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Abstract and Keywords 
 

Abstract - The development of new and efficient synthetic methodologies to prepare 

heterocyclic compounds has received great attention over the years due to their 

importance in the pharmaceuticals and fine chemicals industries. Described herein are 

several novel syntheses of a variety of heterocycles including siloles, azaindoles, 

piperideines, piperidines and tetrahydropyrans.  

A one-pot, two-step methodology involving Tamao’s reductive cyclization 

followed by Negishi cross coupling was utilized to synthesize several new series of 

silole-based chromophores. The property studies revealed new electropolymerized 

poly(thienyl-silole)s with enhanced photoefficiency for all-polymer solar cells. In 

addition, a new procedure is developed for the synthesis of the first dissymmetric silole 

tethered to amine functionality. The synthesized compounds hold great promise in the 

arena of biosensors and solar cell applications.   

Furthermore, a novel and practical two step sequence for the preparation of C2 

substituted 5-azaindoles has been reported. The synthetic sequence features a [3+2] 

dipolar cycloaddition between nitriles and a 3,4-cyclopropanopiperidine followed by 

SeO2 oxidation.  

Finally, the annulation reaction between 2-alkoxy-1,1-cyclobutane diesters and 

imines or aldehydes gave access to highly functionalized piperidines and 

tetrahydropyrans, respectively. Both the synthesis of those donor-acceptor cyclobutanes 

and their subsequent annulations are catalyzed by catalytic Yb(OTf)3. Although known 

for more than two decades, this is the first use of 2-alkoxy-1,1-cyclobutane diesters in 
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dipolar cycloadditions. 

The new reactions are done under mild conditions providing the target 

compounds in high yields and excellent selectivity. The divergent nature and cost 

effectiveness of these methods make them very suitable for combinatorial applications in 

the pharmaceutical industry. 

 

Keywords: Heterocyclic Compounds, Siloles, Azaindoles, Piperidines, Piperideines, 

Tetrahydropyrans, Cyclopropanes, Cyclobutanes, Electrochemiluminescence, Solar 

Cells, Dipolar Cycloaddition, Lewis Acid Catalysis, New Synthetic Methodologies
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Chapter 1: Structural Tuning of Siloles: Synthesis and Electrochemiluminescence of 

New Silole Based Chromophores for Analytical and Optoelectronic Application 

This chapter describes the work done in our research group towards the development of 

silole-based materials for applications in biological sensors and photoelectronic devices. 

In addition to a short introduction on the fundamentals of electrochemiluminescence 

(ECL), a brief literature review on the chemistry and properties of siloles will be 

discussed. I acknowledge Mrs. Barbora Morra for synthesizing silole 1.16b. Otherwise, 

in addition to proposing a modified synthesis of the dissymmetric siloles 1.36, the whole 

synthetic work presented in this chapter was done by me. Since fully investigating these 

new materials is highly interdisciplinary in nature, the Pagenkopf group has been 

collaborating with several research groups at the University of Western Ontario. The ECL 

and photoluminescence (PL) of the synthesized compounds have been investigated by the 

research group of Prof. Zhifeng Ding. The electro polymerization behavior for solar cell 

applications was studied by Prof. Oleg A. Semenikhin’s research group. While not 

intended to be exhaustive, a section summarizing the results obtained by our collaborators 

will be included. Some of these results have been published in J. Phys. Chem. B.1 

1.1. Introduction 

1.1.1. Basics of Electrochemiluminescence (ECL) 

Electrochemiluminescence (ECL) or electrogenerated chemiluminescence as the word 

implies is the light emission from an exited state molecule that is produced due to a high-

energy electron transfer (ET) reaction between electrogenerated radical anions and 

cations. According to the method involved, ECL could be annihilation or a co-reactant 
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process.2 A schematic representation of annihilation ECL is given in Figure 1.1. In a 

typical process, the radical anions (R– •) and radical cations (R+ •) of the luminophore (R) 

are  produced during a sequential reduction and oxidation at the surface of an electrode 

by scanning (scanning ECL) or pulsing (pulsing ECL) the potential within a short time 

interval. The annihilation reaction between these ions provides the excited state (R*) as 

well as a ground state molecule. The energy is then released in the form of light when R* 

returns to the ground state (R).2 An alternative way to obtain intense ECL is through a co-

reactant process where another substance is used to produce strong reducing or oxidizing 

intermediates that can interact with the radical ions of the emitter (R– • or R+ •) to generate 

its excited state (R*). Commonly used co-reactants are tri-n-propylamine and benzoyl 

peroxide.2  

 

Figure 1.1 – General mechanism of annihilation ECL 

Over the last decade, ECL has been extensively investigated and has found a 

variety of commercial applications in biomedical diagnostics (e.g. immunoassays), 

pharmaceutical and environmental analyses.3 The development of ECL-based systems 

with high sensitivity, selectivity and quantum efficiency has expanded the research 

interest in designing new luminophores. The new material should be cheap and/or easily 

prepared. In addition, the radical ions should be easily produced under the ECL 
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conditions and are of sufficient stability to allow for the inter diffusion process.2 The first 

attempt to study the ECL properties of siloles was reported by Pagenkopf and Bard in 

2006.4  

1.1.2. Siloles as Novel Materials for Optoelectronic Applications 

The chemistry of siloles has continued to receive much attention with respect to their 

syntheses and properties.5 Of special note is the recent and remarkable progress of siloles 

containing π-conjugated systems due to their potential as conducting materials for novel 

applications such as light-emitting devices,6 nitroaromatic sensors7 and biosensors.8 The 

unique electronic features of the silole ring arise from its low-lying LUMO, which is 

substantially different from cyclopentadiene and other heterocycles (Figure 1.2).9  

 

Figure 1.2 – Relative energy levels of HOMOs (white squares) and LUMOs (black 

squares) for silole vs. other heterocycles (from ref. 9) 

Over the last decade, siloles have set themselves aside as fascinating electronic 

materials. However, in comparison to other related π-conjugated systems such as pyrroles 

and thiophenes, siloles remain relatively unexplored, partly because of their difficult 
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synthesis.10 In addition to the meticulous exploration of silole properties, the pioneering 

efforts by the groups of Tamao and West to construct the silole ring have provided a solid 

foundation for others to build upon leading to the recent advancement of silole 

chemistry.11 

In 1997, Barton’s group utilized a dibromo silole 1.1,11 to synthesize the silole-

acetylene polymers 1.2 (Figure 1.3).12 When compared to the corresponding 

poly(phenyleneethynylene)s (λmax = 425 nm),13 and poly (thiopheneethynylene)s (λmax = 

438 nm,14 the silole-containing polymers significantly showed red-shifted absorptions 

(λmax = 494 nm) implicating the importance of the silole ring in the properties of these 

substances.  

 

Figure 1.3 – Absorption data for polymer 1.2 in THF  

In 1998, Tamao and co-workers reported a series of 2,5-diethynylsilole monomers 

and their polymerized products (e.g. 1.3 and 1.4, Figure 1.4).15 The synthesized polymers 

significantly showed narrow bandgaps (up to 1.8 eV). Moreover, a bathochromic shift in 

the absorption spectrum was observed when a diethynylthiophene moiety was 

incorporated. Despite the unique electronic features of these novel materials, the 

conductivities of the synthesized polymers were found to be moderate. 
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Figure 1.4 – Absorption data for polymers 1.4 in chloroform  

In a subsequent study towards the development of efficient electron-transporting 

(ET) materials for organic devices, the Tamao’s research group has prepared a 

symmetrically substituted series of 2,5-diaryl siloles 1.5-1.7 (Figure 1.5).6d In order to 

optimize the physical properties of the synthesized siloles, different substitution patterns 

have been investigated including; various mono-subtituted phenyl rings, extended π-

conjugated and heteroaryl groups. Whereas compound 1.7 emerged as highly efficient 

fluorophores with potential application as emissive material, compound 1.6 showed high 

performance as a new ET material.  

 

Figure 1.5 – Symmetric siloles 1.5-1.7. 

The ability to fine tune the electronic properties of siloles have been impeded by 

the challenges of synthesizing dissymmetric siloles and hence varying the functional 

groups at the silole termini.16 In addition, the iterative and length-specific synthesis of 



6 
 

oligomeric silole requires a dissymmetric silole that can serve either as a starting point or 

an end cap.17 In this regard, the dissymmetric silole 1.8 reported by the Pagenkopf 

research group in 2004 was used to synthesize the first silole-containing extended 

chromophores bearing electronically dissimilar functional groups at C(2) and C(5) 1.9 as 

well as oligomeric siloles of precise composition 1.10 (Figure 1.6).16,17  

 

Figure 1.6 – Donor- acceptor dissymmetric siloles 1.9 and oligomeric siloles 1.10 

The electronic spectra of donor-aceptor (DA) siloles 1.9 showed a stepwise 

bathochromic shift ranging from 429 nm (parent silole; D = A = H) to 496 nm (the most 

polar silole; D = NMe2 & A = NO2) (Figure 1.6).16 This study indicated the important 

role of electron delocalization in these substances which can be fine tuned by 

manipulation of peripheral push-pull substituents at the C(2) and C(5) positions. The 

consequences of varying the nature of the DA groups were also observed in the PL 

spectra. The silole having OCH3 as a donor group and NO2 as an acceptor group 
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displayed the longest wavelength emission, at 649 nm (Figure 1.6). To the best of our 

knowledge, this is the longest wavelength emission for a compound possessing only a 

single silole in the chromophore.16 On the other hand, the relatively low molecular weight 

oligomers 1.10 (Figure 1.6) displayed a similar absorption maximum (492 nm) to the 

analogous high molecular weight silole-containing polymers 1.2 (494 nm). From these 

observations, the effective conjugation length within the corresponding silole polymers 

was established for the first time and it is approximately equal to that of the tetramer 1.10 

(Figure 1.6, n = 3). Unfortunately, the quantum efficiencies were modest with the 

monomer being the most efficient.17 

In order to examine the influence of a single silole ring on the properties of an 

extended chromophore, the Pagenkopf group synthesized silole 1.11 (Figure 1.7) for 

direct comparison the trimer silole 1.10 (Figure 1.6, n = 2). The absorption and emission 

maxima of 1.11 were blue-shifted relative to trimer 1.10, but interestingly the quantum 

efficiency was 20.11×10-2 in the case of 1.11 versus 0.37×10-2 for trimer 1.10.17  

 

Figure 1.7 – Extended chromophore 1.11 

In addition to C2 and C5 functionalization, manipulating the steric requirements 

of the silole ring substituents would increase the energy barriers for non-emissive decay 
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processes and ultimately result in increased PL efficiency. Thus, our group also 

investigated some silole modifications intended to impart “rigidity” or restricted rotation 

compared to the parent chromophore 1.12 (Figure 1.8).18 The outcome of this effort was 

the preparation of the first highly efficient 3,4-diphenylsilole fluorophore 1.13, having a 

quantum efficiency of 63% (determined with reference to fluorescein).18 When compared 

to 1.12 (quantum efficiency is 9%),16 this pioneering discovery welcomed siloles as 

promising structurally tunable fluorophores and unambiguously refuted the notion that all 

3,4-disubstituted siloles will possess intrinsically low quantum efficiencies. Therefore, 

the electrogenerated chemiluminescence (ECL) properties were examined. However, 

moderate ECL quantum yields were obtained.4  This might be attributed to instability of 

their radical cations needed for ECL generation.2  

 

Figure 1.8 – Sterically rigid, highly fluorescent silole 1.13. I acknowledge Dr. Pagenkopf 

for generating graphic 1.12 

Considering that siloles 1.7 are efficient electron transporting materials, we 

expected that replacement of the methyl substituents with larger iPr, tBu and nHex 

groups would increase the energy barriers for non-emissive decay, stabilize the radical 

anions, and thus result in enhanced PL and ECL. Therefore the target chromophores 1.14 

were prepared and the electronic properties (UV-Vis, PL, and ECL) of these new hybrids 
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were investigated (Figure 1.9).19 In general, easier and reversible oxidation was observed 

with extended conjugation (n = 2) and branched substituents on the silicon (R = iPr or 

tBu). In addition, cyclic voltammograms (CVs) showed that the radical cations are more 

stable than the anions. This was translated into enhanced ECL efficiency highlighting the 

potential applications of these siloles.19 

 

Figure 1.9 – Thiophene-silole hybrids  

Finally, a new series of 3,4-diphenylsiloles incorporating arylene ethynylene 

strands at the 2,5-positions (e.g. 1.15, Figure 1.10) have been reported by Ding et al. in 

2007.20 The respective photoluminescence properties were investigated as a function of 

chain length. When compared to our silole 1.13 (quantum efficiency is 20%), double 

incorporation of arylene ethynylene strands in 1.15 (quantum efficiency is 50%) was 

found to be effective for enhancing the photoluminescence.20 
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Figure 1.10 – Arylene ethynylene/ silole hybrid 

1.1.3. Research Objectives 

Development of silole chromophores bearing fine-tuned properties depends on the 

ability to control the electronic nature of the molecule by varying the silole at the 2 and 5-

termini, substitution on the silicon atom as well as the conjugated system. Considering 

the unique features of siloles 1.5 – 1.6,6d including narrow energy gap, high conductivity, 

long emissive life time and high thermal stability, the objective of this study is to fine-

tune the properties of those siloles for ECL-based biomedical applications and 

optoelectronic industries.  

It was anticipated that enhanced PL and ECL could be obtained if the methyl 

substituents on the silicon atom of 1.5 and 1.6 are replaced by n-hexyl groups (1.16 and 

1.17, Figure 1.11). In addition to possible improved solubility, the bulky n-hexyl groups 

might increase the energy barriers for the non-emissive decay and hence stabilize the 

radical anions required for ECL annihilation. Furthermore, the effect of different electron 

donating and withdrawing groups on the one-electron transfer process involved and hence 

the electronic properties of those siloles will be examined.  

In collaboration with Prof. Zhifeng Ding’s research group, we previously 

discovered that bithiophene-silole hybrid (1.14, n = 2) is a more efficient fluorophore 

than thiophene-silole hybrid (1.14, n = 1).19 Therefore, it was envisioned that siloles 1.18 

with a more extended conjugation (terthiophene) will have lower redox potentials and 

hence the radical ions will be easily generated. Ultimately, better ECL efficiency is 

anticipated for 1.18.  
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Figure 1.11 – Target Siloles 1.16, 1.17 and 1.18 

The ultimate objective of this research project is to develop an efficient 

fluorophore for analytical applications in clinical and biomedical diagnostics. An 

essential requirement for ECL-based analytical methods is that these siloles should have 

one binding-site through which the important biological molecules, such as single 

stranded DNA (ss-DNA), antibody and/or oligonucleotide, could be conjugated via 

efficient and practical routes, such as a click reaction (Figure 1.12, A),21 or amide 

formation (Figure 1.12, B).22  

 

Figure 1.12 – Silole-labeled biosensors 
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This study will pursue an efficient methodology to prepare dissymmetric siloles 

by installing NH2 and/or N3 on one side of the ring (Figure 1.13). 

 

Figure 1.13 – Target dissymmetric siloles 

It is believed that these new silole-based materials will find a wide variety of 

applications in biomedical and optoelectronic industries (e.g. biosensors and solar cells). 

The synthetic effort toward these silole targets will be discussed in the following section. 

1.2. Results and Discussions 

1.2.1. Synthesis of Symmetric Siloles 1.16 – 1.18 

The silole ring can be obtained via a zirconocene mediated reductive cyclization 

of acetylenes (Scheme 1.1).23   

 

Scheme 1.1 – Zirconocene mediated reductive cyclization of acetylenes. 
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However direct transmetallation from zirconium to silicon is generally ineffective 

and therefore a series of steps involving iodination, lithiation and electrophilic trapping 

sequences have been developed (Scheme 1.1).23  

Developed by Tamao in 1994, the intramolecular reductive cyclization of 

diethynylsilanes utilizing lithium naphthalene (LiNaph) enables a one pot, practical and 

cost effective synthesis of siloles (Scheme 1.2).11  

  

Scheme 1.2 – Tamao’s reductive cyclization/transmetallation/Negishi coupling one pot 

synthesis of siloles 

The key point to attain high yield is the dropwise addition of the diethynylsilane 

1.24 into an electron-pool consisting of an excess amount (4 equiv) of the reductant 

LiNaph, and thereby both acetylene moieties are reduced simultaneously to form an anion 

radical intermediate 1.25 that undergoes radical coupling to form the 3,4-carbon–carbon 

bond, leaving anions at the 2,5-positions. The resulting 2,5-dilithiosiloles 1.26 can be 

transmetallated using excess ZnCl2. In addition to serving as an oxidizing agent for 

residual LiNaph,16 the use of ZnCl2 at this step allows for in situ generation of the 
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versatile chlorozinc intermediate that can be used directly for a Negishi cross coupling 

reaction with different aryl halides.24 Furthermore, when compared to the dilithio-silole, 

the chlorozinc intermediate 1.27 is considerably less basic and less nucleophilic.16 

Therefore, a one pot, two step methodology involving Tamao’s reductive cyclization 

followed by Negishi cross-coupling strategy was utilized to achieve the target compounds 

1.16 – 1.18. 

Starting from the commercially available phenylacetylene 1.29 and thiophene 

1.30, the synthetic intermediates; bis(phenylethynyl)dialkylsilanes 1.24a-c and 

bromoterthiophene 1.34 were prepared according to the published procedures and 

obtained in good to excellent yields (Scheme 1.3).25 Extra care should be followed during 

the preparation of terthiophene due its high vapour pressure and phototoxicity.25c 

 

Scheme 1.3 – Synthesis of the starting materials. 1.24c was kindly provided by Mr. Xin 

(Kevin) Wang, a previous student in our group. 
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The intramolecular reductive cyclization of bis(phenylethynyl)dialkylsilane 

1.24a-c using an excess amount (4 equiv) of LiNaph, followed by transmetallation with 

ZnCl2 and treatment with different aryl halides in presence of PdCl2(PPh3)2 catalyst 

provided compounds 1.16a-e, 1.17 and 1.18a-c, in moderate to good yields (Scheme 1.4). 

Since all intermediates involved in this methodology are sensitive to moisture, air and 

light, the whole reaction sequence was carried out under an inert atmosphere of dry 

argon, and protected from light using aluminum foil. Single crystals of silole 1.18b were 

grown from a concentrated CH2Cl2 solution by slow diffusion of pentane. The x-ray 

structure was solved and the ORTEP is presented in Figure 1.14. 

 

Scheme 1.4 – Synthesis of the target siloles 1.16 – 1.18. 1.16b was prepared by Mrs. 

Barbora Morra  
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Figure 1.14 – X-ray crystal structure of 1.18b 

1.2.2. Synthesis of Dissymmetric Siloles 1.36 – 1.41 

Considering the attenuated nucleophilicity of the chlorozinc intermediate 1.27 (Scheme 

1.5), our group previously reported an efficient methodology to prepare the first 

dissymmetric silole series.16 The methodology involved a two step halogenation where a 

slow monochlorination using N-chlorophthalimide (NCP) followed by iodination with I2 

afforded the chloroiodosilole 1.9 (Scheme 1.5).16 Although the synthesis of the 

intermediate 1.9 was a milestone step for us, working with this silole is complicated by 

its high light sensitivity and instability. Because it decomposes within minutes from 

isolation, it should be used directly for the successive cross coupling reactions.  

Much of experimental effort has been dedicated over the years by our group to 

synthesize the target silole 1.19 utilizing the synthetic intermediate 1.9 however with no 

success (Scheme 1.5). In fact it was quite a challenging task. 
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Scheme 1.5 – Synthesis of dissymmetric silole 1.36 

To simplify the reaction sequence and to isolate a stable product; instead of 

treating with iodine, the chlorozinc intermediate 1.35 was subjected directly to the cross 

coupling reaction conditions with bromothiophene. By following this modified 

procedure, the versatile monochloro thiophene-silole hybrid 1.36 was isolated in 60% 

yield (Scheme 1.5). When compared to the iodochlorosilole 1.9, the monochlorosilole 

1.36 is very stable and crystalline solid that can be stored for extended periods of time 

without any decomposition. Single crystals of silole 1.36 were grown from a concentrated 

CH2Cl2 solution by slow diffusion of pentane. The x-ray structure was solved and the 

ORTEP is presented in Figure 1.15.           
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Figure 1.15 – X-ray structure of dissymmetric silole 1.36 

Having the chlorosilole 1.36 in hand, it was treated with the chlorozinc 

intermediates generated from bromobenzene 1.37 (Scheme 1.6, equation 1), phenyl 

acetylene 1.29 (Scheme 1.6, equation 2) and 1-(4-bromophenyl)-N-methylmethanamine 

1.40 (Scheme 1.6, equation 3). The expected novel dissymmetric siloles 1.38, 1.39 and 

1.41 were obtained in moderate to excellent yields (Scheme 1.6). To avoid any harsh 

deprotection condition that might destroy the silole ring, a very labile protecting group 

trimethylsilyl (TMS) was selected to protect amine 1.40 during cross coupling reaction.26 

It was easily removed during the aqueous work-up to provide the free amine 1.41 

required for conjugation with biomolecules.      
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Scheme 1.6 – Synthesis of dissymmetric siloles 1.38, 1.39 and 1.41 

In summary, a one pot reaction sequence featuring Tamao’s reductive cyclization, 

transmetallation and Negishi cross coupling reaction has been used to prepare a new 

series of structurally modified siloles with anticipated fine tuned properties. In addition, a 

new synthesis of dissymmetric siloles has been developed and applied efficiently to 

prepare the first dissymmetric silole tethered to amine functionality. Current synthetic 

efforts in our group are directed toward structural modification of the conjugated system, 

the substitution pattern on the silicon atom, the spacer group and the binding 

functionality. Due to the unique electronic properties of the silole ring, the synthesized 

compounds hold great promise in the arena of biosensors and optoelectronic industries. 

While not intended to be comprehensive, the following section summarizes the results 

obtained by our collaborative research groups. 
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1.3. Electronic Properties of Siloles 1.16 – 1.18  

Studying the electronic properties of these synthetic siloles is one of the most important 

components in this project.  It indicates not only the potential of these siloles for future 

applications, but also where the subsequent synthetic effort should go. Our group 

acknowledges the immense effort made by our collaborators. The UV-Vis absorption, 

photoluminescence (PL) and electrochemiluminescence (ECL) properties of siloles 1.16 

– 1.17 were investigated by Prof. Zhifeng Ding’s research group. The electro 

polymerization behavior of siloles 1.18a for solar cell applications was studied by Prof. 

Oleg A. Semenikhin’s research group. Some of these results are summarized in the 

following sections. 

1.3.1.  UV-Vis Absorption, PL and ECL Properties of Siloles 1.16 – 1.17 

The UV-Vis absorption, PL and ECL properties for siloles 1.16 - 1.17 were 

investigated. Table 1.1 summarizes the data obtained from absorption, PL and ECL 

spectra. The absorption and PL spectra are presented in Figure 1.16.  

The conjugative groups e.g. 1.16c and 1.16e showed the lowest energy absorption 

and emission. The observed excimer peaks are due to the enhanced dimerization 

facilitated by the long hexyl chain. Unlike the thiophene-silole hybrids (data is not 

presented here), low quantum yields were observed in the scanning ECL. On the other 

hand, the pulsing technique was able to improve the quantum yields noticeably. The 

remarkable difference in the efficiency between the scanning and pulsing ECL can be 

attributed to the instability of the radical ions produced by these siloles. Because both the 

radical anions and cations are generated simultaneously within a very short time interval 
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in the pulsing ECL, the chance to generate the excited state is higher and hence the 

efficiency. Because the initial data obtained from the cyclic voltamograms (CVs) is not 

conclusive, additional information is required. Detailed computational and experimental 

work is underway to further investigate the redox properties of these siloles  

Table 1.1 – Spectroscopic data of siloles 1.16 – 1.17a 

 

silole 
Abs. λmax 

(nm) 

 ECL 
PL λmax (nm) QE (%)c

λmax (nm) QE (%)b 
monomer/ex

cimer 
scanning/p

ulsling 
1.16a, X = H 355 398/470 1.21 418/615 0.56/54.68 

1.16b, X = CF3 355 401/460 1.98 NAd 0.70/10.46 

1.16c, X = NO2 395 430/520 4.11 463/654 0.22/33.93 

1.16d, X = OCH3 375 493/541 1.60 485/574 0.19/76.99 

1.16e, X = N(CH3)2 425 332/634 48.93 NAd 0.17/20.63 

1.17 355 400/467 0.72 410/630 0.18/214 

adetermined in benzene/acetonitrile solvent mixture at room temperature.bWith respect to 

DPA.cAnnihilation mechanism, relative to DPA.dProduced flat spectra 
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1.16a, X = H 1.16b, X = CF3 

1.16c, X = NO2 1.16d, X = OCH3 

1.16e, X = N(CH3)2 

 

1.17 

 

 

Figure 1.16 – UV-visible absorption (red) and normalized PL emission (green) spectra of 

the silole series 1.16 – 1.17 in 1.5:1 benzene/acetonitrile solvent. 

 

1.3.2. Poly(thienyl-silole)s for All-polymer Solar Cells 

To examine the utility of these materials for all-polymer solar cells application, the 

electrochemical and photoelectrochemical properties of electropolymerized poly(thienyl-

silole)s were investigated by Prof. Semenikhin’s research group. The materials were 
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prepared by electrochemical anodic polymerization of silole 1.14a (MeTTSTT) and 1.18a 

(MeTTTSTTT, as well as co-polymerization of these monomers with 2,2'-bithiophene 

(BT) (Figure 1.17).1  

 

 

(A) (B) 

Figure 1.17 – Photocurrent-potential dependencies and photocurrent decay against time 

of poly(thienyl-silole)s (A) Photocurrent-potential dependencies for films of 

MeTTTSTTT (1), MeTTSTT (2), PBT (3), 1:1 copolymer of MeTTTSTTT-BT (4) and 

1:1 copolymer of MeTTSTT-BT (5) measured in oxygen-saturated acetonitrile solution. 

(B) Photocurrent decay against time of PBT (1) and 1:1 copolymer of MeTTSTT-BT (2).  

As shown in Figure 1.17A, the photocurrent measurements showed that the 

introduction of siloles gave rise to a remarkable enhancement in the photocurrent of the 

copolymer material (Figure 1.17A, curve 5 and 4) as compared to non-modified parent 
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polybithiophene (PBT) (Figure 1.17A, curve 3). Copolymerization of BT with silole 

1.14a (MeTTSTT) gave the highest photocurrent (Figure 1.17A, curve 5).  

A major drawback of the use of organic materials in solar cells is their tendency to   

rapid photodegradation resulting in photocurrent decay. As shown in (Figure 1.17B, 

curve 1), the photocurrent magnitude of polybithiophene (PBT) rapidly decreased with 

time. In contrast, the magnitude of the photocurrents of Me-TTTSTTT-BT and Me-

TTSTT-BT copolymers grows with time to reach a stable plateau (Figure 1.17B, curve 

2). These results indicate the superior stability of these materials and their great promise 

as electron-acceptor for all-organic solar cells. 

1.4. Conclusion and Future Work 

In summary, several new series of symmetric and dissymmetric silole-based 

chromophores were prepared by a one pot reaction sequence featuring Tamao’s reductive 

cyclization, transmetallation and Negishi cross coupling. In addition, a new methodology 

was developed for the synthesis of the first dissymmetric silole containing a secondary 

amine functionality that can be used for conjugation with various biomolecules. This 

methodology provides a new way for structural modification of siloles and hence novel 

materials for biological sensors and optoelectronic applications. The electronic properties 

(UV-Vis, PL, ECL) and the electropolymerization behavior of these siloles were 

investigated. This has lead to the discovery of new electropolymerized poly(thienyl-

silole)s for all-polymer organic solar cells, displaying enhanced photoefficiency when 

compared to the non-modified polybithiophene. Through extensive collaborations among 

physicists, biologists, synthetic and analytical chemists, future efforts are directed toward 
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structural modification of these siloles. Due to the unique properties of these materials, 

the synthesized compounds hold great promise for biosensors, solar cells and 

optoelectronic applications.  

1.5. Experimental 

1.5.1. General  

All reactions were carried out under an inert atmosphere of dry argon unless 

otherwise indicated. Flasks were oven or flame dried and allowed to cool in a desiccator 

prior to use. All reagents and chemicals were of reagent quality, obtained from common 

commercial sources and used without further purification unless otherwise noted. All 

reactions were protected from light using aluminum foil. All solvents for the reactions 

were obtained from an Innovative Technology SPS-400-5 solvent dispensing system. For 

reactions involving lithium naphthalenide (LiNaph), THF was degassed with argon prior 

to use. LiNaph solutions were titrated using a literature method.27 ZnCl2 was flame-dried 

under vacuum and stored in glovebox. Progress of reactions was monitored by thin layer 

chromatography (TLC) performed on F254 silica gel plates. Column chromatography 

was performed with Silica Flash P60 60 Å silica gel from Silicycle according to the Still 

method.28 

The 1H and 13C nuclear magnetic resonance (NMR) spectra were obtained on a 

Varian Mercury 400 MHz NMR spectrometer. Chemical shifts (δ) were expressed in 

parts per million (ppm) downfield from tetramethylsilane using the residual protonated 

solvent as an internal standard (chloroform-d, 1H 7.25 ppm, 13C 77.0 ppm).When peak 

multiplicities are given, the following abbreviations are used: s, singlet; d, doublet; t, 
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triplet; dd, doublet of a doublet; m, multiplet. Coupling constants for all spectra are 

expressed in Hertz (Hz). HRMS (CI, FAB) were obtained with a Finnigan MAT 8200 

instrument. For known intermediates, only NMR was performed for characterization.  

1.5.2. Detailed Experimental Procedures 

1.5.2.1. General Procedure for the Synthesis of 

Bis(Phenylethynyl)dialkylsilane 

A solution of phenylacetylene (2.5 equiv) in THF (1 mL/ 1 mmol) was cooled to –78 °C 

(internal temperature). nBuLi (2.1 equiv) was added dropwise into the flask such that the 

internal temperature did not exceed –50 °C. It was allowed to warm to 0 ºC, and 

dichlorodialkylsilane (1.0 equiv) was charged into the pale yellow solution dropwise such 

that the internal temperature did not exceed 10 ºC. Then it was allowed to react at rt and 

monitored by TLC. Upon completion (ca 30 min), the reaction mixture was poured into a 

half saturated ammonium chloride aqueous solution, followed by extraction with ethyl 

acetate. The combined organic layers were washed with H2O, brine, dried (MgSO4), and 

concentrated in vacuum.  

 

Dimethylbis(phenylethynyl)silane (1.24a)19 

The reaction was done at 23 mmol scale to yield the product as white powder. 

Recrystallization from hexanes yielded 5.34 g (89%) of the desired product as white 



27 
 

crystals. Rf 0.56 (10% EtOAc/hexanes); 1H NMR (400 MHz, CDCl3)  7.53-7.49 (m, 

4H), 7.34-7.28 (m, 6H), 0.48 (s, 6H); 13C NMR (100 MHz, CDCl3)  132.1, 128.8, 128.2, 

122.6, 105.9, 90.6, 0.5. 

 

Dihexylbis(phenylethynyl)silane (1.24c)19 

The reaction was done at 23 mmol scale to yield the product yellow oil (97% yield, 9.00 

g). Rf 0.35 (10% CH2Cl2/hexanes); 1H NMR (400 MHz, CDCl3)  7.51-7.46 (m, 4H), 

7.30-7.24 (m, 6H), 1.64-1.55 (m, 4H), 1.44 (dt, J = 14.1, 7.0 Hz, 4 H), 1.35-1.29 (m, 8H), 

0.92-0.85 (m, 10H); 13C NMR (100 MHz, CDCl3)  132.0, 128.7, 128.1, 122.8, 106.6, 

89.4, 32.7, 31.5, 23.7, 22.6, 14.8, 14.1. 

1.5.2.2. General Procedure for the One-pot Reductive Cyclization/ 

Negishi Cross-coupling Reaction 

A solution of bis(phenylethynyl) dialkylsilane 1.24 (1.5 mmol, 1.0 equiv) was added 

dropwise into a solution of LiNaph (16 mL, 0.38 M, 6.1 mmol, 4.0 equiv) at rt. The 

solution was cooled to –10 °C (internal reaction temperature) and ZnCl2 dissolved in 

THF (25 mL, 0.30 M, 7.5 mmol, 5.0 equiv) was added via syringe in one portion. The 

fine black suspension was allowed to react for 20 min. To this solution was added 
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PdCl2(PPh3)2 (52 mg, 0.075 mmol, 5 mol %) and aryl halide (3.3 mmol, 2.2 equiv). The 

reaction mixture was set to reflux and monitored by TLC. Upon completion (ca 12 h), the 

reaction mixture was allowed to cool to rt, added an aqueous solution of HCl (0.1N, 10 

mL) and extracted with Et2O (3 x 20 mL). The combined organic layers were washed 

with H2O (20 mL), brine (2 x 20 mL), dried (MgSO4), and concentrated in vacuum. The 

product was then purified by flash chromatography on silica gel (hexanes → 30% 

CH2Cl2/hexanes gradient). 

 

2,5-Di(2,2'-terthiophen-5-yl)-1,1-dimethyl-3,4-diphenyl-1H-silole (1.18a) 

The reaction was done at 1.5 mmol scale to yield the product as reddish black solid (90% 

yield, 1.0 g). Rf 0.27 (30% CH2Cl2/hexanes); mp: 350 ºC; 1H NMR (400 MHz, CDCl3)  

7.21-7.17 (m, 8H), 7.12-7.10 (m, 2H), 7.02-6.98 (m, 6H), 6.97(d, J = 3.7 Hz, 2H), 6.94 

(d, J = 3.9 Hz, 2H), 6.81(d, J = 3.7 Hz, 2H), 6.77(d, J = 3.9 Hz, 2H)  0.72 (s, 6H); 13C 

NMR (100 MHz, CDCl3)  153.0, 142.4, 138.7, 137.2, 136.7, 136.5, 136.0, 131.7, 129.4, 

128.6, 128.0, 127.8, 127.4, 124.4, 124.3, 123.9, 123.6, 123.1, -1.7; HRMS m/z 754.0443 

(calcd for C42H30SiS6, 754.0441).  
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2,5-Di(2,2'-terthiophen-5-yl)-1,1-di-tert-butyl-3,4-diphenyl-1H-silole (1.18b) 

The reaction was done at 1 mmol scale to yield the product as a reddish brown solid (86% 

yield, 0.763 g). Rf 0.37 (20% CH2Cl2/hexanes); mp: 58-60 ºC; 1H NMR (400 MHz, 

CDCl3)  7.18 (dd, J = 5.1, 1.0 Hz,  2H), 7.12 - 7.10 (m, 2 H), 7.07-7.04 (m, 6H), 7.0-

6.95 (m, 4H), 6.88-6.84 (m, 8H), 6.65 (d, J = 3.9 Hz, 2H), 1.27 (s, 18H); 13C NMR (100 

MHz, CDCl3)  158.0, 144.0, 139.3, 137.5, 136.8, 136.6, 135.8, 133.3, 130.2, 129.3, 

128.1, 128.0, 127.0, 124.5, 124.5, 123.8, 123.7, 123.0, 77.6, 77.2, 76.9, 29.6, 20.8; 

HRMS m/z 838.1381 (calcd for C48H42SiS6, 838.1380). 

 

2,5-Di(2,2'-terthiophen-5-yl)-1,1-dihexyl-3,4-diphenyl-1H-silole (1.18c) 

The reaction was done at 1 mmol scale to yield the product as a reddish brown solid (65% 

yield, 0.572 g). Rf 0.29 (hexanes); mp: 140-142 ºC; 1H NMR (400 MHz, CDCl3)  7.24-

7.17 (m, 8H), 7.12 (dd, J = 3.7, 1.2 Hz,  2H), 7.01-6.96 (m, 8H), 6.95 (d, J = 3.9 Hz, 2H), 

6.81 (d, J = 3.7 Hz, 2H), 6.76 (d, J = 3.91 Hz, 2H), 1.53-1.45 (m, 4H), 1.36 (dd, J = 7.8, 

6.8 Hz, 4 H), 1.27-1.17 (m, 12H), 0.86-0.80 (m, 6H); 13C NMR (100 MHz, CDCl3)  

154.2, 142.7, 139.0, 137.2, 136.6, 136.6, 135.8, 130.6, 129.5, 128.6, 128.0, 127.8, 127.4, 

124.3, 124.3, 123.8, 123.5, 123.1, 32.5, 31.5, 23.6, 22.6, 14.1; HRMS m/z 894.2004 

(calcd for C51H48SiS6, 894.2006).  
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1,1-Dihexyl-2,3,4,5-tetraphenyl-1H-silole (1.16a) 

The reaction was done at 1 mmol scale to yield the product as yellow oil (86% yield, 

0.476 g). Rf 0.27 (hexanes); 1H NMR (400 MHz, CDCl3)  7.15 - 7.09 (m, 4 H), 7.05 (d, 

J = 7.2 Hz, 2 H), 7.03 - 6.97 (m, 6 H), 6.92 (d, J = 7.0 Hz, 4 H), 6.82 - 6.77  (m, 4 H), 

1.44 -1.36  (m, 4 H), 1.30 (dt, J = 14.3, 6.9 Hz, 4 H), 1.24 - 1.16  (m, 8 H), 1.04 - 0.98  

(m, 4 H), 0.84 (t, J = 6.8 Hz, 6 H); 13C NMR (100 MHz, CDCl3)  155.1, 140.7, 140.4, 

139.0, 130.0, 128.9, 127.8, 127.3, 126.1, 125.3, 32.7, 31.4, 23.5, 22.5, 14.1, 12.0; HRMS 

m/z 554.3373 (calcd for C40H46Si, 554.3369).  

 

1,1-Dihexyl-3,4-diphenyl-2,5-bis(4-(trifluoromethyl)phenyl)-1H-silole (1.16b) 

The reaction was done at 1 mmol scale to yield the product as yellow oil (65% yield, 

0.448 g). Rf 0.22 (hexanes); 1H NMR (400 MHz, CDCl3)  7.38 (d, J = 8.0 Hz, 4H), 7.01 

(t, J = 8.3 Hz, 10 H), 6.75 (d, J = 6.4Hz,  4H), 1.38-1.26 (m, 8H), 1.21-1.12 (m, 8H), 
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1.04-0.98 (m,4H), 0.83 (t, J = 6.3 Hz,  6H); 13C NMR (100 MHz, CDCl3)  156.6, 144.1, 

140.3, 138.0, 129.8, 128.8, 127.6, 126.7, 125.7, 124.9, 124.9, 32.7, 31.4, 23.4, 22.4, 14.0, 

11.8; HRMS m/z 690.3123 (calcd for C42H44SiF6, 690.3116).  

 

1,1-Dihexyl-2,5-bis(4-methoxyphenyl)-3,4-diphenyl-1H-silole (1.16d) 

The reaction was done at 1 mmol scale to yield the product as yellow oil (78% yield, 

0.480 g). Rf 0.13 (hexanes); 1H NMR (400 MHz, CDCl3)  7.02-6.97(m, 6H), 6.82 (d, J = 

8.6 Hz, 4 H), 6.78 (dt, J = 3.7, 2.8 Hz, 4 H), 6.65 (d, J = 8.8 Hz, 4 H), 3.73 (s, 6 H), 1.40 - 

1.32 (m, 4 H), 1.29 - 1.25 (m, 4 H), 1.21 - 1.14 (m, 8 H), 1.0 - 0.95 (m, 4 H), 0.82 (t, J = 

6.8 Hz, 6 H); 13C NMR (100 MHz, CDCl3)  157.3, 154.2, 139.5, 139.0, 132.7, 130.1, 

130.0, 127.4, 125.9, 113.3, 55.0, 32.7, 31.5, 23.5, 22.5, 14.1, 12.3; HRMS m/z 614.3565 

(calcd for C42H44SiF6, 614.3580).  

 

4,4'-(1,1-Dihexyl-3,4-diphenyl-1H-silole-2,5-diyl)bis(N,N-dimethylaniline) (1.16e) 
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The reaction was done at 1 mmol scale to yield the product as yellow oil (57% yield, 0.36 

g). Rf 0.16 (5% ethylacetate-hexanes); 1H NMR (400 MHz, CDCl3)  7.04 – 6.99 (m, 6 

H), 6.85 - 6.80 (m, 6 H), 6.79 (s, 2 H), 6.48 (d, J = 8.8 Hz, 4 H), 2.87 (s, 12 H), 1.42 - 

1.36 (m, 4 H), 1.30 - 1.25 (m, 6 H), 1.20 - 1.16 (m, 6 H), 1.02 – 0.98 (m, 4 H), 0.82 (t, J = 

6.7 Hz, 6 H); 13C NMR (100 MHz, CDCl3)  152.9, 148.1, 140.6, 138.0, 130.1, 130.1, 

128.5, 127.5, 125.6, 111.9, 40.4, 32.7, 31.6, 23.6, 22.6, 14.2, 13.0; HRMS m/z 640.4240 

(calcd for C44H56N2Si, 640.4213).  

 

2,2'-(1,1-Dihexyl-3,4-diphenyl-1H-silole-2,5-diyl)dipyridine (1.17)  

The reaction was done at 1 mmol scale to yield the product as yellow oil (70% yield, 

0.389 g). Rf 0.6 (5% ethylacetate-hexanes); 1H NMR (400 MHz, CDCl3)  8.52 (dt, J = 

4.9, 0.8 Hz, 2 H), 7.22 - 7.16 (m, 2 H), 7.12- 7.07 (m, 6 H), 6.92 - 6.86 (m, 6 H), 6.50 

(dd, J = 8.1, 0.5 Hz, 2 H), 1.44 - 1.39 (m, 4 H), 1.29 - 1.25 (m, 4 H), 1.23 - 1.15 (m, 12 

H), 0.81 (t, J = 6.8 Hz, 6 H); 13C NMR (100 MHz, CDCl3)  159.0, 155.8, 149.1, 144.0, 

139.6, 134.8, 129.3, 127.9, 126.5, 122.5, 120.0, 32.7, 31.5, 23.8, 22.6, 14.1, 12.6; HRMS 

m/z 556.3250 (calcd for C38H44N2Si, 556.3274).  

1.5.2.3. General Procedure for the Synthesis of Dissymmetric Siloles 
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A solution of bis(phenylethynyl) dialkylsilane 1.24a (1.0 equiv) was added dropwise into 

a solution of LiNaph in THF (4.0 equiv) at rt. The solution was cooled to –10 °C (internal 

reaction temperature) and ZnCl2 dissolved in THF (5.0 equiv) was added via syringe in 

one portion. The fine black suspension was allowed to react for 20 min. After cooling the 

reaction then cooled to –78 °C, N-chlorophthalimide solution in THF (1.0 equiv) was 

added dropwise. The reaction then allowed to stir at –78 °C for 30 min. To this solution 

was added PdCl2(PPh3)2 (5 mol %) and aryl halide (1.3 equiv). Then the reaction mixture 

was set to reflux and monitored by TLC. Upon completion (ca 12 h), the reaction mixture 

was allowed to cool to rt and concentrated. The crude product dissolved in minimum 

amount of CH2Cl2 was applied on silica gel and purified by flash chromatography 

(hexanes → 30% CH2Cl2/hexanes gradient). 

 

2-Chloro-1,1-dimethyl-3,4-diphenyl-5-(thiophen-2-yl)-1H-silole (1.36) 

The reaction was done at 5 mmol scale to yield the product as yellow powder. 

Recrystallization from CH2Cl2/hexanes yielded 1.1 g (60%) of the desired product as 

yellow crystals. Rf  0.3 (hexanes); 1H NMR (400 MHz, CDCl3)  7.23 - 7.19 (m, 3 H), 

7.18 - 7.13 (m, 3 H), 7.05 - 6.99 (m, 5 H), 6.90 - 6.87 (m, 1 H), 6.84 - 6.81  (m, 1 H), 0.60 

(s, 6 H); 13C NMR (100 MHz, CDCl3)  155.0, 150.1, 142.4, 138.3, 135.9, 133.1, 131.0, 

129.6, 129.1, 128.5, 127.5, 127.4, 127.1, 127.0, 126.2, 125.7, -4.3; HRMS m/z 378.0657 

(calcd for C22H19ClSSi, 378.0665).  
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1,1-Dimethyl-2,3,4-triphenyl-5-(thiophen-2-yl)-1H-silole (1.38) 

To a solution of bromobenzene (1.5 equiv) in ether cooled to 0 °C, nBuLi (1.5 equiv) was 

added dropwise. The reaction then allowed to stir at 0 °C. After completion (ca 1 h), the 

reaction mixture was carefully transferred via cannula to a solution of ZnCl2 (1.8 equiv) 

in THF at 0 °C. The reaction then allowed to stir at rt. After completion (ca 30 min), 

MeTSiCl 1.36 (1.0 equiv) and Pd(PPh3)4 (5 mol %) were added. The reaction then was 

set to reflux. After completion (ca 16 h), the reaction was cooled to rt, diluted with 

hexanes, filtered through silica plug and concentrated. The product was purified by flash 

chromatography (hexanes → 10% CH2Cl2/hexanes gradient). 

The reaction was done at 0.2 mmol scale to yield the product as yellow powder (83% 

yield, 0.07 g). Rf  0.16 (hexanes); 1H NMR (400 MHz, CDCl3)  7.21 - 7.16 (m, 3 H), 

7.11 (br. s., 2 H), 7.04 - 6.94 (m, 10 H), 6.88 - 6.84 (m, 3 H), 0.59 (s, 6 H); 13C NMR 

(100 MHz, CDCl3)  154.7, 152.2, 142.9, 139.9, 139.5, 139.2, 138.9, 133.0, 129.8, 128.8, 

128.8, 128.4, 127.9, 127.4, 127.1, 126.2, 126.1, 125.6, 125.6, -2.8; HRMS m/z 420.1367 

(calcd for C28H24SSi, 420.1368).  
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1,1-Dimethyl-3,4-diphenyl-2-(phenylethynyl)-5-(thiophen-2-yl)-1H-silole (1.39) 

To a solution of ZnCl2 (1.5 equiv) in THF, Et3N (3 equiv) and phenylacetylene (1.2 

equiv) were added. After stirring the reaction mixture at rt for 30 min, silole 1.36 (1.0 

equiv) and Pd(PPh3)4 (5 mol %) were added. The reaction then was set to reflux. After 

completion (ca 16 h), the reaction was cooled to rt, diluted with hexanes, filtered through 

silica plug and concentrated. The product was purified by flash chromatography (hexanes 

→ 10% CH2Cl2/hexanes gradient. 

The reaction was done at 0.2 mmol scale to yield the product as yellow powder (75% 

yield, 0.07 g). Rf  0.33 (10% CH2Cl2/hexanes); 1H NMR (400 MHz, CDCl3)  7.250 - 

7.20 (m, 8 H), 7.15 - 7.11 (m, 5 H), 7.06 - 7.02 (m, 3 H), 6.89 - 6.84 (m, 2 H), 0.61 (s, 6 

H); 13C NMR (100 MHz, CDCl3)  163.5, 151.0, 142.7, 138.6, 138.0, 134.1, 131.4, 

129.8, 129.2, 128.6, 128.1, 127.8, 127.5, 127.0, 126.2, 126.1, 124.6, 121.1, 98.8, 89.8, -

3.7; HRMS m/z 444.1365 (calcd for C30H24SSi, 444.1368).  

 

1-(4-(1,1-Dimethyl-3,4-diphenyl-5-(thiophen-2-yl)-1H-silol-2-yl)phenyl)-N-

methylmethanamine (1.41) 

To a solution of 1-(4-bromophenyl)-N-methylmethanamine (3.0 equiv) in ether cooled to 

0 °C, TMSCl (3.3 equiv) and Et3N (3.5 equiv) were added. The reaction then allowed to 

stirr at rt. After completion (ca 16 h), the heterogeneous reaction mixture was allowed to 
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separate and the ether layer was carefully decanted via a syringe into another flask. Then 

the solution was cooled to 0 °C and nBuLi (3.0 equiv) was added dropwise. The reaction 

then allowed to stirr at 0 °C. After completion (ca 2 h), the reaction mixture was carefully 

transferred via cannula to a solution of ZnCl2 (3.3 equiv) in THF at 0 °C. The reaction 

then allowed to stir at rt. After completion (ca 30 min), silole 1.36 (1.0 equiv) and 

Pd(PPh3)4 (5 mol %) were added. The reaction then was set to reflux. After completion 

(ca 16 h), the reaction was cooled to rt, diluted with hexanes, filtered through silica plug 

and concentrated. The crude product was then dissolved in ethyl acetate and poured into 

water, followed by extraction with ethyl acetate. The combined organic layers were 

washed with brine, dried (MgSO4), and concentrated in vacuum. The product was 

purified by flash chromatography (ethyl acetate → 5% MeOH/CH2Cl2 gradient). 

The reaction was done at 0.2 mmol scale to yield the product as yellow oil (40% yield, 

0.04 g). Rf  0.16 (ethyl acetate); 1H NMR (400 MHz, CDCl3)  7.20 - 7.16 (m, 3 H), 7.05 

- 7.02 (m, 2 H), 7.02 - 6.96 (m, 6 H), 6.90 (d, J = 8.4 Hz, 2 H), 6.88 - 6.81 (m, 4 H), 3.62 

(s, 2 H), 2.41 (s, 3 H), 0.87 (br. s., 1 H), 0.58 (s, 6 H); 13C NMR (100 MHz, CDCl3)  

154.5, 152.3, 142.9, 139.5, 139.2, 139.1, 138.1, 137.5, 132.8, 129.8, 128.8, 128.4, 127.8, 

127.5, 127.1, 126.2, 126.1, 125.5, 55.8, 36.1, -2.7; HRMS m/z 463.1796 (calcd for 

C30H29NSSi, 463.1790). 
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Chapter 2: Cyclopropane Activation for Dipolar Cycloaddition: Synthesis of 5-

Azaindoles via a Cycloaddition Reaction between Nitriles and Donor−Acceptor 

Cyclopropanes 

This chapter describes the expansion of current group methodology, namely 

nitriles/donor−acceptor (DA) cyclopropanes formal [3+2] cycloaddition, to include a 

highly efficient synthesis of 5-azaindoles. In addition to a brief introduction on the 

bonding and general reactivity of small membered cycloalkanes (cyclopropane and 

cyclobutane), the utility of cyclopropane rings in dipolar cycloaddition will be discussed. 

The whole synthetic work presented in this chapter was done by me and the results have 

been published in Organic Letters.1 Some portions of the text and schemes have been 

reproduced in part with permission from Moustafa, M. M. A. R.; Pagenkopf, B. L. Org. 

Lett. 2010, 12, 3168. Copyright 2010 American Chemical Society. 

2.1. Introduction 

2.1.1. Bonding and General Reactivity of Small Membered Cycloalkanes 

Due to their biological activity, high chemical reactivity, and their relative stability at 

room temperature, cyclopropane2 and cyclobutane3 derivatives have been emerged as 

important pharmacophores in many drugs and as versatile building blocks in modern 

organic synthesis. Because of the inherent ring strain, both cyclopropanes and 

cyclobutanes can undergo a facile C−C bond cleavage. In contrast, it is difficult to cleave 

this bond of cyclopentanes and the higher cycloalkanes.4 On the other hand, cyclopropane 

shows a reactivity profile similar to olefins by reacting readily with bromine,5 and 
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sulfuric acid.6 However cyclobutanes donot react with either of these reagents. This can 

be explained by differences of structures and energies of these compounds.4 

Despite the large difference in C−C−C bond angles, cyclobutane has a ring strain 

(26.3 kcal/mol) similar to that of cyclopropane (27.5 kcal/mol).4 This may be explained 

by invoking a 1,3 (nonbonded) carbon/carbon interactions.7 Cyclobutane has two 

interactions with a relative small distance between the carbons. Because all of the carbons 

are bonded to each other, cyclopropane does not have such interaction. This cross-ring 

repulsion can also explain why cyclobutanes have markedly longer C−C bond lengths. 

The C−C bond lengths of cyclobutanes cover a range of 1.521–1.606 Å depending on the 

substitution pattern, with an average value of 1.554 Å. In contrast, cyclopropane has 

shorter C−C bond lengths and cyclopentane is only 0.013 Å greater.4  

The C−C−C bond angle of cyclobutane is 88°, with a puckered conformation, to 

minimize the torsional interaction between the two adjacent methylene groups (Figure 

2.1).4 However this leads to increased bond angle strain. The balance between these two 

strains controls the equilibrium geometry. The properties of the C−H bonds in 

cyclobutane are much closer to those of the other cycloalkanes.4 In contrast, The C−C−C 

bond angle of cyclopropane is 60° which is a large deviation from the 109.5° expected for 

sp3−hybridized carbons. As explained by Förster-Coulson-Moffitt model, the high p 

character in the C−C bonds of cyclopropane (ring bonds) must lead to high s character in 

its C−H bonds (peripheral bonds). Therefore the C−H bonds of cyclopropane are shorter 

and stronger.4 In addition, the electron density is thought to lie on the outside of the ring 
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because of the geometric constraints of the cyclopropane ring.8 As a result, reactivity of 

cyclopropane is closer to that of alkenes rather than alkanes.9  

               

Figure 2.1 – Puckered conformation of cyclobutane and Förster-Coulson-Moffitt model 

of cyclopropane bonding 

The inherent reactivity of cyclopropanes and cyclobutanes can be further 

enhanced through the use of activating substituents. In general, there are three classes of 

activated cyclopropanes. The first class is activated with electron-withdrawing groups 

and those cyclopropanes can react as homo Michael acceptors with a variety of 

nucleophiles (Figure 2.2, Equation i). In the second class, the cyclopropane ring is 

substituted with electron-donating groups and those cyclopropanes can be cleaved by 

different electrophiles (Figure 2.2, Equation ii). In each case an ionic intermediate will 

be generated that can be used in the subsequent transformations. The third class is 

donor−acceptor (DA) cyclopropane where both donor and acceptor groups are utilized in 

a synergistic fashion (Figure 2.2, Equation iii). Under mild conditions, usually LA 

catalysis, those cyclopropanes undergo ring opening to form 1,3-zwitterionic 

intermediates that can be used as dipole equivalents in many useful transformations. 

Dipolar cycloaddition involving activated cyclopropanes (DA cyclopropanes) is 

extensively studied and has been demonstrated by the preparation of highly substituted 

carbo- and heterocyclic natural and unnatural targets.10  In contrast, reports that extend 

these methodologies to cyclobutanes are rare. This was surprising because both rings 
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have very similar ring strain suggesting a facile heterolytic ring opening of the 

cyclobutanes and potential homologous applications (Figure 2.2, Equation iv). The utility 

of doubly activated cyclopropanes will be discussed in this chapter while the use of 

cyclobutanes in dipolar cycloaddition will be covered in chapter 3. 

 

Figure 2.2 – Activated cyclopropane and cyclobutane  

2.1.2. Formal [3+2] Cycloaddition of DA Cyclopropanes  

While there are a wide variety of annulation reactions involving DA cyclopropanes, this 

section will deal only with the formal intermolecular [3+2] cycloaddition reactions of 

1,1-cyclopropanediesters 2.1 (Figure 2.3, Equation i) and/or 2-alkoxy cyclopropane 

carboxylic ester 2.3 (Figure 2.3, Equation ii). A particular emphasis will be placed on 

aldehydes, imines and nitriles. Other dipolarophiles for example; isocyanates,11 

isothiocyanates,12 azodicarbonyl derivatives,13 acetylenes,14 alkenes,15 silyl enol ethers,16 

silyl ketene acetals,17 allenylsilanes,18 nitrones,19 and diazenes20 will not be covered. 
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Figure 2.3 – The formal [3+2] cycloaddition of 1,2-dipoles with DA cyclopropane 

Among different dipolarophiles examined, aldehydes and ketones have been 

studied extensively. For instance, Saigo and co-workers have reported a highly 

diastereoselective synthesis of γ-lactones 2.7 and 2.10 by a LA catalyzed reaction of 

carbonyl compounds with cyclopropane 2.5 and 2.8, respectively (Scheme 2.1).21  

 

Scheme 2.1 – Cycloaddition between 2,2-dialkoxycyclopropane carboxylic ester and 

aldehydes or ketones 
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The diastereoselectivity of the reaction varies according to LA utilized and the 

substitution pattern of the substrates. In general, a high cis-selectivity was obtained with 

TiBr4, SnBr4 and TiCl4 whereas ZrCl4 was moderately trans-selective (Scheme 2.1).  

In 2000, Sugita et al reported a related reaction with a chromatene-derived 

1,1-cyclopropanediesters 2.11 where the trans-fused tetrahydrofuro[2,3-

b][1]benzopyranones 2.13 were obtained in good yields and high diastereoselectivities 

(Scheme 2.2).22  

 

Scheme 2.2 – Cycloaddition reactions with chromatene derived cyclopropanes 
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In absence of the diester functionality, an endo ring cleavage occurs giving rise to 

a different zwitterion intermediate 2.18, that can be trapped with silyl enol ethers 2.17 to 

afford the oxepanone derivatives 2.17 in 40-95% yield (Scheme 2.2).22    

A few years later the same annulation was extended to other 1,1-

cyclopropanediesters activated with different types of donating groups. For example, a 

cobalt-complexed 2-ethynyl group (2.19) reported by Christie and co-workers,23  and 

aromatic substituents (2.22) reported by the Johnson group (Scheme 2.3).24 The reaction 

conditions, scope and product diastereoselectivity vary according to cyclopropane nature.  

 

Scheme 2.3 – The reaction of aldehydes and 1,1-cyclopropanediester 

In Christie’s work, three equivalents of BF3•OEt2 was optimal for the 

cycloaddition to occur where aliphatic, electron-deficient or neutral aryl aldehydes 

undergo the reaction to provide the target tetrahydrofurans 2.21 however in moderate 

yield and diastereoselectivity. Unfortunately, electron-rich aromatic aldehydes were 

incompatible to the reaction conditions.23 In contrast, the Johnson’s Sn(OTf)2-catalyzed 
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approach provided the desired tetrahydrofurans 2.23 in excellent diastereoselectivities 

and yields.24 While Sn(OTf)2 promoted the reaction with aromatic, alkenyl, and alkynyl 

aldehydes, SnCl4 effectively catalyzed the reaction with aliphatic ones (Scheme 2.3).25 

More recently, Johnson reported an asymmetric variant where enantioenriched 

tetrahydrofurans were obtained via a dynamic kinetic resolution of racemic 

cyclopropanes and aldehydes.26  

The cycloaddition reaction between DA cyclopropanes and aldehydes has been 

applied in the synthesis of many natural products including (+)-virgatusin 2.24,27 (+)-

polyanthellin A 2.25,28 (+)-isatisine A 2.26,29 and (±)-bruguierol 2.27 (intramolecular 

annulation) (Scheme 2.4).30 

 

Scheme 2.4 – Applications of DA cyclopropane-aldehyde cycloaddition 
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DA cyclopropanes have also been reported to undergo cyclization with imines to 

furnish pyrrolidine derivatives in a stereoselective manner.31 The Pagenkopf group has 

shown that TMSOTf can mediate the cycloaddition of imine 2.29 with glucal–derived 

DA cyclopropane 2.28. The reaction displayed excellent stereoselectivity and furnished 

the aminal product 2.30 in 82% yield (Scheme 2.5).10e  

 

Scheme 2.5 – Annulation reactions of glucal–derived DA and iminies 

In addition, the annulation reaction between 1,1-cyclopropanediesters  and imines 

has been examined by several research groups including the Kerr,32 the Tang,33 the 

Christie34 and the Johnson groups.35   When the reaction of cyclopropane 2.22 and in situ 

generated aromatic imines 2.31 is catalyzed by Yb(OTf)3, refluxing toluene was required 

to give 2,5-cis-pyrrolidines 2.32 (Scheme 2.6) as the major product.32 Interestingly, when 

the more reactive Sc(OTf)3 was used, better diastereocontrol can be achieved and the 

reaction can be done at milder conditions.33 On the other hand, the annulation of cobalt-

complexed 2-ethynyl-1,1-cyclopropanediester 2.19 with imines 2.31 is catalyzed by 

BF3•OEt2 to produce pyrrolidines 2.33 in moderate diastereoselectivity and yield 

(Scheme 2.6).34 More recently, the Johnson group has reported an asymmetric variant 

where enantioenriched pyrrolidines were obtained via a dynamic kinetic resolution of 

racemic cyclopropanes and imines.35 
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Scheme 2.6 – The reaction of imines and 1,1-cyclopropanediesters  

The cycloaddition reaction between 1,1-cyclopropanediesters and imines has been 

applied in the synthesis of (-)-allosecurinine 2.34,36  and FR901483 2.35 (Scheme 2.7).37 

 

Scheme 2.7 – Applications of DA cyclopropane-imine cycloaddition 

The annulation reaction between nitriles and DA cyclopropanes was first reported 

by the Pagenkopf group in 2003,38 where a highly stereoselective formal [3+2] 

cycloaddition reaction between glycal-derived cyclopropane 2.28 and nitriles 2.36 
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afforded 3,4-dihydro-2H-pyrroles 2.37 (Scheme 2.8). The reaction is mediated efficiently 

with TMSOTf at room temperature affording only one diastereomeric product 2.37. The 

cycloaddition demonstrated a broad scope where ,-unsaturated, aliphatic and aromatic 

nitriles participated in the reaction. In addition, the di-tert-butylsilylene protective group 

is not a necessary structural feature. Unfortunately, electron deficient nitriles failed to 

participate.  

 

Scheme 2.8 – Nitriles/glycal-derived DA cyclopropane cycloaddition 

Under these conditions the internal lactone linkage in 2.28 is important for the 

cycloaddition to occur. Therefore, attempted reaction between nitriles and cyclopropane 

2.38 gave multiple products.38 Interestingly, when the cycloaddition was done at lower 

temperature, the pyrrole derivatives 2.39 were obtained in excellent yields.39 This 

observation prompted extending the reaction to general non-carbohydrate-derived DA 

cyclopropane substrates 2.40 and a highly efficient pyrrole synthesis was reported.39 The 

reaction is highly regiospecific permitting the synthesis of multi substituted pyrroles 2.42 

in moderate to excellent yields with a precise control on the substitution pattern (Scheme 

2.9). 
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Scheme 2.9 – Pyrrole synthesis through nitrile/DA cyclopropane cycloaddition 

Shortly afterward, this reaction was applied to the synthesis of many natural and 

unnatural targets including bipyrroles 2.43a and thienylpyrroles 2.43b,40 (±)-goniomitine 

2.44,41 and (±)-quebrachamin 2.45 (Scheme 2.10).42 The effectiveness, cost efficiency 

and regioselectivity of this powerful annulation encouraged our group to apply it for the 

synthesis of 5-azaindoles. This work will be covered in the following section. 

 

Scheme 2.10 – Applications of DA cyclopropane/nitrile cycloaddition 
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2.2. Synthesis of 5-Azaindoles via a Cycloaddition Reaction between Nitriles and 

DA Cyclopropanes 

2.2.1. Research Objectives 

Due to enhanced solubility and perhaps superior bioavailability and activity, the 

development of azaindoles as indole isosteres has received considerable attention over the 

past decade.43 These efforts have resulted in the discovery of many active drug candidates 

(see Figure 2.4 for representative examples).44 Despite the promising potential of these 

heterocycles, they remain largely underexplored, in part due to the limited synthetic 

methods to prepare and functionalize the azaindole nucleus.  

 

Figure 2.4 – Examples of pharmacologically active azaindoles 



54 
 

While there are many synthetic methods available for the preparation of 

substituted indoles,45 only a few have been developed for the preparation of azaindoles.  

Some of the classic methods either do not work or are inefficient. The alternative 

methods generally rely on highly functionalized pyridine substrates, which are expensive 

or require multistep syntheses to prepare.46 Some recent examples are summarized in 

Scheme 2.11.46, 47 Additionally, C2 and C3 substituted 5-azaindoles are notoriously 

difficult to access as they often depend on multistep approaches involving highly 

functionalized pyridines, or strong bases to lithiate the 5-azaindole itself followed by 

electrophile trapping.47  

 

Scheme 2.11 – Synthetic approaches to azaindoles 

The goal of my research was to expand the formal [3+2] cycloaddition reaction 

between DA cyclopropanes and nitriles developed by our group in order to gain a 
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versatile access to azaindole heterocycles. The new approach envisioned a two step 

sequence for the synthesis of 5-azaindoles 2.66 by oxidation of a tetrahydro-1H-

pyrrolo[3,2-c]pyridine intermediate 2.67 obtained through a cycloaddition reaction 

between nitriles 2.36 and a 3,4-cyclopropanopiperidine 2.68 (Scheme 2.12). This strategy 

allows for an easy access to a wide variety of C2 functionalized azaindoles simply by 

varying the starting nitrile.  

 

Scheme 2.12 – Retrosynthetic analysis of azaindoles 

2.2.2. Results and Discussions 

The synthesis of the cyclopropanopiperidine began with benzyl protection of 4-

piperidone 2.69 followed by acetalization in acidic methanol (Scheme 2.13).48  Then the 

resulting acetal 2.71 was converted to enol ether 2.72 under Gassman’s conditions;49  

however, when 2.72 was subjected to cyclopropanation with ethyl diazoacetate in 

presence of Cu(TBS)2,
50  the ethyl cinnamate 2.73 was obtained in 60% yield and none of 

the desired cyclopropane 2.74 was observed. The cinnamate is likely formed by 

nucleophilic attack of the piperidine nitrogen at the carbene followed by nucleophilic 

attack of the formed carbanion at the benzylic position followed by elimination. 



56 
 

 

Scheme 2.13 – Attempted synthesis of the cyclopropanopiperidine 

To avoid this undesired reaction a tosyl protecting group was employed (Scheme 

2.14),51 and cyclopropanation under the same conditions afforded the desired 

cyclopropane 2.75 in 90% yield as an inconsequential 8 : 1 mixture of endo to exo 

diastereomers (Scheme 2.14).  

 

Scheme 2.14 – Access to cyclopropanopiperidines 
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With cyclopropane 2.75 in hand it was allowed to react with acetonitrile under the 

standard annulation conditions (1.0 equiv. Me3SiOTf, –40 °C).39 Both diastereomers 

worked equally well to give the tetrahydropyrrolopyridine 2.76a as a white solid in 95% 

isolated yield (Scheme 2.15). This material was easily and economically prepared on 

gram scale, and was selected as a model substrate for screening oxidation conditions to 

provide the desired azaindole nucleus. 

 

Scheme 2.15 – Nitrile annulation 

It was thought that either a two step sequence involving elimination or 

deprotection of the tosylate followed by oxidation would be acceptable, as well as a one 

step process to give the azaindole directly. Various strategies were explored, including 

strong bases,52 Na-naphthalenide,53 DDQ,54 Pd/C, and MnO2.
55  In each case, either 

decomposition or no reaction was observed (Table 2.1, entries 1– 6). Ultimately it was 

found that SeO2 executed the desired oxidation extraordinarily well and afforded the 

azaindole in 92% isolated yield (Table 2.1, entry 7).56 A control experiment was done 

where the product after SeO2 was isolated directly without basic work up. In this case the 

fully oxidized product was obtained as sulfonyl salt with the pyridine nitrogen. Therefore 

a basic workup is only necessary to neutralize this salt. It is noteworthy that both 

oxidation and deprotection of the tosylate group was done in a single step utilizing SeO2. 
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Table 2.1 – Deprotection and oxidation 

 

entry conditions yield (%) 

1 MeONa/MeOH decomposition 

2 tBuOK/tBuOH decomposition 

3 Na-naphthalenide/THF decomposition 

4 DDQ/toluene decomposition 

5 5% Pd/C, mesitylene no reaction 

6 MnO2,CH2Cl2 no reaction 

7 SeO2, dioxane 92% azaindole (2.79a) 

With reaction conditions established for both the nitrile annulation and subsequent 

oxidation the reaction scope was explored, and the results are summarized in Table 2.2. 

The reaction works well with other aliphatic nitriles (Table 2.2, entry b) as well as 

aromatic and electron rich aromatic nitriles (Table 2.2, entries c and d). Unsaturated 

nitriles are effective (Table 2.2, entry e) as are those containing heteroatoms, such as 2-

thiophenecarbonitrile (Table 2.2, entry f). The annulation reaction is conveniently run 

with a large excess of nitrile as solvent, but where this is impractical, nitromethane was 

employed. Unfortunately, sterically hindered (e.g., pivalonitrile and isobutyronitrile) or 

electron deficient nitriles (e.g., 4-bromobenzonitrile) did not engage in the reaction. 
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Table 2.2 – Scope of azaindole synthesisa 

 

entry nitrile azaindole (2.79) ann. yield ox. yield 

a MeCN R = Me 95% 92% 

b EtCN R = Et 62% 94% 

c PhCN R = Ph 92% 97% 

d 86% 81% 

e 
 

 

69% 61% 

f 
 

 

87% 61% 

aCycloaddition reactions were run at –40 °C using 1.0 equiv of 

cyclopropane, 2.0 equiv nitrile, 1.0 equiv Me3SiOTf in nitromethane 

solvent. In the case of acetonitrile (entry a), excess nitrile was used as 

solvent. Oxidation conditions: 5 equiv of SeO2 in refluxing dioxane. 

The Pagenkopf group had shown previously that other functional groups can react 

in formal dipolar cycloadditions with DA cyclopropanes, including electron deficient 

pyridines57 and indoles.58  While not intended to be exhaustive, Table 2.3 shows that the 

3,4-cyclopropanopiperidine 2.75 reacts analogously to afford fused azaindoles very 

efficiently. The reactions with both 4-cyanopyridine and 2-cyanopyridine gave their 
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respective tetrahydro-pyridoindolizines (Table 2.3), and both underwent oxidation with 

SeO2 to the pyridoindolizine. The single crystal x-ray structure of 2.81b was solved and 

the ORTEP is presented in (Figure 2.5). The cycloaddition with indole provided the 

cycloadduct 2.80c in 57% yield, but the standard SeO2 oxidation conditions were 

ineffective in this case. 

Table 2.3 – [3+2] Cycloannulation between pyridines and indole with cyclopropane 2.59 

 

entry dipolarophile 
annulation 

product (2.80) 
yield 

oxidation 

product (2.81) 
yield 

a 

  

2.80a 

(71%) 
 

2.81a 

(99%) 

b 

  
 

2.80b 

(53%) 
 

2.81b 

(64%) 

ca 

  

2.80c 

(57%) 
decomposition N/A 

a Relative stereochemistry was not determined but was assigned by analogy only.  For a 

relevant discussion with similar systems, see reference 58.  
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Figure 2.5 – X-ray crystal structure of 2.81b 

2.2.3. Summary 

A novel and practical two step sequence for the preparation of C2 substituted 5-

azaindoles and fused azaindoles has been reported. The target compounds were obtained 

in 34-87% overall yield. The synthetic sequence starts with an easily prepared and 

inexpensive piperidine based DA cyclopropane, which is then allowed to react with 

nitriles, pyridines and indoles.  A subsequent SeO2 mediated oxidation cleaves the tosyl 

protecting group and oxidizes the substrates to provide the aromatic azaindoles. 

2.3. Experimental 

2.3.1. General  

All reactions were run under an argon atmosphere unless otherwise indicated. Flasks 

were oven dried and cooled in a dessicator prior to use. Solvents and reagents were 

purified by standard methods.59 Dichloromethane, dioxane were purified by passing the 
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solvents through activated alumina columns. MeNO2 was dried by refluxing under CaH2 

for one hour prior to distillation. Synthetic intermediates including enol ethers,51 bis(N-

tertbutylsalicylamidinato)copper(II) (Cu(TBS)2),
50

 and ethyl diazoacetate were prepared 

according to the published procedures.  All other chemicals were of reagent quality and 

used as obtained from commercial sources unless otherwise noted. The progress of 

reactions were monitored by thin layer chromatography (TLC) performed on F254 silica 

gel plates. The plates were visualized by staining with ceric ammonium molybdate,60 or 

p-anisaldehyde. Column chromatography was performed with Silica Flash P60 60 Å 

silica gel from Silicycle according to the Still method.61 

The 1H and 13C NMR data were obtained on 400 or 600 MHz spectrometers. All 

spectra were obtained in deuterated chloroform and/or DMSO-d6. The spectra were 

referenced to residual chloroform (at δ 7.25 ppm for 1H spectra and the center peak of the 

triplet at δ 77.0 (t) for 13C spectra) and  DMSO-d6 (at δ 2.49 ppm for 1H spectra and the 

center peak of the multiplet at δ 39.50 (m) for 13C spectra). When peak multiplicities are 

given, the following abbreviations are used: s, singlet; d, doublet; dd, doublet of doublets; 

td, triplet of doublets; t, triplet; q, quartet; m, multiplet; br, broad; EI mass spectra were 

obtained spectrometer at an ionizing voltage of 70 eV. Melting points are uncorrected.  

2.3.2. Detailed Experimental Procedures 

2.3.2.1. Cyclopropane Synthesis 



63 
 

 

endo - Ethyl 6-methoxy-3-tosyl-3-azabicyclo[4.1.0]heptane-7-carboxylate (endo-2.75) 

and exo- ethyl 6-methoxy-3-tosyl-3-azabicyclo[4.1.0]heptane-7-carboxylate (exo-

2.75) 

 To a refluxing solution of the corresponding enol ether,51 (1.33g, 5 mmol) and 

Cu(TBS)2,
50

 (0.014 g, 0.25 mmol)  in 15 mL CH2Cl2, diazoacetate (1.09 mL, 10.4 mmol) 

was added drop wise over 3 hrs. After refluxing for 8 h at room temperature, the solvent 

evaporated and the crude reaction mixture was flashed on silica gel using EtOAc/hexanes 

(10–30%) for elution to provide the endo diastereomer as yellow oil (80% yield, 1.4 g). 

Rf 0.16 (30% EtOAc/hexanes); 1H NMR (400 MHz, CDCl3) 7.49 (d, J = 8.4, 2H), 7.22 

(d, J = 8.01, 2H), 4.07–3.99 (m, 2H), 3.28 (d, J = 11.72, 1H), 3.09 (s, 3H), 3.06-2.97(m, 

2H), 2.58-2.55 (m, 1H), 2.32 (s, 3H), 2.18-2.10 (m, 3H), 1.67 (d, J = 6.25, 1H), 1.15 (t, J 

= 7.13, 3H); 13C NMR (100 MHz, CDCl3)  168.8, 143.5, 132.8, 129.5, 127.1, 64.6, 60.4, 

54.1, 43.6, 42.4, 30.6, 27.9, 25.3, 21.1, 13.9; HRMS m/z 353.12970 (calcd for 

C17H23NO5S, 353.1297).  

The exo diastereomer was obtained as yellow oil (10% yield, 0.17 g). Rf 0.2 (30% 

EtOAc/hexanes); 1H NMR (400 MHz, CDCl3) 7.54 (d, J = 8.4, 2H), 7.23 (d, J = 8.01, 

2H), 4.11-4.03 (m, 3H), 3.40-3.33 (m, 1H), 3.20 (dd, J = 12.31, 7.03 Hz, 1H), 3.16 (s, 

3H), 2.78-2.71(m, 1H), 2.48-2.42 (m, 1H), 2.34 (s, 3H), 2.10-2.03 (m, 1H), 1.84 (d, J = 
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10.75, 1H), 1.72-1.67(m, 1H), 1.18 (t, J = 7.23, 3H); 13C NMR (100 MHz, CDCl3)  

168.3, 143.3, 133.3, 129.4, 127.3, 61.5, 60.5, 53.7, 42.1, 40.6, 28.5, 23.9, 23.5, 21.3, 

13.8; HRMS m/z 353.1293 (calcd for C17H23NO5S, 353.1297). 

2.3.2.2. General Procedure for the Cycloaddition Reaction 

To a solution of cyclopropane  275 (0.17 g, 0.5 mmol) and nitrile (1.0 mmol, 2 eq) in 

MeNO2 (3.0 mL) at –40 °C, TMSOTf (0.1 ml, 0.5 mmol) was added dropwise. After 

completion (14-18 h, TLC), 5.0 mL of EtOAc was added and the mixture was poured into 

a saturated solution of NaHCO3 (15 mL). The heterogeneous mixture was separated and 

the aqueous layer was extracted with EtOAc (3 x 10 mL). The combined organic layers 

were washed with brine, dried (MgSO4), filtered through Celite and concentrated under 

reduced pressure. Purification by flash chromatography on silica gel using EtOAc-

hexanes for elution provided the title compounds. 

 

Ethyl 2-methyl-5-tosyl-4,5,6,7-tetrahydro-1H-pyrrolo[3,2-c]pyridine-3-carboxylate 

(2.76a) 

White powder (95% yield, 0.17 g). Rf 0.5 (50% EtOAc/hexanes); mp 158–160 °C;   1H 

NMR (400 MHz, CDCl3) 8.10 (s, 1H), 7.67 (d, J = 8.21, 2H), 7.27 (d, J = 8.01, 2H), 

4.25 (s, 2H), 4.21(q, J = 7.52, 2H), 3.37 (t, J = 5.67, 2H), 2.63 (t, J = 5.37, 2H), 2.43 (s, 

3H), 2.40 (s, 3H), 1.33 (t, J = 7.03, 3H); 13C NMR (100 MHz, CDCl3)  165.3, 143.3, 
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135.0, 134.2, 129.5, 127.4, 122.3, 114.6, 108.4, 59.2, 44.7, 43.2, 22.9, 21.4, 14.45, 13.2; 

HRMS m/z 362.1310 (calcd for C18H22N2O4S, 362.1300). 

 

Ethyl 2-ethyl-5-tosyl-4,5,6,7-tetrahydro-1H-pyrrolo[3,2-c]pyridine-3-carboxylate 

(2.76b) 

White powder (62% yield, 0.10 g). Rf 0.18 (30% EtOAc/hexanes); mp 50–52 °C; 1H 

NMR (400 MHz, CDCl3) 8.47 (s, 1H), 7.64 (d, J = 8.21, 2H), 7.25 (d, J = 8.01, 1H), 

4.23–4.17 (m, 4H), 3.34 (t, J = 5.47, 2H), 2.85 (q, J = 7.42, 2H), 2.62 (s, 2H), 2.37 (s, 

3H), 1.31 (t, J = 7.03, 3H), 1.14 (t, J = 7.52, 3H); 13C NMR (100 MHz, CDCl3)  165.2, 

143.3, 141.1, 133.9, 129.54, 127.3, 122.3, 114.4, 107.3, 59.1, 44.7, 43.3, 22.8, 21.4, 20.5, 

14.3, 13.6; HRMS m/z 376.1467 (calcd for C19H24N2O4S, 376.1457). 

 

Ethyl 2-phenyl-5-tosyl-4,5,6,7-tetrahydro-1H-pyrrolo[3,2-c]pyridine-3-carboxylate 

(2.76c) 

White powder (92% yield, 0.15 g). Rf 0.16 (30% EtOAc/hexanes); mp 54-56 °C; 1H 

NMR (400 MHz, CDCl3) 8.10 (s, 1H), 7.71 (d, J = 8.21, 2H), 7.47 (d, J = 7.82, 2H), 

7.38–7.29 (m, 5H),  4.34 (s, 2H), 4.15(q, J = 7.23, 2H), 3.34 (t, J = 5.67, 2H), 2.73 (t, J = 
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5.57, 2H), 2.41 (s, 3H), 1.23 (t, J = 7.13, 3H); 13C NMR (100 MHz, CDCl3)  164.6, 

143.4, 136.8, 134.2, 132.0, 129.6, 128.9, 128.2, 128.0, 127.5, 124.6, 116.2, 108.7, 59.5, 

44.8, 43.1, 23.0, 21.4, 14.1; HRMS m/z 424.1462 (calcd for C23H24N2O4S, 424.1457). 

 

Ethyl 2-(4-methoxyphenyl)-5-tosyl-4,5,6,7-tetrahydro-1H-pyrrolo[3,2-c]pyridine-3-

carboxylate (2.76d) 

Yellow oil (86% yield, 0.39 g). Rf 0.16 (30% EtOAc/hexanes); 1H NMR (400 MHz, 

CDCl3) 8.54 (s, 1H), 7.66 (d, J = 8.21, 2H), 7.38 (d, J = 8.79, 2H), 7.27 (d, J = 8.01, 

2H), 6.82 (d, J = 8.79, 2H), 4.29 (s, 2H), 4.09 (q, J = 7.03, 2H), 3.76 (s, 3H), 3.37 (t, J = 

7.03, 2H), 2.66 (t, J = 5.47, 2H), 2.39 (s, 3H), 1.22 (t, J = 7.13, 3H); 13C NMR (100 MHz, 

CDCl3)  164.8, 159.4, 143.4, 137.0, 133.9, 130.2,  129.5, 127.4, 124.3, 124.2, 115.6, 

113.3, 107.9, 59.4, 55.2, 44.8, 43.1, 22.9, 21.4,14.2; HRMS m/z 454.1572 (calcd for 

C24H26N2O5S, 454.1562). 

 

(E)-Ethyl 2-styryl-5-tosyl-4,5,6,7-tetrahydro-1H-pyrrolo[3,2-c]pyridine-3-

carboxylate (2.76e) 
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White powder (69% yield, 0.12 g). Rf 0.15 (30% EtOAc/hexanes); mp 63-65 °C;   1H 

NMR (400 MHz, CDCl3) 8.73 (s, 1H), 7.75 (d, J = 16.80, 1H), 7.68 (d, J = 7.21, 2H), 

7.40 (d, J = 7.62, 2H), 7.30-7.27 (m, 4H), 7.20 (t, J = 7.33, 1H), 6.72 (d, J = 17.00, 1H), 

4.29-4.24 (m, 4H), 3.39 (t, J = 5.67, 2H), 2.71 (t, J = 5.67, 2H), 2.40 (s, 3H), 1.36 (t, J = 

7.13, 3H); 13C NMR (100 MHz, CDCl3)  164.9, 143.5, 136.7, 134.5, 134.0, 129.6, 

128.6, 127.7, 127.4, 126.8, 126.3, 125.7, 117.6, 116.6, 110.2, 59.7, 44.7, 43.1, 23.1, 21.4, 

14.4; HRMS m/z 450.1602 (calcd for C25H26N2O4S, 450.1613). 

 

Ethyl 2-(thiophen-2-yl)-5-tosyl-4,5,6,7-tetrahydro-1H-pyrrolo[3,2-c]pyridine-3-

carboxylate (2.76f) 

 White powder (87% yield, 0.37 g). Rf 0.14 (40% EtOAc/hexanes); mp 45-48 °C; 1H 

NMR (400 MHz, CDCl3)  8.40 (s, 1H), 7.68 (d, J = 8.21, 2H), 7.40 (dd, J = 3.66, 1.17 

Hz, 1H), 7.30–7.28 (m, 3H), 7.01 (dd, J = 5.13, 3.66 Hz, 1H), 4.31 (s, 2H), 4.21 (q, J = 

7.18, 2H), 3.41 (t, J = 5.72, 2H), 2.70 (t, J = 5.72, 2H), 2.40 (s, 3H), 1.30 (t, J = 7.11, 

3H); 13C NMR (100 MHz, CDCl3)  164.4, 143.4, 134.1, 132.9, 129.8, 129.6, 127.4, 

127.3, 127.0, 125.9, 124.9, 116.3, 109.1, 59.8, 44.8, 43.0, 22.9, 21.4, 14.2; HRMS m/z 

430.1010 (calcd for C21H22N2O4S2, 430.1021). 
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Ethyl 8-cyano-2-tosyl-1,2,3,4-tetrahydropyrido[3,4-b]indolizine-10-carboxylate 

(2.80a) 

Light brown powder (71%, 0.15 g). Rf 0.8 (10% MeOH/DCM); mp 183–185 °C; 1H 

NMR (400 MHz, CDCl3)  8.51 (s, 1H), 7.75 (s, 1H), 7.71 (d, J = 8.06, 2H), 7.30 (d, J = 

8.06, 2H), 6.83 (dd, J = 7.11, 1.69 Hz, 1H), 4.56 (s, 2H), 4.36 (q, J = 7.08, 2H), 3.57 (t, J 

= 5.72, 2H), 2.91 (t, J = 5.64, 2H), 2.40 (s, 3H), 1.42 (t, J = 7.18, 3H);  13C NMR (100 

MHz, CDCl3)  163.7, 143.8, 133.9, 132.5, 129.7, 127.4, 126.1, 124.8, 122.2, 121.8, 

118.2, 112.1, 104.1, 103.6, 60.2, 44.6, 42.6, 21.9, 21.5, 14.5; HRMS m/z 423.1253 (calcd 

for C22H21N3O4S, 423.1253). 

 

Ethyl 6-cyano-2-tosyl-1,2,3,4-tetrahydropyrido[3,4-b]indolizine-10-carboxylate 

(2.80b) 

Yellow crystals (53% yield, 0.22 g). Rf 0.28 (40% EtOAc/hexanes); mp 158–160 °C; 1H 

NMR (400 MHz, CDCl3)  8.41 (d, J = 9.04, 1H), 7.72 (d, J =  8.06, 2H), 7.30 (d, J =  

8.06, 2H), 7.26 (d, J = 6.84, 1H), 6.97 (dd, J = 8.07, 7.45 Hz, 1H), 4.53 (s, 2H), 4.34 (q, J 

= 7.08, 2H), 3.50 (t, J = 5.62, 2H), 3.43 (t, J = 5.62, 2H), 2.40 (s, 3H), 1.42 (t, J = 6.96, 

3H);  13C NMR (100 MHz, CDCl3)  163.8, 143.7, 135.3, 133.8, 129.7, 127.5, 124.9, 

124.3, 121.8, 119.3, 114.7, 107.3, 103.2, 60.0, 44.8, 42.9, 24.0, 21.4, 14.4; HRMS m/z 

423.1261 (calcd for C22H21N3O4S, 423.1253). 
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10a-Methoxy-5,5a,6,6a,7,8,9,10,10a,10b decahydrocyclopentadiene[c]pyridine[5,6-

b]indole-6-carboxylic acid ethyl ester (2.80c) 

White powder (57% yield, 0.8 g). Rf 0.17 (30% EtOAc/hexanes); mp 45–47 °C; 1H NMR 

(400 MHz, CDCl3)  7.62 (d, J = 8.21, 2H), 7.27 (d, J = 8.01, 2H), 7.09 (d, J = 7.42, 1H), 

7.01 (t, J = 7.33, 1H), 6.61 (t, J = 7.33, 1H), 6.54 (d, J = 7.82, 1H), 4.59 (dd, J = 10.36, 

5.28 Hz, 1H), 4.32 (brs, 1H), 4.18 (q, J = 7.23, 2H), 3.82 (dd, J = 10.94, 3.91 Hz, 1H), 

3.71 (d, J = 11.72, 1H), 3.41 (d, J = 10.55, 1H), 3.09 (s, 1H), 2.95 (dd, J = 12.70, 5.28 

Hz, 1H), 2.69 (t, J = 11.14, 1H), 2.52 (s, 3H), 2.38 (s, 3H), 2.08 (td, J = 4.10, 1H), 1.69 

(td, J = 4.49, 1H), 1.28 (t, J = 7.13, 3H);  13C NMR (100 MHz, CDCl3)  173.9, 152.5, 

143.1, 134.0, 129.5, 128.5, 127.2, 125.3, 118.0, 109.9, 81.1, 66.7, 60.6, 56.8, 52.7, 50.7, 

50.6, 50.5, 44.3, 41.48, 29.5, 21.3, 14.1.; HRMS m/z 470.1889 (calcd for C25H30N2O5S, 

470.1875). 

2.3.2.3. General Procedure for SeO2 Oxidation 

To a solution of pyrrole (1.0 mmol) in dioxane (5.0 mL), SeO2 (5.0 mmol, 5 eq) was 

added. The heterogeneous reaction mixture was heated at reflux for 24-40 h. After 

completion, the reaction was allowed to cool to rt and NaHCO3 (2 g) and anhydrous 

MgSO4 (1 g) were added.  After stirring for 30 min the heterogeneous mixture was 

filtered and the solids were washed with EtOAc (3 x 5 mL). The collected filtrate was 
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washed with 10% NaOH (3 x 10 mL) and the organic layer was separated. The organic 

layer was extracted with HCl 10% (3 x 10 mL). The combined acidic extracts were 

collected and neutralized with 10% NaOH and back extracted with EtOAc (3 x 10 mL). 

The organic layer then washed with brine, dried (MgSO4), filtered through celite and 

concentrated under reduced pressure to provide the title compounds. 

 

Ethyl 2-methyl-1H-pyrrolo[3,2-c]pyridine-3-carboxylate (2.79a) 

 White powder (92% yield, 0.18 g). Rf 0.24 (10% MeOH/DCM); mp 145–150 °C; 1H 

NMR (600 MHz, DMSO-d6)  9.10 (s, 1H), 8.21 (d, J = 5.27, 1H), 7.34 (d, J = 5.27, 1H), 

4.29 (q, J = 6.83, 2H), 2.66 (s, 3H), 1.35 (t, J = 7.03, 3H); 13C NMR (600 MHz, DMSO-

d6)  164.3, 145.8, 142.7, 140.9, 138.6, 123.3, 106.4, 102.2, 59.1, 14.3, 13.3; HRMS m/z 

204.0892 (calcd for C16H14N2O2,  C11H12N2O2, 204.0899). 

 

Ethyl 2-ethyl-1H-pyrrolo[3,2-c]pyridine-3-carboxylate (2.79b) 

White powder (94% yield, 0.20 g). Rf 0.14 (10% MeOH/DCM); mp 135–137 °C; 1H 

NMR (400 MHz, DMSO-d6)  9.12 (brs, 1H), 8.24 (brs, 1H), 7.39 (s, 1H), 4.29 (q, J = 

6.94, 2H), 3.10 (q, J = 7.48, 2H), 1.35 (t, J = 7.04, 3H), 1.26 (t, J = 7.55, 3H); 13C NMR 
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(100 MHz, DMSO-d6)  172.0, 164.2, 151.4, 142.9, 140.9, 138.7, 106.7, 101.4, 59.2, 

20.3, 14.36, 13.4; HRMS m/z 218.1058 (calcd for C12H14N2O2, 218.1055). 

 

Ethyl 2-phenyl-1H-pyrrolo[3,2-c]pyridine-3-carboxylate (2.79c) 

Off-white powder (97% yield, 0.25 g). Rf 0.17 (10% MeOH/DCM); mp 210-213 °C; 1H 

NMR (600 MHz, DMSO-d6)  9.25 (s, 1H), 8.29 (d, J = 5.28, 1H), 7.73–7.71 (m, 2H), 

7.51–7.49 (m, 3H), 7.42 (d, J = 5.42, 1H), 4.22 (q, J = 7.04, 2H), 1.25 (t, J = 7.11, 3H);  

13C NMR (100 MHz, DMSO-d6)  163.7, 145.5, 143.9, 141.4, 139.2, 130.9, 130.02, 

129.3, 127.8, 123.9, 106.9, 102.4, 59.4, 14.1; HRMS m/z 266.1047 (calcd for 

C16H14N2O2,  266.1055). 

 

Ethyl 2-(4-methoxyphenyl)-1H-pyrrolo[3,2-c]pyridine-3-carboxylate (2.79d) 

White powder (81% yield, 0.23 g). Rf 0.11 (10% MeOH/DCM); mp 198-200 °C; 1H 

NMR (400 MHz, DMSO-d6)  9.25 (brs, 1H), 8.29 (brs, 1H), 7.68 (d, J = 8.50, 2H), 

7.42(s, 1H),  7.05 (d, J = 8.50, 2H), 3.23 (q, J = 7.04, 2H), 3.83 (s, 3H), 1.27 (t, J = 7.04, 

3H); 13C NMR (100 MHz, DMSO-d6)  163.8,160.2, 145.7, 143.7, 141.2, 139.2, 131.5, 
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122.9, 113.4, 101.8, 100.2, 94.3, 59.4, 55.3, 14.2; HRMS m/z 296.1156 (calcd for 

C17H16N2O3, 296.1161). 

N

N
H

CO2Et
Ph

 

(E)-Ethyl 2-styryl-1H-pyrrolo[3,2-c]pyridine-3-carboxylate (2.79e) 

Yellow powder (61% yield, 0.18 g). Rf 0.20 (10% MeOH/DCM); mp 258-260 °C; 1H 

NMR (600 MHz, DMSO-d6)  9.17 (brs, 1H), 9.30 (brs, 1H), 8.00 (d, J = 16.40, 1H), 

7.60–7.56 (m, 3H), 7.46 (t, J = 7.61, 2H), 7.42 (d, J = 5.72, 1H), 7.38 (t, J = 7.32, 1H), 

4.37 (q, J = 7.03, 2H), 1.41 (t, J = 7.03, 3H); 13C NMR (100 MHz, DMSO-d6)  164.0, 

143.4, 142.9, 141.8, 140.0, 135.8, 134.0, 129.0, 128.9, 126.8, 116.7, 106.6, 103.6, 59.6, 

14.2.; HRMS m/z 292.1205 (calcd for C18H16N2O2,  292.1212). 

 

Ethyl 2-(thiophen-2-yl)-1H-pyrrolo[3,2-c]pyridine-3-carboxylate (2.79f) 

Yellow powder (61% yield, 0.8 g). Rf 0.2 (10% MeOH/DCM); mp 170-175 °C; 1H NMR 

(400 MHz, DMSO-d6)  9.20 (brs, 1H), 8.29 (brs, 1H), 7.94 (s, 1H), 7.81 (d, J = 4.69, 

1H), 7.42 (d, J = 5.27, 1H), 7.24–7.23(m, 1H), 4.34 (q, J = 7.03, 2H), 1.37 (t, J = 7.32, 

3H); 13C NMR (100 MHz, DMSO-d6)  163.7, 143.30, 141.1,139.8, 139.1, 131.8, 130.3, 

129.8, 127.1, 124.1, 106.9, 101.9, 59.6, 14.2; HRMS m/z 272.0612 (calcd for 

C14H12N2O2S, 272.0619). 
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Ethyl 8-cyanopyrido[3,4-b]indolizine-10-carboxylate (2.81a) 

Yellow powder (73% yield, 0.19 g). Rf 0.17 (10% MeOH/DCM); mp 168–171 °C; 1H 

NMR (400 MHz, DMSO-d6)  9.42 (brs, 1H), 9.17 (d, J = 7.23, 1H), 8.52 (brs, 1H), 8.50 

(s, 1H), 8.26 (d, J = 5.47, 1H), 7.23 (d, J  = 6.84, 1H), 4.36 (q, J = 7.03, 2H), 1.42 (t, J = 

7.03, 3H); 13C NMR (100 MHz, DMSO-d6)  163.1, 144.9, 141.09, 136.6, 134.0, 128.4, 

126.1, 122.9, 117.4, 111.2, 110.6, 106.9, 96.8, 59.9, 14.3; HRMS m/z 265.0856 (calcd for 

C15H11N3O2, 265.0851). 

 

Ethyl 6-cyanopyrido[3,4-b]indolizine-10-carboxylate (2.81b) 

Yellow crystals (64% yield, 0.16 g). Rf 0.30 (10% MeOH/DCM); mp 183-186 °C; 1H 

NMR (400 MHz, DMSO-d6)  9.61 (s, 1H), 8.61 (dd, J = 9.38, 1.17 Hz, 1H), 8.58 (d, J = 

6.06, 1H), 8.46 (dd, J = 6.15, 1.07 Hz, 1H), 7.90 (dd, J = 7.03, 1.17 Hz, 1H), 7.60 (dd, J = 

9.38, 6.84 Hz, 1H),4.41 (q, J = 7.10, 2H), 1.43 (t, J = 7.13, 3H); 13C NMR (100 MHz, 

DMSO-d6)  163.4, 145.4, 139.5, 133.8, 127.5, 125.0, 124.8, 123.2, 114.5, 111.1, 107.4, 

107.2, 96.2, 59.9, 14.4; HRMS m/z 265.0846 (calcd for C15H11N3O2, 265.0851). 
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Chapter 3: Cyclobutane Activation for Dipolar Cycloaddition: New Synthesis of 

Alkoxy Substituted Donor−Acceptor (DA) Cyclobutanes and their First Use in 

Dipolar Cycloaddition with 1,2-Dipoles  

This chapter describes the development of a new synthesis of alkoxy substituted 1,1-

cyclobutane diesters (DA cyclobutanes) and their utility for the first time in dipolar 

cycloaddition to prepare highly substituted piperidines, piperideines and 

tetrahydropyrans. A brief summary of the reactivity and utility of cyclobutane rings in 

dipolar cycloaddition will be covered. The cyclobutane chemistry presented in this 

chapter was proposed, proofed and optimized by me. Part of the synthetic work was 

carried out in collaboration with colleagues Mr. Andrew C. Stevens and Mr. Benjamin P. 

Machin; namely the tetrahydropyran methodology; and the results have been published in 

Organic Letters.1 The individual contributions for the tetrahydropyran methodology are 

as follows: the reaction concept was designed, proofed and firstly optimized by me. I 

made the cyclobutane starting materials and cycloadducts derived from 1-

methoxycyclohex-1-ene. The rest of substrate scope and examining different reaction 

conditions was carried by Mr. Andrew C. Stevens and Mr. Benjamin P. Machin. Some 

portions of the text and schemes have been reproduced in part with permission from 

Moustafa, M. M. A. R.; Pagenkopf, B. L. Org. Lett. DOI: 10.1021/ol102062t and 

Moustafa, M. M. A. R.; Stevens, A. C.; Machin, B. P.; Pagenkopf, B. L. Org. Lett. DOI: 

10.1021/ol102063f. Copyright 2010 American Chemical Society.  
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3.1. Introduction 

3.1.1. Formal [4+2] Cycloaddition of DA Cyclobutanes  

The introduction of cyclobutane derivatives, as molecular building blocks in the synthesis 

of highly complex compounds has gained increasing importance in the last decades. This 

is mainly because cyclobutane derivatives are easily obtained by many reliable methods. 

In addition, activated cyclobutanes can undergo a facile and selective bond cleavage 

under a variety of conditions due to an inherent ring strain. The cleavage point and rate 

are dependent on the reaction mechanism, conditions, reagents and the ring substituents.2 

While there are numerous reactions involving C−C bond cleavage of cyclobutanes, this 

section will include an extensive review of the cycloaddition examples where 

cyclobutane ring is being used as 1,4–dipole equivalent (Scheme 3.1).   

 

Scheme 3.1 – Dipolar cycloadditions with cyclobutanes 

Saigo and coworkers at the University of Tokyo were the first to utilize activated 

cyclobutanes in cycloaddition reactions in a similar fashion to cyclopropanes.3  In the 

presence of titanium(IV) chloride, a novel [4+2] annulation reaction between 2-

(dimethylamino)cyclobutanecarboxylic esters 3.1 and carbonyl compounds 3.2 proceeds 

easily to give the pyran derivatives 3.4 in moderate to good yields (Scheme 3.2). When a 

basic work up was involved a mixture of unhydrolyzed dimethylamino derivative 3.3 and 

δ-lactol 3.4 were obtained. In order to hydrolyze 3.3 into 3.4, acidic treatment was 
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required. Although Saigo obtained a mixture of stereoisomers with his amine activated 

cyclobutanes, moderate to excellent diastereoselectivities were obtained when other 

activating groups were utilized (vide infra).     

 

Scheme 3.2 – The reaction of dimethylamino cyclobutanecarboxylic esters and carbonyl 

compounds 

Since Saigo’s first communication in 1991, surprisingly no other reports appeared 

until very recently where the Matsuo group has extended the previous reaction to alkoxy-

activated cyclobutanones rings.4 They have shown that aldehydes or ketones undergo a 

BF3•OEt2-catalyzed [4+2] annulation reaction with 3-alkoxycyclobutanones 3.5 and 3.9 

to give substituted δ-pyrones 3.7 and 3.11 respectively (Scheme 3.3). Compared to 

Saigo’s cycloaddition, a single diastereomer was obtained in case of aldehydes 

cycloadducts. On the other hand cycloadducts of ketones were obtained in moderate 

diastereoselectivity when the reaction done in CH2Cl2. Interestingly, the diastereomeric 

ratio of these cycloadducts dramatically increased when diisopropyl ether was employed 

as a solvent. In addition to this marked diastereoselectivity, a regioselective ring opening 

was also observed. While the bicyclic cyclobutanone 3.5 gave rise to less substituted 

enolate intermediates 3.8, more substituted enolates 3.12 were generated from the 

monocyclic cyclobutanone 3.9 (Scheme 3.3). The new methodology was utilized 



84 
 

efficiently to prepare various multisubstituted dihydro-δ-pyrones, which might be 

difficult to be accessed by hetero Diels-Alder chemistry.5 Shortly thereafter, Matsuo has 

extended the annulation reactions of these 3-alkoxycyclobutanones to include silyl enol 

ethers,6 allyl silanes,7 and imines.8     

 

Scheme 3.3 – The reaction of 3-alkoxycyclobutanones with carbonyl compounds. 

From various Lewis acids screened, EtAlCl2 catalyzed the desired annulation of 

silyl enol ether 3.14 with different 3-alkoxycyclobutanone (e.g. 3.9) to yield highly 

oxygenated cyclohexanone derivatives 3.15 in moderate yield and good selectivity 

(Scheme 3.4).6 
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Scheme 3.4 – The reaction of silyl enol ether and 3-alkoxycyclobutanone 

On the other hand, tin(IV) chloride was the best catalyst for the formal [4+2] 

cycloaddition between allysilanes 3.17 and 3-alkoxycyclobutanones 3.16 (Scheme 3.5).7 

The cyclohexanone cycloadducts 3.18 were obtained in good yield however in moderate 

diastereoselectivity. Furthermore, when these cycloadducts were treated with Me3SiOTf, 

the versatile cyclohexenone derivatives 3.19 were synthesized in good to excellent yields 

over two steps. Interestingly, when a sterically none demanding silyl group was 

employed (e.g. allyl trimethylsilane), the desired cycloaddition occurred rather than 

elimination of the silyl group. These results are in contrast to the usual tendency of LA 

catalyzed reactions of allyltrimethylsilane with carbonyl compound to give the allylation 

products. When the bulky SiPh2tBu group was employed, the unexpected pyrones 3.20 

were obtained in moderate yields (Scheme 3.5).  This pyrone product is believed to arise 

from the more stable zwitterionic intermediate 3.22 generated through a 1,5-hydride 

transfer of the β–silyl cation 3.21. The tendency toward the hydride shift and hence the 

pyrone formation improved by increasing the steric demand of the R substituent of the 

cyclobutane 3.16. 
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Scheme 3.5 – The reaction of allysilane and 3-alkoxycyclobutanone 

Finally, the Matsuo group has very recently extended the cycloaddition reactions   

of the alkoxycyclobutanones to include imine based dipolarophiles.8 A formal [4+2] 

cycloaddition reaction was achieved when 3.9 was treated with different N-p-

toluenesulfomyl imines 3.22 in the presence of catalytic TiCl4 to yield different 

dihydropyridone derivatives 3.24 after elimination of ethanol from the expected 

cycloadducts (Scheme 3.6).  Cleverly, this cycloaddition has been applied to the 

synthesis of bremazocine 3.25 in six steps starting from the cycloadduct 3.24a. When 

compared to the many natural products that have been prepared through DA 

cyclopropane based methodologies, the synthesis of bremazocine 3.25, published in 
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2010,8 is the first natural product to be synthesized based on DA cyclobutane 

cycloadditions.   

 

Scheme 3.6 – The reaction of imines and 3-alkoxycyclobutanone 

 In the previous examples either the cyclobutane or the cyclobutanone is activated 

by dimethylamino, or alkoxy substituents, respectively. However the first reports 

regarding the annulation of 1,1-cyclobutanediesters 3.26 and 3.29, activated by carbon-

based activating groups were published in 2009 simultaneously by Christie and 

Pritchard,9 and the Johnson groups (Scheme 3.7).10 In Johnson’s work, the reaction with 

different electron deficient and/or electron rich aromatic aldehydes was efficiently 

catalyzed by Sc(OTf)3. However, a more bulky LA 3.28 was required to activate the 

cyclobutane ring toward aliphatic aldehydes. In both cases, the cis-2,6-disubstituted 

tetrahydropyrans 3.27 were obtained in excellent yields and diastereoselectivities 

(Scheme 3.7).10 When compared to Johnson’s work, the cycloaddition reported by 

Christie and Pritchard is limited to cyclobutanes activated by a dicobalt-alkyne complex. 

In addition, shorter reaction time, high diastereoselectivity and yield were observed only 
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with electron rich aromatic aldehydes. When aliphatic and/or electron deficient aldehydes 

were utilized, either a poor yield, diastereoselectivity or a limited scope was observed 

(Scheme 3.7).9 This is in contrast to the homologues reaction with DA cyclopropanes 

where the electron deficient aldehydes react faster.              

  

Scheme 3.7 – The reaction of aldehydes and 1,1-cyclobutane diesters 

3.1.2. Research Objectives 

Doubly activated 2-alkoxy-1,1-cyclobutane diesters 3.33 are interesting 1,4-dipole 

equivalents because they can be prepared in a single step from the corresponding enol 

ether and methylidene malonate by LA catalysis (Scheme 3.8). Although they are known 

compounds, the use of these DA cyclobutanes in dipolar cycloadditions had not been 

realized prior to the work presented in this thesis. 
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Scheme 3.8 – Lewis acid catalyzed synthesis of 2-alkoxy-1,1-cyclobutane diesters 

The objective of my research was to synthesize these cyclobutanes and to utilize 

them in dipolar cycloadditions. Under LA catalysis these cyclobutanes are expected to 

undergo a facile heterolytic bond cleavage to form 1,4-zwitterion intermediates 3.34 that 

can be trapped with different 1,2- and 1,3-dipoles including aldehydes, nitriles,  imines, 

diazines, acetylenes, nitrones, etc (Scheme 3.9).    

 

Scheme 3.9 – Targeted formal [4+2] cycloadditon with 1,2 and 1,3 dipoles e.g. 

aldehydes, nitriles,  imines, diazines, acetylenes, nitrones, etc. 

The expected six and/or seven membered carbo and heterocycles are important 

cores of many natural and unnatural products. The introduction of the formal [4+2] 

cycloaddition of 2-alkoxy-1,1-cyclobutane diesters as a new way to achieve these rings is 

expected to have a great impact on the scope, versatility and utility of DA cyclobutane 
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based methodologies. The following sections will discuss the synthesis of these DA 

cyclobutanes and their use for the first time to prepare piperidine, piperideines and 

tetrahydropyrans.  

3.2. Results and Discussions 

3.2.1. Synthesis of 2-Alkoxy-1,1-Cyclobutane Diesters 

Although there are many recent highly efficient and stereoselective syntheses of 

cyclobutanes activated by silyl ether groups,11 the syntheses of cyclobutanes activated by 

alkyl ethers are very limited.12 Two methods have been reported that allow access to 

alkoxy substituted DA cyclobutanes with geminal electron withdrawing groups in good 

yields (Scheme 3.10).  

 

Scheme 3.10 – Synthesis of 2-alkoxy-1,1-cyclobutane diesters  

The use of a Michael induced ring closure of acyclic substrates (e.g 3.36) was not 

selected as a preparative route as it offers limited control over the stereochemistry and 



91 
 

required multiple steps. On the other hand, the ZnBr2 mediated [2+2] annulation reaction 

reported by Roberts in 1986 appeared much more promising since the same LA (ZnBr2) 

can be used in the subsequent [4+2] reaction allowing for a one-pot tandem process 

(Scheme 3.10). 

Based on this earlier precedence, ZnBr2 was taken as the Lewis acid for the 

cycloaddition of dihydropyran 3.31a and di-t-butyl methylidene malonate 3.32a. 

Unfortunately, duplication of the conditions reported by Roberts, in our hands, gave a 

poor yield (39% Table 3.1, entry 1), and isolation of the cyclobutane was complicated by 

both considerable byproducts and the stoichiometric ZnBr2. More problematic, however, 

was our inability to extend this methodology to the more readily available and cheaper 

diethyl methylidene malonate 3.32b (depending on their synthesis from the 

corresponding malonates, they cost approximately 150$/5g for 3.32a and 120$/kg for 

3.32b). Only trace amounts of the desired cyclobutane 2.39b was isolated along with a 

complex mixture of polymerization and ring opened byproducts (Table 3.1, entry 2). This 

may be attributed to the higher reactivity of diethyl methylidene malonate 3.32b and its 

tendency to rapid polymerization when compared to 3.32a. To improve the outcome of 

the reaction, other Lewis acids were screened, including TMSOTf, ZnCl2, Sc(OTf)3, and 

Yb(OTf3 (Table 3.1). Although TMSOTf and ZnCl2 were completely ineffective, 

Sc(OTf)3, and Yb(OTf3) emerged as highly effective catalysts, with Yb(OTf)3 being the 

catalyst of choice due to slightly higher yields and lower catalyst cost (Table 3.1, entries 

5 and 6). The use of catalytic Yb(OTf)3 rather than stoichiometric ZnBr2 made the 

reactions operationally much simpler to perform, requiring only a simple filtration 

through silica plug to provide the cyclobutane in high purity and yield. In addition, 
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comparable yields were obtained with catalyst loadings as low as 2 mol % however 

longer reaction times are required. 

Table 3.1 – Optimization of the 2-alkoxy-1,1-cyclobutane diesters synthesis 

 

entry R catalyst temperature yield (%)a 

1 tBu 1 equiv ZnBr2 –130 °C to –78 °C 39b 

2 Et 1 equiv ZnBr2 –130 °C to –78 °C 17b 

3 Et 1 equiv ZnCl2 –130 °C to –78 °C 0c 

4 Et 1 equiv TMSOTf –78 °C 0c 

5 Et 10 mol % Sc(OTf)3 –78 °C 78 

6 Et 10 mol % Yb(OTf)3 –78 °C 84 

a Isolated yield. b Product contaminated by ring opened and 

polymeric substance. c Polymeric substances observed. 

The crude cyclobutane obtained from the reaction catalyzed by Yb(OTf)3 (Figure  

3.1, C) is sufficiently pure and even cleaner than the purified material obtained when 

ZnBr2 is used (Figure  3.1, A).  
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Figure  3.1 – 1H NMR spectra of 3.39b isolated from ZnBr2 and Yb(OTf)3 (with and 

without pyridine additive) catalyzed reactions as well as the TLC images. 

On the other hand, it was observed that the cyclobutane ring is very sensitive to 

Yb(OTf)3 and it decomposes within minutes after isolation if there are any traces of the 

catalyst left (Figure  3.1, b). Therefore, the cyclobutane should be purified once collected 

to avoid any decomposition. For large scale applications, few drops of pyridine 

8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5
Chemical Shift (ppm)
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(B) 1H NMR spectrum of the crude product from Yb(OTf)3 catalyzed reaction  
(without pyridine additives, data collected after 5 minutes) 

(C) 1H NMR spectrum of the crude product from Yb(OTf)3 catalyzed reaction  
(with pyridine additives, data collected after 16 h) 

(A)  1H NMR spectrum of the  purified product from ZnBr2 catalyzed reaction

cyclobutane: UV 
inactive, stained 

pyridine: UV active, 
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decomposition 
products 
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(equivalent amount to LA) can be added to the reaction at –78 °C before filtration. The 

pyridine additive chelates Yb(OTf)3 and prevents cyclobutane ring opening  (Figure  3.1, 

c).  

With a promising catalyst identified for the desired [2+2] annulation, the reaction 

scope was explored, and the results are summarized in Table 3.2.  

Table 3.2 – Scope of the cyclobutane synthesis  

 

Entry Enol Ether Cyclobutane yieldsa 

1 
 

3.39c, R3= H, R = Et (93%) 
3.39d, R3= H, R = tBu (72%) 
3.39e, R3= R = Me (NR)b 

2 
  

3.39f, R = Me (56%) 
3.39g, R = Et (80%) 

3 

  

3.39h, (70%) 

a Isolated yield. When possible, only one diastereomer was 

isolated. b No reaction was observed. When the reaction warmed up 

to rt, polymerization takes place. 

The range of compatible methylidene malonates has been expanded from the most 

stable t-butyl, to now encompass ethyl and the very reactive methyl derivatives. All 

methylidene malonates gave the target DA cyclobutanes in good to excellent yields 
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(entries 1-3). Unfortunately, the more substituted and stable 2-ethylidenemalonate was an 

ineffective reactant partner under these conditions (entry 1, 3.39e).  The range of enol 

ethers that participated in the cycloaddition was quite broad with cyclic, acyclic and 

higher-substitution patterns being tolerated (entries 1-3). All cyclobutanes were obtained 

in good to excellent yields and as single diastereomers. Some of the cyclobutanes were 

prepared on large scale in a single pot, with reactions providing the cyclobutane in up to 

12 grams. The relative stereochemistry of the cis-products was assigned on the basis of 

NOE interactions. A representative spectrum (for cyclobutane 3.39b) is presented in 

Figure 3.2.  

 

Figure 3.2 – 1D NOESY of cyclobutane 3.39b 
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The 1D NOESY spectrum showed a strong interaction in the positive direction of 

the spectrum (highlighted in a blue circle) between the ring junction protons when either 

of them is irradiated (the irradiated proton colored red appears in the negative direction of 

the spectrum) (Figure 3.2). 

Next, the ability of Yb(OTf)3 to catalyze the same annulation reaction between 

methylidene malonates 3.32 and other electron rich alkenes was explored (Table 3.3).  

Table 3.3 – Annulation reaction between styrene derivatives and methylidene malonates 

 

entry styrene derivatives cyclobutane yieldsa 

1 

 

3.41a, R3 = H, R = Et (81%) 
3.41b, R3 = Ph, R = Me (NR)b

2 

  

3.41c, R = Me (51%) 
3.41d, R = Et (71%) 
3.41e, R= tBu (59%) 
 

3 

  

3.41f, (NR)b 

aIsolated yield. When possible, only one diastereomer was isolated. bNo reaction 

was observed. When the reaction warmed up to rt, polymerization takes place. 



97 
 

The [2+2] reaction of methylidene malonates 3.32 with p-vinyl anisole (Table 

3.3, entry 1) and anethole (Table 3.3, entry 2) gave cyclobutanes 3.41a-e as a single 

diastereomeric product. Similarly to 2-ethylidenemalonate, no reaction was observed with 

the more substituted 2-benzylidenemalonate (Table 3.3, entry 1, 3.41b). Unfortunately, 

no reaction was observed with styrene and only polymerization products were observed 

(Table 3.3, entry 3, 3.41f).  

In summary, ytterbium triflate has been shown to be an excellent catalyst for the 

[2+2] annulation reaction between a wide variety of electron rich alkenes and 

methylidene malonates. The use of ytterbium triflate makes the reactions operationally 

much simpler to perform, and gives single diastereomeric products that are obtained 

cleaner and in higher yield. The use of these synthetically useful cyclobutanes in dipolar 

cycloaddition reactions will be covered in the following sections. 

3.2.2. Formal [4+2] Cycloaddition of Alkoxy-substituted DA Cyclobutanes 

and Imines: Stereoselective Synthesis of Piperidines  

Functionalized piperidine rings are among the most common heterocyclic cores in 

many natural compounds and unnatural synthetic analogues. Figure 3.3 shows several 

representative examples.13,14Due to their broad pharmacological effects, the development 

of new synthetic methodologies to prepare piperidine heterocycles has received enormous 

attention over the years.14 While a comprehensive review is beyond the scope of this 

thesis, some of the commonly used methods to prepare piperidines are summarized in 

Figure 3.4. In general, piperidines can be easily accessed by nucleophilic substitution, 

reductive amination, hydroamination, Michael addition, ring-closing metathesis, ene 
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reaction, radical cyclization, reduction of pyridine (Figure 3.4) and/or cycloaddition 

reactions (Scheme 3.11).14 

 

Figure 3.3 – Biologically active piperidines 
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Figure 3.4 – Synthetic approaches toward piperidines 

Although, many of these methods have been applied successfully in the synthesis 

of different piperidine derivatives, the stereoselective synthesis of multisubsituted 

piperidines and those containing quaternary carbons remains a known synthetic 

challenge.14e Cycloaddition reactions and related syntheses are among the most important 

methods that have been developed to solve this problem. Scheme 3.11 shows some recent 

examples including Diels-Alder approach (equation 1&2),15 dipolar cycloaddition with 

azides (equation 3)16 and/or nitrones (equation 4),17 palladium-trimethylenemethane 

mediated annulation (equation 5)14f,18 and cyclopropane ring-opening/Conia-Ene 

cyclization (equation 6).19  
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Scheme 3.11– Cycloaddition routes and related syntheses toward multisubsituted 

piperidines 

Indeed, these methods provide a reliable and efficient solution however with a 

variety of limitations..14e As such, the development of concise, versatile, efficient and 

stereocontrolled routes to multisubstituted piperidines stands to be of great importance to 

synthetic and medicinal chemists. 

Imines have been utilized by us20 and others21 as dipolarophiles in Lewis acid-

catalyzed [3+2] cycloadditions with DA cyclopropanes to furnish pyrrolidine derivatives 

in a stereoselective manner. At the onset of this project, analogous reactions with DA 

cyclobutanes were not known,22 thus we sought to access the piperidine nucleus 3.65 

through a Lewis acid-catalyzed formal [4+2] cycloaddition of appropriately substituted 

DA cyclobutanes 3.39 and imines 3.64 (Scheme 3.12). Given our ongoing interest in 

alkoxy substituted DA cyclopropanes,23 the analogous cyclobutanes were chosen as 

substrates for the exploration of this chemistry. 

 

Scheme 3.12 – Formal [4+2] cycloaddition of DA cyclobutanes and imines 

Since Yb(OTf)3 has been identified as a superior catalyst for the synthesis of 

alkoxy substituted DA cyclobutanes (Table 3.1), the feasibility of using it to catalyze the 

[4+2] cycloaddition of these cyclobutanes with imines was explored to allow for a 
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possible  one-pot synthesis of piperidine.24  To our delight, upon exposure of cyclobutane 

3.39b and imine 3.66a (prepared in situ) to catalytic Yb(OTf)3 at –50 °C, the trans fused 

bicyclic piperidine trans-3.67a as a single diastereomer and piperideine 3.68a were 

observed (Scheme 3.13). On the other hand, reaction of imine 3.66b gave cycloadduct 

3.67b as a 2:1 mixture of diastereomers as well as the piperideine 3.68b. The relative 

stereochemistry of trans-3.67b and cis-3.67b was assigned on the basis of NOE 

interactions, and ultimately confirmed by single-crystal X-ray analysis (Figure 3.5 and 

Figure 3.6). It is likely that the piperideine 3.68 is produced from cycloadduct 3.67 by 

tetrahydropyran ring opening followed by a proton transfer. In order to isolate a single 

product, the reaction was warmed to room temperature for an hour after consumption of 

the cyclobutane to drive the product from the piperidine 3.67a to the piperideine 3.68a.  

 

Scheme 3.13 – Formal [4+2] cycloaddition of 2-alkoxy-1,1-cyclobutane diesters and 

imines 
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Figure 3.5 – Single crystal X-ray structure of trans-3.67b 

 

Figure 3.6 – Single crystal X-ray structure of cis-3.67b 

Having demonstrated that the piperdeine synthesis was successful, the scope for 

the reaction was explored and the results are summarized in Table 3.4. Unfortunately, the 

scope for the formal [4+2] reaction is quite limited. While aniline-derived imines were 

effective substrates, no reaction was observed with imines bearing aliphatic substituents 

on the nitrogen. The reaction tolerated various substituents at C2 including cinnamyl, 

naphthyl, electron rich or deficient aromatic and heteroaromatic (Table 3.4, 3.68a- 

3.68g). On the other hand, the more reactive cyclobutanes 3.39g and 3.39h gave complex 

mixtures when subjected to the same reaction conditions. 
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Table 3.4 – Ytterbium triflate catalyzed synthesis of piperdeines 

 

entry cyclobutane 3.39 piperideine 3.68 yielda 

1 

  

3.68a, Ar = C6H5 (83%) 
3.68b, Ar = 3-NO2C6H4 (73%) 
3.68c, Ar = 4-MeOC6H4 (77%)
3.68d, Ar = 2-thienyl (42%) 
3.68e, Ar = 1-naphthyl (84%) 

2 

 

3.68f, Ar = Ph (86%) 
3.68g, Ar = 3-NO2C6H4 (81%) 

3 

  

3.68h, Ar = C6H5 (NR)b 

3.68i, Ar = 3-NO2C6H4 (NR)b 

3.68j, Ar = 4-MeOC6H4 (NR)b 

4 

  

3.68k, Ar = C6H5 (NR)b 

aIsolated yield. bComplex reaction mixture was observed.  

In regard to the nitrogen functionalization, extensive optimization has been done 

to install a variety of aliphatic groups including methyl, iso propyl and/or benzyl however 

with no success and the results are summarized in Table 3.5 (entries 1-11). A wide 

variety of reaction conditions have been examined including different LAs (Et2ALCl2, 

MgCl2, MgBr2, SnCl2, ZnCl2, ZnBr2, Zn(OTf)2, Yb(OTf)3, Sc(OTf)3, TiCl4), different 
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solvents (sulfolane, CH2Cl2, toluene) and/or different reaction temperatures (–50 °C, 0 °C 

or ambient).  

Table 3.5 – Optimizing the reaction conditions with aliphatic iminesa 

 

 
LA (10 
mol %) 

CH2Cl2 
toluene,

rt 

CH3NO2 

–50 °C-
rt 

sulfol-
ane, 

rt 
entry –50 °C, 

12 h 
0 °C, 
12 h 

rt, 
12 h 

1 Et2ALCl2  NRb 3.70 -- -- -- -- 

2 MgCl2 NR NR 3.70 -- -- -- 

3 MgBr2 NR 3.70 -- -- -- -- 

4 SnCl2 NR decomp. -- -- -- -- 

5 ZnCl2 NR decomp. -- -- -- -- 

6 ZnBr2 NR NR+decomp. -- -- -- -- 

7 Zn(OTf)2 NR NR 3.68lc -- -- -- 

8 Yb(OTf)3 NR NR 3.68lc 3.68lc 3.71 3.72 

9 Sc(OTf)3 3.68lc -- -- -- -- -- 

10 TiCl4 decomp.d -- -- -- -- -- 

11 TMSOTf 3.70 -- -- -- -- -- 

a reaction monitored by NMR.bNR= no reaction and only cyclobutane observed. c traces 

of the product and decomposition.ddecomp.= decomposition.  
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In general, either cyclobutane ring opening product 3.70 and/or decomposition 

were obtained. Traces of the expected cycloadduct 3.68l as well as decomposition 

products were observed when the reaction catalyzed by Zn(OTf)2, or Sc(OTf)3 or 

Yb(OTf)3 (Table 3.5, entries 7-9). In order to stabilize the oxocarbenium ion intermediate 

and hence to avoid cyclobutane decomposition, more polar solvents were examined 

including CH3NO2 and sulfolane.23a,25 When CH3NO2 was used, it underwent enolization 

under the reaction condition following by addition to the imine and elimination providing 

the nitro alkene 3.71 (Scheme 3.14). Therefore sulfolane as a polar and inert solvent was 

examined.25 However, lactol 3.72 was isolated due to addition of water to the zwitterion 

intermediate 3.73. Since sulfolane is a very hygroscopic solvent, the attempts to make it 

dry were met with failure.25 
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Scheme 3.14 – Plausible mechanism for 3.71 and 3.72 formation 
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Despite the limited scope of the new methodology, the substitution pattern of the 

piperideines 3.68a-g on the N1, C2 and C3 positions as well as the C5-C6 alkene 

functionality and the aliphatic alcohol side chain on C5 can provide a valuable handle for 

further synthetic manipulation. In addition, the milder reaction condition and cost 

effectiveness associated with this one pot approach compete to other related reaction for 

example Diels-Alder cycloaddition. In fact, targeting those piperideines using aza-diene 

Diels-Alder reaction could be a difficult task to realise since the aza-dienes can suffer 

from competitive imine addition and/or tautomerisation.14e         

Since only aldehydes have been reported to undergo dipolar cycloaddition with 

cyclobutanes activated with carbon based donating groups, the ability of Yb(OTf)3 to 

catalyze the same annulation with cyclobutanes 3.41 was then explored (Table 3.6). In 

contrast to the cyclobutanes activated by alkoxy group, the cycloaddition of imines with 

cyclobutane 3.41a required higher temperatures and longer reaction times (0 °C for 10 h 

vs. –50 °C for 1 h). Nonetheless, the cycloaddition proceeded smoothly to provide 

pentasubstituted piperidines 3.74. All the cycloadducts 3.74a-f were obtained in moderate 

to good yields and exclusively as the trans-diastereomer. Similar to cyclobutanes 

activated by alkoxy group 3.39, electron-rich or deficient aromatic, conjugated aromatic, 

and heteroaromatic imines participated in the reaction providing the piperidines 3.74a-

3.74f. Unfortunately, cyclobutane 3.41d failed to react productively with imines, and 

only decomposition was observed along with traces of the piperidine 3.74g. 
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Table 3.6 – Synthesis of pentasubstituted piperidines 

 

entry cyclobutane 3.41 piperidine 3.74 yielda 

1 

 

3.74a, Ar = Ph (62%) 

3.74b, Ar = 3-NO2 C6H4 (86%) 
3.74c, Ar = 4-MeO C6H4 (73%) 
3.74d, Ar = 2-thienyl (59%) 
3.74e, Ar = 1-naphthyl (68%) 
3.74f, Ar = CHCPh2 (61%) 

2 

 

 

3.74g, Ar = Ph (traces) 

a Isolated yield 

Again this cycloaddition does not tolerate aliphatic substituent on the imine 

nitrogen (Scheme 3.15). When the reaction was heated in CH2Cl2, interestingly a retro 

[2+2] followed by [4+2] annulation between styrene and the cyclobutane starting material 

3.41a was observed and the cyclohexane derivative 3.75 was isolated. This observation 

suggests that these DA cyclobutanes can undergo formal [4+2] cycloaddition reaction 

with other electron rich olefin to form multi substituted cyclohexanes.  
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3.41a

Yb(OTf)3 (10 mol%),
CH2Cl2, MS 4 Å, reflux, 3 h

N

Ph
3.69a

CO2Et
CO2Et

MeO
MeO

CO2Et
CO2Et

OMe

3.75

CO2Et

CO2Et

MeO

+
3.41a

 

Scheme 3.15 – Annulation of cyclobutane 3.41a and aliphatic imines 

Finally, the possibility of carrying out the cyclobutane formation/imine annulation 

sequence in one pot was examined. When a CH2Cl2 solution of imine was added to a 

concentrated solution of the in situ formed cyclobutane, the expected cycloadducts were 

obtained in yields ranging from (59 – 84%). The variation in yield is attributed to the 

purity of methylidene malonate, as higher yields were observed with freshly prepared 

methylidene malonate.  

 

Scheme 3.16 – One pot, multi-step synthesis of piperideines 

In summary, the use of 2-alkoxy-1,1-cyclobutane diesters for the first time in 

dipolar cycloadditions have been reported. They undergo a formal [4+2] cycloaddition 

with imines to afford highly substituted piperidines and piperideines. Although there are 
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some limitations, this new piperidine synthesis has some advantages when compared to 

other related [4+2] cycloaddition for example aza-diene Diels-Alder reaction. It starts 

with readily available and cheap DA cyclobutanes. In addition, the reaction can be done 

under milder conditions and with a broader scope. Finally, a one pot procedure for 

cyclobutane synthesis and subsequent imine cycloaddition can be achieved easily. Future 

efforts include applying this methodology in the total synthesis of piperidine natural 

products and developing an asymmetric variant.  

3.2.3. Formal [4+2] Cycloaddition of Alkoxy-substituted DA Cyclobutanes 

and Aldehydes Catalyzed by Yb(OTf)3 

Six-membered oxygenated heterocycles are a common structural feature in a 

plethora of bioactive compounds including naturally occurring carbohydrates and non 

carbohydrates products as well as synthetic analogues. Figure 3.7 shows some 

representative examples. These compounds can vary from simple tetrahydropyrans, 

spiroketals, chromanes and flavanones to more elaborate architectures present in marine 

natural products such as palytoxin and maitotoxin.26  
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Figure 3.7 – Biologically active tetrahydropyrans 

Due to their wide range of functionalities and biological activities, the 

development of new syntheses of these heterocycles has continued to be of major 

importance. In general, the tetrahydropyran ring can be prepared by numerous 

intramolecular cyclizations of an oxygenated precursor for example nucleophilic 

substitution, ring-closing metathesis, Michael additions as well as alkyne, alkene, allene 
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and/or epoxide mediated cyclization.26 These methods are widely used and provide the 

target structures in a highly efficient and simple way. On the other hand, a variety of 

intermolecular syntheses of tetrahydropyrans have also been reported (Scheme 3.17). 

Classical and extensively used examples are the [4+2] Hetero Diels-Alder (Scheme 3.17, 

equation 1),27 the Prins cyclization (Scheme 3.17, equation 2),28 the Petasis-Ferrier 

rearrangement (Scheme 3.17, equation 3).29   

 

Scheme 3.17 – Intermolecular syntheses of tetrahydropyrans 

Having demonstrated the utility of 2-alkoxy-1,1-cyclobutane diesters in the 

synthesis of piperidines and piperideines, it was envisioned that the tetrahydropyran rings 

could also be formed by the formal [4+2] dipolar cycloaddition of these DA cyclobutanes 
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with aldehydes (Scheme 3.18). When compared to the related [4+2] annulation reaction 

(Scheme 3.7),9,10 the unique feature of this approach is that the expected cycloadduct will 

have an anomeric carbon bearing an alkoxy substituent that can be easily modified (e.g., 

C-glycosidation reactions and elimination)30 providing important pyran derivatives 3.87 – 

3.89 that can be further elaborated into many natural products (Scheme 3.18). 

 

Scheme 3.18 – Formal [4+2] approach to tetrahydropyrans and the potential utility of the 

expected cycloadduct. 

Therefore cyclobutane 3.39c was allowed to react with benzaldehyde 3.90 (Table 

3.7). As expected, Yb(OTf)3 catalyzed the annulation reaction very efficiently to afford 

the fused acetal 3.91 which was obtained in moderate to excellent yield and  as a single 

diastereomer under a variety of reaction conditions. The optimization studies revealed 

that temperature had little effect on the yield or diastereoselectivity (Table 3.7, entries 1 

– 3). In addition, the reaction could be effected with catalyst loadings as low as 0.5 mol 

% (Table 3.7, entry 8). Furthermore, the reactions were complete in 2 min when done in 
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the microwave reactor (Table 3.7, entry 9). Finally, we noticed that the aldehyde 

equivalency had very little effect on the yield (Table 3.7, entries 5 and 6). It is important 

to note that only a single diastereomer was observed by NMR. The relative 

stereochemistry of the cis-product was assigned on the basis of NOE interactions.  

Table 3.7 – Optimization of the [4+2] cycloaddition between DA cyclobutanes and 

benzaldehydea 

 

entry 

conditionsb

yieldb (%)
Yb(OTf)3 (mol %) PhCHO (equiv) temp (°C)

time 
(min) 

1 10 3.0 -40 120 70 

2 10 3.0 0 15 84 

3 10 3.0 20 15 78 

5 10 1.1 0 15 78 

6 10 0.9 0 15 68 

7 2 1.1 0 45 74 

8d 0.5 1.1 25 18 h 79 

9e 2 1.1 60 2 76 

aThe proof of concept reaction was done by me. The extensive optimization 

presented in this table was done by Mr. Andrew C. Stevens and Mr. Benjamin 

P. Machin. bReactions were conducted on 0.4 mmol scale.c Isolated yield.dNo 

reaction was observed at 0 °C. eReaction was conducted in a microwave 

reactor. 
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After the reaction conditions were optimized, the scope was explored and the 

results are summarized in Table 3.8.  

Table 3.8 – Scope of the formal [4+2] cycloaddition of DA cyclobutanes and aldehydesa 

 
 

tetrahydropyrans 3.91/ yieldb 

 
3.91a, X = H, 84% 
3.91b, X = OMe, 80% 
3.91c, X = Cl, 89% 
3.91d, X = CN, 88% 
3.91e, X = NO2, 75% 

 
3.91f, 80% 

3.91g, 80% 

 
3.91h, 69% 

 
3.91i, 71% 

3.91j, 62% 

3.91k, 87% 

 
3.91l, 51% 

 
3.91m, R = (CH2)2Ph, 
68% 
3.91n, R = (CH2)4CH3, 
56% 
3.91o, R = CH3, 51% 
3.91p, R = iPr, 58% 
3.91q, R= cyclopropyl, 
72% 

 
3.91r, R = Ph, 60% 
3.91s, R = (CH2)2Ph, 
62% 

 
3.91t, R = Ph, 72% 
3.91u, R = (CH2)2Ph, 70% 

 
3.91v, R = p-C6H4OMe, 76% 
3.91w, R = p-C6H4Cl, 69% 
3.91x, R = m-C6H4NO2, 60% 
3.91y, R = trans-C2H2Ph,71% 
3.91z, R = 2- thienyl, 56% 

acyclobutane starting materials and cycloadducts 3.91v – 3.91z were prepared by me. The 

rest of the scope was done by Mr. Andrew C. Stevens and Mr. Benjamin P. Machin. 

bIsolated yield. For cycloadducts 3.91v – 3.91z, reagents were added –50 °C then the 

reactions warmed gradually to 0 °C.  
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Aromatic aldehydes were found to be excellent reaction partners regardless of 

whether they were electron rich (3.91b), halogenated (3.91c), or electron poor (3.91d, 

3.91e). In addition, heteroaromatic (2-furfural, 2-thiofurfural, and indole-2-

carboxaldehyde, entries 3.91g–3.91i) as well as conjugated aldehydes (3.91j–3.91l) 

underwent the cycloaddition. All tetrahydropyrans 3.91a-3.91l were obtained as a single 

diastereomer in moderate to excellent yields ranging from 51% to 89% (Table 3.8).  

In Johnson’s previous work, a stronger Lewis acid was required for aliphatic 

aldehydes to react with aryl-substituted cyclobutanes.10 Interestingly, we discovered that 

the same mild Lewis acid, Yb(OTf)3, effectively catalyzed the [4+2] cycloaddition 

between the alkoxy-substituted cyclobutanes and aliphatic aldehydes (Table 3.8). 

Examining the reaction scope revealed that linear (dihydrocinnamaldehyde, 3.91m, and 

hexanal, 3.91n), acetaldehyde (3.91o), branched (isobutyraldehyde, 3.91p), and 

cyclopropyl aldehydes (3.91q) all underwent the cycloaddition to provide exclusively the 

cis bicyclic acetals (Table 3.8, 3.91m-3.91q).   

Several additional DA cyclobutanes were investigated (Table 3.8). 

Tetrahydropyran-fused cyclobutane 3.39b underwent successful cycloaddition with both 

aromatic and aliphatic aldehydes to afford the all cis-products (3.91r, 3.91s). The 

unsubstituted cyclobutane 3.39c also participated in the cycloaddition with aliphatic and 

aromatic aldehydes (3.91t, 3.91u). Furthermore, the cyclohexyl-fused cyclobutane 3.39d 

underwent cycloaddition with aromatic aldehydes to afford the fused ring systems 3.91v–

3.91z, each as a single diastereomer. Unfortunately, when aliphatic aldehydes were 

allowed to react with 3.39d, decomposition was observed.   
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Next, the possibility of carrying out the cyclobutane formation/aldehyde 

annulation sequence in a one pot was examined (Scheme 3.19). When benzaldehyde was 

added to a solution of the in situ formed cyclobutane 3.39g at –78 °C and the reaction 

then was allowed to warm to 0 °C, the tetrahydropyran 3.91t was obtained in 54% yield. 

Although, it provides a lower yield than the two-step sequence, the one-pot reaction 

allowed for the efficient synthesis of this tetrahydropyrans 3.91t in eight gram scale for 

further synthetic manipulations.30   

 

Scheme 3.19 – One pot, multi-step synthesis of tetrahydropyan 

When compared to imines, aldehydes are more efficient dipolarophiles in the 

annulation reaction with 2-alkoxy 1,1-cyclobutane diesters. In addition to the broader 

scope and the shorter reaction times, the tetrahydropyran cyloadducts were obtained in 

moderate to excellent yields and as single diastereomers.  

In summary, by utilizing the formal [4+2] annulation between aldehydes and DA 

cyclobutanes, a novel synthesis of tetrahydropyran derivatives is reported. The reaction 

was efficiently catalyzed by Yb(OTf)3 with a wide variety of aldehydes. The new method 

highly selective for the cis-diastereomer and provide the product in moderate to excellent 

yields. Developing an asymmetric variant of this methodogly and further applying it in 

the total synthesis of pyran-based natural products are future projects in our group.  
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3.3. Chapter Summary 

Although known for more than two decades, the first use of 2-alkoxy-1,1-

cyclobutane diesters in dipolar cycloaddition was reported. Both the synthesis of those 

donor-acceptor cyclobutanes and their subsequent annulation with imines (in situ formed) 

as well as aldehydes are catalyzed by catalytic Yb(OTf)3. In addition, novel syntheses of 

several bilogicaly important heterocycles including piperidine, piperideine and 

tetrahydropyrans were also reported. The reactions are done under very mild conditions 

providing the products in high yields and excellent selectivity. Future efforts are to target 

different heterocycles by identify new dipolarophile partners, to develop an asymmetric 

variant of the current methodologies and to apply them in the total synthesis of 

biologically active natural compounds as well as synthetic analogues.  

3.4. Experimental 

3.4.1. General  

1H and 13C NMR spectra were recorded using a Varian Mercury 400 or 600 MHz 

spectrometers. Chemical shifts (δ) were expressed in parts per million (ppm) downfield 

from tetramethylsilane using the residual protonated solvent as an internal standard 

(chloroform-d, 1H 7.25 ppm and 13C 77.00 ppm). Coupling constants were expressed in 

Hertz (Hz). When peak multiplicities are given, the following abbreviations are used: s, 

singlet; d, doublet; dd, doublet of doublets; td, triplet of doublets; t, triplet; q, quartet; m, 

multiplet; br, broad. HRMS (CI, FAB) were obtained with a Finnigan MAT 8200 

instrument. Melting points are uncorrected. X-ray analysis were carried out at low 

temperature (–123 °C) on a Nonius Kappa-CCD diffractometer. The progress of reactions 
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were monitored by thin layer chromatography (TLC) performed on F254 silica gel plates. 

The plates were visualized by staining with ceric ammonium molybdate (CAM),31 or 

potassium permanganate. Column chromatography was performed with Silica Flash P60 

60 Å silica gel from Silicycle according to the Still method. 32 All solvents were obtained 

from an Innovative Technology SPS-400-5 solvent purification system. All chemicals 

were of reagent quality and used as obtained from commercial sources unless otherwise 

noted. Flasks were oven dried and cooled in a desiccator prior to use. Reactions were 

carried out under an inert atmosphere (dry argon) unless otherwise indicated. 

3.4.2. General Procedure A for the [2+2] Synthesis of Cyclobutanes 3.39b-h 

and 3.41a-e   

To a solution of Yb(OTf)3 (0.01 eq) in CH2Cl2 (0.5 mmol/ 10.0 mL) maintained at –78 

°C was added simultaneously by syringe pump over 45 minutes a solution of enol ether 

(1.2 equiv) in CH2Cl2 (5 mmol/ 10.0 mL) and a second solution of methylidene 

malonate33 (1.0 equiv) in CH2Cl2 (5 mmol/ 10.0 mL) (both at rt). To avoid any 

polymerizations and side reactions, methylidene malonate solution should be dilute and 

have roughly the same molar concentration of the enol ether. Alternatively, alkenes (6 

mmol of enol ether and 5 mmol of methylidene malonate) can be dissolved in CH2Cl2 

(20.0 mL), cooled down to approximately –78 °C, then this solution was added through a 

cannula to CH2Cl2 solution of Yb(OTf)3 maintained at –78 °C. After the reaction 

appeared complete (tlc, 1-3 h), pyridine (0.01 eq) was added at –78 °C and the reaction 

was filtered while still cold through a silica gel (2 cm) and celite (1 cm) bilayer pad open 

to the atmosphere. The filtrate was concentrated under reduced pressure. Purification of 
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the residue by flash column chromatography on silica gel using EtOAc-hexanes for 

elution (buffered with 1% Et3N) provided the title compounds. The procedure was 

effectively run at up to 50 mmol scale for some cyclobutanes. 

 

Diethyl 2-oxabicyclo[4.2.0]octane-8,8-dicarboxylate (3.39b):34 

The synthesis was done at 50 mmol scale to yield cyclobutane as colorless oil (87% yield, 

11.14 g). Rf 0.40 (30% EtOAc/hexanes); 1H NMR (400 MHz, CDCl3)  4.62 (t, J = 4.1 

Hz, 1H), 4.32-4.27 (m, 1H), 4.25-4.20 (m, 1H), 4.18-4.11 (m, 2H), 3.78 (d, J = 11.7 Hz, 

1H), 3.23 (t, J = 10.5 Hz, 1H), 2.95 (t, J = 11.1 Hz, 1H), 2.56 (apparent s, 1H), 2.14 (ddd, 

J = 11.4, 8.4, 3.5,  1H), 1.81-1.73 (m, 1H), 1.64-1.55 (m, 2H), 1.39 (d, J = 14.0, 1H), 1.24 

(t, J = 7.0, 6H); 13C NMR (100 MHz, CDCl3)  170.4, 168.0, 75.4, 64.5, 61.3, 61.2, 55.9, 

29.6, 28.2, 22.7, 20.8, 14.1, 14.0; HRMS m/z 256.1315 (calcd for C13H20O5, 256.1311). 

 

Diethyl 2-oxabicyclo[3.2.0]heptane-7,7-dicarboxylate (3.39c): 

The synthesis was done at 40 mmol scale to yield cyclobutane as colorless oil (93% yield, 

9.00 g). Rf 0.48 (30% EtOAc/hexanes); 1H NMR (400MHz , CDCl3)  4.96 (dd, J = 5.5, 

2.7 Hz, 1 H), 4.29- 4.12 (m, 4 H), 4.11- 4.04 (m, 1 H), 3.99- 3.92 (m, 1 H), 3.14- 3.06 (m, 
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1 H), 2.48 (dd, J = 13.5, 6.8 Hz, 1 H), 2.28 (ddd, J = 13.3, 9.0, 2.7 Hz, 1 H), 1.79- 1.73 

(m, 2 H), 1.23 (td, J = 7.0, 3.5 Hz, 6 H);  13C NMR (100 MHz, CDCl3)  170.7, 168.0, 

81.7, 69.5, 61.3, 56.3, 35.9, 31.1, 29.3, 14.09, 13.98; HRMS m/z 242.1150 (calcd for 

C12H18O5, 242.1154).  

 

Di-tert-butyl 2-oxabicyclo[3.2.0]heptane-7,7-dicarboxylate (3.39d): 

The synthesis was done at 5 mmol scale to yield cyclobutane as colorless oil (72% yield, 

1.00 g). Rf 0.50 (30% EtOAc/hexanes); 1H NMR (400 MHz, CDCl3)  4.91 (dd, J =  5.5, 

2.0 Hz, 1H), 4.05 (t, J = 7.6 Hz, 1H), 3.95 (td, J = 9.5, 6.1 Hz, 1H), 3.06-3.02 (m, 1H), 

2.39 (dd, J =  13.1, 6.7 Hz, 1H), 2.16 (ddd, J = 12.8, 9.3, 2.3 Hz,  1H),1.80-1.71 (m, 2H), 

1.46 (s, 9H), 1.45 (s, 9H); 13C NMR (100 MHz, CDCl3)  170.3, 167.4, 81.5, 81.2, 81.1, 

69.3, 57.6, 35.5, 31.2, 29.1, 27.9, 27.8; HRMS m/z 299.1857 (calcd for C16H26O5, 

298.1780). 

 

Dimethyl 2-ethoxycyclobutane-1,1-dicarboxylate (3.39f): 

The synthesis was done at 35 mmol scale to yield cyclobutane as colorless oil (56% yield, 

4.2 g). Rf 0.33 (20% EtOAc/hexanes); 1H NMR (400 MHz, CDCl3)  4.45 (t, J = 8.3 Hz, 

1H), 3.76 (s, 3H), 3.71 (s, 3H), 3.54-3.46(m, 1H), 2.49 (quin, J = 5.8 Hz, 1H), 2.16 (td, J 
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= 9.0, 6.8 Hz, 2H), 1.70 (apparent q, J = 9.0 Hz, 1H), 1.12 (t, J =  7.0 Hz, 3H); 13C NMR 

(100 MHz, CDCl3)  171.42 , 169.5, 75.5, 65.1, 61.0, 52.5, 52.4, 26.0, 21.0, 15.0; HRMS 

m/z 216.0992 (calcd for C10H16O5, 216.0998). 

 

Diethyl 2-ethoxycyclobutane-1,1-dicarboxylate (3.39g): 

The synthesis was done at 1 mmol scale to yield cyclobutane as colorless oil (80% yield, 

0.19 g). Rf 0.40 (20% EtOAc/hexanes); 1H NMR (400 MHz, CDCl3)  4.45 (t, J = 8.5 Hz, 

1H), 4.30-4.10 (m, 4H), 3.74-3.66 (m, 1H), 3.54-3.47 (m, 1H), 2.49 (quin, J = 6.2 Hz, 

1H), 2.16 (td, J = 8.8, 6.4 Hz, 2H), 1.68 (apparent q, J = 9.3, 1H), 1.25 (dt, J = 10.2, 7.1 

Hz, 6H), 1.13 (t, J =  7.0 Hz, 3H); 13C NMR (100 MHz, CDCl3)  171.0, 168.6, 75.4, 

65.1, 61.3, 61.2, 61.1, 25.9, 20.9, 14.9, 14.1, 14.0; HRMS m/z 244.1310 (calcd for 

C12H20O5, 244.1311). 

 

 Diethyl 6-methoxybicyclo[4.2.0]octane-7,7-dicarboxylate (3.39h): 

The synthesis was done at 85 mmol scale to yield cyclobutane as colorless oil (70% yield, 

16 g). Rf 0.33 (30% EtOAc/hexanes); 1H NMR (400 MHz, CDCl3)  4.23-4.18 (m, 4H), 

3.35 (s, 3H), 2.79-2.75 (m, 1H), 2.42 (d, J = 13.1 Hz, 1H), 2.31 (t, J = 10.2 Hz, 1H), 1.78 

(t, J = 11.3 Hz, 1H), 1.58-1.53 (m, 2H), 1.50-1.48 (m, 1H), 1.41 (d, J = 14.6 Hz, 1H), 
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1.30 (t, J = 7.5 Hz, 1H), 1.26 (t, J = 6.9 Hz, 6H), 1.20 (d, J = 12.0 Hz, 2H); 13C NMR 

(100 MHz, CDCl3)  169.7, 168.8, 81.3, 62.8, 61.3, 60.8, 51.6, 36.5, 27.4, 25.0, 23.2, 

21.1, 20.1, 14.0,13.9; HRMS m/z 284.1631 (calcd for C15H24O5, 284.1624). 

 

Diethyl 2-(4-methoxyphenyl)cyclobutane-1,1-dicarboxylate (3.41a): 

The synthesis was done at 15 mmol scale to yield cyclobutane as colorless oil (81% yield, 

3.7 g). Rf 0.35 (30% EtOAc/hexanes); 1H NMR (400 MHz, CDCl3)  7.21 (d, J = 8.7 Hz, 

2H), 6.80 (d, J = 8.7 Hz, 2H), 4.30 (t, J = 9.6 Hz, 1H), 4.27-4.23 (m, 1H), 4.21-4.16(m, 

1H), 3.81-3.78 (m, 1H), 3.76 (s, 3H), 3.70-3.65 (m, 1H), 2.66 (dt, J = 9.3 Hz, 2.34 Hz, 

1H), 2.55 (quin, J = 9.8 Hz, 1H), 2.20 (apparent q, J = 9.3 Hz, 1H), 2.13 (dq, J = 8.7, 2.93 

Hz, 1H), 1.26 (t, J = 7.0 Hz, 3H), 0.80 (t, J = 7.3 Hz, 3H); 13C NMR (100 MHz, CDCl3)  

171.7, 169.4, 158.5, 131.3, 128.8, 113.3, 61.1, 60.8, 59.6, 55.2, 44.3, 25.4, 20.8, 14.0, 

13.6; HRMS m/z 306.1474 (calcd for C17H22O5, 306.1467). 

 

Dimethyl 2-(4-methoxyphenyl)-3-methylcyclobutane-1,1-dicarboxylate (3.41c): 

The synthesis was done at 35 mmol scale to yield cyclobutane as colorless oil (51% yield, 

5.20 g). Rf 0.45 (30% EtOAc/hexanes); 1H NMR (400 MHz, CDCl3)  7.17 (d, J = 8.5 
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Hz, 2H), 6.80 (d, J = 8.5 Hz, 2H), 3.78 (d, J = 7.0 Hz, 1H), 3.76 (s, 3H), 3.74 (s, 3H), 

3.27 (s, 3H), 2.96-2.86 (m, 1H), 2.80 (dd, J = 11.3, 8.3 Hz, 1H), 1.77 (dd, J = 11.1, 9.1 

Hz, 1H), 1.11 (d, J = 6.6 Hz, 3H); 13C NMR (100 MHz, CDCl3)  172.15, 169.9, 158.5, 

130.3, 128.6, 113.4, 57.0, 55.1, 52.3, 51.9, 33.6, 29.1, 20.3; HRMS m/z 292.1311 (calcd 

for C16H20O5, 292.1311). 

 

Diethyl 2-(4-methoxyphenyl)-3-methylcyclobutane-1,1-dicarboxylate (3.41d): 

The synthesis was done at 1 mmole scale to yield cyclobutane as colorless syrup (71% 

yield, 0.22 g). Rf 0.28 (30% EtOAc/hexanes); 1H NMR (400 MHz, CDCl3)  7.19 (d, J = 

8.5 Hz, 2H), 6.79 (d, J = 8.5 Hz, 2H), 4.29-4.13 (m, 2H), 3.84-3.8 (m, 1H), 3.78 (d, J = 

3.9 Hz, 1H), 3.76 (s, 3H), 3.72-3.64 (m, 1H), 2.97-2.86 (m, 1H), 2.97 (dd, J = 11.3, 8.5 

Hz, 1H), 1.76 (dd, J = 10.9, 8.9 Hz, 1H), 1.25 (t, J = 7.0 Hz, 3H), 1.12 (d, J = 6.6 Hz, 

3H), 0.79 (t, J = 7.2 Hz, 3H); 13C NMR (100 MHz, CDCl3)  171.8, 169.6, 158.5, 130.5, 

128.8, 113.4, 61.1, 60.8, 56.9, 55.2, 52.0, 33.6, 28.9, 20.4, 14.0, 13.6; HRMS m/z 

320.1633 (calcd for C18H24O5, 320.1624).  

 

Di-tert-butyl 2-(4-methoxyphenyl)-3-methylcyclobutane-1,1-dicarboxylate (3.41e): 
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The synthesis was done at 5 mmol scale to yield cyclobutane as white solid (59% yield, 

1.00 g). Rf 0.32(30% EtOAc/hexanes); 1H NMR (400 MHz, CDCl3)  7.23 (d, J = 8.6 Hz, 

2H), 6.82 (d, J = 8.9 Hz, 2H), 3.76 (s, 3H), 3.74 (d, J = 10.1 Hz, 1H), 2.88-2.78 (m, 1H), 

2.70 (dd, J = 10.9, 8.2 Hz, 1H), 1.64 (dd, J = 10.9, 8.9 Hz, 1H), 1.46 (s, 9H), 1.11 (d, J = 

6.6 Hz, 3H), 1.02 (s, 9H); 13C NMR (100 MHz, CDCl3)  171.2, 168.8, 158.4, 130.8, 

129.2, 113.3, 80.89, 80.73, 68.1, 57.9, 55.3, 51.3, 33.6, 28.2, 27.9, 27.4, 20.3; HRMS m/z 

376.2291 (calcd for C22H32O5, 376.2250).  

3.4.3. General Procedure B for the Formal [4+2] Cycloaddition of Imine and 

Cyclobutanes 3.39b and 3.39c: Synthesis of Piperideine 3.68a-g  

A solution of aldehyde (1 eq, 3 mmol) and amine (1 eq, 3 mmol) dissolved in dry CH2Cl2 

(2 mL) was stirred at rt over activated 4 Å MS (ca. 2 g) under Ar for 1 h. Without 

isolation the in situ generated imine was added via cannula to a solution of Yb(OTf)3 

(0.01 eq) in CH2Cl2 (0.5 mL) over activated 4 Å MS (ca. 1 g) in a –50 °C cold bath, 

followed immediately by neat cyclobutane (1.0 eq, 1 mmol). The reaction was maintained 

at –50 °C until complete (tlc, 30 – 60 min), and then allowed to warm to rt.  After an hour 

the reaction mixture was treated with solid NaHCO3 (ca. 0.5 g) and filtered through a 

silica gel (2 cm) and celite (1 cm) bilayer pad open to the atmosphere. The filtrate was 

concentrated under reduced pressure. Purification of the residue by flash column 

chromatography on silica gel using EtOAc-hexanes for elution (buffered with 1% Et3N) 

provided the title compounds.  
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Diethyl 7,8-diphenylhexahydro-2H-pyrano[2,3-b]pyridine-6,6(7H)-dicarboxylate 

(3.67a): 

This piperidine was obtianed as a minor product when the reaction (according to general 

procedure A) was stoped at –50 °C after ca. 30 min.  Colorless syrup (17% yield, 0.02 g) 

as a single diasteriomer. Rf 0.26 (20% EtOAc/hexanes); 1H NMR (400 MHz, CDCl3)  

7.11-7.06 (m, 5H), 7.02 (d, J = 6.4, 2H), 6.91 (d, J = 8.2, 2H), 6.83 (t, J = 7.3, 1H), 5.61 

(s, 1H), 4.68 (d, J = 8.2, 1H), 4.40-4.34 (m, 2H), 3.93 (dd, J = 11.7, 4.7, 1H), 3.79-3.75 

(m, 1H), 3.72-3.67 (m, 1H), 3.56-3.52 (m, 1H), 2.5-2.44 (m, 2H), 1.91 (d, J = 12.9, 1H), 

1.76-1.74 (m, 1H), 1.68-1.65(m, 1H), 1.61-1.57 (m, 2H), 1.36 (t, J = 7.0, 3H), 0.86 (t, J = 

7.0, 3H); 13C NMR (100 MHz, CDCl3)  169.8, 168.4, 146.6, 136.7, 129.9, 127.9, 

127.6,127.5, 124.2, 122.6, 87.4, 68.7, 67.1, 62.1, 61.4, 58.7, 38.0, 30.4, 29.3, 26.0, 14.1, 

13.4; HRMS m/z 437.2206 (calcd for C26H31NO5, 437.2202).  
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Diethyl 7-(3-nitrophenyl)-8 phenylhexahydro-2H-pyrano[2,3-b]pyridine-6,6(7H)-

dicarboxylate (3.67b): 

This piperidine was obtianed as a minor product when the reaction (according to general 

procedure A) was stoped at –50 °C after ca. 30 min. Yellow powder (22% yield, 0.03 g) 

as two diasteriomers (2:1 trans:cis); trans-3.67b: recrystallization from CH2Cl2/hexanes 

yielded yellow crystals. Rf 0.25 (20% EtOAc/hexanes); 1H NMR (400 MHz, CDCl3)  

7.99 (d, J = 8.2, 1H), 7.95 (s, 1H), 7.36 (d, J = 7.6, 1H), 7.29 (t, J = 7.6, 1H), 7.08 (t, J = 

7.6, 2H), 6.9 (d, J = 7.6, 2H), 6.85 (t, J = 7.0, 1H), 5.78 (s, 1H), 4.64 (d, J = 8.2, 1H), 

4.42-4.35 (m, 2H), 3.94 (dd, J = 11.7, 4.7, 1H), 3.84-3.80 (m, 1H), 3.75-3.71 (m, 1H), 

3.57 (t, J = 11.1, 1H), 2.52 (dd, J = 14.6, 3.5, 1H), 2.37 (t, J = 14.0, 1H), 1.94 (d, J = 

11.7, 1H), 1.78-1.74 (m, 1H), 1.64-1.59 (m, 3H), 1.37 (t, J = 7.0, 3H), 0.91 (t, J = 7.0, 

3H); 13C NMR (100 MHz, CDCl3)  169.2, 168.0, 147.4, 145.9, 139.2, 135.6, 128.6, 

128.3, 124.2, 123.8, 123.1, 122.5, 87.4, 67.9, 67.2, 62.4, 61.8, 58.5, 37.8, 30.3, 29.2, 25.9, 

14.1, 13.5; HRMS m/z 482.2043 (calcd for C26H30N2O7, 482.2053).  

cis-3.67b: recrystallization from CH2Cl2/hexanes yielded yellow crystals. Rf  0.31 (20% 

EtOAc/hexanes); 1H NMR (400 MHz, CDCl3)  8.72 (t, J = 2.0, 1H), 8.04 (d, J = 7.6, 

1H), 7.97 (d, J = 9.3, 1H), 7.32 (t, J = 7.9, 1H), 7.21-7.19 (m, 2H), 7.17-7.14 (m, 2H), 

6.81-6.79 (m, 1H), 6.04 (s, 1H), 4.77 (d, J = 2.3, 1H), 4.34-4.30 (m, 1H), 4.28-4.24 (m, 

1H), 4.18 (d, J = 11.1, 1H), 3.89-3.86 (m, 1H), 3.73-3.70 (m, 1H), 3.62-3.58 (m, 1H), 

2.82 (t, J = 14.0, 1H), 2.08 (dd, J = 14.0, 2.9, 1H), 1.95-1.91 (m, 1H), 1.75 (d, J = 13.5, 

1H), 1.45 (d, J = 12.3, 1H), 1.29 (t, J = 7.0, 3H), 1.04 (t, J = 7.0, 3H); 13C NMR (100 

MHz, CDCl3)  170.3, 168.3, 148.1, 147.7, 140.5, 136.4, 129.0, 128.5, 125.6, 122.5, 



127 
 

120.8, 118.0, 85.3, 66.3, 62.2, 61.7, 59.9, 59.7, 31.8, 29.0, 24.1, 20.8, 14.0, 13.64; HRMS 

m/z 482.2043 (calcd for C26H30N2O7, 482.2053).   

 

Diethyl-(3-hydroxypropyl)-1,2-diphenyl-1,2-dihydropyridine-3,3(4H)-dicarboxylate 

(3.68a): 

The synthesis was done at 0.3 mmole scale to yield the tiltled compound as colorless oil 

(81% yield, 0.10 g). Rf 0.13 (20% EtOAc/hexanes); 1H NMR (400 MHz, CDCl3)  7.28-

7.26 (m, 5H), 7.19-7.15 (m, 2H), 6.84-6.80 (m, 3H), 6.59 (s, 1H), 5.51 (s, 1H), 4.16-4.04 

(m, 4H), 3.69 (t, J = 6.4, 2H), 2.58 (d, J = 17.2, 1H), 2.50 (d, J = 17.2, 1H), 2.71 (t, J = 

7.4, 2H), 1.78-1.71 (m, 2H), 1.60 (brs, 1H), 1.19 (t, J = 7.2, 3H), 1.06 (t, J = 7.2, 3H); 13C 

NMR (100 MHz, CDCl3)  169.2, 168.6, 147.0, 139.8, 129.0, 128.5, 127.9, 127.1, 124.4, 

120.3, 115.9, 107.9, 62.5, 61.9, 61.7, 57.6, 31.1, 26.5, 13.9, 13.8; HRMS m/z 437.2194 

(calcd for C26H31NO5, 437.2202).  
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 Diethyl 5-(3-hydroxypropyl)-2-(3-nitrophenyl)-1-phenyl-1,2-dihydropyridine-

3,3(4H)-dicarboxylate (3.68b): 

The synthesis was done at 0.3 mmole scale to yield the tiltled compound as colorless oil 

(73% yield, 0.10 g). Rf 0.12 (20% EtOAc/hexanes); 1H NMR (400 MHz, CDCl3)  8.19 

(t, J = 1.76, 1H), 8.13 (d, J = 8.2, 1H), 7.63 (d, J = 7.8, 1H), 7.48 (t, J = 7.2, 1H), 7.20 (t, 

J = 8.0, 2H), 6.87 (t, J = 7.4, 1H), 6.80 (d, J = 7.8, 2H), 6.61 (s, 1H), 5.65 (s, 1H), 4.20-

4.02 (m, 4H), 3.70 (t, J = 6.4, 2H), 2.64 (d, J = 17.5, 1H), 2.45 (d, J = 17.5, 1H), 2.24 (t, J 

= 7.8, 2H), 1.75 (quin, J = 6.9, 2H), 1.53 (brs, 1H), 1.24 (t, J = 7.0, 3H), 1.06 (t, J = 7.2, 

3H); 13C NMR (100 MHz, CDCl3)  168.5, 168.2, 148.3, 146.5, 142.0, 133.4, 129.6, 

129.2, 124.3, 123.0, 122.2, 120.9, 116.1, 108.5, 62.26, 62.20, 62.0, 61.3, 57.3, 31.0, 30.9, 

26.4, 13.9, 13.7; HRMS m/z 482.2026 (calcd for C26H30N2O7, 482.2053).  

 

Diethyl 5-(3-hydroxypropyl)-2-(4-methoxyphenyl)-1-phenyl-1,2-dihydropyridine-

3,3(4H)-dicarboxylate (3.68c): 

The synthesis was done at 0.3 mmole scale to yield the tiltled compound as colorless oil 

(77% yield, 0.10 g). Rf 0.14 (20% EtOAc/hexanes); 1H NMR (400 MHz, CDCl3)  7.18 

(d, J = 8.6, 2H), 7.15 (d, J = 7.4, 2H), 6.83 (d, J = 8.2, 2H), 6.79 (d, J = 8.6, 3H), 6.57 (s, 

1H), 5.47 (s, 1H), 4.17-4.03 (m, 4H), 3.76 (s, 3H), 3.69 (t, J = 6.2, 2H), 2.58 (d, J = 17.8, 

1H), 2.50 (d, J = 17.9, 1H), 2.21 (t, J = 7.4, 2H), 1.75 (quin, J = 6.6, 2H), 1.35 (brs, 1H), 
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1.20 (t, J = 7.0, 3H), 1.05 (t, J = 7.2, 3H); 13C NMR (100 MHz, CDCl3)  169.3, 168.7, 

159.1, 147.0, 131.8, 129.0, 128.3, 124.3, 120.2, 115.8, 113.8, 107.7, 77.3, 62.5, 61.67, 

61.65, 61.3, 57.7, 55.1, 31.1, 26.5, 13.9, 13.80; HRMS m/z 467.2297 (calcd for 

C27H33NO6, 467.2308).  

 

 Diethyl 5-(3-hydroxypropyl)-1-phenyl-2-(thiophen-2-yl)-1,2-dihydropyridine-

3,3(4H)-dicarboxylate (3.68d): 

The synthesis was done at 0.3 mmole scale to yield the tiltled compound as colorless oil 

(42% yield, 0.05 g). Rf 0.16 (20% EtOAc/hexanes); 1H NMR (400 MHz, CDCl3)  7.22-

7.17 (m, 3H), 6.95 (d, J = 3.5, 1H), 6.91-6.83(m, 4H), 6.39 (s, 1H), 5.89 (s, 1H), 4.26-

4.09 (m, 2H), 4.02 (q, J = 7.0, 2H), 3.69 (t, J = 6.4, 2H), 2.69 (d, J = 17.6, 1H), 2.58 (d, J 

= 17.6, 1H), 2.21 (t, J = 7.4, 2H), 1.77 (quin, J = 7.0, 2H), 1.59 (brs, 1H), 1.24 (t, J = 7.2, 

3H), 0.98 (t, J = 7.0, 3H); 13C NMR (100 MHz, CDCl3) 168.5, 168.3, 146.6, 141.5, 

129.1, 126.3, 126.0, 125.2, 123.2, 120.4, 115.8, 109.5, 62.5, 61.95, 61.87, 58.22, 58.1, 

31.1, 30.9, 27.0, 13.9, 13.6; HRMS m/z 443.1753 (calcd for C24H29NO5S, 443.1766).  
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 Diethyl 5-(3-hydroxypropyl)-2-(naphthalen-1-yl)-1-phenyl-1,2-dihydropyridine-

3,3(4H)-dicarboxylate (3.68e): 

The synthesis was done at 0.3 mmole scale to yield the tiltled compound as colorless oil 

(84% yield, 0.12 g). Rf 0.12 (20% EtOAc/hexanes); 1H NMR (400 MHz, CDCl3)  8.27 

(d, J = 8.8, 1H), 7.87 (d, J = 8.2, 1H), 7.97 (d, J = 8.2, 1H), 7.65 (d, J = 7.6, 1H), 7.53 (t, 

J = 7.6, 1H), 7.48 (t, J = 7.0, 1H), 7.42 (t, J = 7.9, 1H), 7.12 (t, J = 7.0, 2H), 6.81-6.78 

(m, 3H), 6.72 (s, 1H), 6.43 (s, 1H), 4.21-4.11 (m, 2H), 3.73 (t, J = 6.4, 2H), 3.51-3.43 (m, 

2H), 2.75 (d, J = 16.7, 1H), 2.64 (d, J = 16.7, 1H), 2.28 (t, J = 7.3, 2H), 1.80 (quin, J = 

6.8, 2H), 1.58 (brs, 1H), 1.13 (t, J = 7.0, 3H), 0.83 (t, J = 7.0, 3H); 13C NMR (100 MHz, 

CDCl3) 169.6, 168.8, 147.0, 136.3, 133.3, 130.2, 129.18, 129.07, 128.52, 125.97, 

125.84, 125.75, 125.4, 124.7, 122.2, 120.3, 115.9, 107.5, 62.4, 61.66, 61.51, 57.1, 56.4, 

31.0, 27.1, 13.8, 13.17; HRMS m/z 487.2343 (calcd for C30H33NO5, 487.2359).  

 

Diethyl 5-(2-hydroxyethyl)-1,2-diphenyl-1,2-dihydropyridine-3,3(4H)-dicarboxylate 

(3.68f): 

The synthesis was done at 0.3 mmole scale to yield the tiltled compound as colorless oil 

(86% yield, 0.10 g). Rf 0.15 (20% EtOAc/hexanes); 1H NMR (400 MHz, CDCl3)  7.32-

7.25 (m, 5H), 7.20-7.16 (m, 2H), 6.86-6.82 (m, 3H), 6.65 (s, 1H), 5.59 (s, 1H), 4.16-4.04 

(m, 4H), 3.81-3.75 (m, 1H), 3.71-3.65 (m, 1H), 2.66 (d, J = 17.2, 1H), 2.45 (d, J = 17.6, 
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1H), 2.39-2.35 (m, 2H), 1.89 (brs, 1H), 1.18 (t, J = 7.2, 3H), 1.02 (t, J = 7.0, 3H); 13C 

NMR (100 MHz, CDCl3)  169.6, 168.3, 146.7, 139.5, 129.0, 128.5, 128.0, 127.2, 126.6, 

120.6, 116.1, 104.7, 62.3, 62.0, 61.8, 60.2, 58.0, 37.7, 25.7, 13.8, 13.70; HRMS m/z 

423.2045 (calcd for C25H29NO5, 423.2046).   

 

Diethyl 5-(2-hydroxyethyl)-2-(3-nitrophenyl)-1-phenyl-1,2-dihydropyridine-3,3(4H)-

dicarboxylate (3.68g): 

The synthesis was done at 0.3 mmole scale to yield the tiltled compound as colorless oil 

(81% yield, 0.11 g). Rf 0.14 (20% EtOAc/hexanes); 1H NMR (400 MHz, CDCl3)  8.23 

(t, J = 1.9, 1H), 8.13 (dd, J = 8.2, 1.5, 1H), 7.69 (d, J = 7.8, 1H), 7.49 (t, J = 8.2, 1H), 

7.20 (t, J = 7.4, 2H), 6.89 (t, J = 7.0, 1H), 6.81 (d, J = 7.8, 2H), 6.66 (s, 1H), 5.71 (s, 1H), 

4.20-4.06 (m, 4H), 3.84-3.78 (m, 1H), 3.75-3.69 (m, 1H),  2.72 (d, J = 17.5, 1H), 2.41-

2.36 (m, 3H), 1.88 (brs, 1H), 1.24 (t, J = 7.0, 3H), 1.02 (t, J = 7.2, 3H); 13C NMR (100 

MHz, CDCl3) 168.9, 168.0, 148.3, 146.3, 141.8, 133.5, 129.69, 129.29, 126.4, 123.1, 

122.4, 121.3, 116.2, 105.7, 62.37, 62.31, 61.7, 60.3, 57.7, 37.7, 25.8, 13.9, 13.6; HRMS 

m/z 468.1898 (calcd for C25H28N2O7, 468.1897). 

3.4.4. General Procedure C for the One-pot [2+2]/ [4+2] Synthesis of 

Piperideines 3.68a and 3.68m 
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A solution of cyclobutane was prepared according to General Procedure A (1:1 equiv of 

enol ether and freshly prepared methylidene malonate is employed), and without isolation 

a solution of imine prepared according to General Procedure B was added.  The reaction 

mixture was then concentrated while still cold to a total volume of ca. 2 mL.  The 

reaction was then maintained at –50 °C until complete (tlc, 30 – 60 min), and then 

allowed to warm to rt and processed as described under General Procedure B to afford the 

title compounds.  

 

Diethyl 2-(3-ethoxy-4-methoxyphenyl)-5-(3-hydroxypropyl)-1-phenyl-1,2-

dihydropyridine-3,3(4H)-dicarboxylate (3.68m): 

The synthesis was done at 0.5 mmole scale to yield the tiltled compound as colorless oil 

(84% yield, 0.21 g). Rf 0.11 (30% EtOAc/hexanes); 1H NMR (400 MHz, CDCl3)  7.20 - 

7.15 (m, 2 H), 6.86 - 6.82 (m, 4 H), 6.81 (dd, J = 8.2, 1.8 Hz, 1 H), 6.76 - 6.74 (m, 1 H), 

6.57 (s, 1 H), 5.44 (s, 1 H), 4.14 (dq, J = 11.0, 7.1 Hz, 1 H), 4.10 - 4.02 (m, 5 H), 3.78 (s, 

3 H), 3.68 (t, J = 6.4 Hz, 2 H), 2.61 (d, J = 17.6 Hz, 1 H), 2.56 (d, J = 17.6 Hz, 1 H), 2.20 

(t, J = 7.3 Hz, 2 H), 1.78 - 1.70 (m, 2 H), 1.68 (s, 1 H), 1.43 (t, J = 7.0 Hz, 3 H), 1.19 (t, J 

= 7.3 Hz, 3 H), 1.04 (t, J = 7.0 Hz, 3 H); 13C NMR (100 MHz, CDCl3)  169.3, 168.7, 

149.1, 147.9, 147.1, 132.2, 129.0, 124.3, 120.3, 119.5, 116.0, 112.2, 110.6, 107.8, 77.3, 
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76.7, 64.1, 62.5, 61.7, 57.8, 55.8, 31.3, 31.1, 26.6, 14.8, 13.9, 13.8; HRMS m/z 511.2550 

(calcd for C29H37NO7, 511.2570). 

3.4.5. General Procedure D for the Formal [4+2] Cycloaddition of Imine 

and Cyclobutanes 3.41a: Synthesis of Piperidine 3.74a-f 

The general procedure B was employed, except that after addition of cyclobutane the cold 

bath temperature was set to 0 °C and maintained at this temperature until complete (tlc, 8 

– 12 h).  Workup and purification as described in general procedure B provided the title 

compounds. 

 

Diethyl 6-(4-methoxyphenyl)-1, 2-diphenylpiperidine-3,3-dicarboxylate (3.74a): 

The synthesis was done at 0.3 mmole scale to yield the tiltled compound as colorless oil 

(62% yield, 0.90 g). Rf 0.22 (20% EtOAc/hexanes); 1H NMR (400 MHz, CDCl3)  7.21-

7.19 (m, 2H), 7.13-7.09 (m, 5H), 6.90-6.81 (m, 4H), 6.64-6.61 (m, 3H), 5.66 (s, 1H), 4.73 

(dd, J = 11.5, 3.7,  1H), 4.39 (q, J = 7.1, 2H), 3.87-3.75 (m, 2H), 3.65 (s, 3H), 2.75 (td, J 

= 14.5, 4.1,  1H), 2.56-2.52 (m, 1H), 2.14 (dq, J = 13.9, 3.4,  1H), 1.68-1.57 (m, 1H), 1.37 

(t, J = 7.0, 3H), 0.92 (t, J = 7.0, 3H); 13C NMR (100 MHz, CDCl3)  170.2, 168.9, 157.8, 

149.6, 137.68, 137.07, 129.85, 128.1, 127.65, 127.61, 127.3, 125.1, 121.7, 113.4, 67.7, 

61.81, 61.36, 59.0, 56.6, 54.9, 34.2, 24.5, 14.2, 13.5; HRMS m/z 487.2357 (calcd for 

C30H33NO5, 487.2359). 
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Diethyl 6-(4-methoxyphenyl)-2-(3-nitrophenyl)-1-phenylpiperidine-3,3-

dicarboxylate (3.74b): 

The synthesis was done at 0.3 mmole scale to yield the tiltled compound as colorless oil 

(86% yield, 0.13 g). Rf 0.16 (20% EtOAc/hexanes); 1H NMR (400 MHz, CDCl3)  8.12 

(t, J = 1.9, 1H), 8.0 (dd, J = 8.2, 1.5, 1H), 7.51 (d, J = 7.8, 1H), 7.31 (t, J = 8.2, 1H), 7.09 

(d, J = 8.9, 2H), 6.89 (t, J = 7.4, 2H), 6.81 (d, J = 7.4, 2H), 6.66-6.62 (m, 3H),  5.83 (s, 

1H), 4.71 (dd, J = 11.5, 3.7,  1H), 4.41 (qd, J = 7.1, 2.5, 2H), 3.92-3.79 (m, 2H), 3.66 (s, 

3H), 2.68-2.55 (m, 2H), 2.2 (dq, J = 14.0, 3.5, 1H), 1.70-1.63 (m, 1H), 1.38 (t, J = 7.2, 

3H), 0.98 (t, J = 7.2, 3H); 13C NMR (100 MHz, CDCl3)  169.6, 168.5, 158.0, 148.8, 

147.5, 140.2, 136.2, 135.7, 128.6, 128.0, 124.7, 124.1, 122.4, 122.2, 119.9, 113.5, 67.0, 

62.1, 61.7, 58.8, 56.8, 55.0, 33.9, 24.4, 14.2, 13.6; HRMS m/z 532.2195 (calcd for 

C30H32N2O7, 532.2210). 

 

Diethyl 2,6-bis(4-methoxyphenyl)-1-phenylpiperidine-3,3-dicarboxylate (3.74c): 
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The synthesis was done at 0.3 mmole scale to yield the tiltled compound as colorless oil 

(73% yield, 0.11 g). Rf 0.14 (20% EtOAc/hexanes); 1H NMR (400 MHz, CDCl3)  7.10 

(t, J = 8.9, 4H), 6.88 (t, J = 7.4, 2H), 6.80 (d, J = 7.8, 2H), 6.63 (t, J = 8.6, 5H), 5.60 (s, 

1H), 4.67 (dd, J = 11.5, 3.3,  1H), 4.38 (q, J = 7.0, 2H), 3.89-3.75 (m, 2H), 3.69 (s, 3H), 

3.65 (s, 3H), 2.72 (td, J = 14.6, 3.9, 1H), 2.50 (d, J = 14.8, 1H), 2.12 (dq, J = 13.8, 3.3, 

1H), 1.67-1.59 (m, 1H), 1.37 (t, J = 7.2, 3H), 0.95 (t, J = 7.0, 3H); 13C NMR (100 MHz, 

CDCl3)  170.2, 168.9, 158.6, 157.7, 149.7, 137.1, 130.9, 129.7, 128.1, 127.6, 125.2, 

121.7, 113.3, 112.8, 67.2, 61.7, 61.3, 59.1, 56.4, 54.9, 34.3, 24.4, 14.2, 13.7; HRMS m/z 

517.2452 (calcd for C31H35NO6, 517.2464). 

 

Diethyl 6-(4-methoxyphenyl)-1-phenyl-2-(thiophen-2-yl)piperidine-3,3-dicarboxylate 

(3.74d): 

The synthesis was done at 0.3 mmole scale to yield the tiltled compound as colorless oil 

(59% yield, 0.10 g). Rf 0.25 (20% EtOAc/hexanes); 1H NMR (400 MHz, CDCl3)  7.12 

(d, J = 5.0, 1H), 7.0 (d, J = 8.6, 2H), 6.92 (t, J = 7.4, 2H), 6.81 (d, J = 7.4, 2H), 6.78-

6.69(m, 2H), 6.60 (d, J = 8.6, 2H), 6.53 (d, J = 3.5, 1H), 5.93 (s, 1H), 4.47 (dd, J = 11.3, 

3.1,  1H), 4.40 (q, J = 7.0, 2H), 3.96-3.87 (m, 2H), 3.65 (s, 3H), 3.65 (s, 3H), 2.71-2.56 

(m, 2H), 2.06-2.02 (m, 1H), 1.66-1.55 (m, 1H), 1.39 (t, J = 7.2, 3H), 0.98 (t, J = 7.2, 3H); 

13C NMR (100 MHz, CDCl3)  169.6, 168.5, 157.8, 149.5, 136.9, 136.5, 128.6, 128.3, 
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127.7, 125.5, 125.0, 122.4, 113.4, 65.0, 61.9, 61.5, 59.0, 56.7, 54.9, 34.2, 24.9, 14.3, 

13.6; HRMS m/z 493.1915 (calcd for C28H31NO5S, 493.1923). 

 

Diethyl 6-(4-methoxyphenyl)-2-(naphthalen-1-yl)-1-phenylpiperidine-3,3-

dicarboxylate (3.74e): 

The synthesis was done at 0.3 mmole scale to yield the tiltled compound as colorless oil 

(68% yield, 0.10 g). Rf 0.30 (20% EtOAc/hexanes); 1H NMR (400 MHz, CDCl3)  7.69 

(d, J = 8.9, 1H), 7.64 (d, J = 7.4, 1H), 7.27 (d, J = 8.2, 1H), 7.24 (dd, J = 7.0, 2.3, 1H), 

7.08 (t, J = 7.4, 1H), 6.94-6.88(m, 2H), 6.79 (d, J = 8.6, 2H), 6.57 (s, 1H), 6.52 (d, J = 

7.8, 2H), 6.35 (t, J = 7.8, 2H), 6.27 (d, J = 8.6, 2H), 6.06 (t, J = 7.4, 1H), 4.65 (dd, J = 

11.3, 3.9,  1H), 4.12-4.04(m, 2H), 3.27 (s, 3H), 3.11-3.03 (m, 1H), 2.80-2.72 (m, 1H), 

2.54 (td, J = 14.6, 4.3, 1H), 2.20-2.15(m, 1H), 1.89 (dq, J = 14.0, 3.5, 1H), 1.39-1.28(m, 

1H), 1.03 (t, J = 7.0, 3H), 0.16 (t, J = 7.0, 3H); 13C NMR (100 MHz, CDCl3)  170.6, 

168.7, 157.8, 149.1, 137.2, 135.0, 133.4, 132.6, 128.19, 128.1, 128.06, 127.4, 126.5, 

125.3, 124.8, 124.3, 123.8, 121.5, 113.3, 61.8, 61.0, 59.2, 58.0, 56.7, 54.9, 34.1, 24.2, 

14.2, 12.96; HRMS m/z 537.2510 (calcd for C34H35NO5, 537.2515). 
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Diethyl 2-(2,2-diphenylvinyl)-6-(4-methoxyphenyl)-1-phenylpiperidine-3,3-

dicarboxylate (3.74f): 

The synthesis was done at 0.3 mmole scale to yield the tiltled compound as colorless oil 

(61% yield, 0.10 g). Rf 0.21 (20% EtOAc/hexanes); 1H NMR (400 MHz, CDCl3)  7.25-

7.23(m, 2H), 7.13-7.10(m, 3H), 7.05-6.99(m, 4H), 6.96-6.92(m, 2H), 6.84-6.77(m, 3H), 

6.60 (d, J = 8.6, 2H), 6.43 (d, J = 11.3, 1H), 6.16 (d, J = 7.0, 2H), 4.96 (d, J = 11.3, 1H), 

4.57 (dd, J = 11.3, 3.1,  1H), 4.32 (q, J = 7.0, 2H), 4.25-4.17(m, 1H), 3.94-3.86(m, 1H), 

3.65 (s, 3H), 2.64-2.47 (m, 2H), 1.99 (dd, J = 13.6, 3.1,  1H), 1.65-1.54(m, 1H), 1.32 (t, J 

= 7.2, 3H), 1.11 (t, J = 7.2, 3H); 13C NMR (100 MHz, CDCl3)  169.8, 169.4, 157.7, 

149.6, 146.5, 143.3, 138.5, 136.5, 129.1, 128.3, 128.0, 127.8, 127.47, 127.4, 126.8, 126.6, 

122.6, 120.2, 113.3, 61.7, 61.5, 61.3, 59.0, 56.1,54.9, 34.6, 25.0, 14.2, 13.7; HRMS m/z 

589.2827 (calcd for C38H39NO5, 589.2828). 

3.4.6. General Procedure E for the Annulation Reaction Between Aldehydes 

and Cyclobutane 3.39h:35  

To a solution of Yb(OTf)3  (0.01 equiv, 0.004 mmol ) in CH2Cl2 (2.0 mL) at -50 °C, 

aldehyde (3.0 equiv, 1.2 mmol) and cyclobutane (1.0 equiv, 0.4 mmol) dissolved in 

CH2CL2 (2.0 mL) were added. The reaction mixture then warmed gradually to 0 °C (ca 1-

2 h). After completion, it was filtered through silica gel pad (2 cm). The filtrate was 

concentrated under reduced pressure. Purification by flash column chromatography on 

silica gel using EtOAc-hexanes for elution provided the title compounds. TEA (1%) was 

added to the eluent to buffer silica gel.  
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Diethyl 8a-methoxy-2-(4-methoxyphenyl)hexahydro-2H-chromene-3,3(4H)-

dicarboxylate (3.91v) 

Colourless oil (76% yield, 0.09 g). Rf 0.3 (10% EtOAc/hexanes); 1H NMR (400 MHz, 

CDCl3)  7.38 (d, J = 8.7 Hz, 2 H), 6.78 (m, J = 8.7 Hz, 2 H), 5.25 (s, 1 H), 4.09 (q, J = 

7.3 Hz, 2 H), 4.01 (dq, J = 10.7, 7.2 Hz, 1 H), 3.82-3.78 (m, 1 H), 3.77 (s, 3 H), 3.11 (s, 3 

H), 2.19-2.14 (m, 1 H), 2.11 (t, J = 12.4 Hz, 1 H), 2.08-2.03 (m, 1 H), 2.02 (d, J = 12.8 

Hz, 1 H), 1.71 (d, J = 8.4 Hz, 1 H), 1.61 (d, J = 9.9 Hz, 1 H), 1.44-1.31 (m, 5 H), 1.14 (t, 

J = 7.1 Hz, 3 H), 0.94 ppm (t, J = 7.1 Hz, 3 H); 13C NMR (100 MHz, CDCl3)  170.8, 

169.6, 158.8, 131.8, 129.1, 112.5, 99.0, 72.5, 61.0, 60.4, 58.9, 55.2, 47.1, 39.4, 33.2, 31.2, 

28.6, 25.6, 22.6, 13.9, 13.5; HRMS m/z 420.2159 (calcd for C23H32O7, 420.2148). 

 

Diethyl 2-(4-chlorophenyl)-8a-methoxyhexahydro-2H-chromene-3,3(4H)-

dicarboxylate (3.91w) 

Colourless oil (69% yield, 0.08 g). Rf 0.5 (10% EtOAc/hexanes); 1H NMR (400 MHz, 

CDCl3)  7.39 (d, J = 8.6 Hz, 2 H), 7.21 (d, J = 8.6 Hz, 2 H), 5.29 (s, 1 H), 4.10 (q, J = 

7.0 Hz, 2 H), 3.99 (dq, J = 10.7, 7.1 Hz, 1 H), 3.77 (dq, J = 10.8, 7.1 Hz, 1 H), 3.10 (s, 3 
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H), 2.13-2.09 (m, 2 H), 2.08-2.05 (m, 1 H),  2.04-2.00 (m, 1 H), 1.71-1.70 (m, 1 H), 1.62-

1.60 (m, 1 H), 1.44-1.1.32 (m, 5 H), 1.15 (t, J = 7.0 Hz, 3 H), 0.92 (t, J = 7.2 Hz, 3 H); 

13C NMR (100 MHz, CDCl3)  170.7, 169.3, 138.2, 133.0, 129.3, 127.3, 99.1, 72.2, 61.2, 

60.6, 58.9, 47.1, 39.4, 33.2, 31.2, 28.5, 25.6, 22.6, 13.9, 13.5; HRMS m/z 425.1283 (calcd 

for C22H29ClO6, 424.1653).  

 

Diethyl 8a-methoxy-2-(3-nitrophenyl)hexahydro-2H-chromene-3,3(4H) 

dicarboxylate (3.91x) 

Colourless oil (60% yield, 0.104 g). Rf 0.4 (10% EtOAc/hexanes); 1H NMR (400 MHz, 

CDCl3)  8.32 (s, 1H), 8.09 (d, J = 8.0 Hz, 1H), 7.82 (d, J = 7.7 Hz, 1H), 7.42 (t, J = 8.0 

Hz, 1H), 5.41 (s, 1H), 4.15 (q, J = 7.0 Hz, 2H), 4.02-3.97 (m, 1H), 3.86-3.80 (m, 1H), 

3.11 (s, 3H), 2.21-2.13 (m, 2H), 2.11-2.07 (m, 1H), 2.03 (d, J = 10.6 Hz, 1H), 1.71 (d, J = 

9.1 Hz, 1H), 1.64 (d, J = 8.4 Hz, 1H), 1.46-1.42 (m, 1H), 1.40-1.34(m, 4H), 1.17 (t, J = 

7.1 Hz, 3H), 0.90 (t, J = 7.1 Hz, 3H); 13C NMR (100 MHz, CDCl3)  170.4, 168.8, 147.5, 

141.9, 134.1, 127.9, 123.1, 122.2, 99.5, 71.9, 61.5, 60.7, 59.2, 47.1, 39.6, 33.1, 31.1, 28.4, 

25.5, 22.5, 13.8, 13.5; HRMS m/z 435.1882 (calcd for C22H29NO8, 435.1893).  
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Diethyl 8a-methoxy-2-styrylhexahydro-2H-chromene-3,3(4H)-dicarboxylate (3.91y) 

Colourless oil (71% yield, 0.08 g). Rf 0.25 (10% EtOAc/hexanes); 1H NMR (400 MHz, 

CDCl3)  7.38 (d, J = 7.3 Hz, 2 H), 7.27 (t, J = 7.7 Hz, 2 H), 7.21 - 7.18 (m, 1 H), 6.65 

(dd, J = 16.1, 6.6 Hz, 1 H), 6.58 (d, J = 16.1 Hz, 1 H), 4.74 (d, J = 7.0 Hz, 1 H), 4.19 (q, J 

= 7.0 Hz, 2 H), 4.14 - 4.08 (m, 2 H), 3.17 (s, 3 H), 2.15 - 2.02 (m, 3 H), 1.85 - 1.80 (m, 1 

H), 1.70 (d, J = 12.1 Hz, 1 H), 1.61 (d, J = 12.4 Hz, 1 H), 1.41 - 1.38 (m, 3 H), 1.29-1.24 

(m, 2 H), 1.21 (t, J = 7.1 Hz, 3 H), 1.15 (t, J = 7.1 Hz, 3 H); 13C NMR (100 MHz, CDCl3) 

 170.2, 169.4, 137.0, 131.1, 128.4, 127.4, 127.3, 126.5, 99.0, 77.3, 76.7, 72.9, 61.3, 60.9, 

59.0, 47.0, 40.1, 32.5, 31.3, 28.5, 25.6, 22.5, 14.03, 14.0; HRMS m/z 416.2202 (calcd for 

C24H32O6, 416.2199).  

 

Diethyl 8a-methoxy-2-(thiophen-2-yl)hexahydro-2H-chromene-3,3(4H)-

dicarboxylate (3.91z) 

Colourless oil (56% yield, 0.06 g). Rf 0.3 (10% EtOAc/hexanes); 1H NMR (400 MHz, 

CDCl3)  7.17 (dd, J = 5.1, 1.2 Hz, 1 H), 7.03 (d, J = 3.5 Hz, 1 H), 6.89 (dd, J = 5.1, 3.9 

Hz, 1 H), 5.56 (s, 1 H), 4.20-4.10 (m, 2 H), 4.02 (dq, J = 10.7, 7.1 Hz, 1 H), 3.88 (dq, J = 

10.7, 7.1 Hz, 1 H), 3.15 (s, 3 H), 2.11-2.03 (m, 4 H), 1.70-1.68 (m, 1 H), 1.62-1.60 (m, 1 

H), 1.42-1.33 (m, 5 H), 1.17 (t, J = 7.0 Hz, 3 H), 0.96 (t, J = 7.0 Hz, 3 H); 13C NMR (100 

MHz, CDCl3)  170.5, 169.1, 142.7, 125.7, 125.3, 124.3, 99.4, 70.1, 61.3, 60.8, 59.3, 
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47.2, 39.5, 33.0, 31.1, 28.5, 25.6, 22.6, 13.9, 13.5; HRMS m/z 396.1595 (calcd for 

C20H28O6S, 396.1607).  

3.4.7. General Procedure F for the One-pot [2+2] / [4+2] Synthesis of 

Tetrahydropyran. 

 To a solution of Yb(OTf)3  (0.01 eq) in CH2Cl2 (10.0 mL/ 0.25 mmol) at –78 °C, the 

enol ether (1.1 equiv) was dissolved in CH2Cl2 (10.0 mL/ 5 mmol) and methylidene 

malonate (1.0 equiv) dissolved in CH2Cl2 (10.0 mL/ 5 mmol)  were added by syringe 

pump over 30 minutes. Both solutions were added simultaneously. After 1h, aldehyde 

(3.0 equiv) was added. The reaction mixture warmed gradually to 0 °C. After completion 

(25 min), the reaction was filtered through silica gel pad (2 cm). The filtrate was 

concentrated under reduced pressure. Purification by flash column chromatography on 

silica gel using EtOAc-hexanes for elution provided the title compounds. TEA (1%) was 

added to the eluent to buffer silica gel. 

 

Diethyl 6-ethoxy-2-phenyldihydro-2H-pyran-3,3(4H)-dicarboxylate (3.91t): 

The reaction was done at 45 mmol scale to yield the titled product as colourless oil (54% 

yield, 8.50 g). Rf 0.40 (10% EtOAc/hexanes); 1H NMR (400 MHz, CDCl3)  7.45-7.43 

(m, 2 H), 7.28-7.22 (m, 3 H), 5.08 (s, 1 H), 4.67 (dd, J = 9.4, 2.7 Hz, 1 H), 4.12 (qd,  J = 

7.2, 2.3 Hz, 2 H), 3.05-3.97 (m, 1 H), 3.95-3.84 (m, 2 H), 3.51 (dq, J = 9.6, 7.1 Hz, 1 H), 
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2.63-2.57 (m, 1 H), 2.12 (td, J = 13.3, 4.7 Hz, 1 H), 2.00-1.90 (m, 1 H), 1.87 - 1.81 (m, 1 

H), 1.20 (t, J = 7.0 Hz, 3 H), 1.14 (t, J = 7.2 Hz, 3 H), 0.94 (t, J = 7.0 Hz, 3 H); 13C NMR 

(100 MHz, CDCl3)  171.0, 168.3, 139.2, 127.4, 127.1, 102.5, 79.4, 64.3, 61.4, 60.6, 

58.5, 31.1, 27.8, 15.1, 13.8, 13.5; HRMS m/z 350.1711 (calcd for C19H26O6, 350.1729).  
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Appendix 2 – NMR Spectra for Compounds Presented in Chapter 1 
 

Dimethylbis(phenylethynyl)silane (1.24a) 
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Dihexylbis(phenylethynyl)silane (1.24c) 
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2,5-di(2,2'-terthiophen-5-yl)-1,1-dimethyl-3,4-diphenyl-1H-silole (1.18a) 
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2,5-di(2,2'-terthiophen-5-yl)-1,1-di-tert-butyl-3,4-diphenyl-1H-silole (1.18b) 
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2,5-di(2,2'-terthiophen-5-yl)-1,1-dihexyl-3,4-diphenyl-1H-silole (1.18c) 
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1,1-dihexyl-2,3,4,5-tetraphenyl-1H-silole (1.16a) 
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1,1-dihexyl-3,4-diphenyl-2,5-bis(4-(trifluoromethyl)phenyl)-1H-silole (1.16b) 
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1,1-dihexyl-2,5-bis(4-methoxyphenyl)-3,4-diphenyl-1H-silole (1.16d) 
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4,4'-(1,1-dihexyl-3,4-diphenyl-1H-silole-2,5-diyl)bis(N,N-dimethylaniline) (1.16e) 
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2,2'-(1,1-dihexyl-3,4-diphenyl-1H-silole-2,5-diyl)dipyridine (1.17) 
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2-chloro-1,1-dimethyl-3,4-diphenyl-5-(thiophen-2-yl)-1H-silole (1.36) 
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1,1-dimethyl-2,3,4-triphenyl-5-(thiophen-2-yl)-1H-silole (1.38) 
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1,1-dimethyl-3,4-diphenyl-2-(phenylethynyl)-5-(thiophen-2-yl)-1H-silole (1.39) 
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1-(4-(1,1-dimethyl-3,4-diphenyl-5-(thiophen-2-yl)-1H-silol-2-yl)phenyl)-N-
methylmethanamine (1.41) 
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Appendix 3 – NMR Spectra for Compounds Presented in Chapter 2 

endo- Ethyl-6-methoxy-3-tosyl-3-azabicyclo[4.1.0]heptane-7-carboxylate (endo-2.75) 
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exo-Ethyl 6-methoxy-3-tosyl-3-azabicyclo[4.1.0]heptane-7-carboxylate (exo-2.75) 
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Ethyl 2-methyl-5-tosyl-4,5,6,7-tetrahydro-1H-pyrrolo[3,2-c]pyridine-3-carboxylate 

(2.76a) 

  
12 11 10 9 8 7 6 5 4 3 2 1 0

Chemical Shift (ppm)

3.03 3.002.022.021.971.880.90

Chloroform-d

1
.3

1
1

.3
3

1
.3

4

2
.4

02
.4

3
2

.6
3

2
.6

43
.3

5
3

.3
7

3
.3

8

4
.1

9
4

.2
1

4
.2

3
4

.2
5

7
.2

5
7

.2
7

7
.2

97
.6

7
7

.6
9

8
.1

0

4.0 3.5 3.0 2.5 2.0 1.5
Chemical Shift (ppm)

3.03 3.002.022.02 1.91

1
.3

1
1

.3
3

1
.3

4

2
.4

0
2

.4
3

2
.6

1
2

.6
3

2
.6

43
.3

5
3

.3
7

3
.3

8

4
.1

9
4

.2
1

4
.2

3
4

.2
5

200 180 160 140 120 100 80 60 40 20 0
Chemical Shift (ppm)

Chloroform-d

1
3

.2
61

4
.4

4

2
1

.4
7

2
2

.9
2

4
3

.2
8

4
4

.7
5

5
9

.2
7

7
6

.6
8

7
7

.0
0

7
7

.3
1

1
0

8
.4

41
1

4
.6

0

1
2

2
.3

1

1
2

7
.4

5
1

2
9

.5
9

1
3

5
.0

5

1
4

3
.3

8

1
6

5
.3

7

TsN

N
H

CO2Et



166 
 

Ethyl 2-ethyl-5-tosyl-4,5,6,7-tetrahydro-1H-pyrrolo[3,2-c]pyridine-3-carboxylate 

(2.76b) 
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Ethyl 2-phenyl-5-tosyl-4,5,6,7-tetrahydro-1H-pyrrolo[3,2-c]pyridine-3-carboxylate 

(2.76c) 
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Ethyl 2-(4-methoxyphenyl)-5-tosyl-4,5,6,7-tetrahydro-1H-pyrrolo[3,2-c]pyridine-3-

carboxylate (2.76d) 
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Ethyl 2-styryl-5-tosyl-4,5,6,7-tetrahydro-1H-pyrrolo[3,2-c]pyridine-3-carboxylate 

(2.76e) 
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Ethyl 2-(thiophen-2-yl)-5-tosyl-4,5,6,7-tetrahydro-1H-pyrrolo[3,2-c]pyridine-3-

carboxylate (2.76f) 
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Ethyl 8-cyano-2-tosyl-1,2,3,4-tetrahydropyrido[3,4-b]indolizine-10-carboxylate 

(2.80a) 
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Ethyl 6-cyano-2-tosyl-1,2,3,4-tetrahydropyrido[3,4-b]indolizine-10-carboxylate 

(2.80b) 
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10a-Methoxy-5,5a,6,6a,7,8,9,10,10a,10b-decahydrocyclopentadiene[c]pyridine 

[5,6-b]indole-6-carboxylic acid ethyl ester (2.80c) 
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Ethyl 2-methyl-1H-pyrrolo[3,2-c]pyridine-3-carboxylate (2.79a) 
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Ethyl 2-ethyl-1H-pyrrolo[3,2-c]pyridine-3-carboxylate (2.79b) 
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Ethyl 2-phenyl-1H-pyrrolo[3,2-c]pyridine-3-carboxylate (2.79c) 

 

 

10 9 8 7 6 5 4 3 2 1 0
Chemical Shift (ppm)

3.002.74 1.951.00 0.94

DMSO-d6

1
.2

3
1

.2
5

1
.2

6

2
.4

9

4
.2

0
4

.2
2

4
.2

3
4

.2
5

7
.4

2
7

.4
3

7
.4

97
.5

0
7

.5
1

7
.7

1
7

.7
2

7
.7

3

8
.2

9
8

.3
1

9
.2

5
8.25 8.00 7.75 7.50

Chemical Shift (ppm)

2.741.910.94

7
.4

2
7

.4
3

7
.4

9
7

.5
0

7
.5

1

7
.7

1
7

.7
2

7
.7

3

8
.2

9
8

.3
1

180 160 140 120 100 80 60 40 20 0
Chemical Shift (ppm)

DMSO-d6

1
4

.1
1

3
8

.8
8

3
9

.0
8

3
9

.3
0

3
9

.5
0

3
9

.7
1

3
9

.9
2

4
0

.1
2

5
9

.4
3

1
0

2
.4

4

1
0

6
.9

4

1
2

3
.9

4
1

2
7

.8
9

1
3

0
.0

2
1

3
0

.9
2

1
3

9
.2

7
1

4
1

.4
6

1
4

3
.9

8
1

4
5

.5
8

1
6

3
.7

3

160 152 144 136 128 120 112 104
Chemical Shift (ppm)

1
0

2
.4

41
0

6
.9

4

1
2

3
.9

4

1
2

7
.8

9
1

2
9

.3
4

1
3

0
.0

2
1

3
0

.9
2

1
3

9
.2

7
1

4
1

.4
6

1
4

3
.9

8
1

4
5

.5
8

1
6

3
.7

3



177 
 

Ethyl 2-(4-methoxyphenyl)-1H-pyrrolo[3,2-c]pyridine-3-carboxylate (2.79d) 
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 Ethyl 2-styryl-1H-pyrrolo[3,2-c]pyridine-3-carboxylate (2.79e)

 

 

8.0 7.9 7.8 7.7 7.6 7.5 7.4 7.3
Chemical Shift (ppm)

3.14 2.13 1.081.02

7.
37

7.
38

7.
39

7.
42

7.
45

7.
46

7.
47

7.
56

7.
59

7.
608.
008.
03

12 11 10 9 8 7 6 5 4 3 2 1
Chemical Shift (ppm)

3.14 3.002.141.020.94

DMSO-d6

1.
40

1.
41

1.
42

2.
49

4.
36

4.
374.

38
4.

39

7.
37

7.
387.

45
7.

46
7.

59
8.

008.
03

8.
30

9.
17

200 180 160 140 120 100 80 60 40 20 0
Chemical Shift (ppm)

DMSO-d6

1
4

.2
8

3
9

.0
8

3
9

.2
2

3
9

.5
0

3
9

.6
4

3
9

.9
1

5
9

.6
8

1
0

3
.6

6
1

0
6

.6
11

1
6

.7
5

1
2

6
.8

1
1

2
9

.0
8

1
3

4
.0

2
1

3
5

.8
6

1
4

1
.8

1
1

4
2

.9
3

1
4

3
.4

0

1
6

4
.0

7

140 135 130 125 120 115 110 105
Chemical Shift (ppm)

1
0

3
.6

6

1
0

6
.6

1

1
1

6
.7

5

1
2

6
.8

1
1

2
8

.9
8

1
2

9
.0

8

1
3

4
.0

2

1
3

5
.8

6

1
4

0
.0

4
1

4
1

.8
1

1
4

2
.9

3
1

4
3

.4
0



179 
 

Ethyl 2-(thiophen-2-yl)-1H-pyrrolo[3,2-c]pyridine-3-carboxylate (2.79f) 
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Ethyl 8-cyanopyrido[3,4-b]indolizine-10-carboxylate (2.81a) 
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Ethyl 6-cyanopyrido[3,4-b]indolizine-10-carboxylate (2.81b) 
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Appendix 4 – NMR Spectra for Compounds Presented in Chapter 3 

Diethyl 2-oxabicyclo[4.2.0]octane-8,8-dicarboxylate (3.39b)  
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Diethyl 2-oxabicyclo[3.2.0]heptane-7,7-dicarboxylate (3.39c) 
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Di-tert-butyl 2-oxabicyclo[3.2.0]heptane-7,7-dicarboxylate (3.39d) 
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Dimethyl 2-ethoxycyclobutane-1,1-dicarboxylate (3.39f) 
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Diethyl 2-ethoxycyclobutane-1,1-dicarboxylate (3.39g) 
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Diethyl 6-methoxybicyclo[4.2.0]octane-7,7-dicarboxylate (3.39h) 
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Diethyl 2-(4-methoxyphenyl)cyclobutane-1,1-dicarboxylate (3.41a) 
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Dimethyl 2-(4-methoxyphenyl)-3-methylcyclobutane-1,1-dicarboxylate (3.41c) 
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Diethyl 2-(4-methoxyphenyl)-3-methylcyclobutane-1,1-dicarboxylate (3.41d) 
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Di-tert-butyl 2-(4-methoxyphenyl)-3-methylcyclobutane-1,1-dicarboxylate(3.41e) 
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Diethyl 7,8-diphenylhexahydro-2H-pyrano[2,3-b]pyridine-6,6(7H)-dicarboxylate 
 (trans-3.67a) 
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Diethyl 7-(3-nitrophenyl)-8 phenylhexahydro-2H-pyrano[2,3-b]pyridine-6,6(7H)-
dicarboxylate (trans-3.67b)2 

 
 

 

 
 
 

 
 

                                                 
2 Product contaminated with 20% 3-nitrobenzaldehyde arising from aldimine hydrolysis during flash chromatography. 
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Diethyl 7-(3-nitrophenyl)-8 phenylhexahydro-2H-pyrano[2,3-b]pyridine-6,6(7H)-
dicarboxylate (cis-3.67b) 
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Diethyl 5-(3-hydroxypropyl)-1,2-diphenyl-1,2-dihydropyridine-3,3(4H)-
dicarboxylate (3.68a) 
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Diethyl 5-(3-hydroxypropyl)-2-(3-nitrophenyl)-1-phenyl-1,2-dihydropyridine-
3,3(4H)-dicarboxylate (3.68b): 
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Diethyl 5-(3-hydroxypropyl)-2-(4-methoxyphenyl)-1-phenyl-1,2-dihydropyridine-
3,3(4H)-dicarboxylate (3.68c) 
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Diethyl 5-(3-hydroxypropyl)-1-phenyl-2-(thiophen-2-yl)-1,2-dihydropyridine-
3,3(4H)-dicarboxylate (3.68d): 
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 Diethyl 5-(3-hydroxypropyl)-2-(naphthalen-1-yl)-1-phenyl-1,2-dihydropyridine-
3,3(4H)-dicarboxylate (3.68e): 
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Diethyl 5-(2-hydroxyethyl)-1,2-diphenyl-1,2-dihydropyridine-3,3(4H)-dicarboxylate 
(3.68f) 
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Diethyl 5-(2-hydroxyethyl)-2-(3-nitrophenyl)-1-phenyl-1,2-dihydropyridine-3,3(4H)-
dicarboxylate (3.68g): 

 
 

 
 
 

 
 
  

PROTON_01.ESP

9 8 7 6 5 4 3 2 1 0
Chemical Shift (ppm)

2.983.560.693.161.071.031.064.231.061.042.101.062.041.071.060.981.03

CHLOROFORM-d

1.
00

1.
02

1.
04

1.
24

1.
25

1.
88

2.
362.

37
2.

39
2.

40
2.

41
2.

72
2.

76
3.

703.
723.
73

3.
783.

80
3.

81
4.

06
4.

08
4.

09
4.

15
4.

17
4.

19
4.

20

5.
71

6.
66

6.
816.

83
6.

91
7.

187.
20

7.
25

7.
47

7.
49

7.
51

7.
69

7.
718.

23
8.

23
8.

24

2.75 2.50 2.25 2.00 1.75
Chemical Shift (ppm)

0.693.161.07

1.
88

2.
362.

37
2.

39
2.

40
2.

41

2.
72

2.
76

7.7 7.6 7.5
Chemical Shift (ppm)

1.071.06

7.
47

7.
49

7.
51

7.
69

7.
71

180 160 140 120 100 80 60 40 20 0
Chemical Shift (ppm)

CHLOROFORM-d

16
8.

93
16

8.
01

14
8.

37 14
6.

38

14
1.

84

13
3.

57

12
9.

29
12

6.
44

12
2.

45
12

1.
30

11
6.

28

10
5.

72

77
.3

2
77

.0
0

76
.6

9

62
.3

7
61

.7
5

60
.3

4
57

.7
3

37
.7

0

25
.8

3

13
.9

2 13
.6

9

CARBON_01.ESP

130 128 126 124 122 120
Chemical Shift (ppm)

12
9.

69
12

9.
29

12
6.

44

12
3.

18 12
2.

45

12
1.

30



228 
 

 
 



229 
 

Diethyl 2-(3-ethoxy-4-methoxyphenyl)-5-(3-hydroxypropyl)-1-phenyl-1,2-
dihydropyridine-3,3(4H)-dicarboxylate (3.68m) 
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Diethyl 6-(4-methoxyphenyl)-1,2-diphenylpiperidine-3,3-dicarboxylate (3.74a) 
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Diethyl 6-(4-methoxyphenyl)-2-(3-nitrophenyl)-1-phenylpiperidine-3,3-
dicarboxylate (3.74b): 
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Diethyl 2,6-bis(4-methoxyphenyl)-1-phenylpiperidine-3,3-dicarboxylate (3.74c): 
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Diethyl 6-(4-methoxyphenyl)-1-phenyl-2-(thiophen-2-yl)piperidine-3,3-dicarboxylate 
(3.74d): 
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Diethyl 6-(4-methoxyphenyl)-2-(naphthalen-1-yl)-1-phenylpiperidine-3,3-
dicarboxylate (3.74e): 
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Diethyl 2-(2,2-diphenylvinyl)-6-(4-methoxyphenyl)-1-phenylpiperidine-3,3-
dicarboxylate (3.74f): 
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Diethyl 8a-methoxy-2-(4-methoxyphenyl)hexahydro-2H-chromene-3,3(4H)-

dicarboxylate (3.91v) 
 

 
 

 
 
  

PROTON01.esp

10 9 8 7 6 5 4 3 2 1 0
Chemical Shift (ppm)

2.782.765.121.000.980.991.181.141.133.173.320.961.082.161.032.072.08

CHLOROFORM-d

7.
39 7.
38

7.
25

6.
80

6.
78

5.
25

4.
12

4.
11

4.
09

4.
08

3.
77

3.
76

3.
11

2.
17

2.
17 2.

13
2.

11
2.

09 2.
07

2.
06

1.
44

1.
38

1.
36

1.
35

1.
15

1.
14

0.
95

0.
94

0.
92

2.2 2.1 2.0 1.9 1.8 1.7 1.6
Chemical Shift (ppm)

1.000.980.991.181.141.13

2.
19

2.
18 2.

17
2.

17
2.

15
2.

13
2.

11
2.

09 2.
07

2.
06

2.
05

2.
04 2.

03
2.

01

1.
71

1.
70

1.
61 1.

60

CARBON_01.esp

180 160 140 120 100 80 60 40 20 0
Chemical Shift (ppm)

CHLOROFORM-d

17
0.

77
16

9.
61

15
8.

80

13
1.

76
12

9.
08

11
2.

50

98
.9

7

77
.3

2 77
.0

0
76

.6
8

72
.5

1

61
.0

0
60

.4
2

58
.9

4
55

.1
7

47
.0

7

39
.4

0

33
.2

1
31

.2
3

28
.5

5
25

.6
5

22
.5

8

13
.9

0 13
.5

4

62 61 60 59 58
Chemical Shift (ppm)

61
.0

0

60
.4

2

58
.9

4



251 
 

 



252 
 

 

 
 



253 
 

 
 

 
 
 
 
 
 
 
 
 

PROTON01

7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5
Chemical Shift (ppm)

CHLOROFORM-d

7
.3

9
7

.3
8

7
.2

5

6
.8

0
6

.7
8 5
.2

5

4
.1

2
4

.1
1

4
.0

9
4

.0
8

3
.7

9
3

.7
7

3
.7

6

3
.1

1

2
.1

7
2

.1
7 2
.1

3 2
.1

1
2

.0
9

2
.0

7
2

.0
6

1
.4

3

1
.3

8
1

.3
6

1
.3

5
1

.1
5

1
.1

4
0

.9
5

0
.9

4
0

.9
2

NOESY1D01

NOESY1D02.esp



254 
 

Diethyl 2-(4-chlorophenyl)-8a-methoxyhexahydro-2H-chromene-3,3(4H)-
dicarboxylate (3.91w) 

 

 
 

 
  

PROTON_01.esp

9 8 7 6 5 4 3 2 1 0
Chemical Shift (ppm)

3.002.995.121.051.081.071.092.053.121.061.062.051.011.942.06

CHLOROFORM-d

7.
42 7.

39
7.

25 7.
23

7.
21 5.

29

4.
14

4.
12

4.
10

4.
08

3.
99

3.
97

3.
79

3.
77

3.
10

2.
13

2.
13

2.
11

2.
08 2.
07

1.
38

1.
37

1.
35

1.
33

1.
17

1.
15

0.
94

0.
92

0.
90

2.15 2.10 2.05 2.00 1.95 1.90 1.85 1.80 1.75 1.70 1.65 1.60
Chemical Shift (ppm)

1.051.081.071.092.05

2.
13 2.
13

2.
11

2.
09

2.
08 2.

07
2.

05
2.

03
2.

03

2.
00 1.
71

1.
70

1.
62

1.
60

CARBON_01

180 160 140 120 100 80 60 40 20 0
Chemical Shift (ppm)

CHLOROFORM-d

1
7

0
.6

7
1

6
9

.3
0 1

3
8

.2
3

1
3

2
.9

9
1

2
9

.3
1

1
2

7
.2

6

9
9

.1
1

7
7

.3
2

7
7

.0
0

7
6

.6
9

7
2

.1
6

6
1

.2
2

6
0

.5
6

5
8

.9
4

4
7

.1
2 3
9

.4
3

3
3

.1
5 3
1

.2
0

2
8

.5
2

2
5

.6
1

2
2

.5
8

1
3

.9
1

1
3

.5
0

62 61 60 59 58
Chemical Shift (ppm)

6
1

.2
2

6
0

.5
6

5
8

.9
4



255 
 

 

 



256 
 

 

 
 
 
 
 



257 
 

 
 
 

 
 
 
 

PROTON_01.esp

7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5
Chemical Shift (ppm)

CHLOROFORM-d

7
.4

2 7
.3

9
7

.2
5 7
.2

3
7

.2
1 5
.2

9

4
.1

4
4

.1
2

4
.1

0
4

.0
8

4
.0

0
3

.9
9

3
.9

7
3

.7
9

3
.7

7

3
.1

0

2
.1

3
2

.1
3

2
.1

1
2

.0
9

2
.0

8
2

.0
7

1
.3

8
1

.3
7

1
.3

5
1

.3
3

1
.1

7
1

.1
5

0
.9

4
0

.9
2

0
.9

0

NOESY1D01

NOESY1D02.esp



258 
 

Diethyl 8a-methoxy-2-(3-nitrophenyl)hexahydro-2H-chromene-3,3(4H)-
dicarboxylate (3.91x) 
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Diethyl 8a-methoxy-2-styrylhexahydro-2H-chromene-3,3(4H)-dicarboxylate (3.91y) 
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Diethyl 8a-methoxy-2-(thiophen-2-yl)hexahydro-2H-chromene-3,3(4H)-
dicarboxylate (3.91z) 
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Diethyl 6-ethoxy-2-phenyldihydro-2H-pyran-3,3(4H)-dicarboxylate (3.91t) 
 
 
 

 
 

 
 
 

PROTON_01

9 8 7 6 5 4 3 2 1 0
Chemical Shift (ppm)

2.912.993.111.061.071.110.921.122.011.032.071.000.993.202.00

CHLOROFORM-d 0.
92

0.
94

0.
96

1.
14

1.
20

1.
22

1.
85

1.
86

1.
94

1.
97

2.
092.

12
2.

14

2.
58

2.
62

2.
63

3.
47

3.
49

3.
51

3.
53

3.
87

3.
883.
90

3.
934.

00
4.

02

4.
12

4.
12

4.
144.

14
4.

66
4.

67
4.

69
4.

69
5.

08

7.
22

7.
24

7.
24

7.
26

7.
43

7.
44

7.
45

2.50 2.25 2.00
Chemical Shift (ppm)

1.061.071.110.92

1.
83

1.
84

1.
85

1.
86

1.
87

1.
94

1.
97

1.
99

2.
00

2.
09

2.
10

2.
12

2.
14

2.
16

2.
172.

57
2.

58

2.
62

2.
63

4.5 4.0 3.5
Chemical Shift (ppm)

1.122.011.032.071.00

3.
49

3.
513.

51
3.

53
3.

55

3.
843.

87

3.
883.
90

3.
91

3.
93

3.
934.

00
4.

02
4.

11

4.
12

4.
12

4.
14

4.
14

4.
16

4.
66

4.
67

4.
69

4.
69

CARBON_01

180 160 140 120 100 80 60 40 20 0
Chemical Shift (ppm)

CHLOROFORM-d

1
7

0
.9

6
1

6
8

.3
0 1
3

9
.1

7

1
2

7
.3

5
1

2
7

.1
5

1
0

2
.5

0

7
9

.3
9

7
7

.3
2

7
7

.0
0

7
6

.6
9

6
4

.3
5

6
1

.4
3

6
0

.6
4

5
8

.4
6

3
1

.0
7

2
7

.8
5

1
5

.1
3

1
3

.8
5

1
3

.5
2



269 
 

 
 

 
 
 



270 
 

 
 

 
 

PROTON_01

7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5
Chemical Shift (ppm)

0.
93

0.
95

0.
97

1.
15

1.
21

1.
23

1.
821.

86
1.

87
1.

95
1.

971.
98

2.
10

2.
112.

13
2.

15
2.

582.
59

2.
602.
623.

513.
52

3.
54

3.
85

3.
89

3.
91

3.
944.
01

4.
03

4.
13

4.
13

4.
144.
15

4.
174.

68
4.

69
4.

70

5.
09

7.
237.

24
7.

25
7.

27
7.

29

7.
44

7.
45

7.
46

NOESY1D_01

NOESY1D_02



271 
 
 

Curriculum Vitae 

Mahmoud M. Abd Rabo Moustafa  

Education  

 Ph.D. (Organic chemistry) University of Western Ontario, 
Canada 

2011 

 The Pharmacy Examining Board of Canada 
Evaluating exam (Successfully passed) 

 
2009 

 M.Sc. (Pharmaceutical chemistry) Al-Azhar University, Egypt 2006 

 B. Pharmacy,  Al-Azhar University, Egypt 2000 

Research and Relevant Work Experience  

 Teaching assistant (University of Western Ontario, Canada)  2007-2010 

 Research assistant (University of Western Ontario, Canada)  2007-2010 

 Assistant lecturer: (Al-Azhar University, Faculty of Pharmacy, 
Egypt)  

2003-2006 
 

 Research assistant (Al-Azhar University, Faculty of Pharmacy, 
Egypt) 

2003-2006 
 

 Research assistant (National Center for Radiation Research and 
Technology, Egypt) 

2000-2003 
 

 Pharmacist (Hosam pharmacy, Cairo, Egypt) 
Senior pharmacist (part time) 

Junior pharmacist (part time)  

 
2001-2006 

2000-2001 

Workshops and Training  

 Future professors workshop series (UWO) 2010 

 Accessibility in teaching training sessions (UWO) 2010 

 The American Chemical Society summer school on green chemistry 
and sustainability (ACS) 

2009 

 Teaching assistant training program (UWO) Jan 2007 

 Communication in the Canadian classroom (UWO) Jan 2007 

Awards and Scholarships  

 Graduate thesis research award (UWO) 
 Dissertation year award (UWO) 

2010 

2010 

 The Egyptian academy of scientific research and technology 
scholarship 

2007-2010 

 The faculty of pharmacy dean’s award, Al-Azhar University  2000 

 The Egyptian ministry of education award for high school students 1995 



272 
 

Publications  

8)    Filing a patent/writing three articles is underway.   

7)  “Formal [4+2] Cycloaddition of Alkoxy-Substituted Donor-Acceptor Cyclobutanes 
and Aldehydes Catalyzed by Yb(OTf)3” Moustafa, M. M. Abd Rabo; Stevens, A. 
C; Machin, B. P.; Pagenkopf, B. L. Org. Lett. 2010, 12, 4736–4738.  

6) “Ytterbium Triflate Catalyzed Synthesis of Alkoxy-Substituted Donor–Acceptor 
Cyclobutanes and their Formal [4+2] Cycloaddition with Imines: Stereoselective 
Synthesis of Piperidines” Moustafa, M. M. Abd Rabo; Pagenkopf, B. L. Org. Lett. 
2010, 12, 4732–4735. 

5)  “Synthesis of 5-Azaindoles via a Cycloaddition Reaction between Nitriles and Donor-
Acceptor Cyclopropanes” Moustafa, M. M. Abd Rabo; Pagenkopf, B. L. Org. Lett. 
2010, 12, 3168–3171. 

4) “Electrochemical and Photovoltaic Properties of Electropolymerized Poly(thienyl-
silole)s” Byers, J.C.; DiCarmine, P. M.; Moustafa, M. M. Abd Rabo; Wang, X.; 
Pagenkopf, B. L.; Semenikhin, O.A. J. Phys. Chem. B 2009,113, 15715–15723. 

3) “Silole Based Acetylenes as Advanced π-conjugated Systems for Optoelectronic 
Applications” Moustafa, M. M. Abd rabo; Pagenkopf, B. L. Comptes rendus Chimie 
2009, 12, 359–365. 

2) “Novel Quinazolinone Derivatives As Possible Antitumor Agents” Barakat, S. E; 
Ghorab, M. M.; Saker, H. M.; Abd Rabo, M. M. Phosphorus, Sulfur and Silicon and 
the Related Elements, 2007, 182, 1–13. 

1)  “Synthesis and Antitumor Activity of Some Novel Quinazoline Derivatives Bearing 
the Biologically Active Thione Moiety” Ghorab, M. M.; Barakat, S. E.; Saker, H. M.; 
Abd Rabo, M. M. Arzneim.Forsch./Drug Res., 2006, 56, 665–670. 

Presentations (* denotes oral presentation, presenting author is underlined)  

10) *“Annulation reactions of strained cycloalkanes: Novel syntheses of heterocycles and 
biologically active natural products” Moustafa, M. M. Abd Rabo; Pagenkopf, B. L.; 
ACS national meeting (2011, Anaheim, CA) 

9) “Structural tuning of siloles: Synthesis and property studies of new silole based 
chromophores for analytical and optoelectronic applications” Moustafa, M. M. Abd 
Rabo; Pagenkopf, B. L.; ACS national meeting (2011, Anaheim, CA) 

8) “Formal [4+2] Cycloaddition of Donor-Acceptor Cyclobutanes and Aldimines: 
Stereoselective Synthesis of Piperidine” Moustafa, M. M. Abd Rabo; Pagenkopf, B. 
L.; The 14th Symposium on the Latest Trends in Organic Synthesis (2010, St. 
Catharines, ON) 

7)  “Formal [4+2] Cycloaddition of Alkoxy-Substituted Donor-Acceptor Cyclobutanes 
and Aldehydes Catalyzed by Yb(OTf)3”  Moustafa, M. M. Abd Rabo; Stevens, A. 
C; Machin, B. P.; Pagenkopf, B. L.; The 14th Symposium on the Latest Trends in 
Organic Synthesis (2010, St. Catharines, ON) 

6)  “Synthesis of 5-Azaindoles via a Cycloaddition Reaction between Nitriles and Donor-
Acceptor Cyclopropanes” Moustafa, M. M. Abd Rabo; Pagenkopf, B. L.; the 93rd 
CSC Conference (2010, Toronto, ON)  

5)  “[4+2] Cycloaddition of Donor-Acceptor Cyclobutanes and Aldimines: 



273 
 

Stereoselective Synthesis of Piperidine” Moustafa, M. M. Abd Rabo; Pagenkopf, B. 
L.; The 93rd CSC Conference (2010, Toronto, ON) 

4) “Synthesis and Electrochemical Properties of New Silole Based Luminophores” 
Moustafa, M. M. Abd Rabo; ACS Green Chemistry Summer School 2009, Golden, 
Colorado 

3)  “Silole Chemistry Lights Our Life: Synthesis and Electrochemical Properties of New 
Silole Based Luminophores” Moustafa, M. M. Abd Rabo; Pagenkopf, B. L.; The 
22nd  Annual Western Research Forum (2009, UWO, London, ON) 

2)*“Silole Chemistry Lights Our Life: Synthesis and Electrogenerated 
Chemiluminescence (ECL) of New Silole Based Materials” Moustafa, M. M. Abd 
Rabo; The 92nd CSC Conference (2009, Hamilton, ON) 

1)  “Silole Chemistry Lights Our Life: Synthesis and Electrochemical Properties of New 
Silole Based Luminophores” Moustafa, M. M. Abd Rabo; Na, C.; Pagenkopf, B. L.; 
Ding, Z.; The 19th Quebec-Ontario Mini Symposium of Bioorganic and Organic 
Chemistry (2008, Toronto, ON)  

 

 


	New Synthetic Methodologies Directed toward Pharmacologically Active Compounds as well as Silole Based Chromophores for Analytical and Optoelectronic Applications
	Recommended Citation

	Front Stuff_b 
	Chapter_1_b
	Chapter_2_b
	Chapter_3_b
	appendix_1_ACS regulation
	Appendix_2_Chapter_1_spectra_b
	appendix_3_Chapter_2_spectra_b
	appendix_4_Chapter_3_spectra_b
	MM_CV

