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ABSTRACT 

Metastatic colonization and establishment of overt lymph node (LN) 

tumors indicates poor prognosis for cancer patients. However, the basic biology 

that influences the development of LN metastasis is poorly understood. The 

following work provides a new lymph node experimental metastasis assay 

(LEMA) that permits the assessment of tumor cell fate after they arrest in 

draining LNs. Using a mouse melanoma cell model, we discovered that only 8% 

of the tumor cells that arrive in the LN are successful in forming overt tumors. 

This work also explored the use of imaging approaches to monitor the process 

on LN metastasis in mice. To study the dynamic growth of LN metastases in vivo, 

we used three-dimentional high frequency ultrasound (HFUS) to non-invasively 

and longitudinally monitor the progression of LN metastases in mice. We 

observed that growth rates of LN tumors varied from mouse to mouse. 

Furthermore, HFUS allowed us to visualize small metastatic deposits and 

micrometastases and their growth over time.  In order to provide some ground 

work for the development of magnetic resonance imaging (MRI) of lymph node 

metastases, we developed a gel phantom that simulated the progressive 

metastatic colonization of LNs. By labeling cells with gadofluorine M (GdF), a 

positive contrast agent), we were able to demonstrate that MRI ( at 3T) detected 

differences in tumor cell number in our gel phantom that contained a series of 

cell pellets with different percentages of labeled tumor cells mixed with unlabeled 

tumor cells. We found that the lower limit of detection of GdF-labeled cells was 

546 cells per voxel. The research described herein will expedite future research 
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by providing a new experimental lymph node metastasis assay and novel 

imaging techniques that will permit the study of metastasis development in the 

lymph node. 

 

KEYWORDS: lymphatic metastasis, lymph node metastasis, lymph node, 

metastasis, high frequency ultrasound, magnetic resonance imaging 
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Chapter 1.0: Introduction of lymphatic metastasis 

1.1  Natural history of lymphatic metastasis in cancer 

Lymphatic vessels provide one of the main anatomical routes by which 

invasive tumour cells can disseminate from the primary tumour (Pantel and 

Brakenhoff, 2004). Certain types of cancer, including breast, prostate, and 

melanoma, have a propensity to disseminate via the lymphatics. Yet despite the 

prevalence of lymphatic metastasis, experimental work elucidating the underlying 

biology, until the last decade, has been relatively limited. In the past decade, 

there has been a surge in the number of studies uncovering the molecular 

determinants of lymphatic metastasis. The following chapter aims to highlight 

pre-clinical experimental work that contributes to our basic understanding of 

lymphatic metastasis. Before continuing, however, a brief overview of clinical and 

pathological studies that detail the natural history of lymphatic metastasis will 

esetablish the disease model which experimental models must mimic. 

Physicians have described the spread of cancer to axillary lymph nodes 

as early as the 18
th 

century (Weiss, 2000). Since then, a multitude of clinical and 

pathological studies have been published, suggesting that the lymphatic spread 

of breast cancer cells and formation of axillary lymph node metastases are 

common events in the natural history of the disease. The incidence of lymph 

node metastases in breast cancer is 30% to 50% (Foster 1996), 10% in prostate 

cancer (Swanson et al, 2006), and 50% in malignant melanoma (Buzzell and 

Zitelli, 1996). Upon review of the current literature, it is evident that there are at 
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least three potentially clinically relevant steps in lymphatic metastasis: 1) 

lymphangiogenesis, 2) lymphovascular invasion, and 3) lymph node metastasis. 

1.2 Lymphangiogenesis 

Neo-vascularization contributes to the dissemination of tumour cells by 

increasing the likelihood of tumour cell intravasation into vessels (Folkman, 

1992). In the context of lymphatic metastasis, it is reasonable to presume that 

increased lymphatic vessel density as a result of lymphangiogenesis would 

increase the likelihood of tumour cell invasion into lymphatic vessels. Indeed, 

there are clinical studies supporting this notion. Nakamura and colleagues (2005) 

examined archived and fresh frozen patient tissue samples, and demonstrated 

that elevated expression levels of vascular endothelial growth factor C (VEGF-C) 

was associated with increased lymphatic vessel density, lymph node metastases, 

and decreased patient survival. Schoppman and colleagues (2006) analyzed 

archival tissue from patients with invasive breast cancer and found a significant 

association between VEGF-C expression from tumour-associated macrophages 

and lymphatic microvessel density (LMVD), as well as LMVD and 

lymphovascular invasion. These findings support the idea of the local 

peritumoural inflammatory reaction that contains VEGF-C expressing 

macrophages, may contribute to lymphangiogenesis and thereby increasing the 

likelihood of lymphatic invasion by tumour cells (Coussens and Werb, 2002). 
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 To model tumour-associated lymphangiogenesis, Skobe and 

associates (2001) engineered MDA-MB-435 human breast cancer cells to over-

express VEGF-C. These cells were able to significantly increase intratumoural 

lymphangiogenesis when implanted in nude mice. Moreover over-expression of 

VEGF-C was also associated with a 60% increase in the incidence of lymph 

node metastasis. Similar findings have been demonstrated in MCF-7 human 

breast cancer cells (Karpanen et al, 2001; Mattila et al, 2002). Another growth 

factor that was discovered to stimulate lymphangiogenesis is VEGF-D. Stacker 

and colleagues (2001) transfected the non-metastatic 239EBNA cells to express 

VEGF-D (designated VEGF-D-293 cells). When injected into mice,  VEGF-D-293 

tumours had a higher amount of lymphatic vessels compared to tumours of the 

parental cell line. Furthermore, VEGF-D expression in VEGF-D-293 cells led to a 

higher incidence of lymph node metastases compared to parental cells. The 

authors demonstrated that the treatment of mice bearing VEGF-D-293 cells with 

anti-VEGF-D antibodies reduced the amount of tumour-associated lymphatic 

vessels, and inhibited the spread of tumour cells to draining lymph nodes. 

Metastasis to draining lymph nodes can also be inhibited by the administration of 

antibodies against the cognate receptor VEGF-R3,  as demonstrated by Shimizu 

and colleagues in 2005.  

Another biological factor that has been implicated in inducing tumour 

lymphangiogenesis is cyclooxygenase-2 (COX-2; Su et al, 2004; Timoshenko et 

al, 2006).  Bhattacharjee and colleagues (2010) demonstrated that the role of 
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cyclooxygenase (COX)-2 in the up-regulation of VEGF-C production is 

associated with lymphangiogenesis in patient samples. In an experimental 

mouse model, the inhibition of COX-2 by etodolac resulted in both decreased 

tumour lymphangiogenesis and lymph node tumour burden (Iwata et al, 2007). 

1.3  Lymphovascular invasion 

Tumour cell intravasation into lymphatic vessels is requisite for the 

initiation of lymphatic metastasis (Nathanson et al, 1997). Lymphatic or vascular 

invasion, a sign of poor prognosis, is commonly referred to as “lymphovascular 

invasion”, and means any involvement of an endothelial-lined space. Although it 

has been said that differentiating between vascular vs. lymphatic space 

involvement is not important in terms of prognostic value (both are felt to be 

associated with poor outcome), the use of this definition precludes the ability to 

tease out the relative significance of a lymphatic vs. a vascular route of 

metastasis. The development of new and improved markers of lymphatic 

endothelium, however, have allowed the specific evaluation of tumour cells found 

within lymphatic vessels, as defined by positive staining for markers such as 

lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1; Banurji et al, 1999), 

podoplanin (Breiteneder-Geleff et al, 1999), D2-40 (Kahn et al, 2002), or Prox-1 

(Wigle and Oliver, 1999). Using dual-color immunofluorescence staining for 

LYVE-1 and podoplanin, Schoppman and colleagues (2004) demonstrated that 

lymphatic invasion was associated with an increased risk of developing lymph 

node metastasis, as well as lower overall patient survival. The same authors also 
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found a correlation between high lymphatic microvessel density and lymphatic 

invasion. This supports the notion that increased vessel density increases the 

likelihood of tumour cell intravasation, in the context of lymphatic vessels 

(Folkman, 1992). 

1.4 Lymph node metastasis 

The prognostic value of axillary lymph node metastasis has been well 

known, and provides one of the strongest prognostic factors in breast cancer 

(Foster, 1996, Koscielny and Tubiana, 1996; Fisher et al., 1984; Contesso et al, 

1977; Nemoto et al, 1980; Peloquin et al, 1991). This is very well established for 

metastatic nodal deposits > 2.0 mm (Huvos et al, 1971). With lesser degrees of 

nodal involvement, the association with outcome is less clear. The 

preponderance of the literature would suggest that micrometastatic nodal 

involvement (ie. recognizable on routine H&E stained slides, as > 0.2 mm, but 

not > 2.0 mm; ) is also significant, but perhaps with a lesser degree of impact on 

prognosis (Maibenco et al, 2006; Park et al, 2009; Weaver et al, 2011). The 

clinical significance of nodal deposits no greater than 0.2 mm however (referred 

to as isolated tumour cells, pN0i
+ 

by AJCC 6
th 

edition staging criteria) is 

controversial (Singletary and Greene, 2003; Querzoli et al, 2006). 
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1.4.1 Metastatic progression in the lymph node 

As with step-wise progression of hematogenous (blood-borne) metastasis, 

lymphatic metastasis is presumed to be a step-wise phenomenon (Carr and Carr, 

1982). From the aforementioned clinical data, we can model that lymphatic 

metastasis can occur in five steps, illustrated in the Figure 1.1. The steps 

depicted in Figure 1.1 manifest as distinct histopathological entities in the clinic, 

some of which have prognostic significance (eg. lymphatic invasion and lymph 

node metastasis). However, whether the model represents a true continuous 

progression has yet to be ascertained. 
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Figure 1.1 Schematic diagram of the progression of lymphatic metastasis.  

(1) Tumour cell entry and transit within lymphatics (lymphatic invasion), (2) arrest 

in the draining lymph node as isolated tumour cells (ITCs), (3) formation of 

micrometastasis in the lymph node, (4) establishment of macrometastasis in the 

lymph node, and (5) further dissemination to downstream lymphatic vessels and 

lymph nodes. 
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1.4.2 Clues from studies of hematogenous experimental metastasis 

Questions regarding the fate of tumour cells once they arrest at the 

secondary site can potentially be addressed by using the experimental tools that 

were used to ascertain the timing of events and molecular determinants of 

hematogenous metastasis, and applying them to the study of the lymphatic 

metastasis. For example, Luzzi and colleagues (1998), through the use of 

intravital videomicroscopy (IVVM), have demonstrated that tumour cells that are 

introduced into systemic circulation arrest and extravasate into secondary organs 

with high efficiency. However, only a small proportion of these cells was able to 

establish growth at the secondary site. More strikingly, Naumov and colleagues 

(1999) employed IVVM to demonstrate the presence of “dormant” single non-

dividing cells that have extravasated into the liver parenchyma and have survived 

two weeks after injection. More recently, Heyn et al, (2006) employed magnetic 

resonance imaging (MRI) to study the fate of breast cancer cells in a mouse 

model of brain metastasis. Their work supports the notion that only a small 

proportion of extravasated tumour cells have the capacity to establish 

metastases. Using non-invasive imaging techniques to longitudinally monitor the 

lymphatic spread of tumour cells in vivo can provide insight into which step(s) of 

lymphatic metastasis do tumour cells accomplish with low efficiency, and thereby 

elucidating the rate-limiting step(s) of the process. 
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1.5 Animal models of lymphatic metastasis 

With respect to experimental studies of lymphatic metastasis in breast 

cancer, earlier work in the 1970’s by Ian Carr merits discussion. At the University 

of Saskatchewan, Carr and colleagues studied a series of rat mammary 

carcinomas that reproducibly metastasized to the popliteal lymph node when 

injected into the foot pad. In one study using Rd/3 cells, Carr and associates 

demonstrated that the primary tumour in the footpad continually seeds the 

popliteal lymph node with tumour cells thereby recapitulating the progressive 

steps of lymph node metastasis. However, if the footpad was removed before 24 

hours have elapsed, progressive lymphatic metastasis did not occur (Carr and 

McGinty, 1976). In another study using Walker rat carcinoma cells, cannulation of 

the lymphatic trunk efferent to the primary tumour revealed a progressive rise, 

with time, in the number of tumour cells leaving the primary tumour (Carr et al, 

1980).  

To model tumour-associated lymphangiogenesis, Skobe and associates 

(2001) engineered MDA-MB-435 human breast cancer cells to over-express 

VEGF-C. These cells were able to significantly increase intratumoural 

lymphangiogenesis when implanted in nude mice. Moreover over-expression of 

VEGF-C was also associated with a 60% increase in the incidence of lymph 

node metastasis. Similar findings have been demonstrated in MCF-7 human 

breast cancer cells (Karpanen et al, 2001; Mattila et al, 2002).  
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There is mounting evidence suggesting tumour cells may actively migrate 

towards and intravasate into lymphatic vessels by conscripting the same 

mechanisms of adhesion and migration that leukocytes use for entry into the 

lymphatic system. In a seminal paper by Muller and associates (2001), the 

authors provide clinical and experimental data suggesting that breast cancer 

cells express chemokine receptors (CXCR-4) that actively promote tumour cell 

migration into lymphatics and draining lymph nodes. In their experimental mouse 

studies, the inhibition of CXCR-4 with neutralizing anti-CXCR-4 antibodies 

significantly inhibited metastasis to the inguinal and axillary lymph nodes and 

lung.  

1.6 Unanswered questions 

The recent discoveries in lymphatic biology and lymphatic metastasis are 

indeed proving to be an exciting time in this field. Such studies are important in 

addressing questions regarding the progression of lymphatic metastasis. For 

example, during tumour progression, how many cells are shed into the 

lymphatics? What proportion of these tumour cells survives to form lymph node 

metastases? To what degree do lymph node metastases contribute (if at all) to 

systemic dissemination? What biological factors affect the progression of lymph 

node metastases? Such questions not only aim to determine the biological 

significance of isolated tumour cells (ITCs) and micrometastases, but to also find 

biological markers that have predictive value when assessing patient outcome. 
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These unanswered questions underscore the need for more models of 

lymphatic metastasis. Current experimental research is beginning to uncover the 

molecular determinants of lymphatic metastasis. However, at the same time, it’s 

also important to develop imaging models that permit the in vivo longitudinal 

imaging of the progression of lymphatic metastasis. The intersection between 

imaging and biological modeling of lymphatic metastasis will be a forward-

thinking approach to investigating the in vivo dynamics of lymphatic metastasis; 

and more importantly, such models will permit the non-invasive and longitudinal 

evaluation of the efficacy of anti-lymphatic metastatic therapeutics. 
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1.7 THESIS HYPOTHESIS 

Based on previous studies examining tumour cell fate in secondary organs 

such as the liver, lung, and brain, it is hypothesized that metastasis 

progression in lymph nodes is an inefficient process. Specifically, it is 

predicted that cancer cell survival will significantly decrease over 

progressive time points. 

1.8 THESIS OBJECTIVE 

To address the above hypothesis, the primary objective of this thesis is to 

develop and characterize a novel lymph node experimental metastasis 

assay that recapitulates the progressive steps of metastasis development 

in the lymph node. This model will be used to assess tumour cell fate 

(cancer cell survival) after their arrest in the lymph node 

1.8.1 SPECIFIC AIMS 

1)  To create a new lymph node experimental metastasis assay (LEMA) that 

permits the quantification of tumour cell fate after arrest in draining lymph 

nodes 

2) To assess the utility of high frequency ultrasound in the non-invasive and 

longitudinal characterization of lymph node metastasis development in 

vivo 
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3) To develop quantitative methods that utilize positive-contrast MRI to 

assess tumour cell number in a lymph node phantom. 
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Chapter 2.0: Assessing the fate of isolated tumour cells and 

micrometastases in the development of overt lymph node metastases 

2.1  Introduction 

 The dissemination of tumour cells into the lymphatic vasculature is 

common in the natural history of many types of cancer. After transit within the 

lymphatic vasculature, tumour cells eventually arrest and begin to colonize 

draining lymph nodes. The successful establishment of overt lymph node 

metastases (> 2 mm in diameter) becomes a clinically relevant event for the 

cancer patient since the assessment of the number of lymph node metastases 

and extent of nodal involvement is currently standard clinical practice in 

evaluating disease aggressiveness and determining patient prognosis (Das and 

Skobe, 2008). Although lymph node metastases themselves are not fatal to the 

patient, it is hypothesized that lymph node metastases act as reservoirs of 

metastatic cells which can disseminate further into systemic circulation 

(Sleeman, 2000; Morton et al, 2003). This notion is supported by Rebhun et al 

(2008), who demonstrated lymph node tumours can seed tumour cells into the 

systemic circulation.  

Each step of the (lymphatic) metastatic cascade may be a rate-limiting 

step (Chambers et al, 2002; Pantel and Brakenhoff, 2004). From tumour cell 

invasion into local stroma, intravasation into nearby vessels, transit within 

vessels, arrest at the secondary site, and successful formation of overt 

metastases – all potentially offer a window of therapeutic intervention. Therefore, 
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in order to produce efficacious anti-metastatic treatments in the clinic, it is 

paramount to study and understand the basic underlying biology that drives each 

step of the cascade. Indeed, within the last decade, several groups in lymphatic 

metastasis research have studied a particular aspect of the cascade in vivo and 

conceived a novel anti-metastatic therapy. For example, Wiley and colleagues 

(2001) demonstrated how the lymphatic dissemination of B16 cells over-

expressing chemokine receptor-7 can be inhibited by injecting neutralizing 

antibodies against C-C chemokine ligand 21 (cognate ligand of CCR7). In 

another study examining tumour-induced lymphangiogenesis, He and colleagues 

(2005) studied how blockage of VEGFR3 activation on lymphatic vessels by 

soluble VEGF-R3-Ig fusion proteins inhibited lymphangiogenesis and the 

incidence of lymph node metastases was reduced.  

Despite the plethora of basic research studies examining how tumour cells 

gain entry into the lymphatic vasculature, relatively few studies have examined 

the events following tumour cell arrest in draining lymph nodes. With the 

exceptions of a few studies (Dadiani et al, 2006; Yokoyama et al, 2006), the 

majority of studies in lymphatic metastasis have regarded lymph node 

metastases as a “black-box” labeled “end-point” rather than being viewed as the 

result of a series of discrete steps involving a number of possible pathways  

(MacDonald et al, 2002). Clinical data provides evidence that earlier stages of 

lymph node metastases can manifest as the following histologically distinct 

entities whose prognostic significance is controversial: (1) isolated tumour cells 



23 

 

or clusters of tumour cells less than 0.2 mm in diameter, (2) micrometastases 

which are lesions greater than 0.2 mm and no greater than 2 mm, and finally (3) 

overt metastases greater than 2 mm (Kahn et al, 2006; Singletary et al, 2002). 

From these clinical observations, formation of lymph node metastases is 

presumed to begin with isolated tumour cells arresting in the subcapsular sinus 

of the lymph node. These tumour cells then proliferate to form a micrometastatic 

deposit, which eventually grows into an overt lymph node tumour. Despite the 

voluminous amount of clinical observations, exactly how each step progresses to 

the next is unknown. What proportion of isolated tumour cells survive to form 

micrometastases? What proportion of micrometastases grow into overt lymph 

node metastases? What genetic factors positively or negatively regulate the 

progression in each of these steps? 

Insight into answering these questions comes from animal models of 

metastasis where the fate of tumour cells after arrest at the secondary site is 

quantified (Luzzi et al, 1998; Cameron et al, 2000, Heyn et al, 2006; Kienast et 

al, 2010). To quantify the fate of tumour cells, Luzzi et al (1998) and Cameron et 

al (2000) used an experimental metastasis assay in which tumour cells and 

similar sized reference beads are directly injected into the vessel upstream of the 

target organ. The reference beads permit a “cell accounting” analysis where the 

percent survival of the initial injected population of tumour cells that form 

metastatic lesions at progressive intervals can be calculated (MacDonald et al, 

2002). Collectively, these studies demonstrate that upon arrival in the secondary 



24 

 

site, the progression of single tumour cells into overt metastases is an inefficient 

process. More specifically, the majority of single tumour cells that arrive in the 

secondary site do not survive to form overt tumours, and only 0.02% and 5.8% of 

tumour cells survive to form metastases in the liver and lung, respectively (Luzzi 

et al, 1998; Cameron et al 2000). Heyn and colleagues (2006) employed high-

resolution cellular MRI to track the fate of magnetically labeled cancer cells 

arrested in the brain and determined that 1.5% of the cells were able to form 

metastases. Kienast et al (2010) also found similarly low values of efficiency in 

the brain; furthermore the authors define several critical steps unique to the brain 

microenvironment that contribute to this inefficiency. The studies described 

above focused on hematogenous metastasis.  However, with respect to 

assessing metastatic inefficiency lymph node, there are currently no metastasis 

models that permit the quantification of the discrete series of events that occur 

after tumour cells arrest in the lymph node. 

In the research described herein, the use of the B16F10 melanoma model 

is described in a novel metastasis assay, called lymph node experimental 

metastasis assay (LEMA), which permits the quantitative assessment of tumour 

cell fate after arrest in lymph nodes. We demonstrate how our model 

recapitulates the progressive steps of metastasis development: from isolated 

tumour cells, micrometastases, and overt lymph node metastases. Furthermore, 

using the “cell accounting” technique, we provide quantitative evidence that 

suggests metastasis formation in the lymph is also an inefficient process. We 
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found that only a small proportion of cells delivered to the lymph node (0.37%) go 

on to form micrometastases, and that even a smaller proportion (~0.08%) that 

arrest in the lymph node  are successful in forming overt lymph node tumours.  
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2.2 Materials and Methods 

2.2.1 Cell culture and cell labeling 

Briefly, a B16F10 murine melanoma cell line carrying a lacZ expressing 

vector (Kirstein et al, 2009) was maintained in -MEM medium containing 10% 

fetal bovine serum at 37°C and 5% CO2. For labeling cells with 3μm 

microspheres, cells were grown in a T75 tissue culture flask using medium with 

fetal bovine serum until 80% to 90% confluent.  

To determine if macrophages in the lymph node (sinus histiocytes) 

phagocytose the tumour cells, tumour cells were labeled with 3μm polystyrene 

beads (Polysciences, Warrington, Pennsylvania) in vitro prior to injection into 

mice. For cell labeling, 5mL of OptI-MEM medium (Invitrogen, Burlington, 

Ontario) containing 1.68 x 108 beads were added to 70-80% confluent B16F10-

LacZ cells (T75 flask) and incubated for 1 h at 37°C. After incubation, the media 

was aspirated, and cells were washed thoroughly with Hank’s buffered salt 

solution (HBSS) to remove unincorporated 3μm beads. Cells were then 

trypsinized, centrifuged, then resuspended in HBSS. The cell pellet was washed 

twice in HBSS prior to performing a trypan blue exclusion assay to test cell 

viability. Cell viability was between 95-99%. From these cells, a working cell 

suspension containing 1.5x107 B16F10-lacZ cells and 7.5x105 16μm polystyrene 

reference beads (Polysciences), at a 20:1 cell:bead ratio, in a volume of 1mL 

was prepared for intranodal (inguinal) injection in mice.  
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2.2.2 Animal model and surgical technique 

Female C57Bl/6 mice (Harlan Sprague Dawley, Indianapolis, Indiana), 5 

weeks of age, were cared for in accordance with standards of the Canadian 

Council on Animal Care, under an approved protocol of the University of Western 

Ontario Council on Animal Care. During surgery, mice were kept under gas 

anesthesia with 1.5% isolflurane in oxygen and restrained on a water-heated 

stage.  A one-inch incision was made in the lower ventral midline, and skin and 

underlying fascia were blunt dissected to expose the 4th mammary fat pad. The 

skin flap attached to the mammary gland was reflected back and pinned with 

sterile needles for easy access to the mammary fat pad and inguinal lymph node. 

Under a dissecting microscope, the surface of the inguinal lymph node was 

exposed by removing adjacent mammary fat pad tissue. A suspension of tumour 

cells and 16μm reference beads (200μL of working cell suspension described 

above) was infused into the lymphatic microvasculature via intranodal injection 

with a pulled borosilicate glass needle (inner diameter 200 μm) that was 

connected to an 18 gauge needle and 1mL syringe with Tygon tubing. Infusion of 

the cell suspension was done over a period of 5 minutes. In order to maintain the 

tumour cell to reference bead ratio in the axillary lymph node, further seeding 

from tumour cell growth in the  inguinal lymph node (site of injection) was 

prevented by surgically removing the inguinal immediately after completion of the 

injection. Large blood vessels connected to the mammary fat pad were 

cauterized. The surgical wound was closed with surgical staples. Mice were then 
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injected with Metacam (0.1mg/kg; Boehringer Ingelheim Vetmedica Inc, St. 

Joseph, Missouri) and saline and allowed to recover.  

To assess the growth of tumour cells in the axillary lymph node at 

progressive time intervals, surgery and tumour cell injection was performed on 40 

mice that were divided into 4 time end-point groups: 90 minutes, 3 days, 7 days, 

and 14 days post-injection, with 10 mice per group. At the end of each time 

interval, axillary lymph nodes were collected for gross morphological 

assessment, histological processing and analysis.  

2.2.3 Micro-lymphangiography 

 To highlight the lymphatic drainage pathway from the inguinal lymph node, 

a blue tissue marking dye TMDTM (Triangle Biomedical Sciences Inc., Durham, 

North Carolina) was injected in the same manner as described in the previous 

section. 

2.2.4 Lymph node staining and histology 

 At each time end-point, whole axillary lymph nodes and lungs were 

harvested and placed in ice-cold phosphate buffer (0.1 M sodium phosphate 

monobasic, 0.1 M sodium phosphate dibasic, pH 7.3 until the organs from all 

mice were collected. Organs were subsequently stained with X-gal (Bioshop, 

Burlington, Canada) solution as described by Goring et al (1987) to visualize 

LacZ-expressing cells. X-gal stained lymph nodes were imaged in whole mount 

using a SteREO Lumar (Zeiss, Toronto, Canada) dissection scope attached to a 
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Canon PowerShot A640 with a vertical and horizontal resolution of 180 dots per 

inch.. 

 For histologic examination, fixed organs were paraffin-embedded for 

routine histological sectioning (thickness, 5 μm) and staining with hematoxylin 

and eosin (H&E). Digital images of histology sections were captured using a 

color CCD camera and analyzed using Optimas TM 6.1 image analysis software 

(Optimas Corporation, Bothell, Washington). 

2.2.5 Histological and stereological analysis 

 To acquire an estimate of the surface distribution of LacZ-expressing 

tumour cells in lymph nodes at each time point, a point count (PP) method 

described by Underwood (1970) was used to calculate the fractional surface area 

of the lymph node covered with tumour cells. Using ImageJ analysis software 

(Abramoff et al, 2004), a point grid consisting of squares with an area of 0.14 

mm2 was superimposed onto digital images of whole mount lymph nodes (both 

sides of the lymph node were assessed). The point estimate (PP) is calculated by 

determining the number of points falling on LacZ/melanin staining divided by the 

total number of points falling on the lymph node.  

 To calculate histological tumour-burden, the same point count method was 

applied to digital images of H&E sections of lymph nodes. Using a point grid 

consisting of squares with an area of 1000μm2, PP is calculated by determining 

the number of points falling in areas of frank tumour divided by the total number 
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of points falling on the lymph node. PP was calculated for three 5 μm-thick 

sections (spaced 20 μm apart) per lymph node to obtain an average per mouse. 

2.2.6 Determining tumour cell survival in lymph nodes  

 To determine the percentage of injected melanoma cells that survived as 

isolated tumour cells, micrometastases, and/or overt metastases, we based our 

calculation on the assumption that metastatic deposits originated from a single 

cell (Fidler and Talmadge, 1986). As defined by the American Joint Committee 

on Cancer (Green et al, 2002 ; Singletary et al, 2002), isolated tumour cells are 

defined as tumour cell clusters that are less than 0.2 mm in diameter; 

micrometastases are tumour deposits larger than 0.2 mm but no larger than 2 

mm; overt metastases are larger than 2 mm. Therefore, by tabulating the number 

of isolated tumour cells, micrometastases, and overt metastases from axillary 

lymph node wholemount images (1 wholemount image per mouse, 10 mice per 

time point) and the average number of reference beads from corresponding 

histology sections (n = 6), the observed tumour cell-to-reference bead ratio for 

each lymph node was calculated for each time point. For each mouse in each 

time point, the observed ratio was divided by the initially injected tumour cell-to-

reference bead ratio to calculate tumour cell survival. Reference bead counts for 

lymph node sections were obtained from the average of 6 histology sections per 

lymph node. To estimate the number of the reference beads per lymph node, the 

numerical density of reference beads per section volume (area of section x 
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section thickness, 5μm) was multiplied by the number of section volumes that fit 

in the total lymph node volume.  

2.2.7 Statistical analysis 

Statistical analysis was performed using Microsoft Excel 2007 (Microsoft 

Corporation, Redmond, Washington) and GraphPad Prism version 4.0 

(GraphPad Software Inc., San Diego, California) for Windows XP. When raw 

percentage values were binomial in distribution, raw values were transformed 

using the arcsine (square root(x)) function in order to normalize the distribution. 

The mean and standard deviation of transformed data were analyzed by one-way 

ANOVA to compare multiple groups. Upper and lower confidence intervals were 

calculated, back-transformed and graphed with the untransformed mean 

percentage value for each group. A p value < 0.05 was regarded statistically 

significant. To determine which groups were significantly different, Tukey’s 

multiple comparisons test was used. When data were not percentage values, 

data were tested for normality using Kolmogorov-Smirnov test that is available in 

the Graphpad Prism software package.  

When data were normal in distribution, parametric one-way ANOVA was 

used to compare the means of multiple groups, and post-hoc Tukey’s multiple 

comparisons test was performed to determine which groups were signicantly 

different. When data were not normally distributed, the means of multiple groups 

were compared by non-parametric Kruskal-Wallis ANOVA, and when means 

were found to be statistically different, a post-hoc  Dunn’s multiple comparisons 
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 was performed to determine which groups were significantly different.
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2.3  Results 

2.3.1 Experimental lymph node metastasis model 

Our first goal was to devise and test a new in vivo model that recapitulated 

the progressive stages of metastasis development in the lymph node.  This 

model utilizes two interconnected lymph nodes:  the inguinal lymph node 

(injection site), and axillary lymph nodes (site of metastasis), as illustrated in 

Figure 2.1A. When labeling cells with 3μm beads in vitro, the majority of cells 

(~70%) were efficiently labeled with the beads, and labeling did not inhibit cell 

growth in vitro or the ability of cells to form metastases in vivo (data not shown). 

In the first step illustrated in Figure 2.1, a cell suspension, containing a ~16:1 

mixture of B16F10-LacZ cells and 16μm reference beads (see Figure 2.1D), was 

injected directly into the inguinal lymph node. By applying slow and steady 

pressure to the syringe, the injectate traveled (~40μL per minute) through the 

inguinal lymph node, lymphatic duct, and drained into the axillary lymph node. 

This is simulated in Figure 1B, where a blue tissue dye was injected into the 

inguinal lymph node.  In the second step, after injection, the inguinal lymph node 

was surgically removed to prevent tumour growth that may further seed the 

axillary lymph node, thereby abolishing the injected 16:1 tumour cell-to-bead 

ratio. Two weeks post-injection, overt axillary lymph node metastases were 

apparent (Figure 2.1C). To assess whether tumour cells were phagocytosed by 

immune cells, tumour cells were labeled with 3μm beads prior to injection into the 

inguinal lymph node (shown by black arrows in Figure 2.1D). We then used this 
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model to study the development of axillary lymph node metastases, by 

performing a time-dependent experiment that permitted the evaluation of 

changes in tumour burden at progressive time points as described in the 

Methods & Materials Section, section 2.2.2 (Figure 2.2). 
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Figure 2.1 Lymph node experimental metastasis assay (LEMA).                      

A diagram of the experimental lymph node metastasis model is shown (panel A). 

A suspension of tumour cells and 16 μm reference beads are intranodally 

injected into the inguinal lymph node. Excess fluid pressure cause the 

suspension to leave the inguinal lymph node (via efferent lymphatic vessel) into 

the lymphatic duct. The cell suspension then arrives in the axillary lymph node 

via the afferent lymphatic vessel. Tumour cells and 16 mm reference beads 

arrest in the subcapsular region of the afferent side of the axillary lymph node.  In 

panel B, the drainage route of the cell suspension is simulated where a blue 

tissue dye was injected in the same manner to visualize the lymphatic drainage 

pathway. After injection with tumour cells, a large axillary lymph node metastasis 

became apparent after 14 days (panel C). In panel D, a bright-field micrograph is 

shown of the cell suspension containing B16F10-lacZ cells (white *) and 16μm 

reference beads (white arrowheads) is shown. In addition, the B16F10-lacZ cells 

were pre-labeled with 3μm beads (black arrows) to determine if host cells 

phagocytosed tumour cells once they arrive in the lymph node.  Scalebar = 20μm 

in Panel D. 
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Figure 2.2 A time-dependent study to investigate the progression of lymph 

node metastasis progression. Forty mice underwent surgery in which B16F10-

lacZ cells were intranodally injected into the inguinal lymph node of female 

C57/Bl6 mice. The inguinal lymph node was then surgically removed, and the 

mouse was allowed to recover. Forty mice were divided into 4 groups that were 

euthanized at 90 minutes, 3, 7, and 14 days post-injection. Lymph nodes were 

then examined for the presence of isolated tumour cells, micrometastases and 

overt metastases. 
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2.3.2 Incidence of isolated tumour cells, micrometastases, and overt 

metastases 

 The growth of lymph node metastases over time, including incidences of 

each type of metastatic deposit (isolated tumour cells, micrometastases, overt 

metastases), is summarized in Table 2.1. The presence or absence of each type 

of lesion was tabulated. Shortly after injection into the inguinal lymph node (90 

minutes), isolated tumour cells were observed in the axillary lymph node in all 10 

mice. After 3 days had elapsed, isolated tumour cells were found in 9/10 mice, 

and micrometastases were found in 7/10 mice. At 7 days post-injection, no 

isolated tumour cells were found in any of the mice. The incidences of 

micrometastases and overt metastases were 1/10 and 2/10, respectively. By 14 

days, 1/10 mice had a micrometastasis, and the majority of lymph nodes in mice 

(6/10) were overrun by tumour tissue. The assessment of incidence of a 

particular metastatic lesion type was binary: only the presence or absence of the 

lesion type was denoted. Since this did not provide information about the extent 

of nodal involvement, we subsequently assessed metastatic tumour burden by 

quantifying the proportion of lymph node surface area occupied by tumour and 

tumour area in histological sections.  



39 

 

 

 

 

 

 

 

 



40 

 

2.3.3 Stereological analysis of whole-mount surface tumour burden 

 To measure the surface area of lymph nodes that was occupied by 

tumour, tumour cell expression of -galactosidase (blue in color) on the surface 

of the lymph node was assessed. Representative axillary lymph nodes from each 

time point are shown in Figure 2.3 A-D. After injection into the inguinal lymph 

node, tumour cells drained into the subcapsular sinus of the axillary lymph node, 

and can be visualized as blue staining at the lymph node surface (90 minutes; 

Figure 2.3A). In Figure 2.3B, the surface distribution of tumour cells was reduced 

at 3 days post-injection. The reduction in surface tumour burden continued to 

decrease at 7 days. One lymph node harbored a micrometastasis at this 

timepoint, as shown in Figure 2.3C. By 14 days, large overt metastases had 

formed in the majority of lymph nodes, Figure 2.3D.  

 The observations above were supported by quantitative measurements of 

surface tumour burden as determined by stereological analysis (point count 

method) in Figure 2.3E, where the means (± standard deviations) are shown. At 

90 minutes post-injection, tumour cells were found on average, to occupy 50.7% 

of the lymph node surface area. The surface area occupied by tumour cells 

significantly dropped to 10% and then 8%, at 3 and 7 days post-injection, 

respectively. By 14 days, the surface area of tumour tissue significantly rose to 

54.6%, which reflects the increase in overt metastases at this time point (see 

Table 1).  
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Figure 2.3 Visualization and quantification of surface tumour burden of 

axillary lymph nodes. Panels A-D depict the stages of lymph node metastasis 

development: initial arrest of tumour cells in the lymph node (A), isolated tumour 

cells (B), micrometastasis (C), and an overt metastasis (D), at the time points 

indicated. Scalebar = 2 mm. In panel B, inset shows higher magnification 

showing clusters of isolated tumour cells (arrowheads). Scalebar = 100μm. The 

changes in surface tumour burden are quantified in panel E, where 

untransformed means and back transformed standard deviations are shown, n = 

10 mice per group. Statistics were performed on transformed data in which the 

means were analyzed by one-way ANOVA (p <0.001), and a post-hoc Tukey’s 

multiple comparisons test was used to determine which groups were significantly 

different from each other (* p < 0.5, ** p < 0.01). 
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   2.3.4 Stereological analysis of histological tumour burden 

 Analysis of surface tumour burden is useful in providing a whole (albeit 

superficial) view of metastatic colonization on a per-lymph node basis over 

progressive time points. To study the growth of metastatic deposits that extend 

beyond the subcapsular sinus, however, analysis of the histological cross-

sections of the lymph node was performed. Figure 2.4A-D show representative 

histological cross-sections taken at each time point (low magnification, 25X). 

Although the presence of tumour cells was confirmed at higher magnification 

(1000X) at 90 minutes and 3 days post-injection (see insets of Figure 2.4A-B), 

histological tumour burden at low magnification did not become apparent until 7 

and 14 days, as seen in panels C and D, respectively. This is due to the 

diminished sensitivity of the point count method in detecting single tumour cells 

at low magnification. Only when tumour deposits grow larger than 0.01 mm2 does 

the probability of a grid point falling on tumour tissue (and being enumerated) 

increase. The changes in histological tumour burden over time are shown in 

Figure 2.4E.  The means and standard deviations are shown, where n = 10 per 

group. The means of transformed data was analyzed by one-way ANOVA (p 

<0.001), and a post-hoc Tukey’s multiple comparisons test was used to 

determine which groups were significantly different from each other (* p < 0.5, *** 

p < 0.001). 
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Figure 2.4  Quantification of time-dependent changes in histological 

tumour burden. Panels A-D show histological sections at low magnification 

(25X) that are representative of their respective time points. Scalebar = 1 mm. In 

A-B, although tumour burden was not apparent at low magnification, tumour cells 

are seen to be arrested in the subcapsular sinus at high magnification (1000X, 

see insets). Arrow heads denote the location of tumour cells. Scalebar = 20μm. 

Although single tumour cells are difficult to detect at 25X magnification, tumour 

burden can be quantified by the point count method at 25X magnification when 

micrometastases (an example shown in panel C) and overt metastases (an 

example in panel D) form. Histological tumour burden between the time groups 

are quantified in E, where untransformed mean and back transformed standard 

deviations are shown, n = 10 per group. The means of transformed data (asin 

square root) was analyzed by one-way ANOVA (p < 0.001), and a post-hoc  

Tukey’s multiple comparisons test was used to determine which groups were 

significantly different from each other (* p < 0.05, *** p < 0.001). 
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2.3.5 Consistent delivery of reference beads in all time-end point groups 

The role of 16 μm reference beads is central to LEMA for two important 

points: (1) the observations on lymph node tumour burden over progressive time 

intervals are presumably due to an actual biological phenomenon rather than 

technical issues such as an inconsistent delivery of injectate between groups of 

mice, (2) the accuracy of quantifying tumour cell fate by the “cell accounting” 

technique hinges upon the reference beads arresting in the same anatomical 

regions as tumour cells due to their similarity in sizes. Both of these assumptions 

imply that the average number of reference beads do not significantly vary 

between groups of mice. Therefore to determine if these assumptions are 

correct, the average number of reference beads per section was counted in six 

histological sections spaced 25 μm apart from each other. The graph in Figure 

2.5 C demonstrates that the average number of reference beads per section did 

not significantly vary from 90 minutes, 3, 7 and 14 days. Furthermore, from these 

values we extrapolated the number of reference beads per entire volume of 

lymph node and found the values did not significantly vary from each other at any 

of the time points. Therefore we can conclude the two assumptions in LEMA are 

correct. One should note, however, there were 2 cases were where reference 

beads were absent in histology sections. In one case,  a mouse in the 3 day time 

point, where the lymph node harbored only a few scattered isolated tumour cells. 

The other case was in day 7 in a mouse where the lymph node was negative for 
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metastasis. Slides containing lymph node sections that did not contain reference 

beads could be due to sampling error when sectioning the lymph node during 

histological preparation.  
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Figure 2.5 Quantification of the average number of reference beads 

delivered per lymph node for all time points. Panel A depicts an example of 

an area (subcapsular sinus, dashed box) where tumour cells and reference 

beads first arrest in the axillary lymph node. Scalebar = 2 mm. In B, a higher 

magnification of the dashed box area in A is shown. Arrow points to a reference 

bead, arrow heads denote tumour cells. Scalebar = 20μm. The mean number of 

reference beads per section was averaged from six sections per axillary lymph 

node per mouse. In panel C, the average of the means from all mice per time 

point are shown, error bars represent the standard error of the mean. The means 

were shown to not significantly vary between all time points, one-way ANOVA (p 

> 0.05). The numbers of mice enumerated per time point were 10, 9, 9 and 10, at 

90 minutes, 3, 7 and 14 days, respectively. 
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2.3.6 Assessment of tumour cell survival and fate with respect to 

formation of micrometastases and overt metastases 

In determining the fate of tumour cells after they arrest in the lymph node, 

we assumed that various types of metastatic deposits (isolated tumour cells, 

micrometastases, and overt metastases) are clonal in origin (Fidler and 

Talmadge, 1986). With this assumption, the percentage of tumour cells in the 

lymph node that have survived as a particular type of metastatic lesion was 

calculated. The percent tumour cells delivered to the lymph node that were 

present as isolated tumour cells, micrometastases, and overt metastases at the 

various time points is shown in Figure 2.6 A, B, and C, respectively. These 

survival data are summarized in the fate map in Figure 2.7, where stages of 

lymph node metastasis development are arranged in chronological order. 97% of 

the tumour cell injectate survived as isolated tumour cells at 90 minutes post-

injection. Strikingly, tumour cell survival dropped from 97% to 7% from 90 

minutes to 3 days. Single tumour cells were no longer found in the axillary lymph 

node beyond 3 days. Micrometastases that have formed at 3 days may 

contribute to the formation of overt metastases observed at 7 days post-injection. 

Also, some of the micrometastases at 3 days may have remained dormant, 

which may explain their presence at 7 and 14 days. In addition, there is a larger 

percentage of the originally delivered cells present as micrometastases at 3 days 

(0.36%), than detected as overt metastases at days 7 and 14, suggesting 

inefficiency in conversion from micrometastases to overt metastases.
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Figure 2.6. Quantification of the fate of tumour cells in the lymph node.                 

In panel A, the percentages of the tumour cells in the lymph node that  survived 

as isolated tumour cells for each time point are shown. Means and standard 

errors are shown. Means were compared by parametric one-way ANOVA in 

graph A (p < 0.0001), and Tukey’s multiple comparisons test was used to 

determine which means were significantly different (***,p < 0.001). Panel B 

shows the percentage of the tumour cells in the lymph node that formed 

micrometastases.  In panel C, at 7 and 14 days post-injection, the proportion of 

tumour cells in the lymph node that were able to successfully form overt tumours 

was 0.002% and 0.08%, respectively. Means and standard errors are shown. In 

graphs B & C, means were compared by non-parametric ANOVA (Kruskal-Wallis 

test) where p < 0.001 and p < 0.01, respectively. Dunn’s multiple comparisons 

test was used to determine which means were significantly difference (*, p < 

0.05; **, p < 0.01; ***, p < 0.001). 
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Figure 2.7. A flow chart showing the fate of tumour cells after they arrest in 

the axillary lymph node. Note the rapid loss of isolated tumour cells over time. 

The micrometastatic compartment also showed progressive loss from 3 days to 

14 days post-injection. At 7 days, 0.002% of the tumour cells that arrested in the 

lymph node had formed overt metastases, and at 14 days, 0.08% of the tumour 

cells had formed overt metastases. Dotted arrows denote possible fates of the 

metastatic lesion. From this flow chart, it is apparent that there are several major 

sources of metastatic inefficiency in the lymph node:  1) there was a significant 

loss of isolated tumour cells and 2) only a small proportion of isolated tumour 

cells were able to form micrometastases, and 3) only a small proportion of 

micrometastases were able to successfully form overt metastases. 
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2.3.7 Sinus histiocytes as a possible source of tumour cell toxicity in the 

lymph node 

 To determine if phagocytic activity of sinus histiocytes in the lymph node 

contributed to tumour cell death, tumour cells were pre-labeled with 3 μm 

polystyrene beads prior to injection into mice.  The greatest amount of tumour 

cell loss occurred between 90 minutes and 3 days post-injection of tumour cells. 

Therefore to assess whether sinus histiocytes contributed to tumour cell loss 

between these two time points, we examined lymph node histology sections for 

changes in the proportion of immune cells that contained 3 μm beads from 90 

minutes to 3 days (Figure 2.8). Indeed, we found that the average proportion of 

sinus histiocytes containing 3μm beads doubled from 90 minutes to 3 days, 

however this trend did not reach significance. 
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Figure 2.8 Quantification of sinus histiocytes containing 3 μm beads. A 

trend towards an increase in the number of sinus histiocytes containing 3 μm 

polystyrene beads from 90 minutes to 3 days post-injection is observed. The 

mean of averages and standard deviations are shown. The means were shown 

to not significantly vary between 90 minutes and 3 days (unpaired t-test, p > 

0.05). 
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2.4 Discussion 

  To date, research in lymphatic metastasis has largely focused on the site 

of the primary tumour where metastatic cells gain entry into lymphatic vessels. 

From these studies, several molecules have been implicated in promoting 

lymphatic metastasis in vivo including: VEGF-C (Karpanen et al, 2001; Hoshida 

et al, 2006), VEGF-D (Stacker et al, 2001), CXCR3 (Kawada et al, 2004), CCR7 

(Wiley et al. 2001), and COX-2 (Bhattacharjee et al, 2010), to name several. 

Tumour cells gain entry into peritumoural lymphatic vessels and eventually drain 

into regional lymph nodes. The events occurring after tumour cell arrest in lymph 

nodes have been less studied in basic scientific literature. On the other hand, 

clinical data clearly demonstrate distinct histological stages of metastasis 

development which eventually result in clinically relevant overt metastasis. It is 

the subclinical metastatic lesions such as isolated tumour cells and 

micrometastases that stir controversy with respect to their impact on patient 

survival (Millis et al 2002; Imoto et al, 2006; Andersson et al, 2010). To clarify the 

biological significance of subclinical nodal disease, animal models are required to 

study the progression of single tumour cells to micrometastases, and eventually 

overt metastases. More importantly, cancer researchers can use these animal 

models to discover predictive biomarkers that can help clinicians easily assess 

the clinical impact of isolated tumour cells and micrometastases. However, there 

are very few appropriate animal models that permit the study of the events after 

tumour cell arrest in the lymph node (Yokoyama et al, 2006).  
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Thus, to devise an animal model that would permit a quantitative study of 

the events preceding the formation of overt lymph node metastases, I turned to 

previous studies of metastasis using the experimental (hematogenous) 

metastasis assay to quantify the fate of tumour cells after arrest at the secondary 

organ (Luzzi et al, 1998; Cameron et al 2000). LEMA uses the same approach as 

these previous studies by injecting a cell suspension with a known ratio of tumour 

cells and similar sized reference beads upstream of the secondary organ. 

Although the intranodal injection of tumour cells is an artificial method to 

introduce tumour cells into the lymphatic vasculature, the progressive steps of 

metastasis development in the axillary lymph node observed in this study (see 

Figure 2.4 A-D) mimics the progressive stages of metastasis development 

observed in patient lymph nodes – from isolated tumour cells, micrometastases, 

and overt lymph node metastases. 

Once the tumour cells and 16 μm reference beads arrest in the axillary 

lymph node, the reference beads permit a “cell accounting” analysis to be 

performed in which the percent survival values of the population of tumour cells 

that have arrested in the lymph node were calculated at progressive intervals. 

Our analysis revealed a precipitous drop in tumour cell survival from 97% to 7% 

from 90 minutes to 3 days post-injection, respectively. Thereafter, no isolated 

tumour cells were found. Also, we found that a small proportion of isolated 

tumour cells (ie. 0.36% from 90 minutes) survived to form micrometastatic 

deposits. We also observed that the number of micrometastases decreased over 
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time from ~0.3% to 0.003% from 3 to 14 days post-injection. Lastly, only 0.08% 

of the tumour cells that arrest in the lymph node were able to form overt 

metastases 14 days post-injection. 

The metastatic inefficiency observed in the lymph node is similar to 

observations of metastasis progression in the liver (Luzzi et al, 1998), lung 

(Cameron et al, 2000), and brain (Heyn et al, 2006; Kienast et al, 2010) with a 

few notable differences. The drop in the number of isolated tumour cells from day 

1 to 3 days post-injection is 6% in liver, 24% in lung, and ~ 5% to 41% in the 

brain (depending upon the cell line, Kienast et al, 2010), whereas in the lymph 

node, we saw a 90% drop from 90 minutes to 3 days post-injection. Another 

notable difference observed in the other studies is that the percent survival of the 

original tumour cell injectate arrested at the secondary site persisting as single 

non-dividing tumour cells is 36% in liver and 3.5% in lung (both after 14 days), 

4.5% in brain after 28 days (Heyn et al 2006), and 1.7% after 42 days (Kienast et 

al, 2010), whereas in the lymph node, no single tumour cells were found at 7 or 

14 days post-injection. From a broader perspective, these differences in 

metastatic efficiencies of different cell lines and the organ they grow in illustrate 

Paget’s hypothesis that a disseminated cancer cells can only form metastases in 

organs that are permissivefor growth (Paget, 1889).  

The steep drop in the number of isolated tumour cells over time, and their 

absence at later time points observed in this model, suggest that the lymph node 

microenvironment is not conducive to the growth of single tumour cells when 
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compared to survival values in the previously mentioned studies. Peripheral 

lymph nodes are known to be major immunological sites harboring many types of 

immune cells including natural killer cells and phagocytic sinus histiocytes. These 

immune cells have been demonstrated to have anti-tumour activity in the lymph 

node in spontaneous metastasis assays (Kurokawa 1970; Carr and McGuinty, 

1974; Yokoyama et al, 2006). Therefore, to determine if these immune cells play 

a role in the progressive loss of tumour cells in LEMA, B16F10-LacZ cells were 

labeled with 3μm polystyrene beads in vitro prior to injection into mice. Indeed 

the cytoplasm of sinus histiocytes was observed to contain 3μm beads, as well 

as blue and brown melanotic granules, at various time points, suggesting that 

histiocytes may contribute to the observed metastatic inefficiency in LEMA. At the 

same time, however, it is possible that tumour cells can die, and their cellular 

debris would be subsequently scavenged by sinus histiocytes, as is their 

function. Therefore, future studies using intravital videomicroscopy are needed to 

provide direct evidence of the role of sinus histiocytes in tumour cell loss in the 

lymph node. 

The current study provides the first quantitative analysis of the steps 

leading to the formation of metastases in the lymph node. Although lymph node 

metastases themselves are not lethal to the patient (Das and Skobe, 2008), they 

may act as reservoirs of metastatic cells that can further disseminate into 

systemic circulation (Sleeman, 2000).  Observations by Rehbun and Fidler 

(2008) suggest that lymph node tumours can seed the lung with metastases with 
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equal propensity as the primary tumour. It would be interesting to determine if 

reducing the tumour burden in lymph nodes results in reduced lung tumour 

burden. If so, this would strengthen the notion of lymph node metastases as 

being reservoirs of metastatic cells. In the context with our study, we discovered 

that for this B16 melanoma model, metastasis formation is an inefficient process 

within the lymph node. As with previous reports on metastatic inefficiency, we 

also observed “bottleneck” effects where only a few isolated tumour cells or 

micrometastases can successfully progress to the next stage of metastasis 

development.  

LEMA is a new metastasis assay that has been developed to address the 

need for animal models which permit the study of metastasis development in the 

lymph node microenvironment. This is the first report to quantify the fate of 

tumour cells after they arrest in the lymph node. The “bottleneck” effect observed 

at each step of metastasis suggests there are mechanisms that regulate how 

isolated tumour cells and micrometastases successfully form overt lymph node 

tumours. It is our hope this model will facilitate future research that will examine 

these regulatory mechanisms. In doing so, novel anti-metastatic therapeutics can 

be discovered that inhibit the formation of lymph node tumours, but more 

importantly, potentially prevent further systemic dissemination of metastatic cells. 
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Chapter 3.0:  High-Frequency (40 MHz) Ultrasound Imaging of the 

Development of Experimental Lymph Node Metastases 

3.1  Introduction 

 Evaluation of lymph node status and removal of metastatic lymph nodes 

has been part of standard care for cancer patients.  When metastatic tumour 

cells escape into the lymphatic vasculature, they eventually drain into the first 

lymph node, termed sentinel node, of the regional drainage basin (Cabanas, 

1977). From the sentinel node, tumour cells can disseminate and establish 

metastases in several lymph nodes in the drainage basin. Considering the 

sequence of these events, biopsy of the sentinel nodal provides a good indicator 

of the nodal status of downstream regional lymph nodes (Morton et al, 1992). 

The assessment of nodal status is of particular clinical importance since degree 

of nodal involvement foretells the statistical probability of future or current risk of 

systemic metastases to distant organs (Cady et al., 2007). In an effort to discover 

new avenues of anti-metastatic therapeutic intervention, the pathological 

processes that drive lymphatic metastasis are an area of intense research in 

preclinical studies (for review, see Mumprecht and Detmar, 2009). 

To study the stages of lymph node metastasis progression in mice, I have 

recently developed a novel animal model termed lymph node experimental 

metastasis assay (LEMA; see Chapter 2.0). This previous study demonstrated, 

though progressive time end-point experiments, that LEMA reliably recapitulates 
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the progressive stages of metastasis development, from: 1) the arrest of tumour 

cells, 2) growth into micrometastasis, 3) and formation of overt lymph node 

metastases. Moreover, adapting a “cell accounting” technique previously 

developed for quantifying steps in hematogenous metastasis (Luzzi et al., 1998; 

Cameron et al,. 2000), we were able to demonstrate how the formation of lymph 

node metastases is an inefficient process.  We found that only 0.08% of tumour 

cells that arrive in the axillary lymph node were successful in forming overt 

metastases. However, one caveat of histological studies that examine disease 

progression is that they produce static “snap shots” of a pathologic process that 

is dynamic in nature. For example, Holmgren and colleagues (1995) 

demonstrated that the growth of micrometastases in lung is in a state of flux that 

is largely influenced by the rate of cell proliferation and rate of cell apoptosis. 

Thus once we observe a histological “snap-shot” of a metastatic deposit, it is not 

readily apparent whether the lesion would continue to grow into a lymph node 

tumour or spontaneously regress. To address this limitation, the current research 

uses non-invasive three-dimensional high frequency ultrasound (3D HFUS) 

imaging to longitudinally study the dynamic growth of individual lymph node 

metastases. 

 When compared to other imaging modalities such as magnetic resonance 

imaging, x-ray computed tomography, and positron emission tomography, 

ultrasound is the most prevalent diagnostic imaging modality used in the United 

States (Szabo, 2004). The frequency of clinical ultrasound scanners ranges from 
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1 – 15 MHz and spatial resolution ranges from 3 mm to 0.5 mm, accordingly. 

HFUS ranges from 20-100 MHz, and can resolve structures on the micrometer 

scale; however, there is a trade-off since depth penetration of the ultrasound 

waves into the tissue is diminished due to frequency-dependent attenuation 

(Vogt et al., 2010). Thus HFUS largely has been used in near-surface clinical 

applications (imaging skin & superficial lymph nodes), and small animal imaging. 

With respect to small animal imaging cancer research, HFUS has proven to be a 

useful tool in studying orthotopic tumour growth (Cheung et al., 2005), the 

development of liver metastases (Graham et al., 2005), and assessing the 

efficacy of targeted therapies against tumour vasculature (Franco et al., 2006). In 

regards to lymph node imaging, several groups have used high frequency 

ultrasound in monitoring lymph node size in pathological conditions such as 

autoimmune lymphoproliferative disease (Teachey et al, 2008) and lymph node 

hyperplasia (Bosisio et al, 2009). The latter study is of particular interest because 

the authors demonstrated the reliability of HFUS in serially imaging lymph nodes 

as small as 0.1 mm3 and reported that error measurements accounted for 6.7% 

of variability when measuring small lymph nodes. 

The present research demonstrates the utility of 3D HFUS (40 MHz) in 

serially imaging the development of lymph node metastases in mice. Specifically, 

I demonstrate how ultrasound parameters such as volume, roundness index, B-

mode brightness, and percent vascularity can be used to characterize the 

progression of lymph node metastasis development. In addition, we report the 
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sensitivity and specificity of these parameters in differentiating metastatic lymph 

nodes from non tumour-bearing lymph. The most important finding of this study is 

the ability of HFUS to detect small non-palpable metastatic deposits ranging from 

1.2 to 4.4 mm in diameter without the use of contrast agents or cell labels. The 

size range of small metastatic deposits detected in this study is smaller than the 

clinical limit of detection which ranges from 4.5 - 5 mm in diameter (Starritt et al, 

2005; Sibon et al, 2007). This suggests that ultrasound scanning at higher 

frequencies maybe more sensitive in detecting smaller metastases compared to 

scanning at lower ultrasound frequency. The small metastatic deposits observed 

in this study appeared as distinct hyperechoic regions which permitted image 

segmentation and the acquisition of volumetric data over successive time points. 

From these findings, we conclude that HFUS is a cost-effective and time-efficient 

imaging modality well suited for longitudinal study of lymph node 

micrometastases mice.  



70 

 

3.2   Materials and Methods 

3.2.1 Cell culture  

B16F10-LacZ murine melanoma cells (Kirstein et al, 2009) were 

maintained in -MEM containing 10% fetal bovine serum at 37°C and 5% CO2. 

Cells were then trypsinized with 0.25% trypsin and 1mM EDTA, centrifuged at 

800 rpm for 5 minutes, then resuspended in HBSS. The cell pellet was washed 

twice in HBSS prior to performing a trypan blue exclusion assay to test cell 

viability. Cell viability was between 95-99%. From these cells, a working cell 

suspension containing 1.5x107 B16F10-lacZ cells in a volume of 1mL was 

prepared for intranodal (inguinal) injection. A volume of 200μL containing 3x106 

cells were injected into each mouse. 

3.2.2  Animal model and surgical technique 

Surgical procedures for LEMA are described in more detail in Chapter 2. 

The current study used LEMA to induce tumour growth in axillary lymph nodes, 

however, tumour cells were not labeled with 3 μm beads nor co-injected with 16 

μm reference beads. Described briefly, female C57Bl/6 mice (Harlan Sprague 

Dawley, Indianapolis, IN), 5 weeks of age, were cared for in accordance with 

standards of the Canadian Council on Animal Care, under an approved protocol 

of the University of Western Ontario Council on Animal Care. Surgery was 

performed on mice under gas anesthesia (1.5% isolfluorane in O2) on a water-

heated stage. Under asceptic conditions, the right inguinal lymph node was 
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slowly injected with 200 μL of a suspension containing 3x106 B16F10-LacZ cells 

(see Figure 3.1 A). During the injection, the cell suspension could be seen 

leaving the inguinal lymph node via the efferent lymphatic duct when observed 

under a dissection microscope. After injection, the inguinal lymph node was 

surgically removed to prevent early onset of morbidity due to rapid tumour growth 

in the inguinal lymph node (see Figure 3.1 B). The surgical wound was closed 

with stainless steel staples, and mice were injected with Metacam (0.1mg/kg; 

Boehringer Ingelheim Vetmedica Inc, St. Joseph, Missouri) and allowed to 

recover. From previous experiments using this model, after 14 days post-

injection, palpable axillary lymph node metastases form in 70-90% of the mice 

(see Figure 3.1 C). 

A separate group of aged-matched mice (n = 3) served as a control group 

where mice underwent the same surgical procedures as outlined above, except 

saline was injected in the inguinal lymph node rather than tumour cells. This was 

done to determine whether tissue damage from the surgical procedure affected 

the downstream axillary lymph node. 
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Figure 3.1 A novel animal model recapitulating lymph node metastasis. 

To experimentally induce the formation of lymph node metastases, tumour cells 

were introduced directly into the lymphatic vasculature via an intranodel injection 

of tumour cells in the inguinal lymph node (panel A). Morbidity from tumour 

growth at the injection site was prevented by surgical removal of the inguinal 

lymph node (panel B). After 14 weeks post-injection, axillary lymph node 

metastases formed (panel C). 
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3.2.3 Ultrasound B-mode & power Doppler imaging 

 To non-invasively monitor the changes in lymph node volume, roundness 

index (RI), B-mode image brightness (grey value), and  vascular volume fraction 

from power Doppler ultrasound during the development of lymph node 

metastases, the Vevo 2100 high-frequency ultrasound imaging system 

(VisualSonics Inc., Toronto, Ontario, Canada) was used.  The Vevo 2100 is the 

linear array system described by Foster et al (2009). The Vevo 2100 ultrasound 

probe used in this study (MS-550D) has a 40-MHz center frequency with a 7-mm 

focal depth. The nominal in-plane spatial resolution at the focus is 40 μm (axial) x 

80 μm (lateral). Imaging of mice was similar to the methods described by 

Graham et al. (2005). Briefly, the shoulder area nearest to the axillary lymph 

node was depilated with commercial NairTM hair removal cream. During imaging, 

the mouse was positioned on its side and was kept under anesthesia with 1.5% 

isofluorane on a heated stage. Two-dimensional (2D) images of the lymph node 

were acquired in the sagittal plane after ultrasound contact gel was applied to the 

depilated shoulder area. For three-dimensional (3D) imaging, parallel 2D images 

were obtained by mounting the transducer on a computer-controlled linear motor 

that was programmed to acquire images at 30-μm intervals along the length of 

the lymph node. All mice were imaged every second day until 14 days post-

injection (Figure 3.2), a time point at which 70%-90% of mice typically developed 

lymph node metastases (Chapter 2). 
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 Ultrasound volume measurements were obtained as described by Tong et 

al 1998). Briefly, the boundaries of lymph nodes or hyperechoic regions were 

manually segmented within parallel planes separated by 300 μm. The total 

volume of the object of interest was calculated by summing the outlined areas 

and multiplying the inter-slice distance. 

Three-dimensional power Doppler imaging was used to measure changes 

in percent vascularity of lymph nodes during the development of metastases. 

Percent vascularity is the percentage of pixels within the ultrasound volume in 

which blood flow was detected by the power Doppler system. The acquisition 

settings for power Doppler were 10 x 14 mm2 field of view, frequency 32MHz, 

100% transmit power, 30 dB receiver gain, wall filter at maximum, and 4 kHz 

pulse repetition frequency. These settings were selected to image normal lymph 

node vascularity in non-tumour bearing mice. Power Doppler imaging was 

immediately performed after each B-mode imaging scan, as described above. In 

total, B-mode and power Doppler imaging took approximately 8 minutes to 

complete per mouse. 

To obtain measurements of percent vascularity, the boundaries of lymph 

node tumours were manually segmented within parallel planes separated by 300 

μm. The percent vascularity represents the percentage of the pixels within the 

region of interest (ROI) which have a power Doppler signal associated with them.
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Figure 3.2 Imaging protocol to longitudinally study the progression of 

lymph node metastasis. Mice that have received an injection of tumour cells 

were monitored every 2nd day for 14 days. B-mode ultrasound and 3D power-

Doppler imaging were performed to measure changes in lymph node volume, 

roundness index, B-mode image brightness, and lymph node vascularity. Control 

mice were subject to sham surgery and saline injection to determine if the 

changes in ultrasonic parameters were specific to the presence of growing 

metastases. At the end point, mice were euthanized and lymph nodes harvested 

and stained for lacZ and H&E for morphometric analysis. 



76 

 

3.2.4 Ultrasound Imaging Analysis 

Lymph node images were manually segmented in parallel planes at 300 

μm intervals through the 3D ultrasound images and lymph node volumes were 

estimated as described in Graham et al. (2005). For lymph nodes with distinct 

hyperechoic regions, subvolumes of these brighter regions were analyzed in the 

same manner. 

The roundness index (RI) of the lymph node, defined as the ratio of the 

longest axis to the shortest axis of the lymph node (Vassallo et al., 1993), was 

measured in 2D images of lymph nodes. Five images were obtained from each 

lymph node at all time points and exported into the ImageJ software package 

(Abramoff et al, 2004) for analysis. In ImageJ, lymph nodes were segmented and 

the RI was manually calculated. The five RI measurements were averaged for 

each lymph node.  

To assess differences in B-mode image brightness (grey scale value) 

between lymph nodes negative for metastases (as assessed by histology) and 

lymph node metastases and regions suspected of being metastatic tissue, five 

2D images of lymph nodes were imported into ImageJ. The images were stored 

using a logarithmically compressed grey scale with 256 grey levels and a 65-dB 

dynamic range. Three circular regions of interest (ROIs), with a diameter of 0.3 

mm, were uniformly spaced along the length of the lymph node and the mean 

grey pixel value from all the pixels within the ROI was calculated. The 15 grey 
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values from the 5 images analysed were averaged for each lymph node. In cases 

where lymph nodes had hyperechoic regions suspected of being small metastatic 

deposits, a sub-region analysis was performed where mean grey values sampled 

from hyperechoic were compared to mean grey values obtained from regions of 

the lymph node that appeared normal. Sub-region comparison analysis was 

performed on three lymph nodes that harboured distinct hyperechoic sub-

regions. 

3.2.5  Assessing sensitivity and specificity of ultrasound parameters in 

detecting lymph node metastases 

To assess how well the above ultrasound parameters can accurately 

detect the presence of lymph node metastases when compared to the “gold 

standard” of histological evaluation by a pathologist, the sensitivity and the 

specificity of each parameter was calculated. In the context of this study, 

sensitivity refers to the proportion of mice with actual lymph node metastases 

and considered positive by ultrasound. Specificity refers to the proportion of mice 

without lymph node metastases and considered negative by ultrasound 

(Florkowski, 2008). For each ultrasound parameter, raw values were arranged 

from lowest to highest, and a threshold value was applied as a “cut-off” point that 

differentiated lymph nodes that were negative for metastases and lymph nodes 

that harboured metastases. For example, Vassallo and colleagues (1993) 

considered lymph nodes with a small RI value (< 2) to be positive for metastasis. 

Therefore when the range of values within the negative lymph node group was 
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examined, the smallest RI value was 3.4. This value is then considered the 

threshold value where any lower RI value would be considered “positive” for 

metastasis, whereas any value higher than the threshold value would be 

considered “negative”. When comparing the number of “negative” and “positive” 

lymph nodes by ultrasound evaluation to the actual number of true negatives and 

positives by the “gold standard” of histological assessment, sensitivity and 

specificity values can be calculated from the following equations: 

Sensitivity = True Positive Fraction (TPF)      
 
TPF =     Correct positive diagnosis 
    

   Actual number of positive cases 
 

 

Specificity = 1 - False Positive Fraction (FPF) 
 
FPF =      Incorrect positive diagnosis   
   

            Actual number of negative cases 
 

 

TPF and FPF values were calculated using cut-off values for volume, roundness 

index, B-mode brightness, and percent vascularity. The cut-off values were 

chosen based on the range of values observed in negative lymph nodes. The 

resulting sensitivity and specificity values for each parameter were tabulated. 
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3.2.6 Lymph node staining and histology 

 Fourteen days after injection, all animals were sacrificed  after final 

imaging and whole axillary lymph nodes were harvested and placed in ice-cold 

phosphate buffer (0.1 M sodium phosphate monobasic, 0.1 M sodium phosphate 

dibasic, pH 7.3) until the organs from all mice were collected. Organs were 

subsequently stained with X-gal (Bioshop, Burlington, Canada) solution as 

described by Goring et al., (1987) to visualize LacZ-expressing cells. X-gal 

stained lymph nodes were imaged in whole mount using a SteREO Lumar (Zeiss 

Canada) dissection scope attached to a digital camera (Canon). For histologic 

examination, fixed organs were paraffin-embedded for routine histological 

sectioning (thickness, 5 μm) and staining with hematoxylin and eosin (H&E).  

3.2.7 Histological and stereological analysis 

 To acquire an estimate of histological tumour burden, a point count (PP) 

method described by Underwood (1970) was used to calculate the fractional area 

of the lymph node section containing tumour tissue. Using ImageJ analysis 

software, a point grid consisting of 0.01μm2 squares was superimposed onto 

digital images of H&E stained lymph node sections. The point estimate (PP) was 

calculated by determining the number of points falling on tumour tissue divided 

by the total number of points falling on the lymph node. PP was calculated for 3 

sections per lymph node to obtain a mean per mouse.  
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3.2.8 Statistical analysis 

Statistical analysis was performed using Microsoft Excel 2007 (Microsoft 

Corporation, Redmond, Washington) and GraphPad Prizm version 4.0 

(GraphPad Software Inc., San Diego, California) for Windows XP. Prior to 

performing statistical analyses on means, data were tested for normality. When 

data were normally distributed, means that were measured over time were 

compared by parametric repeated measures analysis of variance (ANOVA), and 

post-hoc Tukey’s multiple comparisons test was performed to determine which 

means were significantly different. When data were not normally distributed, 

means that were measured over time were compared by non-parametric  

repeated measures Friedman’s test, and post-hoc analysis using Dunn’s multiple 

comparisons test.  

To compare ultrasound volume measurements of metastatic tissue in 

lymph nodes to histological area measurements, a correlation coefficient (r2) 

value was generated using a linear regression model to determine if a positive 

correlation existed between the two parameters.  
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3.3  Results 

3.3.1 Lymph node experimental metastasis assay 

LEMA is a new animal model that recapitulates the stages of metastasis 

development in the lymph node. In this assay, axillary lymph node metastases 

are formed by the direct introduction of tumour cells into the lymphatic 

vasculature via intranodal injection into the inguinal lymph node. Prior to injection 

of tumour cells, mice were scanned by ultrasound for baseline measurements of 

lymph node volume, roundness index, B-mode brightness, and percent 

vascularity. The incidence of metastases 14 days after injection is shown in 

Table 3.1, as assessed by histopathology. 
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3.3.2 Changes in lymph node volume during the development of 

metastases 

 High-frequency ultrasound was used to non-invasively monitor the 

changes in lymph node volume during the stages of early seeding, formation of 

micrometastases, and the development of overt tumours. Mice were divided into 

distinct groups based on their histological characterization at end point: 1) 

negative lymph nodes with no metastases (see Figure 3.3 A); 2) lymph nodes 

that harboured small metastases but normal parenchyma tissue was still 

apparent (Figure 3.3 B); and 3) large metastases where the lymph node was 

completely replaced by metastatic tissue (Figure 3.3 C). Statistical analysis of 

these three groups reveals significant changes in lymph node volume over time 

as measured by ultrasound. Large lymph node metastases exhibited the greatest 

increase in volume over time. Interestingly, when comparing the median volumes 

of the three groups at 14 days, negative lymph nodes were not statistically 

different from those harbouring small metastases (see Figure 3.3 D legend).  



84 

 

Figure 3.3 Ultrasound analysis of lymph node volume during the 

development of metastases. Panels A, B, and C provide examples of a lymph 

node negative for metastases (assessed by histology), a lymph node with a small 

metastasis (white dashed box), and a large lymph node metastasis, respectively. 

Volumes are indicated in each panel. In panel D, longitudinal measurements of 

lymph node volume are shown for the three groups of lymph nodes. Means ± 

standard deviations are graphed. All groups significantly changed in volume over 

time (*,+ repeated measures ANOVA, p < 0.0001, n = 5; # Friedman test, p < 

0.01, n = 3). At end point, comparison of the three groups (Kruskal-Wallis, p < 

0.05) showed no difference between negative lymph nodes and small 

metastases (post-hoc Dunn’s multiple comparisons test, p > 0.05). In contrast, 

large metastases were significantly different from negative lymph nodes (post-

hoc Dunn’s multiple comparisons test, p < 0.01).  
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3.3.3 Changes in lymph node roundness index during the development of 

metastases 

 Representative examples of lymph nodes with RI values from each group 

of mice are shown in Figure 3.4 A, B, and C.  Negative lymph nodes had high RI 

values (greater than 3.4) which are characteristic of normal flat, prolate spheroid-

shaped lymph nodes (Figure 3.4 A). The growth of small metastatic deposits 

increased the vertical height of lymph nodes, resulting in a lower RI value (less 

than 3.4; Figure 3.4 B). In large metastases, tumour growth resulted in a rounder 

shape (low RI value; Figure 3.4 C). Longitudinal RI measurements of the three 

groups of lymph nodes are shown in Figure 3.4 D. Repeated measures ANOVA 

of RI values reveal negative lymph nodes and lymph nodes with small 

metastases showed no significant change in RI over time. In contrast, lymph 

nodes that developed large metastases significantly became rounder over time 

(therefore decreasing RI value). At the end point, median RI values of negative 

lymph nodes, small metastases, and large metastases were found to be 

significantly different from each other (non-parametric ANOVA (Krusal-Wallis). 

Negative lymph nodes and lymph nodes with large metastases were found to be 

significantly different from each other, whereas median RI value of lymph nodes 

with small metastases did not significantly differ from either group. 
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Figure 3.4 Ultrasound analysis of lymph node roundness index during the 

development of metastases. Panels A, B, and C provide examples of a 

negative lymph node, a lymph node with a small metastasis, and a large lymph 

node metastasis, respectively. RI values are shown for each lymph node. In 

panel D, longitudinal measurements of lymph node RI values are shown for the 

three groups. Means ± standard deviations are shown. Both negative lymph 

nodes (*) and small metastases (#) showed no significant change in RI over time, 

repeated measures ANOVA (p > 0.05, n = 5) and Friedman test (p > 0.05, n = 3), 

respectively. Large metastases (+) did show a significant change in RI over time 

(repeated measures ANOVA, p < 0.0001, n = 5). At end point, the median RI 

values of all groups were compared (Kruskal-Wallis, p < 0.01). There were 

significant differences between the three groups, where negative lymph nodes 

and large metastases were significantly different from each other (Dunn’s 

multiple comparisons test, p < 0.01). The medial RI value of lymph nodes did not 

significantly vary from both negative lymph nodes and lymph nodes with large 

metastases. 
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3.3.4 Changes in lymph node B-mode brightness during the development 

of metastases 

The B-mode brightness of lymph nodes was measured over time to 

determine if differences exist between negative and metastatic lymph nodes. 

Representative examples of a negative lymph node, a lymph node with a small 

metastasis, and an overt lymph node metastasis are shown in Figure 3.5 A, B 

and C. Negative lymph nodes typically appeared hypoechoic (darker) than the 

surrounding adipose tissue. Lymph nodes with small metastatic deposits showed 

distinct sub-regions that appear hyperechoic (brighter) compared to adjacent 

lymph node parenchyma; see Figure 3.5 B, and Figure 3.6 A, D, G and J for 

examples. Large lymph node metastases were more hyperechoic compared to 

normal lymph nodes. Longitudinal assessment of B-mode brightness in the three 

groups of lymph nodes is shown in Figure 3.5 D. Mean pixel brightness sampled 

from negative lymph nodes showed significant changes over time, however there 

were no time points that were significantly different from each other. In contrast, 

lymph nodes with small metastases, and lymph nodes that developed into large 

metastases, did show significant increases in B-mode brightness over time. At 

end point, the B-mode brightness of overt lymph node metastases was 

significantly higher than negative lymph nodes (see Figure 3.6 B). 
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Figure 3.5  Ultrasound analysis of lymph node B-mode brightness during 

the development of metastases. Panels A, B, and C exhibit the echogenic 

properties of a negative lymph node, a lymph node with a small metastasis, and 

a large lymph node metastasis, respectively. In panel D, longitudinal 

measurements of lymph node B-mode brightness are shown for all three groups 

of lymph nodes, means ± standard deviations are shown. All groups showed 

significant changes over time (*, + repeated measures ANOVA, p < 0.05; # 

Friedmen test p < 0.05). At later time points, large lymph node metastases 

showed grey values that were significantly higher than lymph nodes at pre-

injection time point (10-14 days compared to day 0; p < 0.001; Tukey’s multiple 

comparisons test). At end point, B-mode brightness was significantly higher than 

negative lymph nodes (un-paired t test, p < 0.01).  
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3.3.5 Intranodal hyperechoic regions in lymph nodes correspond to small 

metastatic deposits 

At the end point, there were three lymph nodes that harboured small 

metastatic deposits while retaining areas of normal lymph node organ structure 

(Figure 3.6 panels C,F,I,L). Corresponding 2D ultrasound images exhibited 

distinct hyperechoic regions (Figure 3.6 panels A,D,G,J) that appeared to 

correspond to the metastatic deposits. These regions were not found in normal 

lymph nodes. A sub-region B-mode brightness analysis of these 2D images was 

performed in ImageJ to determine if these hyperechoic regions were significantly 

brighter than surrounding  areas within the same lymph node. In all three lymph 

nodes, these hyperechoic regions were significantly brighter than the surrounding 

tissue (Figure 3.6 panels E,H,K). With respect to the ultrasound images in Figure 

3.6 E, H, K, manual measurements of the corresponding metastatic deposits in 

stained whole-mount lymph nodes were 1.5 mm (micrometastasis), 2.6 mm, and 

3.8 mm at their widest diameter, respectively.  

3.3.6  A positive correlation between ultrasound volumetric and 

histological area measurements 

When comparing the volume fraction of these hyperechoic regions and the 

area fraction of the metastatic deposit in histological sections, in addition to data 

from lymph nodes with large metastases, there was a strong positive correlation 
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(r2 = 0.94) between ultrasound volumes and histological area measurements 

(Figure 3.7 C).  
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Figure 3.6 Hyperechoic subregions of the lymph node corresponding to 

micro- and macrometastatic deposits. B-mode ultrasound images of axillary 

lymph nodes  are shown in panels A, D, G, J. An example of a negative lymph 

node is shown in panel A. Axillary lymph nodes shown in D, G, J containing 

hyperechoic subregions (dashed outlines). Scalebar =1 mm. In panel B, the 

mean B-mode brightness of negative lymph nodes (n = 5 lymph nodes) and 

lymph nodes with large metastases (n = 5 lymph nodes) were found to be 

significantly different (un-paired-t test, p < 0.01). Intranodal subregion analyses 

were performed on B-mode images of the lymph nodes with small metastases 

shown in D, G, J.  Hyperechoic (arrow) and hypoechoic regions within lymph 

nodes with small metastases were significantly different in mean B-mode 

brightness (n = 5 ROIs per subregion, paired t-test, ** p < 0.01; *** p < 0.001). 

Images of lymph node whole mounts corresponding to each ultrasound image 

are shown in panels C,F, I, L (metastatic deposits shown by +). Scalebar = 2 mm 

for whole mount images. 
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Figure 3.7  Strong positive correlation between ultrasound volumetric and 

histological area measurements. Examples of ultrasound volume fraction and 

histological area fraction of tumour-burden are shown in panel A and B, 

respectively. Panel A displays a volumetric rendering from B-mode ultrasound 

imagesof the lymph node (red) and the micrometastasis within (light blue). The 

corresponding histology section in panel B outlines the lymph node (red) and the 

micrometastasis (light blue). In panel C, ultrasound measurements of tumour 

volume fractions and histological tumour area fraction were compared by linear 

regression analysis (r2 = 0.94, p < 0.0001, n = 13). Dashed lines represent the 

95% confidence interval.
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3.3.7  Longitudinal imaging of micrometastatic deposits and small 

metastases  

B-mode images of lymph nodes with small non-palpable metastases and 

micromematastatic deposits had hyperechoic subregions that were conspicuous 

enough to outline and make volumetric measurements. This was done over 

several time points. Figure 3.8 demonstrates the volume changes of these 

hyperechoic regions over time.  The variability in growth rates among the small 

metastatic deposits is apparent: mouse #9 showed the largest increase in 

volume in 6 days, mouse #4 only slightly increased during that time, and mouse 

#12, did not appear to change in volume in 6 days. This suggests the 

micrometastatic deposit in mouse #12 was in a state of dormancy. 
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Figure 3.8 Growth of small non-palpable metastatic deposits in lymph 

nodes. Distinct hyperechoic regions of lymph nodes with small metastases 

became apparent in mouse #4 and #9 at eight weeks post-injection, and mouse 

#12 developed a hyperechoic region ten weeks post-injection. In panel A, 

mouse#9 showed a hyperechoic region with a higher rate of volume increase 

than the remaining two lymph nodes. In contrast, the axillary lymph node of 

mouse#12 had a hyperechoic region that appeared to increase in size from day 8 

to 12, after which a decrease in volume was observed. In panels B, C, and D, 

volumetric renderings of the lymph nodes (red) and their metastatic deposits 

(light blue) are shown at 14 days post-injection. 
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3.3.8 Lymph node percent vascularity of negative lymph nodes and 

metastatic lymph nodes. 

3D power Doppler was used to assess whether there were differences in 

percent vascularity (PV) between negative lymph nodes and metastatic lymph 

nodes (shown in Figure 3.9 panels A and B).  A group comparison performed at 

the 14 day end-point showed no significant differences between negative lymph 

nodes, lymph nodes with small metastases, and large overt metastases (shown 

in Figure 3.9 panel D). There was a non-significant decrease in mean PV values 

from negative lymph nodes, to small lymph node metastases, and overt lymph 

node metastases.  
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3.9 Lymph node percent vascularity of negative lymph nodes and 

metastatic lymph nodes. Panels A displays a 3D rendering of a negative lymph 

node and associated vasculature (shown in red). Panel B depicts a lymph node 

with a small metastasis, and panel C, an example of a large lymph node 

metastasis. In panel D, mean PV values of all three groups of lymph nodes at 14 

days are shown (means ± standard deviations). Comparison all three groups 

show no significant differences in percent vascularity (Kruskal-Wallis, p > 0.05).  
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3.3.9 The sensitivity and specificity of ultrasound parameters in detecting 

lymph node metastases 

Ultrasound volume was found to have a sensitivity of 88% and a specificity 

of 100% in detecting lymph node metastases when using a cut-off value of 20 

mm3 (Table 3.2). One caveat in using this threshold value, however, is the 

instance where a lymph node harbouring a micrometastatic deposit (volume 8.7 

mm3) yielded a false negative. This indicates that micrometastatic deposits may 

be present without significantly changing the volume of the lymph node.  

The overall B-mode brightness of lymph node had a sensitivity of 75% and 

a specificity of 100% in detecting lymph node metastases. All negative lymph 

nodes have mean grey values lower than the cut-off value (grey value = 45).  The 

sensitivity was diminished due to two lymph nodes with small metastases that 

also have overall mean grey values less than 45. 

When one considers using decreased values of PV to detect the presence 

of lymph node metastases, PV has a sensitivity of 100% and a specificity of 60%. 

The lower specificity is due to two instances where negative lymph nodes had PV 

values less than 2 that resulted in two incorrect positive diagnoses. 

RI is considered to be the most accurate parameter in detecting lymph 

node metastases.  A cut-off value of 3 resulted in a sensitivity of 100% and 

specificity of 100% (Table 3.2). Furthermore, RI was sensitive in detecting lymph 



102 

 

nodes with small metastases including a lymph node harbouring a 

micrometastasis (example shown in Figure 3.4 B). 
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3.4 Discussion 

The clinical impact of lymph node metastases on patient survival 

underscores the importance of developing preclinical models that recapitulate 

this pathological process. Each step of the metastatic cascade is potentially rate 

limiting (Chambers et al., 2002). Therefore, determining which step(s) of the 

metastatic cascade where metastasized cells are most amenable to intervention 

will lead to the development of novel anti-metastatic therapeutics. One innovative 

approach that has shed light on the metastatic process in vivo is the use of 

imaging modalities such as optical (Luzzi et al., 1998), high-frequency ultrasound 

(Graham et al., 2005), PET (Ren et al., 2009), and MRI (Heyn et al., 2006). High 

frequency ultrasound in particular, is an attractive option for imaging metastases 

due to its high resolution (50 μm), short scan times (in order of minutes), relative 

safety, and cost efficiency in obtaining longitudinal 3D information on soft tissues. 

In the current research, we present the first high frequency ultrasound study that 

characterizes the development of axillary lymph node metastasis in a syngeneic 

mouse model of melanoma. 

As demonstrated by this report, high frequency ultrasound is well suited 

for longitudinal study of lymph node metastasis development. Longitudinal 

changes observed in parameters such as volume, RI, and B-mode brightness 

were sensitive in detecting lymph node metastases from non tumour-bearing 

lymph nodes. In particular, the roundness index was the parameter with both the 

highest sensitivity and specificity in differentiating overt and non-palpable lymph 



105 

 

node metastases (examples shown in 3.4 B,C) from negative lymph nodes. 

Specifically, when using a cut-off value of 3, RI was able to detect a lymph node 

with a micrometastatic deposit.  

Another interesting finding in this study is the manner in which metastatic 

tissue appeared brighter than the normal lymph node tissue. The higher B-mode 

brightness of metastatic deposits is attributable to the larger amplitude of 

backscattered echoes returning to the transducer compared to the backscatter 

from normal lymph node parenchyma. The observation that metastatic deposits 

were hyperechoic was surprising since previous work by Graham and colleagues 

(2005) observed metastases to be hypoechoic (darker) compared to the normal 

liver parenchyma. A plausible explanation of the apparent discordant 

observations on the echogenicity of metastases is the difference in organ site 

(lymph node vs. liver). Since ultrasound contrast between two adjacent tissues is 

dependent on their difference in acoustic impedances, the surrounding 

parenchymal tissue may be a factor that contributes to the ultrasound contrast of 

metastases. Irrespective of the exact cause of higher B-mode brightness of 

lymph node metastases, we were able to exploit this phenomenon and track the 

growth of small metastatic deposits (Figure 3.8). Moreover, we were able to track 

a micrometastatic deposit over time (Figure 3.8 D); in this case, the 

micrometastasis did not seem to significantly change in volume over time. 

Dormancy in micrometastases is purported to be due to a balance of cell 
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proliferation and apoptosis, as seen previously observed by Holmgren and 

colleagues (1995). 

In addition to B-mode derived parameters that describe the lymph node 

shape and echogenecity during the development of lymph node metastases, our 

study also assessed if there were metastasis-associated changes in lymph node 

vascularity via power Doppler imaging. At end-point, we did not see any 

significant differences in percent vascularity between negative lymph nodes, 

small and large lymph node metastases. Although there was a decreasing trend 

from negative lymph nodes to large lymph node metastases, the large variability 

within each group resulted in no significant difference. 

To conclude, this is the first report to demonstrate the utility of 3D HFUS 

imaging in the non-invasive and longitudinal study of the development of lymph 

node metastases in vivo. More specifically, 3D HFUS imaging permits temporal 

sampling of parameters such lymph node volume, shape, and B-mode brightness 

during the growth of lymph node tumours in live mice. Furthermore, the current 

research reports the sensitivity of these parameters in differentiating metastatic 

lymph nodes from non-metastatic lymph nodes. The most striking finding of the 

current work is the ability to identify and longitudinally image micrometastatic 

deposits (as small as 1.2 mm in diameter) within the lymph node without the use 

of contrast agents or cell labels. The ability to longitudinally and non-invasively 

image both micrometastatic disease and overt lymph node tumours in the 

preclinical setting will provide researchers with a new tool to assess the efficacy 
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of novel anti-metastatic therapeutics. Lymph node ultrasound imaging can be 

used to ask: How do quickly vs. slowly growing metastases respond to 

chemotherapeutics? What is the duration of treatment that results in inhibition of 

metastasis growth, or maintenance of micrometastatic dormancy? Does reducing 

lymph node tumour burden decrease systemic metastatic disease? The answers 

to such questions will provide cancer researchers with new insight in the 

treatment of lymphatic metastatic disease. 
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Chapter 4.0: The cellular detectability of positive contrast-labeled tumour 

cells at clinical field strength MRI 

4.1 Introduction 

The ability to non-invasively image the metastatic burden at a secondary 

site would provide researchers with a powerful tool to study the biology of the 

population of metastatic cells, as well as aid the development of novel anti-

metastatic therapeutics. One such imaging modality that can detect the presence 

of single labeled cells, while at the same time provide fine anatomical detail to its 

location is cellular magnetic resonance imaging (MRI). Cellular MRI is a 

burgeoning field that utilizes the high resolution (50μm), non-invasive, and 

longitudinal imaging capabilities of MRI in the tracking of magnetically labeled 

target cells (Anderson et al, 2006).  

The application of cellular MRI in metastasis research has provided an 

unprecedented view on the dynamic growth of individual tumour cells at the 

secondary site in live animals (Heyn et al, 2006). More recently, Townson et al 

(2009) demonstrated how cellular MRI can be used to assess the population of 

metastatic tumour cells at the secondary site in response to anti-proliferative 

chemotherapeutics. Both these studies have used superparamagnetic iron oxide 

(SPIO)-based T2-sensitive contrast agents to magnetically label the cells and 

detect their presence in a whole-body scan as a dark spot or “signal void”. This 

“signal void” is a susceptibility artifact that extends well outside the volume 
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occupied by the cell, and this extension augments the detectability of the cell (Liu 

et al, 2009).  

When using iron oxide-based contrast agents for cellular imaging in vivo, 

however, the researcher must be cognizant of several caveats that can diminish 

both the specificity of the iron oxide cell label, and the ability to quantify the 

number of labeled cells. The specificity of negative contrast enhancement from 

iron oxide is diminished by several endogenous sources of negative contrast in 

the body such as areas of hemorrhage and necrosis (Anderson et al, 2006; Liu et 

al 2009; Bulte 2009). Quantification of iron oxide-labeled cell number in the body 

becomes inaccurate in situations where labeled cells are clustered and their 

respective “signal voids” overlap, (Dodd et al, 1999; Heyn et al, 2006; Townson 

et al 2009).  

To overcome the limitations of using negative contrast agents with large 

susceptibility artifacts, researchers have been exploring labeling methods using 

paramagnetic, T1-sensitive, positive contrast agents such as gadolinium (Gd)-

chelates to visualize target cells in vivo. Target cells labeled with Gd-chelates 

appear hyperintense in the MR image because the Gd3+ ions increase the 

relaxation rates (R1) of nearby hydrogen protons of water molecules. Since the 

degree of contrast enhancement is based on the concentration the gadolinium 

ions within a voxel (3-dimensional pixel), the main advantage in using Gd-

chelates is that MR measurements are quantitative in determining target cell 

number, especially in high numbers, compared to assessing the number of iron 
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oxide-labeled cells. The ability to quantify target cell number in vivo using a Gd-

based contrast agent is exemplified by Amirbekian and colleagues (2007) who 

demonstrated a strong correlation between the number of macrophages detected 

by histology versus MR signal enhancement from Gd-labeled macrophages. 

Therefore, since degree of positive contrast enhancement is reflective of target 

cell number, the application of positive contrast cellular MRI to non-invasively 

evaluate tumour cell number at a metastatic site, such as the lymph node, would 

prove to be useful in the non-invasive assessment of nodal status, especially in 

the early stages of metastatic colonization, and may guide delivery of 

intralymphatic therapy (Lucarelli et al, 2009). 

With this goal in mind, the research described herein sets the stage for 

allowing accurate in vivo quantification of tumour cells within lymph nodes by 

providing a proof of principle that demonstrates the measurement of positive 

contrast signal enhancement and R1 relaxation rates can be a quantitative 

measure of tumour cell number under in vitro conditions. The current study 

utilizes a novel positive contrast agent, called gadofluorine M (GdF), which has 

been shown by Giesel et al (2006) to have superior signal enhancement 

compared to traditional Gd-chelates such as Gd-diethylene,triamino,pentaacetic 

acid (Gd-DTPA) when labeling stem cells.  

The current work characterizes the labeling of breast cancer cells with 

GdF, as well as assessing the detectability and quantification of GdF-labeled 

cells in clinical field strength MRI. Fluorescence microscopy was used to 
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visualize tumour cell uptake of GdF, and estimate the efficiency of cell labeling. 

Previous authors (Simon et al, 2006; Terreno et al, 2006) have shown how 

compartmentalization of MR contrast agents into vesicles can diminish their 

ability to produce signal enhancement. Thus, to ascertain the possibility that the 

relaxivity of GdF may be diminished due to intracellular compartmentalization, 

immune-fluorescence confocal microscopy was used to determine if intracellular 

GdF was sequestered into late endosomes. Next, a range of GdF-loading 

concentrations were assessed for toxicity effects on breast cancer cells in vitro. 

The amounts of signal enhancement and change in R1 values from cell pellets 

labeled with the same range of GdF-labeling concentrations were measured in 

vitro on two clinical field strength MRI scanners: 1.5 Tesla (T) and 3T. Cell 

lysates of the pellets were analyzed by inductively coupled atomic emission 

spectroscopy to confirm whether the signal enhancement and R1 value observed 

across the series of cell pellets were due to corresponding changes in 

intracellular concentration of GdF. Next, the lower limit of detectability of GdF-

labeled tumour cells was assessed in an in vitro agarose MRI phantom 

containing a series of cell pellets where the percentage of GdF-labeled tumour 

cells increases step-wise from 0% to 100%. Additionally, the MRI phantom was 

used to optimize an MR pulse sequence that produced the highest contrast 

between unlabeled cells and GdF-labeled cells. Finally, the MRI phantom was 

use to demonstrate how signal enhancement and R1 values positively correlate 

with tumour cell number. 
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4.2   Materials and Methods 

4.2.1 Cell culture and in vitro labeling with Gadofluorine M 

A lymphotrophic human breast cancer cell line 231-D3H2-LN (Caliper Life 

Sciences, Hopkinton, Massachusetts) was grown in Dulbecco’s modified 

essential medium (Sigma-Aldrich, Oakville, Ontario) supplemented with 10% fetal 

bovine serum, 5% L-glutamine, and 5% non essential amino acids, and cultures 

maintained at 37°C with 5% CO2.  

For standard labeling conditions, 231-D3H2-LN cells were grown to 70% 

confluency in T75 flasks and incubated with 5mL of Opti-MEM (Invitrogen, 

Burlington, Ontario) containing Gadofluorine M (GdF, Bayer-Schering, Germany) 

for 24 hours. A fluorescent version of the compound, Gadofluorine M-

carbocyanine (GdF-cc) where the mannose moiety is replaced with carbocyanin 

(red fluorophore), was used to optically visualize contrast agent uptake and 

quantify labeling efficiency. Labeling efficiency was manually quantified from 3 

micrographs and was expressed as a percentage of labeled cells to total number 

of cells in the micrograph. The effect of different loading concentrations of GdF 

on cell viability was assessed in a colorimetric MTS viability assay. For the MTS 

cell viability assay (product# G3582, Promega, San Luis Obispo, California), 

5x104 tumour cells were plated in 7 wells (96 well format) corresponding to 0, 25, 

100, 250, 1000, 2500, and 10000μM of GdF in Opti-MEM and labeled for 24 

hours. After incubation, cells were washed and the MTS assay was performed 
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according to manufacturer’s instructions and plates were scanned using a 

standard plate reader at absorbance 490nm. The assay was performed in 

triplicate.  

4.2.2 Visualizing intracellular localization of GdF in breast cancer cells 

To visualize the intracellular localization of GdF after uptake, a fluorescent 

version of the contrast agent, gadofluorine M-carbocyanine (GdF-cc; Bayer-

Scherring, Germany) was used to labeled the 231-D3H2-LN cells. Cells were 

grown to 70% confluency in a 2 chamber slide (Nalge Nunc International, New 

York, USA) and were labeled with a 0.05 μmole/mL working concentration GdF-

cc in Opti-MEM for 24 hours. After 24 hours, cells were washed with 0.1M 

phosphate buffered saline (PBS, pH 7.2). Cells were fixed in 1.2% formalin in 

phosphate buffer for 12 minutes then washed with PBS. To permeabilize cells, 

cells were incubated in PBS with 0.01% Tween-20 for 10 minutes. The chamber 

slides were then blocked with 4% bovine serum albumen (BSA) for 10 minutes at 

room temperature. Antibodies against mannose-6-phosphate receptor (Abcam, 

Massachusetts, USA), a late endosomal marker, were diluted 1:200 with 4% 

BSA in PBS and incubated on the cells overnight in a humidified chamber at 4oC. 

Slides were washed and blocked for 10 minutes prior to the addition of 

fluorescent secondary antibodies (goat ant-mouse conjugated to fluorescein 

isothiocyanate, FITC; Jackson ImmunoResearch Laboratories, Pennsylvania, 

USA). Slides were incubated with secondary antibodies in a humidified chamber 

in the dark for 1 hour. Slides were then washed with PBS and counter-stained 
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with blue fluorescent 4',6-diamidino-2-phenylindole (DAPI; Sigma-Aldrich) for  5 

minutes. To test for specificity of the fluorescence immunostain, tumour cells 

were incubated with goat anti-mouse secondary antibodies conjugated to FITC 

only. Slides were mounted in Vectashield (Vector Laboratories, Ontario, Canada) 

and imaged by a Zeiss LSM 410 confocal microscope equipped with a He/Ne 

laser, Kr/Ar laser, and UV laser. 

4.2.3 In vitro MRI of cell pellets labeled at different GdF-loading 

concentrations 

 To assess the detectability of breast cancer cells labeled with GdF at 

different loading concentrations, cell pellets consisting of 1 x107 labeled cells for 

each loading concentration (0, 25, 100, 250, 100, 2500, 10000 μM) were 

prepared in sextuplet. Labeling conditions are as stated in “Standard labeling 

conditions” in section 4.2.1. Cell pellets were spun down in a PCR multiplate 

(364-well format) to allow for convenient single slice MR sampling of each cell 

pellet/GdF loading condition. After centrifugation, images of the phantom and 

metric ruler were taken with a digital camera in order to determine the 

dimensions of the cell pellets. Afterwards, the gel phantom was scanned using 

both 1.5T (GE CV/i whole-body clinical MR scanner) and 3T (GE 750 whole body 

MR imager) clinical strength scanners to determine which field strength provided 

the best quality of image since it is well known that the relaxivity of gadolinium 

chelates is field dependent (Rinck et al, 1999).  
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To compare image quality of the cell pellets scanned at 1.5T and 3T, we 

evaluated the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) in the 

images obtained from each scanner. SNR is equal to the mean signal intensity of 

the object divided by the standard deviation of the mean noise of the background 

(air). CNR is the difference between brightest cell pellet and unlabeled cell pellet 

divided by the standard deviation of the mean noise of the background (air). 

4.2.4 Measurement of T1 relaxation times of cell pellets labeled at different 

GdF-loading concentrations. 

Using a 1.5T scanner, cell pellets were serially scanned with spin-echo 

inversion recovery (IR) pulse sequences at various inversion times (50ms, 

100ms, 200ms, 300ms, 500ms, 800ms, 1200ms, 1800ms, 2500ms, 3500ms), 

where TR: 3000ms, TE: minimum 10.1 ms, NEX:6, BW:20.83, Freq: 256, 

phase:128, field of view: 8cm, slice thickness: 2 mm. Pellets were then scanned 

using a 3T scanner where serial spin-echo inversion recovery spin-echo images 

were obtained with the previously described scanning parameters at 1.5T.  T1 

maps at both 1.5 and 3T were generated by importing the series of IR images 

into an MRImapper software package (Beth Israel Deaconess Medical Center, 

Boston, Massachusetts). Signal enhancement measurements of the cell pellets 

were obtained using image analysis software ImageJ (NIH, Bethesda, Maryland). 
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4.2.5 Quantification of intracellular GdF by inductively coupled plasma 

atomic emission spectroscopy 

To determine the amount of GdF in tumour cells at each loading 

concentration of GdF, we performed inductively coupled plasma atomic emission 

spectroscopy (ICP-AES) on lysates of each cell pellet. To prepare lysates, cell 

pellets were resuspended and fast frozen and thawed twice to disrupt cell 

membranes. 2M nitric acid (HNO3) was added to each cell suspension to a final 

volume of 3mLs. The resulting suspensions were left overnight at 600C. After 

incubation at 600C the cell suspensions were centrifuged to remove insoluble 

material. The solutions were then nebulized in argon plasma and measured by a 

Perkin-Elmer Optima-3300 DV system. The 342 nm atomic emission line of Gd 

was chosen for the ICP-AES analysis. The intensity of the emission line is 

directly proportional to the amount of Gadolinium in the sample. Sample 

intensities were compared to reference standards of known amounts of GdF. The 

amount of gadofluorine M in each cell pellet was expressed as femtomoles per 

cell. 

4.2.6 Construction of gel phantom for in vitro MRI scanning 

To mimic the pathological situation where tumour cells progressively 

colonize the mouse lymph node, and to determine whether or not positive-

contrast enhanced MRI is sensitive enough to detect and measure (via signal 

enhancement and T1 relaxation times) differences in tumour cell number, a gel 

phantom was constructed to contain seven wells with cell pellets consisting of 
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increasing ratios of GdF-labeled tumour cells to unlabeled tumour cells. Cell 

pellets were made from 1x107 tumour cells labeled with 1000μm GdF using 

previously described cell culture conditions. A 1% agarose gel (in Hank’s 

buffered saline solution, Invitrogen, Ontario, Canada) was solidified in a cell 

culture 50mL conical tube and contained 7 cylindrical wells (height 40 mm, 

diameter 2 mm). Seven cell suspensions (total cell number 1x107 cells) with 

increasing of percentage of GdF-labeled tumour cells (0%, 4%, 8%, 16%, 31%, 

62%, 100% labeled cells) were loaded into the wells of the gel phantom. The gel 

phantom was spun down at 800rpm for 5 minutes to pellet the cells prior to 

scanning by MRI. 

4.2.7 Evaluating 3D SPGR, and FIESTA pulse sequences for imaging MRI 

phantom 

We compared two different pulse sequences, 3D-spoiled gradient recoiled 

(3D-SPGR) and fast imaging employing steady state acquisition (FIESTA) in 

detecting the GdF-labeled tumour cells. T1-weighted 3DSPGR is a commonly 

used MR sequence that provides higher SNR images  with T1-weighted contrast. 

The FIESTA pulse sequence is known to offer the highest possible signal-to-

noise ratio (SNR) per unit time of all known sequences but may not be sensitive 

to the gadolinium-based contrast agents (Scheffler and Lehnardt, 2003). These 

two pulse sequences were optimized by adjusting the flip angles (100, 200, 300, 

400, 500).   
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4.2.8 Measurement of T1 relaxation times of cell pellets containing 

different ratios of GdF-labeled tumour cells. 

To measure the T1 relaxation times and signal enhancement of the pellets, 

the gel phantom was scanned at 3T using a series of fast spin-echo inversion 

recovery pulse sequence using different inversion times (50ms, 100ms, 200ms, 

300ms, 400ms, 600ms, 800ms, 1000ms, 1200ms, 1400ms, and 2400ms); where 

TR: 4000ms, TE:minimum 9.96ms, NEX: 6, BW:20.83, Freq: 256, phase:128, 

field of view:8cm, slice thickness: 2 mm. T1 maps were generated as described in 

section 4.2.4. T1 relaxation times from 144 voxels sampled from each cell pellet 

were obtained and analysed by methods described in “Statistical Analysis.” 

4.2.9 Statistical analysis 

Statistical analysis was performed using Microsoft Excel 2007 (Microsoft 

Corporation, Redmond, Washington) and GraphPad Prizm version 4.0 

(GraphPad Software Inc., San Diego, California) for Windows XP. Prior to 

performing statistical analyses on means, data were tested for normality. When 

data were normally distributed, the comparison of several means were compared 

by analysis of variance (ANOVA), and post-hoc Tukey’s multiple comparisons 

test was performed to determine which means were significantly different. When 

data were not normally distributed, the comparison of several means was done 

using the Kruskal-Wallis test, and post-hoc analysis using Dunn’s multiple 

comparisons test.  
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To correlate MR measurements of signal enhancement (grey values) and 

R1 values to the actual number of GdF-labeled tumour cells, a correlation 

coefficient (r2) value was generated using a linear regression model to determine 

if a positive correlation existed between the two parameters.  
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4.3  Results 

4.3.1  Labeling efficiency and cell viability at different loading 

concentration of GdF 

To visualize uptake and quantify labeling efficiency, we used GdF-cc as a 

surrogate marker of tumour cell uptake of the non-fluorescent version of the 

compound. The breast cancer cells labeled with GdF-cc are shown in Figure 4.1.  

From three fluorescent micrographs, labeling efficiency ranged from 98-100%. 

The MTS cell viability assay shows the range of GdF-loading concentrations 

(25μM to 1000μM) that do not significantly affect cellular metabolism 

(dehydrogenase activity) when compared to unlabeled tumour cells. Above 

1000μM of GdF-loading, cellular metabolism becomes significantly lower 

(represented by lower absorbance values) than unlabeled cells. 

4.3.2 Visualization of intracellular localization of GdF by 

immunofluorescence microscopy 

 To determine if GdF was being sequestered into endosomes, we stained 

GdF-cc labeled tumour cells with the late endosomal marker mannose-6-

phosphate receptor, the results of which are shown as a maximum intensity 

projection confocal image in Figure 4.2. The red pixels represent the distribution 

of GdF-cc contrast agent throughout the cytosol. The green punctate pattern 

represents the location of late endosomes. The fluorescent micrograph 

qualitatively illustrates how the GdF contrast agent is found throughout the 
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cytosol, and is not sequestered into late endosomes, suggesting that the 

observed contrast enhancement was not diminished by compartmentalization 

into vesicles. 
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Figure 4.1. Tumour cell uptake of GdF-cc, labeling efficiency, and cell 

viability from GdF-loading. Panel A displays lymphotrophic 231-D3H2-LN 

human breast cancer cells shown in brightfield. Panel B is a fluorescent 

micrograph showing GdF-cc (red) uptake and nuclei are stained with DAPI 

(blue). Panel C is a fused image of panels A and B. Scalebar = 20μm. In panel D, 

cellular metabolism (dehydrogenase activity) was the dependant variable 

measured at the indicated range of loading concentrations of GdF. Means ± 

standard deviations are shown. The observed means analysed by ANOVA (p < 

0.0001) and pairs of means were compared by Tukey’s multiple comparisons test 

where columns that were significantly different are denoted by different letters; 

columns with the same letters are not significantly different. 
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Figure 4.2 Visualization of intracellular location of GdF-cc in tumour cells 

by immunofluorescent microscopy. Confocal maximum intensity projection 

images are shown in panels A and B. In panel A, GdF-cc labeled tumour cells 

were immunostained for mannose-6-phosphate (late endosomal marker) to 

determine if the MRI contrast agent was sequestered into endosomes. GdF-cc 

(red) did not colocalize into endosomes, instead, GdF can be found throughout 

the cytoplasm. To differentiate specific fluorescent staining and 

autofluorescence, panel B shows tumour cells that were only stained with 

secondary FITC-congugated antibodies. Nuclei are counterstained with DAPI 

(blue). Scalebar = 20μm.  
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4.3.3 MRI of cell pellets with different loading concentrations of GdF 

scanned at 1.5T & 3T 

 The ability to measure changes in signal enhancement and T1 relaxation 

times from the presence of labeled tumour cells in a metastatic site at clinical 

field strengths lend to the translation of these findings to clinical applications. 

Therefore, we assessed the sensitivity of 1.5T and 3T clinical scanners in 

detecting the changes in signal enhancement and T1 relaxation times of cell 

pellets labeled at different loading concentrations of GdF. Examples of T1-

weighted images of the cell pellets scanned at 1.5T and 3T using a spin-echo 

pulse sequence are shown in Figure 4.3 A and B, respectively. In regards to 

evaluating image quality as defined by SNR and CNR, images scanned at 3T 

were ~5-fold higher in SNR and CNR compared to 1.5T. Actual values are listed 

in the figure legend of Figure 4.3. 

4.3.4 Quantification of signal enhancement and T1 relaxation of cell pellets 

of different GdF-loading conditions at 1.5T and 3T 

 Two-dimensional cross-sectional slices of the cell pellets were used to 

assess signal enhancement and T1 relaxation at both 1.5T and 3T. Changes in 

R1 relaxation rates (1/T1) as a function of GdF-loading concentration at 1.5T and 

3T are depicted in Figure 4.4 C and D, respectively. Although the changes in R1 

times over different GdF-loading conditions show a similar trend, we see R1 

values are slightly higher at 1.5T compared to 3T. The signal enhancement of 
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cell pellets was examined at 1.5T and 3T in Figure 4.4 E and F, respectively, we 

see similar changes in signal intensity, however at 1.5T, signal intensities are 

slightly higher. In light of the cell viability assay at various GdF-loading 

concentrations (Figure 4.1 D), tumour cells are able to tolerate a range of GdF-

loading concentrations (from 25 to 1000μM) without having significant effects on 

cell viability. Within this range of concentrations, no significant changes in R1 

values and signal enhancement were observed. At higher GdF-loading 

concentrations (2500μM to 10000μM) significant increases in signal 

enhancement and R1 relaxation rates were observed, however tumour cell 

viability was significantly reduced at these higher loading conditions. 

4.3.5 Intracellular concentration of GdF of cell pellets over a range of  

GdF-loading conditions 

Cellular GdF uptake was expressed as femtomole per cell. The amount of 

GdF per cell is shown in Figure 4.5. GdF-loading concentrations from 25μM to 

1000μM did not significantly change the intracellular concentration of GdF. 

However from 2500μM to 10000μM, the amount of intracellular GdF increased, 

with 10000μM showing the highest level of intracellular GdF. 
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Figure 4.3 Cellular MRI of cell pellets labeled at different loading 

concentrations of GdF. Examples of T1-weighted spin echo images of cell 

pellets taken at 1.5T and 3T are shown in panels A and B, respectively. At 1.5T, 

SNR = 7.4 and CNR = 4.1; whereas at 3T, SNR = 35.5 and CNR = 18.6.   
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Figure 4.4 Cellular MRI of cell pellets at 1.5T and 3T.  

Measurements of R1 relaxation rates and signal enhancement (grey values) at 

1.5T and 3T were sampled from 2D MR slices, as shown in panels A and B, 

respectively.  R1 values were obtained from T1 maps constructed from a series of 

inversion recovery images taken at varying TI times, as shown in panels C and 

D. Signal enhancement measurements are shown in panel E and F, respectively.  

Means and standard deviations of 6 cell pellets labeled with the same GdF-

loading condition are shown. Groups were analyzed by ANOVA (p < 0.0001) and  

pairs of columns were analyzed by Tukey’s multiple comparisons test. Pairs of 

columns with the same letter are not significantly different, whereas columns with 

different letters are significantly different.  
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Figure 4.5 Measurement of intracellular GdF of cell pellets by ICP-AES.  

ICP-AES was used to measure intracellular GdF of cell pellets labeled at different 

loading concentrations. Means and standard deviations of 6 cell pellets labeled 

with the same GdF-loading condition are shown. Groups were analyzed by 

ANOVA (p < 0.0001); pairs of columns were analyzed by Tukey’s multiple 

comparisons test. Pairs of columns with the same letter are not significantly 

different, whereas columns with different letters are significantly different. 
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4.3.6 In vitro MRI phantom to assess the detectability of GdF-labeled 

tumour cells at varying numbers 

To mimic the pathological situation where tumour cells progressively 

colonize a given volume of tissue at the metastatic site (eg. lymph node), we 

constructed an MRI phantom (Figure 4.6 A,B)  to contain a series of cell pellets 

that have the same volume and total cell number, but where the percentage of 

GdF-labeled tumour cells mixed with unlabeled tumour cells was increased (ie. 

0%, 4%, 8%, 31%, 62%, 100% GdF-labeled tumour cells in total cell pellet).  

4.3.7  Comparison of CNR from 3D SPGR and FIESTA pulse sequences 

 Two MR pulse sequences (3D SPGR and FIESTA) were assessed to 

determine which sequence maximizes the CNR. The MRI phantom was imaged 

with each pulse sequence at varying flip angles to determine which parameters 

provided images with the best contrast to noise ratio. 3D SPGR images at 

varying flip angles are shown in Figure 4.7 panels A-E, and the calculated CNR 

value for each image is shown. From these images it is evident that a SPGR 

pulse sequence with a flip angle of 100 maximizes the contrast between the cell 

pellet consisting of 100% labeled tumour cells and the unlabeled cell pellet. 

FIESTA images shown at varying flip angles are shown in Figure 4.3.8 panels F-

J. The FIESTA sequence provides high SNR images, however, the change of  

signal intensity does not relate to the concentration of GdF as demonstrated by 

Figure 4.7 panels I and J. 
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Figure 4.6  MRI phantom to assess the sensitivity of positive-contrast 

enhancement at 3T in detecting differing amounts of GdF-labeled tumour 

cells.  A schematic of a 1% agarose gel in a 50mL conical culture tube 

containing a series of cell pellets (1x107 total number of cells) with increasing 

percentage of GdF-labeled tumour cells, is shown in panel A. The actual 

phantom is shown in panel B. Panel C shows an example image of a 2D cross-

sectional MRI slice taken at 3T.  The percentage of labeled tumour cells in each 

pellet is indicated in the legend. The actual volume of the cell pellets was 

measured to be ~19.8 mm3 (r =1 mm, h = 6.3 mm). 
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Figure 4.7 Comparison of image quality between 3D SPGR and FIESTA 

pulse sequences. Image quality as defined by high CNR was evaluated in two 

MRI pulse sequences: 3D SPGR and FIESTA. CNR was calculated as the 

difference between the cell pellet with 100% GdF-labeled cells (P7, dashed 

square) and unlabeled cell pellet (P1, dashed circle) divided by the standard 

deviation of background noise. 3D-SPGR images are shown at varying flip 

angles ( ) in panels A-E. FIESTA images are shown at varying flip angles in 

panels F-J. CNR values are listed below each image. 
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4.3.8 Increased signal enhancement and R1 relaxation rates of cell pellets 

with higher numbers of GdF-labeled tumour cells 

In Figure 4.8 A, a 3D SPGR (flip angle 10o) image is shown. The mean 

signal enhancement (mean grey value) of each cell pellet, sampled by a pixel-by-

pixel basis from the 3D SPGR image are shown in the graph in Figure 4.8 C.  

Signal enhancement is shown to increase significantly in a dose-dependent 

manner from 8% to 100% GdF-labeled cell pellet. 8% corresponds to 8x105 GdF-

labeled cells within the cell pellet.T1 relaxation values of the cell pellets are 

represented in a T1 map of the phantom shown in Figure 4.8 B. The mean R1 

values (1/T1) sampled from a pixel-by-pixel basis from the T1 map are shown in 

Figure 4.8 D. Statistical analysis of R1 values demonstrates the lowest 

percentage of GdF-labeled tumour cells required to produce a significant 

increase in R1 is 4%, or 4x105 GdF-labeled cells. 

4.3.9 The change in MR signal enhancement and R1 measurements 

strongly correlates to the number of GdF-labeled tumour cells. 

To demonstrate that MR measurements of signal enhancement and R1 

values can be used as a quantitative measure of the abundance of GdF-labeled 

tumour cells within a given volume, linear regression analysis was performed to 

determine the correlation coefficient each parameter. In both cases, the change 

in signal enhancement or R1 value strongly correlated with tumour cell number, 

correlation coefficients were  r2 = 0.93 and r2 = 0.93, respectively. The high 
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degree of correlation demonstrates the feasibility of using positive contrast 

enhancement to quantify the abundance of tumour cells. 
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Figure 4.8 MRI of cell pellets containing different proportions of GdF-

labeled tumour cells.  Panel A shows a 2D cross-sectional MR scan of the 

phantom using a 3DSPGR pulse sequence with a 10o flip angle. Quantification of 

signal enhancement (144 voxels sampled from each cell pellet) is shown below 

in panel C. In panel B, a T1 map of the phantom was obtained from a series of 

inversion recovery images taken with varying TI times. 144 voxels from each cell 

pellet were sampled to obtain T1 relaxation times, which was then expressed as 

R1 relaxation rates (1/T1) and analyzed in the graph in panel D. Means and 

standard deviations of 144 voxels in both panels C and D are shown. Groups 

were analyzed by ANOVA (p < 0.0001) and pairs of columns were analyzed by 

Tukey’s multiple comparisons test. Pairs of columns with the same letter are not 

significantly different, whereas columns with different letters are significantly 

different from each other. 



143

 



144 

 

 

 

 

 

Figure 4.9  Changes in MR signal enhancement and R1 values strongly 

correlate with the number of tumour cells per voxel. Panel A shows a strong 

correlation (r2 = 0.93, p < 0.0001) between the change in signal enhancement 

(from unlabeled cells) with the concentration of GdF-labeled tumour cells per 

voxel. In panel B demonstrates a strong correlation (r2 = 0.94, p < 0.0001) 

between the change in R1 relaxation rate (from unlabeled cells) with the 

concentration of GdF-labeled tumour cells per voxel. 
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4.4  Discussion 

The utility of cellular MRI in the assessment of tumour cells in secondary 

organs in the preclinical setting has been well demonstrated by Heyn and 

colleagues (2006). Furthermore, cellular MRI can be used to assess the efficacy 

of chemotherapeutics on the metastatic cell population at the secondary site 

(Townson et al, 2009). Both these studies use SPIO to magnetically label tumour 

cells. Iron-oxide-based contrast agents are extremely sensitive in single cell 

detection since iron oxide particles produce large susceptibility artifacts (signal 

void) that extends far beyond the volume of the actual labeled cell (Liu et al, 

2009). Quantification of iron-oxide labeled tumour cells in the secondary organ is 

possible when the distribution of cells is sparse enough to count individual cells 

(Heyn et al, 2006; Townson et al, 2009). However, in situations where the 

distribution of iron-oxide labeled cells are concentrated into small volume where 

their respective signal voids “overlap”, measurements of signal void area, 

volume, and R2 relaxation rates become inaccurate (Heyn et al, 2006, Rad et al; 

2007; Townson et al, 2009). 

To overcome this limitation, the use gadolinium-based positive contrast 

agents in cellular detection in vivo can offer an alternative method of quantifying 

the number tumour cells at the metastatic site. For Gd-chelates, contrast 

enhancement is dependent on the local concentration of Gd3+ ions and their 

efficiency in relaxing nearby water protons (Caravan 2006), rather than producing 

a large hypointense susceptibility artifact. Although not as well suited in detecting 
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single cells, Gd-chelates have successfully been used in imaging target cells “in 

bulk” within animals. For example, Nolte and colleagues (2008) were able to 

image 1x106 GdF-labeled glioma cells injected into the mouse brain. Several 

other groups have explored positive contrast enhanced cellular MR imaging 

using other cell types such mesenchymal stem cells (Geisil et al, 2006), human 

monocytes (Henning et al, 2007), and macrophages (Adler et al, 2010). To date, 

however, studies in exploring the use of gadolinium-based positive contrast 

agents in quantifying tumour cell number at the metastatic site are lacking. 

To address the need for improved methods in quantifying tumour cells at 

the secondary site, the current work sets the stage for in vivo quantification of 

tumour cells by providing a proof of principle that demonstrates MR 

measurements of positive contrast enhancement can be correlated with the 

number of Gd-labeled tumour cells, under in vitro conditions. The current 

research demonstrates the feasibility of labeling breast cancer cells with GdF, a 

novel Gd-chelate, and demonstrates the cellular detectability of GdF-labeled cells 

by MRI at clinical-field strengths such as 3T. By using an MR phantom containing 

a series of cell pellets with increasing amounts of GdF-labeled tumour cells, the 

current study demonstrates how the change in MR measurements such as signal 

enhancement and R1 values are quantitative measures of the number of tumour 

cells. Furthermore, the lowest amount of labeled cells per voxel detected by R1 

measurements was 546 cells, which corresponded to a cell pellet containing 

4x105 labeled cells. 
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Future studies that use targeted Gd-chelates to detect metastatic cells can 

use the information provided in the current study to quantify tumour cell number 

in secondary organs in vivo using parameters such as signal enhancement and 

R1 values. The ability to quantify the abundance of metastatic cells in secondary 

organs will prove to be an invaluable tool in accurately assessing metastatic 

burden, as well as determining the efficacy of anti-metastatic therapeutics.  
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Chapter 5.0: GENERAL DISCUSSION 

5.1 THESIS SUMMARY 

 The primary objective of this thesis was to study and quantify the fate of 

tumour cells after arresting in draining lymph nodes in a preclinical model of 

melanoma. To accomplish this, the second chapter of this thesis describes the 

development of a new lymph node experimental metastasis assay (LEMA) that 

permits a “cell accounting” analysis where the percentage of tumour cells of the 

original injectate that survived to form various types of metastatic lesions in the 

lymph node can be calculated at progressive time intervals. From this analysis, 

we were able to demonstrate how metastasis formation in the lymph node is an 

inefficient process where only 0.08% of the tumour cells that arrive are able to 

form lymph node tumours. 

 The third chapter of this thesis demonstrates the utility of HFUS in the 

non-invasive and longitudinal study of the growth of lymph node metastases, 

using the same animal model described in the second chapter. The growth rate 

of lymph node metastases varied from mouse to mouse, and in some cases, the 

metastatic lesion did not change in volume over 6 days. The most striking finding 

of this study was how small micrometastatic lesions appeared hyperechoic 

(bright) within the lymph node. The high contrast of these small metastatic 

lesions permitted the observation of their growth over time. The unprecedented 

ability of HFUS to track the growth of micrometastases provide a new avenue to 
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study and assess the efficacy of chemotherapeutics on the growth of 

micrometastatic deposits in a preclinical model. 

 The fourth chapter of this thesis deals with developing in vitro quantitative 

methods for assessing tumour cell number by positive contrast cellular imaging 

at 3T MRI.  To demonstrate the potential utility of positive contrast MRI in 

accurately assessing tumour cell number in vivo at clinical field strength, an in 

vitro MRI phantom was developed to contain a series of cell pellets with 

increasing amounts of positive contrast-labeled cells. This in vitro study provides 

evidence demonstrating a strong positive correlation between the change in 

positive contrast signal enhancement and tumour cell number. The change in R1 

values were also found to strongly correlate with tumour cell number. This study 

will be informative for future research exploring the use of positive contrast 

labeling in assessing tumour burden at secondary organs. 
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5.2 DISCUSSION – ASSESSING THE FATE OF ISOLATED TUMOUR 

CELLS AND MICROMETASTASES IN THE DEVELOPMENT OF OVERT 

LYMPH NODE METASTASES 

5.2.1 The need for a new model of lymph node metastasis 

Assessing the fate of tumour cells after they arrest in draining lymph 

nodes was a difficult task to undertake since current animal models of lymphatic 

metastasis use the spontaneous metastasis assay to study the initial steps of 

lymphatic metastasis. In a spontaneous metastasis assay, tumour cells 

spontaneously metastasize from an artificial primary tumour that is created by the 

orthotopic injection of tumour cells in the appropriate tissue or organ. This is a 

stochastic model in that the researcher has no control on the timing and number 

of cells that arrive in the draining lymph node. Therefore, a new model of lymph 

node metastasis was created to study the latter half of lymphatic metastasis – 

metastasis formation in the draining lymph node. 

5.2.2 LEMA and metastatic inefficiency in the lymph node 

In LEMA, a suspension of tumour cells and reference beads is injected 

into the upstream (inguinal) lymph node where the fluid immediately exits and 

drains into the downstream (axillary) lymph node. From this point, LEMA 

recapitulates the progressive stages of metastasis development. In progressive 

time intervals, isolated tumour cells are seen at 90 minutes and 3 days, followed 

by micrometastases at 3 and 7 days, and then overt metastases are seen at 7 
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and 14 days post-injection. Since tumour cells were co-injected with similarly 

sized reference beads, a “cell accounting” analysis permited the quantification of 

tumour cell survival as isolated tumour cells, micrometastases, and overt 

metastases was calculated. From this analysis, it became apparent that 

metastasis formation is an inefficient process. Ninety percent of the tumour cells 

that arrested in the lymph node were lost from 90 minutes to 3 days. At 3 days, 

0.3% of the original inoculum were able to form micrometastases. At 7 days, no 

isolated tumour cells were found, 0.006% and 0.002% of the tumour cells that 

arrested were able to form micrometastases and overt metastases, respectively.  

Finally at 14 days, 0.003% and 0.08% of the tumour cells were able to form 

micrometastases and overt metastases, respectively. 

5.2.3  Clinical relevance 

This is the first study to provide a detailed quantitative assessment of 

tumour cell fate in lymph nodes. The major conclusions from this study are that 

the majority of tumour cells (90%) that arrive in the lymph node do not form 

metastases, and only a small subset (0.08%) form overt lymph node tumours, for 

the cell line used here. Despite these interesting biological findings, the relevant 

question remains: How do these findings translate to patient care in the clinic? 

Indeed the removal of lymph node tumours are part of standard clinical practice 

in patient staging and controlling local spread (Meng et al, 2011). However, this 

procedure is associated with adverse affects such as seroma, inflammation, 

infection, and lymphedema in patients (Meng et al, 2011). Therefore, a practical 
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application of the current model is in the development of novel intralymphatic 

anti-metastatic therapeutics that reduces or eliminates lymph node tumours. If 

lymph node tumour burden can be reduced or eliminated altogether, this may 

spare patients from undergoing radical axillary lymph node dissection.  

5.2.4  Future studies 

 Intravital fluorescence videomicroscopy (IVFVM) can be used to directly 

determine if sinus histiocytes are responsible to tumour cell toxicity during the 

initial stages of lymph node colonization. LEMA utilizes two lymph nodes that are 

interconnected. In Chapter 2.0, the inguinal lymph node was the site of injection, 

and the downstream axillary lymph node was where tumour formation occurred. 

However, any pair of interconnected lymph nodes can be studied in this manner. 

The inguinal lymph node is highly accessible for intravital imaging (von Andrian, 

1996). Therefore upstream intralymphatic injection of 3 μm bead-labeled, 

fluorescent tumour cells can permit IVFVM observation of tumour cell arrest and 

early colonization of the inguinal lymph node. IVFVM can be performed at 90 

minutes, 24, 48, and 72 hours will permit the assessment of tumour cell 

interaction with sinus histiocytes. Parameters such as the number of sinus 

histiocytes, fluorescent tumour cells with 3 μm beads, and sinus histiocytes with 

3 μm beads at each time point can determine if the loss of tumour cells is 

accompanied by a concomitant increase in sinus histiocytes that contain 3 μm 

beads. 
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5.3 DISCUSSION – HIGH-FREQUENCY (40 MHz) ULTRASOUND IMAGING 

OF THE DEVELOPMENT OF EXPERIMENTAL LYMPH NODE METASTASES 

5.3.1 The utility of HFUS in tracking the dynamic growth of lymph node 

tumours 

 The previous study utilized LEMA to ascertain the fate of tumour cells after 

they arrest in draining lymph nodes. Through detailed time end-point 

experiments, metastatic progression was found to be an inefficient process. One 

major caveat of time end-point experiments is that one cannot track the future or 

the past of a metastatic lesion observed (Chambers et al 2002). To address the 

limitation of this experimental approach, the current study employs the same 

animal model to demonstrate the utility of HFUS in the non-invasive and 

longitudinal study of the dynamic growth of lymph node metastases. 

 HFUS has been previously demonstrated to be a relatively safe, 

inexpensive, and time efficient method in the non-invasive and serial acquisition 

of high resolution (40 μm), 3D information on metastatic growth in the liver 

(Graham et al, 2005). The current study used HFUS to characterize the 

development of lymph node tumours. With a scan time of 8 minutes per mouse, 

the user can acquire information such as 3D volume, RI, B-mode brightness, and 

percent vascularity. The sensitivity and specificity of each parameter in 

differentiating metastatic from non-metastatic lymph nodes is reported. From 

longitudinal observations of changes in lymph node volumes, the growth rate of 

lymph nodes that developed into large tumours varied considerably from mouse 
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to mouse. This is reflected in 14-day end-point volumes which ranged from ~98 

to 543 mm3; for comparison, normal lymph node volumes ranged from 8.5 to 

12.9 mm3.  

5.3.2 Non-invasive and longitudinal imaging of micrometastases 

A surprising observation in this study was the hyperechoic appearance of 

lymph node metastasis in B-mode images. Metastases from several different cell 

lines were previously reported to be hypoechoic in the liver (Graham et al, 2005). 

Analysis of ultrasound images reveals how the B-mode brightness of metastatic 

lymph nodes significantly increases over time compared to non tumour-bearing 

lymph nodes, which exhibited no significant change over time. The most striking 

feature about this study was the ability to track hyperechoic metastatic deposits 

as small as a micrometastasis (< 2 mm in diameter). In mice with metastatic 

lymph nodes, a subset of mice (3 out of  10) had lymph nodes with metastatic 

deposits that were only apparent by ultrasound; these small, non-palpable 

metastatic deposits, ranged from 1.2 to 4.4 mm in diameter. When experimental 

end-point was reached at 14 days, lymph nodes were processed for histological 

analysis of tumour burden.  Stereological analysis revealed a strong positive 

correlation (r2 = 0.94) between 2D measurement of histological tumour burden 

and 3D ultrasound volumetric measurements of tumour burden. The capability of 

HFUS to reliably track micrometastatic deposits opens a new avenue of research 

to non-invasively study the progression of micrometastatic disease within the 

lymph node. 
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5.3.3 Clinical relevance  

 The ability to track changes in metastatic burden in lymph nodes would 

prove to be highly useful in assessing the efficacy of anti-metastatic intervention 

in preclinical treatment models. Therapies that prove to be efficacious in delaying 

the progression of micrometastatic disease, or reducing lymph node tumour 

burden in human xenograft mouse models can potentially translate to the 

treatment of patients in the clinic. 

5.3.4 Future work  

Future research studying lymph node metastases can use HFUS in 

determining whether lymph node tumours contribute to further systemic 

dissemination of metastatic cells. In 2008, Rebhun and colleagues demonstrated 

that lymph node tumours seeded the lungs with metastases as equally well as 

primary tumours in the ear skin. By using the same mouse ear tumour model, 

HFUS can be used to monitor the growth of lymph node tumours and determine 

whether lymph node metastatic burden is correlated with the number of 

pulmonary metastases. Furthermore, lymph node tumour burden can potentially 

be reduced by high intensity focus ultrasound HIFU ablation. HFUS can be used 

to monitor the effects of HIFU ablation on lymph node tumour burden and to 

determine whether the average number of pulmonary metastases is significantly 

different from mice with lymph node tumours that did not receive HIFU ablation 
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treatment. If the average number of pulmonary metastases is significantly 

reduced by treating lymph node tumours with HIFU ablation, then this would 

provide evidence supporting the notion that lymph node tumours act as 

reservoirs of metastatic cells that can further disseminate into system circulation. 
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5.4 DISCUSSION - THE CELLULAR DETECTABILITY OF POSITIVE 

CONTRAST-LABELED TUMOUR CELLS AT CLINICAL FIELD STRENGTH 

MRI 

5.4.1 Problems in quantifying iron-oxide labeled tumour cells 

Imaging single tumour cells at the metastatic site has been previously 

demonstrated (Heyn et al, 2006; Townson et al, 2009; Foster et al, 2008). These 

authors demonstrate the sensitivity in detecting the presence of tumour cells that 

were labeled with superparamagnetic iron-oxide particles. However, 

quantification of the number of iron-oxide-labeled cells becomes problematic 

when imaged in “bulk” where the tumour cells’ respective signal voids overlap 

(Heyn et al, 2006; Townson et al, 2009). 

To address this limitation, cellular labeling with paramagnetic gadolinium-

based contrast agents are favorable since they do not produce a local 

susceptibility artifact (signal void), but rather, the local accumulation of 

gadolinium ions causes voxels to appear brighter. Although not as sensitive as 

iron-oxide on a per millimolar basis, this is compensated by developing strategies 

in delivering a higher payload of Gd-chelates to the target, or increasing the 

relaxivity of the Gd-chelate itself. 
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5.4.2 Assessment of tumour cell number by positive contrast cellular MRI 

in vitro 

The current study explores the feasibility of imaging GdF-labeled breast 

cancer cells at 3T MRI. To demonstrate whether MR parameters such as signal 

enhancement and R1 relaxation rate can measure the abundance of GdF-labeled 

tumour cells, an agarose in vitro MR phantom was constructed to contain a 

series of cell pellets with increasing ratios of GdF-labeled cells to unlabeled cells. 

In using a 3D SPGR pulse sequence with a 10 degree flip angle, we were able to 

demonstrate a strong and positive correlation (r2 = 0.94) between the changes in 

signal enhancement and tumour cell number. A T1 map of the cell pellets was 

constructed and R1 values for each cell pellet were calculated. Comparing R1 

values to the number of GdF-labeled cells by linear regression analysis reveals a 

strong, positive correlation (r2 = 0.94). These results show that positive contrast 

cellular MRI can be used to quantify the abundance of tumour cells under in vitro 

conditions. Furthermore, the cell pellet with the smallest amount of GdF-labeled 

cells that produced a measurable change in mean R1 values was 4x105 labeled 

cells or 546 labeled cells per voxel. 

5.4.3 Clinical relevance 

 Assessing metastatic tumour burden in patient lymph nodes is important in 

staging of the disease and influences the choice of therapy. Information from 

current research, such as MR pulse sequence parameters, can be used in the 
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assessment of targeted Gd-based contrast agents developed for in vivo 

quantification of metastatic tumour burden in the lymph nodes. The use of 

targeted Gd-based contrast agents may provide a more accurate assessment of 

metastatic tumour burden which can spare patients from undergoing 

unnecessary lymph node dissection procedures and avoid adverse events such 

as seroma, infection and lymphoedema (Meng et al, 2010). 

5.4.4 Future work 

 The current work sets the stage for in vivo quantification of metastatic 

tumour cells in the secondary organ. Future work can assess a clinically used 

Gd-chelate conjugated to a human tumour-specific targeting moiety such as mAb 

2C5, an anti-nuclear antibody (Erdogan et al, 2008). The novel Gd-chelate-

mAb2C5 contrast agent would be tested in vitro (similar to the current research) 

to determine the lower limit of human tumour cell detection at 3T MRI. For in vivo 

experiments, LEMA would be used with human tumour cells to induce the 

formation of lymph node tumours. The Gd-chelate-mAb2C5 contrast agent would 

be tested in a cohort of 8 mice with lymph node tumours to determine if the 

contrast agent is selectively retained in lymph node metastases. Administration 

of untargeted Gd-chelate into a separate cohort of 8 lymph node tumour-bearing 

mice would serve as a control. Signal enhancement and R1 values of lymph node 

tumours of mice that received targeted Gd-chelate-mAb2C5 contrast agent would 

be compared to lymph node tumour-bearing mice that received non-targeted Gd-

chelate. A significant increase in signal enhancement or R1 values in lymph node 
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tumour-bearing mice would demonstrate Gd-chelate-mAb2C5 is a contrast agent 

that can specifically detect human lymph node tumours. 
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5.5 CONLUSIONS 

 Tumour cell dissemination to draining lymph nodes and the establishment 

of metastases are parts of the natural history of many types of cancer. 

Assessment of the number and extent of lymph node tumours is crucial in 

disease staging and influences the choice of treatment. The current thesis 

explored the uncharted events after tumour cells arrest in draining lymph nodes. 

It was discovered that the majority of tumour cells (90%) are lost during the initial 

stages of colonization. Metastatic progression of the few surviving tumour cells 

proceeded in an inefficient manner where only 0.08% of the original cells that 

arrived were able to successfully form overt metastases. To understand the 

dynamic growth of lymph node tumours in vivo, we utilized HFUS to longitudinally 

assess lymph node tumour growth in individual mice. Heterogeneity in lymph 

node tumour growth rate was observed from mouse to mouse. The current thesis 

demonstrates how HFUS has the unprecedented capability to longitudinally track 

the progression of micrometastatic disease in murine lymph nodes.  This should 

be a useful tool in future metastasis research that studies the growth of 

micrometastatic deposits and assesses how they respond to anti-metastatic 

therapeutics. The final work of this thesis demonstrates the capability of clinical 

strength MRI to detect and quantify the abundance of tumour cells, under in vitro 

conditions. This will pave the way for future studies that evaluate novel targeted 

gadolinium-based contrast agents that can aid the in the accurate assessment of 

metastatic tumour burden in cancer patients. 
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