarcity of long term historical observations, 
outputs from seventeen GCM models were used in the study ( 

 

 

 

Table 3.5). 

 

From  

 

 

 

Table 3.5, it is noticed that different model comes with its own resolution, which makes the 

analysis difficult. To avoid such resolution discrepancy a course resolution (10.0 long, 10.0 lat) is 

chosen. At the very beginning, all of these 17 GCMs data are averaged over 10°X10° grid size 

(Figure 3.1), so that they can represent the same grid area, with a time span of 99 years (from 
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1901 to 1999). Then the ensemble mean for each of the individual cells (10°X10°) are computed 

by averaging the 17 sets of data. The whole process reduces 17 sets of individual datasets in to 

a single (ensemble mean) 10°X10° dataset. Since the objective of the whole disaggregation 

process is to produce representative data sets for Canada and ROW (rest of the world), 

therefore rainfall and temperature for the 2 regions needs to be separated. Thiessen polygon 

method is implemented over the computed ensemble mean data to calculate the weight of 

each of the cells located within Canada and ROW.   As a final step, areal average data for the 

two individual regions are computed for the 99 years for further analysis. 

 

 

 

 

Table 3.5: GCM models used for the regionalization of the temperature and rainfall data 

Originating Group Country ID Additional info. 

National Center for Atmospheric Research USA CCSM3 2.8X2.8 

Canadian Centre for Climate Modelling & Analysis Canada CGCM3.1(T47)  2.8X2.8 

Canadian Centre for Climate Modelling & Analysis Canada CGCM3.1(T63)  1.9X1.9 

CSIRO Atmospheric Research Australia CSIRO-CCSM3Mk3.0 1.9X1.9 

CSIRO Atmospheric Research Australia CSIRO-Mk3.5 1.9X1.9 

Max Planck Institute for Meteorology Meteorological 
Institute of the University of Bonn 

Germany ECHAM5/MPI-OM 1.9X1.9 

Meteorological Research Institute of KMA, and Model 
and Data group 

Germany/Korea ECHO-G 3.9X3.9 
 

US Dept. of Commerce / NOAA / Geophysical  
 Fluid Dynamics Laboratory 

USA GFDL-CM2.0 2.5 long, 2.0 lat 

NASA / Goddard Institute for Space Studies USA GISS-AOM 4.0 long, 3.0 lat 

NASA / Goddard Institute for Space Studies USA GISS-EH 5.0 long, 4.0 lat 

NASA / Goddard Institute for Space Studies USA GISS-ER 5.0 long, 4.0 lat 

Institute for Numerical Mathematics Russia  INM-CM3.0 5.0 long, 4.0 lat 

Institute Pierre Simon Laplace France IPSL-CM4 3.75 long, 2.5 lat 

Meteorological Research Institute Japan MRI-CGCM2.3.2 2.8X2.8 

National Center for Atmospheric Research USA PCM 2.8X2.8 



 

144 

Originating Group Country ID Additional info. 

Hadley Centre for Climate Prediction and Research / 
Met Office 

UK UKMO-HadCM3 3.75 long, 2.75 lat 

Hadley Centre for Climate Prediction and Research / 
 Met Office 

UK UKMO-HadGEM1          1.875 long, 1.25 lat 

 

 

Equation 3.6 represents the basic model equation for the spatial disaggregation modeling, 

where, parameter matrices E, F, G and Ɛ are generated with the help of R (http://www.r-

project.org/, last accessed July, 2011 ), which is a language and environment for statistical 

computing and graphics.  The customized R model is capable of handling both the temporal and 

spatial data sets, and the associated programming codes are available at ANEMI User’s Manual 

(Akhtar et al, 2011).  For the temporal disaggregation (yearly temperature to monthly 

temperature),  parameter matrices A, B, C and Ɛ are also generated in the same way as spatial 

disaggregation with help customized R software. In this case ANEMI version 2 utilizes the 

Equation 3.4, where the yearly temperature value U is endogenously feed into the model from 

the climate sector.   

 

Figure 3.1: Map showing Canada and rest of the world (ROW) with 10 by 10 greed 

 

3.7 Regional Model Performance  
 

http://www.r-project.org/
http://www.r-project.org/
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The Canada version of the ANEMI model is developed to evaluate the driving feedback 

structure and policy scenarios within nine sectors of the model. The regional model is verified 

by comparing the simulated value with the observation along a few established model 

simulations. The simulation time horizon is from 1980 until 2100. The model performance 

evaluation period is selected to be first 30 years (from 1980 to 2010).  Because of continuous 

data scarcity, in many cases single or multiple discrete observations are considered in the 

evaluation of model performance. 

 

3.7.1 Water Sectors 

 

The main processes within the water sectors (hydrologic cycle, water demand and water 

quality) of Canada version of the ANEMI model are developed using temporal and spatial 

disaggregation.   

 

The water withdrawals for various uses (domestic, industry, and agriculture) are driven by the 

economic activities, size of population, climatic conditions, irrigation requirements and so on.  

Pacific Institute (full name: Pacific Institute for Studies in Development, Environment, and 

Security, is a non-profit research institute created in 1987 to provide independent research and 

policy analysis on issues at the intersection of development, environment, and security. It is 

located in Oakland, California, USA) calculated water consumption of Canada for the year 2006, 

whereas Shiklomanov and Rodda (2003) gathered a decadal data starting from 1980. In 

addition, Shiklomanov and Rodda (2003) also projected the future water consumption until 

2030.    

 

The validation comparison graphs (Figures 3.2, 3.3 and 3.4) show that the estimation of the 

Pacific Institute is not analogous to the data analysed by Shiklomanov and Rodda (2003). Water 

withdrawal for agricultural use is not available in Shiklomanov and Rodda’s (2003) publication. 
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The regional ANEMI model produces values much closer to the Pacific Institute than to 

Shiklomanov and Rodda’s (2003).   

 

 

Figure 3.2: Domestic water withdrawals (Canada) validation 

 

 

Figure 3.3: Industrial water withdrawals (Canada) validation 
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Figure 3.4: Agricultural water withdrawals (Canada) validation 

 

3.7.2 Population 

 

The regional version of the ANEMI model includes a very detailed population sector. The 

simulated results match perfectly with the observed UN population data (for Canada region) 

until 2005. The UN data after 2005 are from their own modeling projections, not from the 

observations. It is also noticeable that the IIASA (International Institute for Applied Systems 

Analysis) data sets are not agreeable with the observations,  the whole data set is basically 

projected  ( projection is done  in 2007). The Figure 3.5 also shows that the two projections (UN 

and IIASA) are very different in respect to population size. The ANEMI simulated results follow 

an average path indicating (a) a very good agreement with observed information (until 2005); 

and (b) some deviation from IIASA future projections.  
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Figure 3.5: Population (Canada) validation 

 

3.7.3 Land-Use 

 

Canada contains over one-third of the world’s boreal forest, one-fifth of the world’s temperate 

rainforest, and one-tenth of the total global forest cover. Canada’s relatively undisturbed forest 

areas are sufficiently large to maintain all of their native biodiversity. However, with the 

increasing demand, forest areas are being converted into either agricultural land or human 

settlements. Land-use sector of the regional ANEMI (Canada region) model has the capability to 

generate land conversion based on the population growth. Two verification graphs (Figures 3.6 

and 3.7) are presented to show the future land-use change in respect to forest and 

cultivated/agricultural area. The simulated results are also compared with the WDI database 

(World Development Indicators, The World Bank, http://databank.worldbank.org, last 

accessed, August 2011). The ANEMI performance shows a good agreement with the 

observations. The observed data for agricultural area are not showing any trend. The ANEMI 

simulations are showing a rising trend, as expected by the majority of the scientific 

communities.  
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Figure 3.6: Forest area (Canada) validation 

 

 

Figure 3.7: Cultivated area (Canada) validation 

 

From the comparison graphs, it can be concluded that the regional version of the ANEMI model 

is performing satisfactorily and is capable of handling different policy scenario in the context of 

Canada. 
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3.7.4 Energy-Economy 

 

The Gross Domestic Product (GDP) in Canada expanded 1% in the first quarter of 2011 over the 

previous quarter. From 1961 until 2010, Canada's average quarterly GDP growth was 0.84% 

reaching  historical high of 3.33% in December of 1963 and a record low of -1.80% in March of 

2009. Canada's economy is diversified and highly developed. The foundation of Canada’s 

economy is foreign trade and The United States is by far the nation's largest trade partner. 

Foreign trade is responsible for about 45% of the nation's gross domestic product (GDP).  

 

It seems difficult to find any good projections of GDP for Canada. In most cases, 1% change 

relative to baseline is reported for policy experimentation. The regional ANEMI simulated 

results seem close to the WDI data (here, GDP is expressed in constant 2005 international dollar 

value) from the World Bank (http://databank.worldbank.org, last accessed, August 2011) 

satisfying the calibration of energy-economy sector of Canada model (Figure 3.8). 

 

 

Figure 3.8: Real GDP per capita for Canada 
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4 MODEL USE 
 

Both, the global and the regional versions of the ANEMI model which are developed by 

combining individual sectors together, are verified using historical observations as well as 

available published literature. Initially, all the individual sectors are calibrated separately and 

are then connected together to form the integrated model, which can satisfactorily represent 

the society-biosphere-climate-economy-energy system. 

 

The purpose of the ANEMI model is not to forecast the future but to assist in understanding the 

complexity of the whole system and provide insight in the possible behaviour of the system and 

its components under changing climate. The integrated assessment model like ANEMI provides 

policymakers and scientists with the tool that can answer many ‘what if’ questions. This chapter 

of the report demonstrates the implementation of ANEMI version 2 model to simulation of 

policy scenarios developed in cooperation with project partners.  The set of scenarios 

presented here is selected from comprehensive in-person communication with project 

partners.  The detailed report on scenario development is available in Popovich et al (2010) that 

is available on the same CD-ROM.    

 

4.1 Description of Scenarios 
 

Detailed process of communication with the climate change policy community (represented by 

the project partners) resulted in the identification of seven policy scenarios. In the second 

phase of the ANEMI model implementation these scenarios were aggregated into three general 

scenarios presented in following sections of the report.   
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4.1.1 Carbon Tax Scenario 

 

The assessment reports from the Intergovernmental Panel on Climate Change (IPCC, 2007b; 

Trenberth et al, 2007; Schneider et al 2001) have identified the key potential impacts of climate 

change. Furthermore, these reports point to human-induced increases in the atmospheric 

concentration of greenhouse gasses (GHGs) as a likely cause of climate change. There is a 

relatively strong consensus in the scientific community that GHGs emissions need to be cut in 

order to reduce the impacts of climate change. 

 

Various policy options are available to reduce GHG emissions (Popovitch et al, 2010). Three of 

them are tested with the ANEMI model. The first, and the easiest policy to implement is carbon 

tax. In the energy-economy sector, the carbon tax is implemented as a tax per unit of CO2 

emissions, effectively raising the price of fossil fuel. Selected results from the carbon tax 

scenario are presented later in this chapter. The carbon tax is implemented in 2012 and slowly 

ramped up to $100 per tonne of CO2 emission over 30 years. The carbon tax has a significant 

impact on energy input into heat energy production as it is primarily produced from fossil fuel. 

The impact on electricity production is less severe as nuclear and hydro power are not impacted 

by the carbon tax. 

 

4.1.2 Increase Water Use Scenario 

 

Water is crucial not only for human survival but it also work as a fuel for growing economy. 

With the increasing population and rising global temperature, the total demand for water is 

rising irrespective of the individual water uses (domestic, industrial and agricultural). Such an 

increase in water demand results in the demand for additional infrastructure (dams, reservoirs, 

and diversions). Many watersheds now have their water resources fully allocated and greater 

irrigation efficiency will be required if irrigated area is to expand in the future, while 

maintaining acceptable stream flows for other uses. Decreasing water availability, declining 
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water quality, and growing water demand are posing significant challenges to human 

population and health of ecosystems as well. Intergovernmental Panel on Climate Change 

(Kundzewicz et al, 2007) states that global warming will lead to “changes in all components of 

the freshwater system,” and concludes that “water and its availability and quality will be the 

main pressures on, and issues for, societies and the environment under climate change’’ (Bates 

et al, 2008).  In some areas, improved irrigation efficiencies may actually dictate an increase in 

irrigation water used per unit of land, where crops are now receiving insufficient water for 

optimum growth. For example, in Alberta and British Columbia, evaluation of irrigation system 

practices found that for some crops, producers were under-irrigating and could improve 

production by increasing the amount of water applied. At the same time, continued 

improvement in irrigation and conveyance efficiency will free up some water for other uses. 

 

Climate change projections for Canada indicate a 37% increase in irrigation water demand in 

the Okanagan Valley, B.C. (Neilsen et al, 2001). In addition, due to global warming the area 

where crops require irrigation may increase in the Prairies, Ontario, Quebec and the Atlantic 

Provinces. Therefore, the second policy scenario included in this study focuses on increased 

water use. An assumed amount of 15% increase across all water uses is tested to demonstrate 

the ANEMI model response to the increase in need for water.   

 

4.1.3 Food Production Increase Scenario 

 

In a news release by the Food and Agriculture Organization of the United Nations, it stated that 

“Producing 70 percent more food for an additional 2.3 billion people by 2050 while at the same 

time combating poverty and hunger, using scarce natural resources more efficiently and 

adapting to climate change are the main challenges world agriculture will face in the coming 

decades” (FAO, 2009). 
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This scenario is closely related to the previous one, in which the demand for water is expected 

to increase. Whereas previous scenario experimented with the impact of increasing irrigation to 

cope with rising food demand, this scenario tests the impact of redistributing land-use, by 

converting more land from forest to agriculture. This scenario also uses the global version of 

the ANEMI model, making a more general set of conclusions for the world’s capacity to meet 

global food demand. It also shows the sink capacity of the land, and produces output in various 

sectors, including: population, hydrologic cycle, water quality, energy-economy, climate, 

carbon, and food production. 

 

4.2 Global Model Analyses 
 

In the following three sections, the main results of ANEMI simulations of three policy scenarios 

are presented.  

 

4.2.1 Global Carbon Tax Scenario 

 

The carbon tax is implemented in 2012 and slowly ramped up to $100 per tonne of CO2 over 30 

years. Figures 4.1 and Figure 4.2 show how are electric and heat energy production impacted 

by the implementation of the carbon tax. The dashed line in these two figures show ANEMI 

simulation results without the carbon tax and full line shows results with the carbon tax in 

place. The carbon tax has a significant impact on energy input into heat energy production as it 

is primarily produced from the fossil fuel. The impact on electricity production is less severe as 

nuclear and hydro power are not impacted by the carbon tax. 
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Figure 4.1: Energy used to produce electricity 

 

 

Figure 4.2: Energy used to produce heat energy 

 

The implemented carbon-tax policy creates significant pressure on different fossil fuel pricing 

based on the carbon emission amount to produce unit amount of energy. Following the 

elasticity of substitution the share of each fossil fuel type is automatically adjusted to produce 

the low cost energy. Not only this type of adjustment (a certain combination of coal, oil and 

natural gas to produce cost effective energy) but mostly a dramatic drop in energy 

consumption (Figure 4.3Error! Reference source not found.) change the whole dynamics of the 

global energy-economy sector. The initial reduction of the fossil fuel based energy 
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consumption, just immediate after the implementation of the carbon-tax helps to maintain a 

relatively stable supply of the fossil fuel based energy throughout the 21st century. Such 

behaviour is driven by the availability of the fossil fuel reserve. In the base simulation, fossil fuel 

price started to climb up, as the reserve tends to decline and after 2080 the world is mostly 

running out of fossil fuel to produce heat and electric energy. On the other hand, under the 

carbon tax scenario, initial reduction in energy consumption saves a significant portion of fossil 

fuel to burn later. As the fossil fuel based energy consumption decreases significantly, so the 

fossil fuel based emissions follow the same trend (Error! Reference source not found.). However, 

after 2040 there is a change in trend for energy consumption path because of the introduction 

of carbon capture and storage technology. 

 

 

Figure 4.3: Global energy consumption  
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Figure 4.4: Global CO2 emissions from fossil fuel  

 

The main source of anthropogenic emissions is the burning of fossil fuel and forest 

cutting/burning. Under this scenario, the fossil fuel based emissions are reduced by almost half, 

which significantly lowers the atmospheric CO2 concentration increment rate and by 2100 the 

global atmospheric concentration could be well below 500ppm (Figure 4.5). Atmospheric CO2 

concentration is considered as one of the sources of increased radiative forcing, which works as 

a driving force for increase in global temperature.  The model also shows around 0.5 0C drop in 

atmospheric temperature by 2100, compared to base condition (Figure 4.6).   Due to its positive 

correlation, the sea-level rising rate slows down relative to the base (no carbon tax) run (Figure 

4.7).  

 

Figure 4.5: Global atmospheric CO2 concentration  
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Figure 4.6: Global atmospheric temperature change  

 

 

Figure 4.7: Global sea-level rise  

 

The suitable temperature and less pollution result in increase of human life expectancy a bit 

after the implementation of carbon tax policy and thereby global population increase by almost 

10% compared to the base condition for more than 50 years (Figure 4.8). Such population 

increase demands more food production (Figure 4.9), leading to higher water demand for 

irrigation. As more irrigation produces higher pollution of water and requires more fresh water 

for dilution, the water-stress starts to increase (Figure 4.10) and eventually acts as a negative 

feedback force in food production and population sectors. The global GDP also exhibits 13% 

increase from the base conditions in 2100 (Figure 4.11).  
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Figure 4.8: Global population  

 

 

Figure 4.9: Global food production  
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Figure 4.10: Global water-stress  

 

 

Figure 4.11: Global GDP change  

 

The impact of the carbon tax on GDP per capita is first negative (minor) impact, because of the 

distortion created by the tax policy (Figure 4.11). Eventually, all the benefits from reduction of 

climate damage and price effects for fossil fuel suppress the tax distortion effect. The price 

effect for fossil fuel is showing some benefit from delaying depletion of the reserves. In the 

ANEMI model, fossil fuel prices are a function of the reserve level relative to the base year. That 

is, when reserves decrease, the price starts to increase, and the benefits from delaying the price 

increase are significant.  
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4.2.2 Global Water Use Scenario 

 

The second scenario is tested using the global version of the ANEMI version 2 model, with 15% 

increase in water use for all uses. The intension of this scenario is to identify the probable 

impacts of increased water use on other sectors of the model and find how the multiple 

feedbacks determine the system response, not to forecast the future.   

The main impact of 15% increase in water consumption from the base conditions (without the 

increase), decreases the available surface water by 1% (Figure 4.12). This value may seem 

negligible on global scale but if translated onto agriculture and human use, then it could vary 

from 0 to 50%. Therefore, it is very difficult to compute the actual water-stress, which the 

world may face by 2100. The model computations indicate around 6% increase in water-stress 

(Figure 4.13).  

 

Figure 4.12: Global available surface water 
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Figure 4.13: Global water-stress 

 

The increase in water withdrawals is manifested in decrease of water quality and eventually 

produces even higher water-stress (due to increased dilution requirements). The agricultural 

sector faces higher water scarcity and loses productivity by more than 5% (Figure 4.14).  

 

 

Figure 4.14: Global food production 

 

The increase in water-stress increases a threat to human survival, especially in terms of life 

expectancy. The reduction of the per capita food production becomes a challenge.  

Unfortunately these two combined feedbacks result in 7.5% reduction of the overall population 
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by the end of this century (Figure 4.16).  The global GDP also decreases (Figure 4.19) but at a 

very nominal level (2.5%) due to decrease in the population.  

 

 

Figure 4.15: Global population 

 

With the reduction of the global population, the CO2 production from the fossil fuel along with 

atmospheric CO2 concentration decreases (Figures 4.16 and 4.17). Atmospheric CO2 

concentration is one of the major driving sources of radiative forcing, responsible for the global 

temperature rise.   Since the atmospheric CO2 concentration exhibits negligible change, the 

model is not showing any significant change in atmospheric temperature (Figure 4.20), as well 

as the sea-level rise (Error! Reference source not found.).  
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Figure 4.16: Global CO2 emissions from fossil fuel 

 

 

Figure 4.17: Global atmospheric CO2 concentration 

 

 

Figure 4.18: Global GDP 
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Figure 4.19: Global atmospheric temperature 

 

 

Figure 4.20: Global sea-level rise 

 

4.2.3 Global Food Production Scenario 

 

Simulations of the third scenario are focused on finding how is increase in agricultural land 

going to affect the total food production.  In the global ANEMI version 2 model, land conversion 

rate (from forest to agriculture) is increased by 15% to allow for increase in food production 

and identification of the probable impacts on the other model sectors. For this investigation 

few important parameter and variables are analysed, such as: food production, available 

surface water, water-stress, global population, CO2 concentration, etc. 

14.0

14.5

15.0

15.5

16.0

16.5

17.0

17.5

1980 2000 2020 2040 2060 2080 2100

T
e
m

p
e
ra

tu
re

 (
0
C

)

Time

Atmospheric Temperature 

Water use increase

Base

0

30

60

90

120

150

1980 2000 2020 2040 2060 2080 2100

S
e
a
L

e
v
e
l 
ri

s
e
(m

m
)

Time

Sea Level Rise

Water use increase

Base



 

166 

 

The simulation results (Figure 4.21) demonstrate that the conversion of extra 15% of land into 

agricultural land increases the food production for about 1% at the beginning of the policy 

implementation period but after a while the extra production starts to decline because of the 

water shortage. Not only that the extra production from the increase in agricultural area 

diminishes, but the total food production falls below the base conditions (no increase in land 

conversion) after 2090 (Figure 4.21).  It is important to note that more than 80% of the 

projected land expansion is expected to take place in sub-Sharan Africa and Latin America. By 

contrast, in South Asia and Near East/North Africa, where almost all the suitable land is already 

in use, there is a little room for expansion of the agricultural area. One fourth of the expanded 

agricultural land is assumed to be under irrigation, which increases the agricultural water 

consumption and thereby reduces the available water by 0.6% (Figure 4.22). The increase in 

water consumption also increases the total volume of polluted water, thereby requiring more 

fresh water for dilution purposes. This positive feedback structure causes continuation in water 

stress rise up to around 7% above the base case (Figure 4.23). The considerable increase in 

agricultural land failed to produce similar increase in food production. 

 

 

Figure 4.21: Global food production  
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Figure 4.22: Global available surface water 

 

 

Figure 4.23: Global water stress 

 

The increase in water stress generates inverse impact on food production that has positive 

impact on the life expectancy. Figure 4.24 shows population change which is judged 

insignificant in respect to total population.  
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Figure 4.24: Global population 

 

CO2 emissions from the fossil fuel and GDP are directly related to the population. The simulated 

results show very small change in this case (Figures 4.25 and 4.26). However, the model results 

show nearly 1% increase in global CO2 concentration (Figure 4.27), which may be a significant 

finding.  In reality, the atmospheric concentration does not only originate in fossil fuel burning 

but a significant portion of carbon is coming from the change in land-use. In this simulation the 

extra amount of atmospheric CO2 concentration is the consequence of 15% increase in land 

conversion (specifically forest cutting/burning) to expand the agricultural land. 

 

 

Figure 4.25: Global CO2 emissions from fossil fuel 
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Figure 4.26: Global GDP 

 

 

Figure 4.27: Global atmospheric CO2 concentration  

 

A minor change in atmospheric CO2 concentration contributes to a small increase in radiative 

forcing that affects the global temperature change (Figure 4.28). As the forcing from solar 

radiation and other gases remain unchanged, only 1% increases in CO2 concentration dampens 

further. Since, sea-level change is only a function of temperature, the model produces the same 

trend for sea-level change (Figure 4.29). 
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Figure 4.28: Global atmospheric temperature 

 

 

Figure 4.29: Sea-level rise 
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the results.  
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4.3.1 Canada Carbon Tax Scenario 

 

In this section, some selected results are shown from the regional model analyses. Each figure 

used for illustration of the results includes the baseline (no carbon tax applied) and the carbon-

tax policy alternatives. The carbon-tax policy simulations assumes that Canada and the world 

implement the same carbon-tax policy - a carbon tax implemented in 2012 and slowly ramped 

up to $100 per tonne of CO2 over 30 years. 

 

Figure 4.30 shows GDP per capita for the baseline run and the carbon tax scenario. As in the 

global model the tax distortion initially reduces GDP-  however, eventually the reduction in 

climate damages and the fossil fuel price effects take over and GDP increases relative to the 

baseline. The benefit from the carbon tax is somewhat offset in the regional model as fossil fuel 

exports decrease under the tax policy. 

 

 

Figure 4.30: GDP per capita (Canada) 
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input is a result of increasing fossil fuel prices, which are exogenously given, from the global 

model. With the carbon tax, there is a significant impact on energy consumption in the regional 

model. This effect is also visible in the simulations of the global model. 

 

 

Figure 4.31: Total energy used in the production of aggregate energy services (Canada) 

 

Error! Reference source not found. shows total industrial emission from the regional model. This 

emission is closely linked with the total energy consumption. Similar to the results of global 

model simulations, the carbon tax has a significant impact on fossil fuel consumption and 

industrial emission. 
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Figure 4.32: Industrial emission from fossil fuel (Canada) 

 

4.3.2 Canada Water Use Scenario 

 

To demonstrate the regional impact of the water use scenario, 15% increase in water use in 

Canada is assumed. It is already mentioned that the agricultural water use in Canada would 

require 37% more water due to increasing trend in temperature. However, regional simulations 

are performed using 15% increase in order to demonstrate the model performance and to 

maintain the consistency with the global model investigations. 

 

Since Canada’s water resources are abundant and water consumption small, the increase of 

15% in consumption barely changes the total volume of available water compared to the base 

conditions (Figure 4.33). However, water-stress increases by more than 10% at the end of the 

century (Figure 4.34) still staying below the threshold level (0.4). Because of such comfortable 

position, food production (Figure 4.35) and other water intensive activities remain 

uninterrupted. 
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Figure 4.33: Available surface water (Canada)  

 

 

Figure 4.34: Water-stress (Canada) 

 

 

Figure 4.35: Food production (Canada) 
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It is well known that increased water-stress is a great threat for human survival and because of 

Canada’s sufficient water resources human life expectancy is not decreasing by year 2100.  

Therefore, plenty of food stock and large water resources provide Canada with conditions for a 

very stable population (Figure 4.36).  

 

 

Figure 4.36: Population (Canada)  

 

Since the population of Canada remains almost unchanged (0.5% increase) with the 15% 

increase in water consumption, the CO2 emissions from fossil fuel and GDP also remains nearly 

unchanged (Figure 4.37 and Figure 4.38).  
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Figure 4.37: CO2 emission from fossil fuel (Canada) 

 

 

Figure 4.38: GDP (Canada) 

 

4.3.3 Canada Food Production Increase Scenario 
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have become larger and more productive. Greater use of mechanization, mineral fertilizers and 

pesticides, new and better crop varieties, and innovative farming practices keep the food 

production on increase.  Over time, some of these advances have clearly compromised 

environmental health, including water quality. Agricultural impacts on water resources are 
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caused by: need for additional water (semi-arid landscapes), use of additional nutrients, use of 

pesticides and so on. 

 

Even though it is expected that Canada would remain food sufficient country by the end of 21st 

century, as a part of the global community Canada may need to produce more food to meet the 

needs of the rest of the world. In this scenario analyses agricultural land conversion rate in 

Canada is increased by 15% (same as in global analyses) for model utility demonstrations and 

comparison with global model analyses.  

 

In this scenario the results of simulations are not the same at the regional and global scales. 

Increase of 15% in land conversion provides for more than 13% increase in food production 

(Figure 4.39), whereas at the global scale, the increase was around 1%.  However, this 15% 

extra agricultural land and practice requires more water. High availability and low water 

demand in Canada still make the effect of increased water consumption barely distinguishable 

(Figure 4.40). However, the water-stress increases around 7% at the end of this century (Figure 

4.41), still remaining below the critical threshold level.  

 

 

Figure 4.39: Food production (Canada)  
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Figure 4.40: Available surface water (Canada) 

 

 

Figure 4.41: Water-stress (Canada) 

 

Freshwater is essential for human survival, healthy ecosystems and sustainable development. 

Canada as a region has plenty of water resources to support its population. The total 

population shows slight increase by the end of this century. Surprisingly, the regional model 

results do not show any population growth (Figure 4.42). This behaviour can be explained by 

sufficient food production and/or the optimum availability of per capita food-energy. So, 

further increase in per capita food production does not change the life expectancy in Canada.  
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Figure 4.42: Population (Canada) 

 

The total population in Canada remains almost unchanged even with 13% increase in food 

production. With no change in population, there is no increase in human induced fossil fuel 

based emissions and GDP. They both remain almost unchanged (Figure 4.43 and Figure 4.44).  

 

 

Figure 4.43: CO2 emission from fossil fuel (Canada) 
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Figure 4.44: GDP (Canada) 

 

4.4 Conclusions 
 

 Three different climate change policy scenarios are simulated using global and regional 

(Canada) versions of the ANEMI version 2 model. Scenarios are either related to emerging 

problems (shortage in food production, shortage in water availability, etc) or preventive climate 

change mitigation measures such as emissions reductions.  However, the quantitative values 

used with all three scenarios were arbitrarily selected to investigate performance of the models 

and help understand better impacts of model structure on the complex system behaviour. The 

investigated scenarios include:  

o Implementation of carbon tax as well as carbon capture and storage technology 

o 15% increase in overall water use; and 

o 15% increase in agricultural land conversion. 

Simulations of the same scenarios are not showing the same results on global and local scales 

due to the spatial distribution of resources and climate impacts.  

 

The water use increase scenario shows increase in global water-stress to an alarming stage and 

reduction in the food production. These two unfavourable conditions threaten the current 
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population growth and demonstrate a small decrease in future population. Contrary, the extra 

pressure on Canada’s water resources couldn’t change the population path due to the water-

stress level that remains high above the threshold.  Changes in GDP, atmospheric CO2 

concentration, and atmospheric temperature are insignificant.  

 

In the land increase scenario, the 15% conversion rate to agricultural land is only affecting food 

production, approximately 1% increase at the global scale. A closer investigation reviled that 

the extra agricultural activities (a) add more pressure on already scarce water resources and (b) 

increase fresh water demand for dilution. The feedback structure of the model restricts the 

productivity because of water scarcity. On the other hand, food production in Canada increases 

by 13% due to the added agricultural land. This contrasting value is due to lower level of water 

stress in Canada. Other related model sectors are showing minor changes. The only visible 

change is in atmospheric CO2 concentration, which is contributed by forest clearing/burning 

required for the development of new agricultural land. 

 

In case of carbon tax scenario, carbon capture and storage technology is introduced. After 

implementing a moderate tax policy, the model shows a significant reduction in CO2 emissions 

from fossil fuel and stabilization of the atmospheric CO2 concentration. Carbon capture and 

storage technology can be implemented to lower the atmospheric CO2 concentration below 

500 ppm level. These combined efforts lower the global temperature and sea-level rise when 

compared to current policy environment.  Rest of the model sectors are not significantly 

affected by this scenario.   

 

The performed analyses are demonstrating model robustness and readiness for the application 

in investigation of various climate change mitigation and adaptation policy options. 
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