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ABSTRACT 

Artificial cementation of soft clays has been used for several years for different 

ground improvement projects. Although considerable work has been done to develop 

advanced machinery and techniques for the implementation of artificial cementation, less 

knowledge is available on the mechanisms involving the formation of the artificial 

structure and the resulting mechanical behaviour. The primary objectives of the present 

work were to investigate the formation of microstructure in artificially cemented material 

with Portland cement, find the relationships between cementitious bonding and clay 

mineralogy, and create constitutive frameworks for predicting the mechanical behaviour 

of cement-treated clays.  

Qualitative and quantitative microstructural characterisation of reconstituted and 

cemented material has been performed using scanning electron microscopy (SEM) and 

mercury intrusion porosimetry (MIP). The results confirmed the transformation of the 

void microstructure from a bimodal, dispersed material into a unimodal, flocculated 

material due to artificial cementation. The addition of cement was found to reduce the 

amount of macro-pores within the cemented material, resulting in a significant reduction 

in hydraulic conductivity.  

A further parametric study was conducted on data obtained in the laboratory by 

the author combined with those found in the literature, to investigate the effect of clay 

mineralogy on artificial cementation. The results indicated the major influence of the 

activity of the clay, along with the cement and water content, on the results of the cement 

treatment. The observed variations in the mechanical behaviour with respect to 

mineralogy and the important effect of curing time have been explained in terms of the 
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pozzolanic reactions, and the limitations of applying Abrams’ law to cement-admixed 

clays are discussed.  

In addition, an experimental study has been conducted to investigate the yielding 

and stress-strain behaviour of artificially cemented Ottawa clay and to compare it with 

the behaviour of the same soil in its naturally structured state. The results indicate that 

although the natural clay exhibits a meta-stable structure, resulting in an abrupt post-yield 

loss of strength, the artificially cemented material undergoes a more gradual breakage of 

the cementitious bonds. This allows for the use of the critical state concept, along with a 

pseudo-normal compression line, to develop a constitutive model for the artificially 

cemented material. 

 

Keywords: reconstituted clay, artificially cemented clay, microstructure, inter-aggregate, 

intra-aggregate, activity, cement-water ratio, hydration reactions, pozzolanic reactions, 

critical state, yield locus, elastic and plastic deformations, stiffness 
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1 INTRODUCTION 

1.1 General 

Modification of soils to enhance their engineering behaviour using cementing 

agents is well established and extensively practiced. Early methods of surface 

stabilization for compacted soils, in particular for sub-base construction of roads, were 

developed to improve the mechanical behaviour and reduce the total thickness of the base 

course (e.g. Noble and Plaster, 1970; Mitchell, 1986). Increased knowledge of artificial 

cementation techniques widened the range of applications and led to the development of 

new methods employed to stabilize soft or slurried material (Bergado et al., 1996). For 

instance, with growing environmental concerns, artificial cementation has been employed 

for solidification and isolation of contaminated sediments. Several reports indicate 

successful stabilization of wastes, mine tailings, dredged soils, and sludge basins with 

cementing agents (e.g. Adaska et al., 1992; Bodine and Trevino, 1996; Loest and Wilk, 

1998; Wareham and Mackechnie, 2006; Nehdi and Tariq, 2007; Wilk, 2007; Beeghly and 

Schrock, 2010). In addition, of particular interest in recent years has been the 

improvement of engineering properties of soft clays with cementitious additives (e.g. 

Nagaraj and Miura, 2001).  

Soft clays cover large areas of earth including many low-land and coastal regions, 

where many urban and industrial hubs are located, and are frequently encountered in civil 

engineering projects. The presence of soft material can be problematic in many different 

ways. A naturally high liquidity index is a notable characteristic of such material, 
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resulting in high compressibility and low shear strength. If proper engineering measures 

are not taken, a structure built on a soft clay could undergo excessive settlements or even 

failure (e.g. Eden and Bozozuk, 1962; Crawford et al., 1995). Soil subsidence due to the 

withdrawal of ground water is another issue related to the presence of soft clays, 

especially in many low-land regions of South East Asia (Nagaraj and Miura, 2001). Due 

to increased urbanization and industrialization of some populated areas of the planet, 

marine and inland soft clays are also encountered in several land reclamation projects 

(e.g. Chen and Tan, 2002). In addition, sensitive soft clay materials in Eastern Canada 

can lose a large portion of their strength due to mechanical disturbance. This can result in 

catastrophic or progressive failure of embankments and structures, and the creation of 

landslides due to seismic or blast loadings (e.g Skempton and Northey, 1952; Bjerrum, 

1954; Penner, 1965; Sangrey, 1972a).  

There are two common ways of tackling the problems associated with the 

presence of soft or sensitive clays. One effective approach is to pre-consolidate the clay 

using vertical drains and surcharge to reduce its water content and improve its mechanical 

properties. However, due to timing and cost related issues, preconsolidation is not the 

most suitable method in many engineering projects. As an alternative, soft clays can be 

solidified by the artificial production of cementitious bonding within the material 

(Nagaraj and Miura, 2001). This can be achieved by the addition to the clay of bonding 

agents, such as lime, Portland cement, gypsum, or fly ash (e.g. Croft, 1967; Bergado et 

al., 1996; Graham et al., 2005). The cementing agents gradually react with water and clay 

minerals to form bonds between and within the clay aggregates (Bergado et al., 1996). At 
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the same moisture content, the produced cemented material will have significanlty higher 

strength and stiffness than the remoulded clay (e.g. Fig.  1-1).  

There are a number of parameters, such as cement type, curing time, cement/water 

content, temperature, soil mineralogy, and activity, that affect these reactions and hence 

control the strength and stiffness development in an artificially cemented clay (Bergado 

et al., 1996). Similar to naturally structured sensitive clays, the artificially cemented 

material could still undergo large deformations due to its high water content. However, 

the different nature of the cementation process and cementitious bonds in artificially 

cemented soft clay reduces the tendency of the material to display a meta-stable 

behaviour and enables it to sustain higher stresses without undergoing excessive 

settlements (Nagaraj and Miura, 2001).  

The choice of the cementing agent for a particular purpose depends on several 

factors, including the required increase in strength and stiffness, availability, workability, 

durability, working climate, and cost (Ismail et al., 2002). Amongst the cementing agents 

commonly used for artificial cementation, Portland cement is most commonly adopted 

because of its higher availability and effectiveness, lower cost, and easier storage 

(Bergado et al., 1996). Two main types of chemical reaction, i.e. hydration and 

pozzolanic reactions, govern the formation of cementitious bonds within a Portland 

cement-admixed clay. Hydration reactions, which take place between the cementing 

agent and water, generally start faster and are deemed to be responsible for a larger share 

of the total strength gain. In contrast, pozzolanic reactions occur between hydration 

products and clay minerals. They only commence after enough calcium hydroxide is 

produced due to hydration reactions and usually continue for a longer time (Bergado et 
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al., 1996). In addition to the aforementioned reactions, the rapid ion exchange that occurs 

due to the introduction of calcium ions to the soil results in the flocculation of the 

remoulded material (Bergado et al., 1996). 

Although the mechanisms involved in the formation of cementitious bonding and 

the development of strength and stiffness are not fully understood, artificial cementation 

of clays has been used for at least three decades in soil improvement projects. Deep 

mixing and jet grouting techniques have been developed during the past twenty years to 

produce cemented columns in soft ground for the stabilization of roads, excavations, and 

lightly loaded foundations (e.g Tatsuoka et al., 1997; Bergado et al., 1996). Unlike 

shallow mixing, which transforms the entire volume into cemented material, these deep 

mixing techniques only produce discrete cemented columns, leaving a large portion of the 

soft clay untouched (Nagaraj and Miura, 2001). The resulting composite material, 

however, will have higher resistance to settlement and applied loading. In most of these 

methods, the cementing agent is introduced deep into the ground by either mechanical or 

high pressure grout mixing (e.g. Fig.  1-2 and Fig.  1-3). The original deep mixing 

techniques have been modified with time, and combined methods using both mechanical 

and high pressure mixing have been developed, to increase the flexibility and 

effectiveness of the mixing process (Nagaraj and Miura, 2001). The majority of mixing 

techniques remould the in-situ material and therefore destroy the natural structure while 

introducing the artificial cementation (Nagaraj and Miura, 2001). 

Unfortunately, although extensively used, and studied in East and South East Asia, 

cement stabilization of Canadian clays is not common and has not been given much 

attention in the literature. In addition, despite the developments of the associated field 
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techniques and the extensive use of artificially cemented material in engineering projects, 

the effect of some of the controlling parameters, such as soil properties and curing time, 

on the mechanical behaviour is not fully understood. In particular, despite a large amount 

of experimental data on the behaviour of artificially cemented clays being available in the 

literature (e.g. Uddin et al., 1997; Tremblay et al., 2001; Rotta et al., 2003; Horpibulsuk 

et al., 2003; Lorenzo and Bergado, 2004; Kamruzzaman et al., 2009), limited work has 

been done to assess the effect of clay mineralogy and soil activity on artificial 

cementation. Therefore, the available data that is obtained for certain types of clay cannot 

be confidently applied to different clay soils. Due to this lack of knowledge, the 

application of in-situ mixing techniques without a relatively extensive laboratory and 

field testing program is not possible (Nagaraj and Miura, 2001). Better understanding of 

the dominant parameters, especially those related to clay mineralogy, could lead to the 

introduction of predictive models that reduce the time and cost required to design an 

appropriate mix in a particular project by minimizing the number of trials needed to find 

the proper quantity of admixed cement and the required curing period (Horpibulsuk et al., 

2003). Moreover, further investigation of the behaviour of artificially cemented Canadian 

clays can improve knowledge and introduce new opportunities for using these promising 

techniques to improve soft and sensitive Canadian clay soils.   

The term “structure” is usually used for both naturally and artificially cemented 

clays to describe the combined effect of fabric and bonding (Mitchell and Soga, 2005). 

The presence of structure in natural clays has captured the attention of researchers for a 

number of decades. Given the relatively large amount of research that has been conducted 

on the issue, it is surprising that there is not yet a consensus among researchers about the 
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source of this natural cementation (e.g. Sangrey, 1972b; Bentley and Smalley, 1978; 

Yong et al., 1979; Quigley, 1980; Torrance, 1995; Boone and Lutenegger, 1997). 

Nonetheless, several works have been conducted to understand the yielding behaviour of 

natural clays, and constitutive models have been proposed to predict the mechanical 

behaviour of the structured and cemented material (e.g. Mitchell, 1970; Wong and 

Mitchell, 1975; Graham et al., 1983; Rouainia and Muir Wood, 2000; Cotecchia and 

Chandler, 2000; Liu and Carter, 2002; Baudet and Stallebrass, 2004). Some of these 

models have been later applied to artificially cemented clays (e.g. Horpibulsuk et al., 

2010) and some other models have been proposed for both naturally and artificially 

cemented clays (e.g. Vatsala et al., 2001), without properly addressing the nature of the 

structuration and the manner in which it breaks down under loading, which can be 

different for artificially cemented materials. Thus, there is a need to understand micro-

structural and mechanical differences of these two types of cemented materials, so that 

more representative models can be assigned to each type of “structured” clay. Doing so 

requires proper investigation of the microstructural changes undergone by the remoulded 

clay during and after the addition of cementing agents, and of the yielding behaviour of 

the resulting cemented material. Finding these differences and similarities in behaviour 

could also help researchers better exploit artificially cemented samples to represent 

naturally cemented clays in laboratory testing, avoiding the costs and technical problems 

related to obtaining undisturbed specimens of naturally cemented clays and providing 

sufficient specimen consistency required to conduct full parametric studies. 
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1.2 Objectives of the Research 

The aims of this study were to investigate the changes in the microstructure during 

the transformation from remoulded to artificially cemented states, the dominant 

parameters affecting the observed mechanical behaviour of the resulting cemented clays, 

and the suitability of constitutive frameworks to predict the yielding, compressibility, and 

shearing behaviour of such material. In accordance with these overall aims, the specific 

objectives of this research can be summarized as follows: 

 To investigate the micro-fabric of reconstituted clayey soils and to examine 

changes in the microstructure due to variations in the water content.  

 To evaluate the potential transformations occurring to the micro-fabric of 

reconstituted clays due to the addition of Portland cement and to find links 

between clay mineralogy and the observed microstructural changes. 

 To investigate the differences between the micro-fabric and mechanical behaviour 

of artificially cemented clays and those of naturally structured materials. 

 To assess the existence of potential connections between the observed changes in 

the microstructure and the strength and permeability of the artificially cemented 

material. 

 To study the effect of clay mineralogy on the effectiveness of artificial 

cementation, and to identify pertinent parameters for predicting the strength, 

stiffness, sensitivity, and other important characteristics of soft clays cemented 

with Portland cement. 
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 To experimentally study the yield states and stiffness of a soft clay stabilized by 

Portland cement, find the yield envelope, and check the validity of the hardening 

law and associated flow rule.  

1.3 Structure of the Thesis 

This thesis is divided into of six chapters and is presented in an integrated-article 

format. Except for the introductory and concluding chapters, which also have their own 

bibliography, every chapter has its own introduction, literature review, list of references, 

tables, and figures. Detailed organization of the thesis can be summarized as follows: 

Chapter 1 is an introductory chapter providing preliminary information about the 

artificial cementation of clays and recognizes the areas in need of more research. It also 

outlines the objectives and contributions of the thesis, along with its structure. 

Chapter 2 shows the results of a series of mercury intrusion porosimetry tests on 

reconstituted specimens of two types of clay with different water contents. It explains the 

changes in the pore size distribution due to variations in the water content for a relatively 

large range of liquidity indices. Then it discusses technical issues related to the use of 

mercury intrusion porosimetry for clay specimens with high moisture contents.  

Chapter 3 provides the results of a number of scanning electron microscopy and 

mercury intrusion porosimetry tests on three types of clay admixed with Portland cement. 

It explains how the development of cementitious changes the micro-fabric of the material, 

and confirms the existence of some by-products within the cemented soft clay.  

Chapter 4 presents a comprehensive parametric study of the test data obtained by 

the author for four types of clay, as well as those found in the literature for other clay 
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mineralogies. Based on these data, a number of relationships, incorporating the effect of 

mineralogy and activity on the observed mechanical behaviour, are developed. These are 

followed by a critical discussion explaining the possible reasons behind the observed 

behaviour. 

Chapter 5 further explores the mechanical behaviour by presenting the results of 

several triaxial experiments on artificially cemented specimens of a sensitive Leda clay. 

These are added to test results for the undisturbed specimens of the same clay to explain 

the differences between the natural and artificial cementation. Moreover, a simple 

constitutive framework, describing the yielding and shearing behaviour of artificially 

cemented clays, is proposed and evaluated based on the experimental data. 

Chapter 6 presents the major conclusions drawn from this work, along with 

recommendations for further related studies.  

1.4 Significant Contributions 

This research involved extensive laboratory testing, coupled with statistical and 

empirical formulation and theoretical analysis and modelling. Various experiments were 

conducted on a number of different clays treated with Portland cement, and the results 

were used either independently or together with test data from the literature to achieve the 

aforementioned objectives. The major contributions of this research are as follows: 

 Microstrucutral analysis showed that variations in the moisture content of 

reconstituted clays are primarily accompanied by changes in the volume of inter-

aggregate rather than intra-aggregate pores. It also proved that artificial 
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cementation results in the flocculation of the material, converting the observed 

bimodal pore size distribution of reconstituted clays to unimodal.  

 It was observed that a greater degree of microstructural modifications due to 

artificial cementation is accompanied by higher gain of strength and loss of 

hydraulic conductivity in the material. 

 It was shown that although providing some useful information about the micro-

fabric of the material, the mercury intrusion porosimetry technique can 

underestimate the total volume of the pores for saturated clay specimens with 

moisture contents higher than 50%. 

 The hardening of artificially cemented clays was found to continue with a 

considerable rate with curing time. A new relationship was suggested to predict 

the developed strength for a certain curing time.  

 The activity number (A) of the clay was recognized as a pertinent parameter, 

along with the cement and water contents. Empirical relationships were proposed 

to estimate the undrained shear strength, vertical effective yield stress, and 

compression index of clay stabilized by Portland cement.  

 The results showed that contrary to the general belief, the effect of the secondary 

reactions on the developed strength and stiffness is significant. A critical review 

of the literature provided possible reasons for the importance of these reactions in 

the cementation process. 

 It was shown that the compression behaviour of artificially cemented clays can be 

represented by a bilinear model. A general relationship was found to be usually 

true for the compression of both reconstituted and artificially cemented clays. 
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 The results indicated gradual destructuration and more isotropic behaviour of 

artificially cemented clays compared to naturally structured material. The 

structure was found to be preserved even when the artificially cemented material 

underwent significant volumetric strains due to compression. 

 A combination of the elliptical cap and modified Cam-clay models were used to 

represent the yield locus of the artificially cemented clays. The proposed envelope 

was suggested to be bounded in p’-q plane by the unconfined compression path. It 

was also shown that using the critical state concept, the parameters required to 

find the yield envelope for a soft clay stabilized by Portland cement can be 

obtained. 
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(a) 

 
(b) 

Fig.  1-1. Micrographs of two Ottawa clay specimens with a similar moisture content: (a) 

reconstituted, cu < 2 kPa; (b) artificially cemented (6.4% cement), cu,28 days = 160 

kPa 
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(a) 

 
(b) 

Fig.  1-2. Deep mixing: (a) dual mixing shafts; (b) an excavation supported by deep mixed 

retaining wall (Coastal Development Institute of Technology, 2002)  
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(a) 

 
(b) 

      
(c) (d)                 

Fig.  1-3. Jet grouting: (a) the steps of a large diameter jet grouting technique; (b) jet 

grouting nozzle; (c) & (d) cemented columns made by jet grouting (Raito, 2010) 
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2 USE OF MERCURY INTRUSION POROSIMETRY FOR 

MICROSTRUCTURAL INVESTIGATION OF 

RECONSTITUTED CLAYS 

2.1 Introduction 

Mercury intrusion porosimetry (MIP) has been used by a number of researchers to 

study the structure developed in clays under various conditions, i.e. natural, remoulded, 

compacted, or consolidated states. However, there is very little information in the 

literature about the fabric developed in reconstituted clayey soils and slurries. Studying 

the fabric of these types of soil can provide valuable information about the processes 

governing the formation of natural soils and hydraulic fills, and can give insights into the 

link between micro-structure and fundamental geotechnical characteristics, such as 

hydraulic conductivity, strength, and compressibility. Since MIP is a relatively new 

technique, the limitations of performing this type of analysis on saturated clays are 

currently not well defined. Hence, the present study has two main objectives: to 

investigate changes in the micro-fabric of reconstituted clayey soils due to variations in 

moisture content and to assess the effectiveness of using mercury intrusion porosimetry 

on saturated clays with high moisture contents. 

2.2 Literature Review 

Soil aggregates or peds are often described as “packings” of clay particles, which 

behave as compressible, crushable single particles and interact to create strength, 

stiffness, and flow responses in clays (Mitchell and Soga, 2005). Although early works 
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considered the interactions between individual clay platelets to play a central role in the 

mechanical behaviour of clays (Terzaghi, 1925; Casagrande, 1932; Lamb, 1953; Lamb, 

1958), researchers later confirmed the importance of clay clusters in understanding the 

behaviour of such material. Aylmore and Quirk (1960) investigated dried specimens of an 

illite clay from South Austrailia and suggested that the clay mass consisted of a series of 

parallel crystals, called “domains”. They concluded that the pore space of the dried 

material was “almost exclusively” within these domains and that the inter-domain 

porosity was negligible. Olsen (1962) described the discrepancies between the measured 

hydraulic flow rates of saturated clays and those predicted from Darcy’s law as being 

fully explainable in terms of the “cluster” concept. He postulated that the clay pores are 

not of equal sizes and almost all of the flow passes through the larger pores existing 

between clay aggregates. After studying the microfabric of a variety of normally 

consolidated and lightly overconsolidated clays by scanning electron microscopy, Collins 

and McGown (1974) suggested that single clay platelets rarely exist within clayey 

material, while groups of platey particles, which interact with each other in various 

forms, are abundant. They also classified the pore spaces observed in different soils into 

four broad groups: intra-elemental, intra-assemblage, inter-assemblage, and trans-

assemblage pores. The cluster concept has also provided a basis for recent dual 

porosity/dual permeability models used to simulate water movement and solute transport 

in porous media. These models assume that the total porosity of the soil is divided into 

two independent, but interacting domains, i.e. macropores and micropores, and use a 

coupled set of parameters and equations to describe the hydraulic properties of each 

domain (e.g. Gerke and van Genuchten, 1993; Jarvis, 1994).  
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Mercury intrusion porosimetry has been used previously for examining the micro-

fabric of various porous media and can provide quantitative information on the 

distribution of pores within the material (e.g. Choquette et al., 1987; Delage et al., 1996; 

Locat et al., 1996; Ninjgarav et al., 2007; Romero and Simms, 2008; Koliji et al., 2010). 

Such information can significantly improve the understanding of the macroscopic and 

engineering behaviour of soils (Romero and Simms, 2008). Diamond (1970) was one of 

the first to investigate the pore size distribution of clays using MIP analysis. He measured 

mercury contact angles for different clay minerals and performed MIP analysis on clays 

from various geological origins and for different structural states. Garcia-Bengochea et al. 

(1979) performed MIP analysis on compacted silty clay and observed a bimodal pore size 

distribution in the tested material. They showed that variations in the compaction effort 

and moisture content were only accompanied by changes in the volume of the 

macropores and suggested that the large pores alone are responsible for the permeability 

of the material. However, Lapierre et al. (1990) later measured the mercury intrusion and 

permeability of Louiseville clay and contended that permeability cannot be predicted by 

exclusively using the pore size distribution data, since other factors also control flow 

through a porous medium. Delage and Lefebvre (1984) used combined SEM and MIP 

results to describe the microstructure of a sensitive Champlain clay in undisturbed and 

remoulded states. They suggested that two different porosity regimes, i.e. intra-aggregate 

and inter-aggregate, existed in remoulded specimens of a Champlain clay from St. 

Marcel. They also showed that consolidation of the clay resulted in the collapse of its 

inter-aggregate pores, leaving its intra-aggregate pores almost intact. This was further 

confirmed by test results for four different types of clay reported by Griffiths and Joshi 
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(1989). Romero et al. (1999) also performed MIP and scanning electron microscopy 

analyses on compacted Boom clay and reported that at high compressive stresses, the 

clay aggregates fuse as the inter-aggregate porosity collapses. 

A clay specimen should be depleted of all of its pore moisture, prior to performing 

mercury intrusion porosimetry. This can be achieved with various methods including 

air/oven-drying, freeze-drying or critical-point-drying; an effective drying method will 

impose minimal disturbance to the soil fabric. Gillott (1970) investigated the fabric of 

Leda clays and showed that although all of these drying techniques had detectable 

influence on fabric, air-drying caused the greatest disturbance. Air-drying also causes 

significant disturbance to the fabric of saturated clayey soils with high water contents, 

since it results in considerable pore shrinkage in the material (Mitchell and Soga, 2005). 

Oven-drying may result in less fabric changes, since the shorter drying time limits the 

ability of particles to rearrange. However, there is still some fabric disturbance, as well as 

breakage of particle clusters, in such samples due to thermal stresses induced by the 

oven-drying (Mitchell and Soga, 2005). Delage and Lefebvre (1984) showed that oven 

drying resulted in a dense packing of the particles and significantly modified the 

microstructure of a Champlain clay. Cuisinier and Laloui (2004) also reported that oven 

drying induced a significant porosity reduction in specimens of a compacted silt. 

However, by using the freeze-drying or critical-point drying technique, the fabric 

disruption caused by the other two conventional drying methods can be minimized 

(Mitchell and Soga, 2005). Freeze-drying is the more commonly used method, and if 

implemented properly, can essentially preserve the initial structure of the soil material 

(Romero et al., 1999; Cuisinier and Laloui, 2004). Thompson et al. (1985) investigated 
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the effects of drying treatment on porosity of three types of clay. They reported that 

although both freeze-drying and oven-drying caused a porosity reduction in the material, 

oven drying resulted in more sample disturbance than freeze-drying. 

Despite its potential effectiveness, mercury intrusion porosimetry has been rarely 

used to examine the microstructure developed in slurried and reconstituted clays. This 

method, if accompanied with a proper sample preparation technique, can therefore shed 

some light on fabric development in reconstituted soft clays and enrich the current 

understanding of the role of particles and aggregates in the mechanical behaviour of clay 

soils. 

2.3 Experimental Design 

2.3.1 Material properties 

Reconstituted samples of two types of clay: EPK kaolin and Nanticoke clay were 

prepared for this study. EPK kaolin is a commercially available pulverized kaolin clay 

from Georgia, U.S. Air-dried clay powder was also obtained from block samples of a 

stiff, fissured clay with a glacio-lacustrine origin taken from 3 m depth in a test pit in 

Nanticoke, Ontario. X-ray diffraction analysis showed that the Nanticoke clay had 

primary clay minerals of illite and chlorite and primary non-clay minerals of quartz, 

feldspar, calcite, and dolomite. Table  2-1 summarizes the basic geotechnical properties of 

the two types of clay used in this study and Fig.  2-1 shows their grain size distribution 

obtained in compliance with ASTM D422. 
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2.3.2 Specimen preparation and testing programme 

All of the samples used in this study were obtained from the aforementioned 

powdered material. EPK Kaolin was already available in a powder form. To prepare the 

powdered Nanticoke clay, the original soil was cut into small pieces and dried at room 

temperature. Then it was finely pulverized into a powder (100% passing Sieve No. 40) 

using a rubber hammer to avoid crushing the soil particles. The prepared powder was 

then used to make reconstituted specimens. 

For the preparation of the reconstituted samples, two different methods were used 

depending on the target moisture content of the specimen. To make specimens with a 

moisture content higher than the plastic limit, powdered clay was added to the amount of 

water needed to reach the target moisture content. The resulting mixture was blended for 

a few minutes and was left to soak for 24 hours in a sealed container before it was mixed 

again and used for testing. To prepare specimens with a moisture content equal to the 

plastic limit, an initial clay-water mixture with a liquidity index of 0.5 was made. The 

moisture content of the resulting paste was then reduced to that of the plastic limit, using 

the same method described in ASTM D4318 for obtaining the plastic limit of soils. For 

all reconstituted samples, the moisture content of a portion of the specimen was measured 

before performing the experiments to ensure that the target moisture content was reached. 

Distilled, deionized water was used in the preparation of all of the reconstituted clay 

specimens. 

Mercury intrusion porosimetry (MIP) was carried out on the reconstituted samples 

of clay with an AutoPore IV, a porosimeter manufactured by Micromeritics and capable 

of providing a maximum mercury pressure of 414 MPa. To carry out the tests, a sample 
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of the dried soil was placed in an MIP penetrometer, and the sealed penetrometer was 

inserted into the low pressure port of the equipment. In the first phase, the air was 

evacuated and was then replaced by mercury in increments until a mercury pressure of 

172 kPa was reached. Next, the penetrometer, now filled with mercury, was removed 

from the low pressure port, weighed, and placed in the high pressure port, where it was 

pressurized incrementally up to the maximum pressure of 414 MPa. The mass of the 

dried specimens used in the MIP analysis ranged from 1.0 to 3.0 g depending on the stem 

volume of the penetrometer and the expected total pore volume of the sample.  

The samples were prepared for the MIP analysis with two methods: air-drying and 

freeze-drying. To air-dry the specimens, they were left to dry at room temperature (25oC) 

for a few days, before they were completely dried in a desiccator under an absolute 

pressure of 4 Pa. For freeze-drying, very small pieces or drops (depending on the 

liquidity index) of the reconstituted specimens were placed on wax paper to prevent them 

from sticking to the specimen holder. Next, the samples were placed in a specimen holder 

and dipped for about one minute into a container filled with isopentane that had been 

previously cooled to its melting point (-160oC) in liquid nitrogen (-196oC). After 

freezing, the pore water was removed by sublimation with the use of a vacuum pump 

capable of providing an absolute pressure of 4 Pa. The dried specimens were then kept in 

a desiccator under vacuum until tested.  

2.4 Test Results and Analysis 

Mercury intrusion porosimetry was conducted on the reconstituted specimens of 

Nanticoke clay and EPK kaolin at different liquidity indices (ranging from 0 to 3). 
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Although most of the experiments were performed on freeze-dried samples, a few tests 

were also conducted on air-dried specimens, to investigate the effect of air-drying on pore 

size distribution and to compare air-dried and freeze-dried material. Washburn’s equation 

(Washburn 1921), which is derived for capillary flow of a liquid in a cylindrical tube, was 

employed to calculate pore diameters based on the applied mercury pressures: 

     
P

r c cos2
                                                                                             (2.1) 

Where r is the pore radius, P is the applied mercury pressure,  is the surface 

tension of mercury, and c is the solid-liquid contact angle. Based on the recommendation 

of Diamond (1970) for kaolinite and illite, a mercury contact angle of 147o and also a 

surface tension of 485 dynes/cm were used in the calculations. If the calculated pore 

diameters are successively numbered, cumulative and log-differential pore volumes can 

be obtained for each calculated pore diameter, Di, as follows: 

       iicumulative VV                                                                                      (2.2) 
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                                                                              (2.3) 

Where Vi is the measured total intruded pore volume corresponding to the 

diameter, Di. Logarithmic differential distribution, which provides a qualitative 

measurement of the distribution of the pores, is typically used, rather than the incremental 

distribution, to eliminate the experimental point spacing effect that usually makes the 

latter curve uneven.  

Fig.  2-2 shows the pore size distribution of reconstituted Nanticoke clay 

specimens with different moisture contents at liquidity indices of 0, 0.5, 1, 2, and 3. The 
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distribution is shown for a diameter range of 3 nm to 0.1 mm. Since all cumulative curves 

(Fig.  2-2a) become essentially flat at diameters less than 10 nm, we can assume that 

regardless of the moisture content of the specimens, almost all of the pores in 

reconstituted Nanticoke clay have a diameter larger than 3 nm. Thus, the cumulative 

volume reading at a diameter of 3 nm represents the total pore volume of the sample. As 

expected, the total pore volume increases with an increase in the moisture content (Fig. 

 2-2a). Note the trimodal behaviour observed in Fig.  2-2b is due to switchover errors 

related to the MIP test procedure. Thus, the local minimum that is observed in all of the 

curves at a diameter of about 7 microns (7,000 nm) is an experimental artefact due to the 

transition of the test from the low to high pressure systems (Giesche, 2006). Thus without 

that local minimum, the actual pore size distribution (in the log-differential curves) is 

bimodal with a first peak roughly between 70,000 and 400 nm and a second one between 

300 and 10 nm.  

The bimodal pattern observed in the log-differential curves indicates that two 

different mechanisms are involved in forming the pores within the material. We can 

attribute the peak with a larger dominant diameter to the free water existing between soil 

aggregates and the peak with a smaller dominant diameter to the water trapped within the 

aggregates and on the surface of clay particles (Garcia-Bengochea et al., 1979; Lapierre 

et al., 1990; Romero et al., 1999). With this assumption, the total volume of inter-

aggregate and intra-aggregate pores can be obtained by calculating the area underneath 

the first (70,000 to 400 nm) and second (300 to 10 nm) peaks plotted in incremental 

space, respectively (Table  2-2). As moisture content increases, the first peak (between 

70,000 and 400 nm) shifts towards the larger pores (the right side of the figure) and also 
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covers a larger area in Fig.  2-2b (larger inter-aggregate pore volume in Table  2-2), 

indicating that the inter-aggregate pores, which are occupied by the free pore water, 

expand in diameter and volume. In contrast, an increase in moisture content only causes 

slight movement of the position of the peak associated with intra-aggregate pores 

(between 300 and 10 microns). As the moisture content increases from 23 to 98%, the 

position of this peak translates from 65 to 160 nm (Fig.  2-2b). Similarly, with changes in 

moisture content, the area covered by the second peak in Fig.  2-2b (the total volume of 

intra-aggregate pores) remains almost constant at about 0.18 ml/g (Table  2-2). This 

suggests that most of the water added to Nanticoke clay at moisture contents higher than 

(or equal to) the plastic limit stays between, rather than within, the clay aggregates. As 

will be discussed later, the total volume of the pores trapped inside the clusters of clay 

appears to be essentially constant.  

Fig.  2-3 illustrates the pore size distribution of reconstituted EPK specimens with 

different moisture contents at liquidity indices of 0, 0.5, 1 and 2. It can be seen that with 

an increase in the moisture content, the position of the peak associated with the intra-

aggregate pores (between 300 and 10 microns) moves very little, although the peak 

associated with the inter-aggregate pores (between 70,000 and 400 nm) shifts 

significantly towards higher diameters. Moreover, in common with Nanticoke clay, the 

reconstituted samples of EPK kaolin with different moisture contents have the same intra-

aggregate pore volumes. Table  2-3 summarizes the calculated inter-cluster and intra-

cluster pore volumes for this clay. For all of the specimens, the volume of the intra-

aggregate pores is very close to the average value of 0.26 ml/g, which is higher than that 

measured for Nanticoke clay (0.18 ml/g), implying that a higher amount of pores exists 
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within the kaolin clusters in a reconstituted state. This is due to the size, shape and inter-

particle forces of the kaolin platelets being different from those of the illite and chlorite 

particles in the Nanticoke clay. Both the reconstituted Nanticoke clay and EPK kaolin 

hold all of the added water in the layers between clay aggregates, rather than within the 

aggregates themselves. At high liquidity indices, this free pore water is likely to be 

responsible for the higher permeability and the fluid behaviour of the reconstituted 

material.  

Comparing the two figures, the effect of clay mineralogy on the pore size 

distribution can be seen; the two dominant peaks are more clearly separated in 

reconstituted EPK kaolin than in Nanticoke clay. The peaks associated with intra-

aggregate pores are sharper and have a higher maximum value in the EPK kaolin. In 

addition, the dominant inter-aggregate pore diameter ranges from 30 to 10 microns in 

EPK kaolin, while it covers a wider range (from 30 to 1.5 microns) in the Nanticoke clay. 

In both clays, however, as the liquidity index reduces to zero, the material is first depleted 

of smaller inter-aggregate pores (within a diameter range of 0.4 to 10 microns) rather than 

the larger pores.  

If left to dry at room temperature, a soft clay specimen will shrink until it reaches 

the shrinkage limit, after which the clay will dry without further volume change. 

Therefore, by causing substantial particle rearrangements within the clayey material 

(Aylmore and Quirk, 1960), air-drying would noticeably change the pore size 

distributions and total pore volume of a soft clay specimen. Comparing pore size 

distributions and total pore volumes of two originally identical reconstituted specimens, 

one air-dried and one freeze-dried, can therefore provide us with useful information about 
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the microstructure of the soil. The results of MIP analysis on air-dried and freeze-dried 

specimens of reconstituted Nanticoke clay and EPK kaolin are presented in Fig.  2-4 and 

Fig.  2-5, respectively. The Nanticoke clay specimen has lost a large portion of its pore 

volume due to shrinkage. As Fig.  2-4b shows, almost all of the pores with a diameter 

larger than 160 nm have disappeared from the air-dried Nanticoke sample. In addition, 

regardless of their initial moisture contents, all of the EPK specimens shrink to a similar 

total pore volume as they dry. Fig.  2-5b shows that almost all of the remaining pores in 

the air-dried kaolin are smaller in diameter than 400 nm, although there are still some 

voids with diameters higher than 10,000 nm (10 micron) left in the material. This 

confirms the previous observation that reducing the moisture content leads to the smaller 

inter-aggregate pores disappearing faster than the larger ones (Fig.  2-2 and Fig.  2-3). The 

total pore volumes remaining in the air-dried specimens (residual pore volume) are given 

in Table  2-2 and Table  2-3 along with the inter- and intra- aggregate pore volumes of the 

air-dried samples. The residual pore volumes of EPK kaolin and Nanticoke clay, which 

contains illite and chlorite clay minerals, are about 0.34 and 0.21 ml/g, respectively. 

Therefore, the moisture contents of 34% and 21% deduced based on the MIP results for 

air-dried EPK and Nanticoke clays, respectively, should be related to the shrinkage 

properties of the two clays. Further explanation about this deduction is provided in the 

discussion section.  

Several researchers (Garcia-Bengochea et al., 1979; Delage and Lefebvre, 1984; 

Griffiths and Joshi, 1989; Lapierre et al., 1990; Delage et al., 1996; Romero et al., 1999; 

Simms and Yanful, 2002; Cuisinier and Laloui, 2004; Romero et al., 2005; and Ninjgarav 

et al., 2007) have previously shown that a reduction in void ratio due to consolidation or 
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compaction only changes the inter-aggregate pore volume and that the volume of intra-

aggregate pores remains almost constant during volumetric compression. Koliji et al. 

(2010) suggest that any structural degradation in aggregated clay due to mechanical 

loading or moisture changes leads to changes in the macro-pore structure and leaves the 

micro-pores unaffected. As Table  2-2 and Table  2-3 indicate, the intra-aggregate pore 

volume for each clay is almost constant regardless of the moisture content of the samples. 

The inter-aggregate pore volume is close to zero for the air-dried condition and increases 

proportionately with the moisture content. Thus, there appears to be a strong link between 

residual pore volumes for the EPK and Nanticoke clays and the moisture content at the 

shrinkage limit. It is therefore postulated that regardless of the clay soil moisture content, 

the volume of the pores within its aggregates is approximately constant. Hence, the intra-

aggregate pores are more closely related to clay mineralogy, particle size distribution, and 

pore water chemistry. 

Table  2-1 shows that the liquid limits of Nanticoke clay and EPK kaolin are 48 

and 61%, respectively. Despite this difference, the inter-aggregate pore volumes of both 

clays, at a moisture content equal to the liquid limit (LI=1), are almost equal (0.28 ml/g 

and 0.27 ml/g for Nanticoke and EPK clays, respectively). This can be explained with the 

cluster model developed by Olsen (1962) and is consistent with the suggestion by 

Nagaraj et al. (1991) that different clays, at a moisture content equal to the liquid limit, 

have approximately the same hydraulic conductivity (Mitchell and Soga, 2005). It is also 

generally accepted that various clays have approximately the same undrained shear 

strength (cu~2.0 kPa) at the liquid limit (Mitchell and Soga, 2005). This link suggests that 

the mechanical behaviour of remoulded and reconstituted soils, e.g. hydraulic 
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conductivity and shear strength, is closely related to the volume of inter-aggregate pores, 

supporting the concept that clay aggregates behave like single particles and inter-cluster 

pore sizes govern the interactions between different aggregates.  

2.5 Discussion on MIP analysis for soft and slurried clays 

Mercury intrusion porosimetry has the potential to be an effective tool for 

studying the microstructure of porous material. However, there are certain aspects 

associated with the MIP test procedure that may affect the results. In particular, for MIP 

analysis of soft clays, structural damage that may occur within the specimen while its 

pore moisture is being depleted during drying could be significant. This section discusses 

this issue and other factors of importance for accurate measurement of microstructure for 

clays at high moisture content.  

Being saturated and having high a moisture content, soft and slurried clays possess 

a highly porous and potentially collapsible structure. Therefore, an accurate MIP analysis 

of such material is impossible without an effective drying method. The size of the 

specimens is a major factor in uniform drying of soft and slurried clays. Clays usually 

have a poor thermal conductivity, exacerbated in soft clays by the high volume of the 

pores (Abu-Hamdeh and Reeder, 2000). Using a large specimen can result in improper 

freezing of the moisture existing deep inside the specimen or in melting and 

recrystallization of the ice in the core of the specimen before sublimation is complete. 

Attempts to freeze-dry samples with a thickness of about 10 mm failed as the specimens 

went through non-uniform freezing and drying, creating a two-phase dried specimen with 

a freeze-dried soft outer shell and an air-dried stiff inner core. Hence, the size of the 
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samples used for freeze-drying should be as small as possible (Mitchell and Soga, 2005, 

suggest a thickness of 3 mm), and the outer part rather than the core of the dried 

specimens should be used for MIP testing.  

One approach to evaluating the intactness of a dried specimen is to compare the 

total pore volume measured by MIP analysis, Vm, with the moisture content of the sample 

before drying. If the obtained cumulative curves become flat at very small diameters, the 

total MIP measured pore volume, Vm, which is equal to the cumulative reading at the 

smallest measured diameter, will correspond to the volume of all of the pores within the 

specimen. The void ratio, e, can be related to the pore volume, Vv, using: 
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Where Ms is the mass of dry solids, Gs is the specific gravity, and w is the density 

of water.  Void ratio can also be obtained from the following equation: 
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Where w is the moisture content of the soil and S is its degree of saturation. 

Combining Eqs. (2.4) and (2.5) gives: 
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The MIP measured pore volume, Vm, is the volume of intruded mercury in 

millilitres per one gram of dried specimen. Therefore, assuming that the sample used in 

the MIP analysis has been thoroughly dried: 
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Assuming that the clay has been completely saturated prior to drying (S=1) leads 

to a direct correspondence between the MIP measured pore volume, Vm, and moisture 

content:  
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V


                                                                                                       (2.8) 

Since the density of the pore water, w, is approximately 1 g/cm3, if given in 

millilitres per gram, the total measured pore volume, Vm, will be equal to the moisture 

content. Delage and Lefebvre (1984) used this same method to check the link between the 

natural moisture content of a soft clay and the total intruded pore volume measured by 

MIP analysis. Using Eq. (2.8) to evaluate MIP test results, it is found that some data 

provided in the literature for specimens obtained by freeze-drying or critical-point-drying 

are proposing moisture contents far below the gravimetric moisture content of the soil, 

indicating that the drying method may not have been successfully implemented (e.g. 

Kamruzzaman et al., 2009). In addition, some other data in the literature are presented in 

terms of percentage (ratio of intruded volume to the measured total pore volume), making 

it impossible to assess the effectiveness of the drying method and hence the validity of 

the data (e.g. Yamadera et al., 1998; Chew et al., 2004; Prashant and Penumadu, 2007).  

Eq. (2.8) was used to calculate MIP derived moisture contents of reconstituted 

Nanticoke clay and EPK kaolin. The MIP derived moisture contents, wm, are plotted 

against the measured gravimetric moisture content of the specimens, wr, in Fig.  2-6. It 

can be sees that a bilinear relationship exists, i.e. below wr of 50%, the MIP derived and 

measured moisture contents are equal, while at values higher than 50%, the MIP derived 

moisture contents are lower than expected. The difference between the two increases with 
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further increase in the moisture content. The variance between the two lines in Fig.  2-6 

represents the amount of error in MIP results. This error may be estimated using the 

following relationships: 

     For wr < 50% :      0ew  

     For wr > 50% :      255.0  re ww                                                            (2.9) 

Where we is the difference between the MIP derived and measured gravimetric 

moisture contents.  

Other researchers have also reported that for void ratios in excess of a certain 

threshold, the void ratio of their specimens has been underestimated by MIP analysis 

(Cuisinier and Laloui, 2004; Ninjgarav et al., 2007; Simms and Yanful, 2004; Romero 

and Simms, 2008; Koliji et al., 2010). As Fig.  2-6 shows, the points corresponding to the 

two different clays follow a similar path, indicating that the observed error should be 

systematic and independent of the type of clay. As discussed previously, the shrinking 

characteristics of clays are highly dependent on their mineralogy. Hence, the observed 

error is not due to ineffective drying. Romero and Simms (2008) suggested the following 

additional sources of error in MIP analysis of porous materials: 

 The presence in the material of isolated pores surrounded by solids (enclosed 

porosity); 

 The presence in the material of large pores that are only accessible via smaller 

ones (constricted porosity); 

 The maximum practical pressure of the apparatus, possibly leaving some 

miniature pores unintruded (non-intruded porosity); 
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 The minimum practical pressure of the apparatus, making it unable to measure the 

volume of large pores (non-detected porosity). 

However, Romero and Simms (2008) also suggested that the amount of enclosed 

porosity is generally insignificant in soils. Constricted porosity is also thought to only 

affect the measured pore size distribution, but not the measured total pore volume. Since 

all cumulative curves presented in this study flatten at diameters less than 10 nm 

(indicating that there is no pore with a lower diameter), the effect of non-intruded 

porosity on MIP results is also likely to be minimal. Consequently, the only plausible 

explanation for the variance in moisture contents measured by the MIP analysis at high 

moisture contents seems to be the limitation of MIP for detecting large pores (pores 

larger than 100 microns in diameter). This is supported by the observation that higher 

errors are found for samples with higher moisture contents, which would potentially have 

more inter-aggregate macropores. Koliji et al. (2010), who used MIP to investigate the 

microstructure of unsaturated clays, used an ultra-macropore kit in the low pressure unit 

of their porosimeter, enabling them to detect pore diameters as large as 600 m. They 

compared the pore size distributions measured for a specific soil sample with and without 

the ultra-macropore kit and demonstrated that 22.5% of the total pore volume of the 

specimen was not detected when the ultra-macropore kit was not used. In common with 

Simms and Yanful (2004) and Cuisinier and Laloui (2004), they also attributed this error 

to the limitation of conventional MIP testing for detecting very large pores.  
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2.6 Summary and Conclusions 

Mercury intrusion porosimetry analysis was used to evaluate the microstructural 

changes in reconstituted clays due to variations in the moisture content. The results of this 

study have indicated that: 

 A bimodal distribution of pore sizes exists in all of the reconstituted specimens. 

The peak associated with larger diameters represented inter-cluster pores, while 

the one associated with smaller diameters corresponded to intra-cluster pores. 

 The volume of the pores trapped within the clay aggregates was found to be 

independent of the moisture content. Although constant with variations in the 

moisture content, the intra-aggregate pore volume differed between clay types. 

 Conversely, the volume of the pores existing between clay aggregates changed 

proportionately with changes in the moisture content. A reduction in the moisture 

content predominantly affected the volume of smaller inter-aggregate pores rather 

than larger ones. 

 Air-drying resulted in the disappearance of almost all of the inter-aggregate pores 

from the material. However, even complete air-drying did not change the intra-

aggregate pore volume of the specimens. 

 At high moisture contents, MIP underestimated the void ratio of the saturated 

material. This error was attributed to the limitation of the MIP analysis in 

recognizing pores with a large pore diameter.  

  Since higher amounts of error were observed in specimens with a higher void 

ratio, results of MIP analysis for such material states should be viewed with 

caution. 
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Table  2-1. Basic geotechnical properties of the two types of clay used in this study  

Soil Characteristic Nanticoke clay EPK kaolin 

Liquid limit, LL (%) 48 61 

Plastic limit, PL (%) 23 36 

Plasticity Index, PI (%) 25 25 

Specific Gravity, Gs 2.73 2.61 

Clay fraction (<2 m, %) 48 53 

Activity, A 0.52 0.47 
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Table  2-2. The calculated inter-aggregate and intra-aggregate pore volumes for samples 

of Nanticoke clay at different moisture contents 

Liquidity 

index, LI 

Moisture 

content, w (%) 

Total pore 

volume (ml/g) 

Inter-aggregate 

pore volume (ml/g) 

Intra-aggregate 

pore volume (ml/g) 

3 98 0.77 0.57 0.20 

2 73 0.58 0.37 0.21 

1 48 0.46 0.28 0.18 

0.5 35.5 0.34 0.17 0.17 

0 23 0.23 0.07 0.16 

N/A Air-dried 0.21 0.04 0.17 
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Table  2-3. The calculated inter-aggregate and intra-aggregate pore volumes for samples 

of EPK kaolin at different moisture contents 

Liquidity 

index, LI 

Moisture 

content, w (%) 

Total pore 

volume (ml/g) 

Inter-aggregate 

pore volume (ml/g) 

Intra-aggregate 

pore volume (ml/g) 

2 86 0.68 0.42 0.26 

1 61 0.55 0.27 0.28 

0.5 48.5 0.49 0.22 0.27 

0 36 0.35 0.1 0.25 

N/A Air-dried 0.34 0.09 0.25 
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Fig.  2-1. Particle size distribution of the three clays used in this study 
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(b) 

Fig.  2-2. Pore size distribution of reconstituted Nanticoke clay specimens with different 

liquidity indices: (a) cumulative distribution; (b) log-differential distribution 
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(b) 

Fig.  2-3. Pore size distribution of reconstituted EPK kaolin specimens with different 

liquidity indices: (a) cumulative distribution; (b) log-differential distribution 
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(b) 

Fig.  2-4. Pore size distribution of freeze-dried and air-dried reconstituted Nanticoke clay 

at LI=3 (a) cumulative distribution; (b) log-differential distribution 
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(b) 

Fig.  2-5. Pore size distribution of freeze-dried and air-dried reconstituted EPK specimens 

at different liquidity indices: (a) cumulative distribution; (b) log-differential 

distribution 
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Fig.  2-6. MIP derived moisture contents versus the measured moisture contents  
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3 THE DEVELOPMENT OF MICROSTRUCTURE IN 

ARTIFICIALLY CEMENTED CANADIAN CLAYS 

3.1 Introduction 

Artificial cementation is becoming increasingly important for the stabilization and 

treatment of soft clayey soils. Cemented, dredged and waste soils are often employed in 

land reclamation and rehabilitation projects. Cementitious additives are also extensively 

used to improve mechanical properties of soft ground underlying roads and railways. 

Deep mixed concrete columns are becoming more common as alternatives to piles for 

stabilized slopes, trenches and deep excavations in soft ground (Bergado et al., 1996). 

Cementitious additives are also used to stabilize mine wastes for underground disposal 

(e.g. MacKay and Emery, 1992). The major aim of the aforementioned application of 

artificial cementation is the creation of bonding between soil particles, thereby increasing 

the strength and reducing the compressibility of the materials (e.g. Fischer et al., 1978; 

Uddin et al., 1997; Tremblay et al., 2001; Ismail et al., 2002a; Lo and Wardani, 2002; 

Chew et al., 2004; Kamruzzaman et al., 2009). Whilst the mechanical behaviour of 

cemented clays is becoming better understood, the nature of the bonding and the 

microstructure developed in artificially cemented clays are still poorly described in the 

literature.  

Many features of artificial cementation in clays are also characteristic of 

cementation in natural clay deposits (e.g. Loiselle et al., 1971; Sangrey, 1972; Boone and 

Lutenegger, 1997; Graham et al., 2005). Evidence of natural cementation is found in 

many sensitive soils, especially those located in parts of Canada (e.g. Sangrey, 1972; 
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Bentley and Smalley, 1978; Quigley, 1980; Graham et al., 2005). Investigation of the 

effect of natural cementation on soil behaviour has been enhanced by the use of 

artificially cemented samples created in the laboratory (e.g. Graham et al., 2005). This 

approach avoids the cost and technical difficulties associated with obtaining undisturbed 

naturally cemented specimens and can provide insight into the processes forming natural 

soils and weak rocks. In addition, the development of constitutive models for naturally 

and artificially cemented soils requires good understanding of the initial microstructure 

and bonding that occurs during the formation, and the subsequent breakdown of this 

structure during loading. 

It is therefore important to study the microstructural changes and bonding of the 

soil due to the addition of cementitious binders and to investigate the links between the 

resulting microstructural changes and mechanical behaviour of the material. The 

behaviour of cemented clays has been found to be dependent on bonding, composition, 

and fabric (Mitchell and Soga, 2005). It is also thought to be dependent on the 

mineralogy and activity of the soil and the type of cement (Croft, 1967a; Croft, 1967b; 

Noble and Plaster, 1970; Osula, 1996; Tremblay, et al. 2001; Ismail et al., 2002a; Ismail 

et al., 2002b; Bhattacharja et al., 2003; Wareham and Mackechnie, 2006). However, these 

latter aspects have been less well investigated for cement-treated clays. 

The objective of this study was to investigate the development of cementation for 

kaolinite and two Ontario clays with Portland cement additives, to better understand the 

effects of clay mineralogy and activity on the resulting microstructure and bonding. 

Qualitative and quantitative data have been utilised, from scanning electron microscopy 

and mercury porosimetry, and microstructural descriptions have been correlated to the 
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mechanical behaviour of the material. The effect of gypsum on Portland cement-soil 

mixtures has also been investigated. These aspects are discussed with the potential 

consequences for the use of cementitious binders for soil stabilization and improvement. 

3.2 Literature Review 

Soil aggregates or clusters are often described as “assemblages” of clay particles, 

which behave as compressible, crushable macro-particles and interact to create strength 

and stiffness in clays (Mitchell and Soga, 2005). Despite soil-cement mixtures being 

thoroughly blended, clay particles will often form aggregates enclosed by the cement 

slurry (Croft, 1967b; Bergado et al., 1996). Due to its availability and relative 

inexpensiveness, Portland cement is the most commonly used cementing agent in 

geotechnical projects. Adding Portland cement to soil results in a hydration reaction in 

the cement, followed by a pozzolanic reaction between the calcium hydroxide supplied 

by the cement and the silica in the soil (e.g. Herzog and Mitchell, 1963; Croft, 1967a; 

Bergado et al., 1996; Bhattacharja et al., 2003). Both hydration and pozzolanic reactions 

lead to the creation of gelatinous and amorphous hydrated calcium silicates and calcium 

aluminates. These products later crystallize to form inter-aggregate and inter-particle 

bonds (Croft, 1967a), giving an apparent cohesion to the resulting composite material. 

The hydration reactions take place with a faster rate than the pozzolanic reactions and 

occur mainly in the space between the soil aggregates, forming a strong matrix enclosing 

the non-bonded particles and aggregates. Conversely, the pozzolanic reactions take place 

between the produced calcium hydroxide and the silica and alumina, dissolved from the 

clay surfaces, to bond the particles within the clay aggregates (Bergado et al., 1996; 
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Bhattacharja et al., 2003). These two forms of reactions combine to produce inter-

aggregate and intra-aggregate bridges, creating a strongly bonded fabric within the soil 

body.  

Gypsum is another effective cementing agent and is well-known for its 

workability and slow hardening rate after initial setting. When mixed with water, the 

calcium sulphate hemihydrate powder changes to its dihydrate form (gypsum), 

developing a rigid crystal lattice within the desired material (Amaratunga, 1995). Unlike 

cement-based mixtures, hydrated gypsum remains relatively soft for a long time after 

mixing; gypsum is often added as a compound to Portland cement to prevent flash 

setting. Although it can significantly increase the strength and stiffness of granular soils 

(Huang and Airey, 1998), adding gypsum alone to soft clays with high moisture contents 

does not improve their shear strength or compressibility characteristics. However, if 

added to cement and clay mixtures, gypsum can noticeably change the properties of the 

cemented clay. Both of these binders can change the microstructure of the clay; they 

produce a flocculated structure in the material, as they increase the calcium content of the 

soil. Moreover, both cement and gypsum hydration reactions consume pore water and are 

exothermic, i.e. they produce heat. However, the formation of gypsum crystals is also 

accompanied by volumetric expansion in the soil (Sereda et al., 1965).  

Scanning electron microscopy and mercury intrusion porosimetry have been used 

previously for examining the micro-fabric of various porous materials (e.g. Choquette et 

al., 1987; Delage et al., 1996; Locat et al., 1996; Ninjgarav et al., 2007; Romero and 

Simms, 2008; Koliji et al., 2010). When used in combination, SEM and MIP can provide 

coupled qualitative and quantitative information on the arrangement and distribution of 
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particles and pores within the material. Such information can improve the understanding 

of the macroscopic and engineering behaviour of soils (Romero and Simms, 2008). 

Despite their potential effectiveness, these two characterization methods are infrequently 

used together to examine the microstructure developed in clays, especially those treated 

by Portland cement or gypsum. Lapierre et al. (1990) used MIP results to find the 

relationships between pore size distribution and permeability of a Leda clay and 

suggested that no unique correlation between the two parameters can be found.  

Choquette et al. (1987) studied the effects of artificial cementation with quick lime 

on microtexture and mineralogy of marine clays from eastern Canada. They concluded 

that the addition of lime results in immediate agglomeration of clay particles and that the 

flocculated structure is maintained with development of cementitious bonds. They also 

suggested that lime stabilization results in the production of platey minerals, which 

partition the inter-aggregate space within the soil material and increase the volume of the 

micropores. They observed a correlation between the amount of structural change due to 

the addition of lime and the measured strength of the treated clay.  

Locat et al. (1996) investigated the mechanical and hydraulic behaviour of a lime-

treated clay, suggesting that if the lime content is high enough (greater than 3%) to 

provoke pozzolanic reactions in the soil (for a constant void ratio), the produced 

cementitious material will fill the pore space and can reduce the hydraulic conductivity 

by up to an order of magnitude. Chew et al. (2004) and Kamruzzaman et al. (2009) 

investigated the development of microstructure in cement-treated Singapore marine clay 

by performing SEM and MIP analyses and detected an increase in the degree of 

flocculation at higher cement contents. Based on the MIP results for the cement-treated 
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samples, Kamruzzaman et al. (2009) also suggested that among specimens prepared at 

the same initial moisture content, those having a higher cement content will also have a 

higher volume of macropores, as well as a higher total pore volume. Horpibulsuk et al. 

(2010) performed MIP analysis on compacted specimens of a silty clay treated with 10% 

Portland cement. They showed that in the pore diameter range of 10 to 100 nm, the pore 

size distributions of samples with different moisture contents are essentially the same. 

3.3 Experimental Design 

3.3.1 Material properties 

Artificially cemented samples of three types of clay: EPK kaolin, Nanticoke clay, 

and Ottawa clay, were prepared for this study. EPK kaolin is a commercially available 

pulverized kaolin clay from Georgia, U.S. Air-dried clay powders were also obtained 

from block samples of a stiff, fissured clay with a glacio-lacustrine origin taken from 3 m 

depth in a test pit in Nanticoke, Ontario, and from samples of a sensitive Leda/Champlain 

clay (St~20) also taken from 3 m depth in a borehole in Ottawa, Ontario. X-ray 

diffraction analysis showed that the Nanticoke and Ottawa clays had primary clay 

minerals of illite and chlorite. Traces of vermiculite were also found in the Ottawa clay. 

The primary non-clay minerals of these soils are quartz, feldspar, calcite, and dolomite. 

Additional pyrite was found in the Ottawa clay (Fig.  3-1). Both clays appear to have 

almost similar clay minerals. However, since they have been deposited in different 

geological periods and depositional environments, Nanticoke and Ottawa clays do not 

necessarily have a unique mineralogy and structure (Locat et al., 1985). For instance, the 

two clays have different colors, activities, and clay contents. Quigley (1980) suggests that 
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the Nanticoke clay, which can be considered among the Lake Erie basin clays, has been 

formed in freshwater glacial lakes around 13,000 years BP. However, the Ottawa clay is a 

Champlain Sea clay mainly deposited in a marine environment approximately between 

12,500 to 10,000 BP (Quigley, 1980). Hence, unlike the Nanticoke material, the Ottawa 

clay has been formed in an environment with an approximate salinity of 35 g/L. The 

Nanticoke and Ottawa clay specimens used in this study had natural moisture contents of 

28 and 80%, indicating liquidity indices of 0.2 and 2, respectively. Table  3-1 summarizes 

the basic geotechnical properties of the three types of clay used in this study, and Fig.  3-2 

shows their grain size distribution conducted according to ASTM D422. Note that the 

particle size distribution curves for the three clays are relatively similar. 

Two types of binders were used in this study. Ordinary Portland cement (type I 

according to ASTM C150) was used as the primary cementing agent to produce 

cementitious bonding within the specimens. Plaster of Paris (calcium sulphate 

hemihydrate) was also added to some of the mixtures of EPK kaolin, to investigate the 

microstructure and strength developed in gypsum treated material. 

3.3.2 Specimen preparation and testing programme 

Except for the undisturbed specimens of Ottawa and Nanticoke clays, all other 

samples used in this study were obtained from powdered material. EPK Kaolin is already 

available in powder form. To prepare the powdered Nanticoke and Ottawa clays, the soil 

obtained from the block samples was cut into small pieces and dried at room temperature. 

Then the soil was finely pulverized into a powder (100% passing Sieve No. 40) using a 

rubber hammer to avoid crushing any soil particles. For each clay type, prepared powder 

was then used to make cemented or reconstituted specimens. 
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To make the cemented samples, clay powders were added to de-ionised water to 

form a slurry with a water content close to the desired value. The slurry was then mixed 

in a commercial mixer until it was uniform. Next, the required amount of cement and 

water was added to the mixture to increase the water content to the desired level. If 

needed, a certain amount of gypsum (in powder form) was also added to the mixture, so 

that the required combination of soil-cement-gypsum was obtained. The slurry was then 

gently mixed for a maximum of 15 minutes, to ensure that the mixing process would not 

break any produced bonds.  The mixture was then poured into plastic cups, 70 mm in 

diameter and 120 mm in height. Trapped air bubbles were removed from the specimens 

by gently tapping on the walls of each cup, and some water was added above the slurry 

surface in every cup, to provide it with moisture throughout the curing period. The cups 

were then covered by plastic wrap and placed in a temperature controlled room to be 

cured at a constant temperature of 25oC. All cemented samples were cured for a period of 

28 days before being used for testing. Cemented samples were prepared with different 

moisture content, w (%), cement content, c (%), and gypsum content, g (%). Cement and 

gypsum contents were defined as the ratio of mass of cement or plaster to the mass of dry 

soil in terms of a percentage, respectively.  

For the preparation of the reconstituted samples, powdered clay was added to the 

amount of water needed to reach the target moisture content. The resulting mixture was 

blended for a few minutes and was left to soak for at least 24 hours in a sealed container 

before it was mixed again and used for testing. For all reconstituted samples, the moisture 

content of a portion of the specimen was measured prior to performing experiments to 

ensure that the target moisture content was reached. 
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To analyse the microstructure developed in the cemented clays, mercury intrusion 

porosimetry (MIP) and scanning electron microscopy (SEM) were carried out on 

undisturbed, reconstituted, or cemented samples of EPK kaolin, Nanticoke clay, and 

Ottawa clay. The scanning electron microscopy analysis was conducted using a Hitachi 

S-4500 field emission SEM with a Quartz XOne EDX system. For the SEM/EDX 

analysis, very small dried pieces of the clay sample were secured on aluminum mounting 

stubs by an adhesive carbon conductive tab and were sputter coated with a thin layer of 

gold, before placement in the SEM device. SEM images were taken at different levels of 

magnification in the range of 1000x to 25,000x. Mercury intrusion porosimetry tests were 

carried out with an AutoPore IV, a porosimeter manufactured by Micromeritics and 

capable of providing a maximum mercury pressure of 414 MPa. This porosimeter 

conducts MIP experiments in two stages; i.e. a low pressure stage followed by a high 

pressure stage. To carry out the tests, a sample of the dried soil was placed in an MIP 

penetrometer, and the sealed penetrometer was inserted into the low pressure port of the 

equipment. In this stage, the air was evacuated and was then replaced by mercury in 

increments until a mercury pressure of 172 kPa was reached. Next, the penetrometer, now 

filled with mercury, was removed from the low pressure port, weighed, and placed in the 

high pressure port, where it was pressurized, incrementally up to the maximum pressure 

of 414 MPa. The mass of the dried specimens used in the MIP analysis ranged from 1.0 

to 1.7 g, depending on the stem volume of the penetrometer and the expected total pore 

volume of the sample.  

For preparation of the samples for the SEM and MIP analyses, a freeze-drying 

method was employed to remove the pore water with minimum disturbance to the pore 
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structure. To freeze-dry the specimens, samples were cut into small cubes (about 5 mm in 

each linear dimension) to avoid disturbance due to non-uniform freezing (Mitchell and 

Soga, 2005). Next, they were placed in a specimen holder and dipped for about one 

minute into a container filled with isopentane that had been previously cooled to its 

melting point (-160oC) in liquid nitrogen (-196oC). This sudden reduction in temperature 

(to values lower than -130oC) prevents the formation of crystalline ice in the sample and 

avoids any volume expansion. In addition, dipping the samples in cooled isopentane 

prevents the delay in freezing that would happen to samples dipped directly into liquid 

nitrogen because of the development of thermally insulating gaseous bubbles around the 

specimens (Rowe, 1960). After freezing, the pore water was removed by sublimation 

with the use of a vacuum pump capable of providing an absolute pressure of 4 Pa. The 

dried samples were then kept in a desiccator under vacuum until tested. A number of 

specimens used in MIP analysis were prepared by air-drying rather than freeze-drying. To 

air-dry the samples, they were left to dry at room temperature (25oC) for a few days 

before they were completely dried in a desiccator under an absolute pressure of 4 Pa. 

Oedometer tests on undisturbed, reconstituted, and cemented specimens of 

Nanticoke and Ottawa clays were used to measure the hydraulic conductivity. All 

oedometer tests and calculations were performed in accordance with ASTM D2435, and 

the hydraulic conductivity values were obtained using the square root of time method 

(Head, 1982). In addition, the undrained shear strengths of cemented EPK, Nanticoke and 

Ottawa clays with different cement contents were measured with a laboratory shear vane. 

The vane had a diameter and height of 19 and 28 mm, respectively. The tests were carried 

out with an approximate rate of one complete revolution per minute to avoid the 
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influence of shearing rate on the test results. To measure the peak shear strength, cup, the 

vane was inserted into the plastic cups filled with the cemented soil and was rotated until 

the sample reached failure. The residual shear strength, cur, of the material was measured 

after multiple rotations of the vane.  

3.4 Results and Analysis 

3.4.1 SEM analysis of undisturbed, reconstituted, and artificially cemented 

specimens 

Scanning electron microscopy provides a useful tool for visual characterisation of 

particle structure and bonding agents developed between soil particles due to artificial 

cementation. SEM analysis was performed on freeze-dried samples of intact, 

reconstituted or cemented clay to identify differences between these materials and states. 

Fig.  3-3 shows the images taken from an undisturbed sample of Nanticoke clay at 

different magnifications. The clay sample was highly overconsolidated with an apparent 

vertical preconsolidation stress of almost 500 kPa, explaining the compacted and 

dispersed structure observed in Fig.  3-3a, b, and d. EDX analysis confirmed the presence 

of silt size quartz and feldspar crystals, which are marked in Fig.  3-3b with the numbers 1 

and 2, respectively. The smaller platey clay particles (Fig.  3-3b and d) gather in 

approximately parallel arrangements to form a dispersed structure. Calcite clasts were 

also observed in the intact soil. The calcite particle identified by EDX analysis can be 

recognized from its striated surface in Fig.  3-3b (point 3) and c (at a higher level of 

magnification). Although trace amounts of carbonates were also seen on the EDX scans 
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performed on the entire sample, it is difficult to identify whether the majority of 

carbonates are discrete clasts or are disseminated through the soil body.  

In contrast, Fig.  3-4 shows SEM micrographs at different magnifications taken 

from the surface of Nanticoke clay treated with 8.7% Portland cement. Comparing this 

figure with Fig.  3-3, it can be seen that a more open structure exists in the cemented clay. 

This is a consequence of the introduction of cement into the soil; the concentration of 

calcium ions, Ca2+, in the pore fluid increases rapidly due to the commencement of 

hydration reactions. Gartner et al. (1985) reported that the aqueous phase of Portland 

cement pastes with a w/c ratio of 0.5 became super-saturated with respect to calcium 

within 12 minutes of curing. This increase in the concentration of calcium ions leads to 

the substitution of calcium, which is a divalent cation, for the monovalent cations, such as 

Na+ and K+, which have been previously adsorbed to clay surfaces within the double 

layer (Bergado et al., 1996; Bhattacharja et al., 2003). The cation exchange increases the 

concentration of positively charged calcium ions in the vicinity of particle surfaces and 

causes flocculation (Herrin and Mitchell, 1961; Herzog and Mitchell, 1963; Choquette et 

al., 1987). Resulting from the hydration and pozzolanic reactions, the rapid formation of 

cementing bonds at points of contacts between the particles and aggregates helps 

maintain this open structure over time. Choquette et al. (1987) suggest that a similar 

phenomenon occurs in lime treated clays. The addition of quick lime to clay gives rise to 

instantaneous agglomeration of clay particles. They showed that the soil keeps the 

instantly formed flocculated structure throughout the maturation process. Careful 

investigation of Fig.  3-4b shows cementitious bridges, marked by dashed circles, 

connecting the platey clay particles to each other.  
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Furthermore, it can be seen in Fig.  3-4 that the process of cementation has been 

accompanied by the formation of small needle-like precipitated crystals between the 

particles. These crystals, which are scattered throughout the surface individually or in the 

form of clusters, have a high aspect ratio with a maximum length and diameter of 4 and 

0.3 m, respectively. EDX analysis showed that in comparison to the soil particles, these 

crystals contain substantial amounts of calcium, sulphide, and aluminum ions. Thus these 

crystals are most likely to be calcium sulfoaluminate or Ettringite. Ettringite forms as a 

reaction product of the lime produced during the cement hydration and aluminium 

provided by clay or other minerals (e.g. alumino-silicate feldspar). The release of calcium 

into the soil increases the pH of the medium, so silica and alumina dissolve from clay 

surfaces into the pore water and combine with the calcium and sulphate added to the soil 

to produce the Ettringite (Mitchell, 1986; Wang, 2002; Bhattacharja et al., 2003; Wang et 

al., 2005). The crystallization of Ettringite begins in the early stages of curing as soon as 

water is added to the cement-clay powder and the calcium hydroxide required for its 

formation starts to be produced. Wang et al. (2005) showed that the length and diameter 

of Ettringite crystals increase gradually with the curing time. They also suggested that the 

larger crystals form in a low pH environment. The formation of Ettringite crystals is often 

accompanied by considerable volumetric expansion, which could impose substantial 

damage to the surrounding soil structures. However, in the case of soft clays, the 

production of Ettringite is less problematic because of the relatively high void ratio of the 

soil. The primary problem regarding sulphate attack in cement treated soft clays is that it 

hinders the production of CSH and CAH, by consuming the two main ingredients needed 

for the progression of pozzolanic reactions, namely silica/alumina and calcium ions, and 
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also by depleting the material of lime, hence dropping the pH and making silica and 

alumina insoluble. 

Fig.  3-5 shows SEM images at different magnifications of undisturbed Ottawa 

clay, which is a medium plasticity moderately sensitive clay (St~20) with a liquidity 

index of almost 2 in its natural state. It can be seen that tightly packed arrangements of 

clay particles have formed aggregates that exist in an open and flocculated structure with 

respect to each other. Several explanations, such as natural cementation, weathering, 

thixotropic hardening, and leaching/ion exchange, have been proposed for the sensitivity 

of North American and Scandinavian post-glacial clays (Mitchell and Soga, 2005). A 

number of researchers have attributed the card-house arrangement of the particles in post-

glacial clays, partly to the existence of platey silt-sized crystals mainly composed of 

quartz (Gillott, 1979; Smalley et al., 1973; Krinsley and Smalley, 1973). Compared to 

spherical particles, these flat particles tend to form a more open structure, increasing the 

soil potential for sudden collapse (Krinsley and Smalley, 1973). Such platey particles, 

which have different orientations and are not bigger than 10 m in length, can be 

recognized in Fig.  3-5b and c. As can be seen in the figures, these particles help form a 

metastable fabric in the soil by acting as bridges between clay aggregates. Delage and 

Lefebvre (1984) also observed silt-size platey minerals, which interacted with clay 

platelets and helped form bridge crossings between the aggregates, in a sensitive 

Champlain clay. Quigley et al. (1981) suggested that the pyrite mineral that has been 

produced in the soil probably by anaerobic bacterial processes (such as sulphate reduction 

by sulphate reducing bacteria) cements these silt grains at their points of contacts. Fig. 

 3-5d shows a calcite/dolomite concentration (the circled aggregate), which can be 
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identified from its rugged surface. EDX analysis indicated a calcium/magnesium 

carbonate nature of this particle. In addition, the EDX area scan confirmed the results of 

previous chemical examinations, performed by the authors, indicating the presence of 

almost 4% calcite and 2% dolomite in this Ottawa clay specimen. Calcium carbonate has 

also been mentioned frequently by previous researchers as the possible cause of 

cementation in Leda clays (Townsend, 1965; Loiselle et al., 1971; Sangrey, 1972; Boone 

and Lutenegger, 1997).  

If destructured, Ottawa clay will exhibit a fairly dispersed fabric (Fig.  3-6). A 

clear lack of structure is observed in the reconstituted soil. However, since the 

reconstituted specimen has been freeze-dried shortly after being mixed at a high moisture 

content, a large amount of pores exists in the soil despite its dispersed structure. The 

presence of small particles of platy morphology and their importance in the formation of 

the fabric can be recognized in Fig.  3-6, as well. However, unlike the undisturbed clay, 

for the reconstituted specimen, the platey silt particles lie parallel to each other, rather 

than at different orientations.  

Micrographs of treated Ottawa clay with 3.1 and 6.4% cement contents are 

presented in Fig.  3-7 and Fig.  3-8 at different magnifications. Comparing the 

reconstituted specimen (Fig.  3-6) with those treated with Portland cement, it can be seen 

that cementation has resulted in an agglomerated, open structure in the clay and has 

produced Ettringite needles that are scattered throughout the cemented samples in an 

uneven fashion. As expected, the higher the cement content, the higher the produced 

volume of Ettringite in the soil. Moreover, in cemented Ottawa clay we can see needle-

shaped crystals as long as 12 m, which is much longer than the maximum values 
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detected in cemented Nanticoke clay. However, the Ettringite crystals produced in the 

two clays seem to have similar diameters. Since most of the components needed for 

Ettringite formation are supplied by the soil, the mineralogy will affect the size and total 

volume of the Ettringite produced during artificial cementation.  

We can see in Fig.  3-7a and b that silt-sized particles of quartz or feldspar origin 

(according to the results of EDX analysis) have been coated with very small crystals that 

are probably the products of artificial cementation. In the sample with 3.1% cement, the 

clay particles have formed aggregates that are connected to each other by cementitious 

bonds. Comparing Fig.  3-6 with Fig.  3-7, it can be seen that the new cementitious crystals 

that have been produced in the cemented sample have a “popcorn-like” morphology (Fig. 

 3-7b, c, and d). Fig.  3-8 better illustrates the two-phase structure of the artificially 

cemented clay, i.e. one phase consists of clay aggregates formed when particles were 

bonded to each other firstly by charge forces and then by the cementitious material, and 

the second phase is the very porous matrix of cementitious matter filling the gaps 

between the aggregates and locking them in place. The formation of a reticular texture is 

evident in this figure. The highly flocculated structure of the clay treated with 6.4% 

cement is due to the availability of more Ca2+ cations and the higher pH of the pore fluid. 

Unlike the Nanticoke clay, the produced cementitous material in the Ottawa clay seems 

to be gelatinous and poorly crystalline and has coated the clay aggregates. The different 

morphologies of the cemented soil and precipitated products of Nanticoke and Ottawa 

clays confirm the importance of soil mineralogy in the resulting artificial cementation. 

To investigate the effect of cementation by gypsum on clay structure, samples of 

EPK kaolin cemented by either Portland cement alone or by a combination of Portland 
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cement and gypsum were analyzed using the scanning electron microscopy (Fig.  3-9 and 

Fig.  3-10). The same patterns as those observed in cemented Nanticoke and Ottawa clays 

exist in the cemented kaolin clay; however, the degree of flocculation and the amount and 

size of needle-like crystals is less in the case of kaolin (Fig.  3-9), than for the other two 

clays. Having a higher magnification level than other figures, Fig.  3-9c reveals the 

presence of cementitious bridges (marked by circles) between clay aggregates and also 

the existence of particles with fibrous textures in the material. Using both cement and 

gypsum as cementing agents has resulted in a more compact fabric of the particles, with 

some very small openings and cracks in the material (Fig.  3-10). This could be due to the 

volume expansion that follows the hydration of calcined gypsum. The gypsum swelling, 

which is attributed to the growth of the crystal lattice, fills the larger pores and creates the 

observed packed structure. Fig.  3-10b, c, and d show a minute hole containing many 

needle-like crystals, a tiny crack with smooth surfaces on both sides, and an isolated 

crystal of gypsum, respectively. As can be seen in these images, compared to the kaolin 

sample with only Portland cement, the gypsum specimen has a lesser amount of Ettringite 

crystals. Moreover, the same fibrous textures are observed in the gypsum treated material 

(Fig.  3-10e and f). From these images, we can infer that the addition of gypsum has 

reduced the homogeneity of the cemented material, resulting in a potential increase in 

permeability of the soil. 

3.4.2 Pore size distribution: the effect of artificial cementation by Portland cement 

and gypsum 

Mercury intrusion porosimetry was conducted on the same cement treated and 

reconstituted clay specimens to study the effect of artificial cementation on the pore size 
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distribution of the clay. Most of the experiments were performed on freeze-dried samples; 

however, a few tests were also conducted on air-dried specimens to investigate the 

shrinkage properties of the cemented clays. Washburn’s equation (Washburn, 1921), 

which is derived for capillary flow of a liquid in a cylindrical tube, was employed to 

calculate pore diameter based on the applied mercury pressure: 

P
r

 cos2
                                                                                                  (3.1) 

Where r is the pore radius, P is the applied mercury pressure,  is the surface 

tension of mercury, and  is the solid-liquid contact angle. Based on the recommendation 

by Diamond (1970) for kaolinite and illite, a mercury contact angle of 147o and also a 

surface tension of 485 dynes/cm were used in the calculations. If the calculated pore 

diameters are successively numbered, cumulative and log-differential pore volumes can 

be obtained for each calculated diameter, Di, as follows: 
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                                                                                   (3.3) 

Where Vi is the measured total intruded pore volume corresponding to the 

diameter, Di. Logarithmic differential distribution, which provides a qualitative 

measurement of the distribution of the pores, is used instead of the incremental 

distribution to eliminate the experimental point spacing effect that usually makes the 

latter curve uneven.  

Fig.  3-11 shows pore size distributions of cemented samples of Nanticoke clay 

with a moisture content of 98% (LI=3) and with cement contents ranging from 0 to 19%. 
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The distribution is shown for a diameter range of 3 nm to 0.1 mm. Since all cumulative 

curves (Fig.  3-11a) become flat at diameters less than 10 nm, we can assume that 

regardless of the moisture content of the specimens, almost all of the pores in the 

specimens have a diameter larger than 3 nm. Thus, the cumulative volume reading at a 

diameter of 3 nm represents the total pore volume of the sample. All cemented specimens 

were cured for 28 days before being freeze-dried. However, despite being left for 28 days 

to cure under water, all specimens treated with Portland cement had a final moisture 

content similar to their initial one, because the flocculation happening shortly after the 

addition of cement prevented self-weight driven settlement of the particles. This is 

confirmed by the observation that all cumulative curves in Fig.  3-11a converge at very 

small pore diameters, indicating that the total pore volume of all cemented specimens is 

the same (about 0.85 ml/g).   

As can be seen in Fig.  3-11b, a local minimum exists in all of the distribution 

curves at an approximate diameter of 7 microns (7000nm). This is an artefact due to the 

point of switchover from the low to the high pressure stages (Giesche, 2006) and should 

be neglected in the analysis. Hence, without this minimum, the actual pore size 

distributions (in log-differential graphs) will become either bimodal or unimodal.  

Although the total pore volumes of all of the samples are equal (Fig.  3-11a), the 

distribution of the pores is highly variable depending on the cement content of the 

specimen (Fig.  3-11b). Two distinct patterns can be recognized; samples with 0.5, 1, and 

2% cement contents have a pore size distribution very similar to that of the reconstituted 

specimen (c=0%), i.e. a bimodal pattern with a first peak between 70,000 and 400 nm and 

a second peak between 300 and 10 nm. We can associate the first peak with the free 
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water existing between soil aggregates (inter-aggregate pores) and the second one with 

the water that is trapped within the aggregates and on the surface of clay particles (intra-

aggregate pores). Hence, a dispersed structure in which clay aggregates are separate from 

one another exists in these specimens. On the other hand, samples with cement contents 

higher than 2% display a unimodal pore size distribution with only one peak in the range 

of 3000 to 10 nm, indicating the existence of a flocculated structure in the specimens. It 

can also be seen that an increase in cement content substantially reduces the amount of 

large pores (with a diameter higher than 4000 nm), because the products of cement 

hydration fill the gaps between soil aggregates and divide each large pore into a number 

of smaller ones. Again, this reduction in inter-aggregate pore volume is significant when 

cement content is increased from 2% to 4%. Hence, we can conclude that at cement 

contents higher than 2%, a fundamental structural change from dispersed to flocculated 

takes place in the specimens. The specimen with 2% cement content seems to be in 

transition from a dispersed to a flocculated structure. In addition, the results show that in 

samples with a unimodal pore size distribution (c>2%), a further increase in cement 

content widens the peak and slightly shifts it towards larger diameters (i.e. the right side 

of the figure). For example, the peak for specimens with 4.2 and 8.7% cement contents is 

at 250 nm, while the one corresponding to samples with 13.6 and 19% cement contents is 

at 380 nm. This implies that the degree of flocculation keeps increasing with a further 

increase in cement content.  

Fig.  3-12 and Fig.  3-13 show the pore size distribution of samples of Ottawa clay 

and EPK kaolin, respectively. As these figures show, the arguments made for 

reconstituted and cemented Nanticoke clay are also true for the other two clays. However, 
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comparing the behaviour of the three soils, the important effect of clay mineralogy on 

pore size distribution is noticeable. Ottawa clay, for example, at a relatively low cement 

content of 6.4% displays a very high degree of flocculation, which is identified by its 

very wide unimodal pore size distribution that extends into pore sizes with very low 

diameters (Fig.  3-12b) and has a peak at 197 nm. The reticular texture observed before, 

for the cemented Ottawa clay in Fig.  3-8, supports the wide range of pore sizes and small 

dominant pore diameters. EPK kaolin treated with 6.4% cement, on the other hand, 

displays a lower degree of flocculation and partly retains its bimodal structure. 

The intact Ottawa clay specimen shown in Fig.  3-12 also exhibits a flocculated 

structure, explaining the soil sensitivity and its high in-situ moisture content. However, 

having semi-bimodal pore size distributions (i.e. a local peak an approximate diameter of 

100 nm followed by the main peak at a greater diameter), both undisturbed and 3.1% 

cement treated Ottawa clay specimens seem to have been in transition from a dispersed to 

a flocculated structure. This may explain why the dominant peak for cemented Ottawa 

clay moves significantly towards smaller diameters as the cement content increases from 

3.1 to 6.4%. Reconstituted Ottawa clay, in contrast, has a discernible bimodal pore size 

distribution with a first dominant peak between 100,000 and 800 nm and a second one 

between 700 and 10 nm.  

In addition, as shown in Fig.  3-13b for EPK kaolin, the peaks for specimens with 

6.4% cement content become less intense and wider as the moisture content increases, 

indicating that a more porous, card-house structure is formed in cemented samples with a 

higher liquidity index. Nevertheless, at a constant cement content, an increase in moisture 

content does not seem to make a drastic change in the dominant pore diameter. For 
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instance, in EPK specimens with 6.4% cement content, the peak moves slightly from 80 

nm to 120 nm as the moisture content increases from 61 to 86%.  

For all of the three clays, we can see that with the addition of cement the total pore 

volume remains constant, while the inter-aggregate pores seem to disappear. This finding 

is contrary to the suggestion of Kamruzzaman et al. (2009) that at a certain initial 

moisture content, both inter-aggregate and total pore volumes significantly increase with 

a rise in cement content. The main reason for this fundamental disagreement is explained 

later in the paper. Based on the results, we can conclude that artificial cementation only 

increases the volume of the micropores by sacrificing that of the macropores. This is in 

accord with Choquette et al. (1987), who also reported the disappearance of the inter-

aggregate large pores and the replacement of the bimodal pore distribution of 

reconstituted samples by a unimodal flocculated distribution in 4% lime treated clay. 

They also reported that cementation of clay by lime does not change the total pore 

volume of the soil. They attributed the reduction in macropores to the production of 

cementitious material in inter-aggregate pores, partitioning each larger pore into a 

number of smaller ones. Hence, a common factor seems to govern the pore size 

distribution of clays treated with both lime and Portland cement. This factor is probably 

the presence of Ca2+ cations in both cases. The flocculated distribution, which is formed 

immediately after the addition of lime or cement, stays as the cementing bonds form and 

solidify the material.  

If left to dry at the room temperature, a soft clay specimen will shrink until it 

reaches the shrinkage limit, after which the clay will dry without further volume changes. 

Substantial particle rearrangements within the clayey material during the air-drying 
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process will change the pore size distributions and total pore volume of a soft clay 

specimen (Gillott 1970). Comparison of pore size distributions and total pore volumes of 

two originally identical specimens, one air-dried and one freeze-dried, can therefore 

provide us with useful information about microstructural changes in soil, and in cemented 

clay in particular, due to atmospheric drying. Results of the MIP analysis on both air-

dried and freeze-dried specimens of Nanticoke clay are presented in Fig.  3-14. Except for 

the air-dried undisturbed Nanticoke clay, which had an in-situ moisture content of 28% 

(LI=0.2), all of the Nanticoke samples plotted in Fig.  3-14 were cement treated and had 

an initial moisture content of 98% (LI=3). Having similar moisture contents, all freeze-

dried Nanticoke samples have the same total pore volume. In comparison, the total pore 

volume of the air-dried specimens changes depending on their cement content. The air-

dried undisturbed Nanticoke sample and the ones with 0.5 and 1% cement all have a 

similar pore size distribution with the majority of the pores having a diameter less than 

160 nm. The total pore volume remaining in these samples (residual pore volume) will be 

related to the shrinkage limit of the material. Conversely, Nanticoke samples with 2.0, 

4.2, and 8.7% cement contents still have large pores left and also have a residual total 

pore volume greater than that of untreated and lightly cemented specimens, perhaps due 

to the presence of cementitious bonds that resist excessive shrinkage and particle 

rearrangement. The higher the cement content, the lower the shrinkage due to air-drying. 

Specimens with 8.7, 4.2 and 2.0% cement contents have lost 26, 31, and 52% of their 

total pore volume due to bulk shrinkage, respectively. Both samples with cement contents 

less that 2% have lost 75% of their total pore volume. Therefore, according to the results 

presented in Fig.  3-14, an effective cementation (one assumed to yield a considerable 
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strength gain in the soil) is not produced in Nanticoke specimens with less that 2% 

cement content. Moreover, the fact that even the sample with 8.7% cement content has 

gone through 26% bulk shrinkage, suggests that some structural damage may be caused 

by drying of artificially cemented clays. This structural damage could have negative 

effects such as a loss of strength in cemented materials in an arid environment. The 

resemblance between the results presented here for air-dried cemented Nanticoke clay 

and those of Kamruzzaman et al. (2009) obtained for cemented Singapore Marine clay 

suggests that the critical-point-drying method employed by Kamruzzaman et al. (2009) 

may not have been successful and has resulted in substantial shrinkage and fabric change 

in the material. In addition, Fig.  3-14 shows that the residual pore volume of air-dried 

undisturbed Nanticoke clay is similar to that of remoulded clay at low cement contents. 

Hence, being highly overconsolidated, undisturbed Nanticoke clay should have had 

limited structure due to bonding between the particles. 

The effects of the addition of a second binder, gypsum, on the pore size 

distribution of soil-cement mixtures were studied by comparing MIP results for 

uncemented, cement treated, and cement/gypsum treated samples of EPK kaolin (Fig. 

 3-15). As the figure shows, addition of 25% gypsum almost completely eliminates all of 

the pores with a diameter higher than 4000 nm (4 microns). This is because the hydration 

of calcined gypsum is accompanied by a significant volumetric expansion and because 

the hydrated gypsum crystals fill the gaps between soil aggregates (inter-aggregate 

pores). Although it eliminates all of the large pores, gypsum treatment shifts the position 

of the dominant pore size towards larger diameters and makes the peaks wider. At 61% 

moisture content, the peak moves from 80 nm to 220 nm, and at 86% moisture content, it 
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shifts from 120 nm to 520 nm. This more flocculated structure of gypsum treated clays 

can be attributed to the presence of high amounts of Ca2+ cations in the soil. The crystal 

growth of gypsum, which is accompanied by swelling, could also produce larger pores 

within the material. We can also see that at similar cement and gypsum contents, the 

specimens with higher moisture content have a slightly less intense, wider peak, 

indicating higher degree of flocculation.  

3.4.3 The effects of the developed microstructure on the mechanical behaviour of 

artificially cemented clays 

To further evaluate the micro-structural results for the cemented slurried clays, 

hydraulic conductivity and undrained shear strength were measured for the clays and 

cement contents described previously. Permeabilities, obtained by performing oedometer 

tests on undisturbed, reconstituted, and cemented samples of Nanticoke and Ottawa clays, 

are plotted in Fig.  3-16. For Nanticoke clay (Fig.  3-16a), the permeability of the specimen 

with 2% cement is close to that of the uncemented samples. This is in agreement with the 

observed resemblance between the pore size distributions of reconstituted Nanticoke and 

the 2% cement treated specimen (Fig.  3-11) and indicates that the dispersed structure 

observed in both samples governs their permeability behaviour. In contrast, as cement 

content increases to 4.2 and 8.7%, there is a considerable reduction in the permeability of 

the cemented Nanticoke clay. As observed in Fig.  3-11, artificial cementation of more 

than 2% creates a flocculated unimodal pore structure in Nanticoke clay and appreciably 

reduces the amount of inter-connected pores (with a diameter higher than 4000 nm) that 

exist between the soil aggregates. The cementitious material produced by cement 

hydration most likely blocks some of these water-channels, hence reducing the 
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permeability of the clay. A similar pattern exists in Fig.  3-16b for the Ottawa clay 

specimens. The results are in agreement with the suggestion by Garcia-Bengochea et al. 

(1979) that permeability is predominantly related to magnitude and frequency of 

macropores rather than micropores. These observations are also in accord with those of 

Locat et al. (1996), who reported an order of magnitude reduction in the permeability of a 

clay specimen treated with 10% lime.  

It was shown earlier in the paper that unlike cement content, moisture content does 

not significantly affect the pore size distribution pattern of cemented EPK kaolin. 

Similarly, as Fig.  3-16 shows, the cement content has a more important effect than the 

moisture content on the permeability of Ottawa clay. Despite having different total pore 

volumes, the two specimens with a similar 6.4% cement content, but with different 

moisture contents, have almost the same permeability. Hence, the flocculated structure 

produced in these samples due to cementation should play a vital role in their pore size 

distribution and permeability behaviour. Furthermore, the important effect of mineralogy 

and activity on the behaviour of cement treated clay is again illustrated in Fig.  3-16; the 

addition of cement reduces permeability in Ottawa clay more than it does for Nanticoke 

clay. On average, the permeability of reconstituted Ottawa clay is 65 times that of the 

same clay treated with 6.4% cement. However, this ratio reduces to 30 when 

reconstituted Nanticoke is compared to 8.7% cement treated sample of Nanticoke clay.  

The laboratory shear vane was employed to measure the undrained shear strength 

and sensitivity of the cement treated clays (Fig.  3-17). Focusing on the behaviour of the 

Nanticoke specimens, we can find correspondance between MIP and shear vane test 

results. Fig.  3-11 showed that at 98% moisture content, Nanticoke samples with less than 
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2% cement have a bimodal pore size distribution, similar to that of reconstituted material. 

Moreover, Fig.  3-14 suggests that almost no effective bonding is developed in samples 

with 1% cement content, since when they are air dried, they have shrunk to the same total 

pore volume as that of the reconstituted material. These findings are in agreement with 

the observation in Fig.  3-17 that the Nanticoke specimens with 1% cement content have 

not gained any measurable strength. In addition, as illustrated before by SEM and MIP 

results, samples with higher cement contents have a more flocculated structure and a 

larger dominant pore diameter, explaining their brittle behaviour and higher sensitivity.  

Fig.  3-17 also shows the important connection between the clay mineralogy and 

activity, and the effectiveness of artificial cementation. At a certain cement content and 

after 28 days of curing, Ottawa clay samples gain much higher strength, cu, 28 days, and 

sensitivity, st, 28 days, than do samples of Nanticoke clay or EPK kaolin. This is in 

agreement with the highly flocculated structure observed by the SEM and MIP analysis in 

cemented Ottawa clay. Compared to those of Nanticoke clay or EPK kaolin, Ottawa clay 

particles appear to have more chemical interactions with the added cement. Some 

researchers have mentioned the presence of amorphous iron, silica, and alumina oxides as 

a reason for the high sensitivity of Champlain/Leda clays (Bentley and Smalley, 1978; 

Yong et al., 1979; Quigley, 1980; Locat et al., 1984; Locat et al., 1985). The presence of 

such minerals could explain the higher strength of the cemented Ottawa clay. Besides 

silica and alumina dissolved from clay surfaces, the amorphous sesquioxides previously 

present in Ottawa clay react more readily with the produced lime and create more 

secondary cementitious bonds within the material (Wissa et al., 1965). Townsend (1985) 

also suggested that the presence of amorphous silica produces higher pozzolanic strengths 
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in cemented clays. Choquette et al. (1987) postulated that a more significant change in 

volume distribution due to cementation is also accompanied by a higher strength gain of 

lime treated clays. We can see that for Ottawa clay, a unimodal pore distribution has 

formed with a much wider peak than that of the other two clays. In addition, SEM results 

showed that more significant structural changes occur to cemented Ottawa clay, when 

compared to cemented Nanticoke or EPK material. The higher strength gain of cemented 

Ottawa clay, therefore, can be attributed to the more significant structural modifications 

that occur for this soil after the addition of cement. 

Pore size analysis of the cemented clays showed that after a certain cement content 

(for example 2% for Nanticoke clay), when a flocculated structure is formed in the 

material, further addition of cement does not significantly change the pore size 

distribution pattern (Fig.  3-11 and Fig.  3-13). However, the permeability and strength 

continue to change with more cement being added to the soil. Although it does not 

change the pore size distribution pattern, the addition of more cement partitions and 

eliminates the remaining macropores by forming cementitious bridges, further reducing 

the permeability of the material. Moreover, further addition of cement to the flocculated 

soil creates more and stronger cementitious bonds in inter-particle contacts, as well as 

inter-aggregate pore spaces, increasing the strength of the crystal lattice formed within 

the material. On the other hand, more cementation appears not to change the size of the 

micropores significantly. These intra-aggregate pore sizes should depend on particle size 

distribution, activity, and clay mineralogy rather than cementation. 
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3.5 Summary and Conclusions 

Using mercury intrusion porosimetry and scanning electron microscopy, the 

effects of artificial cementation, by Portland cement or gypsum, on the fabric of Kaolin 

and two other Canadian clays with high moisture contents were studied. Results of 

oedometer and laboratory shear vane tests were also utilised to examine changes in the 

permeability, undrained shear strength and sensitivity of the material, and to find 

connections between the developed microstructure and the mechanical behaviour. The 

study produced the following main conclusions: 

 From comparison of the SEM and MIP analyses for the clays, a bimodal 

distribution of the pore sizes was linked with dispersed soil fabrics. Conversely, a 

unimodal distribution was assumed to be an indication of a flocculated structure, 

in which a card house fabric exists and aggregates are connected to each other via 

cementitious bonding.   

 Little identifiable structure was observed in micrographs of highly 

overconsolidated undisturbed Nanticoke clay. However, an openly structured 

fabric was identified in undisturbed sensitive Ottawa clay. The existence in 

undisturbed Ottawa clay of calcium carbonate, along with rotund quartz and 

feldspar particles, was recognised as a probable cause of the observed structure. 

 SEM images of the reconstituted clay displayed an unstructured, dispersed fabric, 

while micrographs of cement treated clays indicated the presence of a reticulated 

matrix within the material. As the cement content increased, the structure of the 

remoulded materials gradually transformed from dispersed into flocculated states.  

It was also observed that the produced cementitious products were affixed to the 
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particles, coated particle surfaces, and formed matrices that filled the gaps 

between the clay aggregates.  

 Links were observed between the structural changes due to artificial cementation 

and the mechanical properties such as permeability, shear strength, and 

sensitivity. Specimens undergoing higher structural alterations also experienced 

more significant changes in their mechanical behaviour.  

 Although there is no change in the total pore volume of the clay, increasing the 

cement content results in a significant reduction in the volume of the macro-pores, 

as the cementation products fills the gaps between soil aggregates. This is also 

accompanied by a reduction in the permeability of the material.  

 MIP results also showed that although an increase in the moisture content 

increases the total pore volume, it does not significantly change the pore size 

distribution of the cemented soil. The permeability analysis confirmed that cement 

content rather than moisture content controls the pore size distribution and 

permeability of cement treated clays. 

 MIP and SEM results indicated that soil mineralogy and activity greatly affect the 

pore size distribution of cement treated clays. For the three clays used in this 

study, artificially cemented Ottawa clay and EPK kaolin attained the highest and 

lowest degree of flocculation, respectively. Moreover, cemented samples of 

Ottawa clay, which displayed a highly flocculated structure and a reticular texture 

in MIP and SEM analysis, gained higher strength and sensitivity and underwent 

more permeability reduction than the other two clays. 
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 The existence of needle-like Ettringite crystals in the artificially cemented 

specimens indicates that the clays experience some degree of sulphate attack. 

Inspection of the micrographs of the cement-treated clays showed that the size 

and amount of the produced Ettringite depend on the mineralogy and activity of 

the host clay. 

 The addition of gypsum to cemented clay eliminated all of the macro-pores with a 

diameter greater than 4 microns, but increased the dominant pore diameter of the 

composite material. Both these effects are explained by gypsum crystal growth, 

which is accompanied by volumetric expansion.  
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Table  3-1. Basic geotechnical properties of the three types of clay used in this study  

Soil Characteristic Ottawa clay 
Nanticoke 

clay 
EPK kaolin 

Liquid limit, LL (%) 52 48 61 

Plastic limit, PL (%) 24 23 36 

Plasticity Index, PI (%) 28 25 25 

Specific Gravity, Gs 2.82 2.73 2.61 

Clay fraction (<2 m, %) 43 48 53 

Activity, A 0.65 0.52 0.47 
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Fig.  3-1. X-ray diffraction analysis of (a) Nanticoke clay; (b) Ottawa clay 
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Fig.  3-2. Particle size distribution of the three clays used in this study 
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(a): 1,000x                                                         (b): 5,000x                                    

                                  
(c): 25,000x                                                       (d): 10,000x                                    

Fig.  3-3. Scanning electron micrographs of undisturbed Nanticoke clay, w = 28%, LI = 

0.2 (the numbers in figure b mark the explained minerals) 
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(a): 5,000x                                                          (b): 15,000x                                  

 
(c): 8,000x                                   

Fig.  3-4. Scanning electron micrographs of Nanticoke clay treated with 8.7% Portland 

cement, w = 98%, LI = 3 (the circles in figure b mark some of the bonded 

contacts) 
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(a): 1,000x                                                          (b): 5,000x                                   

      
(c): 5,000x                                                          (b): 7,000x                                              

Fig.  3-5. Scanning electron micrographs of undisturbed Ottawa clay, w = 80%, LI = 2 

(the circle in figure d marks a clast of calcium carbonate) 
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(a): 1,000x                                                          (b): 5,000x                                   

 
 (c): 10,000x                    

Fig.  3-6. Scanning electron micrographs of reconstituted specimens of Ottawa clay, w = 

80%, LI = 2 
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(a): 1,000x                                                         (b): 5,000x                                   

     
 (c): 5,000x                                                         (d): 5,000x                                   

Fig.  3-7. Scanning electron micrographs of Ottawa clay treated with 3.1% Portland 

cement, w = 80%, LI = 2 
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 (a): 1,000x                                   

       
(b): 5,000x                                                          (c): 10,000x                                   

     
 (d): 5,000x                                                          (e): 5,000x            

Fig.  3-8. Scanning electron micrographs of Ottawa clay treated with 6.4% Portland 

cement, w = 80%, LI = 2 
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(a): 1,000x                                                          (b): 5,000x                                   

 
(c): 20,000x                                   

Fig.  3-9. Scanning electron micrographs of EPK Kaolin treated with 6.4% Portland 

cement, w = 61%, LI = 1 (the circles in figure c mark some of the bonded 

contacts) 
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(a): 1,000x                                                         (b): 5,000x                                   

     
(c): 5,000x                                                          (d): 10,000x                                  

     
(e): 5,000x                                                          (f): 10,000x                                   

Fig.  3-10. Scanning electron micrographs of EPK Kaolin treated with 6.4% Portland 

cement and 25% gypsum, w = 61%, LI = 1 
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(b) 

Fig.  3-11. Pore size distribution of cement treated Nanticoke clay specimens with LI=3 

(w=98%) at different cement contents: (a) cumulative distribution; (b) log-

differential distribution 
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(b) 

Fig.  3-12. Pore size distribution of undisturbed, reconstituted, and cement treated Ottawa 

clay specimens: (a) cumulative distribution; (b) log-differential distribution 
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(b) 

Fig.  3-13. Pore size distribution of reconstituted and cement treated EPK kaolin: (a) 

cumulative distribution; (b) log-differential distribution 
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(b) 

Fig.  3-14. Pore size distribution of freeze-dried and air-dried cement treated Nanticoke 

clay specimens with LI=3 (w=98%) at different cement contents: (a) cumulative 

distribution; (b) log-differential distribution 
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(b) 

Fig.  3-15. Pore size distribution of cement and gypsum treated EPK kaolin: (a) 

cumulative distribution; (b) log-differential distribution 
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(b) 

Fig.  3-16. Permeability of undisturbed, reconstituted, and cement treated specimens of (a) 

Nanticoke clay; (b) Ottawa clay 
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(b) 

Fig.  3-17. The effect of cement content on (a) undrained shear strength, and (b) 

sensitivity of Nenticoke, EPK, and Ottawa clay specimens with different 

moisture contents  
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4 BASIC PARAMETERS GOVERNING THE BEHAVIOUR OF 

CEMENT-TREATED CLAYS 

4.1 Introduction 

Soft clays cover large areas of our built environment, including many important 

coastal and low-land regions, where major urban and industrial areas are located, and are 

often encountered in land reclamation projects. These clays can have high in situ water 

contents and are considered to be potentially problematic soils, because of their low 

strength and susceptibility to large settlements. Although accelerated consolidation of 

these clays using various drainage techniques (e.g. wick drains) is common, it is not 

preferable in many cases, due to time constraints and expense. An alternative approach 

for increasing the stiffness and strength of soft ground is to create cementitious bonds 

within the soil material by adding cementing agents (e.g. Nagaraj and Miura, 2001). 

Depending on the specific needs of different projects, various cement stabilization 

techniques, such as shallow soil mixing, deep mixing, and jet grouting, have been 

developed and are now routinely applied (e.g. Bergado et al., 1996; Nagaraj and Miura, 

2001). Many of these treatments are used to provide soft soil underlying roads and 

railways with higher stiffness and bearing capacity. Deep mixed cement columns are also 

utilized as an alternative to piles to stabilize slopes, trenches and deep excavations in soft 

ground (Bergado et al., 1996). These chemical stabilization methods differ in their 

approaches for creating soil bonding, but they all utilise at least one form of bonding 

agent (usually Portland cement, lime, or fly ash). Due to common availability and 
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effectiveness, Portland cement is currently the most widely used cementing agent for 

ground improvement projects.  

Although the changes in mechanical behaviour of many different clays stabilized 

by cement have been studied before by various researchers, limited attempts have been 

made to correlate the data from different soils and to introduce unified approaches 

describing the effect of clay mineralogy. Such a framework would assist engineers in 

preliminary design studies and minimize the number of trials needed to determine the 

required cement content and curing period. The significant volumes of data that have 

been reported recently by several researchers on the mechanical properties of cement-

treated clays at high water contents have made these aims more feasible. The primary 

objective of this study was to combine data available in the literature, with further results 

from the authors, and to identify pertinent parameters for predicting the strength, 

stiffness, sensitivity, and other important geotechnical characteristics of soft clays 

cemented with Portland cement.  

4.2 Literature Review 

Many researchers (e.g. Uddin et al., 1997; Yin and Lai, 1998; Tremblay et al., 

2001; Tan et al., 2002; Rotta et al., 2003; Horpibulsuk et al., 2003; Horpibulsuk et al., 

2004a; Lorenzo and Bergado, 2004; Chew et al., 2004; Lee et al., 2005; Xiao and Lee, 

2008; Kamruzzaman et al., 2009) have investigated the effect of artificial cementation by 

Portland cement on the mechanical behaviour of clay and have reported increases in 

strength, stiffness, and brittleness of the soil. Increases in the peak strength and stiffness 

of the material occur due to the formation of a cementitious structure within the soil 
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skeleton. In soils with high water contents, this cemented structure may be responsible for 

a significant proportion of the mechanical behaviour of the soil.  

Adding Portland cement to a soil body results in a primary hydration reaction in 

the cement, followed by a secondary pozzolanic reaction. The former happens in any 

mixture of cement and water, but the latter only occurs in the vicinity of soil crystals 

between calcium hydroxide supplied by the cement, and silica and alumina from the soil 

(Herzog and Mitchell, 1963; Croft, 1967a; Bergado et al., 1996; Bhattacharja et al., 

2003). The primary hydration reactions are (Bergado et al., 1996; Bhattacharja et al., 

2003):  

23233 )(362 OHCaHSCHSC                                                       (4.1) 

23232 )(42 OHCaHSCHSC                                                         (4.2) 

Where the following symbols represent short forms of the compounds: H = H2O, 

C = CaO, and S = SiO2. The subsequent secondary reactions occur as soon as calcium 

hydroxide is produced in the mixture (Bergado et al., 1996; Bhattacharja et al., 2003): 

CSHSiOOHCa  22)(                                                                       (4.3) 

CAHOAlOHCa  322)(                                                                     (4.4) 

Where A = Al2O3. Due to the purity and fineness of the calcium hydroxide 

produced during the hydration reactions, it reacts more strongly than ordinary lime with 

the soil minerals (Herzog and Mitchell, 1963; Bhattacharja et al., 2003). Both hydration 

and pozzolanic reactions lead to the creation of gelatinous and amorphous materials, 

which later crystallize to form inter-aggregate and inter-particle bonds (Croft, 1967a). 

The production of cementitious bonds between soil mineral substances creates a matrix 
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that encloses the unbonded particles and aggregates and results in an apparent cohesion in 

the soil material, making its engineering behaviour more complex (Kasama et al., 2000).  

Bonding, composition, and fabric are often identified as important elements that 

contribute to the overall structure of a clay (Mitchell and Soga, 2005). For artificially 

cemented soils, these factors depend on cement and water chemistry, type, grain size 

distribution, and plasticity of clay, and the process of mixing and curing. Although soil 

properties can greatly influence the cementation process, few researchers have 

investigated the effect of soil mineralogy on artificial cementation. Early works on the 

hardening of soil-cement mixtures considered the soil material to be relatively inert 

(Croft, 1967b). Croft (1967a) investigated the effect of mineralogical composition of clay 

on cement stabilization by analyzing the behaviour of seven types of clay mixed with 

Portland cement. He suggested that although most clay minerals eventually consume the 

lime produced in the hydration process, more expansive clay minerals, such as 

montmorillonite, are much quicker to react with lime than less active minerals, such as 

kaolinite and illite. Noble and Plaster (1970) investigated the chemical reactions in 

Portland cement-clay mixtures and reported that the rate of cement hydration in most 

clays mixed with cement was slower than normal. Their results also showed that the 

reaction of calcium hydroxide with the soil minerals (secondary reactions) was related to 

the magnitude of the clay size fraction and that soil mineralogy and size distribution 

controlled the strength development. Woo (1971) suggested that an increase in clay 

content or plasticity index would make artificial cementation by Portland cement less 

effective. Tremblay et al. (2001) investigated the effect of organic content on artificial 

cementation of clays from eastern Canada and concluded that the presence organic matter 
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can negatively affect the efficiency of artificial cementation, especially if the organic 

content is higher than 3 to 4 %.   

A new parameter to characterise the behaviour of artificially cemented clays has 

been introduced during the past decade. Miura et al. (2001) suggested that Abrams’ law 

(Abrams, 1918), which is commonly used in concrete technology, can also be applied to 

cemented soils. They proposed w/c (clay-water/cement ratio) as a parameter for studying 

the engineering behaviour of cemented clays with high liquidity indices. For any given 

clay, Miura et al. (2001) showed that lower values of w/c result in higher strength and 

that two mixtures with different cement and water contents will have a similar strength 

level if their w/c ratios are the same. However, they also noted that at low w/c ratios (for 

example w/c = 7.5), soil fabric has a bigger influence on the behaviour of cemented clays 

and using w/c ratio alone is not sufficient to predict the soil behaviour.  

Horpibulsuk et al. (2003) provided empirical equations correlating the w/c ratio 

with unconfined compressive strength for Ariake and Bangkok clays. They proposed 

different coefficients in their equation for each clay type and curing period. They also 

provided a logarithmic equation for predicting strength development with curing time 

based on the results of experiments performed on different types of clay, up to 180 days 

after curing.  Horpibulsuk et al. (2005), Lee et al. (2005), and Lorenzo and Bergado 

(2005) also confirmed that shear strength can be expressed as a function of w/c ratio for 

Ariake, Singapore, and Bangkok clays.  
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4.3 Description of Laboratory Studies and Data Analysis 

4.3.1 Experimental work 

To investigate the effect of mineralogy, laboratory studies were conducted by the 

authors on cement-treated specimens of three different clays, i.e. EPK kaolin, Nanticoke 

clay, and Ottawa clay. Portland cement (type I according to ASTM C150) was chosen for 

this study, since it is one of the most commonly added cementing agents (Bergado et al., 

1996; Nagaraj and Miura, 2001; Bhattacharja et al., 2003). Most ground improvement 

projects involving artificial cementation occur in zones with a high water table; hence, 

the specimens used in this study were covered with water, so that their moisture content 

did not drop significantly due to cement hydration. The effect of curing time on the 

strength and sensitivity of the cemented material was investigated by performing 

laboratory shear vane tests on the cement-treated samples at various time intervals after 

curing. In addition, the results of oedometer and triaxial tests were used to obtain 

relationships between soil/cement parameters and the mechanical properties of the 

artificially cemented clays. The results of these laboratory studies were added to those 

found in the literature and described in Section  4.3.3 below. 

4.3.2 Specimen preparation and testing procedures 

EPK Kaolin is already available in a powdered form. To make the powdered 

Nanticoke and Ottawa clays, the soil was cut into small pieces, dried at room 

temperature, and then finely pulverized into a powder (100% passing Sieve No. 40), 

using a rubber hammer to avoid crushing the soil particles. Clay powders were mixed 

with distilled, deionised water to form a slurry with a water content close to the desired 
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value. The slurry was mixed until a uniform paste was achieved. Next, the required 

amount of cement mixed with water was added to the mixture to increase the water 

content to the desired level. The slurry was mixed again for a maximum of 15 minutes, so 

that the mixing process did not disturb the produced bonds.  The mixture was then poured 

into plastic cups 70 mm in diameter and 120 mm in height. Trapped air bubbles were 

removed from the samples by gently tapping on the walls of each cup, and some water 

was added on top of the slurry in every cup to provide it with moisture throughout the 

curing period. The cups were then covered by plastic wraps and placed in a temperature 

controlled room to be cured at a constant temperature of 25oC. Cemented samples were 

prepared with different moisture contents, w(%), and cement contents, c(%), where 

cement content is defined as the ratio of mass of cement to the mass of dry soil in terms 

of percentage. A few oedometer tests were also performed on undisturbed and 

reconstituted specimens of Ottawa clay. The reconstituted specimens were prepared at 

water contents of 1.2 and 1.5 times the liquid limit to obtain the intrinsic compression line 

(ICL) for the material (Burland, 1990). 

Since the undrained shear strength of a large number of cemented specimens were 

to be measured, the laboratory shear vane was chosen as the primary testing method. The 

vane had a diameter and height of 19 and 28 mm, respectively. The vane tests were 

carried out at a rate of one complete revolution per minute (Serota and Jangle, 1972; 

Kogure et al., 1988). Although it is generally recognised that due to the different modes 

of failure, undrained shear strengths measured with the shear vane apparatus vary from 

those measured with other test methods (Kogure et al., 1988), the manufacturer of the 

shear vane calibrated the device using UU triaxial tests on clay specimens (Serota and 
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Jangle, 1972). Accordingly, the calibration factor obtained based on this approach was 

used herein, allowing for the comparison of the vane results to those obtained from 

unconfined compression or quick triaxial tests shown later in the paper. A similar 

apparatus was used by Kirwan (2003) and Kainourgiaki (2004) to measure the shear 

strengths of cemented Speswhite kaolin specimens. In addition to the shear vane, a 

number of oedometer and CIU triaxial tests were also performed to obtain further 

parameters. The oedometer and CIU triaxial tests were conducted according to ASTM 

D2435 and ASTM D4767, respectively. For testing, the samples were taken out of the 

plastic cups and were cut with a thin wire trimmer to the required size. 

4.3.3 Additional database compilation 

In addition to the experimental studies, a detailed literature survey and analysis of 

the data was conducted by the authors. To ensure as diverse a collection of data as 

possible, the results of laboratory shear vane, unconfined compression, undrained triaxial, 

and oedometer tests performed by different researchers on different types of clay treated 

with Portland cement were included in the analysis. The database covers twenty-three 

studies published from 1967 to 2010. For the parametric studies, information on the 

following cement-treated clays were gathered from the literature: Speswhite Kaolin 

(Ritchie, 2004; Kainourgiaki, 2004; Kirwan, 2003;); Ariake clay (Miura et al., 2001; 

Horpibulsuk et al., 2003; Horpibulsuk et al., 2004a; Horpibulsuk et al., 2004b; 

Horpibulsuk et al., 2005); Bangkok clay (Uddin, 1994; Uddin et al., 1997; Bergado et al., 

1999; Lorenzo and Bergado, 2004; Horpibulsuk et al., 2004b); Singapore marine clay 

(Tan et al., 2002; Chew et al., 2004; Lee et al., 2005; Xiao and Lee, 2008; Kamruzzaman 

et al., 2009); Hong Kong clay (Yin and Lai, 1998); Brown, Black cotton, and Red earth 
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Indian clays (Nagaraj et al., 1996; Narendra et al., 2006); Illite (Nagaraj et al., 1996); 

Home Rule Kaolin (Croft, 1967a); Louiseville clay (Tremblay et al., 2001); Bothkennar 

clay (Kirwan, 2003; Kainourgiaki, 2004); Rotoclay Kaolin (Flores et al., 2010).  

4.3.4 Material properties 

Analysis was performed on laboratory test results conducted by the authors for 

artificially cemented specimens of two commercially produced kaolin clays: EPK and 

Speswhite, and two naturally occurring Canadian clays: Nanticoke and Ottawa clays. 

EPK is a pulverized kaolin clay from Georgia, U.S., and Speswhite china clay is 

produced from deposits in the southwest of England. Air dried clay powders were also 

obtained from block samples of a stiff fissured clay with a glacio-lacustrine origin taken 

from 3 m depth in a test pit in Nanticoke, Ontario, and from samples of a sensitive 

Leda/Champlain clay (St~20), also taken from 3 m depth in a borehole in Ottawa, 

Ontario. X-ray diffraction analysis showed that the primary clay minerals of both soils 

are illite and chlorite, with traces of vermiculite found in the Ottawa clay. The 

engineering properties of these four clays are summarized in Table  4-1.  

In addition to the aforementioned clay tests, the laboratory results from other 

researchers on clayey soils listed in Section  4.3.3 were used in the overall analysis. Some 

basic properties of these soils are given in Table  4-2 and Table  4-3. The liquid limit (LL) 

plastic limit (PL), plasticity index (PI), and activity number (A) of these clays range from 

38 to 125, 15 to 60, 20 to 65, and 0.47 to 1.18, respectively. It should be noted that except 

for Bothkennar clay and Rotoclay Kaolin, which are from the U.K, and Home Rule 

Kaolin, which is from Australia, the remaining clays are from East and Southeast Asia or 

Canada. 
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4.4 Analysis of the Data 

4.4.1 Hardening of cemented clays with time 

Fig.  4-1 shows the results of typical laboratory shear vane tests on artificially 

cemented samples of Nanticoke clay prepared at a moisture content of 98% (liquidity 

index, LI=3). The tests were conducted on cemented samples cured up to forty months. 

Four cement percentages were used, namely 1, 2, 4.2, and 8.7%. Samples with 1% 

cement did not produce any measurable strength, even after long curing periods, so the 

results for these samples are not plotted in the figure. Likewise, the strength of the sample 

with 8.7% cement after forty months of curing could not be measured, since it exceeded 

the maximum capacity of the shear vane device. As expected, the shear strength increases 

with curing time and cement content, since both contribute to the production of more 

cementing bonds within the soil body, and this confirms the previous findings of many 

other researchers (e.g. Nagaraj et al., 1996; Uddin et al., 1997; Bergado et al., 1999; 

Horpibulsuk et al., 2003; Kamruzzaman et al., 2009). However, an interesting 

observation is that the cemented samples kept gaining significant amounts of strength, 

long after the start of curing, as the curves in Fig.  4-1 have considerable slope even after 

one thousand days. It is typically assumed that the hydration rate of ordinary Portland 

cement drops significantly with time after curing. This trend of increasing strength is not 

typical for cement based construction materials, such as concrete, and may be attributed 

to the slower secondary reactions that happen between clay minerals and cementation 

products. Further explanation of this behaviour is provided in the discussion section. 

 



120 

 

The values plotted in Fig.  4-1 are peak undrained shear strengths measured with 

the laboratory shear vane device. If these peak strengths are normalised by the peak 

strength of the same sample after 28 days of curing (cu, 28 days), all three curves in Fig.  4-1 

plot on the same curve (Fig.  4-2), indicating that the hardening trend is independent of the 

amount of cement added to the soil. Fig.  4-2 better illustrates the continuation of the rate 

of increase of peak shear strength; the peak strength after 400 and 1200 days of curing is 

2 and 3 times that after 28 days, respectively. As reported by Tan et al. (2002), the results 

of unconfined compression tests on cemented specimens of Singapore marine clay 

suggest the same independence of hardening trend from cement and water contents. 

Horpibulsuk et al. (2003) have also shown the same independence for Bangkok, Ariake, 

and Indian clays.  

The data plotted in Fig.  4-2 were obtained for one type of clay, with a single value 

of moisture content and variations in the cement content. To investigate whether a unique 

relationship occurs for a number of clays, where the hardening trend is independent from 

mineralogy and moisture content (as well as from the cement content), unconfined 

compression tests results collected from the literature for the different soils described in 

Section  4.3.3 have been plotted, along with the results for Nanticoke clay, in Fig.  4-3. It 

can be seen that all data follow a similar trend, yielding the following relationship: 
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Where “cu” is the undrained shear strength after “t” days of curing. More than 440 

data points for 12 different clays, with a wide range of liquidity indices (LI ~ 0.4 to 3.0) 

and cement contents (c ~ 1 to 100%) were used to derive Eq. (4.5). Table  4-2 summarizes 
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soil properties of the samples plotted in this figure. The dashed line in Fig.  4-3 is 

calculated from the logarithmic equation that was suggested earlier by Horpibulsuk et al. 

(2003) for soils with a liquidity index of 1.0 to 2.5. It should be noted that the proposed 

equation has been obtained for curing times in the range of 1 to 1250 days and may not 

provide a good prediction particularly for curing times less than 1 day. 

In addition to the peak strengths, residual vane shear strengths of three of the clays 

were also measured by the authors. Since the cementation process changes the 

mechanical behaviour and the mineralogy of the soil, the measured residual strengths of 

the cemented soils are much higher than those expected for a soil with such a high 

moisture content. It was observed that samples with higher cement content and curing 

time have higher residual strengths. For example, the residual strengths of the samples 

with 2% cement and 1 and 600 days of curing were 0.5 and 1.5 kPa, while those of the 

samples with 8.7% cement were 2 and 6 kPa, respectively. The residual strength appeared 

to be mobilized due to friction rather than bonding; the stronger samples also formed a 

thinner shear band after failure. In addition, the changes in the mineralogy of the soil due 

to pozzolanic reactions, which produce cementitious bonds within the soil aggregates, 

could increase the residual strength of the material. However, the residual strength does 

not increase at the same rate as the peak strength. As a result, the brittleness and 

sensitivity of the soil also increase with cement content and curing time. Fig.  4-4 shows 

the development of sensitivity in cemented samples of Nanticoke clay with three different 

cement contents; the sensitivity number of the specimen with 8.7% cement has reached 

up to 13 and 24, after 28 and 600 days of curing, respectively.  
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The sensitivity values of Nanticoke clay samples are plotted along with those for 

samples of EPK and Speswhite kaolin in Fig.  4-5. Similar to the previous analysis, the 

value measured after 28 days of curing, St, 28 days, is used as a normalizing parameter. The 

sensitivity is seen to increase with curing time in a logarithmic fashion according to: 

03.1ln14.0
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Where “St” is the sensitivity after “t” days of curing. Comparison of Fig.  4-3 and 

Fig.  4-5 shows that while both peak strength and sensitivity initially increase linearly 

with time in logarithmic space, after almost 100 days of curing, the peak strength begins 

to increase with a faster rate than the sensitivity. Since the pozzolanic reactions, which 

occur more slowly than the hydration reactions and continue for a longer time, mainly 

strengthen the soil aggregates, they lead to more frictional soil resistance and continue to 

increase the residual strength for a long time after the addition of Portland cement to the 

soil.  

4.4.2 Shear strength of artificially cemented clays: state parameters  

In addition to curing time and cement content, other parameters, such as water 

content and liquidity index, plasticity index, clay content, curing temperature, and soil 

mineralogy, affect the behaviour of artificially cemented clays (Croft, 1967a; Croft, 

1967b; Woo, 1971; Broms, 1986; Bergado et al., 1996; Uddin et al., 1997; Miura et al., 

2001). To further investigate the parameters that have a significant effect on the strength 

of cemented clays, the results of the laboratory shear vane tests on samples made of 

different clays with varying moisture and cement contents were studied. Fig.  4-6 shows 

the relationship between liquidity index and undrained shear strength after 28 days, cu, 28 
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days, for EPK and Speswhite Kaolins and Ottawa clay. As expected, a reduction in 

liquidity index (LI) is followed by an increase in the shear strength. A bilinear 

relationship seems to exist. As the liquidity index reduces from 4 to 1, the rate of increase 

in the strength is initially low but increases after a threshold in the curves is reached. For 

kaolin clays with 4.2 and 8.7% cement, this threshold is at LI=3. The figure also shows 

that at LI values higher than 4, the addition of 11.1% cement does not result in a 

substantial strength gain for EPK kaolin. Considering only EPK and Speswhite kaolin 

clays, we can see that at a certain liquidity index, shear strength increases with an 

increase in the cement content, i.e. the two types of kaolin clay gain almost the same 

amount of shear strength due to cementation bonding, if they are mixed at a similar 

cement content and liquidity index.  However, this is not necessarily true for all types of 

clays mixed with Portland cement.  As can be seen in Fig.  4-6, at a similar liquidity 

index, Ottawa clay samples with 6.4% cement gain much higher strengths than samples 

of kaolin with 11.1% cement. Fig.  4-7 better illustrates this phenomenon; Ottawa and 

Nanticoke clays, which are both predominantly illitic, gain significantly higher strengths 

than does kaolin clay, when mixed with cement at a similar cement content and a similar 

liquidity index or water content. This again illustrates the importance of soil 

mineralogical composition in cement stabilization. It can be seen in Fig.  4-7 that a 

threshold exists for cemented EPK kaolin clay at c=8.7%; as the cement content exceeds 

this value, the strength starts to increase with a greater rate.  

Miura et al. (2001) introduced clay-water/cement ratio, w/c, as a key parameter in 

understanding the behaviour of soft clays admixed with Portland cement. Horpibulsuk et 

al. (2003) and Horpibulsuk et al. (2005) further discussed the importance of this 



124 

 

parameter and proposed an expression for calculating the amount of added cement to 

stabilize soft clays based on in-situ water content of the soil. The results of this study 

corroborate the previous findings regarding the importance of clay-water/cement ratio. To 

better illustrate the results, cement-moisture ratio, c/w, which is the ratio of cement 

content (%) to initial moisture content of the clay (%), is used instead of water-cement 

ratio, w/c. The cement-moisture ratios of the samples tested with laboratory shear vane 

have been plotted against 28-days undrained shear strength and sensitivity in Fig.  4-8 and 

Fig.  4-9, respectively. Similar trends are observed in both graphs as the undrained shear 

strength and sensitivity are closely related. In both figures, a trend can be detected for 

each type of clay, i.e. the shear strength and sensitivity increase with an increase in c/w. 

Moreover, the increase in the strength with an increase in c/w ratio is non-linear; the rate 

of increase in strength and sensitivity with c/w ratio increases as the c/w ratio gets larger. 

However, due to their mineralogical variations, different clay types follow different 

paths, and the overall data are rather scattered. To create an expression that may be used 

to predict the behaviour of cemented clays accounting for clay mineralogy, an additional 

parameter that takes into account the effect of clay type is introduced. 

On inspection of Fig.  4-8 and Fig.  4-9, it can be seen that at similar cement-

moisture ratios, the highest and lowest strength and sensitivity belong to samples of 

Ottawa clay and EPK kaolin, respectively. For Ottawa clay, a cement-moisture ratio of 8 

results in a shear strength of 160 kPa, while for EPK kaolin, a cement-moisture ratio as 

high as 18.5 only gives a shear strength of 149 kPa. Further comparison between the 

activity numbers from Table  4-1 and the results presented in Fig.  4-8 and Fig.  4-9 

confirms that the higher the activity number (A) of the soil, the higher its strength and 
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sensitivity at a given cement-moisture ratio. Plotting the undrained strength and 

sensitivity against cement-moisture ratio multiplied by A2.7 is found to eliminate the 

effect of variations in the type of clay and results in a unique curve for all four clays (Fig. 

 4-10 and Fig.  4-11). Again, this relationship is non-linear; the strength and sensitivity 

increase with an increase in (A2.7)*(c/w), indicating that higher soil activity leads the 

cementing agent producing more and/or stronger bonds.  

4.4.3 Predicting the behaviour of artificially cemented clays 

4.4.3.1 Undrained shear strength: Unconfined compression 

The data presented in Fig.  4-10 and Fig.  4-11 only cover a small range of clay 

types and cement and moisture contents, due to the limitations of using the laboratory 

shear vane device; cement contents for ground improvement applications are typically 

higher. Unlike laboratory shear vane, unconfined compression tests can be performed on 

samples with much higher undrained shear strengths. Several researchers have performed 

such experiments on various types of artificially cemented clay. Their results, in terms of 

undrained shear strength, are also plotted versus the c/w ratio of the specimens in Fig. 

 4-12 along with the results presented in the previous figures. The kaolinite data include 

those for EPK, Speswhite, and Rotoclay kaolins. Although some scatter exists within the 

data for each clay type, a clear pattern of increase in strength with c/w ratio is shown. 

Ariake clay, which has an activity number of 1.18, gains much higher strengths than 

Hong Kong, Bangkok, or Singapore clays the activity of which is 0.91, 0.87, and 0.76, 

respectively, confirming the importance of soil activity in the gained strength. Based on 

this concept, a relationship between activity, c/w ratio and undrained shear strength was 

defined using the parameter  below: 
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A  2.3                                                                                          (4.7) 

Fig.  4-13 shows the values of undrained shear strength normalised by the 

atmospheric pressure, Pa (=101.3 kPa), plotted against this new  parameter. The 

relationship can be satisfactorily modelled by the following polynomial function:  

42.049.636.128 228,  
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                                            (4.8) 

This correlation enables an estimate of the shear strength of a cemented soil based 

on c/w ratio and activity. It should be noted that Eq. (4.8) has been derived for  values 

less than 0.4 and may not be applicable to cemented clays with >0.4. During the 

analysis, it was also noticed that in some cases, w/c ratios lower than 3 (c/w values higher 

than 0.33) resulted in lower than expected undrained shear strength especially for 

Bangkok and Singapore clays. This indicates that the addition of high amounts of cement 

to certain soils might also reduce the efficiency of the soil improvement process.  

4.4.3.2 Undrained shear strength: Triaxial 

In addition to data from unconfined compression tests, the results of several 

undrained triaxial test studies on artificially cemented clays were used in the analysis. All 

of these cemented specimens had been isotropically consolidated to 25, 50, or 100 kPa 

before undrained shearing, but in all cases, the consolidation pressure had been 

considerably lower than the yield stress of the specimens, indicating that the cementitious 

bonds had remained relatively intact. Fig.  4-14 shows the undrained shear strengths 

measured with triaxial tests for confined specimens, consolidated below the yield stress, 

versus those measured for unconfined specimens with unconfined compression or shear 
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vane tests. As it shows, the slope of the line fitting the data is very close to unity and 

indicates only 4% of increase in strength due to confinement. Hence, Eq. (4.8), which is 

obtained based on the results of unconfined compression tests, should be able to predict 

undrained shear strengths obtained from triaxial experiments, as long as the yield 

consolidation pressure is not exceeded. It can also be concluded that if the isotropic 

loading phase does not cause the soil to yield, confinement does not have any significant 

effect on the undrained shear strength of cemented clays. This indicates that cemented 

clay pre-yield behaviour is predominantly dependent on the cementitious bonds, rather 

than friction. Fig.  4-15 shows the peak undrained shear strengths, obtained from triaxial 

experiments, versus the  parameter. It can be seen that the same trend observed in Fig. 

 4-13 also exists for the triaxial specimens. The dashed line, which represents Eq. (4.8), 

can also provide a reasonable match for the results of this specific form of undrained 

triaxial test.  

4.4.3.3 Compressibility and vertical yield stress: Oedometer 

Since they usually have high moisture contests and void ratios, cemented clays are 

often meta-stable and undergo a significant amount of compression after the yield point is 

passed. Thus, accurate prediction of the yield stress can be very important in the design of 

cement-clay mixtures for settlement problems. Analysis was conducted on the results of 

oedometer experiments performed for this study, along with those found in the literature. 

Fig.  4-16 shows the relationship between ’y, which is the vertical yield stress obtained 

from oedometer tests, and undrained shear strength, cu, for the cemented specimens. All 

of the ’y values have been calculated based on Casagrande method (ASTM D2435). The 

results support the suggestion by Horpibulsuk et al. (2004b) that a linear relationship 
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exists between vertical yield stress and undrained shear strength of cement-admixed 

clays. Although there is significant scatter in the data, it can be seen that the cu/’y ratio is 

insensitive to the PI. An average value of cu/’y = 0.22 is found, which is similar to those 

proposed by Mesri (1975) and re-evaluated by other researchers (Trak et al., 1980; Trak 

and Leroueil, 1983; Jamiolkowski et al., 1985; Mesri 1989) for normally consolidated 

and lightly overconsolidated clays. Horpibulsuk et al. (2004b) performed similar analysis 

on cemented Bangkok, Tokyo, and Ariake clays and suggested a range of 0.23 to 0.36 for 

cu/’y with a slightly higher average value of 0.29. The significant scatter in cu/’y ratios 

is better illustrated in Fig.  4-17. The variation in the data may originate in the effect of 

additional cementitious fines on the plasticity index, which has not been accounted for in 

the results. 

Since vertical yield stress correlates with undrained shear strength and also 

represents the strength of the cemented material, we would expect it to correlate with the 

 parameter as well. Using Eq. (4.8) and assuming a cu/’y ratio of 0.22, the vertical yield 

stress of the cemented material can be approximated as follows: 

9.15.2945.583 228, 
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This also enables the estimation of the yield stress based on cement-moisture ratio 

and the activity number. Fig.  4-18 gives the values of ’y versus the  parameter with Eq. 

(4.9) plotted as a dashed line. The solid line represents the relationship obtained by using 

a cu/’y ratio of 0.29, as suggested by Horpibulsuk et al. (2004b). As the figure shows, 

using a ratio of 0.22 provides a better approximation of the overall data. 
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Most naturally structured soft clays experience a relatively abrupt destructuration 

once the virgin yield stress is exceeded (e.g. Burland, 1990). In comparison, numerous 

consolidation test results on artificially cemented clays have confirmed that this type of 

structured material undergoes a more gradual breakage of the bonds and has an 

approximately linear post-yield compression curve (e.g. Miura et al., 2001; Rotta et al., 

2003; Lorenzo and Bergado, 2004; Xiao and Lee, 2008; Kamruzzaman et al., 2009). In 

common with other structured soils, however, this compression line still converges with 

the intrinsic compression line (ICL) of the material at high pressures (Burland, 1990; Liu 

and Carter, 2002; Rotta et al., 2003). Fig.  4-19 illustrates an example of the different 

compression behaviours of naturally structured and artificially cemented clays. Naturally 

structured Ottawa clay undergoes higher amount of pre-yield compression followed by an 

abrupt post-yield destructuration, while the artificially cemented material displays a 

stiffer pre-yield response and a more gradual post-yield breakage of the cementitious 

bonds. Even though artificially cemented clays have been previously treated as 

“structured soils”, they may be better represented in e : ’v space using two limiting 

relationships (Horpibulsuk et al., 2004b); one a near horizontal pre-yield line followed by 

a pseudo-normal compression line (Fig.  4-20). This pseudo-normal compression line (so 

called since it may represent a family of changing gradient lines with destructuration) can 

be represented by the following equation: 

)log( vcCee                                                                           (4.10) 

Where e is the void ratio at ’v = 1 kPa, and Cc is the “average” slope of the 

compression line. As Fig.  4-20 indicates, steeper compression lines (i.e. greater values of 
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Cc) are expected to be accompanied by higher interception values (e) for a specific type 

of clay.  

A number of researchers have previously proposed normalised such relationships 

for predicting the generalized compression behaviour of reconstituted or artificially 

cemented clays (e.g. Nagaraj and Srinivasa Murthy, 1986; Burland, 1990; Nagaraj et al., 

1993; Nagaraj et al., 1994; Horpibulsuk et al., 2004b). These relationships are often 

written in the following form: 

)log( v
n

ba
e

e                                                                             (4.11) 

Where a and b are normalized parameters usually obtained from experimental 

data, and en is a normalizing void ratio. The void ratio at the liquid limit (eL) has been 

commonly used as the normalizing void ratio for reconstituted clays (e.g. Burland, 1990; 

Nagaraj et al., 1994). However, e100 (the void ratio at ’v = 100 kPa) was used also by 

Horpibulsuk et al. (2004b) to normalize the compression behaviour of both cemented and 

uncemented material. At a void ratio equal to eL, reconstituted clays have an undrained 

shear strength (cu) of approximately 1.7 kPa (Wood, 1990), corresponding to a vertical 

effective stress (’v) of 7.7 kPa (based on the relationship suggested by Mesri, 1975). 

Likewise, e (the void ratio at ’v = 1 kPa) can also be used as another pressure based, 

normalizing reference volume. Since eL is a reference state associated with remoulded 

soil states, it is essentially arbitrary with respect to cemented and structured soils. In such 

cases, e is preferred since it is a fixed and known reference volume for an effective stress 

of 1 kPa, without the uncertainty associated with the determination of liquid limit states. 

Therefore, Eq. (4.11) can be rewritten as: 
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Here the ratio b/a is equal to Cc/e (Eq. 4.10). An examination of relationships 

with a similar form to Eq. (4.11) that are available in the literature reveals that the b/a 

ratio (~Cc/e ratio) has a very narrow range (between 0.21 and 0.23) and appears to be 

independent of the value of the a and b parameters (e.g. Nagaraj and Srinivasa Murthy, 

1986; Nagaraj et al., 1993; Nagaraj et al., 1994; Horpibulsuk et al., 2004b). Interestingly, 

assuming that the vertical yield stress at the liquid limit is approximately 7.7 kPa, the 

relationship proposed by Burland (1990) between Cc
* (for reconstituted clay) and eL also 

gives a Cc
*/e ratio of approximately 0.21. 

The average e and Cc parameters were also obtained for the cemented clays 

studied herein. The results again suggest that a linear relationship exists between the two 

parameters (Fig.  4-21): 

eCc 23.0                                                                                          (4.13) 

Hence, as was previously suggested by Horpibulsuk et al. (2004b), the same 

relationship (Eq. 4.13) governs both the destructuration/compression of artificially 

cemented clays and the compression of reconstituted material. This resemblance in 

behaviour could be related to the more gradual breakage of the bonds within the 

artificially cemented clay; although the bond breakage is brittle, it appears to be 

sufficiently disseminated to lead to elasto-plastic frictional behaviour of the cemented 

material. It should be noted that the data used to find Eq. (4.13) were obtained by 

oedometer tests for a vertical effective stress (’v) range of 5 to 8000 kPa and initial void 

ratios (eo) less than 5.5. 
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Combining Eqs. (4.12) and (4.13) gives: 

)log(23.01 ve

e 


                                                                        (4.14) 

Thus, Eq. (4.14) produces a number of discrete lines in the e – log(’v) space, 

restricting the pseudo-normal compression lines to only moving on certain paths. 

Therefore, having the value of eo for a particular cemented clay and estimating ’y from 

Eq. (4.9), we can utilize Eq. (4.14) to calculate the values of e and Cc for a specific 

cemented clay.  

A further parametric study was completed to provide a deeper understanding and 

enable the prediction of e and Cc directly from the basic geotechnical properties of the 

cemented material. As illustrated in Fig.  4-22, for a given vertical yield stress (’y), a 

higher post-curing void ratio (eo) will increase the post-yield destructuration rate of the 

material and will thus be accompanied by an increase in e and Cc. Similarly, for a given 

initial void ratio, a higher yield stress results in greater e and Cc values. Based on the 

information available in the literature it seems reasonable that there are links between 

form of cementation, post-curing void ratio, yield stress, and clay mineralogy. 

Horpibulsuk et al. (2004b) suggested that the slope of the compression line (Cc) only 

depends on the cement content and clay type and is independent of the moisture content. 

However, the results of this study indicate that the water content can also affect the 

compressibility of a cemented clay. Since a number of researchers have previously 

correlated the slope of the compression line of remoulded clays with the plasticity index 

or liquid limit (Burland, 1990; Wood, 1990), the liquidity index was used in calculations 
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to incorporate the effect of index properties with water content. After analyzing the 

oedometer data, it was found that the post-yield compressibility of the cemented clays is 

related to the liquidity index (LI), cement content (c), and activity number (A). Hence, a 

new parameter, , was defined as follows: 

2.3.. AcLI                                                                                        (4.15) 

The calculated Cc values are plotted versus the new  parameter in Fig.  4-23 for 

different cemented clays. A clear trend can be detected in the results, providing the 

following relationship: 

32.085.0 cC                                                                                     (4.16) 

Similarly, a relationship for estimating the representative e values based on the  

parameter can be obtained (Fig.  4-24):  

32.070.3  e                                                                                      (4.17) 

Substitution of Eq. (4.16) and Eq. (4.17) into Eq. (4.10) provides: 

 )log(23.017.3 32.0
ve                                                            (4.18) 

Previous works have shown that addition of Portland cement reduces the swelling 

potential of the improved clay (Bhattacharja et al., 2003). Based on the available data, the 

slope of the swelling line, Cs, of a specific clay seems to be essentially constant and 

independent from the cement content. However, for a certain type of clay, cemented 

samples with higher  parameters tend to have slightly lower swelling indices (Fig.  4-25). 

Although a clear relationship cannot be obtained due to the scatter that exists in the data, 

this suggests that higher cementation does indeed reduce the tendency of the soil to 

rebound due to unloading. 
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It should be noted that the equations presented in this section are derived based on 

the available data for a number of clays with a certain range of water content, cement 

content, and activity number; the properties of these clays, along with the type of 

experiments performed on each soil, are given in Table  4-3.  

4.5 Discussion 

Two interesting observations emerge from the results presented herein. First, the 

strength of artificially cemented clays continues to increase with curing time even beyond 

three years. Second, the gained strength appears to be a function of the activity number of 

the soil, as well as the w/c ratio. Both of these phenomena can be further understood by 

taking into account the importance of the secondary pozzolanic reactions.  

The hydration reaction is primarily responsible for the short-term gain in strength, 

since it produces the primary bonds and reduces the moisture content of the mixture. In 

contrast, the pozzolanic reactions commence when adequate concentration of hydroxide 

ions is produced and a certain level of alkalinity is reached in the pore fluid (Herzog and 

Mitchell, 1963; Xia and Lee, 2008). The secondary reactions are considerably slower 

than the hydration reaction and can continue for months, or even years after mixing 

(Bergado et al., 1996), but only if there is sufficient calcium available in the matrix and 

the pH continues to be elevated. According to Stocker (1975), the first layer of secondary 

reaction products covers the particle surfaces and impedes further reactions. For the 

reactions to continue, Ca(OH)2 must diffuse through the first layer of reaction products 

(Stocker, 1975; Croft, 1967b; Bhattacharja et al., 2003). This process of diffused 

cementation occurs at a much slower rate than the hydration reaction of the cement. 
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Furthermore, clay minerals are much more chemically reactive than concrete aggregates, 

so the pozzolanic reaction is more pronounced in artificially cemented clays than it would 

be in concrete or other granular pastes. Thus the continuation of strength gain, which 

differentiates the hardening response of a cemented clay from that of concrete, could be 

attributed to the secondary pozzolanic reactions between the clay minerals and cement 

hydration products.  

As stated by Bergado et al. (1996), if cured and mixed under similar conditions, 

soils with higher pozzolanic reactivity obtain greater strengths, compared to those with 

lower reactivity. Most physicochemical phenomena that happen in the soil material are 

affected by the available surface area (Bhattacharja et al., 2003). Croft (1967a) suggested 

that expansive minerals, which have high surface areas and activity numbers, consume 

the lime released during the cement hydration more rapidly. Therefore, secondary 

reactions commence sooner and are of higher intensity in active clays. This could result 

in higher gained strength in such soils, compared to those of soils with lower activity 

number. In addition, based on the work of Wissa et al. (1965), the amount of cementitious 

material produced during the pozzolanic reaction depends on the amount of clay fraction 

as well as that of amorphous silica and alumina that exist in the soil; having a high 

surface area and therefore a high activity, poorly crystallized minerals react more readily 

with calcium hydroxide and produce more cement. Hence, the activity number of the clay 

is an important parameter in determining the gained strength, as it represents the ability of 

the material to be involved in the pozzolanic reactions. 

Although the results of this work imply that secondary reactions, which are often 

deemed to be lower in significance compared to the hydration reactions, play an 
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important role in providing the cemented clay with strength, further elucidation from a 

micro-structural point of view is needed to understand the mechanisms by which these 

reactions affect the cemented soil behaviour.  

Soil aggregates or clusters are the fundamental components controlling soil 

behaviour. They can act almost as single particles and interact to generate the strength 

and stiffness in clays (Mitchell and Soga, 2005). Even if the soil-cement mixture is 

thoroughly blended, clay particles will form aggregates enclosed by the cement slurry 

(Croft, 1967b; Bergado et al., 1996). As a result, during the curing period, hydration 

reactions form hardened cement bodies, which connect to develop a matrix within the soil 

mass (also called skeletal cementation by Bhattacharja et al., 2003). On the other hand, 

since pozzolanic reactions take place between clay minerals and cement hydration 

products and hence happen near particle surfaces, they form cementitous material on or 

near the surface of clay particles. Stocker (1975) suggests that these reactions take place 

exclusively at particle edges. The produced cement pastes the flocculated particles 

together at points of contact, developing hardened soil bodies and increasing the strength 

of soil aggregates (Herzog and Mitchell, 1963). The strength of the improved soil will 

depend on the strength of the hardened cement and soil skeleton (Bergado et al., 1996). 

However, because the cementitious bonds produced by pozzolanic reactions (CSH and 

CAH) have a lower strength compared to those created by the hydration reactions [mainly 

C3S2H3] (Bergado et al., 1996), the strength of the whole cemented soil mass should 

mainly depend on the strength of the hardened aggregates, rather than that of hydrated 

cement bodies. This is consistent with the findings of Saitoh et al. (1985), who suggested 

that the lower the pozzolanic reactivity of the soil, the higher its strength dependence on 
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the properties of hardened soil bodies. Thus, the strength of the cemented material is 

greatly dependent on the degree and intensity of the secondary reactions.  

Nonetheless, it should be borne in mind that the results presented here are only for 

soils with low to medium values of activity number (less than 1.2). Very high activity 

numbers, which are usually encountered in smectitic clays, may have a negative effect on 

the strength of cement treated soil (Bergado et al., 1996), as the high affinity of these 

clays for lime depletes the soil-cement mixture from calcium hydroxide and reduces the 

pH of the aqueous phase (Croft, 1967a), decreasing the solubility of silicates and 

aluminates and bringing the secondary reactions to a halt (Herzog and Mitchell, 1963; 

Bergado et al., 1996). This is further evidenced by the works of Croft (1967), Noble and 

Plaster (1970), Ingles and Metcalf (1972), and Osula (1996), who suggested that Portland 

cement treatment does not develop much strength in highly active clays, such as 

montmorillonite, and recommended that it be replaced by lime stabilization, so that there 

would be enough lime available in the mix to keep the pH at a high level. 

Other factors could also be contributing to the observed behaviour of the 

artificially cemented clays. Noble and Plaster (1970), who examined the chemical 

reactions in mixtures made by the addition of Portland cement to various types of clay, 

suggested that the hydration reaction takes place at a slower rate in clays than concrete. 

This is in accord with the statement made by Bergado et al. (1996) that cemented soil is 

better improved if type III Portland cement, which provides relatively high early 

strengths, is used rather than type I. Therefore, one reason why the rate of increase in the 

strength of cemented clays is lower than that of concrete could be the slower hydration 

reaction due to the presence of clay minerals.  
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Additionally, to better understand the importance of the activity number compared 

to that of water-cement ratio, we can further deliberate on Abrams’ law. This law states 

that the strength of concrete only depends on the ratio of “free” water content to the 

cement content in the mix (Abrams, 1918). To successfully apply Abrams’ law, which 

was originally intended for concrete material, to artificially cemented clays, we should 

address the main difference between concrete and clay constituents. Unlike concrete, 

clayey materials tend to absorb significant amounts of water. The extent of this 

absorption depends on the specific surface area, which can be represented by the activity 

number of the soil. The amount of adsorbed water increases in more active clays, which 

usually have higher surface area and charge deficiency (Mitchell and Soga, 2005). Hence, 

there will be less “free” water available in the paste for cement hydration. This adsorbed 

water is not taken into account when water-cement ratio (w/c) is calculated. 

Consequently, comparing two different clays that have been artificially cemented and 

have similar clay water-cement ratios, the one having a higher activity would probably 

gain higher strength, since the actual w/c ratio is lower than the nominal value. 

A few researchers have tried to correlate the mechanical behaviour of cemented 

clays with the index properties (e.g. Woo, 1971). Using the activity number for modelling 

the behaviour of cemented soil appears to have an advantage over using other soil 

parameters such as plasticity index, liquid limit, or clay content. As postulated by 

Skempton (1953), since the plasticity of a soil depends on both the type and amount of 

clay existing in that soil, the activity number is constant for a certain type of material, 

regardless of its index properties. This eliminates the variability observed in index 
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properties of different samples taken from the same site and makes possible further 

interpretations based on the activity number.  

Analysis of the available data in the literature has shown that at very low water-

cement ratios (w/c < 3), the strength gained by the mixture after 28 days is in some cases 

lower than the expected value. In almost all of these cases, this low w/c ratio was 

accompanied by a very high cement content (c > 25%) and a relatively low liquidity 

index (LI < 1.5). According to Abrams’ law, lower water cement ratios should result in 

higher strength. However, there seems to be a threshold for water cement ratio of 

cemented clays, after which the cementation process will not be as efficient as expected. 

It is known in concrete technology that for every 4 portions of cement, 1 portion of water 

is needed to fully complete the hydration reaction (w/c = 0.25). However, concrete 

mixtures obtained by using this minimum ratio are often considered too dry, because 

some of the water is absorbed by the sand and gravel grains and is not available to 

participate in the hydration reaction. The same phenomenon appears to happen to a 

greater extent in clays. At low liquidity indices, the soil still has a “plastic state”. Hence, 

inter-aggregate free water, which is not absorbed to the clay surface, will not be available 

to complete the hydration reaction of cement. Croft (1967b) reported that the 

development of cementitious material consumes the free moisture existing in inter-

connected voids, and unless additional water is added, a strong pattern of intersecting 

cracks will develop in the cemented soil, reducing the strength and stiffness of the 

material. Horpibulsuk et al. (2003) also showed that cement contents higher than 40% 

(w/c<4.5) resulted in lower than expected undrained shear strength in cement-treated high 

water content Ariake clay. In addition, Horpibulsuk et al. (2010) illustrated for a 
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compacted silty clay that at cement contents higher than 11% (w/c<2.4), the addition of 

cement did not noticeably increase the strength, and that at cement contents higher than 

30% (w/c<0.9), the strength reduced even further with addition of cement to the mixture. 

Therefore, due to the high surface area of the clayey material, the minimum w/c ratio 

required for clay-cement mixtures is much higher than that of concrete. Thus, w/c ratio 

higher than 3 appears to produce more efficiency for the cementation process. 

In addition to soil activity and the w/c ratio, the presence of organics in the soil 

could also significantly affect the cementation process and its outcome. High organic 

contents hinder the development of strength in soils improved by Portland cement or lime 

(Tremblay et al., 2001). Miura et al. (1986) suggest that cement rather than lime should 

be used in the stabilization of organic clays to achieve better results. None of the clays 

described in this study contain amounts of organic material large enough to affect the 

cementation process. Thus, caution should also be exercised should the equations 

provided herein be used for organic clays.  

4.6 Summary and Conclusions 

To study the effect of soil mineralogy and activity on the properties of cemented 

clays and to find important parameters governing cement-treated clay mechanical 

behaviour, the results of laboratory shear vane, unconfined compression, undrained 

triaxial, and oedometer tests on many different types of clays treated with Portland 

cement have been examined. The results indicate that: 

 Although the hydration rate of ordinary Portland cement used to stabilize clay 

drops significantly with curing time, cemented clays continue to gain significant 
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amount of strength long after the curing has started. This behaviour, which is not 

typical of cement-based construction materials can be attributed to slower 

pozzolanic reactions that happen between clay minerals and cementation 

products.  

 The hardening trend of artificially cemented clays is independent of the water and 

cement contents, and the clay type and can be modelled by a power function.  

 The residual shear strength of the cemented soil increases with increasing curing 

time or cement content. This has been attributed to the changes in the frictional 

properties of the destructured soil and therefore the secondary reactions, which 

produce cementitious bonds within the soil aggregates. However, the residual 

strength increases with a slower rate than does the peak strength. Consequently, 

the sensitivity and brittleness of the material increases with curing time and 

cement content.  

 Undrained shear strength of cemented clays is dependent on their mineralogical 

composition. The strength of the cement-treated material is also closely related to 

its cement-water ratio, c/w. However, this ratio alone is not enough to predict the 

behaviour of cemented clays. The activity of the soil, which represents its 

mineralogy and its ability to be involved in chemical reactions, should also be 

considered. The higher the activity number, the higher the strength of the clay at a 

given cement-moisture ratio.  
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 Using the empirical  and  parameters has enabled the prediction of the 

undrained shear strength, vertical yield stress, and the slope of the compression 

line for artificially cemented clays.  

 Undrained shear strength of cemented clays is independent of the confining 

pressure of the soil, unless the yield stress has been exceeded. Therefore, the pre-

yield behaviour of cement-treated clays is predominantly dependent on 

cementation bonds, rather than friction.  

 Pozzolanic reactions are believed to be responsible for the observed behaviour of 

cemented clays. A matrix of hardened material is formed in the soil body due to 

hydration of cement. However, the hydration process does not necessarily 

produce bonds between the particles. Since they form cementing bonds between 

the soil particles and within the aggregates, the pozzolanic reactions are 

responsible for the overall strength of the cement-cluster network.  

 Due to the slow rate of the pozzolanic reactions, the hardening of cemented clay 

takes much longer than that of concrete. In addition, more active clays, which 

react more rapidly and intensely with the hydration products and therefore 

produce more cementing bonds, gain higher amount of strength due to artificial 

cementation.  

 Water/cement ratios less than 3 may hinder the cementation process and reduce its 

efficiency.  
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Table  4-1. Geotechnical properties of the four types of clay tested by the authors 

Soil Characteristic Ottawa clay 
Nanticoke 

clay 
EPK kaolin 

Speswhite 

kaolin 

Liquid limit, LL (%) 52 48 61 64 

Plastic limit, PL (%) 24 23 36 34 

Plasticity Index, PI (%) 28 25 25 30 

Specific Gravity, Gs 2.82 2.73 2.61 2.62 

Clay fraction (<2 m, %) 43 48 53 61 

Activity, A 0.65 0.52 0.47 0.49 
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Table  4-2. Properties of the cemented soil samples from the literature used in the time analysis (Fig.  4-3) 

Soil
Plastic limit, 

PL (%)
Liquid limit, 

LL (%)

Plasticity 
index, PI 

(%)

Clay 
content (%)

Activity, A
Water 

content, w 
(%)

Liquidity 
index, LI

Cement content, c(%) Reference

Home Rule kaolin 33 64 31 88 0.35 45 0.4 1, 5, 10, 20 Croft (1967a)

Rotoclay kaolin 30 58 28 40 0.70 115 3.0 10, 20 Flores et al. (2010)

35 87 52 68 0.76 120 1.6 5, 10, 20, 30, 40, 50, 60 Kamruzzaman et al. (2009)

100 1.2 10, 15, 20

133 1.7 50

150 1.9 77, 100

32 72 40
90, 120, 

150
1.5, 2.2, 3 10, 20, 30 Tan et al. (2002)

86, 106, 
136, 166

0.7, 1, 1.5, 
2

10 Lorenzo and Bergado (2004)

80 1.3
5, 7.5, 10, 12.5, 15, 20, 

25, 30, 35, 40
Uddin et al. (1997); Uddin 

(1994); Bergado et al. (1999)

106 0.7 10, 20

130 2.0 10, 15, 20

160 2.5 15, 20

Illite a a a a a 118 a 10, 20 Nagaraj et al. (1996)

Brown Indian clay 23 60 37 46 0.80 60, 90, 120 1, 1.8, 2.6 3 - 24b Narendra et al. (2006)

Brown Indian clay a a a a a 62 a 10, 20 Nagaraj et al. (1996)

Black cotton Indian clay 35 97 62 61 1.02
97, 145, 

194
1, 1.8, 2.6 5 -19.5b Narendra et al. (2006)

Black cotton Indian clay a a a a a 72 a 10, 20 Nagaraj et al. (1996)

Black cotton Indian clay a a a a a 86 a 20 Nagaraj et al. (1996)

Red earth Indian clay 15 38 23 32 0.72 38, 57, 76 1, 1.8, 2.7 4 - 15b Narendra et al. (2006)

0.8760

60 125

69

55

65

43 103

25 90

65

Xia and Lee (2008)

Horpibulsuk et al. (2003)

Singapore marine clay

Bangkok clay

Ariake clay 1.18

aa

 
a: no data available, b: data ranging between the two values 
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Table  4-3. Properties of the cemented soil samples from the literature used in the parametric study 

Soil Activity, A
Water content, w 

(%)
Cement content, 

c (%)
Type of test Reference

Rotoclay kaolin 0.70 115 10, 20 UC Flores et al. (2010)

Singapore marine clay 0.76 90 - 150b 5 - 77b UC, CIU, Oed.
Kamruzzaman et al. (2009); Xiao and Lee (2008); Tan et al. 

(2002); Chew et al. (2004); Lee et al. (2005)

Bangkok clay 0.87 80 - 209b 3 - 35b UC, CIU, Oed.
Lorenzo and Bergado (2004); Uddin et al. (1997); Uddin (1994); 

Horpibulsuk et al. (2004b)

Ariake clay 1.18 106 - 250b 6 - 33b UC, CIU, Oed.
Miura et a. (2001); Horpibulsuk et al. (2003); Horpibulsuk et al. 
(2004a); Horpibulsuk et al. (2004b); Horpibulsuk et al. (2005)

Hong Kong clay 0.91 60 - 100b 5 - 20b UC, CIU Yin and Lai (1998)

Brown Indian clay 0.80 60 - 120b 3 - 24b UC Narendra et al. (2006)

Black cotton Indian clay 1.02 97 - 194b 5 -19.5b UC Narendra et al. (2006)

Red earth Indian clay 0.72 38 - 76b 4 - 15b UC Narendra et al. (2006)

Louiseville clay 0.56 122 5.3 Oed. Tremblay et al. (2001)

Bothkennar clay 0.50 60 4.2 CIU, Oed. Kirwan 2003; Kainourgiaki (2004)
 

 
b: data ranging between the two values 
UC: unconfined compression test 
CIU: conventional undrained triaxial test 
Oed: oedometer test
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Fig.  4-1. Shear strength of artificially cemented Nanticoke clay (LI=3, w=98%) with 

curing time 
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Fig.  4-2. Normalized undrained shear strength of cemented Nanticoke clay (LI=3, 

w=98%) versus curing time  
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R2 = 0.91
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Fig.  4-3. Normalized undrained shear strength of various clays cemented with Portland 

cement versus curing time  
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Fig.  4-4. Sensitivity of artificially cemented Nanticoke clay (LI=3, w=98%) with curing 

time  
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Fig.  4-5. Normalized sensitivity of three cemented clays versus curing time  
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Fig.  4-6. The relationship between liquidity index and undrained shear strength for soils 

with different cement contents  
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Fig.  4-7. The relationship between cement content and undrained shear strength for soils 

with different liquidity indices 
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Fig.  4-8. Variations in undrained shear strength with cement-moisture ratio (c/w)  
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Fig.  4-9. Variations in sensitivity with cement-moisture ratio (c/w)  
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Fig.  4-10. The effect of cement-moisture ratio (c/w) and activity number (A) on 

undrained shear strength  

 

 

 

 

 

 

 

 



164 

 

0

5

10

15

20

25

30

35

40

45

0.000 0.005 0.010 0.015 0.020 0.025 0.030

(A2.7).(c/w)

S
t,

 2
8 

d
ay

s 
(k

P
a)

Ottawa clay

Nanticoke clay

EPK kaolin

Speswhite kaolin

 

Fig.  4-11. The effect of cement-moisture ratio (c/w) and activity number (A) on 

sensitivity  
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Fig.  4-12. Undrained shear strength of various cemented clays versus cement-moisture 

ratio 
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Fig.  4-13. Undrained shear strength of various clays versus the  parameter  

 

 

 

 

 

 

 

 

 



167 

 

cu1= 1.04cu2

R2 = 0.98

0

200

400

600

800

1000

1200

0 200 400 600 800 1000 1200

cu2 (kPa) - unconfined specimens

c
u

1 
(k

P
a

) 
- 

C
IU

 t
ri

a
x

ia
l s

p
e

c
im

e
n

s

Nanticoke clay

Speswhite Kaolin

Ottawa clay

Bangkok clay

Ariake clay

Singapore clay

Hong Kong clay

 

Fig.  4-14. Comparison between undrained shear strengths obtained for consolidated 

triaxial specimens and those obtained for unconfined specimens 
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Fig.  4-15. Undrained shear strength from CIU triaxial tests versus the  parameter 
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Fig.  4-16. Vertical yield stress versus undrained shear strength 
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Fig.  4-17. The relationship between the plasticity index and the cu/’y ratio 
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Fig.  4-18. The relationship between vertical yield stress and   
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Fig.  4-19. One dimensional compression curves for undisturbed, artificially cemented, 

and reconstituted Ottawa clay.  
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Fig.  4-20. Idealized compression behaviour of artificially cemented clays (after 

Horpibulsuk et al., 2004b) 
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Fig.  4-21. The relationship between Cc (the slope of the compression line) and e (void 

ratio at ’v = 1 kPa) 
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Fig.  4-22.  The effect of variations in (a) initial void ratio; and (b) vertical effective yield 

stress, on the slope of the pseudo-normal compression line 
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Fig.  4-23. The relationship between the slope of the compression line, Cc, and   
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Fig.  4-24. The relationship between e (void ratio at ’v=1) and   
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Fig.  4-25. The relationship between the slope of the swelling line, Cs, and   
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5 A FRAMEWORK FOR YIELDING AND STRESS-STRAIN 

BEHAVIOUR OF ARTIFICIALLY CEMENTED CLAYS 

5.1 Introduction 

Artificial cementation is used in civil engineering practice as an effective method 

for the stabilization of soft ground. Both shallow and deep stabilization techniques have 

been developed over the past few decades to enhance engineering properties, such as 

strength and compressibility, and to solidify soft and slurried clays (e.g. Bergado et al., 

1996; Nagaraj and Miura, 2001). Deep mixed cementitious soil columns, for instance, are 

employed to stabilize trenches and deep excavations and to increase the bearing capacity 

of lightly loaded structures. Lime has been a commonly used cementing agent in ground 

improvement projects. However, Portland cement is becoming more preferable in recent 

years due to its lower cost, easier storage, and higher effectiveness (Bergado et al., 1996).  

Several researchers have experimentally studied the yielding behaviour of natural 

structured soft clays, and a number of models have been developed for predicting the 

shearing and compression behaviour of such material (e.g. Mitchell, 1970; Wong and 

Mitchell, 1975; Graham et al., 1983b; Clausen et al., 1984; Folks and Crookes, 1985). 

Natural sensitive cemented clays tend to exist in a meta-stable state; once the apparent 

“preconsolidation pressure” caused by the natural cementation is exceeded, rupture of the 

particle bonds results in an abrupt increase in compressibility (e.g. Mitchell, 1970). Since 

the material forms an anisotropic structure prior to cementation, evidence of this fabric is 

apparent in the mechanical response of the soil (e.g. Lo and Morin, 1972; Tavenas and 

Leroueil, 1977). In contrast, many artificial cementation techniques involve significant 
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remoulding of the in-situ material, replacing the meta-stable fabric of the soil with an 

almost uniform isotropic matrix of bonded particles and aggregates (Nagaraj and Miura, 

2001). Although this material has been previously described as “structured” and modelled 

accordingly (e.g. Horpibulsuk et al., 2010), the yielding and plastic flow of artificially 

cemented clays appears to be fundamentally different from that of naturally cemented 

clayey soil. Thus far, little implementation of these forms of constitutive model into finite 

element software has occurred (e.g. Helinski et al., 2007), but it is important that suitable 

approaches are developed for accurate prediction of complex boundary value problems.  

Although significant work has been published on the compression and 

undrained/drained shearing behaviour of artificially cemented clays from standard triaxial 

and oedometer tests, very limited data concerning the yielding and plastic flow of this 

material, when subjected to complex stress paths in triaxial space, is available. Such 

information would aid researchers to develop more realistic constitutive models, resulting 

in improved predictions of the soil behaviour and better models for geotechnical systems. 

The main objective of this study was to experimentally investigate the yielding and 

stress-strain behaviour of an artificially cemented clay enhanced with Portland cement 

and to propose a constitutive framework to described the observed behaviour.  

5.2 Literature Review 

Yielding and compression behaviour of remoulded and naturally structured clays 

has been well studied and documented. Mitchell (1970) performed a number of 

conventional, constant p’, and constant  (stress ratio) triaxial experiments to study the 

yielding and mechanical strength of Ottawa clay. Depending on the type of experiments, 
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yield points were established using plots of either void ratio (e) versus mean effective 

stress (p’) or axial strain () versus deviatoric stress (q), forming an approximately unique 

curve in the p’-q plane. The obtained yield surface confirmed the anisotropic elasto-

plastic behaviour of the material. Three different modes of failure were observed, 

depending on the value of the mean normal stress at failure. In addition, yielding and 

plastic flow of sensitive Ottawa clay was further investigated by Wong and Mitchell 

(1975). They suggested that the pre-yield behaviour of the sensitive clay can be 

considered to be quasi-elastic and isotropic. They also proposed an experimentally 

defined flow rule, correlating the plastic strain increments with the stress ratio (), to 

derive a plasticity theory describing the post-yield behaviour of sensitive cemented clays.  

Tavenas et al. (1979) performed stress path-controlled triaxial experiments on four 

different sensitive Champlain clays and used strain energy as a criterion to define the 

yield surface of the material. They proposed that unlike other criteria, strain energy can 

be used to acceptably define the limit state stress condition of the material along any 

selected stress path. Graham et al. (1983b) used the same concept along with a newly 

defined parameter, i.e. the length of the stress vector (LSSV), to study the yield states of 

naturally cemented Winnipeg clay. They also found the plastic strain increment vectors 

for the material, assuming a pre-yield cross-anisotropic pseudo-elastic behaviour for the 

material. They showed that specimens with different preconsolidation pressures produced 

a well-defined normalized yield locus and that the plastic strain increment vectors were 

approximately perpendicular to the proposed yield envelope. However, systematic 

deviations from normality were observed along certain stress paths, suggesting a counter-

clockwise average deviation.  
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Graham and Li (1985) compared the behaviour of remoulded and natural 

Winnipeg clay and concluded that many of the important conceptual principles of critical 

state soil mechanics equally apply to both remoulded and natural clay. They also showed 

that the normal consolidation lines (NCL) and critical state lines (CSL) obtained for 

remoulded and natural clays were approximately parallel. Clausen et al. (1984) used 

measurements of pore pressures and deformations obtained by instrumentation of a 

circular test fill embankment built on a quick clay at Mastemyr, Norway to determine the 

occurrence of yielding within the material. They coupled their analysis with the results of 

laboratory tests on high quality specimens to produce a simple elastic-plastic model for 

the clay. They explained the slight discrepancy observed between the filed and laboratory 

test results in terms of underestimation of  the apparent preconsolidation ratio of the soil. 

More recently, Smith et al. (1992) studied the yielding behaviour of undisturbed 

Bothkennar clay by performing a number of drained probing and undrained shearing 

triaxial tests and confirmed the previous hypothesis that the behaviour of the soil at small 

strains can be explained by two kinematic sub-yield envelopes that exist within the 

primary bounding surface, which marks the onset of large-strain yielding. Although 

accurately mapping the first small elastic zone was difficult, the second zone was 

successfully located by undrained cyclic and drained probing triaxial experiments.  

In addition to naturally structured material, artificially cemented clays have been 

subjected to a number of investigations mostly during the past decade. Uddin et al. (1997) 

conducted a comprehensive study of the engineering behaviour of cement-treated soft 

Bangkok clay. Results of conventional undrained triaxial experiments indicated that the 

stress paths in the p’-q plane were initially perpendicular to the p’ axis, followed by an 
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abrupt change in the curvature of the stress paths at higher deviator stresses. This phase 

transformation was utilized to obtain a family of curved loci for the material.  

Tremblay et al. (2001) experimentally investigated one-dimensional compression 

behaviour of a number of clays from eastern Canada treated with lime or cement. Based 

on the experimental data, they developed a general compressibility model, estimating the 

resistance to compression for a given soil treated with a particular additive, by defining 

relationships between initial void ratio, additive content, and vertical effective yield 

stress. Horpibulsuk et al. (2004) studied the undrained shear behaviour of cement 

admixed Ariake clay at high water content and suggested that cementitious bonds play a 

dominant role on the strength characteristics of the material, if particularly sheared at 

confining pressures less lower than the mean effective yield stress. They also found that 

even if the specimens are sheared at confining pressures higher than the mean effective 

yield stress, cementation bonding still had a marked effect on the shear resistance of the 

material. Artificial cementation was also shown to increase the friction angle of the 

material, as well as its cohesion intercept. Although addition of a slight amount of cement 

significantly increased the friction angle of the material, further addition of cement did 

not significantly change the friction angle.  

Kamruzzaman et al. (2009) studied the mechanical behaviour of cement-treated 

Singapore marine clay by performing a number of oedometer and conventional undrained 

triaxial experiments and reported that cementation resulted in a significant increase in the 

apparent preconsoldiation pressure and a decrease in the swelling index of the clay. They 

also observed progressive post-yield destructuration of the cemented clay and attributed it 

to the gradual breakage of the cementitious bonds. The effect of cementation on the 
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shearing behaviour was observed even in specimens consolidated well beyond the yield 

stress. However, specimens sheared at low confining stresses exhibited a more brittle 

failure followed by strain softening of the material.  

A number of constitutive models have also been proposed to predict the yielding 

and compression behaviour of structured clayey material. Rouainia and Muir Wood 

(2000) adopted a bubble model to extend the modified Cam Clay, to improve the 

estimates of small strain stiffness and degradation of stiffness with strain. The bubble was 

chosen to have the same elliptical shape, and the elastic behaviour was assumed to be 

isotropic. The suggested model could effectively reproduce the shearing and compression 

responses of a Swedish natural structured clay. Vatsala et al. (2001) proposed a 

framework considering the behaviour of a structured soil to be due to the coupled 

response of the soil skeleton and cementation bonding. The two components were 

represented separately; modified Cam Clay was used to represent the behaviour of 

uncemented soil skeleton, and a new elasto-plastic model was proposed for the bond 

component. At every strain level, the stresses produced due to each component were 

calculated and added to generate the overall response. Therefore, the model was 

described to be appropriate only if the microstructure of the material was not changed due 

to cementation. The proposed framework could successfully approximate the 

compression behaviour of a number of natural soils ranging from highly soft to very stiff 

clayey and non-clayey material.  

Baudet and Stallebrass (2004) proposed a constitutive framework for structured 

clays that used sensitivity of the material as a single parameter to represent the structure. 

They defined a damage strain as a function of plastic volumetric and shear strains and 
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postulated that sensitivity decreases exponentially with the damage strain. They also 

suggested that natural soil structure is composed of meta-stable and stable elements. The 

stable components were considered not to degrade with straining and were simulated by 

allowing the limit value of sensitivity to be greater than unity. In an attempt to produce a 

structured Cam-clay model, Liu and Carter (2002) assumed the void ratio of a structured 

material at any state of stresses to be the sum of the void ratio for the corresponding 

reconstituted soil plus the additional void ratio due to structure. They proposed a 

formulation to find the additional void ratio based on the mean yield effective stress and a 

“b” parameter called the destructuration index, which should be obtained for a specific 

soil based on experimental data. They incorporated this framework into modified Cam 

Clay and used the resulting “structured Cam Clay” framework to predict the compression 

and shearing behaviour of five naturally structured soils.  

Most of the aforementioned frameworks are mainly designed to predict the 

behaviour of naturally structured clays. Further work (although limited) has been done to 

develop models representing the behaviour of artificially cemented material. Yasufuku et 

al. (1997) proposed a generalized dissipated energy equation to find a yield function for 

lightly cemented clays. They took the effect of artificial cementation into account by 

shifting the critical state line in the p’-q plane, so that its intercept with the q axis was not 

zero. The model assumed that the intercept of the critical state line with the p’ axis (P’r) is 

constant, and used a parameter, c, as a soil constant characterizing the shape of the yield 

surface. The produced framework could moderately predict the behaviour of Ariake clay, 

reconstituted at twice the liquid limit and mixed with cement at 1 and 3% cement 

contents. Kasama et al. (2000) further developed and modified the model proposed earlier 
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by Yasufuku et al. (1997) and used the produced framework to predict the results of 

undrained triaxial experiments on a lightly cemented clay. Horpibulsuk et al. (2010) later 

adopted the model proposed by Liu and Carter (2002) to artificially cemented clays, 

assuming a critical state behaviour similar in concept to that suggested by Yasufuku et al. 

(1997), i.e. the yield surface was shifted to the left in the p’-q plan, so that its intercept 

with the q axis was not zero. The model, which tied the behaviour of the cemented 

material to that of reconstituted clay using a few characterizing parameters, could 

reasonably predict the shearing behaviour of a number of artificially cemented soils.  

The term “structured” has often been used in the literature to describe both 

naturally and artificially cemented clays, and the aforementioned models have been 

developed to predict the behaviour of both types of material. However, there appears to 

be significant differences in the behaviour of the natural and artificial structure, which are 

not fully understood and addressed. In addition, most of the experimental works 

conducted on artificially cemented clays are mainly concerned with the effect of 

parameters such as cement content, water content, and curing time on the mechanical 

behaviour, and to date no significant study has been performed to investigate the yielding 

and stress-strain properties of this type of material. Therefore, this study has investigated 

the mechanical response of artificial and natural clay soils, when subjected to complex 

stress path tests. A comparison of the behaviour of the two types of structure (natural and 

artificial) is made and a new framework for predicting the behaviour of the artificially 

cemented material is presented.  
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5.3 Experimental Design 

5.3.1 Material properties 

Clay specimens were obtained for use in this study from a site in the Ottawa 

valley. The samples were collected from 3 m deep boreholes. Given the high sensitivity 

of the material, specially designed Shelby tubes with a 15 cm diameter were used to 

obtain specimens for minimal disturbance to the in-situ structure of the clay. The soil is a 

sensitive Champlain clay (St~20) with a specific gravity (Gs) of 2.82 and can be classified 

as a highly plastic clay (CH), according to the Unified Soil Classification System (ASTM 

D2487). The liquid (LL) and plastic (PL) limits are 52 and 24%, respectively, and the pH 

of the pore water is about 8.3. The grain size distribution is 43% clay (D < 0.002 mm), 

55% silt (0.002 mm < D < 0.06 mm), and only 2% sand (D > 0.06). X-ray diffraction 

analysis of the soil showed that the primary clay minerals are illite and chlorite, while 

traces of vermiculite are also found in the material. The primary non-clay minerals are 

quartz, feldspar, calcite, dolomite, and pyrite. At the time of sampling, the groundwater 

table was located at 1.2 m depth below the ground surface, and the natural moisture 

content of the sampled material was close to 80%, indicating a liquidity index (LI) of 2. 

The bulk density of the soil was almost 15 kN/m3 and the in-situ vertical overburden 

pressure was 27 kPa, indicating an apparent over-consolidation ratio (OCR) of 7.4. 

Ordinary Portland cement (type I according to ASTM C150) was used to produce the 

cementitious bonding in the reconstituted material, due to its common usage as a 

cementing agent in ground improvement projects (e.g. Bergado et al., 1996; Nagaraj and 

Miura, 2001; Bhattacharja et al., 2003).  
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5.3.2 Specimen preparation 

Undisturbed specimens of Ottawa clay were extruded from the Shelby tubes, 

carefully trimmed to size, and tested. Artificially cemented and reconstituted specimens, 

in contrast, were obtained from powdered material. To prepare the powdered clay, the 

soil was cut into small pieces and dried at room temperature. Then, it was finely 

pulverized into a powder (100% passing Sieve No. 40), using a rubber hammer to avoid 

crushing any soil particles.  

To make the artificially cemented samples, clay powder was added to de-ionised 

water to form a slurry with a water content close to the desired value. The slurry was then 

mixed in a commercial food blender until it was uniform. Next, the required amount of 

cement and water was added to the mixture to increase the water content to the target 

level. The slurry was then gently mixed for a maximum of 15 minutes, to ensure that the 

mixing process would not break any produced bonds.  Next, the mixture was poured into 

plastic cups, 70 mm in diameter and 120 mm in height. Trapped air bubbles were 

removed from the specimens by gently tapping on the walls of each cup, and some water 

was added above the slurry surface in every cup, to provide it with moisture throughout 

the curing period. The cups were then covered by plastic wrap and placed in a 

temperature controlled room to be cured at a constant temperature of 25oC. All cemented 

samples were cured for a period of 28 days before being used for testing. To be 

comparable to the natural soil, all of the artificially cemented specimens were prepared at 

a moisture content equal to 80%. In addition, the majority of the samples were mixed at 

one of the three cement contents: 3.1, 4.2, or 6.4%, where cement content, c (%), is 

defined as the ratio of mass of cement to the mass of dry soil. 
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For the preparation of the reconstituted samples, powdered clay was added to the 

amount of water needed to reach the target moisture content. The resulting mixture was 

blended for a few minutes and was left to soak for at least 24 hours in a sealed container, 

before being mixed again and used for testing. The moisture content of a portion of the 

specimen was measured prior to performing experiments to ensure that the target 

moisture content was reached. 

5.3.3 Testing programme 

The experimental study programme involved a number of oedometer and triaxial 

experiments on undisturbed and artificially cemented Ottawa clay specimens. Since both 

undisturbed and artificially cemented samples had a relatively high sensitivity, extra care 

was taken to preserve the structure of the material during the preparation of the 

specimens for the oedometer and triaxial testing, and a lubricated thin wire trimmer was 

used to cut all of the specimens to the required size. The oedometer tests were performed 

in accordance with ASTM D2435, using oedometer rings 15 and 50 mm in height and 

diameter, respectively. Two oedometer experiments were also performed on reconstituted 

Ottawa clay at water contents of 1.2 and 1.5 times the liquid limit to obtain the intrinsic 

compression line (ICL) for the material (Burland, 1990). The triaxial tests were 

conducted in a GDS microcomputer controlled triaxial system with hydraulic controllers, 

enabling the execution of complex stress path controlled experiments. All of the triaxial 

samples had a height and diameter of 100 and 50 mm, respectively. A back pressure of at 

least 200 kPa was used in all of the experiments, and B-value checks were carried out 

after the saturation phases to ensure proper saturation of the samples. Seven undrained 

triaxial tests were carried out on undisturbed Ottawa clay, isotropically consolidated to 
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25, 45, 75, 150, 300, 400, and 600 kPa before undrained shearing with constant cell 

pressure. The isotropic compression of these samples was conducted by applying 

consecutive increments of stress. To minimize any effects of rate sensitivity of the 

undisturbed sensitive Leda clays (e.g. Lo and Morin, 1972; Graham et al., 1983a), the 

undrained shearing phase of each test was conducted at a standardized slow rate of 0.006 

%/min. In addition, twenty eight drained and undrained triaxial experiments were 

performed on artificially cemented specimens, with an initial moisture content of 80% 

(similar to that of undisturbed material) at three different cement contents. After 

saturation, the samples were isotropically consolidated to initial stresses, presented as p’i 

in Table  5-1. A number of the experiments included unloading-reloading stages after the 

initial shearing phase to monitor the changes with yielding in the size and shape of the 

yield surface. Isotropic loading was carried out at a constant slow rate of 4 kPa/h, and 

drained and undrained shearing was conducted at rates of 0.003 and 0.006 %/min, 

respectively. The aforementioned rates were determined based on the methods suggested 

by Head (1986). The “Cambridge” form of invariants has been used herein to describe the 

stress and strain state of the material (Schofield and Wroth, 1968): 

raq                                                                                                  (5.1) 
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Where q and p’ are deviatoric and mean effective stresses, and q and p are shear 

and volumetric strains, respectively. The subscripts a and r denote axial and radial 

directions in triaxial space. Table  5-1 summarizes the laboratory triaxial tests performed 

on the artificially cemented samples. Unless stated otherwise, the tests listed in the table 

have been conducted in compression. For experiments that have been carried out with 

multiple stages, the sequence is also detailed in the test stage descriptions. To define the 

yield curve, a number of drained triaxial tests have been performed with a constant 

incremental stress ratio of =q/p’. Note that this has been used to differentiate from the 

more commonly used stress ratio, , which is usually defined as: =q/p’. Fig.  5-1 shows 

the schematic direction of the different probing tests performed on specimens with 4.2% 

cement content. A number of these probing tests were followed by drained unloading-

reloading or undrained shearing, so that the specimens would undergo failure and reach 

the critical state condition (Table  5-1). As illustrated in the figure, the direction of each 

probing vector can also be shown with an angle (), which ranges from 0o to 180o and 

180o to 360o for compression and extension tests, respectively.  

5.4 Results and Analysis 

5.4.1 General volumetric behaviour and hardening 

1-D compression of reconstituted, undisturbed, and artificially cemented Ottawa 

clay was studied by performing a number of oedometer and triaxial experiments (Fig. 

 5-2). The dashed lines represent the paths obtained by performing Ko compression tests 

using the triaxial equipment. These triaxial tests were performed by volumetric 
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measurements rather than direct measurement of the diameter of the specimen and based 

on the assumption that the cylindrical shape of the triaxial specimen is maintained during 

Ko compression. The figure confirms the relative accuracy of this assumption, as the test 

paths obtained by triaxial experiments for a certain sample are close to those found with 

the oedometer tests. In addition, the compression curves for the two reconstituted 

specimens, which were prepared at different initial moisture contents, essentially follow a 

similar path at effective vertical pressures higher than 50 kPa. This unified curve can be 

assumed to be the intrinsic compression line (ICL) of this material. The solid line in Fig. 

 5-2 represents the empirical equation proposed by Burland (1990) to estimate the ICL of 

a clay based on its void ratio at the liquid limit, eL. It can be seen that this equation is 

unable to estimate the ICL for the Ottawa clay, perhaps due to the relatively high silt 

content of the material.  

As the figure shows, both natural structure and artificial cementation result in 

yield stresses that are significantly higher than the yield stress of an uncemented 

reconstituted specimen at the same void ratio, enabling the structured material to endure 

relatively high stresses at high void ratios. However, the results show that important 

distinctions exist between the behaviour of naturally structured and artificially cemented 

Ottawa clays. Unlike the undisturbed clay, which undergoes higher pre-yield 

deformations and has a steeper unloading-reloading line, the artificially cemented 

specimens exhibit a relatively stiff pre-yield behaviour and lesser elastic rebound due to 

unloading (Table  5-3). In addition, after the yield point is passed, undisturbed Ottawa 

clay experiences a more sudden structural collapse as its compression curve rapidly 

approaches the intrinsic compression line of the material, demonstrating the highly meta-
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stable condition of the naturally structured Ottawa clay. In contrast, the artificially 

cemented specimens undergo a more gradual destructuration displayed by an 

approximately linear post-yield compression response that steadily approaches the ICL 

line. Many other researchers have also reported an approximately linear compression of 

clays treated with lime or cement (e.g. Locat et al., 1996; Miura et al., 2001; Rotta et al., 

2003; Kamruzzaman et al., 2009). This steady destructuration can be attributed to the 

relatively uniform matrix of cementitious bonds that are formed within the artificially 

cemented material. As a result of this inter-connected texture, the cementitious bonds do 

not rupture simultaneously but rather break gradually until the post-yield compression 

line merges into the intrinsic compression line (ICL).  

As expected, the yield stress increases in the artificially cemented clay with an 

increase in the cement content. Hence, higher cementation results in a higher 

destructuration rate and increases the slope of the post-yield compression line. The same 

trends are also observed in Fig.  5-3, which shows the isotropic compression and swelling 

paths of undisturbed and artificially cemented Ottawa clay. Both figures indicate that the 

unloading-reloading lines of artificially cemented specimens with different cement 

contents have approximately the same inclinations (Cs~0.022), which are also close to the 

slope of the pre-yield compression lines of the samples. The results of the oedometer tests 

(Fig.  5-2) also show that the swelling index (Cs) of the undistured Ottawa clay (~0.135) is 

approximately five times that of the reconstituted (~0.025) or cement-treated (~0.022) 

clays, indicating a less elastic nature of the artificially produced compared to the natural 

bonds.   
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Two important observations were made herein for artificially cemented Ottawa 

clay: the isotropic and Ko post-yield compression curves are linear, and the isotropic and 

Ko unloading-reloading lines are parallel to the pre-yield compression lines. The same 

phenomena were also observed in compression or loading-unloading tests conducted 

along other stress paths (e.g. Fig.  5-4). Therefore, assuming that the yielding of the 

material during any compression path occurs at a mean effective stress equal to p’y, the 

linear post-yield compression of the artificially cemented clay can be represented by the 

following equation (Wood, 1990): 

pvv  ln                                                                                       (5.5) 

Moreover, both pre-yield compression and loading-unloading lines can be 

modelled by (Wood, 1990): 

pvv  ln                                                                                       (5.6) 

In these equations, v and v are specific volumes corresponding to p’=1, and  

and  are the slopes of the compression and unloading-reloading lines, respectively. 

Among these parameters,  is almost constant for a certain cement content while  and v 

may change depending on the stress path followed during compression, and v varies 

depending on the current size of the yield locus.  

However, as Fig.  5-3 indicates, Eq. (5.5) does not give a good representation of 

the post-yield compression of the naturally structured clay; other more appropriate 

models, such as the one proposed by Liu and Carter (2000), can be used to represent the 

collapse behaviour of the material. In contrast, employing this linear model to represent 

the volumetric behaviour and hardening of artificially cemented clays has several 

advantages over employing the model proposed by Liu and Carter (2000) for the 



195 

 

destructuration of clays during virgin compression. Although that model can also predict 

the behaviour of structured material undergoing linear gradual destructuration, applying it 

to artificially cemented clays adds unnecessary complexity to the mathematical 

calculations needed to find the virgin compression line. Moreover, the model proposed by 

Liu and Carter (2000) couples the virgin compression line to the intrinsic compression 

line of the material and hence requires an accurate prediction of the ICL. However, as 

illustrated in Fig.  5-2, the available empirical equations may not provide an acceptable 

prediction of the ICL, giving rise to the need for additional experimentation to find the 

actual ICL for a particular material. Even the experimental ICL may not be unique for 

soils with different cement contents, perhaps due to the additional granular fins that are 

released into the soil matrix during destructuration. 

Using equations (5.5) and (5.6), the volumetric behaviour of the artificially 

cemented material during compression and shear can be modelled. Fig.  5-5 shows the 

experimentally obtained volumetric paths, along with the lines that can replace these 

paths to represent the elastic and plastic volumetric response of the cemented clay. In 

addition, using the limit specific volume and mean effective stress of the specimens 

sheared to high strains, the projection of the critical state line on the volumetric plane is 

plotted in Fig.  5-5. As the figure shows, the three lines representing isotropic and ko 

compression and the critical state are almost parallel in samples with 4.2 and 6.4% 

cement contents, while the critical state line of the specimen with 3% cement content is 

relatively steeper than the other two lines. Table  5-2 and Table  5-3 summarize the , , v 

and v values obtained for the dashed lines plotted in Fig.  5-5, along with the volumetric 

parameters of the natural clay. Table  5-2 shows that the parameters corresponding to the 
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presumed isotropic compression line for the natural clay (Fig.  5-3) are close to those 

obtained for the specimen with 4.2% cement content. Moreover, the tables indicate that 

the values of  and  can be assumed to be constant for each cement content. Although 

the individual cementitious bonds have a brittle response, since they are disseminated 

through the material and break gradually, the overall response of the cemented clay is 

elasto-plastic and follows the critical state concept. Therefore, the critical state theory can 

be applied, and these two parameters can be used to separate the elastic and plastic 

volumetric responses of the cemented material.  

5.4.2 Yielding and critical state 

The undrained and drained shearing stages were continued to axial strains of about 

15 and 20%, respectively. In the majority of the compression tests, a relatively well-

defined critical state, where no significant changes were observed in the deviator stress 

(q), mean effective stress (p’), and specific volume (v), was reached. However, two of the 

four extension tests did not reach the critical state; this may be due to the limitations of 

the triaxial apparatus to shear the samples beyond the tension cut-off line. In addition, the 

other two extension tests did not reach a well-defined critical state, perhaps due to 

significant changes occurred to the sample geometry after failure. Fig.  5-6 shows the 

critical state lines obtained for the artificially cemented specimens along with that of 

natural Ottawa clay. A best fit to the experimental data obtained for the natural clay is 

plotted in the figure. As it shows, the CSL of the natural Ottawa clay is almost parallel to 

the one obtained for the specimen with 4.2% cement content (Table  5-2).  

 



197 

 

Fig.  5-7 shows the points representing the critical state condition of the 

undisturbed and artificially cemented Ottawa clay in the p’-q plane. A number of 

observations can be made. The slope of the critical state line (M) of the artificially 

cemented specimens only negligibly increases with an increase in the cement content and 

is around 1.9 for all three samples. This slope is significantly higher than the one obtained 

for the natural clay (M=1.3). In addition, the slope of the critical state line (M) is 

preserved in the artificially cemented specimens even at very high confining stresses, 

although it drops in the undisturbed specimen isotropically consolidated to a high 

pressure before shearing. This again suggests that during drained compression, the natural 

structure disappears more quickly than artificial cementation after the yield stress is 

passed. A good illustration of this significant difference between the natural and artificial 

structure is provided in Fig.  5-8. As it shows, a shear band is formed in the undisturbed 

sample sheared after isotropically consolidated to 25 kPa (close to the in-situ stresses), 

although the undisturbed specimen consolidated to 600 kPa experiences buckling with no 

single shear band formed in the sample. The isotopic yield pressure of this material is 

approximately po’=80 kPa (Fig.  5-3), and further isotropic compression results in the 

collapse of the structure. At a pi’=600 kPa, limited structure is left in the material (in Fig. 

 5-3 the specific volume is reduced to 2.07 at pi’=600 kPa), and the shear behaviour is 

mostly frictional. In contrast, although it yields at a low isotropic pressure of po’=35 kPa, 

the artificially cemented specimen (c=3.1%) preserves a portion of its structure up to high 

stresses (in Fig.  5-3 the specific volume is reduced to 2.33 at pi’=600 kPa). Therefore, it 

experiences a brittle failure with the deformations after failure being concentrated along a 

shear band rather than being spread throughout the specimen (Fig.  5-8c). 
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Unlike many construction materials, such as steel or concrete, soil does not 

usually have a precisely defined yield surface, as it undergoes a gradual transition from 

elastic to plastic behaviour and rarely exhibits a linear, purely elastic pre-yield response 

(Wong and Mitchell, 1975). Hence, the method of extrapolation introduced by Taylor and 

Quinney (1931) is usually employed to estimate the yield point for a particular stress 

path. Moreover, different loading paths in soils induce different straining modes. 

Therefore, on each particular stress path, certain strain variables may provide a more 

sensitive indication of the yield point (Wood, 1990), and some other variables, which stay 

constant during the test, would not give any sign of where yielding takes place. One 

approach to locating the yield point is to use as many different plots as possible and take 

the average to have a maximum number of independent estimates of the position of the 

yield. Alternatively, a single plot containing all different stress and strain variables can be 

utilized (Wood, 1990); defining the yield point using such variables would be possible for 

all different stress paths. This is achievable by plotting the cumulative work done in 

straining the sample, W, against the length of the stress vector, s, which is a scalar 

quantity introduced by Graham et al. (1983b): 

)( qp qpW                                                                            (5.7) 

22 qps                                                                                     (5.8) 

In these equations,  represents the total change in a variable, while  represents 

an incremental variation.  

Plots of W and s were utilized to find the position of the yield points for 

artificially cemented specimens of Ottawa clay tested along different stress paths. Fig. 

 5-9 illustrates the method that was used to define yield states along different stress paths. 
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The obtained yield states for different cement contents normalised against the isotropic 

yield stress (p’o) of the material are plotted in Fig.  5-10. It can be seen that all of the data 

fall on a relatively well defined envelope. This is in agreement with the previous 

observation that the slope of the critical state line for the three different cement contents 

is approximately the same (M~1.9). In addition, due to the effect of cementitious bonds, 

the obtained yield locus is vertically well-extended in the p’-q plane. This vertical 

elongation of the yield locus is even more pronounced than is usually observed in 

naturally structured clays (e.g. Mitchell, 1970; Wong and Mitchell, 1975). As expected, 

the behaviour of the artificially cemented material seems to be isotropic, since the yield 

surface meets the hydrostatic line at its maximum mean effective stress (p’). Furthermore, 

a significant number of the specimens did not fail until their stress paths reached the 

tension cut-off line. This happened in a number of drained tests along with all of the CIU 

tests performed at p’i<p’o and is in agreement with the results of a recent literature review 

conducted by the authors indicating that the undrained shear strengths obtained for 

artificially cemented clays by CIU triaxial tests performed at p’i<<p’o are similar to those 

obtained for the same specimens with unconfined compression experiments (Sasanian 

and Newson, 2010). 

A total of 16 compression and 4 extension tests were performed on the specimens 

with a 4.2% cement content. Fig.  5-11a shows the resulting yield points in the p’-q plane 

along with the critical state lines in compression and extension. As the data indicate, the 

yield locus is bounded by the tension cut-off lines in both compression and extension 

(c=3 in compression and e=–1.5 in extension). A combination of two elliptical models 

was adopted to match the obtained data: the elliptical cap (Chen and Mizuno, 1990) for 
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Me≤≤Mc and the modified Cam-Clay (Wood, 1990) for Mc≤≤c and e≤≤Me. Fig. 

 5-11b shows the parameters used to define the yield locus. For >0 (compression) the 

equation of the yield locus can be written as: 

For 0 ≤ ≤ Mc:   0
'

'
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For Mc ≤ ≤ c:   0)'2('  plpMqf cc                           (5.10) 

Where p’o is the isotropic yield stress, and lc is the mean effective stress 

corresponding to the critical state in compression. Using Eqs. (5.9) and (5.10) to define 

the yield surface increases the flexibility to find a good match with the experimental data 

while limiting the number of variables required to define the yielding of a cemented 

material. The mean effective stress equivalent to =3 can be defined as: 
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                                                                                   (5.11) 

Similar equations can be used to define the yield locus in extension by only 

replacing Mc, lc, and c with Me, le, and e, where le is the mean effective stress 

corresponding to the critical state in extension.  

Fig.  5-12 shows the compression test results for the specimens with 3.1 and 6.4% 

cement contents, along with the yield loci obtained from Eqs. (5.9) and (5.10). Using the 

proposed model requires the estimation of three parameters: p’o, M, and l. For 

convenience in mathematical calculations, l and p’o can be related with introducing the 

following parameter: 
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The parameters used to plot the yield loci shown in Fig.  5-11a and Fig.  5-12 are 

summarized in Table  5-4. The values of p’o and M (in compression) have been obtained 

form the data plotted in Fig.  5-5 and Fig.  5-7, respectively. The values of l and R were 

chosen so that the yield loci provided the best estimate of the experimental data. As 

mentioned previously, the relatively high Me obtained herein for the specimen with 4.2% 

cement content is possibly in error, since it was found from the results of only two 

experiments and the samples did not reach a well-defined critical state due to significant 

changes in their geometry. Allman and Atkinson (1992) also reported difficulties with 

finding the slope of the critical state line from the results of extension tests on 

reconstituted Bothkennar clay.  

The size of the proposed yield surface can be directly determined by finding the 

isotropic yield pressure, p’o, of the material. Alternatively, the effective vertical yield 

stress, ’y, obtained from oedometer tests can be utilized to determine the size of the 

yield locus for an artificially cemented clay. This can be achieved by finding the 

intersection of the following line representing ’a = ’y in p’-q plane (Wood, 1990) with 

the elliptical cap model (Eq. 5.9): 

y

q
p  

3

2
'                                                                                           (5.13) 

Fig.  5-13 shows the experimentally obtained yield loci along with the lines 

obtained from Eq. (5.13) using the oedometer test data (Fig.  5-2). Since no oedometer test 

was performed on the specimen with 3.1% cement content, the results of Ko compression 
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test in the triaxial apparatus were used to find ’y of the specimen. The results show that 

the one dimensional compression tests can acceptably define the size of the yield 

envelope for cemented material. The intersection points are also close to the yielding 

points obtained for the Ko stress paths. By using this method, it is possible to find the 

yield envelope without performing an isotropic compression test on the material. This can 

be very beneficial as artificially cemented clays with high cement contents, usually used 

in practice, have p’o values that are too high to be directly measured in a conventional 

triaxial apparatus. 

Among the parameters listed in Table  5-4, the values of p’o and M can be found 

for any type of artificially cemented clay with performing a number of conventional 

triaxial and oedometer experiments. The value of R (and l) can also be estimated using 

the critical state concept. Doing so requires the determination of the isotropic 

compression and critical state lines in the volumetric plane. Assuming that the slope of 

the two lines in v-lnp’ space is equal to  (e.g. the average of the values experimentally 

found and reported in Table  5-2), and using N and  to represent v of the isotropic 

compression and critical state lines (in Eq. 5.5), respectively, we can find the specific 

volume at the critical state as follows (Wood, 1990): 

l

p
pNv o

ocs


 lnln                                                                 (5.14) 

Where  is the slope of the unloading-reloading lines and can be estimated by 

finding the slope of the initial elastic compression line (refer to Fig.  5-5 and Table  5-3). 

In addition, we know that: 

lvcs ln                                                                                       (5.15) 
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Combining these two equations with Eq. (5.12) yields: 
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MR                                                               (5.16) 

This equation was used to estimate R based on the obtained critical state 

parameters for each cement content (Table  5-4). As the table shows, the R values 

calculated from Eq. (5.16) for the compression tests are relatively close to the values 

found from the yield loci. However, there is a significant difference between the Re 

obtained from the yield locus and the one calculated based on the critical state concept for 

the specimen with 4.2% cement content. This again supports the viewpoint that the Me 

value used in Eq.(5.16) to find Re is not accurate; a lower Me would provide a yield locus 

that is still well fit to the yield data while giving a more reasonable Re value.  

As mentioned earlier, the yield states shown in Fig.  5-11a and Fig.  5-12 have been 

obtained using the energy method, which considers a significant shift in the slope of the 

energy curve as an indication of yielding. However, the amount of work required to cause 

yielding was not equal in all of the tests, but rather depended on the stress path. Fig.  5-14 

shows the measured yielding energy versus the direction of the drained probing tests, 

performed on specimens with 4.2% cement content and started at p’i=75 kPa (Fig.  5-1). 

The angle  represents the direction of the stress path and is calculated clockwise, 

assuming that the angle of the vector on the isotopic line connecting p’i=75kPa to the 

origin is equal to zero (Fig.  5-1). The volumetric (p,y) and shear (q,y) strains at yield are 

also given for each test direction. As the figure shows, the work required to cause 

yielding in experiments with  values lower than 90o or higher than 270o is minimal. This 

is in agreement with the stiff pre-yield behaviour observed in experiments failed “dry” of 
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the CSL. In contrast, high energy levels are required to cause yielding, when specimens 

yield “wet” of the CSL. Moreover, as implied by the bimodal pattern of the representative 

curve, a relatively lower amount of work is needed to yield the specimen along the 

isotopic stress path (=180o). The two maxima, which indicate the stress paths inducing 

the greatest ductile response, occur at angles close to 120o and 240o. These results are in 

accordance with those obtained by Smith et al. (1992) for undisturbed Bothkennar clay. 

To avoid the complexities involving changes in the shape of the yield surface due 

to volumetric compression, it is typically assumed that the shape remains the same 

irrespective of the stress path causing hardening in the material, i.e. isotropic hardening 

occurs (Wood, 1990). To check the validity of this assumption for artificially cemented 

clays, a number of loading-unloading-reloading tests were conducted along different 

stress paths on specimens with 4.2% cement content (Fig.  5-15). Although loaded along 

different stress paths, all of the specimens were unloaded after reaching the same 

unloading-reloading line corresponding to v=2.80. Hence, the specimens can be assumed 

to be all on the same sized yield locus just before the commencement of the unloading 

stage. After being unloaded to very low stresses (refer to Fig.  5-15 and Table  5-1), the 

reloading stage was conducted to find the position of the yield along a different stress 

path. Three of the reloading tests (AC5, AC15, and AC15) were drained stress path 

controlled, while one (AC16) was conventional undrained starting at a p’i=25 kPa, after 

being isotropically unloaded from a p’o=600 kPa. Since both loading and reloading 

yielding points fall close to the proposed yield surface, the above-mentioned assumption 

can be considered to be acceptable for the artificially cemented material. Comparison of 

AC13 and AC16, which both have undergone conventional drained shear at p’i=25 kPa 
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and have failed on the unconfined compression path, shows that AC13 with a p’o equal to 

168 kPa fails at a pf’=43 kPa, and AC16 with a p’o expanded to 600 kPa fails at a pf’=176 

kPa, indicating an almost similar p’o/p’f ratio for both specimens.  

Fig.  5-16 shows the changes in the work input (W) due to load reversals of the 

artificially cemented specimens with 4.2% cement content versus the length of the stress 

path (s). The “s” values have been calculated from a point on the isotropic line with a p’ 

corresponding to the start of the experiment (p’i values in Table  5-1). The figure also 

shows the starting points of each stage for one of the experiments (AC5). This figure 

indicates the relatively linear elastic unloading-reloading of the material within the yield 

surface for AC14, AC15, and AC16. However, despite moving inside the yield surface, 

the unloading of the specimen in AC5 has been accompanied by some plastic 

deformations. This is perhaps because the specimen has been unloaded from the Ko path 

to p’=500 kPa on the isotropic line (Table  5-1), which is very close to the p’o=600 kPa, 

and is an indicator of the elasto-plastic response of the material.   

To obtain the state boundary surface for the artificially cemented specimens, the 

stresses in the p’-q plane were divided by the equivalent pressure, p’e. By definition, the 

equivalent pressure is the mean effective stress on the isotropic compression line 

corresponding to the specific volume at any stage of a triaxial test (e.g. Atkinson and 

Bransby, 1978). Therefore, for a particular specific volume (v) during the test, p’e can be 

obtained from (e.g. Atkinson and Bransby, 1978):  
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As shown in Fig.  5-17, being normalized by the equivalent pressure, both drained 

and undrained stress paths fall inside a single bounding surface. The figure also shows 

that this state boundary surface can be satisfactorily represented by the proposed yield 

locus, plotted in the normalised space (the bounding curves in Fig.  5-17) using the linear 

hardening model. At any mean effective stress (p’) on or inside a current yield locus of 

size p’o, the equivalent pressure (p’e) can be related to p’ using the following equation 

(Wood, 1990):  
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Using this equation for the points on the yield surface, along with Eq. (5.17), 

defines a surface in p’-q-v space corresponding to the proposed yield locus. The p’/p’o 

ratio for the suggested yield locus can be obtained as follows:  

For 0 ≤ ≤ M:   
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For M ≤ ≤ 3:   
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Combining Eq. (5.18) with Eqs. (5.19) and (5.20) yields the p’/p’e ratios defining 

the state boundary surface for the proposed model. The q/p’e ratio can then be simply 

found by multiplying p’/p’e by . At =M, both of the obtained equations will be 

simplified to the following form: 
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Eq. (5.21) defines a point on the normalised space corresponding to the critical 

state line. Although all of the normalized stress paths shown in Fig.  5-17 fall inside the 

defined state boundary surface, most of them do not terminate on the point representing 

the theoretical critical state line according to Eq. (5.21). This is better illustrated in Fig. 

 5-18, which shows the points representing the critical state for each experiment along 

with the ones obtained by Eq. (5.21). The experimental values are stretched along a line 

with ~M, indicating that in most of the experiments, the experimental critical state has 

been reached at a equivalent pressure higher than the expected value. A closer 

examination of Fig.  5-17 shows that this deviation from the expected critical state point in 

the normalised space is more pronounced in the undrained experiments.  

Since the post-yield compression of the undisturbed Ottawa clay is not linear, a 

unique state boundary surface, similar to the one defined for the artificially cemented 

material, cannot be found for the undisturbed clay (Fig.  5-19a). The hypothetical isotropic 

compression line shown in Fig.  5-3 underestimates the equivalent pressure (p’e) for 

undisturbed specimens sheared at low confining pressures (p’i). However, for comparison 

purposes, the stress paths obtained for the undisturbed clay can be normalised using the 

real isotopic yield stress of the material (p’o). Based on the isotropic compression 

behaviour of the undisturbed clay (Fig.  5-3), p’o has been considered to be equal to 80 

kPa for specimens sheared at p’i < 80 kPa and equal to p’i for those sheared at p’i > 80 

kPa. The results (Fig.  5-19b) show that the obtained pseudo-state boundary surface for 

the undisturbed material is not as vertically elongated as the one obtained for the 

artificially cemented clay. However, the presented normalised surface does not provide a 
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good indication of the shape of the yield envelop for the undisturbed clay due to possible 

anisotropic response of the material. 

5.4.3 Stiffness and deformations 

The relatively diverse types of triaxial experiment performed on the artificially 

cemented specimen with 4% cement content allow for the investigation of the failure 

mode based on the stress path and stress ratio () at failure. In general, the specimens that 

failed wet of the critical state line in p’-q plane underwent a gradual failure accompanied 

by volumetric compression, while the ones that failed dry of the CSL experienced a 

sudden, brittle failure accompanied by a slight volumetric expansion. Fig.  5-20 shows the 

normalised deviator stress and secant shear modulus obtained from a number of drained 

triaxial experiments in compression and extension. Among the experiments shown in this 

figure, AC2 and AC3 were conventional drained tests, AC4 and AC17 were sheared at a 

constant p’, and AC9 and AC18 were conducted with an almost similar incremental stress 

ratio (). The presented secant moduli were calculated from (Wood, 1990): 
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3sec                                                                                            (5.22) 

As the figure shows, AC2, AC3, and AC18, which failed wet of the critical state 

line, have smoother transition from elastic to plastic behaviour, while the rest of the 

experiments exhibit an almost linearly elastic pre-yield response, followed by a brittle 

failure. Moreover, the post-yield reduction of the shear modulus is slower and less 

significant in the specimens experiencing a gradual yielding than in those undergoing a 

brittle failure. 
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Similar normalised graphs obtained by performing undrained triaxial tests on the 

artificially cemented and undisturbed Ottawa clays are shown in Fig.  5-21 and Fig.  5-22, 

respectively. Three of the undrained experiments shown in Fig.  5-21 (AC11, AC12 and 

AC13) were conducted at p’i values less than the isotropic yield pressure of the material 

(p’o). These experiments have undergone a more abrupt failure, followed by a sudden loss 

of strength, while AC 1 and AC7, which had a p’i > p’o, exhibit a gradual post-yield strain 

softening. In addition, unlike in the other three tests, the normalised shear moduli 

obtained from AC1 and AC7 are approximately the same, indicating the more frictional 

response of the material. Considering the approximately linear pre-yield behaviour (Fig. 

 5-21a) and the almost vertical stress paths (Fig.  5-17b) observed in the undrained 

experiments performed inside the original yield locus, the Gu values shown in Fig.  5-21b 

for AC11, AC12 and AC13 can be considered to be equal to G’ of the material. Rather 

similar observations can be also made for the undisturbed clay (Fig.  5-22). However, 

comparison of the two figures indicate that unlike the artificially cemented clay, the 

undisturbed material does not display any post-yield strain softening, if sheared at p’i > 

p’o. Moreover, the failure of the undisturbed specimens sheared at low confining 

pressures is not as brittle as those observed in the artificially cemented clays. These can 

be related to the faster rate of destructuration of the undisturbed clay due to post-yield 

isotropic compression, along with a more ductile failure of the natural bonds. 

To predict the pseudo-elastic behaviour of any artificially cemented clay, there is a 

need to determine the Poisson’s ratio (’) of the material. This can be achieved by 

obtaining the coefficient of earth pressure at rest, Ko, of the cemented clay. Assuming a 

purely elastic behaviour (Wood, 1990):  
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In Ko condition, the lateral strain (r) is equal to zero, and therefore: 
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In addition, the knowledge of the Ko coefficient is useful for predicting the at-rest 

stresses in ground improvement projects involving artificially cemented material and aids 

the interpretation of the results of oedometer tests performed on improved soil. The Ko 

compression experiments, performed herein by the triaxial apparatus, produced rather 

interesting results. Fig.  5-23 shows the stress paths followed during the Ko tests in 

samples with different cement contents. A bilinear behaviour is observed; the stress paths 

start with a significant slope until they reach the critical state line. At this point, they 

change direction and continue with a lesser slope until relatively high stresses. 

Interestingly, the yield points obtained by the method described in Section  5.4.2 fall 

exactly where the stress paths change direction. Therefore, the pre-yield Ko coefficient of 

the specimens can be approximated by the slope of the critical state lines. Although the 

one dimensional stress paths are bilinear, an average Ko can also be calculated for the 

material with an acceptable error, using the relationships shown in Fig.  5-23. Assuming 

that the slope of the representative lines shown in the figure is m, the average Ko of the 

material can be obtained as: 
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Ko                                                                                     (5.25) 
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The calculated average Ko coefficients and Poisson’s ratios (using Eq. 5.24) are 

summarized in Table  5-5. The obtained Poisson’s ratios are very similar to the values 

typically assumed (e.g. Lamond and Pielert, 2006) for the concrete material (~0.18). 

Moreover, it can be seen that the Ko coefficients calculated for the three specimens are 

almost equal, indicating that the addition of more cement does not significantly change 

the Poisson’s ratio of the material. Moreover, as Fig.  5-23 shows, unlike in naturally 

structured Champlain clays, which typically have an initially low Ko coefficient followed 

by a significantly higher post-yield value (e.g. Silvestri 1984), in the artificially cemented 

Ottawa clay, the slope of the Ko stress path in p’-q plane does not significantly reduce (Ko 

does not increase) after the yield point is passed, confirming again the gradual post-yield 

destructuration of the artificially cemented clay. By calculating the friction angle, ’, 

from M values (in Table  5-4) based on the Mohr-Coulomb criterion and using Jaky’s 

relationship (Jaky, 1948), similar Ko coefficients as those experimentally found herein are 

obtained for the material (Table  5-5). 

The suggested yield locus can be also used to predict the magnitude of plastic 

volumetric and shear strains if associated flow is obeyed. To examine normality, the 

direction of the plastic increment vectors at yield for each experiment should be 

determined. The total measured strain is equal to the sum of plastic, non-recoverable and 

elastic, recoverable strains: 

p
p

e
pp                                                                                 (5.26) 

p
q

e
qq                                                                                   (5.27) 



212 

 

Where superscripts e and p refer to elastic and plastic components of strain, 

respectively. Therefore, to obtain the plastic components for each experiment, the elastic 

component was calculated and subtracted from the total measured strain. Assuming 

isotropic pseudo-elasticity of the artificially cemented material, the elastic shear and 

volumetric strains were obtained from (Wood, 1990):  
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0/1
                                                      (5.28) 

Where K’ and G’ are the bulk and shear moduli, respectively. The average pre-

yield secant shear modulus was used to calculate the elastic shear strains. For the reasons 

mentioned earlier, the pre-yield undrained and drained shear moduli were assumed to be 

equal in the CIU triaxial experiments. Changing with the mean effective stress during the 

test, the bulk modulus at any stage of the experiment was calculated from (Wood, 1990): 


pv

K


                                                                                                 (5.29) 

For consistency, the plastic strains were all calculated for a range equivalent to 

0.2Wyield, where Wyield is the total work done since the beginning of the experiment up 

to the yielding point. Fig.  5-24 shows the yield loci, along with the obtained plastic strain 

increment vectors plotted in the p’-q plane. In this figure, it is assumed that p’ and p
p, 

and q and q
p are coaxial, respectively. The figure shows that the normality condition is 

generally followed at yielding points that are “wet” of the CSL. These are the 

experiments that displayed a gradual yielding accompanied by an elasto-plastic 

behaviour. In contrast, the associated flow rule appears not to be valid for the points that 

are “dry” of the CSL. As discussed earlier, these experiments underwent sudden failure 
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and exhibited a pseudo-elastic pre-yield behaviour. This brittle failure was accompanied 

by a relatively low amount of volumetric expansion, perhaps due to the already higher 

than normal void ratio of the material. Consequently, all of the increment vectors located 

at the left of the CSL are almost vertical.  

The results can be better examined if the deviation from normality is measured 

and illustrated (Fig.  5-25). The normal directions to the yield locus were obtained by 

finding the derivation of the Eqs. (5.9) and (5.10) against p’ and writing: 

1
'
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p
q
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d

dp

dq




                                                                                   (5.30) 

The deviation was then determined as the angular difference between the 

measured and calculated vectors. In the calculations, a clock-wise deviation was 

considered to be positive. As Fig.  5-25 shows, at  values less than 1.5, the deviation 

from normality (d) is less than 5o in all of the tests and is usually negative. However, as 

 increases beyond 1.5, the deviation angle rapidly increases and reaches a value of 37o at 

=3. In general, it can be concluded that the normality condition is generally met for 

<M but is significantly violated at >M values. All of the three points with <M that 

have a high deviation from normality correspond to the Ko compression tests (for the 

three different cement contents). This could be related to the fact that unlike the 

remaining experiments, these tests were stress controlled, and as shown previously, the 

direction of the stress path changed in Ko tests exactly at the yielding state. 

The proposed framework appears to successfully represent the yielding behaviour 

of the artificially cemented Ottawa clay. However, it was unable to precisely predict the 

direction of the plastic strain increment vectors for specimens failing “dry” of the CSL. 
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The brittle nature of the failure in such specimens induces shifts in the direction of the 

increment vectors, making more difficult accurate prediction of the plastic response of the 

material. In general, the results indicated that although the specimens failing “dry” of the 

CSL experience some volumetric expansion, the resulting negative volumetric strains are 

negligible in amount comparing to the experienced shear strains; thus the direction of the 

plastic strain increment vectors obtained for these specimens is close to 90o. 

Consequently, the proposed yield locus can be used only to predict the strains when 

specimens yield “wet” of the critical state line. In such cases (<M) in the compression 

plane, the slope of the plastic strain increment vectors can be determined as: 
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                                                     (5.31) 

In contrast, for specimens yielding “dry” of the CSL, the proposed yield locus 

does not coincide with the plastic potential surface of the material. Since the observed 

plastic strain increment vectors were almost perpendicular to the p’ axis (in p’-q plane), 

the plastic potential surface for (>M) in the compression plane can be approximated by 

a horizontal line with a constant deviator stress (q) equal to: 

Mlq                                                                                                     (5.32) 

By using this method, the small plastic volumetric expansions occurring after 

failure would be neglected. 
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5.5 Conclusions 

In this study, the results of drained and undrained triaxial experiments on 

undisturbed and artificially cemented specimens of Ottawa clay were utilised to 

investigate the fundamental differences in the mechanical behaviour of naturally and 

artificially structured clays and to propose a new constitutive framework for the behviour 

of the artificially cemented material. The following main conclusions can be made: 

 It was observed that compression behaviour of the reconstituted Ottawa clay does 

not follow the general pattern reported for many other types of clay (Burland, 

1990). This was attributed to the high silt content of the material. 

 Whilst the naturally structured Ottawa clay existed in a meta-stable state and was 

highly collapsible, the artificially cemented Ottawa clay exhibited a more gradual 

degradation of the cementitious bonds. This was attributed to the approximately 

uniform dissemination of the cementitious bonds within the artificially cemented 

material. It was hypothesised that these brittle bonds do not break simultaneously 

in shearing or compression, but rather rupture gradually, resulting in an overall 

elasto-plastic response in accord with the critical state framework.  

 Using estimates of dissipated plastic energy, the yield states were found for 

different stress ratios based on the experimental data for the artificially cemented 

clay. A mathematical formulation was employed to predict the observed yield 

states. The parameters defining the proposed formulation were also examined and 

alternative ways were proposed to obtain some of the required parameters. 

 Expansion of the proposed yield envelop with plastic straining was studied by 

performing a number of unloading-reloading tests along different stress paths. 
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Isotropic hardening was confirmed since the shape of the yield locus was found to 

be unchanged due to plastic hardening. The energy variations during the 

unloading-reloading cycles showed that the deformations were recoverable only if 

the stress paths stayed well inside the current yield envelop.  

 It was observed that the critical state line is preserved in the artificially cemented 

clay even at high confining pressures. Although cementation significantly 

increased the slope of the critical state line (M), a further increase in the cement 

content was found to have a negligible effect on the slope of the CSL. In addition, 

the parameters required to define the proposed yield locus for the artificially 

cemented material were successfully predicted using the critical state concept.  

 The proposed framework could predict a state boundary surface for the artificially 

cemented Ottawa clay. However, the attempt to apply the same concept to the 

natural clay was unsuccessful due to the non-linear post yield compression of the 

material.  

 Two distinct modes of behaviour were observed in stress-strain curves for the 

artificially cemented clays. The specimens that failed “dry” of the CSL showed an 

approximately linear elastic pre-yield response followed by an abrupt failure. In 

contrast, the samples that yielded “wet” of the CSL exhibited an elasto-plastic 

gradual yielding. Work input data for different stress paths also indicated a brittle 

behaviour “dry” of the CSL and a ductile response “wet” of the critical state line.  

 The test results showed that associated flow was obeyed in artificially cemented 

specimens failing “wet” of the CSL, while deviations from normality were 

observed in samples failing “dry” of the critical state line. A simple linear, 
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horizontal plastic potential surface was suggested to predict the plastic flow “dry” 

of the CSL.  
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Table  5-1. Summary of laboratory triaxial experiments performed on artificially cemented Ottawa clay 

Test 
ID 

c 
(%) 

P’i 
(kPa) 

Test description 

AC21 3.1 10 (i) Isotropic consolidation to p’=600 kPa, (ii) Undrained shear at constant cell pressure
AC22  (i) Ko consolidation to p’=236 & q=307 kPa, (ii) Undrained shear at constant cell pressure 
AC27   (i) Drained shear (= 3)
AC28   (i) Drained probing (= 0.5) to p’=124 & q=60 kPa, (ii) Undrained shear at constant cell pressure
AC1 4.2 10 (i) Isotropic consolidation to p’=600 kPa, (ii) Undrained shear at constant cell pressure
AC16   (i) & (iii) Isotropic loading to p’=200 & 600 kPa, (ii) & (iv) Isotropic unloading to p’=25 kPa, (vi) Undrained shear 
AC5  30 (i) Ko consolidation to p’=500 & q=775 kPa, (ii) Unloading to p’=500 & q=0 kPa, (iii) Drained shear (=–3)
AC2  100 (i) Drained shear (= 3) 
AC6   (i) Drained shear (= –3)
AC10   (i) Drained shear (= –4.7)
AC3  75 (i) Drained shear (= 3)
AC4   (i) Drained shear with constant p’ 
AC8   (i) Drained probing (= 1) to p’=220 & q=149 kPa, (ii) Undrained shear at constant cell pressure
AC9   (i) Drained shear (= –3)
AC14   (i) Drained probing (=0.5) to p’=606 & q=292 kPa, (ii) Unloading to p’=200 & q=0 kPa, (iii) Drained shear (=3) 
AC15   (i) Drained probing (=1.6) to p’=466 & q=630 kPa, (ii) Unloading to p’=200 & q=0 kPa, (iii) Drained shear (=3) 
AC13  25 (i) Undrained shear at constant cell pressure 
AC12  75 (i) Undrained shear at constant cell pressure 
AC11  150 (i) Undrained shear at constant cell pressure 
AC7  400 (i) Undrained shear at constant cell pressure 
AC17 4.2 75 (i) Drained shear in extension with constant p’
AC18   (i) Drained shear in extension (= –2.5)
AC19   (i) Drained shear in extension (= 3)
AC20   (i) Undrained shear in extension at constant cell pressure 
AC24 6.4 10 (i) Isotropic consolidation to p’=1000 kPa, (ii) Undrained shear at constant cell pressure
AC23  55 (i) Ko consolidation to p’=855 & q=1360 kPa, (ii) Undrained shear at constant cell pressure 
AC26  250 (i) Drained probing (= 0.58) to p’=897 & q=378 kPa, (ii) Undrained shear at constant cell pressure
AC25   (i) Drained probing (= 1.73) to p’=688 & q=765 kPa, (ii) Undrained shear at constant cell pressure
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Table  5-2. Parameters defining the isotropic and Ko compression and the critical state 

line for the artificially cemented Ottawa clay 

Soil 

parameter 

Cement 

content, c (%) 

Isotropic 

compression line 

Ko compression 

line 

Critical state line 

(CSL) 

 3.1 0.275 0.283 0.311 

 4.2 0.345 0.348 0.358 

 6.4 0.435 0.451 0.466 

 Undisturbed 0.365  0.382 

v 3.1 4.09 4.06 4.01 

 4.2 4.92 4.86 4.75 

 6.4 5.93 5.85 5.67 

 Undisturbed 4.36  4.24 
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Table  5-3. Parameters defining the elastic isotropic compression and unloading-reloading 

lines for the artificially cemented Ottawa clay 

Soil 

parameter 

Cement 

content, c (%) 

Elastic 

compression line 

Unloading-

reloading line (1) 

Unloading-

reloading line (2) 

 3.1 0.015   

 4.2 0.014 0.014 0.013 

 6.4 0.011   

 Undisturbed 0.028   

v 3.1 3.25   

 4.2 3.28 3.19 2.81 

 6.4 3.28   

 Undisturbed 3.21   
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Table  5-4. Parameters required to define the proposed yield loci for samples with 

different cement contents 

Cement content, c (%) P’o (kPa) M l (kPa) Ryield data Rcritical state 

3.1 32 1.86 23 0.21 0.18 

4.2 (compression) 168 1.89 115 0.24 0.34 

4.2 (extension) 168 –0.72 140 –0.28 -0.91 

6.4 557 1.99 320 0.37 0.40 
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Table  5-5. The measured average Ko coefficients and calculated Poisson’s ratios of the 

artificially cemented Ottawa clay 

Cement content, 

c (%) 

Coefficient of earth 

pressure at rest, Ko  

Poisson's ratio, 

’ 
Ko (Jaky, 1948) 

3.1 0.29 0.22 0.29 

4.2 0.22 0.18 0.28 

6.4 0.22 0.18 0.25 
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Fig.  5-1. The direction of the drained probing triaxial tests performed on specimens with 

4.2% cement content 
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Fig.  5-2. One dimensional compression of undisturbed, reconstituted, and artificially 

cemented Ottawa clay 
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Fig.  5-3. Isotropic compression of undisturbed and artificially cemented Ottawa clay 
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Fig.  5-4. Volumetric response of artificially cemented specimens due to loading and 

unloading in different stress paths 
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Fig.  5-5. Modeling of the volumetric behaviour with changes in the mean effective stress 

(p’) of artificially cemented Ottawa clays: (a) c=3.1%; (b) c=4.2%; (c) c=6.4% 
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Fig.  5-6. The critical state lines on the volumetric plane of the naturally and artificially 

structured Ottawa clay  
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Fig.  5-7. The critical state lines on the p’-q plane of the naturally and artificially 

structured Ottawa clay 
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(a)                                                                          (b) 

 
(c)   

Fig.  5-8. Images of the sheared specimens: (a) Undisturbed, p’i=25 kPa; (b) Undisturbed, 

p’i=600 kPa; (c) artificially cemented (c=3.1%), p’i=600 kPa 
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Fig.  5-9. The derivation of the yield states for tests performed along different stress paths  
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Fig.  5-10. Normalised yielding states of the artificially cemented specimens with 

different cement contents  
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Fig.  5-11. (a) The experimental yielding states, and (b) the proposed model for the 

artificially cemented specimen with 4.2% cement content  
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Fig.  5-12. The experimental yielding states and the proposed model for the artificially 

cemented specimen with: (a) c=3.1%; (b) c=6.4% 
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(c) 

Fig.  5-13. The determination of the size of the yield locus using oedometer test results: 

(a) c=3.1%; (b) c=4.2%; (c) c=6.4% 
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Fig.  5-14. The amount of work required to cause yielding in specimens with 4.2% cement 

content versus the direction of the drained probing tests (all started at p’i=75kPa) 
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Fig.  5-15. The expansion of the yield surface along different stress paths in the artificially 

cemented specimen with 4.2% cement content 
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Fig.  5-16. The variations in the work input during the unloading-reloading of the 

specimens with 4.2% cement content along different stress paths 
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(c)   

Fig.  5-17. The state boundary surface of artificially cemented specimens with: (a) 

c=3.1%; (b) c=4.2%; (c) c=6.4%  
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Fig.  5-18. Theoretical and experimental critical state lines in normalized stress space 

 

 

 

 

 

 

 

 

 

 

 



246 

 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

p'/p'e

q
/p

' e

p'i=25 kPal

p'i=45 kPa

p'i=75 kPa

p'i=150 kPa

p'i=300 kPa

p'i=400 kPa

p'i=600 kPa

 
(a) 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

p'/p'o

q
/p

' o

p'i = 25 kPal

p'i = 45 kPa

p'i = 75 kPa

p'i = 150 kPa

p'i = 300 kPa

p'i = 400 kPa

p'i = 600 kPa

 
(b) 

Fig.  5-19. Normalized stress paths obtained for undisturbed Ottawa clay: (a) using the 

equivalent pressure (p’e); (b) using the isotopic yield stress (p’o) 
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(b) 

Fig.  5-20. Gradual versus brittle failure of artificially cemented clay (c=4.2%) in drained 

compression and extension: (a) normalized deviator stress versus shear strain; 

(b) normalized shear modulus versus shear strain 
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(b) 

Fig.  5-21. Undrained shear behaviour of the artificially cemented Ottawa clay (c=4.2%): 

(a) normalized deviator stress versus shear strain; (b) normalized shear modulus 

versus shear strain 
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(b) 

Fig.  5-22. Undrained shear behaviour of undisturbed Ottawa clay: (a) normalized 

deviator stress versus shear strain; (b) normalized shear modulus versus shear 

strain 
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(c) 

Fig.  5-23. Ko stress paths for artificially cemented specimens with: (a) c=3.1%; (b) 

c=4.2%; (c) c=6.4% 
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(c) 

Fig.  5-24. Experimentally determined yield loci along with plastic strain increment 

vectors: (a) c=3.1%; (b) c=4.2%; (c) c=6.4% 
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Fig.  5-25. The deviation from normality versus the stress ratio 

 

 

 

 

 

 

 

 

 

 

 



253 

 

6 CONCLUSIONS AND RECOMMENDATIONS 

6.1 Summary and conclusions 

The effects of artificial cementation on the structure and mechanical properties of 

clays were investigated. The research involved extensive laboratory testing, coupled with 

statistical and empirical formulation, and theoretical analysis and modelling. Various 

experiments were conducted on a number of different clays treated with Portland cement, 

and the results were used either independently or together with test data from the 

literature to achieve the aforementioned objectives. The major conclusions of this 

research study are as follows: 

 Mercury intrusion porosimetry analysis showed that a bimodal distribution of 

pore sizes exists in saturated reconstituted clays. Variations in the moisture 

content of the reconstituted material are primarily accompanied by changes in the 

volume of inter-aggregate rather than intra-aggregate pores. Even air-drying did 

not significantly change the intra-cluster pore volumes of the reconstituted 

specimens. The measured intra-aggregate pore volumes only varied depending on 

the clay mineralogy, rather than the moisture content. 

 A systematic error, causing an underestimation of the total pore volume, was 

detected in the results of mercury intrusion tests on reconstituted clays with high 

moisture contents. It was found that the amount of the observed error is 

proportionate to the total void ratio of the specimens. Hence, the inability of the 

mercury porosimetry technique to detect pores with a large diameter is mentioned 

as the possible cause of the error. 
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  Due to artificial cementation, the dispersed bimodal fabric of the reconstituted 

clay transforms into a flocculated unimodal state, in which a card house fabric 

exists and aggregates are connected to one another via cementitious bonding. The 

produced cementitious products are affixed to the particles, coat particle surfaces, 

and form matrices that fill the gaps between the clay aggregates (inter-aggregate 

pores). Artificial cementation also partitions the gaps existing between clay 

aggregates, reducing the total volume of the macro-pores and therefore the 

hydraulic conductivity of the cemented material. 

 Microstructural investigations indicated that soil mineralogy and activity greatly 

affect the pore size distribution of cement-treated clays. In addition, the changes 

in the structure due to artificial cementation are directly linked with the resulting 

mechacnical behaviour, i.e. soils undergoing higher structural alterations also 

experience more significant changes in their mechanical behaviour. Therefore, a 

greater degree of microstructural modifications due to artificial cementation is 

accompanied by higher gain of strength and loss of hydraulic conductivity. 

 The effect of clay mineralogy on the effectiveness of artificial cementation has 

been investigated by conducting a parametric study on the data available in the 

literature along with those obtained herein. The results indicate that the activity of 

the clay, along with water-cement ratio, greatly influences the outcome of 

artificial cementation. Higher activity is found to induce higher strength and 

stiffness. This is explained by the significant effect the pozzolanic reactions, 

which take place between clay minerals and the cementation products. The slow 
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rate of these reactions is also considered to be responsible for the observed 

continuation of the hardening process even after long curing times.  

 A critical review of the literature provided possible reasons for the importance of 

the pozzolanic reactions in the cementation process. A matrix of hardened 

material is formed in the soil body due to hydration of cement. However, the 

hydration process does not necessarily produce bonds between the clay particles. 

Since they form cementitious bridges between the soil particles and within the 

aggregates, the pozzolanic reactions are responsible for connecting the produced 

matrix to the clay particles and developing a cement-cluster network.  

 A relationship has been proposed to predict the undrained shear strength of 

cement-treated clays after a certain curing period. The strength gained after 28 

days has been used in the relationship as a normalising parameter. In addition, 

two new parameters have been defined to couple the effect of activity of a clay 

with that of cement and water contents. New empirical relationships were 

introduced based on these parameters to estimate the undrained shear strength, 

sensitivity, vertical effective yield stress, and compression index of cement-

treated material.  

 Although naturally structured clays exist in a highly collapsible, meta-stable state, 

artificially cemented clays display a gradual post-yield destructuration. It was 

illustrated that the structure of a cement-treated clay is preserved up to relatively 

high stress levels. The brittle bonds, produced due to artificial cementation, do not 

break simultaneously due to shearing or compression but rather rupture gradually, 

resulting in an overall elasto-plastic response that follows the critical state 



256 

 

principles. Consequently, the compression behaviour of the cement-treated 

material can be represented by a simple bilinear model, without any need to deal 

with the complexities of applying some of the models that currently exist for the 

structured clays (e.g. Liu and Carter, 2000; Horpibulsuk et al., 2010).  

 Results of compression tests on different cement-treated clays have been 

compared with those previously provided for the reconstituted material (e.g. 

Nagaraj and Srinivasa Murthy, 1986; Burland, 1990; Nagaraj et al., 1994). It is 

shown that the same relationship governs the compression behaviour of both 

reconstituted and artificially cemented clays.  

 In addition, results of an experimental study on artificially cemented Ottawa clay 

were used to define the yield states based on the energy method proposed by 

Graham et al. (1983b). Based on the critical state concept, a combination of the 

elliptical cap and modified Cam-clay models have been used to represent the 

observed yield envelop, which is bounded in p’-q plane by the unconfined 

compression path. The expansion of the proposed yield envelop with plastic 

straining was studied by performing a number of unloading-reloading tests along 

different stress paths. It was confirmed that the shape of the expanded yield locus 

can be assumed to be unchanged due to plastic hardening, indicating the 

occurrence of isotropic hardening. It was also shown that using the critical state 

concept, the parameters required to find the yield locus can be satisfactorily 

obtained.  

 Two different modes of failure have been detected for the cement-treated 

material. The specimens failed “dry” of the critical state line show an 
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approximately linear elastic pre-yield response followed by an abrupt failure. In 

contrast, the samples yielding “wet” of the CSL exhibit an elasto-plastic gradual 

yielding. Work input data for different stress paths also indicate a brittle 

behaviour “dry” of the CSL and a ductile response “wet” of the critical state line.  

 The normality condition was also checked for the proposed yield envelop. It was 

found that that the associated flow rule is obeyed in artificially cemented 

specimens failed “wet” of the CSL, while deviations from normality were 

observed in samples failed “dry” of the critical state line. Based on the observed 

behaviour, a simple linear, horizontal plastic potential surface has been suggested 

to predict the plastic flow dry of the CSL. 

6.2 Recommendations for future research 

The results of this study provided a better understanding of the microstructure of 

the reconstituted clays with high water contents. It was shown that only the volume of the 

inter-aggregate pores changes due to variations in the moisture content. It was also 

proposed that the volume of the macro-pores governs the mechanical properties, such as 

hydraulic conductivity and strength, of the reconstituted material. This can be further 

investigated by performing mercury intrusion porosimetry tests on different clay 

specimens with various moisture contents and following different shear paths, along with 

measurements of hydraulic conductivity and strength, to find possible systematic patterns 

governing the soil behaviour during formation and under loading. In addition, it was 

shown that the intra-aggregate pore volume is constant for a certain clay mineralogy. 
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Further investigations of various types of clay could provide useful information about the 

relationship between clay mineralogy and the intra-aggregate pore volume. 

 Moreover, the microstructural processes involving the formation of artificial 

structure in clays with high water contents were investigated herein. A more 

comprehensive study involving the measurement of the pore size distribution of 

cemented clays, cured under stress, could shed some light on the effects of confinement 

on the developed structure. In addition, the microstructure of artificially cemented clays 

consolidated to different loads after curing can be studied using scanning electron 

microscopy or mercury intrusion porosimetry technique. This can help better understand 

the reasons for the gradual destructuration exhibited by the cement-treated material.  

The parametric study conducted herein involved a relatively limited number of 

clays and only one type of cementing agent. The results can be further evaluated and 

adjusted using data obtained for other types of clay treated with Portland cement or a 

different cementing agent. Moreover, the results of triaxial experiments on various 

cement-treated clays with different moisture and cement contents can be used to find 

empirical relationships, similar to those suggested herein, to predict the parameters 

needed to define the proposed model (i.e. R, p’o, and M). This would enhance the 

proposed model to provide more realistic predictions of the soil behaviour and reduce the 

possible errors. 

The proposed framework is only rudimentary and has been developed based on 

the data for one type of cement-treated clay. First, it should also be further expanded 

analytically to create suitability for numerical predictions by analytically finding the 

required stress and strain matrices. The model should then be checked with the 
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experimental data obtained for other types of cemented clay to ensure its applicability to 

clays with a different mineralogy. Moreover, the suggested plastic potential functions can 

be further evaluated to find more realistic alternatives. True triaxial or hollow cylinder 

testing of the artificially cemented samples can also provide a powerful database for 

further development of the suggested framework in the three dimensional space. 

The available knowledge of the naturally structured clays suggests that such clays 

are typically anisotropic and rate sensitive (e.g. Lo and Morin, 1972; Tavenas and 

Leroueil, 1977; Graham et al., 1983a). An experimental study of artificially cemented 

specimens cured under stress and cut in different angles can provide useful information 

about the possibility of the development of an anisotropic texture in such remoulded 

material. In addition, the effects of the strain rate and creep on the mechanical behaviour 

can be investigated by conducting fast and slow triaxial experiments. If needed, further 

adjustments can be applied to the proposed framework to take the effect of rate 

dependency and anisotropy into account. 

It was shown herein that the intrinsic compression line proposed by Burland 

(1990) does not accurately predict the behaviour of reconstituted Ottawa clay. Further 

studies are needed to investigate the reasons for this discrepancy. As discussed before, 

this could be due to the effect of the silt content on the soil behaviour. Therefore, 

compression tests can be performed on other natural silty clays or on reconstituted clays 

artificially prepared in the laboratory with different silt contents to investigate the validity 

of the equation proposed by Burland (1990) for silty material. 
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Finally, it was also observed herein that a clear shear band forms in artificially 

cemented clays sheared in the triaxial equipment. This shear band formed even if the 

specimen was sheared at high confining pressures due to the partial preservation of the 

structure. The effects of the localised shear deformations on the overall response need to 

be evaluated in terms local drainage and geometrical symmetry of the specimen. 
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