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Abstract 
 

Smoking-related lung diseases including chronic obstructive pulmonary disease (COPD) 

and lung cancer are projected to have claimed the lives of more than 30,000 Canadians in 

2010.  The poor prognosis and lack of new treatment options for lung diseases associated 

with smoking are largely due to the inadequacy of current techniques for evaluating lung 

function.  Hyperpolarized 3He magnetic resonance imaging (MRI) is a relatively new 

technique, and quantitative measurements derived from these images, specifically the 

ventilation defect volume (VDV) and ventilation defect percent (VDP) have the potential 

to provide new sensitive measures of lung function.  Here, we evaluate the 

reproducibility of VDV, and explore the sensitivity of these measurements in healthy 

young and elderly volunteers, and subjects with smoking-related lung disease (COPD and 

radiation-induced lung injury (RILI)).  Our results show that 3He MRI measurements of 

ventilation have high short-term reproducibility in both healthy volunteers and subjects 

with COPD.  Additionally, we report that these measurements are sensitive to age-related 

changes in lung function.  Finally, in RILI we show that measurements of lung function 

derived from 3He MRI are sensitive to longitudinal changes in lung function following 

treatment, while in COPD we report that using VDP in conjunction with structural 

measurements of disease (using the apparent diffusion coefficient (ADC) derived from 

diffusion-weighted images) may provide a new method for phenotyping this smoking-

related lung disease.   

 

Keywords: Hyperpolarized 3He magnetic resonance imaging, functional lung imaging, 

ventilation defect, chronic obstructive pulmonary disease, lung cancer, radiation-induced 

lung injury 



iv  

Co-Authorship 

The following thesis contains four manuscripts published in scientific journals, one 

manuscript published in a peer-reviewed conference proceeding and one manuscript 

submitted for publication.  Chapter 2 is an original manuscript entitled, “Hyperpolarized 
3He Magnetic Resonance Imaging of Chronic Obstructive Pulmonary Disease: 

Reproducibility at 3.0 Tesla”, and was published in the journal Academic Radiology in 

October 2008.  The manuscript was coauthored by Lindsay Mathew, Andrea Evans, 

Alexei Ouriadov, Roya Etemad-Rezai, Robert Fogel, Giles Santyr, David G. McCormack 

and Grace Parraga. Chapter 3 is an original manuscript entitiled “Hyperpolarized 3He 

Magnetic Resonance Imaging of Ventilation Defects in Healthy Elderly Voluneers: Initial 

Findings at 3.0T” and was published in the journal Academic Radiology in June 2008. 

The article was co-authored by Grace Parraga, Lindsay Mathew, Roya Etemad-Rezai, 

David G. McCormack and Giles E. Santyr. Chapter 4, entitled “Hyperpolarized 3He 

magnetic resonance imaging: Preliminary evaluation of phenotyping potential in chronic 

obstructive pulmonary disease” was published in the European Journal of Radiology 

(Epub ahead of print November 20, 2009). Co-authors on this paper were Lindsay 

Mathew, Miranda Kirby, Roya Etemad-Rezai, Andrew Wheatley, David G. McCormack 

and Grace Parraga. Chapter 5, a manuscript published in Medical Physics in January 

2010, is entitled “Detection of longitudinal lung structural and functional changes after 

diagnosis of radiation-induced lung injury using hyperpolarized 3He magnetic resonance 

imaging” and was co-authored by Lindsay Mathew, Stewart Gaede, Andrew Wheatley, 

Roya Etemad-Rezai, George B. Rodrigues and Grace Parraga.  Appendix A is an original 

manuscript published in the Conference record on the Forty-second Asilomar Conference 

Signals, Systems and Computers, 2008, co-authored by Lindsay Mathew, Andrew 

Wheatley, David G. McCormack and Grace Parraga, and entitled “Hyperpolarized 3He 

Magnetic Resonance Pulmonary Imaging: Image Processing Tools for Clinical 

Research”.  Appendix B is an original case report co-authored by Lindsay Mathew, 

Miranda Kirby, Donald Farquhar, Christoper Licskai, Roya Etemad-Rezai, David G. 

McCormack and Grace Parraga.  This manuscript, entitled “Hyperpolarized 3He 

Magnetic Resonance Imaging Biomarkers of Bronchoscopic Airway Bypass in COPD”, 



v  

was submitted to the Journal of Magnetic Resonance Imaging in November 2010 

(submission #JMRI-10-0886). 

As the principal author and PhD candidate, Lindsay Mathew contributed to study design, 

wrote the protocol, UWO Health Sciences Research Ethics Board ethics submission, 

Health Canada ethics submissions, and London Regional Cancer Program Small Grants 

for Cancer Research grant to secure funding for ROB0016, entitled ‘Predictors of 

Radiation-induced Lung Injury using Hyperpolarized 3He Magnetic Resonance Imaging’.  

Additionaly, L.Mathew oversaw subject study visits, performed data analysis and 

statistical analysis, led interpretation of results, drafted manuscripts, and revised 

manuscripts for publication in response to reviews.  Miranda Kirby provided assistance 

with data analysis, designed and wrote software for automated quantification of 

ventilation images, and contributed editorial assistance for the manuscripts in which she 

co-authored. Dr. Parraga, as the principal author’s supervisor helped to determine the 

project objectives, provided mentorship, consulted on interpretation of results, provided 

editorial assistance and overall guidance. Dr. Roya Etemad-Rezai, Dr. David G. 

McCormack, Dr. Giles Santyr, Dr. Alexei Ouriadov, Dr. Robert Fogel and Dr. Stewart 

Gaede provided clinical and physics expertise and aided in interpretation of the results for 

the respective papers that they co-authored. Dr. George B. Rodrigues provided ongoing 

guidance, was instrumental in setting up the clinical studies and provided clinical 

expertise in reviewing the results and manuscripts.  

Pulmonary function data acquisistion was performed by Sandra Halko and Shayna 

McKay. Hyperpolarization of 3He was performed by Andrew Wheatley.  MRI acquisition 

was performed by Cyndi Harper-Little and Trevor Szekeres.  



vi  

 

 

 

 
 

 

In Memory of my dad, Bruce Mathew; my inspiration… 

For your unconditional love, support and faith in me. 

 

 



vii  

Acknowledgements 

 
First and foremost, I would like to thank my supervisor Dr. Grace Parraga.  I am grateful 

for the guidance, support and encouragement she has provided me over the past five 

years.  Her belief in my abilities, our thought-provoking conversations and her emphasis 

on productivity have pushed me to excel.  She is passionate about her research, which 

comes across daily in her dedication to her work, her staff and her students, and makes 

research in her lab exciting.  Her mentorship has been invaluable to me during my time in 

her lab.  

I would also like to thank the members of my advisory committee: Dr. Aaron Fenster, Dr. 

George Rodrigues, Dr. Roya Etemad-Rezai and Prof. Jake Van Dyk.  I am most fortunate 

to have Dr. Fenster on my committee; he is the ultimate role model as a scientist, and his 

passion for, and dedication to imaging research are truly inspiring.  Dr. Rodrigues has 

provided me new opportunities to pursue a research project in the area of Radiation 

oncology/biophysics; an area of research that I am passionate about, and has provided me 

with an unparalleled learning experience during my time at the cancer centre.  His 

mentorship, expertise and guidance have greatly contributed to my research.  Dr. Etemad-

Rezai has been available to download and take me though countless chest x-rays and 

CTs.  Her time in the lab on Tuesdays provided me with great learning opportunities both 

in the dark-room and during lab meetings.  Her support and guidance during my time in 

the Parraga lab are most appreciated.  Prof. Van Dyk has been an integral member of my 

advisory committee both during his time in London and during his time at the IAEA.  

Despite being half-way around the world and involved in a new high-level position, he 

still took the time to send me all of the latest articles he came across and felt were 

pertinent to my research.  

I would also like to thank the staff of the Parraga lab, and many others at Western whose 

assistance has been crucial in my research and academic life.  Members of the Parraga 

group have been supportive, knowledgable and willing to provide assistance to make sure 

my projects in the lab have been successful.  To Andrew Wheatley – thank you for 

always making sure my computer was running and had everything I needed to do my 

research, for your intellectual questions and witty comments in lab meeting, and for the 



viii  

many bags of hyperpolarized 3He that always came out precisely on time.  Sandra Halko 

has shared with me her expertise in running clinical studies, writing protocols and ethics 

submissions and spent countess hours with me looking up clinical data necessary for my 

clinical studies.  I would like to thank both Sandra and Shayna McKay for their help in 

running study subject visits, for all the pulmonary function tests performed, and for time 

spent coaching research subjects in the MR.  Thanks also to Trevor Szekeres and Cyndi 

Harper-Little for performing the many 3He MRI scans that made this research possible.  I 

would also like to thank Laura Groom and Wendy Hough in Medical Biophysics for all 

of their hard work behind the scenes.  

To my lab mates and friends at Robarts; you’ve made the last few years fun and 

enjoyable.  I am thankful for the great friendship I’ve developed with Miranda Kirby, 

who allowed me to mentor her in her early years, and who now teaches me.  Thanks 

Miranda for the afternoon chai latte breaks, some great memories at some amazing 

conferences and all the wonderful discussions that got me through the past few years!  

Thanks too to my other fellow lab mates past and present: Christianne Mallet for the 

coffee time chats and lunch breaks, Laura Wilson for many good laughs, Hassan Ahmed 

for his easy going, care-free outlook on life, to Amir Owrangi for the goofy smile he had 

on every time I walked to my desk and never failing to give me an ‘Oh Really?!’ just 

when I needed it, to Steven Choy, Steve Costella and Dan Buchanan for adding some 

male perspective to the lab group, and Jessica McCallum for the countless hours of 

company in the dark room. 

A very special thank you to my husband, Sanjay, for your love, patience and 

understanding. Thanks too, to all of my family for all of their love and encouragement.  

Your support has meant a lot to me.   

Finally, I am truly grateful for the financial support I received during my graduate studies 

that enabled me to completely focus my time and energy on my research.  I acknowledge 

the funding I received from the Vanier Canadian Graduate Scholarship, the CIHR 

Strategic Training Program in Cancer Research and Technology Transfer, the Ontario 

Graduate Scholarship and the Schulich Graduate Scholarship.   



ix  

Table of Contents 
 
Certificate of Examination…………………………………………...……………………ii 
Abstract……………………………………………………………………...……………iii 
Co-Authorship……………………………………………………………………..……..iv 
Acknowledgements……………………………………………………………..………..vii 
Table of Contents………………………………………………………………..………..ix 
List of Appendices…………………………………………………………..…………..xiii 
List of Tables..……………………………………………………………..…………....xiv 
List of Figures………………………………………………………………..…………..xv 
List of Abbreviations……………………………………………………….…………..xvii 

CHAPTER  1: INTRODUCTION ................................................................................... 1 

1.1 Overview and Motivation ..................................................................................... 1 

1.2 Lung Function: Delivery and Exchange of O2 ................................................... 2 

1.3 Established Tests of Lung Function .................................................................... 3 
1.3.1 Pulmonary Function Tests .............................................................................. 4 
1.3.2 Clinical Measurements of Breathlessness ....................................................... 6 
1.3.3 Inflammatory Markers .................................................................................... 7 
1.3.4 Other Tests ...................................................................................................... 7 

1.4 Functional Decline of the Lung ............................................................................ 8 
1.4.1 The Aging Lung: Normal Functional Decline ................................................ 8 
1.4.2 Chronic Obstructive Pulmonary Disease: Accelerated Functional Decline . 11 
1.4.3 Lung Cancer .................................................................................................. 14 
1.4.4 Radiation-induced lung injury ...................................................................... 16 

1.5 Imaging Measurements of Lung Function ....................................................... 18 
1.5.1 Chest x-ray .................................................................................................... 19 
1.5.2 X-ray Computed Tomography ...................................................................... 21 
1.5.3 Nuclear Medicine Methods ........................................................................... 24 
1.5.4 Magnetic Resonance Imaging ....................................................................... 27 

1.6 Hyperpolarized Noble Gas MRI ........................................................................ 29 
1.6.1 Development and Theory .............................................................................. 29 
1.6.2 Hyperpolarized 3He MRI: Research Subject Studies .................................... 32 

1.7 Thesis Hypothesis and Objectives ..................................................................... 34 

1.8 References ............................................................................................................ 36 



x  

CHAPTER  2: HYPERPOLARIZED 
3
HE MAGNETIC RESONANCE IMAGING 

OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE: REPRODUCIBILITY 

AT 3.0 TESLA ................................................................................................................. 54 

2.1 Introduction ......................................................................................................... 54 

2.2 Materials and Methods ....................................................................................... 56 
2.2.1 Study Subjects ............................................................................................... 56 
2.2.2 Study Assessments ........................................................................................ 56 
2.2.3 Safety Monitoring and Hyperpolarized 3He Administration ........................ 57 
2.2.4 Imaging ......................................................................................................... 57 
2.2.5 Image Analysis.............................................................................................. 58 
2.2.6 Statistical Methods ........................................................................................ 59 

2.3 Results .................................................................................................................. 60 
2.3.1 Study Subjects ............................................................................................... 60 
2.3.2 3He MRI Measurements ................................................................................ 63 
2.3.3 3He Measurement Reproducibility ................................................................ 66 

2.4 Discussion............................................................................................................. 70 

2.5 Conclusion ........................................................................................................... 75 

2.6 References ............................................................................................................ 76 

CHAPTER  3: HYPERPOLARIZED 
3
HE MAGNETIC RESONANCE IMAGING 

OF VENTILATION DEFECTS IN HEALTHY ELDERLY VOLUNTEERS: 

INITIAL FINDINGS AT 3.0 TESLA ........................................................................... 79 

3.1 Introduction ......................................................................................................... 79 

3.2 Methods ................................................................................................................ 80 
3.2.1 Study Population ........................................................................................... 80 
3.2.2 Spirometry..................................................................................................... 80 
3.2.3 Magnetic Resonance Imaging ....................................................................... 80 
3.2.4 Image Analysis.............................................................................................. 81 

3.3 Results .................................................................................................................. 84 
3.3.1 Study Subjects ............................................................................................... 84 
3.3.2 Ventilation Defects and Ventilation Defect Volume .................................... 85 
3.3.3 Ventilation Defect Volume Interscan and Inter-observer Reproducibility ... 86 

3.4 Discussion............................................................................................................. 89 

3.5 Conclusion ........................................................................................................... 93 

3.6 References ............................................................................................................ 94 



xi  

CHAPTER  4: HYPERPOLARIZED 
3
HE MAGNETIC RESONANCE IMAGING: 

PRELIMINARY EVALUATION OF PHENOTYPING POTENTIAL IN 

CHRONIC OBSTRUCTIVE PULMONARY DISEASE ........................................... 97 

4.1 Introduction ......................................................................................................... 97 

4.2 Methods ................................................................................................................ 99 
4.2.1 Subjects ......................................................................................................... 99 
4.2.2 Pulmonary Function Tests ............................................................................ 99 
4.2.3 Safety Monitoring and Hyperpolarized 3He Administration ........................ 99 
4.2.4 Imaging ....................................................................................................... 100 
4.2.5 Image Analysis............................................................................................ 101 
4.2.6 Statistical Methods ...................................................................................... 103 

4.3 Results ................................................................................................................ 104 
4.3.1 Study Subjects ............................................................................................. 104 
4.3.2 3He MRI Measurements .............................................................................. 105 

4.4 Discussion........................................................................................................... 110 

4.5 Conclusion ......................................................................................................... 112 

4.6 References .......................................................................................................... 113 

CHAPTER  5: DETECTION OF LONGITUDINAL STRUCTURAL AND 

FUNCTIONAL CHANGES AFTER DIAGNOSIS OF RADIATION-INDUCED 

LUNG INJURY USING HYPERPOLARIZED 
3
HE MAGNETIC RESONANCE 

IMAGING ...................................................................................................................... 117 

5.1 Introduction ....................................................................................................... 117 

5.2 Methods .............................................................................................................. 118 
5.2.1 Study Subjects ............................................................................................. 118 
5.2.2 Study Evaluations ....................................................................................... 118 
5.2.3 Imaging ....................................................................................................... 119 
5.2.4 Image Analysis............................................................................................ 120 
5.2.5 3He – 1H Image Registration ....................................................................... 121 
5.2.6 Statistical Analysis ...................................................................................... 121 

5.3 Results ................................................................................................................ 122 
5.3.1 Study Subjects ............................................................................................. 122 
5.3.2 3He MRI ...................................................................................................... 124 
5.3.3 Correlations ................................................................................................. 125 
5.3.4 Image Registration ...................................................................................... 129 

5.4 Discussion........................................................................................................... 130 

5.5 Conclusion ......................................................................................................... 133 



xii  

5.6 References .......................................................................................................... 135 

CHAPTER  6: CONCLUSIONS AND FUTURE DIRECTIONS ............................ 140 

6.1 Overview and Summary ................................................................................... 140 

6.2 Summary of Conclusions .................................................................................. 144 

6.3 Limitations of Current Tools and Solutions ................................................... 145 
6.3.1 Study Specific Limitations .......................................................................... 145 
6.3.2 General Limitations .................................................................................... 148 

6.4 Roadmap for Future Studies............................................................................ 151 
6.4.1 Quantification of Lung Disease in Patients Diagnosed with Non-Resectable 
Lung Cancer using Hyperpolarized 3He MRI ............................................................. 151 
6.4.2 Ventilation Defect Etiology ........................................................................ 154 
6.4.3 Hyperpolarized Noble Gas MRI Phenotypes of COPD .............................. 155 
6.4.4 Hyperpolarized 129Xe MRI: Ventilation Defects in Health and Disease .... 156 

6.5 Impact and Significance ................................................................................... 157 

6.6 References .......................................................................................................... 158 

 



xiii  

List of Appendices 

APPENDIX – A: HYPERPOLARIZED 
3
HE MAGNETIC RESONANCE 

PULMONARY IMAGING: IMAGE PROCESSING TOOLS FOR CLINICAL 

RESEARCH .................................................................................................................. 161 

A.1 Introduction ....................................................................................................... 161 

A.2 Methods .............................................................................................................. 164 

A.3 Results ................................................................................................................ 165 
A.3.1 Image Visualization .................................................................................... 165 
A.3.2 Image Registration ...................................................................................... 165 
A.3.3 Signal Normalization .................................................................................. 166 
A.3.4 Image Subtraction ....................................................................................... 166 

A.4 Conclusion ......................................................................................................... 167 

A.5 References .......................................................................................................... 169 

APPENDIX – B: HYPERPOLARIZED 
3
HE MAGNETIC RESONANCE 

IMAGING BIOMARKERS OF BRONCHOSCOPIC AIRWAY BYPASS IN COPD

......................................................................................................................................... 171 

B.1 Introduction ....................................................................................................... 171 

B.2 Case Report ....................................................................................................... 171 

B.3 Discussion........................................................................................................... 175 

B.4 References .......................................................................................................... 177 

APPENDIX – C: PERMISSIONS FOR REPRODUCTION OF SCIENTIFIC 

ARTICLES .................................................................................................................... 179 

APPENDIX – D: HEALTH SCIENCE RESEARCH ETHICS BOARD APPROVAL 

NOTICES....................................................................................................................... 185 

CURRICULUM VITAE ............................................................................................... 187 

 

 



xiv  

List of Tables  
 
Chapter 2: 
Table 2-1: Subject Demographics. .................................................................................... 62 
Table 2-2: Same day and 7-day Rescan ADC and VDV Measurements. ......................... 64 
Table 2-3: Scan-Rescan Reproducibility. ......................................................................... 67 
Table 2-4: 3He ADC and VDV Sample Size Calculations. .............................................. 70 
 

Chapter 3: 
Table 3-1: Study Subject Demographic Characteristics. .................................................. 84 
Table 3-2: Ventilation Defects in Healthy Elderly Volunteers. ........................................ 85 
Table 3-3: Elderly Volunteer Ventilation Defect Volume Inter-observer Reproducibility.

................................................................................................................................... 87 
 

Chapter 4: 
Table 4-1: Subject Demographics. .................................................................................. 104 
Table 4-2: Whole Lung 3He MRI ADC and Ventilation Measurements. ....................... 106 
Table 4-3: Whole lung 3He MRI Correlations with Pulmonary Function. ..................... 107 
Table 4-4: Center slice 3He Measurement Contributions by Subject. ............................ 108 
 

Chapter 5: 
Table 5-1: Subject Demographics. .................................................................................. 123 
Table 5-2: Radiation Parameters. .................................................................................... 124 
Table 5-3: 3He MRI ADC and Ventilation Measurements. ............................................ 127 
Table 5-4: Longitudinal Differences. .............................................................................. 127 
 

Appendix B: 
Table B-1: Pulmonary function test and 3He MRI results pre- and post-AB. ................ 173 



xv  

List of Figures 
 

Chapter 1: 
Figure 1-1: Lung Function. ................................................................................................. 3 
Figure 1-2: Pulmonary Function Testing. ........................................................................... 5 
Figure 1-3: Normal Decline in Pulmonary Function with Age. ....................................... 10 
Figure 1-4: COPD Pathology and Decline in Lung Function. .......................................... 13 
Figure 1-5: Canadian Incidence and Mortality in Cancer for 2010. ................................. 14 
Figure 1-6: Stages of Radiation-induced lung injury. ....................................................... 17 
Figure 1-7: Chest x-ray of healthy volunteer, COPD and lung cancer. ............................ 20 
Figure 1-8: CT of Smoking-related lung disease. ............................................................. 23 
Figure 1-9: Proton MRI of the Lung. ................................................................................ 28 
Figure 1-10: Hyperpolarized 3He MRI in Health, COPD, Lung Cancer and RILI. ......... 33 
 
Chapter 2: 

Figure 2-1: 3He Apparent Diffusion Coefficient Maps and centre slice ADC results. ..... 61 
Figure 2-2: 3He MR Ventilation Images and Ventilation Defect Volume (VDV) Results.

................................................................................................................................... 65 
Figure 2-3: Center Slice ADC and VDV Reproducibility. ............................................... 68 
Figure 2-4: Center Slice 3He VDV Reproducibility ......................................................... 69 
 
Chapter 3: 

Figure 3-1: Hyperpolarized 3He Magnetic Resonance Imaging Ventilation Defect 
Volume Segmentation Approach. ............................................................................. 83 

Figure 3-2: Elderly Healthy Volunteers 3He Magnetic Resonance Imaging. ................... 86 
Figure 3-3: Middle-aged Healthy Volunteers 3He Magnetic Resonance Imaging. .......... 87 
Figure 3-4: Reproducibility of 3He Ventilation in Healthy and Middle-aged Healthy 

Volunteers ................................................................................................................. 88 
 
Chapter 4: 

Figure 4-1: Schematic for 3He MRI Ventilation Analysis. ............................................. 103 
Figure 4-2: Linear Regression. ....................................................................................... 105 
Figure 4-3: 3He MRI VDP and ADC% Contributions in COPD. ................................... 107 
Figure 4-4: 3He MRI Classification by Thresholding. .................................................... 108 
Figure 4-5: 3He VDP and ADC Dominance. .................................................................. 109 
 
Chapter 5:  

Figure 5-1: Representative Baseline and Follow-up Hyperpolarized 3He Ventilation 
Images, ADC Maps and ADC Histograms. ............................................................ 123 

Figure 5-2: Baseline and Follow-up Hyperpolarized 3He MRI Measurements. ............. 125 
Figure 5-3: Mean Longitudinal Differences in 3He MRI and spirometry measurements.

................................................................................................................................. 126 
Figure 5-4: 3He MRI longitudinal changes compared to Radiation Parameters ............. 128 
Figure 5-5: Representative subjects showing 3He – 1H MR Image Registration. .......... 129 
 



xvi  

Chapter 6: 

Figure 6-1: Representative 3He VDP dominant subjects ................................................ 153 
Figure 6-2: Representative 3He mixed subjects .............................................................. 153 
 
Appendix A: 

Figure A-1: Clinical Hyperpolarized 3He Magnetic Resonance Imaging. ...................... 163 
Figure A-2: Ventilation Defect scoring of 3He MRI. ..................................................... 164 
Figure A-3: Ventilation Defect Evaluation: Estimation by Consensus. ......................... 165 
Figure A-4: Image Processing for a Subject with Stage III COPD. ............................... 168 
Figure A-5: Image Processing for a Subject with Radiation-induced lung injury. ......... 168 
 
Appendix B: 

Figure B-1: 3He MRI registered to 1H MRI Prior to Airway Bypass. ............................ 174 
Figure B-2: 3He MRI registered to 1H MRI Following Airway Bypass. ........................ 175 
 

  



xvii  

List of Abbreviations 
 

2D   Two-dimensional 
3He   Helium-3 
6MWD  Six minute walk distance 
99mTc   Technetium-99m 
129Xe   Xenon-129 
AB   Airway bypass 
ADC   Apparent diffusion coefficient 
ANOVA  Analysis of variance 
ATS   American Thoracic Society 
BAL   Bronchoalveolar lavage 
BMI   Body mass index 
BODE   BMI, airflow obstruction, dypnea, exercise capacity 
BOLD   Burden of obstructive lung disease 
BW   Bandwidth 
CE   Centrilobular emphysema 
COPD   Chronic obstructive lung disease 
CPET   Cardiopulmonary exercise testing 
CT   Computed tomography 
COV   Coefficient of variation 
DLCO   Diffusing capacity of carbon monoxide 
DWI   Diffusion-weighted imaging 
ERV   Expiratory reserve volume 
FDG   Fluorodeoxyglucose 
FEV1   Forced expiratory volume in one second 
FGRE   Fast gradient recalled echo 
FOV   Field of view 
FRC   Functional residual capacity 
FVC   Forced vital capacity 
GEHC   General Electric Health Care 
GOLD   Global initiative for obstructive lung disease 
HIPAA  Health insurance portability and accountability act 
HRCT   High resolution computed tomography 
HU   Hounsfield units 
IC   Inspiratory capacity 
MAA   Macro-aggregated albumin 
MLD   Mean lung dose 
mMRC  modified Medical Research Council 
MRI   Magnetic resonance imaging 
NLST   National Lung Screening Trial 
NSCLC  Non-small cell lung cancer 
PET   Positron emission tomography 
PFT   Pulmonary function test 



xviii  

PIPEDA  Personal information protection and electronic documents act 
PTV   Planning target volume 
PVV   Percent ventilated volume 
RF   Radiofrequency 
RILI   Radiation-induced lung injury 
RV   Residual volume 
SCLC   Small cell lung cancer 
SGRQ   St. George’s Respiratory Questionnaire  
SNR   Signal-to-noise ratio 
SPECT  Single photon emission computed tomography 
SpO2   Oxygen saturation on pulse oximetry 
T1   Longitudinal relaxation 
TCV   Thoracic cavity volume 
TE   Echo time 
TLC   Total lung capacity 
TNM   Tumour, node, metastasis 
TR   Repetition time 
TV   Tidal volume 
VC   Vital capacity 
VDP   Ventilation defect percent 
VDS   Ventilation defects score 
VDV   Ventilation defect volume 
VV   Ventilation volume 
WHO   World Health Organization 
%pred   Percent of predicted value 



1 

  

CHAPTER  1:  INTRODUCTION 

1.1 Overview and Motivation 

More than 30,000 Canadians are projected to have died from smoking-related lung 

diseases in 20101,2, which include both chronic obstructive pulmonary disease (COPD) 

and lung cancer.  The staggering mortality rate for lung diseases that can be attributed to 

smoking continues to rise3, while current treatments remain largely unsuccessful and 

potential new treatments fail in clinical trials.4-7  Currently, symptom management is the 

only available treatment option for COPD aside from smoking cessation3,8, while current 

treatments for lung cancer have a dismal 10-15% survival rate.9  Moreover, radiation 

treatment for lung cancer causes further damage to the lung in more than 30% of patients, 

a condition known as radiation-induced lung injury (RILI).10-12  These dismal mortality 

statistics and the lack of new treatment options are likely a consequence of the 

fundamental inadequacy of the current tools used to monitor and evaluate lung function.  

Spirometry is the current gold standard for measuring lung function and is also used as an 

intermediate endpoint for evaluation of new therapies in clinical trials, despite evidence 

that its measurements do not to correlate well with patient outcomes.13  Established 

measurements of lung function provide only global measures of largely regional diseases, 

cannot differentiate between true functional impairment and various underlying structural 

pathologies, and are largely insensitive to early disease-related changes, disease 

progression and response to therapy.14-16  Thus, there is an urgent need for new tools that 

can provide sensitive measures of lung function, probing regional lung function 

independent of underlying pathology.  Imaging tools have the potential to play a key role 

in the development of new sensitive measurements of lung function, though they are not 

yet fully developed.  

This thesis focuses on the development and application of novel quantitative 

measurements of lung function derived from hyperpolarized helium-3 (3He) magnetic 

resonance imaging (MRI), and evaluates 3He MRI measurements of lung function in 

healthy volunteers and subjects with smoking-related lung disease (COPD, lung cancer 

and RILI).  In order to validate new metrics aimed at quantifying lung function the 

sensitivity and reproducibility of these measurements must first: 1) be characterized in 
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healthy individuals across a variety of ages, and, 2) be evaluated in the context of 

currently available tools.  Finally, these measurements can then be extended to evaluate 

lung function in the context of COPD, lung cancer and RILI.  To provide a foundation for 

these concepts, Chapter 1 addresses the current understanding of lung function in healthy 

young and elderly individuals.  This chapter reviews the literature related to COPD, lung 

cancer and RILI, outlines the current tools and imaging methods for evaluating lung 

function, and describes hyperpolarized 3He MRI.  Finally, an overview of the hypotheses 

tested in this thesis related to a novel metric for evaluating lung function in young and 

elderly healthy volunteers, as well COPD, lung cancer and RILI, derived from 

hyperpolarized 3He MRI are described.  

1.2  Lung Function: Delivery and Exchange of O2 

On average, a person takes a breath once every five seconds, breathing more than 8,600 L 

of air per day.17  The act of breathing continually introduces oxygen into the body and 

expels carbon dioxide from the body.  Thus, the continuous function of the respiratory 

system, which is responsible for breathing, is vital for human life.  The respiratory system 

can be divided into two parts; the lung, the site of gas exchange, and the ventilatory 

pump, comprised of the components that facilitate breathing including the chest wall, 

diaphragm, inspiratory and expiratory muscles, the respiratory centres in the brain stem, 

and the neural connections between the brain and respiratory muscles.18  The ventilatory 

pump works by a mechanical process to expand the lung, whereby the muscles of the 

thorax and abdomen work together under the control of the brain.19  In order to increase 

the volume of the lungs the respiratory muscles must produce a pressure great enough to 

overcome the natural tendencies of the lung and chest wall to recoil.19  When this 

pressure is achieved the lung expands, and the increase in lung volume creates a negative 

pressure within the lung relative to atmospheric pressure, resulting in an influx of air 

from the environment (Figure 1-1).  Within the lung, air flows through many generations 

of airways, finally reaching alveoli; the site of gas exchange, where passive diffusion of 

oxygen and carbon dioxide across the blood-gas barrier occurs.  The constant, 

synchronous functioning of the ventilatory pump and the lungs allows for gas delivery 

and gas exchange to occur.  
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The lung, as the site of gas exchange, has a unique structural design that maximizes its 

overall functional capacity.  Normal lung function requires ventilation of the more than 

300 million alveoli.20  The architecture necessary for gas delivery and homogenous 

ventilation throughout the lungs is provided by over 2400 km of large and small airways, 

with more than 20 generations of dichotomous branching as shown in Figure 1-1.20  

Designed to maximize function, the dichotomous branching structure of the large 

airways, from the trachea to the terminal bronchioles, and small airways (<2mm in 

diameter) rapidly expand the total cross-sectional area of the airways, thereby providing a 

low-resistance path for airflow.20-22  In total, the airway tree takes up a mere 3% of the 

total lung volume, minimizing the anatomic dead space in the lungs, and maximizing the 

volume available for gas exchange.23 

 

 

Figure 1-1: Lung Function. 

In the young healthy adult lung, expansion of the lungs results in airflow through approximately 
2400 km of large and small airways.  The airways provide a pathway for ventilation of more than 
300 million alveoli, where gas exchange across the blood-gas barrier occurs.  
 

1.3 Established Tests of Lung Function 

There are an array of methods for evaluating lung function; some are commonly used in 

the clinic, while others are more often performed in research studies as primary or 

secondary outcome measures.  Methods for evaluating lung function include quantitative 

tests such as spirometry, plethysmography and diffusing capacity of carbon monoxide 

(DLCO), and qualitative tests such as the modified Medical Research Council (mMRC) 
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dyspnea scale.  Despite the fact that these tests are either subjective or highly effort 

dependent, they are for the most part inexpensive and readily accessible making them 

ideal tools for clinical use.  The various measurements of lung function that can be 

derived from these tests are described here.  

1.3.1 Pulmonary Function Tests 

Pulmonary function tests (PFT) directly measure overall lung function using three 

different sets of coached breathing maneuvers, which allow for the evaluation of, 1) 

dynamic flow rates, 2) static lung volumes, and 3) gas exchange.  Spirometry, which 

measures flow rates using a spirometer (Figure 1-2A), is regarded as the gold standard for 

measuring lung function.  Spirometry captures two specific measurements; the forced 

expiratory volume in one second (FEV1), the maximal volume of air that can be 

forcefully expired from the lungs in one second and the forced vital capacity (FVC), the 

total volume of air that can be forcefully expired from the lungs, as shown in Figure 1-

2B.  Static lung volumes can be measured using plethysmography (Figure 1-2C), which 

requires an individual to perform a series of breathing maneuvers in a closed system 

where pressure changes are measured, followed by the application of Boyle’s Law to 

compute lung volumes.  Lung volumes that can be measured are shown in Figure 1-2D, 

and include total lung capacity (TLC), the total volume of gas in the lungs following 

maximum inspiration; functional residual capacity (FRC), the lung volume at the end of 

normal expiration; inspiratory capacity (IC), the volume inspired from FRC; tidal volume 

(TV), the volume of gas inhaled and exhaled as during normal respiration; residual 

volume (RV), the volume of gas remaining in the lungs following maximum expiration; 

expiratory reserve volume (ERV), the volume of gas remaining in the lungs at the end of 

normal expiration that could be expired on maximum effort; and, vital capacity (VC), the 

maximum volume of gas inspired from RV.  Both flow rates and lung volumes measured 

are commonly expressed as a percent predicted (%pred) value that depends on age, height, 

gender and ethnicity.3,24  Finally, diffusion of gases across the alveolar membrane can 

also be measured using DLCO.  DLCO is measured during a breath-hold technique, 

whereby alveolar volume and alveolar concentrations of carbon monoxide are derived 

from measurements of the concentration of tracer gas in the inhaled and exhaled air and 
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the carbon monoxide concentration in the inspired gas.25 Closing capacity is the lung 

volume at which the small airways in the dependent part of the lung close, and can be 

measured using a single-breath nitrogen wash-out test.29  

 

Figure 1-2: Pulmonary Function Testing.   

A hand-held spirometer is shown in (A) with a corresponding sample airflow curve in (B), 
depicting both the forced expiratory volume in one second and the forced vital capacity.  (C) 
displays a subject in a plethysmography body box, where plethysmography and measurement of 
gas diffusion can be performed.  Note that for plethysmography, the door of the body box is 
closed and sealed.  Lung volumes that can be measured using plethysmography are shown in (D), 
and include vital capacity, tidal volume, expiratory reserve volume, residual volume, inspiratory 
capacity, functional residual capacity, and total lung capacity.  
 

PFTs are the most commonly performed lung function tests in the clinic, largely due to 

the low cost associated with hand-held spirometers and their relative ease of use.  Despite 
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the wide-spread use of PFTs, studies have shown they are highly effort dependent, may 

not be reproducible, and give a single global measurement of lung diseases that are 

thought to be highly regionally variable.16  The variability in pulmonary function test 

results, primarily due to inconsistency in patient effort, have been found to be higher than 

for most other clinical laboratory tests.26  The American Thoracic Society (ATS) has 

created acceptability and repeatability criteria to minimize the variability of these 

measurements, which dictates that a minimum of three technically acceptable spirometry 

maneuvers must be completed (free from artifacts and leaks, good start, acceptable 

exhalation), with the two largest FEV1 and FVC measurements within 150mL of each 

other.27,28  This criteria can be challenging for patients with lung disease, and many tests 

are often performed before the criteria is reached.  Additionally, the ability to measure 

DLCO relies on the subjects’ ability to perform a breath-hold ten seconds in duration, 

which is often not possible for patients with severe lung disease.  Thus, pulmonary 

function testing, although inexpensive and easily accessible, can be difficult to execute 

properly, especially in patients with advanced lung disease. Furthermore, these tests do 

not provide specific measures of underlying disease in the lung parenchyma or airways. 

1.3.2 Clinical Measurements of Breathlessness 

Clinical measurements of breathlessness aim to evaluate lung function by measuring 

dyspnea (shortness of breath) both qualitatively and quantitatively.  The mMRC scale is a 

survey of respiratory symptoms that has been well validated in the literature.29  This scale 

requires the subject to select one of five statements that best describes the type of 

physical task that usually leaves them feeling breathless, such as ‘I get short of breath 

when hurrying on level ground or walking up a slight hill’.30  Advancing on the mMRC’s 

single component system, the St. George’s Respiratory Questionnaire (SGRQ) addresses 

three areas of concern, including symptoms, activities that relate to breathlessness and 

disturbances to daily life.29   This self-administered questionnaire includes 76 items 

weighted by the distress associated with each.29  Another, more objective test used to 

evaluate breathlessness is the six minute walk distance (6MWD), whereby the distance 

that an individual can walk in six minutes on a hard flat surface is measured.31  Results of 

the 6MWD test have been correlated to quality life and ability to complete daily 
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activities, and used to predict morbidity and mortality.31  In fact, both mMRC and 

6MWD have been shown to be better predictors of mortality in COPD than FEV1.
32  

Overall, these tests are inexpensive, highly accessible, and despite their subjective nature 

appear to correlate well with disease outcomes.  

1.3.3 Inflammatory Markers 

Inflammation is heavily associated with the development of COPD, and subsequent 

decline in lung function.  Inflammatory markers that may be related to COPD 

development and/or progression can be measured using bronchoalveolar lavage (BAL) 

and induced sputum measurements.31  BAL is an invasive method using bronchoscopy to 

collect cells and proteins found in pulmonary secretions for evaluation.31  While the 

patient is sedated a flexible bronchoscope is used for direct visualization and guidance 

through the airways to a location where the pulmonary secretion is sampled, generally at 

the level of the subsegmental bronci (4th-6th generation).31  At the location to be sampled, 

a saline solution is flushed into the airway, and then drawn back out for analysis.  This 

technique allows for assessment of eosinosphils, neutrophils, lymphocytes, mast cells, 

machrophages, histamine and subcellular protein components.31   

Induced sputum measurements of inflammatory markers can also be made.  In this 

procedure an individual inhales nebulized hypertonic saline that induces sputum 

production, specifically from the lower airways for sampling.31  Due to the highly 

invasive nature of these procedures, coupled with the costs associated BAL, the wide-

spread use of these techniques is limited.  

1.3.4 Other Tests 

Other tools have been developed to evaluate lung function, including the BODE index.  

This test combines four measures of lung function that have the strongest association 

with mortality – body mass index (BMI), airflow obstruction, dyspnea, and exercise 

capacity.33  In this test measurements of these four parameters, BMI, post-

bronchodialator FEV1 %pred value, mMRC dypnea score and 6MWD, are each scored on 

a scale of zero to three  (zero or one for BMI) and summed to compute a total BODE 

index score out of ten.33     



8 

  

Another approach to evaluate lung function is to evaluate exertional dyspnea.  

Cardiopulmonary exercise testing (CPET) allows for the simultaneous study of responses 

of the respiratory system to a known exercise stress through the measurement of gas 

exchange with the airway.34  In addition to measuring gas exchange, oxygen uptake 

( V&O2max), carbon dioxide output ( V&CO2) and minute ventilation ( V& E), 

electrocardiography, heart rate and blood pressure can also be measured.34,35  There are a 

number of different protocols for CPET, using either a treadmill or cycle ergometer.  

Protocols are classified according to how the work rate is applied, and include 1) 

progressive incremental exercise, 2) a multi-stage exercise protocol, 3) a constant work 

rate protocol, and 4) a discontinuous protocol.35   

1.4 Functional Decline of the Lung 

There is a natural decline in lung function that occurs due to aging and this decline occurs 

at an accelerated rate in individuals with lung disease.  Accelerated functional decline 

occurs with smoking-related lung diseases, including COPD, lung cancer and RILI.  

Section 1.4 of this thesis provides an overview of the functional lung changes that occur 

with age, COPD, lung cancer, and RILI, as well as the underlying pathology thought to 

cause lung function impairment, and commonly presented symptoms that lead to COPD, 

lung cancer and RILI diagnosis.  

1.4.1 The Aging Lung: Normal Functional Decline 

During the first two decades of life the lungs grow and mature, reaching maximal 

functional capacity at the age of approximately 20 for females and 25 for males.36  

Beyond this age, four basic physiological changes associated with aging begin to occur, 

including: 1) a decrease in the elastic recoil of the lung, 2) a decrease in compliance of 

the chest wall, 3) a decrease in strength of the respiratory muscles, and, 4) a change in 

shape and structure of the lung.36-38  The decreases in static elastic recoil pressures that 

occur with age are most evident at high lung volumes (above 40-50% of TLC), which 

results in increased lung compliance (ability of the lungs to increase in volume with 

applied change in pressure) at these lung volumes.39  The decline in lung elastic recoil 

can be attributed to changes in connective tissue; specifically elastin and collagen, 
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although conflicting evidence exists as to the exact changes that occur.39  Stiffening of 

the chest wall occurs as its rigidity increases due to other age-related changes including 

decalcification of the ribs, costal cartilage calcification, changes in shape of the chest, and 

narrowing of the intervertebral disk spaces.39  During normal breathing, the lung volume 

increase that results from rib cage expansion is 40% of the total volume increase.  This 

drops by 10% to 30% in the elderly, while the energy required for chest wall movement 

is 70% of the total elastic work required to breathe, as compared to 40% in a 20 year-

old.39  Additionally, the diaphragm muscles have been shown to decline in strength in the 

elderly, which may be due to an overall decline in muscle mass with age.40  With age, the 

lung changes shape due to the increase in kyphotic curvature of the spine and 

anteroposterior diameter of the chest wall.39  The large airways are not generally affected 

by aging, other than calcification of the bronchial cartilage, which results in a slight 

increase in anatomic dead space.39  In contrast, the small airways decrease in diameter 

due to a decrease in tethering, which would normally maintain patency at a given lung 

volume, leading to premature airway closure.39,40  These changes in the small airways 

result in air-trapping and ventilation-perfusion mismatching.40  There is an increase in 

distal airspace size with aging, resulting from loss of supporting tissue, along with a loss 

in the number of capillaries per alveolus.38,41  Overall, the total alveolar surface area of 

the lung decreases by 0.27 m2/year, from 70m2 at age 20 to 60 m2 at age 70.39  These age-

related changes do not alter day-to-day lung function, as assessed by blood oxygenation 

and ventilation, although the respiratory system of elderly individuals has a diminished 

ventilatory response to hypercapnia, making them more vulnerable to respiratory failure 

and hypoxia when compromised (i.e. pneumonia).41,42  
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Figure 1-3: Normal Decline in Pulmonary Function with Age.  

The functional decline of the healthy aging lung, as measured by FEV1 is shown in this 
schematic.  In the healthy elderly adult the decline in lung function does not amount into 
clinically relevant airflow obstruction. Adapted from reference (43). 
 

The underlying physiological changes that occur in the lung with increasing age effect 

lung function, and the aging effect has been well characterized in cross-sectional studies 

using PFTs.  The classic study by Fletcher and Peto in 1977 was the basis for our current 

understanding of functional lung decline that results from aging.43  This study showed a 

continuous decline in FEV1 beginning at the age of 25, at a rate of approximately 42 

ml/year43, but this decline did not reach the threshold of clinically relevant airflow 

obstruction (Figure 1-3).  The effects of age on lung function can also be detected with 

other PFT measurements, with results indicating that increased age is associated with an 

increase in RV, RV/TLC, and FRC (due to increased lung compliance), a decrease in 

FVC, and IC while TLC shows no change with age.36,38,41,44  Additionally, VC declines 

by approximately 26mL/year in men and 21mL/year in women.39  Interestingly, a 

longitudinal study using pulmonary function testing in fit, healthy elderly subjects (in 
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their sixth and seventh decades) showed that the longitudinal rate of change in VC, RV 

and FEV1 is significantly greater than would be predicted from cross-sectional data.45  

The authors of this study hypothesized that the accelerated rate of decline reported in this 

longitudinal study may reflect non-linear changes in lung function in a subset of the 

population, which may be averaged out in cross-sectional studies.45  Finally, the effects of 

age on gas diffusion across the blood-gas barrier have also been evaluated using the 

DLCO, with results indicating that there is a decline in DLCO with age, corrected for 

alveolar volume.46  The reported decrease in DLCO correlates well with the decrease in 

internal surface area of the lung.39  

Overall, physiological changes associated with aging can be quantified using PFTs, and 

these measurements show a decline in lung function in healthy adults as they age, with 

longitudinal studies showing that the rate of decline may be greater than previously 

thought.   

1.4.2 Chronic Obstructive Pulmonary Disease: Accelerated Functional 

Decline 

COPD is defined by the ATS as a preventable and treatable disease state characterized by 

airflow limitation that is not fully reversible, and usually progressive.47  Airflow 

limitation in COPD is associated with an abnormal inflammatory response in the lungs to 

inhaled noxious particles or gases – most commonly cigarette smoke.3,8,47  COPD is the 

fourth leading cause of death worldwide, with morbidity and mortality rates expected to 

increase in the coming years.8  At least 750 000 Canadians are currently living with 

COPD, and as much as 10% of the population worldwide has the disease.48,49  COPD 

results in thousands of hospitalizations in Canada every year, with the average hospital 

stay lasting 10 days and costing $10,000.50,51  Additionally, 18% of patients will be 

readmitted within the year.50,51  Given that COPD is largely underdiagnosed, the true 

prevalence of this disease is not known.8  Although current prevalence data is thought to 

largely underestimate the burden of COPD, historically the data has suggested that COPD 

occurs more commonly in men, but more recently the prevalence of COPD appears close 

to equal between the genders, with the latest data suggesting women may be more 

susceptible to developing COPD.49,52  
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COPD is caused by the inhalation of cigarette smoke and other toxic particles, which 

invoke a local and systemic inflammatory response.53  In the subset of smokers that 

develop COPD this inflammatory response is persistent54 and amplified.55  The 

inflammatory reaction leads to pathological changes in four specific areas of the lung; the 

central airways, small airways, lung parenchyma and pulmonary vasculature47 resulting 

in chronic bronchitis, small-airway obstruction, emphysematous destruction and 

pulmonary hypertension respectively.53  Emphysema is characterized by the dilation and 

destruction of lung tissue beyond the terminal bronchioles (Figure 1-4A).22  As shown in 

Figure 1-4B, chronic bronchitis is associated with inflammation in the central airways 

resulting in increased mucus production, defective mucociliary clearance and thickening 

of the bronchial walls22, while small-airway obstruction is associated with a remodeling 

of the airways leading to a thickening of all compartments of the airway wall and a 

malfunctioning of the mucociliary clearance apparatus resulting in an accumulation of 

inflammatory exudates in the airway lumen.22,56,57  The occurrence of pulmonary 

hypertension in COPD is likely caused by hypoxic vasoconstriction.58  

Spirometric measurements are used to diagnose COPD, as the disease is characterized by 

irreversible airflow limitation.  The current ATS guidelines state that a post-

bronchodialator FEV1/FVC < 0.7 dictates a diagnosis of COPD, with disease severity 

determined based on the FEV1 %pred values (stage I FEV1 ≥ 80%pred, stage II 50%pred ≤ 

FEV1 < 80%pred, stage III 30%pred ≤ FEV1 < 50%pred, stage IV FEV1 < 30%pred).
3  The 

seminal cross-sectional study by Fletcher and Peto showed that the rate of decline in 

FEV1 in smokers with COPD is significantly greater than age-matched healthy 

volunteers, although smoking cessation slows the rate of decline to that of normal healthy 

aging (Figure 1-4).43  COPD is also associated with increases in TLC due to loss of 

elastic recoil, RV due to the premature closing of narrowed airways at higher lung 

volumes, and RV/TLC, especially in advanced COPD.59  A decrease in IC in COPD 

patients is indicative of hyperinflation.59  A decline in DLCO is measured in patients with 

COPD, reflective of the loss in alveolar surface area.60  
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Figure 1-4: COPD Pathology and Decline in Lung Function.   

Emphysematous destruction and chronic bronchitis are shown in A and B respectively.  The 
functional decline of the lung likely releated to these underlying conditions is shown in panel C, 
where Ci shows the natural decline in lung function due to age, Cii shows the decline associated 
with smokers susceptible to lung disease and Ciii and Civ show the decline in lung function 
associated with smoking cessation at 45 and 65 years respectively. Adapted from references (22), 
(43), and (212).  
 

Those with COPD may experience a wide variety of symptoms including chronic cough, 

sputum production, dyspnea, wheezing, and chest tightness.3  Generally, the first 

symptom to develop is coughing, followed by sputum production.8  The primary reason 

medical attention is sought is for dyspnea, which is also the major cause of disability 

associated with COPD.3,8  Symptoms are often related to smoking history as defined by 

pack-years; the number of years smoked multiplied by the number of packs smoked per 

day.  These symptoms often result in a significant interference with normal activities of 

daily living and a decline in quality of life, which are assessed in research studies using 

quality of life metrics including the SGRQ61, the 6MWD62-64, mMRC65 and the BODE 

index.33,66  Quality of life measures including the mMRC scale, the 6MWD, and BMI are 

all better predictors of mortality than FEV1.
32  The BODE index predicts mortality in 

COPD patients better than any of its components taken independently.33   

COPD is well described as a complex and heterogeneous disease in terms of clinical 

presentation, underlying pathology, physiology, imaging, response to therapy, decline in 
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lung function, and survival, which may be reflective of distinct underlying phenotypes.67  

The identification of elements that could be used to group COPD patients into clinically 

meaningful subgroups, providing prognostic information useful for guiding current 

treatments, and developing new therapies is necessary.67  Although many studies have 

proposed potential COPD phenotypes68-71, large-scale longitudinal clinical studies aimed 

at identifying COPD phenotypes are needed to begin to enhance our understanding of the 

disease in this regard.67  Studies of this nature, collecting clinical, physiological, 

radiological, biological and genetic data, aimed at evaluating COPD phenotypes are 

currently underway.14,72  

1.4.3 Lung Cancer 

Lung cancer is the leading cause of cancer related death, as shown in Figure 1-5, and 

responsible for more than 1 in 4 of all projected deaths from cancer.2  In 2010 it is 

projected that 24,200 Canadians will have been newly diagnosed with lung cancer, an 

incidence rate second only to prostate cancer, and an additional 20,600 currently 

diagnosed Canadians will die from the disease.2    

 

Figure 1-5: Canadian Incidence and Mortality in Cancer for 2010.   

Projected incidence and mortality rates for cancer in Canada in 2010.  Lung cancer is projected to 
be the second most commonly diagnosed cancer, and cause more than one in four of all cancer-
related deaths.  Adapted from reference (2).   
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The first classification system for lung cancer was proposed in 1924 by Marchesani and 

co-workers, and is the basis for World Health Organization (WHO) classification used 

today.9,73 According to the current WHO classification, lung cancer can be divided up 

into four major histological subtypes; squamous cell carcinoma, adenocarcinoma, small-

cell carcinoma and large-cell carcinoma.74,75  Squamous cell carcinomas are generally 

larger than 4 cm in diameter, display cavitation, and are centrally located, often causing 

segmental or lobar collapse due to their location.9,76  Adenocarcinoma on the other hand 

are usually located in peripheral regions of the lung, are typically less than 4 cm in 

diameter, and rarely cavitate.9,76  Squamous cell and adenocarcinomas each comprise 

about 30% of all lung cancers seen in the clinic.75  Small cell carcinomas are 

characterized by small tumour cells that are densely packed with limited cytoplasms and 

no nucleoli77, while large-cell lung cancers are usually poorly differentiated9, grow 

rapidly and metastasize quickly.78  Squamous cell carcinoma, adenocarcinoma and large-

cell lung cancer are frequently grouped into one category called non-small cell lung 

cancer (NSCLC) because of similar treatment options79, while small-cell lung cancer 

(SCLC) is treated with a different approach due to its chemosensitivity and mode of 

metastatic spread.  

Lung cancer is treated according to the stage of the disease.  Staging occurs according to 

the International System for Staging Lung Cancer; the T- primary tumour, N- regional 

lymph nodes, M- distant metastasis (TNM) classification.  The primary tumour is 

classified on a scale of one to four according to its size (diameter) and location with 

respect to the chest wall, carina (ridge separating openings of right and left main 

bronchi), diaphragm, mediastinum and pericardium.80  Regional lymph nodes are 

classified according to metastasis – either not present (0), present in the ipsilateral 

peribronchial and/or ipsilateral hilar nodes (1), present in the ipsilateral mediastinal 

and/or subcarinal lymph nodes (2), or metastasis mediastinal or supraclavicular lymph 

nodes (3).80  Distant metastases are either not detected (0), or present (1).80  The overall 

stage of a lung cancer is then determined by the combination of T, M and N stages.  For 

example stage IIIA lung cancer can be any one of the following combinations: T3N1M0, 

T1N2M0, T2N2M0, or T3N2M0.  Each overall stage has similar treatment options and 

survival expectancies.80  Stage I and II (and occasionally IIIA) lung cancers are operable, 
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and surgery is performed as it has the highest long-term survival rates.75  Stage III 

generally means that the tumour is non-resectable due to its location along the 

mediastinum and presence of positive nodes not having spread beyond the lung.81  In this 

stage curative treatment combining chemotherapy and radiation therapy is the most 

common approach.75,79  Stage IV lung cancer indicates that the tumour has metastasized 

beyond the lungs, and therefore in this late stage, palliative treatment is most commonly 

provided.75 

Many lung tumours result in occlusion of the major airways causing breathlessness.  

Dyspnea is an early symptom in 60% of lung cancer cases, and accompanies other 

symptoms, including chronic cough and sputum production or hemoptysis.75,82  Patients 

with lung cancer frequently have co-existing lung disease that adversely impacts lung 

function, and limits options for cancer therapy.82,83  In a retrospective study of 294 newly 

diagnosed lung cancer patients with previously collected pulmonary function tests, 

findings revealed that 73% of men and 53% of women had airflow obstruction fitting the 

definition of COPD.84  The prevalence of COPD in this study is potentially overestimated 

due to the impact of tumour burden of airflow measurements, and therefore highlights the 

difficulty in evaluating undiagnosed underlying lung disease in patients with lung cancer.  

Thus, the interaction between underlying lung disease, lung cancer onset, treatment, and 

survival outcomes are unclear.  

1.4.4 Radiation-induced lung injury 

Radiation treatment for lung cancer can be curative, but it can also be fatal.  Damage to 

the lung can be incurred from radiation treatment leading to a significant decline in lung 

function accompanied by symptoms that degrade quality of life.10  RILI is the major 

dose-limiting toxicity of lung cancer radiation.  The lung is extremely sensitive to 

radiation, with RILI occurring in an estimated 5-35% of patients undergoing thoracic 

radiation, and the incidence of moderate to severe radiation injury between 10-20%.12  

With increasing severity, survival rates decrease dramatically, and studies show 3-year 

survival rates of 0% in subjects with severe injury.85   
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Figure 1-6: Stages of Radiation-induced lung injury.   

The acute phase of radiation pnuemonitis followed by the chronic late phases encompassing radiation fibrosis are shown in this schematic, along 
with the associated complications commonly arising in each phase. Adapted from reference (87). 
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RILI occurs in a series of stages, as depicted in Figure 1-6 - an early latent phase 

followed by an intermediate acute phase, a subacute phase, a late phase, and a chronic 

phase.86,87  The intermediate acute phase – radiation pneumonitis, is marked by an 

inflammatory response during which leukocytes, plasma cells, macrophages, and 

fibroblasts invade the alveoli causing capillary obstruction and septal thickening.10,88  

Radiation fibrosis (late and chronic phases) is marked by further septal thickening and 

obliteration of the alveolar space.88  This immune response is manifested in the form of 

clinical symptoms which include dyspnea and a productive or non-productive cough in 

the pneumonitis phase, and may develop into more severe dyspnea, reduced exercise 

tolerance, orthopnea (difficulty breathing when not upright), cyanosis (bluish colour of 

the skin due to insufficient oxygen), chronic cor pulmonale (a complication of pulmonary 

disease leading to enlargement of the right ventricle), and finger clubbing as the injury 

moves to the fibrotic stage.89   

Many potential predictors of RILI have been examined including age, gender, histology, 

stage, tumour lobe, lung involved, performance status, weight loss, chemotheraphy drugs, 

chemoradiation schedule, pulmonary function tests, radiation dose, daily dose delivered 

and volume irradiated, with the majority showing no significant relationship to RILI 

risk.11,90  Robnett et al. indicated that low pre-treatment absolute FEV1 was significantly 

associated with the development of severe radiation pneumonitis, and all patients in this 

study with severe RILI had a pre-treatment FEV1 of less than 2.0 litres.91  Recently, 

Rodrigues and co-workers have shown that elevated dose-volume parameters including 

the percentage of lung volume receiving greater than 20Gy and mean lung dose remain as 

the main correlation risk factors but with very low predictive value as an ensemble.11
 

1.5 Imaging Measurements of Lung Function 

Pulmonary imaging has evolved over many decades, with a large focus in recent years on 

structural techniques, specifically with the development of high resolution x-ray 

computed tomography (HRCT).  Imaging techniques including nuclear medicine and 

MRI, aimed at evaluating lung function in COPD, lung cancer and RILI, have lagged 

behind structural lung imaging methods, and although in the last two decades some major 
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advances in functional lung imaging have been made, the clinical translation of these 

techniques has yet to be seen.  

1.5.1 Chest x-ray 

The chest radiograph (Figure 1-7) is the most commonly acquired image for the 

evaluation of the lung.92  The standard method for acquiring chest x-rays is for the subject 

to stand with their back to the x-ray source and their hands placed on the posterior aspects 

of the hips with the elbows rolled forward such that the scapulae are not in the lung field, 

referred to as a postero-anterior (PA) x-ray.93   The PA x-ray is acquired at full 

inspiration to capture the greatest possible area of lung structure  A lateral projection is 

often acquired in addition to the PA projection, with the median sagittal plane of the 

subject parallel to the film and the subjects arms folded across their head.93,94    In a chest 

x-ray of a healthy young individual x-rays travel from the x-ray source on the posterior 

side, and through the lung parenchyma with relatively little attenuation or scatter, as 

compared to other bony thoracic structures such as the ribs or clavicles.  The x-rays 

interact with the detector on the anterior side of the subject, generating an image in which 

the lung tissue appears predominantly black.95  The branching of the pulmonary vessels 

can be seen; the fissures separating the lobes of the lungs may be visible; the trachea is 

centered; and the diaphragm appears as a smooth curve with acute and clearly defined 

costophrenic angles.93,95  The radiation dose associated with a typical chest x-ray is 

0.02mSv, which is equivalent to approximately three days background radiation.96  This 

transmission-based imaging method is fast, widely available, and deposits relatively low 

radiation doses as compared to other lung imaging modalities used clinically.97 

A longitudinal study of chest x-rays acquired in a group of healthy men initially 48±13 

years, and followed for 17±3 years, showed a doubling in hyperinflation, increased 

markings, a three fold increase in the presence of enlarged pulmonary arteries and a 

dramatic increase in the presence of Kerley B lines (thickened interlobular septa visible 

in the subpleural region).98  The width of the cardiac silhouette also increases with age.95  

COPD can be difficult to detect on chest x-ray due to poor contrast of the two-

dimensional (2D) projection image99, and detectability is related to overall severity of 
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COPD (stage III and IV are most easily detected), rather than specific underlying 

pathology such as emphysema or small airways disease.60,100  Patients with COPD 

usually exhibit some degree of hyperinflation due to emphysema or airways disease, 

which presents as a flattened diaphragm, a large lucent retrosternal air space, a narrow 

vertical heart, and an overall increase in the anterior-posterior diameter of the chest 

(Figure 1-7B).60,100,101  Focal areas that are hyper-lucent (darker than normal) within the 

lung parenchyma may be indicative of bullous disease.101 

 

Figure 1-7: Chest x-ray of healthy volunteer, COPD and lung cancer.   

Chest x-rays are shown for a healthy individual in A, a subject with COPD in B, and a subject 
with lung cancer in C. B displays hyperinflation and the presence of flattened diaphragm (as 
indicated by arrows) common on chest x-rays of COPD. The arrow in C points to a tumour in the 
right upper lung.  
 

Chest x-rays continue to be the imaging modality used for the diagnosis of lung cancer 

(Figure 1-7C), despite their inaccuracy, largely due to the wide-spread availability and 

low cost relative to CT and MRI.102,103  Chest x-ray is not a reliable method for detecting 

lung cancer, and many small tumours are missed.103,104  Failure to detect lesions at 

favourable and even larger sizes can occur because the lesions can be obscured by the 

mediastinum and other aspects of the thorax.104  In the context of lung radiotherapy, 

treatment plans were made using x-ray films until the 1980’s.105  These films provided 

only two-dimensional information with high levels of uncertainty surrounding precise 

tumour location, necessitating large planning target volume (PTV) margins (2-3cm in all 

directions) to account for this.105      
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Chest x-ray in RILI is critical for diagnosis, as symptoms are non-specific and pulmonary 

function tests are not routinely performed in follow-up evaluation.  Changes in chest x-

ray are usually first detected 2-3 months following radiation therapy, and include 

increased ground glass opacity, indistinctness of the usual pulmonary markings.89  The 

appearance of acute radiation pneumonitis on chest x-ray widely varies, ranging from 

minimal changes (slight indistinctness of the pulmonary vasculature or slight increase in 

the thickening of the pleura) to complete consolidation of the irradiated area.106  If 

fibrosis follows the pneumonitis phase, it commonly appears on chest x-ray as apical 

thickening, a slight retraction or elevation of a hemidiaphragm, minimal retraction or 

elevation of the hilum or minor fissure, linear strand-like densities in the area where 

pneumonitis was present.86,106  Retraction secondary to radiation fibrosis follows the 

typical appearance of fibrosis of any other etiology.106  

1.5.2 X-ray Computed Tomography 

In recent years, x-ray computed tomography (CT) has become the imaging modality of 

choice for evaluating the lung, providing highly detailed images with isotropic voxel size, 

all captured in a ten-second breath-hold.107,108  The development of CT in the 1970’s 

brought about many changes in terms of lung imaging.  Through the acquisition and 

reconstruction of multiple projections of data, cross-sectional images of the body can be 

obtained.102  Each image slice is a matrix of pixels representing a voxel of tissue, and 

specific to CT, each pixel is assigned a CT number based on the attenuation of signal in 

that pixel in relation to the attenuation of water.102  CT is generally taken to be the best 

imaging modality for the evaluation of lung parenchyma, with HRCT providing 

morphological detail of the lung and generally accepted as the gold standard for structural 

assessment of the lung.109   Despite the excellent morphological detail of the lung that 

thoracic CT provides, concerns remain regarding the radiation dose associated with these 

scans.  A typical thoracic CT has an effective dose of 8 mSv, which is the equivalent of 

approximately 400 chest x-rays or 3.6 years of background radiation.96   

Although CT is generally regarded as a structural imaging technique, recent research has 

evaluated the potential to extract functional information from inspiratory and expiratory 

CT and four-dimensional CT.110-112  This emerging field of research has shown that 
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registration, thresholding and subtraction of pixel values at maximum inspiration and 

expiration may yield information regarding ventilation by evaluating density changes in 

registered pixels.110-112  Research is continuing in this area, and studies aimed at 

evaluating the reproducibility, sensitivity, and correlates with currently accepted markers 

of lung function are required.  

Cross-sectional CT studies of healthy young and elderly subjects have been performed to 

identify characteristics on CT that can be attributed to the normal aging process, in order 

to differentiate features associated with aging from those associated with potential 

disease.  Findings suggest that in older healthy subjects there is a statistically significant 

increase in the prevalence of reticular pattern, cysts, bronchial dilation and bronchial wall 

thickening in elderly subjects, while no difference between ground glass opacity, 

interlobular septal thickening or centrilobular emphysema was found.113  Another study 

examining age-related differences apparent on CT found that mean lung attenuation 

values decreased significantly with increasing age, while mean lung volumes showed no 

significant change with increasing age.114  

CT imaging of COPD patients is routinely used to qualitatively detect emphysema, as 

shown in Figure 1-8A.  Centrilobular emphysema (CE) is the most common form and 

strongly associated with cigarette smoking.  CE is characterized by focal regions of 

decreased attenuation that are confined to the center of the secondary lobule, and is most 

commonly located in the upper lobes.109  Two methods for quantifying emphysema from 

CT have been developed based on areas of low attenuation.  The first is a threshold cutoff 

based on Hounsfield units (HU) to separate emphysematous tissue from normal tissue, 

with the most common threshold being -950 HU.108,115  The second method uses a 

percentile point on the frequency distribution curve of attenuation values to compare 

subjects or groups of subjects.108  The 15th percentile is most commonly used, and is the 

preferred method for longitudinal analysis.108,115  Quantitative CT analysis of COPD 

patients commonly show an increase in low attenuation areas116-119 and increases in 

airway wall area dimemsions119-123 reflective of emphysema and airways disease 

respectively.  Although a number of algorithms exist to evaluate airway wall dimensions, 

the small airways cannot be well resolved on current resolution of CT.108  Given that 
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these airways, <2mm in diameter, are the main site of airflow obstruction in COPD it is 

likely that current measurements of airways disease using CT largely underestimate the 

true burden of this underlying pathology in COPD.108  Despite the limitations of CT 

airway measurements, Nakano and co-workers used measurements of emphysema and 

airways disease derived from CT in an effort to understand their relative contribution in 

COPD.  They were the first to use CT as a tool for phenotyping COPD, and reported a 

single dominant phenotype in 40% of subjects.121  A longitudinal study using CT by 

Ohara et.al. showed that surrogate measures of airways disease did not correlate with 

FEV1 at baseline, but changes in airway measurements over four years were significantly 

inversely correlated to the change in FEV1 over the same time period.123  The change in 

percentage of low attenuation areas in this same study did not correlate with the decline 

in FEV1.
123   

 

Figure 1-8: CT of Smoking-related lung disease.   

COPD is identifiable on CT by the areas of decreased signal intensity and flattened diaphragm as 
indicated by the arrows in A.  Arrows in B show stage IIIB lung cancer with the presence of 
underlying COPD, while the arrow in C points to RILI as evidenced by the marked increase in 
lung density in the irradiated portion of the lung.  
 

CT is the modality of choice for evaluating lung cancer (Figure 1-8B), and is used for 

guidance of transthoracic needle biopsies of lung nodules.124  Perhaps more importantly, 

CT is critical for staging lung cancer in terms of identifying tumour size, location, local 

extent of the primary tumour, including the presence or absence of atelectasis, pleural 

effusion, the status of the mediastinum, and lymph node abnormalities.125  In recent 

years, given the dismal outcomes of the disease, the benefits of CT screening for lung 

cancer have been debated, amid concerns regarding radiation dose.126  The National Lung 
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Screening Trial (NLST), a multi-centre randomized control trial, is evaluating spiral CT 

against standard chest x-ray for detection of lung cancer.126,127  Results released in 

December 2010 from the NLST show a significant decrease of 20% in the number of 

deaths in the group screened with low-dose helical CT.128  The appearance of thoracic 

tumours on chest radiography and CT differ based on the histological classification of the 

tumour.  On chest radiography approximately half of all adenocarcinomas display 

mediastinal lymphadenopathy129, while on CT these tumours are characterized by either a 

localized ground glass opacity with a doubling time greater than one year, or a solid mass 

with a fast doubling time, less than one year.130  In regard to radiation treatment planning, 

three-dimensional information for the purposes of target definition and treatment 

planning became widely available in the 1990’s when CT largely replaced 

radiography105, and is now viewed as the minimum standard of care in the treatment of 

thoracic tumours.131 

Radiographic evidence of RILI is frequently observed following radiotherapy, although 

only a fraction patients presenting with radiological evidence of RILI complain of 

symptoms.132  CT evidence of RILI is shown in Figure 1-8C, and was described by 

Libshitz et al133 as: 1) homogenous, with a slight increase in density uniformly involving 

the irradiated portions of the lung, 2) patchy consolidation contained within the irradiated 

lung, but not conforming to the shape of radiation portals, 3) discrete consolidation 

conforming to the shape of radiation portals, but non-uniformly, 4) solid consolidation 

conforming to and totally involving the irradiated portions of the lung.  Radiation fibrosis 

has also been described on CT as well defined areas of atelectasis with parenchymal 

distortion, traction bronchiectasis, mediastinal shifting and pleural thickening.10,134,135  In 

comparison to chest x-ray, CT is more sensitive to RILI-related changes in the lung and 

demonstrates changes sooner following treatment.133,136-138   

1.5.3 Nuclear Medicine Methods 

Scintigraphy, single photon emission computed tomography (SPECT) and positron 

emission tomography (PET) have all been used in the context of functional lung 

imaging.139  Planar scintigraphy images are still acquired clinically, however, research 

studies of lung function using nuclear medicine now focus on SPECT and PET 
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approaches.139  Ventilation and perfusion are commonly imaged using these nuclear 

medicine techniques.  

Ventilation images are generated using a gamma camera, which detects gamma rays 

released following radionuclide decay, with scintigraphy capturing a single 2D 

projection, and SPECT images reconstructed from multiple 2D projections.140,141  

Ventilation imaging using scintigraphy or SPECT can be performed with radioactive 

gases (133Xe, 127Xe, 81mKr) or radiolabeled aerosols (i.e. Technegas).139    Radioaerosols 

can be used as an alternative to radioactive gases, although their distribution is not always 

ideal.139,142  When an aerosol such as Technegas is used, the deposition and distribution 

depend on its aerodynamic properties – primarily the particle size, with particles larger 

than 2µm tending to deposit in the large airways of the lung.143  Ventilation patterns of 

the lung are studied using an array of protocols that largely depend on the half-life of the 

radioisotope used.144  Ventilation can be evaluated during the wash-in phase of the gas, 

followed by the steady state and wash-out phases.  This allows for analysis of lung 

volumes, regional clearance rate and gas trapping.144  The effective radiation dose from 

these scans ranges from 0.1-0.6mSv.  Ventilation images are often coupled with 

perfusion images, which allow for the evaluation of ventilation-perfusion matching.  

Perfusion images are commonly acquired following an injection of technetium-99m 

(99mTc) labeled macro-aggregated albumin (MAA), which gives a measure of relative 

pulmonary arterial blood flow.144  MAA has a diameter of 10-40µm, and therefore cannot 

pass through the terminal arterioles; a typical dose of 200 000 particles results in a 

blockage of less than 0.01% of the total number of arterioles.144  The radiation dose 

associated with a perfusion scan is 1.0 mSv.144   

PET provides structural and functional information using positron emitters that are 

physiologically and biochemically relevant to functional lung processes, including 11C, 
13N, 15O, 18F, 19Ne, and 68Ga, with half-lives ranging from 17.4 seconds to 110 

minutes.145  These radionuclides decay via β+ decay, and a positron is emitted.146  The 

positron quickly loses its kinetic energy, and combines with an electron in an annihilation 

event, simultaneously emitting two 511keV photons at 180 degrees from each other.146  

PET scanners localize the location of the annihilation event through coincidence 
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detection of photons in opposing detectors.146  Functional measurements using PET 

commonly include regional ventilation using 19Ne, as well as the ventilation perfusion 

ratio using 13N.147,148  The most common PET tracer is 18F- fluorodeoxyglucose (FDG), 

an analog of glucose is used as a marker of inflammation.145  In the lung, it is suggested 

that the uptake of 18F-FDG is specific to neutrophilic infiltration.145   

Limited studies evaluating the effect of aging on the distribution of ventilation using 

nuclear medicine techniques have been performed.  A PET study using 18F-FDG-PET 

found that with increased age standard uptake values in the lung increase, which may 

relate to inflammation in the lung.114,145 

Nuclear medicine has also been used to study COPD, more specifically to examine 

ventilation perfusion patterns in these subjects with airflow limitation.  SPECT studies of 

COPD show two common findings in terms of ventilation; matched areas with defects in 

both ventilation and perfusion, and regions that are perfused but unventilated.149,150  

Ventilation studies using SPECT have also been found to correlate with FEV1.
151  In 

COPD, PET studies have shown there is a positive correlation between DLCO and 

perfusion, but a negative correlation with the ventilation-perfusion ratio.152  

Nuclear medicine, and more specifically PET in combination with CT (PET/CT), has 

been heavily studied in recent years for its use in evaluating and staging lung cancer.  

Using 18F-FDG, PET studies have shown an increased specificity, sensitivity and 

negative predictive values in characterizing pulmonary nodules as benign or malignant as 

compared to conventional procedures (CT).153  PET/CT also aids in staging, as it is useful 

for determining whether there is involvement of the thoracic wall.153  Neither SPECT nor 

PET have been used to date to study the impact of lung cancer on regional pulmonary 

function.   

Longitudinal nuclear medicine studies by Prato and co-workers using 133Xe ventilation 

scintigraphy and 99mTc-MAA for evaluation of perfusion showed that the functional 

parameter in the lung most affected by radiation was blood flow, which was also affected 

the earliest.154  They report that blood flow changes at 60 days-post radiation are 

predictive of perfusion values at 300 days, and therefore decreased perfusion as measured 
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by 99mTc-MAA may be an indicator of patients that will go on to develop severe 

pulmonary complications.154  Studies evaluating the ability of SPECT scans acquired pre-

treatment to determine risk of developing radiation pneumonitis post-treatment have been 

performed, and to date these scans do not appear to have better predictive value than 

mean lung dose or PFTs.155  One study did suggest that the presence of SPECT 

hypoperfusion adjacent to a central mediastinal mass might identify patients with 

improved DLCO following radiation.156  A study assessing the effects of radiation 

pneumonitis using PET showed increased 18F-FDG uptake in non-irradiated lung tissue 

of approximately 80% of patients following radiation treatment for lung cancer.157   

1.5.4 Magnetic Resonance Imaging 

Only recently, with advances in pulmonary MRI research, has MRI been used for lung 

imaging.158  MRI utilizes the magnetic properties of certain nuclei, most commonly 

protons to create functional and structural images.  Therefore, MRI has, until recently, 

had a limited use in visualization and functional assessment of the lung primarily due to 

the low water content (proton density) within the lung as visualized in Figure 1-9, as well 

as secondary factors that include image degradation by cardiac and respiratory motion, 

and high susceptibility artefacts at the alveolar interface.158-160  New imaging techniques 

and hardware developed over the last decade have made it possible to use proton MRI to 

advance the knowledge of pulmonary function.  Short echo times (TE) and single shot 

fast spin echo sequences have been used to probe pulmonary perfusion.160  Additionally, 

oxygen-enhanced lung MRI, using inhaled molecular oxygen as a paramagnetic contrast 

agent, has been used for functional lung imaging.161-163  This technique works by 

shortening the longitudinal relaxation (T1) time of protons in the blood, resulting in a 

reduction of measured T1 values of 7-14% depending on the exact approach used.163  This 

decrease in T1 seen in normal lung tissue depends on three factors: 1) ventilation of the 

lung or region of interest within the lung, 2) diffusion of the oxygen from the alveoli into 

the capillaries, and 3) the perfusion of the lung tissue.161,164  The functional changes 

measured with oxygen-enhanced MRI correlate with FEV1
165,166, and DLCO.167   

Proton MRI has been used to demonstrate changes in both the airways and parenchyma in 

subjects with COPD.168,169  In emphysema the extent of tissue loss, decrease in blood 
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volume and degree of hyperinflation negatively correlate with MR signal.168,170  

Additionally, in regard to the lung parenchyma, it has been reported that the difference in 

parenchymal signal intensity between inspiration and expiration correlate with FEV1.
171  

MRI has also been used to evaluate the airways, with an MRI study of COPD revealed 

bronchial wall thickening and mucus secretion.168  Using oxygen-enhanced MRI 

methods, Ohno and co-workers showed that lifetime smoking exposure, FEV1/FVC, 

FEV1 %pred correlate with quantitative measurements captured from this MRI 

technique.166  

 

 

Figure 1-9: Proton MRI of the Lung.   

Historically, proton MRI has not been used for lung imaging due to the low signal related to the 
lack of protons (water) within the lung. Characteristically, the lungs appear as a large regions of 
signal void on MRI.  
 

MRI applications in lung cancer have focused on detection and classification of 

pulmonary nodules, as well as improvement of MR pulse sequences and contrast agents 

for prospective MR application in TNM staging.172  In regard to functional lung imaging 

in lung cancer, MRI has been used to assess and quantify diaphragm motion in the first 
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second following maximum expiration and the total motion at end-expiration.173,174  

These measurements have been shown to correlate well with FEV1/FVC in healthy 

volunteers.173,174  Differences between diaphragm motion in the ipsilateral and 

contralateral lungs exist in patients with stage IB tumours located in the middle and lower 

lung regions, but do not exist in patients with stage IA lung cancer.173,175  

1.6 Hyperpolarized Noble Gas MRI 

Using inhaled hyperpolarized gas as a contrast agent, research over the past two decades 

has demonstrated that MRI can be used a tool for functional imaging of the lung.  This 

section will discuss the development of this technique, its application in imaging healthy 

young and elderly volunteers, and subjects with smoking-related lung disease.  Findings 

that suggest this technique might provide a sensitive, non-invasive measurement of lung 

function will be discussed.  

1.6.1 Development and Theory 

An MR-detectable contrast agent that could be inhaled and imaged in vivo, providing 

high resolution functional lung images, would present an ideal alternative to standard 

proton MRI.  In 1994, Albert and co-workers published the first-ever report showing that 

this was indeed possible, and reported that hyperpolarized Xenon-129 (129Xe) could be 

used as an inhaled contrast agent to produce MR images in an ex-vivo mouse 

model.176,177  In order to produce these images, Albert and co-workers first faced the 

problem that 129Xe gas on its own would not be sufficient to produce a detectable MR 

signal.  Happer et al. had previously shown that noble gas nuclei can be hyperpolarized 

by optical pumping techniques; increasing the polarization of the gas, and thereby its MR 

detectability, by a factor of 100,000.177,178  The optical pumping technique involves a 

glass cylinder filled with the noble gas and rubidium (Rb) vapour, which is illuminated 

by circularly polarized laser light.177,179  The laser light is absorbed by the Rb vapour, 

causing high electronic polarization in the Rb atoms.179  The polarized Rb atoms undergo 

collisions with the noble gas in the glass cell, resulting in a transfer of polarization 

between the atoms.  This process takes 6-8 hours, and can result in polarizations of 10-

25%.179   
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Hyperpolarized gas MRI applies specifically to the two non-radioactive noble gas 

isotopes with spin-1/2 nuclei; 3He and 129Xe.  When comparing and contrasting these 

nuclei to select the most suitable agent for MRI use, it is noted that 3He has a 

gyromagnetic ratio (γ) 2.7 times greater than that of 129Xe, and therefore yields a 2.7 

times greater improvement in SNR177 (given that signal scales with γ2 for hyperpolarized 

noble gas MRI180, and noise scales with γ).  In addition, 3He has been extensively used in 

the area of pulmonary function testing for the measurement of RV as well as other 

medical and non-medical uses181, and therefore well characterized and widely accepted as 

a safe agent for pulmonary imaging.  For these reasons 3He has been the contrast agent of 

choice for much of the hyperpolarized noble gas MRI research performed to date, 

although supply of 3He is currently an issue.  

Two years after the initial report of in vivo hyperpolarized noble gas MRI by Albert et 

al., the first ventilation images in humans were published.182,183  Kauczor and co-workers 

showed homogenous signal intensity across the lungs of healthy volunteers, and regions 

of signal void in a subject with bronchogenic carcinoma and COPD.183  Since this time, 

the technique has been widely applied in lung disease such as asthma184-190, cystic 

fibrosis191-195, and lung transplant cases.196-198  Interest in this technique has grown since 

these first images were produced, as they provide complimentary and alternative 

information to standard x-ray and CT without the use of ionizing radiation.  Furthermore, 

safety data on this method is positive as indicated in a retrospective analysis by Lutey and 

co-workers, who assessed the first 100 subjects (healthy and diseased) imaged using this 

technique at Washington University.  They reported that the 3He MRI breath-hold 

technique had no effect on vital signs and that there was only a slight decrease in SpO2 in 

the first minute following breath-hold, thereby confirming the expected safety of this 

technique.199 

Using hyperpolarized 3He MRI two different sets of images are commonly acquired; spin 

density images that provide high resolution functional information, and diffusion 

weighted images (DWI) that provide structural information.  Standard spin density 

images produce functional images showing the location and density of 3He gas within the 

lung, thus yielding information on lung ventilation.  The signal acquired in 3He MR 
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ventilation images is not always homogenous, and some regions of the lung do not fill 

with 3He gas at all, therefore appearing as regions of signal void.  Regions of signal void 

are classified as ventilation defects, and are characterized as any well defined area of the 

lung showing no or low signal intensity compared with the remaining normal appearing 

ventilated lung, excluding signal loss appearing due to pulmonary vasculature, heart and 

mediastinum.188  To date, ventilation defects have most commonly been characterized by 

radiologists using scoring methods187,188 or by estimating the percentage of the lung 

occupied by ventilation defects193.  One metric of quantifying lung function from 3He 

MRI reported in the literature is percent ventilated volume (PVV) and has been applied 

by the group in Sheffield.200  This quantitative measurement normalizes the total volume 

of all reporting voxels appearing as ventilated in the 3He MR image by total volume of 

the thoracic cavity as determined by conventional 1H MRI.200  Thus both ventilation 

defects and regions of signal void associated with pulmonary vasculature and other 

regions around the mediastinum both contribute to the PVV values of less than 100%.  A 

study by Altes and co-workers directly compared functional images captured with 3He 

MRI to 133Xe scintigraphy using ventilation defect scoring methods.  The signal from all 
3He coronally acquired slices was summed for comparison purposes, and results showed 

that in more than 60% of the lung quadrants ventilation defects identified in both sets of 

images corresponded in size, conspicuity and location.201  Dynamic 3He MR images have 

also been captured, allowing for visualization of 3He wash-in and wash-out in the lung, 

specifically allowing for visual assessment of airway function, although methods for 

quantifying these images are still under development.202-204   

The second set of 3He MR images commonly acquired are DWI, which mean that in 

addition to high resolution functional lung images produced, the underlying structure of 

the lung can also be probed.  Diffusion MR principles widely used in such areas as brain 

imaging can be applied to 3He or 129Xe MRI over short and long timescales, thereby 

allowing for the evaluation of acinar size.205-209 The apparent diffusion coefficient 

(ADC), calculated from diffusion weighted images, is a measure of helium diffusivity 

(centimeters squared per second (cm2/s)) in the lung and is highly reproducible210,211, and 

has been validated against histological212 and CT213 measurements.  
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1.6.2 Hyperpolarized 
3
He MRI: Research Subject Studies  

Static ventilation images of healthy volunteers have been acquired and evaluated at a 

handful of sites.  Characteristically, as evident in Figure 1-10A, these images show 

homogenous signal throughout the lung, with a minimal number of ventilation defects 

observed in healthy subjects.214-216  Lee and co-workers reported that ventilation defects 

observed in healthy volunteers were small; no larger than 3 cm215, while Mata and co-

workers reported that they occur in the posterior and anterior portions of the lung.216  

PVV was measured by Woodhouse et al. in middle-aged healthy volunteers (mean age = 

51), and a mean PVV of 90% was reported.200  Structural changes in lung microstructure 

occur over a lifetime in the healthy lung, and can be detected with 3He MRI.  Post-natal 

lung development has been probed with 3He MRI, and in subjects aged four to 30 years, 

an increase of 0.003cm2/s/y was detected.217  Once the lung reaches maturity, structural 

changes associated with aging occur and have been detected using 3He MRI, with results 

showing an annual increase in the ADC of 0.0015cm2/s for subjects between 20 and 70 

years of age.218  

  3He MRI has been used to probe functional and structural changes in smokers 

with179,205,210,214,219-221 and without200,222,223 COPD.  Subjects with COPD have an 

increased number of ventilation defects214 as seen in Figure 1-10B, a reduced PVV200, 

and an increase in ADC219 as compared to healthy age-matched volunteers.  Kauczor et 

al. described the ventilation defects that occur in COPD as regions of patchy signal, or 

wedge shaped regions of signal void.224  The ventilation defects that occur in subjects 

with COPD are predominantly in the upper lobes of the lung.225  Measurements of PVV 

in smokers with and without COPD do not correlate with spirometry measurements.200  

Correlations have been reported between structural measurements of emphysema using 
3He MRI derived ADC and FEV1/FVC219,221 and DLCO.221  
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Figure 1-10: Hyperpolarized 
3
He MRI in Health, COPD, Lung Cancer and 

RILI.   

Hyperpolarized 3He MRI are shown here for A. a young healthy volunteer, B. a subject with 
COPD, C. a subject with lung cancer obstructing ventilation of the right lower lobe, and D. a 
subject with RILI following radiation treatment for lung cancer. A homogenous signal is 
observed throughout the lungs in the healthy volunteer (A), while regions of signal void and 
heterogenous signal intensity are seen in smoking-related lung disease (B-D).  

 

Limited clinical studies applying 3He MRI to lung cancer (Figure 1-10C) have been 

performed.  Ireland and co-workers have shown that 3He MRI can be registered with CT 

scans for treatment planning purposes.  This study showed, using simulated treatment 

plans, that both the functional and total lung volume receiving 20Gy or greater could be 

significantly reduced.226  In a subsequent study, the same group showed that registration 
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accuracy of 3He MRI to CT in a group of patients with NSCLC could be improved using 

breath-hold CT as compared to free-breathing CT.227   

1.7 Thesis Hypothesis and Objectives 

The objective of this thesis was to develop an understanding of lung function in the 

context of hyperpolarized 3He MRI in healthy subjects and subjects with smoking-related 

lung disease, including COPD, lung cancer, and RILI.  A method of quantifying 

ventilation defects in these images was developed, and evaluated here, in regard to its 

reproducibility and sensitivity in detecting disease-related changes in ventilation.  The 

objectives and hypotheses tested in this thesis, specific to each chapter are described here.  

We first evaluated the short-term reproducibility of ventilation defect volume (VDV) in 

both healthy subjects and subjects diagnosed with stage II and III COPD, and this is 

described in Chapter 2.  Here we tested the hypothesis that VDV has high short-term 

reproducibility in healthy volunteers and COPD subjects.  Eight age-matched healthy 

volunteers and 16 COPD subjects were evaluated twice in one day (7 ±2 minutes) and 

again 7 ±2 days later using 3He MRI at 3.0 T.  

We then evaluated VDV in the context of normal aging in Chapter 3, and tested the 

hypothesis that ventilation changes occurring with aging can be detected using 

quantitative measures of lung ventilation from 3He MRI.  Twenty-four middle aged 

subjects and eight healthy elderly volunteers were imaged using 3He MRI, and VDV was 

used to quantify ventilation and evaluate differences between subject groups.  

Chapter 4 of this thesis evaluates the potential for quantification of ventilation 

(ventilation defect percent (VDP)) in addition to structure (ADC) to classify subjects with 

COPD according to the proportion of underlying functional and structural disease.  

Twenty ex-smokers were evaluated at a single time point using both static ventilation 

imaging and diffusion-weighted imaging. We hypothesized that differences in ventilation 

patterns exist within subjects with COPD, and can be used for stratification purposes, and 

tested this hypothesis in Chapter 4.  
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In Chapter 5 subjects with clinically diagnosed RILI were evaluated twice within five 

months to evaluate functional and structural changes that occur post-RILI diagnosis.  

Seven subjects were scanned at baseline and four subjects returned for follow-up. 

Pulmonary function test data was also collected and compared to 3He MRI data.  In this 

chapter we tested the hypothesis that lung damage occurring due to curative-intent 

radiation treatment results in long-term functional changes in ventilation that can be 

measured using 3He MRI. 

The objective of Appendix A was to review the current state-of-the-art 3He MRI 

ventilation analysis, as described in the literature, and provide an overview of potential 

directions that these analysis methods might take in the future.  Discussion of the current 

limitations and future requirements, specifically for ventilation analysis in serial or 

longitudinal image studies acquiring multiple 3He images from a single subject at 

multiple time-points, is described.  

A case study of a single subject imaged twice prior to Airway Bypass, and twice 

following the procedure is presented in Appendix B.  Here, we applied quantitative 

ventilation analysis to 3He images acquired over a four year period.  While 3He MRI data 

was only available for a single subject, PFTs were also acquired at all four time-points 

and self-reported dyspnea scores were assessed.  We hypothesized that changes in 

ventilation as quantified by 3He VDP would correspond to changes in mMRC. 

The overarching hypothesis tested in this thesis is that VDV and VDP are sensitive 

measurements for evaluating differences in lung ventilation between subject groups and 

longitudinally.  This hypothesis is tested in Chapters 2-5, in healthy volunteers and 

subjects with smoking-related lung disease.  Chapter 6 of this thesis provides a summary 

of this work and highlights the conclusions drawn from these studies.  New hypotheses 

generated based on the studies presented in this thesis are outlined in Chapter 6, and 

future directions for quantitative noble gas MRI ventilation analysis using VDV and VDP 

are described.   
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CHAPTER  2: HYPERPOLARIZED 
3HE MAGNETIC 

RESONANCE IMAGING OF CHRONIC OBSTRUCTIVE 

PULMONARY DISEASE: REPRODUCIBILITY AT 3.0 TESLA 
 
The work presented in this chapter has been previously published in Academic Radiology 
as indicated below, and is reproduced here with permission (Appendix C).  
L. Mathew, A. Evans, A. Ouriadov, R. Etemad-Rezai, R. Fogel, G. Santyr, D.G. McCormack, G. 

Parraga. “Hyperpolarized 
3
He Magnetic Resonance Imaging of Chronic Obstructive Pulmonary 

Disease at 3.0 Tesla: Reproducibility at 3.0 Tesla” Acad Radiol. 2008 Oct;15(10):1298-311 

2.1 Introduction 

Chronic obstructive pulmonary disease (COPD) is the fourth leading cause of death 

worldwide and continues to increase in incidence, morbidity and mortality rates, as well 

as direct and indirect costs.1 The increasing prevalence and economic burden related to 

COPD is motivating the assessment of new ways to provide earlier diagnosis, better 

patient risk assessment, and improved patient monitoring of disease progression and 

treatment.  While both pulmonary function tests and high resolution computed 

tomography (HRCT) have been well-established as non-invasive diagnostic tools and 

biomarkers in clinical studies of COPD, some of the limitations of these approaches are 

driving the development of new imaging tools that are sensitive to disease changes, that 

provide regional information, and that have the appropriate specificity and precision for 

use in clinical research.   

Hyperpolarized 3He magnetic resonance imaging (MRI) has emerged as a radiological 

research method for the evaluation of the regional distribution of anatomical and 

functional lung changes associated with COPD.2-5  In particular, the measurement of the 
3He apparent diffusion coefficient (ADC)6 has been exploited to probe the lung 

microstructure in patients with COPD2,3,5-7 and in ex vivo explanted lungs.8  Same-day 

scanning reproducibility has also been assessed.9  Increases in ADC are consistent with 

expected increases in acinar size due to destruction of alveoli accompanying 

emphysema5,7,10.  Furthermore, increases in ADC have been shown to correlate with 

histological measurements of disease11,12 and also have been shown to correlate 

positively with age.13  Parenchymal focal ventilation defects in 3He images also appear to 
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be sensitive to lung ventilation changes that accompany COPD.10,14-16  The 3He 

ventilation defect score correlates with both age17 and disease status providing 

radiologists and respirologists with a new measurement tool for clinical studies of the 

spatial and temporal changes in the lung that accompany COPD.  The percent ventilation 

volume18 as well as ADC measurements16 derived from 3He images have been shown to 

be altered in otherwise asymptomatic smokers with normal pulmonary function values, 

suggesting that these measures are sensitive to early lung changes in smokers.  Finally, 

safety and tolerability have been shown to be excellent across a variety of healthy and 

respiratory compromised patients.19,20  

While these studies have assessed the sensitivity of 3He MRI to lung differences in 

COPD, the development of 3He MRI for clinical studies also requires the evaluation of 

measurement precision, which is a critical consideration for clinical study design.  For 

example, in longitudinal clinical studies that aim to utilize 3He MRI measurements of 

disease, it will be critical to understand variability that can be attributed to: 1) image 

acquisition methods including those related to the scanner (field-strength, coils used) and 

subject compliance (breath-hold, motion), 2) image analysis methods that are observer-

dependent or computationally driven, 3) center- or site-specific methodologies including 

gas delivery methods, 4) potential variability differences among different disease states 

including healthy age-matched control subjects, and, 5) potential physiological and/or 

radiological changes that occur over short periods of time.  Accordingly, the goal of this 

study was to assess subjects with stage II and stage III COPD as well as age-matched 

healthy volunteers at a single center using 3He MRI at 3T and the reproducibility of 3He 

MRI measurements during repeated scanning visits.  We present same-day and 7-day 

reproducibility of 3He ADC and ventilation defect volume (VDV).  Reproducibility 

measurements also allowed for the calculation of sample sizes that may aid in the design 

of clinical studies of COPD utilizing 3He ADC and VDV. 
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2.2 Materials and Methods 

2.2.1 Study Subjects 

Twenty-four subjects were enrolled from the general population of the tertiary health care 

center as well as directly from the COPD clinics at the local three teaching hospitals.  All 

subjects provided written informed consent to the study protocol approved by the local 

research ethics board and Health Canada and the study was compliant with the Personal 

Information Protection and Electronic Documents Act ((PIPEDA) Canada).  COPD 

subjects required a disease diagnosis of at least one year, having had a smoking history of 

at least 10-pack-years and fewer than three COPD exacerbations within the last 12 

months.  Healthy subjects were included if they had no history of chronic respiratory 

disease, less than one pack-year smoking history, forced expiratory volume in 1 s 

((FEV1) greater than 80% predicted, FEV1 divided by the forced vital capacity (FVC) or 

FEV1/FVC greater than 70%, and no current diagnosis or history of cardiovascular 

disease.  Throughout the duration of the study, COPD subjects were to be withdrawn 

from the study if they had experienced a COPD exacerbation or if they experienced a 

drop in arterial oxygen levels as monitored using pulse oximetry below 80% for 15 

continuous seconds during MRI procedures.  COPD and healthy subjects were 

categorized according to GOLD criteria.21  

2.2.2 Study Assessments 

After subjects provided written informed consent, they were screened for MRI and coil 

compatibility and underwent a physical exam, plethysmography and spirometry.  

Spirometry and plethysmography were performed in the morning after patients delayed 

inhaled bronchodilators and corticosteroids for approximately 12 hours as previously 

described.14  Briefly, spirometry was performed at screening and at each MRI visit using 

an ndd EasyOne spirometer (ndd Medizintchnik AG, Zurich, CH) reporting forced 

expiratory volume in 1 s ((FEV1) absolute and percent predicted) and forced vital 

capacity (FVC).  COPD subjects performed spirometry at a pre-MRI screening visit (pre-

and post-bronchodilator) and were enrolled based on the post-bronchodilator FEV1 

measurement that was furthermore required to be within 3% of pre-bronchodilator FEV1, 
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which eliminated any potential subjects with underlying lung disease responsive to 

bronchodialators such as asthmatics.  Whole body plethysmography (SensorMedics 

VIASYS Healthcare Inc. Yorba Linda, CA USA) was also performed at the pulmonary 

function laboratory at University Hospital (London Health Sciences Centre, London, 

Canada) for the measurement of total lung capacity (TLC), inspiratory capacity (IC) 

residual volume (RV), and functional residual capacity (FRC).   

2.2.3 Safety Monitoring and Hyperpolarized 
3
He Administration 

On both MRI visit dates, subject supine vital signs and arterial O2 levels were recorded 

before pre-MRI spirometry and subjects were administered a practice dose of mixed 4He-

nitrogen while seated outside the scanner.  Digital pulse oximetry was used to monitor 

arterial blood oxygenation levels during MR scanning and all breath-hold manuevers.  

Hyperpolarized 3He gas was provided by a turn-key, spin-exchange polarizer system 

(HeliSpin™, GEHC, Durham, NC).  In a typical study this system provided 30% 

polarization in 12 hours.  Doses (5 mL/kg) were delivered in 1 L plastic bags (Tedlar®, 

Jensen Inert Products, Coral Springs, FL) diluted with ultrahigh purity, medical grade 

nitrogen (Spectra Gases, Alpha, NJ).  Polarization of the diluted dose was quantified by a 

polarimetry station (GEHC, Durham, NC).  3He MR scans were acquired during an 

inhalation breath-hold after inspiration from tidal volume of a 1L 5 ml/kg dose of 3He 

mixed with N2.  Post-MRI spirometry was also performed for all subjects.  

2.2.4 Imaging 

Magnetic resonance imaging was performed on a whole body 3.0 Tesla Excite 12.0 MRI 

system (GEHC, Milwaukee, WI USA) with broadband imaging capability as previously 

described.14  All helium imaging employed a whole body gradient set with maximum 

gradient amplitude of 19.4 mT/m and a single channel, rigid elliptical transmit/receive 

chest coil (RAPID Biomedical GmbH, Wuerzburg Germany).  The basis frequency of the 

coil was 97.3 MHz and excitation power was 3.2 kW using an AMT 3T90 RF power 

amplifier (GEHC, Wilwaukee WI USA).    

The time-frame between 3He MRI scans was within 7 ± 2 minutes and again 7 ± 2 days 

later.  A one-week period between scanning sessions was selected to minimize subject 
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inconvenience, and to model typical sources of variability stemming from the acquisition 

of the images over time due to technologist changes, coil positioning, subject motion and 

positioning changes and potential physiological changes.  Repeat spirometry at the 

second MR visit (pre- and post-MRI) was performed to screen for exacerbations or global 

disease changes that may have occurred during the one-week scanning period.   

1H scans were acquired prior to the 3He imaging with subjects scanned during breath-

hold at the top of tidal volume using a whole body radiofrequency (RF) coil and again 

after 3He imaging using a 4-channel torso array coil (GEHC, Milwaukee, WI) and a fast 

spoiled gradient recalled echo sequence (256x256 matrix, FOV 40x 40cm, TR= 2.7, 

TE=1.3, flip angle=8 degrees).   

3He multislice images were obtained in the coronal plane using a fast gradient-recalled 

echo (FGRE) method with centric k-space sampling.16  Two interleaved images 

(TE = 3.7 ms, TR = 7.6 ms, 128 x 128, 7 slices, 30 mm slice thickness, FOV = 40cm x 

40cm) without and with additional diffusion sensitization (G = 19.4 mT/m, rise and fall 

time = 0.5 ms, duration = 0.46 ms, b value = 1.6 s/cm2) were acquired for each slice.  The 

first image served as a map of ventilation, while the combination of the two images was 

used to compute ADC maps.  All scanning was completed within approximately 10 

minutes of first lying in the scanner.   

2.2.5 Image Analysis 

A single expert observer analyzed images for center slice ADC and another single 

observer analyzed images for center slice VDV.  Two observers were used to minimize 

the potential for observer bias.  The ADC images were analyzed by a single trained 

observer in an image visualization environment (digital copy) with room lighting levels 

equivalently established for all image analysis sessions.  Mean ADC and ADC maps were 

processed using in-house software programmed in the IDL Virtual Machine platform 

(Research Systems Inc., Denver, CO) as previously described14 with b = 1.6 s/cm2.   

The non-diffusion weighted images were examined in the same image visualization 

environment by a single trained observer for analysis of ventilation defects in the center 

coronal slice, which was defined as the slice including the carina.  Three observers, in 
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consensus determined the total number and location of ventilation defects at baseline 

scan, same-day rescan and 7-day rescan.  Images were reviewed such that all three 3He 

images were visible on a digital workstation monitor system (consisting of identical 19 

inch flat panel monitors).  A ventilation defect was defined as previously described22 as 

any well-defined area of the lung showing no signal intensity compared with the 

remaining ventilated lung.  Areas of absent signal associated with the pulmonary vascular 

structures, heart, hilum and mediastinum were not considered to be ventilation defects.  

Ventilation defect volume was manually segmented without the aid of a quantitative 

signal-to-noise or spin density threshold.  After scoring ventilation defects, manual 

segmentation of the defects was performed by a single observer (one of the three 

consensus observers) using the non-diffusion weighted images of the center coronal slice 

with the observer blinded to subject identity, disease status and scan time-point.  Images 

were randomized (subject and scan time) and the 32 bit image slices were imported into a 

3D image visualization platform developed in our laboratory23,24 for MR and ultrasound 

applications as previously described.25  Segmentation was performed using this image 

visualization software which also provided a method for 2-dimensional rigid image 

overlay or registration (of the center slice 1H image and the center slice 3He image), 

facilitating the manual segmentation of center-slice ventilation defect volume.  

Ventilation defect volume, as segmented from center slice 3He images, was computed as 

the area of the segmented defect multiplied by the slice thickness (30mm).  

2.2.6 Statistical Methods 

Means for ADC, ADC standard deviation of center slice and whole lung as well as 

ventilation defect volume of center slice were calculated.  The difference in center slice 

ADC values and VDV between time points was computed for every subject, and the 

mean and standard deviations of these differences reported.  Comparison of ADC and 

VDV means was performed using the one-way analysis of variance (ANOVA) in SPSS 

14.00 (LEAD Technologies, Inc., Chicago, IL).  Intraclass correlation coefficients (ICC) 

and Lin’s concordance correlation coefficients (CCC)26, were calculated using SPSS.  

The ICC provides a way to quantify the reproducibility of the relative rankings of each 

subject’s repeated scans and the CCC provides a way to show the reproducibility of both 
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the relative rankings and agreement of repeated scanning results.  The sample size (N) 

required to detect specific volumetric changes or differences (δ ) in ADC and VDV was 

also calculated for power ß = 0.80, with α = 0.05; accordingly,  Zα = 1.96, and Zß = 0.80 

and N is calculated as27: 

 

 

2.3 Results 

2.3.1 Study Subjects 

Baseline demographic characteristics are provided in Table 2-1 for the 24 subjects 

enrolled (15 male) with very similar mean ages and age ranges for each subgroup.  Mean 

body mass index (BMI) and BMI range for each subject subgroup was also very similar.  

As the COPD subjects and healthy volunteers were enrolled based upon FEV1 and 

FEV1/FVC according to GOLD criteria21, the mean values for FEV1 and FEV1/FVC for 

each subject subgroup reflect the GOLD criteria categorization.  In addition to the 

expected and significantly decreased FEV1 and FEV1/FVC for the COPD subgroups as 

compared to the healthy volunteers (p<.01), baseline FRC was also significantly 

increased for both COPD subject groups (p<.01) and TLC was also significantly 

increased for the stage III COPD subgroup (p<.001), both findings consistent with lung 

hyperinflation. 
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Figure 2-1: 
3
He Apparent Diffusion Coefficient Maps and centre slice ADC 

results. 

i) ADC Maps ii) Corresponding ADC Histograms 
A) Healthy Volunteer (male, age = 63 yrs, FEV1= 92% predicted)  
B) Stage II COPD (male, age = 72 yrs, FEV1=62% predicted) 
C) Stage III COPD (male, age = 52 yrs, FEV1= 49% predicted)  
D) Stage III COPD (male, age =72 yrs, FEV1 = 49% predicted) 
E) Box and Whisker plots for subject subgroups at scan, same day rescan and 7-day 
rescan. Boxes represent the interquartile range (25th to 75th percentile), the whiskers 
represent the minimum and maximum values and the solid line represents the median 
value. Healthy volunteers n=8 (7 at 7-day rescan), stage II COPD n=9 (8 at 7-day rescan), 
stage III COPD n=7 (6 at same-day rescan).  
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Two subjects did not return for the second MR visit: 1) a single healthy volunteer (male, 

age 72 years) did not return due to claustrophobia, and 2) a single subject with stage II 

COPD (female, age 72 years), who was hospitalized due to an exacerbation of her 

disease.  However, both of these subjects completed both scans during their first visit, 

allowing for same-day reproducibility analysis.  All subjects with stage III COPD 

returned for the second MR visit, however as previously described 14, for a single subject 

(the first scanned at our site with stage III COPD ) the MR images for same-day rescan 

could not be evaluated.  This was due to the subject’s high respiratory rate which made 

the inhalation maneuver difficult.  This resulted in a 3He image with low SNR (<10).  

Thus in total 24 subjects were evaluable at baseline scan, 23 subjects at same-day rescan 

and 22 subjects at 7-day rescan.  There was a single subject with stage II COPD who 

experienced three episodes of mild and transient (all < 5 seconds in duration) hypoxemia 

(SpO2 dropped below 88%) sporadically before (once) and after (twice) MR scanning.  

All of these episodes resolved spontaneously, and all were asymptomatic (no clinical 

symptoms).  The same subject experienced shoulder pain due to restriction of her 

shoulder in the rigid MR coil perhaps due to her size and shape (subject BMI=38).  There 

were no other scanning- or breath-hold-related adverse events reported in the study, and 

no serious or severe adverse events reported related to any protocol procedure.  

 

Table 2-1: Subject Demographics. 

 Healthy Volunteers 
n=8 

Stage II COPD 
n=9 

Stage III COPD 
n=7 

Age yrs (±SD) [range] 67 (6) [58-74] 68 (6) [59-74] 67 (8) [52-75] 
Male Sex 5 4 6 
Body Mass Index (±SD) [range] 27 (4) [24-35] 28 (5) [21-38] 27 (4) [22-34] 
FEV1 %* (±SD) 106 (19) 63 (8)** 42 (7)** 
FEV1/FVC % (±SD) 77 (5) 54 (11)** 38 (10)** 
IC %* (±SD) 111 (16) 99 (18) 78 (17) 
RV %* (±SD) 97 (10) 142 (20) 188 (55) 
FRC %* (±SD) 95 (14) 116 (14)** 152 (37)** 
TLC %* (±SD) 104 (19) 108 (9) 115(23)*** 
*Percent predicted, FEV1 = Forced Expiratory Volume in 1s, FVC= Forced Vital Capacity   
FRC= Functional Residual Capacity, TLC= Total Lung Capacity 
**significantly different than healthy volunteers (p<0.01), *** significantly different than healthy 
volunteers (p<0.001) 
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2.3.2 
3
He MRI Measurements 

Representative center slice ADC maps and corresponding ADC histograms are provided 

for a healthy volunteer (Figure 2-1A), a subject with stage II COPD (Figure 2-1B) and 

two subjects with stage III COPD, (Figure 2-1C and 2-1D).  Mean ADC and mean ADC 

standard deviations (SD) for all the representative subjects is provided in Figure 2-1(ii) 

and in Figure 2-1E, a box and whisker plot shows the mean center slice ADC values for 

each subgroup and scan time point (Scan, same day rescan and 7-day rescan).  In Figure 

2-2, the non-diffusion-weighted images of the diffusion-weighted pair are provided for 

the same representative subjects (Figures 2-2A-D).  In Figure 2-2E, a box and whisker 

plot shows the mean center slice VDV values for each subgroup and scan time point 

(scan, same day rescan and 7-day rescan).    

Table 2-2 shows mean whole lung ADC, whole lung SD, center slice ADC, center slice 

SD as well as center slice VDV for all subgroups and scan time-points.  The difference in 

both whole lung and center slice mean ADC between healthy volunteers and subjects 

with stage II COPD was significant (p<.05) as was the difference between healthy 

volunteers and subjects with stage III COPD (p<.01) at all time points.  There was no 

significant difference for whole lung ADC SD between any subject subgroup at any time-

point but there was a significant difference for center slice ADC SD between subjects 

with stage III COPD and healthy volunteers and subjects with stage II COPD (p<.01) at 

all time-points.  For mean ventilation defect volume, there was no significant difference 

between healthy volunteers and subjects with stage II COPD at any time point.  However, 

there was a significant difference between subject with stage III COPD and both healthy 

volunteers and subjects with stage II COPD (p<.01) at all time-points.   
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Table 2-2: Same day and 7-day Rescan ADC and VDV Measurements. 

 Healthy 
Volunteers 

n=8 

Stage II  
COPD 

n=9 

Stage III 
COPD 

n=7 
 
Whole Lung Mean ADC (±SD) cm2/s 

   

    Scan 0.27 (0.02) 0.38 (0.09) 0.44 (0.09) 
    Same-day Rescan 0.26 (0.02) 0.36 (0.09) 0.42 (0.09)*  
    7-day Rescan  0.26 (0.02)**  0.39 (0.08)***  0.43 (0.09) 
 
Whole Lung ADC SD (±SD) cm2/s 

   

    Scan 0.18 (0.03) 0.24 (0.07) 0.24 (0.04) 
    Same-day Rescan 0.19 (0.05) 0.22 (0.08) 0.24 (0.04) * 
    7-day Rescan 0.16 (0.02) ** 0.25 (0.08) *** 0.24 (0.04) 
 
Center Slice Mean ADC (±SD) cm2/s 

   

    Scan 0.26 (0.02) 0.38 (0.10) 0.47 (0.10) 
    Same-day Rescan 0.25 (0.03) 0.36 (0.09) 0.46 (0.11) * 
    7-day Rescan 0.24 (0.02) ** 0.39 (0.10) *** 0.46 (0.10) 
 
Center Slice ADC SD (±SD) cm2/s 

   

    Scan 0.15 (0.03) 0.19 (0.06) 0.26 (0.07) 
    Same-day Rescan 0.14 (0.04) 0.15 (0.03) 0.24 (0.06) * 
     7-day Rescan 0.12 (0.03) ** 0.19 (0.04) *** 0.29 (0.15) 
 
Center Slice Ventilation Defect Volume 
(±SD) cm3 

   

    Scan 80 (30) 70 (40) 220 (160) 
    Same-day Rescan 70 (30) 80 (50) 220 (150) * 
    7-day Rescan 70 (30) ** 110 (70) *** 220 (110) 
*(n=6)  **(n=7) ***(n=8) 
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Figure 2-2: 
3
He MR Ventilation Images and Ventilation Defect Volume 

(VDV) Results. 

A) Healthy Volunteer (male, age = 63 yrs, FEV1= 92% predicted)  
B) Stage II COPD (male, age = 72 yrs, FEV1=62% predicted)  
C) Stage III COPD (male, age = 52 yrs, FEV1= 49% predicted) 
D) Stage III COPD (male, age = 72 yrs , FEV1= 49% predicted) 
E) Box and Whisker plot for mean VDV for subject subgroups at scan, same day rescan 
and 7-day Rescan. Boxes represent the interquartile range (25th to 75th percentile), the 
whiskers represent the minimum and maximum values and the solid line represents the 
median value. 
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2.3.3 
3
He Measurement Reproducibility 

As a reference for the measurement of 3He MRI reproducibility, repeated spirometry at 

the second scanning visit showed no change for any subject or subject subgroup in FEV1 

or FEV1/FVC within the 7 ± 2 days rescan period.  Scan-rescan 3He MRI reproducibility 

was assessed using linear regression as shown in Figure 2-3 as well as the ICC and CCC 

as shown in Table 2-3.  In Figure 2-3, same-day (R2 = 0.934) and 7-day rescan (R2 = 

0.960) linear regression for center slice ADC was high and not significantly different and 

furthermore not significantly different from same-day rescan mean VDV (R2 = 0.941).  7-

day rescan VDV was lower and significantly different (R2 = 0.576, p<.001).  The 

corresponding Pearson correlations were also high for same-day and 7-day rescan mean 

ADC (r = 0.959 and r = 0.980 respectively) as well as same-day rescan mean VDV (r = 

0.970) with 7-day rescan mean VDV somewhat lower (r = 0.759).   

Table 2-3 provides a comparison of same-day and 7-day ICC and CCC for FEV1, center 

slice ADC and center slice VDV.  ICC and CCC were both high for FEV1 and not 

significantly different for same-day and 7-day repeated spirometry, or between subject 

subgroups.  Center slice mean ADC for all subjects pooled together was highly 

reproducible for both same-day and 7-day rescan (ICC and CCC 0.96 and 0.98 

respectively).  When reproducibility of mean ADC is considered for subject subgroups, 

ICC and CCC was highest for subjects with stage III COPD.  For center slice VDV,  ICC 

and CCC were high for same-day rescan for all subject subgroups and for all subjects 

pooled together (ICC and CCC 0.97 and 0.98 respectively) and not significantly different 

from same-day ADC reproducibility.  However, 7-day rescan ICC and CCC was 

significantly lower (p<.01) than same-day rescan for all subject subgroups and for all 

subjects pooled together.    

In Figure 2-4, 3He images are provided to show visual evidence of the location, number 

and size of ventilation defects at scan (Figure 2-4i) same-day rescan (Figure 2-4ii) and 7-

day rescan (Figure 2-4iii).  In Figure 2-4A and 2-4B, 3He images for two representative 

healthy volunteers are shown, in Figure 2-44C and Figure 2-4D, 3He images for two 

representative subjects with stage II COPD and in Figures 2-4E and 2-4F, 3He images for 

two representative subjects with stage III COPD are provided.   
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Table 2-4 provides sample sizes that would be required to measure ADC and VDV (α = 

0.05, β= 0.80) derived from the observed 7-day rescan differences.  The 7-day rescan 

differences were selected because they provide the most conservative estimate (based on 

the fact that variability is higher at 7-days) and because for clinical trials designed to 

detect disease changes, repeated scans over longer periods of time would be utilized.  The 

sample size required to measure a 1% / 5 % / 10% change in ADC in healthy volunteers 

(0.0025 / 0.0125 / 0.025cm2/s, respectively) was 975 / 39 / 10 subjects, and in subjects 

with stage III COPD (0.0047 / 0.0235 / 0.047 cm2/s) this was reduced to 69 / 3 / 1 

subjects.  Sample sizes calculated related to the use of VDV as an intermediate endpoint 

required to measure a 5% to 10% change would be 331 to 83 healthy volunteers, 882-220 

subjects with stage II COPD and 1089-272 subjects with stage III COPD. 

 

Table 2-3: Scan-Rescan Reproducibility.   

 Healthy Volunteers 
n=8 

Stage II COPD 
n=9 

Stage III 
COPD 

n=7 

All Subjects 
n= 24 

 ICC CCC ICC CCC ICC CCC ICC CCC 
 
Center Slice Mean ADC 
(cm2/s) 

        

     Same day Rescan 0.83 0.85 0.91 0.91 0.98 0.93 0.96 0.96 
     7-day Rescan 0.17 0.24 0.97 0.96 0.99 0.98 0.98 0.98 
 
Center Slice VDV (cm3) 

        

     Same day Rescan 0.91 0.90 0.94 0.94 0.96 0.96 0.97 0.98 
     7-day Rescan 0.56 0.57 0.59 0.62 0.63 0.58 0.74 0.75 
 
FEV1 (%predicted) 

        

     Same Day Spirometry 0.98 0.98 0.97 0.97 0.94 0.94 0.99 0.99 
     7-day Spirometry 0.99 0.99 0.94 0.94 0.97 0.96 0.99 0.99 
ICC is Intraclass Correlation Coefficient and CCC is Lin’s Concordance Correlation Coefficient.  
Correlation coefficients represent reproducibility between baseline scan and either same-day 
rescan or 7-day rescan.  
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Figure 2-3: Center Slice ADC and VDV Reproducibility. 

Hollow triangles represent healthy volunteers, solid squares represent subjects with stage 
II COPD, and hollow circles represent subjects with stage III COPD. Dashed line 
represents 95% confidence interval of regression (solid line).  
A. Scan - Same day Rescan ADC linear regression: y = 0.99x + 0.016 (p<.001) Pearson r 
= 0.96 
B. Scan - 7-day Rescan ADC linear regression: y = 0.94x+ 0.028 (p<.001) Pearson r = 
0.97 

C. Scan - Same-day Rescan VDV linear regression: y = 0.98x + 4.12 (p<.001) Pearson r 
= 0.97 

D. Scan - 7-day Rescan VDV. Linear regression: y = 0.88x + 9.94 (p<.001) Pearson r = 
0.76 

ADC: R2 Same Day Rescan versus R2 7-day Rescan, p=NS  
VDV: R2 Same Day Rescan versus R2 7-day Rescan, p<0.001 
ADC and VDV: ADC R2 Same Day Rescan vs. VDV R2 Same Day Rescan : p=NS 
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Figure 2-4: Center Slice 
3
He VDV Reproducibility 

A) and B) Healthy volunteers at Scan (i), Same-day Rescan (ii) and 7-day Rescan (iii) 
C) and D) Subjects with Stage II COPD at Scan (i), Same-day Rescan (ii) and 7-day 
Rescan (iii) 
E) and F) Subjects with Stage III COPD at Scan (i), Same-day Rescan (ii) and 7-day 
Rescan (iii). 
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Table 2-4: 
3
He ADC and VDV Sample Size Calculations.   

  
Healthy 

Volunteers 
n= 8 

 
Stage II COPD 

n= 9 

 
Stage III COPD 

n= 7 

 
ADC (Center Slice) 

   

Seven Day    (N) 7 8 7 
Mean  (BL and 7-day cm2/s 0.25 0.39 0.47 
Difference (SDdiff) cm2/s 0.02 0.01 0.01 
Sample Size 1%/5%/10% change 
(n) 

 
975 / 39 / 10 

 
100 / 4 / 1 

 
69 / 3 / 1 

 
VDV  (Center Slice) 

   

Seven Day    (N) 7 8 7 
Mean (BL and 7-day) cm3 73 92 220 
SDdiff  cm3 17 35 93 
Sample Size 5%/10% change (n) 331 / 83 882 / 220 1089/ 272 
 

2.4 Discussion 

In order to assess the feasibility of 3He MRI at 3T for use in clinical research studies of 

COPD, we prospectively assessed 24 age-matched subjects, including 15 subjects with 

stage II or stage III COPD.  We directly assessed and compared same-day and 7-day 

measurements of 3He MRI ADC and 3He ventilation defect volume.  Here we provide the 

quantitative results of this study performed at 3T and show: 1) high reproducibility of 3He 

ADC that was not significantly different between same-day rescan and 7-day rescan, 2) 

high reproducibility of 3He VDV that was significantly higher at same-day rescan as 

compared to 7-day rescan, 3) significant differences in 3He ADC between healthy 

subjects and those with COPD, and, 4) significant differences in 3He center slice VDV 

between subjects with stage III COPD and those subjects with stage II COPD and healthy 

volunteers. 

The study was designed primarily to assess the reproducibility of these measurements at 

3T and to compare measurement precision by assessing repeated scanning measurements 

over a few minutes and over a one week period.  It is worth noting that repeated 

spirometry at the second scanning visit also showed no change for any subject or subject 

subgroup in FEV1 or FEV1/FVC, suggesting that no global changes in respiratory 
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function had occurred during this time-frame.  For ADC, same-day reproducibility 

measured using linear regression (R2 = 0.934), ICC and CCC was high (as previously 

reported9) and similar to 7-day rescan measurements of ADC reproducibility and also to 

same-day rescan mean VDV (R2 = 0.941), suggesting that these measurements are not 

sensitive to changes in subject positioning or any scanner-coil interactions that might 

change over short periods of time.  However, 7-day rescan reproducibility for VDV was 

lower and significantly different (R2 = 0.576, p<.001).  Some explanation for this may be 

derived from the fact that the measurement of VDV itself was performed by manual 

segmentation and center slice VDV was represented by very small volumes in the healthy 

volunteers and stage II subjects.  Accordingly, the differences in VDV measured at same-

day rescan and 7-day rescan as shown in Figure 2-4 were not large, with the majority of 

defects having the same location and similar size in all scans.  Nevertheless, the 

possibility exists that the differences measured, though small, were due to physiological 

changes that occurred over a one week period.  This would suggest that VDV sensitively 

quantified ventilation changes resultant from airway narrowing or closure that occurred 

without changes in global disease measurements such as FEV1 and FEV1/FVC or in the 
3He ADC measurements.  In addition it suggests that it is possible to measure 

physiological changes that occur over short periods of time in some subjects and such 

changes cannot be detected by spirometry.  Sample sizes required to measure changes in 

ADC and in VDV over time reflected the increased variability of the VDV measurement 

as compared to ADC.  It is difficult to provide an appropriate context for the potential 

changes in ADC and VDV that may occur over time as a function of disease progression, 

normal aging processes or COPD exacerbations.  The sample size calculations may be 

viewed as a guide to assist in the design of studies sensitive to morphological changes in 

the lung parenchyma or airways using ADC, or studies sensitive to dynamic processes 

using VDV such as those aimed at assessing ventilation changes that are dependent on 

airway patency to provide gas into the lung parenchyma.  Thus, overall, if direct 

measurement of airway or alveolar size changes is required, a smaller group of subjects 

would be adequate, whereas precise measurement of more dynamic processes such as 

those involving mucus plugging and other ventilation changes would require a larger 

patient group.   
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In this study we made a number of other observations that are relevant to the potential 

clinical research use of 3He MRI.  First, the use of 3He MRI at 3T in elderly healthy 

volunteers and subjects with stage II and stage III COPD was well-tolerated.  In total we 

assessed repeated scanning in 24 subjects (15 scans in eight healthy volunteers and 31 

scans in 16 subjects with COPD) and only a single subject (with stage II COPD and BMI 

38) reported mild and transient hypoxemia with complete recovery in 5s and without 

clinical symptoms.  This finding, along with previously reported work at other sites and 

field strengths19,20,28, supports the use of 3He MRI at 3T in longitudinal studies of older 

subjects -even those with significant respiratory compromise.  

We also noted the difference in mean ADC and VDV between subject subgroups which 

is a measure of 3He MRI sensitivity.  Mean ADC differences existed between healthy 

volunteers and subjects with stage II (p<.05) and stage III COPD (p<.01), but not 

between subjects with stage III COPD and those with milder disease.  While the mean 

ADC for stage III COPD subjects was in fact greater, a larger SD for this population 

likely resulted in the difference being not statistically significant.  However, the inherent 

advantage of quantitative imaging is that each image voxel represents a quantitative 

measure of disease; the reduction of all voxels to a whole lung mean or center slice mean 

effectively masks any of the regional differences between subjects and subject subgroups.  

In other words, although differences were not detected using whole lung and center slice 

mean values, regional analysis30 may well show differences between subject subgroups 

even with small sample sizes.  ADC SD, which is a measure of the variability of the ADC 

measurement over the region of interest assessed (center coronal slice), also significantly 

differed (p<.01) between subjects with stage III COPD and the healthy volunteers and 

subjects with less severe disease.  This suggests that the stage III COPD subgroup has 

higher ADC heterogeneity within the region of interest assessed which has also been 

previously reported.9  For mean VDV, there was no significant difference between 

healthy volunteers and subjects with stage II COPD at any time point.  However, there 

was a significant difference between subjects with stage III COPD and both healthy 

volunteers and subjects with stage II COPD (p<.01) at all time-points.  The finding of 

reproducible ventilation defects (no difference in VDV between visits according to 

ANOVA results) in the healthy elderly subgroup was not anticipated and suggests caution 



73 

  

must be used in interpreting results from 3He studies of elderly subjects with underlying 

disease.  This finding also underscores the value of including a healthy elderly volunteer 

control group as in this study and those planned in future that utilize 3He MRI in studies 

of older COPD subjects.  Perhaps as part of the normal aging processes in the lung, non-

random airway narrowing occurs even in the absence of known or detectable respiratory 

or cardiovascular disease, which may account for the VDV results shown here in healthy 

elderly subjects.  

The primary limitation of this study is the small sample size of each of the subgroups, 

which may have limited the power to detect ADC differences between the stage II and 

stage III COPD subject subgroups and to detect VDV differences between the healthy 

volunteers and subjects with stage II COPD.  Another limitation of this study was the fact 

that we did not prospectively acquire 1H and 3He images with the same breath-hold 

thoracic volumes (using the methods previously described by van Beek and co-

workers18).  Hence for the majority of subjects at each time point, 1H and 3He thoracic 

image volumes were not well-matched, so that a reproducibility analysis of percent 

ventilation volume as previously developed by van Beek18 was not possible in this study.  

Nevertheless, in spite of the fact that the 3He and 1H images were acquired under similar, 

but not exactly the same breath-hold volume, we were able to calculate percent ventilated 

volume for 18 subjects who had well-matched 1H and 3He volumes for same-day rescan 

(as assessed by a radiologist who visually compared the 3He and 1H image slices) using 

manual segmentation of ventilated volumes.29  Elderly healthy volunteers (n=5) exhibited 

94±20% ventilation volume, whereas subjects with stage II COPD (n=6) showed 77±19% 

ventilation volume and subjects with stage III COPD (n=7) had 68±14% ventilation 

volume, which is in good agreement with results of a previous study in COPD.18   

Although we could not assess reproducibility of percent ventilation volume in this study, 

the percent ventilation volume result for a subset of patients at a single time point using 

manual segmentation suggests that this is a robust measurement that may provide 

valuable measurement of airway disease in longitudinal studies.  In addition, because 1H 

and 3He images were not acquired with exactly matching breath-holds and very different 

slice thickness, we limited the analysis of defect volume reproducibility to the center 

coronal slice where the edge of the thoracic cavity and ventilation defects were most 
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easily discerned.  Hence in this study, center coronal slice VDV represented the area of 

ventilation defect for the center slice which was then multiplied by the 30 mm slice 

thickness reflecting contributions from the entire slice.  Because of the rather thick slices 

used, VDV as measured in this study, though precise, provides only an estimate of the 

true ventilation defect volume.  The use of thinner slices and 3D imaging approaches will 

allow for an estimate of ventilation defect volume that is likely more accurate.  Another 

shortcoming of the study design was related to the fact that repeated scanning visits were 

prospectively designed to assess the reproducibility of the 3He ADC.  For ventilation 

defect volume quantification we utilized the first of the interleaved diffusion-weighted 

pair of images (typically acquired for ADC calculation) which has intrinsically lower 

signal-to-noise ratio than do 3He spin density (ventilation) images.  Despite this, one of 

the major advantages of our approach is that a single patient breath-hold can be used to 

assess both ADC value contributions from the ventilated lung and VDV contributions 

from those areas of the lung that are not ventilated.  The pragmatic use of a single breath-

hold imaging session results in an increased subject convenience and tolerability and 

decreases cost and time for the subject scan, which are important considerations for 

clinical studies aimed at assessing new treatments as well as longitudinal studies.  

During progressive COPD, it is believed that adaptive remodeling of the lung and 

thoracic gross anatomy such as the diaphragm, muscles and skeleton occurs to 

accommodate the microscopic remodeling of the airways and airspaces.  Clinical research 

studies of COPD continue to focus on spirometric measurement of FEV1, and in some 

cases high resolution or multi-detector x-ray CT methods to assess novel interventions 

and disease progression.  The results of the current study suggest that 3He MRI at 3T 

provides another radiological tool for the assessment of both airway and airspace changes 

in COPD with sufficient precision for clinical research studies.  Moreover, the method 

also provides a relatively rapid and safe method of visualizing and quantifying both 

spatial and temporal lung structural and functional dynamics related to disease 

progression or concomitant with novel treatments. 
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2.5 Conclusion 

In this study of a relatively small group of elderly healthy volunteers and subjects with 

stage II and stage III COPD, both 3He MRI ADC and VDV measurements were highly 

reproducible in repeated scans within a few minutes.  3He MRI ADC also showed high 

reproducibility at 7-day rescan and 3He MRI VDV was significantly less reproducible in 

7-day rescan visits, providing evidence of spatial and temporal changes in ventilation 

defect size over the seven day rescan period.  In healthy age-matched elderly subjects, 
3He MRI ADC was significantly different as compared to subjects with stage II COPD 

whereas 3He MRI VDV was significantly different between subjects with stage III COPD 

and those without disease or with stage II COPD.  
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CHAPTER  3: HYPERPOLARIZED 
3HE MAGNETIC 

RESONANCE IMAGING OF VENTILATION DEFECTS IN 

HEALTHY ELDERLY VOLUNTEERS: INITIAL FINDINGS AT 

3.0 TESLA 
 
The work presented in this chapter has been previously published in Academic Radiology 
as indicated below, and is reproduced here with permission (Appendix C).  
G. Parraga, L. Mathew, R. Etemad-Rezai, D.G. McCormack. G. Santyr. “Hyperpolarized 

3
He 

Magnetic Resonance Imaging Ventilation Defects in Healthy Elderly Volunteers: Initial Findings 

at 3.0 Tesla”  Acad Radiol. 2008 Jun;15(6):776-85 

3.1 Introduction 

New methods of pulmonary magnetic resonance imaging (MRI) with inhaled 

hyperpolarized helium-3 (3He), have been shown to provide regional pulmonary 3He 

ventilation maps and the location and size of ventilation changes within the lung in 

asthma1-4, cystic fibrosis5-10 and chronic obstructive pulmonary disease (COPD).11-19  In 

patients with respiratory disease, areas of decreased ventilation from airflow changes are 

observed as “ventilation defects” that are visualized as decreased or an absence of 3He 

intensity in 3He MRI spin density images.   

Previously, both the size and number of these ventilation defects has been shown to 

correlate with severity in asthma3,4,20,21
 and in addition, exercise and methacholine 

challenge has been shown to alter the size, location and number of defects that occur in 

asthma.3  We have also previously described a preliminary analysis of ventilation defect 

score and ventilation defect volume (VDV) in 3 subjects – one with mild-moderate 

COPD, one with severe COPD and a single healthy age-matched control.17  We noted in 

this study that significant ventilation defects were observed even in the healthy elderly 

subject.  The finding of ventilation defects in an older healthy individual who was not a 

smoker, did not have asthma, or cardiovascular disease and who had normal pulmonary 

function tests17 was surprising and had not been reported previously in other studies of 

younger healthy volunteers.  This result challenged us to explain the physiological 

mechanisms related to ventilation defects in healthy lung as well as the prevalence of 

ventilation defects in older and middle-aged individuals.  To try to address some of these 

issues, the goal of this study was to examine and compare, with the use of 3He MRI, 
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ventilation defects in elderly and middle-aged subjects who had no history of smoking, 

respiratory or cardiovascular disease.   

3.2 Methods 

3.2.1 Study Population 

Subjects were recruited from the general population by newspaper advertisement and 

media coverage and they provided written informed consent to study protocols approved 

by The University of Western Ontario Standing Board of Human Research Ethics and by 

Health Canada.  In order to qualify as a healthy subject, volunteers had no history of 

chronic respiratory disease or cardiovascular disease and less than 1 pack-year of 

smoking over their lifetime.  In addition, subjects were enrolled based on forced 

expiratory volume in 1s (FEV1) ≥ 80% predicted and FEV1 divided by the forced vital 

capacity (FVC) (FEV1/FVC) ≥ 70%, measured using spirometry, according to the GOLD 

classification for healthy subjects.22  For the elderly cohort, subjects were recruited 

between the ages of 50 and 75 years and enrolled between the ages of 58 and 74 years 

inclusive, whereas for the younger subgroup, subjects were recruited between the ages of 

18 and 60 years of age and enrolled between the ages of 23 and 57 years inclusive.  

3.2.2 Spirometry 

Spirometry was performed at screening and at each MRI visit using an ndd EasyOne 

spirometer (ndd Medizintchnik AG, Zurich, CH) reporting forced FEV1 (absolute and 

percent predicted) and FVC.  

3.2.3 Magnetic Resonance Imaging 

For both subject subgroups, MRI was performed on a whole body 3.0 Tesla Excite 12.0 

MRS system (GEHC, Milwaukee, WI USA) with broadband imaging capability as 

previously described.17  All helium imaging employed a whole body gradient set with 

maximum gradient amplitude of 19.4 mT/m and a single channel, elliptical 

transmit/receive chest coil (RAPID Biomedical GmbH, Wuerzburg Germany).  The basis 

frequency of the coil was 97.3 MHz and excitation power was 3.2 kW using an AMT 

3T90 RF power amplifier (GEHC, Wilwaukee WI USA).    
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The elderly subgroup was scanned twice within 7 ± 2 minutes (scan and same-day rescan) 

and then again once within 7 ± 2 days (7-day rescan).  All but two of the younger subjects 

were scanned on a single occasion only, with two subjects being scanned up to 20 times 

each within 2 years.  Multi-slice 3He coronal images were obtained using a fast gradient-

echo method (FGRE) with centric k-space sampling (FOV 40x40cm).  Two interleaved 

images (TE = 3.7 ms, TR = 7.6 ms, 128 x 128, flip angle = 7 degrees, 7 slices 30 mm 

thick), with and without additional diffusion sensitization (G = 19.4mT/m, rise and fall 

time = 0.5 ms, gradient duration = 0.46ms, diffusion time = 1.46ms, b value = 1.6s/cm2), 

were acquired for each slice with the non-diffusion-weighted image serving as a 3He 

ventilation image for analysis.  The total image acquisition time was 14s.  Each subject 

inhaled 3He gas as previously described17 from a 1 L 3He/N2 gas mixture consisting of a 

dose of 5ml/kg of hyperpolarized 3He (i.e. for a 50 kg subject, 250ml would be dispensed 

and diluted with medical N2 to a total volume of 1L).  The 3He gas dose was administered 

to subjects after completing a tidal breath exhalation and imaging was performed with the 

subject in breath-hold, once the subject had completed inhaling the 1L volume of gas.  

Proton imaging was performed after completion of 3He imaging and subjects were 

rescanned using a 4-channel radiofrequency coil (GEHC, Milwaukee, WI) with the 

subject holding their breath after completing a tidal breath inhalation.  Multi-slice 1H 

coronal images were obtained using a fast spoiled gradient recalled echo sequence 

(256x256 matrix, FOV 40x40cm, TR= 2.7, TE= 1.3, flip angle = 8 degrees).  All 

scanning was completed within approximately 10 minutes of first lying in the scanner.   

Hyperpolarized 3He gas was provided by a turn-key, spin-exchange optical pumping 

system (HeliSpin™, GEHC, Durham, NC) as previously described.17  

3.2.4 Image Analysis 

Center slice 3He images were analyzed for ventilation defect score (VDS) and ventilation 

defect volume (VDV) in a dedicated radiological viewing room which provided a 

constant image visualization environment with consistent (darkened) room lighting.  

Ventilation defect score and volumetric segmentation were performed for the center 

coronal slice only, determined by the presence of the carina, with the aid of the 1H center-

slice images (also determined by the presence of the carina).  3He center-slice images 
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were visually compared alone and registered together with 1H center slice images.  While 

all slices were reviewed, only the center coronal slice was quantitatively assessed because 

in this study, 1H image slices were not acquired with the same slice thickness or breath-

hold as the 3He images (slice thickness of 10mm for 1H as compared to 30mm slice 

thickness for 3He).   

Images were examined in the same image visualization environment by four trained 

observers for analysis of ventilation defects with the observers blinded to subject identity, 

disease status and scan time-point.  3He ventilation defects were identified as areas with 

an absence of 3He signal with a fixed signal-to-noise (SNR) threshold of 22 and fixed 

contrast level, which were empirically established after reviewing all images.  Images 

were reviewed such that for each subject all time points examined were displayed on a 

digital workstation monitor system (consisting of identical 19 inch flat panel monitors).  

Thus, all 3He images for each subject were scored together with the observers blinded to 

the demographic, clinical, and spirometric information of the subjects.  A ventilation 

defect was defined as previously described by Altes and co-workers23 as any well-defined 

area of the lung showing no or low signal intensity compared with the remaining 

ventilated lung.  Areas of absent signal associated with the pulmonary vascular structures, 

heart, hilum and mediastinum were not considered to be ventilation defects.  No lower 

boundary for defect size detection or quantification was used.  After scoring ventilation 

defects, manual segmentation of the defects was performed on 32 bit image slices 

randomized together (subject and scan time) that were imported into a 3D image 

visualization platform developed in our laboratory24,25 for MR and ultrasound 

applications as previously described.26  The image visualization software tool used also 

provided a method for 2-dimensional rigid image overlay or registration (of the center 

slice 1H image and the center slice 3He image), facilitating the manual segmentation of 

center-slice ventilation defect volume even in the case where poor registration occurred 

due to breath-hold mismatch.  As shown in Figure 3-1, 2-dimensional image overlay (of 

the center slice 1H image and the center slice 3He image) facilitated the identification and 

manual segmentation of center slice ventilation defects.  3He ventilation defects were 

manually segmented, recorded and multiplied by the slice thickness (30mm) to 

approximate VDV, which was recorded in dedicated source documents.  Inter-scan and 
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inter-observer variability was assessed using the coefficient of variation (COV), which 

was calculated as the standard deviation of the difference (between scans for inter-scan 

and between observers for inter-observer) divided by mean VDV.   

Figure 3-1: Hyperpolarized 
3
He Magnetic Resonance Imaging Ventilation 

Defect Volume Segmentation Approach. 

A.1H thoracic cavity (i) Subject 7-1003, (ii) Subject 7-1008, (iii) Subject 6-007, (iv) Subject 6-
001 
B. Hyperpolarized 3He Ventilation Image (i) Subject 7-1003, (ii) Subject 7-1008, (iii) Subject 6-
007, (iv) Subject 6-001  
C. Overlay of 3He ventilation Image (yellow) on 1H thoracic cavity (grey) (i) Subject 7-1003, (ii) 
Subject 7-1008, (iii) Subject 6-007, (iv) Subject 6-001 
D. Segmentation of 3He ventilation defects (red) (i) Subject 7-1003, (ii) Subject 7-1008, (iii) 
Subject 6-007, (iv) Subject 6-001 



84 

  

3.3 Results 

3.3.1 Study Subjects 

Eight elderly healthy subjects (five males) were enrolled (mean age 67 ± 6 years, range 

58-74 years) as well as 24 (14 males) middle-aged healthy volunteers (mean age 44 ± 10 

years, range 23-57 years).  Baseline subject demographic data and pulmonary function 

test results are reported in Table 3-1.  Both subgroups had similar baseline mean weight, 

FEV1 (% predicted) and FEV1/FVC.  None of the subjects had a history of cardiovascular 

or respiratory disorders, obesity, sleep disorders and none of the subjects had smoked 

within the last 10 years or had a smoking history of > 1 pack-year over their lifetime.  

Body mass indices ranged from 24-35 for the elderly subjects and 20-24 for the middle-

aged subjects.  The two subgroups had significantly different mean age (p<.001).  All 

subjects except for a single elderly subject who withdrew from the 7-day scanning visit 

due to claustrophobia were able to complete all scans and visits.  The single subject who 

withdrew after his first scanning visit was scanned twice during his single scanning visit.  

Two middle-aged healthy subjects were scanned up to 20 times each within two years. 

Table 3-1: Study Subject Demographic Characteristics. 

 Elderly Healthy 
Volunteers  

(n=8) 

Middle-aged Healthy 
Volunteers  

(n=24) 

Male (n) 5 14 
Age (± SD) [range] Y 67 (6) [58-74] 44 (10) [23-57] 
Weight (± SD) kg 76 (17) 76 (13) 
Body Mass Index (± SD) [range] 27 (4) [24-35] 25 (3) [20-34] 
FEV1 % Predicted (± SD) 106 (19) 101 (11) 
FEV1/FVC % (± SD) 77 (5) 80 (8) 
Subjects with Ventilation Defects  N (male) 6 (3) 0 (0) 
Total Ventilation Defects N 
                       Scan 
                       Same-day Rescan 
                       7-day Rescan 

 
16 
15 
18 

 
0 
0 
0 

Mean VDV  cm
3
 (± SD) 

 

                       Scan 
                                   

Same-day Rescan 
                        7-day Rescan 

 
52 (34) 
53 (35) 
48 (39) 

 
0 
0 
0 

SD is subgroup standard deviation for eight healthy volunteers 
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3.3.2 Ventilation Defects and Ventilation Defect Volume 

As shown in Table 3-1, none of the middle-aged healthy volunteers showed evidence of 

center coronal slice 3He ventilation defects, including two of these subjects who were 

scanned up to 20 times each within a two-year time frame.  Although only the center slice 

was quantitatively assessed, for these younger subjects, ventilation defects were not 

observed in any slices.  However, six of eight elderly healthy volunteers exhibited visibly 

obvious 3He ventilation defects in scans acquired at baseline scan, same-day rescan and  

Table 3-2: Ventilation Defects in Healthy Elderly Volunteers. 

                                              Number of Defects in Center Slice 
 Scan Same-day Rescan 7-day Rescan 

Subject 1001 0 0 0 
Subject 1002 3 3 NA 
Subject 1003 3 3 5 
Subject 1004 2 2 4 
Subject 1005 3 2 3 
Subject 1006 0 0 0 
Subject 1007 2 2 3 
Subject 1008 3 3 3 
Total Sum Defects 16 15 18 
Mean Defect Score 2.7 2.5 3.6 

NA is not assessable 

7-day rescan, as results indicate in Table 3-2.  Two of the eight healthy elderly subjects 

had no ventilation defects in any slice during scan, same-day rescan or 7-day rescan and 

these were both male subjects and the youngest in the subgroup (age 58 BMI 27 and age 

60 BMI 35, respectively).  For all healthy elderly subjects, the total number of center 

slice defects summed across all subjects was 16 at scan, with mean VDS of 2.5.  For 

same day rescan, VDS was 2.7 and the sum of total defects was 15 whereas for 7-day 

rescan, VDS was 3.6 and the sum of total defects was 18.  Mean VDV was 52 ± 34 cm3 at 

scan, 53 ±  35 cm3 at same-day rescan and 48 ±  39 cm3 at 7-day rescan.  Figure 3-2 

shows 3He ventilation images with defects identified with arrows (Figure 3-2(i)) and the 

overlay of 3He ventilation images on the 1H thoracic cavity image (Figure 3-2(ii)) for 

three representative healthy elderly subjects (ages 70, 73 and 74 years respectively).  

Figure 3-3 provides representative 3He ventilation scans for three representative healthy 

middle-aged subjects (ages 45, 43 and 39 years respectively).  The range of signal-to-

noise (SNR) for the images in both subgroups was similar.  
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Figure 3-2: Elderly Healthy Volunteers 
3
He Magnetic Resonance Imaging. 

A. Subject 7-1004 70 yr old female FEV1 = 149% predicted, FEV1/FVC=75% (i) 3He image (ii) 
overlay of 3He image with 1H thorax image 
B. Subject 7-1007 73 yr old male FEV1= 104% predicted, FEV1/FVC=84%  (i) 3He image (ii) 
overlay of 3He image with 1H thorax image 
C. Subject 7-1008 74 yr old male FEV1 = 91% predicted, FEV1/FVC=79%  (i) 3He image (ii) 
overlay of 3He image with 1H thorax image 
 

3.3.3 Ventilation Defect Volume Interscan and Inter-observer 

Reproducibility 

For all eight elderly subjects who underwent scanning, inter-scan COV for mean VDV 

was 1.8% for same-day scanning and 5.3% for 7-day scanning (as compared to baseline 

scan).  Figure 3-4 shows 3He ventilation images providing visual evidence of the 

reproducibility of VDV for two representative elderly subjects with ventilation defects 

that completed both same-day and 7-day scanning visits.  For both subjects, the 

magnitude and location of many of the defects are very similar during same-day 

scanning; there are a few differences in the number of defects, the location of the defects 

and the size of the defects observed in the 7-day rescan.  For comparison, repeated scans 

of two middle-aged subjects are also provided in Figure 3-4 with rescan performed within 
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8 months of baseline and the second rescan performed within 2 years of baseline.  No 

defects or visual differences were observed in the scans for the middle-aged subjects.  

While a single observer’s results are provided for mean VDV in Table 3-1, the results for 

three additional observers are provided in Table 3-3 as well as inter-observer COV, 

which ranged from 10% to 12%.  

 

Figure 3-3: Middle-aged Healthy Volunteers 
3
He Magnetic Resonance 

Imaging. 

A. Subject 6-1001 45 yr old female 
B. Subject 6-1003 42 yr old male  
C. Subject 6-1010 39 yr old male  

 

Table 3-3: Elderly Volunteer Ventilation Defect Volume Inter-observer 

Reproducibility.   

                                              Mean VDV cm
3
 (± SD) 

 Scan Same-day Rescan 7-day Rescan 

Observer 1 52 (34) 53 (35) 48 (39) 
Observer 2 72 (55) 67 (47) 60 (48) 
Observer 3 67 (43) 64 (42) 53 (40) 
Observer 4 70 (63) 65 (61) 46 (44) 
Mean Ob1-4 66 (8)* 62 (6)* 52 (6)* 
COV (%) 12 10 12 

SD is subgroup standard deviation for eight healthy volunteers except for *SD is observer 
standard deviation 
COV is SD/ mean VDV for observers  
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Figure 3-4: Reproducibility of 
3
He Ventilation in Healthy and Middle-aged 

Healthy Volunteers 

A.Subject 7-1005 Elderly Volunteer (i) Scan, (ii) Same-day Rescan, (iii) 7-day Rescan 
B.Subject 7-1008 Elderly Volunteer (i) Scan, (ii) Same-day Rescan, (iii) 7-day Rescan 
C.Subject 6-1001 Middle-aged Volunteer (i) Scan, (ii) Rescan 1, (iii) Rescan 2 
D.Subject 6-1002 Middle-aged Volunteer (i) Scan, (ii) Rescan 1, (iii) Rescan 2 
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3.4 Discussion 

A number of important observations were made in this study.  First, all subjects in this 

study who were age 63 years and older displayed ventilation defects in the center coronal 

slice and the number, location and size of these defects were highly reproducible for 

same day scanning sessions with mean inter-scan VDV COV 1.8% and the total number 

of defects at 16 and 15 for same-day scan and rescan respectively.  Somewhat lower 

reproducibility was observed for the 7-day scanning visit as compared to baseline with a 

mean inter-scan VDV COV of 5.3% and the total number of defects scored at 18, with a 

mean VDS of 3.6 defects.  However, all of the six elderly subjects who displayed 

ventilation defects at baseline displayed very similar number and size of ventilation 

defects at the 7-day scanning session.  In addition, none of the 24 healthy volunteers in 

the middle-aged subgroup displayed ventilation defects during any scanning session and 

neither did the two youngest subjects in the elderly subgroup.  As shown in Table 3, four 

observers measured VDV over a 1.5 year period with inter-observer COV ranging from 

10% to 12%.  In recent work, Altes and co-workers27, have shown the association of age 

and ventilatory defects which supports the finding reported here of significantly different 

size and number of defects in the centre coronal slice of healthy younger and elderly 

volunteers.  Their previous work also reported small mean numbers (<2) of ventilation 

defects in younger healthy volunteers6 when the entire lung was assessed.  In current 

studies of healthy volunteers at 3.0 Tesla at our site, there is little evidence of posterior or 

other slice defects in healthy volunteers who have less than 1-pack-year smoking and no 

evidence of cardiovascular or respiratory disease.  This may be the case because 3.0 Tesla 
3He MRI at our site has been limited to <50 healthy volunteers; it is possible that with 

more subjects scanned over time small mean numbers of ventilation defects will be 

detected in some young healthy subjects.   

A second finding from this preliminary study was that for the six elderly subjects for 

whom defects were observed at baseline, there was a tendency for these to appear in the 

same locations 7 days later.  In some cases, the original defects were accompanied by 

new defects and/or slightly altered sizes.  Regional persistence or recurrence of 

ventilation defects has also been recently described in asthma by Altes, de Lange and co-
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workers28 with specific regions of the lung appearing to be more likely to display altered 

ventilation patterns.   The observation in this study that regional persistence is also a 

feature of ventilatory defects in healthy elderly subjects suggests that specific airways 

appear to be preferentially closed in the aging lung and that these airways are more likely 

to be closed on sequential days.  It is important to point out that all subject scanning 

sessions were scheduled for the same time of day on the second scanning visit as the first 

scanning visit (±1 hour from baseline scan for each subject) and always during mid-

morning.  Spirometry measurements were also recorded before and after each scanning 

session and there was no change in spirometry measures observed for any subjects 

between scanning dates or after MR scanning.  Finally, obesity is a critical issue to 

consider when imaging subjects in the supine position, as extra weight directly influences 

respiratory mechanics in the supine and upright position.  None of the subjects who 

displayed ventilation defects were obese, and hence it is unlikely that any of the 

ventilatory defects observed were related to BMI.  

Thirdly, we observed that for the elderly healthy volunteers, all defects in the center 

coronal slice appeared on the periphery of the coronal slice, which is similar to 

previously published work in asthma.3,29-31  This finding of peripheral lung ventilation 

defects in the elderly healthy lung and in asthma  is in contrast to previously published 
3He results for subjects with COPD in our lab17 and others11-16,18,19 and in cystic fibrosis7-

10, where numerous and large defects are observed throughout the coronal and axial plane 

and not on the periphery alone.   

The primary limitation of this preliminary study is the small sample size of the elderly 

subject group and the fact that for the majority of the middle-aged subjects group there 

was no protocol specification for prospective repeated scanning because no ventilation 

defects were observed at baseline.  For two middle-aged subjects, repeated scanning was 

undertaken, only because these subjects were enrolled in a hardware and software 

development protocol requiring multiple scanning visits to enable pulse programming 

alteration assessments.  Both of these subjects were scanned up to 20 times over two 

years and these subjects (both with ages very close to the mean of the middle-aged group) 

never displayed ventilation defects during any scanning visit.   
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Another shortcoming of the study is related to the fact that subjects were scanned in a 

study designed to assess the reproducibility of the 3He ADC and hence the images had 

lower SNR and thicker slices than do spin density images.  Nevertheless, the finding of 

ventilation defects is still very evident and the difference in younger and older subjects is 

significant.  This suggests that the current result is robust and provides a conservative 

estimate of the defects that may be observed in older subjects.  Elderly subjects were 

enrolled in the current study with ADC reproducibility as the primary end-point and as 

such protocol utilized an optimized ADC sequence.  The primary focus on ADC required 

necessary trade-offs be made in the use of the non-diffusion-weighted images as a 

indication of ventilation (i.e. increased TE, diffusion time).  We acknowledge that the 

longer TE will introduce undesirable T2* weighting into the ventilation, but expect that 

this effect would lead to less than 50% signal reduction even with the largest ADC (larger 

airways).  Indeed, the signal in the airways is well appreciated in our images.  Therefore, 

we are confident that the regions of signal void in the lung parenchyma attributed to 

ventilation defect in this study represent the absence of helium gas and not signal decay.  

This is confirmed by the measurement of the same signal voids in T1-weighted image 

(obtained on Visit 2, data not shown) which was obtained with TE of about half that of 

the non-diffusion-weighted images.  It may be possible that with 3He ventilation imaging, 

the improvement in SNR might result in better measured reproducibility for the same-day 

and 7-day scanning visits.   

Another limitation of this study is the fact that 3He and 1H images were acquired at 

somewhat different lung volumes and that this may have influenced the segmentation of 

ventilation defects that appeared on the lung-pleura boundaries.  For example, the 1H 

images were acquired in breath-hold fashion after blowing out to the bottom of tidal 

volume and holding their breath at the top of tidal volume.  The 3He images were 

acquired after blowing out to the bottom of tidal volume and in breath-hold after inhaling 

1L of the 3He/N2 gas mixture.  Therefore the volumes were not exactly matched and 

overlay of 3He and 1H images were not perfectly registered.  However, although the 

images were acquired at slightly different volumes, the lung boundaries were readily 

discerned when the 1H and 3He images are provided in overlay and identification of these 

are facilitated in all six cases where there were clear ventilation defects at the outer 
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boundary of the lungs.  In addition, because 1H and 3He images were not acquired with 

exactly matching breath-holds and very different slice thickness, we limited the analysis 

of defect volume reproducibility to the center coronal slice where the edge of the thoracic 

cavity and ventilation defects were most easily discerned.  Hence, in this study center 

coronal slice VDV represented the area of ventilation defect for the center slice, which 

was then multiplied by the 30 mm slice thickness to reflect contributions from the entire 

slice.  We also point out that for some subject images, the apices of the lung have 

complex ventilation patterns that might be interpreted as ventilation defects.  In most 

cases, the overlay of proton and helium images allows for interpretation of the irregular 

shape of the ventilation image as dependent upon tissue and bone anatomy at the top of 

the lung.  We investigated coil coverage and found that there is excellent signal intensity 

in the trachea up to and including the cricoid/larynx.  We have also directly assessed coil 

inhomogeneity quantitatively (ISMRM abstract 2008 #5175) and observed less than 20% 

in the superior-inferior direction over a 44 cm FOV, which is likely adequate for the 

imaging results we have presented here. 

Why do elderly healthy volunteers display 3He MRI ventilation defects along the 

periphery of the coronal plane of the lung?  How is this finding related to the increased 

ADC values shown previously for older subjects17,32,33 and in the six elderly subjects in 

this study with ventilation defects (with mean ADC = 0.27 cm2/s)?  How might this 

finding be related to other measurements of pulmonary physiology that are also known to 

change with aging such as FEV1 and closing volume?  It is possible that along with 

changes in the lung airspaces such as alveoli and acinar ducts, (as evidenced by increased 

ADC) changes in airways may also occur over time, and perhaps correlated to increased 

closing volumes with advancing age.  In this study, the majority of defects were observed 

along the periphery of the coronal slice which suggests that terminal airway closure or 

narrowing may be an age-dependent pathology of the lung.  Altes and co-workers have 

also observed ventilation defects in healthy volunteers are positively correlated with 

age27, suggesting that the finding here in a few elderly subjects should be assessed in 

more volunteers in multi-center studies.   While the etiology of ventilation defects is yet 

unknown, we are currently assessing the presence and reproducibility of ventilation 

defects in a greater number of elderly COPD subjects and elderly (age-matched) healthy 
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volunteers over a five-year period in order to better understand this radiological finding.  

The observation of reproducible pulmonary ventilation defects in otherwise healthy 

elderly volunteers suggests caution must be used in interpreting results from 3He studies 

of elderly subjects with underlying disease.  This finding further suggests that inclusion 

of a healthy elderly volunteer control group may be required when using 3He MRI in 

treatment studies of elderly COPD, subjects in order to appropriately relate potential 

treatment effects to underlying disease and not other processes related to aging.  If the 

results of this preliminary study are observed in the majority of elderly volunteers 

scanned in our laboratory and elsewhere, this may potentially result in increased subject 

sample sizes required in cohort and treatment studies of elderly subjects with respiratory 

disease where 3He MRI phenotypes are used as measurements or biomarkers of disease.   

3.5 Conclusion 

In conclusion, the observations made in this study of a relatively small group of elderly 

and middle-aged healthy volunteers indicated that regional ventilation defects within the 

lung as demonstrated using 3He MRI were present in six elderly subjects aged 63-74 

years.  These ventilation defects were highly reproducible in size and location in repeated 

scans within a few minutes and again 7 days later.  These results suggest that as part of 

the aging processes in the lung, non-random airway closure or narrowing occurs that is 

restricted to the lung periphery and is regionally recurrent or persistent.  The results 

further suggest that these airway changes are occurring in the absence of known or 

detectable respiratory or cardiovascular disease, perhaps as part of normal aging 

processes.  Further work is required to unravel the etiology of these defects in healthy 

elderly volunteers.    
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CHAPTER  4:  HYPERPOLARIZED 
3HE MAGNETIC 

RESONANCE IMAGING: PRELIMINARY EVALUATION OF 

PHENOTYPING POTENTIAL IN CHRONIC OBSTRUCTIVE 

PULMONARY DISEASE 
 
The work presented in this chapter has been previously published in the European 

Journal of Radiology as follows, and is reproduced here with permission (Appendix C).  
L. Mathew, M Kirby, A. Wheatley, DG McCormack, G. Parraga. “Hyperpolarized 

3
He Magnetic 

Resonance Imaging: Preliminary Evaluation of Phenotyping Potential in Chronic Obstructive 

Pulmonary Disease” Eur J Radiol. 2009 Nov 20. [Epub ahead of print] 

4.1 Introduction 

Chronic obstructive pulmonary disease (COPD) is the most common chronic, terminal 

respiratory disease worldwide and it continues to grow in prevalence1 and yet has a very 

poor prognosis, despite aggressive therapy.1-3  Although widespread pulmonary 

inflammation 4,5 and diffuse lung tissue alterations are often observed5, obstruction of the 

small airways (airways disease) and tissue destruction in the pulmonary parenchyma 

(emphysema) are the hallmark pathologies.6  Accordingly, both airways disease and 

emphysema contribute to the clinical course of COPD, although the underlying 

mechanisms of both pathologies and the proportional contributions of these and their 

relationship to outcomes are not completely understood. 

The current functional definition of COPD7 relies on the spirometric measurement of 

airflow obstruction.  A fundamental limitation exists however, because the anatomy and 

physiology of the lung is complex and spirometry measurements reflect the global sum of 

all the different possible COPD pathologies including small airways disease, emphysema 

(i.e. parenchymal destruction), chronic bronchitis (i.e. large airway remodeling), and 

bronchiectasis (i.e. abnormal dilation of bronchi and bronchioles).8  

The limitation of spirometry for differentiating between these pathologies or phenotypes 

has severely limited the scope of basic research and clinical studies that evaluate the 

relationship between these morphological phenotypes, disease pathogenesis and 

progression, and patient outcomes.  Accordingly, one major goal of COPD research is to 
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find a way to identify patients with these different underlying pathological “phenotypes”, 

which has the potential to have a profound effect on patient care and treatment options.  

In this regard, non-invasive high resolution multi-detector x-ray computed tomography 

(CT)9-12 has been shown to detect unique and quantitative phenotypes of both emphysema 

and airway disease13-15 with the potential to determine the contributions of both airway 

and airspace changes in COPD.  Previously published results suggest that CT-derived 

phenotypes provide evidence of underlying phenotype dominance in approximately 40% 

of subjects.13   

Hyperpolarized 3He magnetic resonance imaging (MRI) has emerged as research method 

that is complementary to CT because it allows for simultaneous visualization of tissue 

structure and regional airway function at high spatial and temporal resolution, without the 

use of ionizing radiation.  In particular, the measurement of the 3He apparent diffusion 

coefficient (ADC)16, which is a surrogate measurement of airspace size17-20, has been 

previously histologically-validated21 and correlated with CT measurements of 

emphysema.22  Ventilation defects or signal voids in 3He spin density images are 

hypothesized to reflect airflow limitation related to airway narrowing or closure23, but the 

exact pathology underlying 3He ventilation defects has yet to be determined.  

Importantly, both 3He MRI ADC and ventilation measurements have been shown to be 

highly reproducible24-26, sensitive to age27-29 and to disease-related changes.26,30-33 

Here we describe the results of a proof-of-principle and hypothesis-generating 

preliminary study where we explore the potential of hyperpolarized 3He MRI to classify 

(or phenotype) individual COPD ex-smokers based on the relative contributions of 

ventilation defect and ADC measurements.  To our knowledge, this is the first study 

aimed at evaluating the potential for 3He MRI to detect phenotypes based on the 

proportional contributions of COPD structural and functional measurements. 
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4.2 Methods 

4.2.1 Subjects 

Twenty subjects were enrolled from the general population of the local tertiary health 

care center as well as directly from the COPD clinics at three local teaching hospitals.  

All subjects provided written informed consent to the study protocol approved by the 

local research ethics board and Health Canada and the study was compliant with both the 

Health Insurance Portability and Accountability Act (HIPAA, USA) and the Personal 

Information Protection and Electronic Documents Act (PIPEDA, Canada).  Subjects were 

categorized according to Global initiative for Obstructive Lung Disease (GOLD) 

criteria34 and required a COPD diagnosis of at least one year, with a smoking history of at 

least 10-pack-years and additional inclusion and exclusion criteria as previously 

reported.26  

4.2.2 Pulmonary Function Tests 

Subjects were screened for MRI and coil compatibility (inner diameter of elliptical coil = 

50cm) and underwent a physical exam, plethysmography and spirometry both of which 

were performed according to American Thoracic Society guidelines.35  Briefly, 

spirometry was performed pre- and post-bronchodilator using an ndd EasyOne spirometer 

(ndd Medizintchnik AG, Zurich, CH) reporting forced expiratory volume in 1 s (FEV1) 

and forced vital capacity (FVC) and a minimum of three acceptable spirometry 

maneuvers were carried out with the best FEV1 and FVC selected for analysis.  Whole 

body plethysmography (MedGraphics Corporation, 350 Oak Grove Parkway St. Paul MN 

USA) was also performed within meters of the MR scanner for the measurement of total 

lung capacity (TLC), inspiratory capacity (IC), residual volume (RV), and functional 

residual capacity (FRC).   

4.2.3 Safety Monitoring and Hyperpolarized 
3
He Administration 

Prior to MRI, supine vital signs and arterial O2 levels measured by pulse oximetry were 

recorded, and subjects were administered a practice dose of mixed 4He-N2 gas while 

seated outside the scanner.  Digital pulse oximetry was used to monitor arterial blood 
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oxygen levels during MR scanning and all breath-hold maneuvers.  Hyperpolarized 3He 

gas was provided by a turn-key, spin-exchange polarizer system (HeliSpin™, GEHC, 

Durham, NC) as previously described.36   In a typical study this system provided 30% 

polarization in 12 hours.  Doses (5 mL/kg) were delivered in 1 L plastic bags (Tedlar®, 

Jensen Inert Products, Coral Springs, FL) diluted with ultrahigh purity, medical grade 

nitrogen (Spectra Gases, Alpha, NJ).  The 3He gas dose was administered to subjects after 

completing a tidal breath exhalation (ie. FRC) and imaging was performed with the 

subject in breath-hold from FRC. 

4.2.4 Imaging 

Magnetic resonance imaging was performed on a whole body 3.0 Tesla Excite 12.0 MRI 

system (GEHC, Milwaukee, WI USA) with broadband imaging capability as previously 

described.36  All helium imaging employed a whole body gradient set with maximum 

gradient amplitude of 19.4 mT/m and a single channel, rigid elliptical transmit/receive 

chest coil (RAPID Biomedical GmbH, Wuerzburg Germany).  The basis frequency of the 

coil was 97.3 MHz and maximum excitation power was 3.2 kW using an AMT 3T90 RF 

power amplifier (GEHC, Wilwaukee WI USA). 

Two-dimensional multi-slice coronal 1H scans were acquired prior to 3He imaging with 

subjects scanned during 1-L breath-hold of 4He/N2 from FRC using the whole body 

radiofrequency (RF) coil and proton fast spoiled gradient-echo (16s total data acquisition, 

repetition time (TR)=4.7ms, echo time (TE)=1.2 ms, flip angle=30°, bandwidth 

(BW)=31.25, field-of-view (FOV)=40cm x 40cm, matrix 128 x 128, 14 slices, 15mm  

slice thickness, 0mm gap).  For diffusion-weighted 3He imaging, multi-slice coronal 

images were obtained using a fast gradient-echo method (FGRE) with centric k-space 

sampling.  Two interleaved images (14s total data acquisition, TR=7.6 ms, TE=3.7 ms, 

flip angle=8°, BW=31.25, FOV=40cm x 40cm, matrix=128 x 128, 7 slices, 30 mm slice 

thickness), with and without additional diffusion sensitization (G=19.4mT/m, rise and fall 

time=0.5 ms, gradient duration=0.46ms, diffusion time=1.46ms, b value=1.6s/cm2), were 

acquired for each slice.  For ventilation images, multi-slice coronal images were also 

obtained using the same chest coil (14s total data acquisition, TR=4.3ms, TE=1.4ms, flip 



101 

  

angle=7o, BW=31.25, FOV=40cm x 40cm, matrix 128 x 128, 15 slices, 10mm slice 

thickness, 0mm gap).  

4.2.5 Image Analysis 

3He ventilation image measurements and 3He diffusion-weighted image analyses were 

performed in an image visualization environment with room lighting levels equivalently 

established for all image analysis sessions as previously described.26,37  Mean apparent 

diffusion coefficient (ADC) and ADC maps were processed for all slices using in-house 

software programmed in the IDL Virtual Machine platform (Research Systems Inc., 

Denver, CO) as previously described36, with the trachea and main bronchi removed prior 

to analysis and b = 1.6 s/cm2.  3He ventilation images were examined by a single trained 

observer for analysis of ventilation defects in all coronal slices.  A ventilation defect was 

defined as previously described38, and manual segmentation of the ventilation defects was 

performed with the observer blinded to subject identity, clinical characteristics and 

disease stage.  Segmentation was performed using custom-designed image visualization 

software which provides for two-dimensional rigid image registration (of the 1H and 3He 

slices), facilitating the manual segmentation of ventilation defects in all slices.  It is 

important to note that using this method and images from this dataset, intra- and inter-

observer coefficients of variation of <10% were previously determined (unpublished 

data); inter-scan ventilation defect volume (VDV) coefficients of variation were 

previously reported and were very similar.26  To generate ventilation volumes, for each 

slice, the average contour area was multiplied by the slice thickness and all slices were 

summed to obtain a total volume.39  As shown in Figure 4-1, manual segmentation of the 
3He signal provided a VDV while thoracic cavity volume (TV) was recorded following 

segmentation of 1H images, and both were used to calculate ventilation defect percent 

(VDP), or the percentage of the thoracic cavity occupied by ventilation defects. 

To determine the proportional contribution of ADC to total 3He MRI measured disease, 

we normalized ADC values using a linear scale.  The scale ranged from 0% representing 

the mean ADC for healthy age-matched (elderly) never-smoking volunteers 

(ADC=0.27cm2/s)29 to 100% (ADC=0.88cm2/s) for helium in an infinitely large 

container.  Normalized parameters representing airway functional (VDP) and airspace 
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Figure 4-1: Schematic for 
3
He MRI Ventilation Analysis. 

3He MRI ventilation images manually segmented to provide 3He derived ventilation defect 
volume (VDV) by manual segmentation of 3He focal signal voids.  1H MRI thoracic cavity 
images manually segmented on a slice-by-slice basis to provide a 1H MRI derived thoracic cavity 
volume (TCV).  Ventilation defect percent (VDP) is generated as VDV normalized or divided by 
TCV.   
 
structural (ADC%) measurements for the center slice (with the highest SNR) were 

summed to provide a total MRI disease measurement based on the assumption of a linear 

relationship between these variables.  From this total disease measurement, the 

proportional contribution of ventilation defects (VDP) and emphysema (ADC%) was 

evaluated for each subject.  

4.2.6 Statistical Methods 

Mean ADC and VDV were calculated by summing the data and dividing by the number 

of subjects (n) and standard deviations were calculated as the square root of the sum of 

the differences between the squared data and the squared mean, divided by n.  

Comparison of ADC and VDV means was performed using the one-way analysis of 

variance (ANOVA) in SPSS 16.00 (SPSS Inc., USA LEAD Technologies, Inc., Chicago, 

IL).  The relationship between 3He MRI ADC and ventilation measurements was 

determined using linear regression and Pearson correlation coefficients (GraphPad Prism 

version 4.00, GraphPad Software Inc, San Diego California, USA).  A Holm-Bonferroni 

correction was applied to account for multiple comparisons.40  Classification of subjects 

into three categories based on ADC% and VDP was based on the proportional 

contribution of ADC% or VDP to total measurement of underlying disease pathology 

using an arbitrary 2/3 threshold – indicating either ADC% or VDP was the major 
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contributor to 3He MRI measured disease.  A multivariate ANOVA was performed to 

determine significant differences between the three groups.  

4.3 Results 

4.3.1 Study Subjects 

Baseline demographic characteristics are provided in Table 4-1 for the 20 subjects 

enrolled (13 male) by GOLD criteria.34  A single subject presented with normal FEV1 and 

low FEV1/FVC (stage I) with a prior diagnosis of emphysema from thoracic CT.  All 

other subjects were either categorized as GOLD stage II or stage III COPD according to 

post-bronchodilator spirometry performed on the same day as MRI.  Mean body mass 

index (BMI) and BMI range for each subject subgroup was similar.  As the COPD 

subjects were enrolled according to GOLD criteria34, the mean values for FEV1 and 

FEV1/FVC for each subgroup reflected the GOLD categorization.  In addition to the 

expected and significantly decreased FEV1 percent predicted (%pred) and FEV1/FVC for 

the stage III COPD subgroup, baseline FRC and RV were significantly increased and IC 

significantly decreased for stage III COPD subjects consistent with lung hyperinflation. 

Table 4-1: Subject Demographics. 

 Stage I COPD 
n=1 

Stage II COPD 
n=9 

Stage III COPD 
n=10 

Significance 
Difference 

SII -SIII  
p 

Age yrs (±SD) 
[range] 

67 
- 

68(6) 
[59-74] 

68(7) 
[52-75] 

NS 

Male Sex 1 4 8  
Body Mass Index 33 29 25 NS 
(±SD) [range] - (4) [22-38] (4) [18-34]  
FEV1 %*(±SD) 90 61 (6) 39 (7) <.001 
FEV1/FVC % (±SD) 61 54 (11) 36 (9) .003 
IC %* (±SD) 128 95 (18) 59 (34) .006 
RV %* (±SD) 161 141 (21) 191 (47) .009 
FRC %* (±SD) 139 118 (16) 164 (39) .01 
TLC %* (±SD) 135 108 (9) 119 (23) NS 

*Percent predicted, FEV1 = Forced Expiratory Volume in 1s, FVC= Forced Vital Capacity FRC= 
Functional Residual Capacity, TLC= Total Lung Capacity NS= Not significant, SII = stage II 
COPD, SIII= stage III COPD.  
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Figure 4-2: Linear Regression. 

A) shows the relationship between FEV1 %pred and whole lung VDV (y= -0.03x + 3.01, 
p=0.007).  B) shows the relationship between FRC %pred and whole lung ADC (y= -
0.002x + 0.18, p=0.001). Dashed line shows the 95% confidence interval.  
 

4.3.2 
3
He MRI Measurements 

Table 4-2 shows mean 3He ADC as well as 3He ventilation measurements (VDV and 

VDP) for the single patient with normal FEV1, and all patients with stage II and stage III 

disease.  No significant difference was observed for any of the 3He MR measurements 

between stage II and stage III subgroups.  Pearson correlation coefficients for 3He ADC 

and VDV are provided in Table 4-3 which shows significant and modest correlations for 

ADC and VDV with FRC %pred and significant association between TLC and ADC.  

Figure 4-2 shows the relationship between FEV1 %pred and VDP (Figure 4-2A), and the 

relationship between ADC and FRC %pred (Figure 4-2B).  Table 4-4 shows center slice 
3He MRI measurements and the relative contributions of these measurements for each 

subject.  The sum of ADC% + VDP is provided for each patient in Figure 4-3, where 

centre slice VDP and ADC% values are summed together and expressed as a percentage of total 

3He MRI measured disease (total sum divided by 2).  The sum of ADC% + VDP, was 

statistically significantly lower (p=0.006) for subjects classified as ADC (AD) or VDP 

dominant (VD) compared to the mixed group.  There was also a significant difference for 

FEV1%pred between subjects with a single predominant 3He MR measurement (either 

ADC or VDP) and subjects in the mixed group (p=0.008).  Subject classification results 

based on an arbitrary 10% threshhold are shown in Figure 4-4 with the threshold denoted 

as a dotted line and subjects with ADC% and VDP values close to the threshhold denoted 



106 

  

with asterisks.  Both the 10% threshold and 2/3 contribution to total MRI-measured 

disease classified the same three subjects as VD and the same four  

subjects as AD.  The results of the multivariate ANOVA showed the VD subgroup had 

significantly different, and lower ADC% values than the AD subgroup (p=0.02) and 

mixed groups (p=0.008).  The AD subgroup showed statistically significantly different, 

lower VDP values than the mixed group (p=0.003).  In Figure 4-5 3He MR ventilation 

images (i), ADC maps (ii) and ADC histograms (iii) are provided for the subjects 

identified by both classification methods as in the AD subgroup with high ADC pixel 

values, increased mean ADC and broader ADC histograms (Subjects 2-8 (A), 2-6 (B), 3-

6 (C) and 1-1 (D)).  Figure 4-5 also shows the subjects in the VD subgroup (and one 

subject on the 10% threshold) with increased ventilation defects and low ADC pixel 

values, decreased mean ADC and narrow peak ADC histograms (Subjects 3-4 (E), 2-9 

(F), 2-3 (G), 3-7 (H)).  

 

 

 

 

 

 

 

 

 

 

Table 4-2: Whole Lung 
3
He MRI ADC and Ventilation Measurements. 

 Stage I 
n=1 

Stage II COPD 
n=9 

Stage III COPD 
n=10 

ADC (±SD) cm
2
/s 0.58 0.42 (0.10) 0.48 (0.09) 

ADCSD (±SD) cm
2
/s  0.27 0.23 (0.04) 0.26 (0.05) 

VDV (±SD) L 0.19 1.07 (0.69) 1.74 (0.88) 
VDP (±SD) (%) 6 22 (16) 28 (12) 

ADC is 3He apparent diffusion coefficient, SD is standard deviation, VDV is ventilation defect 
volume, VDP is ventilation defect percent 
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Figure 4-3: 
3
He MRI VDP and ADC% Contributions in COPD. 

Center slice VDP and ADC% values are summed together and expressed as a percentage of total 
3He MRI measured disease (total sum divided by 2), where 100% disease would be 100% VDP 
and ADC =0.88cm2/s.  Subjects § are classified as primarily ADC by both classification methods, 
whereas subjects † are classified as primarily VDP by the classification methods.  

Table 4-3: Whole lung 
3
He MRI Correlations with Pulmonary Function.   

 ADC Holm-Bonferroni 
p value 

VDV Holm-Bonferroni 
p value 

FEV1 %pred (p) -0.26 (0.27) 0.27 -0.58 (0.007) 0.07 
FEV1/FVC (p) -0.53 (0.02) 0.12 -0.54 (0.01) 0.08 
FRC %pred (p) 0.68 (0.001) 0.012 0.62 (0.003) 0.033 
IC %pred (p) -0.39 (0.09) 0.27 -0.55 (0.01) 0.09 
TLC %pred (p) -0.53 (0.02) 0.014 0.34 (0.14) 0.28 
RV %pred (p) 0.43 (0.06) 0.24 0.48 (0.03) 0.15 
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Table 4-4: Center slice 
3
He Measurement Contributions by Subject.   

Subject FEV

1 
FEV1/FV

C 
VDP 
(%) 

ADC
% 

ADC%+VD
P 

Contribution 
ADC 

Contribution 
VDP 

1-1 90% 61%  2 54 56 96% 4% 

2-1 64% 50% 33 39 72 54% 46% 

2-2 51% 41% 52 33 85 39% 61% 

2-3 68% 61% 21 2 23 7% 93% 

2-5 62% 48% 25 20 45 44% 56% 

2-6 62% 53% 5 34 39 87% 13% 

2-7 66% 77% 21 21 42 50% 50% 

2-8 59% 50% 6 13 19 69% 31% 

2-9 68% 60% 18 3 21 15% 85% 

2-10 51% 42% 64 56 120 47% 53% 

3-1 43% 29% 38 38 76 50% 50% 

3-2 35% 29% 25 28 53 53% 47% 

3-4 41% 46% 12 10 22 45% 55% 

3-5 42% 32% 19 33 52 63% 37% 

3-6 49% 42% 8 48 56 86% 14% 

3-7 49% 54% 29 7 36 18% 82% 

3-8 32% 37% 46 33 79 42% 58% 

3-9 33% 31% 37 57 94 61% 39% 

3-10 35% 23% 33 56 89 63% 42% 

3-11 30% 35% 26 48 74 65% 45% 

Bolded subjects were classified as having a single predominant measurement by the 2/3 
approach.  
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Figure 4-4: 
3
He MRI Classification by Thresholding.  

VDP and ADC% scatter plot for all subjects with dashed line denoting 10% threshold cutoff. The 
asterisks represent two subjects close to the threshold line, X represents subject 2-8, and the * 
represents subject 3-4.  
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Figure 4-5: 
3
He VDP and ADC Dominance. 

A-D) ADC dominant subjects identified in both classification methods A) subject 2-8  B) subject 
2-6  C) subject 3-6  D) subject 1-1 
E) Subject 3-4, on the 10% threshold of mainly VDP classification  
F-H) predominantly elevated VDP subjects identified in both classification methods F) subject 2-
9  G) subject 2-3  H) subject 3-7   
Predominantly ADC subject images have fewer ventilation defects (i) with brighter red/yellow 
ADC maps (ii) and broader histograms (iii), whereas predominantly VDP subjects show 
increased ventilation defects and darker red/black ADC maps.  
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4.4 Discussion 

In this pilot study of COPD ex-smokers, we made a number of important observations 

that are relevant to the potential use of 3He MRI.  First, although this was a relatively 

small pilot study, preliminary analysis showed that there was evidence of a single 3He 

measurement – either VDP or ADC providing the main contribution to 3He MRI 

measured disease in a subset of subjects (35%)  evaluated.  In particular, some patients 

reported high ADC and nearly normal 3He ventilation images with normal ADC based on 

age-matched healthy non-smoker volunteers.37  Another small group of patients reported 

nearly normal (age-adjusted) ADC but significantly elevated VDP (where normal VDP is 

defined as equivalent to no defects, a finding in the healthy young, and some healthy 

elderly subjects26).  We acknowledge that these results are descriptive, the threshold 

approach is simplistic, appears arbitrary, and can only be viewed as a first step towards a 

more quantitative and mathematical-based understanding of phenomenological 

observations that can be achieved when more patients are evaluated.  Furthermore, we 

acknowledge that this is a preliminary analysis, and that our findings are based on the 

assumption that there is a linear relationship between ADC%, VDP and overall disease.  

It is important to note that currently the exact relationship between emphysema, airways 

disease and a “total disease index or measurement” has not been evaluated or at least 

published.  Therefore, our approach should be considered a first order approximation 

with regard to the extent that emphysema and airways disease contribute to COPD.  

Clearly, these concepts require further testing or modelling to determine the extent to 

which tissue destruction and airway inflammation or obstruction contribute to overall 

disease.  Despite the preliminary and somewhat straightforward approach presented here, 

our results support further testing of the hypothesis that non-invasive 3He MRI can 

provide unique information that can be used to phenotype COPD subjects. 

 Second, we observed that the seven subjects with evidence of a single dominant 3He 

MRI measurement had significantly higher FEV1, compared to the mixed subgroup 

(n=13).  This suggests that subjects with mainly elevated VDP or ADC showed decreased 

disease severity measured using spirometry.  Additionally, for these seven patients, the 
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sum of VDP + ADC% was significantly lower than for the 13 mixed subgroup patients, 

also suggesting the presence of less severe underlying disease.  In a follow-up to the 

analysis presented here, we will evaluate these same 20 patients over time to evaluate 

VDP and ADC to help to clarify the role of disease progression and severity on subject 

classification.  Nevertheless this study suggests that in COPD subjects with higher FEV1 

and lower 3He MRI measurements of disease there is the potential for either tissue 

destruction or ventilation defects to dominate. 

Third, we observed significant but modest associations between some imaging 

measurements with spirometry and plethysmography, consistent with previous 3He MRI 

studies of COPD.22,30-32  We note however that these associations were not strong which 

is perhaps consistent with the small patient group studied, the limitations of spirometry 

and plethysmography as determinants of disease classification or severity and the fact 

that COPD itself is very heterogeneous.   

We acknowledge that this pilot study is limited by the small number of subjects studied 

and the fact that the analysis was restricted mainly to subjects with stage II and III 

COPD.  Therefore, caution should be exercised in extrapolating these results to the 

general COPD population and more specifically to patients with stage I or IV disease.  

Another shortcoming of this study is the lack of high resolution CT data with which to 

directly compare the 3He MRI findings.  Nakano and colleagues have already reported 

CT phenotype dominance14 in COPD and it will be critical to evaluate and compare both 

tools in the same patients.  A further limitation of this study is that without histology, we 

cannot definitively ascribe ventilation defects to specific airway pathologies such as 

airway occlusion via mucous plugs, airway narrowing, airway wall thickening or bullae.  

Nevertheless, regardless of the specific underlying pathology, airway changes are a likely 

prerequisite for the ventilation defects that can be visualized within the time-frame of the 
3He MR breath-hold scan.   
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4.5 Conclusion 

In conclusion, the results of this pilot study of a small group of COPD ex-smokers show 

differences in the proportional contributions of 3He ventilation defects and ADC, 

suggesting a potential new role for 3He MRI in COPD studies.  These findings indicate 

that 3He MRI should be more extensively evaluated in a larger and more diverse group of 

COPD patients, allowing for confirmation of these results with more complex statistical 

analyses.  Future studies should aim to address the research questions generated in this 

pilot study: can 3He MRI be used to phenotype subjects in a larger COPD population 

encompassing subjects across GOLD categories; does COPD, as these preliminary data 

would suggest, develop as mainly ventilation defects or tissue alterations in the early 

stages of disease; what is the relationship between the phenotypes detected by 3He MRI 

and those determined by CT?  Future evaluation of 3He MRI phenotypes of COPD will 

shed light on this very important potential application for this technology.    
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CHAPTER  5: DETECTION OF LONGITUDINAL 

STRUCTURAL AND FUNCTIONAL CHANGES AFTER 

DIAGNOSIS OF RADIATION-INDUCED LUNG INJURY USING 

HYPERPOLARIZED 
3HE MAGNETIC RESONANCE IMAGING 

 
The work presented in this chapter has been previously published in Medical Physics  as 
follows, and is reproduced here with permission (Appendix C).  
L. Mathew, S. Gaede, A. Wheatley, R. Etemad-Rezai, G.B. Rodrigues G. Parraga “Detection of 

Longitudinal Lung Structural and Functional Changes after Diagnosis of Radiation-induced lung 

injury using Hyperpolarized 
3
He Magnetic Resonance Imaging” Med Phys.2010 Jan;37(1):22-31 

5.1 Introduction 

The lung is extremely radiosensitive and therefore highly susceptible to radiation-induced 

injury.1  Although radiation treatment doses for thoracic tumours are modified in order to 

decrease the risk of tissue damage, radiation-induced lung injury (RILI) still occurs in as 

many as 37% of thoracic cancer cases involving radiation treatment.2-5  Moderate to 

severe injury occurs in about 20% of RILI cases6 and is manifested as: 1) symptoms that 

significantly interfere with activities of daily life including shortness of breath, cough, 

and fever, 2) the requirement for oxygen therapy or ventilatory support, and, 3) premature 

death.  These symptoms and adverse effects are a result of structural changes in the lung 

including capillary obstruction and septal thickening7,8 resulting in smaller alveolar 

spaces in the pneumonitis phase of the injury, and further septal thickening with 

obliteration of the alveolar space in the fibrotic phase,8-10 all of which result in the 

functional impairment of the lung.  Significant declines in pulmonary function are 

typically observed in the months immediately following radiation therapy, and global 

lung function measurements such as the forced expiratory volume in one second (FEV1), 

and forced vital capacity (FVC) as well as the diffusing capacity of carbon monoxide 

(DLCO) continue to decline even two years post-radiation treatment.11  Although these 

pulmonary function measurements are often used as indicators of overall lung function, 

the regional functional impact of inflammation and fibrosis in the lung over time are still 

not well understood.  Novel non-invasive imaging methods which provide high spatial 

and temporal resolution such as hyperpolarized helium-3 magnetic resonance imaging 

(MRI) may provide some clues as to where and how structural and functional changes 
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occur in RILI over time.  Hyperpolarized 3He MRI is being developed in a handful of 

respiratory and MR imaging research centers to provide a quantitative method for the 

measurement of lung function and tissue microstructure by exploiting the diffusion 

properties of 3He.12  Over the past decade, this method has been pioneered to probe lung 

structure and function in healthy volunteers,13-16 chronic obstructive pulmonary 

disease,17-21 cystic fibrosis,22-24 asthma.25-28 and for applications in radiation treatment 

planning.2930   

Although 3He MRI has been explored as a potential radiation treatment planning tool,29 it 

has not yet been used in clinical research to monitor RILI changes post-diagnosis, which 

we believe is important to further our understanding of both the regional distribution and 

functional and structural nature of changes that accompany the global decline in 

pulmonary function.  Accordingly, here we present the first longitudinal 3He MRI results 

in a small group of patients after diagnosis of RILI. 

5.2 Methods 

5.2.1 Study Subjects 

Study subjects were recruited and enrolled from the London Regional Cancer Program 

(London, Canada) with a clinical diagnosis of RILI (symptomatic, with or without 

radiological evidence) based on respiratory symptoms following radiation therapy for 

lung or breast cancer.  Informed consent was obtained prior to participation in this study, 

which was approved by the local research ethics board and Health Canada.   

5.2.2 Study Evaluations 

All subjects consented to a baseline and follow-up visit prospectively planned for 20 to 

24 weeks post-baseline visit to capture short-term differences in 3He imaging 

measurements of RILI diagnosed based on symptomatic evidence.  At both visits, vital 

signs and a short clinical history were recorded, followed by spirometry and 

plethysmography performed according to ATS guidelines31.  Spirometry was performed 

using an ndd EasyOne spirometer (ndd Medizintchnik AG, Zurich, Switzerland) for 

FEV1 and FEV1/FVC.  Whole-body plethysmography was performed (MedGraphics Elite 
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Series, MedGraphics Corporation. St. Paul, USA) and total lung capacity (TLC), 

functional residual capacity (FRC), residual volume (RV), expiratory reserve volume 

(ERV) and inspiratory capacity (IC) were recorded.  The DLCO was also tested and 

recorded.  All pulmonary function values were recorded as absolute and normalized 

percent predicted values based on sex, age and body mass index. 

5.2.3 Imaging 

Helium-3 was polarized as previously described19,32,33 using a turn-key, spin-exchange 

polarizer (HeliSpin, GEHC, Durham, NC) and dispensed in a room adjacent to the MR 

suite with a dose of 5ml/kg body weight. 3He was mixed with medical grade N2 (Spectra 

Gases, Alpha, NJ) to a total volume of 1.0L.  

Imaging was performed on a whole-body 3.0T MR system (Excite 12.0, GEHC, 

Milwaukee, WI) as previously reported.15,32-35  Subjects were positioned supine in the 

MRI scanner with arms at sides, and pulse oximetry was used to monitor blood 

oxygenation throughout the course of image acquisition.  All imaging was performed in a 

breath-hold fashion, with subjects instructed to inhale a gas mixture from a 1.0 L Tedlar 

bag (Jensen Inert Products, Coral Springs, FL) from the bottom of tidal volume, and to 

hold their breath for 15 seconds.   

Proton MR images were acquired in the coronal plane with patients in breath-hold (1.0L 

of a 4He/N2 mixture), to mimic the 3He MRI breathhold maneuver.  For proton imaging, a 

fast spoiled gradient recalled echo sequence was applied with a matrix size of 256x256, 

field of view (FOV) = 40 cm x 40 cm or 44 cm x 44 cm (depending on subject size), 15 

slices each 10mm thick, repetition time (TR) of 2.7 seconds, echo time (TE) of 1.3 

seconds and a flip angle of 8º.   

A single-channel rigid elliptic transmit/receive chest coil (RAPID Biomedical GmbH, 

Wuerzburg, Germany) with a basis frequency of 97.3 MHz and an excitation power of 

3.2kW was used for all 3He imaging with a maximum gradient amplitude of 19.4mT/m.  

Multi-slice 2-D 3He MR static ventilation images were acquired using the unweighted 

image (no T1 sensitization) of a T1-weighted sequence applied following inspiration of 
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hyperpolarized 3He with the following parameters: TR = 4.3s, TE = 1.4s, flip angle = 7º, 

matrix = 128x128, a FOV = 40 cm x 40 cm, slice thickness = 10mm, number of slices = 

15, 0 mm gap.  Following ventilation imaging, diffusion-weighted imaging was 

performed as previously described19,35 with the same 3He/N2 dose and breath-hold 

maneuver. 3He multislice images were obtained in the coronal plane using a fast gradient-

recalled echo (FGRE) method with centric k-space sampling.  Two interleaved images 

(TE = 3.7 ms, TR = 7.6 ms, 128 x 128, 7 slices, 30 mm slice thickness, FOV = 40cm x 

40cm) without and with additional diffusion sensitization (G = 19.4 mT/m, rise and fall 

time = 0.5 ms, duration = 0.46 ms, b value = 1.6 s/cm2) were acquired for each slice.  All 

scanning was completed within approximately 10 minutes of the subject first lying in the 

scanner.   

5.2.4 Image Analysis 

All image analysis was performed in a room with controlled lighting by a single expert 

observer (LM). Image analysis was performed blinded to subject identity, clinical status 

and timepoint. Ventilation image analysis was performed using manual segmentation of 

hyper-intense 3He regions on a slice by slice basis independently for each lung as 

previously described to obtain a ventilated volume (VV).32,36  In addition, proton images 

were reviewed and the thoracic cavity was segmented to obtain a thoracic cavity volume 

(TCV) for both the ipsilateral and contralateral lungs.    All image segmentation was 

performed using an in-house image processing software platform as previously 

described.37  Helium and proton image segmentation were both repeated three times and 

the mean values were recorded.  For the 3He VV and 1H TCV, ipsilateral and 

contralateral lung volumes were summed to obtain the totals.  Percent ventilated volume 

(PVV)36 was generated as the VV divided by the TCV, and was computed for each lung 

independently as well as combined.  

Diffusion-weighted images were analyzed by the same single trained observer in a 

controlled image visualization environment (digital copy) with room lighting levels 

equivalently established for all image analysis sessions.  The mean apparent diffusion 

coefficient (ADC) and ADC maps were generated as previously reported33,35 for the 

ipsilateral and contralateral lungs independently and for the whole lung (5 center slices) 
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using in-house software programmed in the IDL Virtual Machine platform (Research 

Systems Inc., Denver, CO as previously described19 with b = 1.6 s/cm2.   The anterior and 

posterior slices were not used for analysis due to insufficient signal-to-noise ratio (SNR).  

5.2.5 
3
He – 

1
H Image Registration 

3He – 1H MR image registration was performed to facilitate the segmentation of 

ventilated areas to compute a ventilated volume.   Hyperpolarized 3He and 1H MR images 

were imported into an in-house image processing software application as previously 

described.37  Prior to importing images and image registration 3He MR images were first 

viewed in ImageJ 1.33u (National Institutes of Health, USA) where the green and blue 

channels in the RGB scale were set to zero to achieve a red scale image.  The center slice 
3He and 1H images were viewed simultaneously and a single point rigid registration of 

coronal images was performed.  The carina was used for single point rigid registration for 

all 3He and 1H images, and was selected as this point was consistently evident for image 

registration purposes in both functional and structural MR images across all study 

subjects.  3He – 1H MRI registration accuracy was determined using the overlap 

coefficient, as previously described by Ireland and co-workers,30 and modified for 1H – 
3He images.  This method was adapted for image registration of the center slice only 

excluding the trachea and main bronchi, and was calculated using Equation 1 where A3He 

MRI is the area of 3He MR ventilation and A1H MRI is the area of 1H MR thoracic cavity.    

MRIHe3

MRI H1  MRIHe3

A

AA
 x 100

I
= Ω               (1) 

5.2.6 Statistical Analysis 

Mean ADC and ADC standard deviation were calculated for the 5 center slices as 

previously described.35  Mean VV, TCV and PVV and standard deviations were 

calculated from repeated measures for the ipsilateral, contralateral and combined lung 

volume.  The difference between baseline and follow-up pulmonary function test results 

and MRI measurements were calculated for the four subjects returning for a second visit, 

and a mean difference was reported.  Differences between ipsilateral and contralateral 

lung measurements were evaluated using a paired t-test.  The paired t-test was also used 
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to evaluate differences between parameters measured at both baseline and follow-up.  

Correlations between imaging, radiation treatment and pulmonary function parameters 

were assessed using Pearson’s product moment correlation coefficient.  All statistical 

analysis was performed using SPSS 17.0 (SPSS Inc, Chicago, IL) and results were 

considered significant when the probability of making a Type I error was less than 5% (p 

< 0.05). 

5.3 Results 

5.3.1 Study Subjects 

Study subject demographics at baseline and follow-up are provided in Table 5-1.  Seven 

subjects were enrolled following a clinical diagnosis of RILI based on symptomatic 

presentation, six after radiation treatment for lung cancer and one after breast cancer 

treatment.  The mean period of time between the start of radiation and the first scanning 

visit was 35.1 ± 12.2 weeks, with the first scanning visit 9.1 ± 5.1 weeks following the 

initial report of RILI symptoms.  Four subjects returned for a follow-up visit 22.0 ± 0.8 

weeks after the first visit. The three subjects who did not return for repeat scanning were 

deceased (n=2) or too ill (n=1) to return for follow-up.    Five of the seven subjects had a 

smoking history of >10-pack-years.  Two subjects reported an FEV1 %predicted < 50% at 

baseline and the single breast cancer subject reported an FEV1 %predicted > 80%.  At 

follow-up, three subjects reported a change in FEV1 %predicted < 10%, while one subject 

reported an increase of 17%.  Radiation parameters for all seven subjects are provided in 

Table 5-2.  Subjects were treated with a mean dose to the target of 58 ± 7 Gy, and for 

those subjects treated for lung cancer the mean lung dose (MLD) was 17 ± 2 Gy and 

V20Gy was 32% ± 3%, where V20Gy is the percentage of lung volume receiving at least 20 

Gy. The meanV20Gy was calculated for five subjects, as one subject was imaged again 

using CT for a radiation boost and calculation of an accurate V20Gy would have required 

dose warping, currently not available in our centre. 
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Table 5-1: Subject Demographics. 

 Baseline 5 month Follow-up 

 n=7 n=4 

Age yrs (SD) [range] 63 (11) [50-76] 60 (12) [51-77] 

Sex- Male 2 2 

Body Mass Index (SD) 28 (4) 28 (3) 

FEV1 %pred (SD) 62 (18) 68 (17) 

FEV1/FVC % (SD) 70 (7) 74 (12) 

IC (L) (SD) 1.4 (0.4) * 1.8 (0.7) 

RV (L) (SD) 1.2 (0.6) * 1.7 (0.7) 

FRC (L) (SD) 2.7 (0.4) * 2.9 (0.5) 

TLC (L) (SD) 4.2 (0.7) * 4.7 (0.7) 

DLCO %pred (SD) 62 (24) * 64 (26) 

*n=4 

Figure 5-1: Representative Baseline and Follow-up Hyperpolarized 
3
He 

Ventilation Images, ADC Maps and ADC Histograms. 

A, B and C representative subjects at Baseline (i and ii) and Follow-up (iii and iv) 
(i and iii) 3He MR ventilation images at Baseline and Follow-up respectively 
(ii and iv) 3He MR ADC Map and Histogram Baseline and Follow-up respectively 
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Table 5-2: Radiation Parameters. 

VxGY(%) is the volume of normal lung receiving xGy radiation.  

 All Subjects 
N=7 

 Ipsilateral Lung 
Mean (SD) 

Contralateral Lung 
Mean (SD) 

Total Lung 
Mean (SD) 

Total Dose (Gy)    58.1 (7.0) 

Dose Fraction (Gy)   2.01 (0.2) 

Mean Lung Dose (Gy) 26.1 (9.9) 7.7 (5.6) 15.1 (5.6) 

V5Gy (%)* 70.3 (22.8)  37.7 (30.6)  52.1 (22.7)  

V10Gy (%)* 60.3 (23.3)  25.0 (21.9)  40.0 (17.1)  

V13Gy (%)* 56.7 (23.1)  19.3 (17.0)  34.7 (14.4)  

V20Gy (%)* 50.6 (21.5)  11.8 (10.7)  27.3 (10.8)  

*Calculated for 6 subjects (five lung cancer, single breast cancer) only because a single lung 
cancer subject underwent two separate phases of radiation with different planning CTs, and 
therefore these parameters could not be obtained. Dose fraction is the dose delivered in each 
treatment fraction (i.e. A dose fraction of 2Gy in 30 fractions results in a total dose of 60Gy).  
 

5.3.2 
3
He MRI 

Representative baseline and follow-up center slice ventilation images as well as the 

corresponding ADC maps and ADC histograms are provided in Figure 5-1 for three 

representative subjects with RILI following radiation treatment for a right hilar mass 

(Figure 5-1a), a right upper lobe mass (Figure 5-1b), and a left hilar mass (Figure 5-1c).  

All mean 3He MRI ADC and ventilation measurements are reported in Table 5-3 for the 

ipsilateral, contralateral and total lung for both baseline and follow-up visits.  For the 

baseline scan, a difference in the mean ADC of 0.03 cm2/s between lungs was observed, 

that was not significant (p=0.053) (Figure 5-2a).  As shown in Figure 5-2b, ventilation 

images showed a significant difference in VV (p=0.014) and TCV (p=0.027) between 

ipsilateral and contralateral lungs.  PVV was significantly different (p=0.025), and 33% 

lower in the ipsilateral lung as compared to the contralateral lung (Figure5-2c).  

Longitudinal differences between baseline and follow-up for all parameters are provided 

in Table 5-4 and Figure 5-3 for each of the four subjects returning for the second visit.  

At follow-up, total mean ADC was significantly higher than at baseline (p=0.016).  When 

measured independently, ipsilateral mean ADC was not significantly different between 

baseline and follow-up (p=0.053), while the contralateral mean ADC at follow-up was 

significantly increased compared to baseline (p=0.003, Figure 5-3b).  As shown in Figure 
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5-3d, the contralateral lung also showed a significant increase in PVV at follow-up 

(p=0.012), while no other 3He MRI measurements showed a statistically significant 

change.   

5.3.3 Correlations 

Figure 5-4 shows a graphical presentation of the longitudinal changes in ADC and PVV 

for ipsilateral, contralateral and whole lung with the V5Gy, V10Gy, V13Gy and V20Gy 

identified for each of the four patients who returned for follow-up imaging.  For patients 

returning at follow-up Figure 5-4 Ai shows a trend towards improved PVV over time 

with lower doses to the ipsilateral lung in subjects treated for lung cancer, while Figure 

5-4 Cii indicates that with lower total VxGy there is a greater increase in total ADC with 

time.  

 

 

Figure 5-2: Baseline and Follow-up Hyperpolarized 
3
He MRI Measurements. 

Baseline and Follow-up for the ipsilateral and contralateral lungs for all subjects. 
A) mean 3He MRI ADC, B) 3He MRI VV, and C) 3He MRI PVV.  
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Figure 5-3: Mean Longitudinal Differences in 
3
He MRI and spirometry 

measurements. 

Differences between Baseline and Follow-up for subjects returning for a second visit (n=4) 
A) FEV1 %pred, B) mean contralateral ADC, C) mean ipsilateral PVV and D) contralateral PVV.  
 
 
At baseline there was a statistically significant correlation observed for ipsilateral VV and 

PVV with inspiratory capacity (R=0.97, p=0.007, R=0.89, p=0.045 respectively).  DLCO 

also correlated with ipsilateral VV (R=0.83, p=0.041) at baseline, while ERV correlated 

with ipsilateral PVV (R= -0.89, p=0.041). Radiation parameters related to the ipsilateral 

lung including MLD, V5Gy, V10Gy, V13Gy, and V20Gy correlated with ipsilateral PVV (R= -

0.79, p=0.035; R= -0.83, p=0.040; R= -0.89, p=0.018; R= -0.89, p=0.018; R= -0.85, 

p=0.031, respectively).  No other correlations between radiation parameters and 3He MRI 

measurements were observed.   
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Table 5-3: 
3
He MRI ADC and Ventilation Measurements.   

 Baseline 
N=7 

5 month Follow-up 
N=4 

 Ipsilateral Contralateral Total Ipsilateral Contralateral Total 

WL ADC (SD) cm
2
/s* 0.33 (0.06) 0.30 (0.06) 0.31 (0.05) 0.35 (0.04) 0.32 (0.04) 0.32 (0.04) 

WL ADC SD (SD) cm
2
/s* 0.12 (0.07) 0.11 (0.07) 0.11 (0.08) 0.24 (0.02) 0.19 (0.05) 0.20 (0.04) 

WL VV (SD) L 0.9 (0.5) 2.1 (0.6) 3.0 (0.7) 1.0 (0.7) 2.5 (0.7) 3.5 (0.6) 
WL TCV (SD) L 1.6 (0.3) 2.3 (0.7) 3.9 (0.8) 1.4 (0.2) 2.4 (0.7) 3.8 (0.5) 
WL PVV (SD) % 55 (29) 88 (5) 76 (12) 68 (45) 103 (5) 92 (15) 

*ADC data for n=6 at baseline 

 

At follow-up whole lung PVV correlated with IC (R=0.97, p=0.033), FVC %predicted 

(R=0.99, p=0.005) and total dose (R= -0.98, p=0.021).  Total dose also correlated with 

the follow-up ipsilateral VV and PVV (R= -0.98, p=0.024 and R= -0.98, p=0.015 

respectively). The change in ipsilateral VV between baseline and follow-up correlated 

with the change in FEV1 absolute and percent predicted (R=0.98, p=0.023 and R=0.99, 

p=0.009 respectively).  There was no correlation between changes in spirometry values 

and changes in contralateral or total lung VV or PVV.   

Table 5-4: Longitudinal Differences.   

 002 003 004 005 Mean (SD) BL -FU 
P 

FEV1 %pred -6 -3 17 9 4.3 (10.7) 0.485 

FVC %pred -2 1 16 14 7.3 (9.1) 0.208 

FEV1/FVC 14 -3 2 -2 2.8 (7.8) 0.532 

TLC (L) ND 0.54 1.16 0.47 0.7 (0.4) 0.081 

DLCO %pred 1 0 ND 7 2.7 (3.8) 0.500 

Ipsilateral WL ADC 
(cm

2
/s) 

0.02 0.05 0.02 -0.01 0.02(0.02) 0.215 

Contralateral WL ADC 
(cm

2
/s) 

0.02 0.04 0.02 0.02 0.02(0.01) 0.003 

Total WL ADC (cm
2
/s) 0.02 0.03 0.02 0.01 0.02 (0.01) 0.016 

Ipsilateral PVV -4 0 35 49 20 (26) 0.231 

Contralateral PVV 9 15 18 23 16 (6) 0.012 

Total PVV 7 8 26 33 19 (13) 0.068 

ND = No data for one of the two visits, BL = Baseline, FU = Follow-up 
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Figure 5-4: 
3
He MRI longitudinal changes compared to Radiation Parameters 

A) MRI measurements ipsilateral lung of four subjects returning at follow-up compared to VxGy% (the volume of normal lung receiving x Gy of 
radiation).  
B) MRI measurements contralateral lung compared to VxGy (%)  
C) MRI measurements both lungs compared to VxGy (%) (i) PVV, (ii) ADC.  



129 

 

 

5.3.4 Image Registration 

Image registration results are provided in Figure 5-5 showing 3He – 1H registration for subjects 

002, 004, 005 and 008, with the 3He signal in red and the 1H signal in gray scale.  3He – 1He 

registration accuracy was evaluated at baseline for all seven subjects with a mean overlap 

coefficient of 93.6 ± 4.6%.   

 

Figure 5-5: Representative subjects showing 
3
He – 

1
H MR Image Registration. 

Centre slice 3He – 1H image registration is shown with the 3He signal intensity in red, and the 1H signal 
intensity in grey scale for a) subject 008, b) subject 005, c) subject 002 and d) subject 004.  
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5.4 Discussion 

In vivo imaging provides a way to quantitatively evaluate spatial and temporal changes in the 

lung, post-radiation, such as consolidation within the lung visualized using CT for which various 

patterns have been described38 ranging from slightly increased density to solid consolidation and 

irregular bronchi.  As another example, functional imaging of RILI using SPECT provides 

images which can be evaluated for ventilation and perfusion defects,39-41 and while the incidence 

of the latter is more common, both measurements appear to be more sensitive than CT 

measurements for the detection of functional lung changes.42   Despite the development of these 

important imaging approaches, and the elegant work of a number of teams using CT,38,43-45 the 

temporal and spatial aspects of RILI initiation and progression are still not well understood, 

partially because of the widely varying imaging protocols and a lack of intensive serial studies 

reported in the literature.  Emerging hyperpolarized noble gas MRI methods may provide a way 

to measure specific RILI effects that are often very complex given the myriad of other 

malignancy-related changes occurring prior to and after radiation.  The advantage of 3He MRI 

approaches for RILI may derive from the fact that the method is rapid, well-tolerated,46 provides 

regional functional information with relatively high spatial resolution, and enables intensive 

serial studies that could potentially identify early and late mechanisms of disease initiation and 

progression, respectively.  Once specific measurements and potential mechanisms are identified, 

it is theoretically possible to improve the spatial resolution of therapy (guidance) and perhaps 

increase doses to improve tumour response with decreased normal tissue (or at least normal 

functioning tissue) damage.  This is critical in the lung in particular where improvements in 

radiation therapy methods have not resulted in significantly improved patient survival.47   

Here in a small pilot study of RILI patients, we provide quantitative structural and functional 3He 

MRI measurements in subjects after symptomatic RILI onset.  Accordingly we report: 1) 3He 

MRI ADC, VV, PVV and 1H MRI TCV for seven subjects approximately 8 months after 

radiation therapy and again 6 months later for four of these subjects, 2) correlations between 3He 

MRI measurements, well-established pulmonary function and lung volume measurements and 

radiation parameters, and, 3) feasibility and implementation of functional 3He MR image 
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registration with structural 1H MR images.  To our knowledge, this is the first longitudinal 

application of hyperpolarized 3He MRI in subjects after clinical diagnosis of RILI. 

First, and as might be expected, at baseline we observed a significant difference in TCV of the 

ipsilateral and contralateral lungs, suggestive of gross thoracic cavity remodelling following 

radiation injury.  Additionally 3He VV in the ipsilateral and contralateral lung was significantly 

different, likely reflecting the decreased lung volume available for ventilation in the target lung.  

Importantly, we noted a significant difference in PVV, which was higher in the contralateral 

lung, suggesting that the functional capacity of the contralateral lung remained high following 

radiation treatment.  The lower PVV reported in the ipsilateral lung may be due to inflammation 

or scarring related to the radiation dose and for some patients, due to residual tumour burden; 

however, the direct cause cannot be directly ascertained due lack of histological confirmation. At 

baseline, the contralateral lung reported a lower mean ADC and the difference was below the 

threshold for statistical significance (p=0.053).  If this result is indeed found to be significant in a 

larger group of patients, this would contradict previous studies in animals48 where the ipsilateral 

lung showed lower ADC (suggestive of fibrosis) than the contralateral lung.  One possible 

explanation for the result obtained here is that the severely fibrosed regions of the ipsilateral lung 

could not be ventilated and therefore could not contribute to the ADC measurement, resulting in 

an increased ADC.  Additionally, the increased contralateral lung ADC values might 

alternatively reflect increased inflammation at the baseline scan, or increased alveolar 

dimensions due to increased ventilation in the contralateral lung.  

Second, for the small number of patients who were scanned at follow-up, there was a significant 

change in the contralateral PVV and both the contralateral and whole lung 3He ADC.  Both 

results show that in small numbers of subjects 3He MRI can sensitively detect lung structural and 

functional changes as RILI progresses.  We were surprised to observe the unexpected increase in 

contralateral PVV that occurred between weeks 35 and 57 post-radiation. This indicated that 

although the TCV did not change over the 22 week period, the functional capacity of that volume 

showed a significant increase, suggesting that functional, but not gross structural remodelling 

occurred in response to the apparent loss of function in the ipsilateral lung (as evidenced by low 
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ipsilateral PVV in the majority of subjects). To our knowledge this increase in functional 

capacity of the contralateral lung, long after radiation treatment, and in isolation of structural 

lung volume change, is a novel finding, not previously reported in the literature.  The statistically 

significant increase in ADC we observed (which in COPD has been validated using histology49 

and CT50 as an increase of alveolar dimensions reflecting emphysema) over a relatively short 

period of 22 weeks was greater than the rate previously established for healthy aging non-

smokers, 14 and therefore is unlikely related to age-related emphysema.  In a previous animal 

model study of radiation fibrosis, alveolar septal thickening was suggested as the explanation for 

decreased 3He MRI ADC post-radiation.48  For the patients studied here, imaging was 

approximately 8 months post-radiation therapy which is most likely within the radiation fibrosis 

timeframe.51  Therefore, the increase in ADC observed in the contralateral lung may reflect 

decreased or perhaps resolution/improvement of radiation-induced inflammation or fibrosis over 

time; no change in the ipsilateral ADC was reported perhaps because of irreversible fibrosis in 

that lung.   

Third, correlations were observed between 3He MRI measurements, pulmonary function 

measurements and radiation parameters.  The significant negative correlation between radiation 

parameters (MLD, V5Gy, V10Gy, V13Gy, and V20Gy) and PVV for the ipsilateral lung is in 

agreement with our understanding of the direct negative relationship between lung function and 

radiation treatment.  Additionally, DLCO which is commonly impaired in subjects with 

RILI,6,11,52,53 was significantly correlated with ipsilateral VV, which is in agreement with our 

understanding that the lungs diminished capacity to ventilate can result in significant decreases 

in gas transfer.  

Finally, we showed that MR image registration was feasible in this patient group and over these 

time periods.  3He–1H registration resulted in an overlap coefficient of 93.6%, likely due to the 

fact that the elapsed time between scans was on the order of minutes, and subjects were not 

moved between scans.  This registration may be used in future to aid lung volume segmentation 

and for the development of semi- and fully-automated segmentation of 3He MRI lung volumes. 

Furthermore, future studies should involve registration of 3He MR ventilation images to CT 
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images both pre- and post-radiation, to aid in ascertaining a direct relationship between scarring 

and functional impairment in the lungs of subjects with RILI.   

We acknowledge a number of specific limitations of this study, the first of which is the small 

sample size at baseline (n=7) and follow-up (n=4).  This may have restricted our ability to detect 

other significant differences between lungs at baseline and longitudinally.   In future studies with 

larger sample sizes it will be important to closely monitor additional clinical factors such as 

specific treatment regimes (specific chemotherapies administered concurrently), specific post-

radiation respiratory difficulties experienced, smoking status and O2 usage to determine whether 

any of these variables directly affect the functional or structural changes reported in subjects with 

RILI that could not be evaluated here due to limited sample size.  We also recognize that a multi-

modality comparison using CT would have provided an opportunity to directly compare and 

contrast the sensitivity of 3He MRI and quantitative high resolution CT which would provide 

critical context for the functional and structural findings we report here.  Finally, another 

potential shortcoming of this pilot study relates to the fact that we only implemented rudimentary 

registration methods in this study and that in future whole lung registration should be evaluated 

as well as image registration with a greater number of fiducial markers.   

A previous study using 3He MRI by Ireland and co-workers29 showed that functional information 

obtained prior to radiation could be used in conjunction with CT for radiation planning.  Here in 

this small pilot study of seven patients, we add to this significant body of work and show that 
3He MRI provides quantitative and regional measurements of RILI post-diagnosis and 

longitudinally for the target and non-target lung.   

5.5 Conclusion 

In conclusion, hyperpolarized 3He MRI provides a way to acquire quantitative lung functional 

information as well as a method to measure 3He diffusion to probe airway and airspace sizes.  

Furthermore, for the first time we showed that lung function in the contralateral lung 

significantly increased over time following the onset of symptomatic RILI, likely to compensate 
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for the radiation-induced functional damage that was largely restricted to the ipsilateral lung and 

constant over the time course of this study.    
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CHAPTER  6:  CONCLUSIONS AND FUTURE DIRECTIONS 

6.1 Overview and Summary 

The development of new, sensitive and precise measurements of lung function are critical for a 

better understanding of the structure-function paradigm that exists in the lung in both the normal 

and disease states.1,2  Currently, the gold standard method for evaluating lung function is 

spirometry.  Specifically FEV1, measuring airflow limitation, is influenced by both regions of 

functional impairment and anatomical changes in the lung tissue microstructure and airway 

calibre.  Thus, FEV1 is a good indicator of disease presence, but cannot provide any information 

on the contribution of underlying structural impairments or ventilation abnormalities that 

contribute to airflow obstruction.  Furthermore, it does not give any indicator of the regional 

burden of disease, which is important for disease classification and guiding interventions and 

treatments.  Therefore, when airflow limitation is detected further examination is often required.  

Chest x-rays are most commonly used for subsequent evaluation, but provide extremely limited 

quantitative information.  CT is often the imaging modality of choice for high resolution 

pulmonary imaging.3  Using CT, it is possible to evaluate the lung microstructure by way of lung 

attenuation measurements3-6 and to evaluate the airways through measurements of the airway 

wall7-10, but the relationship these structural measurements have with lung function is often not 

clear.  Moreover, CT is associated with significant increase in radiation exposure compared to 

chest x-ray, and because of the high radiation dose, serial CT exams over short time frames and 

longitudinal studies are not practical or safe even in elderly subjects.  Thus, using clinically 

available imaging tools, lung structure can be probed without any information on the functional 

impact of structural abnormalities observed.  Nuclear medicine techniques could fill this 

functional imaging gap, but they too are associated with radiation dose, suffer from poor 

resolution, and deposition of tracer particles in the central airways.11,12  Given that loss of lung 

function often occurs regionally within the lung, and may be associated with changes in lung 

microstructure, airway remodelling, or both, an ideal imaging tool would allow for quantitative 
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measurements of functional impairments in both cross-sectional and longitudinal studies, in 

conjunction with measurements of underlying lung structure.2  

It is in this context that we embarked on developing quantitative measurements of lung function 

derived from hyperpolarized 3He MR images.  In this thesis we evaluated 3He MRI 

measurements of lung function in cross-sectional and longitudinal studies of healthy volunteers 

and subjects with smoking-related lung disease.  In regard to these measurements, we tested the 

following hypotheses: 1) metrics for quantifying 3He MR ventilation images have high short-

term reproducibility 2) changes in lung function occurring with normal healthy aging can be 

detected using measurements of functional 3He MR images, 3) functional and structural 3He MRI 

measurements of COPD subjects, taken together, can be used to stratify disease, and, 4) 

radiation-induced lung injury results in long-term changes in lung function that can be measured 

using 3He MRI.  

In Chapter 2, the same-day and seven-day reproducibility of VDV was evaluated from 3He MR 

images acquired at 3.0T.  Twenty-four age-matched subjects were imaged with 3He MRI twice 

within 7 ± 2 minutes and again 7 ± 2 days later.  Same-day and seven-day reproducibility were 

evaluated using ICC, CCC and linear regression.  Same-day VDV was highly reproducible for all 

subjects (ICC = 0.97, CCC = 0.98, r2 = 0.94), while seven-day VDV was significantly lower 

(p<0.01, ICC = 0.74, CCC = 0.75, r2 = 0.58).  Over the seven day time period there were no 

significant differences in FEV1 and FEV1/FVC.  ADC, derived from diffusion-weighted 3He 

MRI, was also evaluated for reproducibility over the same time period.  ADC was not 

significantly different at the seven minute or seven day time mark, and was found to be highly 

reproducible at both time points (same-day r2 = 0.93, seven-day r2 = 0.96).  This is the first study 

to report the reproducibility of VDV, and more importantly, the first to report on the 

reproducibility of any method for quantifying ventilation defects with 3He MRI.  Additionally, 

this is the first study to report on the reproducibility of 3He MRI evaluated at 3.0T.  Overall, in 

Chapter 2 we demonstrate that 3He MRI VDV has high short-term reproducibility, and therefore 

has potential as a non-invasive quantitative marker of lung function for use in clinical trials 
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evaluating new treatments, as well as in longitudinal and cross-sectional research studies of 

smoking-related lung disease.  

In Chapter 3, 3He MRI VDV was measured in a group of young healthy volunteers (mean age = 

44), and another group of elderly healthy volunteers (mean age = 67).  Images were acquired 

twice in one day, and again one week later to evaluate the inter-scan VDV variability.  Images 

were scored and analyzed by four trained observers to assess the inter-observer variability of 

VDV.  No ventilation defects were observed in the younger subjects, while in the older subject 

group, six of eight subjects had ventilation defects, with a mean VDV = 52 ± 34 cm3.  Same-day 

and seven-day COVs were 1.8% and 5.3% respectively, while the inter-observer COV ranged 

from 10-12%.  Overall, this study demonstrates that there are ventilation defects present in 

healthy elderly adults that are quantifiable using VDV, and that these age-related changes in lung 

function are highly reproducible over short time periods.  Smoking-related lung disease, 

specifically COPD, tends to occur in elderly individuals, and thus it will be important in future 

studies quantifying lung function using 3He MRI to differentiate between 3He MRI VDV likely 

related to age alone, and volumes likely related to both age and COPD in this elderly diseased 

population.   

In Chapter 4, functional and structural 3He MRI measurements were captured and used to stratify 

subjects with COPD according to the proportional contribution of these measurements to the 

overall sum of disease.  Twenty former smokers with mainly stage II and stage III COPD were 

imaged using 3He MRI at a single time-point.  Based on the relative contribution of normalized 

ADC and VDP, there was evidence of a predominant measurement in seven of the twenty 

subjects, three having mainly ventilation defects and four having mainly emphysema.  

Additionally, those with a predominant measurement had less overall disease, suggesting that 

mainly ventilation defects or tissue destruction develop early in the disease, with both being 

present at later stages.  This was the first study to explore the potential of 3He MRI derived 

measurements to stratify subjects with COPD, and results suggest that 35% of subjects had a 

single predominant measurement – which is in agreement with previously published CT data.9  

Further studies with increased sample size should be performed to evaluate 3He MRI based 
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measurements as a tool for phenotyping COPD.  With further validation, 3He MRI VDP and 

ADC phenotypes may allow for identification and selection of COPD subjects based on their 

baseline 3He MRI-derived phenotype for clinical studies.  Potential new treatments could then be 

evaluated in a specific 3He MRI phenotype, and specific underlying changes in lung function and 

structure evaluated.  

In Chapter 5, 3He MRI derived measurements of lung function were used for the longitudinal 

evaluation of subjects with a clinical diagnosis of radiation-induced lung injury.  Static 

ventilation and diffusion-weighted MR images were acquired 35 ± 12 weeks after radiation 

therapy began and again 22.0 ± 0.8 weeks later.  At baseline, PVV was significantly lower 

(p<0.05) in the ipsilateral diseased lung.  In four subjects returning for follow-up evaluation 

significant differences in both PVV and ADC were reported.  3He MRI PVV increased by 16% ± 

6% (p<0.05), and 3He ADC increased by 0.02 ± 0.01 cm2/s (p<0.01).  Hyperpolarized 3He MRI 

was well tolerated in all subjects with moderate to severe RILI.  Functional improvements and 

microstructural changes were observed in the contralateral lung, while the ipsilateral lung 

remained stable, suggesting that functional compensatory changes may have occurred in the 

contralateral lung due to ipsilateral radiation-induced lung injury.  These findings highlight the 

sensitivity of 3He MRI VDV to changes in lung function, and for the first time provide evidence 

of functional changes in the fibrotic stage of RILI.  Specifically, this is the first report to suggest 

that the lung has the ability to compensate for a severe, local functional injury by increasing its 

functional capacity in other regions. 

In Appendix A current methods for analyzing static ventilation images found in the 3He MRI 

literatre were described along with their limitations.  Specific needs for 3He MRI ventilation 

analysis were addressed, and most importantly methods needed for quantitative comparative 

analysis of 3He MR ventilation images acquired from the same subject at multiple time-points 

were described.  Requirements for image analysis include registration, signal normalization, and 

image subtraction for regional difference analysis.  Development of these quantitative tools will 

further establish the potential of 3He ventilation image-derived measurements as sensitive 

markers of regional lung function that can be used as an analysis tool in clinical trials.  
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Appendix B described a case study of a single subject imaged pre- and post-Airway Bypass 

(AB).  The subject was imaged over a four year time-period; at baseline, two years later, and 

again six and twelve months following AB.  In the two years between baseline and first follow-

up visit, there was a decrease in VDP that corresponded to a visually apparent worsening on the 
3He MR images.  Following the AB procedure VDV and VDP improved, which corresponded to 

a self-reported improvement according to the mMRC scale, along with an improvement in cycle 

ergometry test time.  Although the subject reported feeling better and visually apparent changes 

in ventilation were observed and quantified, there were minimal change in PFTs.  While this is 

the only subject in the Broncus AB study to have 3He MRI data, quantitative 3He ventilation 

results following therapeutic intervention showed an improvement, were reflective of the 

improvement in dyspnea scores (while PFTs did not show any change), and therefore highlight 

the potential of this technique as a sensitive measure of lung function in clinical trials.  

Here in Chapter 6 the conclusions that can be drawn from the studies presented in this thesis are 

addressed, as well as the limitations of these studies and possible future work that will expand on 

the work presented in Chapters 2-5.  The conclusions of this thesis are addressed in section 6.2, 

the limitations of the current studies and solutions are presented in section 6.3, and possible 

future studies are detailed in section 6.4. 

6.2 Summary of Conclusions 

Overall, we have presented a new method for quantifying 3He ventilation defects present in static 

ventilation MR images.  Measurements of ventilation defect volume are shown to have high 

same-day and moderate seven-day reproducibility in healthy volunteers and subjects with COPD.  

Furthermore, they are sensitive to changes in ventilation that occur with aging in healthy 

individuals.  The quantification of ventilation changes that occur with age is important, as lung 

diseases typically occur in elderly individuals, and it is important to differentiate between 

functional changes occurring due to age, and those occurring due to lung disease.  COPD, the 

most common smoking-related lung disease, is known to be a heterogenous disease and we have 

shown here that the quantification of ventilation defects in conjunction with the quantification of 

underlying microstructural abnormalities measured using 3He MRI can be used to stratify 
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subjects according to the proportion of these functional and structural measurements to the 

overall sum of 3He MRI measured disease.  This initial report suggests that 3He MRI may have a 

role to play in phenotyping COPD for treatment, and additional larger-scale studies will be 

needed to confirm this result.  Additionally, in a small group of subjects diagnosed with RILI 

post-radiation therapy, functional and structural changes were observed and quantified in the 

contralateral lung.  The improvement in contralateral lung function observed suggests that there 

is a compensatory effect following severe radiation injury to the ipsilateral lung.  Furthermore, 

the changes in contralateral lung microstructure observed over 22 weeks in this very small group 

of RILI subjects speaks to the sensitivity of 3He MRI ADC for detecting differences in lung 

microstructure longitudinally.  

In summary, we have provided: 1) evidence that VDV derived from 3He MRI images has high 

short-term reproducibility, 2) evidence of reproducible ventilation defects in healthy elderly 

subjects, not present in their younger healthy peers, 3) a new method for stratification of subjects 

with COPD based on 3He MRI derived VDP and normalized ADC, and, 4) evidence of 

longitudinal changes in function and structure of the contralateral lung in subjects clinically 

diagnosed with RILI.  

6.3 Limitations of Current Tools and Solutions 

The limitations of the studies presented in this thesis are discussed in this section, along with 

recommended solutions to address these limitations in future studies.  A number of limitations 

addressed in this section are common to multiple studies described in this thesis, while others are 

study specific.  This section begins by addressing the study-specific limitations in sub-section 

6.3.1, while general limitations are discussed in section 6.3.2. 

6.3.1 Study Specific Limitations 

In Chapter 2 and 3, VDV was measured from hyperpolarized 3He MRI.  One of the primary 

goals of the initial 3He MRI study of healthy elderly subjects and subjects with COPD was to 

assess the reproducibility of 3He MRI measurements of the ADC; measurements of ventilation 

derived from these images was a secondary marker and therefore did not drive the data collection 
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scheme/MR pulse sequence design.  The ADC is calculated from DWI, which have inherently 

thicker slices than 3He MR spin density images for the same breath-hold/imaging time, given 

that a diffusion and non-diffusion weighted image are captured for each slice of the DWI series.  

For the calculation of VDV the first of the interleaved diffusion-weighted pair of images was 

used.  The thickness of the slices was 30mm, and therefore the ventilation defect area segmented 

was multiplied by 30mm, representing signal contribution from the entire slice.  Given the slice 

thickness of the images used for image analysis, it is possible that the VDV values presented 

over-estimate the true ventilation defect volume, and thus should be taken as an estimate of the 

true VDV of the lung.  Additionally, the use of DWI results in images with a lower signal-to-

noise ratio than would be obtained had spin-density images been acquired for VDV 

measurements.  Thus, acquiring a spin-density image set or perhaps a three-dimensional 

volumetric image set would allow for thinner slices and an improved signal-to-noise ratio.  It will 

be important to evaluate thinner slices using spin density images, especially in a young healthy 

volunteer cohort to determine whether this group truly did not have any ventilation defects, as 

reported, or whether the thick slices and increased SNR perhaps mask the very small ventilation 

defects that have been reported in the literature in groups of similar age and health status.13,14  

A second limitation present in Chapters 2 and 3 is that proton images acquired just prior to 3He 

MRI were not bag-matched to the 3He MRI breath-hold scans.  In follow-up studies 1H scans 

were acquired following inhalation of 1.0 L of 4He/N2 at the same dosage used for 3He/N2 

ventilation imaging.  This approach allowed for rigid registration of proton and helium scans, 

allowing for clear delineation of the thoracic cavity border, and aided in ventilation defect 

segmentation.  However, this was not the approach used in Chapter 2 and 3, when proton images 

were acquired during a breath-hold at peak-tidal volume.  Therefore, the VDP measurement used 

in Chapter 4, and PVV measurement used in Chapter 5 and pioneered by Woodhouse and co-

workers15, could not directly be assessed.  In subjects with COPD, proton and helium images 

were registered, and despite these differences in image acquisition techniques, 3He MR images 

visually appeared to have good registration in most COPD subjects, while healthy elderly 

subjects had poorer registration on visual inspection making ventilation defect delineation 

difficult.  Without a normalized measurement such as VDP or PVV, a true inter-subject 
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comparison of the extent of ventilation defects in the lung was not possible.  In all future studies, 

this limitation was addressed by acquiring bag-matched 1H MRI.   

One of the major limitations of the work presented in Chapters 2-5 is the small sample size, each 

with a study specific impact.  In Chapter 2, the group of healthy volunteers had eight subjects, 

while the Stage II and III groups had nine and seven subjects respectively.  The small sample 

size was selected to detect between group differences in ADC, and was calculated based on ADC 

and ADC standard deviation (SD) results published by Salerno and co-workers16.  This sample 

size may have limited the power necessary to detect differences between VDV in the elderly 

healthy volunteer and stage II COPD subgroups, which in this study were not statistically 

significant.  However, it is also possible that the reported VDV in subjects with stage II COPD is 

not due to COPD, but rather predominantly due to aging.  Another possibility that would explain 

the large VDV SD is related to underlying 3He MRI phenotypes in the stage II COPD 

population; a subset of the stage II subjects were likely ADC dominant, having a VDV was due 

to age alone while another subset had elevated VDV due to both age and COPD (VDP or mixed 

phenotypes).  In Chapter 3, the small sample size of the elderly subgroup may have resulted in an 

over- or under-estimation of true population ventilation defect volume; however, it is clear that 

ventilation defects do occur in the elderly, and these defects should not be confused with 

functional abnormalities related to COPD or other lung diseases.  The small sample size in 

Chapter 4 of twenty subjects resulted in stage II and stage III COPD subjects forming the basis 

of the COPD group evaluated (one subject with stage I disease was included).  The limited 

sample size evaluated, made up of a small group of mainly stage II and III COPD, indicates 

caution should be exercised in extrapolating the results presented in this chapter to the general 

COPD population, and more specifically, more advanced or less severe COPD groups (stage 

I/IV).  In Chapter 5, the small sample size at baseline (n=7) and follow-up (n=4) may have 

restricted the detection of differences in functional measurements acquired longitudinally in the 

ipsilateral lung.  Additionally, an increase in sample size in this study may have allowed for the 

detection of a significant difference in ADC between lungs at baseline (p=0.053 in seven 

subjects), and longitudinal change in ADC in the ipsilateral lung.  Thus, increasing sample size 
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in future studies using 3He MRI will increase the power and likely lead to an increase in the 

number of differences detected between subject groups.  

A further limitation in Chapter 3 is the lack of follow-up data for the younger subgroup.  Because 

no defects were present at baseline in any subjects in this young healthy subgroup no follow-up 

data was acquired.  Therefore, it is not known what the short-term reproducibility of this finding 

is.  However, in two young healthy subjects imaged at multiple time points as part of a hardware 

and software development protocol no ventilation defects were observed in any of the scans 

collected.  Despite this observation, it would be valuable to continue scanning younger healthy 

volunteers, and to evaluate the short-term reproducibility of ventilation images in these subjects 

given that previous reports of young healthy volunteers do report the presence of ventilation 

defects.13,14   

One specific limitation present in Chapter 5 is the lack of other clinical parameters collected for 

study purposes.  Subjective information regarding post-radiation respiratory difficulties was not 

obtained, and would have been useful in evaluating the impact of functional changes measured 

with 3He MRI on quality of life scores.  Additionally, information related to treatment regime, 

specifically course of chemotherapy, smoking history and use of oxygen post-treatment, if 

collected, could give further information in relation to the functional changes reported in this 

study.  

6.3.2 General Limitations 

One major limitation of the studies presented in this thesis is the lack of data collected from other 

imaging modalities in conjunction with 3He MRI, specifically CT data that could have been used 

for validation purposes.  CT has largely been used both clinically and as a research tool for 

quantifying attenuation, related to the lung parenchyma3-6, and airway wall dimensions.7-10  

Although a limited number of studies have compared ADC measured from diffusion-weighted 
3He MRI to attenuation on CT17, to date there has not been a direct comparison of 3He ventilation 

defect measurements to airway wall dimensions.  It is hypothesized that 3He MRI VDV in 

subjects with COPD is the result of underlying airways disease, and therefore measurements of 
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airway dimension on CT would provide important complimentary information on airway 

structure leading to the ventilation defects that could be used to test this hypothesis.  In relation 

to the work presented in Chapter 4 regarding the classification of COPD based on 3He MRI 

measurements, similar work has been done by Nakano and co-workers using CT9, and a direct 

comparison of these two techniques in the same COPD subject group would provide further 

insight into the surrogate measures of underlying emphysema and airways disease captured by 

these respective imaging modalities.  Additionally, the registration of 3He MRI to CT data in 

Chapter 5 could have potentially been used to correlate regions of ventilation defect with areas of 

fibrosis on CT, providing a direct link to the etiology of these regions of signal void on 3He MRI.  

Furthermore, in all studies presented here, registration of 3He MRI with CT images would allow 

for a breakdown of ventilation defect analysis by lobe.  In Chapter 2, the measurement of lobar 

VDV could be evaluated for reproducibility, which would have the potential to further solidify 
3He MRI as a highly reproducible technique for evaluating regional pulmonary ventilation.  

Overall, CT data collected in conjunction with 3He MRI would aid in validating 3He MRI 

measurements against more established CT images, and potentially provide some explanation as 

to the underlying structural abnormalities that result in diminished ventilation.  Finally, nuclear 

medicine techniques would have been valuable for cross-comparison purposes, especially in 

Chapter 5, where blood flow measurements would have provided important complimentary 

information to the ventilation results.  We hypothesize in Chapter 5 that the increase in PVV in 

the contralateral lung may be due to a compensatory increase in ventilation due to the diminished 

ventilation in the ipsilateral lung.  Measurements of blood flow from PET would show whether 

this ventilation improvement translates to a true improvement in contralateral lung function due 

to a corresponding improvement in blood flow, or whether the increase in ventilation is not 

mirrored by an increase in blood flow, simply resulting in a ventilation-perfusion mismatch in 

the contralateral lung.  

The second overall limitation is that the etiology of ventilation defects is currently unknown.  

While we hypothesize that VDV is reflective of underlying airways disease in subjects with 

COPD, closing volumes in healthy elderly subjects and radiation fibrosis in subjects with RILI, 

to date there is no direct evidence to affirm these hypotheses.  There is also the possibility that 
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ventilation defects occur in COPD due to bullous disease, representing structural changes in lung 

parenchyma rather than the hypothesized changes in lung airway structure, or a combination of 

the two.  Without knowing the underlying cause of the ventilation defect, it is difficult to 

determine whether 3He MRI is truly sensitive to underlying changes in airway structure that may 

be associated with aging, COPD or fibrosis.  Therefore, histological data is necessary to ascertain 

the direct cause of ventilation defects observed and measured using 3He MRI.  Given that this is 

a potentially difficult task to accomplish in humans, a secondary method of validation would be 

through multi-modality imaging studies.  High resolution CT can provide structural information 

regarding both airway dimensions and lung parenchyma, and thus could be used in conjunction 

with 3He MRI to correlate ventilation defects to regions of inflamed, thickened airways, bullae, 

or fibrosis.   

Finally, one major limitation of all studies presented here is the limited translation of this 

technique for more widespread research investigating lung diseases in both the research setting 

and for use in guiding therapy or as an endpoint in clinical trials.  There is an extremely limited 

supply of helium-318,19, and therefore further follow-up studies stemming from the studies 

presented here may not be possible.  It has been pointed out in previous paragraphs that 

increased sample sizes are needed in future studies to expand on the promising results of these 

small studies, which will likely not be possible given the current gas supply.  Therefore, 

validation of this technique may not be necessary, but rather these studies should be reproduced, 

perhaps on a larger scale, with 129Xe, which is set to replace 3He as the noble gas contrast agent 

for hyperpolarized gas MRI.20-22  Thus, previous solutions for limitations addressed in the 

previous paragraphs would be better suited using 129Xe, which is likely to have increased 

translational value in the clinical research setting. 
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6.4 Roadmap for Future Studies 

6.4.1 Quantification of Lung Disease in Patients Diagnosed with Non-

Resectable Lung Cancer using Hyperpolarized 
3
He MRI 

Combining the work presented in Chapters 4 and 5, we are currently evaluating potential 

functional and structural measurements derived from 3He MRI to be used as predictors of 

radiation-induced lung injury.  Lung cancer and COPD are both diseases of tobacco smokers, 

thus many patients diagnosed with lung cancer will also have underlying, and potentially 

undiagnosed COPD.  Inflammation is the hallmark of both COPD and RILI and we hypothesize 

that imaging measurements of airway function (airway disease or inflammation) and airspace 

structure (emphysema) provide a way to predict the enhanced and prolonged inflammatory 

response to radiation.  Previous studies however have failed to establish that spirometric (FEV1) 

and other standard measurements of COPD severity are predictive of RILI23, likely because 

spirometry provides a global measurement of disease, and thus tumour burden and underlying 

COPD have a confounding effect on results.  Therefore, in a study currently underway, we aim 

to evaluate measurements of airway function and tissue destruction typical of COPD in the 

contralateral lung only using 3He MRI, to determine whether they may be useful for predicting 

RILI onset.  The findings presented in Chapter 4, demonstrating the potential of 3He MRI to 

categorize subjects into subgroups according to predominant measures of underlying disease, 

have led to the current study using hyperpolarized 3He MRI to measure the contribution of ADC 

and VDP to total disease measured in the contralateral lung of patients prior to radiation and 

evaluate these phenotypes as predictors of RILI.  In this study, we hypothesize that quantification 

of ventilation using 3He MRI in patients with advanced lung cancer scheduled for radiation 

therapy can be used to quantify underlying lung disease, and will be predictive of treatment 

outcomes.  

To date, 17 subjects recruited from the London Regional Cancer Program scheduled for radical 

radiation therapy (>60Gy) have enrolled in the study, and provided informed consent.  

Pulmonary function tests including spirometry, plethysmography and DLCO were performed, 

followed by MRI in a single study visit as described in Chapters 2-5, prior to the first scheduled 
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radiation treatment.  MRI images were analyzed, and VDP and ADC% were measured in the 

contralateral lung independently (to avoid confounding results due to tumour burden) according 

to the methods outlined in Chapter 4.  Briefly, ADC measurements taken from the contralateral 

lung were scaled from 0-100% using an ADC range of 0.24cm2/s to 0.88cm2/s, based on the 

expected healthy ADC value of the youngest subject (47 years old) based on results published by 

Fain and co-workers24, and the maximum ADC value for helium in an infinitely large 

container.25  The scaled ADC% values and VDP values were summed to obtain an overall 3He 

MRI total disease measurement.  CT data collected for diagnosis, treatment planning and follow-

up as part of standard care were acquired for interpretation of radiological changes following 

radiation therapy.  CT images will be evaluated for radiological evidence of RILI by a radiologist 

specializing in thoracic imaging, and a radiation oncologist with an expertise in lung cancer, 

according to criteria previously published by Palma and co-workers.26       

Results to date indicate that 9 of 17 subjects (53%) were VDP dominant, while the remainder 

had mixed disease according to 3He MRI VDP and ADC% measurements.  Interestingly, no 

subjects had ADC dominant disease according to 3He MRI measurements of the contralateral 

lung.  Representative VDP dominant subjects are shown in Figure 6-1, representative mixed 

subjects are shown in Figure 6-2 and all subjects ranked by total disease are shown in Figure 6-3.  

Total disease (sum of ADC% and VDP) was significantly different (p<0.001), and greater in the 

subjects with mixed disease.  Additionally, linear regression showed relationships between VDP 

in the contralateral lung and FEV1%pred (r
2=0.57, p<0.001), FEV1/FVC (r2=0.36, p<0.05), and 

DLCO (r2=0.50, p<0.01), while contralateral ADC showed a linear relationship with the same 

pulmonary function test measurement (FEV1 %pred r2=0.45, p<0.05; FEV1/FVC r2=0.63, 

p<0.001; DLCO r2=0.69, p<0.001).  Future analysis will determine if these underlying phenotypes 

play a role in RILI development.   
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Figure 6-1: Representative 
3
He VDP dominant subjects 

Static ventilation images are shown in (i), and ADC maps are shown in (ii) for subjects 016 (A), 018 (B) 
and 015 (C) for lung cancer subjects classified as VDP dominant according to 3He MRI measurements of 
the contralateral lung (left lung in all cases shown).  
 
 

Figure 6-2: Representative 
3
He mixed subjects 

Static ventilation images are shown in (i), and ADC maps are shown in (ii) for subjects 013 (A), 005 (B) 
and 017 (C) for lung cancer subjects classified as having mixed disease according to 3He MRI 
measurements of the contralateral lung (left lung in A and B, right lung in C).  
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Figure 6-3.  3He MRI VDP and ADC% contribution in the contralateral lung of Lung Cancer Subjects 
VDP and ADC% values are expressed as a percentage of the total 3He MRI disease. * are VDP dominant. 
 
  
Overall, VDP and ADC% measurements may provide sensitive and specific markers for 

predicting the development, severity and progression of RILI, with the potential to effect patient 

care by allowing for radiation treatment planning evaluation in identified high risk patients.   

6.4.2 Ventilation Defect Etiology 

In this thesis we demonstrated that VDV and VDP measured from hyperpolarized 3He MRI are 

sensitive and highly reproducible markers of lung ventilation.  3He derived measurements of 

VDV and VDP have potential as a novel marker of regional pulmonary ventilation abnormalities 

in longitudinal and cross-sectional studies of lung disease in clinical trials aimed at evaluating 

new therapeutics.  Before this goal can be reached, the etiology of ventilation defects needs to be 

determined.  

To determine the etiology of ventilation defects, there are a number of potential studies that 

could be performed.  Histological validation would of course provide concrete evidence as to the 

underlying pathology leading to regions of signal void on 3He MRI in the lung.  3He ADC has 

been validated in histological studies in canines and humans27,28, and should be extended in 

future studies for evaluating ventilation defect etiology.  Woods and co-workers performed the 

first and only human study assessing 3He gas diffusion in patients prior to lung transplantation, 

with subsequent morphological analysis in the explanted human lung.28  To evaluate the cause of 
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ventilation defects, a study following the same protocol should be performed, with 3He spin 

density images replacing the DWI, and used to guide the histological sampling of areas 

surrounding the defect and within the area of the ventilation defects.  Sampling areas within the 

ventilation defects would allow for the evaluation of the parenchyma in the region of the defect, 

to determine whether or not bullae were present and might have contributed to the region of 3He 

signal void.  Areas of the lung preceding the ventilation defect should also be sampled and 

evaluated with specific attention on the small airways leading to the ventilation defect.  Hogg 

and co-workers have carefully characterized small airways disease in COPD using histology, and 

this seminal work should be used to help guide the airways analysis.1,29  Histological analysis 

using the techniques described here should be performed in a subject cohort with well described 

ventilation defects prior to lung transplantation.  

Additionally, multi-modality studies should be performed using CT and 3He MRI.  These studies 

should evaluate associations between airway dimensions preceding ventilation defects in the 

airway tree, and quantification of areas of low attenuation within the ventilation defect.  Coxson 

and co-workers as well as Nakano and co-workers have probed airway dimensions using CT in 

previous studies of COPD.5,7,9,30  The measurements they have previously employed could be 

applied in a multi-modality study incorporating 3He MRI.  Such a study would require 

registration of 3He MRI to CT images, and would also require that CT images be collected in a 

similar breath-hold fashion to mimic the 3He MRI scan, thus emulating the conditions of the 

airways and parenchyma during the 3He MRI scan.  Association between airway dimensions, 
3He VDV and a regional overlap analysis of bullae and ventilation defects should provide further 

insight into the etiology of the signal void on 3He MRI. 

6.4.3 Hyperpolarized Noble Gas MRI Phenotypes of COPD 

Another key future study that should be performed is a follow-up to the study presented in 

Chapter 4, using measurements derived from 3He MRI to classify patients with COPD according 

to the proportion of 3He MRI measured disease.  The follow-up study should begin with a large 

cross-sectional sample of subjects with COPD, with cohorts of subjects from all four stages of 

disease.  This diverse population will aid in understanding potential underlying phenotypes that 
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exist across all stages of COPD, detectable through measurements derived from 3He MRI.  A 

larger sample size than previously studied will allow for more sophisticated statistical analysis, 

such as principal component analysis, probing underlying COPD phenotypes detected using 3He 

MRI.  Furthermore, this will enhance our understanding of the proportion of subjects with 

ventilation defect dominant, ADC dominant and mixed disease based on 3He MRI in early stages 

of COPD as compared to the proportion of each subgroup in the later stages of disease.  

Additionally, these subject cohorts should be followed longitudinally to determine how 

individuals progress from one classification to another, and how changes in disease severity 

effect 3He MRI disease classification. 

6.4.4 Hyperpolarized 
129

Xe MRI: Ventilation Defects in Health and Disease 

Finally, and as previously eluded to, there is a shortage of 3He that limits the future translation of 

this technique.  Currently, studies are underway to evaluate 129Xe as a 3He replacement for 

hyperpolarized noble gas MRI in human studies.20-22,31-33  Initial studies using 129Xe MRI in 

humans have been completed, and the results from these studies are promising.20,31-33  Studies 

presented in this thesis should be repeated using 129Xe, to evaluate the short-term reproducibility 

of VDV and VDP measured from 129Xe MR images, as well as the sensitivity of VDP derived 

from 129Xe MR images to age- and disease-related changes.  129Xe will not only be able to probe 

alveolar diffusion and ventilation, but it also has the advantage of being a probe for 

transmembrane diffusion.21,31-33  129Xe is soluble in blood and tissue, and during MR imaging, 

exhibits a readily discernible frequency shift and retains longitudinal relaxation times of several 

seconds.31-33  Thus, using hyperpolarized 129Xe as an inhaled contrast agent for MR imaging, the 

intraalveolar diffusion, ventilation and transmembrane diffusion can all be evaluated.  Future 

studies using 129Xe will be particularly useful in the evaluation of RILI.  Probing the transfer of 
129Xe from the alveolar spaces into the capillaries provides information on the thickness of the 

tissue barrier separating the air spaces and capillaries.  Differences detected in thickness of the 

alveolar tissue, especially thickening in regions will likely be associated with regions of inflamed 

and fibrosed tissue following radiation therapy.  Overall, the addition of xenon transfer constant 

measurements that accompany 129Xe MRI may have a potential role in RILI as an early marker 
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of injury onset.  This will largely depend on the sensitivity of 129Xe MRI xenon transfer constant, 

which will require evaluation in preliminary studies of this technique.  

Overall, studies of lung function using surrogate measurements of ventilation derived from 

hyperpolarized gas MRI should be further developed.  VDV and VDP hold promise as non-

invasive, sensitive markers of lung function that will be useful in longitudinal and cross-sectional 

studies of lung disease, specifically in research studies evaluating the functional burden of 

structural disease changes and clinical trials evaluating new therapeutics.  

6.5 Impact and Significance 

Overall, in this thesis we have introduced a novel method for quantifying regional and total lung 

ventilation from 3He MR static ventilation images.  VDV and VDP, with high short-term 

reproducibility, are sensitive to age-related differences in lung ventilation, and changes in lung 

function following treatment in subjects with lung cancer.  Furthermore, they can be used to 

phenotype subjects with lung disease according the magnitude of functional impairment and the 

magnitude of structural impairments.  The results of studies presented in this thesis provide a 

foundation for future studies using 3He MRI aimed at evaluating longitudinal or treatment related 

changes in lung function in subjects with smoking related lung disease.  Additionally, VDV and 

VDP measurements are translatable, and can be used to quantify lung function from 129Xe MR 

images.  3He MRI derived VDV and VDP are sensitive metrics of lung function and can be used 

both independently and in conjunction with structural 3He MR imaging measurements to gain a 

more complete understanding of the lung in health and disease.  
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Appendix – A: Hyperpolarized 3He Magnetic Resonance 

Pulmonary Imaging: Image Processing Tools for Clinical 

Research 
 
The work presented in this chapter has been previously published in Conference Record on the 

Forty-Second Asilomar Conference; Signals, Systems and Computers as follows.  
L. Mathew, A. Wheatley, DG McCormack, G. Parraga. “Hyperpolarized 

3
He Magnetic Resonance 

Pulmonary Imaging: Image Processing Tools for Clinical Research” Conference record on the Forty-

second Asilomar Conference Signals, Systems and Computers, 2008.  

A.1 Introduction 

Chronic obstructive pulmonary disease, (COPD) is a leading cause of death worldwide1, and 

continues to grow in prevalence.2  The worldwide Burden of Obstructive Lung Disease (BOLD) 

study recently reported that 10% of the world’s adults 40 years and older have clinically relevant 

COPD.3,4  Surprisingly, the world-wide COPD prevalence in never-smokers was between 6 and 

15%, only slightly lower than for tobacco smokers.5 

Despite decades of active research, as well as the staggering and growing societal burden of 

COPD, therapeutic breakthroughs have not occurred, largely because of: 1) inadequate patient 

phenotyping of underlying pathology, 2) an incomplete understanding of COPD pathogenesis, 

and, 3) a scarcity of sensitive tools that can track disease changes.  These limitations are critical 

considerations when treating patients and evaluating clinical trials because the intermediate 

endpoints currently in use (such as lung function measured using spirometry) are poor surrogates 

for long-term outcomes -the ultimate target of new treatments.   In response to these serious 

limitations, non-invasive imaging techniques have been recently proposed by Hogg6 as potential 

solutions, because they may provide in vivo phenotypes of lung pathology and function that can 

be used for testing new treatments and to personalize patient therapy. 

Computed tomography (CT) has emerged as a research and clinical tool because it provides high 

resolution images of pulmonary anatomy, and quantitative information about lung tissue 

structure.  However, CT is also associated with a small, but potentially significant radiation 

burden that limits “dynamic” imaging of the lung and longitudinal imaging in certain patients.  
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Hyperpolarized helium-3 (3He) magnetic resonance imaging (MRI) has recently emerged as 

another research approach7-11 for the non-invasive measurement of lung structure and function, 

including conduction of gas through airways and into airspaces.  Preliminary studies suggest that 
3He MRI may be ideally suited for longitudinal respiratory research, which is a likely target 

application of this novel technology.  3He MRI provides a complementary and alternative 

method for evaluating respiratory disease and may be superior to CT because it allows 

simultaneous visualization of both airway and airspace structure and function at high spatial and 

temporal resolution. Two major pathological phenotypes that can be directly measured in 

respiratory disease involve changes in the airways and airspaces, which in COPD are reflected in 

emphysema and airways disease.
12  Emphysema is defined histologically as an abnormal 

permanent enlargement of the lung parenchyma (or airspace) beyond the terminal bronchioles 

with destruction of the alveolar walls.13   Hogg and coworkers14 have recently identified that 

pulmonary inflammation is associated with both tissue proliferation in the airways  (manifested 

as airways disease) and tissue destruction in the respiratory bronchioles (manifested as 

emphysema), these sites separated by only a few micrometers.  In this regard it is important to 

note that a major goal of COPD research in particular and respiratory research in general is to 

find a way to differentiate patients with these underlying disease pathological “phenotypes” 

because the treatments required for the different pathologies are conceptually and practically 

very different.  For decades, the concept of pathology-based respiratory treatments has been 

explored with the notion that this could result in more efficacious and personalized patient care.  

However, it remains difficult, if not impossible, to phenotype (i.e. measure the physical or 

pathological characteristics of) patients in vivo based upon underlying disease pathology.   

A handful of research centres world-wide have pioneered the use of inhaled hyperpolarized 

noble gases such as 3He for lungs imaging.7,9-11,15-20 The images acquired provide both 

anatomical and functional information of the respiratory system that have never before been 

attained.  Of the numerous and novel hyperpolarized 3He MRI measurements that can be 

obtained, the 3He ventilation defect and ventilation volume provides an opportunity to visualize 

(with 1x1mm in-plane resolution and 15-mm slice thickness) and quantify those areas of the lung 

that participate in ventilation and those that do not.  As shown in Figure A-1, in healthy young 
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adults, a single inhalation of hyperpolarized 3He gas results in homogeneous signal suggesting 

that all areas of the lung are participating equally in ventilation.  In contrast, characteristic 

volumetric “focal” defects are observed in COPD, corresponding to areas of the lung that are not 

ventilated or are poorly ventilated within the time-course of a typical 8-16s breath hold scan.   

 

Figure A-1: Clinical Hyperpolarized 
3
He

 
Magnetic Resonance Imaging. 

A. functional imaging in a healthy volunteer during a 15 second 3He breath hold, no ventilation defects 
are seen B. a subject with stage III COPD with large regions of signal void (ventilation defects), and C. a 
subject with exercise induced asthma showing focal ventilation defects. 

As shown in Figure A-2, scoring methods have been developed and used to provide quantitative 

regional 3He ventilation defect scores21,22 whereby focal ventilation defects are counted and a 

defect score/slice is generated.  For example, one of the currently used tools for quantifying 

regions void of 3He signal  team of radiologists to count them on a slice by slice basis, and 

dividing by the total number of slices to get the mean number of ventilation defects per slice 

(VDS). 21,22 Another method shown in Figure A-3 relies on defect scoring by consensus, whereby 

a group of three radiologists would review all slices of the 3He MRI and estimate the percentage 

of the lung that appears not to be ventilated.23  These techniques are subject to interpretation, 

observer bias and potentially less sensitive to the physiological changes that appear to take place 

in the lung.  In addition, in longitudinal studies where focal ventilation defects often change in 

size as compared to the number of defects, consensus defect and ventilation scoring methods 

often fail to reveal physiological truth because we and others have observed that ventilation 

defects often grow in volume as compared to number over time.  
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Figure A-2: Ventilation Defect scoring of 
3
He MRI. 

Ventilation defect scoring of the center slice is shown for A. asthma subject at baseline, B. asthma subject 
5 minutes post-exercise, C. asthma subject 55 minutes post-exercise. This demonstrates the lack of 
information VDS yields- specifically changes in size and location of defects. 

Therefore, in order to accelerate the use of 3He MRI in clinical longitudinal research, new image 

analysis, image visualization and processing/segmentation tools are required that account for the 

physiological changes that potentially can occur and that provide appropriate continuous 

statistical endpoints.  We hypothesize that 3He MRI can be analyzed to provide information 

about how lung regions which are not receiving ventilation change over time, and how potential 

treatments will affect these unventilated regions. In order to do this, tools that can quantify 

differences in ventilation are needed, which are both sensitive and specific to regional changes in 

ventilation over time.  These types of tools will have the capability to assess not only regions of 

signal void, but also regions that are decreasing in ventilation over time- possibly predicting the 

location of a future ventilation defect. Hyperpolarized 3He MR ventilation images contain the 

information necessary to quantify regional changes in lung function, and thus the aim of this 

paper is to outline the exact tools needed for this to occur. Here we propose preliminary results 

of novel image processing tools we have designed to account for these differences and address 

the outlined image processing needs are described below. 

A.2 Methods 
Subjects with asthma and stage II and stage III COPD were recruited for various studies at our 

site. All subjects provided written informed consent to the study protocols approved by the local 
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ethics board and Health Canada. Longitudinal time points ranged from same-day rescan to a 2-

year follow up study. 

 

Figure A-3: Ventilation Defect Evaluation: Estimation by Consensus. 

Ventilation defect estimation by consensus is shown in the centre slice for A. asthma subject at baseline, 
B. asthma subject 5 minutes post-exercise, C. asthma subject 55 minutes post-exercise. Binning of 
ventilation abnormalities into groups such as mild-moderate and severe is shown to be an insensitive 
technique for assessing ventilation and ventilation differences. 

A.3 Results 

A.3.1 Image Visualization 

Image analysis was performed in a controlled lighting environment.  For the purposes of 

visualizing and scoring images at baseline and follow-up, images from each visit were compared 

visually on side-by-side monitors.  For direct visualization of differences in signal intensity in 

baseline and two year follow-up images were changed to red and blue colour scales respectively.   

These images were previously registered based on main airway anatomy as described below. Red 

baseline and blue follow-up images were then summed on a pixel-by-pixel basis, with the 

resulting image showing the contribution of each scan as visualized through the pixel hue. 

 

A.3.2 Image Registration 

Hyperpolarized 3He MR images acquired at different time points require image registration 

before they can be directly compared. This may be possible by rigid registration of points 
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surrounding the trachea, right and left bronchi, and carina. In order for registration to be 

successful points used must be present at each time point. Image registration in this preliminary 

study was performed using a manual image registration of specified points- most consistently the 

carina, but also points along the perimeter of the trachea. An expert observer selected points in 

images acquired at each time point and then manually aligned them using in-house software. 

A.3.3 Signal Normalization 

Following image registration 3He signal normalization is necessary. This is due to the fact that 

there are both physiological and non-physiological reasons for differences in signal intensity of 

pixels in images from the same subject at different time points. Differences in 3He signal 

intensity due to physiological reasons such as changes in disease should be measured, but prior 

to this non-physiological reasons for differences in 3He signal intensity must be accounted for. 

These reasons include minor differences in absolute polarization of the 3He when it leaves the 

polarizer, and differences in the amount of time that it takes to get the 3He from the polarizer and 

into the patient. Finally non-physiological differences in signal intensity may be due to the exact 

amount of gas inhaled, as subjects with severe disease may struggle to inhale the complete 1.0L 

of gas while in the supine position.  

For all images the mean and standard deviation of the background noise was computed from four 

30x30 pixel regions of interest. A threshold of the mean background noise plus two standard 

deviations of the background noise was applied. In this preliminary study, no signal 

normalization was performed and window and leveling was not changed to account for non-

physiological differences in signal intensity. 

A.3.4 Image Subtraction 

Once image registration was complete image subtraction was performed using two different 

methods. First, the absolute signal intensity difference was calculated on a pixel-by-pixel basis. 

Baseline visit images were subtracted from follow-up visit images.  Results were displayed in 

colour showing a full range of differences in intensity from -255 to +255. Second, normalized 

image subtraction was performed to show the percentage change from baseline as shown in 

Figure A-4 and Figure A-5 for subjects with COPD and radiation-induced lung injury 
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respectively.  This was done by dividing the absolute subtraction image pixel values by baseline 

image pixel values. Pixels resulting in the normalized subtraction image were calculated on a 

pixel-by-pixel basis.  If the absolute difference between pixels was zero, normalization values 

were automatically set to zero. In cases where the follow-up pixel intensity was not equal to zero 

and the corresponding baseline pixel signal intensity value was equal to zero, the normalized 

value was set to positive or negative 110% based on the follow-up pixel value. In order to 

visualize regions of change less than 100%, output image normalization values greater than 

110% were scaled to 110%.  This enabled visualization of minor ventilation differences. 

A.4 Conclusion 

3He MRI measurement precision, sensitivity and specificity are required in order to translate 

these surrogates as intermediate endpoints in clinical research. To accomplish this, novel image 

registration, signal normalization and image subtraction methods are under development for 

asthma, COPD, cystic fibrosis and radiation-induced lung injury.  
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Figure A-4: Image Processing for a Subject with Stage III COPD. 

A. baseline, B. two-year follow-up, C. image addition – baseline is red and two-year follow-up is blue, D. absolute image subtraction 
(baseline – follow-up) on a pixel-by-pixel basis, E. normalized image subtraction ((baseline – follow-up)/baseline) on a pixel-by-pixel 
basis.   
 

 

Figure A-5: Image Processing for a Subject with Radiation-induced lung injury. 

A. baseline, B. five month follow-up, C. image addition – baseline is red and two-year follow-up is blue, D. absolute image subtraction 
(baseline – follow-up) on a pixel-by-pixel basis, E. normalized image subtraction ((baseline – follow-up)/baseline) on a pixel-by-pixel 
basis.  Mis-registration is evident in the lower right lobe, suggesting that registration based on points beyond the trachea and main bronchi 
may be necessary. 
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Appendix – B: Hyperpolarized 3He Magnetic Resonance 

Imaging Biomarkers of Bronchoscopic Airway Bypass 

in COPD 

 
The work presented in this chapter has been submitted to Journal of Magnetic Resonance 

Imaging for publication (submission # JMRI-10-0886).  
L. Mathew, M. Kirby, D. Farquhar, C. Licskai, R. Etemad-Rezai, DG McCormack, G. Parraga 

“Hyperpolarized 
3
He Magnetic Resonance Imaging Biomarkers of Bronchoscopic Airway Bypass 

in COPD” Submitted to J Magn Reson Imaging, January 2011. 

B.1 Introduction 

Pulmonary functional imaging using hyperpolarized helium-3 magnetic resonance 

imaging (3He MRI) provides quantitative regional pulmonary functional information with 

high sensitivity to longitudinal changes in chronic obstructive pulmonary disease 

(COPD).1  In the case of lung functional changes in COPD after drug2 or direct airway 

interventions3 a discordant relationship has been previously reported between 

symptomatic improvements measured using quality of life scores, and pulmonary 

function tests.4  Until very recently, the use of pulmonary imaging methods has been 

limited to the evaluation of structural lung changes.  Here, we report the first case of an 

elderly ex-smoker with severe emphysema who was monitored longitudinally for 2 years 

before, and 1 year after bronchoscopic Airway Bypass (AB) using 3He MRI for the 

quantitative evaluation of functional lung changes. 

B.2 Case Report 

A 73-year old male ex-smoker with GOLD stage III COPD underwent AB in February 

2009 as part of the Exhale Airway Stents for Emphysema (EASE) Trial.  AB is an 

investigational procedure that involves Doppler-guided transbronchial delivery and 

airway insertion of drug-eluting stents (Exhale® Drug-Eluting Stent, Broncus 

Technologies, Inc., USA) with the aim being connection of the segmental airways to 

adjacent lung tissue allowing trapped gas to be exhaled.  Written informed consent was 

provided to a Health Insurance Portability and Accountability Act (HIPAA) compliant 

protocol approved by a local ethics board, and Health Canada.  Thirty-two months prior 

to AB (June 2006), he reported a 70-pack-year smoking history, having ceased smoking 
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approximately 13 years earlier, and was enrolled in a longitudinal hyperpolarized 3He 

MRI study that also included same day spirometry and plethysmography.  As shown in 

Table B-1, at 32 months pre-AB forced expiratory volume in one second (FEV1) was 

1.2L (32%pred), and residual volume (RV) to total lung capacity (TLC) ratio was 0.62.  

Hyperpolarized 3He ventilation and diffusion-weighted MRI was performed on a 3.0T 

scanner (Excite 12.0, GEHC, Milwaukee, WI) as previously described5 in a breath-hold, 

after inspiration of 1.0L of 5mL/kg 3He mixed with N2 gas from functional residual 

capacity (FRC).  Proton images were also acquired as previously described6 within 3 

minutes of 3He MRI, with the same breath-hold volume from functional residual capacity 

(FRC) (1.0L of 4He/N2 mixture) to obtain a structural image of the thorax allowing for 

clear delineation of the thoracic cavity.  3He ventilation MRI (Figure B-1A, 32 months 

pre-AB) shows a heterogeneous distribution of gas with large ventilation defects, and in 

regions of gas distribution, heterogeneous signal intensity - both of which are the 

hallmark of COPD.  Upon returning for follow-up imaging 24 months later in June 2008 

(8 months pre-AB Figure B-1B) 3He MR images showed a decrease in ventilation of the 

right upper and lower and left upper lung regions (Figure B-1B).  Quantitative analysis of 

the 3He ventilation distribution (Table B-1) resulted in a 3He MRI ventilation volume 

(VV) decrease of 3.8L over the two year period, corresponding to a decrease in the 

percentage of ventilated lung volume (PVV) from 73% to 26% and an increased 

ventilation defect percent (VDP).  The functional imaging changes observed were 

concomitant with a decrease in FEV1 and FVC and an increase in RV/TLC (Table B-1) 

during the follow-up period.  There were no exacerbations or hospitalizations reported 

during the follow-up period. 

At this time the subject was enrolled in a randomized double-blind study evaluating the 

safety and efficacy of AB in subjects with homogeneous emphysema and severe 

hyperinflation (RV/TLC≥0.65).  For 6 weeks prior to AB, the subject underwent 

pulmonary rehabilitation, and four days prior to AB his self-reported dyspnea rating was 

2 on the modified Medical Research Council (mMRC) scale and his St George’s 

Respiratory Questionnaire (SGRQ) score was 65.  In February 2009 four stents were 

placed; two in the right lower and two in the left upper lung.  The subject returned for 

follow-up evaluation one, three, six and twelve months post-stent, with 3He MRI at the 
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six month (Figure B-2A) and twelve month (Figure B-2B) time points.  At 6 months post-

AB, the subject reported an increase in forced vital capacity (FVC) ≥ 12% and therefore 

failed to achieve responder status and was subsequently categorized as an AB non-

responder.   

Table B-1: Pulmonary function test and 
3
He MRI results pre- and post-AB.

 
 

 Months 

 Pre-Airway Bypass Post-Airway Bypass 

 32 8 2 0.1 1 3 6 12 

 

FEV1 (L) 1.2 0.8 0.9 1.1 1.2 1.2 1.1 1.2 
FEV1 (%pred) 32 23 27 32 34 35 33 35 
FVC (L) 3.2 2.3 2.6 3.2 3.6 3.6 3.5 3.8 
FVC (%pred) 66 49 57 68 77 78 76 81 
FEV1/FVC (%) 37 34 35 35 32 33 32 31 
RV (L) 5.2 5.2 5.6 4.4 5.0 4.5 4.7 5.0 
RV (%pred) 193 200 213  169 190 169 169 189 
TLC (L) 8.4 8.0 8.6 7.8 8.2 8.2 8.3 8.5 
TLC (%pred) 111 107 115 104 114 110 108 114 
RV/TLC  0.62 0.65 0.65 0.57 0.60 0.55 0.56 0.58 
IC (L) 1.8 1.6 1.6 2.1 2.3 2.3 1.8 2.8 
DLCO 
(ml/min/mmHg) 

  9.2 9.9 14.6 16.9 14.6 18.7 

DLCO (%pred)   26 28 42 48 42 53 
mMRC     2 1 0 1 1 
6MWD (m)    288 315 330 366 330 
SGRQ    65 27 27 27 31 
CE (s)    750   1084  
WL TCV (L) 7.3 6.3     8.5 8.1 
WL VV(L) 5.4 1.6     4.8 5.8 
WL PVV (%) 73 26     57 72 
WL VDV (L) 2.0 4.7     3.6 2.4 
WL VDP (%) 27 74     43 28 
WL ADC (cm2/s) 0.47 0.49     0.48 0.49 

Note: the dashed line separates pre- and post-AB results 
FEV1 = forced expiratory volume in one second, FVC = forced vital capacity, RV = residual 
volume, TLC = total lung capacity, IC=Inspiratory Capacity, DLCO=Carbon Monoxide Diffusion 
Capacity of the lung, mMRC = modified medical research council, 6MWD = six minute walk 
distance, SGRQ = St. George’s research questionnaire, CE = cycle ergometry,  
TCV = thoracic cavity volume, VV = ventilated volume, PVV = percent ventilated volume, VDV 
= ventilation defect volume, VDP = ventilation defect percent, ADC = apparent diffusion 
coefficient. 
 

In contrast, at 6 months post-AB, very obvious changes in 3He MRI were observed 

throughout the right lung and in the left upper lobe at six months (Figure 2A) with further 
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improvements, specifically in the right lower lung observed at twelve months (Figure 2B) 

post AB.  Such visual changes did appear to generally correspond with stent placements 

in the right lower and left upper lung lobes.  These gas distribution improvements that 

occurred after stent placement corresponded to 3He MRI VV increases of 3.2L at 6 

months and 4.2L, 1 year after the AB procedure.  As noted in Table B-1, the thoracic 

cavity volume (TCV) measured using 1H MRI increased approximately 2.0L between the 

8 month pre-stent visit and the 6 and 12 month post-stent visits.  Taken together, the 

increase in VV and TCV resulted in an improved PVV 6 months post-stent that persisted 

at the 1 year post AB time-point.  At the same time, other surrogate measures of lung 

functional capacity including the six minute walk distance (6MWD), SGRQ score and 

cycle ergometry (CE) time showed improvements post-AB 6MWD increased by 78m, 

SGRQ score decreased by 38, and CE time improved by 334s.  During this same time 

period an increased diffusing capacity of carbon monoxide (DLCO) was measured with 
3He MRI whole lung ADC remaining unchanged.  

 

Figure B-1: 
3
He MRI registered to 

1
H MRI Prior to Airway Bypass. 

3He MRI registered to 1H MRI of GOLD stage III COPD ex-smoker A) 32 months prior to AB 
and B) 8 months prior to AB.  Heterogeneous 3He signal intensity and large ventilation defects 
are visualized in both scans, with 3He MRI VV decreased by 3.8L during this two year time 
period.  
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B.3 Discussion 

Bronchoscopic lung volume reduction methods provide a minimally invasive alternative 

to lung volume reduction surgery with the goal of improving COPD quality of life, 

pulmonary function and survival.7-9  Unfortunately, for many of these approaches, 

including AB10, significant improvements in the established intermediate endpoints such 

as FEV1 and RV/TLC have not been realized post-intervention3,4 and sometimes these 

results are discordant with measures of symptoms or functional improvements. In these 

studies lung imaging has been used only as a structural tool to capture lung volumes 

using CT.  

 

Figure B-2: 
3
He MRI registered to 

1
H MRI Following Airway Bypass. 

3He MRI registered to 1H MRI of GOLD stage III COPD ex-smoker A) 6 months post-AB and B) 
12 months post-AB after insertion of two stents left upper lung and two stents right lower lung.  
Improved gas distribution post-AB is suggested with new regions of 3He ventilation and 
increased 3He signal intensity and VV at both time points post-AB. 
 

3He MRI has emerged over the last 10 years as a highly reproducible and sensitive 

research tool for the evaluation of COPD in cross-sectional and longitudinal 

studies1,5,11,12.  Here we show hyperpolarized 3He MRI in a COPD ex-smoker on 4 

occasions – twice before AB (32 and 8 months prior) and twice after AB (6 and 12 

months post) and the results suggest significant improvements in gas distribution (3He 
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VV increase of over 3L) 6 months and 12 months after AB.  These imaging results 

cannot be explained by the small changes in spirometry and plethysmography results but 

they are in agreement with post-AB changes (improvements) in the 6MWD, SGRQ and 

mMRC.   

In summary, we report changes in 3He MRI VV for a COPD ex-smoker following AB 

that are similar to changes in quality of life measurements but not reflected in FEV1, 

FVC, IC or RV/TLC.  Potential explanations for these findings include higher sensitivity 

of 3He MRI to functional lung changes than traditional pulmonary function tests.  This 

discordance in outcome measures, in the only EASE Trial subject for whom 3He MRI 

was performed, highlights the utility of functional lung imaging in COPD interventional 

trials, and suggests this high resolution functional imaging method may offer insight into 

underlying regional physiologic changes in COPD patients following treatment.  
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