
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

10-29-2010 12:00 AM

Characterizing and Diagnosing Architectural Degeneration of Characterizing and Diagnosing Architectural Degeneration of

Software Systems from Defect Perspective Software Systems from Defect Perspective

Zude Li
University of Western Ontario

Supervisor

Dr. Nazim H. Madhavji

The University of Western Ontario

Graduate Program in Computer Science

A thesis submitted in partial fulfillment of the requirements for the degree in Doctor of

Philosophy

© Zude Li 2010

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Software Engineering Commons

Recommended Citation Recommended Citation
Li, Zude, "Characterizing and Diagnosing Architectural Degeneration of Software Systems from Defect
Perspective" (2010). Electronic Thesis and Dissertation Repository. 30.
https://ir.lib.uwo.ca/etd/30

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ir.lib.uwo.ca%2Fetd%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/30?utm_source=ir.lib.uwo.ca%2Fetd%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

CHARACTERIZING AND DIAGNOSING ARCHITECTURAL

DEGENERATION OF SOFTWARE SYSTEMS

FROM DEFECT PERSPECTIVE

(Spine title: Characterizing and Diagnosing Architectural Degeneration)

(Thesis format: Monograph)

by

Zude Li

Graduate Program in Computer Science

A thesis submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

The School of Graduate and Postdoctoral Studies
The University of Western Ontario

London, Ontario, Canada

c© Zude Li 2010

THE UNIVERSITY OF WESTERN ONTARIO

School of Graduate and Postdoctoral Studies

CERTIFICATE OF EXAMINATION

Supervisor

Dr. Nazim Madhavji

Co-Supervisor

Dr. Mechelle Gittens

Examiners

Dr. Jamie Andrews

Dr. Michael Katchabaw

Dr. Luiz Capretz

Dr. Tim Lethbridge

The thesis by

Zude Li

entitled:

Characterizing and Diagnosing Architectural Degeneration
of Software Systems from Defect Perspective

is accepted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

Date

Chair of the Thesis Examination Board

ii

Abstract

The architecture of a software system is known to degrade as the system evolves

over time due to change upon change, a phenomenon that is termed architectural

degeneration. Previous research has focused largely on structural “deviations” of

an architecture from its baseline. However, another angle to observe architectural

degeneration is software defects, especially those that are architecturally related.

Such an angle has not been scientifically explored until now. Here, we ask two

questions: (1) What do defects indicate about architectural degeneration? and (2)

How can architectural degeneration be diagnosed from the defect perspective?

To answer question (1), we conducted an exploratory case study analyzing

defect data over six releases of a large legacy system (of size approximately 20

million source lines of code and age over 20 years). The relevant defects here are

those that span multiple components in the system (called multiple-component

defects – MCDs). This case study found that MCDs require more changes to fix

and are more persistent across development phases and releases than other types

of defects. To answer question (2), we developed an approach (called Diagnosing

Architectural Degeneration – DAD) from the defect perspective, and validated it

in another, confirmatory, case study involving three releases of a commercial sys-

tem (of size over 1.5 million source lines of code and age over 13 years). This case

study found that components of the system tend to persistently have an impact

on architectural degeneration over releases. Especially, such impact of a few com-

ponents is substantially greater than that of other components. These results are

new and they add to the current knowledge on architectural degeneration. The

key conclusions from these results are: (i) analysis of MCDs is a viable approach

to characterizing architectural degeneration; and (ii) a method such as DAD can

be developed for diagnosing architectural degeneration.

Keywords: architectural degeneration, software architecture, software defect,

software change, software maintenance and evolution, case study, tool technology.

iii

Acknowledgements

I thank my supervisor Dr. Nazim H. Madhavji and co-supervisor Dr. Mechelle

Gittens, for their continuous support and help throughout my Ph.D. studies, es-

pecially for their constructive suggestions on my research. Most of all, they help

me in developing the ability necessary of doing research in Software Engineering.

Thanks to the University of Western Ontario and the Department of Computer

Science thereof for providing useful research resources. Special thanks to Dr.

Jamie Andrews and the Graduate Secretary Janice Wiersma for their help on

my studies. For my colleagues in the department who participated, guided and

commented my work, thank you very much for your participation and effort.

Especially, I thank these colleagues in the research group: Andriy Miranskyy,

Syed Shariyar Murtaza, Dr. Remo Ferrari, and Shyamsundar B. Kulkarni. My

thesis would not have been possible without their help. I also thank Quazi Abidur

Rahman for his help on my studies.

My research has been partially supported by research grants from Natural

Science and Engineering Research Council (NSERC) of Canada and the Centre

for Advanced Studies (CAS), IBM Canada. Thanks to NSERC and CAS. Special

thanks to Andriy Miranskyy, David Godwin, Enzo Cialini, and Calisto Zuzarte

at IBM Canada, for their support throughout the research project.

Last but not the least, special thanks to my wife (Linda) and son (little Kui)

for their motivation and support throughout my overseas studies. Such support

has always been very important for me.

iv

Contents

Certificate of Examination ii

Abstract iii

Acknowledgements iv

Contents v

List of Tables x

List of Figures xi

List of Appendices xiii

List of Abbreviations xiv

Definitions of Key Terms xv

1 Introduction 1
1.1 Motivation . 1
1.2 Research Questions . 5
1.3 Research Preview . 5

1.3.1 Case Study 1: Multiple-Component Defect (MCD) Concerns 6
1.3.2 Diagnosing Architectural Degeneration (DAD) 7

A Profile of the DAD Approach 8
Case Study 2: Validation of the DAD Approach 9

1.4 Research Contributions . 10
1.4.1 Case Study 1: MCD Analysis 11
1.4.2 DAD Approach and Tool 12
1.4.3 Case Study 2: Validation of the DAD Approach 13

1.5 Thesis Structure . 15

2 Related Work 16
2.1 General Background . 17

2.1.1 Software Architecture . 17

v

2.1.2 Software Maintenance . 18
2.1.3 Architectural Evolution 19

2.2 Software Aging . 20
2.2.1 Causes and Properties of Aging 21
2.2.2 Code Decay . 22

2.3 Architectural Degeneration . 23
2.3.1 Measurement . 23

Complexity Perspective . 24
Maintainability Perspective 24

2.3.2 Prevention . 26
Design for Change . 26
Change Process Improvement 27
Reverse Engineering . 27

2.3.3 Diagnosis . 28
Architectural Deviation Detection 28
Defect-Prone Component Identification 29
Fault and Change Architectures 29

2.3.4 Treatment . 31
Active maintainability improvement 31
Re-engineering . 32

2.3.5 Analysis of Existing Diagnosis Techniques 33
2.4 Software Defects . 34

2.4.1 Defect Distribution . 35
2.4.2 Defect Correction Effort 36
2.4.3 Architectural Defects . 36
2.4.4 Defect-Prone Components 37
2.4.5 Analysis of Existing Defect Research 38

3 MCDs and Architectural Degeneration 39
3.1 Clarifications of MCDs . 39

3.1.1 MCDs vs. Interface Defects 40
3.1.2 MCDs vs. Architectural Defects 40

3.2 Understanding Architectural Degeneration 41
3.2.1 Degeneration vs. Deviation 41
3.2.2 Architectural Degeneration and MCDs 42
3.2.3 Degeneration-Critical Components 43

3.3 Key Points . 43

4 Case Study 1: MCD Analysis 44
4.1 Research Questions . 45
4.2 Terminology . 46
4.3 Case Study Design . 49

vi

4.3.1 Description of the System and Data 49
4.3.2 Data Collection, Clean-up, and Analysis Procedures 50
4.3.3 Descriptive System Statistics 52
4.3.4 Case Study Process . 53

4.4 Analysis of Data, Results, Interpretation, and Comparisons 54
4.4.1 MCD Distribution (Question (i)) 54
4.4.2 MCD Complexity (Question (ii)) 56
4.4.3 MCD Persistence (Question (iii)) 59
4.4.4 Summary of Findings . 62

4.5 Threats to Validity . 63
4.5.1 Data Reliability . 63
4.5.2 External Validity . 64
4.5.3 Conclusion Validity . 64

4.6 Implications . 65
4.6.1 Software Maintenance . 65
4.6.2 Architectural Degeneration Treatment 66
4.6.3 Architectural Methods and Tools 67

4.7 Recap of Case Study 1 . 68

5 Diagnosing Architectural Degeneration (DAD) 70
5.1 Symptoms for Diagnosis . 70
5.2 A Conceptual DAD Framework 72

5.2.1 Step 1: Identification of MCDs and Fix Relationships . . . 73
5.2.2 Step 2: Measurement of Components and Fix Relationships 74
5.2.3 Step 3: Identification of Degeneration-Critical Components

and Fix Relationships . 75
5.2.4 Step 4: Persistence Evaluation for Components and Fix Re-

lationships . 76
5.2.5 Step 5: Architectural Degeneration Evaluation 76
5.2.6 Defect Architecture Construction 76

5.3 A DAD Prototype Tool . 77
5.3.1 Main Features . 78
5.3.2 Data Input for the Tool 79
5.3.3 Data Processing by the Tool 80
5.3.4 Output of the Tool . 81

5.4 Comparison and Discussion . 82
5.5 Key Points of the DAD Approach 84

6 Case Study 2: DAD Validation 85
6.1 Research Questions and Metrics 85
6.2 Case Study Design . 87

6.2.1 Description of the System and Data 88

vii

6.2.2 Data Collection and Clean-up Procedures 89
6.2.3 Data Analysis Procedures 91
6.2.4 Descriptive Defect Statistics 92

A Basic Profile of the System 92
Defect Distributions . 93
MCDs vs. Non-MCDs . 95

6.2.5 Case Study Process . 96
6.3 Analysis of Data, Results, Interpretation, and Comparisons 97

6.3.1 Components’ Contributions (Q1) 98
Components’ Measures . 98
Correlation Analysis . 100
Degeneration-Critical Components 102

6.3.2 Persistence of Components’ Contributions (Q2) 104
6.3.3 Fix Relationships’ Contributions (Q3) 107
6.3.4 Persistence of Fix Relationships’ Contributions (Q4) . . . 109
6.3.5 Architectural Degeneration Trend (Q5) 112
6.3.6 Defect Architectures . 114
6.3.7 Summary of Findings . 116

6.4 Threats to Validity . 117
6.4.1 Data Quality . 118
6.4.2 External Validity . 118
6.4.3 Construct Validity . 119
6.4.4 Conclusion Validity . 120

6.5 Implications . 121
6.5.1 Methods of Architectural Degeneration Analysis 121
6.5.2 Priority Re-engineering of System Components 122
6.5.3 Empirical Research . 122

6.6 Recap of Case Study 2 . 124

7 Case Study 1 vs. Case Study 2 126
7.1 MCD Identification . 126
7.2 MCD Distribution . 127
7.3 MCD Complexity Measurement 128
7.4 Further Comparative Analysis . 129

8 Critical Assessment 131
8.1 MCDs and Architectural Degeneration 131
8.2 Case Study 1: MCD Analysis . 133
8.3 DAD Approach and Tool . 134
8.4 Case Study 2: DAD Validation 135

9 Challenges and Lessons Learnt 138
9.1 Data Access . 138

viii

9.2 Data Quality . 140
9.3 Data Analysis, Risks and Scope 141
9.4 Result Interpretation and Validation 142
9.5 Academic Cycles and Industry Concerns 144
9.6 Key Points of Challenges and Lessons 145

10 Conclusions and Future Work 147

Bibliography 150

A DAD with Relation Algebra 161
A.1 Motivation . 161
A.2 Related Algebraic Work . 164

A.2.1 Ordinary Relation Algebras 164
A.2.2 Algebras of Components and Connectors 165
A.2.3 Analysis of Existing Algebraic Work 166

A.3 Basic Notions and Notations . 166
A.4 Extended Relation Algebra for DAD 168

A.4.1 Architectural Relation . 168
A.4.2 AR Lifting and Lowering 170
A.4.3 Extended Architectural Relation 172
A.4.4 Attribute Aggregation . 174

A.5 An Example Application . 175
A.6 Algebra Implementation in the Tool 178

A.6.1 Complete EAR Construction 179
A.6.2 EAR Structure Implementation 180
A.6.3 EAR Operation Implementation 180

A.7 Discussion and Comparison . 182
A.8 Short Conclusion . 184

B DAD Prototype Tool Demonstration 185
B.1 Descriptive System Statistics . 186
B.2 Component Measurements . 188

B.2.1 Degeneration-Critical Components 188
B.2.2 Architectural Degeneration 190

B.3 Defect Architectures . 191
B.4 Short Conclusion . 195

Vitae and Thesis-Relevant Publications 196

ix

List of Tables

4.1 Example defect records. 50
4.2 Basic profile of the subject system of Case Study 1. 52
4.3 Proportions of MCDs and their accompanying changes. 57
4.4 Accompanying changes required for MCDs. 58
4.5 Backward and forward-ratios of MCDs. 60

5.1 Key attributes of the data input. 79

6.1 Example defect-fix records (only key fields). 89
6.2 Basic profile of the subject system of Case Study 2. 92
6.3 Component measures with metrics M1 (“%MCDs”) and M2 (“#MCDs

per KSLOC”). 99
6.4 Component measures with metrics M3 (“#Components fixed per

MCD”) and M4 (“#Code files fixed per MCD”). 100
6.5 Correlations between component measures w.r.t. different metrics. 101
6.6 Cross-phase/release rank correlations (Spearman-values) between

component measures. 105
6.7 Means and standard deviations (in brackets) of fix-relationships’

measures. 110
6.8 Cross-release rank correlations (Spearman-values) between fix re-

lationships’ measures. 111

A.1 Algorithm of constructing complete EARP|C. 179

x

List of Figures

1.1 Visual trend of the architectural degeneration. 4

1.2 The three main parts of this thesis research and their contributions. 10

3.1 Relationship between architectural degeneration and MCDs. . . . 42

4.1 Distributions of MCDs by components and fix relationships. . . . 55

5.1 A conceptual DAD framework. 73

5.2 Data processing by the DAD prototype tool. 81

6.1 Distribution of defects by number of components spanned. 94

6.2 Distribution of defects by number of code files spanned. 94

6.3 MCDs vs. non-MCDs. 95

6.4 Components’ MCD percentage measures across releases. 105

6.5 Persistence of components’ “%MCDs” measures across releases. . 106

6.6 Fix relationships’ measures in release 1. 108

6.7 Persistence of fix relationships’ “%MCDs” measures across releases. 112

6.8 Defect architecture (segment) of release 1 with metric M1. 114

6.9 Defect architecture (segment) of release 1 with metric M3. 115

A.1 An example architectural graph (segment). 170

A.2 A segment of the EARC diagram for release 1. 177

A.3 EAR structure implementation. 181

B.1 Numbers of defects in the Eclipse Platform. 186

B.2 Numbers of defects in the Eclipse Platform (release 1). 187

B.3 Numbers of code files fixed in the commercial system. 187

B.4 Number of MCDs in components of Eclipse Platform (release 3). . 189

B.5 Component measures with MCD complexity metric M3 (“#Com-
ponents fixed per MCD”) in the commercial system. 189

B.6 Architectural degeneration trend of the Eclipse Platform across re-
leases, w.r.t. the MCD percentage metric M1 (“%MCDs”). 191

B.7 Architectural degeneration trend of the commercial system across
releases, w.r.t. the MCD quantity metric M1’ (“%MCDs”). . . . 192

xi

B.8 “Macro” defect architecture (segment) of the Eclipse Platform (re-
lease 3) w.r.t. the MCD quantity metric “#MCDs”. 193

B.9 “Micro” defect architecture (segment) of component C5 in the com-
mercial system (release 1). 194

xii

List of Appendices

Appendix A DAD with Relation Algebra 161
Appendix B DAD Prototype Tool Demonstration 185

xiii

List of Abbreviations

Abbreviation Full name
First use
(page #)

SLOC Source line of code 1
KSLOC Thousand SLOC 74
DAD Diagnose architectural degeneration 7
MCD Multiple-component defect 3
SCD Single-component defect 35
MFD Multiple-file defect 94
SFD Single-file defect 95
ADD Attribute-driven design 18

ATAM Architecture tradeoff analysis method 18
SAAM Software architecture analysis method 18
CBM Coupling between modules 24

CBMC Coupling between module classes 24
UML Unified modeling language 28
DPC Defect-prone component 29
SAVE Software architecture visualization and evaluation 29
ROSE Re-engineering of software evolution 30

SACPT Software architecture change propagation tool 30
ODC Orthogonal defect classification 34

D, T, F Development, testing, and field phases 46
A All phases (including D, T and F) 46

BR Backward ratio 48
FR Forward ratio 48

Pearson-value Pearson correlation coefficient 52
Spearman-value Spearman’s rank correlation coefficient 91

SWEBOK Software engineering body of knowledge 66
RPA Relation partition algebra 164
CSP Communicating sequential process 165
AR Architectural relation 168
AES Architectural entity set 168
EAR Extended architectural relation 172
SQL Structured query language 180
FVT Functional verification test 187
SVT System verification test 187
PQA Performance quality assurance 187

xiv

Definitions of Key Terms

Defect: A defect is “an incorrect step, process, or data definition in a computer
program” (IEEE Std 610.12-1990). Here the terms “defect” and “fault” are
used interchangeably.

Component: A component is a primary building block (or element) of a software
system’s architecture which encapsulates a set of closely related functional-
ities of this system. Note that a component is implemented by code files.

Architecture: The architecture of a software system is the structure or structures
of the system which comprise components (or elements) and their externally
visible properties and relationships (Bass et al., 2003, p. 21).

Architectural Degeneration: Architectural degeneration is a phenomenon where
a software system’s architectural change over time leads to progressive qual-
ity decline.

Multiple-Component Defect (MCD): A MCD is a defect that requires changes
(fixes) in more than one component in a software system.

Fix Relationship: A fix relationship is a relationship among components where
fixing a MCD in one component requires changes in the other components
in order to fix this MCD.

Defect Architecture: A defect architecture is a composition of the components
and fix relationships among the components of a software system.

Degeneration-Critical Component: A degeneration-critical component is a
component in a system which contributes substantially more to the archi-
tectural degeneration than other components.

Degeneration-Critical Fix Relationship: A degeneration-critical fix relation-
ship is a fix relationship in a system which contributes substantially more
to the architectural degeneration than other fix relationships.

xv

1

Chapter 1

Introduction

The architecture of a software system is known to degrade as the system evolves

over time due to change upon change (Lehman, 1980). A degraded architecture

can make future changes in the system more costly and erroneous than need be

(Stringfellow et al., 2006). The phenomenon where a software system’s architec-

tural change over time leads to progressive quality decline is termed architectural

degeneration (Lindvall et al., 2002). Such architectural degeneration is the focus

of this thesis research.

1.1 Motivation

Severe architectural degeneration can trigger system re-engineering (Brooks, 1975,

p. 123). For example, MacCormack et al. (2006) report that the Mozilla browser’s

code was “too tightly coupled” for ease of modifiability and was the primary

cause of its re-engineering in 1998. This effort consumed five years to rewrite over

seven thousand source files and two million source lines of code (SLOC, including

comments) (Godfrey and Lee, 2000). Such a scenario could well be repeated in

the case of the Firefox browser (Mozilla browser’s successor after 2002) because,

as we noted in our analysis of this browser, its architecture in 2007 was similar

2

to that in 1998 in terms of tightly coupled subsystems. Similarly, evolvability

problems in terms of incorporating new requirements in the Linux-kernel led to

a two-year effort on restructuring release 2.2, which was repeated for release 2.6

(van Gurp and Bosch, 2002). Eick et al. (2001) describe how the modularity of

the architecture of the AT&T 5ESS telephone switching system had degraded over

the period 1989 to 1996. In particular, the probability of a change touching more

than one file in the system had increased from less than 2% in 1989 to more than

5% in 1996. There were indicators that systems had reached a state from which

further change was not possible.

We can conclude from the above Mozilla, Linux-kernel and 5ESS issues that

there is substantial evidence of the negative impact of architectural degeneration

on the software business and quality of systems. Therefore, characterizing, diag-

nosing and treating architectural degeneration is significant for the related system

quality and cost concerns in practice.

Previous research on architectural degeneration has largely focused on “de-

viations” from its baseline (one of its previous forms) (Hochstein and Lindvall,

2005), e.g.: deviation detection (Murphy et al., 2001) and removal (Tran and

Holt, 1999) and deviation-based degeneration measurement (Lindvall et al., 2002).

Deviations made to an architecture lead to its degeneration (Lindvall et al., 2002).

For example, new components1 added to a software system have more potential

to contain more defects than old or modified components (Endres, 1975). How-

ever, there is a counter argument (Bhattacharya and Perry, 2007) that deviations

may not always lead to degeneration because deviations show areas of change in

an architecture, which does not necessarily indicate loss of functionality or of the

structure of the architecture. For an architecture, deviation analysis focuses on its

structural difference against its baseline, but degeneration analysis focuses on its

adverse impact on system quality. Therefore, detecting, measuring and removing

1A component is an architectural element which is implemented by a number of code files.

3

deviations in a software architecture could align it better to its baseline (from a

structural perspective) but may not effectively decrease its degeneration (from a

quality perspective).

We were thus motivated to pursue a new line of investigation into architectural

degeneration – that from the point of view of a system’s “defect” quality. Fixing a

defect spanning multiple system components (called a multiple-component defect

or MCD (Li et al., 2009)) is of an architectural nature because MCDs are related

to architectural problems (von Mayrhauser et al., 2000). The more the number of

changes across the components to fix a defect, the more complex the fix in general.

We could see above the concern for architecture degradation and change complex-

ity in the AT&T system (Eick et al., 2001). Also, in (von Mayrhauser et al., 2000),

the authors use MCDs as a basis for identifying problematic change-coupling rela-

tionships among components (called fix relationships (Li et al., 2009) – i.e., fixing

one component entails fixing other related components) in a software architecture.

In complementary analysis of three large software systems, DAmbros et al. (2009)

use change-coupling relationships to predict defects in system components.

In this thesis research, we build upon the previous work (e.g., (Eick et al.,

2001; D’Ambros et al., 2009; Li et al., 2009)) by using MCDs to characterize: (i)

defect quality of components, (ii) fix relationships between components, (iii) the

persistence of (i) and (ii) across system development phases and releases, and (iv)

architectural degeneration through the analysis of (i) and (ii) across phases and

releases. The quantity of MCDs in components, severity in terms of extent of

change, and persistence over multiple phases and releases would reflect the degree

to which a system’s architecture is degenerating.

To better understand the phenomenon of architectural degeneration, we ran-

domly selected 50 MCDs from each of the three successive releases of a commercial

legacy system and mapped them on the system’s respectively three architectures.

The subject system contains 10 components, and restructuring was carried out on

4

release 3 in order to improve the system structure. This is shown in Figure 1.1,

where boxes (C0–C9) denote system components and edges denote fix relation-

ships between pairs of components. The thicker the box or edge, more MCDs

contained in the component or stronger the fix relationship between the pair of

components, respectively.

C0

C3C9

C8

C7

C6C5

C4

C2

C1 C0

C3C9

C8

C7

C6C5

C4

C2

C1

C0

C3C9

C8

C7

C6C5

C4

C2

C1

release 1 release 2

release 3

component

fix relationship

Legend:

Figure 1.1: Visual trend of the architectural degeneration.

Figure 1.1 shows that MCDs had spread more widely in release 2 than in

releases 1 and 3 – there are more “thick” fix relationships in release 2. That

is, MCDs were more complex in release 2 than those in releases 1 and 3. This

implies that, from the MCD complexity perspective, architectural degeneration

of the system increased from release 1 to release 2, but decreased later in release

3 (due to restructuring). This motivated us to investigate into the trend of the

system’s architectural degeneration across development phases and releases.

5

1.2 Research Questions

This thesis research focuses on characterizing and diagnosing architectural degen-

eration of software systems from the defect perspective. In particular, we ask two

relevant, overall questions here:

Question 1: What do defects indicate about architectural degeneration?

Question 2: How can architectural degeneration be diagnosed from the defect

perspective?

Question 1 is concerned with characteristics of defects which are involved in

architectural degeneration. The relevant defects here are those defects that span

multiple system components (i.e., MCDs). For example, MCDs could be more

and more complex to fix as the architecture undergoes degeneration. Therefore,

the increasing complexity of MCDs could indicate the increase in architectural

degeneration. Further, question 2 is concerned with how to measure architectural

degeneration in relation to defects, e.g., how to measure the complexity of MCDs.

Each of these two overall questions has been decomposed into several specific

questions, which are described in the next section.

1.3 Research Preview

The above description of questions 1 and 2 indicates that this thesis research

is centered on MCDs and architectural degeneration. MCDs are related to po-

tential crosscutting concerns (Eaddy et al., 2008) or architectural problems (von

Mayrhauser et al., 2000). Fixing a MCD requires changes in more than one com-

ponent, which is a sign of problems with the software architecture (Stringfellow

et al., 2006). This thesis research is thus to characterize and diagnose architec-

tural degeneration from the MCD perspective. Here, we present a preview of the

main contents of this thesis research.

6

1.3.1 Case Study 1: Multiple-Component Defect (MCD)

Concerns

We propose that from the defect perspective, architectural degeneration manifests2

itself through MCDs. Therefore, characteristics of MCDs, such as their quantity

and complexity, can reflect the impact of architectural degeneration on software

defects. Unfortunately, there is a scarcity of quantitative research on architectural

degeneration from the MCD perspective. Therefore, the research on question 1

(see Section 1.2) was motivated to characterize the MCDs in a real software system

in order to investigate defects that indicate about architectural degeneration. This

research is involved in an exploratory case study (Case Study 1).

Case Study 1 investigates the defect history (defect records) of a large, legacy

system (of size approximately 20 million SLOC and age over 20 years). The system

has evolved over nine major releases, numerous minor releases and patches. The

defect dataset under investigation covers 17 of over 20 years of the system.

This case study investigates the MCDs in six of the nine major releases of the

subject system by answering the following three questions:

(i) Does the 80:20 Pareto principle fit the MCD distribution?

(ii) To what extent are MCDs more complex than other types of defects?

(iii) To what extent are MCDs more persistent than other types of defects?

Question (i) is concerned with the MCD distribution: whether approximately

80% of MCDs emanate from 20% of the components of the subject system. Due

to the relationship between MCDs and architectural degeneration (as discussed at

the beginning of this section), this question is related to the skewed distribution of

architectural degeneration over the components. Question (ii) is concerned with

the MCD complexity. The number of components that are changed in order to

2Later in Section 3.2.2, we describe the relationship between architectural degeneration and
MCDs (their characteristics such as complexity); also see Figure 3.1.

7

fix a defect is a measure of complexity3 (Endres, 1975). Further, question (iii)

is concerned with the MCD persistence across development phases and releases.

MCDs that cross phase or release boundaries are clearly not getting fixed and

are being flagged again in subsequent phases or releases, which are thus harder

to fix then non-persistent defects. The greater the complexity and persistence

(difficulty) of fixing MCDs (compared against that for other types of defects), the

greater the adverse impact of architectural degeneration on software defects.

Answering the above three questions, (i)–(iii), can build a quantitative profile

of MCDs in terms of their (a) distribution by the components, (b) complexity in

terms of the number of components changed, and (c) persistence across phases and

releases. This profile reflects the impact of architectural degeneration on system

defects (thus, addressing question 1 posed in Section 1.2). See Chapter 4 for Case

Study 1 and this profile in detail. Moreover, this profile also shows quantitative

evidence which can motivate us to create an approach to diagnose architectural

degeneration from the defect perspective. This approach is described below.

1.3.2 Diagnosing Architectural Degeneration (DAD)

We propose that there are degeneration-critical components and fix relationships

in a system which contribute substantially more to architectural degeneration than

other components and fix relationships. It is necessary to properly diagnose such

degeneration in relation to the degeneration-critical components and fix relation-

ships. Unfortunately, there is a scarcity of effective techniques used to diagnose

architectural degeneration. We therefore created an approach (called Diagnosing

Architectural Degeneration – DAD) from the defect perspective.

This DAD approach answered question 2 posed in Section 1.2. In particular,

DAD supports: (a) identification of degeneration-critical components and fix re-

3Fixing a defect usually requires changes in a code base. The change span (e.g., number of
components changed for a defect-fixing request) (Eick et al., 2001) thus indicates the complexity
(and the difficulty) of fixing this defect.

8

lationships in a given system, (b) evaluation of persistence of components and fix

relationships in relation to architectural degeneration, and (c) evaluation of the

trend in architectural degeneration over time. A profile of this approach is below.

A Profile of the DAD Approach

In order to support architectural degeneration diagnosis, DAD defines a suite of

metrics to measure the “contribution” of a component or a fix relationship of

a given system to architectural degeneration. These metrics are related to the

quantity (in forms of proportion and density) and complexity of MCDs pertaining

to a component or a fix relationship in the system. The number of components

or code files changed in order to fix a MCD is a measure of complexity.

By measuring the components with the MCD quantity and complexity metrics,

DAD can identify degeneration-critical components and fix relationships in the

system which are components having substantially greater MCD quantity and

complexity measures than other components and fix relationships. Based on the

component and fix relationship measures, DAD can evaluate the persistence of

components and fix relationships in relation to architectural degeneration, and

can also evaluate the architectural degeneration of the system over time.

We have developed a prototype tool to facilitate DAD application in real con-

texts. This prototype tool analyzes the defect-fix history (defect records and

change logs) of a given system; and beyond that, it supports automation of DAD

application on the system with the help of a Relation Algebra (see Appendix A).

The main outputs of this prototype tool are profiles of the system with respect

to the defects (mainly MCDs) and architectural degeneration. See a detailed

description of the DAD approach and its prototype tool in Chapter 5.

We also applied the DAD approach in the second, confirmatory, case study

on a commercial software system (of size over 1.5 million SLOC and age over 13

years). The system is actually a core subsystem of the even larger system under

investigation of Case Study 1 (MCD analysis). This case study is described below.

9

Case Study 2: Validation of the DAD Approach

Case Study 2 was conducted on three major, successive releases of the subject

system. This study followed the DAD approach to measure MCD quantity and

complexity for components and fix relationships of the system. Based on the

measurement, this study identified degeneration-critical components and fix rela-

tionships, evaluated the persistence of components and fix relationships over time,

and discovered architectural degeneration trend for the system.

In particular, Case Study 2 answered five investigative, relevant questions.

First of all, there are two questions related to the components in a system:

(a) Do some components in a system contribute more than other components to

the system’s architectural degeneration?

(b) Do components contribute persistently to architectural degeneration over de-

velopment phases and releases?

Question (a) is concerned with the quantity of MCDs spread across the sys-

tem’s components. It is also concerned with the number of components or code

files changed (a complexity issue) to fix a MCD. Question (b) complements this

with its focus on persistence across development phases and system releases. That

is, it would highlight components that are tenacious in their defect quality and

across phases and releases.

Following this, there are two more questions, (c) and (d) for “fix relationships”

analogous to questions (a) and (b). In particular, we are interested in knowing

(c) whether some fix relationships contribute more than others to architectural

degeneration; and (d) whether fix relationships are persistent over phases and

releases. Based on these four questions, the last question (e) is: What is the trend

in architectural degeneration from the defect perspective? This question examines

architectural degeneration across phases and releases based on measurement of

components and fix relationships.

10

These are clearly important questions to ask about system management; we

saw earlier the price to pay due to degenerating architectures (see Section 1.1).

However, a key aspect of Case Study 2 is that it shows how we can systematically

analyze MCDs to characterize the trend in architectural degeneration (e.g., see

Figure 1.1). This complements the deviation perspective taken in the literature.

See Chapter 6 for the details of Case Study 2.

1.4 Research Contributions

The above research preview indicates that this thesis research contains three main

parts: Case Study 1 (MCD analysis), the DAD approach (and its prototype tool),

and Case Study 2 (DAD validation). Following this preview, we discuss the con-

tributions of these three parts, see Figure 1.2 for a profile.

Case Study 1: MCD analysis

Case Study 2: DAD validation

Empirical knowledge of MCDs

DAD: approach and tool

Empirical knowledge of
architectural degeneration

An approach to diagnosing
architectural degeneration

DAD prototype tool

Lessons learnt from conducting
case studies in an industiral context

 Main Body Main Contributions

Acronyms:
 MCD -- Multiple-Component Defect; DAD -- Diagnosing Architectural Degeneration

Figure 1.2: The three main parts of this thesis research and their contributions.

The overarching contribution of this research (specifically its three main parts)

is new, empirical knowledge on architectural defects (MCDs) and degeneration in

11

software systems, which can benefit system evolution and quality improvement.

The existing knowledge reflects the state of current theory on architectural degen-

eration, i.e., that the degeneration of an architecture can be determined based on

its deviations made against a baseline. This thesis work adds that architectural

degeneration can be determined through analysis of MCDs (a quality perspective).

The following three subsections give the details.

1.4.1 Case Study 1: MCD Analysis

We note from Section 1.3.1 that Case Study 1 investigates the distribution, com-

plexity and persistence of the MCDs in six releases of the subject system. The

relevant quantitative findings are described below.

(1) The Pareto principle fits the MCD distribution by components: over 80%

of MCDs emanate from 20% of the components.

(2) MCDs are more complex to fix than non-MCDs. On average, fixing a MCD

requires near 3 times changes (based on components) as much as that for

fixing a non-MCD.

(3) MCDs are more persistent across development phases and releases than non-

MCDs. The proportion of MCDs crossing over from one phase or release to

the next is 6.0-8.5 times as much as that for non-MCDs.

The above findings depict a quantitative profile of MCDs in the subject system,

which addresses questions (i)–(iii) posed in Section 1.3.1. This profile also has

implications for software maintenance and quality improvement. For example,

separating MCDs from other types of defects can help focus attention on these

hard-to-fix defects, and more correction and testing efforts should be focused on

MCDs (because of their persistence) to avoid leaking into successive releases.

This case study is new and there are no similar studies in the scientific lit-

erature. Historically, MCDs have been associated with “interface” defects. For

example, Endres (1975) defines an interface defect as one that requires “changes”

12

to more than one module in order to fix it. Previous research has focused on

the “extent” of different types of defects, including interface defects, in software

systems. It has been found that interface defects account for 5% (Endres, 1975),

11% (Basili and Perricone, 1984), 6%-15% (Basili and Shull, 2005), and 4%-24%

(Weiss, 1979) of all defects in software systems. The case study investigates a

different line of inquiry focused on MCDs, specifically, their distribution, com-

plexity and persistence over time. These three aspects were not investigated in

the previous studies (e.g., (Endres, 1975) and (Basili and Perricone, 1984)). The

quantitative findings (as shown above) of these aspects reflect the impact of archi-

tectural degeneration on defects, which can thus help understand the architectural

degeneration in the system.

1.4.2 DAD Approach and Tool

The DAD approach operationalizes a defect perspective with MCD quantity and

complexity metrics to identify degeneration-critical components and fix relation-

ships, to evaluate the persistence of components and fix relationships in relation to

architectural degeneration, and to evaluate architectural degeneration over time.

In particular, degeneration-critical components are identified specifically as com-

ponents that have the substantially greater MCD quantity or complexity measures

than other components in a given system. Likewise for degeneration-critical fix

relationships. Also, the architectural degeneration is claimed to be increased if

the system’s MCD quantity and complexity measurements increased with time.

Otherwise, it is claimed to be decreased or mitigated.

Through applying DAD on a given system, the derived information of archi-

tectural degeneration can help improve the system’s quality. Existing techniques

cannot offer this information. We note from Section 1.1 that previous research has

centered on detection (Murphy et al., 2001) and removal (Krikhaar et al., 1999)

(Tran and Holt, 1999) of architectural deviations. DAD, on one side, is obviously

13

different from these deviation-related techniques. On another side, its defect per-

spective can complement the deviation perspective for architectural degeneration

diagnosis (Lindvall et al., 2002) (Bhattacharya and Perry, 2007). For example,

the MCD quantity and complexity metrics defined in DAD can be used to mea-

sure the deviations made in an architecture. In this situation the deviations that

lead to significant increase in the system’s MCD quantity or complexity should

be identified as the degeneration-critical components for intensive attention.

Moreover, the DAD prototype tool can create profiles of a given system and its

defects and diagnose its architectural degeneration over time. Therefore, this tool

can complement existing techniques and tools for system quality improvement,

such as architectural deviation detection and removal (Lindvall and Muthig, 2008),

architectural transformation (Krikhaar et al., 1999) (Fahmy and Holt, 2000), and

re-engineering (Chikofsky and Cross, 1990).

1.4.3 Case Study 2: Validation of the DAD Approach

We note from Section 1.3.2 that Case Study 2 applied the DAD approach on a

real software system. That is, it identified the degeneration-critical components

and fix relationships and evaluated the architectural degeneration over time for

the subject system. Beside the DAD application, this case study also addresses

the five questions, (a)–(e), posed in Section 1.3.2. The relevant results of this

study are summarized below (see Section 6.3).

(1) There are 20% of the system’s components and 10% of fix relationships

which exhibit over 70% of MCDs. Among these, there are few components

and fix relationships that are associated to relatively more complex MCDs.

These components and fix relationships are degeneration-critical.

(2) The system’s components tend to persistently have an impact on archi-

tectural degeneration over multiple releases of the system; however, such

persistence does not apply to the fix relationships.

14

(3) As the system evolves, the trend in architectural degeneration may increase

or decrease, depending on whether any treatments were made.

These results add to the current knowledge on architectural degeneration,

which can aid architectural degeneration treatment and system evolution. For

example, the degeneration-critical are the few-but-vital components in the sys-

tem which have to be fixed and tested more thoroughly than other components.

Meanwhile, the components that contribute persistently to the architectural de-

generation have to be treated with intensive attention. Overall, we conclude that

architectural degeneration can be characterized from the perspective of defects,

which complements the characterization from the structural or deviation perspec-

tive (Lindvall et al., 2002; Hochstein and Lindvall, 2005).

Historically, there are some studies which address architectural degeneration.

For examples, Brooks (1975, p. 123) and Belady and Lehman (1976; 1980) find

that any system will eventually require a redesign due to continuing structural de-

terioration. Eick et al. (2001) then find that improper architectural design is one

of the main factors causing code decay (the phenomenon where change to a system

becomes more difficult than before). Bhattacharya and Perry (2007) described the

structural deviation and functionality loss of a system with time. Lindvall et al.

(2002) discussed the problem of system complexity increase due to architectural

deviations. However, there are few studies quantitatively characterizing, or moni-

toring, architectural degeneration. For a system, such quantitative characteristics

are credible and are important especially when the organization is planning to

act for controlling and treating the architectural degeneration. This case study

spanned this gap, which measured architectural degeneration in a system.

Moreover, there are challenges and lessons learnt from conducting Case Studies

1 and 2, which are mainly related to the data access, quality, cleaning, analysis,

and interpretation, academic cycles, industry jitters, etc. They can benefit future

empirical studies conducted in industrial contexts.

15

Over the two case studies and the DAD approach and its prototype tool, we

claim that this thesis research adds to the current knowledge on software defects

(e.g., (Endres, 1975) and (Basili and Perricone, 1984)) and the theory of archi-

tectural degeneration (mainly, deviation-based evaluation (Lindvall et al., 2002)),

and also enriches the methodology and technology of handling (detecting and

fixing) software defects and characterizing and diagnosing architectural degener-

ation. The key conclusions from this work are: (i) analysis of MCDs is a viable

approach to characterizing architectural degeneration; and (ii) a method such as

DAD can be developed based on MCD characteristics for diagnosing architectural

degeneration from the defect perspective.

1.5 Thesis Structure

The thesis is organized as follows. Chapter 2 outlines related work of this the-

sis research. Chapter 3 introduces the core concepts for this research. Later in

Chapter 4, we elaborate Case Study 1. In Chapter 5, we illustrate the DAD ap-

proach and its prototype tool. In Chapter 6, we elaborate Case Study 2. Then

in Chapter 7, we compare these two case studies. After that, we assess the main

achievements and limitations of this thesis research (mainly its three parts shown

in Chapters 4–6) in Chapter 8. We then discuss the challenges and lessons learnt

from conducting the case studies in Chapter 9. Finally, we conclude the whole

thesis and describe the future work in Chapter 10. Appendix A defines the Rela-

tion Algebra underlying the DAD prototype tool, which is used to implement the

DAD features in the tool prototype. Appendix B demonstrates typical outputs of

applying this prototype tool on the open-source Eclipse Platform4 and the subject

commercial system of Case Study 2.

4See an introduction to the Eclipse Platform at http://www.eclipse.org/platform/ (last
access in November 2010).

16

Chapter 2

Related Work

This chapter outlines related work centered on architectural degeneration and its

diagnosis. We first describe relevant background knowledge on software architec-

ture and maintenance (see Section 2.1), then dig into three fundamental aspects

of the architecture and maintenance research:

(1) understanding the software aging phenomenon (e.g., its causes and proper-

ties) which includes architectural degeneration; see Section 2.2;

(2) handling architectural degeneration, including typical techniques for mea-

surement, prevention, diagnosis and treatment of architectural degeneration;

see Section 2.3; and

(3) characterizing software defects (e.g., their distribution, complexity and cost

measurements, etc.), see Section 2.4.

These three aspects are closely related to the work on characterization and

diagnosis of architectural degeneration – the focus of this thesis research. Based

on the related work description within these three aspects, we then discuss the

specific motivations for the relevant work of this thesis research, which includes

Case Study 1 (analysis of multiple-component defects or MCDs – see Chapter 4),

the DAD approach (and its prototype tool – see Chapter 5), and Case Study 2

(DAD validation – see Chapter 6).

17

2.1 General Background

The phenomenon of architectural degeneration is related to software architecture

and maintenance. As the size and complexity of software systems rapidly grow,

the architecture becomes more important (Garlan and Shaw, 1993) and the main-

tenance becomes more expensive (Sutherland, 1995). They are thus more and

more critical for success of software development projects.

2.1.1 Software Architecture

The architecture of a software system is the structure or structures of the system

which comprise components (or elements) and their externally visible properties

and relationships (Bass et al., 2003, p. 21). The architecture of, especially, a large

software system is firmly entrenched as amongst the key information artifacts of a

software organization (Bass et al., 2003, p. xi). Its development can galvanize the

diverse stakeholders into action towards a common goal of realizing the envisaged

system or maintaining the delivered system (Clements et al., 2002, p. 10). In

many cases, it can influence, or even dictate, the organization of the various

development teams (Booch, 2007).

From a structural perspective, an architecture captures the structure of a sys-

tem in terms of the components and how they interact (Gorton, 2006). As a

conceptual solution, an architecture captures the foundational design decisions

made early in the development process (Jansen and Bosch, 2005) (Bass et al.,

2003, p. 26). These design decisions typically need to consider the various system

qualities (such as performance, reliability, modifiability, usability, and others),

which are central to the system’s success (Clements et al., 2002, pp. 1-2). Con-

sequently, the architecture is difficult to change much later in the project or after

the system’s release (Fowler, 2003).

An architecture is generally formed during system design. Such an architecture

captures the design decisions made prior to system construction, which is often

18

termed the conceptual (as-designed or as-intended) architecture (Bowman and

Holt, 1999). There is also an architecture existing in the code, which captures

the real structure of the implemented system. Accordingly, such an architecture

is termed the concrete (as-implemented) architecture (Bowman and Holt, 1999).

Research in software architecture focuses on topics such as the choice of ar-

chitectural drivers, design tactics and patterns (Bass et al., 2003, ch. 5), the

use of particular architectural methods (e.g., ADD (Bass et al., 2003, ch. 7),

ATAM (Clements and Northrop) and SAAM (Kazman et al., 2002); also see the

survey in (Dobrica and Niemela, 2002)), requirements-architecture intertwining

(Nuseibeh, 2001), architectural recovery (Biggerstaff, 1989) (Chikofsky and Cross,

1990), transformation (Fahmy and Holt, 2000), evolution (McNair et al., 2007),

and visualization (Gallagher et al., 2008). Diagnosis of architectural degeneration

– the focus of this thesis research – is closely related to architectural recovery and

evolution. Architectural degeneration mostly happens during system evolution,

and its diagnosis is usually based on the concrete architecture recovered from a

system’s code base; see several example techniques for diagnosis in Section 2.3.3.

2.1.2 Software Maintenance

Software maintenance1 refers to “any work that is undertaken after delivery of a

software system” (Cornelius et al., 1989) (see IEEE Std 1219:1998). In particu-

lar, it includes corrective, adaptive, perfective and preventive maintenance (Lientz

and Swanson, 1980) (Cornelius et al., 1989) (also see ISO/IEC 14764:2006). The

software maintenance costs increase continually over the last 40 years: from ap-

proximately 40% of the total software lifetime costs in the early 1970’s to 80%-90%

in the early 1990’s (Pigoski, 1997, fig. 3.1) (also see (Seacord et al., 2003, fig. 1-

1In this thesis, the terms “software maintenance” and “software evolution” are usually used
interchangeably. However, “software maintenance” is used with implicit meaning of fixing system
problems discovered after delivery, and “software evolution” is used with implicit emphasis on
system change process over time.

19

2)) and even over 90% after 2000 (Erlikh, 2000). As Jones2 reported, software

maintenance costs continually increase as the 21st century advances, which has

caused more than 50% of the software population to be excessively engaged in

maintenance rather than new development.

Software maintenance is mostly a value-adding process (Belady and Lehman,

1976). It keeps the system operating as expected by fixing defects and adding

new enhancements. It is also a complexity-increasing process and thus a cost-

increasing process. Belady and Lehman’s laws of software evolution (1976; 1980)

indicate that a system under maintenance increases in complexity over time, which

leads to increased costs for future development. When the increased cost exceeds

the added value, the system could be phased out and new development could be

considered as a replacement (Bennett and Rajlich, 2000).

Research in software maintenance focuses on topics such as maintenance classi-

fication (Lientz and Swanson, 1980) (Cornelius et al., 1989), change process (Mad-

havji, 1992) (Sousa and Moreira, 1998), program comprehension (Corbi, 1989)

(Padula, 1993), defect analysis (Basili and Perricone, 1984) (Shull et al., 2002),

and change impact analysis (Arnold, 1993) (Bohner and Arnold, 1996). The work

on architectural degeneration diagnosis is related to defect analysis, especially

characteristics of defects spanning multiple components in the architecture. The

related work on defect characteristics is discussed in Section 2.4.

2.1.3 Architectural Evolution

A system with a well-designed architecture is relatively easy to change (Hsia et al.,

1995). Also the architecture (if documented) could guide system comprehension

and change (e.g., ripple effect3 detection) (Bass et al., 2003, ch. 2). Meanwhile,

system change (during evolution) can affect (mostly, “destroy” (Brooks, 1975,

2Read Jones’ talk in 2007, entitled “Geriatric Issues of Aging Software”; see http://www.
stsc.hill.af.mil/crossTalk/2007/12/0712Jones.html (accessed in November 2010).

3Ripple effect is “effect caused by making a small change to a system which affects many
other parts of a system” (Stevens et al., 1974).

20

p. 122)) the architecture (Williams and Carver, 2010). For example, change

in the code base of a system can modify the concrete architecture and cause

it to be inconsistent with the conceptual architecture (Perry and Wolf, 1992).

Here, change to the architecture form or its properties or constraints is called

architectural change (Krikhaar et al., 1999). Such architectural change is usually

unintentional and is likely to affect the whole system; and its impact is often more

adversely than that for change confined in a small area of the system (Nedstam

et al., 2004). For example, architectural change tends to destroy the original

architecture, leading to major quality problems (Brooks, 1975, p. 122) (Williams

and Carver, 2010).

Architectural degeneration is caused only by architectural changes that lead

to decline in system quality (Perry and Wolf, 1992), which are called “dirty”

architectural changes. Because the term “quality” is usually operationalized with

quality attributes such as maintainability, reliability, etc. (see ISO 9126-1 for an

example quality model), whether an architectural change is “dirty” or not should

be determined with relation to a specific quality attribute. Therefore, diagnosis of

architectural degeneration should first clarify the particular (quality) perspective

that it focuses upon. Consequently, characteristics of a system with respect to a

quality attribute can reflect an aspect of its architectural degeneration. This is the

fundamental idea of this thesis research on architectural degeneration diagnosis,

see Section 3.2.2 for a detailed discussion.

2.2 Software Aging

Software, like humans, ages with time (Parnas, 1994). Software ages as its value

declines but its cost increases. Parnas (1994) terms this phenomenon software

aging (mirror human aging). Software aging is a more generalized phenomenon of

architectural degeneration. We thus give a basic understanding of software aging

in this section, mainly covering its causes and properties.

21

2.2.1 Causes and Properties of Aging

Brooks, Belady and Lehman pioneered the early software aging research in the

1970’s. For example, Brooks (1975, p. 123) noted that: “All repairs tend to

destroy the structure, to increase the entropy and disorder of the system.” Mean-

while, Belady and Lehman’s law of increasing complexity (1976) states that as a

system evolves, its complexity increases unless work is done to maintain or reduce

it. Both Brooks (1975, p. 123) and Belady-Lehman (1976) argued that change

to software tends to degrade its structure; the degraded structure then resists

future change and ultimately leads to system redesign. Change to software is

risky (Sommerville, 2006, p. 500). Some change degrades the software structure,

which is termed “dirty” (or “muddy”) change. Dirty change is the main cause

of software aging during maintenance. As Jones said (see footnote 2 in page 19),

“maintenance of aging software tends to become more difficult year by year since

updates gradually destroy the original structure of the applications.”

Beside, software aging can be also caused by “inability to change” (Lyons,

1981, p. 337) or “lack of change” (Parnas, 1994) (i.e., failure of meeting change

requirements). As Lyons (1981, p. 337) stated, “software deterioration [aging]

results from software’s inability to change itself to match the changing decisions

processes of the enterprise. Software progressively loses its productive capacity

unless it is continually infused with the ongoing changes in the enterprise’s decision

system.” For a system, its use environment and requirements are changing with

time. This requires the system to change itself correspondingly. Otherwise, it will

age quickly and be phased out soon (Bennett and Rajlich, 2000).

From the literature (e.g., (Parnas, 1994) and (Eick et al., 2001)), we conclude

that software aging has the following five properties:

First, aging is inevitable. No matter how great and perfect a software system is

now, it will be disconnected from its users eventually.

Second, aging is temporarily resistible and reversible. There are viable techniques

22

which can temporarily resist aging and reverse its effect.

Third, software ages diversely. Such aging diversity manifests itself as various

aging causes, effects and symptoms in software systems.

Fourth, software that ages may nevertheless increase in value but increase more

in cost side by side. Generally, the software under maintenance has passed

the peak time of value adding and entered into the time of cost increasing.

Fifth, software aging mainly degrades the system quality, but also affects the

functionality enhancement. Software quality decline leads to maintenance

cost increase, which thus retards the system functionality change process.

2.2.2 Code Decay

Code decay is a code-level aging phenomenon in which the difficulty and cost of

change in code increase with time (Karr et al., 1996). It is pervasive in software

systems (Eick et al., 2001). Ohlsson et al. (1998) propose an approach to classify

system components based on the amount of decay: green (normal evolution),

yellow (code decay) and red (“mission impossible”) components. The amount of

decay is measured by the number of defects, time to perform certain maintenance

activities, and the complexity of the component. Red components require the

most attention during system maintenance and evolution.

Graves and Mockus (1998) suggest that the increase rate of change effort is

“the most prominent indicator of code decay as well as a trigger for maintenance

process improvement”. Eick et al. (2001) suggest to measure code decay in terms

of change effort (e.g., number of components changed and number of lines of code

added/deleted), interval (calendar time required) and quality. They find that the

code of a large telephone switching system had decayed from 1989 to 1996. For

example, the probability that a change touched more than one file in the system

increased from less than 2% in 1989 to more than 5% in 1996. Stringfellow et

al. (2006) suggest that “increasing difficulty [of change] ... is a sign of code

23

decay”, where the difficulty of change is measured in terms of change size (i.e.,

number of source lines of code added, deleted or modified) and span (i.e., number

of components or code files that are changed).

Eick et al. (2001) suggest that inadequate architectural design is one of the

most critical factors of code decay. We note from Section 2.1.3 above that the

architecture of a system could change (mostly, degrade) as the system evolves.

The degraded architecture differs from the original architecture (Bowman and

Holt, 1999) and usually leads to substantial increase in code decay. We discuss

this phenomenon – architectural degeneration – as below.

2.3 Architectural Degeneration

Architectural degeneration (or erosion) is an architecture-level aging phenomenon.

In comparison against code decay, it is concerned more with change to high-level

system structures (Lindvall et al., 2002) (Hochstein and Lindvall, 2005). Lindvall

et al. (2002) suggest that a system is suffering architectural degeneration if its

“concrete” architecture has major deviations from its “conceptual” architecture.

There are some studies in literature which aimed to “measure”, “prevent” (resist),

“diagnose” and “treat” (reverse) architectural degeneration in real systems; see

these four subsections below: 2.3.1–2.3.4.

2.3.1 Measurement

Change to an architecture may lead to deviation, which indicates its degeneration

(Bhattacharya and Perry, 2007). Existing measurements of architectural degener-

ation are mainly based on architectural deviations. In particular, we describe two

categories of these measurements, which are related to increase in system-structure

complexity and decline in system maintainability (mainly modularization) due to

architectural deviations. Note that system complexity has a strong relationship

with maintainability (Kafura and Reddy, 1987).

24

Complexity Perspective

As early as the 1970’s, Belady and Lehman (1980) noted that the complexity

of a system increases as it evolves. There is a wealth of literature which has

described the adverse impact of complexity to system quality and costs. For

example, Banker et al. (1993) suggest that the maintainability and maintenance

costs of a software system are substantially affected by its complexity. Also it

has been well recognized that system modules of the highest complexity tend to

contain the most defects4.

Jaktman et al. (1999) suggest that the increase in system complexity indi-

cates architectural degeneration. They define several system-complexity metrics

for architectural degeneration measurement. Two examples of such metrics are:

average number of components per relative call graph level (hierarchical complex-

ity) and average number of calls per component (structural complexity). Their

study on a software system indicates that its structural complexity increased con-

tinuously across six releases. Similarly, van Gurp and Bosch (2002) define several

architectural complexity metrics such as numbers of packages, classes, functions,

or non-commented source statements. They find that the complexity increased

substantially over the evolution of a five-release system.

Maintainability Perspective

Lindvall et al. (2002) define two maintainability metrics to measure architec-

tural degeneration: “coupling-between-modules” (CBM) and “coupling-between-

module-classes” (CBMC). The CBM metric is the number of non-directional ref-

erences between modules; and the CBMC metric is the number of non-directional,

class-to-class, references between modules. An architecture with low CBM and

CBMC measurements is of low degeneration degree. Through a case study on a

4See Enerjy’s article “McCabe Cyclomatic Complexity: the Proof in the Pudding”: http:
//www.enerjy.com/blog/?p=198 (last access in November 2010).

25

two-version system they find that the new version released after restructuring the

whole system has lower CBM and CBMC values than the old version.

More interestingly, Andrews et al. (2000) define “defect-cohesion” and “defect-

coupling” metrics to measure the “degeneration” of a component or a fix relation-

ship between two components. The defect-cohesion of a component is measured

by the total number of code files changed to fix the defects pertaining to the com-

ponent. Components having the greatest defect-cohesion measurements are the

most severely degenerated. The defect-coupling of a fix relationship between two

components is measured by the number of code files changed in each of the two

components in order to fix the defects spanning the two components. Fix rela-

tionships having the greatest defect-coupling measurements are the most severely

degenerated. These two metrics are used to derive fault architectures from a

system’s defect history, see Section 2.3.3.

In addition, Bhattacharya and Perry (2007) define metrics to measure architec-

tural deviation from a functional perspective as well as from a structural perspec-

tive. Functional deviation measures “how a given version of software deviates from

the baseline in terms of the architectural services and data supported”. Struc-

tural deviation measures “the deviation in terms of architectural characteristics

captured in the Form of the architectural description of our abstract architecture

model”. Examples of such functional or structural deviation metrics are num-

bers of eroded (deleted, dead or degraded) functionalities, attributes or services

of an architecture from its baseline. They also define metrics to measure architec-

tural degeneration based on loss of functionality and architectural structure over

time. Application of the deviation and degeneration metrics can help identify the

problematic areas (e.g., change-active components) in an architecture.

Measuring the architectural degeneration is the first step towards its diagnosis

and treatment, which are described in Sections 2.3.3 and 2.3.4. Note that a

deviation to an architecture does not always indicate its degeneration, especially

26

when, for example, most of defects introduced by this deviation are confined to a

very limited area in the system and are not related to any architectural problems.

For an architecture, its deviation measurement focuses on its structural difference

against its baseline, but its degeneration measurement is based on the impact of

architectural change on system quality (e.g., defects).

2.3.2 Prevention

We note that architectural degeneration (as a variant of software aging) is in-

evitable but resistible (see Section 2.2). Thus the section title “prevention” means

not to really avoid architectural degeneration but to resist or postpone it. Next,

we outline three usual prevention techniques: design for change, change process

improvement, and reverse engineering.

Design for Change

Design for change means designing a software system to embrace change in future

(Parnas, 1994). Its core principle is separation of concerns (or modularization)

(Parnas, 1979). This means that modules of a system should implement separated

concerns, and couplings among modules must be well outlined and keep loose

in inter-module coupling. Parnas (1979) states that the most critical step to

design an easily changeable system is the design of use relationships between

software elements (e.g., modules, files, classes, etc.). Ideally, design for change

can confine most likely occurred changes to a limited amount of system parts;

the consequent, adverse effects on system quality are thus reduced. However,

future changes are not always predictable. Some changes (out of prediction) may

still span the architecture and inflict adverse impact on system quality. These

changes are the so-called “dirty” architectural changes (see Section 2.1.3), which

lead to architectural degeneration. This is one of the reasons why architectural

degeneration is inevitable during evolution of large software systems.

27

Change Process Improvement

Some change to a system requires quick accomplishment (Sommerville, 2006, p.

500), which thus causes software aging. Improving the change process with im-

pact analysis and regression testing or review can reduce this risk (Rothermel and

Harrold, 1997). Impact analysis is to identify what to modify or to identify the

potential change consequences (Arnold, 1993); regression testing is to retest the

modified software parts, in order to assure that a known defect has been success-

fully fixed (Leung and White, 1989); change review is used widely for any type of

change, in order to assure that the change request has been successfully accom-

plished without introducing defects (Ciolkowski et al., 2003). These techniques

can help reduce the adverse impact of quick-and-dirty change on software quality.

Nedstam et al. (2003) proposed a generic architectural change process, which

aims at implementing architectural change considering its technical and organi-

zational impacts. However, due to limitations in time, cost and other resources,

these techniques may not be used properly in such situations as emergent change,

agile development and distributed development and maintenance.

Reverse Engineering

Reverse engineering is a process of creating representations of a software system

in another form or at a higher level of abstraction (Chikofsky and Cross, 1990).

Architectural recovery is a regular form of reverse engineering in practice. Gen-

erally, architectural recovery has three steps (Krikhaar, 1997): (i) extract basic

information from the source code of a software system; (ii) abstract a manage-

able set of architecture-significant information from the basic information; and

(iii) represent the abstracted information with visual forms (e.g., box-and-arrow

graphs (Holt, 1998)). Architectural recovery captures knowledge about the soft-

ware, which helps in understanding the software and guiding software change. It

is also used to detect deviations between architectures; see next Section 2.3.3.

28

We note from the above discussion that these “prevention” techniques can

only resist or postpone, but cannot avoid, architectural degeneration. Although

architectural degeneration is inevitable (see Section 2.2.1), these “prevention”

techniques can help reduce the damage to system quality (due to architectural

change). which is obviously important for system quality and cost concerns. For

an architecture that is under degeneration, adequate diagnosis techniques can

quantify the adverse impact of its degeneration on system quality.

2.3.3 Diagnosis

Architectural degeneration diagnosis is one of the focuses of this thesis research.

It is mainly to identify the most degenerated architectural areas (the so called,

“degeneration-critical” components) in a system and to evaluate the architectural

degeneration over time for that system. Here, we describe three usual diagnosis

techniques: architectural deviation detection, defect-prone component identifica-

tion, and fault and change architectures.

Architectural Deviation Detection

Generally, architectural deviation detection has three steps: (i) architectural re-

covery (as described in Section 2.3.2); (ii) formal architectural specification, i.e.,

describing the architecture with formal languages (e.g., UML5 (Shin et al., 2006)

(Lindvall and Muthig, 2008)) or models (e.g., Murphy et al.’s software reflex-

ion model (2001)); and (iii) architectural comparison, i.e., identifying deviations

between architectural specifications by comparison.

Further, Krikhaar et al. (1999) propose an approach to remove architectural

deviations by transformation. Examples of architectural transformations are cre-

ate, delete, and rename a unit, isolate and move a function, etc. This approach

has been further extended in Tran and Holt’s approach of forward architectural

5UML stands for Unified Modeling Language; see a detailed description of UML at http:
//www.uml.org (last access in November 2010).

29

repair (1999), which is to repair the concrete architecture of a system to match

the conceptual architecture (the baseline). Lindvall et al. (2007; 2008) have devel-

oped a tool named Software Architecture Visualization and Evaluation (SAVE),

which is proposed to allow software architects to navigate, visualize, and evaluate

architectural deviations occurred over time for a specific system. In this tool,

UML notations are used to describe architectures.

Defect-Prone Component Identification

The defect history of a system manifests the components that contain the greatest

number of defects in the system, which are often termed defect-prone components

(DPCs). From a defect perspective, DPCs could be considered as the most

degenerated areas in the architecture. Generally, DPCs are identified according

to the Pareto-shaped defect distribution: 20% of the components contain 60%-

80% of defects in the system (Boehm and Basili, 2001) (Ostrand et al., 2005). As

a rule of thumb, DPCs refer to the top α components that contain the greatest

number of defects in the system. The threshold α is set to 25% in Ohlsson and

Wohlin’s study (1998) and 20% in our earlier study (Li et al., 2009). Many studies

(e.g., (Ohlsson et al., 1999), (Andrews and Stringfellow, 2001), and (Andersson

and Runeson, 2007)) have found that DPCs tend to persist across development

phases and releases. This persistence is further discussed in Section 2.4.4.

Fault and Change Architectures

We note from Section 2.3.1 that Andrews et al. (2000) define “defect-cohesion”

and “defect-coupling” metrics to measure the degeneration of a component or

a fix relationship in a system. Further, von Mayrhauser et al. (2000) propose

an approach to derive fault architectures from system defect history using these

metrics. A fault architecture is a composition of fix relationships among compo-

nents in a system. Recall that two (or more) components have a fix relationship

if changes made in one component are coupled by changes in the other(s) in order

30

to fix an multiple-component defect (MCD) (Zimmermann et al., 2004). As a rule

of thumb, the top β fix relationships that involve the greatest number of MCDs

are termed defect-prone fix relationships. In the literature, β is set to 5%-15% in

Stringfellow and Andrews’ study (2002) and 10% in our earlier study (Li et al.,

2009). Fault architectures can highlight those defect-prone fix relationships over

a system’s architecture.

Likewise, Stringfellow et al. (2006) propose a similar approach to deriving

change architectures from system change history. Note that the change architec-

ture partially overlaps with the fault architecture. Related research is related to

the change-coupling relationships6 among system components. Zimmermann et

al. (2004) propose a prototype tool (ROSE – Re-engineering Of Software Evolu-

tion) to determine change-coupling relationships at different levels of granularity

(such as directories, modules, files, methods, variables and sections). Ying et al.

(2004) use an association mining technique to find potential change patterns (pairs

or sequences) in source code from the defect histories of the Eclipse7 and Mozilla8

projects. Abdelmoez et al. (2004) have developed the tool SACPT (Software

Architecture Change Propagation Tool) to measure the likelihood that a change

that arises in one component propagates to other components. These approaches

focus on changes to related system elements at varying levels of granularity. They

are deemed to assist in modification activities.

Overall, diagnosis of architectural degeneration in a system, by identify devia-

tions (Hochstein and Lindvall, 2005) and DPCs (Ohlsson and Wohlin, 1998) and

deriving fault and change architectures (von Mayrhauser et al., 2000) (Stringfellow

and Andrews, 2002), offers valuable information for the treatment.

6Two (or more) components in a system have a change-coupling relationship if change made
in one component are coupled with changes in the other component(s) in order to complete the
intended change (Zimmermann et al., 2004). Fix relationship is a special form of change-coupling
relationship in relation to defect correction.

7The Eclipse project website: http://www.eclipse.org (last access in November 2010).
8The Mozilla project website: http://www.mozilla.org (last access in November 2010).

31

2.3.4 Treatment

We note from Section 2.2.1 that software aging is temporarily reversible; so is

architectural degeneration. It is thus possible to treat architectural degenera-

tion for software systems, i.e., to reduce or mitigate the impact of architectural

degeneration on system quality (e.g., maintainability and reliability). Here, we

describe active maintainability improvement and re-engineering as example treat-

ment techniques. Note that techniques for architectural degeneration removal,

such as architectural transformation (Krikhaar et al., 1999) and forward architec-

tural repair (Tran and Holt, 1999) (see Section 2.3.3), also contribute to mitigation

of architectural degeneration.

Active maintainability improvement

It is to improve a system’s maintainability by repairing its affecting factors (e.g.,

over-large code files, complex interfaces, too many interactions among compo-

nents, etc. (Pigoski, 1997, p. 282)) before they affect the system. In contrast,

there is passive maintainability improvement which is to improve the maintain-

ability after it has affected the software, e.g., re-engineering (as described below).

Active maintainability improvement has been deployed in many organizations.

For example, Microsoft Corporation usually allows about 20% of developers’ time

immediately after delivery to re-structure or rewrite certain weak parts of software

products; this is, so called, “the 20 percent tax” (Cusumano and Selby, 1995, pp.

280-281). Their experience indicates that “if you don’t pay the 20 percent tax,

then you end up in a bad situation.” (Cusumano and Selby, 1995, p. 281)

Similarly, Banker et al. (1993) argue that maintaining the structure of a

software system often requires up to 25% of the total maintenance cost, and

LaToza et al. (2006) report that the effort on making the code more evolvable is

near to 15% of the total development effort. Empirical studies find that a more

maintainable software system has 32.9% fewer failures (Rombach, 1987), requires

32

36% fewer defect fixes (Bandi et al., 2003), 16.7% fewer environment changes, and

28.9% fewer requirements changes (Rombach, 1987).

Re-engineering

Re-engineering is a process of reverse engineering a subject system, reconstituting

it in a new form, and implementing this new form (Chikofsky and Cross, 1990).

Jacobson and Lindström (1991) define that re-engineering = reverse engineering +

change deltas + forward engineering. Re-engineering is used more often to replace

aging software rather than to improve the maintainability (SWEBOK, 2004, ch.

6). Example re-engineering techniques are transformation at the architecture level

(Grubb and Takang, 2003, p. 144) (see examples in Section 2.3.3) and component

re-engineering at the design level (Booch, 2008). These techniques could reduce

the architectural degeneration for the system.

Here, we focus on a special, code-level, re-engineering technique – software

refactoring – a light-weight technique of performing changes on a code program

to improve its internal structure without changing its external behavior (Fowler,

1999, p. 53). Each change does little but a sequence of changes can restructure

the whole system (Mens and Tourw, 2004). However, van Gurp and Bosch (2002)

suggest that current refactoring techniques cannot effectively improve the global

maintainability, especially when there are complex structural problems which are

widely dispersed over multiple components.

Except the adverse impact of architectural degeneration on system quality,

there are other concerns which can affect the adaption of architectural degen-

eration treatment techniques in real system contexts, such as actual costs and

benefit of the proposed treatment and related organizational strategies. For ex-

ample, mitigating the architectural degeneration of a seriously-aging system (via

re-engineering) could require even more costs than re-developing the whole sys-

tem from scratch. As Sneed (1991) states, “In any case one must calculate the

expected lifetime of the target system and compare the costs of re-engineering

33

with the costs of redevelopment starting from scratch. Re-engineering is often

only considered a viable alternative, when the re-engineering effort is no more

than 50% of the redevelopment effort.”

2.3.5 Analysis of Existing Diagnosis Techniques

Section 2.3.3 has outlined three techniques for architectural degeneration diag-

nosis. We argue that these techniques cannot effectively diagnose architectural

degeneration from the defect perspective.

First, deviations to an architecture do not always manifest as degeneration (Bhat-

tacharya and Perry, 2007). Therefore, simply detecting and removing all de-

viations from an architecture is not the optimal way to diagnose and treat

its degeneration (as discussed in Section 1.2).

Second, the defect-prone components (DPCs) of a system are the components

containing the greatest number of defects in the system (see Section 2.3.3).

However, the DPCs do not always coincide with the components which

contribute most to the architectural degeneration (the degeneration-critical

components). For example, a DPC could be considered degeneration-critical

if it contains many more multiple-component defects (MCDs) than other

components in the system.

Third, a fault architecture (von Mayrhauser et al., 2000) of a system can mani-

fest a type of degeneration-critical components in the system – high-MCD-

quantity components. There are other types of degeneration-critical compo-

nents (e.g., high-MCD-density or complexity components) which cannot be

exposed by the fault architecture. Similar limitations also hold for change

architectures (Stringfellow and Andrews, 2002).

We thus created the DAD approach (as previewed in Section 1.3.2) to address

these deficiencies. In particular, DAD defines MCD quantity and complexity

metrics to identify the degeneration-critical components and fix relationships and

34

evaluate the architectural degeneration in a given system (see Section 1.4.2). See

the details of DAD in Chapter 5.

Further, we were motivated to conduct the second case study to apply this

DAD approach on a real system. Another important motivation of conducting this

study is rooted in deficiency of scientific knowledge on architectural degeneration.

For example, the literature did not identify the persistence of the contribution

of a component or a fix relationship to the architectural degeneration, and the

quantitative increase trend of the architectural degeneration over time. We thus

investigated these aspects in the case study in order to address this deficiency.

The findings can aid understanding the architectural degeneration phenomenon

of the system. This case study is described in Chapter 6.

2.4 Software Defects

Recall Section 1.3 that Case Study 1 analyzes the defect (MCD) distribution,

complexity and persistence. We note that software defects are usually investigated

in relation to their aspects (e.g., where the defect was injected, when (which

activity) the defect was found, where the defect was fixed, etc.) (Basili and

Perricone, 1984). For example, IBM’s Orthogonal Defect Classification (ODC)

(Chillarege et al., 1992) model defines several aspects including testing activity

(when the defect was found), trigger (the environment or condition that had

to exist for defect detection), impact (the effect of the defect on the customer),

target (where to fix the defect), source (the origin of the design/code which had

the defect), etc. Aside from that, we are not aware of any particular defect logging

standard; however, there are several tools for tracking defects, such as Rational

Clearquest, Bugzilla, Bug Everywhere, and Fossil9.

9IBM Rational Clearquest: http://www-01.ibm.com/software/awdtools/clearquest/;
Bugzilla: http://www.bugzilla.org/; Bug Everywhere: http://bugseverywhere.org/be/
show/HomePage; and Fossil: http://www.fossil-scm.org/index.html/doc/tip/www/index.
wiki (last access in November 2010).

35

In literature, the defect analysis work that is closely related to this thesis

research is about: defect distribution, correction effort, architectural defects, and

defect-prone components (DPCs). Here, in the following four subsections (2.4.1–

2.4.4), we review typical quantitative findings in these four aspects respectively.

2.4.1 Defect Distribution

Finding 1: Almost all software modules are defective before system delivery, but

over half of the modules are defect-free after delivery.

Almost no software modules pass through inspection without defects before

delivery (Shull et al., 2002). However, after delivery, defective modules are reduced

to 25% (Andrews and Stringfellow, 2001), 26% (Basili and Perricone, 1984), 48%

(Endres, 1975), and 50% (Andersson and Runeson, 2007) of modules in the system.

Finding 2: About 60%-80% of defects emanate from 20% of the modules.

Studies have shown that the 80-20 Pareto principle generally fits defect distri-

butions by modules (Boehm and Basili, 2001) (Ostrand et al., 2005) and source

files (Gittens et al., 2005). However, it could vary based on different character-

istics of system contexts such as development processes used and system quality

goals (Shull et al., 2002). For example, Ebert (2001) confirms that 20% of the

modules can contain 40% through 80% of defects, depending on product line. Our

earlier study (Li et al., 2009) finds that approx. 83% of defects emanate from 20%

of the components in a large legacy system.

Finding 3: About 75%-95% of defects are single-component defects.

A defect is a single-component defect (SCD) if it is confined in only one com-

ponent. Endres (1975) finds that 85% of defects are SCDs. This is supported by

the studies described by Basili and Perricone (1984) where the finding stands at

89%, and by Weiss and Basili (1985) where the finding is in the range 76%-96%.

Similarly, our earlier study (2009) finds that SCDs account for 88%-94% of all

defects in the six releases of a large system.

36

2.4.2 Defect Correction Effort

Finding 4: Identifying and fixing a critical defect in a large system after delivery

is about 100 times more expensive than that before delivery.

For large software systems, a defect effort increase of approximately 100:1 was

often supported in literature and experiments (Shull et al., 2002). Hiemann (1974)

finds that an effort increase of about 30:1 for defect slippage from code to field.

O’Neill (see (Lindner and Tudahl, 1994)) reports an effort increase of about 13:1

for defect slippage from code to test and a further 9:1 increase for slippage from

test to field; this means an effort increase of about 117:1 for defect slippage from

code, via test, to field.

NASA research (see (Dabney et al., 2004)) shows that a defect introduced in

requirements which escapes into design, code, test, integration, and operational

phases, may consume the correction-cost factors of 5, 10, 50, 130, and 368, respec-

tively (Boehm, 1976). Boehm (see (McGibbon, 1996)) argues that the 100:1 factor

is about right for only critical defects in large systems; for non-critical defects, the

factor could be reduced greatly to about 2:1.

2.4.3 Architectural Defects

Finding 5: About 5%-25% of defects are architectural defects.

Some defects in code originate in software architecting phase (Basili and Per-

ricone, 1984), such as defects related to multiple components. We call these

“architectural defects”. In Yu’s study (1998), such defects account for 18.5% of

defects in a large system. In Leszak et al.’s study (2000), architectural defects

account for approximately 5% of all defects, while consuming approximately 10%

of the total correction effort. In Shin et al.’s study (2006), architectural defects

are considered as anomalies that occur on the components or their interactions.

Historically, architectural defects have been associated with “interface” de-

fects. For example, Endres (1975) defines an interface defect as one that requires

37

“changes” to multiple modules in order to fix it. With this definition, studies

have reported that interface defects account for 5% (Endres, 1975), 11% (Basili

and Perricone, 1984), 6%-15% (Basili and Shull, 2005), and 4%-24% (Weiss, 1979)

of all defects. In contrast, Basili and Perricone (1984) adopt a stricter definition

in that even if a maintainer needs to “examine” (not necessarily “change”) more

than one module in order to “understand” how to fix it then it is designated as an

interface defect. With this definition, the profile of interface defects, however, is

in stark contrast: 39% (Basili and Perricone, 1984), 66% (Perry and Evangelist,

1987), and 39.2%-57.5% (Nakajo and Kume, 1991). Note that the use of Basili-

Perricone’s definition requires subtle, “examination” (or soft), measures, which

may not be captured widely in actual software projects.

2.4.4 Defect-Prone Components

Finding 6: Defect-prone components (DPCs) tend to persist across system de-

velopment phases and releases.

We note from Section 2.3.3 that DPCs are defined as the top α (e.g., 20%

(Li et al., 2009)) of components that contain the greatest number of defects in

a system. Studies show that DPCs tend to remain defect-prone, from functional

testing phases to system testing phases (Yu et al., 1988), from pre-release phases

to field phases (Compton and Withrow, 1990), from development phases to testing

phases (Andrews and Stringfellow, 2001), and from previous releases to successive

releases (e.g., (Ohlsson et al., 1999), (Andrews and Stringfellow, 2001), (Stringfel-

low and Andrews, 2002), and (Andersson and Runeson, 2007)). However, there

are studies which counteract the above findings, indicating that DPCs are not

persistent across phases (Andrews and Stringfellow, 2001) or releases (Fenton and

Ohlsson, 2000) (Ostrand and Weyuker, 2002). Our earlier study (2009) finds

that in a large legacy software system, DPCs also contain the greatest number of

MCDs, and over 70% of DPCs persist over multiple development releases.

38

2.4.5 Analysis of Existing Defect Research

The above overview of existing software defect research (see Findings 1–6) in-

dicates that whereas general software defects have been extensively studied for

more than three decades (e.g., (Endres, 1975), (Adams, 1984), and (Basili and

Perricone, 1984) in the 1970’s and 1980’s, (Compton and Withrow, 1990) and

(Nakajo and Kume, 1991) in the 1990’s, and (Boehm and Basili, 2001), (Leszak

et al., 2000), and (Ebert et al., 2005) in the 2000’s), software architectures have

not been studied as much from the viewpoint of defects during the same period.

For example, how architectural defects differ from other types of defects, in terms

of characteristics such as distribution, complexity, persistence, etc. In particular,

we define architectural defects as multiple-component defects (MCDs) as they are

related to potential crosscutting concerns (Eaddy et al., 2008) or architectural

problems (von Mayrhauser et al., 2000) (as discussed in Section 1.3).

Intuitively, MCDs are considered more complex and costly to fix than other

types of defects. Unfortunately, there are few such empirical findings from the

literature (see Section 2.4.5). Our own, pilot, motivational investigations of five

open-source software systems (a large application platform, a C++ application-

development framework, Mozilla Bugzilla, Mozilla Network Security Suite, and

OpenOffice spreadsheet) suggest that in comparison to fixing a non-MCD, fixing

a MCD requires 2.3 times the changes, and adds/deletes 2.7 times SLOC (size)

in 2.4 times the code files (span). This means that MCDs are more complex and

costly (in change factors) to fix than non-MCDs.

Clearly, then, scientific studies on MCDs are important for their improved

treatment and prevention, which are central to architectural evaluation, improve-

ment and evolution (Rosso, 2006). This seals the initial intention to conduct

further investigations on MCDs.

39

Chapter 3

MCDs and Architectural

Degeneration

In this chapter, we introduce the concepts of multiple-component defects (MCDs)

and architectural degeneration. In particular, we differentiate MCDs from inter-

face defects and architectural defects (see Section 3.1), and describe relationships

between architectural degeneration, and deviations, MCDs, and degeneration-

critical components (see Section 3.2). This is fundamental to the focus of this

thesis work – characterization and diagnosis of architectural degeneration from

the defect perspective (as mentioned in Section 1.2).

3.1 Clarifications of MCDs

A MCD is defined as a defect that requires changes in more than one component

in a software system in order to fix this defect (Li et al., 2009). We note from

Section 2.4.3 that MCDs are related to interface defects (Endres, 1975) and ar-

chitectural defects (Leszak et al., 2000). Here, we clarify the relationships among

these three types of defects. Clearly separating MCDs from other types of defects

can aid understanding and analyzing MCDs, which is important for the later

described case studies (see Chapters 4 and 6) in the industrial context.

40

3.1.1 MCDs vs. Interface Defects

Interface defects are defined as defects that requires “changes” (Endres, 1975) (or

“examinations” (Basili and Perricone, 1984)) to multiple modules in order to fix

the defects (see Section 2.4.3). MCDs are similar to interface defects; both are re-

lated to interacting problems between system elements (components or modules).

However, MCDs differ from interface defects because the term “component” de-

fined here is not equivalent to the term “module” (e.g., as per definition in IEEE

Std 610.12-1990). A component is a primary building block (or element) of a soft-

ware system’s architecture (Bass et al., 2003, p. 21) which encapsulates a set of

closely related functionalities of this system. Whereas a module is a building block

of a system’s code base which contains a set of code files or programs (Basili and

Perricone, 1984). Simply, components are the parts that make up a conceptual ar-

chitecture but modules are the parts that make up a “physical” system (IEEE Std

610.12-1990). However, components and modules could overlap to some extent.

3.1.2 MCDs vs. Architectural Defects

Because architectures (or significant parts thereof) encompass multiple, interact-

ing, components, architectural defects typically span more than one component.

We thus associate architectural defects with MCDs. Also, due to the “multiple-

component” nature, MCDs are related to potential crosscutting concerns (Aver-

sano et al., 2009) and architectural problems (von Mayrhauser et al., 2000). How-

ever, architectural defects could be more than MCDs. For example, there could

be architectural defects confined to only one component. Furthermore, there is

no well-recognized definition of architectural defect in the literature. As we note

from Section 2.4.3, in Basili and Perricone’s study (1984), architectural defects are

associated with interface defects, which account for 39% of all defects in a legacy

system. In Leszak et al.’s study (2000), architectural defects refer to defects in

code base originating in the early software architecting phase. They find that

41

architectural defects account for approximately 5% of all defects, while consum-

ing approximately 10% of the total correction effort. And in Shin et al.’s study

(2006), architectural defects are considered as anomalies that occur on compo-

nents or connectors.

3.2 Understanding Architectural Degeneration

To help understand the concept of architectural degeneration, we describe, below,

the potential relationships between architectural degeneration, and architectural

deviations, MCDs, and system components.

3.2.1 Degeneration vs. Deviation

A well-known perspective to diagnose architectural degeneration is architectural

deviation (Lindvall et al., 2002). It is generally recognized that the more deviations

made to an architecture from its baseline, the more seriously this architecture has

been degenerated (Hochstein and Lindvall, 2005; Bhattacharya and Perry, 2007;

Lindvall and Muthig, 2008). In the studies such as (Lindvall et al., 2002) and (van

Gurp and Bosch, 2002), deviations are measured from a structural perspective.

Later, in (Bhattacharya and Perry, 2007), metrics are defined to measure devi-

ations both structural and functional perspectives. The functional perspective

measures how an architecture deviates from its baseline in terms of the services,

functionalities, and data supported by architectural elements.

The concept of architectural degeneration emphasizes the adverse impact of

“dirty” architectural change on system quality. This has two implications. First,

deviations made to an architecture do not always indicate its degeneration. For

an architecture, deviation analysis emphasizes its structural difference against its

baseline, but degeneration analysis focuses on its adverse impact on system quality.

Removing the structural deviations in an architecture may not effectively mitigate

its degeneration (from quality perspective). Second, architectural degeneration

42

can be diagnosed from perspectives of quality attributes such as maintainability,

reliability, and performance (see McCall’s quality model (1977)). In this thesis

research, we diagnose architectural degeneration from only the defect (mainly,

MCD) perspective; see the further discussion in the next subsection.

3.2.2 Architectural Degeneration and MCDs

The relationship between architectural degeneration and MCDs is shown in Fig-

ure 3.1. We claim that architectural degeneration manifests itself through MCDs.

The reasons are: (1) MCDs are related to potential crosscutting concerns (Eaddy

et al., 2008; Aversano et al., 2009); and (2) fixing a MCD requires changes in more

than one component, which is a sign of problems with the software architecture

(von Mayrhauser et al., 2000; Stringfellow et al., 2006). Any change to the ar-

chitecture of a software system could affect the potential crosscutting concerns or

architectural problems and thus could change the profile of MCDs in the system.

Therefore, characteristics of MCDs, such as their quantity and complexity, can

quantitatively reflect architectural degeneration.

Architectural
Degeneration

Multiple-Component
Defects (MCDs)

Characteristics
(e.g., complexity)

Manifested
by

Reflect

Has

Figure 3.1: Relationship between architectural degeneration and MCDs.

The relationship between architectural degeneration and MCDs (see Figure 3.1)

is fundamental to Case Study 1 – investigating the impact of architectural degen-

eration on defects by characterizing the MCDs in the system, and of the DAD ap-

proach – diagnosing architectural degeneration by measuring system components

43

and fix relationships with MCD quantity and complexity metrics. See Chapters 4

(Case Study 1) and 5 (the DAD approach) for details.

3.2.3 Degeneration-Critical Components

We note from Section 2.4.1 that the defect distribution by components is skewed:

60%-80% of defects emanate from 20% of the components (Boehm and Basili,

2001). Likewise, our earlier study (Li et al., 2009) shows that in a large sys-

tem, 83% of MCDs emanate from 20% of the components and 75% of MCDs

are involved in 10% of the fix relationships. These MCD-prone components and

fix relationships should be considered degeneration-critical. This motivated us to

identify and characterize these components and fix relationships to support effec-

tive architectural degeneration treatment. We thus created the DAD approach

which can be used to achieve this purpose; see Chapter 5.

3.3 Key Points

We list several key points as mentioned in this chapter:

• MCDs are defects spanning more than one system component (not module)

and are considered related to architectural problems (see Section 3.1).

• Architectural degeneration is more related to system quality concerns than

structural deviation concerns (see Section 3.2.1).

• Architectural degeneration manifests itself through MCDs (see Figure 3.1).

• There could be a few degeneration-critical components and fix relationships

in a specific software system (see Section 3.2.3).

44

Chapter 4

Case Study 1: MCD Analysis

This chapter describes an exploratory case study (Case Study 1)1 which analyzed

multiple-component defects (MCDs) in a large, commercial, legacy system. As per

the relationship between MCDs and architectural degeneration (see Figure 3.1),

this case study addresses question 1 posed in Section 1.2 – What do defects indi-

cate about architectural degeneration? The answer to this question will allow us

to characterize architectural degeneration from the defect perspective, and will

further motivate us to create methods for diagnosing architectural degeneration.

In Section 4.1, we describe three specific research questions for Case Study

1. We then define or explain several key terms used in this case study in Sec-

tion 4.2. In Section 4.3, we describe the case study design, which includes: the

subject system and data, the data collection, clean-up, and analysis procedures,

and the overall case study process. We then describe and interpret main findings

in Section 4.4. In Section 4.5, we discuss threats to validity of the findings. In Sec-

tion 4.6, we discuss implications of the study. Finally, we briefly recap the study

in Section 4.7. Assessment of this study is described in Section 8.2. Challenges

and lessons learnt from conducting this study are described in Chapter 9.

1This case study has been described in our earlier paper (Li et al., 2009) and its enhanced
version accepted by the Empirical Software Engineering journal.

45

4.1 Research Questions

We note that MCDs, due to the “multiple-component” nature, are related to

potential crosscutting concerns or architectural problems in the system (see Sec-

tion 3.1.2). We also note that software architectures have not been studied much

from the viewpoint of MCDs (see Section 2.4.5). Moreover, characterizing MCDs

can reflect the negative impact of architectural degeneration on software defects

(see Figure 3.1). Therefore, in order to answer question 1 (What do defects in-

dicate about architectural degeneration?) posed in Section 1.2, Case Study 1

addresses three specific questions on a large legacy system (of size approximately

20 million SLOC and age over 20 years):

(i) Does the 80:20 Pareto principle fit the MCD distribution?

(ii) To what extent are MCDs more complex than other types of defects?

(iii) To what extent are MCDs more persistent than other types of defects?

Question (i) is concerned with the MCD distribution: whether approximately

80% of MCDs emanate from 20% of the components in the system. Due to

the relationship between MCDs and architectural degeneration (see Figure 3.1),

this question is related to the distribution of the impact of architectural degen-

eration on software defects over the components. This question is addressed in

Section 4.4.1. Question (ii) is concerned with the MCD complexity. The number

of components that are changed in order to fix a MCD is a measure of complex-

ity (Endres, 1975). Finally, question (iii) is concerned with the MCD persistence

across development phases or releases. MCDs that cross phase or release bound-

aries are clearly not getting fixed and are being flagged again in subsequent phases

or releases, which are thus harder to fix then non-persistent defects. The greater

the complexity and persistence (difficulty) of MCDs (compared against that for

other types of defects), the greater the impact of architectural degeneration on

software defects. These two questions, (ii) and (iii), are addressed in Sections 4.4.2

46

and 4.4.3 respectively. Note that severity of a defect can also be a factor in whether

the defect is fixed or not in a given release. This paper performs such analysis.

Overall, answering the above three questions can build a quantitative profile

of MCDs in terms of their (a) distribution by the components, (b) complexity in

terms of the number of components changed, and (c) persistence across phases and

releases. This profile reflects the impact of architectural degeneration on software

defects in the subject system. It also adds to the current knowledge on MCDs in

relation to architectural degeneration.

4.2 Terminology

A defect is “an incorrect step, process, or data definition in a computer program”

(IEEE Std 610.12-1990). Simply, a defect is a flaw in code. We categorize defects

into three types based on the phases where they are discovered: development

defects (type D), testing defects (type T), and field (i.e., post-delivery) defects

(type F); found in the phases of development (including design, coding, and unit

test), testing (including functional and system test), and field (i.e., after release),

respectively. The reason for categorizing defects in this manner is that they can

be analyzed for cross-phase boundary transitions. For defect comparisons crossing

releases, we add an additional type of defect, named all defects (type A), which

refers to the sum of defect-types D, T , and F in a release.

In the defect dataset under investigation, two defects are related to each other

as parent and child. For this purpose there are two reference fields: one (“parent

reference”) to link to the parent defect and other (“children reference”) to link to

the children defects. A defect may be too complex to fix all at once. Therefore, it

is decomposed into multiple simpler defects for piecemeal correction and a defect

record created for each child defect and parent-children relationships logged. These

simpler defects (for the same complex defect) could span different phases (e.g.,

design, coding and testing) and even releases. The parent and children reference

47

fields and their relationships are described in the example defect records shown in

Table 4.1; see Section 4.3.1 for details.

For example, initial analysis of a new defect (d1) record indicates that d1 is

a complex defect located in component c1, which requires fixes in three other

components (c2, c3, and c4). A normal routine is to create three new defect (d2,

d3 and d4) records indicating new defects d2, d3 and d4 located in components c2, c3

and c4, respectively. In this case, we say that d1 (as the parent) is decomposed into

d2, d3 and d4 (as the three children of d1), and there is a parent-child relationship

between d1 and each of (d2, d3 and d4), which can be identified by investigating

the four defects records (using their parent and children reference values). Also,

see example defect records in Section 4.3.1.

A defect could have multiple root causes (Kulkarni, 2008) which are usually

located in more than one component. This defect is termed a multiple-component

defect (MCD). Fixing a MCD thus requires changes to more than one component.

For the subject system, a MCD manifests itself as parent-children relationships

in the defect-tracking database. For example, if a parent defect d1 in c1 has three

children defects: d2 in c2, d3 in c3, and d4 in c3, then this indicates that fixing d1

also requires fixing components c1, c2 and c3. We say that fixing d1 requires four

changes in three components: one is in c1 (to fix d1), one is in c2 (to fix d2), and

the remaining two are in c3 (to fix d3 and d4). We thus also say that fixing d1

requires three accompanying changes (i.e., excluding the change to fix d1) in the

two components: one is in c2 (to fix d2), and the remaining two are in c3 (to fix d3

and d4). Number of accompanying changes required to fix a defect is a measure

of complexity of this defect.

We identify MCDs based on the parent-children defect relationships; if a par-

ent defect and its children defects are located in multiple components, all these

defects are MCDs. An example of MCD identification is described in Section 4.3.1.

Further, we say that there is a fix relationship among components if fixing a MCD

48

in one component requires changes to the other components in order to fix this

MCD. Fix relationship is an implicit relationship over the architecture, which

points to architectural problems (D’Ambros et al., 2009).

If a parent defect and its children defects are found in two different system

phases or releases, we say that there is a cross-phase/release parent-children re-

lationship. Such a relationship indicates that the parent defect is alive across

phases/releases, indicating that it is more persistent than other defects that do

not have such relationships. Further, in a sequence A − B, where A and B are

two sets of defects found in time-ordered phases/releases (i.e., A is followed by

B), we define that: (a) the backward-ratio (BR) refers to the number of defects

in B that are children of defects in A divided by the size of B; and (b) the

forward-ratio (FR) refers to the number of parent defects in A that have children

defects in B divided by the size of A. They are formally described as below.

BR =
| {b | b ∈ B ∧ ∃ a ∈ A : b Â a} |

|B| (4.1)

FR =
| {a | a ∈ A ∧ ∃ b ∈ B : a ≺ b} |

|A| (4.2)

Here “b Â a” (or “a ≺ b”) means defect b is a child of defect a, and | · | returns

the number of members in a set. The definitions indicate that: (i) the higher the

BR the more defects in B are children of defects in A, and (ii) the higher the

FR the more defects in A are parents of defects in B. For example, suppose two

time-ordered defect sets: A = {d1, d2, d3, d4} and B = {d5, d6, d7}, where d1 ≺ d5

and d2 ≺ d6. Then, we can derive that, from A to B: BR = |{d5, d6}| / |{d5, d6,

d7}| = 2 / 3 ≈ 0.67, and FR = |{d1, d2}| / |{d1, d2, d3, d4}| = 2 / 4 = 0.5.

Further, we say that a defect persists across a phase or a release if it has

children defects in the later phase or release. The persistence of a type of defect

(e.g., MCD) is evaluated with the above BR and FR metrics. For example, the

forward-ratio FR of a set of MCDs across two releases is the number of MCDs in

49

this set that have children defects in the latter release divided by the size of this

set. Likewise for the calculation of the defect backward-ratio BR.

4.3 Case Study Design

This section describes the design of Case Study 1, which includes: description of

the subject system and data, the data collection, clean-up, and analysis proce-

dures, descriptive system statistics, and the overall case study process.

4.3.1 Description of the System and Data

We had an opportunity to study a large, commercial, legacy system2 that contains

approximately 20 million source lines of C, C++, JavaTM , and script code in

the latest release, and has evolved over nine major releases and numerous minor

releases and patches with fixes in more than 20 years.

The main data upon which this case study is based is the defect history (defect

records, not enhancements) of six of the nine major releases (covering 17 years).

In the system studied, MCDs are recorded in two situations: active and passive.

The former situation is that a complex defect is actively decomposed (before being

fixed) by developers into several simpler ones (for piecemeal fix) and these decom-

posed defects require fixes in at least one component other than the component

where the parent defect is fixed (thereby making the parent defect and each of the

children defects a multiple-component defect). The latter situation is that after a

defect is “fixed” and the corresponding defect record is closed, it is found that this

defect was not fixed properly and requires more fixes. One or more new defect

records (called children defects) are thus created to log the remaining problems

for the parent defect, meaning that fixing the parent defect requires fixing these

new children defects.

2Due to the non-disclosure agreement with the sponsoring organisation, we are not permitted
to disclose the application type of the system. In our humble opinion, however, this does not
affect the understanding of any technical details presented in this paper.

50

Each defect record includes the following information: (1) the component,

phase and release in which this defect was discovered (not injected), (2) the sum-

mary describing the main problem, (3) the parent reference and children reference

indicating parent-children relationships (as defined in Section 4.2) between defects,

and (4) the severity indicating the impact of this defect on the use of the system.

The case study analyzed these fields of each defect record in the dataset. Two

example defect records are shown in Table 4.1.

Table 4.1: Example defect records.

ID Component
Release Parent Children

Severity Summary
Phase Reference Reference

0010 C1 r1 design — 0011, ... 2 Data share-
space crash

0011 C2 r1 code 0010 — 3 Garbage
collection
problem

As shown in Table 4.1, the first defect record indicates that the defect 0010

(see column “ID”) was discovered in component C1 (see column “Component”)

when designing release 1 (r1 design – see column “Release Phase”); its severity

level is 2 (considered major – see column “Severity”); and it is a data share-

space crash (see column “Summary”). Its “Children Reference” value – “0011,

...” – indicates that the defect 0011 is one of its children defects. The second

defect record indicates that the defect 0011 was discovered in component C2 when

coding release 1 (r1 code). Its “Parent Reference” value – 0010 – shows the ID of

its parent defect (i.e., the first defect shown in the table).

4.3.2 Data Collection, Clean-up, and Analysis Procedures

For the subject system, the defects were recorded when they were discovered in

development, testing, and field phases. When a defect is found by a developer

or user, it is reported to an appropriate analyst in the development team. A

51

new record is thus opened to log this defect in the defect-tracking database. The

analyst also checks whether it is a rediscovery of a previous defect. If it is a

rediscovery, the analyst typically refers it to the previous defect. Here, a defect

rediscovery indicates that: (a) the original defect was not fixed properly; and (b)

the rediscovered defect still requires changes to code in order to fix this defect as

well as the original one. Note that this “rediscovery” meaning is different from

that in some other contexts where defect rediscoveries do not require further code

changes (Kulkarni, 2008). In this case study, this special relationship between the

original defect and its “rediscoveries” was defined as parent-children relationship;

see Section 4.2. That is, fixing a parent defect requires accompanying changes to

fix its children defects (i.e., its “rediscoveries”). The related data quality issues

are described in Section 4.5.1.

We wrote programming scripts to query the defect-tracking database and thus

gathered the defect records (from the database) for each system release under

investigation. We then cleaned up the defect records, mainly removing defects

that are still unresolved and removing incomplete or incorrect defect records (e.g.,

defect records having empty component values or incorrect reference values). For

example, we removed the defects which are “invalid” or still “open” in the system.

This was carried out based on the state field of defect records. In particular,

defects records which are not “closed”, “integrated”, “delivered” and “validated”

are excluded from the dataset.

After that, we identified the development, testing, and field phases for the

defect records. This step was carried out based on the phase field of the defect

records. Therefore, the development, testing and field defects were identified

accordingly. We also identified the parent-children defect relationships based on

the “parent reference” and “children reference” values of defect records. See an

example in Table 4.1 that defect 0010 is the parent of defect 0011.

Finally, we used scripts to analyze the defect records. Some statistical methods

52

(e.g., Pearson correlation coefficient3 or Pearson-value) and Wilcoxon signed-rank

test4) were also used for the analysis. Descriptive statistics of the subject system

are given below.

4.3.3 Descriptive System Statistics

Table 4.2 depicts the number of components (see column “#Components”), the

proportion of defects (see column “%Defects”), and the time range (number of

years) covered by the defect history (see column “#Years Covered”), in each of

the six releases of the system. Rows “Mean” and “StDev” show the average and

standard deviations values across the six releases. The actual release numbers

are represented by r1 through r6. For example, release 1 (see row “r1”) has 183

components, the defects from this release account for 16% of the all defects, and

the dataset covers the defect data recorded in 9.8 years.

Table 4.2: Basic profile of the subject system of Case Study 1.
Release #Components %Defects #Years Covered

r1 183 16% 9.8
r2 206 19% 9
r3 266 14% 9.6
r4 320 22% 9
r5 316 14% 4.3
r6 326 16% 7.5

Mean 270 17% 8.2
StDev 62.3 3% 2.1

The table indicates that the system size (by #Components) increased by about

80% from release 1 to release 6 (across 17 years), the average increase ratio is

12.5% per release. This table also indicates that the defects under investigation are

3Pearson correlation coefficient is a correlation measure between two data arrays and its
range is from -1 to +1. A value of 1 indicates a positive linear correlation, a value of -1 indicates
a negative linear correlation; and a value of 0 or near 0 indicates “no” correlation.

4The Wilcoxon signed-rank test is “a non-parametric statistical hypothesis test for the case
of two related samples or repeated measures on a single sample” (see http://en.wikipedia.
org/wiki/Wilcoxon_signed-rank_test (last access in June 2010)). The population for test
does need to be normally distributed.

53

relatively evenly distributed in the six releases (an average of 17% per release); the

corresponding standard deviation value is small (3% – row “StDev”). Moreover,

this table shows that the defect dataset for each release covers the defect data

in an average of 8.2 years (see column “#Years Covered”), indicating the legacy

nature of the dataset under investigation. The relevance of these findings to Case

Study 1 is described later in Section 4.4.

4.3.4 Case Study Process

Centered on the three questions, (i)–(iii), posed in Section 4.1, Case Study 1 was

undertaken in seven key steps:

Step 1: we cleaned up the defect records for the subject system. This data

cleaning process was carried out manually for the most part. Some scripts

are used to speed up this process. See Section 4.3.2 for the details.

Step 2: we identified parent-children relationships based on the “parent refer-

ence” and “children reference” values of defect records, see Section 4.3.2.

Step 3: we identified MCDs with the help of parent-children defect relationships.

This step is discussed in Sections 4.2 and 4.4.1.

Step 4: we identified MCDs that are spread across development phases or re-

leases. We examined six main releases of the subject system. The defects

data were readily categorized into appropriate phases of each of the six re-

leases. This step is discussed in Section 4.4.3.

Step 5: we analyzed MCD distributions by components and fix relationships in

the system, see Section 4.4.1 (addressing question (i)).

Step 6: we compared MCDs against non-MCDs in terms of their complexity

(number of changes), see Section 4.4.2 (addressing question (ii)).

Step 7: we compared MCDs against non-MCDs in terms of their persistence

across phases and releases, see Section 4.4.3 (addressing question (iii)).

54

This case study was designed to quantitatively examine the distribution, com-

plexity and persistence over time of MCDs compared against non-MCDs. In

particular, the complexity of a defect is measured by the number of accompany-

ing changes required to fix it. The more accompanying changes required for a

defect, the more complex this defect is. The persistence over time of a defect is

measured by the number of system development phases (and releases) that this

defect spans. The more phases or releases a defect spans, the more persistent

this defect is. The quantitative findings of MCDs in terms of their distribution,

complexity and persistence are presented and interpreted in the next section.

4.4 Analysis of Data, Results, Interpretation,

and Comparisons

The findings of Case Study 1 addressing questions (i)–(iii) posed in Section 4.1

are related to the distribution, complexity, and persistence over time of MCDs

in the subject system. We describe and interpret the findings using these three

aspects. We also compare the findings against related work in the literature.

We note that data interpretation should be based on such principles as: (a)

corresponding with the (quantitative or qualitative) findings (Bracey, 2006, p.

32); (b) incorporating the context variables (Basili et al., 2006, p. 68); and (c)

reducing subjective judgement (Münch, 2006). Following this, here, we interpret

the findings of Case Study 1 (as below) with relation to architectural degeneration

in the industrial context.

4.4.1 MCD Distribution (Question (i))

Recall from Section 2.4.1 that defect distribution is usually skewed. Here, Fig-

ure 4.1 illustrates the average distributions of all defects and MCDs by components

and fix relationships across the six releases of the subject system. There are three

55

curves showed in this figure: the “Defect:Component” curve represents the dis-

tribution of defects by components; the “MCD:Component” curve represents the

distribution of MCDs by components; and the “MCD:Fix Relationship” curve

represents the distribution of MCDs by fix relationships5.

Figure 4.1: Distributions of MCDs by components and fix relationships.

This figure indicates that the Pareto principle (i.e., the 80:20 rule) largely fits

the distributions of defects and MCDs by components or fix relationships in the

system: over 80% of all defects and MCDs emanate from (i.e., are concentrated

in) 20% of the components, and nearly 75% of MCDs involve 10% of the fix

relationships. This answered question (i) posed in Section 4.1 – Does the 80:20

Pareto principle fit the MCD distribution?

Further, the MCD distribution reflects the distribution of the impact of archi-

tectural degeneration on software defects (recall Figure 3.1). That is, from the

MCD quantity perspective, there are 20% of the components which contribute

most to the degeneration of the system’s architecture. These 20% of components

5Recall Section 4.2 that there is a fix relationship between two components if there is at least
one MCD pertaining to both these two components. In this case, we also say that that MCD
pertains to this fix relationship. Here, the distribution of MCDs by fix relationships is to count
the aggregate of MCDs pertaining to the (binary) fix relationships in the system.

56

should be thus considered degeneration-critical, indicating the most problematic

areas in the system with respect to architectural degeneration. Identifying these

components is thus important for system quality and cost concerns. Therefore,

this motivated us to develop an effective solution to identify degeneration-critical

components for a given system. Such a solution is the DAD approach (illustrated

in Chapter 5). The related issue about degeneration-critical component identifi-

cation is also investigated in Case Study 2 (see Section 6.3.1).

We note that the Pareto-shaped defect distribution has been studied by several

other researchers such as Boehm and Basili (2001), and Ostrand et al. (2005);

they find that about 80% of defects emanate from 20% of the components. We

also note from Gittens et al.’s study (2005) on the same system that 60% of the

defects found in development (type D) and testing (type T) and near 80% of the

defects found in field (type F) pertain to only 20% of the system’s code. Similar

findings are shown in our earlier study (2009): about 80% of the type D and T

MCDs emanate from 20% of the components. The findings shown above added

that this Pareto principle largely fits the MCD distribution by fix relationships.

4.4.2 MCD Complexity (Question (ii))

If a defect requires one or more accompanying changes (as per definition in Sec-

tion 4.2), we can assume that this defect is relatively more complex to fix, in some

respect, than a defect that does not require any accompanying change. In the

study, we find the following profile for defects that require one or more accompa-

nying changes over six releases: 10% defects of type A (all), 8% defects of type D

(development), 9% defects of type T (testing), and 9% defects of type F (field)6.

Due to the “multiple-component” nature, MCDs are generally considered more

complex to fix than other types of defects. The complexity of a MCD can be thus

6Here, we see that the percentage 10% for type A defects, which is larger than that for types
D, T , and F defects. The reason follows. Type A is a set of types D, T and F ; and there exist
defects requiring accompanying changes across phases (development, testing and field). These
defects are considered only when the percentage for type A – 10% – is counted.

57

measured by the number of accompanying changes required to fix this MCD.

Table 4.3 shows the proportions of MCDs (see column “%MCDs”) and their

accompanying changes (see column “%Accompanying Changes for MCDs”) in the

six releases. For example, MCDs account for 7% of all defects but these defects

consume 50% of all accompanying changes in release 1 (see row “r1”).

Table 4.3: Proportions of MCDs and their accompanying changes.
Release %MCDs %Accompanying Changes for MCDs

r1 7% 50%
r2 11% 60%
r3 5% 45%
r4 8% 57%
r5 5% 46%
r6 10% 55%

Mean 8% 52%
StDev 3% 6%

Table 4.3 shows that on average over the six releases, MCDs account for ap-

proximately 8% of the defects (with standard deviation 3%), but consume ap-

proximately 52% of the all accompanying changes (thus 52% of the all children

defects) (with standard deviation 6%). This means that, on average, a MCD

consumes many more accompanying changes than a non-MCD, indicating the

increased complexity in attempting to fix MCDs in the subject system.

Table 4.3 also describes a near-linear, positive, correlation between the propor-

tion of MCDs and that of accompanying changes for MCDs; the corresponding

Pearson-value is 0.93 (over the six releases)7. This indicates that the greater

the MCD proportion of the system, the greater the proportion of accompanying

changes required for fixing the MCDs in the system.

Considering Tables 4.2 and 4.3 together, we find that there is “no” correlation

between the system size (see column “#Components” in Table 4.2) and the MCD

7The critical value for 6 data pairs (because there are six releases) based Pearson value
is 0.622 (see http://www.une.edu.au/WebStat/unit_materials/c6_common_statistical_
tests/test_signif_pearson.html (last access in November 2010)). Here, obviously, the 0.93
Pearson-value indicates a significant correlation.

58

proportion (see column “%MCDs” in Table 4.3); the corresponding Pearson-value

is -0.158. This indicates that the increase in system size does not substantially

affect the MCD proportion of the system.

In particular, Table 4.4 depicts the average numbers of accompanying changes

for MCDs and all defects in development phases, testing phases and all phases.

Each cell in the “MCDs” and “All Defects” columns is a Mean/Standard devia-

tion (StDev) pair. For example, value “2.10/0.10” in column “MCDs” means that

the average number of accompanying changes for a MCD is 2.10 with standard

deviation 0.10. Column “MCDs:Non-MCDs” shows the average ratio of the num-

ber of accompanying changes for MCDs to that for non-MCDs. The last column

“p-value” shows the significance level – the p value9 – for the difference between

the values for MCDs and “All Defects”. The p value “< 0.001” (for the testing of

defects of types: All, Development and Testing) means that there are statistically

significant differences between all defects and MCDs with respect to the quantity

of accompanying changes required.

Table 4.4: Accompanying changes required for MCDs.
Defect Type MCDs All Defects MCDs:Non-MCDs p-value

All 2.10/0.10 0.10/0.03 26.3 < 0.001

Development 2.10/0.17 0.08/0.02 30 < 0.001

Testing 2.15/0.07 0.09/0.03 27 < 0.001

Table 4.4 shows that the average number of accompanying changes for MCDs

is about 2.1 (see column “MCDs”), which is 26-30 times (see column “MCDs:Non-

MCDs”) as much as that for non-MCDs. This also means that a MCD has an

average of 2.1 children defects, but a general defect has an average of only 0.1

8Because the critical value for 6 data pairs based Pearson value is 0.622 (see the previous
footnote), here, the -0.15 Pearson-value thus indicates an insignificant correlation.

9In order to determine if there is any significant difference between all defects and MCDs
with respect to the accompanying changes, we conducted a Wilcoxon paired signed rank test.
Each test here is based on 6 data pairs (because that there are six releases). The p value is “the
probability of obtaining a test statistic at least as extreme as the one that was actually observed,
assuming that the null hypothesis is true.” (see http://en.wikipedia.org/wiki/P-value (last
access in November 2010))

59

children defect. This further indicates that, on average, a MCD requires to be

decomposed into nearly 3 times as much as the simpler defects for piecemeal

correction than a non-MCD (i.e., fixing a MCD requires nearly 3 times changes

(based on components) as much as that for fixing a non-MCD.). This confirms the

early finding (of Table 4.3) that MCDs are more complex to fix than non-MCDs,

which thus answered question (ii) posed in Section 4.1 – To what extent are MCDs

more complex than other types of defects?

We note that 20% of defects consume 60%-80% of total correction effort (Ebert

et al., 2005, ch. 9). Usually, these 20% of defects are more complex to fix than

the remaining defects. We also note that, in (Eick et al., 2001), the authors use

change factors (including size (number of added/deleted SLOC), span (number of

components spanned), time interval (calendar time required), etc.) to measure a

change’s effort. Fixing a defect usually requires changes in a code base; therefore,

these change factors can be used to measure the defect – its “complexity”. As

shown above, we measured defect (MCD) complexity with the number of accom-

panying changes. This can complement the previous work (e.g., (Eick et al., 2001)

and (Ebert et al., 2005, ch. 9)).

Furthermore, considering the relationship between MCDs and architectural

degeneration (see Figure 3.1), we can infer that the architectural degeneration

increased the (fix) complexity of defects in the system. This is mainly due to the

profile of over 50% of accompanying changes for MCDs (see Table 4.3) and the

“26-30” factor of the MCD complexity over that for non-MCDs (see Table 4.4).

4.4.3 MCD Persistence (Question (iii))

We note from Section 4.2 that a defect is persistent if it crosses development

phase or release boundaries. We thus say that MCDs are more persistent than

non-MCDs if it can be shown that the percentage of persistent MCDs is greater

than that for general defects. In this study, the MCD persistence is examined with

60

the forward- and backward-ratios (FR and BR – as per definitions in Section 4.2)

of MCDs crossing phases and releases.

Table 4.5 shows the average BR and FR values of MCDs and of all defects

crossing a phase or a release. Note that ri and ri+1 represent the previous and

next releases, respectively. Similar to Table 4.4, the row “p-value”10 show the

p values which indicate the significance level of the difference between MCDs

and “All Defects”. For example, “0.12/0.05” (in column “D in ri → T in ri”)

indicates that the average BR value of all defects from development (D) to testing

(T) phases is 0.12 (with standard deviation 0.05). This means that only 12%

of the defects found in testing (type T) are forwarded from development (type

D) defects. However, there are 83% of testing (type T) MCDs forwarded from

development (type D) MCDs (see value “0.83/0.04”).

Table 4.5: Backward and forward-ratios of MCDs.
D in ri → T in ri A in ri → A in ri+1

All Defects 0.12/0.05 0.03/0.01
BR MCDs 0.83/0.04 0.13/0.10

MCDs:Non-MCDs 8.3 6.5
p-value < 0.001 < 0.001
All Defects 0.10/0.06 0.03/0.03

FR MCDs 0.71/0.12 0.15/0.10
MCDs:Non-MCDs 7.5 6.0
p-value < 0.001 < 0.001

By comparing columns “D in ri → T in ri” and “A in ri → A in ri+1” in

Table 4.5, we can infer that the FR and BR values of all defects and MCDs across

releases are much smaller than those across phases. However, this table also

shows that the cross-phase (or release) FR and BR values of MCDs are 6.0-8.5

times (see rows “MCDs:Non-MCDs”) as much as the values for non-MCDs. It

10Note that for across-phase comparison (from development to testing), there are 6 data pairs
for the testing; but for cross-release comparison (e.g., from release i to release i + 1; i = 1..5),
there are only 5 data pairs for the testing. The p values “< 0.001” shown in Table 4.4 mean that
there are significant differences between all defects and MCDs with respect to the forward-ratios
and backward-ratios across phases and releases.

61

constitutes strong evidence in support for: MCDs are more persistent than other

types of defects across a phase and a release. This answered question (iii) posed

in Section 4.1 – To what extent are MCDs more persistent than other types of

defects? This further implies that MCDs are harder to fix than non-MCDs and

are more likely to escape software development scrutiny.

Note that severity of a defect can also be a factor in whether the defect is fixed

or not in a given release. In particular, our data shows that, on average over the

six releases, 70% of MCDs and 62% of non-MCDs are of high severity. We further

conducted a Wilcoxon paired signed rank test and found that there is no significant

difference (at the 0.95 level) between these two percentages of high-severity defects

in MCDs and non-MCDs (0.05 < p < 0.1) over the six releases. This indicates that

the severity does not significantly affect the persistence of MCDs (in comparison

against that for non-MCDs). This issue is further discussed in Section 4.5.3.

For the architectural aspect, we can infer that the architecture (specifically

the change-coupling problems among components) inflicts more adverse impact

on the defect correction. For example, the above findings (see Section 4.4.2)

indicate that architectural defects (MCDs) are more complex (by number of ac-

companying changes) to fix than other types of defects. We can further infer

(based on quantitative support) that the architectural degeneration increases the

average fix difficulty of defects in the system. This is mainly due to the “6.0-8.5”

factor of the MCD persistence over that for non-MCDs (see Table 4.5).

We note from Section 2.4.2 that the longer a defect exists in the system, the

much more costly it is to fix this defect. We also note that some defects are redis-

covered across development phases and releases in the system (Kulkarni, 2008).

As described above, defects that are “rediscovered” across phases and releases are

considered persistent and over half of such defects span multiple components (i.e.,

MCDs – see Table 4.5). This finding adds to the knowledge on defect correction;

also see their implications in Section 4.6.

62

4.4.4 Summary of Findings

There are three key aspects of the findings of this case study: the distribution,

complexity and persistence of MCDs. These findings are summarized below.

• The Pareto principle fits the MCD distributions: over 80% of the MCDs

emanate from 20% of the components and nearly 75% of the MCDs involve

10% of the fix relationships (see Figure 4.1). This indicates that the MCDs

are highly concentrated in a few components in the system.

• The MCDs account for approximately 8% of the defects, but consume ap-

proximately 52% of the accompanying changes in the system (see row “Mean”

in Table 4.3). In detail, on average, fixing a MCD requires nearly 3 times

changes (based on components) as much as that for fixing a non-MCD, in-

dicating the increased complexity in fixing MCDs.

• The proportion of MCDs crossing over from one phase or release to the

next is 6.0-8.5 times as much as that for non-MCDs (see row “MCDs: Non-

MCDs” in Table 4.5). This indicates that MCDs are more persistent than

other defects across phases and releases.

Overall, the above findings are new; and there are no previously published

studies similar to this case study. These finding add to the scientific knowledge

on architectural defects (MCDs). Based on the relationship between MCDs and

architectural degeneration (see Figure 3.1), we claim that: (1) there are a few (20%

of) components that contributed most (over 80%) to the architectural degenera-

tion from the MCD quantity perspective; and (2) the architectural degeneration

increases the average fix complexity and difficulty of defects in the system. This

thus sealed our attention on the DAD approach (see Chapter 5), which can aid

mitigating the adverse impact of architectural degeneration on defects (e.g., re-

ducing the fix complexity and difficulty of MCDs).

63

4.5 Threats to Validity

This section discusses the main threats to validity of the case study findings. We

classify these threats into three groups: data reliability, and external and construct

validity; see the following three subsections.

4.5.1 Data Reliability

There is a concern with the accuracy of the defect dataset for the legacy system

involved in the investigation (see Section 4.3.1). By examining a random sam-

ple of 120 (20 from each of the six releases) defect records, we determined that

while about 80% of the (parent and children) reference values straightforwardly

described the parent-children relationships, about 20% were also used for other

purposes, such as representation of separate defects with similar summaries, or in-

troduction of new defects induced by defect fixes. While it was possible to exclude

the 20% from the random sample (i.e., the 120 defect recrods), it is clearly not

pragmatic to remove such anomalous records from the large defect dataset. There-

fore, the identification of parent-children relationships between defects could be

affected to some extent in this case study. This introduces some degree of threat

to validity of the results and calls for future research to develop techniques to

automatically filter out noise from the dataset.

There is also a concern with the completeness of the defect dataset. For

example, it is possible that some defects were fixed but were not recorded in the

defect-tracking database. Although the developers conveyed their high degree of

confidence in the completeness11 of the defect history representing the 17 years

we analyzed (e.g., an average of 8.2 years per release; see Table 4.2), there is no

simple way to independently confirm this.
11A rigorous routine for the subject system is to first record a defect in the defect-tracking

database, then fix this defect, and finally update the fields of the defect record. Thus, it can
be said that all the defects fixed in the system have first been recorded in the defect-tracking
database. This leads to the statement about the confidence in the completeness of the dataset.

64

4.5.2 External Validity

External validity is concerned with the generalization of study findings in other

contexts (Creswell, 2002). First, let us examine the system under study. It is

a large legacy system. While, there are other large legacy systems from diverse

application domains, there is no obvious reason to single out the case study system

as particular from the point of view of defect types and spread in the system. For

example, one would expect that MCDs would also exist in other large systems.

However, the way MCDs are recorded in the logs can be specific to the organization

(e.g., people culture, habits and process), infrastructure, defect logging tools,

and others. This implies that the detailed steps in identifying MCDs (based on

the parent-children relationships among defects – Section 4.2) are not obviously

generalizable to other contexts.

We note that in some open-source software systems (as mentioned in Sec-

tion 3.1), the defect histories only partially satisfy the requirements for reproduc-

ing this case study. For example, whereas MCDs could be identified from the

defect records and change logs of these systems, the MCD-persistence analysis

was not possible because the “parent reference” and “children reference” values

(see Section 4.3.1) are not recorded in the defect records.

4.5.3 Conclusion Validity

Conclusion validity is concerned the extent to which the conclusions made in

the study are reasonable Wohlin et al. (2000). We investigated the complexity

and persistence of MCDs by comparing them against other types of defects (see

Sections 4.4.2 and 4.4.3). The definition of complexity of a defect is based on the

number of accompanying changes required to fix this defect (see Section 4.2). The

definition of persistence of a defect is based on the extent to which this defect is

leaked into successive phases or releases. The quantitative findings of the MCD

complexity and persistence are given in Sections 4.4.2 and 4.4.3.

65

A possible threat to a conclusion of this study is related to the definition of

defect complexity. That is, complexity is based on the changes at the level of

components, not number of lines of code added, modified or deleted, or in terms

of the amount of time spent, or logical complexity of code, etc. These factors were

not considered in this case study because of lack of such detailed data.

Another possible threat to a conclusion of this study is related to the potential

impact of defect severity on defect persistence across development phases and

releases (see Section 4.4.3). We note from Section 4.4.3 that there is no significant

difference (0.05 < p < 0.1) between the percentages of high-severity defects in

MCDs and non-MCDs (70% vs. 62%); the threat is thus low.

4.6 Implications

In this section, we discuss the implications of the case study findings (see Sec-

tion 4.4) from the points of views of software maintenance, architectural degener-

ation treatment, and architectural methods and tools.

4.6.1 Software Maintenance

Because MCDs are highly concentrated in a few components in the system (see

Figure 4.1), those MCD-prone components should be separated from other com-

ponents for effectively discovering and fixing MCDs in the system. Also, because

MCDs are more complex than other kinds of defects (see Table 4.4), they require

more effort to fix. Moreover, because MCDs are more persistent across phases

and releases than other kinds of defects (see Table 4.5), they require more testing

effort in order to ensure system qualities such as reliability and user satisfaction.

Therefore, separating MCDs from other defects, during maintenance, can help

focus attention on these hard-to-fix defects. Second, it is more difficult to fix

a MCD in the system phase or release where this MCD occurred. Third, more

66

regression-testing efforts are required in order to increase the probability of fixing

MCDs in the current phase or release; otherwise, the reliability and maintenance

cost of the subsequent system phase or release will be affected. Further, the

complexity and persistence of MCDs also reflect the importance of the MCD-

prone components for improving defect correction and prevention.

Further, we note that there are a few fix relationships in the system which are

involved in a majority of the MCDs (see Figure 4.1). These special fix relationships

can help refine strategies of component re-engineering. For example, MCD-prone

components having one or more such fix relationships should be re-engineered in

higher priority than other components having no such fix relationships. We note

that defect classification schemes such as IBM’s Orthogonal Defect Classification

(ODC) (Chillarege et al., 1992) and Hewlett Packard’s Defect Origins, Types and

Modes (Grady, 1992, pp. 122-137) do not involve the view of point of multiple-

component nature of defects. We also note that SWEBOK12, IEEE Std 1219-

199813, and other such literature do not mention how to treat MCDs.

4.6.2 Architectural Degeneration Treatment

Considering the relationship between MCDs and architectural degeneration (see

Figure 3.1), the Pareto-shaped MCD distribution (see Figure 4.1) indicates that

architectural degeneration is mainly caused by a few (20% of), MCD-prone, com-

ponents in the system. These MCD-prone components are degeneration-critical

from the MCD quantity perspective. Therefore, treating the architectural degen-

eration should focus only on these components. For example, these components

should be re-engineered in priority.

Moreover, the MCD complexity and persistence profile (see Tables 4.3–4.5) re-

12SWEBOK stands for the Software Engineering Body of Knowledge (by IEEE); see www.
swebok.org (last access in November 2010).

13IEEE Std 1219-1998 refers to as IEEE’s Standard for Software Maintenance;
see http://standards.ieee.org/reading/ieee/std_public/description/se/1219-1998_
desc.html (last access in November 2010).

67

flects the adverse impact of architectural degeneration on software defects, which

thus increases the necessity and significance of architectural degeneration treat-

ment in practice. Typically, treating architectural degeneration should decrease

the MCD complexity and persistence. The MCD complexity could be decreased by

component re-engineering; however, decreasing the MCD persistence must require

defect correction improvement, e.g., enhancing regression testing or post-change

code review to avoid leaking defects into next development phases or releases.

4.6.3 Architectural Methods and Tools

It is worth mentioning that while tools for software architecting and maintenance

have made significant progress over the last decade (e.g., in the areas of met-

rics, maintenance history analysis, change and impact analysis, etc.), the work

described in this paper is yet another trigger for making further progress in tool-

technology. For examples, the ROSE prototype (Zimmermann et al., 2004) can

determine the change-coupling relationships at different system-granularity levels,

and the SACPT tool (Abdelmoez et al., 2004) can measure the architecture-level

change propagation among components. Such tools could benefit from our work

on fix relationships.

Both ROSE and SACPT, by integrating the methods of identifying fix rela-

tionships, can support detection of inter-connection problems on the architectural

level and identification of MCDs on the code level. For example, ROSE could

answer questions such as: “Which system elements have fix relationships with the

elements under editing?” and “Do these fix relationships cause many MCDs in

code?” SACPT could answer questions such as: “Which architectural elements

are most likely to contain the fixes that couple the fixes made in a specific archi-

tectural element?” and “How many of these fix-coupled architectural elements,

given an architectural element?” These questions cannot be easily answered with

the ROSE and SACPT tools in the current situation.

68

4.7 Recap of Case Study 1

Previous research has shown that architectural defects (typically those that span

over multiple components and their interactions) can consume twice as much

effort in fixing them as that for other defects (Leszak et al., 2000). Thus, any

new understanding about these resource-sinking defects can help fix these defects.

MCDs are such defects. Due to their “multiple-component” nature, MCDs are

related to potential crosscutting concerns (Aversano et al., 2009) and architectural

problems (von Mayrhauser et al., 2000).

In Case Study 1 we answered question 1 posed in Section 1.2 (What do defects

indicate about architectural degeneration?) in a large legacy system. In particu-

lar, this case study answered these three questions (see Section 4.1): (1) Does the

80:20 Pareto principle fit the MCD distribution? (2) To what extent are MCDs

more complex than other types of defects? and (3) To what extent are MCDs

more persistent than other types of defects?

This case study investigates the defect data of a large system, representing

six releases over 17 years (see Section 4.3.1). The qualitative findings of this case

study relevant to the questions are: (i) MCDs are highly concentrated in a few

components in the system (see Figure 4.1); (ii) MCDs are more complex to fix

then non-MCDs (see Tables 4.3 and 4.4); and lastly (iii) MCDs are more persistent

than other defects across phases and releases (see Table 4.5). A succinct summary

of the quantitative findings can be seen in Section 4.4.4.

According to the relationship between MCDs and architectural degeneration

(see Figure 3.1), we can infer from the above MCD profile that: (1) there are

a few components and fix relationships that contribute most to the architectural

degeneration; and (2) the architectural degeneration increases the average fix com-

plexity and difficulty of defects in the system. This addresses question 1 posed in

Section 1.2 – What do defects indicate about architectural degeneration? It also

sealed our intention to create an approach for architectural degeneration diagnosis

69

– the DAD approach (see Chapter 5).

Overall, the above findings are new; and there are no previously published

studies similar to this case study. These findings add to the scientific knowledge

on architectural defects (MCDs) and degeneration. They also have implications

for software maintenance, architectural degeneration treatment, and system qual-

ity improvement. For example, because MCDs are more difficult to fix than other

types of defects, separating MCDs from other defects, during maintenance, can

help focus attention on these hard-to-fix defects. Also, those MCD-prone compo-

nents should be separated from other components for the purpose of effectively

discovering and fixing MCDs as well as architectural degeneration treatment in

the system. See Section 4.6 for the details of the implications.

While these findings are new, we should not overlook that these results are from

only one, albeit significant, case study. This case study has its own idiosyncratic

threats, e.g., specification of raw data, MCD identification, and MCD-persistence

analysis (see Section 4.5). There is thus a need to conduct replicated studies

involving other systems in order to build a body of knowledge on architectural

defects (e.g., MCDs). Later Section 8.2 discusses other related limitations to this

case study, and Chapter 9 describes the challenges involved in and lessons learnt

from conducting this study in an industrial context.

70

Chapter 5

Diagnosing Architectural

Degeneration (DAD)

In this chapter, we describe the approach to Diagnosing Architectural Degene-

ration from the defect perspective. This approach addresses question 2 posed

in Section 1.2 – How can architectural degeneration be diagnosed from the defect

perspective? In Section 5.1, we describe two plausible symptoms for the diagnosis.

In Section 5.2, we illustrate a conceptual DAD framework, mainly the goals of

this approach and its procedural steps to achieve the goals. In Section 5.3, we

describe a DAD prototype tool, including its main features, data input, processing

mechanisms, and output. After that, we compare DAD against related techniques

in Section 5.4. Finally, we give a summary of this approach in Section 5.5. A case

study that validated DAD on a real system is presented in Chapter 6. Assessment

of DAD is discussed in Section 8.3.

5.1 Symptoms for Diagnosis

We note from Figure 3.1 that, from the defect perspective, architectural degener-

ation manifests itself by multiple-component defects (MCDs). We also note that

Case Study 1 examines the distribution, complexity, and persistence of MCDs in

71

the subject system (see Sections 4.4.1 and 4.4.2) for the purpose of characterizing

the architectural degeneration. From this, we claim that the architecture of a

specific system has under degeneration if:

(1) more and more MCDs were discovered in the system, or

(2) the MCDs are more and more complex to fix.

Obviously, these two plausible symptoms are concerned with the quantity and

complexity of MCDs in the system. As described in Case Study 1 (see Section 4.1),

the number of components that are changed in order to fix a MCD is a measure

of complexity (Endres, 1975). Likewise, we can also measure the complexity of a

MCD by the number of code files changed to fix this MCD.

Except these two symptoms (MCD quantity and complexity), there is another

symptom – architectural deviation (see Section 2.3.1). If an architecture has

deviated from its baseline, it has most likely degenerated (Hochstein and Lindvall,

2005). In addition, some symptoms of code decay (Eick et al., 2001) also manifest

architectural degeneration, such as increasingly excessive size and complexity of

components. We do not discuss these symptoms here because they are not directly

related to software defects.

In a software system, different components could inflict varying impacts (called

“contributions” here) on the architectural degeneration. Therefore, based on

the skewed distribution of the components’ contributions, we can identify the

degeneration-critical components as the components which contribute substan-

tially more to the architectural degeneration than the other components. Like-

wise for degeneration-critical fix relationships. Further, considering the above

two symptoms (MCD quantity and complexity) of architectural degeneration, we

can identify degeneration-critical components and fix relationships from the MCD

quantity and complexity perspectives. For example, the MCD distribution chart

in Case Study 1 (see Figure 4.1) shows that over 80% of MCDs are concentrated

in 20% of the components and 75% of MCDs are involved in 10% of the fix re-

72

lationships. From the MCD quantity perspective, these 20% of components and

10% of fix relationships should be considered degeneration-critical in the system.

The DAD approach was thus proposed to measure the contribution of a com-

ponent or a fix relationship of a specific system to the architectural degeneration,

using proper MCD quantity and complexity metrics. The degeneration-critical

components and fix relationships can be thus identified (according to a criterion)

based on the measures of the components and fix relationships. Next, we describe

a conceptual framework of this DAD approach.

5.2 A Conceptual DAD Framework

The DAD approach operationalizes the defect perspective (for diagnosing architec-

tural degeneration) with MCD quantity and complexity metrics for components

and fix relationships. The three goals that this approach was designed to achieve

are: (1) identification of degeneration-critical components and fix relationships

in a given system; (2) evaluation of persistence of components and fix relation-

ships in relation to architectural degeneration; and (3) evaluation of architectural

degeneration over time for the system.

We designed a conceptual DAD framework (see Figure 5.1) to achieve these

three goals: (1)–(3). This framework defines five key steps (see the five boxes in

Figure 5.1), which are outlined below.

Step 1: identify MCDs and fix relationships from the defect-fix history (defect

records and change logs) of a given system (see Section 5.2.1).

Step 2: measure the system’s components and fix relationships with MCD quan-

tity and complexity metrics (see Section 5.2.2).

Step 3: identify degeneration-critical components and fix relationships according

to the MCD quantity and complexity measures (see Section 5.2.3).

73

Step 1: Identify MCDs and
fix relationships

Step 3: Identify degeneration-critical
components and fix relationships

Step 5: Evaluate the trend in
architectural degeneration

Step 2: Measure MCD quantity and
complexity of components and fix relationships

Legend:

data flow

activity

MCDs, components,
and fix relationships

Defect-fix
history

Step 4: Evaluate persistence of
components and fix relationships

Measurement values of components and fix relationships

data input

Figure 5.1: A conceptual DAD framework.

Step 4: evaluate the persistence of the components and fix relationships over

development phases and releases (see Section 5.2.4).

Step 5: evaluate the architectural degeneration according to the MCD quantity

and complexity measures over phases and releases (see Section 5.2.5).

Sections 5.2.1–5.2.5 give the details of these five steps, respectively. After

that, in Section 5.2.6, we describe construction of “defect architectures” – the

main output of this DAD approach (its five steps).

5.2.1 Step 1: Identification of MCDs and Fix Relation-

ships

This step is to identify MCDs based on the defect-fix history (defect records

and change logs) of a given system. In particular, if a defect record is matched

74

with a set of change logs from more than one component in the system, the

corresponding defect is a MCD; consequently, a fix relationship is identified among

the components which are changed together to fix this MCD.

Recall that a fix relationship is a relationship among components where fixing

a MCD in one component requires changes in the other components in order to

fix this MCD. We note that a fix relationship is an implicit relationship over the

architecture, which points to architectural problems (D’Ambros et al., 2009).

5.2.2 Step 2: Measurement of Components and Fix Rela-

tionships

Step 2 is to measure components and fix relationships of a given system. DAD

defines four metrics which are related to the quantity and complexity (number of

components or code files fixed per defect) of MCDs that pertain to a component

or a fix relationship in the system. These metrics are below.

M1 (“%MCDs”) – the proportion of MCDs pertaining to a component against

all MCDs in the system.

M2 (“#MCDs per KSLOC”) – the average quantity of MCDs per thousand

SLOC (KSLOC) of a given component.

M3 (“#Components fixed per MCD”) – the average quantity of components fixed

for a MCD in a given component.

M4 (“#Code files fixed per MCD”) – the average quantity of code files fixed for

a MCD in a given component.

Metrics M1 (“%MCDs”) and M2 (“#MCDs per KSLOC”) are concerned with

the proportion and density of MCDs in a given component. The more the MCDs

pertain to a component (M1), the greater the contribution of this component

to architectural degeneration. Metric M2 complements M1 by normalizing the

MCD quantity by the component size (in KSLOC). Metrics M3 (“#Components

75

fixed per MCD”) and M4 (“#Code files fixed per MCD”) are concerned with the

complexity of MCDs at the component and code file levels in terms of the number

of fixes. The more complex the MCDs pertain to a component, the greater the

contribution of this component to architectural degeneration. Note that other

similar complexity metrics can be also defined in DAD, for example, number of

subsystems or functions that are required to change in order to fix a defect is also

a complexity measure.

Metrics M1 (“%MCDs”), M3 (“#Components fixed per MCD”) and M4

(“#Code files fixed per MCD”) are also used analogously to measure fix relation-

ships1. Metric M1 can be used to measure the proportion of MCDs involving a

fix relationship against all MCDs in the system. Analogous interpretations are

attributed to metrics M3 and M4.

5.2.3 Step 3: Identification of Degeneration-Critical Com-

ponents and Fix Relationships

Based on the MCD quantity and complexity measures for the components and fix

relationships (see Section 5.2.2), step 3 of DAD is then to identify the degeneration-

critical components and fix relationships in the system. In particular, degeneration-

critical components and fix relationships are identified as components and fix re-

lationships which have substantially greater measures than other components and

fix relationships. Determining whether a measure is “substantially” greater than

another measure is based on the particular measure distribution. Therefore, DAD

does not set up a definite criterion for identification of degeneration-critical com-

ponents and fix relationships. This criterion must be determined in the specific

context. An example of such criterion is described in a case study on a commercial

legacy software system (see Section 6.3.1).

1A fix relationship has no size in SLOC, so we do not measure the MCD density (i.e., the
M2 metric) for fix relationships here.

76

5.2.4 Step 4: Persistence Evaluation for Components and

Fix Relationships

Based on the MCD quantity and complexity measures for the components and fix

relationships (see Section 5.2.2), step 4 of DAD is to evaluate the persistence of

the components and fix relationships in relation to architectural degeneration. In

particular, the components or fix relationships are claimed persistent if their mea-

sures keep relatively stable across development phases and releases. In practice,

we use Spearman’s rank correlation coefficient (or Spearman-value)2 to evaluate

the persistence of the measures of components and fix relationships across devel-

opment phases and releases.

5.2.5 Step 5: Architectural Degeneration Evaluation

Based on the MCD quantity and complexity measures for the components and fix

relationships (see Section 5.2.2), step 5 of DAD is to evaluate the architectural

degeneration of a system over phases and releases. In particular, the architectural

degeneration is claimed increased if these measures increased with time. Oth-

erwise, it is decreased or mitigated. Accordingly, the architectural degeneration

trend of the system can be discovered with the longitudinal evaluations. Note that

the evaluations with different MCD quantity or complexity metrics (as defined in

Section 5.2.2) could be different.

5.2.6 Defect Architecture Construction

Over the above five steps of the DAD approach, we note that DAD can ultimately

derive defect architectures for a given system within particular phases and releases.

Similar to a fault architecture (von Mayrhauser et al., 2000), a defect architecture

is defined as a composition of components and fix relationships of a system.

2Similar to Pearson correlation coefficient (or Pearson-value), Spearman’s rank correlation
coefficient (or Spearman-value) is a correlation measure. It is considered as being the Pearson
correlation coefficient between two ranked data arrays and its range is from -1 to +1.

77

A defect architecture is generally visualized as a “box-and-arrow” graph (Gor-

ton, 2006, p. 117), where a “box” denotes a component and an “arrow” (ac-

tually, an undirected “edge”) denotes a fix relationship. An attribute of a box

or an arrow can denote its MCD quantity or complexity measure. Thus, defect

architectures can be used to highlight degeneration-critical components and fix

relationships in a given system over development phases and releases. They also

support cross-longitudinal analysis of measures for components and fix relation-

ships, and support evaluation of the architectural degeneration trend over time.

For example, Figure 1.1 (see page 4) shows three charts, each of which is a de-

fect architecture (with MCD quantity measures represented by the thickness of the

“boxes” and “edges”). These three defect architectures highlight the degeneration-

critical components (e.g., the “box” C5) and fix relationships (e.g., the “edge”

between C5 and C6) in the three releases of the commercial system (investigated

in Case Study 2; see Section 6.3.1). We also find that some degeneration-critical

components and fix relationships persist over the three releases. Especially, by

comparing these three defect architectures we can evaluate the architectural de-

generation trend of the system over the three releases. In particular, we note that,

from the MCD complexity (i.e., metric M3) perspective, the architectural degen-

eration of the system increased as the system evolved from release 1 to release 2

but then decreased in release 3.

5.3 A DAD Prototype Tool

In this section, we describe a DAD prototype tool which implements the concep-

tual DAD framework (see Figure 5.1). We first present the main features of this

tool in Section 5.3.1. We then describe its data input in Section 5.3.2, its data

processing steps in Section 5.3.3, and its outputs in Section 5.3.4. Note that this

prototype tool was built on an extended Relation Algebra (in order to implement

the main features of the DAD approach). We describe this Relation Algebra in

78

Appendix A. Furthermore, Appendix B demonstrates the application of this DAD

prototype tool on a commercial legacy system and the Eclipse Platform.

5.3.1 Main Features

This prototype tool implements the three goals of the DAD approach (see Sec-

tion 5.2): (i) identification of degeneration-critical components and fix relation-

ships in a given system, (ii) evaluation of persistence of components and fix rela-

tionships in relation to architectural degeneration, and (iii) evaluation of architec-

tural degeneration of the system across development phases and releases. There

are three basic features upon which these three core features are built: (1) iden-

tification of MCDs in a defect-fix dataset, (2) identification of fix relationships

among components, and (3) measurement of components and fix relationships

with MCD quantity and complexity metrics (see Section 5.2.2).

Except the above features, there are another three complementary visualiza-

tion features implemented in this DAD prototype tool:

(a) Defect architecture visualization. A defect architecture is visualized as a box-

and-arrow graph (Gorton, 2006, p. 117). It can highlight the degeneration-

critical components and fix relationships in the system.

(b) Visualization for persistence of components and fix relationships. A persis-

tence view is visualized with a bar or line chart. It aids understanding the

obstinate problems in the system leading to architectural degeneration.

(c) Architectural degeneration trend visualization. An architectural degenera-

tion trend is visualized with a bar or line chart. It aids evaluating the

system’s architectural degeneration with time.

We note that an ordinary Relation Algebra (such as Tarski’s algebra of binary

relations (Tarski, 1941) or Codd’s algebra of n-ary relations (Codd, 1972)) has

been used by some researchers to facilitate the visualization (Berghammer and

79

Fronk, 2003), transformation (Krikhaar et al., 1999), abstraction (Holt, 1999),

aggregation (Holt, 1999), and analysis (Feijs et al., 1998) of architectures. We

thus implemented the above features of the DAD prototype tool based on an

extended Relation Algebra (specifically the work by Feijs and Krikhaar (1998)

and Holt (1999)). The full algebra is described in Appendix A.

5.3.2 Data Input for the Tool

The main dataset under the investigation of the prototype tool is the defect-fix

history (defect records and change logs) of a given software system. The required

data attributes are described in Table 5.1. The system structure information is

also processed in the prototype tool, which indicates which file belongs to which

component and what is the file’s size (in KSLOC). This table is self-explained, so

we do not describe it here any more.

Table 5.1: Key attributes of the data input.
Attribute Description

ID The unique identity of the defect report
Release The release where the defect was discovered

Defect Phase The phase where the defect was discovered
Component The component where the defect was discovered
Submit date The date to submit the defect to the system
State The last state of the defect
ID The unique identity of the change log

Change Release The release where the change was made
Phase The phase where the change was made

(Fix) File The code file where the change was made
Defect ID The identity of the defect fixed by the change

System Component The component’s name
Structure File The file’s name

(part) Size The file’s size

For a usual system, the system structure information is mostly available. Such

a system usually contains defects. Fixing a defect requires changes (fixes) to

the code base. The discovered defects are usually recorded in a defect-tracking

80

database (collecting historical defect records, e.g., Bugzilla3) and the changes are

logged in a version control system (collecting historical changes made in a code

base, e.g., Concurrent Versions System or CVS4). Therefore, the key attributes of

the defect records and change logs (shown in Table 5.1) can be mostly gathered

from defect-tracking databases and version control systems. We thus claim that

the data required by this prototype tool is widely available.

5.3.3 Data Processing by the Tool

Figure 5.2 illustrates the data processing by the DAD prototype tool. In particu-

lar, it specifies the steps used to implement the main features (see Section 5.3.1).

We briefly describe these steps below.

• Map change logs to defect records. Each defect is associated with a set of

changes (in a code base) by matching the “Defect ID” field of change logs

to the “ID” field of defect records (see Table 5.1).

• Locate defects in components. Each defect is located in component(s) in

which at least one code file is changed in order to fix this defect.

• Identify MCDs ; see Section 5.2.1.

• Identify fix relationships ; see Section 5.2.1.

• Measure components and fix relationships with the MCD quantity and com-

plexity metrics ; see Section 5.2.2.

• Set up criteria and identify degeneration-critical components and fix rela-

tionships ; see Section 5.2.3.

• Create and visualize persistence view for components and fix relationships

by gathering the measures for components or fix relationships over time,

which is then visualized as a bar or line chart.
3See Bugzilla’s web site: http://www.bugzilla.org/ (last access in November 2010).
4See a CVS web site: http://www.nongnu.org/cvs/ (last access in November 2010).

81

Map change logs to
defect records

Identify MCDs

Locate defects in
components

Defect records;
Change logs;

System structure

Identify
fix-relationships

Create and visualize defect-architecture

Measure components and fix
relationships with M1, M2, M3 and M4

Set up criterion and identify
degeneration-critical components

and fix relationships

Create and visualize
architectural degeneration trend

Legend:

data input

activity

data flow

Create and visualize persistence view
of components and fix relationships

Figure 5.2: Data processing by the DAD prototype tool.

• Create and visualize architectural degeneration trend by gathering the av-

erage measures of components or fix relationships over time, which is then

visualized as a bar or line chart.

• Create and visualize defect architecture; see Section 5.2.6.

Overall, the processing steps above posed implement the conceptual DAD

framework (see Figure 5.1) in the prototype tool.

5.3.4 Output of the Tool

Following the above description of the data processing steps of in the DAD pro-

totype tool, we describe the outputs of using this tool on a given system:

82

• Characteristics of defects (including MCDs). The tool creates charts to

demonstrates quantity and complexity characteristics of defects (including

MCDs) in a given system. See examples in Section B.2.

• Measures of components and fix relationships. The tool creates bar and line

charts to show MCD quantity and complexity measures for components and

fix relationships of the system. See examples in Section B.2.

• Defect architectures. The tool creates box-and-arrow graphs to visualize

defect architectures for the system. See examples in Section B.3.

• Persistence view for components or fix relationships. The tool creates bar

and line charts to visualize the measures of components or fix relationships

over phases and releases. See examples in Section B.2.1.

• Architectural degeneration trend. The tool creates bar and line charts to

visualize architectural degeneration trend over phases and releases for a given

system. See examples in Section B.2.2.

• Profile of the system, for example, the size (in SLOC) of a component, and

the number of defects and changes occurred in a component. See examples

in Section B.1.

These outputs are created by following the data processing steps shown in

Figure 5.2. Later in Appendix B, we demonstrate several typical outputs of this

prototype tool used on a commercial legacy system.

5.4 Comparison and Discussion

There are some metrics defined in the literature for architectural degeneration

measurement. For examples, Jaktman et al. (1999) define complexity metrics

(e.g., the average number of calls per component); and Lindvall et al. (2002) de-

fine two similar metrics (i.e., “coupling-between-modules” (CBM) and “coupling-

between-module-classes” (CBMC)). However, these metrics do not consider defect

83

characteristics related to architectural degeneration. Therefore, these metrics can-

not be used to measure architectural degeneration from defect perspective. DAD

defines several MCD quantity and complexity metrics (see Section 5.2.2). These

metrics operationalize the defect perspective, which can thus complement the

deviation-based measurement (e.g., (Jaktman et al., 1999) and (Lindvall et al.,

2002)) for architectural degeneration diagnosis.

Recall Section 2.3.3 where we describe three diagnosis techniques, including

architectural deviation detection, defect-prone component (DPC) identification,

and fault and change architectures construction. In Section 2.3.5 we discuss the

deficiencies of these techniques in diagnosing architectural degeneration from de-

fect perspective. The defect is an indicator of poor system quality. Analysis of

defects in history of a given system can uncover potential problems related to the

system evolution (von Mayrhauser et al., 2000). Therefore, DAD complements

these techniques by offering new information about architectural degeneration.

Furthermore, the DAD approach (and its prototype tool) also complements

other related techniques such as reverse engineering (for architectural degener-

ation prevention) and re-engineering (for architectural degeneration treatment).

Reverse engineering can help detect deviations (Murphy et al., 2001) in an archi-

tecture against its baseline (Krikhaar, 1997) from structural perspective. DAD

offers a defect perspective, which can complement the structural perspective. Re-

engineering can greatly improve the structure of a system. However, re-engineering

the whole system is usually extremely costly. In some situations, re-engineering

the most problematic components in the system is a cost-effective alternative for

system quality concerns (Booch, 2008). DAD can identify degeneration-critical

components in a system which most likely require re-engineering.

In addition, DAD supports architectural degeneration evaluation over time,

which can aid long-term system management (Jacobson and Lindström, 1991)

(also see (Sommerville, 2006, p. 506)), such as whether or not, or when, to freeze

84

the released system, transform the system’s architecture to a new form, re-engineer

the system, or initiate new-release development.

5.5 Key Points of the DAD Approach

We summarize several key points of the DAD approach (see Section 5.2) and its

prototype tool (see Section 5.3) as below.

• DAD operationalizes the defect perspective for diagnosing architectural de-

generation with the MCD quantity and complexity metrics.

• The three goals of DAD are: (1) identification of degeneration-critical com-

ponents and fix relationships in a given system; (2) evaluation of persistence

of components and fix relationships in relation to architectural degenera-

tion; and (3) evaluation of architectural degeneration of a given system over

development phases and releases.

• A conceptual DAD framework (see Figure 5.1) contains five steps: (1) iden-

tification of MCDs and fix relationships; (2) measurement of components

and fix relationships; (3) identification of degeneration-critical components

and fix relationships; (4) evaluation of persistence of components and fix

relationships in relation to architectural degeneration; and (5) evaluation of

architectural degeneration across phases and releases.

• The DAD prototype tool implements the DAD approach, which supports vi-

sualization of measures of components and fix relationships of a given system

of defect architectures for the system (a development or release thereof), and

of architectural degeneration trend over development phases and releases.

See example outputs of this prototype tool in Appendix B.

Validation of this DAD approach is illustrated by a case study on a commercial

legacy system, which is described in the next chapter.

85

Chapter 6

Case Study 2: DAD Validation

The previous chapter describes the DAD approach. Following that, this chapter

describes a confirmatory case study (Case Study 2) which validates the DAD

approach to three major, successive, releases of a commercial system (of size over

1.5 million SLOC and age over 13 years). This system is a core subsystem of the

even larger system investigated in Case Study 1 (see Section 4.3.1).

In Section 6.1, we describe five research questions for this case study. In

Section 6.2, we describe the study design. We present and interpret the study

findings in Section 6.3. We then discuss threats to validity of the study findings

in Section 6.4 and describe implications in Section 6.5. Finally, we give a summary

in Section 6.6. Assessment of this study is described in Section 8.4.

6.1 Research Questions and Metrics

Recall Section 5.2 that the DAD approach (see Figure 5.1) supports: (1) identifica-

tion of degeneration-critical components and fix relationships in a given system;

(2) evaluation of persistence of components and fix relationships in relation to

architectural degeneration; and (3) evaluation of architectural degeneration of a

given system over time. We thus, in Case Study 2, define five relevant questions

(see Section 1.3.2) to address these three aspects on a commercial legacy system.

86

Q1: Do some components in a system contribute more than other components to

the system’s architectural degeneration?

Q2: Do components contribute persistently to architectural degeneration over de-

velopment phases and releases?

Q3: Do some fix relationships in a system contribute more than other fix rela-

tionships to the system’s architectural degeneration?

Q4: Do fix relationships contribute persistently to architectural degeneration over

development phases and releases?

Q5: What is the trend in architectural degeneration from the defect perspective?

Question Q1 is concerned with the quantity of MCDs spread across the sys-

tem’s components. It is also concerned with the number of components or code

files changed (a complexity issue) to fix a MCD. Question Q2 complements this

with its focus on persistence across development phases and system releases. That

is, it would highlight components that are tenacious in their defect quality and

across phases and releases. Together, Q1 and Q2 would give us a handle on the

parts of the architecture that need management attention. Following this, we de-

fine two more questions (Q3 and Q4) for “fix relationships” analogous to Q1 and

Q2. Based on these four questions, question Q5 examines system degeneration

across development phases and releases.

Note that these five questions, Q1–Q5, are addressed by following the DAD

approach in the case study. In particular, Q1 and Q3 are related to Step 3 of

the DAD approach (see Section 5.2.3); Q2 and Q4 are related to Step 4 (see

Section 5.2.4); and Q5 is related to Step 5 (see Section 5.2.5). These are clearly

important questions to ask about system management. Earlier we saw the price

to pay due to degenerating architectures (see the example Mozilla, Linux-kernel

and 5ESS issues in Section 1.1).

87

The novelty and relevance of these questions were validated through reviews

and discussions with collaborating researchers and practitioners from the sponsor-

ing organization, as were the four MCD quantity and complexity metrics defined

in the DAD approach (see Section 5.2.2). Here, we list these four metrics below

and then briefly discuss their relationships to questions Q1–Q5.

M1 (“%MCDs”) – the proportion of MCDs pertaining to a component against

all MCDs in the system.

M2 (“#MCDs per KSLOC”) – the average quantity of MCDs per thousand

SLOC of a given component.

M3 (“#Components fixed per MCD”) – the average quantity of components fixed

for a MCD in a given component.

M4 (“#Code files fixed per MCD”) – the average quantity of code files fixed for

a MCD in a given component.

These four metrics deal with questions Q1 and Q2 described above. Mean-

while, metrics M1 (“%MCDs”), M3 (“#Components fixed per MCD”) and M4

(“#Code files fixed per MCD”) are also used analogously to measure fix relation-

ships (i.e., deal with questions Q3 and Q4). Further, question Q5 is addressed

by looking at the results across questions Q1 and Q3.

Next, we describe the design of Case Study 2 in order to address the above

five questions (Q1–Q5) using these metrics (M1–M4).

6.2 Case Study Design

This section describes the design of Case Study 2, which includes: the subject sys-

tem and data, the data collection, clean-up, and analysis procedures, descriptive

system statistics, and the overall case study process.

88

6.2.1 Description of the System and Data

Case Study 1 (see Chapter 4) investigates the defect history of a large legacy

system of size over 20 million SLOC and age over 20 years (see Section 4.3.1). This

case study (Case Study 2) focused further upon a core subsystem of that system,

which is of size over 1.5 million SLOC and age over 13 years. In particular, this

study investigates the defect-fix history (defect records and change logs) of three

major, successive, releases of this (sub)system.

This system contains 10 components (labeled C0–C9) and each component is

implemented by a number of code files (mainly, written in the language C). The

system’s size increased by 14% from release 1 (about 1.6 million SLOC) to release

2 and then by 7% to release 3. The size growth in releases 2 and 3 were mainly

due to enhancements; subsequently, restructuring was carried out on release 3 in

order to improve the system structure. These three releases are still under active

maintenance now.

We focused on the defect-fix history (defect records and change logs) of these

three releases, containing approximately 1100, 550 and 600 defect records while

spanning approximately six, five and three years respectively. Each defect-fix

record includes key information pertaining to: the release, phase and component

in which the defect was discovered; the state that the defect is currently in (e.g.,

“working”, “validated”, “closed”, etc.); the reference that indicates defect redis-

covery (i.e., associates a defect to its previous occurrence); the submit date that

this defect was submitted to the defect-tracking database; and the file(s) and

component(s) that were changed in order to fix the defect.

Table 6.1 shows four example defect-fix records. For example, defect 0020

(see column “ID”) was discovered in component C1 (see column “Component”)

while “testing” (see column “Phase”) release “r1” (see column “Release”), and

this defect was fixed in two code files “C1/.../foo1.C” and “C2/.../foo2.C” in

components C1 and C2 (see column “Component*”) respectively.

89

Table 6.1: Example defect-fix records (only key fields).
ID Release Phase Component File Component*

0020 r1 testing C1 C1/.../foo1.C C1
0020 r1 testing C1 C2/.../foo2.C C2
0021 r1 field C3 C3/.../foo3.C C3
0021 r1 field C3 C4/.../foo4.C C4

Note that the values in columns “Component” and “Component*” could be

different. For example, Table 6.1 shows that defect 0020 was discovered in com-

ponent C1 (the “Component” value) but was fixed in components C1 and C2

(the “Component*” values). Likewise for defect 0021 which was discovered in

component C3 but was fixed in components C3 and C4. Also note that the

“Component*” field does not exist in the collected, raw, defect-fix dataset, which

was inserted later during the data cleaning process, described below.

6.2.2 Data Collection and Clean-up Procedures

The collection process for the defect records for this case study is similar to that

for the defect dataset under investigation of Case Study 1. We do not repeat this

process here; see Section 4.3.2 for details. The collection process for the change

logs for this case study is described below. Changes were made to the code base

in order to fix each newly recorded defect in the defect-tracking database; the

changes were logged in the version control system. We extracted the change logs

from the version control system.

Next, we describe the five main steps used to clean up the collected, raw defect-

fix dataset, as below. Some of these steps are similar to those for cleaning up the

defect dataset in Case Study 1 (see Section 4.3.2). Note that these steps were

carried out mainly with programming scripts.

Step 1: we removed defects which are rediscoveries or not closed or validated in

the system. This was carried out based on the state field of defect records. In

particular, defects records which are not “closed”, “integrated”, “delivered”

90

and “validated” are excluded from the dataset.

Step 2: we removed change logs where changes were made in non-code files (e.g.,

documentation files). Here the code files are mainly .c files (in the language

C). This was carried out based on the “file” field of change logs.

Step 3: we filled in the “Component*” value for each defect-fix record (see ex-

amples in Table 6.1). For each defect record, the “Component*” value is a

component name indicating a component that was changed in order to fix

this defect. This information is not recorded automatically in the defect-fix

database. A simple text analysis technique was used to identify the com-

ponent name from the “File” field and copy that component name to the

“Component*” field. For example, it identified the component name “C1”

from the “File” field value “C1/.../foo1.C”, so the corresponding “Compo-

nent*” value is “C1”.

Step 4: we identified the Internal and Field phases for defect records. Note that

the internal phase subsumes functional and system testing and performance

quality assurance phases. Defect-fix records from other phases (e.g., devel-

opment1) were removed. This step was carried out based on the phase field

of the defect records (see examples in Table 6.1).

Step 5: we removed “outliers” from the dataset. For example, we find that there

is a defect which required fixes in 130 code files while the other defects

required fixes in, on average, approximately 2.2 code files (at most 80 code

files; see Figure 6.2). This defect was treated as an outlier and was thus

excluded from the analysis.

1The reason we removed defect-fix records made during the development phases (e.g., design
and coding) is that developers could have fixed several defects but recorded them together as
one defect and they also could have made changes in the code base which were recorded as fixes
to a defect but which were not really fixing that defect.

91

6.2.3 Data Analysis Procedures

We then wrote programming scripts to analyze the defect-fix records. Statistical

methods such as Pearson correlation coefficient (or Pearson-value) and Spearman’s

rank correlation coefficient (or Spearman-value)2 were also used to evaluate cor-

relation and persistence for components and fix relationships measures.

The data analysis procedures were carried out based on MCDs identified from

the defect-fix dataset. In particular, we identified MCDs based on the “Com-

ponent*” values (rather than the “Component” values). For example, Table 6.1

indicates that defects 0020 and 0021 are two MCDs. Meanwhile, the fix relation-

ships among components can be consequently identified when a MCD is identified.

For example, there is a fix relationship between components C1 and C2 because

of MCD 0020. Likewise for the fix relationship between components C3 and C4

(due to MCD 0021). Note that, in this case study, we only identified binary fix

relationships in the system. The reason is that the majority of MCDs span only

two components, see Figure 6.1 (in Section 6.2.4 below) for details. Fix relation-

ships spanning more than two components were subsequently decomposed into a

binary form and thus were used in the study.

Note that, in Case Study 2, the method of MCD identification is different

from that for Case Study 1. The former is based on matching change logs to

defect records (mainly, “Component*” field information); the latter is based only

on defect records (by identifying parent-children relationships – Section 4.2). See

a detailed comparison of these two methods in Section 7.1.

The data analysis procedures of this case study were centered on the MCDs

in the system. They are incorporated into the case study design; see Section 6.2.5

for details. Before we describe this study design, we first give some descriptive

statistics about the defects in the subject system, below.

2Similar to Pearson correlation coefficient (or Pearson-value), Spearman’s rank correlation
coefficient (or Spearman-value) is a correlation measure. It is considered as being the Pearson
correlation coefficient between two ranked data arrays, ranging from -1 to +1.

92

6.2.4 Descriptive Defect Statistics

Here, we first describe the components’ sizes and defect proportions in the system,

then illustrate the defect distributions by number of components or code files in

the system. Note that the case study findings (shown in Section 6.3) are related

to these descriptive statistics of the system and defects.

A Basic Profile of the System

Table 6.2 gives a basic description of the subject system. It shows the sizes

(thousand SLOC – see column “KSLOC”) and defect proportions (proportion of

defects in the system – see column “%Defects”) of the 10 components (written

C0–C9) in the three releases (written r1, r2 and r3). For example, component C0

(see row “C0”) is of size 40 KSLOC in release 1 (r1), and there are 3% of defects

in the subject system which emanate from C0 in r1.

Table 6.2: Basic profile of the subject system of Case Study 2.

Component
KSLOC %Defects

r1 r2 r3 Avg r1 r2 r3 Avg
C0 40 43 44 42 3% 2% 3% 3%
C1 155 174 188 172 8% 11% 11% 10%
C2 22 36 45 34 5% 8% 9% 7%
C3 337 386 408 377 24% 26% 19% 23%
C4 9 10 11 10 0% 0% 2% 1%
C5 557 633 706 632 35% 44% 51% 44%
C6 275 316 316 302 34% 19% 12% 22%
C7 137 139 140 139 3% 3% 1% 3%
C8 18 20 20 20 2% 2% 1% 2%
C9 129 165 182 159 10% 8% 11% 10%

Mean 168 192 206 189 12% 12% 12% 12%
StDev 176 200 219 198 14% 14% 15% 14%

In Table 6.2, the average size (“KSLOC”) and defect proportion (“%Defects”)

of each component over the three releases are shown in columns “Avg”; and the

average and standard-deviation values of the sizes and defect proportions of the

components in each release are shown in rows “Mean” and “StDev”. For exam-

93

ple, the average size of a component in release r1 is 168 KSLOC (with standard

deviation value 176), the average size of component C0 over the three releases is

42 KSLOC, and the defects pertaining to C0 account for an average of 3% of all

defects investigated in the system.

We note from Table 6.2 that the sizes of r1, r2 and r3 are approximately

1680, 1920, and 2060 KSLOC, respectively (see row “Mean”). This indicates that

the system’s size increased by about 14% from r1 to r2 and then 7% in r3 (as

mentioned in Section 6.2.1). We also note from Table 6.2 that the component

sizes are not uniform in the system. For example, the size of component C5 is

557 KSLOC (see row “C5”) in r1, which accounts for 33% of the system’s size;

likewise for 33% and 39% in the remaining r2 and r3. Whereas component C4

(see row “C4”) is very small: an average of less than 1% of the system’s size in

the three releases.

Similar to the component size distribution, the defect proportion distribution

is also skewed. Across the three releases, component C5 contains an average of

44% of the all defects in the system, but each of components C0, C4, C7 and C8

contains less than 5% of the all defects. Note that each MCD is counted multiple

times as it spreads over multiple components. This explains why the average

defect proportion of the 10 components is greater than 10% (actually, an average

of 12%; see row “Mean”).

Defect Distributions

Figure 6.1 illustrates the highly-tailed distribution of defects by number of com-

ponents spanned. It shows that in the three releases together, 82% of defects are

single-component defects (SFDs) – defects requiring fixes confined to one compo-

nent. This means that MCDs account for only 18% of all defects3. Further, this

figure shows that the MCDs spanning two components account for 77% of the

3In particular, 19%, 17% and 17% of all defects are identified as MCDs in the three releases
(r1, r2 and r3) of the subject system, respectively; see Figure 6.3 for details.

94

total MCDs. This indicates that only 4% of defects spanned more than two com-

ponents in the system. The fix relationships involved in these 4% of defects were

subsequently decomposed into a binary form and thus were used in the study.

Figure 6.1: Distribution of defects by number of components spanned.

Similar to Figure 6.1, Figure 6.2 illustrates the highly-tailed distribution of

defects by number of code files spanned.

Figure 6.2: Distribution of defects by number of code files spanned.

Figure 6.2 shows that in the three releases together, 41% of defects spanned

more than one code file in the system. We call these defects the multiple-file defects

(MFDs). Correspondingly, the remaining 59% of defects that were confined in

95

single files are called the single-file defects (SFDs). Note that the 18% MCDs

(see Figure 6.1) are subsumed in these 41% MFDs because a MCD is always a

MFD. Also, Figure 6.2 shows that 85% of MFDs spanned two to five code files.

This indicates that there are only 6% of defects which spanned more than five

code files in the system.

MCDs vs. Non-MCDs

Figure 6.3 describes two bar charts: the top bar chart shows the proportions of

MCDs and non-MCDs in the system (its three releases), and the bottom bar chart

shows the average number of changes required to fix a MCD or non-MCD.

Figure 6.3: MCDs vs. non-MCDs.

96

We find from Figure 6.3 that approximately 20% of defects are MCDs in the

system. In particular, 19%, 17% and 17% of defects are MCDs in the three releases

(r1, r2 and r3), respectively (see the “%MCD” bar in the top chart). We can also

find that fixing a MCD requires an average of nearly 3.5 times changes as much

as that for fixing a non-MCD (see the bottom chart). This is consistent with the

relevant finding in Case Study 1 (based purely on the defect dataset) – on average,

fixing a MCD requires near 3 times changes (based on components) as much as

that for fixing a non-MCD.

6.2.5 Case Study Process

Armed with the questions (Q1–Q5) and the MCD quantity and complexity met-

rics (M1–M4) from Section 6.1, we define these six key steps for conducting the

case study, which resulted from the discussions conducted with, and reviews by,

the collaborating partners:

Step 1: we cleaned up the defect-fix records for the subject system. Some scripts

are used to carry out this process. See Section 6.2.2 for details.

Step 2: we identified MCDs and then identified fix relationships in the system.

This step has been discussed in Section 6.2.2.

Step 3: we measured each component in the system with metrics M1, M2, M3

and M4 (see Section 6.1), and then identified the degeneration-critical com-

ponents (addressing question Q1), see Section 6.3.1.

Step 4: we measured the persistence of each component’s measures across phases

and releases (addressing question Q2); see Section 6.3.2.

Step 5: we repeated Steps 3 and 4 for the fix relationships in the system (ad-

dressing questions Q3 and Q4); see Sections 6.3.3 and 6.3.4.

Step 6: we derived the architectural degeneration trend for the system and also

analyzed the impact of system restructuring on architectural degeneration

(addressing question Q5), see Section 6.3.5.

97

Steps 1–2 are the preparatory steps for the subsequent steps, 3–6. In Step 3,

an appropriate criterion was determined (based on the actual distribution of com-

ponent measures) for identifying degeneration-critical components of the system.

In Step 4, the “persistence” was measured by the strength of rank correlation

(Spearman-value)4 of the measures between different phases and releases. In Step

5, a similar criterion to that in Step 3 was used to identify degeneration-critical

fix relationships, and a similar measurement to that in Step 4 was used for the

persistence of fix relationships. Step 6 was conducted based on the measures for

components and fix relationships (Steps 3 and 5). The main results of the steps

3-6 above are described in the next section.

6.3 Analysis of Data, Results, Interpretation,

and Comparisons

In this section, we present and interpret the case study findings related to the

questions, Q1–Q5, posed in Section 6.1. In Section 6.3.1, we describe the com-

ponents’ “contributions” to architectural degeneration (for Q1); in Section 6.3.2,

we describe the persistence of the components’ contributions (for Q2); in Sec-

tions 6.3.3 and 6.3.4, we describe the fix relationships’ contributions (for Q3) and

their persistence (for Q4); and in Section 6.3.5, we describe the architectural de-

generation trend over time of the system (for Q5). Meantime, we also compare the

findings against related work (if any) in the literature. Finally, in Section 6.3.6,

we describe example defect architectures derived with the DAD approach for the

subject system. These defect architectures can help easily understand the archi-

tectural degeneration phenomenon in the system.

4Here, the “persistence” has two aspects to its meanings: (a) the cross-longitudinal measures
are close for the components; and (b) the ranks of the measures change little. Aspect (a) is
determined by the actual measures for each phase or release. For aspect (b), we use Spearman-
value to measure the rank difference between the measures for different phases and releases. The
larger the Spearman-value, the more persistent the measures.

98

Recall the beginning paragraph of Section 4.4 (for Case Study 1) where we

note the fundamental principles for data interpretation, such as: (a) correspond-

ing with the (quantitative or qualitative) findings (Bracey, 2006, p. 32); (b)

incorporating the context variables (Basili et al., 2006, p. 68); and (c) reducing

subjective judgement (Münch, 2006). Here, we also follow these principles for the

interpretation of the findings of Case Study 2, as below.

6.3.1 Components’ Contributions (Q1)

Note from Section 6.1 that the contribution of a component to architectural de-

generation is measured with the MCD quantity and complexity metrics (M1–M4;

see Section 6.1); the greater the MCD quantity or complexity measures of a com-

ponent, the more this component contributes to architectural degeneration.

Components’ Measures

The MCD percentage (M1) and density (M2) measures of the components (C0-

C9) are shown in Table 6.3. For example (see row “C0”), across releases r1, r2

and r3, component C0 contained MCDs which account for 4%, 7% and 7% of all

MCDs; and there are 0.23, 0.16 and 0.16 MCDs per KSLOC.

We note from Table 6.3 that the distribution of MCDs over the components

is skewed. For example (see row “C5”), MCDs contained in component C5 ac-

count for 64%, 59% and 63% of all MCDs in r1, r2 and r3, respectively. MCDs

contained in component C4 (see row “C4”) account for an average of only 3%

of all MCDs. Likewise for the skewed distribution of MCD-density values over

the 10 components. For example, over the three releases, component C2 (see row

“C2”) has an average of 0.86 MCDs per KSLOC, which is about 300% more than

the average value for the 10 components. Component C7 (see row “C7”) has an

average of 0.08 MCDs per KSLOC, which is only 35% of the average value for

the components. Correlation between the measures is described below. One can

99

Table 6.3: Component measures with metrics M1 (“%MCDs”) and M2 (“#MCDs
per KSLOC”).

Component
%MCDs (M1) #MCDs per KSLOC (M2)

r1 r2 r3 Avg r1 r2 r3 Avg
C0 4% 7% 7% 6% 0.23 0.16 0.16 0.18
C1 15% 17% 23% 18% 0.20 0.09 0.12 0.14
C2 12% 28% 32% 24% 1.10 0.76 0.71 0.86
C3 37% 38% 22% 32% 0.23 0.09 0.05 0.12
C4 0% 1% 7% 3% 0.23 0.09 0.64 0.25
C5 64% 59% 63% 62% 0.24 0.09 0.09 0.14
C6 50% 50% 28% 43% 0.37 0.15 0.09 0.20
C7 8% 14% 3% 8% 0.12 0.09 0.02 0.08
C8 2% 6% 3% 4% 0.28 0.30 0.15 0.24
C9 36% 26% 32% 31% 0.57 0.15 0.18 0.30

Mean 23% 25% 22% 23% 0.33 0.20 0.22 0.25
StDev 22% 19% 19% 19% 0.31 0.21 0.25 0.22

Note: the rows “Mean” and “StDev” show the average and standard
deviation values of the measures across the 10 components in a system
release. The “Avg” sub-columns show the average measures of the 10
components across the three releases.

also analyze the trend of MCD quantity across the three releases. We discuss this

trend later in Section 6.3.5, where other trend measures are also discussed.

Table 6.4 shows the MCD complexity (“#Components fixed per MCD” (M3)

and “#Code files fixed per MCD” (M4)) measures of the 10 components. For

example, fixing a MCD in component C0 (see row “C0”) requires, on average,

changes in 2.1, 2.3 and 2.3 components and in 3.1, 3.0 and 3.9 code files in the

three releases, respectively.

We note from Table 6.4 that the distributions of the components’ MCD com-

plexity measures (i.e., their “#Components fixed per MCD” and “#Code files

fixed per MCD” values) have a low degree of dispersion. The standard devia-

tion values of these measures (see row “StDev”) stays relatively small compared

against the average values (see row “Mean”). This is different from the skewed

distributions of the MCD quantity measures shown in Table 6.3. The correlation

between these component measures is described below.

100

Table 6.4: Component measures with metrics M3 (“#Components fixed per
MCD”) and M4 (“#Code files fixed per MCD”).

Component
#Components fixed #Code files fixed

per MCD (M3) per MCD (M4)
r1 r2 r3 Avg r1 r2 r3 Avg

C0 2.1 2.3 2.3 2.2 3.1 3.0 3.9 3.3
C1 2.7 3.1 2.4 2.7 8.2 9.7 4.1 7.4
C2 2.5 2.8 2.2 2.5 4.1 6.5 4.9 5.2
C3 2.4 2.7 2.5 2.5 6.1 8.1 4.7 6.3
C4 0.0 2.0 2.0 1.3 0.0 3.0 3.6 2.2
C5 2.3 2.7 2.3 2.4 5.5 6.4 4.4 5.4
C6 2.4 2.6 2.5 2.5 6.2 6.1 4.4 5.6
C7 3.1 2.8 2.7 2.8 13.1 6.9 3.3 7.8
C8 3.0 3.7 2.0 2.9 5.0 10.7 3.0 6.2
C9 2.5 3.1 2.4 2.7 6.2 8.7 3.8 6.2

Mean 2.3 2.8 2.3 2.5 5.8 6.9 4.0 5.6
StDev 0.9 0.5 0.2 0.4 3.4 2.5 0.6 1.7

Correlation Analysis

Table 6.5 describes the Pearson correlation coefficient values (Pearson-values)5

among the component measures with the MCD quantity and complexity met-

rics (i.e., M1, M2, M3 and M4; see Tables 6.3 and 6.4). Meanwhile, we also

investigate the correlations with the sizes (column “KSLOC”) and defect propor-

tions (column “%Defects”) of the components (see Table 6.2). For example, the

Pearson-value between the “%MCDs” (M1) and “#MCDs per KSLOC” (M2)

measures is 0.00, indicating “no” correlation between the MCD percentage and

density measures of the components in the system.

Table 6.5 indicates that there are two correlation clusters; the measures in

each cluster are positively correlated (moderate to large)6 with each other.

5There are 30 data pairs (i.e., 10 components for 3 releases) for each correlation analysis.
The critical value for 30-pairs based 0.95-significance for two-tailed test of the Pearson-values
is 0.296 (see http://www.une.edu.au/WebStat/unit_materials/c6_common_statistical_
tests/test_signif_pearson.html (last access in November 2010)). In Table 6.5, the P-values
that we focus on are larger than 0.296, indicating that they are statistically significant.

6Access to www.umich.edu/~exphysio/MVS250/PearsonCorr.doc (last access in November
2010.) for more details about interpretation of Pearson correlation values.

101

Table 6.5: Correlations between component measures w.r.t. different metrics.
M2 M3 M4 KSLOC %Defects

M1:
0.00 0.10 0.30 0.87 0.92

%MCDs
M2: #MCDs

-0.05 0.05 0.28 0.24
per KSLOC

M3: #Components
0.63 0.17 0.08

fixed per MCD
M4: #Code files

0.28 0.24
fixed per MCD

KSLOC (i.e.,
0.94

component size)

• The first cluster contains the measures with metrics “KSLOC”, “%Defects”

and “%MCDs” (M1). The Pearson-value is 0.94 between “KSLOC” and

“%Defects”, 0.87 between “KSLOC” and “%MCDs”, and 0.92 between

“%Defects” and “%MCDs”, indicating three near-linear, positive, correla-

tions. This is a well-known fact that does not impart much knowledge here.

However, the MCD finding added to the above finding is new. An example

component is C5. It is the largest component in the system (see row “C5”

in Table 6.2), which also contains the greatest number of defects and MCDs

in the three releases, see row “C5” in Table 6.3.

• The second cluster contains the measures with metrics “#Components fixed

per MCD” (M3) and “#Code files fixed per MCD” (M4), between which

the Pearson-value is 0.63, indicating a significant, positive correlation. This

indicates that the more other components required to fix for a MCD in

a given component, the more code files required to fix for a MCD in this

component. An example component is C7, which has the greatest M3 and

M4 measures in release 1; see row “C7” in Table 6.4.

Except the above two correlation clusters, there are no other “significant”

correlations among the component measures shown in Table 6.5. Suffice it to say

here, this indicates that the MCD quantity (M1 and M2) measure of a component

102

does not substantially affect its MCD complexity (M3 and M4) measure, and vice

versa. Next, we describe the degeneration-critical components that are identified

in the system according to the above MCD quantity and complexity measures (see

Tables 6.3 and 6.4).

Degeneration-Critical Components

Degeneration-critical components are defined as components in a system which

contribute substantially more (based on some defined criteria) to the architectural

degeneration than other components. We note from (Li et al., 2009) that 20% of

the components contain over 80% of MCDs in a large legacy system. These 20%

components could be considered as degeneration-critical in that system; and the

(top) “20%” is thus the criterion for identification.

In this case study, we refine this well-known 80-20 criterion further with a

focus on architectural degeneration, i.e.: degeneration-critical components are

those components that satisfy:

(i) their MCD quantity or complexity measures rank in the top 20%, and

(ii) these measures are substantially greater than the others.

We subjectively define that a measure is substantially greater than the others

if it is at least 50% greater7 than the average value.

With this new criterion, we first identified component C5 (see row “C5” in

Table 6.3) as degeneration-critical in release 1 with respect to (w.r.t.) metric

“%MCDs” (M1), because C5 was involved in 64% of MCDs, which is the greatest

measure and is substantially greater than the average value (23%). Likewise, C5 is

7The reason we choose “at least 50% greater” as a part of this criterion is described below.
As in a plot box, any data point in an array that is greater than the upper quartile is usually
considered as an outlier. Here, such an outlier refers to a degeneration-critical component. This
has been considered in aspect (i) of this criterion – “in the top 20%”. However, in case that
the data distribution is so even that no degeneration-critical components exist, we must add
another aspect to the criterion in order to exclude such “outliers” which actually should not
be considered as degeneration-critical components. We thus set up aspect (ii) – “at least 50%
greater” – which can achieve this purpose.

103

also degeneration-critical in releases 2 and 3. Similarly, we identified the following

degeneration-critical components (see data from Table 6.3): C6 in releases 1 and

2 w.r.t. “%MCDs” (M1) (50% and 50%; see row “C6”), C2 in releases 1, 2 and 3

w.r.t. “#MCDs per KSLOC” (M2) (1.10, 0.76 and 0.71; see row “C2”), and C7

in release 1 (13.1; see row “C7”) and C8 in release 2 w.r.t. “#Code files fixed per

MCD” (M4) (10.7; see row “C8”).

As a partial validation, we showed the findings (components C5 and C6) to

the key developers8 (by interview) who confirmed from their experience that C5

and C6 were the two topmost problematic components in the subject system, and

that they were also among the top problematic components for the entire, much

larger, system (mentioned in Section 6.2.1). Unfortunately, there is no “process”

data or “historical accounts” in the projects logged for this legacy system to be

able to analyse possible underlying reasons for the above component measures

(see Tables 6.3 and 6.4). The developers were also enthused by the fact that we

had developed a systematic approach to identifying a critical set of components

compared to their experimental-based approach which is distributed among the

project staff and that is erodes with people turnover and memory lapses over time.

We can conclude from the above discussion that there are a few degeneration-

critical components in the system. This addresses question Q1 posed in Sec-

tion 6.1 – Do some components in a system contribute more than other compo-

nents to the system’s architectural degeneration? We note Section 2.3.3 where

defect-prone components are identified based on the Pareto-shaped defect distri-

bution: 25% (1998) or 20% (Boehm and Basili, 2001; Li et al., 2009) of the compo-

nents that contain many more defects than other components. These defect-prone

components that also contain the most of MCDs are considered degeneration-

critical from the MCD quantity perspective. The findings of degeneration-critical

8Key developers made their responses based on information known to them and logged in
restricted databases accessible only to them. We were not privy to such highly sensitive organi-
zational information. We trust their judgment.

104

(MCD-prone) components described above can complement the previous work

on identification of defect-prone components (e.g., (Ohlsson and Wohlin, 1998)).

Likewise, some architectural deviations (see Section 2.3.1) that contain many more

MCDs than other deviations are considered degeneration-critical. Next, we con-

tinue to examine the persistence of these component measures over time.

6.3.2 Persistence of Components’ Contributions (Q2)

We note from Tables 6.3 and 6.4 that the average MCD quantity and complexity

measures of the components did not change substantially in the three releases.

For example (see row “Mean” in Table 6.3), the MCDs pertaining to a component

account for an average of 23%, 25% and 23% of all MCDs in the system, and

(see row “Mean” in Table 6.4) the number of components fixed per MCD in a

component is an average of 2.3, 2.8 and 2.3. Therefore, we can say that the

average MCD quantity and complexity measures of the components do persist

across releases. If the trend of the average values is on the rise then it indicates

that the (MCD) fixes are likely consuming more and more resources over time.

More precisely, we use Spearman’s rank correlation (Spearman-value)9 to ex-

plore the rank correlations between the component measures across phases and

releases; see Table 6.6. For example, the Spearman-value of the MCD per-

centage measures (see row “M1”) is 0.57 between the internal and field phases

(“Internal→Field”), 0.96 between release 1 and 2 (“r1→r2), and 0.78 between

release 2 and 3 (“r2→r3); indicating three large, positive, rank correlations.

We note from Table 6.6 that these measures persist across internal and field

phases (see column “Internal→ Field”) and across releases 1 and 2 (see column “r1

9Note that there are 10 data pairs (due to 10 components) for this correlation analysis. The
critical value for 10 data pairs based 0.95-significance for two-tailed test of the Spearman-values
is 0.73 (see http://geographyfieldwork.com/SpearmansRank.htm (last access in November
2010)). In Table 6.6, we can thus find that the Spearman-values 0.96 (for “%MCDs” crossing r1
and r2), 0.78 (for “%MCDs” crossing r2 and r3), and 0.85 (for “#Components fixed per MCD”
crossing r1 and r2) are statistically significant. We thus only focus on these three Spearman
values in the following discussion.

105

Table 6.6: Cross-phase/release rank correlations (Spearman-values) between com-
ponent measures.

Internal→Field r1→r2 r2→r3

%MCDs (M1) 0.57 0.96 0.78
#MCDs per KSLOC (M2) 0.45 0.55 0.64

#Components fixed per MCD (M3) 0.46 0.85 -0.01
#Code files fixed per MCD (M4) 0.70 0.49 -0.21

→ r2”); the corresponding Spearman-values are relatively large (ranging between

0.45 and 0.70 – ave. 0.55 for the former, and between 0.49 and 0.96 – ave. 0.71).

This suggests that the MCD-proneness of these components is “not” affected by

the defect correction process.

For example, Figure 6.4 shows the MCD percentage (M1) measures (see col-

umn “%MCDs (M1)” of Table 6.3) of the 10 components (C0–C9) in the three

releases (r1, r2 and r3). This figure indicates the persistence of the MCD percent-

age measures of each component across the three releases (especially crossing r1

and r2). This coincides with the Spearman-values (0.96 and 0.78) shown in row

“%MCDs (M1)” of Table 6.6. Similar charts can be created for the “#Compo-

nents fixed per MCD” measures crossing r1 and r2.

Figure 6.4: Components’ MCD percentage measures across releases.

106

Further, Figure 6.5 illustrates the ranks of the components’ MCD percentage

(“%MCDs”) measures across releases 1 and 2. This figure shows a near-linear

curve which indicates that there is a strong rank correlation (with Spearman-

value = 0.96; see row “%MCDs (M1)” of Table 6.6) between the components’

MCD proportions pertaining to the releases 1 and 2. This strengthens the findings

(see Figure 6.4 and Table 6.6: the components’ MCD quantity and complexity

measures do persist across phases and releases.

Figure 6.5: Persistence of components’ “%MCDs” measures across releases.

We can conclude that the components’ contributions to architectural degen-

eration do persist across interval and field phases and across releases 1 and 2,

from the perspectives of MCD quantity and complexity. This addresses question

Q2 posed in Section 6.1 – Do components contribute persistently to architectural

degeneration over development phases and releases?

We note from Section 2.4.4 that defect-prone components (DPCs) tend to

persist across system development phases and releases (Compton and Withrow,

1990; Ohlsson et al., 1999). This is similar to the persistence of components (MCD

quantity and complexity measures thereof) in relation to architectural degenera-

107

tion shown above. Overall, the above component measures (Tables 6.3 and 6.4)

and their persistence analysis (Table 6.6 and Figures 6.4 and 6.5) help in building

a quantitative profile of the components (and the complexity of their fixes) in

relation to architectural degeneration. Next, we do analogous measurements and

persistence analysis for the fix relationships in the system.

6.3.3 Fix Relationships’ Contributions (Q3)

We first describe the MCD quantity and complexity measures of the fix rela-

tionships, and then discuss the persistence of these measures across phases and

releases. Recall that these measures deal with defects concerning inter-component

relationships. Essentially, the more they spread through a system, and the more

they persist in components, and across phase and release boundaries, the more

the architecture degenerates over time.

We note that there are at most 45 (binary)10 fix relationships in the system. As

an example, Figure 6.6 shows the MCD quantity (“%MCDs” (M1) – see the top-

left chart) and complexity (“#Components fixed per MCD” (M3) and “#Code

files fixed per MCD” (M4) – see the top-right and bottom charts, respectively)

measures of these 45 fix relationships11 in release 1. Similar charts can be created

for the remaining releases 2 and 3.

Figure 6.6 indicates that the three distributions of these measures are skewed.

For example, there are five fix relationships (see the red-coloured circles in the

top-left chart) which are involved in a greater proportion of MCDs than are other

fix relationships. In particular, we note that over 70% of MCDs involve at least

one of these five (approximately 10%) fix relationships. This finding coincides

with the earlier finding (Li et al., 2009) where nearly 75% of MCDs involved 10%

of the fix relationships. Likewise, we find two fix relationships (circled in the

10Fix relationships are undirected and there are only 10 components in the system, we can
infer that there are at most 45 (i.e., 10×(10-1)/2) fix relationships.

11If a fix relationship does not exist in the system, its measures are set to 0.

108

Note: in each chart, a “diamond” represents a fix relationship, and its index
in the vertical axis indicates the measure (“%MCDs” (M1), “#Components
fixed per MCD” (M3), or “#Code files fixed per MCD” (M4) in the top-left,
top-right or bottom charts, respectively). A “circled” diamond represents a
degeneration-critical fix relationship which has “substantially” greater values
than other fix relationships (denoted by the non-circled diamonds).

Figure 6.6: Fix relationships’ measures in release 1.

top-right chart) that have the greatest “#Components fixed per MCD” (M3)

measures, and four fix relationships (circled in the bottom chart) that have the

greatest “#Code file fixed per MCD” (M4) measures.

With a criterion similar to that defined for degeneration-critical component

identification (see Section 6.3.1), these 11 (i.e., 5 + 2 + 4 = 11; see Figure 6.6),

“circled”, fix relationships are considered degeneration-critical in the subject sys-

tem – because they contribute substantially more to architectural degeneration

than do other fix relationships. This addresses question Q3 posed in Section 6.1

– Do some fix relationships in a system contribute more than other fix relation-

109

ships to the system’s architectural degeneration? It also complements the finding

from Section 6.3.1: there are a few degeneration-critical components in the sys-

tem. These degeneration-critical fix relationships should be treated as important

as degeneration-critical components in the system.

In the literature, we note (in Section 2.3.3) that von Mayrhauser et al. (2000)

propose the fault architecture construction approach to highlight some fix rela-

tionships among system components which involve substantially more MCDs than

other fix relationships. The work described above extended von Mayrhauser et

al.’s approach to measure fix relationships with the MCD quantity and complexity

metrics (as defined in the step 2 of the DAD approach – Section 5.2.2).

Further, we note that over half (e.g., 6/11 in release 1) of these degeneration-

critical fix relationships are connected by the degeneration-critical components

(see Section 6.3.1) in the system. Due to lack of detailed data, we cannot in-

vestigate the underlying reasons for this inter-relationship between degeneration-

critical components and fix relationships. We will continue the discussion on

this issue in Section 6.5.3. Suffice it to say here, this finding (about the inter-

relationship) can aid in the design of degeneration treatment procedures.

6.3.4 Persistence of Fix Relationships’ Contributions (Q4)

Table 6.7 illustrates the mean and standard deviation (in brackets) values of the

“%MCDs” (M1), “#Components fixed per MCD” (M3), and “#Code files fixed

per MCD” (M4) measures for the fix relationships in the three releases (r1, r2

and r3). For example, the value “4% (7%)” means that each fix relationship is

involved in, on average, 4% (with standard deviation 7%) of MCDs in release 1.

We note that (see Table 6.7) these average “%MCDs” (M1), “#Components

fixed per MCD” (M3), and “#Code files fixed per MCD” (M4) measures of

fix relationships increase from release 1 to release 2 and later decrease in release

3. We will explain this later in relation to architectural degeneration in Sec-

110

Table 6.7: Means and standard deviations (in brackets) of fix-relationships’ mea-
sures.

r1 r2 r3

%MCDs (M1) 4% (7%) 5% (6%) 3% (6%)
#Components fixed per MCD (M3) 2.2 (1.8) 3.2 (2.6) 1.5 (1.5)

#Code files fixed per MCD (M4) 5.7 (6.7) 10.5 (10.2) 2.8 (2.9)

tion 6.3.5. Simply put, this indicates that the (MCD) fixes are likely consuming

more resources as the system evolves across releases 1 and 2; whereas that resource

consumption decreases in release 3.

We also note that there is a large, positive, correlation between the “#Com-

ponents fixed per MCD” (M3) and “#Code files fixed per MCD” (M4) measures

for fix relationships; the corresponding average Pearson-value is 0.87 across the

three releases. However, there are no significant correlations between the MCD

percentage (“%MCDs” or M1) and complexity (M3 and M4) measures; the cor-

responding average Pearson-values are less than 0.25. These findings coincide with

the similar findings for the components (see Section 6.3.1), i.e.: fixing a MCD,

a fix relationship exhibiting a high number of inter-component changes tends to

exhibit a high number of inter-code-file changes.

We note from Table 6.7 that the average MCD percentage (M1) and com-

plexity (M3 and M4) measures of fix relationships persist across releases. We

further investigate the rank correlations (Spearman-values)12 of these measures

across releases (“r1 → r2” and “r2 → r3”), see Table 6.8. For example, the cell

value “0.51” indicates a medium, positive, rank correlation between the “%MCDs”

(M1) measures of releases 1 and 2.

We note from Table 6.8 that most of the Spearman-values do not indicate

12Note that there are 45 data pairs for the Spearman correlation analysis hereon. The critical
value for 45 data pairs based 0.95-significance for two-tailed test of the Spearman-values is less
than 0.35 (see http://geographyfieldwork.com/SpearmansRank.htm (last access in November
2010)). In Table 6.7 we can thus find that the Spearman-values 0.51 (“%MCD” crossing r1 and
r2), 0.78 (“%MCD” crossing r2 and r3), 0.44 (“#Components fixed per MCD” crossing r1 and
r2), and 0.35 (“#Code files fixed per MCD” crossing r1 and r2) are statistically significant. We
thus focus only on these values in the later discussion.

111

Table 6.8: Cross-release rank correlations (Spearman-values) between fix relation-
ships’ measures.

r1 → r2 r2 → r3

%MCDs (M1) 0.51 0.78
#Components fixed per MCD (M3) 0.44 0.02

#Code files fixed per MCD (M4) 0.35 0.04

large, positive, rank correlations. We thus infer that the across-release persis-

tence of the fix relationships’ contributions to the architectural degeneration is

weak, suggesting that the MCD-proneness of these fix relationships is affected by

the defect correction process. This addresses question Q4 posed in Section 6.1:

Do fix relationships contribute persistently to architectural degeneration over de-

velopment phases and releases? However, note that the above finding of weak

persistence of the fix relationships is in contrast to the strong persistence of the

components across phases and releases (see Section 6.3.2).

Further, Figure 6.7 illustrates the ranks of the fix relationships’ MCD per-

centage (“%MCDs”) measures across releases 1 and 2. This figure shows a curve

which indicates that there is a weak rank correlation (with Spearman-value =

0.51; see row “%MCDs (M1)” of Table 6.6) between the fix relationships’ MCD

percentages pertaining to the releases 1 and 2. This strengthens the findings (see

Table 6.8: the fix relationships’ MCD quantity and complexity measures do not

persist across phases and releases.

We note that the fault architecture construction approach by von Mayrhauser

et al. (2000) (see Section 2.3.3) can be used to evaluate the persistence of (most

frequently occurred) fix relationships across multiple fault architectures. However,

this is related only to the MCD quantity perspective as described above. The

above identification of degeneration-critical fix relationships extended the fault

architectural construction approach with the MCD complexity perspective. The

degeneration-critical fix relationships are shown in defect architectures (one of the

112

Figure 6.7: Persistence of fix relationships’ “%MCDs” measures across releases.

main outputs of the DAD prototype tool), see Figure 1.1 as an example; other

examples are shown in Section B.3.

Overall, the above measures and persistence analysis help in building a profile

of fix relationships in the system, and complement the profile of components built

in Sections 6.3.1 and 6.3.2. These two profiles together describe characteristics of

architectural degeneration in the subject system over time. Next, we derive and

discuss the architectural degeneration trend of the system based on these profiles

of components and fix relationships.

6.3.5 Architectural Degeneration Trend (Q5)

In Sections 6.3.1 and 6.3.3, we described release-specific measures and information

for components and fix relationships but deferred trend-analysis of the system’s

architecture till this subsection. Based on these specific measures, we analyze the

trend of architecture degeneration across the three releases.

First of all, we note from Table 6.3 (row “Mean”) that the average MCD

percentage of the components is 23% in release 1, then increases to 25% in release

2, and finally decreases to 22% in release 3. This indicates that, from the MCD

113

percentage perspective, the architectural degeneration of the system first increased

in release 2 but then decreased in release 3. This “increase-then-decrease” trend is

confirmed by the components’ MCD complexity measures across the three releases

(see Table 6.4). It is also confirmed analogously based on the fix relationships’

MCD quantity and complexity measures; see in Table 6.7, the data across the three

releases for metrics “%MCDs” (M1), “#Components fixed per MCD” (M3),

and “#Code files fixed per MCD” (M4). Recall Figure 1.1 where this trend

is also demonstrated. However, this “increase-then-decrease” trend differs from

the “increase-only” trend depicted in the AT&T 5ESS case (Eick et al., 2001)

discussed in Section 1.1 which, though, is interesting, was surprising as we had

naively expected the trend to be “increase-only” in our study as well. Nothing

is the dataset and analysis done suggested that the interpretation should be any

different than it actually was.

Concurrent to this, Belady and Lehman’s laws of software evolution (1976;

1980), from 1974, on Increasing Complexity suggests that “as an ‘E-type’ system

evolves its complexity increases unless work is done to maintain or reduce it.”

Though Belady-Lehman’s law does not focus on architectural degeneration, we

can draw parallels with it on the assumption that the architecture is likely to

degenerate as the system gets more and more complex over time. The trailing

part of Belady-Lehman’s law (“... unless work is done to maintain or reduce it”),

however, supported the idea to present the findings to the developers who im-

mediately, if enthusiastically, attributed this improvement in architecture quality

between releases r2 and r3 to “system restructuring” that they had carried out

prior to release r3. Among the restructuring process included making the com-

ponents more cohesive while reducing the coupling amongst the components. For

example, this meant grouping related files together to minimize cross-component

function calls in release 3. This explains the “increase-then-decrease” trend in the

case study system’s evolution.

114

This trend supports Lindvall et al.’s conclusion (Lindvall et al., 2002) that

restructuring can decrease architectural degeneration. An interesting difference,

however, between our work and Lindvall et al.’s is that whereas they analyzed

system architectures based on “deviations” (inter-component interactions) we an-

alyzed system architectures based on quantity and complexity of MCDs. This

section addresses question Q5 posed in Section 6.1: What is the trend in archi-

tectural degeneration from the defect perspective?

6.3.6 Defect Architectures

Figure 6.8 illustrates the defect architecture (segment) of release 1 of the sub-

ject system with respect to the MCD percentage metric – “%MCDs” (M1). It

describes the top 2 components (red-coloured nodes) and the top 10 fix relation-

ships which have the greatest M1 measures (shown in the labels) in release 1.

The blue-coloured nodes are shown in the figure because they are connected with

these fix relationships. The numeric labeles on each node or edge in Figure 6.8

indicates the “%MCDs” value of the component or fix relationship in the system.

[red]

[blue]

[blue]

[blue]

[blue]

[blue]

[red]

Figure 6.8: Defect architecture (segment) of release 1 with metric M1.

115

As shown in Figure 6.8, there are 64% of MCDs in release 1 that pertained

to component C5, there are 50% of MCDs that pertained to component C6 (co-

inciding with the finding shown in Table 6.3), and there are 40.1% of MCDs

that involved the fix relationship between C5 and C6. Moreover, the two “red-

coloured” components, C5 and C6, should be considered degeneration-critical as

their MCD-percentage (M1) measures are obviously greater than that for other

components (see blue-coloured nodes). This coincides with the findings of the

degeneration-critical components in Section 6.3.1.

Similar to above Figure 6.8, Figure 6.9 illustrates the defect architecture (seg-

ment) of release 1 of the subject system with respect to metric M3 – MCD

complexity (i.e., #Components fixed per MCD). It shows the top 2 components

(red-coloured nodes) and the top 10 fix relationships which have the greatest M3

measures (shown in the labels) in release 1.

[blue]

[blue]

[blue]

[blue]

[blue]

[red]

[red]

Figure 6.9: Defect architecture (segment) of release 1 with metric M3.

In Figure 6.9, the two “red-coloured” components, C7 and C8, should be

considered degeneration-critical due to their, substantially great, M3 measures.

This coincides with the findings in Section 6.3.1.

Both Figures 6.8 and 6.9 indicate that the degeneration-critical components

116

(red-coloured nodes) are connected with degeneration-critical fix relationships

than other components (blue-coloured nodes) in the system. In Figure 6.8, the

two degeneration-critical components, C5 and C6, have 6 and 3 fix relationships,

respectively. However, the other components (the remaining 5 components in the

figure) have an average of only 2.2 fix relationships. Also, in Figure 6.9, the two

degeneration-critical components, C8 and C7, have 5 and 3 fix relationships, re-

spectively; but the other components (the remaining 6 components in the figure)

have an average of only 2 fix relationships. This indicates a strong correlation – the

degeneration-critical components tend to correlate with the degeneration-critical

fix relationships; see Section 6.3.3.

In addition, Figure 1.1 (in Chapter 1) also describes three defect architectures

of the system (with 50 randomly chosen MCDs for each of the three releases),

where the thickness of the “boxes” or the “edges” represents the number of MCDs

involved in the components and the fix relationships between the components.

6.3.7 Summary of Findings

The key findings which address the five questions, Q1–Q5, posed in Section 6.1,

are summarized below.

(1) There are 20% of the components which contain over 80% of MCDs (see

Table 6.3). There are also few components (see Table 6.4) which are associ-

ated to relatively more complex MCDs. These components are degeneration-

critical. This addresses question Q1.

(2) The MCD quantity and complexity measures of components persist across

development phases and releases (the Spearman-values are, on average, 0.55

for across phases, and 0.71 for across release – see Table 6.6). This indi-

cates that the components tend to persistently contribute to architectural

degeneration, which addresses question Q2.

(3) There are 10% of the fix relationships which contain over 70% of MCDs (see

117

Figure 6.6). There are also few fix relationships (see Figure 6.6) which are

associated to relatively more complex MCDs. These fix relationships are

degeneration-critical. This addresses question Q3.

(4) The MCD quantity and complexity measures of fix relationships do not

persist across phases and releases (most of the Spearman-values are less than

0.5 – Table 6.8). This indicates that the fix relationships do not persistently

contribute to architectural degeneration, which addresses question Q4.

(5) The average MCD quantity and complexity measures of components in-

creased by approximately 10% (see Table 6.3) and 25% (see Table 6.4) as

the system evolved from release 1 to release 2. Likewise, approximately 25%

and 50% for fix relationships’ measures (see Table 6.7). However, the same

measures of components and fix relationships decreased by even higher rate

from release 2 to release 3. This indicates an “increase-then-decrease” trend

in architectural degeneration of the system, which addresses question Q5.

In addition to the above summary of findings, we also note that the MCD

complexity measures for components and fix relationships are largely correlated to

each other (Pearson-values are close to 1), but there are no substantial correlations

between MCD quantity and complexity measures (see Sections 6.3.1 and 6.3.4).

Overall, these findings are new and can be said to add substantially to the body

of knowledge on architectural degeneration. These findings also have implications

for both software evolution and quality improvement; see Section 6.5.

6.4 Threats to Validity

This section discusses the main threats to the validity of the main findings of

this case study (see Section 6.3). We classify these threats into four groups: data

quality, and external, construct and conclusion validity.

118

6.4.1 Data Quality

As described in Section 6.2.1, the dataset examined in this case study is the defect-

fix history of three major releases (each of which are six, five and three years old

respectively) of an over-13-year-old system. With legacy data, there is a threat

regarding the accuracy and completeness of the dataset. For example, could it be

possible that some defects were fixed but were not recorded in the defect-tracking

database? Likewise, were some changes made in the code base but not recorded

in the version control system? And, were some changes recorded in the version

control system but not “correct” (can really fix the defect)? In this case study,

the developers conveyed their high degree of confidence in the completeness of the

dataset, but there is no simple way to independently confirm this. However, from

the analysis of the defect-fix dataset we observe that there were no obvious spatial

or time gaps in the defect records and in the change logs.

Painfully, we got access to defect data over two years of attempts; there is

no “process” data or “historical accounts” in the projects logged for this legacy

system to be able to analyse possible underlying reasons for the findings presented

in Section 6.3. Staff turnover means that developer memory is faint on such issues

and unreliable to include in a scientific study. Yet, the findings are interesting

that we think the software engineering community should know about.

6.4.2 External Validity

External validity is concerned with the generalization of the findings of the study

in other contexts (Creswell, 2002). The subject system is a (sub)system of an even

large legacy system; and the dataset under study is the defect-fix history (defect

records and change logs) of three major, successive, releases of this system. For

many systems, defect records can be gathered from defect-tracking systems, and

change logs can be collected from version control systems. However, the way

changes are matched with defects in a software project can be specific to the

119

organization, people, tools, processes, controls, etc. For example, we noted that

several open-source systems do not involve any defect information in change logs,

in which case, the change logs cannot be matched with defect records. Without

such matches between defects and changes, the “Component*” (indicating the

component fixed for a specific defect; see Section 6.2.1) value cannot be determined

reliably for each defect. Thus the MCDs cannot be identified from the defect

set. This implies that the detailed steps we used in the study (see Step 2 in

Section 6.2.5) in identifying MCDs are not easily generalizable to other contexts.

Also, note that the findings of this case study about the components’ per-

sistence in the MCD quantity and complexity measures (see Section 6.3.2) and

the architectural degeneration trend (“increase-then-decrease”; see Section 6.3.5)

should be carefully analyzed when generalizing to other contexts.

6.4.3 Construct Validity

Construct validity is concerned with the actual data gathered in the study and

its relationship with the measures defined (Wohlin et al., 2000). In Section 6.2.1,

the “complexity” of a defect is measured by the number of components or code

files changed in order to fix this defect. There could be other definitions for defect

complexity, such as the number of source lines of code that were added, deleted

or modified, or the amount of calendar time spent in fixing a defect. In the case

study, we chose to use component and file change measures because this was the

data that was captured in the logs. Fine-grained measures of code, and effort

data, are not logged so such measures could not be incorporated in the analysis

of data. Thus, in the case study, the validity of the results has to be viewed from

coarse-grained component and file -based complexity measures.

Another issue is the criterion defined for identifying degeneration-critical com-

ponents (see Section 6.3.1). This criterion is context sensitive (e.g., the component

measure distribution and the threshold of “top 20%” chosen by management) and

120

so using a different threshold could affect the answer to question Q1 posed in

Section 6.2.1 (i.e.: Do some components in a system contribute more than other

components to the system’s architectural degeneration?). Similar logic applies to

the criterion for fix relationships (see Section 6.3.3).

6.4.4 Conclusion Validity

Conclusion validity is concerned the extent to which the conclusions made in the

study are reasonable (Wohlin et al., 2000). For this study, we concluded that

the components’ measures tend to persist over time (see Section 6.3.2), and the

architectural degeneration increased as the system evolved (see Section 6.3.5).

While the conclusions are traceable to the analysis of the data in the study, we

note that we had access to only three releases of the system. Especially, there are

three issues to note.

First, not all of the MCD quantity and complexity measures of the components

support the architectural degeneration increase trend. For example, the

MCD density (“#MCDs per KSLOC” or M2) (see row “Mean” in Table 6.3)

does not support this trend (see Section 6.3.2).

Second, the four types of the components’ measures show varying (not the same)

persistence. Table 6.6 shows that the cross-phase/release rank correlations

between the components’ measures rang between -0.21 and 0.96, indicating

great variance. For example, the MCD percentage (“%MCDs” or M1) and

complexity (“#Components fixed per MCD” or M3) measures strongly per-

sist across releases 1 and 2; their Spearman-values are 0.96 and 0.85. How-

ever, the other two measures (“#MCDs per KSLOC” (M2) and “#Code

files fixed per MCD” (M4)) exhibit only weak persistence; their Spearman-

values are 0.55 and 0.49 (see column “r1 → r2” in Table 6.6).

Third, there was restructuring work carried out on release 3 in order to improve

the system structure (see Section 6.2.1), and we found that the restructuring

121

has substantial impact on the components’ persistence in their measures and

on the architectural degeneration increase trend (see Section 6.3.5). This

thus does not support our conclusion that the architectural degeneration

increased as the system evolved.

Considering these three issues, we recommend careful context analysis in the use

of the conclusions.

6.5 Implications

This section discusses the implications of the case study findings from the points

of views of methods, priority re-engineering, and empirical research.

6.5.1 Methods of Architectural Degeneration Analysis

We note that two of the 10 components of the subject system (e.g., components

C5 and C6) are involved in most of the MCDs in the system (see Table 6.3).

The 80-20 Pareto rule is well-known in software quality (Boehm and Basili, 2001),

where identifying the top 20% defective components is relatively straightforward.

Unfortunately, this would not suffice for the analysis of architecture degeneration

because it entails more than frequency counting of component defects. In Sec-

tions 6.3.1 and 6.3.3, we saw that, in the subject system: (1) there are a few

degeneration-critical components and fix relationship which contribute substan-

tially more to the architectural degeneration than other components and fix rela-

tionships; and (2) over half of degeneration-critical fix relationships are connected

by the degeneration-critical components.

Identification of these “hard core”, inter-related, components requires anal-

ysis of MCDs, filtering out high density components, mapping out fix relation-

ships, and filtering out “hard core” architectural areas that are degenerating at

a faster pace than other architectural areas. Because different software organi-

zations log defect and change data in organization-specific ways and databases

122

(e.g.: Bugzilla13, Bugzero14, and Bugs-Everywhere15 for software defect tracking

and management), it should be possible to create suitable high-level, defect and

architectural analysis methods (if not concrete software tools) (e.g., ADD (Bass

et al., 2003, ch. 7), ATAM (Clements and Northrop) and SAAM (Kazman et al.,

2002); also see the survey in (Dobrica and Niemela, 2002)) with guidelines so that

software developing organizations can internalize and customize these methods in

their software projects. This would help transition research-oriented case-studies

(such as the one described here) to everyday practice.

6.5.2 Priority Re-engineering of System Components

Most values in Table 6.6 show that components contribute persistently to architec-

tural degeneration across internal and field phases and across releases. Creating

such a persistence profile can help in determining: (a) whether or not a spe-

cific component should be re-engineered (or restructured), and (b) which specific

components should be re-engineered with priority. Although re-engineering is

costly, priority re-engineering could focus on the most-problematic components in

the system (Booch, 2008). Also, this analysis enriches the current re-engineering

strategies (e.g., splitting over-large components and reducing inter-component in-

teractions (Tran and Holt, 1999)).

6.5.3 Empirical Research

Based on the study findings, we raise the following two investigative questions

that seek to probe deeper into the phenomena observed from this study.

(1) To what extent are degeneration-critical components and fix relationships

inter-related?

13See http://www.bugzilla.org/ (last access in November 2010).
14See http://www.websina.com/bugzero/ (last access in November 2010).
15See http://bugseverywhere.org/be/show/HomePage (last access in November 2010).

123

In Section 6.3.4, we qualitatively observed that over half of the degeneration-

critical fix relationships were connected by degeneration-critical components. That

is, degeneration-critical components often occur together in terms of MCDs. De-

spite this potentially interesting finding, we could not scientifically determine

the extent to which degeneration-critical components are related to degeneration-

critical fix relationships. This was due to the relatively small sample of compo-

nents investigated in this study; the ten components examined (see Section 6.2.1)

were more than adequate for answering the case study research questions, but were

too low to provide the statistical power to adequately probe this particular result

further. Knowing this relationship would provide critical input into the priority

re-engineering process (see above). For example, this would further help isolate an

even smaller area of the system for priority re-engineering if it is indeed confirmed

that most MCDs are contained within degeneration-critical components that have

associated fix relationships, as suggested by the initial finding (see Section 6.3.3).

(2) What are the underlying reasons for the impact of a defect correction process

on the persistence of the components and fix relationships?

In Section 4.3.2, we observed that fix relationships have “weak” persistence

across phases and releases. Similarly, in Section 6.3.2, we observed that com-

ponents have “strong” persistence. However, in the study, we could not probe

deeper into these findings due to a lack of access to the software architecture it-

self, and its evolutionary data. Recall from Section 6.2.1 that we only had access

to the defect and change data, both of which were adequate for investigating the

original research questions. The data that is specifically needed is the documen-

tation of the physical interactions between the software components, and how

these interactions change over time. Given this data, we could then associate

the physical architectural changes with the defect correction process, leading to

the underlying technical reasons why the persistence occurred. This characteriza-

tion of root-cause persistence issues could provide an empirical-based groundwork

124

for developing further technological support to aid in the defect correction and

architectural degeneration treatment processes.

6.6 Recap of Case Study 2

Previous research has far focused on architectural deviations from the baseline as

a vehicle to study architectural degeneration. We complement this by focusing

on the quantity of MCDs, the spread of changes across the system’s components,

and fix relationships, and the persistence of these across several releases – as a

way to characterize architectural degeneration. In particular, we conducted a

case study which followed the DAD approach (see Section 5.2) to characterize the

architectural degeneration of a commercial legacy system (of size over 1.5 million

SLOC and age over 13 years) using specific metrics.

The main findings of this case study in descriptive terms are: (1) there exist a

small set of components and fix relationships that contain most of the MCDs (see

Sections 6.3.1 and 6.3.3); (2) the system’s components tend to persistently have

an impact on architectural degeneration over multiple releases of the system; how-

ever, such persistence does not apply to the fix relationships (see Sections 6.3.2 and

6.3.4); and lastly (3) architectural degeneration increases as the system evolves

over time; but restructuring can reverse this trend (see Section 6.3.5). A succinct

summary of the results is shown in Section 6.3.7. These findings are new and

add to the body of knowledge on architectural degeneration. The existing knowl-

edge reflects the state of current theory on architectural degeneration, i.e., the

degeneration of an architecture can be determined based on its deviations made

against a baseline. This case study (plus Case Study 1) adds that architectural

degeneration can be characterized and diagnosed through analysis of MCDs.

Implications of these findings are on: determining degeneration-critical com-

ponents and fix relationships, priority re-engineering, and empirical research (see

Section 6.5). Overall, we conclude that architectural degeneration can be charac-

125

terized from the defect perspective, which complements the characterization from

the structural or deviation perspective (Lindvall et al., 2002).

While these findings are new, one should not overlook that these results are

from only one, albeit significant, case study. This study has its own idiosyncratic

threats, e.g., defect complexity measure and metric correlation (see Section 6.4).

There is thus a need to conduct replicated studies involving other systems in

order to (i) validate the DAD approach and (ii) build a body of knowledge on

architectural degeneration, components and fix relationships. Later Chapter 9

describes some of the challenges involved and lessons learnt.

126

Chapter 7

Case Study 1 vs. Case Study 2

Following the description of Case Studies 1 and 2 in Chapters 4 and 6, this chap-

ter compares these two case studies, centered on handling and using multiple-

component defects (MCDs). For the comparison, we first note that Case Study 1

was to examine the extent to which architectural degeneration affected software

defects, by comparing the complexity and persistence of MCDs against that of

other types of defects. It investigates the historical defect records of six major

releases of a large legacy software system (see Section 4.3.1). We then note that

Case Study 2 had achieved its purpose: application and validation of the DAD

approach in a legacy system (which is a part of that large system investigated in

Case Study 1). It investigates the defect-fix history (defect records and change

logs) of three major, successive, releases of the subject system (see Section 6.2.1).

In the three sections below, 7.1–7.3, we compare the two case studies from

three aspects in the subject systems respectively: their MCD identifications, MCD

distributions, and MCD complexity measures.

7.1 MCD Identification

We note from Section 6.2.2 that the MCD identification methods are different for

the two case studies. They are described below.

127

• In Case Study 1, each defect record has a “Component” field value (see

example defect records in Table 4.1). The parent-children relationships are

identified among the defects (as defined in Section 4.2). If a parent defects

and its children defects have different “Component” field values, they are

identified as MCDs.

• In Case Study 2, each defect-fix record has a “Component*” field value (see

example defect-fix records in Table 6.1). A defect having more than one

component value recorded in its “Component*” field is identified as a MCD

(see Section 6.2.2).

We note from the defect-fix database of Case Study 2 (see Section 6.2.1) that a

defect discovered in a component always had one or more fixes in this component.

That is, the “Component” value of a defect is always involved in its “Component*”

value. Because MCDs are identified based on the “Component” field (as in Case

Study 1), we can infer that the set of MCDs identified based on parent-children

relationships is included in the set of MCDs identified based on the “Component*”

field (as in Case Study 2). In particular, about 8% of defects are identified as

MCDs in Case Study 1 (see Table 4.3), but about 18% in Case Study 2 (see

Section 6.2.4).

7.2 MCD Distribution

Both Case Studies 1 and 2 investigate the distributions of MCDs in the subject

systems. The related findings are described below.

• In Case Study 1, the Pareto principle fits the MCD distribution by com-

ponents. Figure 4.1 shows that over 80% of MCDs emanate from 20% of

the components and about 75% of MCDs involve only 10% of the fix rela-

tionships. These 20% of components and 10% of fix relationships should be

considered degeneration-critical.

128

• In Case Study 2, the MCD distribution by components is highly tailed.

Across the three releases under investigation, the two (out of 10) compo-

nents, C5 and C6, contain 62% and 43% of MCDs1 in the system (see

column “%MCDs (M1)” of Table 6.3). Meanwhile, only a few (5 out of

45, i.e., about 10%) fix relationships are involved in over 10% of MCDs in

the system and the majority of MCDs involve at least one of these 10% fix

relationships2 (see Figure 6.6). These two components and a few fix rela-

tionships are thus considered degeneration-critical in the system from the

MCD percentage perspective.

Therefore, both Case Studies 1 and 2 support that the majority (over 80%) of

MCDs are concentrated in a few (about 20% of) components and are involved in

a few (about 10% of) fix relationships in the systems.

7.3 MCD Complexity Measurement

We note that both Case Studies 1 and 2 measured the complexity of MCDs. We

describe their MCD complexity measures below.

• In Case Study 1, the complexity of a MCD is measured by the number of

accompanying changes (as defined in Section 4.2). Table 4.4 indicates that

a MCD required an average of 2.1 accompanying changes, indicating 3.1

(2.1+1) changes3 for a MCD, which is about 2.8 times as much as that for

a non-MCD (requiring an average of 1.1 changes).

• In Case Study 2, the complexity of a MCD is measured by the number of

components or code files changed in order to fix this MCD (see example

metrics “#Components fixed per MCD” (M3) and “#Code files fixed per

1It is obvious that these 62% and 43% of MCDs are overlapped partially.
2This is derived by summing up the MCDs involving these 10% fix relationships.
3Note that in Case Study 1, the number of changes is counted based purely on defect records

(no change logs). Therefore, as defined in Section 4.2, each non-parent defect has one and only
one change. This is different from that in Case Study 2.

129

MCD” (M4) in Section 5.2.2). Table 6.4 indicates that a MCD required

an average of 5.5 changes (in an average of 2.3 components) which is about

2.5 times as much as that for a defect (a MCD or not a MCD, requiring an

average of only 2.2 changes in 1.2 components).

The above findings (e.g., 2.8 vs. 2.5) indicate that there is no substantial

difference4 in the complexity of the MCDs identified in Case Studies 1 and 2.

Therefore, we can further infer that (note that MCDs account for an average of

8% in Case Study 1 but an average of 18% in Case Study 2; see Section 7.1):

(1) For Case Study 1, there are about 10% of defects in the subject system which

are not identified as MCDs but have similar complexity measures with the

MCDs identified with parent-children relationships.

(2) For Case Study 2, there are about 8% of defects (i.e., about 45% of MCDs)

in the subject system which have children defects spanning multiple com-

ponents and have stronger persistence (see Table 4.5) across development

phases and releases than other defects.

(3) The subset of MCDs identified based purely on defect dataset can be used to

characterize (in terms of at least their complexity) the whole set of MCDs

existing in the system. This indicates an alternative way to investigate

MCDs when only defect records are under investigation.

7.4 Further Comparative Analysis

We conclude from the above comparison between Case Studies 1 and 2 that al-

though the MCD identification methods are different (see Section 7.1), both case

studies support that MCDs are highly concentrated in a few (about 20% of) com-

ponents and (about 10% of) fix relationships in the systems (see Section 7.2).

4Here, we cannot conduct a statistical significance test for this “2.8 vs. 2.5” comparison
because the sizes of the two comparing arrays are obviously not equivalent. However, from the
practical perspective, we can declare that there is no substantial difference between 2.8 and 2.5
as the measures of MCD complexity.

130

Especially, the complexity measures of the MCDs identified with the different

methods in the two case studies are similar (see Section 7.3).

The comparison between Case Studies 1 and 2 indicates that the subset of

MCDs identified based purely on defect dataset can represent the whole set of

MCDs in the system (identified based on defect-fix dataset), in terms of at least

their distribution and complexity characteristics. This indicates an alternative

way to investigate MCDs when only defect records are under investigation, and

that the two case studies are complementary with each other.

Except the differences in MCD identification, distribution, and complexity

measurement (see Sections 7.1–7.3), we also note two essential differences between

these two studies. First, the research goals are different. Case Study 1 aims at

examining MCDs (their complexity and persistence) in order to understand archi-

tectural degeneration, but Case Study 2 aims at application of the DAD approach

(see Chapter 5) and characterization of architectural degeneration. Therefore,

their research questions are different (see Sections 4.1 and 6.1 for details). Sec-

ond, the formats of the datasets under investigation are different. Case Study 1

investigates defect records but Case Study 2 investigates both defect records and

change logs; see Tables 4.1 and 6.1 for the key attributes of the datasets in the

two case studies. However, we have faced similar challenges during, and also have

learnt similar lessons from, conducting these two case studies; see Chapter 9 for

these challenges and lessons.

131

Chapter 8

Critical Assessment

Recall that Chapters 4, 5 and 6 describe the three main parts of this thesis re-

search: Case Study 1 (analysis of multiple-component defects – MCDs), the DAD

approach and its prototype tool, and Case Study 2 (DAD application). Here,

we assess these three parts, focusing mainly on their limitations. First of all,

we discuss the relationship between MCDs and architectural degeneration (see

Figure 3.1), which is fundamental to this thesis research.

8.1 MCDs and Architectural Degeneration

We note from Section 3.1.2 that MCDs, due to their “multiple-component” nature,

are related to potential crosscutting concerns (Eaddy et al., 2008) or architectural

problems (von Mayrhauser et al., 2000) in the system. As Stringfellow et al.

(2006) state, “problems related to interactions between components is a sign of

problems with the software architecture of the system and are often costly to

fix.” We thus propose that architectural degeneration manifests itself through

MCDs (see Figure 3.1). Consequently, the characteristics of MCDs such as their

quantity and complexity can reflect the impact of architectural degeneration on

software defects. Therefore, we can evaluate the architectural degeneration for

a specific system by examining the quantity and complexity of MCDs in that

132

system. This is the fundamental basis of this thesis research – characterization

and diagnosis of architectural degeneration. However, there are two issues related

to this fundamental basis.

First, we acknowledge that architectural degeneration has impact on not only

software defects but also other quality aspects such as maintainability, adapt-

ability, reusability, etc. (see an example quality model in McCall et al.’s study

(1977)). Therefore, the defect perspective, as defined in the work, can only char-

acterize one aspect of architectural degeneration; and we should not make cursory

decisions on the architectural degeneration of a system based only on the MCD

quantity and complexity measures of components and fix relationships.

Second, even from the defect perspective, architectural degeneration could re-

late to defects confined to only one component (so called single-component defects

or SCDs). For example, there are SCDs that require only “examinations”, but

not “physical” changes, to more than one component for their corrections. These

defects are obviously not identified as MCDs in the work but fixing these defects

needs to consider their potential impact over the architecture.

Basili and Perricone (1984) call these defects (defects requiring examinations

in more than one system module) “interface” defects. The literature (e.g., (Basili

and Perricone, 1984), (Perry and Evangelist, 1987) and (Nakajo and Kume, 1991))

indicates that interface defects account for about 40%-65% of all defects (see Sec-

tion 2.4.3). We note that MCDs are included in interface defects (as per Basili-

Perricone’s definition). However, there could be over 40% of interface defects that

are not MCDs, which are thus not considered in the proposal on the relationship

between architectural degeneration and MCDs. Therefore, this could affect diag-

nosis of architectural degeneration from the defect perspective. Unfortunately, the

use of Basili-Perricone’s interface defect definition requires subtle, “examination”

(or soft), measures (as described in Section 2.4.3), which are not captured widely

in actual software projects, including the systems under the investigation.

133

8.2 Case Study 1: MCD Analysis

Built upon the relationship between MCDs and architectural degeneration (see

Figure 3.1), Case Study 1 (see Chapter 4) investigates the distribution, complexity

and persistence of MCDs in a large legacy system (of size 20 million SLOC), for

the purpose of quantifying the extent to which architectural degeneration affects

software defects. The defect dataset analyzed for this study covers 17 of over 20

years of the system and six of the nine major releases.

Results indicate that MCD are concentrated in a few components in the system

(see Figure 4.1). Results also indicate that MCDs are complex to fix and are

persistent across development phases and releases (see Tables 4.3–4.5). Knowing

these characteristics can help management and maintenance staff to focus on

particular hard-to-fix defects. Moreover, the MCD profile reflects the adverse

impact of architectural degeneration on software defects, mainly, in terms of their

fix complexity and difficulty. Knowing this can aid understanding the architectural

degeneration of the system and can also increase the necessity and significance of

treating the architectural degeneration.

We note from Section 2.4.5 that there is clearly little research conducted on

characteristics of MCDs and from Section 4.7 that there are no studies in the

literature similar to this case study. In particular, the findings on MCDs add to

the current knowledge on architectural defects (e.g., the genre defined by Endres

(1975) and Basili-Perricone (1984)) and degeneration.

While we have answered the three questions, (i)–(iii), posed in Section 4.1,

as yet we do not know whether the defect complexity metric (i.e., the number

of accompanying changes required to fix a defect) reflects the real complexity of

defects in the system. The defect dataset under the investigation cannot support

this validation. Thus, careful thought needs to be considered in the design of such

a study in other contexts.

A limitation of this study is that inter-relationship between the MCD-prone

134

components and the most frequently occurring fix relationships (see Figure 4.1)

was not addressed. Such inter-relationship could benefit cost-effective system

quality improvement. Another limitation of this case study is the lack of findings

about characteristics of the MCD-prone components. For example, we do not

know from this study the extent to which these components tend to persist across

phases and releases. Such characteristics can help improve the system quality.

8.3 DAD Approach and Tool

The DAD approach (see Chapter 5) aims at: (i) identifying degeneration-critical

components and fix relationships, (ii) evaluating persistence of components and

fix relationships, and (iii) evaluating architectural degeneration for a given system,

using the MCD quantity and complexity metrics (as defined in Section 5.2.2). A

conceptual DAD framework was proposed in order to carry out these three goals

(see Figure 5.1). A prototype tool was developed to facilitate DAD application in

real system contexts.

Note that the role of DAD and its prototype tool is to operationalize the de-

fect perspective of architecture degeneration. So, in itself, it does not contribute

directly to new theories, but it helps automate the process of discovery. The

information of architectural degeneration derived with DAD can help treat the

architectural degeneration problem in the system, which could lead to increase in

system quality and decrease in maintenance costs. DAD can thus complement ex-

isting techniques for architectural degeneration diagnosis (see Section 2.3.3), such

as architectural deviation detection (Murphy et al., 2001) (Lindvall and Muthig,

2008), defect-prone component (DPC) identification (Ohlsson and Wohlin, 1998)

(Li et al., 2009), and fault architecture construction (von Mayrhauser et al., 2000).

In particular, we note that von Mayrhauser et al. (2000) propose an approach

to derive fault architectures from system defect history, which can highlight the

degeneration-critical fix relationships in the architecture from the MCD quantity

135

perspective. Fault architectures are similar to defect architectures created with

the DAD approach. However, DAD defines both MCD quantity and complexity

metrics (see Section 5.2.2) which support creating defect architectures from both

MCD quantity and complexity perspectives. Therefore, we can say that fault

architecture is a type of defect architecture and there are defect architectures

that are not fault architectures.

However, DAD defines only a defect perspective for diagnosing architectural

degeneration. It cannot support the diagnosis from other perspectives such as

architectural deviation (see Section 2.3.1). Especially, it is obvious that even

from the defect perspective, the MCD quantity and complexity metrics (see Sec-

tion 5.2.2) cannot measure all characteristics of architectural degeneration. For

example, these metrics do not involve the severity information of defects due to

architectural degeneration. It could be that architectural degeneration leads to

more severe defects but DAD cannot measure it.

In addition, DAD examines only the architecture-level degeneration of the

system. It cannot offer information about, for example, which code files contribute

most to the “degeneration” of a component, and which fix relationships among

code files frequently occurred across phases and releases. This kind of information

can help refine strategies and solutions of treating architectural degeneration.

8.4 Case Study 2: DAD Validation

Case Study 2 (see Chapter 6) applies the DAD approach (see Section 5.2) to

identify the degeneration-critical components and fix relationships and evaluate

the architectural degeneration in a commercial system (of size over 1.5 million

SLOC and age over 13 years). This system is actually a core subsystem of the

subject system of Case Study 1 (see Section 4.3.1).

Case Study 2 investigates the defect-fix history of three major, successive re-

leases of the subject system (see Section 6.2.1). Results first show that there are

136

a few degeneration-critical components and fix relationships in the system which

contribute substantially more to the architectural degeneration than other compo-

nents and fix relationships (see Figure 6.6). Knowing these degeneration-critical

components and fix relationships can help management and practitioners to effec-

tively treat the architectural degeneration of the system. Results also show that

the components’ contributions to the architectural degeneration tend to persist

across phases and releases (see Section 6.3.2). Knowing such persistence can help

identify the persistent components in the system which should be treated with in-

tensive attention in order to mitigate the architectural degeneration in next phases

or releases. Results then show that the architectural degeneration increased as the

system evolved across releases and system restructuring could reverse this increase

trend (see Section 6.3.5). Knowing this architectural degeneration trend can help

management staff in planning system evolution.

We note that researchers such as Brooks (1975, p. 123), Belady and Lehman

(1976) have observed and investigated the architectural degeneration phenomena

in real software systems. We also note from Section 2.3.1 that the complexity

increased substantially over the evolution of a five-release system (see van Gurp

and Bosch’s study (2002)), and for a two-version system, the new version released

after restructuring the whole system has higher maintainability (measured by

inter-module interactions) than the old version (see Lindvall et al.’s study (2002)).

These studies use a structural deviation perspective to understand and diag-

nose architectural degeneration. Our study applies the DAD approach and thus

uses a defect perspective, which is obviously different from that structural devi-

ation perspective. However, although there are no previously published studies

that operationalized the defect perspective with MCD quantity and complexity

metrics, we still need to acknowledge that some of the findings, such as that the

architectural degeneration increased during system evolution and system restruc-

turing could reverse this increase trend, coincide with related findings from the

137

literature (e.g., (Belady and Lehman, 1976), (van Gurp and Bosch, 2002), and

(Lindvall et al., 2002)). We also must claim that the findings about the per-

sistence of components’ and fix relationships’ contributions to the architectural

degeneration are new.

While we have answered the five questions, Q1–Q5, posed in Section 6.1 (also

see Section 1.3.2), as yet we do not have a scientific understanding of the inter-

relationship between degeneration-critical components and fix relationships in the

subject system (see a similar discussion in Section 8.2). For example, we do not

know the extent to which the degeneration-critical fix relationships are correlated

with the components. This can complement existing results on degeneration-

critical components and fix relationships.

138

Chapter 9

Challenges and Lessons Learnt

Conducting a case study of a large legacy system in industry has its challenges.

In this chapter, we describe such challenges and lessons learnt from conducting

Case Studies 1 and 2 (see Chapters 4 and 6), which are related to: data access

(see Section 9.1); data quality (see Section 9.2); data analysis procedures, risks

and scope (see Section 9.3); validation of the findings and interpretation (see

Section 9.4); and academic cycles and industry concerns (see Section 9.5). The

lessons of these aspects can complement existing studies on the management of

university-industry collaborations for empirical studies such as (Beckman et al.,

1997), (Conradi et al., 2003), and (Lethbridge et al., 2007).

9.1 Data Access

One of the most difficult aspects of conducting a study of a large system in industry

is having access to the necessary artifacts of the study. It is the system’s defect

records in Case Study 1 (see Section 4.3.1) and the system’s defect records and

change logs in Case Study 2 (see Section 6.2.1). While open-source datasets

(such as source code, defect records and change logs) are publicly available, the

specific studies that can be conducted using this data depend on the characteristics

of the data actually contained in the datasets. For example, we note that the

139

attribute “reference” (specifically “parent reference” and “children reference” –

Section 4.3.1) was non-existent in the defect records of some open-source systems.

Thus, the investigation on the persistence of MCDs (across phases and releases)

of Case Study 1 (see Section 4.4.3) was not possible for these systems.

Aside from this, it is generally customary to make a non-disclosure agreement

(NDA) to have access to proprietary data. Despite having such agreements, it

may still be difficult (in some cases) to obtain access to certain type of data.

It especially depends on the sensitivity of the data and organizational lines of

authority. For example, it is quite probable that the party in the organization

authorized to sign NDAs may not have any authority to provide actual access to

proprietary data “owned” by product groups. Thus, the NDA in this case serves

only as an “enabler” for an external researcher and not necessarily as access rights

to project data.

Further, a product group is not usually a homogenous entity; there are tech-

nical people in the group of varying seniority and there are one or more levels of

management. Thus, even if the technical people are enthusiastic about research

collaboration, they may not be able to authorize access to the required data for

the case study. It is our experience that jumping over the various organization

hurdles can take weeks to months and this should be factored in any desire to

conduct a case study in industry.

Beyond signing a NDA with the administrative body, the researcher needs to

identify and collaborate with an appropriate product group prior to having any

chance to access data for conducting a desirable study. This is also difficult and

time consuming because it depends on certain factors such as: knowing which

group is amenable to collaboration, which is not obvious at all in large corpora-

tions; whether there is a match between the researcher’s interests and expertise

and the group’s needs for investigation; whether there is budget allocated to the

research project; and whether sufficient “trust” has been built with the product

140

group for them to provide the researcher access to data. This can take many

months to accomplish, especially for new collaborative relationships. Even for

established relationships, obtaining access to a database for a new case study is

not to be taken for granted.

In short, data is not given to the researcher “on a silver platter”; it must be

“earned over time”. This is thus a critical milestone in conducting a case study on

industrial data. Clearly, this depiction is also a serious impediment to any plans

for an industry-based “replication” of a case study.

9.2 Data Quality

A challenge in conducting a case study in an industry context is in accepting the

fact that the term “quality” as understood in the context of a large commercial

organization is different from that as understood in the context of academia. In

Case Studies 1 and 2 described in Chapters 4 and 6, the defect and change data

is logged in corporate databases in the midst of such key elements such as: large-

scale system growth, globally distributed development teams, different cultural

habits and norms, experience levels of the personnel, software costs and budget

cuts, profitability and market competition, need for timely releases of the system,

customer satisfaction requirements, etc.

Especially, the defect data for the six releases used in Case Study 1 was cap-

tured over a period of 17 years (see Section 4.3.1) and the defect-fix data for the

three releases used in Case Study 2 was captured from the over-13-year-old sys-

tem (see Section 6.2.1). During the period, the organization has gone through a

significant changes, e.g.: corporate size and goals, staff turnover (both technical

and managerial); technology and infrastructure changes; policy, process, method,

procedure and paradigm changes; skill and market changes; customer and needs

changes; etc. Thus, “data quality” in industry has been impacted by such factors.

Likewise, a lesson to be learnt here is that researcher expectations, predominantly

141

grown in the relatively idealized visions of development environments, need to be

moderated in terms of “cleanliness” and “completeness” of long-lived data. Recall

Sections 4.5.1 and 6.4.1 where we discuss the threats on “data reliability”.

9.3 Data Analysis, Risks and Scope

Data quality has impact on the analysis procedures and this impact should not be

ignored. Given the concerns for proprietary information that are to be expected

in the dataset for the case studies, its impact on data analysis procedures should

not be ignored. For example, automated tool support for analyzing data may

not work well in complicated situations, e.g., when a field of a defect record is

used abnormally for unanticipated purposes. We had encountered a number of

such cases (see Sections 4.5 and 6.4) and had needed numerous back-and-forth

clarification meetings with the developers and had to resort to manual analysis of

defect records and change logs. Such situations usually lead to time delays in the

study progress.

It is also important to analyze the risk to the two case studies introduced by

the quality of the datasets. In Case Study 1, approximately 20% of the defect

records had anomalous use of the “reference” (specifically “parent reference” and

“children reference”) field (see Section 4.5). However, because there were other,

key, usable fields in the affected defect records, we decided not to eliminate these

20% records. (Actually, we have no effective ways to eliminate these 20% records

due to the large population.) Clearly, there are no firm criteria for deciding when

to exclude a defect record from data analysis; this must be judged on a case-by-

case basis by examining the issues at hand. In Case Study 2 (see Section 6.4), most

of defects are recorded with only one component but a certain percentage (as we

find, approximately 22%-25%) of defects span more than one component. Clearly,

such multiple-component information cannot be found within the “Component”

field of defect records, because that field logs one and only one component name

142

(see Section 6.2.2). Fortunately, this can be discovered by investigating the change

logs. Otherwise, the identification of MCDs was not possible in Case Study 2.

Furthermore, recall Section 4.3.1 where we mention that Case Study 1 utilizes

only six of the nine releases of the subject system. Here, data quality was a

prime driver in deciding the specific releases we could use for the study. This

obviously affects the scope of the study in terms of the volume of usable data.

However, in some situations, the impact on the study can even be in terms of

the particular research questions that can be investigated, e.g., when the dataset

is not adequately clean or when data is missing. For example, analysis of the

persistence of MCDs in Case Study 1 (see Section 4.4.3) would be compromised

severely if the data were available from only one or two system releases. Likewise

for evaluation of the persistence of components and fix relationships in relation

to architectural degeneration (see Sections 6.3.2 and 6.3.4) and analysis of the

architectural degeneration trend (see Section 6.3.5) of the subject system over

phases and releases in Case Study 2.

9.4 Result Interpretation and Validation

In complex case studies in industry, the findings and their interpretation by re-

searchers can be erroneous in some situations even if data analysis was accurately

performed. This is, for example, due to hidden reliability problems with the

dataset and with the execution of empirical procedures. Recall Section 4.5 for an

example of the non-standard use, by developers, of some defect attribute fields.

Should such fields be incorrectly understood by the researcher then this could

lead to incorrect inputs for data analysis which, in turn, could lead to incorrect

findings and their interpretation.

For example, in Figure 1.1 (also see Section 6.3.1), components C5 and C6 are

analyzed to be the most problematic ones due to their MCD content. This find-

ing, by itself, even if accurately resultant from data analysis, is still suspect and

143

requires further validation from the developers (and in some cases even the users

of the system under study). Do, for example, developers consider components C5

and C6 to be problematic in their day-to-day experience? If yes, then this would

indicate concurrence of real-world experience by the developers with the technical

findings from Case Study 2 – and the confidence in the study findings would be

high. If no, then this suggests disagreement between the developers’ experience

(e.g., defect correction) and the study results and so this warrants further investi-

gation, while lowering the confidence in the findings. Similar validation needs to

be conducted on any interpretation of the findings from the two case studies. In

other words, the “loop” must be closed by validating the findings in the real-world

and the appropriateness of the interpretation in specific contexts. Such valida-

tion, though was carried out in the case of components C5 and C6 as described

in Section 6.3.1, is subtle and subject to accidental omission.

Furthermore, an intriguing question that arose in the two case studies is

whether all findings of the studies can be validated in the manner described above.

For example, in Case Study 1, Section 4.4.3 presents cross-release defect persis-

tence (see Table 4.5). Could we then realistically expect developers to be aware

of defect persistence across releases, from their day-to-day experience, and help

in validating the findings of the study? Considering that in this study the six

releases span a period of 17 years, during which there have been a “hurricane of

changes” in the corporation, the answer is highly likely “no”, which is what it

turned out to be. The same question and similar answer are for Case Study 2

where the defect-fix dataset covers a period of 13 years.

Therefore, an important lesson to be learnt here is that certain type of findings

(e.g., components C5 and C6 quality – see Section 6.3.1) point to “concrete arti-

facts” which would be in the realm of the developers’ day-to-day experience and,

accordingly, would be logged in the project’s knowledge-base, and would likely

be validate-able. However, certain other type of findings (e.g., persistence across

144

many releases) point to “process” data spanning a long period of time that would

be difficult to track, and would likely be tricky to validate in the field.

9.5 Academic Cycles and Industry Concerns

For obvious reasons, it is expected that case studies tackle industry-scale projects

as opposed to classroom-scale projects. Graduate students (in the Masters and

Doctoral programs) are increasingly involved in conducting such case studies, as

was the occurrence in the described two case studies. However, we saw earlier how

concerns for proprietary information and time lags can permeate research projects

in industry. This can thus pose serious research risks to the unwary, consequences

of which can include outright case study modification and even termination. Un-

fortunately, there are no silver bullets to satisfactorily deal with this situation

and it is the price of industrial contribution to the body of knowledge in Software

Engineering.

However, an important lesson learnt from this and other case studies in in-

dustry is to carefully weigh the risks involved in conducting a “solution-seeking”

as opposed to a “knowledge-seeking” study. The former type of study aims at

creating a solution to a known problem; whereas, the latter type of study aims at

creating new knowledge by examining a current situation. In the former study,

however, the resultant solution needs to be validated by applying it in an actual

project. This would imply perturbations in the project which are often resisted to

by project personnel. This is actually understandably in the practice but it also

implies research risk.

Both Case Studies 1 and 2 are of the latter kind – knowledge seeking (note

Case Study 2 validated the DAD approach). In the two studies, neither data

gathering nor result validation involved any changes in the actual systems, where

research risks were thus contained. These issues apply equally well to new case

studies and replicated studies in industry.

145

9.6 Key Points of Challenges and Lessons

The key challenges and lessons learnt from conducting Case Studies 1 and 2 (see

Chapters 4 and 6) are summarized below.

• Industrial data is not given to the researcher on a silver platter; it must be

earned over time. Specifically, note that: (1) the NDA agreement serves

only as an “enabler” for an external researcher and not necessarily as access

rights to project data in an industrial context; (2) accessing the industrial

data requires to jump over various organization hurdles, which can take

weeks to months; and (3) accessing and interpreting the industrial data is

difficult and also time consuming.

• The term “quality” as understood in the context of a large, complex, in-

dustrial organization is radically different from that as understood in the

context of academia. Therefore, researcher expectations need to be moder-

ated with long-lived data from industry.

• Data quality related problems can inflict impact on data analysis procedures

and this impact should not be ignored. Thus, it is important to analyze the

risk to the studies introduced by the quality of the data.

• Findings and their interpretation of complex industrial studies should be

validated in industrial contexts. However, only certain type of findings point

to “concrete artifacts” which would likely be validate-able; certain other type

of findings point to “process” data would be not validate-able.

• The concerns for proprietary information and time lags occurred during

industrial studies could pose serious research risks.

The above mentioned challenges apply equally well to new case studies and

replicated studies in industry. Unfortunately, there are no silver bullets to satis-

factorily deal with these challenges. However, we believe that the lessons learnt

146

from the two case studies could help researchers in conducting new or replicated

case studies with industrial data in future.

Note that Lethbridge et al. (2007) also discuss benefits, drawbacks, risks, and

risk-reducing factors of empirical studies in industrial settings. They further cre-

ate a checklist of activities that should be involved in planning and management

of industry-university collaborations, such as negotiating level and type of com-

mitment, risk management, and access to participants. Other researchers such as

Beckman et al. (1997), Mead et al. (1999), Arisholm et al. (1999), Conradi et al.

(2003), and Rombach and Achatz (2007) also address similar issues regarding re-

search collaborations. Our lessons learnt, as shown above, can complement these

existing studies.

147

Chapter 10

Conclusions and Future Work

Software architectures degenerate over time (Lehman, 1980), resulting in increased

software costs and quality problems (Stringfellow et al., 2006). This phenomenon

is termed architectural degeneration (Lindvall et al., 2002). The problems de-

scribed in Section 1.1 concerning the Mozilla browser, Linux-kernel and AT&T

5ESS evolution (e.g., structural degradation and the need for re-engineering) in-

dicate that architectural degeneration can lead to substantial quality and cost

problems for software systems.

Previous research has focused on architectural deviations from the baseline as

a vehicle to study degeneration. However, while detecting (Murphy et al., 2001),

measuring (Lindvall et al., 2002) and removing (Tran and Holt, 1999) deviations

in an architecture can align it better to its baseline (from a structural perspective)

(Hochstein and Lindvall, 2005), this may not improve architectural quality (Bhat-

tacharya and Perry, 2007). In this thesis, we examine architectural degeneration

from the perspective of software defects. In particular, we characterized and di-

agnosed architectural degeneration by answering the following two questions (see

Section 1.2): (1) What do defects indicate about architectural degeneration? and

(2) How can architectural degeneration be diagnosed from the defect perspective?

To answer question (1), we conducted an exploratory case study, Case Study 1

148

(see Chapter 4), analyzing defect data over six releases of a large legacy system (of

size approx. 20 million SLOC and age over 20 years). The relevant defects here

are those that span multiple components in the system (called multiple-component

defects – MCDs (Li et al., 2009)). To answer question (2), we developed an

approach (called Diagnosing Architectural Degeneration – DAD; see Chapter 5)

from the defect perspective, and validated it in another, confirmatory, case study

(Case Study 2 – Chapter 6) involving three releases of a commercial system (of

size over 1.5 million SLOC and age over 13 years).

The key results of this thesis are (see Chapters 4–6):

(1) The knowledge of MCDs – On average, fixing a MCD requires nearly 3 times

changes (based on components) as much as that for fixing a non-MCD,

and MCDs are 6.0-8.5 times more persistent across development phases and

releases than other types of defects (see Sections 4.4.2 and 4.4.3).

(2) The DAD approach, which defines MCD quantity and complexity metrics

(see Section 5.2.2) to measure components and fix relationships (a change-

coupling relationship among components due to MCDs) of a given system

for diagnosing architectural degeneration of the system. A prototype tool

has been developed to facilitate the usage of DAD.

(3) The knowledge of architectural degeneration – Architectural degeneration is,

largely and persistently, due to approx. 20% of components and approx. 10%

of fix relationships in a system (see Sections 6.3.1–6.3.4); and it increases

(e.g., by 25% in the MCD complexity) as the system evolves from release to

release, but it can decrease (by even higher rate) after system restructuring

(see Section 6.3.5).

(4) Lessons learnt from conducting empirical studies in an industrial context

(see Chapter 9), concerning industrial data access, data quality, cleaning

and analysis of data, interpretation and validation of the findings, academic

cycles, industry jitters, and time lags.

149

These results are novel and they complement previous research on architectural de-

generation (e.g., deviation-based architectural measurement (Lindvall et al., 2002)

and construction of “fault architectures” from defect history (von Mayrhauser

et al., 2000)). The key conclusions from these results are: (i) analysis of MCDs is

a viable approach to characterizing architectural degeneration; and (ii) a method

such as DAD can be developed based on MCD characteristics for diagnosing ar-

chitectural degeneration from the defect perspective.

In the future, we intend to conduct further research from two aspects. The

first is to extend the DAD approach (and its prototype tool; see Sections 5.2

and 5.3) to investigate the “degeneration” of a specific component. This can

aid understanding a component in relation to its inside defect-related problems.

This extension requires the definition of defect-related metrics to measure the

“contribution” of a single code file (and a fix relationship between two code files)

to the degeneration of the component.

The second aspect is to examine: (i) the inter-relationship between degeneration-

critical components and fix relationships, and (ii) the underlying reason for the

persistence of varying degrees of “degeneration”-measures of the components and

fix relationships over time (see Sections 6.3.2 and 6.3.4). This could form a foun-

dation for developing further technological support to aid in the architectural

degeneration treatment process. See questions (1) and (2) in Section 6.5.3 for a

detailed discussion.

150

Bibliography

Walid Abdelmoez, Mark Shereshevsky, Rajesh Gunnalan, Bo Yu, S. Bogazzi,
Mustafa Korkmaz, and Hany. H. Ammar. Software architectures change prop-
agation tool (sacpt). In Proceedings of the 20th International Conference on
Software Maintenance (ICSM’04), pages 517–517, Chicago, USA, September
2004.

Edward N. Adams. Optimizing preventive service of software products. IBM
Research Journal, 28(1):2–14, 1984.

Robert Allen and David Garlan. Formalizing architectural connection. In Proceed-
ings of the 16th International Conference on Software Engineering (ICSE’94),
pages 71–80, Sorrento, Italy, May 1994.

Carina Andersson and Per Runeson. A replicated quantitative analysis of fault
distribution in complex software systems. IEEE Transactions on Software En-
gineering, 33(5):273–286, 2007.

Anneliese Amschler Andrews and Catherine Stringfellow. Quantitative analysis of
development defects to guide testing: A case study. Software Quality Journal,
9:195–214, 2001.

Anneliese Amschler Andrews, Magnus C. Ohlsson, and Claes Wohlin. Deriving
fault architectures from defect history. Journal of Software Maintenance: Re-
search and Practice, 12:287–304, 2000.

Erik Arisholm, Bente Anda, Magne Jørgensen, and Dag I.K. Sjøberg. Guidelines
on conducting software process improvement studies in industry. In Proceed-
ings of the 22nd IRIS Conference (Information Systems Research Seminar in
Scandinavia), pages 87–102, Keuruu, Finland, 1999.

Robert S. Arnold. Software Reengineering. IEEE Computer Society, 1993.

Robert S. Arnold and Shawn A. Bohner. Impact analysis - towards a framework
for comparison. In Proceedings of the Conference on Software Maintenance
(CSM’93), pages 292–301, Montreal, Canada, September 1993.

Lerina Aversano, Luigi Cerulo, and Massimiliano Di Penta. The relationship
between design patterns defects and crosscutting concern scattering degree: An
empirial study. IET Software, 3(5):395–409, 2009.

Rajendra K. Bandi, Vijay K. Vaishnavi, and Daniel E. Turk. Predicting main-
tenance performance using object-oriented design complexity metrics. IEEE
Transactions on Software Engineering, 29(1):77–87, 2003.

151

Rajvi D. Banker, Srikant M. Datar, Chris F. Kemerer, and Dani Zweig. Software
complexity and maintenance costs. Communications of the ACM, 36(11):81–94,
1993.

Victor R. Basili and Barry T. Perricone. Software errors and complexity: An
empirical investigation. Communications of the ACM, 27(1):42–52, 1984.

Victor R. Basili and Forrest Shull. Evolving defect “folklore”: A cross-study
analysis of software defect behavior. In Proceedings of the International Software
Process Workshop (ISPW’05), pages 1–9, Beijing, China, May 2005.

Victor R. Basili, Dieter Rombach, Kurt Schneider, Barbara Kitchenham, Dietmar
Pfahl, and Richard W. Selby (ed.). Empirical Software Engineering Issues:
Critical Assessment and Future Directions. Springer, 2006.

Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice
(Second Edition). Addison-Wesley Professional, 2003.

Kathy Beckman, Soheil Khajenoori, Neal Coulter, and Nancy R. Mead. Col-
laborations: Closing the industry-academia gap. IEEE Software, 14(6):49–57,
1997.

Laszlo A. Belady and Meir M. Lehman. A model of large program development.
IBM Systems Journal, 3:225–252, 1976.

Keith Bennett and Václav Rajlich. Software maintenance and evolution: A
roadmap. In Proceedings of the Conference of the Future of Software Engi-
neering, pages 73–87, Limerick, Ireland, June 2000.

Rudolf Berghammer and Alexander Fronk. Applying relational algebra in 3d
graphical software design. In Proceedings of the 7th International Seminar on
Relational Methods in Computer Science (RelMiCS 7), pages 89–96, Malente,
Germany, May 2003.

Jan A. Bergstra, Jan Heering, and Paul Klint. Module algebra. Journal of the
Association for Computing Machinery (JACM), 37(2):335–372, 1990.

Sutirtha Bhattacharya and Dewayne E. Perry. Architecture assessment model for
system evolution. In Proceedings of the 6th Working IEEE/IFIP Conference on
Software Architecture (WICSA’07), pages 8–17, Mumbai, India, January 2007.

Ted J. Biggerstaff. Design recovery for maintenance and reuse. IEEE Computer,
22(7):36–49, 1989.

Barry Boehm and Victor R. Basili. Software defect reduction top 10 list. IEEE
Computer, 34(1):135–137, 2001.

Barry W. Boehm. Software engineering. IEEE Transactions on Computers, C-25
(12):1226–1241, 1976.

Shawn Bohner and Robert S. Arnold. Software Change Impact Analysis. IEEE
Computer Society Press, 1996.

Grady Booch. The economics of architecture-first. IEEE Software, 24(5):18–20,
2007.

152

Grady Booch. Nine things you can do with old software. IEEE Software, 25(5):
93–94, 2008.

Ivan T. Bowman and Richard C. Holt. Linux as a case study: Its extracted
software architecture. In Proceedings of the 21st International Conference on
Software Engineering (ICSE’99), pages 555–563, Los Angeles, CA, USA, May
1999.

Gerald W. Bracey. Reading Educational Research: How to Avoid Getting Statis-
tically Snookered. Heinemann, 2006.

Fred P. Brooks. The Mythical Man-Month. Addison Wesley, 1975.

Ettiot J. Chikofsky and James H. Cross. Reverse engineering and design recovery:
A taxonomy. IEEE Software, 7(1):13–17, 1990.

Ram Chillarege, Inderpal S. Bhandari, Jarir K. Chaar, Michael J. Halliday, Di-
ane S. Moebus, Bonnie K. Ray, and Man-Yuen Wong. Orthogonal defect classifi-
cation - a concept for in-process measurements. IEEE Transactions on Software
Engineering, 18(11):943–956, 1992.

Marcus Ciolkowski, Oliver Laitenberger, and Stefan Biffl. Software reviews: The
state of the practice. IEEE Software, 20(6):46–51, 2003.

Paul Clements and Linda M. Northrop. Software architecture: An executive
overview. Technical Report, CMU/SEI-96-TR-003, Feb, 1996.

Paul Clements, Felix Bachmann, Len Bass, David Garlan, James Ivers, Reed
Little, Robert Nord, and Judith Stafford. Documenting Software Architectures:
Views and Beyond. Addison-Wesley Professional, 2002.

Edgar F. Codd. Relational completeness of data base sublanguages. Data Base
Systems: Courant Computer Science Symposia Series, 6:65–98, 1972.

B. Terry Compton and Carol Withrow. Prediction and control of ADA software
defects. Journal of Systems and Software, 12(3):199–207, 1990.

Reidar Conradi, Tore Dyb̊a, Dag I.K. Sjøberg, and Tor Ulsund. Lessons
learned and recommendations from two large norwegian SPI programmes. In
Proceedings of the 9th European Workshop on Software Process Technology
(EWSPT’03), pages 32–45, Helsinki, Finland, September 2003.

Thomas A. Corbi. Program understanding: Challenge for the 1990s. IBM Systems
Journal, 28(2):294–306, 1989.

B. J. Cornelius, M. Munro, and D. J. Robson. An approach to software mainte-
nance education. Software Engineering Journal, 4(4):233–136, 1989.

John W. Creswell. Research Design: Qualitative, Quantitative, and Mixed Meth-
ods Approaches (2nd edition). Sage Publications, 2002.

Michael A. Cusumano and Richard W. Selby. Microsoft Secrets: How the World’s
Most Powerful Software Company Creates Technology, Shapes Markets, and
Manages People. The Free Press, 1995.

153

James B. Dabney, Gary Barber, and Don Ohi. Estimating direct return on invest-
ment of independent verification and validation. In Proceedings of the IASTED
Conference on Software Engineering and Applications, pages 394–399, Cam-
bridge, MA, USA, November 2004.

Marco D’Ambros, Michele Lanza, and Romain Robbes. On the relationship be-
tween change coupling and software defects. In Proceedings of the 16th Working
Conference on Reverse Engineering (WCRE’09), pages 135–144, Antwerp, Bel-
gium, October 2009.

Liliana Dobrica and Eila Niemela. A survey of software architecture analysis
methods. IEEE Transactions on Software Engineering, 28(7):638–653, 2002.

Marc Eaddy, Thomas Zimmermann, Kaitlin D. Sherwood, Vibhav Garg, Gail C.
Murphy, Nachiappan Nagappan, and Alfred V. Aho. Do crosscutting concerns
cause defects. IEEE Transactions on Software Engineering, 34(4):497–515,
2008.

Christof Ebert. Metrics for identifying critical components in software projects.
In Handbook of Software Engineering and Knowledge Engineering, 2001.

Christof Ebert, Reiner Dumke, Manfred Bundschuh, and Andreas Schimietendorf.
Best Practices in Software Measurement. Springer, 2005.

Stephen G. Eick, Todd L. Graves, Alan F. Karr, J. S. Marron, and Audris Mockus.
Does code decay? assessing the evidence from change management data. IEEE
Transactions on Software Engineering, 27(1):1–12, 2001.

Albert Endres. An analysis of errors and their causes in system programs. ACM
SIGPLAN Notices, 10(6):327–336, 1975.

Len Erlikh. Leveraging legacy system dollars for e-business. IT Pro, 2(3):17–23,
2000.

Hoda Fahmy and Richard C. Holt. Software architecture transformations. In
Proceedings of the 16th International Conference on Software Maintenance
(ICSM’00), pages 88–96, San Jose, California, USA, October 2000.

Loe M.G. Feijs and R. L. Krikhaar. Relation algebra with multi-relations. Inter-
national Journal of Computer Mathematics, 70(1):57–74, 1998.

Loe M.G. Feijs and Yuechen Qian. Component algebra. Science of Computer
Programming, 42(2-3):173–228, 2002.

Loe M.G. Feijs, R. L. Krikhaar, and R.C. van Ommering. A relational approach
to support software architecture analysis. Software Practice & Experience, 28
(4):371–400, 1998.

Norman Fenton and Niclas Ohlsson. Quantitative analysis of faults and failures
in a complex software system. IEEE Transactions on Software Engineering, 26
(8):797–814, 2000.

Martin Fowler. Refactoring: Improving the Design of Existing Code. Addison-
Wesley Professional, 1999.

154

Martin Fowler. Who needs an architect? IEEE Software, 20(5):11–13, 2003.

Keith Gallagher, Andrew Hatch, and Malcolm Munro. Software architecture vi-
sualization: An evaluation framework and its application. IEEE Transactions
on Software Engineering, 34(2):260–270, 2008.

David Garlan and Mary Shaw. An Introduction to Software Architecture. Ad-
vances in Software Engineering and Knowledge Engineering, Volume I, World
Scientific Publishing Company, 1993.

Mechelle Gittens, Yong Kim, and David Godwin. The vital few versus the trivial
many: Examining the pareto principle for software. In Proceedings of the 29th
Annual International Computer Software and Applications Conference (COMP-
SAC’05), pages 179–185, Edinburgh, Scotland, July 2005.

Michael W. Godfrey and Eric H. S. Lee. Secrets from the monster: Extract-
ing mozilla’s software architecture. In Proceedings of the 2nd Symposium of
Constructing Software Engineering Tools (CoSET’00), pages 15–23, Limerick,
Ireland, June 2000.

Ian Gorton. Essential Software Architecture. Springer-Verlag, 2006.

Robert B. Grady. Practical Software Metrics for Project Management and Process
Improvement. Prentice-Hall, 1992.

Todd L. Graves and Audris Mockus. Inferring change effort from configuration
management databases. In Proceedings of the 5th International Symposium on
Software Metrics (ISSM’98), pages 267–273, Bethesda, MD, USA, March 1998.

Penny Grubb and Armstrong A. Takang. Software Maintenance: Concepts and
Practice. World Scientific Publishing Company, 2003.

Peter Hiemann. A new look at the program development process. In Proceedings
of the 4th Informatic Symposium on Program Methodology, pages 11–37, Bad
Wildbad, Germany, September 1974.

Charles Antony Richard Hoare. Communicating Sequential Processes. Prentice
Hall, 1985.

Lorin Hochstein and Mikael Lindvall. Combating architectural degeneration: A
survey. Information and Software Technology, 47:643–656, 2005.

Richard C. Holt. Structural manipulations of software architecture using tarski
relational algebra. In Proceedings of the 5th IEEE Working Conference on
Reverse Engineering (WCRE’98), pages 210–219, Honolulu, Hawaii, USA, Oc-
tober 1998.

Richard C. Holt. Software architecture abstraction and aggregation as algebraic
manipulations. In Proceedings of the 9th Conference of the IBM Centre for
Advanced Studies on Collaborative Research (CASCON’99), pages 5–17, Mis-
sissauga, Ontario, Canada, November 1999.

Richard C. Holt. Grokking software architecture. In Proceedings of the 15th
Working Conference on Reverse Engineering (WCRE’08), pages 5–14, Antwerp,
Belgium, October 2008.

155

P. Hsia, G. Gupta, C. Kung, J. Peng, and S. Liu. A study on the effect of
architecture on maintainability of object-oriented systems. In Proceedings of
the 3th International Conference on Software Maintenance (ICSM’95), pages
4–11, Opio (Nice), France, October 1995.

Ivar Jacobson and Fredrik Lindström. Re-engineering of old systems to an object-
oriented architecture. In Proceedings of the 6th Annual Conference on Object-
Oriented Programming Systems, Languages, and Applications (OOPSLA’91),
pages 340–350, Phoenix, Arizona, USA, October 1991.

Catherine Blake Jaktman, John Leaney, and Ming Liu. Structural analysis of the
software architecture - a maintenance assessment case study. In Proceedings of
the 1st Working IFIP Conference on Software Architecture (WICSA’99), pages
455–470, San Antonio, TX, USA, February 1999.

Anton Jansen and Jan Bosch. Software architecture as a set of architectural
design decisions. In Proceedings of the 5th Working IEEE/IFIP Conference on
Software Architecture (WICSA’05), pages 109–120, Pittsburgh, Pennsylvania,
USA, November 2005.

Michael Jiang, Jing Zhang, Hong Zhao, and Yuanyuan Zhou. Maintaining soft-
ware product lines c an industrial practice. In Proceedings of the 24th IEEE
International Conference on Software Maintenance (ICSM’08), pages 444–447,
Beijing, China, September 2008.

D. Kafura and R. Reddy. The use of software complexity metrics in software main-
tenance. IEEE Transactions on Software Engineering, 13(3):335–343, 1987.

Alan Karr, Adam Porter, and Lawrence Votta Jr. An empirical exploration of
code evolution. In Proceedings of the 1st International Workshop on Empirical
Studies of Software Maintenance (WESS’96), Monterey, CA, USA, November
1996.

Rick Kazman, Liam O’Brien, and Chris Verhoef. Architecture reconstruction
guidelines, third editions, technical report, cmu/sei-2002-tr-034, 2002.

Rene L. Krikhaar. Reverse architecting approach for complex systems. In Proceed-
ings of the 1997 International Conference on Software Maintenance (ICSM’97),
pages 1–11, Bari Italy, September 1997.

Rene L. Krikhaar, Andre Postma, Alex Sellink, Marc Stroucken, and Chris Ver-
hoef. A two-phase process for software architecture improvement. In Proceed-
ings of the 15th International Conference on Software Maintenance (ICSM’99),
pages 371–380, Oxford, England, UK, August 1999.

Shyamsundar Kulkarni. Software defect rediscoveries: Causes, taxonomy and
signficance. M.sc., The University of Western Ontario, 2008.

Thomas D. LaToza, Gina Venolia, and Robert DeLine. Maintaining mental mod-
els: A study of developer work habits. In Proceedings of the 28th Interna-
tional Conference on Software Engineering (ICSE’06), pages 492–501, Shang-
hai, China, May 2006.

Meir M. Lehman. Programs, life cycles, and laws of software evolution. Proceedings
of the IEEE, 68(9):1060–1076, 1980.

156

Marek Leszak, Dewayne E. Perry, and Dieter Stoll. A case study in root cause
defect analysis. In Proceedings of the 22nd International Conference on Software
Engineering (ICSE’00), pages 428–437, Limerick, Ireland, June 2000.

Timothy C. Lethbridge, Steve Lyon, and Peter Perry. The management of
univeristy-industry collaborations involving empirical studies of software en-
gineering. In Forrest Shull, Jaince Singer, and Dag I.K. Sjøberg, editors, Guide
to Advanced Empirical Software Engineering, pages 257–284. Springer, 2007.

Hareton K.N. Leung and Lee White. Insights into regression testing. In Pro-
ceedings of the Conference on Software Maintenance (ICSM’89), pages 60–69,
Miami, FL, USA, October 1989.

Zude Li, Mechelle Gittens, Syed Shariyar Murtaza, Nazim H. Madhavji, Andriy V.
Miranskyy, David Godwin, and Enzo Cialini. Analysis of pervasive multiple-
component defects in a large software system. In Proceedings of the 25th IEEE
International Conference on Software Maintenance (ICSM’09), pages 265–273,
Edmonton, Alberta, Canada, September 2009.

Bennet P. Lientz and E. B. Swanson. Software Maintenance Management: a Study
of the Maintenance of Computer Application Software in 487 Data Processing
Organizations. Addison-Wesley Publishing, 1980.

Richard J. Lindner and D. Tudahl. Software development at a baldrige winner.
In Proceedings of the International Electro Conference (ELECTRO’94), pages
167–180, Boston, USA, May 1994.

Mikael Lindvall and Dirk Muthig. Bridging software architecture gap. IEEE
Computer, 41(6):98–101, 2008.

Mikael Lindvall, Roseanne Tesoriero, and Patricia Costa. Avoiding architectural
degeneration: An evaluation process for software architecture. In Proceedings
of the 8th IEEE Symposium on Software Metrics (METRICS’02), pages 77–86,
Ottawa, Canada, June 2002.

Michael J. Lyons. Salvaging your software asset: (tools based maintenance). In
Proceedings of the AFIPS Conference on National Computer, pages 337–341,
Chicago, Illinois, USA., May 1981.

Alan MacCormack, John Rusnak, and Carliss Y. Baldwin. Exploring the structure
of complex software designs: An empirical study of open source and proprietary
code. Management Science, 52(7):1015–1030, 2006.

Nazim H. Madhavji. Environment evolution: The prism model of changes. IEEE
Transactions on Software Engineering, 18(5):380–392, 1992.

Jim A. McCall, P. K. Richards, and G. F. Walters. Factors in software quality.
National Technique Information Service, 1,2,3, 1977.

Thomas McGibbon. Software reliability data summary, data analysis center for
software (dacs), 1996.

Andrew McNair, Daniel M. German, and Jens Weber-Jahnke. Visualizing software
architecture evolution using change-sets. In Proceedings of the 14th Working
Conference on Reverse Engineering (WCRE’07), pages 130–139, Vancouver,
BC., Canada, October 2007.

157

Nancy Mead, Kathy Beckman, Jimmy Lawrence, George O’Mary, Cynthia Parish,
Perla Unpingco, and Hope Walker. Industry/university collaboration: Different
perspectives heighten mutual opportunities. Journal of Systems and Software,
49:409–423, 1999.

Nenad Medvidovic and Richard N. Taylor. A classification and comparison frame-
work for software architecture description languages. IEEE Transactions on
Software Engineering, 26(1):70–93, 2000.

Tom Mens and Tom Tourw. A survey of software refactoring. IEEE Transactions
on Software Engineering, 30(2):126–139, 2004.

Jürgen Münch. Effective data interpretation. In Victor R. Basili, Dieter Rombach,
Kurt Schneider, Barbara Kitchenham, Dietmar Pfahl, and Richard W. Selby,
editors, Empirical Software Engineering Issues: Critical Assessment and Future
Directions, pages 83–90. Springer, 2006.

Gail C. Murphy, David Notkin, and Kevin Sullivan. Software reflexion models:
Bridging the gap between design and implementation. IEEE Transactions on
Software Engineering, 27(4):364–380, 2001.

Takeshi Nakajo and Hitoshi Kume. A case history analysis of software error
cause-effect relationships. IEEE Transactions on Software Engineering, 17(8):
830–838, 1991.

Josef Nedstam, Even-Andre Karlsson, and Martin Host. Experiences from the
architectural change process. In Proceedings of the 2nd International Workshop
from Software Requirements to Architectures (STRAW’03), Portland, Oregon,
USA, May 2003.

Josef Nedstam, Even-Andre Karlsson, and Martin Host. The architectural change
process. In Proceedings of the 2004 International Symposium on Empirical Soft-
ware Engineering (ISESE’04), pages 27–36, Redondo Beach CA, USA, August
2004.

John Nestor, William Wulf, and David Lamb. IDL - interface description lan-
guage - formal description (draft revision 2), technical report, computer science
department, carnegie-mellon university, 1982.

Bashar Nuseibeh. Weaving the software development process between require-
ments and architectures. In Proceedings of the First International Workshop
From Software Requirements to Architectures (STRAW’01), Toronto, Canada,
May 2001.

Magnus C. Ohlsson and Claes Wohlin. Identification of green, yellow and red
legacy components. In Proceedings of the 14th International Conference on Soft-
ware Maintenance (ICSM’98), pages 6–15, Bethesda, Washington D.C., USA,
November 1998.

Magnus C. Ohlsson, Anneliese von Mayrhauser, Brian McGuire, and Claes
Wohlin. Code decay analysis of legacy software through successive releases. In
Proceedings of the 1999 IEEE Aerospace Conference, pages 69–81, Snowmass
at Aspen, CO, USA, 1999.

158

Thomas J. Ostrand and Elaine J. Weyuker. The distribution of faults in a large
industrial software system. In Proceedings of the 2002 ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis (ISSTA’02), pages 55–64,
Rome, Italy, July 2002.

Thomas J. Ostrand, Elaine Weyuker, and Robert M. Bell. Predicting the location
and number of faults in large software systems. IEEE Transactions on Software
Engineering, 31(4):340–355, 2005.

Alessandra Padula. Use of a program understanding taxonomy at Hewlett-
Packard. In Proceedings of the 2nd Workshop on Program Comprehension,
pages 66–70, Capri, Italy, July 1993.

David Lorge Parnas. Designing software for ease of extension and contraction.
IEEE Transactions on Software Engineering, 5(2):128–138, 1979.

David Lorge Parnas. Software aging. In Proceedings of the 16th International
Conference on Software Engineering (ICSE’94), pages 279–287, Sorrento, Italy,
May 1994.

Dewayne E. Perry and W. M. Evangelist. An empirical study of software interface
faults. In Proceedings of the 20th Annual Hawaii International Conference on
Systems Sciences, pages 113–126, Hawaii, January 1987.

Dewayne E. Perry and Alexander L. Wolf. Foundations for the study of software
architecture. ACM SIGSOFT Software Engineering Notes, 17(4):40–52, 1992.

Thomas M. Pigoski. Practical Software Maintenance: Best Practices for Managing
Your Software Investment. John Wiley & Sons, Inc., 1997.

D. Li. L. Rees, K. Stephenson, and J. V. Tucker. The algebraic structure of
interfaces. Science of Computer Programming, 49(1-3):47–88, 2003.

Dieter Rombach and Reinhold Achatz. Research collaborations between academia
and industry. In Proceedings of the Future of Software Engineering 2007, the
29th International Conference on Software Engineering (ICSE’07), pages 29–36,
Minneapolis, MC, USA, May 2007.

H. Dieter Rombach. A controlled experiment on the impact of software structure
on maintainability. IEEE Transactions on Software Engineering, 13(3):344–354,
1987.

Kenneth A. Ross and Charles R.B. Wright. Discrete Mathematics. Prentice Hall,
1988.

Christian Del Rosso. Continuous evolution through software architecture evalua-
tion: A case study. Journal of Software Maintenance and Evolution: Research
and Practice, 18:351–383, 2006.

Gregg Rothermel and Mary Jean Harrold. A safe, efficient regression test selection
technique. ACM Transactions on Software Engineering and Methodology, 6(2):
173–210, 1997.

Gunther Schmidt and Thomas Ströhlein. Relations and Graphs. Springer-Verlag,
1993.

159

Robert C. Seacord, Daniel Plakosh, and Grace A. Lewis. Modernizing Legacy
Systems: Software Technologies, Engineering Processes, and Business Practices.
Addison-Wesley, 2003.

Michael E. Shin, Yan Xu, Fernando Paniagua, and Jun Hoon An. Detection
of anomalies in software architecture with connectors. Science of Computer
Programming, 61:16–26, 2006.

Forrest Shull, Victor Basili, Barry Boehm, A. Winsor Brown, Patricia Costa,
Mikael Lindvall, Dan Port, Ioana Rus, Roseanne Tesoriero, and Marvin
Zelkowitz. What we have learned about fighting defects. In Proceedings of
the 8th IEEE Symposium on Software Metrics (METRICS’02), pages 249–258,
Ottawa, Canada, June 2002.

Harry M. Sneed. Economics of software re-engineering. Software Maintenance:
Research and Practice, 3(3):163–182, 1991.

Ian Sommerville. Software Engineering (8th edition). Addison Wesley, 2006.

Maria J. C. Sousa and Helena Mendes Moreira. A survey on the software mainte-
nance process. In Proceedings of the 14th International Conference on Software
Maintenance (ICSM’98), pages 265–274, Bethesda, Maryland, USA, November
1998.

Wayne G. Stevens, G. Meyers, and Larry Constantine. Structured design. IBM
Systems Journal, 13(2):115–139, 1974.

William C. Stratton, Deane E. Sibol, Mikael Lindvall, and Patricia Costa. The
save tool and process applied to ground software development at JHU/APL:
An experience report on technology infusion. In Proceedings of the 31st An-
nual IEEE/NASA Software Engineering Workshop (SEW’07), pages 187–193,
Columbia, Maryland, USA, March 2007.

Catherine Stringfellow and Anneliese Andrews. Deriving a fault architecture to
guide testing. Software Quality Journal, 10:299–330, 2002.

Catherine Stringfellow, C. D. Amory, D. Potnuri, Anneliese Andrews, and
M. Georg. Comparison of software architecture reverse engineering methods.
Information and Software Technology, 48:484–497, 2006.

Jeff Sutherland. Business objects in corporate information systems. ACM Com-
puting Surveys, 27(2):274–276, 1995.

SWEBOK. Guide to the software engineering body of knowledge; see www.
swebok.org, 2004.

Alfred Tarski. On the calculus of relations. The Journal of Symbolic Logic, 6(3):
73–89, 1941.

John B. Tran and Richard C. Holt. Forward and reverse repair of software archi-
tecture. In Proceedings of the 9th Conference of the Centre for Advanced Studies
on Collaborative Research (CASCON’99), pages 12–20, Mississauga, Ontario,
Canada, November 1999.

160

Jilles van Gurp and Jan Bosch. Design erosion: Problems and causes. Journal of
Systems and Software, 61(2):105–119, 2002.

Anneliese von Mayrhauser, Magnus C. Ohlsson, and Claes Wohlin. Deriving fault
architectures from defect history. Journal of Software Maintenance: Research
and Practice, 12(5):287–304, 2000.

David M. Weiss. Evaluating software development by error analysis: The data
from the architecture research facility. Journal of Systems and Software, 1:
57–70, 1979.

David M. Weiss and Victor R. Basili. Evaluating software development by anal-
ysis of changes: Some data from the software engineering laboratory. IEEE
Transactions on Software Engineering, 11(2):157–168, 1985.

Michel Wermelinger and Jose Luiz Fiadeiro. Connectors for mobile programs.
IEEE Transactions on Software Engineering, 24(5):331–341, 1998.

Byron J. Williams and Jeffrey C. Carver. Characterizing software architecture
changes: A systematic review. Information and Software Technology, 52:31–51,
2010.

Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Björn Regnell, and
Anders Wesslén. Experimentation in Software Engineering: An Introduction.
Kluwer Academic Publishers, 2000.

Annie T.T. Ying, Gail C. Murphy, Raymond Ng, and Mark C. Chu-Carroll. Pre-
dicting source code changes by mining change history. IEEE Transactions on
Software Engineering, 30(9):574–586, 2004.

Tze-Jie Yu, Vincent Y. Shen, and Hubert E. Dunsmore. An analysis of several
software defect models. IEEE Transactions on Software Engineering, 14(9):
1261–1270, 1988.

Weider D. Yu. A software fault prevention approach in coding and root cause
analysis. Bell Labs Technical Journal, 3(2):3–21, 1998.

Martin V. Zelkowitz and Loana Rus. Defect evolution in a product line environ-
ment. Journal of Systems and Software, 70(1-2):143–154, 2004.

Thomas Zimmermann, Peter Weibgerber, Stephan Diehl, and Andreas Zeller.
Mining version histories to guide software changes. In Proceedings of the 26th
International Conference on Software Engineering (ICSE’04), pages 563–572,
Edinburgh, UK, May 2004.

161

Appendix A

DAD with Relation Algebra

In this chapter, we describe a Relation Algebra implemented in the DAD proto-

type tool to support expression and manipulation of defect properties of software

architectures. In Section A.1, we briefly introduce the motivation of using Relation

Algebras for architectural analysis. We then review related algebraic work in Sec-

tion A.2, centered on expression and manipulation of software architectures. After

that, we outline basic notions and their notations in Section A.3. In Section A.4,

we describe the Relation Algebra. In Section A.5, we present a simple application

of this approach for architectural degeneration measurement. In Section A.6, we

elaborate the algebra implementation in the DAD prototype tool. Finally, we

compare the approach against existing related techniques in Section A.7.

A.1 Motivation

A software architecture is the structure of a system, comprising of software ele-

ments, the externally visible properties of those elements, and the relationships

among them (Bass et al., 2003, p. 21). It is often specified informally as a box-and-

arrow graph (Gorton, 2006, p. 117), termed the architectural graph (Holt, 1998).

More formally, an ordinary Relation Algebra (such as Tarski’s algebra of binary

relations (Tarski, 1941) and Codd’s algebra of n-ary relations (Codd, 1972)) has

162

been used by some researchers to facilitate the visualization (Berghammer and

Fronk, 2003), transformation (Krikhaar et al., 1999), abstraction (Holt, 1999),

aggregation (Holt, 1999), and analysis (Feijs et al., 1998) of software architec-

tures. These are, clearly, important operations on software architectures for the

development of software systems.

However, the reality is that software systems can be defective and approxi-

mately 5% to 20% of these defects are architectural defects (Yu, 1998; Li et al.,

2009). Such defects are characterized by: (i) their span across multiple software

components (also often referred to as “elements”); (ii) their persistence across

multiple development phases or releases; and (iii) their complexity.

Just as a Relation Algebra has been demonstrated to be invaluable for ar-

chitectural “structure” (e.g., through the described operations) (Holt, 2008), so

it can be used fruitfully for the visualisation, aggregation and analysis of archi-

tectural “defects”. For example, a defect spanning two or more components can

be depicted in the algebra as attributes of inter-component relationships. Also,

defects pertaining to higher levels of system abstraction (such as system, subs-

system and component levels) can be expressed in the algebra as aggregates of

defects pertaining to lower levels of system abstraction (such as files, classes and

functions). Furthermore, defects persistent across multiple phases or releases can

be stated in the algebra through longitudinal analysis of the defects.

Ordinary Relation Algebras such as Tarski’s algebra (Tarski, 1941) cannot ex-

press and manipulate the described architectural defect-properties by its relational

structure and operations. For example, consider that there are three architec-

tural (inter-component) defects di, dj and dk involving a dependency relationship

between components x and y in a software architecture. The architectural rela-

tionship can be described as a tuple of a binary relation: <x, y> in the ordinary

algebra. However, the three defects cannot be expressed easily within such a bi-

nary relation structure; it requires the algebra to deal with different numbers of

163

defects embodied across the various architectural components. This is also the

problem with Codd’s algebra (Codd, 1972). Also, the ordinary relational opera-

tors cannot manipulate defect-properties of <x, y>. Similarly, both Tarski’s and

Codd’s algebras also need to deal with issue of cross-longitudinal defects.

Feijs and Krikhaar (1998) and Holt (1999) have extended the ordinary algebra

of binary relations by incorporating a numeric arity with the binary relation (e.g.,

<x, y, n> where, for example, n can be aggregate size of x and y). While this is

useful to capture architectural properties, its power of expression is limited when

attempting to address architectural defect-properties already described. We can

see from this that there was a need to investigate architectural defect-properties

and how these can be expressed in, and manipulated by, a Relation Algebra.

Building upon the work by Feijs and Krikhaar (1998) and Holt (1999), we

propose an approach to expressing and manipulating defect-properties of soft-

ware architectures with a Relation Algebra. Example defect-properties are the

quantity of defects pertaining to a system component or involving two or more

components, the complexity of a defect in terms of, for example, the number of

components changed in order to fix this defect, and the persistence of a defect

crossing development phases and releases.

In our approach, the Relation Algebra is used to support expression of the ar-

chitectural defects of a software system with ordinary relations, and manipulation

of the architectural defects with ordinary relational operations. This approach can

therefore support analysis of the architectural defect-properties (e.g., their distri-

bution, complexity and persistence) for a given software system. In particular, it

facilitates several requirements for architectural analysis:

(i) specifying the varying number of inter-component defects across the archi-

tecture (von Mayrhauser et al., 2000; Li et al., 2009);

(ii) analysis of multiple architectures for persistent defects (e.g., across a product

line (Jiang et al., 2008; Zelkowitz and Rus, 2004));

164

(iii) analysis of the span of architectural defects crossing multiple components

(e.g., interface defects (Endres, 1975; Basili and Perricone, 1984));

(iv) tracing defects across longitudinally (phases and releases) for a given system

(von Mayrhauser et al., 2000; Li et al., 2009).

With this Relation Algebra, the DAD prototype tool can implement its main

features – characterizing MCDs and diagnosing architectural degeneration – for a

given system. See Appendix A for a complete description of this Relation Algebra.

A.2 Related Algebraic Work

In this section, we briefly outline existing literature on Relation Algebras and

formal specification of architectures, centering on expressing and manipulating

defect-properties for software architectures.

A.2.1 Ordinary Relation Algebras

A classical Relation Algebra is Tarski’s algebra of binary relations (1941), which

has been implemented in a couple of languages (e.g., Relview and Grok - see (Holt,

2008)). For example, Grok is light-weight tool, uses formal approach and supports

features such as architectural comparison, abstraction and visualization (1998).

Feijs et al. (1998) define a variant of Tarski’s algebra, termed Relation Partition

Algebra (RPA). This has been implemented in a tool called TEDDY, which shares

many features with Grok. A more expressive algebra is Codd’s algebra of n-ary

relations (1972), which has been implemented in several languages such as GReQL,

JGrok and CrocoPat (see (Holt, 2008)). They can be used to manipulate n-ary

relationships (e.g., hierarchy and dependency relationships among components).

Feijs and Krikhaar (1998) define a multi-relation theory, where an ordinary

relation is bound to a numeric multiplicity arity. The arity is a number which can

be used to denote user-defined concepts, such as: the number of instances of a

165

given tuple in a relation; the size of the related components; defect-count; change-

counts; etc. This structure allows more complex relational operators to be defined

over relations (e.g., aggregation of component sizes, defects, changes made). Holt

(1999) also proposed a similar extension to Tarski’s algebra for application to the

field of software architectures.

A.2.2 Algebras of Components and Connectors

Complementing the work on Relation Algebra is the formalization of components

and connectors for architectural specification. Connectors are communication

vehicles (e.g., procedure calls) among the components of a system. There are al-

gebras specifically for the formalization of architectural components and connec-

tors. For example, Bergstra et al. (1990) define a module algebra that specifies

export/import resources in first-order logic. Feijs and Qian (2002) similarly define

an algebra for component interfaces.

Also, Allen and Garlan (1994) propose an architectural connector theory which

defines architectural connectors as explicit semantic interactions between compo-

nents. In this theory, each connector is specified as a protocol that characterizes

the components in an interaction and how they interact. The underlying model is

a process algebra (a subset of Hoare’s Communicating Sequential Process or CSP

(Hoare, 1985)). Similarly, Wermelinger and Fiadeiro (1998) propose a connector

algebra which supports connector construction for software design. For example,

it supports construction of new connectors from old ones.

In addition, there is other algebraic work for formal specification of architec-

tures (Nestor et al., 1982), where composition of interfaces and import/export

relationships amongst the interfaces are prominent (Rees et al., 2003). Further-

more, there are a number of architectural description or modeling languages (e.g.,

Acme, Wright, and UML – see (Medvidovic and Taylor, 2000)) that also facilitate

specification of architectures.

166

A.2.3 Analysis of Existing Algebraic Work

Just as a Relation Algebra has been demonstrated to be invaluable for architec-

tural “structure” (Holt, 2008), so it could be used fruitfully for the visualization,

aggregation and analysis of architectural “defects”. However, ordinary Relation

Algebras such as Tarski’s algebra (1941) and Codd’s algebra (1972) cannot ex-

press and manipulate architectural defect-properties by its relational structure

and operations. For example, consider that there are three architectural (inter-

component) defects di, dj and dk involving a dependency relationship between

components x and y in a software architecture. The architectural relationship can

be described as a tuple of a binary relation: <x, y> in the ordinary algebra. How-

ever, the three defects cannot be expressed easily within such a binary or n-ary

relation structure; it requires the algebra to deal with different number of defects

embodied across the various architectural components. Similarly, both Tarski’s

and Codd’s algebras also need to deal with issue of cross-longitudinal defects.

Feijs and Krikhaar (1998) and Holt (1999) have extended Tarski’s algebra

(1941) by incorporating a numeric arity with the binary relation (e.g., <x, y, n>

where, for example, n can be aggregate size of x and y). While this is useful to cap-

ture architectural properties, its power of expression is limited when attempting

to address architectural defect-properties already described.

Analyzing these algebraic techniques and tools indicates that they cannot ef-

fectively express and manipulate architectural defect-properties. We were thus

motivated to build an enhanced Relation Algebra based on existing algebraic

work, in order to implement the DAD features in the prototype tool.

A.3 Basic Notions and Notations

A set is a collection of objects. Given set S, a (binary) relation on S is a subset of

the Cartesian product S×S, written RS2 (or R, if S is clear) ⊆ {<x, y> | x, y ∈ S}.

167

We also use an infix notation to present a relation: xRy for <x, y> ∈ R. Further,

we write EM for the empty relation {}, ID for the identity relation {<x, x> | x ∈
S}, UN for the universe relation S × S, and ℘(UN) for the power set of UN, i.e.,

℘(UN) = {R | R ⊆ UN}.

Several basic set operations are defined as follows (see (Ross and Wright, 1988,

ch. 2)). We use ⊆ for inclusion, = for equivalence, − for complement, > for

transpose, ∪ for union, ∩ for intersection, − for (asymmetric) difference, and ◦
for composition. Note that Ri and Rj are two example sets, ⇔ means “if and only

if,” and ≡ means “equals to”.

• Ri ⊆ Rj ⇔ ∀x ∈ Ri [x ∈ Rj].

• Ri = Rj ⇔ Ri ⊆ Rj ∧ Rj ⊆ Ri.

• R = {<x, y> | <x, y> ∈ UN ∧ <x, y> 6∈ R}.
• R> = {<y, x> | <x, y> ∈ R}.
• Ri ∪ Rj ≡ {<x, y> | <x, y> ∈ Ri ∨ <x, y> ∈ Rj}.
• Ri ∩ Rj ≡ {<x, y> | <x, y> ∈ Ri ∧ <x, y> ∈ Rj}.
• Ri − Rj ≡ {<x, y> | <x, y> ∈ Ri ∧ <x, y> 6∈ Rj}.
• Ri ◦ Rj ≡ {<x, z> | <x, y> ∈ Ri ∧ <y, z> ∈ Rj}.

A typical Relation Algebra (R, ∪, ∩, −, ◦, >) (Schmidt and Ströhlein, 1993, p.

271) consists of a nonempty set R of relations, such that: for any x, y, and z ∈ R,

the following, example, axioms hold:

• (x ∪ y) ∪ z = x ∪ (y ∪ z), (x ∩ y) ∩ z = x ∩ (y ∩ z).

• x ∪ y = y ∪ x), x ∩ y = y ∩ x.

• x ∪ (x ∩ y) = x, x ∩ (x ∪ y) = x.

• x ⊂ y ⇒ x ∪ z ⊂ y ∪ z, x ∩ z ⊂ y ∩ z.

• x ◦ (y ◦ z) = (x ◦ y) ◦ z.

• If x ◦ y = y ◦ x = x and x ◦ z = z ◦ x = x, then y = z.

168

• For R 6= EM: UN ◦ R ◦ UN = UN.

• x ◦ y ⊂ z ⇔ x> ◦ z ⊂ y ⇔ z ◦ y> ⊂ x.

The above mentioned notions and notations are used in following sections for

description of the approach with a Relation Algebra.

A.4 Extended Relation Algebra for DAD

In this extended Relation Algebra, we define relational structures used specifi-

cally to express architectural defect-properties and operations on the relational

structures for manipulation. This work is, in part, built upon the work by Feijs-

Krikhaar (1998) and Holt (1999) by utilizing the idea of attribute arity. In the

subsections below, we first describe the architecture relation and the Lifting and

Lowering operations for abstracting architectural elements. After that, we extend

the architecture relation with defect attributes. Finally, we define the procedure

for aggregating defect-properties. The relational structures and operations sup-

port expression and manipulation of architectural structures and defects, which

is essential to the DAD prototype tool.

A.4.1 Architectural Relation

A software architecture is a composition of architectural entities and relationships

between the entities. Example entities are: components, subsystems, and system.

And example relationships are: a component contains another one; changes in one

component are related to changes in another; and a component invokes another

to satisfy an obligation.

An architectural relation (AR) is a special ordinary relation where each tuple

denotes a relationship between two entities of an architecture. Formally, an ar-

chitectural relation, written AR, is a subset of the Cartesian product AES× AES,

where AES denotes the set of entities of an architecture.

169

For the purpose of expression and manipulation of architectural defects (such

as aggregation (Holt, 1999) and change-impact analysis (Arnold and Bohner,

1993)) with the algebra, we focus on two main AR types: hierarchical and depen-

dence ARs (also see (Feijs et al., 1998)).

• A hierarchical AR represents a partial-order relation between architectural

entities. A hierarchical AR is a parent-of relation, written ARP. Given x, y ∈
AES, <x, y> ∈ ARP (i.e., xPy) if and only if x is a parent of (or contains)

y, denoting that a subsystem (x) is the parent of a component (y).

• A dependence AR denotes a dependence relation between architectural en-

tities. There are variant dependence AR types such as function-call, data-

reference, change-coupling, user, and so on. A dependence AR is a change-

coupling relation, written ARC. Given x, y ∈ AES, <x, y> ∈ ARC (i.e., xCy)

if and only if changes (insertion, deletion and modification) in x are related

to changes in y.

We assume that any two architectural entities (x, y) having parent-of rela-

tionships with the same third-party entity (z) must be involved in a parent-of

relationship. This means that for any xPz and yPz we have xPy or yPx. We also

assume that hierarchical and dependence ARs are mutually exclusive except the

identity tuples. For example, considering ARP and ARC: if xPy or yPx holds, then

xCy and yCx do not hold; and vice versa. However, there is an exception: any

identity tuple <x, x> belongs to both ARP and ARC.

Example 1: Figure A.1 illustrates an architectural graph segment with parent-of

and change-coupling relationships. This segment contains a system node (sys),

two component nodes (c1 and c2), and three source file nodes (f1, f2 and f3). The

set of architectural entities is:

AES = { sys, c1, c2, f1, f2, f3 }.

The tuples of the parent-of and change-coupling ARs are labeled with “P” and

“C” in the figure, below:

170

ARP = { <sys, c1>, <sys, c2>, <c1, f1>, <c1, f2>, <c2, f3> }.
ARC = { <f1, f2>, <f2, f3> }.

sys

c1 c2

f1
f2 f3

P P

PP
P

C C

Figure A.1: An example architectural graph (segment).

Later on, we use ARP as a reference hierarchical AR and use ARC as a reference

dependence AR. Any operations or constraints applied to ARP or ARC are also

applied to hierarchical or dependence ARs, respectively, by default.

On a practical note, we can extract the ARP or ARC tuples by examining the

system’s architecture and its defect logs. These tuples (that are obtained directly

from the source data) are termed initial tuples. There is another type, derived

tuples, that is obtained by applying certain operations on the architecture. These

operations and the resultant, derived, tuples are discussed in the next subsection.

A.4.2 AR Lifting and Lowering

Since the parent-of relation ARP is transitive, we can infer that: If xPy and yPz,

then xPz. In a sense, xPz is a lifting (i.e., abstraction) from yPz, and xPz is also a

lowering (i.e., refinement) from xPy. For example, considering nodes sys, c1 and

f1 in Figure A.1. It is known that sysPc1 and c1Pf1 (see Example 1). Therefore,

we can say that: c1Pf1 induces sysPf1 by lifting, and sysPc1 induces sysPf1 by

lowering. Through iteratively lifting and lowering the initial ARP, a complete ARP

can be constructed.

171

This transition based lifting and lowering situation cannot apply to the change-

coupling relation ARC, because it is non-transitive. However, in Relation Partition

Algebra (RPA) (Feijs et al., 1998), special Lifting and Lowering operations are

defined to transform ARC at a certain level to that at a higher or lower level.

Likewise, we define these two operations in order to construct a complete ARC.

Definition 1 (Lifting and Lowering on ARC) Lifting on ARC has two types:

left and right lifting. Given xCy:

• Left lifting: If ∃ w, s.t. <w, x> ∈ ARP, and <w, y>, <y, w> 6∈ ARP, then

<w, y> ∈ ARC. The operation of deriving wCy from xCy is termed left

lifting, written ↑(xCy) = wCy;

• Right lifting: If ∃ z, s.t. <z, y> ∈ ARP, and <x, z>, <z, x> 6∈ ARP, then

<x, z> ∈ ARC. The operation of deriving xCz from xCy is termed right

lifting, written (xCy)↑ = xCz.

Similarly, the Lowering operation on ARC also has two types: left and right low-

ering. Given xCy:

• Left lowering: If there exists a non-empty set τ = {w | xPw}, then there

must exist at least one w ∈ τ , <w, y> ∈ ARC. The operation of deriving

wCy from xCy is termed left lowering, written wCy ∈ ↓(xCy);

• Right lowering: If there exists a non-empty set τ = {z | yPz}, then there

must exist at least one z ∈ τ , <x, z> ∈ ARC. The operation of deriving xCz

from xCy is termed right lowering, written xCz ∈ (xCy)↓.

Note that the lowering operation is related to the lifting operation. For ex-

ample, wCy ∈ ↓(xCy) holds if and only if ↑(wCy) = xCy holds. Likewise,

{wCy} = ↓(xCy) holds if and only if ↑(wCy) = xCy and @z : z 6= w∧ ↑(zCy) = xCy

hold.

Example 2: Considering three relationships (AR tuples) in Figure A.1: c1Pf2,

f2Cf3, and c2Pf3. First, new tuple c1Cf3 is derived by left lifting f2Cf3. Second,

172

new tuple c1Cc2 is derived by right lifting c1Cf3. In brief, ↑(f2Cf3) = c1Cf3 and

(c1Cf3)↑ = c1C c2. We can also infer that ↓ (c1Cf3) = {f2Cf3} and (c1C c2) ↓ =

{c1Cf3}. Note that sys Cf3 does not hold because of sys Pf3.

An architectural relation that contains both initial tuples and all derived tuples

is claimed complete. Formally:

Definition 2 (AR Completeness) There are two cases:

• ARP is complete, if and only if for any xPy and yPz: <x, z> ∈ ARP.

• ARC is complete, if and only if for any xCy: {↑(xCy)} ∪ {(xCy)↑} ⊆ ARC.

Note that a complete ARC also indicates that any xCy: ↓(xCy) ∪ (xCy)↓ ⊆
ARC, because, as said above, the AR lowering operation is related to the AR lifting

operation.

Example 3: Considering the initial ARP and ARC shown in Figure A.1 (see

Example 1), we can construct the corresponding complete ones below. First, the

following new parent-of tuples are derived from the initial ARP:

sys Pf1; sys Pf2; and sys Pf3.

These derived tuples, together with the initial ones, comprise the complete ARP

over Figure A.1. Second, the following new change-coupling tuples are derived

from the initial ARC and the complete ARP:

↑(f2Cf3) = c1Cf3; (f2Cf3)
↑ = f2C c2; then

↑(f2C c2) = (c1Cf3)
↑ = c1C c2.

Likewise, the above derived tuples, together with the initial ones, comprise the

complete ARC over Figure A.1.

A.4.3 Extended Architectural Relation

The core relational structure of expressing architectural defect-properties is termed

the extended architectural relation (EAR). An EAR relation adds an attribute ar-

ity to each tuple in an architectural relation.

173

Here, an attribute is defined specifically as a set of defects pertaining to an

architectural entity or relationship. For example, the defect set of a change-

coupling relationship between two components x and y is written as D<x,y> =

{d1, · · · , di, · · · , dn} where di (i=1..n) denotes a defect involving this change-

coupling relationship.

Definition 3 (EAR) An EAR built upon an AR and a set Att of defect at-

tributes, written EAR, is a total function: AR → Att. A EAR tuple is thus written

as <x, y, D<x,y>>, where <x, y> is an AR tuple and D<x,y> is the defect set

pertaining to this tuple.

In the approach, EARs are used to express architectural structures (AR) and

defect attributes (Att) . Later, we define operations for manipulating the archi-

tectural structure (AR) and defect attribute (Att) parts of EARs.

As we know parent-of and change-coupling ARs (see Section A.4.1), we can

thus define parent-of and change-coupling EARs based on the according ARs,

written EARP and EARC, respectively. Further, given AR and its derived EAR,

we call AR the base of EAR, written bEARc = AR. Likewise, we write dAReAtt (or

dARe, if Att is clear) for EAR (with Att).

Example 4: Supposing that there are two example EARC tuples in Figure A.1:

identity tuple <f1, f1, {d1, d2, d3}>, and

change-coupling tuple <f1, f2, {d3}>.

The first tuple indicates that file f1 has three defects: d1, d2 and d3. The second

tuple indicates that defect d3 requires fixes in both files f1 and f2, therefore

involving tuple f1Cf2.

Two EARs can be compared (e.g., inclusion “⊆” and equivalence “=”) based

on their tuples, as below.

Definition 4 (EAR ⊆ and =) Given two EAR tuples: ti = <a, b, D<a,b>> and

tj = <c, d, D<c,d>>, we define “less-than” (¹) and equivalence (=) between ti

and tj as:

174

• ti ¹ tj ⇔ a = c ∧ b = d ∧ D<a,b> ⊆ D<c,d>.

• ti = tj ⇔ a = c ∧ b = d ∧ D<a,b> = D<c,d>.

Hence, given two EARs: EARi and EARj, the EAR comparisons (“⊆” and “=”)

are defined as follows:

• EARi ⊆ EARj ⇔ ∀ti ∈ EARi[∃tj ∈ EARj[ti ¹ tj]].

• EARi = EARj ⇔ EARi ⊆ EARj ∧ EARj ⊆ EARi.

Further, we define the ordinary relational operations (e.g., ∪, ∩, and −) for

the EAR structure below.

Definition 5 (Combinational EAR Operations) Given EARi and EARj, a

combinational EAR operation, written ¤4, is a combination of two operations

¤ and 4: The first step is ¤ between bEARic and bEARjc. The second step is 4
between Atti (i.e., the Att of EARi) and Attj (i.e., the Att of EARj). The operation

¤4 is defined as:

EARi ¤4 EARj ≡ d bEARic¤bEARjc eAtti4Attj .

For example, two concrete combinational EAR operations, ∩∪ and ∪∩, are below:

• EARi ∩∪ EARj ≡ {<x, y, D<x,y> ∪ D
′
<x,y>> |

<x, y, D<x,y>> ∈ EARi ∧ <x, y, D
′
<x,y>> ∈ EARj}.

• EARi ∪∩ EARj ≡ {<x, y, D<x,y> ∩ D
′
<x,y>> |

<x, y, D<x,y>> ∈ EARi ∨ <x, y, D
′
<x,y>> ∈ EARj}.

Other combinational operations can be defined similarly, including ∩∩, ∩−, ∪∪,
∪−, −∩, −∪, and −−.

These combinational EAR operations are used to manipulate EARs for varying

purposes such as defect aggregation and comparison among architectural elements.

A.4.4 Attribute Aggregation

The attributes of different architectural entities may have some special relation-

ships. For example, we can infer that, for tuple xPy (x is a parent of y), defects

175

occurred in y (D<y,y>) also occurred in x (D<x,x>), i.e., D<y,y> ⊆ D<x,x>. How-

ever, it is obvious that this simple reasoning method does not fit change-coupling

type tuples such as xCy. To span this deficiency, we define attribute aggregation

to reason how attributes are aggregated over ARP or ARC tuples, below.

Definition 6 (Attribute Aggregation) Given EAR (AR → Att), the members

in Att pertaining to any tuples in AR are aggregated in two ways:

• Considering <x, x> ∈ AR, the attribute of <x, x>, written D<x,x>, is a

union (∪) of the attributes of the entities contained by x, i.e., D<x,x> =
⋃
∀y[xPy] D<y,y>.

• Considering <x, y> (x 6=y) ∈ AR, the attribute of <x, y>, written D<x,y>,

is an intersection (∩) of the attributes of the two connecting entities, i.e.,

D<x,y> = D<x,x> ∩ D<y,y>.

Example 5: Considering Figure A.1 where component c1 contains files f1 and f2.

Supposing that these two EAR tuples hold: <f1, f1, {d1, d2, d3}> and <f2, f2, {d3, d4}>.

According to Definition 6, these two EAR tuples hold:

<c1, c1, {d1, d2, d3, d3, d4}>; <f1, f2, {d3}>.

With the above definitions of AR completeness (Definition 2) and attribute

aggregation (Definition 6), we can set up the criteria for a complete EAR.

Definition 7 (EAR Completeness) An EAR (no matter of the type) is com-

plete, if and only if two conditions hold:

(i) The AR base is complete (see Definition 2);

(ii) Each tuple’s attribute satisfies Definition 6.

A.5 An Example Application

Following the description of the approach to expressing and manipulating architec-

tural defect-properties in the previous section, we describe an example application

of this approach – architectural degeneration measurement.

176

The architectural degeneration has many symptoms (e.g., increasingly exces-

sive size and complexity of system entities (Eick et al., 2001), architectural de-

viation (or departure) (Hochstein and Lindvall, 2005), etc.). Here, we elaborate

on the second symptom posed in Section 5.1 – “the MCDs are more and more

complex to fix”. MCDs are defects requiring fixes in more than one component in

the system. In particular, we choose the MCD-complexity metric M3 – “#Com-

ponents fixed per MCD” – to measure the components in the subject system of

Case Study 2 (see Section 6.2.1).

Note that MCDs involve change-coupling relationships among components

(i.e., fix relationships). Therefore, we can count the average span of a fix re-

lationship (called SPAN) – the average number of components changed in order

to fix a MCD in a specific component – to calculate the M3 measurement for

this component. There are two main steps in this calculation with the algebraic

approach described in above Section A.4.

Step 1: defined the change-coupling extended architectural relation (EARC) for

each release of the system. This coincides with Step 1 of the DAD approach –

defect architecture construction (see Section 5.2.1).

Example 6: Figure A.2 illustrates a component-level segment of the EARC di-

agram of the first release of the system. In the figure, the weight on a node

represents the quantity of MCDs in the component. Likewise, the weight on an

edge between two given nodes represents the number of MCDs pertaining to the

two connecting components. The two red-colored nodes denote the top two MCD-

prone components (C5 and C6) in the system. The figure shows that there are 133

MCDs in component C5, 103 MCDs in component C6, and 83 MCDs involving the

fix relationship E0 (between C5 and C6). Thus, for node C5, the corresponding

tuple in EARC is defined as:

< C5, C5, {d1
<C5,C5>, · · · , di

<C5,C5>, · · · , d133
<C5,C5>} > ,

177

where di
<C5,C5> is one of the 133 defects associated with components C5. Likewise,

for edge E0, the corresponding tuple is defined as:

< C5, C6, {d1
<C5,C6>, · · · , di

<C5,C6>, · · · , d103
<C5,C6>} > ,

where di
C5,C6 is one of the 103 relationship defects.

Figure A.2: A segment of the EARC diagram for release 1.

Step 2: measured the average span of fix relationships in the whole system over

time, as below. This coincides with Step 2 of the DAD approach – defect archi-

tecture measurement (see Section 5.2.2).

SPAN = 1 +
1

m

m∑
i=1

|⋃1≤j≤ki
ATT(ci C cj)|

|ATT(ci)| ,

where m is the number of components in the system, ki is the number of compo-

nents that have fix relationships with the ith component (i.e., ci), and ATT(ci C cj)

denotes the attribute set of tuple ci C cj, likewise for ATT(ci). The greater the

SPAN value, the greater the average span of fix relationships in the system.

Example 7: Consider Figure A.2 as an example. Two steps of calculating the

SPAN value follow. First, calculate the average span of fix relationships for each

178

component. For example, component C5 has six fix relationships: E0, E2, E4,

E5, E8, and E9. The average span of these relationships for C5 is:

1 + (83+24+20+17+12+12)/133 ≈ 2.26.

This means that an average of 2.26 components are involved in fixing a MCD in

component C5. Similarly, for component C6, the span is:

1 + (83+21+14)/103 ≈ 2.14.

The span for other components can be calculated similarly1. After calculating

the average span of fix relationships for each component shown in Figure A.2,

we then calculate the average span, SPAN, for all the components in the system,

by averaging the span values for each component. This, in fact, gives us the

measurement of the span value for one system.

Taking the difference between the span values of the given three releases of the

system would identify whether or not the system has degenerated. We found that

the SPAN value is 2.28 for release 1, 2.45 for release 2 (increased by about 7%), and

2.21 for release 3 (decreased by about 9%). This coincides with the findings shown

in Table 6.4 (row “#Components fixed per MCD (M3)”). Further, it indicates

that the architectural degeneration increased as the system evolved from release

1 to release 2 but decreased late in release 3, with respect to the average span of

a fix relationship in the architecture, see Section 6.3.5 for details.

A.6 Algebra Implementation in the Tool

The approach to expressing and manipulating both architectural structures and

defects (shown in Section A.4) has been implemented in the DAD prototype tool.

1For a given component (e.g., C2), the total number of MCDs on the fix relationships of that
component will be greater than or equal to the number of MCDs in the component. However
this figure only shows the relationships among the components that the system contains. The
system is a part of the whole, much larger, system. There are other relationships between C2 and
other components that are outside the system. These relationships are not shown in Figure A.2.
Thus, for C2, the comparison “12 < 24” is only a partial view.

179

Here, we describe the main implementation mechanisms of the approach in the

prototype tool, focusing on: (a) construction of complete extended architectural

relations (EARs) – Section A.6.1; (b) implementation of EAR tuples in a relational

database – Section A.6.2; and (c) implementation of the EAR operations such as

Lifting, Lowering, and others – Section A.6.3.

A.6.1 Complete EAR Construction

Constructing complete EARs is critical for analysis of architectural defect-properties.

Definition 7 has given the criterion to check if an AR is complete. Here we give an

algorithm to construct a complete EAR according to this criterion; see Table A.1.

Table A.1: Algorithm of constructing complete EARP|C.
Input: initial ARP|C

Output: complete ARP|C and EARP|C

Process:

(1) Do // for complete ARP

(2) FOR any two tuples <x, y>, <y, z> ∈ ARP

(3) add <x, z> into ARP;

(4) UNTIL no new tuple can be added to ARP

(5) DO // for complete ARC

(6) FOR any tuple <x, y> ∈ ARC

(7) add ↑(<x, y>) into ARC;

(8) add (<x, y>)↑ into ARC;

(9) UNTIL no new tuple can be added to ARC

(10) FOR any tuple <x, y> ∈ ARP|C

(11) add <x, y, {}> into EARP|C;
// create a placeholder for the attributes of <x, y>.

(12) update D<x,y> for any lowest-level <x, y> in EARP|C;

// this is to initialize EARP|C

(13) Do // attribute aggregation

(14) FOR any tuple <x, y, D<x,y>> ∈ EARP|C

(15) aggregate D<x,y> according to Definition 6;
(16) UNTIL no new attribute aggregations can occur

Note that initial AR tuples are usually at the lowest level of the architecture.

For example, we can find initial change-coupling tuples at the file level; then we

180

derive new component-level tuples based on these tuples for completeness. The

EAR initialization (Line 12) is to fill up the attributes for the lowest-level EAR

tuples, which can be extracted from the defect records of the system. The defect

properties in upper-level entities such as components and subsystems can be then

aggregated from that in the lower-level entities such as source files (Lines 13–16).

A.6.2 EAR Structure Implementation

We describe the implementation of the EAR structure in the DAD prototype tool,

see Figure A.3 (a, b and c). Figure A.3a represents the entity hierarchy tree for

the system. Figure A.3b shows defect information linked to the respective files in

Figure 3a; for example, file f1 contains three defects (d1, d2 and d3). Figure A.3c

shows the defect records. The first defect record in Figure A.3c indicates that

defect d1 was located in file f1; it was medium-severity and it required 5 changes

for the defect to be fixed.

In the DAD prototype tool, this EAR structure was implemented in an or-

dinary relational database systems MySQL2. In MySQL, relational tables can

record architectural structures, defect properties, and links between them. The

Structured Query Language (SQL) is then used to query and manipulate these

relational tables for the support of architectural degeneration diagnosis.

A.6.3 EAR Operation Implementation

Based on the above EAR structure implementation, the combinational operations

(see Definition 5) between two EARs could be implemented by combining the

corresponding operations on the AR parts and the attribute parts of the EARs.

In particular, there are three steps in EAR operation implementation:

Step 1: identify the defect list(s) for each architectural entity involved in an EAR.

As shown in Figure A.3, only files (denoted by nodes f1, f2 and f3) have links to

2See the website of MySQL: www.mysql.com (last access in November 2010).

181

Def. ID Location Severity #Changes

d1 f1 medium 5

d2 f1 medium 1

d3 f1, f2 high 3

d4 f2, f3 low 15

d5 f3 high 8

f1

 f2

 f3

(a): Entity hierarchy tree (b) Defect list

(c) Defect-fix records (procssed)

 c1

 c2

 sys

< d1, d2, d3>

< d3, d4 >

<d4, d5 >

Note: "Def. ID" denotes the defect identity; "Location" denotes where this
defect occurs; "Severity" denotes the defect's severity; and "#Changes" de-
notes the number of changes required to fix the defect.

Figure A.3: EAR structure implementation.

the defect lists. The linked lists of other higher-level entities must be aggregated

from those at the lower level. For example, the defect list of c1 is {<d1, d2, d3,

d4}, which is the aggregation of the defect lists of f1 and f2.

Step 2: Identify the defect list for an EAR tuple by intersecting the defect lists

of the respective two entities in the tuple. For example, the defect list of f1Cf2 is

{d3} (via intersection of f1 and f2), specified as <f1, f2, {d3}>.

Step 3: Operate EARs and their defect lists together. For example, considering

two simple EARs:

EARi = { <f1, f2, {d3}>, <f2, f3, {d4, d5}> };
EARj = { <f1, f2, {d3, d4}>, <f2, f3, {d4}> }.

182

We can infer that (see Definition 5):

EARi ∪∩ EARj = { <f1, f2, {d3}>, <f2, f3, {d4}> }.

Within MySQL, the ordinary relational operations can be used to implement

the above EAR operations. Overall, built upon the implementation of algebraic

expression and manipulation of architectural defect-properties, the DAD proto-

type tool supports diagnosis of the architectural degeneration over time for a give

software system. Later Appendix B will demonstrate example outputs of this

prototype tool on the subject system of Case Study 2.

A.7 Discussion and Comparison

The approach, as described in Sections A.4 and A.5, uses Relation Algebra to

express and manipulate both architectural structures and defect-properties. It

utilizes an attribute arity (similar to the work by Feijs-Krikhaar (1998) and Holt

(1999)) to express defects for architectural entities (e.g., components) and relation-

ships (e.g., change-coupling). This is supported with the extended architectural

relation (EAR) structure; see Definition 3. An EAR is a mapping from a binary

relation (representing an architectural structure) to an attribute set (representing

a type of architectural defect-property). Further, the EAR operations (see Def-

inition 5) supports manipulation of these defects together with the architectural

structures (entities and relationships).

Actually, there are probably more attributes arities bound to an architec-

tural relation because a software architecture can have more attributes than the

defect-aspect, e.g., change and correction-cost. Therefore, the EAR structure (see

Definition 3) can be generalized to an n-ary (n > 3) structure:

AR → Att1 × Att2 × · · · × Attn−2.

Obviously, this n-ary EAR structure should be more expressive than the cur-

rent 3-ary structure. And it is viable to define this n-ary EAR structure with

183

MySQL (just like that for the 3-ary structure; see Section A.6.2).

Feijs and Krikhaar (1998) propose a multi-relation theory by adding a multi-

plicity (i.e., a numeric attribute) to each tuple in a relation and generalizing ordi-

nary relation operations to multi-relation operations. Such a theory can thus sup-

port aggregation of numeric attributes. Holt also defines a numeric arity (termed

attribute) bound to architectural relations (e.g., <x, y, n>). This structure sup-

ports attribute aggregation, which is equivalent to that in Feijs-Krikhaar’s theory.

However, the single numeric arity n in these two techniques was not meant to (and

hence cannot) express the set of individual defects (d1, · · · , di, · · · , dn) associated

with the components x and y, as represented in the approach. Thus, it is pos-

sible to use the representation to perform cross-longitudinal analysis of defects;

for example, to assess whether or not defect di crosses a phase boundary or exists

in more than one component. Such analysis is clearly useful for the diagnosis of

architectural degeneration over time.

Note, however, that in the approach the cross-release analysis is carried out

procedurally (using the operation “difference” - see Section A.4.3); whereas, cross-

component analysis is inherent in the tuple specification (i.e., x and y in a tuple

denote two components involved in a defect relationship). One can thus argue the

demerits of a procedural operation such as “difference” in the approach. Would it

be beneficial, for example, to capture the inter-release properties within a tuple,

thereby integrating the difference operation more tightly in the extended algebra

itself than is currently possible in the approach? Another interesting question is

whether temporal operations can be included in the approach to deal with the

timing of the defects (e.g., when secondary defects were introduced). These issues

are currently being investigated.

We have compared the work by Feijs-Krikhaar (1998) and Holt (1999) here,

but not others such as component algebra (Bergstra et al., 1990) (Feijs and Qian,

2002) and connector algebra (Allen and Garlan, 1994) (Wermelinger and Fiadeiro,

184

1998) (see Section A.2.2), because RPA (by Feijs-Krikhaar) and Grok (by Holt)

are both closely related to the approach. The component algebra and connector

algebra focus on algebraic specification of software architectures. The approach

complements these works.

A.8 Short Conclusion

Just as a Relation Algebra has proved to be invaluable for operating on the struc-

ture of an architecture (e.g., through operations such as abstraction, union and

intersection) (Feijs and Krikhaar, 1998) (Holt, 1999), so it can be used fruitfully for

the visualization, aggregation and analysis of architectural “defects”. This, com-

plementary view, is fundamental to the approach to expressing and manipulating

architectural defect-properties with Relation Algebras. This Relation Algebra de-

fines an extended architectural relation structure and corresponding operations to

support expression and manipulation of both architectural structures and defects.

It has been implemented with MySQL in the DAD prototype tool (see Section 5.3

and Appendix B).

185

Appendix B

DAD Prototype Tool

Demonstration

In this chapter, we demonstrate the DAD prototype tool (as described in Chap-

ter 5.3) on two software systems: (1) the commercial system under investigated

in Case Study 2 (see Section 6.2.2); and (2) the open-source Eclipse Platform1.

In particular, we present several charts created by the prototype tool, which illus-

trate: descriptive system statistics, component measure, architectural degenera-

tion trend, and defect architectures for the two systems.

Note that because we do not have any process data or historical accounts of

the Eclipse Platform, we cannot interpret the relevant findings shown here (with

the DAD prototype tool). For example, we cannot explain why the architectural

degeneration increased or decreased as the Eclipse Platform evolved release upon

release (due to lacking of the data about the historical evolution process of this

system). However, for the commercial system, we can interpret some of the rele-

vant findings here in the context of Case Study 2.

1“The Eclipse Platform provides the core frameworks and services upon which all plug-in
extensions are created. It also provides the runtime in which plug-ins are loaded, integrated,
and executed. The primary purpose of the Platform is to enable other tool developers to easily
build and deliver integrated tools.” (see a detailed introduction to the Eclipse Platform at
http://www.eclipse.org/platform/ (last access in November 2010)).

186

B.1 Descriptive System Statistics

First of all, this DAD prototype tool can build a descriptive profile for a given

system and its components. Such a profile can help understand the system.

First, Figure B.1 shows a bar chart which illustrates the numbers of defects in

the seven releases of the Eclipse Platform (releases 1, 2, 2.1, 3, 3.1, 3.2, and 3.3).

From this chart, we can easily find that there are over 2,750 defects discovered in

release 3, which is many more than the number of defects in any other release.

Note that the number of defects discovered in a given release is related to the time

range of this release under development, testing and maintenance. For example,

our finding shows that the time range is about half year for release 1 but over

three years for releases 3, 3.1 and 3.2.

Figure B.1: Numbers of defects in the Eclipse Platform.

Second, Figure B.2 shows a bar chart which illustrates the numbers of code files

in the seven components (Ant, Core, CVS, Debug, SWT, Team, and UI) of the

Eclipse Platform (release 1). This chart indicates that the defect distribution by

the components is highly skewed. Obviously, components SWT and UI contains

many more defects than the other components. This is related to the size of each

component. For example, our finding shows that 29% (23/79) and 46% (36/79)

of code files of release 1 were contained by SWT and UI.

187

Figure B.2: Numbers of defects in the Eclipse Platform (release 1).

Third, Figure B.3 shows a bar chart which illustrates the numbers of code files

fixed in the four phases of the three releases (r1, r2 and r3) of the commercial

system of Case Study 2: functional verification testing (FVT), system verification

testing (SVT), performance quality assurance (PQA), and field (“ Field”) phases.

Note that for the subject system, SVT usually succeeds FVT, PQA could happen

in parallel with FVT and SVT, but PQA usually succeeds SVT. The FVT, SVT

and PQA phases are included in the Internal phase (see Section 6.2.2).

Figure B.3: Numbers of code files fixed in the commercial system.

188

Figure B.3 shows that in comparison against the FVT and PQA phases, there

are more code files fixed during the SVT and field phases (except the field phase

of r3). This indicates that defects discovered during the SVT and field phases

spread over the system much more widely than defects in the FVT and PQA

phases. This figure also shows that as the system evolved from r1 to r3, the

numbers of code files fixed in the SVT and field phases decreased substantially

but the number of code files fixed in the FVT and PQA phases kept relatively

stable. This indicates that the defects discovered during the SVT and field phases

tend to be concentrated in a few areas of the system. However, this could be also

related to the number of defects (approx. 1100, 550, and 600) investigated in the

three releases (see Section 6.2.1).

B.2 Component Measurements

Recall from Section 5.2.2 that the DAD approach defines a suite of metrics to mea-

sure components of a given system. Here, we demonstrate examples of component

measures in the two subject systems; see Section B.2.1. We also demonstrate the

trend in architectural degeneration of the two systems in Section B.2.2.

B.2.1 Degeneration-Critical Components

Recall Sections 5.2.3 and 6.3.1 that degeneration-critical components are identified

based on the MCD quantity and complexity measures of the components in a

given system. For example, Figure B.4 shows the quantity of MCDs which are

involved in the 14 components of the Eclipse Platform (release 3). We can easily

find from this figure that there are three components which contain many more

MCDs than other components. These three components are CVS (over 60 MCDs),

Team (approx. 60 MCDs) and UI (near 50 MCDs), which can be thus considered

degeneration-critical from the MCD quantity perspective. Note that, similar to

Figure B.1 above, the quantity of MCDs in a component is related to the size of

189

this component. In particular, our finding shows that in release 3, 9% (289/3385),

7% (220/3385), and 37% (1257/3385) of code files are contained by components

CVS, Team and UI, respectively.

Figure B.4: Number of MCDs in components of Eclipse Platform (release 3).

Second, Figure B.5 illustrates the MCD complexity (M3 – “#Components

fixed per MCD”) measures for the 10 components in the three releases (r1, r2 and

r3) of the commercial system of Case Study 2. It shows that the distribution of

the M3 measures has a low degree of dispersion. This coincides with Table 6.4

(see column “#Components fixed per MCD (M3)”).

Figure B.5: Component measures with MCD complexity metric M3 (“#Compo-
nents fixed per MCD”) in the commercial system.

190

However, from Figure B.5 we can still find that components C7 and C8 have the

greatest M3 measures in release 1, which could be identified as two degeneration-

critical components in release 1. Likewise for degeneration-critical component

C8 in release 2. We cannot identify degeneration-critical components for release 3

because the component measure distribution is quite even. These findings coincide

with the degeneration-critical components shown in Section 6.3.1.

Figure B.5 also shows that the average M3 (“#Components fixed per MCD”)

measure of the components increased from release 1 to release 2 but then decreased

in release 3. This indicates that the architectural degeneration of the system

increased the system evolved from release 1 to release 2 and then decreased in

release 3. It thus confirms the conclusions derived in Section 6.3.5.

B.2.2 Architectural Degeneration

Recall Sections 5.2.5 and 6.3.5 that the trend in architectural degeneration is de-

termined by evaluating the averaged MCD quantity and complexity measures of

the components over development phases and releases. For example, Figure B.6

demonstrates a line chart which shows the trend in architectural degeneration of

the Eclipse Platform over the seven releases, with respect to (w.r.t.) the MCD

percentage metric “%MCDs” (M1). From this chart we can find that the archi-

tectural degeneration increased as the system evolved from release 1 to release

3.2, but then decreased in release 3.3 (from release 3.2). Mostly, this shows an

“increase-only” trend. We do no have any process data or historical accounts to

explain this trend. Suffice to say here, this “increase-only” trend fits the general

trend in architectural degeneration as observed by the laws of software evolution

(Belady and Lehman, 1976; Lehman, 1980).

Likewise, Figure B.7 illustrates the average MCD-percentage (M1’ – “%MCDs”)

measures2 for the four phases (FVT, SVT, PQA, and Field) in the three releases

2Here, M1’ refers to the proportion of MCDs in all defects in a particular phase.

191

Figure B.6: Architectural degeneration trend of the Eclipse Platform across re-
leases, w.r.t. the MCD percentage metric M1 (“%MCDs”).

(r1, r2 and r3) of the commercial system of Case Study 2. Note that here, the

M1’ measure refers to the proportion of all MCDs in the all defects in the system

(a phase thereof). It is just different from the normal M1 measures shown in

Table 6.3 (see Section 6.3.1) and Figure B.6.

Figure B.7 indicates that the M1’ measures of the system are quite different

among the phases and releases. For example, the M1’ measure for the PQA phase

increased as the system evolved from r1 to r3. However, that for the field phase

kept relatively stable as the system evolved from r1 to r2 but later decreased sub-

stantially in r3. From this figure, we cannot observe the “increase-then-decrease”

trend for the architectural degeneration over the phases of the three releases (as

concluded in Section 6.3.5). However, the average M1 (“%MCDs”) measures

of the components across the three releases have indicated this trend (see row

“Mean” in Table 6.3).

B.3 Defect Architectures

Recall that there are two defect architectures (see Figures 6.8 and 6.9) shown

in Section 6.3.6. These are “macro” defect architectures as they are spanning

192

Figure B.7: Architectural degeneration trend of the commercial system across
releases, w.r.t. the MCD quantity metric M1’ (“%MCDs”).

components in the system. Further, we give an example of another macro defect

architecture which is derived for the Eclipse Platform; see Figure B.8.

Figure B.8 illustrates the defect architecture (segment) of the Eclipse Platform

(release 3) with respect to the MCD quantity metric – “#MCDs”. It describes

the top 3 components (red-colored nodes) and the top 10 fix relationships which

have the greatest MCD quantity values (shown in the labels) in release 3. The

blue-colored nodes are shown in the figure because they are connected with these

fix relationships. The numeric labeles on each node or edge in Figure B.8 indicates

the “#MCDs” value of the component or fix relationship in the system.

Figure B.8 indicates that components Team, CVS and UI are degeneration-

critical in release 3. This finding is consistent with the finding shown in Figure B.4

above. We also find that there are 55 MCDs pertaining to the fix relationship

between components Team and CVS. Considering the 60 and 61 MCDs occurred in

the two components, we can derive that most of the MCDs occurred in component

Team (55/60) also occurred in component CVS; and vice versa (55/61).

193

[red]

[blue] [blue]
[blue]

[blue]

[blue][blue]

[red]

[red]

Figure B.8: “Macro” defect architecture (segment) of the Eclipse Platform (release
3) w.r.t. the MCD quantity metric “#MCDs”.

Following the above demonstration of macro defect architectures, we, below,

describe a “macro” defect architecture which span code files in a given system

component; see Figure B.9. The feature of micro defect architecture construc-

tion is an extension to the DAD approach for the purpose of identification of

degeneration-critical code files and fix relationships in a particular component.

We note from Figure 6.8 (in Chapter 6) that component C5 is a degeneration-

critical component in release 1 of the subject system from the MCD-percentage

perspective. Especially, C5 persists its degeneration-critical nature in later re-

leases 2 and 3 (see Section 6.3.1). We thus want to do an in-depth investigation

particularly for C5. That is to know the contribution of each code file in C5 to its

degeneration and also the “degeneration-critical” code files in C5 which contribute

substantially more to the degeneration than other code files.

Figure B.9 illustrates a “micro” defect architecture (segment) of component

C5 in release 1. It shows the top 10 code files (red-colored nodes) that contain the

most number of multiple-file defects (MFDs) in C5, and the top 10 most frequently

occurring fix relationships between the code files (due to MFDs). Note that MFDs

are defect requiring changes (fixes) in more than one code files in a component.

This indicates that MFDs exclude MCDs herein.

194

[blue] [blue]

[blue]

[blue]

[blue]

[blue][red]

[red]

[red]

[red]

[red]

[red]

[red] [red]

[red]

[red]

Figure B.9: “Micro” defect architecture (segment) of component C5 in the com-
mercial system (release 1).

Figure B.9 shows that, for example, there are 15 MFDs requiring fixes in

code file F233, and there are 4 MFDs that required fixes in both code files F233

and F234 (see edge E1 in the figure). Following the similar criterion used in

Section 6.3.1 for identification of degeneration-critical components and fix rela-

tionships, these code files and fix relationships (red-colored) should be considered

degeneration-critical in component C5 (in release 1).

Figure B.9 also shows that there are 4 of the 10 top MFD-concentred code files

(red-colored) that do not have top MFD-concentred fix relationships (red-colored);

see nodes F212, F188, F166, and F218. Meanwhile there are 3 fix relationships

existing between files that are not in the top 10 list; see edges E4, E8 and E9.

It indicates that there is a weak correlation between these degeneration-critical

code files and fix relationships (between code files). This finding is in contrast

to the “strong correlation” between degeneration-critical components and fix re-

lationships (between components) shown in Figures 1.1 and 6.9.

195

B.4 Short Conclusion

This chapter demonstrated several typical outputs of the DAD prototype tool

(based on the open-source Eclipse Platform and the commercial legacy system

investigated in Case Study 2), see Figures B.1–B.9. Some of these outputs have

coincided with the findings shown in Case Study 2 (see Section 6.3). Based on

the demonstration, we claim that this DAD prototype tool can be used to provide

information about a given system and its architectural degeneration over develop-

ment phases and releases, which can help in diagnosing and treating architectural

degeneration of the system.

Vitae and Thesis-Relevant Publications

NAME Zude Li

CONTACT zude.s.lee@gmail.com

EDUCATION Ph.D. (Computer Science)
— University of Western Ontario, November 2010

MEng. (Software Engineering)
— Tsinghua University, July 2006

BSc. (Computer Science)
— Hunan Normal University, July 2004

RELATED WORK Research and Teaching Assistant (2006 - 2010)
EXPERIENCE — The University of Western Ontario

THESIS-RELEVANT PUBLICATIONS

1. Zude Li, Mechelle Gittens, Syed Shariyar Murtaza, Nazim H. Madhavji,
Andriy V. Miranskyy, David Godwin, and Enzo Cialini. Analysis of Perva-
sive Multiple-Component Defects in a Large Software System. In Proc. of
the 25th IEEE Int’l Conference on Software Maintenance (ICSM’09), pages
265-273, Edmonton, Alberta, Canada, September 2009.

• An enhanced version of this paper is in Number 2.

2. Zude Li, Nazim H. Madhavji, Syed Shariyar Murtaza, Mechelle Gittens,
Andriy V. Miranskyy, David Godwin, and Enzo Cialini. Characteristics
of Multiple-Component Defects and Architectural Hotspots: A Large Sys-
tem Case Study. Accepted by the Empirical Software Engineering (ESE)
Journal, September 2010.

• This paper describes the main results of Case Study 1 of this thesis
(see Chapter 4).

3. Zude Li, Nazim H. Madhavji, Mechelle Gittens, Remo N. Ferrari, Syed
Shariyar Murtaza, Andriy V. Miranskyy, David Godwin, and Enzo Cialini.
Characterizing Architectural Degeneration from Defect Perspective: A Case
Study. Submitted to the 33rd International Conference on Software Engi-
neering (ICSE’11), Waikiki, Honolulu, Hawaii, May 2011.

• This paper describes the main results of Case Study 2 of this thesis
(see Chapter 6).

196

	Characterizing and Diagnosing Architectural Degeneration of Software Systems from Defect Perspective
	Recommended Citation

	Characterizing and Diagnosing Architectural Degeneration of Software Systems from Defect Perspective

