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Abstract

This thesis is on algebraic and algebraic geometry aspects of complex hyperplane

arrangements and multiarrangements. We start by examining the basic properties

of the logarithmic modules of all orders such as their freeness, the cdga structure,

the local properties and close the first chapter with a multiarrangement version of a

theorem due to M. Mustaţă and H. Schenck.

In the next chapter, we obtain long exact sequences of the logarithmic modules

of an arrangement and its deletion-restriction under the tame conditions. We observe

how the tame conditions transfer between an arrangement and its deletion-restriction.

In chapter 3, we use some tools from the intersection theory and show that the

intersection cycle of a certain projective variety has a closed answer in terms of the

characteristic polynomial. This result is used to compute the leading parts of the

Hilbert polynomial and Hilbert series of the logarithmic ideal. As a consequence, we

recover some of the classical results of the theory such as the Solomon-Terao formula

for tame arrangements. This is done by computing the Hilbert series in two different

ways. We also introduce the notion of logarithmic Orlik-Terao ideal and show that

the intersection lattice parametrizes a primary decomposition. The chapter is closed

by a generalization of logarithmic ideals to higher orders. It is shown that these ideals

detect the freeness of the corresponding logarithmic modules.

The last chapter is a generalization of the notion of logarithmic ideal to mul-

tiarrangements. Some of the basic properties of these ideals are investigated. It is

shown that one obtains a natural resolution of this ideal by logarithmic modules un-

der the tame condition. In the final section it is shown that the intersection cycle of

the logarithmic ideal of a free multiarrangement is obtained from its characteristic

polynomial, similar to simple arrangements.

Keywords: arrangement/multiarrangement, derivation module, logarithmic ideal, char-

acteristic polynomial, Tutte polynomial, intersection cycle, Chow ring.
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Preface

In this thesis, complex hyperplane arrangements are studied by looking at their log-

arithmic modules, sheaves and ideals in connection to their combinatorial structure.

The content goes beyond what the title might suggest. In fact, this thesis is not

directly targeted at studying characteristic polynomials. The current title is ac-

knowledging the ubiquity of this polynomial in different contexts: For instance, the

characteristic polynomial captures various data such as the number of chambers in

the real picture [45], the Betti numbers of the complex complement [21], the generic

number of critical points of the master function [23], Chern polynomial of the sheaf

of the logarithmic modules ( [20], [13]), the number of points in the complement over

a finite field, the volume of the configuration space of polymers [19], the class of the

union of the hyperplanes in the Grothendieck ring of varieties [5] and list goes on.

Some of the above will be explained in Section 1.3 where the literature background

is discussed.

The above list of contexts where the characteristic polynomial appears is ex-

tended in this thesis. The most serious contribution, which is a joint work with

Graham Denham and Mathias Schulze, is the computation of the intersection cy-

cle of the variety X(A) in a product of projective spaces (Theorem 3.3.2). As an

application, we obtain a new proof for the Solomon-Terao Formula (1.12) for tame

arrangements. This formula is significant for simple arrangements and multiarrange-

ments. It implies the celebrated Factorization Theorem (1.11) and motivates the

definition of the characteristic polynomial for multiarrrangements [2]. This also pro-

vides a basis for generalizing the result of Mustaţă and Schenck from [20] to locally

free multiarrangements (Theorem 1.5.10). This is interesting because except for the

free case (Factorization Theorem), we do not have any results for computing the

characteristic polynomial of multiarrangements.

In the rest of this section, the highlights of the content of every chapter is de-

scribed. Chapter 1 is a review of the relevant material from the literature. The notion

of multiarrangement has received some emphasis and some minor generalizations of

the existing results are presented. In particular, we have a more general form of

Saito’s Criterion and a formula that relates the Poincaré polynomial of a locally free

multiarrangement to a certain Chern polynomial.
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In chapter 2, we impose conditions that facilitate relating the logarithmic mod-

ules of an arrangement to its deletion and restriction. As a result, we obtain long

exact sequences of the logarithmic modules. See Theorems 2.1.5 and 2.2.5. These

sequences are used to see how tameness and its dual notion which are homological

dimension conditions are transferred between the triple (Corollaries 2.2.6 and 2.1.6).

In the last chapter as well as the last section of chapter 3, we display different

generalizations of the notion of logarithmic ideal. In 3.5.1, we obtain an ideal which

is something in between the Orlik-Terao ideal and the meromorphic ideal of an ar-

rangement. The primary decomposition of this ideal is interestingly parametrized by

the intersection lattice as shown in Theorem 3.5.7. Section 3.5.2 generalizes the loga-

rithmic ideals to higher orders for all p = 1, . . . , `, such that the ordinary logarithmic

ideal corresponds to p = 1. The main result of the section is Theorem 3.5.14.

Chapter 4 is a generalization in the direction of multiarrangements. It is shown

that the simple logarithmic ideal always defines one of the components of the primary

decomposition (Corollary 4.1.10). It is conjecturally stated that the radical of the

logarithmic ideal with multiplicity only depends on the support of the multiplicity

(Conjecture 4.1.14). We also show similar results about the resolutions of these ideals

and Hilbert series which are generalizations from the theory of simple arrangements.

The very last result is an analogous version of the intersection cycle formula for

free multiarrangements (Corollary 4.4.2) which is only based on the Factorization

Theorem for multiarrangements. It is interesting to note that one can incorporate

multiplicities in the definition of the logarithmic ideal in two ways, both of which

turn to be natural and useful.

Mehdi Garrouisan

April 2011

xii



Chapter 1

Preliminaries

This chapter serves as an introduction to the rest of the thesis. We start by recalling

the standard notations and structures. The content is mostly a projection of the

existing literature and provides a foundation for working on (multi)arrangements in

the forthcoming chapters. We have added some proofs in cases where locating one in

the literature was not easy, or a need for some face lift was felt. As general references,

the reader may consult [22], [11] and [10]. The reader is advised that sections 1.2 and

1.3 are informal introductions with emphasis on motivating certain constructions and

outlining some related directions of research. The rigorous study of the material starts

with section 1.4.

1.1 Basic Definitions and Operations

A complex arrangement of hyperplanes is a finite collection of codimension one affine

subspaces of a complex vector space V ' C`. A is called central if all of its hyper-

planes pass through the origin otherwise it is an affine arrangement. We tend to

drop the adjective complex unless emphasis is needed. A multiarrangement of hyper-

planes is a pair (A,m), where A is an arrangement of hyperplanes and m : A → N
is an assignment of multiplicities. In practice, once we fix an order on the hyper-

planes H1, . . . , Hn, we identify m with the vector (m(H1), . . . ,m(Hn)). The size of

a multiarrangement (A,m) is |(A,m)| = |m| =
∑
H∈Am(H). For every hyperplane

H ∈ A, we fix a linear functional f = c1x1 + · · · + c`x` ∈ V ∗, with ker f = H. The

coordinate ring of A, denoted C[A], is the coordinate ring of V as an affine space. The

usual setup is that V = C` and its coordinate ring is R = C[x1, . . . , x`]. We identify

a simple arrangement A with the multiarrangement (A,1), where every hyperplane

receives multiplicity one.

One can define an arrangement A = {ker fi : 1 ≤ i ≤ n} by its defining poly-

nomial Q = f1 · · · fn. If (A,m) is a multiarrangement, then the defining polynomial

is Q̃ = Πif
m(Hi)
i . This polynomial is well-defined up to a nonzero multiple. The

vanishing of Q defines the union of all hyperplanes of A.

1



1.1. BASIC DEFINITIONS AND OPERATIONS

A subarrangement B ⊆ A is called dependent if codim(∩H∈BH) < |B|, where

absolute value denotes cardinality. This is equivalent to saying that {fi : ker fi ∈ B}
is a dependent set of vectors in V ∗. A subarrangement that is not dependent is called

independent. In fact, every arrangement has an underlying matroid which carries

the combinatorial data. Matroids formalize the concept of dependence in general.

See [36, Chapter 1] as a reference on matroids. A generic arrangement is one that

has dependent subarrangements B only when |B| > dimV . The Boolean arrangement

is defined by Q = x1 · · ·x` and has the property that |A| = dimV . This is a direct

sum of one dimensional arrangements in the sense that will be made precise later.

A central arrangement is essential when it has an independent subarrangement

of size dimV . If A a central arrangement, then we can projectivize it to obtain

PA = {PH : H ∈ A} ⊂ PV .

Knowing how the hyperplanes cut one another is extremely useful in under-

standing arrangements. This information is recorded in the lattice of intersections

(L(A),≤,∧,∨) where

L(A) := {∩H∈BH : B ⊆ A}, (1.1)

and B runs over all subarrangements of A, including the empty one. This is a geo-

metric lattice where the elements are ordered by reverse inclusion: X ≤ Y if Y ⊆ X,

for X, Y ∈ L(A). The lattice operations of meet and join are defined as follows. For

all X, Y ∈ L(A), we have

X ∨ Y = X ∩ Y, X ∧ Y :=
⋂

X∪Y⊆Z
Z.

The rank of an element X of the lattice is codimX in V and the rank of a central

arrangement A is the maximum length of the chains of L(A), which coincides with

the rank of the maximal element of L(A), i.e. codim ∩H∈A H in V .

On the geometric side, the main source of study is the complement of the

arrangement M(A) := V \
⋃
H H.

Given arrangements A1 ⊂ V1 and A2 ⊂ V2 with coordinate rings R1 and R2,

one can construct a few new arrangements. The first natural one is the direct sum

A1 ⊕A2 := {H ⊕ V2 : H1 ∈ A1} ∪ {V1 ⊕H2 : H2 ∈ A2}.

The direct sum lives in V1 ⊕ V2 and has R1 ⊗R2 as its coordinate ring. An arrange-

ment A is called irreducible if it cannot be written as a direct sum of two smaller

2



1.1. BASIC DEFINITIONS AND OPERATIONS

arrangements. Also A fails to be essential if up to some linear change of coordi-

nates, one can write it as Ae ⊕ Φ, where Ae is the essential part and Φ is an empty

arrangement.

Given a central arrangement A and X ∈ L(A), we have the localization subar-

rangement

AX := {H ∈ A : H ≤ X}

and the corresponding restriction arrangement

AX := {H ∩X : H ∈ A \ AX , H ∩X 6= ∅}.

One can also define the localization with respect to a point x ∈ V by

Ax := {H ∈ A : x ∈ H}.

If we let X = ∩x∈H∈AH, then Ax will agree with AX .

If we distinguish a hyperplane H ∈ A, we get two associated arrangements

which are of special importance: The deletion of A with respect to H is defined by

A′ := A \ {H} where we simply remove H. The restriction is obtained by cutting

all hyperplanes of A′ with the distinguished hyperplane H, that is A′′ := AH =

A′∩H. The importance of this construction comes from the fact that if one succeeds

in controlling a certain property or construction of an arrangement by just having

information about its deletion and restriction, then one usually gets a combinatorial

recipe that is governed or indexed by the lattice of intersection. In other words,

deletion and restriction is a general framework for inductive arguments.

The immediate property of the triple (A,A′,A′′) at the level of complements

is listed below.

L(A) = L(A′) ∪ L(A′′),

M(A) = M(A′) \H,

M(A′′) = M(A′) ∩H.

In general it is desirable to see how different objects that we associate to arrangements

behave under deletion and restriction.

If A happens to be nonessential, i.e. the center ∩A is bigger than zero, then

we can divide it by its center to essentialize it. To be precise, if W = ∩H∈AH 6= 0,

then we pass to A/W , which lives in V/W and consists of the images {H1, . . . , Hn}

3



1.1. BASIC DEFINITIONS AND OPERATIONS

of the hyperplanes of A under the projection V → V/W . This operation leaves the

lattice unchanged. The essentialized arrangement is denoted by Ae.
Since we are interested in central arrangements, if A happens to be noncentral,

we make the cone arrangement over A which is denoted by cA. For this, homoge-

nize the linear polynomials by introducing a new variable h. It is customary to add

the hyperplane h = 0 to the cone to keep it essential. The coordinate ring of cA
equals R[h]. Conversely, given a central arrangement A, the decone arrangement of

A, denoted dA, is obtained by intersecting the hyperplanes of A with the hyperplane

xn = 1. Note that the decone of an essential arrangement is only an affine arrange-

ment. This is useful for depicting three dimensional real arrangements. Assume that

after a change of coordinates x3 = 0 is one of the hyperplanes. We first projectivize

R3 to get RP2 which we identify with the upper hemisphere in S2, where the antipo-

dal points on the equator are identified. Now the hyperplane x3 = 0 is the plane at

infinity and we identify the interior of the upper hemisphere with the decone dA but

keep in mind that parallel lines meet at infinity.

Example 1.1.1. Consider the type A3 arrangement A(A3) = {ker(xi − xj) : 1 ≤
i < j ≤ 4}. The maximal element of L(A(A3)) is the line x1 = x2 = x3 = x4 whose

codimension in R4 is 3 and hence rank(A) = 3. In order to fix the difference between

the rank of the ambient space and the arrangement, we slice the arrangement by

x4 = 0 to get (x1 − x2)(x1 − x3)x1(x2 − x3)x2x3. Decone with respect to x3 by

letting x3 = 1 to get the following picture.

x
3

x
2

x
2
−
x
3

x1

x1 − x3

x 1
−
x 2

The deletion and restriction with respect to the hyperplane at infinity looks as follows.

4



1.2. DERIVATIONS AND KÄHLER FORMS

Also, their respective lattices are displayed below.

Note that two of the double points correspond to the intersection of the parallel lines

at infinity. These two lattices may be combined to recover the lattice of the original

arrangement which is known to be the partition lattice. The deletion-restriction

process can be performed until all resulting arrangements are broken down into rank

1 pieces. The above arrangement is also known as the braid arrangement since it is

the classifying space of the braids and is also the configuration space of collision-free

motion of 4 particles on the complex plane.

1.2 Derivations and Kähler Forms

Modules of derivations and differential forms are going to be among the central objects

of this thesis. We start with the following general definition.

Definition 1.2.1. Let A and B be commutative rings, A be a B-algebra and N be

an A-module. A B-linear map d : A → N is a derivation if it satisfies the Leibniz

rule

d(fg) = fdg + gdf,

for all f, g ∈ A. The set DB(A,N) of all B-linear derivations is naturally a module

over A. In case N = A, we use the notation DB(A) as a short hand notation for

DB(A,A). It follows from the Leibniz property that db = 0 for all b ∈ B. If we let

A be the coordinate ring of an algebraic variety X over a field B, then DB(A) is the

set of algebraic tangent vector fields to X.

Dually, the module of Kähler forms of A over B, denoted ΩB(A), consists of

all symbols df for all f ∈ A, subject to the relations

d(fg) = df · g + fd · g Leibniz

d(af + bg) = adf + bdg B − Linearity
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1.2. DERIVATIONS AND KÄHLER FORMS

for all a, b ∈ B and f, g ∈ A. The map d : A→ ΩB(A) is in fact a B-linear derivation,

called the universal R-linear derivation and satisfies the following universal property:

Given an A-module N and a B-linear derivation e : A → N , there is a unique

B-linear map e′ that fills the following diagram.

A

ΩB(A)

N

d

e ∃! e′

It follows from the above diagram that

DB(A,N) ∼= HomB(ΩB(A), N).

In particular, we see that DB(A) and ΩB(A) are dual to one another if we let N = A.

For more details, see [14, Chapter 16].

Now let us switch to the affine case and consider complex vectors spaces (as

complex manifolds) V and W with a linear transformation φ : W → V . The map φ

induces an algebra map in the reverse direction φ∗ : C[V ]→ C[W ]. If we pass to the

vector bundles, we get

dφ : TW → TV,

where in our linear setting TW really equals W × W and dφ really equals φ × φ.

Dually, if we pass to the cotangent bundle, we get

(dφ)∗ : T∗V → T∗W,

where (dφ)∗ really is defined by the transpose matrix φT . For convenience, let R =

C[V ] and S = C[W ]. In general, sections of the tangent bundle TV → V are called

vector fields but we restrict our attention to the polynomial vector fields θ : R → R

which are C-linear and satisfy the Leibniz rule. That is, θ(fg) = θ(f)g + fθ(g),

for all f, g ∈ R. The module of polynomial vector fields is denoted by DC(R) (or

alternatively DC[V ]).

Dually, we will be considering the polynomial differential forms ΩC(R) = ΩC[V ]

which consist of polynomial sections of the cotangent bundle. In general, we drop

the indication to the scalars if emphasis is not required. Ω(R) consists of all df , for
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1.2. DERIVATIONS AND KÄHLER FORMS

all f ∈ R, where d(fg) = df · g + f · dg. If dimV = `, then for 0 ≤ p ≤ `, we let

Dp(R) := ∧pD(R) and Ωp(R) := ∧pΩ(R).

The map φ may be used to send vector fields and differential forms over in a

functorial way through pull-backs, denoted φ∗, and push-forwards, denoted φ∗, while

one needs to be careful about the disadvantage of D in this regard: Push forward of

vector fields is in general only possible when the map φ is either an injection or an

isomorphism. D works covariantly and Ω works contravariantly:

φ∗ : D[W ]→ D[V ]

φ∗ : Ω[V ]→ Ω[W ]

The purpose of the following proposition is to explain the functorial properties.

See [34] for more details.

Proposition 1.2.2. Let φ : W → V be a linear map between vector spaces as above.

(1) By pulling forms back, we get a map Ω[V ]→ Ω[W ] contravariantly, i.e. Ω is a

contravariant functor from the category of vector spaces to dga’s.

(2) If φ is an injection or an isomorphism, then by pushing forward along φ, we get

a natural map D[W ]→ D[V ].

Proof. If ω ∈ Ω[V ], then φ∗(ω) is the composition of the following maps:

W
φ−→ V

ω−→ T∗V
φT−−→ T∗W

On the other hand, φ∗ works by pushing vector fields of W forward to vector fields

on V :

Let y1, . . . , yk and x1, . . . , x` be coordinates on W and V , respectively. Given

θ ∈ D(S), we write it as
s∑
j=1

gj
∂

∂yj
,

where g1, . . . , gs ∈ S. For a polynomial function f on V , i.e. an element of R, and a

point v ∈ φ(V ), we let

φ∗(θ)|v(f) = θw(φ∗(f)) = θw(f ◦ φ),

where φ(w) = v.
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1.2. DERIVATIONS AND KÄHLER FORMS

The module of Kähler forms also behaves functorially in the setting of maps

between algebras. Let A and A′ be B and B′-algebras respectively around a com-

mutative diagram of rings which is displayed in the following with solid arrows, i.e a

morphism between algebras.

B

B′

A

A′

ΩB(A)

ΩB′(A
′)

d

d

Then the universal property of Ω induces a map between the modules of Kähler

differential forms as indicated by the dashed line. See [14] for some more details.

In the rest of this section, we try to clarify the geometric significance of our

main objects of study, namely the derivation module and the module of logarithmic

forms of an arrangements. One may bear in mind that some of these constructions

are generalizable to more arbitrary divisors [25].

Fix coordinates x1, . . . , x` on the ambient space V of an arrangement A defined

by a product Q. We are interested in the collection of vector fields that are tangent

to all hyperplanes of A. That is, for any point p ∈ V (Q), we require that

θ
∣∣
p · (∇Q)

∣∣
p = 0.

If we let θ =
∑
i gi∂xi , this will amount to having

(
∑
i

gi(p)
∂

∂xi

∣∣∣
p
) · (
∑
i

∂Q

∂xi


p

∂

∂xi

∣∣∣
p
) =

∑
i

gi(p)
∂Q

∂xi


p

= θ(Q)

p = 0,

for all points p, with Q(p) = 0. This leads us to the definition of the derivation

module of an arrangement.

D(A) := {θ ∈ D(R) : θ(Q) ∈ (Q)} (1.2)

The derivation module is a submodule of

D(R) := R∂x1 ⊕ · · · ⊕R∂x` , (1.3)

as an R-module.

If Q = f1 · · · fn, then θ(Q) =
∑n
i=1 θ(fi)Q/fi ∈ (Q). But this is only possible if
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1.2. DERIVATIONS AND KÄHLER FORMS

for each 1 ≤ i ≤ n, fi divides θ(fi). For this, divide θ(fi) by fi to get θ(fi) = fiqi+ri

and observe that the fact that θ(Q) is divisible by Q implies that ri = 0. Conversely,

if each θ(fi) is a multiple of fi, then we θ(Q) becomes a multiple of Q. Thus, as an

alternative definition we get

D(A) := {θ ∈ D(R) : θ(fi) ∈ (fi), 1 ≤ i ≤ n} (1.4)

This form of definition allows using multiplicities as follows.

Definition 1.2.3. The derivation module of a multiarrangement (A,m) is defined

by

D(A,m) := {θ ∈ D(R) : θ(fi) ∈ (f
mi
i ), 1 ≤ i ≤ n}. (1.5)

This defining condition is asking for tangency to the hyperplanes of higher orders

according to their multiplicities.

Having derived formulations for the module of tangent vector fields, we switch

to the dual situation. This time we are going to look at covector fields (differential

forms) ω over V that are perpendicular to the hypersurface defined by Q = 0 at all

of its points. Using the same coordinates, let ω =
∑
i gidxi and this time consider

the gradient as a covector field in the cotangent space. ω is going to be normal to

the surface if it is parallel to ∇Q at all points of V (Q). That is, for all points p with

Q(p) = 0, we need the matrix[
g1 . . . g`

∂Q/∂x1 . . . ∂Q/∂x`

]

to have rank = 1. Equivalently, this requires the determinant of 2 × 2 minors to

vanish: For all 1 ≤ i < j ≤ ` and p ∈ V (Q), we require

det

[
gi(p) gj(p)

(∂Q/∂xi)
∣∣
p (∂Q/∂xj)

∣∣
p

]
= 0.

Again, this amounts to the membership of the determinant in the ideal (Q). Equiv-

alently, one can formulate these memberships compactly by the just asking

ω ∧ dQ ∈ QΩ2[V ],
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1.2. DERIVATIONS AND KÄHLER FORMS

simply because

ω ∧ dQ =
∑

1≤i<j≤`
det

[
gi gj

∂Q/∂xi ∂Q/∂xj

]
dxi ∧ dxj .

In order to get nicer formulations later we divide these differential forms by Q. The

result gives a module of differential forms with poles on the hyperplanes.

The module of logarithmic forms of an arrangement A is defined by

Ω(A) := {ω/Q : ω ∈ Ω1[V ], ω ∧ dQ ∈ QΩ2[V ]}. (1.6)

This module lives inside the localization Ω(R)Q, where

Ω(R) := Rdx1 ⊕ · · · ⊕Rdx`, (1.7)

as a module over R.

Similar to the case of derivations, we can check this condition on hyperplanes

individually as follows. Equivalently,

Ω(A) = {ω : Qω ∈ Ω1[V ], Qω ∧ dfi ∈ fiΩ2[V ], 1 ≤ i ≤ n}. (1.8)

Again, this definition will be more suitable for generalizing to multiarrange-

ments.

Definition 1.2.4. The module of logarithmic forms of a multiarrangement (A,m) is

defined by

Ω(A,m) := {ω : Q̃ω ∈ Ω1[V ], Q̃ω ∧ dfi ∈ f
mi
i Ω2[V ]},

where Q̃ = Πif
mi
i is the defining polynomial of the multiarrangement.

These two logarithmic modules are graded and one can pick homogeneous min-

imal sets of generators for them. There are two natural choices of gradings as follows.

Definition 1.2.5. For every j = 1, . . . , `,

• in the polynomial grading, deg dxj = deg ∂xj = 0 and deg xj = 1,

• and in the total grading, deg dxj = deg xj = 1 and deg ∂xj = −1.
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1.2. DERIVATIONS AND KÄHLER FORMS

Note that under the polynomial grading we have the graded isomorphism R` ∼=
D(R), while under the total grading, R`[−1] ∼= D(R) and the Euler derivation

θE =
∑`
j=1 xj∂xj is degree zero. Here comes the definition of a very nice class

of arrangements.

Definition 1.2.6. A multiarrangement (A,m) is free if D(A,m) is a free module

over R. If (A,m) is free and θ1, . . . , θ` is a homogeneous basis, then deg θ1, . . . , deg θ`

with respect to the polynomial grading are the exponents of (A,m). If exponents are

listed nondecreasingly, then exp(A,m) := (deg θ1, . . . , deg θ`).

It is known that the modules D and Ω are dual to one another, so one can also

define freeness and the exponents by looking at Ω(A,m).

In fact, there is a nondegenerate pairing

D(A,m)× Ω(A,m)→ R,

which supports the duality. We will come back to this later in this chapter.

Example 1.2.7. Some examples of free and non-free arrangements:

• Every multiarrangement in rank 2 is free. In the simple case, the derivation

module of an arrangement of lines in C2 defined by f1 · · · fn ∈ C[x, y] has a

basis consisting of

θ1 = x∂x + y∂y, θ2 =
Q

f1
(
∂f1
∂x

∂y −
∂f1
∂y

∂x), (1.9)

implying that exp(A) = (1, |A|−1). See [22] for more details. One big contrast

with multiarrangements arises right here. In case of multiarrangement of rank

2, there is no general formula and the exponents are non-combinatorial. See

Example 1.4.12 for an illustration.

• Reflection arrangements with constant multiplicities m ≡ m are free [32]. A

reflection arrangement consists of reflecting hyperplanes of a finite irreducible

subgroup G of the orthogonal group O(V ). The typical example is the symmet-

ric group S` which corresponds to the A`−1 root system. Each transposition

(i, j) defines a reflection, namely ker(xi− xj), and the resulting arrangement is

the so-called braid arrangement. Subarrangements of the braid arrangement are

important examples of configurations spaces that parametrize robotic motions.

11



1.3. BACKGROUND AND MOTIVATIONS

• The multiarrangement defined by Q̃ = x
m1
1 x

m2
2 x

m3
3 (x1 + x2 + x3)m4 is totally

non-free, meaning that (A,m) is non-free for every multiplicity m. See [3, Ex-

ample 5.6] for a direct proof. An alternative proof follows from [41, Proposition

4.1]. Yet another alternative argument may be obtained from an upgrade of

Theorem 3.5.3 [43] to multiarrangements, where one sees 2-formality as an ob-

struction to freeness.

1.3 Background and Motivations

This section is an account of the history of the theory to the extent that is relevant

to the subject of this thesis. It should be emphasized that the theory of hyperplane

arrangements has had numerous interactions with different parts of mathematics and

what appears here is only a brief selection.

The origins of the subject of logarithmic modules and freeness of arrangements

can be traced back to [12] in 1971 where P. Deligne developed a mixed Hodge structure

on the cohomology algebra H•(U) of a complex smooth algebraic variety U . He ex-

tended his constructions in the next step to eliminate the requirement of smoothness.

The main idea was the introduction of a weight filtration W on H•(U) by means of

an embedding j : U → X of U in a smooth complete variety X such that X \U = D

is a divisor with normal crossings. He introduced the de Rham algebra Ω•X(logD)

and showed that the degree one part Ω1
X(log Y ) is locally free as a sheaf. By means

of the Leray spectral sequence and the fact that there is an isomorphism between

H•(U,C) and the hypercohomology H•(X,Ω•X(logD)), he managed to come up with

a natural Hodge filtration for the mixed Hodge structure. The rest of this section is

split into two parts to show the contrast and transition from simple arrangements to

multiarrangements.

1.3.1 Classical Results

In 1979, K. Saito published his paper [25] on logarithmic differential forms and vector

fields in order to extend the constructions to divisors that are not necessarily complete

intersection. In case of the differential forms, when X is an algebraic manifold and

D is a reduced divisor on X, Ω•X(logD) has the following local picture. Let x ∈ X
be a point and let Qx = 0 be a local equation for D around x, then the germ of the
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1.3. BACKGROUND AND MOTIVATIONS

logarithmic sheaf is defined by

Ω
p
X(logD)x := {ω ∈ Ωrat(X)x : Qxω ∈ Ωp(Ox), Qxdω ∈ Ωp+1(Ox)}.

The sections of the union ∪x∈XΩ
p
X(logD)x are given a natural sheaf structure which

is denoted by Ω
p
X(logD). The dual of the sheaf of logarithmic vector fields is denoted

DX
p (logD). Saito introduced the notion of freeness and found a criterion for verifying

freeness once a candidate for basis is given (see Theorem 1.4.14). One can imagine

that the term logarithmic was used in the initial definition of Deligne because he was

working with normal crossing divisors and at a normal crossing of some n divisors

that are defined locally by f1, . . . , f`, the module Ω1
X(logD)x is freely generated by

d log f1, . . . , d log f` over Ox. Similarly, the derivation module is freely generated by

f1
∂
∂f1

, . . . , f`
∂
∂f`

.

H. Terao was a student of K. Saito and applied his constructions to the con-

text of hyperplane arrangements. At the time, arrangements were gaining popularity

through the works of Grünbaum and other people as an independent subject, al-

though one could also find some hints prior to that (See [17]). Terao considered the

localization of Saito’s sheaf at zero. An easy but important feature of the structure

of D(A) is that it admits a direct sum decomposition as

D(A) = RθE ⊕ Ann(Q), (1.10)

where Ann(Q) = Ann(A) = {θ ∈ D(R) : θ(Q) = 0} and θE =
∑
j xj∂xj is the Euler

derivation. See Proposition 1.4.9 for a slightly more general statement. Note that

an arrangement A is free exactly when Ann(A) is free. The annihilator submodule

Ann(A) has a description in terms of the Jacobian ideal of the arrangement. The

Jacobian ideal, denoted J(A), lives in R and is generated by all partial derivatives

∂Q/∂x1, . . . , ∂Q/∂x`. Equivalently, one can say that the Jacobian ideal is the image

of the map

D(R)→ R.

∂

∂xj
7→ ∂Q

∂xj

A minimal free resolution of R/J(A) starts as follows.

· · · → D(R)→ R→ R/J(A)→ 0
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The annihilator module Ann(A) is naturally the kernel of the above map and makes

the following sequence exact.

0→ Ann(A) ↪→ D(R)→ R→ R/J(A)→ 0

This implies that that J(A) and Ann(A) can be recovered from each other. The

next term in the free resolution must be a free module that projects to Ann(A) =

syz1(J(A)) = kerϕ and so on. So one would expect to get a Jacobian ideal interpre-

tation of freeness from a ring theoretic point of view. The following result is exactly

of this nature.

Theorem 1.3.1 (Terao, [30]). An arrangement A is free if and only if its Jacobian

ideal J(A) is Cohen-Macaulay.

The proof uses the facts that the Krull dimension of R/J(A) and the projective

dimension of D(A) are off by 2 from the rank of the arrangement, together with the

Auslander-Buchsbaum formula.

A recent result of Yoshinaga and Wakefield shows that an arrangement can be

recovered from the Jacobian ideal and hence derivation module. (See [33])

One of the first accomplishments of Terao’s work was the so-called Factorization

Theorem (Corollary 3.4.10) which in the free case relates the algebraic information

of the derivation module in a combinatorial manner to the Betti numbers of the

complement. This has its origins in the computation of the cohomology ring of an

arrangement complement. The complete description of the cohomology ring with

integer coefficients and multiplicative structure, known as the Orlik-Solomon algebra,

is a result of an evolution of a chain ideas due to V.I. Arnol’d, E. Brieskorn, L. Solomon

and P. Orlik. The construction of the Orlik-Solomon algebra is fully combinatorial

and only uses the information of the intersection lattice L(A). In particular, it was

shown that the cohomology algebra is torsion-free and the rank of each component

(the Betti numbers) may be read off from

χ(M(A), t) =
∑

X∈L(A)
µ(X)tdimX =

∑̀
i=0

βi(M(A))(−t)`−i,

where µ : L(A)→ Z is the Möbius inversion formula, defined recursively by µ(V ) = 1

and

µ(X) = −
∑
Y <X

µ(Y ).
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1.3. BACKGROUND AND MOTIVATIONS

In particular, all hyperplanes receive µ = −1. The Poincaré polynomial is related

to the characteristic polynomial by π(A, t) = (−t)`χ(A,−t−1). These formulas give

combinatorial interpretation for these primarily topological invariants.

To be precise, the Poincaré polynomial version of the Factorization Theorem

says that if A is a free arrangement with exponents exp(A) = (d1, . . . , d`), then

π(M(A)) = Π`i=1(1 + dit). (1.11)

Moreover, the Betti numbers are related to the exponents by

βi(M(A)) =
∑

1≤i1<···<ip≤`
Πbi1 · · · bip ,

for every p = 0, . . . , `.

Example 1.3.2. The lattice elements of the deleted A3 arrangement (Example 1.1.1)

are labeled with their Möbius numbers in the following picture.

1

−1 −1 −1 −1 −1

2 1 1 1 1 2

−4

One can write down the characteristic polynomial as χ(t) = t3 − 5t2 + 8t − 4 =

(t−1)(t−2)2 by following the above formula and looking at the labels in the picture.

Also, the Poincaré polynomial equals π(t) = 4t3 + 8t2 + 5 + 1 = (t + 1)(2t + 1)2. In

fact, this arrangement is free and exp(A) = (1, 2, 2).

This result gives a much bigger significance to the notion of freeness. After

the factorization theorem, Terao went on to conjecture that freeness is a combina-

torial property. To be precise, Terao’s conjecture says that the information of L(A)

is enough to determine whether D(A) is a free module or not. This conjecture has

been open to this day although many partial results are available in this direction.

The Factorization Theorem was shown to be a specialization of a more general for-

mula, known as the Solomon-Terao formula [29], which expresses the characteristic

polynomial in terms of an alternating sum of certain Hilbert series as follows.
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1.3. BACKGROUND AND MOTIVATIONS

χ(A; t) = (−1)` lim
x→1

∑̀
p=0

h(Dp(A), x)(t(x− 1)− 1)p (1.12)

This formula holds in general regardless of the fact that Betti numbers of the

derivation modules are not combinatorial in the nonfree case (see [46]). One of the

main results of this thesis is to give a new proof for a weak form of the Solomon-Terao

formula in Chapter 3 as a consequence of the computation of the intersection cycle

of a certain variety.

The main general result in support of Terao’s conjecture is the following result

of S. Yuzvinsky. The idea is to fix a free arrangement A with intersection lattice

L(A) and consider the moduli space V of all arrangements with isomorphic lattices

V = {B : L(B) ' L(A)}.

Every point of V is represented by an n × ` matrix, in which the rows define the

hyperplanes. This is a quasi-affine space in the Zariski topology, where the defining

condition translates to vanishing and non-vanishing of certain minors, according to

the lattice L(A). Assuming that A is free to begin with, we have the following

fundamental result.

Theorem 1.3.3 (Yuzvinky, [44]). Free arrangements form an open set in V .

This implies that nonfree arrangements that share the same intersection lattice

with some free arrangements are scarce.

1.3.2 Transition to Multiarrangements

We are going to spend the rest of this section to elaborate on the naturality and sig-

nificance of multiarrangements. The notion of multiarrangement and their derivation

modules came into attention through a 1989 paper of G. Ziegler [47]. He managed to

upgrade the definition of Ω and D to multiarrangements and show how one naturally

obtains free multiarrangements by starting from free simple arrangement. The follow-

ing theorem explains this construction. His other contribution was to show that the

underlying combinatorics of a free multiarrangement fails to control its exponents.

Ziegler’s main idea was to record the multiplicity information in the restriction pro-

cess. To be precise, given a simple arrangement A, its restriction with respect to a
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distinguished hyperplane H0 is naturally equipped with a multiarrangement structure

(A′′, z), where for each K ∈ A′′, we let

z(K) = #{H ∈ A′ : H ∩H0 = K}. (1.13)

We will refer to this as Ziegler’s restriction multiplicity.

Example 1.3.4. This example illustrates the Ziegler multiplicities in case of the A3

arrangement (Example 1.1.1) when restricted to the hyperplane at infinity.

2

2

1

The parallel lines in the decone picture contribute to the multiple lines in the restric-

tion.

Theorem 1.3.5 (Ziegler, [47]). Let A be a free simple arrangement with exp(A) =

(1, d2, . . . , d`), then its multi-restriction (A′′, z) is also free with exp(A′′, z) = (d2, . . . , d`).

Proof. Suppose A is free and has a homogeneous basis θ1 = θE , θ2, . . . , θ`. Assuming

that H0 = ker f , replace each such θi with θi − (θi(f)/f)θE to make sure that

θi(f) = 0. Now each such θi defines a well-defined derivation on the coordinate ring

of the restriction, namely R/(f).

Let θ be an element of the annihilator Ann(H0) with respect to H0 and let fi

and fj be defining polynomials such that Hi ∩H0 = Hj ∩H0. This is equivalent to

having a dependence between f, fi and fj , say f = afi + afj . Since θ(f) = 0, we get

aθ(fi) = −bθ(fj), in which one side is divisible by fi and the other one by fj , but

since gcd(fi, fj) = 1, it should be divisible by fifj . After repeating this argument as

many times as possible and restricting to H0, we get θ(f̄i) ∈ (f̄i
m(H∩Hi)), where bar

stands for reduction mod f in the ring R/(f) and m(H∩Hi) = #{Hj ∈ A′ : H∩Hj =

H ∩Hi}. By Saito’s criterion (Theorem 1.4.14), this finishes the argument.

In [2], the authors took advantage of the so called Solomon-Terao formula 1.12

to define a characteristic polynomial for multiarrangement. This will be discussed in

Section 1.5.
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Remark 1.3.6. The motivation of considering multiarrangements lies in their nat-

urality in terms incorporating the multiplicity data in the restriction process that

would otherwise be lost. To be more precise, one may reformulate the above theorem

by saying that freeness of A implies the freeness of (A′′, z) together with the formula

χ(A) = (t− 1)χ(A′′, z),

which fails if multiplicities are not taken into account, hence loss of information.

This is reminiscent of Bezout’s theorem where the number intersection number of

two complex plane curves is correctly given by the product of their degrees only if we

take multiplicities into account.

Apart from their naturality in the sense of Ziegler multiplicity, what makes

multiarrangements worth studying lies in the fact that understanding their combina-

torially wild behavior leads to a better understanding of simple arrangements. This

is potentially capable of settling Terao’s conjecture at least in rank three as explained

here and is a current active topic of research.

The following theorem suggests that multiarrangements may be used to obtain

information about simple arrangements. The idea here is to reverse Ziegler’s process.

Theorem 1.3.7 (Yoshinaga, [40]). Let A be a simple arrangement and H be a dis-

tinguished hyperplane, then TFAE:

• A is free;

• (A′′, z) is free and the restriction map p : Ann(H)→ D(A′′, z) is onto;

• (A′′, z) is free, p is onto and χ(A) = (t− 1)χ(A′′, z).

The proof is essentially the same as Ziegler’s proof followed in the reverse direc-

tion. The contribution of this theorem to rank 3 case is of special importance, since

the restriction (multi)arrangements are of rank 2 and hence automatically free (See

Corollary 1.4.33).

Corollary 1.3.8. Let A be simple arrangement of rank 3, then TFAE:

• A is free;

• p is onto and χ(A) = (t− 1)χ(A′′, z);

• p is onto and exp(A) = (1, d2, d3), where exp(A′′, z) = (d2, d3).
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In view of the above result, one needs to understand the projection map p :

Ann(H)→ D(A′′, z), which relies on Theorem 1.3.12 and a result of M. Mustaţă and

H. Schenck [20]. Their main result is a closed formula for the Chern polynomial of the

sheaf associated to the derivation module after the removal of the Euler derivation,

namely the annihilator Ann(H) but first we need the following definition.

Definition 1.3.9. A central arrangement A of rank ` is called locally free if for every

X ∈ L<`(A), the localization AX is free.

Theorem 1.3.10. Let A be a locally free simple arrangement with a choice of a

hyperplane H. Then the coherent sheaf E := Ãnn(H) over P`−1 is actually a vector

bundle and its Chern polynomial, which lives in A∗(P`−1) = Z[t]/(t`), is related to

the characteristic polynomial by

χ(A, t) = (1− t)t`c−1/t(E) = (1− t)(t` − c1t`−1 + · · ·+ (−1)`c`). (1.14)

This specializes to a simpler formula in the rank 3 case where the requirement of

locally freeness is automatically guaranteed (See [27]). We shall present an analogous

version of this formula for locally free multiarrangements in Theorem 1.5.10 and

sketch a proof.

Corollary 1.3.11. Let A be a rank 3 arrangement and consider E := Ãnn(H) as in

the last theorem. Then the Chern numbers are

c0(E) = 1, c1(E) = −n, c2(E) =
∑
p

µ(p), (1.15)

where p in the sum runs over all points of intersection that are away from H0.

Now we can state a theorem of Yoshinaga which enables us control the projec-

tion map p : Ann(H0)→ D(A′′, z).

Theorem 1.3.12 (Yoshinaga, [40]). Let A be a rank 3 arrangement, such that

exp(A′′, z) = (d2, d3), then

dim coker p = c2(E)− d2d3. (1.16)

In particular, if c2 = d2d3, then p is onto, which in turn implies A is free.
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Multiarrangements (A′′, z) that arise as restriction are expected to have a nicer

behavior. Yoshinaga gave the following definition and tried to study them.

Definition 1.3.13. A multiarrangement (A,m) is called extendible if there is some

simple arrangement E with a hyperplane H, such that (A,m) equals the restriction

arrangement EH with the natural restriction multiplicity z (see formula 1.13). An

arrangement such as E will be an extension for (A,m).

The problem of characterization of extendible multiarrangements is discussed

in [41]. It is noted that even in the rank two case, some multiarrangements are not

extendible. The main result establishes links between freeness of certain multiar-

rangements and their extendibility.

The upshot is that the non-freeness of an arrangement A has to do with devia-

tion of the characteristic polynomial χ(A′′, z) from χ(A)/(1− t). Given the fact that

χ(A′′, z) is not entirely controlled by the underlying combinatorics, an interesting

question to ask would be whether this noncombinatorial behavior can harm Terao’s

conjecture to the extent that it fails.

In order to exploit the combinatorics of multiarrangements, the authors in [3]

crafted a suitable choice of multiplicity to relate the exponents of a multiarrangement

in the free case to that of its deletion and restriction. The tricky part is the definition

of the multiplicity for restriction. The main construction of [3] is the following.

Definition 1.3.14. Let (A,m) be a multiarrangement defined by Q̃. The deletion

of (A,m) with respect to a distinguished hyperplane H0 = ker f0, denoted (A,m)′,

is defined by Q̃/f0. Equivalently,

(A,m)′ :=

{
(A′,m|A′) m(H0) = 1

(A,m′) m(H0) > 1

where m′(H) = m(H) if H 6= H0 and m′(H0) = m(H0)−1. The restriction (A,m)′′

with respect to H0 is the pair (A′′,m∗), where the multiplicity m∗ is defined in the

following non-combinatorial process.

Given X ∈ A′′, choose coordinates such that f0 = x1 and X = {x1 = x2 = 0}
and consider the submultiarrangement AX = {H ∈ A : X ⊂ H} which is of rank

two and hence free. Under these assumptions, if ker f ∈ AX , then f ∈ C[x1, x2].

One can pick two basis elements θX and ΨX for this multiarrangement, such that

θX 6∈ x1D(R) and ΨX ∈ x1D(R) (See Proposition 2.1 in [3]). Having chosen θX ,

define m∗(X) := deg θX .
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Theorem 1.3.15 (Deletion-Restriction, [3]). Let (A,m) be a multiarrangement of

rank `, H0 ∈ A and let (A,m)′ and (A,m)′′ be the deletion and restriction with

respect to H0. Then any two of the following statements imply the third:

(i) (A,m) is free with exp(A,m) = (d1, . . . , d`).

(ii) (A,m)′ is free with exp(A,m)′ = (d1, . . . , d` − 1).

(iii) (A,m)′′ is free with exp(A,m)′′ = (d1, . . . , d`−1).

Note that in the above definition of deletion and restriction, if the original

arrangement is simple, then the deletion and restriction will be simple as well. Simply

because if m ≡ 1, then we let θX just be the Euler derivation.

Theorem 1.3.16. A multiarrangement either has infinitely many nonfree multiplic-

ities or none.

The case of only having free multiplicities is characterized in [4]. In fact, this

can only happen in a trivial way in view of Corollary 1.4.41.

Theorem 1.3.17. If a multiarrangement (A,m) has only finitely many nonfree mul-

tiplicities, then it must be a product of rank one and two arrangements, in which case

it will have no nonfree multiplicity.

Such arrangements are called totally free. The tool that is used in the proof

is the so called local-global mixed product formula. Fix a number p with 1 ≤ p ≤ `,

together with a multiarrangement (A,m) and consider the summation

LMP(k) =
∑
X∈Lk

dX1 · · · d
X
k ,

where Lk consists of rank k elements of the lattice and dX1 , . . . , d
X
k is the sequence of

exponents of (A,m)X whenever it is free.

On the other hand, when (A,m) is free itself, with exponents exp(A,m) =

(d1, . . . , d`), let

GMP(k) =
∑

di1 · · · dik ,

where the sum runs over all increasing sub-k-tuples of exp(A,m). Then, we have the

following result.

Theorem 1.3.18. If (A,m) is free, then the local and global mixed products agree

for all 1 ≤ k ≤ `.
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This is nice because it potentially provides a systematic method of showing that

some multiarrangements are not free as described in [2]. There are a variety of other

related results but we choose to close this section here and recall whatever that is

needed as we develop the material.

1.4 Multiarrangements

This section starts with a comprehensive definition of the logarithmic modules of

multiarrangements of all orders.

Definition 1.4.1. Let (A,m) be a multiarrangement with coordinate ring R, then

its pth module of logarithmic derivations is defined by

Dp(A,m) := {θ ∈ Dp(R) : θ(f, g2, . . . , gp) ∈ fm(H)R, ∀g2, . . . , gp ∈ R, ∀H = ker f ∈ A},
(1.17)

and the module of logarithmic forms is defined by

Ωp(A,m) := {ω/Q̃ : ω ∈ Ωp(R), ω ∧ df ∈ fm(H)Ωp+1(R),∀H = ker f ∈ A}. (1.18)

Here Dp(R) consists of all alternating multilinear maps θ : Rp → R, which satisfy the

Leibniz rule in each component. This is generated as a module over R by all partial

derivatives ∂i1 ∧ · · · ∧ ∂ip , where each ij ∈ {1, . . . , `}, and if g1, . . . , gp ∈ R, then

(∂i1 ∧ · · · ∧ ∂ip)(g1, . . . , gp) = det[∂ij (gk)]j,k (1.19)

We will use the compact notation ∂I , where I is the multi-index I = (i1, . . . , ip).

Similarly, Ωp(R) is generated by all p-forms dxi1 ∧ · · · ∧dxi` and we have a canonical

pairing

Dp(R)× Ωp(R)→ R. (1.20)

Recall the polynomial and total gradings that were introduced in Definition

1.2.5. Each of these two gradings is the appropriate grading in a different context as

we shall see.

Example 1.4.2. • The Euler derivation θE = x1∂x1 + · · ·+x`∂x` belongs to the

derivation module of every simple arrangement A. In fact, θE(f) = f for every

linear form f . Moreover, for every (A,m) we have (Q̃/Q)θE ∈ D(A,m).

• If H = ker f ∈ A, then df/f ∈ Ω(A). Also, df/fm(H) ∈ Ω(A,m).
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• Let (A,m) be the Boolean multiarrangement defined by Q̃ = xy2z3 which is

free for p = 1, 2. Here the exponents are exp(A,m) = (1, 2, 3). Moreover,

x∂x, y
2∂y, z

3∂z and dx
x ,

dy
y2
, dz
z3

are bases for D and Ω, respectively. A basis for

D2(A,m) consists of xy2∂x ∧ ∂y, xz3∂x ∧ ∂z, and y2z3∂y ∧ ∂z and similarly for

Ω2. The modules corresponding to p = 0 and 3 are automatically free.

1.4.1 D and Ω

For the following proposition, recall that the depth of a module M over a polynomial

ring is the length of a maximal M -sequence in the maximal homogeneous ideal. See [7,

Section 1.2] for the technicalities.

Proposition 1.4.3. Let (A,m) be a multiarrangement, then the depth of the loga-

rithmic modules is at least 2.

depth Dp(A,m) ≥ 2, depth Ωp(A,m) ≥ 2.

Proof. We only prove the derivation case. The other case is treated in [20]. Let us

denote Dp(A,m) by D. We need two polynomials g, h ∈ R, such that g 6∈ Z(D) and

h 6∈ Z(D/gD), where Z denotes the zero divisors. Since D is torsion-free, the first

requirement is always satisfied. However, in order to make the second one work we

should choose them subject to the conditions that gcd(g, h) = 1 and gcd(Q̃, gh) = 1,

where Q̃ is the defining polynomial. The second condition would fail if we had a

derivation θ ∈ D, such that hθ ∈ gD. This amounts to saying that there is a

derivation η ∈ D, such that hθ = gη. Write θ as
∑
I hI∂xI , where I runs over all

p-subsets of [`] and hI ’s are polynomials in R. Now, evaluate both sides of hθ = gη on

all choices of p-subsets of the variables to see that for each multi-index I, hI should

be divisible by g. Thus, we can divide θ by g to get h(θ/g) = η ∈ D. But since

gcd(h, Q̃) = 1, we should have θ ∈ gD.

The direct sum and tensor product have the following natural behavior that

one would expect.

Proposition 1.4.4. Let (A1,m1) and (A2,m2) be multiarrangements. Then

Dp
(
(A1,m1)⊕ (A2,m2)

)
=
⊕
i+j=p

Di(A1,m1)⊗C Dj(A2,m2).
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See [2, Lemma 1.4] for a proof. In the special case p = 1, if R1, R2 are the

respective coordinate rings, then above formula reduces to the following.

Corollary 1.4.5.

D
(
(A1,m1)⊕ (A2,m2)

)
=
(
D(A1,m1)⊗R2

)
⊕
(
R1 ⊗D(A2,m2)

)
.

Note that a similar formulas hold for the modules of logarithmic forms.

Definition 1.4.6. If (A,m) and (B,n) are multiarrangements in the same ambient

space V , then their union (A,m) ∪ (B,n) is based on A ∪ B and is equipped with

the multiplicity max{m,n}, keeping in mind that if a hyperplane is absent in an

arrangement, its multiplicity is zero and that maximum is taken componentwise.

Lemma 1.4.7. Let (A,m) and (B,n) be `-multiarrangements and their union defined

by Q̃, then for all 1 ≤ p ≤ `, we have

(i) Dp
(
(A,m) ∪ (B,n)

)
= Dp(A,m) ∩Dp(B,n),

(ii) Ωp
(
(A,m) ∪ (B,n)

)
=
(
Ωp(A,m) : Q̃/Q̃A

)
∩
(
Ωp(B,n) : Q̃/Q̃B

)
,

where Q̃A and Q̃B are the corresponding unreduced defining polynomials.

Proof. In the derivation case, equality follows from the definitions together with the

fact that if H is the union, then (fm(H)) ∩ (fn(H)) = (fmax{m(H),n(H)}).

For the second one, let ω be a form from the left side. We have Q̃ω ∈ Ωp(R)

and Q̃ω ∧ df ∈ fmΩp+1(R), where again m is the maximum of m(H) or n(H).

But we can write Q̃ω ∧ df = Q̃A(Q̃/Q̃A)ω ∧ df and Q̃ω = Q̃B(Q̃/Q̃B)ω. For the

other containment, pick a hyperplane H in the union and follow the same argument

backward.

Corollary 1.4.8. Let (A,m) be a multiarrangement defined by Q̃ = Πni=1f
mi
i . Then

(i) Dp(A,m) =
⋂
Hi∈ADp(Hi,mi) =

⋂n
i=1 Dp(A,mi),

(ii) Ωp(A,m) =
⋂
Hi∈A(Ωp(Hi,mi) : Q̃/f

mi
i ) =

⋂n
i=1(Ωp(A,mi) : Q̃/f1 · · · f

mi
i · · · fn).

where (Hi,mi) is the multiarrangement defined by only f
mi
i .
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The derivation module of a multiarrangement (A,m) may be written as an

intersection of the derivation modules of multiarrangements where every component

only has one multiple hyperplane. To be precise, given a multiplicity m on A and a

hyperplane Hi ∈ A, define

mi(H) =

{
m(H) H = Hi

1 H 6= Hi

It is immediate to see that (A,m) = ∪mi>1(A,mi) and by Lemma 1.4.7 we get

D(A,m) = ∩mi>1D(A,mi). (1.21)

As mentioned earlier, multiarrangements do not admit any canonical choice of deriva-

tion such as the Euler derivation that would lead to a decomposition of the derivation

module like Formula 1.10. The following Lemma is however an attempt at getting a

similar splitting. This in fact will be useful in dealing with the logarithmic ideal of

multiarrangements. The proof is similar to [22, Theorem 4.27] and may be considered

as a special case of [3, Theorem 0.4].

Proposition 1.4.9. Let (A,m) be a multiarrangement in C` that is defined by

Q̃ = f1 . . . fi−1f
m
i fi+1 . . . fn, (1.22)

then the derivation module decomposes as

D(A,m) = Sfm−1i θE ⊕ {θ ∈ D(A,m) : θ(fi) = 0}. (1.23)

where the second component is Ann(Hi) = {θ ∈ D(A) : θ(fi) = 0}.

Proof. Given θ ∈ D(A,m), let

θ = θ − θ(fi)

fi
θE , (1.24)

where θ(fi)/fi is divisible by fm−1i and θ(fi) = 0. Also, the derivation θ ∈ Ann(Hi).

Now if gf
mi
i θE ∈ Ann(Hi), then 0 = gf

mi−1
i θE(fi) = gf

mi
i , forcing g = 0.

Corollary 1.4.10. Let A be a simple arrangement, then D(A) = RθE ⊕ Ann(Hi),

for all i = 1, . . . , n. Consequently, if A is free, then exp(A) starts with d1 = 1.

Proof. Let m = 1 above.
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Corollary 1.4.11. If A is a free simple arrangement with

exp(A) = (d1, d2, . . . , d`), (1.25)

then the multiarrangement Q(A,m) = f1 . . . fi−1fmi fi+1 . . . fn is also free, with ex-

ponents

exp(A,m) = (d2, . . . , d`) ∪ {m}. (1.26)

Conversely, the freeness of (A,m) as above implies the freeness of the underlying

simple arrangement.

Proof. The simple arrangement A is free exactly when Ann(Hi) is a free module with

a homogeneous basis θ2, . . . , θ`, such that deg θi = di. In view of the above splitting,

the same is true about (A,m). Hence, adding f
mi
i θE (or θE) to a basis θ2, . . . , θ` of

Ann(Hi) when it is free returns a basis of (A,m) (or A).

Even though the freeness of multiarrangements with only one hyperplane of high

multiplicity is intimately related to the underlying arrangement and its combinatorics,

after taking intersection as in Formula 1.21, it can be totally distorted. The following

example demonstrates that even in the free case the combinatorics is unable to control

the derivation module.

Example 1.4.12 (Ziegler’s pair of examples [46]). Consider the following two mul-

tiarrangement. Let (A,m) = x3y3(x − y)(x + y) and (B,n) = x3y3(x − y)(x + 2y).

Although these two multiarrangement have isomorphic lattices with multiplicities, we

have exp(A,m) = (3, 5) and exp(B,n) = (4, 4). This is an indication of the difficulty

in working with multiarrangements even in the free case.

1.4.2 Saito’s Criterion for Freeness

The original formulation of the Saito’s Criterion is due to [25, Theorem 1.8] where

it was stated in the context of logarithmic sheaves on singular divisors in complex

manifolds. It provides a handy test to tell whether a set of elements freely generate

a logarithmic module. The result of this section is stated in terms of the derivation

modules and is slightly more general since it covers the modules of different orders.

A similar dual version holds for the module of logarithmic forms.

In general, Dp(A,m) is a module of rank
(`
p

)
, simply because Dp(R) is of rank(`

p

)
and

Q̃ ·Dp(R) ⊆ Dp(A,m) ⊆ Dp(R).
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Lemma 1.4.13. Let (A,m) be a multiarrangement defined by Q̃ and let θi, 1 ≤ i ≤(`
p

)
, be elements in Dp(A,m), then

M(θ1, . . . , θ(`p)
) := det

1≤i1<···<ip≤`
i

[θi(xi1 , . . . , xip)]

is a multiple of Q̃(`−1p−1).

Proof. This is proved similar to [22, Proposition 4.12].

Using the same ideas as Theorem 4.19 of [22] together with the lemma above,

we get the following higher order version of Saito’s criterion.

Theorem 1.4.14 (Saito’s Criterion). Let (A,m) be a multiarrangement defined by Q̃

and let θi, 1 ≤ i ≤
(`
p

)
, be elements in Dp(A,m). Then Dp(A,m) is freely generated

by these elements if and only if

det
1≤i1<···<ip≤`

i

[θi(xi1 , . . . , xip)]
.
= Q̃(`−1p−1).

Proof. Let r :=
(`
p

)
and s :=

(`−1
p−1
)
. If the determinantal equality above holds, then

the derivations θ1, . . . , θr are linearly independent, so for the ’if’ part, it remains to

show that they actually generate Dp. We can use Cramer’s rule to solve θI ’s for all

p-indices I by considering them as unknowns in the following system of r equations.

θi =
∑
|I|=p

θi(xI)∂I , 1 ≤ i ≤ r

This amounts to having Q̃s∂xI ∈ spanR{θi : i = 1, . . . , r}. Pick an arbitrary deriva-

tion η ∈ Dp(A,m) and find gi’s so that

Q̃sη =
r∑
i=1

giθi.

We are going to show that all gi’s have to be divisible by Q̃s. This would imply that

η actually lives in the span of θi’s. By lemma 1.4.13, the determinant

M(θ1, . . . , θi−1, η, θi+1, . . . , θr)
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is a multiple of Q̃s and M(θ1, . . . , θi−1, Q̃sη, θi+1, . . . , θr) ∈ Q̃2sR. But the determi-

nant remains unchanged if we replace Q̃sη with giθi which is just equal to giQ̃
s. This

implies that Q̃s divides gi for all i = 1, . . . , r.

For the other direction, pick a basis of derivations θ1, . . . , θr and let M(θ1, . . . , θr) =

gQ̃s, where g ∈ R. Let us assume that H1 = kerx1. Consider the following sets

of derivations: First, ηI = Q̃∂I , where 1 ∈ I. There are s of these. Second,

ηI = Q̃/x
m1
1 ∂I , where 1 6∈ I. There are

(`−1
p

)
of these. There is a matrix of co-

efficients C with respect to the basis above, such that

MI(ηI) = M(θ1, . . . , θr)C,

where I varies over all p-indices. Determinant of the left hand side, up to sign, equals

Q̃s(Q̃/x
m1
1 )(

`−1
p ),

which should be divisible by gQ̃s. Consequently, g should divide (Q̃/x
m1
1 )(

`−1
p ) and

similarly (Q̃/f
mi
i )(

`−1
p ) for all 1 ≤ i ≤ n, but since these polynomials have no common

divisor, g can only be a constant.

Corollary 1.4.15. Let (A,m) be a multiarrangement and let θi, 1 ≤ i ≤
(`
p

)
be

homogeneous linearly independent elements in Dp(A,m). Then it is free with θi’s as

a basis, if and only if

(`p)∑
i=1

deg θi =

(
`− 1

p− 1

) ∑
H∈A

m(H).

By using the above fact we get a slightly different proof for [2, Lemma 1.3] as

follows.

Corollary 1.4.16. If (A,m) is a free arrangement, then so is Dp(A,m) for all p.

Proof. If D(A,m) is free with a basis θ1, . . . , θ`, let θ(i1,...,ip) := θi1 ∧ · · · ∧ θip for

every p-index I and compute the determinant MI(θI), as I ranges over all indices.

1.4.3 cdga Structure

The main theorem of this section is the following:
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Theorem 1.4.17. Let Ω•(A,m) =
⊕`

i=0 Ωi(A,m). Then Ω•(A,m) is a commuta-

tive differential graded C-algebra with multiplication

Ωp(A,m)× Ωq(A,m)→ Ωp+q(A,m),

defined by exterior product and the usual exterior differentiation d.

The proof is obtained in several steps as follows. We also verify the duality

between Dp and Ωp.

Proposition 1.4.18. Let (A,m) be a multiarrangement. A rational differential form

ω belongs to Ωp(A,m) if and only if for every hyperplane H = ker f ∈ A, there are

rational differential forms ω′ and ω′′, such that

ω =
df

fm(H)
∧ ω′ + ω′′,

where Q̃/fm(H)ω′ ∈ Ωp−1[V ] and Q̃/fm(H)ω′′ ∈ Ωp[V ].

Proof. If ω = df/fm(H) ∧ ω′ + ω′′, then Q̃ω ∈ Ωp[V ]. Also, df ∧ Q̃ω = dfQ̃ ∧ ω′′ =

fm(Q̃ω′′/fm) ∧ df ∈ fmΩp+1(A,m).

Conversely, let ω = η/Q̃ and for a hyperplane H = ker f ∈ A, introduce new

coordinates if necessary such that f = x1. Expand η in the standard basis of Ωp(R)

and split it as

η = dx1 ∧
∑
|I|=p−1

gIdxI +
∑
|I|=p

hIdxI ,

where I ⊆ {2, . . . , `} and the coefficients are polynomials in R. Here x
m(H)
1 divides

dx1 ∧ η, implying that all hI ’s are divisible by x
m(H)
1 , for |I| = p. So, by letting

ω′ = fm(H)/Q̃
∑
|I|=p−1 gI and ω′′ = 1/Q̃

∑
|I|=p hI we obtain the desired format of

the lemma.

Proposition 1.4.19. Wedge product defines a map

Ωp(A,m)× Ωq(A,m)→ Ωp+q(A,m).

Proof. Let ω1 ∈ Ωp(A,m) and ω2 ∈ Ωq(A,m). For each Hi = ker fi ∈ A, we can use

Proposition 1.4.18 to write

ωi =
dfi

f
mi
i

∧ ω′i + ω′′i , i = 1, 2
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Calculation shows that Q̃/f
mi
i ω1∧ω2 is of the form dfi/f

mi
i ω′+ω′′, with Q̃/f

mi
i ω′ ∈

Ωp+q−1[V ] and Q̃/f
mi
i ω′′ ∈ Ωp+q[V ], which again by the Proposition 1.4.18 implies

that Q̃/f
mi
i ω1 ∧ ω2 ∈ Ωp+q(A,m). So for each 1 ≤ i ≤ n, we have Q̃2/f

mi
i ω1 ∧ ω2 ∈

Ωp+q[V ] and Q̃2/f
mi
i ω1 ∧ω2 ∧ dfi ∈ f

mi
i Ωp+q+1[V ] but here we can drop a factor of

Q̃ because Q̃/f
m1
1 , . . . , Q̃/fmn

n and Q̃ are relatively prime.

Proposition 1.4.20. Let 0 ≤ p ≤ `− 1. Then the exterior differentiation d defines

a map Ωp(A,m)→ Ωp+1(A,m).

Proof. Let η ∈ Ωp(A,m) be of the form ω/Q̃. By definition,

ω ∧ dfi = f
mi
i αi, (1.27)

with αi ∈ Ωp+1(R), for every i = 1, . . . , n. We have

dη =
dωQ̃− ω ∧ dQ̃

Q̃2
=

dω − ω ∧ dQ̃

Q̃

Q̃
, (1.28)

and we need two things. The first is that the numerator is a polynomial form. This

is obvious for the first summand. For the second summand, we have

ω ∧ dQ̃

Q̃
=

n∑
j=1

mj ω ∧
dfj
fj
, (1.29)

where every time ω ∧ dfj has a factor of f
mj
j .

The second requirement is that

dω ∧ dfi − ω ∧
dQ̃

Q̃
∧ dfi ∈ f

mi
i Ωp+2(R). (1.30)

For the first term, by differentiating formula 1.27, we get dω ∧ dfi = mif
mi−1
i dfi ∧

αi+f
mi
i dαi, but since dfi∧αi = 0, we are only left with the second term, which is of

the desired form. What remains to show is that 1/Q̃ ω ∧ dQ̃∧ dfi is in f
mi
i Ωp+2(R).

We have

1/Q̃ ω ∧ dQ̃ ∧ dfi = ±fmi
i αi

n∑
j=1

dfj/fj , (1.31)

and it is enough to show that for each j, 1 ≤ j ≤ `, we have

f
mi
i αi ∧ dfj/fj ∈ f

mi
i Ωp+2(R), (1.32)
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and for this, it is enough to observe that αi ∧ dfj/fj ∈ Ωp+2(R): If j = i, then as

we have seen before, the summand vanishes. If j 6= i, then since ω ∧ dfi ∧ dfj =

f
mi
i αi ∧ dfj = ±f

mj
j αj ∧ dfi, we see that f

mj
j divides αi ∧ dfj and this finishes the

argument.

Let M1,M2 be modules over some ring A. An A-bilinear map Φ : M1×M2 → A

is called a nondegenerate pairing if for every 0 6= m1 ∈M1, the map Φ(m1,−) : M2 →
A is nonzero and similarly for every nonzero element in the second factor.

Corollary 1.4.21. Let (A,m) be a multiarrangement of size |m| = m, then for every

0 ≤ p ≤ `, we have a nondegenerate pairing

Ωp(A,m)⊗R Ω`−p(A,m)→ R[m− `].

In particular, the modules Ωp(A,m) and Ω`−p(A,m) are dual to one another. To be

precise, under the total grading, we have HomR(Ωp(A,m), R) ' Ω`−p(A,m)[`−m].

Proof. Use Proposition 1.4.19 together with the fact that Ω`(A,m) = Q̃−1Ω`(R),

which is isomorphic to R up to some shift of degrees. To be precise, under the

polynomial (total) grading Ω`(A,m) ∼= R[m] (R[m − `]), where m = |(A,m)| =∑
H m(H). See Definition 1.2.5. For nondegeneracy, pick some ω ∈ Ωp(A,m),

expand it in the standard basis of Ωp and assume that for all η ∈ Ω`−p(A,m), we

have ω ∧ η = 0. Then in particular we can let η = (1/Q̃)dxj1 ∧ · · · ∧ dxj`−p , for all

`−p indices 1 ≤ j1 < · · · < j`−p ≤ `, showing that all terms of ω have to be zero.

Proposition 1.4.22. The natural pairing 〈θ, ω〉 7→ θ(ω) extends to the following

nondegenerate pairings

D(A,m)× Ωp(A,m)→ Ωp−1(A,m)

Dp(A,m)× Ω1(A,m)→ Dp−1(A,m)

which induce isomorphisms Dp(A,m) ' Ωp(A,m)∗ and Ωp(A,m) ' Dp(A,m)∗, for

p = 1, . . . , `. In particular, Dp and Ωp are reflexive modules.

Proof. Let θ ∈ D(A,m) and ω ∈ Ωp(A,m) and pick a defining form fi and consider

〈θ, ω〉, for which we need to verify the two conditions above. Obviously, we have

Q̃〈θ, ω〉 = 〈θ, Q̃ω〉 ∈ R, (1.33)
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simply because by definition Q̃ω ∈ Ωp(R). For the other membership, we expand

〈θ, Q̃ω ∧ dfi〉 as

〈θ, Q̃ω〉 ∧ dfi + (−1)pQ̃ω〈θ, dfi〉. (1.34)

But by definition, Q̃ω ∧ dfi ∈ f
mi
i Ωp+1(R) and the R-linearity of the pairing allows

us to the factor f
mi
i out and see that the whole expression belongs to f

mi
i Ωp(R). The

same is true about the second summand in the expression above. This implies that

〈θ, Q̃ω〉 ∧ dfi ∈ f
mi
i Ωp(R), as desired.

In order to verify nondegeneracy, one may use the proof of [20] where they use

induction and local properties of Dp and Ωp transfers to multiarrangements but since

the case p = 1 is of special importance, we modify the proof given in [22] to present

explicit maps.

Let α : D(A,m)→ Ω1(A,m)∗ and β : Ω1(A,m)→ D(A,m)∗ be natural maps

we get from the pairing in Proposition 1.4.22. We need to show that these maps are

injective and surjective.

α: If θ =
∑
i gi∂xi ∈ D(A,m) is in the kernel of α, then we pair it with

dxj ∈ Ω1(A,m), j = 1, . . . , l, to see that gj = 0. Also, given η ∈ Ω1(A,m)∗,

define a derivation η̃ by letting η̃(f) = η(df). In order to check that η̃ is actually in

D(A,m), pick a defining form fi and note that dfi/f
mi
i ∈ Ω1(A,m), so η(dfi/f

mi
i )

is a polynomial and η̃(fi) = f
mi
i η(dfi/f

mi
i ) ∈ (f

mi
i ).

β: If ω = 1/Q̃
∑
i hiηdxi ∈ ker β, then 〈Q̃∂xj , ω〉 = hj = 0, so ω = 0. To show

that it is surjective, if ω ∈ D(A,m)∗, then let ω̃ = 1/Q̃
∑
i ω(Q̃∂xi)dxi and check

that β(ω̃) = ω.

Corollary 1.4.23. Let (A,m) be a multiarrangement with m = |m| hyperplanes.

Then

Dp(A,m) ' Ω`−p(A,m)[`−m].

Moreover, under this isomorphism the maps of Proposition 1.4.22 fit into the diagram

Ω`−p(A,m)[`−m] Ω`−p+1(A,m)[`−m]

Dp(A,m) Dp−1(A,m)

ωa

〈 , ωa〉
(1.35)

commutes.
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Proof. This is an immediate consequence of Proposition 1.4.21 and Proposition 1.4.22

where both modules are isomorphic to HomR(Ωp(A,m), R). The commutativity of

the diagram follows from chasing the pertaining maps.

Remark 1.4.24. We saw in Theorem 1.4.17 that Ω•(A,m) is a cdga, so it makes

sense to consider its cohomology and in the non-simple case define

H•(A,m) := H•(Ω•(A,m), d).

This is supported by the main result of [39], in which the authors show that under the

tame hypothesis (Definition 1.4.36), the de Rham cohomology chain complex of the

complement of a simple arrangement is quasi-isomorphic to the algebra of logarithmic

forms Ω•(A).

1.4.4 Homological Dimensions and Local Properties

Given a multiarrangement (A,m), we can use localization to define submultiarrange-

ments that respect the order of L(A) in the following way.

X ∈ L(A) 7→ (AX ,m|AX )

If X ≤ Y , then AX ⊆ AY and since the multiplicities are just the restrictions of

the original multiplicity, we get an inclusion of multiarrangements (AX ,m|AX ) ↪→
(AY ,m|AY ). One can also compose the localization with both Dp and Ωp in order

to get functors as follows:

L(A)→ R−Mod L(A)→ R−Mod,

X 7→ Ωp(AX ,m|AX ) X 7→ Dp(AX ,m|AX )

Note the these two functors are covariant and contravariant, respectively.

Definition 1.4.25. For p ∈ SpecR and X ∈ L(A), let

X(p) =
⋂

ker fi=Hi∈AX
fi∈(p)

Hi.

A covariant/contravariant functor F : L(A) → R − Mod is called local if for any

prime ideal p and any X ∈ L(A) the localization of the map F (X(p) → X) at p is

an isomorphism.
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If the above intersection is empty, we make the convention that X(p) equals

the ambient vector space V .

Proposition 1.4.26. The functors X 7→ Ωp(AX ,m|AX ) and X 7→ Dp(AX ,m|AX )

are local.

Proof. For X ∈ L(A), we have X ⊆ X(p), which implies AX(p) ⊆ AX . Let Q̃ =

Q̃(AX ,m|AX )/Q̃(AX(p),m|AX(p)
). Pick an element θ/1 from the right hand side.

By definition of X(p), Q̃ 6∈ p. Thus, θ/1 equals Q̃θ/Q̃ = θ/1 belongs to the left hand

side too. The case of Ω is similar, except that it works covariantly.

Lemma 1.4.27. Let (A,m) be a multiarrangement and let p be the maximal ideal

corresponding to a point pt ∈M(A). Then

Dp(A,m)p ∼= Dp(R)p and Ωp(A,m)p ∼= Ωp(R)p.

Proof. Let X be the origin and observe that X(p) = V and AX(p) = φ, the empty

arrangement, whose derivation module is just Dp(R) while by our choice (A,m)X =

(A,m). By the local property of Dp the above claim follows. The other case is

similar.

Definition 1.4.28. A central `-multiarrangement (A,m) is called locally free if for

every X ∈ L<`(A), the localization (A,m)X is free.

Lemma 1.4.29. Let (A,m) be a multiarrangement. Then A is free iff D(A,m) is

locally free at all max points/prime points of SpecR.

Proof. Freeness is not preserved under localization in general, but in our case since we

are working over either polynomial or local rings, the statement remains unchanged

after switching to projective (or even flat) instead of free, which is true from the

general theory.

Proposition 1.4.30. A multiarrangement (A,m) is locally free iff D(A,m) is locally

free on the punctured spectrum SpecR \m.

Proof. Let (A,m) be essential of rank `. The ’only if’ part only uses the local functors.

For the if part, let X ∈ L<`(A) and consider D(A,m)X . By the lemma above,

we need to show that D((A,m)X) is free at all max points pt of the spec. There are

three cases.
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If pt is outside of the complement of AX , then it is free. In fact it is isomorphic

to D(R)|pt in this case.

If pt is on the union of hyperplanes of AX but not on X, then by the local

functor business we see that it has the same localization as (A,m).

If pt is on X, then independent of where it is on X, its localization is going

to have the same structure. By the proof of [42, Lemma 2.1], localization of D at

m 6= p ∈ X over Rp is isomorphic to its localization at zero over Rm. The map comes

from translating the point pt to 0 on X and this reduces the problem back to the last

case.

Corollary 1.4.31. An arrangement A is free iff it is locally free and D(A)m is free,

where m is the maximal irrelevant ideal.

Recall that the projective dimension of a module, denoted pd , is the length of

a minimal projective resolution. See [35, Chapter 4] for details and characterizations.

Proposition 1.4.32. Let (A,m) be a multiarrangement of rank `.Then

pd Dp(A,m) , pd Ωp(A,m) ≤ `− 2.

Proof. This follows from Proposition 1.4.3 and the Auslander-Buchsbaum formula

pd + depth = `.

Corollary 1.4.33. Every rank 2 multiarrangement is free.

Proof. Follows from above Proposition in view of the Quillen-Suslin Theorem [24,

Theorem 4.100].

Proposition 1.4.34. Let (A,m) be a multiarrangement of rank `. Then the following

statements are equivlanet for all p = 1, . . . , `− 1:

(1) Dp(A,m) is locally free.

(2) Ωp(A,m) is locally free.

(3) ˜Dp(A,m) is a locally free sheaf (i.e. a vector bundle) on P`−1.

(4) ˜Ωp(A,m) is a locally free sheaf (i.e. a vector bundle) on P`−1.

(5) For every X ∈ L<`(A), Dp(A,m)X is free.

(6) For every X ∈ L<`(A), Ωp(A,m)X is free.
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Proof. Proof is analogous to [20, Theorem 2.3].

Proposition 1.4.35. If ˜D1(A,m) is a vector bundle (i.e. (A,m) is locally free), then

the natural map ∧pD1(A,m) → Dp(A,m) induces an isomorphism ˜∧pD1(A,m) '
˜Dp(A,m).

Proof. Proof is analogous to [20, Proposition 2.9] and can be formalized under Propo-

sition 1.4.30, simply because we throw away the origion (irrelevant maximal ideal) by

passing to the associated sheaf on the projective space.

Here are two technical conditions which are useful weakening of freeness (See

[39], [28] and [13]).

Definition 1.4.36. A multiarrangement (A,m) is called tame if pd Ωp(A,m) ≤ p

for 1 ≤ p ≤ `. Also, (A,m) is called dually tame if pd Dp(A,m) ≤ p for all 1 ≤ p ≤ `.

These inequalities are automatically satisfied for p = ` and `−1 by Proposition

1.4.32.

Example 1.4.37. • Every free arrangement is obviously tame and dually tame.

• By Proposition 1.4.32, every arrangement of rank at most 3 is both tame and

dually tame.

• A small non-example (which should be of rank at least 4) is defined by

Q̃ = x1x2x3x4(x1 + x2)(x2 + x3)(x3 + x1)(x1 + 2x2 + 3x3 + 4x4). (1.36)

Computation by the computer algebra system [16, Macaulay 2] shows that

pd D(A) = 2,

therefore A is not dually tame, although it is tame. Also, the multiarrangement

defined by Q2 serves as non-simple example.

Proposition 1.4.38. Let (A,m) be a multiarrangement and let X ∈ L(A), then

pd Dp(A,m)X ≤ pd Dp(A,m),

pd Ωp(A,m)X ≤ pd Ωp(A,m).

Proof. See the proof of [42, Lemma 2.1] where this is proven in the derivation case

for p = 1 and note that the proof works in general.
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Corollary 1.4.39. If (A,m) is free (tame, dually tame), then all of its localizations

are free (tame, dually tame).

Proposition 1.4.40. Let (Ai,mi), i = 1, 2, be two multiarrangements. The projec-

tive dimension of the direct sum is given by

pd D
(
(A1,m1)⊕ (A2,m2)

)
= max

i=1,2
pd D(Ai,mi).

Proof. Let Ri = C[Ai], for i = 1, 2 and R = R1 ⊗R2. By Corollary 1.4.5

D
(
(A1,m1)⊕ (A2,m2)

) ∼= (D(A1,m1)⊗C R2
)
⊕
(
D(A2,m2)⊗C R1

)
.

The projective dimension of a direct sum is the maximum of the projective dimensions

and

pdR
(
D(Ai,mi)⊗C Rj

)
= pdRi

D(Ai,mi)

for i 6= j ∈ {1, 2}.

Corollary 1.4.41. The direct sum is free if and only if its components are free.

1.5 Characteristic and Poincaré Polynomials

In this section we discuss the characteristic and Poincaré polynomials of arrangements

and multiarrangements in connection to the Solomon-Terao formula and the Tutte

polynomial. The main theorem of this section is a generalization of the Mustaţă-

Schenck formula to multiarrangements.

Definition 1.5.1. Let R = ⊕d∈DRd be graded algebra over a field F that is graded

by a monoid D. Also let M be a graded module or algebra of finite type over R, i.e.

each component Md for each degree d is a finite dimensional vector space. Then the

Hilbert function is defined by

f(d) := dimMd.

The Hilbert Series is defined by

h(M) :=
∑
d∈D

f(d)td.

Here we are mostly interested in gradings over either N or N2.

37



1.5. CHARACTERISTIC AND POINCARÉ POLYNOMIALS

Note 1.5.2. All modules in this section are polynomially graded (Definition 1.2.5).

Definition 1.5.3. Define Ψ̃ and Ψ̄ for (A,m) by

Ψ̃(A,m;x, y) :=
∑̀
p=0

h(Dp(A,m), x)(y(x− 1)− 1)p (1.37)

Ψ̄(A,m;x, y) :=
∑̀
p=0

h(Ωp(A,m), x)(y(1− x)− 1)p (1.38)

which are a priori formal power series. However, it turns out that Ψ̃ is in fact a

polynomial in x, i.e. it does not have poles at x = 1. See [2, Theorem 2.5]. Also,

see [22, Proposition 4.133] where it is shown that Ψ̄ is a polynomial in x for simple

arrangements.

Definition 1.5.4 (Abe, Terao, Wakefield, [2]). The characteristic and Poincaré poly-

nomials of a multiarrangement (A,m) are defined by

χ
(
(A,m), t

)
= (−1)`Ψ̃(A,m; 1, t) = (−1)` lim

x→1

∑̀
p=0

h(Dp(A,m), x)(t(x− 1)− 1)p

(1.39)

π
(
(A,m), t

)
= (−t)`Ψ̃(A,m; 1,−t−1) = t` lim

x→1

∑̀
p=0

h(Dp(A,m), x)(
−1

t
(x− 1)− 1)p

(1.40)

respectively. These two polynomials are related by the formula

π
(
(A,m), t

)
= (−t)`χ

(
(A,m),−t−1

)
.

The characteristic polynomial may alternatively be defined by

χ
(
(A,m), t

)
:= Ψ̄(A,m; 1, t) = lim

x→1

∑̀
p=0

h(Ωp(A,m), x)(t(1− x)− 1)p

which implies an alternative formulation for the Poincaré polynomial as

π
(
(A,m), t

)
= (−t)`Ψ̄(A,m; 1,−t−1) = (−t)` lim

x→1

∑̀
p=0

h(Ωp(A,m), x)(
−1

t
(1−x)−1)p
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The equivalence of the definitions follows from the following lemma.

Lemma 1.5.5. Let (A,m) be an arrangement of m = |m| hyperplanes. Then for

every d ∈ N, we have

(−x−d)`Ψ̃(A,m;x,
xd − 1

1− x
) = xm−`Ψ̄(A,m;x,

1− x−d

1− x
).

As a consequence, (−1)`Ψ̃(A,m; 1, t) = Ψ̄(A,m; 1, t).

Proof. Let d be an arbitrary number. Expand the left hand side as

(−x−d)`
∑̀
p=0

h(Dp(A,m), x)(−xd)p

in which we use Corollary 1.4.23 to switch to the logarithmic forms

∑̀
p=0

h(Ω`−p(A,m), x)xm−`(−x−d)`−p

By [2, Theorem 2.5], the left hand side has no poles at x = 1 which will also be true

for the right hand side. So, we may evaluate both sides at x = 1 to get

(−1)`Ψ̃(A,m; 1,−d) = Ψ̄(A,m; 1,−d).

Now since the left hand side is a polynomial and this identity holds for infinitely many

values of d, it hold in general.

As noted earlier, the characteristic polynomial of simple arrangements has a

combinatorial definition which only makes use of the lattice L(A). The following pair

of examples illustrate the fact the converse of the Factorization Theorem (Corollary

3.4.10) is false even in the case of simple arrangements.

Example 1.5.6 (Nonfree with split characteristic polynomial). Let A be the arrange-

ment Q = yz(x−y)(x−2y)(x+y)(x+2y)(x+z) which is illustrated below [22, Figure
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4.5].

An easy computation gives

χ(A; t) = (t− 1)(t− 3)2,

although A is not free. A multiarrangement example with the same property is

supported by A with multiplicity m = (1, 1, 2, 2, 2, 1, 1). Computation shows that

(A,m) is not free, but

χ((A,m); t) = (t− 4)(t− 3)2.

These examples show that the converse of the Factorization Theorem (Corollary

3.4.10) is not valid. However, if we are lucky, we might be able to tell if an ar-

rangement is non-free by just computing its characteristic polynomial.

Definition 1.5.7. Let A be an arrangement, then its Tutte polynomial is defined by

TA(x, y) =
∑
B⊆A

(x− 1)r−rankB(y − 1)|B|−rankB,

where r denotes the rank of the original arrangement A, and B runs over all subar-

rangements, including the empty one.

Tutte polynomial has an alternative recursive definition which will be discussed

in Section 3.3. It is worth noting that the Tutte polynomial is a stronger invariant

than the characteristic polynomial as the following theorem and example show.

Theorem 1.5.8. Let A be an essential `-arrangement, then

χ(A; t) = (−1)`TA(1− t, 0).

See [11, Theorem 2.33] for a proof.

Example 1.5.9. Let us compare the arrangement A of Example 1.5.6, defined by

QA = xyz(x− z)(x+ z)(y + z)(y − z),
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with the arrangement displayed below

which is defined by

QB = xyz(x± z)(y ± z).

The interesting fact in the comparison is that these two arrangements share the same

characteristic polynomial, namely (t − 1)(t − 3)2, while A is non-free in contrast to

B which is free.

Computation shows that

TA(x, y) = y4 + 2y3 + 3y2 + 4y + 4x+ 4x2 + x3 + 3xy + 2xy2 + xy3

TB(x, y) = y4 + 3y3 + 4y2 + 4y + 4x+ 4x2 + x3 + 4xy + 2xy2

So the Tutte polynomial is actually more sensitive than the characteristic polynomial

which fails to detect the difference between A and B in terms of the combinatorial

type and freeness.

The following theorem is the multiarrangement version of the main result of [41]

by Mustaţă and Schenck. It seems that in general one can only compute the Poincaré

polynomial of a multiarrangement when it is free (Factorization Theorem). This

theorem presents an answer in terms of the Chern polynomial which might potentially

be useful in computations.

Theorem 1.5.10. Let (A,m) be a locally free multiarrangement. Then

π
(
(A,m), t

)
= ct(

˜Ω1(A,m)),

where π is the class of the Poincaré polynomial in the Chow ring Z[t]/(t`).

Proof. We only give a sketch of the proof because it goes parallel to the original one
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given in [20]. If E is a vector bundle of rank r on P`−1, then define

R(E ; t, x) = (−t)r(1− x)`−r
r∑
i=0

h(H0
• (∧iE );x) · (x− 1

t
− 1)i, (1.41)

whereH0
• (∧iE ) is the finitely generated graded module

⊕
d∈ZH

0(P`−1,∧iE (d)). The

main ingredient of the proof is [20, Theorem 3.1] which states that the limit

lim
x→1

R(E ; t, x) (1.42)

exists and equals = ct(E). The proof is straight forward in case of split vector bundles.

The idea in general case is to express the requirements of this identity in terms of some

rational coefficient polynomial identities in the Chern classes of E . The fact that these

relations hold needs Hirzebruch-Riemann-Roch while comparing the Hilbert series of

the global sections with the Hilbert polynomial.

Next step is to use Proposition 1.4.35 to observe that under the locally free

condition, ˜Dp(A,m) is a vector bundle for all p, and that ˜Dp(A,m) = ∧p ˜D1(A,m).

Here if we let E = ˜D1(A,m), then from formula 1.41, we get

lim
x→1

R( ˜D1(A,m);−t, x) = c−t( ˜D1(A,m))

= ct(
˜Ω1(A,m))

Final observation is that one is allowed to replace H0
• (∧iD̃1) with Dp(A,m) and

expand the limit as follows.

lim
x→1

R( ˜D1(A,m);−t, x) = t` lim
x→1

∑̀
p=0

h(Dp(A,m);x)(−1

t
(x− 1)− 1)p

= π((A,m), t).

The Solomon-Terao Formula is used in the last equality.

Corollary 1.5.11. The formula above is valid for all multiarrangements (A,m) of

rank 3. In particular, it holds for the multirestriction of any rank 4 simple arrange-

ment.

Proof. If rank(A,m) = 3, then for every X ∈ L<`(A), the localization (A,m)X is of

rank 2, which makes it automatically free by Corollary 1.4.33.
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1.5. CHARACTERISTIC AND POINCARÉ POLYNOMIALS

In the absence of an analogue for the Euler derivation for multiarrangements,

it is not possible to recover the Poincaré polynomial after it is truncated in the ring

Z[t]/t`. The following approach is an attempt to fix this problem.

Recall that extendible arrangements are introduced in Definition 1.3.13.

Proposition 1.5.12. Let (A,m) be an extendible multiarrangement, such that it has

an extension E which is (by definition a simple arrangement and) locally free, then

(A,m) is a locally free multiarrangement.

Proof. Assume that H is the distinguished hyperplane of E with EH = (A,m), where

we think of EH as natural restriction multiarrangement that is obtained by restriction

at H. One can check that if X ∈ L(A) ⊆ L(E), then (A,m)X = (EH)X = (EX)H .

Now since by assumption, EX is free, we can apply Theorem 1.3.5 to see that (EX)H

is a free multiarrangement.

Proposition 1.5.13. Let (A,m) be an extendible multiarrangement which has a free

extension E, then

π((A,m), t) =
π(E , t)
1 + t

.

Proof. Let

π(E , t) = (1 + t)Π`+1
i=2(1 + dit),

be the Poincaré polynomial of E , where d1(= 1), d2, . . . , d`+1 are the exponents of E .

Then by Ziegler’s theorem and Theorem 4.1 of [2], the Poincaré polynomial of (A,m)

is just Π`+1
i=2(1 + dit).

If we dualize the fomula D(A) = R[−1]⊕D0(A), we get Ω(A) = R[1]⊕Ω0(A)

which is used in the following corollary.

Corollary 1.5.14. Let (A,m) be an extendible multiarrangement which has a locally

free extension E, then for every X ∈ L<`(A), we have

π((A,m)X , t) = ct(Ω
1
0(EX)).

Proof. Using the last Proposition together with Corollary 4.3 of [20], we have

π((A,m)X , t) =
π(E)

1 + t

=
(1 + t)ct(Ω

1
0(EX))

1 + t
= ct(Ω

1
0(EX)).
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1.5. CHARACTERISTIC AND POINCARÉ POLYNOMIALS

It is very difficult to strengthen the statement of this corollary as the following

example illustrates.

Remark 1.5.15. One might expect that under the assumptions of the last corollary

we get

π(A,m) = ct(Ω
1
0(E)).

This is however not true. As a counter example, consider a simple 3-arrangement E
with a non-split characteristic polynomial of the form (t− 1)(t2 + bt+ c). Note that

in rank 3 all arrangements are locally free. By assumption, if we drop the t−1 factor,

we get a polynomial that is irreducible over Z, while by the Factorization Theorem

for multiarrangements, π(EH0) must split.

This failure is there even when the characteristic polynomial splits.

Example 1.5.16. Let A be arrangement defined in Example 1.5.6 and let H =

ker(x− y). The natural multiarrangement obtained by restricting A to H is defined

by

Q̃ = y4(y + z)z

in C2, which has characteristic polynomial (t − 2)(t − 4), while the characteristic

polynomial of A is (t− 1)(t− 3)2.
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Chapter 2

Long Exact Sequences

The aim of this chapter is to obtain long exact sequences of the modules of derivations

and forms under deletion and restriction when certain conditions are satisfied. As a

result, we will get some insight into how the properties of tameness and dual tameness

behave under deletion and restriction when certain conditions are satisfied.

2.1 LES for Dp

The following left-exact sequence relates the derivation module of a multiarrange-

ment to that of its deletion and restriction. Here we are using the Euler multiplicity

(Definition 1.3.14) for the restriction. Note that this sequence is in general not exact.

Proposition 2.1.1. Let (A,m) be a multiarrangement, and let (A,m)′ and (A,m)′′

be its deletion and restriction with respect to some hyperplane H = ker f ∈ A, then

the sequence

0→ Dp(A,m)′[−1]
·f−→ Dp(A,m)

ρ−→ Dp(A,m)′′ (2.1)

is exact over R, where the first map is multiplication by f and ρ is restriction to H.

In particular, this holds for simple arrangements.

Proof. Derivation modules live inside free modules and are hence torsion-free, so mul-

tiplication by f is injective and sends elements of Dp(A,m)′ injectively to derivations

in Dp(A,m). Looking at the second map, we need to check that it is well-defined

and that it really lands where it should. The latter claim follows from applying the

argument in the proof of [3, Proposition 2.2] to each component. To be precise, let

θ ∈ Dp(A,m) and g1, . . . , gp ∈ R, then

θ(g1, . . . , gp) := θ(g1, . . . , gp),

where bar denotes reduction mod f . If (g1, . . . , gp) = (h1, . . . , hp), then for each

1 ≤ i ≤ p, gi − hi ∈ fR. Since θ ∈ Dp(A,m), and g1 − f1 is a multiple of f ,
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2.1. LES FOR DP

θ(g1 − h1, g2, . . . , gp) is dividable by f and hence

θ(g1, . . . , gp) = θ(h1, g2, . . . , gp) (mod f).

Similarly,

θ(h1, g2, . . . , gp) = θ(h1, h2, g3 . . . , gp) (mod f),

and we inductively see that we can replace all gi’s on the right hand side with hi’s to

eventually get

θ(g1, . . . , gp) = θ(h1, . . . , hp) (mod f).

For exactness in the middle, note that if η ∈ Dp(A,m)′, then fη = 0. Also, if

θ ∈ Dp(A,m) and θ = 0, then we express θ as

θ =
∑
I

hI∂I ,

where I runs over all increasing p-indices (notation of Definition 1.4.1) and proceed

by evaluating it at each xI0 = (xi1 , . . . , xip), once at a time. Note that values of

a p-derivation at p-tuples consisting of only the coordinate functions determine the

p-derivation. We have

θ(xI0) =
∑
I

hI∂I(xI0) = hI0 ∈ (f),

since in the determinant definition of ∂I(xI0), we get 1 exactly when I = I0, and zero

otherwise. This computation implies θ/fn =
∑
I(hI/f)∂I is still a valid polynomial p-

derivation which by comparison to the definition of (A,m)′ is seen to live in D(A,m)′.

Definition 2.1.2. A triple (A,m, H) is called Dp-exact if the sequence 2.1 is short

exact, i.e. the last map is onto.

Example 2.1.3. Here are a few examples of Dp-exact pairs.

• If A is rank 2 and H ∈ A, then (A, H) is D1-exact: Use x, y as coordinates and

let H = kerx. Then A′′ is defined by just y and D(A′′) is freely generated by

y∂y, which is the restriction of the Euler derivation x∂x + y∂y to H.

• Direct sum of a Dp-exact pairs is again Dp-exact. To be precise, if (A1, H) is
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2.1. LES FOR DP

Dp-exact and A2 is any other arrangement, then

Dp(A1 ⊕A2)→ Dp(A1 ⊕A2)′′

is also surjective for the following reason. Since H ∈ A1, by following the

definitions we see that (A1 ⊕A2)′′ = (A′′1 ⊕A2). By Corollary 1.4.5 Dp(A1 ⊕
A2) ' [Dp(A1)⊗R2]⊕[R1⊕Dp(A2)] and similarly for the restriction. Therefore

the above map is identical to the natural map

[Dp(A1)⊗R2]⊕ [R1 ⊕Dp(A2)]→ [Dp(A′′1)⊗R2]⊕ [R′′1 ⊗Dp(A2)]

which is clearly surjective.

• As a consequence, totally free arrangements are Dp-exact for all p. (See Theorem

1.3.17)

• By [38, Theorem 3.4], if A is a non-Boolean generic arrangement and H ∈ A,

then (A, H) is D1-exact.

Lemma 2.1.4. Suppose f is a nonzerodivisor in a commutative ring R. If M is a

R/f -module, then

Ext
q
R/f

(M,R/f)[1] ∼= Ext
q+1
R (M,R)

for q ≥ 0, and HomR(M,R) = 0.

Proof. Since f is a non-zerodivisor, R/f has a free resolution

0→ R
f−→ R→ R/f → 0.

So Ext
q
R(R/f,R) = 0 unless q = 1, in which case we get (R/f)[1]. The change of

rings spectral sequence

E
pq
2 = Ext

p
R/f

(M,Ext
q
R(R/f,R))⇒ Ext

p+q
R (M,R),

has only one nonzero row by q = 1.

Theorem 2.1.5. If (A,m, H) is Dp-exact, then there is a long exact sequence of
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2.1. LES FOR DP

R-modules as follows.

0 Ωp(A,m)[−1] Ωp(A,m)′ Ωp(A,m)′′

Ext1R(Dp(A,m), R)[−1] Ext1R(Dp(A,m)′, R) Ext1
R′′(Dp(A,m)′′, R′′)

. . .

·f %′

(2.2)

Here R′′ denotes the coordinate ring of A′′, namely R/f . In particular, this holds for

simple arrangements.

Proof. Start with the usual long exact sequence of the short exact sequence above

0 HomR(Dp(A,m)′′, R) Ωp(A,m) Ωp(A,m)′[+1]

Ext1R(Dp(A,m)′′, R) Ext1R(Dp(A,m), R) Ext1R(Dp(A,m)′, R)[+1]
. . .

and use Lemma 2.1.4 to see the first term dies, i.e HomR(Dp(A,m)′′, R) = 0, since

Dp(A,m)′′ is anR/f -module. Again, by the same lemma, we replace Ext1R(Dp(A,m)′′, R)

with Ωp(A,m)′′. Similarly, replace every ExtiR(Dp(A,m)′′, R) with Exti−1R Dp(A,m)′′, R)[1].

Finally, adjust the shift of degrees by shifting the degrees of terms involving

(A,m) by 1 instead of shifting the degrees of the other two terms by −1.

Corollary 2.1.6. Let (A, H) be Dp-exact for 1 ≤ p ≤ `− 1, then A′ is dually tame

if both A and A′′ are dually tame.

Proof. Let M be an arbitrary R-module. One needs to show that Ext
p+1
R (Dp(A),M)

vanishes. Apply Ext∗R(−,M) to the short exact sequence

0→ Dp(A,m)′[−1]
·f−→ Dp(A,m)

ρ−→ Dp(A,m)′′ → 0

and consider the part

Ext
p+1
R (Dp(A),M)→ Ext

p+1
R (Dp(A′),M)[1]→ Ext

p+2
R (Dp(A′′),M),

for all each p.

The first term is zero since A′ is tame. In order to show that the last term is

zero, use the following change of base spectral sequence

E
r,s
2 = ExtrR′′(Dp(A

′′),ExtsR(R′′,M))⇒ Extr+sR (Dp(A′′),M)
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2.2. LES FOR ΩP

and observe that E
r,s
2 is zero when r + s = p + 2. To be more precise, using 0 →

R
f−→ R→ R′′ → 0 as an R-resolution for R′′, we get

ExtsR(R′′,M) =


(0 :M f) s = 0

M/fM s = 1

0 s > 1

On the other hand, since A′′ was assumed to be tame, after the pth row, all the terms

are going to be zero. So, our spectral sequence only has the columns corresponding

to q = 0, 1. As a consequence, this forces the last term of the exact sequence above

and hence the middle term to vanish.

Proposition 2.1.7. Let (A, H) be an D1-exact pair such that A′′ is tame whose

non-free locus is of codimension k in H. Then (A, H) is Dp-exact for all p ≤ k − 1.

In particular, in rank 4, every D1-exact pair is also D2-exact without any further

assumptions.

Proof. Similar to Proposition 2.2.7.

2.2 LES for Ωp

Proposition 2.2.1. Let A be a central arrangement of hyperplanes and let A′ and

A′′ be its deletion and restriction with respect to a hyperplane ker f = H ∈ A, then

the sequence

0→ Ωp(A)[−1]
·f−→ Ωp(A′) %−→ Ωp(A′′) (2.3)

is exact, where the first map is multiplication by f and % is restriction to H.

Proof. An element of Ωp(A) is of the form ω/Q which gets sent to fω/Q = ω/Q′ ∈
Ωp(A′). By lemma 1.4.18, ω/Q = (df/f) ∧ ω′ + ω′′, where ω′ and ω′′ do not have

poles on H. If we multiply this by f , we get df ∧ ω′ + fω′′, which after restriction

to ker f vanishes. The second map uses [46, Theorem 4.4], which says that Ωp is a

covariant functor from the category of arrangements to vector spaces. For exactness

in the middle, note that if ω/Q′ ∈ Ωp(A′) vanishes after restriction to H, then ω/Q

becomes an element of Ωp(A).

Definition 2.2.2. A pair (A, H) is called Ωp-exact if sequence 2.3 is short exact, i.e.

the last map is onto.
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2.2. LES FOR ΩP

Similar to the derivation case, the rank 2 arrangements, direct sums and totally

free arrangements provide examples for Ωp-exactness property. Additionally, the

functorial property of Ωp allows using the following process to produce more examples.

Example 2.2.3. A hyperplane H ∈ A is called a bridge if rank(A) > rank(A′). This

is motivated by the graphic terminology where a bridge is the last edge to connect two

parts of a graph that would otherwise become two disjoint connected components.

Example 2.2.4. If H ∈ A is a bridge, then (A, H) is an Ωp-exact pair for all p.

This fact was proven in [46] for p = 1 but its proof works in general. The fact

that rank drops by pulling H out means that after a change of coordinates, there

is a variable that does not appear in every other equation. So we may assume that

H = kerx` and ∂x`fi = 0 for any other hyperplane ker f ∈ A. Now, the projection

map π : V → H supports a hyperplane morphism Π : A′′ → A′. On the other

hand, we have the usual morphism I : A′ → A′′, which is supported by the inclusion

i : H → V . As a result, the composition i ◦ π = idH , which by functoriality implies

that i∗ : Ω∗(A′)→ Ω∗(A′′) must be onto.

Theorem 2.2.5. If (A, H) is Ωp-exact, then there is a long exact sequence as follows.

0 Dp(A′)[−1] Dp(A) Dp(A′′)

Ext1R(Ωp(A′), R)[−1] Ext1R(Ωp(A), R) Ext1
R′′(Ω

p(A′′), R′′)
. . .

·f ρ′

(2.4)

Proof. Similar to Theorem 2.1.5.

Corollary 2.2.6. Let (A, H) be Ωp-exact for 1 ≤ p ≤ ` − 1, then A is tame if both

A′ and A′′ are tame.

Proof. Similar to Corollary 2.1.6.

One may utilize the following proposition to make the requirements of the above

corollary more manageable.

Proposition 2.2.7. Let (A, H) be an Ω1-exact pair such that A′′ is tame whose

codimension of non-free locus is k in H. Then (A, H) is Ωp-exact for all p ≤ k − 1.

In particular, in rank 4, every Ω1-exact pair is also Ω2-exact without any further

assumptions.
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2.3. DP -EXACTNESS VS. ΩP -EXACTNESS

Proof. For every p, we have a map ∧pΩ→ Ωp which a monomorphism for all arrange-

ments. Under the above assumptions, when p < k, [13, Proposition 2.9] states that

∧pΩ1(A′′) → Ωp(A′′) is an isomorphism, as indicated in the following commutative

diagram.

0 Ωp(A)[−1] Ωp(A′) Ωp(A′′)

∧pΩ(A′) ∧pΩ(A′′)

?

(2.5)

The bottom map is onto because (A, H) is Ω1-exact and we passed to the p-fold

exterior product. The fact that the above map is onto follows from an easy chase of

diagram.

2.3 Dp-exactness vs. Ωp-exactness

The following lemma allows us to compare the D-exact and Ω-exact properties by

providing alternative descriptions of the first connecting homomorphisms in the above

long exact sequences. We state and prove it for p = 1 although it works for higher

indices as well. Note that we are using simple arrangements, i.e. m ≡ 1.

Lemma 2.3.1. Let A be simple arrangement. The maps % (2.3) and %′ (2.2) agree

when (A, H) is D1-exact. Similarly, the maps ρ (2.1) and ρ′ (2.4) agree when (A, H)

is Ω1-exact.

Proof. We show the proof for the first case. Let (A, H) be D1-exact and consider the

map %′ in (2.2) for p = 1 and m ≡ 1. We have the following explicit description.

Let D = D(A). Given ϕ ∈ HomR(D(A′), R) ' Ω1(A), the following diagram gets

naturally filled with the restriction ϕ|D of ρ to D(A) ⊂ D(A′) and it commutes since

ρ is R-linear. This forces the last map to agree with the reduction of ϕ modulo f on

the right hand side.

0 D(A′) D(A) D(A′′) 0

0 R R R′′ 0

·f ρ

·f
ϕ ϕ|D ϕ

(2.6)
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Therefore the map %′ : HomR(D(A′), R) → HomR′′(D(A′′), R′′) sends each ϕ to ϕ,

just as % does. The proof in the other case is similar.

As a consequence we get the following theorem which shows how these two

properties interact.

Theorem 2.3.2. Let A be an arrangement.

i. If (A, H) is Dp-exact and Dp(A) is free (more generally, Ext1R(Dp(A), R) = 0),

then (A, H) is Ωp-exact.

ii. If (A, H) is Ωp-exact and Ωp(A′) free (more generally, Ext1R(Ωp(A′), R) = 0),

then (A, H) is Dp-exact.

iii. If rank(A) = 3 and (A, H) is Ω1-exact, then A′ is free if A is free.

iv. If rank(A) = 3 and (A, H) is D1-exact, then A is free if A′ is free.

v. In particular, if A has rank 3 and exactly one of A and A′ is free, then (A, H)

cannot be both D1-exact and Ω1-exact for any H.

Proof. The first claim follows from the consequence

0→ Ωp(A)[−1]
·f−→ Ωp(A′) %=%′−−−→ Ωp(A′′)→ Ext1R(Dp(A), R),

which is a segment of the sequence 2.1.5, together with the assumption that the last

module is zero. The second claim is similar and follows from 2.2.5.

The next two statements follow from the above sequences and the fact that

when A is rank 3, then A′′ is of rank 2 and as a consequence automatically free. Last

statement is similar.

2.4 Examples

Ziegler gave a pair of examples of arrangements in [46] to illustrate the fact that the

degree of generators of the derivation modules are not controlled by the combinatorics

of the intersection lattice. This pair of examples appeared in [43] in a different guise to

demonstrate the non-combinatorial behaviour of the 2-formality property. See 3.5.2.

In fact, Ziegler originally prepared these examples to illustrate the fact the Betti
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numbers of the logarithmic modules are not combinatorial in general. The following

arrangements are from [43].

Example 2.4.1. Define the arrangements A1 and A2 by

Q1 = xyz(x+ y + z)(2x+ y + z)(2x+ 3y + z)(2x+ 3y + 4z)(3x+ 5z)(3x+ 4y + 5z)

Q2 = xyz(x+ y + z)(2x+ y + z)(2x+ 3y + z)(2x+ 3y + 4z)(x+ 3z)(x+ 2y + 3z)

(2.7)

and note that only the last two hyperplanes are different. It is worth mentioning that

the triple points of A1 are on a conic while the triple points of A2 are not. Consider

the restrictions with respect to the first hyperplane H = ker x. Direct computation

shows that A′′1 and A′′2 are both free with exp = (1, 5), however in D(A1) is minimally

generated by one generator of degree 1 and eight generators of degree 8, while D(A2)

has one generator in degree 1, one in degree 5, five in degree 6 and two in degree 7.

In summary, we have

D(A1) : β0,1 = 1, β0,8 = 8

D(A2) : β0,1 = 1, β0,5 = 1, β0,6 = 5, β0,7 = 2

It is verified that the projection map p2 : D(A2) → D(A′′2) is onto, where as

p1 : D(A1) → D(A′′1) fails to be onto. The reason is that the degree 5 generator of

the target is not covered under p1, since D(A1) does not have a generator in degree 5.

Therefore, (A1, H) is not D1-exact, while (A2, H) is, although they have isomorphic

lattices, L(A1) ∼= L(A2).
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Chapter 3

Intersection Cycle, Recurrence and the

Characteristic Polynomial

In this chapter, we switch to an ideal theoretic analog of the logarithmic modules to

study simple arrangements. As seen in the last chapter, working for example with D

has the disadvantage that the natural sequence

0→ D(A′)[−1]
·f−→ D(A)

ρ−→ D(A′′) (3.1)

leaks information, as the last map fails to be surjective in general. This problem

will be fixed in the new approach. The present chapter contains a new proof for the

Solomon-Terao formula under the tame hypothesis. This is achieved by calculating

the intersection cycle of the variety of an ideal related to the derivation module and

comparison with the Grothendieck group of coherent sheaves.

3.1 Critical Points

Definition 3.1.1. Given an arrangement A with defining equation Q = f1 · · · fn and

a choice of weight vector λ = (λ1, . . . , λn) ∈ Cn, the corresponding master function

is defined by

Φλ = f
λ1
1 · · · f

λn
n .

A point x ∈ C` is called a critical point with respect to weight λ if it is a critical

point of the function Φλ, i.e.
∂Φλ
∂xi
|x = 0,

for i = 1, . . . , `.

Note that regardless of the terminology, a master function is not actually a func-

tion, as it is multi-valued. However, by the following lemma, if we restrict to points

where the C` factor is in the complement of the hyperplanes, we get a description as
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3.1. CRITICAL POINTS

the vanishing of the differential of a logarithmic function, which is a (well-defined)

meromorphic 1-form.

Lemma 3.1.2. A point x ∈M(A) is critical with respect to a weight λ if and only if

it is a root of the differential 1-from

ωλ =
n∑
i=1

λidfi/fi = d log Φλ. (3.2)

Proof. A point x ∈M(A) is critical if it is a root of

∂Φ/∂xj = Φ
n∑
i=1

λi(∂fi/∂xj)f
−1
i

for all j = 1, . . . , `. Since the value of Φ is nonzero, these equations can be compactly

written as the vanishing of the single formula

∑̀
j=1

n∑
i=1

λi(∂fi/∂xj)f
−1
i dxj = 0

which recovers ωλ by just flipping the summations. See [23] for a slightly more general

treatment.

Definition 3.1.3. Let C denote the coordinate ring of the space of weights Cn,

namely C[a1, . . . , an]. Define the logarithmic 1-form by

ωa =
n∑
i=1

ai
dfi
fi
.

It is immediate to see from the definitions that ωa ∈ Ω1(A) ⊗C C =: Ω1
C(A). The

vanishing of this one form is defined by an ideal, called the meromorphic ideal Imer,

which is generated by ` rational polynomials, namely 〈∂xj , ωa〉, for j = 1, . . . , `.

Let us save the letter S for the ring R ⊗C C = C[x1, . . . , x`; a1, . . . , an]. Note

that Ω1
C(A) is an S-module. Note that the meromorphic ideal Imer lives in the local

ring SQ.

Definition 3.1.4. Given an arrangement A = {H1, . . . , Hn}, together with a surjec-

tive map µ : {a1, . . . , am} → A for some m ≥ n, one naturally gets a multiarrange-

ment (A,m) by letting m(H) := |µ−1(H)|, for all H ∈ A. For every A and µ as
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above, let

ωµ =
n∑
i=1

∑
j∈µ−1(Hi)

aj
dfi
fi
.

In simple case, n = m and µ : ai 7→ Hi, for i = 1, . . . , n.

Multirestriction in the sense of Ziegler provides a natural example of the above

construction as follows. Let A be a simple arrangement of size n with a distinguished

hyperplane H0. Then define a map

z : {a1, . . . , an−1} → A′′

by assigning ai 7→ K ∈ A′′, if Hi ∩ H0 = K. Note that |(A′′, z)| = n − 1, where

z : A′′ → N as a multiplicity is defined in Formula 1.13. Under the notation just intro-

duced, we have the following Proposition, which is a modification of [23, Proposition

4.1].

Proposition 3.1.5. Let (A,m) be a multiarrangement, then the zero locus of ωµ is

a nonsingular quasi-affine variety, denoted Σµ(A), whose codimension in C`×Cm is

rank (A).

Proof. Without loss of generality, we may assume that A is full rank. Let fi(x) =∑`
j=1 cjixj . The solution space of ωµ = 0 is the common zero set of

dµ,i(x) =
n∑
i=1

(
∑

j∈µ−1(Hi)

aj)
cji
fi(x)

,

for j = 1, . . . , `, with x ∈ C` and a ∈ Cm, where m = |m| and n = |A|. In matrix

notation, this is the same as the solution space of

[
cji/fi(x)

]
∑
j∈µ−1(H1)

aj
...∑

j∈µ−1(Hn)
aj

 = 0,

where we think of x as a parameter that runs over all points of the complement, a

space of dimension `. Having picked an x ∈M(A), the linear system above admits a

solution space of dimension n− `. Again after fixing every solution, we get a space of

dimension m(Hi)−1, for the ith component. Adding up the dimensions returns m−`.
Therefore the solution space in C` × Cn is of dimension m after the contribution of
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x ∈ M(A) is added, hence of codimension `. Smoothness is implicitly verified in the

above argument, as the dimension of the tangent space is the same at all points. The

above argument also verifies the fact the natural projection Σµ → M(A) is a trivial

vector bundle.

Definition 3.1.6. Let A be a simple arrangement. The logarithmic ideal I(A)

(as introduced in [9]) is the image of the module of C-linear derivations DC(A) :=

D(A)⊗C C (as S-module) and ωa under the pairing of Proposition 1.4.22 for p = 1.

I(A) := 〈DC(A), ωa〉 (3.3)

Proposition 3.1.7. Let (A,m) be a multiarrangement. The closure of Σµ is defined

by the ideal Iµ(A) = 〈DC(A), ωµ〉, which is bi-homogeneous with respect to the grading

of R and C.

Proof. Similar to [9, Theorem 2.9].

Proposition 3.1.8. Under the above notations, the intersection V (Iµ(A))∩(M(A)×
Cm) equals Σµ.

Proof. This follows from Lemma 1.4.27. See [23] for a proof in the simple case.

3.1.1 A Concrete Example

One of the key results of this chapter is Theorem 3.2.2 which relates the logarithmic

ideal of an arrangement to that of its deletion and restriction. Here is an example to

illustrate the answer.

Consider the rank 2 braid arrangement A, defined by

Q = xy(x− y)

The logarithmic ideal I(A) lives in the polynomial ring R ⊗C C, where R = C[x, y]

and C = [a1, a2, a3]. In an algebraic language, the main result of this chapter is

centered around understanding the ideal I(A) + (ai), for any variable ai. It turns out

that the combinatorics of A emerges in the associated primes of this ideal.

We know that A is free with a basis consisting of the Euler derivation θE =

x∂x + y∂y and θ = xy(∂x + ∂y) [use Saito’s criterion, Theorem 1.4.14]. Pairing these

derivations with the meromorphic one form

ωa = a1
dx

x
+ a2

dy

y
+ a3

d(x− y)

x− y
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returns the ideal I(A) = (a1+a2+a3, a1y+a2x). One may notice that the exponents

of A are realized as the degrees of these generators.

Consider I(A) + (a3). Computation by hand or a computer ( [16]) gives the

prime decomposition

I(A) + (a3) =
(
a1, a2, a3

)
∩
(
a1 + a2, a3, x− y

)
One careful look at the decomposition suggests that the first ideal in the intersection

is I(A′) + (a3) and the second one comes from the restriction multiarrangement A′′

which consists of one hyperplane of multiplicity 2 in the following way.

Let ωz be the meromorphic 1-form obtained by restricting ωa′ to the last hy-

perplane, namely

ωz = (a1 + a2)
dx̄

x̄
,

where bar denotes the variable in the coordinate ring of restriction R/(x − y). The

variables a1 and a2 appear together because the first and second hyperplane have the

same intersection with the last one.

One can now see that the second ideal equals the pull back of 〈D(A′′), ωz〉 under

the natural map

R⊗ C → R⊗ C/(a3)→ R/(x− y)⊗ C/(a3).

One main result of this chapter is to show that this holds at a coarser geometric level

in general.

3.2 A Geometric Deletion-Restriction Formula

Let A a simple arrangement. By Proposition 3.1.7, the ideal I(A) is bihomogeneous

in R ⊗ C[a0] and defines a variety in P`−1 × Pn which we denote by X(A). We

are using the extra variable a0 to avoid irrelevant ideals. Similarly, if (A, µ) is a

multiarrangement (see Definition 3.1.4), denote the projective zero locus of Iµ(A) in

P`−1 × Pm by Xµ(A).

Starting with a simple arrangement A, the following calculation gives a decom-

position of X(A) ∩K, where K = P`−1 × P(ker an).

We are going to consider the deletion and restriction of A with respect to the

last hyperplane Hn. The following two inclusion maps are going to be used to adjust
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the ambient spaces of the components that appear.

P(Hn)× Pn−1 ja−→ P`−1 × Pn−1 ia−→ P`−1 × Pn

Here ja and ia are the maps associated to the natural projection maps

R⊗ C[a0]
i−→ R⊗ C ′[a0]

j−→ R′′ ⊗ C ′[a0],

where C ′ = C[a1, . . . , an−1] = C/(an) and R′′ = R/(fn).

First use the map ja to pull the meromorphic 1-form ωa′ =
∑n−1
i=1 aidfi/fi

back to a form on P(Hn)×Pn−1. This happens to be the same as ωz, in the notation

of Definition 3.1.4, where z : {a1, . . . , an−1} → A′′ is Ziegler’s natural restriction

multiplicity (see formula 1.13). The vanishing of this form defines a manifold PΣz .

It follows from 3.1.7 that the closure of this manifold is defined by the ideal

(θ, 〈j∗a(ωa′)〉 : θ ∈ D(A′′))

of the ring R′′ ⊗C C
′[a0], which we denote by Iz(A′′).

Definition 3.2.1. Let X′ := ia∗X(A′) and X′′ = (ia ◦ ja)∗Xz(A′′). Algebraically,

X′ and X′′ are defined by i−1(I(A′)) and (j ◦ i)−1(Iz(A′′)), respectively. Note that

an ∈ i−1(I(A′)) and an, fn ∈ (j ◦ i)−1(Iz(A′′)).

One of the main theorems of this chapter is the following. Recall that K =

P(Hn).

Theorem 3.2.2. If Hn is a bridge, then X ∩K = X′, otherwise X ∩K = X′ ∪ X′′.

Algebraically, this comes down to showing that I(A) + (an) has two minimal

ideals that define the components of X(A)∩K. As mentioned above, in our notation

Iz(A′′) = 〈D(A′′), ωz〉. The minimal ideals are

min(I(A) + (an)) = {I(A′) + (an), Iz(A′′) + (an, fn)}.

In general, there are embedded primes. Proof will follow from a collection of partial

steps as follows.

Lemma 3.2.3. X′,X′′ ⊆ X(A) ∩K
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Proof. Algebraically, these inclusions translate to the following inclusion of ideals:

I(A) + (an) ⊆ i−1(I(A′)) and (j ◦ i)−1(Iz(A′′))

Given an element 〈θ, ωa〉 ∈ I(A), with θ ∈ D(A), since D(A) ⊆ D(A′), we have

〈θ, ωa〉 = 〈θ, ωa′〉+ an
θ(fn)

fn
∈ i−1(I(A′)).

The second inclusion follows from the same observation, together with the fact that

restriction of a derivation θ ∈ D(A) to Hn (formula 3.1), returns θ|Hn ∈ D(A′′). To

be more precise, we have 〈θ, ωa′〉 ∈ (j ◦ i)−1(I(A′′)) because

〈θ, ωa′〉|Hn = 〈θ|Hn , j
∗(ωa′)〉.

Proposition 3.2.4. The connected components of the underlying matroid of an ar-

rangement A contribute linear elements in I(A) ∩ C. More precisely, B ⊆ A is a

union of connected components if and only if
∑
Hi∈B ai is an element of I(A). More-

over, each connected component of the matroid corresponds to a sum of the variables

a1, . . . , an with minimal terms.

Proof. After a change of coordinates, decompose A as A1 ⊕ · · · ⊕ Ar. Use for-

mula D(⊕ri=1Ai) = ⊕ri=1R D(Ai) of Corollary 1.4.5 and apply Euler derivations

θE1
, · · · , θEr to the logarithmic form ωa. For each index i we get

〈θEi
, ωa〉 =

∑
Hj∈Ai

aj .

Conversely, if 〈θ, ωa〉 =
∑
Hk∈B ak for some subarrangement B, then θ(fi) = 0 for

i 6∈ K and θ(fk) = fk for all k ∈ K. As a consequence, B will be forced to be a

union of the irreducible components as above and θ has be equal to tensor product

of the corresponding Euler derivations. A slightly weaker form of this is implicit

in [9, Proposition 2.8].

Corollary 3.2.5. The following statements are equivalent:

i) Hn is a bridge;

ii) an ∈ I(A);
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iii) an ∈ rad(I(A)).

Proof. By the above proposition, it is clear that the second statement follows from

the first one and the last one is obviously a consequence of the second one. It remains

to see that the last statement implies the first one. Let Hn = kerx` and note that

every element of I(A) is of the form 〈θ, ωa〉, for some θ ∈ DC(A). If for some r ∈ N,

we get arn = 〈θ, ωa〉 = 〈θ, ωa′〉 + 〈θ, andx`/x`〉. It is clear that the first summand

involves other ai’s with i < ` and can not contribute arn. In fact, arn can only be

achieved by ar−1n x`∂x` which implies that xell∂x` is a derivation on A. This is only

possible when Hn is disconnected from the other hyperplanes.

Proposition 3.2.6. Let Hn be a bridge. Then X = X ∩K = X′.

Proof. The fact that Hn is a bridge implies that an ∈ I(A) and this verifies the first

equality. For the second one, we need to show that I(A′) + (an) ⊆ I(A) + (an).

Without loss of generality, assume that fn = x` and that the other equations are free

of x`, so A is the direct sum of A′ and the hyperplane Hn = ker x`. Similar to the

proof of the first lemma, we see that

D(A) = C[x`] ·D(A′)⊕ C[x1, . . . , x`−1] · x`∂x` ,

so in particular, D(A′) ⊆ D(A), which implies the desired inclusion. The second

formula follows from intersecting the first one with K.

The following three cases cover the proof of Theorem 3.2.2 in the non-bridge

case.

3.2.1 case 1: Localization

Lemma 3.2.7. If H = ker fn, then there is an isomorphism of Rfn-modules

D(A)fn
∼= D(A′)fn .

Proof. After passing to localization, the multiplication map

D(A′) ·fn−−→ D(A)

becomes an inverse to the localization of the inclusion D(A) ↪→ D(A′). Therefore,

the localized modules are isomorphic.
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Proposition 3.2.8. The restriction of X(A) to {an = 0} agrees with X(A′), away

from the hyperplane defined by fn. To be more precise, we have

X ∩ V (an) ∩D(fn) = i∗(X(A′)) ∩D(fn).

Proof. The inclusion i∗(X(A′)) ↪→ P`−1×Pn is defined by I(A′) + (an). Intersection

with D(fn) corresponds to passing to the localization modulo fn, so we have

(I(A) + (an))fn = (〈D(A), ωa〉, an)fn

= (〈D(A)fn , ωa〉, an/1)

= (〈D(A′)fn , ωa〉, an/1) by Lemma 3.2.7

= (〈D(A′), ωa〉, an)fn

= (I(A′) + (an))fn

3.2.2 case 2: Complement of Restriction

Proposition 3.2.9. Consider (x, λ) ∈ X∩K, where x ∈M(A′′), i.e. fn(x) = 0 and

fi(x) 6= 0, for all i = 1, . . . , n− 1. Then (x, λ) ∈ X′′.

Proof. Since X = Σ, we may think of (x, λ) as the limit point of a sequence in Σ and

under the above assumptions modify the sequence in order to get a new sequence

with the same limit point, such that the new sequence avoids the unwanted area.

For convenience assume that fn = x` and note that modulo fn, the vanishing of

the 1-form along the sequence converging to (x, λ), becomes the vanishing of following

`− 1 equations
n−1∑
i=1

λi
cj,i
fi

= 0, j = 1, . . . , `− 1,

which is what it takes for the point to be in X′′, except that the x-coordinates might

not lie on the complement M ′′. In order to fix this, let us modify the sequences to

get a new one for which this problem is fixed.

Assume that f1, . . . , f`−1 are independent. Choose a new sequence {yk} in M ′′

with the same limit as {xk}, namely x ∈M ′′. Having made this choice, define a new
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sequence {γk = (γk,1, . . . , γk,n)}k, by setting

γk,i
fi(yk)

=
λk,i
fi(xk)

,

for ` ≤ i ≤ n − 1 and γk,n = 0. This ensures that γk,i → λi for i > `. In order to

determine the first `−1 coordinates of γk’s use the following system of `−1 equations

and `− 1 unknowns for each k.

`−1∑
i=1

γk,i
cj,i
fi(yk)

= −
n−1∑
i=`

γk,i
cj,i
fi(yk)

, j = 1, . . . , `− 1

It remains to verify that limk γk,i = limλk,i = λi, for i = 1, . . . , ` − 1. For this use

Cramer’s Formula to find the unique answer to each γk,i’s, for i < `. For instance

γk,i =

det


−
∑n−1
i=` γk,i

c1,i
fi(yk)

c1,2
f2(yk)

. . .
c1,`−1
f`−1(yk)

...
...

...

−
∑n−1
i=` γk,i

c`−1,i
fi(yk)

c`−1,2
f2(yk)

. . .
c`−1,`−1
f`−1(yk)

 / det


c1,1
f1(yk)

c1,2
f2(yk)

. . .
c1,`−1
f`−1(yk)

...
...

...
c`−1,1
f1(yk)

c`−1,2
f2(yk)

. . .
c`−1,`−1
f`−1(yk)


Note that the denominator is still nonsingular because it is the coefficient matrix of the

(independent) linear forms f1, . . . , f`−1 in which the columns are divided by nonzero

numbers. Similarly, if we switch to xk and λk in the Cramer’s formula above, we get

λk,1 and since the matrices have the same limit, their solutions must have the same

limit as well. This shows that the new sequence (yk, γk) lives in PΣz and converges

to (x, λ).

3.2.3 case 3: Blow Up

For the last case, consider fnωa, which has the same roots as ωa on the complement

M .

Proposition 3.2.10. Consider (x, λ) ∈ X∩K, such that fn(x) = 0 but x 6∈M ′′, i.e.

fn(x) = 0 and fi(x) = 0 too, for some i = 1, . . . , n− 1. Then (x, λ) ∈ X′ ∪ X′′.

Proof. Let X = ∩x∈H∈AH, which is to say that X is the biggest element of (L(A), <)

that contains x. The proof is an induction on the codimension of X. The base case

of codimX = 1 is already covered in the last two cases: If X = Hn, then the point

lies in X′′ and if X = Hi, for i 6= n, then it goes to X′. Without loss of generality, let
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us assume that fr, . . . , fn vanish at x, among which fs, . . . , fn forms a basis, r ≤ s.

Blow up PV along PX to obtain Y . The resulting space is defined by fitj = fjti,

s ≤ i < j ≤ n, and lives inside P`−1 × Pn−s+1, where the tj ’s are coordinates on

the second factor. Since the projection from the blow up is a bijection away from

the proper transform, we can lift our convergent sequence and the lift will have a

convergent subsequence, as Y × Pn is a compact space.

Along the new sequences that is obtained as above, each quotient fn/fi = tn/ti,

for i = s, . . . , n and fn/fi = tn/
∑
t for i = r, . . . , s − 1, where

∑
t is a linear

combination of ts, . . . , tn. At limit, at least one of the ti’s must be nonzero. As a

result, the codimension of the space over which divsion by zero occurs goes down by at

least one and depending on whether at limit tn 6= 0 or ti 6= 0, for some s ≤ i ≤ n− 1.

In the former case the point goes to X′ or otherwise to X′′.

3.2.4 Intersection Classes and Multiplicities

Using the geometric formula we obtained in the last section, we are going to use

intersection theory to first compute the intersection cycle of the logarithmic ideal

and then reformulate the answer in terms of Chern classes. Our general reference on

intersection theory is [15]. We are going to quickly recall some basic facts.

A cycle of codimension r on a variety X of dimension d is an element of the

free abelian group generated by closed irreducible varieties of X of codimension r.

It follows from the Moving Lemma that the Chow ring CH(X) = ⊕dr=0A
r(X) is a

graded ring. If Y and Z are subvarieties which intersect properly (i.e. the codimension

of their intersection is the sum of their codimensions), then the multiplication in the

Chow ring is defined by

Y · Z =
∑

i(Y, Z;Wj)Wj , (3.4)

where the sum runs over all irreducible components Wj of the intersection and the

coefficient is the local intersection multiplicity of Y and Z along Wj .

The space we are considering here is P`−1 × Pn, whose Chow ring is

CH(P`−1 × Pn) =
Z[h, k]

(h`, kn+1)
. (3.5)

See [18, Example 2.0.1.] and [15, Example 8.3.7.] for a proof.

Next items in our toolkit are Chern classes and Chern characters. These are

initially defined for vector bundles via construction that use connections and cer-

tain symmetric functions but one may use resolutions to extend the constructions
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to sheaves over nonsingular varieties and that is exactly what we are going to do in

case of S/I. This is supported by the fact that at the level of schemes over a given

space, there is a canonical map from the Grothendieck group of vector bundles to the

Grothendieck group of coherent sheaves

K◦ → K◦ (3.6)

that sends a vector bundle to its sheaf of sections. This homomorphism upgrades to

an isomorphism in case of a nonsingular scheme, such as P`−1 × Pn−1 in our case.

The map in the reverse direction uses the fact that over a nonsingular scheme, every

coherent sheaf F admits a finite resolution 0→ Eq → · · · → E0 → F by bundles. So

one may simply send [F ] ∈ K◦ 7→
∑
i(−1)i[Ei] ∈ K◦. Since we are in the nonsingular

case, we do not distinguish between the two variations of K-theory and just use K

to denote the common object. The following lemma shows how different numerical

invariants of coherent sheaves (graded modules) are related.

Lemma 3.2.11. Consider graded modules over a polynomial ring R = C[x1, . . . , xd].

The Hilbert series is characterized by the following two properties:

• h(R[−a], t) = ta/(1− t)d;

• h is additive on short exact sequences.

The Chern polynomial ct is characterized by

• ct(R̃[−a]) = 1− at;

• ct is multiplicative on short exact sequences.

And finally, the Chern character is characterized by

• ch(R̃[−a]) = e−at;

• ch is additive on short exact sequences.

See [14, Exercise 19.18] as a reference for the first two items. The fact about

the Chern character follows from definition in comparison with Chern character.

Having talked about the general intersection theory machinery, we now state

the main theorem of this section. Brackets are used to denote the intersection class

of a variety in the Chow ring.
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Theorem 3.2.12. Let A be an arrangement of rank `. If Hn is a bridge, then

[X(A)] = [X(A′)]k, (3.7)

otherwise,

[X(A)]k = [X(A′)]k + [X(A′′)]hk. (3.8)

The proof follows from the following lemmas and propositions. Recall that

K = P`−1 × P(ker an).

Lemma 3.2.13. The intersection X(A)∩K is proper exactly when Hn is not a bridge.

Proof. Since K is a hyperplane, the intersection is not proper iff X(A) ∩K = X(A).

The intersection is defined by the ideal I(A) + (an) and by Corollary 3.2.5, I(A) +

(an) = rad(I(A)) exactly when Hn is a bridge.

For the following lemma, we embed Σ′ and Σz in the ambient space of Σ by

letting the last coordinate be zero.

Lemma 3.2.14. When Hn is not a bridge, PΣ and K intersect properly.

Proof. Since K is a hyperplane, the intersection is not proper only if PΣ ⊆ K, which

implies PΣ ⊆ PΣ′ which is impossible, since dim Σ = n = dim Σ′ + 1.

An alternative proof is to recall that the closure PΣ equals X(A). Again, if

Σ was inside K, then so would be its closure, which cannot be the case by Lemma

3.2.13.

Lemma 3.2.15. The intersection in the last lemma is generically nonsingular and

transversal.

Proof. We projectivize all spaces in P`−1 × Pn and let K = {an = 0} as before. It

is straight forward to verify that Σ ∩K ⊆ Σ′ ∩D(fn) ⊆ Σ ∩K. Thus Σ′ ∩D(fn) =

Σ ∩ V (an) in which the left hand side is an open and hence dense subset of X′.

For the other component, recall that X′′ = Σz. We also have Σz ⊂ Σz ⊂
X ∩K ⊂ X.

For transversality, write D(A) = RθE ⊕ Ann(Hn) and consider a generating

set consisting of the Euler derivation θE together with some generators θ1, . . . , θr

for Ann(Hn). The normal to the hypersurface defined by 〈θE , ωa〉 =
∑
i ai is

(0, . . . , 0; 1, . . . , 1). For every θ ∈ Ann(Hn) we have ∂an〈θ, ωa〉 = 0. Therefore

the kernel of the matrix JI(A) with respect to these generators has some nonzero

component in the an coordinate.
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Lemma 3.2.16 (Proposition 8.2 and Remark 8.2, [15]). Let V and W be varieties

in some nonsingular variety Y and let Z be a proper component of the intersection

V ∩W . The intersection multiplicity i(Z, V ·W,Y ) = 1 iff the maximal ideal of OZ,Y
is the sum of the prime ideals of V and W . When dimZ > 0, this translates to

the following geometric condition: V and W are generically nonsingular along Z and

meet transversally along Z.

Proposition 3.2.17. Let H be a non-bridge hyperplane in an arrangement A, then

[X] · [K] = [X′] + [X′′]. (3.9)

Proof. This follows from Theorem 3.2.2, Lemma 3.2.15 and the above lemma that

ensures getting intersection multiplicity 1.

In the rest of this section, we restate the right hand side of the formula above

with explicit reference to the intersection classes of the original varieties X(A′) and

X(A′).

Lemma 3.2.18. Let V be a variety in Pd and T an invertible linear transformation

on Cd+1. Then V is rationally equivalent to its image TV . Moreover, this is true for

a product of linear transformations on a product of projective spaces.

Proof. By functoriality, pull back along T provides an isomorphism from the Chow

ring of Pd, Z[t]/(td+1), to itself. But there are only two choices of isomorphisms,

namely the one defined by t 7→ −t and the identity. To see why the first one is ruled

out, note that the class of a hyperplane H is t and its pullback is again a hyperplane

for which we have T ∗([H]) = t = T ∗(t). As a result, we have

[TV ] = T ∗[TV ] = [T−1TV ] = [V ].

Equivalently, one could argue that given any variety V , there is a linear subspace

U of the same dimension such that [TV ] = d[U ], where d is the degree. Now, since

taking pullback does not affect the constant c and the dimension of U , we again see

that [V ] = c[U ], as well.

Lemma 3.2.19. Let b < d and let R1 and R2 be the polynomial rings C[x0, . . . , xb]

and C[x0, . . . , xd], respectively. For a homogeneous ideal I of R1, let V1 and V2 be

the varieties defined by I in Pb and Pd, respectively. Then [V1] = i∗[V2] = [V2], where

i : Pb ↪→ Pd is the natural inclusion.
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Proof. The inclusion map i induces

CH(Pd)→ CH(Pb)

[V ] 7→ [i−1(V )]

between the Chow rings. If Pb is embedded in Pd, then i−1(V ) is simply V ∩ Pb.
The map between the chow rings is determined by the image of [Pd] = 1 and

[H] = t, where H is a generic hyperplane on the first side. Intersect with Pb to get

1 7→ 1 and t 7→ t. Also, since V1 and V2 have the same codimension which should be

≤ b, [V1] stays away from the kernel and the equality follows.

For the following Proposition, recall that |(A,m)| = m and |A| = n.

Proposition 3.2.20. Let (A,m) be a multiarrangement, then X(A) and Xµ(A) have

the same intersection class in P`−1×Pm. In particular, for a simple arrangement A,

we have [X(A′′)] = [Xz(A′′)].

Proof. By the lemma above, one only needs to give an invertible linear transformation

T : C` × Cm+1 → C` × Cm+1,

which after passing to the projective spaces, maps one variety to the other one.

Define a linear map T by letting it be identity on C` and on the second factor,

define it by

(a0, a1, . . . , am) 7→ (a0,
∑

i∈µ−1(H1)

ai, . . . ,
∑

i∈µ−1(Hn)

ai, an+1, . . . , am).

By Lemma 3.2.18, this gives [Xµ(A)] = [V (I(A))], where on the right hand side we

consider I(A) as an ideal of the ring R ⊗ C[a0, . . . , am]. Also by the above lemma,

we know that the answer to the intersection class only depends on the defining ideal

and not the ring in which it is being realized. Therefore, I(A′′) gives the equal

intersection cycles [X(A)] = [V (I(A))] which belong to the Chow rings of P`−2×P|A|

and P`−2 × Pm, respectively.

Lemma 3.2.21. The maps ia and ja are proper and their push forwards induce

additive maps on the Chow rings.

Z[h, k]

(h`−1, kn)

·h−→ Z[h, k]

(h`, kn)

·k−→ Z[h, k]

(h`, kn+1)
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In particular, [X′] = [ia∗X(A′)] = k[X(A′)] and [X′′] = [(ia◦ja)∗Xz(A′′)] = hk[Xz(A′′)].

Proof. The first map is induced from inclusion P(Hn) × Pn−1 ↪→ P`−1 × Pn−1 and

sends an intersection class [Y ] 7→ [Y ∩ V (fn)] = [Y ] · h. Similarly, the second map

is induced from P`−1 × Pn−1 ↪→ P`−1 × Pn and sends an intersection class [Z] 7→
[Z ∩ V (an)] = [Z] · k.

Proof of Theorem 3.2.12

We are now in the position to combine the above partial results to prove the main

theorem of the section.

Proof. If Hn is a bridge, then

[X(A)] = [X′] Proposition 3.2.6

= [X(A′)] · k Lemma 3.2.21.

And when Hn is not a bridge, then

[X(A)] · k = [X(A) ∩K] intersection is proper by Proposition 3.2.5

= [X′] + [X′′] Proposition 3.2.17

= [X(A′)] · k + [Xz(A′′)] · hk Lemma 3.2.21

= [X(A′)] · k + [X(A′′)] · hk Lemma 3.2.20.

3.3 Tutte Polynomial and Recursion

Recall that a hyperplaneH is a bridge if rank(A′) = rank(A)−1, otherwise rank(A′) =

rank(A). In case of restriction, rank(A′′) = rank(A)− 1 regardless of whether H is a

bridge or not. The Tutte polynomial (Definition 1.5.7) may also be defined recursively

for loopless matroids by TA(x, y) = 1 for the empty matroid, and

TA(x, y) =

{
xTA′(x, y) if H is a bridge

TA′(x, y) + TA′′(x, y) otherwise
. (3.10)

As a reference, see [37, Theorem 6.2.2] by Brylawski for a strong form of this fact.
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Example 3.3.1. An easy computation using the above recursion formula shows that

the Tutte polynomial of Q = xy(x− y) is TA(x, y) = x2 + x+ y.

Substitute k/h and 0 for x and y respectively and multiply both sides of by k`.

To be precise, note that for an `-arrangement A, the polynomial TA(x, 0) is of the

form
∑`
i=1 ti,0x

i and what we mean by h`TA(h, k) is simply
∑`
i=1 ti,0k

ih`−i. Also,

the fact that TA(x, 0) is divisible by x is a consequence of the Euler derivation. Recall

that D(A) = RθE ⊕ Ann(Q) which implies that the characteristic polynomial χ(t)

is divisible by t − 1. By comparing with Theorem 1.5.8, one immediately sees that

TA(x, 0) is divisible by x. The recurrence is as follows.

h`TA(k/h, 0) =

{
kh`−1TA(k/h, 0) if H is a bridge

h`TA′(k/h, 0) + hh`−1TA′′(k/h, 0) otherwise
(3.11)

Note that the rank of each arrangement appears as the exponent of h everywhere

in this formula. For the arrangement of only one hyperplane, we have T (x, y) = x

and [X] = k, because its logarithmic ideal has only one generator which defines a

hyperplane in the second factor. In this case [X] = hT (k/h, 0) is immediate, verifying

the base case. For the general step, compare the above formula with the formulas of

Theorem 3.2.12 to see that both recursions have the same pattern with

[X(A)] = h`TA(k/h, 0),

where ` = rank(A). This answer maybe reformulated in terms of either the Poincaré

or characteristic polynomial as follows.

Theorem 3.3.2. Let A be an arrangement of rank `, then the intersection class is

given by

[X(A)] = h`TA(k/h, 0) = (−h)`χ(A, (h− k)/h) = (h− k)`π(A, h/(k − h)).

Proof. Use the above argument together with the formulas TA(t, 0) = (−1)`χ(A; 1−t)
and π(A, t) = (−t)`χ(A;−t−1).

All denominators in the above formulas are formal. In every case we homogenize

the expression after multiplying by the denominator to the power ` in order to get a

bivariate formula of total degree `.

Example 3.3.3. The following calculations demonstrate the deletion-restriction for-

mula for computing the intersection cycle.
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• Let A be the Boolean arrangement Q = x1 · · ·x`. The logarithmic ideal I(A) =

(a1, . . . , a`) defines an intersection of ` hyperplanes and the cycle [X(A)] ∈
Z[h, k]/(h`, k`+1) equals k`.

• As the first example consider the arrangement the A2 arrangement Q = xy(x−
y) of Section 3.1.1. Let us use Formula 3.11 to compute the intersection class

[X]. Since X has codimension 2, the answer will be a polynomial of degree

2 of the form ak2 + bkh in Z[h, k]/(h2, k3), however in order to avoid getting

irrelevant ideals, let us include P1 × P2 in P1 × P3 and work in the Chow ring

Z[h, k]/(h2, k4). Start off by deleting the hyperplane x = y. By Formula 3.11,

we have k[X(A)] = k[X(A′)] + kh[X(A′′)]. On the other hand A′ and A′′ are

the boolean arrangements of rank 2 and 1, and I(A′) and I(A′′) are defined by

(a1, a2) and (a1) respectively. Therefore [X(A′)] = k2 and [X(A′′)] = k and we

obtain the relation

k · (ak2 + bkh) = k · k2 + k · kh.

By comparing the coefficients of k3 and k2h on both sides we see that a = b = 1,

as predicted by above theorem. So, the final answer is [X(A)] = k2 + kh.

• The second example is the arrangement A defined by Q = xyz(x + y + z),

which contrary to the first example is nonfree (last item in Example 1.2.7). The

Tutte polynomial is given by TA(x, y) = x3 +x2 +x+ y. Since the codimension

of X(A) is 3, we expect a polynomial of the form ak3 + bk2h + ckh2 as the

answer to [X(A)] ∈ CH(P2 × P4). Let us again use the reduction formula

k[X(A)] = k[X(A′)] + kh[X(A′′)] with respect to the last hyperplane. The

deletion A′ is the rank 3 boolean arrangement and the deletion A′′ is isomorphic

to the A2 arrangement for which we know the answer from the above calculation.

If we substitute in the formula, we get

k · (ak3 + bk2h+ ckh2) = k · k3 + kh · (k2 + kh)

which implies that a = b = c = 1. This verifies the answer of above theorem by

showing that [X(A)] = k3 + k2h+ kh2.

Every reflection group G has a ring of invariants C[V ]G = {f ∈ R : g · f =

f, for all g ∈ G}. The Chevalley-Shephard-Todd theorem states that the ring of

invariants is always polynomial, meaning that there are polynomials p1, . . . , p` such

that C[V ]G = C[p1, . . . , p`]. The list of degrees of these polynomials is called the

basic invariants of G.
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Corollary 3.3.4. Let G be a finite reflection group with basic invariants b1, . . . , b`

and let A(G) be the reflection arrangement consisting of the reflecting hyperplanes of

G, then

[X(A(G))] = Π`i=1((bi − 2)h+ k).

Example 3.3.5. Let G be the symmetric group S3. Then A(G) is the type A

arrangement of rank 2 in C3. The ring of invariants is

C[x1, x2, x3]S3 = C[x1 + x2 + x3, x1x2 + x2x3 + x3x1, x1x2x3]

and the list of basic invariants are (1, 2, 3). One may divide by this ring by the

sum of the variables to avoid negative coefficients. By the above corollary we get

h(h+ k) which is the correct answer to the intersection cycle [X] for the arrangement

Q = xy(x− y).

Lemma 3.3.6. Let F be a sheaf of codimension s over a nonsingular scheme, then

for every 0 < i < s, ci(F) = 0.

Proof. See [15, Example 15.3.6].

Theorem 3.3.7. For any A, ci([OX]) = 0, for i < `, and the Chern character has

order `:

ch([OX]) =
(−1)`−1

(`− 1)!
c`([OX]) + h.o.t.

where the higher order terms involve Chern classes of order higher than `, i.e. terms

in h and k with total degree greater than `. Moreover, c`([OX]) = (−1)`−1(`− 1)![X]

in A`(P`−1 × Pn−1).

Proof. Let Fi be a resolution of OX by locally free sheaves (bundles) and let d =

n− `− 1. The Chern class of Fi is an alternating sum of the Chern classes of these

bundles. Consider an arbitrary term F in the resolution. Using the Newton formulas

to relate the power-sums to the symmetric functions to recover the Chern character

in terms of the Chern classes. To be precise we have

ct(F) =
d∑
i=0

ci(F)ti = Πdi=1(1 + ait),

ch(F) =
d∑
i=1

eai =
d∑
i=1

∞∑
k=0

(ai)
k

k!
=
∞∑
k=0

pk(a1, . . . , ad)

k!
,
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where pk(a1, . . . , ad) =
∑d
i=1 a

k
i and ck(F) = ek(a1, . . . , ad) =

∑
ai1 · · · aik ,

where the sum runs over all subsets of a1, . . . , ad of size k. The power-sums and

symmetric functions are related by the formula

kek(a1, . . . , ad) =
k∑
i=1

(−1)i−1ek−i(a1, . . . , ad)pi(a1, . . . , ad), k ≥ 1.

By the last lemma, ei = 0, for i = 1, . . . , `− 1, which implies that pi(a1, . . . , ad) = 0.

Also, for k = `, we get p` = (−1)`−1`c`(F). Substituting in the above formula for

k = ` returns
p`
`!

=
(−1)`−1`c`(F)

`!
=

(−1)`−1

(`− 1)!
c`(F). (3.12)

Moreover, by [15, Theorem 18.3(5)] and the fact that we are working over a

nonsingular space, the Chern character ch : K(X)→ CHQ sends [OX] to

ch([OX]) = [X] + terms of codimensions > `. (3.13)

By comparison, we see that
(−1)`−1
(`−1)! c`([OX]) = [X].

Corollary 3.3.8. For any A, ci(OX) = 0, for i < ` and

(−1)`−1

(`− 1)!
c`([OX]) = h`TA(k/h, 0) = (h− k)`π(A, h

k − h
),

which also equals (−h)`χ(A; (h− k)/h).

Proof. This is an immediate consequence of 3.3.2 and 3.3.7.

Corollary 3.3.9. Let A be a free arrangement with exp(A) = (d1, . . . , d`). Then

[X(A)] = Π`i=1((di − 1)h+ k).

Proof. This follows from the Factorization Theorem (Formula 1.11) which will also

be a consequence of the results of this chapter.

See Corollary 4.4.2 for a generalization.
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3.4 Applications

In this section we investigate the consequences of the intersection cycle formula of

Theorem 3.3.2 on the Hilbert polynomial and Hilbert series of the logarithmic ideal

and we shall see that we get a new proof for the Solomon-Terao formula for tame

arrangements by computing their Hilbert series in two different ways.

Recall that if F is a coherent sheaf on a projective scheme over a field, then the

Euler characteristic of F is the alternating sum

χ(X,F ) =
∑

(−1)i dimkH
i(X,F ).

The Hirzebruch-Riemann-Roch Formula relates this cohomological information to the

more topological information in the following way.

Lemma 3.4.1 (HRR, Corollary 15.2.1, [15]). Let E be a vector bundle on a nonsin-

gular complete variety X. Then

χ(X,E) =

∫
X

ch(E)td(TX).

In practice integration comes down to collecting the leading term of the inte-

grand.

Let M be a homogeneous module over a ring k[x0, . . . , xr] where k is a field. The

Hilbert function of M is defined by fM : n 7→ dimkMn and the Hilbert polynomial is

the unique polynomial pM that agrees with fM for large values of t.

t� 0 fM (t) = pM (t)

Every homogeneous module M gives rise to a sheaf M̃ over Prk = Proj(k[x0, . . . , xr])

with Γ•(M̃) = M . Also, given a sheaf F over the projective space, the global sections

Γ•(F ) are a graded module over the coordinate ring. The following lemma relates

the Euler characteristic to the Hilbert polynomial.

Lemma 3.4.2 (Exercise 5.2, [18]). Let X = Prk and let M = Γ•(F ). Then

χ(X,F (t)) = pM (t).

This prepares us to state the following result about the Hilbert function of the

logarithmic ideal.
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Proposition 3.4.3. If A is a rank ` arrangement of n ≥ 2 hyperplanes, then

pS/I(x, y) =
[ 1

(n− 1)!

1

tx
TA(tx, 0)(1 + ty)n−1

]
tn−1 + Ω({x, y}n−1), (3.14)

where [. . . ]tn−1 stands for the coefficient of tn−1 and Ω({x, y}n−1) denotes a polyno-

mial in x and y of total degree strictly less than n− 1

Proof. By Lemma 3.4.1, the Hilbert polynomial is computed by the Hirzebruch-

Riemann-Roch formula as follows.

pS/I(x, y) = χ(P`−1 × Pn,OX(x, y)) =

∫
P`−1×Pn

ch(OX(x, y))td(TP`−1×Pn)

=
[
ch(OX(x, y))td(TP`−1×Pn)

]
h`−1kn

=
[
ch(OX)exh+yktd(TP`−1×Pn)

]
h`−1kn

Here we are interested in the leading term of the polynomial in x and y. In order to

pick up the highest powers of x and y, we use the constant term of the Todd class,

namely 1. So there is no loss in restricting to

[
ch(OX)exh+yk

]
.

Moreover, the largest powers of these variables come from the terms of Chern charac-

ter which have the lowest total degree in h and k, namely h`TA(k/h, 0) =
∑`
i=1 ti0h

`−iki.

Therefore the leading term in x and y is in

∑̀
i=1

ti0h
`−iki

∑
r≥0

(hx)r

r!

∑
s≥0

(ky)s

s!

which actually equals

∑̀
i=1

ti0h
`−iki

(hx)i−1

(i− 1)!

(ky)n−i

(n− i)!
=

1

(n− 1)!

∑̀
i=1

ti0

(
n− 1

i− 1

)
xi−1yn−i + Ω({x, y}n−1)

(3.15)

where the tail consists of terms of total degree less than n− 1 in x and y.

Note that the denominator 1/(n − 1)! in the leading term of the Hilbert poly-

nomial indicates the dimension of X, as expected.
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Example 3.4.4. The Tutte polynomial of the arrangement Q = xy(x − y) equals

T (x, y) = x2 + x + y and by the above theorem, the leading term of the Hilbert

polynomial is

x+ y,

as n = 3, ` = 2 and t1,0 = t2,0 = 1. Let us verify this answer by direct computation.

Use the resolution in Proposition 4.3.6 to compute the Hilbert series of S/I as follows.

We have exp(A) = (1, 2), n = 3, ` = 2, Ω0(A) = R, Ω1(A) = R[1] ⊕ R[2] and

Ω2(A) = R[3] by Corollary 1.4.16.

h(S/I) =
tu2

(1− u)4
[ 1

(1− t)2
+ (
−t
u

)
t−1 + t−2

(1− t)2
+ (
−t
u

)2
t−3

(1− t)2
]

=
1− u− tu+ tu2

(1− t)2(1− u)4

= (1− u− tu+ tu2)(
∑
x≥0

tx)2(
∑
y≥0

uy)4

= (1− u− tu+ tu2)(
∑
x≥0

(x+ 1)tx)(
∑
y≥0

(y + 1)(y + 2)(y + 3)

3!
uy)

Now if we multiply out the entire expression and collect the coefficients of monomials

in t and u as in
∑

dim(S/I)(x,y)t
xuy, then we see that after the first few terms the

dimension stabilizes as a polynomial in x and y. For every x ≥ 1, y ≥ 2, dim(S/I)(x,y)
is given by the Hilbert polynomial

pS/I(x, y) =
1

2
y2 + xy +

3

2
y + x+ 1,

where the leading part was predicted by the last theorem:

1

2
y2 + xy =

1

(3− 1)!

[(2

0

)
y2 +

(
2

1

)
xy
]

Moreover, the Hilbert series admits the following partial fraction presentation.

h(S/I; t, u) =
1

(1− u)4
TA(

1− u
1− t

, 0)− 1

(1− t)(1− u)2
.

The significance is due to the fact that the total order of poles in the error part is

strictly less than the number of hyperplanes, i.e. 3 in this case.

The following theorem recovers the leading part of the Hilbert series in its

partial fraction decomposition in terms of the coefficients of the Tutte polynomial.
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Theorem 3.4.5. The leading term of h(S/I; t, u) is combinatorial:

h(S/I; t, u) = (1− u)−(n+1) TA(
1− u
1− t

, 0) + Ω({(1− t)−1, (1− u)−1}n+1) (3.16)

Proof. In the rational function presentation of the Hilbert series

h(S/I; t, u) =
Q(x, y)

(1− t)`(1− u)n+1
,

replace the numerator by its Taylor series expansion

Q(t, u) =
∑
i,j

ei,j(t− 1)i(u− 1)j ,

and rewrite the Hilbert series as

h(S/I; t, u) =
∑
i,j

(−1)i+jei,j(1− t)i−`(1− u)j−n−1.

The Hilbert function pS/I(x, y) is the coefficient of txuy in the above formal power

series for large values of x and y. The stable part of the Hilbert series equals

∑
i,j

(−1)i+jei,j
∑
x≥0

(
x+ `− i− 1

x

)
tx
∑
x≥0

(
y + n− j

y

)
uy

=
∑
x,y≥0

∑
i,j

(−1)i+jei,j

(
x+ `− i− 1

x

)(
y + n− j

y

)
txuy

therefore the Hilbert polynomial equals

pS/I(x, y) =
∑
i,j

(−1)i+jei,j

(
x+ `− i− 1

x

)(
y + n− j

y

)

and since we know that X is of dimension n − 1, the coefficients ei,j can only be

nonzero for i+ j ≥ `. In particular, the leading term of the Hilbert polynomial is to

be looked for among the terms of

∑
i+j=`

(−1)i+jei,j

(
x+ `− i− 1

x

)(
y + n− j − 1

y

)
.
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Eliminate i and extract the leading terms to obtain

(−1)`
∑̀
j=1

e`−j,j
xj−1

(j − 1)!

yn−j

(n− j)!
.

Comparing this with formula 3.15 implies that (−1)`e`−j,j = tj,0, where tj,0 is the

coefficient of xi in the Tutte polynomial. So, we get to rewrite the Hilbert series as

h(S/I; t, u) =
∑
i+j=`

(−1)`ei,j(1−t)i−`(1−u)j−n−1+
∑
i+j>`

(−1)i+jei,j(1−t)i−`(1−u)j−n−1

plus possibly some other terms with smaller order of poles. The first sum simplifies

to ∑̀
j=1

(−1)`e`−j,j(1− t)j(1− u)j−n−1 =
1

(1− u)n+1

∑̀
j=1

tj,0(
1− u
1− t

)j .

Also, the total oder of poles in the second sum will be at most n, as i+ j > `.

Corollary 3.4.6. The formal power series

(1− t+ st(1− t))n+1h(S/I; t, t− st(1− t))

is in fact a polynomial in s and t, and its specialization to t = 1 equals TA(1 + s, 0) =

(−1)`χ(A,−s).

Proof. In the last theorem, denote the error term by q(t, u) and make the substitution

t 7→ t and u 7→ t − st(1 − t). Note that under this change of variable 1 − u 7→
(1− t)(1 + st). By the theorem,

(1−t+st(1−t))n+1h(S/I; t, t−st(1−t)) = TA(1+st, 0)+(1−t)n+1(1+st)n+1q(t, t−st(1−t)),

where the right hand side is a polynomial. This only needs a verification for the error

part. The error term is of the form

q(t, u) =
g(t, u)

(1− t)b(1− u)c

with b+ c < n. After making the substitution, we get

(1−t)n+1(1+st)n+1q(t, t−st(1−t)) = (1−t)n+1−(b+c)(1+st)n+1−cg(t, t−st(1−t)),
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which is a polynomial and since n + 1 − (b + c) ≥ 1, it vanishes at t = 1. The last

claim follows from subbing in t = 1 everywhere.

Definition 3.4.7. Let D•(A) be totally bigraded, i.e. deg ∂xj = (−1, 0), deg xj =

(1, 0) and deg ai = (0, 1), for all 1 ≤ i ≤ n and 1 ≤ j ≤ `. Define two rational

functions by

ΨA(t, u) =
∑̀
p=0

h(Dp(A,m), t)tp(u(1− t)− 1)p

PA(t, u) =
∑̀
p=0

h(Dp(A,m), t)up

Note that ΨA(t, u) = PA(t, tu(1− t)− t).

In the tame case, we have a resolution of S/I by logarithmic differential modules.

The proof of this fact is given in the multiarrangement case in the next chapter. (See

Theorem 4.3.1)

In the following proposition we use C-linear p-derivations

D
S/C
p (A) := Dp(A)⊗C C[a0].

The following proposition provides a resolution of S/I by logarithmic derivation mod-

ules and computes the full answer to the Hilbert series under the tame condition. See

Theorem 4.3.1 for a multiarrangement version and [9] where this fact was originally

proven.

Proposition 3.4.8. Let A be a tame arrangement. Then we have a resolution

0→ D
S/C
` (A)[(0,−`)]→ · · · → D

S/C
1 (A)[(0,−1)]→ D

S/C
0 (A)→ S/I → 0

where the differentials are defined by contraction along ωa:

θ 7→ 〈θ, ωa〉

Moreover, the Hilbert series of S/I(A) equals

h(S/I; t, u) =
PA(t,−u)

(1− u)n+1
.
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Proof. The first statement is a direct consequence of Theorem 4.3.1 and Corollary

1.4.23. The Hilbert series is calculated in the following process.

h(S/I; t, u) =
∑̀
p=0

(−1)p h(D
S/C
p (A)[(0,−p)]; t, u)

=
∑̀
p=0

(−1)pup h(Dp(A), t)h(C)

=
1

(1− u)n+1

∑̀
p=0

(−u)p h(Dp(A), t)

Theorem 3.4.9 (Solomon-Terao Formula). If A is tame, then

∑̀
p=0

h(Dp(A,m), t)tp(s(1− t)− 1)p
∣∣∣
t=1

= (−1)`χ(A,−s).

Proof. This follows from computing the specialization of (1−t+st(1−t))n+1h(S/I; t, t−
st(1− t)) to t = 1 in two different ways via Corollary 3.4.6 and Proposition 3.4.8.

(1− t+ st(1− t))n+1h(S/I; t, t− st(1− t)) = PA(t, st(1− t)− t) Proposition 3.4.8

= ΨA(t, s) Definition 3.4.7

We get the left hand side of the above formula by evaluating ΨA(t, s) at t = 1. On

the other hand, by Corollary 3.4.6, we have

(1− t+ st(1− t))n+1h(S/I; t, t− st(1− t))
∣∣∣
t=1

= TA(1 + s, 0) = (−1)`χ(A,−s).

Corollary 3.4.10 (Factorization Theorem). If A is free with exp(A) = (d1, . . . , d`),

then

π(A, t) = (1 + t)(1 + d2t) · · · (1 + d`t).

Proof. Compute the left hand side of the Solomon-Terao formula in terms of the

exponents. See [22, Theorem 4.137].

It follows from Proposition 1.4.9 that

D(A) = RθE ⊕ Ann(Q),
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where Ann(Q) = {θ ∈ D(R) : θ(Q) = 0}. If we pass to the logarithmic ideals we get

I(A) = (〈θE , ωa〉) + I0(A),

where I0(A) = 〈Ann, ωa〉 and 〈θE , ωa〉 =
∑
i ai. Let X0 be the variety defined

by I0(A) in P`−1 × Pn−1. The addition of ideal turns into a proper intersection

intersection between the variety X0 and V (
∑
i ai) which is a hyperplane in the second

factor.

X = V (a1 + · · ·+ an) ∩ X0

The properness of the intersection is discussed in [13] and is revisited in the next

chapter. It is implicit in the last formula that [X] is divisible by k. Moreover, it

allows us to compute the intersection cycle of X0 as follows.

Lemma 3.4.11. The variety X0 has codimension ` − 1 and its intersection cycle is

given by
h`

k
TA(k/h, 0).

Proof. The intersection class of V (
∑
i ai) simply equals k as it is a hyperplane in

Pn−1. Therefore

[X(A)] = k[X0(A)],

from which the formula follows via Theorem 3.3.2.

Theorem 3.4.12 (Orlik-Terao). For a generic weight λ ∈ Cn, the number of projec-

tive critical points is given by the coefficient of x in the Tutte Polynomial.

Proof. A weight vector λ ∈ Cn spans a line Lλ in Cn which is also a point of codi-

mension n − 1 in Pn−1. In general, the codimension of an intersection is bounded

above by the sum of the codimensions. In this situation, we are interested in the set

X0 ∩ Lλ.

codim (Lλ ∩ X0) ≤ codimLλ + codimX0 = (n− 1) + (`− 1)

This implies that the intersection is proper and in fact forces it to be zero dimensional,

i.e. a finite number of points. In order to compute the exact number we do the

following calculation which is subject to the relations kn = 0 = h` and TA(x, y) =
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3.4. APPLICATIONS∑
i,j ti,jx

iyj .

[Lλ ∩ X0] = [Lλ] · [X0] = kn−1 · h
`

k
TA(k/h, 0)

= kn−1 · h
`

k

∑̀
i=1

tj,0(k/h)i =
∑̀
i=1

ti,0 h
`−ikn+i−2

= t1,0 h
`−1kn−1

According to our notation t1,0 is the coefficient of x in the Tutte polynomial.

Example 3.4.13. In the example of three lines in C2 defined by Q = xy(x− y), the

Tutte polynomial is T (x, y) = x2 + x+ y and there is generically exactly one critical

point.

See [8, Theorem 28] for a related generalization.

82



3.5. APPENDIX TO CHAPTER 3

3.5 Appendix to Chapter 3

3.5.1 Logarithmic OT Ideals

This section is about an ideal which is in essence a blend of the meromorphic ideal

and the Orlik-Terao ideal in the following sense.

Recall that the meromorphic ideal of A is the ideal defined by

n∑
i=1

cij
ai
fi

for j = 1, . . . , `. When A is essential, Imer defines a manifold Σ of codimension `.

The idea here is to mix Imer with the Orlik-Terao ideal IOT (A) which is the kernel

of the following map.

C[y1, . . . , yn]→ C[1/f1, . . . , 1/fn]

yi 7→ 1/fi

The right hand side is called the Orlik-Terao algebra, which serves as a commutative

analog for the Orlik-Solomon algebra. (See [26] and [31].)

One can list a set of generators for the OT ideal that is indexed by the lattice

of intersections L(A) as follows.

Theorem 3.5.1 (Schenck-Tohaneanu, [26]). The kernel of the above map, i.e. the

Orlik-Terao ideal, is generated by elements of the form∑
j

bjyi1 · · · ŷij · · · yit ,

for every dependence
∑t
j=1 bjfij = 0 among the defining linear functionals.

We will refer to these generating elements as the OT relations. The significance

of the OT algebra lies in the fact that it provides a commutative model for the anti-

commutative Orlik-Solomon algebra and that it detects a non-combinatorial property

that is an obstruction to freeness: 2-formality.

Definition 3.5.2. An arrangement A is 2-formal if every dependence between the

linear functionals f1, . . . , fn is a linear combination of dependences between subsets

of size three.
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Now, we can state the following theorem, due to Yuzvinsky [43].

Theorem 3.5.3. If an arrangement A if free, then A is a 2-formal arrangement.

It is expected that the result remains true for multiarrangements as well.

Definition 3.5.4. Let A be a central hyperplane arrangement. The ideal generated

by all OT relations together with the relations obtained from the generators of Imer,

with 1/fi replaced with yi will be called the logarithmic OT ideal. We denote this

ideal by J(A). To be precise, we have

I`ot(A) := IOT (A) + (
n∑
i=1

cijaiyi : 1 ≤ j ≤ n).

Example 3.5.5. Consider the first arrangement in Example 1.2.7, defined by Q =

xy(x− y). The logarithmic form is defined by

ωa = a1
dx

x
+ a2

dy

y
+ a3

d(x− y)

x− y
,

which contributes two relation, namely a1y1+a3y3 and a2y2−a3y3. On the OT side,

since there is only one dependence, −f1 + f2 + f3, we get the relation −y2y3 + y1y3 +

y1y2. Therefore,

I`ot(A) = (−y2y3 + y1y3 + y1y2, a1y1 + a3y3, a2y2 − a3y3).

We will give a presentation of the minimal ideals of such ideals in the following

section.

3.5.1.1 Minimal Primes of Log OT Ideals

Lemma 3.5.6. Let A be an arrangement in C` and let (y, a) be a point on V (I`ot(A))

with yi = 0 for some 1 ≤ i ≤ n, then there is a flat X of rank r − 1 such that

{j : Hj 6∈ AX} ⊆ {j : yj = 0}.

Proof. We use induction on the number of hyperplanes of A. Let yi = 0 and consider

A′ = A \ {Hi}. If A′ is essential, then by induction hypothesis, there is a flat

X ∈ Lr−1(A′) such that {j : Hj 6∈ A′X} ⊆ {j : j 6= i, yj = 0}. This choice of X

works for A too. We might happen to have Hi 6∈ AX , which is ok because of our

assumption yi = 0.
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If A′ is not essential, then its center ∩A′ is a line, i.e. of rank ` − 1, and

{j : Hj 6∈ AX} is the singleton {i}. The inclusion holds in this case too. The base of

induction where we only have one hyperplane is easy.

In general, one can obtain all associated primes of an ideal J but looking among

the ideals (J : z), by letting z vary among all elements of the ring. The drawback is

that depending on where z comes from, (J : z) might only be primary. The following

lemma shows that under the tame condition, saturation at the product of variables

y1 · · · yn returns a prime ideal. (see [6])

Theorem 3.5.7. Let A be a central hyperplane arrangement, then the logarithmic

Orlik-Terao ideal decomposes as follows.

rad(I`ot(A)) =
⋂

X∈L(A)
rad(I`ot(AX) : ΠHi∈AXyi) + (yj)Hj 6∈AX

In particular, the components in the intersection above are the minimal primes of the

logarithmic Orlik-Terao ideal.

Proof. The proof works by induction on the number of hyperplanes in A. The base

case where there is only one hyperplane is easy to verify. In order to use the induction

hypothesis, we need to establish the formula

V (I`ot(A)) = V (J(A) : y1 · · · yn) ∪ (∪X∈Lr−1(A)V (I`ot(AX) + (yj)j 6∈AX )), (3.17)

where r is the rank of our arrangement.

Once this proven, we turn to the defining ideals to get

rad(I`ot(A)) = rad(I`ot(A) : y1 · · · yn) ∩ (∩X∈Lr−1(A)rad(I`ot(AX)) + (yj)Hj 6∈AX )),

and use the induction hypothesis for each AX to get replace rad(I`ot(AX)) with⋂
Y ∈L(AX )

rad(I`ot((AX)Y ) : ΠHi∈(AX )Y
yi) + (yj)Hj∈AX\(AX )Y

.

But since (AX)Y = AY for Y ∈ L(AX), after plugging these for all X ∈ Lr−1(A)

back into the formula above, the desired formula emerges.

Now, let us go back to the formula 3.17 above. If (y, a) ∈ V (I`ot(A)) is a

point with all yi’s nonzero. This point will be in V (I`ot(A) : y1 · · · yn), because

the saturated ideal defines the closure of V (I`ot(A)) − V (y1 · · · yn). Otherwise, if
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some of yi coordinates are zero, then by lemma 3.5.6, there is a flat X ∈ L(A) that

accommodates our point in one of the other components of the formula 3.17.

Example 3.5.8. Associated primes of the ideal in Example 3.5.5 are listed as follows.

(y1, y2, y3)

(a1, y2, y3) (y1, a2, y3) (y1, y2, a3)

(a1 + a2 + a3, y1y2 + y1y3 − y2y3, y2a2 + y3a1 + y3a2, y1a1 + y2a2)

As it is evident, these ideals provides labels for the lattice of intersections of the A2

arrangement. See the deletion in Example 1.1.1.

3.5.2 Higher Order Logarithmic Ideals

One would like to have an analogous definition for the logarithmic ideal in higher

orders to capture the properties of higher order logarithmic modules. The following

definition seems to be a natural one:

Definition 3.5.9. Let A be an `-arrangement and for every p = 1, . . . , `, let

Cp = C[ai1,...,ip : 1 ≤ i1 < i2 < · · · < ip ≤ n],

with variables that are independent. Now, define the pth logarithmic form by

ω
p
a =

∑
1≤i1<i2<···<ip≤n

ai1,...,ip
dfi1 ∧ · · · ∧ dfip

fi1 · · · fip
.

It is immediate to verify that ω
p
a ∈ Ωp(A)⊗C C

p. We extend the scalars of Dp(A) to

Cp and define

Ip(A) = 〈Dp(A)⊗C C
p, ω

p
a〉.

Note that again the p-derivations clear the denominators and we get an ideal

which actually lives in the polynomial ring R ⊗C Cp. We also have the following

analogous definition.

Definition 3.5.10. Under the above setting, let Σp ⊂M(A)×C(np) be the vanishing

of the pth logarithmic form ω
p
a.

Σp(A) = {(x, a) :
∑

1≤i1<i2<···<ip≤n
ai1,...,ip

dfi1 ∧ · · · ∧ dfip
fi1 · · · fip(x)

= 0}
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The vanishing of this meromorphic p-form on M × C(n2) is equivalent to the

vanishing of
(`
2

)
forms as follows. Recall that fi =

∑`
j=1 cj,ixj which implies dfi =∑`

j=1 cj,idxj . We collect all of the coefficients in the matrix
c1,1 . . . c1,n

...
...

c`,1 . . . c`,n


where the ith column stores the coefficients of Hi. Consider the vanishing of the

following sum.

∑
1≤i1<···<ip≤n

ai1,...,ip
dfi1 ∧ · · · ∧ dfip
fi1 · · · fip(x)

=

∑
1≤i1<···<ip≤n

ai1,...,ip

∑`
j1=1 cj1,i1dxj1 ∧ · · · ∧

∑`
jp=1 cjp,ipdxjp

fi1 · · · fip(x)
=

∑
1≤i1<···<ip≤n

ai1,...,ip

∑
1≤j1<···<jp≤` det[minor] dxj1 ∧ · · · ∧ dxjp

fi1 · · · fip(x)

The minor corresponds to rows (j1, . . . , jp) and columns (i1, . . . , ip) for all increasing

index lists. Now we can flip the double sum as follows.∑
1≤j1<···<jp≤`

[ ∑
1≤i1<···<ip≤n

det[minor]
ai1,...,ip

fi1 · · · fip(x)

]
dxj1 ∧ · · · ∧ dxjp

So vanishing translates to the vanishing of all inner sums of which we have
(`
p

)
. We

expect to get an analogous result to Proposition 3.1.5 which requires the following

linear algebra fact. In the following lemma, let Ak denote the matrix of k× k minors

of a matrix A.

Lemma 3.5.11. Let A be an n× n matrix. Then the matrix of k × k minors Ak is

invertible if A is invertible. More generally,

det(Ak) = det(A)(
n−1
k−1).

Note that this is obvious for k = 1, n, and for k = n−1 follows from A ·AdjA =

det(A) · I.
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Proof. Without loss of generality one may assume that A is a diagonal matrix because

otherwise one may apply row operations (adding a multiple of a row to another)

to transform A into a diagonal matrix with the same determinant. Also, because

determinants are multilinear, the row operations do not change the determinant of

the matrix of k × k minors. Now we prove the statement about the determinant by

induction on n. The claim is obvious for n = 1, 2. In general, since A is diagonal, we

only get contributions from the minors which are diagonal, i.e. if the intersection of

any of the k chosen row and columns at any time is off the diagonal, then the minor

will have an entirely zero row. Let n > 2 be arbitrary and assume that the claim is

true for all diagonal matrices of size less than n and all k ≤ n for each n. Let A be

an arbitrary diagonal matrix of dimension n and let k < n. The matrix of k minors

is again a diagonal matrix where each diagonal entry is a product of a k-subset of the

original diagonal entries. Let A′ be the matrix that is obtained by removing the first

row and column of A. The determinant of Ak is

a
(n−1k−1)
1,1 det(A′)(

n−2
k−2) · det(A′)(

n−2
k−1)

where the first factor corresponds to the products that contain a1,1 and the second

one to the ones that do not. Therefore the final answer is

a
(n−1k−1)
1,1 det(A′)(

n−2
k−2)+(n−2k−1) = a

(n−1k−1)
1,1 det(A′)(

n−1
k−1) = det(A)(

n−1
k−1).

Note that the above formula is similar to the general form of the Saito’s Criterion

(Theorem 1.4.14).

Proposition 3.5.12. Let A be an `-arrangement. The vanishing of the pth logarith-

mic form defines a quasi-affine variety in M × C(n2) which is of codimension
(`
p

)
.

Proof. Modify the argument of Proposition 3.1.5 with the above lemma and the

argument preceding it.

The following statement is an extension of Proposition 3.1.7.

Proposition 3.5.13. Let A be an `-arrangement. Then V (Ip(A)) = ΣP .

As a consequence, we get a similar description for freeness of logarithmic mod-

ules of all order.
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Theorem 3.5.14. Let A be an `-arrangement. Then for every p, the module Dp(A)

is free if and only if the logarithmic ideal Ip(A) is a complete intersection.

Proof. Proof is again analogous to the proof of the p = 1 case. See [9, Theorem

2.10].
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Chapter 4

Logarithmic Ideals of Multiarrangements

In this chapter we are going to extend the notion of logarithmic ideal to multiar-

rangements and study its properties. The goal is to get an ideal-theoretic equivalent

description of freeness. Such a description is already known for simple arrangements

in at least two ways: Theorem 1.3.1 about the Jacobian ideal; and Theorem 3.5.14

about the logarithmic ideal. As it was noted in chapter 1, it does not make sense to

talk about a multiarrangement analog of the Jacobian ideal, however the approach

of logarithmic ideal does produce meaningful consequences.

We keep our notations consistent and let DC(A,m) := DC(A,m)⊗C C, which

again lives in DC(S) = D(R)⊗ C. The following definition proves to be natural.

Definition 4.0.15. Let (A,m) be a multiarrangement, then its logarithmic ideal is

defined by

I(A,m) = 〈DC(A,m), ωa〉.

Remark 4.0.16. The logarithmic ideal of a multiarrangement (A,m) actually lives

in the ring S. As noted before ωa ∈ Ω1
C(A). We have the following pairings which

come from Proposition 1.4.22 after tensoring with C.

DC(A) × Ω1
C(A)

S∪ ∩
DC(A,m) × Ω1

C(A,m)

So the image is an ideal in the polynomial ring. Also, because of the first inclusion,

we have I(A,m) ⊆ I(A).

Equivalently, if θ ∈ DC(A,m), then

〈θ, ωa〉 = θ(
n∑
i=1

ai
dfi
fi

) =
n∑
i=1

ai
θ(fi)

fi
(4.1)

which is a polynomial since θ(fi) is divisible by fi.
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Example 4.0.17. Let (A,m) be a Boolean multiarrangement defined by Q̃ = x
m1
1 . . . x

m`
` ,

then the module of derivations D(A,m) is free and has the following elements as a

basis.

x
m1
1 ∂x1 , . . . , x

m`
` ∂x` ,

Thus the logarithmic ideal is

I(A,m) = (a1x
m1−1
1 , . . . , a`m

m`−1
` ).

Primary decomposition components of this ideal are of the form

(a1, . . . , ai−1, x
mi−1
i , ai+1, . . . , a`), (4.2)

for every i with mi > 1, together with the ideal (a1, . . . , an) which comes from the

underlying simple arrangement.

A dual description of the logarithmic ideal is as follows. Consider the image of

the map

Ω`−1(A,m)
ωa−−→ Ω`(A,m)

·Q̃−→ R, (4.3)

where the first map is multiplication by ωa and second map drops the basis dx1 ∧
· · · ∧ dx` and multiplies by the defining polynomial. This is supported by Corollary

1.4.23, which allows us to replace pairing with exterior multiplication and derivation

module D(A,m) with Ω`−1(A,m).

Since the derivation modules are homogeneous with the usual grading of R, the

logarithmic ideal inherits a graded structure too. Moreover, I(A,m) has a bigrading

given by deg xj = (1, 0) and deg ai = (0, 1), for 1 ≤ j ≤ ` and 1 ≤ i ≤ n.

Proposition 4.0.18. If (A,m) is a free multiarrangement, then the ideal I(A,m)

has generators in the polynomial degrees of (A,m). More precisely, if D(A,m) is

generated in polynomial degrees d1, . . . , dt (with t ≥ `), then I(A,m) is generated in

degrees (d1 − 1, 1), . . . , (dt − 1, 1).

Proof. Applying a homogeneous element θ ∈ D(A,m) of polynomial degree d to ωa,

we get
n∑
i=1

ai
θ(fi)

fi
, (4.4)

where deg θ(fi)/fi = d − 1 and deg ai = 1, hence deg = (d − 1, 1). The total degree

is just the addition of the two components.
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4.1 Freeness via Log Ideals

As the title suggests, this section is targeted at detecting freeness of multiarrange-

ments by looking at their logarithmic ideals. This is done through understanding the

geometry of the logarithmic ideal I(A,m). The main result, Theorem 4.1.13, is an

extension of [9, Theorem 2.13] from simple arrangements to multiarrangements. The

knowledge of the simple case is useful in understanding the multiarrangement case,

although the general case is considerably more complicated.

The following lemma is analogous to [9, Lemma 3.10] and relates the logarith-

mic module of forms/ideal of ideal of a multiarrangement to those of its irreducible

components.

Lemma 4.1.1. If (A,m) = (A1,m1) ⊕ (A2,m2), then I(A,m) = S2I(A1,m1) +

S1I(A2,m2).

Proof. This simply follows from the corresponding formula for the logarithmic mod-

ules. See Lemma 1.4.5.

The following fact is analogous to [23, Proposition 2.7]. This has to do with the

local nature of the derivation module. See Lemma 1.4.27.

Proposition 4.1.2. Let (A,m) be a multiarrangement, then

V (I(A,m)) ∩ (M(A)× Cn) = Σ(A). (4.5)

Proof. Pick a point x ∈ M and assume that for some λ ∈ Cn, (x, λ) is in the zero

locus of I(A,m). Consider Q̃∂xi which is a derivation on (A,m), for all 1 ≤ i ≤ `.

Since x is in the complement, Q̃(x) 6= 0 and we get 〈∂xi , ωλ〉 = 0, implying that the

point is critical.

We first treat the case of multiarrangements with only one multiple hyperplane,

i.e. there is some i, such that m(Hi) > 1 and for all H 6= Hi, we have m(H) = 1

(See Proposition 1.4.9).

Proposition 4.1.3. If (A,m) is defined by Q̃ = f1 . . . fi−1fmi fi+1 . . . fn, then the

radical of I(A,m) is independent of m and the zero locus of the logarithmic ideal is

given by

V (I(A,m)) = Σ ∪ V ((fi) + 〈Ann(Hi), ωa〉).

In particular, the codimension of I(A,m) equals its rank.
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Proof. By Proposition 1.4.9, which provides a decomposition of the derivation mod-

ule, we compute the following factorization.

I(A,m) =
(
〈fm−1i θE , ωa〉

)
+
(
〈θ, ωa〉 : θ ∈ D(A,m), θ(fi) = 0

)
=
(
fm−1i (a1 + · · ·+ an)

)
+
(
〈θ, ωa〉 : θ ∈ Ann(Hi)

)
=
[
(fm−1i ) ∩ (a1 + · · ·+ an)

]
+ 〈Ann(Hi), ωa〉

=
[
(fm−1i ) + 〈Ann(Hi), ωa〉

]
∩
[
(a1 + · · ·+ an) + 〈Ann(Hi), ωa〉

]
=
[
(fm−1i ) + 〈Ann(Hi), ωa〉

]
∩ I(A) (by Corollary 1.4.10)

This directly verifies that I(A) defines one of the components of V (I(A,m)) (See

Corollary 4.1.10). In the last Lemma 4.1.4, letting a := (fm−1i ) and c := I(Ann(Hi)),

implies that the radical of (fm−1i )+I(Ann(Hi)) is independent of m, as long as m > 1.

As a result, one sees that the minimal primes of this ideal only depend on whether

m = 1 or 2.

Lemma 4.1.4 (Exercise 1.13 in [6]). Let a, b, c and d be ideals in some commutative

ring and suppose that rad(a) = rad(c) and rad(b) = rad(d), then

rad(a + b) = rad(c + d). (4.6)

The proof is easy and follows from the definitions.

Corollary 4.1.5. Let (A,m) be a multiarrangement with only one multiple hyper-

plane H as in the above proposition. Then the radical of I(A,m) does not depend on

the support of m, i.e. whether m(H) > 1 or m(H) = 1.

Proof. By the above proposition, the radical of I(A,m) equals

rad
[(

(fm−1i ) + 〈Ann(Hi), ωa〉
)
∩ I(A)

]
= rad

(
(fm−1i ) + 〈Ann(Hi), ωa〉

)
∩ radI(A)

where by the above lemma, radical of (fm−1i ) + 〈Ann(Hi), ωa〉 is independent of

m > 1.

Definition 4.1.6. If m is a multiplicity on an arrangement A, then the support of

m is the subarrangement

supp(m) := {H ∈ A : m(H) > 1}. (4.7)
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Corollary 4.1.7. The zero locus V (I(A,m)) contains

Σ ∪ [∪Hi∈supp(m)V ((fi) + 〈Ann(Hi), ωa〉)]. (4.8)

Proof. For every Hi ∈ supp, we have the inclusion D(A,m) ⊆ D(A,mi). Therefore,

V (I(A,mi)) ⊆ V (I(A,m)),

and the left hand side splits as in Proposition 4.1.3.

Remark 4.1.8. It should be emphasized that the inclusion of the above Corollary

is in general far from equality. If D1 and D2 are two derivation modules on some

arrangement A, then 〈D1 ∩D2, ωa〉 ⊆ 〈D1, ωa〉 ∩ 〈D2, ωa〉, where as computing the

right hand side is completely nontrivial: If θ1 ∈ D1 and θ2 ∈ D2 and 〈θ1, ωa〉 =

〈θ2, ωa〉, then 〈θ1 − θ2, ωa〉, implying that θ1 − θ2 is in the kernel of the map θ 7→
〈θ, ωa〉. This kernel is generated by syzygies of the form 〈θ1, ωa〉θ2 − 〈θ2, ωa〉θ1, for

all θ1 ∈ D1 and θ2 ∈ D2, which is almost always bigger than D1 ∩D2.

Theorem 4.1.9. Let A be a rank ` multiarrangement. Then

codim I(A,m) = `.

Proof. It is enough to verify this locally because (co)dimension is determined locally.

By Proposition 4.1.2, V (I(A,m)) agrees with the `-codimensional Σ away from the

hyperplanes. It remains to verify the claim on the hyperplanes. For this, it suffices to

consider irreducible multiarrangements. The reason is that up to a linear change of

coordinates we can break (A,m) into its connected components and by Lemma 4.1.1

write the ideal as the sum of the components.

codimV (I(A,m)) = codimV (
∑
i

I(Ai,mi)) = codim ∩i V (I(Ai,mi))

=
∑
i

codimV (I(Ai,mi))
?
=
∑
i

rank(Ai) = rankA = `

So without loss of generality we let (A,m) be irreducible and essential and use in-

duction on |A|. As a consequence all deletions of A will be essential too, because

otherwise the deleted hyperplane would be a bridge and hence A reducible. Now,

pick a point p 6= m on one of the hyperplanes that is different from the origin. For
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every hyperplane H = ker f ∈ A with m(H) = m we have the sequence

D(A,m) ↪→ D(A′,m|A′)
fm−−→ D(A,m)

which turns to equality after localizing at f as fm is invertible in Rf . We have

D(A,m)f ' D(A′,m|A′)f which implies I(A,m)f + (an)f = I(A′,m|A′) + (an)f

and this ideal defines the zero locus of I(A,m) away from the hyperplane H × Cn.

Since this works for every hyperplane, let H be a hyperplane that does not contain

p. This is possible because A was assumed to be essential. The local codimension

of V (I(A,m)) around p is at most ` + 1 by the induction hypothesis but by the

above corollary every such component of V (I(A,m)) lies in some hyperplanes of the

form Hi × Cn with p ∈ Hi. So we intersect with this hyperplane and this brings the

codimension down to `.

By essentiality, we have codimension ` everywhere on ∪ni=1D(fi) = C`×Cn\0×
Cn. What remains is a component that is contained in 0×Cn which has codimension

at least `. This will not harm the overall codimension of I(A,m).

Corollary 4.1.10. Let m be a multiplicity on an arrangement A, then V (I) is con-

tained in V (I(A,m)) and moreover defines one of the irreducible components.

Proof. In the inclusion Σ ⊂ V (I(A,m)) take closure and use [9, Theorem 2.9] to

replace Σ with V (I(A)). The fact that V (I(A)) defines one of the irreducible com-

ponents is an immediate by dimension reasons.

Remark 4.1.11. • Apart from I(A), the rest of the components of I(A,m) are

to be found among the components of the ideal quotient (I(A,m) : I(A)).

• It is worth remembering from [9] that I(A) is prime when A is tame. In this

case, I(A) appears as one the associated primes of I(A,m). This requirement

will be satisfied for free in rank 3.

Definition 4.1.12. An ideal I is called a complete intersection if it can be generated

by as many generators as its codimension. By the Krull’s principal ideal theorem,

the codimension codim (I) is less than or equal to the minimal number of generators

µ(I).

The following Theorem is analogous to Theorem 2.13 in [9].

Theorem 4.1.13. A multiarrangement (A,m) is free if and only if the ideal I(A,m)

is a complete intersection.
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Proof. If (A,m) is free, then we take a basis θ1, . . . , θ` and apply them to the critical

1-form ωa to get ` generators for the I(A,m). On the other hand, as seen in Theorem

4.1.9, the logarithmic ideal I(A,m) is of height `, showing that it is a complete

intersection.

Conversely, if I(A,m) is a complete intersection, then it has some ` generating

elements, say 〈θ1, ωa〉, . . . , 〈θ`, ωa〉, where θ1, . . . , θ` ∈ DC(A,m). Comparison with

I(A,m) suggests that these elements form a set of generators for DC(A,m) over S.

As a result, DC(A,m) must be free over S, because S is a domain. It particular, it

is flat over S. The next step is to refine this by showing that D(A,m) is flat over

R. Let M be an arbitrary R module and consider it as a S-module by letting the

variables of C act trivially. Let n > 0 and use the flat base change formula for Tor

to get the following.

TorRn (D(A,m),M) ∼= TorSn(D(A,m)⊗R S,M) (4.9)

But here D(A,m) ⊗R S is the same as DC(A,m) and by flatness we see that the

right hand side vanishes. This shows that D(A,m) is flat and hence free over R.

The following conjecture indicates the invariance of the radical logarithmic ideal

under the support of the multiplicity. It is proved in case of multiarrangements with

only one multiple hyperplane and in general is supported by symbolic calculations.

Conjecture 4.1.14. The radical ideal rad(I(A,m)) only depends on supp(m). To

be precise, if m1 and m2 are multiplicities on an arrangement A, then

rad(I(A,m1)) = rad(I(A,m2))

if and only if supp(m1) = supp(m2).

The author expects to find a proof for this by understanding the ideal quotient

(I(A,m) : I(A)) and relating it to radical of the principal ideal generated by Q̃/Q.

4.2 Examples

Example 4.2.1 (Multipencils). The following computation gives the minimal asso-

ciated primes of a multiarrangement (A,m) of lines in C2.
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Let us consider the arrangement defined by Q̃ = f21 f2 . . . fn ∈ C[x, y]. The

module of derivations of this multiarrangement of lines is free and is generated by

θ1 = f1θE , θ2 =
Q

f1

(∂f1
∂x

∂

∂y
− ∂f1

∂y

∂

∂x

)
. (4.10)

Assuming that fi = cix+ diy, we get

I(A,m) =
(
f1(a1 + · · ·+ an),

n∑
i=2

ai(c1di − cid1)f2 · · · f̂i · · · fn
)

=(f1, g) ∩ (a1 + · · ·+ an, g),

where g denotes the second generator on the fist line above. Also note that

(f1, g) =
(
f1, (a2 + · · ·+ an)yn−2

)
, (4.11)

simply because each of g and yn−2(a2+ · · ·+an) is a linear combination of f1 and the

other one. Separating the generators takes us to the list of primary components that

include (fi, a2 + · · ·+ âi + · · ·+ an). In genearal, if the size of supp is at least 2, then

every line Hi = ker fi of multiplicity greater than one, contributes one component to

the intersection, namely the ideal generated by (fi, a2 + · · ·+ âi + · · ·+ an). In this

easy case, the primary decomposition is given by

I(A,m) = I(A) ∩ (x, y) ∩ (
⋂
mi>1

(f
mi−1
i , a+ · · ·+ âi + · · ·+ an)).

The associated primes in this case just come from flattening the exponents mi− 1 to

1, for all mi > 1.

The problem of finding the primary decomposition is not expected to have a

clean answer because the ideals 〈Ann(Hi), ωa〉 might have embedded primes which

are already not easy to describe.

Example 4.2.2 (Deleted A3 Arrangement). Let A be the arrangement defined by

Q = (y−z)y(x−y)x(x−z) and consider multiplicities m1 ≡ 2 and m2 = (2, 2, 3, 2, 2).

Resolving the ideals I1 = I(A,m1) and I2 = I(A,m2) in Macaulay 2 [16] returns

0→ S2 → S5 → S4 → S1 →S/I1 → 0

0→ S1 → S3 → S3 → S1 →S/I2 → 0
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as minimal free resolutions, where the first Betti number measures the minimal

number of generators. Therefore, m1 is non-free multiplicity where the ideal I2

that has codimension 3 needs 4 generators, where as m2 is a free multiplicity with

β1 = 3 = codimI2. It is also worth noting that by Proposition 4.1.9, they have the

same ideal and share the same zero locus. The non/freeness of these two examples

were predicted by a result of T. Abe. See [1].

The Theorem in the following section explains the occurrence of binomial Betti

numbers in the resolution of the free multiplicity in the Example above.

4.3 Tameness, Resolutions and Hilbert Series

By Proposition 1.4.19, together with the fact that ωa ∈ Ω1
C(A) ⊆ Ω1

C(A,m) we

get a well-defined complex as in the following theorem where the differential is mul-

tiplication by the logarithmic 1-from ωa. The statement and proof is analogous

to [9, Theorem 3.5].

Theorem 4.3.1. Let (A,m) be a tame multiarrangement, then the complex

0→ Ω0(A,m)
ωa−−→ Ω1(A,m)

ωa−−→ · · · ωa−−→ Ω`−1(A,m)
ωa−−→ Ω`(A,m)→ S/I(A,m)→ 0

(4.12)

is exact.

Proof. The idea is to show that all localizations of the complex above at maximal

points of R are exact. Again without loss of generality, we can assume that the

arrangement is full rank. In this case, the union of the complements ∪ni=1D(fi)

covers everything except the origin in the first factor. The first step is remove all

multiple hyperplanes one by one and show that the localization of the complex on

each complement agrees with that of the deletion. Then it remains to investigate

exactness at the origin for which the tameness hypothesis will be used.

Case I)Local exactness everywhere except at the origin. We use induction on

the size of the underlying arrangement. With only one hyperplane the problem is

empty. Let |A| > 1. For every H ∈ A of multiplicity m we have the sequence

Ω•R(A′,m|A′) ↪→ Ω•R(A,m)
fm−−→ Ω•R(A′,m|A′)

as a complex over R. Next we tensor this with C = C[a1, . . . , an−1]⊗ C[an].

Ω•C′(A
′,m|A′)⊗ C[an] ↪→ Ω•C(A,m)

fm−−→ Ω•C′(A
′,m|A′)⊗ C[an]
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If we localize at f , the inclusion upgrades to an isomorphism between dga’s since

over Sf , multiplication by fm will define a surjective map as fm will be invertible.

Therefore we get the following isomorphism of chain complex cohomologies

H•(Ω•C′(A
′,m|A′)⊗ C[an])f ' H•(Ω•C(A,m))f

where (Ω•
C′(A

′,m|A′) ⊗ C[an], d) ' (Ω•
C′(A

′,m|A′), d) ⊗ (C[an], 0). As a result,

H•(Ω•
C′(A

′,m|A′)⊗C[an])f will be isomorphic toH•(Ω•
C′(A

′,m|A′)f )⊗C[an]f where

the first factor is zero by induction hypothesis.

Case II)Local exactness at the origin. This uses the tame hypothesis and

follows from the following Lemma 4.3.2.

Let us denote the chain cochain complex (Ω•
S/C

(A,m), ωa) by Ω• and its co-

homology Hq(Ω•) by Hq, for q = 1, . . . , `− 1. It follows from the lemma above that

for each q in the range, we have

suppHq ⊆ {m},

and we want to show that the left hand side is actually empty. Comparison with the

formula

suppHq = V (AnnHq),

in view of the Nullstellensatz correspondence implies that the annihilator is of the

form mr, for some r ≥ 0. This turns the problem to showing that r = 0. The

possibility of having r > 0 is ruled out by the following lemma, where we show that

H0
m(Hq) = ∪∞i=1(0 :Hq mi) = 0,

for q = 1, . . . , `− 1.

Lemma 4.3.2. Let (A,m) be a tame multiarrangement and let m = SR+. If 1 ≤
q < ` is the first spot where Ω• is non-exact, then the zeroth local cohomology module

H0
m(Hq) vanishes. In particular, the localization of the complex 4.3 at m is exact.

Proof. We use the following two hypercohomology local spectral sequences.

′Ep,q2 = Hp(H
q
m(Ω•))⇒ Hp+qm (Ω•) (4.13)

′′Ep,q2 = H
p
m(Hq(Ω•))⇒ Hp+qm (Ω•) (4.14)
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The fact the first non-vanishing of local cohomology characterizes the depth, together

with the Auslander-Buchsbaum theorem, under the tame hypothesis, imply that

H
q
m(Ω•) = 0,

for 0 ≤ q < `− p. As a consequence of the first spectral sequence, we have Hkm(Ω•),

for k < `.

Considering the second spectral sequence, choose the smallest q with Hq 6= 0.

The map ′′E0,q
2 → ′′E1,q−1

2 = 0 is stable, thus

′′E0q
∞ = ′′E0q

2 .

This, combined with the fact that H
q
m(Ω•) = 0, for this specific choice of q, shows that

′′E0q
2 = H0

m(Ω•) = 0. By argument preceding the lemma, implies that the sequence

is exact, contradicting the choice of q.

Here is another implication of tameness, similar to Theorem 3.7 in [9]. Contrary

to the simple case, this does not imply that the logarithmic ideal is prime. In fact,

the logarithmic ideal of nonsimple arrangements is never prime and has at least two

isolated associated primes.

Theorem 4.3.3. Let (A,m) be a tame multiarrangement, then the logarithmic ideal

I(A,m) is Cohen-Macaulay.

Proof. This is similar to the proof of [9, Theorem 3.7] which uses the above resolution

together with Auslander-Buchsbaum Formula.

The following is a corollary to Theorem 4.3.1.

Corollary 4.3.4. A multiarrangement (A,m) is free if and only if the logarithmic

ideal I(A,m) admits binomial Betti number, i.e.

βi(S/I(A,m)) =

(
`

i

)
,

for i = 1, . . . , `.

Proof. The only if part is a simple consequence of the last theorem together with

Corollary 1.4.16 and Proposition 1.4.22. Conversely, if the Betti numbers are bino-

mial, then just because β1 = `, the ideal I(A,m) is generated by ` elements and

freeness follows from the proof of Theorem 4.1.13.
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The following two proposition compute the Hilbert series of S/I(A,m) in dif-

ferent gradings.

Definition 4.3.5. Let Ω•(A,m) be graded polynomially, i.e. deg xj = 1 and deg dxj =

0, for 1 ≤ j ≤ `. Then define

P(A,m)(t, u) :=
∑̀
p=0

h(Ω
p
C(A,m), t)up. (4.15)

For the following Proposition, we are going to bigrade the resolution by letting

deg dxj = deg xj = (1, 0) and deg ai = (0, 1), for all 1 ≤ i ≤ n and 1 ≤ j ≤ `. As a

result, multiplication by ωa will be a map of degree (0, 1).

Proposition 4.3.6. If (A,m) is tame, then

tm−`(−u)`

(1− u)n
P(A,m)(t,−t/u)

is the bigraded Hilbert Series of S/I(A,m) under the total grading.

Proof. By Theorem 4.3.1, for a tame multiarrangement (A,m), the complex

0→ Ω0
S/C [(0,−`)] ωa−−→ · · · ωa−−→ Ω`−1

S/C
[(0,−1)]

ωa−−→ Ω`S/C → (S/I)[(m− `, 0)]→ 0

is exact where the reference to (A,m) is dropped to keep the formula short. In our

grading, degωa = (0, 1), so the term Ω
p
S/C

(A,m) in the sequences should be shifted

to Ω
p
S/C

[(0, p − `)] in order to keep the sequence homogeneous. Let t and u record

the degrees in the R and C variables respectively.

h(S/I)[(m− `, 0)] =
0∑
p=`

(−1)`−ph(Ω
p
S/C

(A,m)[−(0, `− p)]; t, u), deg dxj = 1

= (−1)`
∑̀
p=0

(−1)pu`−ptph(Ω
p
C(A,m), t)h(C, u), deg dxj = 0

=
(−u)`

(1− u)n

∑̀
p=0

(−t/u)ph(Ω
p
C(A,m), t)
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Therefore the final answer is

h(S/I) =
tm−`(−u)`

(1− u)n

∑̀
p=0

(−t/u)ph(Ω
p
C(A,m), t), deg dxj = 0.

In the next calculation, we let the algebra Ω•
S/C

(A,m) be single graded by

letting deg dxi = 0 and

deg xj = deg ai = 1,

for 1 ≤ j ≤ ` and 1 ≤ i ≤ n. Under this setup, the 1-form ωa =
∑n
i=1 aidfi/fi will

be homogeneous of degree 0. In this grading, the complex

0→ Ω0
S/C(A,m) · · · ωa−−→ Ω

`−p
S/C

(A,m)
ωa−−→ · · ·Ω`S/C(A,m)→ (S/I)[m]→ 0, (4.16)

is exact, where m = deg Q̃ = |m| is the size of the multiarrangement.

Theorem 4.3.7. Let (A,m) be an free multiarrangement of rank ` with |A| = n.

Then the Hilbert series of S/I(A,m) is given by

h(S/I) =
Π`i=1(1− tdi)

(1− t)n+`
, (4.17)

where (d1, . . . , d`) = exp(A,m).

Proof. By exactness of the complex above, we have

h(S/I)[m− `] =
∑̀
p=0

(−1)`−ph(Ω
p
S/C

(A,m))

= (−1)`
∑̀
p=0

(−1)ph(Ω
p
C(A,m)) · h(C)

=
(−1)`

(1− t)n+`
∑̀
p=0

(−1)p
∑

1≤i1<···<ip≤`
t
−(di1+···+dip)

=
(−1)`

(1− t)n+`
∑̀
p=0

∑
1≤i1<···<ip≤`

(−t)−(di1+···+dip)

=
(−1)`

(1− t)n+`
Π`p=0(1− t−di) =

Π`p=0(t−di − 1)

(1− t)n+`
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Therefore

h(S/I) =
tmΠ`p=0(t−di − 1)

(1− t)n+`
=

Π`p=0t
di(t−di − 1)

(1− t)n+`
, (4.18)

where the fact m =
∑`
i=1 di is used.

Example 4.3.8. The Hilbert series of S/I(A,m) is not combinatorial. For the

multiarrangements of Example 1.4.12, we have

h(S/I(A1,m1)) =
1− t3 − t5 + t8

(1− t)6
, (4.19)

while

h(S/I(A2,m2)) =
1− 2t4 + t8

(1− t)6
. (4.20)

This is in sharp contrast to the simple case where the Hilbert series of locally free

arrangements is combinatorially determined. See [44].

4.4 Intersection Class with Multiplicity

Proposition 4.4.1. Let I be a bihomogeneous complete intersection ideal in

C[x0, . . . , xm; y0, . . . , yn]

of codimension c, which is generated by g1, . . . , gc, such that deg gi = (bi, di), for

i = 1, . . . , c, then the intersection class [V (I)] ∈ CH(Pm×Pn) = Z[h, k]/(hm+1, kn+1)

is given by

[V (I)] = Πci=1(bih+ dik).

Proof. One can use induction on the number of generators of I, since if we pull the

first generator g1 out, we get the two ideals (g1) and I ′ = (g2, . . . , gc), where the first

one defines a hypersurface and the second one is again a complete intersection. This

is because subsequences of regular sequences are again regular sequences. Since

V (I) = V ((g1) + I ′) = V (g1) ∩ V (I),

we get [V (I)] = [V (g1)] · [V (I ′)] and the answer follows by using the induction hy-

pothesis.

For the base case, consider a bihomogeneous polynomial g of degree (b, d) and

look at the hypersurface it defines in Pm × Pn. Since its codimension is one and the
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degree one part of the cohomology ring is generated by linear combinations of h and

k, the answer should be of the form αh + βk, for some numbers α, β. In order to

determine these, multiply it by hm−1kn, which is the cocycle of L× pt, where L is a

line in Pm and pt is a point in Pn. By g|pt denote the polynomial which is obtained

by partially evaluating g at the point pt. This will be a homogeneous polynomial in

x’s of degree b. We have

V (g) ∩ (L× pt) = (V (g|pt) ∩ L)× pt,

and [V (g|pt)∩L] = bhm and [pt] = kn, and by Kuenneth formula we get [V (g)∩ (L×
pt)] = bhmkn, which by comparison equals αhmkn and we get the first one. For the

other coefficient, one uses pt× L, where this time the point is the first factor and L

is a line in the second factor.

Corollary 4.4.2. Let (A,m) be a free multiarrangement with exp(A,m) = (d1, . . . , d`),

then

[V (I(A,m))] = Π`i=1((di−1)h+k) = (k−h)`π(A,m;h/(k−h)) = (−h)`χ(A,m; (h−k)/h).

Proof. When (A,m) is free with a basis θ1, . . . , θ`, then I(A,m) becomes a complete

intersection, generated by 〈θi, ωa〉, for i = 1, . . . , `, which is of bidegree (di−1, 1).

104



Bibliography

[1] Takuro Abe, Free and non-free multiplicity on the deleted A3 arrangement,

Proc. Japan Acad. Ser. A Math. Sci. 83 (2007), no. 7, 99–103. MR MR2361419

(2009b:32041)

[2] Takuro Abe, Hiroaki Terao, and Max Wakefield, The characteristic polynomial

of a multiarrangement, Adv. Math. 215 (2007), no. 2, 825–838. MR MR2355609

(2009g:52043)

[3] , The Euler multiplicity and addition-deletion theorems for multiarrange-

ments, J. Lond. Math. Soc. (2) 77 (2008), no. 2, 335–348. MR MR2400395

(2009f:32048)

[4] Takuro Abe, Hiroaki Terao, and Masahiko Yoshinaga, Totally free arrangements

of hyperplanes, Proc. Amer. Math. Soc. 137 (2009), no. 4, 1405–1410. MR

MR2465666 (2009j:32020)

[5] Paolo Aluffi, Grothendieck classes and chern classes of hyperplane arrangements,

arXiv:1103.2777 (2011).

[6] M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra,

Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969.

MR MR0242802 (39 #4129)

[7] Winfried Bruns and Jürgen Herzog, Cohen-Macaulay rings, Cambridge Studies in

Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993.

MR 1251956 (95h:13020)
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