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Abstract

Finding the solutions of a polynomial system is a fundamental problem with nu-

merous applications in both the academic and industrial world. In this thesis, we

target on computing symbolically both the real and the complex solutions of nonlin-

ear polynomial systems with or without parameters. To this end, we improve existing

algorithms for computing triangular decompositions. Based on that, we develop var-

ious new tools for solving polynomial systems and illustrate their effectiveness by

applications.

We propose new algorithms for computing triangular decompositions of polyno-

mial systems incrementally. With respect to previous works, our improvements are

based on a weakened notion of a polynomial GCD modulo a regular chain, which per-

mits to greatly simplify and optimize the sub-algorithms. Extracting common work

from similar expensive computations is also a key feature of our algorithms.

We adapt the concepts of regular chain and triangular decomposition, originally

designed for studying the complex solutions of polynomial systems, to describing the

solutions of semi-algebraic systems. We show that any such system can be decom-

posed into finitely many regular semi-algebraic systems. We propose two specifications

(full and lazy) of such a decomposition and present corresponding algorithms. Under

some assumptions, the lazy decomposition can be computed in singly exponential

time w.r.t. the number of variables.

We introduce the concept of comprehensive triangular decomposition for solving

parametric polynomial systems. It partitions the parametric space into disjoint cells

such that the complex or real solutions of a polynomial system depend continuously

on the parameters in each cell. In the real case, we rely on cylindrical algebraic

decomposition (CAD) to decompose a cell into connected components. CAD itself is

one of the most important tools for computing with semi-algebraic sets. We present

a brand new algorithm for computing it based on triangular decomposition.

Keywords: Regular chain, triangular decomposition, polynomial system solving,
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constructible set, cylindrical algebraic decomposition, semi-algebraic system, para-

metric polynomial system, comprehensive triangular decomposition, Regular GCD.
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Chapter 1

Introduction

Solving a polynomial system, or computing its solutions, has been a fundamental

topic in mathematics since ancient times. The meaning of “solving” does not have a

single or simple definition. For example, considering the space of solutions, one may

seek for integer solutions, rational number solutions, real solutions, complex solutions

or even solutions in an arbitrary ring or field. Considering the form of the output,

one may require numerical values or symbolic expressions. For nonlinear polynomial

systems with rational number coefficients, this thesis aims to provide real or complex

solutions which are encoded in the form of triangular systems akin to linear system

solving.

This thesis is motivated by applications from biochemistry. In the field of biochem-

istry, many reaction networks are modelled by dynamical systems. The equilibria (or

steady states) of a dynamical system are typically described by nonlinear parametric

polynomial systems (a system of polynomial equations, inequations or inequalities

with parameters), where a basic question is the stability of these equilibria when pa-

rameters vary. Traditionally, this question is answered by numerical simulation. In

this thesis, we develop new symbolic tools and demonstrate how these tools can help

answering the above question.

In our study, analyzing the stability of the equilibria of dynamical systems is

treated as a particular case of solving nonlinear (parametric) polynomial systems.

This is a central topic in the field of computer algebra. For polynomial system over

a general coefficient field, the two basic tools are Gröbner basis and triangular de-

compositions. In the last decades, more attention was paid to the former tool due to

its simple algebraic structure. However, both theory [47] and experimentation [33]

indicate that the later one tends to produce smaller output. In addition, while the im-

plementation techniques of the former one are already quite advanced, the latter one



2

still has a large potential for improvement. All these factors motivate us to improve

the efficiency of triangular decompositions and develop new theory and algorithms

for supporting them.

In the last five years, we have developed step by the step the tools we needed.

The theoretical and algorithmic results have been published or accepted in conference

proceedings or journal articles [30, 35, 32, 12, 28, 36, 26, 33, 29, 34]. The implemen-

tation of these tools has been integrated into the computer algebra system Maple

and are available in the RegularChains library of Maple releases 12, 13, 14 or 15.

In the rest of this introduction, we first introduce these new tools by an example

from biochemistry in an informal manner. We then summarize the main results we

have already obtained for this thesis.

1.1 An introductory example

In this section we present a complete process for analyzing the stability of a biochem-

istry network by means of the tools we developed in this thesis. Although not all

our tools are directly involved in this process, this application example illustrates the

results we have obtained.

1.1.1 A biochemical network

In [84], Laurent proposed a model for the dynamics of diseases of the central nervous

system caused by prions, such as scrapie in sheep and goat, and “mad cow disease”

or Creutzfeldt-Jacob disease in humans. The model is based on the protein-only

hypothesis, which assumes that infection can be spread by particular proteins (prions)

that can exist in two isomeric forms. The normal form PrPC is harmless, while the

infectious form PrP SC catalyzes a transformation from the normal form to itself. A

natural question is: Can a small amount of PrP SC cause prion disease?

The generic kinetic scheme of prion diseases is illustrated as follows:

↓ 1
PrPC 3−→ PrP SC

4−→ Aggregates.

↓ 2

Denote by
[
PrPC

]
and

[
PrP SC

]
the respective concentrations of PrPC and PrP SC .

Let νi be the rate of Step i for i = 1, . . . , 4. In the above diagram, Step 1 corresponds
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to the synthesis of native PrPC , which is considered in the present analysis as a zero-

order kinetic process, that is ν1 = k1 for some constant k1. Output reactions (Steps

2 and 4, which correspond to the degradation of native PrPC and to the formation

of aggregates respectively) are taken as first-order rate equations: ν2 = k2
[
PrPC

]
,

ν4 = k4
[
PrP SC

]
. Step 3 corresponds to the transformation from PrPC to PrP SC ,

which is a nonlinear process:

ν3 =
[
PrPC

] a
(
1 + b

[
PrP SC

]n)

1 + c [PrP SC ]n
.

Hence we can describe the model by the following differential equations:

d
[
PrPC

]

dt
= ν1 − ν2 − ν3

d
[
PrP SC

]

dt
= ν3 − ν4.

To simplify notation, we set x =
[
PrPC

]
, y =

[
PrP SC

]
. The model is therefore

described by the dynamical system:

dx

dt
= k1 − k2x− ax

(1 + byn)

1 + cyn

dy

dt
= ax

(1 + byn)

1 + cyn
− k4y,

where experiments in [84] suggest to set b = 2, c = 1/20, n = 4, a = 1/10, k4 = 50

and k1 = 800. Now we have:

{
dx
dt

= f1
dy
dt

= f2
with

{

f1 = 16000+800y4−20k2x−k2xy4−2x−4xy4

20+y4

f2 = 2(x+2xy4−500y−25y5)
20+y4

. (1.1)

A constant solution of the above differential equations is called an equilibrium, that

is a point (x, y) ∈ R2 at which the right hand side equations vanish for some k2 ∈ R.

We say (x, y) is asymptotically stable if the solutions of differential equations starting

out close to (x, y) become arbitrary close to it.

By Routh-Hurwitz criterion [62], the equilibrium (x, y) is asymptotically stable if

∆1 := −
(
∂f1
∂x

+
∂f2
∂y

)

> 0 and a2 :=
∂f1
∂x
· ∂f2
∂y
− ∂f1

∂y
· ∂f2
∂x

> 0.

In System (1.1), let p1 and p2 be respectively the numerators of f1 and f2. The
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parametric semi-algebraic systems S1 : {p1 = p2 = 0, x > 0, y > 0, k2 > 0} and

S2 : {p1 = p2 = 0, x > 0, y > 0, k2 > 0,∆1 > 0, a2 > 0} encode respectively the

equilibria and the asymptotically stable hyperbolic equilibria of System (1.1).

1.1.2 Describing the complex solutions

The previous section raises questions on how to compute the real solutions of two

parametric polynomial systems S1 : {p1 = p2 = 0, x > 0, y > 0, k2 > 0} and S2 :

{p1 = p2 = 0, k2 > 0, x > 0, y > 0,∆1 > 0, a2 > 0}. Typically, before studying

the real solutions of a polynomial system, one first wants to investigate its complex

solutions. Let C1 := {p1 = 0, p2 = 0, x 6= 0, y 6= 0, k2 6= 0}. We first study the zero set

of C1 in C3, denoted by ZC(C1).
Under the order x > y > k2, the zero set of C1 in C3 is a union of the zero sets of

the following three subsystems.

R1 :=







(2y4 + 1)x− 500y − 25y5 = 0

(k2 + 4)y5 − 64y4 + (20k2 + 2)y − 32 = 0

y 6= 0

2y4 + 1 6= 0

32y4 + 39y + 16 6= 0

k2 6= 0

k2 + 4 6= 0

, R2 :=







2x− 25y + 400 = 0

32y4 + 39y + 16 = 0

k2 + 4 = 0

.

(1.2)

Each subsystem is of triangular shape and has remarkable algebraic properties: we

call them regular systems. The set of polynomials encoding the equations in each

subsystem is called a regular chain. Such a decomposition is called a triangular

decomposition. The first part of this thesis is dedicated to developing more efficient

algorithms for computing such a decomposition.

1.1.3 Describing complex solutions as functions of parame-

ters

In the previous section, all variables have the same status: they are all regarded as

unknowns. Alternatively, one may wish to view some of the variables as parameters

and investigate how the value of the other variables (let us call them the unknowns)

change with the variation of parameter values. For our example, the unknowns are

x, y while the only parameter is k2. We would like to compute the following objects:
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� a partition of parameter space into disjoint sets, called cells,

� above each connected component of any cell, functions describing the unknowns

and depending continuously on the parameters.

We call such an object a comprehensive triangular decomposition (CTD). A CTD of

C1 is given by the following piecewise definition:







{ } k2 = 0

{R2} k2 + 4 = 0

{R1} k2 6= 0 and k2 + 4 6= 0

,

where R1, R2 are the systems defined by Relation (1.2). Sometimes, we further require

that the graphs of the continuous functions defined above each cell are disjoint, which

motivates a stronger notion of CTD.

Denote tx := (2y4 + 1)x− 25y5 − 500y and

r := 100000k82 + 1250000k72 + 5410000k62 + 8921000k52 − 9161219950k42

− 5038824999k32 − 1665203348k22 − 882897744k2 + 1099528405056.

Let ty be the following polynomial.

ty := (23268734556450898419888092289684588240000k72 + 887808505064962613456074048055203273776000k62
−642759201042010454260920807356084733986376100k52 + 798982465948689385180224786309623594746271260k42
−7555419692922128080747583478837491695680153481k32 − 35449012205417930733315520979315974118845984492k22
−4318751300606321808106545937757017090592882096k2 − 327907507955945276712462277765503291468450043456)y4

+(59504169260387983272768620864010656543555992320 − 14551534965517185002251506600155820489600000k62
+55415511578751525896407727405624657312240756620k32 + 876847598754269841148937318213026162350958803520k2

+317749599530866457124059591088318660732882314640k22 − 85482628839848006177137048155404915235216000k52
−1203526487705166354151311065571798686400000k72 + 10178560608897625817552584862270339173953830200k42)y

3

+(5252669517785054020278014804788614352000000k72 − 167530270978266708856920671122396806455219200k42
+115235109691639562654993861022218266571429229120k22 + 1816672724083305207547642268950808404726365096960

+668319912100483042625432602606969870867763349760k2 + 11286257394981172041497956130156500898560000k62
−13619139734319572834872317215434117053312000k52 + 20906210233179434530990527059307460720922739760k32)y

2

+(305087509391280246850305169385511280140079029520k2 − 343356477061424268437820917723651218855443000k52
+257371530074079023303501373503345352920980000k62 + 32256100951459497483205914682740335606125645595k32
−445476939849013066022926875584021296050000k72 + 29468738920316806213601355334670213121993449540k22
+1120042922677979557343521016591522885983742934720 + 2136427506471107073862725309163219101931291800k42)y

−1631960519672226322959413531153406139242028759040 + 752923805329828287871807847129427549600000k72
+11644312759806478731650777215133019861840000k62 + 737319470990393398599878903903678608444002400k42
−314641696590549396895596270561712599814058672640k2 − 226733546531989363631975695021134672123615921280k22
−72051937593559000483331392372548407242074867040k32 − 364594307740990294702210838952646256405464000k52
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Let R3 be the regular system [tx = 0, ty = 0, r = 0]. Then the following piecewise

definition describes a stronger CTD of C1:






{ } k2 = 0

{R2} k2 + 4 = 0

{R3} r = 0

{R1} k2 6= 0, k2 + 4 6= 0 and r 6= 0

.

From such a CTD, one could easily count the number of complex solutions depending

on parameters:






0 k2 = 0

4 k2 + 4 = 0 or r = 0

5 k2 6= 0, k2 + 4 6= 0 and r 6= 0

.

The third part of this thesis is dedicated to provide such a tool for computing the

complex solutions of a parametric polynomial system.

1.1.4 Describing the real solutions

We turn our attention to computing the real solutions of a polynomial system. The

zero set of {p1 = 0, p2 = 0, k2 > 0} in R3 is a union of the zero sets of the following

two subsystems

A1 :=







(2y4 + 1)x− 25y5 − 500y = 0

(k2 + 4)y5 − 64y4 + (2 + 20k2)y − 32 = 0

k2 > 0

r 6= 0

, A2 :=







tx = 0

ty = 0

r = 0

k2 > 0

.

Each subsystem is called a regular semi-algebraic system. System A1 describes seg-

ments of a space curve while system A2 defines a finite set of points in the three-

dimensional real space.

1.1.5 Describing the real solutions as functions of parameters

The CTD introduced in Section 1.1.3 provides a tool for computing the complex

solutions of a polynomial system as functions of parameters. We generalize it to

compute:

� a partition of the real parametric space into connected cells,
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� above each cell, real valued functions describing the unknowns and depending

continuously on the parameters, whose graphs are disjoint.

This is achieved by decomposing the intersection of a complex cell with the real space

into connected semi-algebraic sets. Such a connected decomposition is obtained by

computing a so-called cylindrical algebraic decomposition (CAD). For this task, we

propose, in the fourth part of this thesis, a totally new algorithm based on triangular

decomposition.

For this example, since there is only one parameter, computing a CAD degen-

erates into isolating the real roots of a univariate polynomial. The polynomial r

has four real roots, two of them are positive, which we denote by 0 < α1 < α2.

The isolating intervals for α1 and α2 are respectively [3.175933838, 3.175941467] and

[14.49724579, 14.49725342].

Let B1 (resp. B2) be the following two systems:

B1 :=







(2y4 + 1)x− 25y5 − 500y = 0

(k2 + 4)y5 − 64y4 + (2 + 20k2)y − 32 = 0

y > 0

, B2 :=







tx = 0

ty = 0

y > 0

.

Then a CTD of S1 is given by the following piecewise definition:







{ } k2 ≤ 0

{B1} 0 < k2 < α1

{B2} k2 = α1

{B1} α1 < k2 < α2

{B2} k2 = α2

{B1} k2 > α2

For each of the six cells, we can compute a sample point, substitute it into the

corresponding Bi and count the number of real solutions of the specialized system:

0 1 2 3 2 1

k2 ≤ 0 0 < k2 < α1 k2 = α1 α1 < k2 < α2 k2 = α2 k2 > α2

Different cells having the same number of real solutions can be merged together







0 k2 ≤ 0

1 k2 > 0 and r > 0

2 k2 > 0 and r = 0

3 k2 > 0 and r < 0
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Thus CTD provides a tool for counting the number of real solutions depending on the

parameters.

1.1.6 Analyzing stability of the biochemical network

Since the real solutions of S1 are exactly the equilibria of System (1.1), we immediately

have the following results.

Theorem 1.1. If 0 < k2 < α1 or k2 > α2, then System (1.1) has 1 equilibrium;

if k2 = α1 or k2 = α2, then System (1.1) has 2 equilibria; if α1 < k2 < α2, then

System (1.1) has 3 equilibria.

By a combination of the computation of CTDs of the following four semi-algebraic

systems S2 := {p1 = 0, p2 = 0, x > 0, y > 0, k2 > 0,∆1 > 0, a2 = 0}, S3 := {p1 =

0, p2 = 0, x > 0, y > 0, k2 > 0,∆1 = 0, a2 = 0}, S4 := {p1 = 0, p2 = 0, k2 >

0, x > 0, y > 0,∆1 6= 0, a2 = 0}, and S5 := {p1 = 0, p2 = 0, k2 > 0, x > 0, y >

0,∆1 = 0, a2 > 0}, we obtain the following theorem for the stability and bifurcation

of System (1.1).

Theorem 1.2. If k2 > α2, see Figure 1.1, the system has one hyperbolic equilibrium,

which is asymptotically stable. If 0 < k2 < α1, see Figure 1.3, the system also has

one hyperbolic equilibrium, which is asymptotically stable. If k2 = α1 or k2 = α2,

the system has 2 equilibria: one is nonhyperbolic and the other one is hyperbolic and

asymptotically stable. Moreover, the system experiences bifurcations at both k2 = α1

and k2 = α2. If α1 < k2 < α2, then the system has three hyperbolic equilibria, two of

which are asymptotically stable and the other one is unstable.

Remark 1.1. This generalizes the illustrated results of Fig.1(c) in [84], where only

concrete values of k2 are given to make sure that System (1.1) is bistable. By symbolic

methods presented here, we can give the precise condition.

1.1.7 Explanation of the experimental results

From these figures, we also observe that: In Figure 1.1, the concentration of PrP SC

(y-coordinate) finally becomes low and thus the system enters a harmless state. Con-

versely, in Figure 1.3 the concentration of PrP SC goes high and thus the systems

enters a pathogenic state. In Figure 1.2, the system exhibits bistability, the initial

concentrations of PrP SC determines whether the final state pathogenic or not. We

thus deduce the following facts, as stated in paper [84]:
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Figure 1.1: Vector field for k2 = 18

� The turnover rate k2 determines whether it is possible for a pathogenic state to

occur.

� As an answer to our question, a small amount of PrP SC does not lead to a

pathogenic state when k2 is large enough.

� Compounds that inhibit addition of PrP SC can be seen as a possible therapy

against prion diseases. However, compounds that increase the turnover rate k2

would be the best therapeutic strategy against prion diseases.

1.2 Main results we have obtained

New algorithms for computing triangular decompositions. We propose new

algorithms for computing triangular decompositions of polynomial systems incremen-

tally. With respect to previous work, our improvements are based on a weakened no-
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Figure 1.2: Vector field for k2 = 8

tion of a polynomial GCD modulo a regular chain, which permits to greatly simplify

and optimize the sub-algorithms. Extracting common work from similar expensive

computations is also a key feature of our algorithms. In our experimental results the

implementation of our new algorithms, realized with the RegularChains library in

Maple, outperforms solvers with similar specifications by several orders of magni-

tude on sufficiently difficult problems. This joint work with Marc Moreno Maza is

published in [33].

New approaches for verifying polynomial solvers. We discuss the verification of

mathematical software solving polynomial systems symbolically by way of triangular

decomposition. Standard verification techniques are highly resource consuming and

apply only to polynomial systems that are easy to solve. We exhibit a new approach

which manipulates constructible sets represented by regular systems. We provide

comparative benchmarks of different verification procedures applied to four solvers

on a large set of well-known polynomial systems. Our experimental results illustrate
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Figure 1.3: Vector field for k2 = 3

the high efficiency of our new approach. In particular, we are able to verify triangular

decompositions of polynomial systems which are not easy to solve. This joint work

with Marc Moreno Maza, Wei Pan and Yuzhen Xie is published in [35] and the

enhanced version is published in [32].

New tools for solving parametric systems. We introduce the concept of com-

prehensive triangular decomposition (CTD) for a parametric polynomial system F

with coefficients in a field. In broad words, it is a finite partition of parameter space

into cells such that each cell C is attached with a triangular decomposition of F

which is “well-behaved” under specialization at any point of C. We propose several

output specifications of CTD addressing different problems regarding the solutions of

F as functions of the parameters. We present an algorithm for computing the CTD

of F . It relies on a procedure for solving the following set theoretical instance of

the coprime factorization problem. Given a family of constructible sets A1, . . . , As,

compute a family B1, . . . , Bt of pairwise disjoint constructible sets, such that for all
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1 ≤ i ≤ s the set Ai writes as a union of some of the B1, . . . , Bt. We report on an

implementation of our algorithm computing CTDs, based on the RegularChains li-

brary in Maple. We provide comparative benchmarks with Maple implementations

of related methods for solving parametric polynomial systems. Our results illustrate

the good performances of our CTD code. This joint work with Oleg Golubitsky,

François Lemaire, Marc Moreno Maza and Wei Pan is published in [30].

New tools for real solving. Regular chains and triangular decompositions are

fundamental and well-developed tools for describing the complex solutions of poly-

nomial systems. We propose adaptations of these tools focusing on solutions of the

real analogue: semi-algebraic systems. We show that any such system can be decom-

posed into finitely many regular semi-algebraic systems. We propose two specifications

(eager and lazy) of such a decomposition and present corresponding algorithms. Un-

der some assumptions, the lazy decomposition can be computed in singly exponential

time w.r.t. the number of variables. We have implemented our algorithms and present

experimental results illustrating their effectiveness. This joint work with James H.

Davenport, John P. May, Marc Moreno Maza, Bican Xia and Rong Xiao is published

in [26] and its enhanced version [27].

Cylindrical algebraic decomposition is one of the most important tools for com-

puting with semi-algebraic sets. For an arbitrary finite set F ⊂ Q[y1, . . . , yn] we apply

comprehensive triangular decomposition in order to obtain an F -invariant cylindri-

cal decomposition of the n-dimensional complex space, from which we extract an

F -invariant cylindrical algebraic decomposition of the n-dimensional real space. We

report on an implementation of this new approach for constructing cylindrical alge-

braic decompositions. This joint work with Marc Moreno Maza, Bican Xia and Lu

Yang is published in [36].

New tools for studying the equilibria of dynamical systems symbolically.

We study continuous dynamical systems defined by autonomous ordinary differential

equations, given by parametric polynomial equations. For such systems, we provide

semi-algebraic description of their hyperbolic and non-hyperbolic equilibria, their

asymptotically stable hyperbolic equilibria, their Hopf bifurcations. To this end, we

revisit various criteria on sign conditions for the roots of a real parametric univariate

polynomial. In addition, we introduce the notion of comprehensive triangular decom-

position of a semi-algebraic system and demonstrate that it is well adapted for our

study. This joint work with Marc Moreno Maza is published in [34].
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Chapter 2

Background

In this chapter, we first introduce informally the notions of a regular chain and a

triangular decomposition, which are the two fundamental concepts in this thesis. We

then define formally the two notions and state some important properties. The latter

and formal treatment relies on a few necessary notions, notations and results from

commutative algebra and algebraic geometry, which are reviewed in Appendix A,

p. 194 and Appendix B, p. 203.

2.1 An informal introduction to regular chains and

triangular decompositions

In this section, we will not try to provide a precise definition of a regular chain and a

triangular decomposition. Instead, we use examples to illustrate instances of regular

chains and triangular decompositions.

Let f(x) := x2 − x− 1 be a univariate polynomial in x. From high school math-

ematics, we know that it has two complex solutions and we can write down explicit

formulas for each of the solutions as follows:

x =
1 +
√
5

2
and x =

1−
√
5

2
.

This seems to be a natural specification for the task “solving an equation symboli-

cally”. Now we slightly change the leading term of f(x) and consider another poly-

nomial g(x) = x5 − x− 1. Then the roots of g(x) cannot be represented by radicals

anymore, as the reader may check, for instance, using the solve command inMaple1.

1http://en.wikipedia.org/wiki/Maple (software)
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This phenomenon is not an exception. In fact, for any d > 4, by a deep theory ini-

tiated by Évariste Galois2, there always exist polynomials of degree d whose roots

cannot be represented by radicals.

Now consider a multivariate polynomial f(x1, . . . , xn). For a variable order x1 <

· · · < xn, we call the largest variable xi appearing in f the main variable of f . Assume

that xn is the main variable, we can see f is a univariate polynomial in xn.

f := ad(x1, . . . , xn−1)x
d
n + . . .+ a1(x1, . . . , xn−1)xn + a0(x1, . . . , xn−1)xn.

By the fundamental theorem of algebra3, for any x1, . . . , xn−1, such that ad 6= 0, f

has exactly d complex solutions (counting multiplicities) in xn. Thus, it is not a

bad idea to use f itself as a representation of its solutions. In particular, any single

nonconstant polynomial is a regular chain.

Let us consider a system of polynomials. We start from a system of linear equa-

tions,

E :=







2x+ y + z − 1 = 0

x+ 2y + z − 1 = 0

x+ y + 2z − 1 = 0

.

Using Gaussian elimination4, it can be transformed into the following equivalent sim-

pler system






z − 1
4
= 0

y − 1
4
= 0

x− 1
4
= 0

.

An interesting feature of this simpler system is that it is of a triangular shape, that

is the polynomials appearing in it have different main variables, which is not true for

the input system E. The polynomial set {x− 1/4, y− 1/4, z− 1/4} is a regular chain

while the set of polynomials in E is not a regular chain.

In general, we call a set of polynomials a triangular set if different polynomials

in it have different main variables. The equations formed by such a triangular set is

called a triangular system.

2http://en.wikipedia.org/wiki/Evariste Galois
3http://en.wikipedia.org/wiki/Fundamental theorem of algebra
4http://en.wikipedia.org/wiki/Gaussian elimination
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Let us replace the linear system E by the following nonlinear polynomial system

F :=







x2 + y + z − 1 = 0

x+ y2 + z − 1 = 0

x+ y + z2 − 1 = 0

.

By a so-called Gröbner basis5 computation, which is a famous tool in computer al-

gebra, under the lexicographic order z > y > x, we obtain the following equivalent

system:

G :=







z + y + x2 − 1 = 0

y2 − y − x2 + x = 0

2x2y + x4 − x2 = 0

x6 − 4x4 + 4x3 − x2 = 0.

.

We observe that the largest variable appearing in the four equations are respectively

z, y, y, x. The system G is not a triangular system since y appears twice as a main

variable.

Let us factorize the polynomials in G:

G :=







z + y + x2 − 1 = 0

(y − x)(y + x− 1) = 0

x2(2y + x2 − 1) = 0

x2(x− 1)2(x2 + 2x− 1) = 0

.

Performing elementary algebraic manipulations, the above system is equivalent to

the disjunction of the four systems below, each of which is a triangular system. The

equivalence is in the following sense: a tuple (x0, y0, z0) of complex numbers is a

solution of G if and only if it is a solution of one the four systems below.







z − x = 0

y − x = 0

x2 + 2x− 1 = 0

,







z = 0

y = 0

x− 1 = 0

,







z = 0

y − 1 = 0

x = 0

,







z − 1 = 0

y = 0

x = 0

.

Moreover, the set of polynomials appearing in each subsystem is a regular chain. Such

a decomposition is a triangular decomposition6 of F .

Let us see some examples where triangular sets are not regular chains. The fol-

5http://en.wikipedia.org/wiki/Groebner basis
6http://en.wikipedia.org/wiki/Triangular decomposition
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lowing triangular system clearly has no solutions.







yz − 1 = 0

y = 0

x− 1 = 0

.

The triangular set {x−1, y, yz−1} is not a regular chain. Consider another triangular
system







yz2 + z − 1 = 0

y(y − 1) = 0

x− 1 = 0

.

For x = 1 and y = 1, z has two complex solutions. But for x = 1 and y = 0, z has

only one complex solution. In other words, this system is discontinuous w.r.t. back

substitutions. The triangular set {x− 1, y(y − 1), yz2 + z − 1} is not a regular chain

either.

Let us now consider a system having infinitely many solutions.

F :=

{

z2 + y2 − x = 0

zy − x = 0
.

Under the order z > y > z, the system F can be decomposed into the following two

subsystems

T1 :=







yz − x = 0

y4 − xy2 + x2 = 0

y 6= 0

, T2 :=







z = 0

y = 0

x = 0

.

We verify now that any solution of F is a solution of T1 or T2 and vice versa. Firstly,

assume that y 6= 0, from the second equation of F , we have z = x/y. Substitute it

into the first equation we have (x/y)2 + y2 − x = 0. Eliminate the denominators,

we obtain the second equation in T1. Secondly, if y = 0, substitute y = 0 into both

equations of F , we obtain x = y = z = 0, that is, T2 is satisfied. Similarly, for any

solution of T1 or T2, we can verify that F is satisfied.

Now we have a look at the triangular set T1. It has several remarkable properties.

Firstly, its solution set is nonempty. For example, when y = 1, its complex solutions

are {x2 − x + 1 = 0, y = 1, z = x}. Secondly, for almost all complex values of x

(more precisely, except x = 0), T1 has solutions and finitely many solutions in y, z.

This suggests that the dimension of system T1 is 1. Thirdly, for all values of x 6= 0,

T1 has four (counting multiplicities) complex solutions in y, z. The triangular set
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{yz − x, y4 − xy2 + x2} is also an instance of a regular chain. Finally, the system T1

and T2 form a triangular decomposition of F .

2.2 A formal definition of regular chain and trian-

gular decomposition

Throughout this thesis, we denote a field by k. We say that a field k is algebraically

closed if every nonconstant polynomial in k[x] has a root in k. An algebraic closure of

k, denoted by K, is an algebraic extension field of k which is algebraically closed. Up

to an isomorphism that fixes every member of k, an algebraic closure of k is unique.

For example, the field C of complex numbers is the algebraic closure of the field R

of the real numbers. Let k[x] denote the ring of polynomials over k, with ordered

variables x = x1 < · · · < xn.

Notations for univariate polynomials. Let A be a commutative ring and let A[x] be

the ring of the univariate polynomials over A. Let p = anx
n+an−1x

n−1+· · ·+a1x+a0,
with an 6= 0, be a polynomial in A[x]. Then the nonnegative integer n is called the

degree of p, denoted by deg(p, x); an is called the leading coefficient of p, denoted by

lc(p, x). The monomial xn, the term anx
n, the polynomial an−1x

n−1 + · · ·+ a1x+ a0

are respectively called the leading monomial, the leading term and the reductum of

p.

Pseudo division. Let f and g be polynomials in A[x] such that deg(g, x) > 0 and

lc(g, x) is regular (See Section A.2 for the meaning of regular) in A. We define

e = min(0, deg(f, x)− deg(g, x) + 1). Then there exists a unique couple (q, r) of

polynomials in A[x] such that we have: lc(g, x)ef = qg + r and r = 0 or deg(r, x) <

deg(g, x). The polynomial q (resp. r) is called the pseudo-quotient (resp. pseudo-

remainder) of f by g and denoted by pquo(f, g) (resp. prem(f, g)). The map (f, g)→
(q, r) is called the pseudo-division of f by g.

Notations for polynomials. Let p be a polynomial in k[x]. If p is not constant,

then the greatest variable appearing in p is called the main variable of p, denoted by

mvar(p). Furthermore, the leading coefficient, the degree, the leading monomial, the

leading term and the reductum of p, regarded as a univariate polynomial in mvar(p),

are called respectively the initial, the main degree, the rank, the head and the tail of

p; they are denoted by init(p), mdeg(p), rank(p), head(p) and tail(p) respectively. Let

q be another polynomial of k[x]. If q is not constant, then we denote by prem(p, q)

and pquo(p, q) the pseudo-remainder and the pseudo-quotient of p by q as univariate
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polynomials in mvar(q). We say that p is less than q and write p ≺ q if either p ∈ k

and q /∈ k or both are non-constant polynomials such that mvar(p) < mvar(q) holds,

or mvar(p) = mvar(q) and mdeg(p) < mdeg(q) both hold. We write p ∼ q if neither

p ≺ q nor q ≺ p hold. Denote by der(p) the derivative of p w.r.t. mvar(p), which is

also called the separant of p w.r.t mvar(p), denoted by sep(p). Denote discrim(p) the

discriminant of p w.r.t. mvar(p). The integer k such that xk = mvar(p) is called the

level of p.

Triangular set. Let T ⊂ k[x] be a triangular set, that is, a set of non-constant

polynomials with pairwise distinct main variables. The set of main variables and the

set of ranks of the polynomials in T are denoted by mvar(T ) and rank(T ), respectively.

A variable in x is called algebraic w.r.t. T if it belongs to mvar(T ), otherwise it is

said to be free w.r.t. T . For v ∈ mvar(T ), denote by Tv the polynomial in T with

main variable v. For v ∈ x, we denote by T<v (resp. T≥v) the set of polynomials t ∈ T
such that mvar(t) < v (resp. mvar(t) ≥ v) holds. Let hT or init(T ) be the product

of the initials of the polynomials in T . We denote by sat(T ) the saturated ideal of T

defined as follows: if T is empty then sat(T ) is the trivial ideal 〈0〉, otherwise it is

the ideal 〈T 〉 : h∞T (See Section A.2 for this notation).

Rank of a triangular set. Let S ⊂ k[x] be another triangular set. We say that T

has smaller rank than S and we write T ≺ S or rank(T ) < rank(S) if there exists

v ∈ mvar(T ) such that rank(T<v) = rank(S<v) holds and: (i) either v /∈ mvar(S); (ii)

or v ∈ mvar(S) and Tv ≺ Sv. We write as T ∼ S if neither T ≺ S nor S ≺ T holds.

Notations for zero sets. Let F and H be two sets of polynomials and T be a

triangular set in k[x]. The quasi-component W (T ) of T is defined as V (T ) \ V (hT ).

Denote byW (T ) the Zariski closure (See Section A.2 for this notion) ofW (T ). Denote

by
∏

f∈H f the product of polynomials in H. If H is empty, then
∏

f∈H f is defined

as 1. Let h :=
∏

f∈H f . We define Z(F, T,H) := (V (F ) ∩W (T )) \ V (h). When F

consists of a single polynomial p, we use Z(p, T,H) instead of Z({p}, T,H); when F

is empty we just write Z(T,H). When H consists of a single polynomial h, we use

Z(F, T, h) instead of Z(F, T,H); when H is empty, we just write Z(F, T ).

Regular chain. A triangular set T ⊂ k[x] is a regular chain if: (i) either T is empty;

(ii) or T \{Tmax} is a regular chain, where Tmax is the polynomial in T with maximum

rank, and the initial of Tmax is regular modulo sat(T \ {Tmax}). The empty regular

chain is simply denoted by ∅.

Triangular decomposition. Let F ⊂ k[x] be finite. Let T := {T1, . . . , Te} be a finite

set of regular chains of k[x]. We call T a Kalkbrener triangular decomposition of V (F )
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if we have V (F ) = ∪e
i=1W (Ti). We call T a Lazard-Wu triangular decomposition of

V (F ) if we have V (F ) = ∪e
i=1W (Ti).

Next we recall some properties of triangular sets and regular chains. These prop-

erties will be used explicitly or implicitly in the following chapters.

Lemma 2.1. Let T be a triangular set in k[x]. Then, we have

W (T ) \ V (hT ) = W (T ) and W (T ) \W (T ) = V (hT ) ∩ W (T ).

Proof. Since W (T ) ⊆ W (T ), we have

W (T ) = W (T ) \ V (hT ) ⊆ W (T ) \ V (hT ).

On the other hand, W (T ) ⊆ V (T ) implies W (T ) \ V (hT ) ⊆ V (T ) \
V (hT ) = W (T ). This proves the first claim. Observe that we have: W (T ) =
(

W (T ) \ V (hT )
)

·∪
(

W (T ) ∩ V (hT )
)

, where ·∪ denotes a disjoint union. We deduce

the second one.

Corollary 2.1. Let T be a triangular set in k[x] and h ∈ k[x] a polynomial. Assume

that hT , the product of the initials of the polynomial in T , divides h. Then we have

W (T ) \ V (h) = W (T ) \ V (h).

Proof. This follows immediately from the identity W (T ) \ V (hT ) = W (T ).

Lemma 2.2 ([6], [14]). Let T be a triangular set in k[x]. Then the following properties

hold:

� We have V (sat(T )) = W (T ).

� Let u be the free variables of T . Assume W (T ) is not empty. Then sat(T ) is

an unmixed ideal (See Section A.5 for the meaning of unmixed) with dimension

n− |T | such that sat(T ) ∩ k[u] = {0} holds.

Proposition 2.1 ([6]). If T is a regular chain of k[x]. Then W (T ) is a nonempty

set in Kn.

Remark 2.1. Let F be a set of polynomials in k[x] and T be a Kalkbrener or Lazard-

Wu triangular decomposition of V (F ). Lemma 2.2 and Proposition 2.1 imply the

following two important properties: (i) V (F ) is empty if and only if T is empty; (ii)

T provides an equidimensional decomposition of V (F ).
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Remark 2.2. Let T be a regular chain of k[x]. Let xi be the largest variable

appearing in T . Then T is also a regular chain in k[x1, . . . , xi]. We denote by

sati(T ) the saturated ideal of T defined in k[x1, . . . , xi]. By Proposition B.3, we have

sati(T )[xi+1, . . . , xn] = sat(T ). Let p be a polynomial in k[x1, . . . , xi]. By Proposi-

tion B.2, p is regular in k[x1, . . . , xi]/sati(T ) if and only if p is regular in k[x]/sat(T ).

Thus, in the rest of this thesis, for both cases, we would simply say p is regular modulo

sat(T ).

Remark 2.3. Lemma 2.2 and Proposition 2.1 show that sat(T ) is an unmixed ideal.

Thus, by Proposition A.15, p is regular modulo sat(T ) if and only if p is regular

modulo
√

sat(T ).
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Chapter 3

Subresultants and Regular GCDs

Calculating polynomial GCDs is a core operation in many algorithms of both symbolic

and numeric computation. In the symbolic case, coefficients usually belong to a unique

factorization domain (UFD) such as the ring of integers or a polynomial domain over

a field. Computing over those domains generally lead to expression swell, which is

a notorious problem that all students have observed, when solving on paper, linear

systems over the integers.

The work-around is the use of the so-called modular methods. See the landmark

books [67, 66] for an extensive presentation of those techniques. As an example,

consider computing the GCD of two polynomials f, g ∈ Z[x], with deg(f) > deg(g) >

0. It is well known that the Euclidean Algorithm can compute such GCD but will

suffer from intermediate expression swell. This phenomenon can be overcome as

follows. Suppose for simplicity that g and all successive remainders computed in the

Euclidean Algorithm are monic. Under this hypothesis, no divisions will occur during

the computation and all coefficients of those polynomials remain integers. (This

assumption does not hold in practice and we will relax it shortly.) Let B be the largest

integer occurring among those remainders. Consider prime numbers p1, p2, . . . , pe

such that their product exceeds 2B. (The factor 2 is there because coefficients can be

positive or negative.) We compute polynomial GCDs of f and g modulo p1, p2, . . . , pe

successively obtaining polynomials h1, h2, . . . , he. Using the Chinese Remaindering

Theorem (CRT), one can reconstruct a GCD of f and g from h1, h2, . . . , he. This

strategy has at least two advantages. First, computing modulo one prime number

limits the size of all coefficients to the size of that prime. If, moreover, that prime has

machine word size, coefficient arithmetic is done directly by the hardware. Secondly,

computing modulo prime numbers allow the use of fast polynomial arithmetic, such as

techniques based on Fast Fourier Transforms. Let us relax now our assumptions that
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our intermediate remainders are monic. Since divisions are now occuring, our CRT

strategy needs to be enhanced in order to recover the denominators of the coefficients

in the output GCD. In addition, some prime numbers become ill-conditioned. As a

simple example, if f = (x − 1)(x − 8) and g = (x − 1)(x − 5), modulo the prime

number p = 3, the polynomials f and g become identical and thus their GCD, while

over Z their GCD is x− 1. Indeed, the remainder of f by g is −3x+ 3 over Z.

The theory of subresultants helps understanding this difficulty. On the previous

example, the resultant of g/(x− 1) and f/(x− 1) is 3 which, thanks to a well known

theorem implies that 3 is ill-conditioned. Returning to the general case of arbitrary

f, g ∈ Z[x], their subresultant of degree d (for d < deg(g)) is proportional to the

polynomial of degree d in the sequence of the Euclidean Algorithm remainders, while

all the coefficients of this subresultant are in Z.

More formally, one can say that an important feature of subresultants is their

specialization property. In broad terms, and up to technical details which are handled

in Section 3.2, the idea is as follows. Consider now f, g over an arbitrary commutative

ring A with deg(f) ≥ deg(g) > 0 and let I be an ideal of A. Let f and g be the images

of f, g modulo I. Then, from the subresultants of f, g, one can deduce those of f

and g. This specialization property plays a central role in the algorithms computing

triangular decompositions. Indeed, those algorithms often compute subresultants over

some ring A and use them modulo an ideal I of A. We can take great advantage of

this in the algorithms presented in Chapter 4.

In this chapter, and after reviewing the definition of subresultants, we revisit the

specialization property of subresultants in Section 3.2. In the literature, this property

always appears with a few hypotheses. Those are not a limitation for most practical

cases but they often lead to painful contortions in order to deal with these corner

cases in actual algorithms and code. Theorem 3.2 states the specialization property

without any hypotheses on the input polynomials. This has greatly helped simplifying

the original subroutines of the Triade Algorithm [103].

This latter algorithm relies on a notion of univariate polynomial GCD which was

introduced in [103]. It extends the usual notion in the sense that the ring needs not

be a UFD. It is well suited to implement key operations such as testing the regularity

of a polynomial modulo the saturated ideal of a regular chain. Theorem 32 in [103]

and Proportion 3.2 show that it is a powerful tool for computing the intersection of a

hypersurface and the quasi-component of a regular chain. In Section 3.3, we relax the

original definition due to Marc Moreno Maza in a way that it is even better suited for
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polynomial system solving, while may be no longer appropriate for other purposes.

This weaker definition helps simplifying further the algorithms of [103] in Chapter 4.

The present chapter is based on [33], co-authored with Marc Moreno Maza.

3.1 Definition of subresultants

Let A be a ring. Let f = amx
m+ · · ·+ a0 and g = bnx

n+ · · ·+ b0 be two polynomials

of A[x] with positive degrees m and n. We call the following matrix the Sylvester

matrix of f and g w.r.t. x.

L =




















am am−1 · · · a0

am am−1 · · · a0
. . . . . . . . .

am am−1 · · · a0

bn bn−1 · · · b0

bn bn−1 · · · b0
. . . . . . . . .

bn bn−1 · · · b0


























n







m

Its determinant is called the (Sylvester) resultant of f and g w.r.t. x, denoted by

res(f, g, x).

Let λ = min(m,n). For any 0 ≤ i < λ, let Li be the submatrix of S formed by

removing the bottom i rows that include the coefficients of f and the bottom i rows

that include the coefficients of g. Note that Li is an (m+ n− 2i)× (m+ n) matrix.

For j = 0, . . . , i, let Li,j be the submatrix of Li consisting of the first m+ n− 2i− 1

columns and the (m + n − 2i + j)-th column. We call the polynomial Si(f, g) =
∑i

j=0 det(Li,j)x
i−j the i-th subresultant of f and g. Let si(f, g) = coeff(Si(f, g), x

i)

and call it the principal subresultant coefficient of Si.

The previous construction can be described in the following more abstract way.

Let A be a ring and let k ≤ ℓ be two positive integers. Let M be an k × ℓ matrix

with coefficients in A. Let Mj be the square submatrix of M consisting of the first

k − 1 columns of M and the jth column of M , for j = k · · · ℓ. Let dpol(M) :=
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∑ℓ
j=k det(Mj)x

ℓ−j and we call it the determinant polynomial of M .

Let f1(x), . . . , fk(x) ∈ A[x]. Let ℓ = 1+max(deg(f1(x)), . . . , deg(fk(x))). The matrix

M of f1, . . . , fk is a k matrix defined by Mij = coeff(fi, x
ℓ−j), for 1 ≤ i ≤ k and

1 ≤ j ≤ ℓ. We then define dpol(f1, . . . , fk) = dpol(M).

Proposition 3.1. Let f = amx
m+ · · ·+a0 and g = bnx

n+ · · ·+b0 be two polynomials

of A[x] with positive degrees m and n. Let λ = min(m,n). For i = 0, . . . , λ − 1, we

have

Si(f, g) = dpol(xn−1−if, . . . , xf, f, xm−1−ig, . . . , xg, g).

Proof. It follows directly from the definition of subresultants.

We extend the definition of subresultants and principal subresultant coefficients

to cover f and g as follows. If m ≥ n, we define Sλ+1 = f , Sλ = g, sλ+1 = am and

sλ = bn. If m < n, we define Sλ+1 = g, Sλ = f , sλ+1 = bn and sλ = am.

3.2 Specialization properties of subresultants

In this section, we investigate the specialization property of subresultants. Although

it is a well-known property, we did not find any literature that covers all the corner

cases. Therefore, we provide here a self-contained proof.

Let A be a ring and let B be a field. Let φ be a homomorphism from A to B,

which induces naturally also a homomorphism from A[x] to B[x]. Letm′ = deg(φ(f)),

n′ = deg(φ(g)) and λ′ = min(m′, n′).
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Lemma 3.1. Let k be an integer such that 0 ≤ k < λ. Assume that φ(sk) 6= 0 holds.

Then either φ(am) 6= 0 or φ(bn) 6= 0 holds. Moreover, we have both deg(φ(f)) ≥ k

and deg(φ(g)) ≥ k.

Proof. Observe that

sk =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

am am−1 · · · a0

· · · · · ·
am am−1 · · · ak

bn bn−1 · · · b0

· · · · · ·
bn bn−1 · · · bk

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

Therefore there exists i ≥ k, j ≥ k such that φ(ai) 6= 0 and φ(bj) 6= 0. The conclusion

follows.

Lemma 3.2. Assume that φ(s0) = · · · = φ(sλ−1) = 0 hold. Then, if m ≤ n, we have

(1) if φ(am) 6= 0 and φ(bn) = · · · = φ(bm) = 0 hold, then φ(g) = 0,

(2) if φ(am) = 0 and φ(bn) 6= 0 hold, then φ(f) = 0.

Symmetrically, if m > n, we have

(3) if φ(bn) 6= 0 and φ(am) = · · · = φ(an) = 0 hold, then φ(f) = 0,

(4) if φ(bn) = 0 and φ(am) 6= 0 hold, then φ(g) = 0.

Proof. We prove (1) and (2), whose correctness implies (3) and (4) by symmetry. Let

i = λ− 1 = m− 1, then we have

Sm−1 = dpol(xn−mf, . . . , xf, f, g).

Therefore

sm−1 =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

am · · · a0
. . . . . .

am am−1

bn · · · bm bm−1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

So from φ(bn) = · · · = φ(bm) = 0 and φ(sm−1) = 0, we conclude that φ(bm−1) = 0.

On the other hand, if φ(am) = 0 and φ(bn) 6= 0, then φ(am−1) = 0.
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Now let consider Sm−2. We have

sm−2 =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

am am−1 · · · a0
. . . . . .

am am−1 am−2

bn · · · bm−1 bm−2

bn · · · bm−1 bm−2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

From φ(bm−1) = 0, we conclude that φ(bm−2) = 0. From φ(am−1) = 0, we conclude

that φ(am−2) = 0.

So on so forth, finally, if φ(am) 6= 0 and φ(bn) = · · · = φ(bm) = 0, we deduce

that φ(bi) = 0, for all 0 ≤ i ≤ m − 1, which implies that φ(g) = 0; if φ(am) = 0

and φ(bn) 6= 0, we deduce that φ(am−1) = · · · = φ(a0) = 0, which implies that

φ(f) = 0.

Lemma 3.3. Let i be an integer such that 0 ≤ i < λ.

(1) if m′ = m and n′ ≥ i, then we have

φ(Si) = φ(am)
n−n′

dpol(xn
′−1−iφ(f), . . . , xφ(f), φ(f), xm−1−iφ(g), . . . , xφ(g), φ(g)).

(2) if n′ = n and m′ ≥ i, then we have

φ(Si) = (−1)(m−m′)(n−i+2)dpol(xn−1−iφ(f), . . . , xφ(f), φ(f),

xm
′−1−iφ(g), . . . , xφ(g), φ(g)).

Proof. The matrix M of the polynomials xn−1−if, . . . , xf, f, xm−1−ig, . . . , xg, g is as

follows

M =




















am am−1 · · · a0

am am−1 · · · a0
. . . . . . . . .

am am−1 · · · a0

bn bn−1 · · · b0

bn bn−1 · · · b0
. . . . . . . . .

bn bn−1 · · · b0


























n− i







m− i
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We know that Si = dpol(M). If m′ = m and n′ ≥ i, then n− n′ ≤ n − i. Therefore

we have

φ(Si) = φ(dpol(xn−1−if, . . . , xf, f, xm−1−ig, . . . , xg, g))

= φ(dpol(xn−1−iφ(f), . . . , xφ(f), φ(f), xm−1−iφ(g), . . . , xφ(g), φ(g)))

= φ(am)
n−n′

dpol(xn
′−1−iφ(f), . . . , xφ(f), φ(f), xm−1−iφ(g), . . . , xφ(g), φ(g))).

If n′ = n and m′ ≥ i, then m−m′ ≤ m− i. Therefore we have

φ(Si) = φ(dpol(xn−1−if, . . . , xf, f, xm−1−ig, . . . , xg, g))

= φ(dpol(xn−1−iφ(f), . . . , xφ(f), φ(f), xm−1−iφ(g), . . . , xφ(g), φ(g)))

= (−1)(m−m′)(n−i+2)dpol(xn−1−iφ(f), . . . , xφ(f), φ(f),

xm
′−1−iφ(g), . . . , xφ(g), φ(g))).

Theorem 3.1 (Specialization property of subresultants). Let i be an integer such

that 0 ≤ i < λ.

(1) if m′ = m and n′ > i, then we have φ(Si(f, g)) = φ(am)
n−n′

Si(φ(f), φ(g)),

(2) if m′ = m and n′ = i, then we have φ(Si(f, g)) = φ(am)
n−n′

φ(bn′)m−1−iφ(g).

(3) if n′ = n and m′ > i, then we have

φ(Si(f, g)) = (−1)(m−m′)(n−i+2)Si(φ(f), φ(g)),

(4) if n′ = n and m′ = i, then we have

φ(Si(f, g)) = (−1)(m−m′)(n−i+2)φ(am′)n−1−iφ(f).

Proof. It directly follows from Lemma 3.3.

Remark 3.1. This theorem provides some corner cases which were not covered by

other literatures, such as Mishra’s book “Algorithmic Algebra” [101]. For example,

the case m = n = m′ = n′, i = n′ − 1 is not covered by Lemma 7.8.1 nor Corollary

7.8.2 in [101]. The case m = n = m′ = n′ + 1, i = n′ is not covered either.

On the other hand, this theorem covers all useful cases such as those needed for

computing GCDs of specialized polynomials, see Theorem 3.2.
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Theorem 3.2. We have the following relations between the subresultants and the

GCD of φ(f) and φ(g):

(1) Let 0 ≤ k < λ be an integer such that φ(sk) 6= 0 and φ(si) = 0 for any 0 ≤ i < k.

Then gcd(φ(f), φ(g)) = φ(Sk).

(2) Assume that φ(si) = 0 for all 0 ≤ i < λ. we have the following cases

(2a) If m ≤ n and φ(am) 6= 0, then gcd(φ(f), φ(g)) = φ(f); symmetrically, if

m > n and φ(bn) 6= 0, then we have gcd(φ(f), φ(g)) = φ(g).

(2b) If m ≤ n and φ(am) = 0 but φ(bn) 6= 0, then we have gcd(φ(f), φ(g)) =

φ(g); symmetrically, if m ≥ n and φ(bn) = 0 but φ(am) 6= 0, then we have

gcd(φ(f), φ(g)) = φ(f).

(2c) If φ(am) = φ(bn) = 0, then

gcd(φ(f), φ(g)) = gcd(φ(red(f)), φ(red(g))).

Proof. Let us first prove (1). W.l.o.g, we assume φ(am) 6= 0. From Lemma 3.1, we

know that k ≤ n′. So for all i < k, we have i < n′. By Theorem 3.1, we have

� for i < k, si(φ(f), φ(g)) = 0,

� if k < n′, we have sk(φ(f), φ(g)) 6= 0,

� if k = n′, we have sk(φ(f), φ(g)) = φ(bm′) = lc(φ(g)) 6= 0.

Thus gcd(φ(f), φ(g)) = φ(Sk).

Next we prove (2a). By symmetry, we prove it when m ≤ n. If φ(bn) = · · · =
φ(bm) = 0, it follows directly from Lemma 3.2. Otherwise, we have n′ ≥ m. Thus for

all i < m, we have i < n′. By Theorem 3.1, we have φ(Si) = φ(am)
n−n′

Si(φ(f), φ(g)).

Thus φ(si) = 0 implies that si(φ(f), φ(g)) = 0. Therefore we deduce that φ(f) =

gcd(φ(f), φ(g)).

Finally (2b) follows directly from Lemma 3.2 and (2c) is obviously true.

3.3 Regular GCDs

Definition 3.1. Let A be a commutative ring with unity. Let p, t, g ∈ A[y] with t 6= 0

and g 6= 0. We say that g ∈ A[y] is a regular GCD of p, t if:
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(R1) the leading coefficient of g in y is a regular element;

(R2) g belongs to the ideal generated by p and t in A[y];

(R3) if deg(g, y) > 0, then g pseudo-divides both p and t, that is, prem(p, g) =

prem(t, g) = 0.

Definition 3.1 was introduced in [104] as part of a formal framework for algorithms

manipulating regular chains [51, 85, 43, 81, 141]. In this section, the ring A will always

be of the form k[x]/
√

sat(T ). Thus, a regular GCD of p, t in A[y] is also called a

regular GCD of p, t modulo
√

sat(T ).

Proposition 3.2. For 1 ≤ k ≤ n, let T ⊂ k[x1, . . . , xk−1] be a regular chain, possibly

empty. Let p, t, g ∈ k[x1, . . . , xk] be polynomials with main variable xk. Assume

T ∪ {t} is a regular chain and g is a regular GCD of p and t modulo
√

sat(T ). We

have:

(i) if mdeg(g) = mdeg(t), then
√

sat(T ∪ t) =
√

sat(T ∪ g) and W (T ∪ t) ⊆
Z(hg, T ∪ t) ∪ W (T ∪ g) ⊆ W (T ∪ t) both hold,

(ii) if mdeg(g) < mdeg(t), let q = pquo(t, g), then T ∪ q is a regular chain and the

following two relations hold:

(ii.a)
√

sat(T ∪ t) =
√

sat(T ∪ g) ∩
√

sat(T ∪ q),
(ii.b) W (T ∪ t) ⊆ Z(hg, T ∪ t) ∪ W (T ∪ g) ∪W (T ∪ q) ⊆ W (T ∪ t),

(iii) W (T ∪ g) ⊆ V (p),

(iv) V (p) ∩W (T ∪ t) ⊆ W (T ∪ g) ∪ V (p, hg) ∩W (T ∪ t) ⊆ V (p) ∩W (T ∪ t).

Proof. We first establish a relation between p, t and g. By definition of pseudo-

division, there exist polynomials q, r and a nonnegative integer e0 such that

he0g t = qg + r and r ∈
√

sat(T ) (3.1)

both hold. Hence, there exists an integer e1 ≥ 0 such that:

(hT )
e1(he0g t− qg)e1 ∈ 〈T 〉 (3.2)

holds, which implies: t ∈
√

sat(T ∪ g). We first prove (i). Since mdeg(t) = mdeg(g)

holds, we have q ∈ k[x1, . . . , xk−1], and thus we have he0g ht = q hg. Since ht and
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hg are regular modulo sat(T ), the same property holds for q. Together with (3.2),

we obtain g ∈
√

sat(T ∪ t). Therefore
√

sat(T ∪ t) =
√

sat(T ∪ g). The inclusion

relation in (i) follows from (3.1).

We prove (ii). Assume mdeg(t) > mdeg(g). With (3.1) and (3.2), this hypothesis

implies that T∪q is a regular chain and t ∈
√

sat(T ∪ q) holds. Since t ∈
√

sat(T ∪ g)
also holds,

√

sat(T ∪ t) is contained in
√

sat(T ∪ g) ∩
√

sat(T ∪ q). Conversely, for
any f ∈

√

sat(T ∪ g) ∩
√

sat(T ∪ q), there exists an integer e2 ≥ 0 and a ∈ k[x] such

that (hghq)
e2f e2 − aqg ∈ sat(T ) holds. With (3.1) we deduce that f ∈

√

sat(T ∪ t)
holds and so does (ii.a). With (3.1), we have (ii.b) holds.

We prove (iii) and (iv). Definition 3.1 implies: prem(p, g) ∈
√

sat(T ). Thus

p ∈
√

sat(T ∪ g) holds, that is, W (T ∪ g) ⊆ V (p), which implies (iii). Moreover,

since g ∈ 〈p, t,
√

sat(T )〉, we have Z(p, T ∪ t) ⊆ V (g), so we deduce (iv).

Let p, t be two polynomials of k[x1, . . . , xk], for k ≥ 1. Let m = deg(p, xk),

n = mdeg(t, xk). Assume that m,n ≥ 1. Let λ = min(m,n). Let T be a regular

chain of k[x1, . . . , xk−1]. Let B = k[x1, . . . , xk−1] and A = B/
√

sat(T ).

Let S0, . . . , Sλ+1 be the subresulant polynomials of p and t w.r.t. xk in B[xk]. Let

si be the principal subresultant coefficient of Si, for 0 ≤ i ≤ λ+ 1.

The following theorem provides sufficient conditions for Sj (with 1 ≤ j ≤ λ + 1)

to be a regular GCD of p and t in A[xk].

Theorem 3.3. Let j be an integer, with 1 ≤ j ≤ λ + 1, such that sj is a regular

element of A and such that for any 0 ≤ i < j, we have si = 0 in A. Then Sj is a

regular GCD of p and t in A[xk].

Proof. By Definition 3.1, it suffices to prove that both prem(p, Sj, xk) = 0 and

prem(t, Sj, xk) = 0 hold in A. By symmetry we only prove the former equality.

Let p be any prime ideal associated with sat(T ). Define D = k[x1, . . . , xk−1]/p

and let L be the fraction field of the integral domain D. Let φ be the homomorphism

from B to L. By Theorem 3.2, we know that φ(Sj) is a GCD of φ(p) and φ(t) in

L[xk]. Therefore there exists a polynomial q of L[xk] such that p = qSj in L[xk],

which implies that there exists a nonzero element a of D and a polynomial q′ of D[xk]

such that ap = q′Sj in D[xk]. Therefore prem(ap, Sj) = 0 in D[xk], which implies that

prem(p, Sj) = 0 in D[xk]. Therefore prem(p, Sj) belongs to p and thus to
√

sat(T ).

So prem(p, Sj, xk) = 0 in A.
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Chapter 4

Algorithms for Computing

Triangular Decompositions of

Polynomial Systems

In this chapter, we propose new algorithms for computing triangular decompositions

of polynomial systems incrementally. With respect to previous work, our improve-

ments are based on a weakened notion of a polynomial GCD modulo a regular chain,

which permits to greatly simplify and optimize the sub-algorithms. Extracting com-

mon work from similar expensive computations is also a key feature of our algorithms.

In our experimental results the implementation of our new algorithms, realized with

the RegularChains library in Maple, outperforms solvers with similar specifications

by several orders of magnitude on sufficiently difficult problems.

4.1 Introduction

The Characteristic Set Method [132] of Wu has freed Ritt’s decomposition from poly-

nomial factorization, opening the door to a variety of discoveries in polynomial system

solving. In the past two decades the work of Wu has been extended to more powerful

decomposition algorithms and applied to different types of polynomial systems or

decompositions: differential systems [13, 78], difference systems [63], real parametric

systems [138], primary decomposition [112], cylindrical algebraic decomposition [36].

Today, triangular decomposition algorithms provide back-engines for computer alge-

bra system front-end solvers, such as Maple’s solve command.

Algorithms computing triangular decompositions of polynomial systems can be



32

classified in several ways. One can first consider the relation between the input

system S and the output triangular systems S1, . . . , Se. From that perspective, two

types of decomposition are essentially different: those for which S1, . . . , Se encode all

the points of the zero set S (over the algebraic closure of the coefficient field of S)

and those for which S1, . . . , Se represent only the “generic zeros” of the irreducible

components of S.

One can also classify triangular decomposition algorithms by the algorithmic prin-

ciples on which they rely. From this other angle, two types of algorithms are essentially

different: those which proceed by variable elimination, that is, by reducing the solving

of a system in n unknowns to that of a system in n − 1 unknowns and those which

proceed incrementally, that is, by reducing the solving of a system in m equations to

that of a system in m− 1 equations.

The Characteristic Set Method and the algorithms in [127] belong to the first type

in each classification. Kalkbrener’s algorithm [81], which is an elimination method

solving in the sense of the “generic zeros”, has brought efficient techniques, based

on the concept of a regular chain. Other work [85, 104] on triangular decomposition

algorithms focus on incremental solving. This principle is quite attractive, since it

allows to control the properties and size of the intermediate computed objects. It is

used in other areas of polynomial system solving such as the probabilistic algorithm of

Lecerf [87] based on lifting fibers and the numerical method of Sommese, Verschelde,

Wampler [114] based on diagonal homotopy.

Incremental algorithms for triangular decomposition rely on a procedure for com-

puting the intersection of a hypersurface and the quasi-component of a regular chain.

Thus, the input of this operation can be regarded as well-behaved geometrical objects.

However, known algorithms, namely the one of Lazard [85] and the one of Moreno

Maza [104] are quite involved and difficult to analyze and optimize.

In this thesis, we revisit this intersection operation. Let R = k[x1, . . . , xn] be

the ring of multivariate polynomials with coefficients in k and ordered variables x =

x1 < · · · < xn. Given a polynomial p ∈ R and a regular chain T ⊂ k[x1, . . . , xn],

the function call Intersect(p, T ) returns regular chains T1, . . . , Te ⊂ k[x1, . . . , xn] such

that we have:

V (p) ∩W (T ) ⊆ W (T1) ∪ · · · ∪W (Te) ⊆ V (p) ∩W (T ).

(See Section 2.2 for the notion of a regular chain and related concepts and notations.)

We exhibit an algorithm for computing Intersect(p, T ) which is conceptually simpler
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and practically much more efficient than those of [85, 104]. Our improvements result

mainly from two new ideas.

Weakened notion of polynomial GCDs modulo regular chain. Modern algorithms

for triangular decomposition rely implicitly or explicitly on a notion of GCD for

univariate polynomials over an arbitrary commutative ring. A formal definition was

proposed in [104] (see Definition 3.1) and applied to residue class rings of the form

A = k[x]/sat(T ) where sat(T ) is the saturated ideal of the regular chain T . A

modular algorithm for computing these GCDs appears in [89]: if sat(T ) is known

to be radical, the performance (both in theory and practice) of this algorithm are

very satisfactory whereas if sat(T ) is not radical, the complexity of the algorithm

increases substantially w.r.t. the radical case. In this paper, the ring A will be of

the form k[x]/
√

sat(T ) while our algorithms will not need to compute a basis nor a

characteristic set of
√

sat(T ). For the purpose of polynomial system solving (when

retaining the multiplicities of zeros is not required) this weaker notion of a polynomial

GCD is clearly sufficient. In addition, this leads us to a very simple procedure for

computing such GCDs, see Theorem 3.3. To this end, we rely on the specialization

property of subresultants. Section 3.2 reviews this property and provides corner cases

for which we could not find a reference in the literature.

Extracting common work from similar computations. Up to technical details,

if T consists of a single polynomial t whose main variable is the same as p, say v,

computing Intersect(p, T ) can be achieved by successively computing

(s1) the resultant r of p and t w.r.t. v,

(s2) a regular GCD of p and t modulo the squarefree part of r.

Observe that Steps (s1) and (s2) reduce essentially to computing the subresultant

chain of p and t w.r.t. v. The algorithms of Section 4.3 extend this simple observation

for computing Intersect(p, T ) with an arbitrary regular chain. In broad terms, the

intermediate polynomials computed during the “elimination phasis” of Intersect(p, T )

are recycled for performing the “extension phasis” at essentially no cost.

The techniques developed for Intersect(p, T ) are applied to other key sub-

algorithms, such as:

� the regularity test of a polynomial modulo the saturated ideal of a regular chain,

see Section 4.3,

� the squarefree part of a regular chain, see Section 4.7.
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The primary application of the operation Intersect is to obtain triangular decompo-

sition encoding all the points of the zero set of the input system. However, we also

derive from it in Section 4.6 an algorithm for computing triangular decompositions

in the sense of Kalkbrener.

Experimental results. We have implemented the algorithms presented in this thesis

within the RegularChains library in Maple, leading to a new implementation of

the Triangularize command. In Section 4.8, we report on various benchmarks. This

new version of Triangularize outperforms the previous ones (based on [104]) by several

orders of magnitude on sufficiently difficult problems. Other Maple commands or

packages for solving polynomial systems (the WSolve package, the Groebner:-Solve

command and the Groebner:-Basis command for a lexicographical term order) are

also outperformed by the implementation of the algorithms presented in this paper

both in terms of running time and, in the case of engines based on Gröbner bases, in

terms of output size.

This chapter is based on paper [33], co-authored with Marc Moreno Maza.

4.2 Properties of regular chains

We review hereafter the notion of iterated resultants and state basic properties

(Propositions 4.2,4.1, 4.3, 4.4, and Corollaries 4.2, 4.3) of regular chains, which are

at the core of the proofs of the algorithms of Section 4.3.

Iterated resultant and iterated pseudo-remainder. Let p, q ∈ k[x]. Assume q

is nonconstant and let v = mvar(q). We define res(p, q, v) as follows: if the degree

deg(p, v) of p in v is null, then res(p, q, v) = p; otherwise res(p, q, v) is the resultant of p

and q w.r.t. v. Let T be a triangular set of k[x]. We define res(p, T ) (resp. prem(p, T ))

by induction: if T = ∅, then res(p, T ) = p (resp. prem(p, T ) = p); otherwise let v

be greatest variable appearing in T , then res(p, T ) = res(res(p, Tv, v), T<v) (reps.

prem(p, T ) = prem(prem(p, Tv, v), T<v)).

Proposition 4.1 (Th. 6.1. in [6]). Let p and T be respectively a polynomial and a

regular chain of k[x]. Then, prem(p, T ) = 0 holds if and only if p ∈ sat(T ) holds.

Proof. Let T = {t1, . . . , ts} with mvar(ti) < mvar(ti+1) and let hi = init(ti). Let

r = prem(p, T ). Then there exists nonnegtive integers e1, . . . , es and polynomials

q1, . . . , qs of k[x] such that
∏s

i=1 h
ei
i p =

∑s
i=1 qiti + r.

If r = 0, then obviously p ∈ sat(T ) holds. Next we prove another direction by
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induction. If T is the empty regular chain, then p = 0 and thus prem(p, T ) = 0

trivially holds.

Now assume that the proposition holds for i = s − 1. Denote Ti = {t1, . . . , ti},
for i = 1, . . . , s. Since prem(p, T ) = prem(prem(p, ts), Ts−1), to prove prem(p, T ) = 0,

by induction it is enough to prove prem(p, ts) ∈ sat(Ts−1). By Theorem B.1, we

have sat(T ) = 〈sat(Ts−1), ts〉 : h∞s hold. Then the conclusion directly follows from

Proposition B.7.

Lemma 4.1. Let p ∈ k[x] be a polynomial and T ⊂ k[x] be a zero-dimensional regular

chain. Then the following statements are equivalent:

(i) The iterated resultant res(p, T ) 6= 0.

(ii) The polynomial p is regular modulo 〈T 〉.

(iii) The polynomial p is invertible modulo 〈T 〉.

Proof. “(i) ⇒ (ii)” Let r := res(p, T ). Then there exist polynomials Ai ∈ k[x], 0 ≤
i ≤ n, such that r = A0p +

∑n
i=1AiTi. So r 6= 0 implies p is invertible modulo 〈T 〉.

Therefore, p is regular modulo 〈T 〉.
“(ii) ⇒ (iii)” Since p is regular modulo 〈T 〉 and T is a zero-dimensional regular

chain, by Lemma A.1, we have V (f, T ) = ∅. Thus f is invertible modulo 〈T 〉.
“(iii)⇒ (i)” Assume res(p, T ) = 0, then we claim that p and T have at least one

common solution, which is a contradiction to (iii).

Let T = {t1, . . . , tn} with mvar(ti) < mvar(ti+1) and let hi = init(ti). Denote

Ti = {t1, . . . , ti}. We prove our claim by induction on i. If i = 1, the claim obviously

holds. Now we assume that the claim holds for i < n.

(1) If mvar(p) < xn, then res(p, T ) = res(p, Tn−1). By induction hypothesis, there

exist ξ1, ξ2, · · · , ξn−1 ∈ K, such that ξ′ = (ξ1, ξ2, · · · , ξn−1) is a common solution

of p and Tn−1. Since T is a zero-dimensional regular chain, hn is invertible

modulo 〈Tn−1〉 (by “(ii) ⇒ (iii)” ). So hn(ξ
′) 6= 0, which implies that there

exists a ξn ∈ K, such that ξ := (ξ1, ξ2, · · · , ξn−1, ξn) is a solution of tn. Therefore

ξ is a common solution of p and T .

(2) If mvar(p) = xn, then res(p, T ) = res(res(p, tn, xn), Tn−1) = 0. By induction

hypothesis, there exists ξ′ = (ξ1, ξ2, · · · , ξn−1), such that res(p, tn, xn)(ξ
′) =

Tn−1(ξ
′) = 0 and hn(ξ

′) 6= 0. So by the specialization property of resultant,

res(p(ξ′), tn(ξ
′), xn) = 0, which implies that there exists a ξn ∈ K, such that



36

ξ := (ξ1, ξ2, · · · , ξn−1, ξn) is a common solution of p and tn. Therefore ξ is a

common solution of p and T .

Proposition 4.2. Let p ∈ k[x]. Let T ⊂ k[x] be a regular chain. Then p is regular

modulo sat(T ) if and only if the iterated resultant res(p, T ) is not zero.

Proof. Let T = {t1, . . . , ts} with mvar(ti) < mvar(ti+1) and let hi = init(ti). Denote

Ti = {t1, . . . , ti}. Let u = u1, . . . , ud and y = y1, . . . , ym be respectively the free

and the main variables of T . Let S be the set k[u1, . . . , ud] \ {0}. Let φ be the

homomorphism k[x]→ S−1k[x]. Note that S−1k[x] is the ring k(u)[y].

Let sat(φ(Ti)) be the saturated ideal of φ(Ti) defined in k(u)[y]. By Theorem

1.1 of [14], for any polynomial of f ∈ k[x], f is regular in k[x]/sat(Ti) if and only if

φ(f) is regular in k(u)[y]/sat(φ(sat(Ti))). Thus φ(T ) is a zero-dimensional regular

chain in k(u)[y]. On the other hand we have res(φ(p), φ(T )) = φ(res(p, T )). Thus,

by Lemma 4.1, p is regular modulo sat(T ) if and only if res(p, T ) 6= 0.

Corollary 4.1. Let T ⊂ k[x] be a triangular set. Then T is a regular chain if and

only if res(hT , T ) 6= 0.

Proof. It follows directly from the definition of regular chain and Proposition 4.2.

Proposition 4.3 (Prop. 5 in [104]). Let T and T ′ be two regular chains of k[x] such

that
√

sat(T ) ⊆
√

sat(T ′) and dim (sat(T )) = dim (sat(T ′)) hold. Let p ∈ k[x] such

that p is regular modulo
√

sat(T ). Then p is also regular modulo
√

sat(T ′).

Proof. By Proposition A.9, a radical ideal is an intersection of its associated prime

ideals. By Proposition A.3, any associated prime ideal of
√

sat(T ′) contains an as-

sociated prime ideal of
√

sat(T ). Since
√

sat(T ′) and
√

sat(T ) are unmixed, we de-

duce that any associated prime of
√

sat(T ′) is an associated prime ideal of
√

sat(T ).

Since p is also regular modulo
√

sat(T ), by Proposition A.10, p is regular modulo
√

sat(T ′).

Proposition 4.4. Let p ∈ k[x] and T ⊂ k[x] be a regular chain. Let v = mvar(p)

and r = prem(p, T≥v) such that r ∈
√

sat(T<v) holds. Then, we have p ∈
√

sat(T ).

Proof. Since r = prem(p, T≥v), there exists an integer e0 ≥ 0 and a polynomial

f ∈ 〈T≥v〉 such that init(T≥v)
e0p = f+r. On the other hand, r ∈

√

sat(T<v), therefore

there exists an integer e1 ≥ 0 such that init(T<v)
e1(init(T≥v)

e0p− f)e1 ∈ 〈T<v〉, which
implies that p ∈

√

sat(T ).
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Corollary 4.2. Let T and T ′ be two regular chains of k[x1, . . . , xk], where 1 ≤ k < n.

Let p ∈ k[x] with mvar(p) = xk+1 such that init(p) is regular w.r.t. both sat(T ) and

sat(T ′). Assume that
√

sat(T ) ⊆
√

sat(T ′) holds. Then we also have
√

sat(T ∪ p) ⊆
√

sat(T ′ ∪ p).

Proof. This follows easily from Proposition 4.1.

Corollary 4.3. Let p ∈ k[x] and T ⊂ k[x] be a regular chain. Let v := mvar(p) and

r := res(p, T≥v). We have:

(1) the polynomial p is regular w.r.t. sat(T ) if and only if r is regular w.r.t.

sat(T<v);

(2) if v /∈ mvar(T ) and init(p) is regular w.r.t. sat(T ), then p is regular w.r.t.

sat(T ).

Proof. By Proposition 4.2, p is regular w.r.t. sat(T ) if and only if res(p, T ) 6= 0,

which is equivalent as res(r, T<v) 6= 0, that is r is regular w.r.t. sat(T<v). So (1)

holds. Claim (2) is a consequence of the McCoy Theorem. We can also prove (2)

directly. Since res(init(p), T ) = res(init(p), T<v), if init(p) is regular w.r.t. sat(T ),

then init(p) is also regular w.r.t. sat(T<v). We claim that p is regular w.r.t. sat(T<v).

Otherwise by Proposition 4.2, there is an associated prime ideal p of sat(T<v) such

that p ∈ p, which implies that init(p) ∈ p, contradiction. Therefore p is regular w.r.t.

sat(T<v). On the other hand, v /∈ mvar(T ), which implies that p = r and therefore p

is regular w.r.t. sat(T ).

4.3 The incremental algorithm

In this section, we present an algorithm to compute Lazard-Wu triangular decompo-

sitions in an incremental manner. We recall the concepts of a process and a regular

(delayed) split, which were introduced as Definitions 9 and 11 in [104]. To serve our

purpose, we modify the definitions as below.

Definition 4.1. A process of k[x] is a pair (p, T ), where p ∈ k[x] is a polynomial

and T ⊂ k[x] is a regular chain. The process (0, T ) is also written as T for short.

Given two processes (p, T ) and (p′, T ′), let v and v′ be respectively the greatest variable

appearing in (p, T ) and (p′, T ′). We say (p, T ) ≺ (p′, T ′) if: (i) either v < v′; (ii)

or v = v′ and dimT < dimT ′; (iii) or v = v′, dimT = dimT ′ and T ≺ T ′; (iv) or

v = v′, dimT = dimT ′, T ∼ T ′ and p ≺ p′. We write (p, T ) ∼ (p′, T ′) if neither
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(p, T ) ≺ (p′, T ′) nor (p′, T ′) ≺ (p, T ) hold. Clearly any sequence of processes which is

strictly decreasing w.r.t. ≺ is finite.

Definition 4.2. Let Ti, 1 ≤ i ≤ e, be regular chains of k[x]. Let p ∈ k[x]. We call

T1, . . . , Te a regular split of (p, T ) whenever we have

(L1)
√

sat(T ) ⊆
√

sat(Ti)

(L2) W (Ti) ⊆ V (p) (or equivalently p ∈
√

sat(Ti))

(L3) V (p) ∩W (T ) ⊆ ∪e
i=1W (Ti)

We write as (p, T ) −→ T1, . . . , Te. Observe that the above three conditions are equiv-

alent to the following relation.

V (p) ∩W (T ) ⊆ W (T1) ∪ · · · ∪W (Te) ⊆ V (p) ∩W (T ).

Geometrically, this means that we may compute a little more than V (p) ∩ W (T );

however, W (T1)∪ · · · ∪W (Te) is a “sharp” approximation of the intersection of V (p)

and W (T ).

When p = 0, we simply write T instead of (p, T ). Therefore the notation T −→
T1, . . . , Te stands for

W (T ) ⊆ W (T1) ∪ · · · ∪W (Te) ⊆ W (T ).

Next we list the specifications of our triangular decomposition algorithm and its

subroutines. We denote by R the polynomial ring k[x], where x = x1 < · · · < xn.

Triangularize(F )

� Input: F , a finite set of polynomials of R

� Output: A Lazard-Wu triangular decomposition of V (F ).

Intersect(p, T )

� Input: p, a polynomial of R; T , a regular chain of R

� Output: a set of regular chains {T1, . . . , Te} such chat (p, T ) −→ T1, . . . , Te.

Regularize(p, T )

� Input: p, a polynomial of R; T , a regular chain of R.
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� Output: a set of pairs {[p1, T1], . . . , [pe, Te]} such that for each i, 1 ≤ i ≤ e: (1)

Ti is a regular chain; (2) p = pi mod
√

sat(Ti); (3) if pi = 0, then pi ∈
√

sat(Ti)

otherwise pi is regular modulo
√

sat(Ti); moreover we have T −→ T1, . . . , Te.

SubresultantChain(p, q, v)

� Input: v, a variable of {x1, . . . , xn}; p and q, polynomials of R, whose main

variables are both v.

� Output: a list of polynomials (S0, . . . , Sλ), where λ = min(mdeg(p),mdeg(q)),

such that Si is the i-th subresultant of p and q w.r.t. v.

RegularGcd(p, q, v, S, T )

� Input: v, a variable of {x1, . . . , xn},

– T , a regular chain of R such that mvar(T ) < v,

– p and q, polynomials of R with the same main variable v such that: init(q)

is regular modulo
√

sat(T ); res(p, q, v) belongs to
√

sat(T ),

– S, the subresultant chain of p and q w.r.t. v.

� Output: a set of pairs {[g1, T1], . . . , [ge, Te]} such that T −→ T1, . . . , Te and

for each Ti: if dimT = dimTi, then gi is a regular GCD of p and q modulo
√

sat(Ti); otherwise gi = 0, which means undefined.

IntersectFree(p, xi, C)

� Input: xi, a variable of x; p, a polynomial of R with main variable xi; C, a

regular chain of k[x1, . . . , xi−1].

� Output: a set of regular chains {T1, . . . , Te} such that (p, C) −→ (T1, . . . , Te).

IntersectAlgebraic(p, T, xi, S, C)

� Input: p, a polynomial of R with main variable xi,

– T , a regular chain of R, where xi ∈ mvar(T ),

– S, the subresultant chain of p and Txi
w.r.t. xi,

– C, a regular chain of k[x1, . . . , xi−1], such that: init(Txi
) is regular modulo

√

sat(C); the resultant of p and Txi
, which is S0, belongs to

√

sat(C).

� Output: a set of regular chains T1, . . . , Te such that (p, C ∪Txi
) −→ T1, . . . , Te.
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CleanChain

IntersectAlgebraic

IntersectFree

Regularize

Extend

Intersect

RegularGcd

Figure 4.1: Flow graph of the Algorithms

CleanChain(C, T, xi)

� Input: T , a regular chain of R; C, a regular chain of k[x1, . . . , xi−1] such that
√

sat(T<xi
) ⊆

√

sat(C).

� Output: if xi /∈ mvar(T ), return C; otherwise return a set of regular chains

{T1, . . . , Te} such that init(Txi
) is regular modulo each sat(Tj),

√

sat(C) ⊆
√

sat(Tj) and W (C) \ V (init(Txi
)) ⊆ ∪e

j=1W (Tj).

Extend(C, T, xi)

� Input: C, is a regular chain of k[x1, . . . , xi−1]. T , a regular chain of R such

that
√

sat(T<xi
) ⊆

√

sat(C).

� Output: a set of regular chains {T1, . . . , Te} of R such that W (C ∪ T≥xi
) ⊆

∪e
j=1W (Tj) and

√

sat(T ) ⊆
√

sat(Tj).

Algorithm SubresultantChain is standard, see [56]. The algorithm Triangularize

is a principle algorithm which was first presented in [104]. We use the following

conventions in our pseudo-code: the keyword return yields a result and terminates

the current function call while the keyword output yields a result and keeps executing

the current function call.

4.4 Proof of the algorithms

Theorem 4.1. All the algorithms in Figure 4.1 terminate.
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Algorithm 1: Intersect(p, T )

if prem(p, T ) = 0 then return {T};1

if p ∈ k then return { };2

r := p; P := {r}; S := { };3

while mvar(r) ∈ mvar(T ) do4

v := mvar(r); src := SubresultantChain(r, T v, v);5

S := S ∪ {src}; r := resultant(src);6

if r = 0 then break;7

if r ∈ k then return { };8

P := P ∪ {r}9

T := {∅}; T′ := { }; i := 1;10

while i ≤ n do11

for C ∈ T do12

if xi /∈ mvar(P ) and xi /∈ mvar(T ) then13

T′ := T′ ∪ CleanChain(C, T, xi+1)14

else if xi /∈ mvar(P ) then15

T′ := T′ ∪ CleanChain(C ∪ Txi
, T, xi+1)16

else if xi /∈ mvar(T ) then17

for D ∈ IntersectFree(Pxi
, xi, C) do18

T′ := T′ ∪ CleanChain(D,T, xi+1)19

else20

for D ∈ IntersectAlgebraic(Pxi
, T, xi, Sxi

, C) do21

T′ := T′ ∪ CleanChain(D,T, xi+1)22

T := T′; T′ := { }; i := i+ 123

return T24

Algorithm 2: RegularGcd(p, q, v, S, T )

T := {(T, 1)};1

while T 6= ∅ do2

let (C, i) ∈ T; T := T \ {(C, i)};3

for [f,D] ∈ Regularize(si, C) do4

if dimD < dimC then output [0, D] ;5

else if f = 0 then T := T ∪ {(D, i+ 1)} ;6

else output [Si, D]7
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Algorithm 3: IntersectFree(p, xi, C)

for [f,D] ∈ Regularize(init(p), C) do1

if f = 0 then output Intersect(tail(p), D) ;2

else3

output D ∪ p;4

for E ∈ Intersect(init(p), D) do5

output Intersect(tail(p), E)6

Algorithm 4: IntersectAlgebraic(p, T, xi, S, C)

for [g,D] ∈ RegularGcd(p, Txi
, xi, S, C) do1

if dimD < dimC then2

for E ∈ CleanChain(D,T, xi) do3

output IntersectAlgebraic(p, T, xi, S, E)4

else5

output D ∪ g;6

for E ∈ Intersect(init(g), D) do7

for F ∈ CleanChain(E, T, xi) do8

output IntersectAlgebraic(p, T, xi, S, F )9

Proof. The key observation is that the flow graph of Figure 4.1 can be transformed

into an equivalent flow graph satisfying the following properties: (1) the algorithms

Intersect and Regularize only call each other or themselves; (2) all the other algorithms

only call either Intersect or Regularize. Therefore, it suffices to show that Intersect and

Regularize terminate.

Note that the input of both functions is a process, say (p, T ). One can check that,

while executing a call with (p, T ) as input, any subsequent call to either functions

Intersect or Regularize will take a process (p′, T ′) as input such that (p′, T ′) ≺ (p, T )

holds. Since a descending chain of processes is necessarily finite, both algorithms

terminate.

Since all algorithms terminate, and following the flow graph of Figure 4.1, each

call to one of our algorithms unfold to a finite dynamic acyclic graph (DAG) where

each vertex is a call to one of our algorithms. Therefore, proving the correctness of

these algorithms reduces to prove the following two points.

� Base: each algorithm call, which makes no subsequent calls to another algorithm

or to itself, is correct.



43

Algorithm 5: Regularize(p, T )

if p ∈ k or T = ∅ then return [p, T ];1

v := mvar(p);2

if v /∈ mvar(T ) then3

for [f, C] ∈ Regularize(init(p), T ) do4

if f = 0 then output Regularize(tail(p), C);5

;6

else output [p, C];7

else8

src := SubresultantChain(p, Tv, v); r := resultant(src);9

for [f, C] ∈ Regularize(r, T<v) do10

if dimC < dimT<v then11

for D ∈ Extend(C, T, v) do12

output Regularize(p,D)13

else if f 6= 0 then output [p, C ∪ T≥v] ;14

else15

for [g,D] ∈ RegularGcd(p, Tv, v, src, C) do16

if dimD < dimC then17

for E ∈ Extend(D,T, v) do18

output Regularize(p, E);19

else20

if mdeg(g) = mdeg(Tv) then output [0, D ∪ T≥v]; next;21

output [0, D ∪ g ∪ T>v];22

q := pquo(Tv, g);23

output Regularize(p,D ∪ q ∪ T>v);24

for E ∈ Intersect(hg, D) do25

for F ∈ Extend(E, T, v) do26

output Regularize(p, F )27

Algorithm 6: Extend(C, T, xi)

if T≥xi
= ∅ then return C;1

let p ∈ T with greatest main variable; T ′ := T \ {p};2

for D ∈ Extend(C, T ′, xi) do3

for [f, E] ∈ Regularize(init(p), D) do4

if f 6= 0 then output E ∪ p;5
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Algorithm 7: CleanChain(C, T, xi)

if xi /∈ mvar(T ) or dimC = dimT<xi
then return C;1

for [f,D] ∈ Regularize(init(Txi
), C) do2

if f 6= 0 then output D3

Algorithm 8: Triangularize(F )

if F = { } then return {∅};1

Choose a polynomial p ∈ F with maximal rank;2

for T ∈ Triangularize(F \ {p}) do3

output Intersect(p, T )4

� Induction: each algorithm call, which makes subsequent calls to another al-

gorithm or to itself, is correct, as soon as all subsequent calls are themselves

correct.

For all algorithms in Figure 4.1, proving the base cases is straightforward. Hence we

focus on the induction steps.

Theorem 4.2. Triangularize terminates and satisfies its specification.

Proof. Its termination is obvious. It correctness can be proved by the following in-

duction:

It holds clearly for the base case: V ({ }) = V (∅) = Kn. Now we assume that

the function call Triangularize(F \ {p}) returns a finite set of regular chains T1, . . . , Te

such that V (F \{p}) = ∪e
i=1W (Ti). By the specification of Intersect, for each Ti, there

exists regular chains Ti,1, . . . , Ti,is s.t.

V (p) ∩W (Ti) ⊆
is⋃

j=1

W (Ti,j) ⊆ V (p) ∩W (Ti).

Therefore, we have

V (F ) =
⋃e

i=1 V (p) ∩W (Ti) ⊆
⋃e

i=1

⋃is
j=1W (Ti,j)

⊆ ⋃e
i=1

(

V (p) ∩W (Ti)
)

⊆ ⋃e
i=1 (V (p) ∩ V (F \ {p}))

= V (F )

That is V (F ) =
⋃e

i=1

⋃is
j=1W (Ti,j), done.

Proposition 4.5. IntersectFree satisfies its specification.
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Proof. We have the following two key observations:

� C −→ D1, . . . , Ds, where Di are the regular chains in the output of Regularize.

� V (p) ∩W (D) = W (D, p) ∪ V (init(p), tail(p)) ∩W (D).

Then it is not hard to conclude that (p, C) −→ T1, . . . , Te.

Proposition 4.6. IntersectAlgebraic is correct.

Proof. We need to prove: (p, C ∪ Txi
) −→ T1, . . . , Te. Let us prove (L1) now, that is,

for each regular chain Tj in the output, we have
√

sat(C ∪ Txi
) ⊆

√

sat(Tj). First by

the specifications of the called functions, we have
√

sat(C) ⊆
√

sat(D) ⊆
√

sat(E),

thus,
√

sat(C ∪ Txi
) ⊆

√

sat(E ∪ Txi
) by Corollary 4.2, since init(Txi

) is regular

modulo both sat(C) and sat(E). Secondly, since g is a regular GCD of p and Txi

modulo
√

sat(D), we have
√

sat(C ∪ Txi
) ⊆

√

sat(D ∪ g) by Corollaries 4.2 and

Proposition 3.2.

Next we prove (L2). It is enough to prove that W (D ∪ g) ⊆ V (p) holds. Since

g is a regular GCD of p and Txi
modulo

√

sat(D), the conclusion follows from point

(iii) of Proposition 3.2.

Finally we prove (L3), that is Z(p, C ∪ Txi
) ⊆ ⋃e

j=1W (Tj). Let D1, . . . , Ds be

the regular chains returned from Algorithm RegularGcd. We have C −→ D1, . . . , Ds,

which implies Z(p, C ∪ Txi
) ⊆ ∪e

j=1Z(p,Dj ∪Txi
). Next since g is a regular GCD of p

and Txi
modulo

√

sat(Dj), the conclusion follows from point (iv) of Proposition 3.2.

Proposition 4.7. Intersect satisfies its specification.

Proof. The first while loop can be seen as a projection process. We claim that it

produces a nonempty triangular set P such that V (p)∩W (T ) = V (P )∩W (T ). The

claim holds before staring the while loop. For each iteration, let P ′ be the set of

polynomials obtained at the previous iteration. We then compute a polynomial r,

which is the resultant of a polynomial in P ′ and a polynomial in T . So r ∈ 〈P ′, T 〉.
By induction, we have 〈p, T 〉 = 〈P, T 〉. So the claim holds.

Next, we claim that the elements in T satisfy the following invariants: at the

beginning of the i-th iteration of the second while loop, we have

(1) each C ∈ T is a regular chain; if Txi
exists, then init(Txi

) is regular modulo

sat(C),

(2) for each C ∈ T, we have
√

sat(T<xi
) ⊆

√

sat(C),
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(3) for each C ∈ T, we have W (C) ⊆ V (P<xi
),

(4) V (p) ∩W (T ) ⊆ ⋃C∈T Z(P≥xi
, C ∪ T≥xi

).

When i = n+ 1, we then have
√

sat(T ) ⊆
√

sat(C), W (C) ⊆ V (P ) ⊆ V (p) for each

C ∈ T and V (p) ∩W (T ) ⊆ ∪C∈TW (C). So (L1), (L2), (L3) of Definition 4.2 all hold.

This concludes the correctness of the algorithm.

Now we prove the above claims (1), (2), (3), (4) by induction. The claims clearly

hold when i = 1 since C = ∅ and V (p) ∩W (T ) = V (P ) ∩W (T ). Now assume that

the loop invariants hold at the beginning of the i-th iteration. We need to prove that

it still holds at the beginning of the (i + 1)-th iteration. Let C ∈ T be an element

picked up at the beginning of i-th iteration and let L be the set of the new elements

of T′ generated from C.

Then for any C ′ ∈ L, claim (1) clearly holds by specification of CleanChain. Next

we prove (2).

� if xi /∈ mvar(T ), then T<xi+1
= T<xi

. By induction and specifications of called

functions, we have

√

sat(T<xi+1
) ⊆

√

sat(C) ⊆
√

sat(C ′).

� if xi ∈ mvar(T ), by induction we have
√

sat(T<xi
) ⊆

√

sat(C) and init(Txi
) is

regular modulo both sat(C) and sat(T<xi
). By Corollary 4.2 we have

√

sat(T<xi+1
) ⊆

√

sat(C ∪ Txi
) ⊆

√

sat(C ′).

Therefore (2) holds. Next we prove claim (3). By induction and the specifications

of called functions, we have W (C ′) ⊆ W (C ∪ Txi
) ⊆ V (P<xi

). Secondly, we have

W (C ′) ⊆ V (Pxi
). Therefore W (C ′) ⊆ V (P<xi+1

), that is (3) holds. Finally, since

V (Pxi
) ∩W (C ∪ Txi

) \ V (init(Txi+1
)) ⊆ ∪C′∈LW (C ′), we have Z(P≥xi

, C ∪ T≥xi
) ⊆

∪C′∈LZ(P≥xi+1
, C ′ ∪ T≥xi+1

), which implies that (4) holds. This completes the proof.

Proposition 4.8. Regularize satisfies its specification.

Proof. If v /∈ mvar(T ), the conclusion follows directly from point (2) of Corollary 4.3.

From now on, assume v ∈ mvar(T ). Let L be the set of pairs [p′, T ′] in the output.

We aim to prove the following facts
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(1) each T ′ is a regular chain,

(2) if p′ = 0, then p is zero modulo
√

sat(T ′), otherwise p is regular modulo sat(T ),

(3) we have
√

sat(T ) ⊆
√

sat(T ′),

(4) we have W (T ) ⊆ ∪T ′∈LW (T ′).

Statement (1) is due to Proposition 4.3. Next we prove (2). First, when there

are recursive calls, the conclusion is obvious. Let [f, C] be a pair in the out-

put of Regularize(r, T<v). If f 6= 0, the conclusion follows directly from point

(1) of Corollary 4.3. Otherwise, let [g,D] be a pair in the output of the algo-

rithm RegularGcd(p, Tv, v, src, C). If mdeg(g) = mdeg(Tv), then by the algorithm

of RegularGcd, g = Tv. Therefore we have prem(p, Tv) ∈
√

sat(C), which implies that

p ∈
√

sat(C ∪ T≥v) by Proposition 4.4.

Next we prove (3). Whenever Extend is called, (3) holds immediately. Otherwise,

let [f, C] be a pair returned by Regularize(r, T<v). When f 6= 0, since
√

sat(T<v) ⊆
√

sat(C) holds, we conclude
√

sat(T ) ⊆
√

sat(C ∪ T≥v) by Corollary 4.2. Let [g,D] ∈
RegularGcd(p, Tv, v, src, C). Corollary 4.2 and point (ii) of Proposition 3.2 imply

that
√

sat(T ) ⊆
√

sat(D ∪ T≥v),
√

sat(T ) ⊆
√

sat(D ∪ g ∪ T>v) together with
√

sat(T ) ⊆
√

sat(D ∪ q ∪ T>v) hold. Hence (3) holds.

Finally by point (ii.b) of Proposition 3.2, we have W (D ∪ Tv) ⊆ Z(hg, D ∪ Tv) ∪
W (D ∪ g) ∪W (D ∪ q). So (4) holds.

Proposition 4.9. Extend satisfies its specification.

Proof. It clearly holds when T≥xi
= ∅, which is the base case. By induction and the

specification of Regularize, we know that
√

sat(T ′) ⊆
√

sat(E). Since init(p) is regular

modulo both sat(T ′) and sat(E), by Corollary 4.2, we have
√

sat(T ) ⊆
√

sat(E ∪ p).
On the other hand, we have W (C ∪ T ′

≥xi
) ⊆ ∪W (D) and W (D) \ V (hp) ⊆ ∪ W (E).

Therefore W (C ∪ T≥xi
) ⊆ ∪e

j=1W (Tj), where T1, . . . , Te are the regular chains in the

output.

Proposition 4.10. CleanChain satisfies its specification.

Proof. It follows directly from Proposition 4.3.

Proposition 4.11. RegularGcd satisfies its specification.

Proof. Let [gi, Ti], i = 1, . . . , e, be the output. First from the specification of Reg-

ularize, we have T −→ T1, . . . , Te. When dimTi = dimT , by Proposition 4.3 and

Theorem 3.3, gi is a regular GCD of p and q modulo
√

sat(T ).
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4.5 The recycling theorem

Theorem 3.3 in Section 3.3 indicates that for computing regular GCDs of two poly-

nomials p and t modulo multiple regular chains one can re-use (or recycle) the sub-

resultant chain of p and t (as soon as it is computed).

In this section, we present a result, that we call the Recycling Theorem, which

extends this “subresultant chain re-using” strategy to the operation Intersect. In fact,

this strategy is a fundamental property of Algorithm 1.

In broad terms, Theorem 4.3 states the following. Using the notations below,

consider the subresultant chain S of the polynomials p and t. Then the intersection

of the hypersurface V (p) and the quasi-component W (T ∪ t) (in the sense of the

operation Intersect) is obtained by computing regular GCDs of p and t modulo various

regular chains. Moreover, the subresultant chain S can be recycled for each of these

GCD computations. Therefore, being able in practice to recycle S for all those (thus

avoiding recomputing S) is essential for performance issues.

Theorem 4.3 (Recycling Theorem). For 1 ≤ k ≤ n, let T ⊂ k[x1, . . . , xk−1] be

a regular chain, possibly empty. Let p, t, g ∈ k[x1, . . . , xk] be polynomials with main

variable xk. Assume T ∪{t} is a regular chain. Then there exists finitely many regular

chains T1 ∪ g1, . . . , Te ∪ ge such that the following hold:

(i) V (p) ∩W (T ∪ t) ⊆ ∪e
i=1W (Ti ∪ gi) ⊆ V (p) ∩W (T ∪ t),

(ii) each gi is some subresultant polynomial of p and t,

(iii) gi is a regular GCD of p and t modulo
√

sat(Ti).

Moreover, Algorithm Intersect(p, T ∪ t) computes such regular chains.

Proof. By the specification of Intersect, we have (i). Next we prove that (ii) and (iii)

hold.

Firstly, if prem(p, T ∪ t) = 0, then we have prem(p, t) ∈ sat(T ), which implies

that prem(p, t) ∈
√

sat(T ). Since prem(t, t) = 0 ∈
√

sat(T ) and init(t) is regular

modulo sat(T ), we deduce that t is a regular GCD of p and t modulo
√

sat(T ). Thus

the theorem holds.

Secondly, whenever Intersect(p, T ∪ t) returns an empty set of regular chains, the

theorem obviously holds.

Thirdly, since mvar(p) = mvar(t) = xk < xk+1, all the regular chains in the output

of Intersect are generated through IntersectAlgebraic at line 21 of algorithm Intersect.
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Then the conclusion follows from line 6 of IntersectAlgebraic and the specification of

algorithm RegularGcd.

4.6 Kalkbrener decomposition

In this section, we adapt the Algorithm Triangularize (Algorithm 8), in order to com-

pute efficiently a Kalkbrener triangular decomposition. The basic technique we rely

on follows from Krull’s principle ideal theorem.

Theorem 4.4. Let F ⊂ k[x] be finite, with cardinality #(F ). Assume F generates

a proper ideal of k[x]. Then, for any minimal prime ideal p associated with 〈F 〉, the
height of p is less than or equal to #(F ).

Corollary 4.4. Let T be a Kalkbrener triangular decomposition of V (F ). Let T be a

regular chain of T, the height of which is greater than #(F ). Then T \ {T} is also a

Kalkbrener triangular decomposition of V (F ).

Based on this corollary, we prune the decomposition tree generated during the

computation of a Lazard-Wu triangular decomposition and remove the computation

branches in which the height of every generated regular chain is greater than the

number of polynomials in F .

Next we explain how to implement this tree pruning technique to the algorithms of

Section 4.3. Inside Triangularize, define A = #(F ) and pass it to every call to Intersect

in order to signal Intersect to output only regular chains with height no greater than

A. Next, in the second while loop of Intersect, for the i-th iteration, we pass the

height A−#(T≥xi+1
) to CleanChain, IntersectFree and IntersectAlgebraic.

In IntersectFree, we pass its input height A to every function call. Besides, Lines

5 to 6 are executed only if the height of D is strictly less than A, since otherwise we

would obtain regular chains of height greater than A. In other algorithms, we apply

similar strategies as in Intersect and IntersectFree.

4.7 Squarefree decomposition

Throughout this section, we assume that the coefficient field k is of characteristic

zero. We propose two strategies for computing a squarefree triangular decomposi-

tion. The first one is a post-processing which applies Algorithm 11 to every regular

chain returned by Algorithm 8. The second consists of ensuring that, each output or
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intermediate regular chain generated during the execution of Algorithm 8 is square-

free.

To implement the second strategy, we add an squarefree option to Algorithm 8 and

each of its subalgorithms. If the option is set to true, this option requires that each

output regular chain is squarefree. This is achieved by using Algorithm 9 whenever we

need to construct new regular chains from a previous regular chain T and a polynomial

p such that T ∪ p is known to be a regular chain.

Algorithm 9: Squarefree(p, xi, T )

Input: a polynomial ring R = k[x1, . . . , xn], a variable
xi of R, a squarefree regular chain T of k[x1, . . . , xi−1], a polynomial p of R
with main variable xi such that T ∪ p is a regular chain.
Output: a set of squarefree regular chains T1, . . . , Te such that

p ∪ T −→ T1, . . . , Te.
p := SquarefreePart(p);1

if mdeg(p) = 1 then return T ∪ p;2

else3

src := SubresultantChain(p, der(p), xi);4

return Squarefree(p, xi, src, T );5

4.8 Experimentation

Part of the algorithms presented in this paper are implemented in Maple14 while

all of them are present in the current development version of Maple. Tables 4.1

and 4.2 report on our comparison between Triangularize and other Maple solvers.

The notations used in these tables are defined below.

Notation for Triangularize. We denote by TK and TL the latest implementation of

Triangularize for computing, respectively, Kalkbrener and Lazard-Wu decompositions,

in the current version of Maple. Denote by TK14 and TL14 the corresponding

implementation in Maple14. Denote by TK13, TL13 the implementation based on

the algorithm of [104] in Maple13. Finally, STK and STL are versions of TK and

TL respectively, enforcing that all computed regular chains are squarefree, by means

of the algorithms in Section 4.7.

Notation for the other solvers. Denote by GL, GS, GD, respectively the func-

tion Groebner:-Basis (plex order), Groebner:-Solve, Groebner:-Basis (tdeg order) in cur-

rent beta version of Maple. Denote by WS the function wsolve of the package
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Algorithm 10: Squarefree(p, xi, src, T )

Input: a polynomial ring R = k[x1, . . . , xn], a variable
xi of R, a squarefree regular chain T of k[x1, . . . , xi−1], a squarefree polynomial
p of R with main variable xi such that T ∪ p is a regular chain, the
sub-resultant chain src of p and der(p) w.r.t xi.
Output: a set of squarefree regular chains T1, . . . , Te such that

p ∪ T −→ T1, . . . , Te.
r := resultant(src);1

T := { };2

for [f, C] ∈ Regularize(r, T ) do3

if f 6= 0 then output C ∪ p; next;4

else5

if dimC = dimT then6

T := T ∪ {C}; next;7

else8

for [g,D] ∈ Regularize(init(p), C) do9

if g 6= 0 then T := T ∪ {D};10

while T 6= { } do11

let C ∈ T; T := T \ {C};12

for [g,D] ∈ RegularGcd(p, der(p), xi, src, C) do13

if dimD = dimC then14

output D ∪ pquo(p, g);15

for E ∈ Intersect(init(g), D) do16

for [f, F ] ∈ Regularize(init(p), E) do17

if f 6= 0 then T := T ∪ {F};18

else19

for [f, E] ∈ Regularize(init(p), D) do20

if f 6= 0 then T := T ∪ {E};21
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Algorithm 11: Squarefree(T )

Input: a polynomial ring R = k[x1, . . . , xn], a regular chain T of R.
Output: a set of squarefree regular chains T1, . . . , Te such that

T −→ T1, . . . , Te.
T := {SquarefreePart(p) | p ∈ T};1

S := { };2

for p ∈ T do3

if mdeg(p) > 1 then4

S := S ∪ {SubresultantChain(p, der(p),mvar(p), R)};5

T := {∅}; T′ := { }; i := 1;6

while i ≤ n do7

for C ∈ T do8

if xi /∈ mvar(T ) then9

T′ := T′ ∪ CleanChain(C, T, xi+1)10

else11

if mdeg(Txi
) = 1 then12

T′ := T′ ∪ CleanChain(C ∪ {Txi
}, T, xi+1)13

else14

for D ∈ Squarefree(Txi
, xi, Sxi

, C) do15

T′ := T′ ∪ CleanChain(D,T, xi+1)16

T := T′; T′ := { }; i := i+ 1;17

return T18

Wsolve [123], which decomposes a variety as a union of quasi-components of Wu

Characteristic Sets.

The tests were launched on a machine with Intel Core 2 Quad CPU (2.40GHz)

and 3.0Gb total memory. The time-out is set as 3600 seconds. The memory usage

is limited to 60% of total memory. In both Table 4.1 and 4.2, the symbol “-” means

either time or memory exceeds the limit we set.

The examples are mainly in positive dimension since other triangular decomposi-

tion algorithms are specialized to dimension zero [48]. All examples are in character-

istic zero.

In Table 4.1, we provide characteristics of the input systems and the sizes of the

output obtained by different solvers. For each polynomial system F ⊂ Q[x], the

number of variables appearing in F , the number of polynomials in F , the maximum

total degree of a polynomial in F , the dimension of the algebraic variety V (F ) are

denoted respectively by #v, #e, deg, dim. For each solver, the size of its output

is measured by the total number of characters in the output. To be precise, let
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“dec” and “gb” be respectively the output of the Triangularize and Groebner functions.

The Maple command we use are length(convert(map(Equations, dec, R), string)) and

length(convert(gb, string)). From Table 4.1, it is clear that Triangularize produces

much smaller output than commands based on Gröbner basis computations.

sys Input size Output size
#v #e deg dim GL GS GD TL TK

1 4corps-1parameter-homog 4 3 8 1 - - 21863 - 30738
2 8-3-config-Li 12 7 2 7 67965 - 72698 7538 1384
3 Alonso-Li 7 4 4 3 1270 - 614 2050 374
4 Bezier 5 3 6 2 - - 32054 - 114109
5 Cheaters-homotopy-1 7 3 7 4 26387452 - 17297 - 285
7 childDraw-2 10 10 2 0 938846 - 157765 - -
8 Cinquin-Demongeot-3-3 4 3 4 1 1652062 - 680 2065 895
9 Cinquin-Demongeot-3-4 4 3 5 1 - - 690 - 2322
10 collins-jsc02 5 4 3 1 - - 28720 2770 1290
11 f-744 12 12 3 1 102082 - 83559 4509 4510
12 Haas5 4 2 10 2 - - 28 - 548
14 Lichtblau 3 2 11 1 6600095 - 224647 110332 5243
16 Liu-Lorenz 5 4 2 1 47688 123965 712 2339 938
17 Mehta2 11 8 3 3 - - 1374931 5347 5097
18 Mehta3 13 10 3 3 - - - 25951 25537
19 Mehta4 15 12 3 3 - - - 71675 71239
21 p3p-isosceles 7 3 3 4 56701 - 1453 9253 840
22 p3p 8 3 3 5 160567 - 1768 - 1712
23 Pavelle 8 4 2 4 17990 - 1552 3351 1086
24 Solotareff-4b 5 4 3 1 2903124 - 14810 2438 872
25 Wang93 5 4 3 1 2772 56383 1377 1016 391
26 Xia 6 3 4 3 63083 2711 672 1647 441
27 xy-5-7-2 6 3 3 3 12750 - 599 - 3267

Table 4.1: The input and output sizes of systems

TK, TL, GS, WS (and, to some extent, GL) can all be seen as polynomial sys-

tem solvers in the sense of that they provide equidimensional decompositions where

components are represented by triangular sets. Moreover, they are implemented in

Maple (with the support of efficient C code in the case of GS and GL). The specifi-

cation of TK are close to those of GS while TL is related to WS, though the triangular

sets returned by WS are not necessarily regular chains.

In Table 4.2, we provide the timings of different versions of Triangularize and other

solvers. From this table, it is clear that the implementations of Triangularize, based

on the algorithms presented in this paper (that is TK14, TL14, TK, TL) outperform

the previous versions (TK13, TL13), based on [104], by several orders of magnitude.

We observe also that TK outperforms GS and GL while TL outperforms WS.

4.9 Extra operations

In this section, we present some operations, which are not the core routines in the in-

cremental triangular decomposition algorithm, but are very useful due to its specifica-



54

sys Triangularize Triangularize versus other solvers
TK13 TK14 TK TL13 TL14 TL STK STL GL GS WS TL TK

1 - 241.7 36.9 - - - 62.8 - - - - - 36.9
2 8.7 5.3 5.9 29.7 24.1 25.8 6.0 26.6 108.7 - 27.8 25.8 5.9
3 0.3 0.3 0.4 14.0 2.4 2.1 0.4 2.2 3.4 - 7.9 2.1 0.4
4 - - 88.2 - - - - - - - - - 88.2
5 0.4 0.5 0.7 - - - 451.8 - 2609.5 - - - 0.7
7 - - - - - - 1326.8 1437.1 19.3 - - - -
8 3.2 0.7 0.6 - 55.9 7.1 0.7 8.8 63.6 - - 7.1 0.6
9 166.1 5.0 3.1 - - - 3.3 - - - - - 3.1
10 5.8 0.4 0.4 - 1.5 1.5 0.4 1.5 - - 0.8 1.5 0.4
11 - 29.1 12.7 - 27.7 14.8 12.9 15.1 30.8 - - 14.8 12.7
12 452.3 454.1 0.3 - - - 0.3 - - - - - 0.3
14 0.7 0.7 0.3 801.7 226.5 143.5 0.3 531.3 125.9 - - 143.5 0.3
16 0.4 0.4 0.4 4.7 2.6 2.3 0.4 4.4 3.2 2160.1 40.2 2.3 0.4
17 - 2.1 2.2 - 4.5 4.5 2.2 6.2 - - 5.7 4.5 2.2
18 - 15.6 14.4 - 126.2 51.1 14.5 63.1 - - - 51.1 14.4
19 - 871.1 859.4 - 1987.5 1756.3 859.2 1761.8 - - - 1756.3 859.4
21 1.2 0.6 0.3 - 1303.1 352.5 0.3 - 6.2 - 792.8 352.5 0.3
22 168.8 5.5 0.3 - - - 0.3 - 33.6 - - - 0.3
23 0.8 0.9 0.5 - 10.3 7.0 0.4 12.6 1.8 - - 7.0 0.5
24 1.5 0.7 0.8 - 1.9 1.9 0.9 2.0 35.2 - 9.1 1.9 0.8
25 0.5 0.6 0.7 0.6 0.8 0.8 0.8 0.9 0.2 1580.0 0.8 0.8 0.7
26 0.2 0.3 0.4 4.0 1.9 1.9 0.5 2.7 4.7 0.1 12.5 1.9 0.4
27 3.3 0.9 0.6 - - - 0.7 - 0.3 - - - 0.6

Table 4.2: Timings of Triangularize versus other solvers

tions. Some of them are used as subroutines of algorithms in other chapters. The ter-

mination and correctness of these algorithms can be proved by similar arguments used

in Section 4.4. We denote by R the polynomial ring k[x], where x = x1 < · · · < xn.

The specifications of the algorithms are as follows.

Triangularize(F, T )

� Input: F , a finite polynomial set of R; T , a regular chain of R.

� Output: a set of regular chains T1, . . . , Te such that we have V (F ) ∩W (T ) ⊆
∪e

i=1W (Ti) ⊆ V (F ) ∩W (T ) holds.

RegularOnly(T,H)

� Input: T , a regular chain of R; H, a finite polynomial set of R.

� Output: a set of regular chains T1, . . . , Te such that we have Z(T,H) =

∪e
i=1Z(Ti, H) and all polynomials in H are regular modulo sat(Ti), for i =

1, . . . , e.

StrongRegularize(p, T )

� Input: p, a polynomial of R; T , a regular chain of R.

� Output: a set of pairs {[p1, T1], . . . , [pe, Te]} such that for each i, 1 ≤ i ≤ e: Ti

is a regular chain; p = pi mod sat(Ti); if pi = 0, then pi ∈ sat(Ti) and otherwise

pi is regular modulo sat(Ti); moreover we have T −→ T1, . . . , Te.

StrongRegularGcd(p, q, v, S, T )
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� Input:

– v, a variable of {x1, . . . , xn}
– T , a regular chain of R such that mvar(T ) < v

– p and q, polynomials of R with the same main variable v such that: init(q)

is regular w.r.t sat(T ); the resultant of p and q w.r.t v belongs to sat(T )

– S, the subresultant chain of p and q w.r.t v

� Output: a set of pairs {[g1, T1], . . . , [ge, Te]} such that T −→ T1, . . . , Te and for

each Ti: if dimT = dimTi, then gi is a regular GCD of p and q modulo sat(Ti);

otherwise gi = 0, which means undefined.

GCD(p, q, v, T )

� Input:

– v, a variable of {x1, . . . , xn}
– T , a regular chain of R such that mvar(T ) < v

– p and q, polynomials of R with the same main variable v such that: init(q)

is regular w.r.t sat(T )

� Output: a set of pairs {[g1, T1], . . . , [ge, Te]} such that T −→ T1, . . . , Te and

for each Ti: if dimT = dimTi, then gi is a regular GCD of p and q modulo
√

sat(Ti); otherwise gi = 0, which means undefined.

Now we describe the above algorithms. Firstly, if in the algorithm Regularize,

we replace everywhere Regularize by StrongRegularize and RegularGcd by StrongRegu-

larGcd, we then obtain an implementation of the algorithm StrongRegularize.

Algorithm 12: StrongRegularGcd(p, q, v, S, T )

for [g, C] ∈ RegularGcd(p, q, v, S) do1

if dimC = dimT then2

// prem(p, g) and prem(q, g) belongs to
√

sat(C) now

for D ∈ StrongRegularize(prem(p, g), C) do3

for E ∈ StrongRegularize(prem(q, g), D) do4

if dimE = dimT then5

output [g, E]6

else7

output [0, E]8

else9

output [gi, Ti]10
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Algorithm 13: GCD(p, q, v, T )

src := SubresultantChain(p, q, v); r := resultant(src)1

for [f, C] ∈ Regularize(r, T ) do2

if dimC < dimT then3

output [0, C]4

else if f 6= 0 then5

output [r, C]6

else7

output RegularGcd(p, q, v, src, C)8

Algorithm 14: Triangularize(F, T )

if F = { } then return {T}1

Choose a polynomial p ∈ F with maximal rank2

for T ∈ Triangularize(F \ {p}, T ) do3

output Intersect(p, T )4

Algorithm 15: Regularize(T,H)

if H = { } then return {T}1

for [f, C] ∈ Regularize(
∏

h∈H h, T ) do2

if f 6= 0 then3

output C4
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Chapter 5

Set-theoretic Operations on

Constructible Sets

Polynomial systems arising from applications often involve inequations, which typi-

cally exclude degenerated configurations. The solution set of a system of polynomial

equations, say f(x) = 0, and inequations, say h(x) 6= 0, is called a constructible set.

This chapter introduces the concept of a regular system which extends the notion of

regular chains (used in Chapter 4 for encoding algebraic varieties) so as to represent

constructible sets. Based on this representation, we present highly efficient algorithms

for computing the set-theoretic difference of two constructible sets and apply it to

verifying polynomial system solvers implementing triangular decompositions.

5.1 Introduction

Constructible sets, which are solution sets of polynomial systems involving equations

and inequations, arise naturally in applications. For example in Chapter 1, the solu-

tion set of C1 := {p1 = 0, p2 = 0, k2 6= 0} in C3 is a constructible set. Constructible

sets are also generated naturally in triangular decomposition. Indeed, for a regular

chain T of k[x1, . . . , xn], its quasi-components W (T ) is the set V (T ) \ V (hT ), which

is again a constructible set. A formal definition of a constructible set is given in

Section 5.2.

Given a polynomial system Σ of k[x1, . . . , xn], the first question one may want to

answer is whether the constructible set cs defined by Σ is empty or not in Kn. To this

end, we introduce the concept of a regular system and prove that any constructible

set decomposes as the union of the zero sets of finitely many regular systems. Then,
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testing the emptiness of cs reduces to checking whether it decomposes into an empty

set of regular systems.

A regular system of k[x1, . . . , xn] is a pair [T,H], where T is a regular chain and H

is a set of polynomials each of which is regular modulo sat(T ). The name of regular

system first appears in the paper [126] with much stronger properties than those that

we impose. The motivation of our definition is to mimic the role that regular chains

play for algebraic varieties.

Algorithms computing triangular decompositions of algebraic varieties, and more

generally constructible sets, do not produce canonical output. In fact, due to different

implementation choices, two implementations of the same triangular decomposition

algorithm may produce different output (both valid if both implementations are cor-

rect) for the same input polynomial system. Deciding whether these two output

decompositions represent the same constructible set is a fundamental verification

problem for polynomial system solvers. In Section 5.5, we discuss this verification

problem in great detail. If we assume that both outputs are represented by regular

systems, the question boils down to computing the difference of the zero sets of two

regular systems. In Section 5.4, we provide a highly efficient algorithm to do this

task. The basic idea there is to exploit the structural properties of regular systems

and extract their common zeros by performing GCD computations.

This chapter is based on paper [35] and its enhanced version [32], co-authored

with Marc Moreno Maza, Wei Pan and Yuzhen Xie.

5.2 Representation of constructible sets

Definition 5.1 (Constructible set). Let F = {f1, . . . , fs} and H = {h1, . . . , hℓ} be

two sets of polynomials in k[x]. We call the conjunction of the following constraints

f1 = 0, . . . , fs = 0 and h1 6= 0, . . . , hℓ 6= 0 a constructible system in k[x], denoted by

[F,H]. Its zero set in Kn is called a basic constructible set of k[x]. A constructible

set of k[x] is a finite union of basic constructible sets of k[x].

Definition 5.2. Let T be a regular chain and H be a set of polynomials in k[x]. If

every polynomial in H is regular modulo sat(T ), we call [T,H] a regular system. If

H consists of a single polynomial h, we simply write [T,H] as [T, h]. It is easy to

prove that [T,H] is a regular system if and only if [T,
∏

f∈H h] is a regular system.

The rank of [T,H], denoted by rank([T,H]), is defined as rank(T ). For a finite set R
of regular systems, we define rank(R) := max {rank(R) | R ∈ R}.



59

Proposition 5.1. For every regular system [T, h] we have Z(T, h) 6= ∅.

Proof. Since T is a regular chain, by Lemma 2.2 we have V (sat(T )) 6= ∅. By defi-

nition of a regular system, the polynomial hhT is regular modulo sat(T ). Hence, by

Lemma A.1, the set V (hhT ) ∩ V (sat(T )) either is empty, or has lower dimension than

V (sat(T )). Therefore, the set V (sat(T ))\V (hhT ) = V (sat(T ))\(V (hhT ) ∩ V (sat(T )))

is not empty. Finally, by Corollary 2.1, the set

Z(T, h) = W (T ) \ V (h) = W (T ) \ V (hhT ) = V (sat(T )) \ V (hhT )

is not empty.

Lemma 5.1. Let T be a regular chain and f be a polynomial in k[x]. Then there

exists finitely many regular systems [T1, h1], . . . , [Te, he] in k[x] such that Z(T, f) =

∪i=1Z(Ti, hi).

Proof. Let hT be the initial of T and h := fhT . Let T1, . . . , Ts be the regular chains

in the output of Regularize(T, h). Then we have W (T ) ⊆ ∪s
i=1W (Ti) ⊆ W (T ), which

implies that Z(T, h) = ∪s
i=1Z(Ti, h), thanks to Corollary 2.1. Moreover, by specifica-

tion of Regularize, h is either regular or zero modulo
√

sat(Ti). W.l.o.g., we assume

that there exists an integer e such that h is regular modulo Ti for 1 ≤ i ≤ e and zero

modulo Ti for e+1 ≤ i ≤ s. If h is zero modulo sat(Ti), then we have W (Ti) ⊆ V (h),

which implies that Z(Ti, h) = ∅. Therefore we have Z(T, h) = ∪s
i=1Z(Ti, h), where

each [Ti, h] is a regular system. This completes the proof.

Lemma 5.2. Let cs be a constructible set of Kn defined by a constructible system of

k[x]. Then, there exists finitely many regular systems [Ti, hi] of k[x], with i = 1, . . . , e,

such that cs = ∪e
i=1Z(Ti, hi). We call ([Ti, hi], i = 1, . . . , e) a triangular decomposition

of cs.

Proof. Since a constructible set of k[x] is a finite union of basic constructible sets of

k[x], there exists finitely many polynomial sets Ei and polynomials fi in k[x] such

that cs = ∪i (V (Ei) \ V (fi)). By applying Triangularize to each Ei, we obtain finitely

many regular chains Ti,1, . . . , Ti,ei in k[x] such that we have cs = ∪i ∪j Z(Ti,j , fi).

The conclusion follows from Lemma 5.1.
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5.3 A straightforward Difference algorithm

In this section, we give a naive method to realize the Difference algorithm for com-

puting the set-theoretic difference of the zero sets of two regular systems. We first

state a technical lemma.

Lemma 5.3. Let p and h be polynomials and T be a regular chain of k[x]. Then there

exists an operation Intersect(p, T, h) returning a set of regular chains {T1, . . . , Te} such
that

(i) h is regular w.r.t. sat(Ti) for all i;

(ii) Ti ≺ T , if p /∈ sat(T );

(iii) Z(p, T, h) ⊆ ∪e
i=1Z(Ti, h) ⊆ (V (p) ∩ W (T )) \ V (h);

(iv) Moreover, if the product hT of the initials of T divides h, then

Z(p, T, h) =
e⋃

i=1

Z(Ti, h)

holds.

Proof. Define

D =
⋃

C∈Intersect(p,T )

{[f,D] | [f,D] ∈ Regularize(h,C)}

We then have

V (p) ∩ W (T ) ⊆
⋃

[f,D]∈D

D ⊆ V (p) ∩ W (T ).

Rename the regular chains {D | [f,D] ∈ D, f 6= 0} as {T1, . . . , Te}. We then have

Z(p, T, h) ⊆
e⋃

i=1

Z(Ti, h) ⊆ (V (p) ∩ W (T )) \ V (h).

Therefore (i) and (iii) hold. Since p /∈ sat(T ), by the specification of Intersect, (ii)

holds. Finally, Corollary 2.1 implies (iv).



61

For two regular systems [T1, h1] and [T2, h2], the following formula,

Z(T1, h1) \ Z(T2, h2) =
(

Z(T1, h1)
⋂

V (T2)
c
)⋃(

Z(T1, h1)
⋂

V (h2hT2)
)

=

(
⋃

f∈T2

Z(T1, h1) \ V (f)

)

︸ ︷︷ ︸

Task A

⋃(

Z(T1, h1)
⋂

V (h2hT2)
)

︸ ︷︷ ︸

Task B

(5.1)

provides a method to compute the difference of the zero sets of two regular systems.

Indeed, Task A is achieved by calling Intersect(0, T1, fh1hT1) for each polynomial

f ∈ T2 and Task B is achieved by calling Intersect(h2hT2 , T1, h1hT1). However, this

method completely ignores the structure of [T2, h2] (a regular system).

In the next section, we provide an algorithm which exploits the structure of [T2, h2].

In broad words, the procedure proceeds as follows.

(1) If sat(T1) = sat(T2) holds, computations reduce to elementary manipulations of

zero sets.

(2) Otherwise, let v be the largest variable such that sat(T1,<v) = sat(T2,<v) holds.

Let G be a regular GCD of T1,v and T2,v modulo
√

sat(T1,<v). If G is not

constant and has main variable v, computations split into cases where either

one can conclude easily or where a recursive call to the procedure can be made. If

G is constant and or has main variable less than v, one can also easily conclude.

5.4 An efficient Difference algorithm

In this section, we present an algorithm to compute the set-theoretic difference of

two constructible sets given by regular systems. As mentioned in the last section,

a naive approach appears to be very inefficient in practice. Here we contribute a

more sophisticated algorithm, which carefully exploits the structure and properties

of regular chains.

Two procedures, Difference and DifferenceLR, are involved in order to achieve this

goal. Their specifications and pseudo-codes can be found below. The rest of this

section is dedicated to proving the correctness and termination of these algorithms.

Algorithm 1 Difference([T, h], [T ′, h′])

Input Two regular systems [T, h] and [T ′, h′].
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Output A family of regular systems [Ti, hi], i = 1, . . . , e, such that: (i) Z(T, h)\
Z(T ′, h′) =

⋃e
i=1 Z(Ti, hi); (ii) rank([Ti, hi]) ≤ rank([T, h]); (iii) there

are at most one [Ti, hi] with the same rank as [T, h].

Algorithm 2 DifferenceLR(L,R)
Input Two lists of regular systems L := {[Li, fi] | i = 1 · · · r} and R :=

{[Rj , gj] | j = 1 . . . s}.
Output A family S of regular systems [Ti, hi], i = 1, . . . , e, such that

(
r⋃

i=1

Z(Li, fi)

)

\
(

s⋃

j=1

Z(Rj, gj)

)

=
e⋃

i=1

Z(Ti, hi),

rank(S) ≤ rank(L), and the number of regular systems in S with

rank(L) is no greater than the number of regular systems in L with

rank(L).

To prove the termination and correctness of above two algorithms, we present a

series of technical lemmas.

Lemma 5.4. Let [T, h] and [T ′, h′] be two regular systems. If sat(T ) = sat(T ′), then

h′hT ′ is regular w.r.t. sat(T ) and

Z(T, h) \ Z(T ′, h′) = Z(h′hT ′ , T, h) and Z(T, h) ∩ Z(T ′, h′) = Z(T, hh′hT ′).

Proof. Since sat(T ) = sat(T ′) and h′hT ′ is regular w.r.t. sat(T ′), h′hT ′ is regular

w.r.t. sat(T ). By Lemma 2.1 and Lemma 2.2, we have Z(T, hh′hT ′) = Z(T ′, hh′hT ).

Note that we can decompose Z(T, h) into the disjoint union

Z(T, h) = Z(T, hh′hT ′) ·∪ Z(h′hT ′ , T, h).

Similarly, we have Z(T ′, h′) = Z(T ′, hh′hT ) ·∪ Z(hhT , T
′, h′). Hence, the conclusion

holds.

Lemma 5.5. Assume that sat(T<v) = sat(T ′
<v). We have

(i) If p′ := T ′
v is defined but not Tv, then the following properties hold:

(i.a) p′ is regular w.r.t. sat(T ),

(i.b) Z(T, h) \ Z(T ′, h′) = Z(T, hp′) ·∪ (Z(p′, T, h) \ Z(T ′, h′)),



63

Algorithm 16: Difference([T, h], [T ′, h′])

begin1

if sat(T ) = sat(T ′) then2

output Intersect(h′hT ′ , T, hhT )3

else4

Let v be the largest variable s.t. sat(T<v) = sat(T ′
<v)5

if v ∈ mvar(T ′) and v /∈ mvar(T ) then6

p′ ← T ′
v7

output [T, hp′]8

output DifferenceLR(Intersect(p′, T, hhT ), [T
′, h′])9

else if v /∈ mvar(T ′) and v ∈ mvar(T ) then10

p← Tv11

output DifferenceLR([T, h], Intersect(p, T ′, h′hT ′))12

else13

p← Tv14

G ← GCD(Tv, T
′
v, v, T<v)15

if |G| = 1 then16

Let [g, C] ∈ G17

if g ∈ k then output [T, h]18

else if mvar(g) < v then19

output [T, gh]20

output DifferenceLR(Intersect(g, T, hhT ), [T
′, h′])21

else if mvar(g) = v then22

if mdeg(g) = mdeg(p) then23

D′
p ← T ′

<v ∪ {p} ∪ T ′
>v24

output Difference([T, h], [D′
p, h

′hT ′ ])25

else if mdeg(g) < mdeg(p) then26

q ← pquo(p, g, v)27

Dg ← T<v ∪ {g} ∪ T>v28

Dq ← T<v ∪ {q} ∪ T>v29

output Difference([Dg, hhT ], [T
′, h′])30

output Difference([Dq, hhT ], [T
′, h′])31

output DifferenceLR(Intersect(hg, T, hhT ), [T
′, h′])32

else if |G| ≥ 2 then33

for [g, C] ∈ G do34

if |C| > |T<v| then35

for D ∈ Extend(C, T, v) do36

for [f, E] ∈ Regularize(hhT , D) do37

if f 6= 0 then output Difference([E, hhT ], [T
′, h′])38

else output Difference([C ∪ T≥v, hhT ], [T
′, h′])39

end40
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Algorithm 17: DifferenceLR(L,R)

begin1

if L = ∅ then2

output ∅3

else if R = ∅ then4

output L5

else6

while R 6= ∅ do7

Let [T ′, h′] ∈ R, R← R \ { [T ′, h′] }8

S ← ∅9

for [T, h] ∈ L do10

S ← S ∪ Difference([T, h], [T ′, h′])11

L← S12

output L13

end14

(i.c) Z(T, h) ∩ Z(T ′, h′) = Z(p′, T, h) ∩ Z(T ′, h′).

(ii) If p := Tv is defined but not T ′
v, then the following properties hold:

(ii.a) p is regular w.r.t. sat(T ′),

(ii.b) Z(T, h) \ Z(T ′, h′) = Z(T, h) \ Z(p, T ′, h′),

(ii.c) Z(T, h) ∩ Z(T ′, h′) = Z(T, h) ∩ Z(p, T ′, h′).

Proof. We first prove (i). As init(p′) is regular w.r.t. sat(T ′
<v), it is also regular w.r.t.

sat(T<v). Recall that Tv not defined means that v /∈ mvar(T ) holds. Therefore, the

polynomial p′ is also regular w.r.t. sat(T ) and [T, hp′] is a regular system. On the

other hand, we have the following disjoint decomposition

Z(T, h) = Z(T, hp′) ·∪ Z(p′, T, h).

Observe that Z(T, hp′) ∩ Z(T ′, h′) = ∅ holds. Therefore, we have

Z(T, h) \ Z(T ′, h′) = Z(T, hp′) ·∪ (Z(p′, T, h) \ Z(T ′, h′))

and we have Z(T, h) ∩ Z(T ′, h′) = Z(p′, T, h) ∩ Z(T ′, h′). This proves (i).

Now we prove (ii). Similarly to what we did in the proof of (i), we observe that
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p is regular w.r.t. sat(T ′). Moreover, the following disjoint decomposition

Z(T ′, h′) = Z(T ′, h′p) ·∪ Z(p, T ′, h′hT ′),

and the relation Z(T, h) ∩ Z(T ′, h′p) = ∅ lead to the conclusion that (ii) holds.

Lemma 5.6. Assume that sat(T<v) = sat(T ′
<v) and sat(T≤v) 6= sat(T ′

≤v) both hold.

Assume that v is algebraic w.r.t. both T and T ′. Define

G = GCD(Tv, T
′
v, v, T<v);

D =
⋃

[g,C]∈G, |C|>|T<v |

Extend(C, T, v);

E = {E | [f, E] ∈
⋃

D∈D

Regularize(hhT , D)}.

Then we have

(i)

Z(T, h) =




⋃

[g,C]∈G, |C|=|T<v |

Z(C ∪ T≥v, hhT )



∪






⋃

E∈E,hhT /∈

√

sat(E)

Z(E, hhT )




 .

(ii) E ≺ T , for all [f, E] ∈ E .

(iii) for all [g, C] ∈ G such that |C| = |T<v|, we have:

(iii.a) C ∪ T≥v is a regular chain and hhT is regular w.r.t. sat(T≥v),

(iii.b) if |G| > 1, then C ∪ T≥v ≺ T holds.

Proof. W.l.o.g, we assume that the pairs in G are numbered [g1, C1], . . . , [ge, Ce],

[ge+1, Ce+1], . . . , [gs, Cs] such that:

� for all 1 ≤ i ≤ e, we have |C| = |T<v|,

� for all e+ 1 ≤ i ≤ s, we have |C| > |T<v|.

By the specification of the operation GCD we have T<v −→ C1, . . . , Cs. For each Ci,

with e+1 ≤ i ≤ s, the operation Extend computes a family of regular chains Di, such

that

� W (Ci ∪ T≥v) ⊆ ∪D∈Di
W (D) holds, and
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�
√

sat(T ) ⊆
√

sat(D) holds, for each D ∈ Di.

Note that D = ∪s
i=e+1 Di. For each D ∈ D, the operation Regularize outputs a family

of regular chains ED such that we have the following regular splitD −→ (E | E ∈ ED).

Note that we have E = ∪D∈D ED. From the definition of a regular split (Definition 4.2,

p. 38) we have

W (T ) = W (T<v ∪ T≥v)

⊆ ∪s
i=1W (Ci ∪ T≥v)

= ∪e
i=1W (Ci ∪ T≥v) ∪ ∪s

i=e+1W (Ci ∪ T≥v)

⊆




⋃

(g,C)∈G, |C|=|T<v |

W (C ∪ T≥v)



 ∪
(
⋃

E∈E

W (E)

)

⊆ W (T ),

which implies,

Z(T, h) = Z(T, hhT )

⊆




⋃

[g,C]∈G, |C|=|T<v |

Z(C ∪ T≥v, hhT )



 ∪






⋃

E∈E,hhT /∈

√

sat(E)

Z(E, hhT )






⊆ W (T ) \ V (hhT ) = Z(T, h).

This proves (i). We prove (iii). Consider [g, C] ∈ G such that |C| = |T<v| holds.
Properties (iii.a) and (iii.b) follow immediately from Proposition 5 of [104]. This

proves (ii). Similarly, (ii) follows from the same Proposition 5 of [104].

Lemma 5.7. Assume that sat(T<v) = sat(T ′
<v) and sat(T≤v) 6= sat(T ′

≤v) both hold.

Assume that v is algebraic w.r.t. both T and T ′. Define p = Tv, p
′ = T ′

v and

G = GCD(p, p′, v, T<v).

We assume that G consists of a single pair (g, C). Then the following properties hold.

(i) We have W (C) = W (T<v).

(ii) If g ∈ k, then

Z(T, h) \ Z(T ′, h′) = Z(T, h).
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(iii) If g /∈ k and mvar(g) < v, then g is regular w.r.t. sat(T ) and we have

Z(T, h) \ Z(T ′, h′) = Z(T, gh) ·∪ (Z(g, T, hhT ) \ Z(T ′, h′)) .

(iv) Assume that mvar(g) = v. Then the following properties hold.

(iv.a) If mdeg(g) = mdeg(p), defining D′
p := T ′

<v∪{p}∪T ′
>v, then h

′hT ′ is regular

w.r.t. sat(D′
p) and we have

Z(T, h) \ Z(T ′, h′) = Z(T, h) \ Z(D′
p, h

′hT ′).

Moreover, if mdeg(p) < mdeg(p′), we have D′
p ≺ T ′.

(iv.b) If mdeg(g) < mdeg(p), defining

q := pquo(p, g, v), Dg := T<v ∪ {g} ∪ T>v and Dq := T<v ∪ {q} ∪ T>v,

then the following properties hold:

(iv.b.1) both Dg and Dq are regular chains,

(iv.b.2) hhT is regular w.r.t. both sat(Dg) and sat(Dq),

(iv.b.3) Dg ≺ T and Dq ≺ T both hold,

(iv.b.4) Z(T, h) = Z(Dg, hhT )
⋃
Z(Dq, hhT )

⋃
Z(hg, T, hhT ) holds.

Proof. Since |G| = 1, by the specification of the operation GCD and the definition of

a regular split (Definition 4.2, p. 38) we deduce property (i). Thus we have

√

sat(C) =
√

sat(T<v) =
√

sat(T ′
<v). (5.2)

Moreover from the specification of the operation GCD, there exist polynomials A and

B such that

g ≡ Ap+Bp′ mod
√

sat(C). (5.3)

From (5.3), we have

V (sat(C)) ⊆ V (g − Ap−Bp′) (5.4)
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Therefore, we deduce

W (T ) ∩ W (T ′)

= W (T<v ∪ p ∪ T>v) ∩ W (T ′
<v ∪ p′ ∪ T ′

>v)

⊆ (W (T<v) ∩ V (p)) ∩ (W (T ′
<v) ∩ V (p′))

⊆ V (sat(T<v)) ∩ V (p) ∩ V (p′) by (5.2)

⊆ V (g − Ap− Bp′) ∩ V (p) ∩ V (p′) by (5.4)

⊆ V (g).

that is

W (T ) ∩ W (T ′) ⊆ V (g). (5.5)

Now we prove (ii). When g ∈ k, g 6= 0, from (5.5) we deduce W (T ) ∩ W (T ′) = ∅.
Now we prove (iii). Since

√

sat(T<v) =
√

sat(C) and since mvar(g) is smaller than

v, by the specification of GCD, the polynomial g is regular w.r.t. sat(T ). Moreover,

we have following decompositions

Z(T, h) = Z(T, gh) ·∪ Z(g, T, hhT ),
Z(T ′, h′) = Z(T ′, gh′) ·∪ Z(g, T ′, h′hT ′).

On the other hand,

Z(T, gh) ∩ Z(T ′, gh′) ⊆ (W (T ) ∩ W (T ′)) \ V (g) = ∅ by (5.5).

Therefore,

Z(T, h) \ Z(T ′, h′)

= (Z(T, gh) \ Z(T ′, h′)) ·∪ (Z(g, T, hhT ) \ Z(T ′, h′))

= Z(T, gh) ·∪ (Z(g, T, hhT ) \ Z(T ′, h′)) .

This proves (iii). Now we prove (iv.a). We distinguish two cases: mdeg(g) =

mdeg(p) = mdeg(p′) and mdeg(g) = mdeg(p) < mdeg(p′). Assume first that

mdeg(g) = mdeg(p) = mdeg(p′) holds. By Proposition 3.2, we have
√

sat(T ′
<v ∪ p) =

√

sat(T ′
<v ∪ p′), which implies that

√

sat(T ′
<v ∪ p ∪ T ′

>v) =
√

sat(T ′
<v ∪ p′ ∪ T ′

>v)

by Corollary 4.2. So we have Z(T ′, h′) = Z(hp, T
′, h′) ∪ Z(D′

p, h
′hp′). Therefore

Z(T, h) \ Z(T ′, h′) = Z(T, h) \ Z(D′
p, h

′hT ′) holds.

Now we assume that mdeg(g) = mdeg(p) < mdeg(p′) holds. In this case, p is
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also a GCD of p and p′ w.r.t. T<v. (This fact is clear on the algorithm of GCD see

Algorithm 15, in Chapter 4.) Let q′ := pquo(p′, p, v). Define D′
q′ := T ′

<v ∪ {q′} ∪ T ′
>v

and D′
p := T ′

<v ∪ {p} ∪ T ′
>v. By Proposition 3.2, we have

Z(T ′, h′) ⊆ Z(D′
p, h

′) ∪ Z(D′
q′ , h

′) ∪ Z(hp, T ′, h′)

⊆ W (T ′) \ V (h′).

With Corollary 2.1, we deduce

Z(T ′, h′) = Z(D′
p, h

′hT ′) ∪ Z(D′
q′ , h

′hT ′) ∪ Z(hp, T ′, h′hT ′). (5.6)

In the other hand, we have

Z(D′
q′ , h

′hT ′) = Z(D′
q′ , hph

′hT ′) ·∪ Z(hp, D′
q′ , h

′h′T )

= Z(D′
q′ , phph

′hT ′) ·∪ Z(p,D′
q′ , hph

′h′T ) ·∪ Z(hp, D′
q′ , h

′h′T )

and

Z(p,D′
q′ , hph

′h′T ) ⊆ Z(D′
p, h

′hT ′) and Z(hp, D
′
q′ , h

′h′T ) ⊆ Z(hp, T
′, h′hT ′).

Combined with (5.6) we obtain

Z(T ′, h′) = Z(D′
p, h

′hT ′) ·∪ Z(D′
q′ , phph

′hT ′) ·∪ Z(hp, T ′, h′hT ′).

Now observe that

Z(T, h) ∩ Z(D′
q′ , phph

′hT ′) = ∅, and
Z(T, h) ∩ Z(hp, T ′, h′hT ′) = ∅.

We deduce

Z(T, h) \ Z(T ′, h′) = Z(T, h) \ Z(D′
p, h

′hT ′).

This completes the proof of (iv.a). Finally property (iv.b) follows from Proposi-

tion 3.2. This completes the whole proof.

Theorem 5.1. Algorithms Difference and DifferenceLR terminate and satisfy their

specifications.
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Proof. Let (R1 = [T1, h1], R
′
1 = [T ′

1, h
′
1]) be the initial input of Difference. Let (R2 =

[T2, h2], R
′
2 = [T ′

2, h
′
2]) be the input of Difference when a recursive call is made. Let v1

be the largest variable v such that sat(T1<v) = sat(T ′
1<v) holds. Let v2 be the largest

variable v such that sat(T2<v) = sat(T ′
2<v) holds. We observe that only the following

three cases may arise:

� the rank of R2 is less than that of R1 (Lines 9, 21, 30, 31, 32, 38, 39)

� the rank of R′
2 is less than that of R′

1 (Line 12 and Line 25 if mdeg(p) <

mdeg(p′))

� the ranks of R1 and R2 are the same; the ranks of R′
1 and R

′
2 are also the same;

however, v2 is strictly larger than v1 (Line 25 if mdeg(p) = mdeg(p′))

Therefore the algorithm Difference terminates. Its correctness follows directly from

the previous lemmas. Finally the termination and correctness of DifferenceLR are

implied by those of Difference.

5.5 Application to the verification of polynomial

system solvers

Given a polynomial system F and a set of components C1, . . . , Ce, it is hard, in

general, to tell whether the union of C1, . . . , Ce corresponds exactly to the solution

set V (F ) or not. Actually, solving this verification problem is generally (at least) as

hard as solving the system F itself.

Because of the high complexity of symbolic solvers, developing both verification

algorithms and reliable verification software tools is a clear need. However, this

verification problem has received little attention in the literature. In this section, we

present new techniques for verifying a large class of symbolic solvers. We also report

on intensive experimentation illustrating the high efficiency of our approach w.r.t.

known techniques.

We assume that each component of the solution set V (F ) is given by a regular

system. Recall that, in broad words, a regular system consists of several polynomial

equations with a triangular shape

p1(x1) = p2(x1, x2) = · · · = pi(x1, x2, . . . , xn) = 0

and a polynomial inequation

h(x1, . . . , xn) 6= 0
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such that there exists (at least) one point (a1, . . . , an) satisfying the above equations

and inequation. Note that these polynomials may contain parameters.

Let us consider the following well-known system F taken from [55].







x31 − x6 − x− y = 0

x8 − z = 0

x10 − t = 0

We aim at solving this system for x > y > z > t, that is, expressing x as a function of

y, z, t, then y as a function of z, t and z as a function of t. One possible decomposition

is given by the three regular systems below:







(t4 − t) x− ty − z2 = 0

t3y2 + 2t2z2y + (−t6 + 2t3 + t− 1) z4 = 0

z5 − t4 = 0

t4 − t 6= 0

,







x2 − z4 = 0

y + t2z2 = 0

z5 − t = 0

t3 − 1 = 0

,







x = 0

y = 0

z = 0

t = 0

Another decomposition is given by these other three regular systems:







(t4 − t) x− ty − z2 = 0

tzy2 + 2z3y − t8 + 2t5 + t3 − t2 = 0

z5 − t4 = 0

z (t4 − t) 6= 0

,







zx2 − t = 0

ty + z2 = 0

z5 − t = 0

t3 − 1 = 0

tz 6= 0

,







x = 0

y = 0

z = 0

t = 0

These two decompositions look slightly different (in particular, the second compo-

nents) and one could think that, if each of them was produced by a different solver,

then at least one of these solvers has a bug. In fact, both decompositions are valid, but

proving that they both encode the solution set V (F ) is not feasible without computer

assistance. However, proving that they define the same set of points can be achieved

by an expert hand without computer assistance. This is an important observation

that will guide us in this work.

Let us consider now an arbitrary input system F and a set of components

C1, . . . , Ce encoded by regular systems S1, . . . , Se respectively. The usual approach

for verifying that C1, . . . , Ce correspond exactly to the solution set V (F ) is as follows.

(1) First, one checks that each candidate component Ci is actually contained in

V (F ). This essentially reduces to substitute the coordinates of the points given

by Ci into the polynomials of F : if all these polynomials vanish at these points,
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then Ci is a component of V (F ), otherwise, (and up to technical details that

we will skip in this overview) Ci is not a component of V (F ).

(2) Secondly, one checks that V (F ) is contained in the union of the candidate

components C1, . . . , Ce by:

(2.1) computing a polynomial system G such that V (G) corresponds exactly to

C1, . . . , Ce, and

(2.2) checking that every solution of V (F ) cancels the polynomials of G.

Steps (2.1) and (2.2) can be performed using standard techniques based on compu-

tations of Gröbner bases, as we discuss in Section 5.5.3. These calculations are very

expensive in practice, as shown by our experimentation, reported in Section 5.5.5.

In this work, we propose a different approach, summarized in non-technical lan-

guage in Section 5.5.1. The main idea is as follows. Instead of comparing a candidate

set of components C1, . . . , Ce against the input system F , we compare it against the

output D1, . . . , Df produced by another solver. Both this solver and the compari-

son process are assumed to be validated. Hence, the candidate set of components

C1, . . . , Ce corresponds exactly to the solution set V (F ) if and only if the comparison

process shows that D1, . . . , Df and C1, . . . , Ce define the same solution set.

The solvers we consider in this study are those solving polynomial systems by

means of triangular decompositions in the so-called sense of Lazard. This choice is

motivated by the following reasons. First, the case of decompositions in the sense

of Kalkbrener was treated in [6], via Gröbner basis computations. Secondly, most

algorithms computing triangular decompositions use the sense of Lazard and no ver-

ification tool for those has been reported prior to our work. We leave for future

research the verification of Kalkbrener’s decompositions by means of more efficient

techniques than those reported in [6].

5.5.1 Methodology

Let us consider again an arbitrary input polynomial system F and a set of components

C1, . . . , Ce encoded by regular systems S1, . . . , Se respectively. As mentioned in the

Introduction, checking whether C1, . . . , Ce corresponds exactly to the solution set

V (F ) of F can be done by means of Gröbner bases computations. This verification

process is quite simple, see Section 5.5.2, and its implementation is straightforward,

Thus, if the underlying Gröbner bases engine is reliable, such verification tool can be

regarded as safe. See [7] for details.
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Unfortunately, this verification process is highly expensive. Even worse, as shown

by our experimental results in Section 5.5.5, this verification process is unable to

check many triangular decompositions that are easy to compute.

We propose a new approach in order to overcome this limitation. Assume that

we have at hand a reliable solver computing triangular decompositions of polynomial

systems. We believe that this reliability can be acquired over time by combining

several features.

� Checking the solver with a verification tool based on Gröbner bases for input

systems of moderate difficulty.

� Using the solver for input systems of higher difficulty where the output can be

verified by theoretical arguments, see [8] for an example of such input system.

� Involving the library supporting the solver in other applications.

� Making the solver widely available to potential users.

Suppose that we are currently developing a new solver computing triangular decom-

positions. In order to verify the output of this new solver, we can take advantage of

the reliable solver.

This may sound natural and easy in the first place, but this is actually not. Indeed,

as shown in the Introductory Chapter, two different solvers can produce two different,

but valid, triangular decompositions for the same input system. Checking that these

two triangular decompositions encode the same solution set boils down to compute

the differences of two constructible sets. This is a non-trivial operation, see the survey

paper [113].

The first contribution of our work is to provide a relatively simple, but efficient,

procedure for computing the set theoretical differences between two constructible

sets, see Section 5.4. Such procedure can be used to develop a verification tool for

our new solver by means of our reliable solver. Moreover, this procedure is sufficiently

straightforward to implement such that it can be trusted after a relatively short period

of testing, as the case for the verification tool based on Gröbner bases computations.

The second contribution of our work is to illustrate the high efficiency of this

new verification tool. In Section 5.5.5, we consider four solvers computing triangular

decomposition of polynomial systems:

� the command Triangularize of the RegularChains library [88] in Maple

� the Triade solver of the BasicMath library [70] in Aldor
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� the commands RegSer and SimSer of the Epsilon library [124] in Maple.

We have run these four solvers on a large set of well-known input systems from the

data base [96, 118, 127]. For those systems for which this is feasible, we have verified

their computed triangular decompositions with a verification tool based on Gröbner

bases computations. Then, for each input system, we have compared all its computed

triangular decompositions by means of our new verification tool.

Based on our experimentation data reported in Section 5.5.5 we make the following

observations.

� All computed triangular decompositions, that could be checked via Gröbner

bases computations, are correct.

� However, the verification tool based on Gröbner bases computations failed to

check many examples by running out of computer memory.

� For each input system F , all pairs of triangular decompositions of F could be

compared successfully by our new verification tool.

� Moreover, for any system F to which all verification tools could be applied, our

new approach runs much faster.

This suggests that the four solvers and our new verification tool have a good level of

reliability. Moreover, it allows to process cases that were previously out of reach.

5.5.2 Verification of triangular decompositions

In this section, we describe how to verify the output from a triangular decomposi-

tion solver. For verification of triangular decomposition in Kalkbrener’s sense, it is

still unknown whether we can circumvent Gröbner basis computations. However, in

Lazard’s sense, we present two methods, based on Gröbner bases and regular systems,

respectively.

5.5.3 Verification with Gröbner bases

Given a set of polynomials F and a polynomial f in k[x], we denote D(F, f) the

difference of V (F ) and V (f). If F is the empty set, then we write D(f) for short.

The following two lemmas state the Gröbner basis methods to verify whether two

basic constructible sets are equal or not.
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Lemma 5.8. Let F,G0, G1, . . . , Gr be finite polynomial sets of k[x] and

f, g0, g1, . . . , gr be polynomials of k[x]. The following statements are equivalent

1. D(F, f) \D(G0, g0) ⊆
⋃r

i=1D(Gi, gi).

2. For every integer s such that 0 ≤ s ≤ r, for every subset {i1, . . . , is} ⊆
{0, . . . , r}, we have

√

〈F ∪ {gi1 , . . . , gis}〉 ⊇
∏

k∈{0,...,r}\{i1,...,is}

〈f〉〈Gk〉. (5.7)

Proof. (1) is equivalent to D(F, f) ⊆ ⋃r
i=0D(Gi, gi), that is

D(F, f)
⋂
(

r⋂

i=0

D(Gi, gi)
c

)

= ∅.

By distributivity, we deduce that (1) is equivalent to

(

D(F, f)
⋂

V (gi1 , . . . , gis)
)⋂




⋂

k∈{0,...,r}\{i1,...,is}

V (Gk)
c



 = ∅,

for all subsets {i1, . . . , is} of {0, . . . , r}. The proof easily follows.

Lemma 5.9. Let F,G0, G1, . . . , Gr be finite polynomial sets of k[x] and

f, g0, g1, . . . , gr be polynomials of k[x]. The following statements are equivalent

1. D(F, f) \D(G0, g0) ⊇
⋃r

i=1D(Gi, gi).

2. For all 1 ≤ i ≤ r, we have

gig0 ∈
√

〈Gi ∪G0〉, gi ∈
√

〈Gi, f〉, and 〈gi〉〈F 〉 ⊂
√

〈Gi〉. (5.8)

Proof. (1) holds if and only if for each 1 ≤ i ≤ r we have

{

D(Gi, gi)
⋂
D(F, f)c = ∅,

D(Gi, gi)
⋂
D(G0, g0) = ∅,

which holds if and only if







V (Gi)
⋂
V (gi)

c
⋂
V (F )c = ∅,

V (Gi)
⋂
V (gi)

c
⋂
V (f) = ∅,

V (Gi)
⋂
V (gi)

c
⋂
V (G0)

⋂
V (g0)

c = ∅.
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The proof easily follows.

The above general lemmas can be used to check if the output from the algorithm

Difference is correct or not. In particular, they can be applied to check if a triangular

decomposition is valid or not by comparing the input system and one triangular

decomposition. We naively implement them using maple package PolynomialIdeals .

5.5.4 Verification with the Difference algorithm

Given two Lazard-Wu’s triangular decompositions {Ti | i = 1 . . . e} and {Sj | j =

1 . . . f}. Checking ∪e
i=1W (Ti) = ∪f

j=1W (Sj) amounts to checking both

(
e⋃

i=1

Z(Ti, 1)

)

\
(

f
⋃

j=1

Z(Sj, 1)

)

and

(
f
⋃

j=1

Z(Sj, 1)

)

\
(

e⋃

i=1

Z(Ti, 1)

)

being empty, where [Ti, 1] and [Sj, 1] are all regular systems. This is equivalent to

check whether DifferenceLR returns the empty set for both differences.

5.5.5 Experimentation

We have implemented a verifier, named Diff-verifier, according to the DifferenceLR

algorithm proposed in Section 5.4, and it has been implemented in Maple 11 based

on the RegularChains library. To verify the effectiveness of our Diff-verifier, we

have also implemented another verifier, named GB-verifier, applying Lemma 5.8 and

Lemma 5.9, on top of the PolynomialIdeals package in Maple 11.

We use these two verifiers to examine four polynomial system solvers herein. They

are the Triangularize function in the RegularChains library [88], the Triade server in

Aldor on top of the BasicMath library [70], the RegSer function and the SimSer func-

tion in Epsilon [124] implemented in Maple. The first two solvers solve a polynomial

system into regular chains by means of the Triade algorithm [104]. They can work

in both Lazard’s sense and Kalkbrener’s sense. In this work, we use the options for

solving in Lazard’s sense. The RegSer function decomposes a polynomial system into

regular systems in a strong sense, and the SimSer function decomposes a polynomial

system into simple systems. They adopt the elimination methods in [127].

The problems used in this benchmark are chosen from [96, 118, 127]. In Table 5.1,

for each system, we give the dimension sequence of the triangular decomposition

computed in Kalkbrener’s sense by the Triade algorithm. The number of variables is
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denoted by n, and d is the maximum degree of a monomial. We also give the number

of components in the solution set for each of the methods we are studying.

Table 5.2 gives the timing of each problem solved by the four methods. In this

study, due to the current availability of Epsilon, the timings obtained by the RegSer

and the SimSer are performed in Maple 8 on Intel Pentium 4 machines (1.60GHz

CPU, 513MB memory and Red Hat Linux 3.2.2-5). All the other timings are run on

Intel Pentium 4 (3.20GHz CPU, 2.0GB total memory, and Red Hat 4.0.0-9), and the

Maple version used is 11. The Triade server is a stand-alone executable program

compiled from a program in Aldor.

Table 5.3 summarizes the timings of GB-verifier for verifying the solutions of

the four methods. Table 3 illustrates the timings of Diff-verifier for checking the

solutions byMaple Triangularize against Aldor Triade server, Maple Triangularize

against Epsilon RegSer, and Epsilon RegSer against Epsilon SimSer. For the case

where there is a time, the verifying result is also true. The ′−′ denotes the case where

the test stalls by either reaching the time limit of 43200 seconds or causing a memory

failure.

Based on (5.1) in Section 5.4, we implement the Difference operation naively, and

we call it Naive-diff-verifier. From the Table 5.4 we can see clearly that, for most

problems, the Diff-verifier performs much better than Naive-diff-verifier, especially

for hard problems.

This experimentation results illustrate that verifying a polynomial solver is a truly

difficult task. The GB-verifier is very costly in terms of CPU time and memory. It

only succeeds for some easy examples. Assuming that the GB-verifier is reliable, for

the examples it succeeds, the Diff-verifier agrees with its results by pairwise checking,

while it takes much less time. This shows the efficiency of our Diff-verifier. Moreover,

the Diff-verifier succeeds in computing the difference for any pair of output of the

four solvers. (The comparison between GB-verifier and Diff-verifer is a bit unfair,

since Gröbner basis method has to keep all information like multiplicities, whereas

Difference does not.) Therefore, our new approach can verify the solution set of all

test polynomial systems that at least two of our four solvers can solve, which serves

well for our purpose.

Furthermore, the tests also show that the Diff-verifier can verify quite difficult

problems. Therefore, the tests indicate that all four solvers are solving tools with

a high probability of correctness, since the checking results would not agree to each

other otherwise.
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Number of Components

Maple 11 Aldor Epsilon Epsilon

Sys Name n d Dimension Triangularize Triade server RegSer SimSer

1 Montes S1 4 2 [2,2,1] 3 3 3 3
2 Montes S2 4 3 [0] 1 1 1 1
3 Montes S3 3 3 [1,1] 2 2 2 3
4 Montes S4 4 2 [0] 1 1 1 1
5 Montes S6 4 3 [2,2,2] 3 3 3 3
6 Montes S7 4 3 [1] 2 2 3 6
7 Montes S8 4 12 [2,1] 2 2 6 6
8 Alonso 7 4 [3] 3 3 3 4
9 Raksanyi 8 3 [4] 4 4 4 10

YangBaxter
10 Rosso 6 3 [4,3,3,1,1,1,1] 7 7 4 13

[0,0,0,0,0,0,
11 l-3 4 3 0,0,0,0,0,0,0] 25 13 8 8
12 Caprasse 4 4 [0,0,0,0,0] 15 5 4 4
13 Reif 16 3 [ ] 0 0 0 0

Buchberger
14 WuWang 5 3 [2] 3 3 3 4
15 DonatiTraverso 4 31 [1] 6 3 3 3
16 Wu-Wang.2 13 3 [1,1,1,1,1] 5 5 5 5
17 Hairer-2-BGK 13 4 [2] 4 4 5 6
18 Montes S5 8 3 [4] 4 4 4 10
19 Bronstein 4 3 [1] 4 2 4 9
20 Butcher 8 4 [3,3,3,2,2,0] 7 6 6 6
21 genLinSyst-2-2 8 2 [6] 11 11 11 11
22 genLinSyst-3-2 11 2 [8] 17 18 18 18
23 Gerdt 7 4 [3,2,2,2,1,1] 7 6 10 10
24 Wang93 5 3 [1] 5 4 6 7
25 Vermeer 5 5 [1] 5 4 12 14
26 Gonnet 5 2 [3,3,3] 3 3 9 9
27 Neural 4 3 [1,1] 4 3 – –
28 Noonburg 4 3 [1,1] 4 3 – –

[12,12,11,
29 KdV 26 3 11,11,11,11] 7 7 – –
30 Montes S12 8 2 [4] 22 17 23 –

[6,6,6,6,6,
31 Pappus 12 2 6,6,6,6,6] 124 129 156 –

Table 5.1: Features of the polynomial systems
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Maple 11 Aldor Epsilon Epsilon
Sys Triangularize Triade server RegSer SimSer
1 0.104 0.164 0.01 0.03
2 0.039 0.204 0.03 0.02
3 0.069 0.06 0.019 0.111
4 0.510 0.072 0.049 0.03
5 0.052 0.096 0.03 0.03
6 0.150 0.06 0.09 5.14
7 0.376 0.072 0.2 1.229
8 0.204 0.065 0.109 0.16
9 0.460 0.066 0.141 0.481
10 1.252 0.108 0.069 0.21
11 5.965 0.587 1.53 2.91
12 2.426 0.167 1.209 2.32
13 123.823 1.886 1.979 2.36
14 0.2 0.101 0.049 0.109
15 2.641 0.08 0.439 0.7
16 105.835 1.429 5.49 6.14
17 23.453 0.688 1.76 1.679
18 0.484 0.078 0.13 0.471
19 0.482 0.071 0.24 1.000
20 9.325 0.442 1.689 2.091
21 0.557 0.096 0.13 0.21
22 1.985 0.173 0.431 0.411
23 4.733 0.499 3.5 4.1
24 7.814 5.353 2.18 30.24
25 26.533 0.580 4.339 60.65
26 3.983 0.354 2.18 2.48
27 15.879 1.567 – –
28 15.696 1.642 – –
29 9245.442 49.573 – –
30 17.001 0.526 2.829 –
31 79.663 4.429 11.78 –

Table 5.2: Solving timings in sec. of the four methods
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GB-verifier timing(s) Diff-verifier timing(s)
Maple 11 Aldor Epsilon Epsilon M.T. M.T. E.R.

Triangularize Triade server RegSer SimSer vs vs vs
sys (M.T.) (A.T.) (E.R.) (E.S.) A.T. E.R. E.S.
1 0.556 0.526 0.518 0.543 0.188 0.238 0.217
2 0.128 0.127 0.129 0.131 0.012 0.010 0.010
3 0.584 0.575 0.585 2.874 0.067 0.088 0.326
4 0.104 0.133 0.139 0.137 0.018 0.017 0.018
5 1.484 1.472 1.457 1.469 0.198 0.178 0.190
6 76.596 72.374 71.853 – 2.010 2.390 12.591
7 0.616 0.601 4.501 4.536 0.191 0.404 0.492
8 – – – – 0.571 0.677 0.925
9 – – – – 4.257 4.454 7.884
10 – – – – 6.555 8.824 9.037
11 – – – – 5.341 3.564 1.997
12 – 58.332 33.469 35.213 1.506 1.657 2.354
13 – – – – 0.000 0.000 0.000
14 1.96 1.937 2.165 5.739 0.617 0.661 0.722
15 330.317 – – – 1.689 3.095 2.870
16 10466.587 – – – 1.340 0.795 0.773
17 – – – – 1.883 2.272 4.903
18 – – – – 4.450 4.596 8.063
19 1.544 0.717 5.046 – 2.162 6.382 41.374
20 – – – – 5.683 5.113 5.949
21 – – – – 6.595 6.621 4.441
22 – – – – 21.689 17.943 11.503
23 – – – – 4.073 5.071 5.775
24 – – – – 1064.127 636.221 707.668
25 – – – – 817.499 1519.858 1585.095
26 – – – – 0.554 1.276 1.741
27 11383.335 – – – 1072.199 – –
28 – – – – 1248.353 – –
29 – – – – 5.418 – –
30 – – – – 428.503 706.854 –
31 – – – – 8071.055 9800.086 –

Table 5.3: Timings of GB-verifier and Diff-verifier
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Naive-diff-verifier Diff-verifier Naive-diff-verifier Diff-verifier
Sys timing(s) timing(s) Sys timing(s) timing(s)
1 0.027 0.188 17 10876.470 1.883
2 0.003 0.012 18 5.498 4.450
3 0.075 0.067 19 7.491 2.162
4 0.010 0.018 20 450.342 5.683
5 0.049 0.198 21 158.879 6.595
6 2.146 2.010 22 4450.023 21.689
7 0.111 0.191 23 11.415 4.073
8 1.815 0.571 24 25047.768 1064.127
9 5.342 4.257 25 – 817.499
10 58.938 6.555 26 0.373 0.554
11 – 5.341 27 2466.459 1072.199
12 – 1.506 28 2464.389 1248.353
13 0.000 0.000 29 316.925 5.418
14 3.254 0.617 30 – 428.503
15 11.813 1.689 31 – 8071.055
16 11.374 1.340

Table 5.4: Timings of Naive-diff-verifier and Diff-verifier for M.T. vs A.T.
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Chapter 6

Comprehensive Triangular

Decomposition

We introduce the concept of comprehensive triangular decomposition (CTD) for a

parametric polynomial system P with coefficients in an arbitrary field k. In broad

words, it is a finite partition of the parameter space into cells such that each cell

C is associated with a triangular decomposition of P that is “well-behaved” under

specialization at any point of C. We propose several output specifications of CTD

addressing different problems regarding the solutions of P as functions of the param-

eters. We also compare our algorithms, both theoretically and in practice, with other

tools for solving parametric polynomial systems.

6.1 Introduction

Solving polynomial systems with parameters has become an increasing need in several

applied areas such as robotics, geometric modeling, stability analysis of dynamical

systems and others. For a given parametric polynomial system P , the following

problems are of interest:

(1) Compute the values of the parameters for which P has solutions or finitely

many solutions, or satisfies certain properties such as continuity. Determine the

number of solutions or the dimension of solution set depending on parameters.

(2) Compute the solutions of P as functions of the parameters.

These questions have been approached by various techniques including Gröbner

bases [86], comprehensive Gröbner bases (CGB) [130, 131, 102, 96, 117], cylindri-

cal algebraic decomposition (CAD) [24] and triangular decompositions [132, 133, 42,
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43, 68, 57, 125, 126, 138, 37, 136]. Methods based on CGB, or more generally Gröbner

bases, are powerful tools for solving Problem (1), that is, determining the values u

of the parameters such that, the specialized system F (u) satisfies a given property.

Methods based on CAD or triangular decompositions are naturally well designed for

solving Problem (2).

In this paper, we introduce the concept of comprehensive triangular decomposition

for a parametric polynomial system with coefficients in a field. This notion plays the

role for triangular decompositions that CGB does for Gröbner bases. With this

concept at hand, we show that Problems (1) and (2) can be completely answered by

means of triangular decompositions.

We first consider parametric polynomial systems involving only equations. Let F

be a finite set of polynomials with coefficients in a field k, parameters u = u1, . . . , ud,

and unknowns y = y1, . . . , ym, that is, F ⊂ k[u1, . . . , ud, y1, . . . , ym]. Let K be the

algebraic closure of k, and let V (F ) ⊂ Kd+m be the zero set of F . Let also πu be

the projection from Kd+m on the parameter space Kd. For all u ∈ Kd we define

V (F (u)) ⊆ Km the zero set defined by F after specializing u at u.

Our first contribution is to show how to compute a finite partition C of πu(V (F ))

and a family of triangular decompositions (TC , C ∈ C) in k[u,y] such that for each C ∈
C and for each parameter value u ∈ C the triangular decomposition TC specializes at u

into a triangular decomposition TC(u) of V (F (u)) given by regular chains. Moreover,

each “cell” C ∈ C is a constructible set given by a family of regular systems in k[u].

We call the pair (C, (TC , C ∈ C)) a comprehensive triangular decomposition of V (F ),

see Section 6.3.

This is a natural definition inspired by that of a comprehensive Gröbner basis [130]

introduced by Weispfenning with the additional requirements proposed by Montes

in [102]. From each pair (C, TC), we can read geometrical information, such as for

which parameter values u ∈ C the set V (F (u)) is finite; we also obtain a “generic”

equidimensional decomposition of V (F (u)), for all u ∈ C. The notion of CTD is also

related to the border polynomial of a polynomial system in [138] and the minimal

discriminant variety of V (F ) as defined in [86] for the case where K is the field of

complex numbers. See Section 6.6 for detailed discussions.

Example 6.1. Let F = {vxy+ux2+x, uy2+x2} be a parametric polynomial system

with parameters u > v and unknowns x > y. Then a comprehensive triangular
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decomposition of V (F ) is:

C1 = {u(u3 + v2) 6= 0} : TC1 = {T3, T4}
C2 = {u = 0} : TC2 = {T2, T3}

C3 = {u3 + v2 = 0, v 6= 0} : TC3 = {T1, T3}

where

T1 = {vxy + x− u2y2, 2vy + 1, u3 + v2}
T2 = {x, u}
T3 = {x, y}
T4 = {vxy + x− u2y2, u3y2 + v2y2 + 2vy + 1}

Here , C1, C2, C3 is a partition of πu(V (F )) and TCi
is a triangular decomposition

of V (F ) above Ci, for i = 1, 2, 3. For different parameter values u, we can directly

read geometrical information, such as the dimension of V (F (u)).

By RegSer [126], V (F ) can be decomposed into a set of regular systems:

R1 =







ux+ vy + 1 = 0

(u3 + v2)y2 + 2vy + 1 = 0

u(u3 + v2) 6= 0

, R2 =







x = 0

y = 0

u 6= 0

,

R3 =







x = 0

vy + 1 = 0

u = 0

v 6= 0

, R4 =







2ux+ 1 = 0

2vy + 1 = 0

u3 + v2 = 0

v 6= 0

, R5 =

{

x = 0

u = 0
.

For each regular system, one can directly read its dimension when parameters

take corresponding values. However, the dimension of the input system could not be

obtained immediately, since a partition of the parameter space is not provided.

By DISPGB [102], one can obtain all the cases over the parameters leading to

different reduced Gröbner bases with parameters:

u(u3 + v2) 6= 0 : {ux+ (u3v + v3)y3 + (−u3 + v2)y2, (u3 + v2)y4 + 2vy3 + y2}
u(u3 + v2) = 0, u 6= 0 : {ux+ 2v2y2, 2vy3 + y2}

u = 0, v 6= 0 : {x2, vxy + x}
u = 0, v = 0 : {x}
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Here for each parameter value, the input system specializes into a Gröbner basis.

Since Gröbner bases do not necessarily have a triangular shape, the dimension may

not be read immediately either. For example, when u = 0, v 6= 0, {x2, vxy+x} is not
a triangular set.

In Section 6.3 we also propose an algorithm for computing the CTD of any para-

metric polynomial system. It relies on a procedure for solving the following problem.

Given a family of constructible sets A1, . . . , As, compute a family B1, . . . , Bt of pair-

wise disjoint constructible sets, such that for all 1 ≤ i ≤ s the set Ai writes as a

union of some of the B1, . . . , Bt. This can be seen as the set theoretical version of the

coprime factorization problem, see [11, 49] for other variants of this problem. Our

solution is presented in Section 6.2 based on the Difference algorithm presented in

Chapter 5 for computing the difference of the zero sets of two regular systems.

For a polynomial system involving inequations, or more generally a parametric

constructible set, one can decompose it into regular systems by the triangular de-

composition algorithm presented in Chapter 5. This suggests us to generalize the

previous definition of CTD to the case of a parametric constructible set. This is done

in Section 6.4. Moreover, in the same section we introduce the concept of disjoint

squarefree comprehensive triangular decomposition (DSCTD) in order to classify the

number of solutions depending on parameters. This is our second contribution.

Our third contribution is an implementation report of our algorithm comput-

ing CTDs, within the RegularChains library in Maple. We provide comparative

benchmarks with Maple implementations of related methods for solving paramet-

ric polynomial systems, namely: decompositions into regular systems by Wang [126]

and discussing parametric Gröbner bases by Montes [102]. We use a large set of

well-known test-problems from the literature. Our implementation of the CTD algo-

rithm can solve all problems which can be solved by the other methods. In addition,

our CTD code can solve problems which are out of reach of the other two methods,

generally due to memory consumption.

This chapter is based on paper [30], co-authored with Oleg Golubitsky, François

Lemaire, Marc Moreno Maza and Wei Pan.
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6.2 Decomposition into pairwise disjoint con-

structible sets

In this section we present two operations which decompose a list of regular systems

into another list of regular systems whose zero sets are disjoint. In addition, the

second operation computes an “intersection free basis” of a list of regular systems,

which is applied to computing comprehensive triangular decompositions in the next

section. The specification of the two operations are as follows.

The operation MPD. Given a list of regular systems S of k[x], the operation Make-

PairwiseDisjoint (MPD for short) computes another list of regular systems D of k[x]

such that ∪R∈SZ(R) = ·∪R∈DZ(R) hold, which ·∪ denotes a disjoint union.

The operation SMPD. Given a list of regular systems R1, . . . , Re of k[x], the operation

SymmetricallyMakePairwiseDisjoint (SMPD for short) computes another list of regular

systems S1, . . . , Sf of k[x] such that the following hold:

� ∪e
i=1Z(Ri) = ·∪f

i=1Z(Si),

� each Z(Ri) is a finite union of some of the Z(Sj).

We call S1, . . . , Sf an intersection free basis of R1, . . . , Re.

Algorithm 18: MPD(S)
begin1

if |S| ≤ 1 then2

output S3

sort the regular systems in S by increasing rank4

let S = L+R, where |L| = |R| or |L| = |R|+ 15

L := DifferenceLR(L,R)6

sort the regular systems in L by increasing rank7

output MPD(L)8

output MPD(R)9

end10

Definition 6.1. Let S be a non-empty list of regular systems. Define Sr as the

subset of regular systems of maximal rank in S. Let φ(S) = (rank(S), |Sr|). Let S ′ be

another non-empty list of regular systems. Let S ≺ S ′ if φ(S) <lex φ(S ′), where <lex

is the lexicographic order. For the empty list [ ] and any non-empty list S, we define

φ([ ]) ≺ φ(S). Clearly any sequence of φ(S) which is strictly decreasing w.r.t. ≺ is

finite.
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Proposition 6.1. Algorithm 18 terminates and satisfies its specifications.

Proof. For empty and singleton lists S, the proposition clearly holds. Let S = L +

R. By Theorem 5.1, we have φ(DifferenceLR(L,R)) ≺ φ(S) holds. On the other

hand, φ(R) ≺ φ(S) clearly holds. Thus the algorithm terminates. Its correctness is

obvious.

Algorithm 19: SMPD(S)
begin1

if |S| ≤ 1 then2

output S3

Let [T0, h0] ∈ S, S ← S \ {[T0, h0]}4

S ← SMPD(S)5

for [T, h] ∈ S do6

A ← Difference([T, h], [T0, h0])7

B ← DifferenceLR([T, h],A)8

output MPD(A)9

output MPD(B)10

C ← DifferenceLR([T0, h0],S)11

output MPD(C)12

end13

Proposition 6.2. The Algorithm SMPD terminates and is correct.

Proof. It follows directly from the termination and correctness of algorithms

Difference, DifferenceLR and MPD.

Remark 6.1. In the rest of this thesis, we also use SMPD to denote an operation for

computing intersection free basis of a set of constructible sets. More precisely, given

a set of constructible sets A1, · · · , As, SMPD computes another set of constructible

sets B1, · · · , Bt whose zero sets are pairwise disjoint, such that each Z(Ai) writes as

a union of some of the Z(B1), · · · , Z(Bt). This operation can be implemented by a

similar algorithm as Algorithm 19.

6.3 Comprehensive triangular decomposition of a

parametric algebraic variety

In this section we introduce the concept of comprehensive triangular decomposition

of an algebraic variety. We propose an algorithm for computing this decomposition
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and apply it to computing the set of all parameter values at which a given parametric

system has an empty or an infinite set of solutions.

From now on, we assume that n = m + d, the variables x1, . . . , xd are renamed

u1, . . . , ud and viewed as parameters, whereas xd+1, . . . , xn are renamed y1, . . . , ym

and regarded as unknowns.

Let Tu (resp. Ty) denote the set of polynomials in T whose main variables belong

to u (resp. y). That is Tu = T ∩ k[u] and Ty = T \ Tu. Let W u(Tu) be the

quasi-component of Tu in Kd.

Let p ∈ k[u,y]. Denote by coeffs(p,y) the set of coefficients of p w.r.t. the

variables y. Let V u(coeffs(p,y)) be the algebraic variety of coeffs(p,y) in Kd. For

u ∈ Kd, we denote by p(u) the polynomial of K[y] obtained by evaluating p at u = u.

Clearly, for all u ∈ Kd, the polynomial p(u) is identically null iff u ∈ V u(coeffs(p,y)).

Let F ⊂ k[u,y]. Then, we denote by F (u) the set of all non-zero p(u) for p ∈ F .
Defining set. Let T ⊂ k[u,y] be a regular chain. Let u ∈ Kd. We say that T

specializes well at u if T (u) is a regular chain of K[y] and hT (u) 6= 0. The union of

all these parameter values is called the defining set of T w.r.t. u, denoted by Du(T ).

Lemma 6.1. Let T ⊂ k[u,y] be a regular chain with mvar(T ) ⊆ y and let u ∈ Kd.

We have

u 6∈ V u(res(hT , T )) ⇐⇒ hT (u) 6= 0 and res(hT (u), T (u)) 6= 0.

Proof. We prove the lemma by induction. If |T | = 1, we have res(hT , T ) = hT . So u 6∈
V u(res(hT , T )) implies hT (u) 6= 0 and therefore res(hT (u), T (u)) = hT (u) = hT (u) 6= 0.

The other direction is obvious.

Now we assume that the conclusion holds for |T | = s − 1. If |T | = s, let v

be the largest variable in mvar(T ). If u 6∈ V u(res(hT , T )), we have res(hT , T )(u) =

res(hT , T<v)(u) 6= 0. Therefore, res(hT<v
, T<v)(u) 6= 0. By induction hypothesis, we

know hT<v
(u) 6= 0. By the specialization property of subresultants, one can deduce

that res(hT , T<v)(u) and res(hT (u), T<v(u)) differ by a nonzero polynomial in K[y].

Thus we have res(hT (u), T<v(u)) 6= 0 holds. So hT (u) 6= 0 holds. Thus we have

hT (u) = hT (u). Therefore res(hT (u), T (u)) = res(hT (u), T<v(u)) = res(hT (u), T<v(u)) 6=
0 also holds. Another direction follows from similar arguments.

Proposition 6.3. Let T ⊂ k[u,y] be a regular chain. Let Du(T ) be the defining set

of T w.r.t. u. Then we have Du(T ) = W u(Tu) \ V u(res(hTy
, Ty)).

Proof. Assume that u ∈ W u(Tu) \ V u(res(hTy
, Ty)). We prove that T specializes

well at u. From Lemma 6.1 we have res(hTy(u), Ty(u)) 6= 0 and hTy
(u) 6= 0. Since
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u ∈ W u(Tu), we have Tu(u) = ∅ and hTu
(u) 6= 0. So we have hT (u) 6= 0. Moreover,

by Proposition 4.2, T (u) = Ty(u) is a regular chain. Therefore, the regular chain T

specializes well at u. The converse implication is proved similarly.

Remark 6.2. Since Du(T ) is a constructible set, by Lemma 5.2, there exists an

algorithm to compute a set of regular systems Ru(T ), such that Du(T ) = Z(Ru(T )).

Definition 6.2. Let T ⊂ k[u,y] be a regular chain. The comprehensive quasi-

component of T w.r.t. u, denoted by WC(T ), is defined by WC(T ) = W (T ) ∩
π−1
u (Du(T )).

Proposition 6.4. Let T ⊂ k[u,y] be a regular chain. The following properties hold:

(1) We have: WC(T ) = W (T ) \ π−1
u (V u(res(hTy

, Ty))).

(2) We have: πu(WC(T )) = Du(T ).

Proof. It follows directly from Proposition 6.3.

Definition 6.3. Let F ⊂ k[u,y] be a finite polynomial set. A comprehensive trian-

gular decomposition (CTD) of V (F ) is given by :

1. a finite partition C of πu(V (F )),

2. for each C ∈ C a set of regular chains TC of k[u,y] such that for u ∈ C each of

the regular chains T ∈ TC specializes well at u and we have for all u ∈ C

V (F (u)) =
⋃

T∈TC

W (T (u)).

We will compute the above comprehensive triangular decomposition with the help

of the following auxiliary concept:

Definition 6.4. Let F ⊂ k[u,y] be a finite polynomial set. A pre-comprehensive

triangular decomposition (PCTD) of V (F ) is a family of regular chains T satisfying

the following property: for each u ∈ Kd, let Tu be the subfamily of all regular chains

in T that specialize well at u; then V (F (u)) =
⋃

T∈Tu
W (T (u)).

Proposition 6.5. Let F ⊂ k[u,y] be a finite polynomial set. A triangular decom-

position T of V (F ) is a pre-comprehensive triangular decomposition if and only if

V (F ) =
⋃

T∈T WC(T ).
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Algorithm 20: PCTD(F )

Input: A finite set F ⊂ k[u,y].
Output: A PCTD of V (F ).
T ← Triangularize(F )1

while T 6= ∅ do2

let T ∈ T , T ← T \ {T}3

output T4

G← coefficients(res(hTy
, Ty),u)5

T ← T ∪ Triangularize(G, T )6

Proof. It follows from the definition of WC(T ), Proposition 6.3 and the definition of

pre-comprehensive triangular decomposition.

Proposition 6.6. Algorithm 20 computes a pre-comprehensive triangular decompo-

sition of V (F ).

Proof. The loop satisfies the following invariant: the union of all W (T ), where T

ranges over T , and of the W (T ′), where T ′ ranges over the current output, equals

V (F ). Indeed, the invariant holds at the beginning, when the output is empty; and for

the regular chain T taken from T at the current iteration, we have W (T ) \WC(T ) =

V (G)∩W (T ) by Proposition 6.4 (1). Then, correctness of the algorithm follows from

Proposition 6.5 and the fact that at the end T = ∅.

Since polynomials in G do not involve the main variables of T , by Lemma 2.2 they

are regular w.r.t sat(T ). Then by Lemma A.1, either the output of Triangularize(G, T )

is empty or the dimensions of the regular chains computed by Triangularize(G, T ) are

strictly less than that of T . Therefore, the algorithm terminates.

Proposition 6.7. Algorithm 21 computes a comprehensive triangular decomposition

of F ⊂ k[u,y].

Proof. Let T be the output of PCTD(F). By Proposition 6.5 and Proposition 6.4 (2),

we have

πu(V (F )) =
⋃

T∈T

Du(T ).

Then the conclusion follows from the definition of comprehensive triangular decom-

position, Proposition 6.2, 6.6 and Remark 6.2.

Given a polynomial set F ⊂ k[u,y], a natural question is to describe the points

u of Kd for which the specialized system F (u) admits solutions, finitely many or

infinitely many solutions.
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Algorithm 21: CTD(F )

Input: A finite set F ⊂ k[u,y].
Output: A CTD of V (F ).
T ← PCTD(F );1

S ← ∅;2

for T ∈ T do3

S ← S ∪Ru(T );4

S ← SMPD(S);5

while S 6= ∅ do6

let C ∈ S, S ← S \ C;7

TC ← regular chains in T associated to C;8

output (C, TC);9

Theorem 6.1. Let T is a pre-comprehensive triangular decomposition of V (F ). De-

note by T0 ⊆ T and T1 ⊆ T respectively the set of regular chains T with y ⊆ mvar(T )

and y 6⊆ mvar(T ). Then for any u ∈ Kd, we have

(i) The system F (u) has solutions in Km if and only if u ∈ ∪T∈TD
u(T ).

(ii) The system F (u) has infinitely many solutions in Km if and only if u ∈
∪T∈T1D

u(T ).

(iii) The system F (u) has finitely many solutions in Km if and only if u ∈
∪T∈T0D

u(T ) \ ∪T∈T1D
u(T ).

Proof. It follows directly from Proposition 6.4 and the definition of a pre-

comprehensive triangular decomposition.

Definition 6.5. The discriminant set of F is defined as the set of all points u ∈ Kd

for which V (F (u)) is empty or infinite.

Remark 6.3. By Theorem 6.1, the discriminant set of F can be computed directly

from a pre-comprehensive triangular decomposition of V (F ).

Proposition 6.8. Let T be a regular chain of Q[u,y] such that mvar(T ) = y. Let

C be a connected subset of Cd such that T specializes well at every u ∈ C. Then the

roots of T in y are continuous functions of u above C.

Proof. We prove the proposition by induction on m. If m = 1, for any u ∈ C, since
T specializes well at u, we have hT (u) 6= 0. By Theorem (1, 4) in [97], the roots of T

in y are continuous functions of u above C.
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Now assume the proposition holds for m − 1. Since T specializes well at u ∈ C,
we know that for any (u, α1, . . . , αm−1) such that T<ym(u, α1, . . . , αm−1) = 0, we have

init(Tym)(u, α1, . . . , αm−1) 6= 0 holds. Applying Theorem (1, 4) in [97] again, the root

of Tym in ym are continuous functions u and y1, . . . , ym−1 above C × (T<ym = 0). By

induction and composition properties of continuous functions, we conclude that the

roots of T in y are continuous functions of u above C.

6.4 Comprehensive triangular decomposition of a

parametric constructible set

In this section, we assume that a constructible set cs is represented by finitely many

regular systems in k[u,y], where u are parameters and y are unknowns.

Let R := [T, h] be a regular system of k[u,y]. Let u ∈ Kd. We say that R

specializes well at u if R(u) is a regular system of K[y] and hT (u) 6= 0. This is

equivalent to say that T specializes well at u and h(u) is regular w.r.t. sat(T (u)).

Definition 6.6. Let cs be a constructible set of k[u,y]. A comprehensive triangular

decomposition of cs is given by : (i) a finite partition C of πu(cs); (ii) for each C ∈ C
a set of regular systems RC of k[u,y] such that for u ∈ C each of the regular systems

R ∈ RC specializes well at u and we have for all u ∈ C cs(u) =
⋃

R∈RC
Z(R(u)).

Similarly, we can define the defining set of regular system R = [T, h] as the set of

all parameter values u in Kd such that R specializes well at u.

Proposition 6.9. We have Du(R) := W u(Tu) \ V u(coeffs(res(hTy
h, T ),y)).

Based on this proposition, one could easily derive similar algorithms for computing

the CTD of a constructible sets. We omit here the details.

Definition 6.7. Let R := [T, h] be a squarefree regular system of k[u,y]. Let u ∈ Kd.

We say that R specializes well at u if R(u) is a squarefree regular system of K[y] and

hT (u) 6= 0. The set of all parameters u ∈ Kd such that R specializes well at u is

called the defining set of R, denoted by Du(R). Let R = {R1, . . . , Re} be a finite set

of regular systems of k[u,y]. We say that R specializes disjointly well at u, if: (i)

each R ∈ R specializes well at u and (ii) the zero sets of Ri(u) in Km are pairwise

disjoint.

Let ·∪ denote the disjoint union of two sets.
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Definition 6.8. Let cs be a constructible set of k[u,y]. A disjoint squarefree com-

prehensive triangular decomposition (DSCTD) of cs is a pair (C, (RC , C ∈ C)), where
C is a finite partition of πu(cs) into nonempty constructible sets, and, for each C ∈ C,
RC is a finite set of regular systems of k[u,y] such that for each point u ∈ C the

following conditions hold:

(i) RC specializes disjointly well at u;

(ii) we have cs(u) = ·∪R∈RC
Z(R(u))

Lemma 6.2. Let R := [T, h] be a squarefree regular system of k[u,y]. Then we have

Du(R) := W u(Tu) \ V u(coeffs(res(sep(Ty)h, T ),y)).

The computation of DSCTD relies on the following concept.

Definition 6.9. Let cs be a constructible set of k[u,y]. A disjoint squarefree pre-

comprehensive triangular decomposition (DSPCTD) of cs is a family of squarefree

regular systems R satisfying the following property: for each u ∈ Kd, let Ru be

the subfamily of all regular systems in R that specialize well at u; then cs(u) =

·∪R∈Ru
Z(R(u)).

Algorithm 22 computes a DSPCTD of a constructible set. Algorithm 23 computes a

DSCTD of a constructible set. The proof of the termination and correctness of the two

algorithms are similar to that of the algorithm PCTD and CTD. The implementation

of the algorithm DSCTD is available in the RegularChains library since Maple13. It

sits inside the ParametricSystemTool module and is implemented as the command

ComprehensiveTriangularize with option the ‘disjoint’=‘yes’.

Algorithm 22: DSPCTD(cs)

Input: A constructible set cs of k[u,y].
Output: A DSPCTD of cs.
let R be the set of regular systems representing cs1

R := MPD(R); R′ := { }2

while R 6= { } do3

let R := [T, h] ∈ R; R := R \ {R}4

R′ := R′ ∪ {R}5

G := coeffs(res(sep(Ty)h, Ty),y)6

R := R ∪ MPD(Intersect(G,R))7

return R′;8

Let cs be a constructible set ofKn. Often, we only need to partition the parameter

space into constructible sets, called cells, such that above each cell:
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Algorithm 23: DSCTD(cs)

Input: A constructible set cs of k[u,y].
Output: A DSCTD of cs.
R := DSPCTD(cs)1

C := { }2

for R ∈ R do3

C := C ∪ {Du(R)}4

C := SMPD(C)5

for C ∈ C do6

let RC be the set of regular systems R ∈ R with C ⊆ Du(R)7

return (C, (RC , C ∈ C))8

1. either cs has no solutions;

2. or cs has infinitely many solutions;

3. or cs has a constant number of solutions and such that the solutions are con-

tinuous functions of the parameters above the connected component of each

cell.

A precise definition of this idea is stated in Definition 6.10.

Definition 6.10. Let cs be a constructible set of Kn. A weak DSCTD (WDSCTD) of

cs is a pair (C, (TC , C ∈ C)), where
� C is a finite partition of Kd into nonempty constructible sets,

� for each C ∈ C, TC is a finite set of regular chains of k[u,y] such that:

(i) either TC is empty, which means that cs(u) is empty for each u ∈ C
(ii) or TC = {∅}, which means that cs(u) is infinite for each u ∈ C;
(iii) or each T ∈ TC satisfies mvar(T ) = y and for each u ∈ C, TC specializes

disjointly well at u and cs(u) = ·∪T∈TCZ(T (u)).

Algorithm 24 computes a WDSCTD of cs. It is not difficult to prove the termina-

tion and the correctness of this algorithm.

6.5 Complex root classification

We restrict now to the case where k (and thus K) is the field C of complex numbers.

The algorithm WDSCTD immediately suggests a solution to the following complex

root classification problem. Let cs be a parametric constructible set of C[u,y]. A

complex root classification of cs is a finite set of pairs {(C1, n1), . . . , (Cs, ns)} such

that
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Algorithm 24: WDSCTD(cs)

Input: A constructible set cs of k[u,y].
Output: A WDSCTD of cs.
let R be the set of regular systems representing cs1

let R0 (resp. R1) be the set of regular systems [T, h] in R such that2

y ⊆ mvar(T ) (resp. y 6⊆ mvar(T ))
let (C, (RC , C ∈ C)) be a DSCTD of R03

let E1 be the projection of the constructible set R1 on Kd
4

D := { }5

if E1 is not empty then6

D := E1; TD := {∅}; D := D ∪ {D}7

for C ∈ C do8

D := Difference(C, E1)9

if D is not empty then10

TD := {Ty | [T, h] ∈ RC}; D := D ∪ {D}11

D := Difference(Km,∪D∈DD)12

if D is not empty then13

D := D ∪ {D}; TD := { }14

return (D, (TD, D ∈ D))15

(i) each Ci is a non-empty constructible set of C[u] and Cd = ·∪s
i=1Ci holds,

(ii) each ni is either ∞ or a nonnegative integer and the ni’s are pairwise distinct,

(iii) for any u ∈ Ci, the distinct number of complex solutions of cs(u) in Cm is ni.

Notation 6.1. For a squarefree regular chain T of k[u,y], define

deg(T ) =

{ ∏

v∈y mdeg(Tv), if y ⊆ mvar(T )

∞, otherwise.

For a collection of squarefree regular chains T , define deg(T ) =∑T∈T deg(T ).

Proposition 6.10. Let T be a squarefree regular chain of Q[u,y], with mvar(T ) = y.

Let C be a connected subset of in Cd. Let k = deg(T ). Assume that T specializes

well at any α ∈ C. Then there exist k continuous functions ψ1(u), . . . , ψk(u) defined

on C, such that W (T ) = ·∪k
i=1{(α, ψi(α)) | α ∈ C} holds, where ·∪ denotes a disjoint

union. In particular, for each α ∈ C, we have W (T (α)) = {ψ1(α), . . . , ψk(α)}, which
is a set of k points in Cm.

Proof. It follows from Proposition 6.8 and the fact that T (u) has k distinct roots in

Cm for any u ∈ C.
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The following algorithm computes a complex root classification of cs w.r.t. u,

whose correctness is easily derived from the specification of WDSCTD.

Algorithm 25: ComplexRootClassificaition(cs)

Input: A parametric constructible set cs of Q[u,x]
Output: A complex root classification of cs w.r.t. u
begin1

(C, (TC , C ∈ C)) := WDSCTD(cs);2

for C ∈ C do nC := deg(TC);3

for each distinct ni in {nC | C ∈ C} do4

let Ci be the union of C such that nC = ni;5

output (Ci, ni)6

end7

6.6 Defining sets, border polynomials, discrimi-

nant sets and discriminant varieties

In this section we investigate the relations between the notions of defining set, border

polynomial, discriminant set and minimal discriminant variety. In this section, we fix

k = Q.

Discriminant variety [86]. Let cs be a basic constructible set of k[u,y]. Let δ be

the dimension of πu(cs). An algebraic variety W is a discriminant variety of cs w.r.t

πu if and only if:

� W is contained in πu(cs),

� W = πu(cs) if and only cs(u) is infinite for almost all u ∈ πu(cs),
� the connected components C1, · · · , Ck of πu(cs) \W are analytic submanifolds

of dimension δ,

� (π−1
u (Ci) ∩ cs, πu) is an analytic covering of Ci, for i = 1, · · · , k. In another

words, for each connected component Ci, there exist a finite set of indexes I
and disjoint connected subsets (Vj)j∈I of cs such that π−1

u (Ci) ∩ cs = ∪j∈IVj.
Moreover πu is a local diffeomorphism from Vi onto Ci.

Proposition 6.11. Given a basic constructible set cs of k[u,y], denote by D be the

discriminant set of cs. Then for any discriminant variety W of cs, we have

D ∩ πu(cs) ⊆ W.
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Proof. If W = πu(cs), the conclusion holds immediately. Otherwise, we have W (

πu(cs). By the definition of discriminant variety, for any u ∈ πu(cs) \ W , the set

cs(u) is finite and nonempty. By the definition of discriminant set, for any u ∈ D,

the set cs(u) is infinite or empty. Therefore D ∩ (cs(u) \W ) = ∅, which implies that

D ∩ πu(cs) ⊆ W .

Border polynomial [138]. Let rs := [T, h] be a squarefree regular system of k[u,y]

with mvar(T ) = y. Let bp be the primitive and square free part of the product of all

res(der(t), T ) and res(h, T ). We call bp the border polynomial of [T, h].

Proposition 6.12. Let rs := [T, h] be a squarefree regular system of k[u,y] with

mvar(T ) = y. Let bp be the border polynomial of rs. Let Du(rs) be the defining set

of rs. We have Kd \ V u(bp) = Du(rs).

Proof. It follows directly from Lemma 6.2.

Proposition 6.13. Let rs := [T, h] be a squarefree regular system of k[u,y] with

mvar(T ) = y. Let bp be the border polynomial of rs. Then V u(bp) is a discriminant

variety of both Z(rs) and V (T ) \ V (h).

Proof. In the following, we first prove that V u(bp) is a discriminant variety of Z(rs).

Then the fact that V u(bp) is a discriminant variety of V (T ) \ V (h) follows directly

from the fact that Z(rs) \ V (bp) = V (T ) \ V (h) \ V (bp).

Since V u(bp) is a hypersurface in Kd, we have Du(rs) = Kd \ V u(bp) = Kd. On

the other hand Du(rs) ⊆ πu(Z(rs)), which implies that πu(Z(rs)) = Kd and thus

dim
(

πu(Z(rs))
)

= d.

Let C1, . . . , Ck be the connected components of Kd \ V u(bp), clearly they are

analytic submanifolds of dimension d. Next we prove that (π−1
u (Ci) ∩ Z(rs), πu) is

an analytic covering of Ci, for i = 1, . . . , k. Or equivalently we prove that for each

connected component C:

(i) there exists a finite set of indexes I and disjoint connected subsets (Vi)i∈I of

Z(rs) such that π−1
u (C) ∩ Z(rs) = ⋃i∈I Vi,

(ii) πu is a local diffeomorphism from Vi onto C.

Since rs specializes well at all u ∈ C, T (u) is a zero-dimensional squarefree regular

chain, which implies that π−1
u (C)∩Z(rs) = π−1

u (C)∩W (T ) holds. Since the number of

distinct complex roots of T are constant above C and they are continuous functions

of u above C with disjoint graphs, (i) holds. On the other hand, the Jacobian
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determinant D(T ) =
∏

t∈T der(t), therefore D(T ) does not vanish above C, which

implies that (ii) holds. In conclusion, V u(bp) is a discriminant variety of Z(rs).

Theorem 6.2. The variety V u(bp) is the minimal discriminant variety of Z(rs) and

V (T ) \ V (h).

Proof. We first prove that V u(bp) is the minimal discriminant variety of Z(rs). We

prove by contradiction. Assume that V u(bp) is not a minimal discriminant variety

of Z(rs). Let W be the minimal discriminant variety of Z(rs). Then there exists

α ∈ Kd such that α /∈ W and α ∈ V u(bp).

Since α ∈ V u(bp), rs does not specializes well at u, which leads to the following

case discussion

(i) If hT (α) = 0, then Z(rs(α)) = ∅.

(ii) If hT (α) 6= 0, but rs(α) is not a squarefree regular system, then #(R(α)) <

deg(T ).

On the other hand, let β 6∈ V u(bp), we have #(rs(β)) = deg(T ). This is a contradic-

tion to the fact that Kd \W has only one connected component (This is true because

all open Zariski sets in Kd have intersection).

The above proof can be also applied to V (T ) \ V (h), but noticing that in (i), if

hT (α) = 0, then V (T (α)) is either empty or infinite.

Proposition 6.13 and Theorem 6.2 were also independently established in [136].

6.7 Implementation

We have implemented the algorithm for computing comprehensive triangular decom-

positions (CTD) based on RegularChains library in Maple 11. Our main function

CTD calls essentially three functions

� Triangularize, computing a triangular decomposition of the input system F ,

� PCTD, deducing a pre-comprehensive triangular decomposition of F ,

� SMPD, obtaining a comprehensive triangular decomposition of F .

We provide comparative benchmarks with Maple implementations of related

methods for solving parametric polynomial systems, namely: decomposition into reg-

ular systems by Wang [126] and discussing parametric Gröbner bases by Montes [102].

Corresponding Maple functions are RegSer and DISPGB, respectively.
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Note that the specifications of these three methods are different. The outputs of

CTD and DISPGB depend on the choice of the parameter sets, whereas RegSer does

not require to specify parameters. RegSer decomposes the input system into pairwise

disjoint constructible sets given by regular systems. CTD computes a comprehensive

triangular decomposition, and thus a family of triangular decompositions with a par-

tition of the parameter space. DISPGB computes a family of comprehensive Gröbner

bases with a partition of the parameter space.

We run CTD in Maple 11 using an Intel Pentium 4 processor (3.20GHz CPU,

2.0GB total memory, and Red Hat 4.0.0-9); we set the time-out to 1 hour. Due to

the current availability of RegSer and DISPGB, the timings obtained by these two

functions are performed in Maple 8 on Intel Pentium 4 machines (1.60GHz CPU,

513MB memory and Red Hat Linux 3.2.2-5); and the time-out is 2 hours. The 30

test-systems used in our experimentation are chosen from [96, 118, 127].

As shown in the following two tables, our implementation of the CTD algorithm

can solve all problems which can be solved by the other methods. In addition, the

CTD can solve 4 test-systems which are out of reach of the other two methods,

generally due to memory consumption.

6.8 Conclusion

Comprehensive triangular decomposition is a powerful tool for the analysis of para-

metric polynomial systems: its purpose is to partition the parameter space into

regions, so that within each region the “geometry” of the algebraic variety of the

specialized system is the same for all values of the parameters.

As one of the main technical tools, we proposed an algorithmic solution for a

set theoretical instance of the coprime factorization problem: refining a family of

constructible sets into a family of pairwise disjoint constructible sets.

We have reported on an implementation of our algorithm computing CTDs, based

on the RegularChains library inMaple. Our comparative benchmarks, withMaple

implementations of related methods for solving parametric polynomial systems, illus-

trate the good performances of our CTD code.
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Sys Name Triangularize PCTD SMPD CTD #Cells
1 MontesS1 0.089 0.002 0.031 0.122 3
2 MontesS2 0.031 0.002 0 0.033 1
3 MontesS3 0.103 0.006 0.005 0.114 2
4 MontesS4 0.101 0.016 0 0.117 1
5 MontesS5 0.383 0.022 0.465 0.870 11
6 MontesS6 0.395 0.019 0.121 0.535 4
7 MontesS7 0.416 0.215 0.108 0.739 4
8 MontesS8 0.729 0.001 0.016 0.746 2
9 MontesS9 0.945 0.116 3.817 4.878 23
10 MontesS10 5.325 0.684 1.138 7.147 10
11 MontesS11 0.757 0.208 12.302 13.267 28
12 MontesS12 14.199 2.419 10.114 26.732 10
13 MontesS13 0.415 0.143 1.268 1.826 9
14 MontesS14 41.167 31.510 0.303 72.980 4
15 MontesS15 6.919 0.579 1.123 8.621 5
16 MontesS16 6.963 0.083 2.407 9.453 21
17 AlkashiSinus 0.716 0.191 0.574 1.481 6
18 Bronstein 2.526 0.017 0.548 3.091 6
19 Gerdt 3.863 0.006 0.733 4.602 5
20 Hereman-2 1.826 0.019 0.020 1.865 2
21 Lanconelli 2.056 0.336 3.430 5.822 14
22 genLinSyst-3-2 1.624 0.275 25.413 27.312 32
23 genLinSyst-3-3 9.571 1.824 1097.291 1108.686 116
24 Wang93 6.795 37.232 11.828 55.855 8
25 Maclane 12.955 0.403 54.197 67.555 21
26 Neural 15.279 19.313 0.530 35.122 4
27 Leykin-1 1261.751 86.460 27.180 1375.391 57
28 Lazard-ascm2001 60.698 2817.801 – – –
29 Pavelle – – – – –
30 Cheaters-homotopy – – – – –

Table 6.1: Solving timings and number of cells of CTD (Maple 11)
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DISPGB (Maple 8) RegSer (Maple 8) CTD (Maple 11)
Sys Time (s) # Cells Time (s) # Components Time (s) # Cells
1 0.509 2 0.021 3 0.122 3
2 0.410 2 0.021 1 0.033 1
3 0.550 2 0.060 3 0.114 2
4 1.511 2 0.070 1 0.117 1
5 1.030 3 0.099 4 0.870 11
6 1.350 4 0.049 5 0.535 4
7 1.609 2 0.180 4 0.739 4
8 2.181 3 0.150 4 0.746 2
9 10.710 5 0.171 7 4.878 23
10 9.659 5 0.329 5 7.147 10
11 0.489 3 0.260 9 13.267 28
12 259.730 5 2.381 23 26.732 10
13 5.830 9 0.199 9 1.826 9
14 – – – – 72.980 4
15 30.470 7 0.640 10 8.621 5
16 61.831 7 6.060 22 9.453 21
17 4.619 6 0.150 5 1.481 6
18 8.791 5 0.319 6 3.091 6
19 20.739 5 3.019 10 4.602 5
20 101.251 2 0.371 7 1.865 2
21 43.441 4 0.330 7 5.822 14
22 – – 0.350 18 27.312 32
23 – – 2.031 61 1108.686 116
24 – – 4.040 6 55.855 8
25 83.210 11 – – 67.555 21
26 – – – – 35.122 4
27 – – – – 1375.391 57
28 – – – – – –
29 – – – – – –
30 – – – – – –

Table 6.2: Solving timings and number of components/cells in three algorithms
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Chapter 7

Computing Cylindrical Algebraic

Decomposition via Triangular

Decomposition

Cylindrical algebraic decomposition is one of the most important tools for computing

with semi-algebraic sets, while triangular decomposition is among the most important

approaches for manipulating constructible sets. In this chapter, for an arbitrary finite

set F ⊂ R[y1, . . . , yn] we apply comprehensive triangular decomposition in order to

obtain an F -invariant cylindrical decomposition of the n-dimensional complex space,

from which we extract an F -invariant cylindrical algebraic decomposition of the n-

dimensional real space. We report on an implementation of this new approach for

constructing cylindrical algebraic decompositions.

7.1 Introduction

Cylindrical algebraic decomposition (CAD) is a fundamental and powerful tool in real

algebraic geometry. The original algorithm introduced by Collins in 1973 [44] has

been followed by many substantial ameliorations, including adjacency and clustering

techniques [4], improved projection methods [98, 73, 24, 17], partially built CADs [45,

99, 116], improved stack construction [46] and efficient projection orders [53].

The main application of CAD is quantifier elimination (QE) for which other ap-

proaches are also available. Some of them have more attractive complexity results [9]

than CAD. However, as pointed out by Brown and Davenport [20], “there is the issue

of whether the asymptotic cross-over points between CAD and those other QE algo-
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rithms actually occur in the range of problems that are even close to accessible with

current machines”. In addition, these authors observe that CAD can help solving

certain QE problems [18, 74] that other QE algorithms can not.

For a finite set Fn ⊂ R[y1, . . . , yn] the CAD algorithm [44] decomposes the real n-

dimensional space into disjoint cells C1, . . . , Ce together with one sample point Si ∈ Ci,

for all 1 ≤ i ≤ e, such that the sign of each f ∈ Fn does not change in Ci and can

be determined at Si. Besides, this decomposition is cylindrical in the following sense:

For all 1 ≤ j < n the projections on the first j coordinates (y1, . . . , yj) of any two

cells are either disjoint or equal. We will make use of this notion of “cylindrical”

decomposition in Cn.

The algorithm of Collins is based on a projection and lifting procedure which

computes from Fn a finite set Fn−1 ⊂ R[y1, . . . , yn−1] such that an Fn-invariant CAD

of Rn can be constructed from an Fn−1-invariant CAD of Rn−1. This construction

and the base case n = 1 rely on real root isolation of univariate polynomials.

In this thesis, we propose a different approach for computing CAD, which proceeds

by successive transformation of an initial decomposition of the complex n-dimensional

space. Our algorithm consists of three main steps:

Initial Partition: we decompose Cn into disjoint constructible sets C1, . . . , Ce such that

for all 1 ≤ i ≤ e, for each f ∈ Fn either f is identically zero in Ci or f vanishes

at no points of Ci.

Make Cylindrical: we transform the initial partition and obtain another decomposition

of Cn into disjoint constructible sets such that this second decomposition is

cylindrical in the above sense.

Make Semi-Algebraic: from the previous decomposition we produce an Fn-invariant

CAD of Rn.

Our first motivation is to understand the relation and possible interaction be-

tween cylindrical algebraic decompositions and triangular decompositions of polyno-

mial systems. The primary goal of triangular decompositions is to provide unmixed

decompositions of algebraic varieties. However, the authors in [138] have initiated

the use of triangular decompositions in real algebraic geometry [138]. Moreover, real

root isolation of zero-dimensional polynomial systems can be achieved via triangular

decompositions [134, 94, 135, 41, 12].

A second motivation of this work is to investigate the possibility of improving

the practical efficiency of CAD implementation by means of modular methods and
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fast polynomial arithmetic. Such techniques have been successfully introduced into

triangular decomposition methods [48, 92, 90]. Each of the three main steps of the

algorithm proposed in this thesis relies on existing sub-algorithms for triangular de-

compositions taken from [103, 30, 135] and for which efficient implementation in the

RegularChains library [88] is work in progress based on the highly optimized low-level

routines of the Modpn library [91].

Our third motivation is to extend to real algebraic geometry the concept of Com-

prehensive Triangular Decomposition (CTD) introduced in [30]. The relation between

CAD and parametric polynomial system solving is natural as pointed in [54] and the

presentation therein of Weispfenning’s approach [24] for QE based on comprehensive

Gröbner bases. This suggests that the algorithm proposed in this thesis could support

a similar QE method.

This chapter is organized as follows. Section 7.2 and Section 7.3 are dedicated to

the first two main steps of our algorithm whereas Sections 7.4 presents the last one.

In Section 7.5 we report on a preliminary experimentation of our new algorithm. No

modular methods or fast polynomial arithmetic are being used yet and our code is just

high-levelMaple interpreted code. However our code can already process well-known

examples from the literature. We also analyze the performances of the different main

steps and subroutines of our algorithm and implementation. This suggests that there

is a large potential for improvement by means of modular methods, for instance for

the computation of GCDs, resultants (and the discriminants) of polynomials modulo

regular chains.

This chapter is based on paper [36], co-authored with Marc Moreno Maza, Bican

Xia and Lu Yang.

7.2 Zero separation

In this section, we assume n ≥ 2 and regard the variables y1 < · · · < yn−1 as

parameters, denoted by u. Let πu be the projection function which sends a point

(ū, ȳn) of K
n to the point ū of the parameter space Kn−1. Let ū ∈ Kn−1. We write

π−1
u (ū) for the set of all points (ū, ȳn) in Kn such that πu(ū, ȳn) = ū.

Let p ∈ k[u, yn] be a polynomial of level n. In broad terms, the goal of this section

is to decompose the parameter space Kn−1 into finitely many cells such that above

each cell the “root structure” of p (number of roots, their multiplicity, . . . ) does not

change. After some notations, we define in Definition 7.1 the object to be computed

by the algorithm devised in this section. It can be seen as a specialization of the
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comprehensive triangular decomposition (CTD) to the case where the input system is

a regular system and all variables but one are regarded as parameters. This algorithm

is stated in Section 7.2.1 after two lemmas.

Notations. Let rs = [T, h] be a regular system of k[u, yn]. If yn does not appear in

rs, we denote by Zu(rs) the zero set of rs in Kn−1. If yn does not appear in T , we

writeWu(T ) for the quasi-component of T in Kn−1. If mvar(h) = yn holds, we denote

by coeff(h) be the set of coefficients of h when h is regarded as a polynomial in yn

with coefficients in k[u] and by Vu(coeff(h)) the variety of coeff(h) in Kn−1. Finally,

if yn is algebraic in T , letting tn be the polynomial in T with main variable yn, we

write Tu = T \ {tn} and rsu = [Tu, r], where r = res(h · sep(tn), tn) is the resultant of
h · sep(tn) and tn w.r.t yn.

Definition 7.1. Let C be a constructible set of Kn−1. A finite set of level n polyno-

mials P ⊂ k[u, yn] separates above C if for each α ∈ C: (1) the initial of any p ∈ P
does not vanish at α; (2) the polynomials p(α, yn) ∈ K[yn], p ∈ P, are squarefree and

coprime.

Let C be a finite collection of pairwise disjoint constructible sets of Kn−1, and, for

each C ∈ C, let PC ⊂ k[u, yn] be a finite set of level n polynomials. Let rs∗ = [T∗, h∗]

be a regular system of k[u, yn], where n ≥ 2 and yn is algebraic w.r.t T . We say that

the family {(C,PC) | C ∈ C} separates Z(rs∗) if the following conditions hold:

(1) C is a partition of πu(Z(rs∗)),

(2) for each C ∈ C, PC separates above C,

(3) Z(rs∗) =
⋃

C∈C

⋃

p∈PC
V (p) ∩ π−1

u (C).

More generally, let cs be a constructible set of Kn such that there exist regular systems

rs1, . . . , rsr of k[u, yn] whose zero sets form a partition of cs and such that yn is

algebraic w.r.t. the regular chain of rsi, for all 1 ≤ i ≤ r. Then, we say that the

family {(C,PC) | C ∈ C} separates cs if C is a partition of πu(cs) and if for all

1 ≤ i ≤ r there exists a non-empty subset Ci of C and for each C ∈ Ci a non-empty

subset PC,i ⊆ PC such that {(C,PC,i) | C ∈ Ci} separates Z(rsi). In this case, we

have: cs =
⋃

C∈C

⋃

p∈PC
V (p) ∩ π−1

u (C).

Example 7.1. Consider the polynomials in k[x > b > a]

p1 = ax2 − b and p2 = ax2 + 2x+ b,
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and the constructible set C = {(a, b) ∈ K2 | ab(ab − 1) 6= 0}. For any point (a, b) of

C, the two polynomials p1(a, b) and p2(a, b) of K[x] are squarefree and coprime. So

the polynomial set {p1, p2} separates above C.
Consider the regular system rs∗ = [{p1}, 1] and the constructible sets

C1 = {(a, b) ∈ K2 | ab 6= 0}
C2 = {(a, b) ∈ K2 | a 6= 0 & b = 0}

Note that the zero set of rs∗ is {p1 = 0 & a 6= 0}. So the family

{ (C1, {p1}), (C2, {ax}) } separates Z(rs∗).
Given two regular systems

rs1 = [{p1}, b] and rs2 = [{p2, b}, 1].

Consider the constructible set

cs = Z(rs1) ∪ Z(rs2) = (V (p1) \ V (ab)) ∪ (V (p2, b) \ V (a)) .

The family { (C1, {p1}), (C2, {p2}) } separates cs.

Lemma 7.1. Let p ∈ k[u, yn] be a level n polynomial. Let r = res(sep(p), p) be the

resultant of sep(p) and p w.r.t yn. Then, the polynomial p(ū) of K[yn] is squarefree

and init(p) does not vanish at ū ∈ Kn−1, if and only if, r(ū) 6= 0 holds.

Observe that init(p) is a factor of r. So the conclusion follows directly from the

specialization property of subresultants.

Lemma 7.2. We have the following properties:

(1) If yn does not appear in rs, then πu(Z(rs)) = Zu(rs).

(2) If yn does not appear in T and if mvar(h) = yn holds, then we have πu(Z(rs)) =

Wu(T ) \ Vu(coeff(h)).

(3) If yn is algebraic w.r.t T and if the regular system rs is squarefree, then rsu is a

squarefree regular system of k[u]; moreover there exists a family R′ of squarefree

regular systems of k[u, yn] such that:

(a) the rank of each rs′ ∈ R′ is less than that of rs,

(b) for each [T ′, h′] ∈ R′, yn is algebraic w.r.t T ′,
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(b) the zero sets Z(rs′), rs′ ∈ R′ and the zero set V (tn)∩Z(rsu) are pairwise

disjoint, and we have

(d) Z(rs) = V (tn) ∩ Z(rsu) ∪
⋃

rs′∈R′ Z(rs′).

Proof. Property (1) is clear and proving (2) is routine. We prove (3). Since rs is

squarefree, using the above notations, we have

res(r, T ) = res(r, Tu) = res(h · sep(tn), T ) 6= 0.

This implies that r is regular w.r.t sat(T ) and that rsu = [Tu, r] is a squarefree regular

system of k[u]. Observe now that the zero set of rs decomposes in two disjoint parts:

Z(rs) = (Z(rs) \ V (r)) ∪ (Z(rs) ∩ V (r)) .

For the first part, we have

Z(rs) \ V (r) = V (tn) ∩ Z(rsu).

For the second part, since r is regular w.r.t sat(T ), by calling operation Intersect, we

obtain a family R of squarefree regular systems of k[u, yn] such that

Z(rs) ∩ V (r) =
⋃

rs′∈R

Z(rs′),

where the rank of each rs′ ∈ R is less than that of rs. Finally, applying the operation

MPD to R we obtain a family R′ satisfying the properties (a), (b), (c) and (d).

7.2.1 The Algorithm SeparateZeros

We present now an algorithm “solving” a regular system in the sense of Definition 7.1.

Precise specifications and algorithm steps follow.

Calling sequence. SeparateZeros(rs∗,u, n)

Input. A (squarefree) regular system rs∗ = [T∗, h∗] of k[u, yn], where n ≥ 2 and yn

is algebraic w.r.t T∗.

Output. A finite family {(C,PC) | C ∈ C}, where C is a finite collection of con-

structible sets of Kn−1, and for each C ∈ C, PC ⊂ k[y1, . . . , yn] is a finite set of

level n polynomials, such that {(C,PC) | C ∈ C} separates the zero set of rs∗. (See

Definition 7.1.)

Step (1). Initialize R = {rs∗} and P = ∅.



108

Step (2). If R = ∅, go to Step (3). Otherwise arbitrarily choose one regular system

rs = [T, h] from R and let R = R \ {rs}. Using the above notations, let R′ be as

in Property (3) of Lemma 7.2. Set P = P ∪ {(rsu, tn)}, set R = R ∪R′ and repeat

Step (2).

Comment. Observe that Step (2) will finally terminate since each newly added

regular system into R has a rank less than that of the one removed from R. When

Step (2) terminates, we obtain a family P of pairs such that

Z(rs∗) =
⋃

(rsu,tn)∈P

V (tn) ∩ π−1
u (Zu(rsu)),

and the union is disjoint. Next, observe that for each pair (rsu, tn) ∈ P , the poly-

nomial init(tn) does not vanish at any point of Zu(rsu), by virtue of Lemma 7.1.

Therefore, the union of all Zu(rsu) is equal to πu(Z(rs∗)).

Step (3). By means of the operation SMPD we compute an intersection-free basis of

all Zu(rsu). Hence we obtain a partition C of πu(Z(rs∗)). Then, for each C ∈ C we

define PC as the set of the polynomials tn such that there exists a regular system

rsu satisfying (rsu, tn) ∈ P and C ⊆ Zu(rsu). Clearly {(C,PC) | C ∈ C} is a valid

output.

Finally, we generalize this algorithm in order to apply it to a constructible set

represented by regular systems.

Calling sequence. SeparateZeros({rs1, . . . , rsr},u, n)
Input. Regular systems rs1, . . . , rsr of k[u, yn], n ≥ 2, whose zero sets are pairwise

disjoint and such that yn is algebraic w.r.t. the regular chain of rsi, for all 1 ≤ i ≤ r;

let cs be the constructible set represented by rs1, . . . , rsr.

Output. A finite family {(C,PC) | C ∈ C}, where C is a finite collection of con-

structible sets of Kn−1, and for each C ∈ C, PC ⊂ k[y1, . . . , yn] is a finite set of level

n polynomials, such that {(C,PC) | C ∈ C} separates cs. (See Definition 7.1.)

Step (1). For each 1 ≤ i ≤ r, call SeparateZeros(rsi,u, n) obtaining {(C,PC) | C ∈
Ci} where Ci is a partition of πu(Z(rsi)).

Step (2). By means of the operation SMPD, compute an intersection-free basis D of

the union of the Ci, for 1 ≤ i ≤ r.

Step (3). For each D ∈ D, let PD be the union of the PC such that D ⊆ C holds.

Return {(D,PD) | D ∈ D}.
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7.3 Cylindrical decomposition

In this section, we propose the notion of an F -invariant cylindrical decomposition

of Kn, generalizing ideas that are well-known in the case of real fields. The main

algorithm and its subroutines for computing such a decomposition are stated in three

subsections.

Definition 7.2. We state the definition by induction on n. For n = 1, a cylindrical

decomposition of K is a finite collection of sets {D1, . . . , Dr+1}, where either r = 0

and D1 = K, or r > 0 and there exists r nonconstant coprime squarefree polynomials

p1, . . . , pr of k[y1] such that

Di = {y1 ∈ K | pi(y1) = 0}, 1 ≤ i ≤ r,

and Dr+1 = {y1 ∈ K | p1(y1) · · · pr(y1) 6= 0}. Note that all Di, 1 ≤ i ≤ r + 1

form a partition of K. Now let n > 1, and let D′ = {D1, . . . , Ds} be any cylindrical

decomposition of Kn−1. For each Di, let {pi,1, . . . , pi,ri}, ri ≥ 0, be a set of polynomials

which separates above Di. (See Definition 7.1.) If ri = 0, set Di,1 = Di×K. If ri > 0,

set

Di,j = {(α, yn) ∈ Kn | α ∈ Di & pi,j(α, yn) = 0},

for 1 ≤ j ≤ ri and set

Di,ri+1 = {(α, yn) ∈ Kn | α ∈ Di &

(
ri∏

j=1

pi,j(α, yn)

)

6= 0}.

The collection D = {Di,j | 1 ≤ i ≤ s, 1 ≤ j ≤ ri + 1} is called a cylindrical decompo-

sition of Kn. Moreover, we say that D induces D′.

Let F = {f1, . . . , fs} be a finite set of polynomials of k[y1 < · · · < yn]. A cylindri-

cal decomposition D of Kn is called F -invariant if D is an intersection-free basis of

the s+ 1 constructible sets V (fi), 1 ≤ i ≤ s and {y ∈ Kn | f1(y) · · · fs(y) 6= 0}.

Lemma 7.3. Let rs1, . . . , rsr+1, with r ≥ 1, be regular systems of k[y1] such that their

zero sets form a partition of K1. Then, up to renumbering, there exist polynomials

p1, . . . , pr, h1, . . . , hr, hr+1 ∈ k[y1] such that rsi = [{pi}, hi] for 1 ≤ i ≤ r and rsr+1 =

[∅, hr+1]. Moreover, setting Di = V (pi) for 1 ≤ i ≤ r and Dr+1 = {y1 ∈ K |
p1(y1) · · · pr(y1) 6= 0}, the sets D1, . . . , Dr+1 form a cylindrical decomposition of K.

Proof. Observe that for 1 ≤ i ≤ r we have Z(rsi) = V (pi), as hi and pi have no
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common roots. Since the zero sets Z(rs1), . . . , Z(rsr+1) form a partition of K1, we

must have V (hr+1) = V (p1 · · · pr). The conclusion follows.

7.3.1 The Algorithm MakeCylindrical

Calling sequence. MakeCylindrical(R, n)
Input. R, a finite family of regular systems such that the zero sets Z(rs), for all

rs ∈ R, form a partition of Kn.

Output. D, a cylindrical decomposition of Kn such that the zero set of each regular

system in R is a union of some cells in D.
Step (1): Base case. If n > 1, go to (2). If R has only one element, return D = K

otherwise use the construction of Lemma 7.3 to return a cylindrical decomposition

D.
Step (2): Initialization. Set to R1,R2,R3 the subset of R consisting of regular

systems rs = [T, h] such that, yn is algebraic w.r.t T , yn appears in h but not in T ,

yn does not appear in T nor in h, respectively.

Step (3): Processing R1. Call SeparateZeros(R1,u, n) (see Section 7.2) obtaining

{(C,PC) | C ∈ C1} where C1 is a partition of πu(cs1), where cs1 is the constructible

set represented by R1. By adding a “1” in each pair, we obtain a collection of triples

T1 = {(C,PC , 1) | C ∈ C1}.
Step (4): Processing R2. For each rs ∈ R2, compute the projection πu(Z(rs)) by

Property (2) of Lemma 7.2. Set C2 = {πu(Z(rs)) | rs ∈ R2} and T2 = {(C, ∅, 2) |
C ∈ C2}.
Step (5): Processing R3. For each rs ∈ R3, compute the projection πu(Z(rs)) by

Property (1) of Lemma 7.2. Set C3 = {πu(Z(rs)) | rs ∈ R3} and T3 = {(C, ∅, 3) |
C ∈ C3}.
Comment. Since the zero sets of regular systems in R are pairwise disjoint, after

step (3), (4), (5), we know that the element in C3 has no intersection with any element

in C1 or C2. Note that it is possible that an element in C1 has intersection with some

element of C2. So we need the following step to remove the common part between

them.

Step (6): Merging. Set C = C1 ∪ C2 ∪ C3 and T = T1 ∪ T2 ∪ T3. Note that each

element in T is a triple (C,PC , IC), with C ∈ C and where IC is an integer of value

1, 2 or 3. By means of the operation SMPD, compute an intersection-free basis C ′ of
C. For each C ′ ∈ C ′, compute QC′ (resp. JC′) the union of the PC (resp. IC) such
that C ′ ⊆ C holds. Set T ′ = {(C,QC ,JC) | C ∈ C ′}.
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Step (7): Refinement. To each C ∈ C ′, apply operation MPD to the family of

regular systems representing C, so as to obtain another family RC of regular systems

representing C and whose zero sets are pairwise disjoint. For each rs ∈ RC , set

Prs = QC and Irs = JC . Let R′ be the union of the RC , for all C ∈ C ′. Set

T ′′ = {(Z(rs),Prs, Irs) | rs ∈ R′}.
Comment. Recall that the union of zero sets of the Z(rs), for all rs ∈ R equals Kn.

Therefore, it follows from Steps (6) and (7), that {Z(rs) | rs ∈ R′} is a partition of

Kn−1.

Step (8): Recursive call. Call MakeCylindrical(R′, n − 1) to compute a cylindrical

decomposition D′ ofKn−1 such that Z(rs), for each rs ∈ R′, is a union of some cells of

D′. For eachD′ ∈ D′, observe that there exists a unique rs ∈ R′ such thatD′ ⊆ Z(rs),

so set PD′ = Prs and ID′ = Irs. Then, set T ′′′ = {(D′,PD′ , ID′) | D′ ∈ D′}.
Comment. By the comment below Step (5), we know that for each triple

(D′,PD′ , ID′) of T ′′′, the values of ID′ can only be {1, 2}, {2} or {3}. Next, ob-

serve that for each D′ ∈ D′ such that ID′ = {2} or ID′ = {3} holds, we have PD′ = ∅,
whereas for each D′ ∈ D′ such that ID′ = {1, 2} the set PD′ is a nonempty finite

family of level n polynomials in k[y1, . . . , yn] such that PD′ separates above D′. In

Step (9) below, we lift the cylindrical decomposition D′ of Kn−1 to a cylindrical

decomposition D of Kn.

Step (9): Lifting. Initialize D to the empty set. For eachD′ ∈ D′ such that ID′ = {2}
or ID′ = {3} holds, let D := D ∪ {D′×K}. For each D′ ∈ D′ such that ID′ = {1, 2}
holds, let D = D ∪ {Dp}, where

Dp = {(α, yn) ∈ Kn | α ∈ D′ and p(α, yn) = 0},

for each p ∈ PD′ and let D = D ∪ {D∗}, where

D∗ = {(α, yn) ∈ Kn | α ∈ D′ &




∏

p∈PD′

p(α, yn)



 6= 0},

Finally, return D. The correctness of the algorithm follows from all the comments

and Definition 7.2.

7.3.2 The Algorithm InitialPartition

Calling sequence. InitialPartition(F, n)

Input. F = {f1, . . . , fs}, a finite subset of k[y1 < · · · < yn].
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Output. A family R of regular systems, the zero sets of which form an intersection-

free basis of the s+1 constructible sets V (f1), . . . , V (fs) and {y ∈ Kn | (∏s
i=1 fi(y)) 6=

0}.
Step (1): Let B = SMPD(V (f1), . . . , V (fs)) be an intersection free basis of the s

constructible sets V (f1), . . . , V (fs). For each element B of B, we apply operation

MPD to the family of regular systems representing B to compute another family

RB of squarefree regular systems such that the zero sets of regular systems in RB

are pairwise disjoint and their union is B. Let R be the union of all RB, B ∈ B.
Clearly the set {Z(rs) | rs ∈ R} is an intersection-free basis of the s constructible

sets V (f1), . . . , V (fs).

Step (2): Let f =
∏

fi∈F
fi and rs∗ = [∅, f ]. Set R = R∪{rs∗}. Obviously R is the

valid output.

7.3.3 The Algorithm CylindricalDecompose

Calling sequence. CylindricalDecompose(F, n)

Input. F , a finite subset of k[y1 < · · · < yn].

Output. an F -invariant cylindrical decomposition of Kn.

Step (1): If n > 1, go to step (2). Otherwise let {p1, . . . , pr}, r ≥ 0, be the set of

irreducible divisors of non-constant elements of F . If r = 0, set D = K and exit.

Otherwise set

Di = {y1 ∈ K | pi(y1) = 0}, 1 ≤ i ≤ r,

and Dr+1 = {y1 ∈ K | p1(y1) · · · pr(y1) 6= 0}. Clearly D = {Di | 1 ≤ i ≤ r + 1} is an
F -invariant cylindrical decomposition of K.

Step (2): Let R be the output of InitialPartition(F, n).

Step (3): Call algorithm MakeCylindrical(R, n), to compute a cylindrical decomposi-

tion D of Kn such that the zero set of each regular system in R is a union of some

cells in D. Clearly, D is an intersection-free basis of the set {Z(rs) | rs ∈ R}, which
implies D is an intersection-free basis of the s+ 1 constructible sets V (f1), . . . , V (fs)

and {y ∈ Kn | (∏s
i=1 fi(y)) 6= 0}. Therefore, D is an F -invariant cylindrical decom-

position of Kn.

7.3.4 Relation with simple systems

Let D be a cylindrical decomposition ofKn. As stated in the definition, each D ∈ D is

described by the common zeros of a family of polynomial equations and inequations.
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Let A and B be respectively the set of those polynomials appearing as equations and

inequations in D. Observe that A and B have the following properties.

(a) A ∩ B = ∅ and A ∪ B is a triangular set of k[y1, . . . , yn].

(b) for any 1 ≤ k ≤ n, let A(k−1) and B(k−1) be respectively the subset of A and B

in which the level of each polynomial is less than k. Let α be a point of Kk−1

which is a zero of each polynomial of A(k−1) and not a zero of any polynomial of

B(k−1). Let pk ∈ A ∪ B be a polynomial of level k. If pk exists, then the initial

of pk does not vanish at α and pk(α) is squarefree polynomial of K[yk].

A pair [A,B] satisfying the above two properties is called a simple system in [125],

which was first introduced by Thomas in 1937 [120]. A simple system has many nice

properties. For example, if [A,B] is a simple system, then the pair [A,
∏

p∈B p] is a

squarefree regular system [125, 126].

7.4 Cylindrical algebraic decomposition

In this section, we show how to compute a CAD of Rn from a cylindrical decomposi-

tion of Cn. This section starts with reviewing basic notions for CAD [3]. A theorem

(Theorem 7.1) due to Collins [44] is then reviewed, where the relation between com-

plex and real roots of a polynomial with real coefficients is shown. The bridge from

cylindrical decomposition to CAD is built in Corollary 7.1, which can be directly ob-

tained from Collins’ theorem. The main algorithm TCAD (short name for CAD based

on triangular decompositions), and its subroutines are stated in four subsections.

A semi-algebraic set [9] of Rn is a subset of Rn which can be written as a finite

union of sets of the form:

{y ∈ Rn | ∀f ∈ F, f(y) = 0 and ∀g ∈ G, g(y) > 0},

where both F and G are finite subsets of the polynomial ring R[y1, . . . , yn].

Given an n-dimensional real space Rn, a nonempty connected subset of Rn is

called a region. For any subset S of Rn, a decomposition of S is a finite collection of

disjoint regions whose union is S. For a region R, the cylinder over R, written Z(R),

is R × R1. Let f1 < · · · < fr, r ≥ 0 be continuous, real-valued functions defined on

R. Let f0 = −∞ and fr+1 = +∞. For any fi, 1 ≤ i ≤ r, we call the set of points

{(a, fi(a)) | a ∈ R} the fi-section of Z(R). For any two functions fi, fi+1, 0 ≤ i ≤ r,
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the set of points (a, b), where a ranges over R and fi(a) < b < fi+1(a), is called the

(fi, fi+1)-sector of Z(R). All the sections and sectors of Z(R) can be ordered as

(f0, f1) < f1 < · · · < fr < (fr, fr+1).

Clearly they form a decomposition of Z(R), which is called a stack over R.

A decomposition E of Rn is cylindrical if either (1) n = 1 and E is a stack over

R0, or (2) n > 1, and there is a cylindrical decomposition E ′ of Rn−1 such that for

each region R in E ′, some subset of E is a stack over R. Moreover, We say that

E induces E ′. A decomposition is algebraic if each of its regions is a semi-algebraic

set. A cylindrical algebraic decomposition of Rn is a decomposition which is both

cylindrical and algebraic.

Let p be a polynomial of R[y1, . . . , yn], and let S be a subset of Rn. The polynomial

p is invariant on S (and S is p-invariant), if the sign of p(α) does not change when

α ranges over S. Let F ⊂ R[y1, . . . , yn] be a finite polynomial set. We say S is

F -invariant if each p ∈ F is invariant on S. A cylindrical algebraic decomposition E
is F -invariant if F is invariant on each region of E .

Let p be a polynomial of R[y1, . . . , yn], and let R be a region in Rn−1. p is delineable

on R if the real zeros of p define continuous real-valued functions θ1, . . . , θs such that,

for all α ∈ R, θ1(α) < · · · < θs(α). Note that if k = 0, V (p) has no intersection with

Z(R). Clearly when p is delineable on R, its real zeros naturally determine a stack

over R.

Let E be a CAD of Rn. As suggested in [3], each region e ∈ E can be represented

by a pair (I, S), where I is the index of e and S is a sample point for e. The index I

and the sample point S of e are defined as follows. If n = 1, let

e1 < e2 < · · · < e2m < e2m+1,m ≥ 0

be the elements of E . For each ei, the index of ei is defined as (i). For each ei,

its sample point is any algebraic point belonging to ei. Let E ′ be the CAD of Rn−1

induced by E . Suppose that region indices and sample points have been defined for

E ′. Let
ei,1 < ei,2 < · · · < ei,2mi

< ei,2mi+1,mi ≥ 0

be the elements of E which form a stack over the region ei of E ′. Let (i1, . . . , in−1)

be the index of ei. Then the index of ei,j is defined as (i1, . . . , in−1, j). Let S ′ be a
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sample point of ei. Then the sample point of ei,j is an algebraic point belonging to

ei,j such that its first n− 1 coordinates are the same as that of S ′.

Theorem 7.1 (Collins). Let p be a polynomial of ring R[y1 < · · · < yn] and R be a

region of Rn−1. If init(p) 6= 0 on R and the number of distinct complex roots of p is

invariant on R, then p is delineable on R.

Corollary 7.1. Let F = {p1, . . . , pr} be a finite set of polynomials in R[y1 < · · · < yn]

of level n. Let R be a region of Rn−1. Assume that for every α ∈ R, (1) the initial

of each pi does not vanish at α; (2) all pi(α, yn), 1 ≤ i ≤ r, as polynomials of R[yn],

are squarefree and coprime. Then each pi is delineable on R and the sections of Z(R)

belonging to different pi and pj are disjoint.

Let R and F be defined as in the above corollary. Then clearly the real roots of

all p ∈ F are continuous functions on R and they together determine a stack over R.

The algorithm GenerateStack, described in Section 7.4.2, is a direct application of the

above corollary.

7.4.1 Real root isolation

Let α = (α1, . . . , αn) be an algebraic point of Rn. Each αi as an algebraic number

is a zero of a nonconstant squarefree polynomial ti(yi) of Q[yi]. Let T be the set of

all ti(yi). Clearly T is a zero dimensional squarefree regular chain of Q[y]. On the

other hand, if T is a zero-dimensional regular chain of Q[y], any real zero of T is an

algebraic point of Rn. Therefore any algebraic point α of Rn can be represented by a

pair (T, L), where T is a zero-dimensional squarefree regular chain of Q[y] such that

T (α) = 0 and L is an isolating cube containing α but not other zeros of T . The pair

(T, L) is called a regular chain representation of α, which will be used to represent a

sample point of CAD.

Next we provide the specification of an algorithm called IsolateZeros for isolating

real zeros of univariate polynomials with real algebraic number coefficients. It is a

subroutine of the algorithm NREALZERO proposed in [135] for isolating the real roots

of a zero-dimensional regular chain.

Calling sequence. IsolateZeros(α(n−1), F, n)

Input. α(n−1) is a point of Rn−1, n ≥ 1, with a regular chain representation (T ′, L′).

If n = 1, T ′ = ∅ and L′ = ∅. F = {p1, . . . , pr} is a list of non-constant polynomials of

Q[y1, · · · , yn] of level n satisfying that (1) for pi ∈ F , T ′ ∪{pi} is a squarefree regular

chain of Q[y1, . . . , yn]; (2) all pi(α
(n−1), yn), 1 ≤ i ≤ r, as polynomials of R[yn], are

squarefree and coprime.
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Output. A pair (N, ν). Let p =
∏r

i=1 pi. N = (N1, . . . , Nm) is a list of intervals with

rational endpoints with N1 < · · · < Nm such that each Nj contains exactly one real

zero of p(α(n−1), yn). ν = (ν1, . . . , νm) is list of integers, where 1 ≤ νi ≤ r, such that

the zero of p(α(n−1), yn) in Nj is a zero of pνj(α
(n−1), yn).

7.4.2 The Algorithm GenerateStack

Calling sequence. GenerateStack(e′, F, n)

Input. e′ is a region of a CAD E ′ of Rn−1, n ≥ 1, and e′ is represented by its index

I ′ and its sample point S ′. Let (T ′, L′) be the regular chain representation of S ′. If

n = 1, T ′ = ∅, I ′ = ∅ and L′ = ∅. F is a finite set of polynomials in Q[y1, . . . , yn]

of level n. The region e′ and the polynomial set F satisfy the conditions specified in

Corollary 7.1.

Output. A stack S over e′.

Step (1). If F = ∅, go to step (2). Otherwise call algorithm IsolateZeros(S ′, F, n) to

isolate the real roots of polynomials in F w.r.t yn at the sample point S ′ of e′. Let

(N, ν) be the output. If N 6= ∅, go to step (3).

Step (2). Let I = (I ′, 1). Let T = T ′ ∪ {yn}, L = L′ × [0, 0], S = (T, L) and return

S = ((I, S)).

Step (3). Let N1 = [a1, b1], . . . , Nm = [am, bm], m > 0 be the elements of N . For

1 ≤ i ≤ 2m + 1, set Ii = (I ′, i). Let s1 be the greatest integer less than a1. Let

s2m+1 be the smallest integer greater than bm. For 1 ≤ i ≤ m− 1, let s2i+1 =
bi+ai+1

2
.

For 0 ≤ i ≤ m, Let T2i+1 = T ′ ∪ {yn − s2i+1}, L2i+1 = L′ × [s2i+1, s2i+1] and set

S2i+1 = (T2i+1, L2i+1). For 1 ≤ i ≤ m, let T2i = T ′ ∪ pνi , L2i = L′ × Ni and set

S2i = (T2i, L2i). Finally, set S be the list of all (Ii, Si), 1 ≤ i ≤ 2m + 1. Then S is

the stack over e′.

7.4.3 The Algorithm MakeSemiAlgebraic

Calling sequence. MakeSemiAlgebraic(D, n)
Input. D is a cylindrical decomposition of Cn, n ≥ 1.

Output. A CAD E of Rn such that, for each element D of D, the set D ∩ Rn is a

union of some regions in E .
Step (1). If n > 1 go to (2). Otherwise let D1, . . . , Dr, Dr+1, r ≥ 0 be the elements

of D. For each 1 ≤ i ≤ r, let pi be the polynomial such that Di = {y1 | pi(y1) = 0}.
Let E be the output of GenerateStack(∅, {p1, . . . , pr}, 1). Clearly E is a CAD of R1.
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Step (2). Let D′ be the cylindrical decomposition of Cn−1 induced by D. Call

MakeSemiAlgebraic recursively to compute a CAD E ′ of Rn−1.

Step (3). In this step we lift the CAD E ′ of Rn−1 to E . Initialize E = ( ). For each

region e′ of E ′, let D′ be the cell of D′ such that e′ ⊂ D′ ∩ Rn. Let D1, . . . , Dr, Dr+1,

r ≥ 0 be the cells of D such that D′ × C = ∪r+1
j=1Dj. For each 1 ≤ j ≤ r, let pj

be the polynomial such that Dj = {(α, yn) | α ∈ D′ & pj(α, yn) = 0}. Add output

of GenerateStack(e′, {p1, . . . , pr}, n) into E . Clearly E is a CAD of Rn and for each

D ∈ D, the set D ∩ Rn is a union of some regions in E .

7.4.4 The Algorithm TCAD

Calling sequence. TCAD(F, n)

Input. F is a finite subset of Q[y1 < · · · < yn], n ≥ 1.

Output. An F -invariant CAD E of Rn.

Step (1). Let D = CylindricalDecompose(F, n) be an F -invariant cylindrical decom-

position of Cn.

Step (2). Call algorithm MakeSemiAlgebraic to compute a CAD E of Rn such that,

for each element D of D, the set D ∩ Rn is a union of some regions in E . Since

D is an intersection-free basis of the s + 1 constructible sets VC(f1), . . . , VC(fs) and

{y ∈ Cn | (∏s
i=1 fi(y)) 6= 0}, E is an intersection-free basis of the s+1 semi-algebraic

sets VR(f1), . . . , VR(fs) and {y ∈ Rn | (∏s
i=1 fi(y)) 6= 0}. Note that each element in

E is connected. Therefore E is an F -invariant cylindrical algebraic decomposition of

Rn.

7.5 Examples and experimentation

7.5.1 An example

Let us illustrate our method by a simple and classical example. Consider the para-

metric parabola p = ax2 + bx + c. Set the order of variables as x > c > b > a.

The first step InitialPartition generates four regular systems, whose zero sets form a

partition of C4.

r1 :=







c = 0

b = 0

a = 0

, r2 :=







bx+ c = 0

b 6= 0

a = 0

,
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r3 :=

{

ax2 + bx+ c = 0

a 6= 0
, r4 :=

{

ax2 + bx+ c 6= 0 .

Next we trace the algorithm MakeCylindrical. Initialize the sets R1 := {r2, r3}, R2 :=

{r4} andR3 := {r1}. Since x appears in the equations of r2 and r3, SeparateZeros(R1)

is called to obtain a family of pairs

{(C1, {t}), (C2, {p}), (C3, {q})},

defined as follows, which separates Z(r2) ∪ Z(r3).

C1 : {a = 0, b 6= 0} → {t} : {bx+ c}
C2 : {a(4ac− b2) 6= 0} → {p} : {ax2 + bx+ c}
C3 : {4ac− b2 = 0, a 6= 0} → {q} : {2ax+ b}

The projection of Z(r4) is the values such that a, b, c do not vanish simultaneously,

denoted by C4. The projection of Z(r1) is the set {a = b = c = 0}, denoted by C5.

Note that C1, C2, C3 are all subsets of C4. In the Merging step, by calling SMPD,

we get another set C6 := {a = b = 0, c 6= 0} such that C1, C2, C3, C5 and C6 are

pairwise disjoint and their union is C3. Moreover, for each Ci, there is a family of

polynomials and indices associated to it.

C1 C2 C3 C5 C6

{t} {p} {q} ∅ ∅
{1, 2} {1, 2} {1, 2} {3} {2}

Since each Ci is already the zero set of some regular system,

MakeCylindrical({C1, C2, C3, C5, C6}, 3)

is called recursively to compute a cylindrical decomposition of C3. By the Lifting

step, we finally obtain a p-invariant cylindrical decomposition of C4. Let r = 4ac−b2,
the decomposition can be described by the following tree.
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+ s

a = 0 a 6= 0

+ ?

b = 0 b 6= 0

+ ? ?

c = 0 c 6= 0 C

? ? � ^

C C t = 0 t 6= 0

?

C

� R

r = 0 r 6= 0

� R

q = 0 q 6= 0
? j

p = 0 p 6= 0

From the above tree, the algorithm MakeSemiAlgebraic finally produces a CAD of

R4 with 27 cells. As pointed out in [17], by Collins-Hong or McCallum projection

operator, one computes the following polynomials during the projection phase: ax2+

bx+c, b2−4ac, c, b, a. In the lifting phase, one then obtains a CAD of R4 with 115 cells!

A CAD with 27 cells is obtained by McCallum-Brown projection operator. However,

this latter operator fails in some (rare) cases.

7.5.2 Experimental results

In this section, we present experimental results obtained with an implementation of

the algorithms presented in this chapter. Our code is in Maple 12 running on a

computer with Intel Core 2 Quad CPU (2.40GHz) and 3.0GB total memory. The

test examples are available at www.csd.uwo.ca/People/gradstudents/cchen252/

CMXY09/examples.pdf. They are taken from diverse papers [53, 3, 45, 98, 17, 46, 24]

on CAD. The time-out for a test run is set to 2 hours.

In Table 7.1, we show the total computation time of TCAD and the time spent on

three main phases of it, which are InitialPartition, (Partition for short), MakeCylindrical,

(M.C. for short) andMakeSemiAlgebraic. (M.S.A. for short). We also report the number

of elements (NR) in the CAD. Aborted computations due to time-out are marked with

“-”. From the table, one can see that, except examples 14 and 16, the steps of the

algorithm dedicated to computations in complex space dominate the step taking place

in the real space.

In Table 7.2, we show the total computation time of the algorithm CylindricalDe-

compose and the time spent on three main operations of it, which are respectively,

MPD and SMPD. We can see that the cost of algorithm CylindricalDecompose is dom-

inated by SMPD. The number of elements (NC) in the cylindrical decomposition of

Cn is also reported.
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Sys Partition M.C. M.S.A. Total NR

1 Parabola 0.024 0.096 0.024 0.144 27
2 Whitney-umbrella 1.184 2.856 1.048 5.088 895
3 Quartic 0.004 7.512 0.704 8.220 233
4 Sphere-catastrophe 0.264 1.368 1.080 2.716 421
5 Arnon-84 0.016 0.052 0.116 0.184 55
6 Arnon-84-2 0.108 0.156 0.120 0.384 41
7 Real-implicitization 2.704 3.600 1.360 7.664 893
8 Ball-cylindar 0.380 1.608 1.196 3.184 365
9 Termination-term-rewrite 0.288 0.532 0.264 1.084 209
10 Collins-Johnson 5.668 48.079 18.833 72.640 3677
11 Range-lower-bounds 0.252 1.192 0.620 2.068 563
12 X-axis-ellipse 2.664 135.028 88.142 225.862 20143
13 Davenport-Heintz 10.576 35.846 6.905 53.335 4949
14 Hong-90 5.728 71.760 2520.354 2597.878 27547
15 Solotareff-3 690.731 2513.817 299.250 3503.954 66675
16 Collision 895.435 2064.469 - - -
17 McCallum-random 0.052 - - - -
18 Ellipse-cad - - - - -

Table 7.1: Timing (s) and number of cells for TCAD

The data reported in two tables shows that SMPD is the dominant operation,

which computes intensively GCDs of polynomials modulo regular chains. This sug-

gests that the modular methods and efficient implementation techniques in [48, 92, 90]

(use of FFT-based polynomial arithmetic, . . . ) have a large potential for improving

the implementation of our CAD algorithm.

In Table 7.3, we compare the timings and number of cells in the output with

Qepcad b. The following is a sample calling sequence of Qepcad b for the example

Parabola.

[]

(a, b, c, x)

4

[a x^2 + b x + c = 0].

full-cad:

go

go

go

d-fpc-stat:
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Sys SeparateZeros MPD SMPD Total NC

1 Parabola 0.020 0.012 0.084 0.156 8
2 Whitney-umbrella 0.508 0.252 2.268 4.052 63
3 Quartic 3.856 0.836 2.460 7.880 24
4 Sphere-catastrophe 0.280 0.088 1.036 1.648 65
5 Arnon-84 0.032 0.008 0.012 0.064 7
6 Arnon-84-2 0.036 0.012 0.092 0.268 13
7 Real-implicitization 1.100 0.652 2.416 6.320 58
8 Ball-cylindar 0.536 0.144 1.040 2.008 55
9 Termination-term-rewrite 0.120 0.032 0.384 0.816 26
10 Collins-Johnson 3.204 0.756 49.031 54.119 594
11 Range-lower-bounds 0.128 0.032 0.960 1.416 49
12 X-axis-ellipse 8.508 2.024 125.104 138.188 856
13 Davenport-Heintz 2.040 1.784 42.578 47.002 407
14 Hong-90 5.741 2.092 64.875 76.956 983
15 Solotareff-3 83.469 62.736 3066.071 3232.073 2974
16 Collision 66.516 377.664 2501.947 2959.904 5877

Table 7.2: Timing (s) and number of cells for CylindricalDecompose

finish:

We have the following observations.

� For systems 1, 4, 11, 12 and 14, TCAD outputs much fewer cells than Qepcad

b. For the other 10 examples, where both software can compute, the cells in

the output are either exact or nearly the same.

� Among the 15 systems that both solvers can compute, for 5 of them, Qepcad

b prints error or warning message 1 during the execution, which indicates the

output CAD may not be a valid one.

� Among the 18 test examples, Qepcad b could solve 172 while TCAD succeeds

on 15 of them. In terms of timing, TCAD is currently slower than Qepcad b.

1For system Quartic, the error message is: “Error! Delineating polynomial should be added
over cell(2,2)!”. For system Real-implicitization, 4 warning messages are generated with two types.
The first one is “Warning! Some 3-level projection factor is acting as a delineating polynomial for
another! CAD Simplification does not take this into account!”. The second one is “A projection
factor is everywhere zero in the cylinder over the cell (2,2,1) of positive dimension. The McCallum
projection may not be valid.” For system Range-lower-bounds, it generates 9 warning messages with
the above two types. For system X-axis-ellipse, it generates 2 warning messages with the first type.
For system Hong-90, it generates 5 warning messages with the above two types.

2Note that Qepcad b solves only 13 if the default memory option “+N20000000” is used. We
increase the memory usage by a factor of 10.
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Sys TCAD Qepcad b

1 Parabola 0.144 27 0.02 115

2 Whitney-umbrella 5.088 895 0.048 895
3 Quartic 8.220 233 0.052 223 (with error)
4 Sphere-catastrophe 2.716 421 0.048 509

5 Arnon-84 0.184 55 0.024 55
6 Arnon-84-2 0.384 41 0.02 41
7 Real-implicitization 7.664 893 0.052 889 (with warning)
8 Ball-cylindar 3.184 365 0.068 365
9 Termination-term-rewrite 1.084 209 0.02 207
10 Collins-Johnson 72.640 3677 0.32 3673
11 Range-lower-bounds 2.068 563 0.184 4199 (with warning)
12 X-axis-ellipse 225.862 20143 3.156 64625 (with warning)
13 Davenport-Heintz 53.335 4949 0.148 4949
14 Hong-90 2597.878 27547 13.852 79289 (with warning)
15 Solotareff-3 3503.954 66675 4.188 66675
16 Collision - - 2.076 45979
17 McCallum-random - - 21.797 877
18 Ellipse-cad - - - -

Table 7.3: Timing (s) and number of cells for TCAD and Qepcad b

7.6 Application to simplifying elementary func-

tions

Elementary functions, like log z and
√
z, can be seen as both multi-valued and single-

valued functions. Regarding them as single-valued functions often causes problems

when one tries to simplify formulas involving those functions [15]. For example, a

simplificaiton of
√
x
√
y as

√
xy is invalid since

√
x
√
y 6= √xy at x = y = −1.

More generally, given an elementary function f(z), we say that a function g(z)

is a valid simplification of f(z) if and only if f(z) − g(z) = 0 holds for all z ∈ C.

Deciding whether g(z) is a simplificaiton of f(z) is an undecidable problem in its full

generality. In [10], the authors propose a method which first computes the branch cuts

of elementary functions and then decomposes branch cuts into connected components

with CAD and finally tests whether f(z) = g(z) holds at a sample point of each

of these connected components. A detailed discussion of their method is beyond

the scope of this thesis. We would instead illustrate their idea using the following

example: do the following equations hold for all z ∈ C?

�
√
z − 1

√
z + 1 =

√
z2 − 1
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�
√
1− z

√
1 + z =

√
1− z2

To answer this question, one first needs to describe the branch cut of elementary

functions. The branch cut of
√
z is conventionally:

{z ∈ C | ℜ(z) < 0 ∧ ℑ(z) = 0}. (7.1)

If we write z as x + iy, the branch cut is the semi-algebraic set {(x, y) ∈ R2 | x <
0 ∧ y = 0}. Applying Equation (7.1), the branch cut of

√
z − 1 is {z ∈ C | ℜ(z−1) <

0 ∧ ℑ(z − 1) = 0}. Writing z as x + iy, the branch cut is the semi-algebraic set

S1 := {(x, y) ∈ R2 | x − 1 < 0 ∧ y = 0}. Similarly, we calculate the branch cuts of√
z + 1,

√
z2 − 1

√
1− z,

√
1 + z and

√
1− z2. These are respectively

S2 := {(x, y) ∈ R2 | x+ 1 < 0 ∧ y = 0},
S3 := {(x, y) ∈ R2 | 2xy = 0 ∧ x2 − y2 − 1 < 0},
S4 := {(x, y) ∈ R2 | x+ 1 < 0 ∧ y = 0},
S5 := {(x, y) ∈ R2 | −x+ 1 < 0 ∧ y = 0}, and
S6 := {(x, y) ∈ R2 | 2xy = 0 ∧ −x2 + y2 + 1 < 0}.

We collect polynomials appearing in S1, S2 and S3 and form a set F := {x+1, x−
1, y, 2xy, x2 − y2 − 1}. By algorithm TCAD, we compute an F -invariant CAD of R2,

which consists of 29 connected cells with a sample point per cell. By evaluating the

polynomials in F at these sample points, we obtain 7 cells C1, . . . , C7 whose sample

points belongs to S1, S2 or S3. Thus the 7 cells form an intersection-free basis of S1,
S2, S3. The seven sample points are (−2, 0), (−1, 0), (−1/2, 0), (0,−1), (0, 0), (0, 1)
and (1/2, 0).

By virtue of the Monodromy Theorem [10], it is sufficient to check whether the

formula holds at these sample points. By the subs and simplify commands of Maple,

we found that
√
z − 1

√
z + 1 −

√
z2 − 1 6= 0 at the first and fourth sample points.

Thus
√
z2 − 1 is not always a valid simplification of

√
z − 1

√
z + 1.

Running a similar procedure, we obtain two cells forming an intersection-free basis

of S4, S5, S6. The sample points attached to each of them are respectively (−2, 0)
and (2, 0). Then it is easy to check that

√
1− z

√
1 + z −

√
1− z2 = 0 holds at both

sample points. Thus
√
1− z2 is a always a valid simplification of

√
1− z

√
1 + z.
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7.7 Conclusion

We have presented a new approach for computing cylindrical algebraic decomposi-

tions. Our main motivation is to understand the relations between CADs and trian-

gular decompositions, studying how the efficient techniques developed for the latter

ones can benefit to the former ones.

Our method can be applied for solving QE problems directly. However, to solve

practical problems efficiently, our method needs to be equipped with existing tech-

niques, like partially built CADs, for utilizing the specific feature of input problems.

Such issues will be addressed in future work.
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Chapter 8

Triangular Decomposition of

Semi-algebraic Systems

Regular chains and triangular decompositions are fundamental and well-developed

tools for describing the complex solutions of polynomial systems. This chapter pro-

poses adaptations of these tools focusing on solutions of the real analogue: semi-

algebraic systems. We show that any such system can be decomposed into finitely

many regular semi-algebraic systems. We propose two specifications (full and lazy)

of such a decomposition and present corresponding algorithms. Under some simpli-

fying assumptions, the lazy decomposition can be computed in singly exponential

time w.r.t. the number of variables. We have implemented our algorithms and the

experimental results illustrate their effectiveness.

8.1 Introduction

Regular chains, the output of triangular decompositions of systems of polynomial

equations, enjoy remarkable properties. Size estimates play in their favor [47] and

permit the design of modular [48] and fast [89] methods for computing triangular

decompositions. These features stimulate the development of algorithms and software

for solving polynomial systems via triangular decompositions.

For the fundamental case of semi-algebraic systems with rational number coeffi-

cients, to which this work is devoted, several algorithms for studying the real solu-

tions of such systems take advantage of the structure of a regular chain. Some are

specialized to isolating the real solutions of systems with finitely many complex so-

lutions [135, 41, 12]. Other algorithms deal with parametric polynomial systems via
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real root classification (RRC) [138] or with arbitrary systems via cylindrical algebraic

decompositions (CAD) [36].

In this work, we introduce the notion of a regular semi-algebraic system, which

in broad terms is the “real” counterpart of the notion of a regular chain. Then we

define two notions of a decomposition of a semi-algebraic system: one that we call lazy

triangular decomposition, where the analysis of components of strictly smaller (com-

plex) dimension is deferred, and one that we call full triangular decomposition where

all cases are worked out. These decompositions are obtained by combining triangu-

lar decompositions of algebraic sets over the complex field with a special Quantifier

Elimination (QE) method based on RRC techniques.

Definition 8.1. Let T ⊂ Q[x] be a squarefree regular chain for an ordering of the

variables x = x1, . . . , xn. Let u = u1, . . . , ud and y = y1, . . . , yn−d designate respec-

tively the variables of x that are free and algebraic w.r.t. T . Let P ⊂ Q[x] be finite

and such that each polynomial in P is regular w.r.t. the saturated ideal of T . Define

P := {p > 0 | p ∈ P}. Let Q be a quantifier-free formula over Q[x] involving only the

u variables. Let S be the semi-algebraic subset of Rd defined by Q. When d = 0, the

0-ary Cartesian product Rd is treated as a singleton set. We say that R := [Q, T,P ]
(also written as [RQ, RT , RP ]) is a regular semi-algebraic system if:

(i) S is a non-empty open subset in Rd,

(ii) the regular system [T, P ] specializes well at every point u of S (see Section 8.2

for this notion),

(iii) at each point u of S, the specialized system [T (u), P (u)>] admits real solutions.

The zero set of R, denoted by ZR(R), is the set of points (u, y) ∈ Rd×Rn−d such that

Q(u) holds and t(u, y) = 0, p(u, y) > 0, for all t ∈ T and all p ∈ P .

Using the notations of Definition 8.1, Let R = [Q, T,P ] be a regular semi-algebraic

system. Since Q is open, each connected component C of Q is locally homeomorphic

to the hypercube (0, 1)d. From Property (ii), the zero set ZR(R) consists of disjoint

graphs of continuous semi-algebraic functions defined on each such C. Moreover, from

Property (iii), there is at least one such graph. For these reasons, which are formally

stated in Theorem 8.1, the regular semi-algebraic system R can be understood as a

parameterization of the set ZR(R). Clearly, the dimension of ZR(R) is d.

Example 8.1. For the variables z > y > x, we consider two classical surfaces (from
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the Algebraic Surface Gallery1) called Sofa and Cylinder with equations:

x2 + y3 + z5 = 0 and x4 + y2 = 1.

The common points of these surfaces with real coordinates can be described as the

union of the zero sets of the following 5 regular semi-algebraic systems R1 to R5

(unspecified RP
i are empty and unspecified RQ

i are “true”):

RT
1 =

{

z5 + (1− x4)y + x2

y2 + x4 − 1

RQ
1 =

{

−1 < x < 1

x12 − 3x8 + 4x4 − 1 6= 0,

RT
2 =







z + 1

y

x− 1

RT
3 =







z + 1

y

x+ 1

RT
4 =







z5 + (1− x4)y + x2

(x4 − 1)y + x2

x12 − 3x8 + 4x4 − 1

RT
5 =







z

(x4 − 1)y − x2
x12 − 3x8 + 4x4 − 1

This decomposition is obtained by the algorithms of Section 8.6. The fact that R2 to

R5 are regular semi-algebraic systems is clear, since each of them consists only of a

zero-dimensional squarefree regular chain. For R1, we observe that

(−1 < x < 1) ∧ (x12 − 3x8 + 4x4 − 1 6= 0)

is a quantifier-free formula2 defining an open set S; moreover py := y2+x4−1, regarded
as a univariate polynomial in y, admits two distinct real roots for each x ∈ S while

pz := z5 + (1 − x4)y + x2, as a univariate polynomial in z, is squarefree and admits

(exactly) one real root for any x ∈ S and any y defined by y2 + x4 − 1 = 0. Indeed,

the discriminant of pz in z is 3125 (−y + yx4 − x2)4 and the resultant w.r.t. y of this

latter polynomial and py is 9765625 (x12 − 3x8 + 4x4 − 1)
4
.

In Section 8.2 we show that the zero set of any semi-algebraic system S can be

decomposed as a finite union of zero sets of regular semi-algebraic systems. We call

such a decomposition a full triangular decomposition (or simply triangular decompo-

sition when clear from context) of S, and denote by RealTriangularize an algorithm

to compute it.

1www1-c703.uibk.ac.at/mathematik/project/bildergalerie/gallery.html
2We said ‘involving only strict inequalities’, but we are using the shorthand f 6= 0 for f > 0∨f <

0.
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The existence of such a triangular decomposition can be understood in terms of

CAD. Indeed, consider a CAD of the polynomials defining S and a cell C where all

constraints of S are satisfied. The cell C is a connected semi-algebraic set homeomor-

phic to hypercube (0, 1)d, for some d, and from the CAD data (see for instance [36])

one can extract a regular semi-algebraic system R whose zero set is C. However, we

should stress the fact that a triangular decomposition of S has much less information

and structure than a CAD of the polynomials defining S. For instance, the zero sets

of the regular semi-algebraic systems in a triangular decomposition of S need not be

cylindrically arranged.

Our motivations in introducing this concept of triangular decomposition are three-

fold. First, we aim at proposing an encoding of the solutions of an arbitrary semi-

algebraic system which, as much as possible, is both explicit (thus using “triangular

representation” of the components) and compact (thus trying to keep the size of

output under control). Secondly, we aim at developing algorithms that are capable

of producing either a full description of the solution set, or partial answers (such

as dimension information or sample points) at a lower cost than a full description.

Thirdly, we aim at proposing an encoding of semi-algebraic sets that can support

efficient algorithms for the set theoretical operations on such sets.

Triangular decomposition of algebraic sets come in two flavors (see Section 2.2 of

Chapter 2). The first one, proposed by Kalkbrener in [81], focuses on representing

the generic points of the irreducible components of the input algebraic set. In [119],

Szántó establishes that this representation is computable in singly exponential time

w.r.t. the number of variables.

The second one, introduced by Wu [132] and studied by many authors (see [33]

and the references therein) represents all the points of the input algebraic set. Our

proposed algorithm, RealTriangularize, leads to triangular decompositions of this sec-

ond type for which it is not known whether or not they can be computed in singly

exponential time w.r.t. the number of variables. Meanwhile, we are hoping to obtain

an algorithm for decomposing semi-algebraic systems (certainly under some generic-

ity assumptions) that would fit in that complexity class. Moreover, we observe that,

in practice, full triangular decompositions are not always necessary and providing

information about the components of maximum dimension is often sufficient. These

theoretical and practical considerations yield a weaker notion of a decomposition of

a semi-algebraic system.

Definition 8.2. Let S = [F,N≥, P>, H 6=] (see Section 8.2 for this notation) be a semi-

algebraic system of Q[x] and ZR(S) ⊆ Rn be its zero set. Denote by d the dimension
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of the constructible set {x ∈ Cn | f(x) = 0, g(x) 6= 0, for all f ∈ F, g ∈ P ∪ H}. A
finite set of regular semi-algebraic systems {Ri | i = 1 · · · t} is called a lazy triangular

decomposition of S if

� ∪t
i=1ZR(Ri) ⊆ ZR(S) holds, and

� there exists G ⊂ Q[x] such that the real-zero set ZR(G) ⊂ Rn contains

ZR(S) \ (∪t
i=1ZR(Ri)) and the complex-zero set V (G) ⊂ Cn either is empty

or has dimension less than d.

We denote by LazyRealTriangularize an algorithm computing such a decomposition. In

our software implementation presented hereafter, LazyRealTriangularize outputs addi-

tional information in order to continue the computations and obtain a full triangular

decomposition, if needed. This additional information appears in the form of un-

evaluated recursive calls, explaining the usage of the adjective lazy in this type of

decompositions.

Complexity results for lazy triangular decomposition. In Section 8.3, we provide

a running time estimate for computing a lazy triangular decomposition of the semi-

algebraic system S when S has no inequations nor inequalities, (that is, when N≥ =

P> = H 6= = ∅ holds) and when F generates a strongly equidimensional ideal of

dimension d. We show that one can compute such a decomposition in time singly

exponential w.r.t. n. Our estimates are not sharp and are just meant to reach a

singly exponential bound. We rely on the work of J. Renagar [109] for quantifier

elimination. In Sections 8.4, 8.5 and 8.6 we turn our attention to algorithms that

are more suitable for implementation even though they rely on sub-algorithms with

a doubly exponential running time w.r.t. d.

A special case of quantifier elimination. By means of triangular decomposition

of algebraic sets over C, triangular decomposition of semi-algebraic systems (both

full and lazy) reduces to a special case of QE. In Section 8.4, we perform this latter

step via the concept of a fingerprint polynomial set, which is inspired by that of a

discrimination polynomial set used for RRC in [138, 136].

Complexity results for fingerprint polynomial set. In Section 8.5, we show that the

fingerprint polynomial set of a pre-regular semi-algebraic system R (See Section 8.2 for

this notion) can be computed in singly exponential time w.r.t. the number of variables

as long as the regular chain part of R is in generic position. The advantage of this

result, compared to that of Section 8.3, is that its proof leads to a practical algorithm,

actually used in our software implementation. Despite its stronger assumptions, this

latter result is practically important since regular chains are often in generic position.
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Implementation and experimental results. In Section 8.6 we describe the algo-

rithms that we have implemented for computing triangular decompositions of semi-

algebraic systems. OurMaple code is part of the RegularChains library. We provide

experimental data for two groups of well-known problems. In the first group, each

input semi-algebraic system consists of equations only while the second group is a

collection of semi-algebraic systems from QE problems. To illustrate the difficulty

of our test problems, and only for this purpose, we provide timings obtained with

other well-known polynomial system solvers which are based on algorithms whose

running time estimates are comparable to ours. For this first group we use Maple’s

Groebner:-Basis command for computing lexicographical Gröbner bases. For the

second group we use a general purpose QE software, Qepcad b (in non-interactive

mode) [19], on the respective QE problems. Our results show that LazyRealTriangu-

larize code solves most of our test problems and more problems than the tools it is

compared to, though these solving tools have different specifications.

We conclude this introduction by computing a triangular decomposition of a par-

ticular semi-algebraic system taken from [21]. Consider the following question: when

does p(z) = z3+az+b have a non-real root x+iy satisfying xy < 1 ? This problem can

be expressed as (∃x)(∃y)[f = g = 0∧ y 6= 0∧ xy− 1 < 0], where f = Re(p(x+ iy)) =

x3−3xy2+ax+ b and g = Im(p(x+ iy))/y = 3x2−y2+a. We call our LazyRealTrian-

gularize command on the semi-algebraic system f = 0, g = 0, y 6= 0, xy − 1 < 0 with

the variable order y > x > b > a. Its first step is to call the Triangularize command

of the RegularChains library on the algebraic system f = g = 0. We obtain one

squarefree regular chain T = [t1, t2], where t1 = g and t2 = 8x3 + 2ax − b, satisfy-
ing V (f, g) = V (T ). The second step of LazyRealTriangularize is to check whether

the polynomials defining inequalities and inequations are regular w.r.t. the saturated

ideal of T , which is the case here. The third step is to compute the so called bor-

der polynomial set (see Section 8.2) which is B = [h1, h2] with h1 = 4a3 + 27b2 and

h2 = −4a3b2 − 27b4 + 16a4 + 512a2 + 4096. One can check that the regular system

[T, {y, xy− 1}] specializes well outside of the hypersurface h1h2 = 0. The fourth step

is to compute the fingerprint polynomial set which yields the quantifier-free formula

Q = h1 > 0 ∧ h2 6= 0 telling us that [Q, T, 1 − xy > 0] is a regular semi-algebraic

system. After performing these four steps, (based on Algorithm 30, Section 8.6)

the function call LazyRealTriangularize([f, g, y 6= 0, xy − 1 < 0], [y, x, b, a]) in our im-

plementation returns the following:
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[[t1 = 0, t2 = 0, 1− xy > 0]] h1 > 0 ∧ h2 6= 0

%LazyRealTriangularize([t1 = 0, t2 = 0, f = 0,

h1 = 0, 1− xy > 0, y 6= 0], [y, x, b, a]) h1 = 0

%LazyRealTriangularize([t1 = 0, t2 = 0, f = 0,

h2 = 0, 1− xy > 0, y 6= 0], [y, x, b, a]) h2 = 0

[ ] otherwise

The above output shows that {[Q, T, 1− xy > 0]} forms a lazy triangular decom-

position of the input semi-algebraic system. Moreover, together with the output of

the recursive calls, one obtains a full triangular decomposition. Note that the cases of

the two recursive calls correspond to h1 = 0 and h2 = 0. Since LazyRealTriangularize

uses the Maple piecewise structure for output format, one simply needs to evalu-

ate the recursive calls with the value command, yielding the same result as directly

calling RealTriangularize







[[t1 = 0, t2 = 0, 1− xy > 0]] h1 > 0 ∧ h2 6= 0

[ ] h1 = 0

[[t3 = 0, t4 = 0, h2 = 0]] h2 = 0

[ ] otherwise

where t3 = xy + 1 and t4 = 2a3x− a2b+ 32ax− 48b+ 18xb2.

From this output, after some simplification, one could obtain the equivalent

quantifier-free formula, 4a3 + 27b2 > 0, of the original QE problem.

This chapter is based on paper [26] and its enhanced version [27], co-authored

with James Davenport, John May, Marc Moreno Maza, Bican Xia and Rong Xiao.

8.2 Triangular decomposition of semi-algebraic

systems

In this section, we prove that any semi-algebraic system decomposes into finitely many

regular semi-algebraic systems. This latter notion was defined in the introduction.

Semi-algebraic system. Let us consider four finite polynomial subsets F =

{f1, . . . , fs}, N = {n1, . . . , nt}, P = {p1, . . . , pr} and H = {h1, . . . , hℓ} of

Q[x1, . . . , xn]. Let N≥ denote the set of the inequalities {n1 ≥ 0, . . . , nt ≥ 0}. Let
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P> denote the set of the inequalities {p1 > 0, . . . , pr > 0}. Let H 6= denote the set of

inequations {h1 6= 0, . . . , hℓ 6= 0}. We will denote by [F, P>] the basic semi-algebraic

system {f1 = 0, . . . , fs = 0, p1 > 0, . . . , pr > 0}. We denote by S = [F,N≥, P>, H 6=]

the semi-algebraic system (SAS) which is the conjunction of the following conditions:

f1 = 0, . . . , fs = 0, n1 ≥ 0, . . . , nt ≥ 0, p1 > 0, . . . , pr > 0 and h1 6= 0, . . . , hℓ 6= 0.

Notations for zero sets. In this paper, we use “Z” to denote the zero set in Cn of

a polynomial system, involving equations and inequations, and “ZR” to denote the

zero set in Rn of a semi-algebraic system.

Good specialization (Definition 6.7 in Section 6.4). Consider a squarefree regular

system [T,H] of k[u,y]. Recall that y and u = u1, . . . , ud stand respectively for

mvar(T ) and x \ y. Let z = (z1, . . . , zd) be a point of Kd. We recall that [T,H]

specializes well at z if: (i) none of the initials of the polynomials in T vanishes modulo

the ideal 〈z1 − u1, . . . , zd − ud〉; (ii) the image of [T,H] modulo 〈z1 − u1, . . . , zd − ud〉
is a squarefree regular system.

Border polynomial [138]. Let [T,H] be a squarefree regular system of k[u,y]. Let

bp be the primitive and square free part of the product of all res(der(t), T ) and all

res(h, T ) for h ∈ H and t ∈ T . We call bp the border polynomial of [T,H] and denote

by BorderPolynomial(T,H) an algorithm to compute it. We call the set of irreducible

factors of bp the border polynomial set of [T,H]. Denote by BorderPolynomialSet(T,H)

an algorithm to compute it. Proposition 8.1, which is an immediate corollary of

Lemma 6.2 in Section 6.4, follows from the specialization property of subresultants

and states a fundamental property of border polynomials.

Proposition 8.1. The system [T,H] specializes well at u ∈ Kd if and only if the

border polynomial bp(u) 6= 0.

Corollary 8.1. Let [T,H] be a squarefree regular system of k[u,y] and B be its border

polynomial set. Let D ⊂ k[u] such that B ⊆ D. Then we have

V (sat(T )) \ V (
∏

h∈H

h) \ V (
∏

f∈D

f) = W (T ) \ V (
∏

f∈D

f)

and V (sat(T )) ∩ V (
∏

h∈H h) \ V (
∏

f∈D f) = ∅ hold.

Pre-regular semi-algebraic system. Let [T, P ] be a squarefree regular system of

Q[u,y]. Let bp be the border polynomial of [T, P ]. Let B ⊂ Q[u] be a polynomial set

such that bp divides the product of polynomials in B. We call the triple [B 6=, T, P>]

a pre-regular semi-algebraic system of Q[x]. Its zero set, written as ZR(B 6=, T, P>),
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is the set (u, y) ∈ Rn such that b(u) 6= 0, t(u, y) = 0, p(u, y) > 0, for all b ∈ B,

t ∈ T , p ∈ P . Lemma 8.1 and Theorem 8.1 are fundamental properties of pre-regular

semi-algebraic systems.

Lemma 8.1. Let S be a semi-algebraic system of Q[x]. Then there exists finitely

many pre-regular semi-algebraic systems [Bi 6=, Ti, Pi>], i = 1 · · · e, s.t. ZR(S) =

∪e
i=1ZR(Bi 6=, Ti, Pi>).

Proof. The semi-algebraic system S decomposes into basic semi-algebraic systems,

by rewriting inequality of type n ≥ 0 as: n > 0 ∨ n = 0. Let [F, P>] be one

of those basic semi-algebraic systems. If F is empty, then the triple [∅,∅, P>], is

a pre-regular semi-algebraic system. If F is not empty, by Proposition 8.1 and the

specifications of Triangularize and Regularize, one can compute finitely many squarefree

regular systems [Ti, H] such that V (F ) ∩ Z(P6=) = ∪e
i=1

(
V (Ti) ∩ Z(Bi 6=)

)
holds and

where Bi is the border polynomial set of the regular system [Ti, H]. Hence, we

have ZR(F, P>) = ∪e
i=1ZR(Bi 6=, Ti, P>), where each [Bi 6=, Ti, P>] is a pre-regular semi-

algebraic system.

Next, we exhibit properties of pre-regular semi-algebraic systems. To this end,

we recall the notion of delineability [44]. Assume n > 1. Let C be a connected cell

in Rn−1. A polynomial p ∈ R[x1, . . . , xn] is delineable on C if the real zeros of p

define continuous real-valued functions θ1, . . . , θs such that, for all α ∈ C we have

θ1(α) < · · · < θs(α).

Lemma 8.2 (Theorem 1 in [44]). Let p be a polynomial of R[y1 < · · · < yn] and C

be a connected semi-algebraic subset of Rn−1. If init(p) 6= 0 on C and the number of

distinct complex roots of p is invariant on C, then p is delineable on C.

Theorem 8.1. Let [B 6=, T, P>] be a pre-regular semi-algebraic system of Q[u,y], with

T non-empty. Let h be the product of the polynomials in B. Let C be a con-

nected subset of the complement of h = 0 in Rd. Then there exist finitely many,

say k, continuous semi-algebraic functions ψ1(u), . . . , ψk(u) defined on C, such that

ZR([T, P>]) = ·∪k
i=1{(α, ψi(α)) | α ∈ C} holds, where ·∪ denotes a disjoint union. In

particular, for each α ∈ C, we have ZR([T (α), P>(α)]) = {ψ1(α), . . . , ψk(α)}, which
is a set of k points.

Proof. We prove by induction on m, the number of variables in y = y1 < · · · < ym.

For 1 ≤ i ≤ m, let Pi = {p ∈ P | mvar(p) ≤ yi}. Write T = {t1, . . . , tm}, where
polynomials are sorted by main variables.
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Case m = 1. For any α ∈ C, the regular system [{t1}, P1] specializes well at α

by Proposition 8.1, which implies that init(t1)(α) 6= 0 and t1(α, y1) is a squarefree

polynomial in R[y1]. Therefore, the polynomial t1 is delineable on C by Lemma 8.2,

which implies that the real zero set of t1 over C consists of finitely many (possibly

none) disjoint graphs of continuous functions. Let ψ1(u), . . . , ψk′(u) be these func-

tions. For i = 1, . . . , k′, the graph of ψi over C, denoted by Gi, is a connected

semi-algebraic set. Moreover, since [{t1}, P1] specializes well above C, we deduce

that the sign of each p ∈ P1 does not change above Gi. We pick those ψi such that

Gi ∩ ZR(P1>) 6= ∅ holds and renumber them as ψ1(u), . . . , ψk(u). Clearly we have

ZR([t1, P1>]) = ·∪k
i=1{(α, ψi(α)) | α ∈ C)} holds.

Case m > 1. Assume that the conclusion holds for the pre-regular semi-algebraic

system [B 6=, {t1, . . . , tm−1}, Pm−1>], that is, there exist k continuous semi-algebraic

functions ψ1(u), . . . , ψk(u) defined on C such that

ZR([{t1, . . . , tm−1}, Pm−1>]) = ·∪k
i=1{(α, ψi(α)) | α ∈ C}

holds. For i = 1, . . . , k, let Gi := {(α, ψi(α)) | α ∈ C}. Then each Gi is a connected

semi-algebraic set. Moreover, by Proposition 8.1, [T, P ] specializes well above ZR(B 6=),

which implies that [{tm}, Pm] specializes well above Gi. By similar arguments as in

the proof of the case m = 1, we deduce that for each i = 1, . . . , k, there exists ni ≥
0 continuous semi-algebraic functions ψi,1(u, y1, . . . , ym−1), . . . , ψi,ni

(u, y1, . . . , ym−1)

defined on Gi such that {(γ, β) ∈ Rd+m−1 × R | γ ∈ Gi, tm(γ, β) = 0, p(γ, β) >

0 for all p ∈ Pm} equals to ·∪ni

j=1{(γ, ψi,j(γ)) | γ ∈ Gi}, which implies that

ZR([T, P>]) = ·∪k
i=1 ·∪ni

j=1{(α, ψi(α), ψi,j(α, ψi(α))) | α ∈ C}

holds. Clearly (ψi(u), ψi,j(u, ψi(u))), where i = 1, . . . , k, j = 1, . . . , ni, are continuous

semi-algebraic functions defined on C, so the conclusion holds.

Lemma 8.3. Let [B 6=, T, P>] be a pre-regular semi-algebraic system of Q[u,y]. One

can decide whether its zero set is empty or not. If it is not empty, then one can

compute a regular semi-algebraic system [Q, T, P>] whose zero set is the same as that

of [B 6=, T, P>].

Proof. If T = ∅, we can test whether the zero set of [B 6=, P>] is empty or not, for

instance using CAD. If it is empty, we are done. Otherwise, defining Q = B 6= ∧ P>,

[Q, T, P>] is a regular semi-algebraic system whose zero set equals that of [B 6=, T, P>].

If T is not empty, we solve the quantifier elimination problem ∃y(B(u) 6= 0, T (u,y) =
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0, P (u,y) > 0) and let Q be the resulting formula. By Theorem 8.1, above each

connected component of B(u) 6= 0, the number of real zeros of the system [B 6=, T, P>]

is constant. Hence, we claim that the zero set defined by Q is the union of the

connected components of B(u) 6= 0 above which [B 6=, T, P>] possesses at least one

solution. If Q is false, we are done. Otherwise, Q defines a nonempty open set of

Rd and [Q, T, P>] is a regular semi-algebraic system whose zero set equals that of

[B 6=, T, P>].

Theorem 8.2. Let S be a semi-algebraic system of Q[x]. Then one can compute a

(full) triangular decomposition of S, that is, as defined in the introduction, finitely

many regular semi-algebraic systems such that the union of their zero sets is the zero

set of S.

Proof. This follows from Lemma 8.1 and 8.3.

8.3 Complexity results for computing a lazy trian-

gular decomposition: a theoretical perspective

We prove that, under some genericity assumptions, a lazy triangular decomposition

of a polynomial system is computed in singly exponential time w.r.t. the number

of variables. First, we state complexity estimates for basic multivariate polynomial

operations.

Complexity of basic polynomial operations. Let p, q ∈ Q[x] be polynomials with

respective total degrees δp, δq, and let x ∈ x. Let ~p, ~q, ~pq and ~r be the height (that

is, the bit size of the maximum absolute value of the numerator or denominator of

a coefficient) of p, q, the product pq and the resultant res(p, q, x), respectively; let

δ := max(δp, δq) and ~ := max(~p, ~q). In [50], it is proved that gcd(p, q) can be

computed within O(n2δ+1~3) bit operations. It is easy to establish that ~pq and ~r

are respectively upper bounded by ~p + ~q + n log(min(δp, δq) + 1) and δq~p + δp~q +

nδq log(δp + 1) + nδp log(δq + 1) + log ((δp + δq)!). Finally, according to [76], the bit

operations of p pseudo-dividing q w.r.t. x is O((δ + 1)3n~2); let M be a k× k matrix

over Q[x], δ (resp. ~) be the maximum total degree (resp. height) of an element of

M , then det(M) can be computed within O(k2n+5(δ + 1)2n~2) bit operations.

We turn now to the main subject of this section, that is, complexity estimates for a

lazy triangular decomposition of a polynomial system under some genericity assump-

tions. Let F ⊂ Q[x]. A lazy triangular decomposition (defined in the Introduction)
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of the semi-algebraic system S = [F, ∅, ∅, ∅], involving only equations, is obtained by

Algorithm 26.

Algorithm 26: LazyRealTriangularize(S)

Input: a semi-algebraic system S = [F, ∅, ∅, ∅]
Output: a lazy triangular decomposition of S
T := Triangularize(F,mode = Kalkbrener)1

for Ti ∈ T do2

bpi := BorderPolynomial(Ti, ∅)3

solve ∃y(bpi(u) 6= 0, Ti(u,y) = 0); let Qi be the resulting quantifier-free4

formula
if Qi 6= false then output [Qi, Ti, ∅]5

Proof of Algorithm 26. The termination of the algorithm is obvious. Let us prove

its correctness. Let Ri = [Qi, Ti, ∅], for i = 1 · · · t be the output of Algorithm 26 and

let Tj for j = t+ 1 · · · s be the regular chains such that Qj = false. By Lemma 8.3,

each Ri is a regular semi-algebraic system. For i = 1 · · · s, define Fi = sat(Ti). Then

we have V (F ) = ∪s
i=1V (Fi), where each Fi is equidimensional. For each i = 1 · · · s, by

Proposition 8.1, we have V (Fi)\V (bpi) = V (Ti)\V (bpi). Moreover, we have V (Fi) =

(V (Fi) \ V (bpi))∪V (Fi∪{bpi}). Hence, ZR(Ri) = ZR(Ti)\ZR(bpi) ⊆ ZR(Fi) ⊆ ZR(F )

holds. In addition, since bpi is regular modulo Fi, we have

ZR(F ) \ ∪t
i=1ZR(Ri) = ∪s

i=1ZR(Fi) \ ∪t
i=1ZR(Ri)

⊆ ∪s
i=1ZR(Fi) \ (ZR(Ti) \ ZR(bpi))

⊆ ∪s
i=1ZR(Fi ∪ {bpi}),

and dim (∪s
i=1V (Fi ∪ {bpi})) < dim(V (F )). So the Ri, for i = 1 · · · t, form a lazy

triangular decomposition of S. �

In this section, under some genericity assumptions for F , we establish running time

estimates for Algorithm 26, see Theorem 8.4. This is achieved through Proposition 8.2

(which gives running time and output size estimates for a Kalkbrener triangular

decomposition of an algebraic set) and Theorem 8.3 (which states running time and

output size estimates for a border polynomial computation). Our assumptions for

these results are the following:

(H0) V (F ) is equidimensional of dimension d,

(H1) x1, . . . , xd are algebraically independent modulo each associated prime ideal of

the ideal generated by F in Q[x],
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(H2) F consists of m := n− d polynomials, f1, . . . , fm.

Hypotheses (H0) and (H1) are equivalent to the existence of regular chains T1, . . . , Te

of Q[x1, . . . , xn] such that x1, . . . , xd are free w.r.t. each of T1, . . . , Te and such that

we have V (F ) = W (T1) ∪ · · · ∪ W (Te).

Denote by δ, ~ respectively the maximum total degree and height of f1, . . . , fm. In

her PhD Thesis [119], Á. Szántó describes an algorithm which computes a Kalkbrener

triangular decomposition, T1, . . . , Te, of V (F ). Under hypotheses (H0) to (H2), this

algorithm runs in time mO(1)(δO(n2))d+1 counting operations in Q, while the total de-

grees of the polynomials in the output are bounded by nδO(m2). In addition, T1, . . . , Te

are square free, strongly normalized [103] and reduced [6].

From T1, . . . , Te, we obtain regular chains E1, . . . , Ee forming another Kalkbrener

triangular decomposition of V (F ), as follows. Let i = 1 · · · e and j = (d+1) · · ·n. Let
ti,j be the polynomial of Ti with xj as main variable. Let ei,j be the primitive part of ti,j

regarded as a polynomial in Q[x1, . . . , xd][xd+1, . . . , xn]. Define Ei = {ei,d+1, . . . , ei,n}.
According to the complexity results for polynomial operations stated at the beginning

of this section, this transformation can be done within δO(m4)O(n) operations in Q.

Dividing ei,j by its initial we obtain a monic polynomial di,j of the polynomial ring

Q(x1, . . . , xd)[xd+1, . . . , xn]. Denote byDi the regular chain {di,d+1, . . . , di,n}. Observe

that Di is the reduced lexicographic Gröbner basis of the radical ideal it generates

in Q(x1, . . . , xd)[xd+1, . . . , xn]. So Theorem 1 in [47] applies to each regular chain

Di. For each polynomial di,j , this theorem provides height and total degree estimates

expressed as functions of the degree [22] and the height [108, 82] of the algebraic set

W (Di). Note that the degree and height of W (Di) are upper bounded by those of

V (F ). Write di,j = Σµ
αµ

βµ
µ where each µ ∈ Q[xd+1, . . . , xn] is a monomial and αµ, βµ

are in Q[x1, . . . , xd] such that gcd(αµ, βµ) = 1 holds. Let γ be the lcm of the βµ’s.

Then for γ and each αµ:

� the total degree is bounded by 2δ2m and,

� the height by O(δ2m(m~+ dm log(δ) + nlog(n))).

Multiplying di,j by γ brings ei,j back. We deduce the height and total degree estimates

for each ei,j below.

Proposition 8.2. Under the hypotheses (H0), (H1), (H2), the Kalkbrener triangular

decomposition E1, . . . , Ee of V (F ) can be computed in δO(m4)O(n) operations in Q. In

addition, every polynomial ei,j has total degree upper bounded by 4δ2m + δm, and has

height upper bounded by O(δ2m(m~+ dmlog(δ) + nlog(n))).
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Next we estimate running time and output size for a border polynomial compu-

tation.

Theorem 8.3. Let R = [T, P ] be a squarefree regular system of Q[u,y], with m = #T

and ℓ = #P . Let bp be the border polynomial of R. Denote by δR, ~R respectively

the maximum total degree and height of a polynomial in R. Then the total degree

of bp is upper bounded by (ℓ + m)2m−1δR
m, and bp can be computed within (nℓ +

nm)O(n)(2δR)
O(n)O(m)~R

3 bit operations.

Proof. Define G := P ∪ {der(t) | t ∈ T}. We need to compute the ℓ + m iterated

resultants res(g, T ), for all g ∈ G. Let g ∈ G. Observe that the total degree and

height of g are bounded by δR and ~R + log(δR) respectively. Define rm+1 := g,

. . . , ri := res(ti, ri+1, yi), . . . , r1 := res(t1, r2, y1). Let i ∈ {1, . . . ,m}. Denote by

δi and ~i the total degree and height of ri, respectively. Using the complexity es-

timates stated at the beginning of this section, we have δi ≤ 2m−i+1δR
m−i+2 and

~i ≤ 2δi+1(~i+1 + n log(δi+1 + 1)). Therefore, we have ~i ≤ (2δR)
O(m2)nO(m)~R.

From these size estimates, one can deduce that each resultant ri (thus the iter-

ated resultants) can be computed within (2δR)
O(mn)+O(m2)nO(m)~R

2 bit operations, by

the complexity of computing a determinant stated at the beginning of this section.

Hence, the product of all iterated resultants has total degree and height bounded by

(ℓ+m)2m−1δR
m and (ℓ+m)(2δR)

O(m2)nO(m)~R, respectively. Thus, the primitive and

squarefree part of this product can be computed within (nℓ+nm)O(n)(2δR)
O(n)O(m)~R

3

bit operations, based on the complexity of a polynomial gcd computation stated at

the beginning of this section.

Theorem 8.4. From the Kalkbrener triangular decomposition E1, . . . , Ee of Propo-

sition 8.2, a lazy triangular decomposition of f1 = · · · = fm = 0 can be computed in
(

δn
2
n4n
)O(n2)

~O(1) bit operations. Thus, under the hypotheses (H0), (H1) and (H2),

a lazy triangular decomposition of this system is computed from the input polynomials

in singly exponential time w.r.t. n, counting operations in Q.

Proof. For each i ∈ {1 · · · e}, let bpi be the border polynomial of [Ei, ∅] and let ~Ri

(resp. δRi
) be the height (resp. the total degree) bound of the polynomials in the

pre-regular semi-algebraic system Ri = [{bpi}6=, Ei, ∅]. According to Algorithm 26,

the remaining task is to solve the QE problem ∃y(bpi(u) 6= 0, Ei(u,y) = 0) for each

i ∈ {1 · · · e}, which can be solved within ((m+ 1)δRi
)O(dm)

~
O(1)
Ri

bit operations, based

on the results of [109]. The conclusion follows from the size estimates in Proposition

8.2 and Theorem 8.3.
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8.4 Quantifier elimination via real root classifica-

tion

In Section 8.3, we saw that in order to compute a triangular decomposition of a

semi-algebraic system, a key step was to solve the following quantifier elimination

problem:

∃y(B(u) 6= 0, T (u,y) = 0, P (u,y) > 0), (8.1)

where [B 6=, T, P>] is a pre-regular semi-algebraic system of Q[u,y]. This problem is

an instance of the so-called real root classification (RRC) [139]. In this section, we

show how to solve this problem when B is what we call a fingerprint polynomial set.

Definition 8.3. Let R := [B 6=, T, P>] be a pre-regular semi-algebraic system of

Q[u,y]. Let D ⊂ Q[u]. Let dp be the product of all polynomials in D. We call

D a fingerprint polynomial set (FPS) of R if:

(i) for all α ∈ Rd, for all b ∈ B we have: dp(α) 6= 0 =⇒ b(α) 6= 0,

(ii) for all α, β ∈ Rd with α 6= β, dp(α) 6= 0 and dp(β) 6= 0: if p(α) and p(β) have

the same sign for all p ∈ D, then R(α) has real solutions if and only if R(β)

does.

Now, we present a method for constructing an FPS based on CAD projection

operators.

Open projection operator [116, 17]. Hereafter in this section, we let u = u1 < · · · <
ud be ordered variables. Let p ∈ Q[u] be non-constant. We denote by factor(p) the

set of the non-constant irreducible factors of p. For A ⊂ Q[u], we define factor(A) =

∪p∈A factor(p). Let Cd (resp. C0) be the set of the polynomials in factor(p) with

main variable equal to (resp. less than) ud. The open projection operator (oproj)

w.r.t. variable ud maps p to a set of polynomials of Q[u1, . . . , ud−1] defined below:

oproj(p, ud) := C0 ∪
⋃

f,g∈Cd, f 6=g factor(res(f, g, ud))

∪ ⋃

f∈Cd
factor(init(f, ud) · discrim(f, ud)).

Then, we define: oproj(A, ud) := oproj(Πp∈A p, ud).

Augmentation. Let A ⊂ Q[u] and x ∈ {u1, . . . , ud}. Denote by der(A, x) the

derivative closure of A w.r.t. x, that is, der(A, x) := ∪p∈A {der(i)(p, x) | 0 ≤ i <

deg(p, x)}. The open augmented projected factors of A is denoted by oaf(A) and

defined as follows. Let k be the smallest positive integer such that A ⊂ Q[u1, . . . , uk]

holds. Denote by C the set factor(der(A, uk)); we have
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� if k = 1, then oaf(A) := C;

� if k > 1, then oaf(A) := C ∪ oaf(oproj(C, uk)).

Proposition 8.3. Let A ⊂ Q[u] be finite and let σ be an arbitrary map from oaf(A)

to the set of signs {−1,+1}. We define:

Sd :=
⋂

p∈oaf(A)
{u ∈ Rd | p(u) σ(p) > 0}.

Then the set Sd is either empty or a connected open set in Rd.

Proof. By induction on d. When d = 1, the conclusion follows from Thom’s

Lemma [9]. Assume d > 1. If d is not the smallest positive integer k such that

A ⊂ Q[u1, . . . , uk] holds, then Sd writes Sd−1 × R and the conclusion follows by

induction. Otherwise, write oaf(A) as C ∪ E, where C = factor(der(A, ud)) and

E = oaf(oproj(C, ud)). We have: E ⊂ Q[u1, . . . , ud−1]. Let M = ∩p∈E {u ∈ Rd−1 |
p(u)σ(p) > 0}. If M is empty then so is Sd and the conclusion is clear. From now

on assume M not empty. Then, by induction hypothesis, M is a connected open set

in Rd−1. By the definition of the operator oproj and Lemma 8.2, the product of the

polynomials in C is delineable over M w.r.t. ud. Moreover, C is derivative closed

(may be empty) w.r.t. ud. Therefore ∩p∈oaf(A) {u ∈ Rd | p(u) σ(p) > 0} ⊂ M × R is

either empty or a connected open set by Thom’s Lemma.

Theorem 8.5. Let R := [B 6=, T, P>] be a pre-regular semi-algebraic system of Q[u,y].

The polynomial set oaf(B) is a fingerprint polynomial set of R.

Proof. Recall that the border polynomial bp of [T, P ] divides the product of the

polynomials in B. We have factor(B) ⊆ oaf(B). So oaf(B) clearly satisfies (i) in

Definition 8.3. Let us prove (ii). Let dp be the product of the polynomials in oaf(B).

Let α, β ∈ Rd such that both dp(α) 6= 0, dp(β) 6= 0 hold and the signs of p(α) and

p(β) are equal for all p ∈ oaf(B). Then, by Proposition 8.3, α and β belong to the

same connected component of dp(u) 6= 0, and thus to the same connected component

of B(u) 6= 0. Therefore the number of real solutions of R(α) and that of R(β) are

the same by Theorem 8.1.

From now on, let us assume that the set B in the pre-regular semi-algebraic system

R = [B 6=, T, P>] is an FPS of R. We solve the quantifier elimination problem (8.1) in

three steps: (s1) compute at least one sample point in each connected component of

the semi-algebraic set defined by B(u) 6= 0; (s2) for each sample point α such that the
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specialized system R(α) possesses real solutions, compute the sign of b(α) for each

b ∈ B; (s3) generate the corresponding quantifier-free formulas.

In practice, when the set B is not an FPS, one adds some polynomials from

oaf(B), using a heuristic procedure (for instance one by one) until Property (ii) of

the definition of an FPS is satisfied. This strategy is implemented in Algorithm 28 of

Section 8.6.

8.5 Complexity results for computing a fingerprint

polynomial set: a practical perspective

Let R := [B 6=, T, P>] be a pre-regular semi-algebraic system of Q[u,y], where u stands

for the free variables of T and y = y1 < · · · < ym are the main variables of T . We

write P = {p1, . . . , pℓ} and T = {t1, . . . , tm}. In this section, we always assume that

T is in generic position, that is, the main degree of ti is 1 for 1 < i ≤ m. Under such

an assumption, we show that a fingerprint polynomial set of R can be computed in

singly exponential time w.r.t. the number of variables. Note that the construction in

Section 8.4 is doubly exponential [20]. Since a regular chain is often in generic position

and detecting this shape is easy, this new construction leads to a practical and more

effective way for computing fingerprint polynomial set, which has been integrated in

our tools.

To achieve this, we present an alternative way (w.r.t. the one presented in last

section) to construct a fingerprint polynomial set of R. This new method relies on a

tool called generalized discriminant sequence (GDS) for counting the number of real

solutions of a univariate polynomial with parametric coefficients, which we review as

follows.

Definition 8.4 ([138, 140]). Let p, q ∈ R[x]. We denote by p′ the derivative of p

w.r.t. x. Let r := rem(p′q, p, x) be the Euclidean remainder of p′q divided by p. Let

s := deg(p, x) and write p = a0x
s + · · · + as, r = c0x

s−1 + · · · + cs−1. The following

2s× 2s matrix

(mij) =












a0 a1 a2 · · · as

0 c0 c1 · · · cs−1

. . . . . . . . .

a0 a1 a2 · · · as

0 c0 c1 · · · cs−1
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is called the generalized discrimination matrix of p w.r.t. q. For i = 1 · · · s, we

denote by gdsi(p, q, x), the 2 i-th leading principal minor of the above matrix and

call gds1(p, q, x), . . . , gdss(p, q, x) the generalized discriminant sequence of p w.r.t. q,

denoted by gds(p, q, x). We write {gds(p, q, x)} the set consisting of the elements of

gds(p, q, x).

Notation 8.1. Let p and q be two polynomials in R[x]. Denote by TaQ(p, q) the

number #{x | p = 0, q > 0}−#{x | p = 0, q < 0}, the Tarski query [9] of p w.r.t. q.

Remark 8.1. The elements in the generalized discriminant sequence of p w.r.t. q

are in one-to-one correspondence (up to a power of a0 and a power of −1) with

the signed subresultant coefficients [9] of p and r. One can compute TaQ(p, q)

merely from the signs of the elements in gds(p, q, x), see Theorem 4.32 in [9] or

Theorem 3.2.1 in [140]: given two pairs of polynomials (pi, qi) (i = 1, 2) with

deg(p1) = deg(p2) = s, if sign(gdsj(p1, q1, x)) = sign(gdsj(p2, q2, x)) holds for all

j = 1, . . . , s, then TaQ(p1, q1) = TaQ(p2, q2) holds.

We prove Lemmas 8.4 and 8.5 for completness; similar results appear in [138, 140].

Let k > 0 be an integer. Let p and q1, q2, . . . , qk be polynomials from R[x] with

gcd(p, qj) = 1 for each j = 1, . . . , k. Lemma 8.4 shows that in this case, the numbers

#{x | p = 0, q1σ10, . . . , qkσk0} with σ1, . . . , σk ∈ {>,<} can be computed from the

numbers in {TaQ(p,
∏k

j=1 q
ej
j ) | e1, . . . , ek ∈ {0, 1}} by solving a linear system with

fixed coefficients.

Denote M :=
(
1
1

1
−1

)
and let M1 := M. For i = 1, . . . , k − 1, denote by Mi+1 the

2i × 2i matrix obtained by replacing each element e of M with eMi. It is easy to

deduce that det(Mi+1) = 22
i

det(Mi)
2 from its block structure, which implies that all

Mi (i = 1, . . . , k) are nonsingular.

Denote by S1 the list of constraints [q1 > 0, q1 < 0], by P1 the polynomial list

[1, q1]. For i = 1, . . . , k − 1, denote by Si+1 the list of constraints

[Si[1] ∧ qi+1 > 0, . . . ,Si[2
i] ∧ qi+1 > 0,Si[1] ∧ qi+1 < 0, . . . ,Si[2

i] ∧ qi+1 < 0],

by Pi+1 the polynomial list [Pi[1], . . . ,Pi[2
i],Pi[1] · qi+1, . . . ,Pi[2

i] · qi+1]. It is easy

to deduce that Si and Pi are of length 2i.

Let Tk be [TaQ(p,Pk[1]),TaQ(p,Pk[2]), . . . ,TaQ(p,Pk[2
k])]. Let Nk be [#{x |

p = 0, Sk[1]},#{x | p = 0, Sk[2]}, . . . ,#{x | p = 0, Sk[2
k]}]. We observe that each of

Tk and Nk is a list of 2k non-negative integers.



143

Lemma 8.4 ([140]). Using the above notations Mk, Tk, Nk and viewing Tk and Nk

as vectors, we have Nk = M−1
k ×Tk.

Proof. Consider the system of linear equations Mk × X = Tk with X as unknown

vector, one can verify that X = Nk is the solution. Here, we only verify the base

case, namely k = 1. Since gcd(p, q1) = 1, we have

#{x | p = 0, q1 > 0}+#{x | p = 0, q1 < 0} = #{x | p = 0} = TaQ(p, 1).

Moreover #{x | p = 0, q1 > 0} − #{x | p = 0, q1 < 0} equals TaQ(p, q1) by

definition.

Let p and q be two univariate polynomials of x with coefficients in Q[u]. The

signed pseudo-remainder (see [9]) of p divided by q, denoted by sPrem(p, q, x), is the

polynomial r satisfying lc(q)ep = aq + r, where deg(r, x) < deg(q, x) and e is the

smallest non-negative even integer greater than or equal to deg(p, x)− deg(q, x) + 1.

In Definition 8.4, we reviewed the concepts of “generalized discriminant matrix (se-

quence)” of two univariate polynomials with real coefficients. We extend the definition

to cover the case of two univariate polynomials p and q with coefficients in Q[u] by

replacing r := rem(p′q, p, x) with r := sPrem(p′q, p, x).

Lemma 8.5. Let p and q be two polynomials of x with coefficients in Q[u]. Let

p = a0x
s+· · ·+as, where a0 6= 0. Suppose α1 and α2 are two points of Rd such that both

a0(α1) 6= 0 and a0(α2) 6= 0 hold. If sign(gdsj(p, q, x)(α1)) = sign(gdsj(p, q, x)(α2))

hold for all j = 1, . . . , s, then we have TaQ(p(α1), q(α1)) = TaQ(p(α2), q(α2)) holds.

Proof. Let r := sPrem(p′q, p, x). Then there exists a non-negative even integer e and

a polynomial b such that ae0p
′q = bp + r holds. Therefore for any α ∈ Rd such that

a0(α) 6= 0, we have

p(α)′q(α) =
b

ae0
(α)p(α) +

r

ae0
(α).

For i = 1, 2, denote ri := rem(p(αi), q(αi)). By the uniqueness of Euclidean reminder,

we deduce that ri =
r
ae0
(αi) for i = 1, 2. By the specialization properties of computing

the determinant of a polynomial matrix and the fact that e is an even number, we

deduce that sign(gdsj(p, q, x)(αi)) = sign(gdsj(p(αi), q(αi), x)) holds for i = 1, 2 and

j = 1, . . . , s. Then the conclusion follows from (ii) of Remark 8.1.

Lemma 8.6. Let p and q1, q2, . . . , qk be polynomials of x with coefficients in Q[u] and

deg(p, x) = s. Assume that p is squarefree and that p has no common factors with each
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of q1, q2, . . . , qk. Let D be the polynomial set consisting of the non-zero polynomials

in
⋃

e1,...,ek∈{0,1}
{gds(p,∏k

j=1 q
ej
j , x)}. Suppose α1, α2 are two values of u such that

sign(f(α1)) = sign(f(α2)) 6= 0 for each f ∈ D. Then the numbers #{x|p(α1) =

0, q1(α1) > 0, . . . , qk(α1) > 0} and #{x|p(α2) = 0, q1(α2) > 0, . . . , qk(α2) > 0} are

equal.

Proof. Let q be any polynomial in {1, q1, q2, . . . , qk}. Then there exists a non-negative

even integer e and polynomial b such that lc(p)ep′q = bp + r, where deg(r, x) <

deg(p, x). Since p is squarefree and p has no common factors with q, we deduce that

gcd(p, r) = gcd(p′q, p) = 1 in Q(u)[x], which implies that gdss(p, q) 6= 0 and therefore

belongs to D.

From sign(f(α1)) = sign(f(α2)) 6= 0 holds for each f ∈ D, we deduce

1. According to Definition 8.4, lc(p) is a factor of each polynomial in D. Therefore,

lc(p)(αi) 6= 0 holds.

2. For each q ∈ {q1, . . . , qk}, we have gdss(p, q, x)(αi) 6= 0 holds, which implies that

gcd(p(αi), sPrem(p′q, p, x)(αi)) = 1 by (1) and the specialization properties of

computing the determinant of a polynomial matrix. So gcd(p(αi), p
′(αi)q(αi)) =

1, which implies that gcd(p(αi), q(αi)) = 1.

3. For all e1, . . . , ek ∈ {0, 1}, TaQ(p(α1),
∏k

j=1 q
ej
j (α1)) = TaQ(p(α2),

∏k
j=1 q

ej
j (α2))

by Lemma 8.5.

For i = 1, 2, let Nαi
, Tαi

be the Nk and Tk constructed as in Lemma 8.4 for the

polynomials p(αi), q1(αi), · · · , qk(αi). Then we have Tα1 = Tα2 by the above item

(3). Therefore, we have Nα1 = Nα2 by Lemma 8.4. Then the conclusion follows,

since the two numbers are the first element of Nα1 and Nα2 respectively.

We return to the pre-regular semi-algebraic system [B 6=, T, P>] introduced at the

beginning of this section. Recall that m and ℓ are the numbers of polynomials in

T and P respectively. Let Pm+1 := P and Pi := {sPrem(p, ti, yi) | p ∈ Pi+1} for

i = m, . . . , 2. Note Pi (i = m + 1, . . . , 2) has at most ℓ elements and suppose that

P2 = {b1, . . . , bk} (k ≤ ℓ). Let

P1 :=
⋃

(α1,α2,...,αk)∈{0,1}k

{gds(t1,
k∏

i=1

bαi

i , y1)} \ {0}.
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Proposition 8.4. Assume that T is in generic position and let D := B ∪P1. Then

the set D is a fingerprint polynomial set of the pre-regular semi-algebraic system

[B 6=, T, P>].

Proof. First since the main degree of ti, 2 ≤ i ≤ m, is 1, by the relation between

pseudo remainder and resultant, we conclude that P2 only have variables u and y1.

Let dp be the product of polynomials in D. By the definition of D, we know that

the border polynomial of [T, P ] divides dp. By Proposition 8.1, for any α ∈ Rd such

that dp(α) 6= 0, the regular system [T, P ] specializes well at α. On the other hand,

by the definition of signed pseudo remainder, there exists even integers δi, 1 ≤ i ≤ ℓ,

and polynomials qij, 1 ≤ i ≤ ℓ, 2 ≤ j ≤ m, such that hδiT≥y2
pi =

∑m
j=2 qijtj + bi (∗).

Hence, for any β = (β1, . . . , βm) such that T (α, β) = 0 and P (α, β) > 0, we

have t1(α, β1) = 0 and b1(α, β1) > 0. Similarly, for all β1 such that t1(α, β1) = 0

and b1(α, β1) > 0, there exists a unique β = (β1, . . . , βm) with T (α, β) = 0 and

P (α, β) > 0.

Therefore, for any α ∈ Rd such that dp(α) 6= 0, there is a 1-to-1 correspondence

between the real solutions of t1(α) = 0,P2(α) > 0 and those of [T (α), P (α)>]. On the

other hand, since for any β such that T (α, β) = 0, we have p(α, β) 6= 0 for any p ∈ P ,
by relation (∗) we deduce that t1(α) has no common factors with any p(α), where

p ∈ P . The polynomial t1(α) is clearly squarefree since [T, P ] specializes well at α.

Thus it follows from Lemma 8.6 that the number of real solutions of t1 = 0,P2 > 0

is determined by signs of polynomials in D. Therefore, the number of real solutions

of [B 6=, T, P>] is also determined by signs of polynomials in D. Finally, D is an FPS

of [B 6=, T, P>].

Theorem 8.6. Let δ and ~ be respectively the maximum total degree and the maxi-

mum coefficient size among all polynomials in P or T . Recall that ℓ and m denote the

number of polynomials in P and T respectively. Then the following three properties

hold:

1. P1 has at most δ2ℓ polynomials,

2. the total degree and, the coefficient bit-size of any polynomials in P1 are upper

bounded by 2ℓ(δ + 1)m+3 and ℓ3δO(m2)n~ respectively;

3. each polynomial in P1 can be computed within 2O(n)ℓO(n)δO(n)O(m2)~2 bit-

operations.
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Proof. Denote the total degree and coefficient bit-size of any polynomials in Pi+1

by ∆i and H̄i respectively, for i = 2, . . . ,m. Combining the estimates for pseudo-

reminder and polynomial product recalled in Section 8.3, we have

∆i ≤ δ(∆i+1 + 1) and H̄i ≤ (∆i+1 + 1)
(
H̄i+1 + n log(∆i+1)

)
,

where ∆m+1 = δ, H̄m+1 = ~. Therefore, for i = 0, . . . ,m− 1, we have

∆m−i+1 ≤ (δ + 1)i+1 and Hm−i+1 < (δ + 1)
i2−i
2 (~+ i2n log(δ + 1)) .

Thus, the total degree and coefficient size of polynomials in P2 are upper bounded by

(δ+1)m and (δ+1)
m2

2 (~+ nm log(δ + 1)). Applying the estimates of polynomial prod-

uct, the total degrees and coefficient sizes of a product of k (k ≤ ℓ) polynomials from

P2 are bounded over respectively by ℓ(δ + 1)m and ℓ2(δ + 1)
m2

2 (~+mn log(δ + 1)) .

Since P2 has k (k ≤ ℓ) polynomials and deg(t1) < δ, the set P1 has at most δ2ℓ

polynomials.

Applying the estimates for the determinant of a matrix of multivariate polyno-

mials in Section 8.3, each polynomial in P1 has total degree and coefficient size

upper bound 2ℓ(δ + 1)m+3 and ℓ3δO(m2)n~ respectively, and can be computed in

2O(n)ℓO(n)δO(n)O(m2)~2 bit operations starting from P2.

Note that a pseudo-remainder can be computed as a determinant of a matrix

of multivariate polynomials. So the computation of of each polynomial in Pi (i =

m, . . . , 2) is dominated by the above estimates on computing a polynomial of P1 from

P2. Therefore, each polynomial in P1 is computed within 2O(n)ℓO(n)δO(n)O(m2)~2 bit

operations.

8.6 Algorithms

In this section, we present algorithms for LazyRealTriangularize and RealTriangularize

that we have implemented. As a byproduct of RealTriangularize, we obtain an algo-

rithm called SamplePoints which computes at least one sample point per connected

component of a semi-algebraic set.

Basic subroutines. The algorithms stated in this section rely on a few subroutines

that we specify hereafter. For a zero-dimensional squarefree regular system [T, P ], the

function call RealRootIsolate(T, P ) [135] returns all the isolated real zeros of [T, P>].

For A ⊂ Q[u1, . . . , ud] and a point s of Qd such that p(s) 6= 0 for all p ∈ A, the
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Algorithm 27: GeneratePreRegularSas(S)

Input: a semi-algebraic system S = [F,N≥, P>, H 6=]
Output: a set of pre-regular semi-algebraic systems [Bi 6=, Ti, Pi>], i = 1 . . . e,
such that
ZR(S) = ∪e

i=1ZR(Bi 6=, Ti, Pi>) ∪e
i=1 ZR(sat(Ti) ∪ {Πb∈Bi

b}, N≥, P>, H 6=).
T := Triangularize(F,mode = Kalkbrener); T′ := ∅1

for p ∈ P ∪H do2

for T ∈ T do3

for C ∈ Regularize(p, T ) do4

if p /∈ sat(C) then T′ := T′ ∪ {C}5

T := T′; T′ := ∅6

T := {[T, ∅] | T ∈ T}; T′ := ∅7

for p ∈ N do8

for [T,N ′] ∈ T do9

for C ∈ Regularize(p, T ) do10

if p ∈ sat(C) then11

T′ := T′ ∪ {[C,N ′]}12

else13

T′ := T′ ∪ {[C,N ′ ∪ {p}]}14

T := T′; T′ := ∅15

T := {[T,N ′, P,H] | [T,N ′] ∈ T}16

for [T,N ′, P,H] ∈ T do17

B := BorderPolynomialSet(T,N ′ ∪ P ∪H)18

output [B, T,N ′ ∪ P ]19

function call GenerateFormula(A, s) computes a formula ∧p∈A (p σp,s > 0), where σp,s

is defined as +1 if p(s) > 0 and −1 otherwise. For a set of formulas G, the function

call Disjunction(G) computes a logic formula Φ equivalent to the disjunction of the

formulas in G.

Proof of Algorithm 27. Its termination is obvious. We prove its correctness. By the

specification of Triangularize and Regularize, at line 16, we have

Z(F, P6= ∪H 6=) = ∪[T,N ′,P,H]∈T Z(sat(T ), P6= ∪H 6=).

Write ∪[T,N ′,P,H]∈T as ∪T . Then we deduce that

ZR(F,N≥, P>, H 6=) = ∪T ZR(sat(T ), N≥, P>, H 6=).
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Algorithm 28: GenerateRegularSas(B, T, P )

Input: S = [B 6=, T, P>], a pre-regular semi-algebraic system of Q[u,y], where
u = u1, . . . , ud and y = y1, . . . , yn−d.

Output: A pair (D,R) satisfying:
(1) D ⊂ Q[u] such that factor(B) ⊆ D;
(2) R is a finite set of regular semi-algebraic systems, such that we have:
∪R∈RZR(R) = ZR(D 6=, T, P>).

D := factor(B \Q)1

if d = 0 then2

if RealRootIsolate(T, P ) = [ ] then return (D, ∅); else return3

(D, {[true, T, P ]})
while true do4

S := SampleOutHypersurface(D, d); G0 := ∅; G1 := ∅5

for s ∈ S do6

if RealRootIsolate(T (s), P (s)) = [ ] then7

G0 := G0 ∪ {GenerateFormula(D, s)}8

else9

G1 := G1 ∪ {GenerateFormula(D, s)}10

if G0 ∩G1 = ∅ then11

Q := Disjunction(G1)12

if Q = false then return (D, ∅); else return (D, {[Q, T, P ]})13

else14

select a subset D′ ⊆ oaf(B) \D by some heuristic method15

D := D ∪D′
16

Between lines 17 and 19, for each [T,N ′, P,H], we generate a pre-regular semi-

algebraic system [B, T,N ′
> ∪ P>]. By Corollary 8.1, we have

ZR(sat(T ), N≥, P>, H 6=) = ZR(sat(T ), N
′
≥, P>, H 6=)

= ZR(B 6=, T,N
′
> ∪ P>) ∪ ZR (sat(T ) ∪ {Πb∈Bb}, N≥, P>, H 6=),

which implies that

ZR(S) = ∪T (ZR(B 6=, T,N
′
> ∪ P>) ∪ ZR(sat(T ) ∪ {Πb∈Bb}, N≥, P>, H 6=))

holds. Therefore, Algorithm 27 satisfies its specification.

Proof of Algorithms 28 and 29. By the definition of oproj, Algorithm 29 terminates

and satisfies its specification. By Theorem 8.5, oaf(B) is an FPS. Thus, by the

definition of an FPS, Algorithm 28 terminates and satisfies its specification.
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Algorithm 29: SampleOutHypersurface(A, k)

Input: A ⊂ Q[x1, . . . , xk] is a finite set of non-zero polynomials
Output: A finite subset of Qk contained in (Πp∈A p) 6= 0 and having a

non-empty intersection with each connected component of
(Πp∈A p) 6= 0.

if k = 1 then1

return one rational point from each connected component of Πp∈A p 6= 02

else3

Ak := {p ∈ A | mvar(p) = xk}; A′ := oproj(A, xk)4

for s ∈ SampleOutHypersurface(A′, k − 1) do5

Collect in a set S one rational point from each connected component of6

Πp∈Ak
p(s, xk) 6= 0;

for α ∈ S do output (s, α)7

Algorithm 30: LazyRealTriangularize(S)

Input: a semi-algebraic system S = [F,N≥, P>, H 6=]
Output: a lazy triangular decomposition of S
T := GeneratePreRegularSas(F,N, P,H)1

for [B, T, P ′] ∈ T do2

(D,R) = GenerateRegularSas(B, T, P ′)3

if R 6= ∅ then output R4

Algorithm 31: RealTriangularize(S)

Input: a semi-algebraic system S = [F,N≥, P>, H 6=]
Output: a triangular decomposition of S
T := GeneratePreRegularSas(F,N, P,H)1

for [B, T, P ′] ∈ T do2

(D,R) = GenerateRegularSas(B, T, P ′)3

if R 6= ∅ then output R4

for p ∈ D do5

output RealTriangularize(F ∪ {p}, N, P,H)6
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Proof of Algorithm 30. Its termination is obvious; we prove it is correct. Let Ri,

i = 1 · · · t be the output. By the specification of each sub-algorithm, each Ri is a

regular semi-algebraic system and we have ∪t
i=1ZR(Ri) ⊆ ZR(S). Next we show that

there exists an ideal I ⊆ Q[x], whose dimension is less than dim(Z(F, P6= ∪ H 6=))

and such that ZR(S) \ ∪t
i=1ZR(Ri) ⊆ ZR(I) holds. At line 1, the specification of

Algorithm 27 imply:

ZR(S) = ∪TZR(B 6=, T, P
′
>) ∪ ∪TZR(sat(T ) ∪ {Πb∈B b}, N≥, P>, H 6=).

At line 3, by the specification of Algorithm 28, for each B, we compute a set D such

that factor(B) ⊆ D and

∪TZR(D 6=, T, P
′
>) = ∪t

i=1ZR(Ri) (8.2)

both hold. Following the strategy used in Algorithm 27, based on Corollary 8.1, we

have

ZR(S) = ∪TZR(D 6=, T, P
′
>) ∪ ∪TZR(sat(T ) ∪ {Πp∈D p}, N≥, P>, H 6=). (8.3)

Combining the relations (8.2) and (8.3) together, we obtain

ZR(S) = ∪TZR(Ri) ∪ ∪TZR(sat(T ) ∪ {Πp∈D p}, N≥, P>, H 6=).

Therefore, the following relations hold

ZR(S) \ ∪t
i=1ZR(Ri) ⊆ ∪TZR(sat(T ) ∪ {Πp∈D p}, N≥, P>, H 6=)

⊆ ZR (∩T (sat(T ) ∪ {Πp∈D p})) .

Define I = ∩T (sat(T ) ∪ {Πp∈D p}) . Since each p ∈ D is regular modulo sat(T ), we

have dim(I) < dim (∩T sat(T )) ≤ dim(Z(F, P6=∪H 6=)). So all Ri form a lazy triangular

decomposition of S. �

Proof of Algorithm 31. For its termination, it is sufficient to prove that there are

only finitely many recursive calls to RealTriangularize. Indeed, if [F,N, P,H] is the

input of a call to RealTriangularize then each of the immediate recursive calls takes

[F ∪ {p}, N, P,H] as input, where p belongs to the set D of some pre-regular semi-

algebraic system [D 6=, T, P>]. Since p is regular (and non-zero) modulo sat(T ) we

have: 〈F 〉 ( 〈F ∪ {p}〉. Therefore, the algorithm terminates by the ascending chain
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condition on ideals of Q[x]. The correctness of Algorithm 31 follows from that of its

sub-algorithms. �

Implementation remark for LazyRealTriangularize. Our software implementation

(within the RegularChains library in Maple) of Algorithm 30 returns the necessary

information for completing a full triangular decomposition of the input semi-algebraic

system S. This is achieved simply by returning [F ∪ {p}, N, P,H] for each p ∈ D,

for each D.

For an input semi-algebraic system S Algorithm 32 computes a sample point set

of S, see Definition 8.5, thus producing at least one point per connected component

of ZR(S).

Definition 8.5. Let S be a semi-algebraic set of Rn. A finite subset A of Rn is called

a sample point set of S if the following conditions hold:

(i) every point of A belongs to some connected component of S,

(2) every connected component of S has a nonempty intersection with A.

Algorithm 32: SamplePoints(S)

Input: a semi-algebraic system S = [F,N≥, P>, H 6=]
Output: A sample point set of S.
T := GeneratePreRegularSas(F,N, P,H)1

for [B, T, P ′] ∈ T do2

for s ∈ SampleOutHypersurface(B) do3

for α ∈ RealRootIsolate(T (s), P ′(s)) do4

output (s, α)5

for p ∈ B do6

output SamplePoints(F ∪ {p}, N, P,H)7

Lemma 8.7. Let S, S1 and S2 be nonempty semi-algebraic sets of Rn. Assume that

S = S1 ∪ S2. Let A1 (resp. A2) be a sample point set of S1 (resp. S2). Then A1 ∪A2

is a sample point set of S.

Proof. First, any point of A1 ∪ A2 obviously belongs to S and therefore belongs to

some connected component of S. Secondly, we want to prove that each connected

component of S contains at least one point of A1∪A2. We prove this by contradiction.

Suppose C is a connected component of S that does not contain any point of A1∪A2

(∗). Let p ∈ C. Then p belongs to some connected component D of S1 or S2. Let

q be a point of A1 ∪ A2 such that q belongs to D. Then there exists a path L(p, q)



152

connecting p and q, which is contained in D and hence contained in S. So p and q

belongs to the same connected component of S, which implies that q ∈ C holds. This

is a contradiction to (∗).

Proof of Algorithm 32. The proof of its termination is exactly the same as that of

RealTriangularize. It correctness follows from Lemma 8.7 and Theorem 8.1.

8.7 Experimentation

We have implemented our algorithms on top of the RegularChains library inMaple.

Hereafter, we report on experimental results using well known benchmark examples

from the literature. The test examples are available at www.orcca.on.ca/~cchen/

issac10.txt.

Table 8.1. Table 8.1 summarizes the notations used in Tables 8.2, 8.3 and 9.1. These

tables demonstrate benchmarks running in Maple 15, using an Intel Core 2 Quad

CPU (2.40GHz) with 3.0GB memory. The timings are in seconds and the time-out is

1 hour.

symbol meaning
#e number of equations in the input system
#v number of variables in the input equations
d maximum total degree of an input equation
G Groebner:-Basis (plex order) in Maple

T Triangularize in RegularChains library of Maple

ST Squarefree Triangularize in RegularChains library of Maple

LR LazyRealTriangularize implemented in Maple

Rre The recursive implementation of RealTriangularize in Maple

S SamplePoints implemented in Maple

Q Qepcad b 1.61
> 1h computation does not complete within 1 hour
FAIL Qepcad b failed due to prime list exhausted

Table 8.1: Notations

Table 8.2. The systems in this group involve equations only. We list the running

times for computing a triangular decomposition of the input algebraic variety as well

as a lazy and a full triangular decomposition of the corresponding real variety. We

also provide the running times for computing lexicographical Gröbner bases with the

Maple function Groebner:-Basis. The data illustrate the performance of LazyRe-

alTriangularize, RealTriangularize and SamplePoints.
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system #v/#e/d G T ST LR Rre S
Hairer-2-BGK 13/11/4 24.64 2.05 2.08 2.96 4.20 5.55
Collins-jsc02 5/4/3 > 1h 0.52 0.52 1.81 560.92 10.82
Leykin-1 8/6/4 101.44 4.00 4.02 4.39 5.46 5.72

8-3-config-Li 12/7/2 110.24 5.96 6.01 7.38 417.90 446.29
Lichtblau 3/2/11 126.35 0.31 0.32 3.55 > 1h > 1h
Cinquin-3-3 4/3/4 64.84 0.70 0.76 2.34 > 1h 57.23
Cinquin-3-4 4/3/5 > 1h 3.47 3.43 15.19 > 1h > 1h

DonatiTraverso-rev 4/3/8 159.95 1.89 2.23 3.34 3.02 2.98
Cheaters-homotopy-1 7/3/7 2498.78 0.65 451.33 > 1h > 1h > 1h

hereman-8.8 8/6/6 > 1h 12.92 22.24 > 1h > 1h 110.34
L 12/4/3 > 1h 0.79 0.80 1.12 14.94 18.16

dgp6 17/19/2 27.38 48.62 49.62 51.75 62.99 70.74
dgp29 5/4/15 85.70 0.20 0.20 0.37 0.38 0.33

Table 8.2: Timings for varieties

Table 8.3. The systems in this table are from quantifier elimination problems. Most of

them involve both equations and inequalities. We provide the timings for computing

(1) a lazy triangular decomposition, (2) a full triangular decomposition and (3) sample

points of the corresponding semi-algebraic systems as well as the timings for solving

the quantifier elimination problem via Qepcad b [19] (in non-interactive mode). Our

tools complete the computations for most of the systems. However, one should note

that the output of our tools is not a solution to the posed quantifier elimination

probem. We note also that our tools are more effective for systems counting more

equations than inequalities.

We conclude this section by reporting on an experimental comparison of

SamplePoints versus related software tools. Among the software that we

can access, we could find only one software function with the same specifica-

tions as SamplePoints, that is, a function computing a sample point set, see

Definition 8.5, for an arbitrary semi-algebraic system. This function is the

SemialgebraicComponentInstances command in Mathematica. We have tested the

function SemialgebraicComponentInstances in Mathematica 8 for the systems (26 in

total) listed in Table 8.2 and Table 8.3. We have found that this command succeeded

for 9 of them, within the same resource limit and the same machine as described

above, while SamplePoints could solve 19 of those systems. Among the 9 systems that

SemialgebraicComponentInstances could solve, SamplePoints failed on 3 of them.
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system #v/#e/d T ST LR Rre S Q
BM05-1 4/2/3 0.28 0.28 0.65 1.15 1.19 8.16
BM05-2 4/2/4 0.29 0.29 3.50 > 1h > 1h FAIL

Solotareff-4b 5/4/3 0.91 0.93 1.98 881.15 14.42 > 1h
Solotareff-4a 5/4/3 0.71 0.74 1.63 4.00 3.12 FAIL

putnam 6/4/2 0.27 0.30 0.76 1.65 1.70 > 1h
MPV89 6/3/4 0.23 0.29 0.89 2.75 2.42 > 1h
IBVP 8/5/2 0.58 0.62 1.26 14.23 13.89 > 1h

Lafferriere37 3/3/4 0.33 0.38 0.69 0.72 0.62 2.3
Xia 6/3/4 0.46 0.46 2.20 209.65 168.49 > 1h
SEIT 11/4/3 0.70 0.71 32.67 > 1h 1355.81 > 1h

p3p-isosceles 7/3/3 0.35 0.35 > 1h > 1h > 1h > 1h
p3p 8/3/3 0.37 0.40 > 1h > 1h > 1h FAIL

Ellipse 6/1/3 0.18 0.19 0.96 > 1h > 1h > 1h

Table 8.3: Timings for semi-algebraic systems

8.8 Applications in program verification

We consider and example arising in the study of program verifications. We apply the

RegularChains library implementation of the algorithms of Section 8.6.

Recent advances in program verification indicate that various problems, for in-

stance, termination analysis of linear programs [121], reachability computation of lin-

ear hybrid systems [61], and invariant generation [95, 110] can be reduced to solving

semi-algebraic systems. Tools for real algebraic computation such as REDLOG [52],

QEPCAD [45, 77, 19], and DISCOVERER [140] have therefore been applied to pro-

gram verification [95, 61].

We consider here Example 3.5 from [61]. This problem reduces to determine the

set

{(y1, y2) ∈ R2 | (∃a ∈ R)(∃z ∈ R) (0 ≤ a) ∧ (z ≥ 1) ∧ (h1 = 0) ∧ (h2 = 0)}

where h1 = 3 y1 − 2 a(−z4 + z) and h2 = 2 y2z
2 − a(z4 − 1). In order words, one

wishes to compute the projection of the semi-algebraic set defined by (0 ≤ a) ∧ (z ≥
1) ∧ (h1 = 0) ∧ (h2 = 0) onto the (y1, y2)-plane. This question can be answered

by running the RealTriangularize command on the semi-algebraic set for the variable

ordering a > z > y1 > y2. We obtain the five following regular semi-algebraic systems
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R1 to R5 (unspecified RP
i and RQ

i are empty):

RT
1 =

{

(z4 − 1) a− 2 z2y2

4 y2 z
5 + 4 y2 z

4 + (3 y1 + 4 y2 ) z
3 + 3 y1 z

2 + 3 y1 z + 3 y1

RQ
1 =

{

(y1 + y2 < 0) ∧ (y1 < 0) ∧ (0 < y2)

3y51 − 6y2y
4
1 − 63y22y

3
1 + 192y32y

2
1 + 112y42y1 + 16y52 6= 0

RP
1 =

{

z > 1

RT
2 =







a

y1

y2

RP
2 =

{

z > 1

RT
3 =







z − 1

y1

y2

RP
3 =

{

0 < a

RT
4 =







a

z − 1

y1

y2

RT
5 =







(z4 − 1) a− 2 z2y2

tz

3 y1
5 − 6 y2 y1

4 − 63 y2
2y1

3 + 192 y2
3y1

2 + 112 y2
4y1 + 16 y2

5

RQ
5 =

{

0 < y2 RP
5 =

{

z > 1

where

tz = (369252163868 y1
4 − 2508200686544 y2 y1

3 + 4300300820416 y2
2y1

2 + 2761812320448 y2
3y1

+ 406754520832 y2
4)z4 + (−180672905280 y2

4 − 1228579249664 y2
3y1 − 1922937082240 y2

2y1
2

+ 1092105551100 y2 y1
3 − 157082832940 y1

4)z3 + (−815128066608 y2
4 − 5538434025360 y2

3y1

− 8644620182000 y2
2y1

2 + 4979116186797 y2 y1
3 − 728379335938 y1

4)z2 + (−316725331280 y2
4

− 276096356865 y1
4 + 1914148321163 y2 y1

3 − 3371008535808 y2
2y1

2 − 2153737071904 y2
3y1 )z

− 1030979306368 y2
4 − 10923966861712 y2

2y1
2 + 6315633355800 y2 y1

3 − 7003676730320 y2
3y1

− 923425115541 y1
4.

The projection on the (y1, y2)-plane of ZR(R2) ∪ ZR(R3) ∪ ZR(R4) is clearly

equal to the (y1, y2) = (0, 0) point. Properties (iii) of Definition 8.1 implies that the

projection on the (y1, y2)-plane of ZR(R1) is given by ZR(R
Q
1 ). For R5, we observe

that the polynomial of RT
5 with main variable y1, say ty1 is delineable above 0 < y2

(By Theorem 8.1). Using a sample point we check that ty1 admits a single real root.

It follows that the projection on the (y1, y2)-plane of ZR(R5) is given by:

(0 < y2) ∧ (3 y1
5 − 6 y2 y1

4 − 63 y2
2y1

3 + 192 y2
3y1

2 + 112 y2
4y1 + 16 y2

5 = 0).

To conclude, we have completed the projection of the semi-algebraic set onto the

(y1, y2)-plane, which can be simplified as (y1 < 0 ∧ y2 > 0 ∧ y1 + y2 < 0) ∨ (y1 =

0 ∧ y2 = 0).
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8.9 Discussion and concluding remarks

Given a semi-algebraic system S the algorithm RealTriangularize (resp. LazyRealTrian-

gularize), as stated in Section 8.6, returns a full (resp. lazy) triangular decomposition

of S. Consider R = [Q, T, P>] an output regular semi-algebraic system and assume

that T admits x1 < · · · < xd as free variables, for d > 0. Let C be a connected compo-

nent of the semi-algebraic set defined by Q in Rd. Theorem 8.1 states that, above C,

the set ZR(R) consists of finitely many disjoint graphs of continuous functions where

each of these graphs is locally homeomorphic to the hypercube (0, 1)d. Therefore R

can be regarded as a parameterization of ZR(R).

This situation is similar to that of triangular decomposition of algebraic sets.

Indeed, consider an input polynomial system F ∈ k[x], for a field k, to which the

algorithm Triangularize is applied. Consider also an output regular chain T with

x1 < · · · < xd as free variables, for d > 0. Then T represents a generic zero for each

irreducible component of V (sat(T )); moreover each of these irreducible components

has dimension d.

The complexity results of Sections 8.3 and 8.5 together with the experimental

results of Section 8.7 suggest that the notions and algorithms presented in this work

are promising tools for manipulating semi-algebraic sets symbolically. In the sequel of

this section, we would like to address the following natural question: would there be

an alternative and competitive algorithm implementing the specifications of LazyRe-

alTriangularize while relying on existing tools from the literature?

One direct approach for computing a lazy triangular decomposition of the semi-

algebraic system S could be the following.

(i) Decompose S into pre-regular semi-algebraic systems, using Algorithm 27.

(ii) For each output pre-regular semi-algebraic system [B 6=, T, P>] compute a CAD

of the complement of the hypersurface defined by B in the parameter space,

where this CAD produces for each cell a sample point s and a Tarski formula Φ

defining that cell.

(iii) For each [B 6=, T, P>] for each (s,Φ) associated with [B 6=, T, P>], if the specialized

system [T (s), P>(s)] has real solutions then output [Φ, T, P>].

In our approach we modify Step (ii) (and Step (iii)) and avoid the computation of a

full CAD by reducing to the following quantifier elimination problem:

∃y(B(u) 6= 0, T (u,y) = 0, P (u,y) > 0).

See Section 8.4 for details. When B is a fingerprint polynomial set, we solve this
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problem by computing (at least) one sample point in each connected component of

the complement of the hypersurface defined by B in the parameter space. Then, the

properties of an FPS yield the Tarski formulas from the polynomials in the FPS. When

B is not a fingerprint polynomial set, we replace B by a superset D of B, which is

an FPS.

A first advantage of our approach is that the concept of an FPS is independent of

the elimination procedure (CAD or other). Actually, we have described two strategies

for FPS construction: one based on open augmented projection (Section 8.4) and one

based on generalized discriminant sequences (Section 8.5). A second advantage is

that when T is in generic position, an FPS of [B 6=, T, P>] can be computed in singly

exponential time w.r.t. the number of variables. It is worth noticing that this case

occurs very frequently in practice. Another important practical observation is the fact

that, often, a fairly small subset of the theoretical FPS (the set oaf(B) in Theorem 8.5

and the set D in Proposition 8.4) is already an FPS. We take advantage of this latter

observation in our implementation.

Regarding the construction and the use of an FPS, we conclude with two remarks.

First, in our implementation and as suggested by Algorithm 28, an FPS is constructed

by an incremental process starting from B. A related procedure appears in [16]

where a CAD augmented projection is computed incrementally so as to produce a

projection-definable CAD. One difference is that, in the FPS construction based on

open augmented projection, the considered cells (in the space of the free variables

of T ) are all open. In the case of the augmented projection construction [16] cells

of lower dimension may need to be considered as well. Secondly, we observe that,

in principle, Algorithm 29 may be replaced by any procedure computing at least

one rational point per connected component of the complement of a hypersurface.

Despite of its doubly exponential running time, we have verified experimentally that

our implementation of Algorithm 29 is competitive with other tools, such as Maple’s

command RootFinding:- WitnessPoints.
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Chapter 9

Set-theoretic Operations on

Semi-algebraic Sets

This chapter presents algorithms for performing set-theoretic operations on semi-

algebraic sets based on the triangular decomposition representation of semi-algebraic

sets. We illustrate the effectiveness of our algorithms by applying them to remov-

ing redundant components appearing in a triangular decomposition of semi-algebraic

systems.

9.1 Introduction

Performing set-theoretic operations on semi-algebraic sets is a fundamental question

with many applications. For two semi-algebraic sets S1 and S2, it includes computing

their union S1 ∪S2, their intersection S1 ∩S2, the differences S1 \S2 and S2 \S1. For

instance, we can apply the verification techniques developed in Chapter 5 for algebraic

system solvers to semi-algebraic system solvers such that those implementing the

algorithms of Chapter 8.

Another application is the removal superfluous components in the computation

of triangular decomposition of semi-algebraic systems. Indeed, it is well known that

decomposition algorithms for polynomial systems, whether they are symbolic [31] or

numeric [115] tend to generate components which are contained in others within the

same decomposition. This phenomenon happens also with the algorithm RealTriangu-

larize for computing triangular decompositions of semi-algebraic systems, presented

in Chapter 8. More precisely, the algorithm RealTriangularize can produce redun-

dant components, that is, regular semi-algebraic systems S for which there exists

another regular semi-algebraic system S ′ in the same decomposition and such that
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ZR(S) ⊆ ZR(S
′) holds. The relation ZR(S) ⊆ ZR(S

′) holds if and only if the set-

theoretic difference ZR(S) \ ZR(S
′) is empty. Thus the inclusion test problem is a

particular case of computing the set-theoretic difference of two semi-algebraic sets.

In Section 9.2, we provide procedures for set-theoretic operations on semi-algebraic

sets represented by triangular decomposition. Those procedures rely on a new algo-

rithm for computing triangular decomposition of semi-algebraic systems in an incre-

mental manner. Presented in Section 9.3 this algorithm is a natural adaptation of

the ideas of Chapter 4 for computing triangular decomposition of algebraic systems

incrementally. Section 9.4 provides experimental results on the removal of redundant

components in triangular decomposition of polynomial systems.

This chapter is based on paper [29], co-authored with James H. Davenport, Marc

Moreno Maza, Bican Xia and Rong Xiao.

9.2 Set theoretic operations

In Chapter 8, we proved that every semi-algebraic set can be represented as the

union of zero sets of finitely many regular semi-algebraic systems. It is natural to ask

how to perform set theoretic operations, such as union, intersection, complement and

difference of semi-algebraic sets, based on such a representation.

Note that each (regular) semi-algebraic system can also be seen as a quantifier

free formula. So one can implement the set operations naively based on the algorithm

RealTriangularize and logic operations. However, an obvious drawback of such an

implementation is that it totally neglects the structure of a regular semi-algebraic

system.

Indeed, if the structure of the computed object can be exploited, it is possible to

obtain more efficient algorithms. One good example of this is the Difference algorithm,

which computes the difference of the zero sets of two regular systems, presented in

Chapter 5. This algorithm exploits the structure of a regular chain and outperforms

the naive implementation by several orders of magnitude.

Apart from the algebraic computations, the idea behind the Difference algorithm

in Chapter 5 is to compute the difference (A1 ∩A2) \ (B1 ∩B2) in the following way:

(A1 ∩ B1) ∩ (A2 \B2)
⋃

(A1 \B1) ∩ A2. (9.1)

Observe that if A1 ∩ B1 = ∅, then the difference is (A1 ∩ A2). Moreover, computing

∩s
i=1Ai \ ∩t

i=1Bi (s, t ≥ 2) can be reduced to the above base case.
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In this section, we present algorithms (Algorithm 33 and 34) which take advantage

of the algorithm Difference (also an algorithm Intersection derived from it) and the

idea presented above for computing the intersection and difference of semi-algebraic

sets represented by regular semi-algebraic systems.

We provide proofs of the termination and correctness of Algorithm 36 and 37.

The termination and correctness of the other algorithms can be easily derived from

them by relation 9.1 and other logic arguments.

Algorithm 33: DifferenceRsas(R,R′)

Input: two regular semi-algebraic systems R = [Q, T, P>] and
R′ = [Q′, T ′, P ′

>]
Output: a set of regular semi-algebraic systems Ri,
i = 1, . . . , e, such that ZR(R) \ ZR(R

′) = ∪e
i=1ZR(Ri).

begin1

Q := Q ∧ P>;2

Q′ := Q′ ∧ P ′
>;3

T := Difference(T, T ′);4

T′ := Intersection(T, T ′);5

if T′ = ∅ then return R;6

for [T ∗, H∗] ∈ T′ do7

Q∗ = Q \ Q′ ∧H∗
6=;8

output RealTriangularize(T ∗,Q∗)9

for [T ∗, H∗] ∈ T do10

Q∗ = Q ∧H∗
6=;11

output RealTriangularize(T ∗,Q∗)12

end13

Algorithm 34: IntersectionRsas(R,R′)

Input: two regular semi-algebraic systems R = [Q, T, P>] and
R′ = [Q′, T ′, P ′

>]
Output: a set of regular semi-algebraic systems Ri,
i = 1, . . . , e, such that ZR(R) ∩ ZR(R

′) = ∪e
i=1ZR(Ri).

Q∗ := Q ∧ P> ∧ Q′ ∧ P ′
>;1

for [T ∗, H∗] ∈ Intersection(T, T ′) do2

output RealTriangularize(T ∗,Q∗ ∧H∗
6=)3

Proposition 9.1. Algorithm 36 terminates and satisfies its specification.
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Algorithm 35: RealTriangularize(T,Q)
Input: T , a regular chain; Q, a quantifier free formula
Output: a set of regular semi-algebraic systems Ri,
i = 1, . . . , e, such that WR(T ) ∩ ZR(Q) = ∪e

i=1ZR(Ri).
for each conjunctive formula F ∧N≥ ∧ P> ∧H 6= do1

output RealTriangularize(T, F,N≥, P>, H 6=);2

Algorithm 36: RealTriangularize(T, F,N≥, P>, H 6=)

Input: a regular chain T and a semi-algebraic system S = [F,N≥, P>, H 6=]
Output: a set of regular semi-algebraic systems Ri,
i = 1 · · · e, such that WR(T ) ∩ ZR(S) = ∪e

i=1ZR(Ri).
T := Triangularize(F, T );1

for C ∈ T do2

output RealTriangularize(C,N≥, P>, H 6= ∪ init(T ) 6=);3

Algorithm 37: RealTriangularize(T,N≥, P>, H 6=)

Input: a regular chain T and a semi-algebraic system S = [∅, N≥, P>, H 6=]
Output: a set of regular semi-algebraic systems Ri,
i = 1, . . . , e, such that WR(T ) ∩ ZR(S) = ∪e

i=1ZR(Ri).
H ′ := init(T ) ∪H;1

T := {[T, ∅]}; T′ := ∅;2

for p ∈ N do3

for [T ′, N ′] ∈ T do4

T′ := T′ ∪ {[C,N ′] | C ∈ Intersect(p, T ′)};5

T′ := T′ ∪ {[T ′, N ′ ∪ {p}]}6

T := T′; T′ := ∅;7

T := {[T ′, N ′ ∪ P,H ′] | [T ′, N ′] ∈ T};8

while T 6= ∅ do9

let [T ′, P ′, H ′] ∈ T; T := T \ {[T ′, P ′, H ′]};10

for C ∈ RegularOnly(T ′, P ′ ∪H ′) do11

BP := BorderPolynomialSet(C,P ′ ∪H ′);12

(DP,R) = GenerateRegularSas(BP,C, P ′);13

if R 6= ∅ then output R;14

for f ∈ DP \ (P ′ ∪H ′) do15

T := T ∪ {[D,P ′, H ′] | D ∈ Intersect(f, C)};16
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Proof. By the specification of Triangularize, we have V (F ) ∩W (T ) ⊆ ∪C∈TW (C) ⊆
V (F ) ∩W (T ). Therefore V (F ) ∩W (T ) = ∪C∈TW (C) \ V (init(T )). Thus its termi-

nation and correctness follows directly from that of Algorithm 37.

Proposition 9.2. Algorithm 37 terminates and satisfies its specification.

Proof. The terminations follows from the fact that at line 16 of this algorithm, the

polynomial f is regular modulo sat(C), which guarantees that each new generated

regular chain has smaller dimension than C. Next we prove the correctness.

Firstly, after line 8, we claim that the following three relations hold.

(i) For any [T ′, P ′, H ′] ∈ T, we have W (T ′) ⊆ W (T ).

(ii) We have Z(T, P ∪H) = ∪[T ′,P ′,H′]∈TZ(T
′, P ′ ∪H ′).

(iii) We have WR(T ) ∩ ZR(N≥, P>, H 6=) = ∪[T ′,P ′,H′]∈TWR(T
′) ∩ ZR(P

′
>, H

′
6=).

Now we prove the claims by induction on the number of polynomials in N . If

N = ∅, then T = T ′, P = P ′ and H ′ = init(T ) ∪H. So the claims clearly hold.

Let N = N ′ ∪ {p} and we assume that the claims hold for N ′. Let T′ be all

the set of triples [T ′, P ′, H ′] such that Z(T, P ∪ H) = ∪[T ′,P ′,H′]∈T′Z(T ′, P ′ ∪ H ′),

WR(T ) ∩ ZR(N
′
≥, P>, H 6=) = ∪[T ′,P ′,H′]∈T′WR(T

′) ∩ ZR(P
′
>, H

′
6=) and W (T ′) ⊆ W (T )

for any [T ′, P ′, H ′] ∈ T′ hold.

Consider the loop from line 3 to 7. Let T be the set of all [T ′, P ′, H ′] after executing

the final iteration of this loop and line 8. For each triple [T ′, P ′, H ′] ∈ T′, the following

relation hold:

Z(T ′, P ′ ∪H ′) = Z(T ′, P ′ ∪H ′) ∩ V (p) ∪ Z(T ′, P ′ ∪H ′) \ V (p). (9.2)

By line 6, the triple [T ′, P ′ ∪ {p}, H ′] belongs to T. Let T1, . . . , Ts be the output

of Intersect. We have

V (p) ∩W (T ′) ⊆ ∪s
i=1W (Ti) ⊆ V (p) ∩W (T ′). (9.3)

By line 5, [Ti, P
′, H ′] belongs to T. By induction hypothesis, we haveW (T ′) ⊆ W (T ),

together with relation 9.3, we deduce that W (Ti) ⊆ W (T ) and

V (p) ∩ Z(T ′, H ′) ⊆ ∪s
i=1Z(Ti, H

′) ⊆ V (p) ∩ Z(T,H ′). (9.4)

Combining relations 9.2, 9.4 and induction hypothesis, we deduce that claims (i), (ii)

and (iii) hold for T and thus for N .
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Secondly, we prove that the while loop from line 9 to 16 generates regular semi-

algebraic systems Ri, i = 1, . . . , e, such that WR(T ) ∩ ZR(S) = ∪e
i=1ZR(Ri). To this

end, it is enough to prove the following loop invariants. For a given iteration, let R
be the set of regular semi-algebraic systems in the current output and let T be the

set of unprocessed tasks [T ′, P ′, H ′]. The invariant we shall prove is

WR(T ) ∩ ZR(N≥, P>, H 6=) = ∪R∈RZR(R) ∪[T ′,P ′,H′]∈T WR(T
′) ∩ ZR(P

′
>, H

′
6=). (9.5)

The invariant clearly hold at the beginning by claim (iii). For a given iteration, we

assume that the invariant holds at the beginning of it and we would like to prove that

the invariant stills holds at the end of it.

For a given iteration, let [T ′, P ′, H ′] be the task picked from T. Let C1, . . . , Cs be

output of RegularOnly, we have Z(T ′, P ′ ∪H ′) ⊆ ∪s
i=1Z(Ci, P

′ ∪H ′) ⊆ W (T ), which

implies that WR(Ci)∩ZR(P
′
>, H

′
6=) ⊆ WR(T )∩ZR(N≥, P>, H 6=). Rename T as the set

of all [Ci, P
′, H ′]. We thus deduce that relation 9.5 holds for the new T.

Moreover, each [Ci, P
′ ∪H ′] is a regular system. By the specifications of Border-

PolynomialSet and GenerateRegularRsas, for each [C,P ′, H ′] ∈ T, there exists finitely

many regular semi-algebraic systems R1, . . . , Rs and a set D such that

WR(C) ∩ ZR(P
′
>, H

′
6=) = ∪s

i=1ZR(Ri) ∪f∈D VR(f) ∩WR(C) ∩ ZR(P
′
>, H

′
6=).

For a given f and C, Intersect computes regular chains T1, . . . , Tt such that V (f) ∩
W (C) ⊆ ∪t

i=1W (Ti) ⊆ V (f) ∩W (C). Note that W (C) ⊆ W (T ), which implies that

Z(Ti, H
′) ⊆ W (T ) and therefore WR(Ti) ∩ ZR(P

′
>, H

′
6=) ⊆ WR(T ) ∩ ZR(N≥, P>, H 6=).

Hence, we deduce that the invariant 9.5 stills holds at end of the iteration.

9.3 Incremental RealTriangularize

Given a semi-algebraic system S := [F,N≥, P>, H 6=], by passing the empty regular

chain ∅ and S to Algorithm 36, we obtain another algorithm for computing a full

triangular decomposition of S. We call this algorithm an incremental one since its

subroutine Triangularize computes a Lazard-Wu triangular decomposition by solving

equations one by one. This incremental algorithms serves as a counterpart of the

recursive algorithm in the previous chapter.
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9.4 Experimentation

In Table 9.1, R denotesRealTriangularize. The subscriptsre and inc denote respec-

tively the recursive and incremental algorithms ofRealTriangularize. The symbol RR,

short name for RemoveRedundantComponents, is an algorithm for removing the re-

dundant components in the output of Rre and Rinc . Its implementation is based on

the algorithm Di�erenceRsas(Algorithm 33). For each algorithm, the left column

records the time (in seconds) while the right one records thenumber of components

in the output.

This table illustrates the e�ectiveness of the incrementalRealTriangularizeand

that of the tool RemoveRedundantComponentsbased on set-theoretic operations of

semi-algebraic sets. Consider for instance the system 8-3-con�g-Li: R inc greatly out-

performs Rre . Moreover, RR helps reduce the number of output components of Rre

from 203 to 45.

sys Rre RR Rinc RR
8-3-con�g-Li 418.6 203 1727 45 30.5 47 129.5 47

dgp6 65.17 20 17.44 15 47.73 19 22.38 17
Leykin-1 4.9 28 20.1 18 6.5 19 13.9 19

L 14.9 69 94.3 20 2.6 19 11.7 19
Mehta0 1294 21 > 1h > 1h 1558 20 > 1h > 1h

EdgeSquare 247.7 116 > 1h > 1h 116.8 43 > 1h > 1h
Enneper 6.1 18 12.4 13 4.9 17 12.7 12

IBVP 14.1 8 > 1h > 1h 2.5 8 > 1h > 1h
MPV89 2.7 6 84.1 6 2.1 7 73.4 6

Xia 223.7 12 > 1h > 1h 21.4 9 > 1h > 1h
Lanconelli 1.1 7 2.4 6 1.0 7 2.2 6
MacLane 17.4 79 240.5 28 5.8 27 35.8 27

MontesS12 197.8 163 346.5 62 49.9 85 413.9 61
MontesS14 3.4 23 14.1 13 2.8 15 11.0 13

Pappus 750.5 409 > 1h > 1h 29.1 119 1127.6 119
Wang168 7.0 16 8.4 10 3.4 11 5.6 10

xia-issac07-1 2.7 13 > 1h > 1h 2.2 12 > 1h > 1h

Table 9.1: The timing and number of output components for di�erent algorithms
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Chapter 10

Comprehensive Triangular

Decomposition of Semi-algebraic

Systems

Typical problems on parametric dynamical systems, such as the stability analysis of

equilibria, require to decompose the parameter space into connected semi-algebraic

sets above which the qualitative behavior of the dynamical system is essentially con-

stant. Taking also into consideration the fact that certain degenerated behaviors (for

instance, infinitely many complex solutions) have no practical interest, we introduce

in this chapter the notion of a comprehensive triangular decomposition of a parametric

semi-algebraic system, together with an algorithm for computing it.

10.1 Introduction

As mentioned in Chapter 1, this thesis is motivated by applications from biochemistry.

In the field of biochemistry, many reaction networks are modeled by dynamical sys-

tems. The equilibria (or steady states) of a dynamical system are typically described

by nonlinear parametric polynomial systems (a system of polynomial equations, in-

equations or inequalities with parameters), where a fundamental question is the study

of the stability of these equilibria when parameters vary.

The notion of a comprehensive triangular decomposition of a parametric semi-

algebraic system (RCTD) is introduced in Section 10.2. We propose an algorithm for

computing it based on the routines presented in Chapter 6 and Chapter 7. Since this

work is quite recent, several natural questions are still a work in progress and not
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discussed here. We observe, however, that this new type of decomposition can be

used to implement fundamental operations such as complete real root classification of

a parametric semi-algebraic system and projection of a semi-algebraic set.

In Section 10.3, we return to the introductory example of Chapter 1 and explain

how the tool proposed in this chapter helps studying this application from biochem-

istry.

The notion of RCTD is related to and was encouraged by several other tools in the

literature, such as the notion of cylindrical algebraic decomposition [44], the notion

of border polynomial [138] and discriminant variety [86]. We remark that there are

several differences between RCTD and those other tools.

Cylindrical algebraic decomposition decomposes the whose space, say Rn, into

cylindrically arranged cells C1, . . . , Ce. Recall that this implies that the projections

of any two cells Ci, Cj for 1 ≤ i < j ≤ e on a Rk, for any k with 1 ≤ k < n, are either

disjoint or equal.

In contrast, RCTD decomposes part of the whole space (actually Π−1
d (Πd(Σ)),

where Σ ⊂ Rn is the semi-algebraic set under study and Πd : R
n −→ Rd the canonical

projection on the parameter space) into cells C1, . . . Ce such that the projections of

any two cells Ci, Cj for 1 ≤ i < j ≤ e on Rd are either disjoint or equal.

Border polynomial and discriminant variety are objects of the parameter space

designed for solving parametric systems in a lazy manner. They do not provide a

complete partition of Πd(Σ) even if Σ is restricted to its components that are generi-

cally zero-dimensional over Rd. Moreover, computing the border polynomial and the

discriminant variety of Σ over Rd does not produce a description of the solutions as

functions on parameters. The notion of RCTD meets all these requirements.

This chapter is based on paper [34], co-authored with Marc Moreno Maza.

10.2 Comprehensive triangular decomposition of

parametric semi-algebraic systems

Let d,m, n be positive integers such that we have n = d + m and d,m ≥ 1. Let

x = x1 < · · · < xn be ordered variables, which are divided into two groups x1 <

· · · < xd and xd+1 < · · · < xn. We rename xi as ui for 1 ≤ i ≤ d and see u =

u1, . . . , ud as parameters. We rename xi as yi−d for d + 1 ≤ i ≤ n and see y =

y1, . . . , ym as unknowns. In this section, we introduce the concept of a comprehensive

triangular decomposition of a parametric semi-algebraic system S (RCTD) of Q[u,y].
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We first recall some notations on semi-algebraic systems introduced in the previous

two chapters.

Semi-algebraic system. Let us consider four finite polynomial subsets F =

{f1, . . . , fs}, N = {n1, . . . , nt}, P = {p1, . . . , pr} and H = {h1, . . . , hℓ} of

Q[x1, . . . , xn]. Let N≥ denote the set of the inequalities {n1 ≥ 0, . . . , nt ≥ 0}. Let P>

denote the set of the inequalities {p1 > 0, . . . , pr > 0}. Let H 6= denote the set of in-

equations {h1 6= 0, . . . , hℓ 6= 0}. We denote byS = [F,N≥, P>, H 6=] the semi-algebraic

system which is the conjunction of the following conditions: f1 = 0, . . . , fs = 0,

n1 ≥ 0, . . . , nt ≥ 0, p1 > 0, . . . , pr > 0 and h1 6= 0, . . . , hℓ 6= 0. The system

f1 = 0, . . . , fs = 0, p1 6= 0, . . . , pr 6= 0 and h1 6= 0, . . . , hℓ 6= 0 is called the associated

constructible system of S. Its zero set in Cn is called the associated constructible set

of S. We call [F, ∅, P>, H 6=], written as [F, P>, H 6=] or [F, P>] when H 6= is empty, a

basic semi-algebraic system.

Squarefree semi-algebraic system. Let R := [T, P ] be a squarefree regular system

of Q[u,y]. We call the pair A := [T, P>] a squarefree semi-algebraic system (SFSAS).

The system R is called the associated regular system of A.

Definition 10.1. Let S be a semi-algebraic system of Q[u,y]. Let cs be the associated

constructible system of S. A comprehensive triangular decomposition of S (RCTD)1

is a pair (C, (AC , C ∈ C)), where
� C is a finite partition of Rd into nonempty semi-algebraic sets,

� for each C ∈ C, AC is a finite set of SFSASes of Q[u,y] such that:

(i) either AC is empty, which means that S(u) is empty for each u ∈ C;
(ii) or AC = {[∅, { }]}, which implies that cs(u) is infinite for each u ∈ C;
(iii) or each A = [T, P>] ∈ AC satisfies mvar(T ) = y, mvar(P ) = y and for

each u ∈ C we have:

– the associated regular systems of AC specialize well at u,

– for each A ∈ AC, ZR(A(u)) is not empty,

– S(u) = ·∪A∈AC
ZR(A(u)).

If we further require in (iii) that C is a connected semi-algebraic set, then we call

(C, (AC , C ∈ C)) a RCTD with connected cells.

Remark 10.1. The RCTD we proposed in paper [34] is essentially a RCTD with con-

nected cells as defined above. Algorithm 38 and 40 presented hereafter also compute

1The “R” in the term RCTD emphasizes the fact this tool focuses on the real solutions of the
input parametric polynomial system.
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a RCTD with connected cells. Nevertheless, a default specification not requiring con-

nectivity provides more flexibility for some applications such as real root classification

and projection.

Remark 10.2. By Theorem 8.1 of Section 8.2 in Chapter 8, the condition (iii) in the

definition of RCTD implies that above each connected component of the cell C, the

solutions of S w.r.t. y are finitely many continuous functions of the parameters u.

Moreover, the graphs of these functions are disjoint above each connected component

of C.

In the rest of this section, we provide an algorithm for computing a RCTD. It relies

on an operation called CAD for decomposing real constructible sets into connected

and cylindrically arranged cells of Rn. The operation CAD can be easily described

via the three subroutines MPD, MakeCylindrical and MakeSemiAlgebraic presented in

Chapter 7. The correctness of the operations CAD follow immediately from those of

its three subroutines.

Calling sequence. CAD(C)
Input. C := {C1, . . . , Ce} is a set of pairwise disjoint constructible sets of Cn given

by polynomials in Q[x] such that Cn = ∪e
i=1Ci.

Output. A CAD2 E of Rn such that for each element C of C, the set C ∩ Rn is a

union of some cells in E .
Step (1). For 1 ≤ i ≤ e, apply operation MPD to the family of regular systems

representing Ci, so as to obtain another family Ri of regular systems representing Ci

and whose zero sets are pairwise disjoint.

Step (2). Let R := ∪e
i=1Ri. Call algorithm MakeCylindrical(R, n), to compute a

cylindrical decomposition D of Cn such that the zero set of each regular system in R
is a union of some cells in D.
Step (3). Call algorithm MakeSemiAlgebraic to compute a CAD E of Rn such that,

for each element D of D, the set D ∩ Rn is a union of some cells in E .
Next we describe algorithms for computing CTD of a semi-algebraic system.

� We start by describing an algorithm for computing CTD of a basic semi-

algebraic system, see Algorithm 38.

� We then present a general algorithm for computing CTD of an arbitrary semi-

algebraic system, see Algorithm 40.

These two steps should help the reader understanding the underlying principles
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Algorithm 38: RCTD(S)

Input: A basic semi-algebraic system S := [F, P>, H 6=] of Q[u,y].
Output: A CTD of S.
begin1

let (C, (TC , C ∈ C)) be a WDSCTD of the associated constructible set of S2

D := CAD(C); E := { }3

for each C ∈ C, for each D ∈ D such that D ⊆ C, let TD = TC4

for D ∈ D do5

if TD = { } then6

E := D; AE := { }; E := E ∪ {E}7

else if TD = {∅} then8

E := D; AE := {[∅, { }]}; E := E ∪ {E}9

else10

let s be a sample point of D11

E := D; E := E ∪ {E}; AE := { }12

let Py be the set of polynomials in P such that mvar(p) ∈ y13

if (P \ Py)> is true after evaluating at s then14

for T ∈ TD do15

if RealRootIsolate(T, Py) 6= [ ] then16

AE := AE ∪ {[T, Py>]}17

return (E , (AE, E ∈ E))18

end19

Algorithm 39: RegularizeInequalities(S)

Input: A semi-algebraic system S = [F,N≥, P>, H 6=] of a polynomial ring R
Output: A set L of triples [T′, P ′, H ′], where T′ is a set of regular chains of R,
P ′ and H ′ are set of polynomials in R, such that: each polynomial in P ′ ∪H ′ is
regular w.r.t. every regular chain in T′; ∪[T′,P ′,H′]∈L ∪T ′∈T′ Z(T ′, H ′) is the
associated constructible set of S; and
ZR(S) = ·∪[T′,P ′,H′]∈L ∪T ′∈T′ WR(T

′) ∩ ZR(P
′
>, H

′
6=).

begin1

T := Triangularize(F );2

L := { [T, ∅] };3

for p ∈ N do4

for [T′, P ′] ∈ L do5

L := L ∪ { [∪T∈T′ Intersect(p, T ), P ′] };6

L := L ∪ { [T′, P ′ ∪ {p}] };7

L := { [T′, P ′ ∪ P,H ∪ P ∪ P ′] | [T′, P ′] ∈ L };8

L := { [∪T ′∈T′RegularOnly(T ′, H ′), P ′, H ′] | [T′, P ′, H ′] ∈ L };9

return L10

end11
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Algorithm 40: RCTD(S)

Input: A semi-algebraic system S = [F,N≥, P>, H 6=] of a polynomial ring R
Output: A comprehensive triangular decomposition of S
begin1

L := RegularizeInequalities(S); L0 := { }; L1 := { };2

for [T′, P ′, H ′] ∈ L do3

R := { };4

for T ′ ∈ T′ do5

if y ⊆ mvar(T ′) then R := R∪ {[T ′, H ′]};6

else L1 := L1 ∪ {[T ′, H ′]};7

L0 := L0 ∪ {[R, P ′]};8

L0 := {[DSPCTD(R), P ′] | [R, P ′] ∈ L0}; L0 := ∪[R,P ′]∈L0 ∪rs∈R [rs, P ′];9

let cs1 be the projection of the constructible set L1 on Cd;10

C := ∅;11

for [rs, P ′] ∈ L0 do12

C := Difference(Du(rs), cs1); if C 6= ∅ then C := C ∪ {C};13

C := SMPD(C);14

for C ∈ C do15

if C is not empty then16

let AC be the set of [rs, P ′] ∈ L0 with C ⊆ Du(rs);17

AC := {[Ty, P ′] | [[T,H ′], P ′] ∈ L0}18

C := cs1; C := C ∪ {C}; AC := {[∅, { }]};19

C := Cd \ ∪C∈CC; C := C ∪ {C}; AC := { };20

D := CAD(C);21

for each C ∈ C, for each D ∈ D such that D ⊆ C, let AD = AC ;22

E := { };23

for D ∈ D do24

if AD = { } or AD := {[∅, { }]} then25

E := D; AE := { }; E := E ∪ {E};26

else27

let s be a sample point of D;28

E := D; E := E ∪ {E}; AE := { };29

for [T ′, P ′] ∈ AD do30

let P ′
y be the set of polynomials in P ′ such that mvar(p) ∈ y;31

if (P ′ \ P ′
y)(s)> is true and RealRootIsolate(T ′(s), P ′

y(s)) 6= [ ]32

then

AE := AE ∪ {[T ′, P ′
y]};33

return (E , (AE, E ∈ E))34

end35
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To prove the correctness of the algorithms, we first establish the following lemma.

Lemma 10.1. Let k[u,y] be a polynomial ring. Let T be a regular chain of k[u,y]

such that mvar(T ) = y. Let p be a polynomial of k[u,y]. Let u ∈ Kd such that T

specializes well at u and such that p(u, y) 6= 0 holds for any (u, y) ∈ W (T ). Then p

is regular modulo sat(T ).

Proof. Since T specializes well at u and p(u, y) 6= 0 for any (u, y) ∈ W (T ), the

polynomial p(u,y) is invertible (and thus regular) modulo 〈T (u,y)〉. Thus, the regular
system [T, p] specializes well at u. Proposition 6.9 implies that res(p, T )(u) 6= 0 holds.

Therefore res(p, T ) 6= 0 holds too and p is regular modulo sat(T ).

Proposition 10.1. Algorithm 38 terminates and satisfies its specification.

Proof. By the specification of WDSCTD and Lemma 10.1, it is easy to deduce that

each element of AE is an SFSAS. Then the termination and the correctness of the

algorithm follow directly from the specifications of its subroutines and the definition

of a RCTD.

Proposition 10.2. Algorithm 39 terminates and satisfies its specification.

Proof. We have the following observations

� Algorithm Triangularize compute a set of regular chains T such that V (F ) =

∪T∈TW (T ).

� For each p ∈ N , line 6 and 7 consider respectively the case p = 0 and p 6= 0.

� For a regular chain T ∈ T′ and a polynomial p ∈ N , algorithm Intersect compute

regular chains T1, . . . , Ts such that V (p)∩W (T ) ⊆ ∪s
i=1W (Ti) ⊆ V (p)∩W (T ),

moreover W (Ti) ⊆ W (T ) ⊆ V (F ).

� For a regular chain T ∈ T′ and a set of polynomials H ′, algorithm RegularOnly

computes regular chains T1, . . . , Tt such that Z(T,H ′) ⊆ ∪t
i=1Z(Ti, H

′) ⊆
Z(F,H ′).

From the above arguments, we can easily deduce the conclusion.

Proposition 10.3. Algorithm 40 terminates and satisfies its specification.

Proof. Firstly, similar to the proof of algorithm 38, each element of AE is an SFSAS.

Secondly, algorithm 39 decomposes the input system as disjoint systems. Then the

termination and correctness of the algorithm follows easily from the specifications of

DSPCTD and other subroutines.
2That is, finitely many constructible sets of Rn which are connected and cylindrically arranged.
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10.3 Example

In this section we revisit the biochemistry network presented in the introductory

Chapter and explain more formally how to describe its equilibria with CTD. The

notions related to dynamical systems are defined in next Chapter.

The dynamical system governing the biochemistry network is

{
dx
dt

= f1
dy
dt

= f2
with

{

f1 = 16000+800y4−20k2x−k2xy4−2x−4xy4

20+y4

f2 = 2(x+2xy4−500y−25y5)
20+y4

. (10.1)

Let x, y ∈ R2 be an equilibrium of it. By Routh-Hurwitz criterion (x, y) is asymptot-

ically stable if

∆1 = −(
∂f1
∂x

+
∂f2
∂y

) > 0 and a2 =
∂f1
∂x
· ∂f2
∂y
− ∂f1

∂y
· ∂f2
∂x

> 0.

In System (10.1), let p1 and p2 be respectively the numerators of f1 and f2. We have

p1 = 16000 + 800y4 − 20k2x− k2xy4 − 2x− 4xy4

p2 = 2x+ 4xy4 − 1000y − 50y5

The Hurwitz determinants ∆1 and a2 are rational functions with the same denomi-

nator (y4 + 20)2, which is always positive. So we can safely set ∆1 (resp. a2) to the

value of its numerator, and then have

∆1 = 400k2 + 40k2y
4 + k2y

8 + 20040 + 2082y4 + 54y8 − 312xy3

a2 = 50k2y
8 + 200y8 + 2000k2y

4 + 4100y4 − 312k2xy
3 + 2000 + 20000k2

The parametric semi-algebraic systems S1 : {p1 = p2 = 0, x > 0, y > 0, k2 > 0} and
S2 : {p1 = p2 = 0, k2 > 0, x > 0, y > 0,∆1 > 0, a2 > 0} encode respectively the

equilibria and the asymptotically stable hyperbolic equilibria of System (10.1).

Next we take S1 as an example and show how to compute a RCTD of it. Let

C1 := {p1 = 0, p2 = 0, x 6= 0, y 6= 0, k2 6= 0} be the associated constructible set of C1.
Under the order x > y > k2, the zero set of C1 in C3 is a union of the zero sets of the
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following two regular systems.

R1 :=







(2y4 + 1)x− 500y − 25y5 = 0

(k2 + 4)y5 − 64y4 + (20k2 + 2)y − 32 = 0

y 6= 0

2y4 + 1 6= 0

32y4 + 39y + 16 6= 0

k2 6= 0

k2 + 4 6= 0

, R2 :=







2x− 25y + 400 = 0

32y4 + 39y + 16 = 0

k2 + 4 = 0

.

A WDSCTD of C1 is given by the following piecewise definition: Denote tx := (2y4 +

1)x− 25y5 − 500y and

r := 100000k82 + 1250000k72 + 5410000k62 + 8921000k52 − 9161219950k42

− 5038824999k32 − 1665203348k22 − 882897744k2 + 1099528405056.

Let ty be the following polynomial.

ty := (23268734556450898419888092289684588240000k72 + 887808505064962613456074048055203273776000k62
−642759201042010454260920807356084733986376100k52 + 798982465948689385180224786309623594746271260k42
−7555419692922128080747583478837491695680153481k32 − 35449012205417930733315520979315974118845984492k22
−4318751300606321808106545937757017090592882096k2 − 327907507955945276712462277765503291468450043456)y4

+(59504169260387983272768620864010656543555992320 − 14551534965517185002251506600155820489600000k62
+55415511578751525896407727405624657312240756620k32 + 876847598754269841148937318213026162350958803520k2

+317749599530866457124059591088318660732882314640k22 − 85482628839848006177137048155404915235216000k52
−1203526487705166354151311065571798686400000k72 + 10178560608897625817552584862270339173953830200k42)y

3

+(5252669517785054020278014804788614352000000k72 − 167530270978266708856920671122396806455219200k42
+115235109691639562654993861022218266571429229120k22 + 1816672724083305207547642268950808404726365096960

+668319912100483042625432602606969870867763349760k2 + 11286257394981172041497956130156500898560000k62
−13619139734319572834872317215434117053312000k52 + 20906210233179434530990527059307460720922739760k32)y

2

+(305087509391280246850305169385511280140079029520k2 − 343356477061424268437820917723651218855443000k52
+257371530074079023303501373503345352920980000k62 + 32256100951459497483205914682740335606125645595k32
−445476939849013066022926875584021296050000k72 + 29468738920316806213601355334670213121993449540k22
+1120042922677979557343521016591522885983742934720 + 2136427506471107073862725309163219101931291800k42)y

−1631960519672226322959413531153406139242028759040 + 752923805329828287871807847129427549600000k72
+11644312759806478731650777215133019861840000k62 + 737319470990393398599878903903678608444002400k42
−314641696590549396895596270561712599814058672640k2 − 226733546531989363631975695021134672123615921280k22
−72051937593559000483331392372548407242074867040k32 − 364594307740990294702210838952646256405464000k52

Let R3 be the regular system [tx = 0, ty = 0, r = 0]. Then the following piecewise
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definition describes a WDSCTD (also a DSCTD) of C1:






{ } k2 = 0

{R2} k2 + 4 = 0

{R3} r = 0

{R1} k2 6= 0, k2 + 4 6= 0 and r 6= 0

.

The polynomial r has four real roots, two of them are positive, which we denote by

0 < α1 < α2. Let B1 and B2 be the squarefree semi-algebraic systems:

B1 :=







(2y4 + 1)x− 25y5 − 500y = 0

(k2 + 4)y5 − 64y4 + (2 + 20k2)y − 32 = 0

y > 0

, B2 :=







tx = 0

ty = 0

y > 0

.

Then a RCTD of S1 is given by the following piecewise definition:







{ } k2 ≤ 0

{B1} 0 < k2 < α1

{B2} k2 = α1

{B1} α1 < k2 < α2

{B2} k2 = α2

{B1} k2 > α2

Here each cell is either a single point or an open interval in R, and thus is connected.

Above each cell, the solutions of the regular chain B1 (or B2) in x, y are the equilibria

of the biochemistry network. They are continuous functions of k2 and the graphs of

the functions are disjoint above each cell.
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Chapter 11

Semi-algebraic Description of the

Equilibria of Dynamical Systems

In this chapter, we study continuous dynamical systems defined by autonomous or-

dinary differential equations, themselves given by parametric rational functions. For

such systems, we provide semi-algebraic descriptions of their hyperbolic and non-

hyperbolic equilibria, their asymptotically stable hyperbolic equilibria, their Hopf

bifurcations. To this end, we revisit various criteria on sign conditions for the roots

of a real parametric univariate polynomial. In addition, we demonstrate the notion

of comprehensive triangular decomposition of a semi-algebraic system, introduced in

last chapter, is well adapted for our study.

11.1 Introduction

The study of polynomial dynamical systems by means of symbolic computation is

one of the most popular application of computer algebra. Equilibria, limit cycles,

center manifolds, normal forms and bifurcation analysis are the main notions used in

the study of dynamical systems [105, 23, 72, 111]. These objects can be manipulated

by a variety of symbolic methods [40, 38, 39, 142, 59, 122, 93, 79, 80, 129, 71, 65,

64, 75, 128, 25, 106]. Among these notions, those which have received the greatest

attention by the computer algebra community are equilibria and bifurcation analysis.

Studying them for polynomial dynamical systems typically consists of: (1) setting

up a (parametric) semi-algebraic system S, (2) extracting from S some particular

information.

The aim of this work is twofold. Our first objective is to revisit the results that

are practically useful for finding equilibria and bifurcation by means of symbolic
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computation. These results are gathered in Sections 11.2 and 11.3. They are generally

stated in terms of the coefficients of a univariate polynomial and translate into semi-

algebraic systems. A prototype of such results is the Routh-Hurwitz’s criterion. While

many of these criteria appear in the literature (for instance in [79, 80]) we also provide

some new criteria, like Theorem 11.9, as well as new interpretation of classical results,

like Theorem 11.13.

Our second objective is to exhibit tools that are well adapted for solving the semi-

algebraic systems implementing the above mentioned results. Typical problems on

parametric dynamical systems (see Problems 1, 2, 3) require to decompose the pa-

rameter space into connected semi-algebraic sets above which the qualitative behavior

of the dynamical system is essentially constant. Taking also into consideration the

fact that certain degenerated behaviors have no practical interest, we introduce, in

Section 10.2, the notion of a comprehensive triangular decomposition of a parametric

semi-algebraic system (CTD), together with an algorithm for computing it. In Sec-

tion 11.4 of this chapter, we exhibit that CTD is indeed a very useful tool in analyzing

the stability of dynamical systems.

We dedicate the rest of this introduction to identify problems arising in the study

of dynamical systems which are eligible to solutions based on semi-algebraic system

solving. Some of these problems, namely Problems 1, 2, 3, are directly formulated

in terms of dynamical systems. For a sake of clarity, the other problems, namely

Problems 4 and 5, are stated in terms of conditions on the roots of a parametric

univariate polynomial, which is meant to be the characteristic polynomial of the

Jacobian matrix of the dynamical system under study.

We consider continuous dynamical systems defined by autonomous ordinary dif-

ferential system of the following shape:







ẏ1 = F1(u1, . . . , ud, y1, . . . , ym),

ẏ2 = F2(u1, . . . , ud, y1, . . . , ym),
...

...

˙ym = Fm(u1, . . . , ud, y1, . . . , ym).

(11.1)

where F1, . . . , Fm are polynomials of Q[u1, . . . , ud, y1, . . . , ym]. The variables u =

(u1, . . . , ud) are considered as parameters and the variables y = (y1, . . . , ym) are seen

as unknowns. In addition, we have yi = yi(t) and ẏi = dyi/dt while the parameters

u1, . . . , ud are independent of the derivation variable t. In the sequel, we simply
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write (11.1) as

ẏ = F (u,y) (11.2)

where F (u,y) = (F1(u,y), . . . , Fm(u,y)) is called the vector field of the system.

For any given parameter value u ∈ Rd, one may notice that any y ∈ Rm such that

F1(u, y) = · · · = Fm(u, y) = 0 holds, is a constant solution of System (11.1), which

is called an equilibrium (or a steady state, or a fixed point). We are interested in the

following problem regarding the equilibria of the given dynamical system.

Problem 1. For a fixed parameter value u (or in absence of parameters) determine

the number of equilibria of (11.1) and compute each of them (for instance, by means

of isolation intervals). In presence of parameters, partition the parameter space into

connected semi-algebraic sets, such that above each of them, the number of equilibria

is constant and each equilibrium is a continuous function of the parameters.

Problems 1 is a particular instance of the solving of semi-algebraic systems. Sec-

tion 10.2 is dedicated to this more general question, with a view toward Problem 1.

We consider now a fixed parameter value u and a particular equilibrium y of

System (11.1) at u. An important problem concerning the equilibrium y is to analyze

its stability. We say y is stable if any solution of System (11.1) starting out close to y

remains close to it. We say y is asymptotically stable if y is stable and if the solutions

of System (11.1) starting out close to y become arbitrary close to it. If y is not stable,

it is said to be unstable. The above discussion leads to enhance Problem 1 into the

following ones, which deals with the number of asymptotically stable equilibria of

System (11.1) depending or not on parameters.

Problem 2. For a fixed parameter value u (or in absence of parameters) determine

the number of asymptotically stable hyperbolic equilibria of (11.1) and compute each

of them. In presence of parameters, partition the parameter space into connected

semi-algebraic sets, such that above each of them, the number of asymptotically stable

hyperbolic equilibria is constant and each of these equilibria is a continuous function

of the parameters.

The study of the system near the particular equilibrium y is usually done using

the linear system

ẏ = J(u, y)(y − y), (11.3)
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where J is the Jacobian matrix of F :

J =









∂F1

∂y1

∂F1

∂y2
· · · ∂F1

∂ym
∂F2

∂y1

∂F2

∂y2
· · · ∂F2

∂ym
...

...
...

∂Fm

∂y1
∂Fm

∂y2
· · · ∂Fm

∂ym









We denote by

f(λ) = a0λ
m + a1λ

m−1 + a2λ
m−2 + · · ·+ am−1λ+ am,

where a0 = 1, the characteristic polynomial of J . If the matrix J(u, y) has no eigen-

values with zero real parts, that is, if f(u, y, λ) has no roots with zero real parts, then

y is called a hyperbolic equilibrium at u; otherwise y is a non-hyperbolic equilibrium at

u. In [107], Hartman and Grobman proved the following result: if y is a hyperbolic

equilibrium, then near y, the phase portrait of the dynamical system (11.1) is topolog-

ically equivalent to that of the linearized dynamical system (11.3). The results imply

that, for a hyperbolic equilibrium y, the phase flow of (11.1) is asymptotically stable

near y if and only if the phase flow of (11.3) is asymptotically stable near y. There-

fore, using standard results on linear differential systems [2], the phase flow of (11.1)

is asymptotically stable near y if and only if all the complex roots of f(u, y, λ) have

negative real parts. This reduces Problem 2 to the following problem.

Problem 2’ For a univariate polynomial f(x) ∈ R[x], determine whether all the

complex roots of f(x) have negative real parts or not.

In the above analysis, we assume the equilibrium y is hyperbolic, so a natural

question is how to determine whether y is hyperbolic or not. In other words, we want

to solve the following problem:

Problem 3. For a fixed parameter value u, determine whether each equilibrium

of (11.1) is hyperbolic or not. In presence of parameters, partition the parameter

space into connected semi-algebraic sets, such that above each of them, an equilibrium

is always either hyperbolic or non-hyperbolic.

This problem is equivalent to determine whether all the complex roots of the char-

acteristic polynomial f(u, y, λ) have nonzero real parts, which leads to the following

general problem.

Problem 3’ For a univariate polynomial f(x) ∈ R[x], determine whether f(x) has

complex roots with zero real parts or not.
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When y is a non-hyperbolic equilibrium of (11.1), if the characteristic polynomial

f(u, y, λ) has at least one complex root with positive real part, then y is an unstable

equilibrium. Otherwise, the stability of y depends also on the higher order terms

of the Taylor expansion of F near the point y. In this situation, one usually needs

to apply the Centre Manifold Theorem [23] to reduce the original system to a low

dimensional dynamical system defined on a centre manifold and further simplify it

by computing its normal form. Finally, the normal form can be further reduced by

removing terms that do not affect the stability of the equilibrium. Therefore, the first

step towards stability analysis of non-hyperbolic equilibria of (11.1) is to determine

when the characteristic polynomial has at least one complex root with positive real

part or, equivalently, determine when f(u, y, λ) has only complex roots with non-

positive real parts, which leads to the following problem.

Problem 4. For a univariate polynomial f(x) with parametric coefficients, determine

whether f(x) has at least one complex root with positive real part. Equivalently, given

two integers k1 and k2, determine whether f(x) has zero as a root of multiplicity k1

and k2 pairs of purely imaginary roots while all the other complex roots have negative

real parts.

When non-hyperbolic equilibria are present, another more interesting phenomenon

is the appearance of bifurcation. For the dynamical system (11.1), a bifurcation

occurs at a parameter α0 if there are parameter values α1 arbitrarily close to α0 with

dynamics topologically non-equivalent to those at α0. For example, the number or

stability of equilibria or periodic orbits of (11.1) may change with perturbations of

u from α0. For a general dynamical system, such as (11.1), a systematic study is

difficult. However, given an equilibrium y of (11.1) at u, necessary conditions for

bifurcation can be obtained as follows. If a bifurcation of an equilibrium occurs near

(u, y), then either or both conditions below are met:

� the characteristic polynomial f has zero as a root of multiplicity k, for some

k > 0,

� the characteristic polynomial f has k pairs of purely imaginary roots, for some

k > 0.

Therefore, the last problem we want to answer in this paper is as follows:

Problem 5. Given non-negative integers k1, k2 and a polynomial f(x) with paramet-

ric coefficients, determine whether f(x) has zero as a root of multiplicity k1 and k2

pairs of purely imaginary roots while no other roots have zero real parts.
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A particular case of the above problem is (k1, k2) = (0, 1). In this case, thus if the

characteristic polynomial f(u, y, λ) has a pair of purely imaginary roots and no other

roots with zero real part, the limit cycle bifurcation that may occur at (u, y) is called a

Hopf bifurcation. Such bifurcation has attracted the interest of many authors. In [71],

the authors presented sufficient conditions for the appearance of Hopf bifurcations.

In [79], the authors give sufficient and necessary conditions on Hopf bifurcations by

further demanding that all the other eigenvalues have negative real roots, which is

convenient for applying Centre Manifold Theory in order to reduce the dimension of

dynamical systems. In [80], the authors present a framework for solving Problem 5.

This chapter is based on paper [34], co-authored with Marc Moreno Maza.

11.2 On the complex roots of a univariate polyno-

mial

As we have seen in the previous section, many problems related to dynamical systems

reduce to studying the complex roots of a univariate polynomial with real coefficients.

In particular, Problems 2’, 3’, 4 and 5 will be completely answered in the present

section.

This section is firmly rooted in the papers [79, 80]. With respect to [79, 80] our

main contribution in this section is Theorem 11.9, from which the main result of [79]

(that is, Theorem 3.6 in [79] and Corollary 11.3 in this section), dedicated to Hopf

bifurcation, can easily be derived. Theorem 11.9 provides two equivalent conditions

for a polynomial with real coefficients to have only complex roots with non-positive

real parts.

The proof of the first condition relies on several results of [79, 80], which are

reviewed hereafter for the reader’s convenience. To prove the second condition, we

introduce Corollary 11.2 and Theorem 11.7. It should be pointed out that to deduce

Corollary 11.3 from Theorem 11.9, this second condition is really needed. We also

correct the error of sign difference in Theorem 3.1 of [79] (Theorem 1 in [80]) and

revise it as Theorem 11.5 hereafter.

Let f(x) ∈ R[x] be a polynomial of degree m, and let us write

f(x) = a0x
m + a1x

m−1 + · · ·+ am.

After recalling the definition and standard properties (Lemma 11.1, Theorems 11.1,

11.3, 11.2, 11.4) of Hurwitz determinants, we discuss their relations with subresul-



181

tant sequences in Section 11.2.2 and their use in the study of symmetric roots in

Section 11.2.3.

Definition 11.1 (Hurwitz matrix). We call Hurwitz matrix of f the m×m matrix

H = (Hµν) defined by Hµν = a2ν−µ for ν = 1, . . . ,m and µ = 1, . . . ,m, with the

convention that ai = 0 holds as soon as i < 0 or i > m holds. For i = 1, . . . ,m,

we denote by ∆i the leading principal minors of H, which are called the Hurwitz

determinants of H:

∆1 = a1, ∆2 =

∣
∣
∣
∣
∣

a1 a3

a0 a2

∣
∣
∣
∣
∣
, . . . ,∆m =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a1 a3 a5 · · · · · ·
a0 a2 a4 · · · · · ·
0 a1 a3 a5 · · ·
0 a0 a2 a4 · · ·

. . .

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

It is easy to see that we have ∆m = am∆m−1.

The following criterion provides a sufficient and necessary condition for a polyno-

mial f to have only roots with negative real parts, which is therefore an answer to

Problem 11.1.

Theorem 11.1 (Routh-Hurwitz’s criterion [62]). The real parts of all the zeros of

f(λ) are negative if and only if ∆1 > 0, ∆2 > 0, . . . , ∆m−1 > 0, am > 0.

There is also another famous criterion equivalent to the above one, which is called

Liénard-Chipart’s Criterion.

Theorem 11.2 (Liénard-Chipart’s criterion [62]). The real parts of all the zeros of

f(λ) are negative if and only if we have:

(1) If m is odd, then all the below inequalities hold:

am > 0, a2 > 0, a4 > 0, . . . , am−1 > 0, ∆2 > 0, ∆4 > 0, . . . , ∆m−1 > 0.

(2) If m is even, then all the below inequalities hold:

am > 0, a1 > 0, a3 > 0, . . . , am−1 > 0, ∆1 > 0, ∆3 > 0, . . . , ∆m−1 > 0.
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11.2.1 Hurwitz determinants and stability of hyperbolic

equilibria of dynamical system

In this section, for a fixed parameter value u ∈ Rd, let y ∈ Rm be an equilibrium of

dynamical system (11.1).

Lemma 11.1 (Orlando’s formula [60]). Let λi, i = 1, . . . ,m, be the eigenvalues of

J(u, y) and ∆m−1 be the (m− 1)-th Hurwitz determinant of its characteristic polyno-

mial. Then we have:

∆m−1 = (−1) 1
2
m(m−1)

∏

1≤i<j≤m

(λi + λj).

Corollary 11.1 (Hyperbolic equilibrium criterion). The following three properties

hold.

(1) J(u, y) have no zero eigenvalues if and only if |J(u, y)| = (−1)mam 6= 0.

(2) If ∆m−1 6= 0, then J(u, y) has no pure imaginary eigenvalues.

(3) If ∆m = am∆m−1 6= 0, then y is a hyperbolic equilibrium.

Proof. Property (1) is clear. Property (2) is an immediate consequence of Orlando’s

Formula. Property (3) follows from |J(u, y)| = λ1λ2 · · ·λm.

Remark 11.1. Necessary and sufficient conditions for J(u, y) to have no pure imag-

inary eigenvalues (resp. y to be hyperbolic equilibrium) will be provided in Sec-

tion 11.2.3.

Theorem 11.3 (Lyapunov’s first method on stability [100]). The following properties

hold.

(i) If J(u, y) has at least one eigenvalue with positive real parts, then y is unstable.

(ii) Assume that y is a hyperbolic equilibrium. If all the eigenvalues of J(u, y) have

negative real parts, then y is asymptotically stable.

Theorem 11.4 (Stability criterion for hyperbolic equilibria). Let y be an equilibrium

of System (11.1), we have:

(1) y is an asymptotically stable hyperbolic equilibrium if and only if

∆1 > 0, ∆2 > 0, . . . , ∆m−1 > 0, am > 0.
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(2) If y is hyperbolic, then y is unstable if and only if there exists some i, 1 ≤ i ≤ n,

such that ∆i ≤ 0.

Proof. Directly by Theorem 11.3 and Routh-Hurwitz Criterion.

11.2.2 Hurwitz determinants and subresultant sequences

Let A = Q[a0, . . . , am] and f ∈ A[x] = a0x
m + a1x

m−1 + · · · + am−1x + am be a

polynomial of degree m. We write f(x) = f1(x
2) + xf2(x

2). If m = 2ℓ + 1, we have

f1(y) = a1y
ℓ + a3y

ℓ−1 + · · · + a2ℓ+1 and f2(y) = a0y
ℓ + a2y

ℓ−1 + · · · + a2ℓ. If m = 2ℓ,

we have f1(y) = a0y
ℓ + a2y

ℓ−1 + · · ·+ a2ℓ and f2(y) = a1y
ℓ−1 + a3y

ℓ−2 + · · ·+ a2ℓ−1.

Theorem 11.5. Let ∆1,∆2, . . . ,∆m be the Hurwitz determinants sequence of f . Then

the following conclusion holds:

(i) If m = 2ℓ+ 1, we have ∆m−1−2i = ∆2ℓ−2i = (−1) (ℓ−i)(ℓ−i−1)
2 si(f1, ℓ, f2, ℓ, y) hold,

for i = 0, 1, . . . , ℓ− 1.

(ii) If m = 2ℓ, we have ∆m−1−2i = ∆2ℓ−1−2i = (−1) (ℓ−i)(ℓ−i−1)
2 si(f1, ℓ, f2, ℓ−1, y), for

i = 0, 1, . . . , ℓ− 1.

(iii) If m = 2ℓ+ 1, for i = 0, 1, . . . , ℓ, we have

∆m−2i = ∆2ℓ+1−2i = (−1) (ℓ−i)(ℓ−i+1)
2 si(f1, ℓ, yf2, ℓ+ 1, y)

= (−1) 3(ℓ−i)(ℓ−i+1)
2 si(yf2, ℓ+ 1, f1, ℓ, y).

(iv) If m = 2ℓ, we have ∆m−2i = ∆2ℓ−2i = (−1) (ℓ−i)(ℓ−i+1)
2 si(f1, ℓ, yf2, ℓ, y) hold, for

i = 0, 1, . . . , ℓ− 1.

Proof. Here, we only prove (i) holds and leave the other cases for exercise.

Whenm = 2ℓ+1, we have f1(y) = a1y
ℓ+a3y

ℓ−1 · · ·+am, f2(y) = a0y
ℓ+a2y

ℓ−1 · · ·+
am−1. So the Sylvester matrix M formed by the coefficients of f1 and f2 is an 2ℓ× 2ℓ
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matrix of the form:

M =




















a1 a3 a5 · · · am

a1 a3 a5 · · · am
. . . . . . . . .

a1 a3 a5 · · · am

a0 a2 a4 · · · am−1

a0 a2 a4 · · · am−1

. . . . . . . . .

a0 a2 a4 · · · am−1




















(11.4)

On the other hand, the Hurwitz matrix H of f is an (2ℓ + 1) × (2ℓ + 1) matrix

whose elements are arranged like this:

H =



















a1 a3 a5 · · · am

a0 a2 a4 · · · am−1

a1 a3 a5 · · · am

a0 a2 a4 · · · am−1

· · · · · ·
a1 a3 a5 · · · am

a0 a2 a4 · · · am−1

a1 a3 · · · am−2 am



















(11.5)

Let H∗ be the sub-matrix composed by the first 2ℓ rows and 2ℓ columns of H.

We denote by H2i the sub-matrix of H∗, formed by the first 2i rows and 2i columns,

for i = 1, 2, . . . , ℓ. We denote by Mi the sub-matrix of M , formed by deleting the

last i rows composed by the coefficients of f1(y) and the last i rows composed by

the coefficients of f2(y) and then deleting the last 2i columns for i = 0, 1, . . . , ℓ − 1.

Then it’s easy to see that if we make the odd rows of H2ℓ−2i “float up” one by

one, we finally get the matrix Mi. So the number of row exchanges for H2ℓ−2i is:

0 + 1 + 2 + · · · + (ℓ − i − 1) = (ℓ−i)(ℓ−i−1)
2

. Therefore, we have ∆2ℓ−2i = |H2ℓ−2i| =
(−1) (ℓ−i)(ℓ−i−1)

2 |Mi| = (−1) (ℓ−i)(ℓ−i−1)
2 si(f1, ℓ, f2, ℓ, y), for i = 0, 1, . . . , ℓ− 1.

Remark 11.2. This theorem is a corrected version of Theorem 1 in [80], where the

sign differences between ∆i and si are wrong.
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11.2.3 Hurwitz determinants and symmetric roots

The following result is taken from [79]. Corollary 11.2 is a direct consequence.

Lemma 11.2 ([79]). Given a univariate polynomial f(x) = a0x
m+a1x

m−1+ · · ·+am
of R[x], where a0 6= 0. We write f(x) into the form: f(x) = f1(x

2) + xf2(x
2). Then

f(x) has a pair of symmetric zeros z and −z in C if and only if z2 is a common zero

of f1(y) and f2(y).

Corollary 11.2. Assume that am 6= 0, then f(x) has a pair of symmetric zeros z

and −z in C if and only if z2 is a common zero of f1(y) and yf2(y).

Theorem 11.6 ([79]). Let f(x) = a0x
m + a1x

m−1 + · · ·+ am ∈ R[x] be a polynomial

of degree m. Then f(x) has exactly k pairs of symmetric roots zi and −zi in C if and

only if ∆m−1 = 0, . . . ,∆m−2k+1 = 0,∆m−2k−1 6= 0.

Theorem 11.7. Notation as above, if am 6= 0, then f has exactly k pairs of symmetric

roots zi and −zi if and only if ∆m = 0, . . . ,∆m−2k+2 = 0,∆m−2k 6= 0.

Proof. If am 6= 0, by Corollary 11.2, the number of symmetric roots, counted with

multiplicities, of the polynomial f is equal to the number of common roots, counted

with multiplicities, of the two polynomials f1(y) and yf2(y). According to the ele-

mentary properties of subresultant sequences the polynomials f1(y) and f2(y) have k

common roots if and only if

s0(f1, yf2, y) = 0, . . . , sk−1(f1, yf2, y) = 0, sk(f1, yf2, y) 6= 0.

So by Theorem 11.5 and specialization property of subresultants presented in Chap-

ter 3, f has exactly k pairs of symmetric roots if and only if ∆m = 0, . . . ,∆m−2k+2 =

0,∆m−2k 6= 0.

Lemma 11.3 ([79]). Let f(x) ∈ R[x] be a polynomial of degree m and z1, . . . , zk

be arbitrary complex numbers. Let f ∗(x) = f(x)(x2 − z21) · · · (x2 − z2k). If ∆∗
i is

the Hurwitz determinants of order i of the polynomial f ∗(x), then ∆i = ∆∗
i , for

i = 1, . . . ,m. Similarly, let f ∗(x) = f(x)xk, then we also have ∆i = ∆∗
i hold.

Theorem 11.8. The polynomial f(x) has zero as root of multiplicity k and all the

other roots in the left half-plane if and only if am−k+1 = · · · = am = 0 and ∆1 >

0,∆2 > 0, . . . ,∆m−k > 0.

Proof. It follows directly from Routh-Hurwitz criterion and Lemma 11.3.
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Theorem 11.9. Let f(x) ∈ R[x] be a polynomial of degree m and f(x) = a0x
m +

a1x
m−1+ · · ·+am = f1(x

2)+xf2(x
2). Let ∆1,∆2, . . . ,∆m be the Hurwitz determinants

sequence of f . Then the following statements are equivalent:

(i) f(x) has k pairs of pure imaginary roots and all the other roots are in the left

half-plane.

(ii) Sk(f1, f2, y) has k negative real roots and ∆m−1 = ∆m−3 = · · · = ∆m−2k+1 = 0,

∆m−2k > 0,∆m−2k−1 > 0, . . . ,∆1 > 0.

(iii) Sk(f1, yf2, y) has k negative real roots and am 6= 0,∆m = ∆m−2 = · · · =
∆m−2k+2 = 0, ∆m−2k > 0,∆m−2k−1 > 0, . . . ,∆1 > 0.

Proof. “(i) ⇒ (ii)”. Assume that f(x) has k pairs of pure imaginary roots and

all the other roots are in the left half-plane. Let ±iω1, . . . ,±iωk be the k pairs of

pure imaginary roots, then we can write f(x) as f(x) = f ∗(x)(x2 + ω2
1) · · · (x2 + ω2

k),

where ω2
1 > 0, . . . , ω2

k > 0 and f ∗(x) has only roots in the left half-plane. By Routh-

Hurwitz criterion, we know that ∆∗
1 > 0,∆∗

2 > 0, . . . ,∆∗
m−2k > 0. According to the

Lemma 11.3, we know that ∆∗
i = ∆i. Therefore, we have ∆m−2k > 0,∆m−2k−1 >

0, . . . ,∆1 > 0 hold.

Moreover, by assumption we know the k pairs of pure imaginary roots are

the only symmetric roots of f(x), which implies ∆m−1 = ∆m−3 = · · · =

∆m−2k+1 = 0,∆m−2k−1 6= 0. Therefore, by Theorem 11.5 we have s0(f1, f2, y) =

0, . . . , sk−1(f1, f2, y) = 0, sk(f1, f2, y) 6= 0, which implies that Sk(f1, f2, y) =

gcd(f1, f2, y). On the other hand, since ±iω1, . . . ,±iωk are the symmetric roots of

f(x), by Lemma 11.2, −ω2
1, . . . ,−ω2

k are the common roots of f1(y) and f2(y), that

is, they are the real roots of Sk(f1, f2, y). Therefore Sk(f1, f2, y) has k negative real

roots.

“(ii) ⇒ (i)” By the assumption, we have ∆m−1 = ∆m−3 = · · · = ∆m−2k+1 =

0,∆m−2k−1 6= 0, which implies that

s0(f1, f2, y) = s1(f1, f2, y) = · · · = sk−1(f1, f2, y) = 0, sk(f1, f2, y) 6= 0.

Therefore the degree of Sk(f1, f2, y) is k and Sk(f1, f2, y) = gcd(f1, f2, y). Since

Sk(f1, f2, y) has k negative real roots, we know that f1(y) and f2(y) has k common

negative real roots and no other common roots. So by Lemma 11.2, f(x) has exactly

k pairs of pure imaginary roots and no other symmetric roots. Let us write f(x) =

f ∗(x)(x2 + ω2
1) · · · (x2 + ω2

k), according to ∆m−2k > 0,∆m−2k−1 > 0, . . . ,∆1 > 0 and

Lemma 11.3, we know that all the roots of f ∗(x) are in the left half-plane. Therefore
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f(x) has k pairs of pure imaginary eigenvalues and all the other roots are in the left

half-plane.

The proof of equivalence of (i) and (iii) are similar. The only difference is that

during the proof we need to use Theorem 11.7 instead of Theorem 11.6 and Corol-

lary 11.2 instead of Lemma 11.2.

By the above theorem, we get the following corollary, which is the main theorem

on Hopf bifurcation in [79, 80].

Corollary 11.3 (Theorem 4 [80]). Let f(x) ∈ R[x] be a degreem polynomial and write

f(x) = a0x
m+a1x

m−1+ · · ·+am = f1(x
2)+xf2(x

2) with a0 > 0. Let ∆1,∆2, . . . ,∆m

be the Hurwitz determinants sequence of f . Then f(x) has a pair of distinct roots, iω

and −iω, on the imaginary and all the other roots in the left half-plane if and only if

am > 0,∆m−1 = 0,∆m−2 > 0, . . . ,∆1 > 0.

Proof. By the equivalence of (i) and (iii) in Theorem 11.9, we only need to prove

that am > 0,∆m−1 = 0,∆m−2 > 0, . . . ,∆1 > 0 if and only if S1(f1, yf2, y) has one

negative real root and am 6= 0,∆m = 0,∆m−2 > 0, . . . ,∆1 > 0. By Theorem 11.5, we

have S1(f1, yf2, y) = (−1) ℓ(ℓ−1)
2 (∆m−2y + am∆m−3).

“ ⇒ ” Since am > 0,∆m−1 = 0, we have am 6= 0 and ∆m = am∆m−1 = 0.

Moreover, as am > 0 and ∆m−2 > 0,∆m−3 > 0, we know that S1(f1, yf2, y) has one

negative real root.

“ ⇐ ” Since S1(f1, yf2, y) has one negative real root and ∆m−2 > 0,∆m−3 > 0,

we have −∆m−2am∆m−3 < 0, which implies that am > 0. Moreover, by ∆m = 0, we

have ∆m−1 = 0.

Combining the result of Theorem 11.8 and Theorem 11.9, we get the answer to

Problem 4. The answer to Problem 5 was first briefly mentioned in [80], which we

summarize as the following Theorem.

Theorem 11.10. Let f(x) = a0x
m + a1x

m−1 + · · · + am be a univariate polynomial

of R[x]. Then f(x) has a root 0 of multiplicity k1 and has k2 pairs of pure imaginary

roots while no other roots have zero real parts if and only if the following holds:

� The coefficients of f(x) satisfy am = · · · = am−k1+1 = 0, am−k1 6= 0.

� Denote a0x
m−k1 +a1x

m−k1−1+ · · ·+am−k1 = f1(x
2)+xf2(x

2). Then there exists

an integer k ≥ k2 such that Sk(f1, f2, y) has k2 negative real roots and

∆m−k1−1 = ∆m−k1−3 = · · · = ∆m−k1−2k+1 = 0,∆m−k1−2k−1 6= 0.
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Proof. It directly follows from Lemma 11.2, Lemma 11.3 and Theorem 11.6.

Remark 11.3. In the above theorem, if both k1 = 0 and k2 = 0, then we get an

answer to Problem 3′. If k1 = 0 and k2 = 1, then we get the necessary and sufficient

condition on Hopf bifurcation.

The reader may notice that in [79, 80] there is also a theorem to provide suffi-

cient and necessary conditions on Hopf bifurcation. More precisely, it is Theorem 3.5

in [79] and Theorem 3 in [80]. However, we find that (also noticed by the author) the

condition provided there is only a sufficient condition.

In Theorem 11.10, we need to determine when a univariate polynomial Sk of degree

k with parametric coefficients has k2, 0 < k2 ≤ k, negative real zeros. This problem

can be reduced to an exhaustive case discussion on the signs of polynomials whose

variables are the coefficients of Sk, by Sturm-Habicht sequence [69] or negative root

discriminant sequence [137].

In Theorem 11.9, rather we want to determine when all the complex roots of

a univariate polynomial with parametric real coefficients are real and negative. In

the rest of this section, we provide a relatively simple answer by virtue of Descartes

criterion and discriminant sequence [137, 138].

Lemma 11.4 (Descartes criterion). Let f(x) ∈ R[x] be a polynomial of degree n.

Let ν be the number of sign variations of its coefficients sequence. Then there exists

m ≥ 0 such that the number of positive real roots of f(x) equals ν − 2m.

Corollary 11.4. Let f(x) = a0x
n + · · ·+ an−1x+ an be a polynomial of degree n. If

f(x) has n negative real roots, then we have aiai+1 > 0 for all 0 ≤ i ≤ n− 1.

Proof. Since f(x) has n negative real roots, f(−x) has n positive real roots. By

Descartes criterion, we have ai 6= 0. On the other hand, since f(x) has no positive

real roots, we know that ai have the same sign. Done.

Definition 11.2 (Discrimination matrix). Given a polynomial with general symbolic

coefficients, f(x) = a0x
n + a1x

n−1 + · · · + an, the following 2n× 2n matrix in terms
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of the coefficients,



















a0 a1 a2 · · · an

0 na0 (n− 1)a1 · · · an−1

0 a0 a1 · · · an−1 an

0 0 na0 · · · 2an−2 an−1

· · · · · ·
· · · · · ·
a0 a1 a2 · · · an

0 na0 (n− 1)a1 · · · an−1



















is called the discrimination matrix of f(x), and denoted by Discr(f). By dk or dk(f)

denote the determinant of the submatrix of Discr(f), formed by the first k rows and

the first k columns for k = 1, 2, . . . , 2n.

Definition 11.3 (Discriminant sequence). Let Dk = d2k, k = 1, . . . , n. We call

the sequence [D1, D2, . . . , Dn] the discriminant sequence of f(x), and denote it by

DiscrList(f). The last term Dn is just the discriminant of f .

Definition 11.4 (Sign list). We call the list [sign(A1), sign(A2), . . . , sign(An)] the

sign list of a given sequence A1, A2, . . . , An, where

sign(Ai) =







1, Ai > 0

0, Ai = 0

−1, Ai < 0

Definition 11.5 (Revised sign list). Given a sign list [s1, s2, . . . , sn], we construct a

new list [t1, t2, . . . , tn] as follows: (which is called the revised sign list)

� If [si, si+1, . . . , si+j ] is a section of the given list, where si 6= 0, si+1 = · · · =
si+j−1 = 0, si+j 6= 0, then, we replace the subsection [si+1, . . . , si+j−1] by the

first j − 1 terms of [−si,−si, si, si,−si,−si, si, si, . . .].

� Otherwise, let tk = sk, i.e. no changes for other terms.

Theorem 11.11. Given a polynomial f(x) = a0x
n + a1x

n−1 + · · ·+ an, where a0 6= 0

of R[x]. If the number of sign changes of the revised sign list of D1, D2, . . . , Dn is

ν, the number of non-vanishing members of the revised sign list is l, then we have:

the number of distinct real roots of f(x) equals l− 2ν; the number of distinct pairs of

conjugate imaginary roots of f(x) is ν.
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Example 11.1. Let f = (x−1)(x2+1), whose discriminant sequence is [3,−4,−16].
The sign list of it is: [1,−1, 1]. Its revised is the same to the sign list. So the number

of distinct real roots of f is 3− 2 = 1.

Theorem 11.12. Let f(x) ∈ R[x] be a polynomial of degree n and [D1, D2, . . . , Dn]

be its discriminant sequence. Then f(x) has n negative real roots if and only if all

its coefficients have the same nonzero sign and there exists k, 1 ≤ k ≤ n, such that

∀i ≤ k, Di > 0 and for other i, we have Di = 0.

Proof. “ ⇒ ” By Corollary 11.4, we know that all the coefficients of f(x) have the

same nonzero sign. On the other hand, since f(x) has no imaginary real roots, the

revised sign list of [D1, D2, . . . , Dn] has no sign changes according to Theorem 11.11.

By the rule on constructing the revised sign list, we conclude that there exists k,

1 ≤ k ≤ n, such that ∀i ≤ k, Di > 0 and for all i > k, Di = 0.

“ ⇐ ” If there exists k, 1 ≤ k ≤ n, such that ∀i ≤ k, Di > 0 and for other i, we

haveDi = 0. Then the revised sign list will look like this: [1, . . . , 1, 0, . . . , 0] Therefore,

the number of sign changes is 0. So f(x) have no imaginary roots. Moreover, since

the coefficients sequence of f(x) has 0 sign variations, we know immediately that f(x)

has n negative real roots by Descartes Criterion.

11.3 Stability of hyperbolic equilibria in view of

bifurcation

In Section 11.2, we discussed the stability of a hyperbolic equilibria for a fixed pa-

rameter value. In this section, we study the stability of a hyperbolic equilibria under

variation of parameters.

Definition 11.6 ([83]). Let us consider a dynamical system that depends on param-

eters. The appearance of a topologically nonequivalent phase portrait under variation

of parameters is called a bifurcation.

Lemma 11.5 ([83]). Given two hyperbolic equilibria of dynamical system (11.1), the

phase portraits of system (11.1) near them are locally topologically equivalent if and

only if at the two equilibria the Jacobian matrix J has the same number of eigenvalues

with negative (positive) real parts.

Theorem 11.13 (Boundary crossing theorem). Given a parameter value α0 of the

dynamical system (11.1) and let β0 be a hyperbolic equilibrium of system (11.1) at
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the parameter α0. Then there exists a continuous function y(u) defined in a small

neighborhood O(α0) of α0 satisfying F (u, y(u)) = 0, y(α0) = β0. Moreover, the defin-

ing domain O(α0) of y(u) can be extended as long as ∆m(u, y(u)) 6= 0. In addition,

inside the extended domain, there will be no bifurcation. In particular, the stability of

y(u) remains the same in the extended domain.

Proof. Since β0 is a hyperbolic equilibrium of system (11.1), we have ∆m(α0, β0) =

(−1)m∆m−1(α0, β0)Det(J)(α0, β0) 6= 0. Since Det(J)(α0, β0) 6= 0, by the implicit

function Theorem, we know that in a neighborhood of α0, there is one and only one

continuous function y(u) defined by F (u, y(u)) = 0 such that y(α0) = β0. Moreover,

we can extend the domain of the function y(u) if only Det(J)(u, y(u)) 6= 0. On the

other hand, the real parts of the eigenvalues of J(u, y(u)) will not become zero, which

implies that the number of the eigenvalues of J(u, y(u)) with negative real parts and

positive real parts will remain the same, respectively. By Lemma 11.5, the phase

portraits will remain locally topologically equivalent. Therefore, the stability will not

change if only ∆n(u, y(u)) 6= 0.

Remark 11.4. In 1929, Frazer and Duncan published a paper entitled “On the Cri-

teria for the Stability of Small Motions” [58]. In that paper, the authors presented

a theorem with the same name as above one, where they pointed out that when the

system passes from a region of stability to the border of stability, ∆n changes from

positive to zero. Here by the language of bifurcation, we see that a dynamical sys-

tem will keep structurally stable if only the parameter does not cross the boundary

described by ∆n = 0.

11.4 Conclusion

Based on the notion of a comprehensive triangular decomposition (CTD) presented

in the last section, we have obtained a framework for analyzing the stability of the

equilibria and compute the bifurcations of polynomial dynamical systems. Indeed,

we can completely solve the problems introduced in Section 11.1.

Let us first have a look at Problem 1. Let F (u,x) be the right hand side polyno-

mial equations of the dynamical system (11.1). It is usually required that u and x are

both positive. Let P (u,x) be the corresponding set of positive inequality constraints.

Let (C, (AC , C ∈ C)) be a CTD of S = [F, P>]. In the practice of dynamical systems,

only the cells above which S has finitely many complex solutions are interesting. This

fact has motivated our definition of the CTD of a semi-algebraic system. Let C ∈ C
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be a cell above which S has finitely many complex solutions, one of them at least

being real, that is, a cell of type (iii) in Definition 10.1. The set C is a connected

semi-algebraic subsets of Rd, above which AC is a finite set of SFSASes whose solu-

tions are disjoint graphs of continuous functions above C; moreover the union of the

graphs of these functions is exactly C ∩ ZR(S). Therefore, Problem 1 is solved.

Next, we look at Problem 2. A first and direct approach consists of computing a

CTD of the system S augmented with the inequalities ∆i > 0, 1 ≤ i ≤ m, where the

∆i are the Hurwitz determinants, see Definition 11.1. A second approach consists of

computing a CTD of the system S augmented with the inequality ∆m > 0 only and

then apply the Boundary Crossing Theorem, that is Theorem 11.13.

Similarly, for each of the three other problems on bifurcation, we will first produce

a semi-algebraic system by means of results in Section 11.2 and then apply CTD to

solve it.
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Chapter 12

Conclusion

Computing the solutions of a polynomials system is a central problem in computer

algebra and has many applications in other fields. Triangular decomposition is one of

the main symbolic techniques for solving polynomial systems. In this thesis, we have

improved both the efficiency and effectiveness of triangular decompositions.

On the efficiency front, we revisited one of the core routines for computing tri-

angular decompositions, namely the computation of regular GCD modulo a regular

chain. We proposed a weakened usage of the concept of regular GCD, based on which

a simpler and more efficient triangular decomposition algorithm was obtained. This

new algorithm is structured to recycle expensive operations, such as the computation

of subresultant chains, as much as possible. The experimentation shows that this new

triangular decomposition algorithm outperforms solvers with similar specifications by

several orders of magnitude.

On the effectiveness front, we have greatly extended the scope of usage of trian-

gular decompositions. Before our work, triangular decompositions were mainly used

for computing the complex solutions of polynomial systems. In this thesis, we intro-

duce the concept of comprehensive triangular decomposition, which is dedicated to

computing the solutions of polynomial systems depending on parameters. Moreover,

we adapt the concept of regular chain and triangular decomposition to semi-algebraic

systems and provide very useful tools for describing the real solutions of polynomial

systems. We have also connected triangular decomposition with cylindrical algebraic

decomposition (CAD), which is one of the fundamental tools in real algebraic geom-

etry. Our new approach for computing CAD brings new insight into this field.

We have successfully applied our tools for several applications. Among them,

the study of equilibria of dynamical systems actually motivated the work in this
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thesis. The work presented in this thesis brings new challenges and opportunities for

triangular decompositions. We conclude this dissertation with three open problems.

� Better control of expression swell when computing triangular decompositions.

� Define and compute a notion of canonical and minimal comprehensive triangular

decomposition.

� Define and compute a notion of canonical and minimal cylindrical algebraic

decomposition.
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Appendix A

Commutative Ring and Ideal

theory

In this chapter, we introduce some useful mathematical concepts and results related

to this thesis. The first three sections describe basic concepts and classical results

for general rings. The main reference we rely on is the book “Introduction to com-

mutative algebra” by M.F. Atiyah and I.G. Macdonald. The next two sections states

fundamental results on polynomial ideals and varieties. The main reference is the

book “Ideals, varieties, and algorithms” by D. Cox, J. Little and D. O’Shea.

A.1 Commutative ring

Let A and B be two sets. We denote by A×B the set of all pairs {(a, b) | a ∈ A, b ∈ B},
which is called the direct product of A and B. Given a set A, we define a function

+ : A× A→ A, called addition operation, such that

(1) for all a, b, c ∈ A, + is associative, that is (a+ b) + c = a+ (b+ c),

(2) there exists an element of A, denoted by 0, such that for any a ∈ A, we have

a+ 0 = 0 + a = a,

(3) for any element a ∈ A, there exists another element b ∈ A, such that a + b =

b+ a = 0.

We call (A,+) a group. If in addition, + is commutative, that is for any a, b ∈ A, we

have a+ b = b+ a, then (A,+) is called an abelian group.

Let (A,+) be an abelian group, we define another function · : A× A→ A, called

multiplication operation, such that
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(1) for all a, b, c ∈ A, · is associative, that is (a · b) · c = a · (b · c),

(2) · is distributive w.r.t. +, that is for any a, b, c ∈ A, we have (a+b) ·c = a ·c+b ·c
and c · (a+ b) = c · a+ c · b hold.

We call (A,+, ·) a ring. If in addition, we have

(3) · is commutative, that is for any a, b ∈ A, we have a · b = b · a,

(4) there exists an element of A, denoted by 1, such that for any a ∈ A, a · 1 =

1 · a = a,

then we call (A,+, ·) a commutative ring with identity. In this thesis, ring shall

always mean a commutative ring with identity. When context is clear, we also

write ring (A,+, ·) as A for short. For any two elements a, b ∈ A, a · b is also written

as ab.

Example A.1. All the integers {. . . ,−2,−1, 0, 1, 2, . . .} forms a ring w.r.t. integer

additions and multiplications, usually denoted by Z. The set of natural numbers

N = {0, 1, 2, . . .} is not a ring since it is not a group w.r.t. number additions.

Let A and B be two rings. A ring homomorphism is a function f : A → B such

that

(i) f(a+ b) = f(a) + f(b),

(ii) f(ab) = f(a)f(b),

(iii) f(1) = 1.

A subset S of A is called a subring of A if S is closed under addition and multi-

plication and contains the identity element of A.

An element x 6= 0 ∈ A is called a zero-divisor in A if there exists y 6= 0 ∈ A such

that xy = 0. A ring with no zero-divisors is called an integral domain. An element

x ∈ A is called a nilpotent if there exists n > 0 such that xn = 0. An element x is

called regular in A if x is neither zero nor zero-divisor in A. An element x of A is

called a unit if there exists y such that xy = 1. A field is a ring A in which 1 6= 0 and

every non-zero element of A is a unit.

Example A.2. Let Z be the set of integers. Let m be a positive integer. Let Z/mZ :=

{0, 1, . . . ,m − 1}. We define additions and multiplications on Z/m as follows: for

any x, y ∈ Z/m, x + y = (x +Z y) mod m and x · y = (x ∗Z y) mod m. Here x +Z y
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and x ∗Z y denote respectively adding and multiplying x and y as usual integers. It is

easy to verify that Z/mZ is a ring.

Then in Z/4, the element 2 is a zero-divisor and also a nilpotent; the element 3

is regular and also a unit. If m is a prime number, say 3, then Z/mZ is a field.

A.2 Ideals

An ideal I of A is a subset of A which is an abelian group w.r.t. + and such that:

for any x ∈ A and y ∈ I, we have xy ∈ I.
Given a ring A and an ideal I of A, we can define an equivalence relation (meaning

reflexivity, symmetry and transitivity) ∼ on A as follows: two elements a, b of A are

equivalent, denoted by a ∼ b if and only if a − b ∈ I. We say that a and b are

congruent modulo I. The equivalent class of a in A, denoted by [a], is set of all

elements equivalent to a. Clearly [a] = a+ I.
The set of all equivalent classes is denoted by A/I. One can defined two operations

+ and · on A/I as follows: [a] + [b] = [a+ b] and [a] · [b] = [a · b]. One can prove the

two operations are well defined and A/I forms a ring, called a quotient ring, under

the two operations.

An ideal p in A is called prime if p 6= A and for any x, y ∈ A, if xy ∈ p, then

either x ∈ p or y ∈ p. An ideal is called maximal if m 6= A and if there is no ideal I
such that m ( I ( A.

Proposition A.1. I is a prime ideal if and only if A/I is an integral domain. I is

a maximal ideal if and only if A/I is a field.

Let I and J be two ideals of A. Define the sum of I and J as I + J :=

{x+ y | x ∈ I, y ∈ J }, which is an ideal of A. Define the intersection of I and J as

I ∩ J := {x | x ∈ I and x ∈ J }, which is an ideal of A. Define the product of I and

J as

IJ := {
r∑

i=1

xiyi | xi ∈ I and yi ∈ J , r > 0},

which is an ideal of A. The union of ideals is generally not an ideal. Define the ideal

quotient of I and J as I : J = {x | xy ∈ I, for all y ∈ J }. Two ideals are said to

be coprime if I+J = A. For coprime deals, we have I+J = IJ . Define the radical
of I as

√
I := {x | xn ∈ I for some n > 0}. An ideal I is called a radical ideal if

I =
√
I. Let h ∈ A The saturated ideal of I w.r.t. h, denoted by I : h∞, is the ideal

{q ∈ A | ∃m ∈ N s.t. hmq ∈ I}.
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Proposition A.2. The following are some useful properties of operations on ideals.

�
√
∩r

i=1Ii = ∩r
i=1

√Ii

� (∩r
i=1Ii) : J = ∩r

i=1(Ii : J )

Proposition A.3. (i) Let p1, . . . , pr be prime ideals and let I be an ideal contained

in ∪r
i=1pi. Then I ⊆ pi for some i. (ii) Let I1, . . . , Is be ideals and let p be a prime

ideal containing ∩r
i=1Ii. Then p ⊇ Ii for some i.

Let A be any ring. A multiplicatively closed subset of A is a subset S of A such that

1 ∈ S and S is closed under multiplication. Define a relation on A × S as follows:

(a, s) ∼ (b, t) if and only if (at−bs)u = 0 for some u ∈ S. One can verification that this

relation is an equivalence relation. Let a/s denote the equivalent class of (a, s), and

let S−1A denote the set of equivalence classes. We define addition and multiplication

on S−1A respectively as (a/s)+ (b/t) = (at+ bs)/st and (a/s)(b/t) = ab/st. One can

verify that the two operations are well defined and S−1A forms a commutative ring

under the two operations. We also have a natural ring homomorphism f : A→ S−1A

defined by f(x) = x/1. The ring S−1A is called the ring of fractions of A w.r.t. S. If

A is an integral domain and S = A− 0, then S−1A is a field and is called the field of

fractions of A.

A.3 Noetherian rings and primary decompositions

Let I be an ideal in A. We say I is finitely generated if there exists finitely many

elements in I, say x1, . . . , xr such that I =
∑r

i=1〈xi〉. A ring A is said to be Noethe-

rian if every ideal in A is finitely generated. Let I1 ⊆ I2 ⊆ · · · be an ascending chain

of ideals. It is said stationary if there exists n such that In = In+1 = · · · .

Proposition A.4. The following statements are equivalent.

� A is Noetherian,

� every ascending chain of ideals in A is stationary,

� every nonempty set of ideals in A has a maximal element.

Let A be a ring. An ideal q in A is called primary if q 6= A and for any x, y ∈ q,

if xy ∈ q, then either x ∈ q or yn ∈ q.
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Proposition A.5. Let q be a primary ideal in A, then
√
q is the smallest prime ideal

containing q.

Let p =
√
q. We call p the associated prime ideal of q and we say q is p-primary.

Proposition A.6. If qi, i = 1, . . . , r are p-primary. Then ∩r
i=1qi is p-primary.

Let x ∈ A. Denote 〈x〉 = {ax | a ∈ A}. Then 〈x〉 is an ideal in A. Let I be an

ideal in A. Then the ideal quotient I : 〈x〉 is simply written as I : x.

Proposition A.7. Let q be a p-primary ideal and x and element of A. Then

(i) if x ∈ q, then q : x = A

(ii) if x /∈ q, then q : x is p-primary

(iii) if x 6∈ p, then q : x = q

A primary decomposition of an ideal I in A is an expression of I as a finite

intersection of primary ideals, say I = ∩r
i=1qi, where each qi is a primary ideal in A.

In general, for a given ideal, a primary decomposition of it may not exist. However,

for Noetherian ring, a primary decomposition always exists.

Proposition A.8. In a Noetherian A, every proper ideal I 6= A has a primary

decomposition.

Let A be a Noetherian ring and let I be an ideal in A. Let ∩r
i=1qi be a primary

decomposition of I. If in addition, it satisfies: (1) all
√
qi are different; (2) for any

1 ≤ i ≤ r, ∪j 6=iqj 6⊆ qi. Then we say the primary decomposition ∩r
i=1qi is minimal.

By Proposition A.6, any primary decomposition of I can be reduced to a minimal

one.

Theorem A.1. Let A be a Noetherian ring Let I be an ideal in A and let ∩r
i=1qi

be a minimal primary decomposition of I. Let pi =
√
qi, i = 1, . . . , r. Then pi are

precisely the prime ideals which appear in the set of ideals I : x, x ∈ A, and therefore

are independent of a particular decomposition of I.

The prime ideals pi in the above theorem are called the associated prime ideals of

I. The ideal I is primary if and only if it has one associated prime ideal. The minimal

elements of {p1, . . . , pr} are called the minimal or isolated prime ideals associated with

I. The others are called embedded prime ideals.
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Proposition A.9. Let A be a Noetherian ring and let I be an ideal in A. Let

p1, . . . , ps be the minimal associated prime ideals with I. Then they are the associated

prime ideals of
√
I. Moreover

√
I = ∩s

i=1pi.

Proof. Let I = ∩r
i=1qi be a minimal primary decomposition of I. Then we have√

I = ∩r
i=1

√
qi by Proposition A.2. Note that

√
qi, i = 1, . . . , r are the associated

prime ideals with I. We pick the minimal ones and rename them as p1, . . . , ps.

Then we have
√
I = ∩s

i=1pi. Since a prime ideal is primary, ∩s
i=1pi is a minimal

primary decomposition of
√
I and therefore p1, . . . , ps are the associated prime ideals

of
√
I.

Proposition A.10. Let I be an ideal in a Noetherian ring A and assume that I 6= A.

Let p ∈ A. Then p is regular in A/I if and only if p does not belong to any associated

prime ideals of I.

Proof. By Proposition A.1, the associated prime ideals of I are exactly the prime

ideals which occur in the set of ideals I : x, x ∈ A.

“⇒” Let p be regular in A/I. We prove by contradiction. Assume that p belongs

to some associated prime ideal of I. Then there exists x ∈ A such that I : x is prime

and p ∈ I : x, which implies that x /∈ I and px ∈ I. It is a contradiction to p is

regular in A/I.
“⇐” Let p be an element of A which does not belong to any associated prime ideals

of I. We prove by contradiction. Assume p is not regular in A/I. Then there exists

x 6∈ I such that px ∈ I, which implies that p ∈ I : x. Let I = ∩r
i=1qi be a minimal

primary decomposition of I. We have I : x = ∩r
i=1(qi : x) by Proposition A.2. Since

x /∈ I, there exists qi such that x /∈ qi. Let pi be the associated prime ideal of qi,

which is also an associated prime ideal of I. By Proposition A.7, qi : x is pi-primary.

Hence we have p ∈ pi, which is a contradiction to the assumption.

Proposition A.11. Let A be a Noetherian ring. Let I be an ideal and h be an

element in A. Then there exists an integer N such that I : h∞ = I : hN .

Proof. First we have I : h∞ = ∪∞
i=0I : hi. Note that there exists an ascending chain

in A such that I : h0 ⊆ I : h1 ⊆ · · · . Since A is a Noetherian ring, there exists N

such that

I : h0 ⊆ I : h1 ⊆ · · · ⊆ I : hN = I : hN+1 = · · · ,

which implies that I : h∞ ⊆ I : hN . I : hN ⊆ I : h∞ is obvious.
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Corollary A.1. Let A be a Noetherian ring and let I be an ideal and h be an element

in A. and let ∩r
i=1qi be a minimal primary decomposition of I. Let pi =

√
qi, i =

1, . . . , r. Assume for the 1 ≤ i ≤ s, h /∈ pi and for s < i ≤ r, h ∈ pi. Then we have

I : h∞ = ∩s
i=1qi.

Proof. By Proposition A.11, there exists integers N0, N1, . . . , Nr, such that I : hN0 =

I : h∞ and qi : hNi = qi : h∞. Let N = max(N0, N1, . . . , Nr). Then we have

I : hN = ∩r
i=1qi : hN , which implies that I : h∞ = ∩r

i=1qi : h∞ = ∩r
i=1qi : hN .

Moreover, we can let N large enough such that if h ∈ pi, then hN ∈ qi. Then the

conclusion follows directly from Proposition A.7.

A.4 Polynomial ideals and algebraic varieties

In this section, we state related concepts on polynomial ideals and algebraic varieties.

Let k be a field. We say that a field k is algebraically closed if every nonconstant

polynomial in k[x] has a root in k. An algebraic closure of k, denoted by K, is an

algebraic extension field of k which is algebraically closed. Up to an isomorphism

that fixes every member of k, an algebraic closure of k is unique. For example, the

field C of complex numbers is the algebraic closure of the field R of the real numbers.

Let f1, . . . , fs be polynomials in k[x1, . . . , xn]. Denote V (f1, . . . , fs) =

{(a1, . . . , an) ∈ Kn | fi(a1, . . . , an) = 0 for all 1 ≤ i ≤ s} and call it the alge-

braic variety defined by f1, . . . , fs in Kn. Sometimes we call V a k-algebraic variety

to emphasize that this variety is defined as zero sets of polynomials with coefficients

in k. Denote by 〈f1, . . . , fs〉 the ideal generated by f1, . . . , fs in k[x1, . . . , xn]. That is

〈f1, . . . , fs〉 = {
∑s

i=1 hifi | h1, . . . , hs ∈ k[x1, . . . , xn]}. Let V ⊆ Kn be a k-algebraic

variety. Define I(V ) = {f ∈ k[x1, . . . , xn] : f(a1, . . . , an) = 0 for all(a1, . . . , an) ∈ V }.
Note that I(V ) is an ideal in k[x1, . . . , xn] and we call it the ideal of V .

Theorem A.2 (Hilbert basis theorem). Every ideal I ⊂ k[x1, . . . , xn] has a finite

generating set. That is I = 〈f1, . . . , fs〉 for some f1, . . . , fs ∈ I.

Hilbert basis theorem shows that it makes sense to speak of the algebraic variety

defined by an ideal I. Let I be an ideal in k[x1, . . . , xn]. Denote by V (I) the set

V (I) = {(a1, . . . , an) ∈ Kn : f(a1, . . . , an) = 0 for all f ∈ I}. Let f1, . . . , fs be the

generators of I. Then V (I) = V (f1, . . . , fs) and therefore is an algebraic variety.

Theorem A.3 (Hilbert’s Nullstellensatz). If I is an ideal in k[x1, . . . , xn], then

I(V (I)) =
√
I.
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Corollary A.2. Let I and J be ideals in k[x1, . . . , xn]. Then V (I) ⊆ V (J ) if and

only if
√
J ⊆

√
I.

Let S be a subset of Kn. The set I(S) = {f ∈ k[x1, . . . , xn] | f(a) = 0 for all a ∈
S} is an ideal in k[x1, . . . , xn]. The k-Zariski closure of S, denote by S, is defined as

the smallest k-algebraic variety containing the set, which is actually V (I(S)).

Theorem A.4. Let I and f be respectively an ideal and a polynomial in k[x1, . . . , xn].

Then we have V (I) \ V (f) = V (I : f∞).

An algebraic variety V ⊂ Kn is irreducible if whenever V is written in the form

V1 ∪ V2, where V1 and V2 are algebraic varieties, then either V1 = V or V2 = V .

Proposition A.12. Let V ⊆ Kn be an algebraic variety. Then V is irreducible if

and only if I(V ) is a prime ideal.

Theorem A.5. Let V ⊆ Kn be an algebraic variety. Then V can be written as a

finite union of irreducible varieties.

Let V ⊆ Kn be an algebraic variety. A decomposition V = V1 ∪ · · · ∪ Vm, where
each Vi is an irreducible variety, is called a minimal decomposition if Vi 6⊆ Vj for i 6= j.

Theorem A.6. Every algebraic variety V ⊆ Kn has a minimal decomposition. Fur-

thermore, this minimal decomposition is unique up to the order in which V1, . . . , Vm

are written.

A.5 Dimension of polynomial ideals and algebraic

varieties

Let A = k[x1, . . . , xn] be a polynomial ring. Let I be an ideal in A. A subset of

variables {y1, . . . , ys} of {x1, . . . , xn} is called algebraically dependent modulo I if

there exists a nonzero polynomial p(y1, . . . , ys) ∈ I. They are called algebraically

independent modulo I if p(y1, . . . , ys) ∈ I implies that p is the zero polynomial,

which is equivalent to say that I ∩k[y1, . . . , ys] = {0}. Let I be a polynomial ideal in

k[x1, . . . , xn]. The dimension of I, denoted as dim I, is defined to be the cardinality

of a largest subset of X which is independent modulo I. If there are no independent

subsets at all (which only happens when I = k[X], then the affine dimension of I is

defined to be −1. The co-dimension or height of I is defined as n− dim I.
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Let V be an algebraic variety of Kn. We define dimV = dim I(V ). An ideal I
in k[X] is called unmixed if the dimensions of all its associated prime ideals are the

same. I is said to be equidimensional if the dimensions of all its associated minimal

prime ideals are the same. Clearly, if an ideal is unmixed, it has no embedded prime

ideals.

Let A be a ring. The Krull dimension of A, named after Wolfgang Krull (1899-

1971), is defined as the supremum of the number of strict inclusions in a chain of

prime ideals. The following proposition suggests another equivalent definition on the

dimension of an ideal.

Proposition A.13. The dimension of I is the Krull dimension of A/I.

Proposition A.14. Let A = k[x1, . . . , xn]. Let p1 ( p2 be two prime ideals in A.

Then dim(p2) < dim(p1).

Proof. Clearly a longest strict chain of inclusions of prime ideals containing p2 is

shorter than the one containing p1. Then the conclusion follows directly from the

definition of dimension of an ideal.

Proposition A.15. Let A = k[x1, . . . , xn]. Let p ∈ A and let I be an ideal in A. If

I is unmixed, then p is regular in A/I if and only if p is regular in A/
√
I.

Proof. Since I is unmixed, the associated prime ideals of I can not be strictly con-

tained in each other by Proposition A.14. Therefore they are all minimal. By Propo-

sition A.9, they are exactly the associated prime ideals of
√
I. The the conclusion

follows immediately from Proposition A.10.

Lemma A.1. Let I be a proper ideal in k[x1, . . . , xn] and f ∈ k[x1, . . . , xn] be a

polynomial regular modulo I. Then, we have: dim(V (I) ∩ V (f)) < dim(V (I))− 1.

Proof. Let p1, . . . , pe be the associated prime ideal of
√
I. We have V (I) ∩ V (f) =

∪e
i=1V (pi)∩V (f). Thus, it is enough to show for any associated prime ideal p of

√
I,

we have dim(〈p + f〉) < dim(p). Since f is regular modulo I, we have p ( 〈p + f〉.
Thus p is strictly contained in any prime ideal of 〈p + f〉. By Proposition A.14, we

deduce the conclusion.
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Appendix B

A Property of Saturated Ideals of

Regular Chains

Proposition B.7 and Theorem B.1 are the main statements of this second appendix.

They are often used to prove properties on regular chains. In fact, up to presentation

details, these results are established in the proof of Theorem 6.1 in the landmark

paper [1]. However, the treatment there is specialized to multivariate polynomial

rings over a field, whereas we work here in a univariate polynomial ring over an

arbitrary commutative ring.

This more abstract treatment was proposed by Aubry in [5]. It has been simplified

by Moreno Maza (unpublished notes) such that the only prerequisite for following

the proof is the fact that univariate pseudo-division is uniquely defined whenever the

leading coefficient of the pseudo-divisor is a regular element of the coefficient ring.

Throughout this section, we consider a commutative ring A and the ring A[x] of

the univariate polynomials in x with coefficients in A. Let I be an ideal of A. We

denote by I[x] the ideal generated by I in A[x].

Proposition B.1. Let f =
∑n

i=0aix
i ∈ A[x] be a polynomial. Then, we have

f ∈ I[x] ⇐⇒ (∀i ∈ {0, . . . , n}) ai ∈ I.

Proof. Assume that f ∈ I[x] holds. Then, there exists b1, . . . , bm ∈ I and g1, . . . , gm ∈
A[x] satisfying f = b1g1 + · · · + bmgm. From there, it is routine to show that each

coefficient of f is the ideal generated by b1, . . . , bm and thus in I. The converse

implication is clear, which concludes the proof.

Proposition B.2. Let p ∈ A. Then we have: p is zero in A/I if and only if p is

zero in A[x]/I[x]; p is regular in A/I if and only if p is regular in A[x]/I[x].
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Proof. Since I ⊆ I[x], we deduce that p is zero in A/I implies that p is zero in

A[x]/I[x]. Conversely, if p is zero in A[x]/I[x], by Proposition B.1, we have p ∈ I
and thus p is zero in A/I.

If p is regular in A/I. Let q =
∑n

i=0 aix
i ∈ A[x] such that pq ∈ I[x]. By

Proposition B.1, we have pai ∈ I, which implies that ai ∈ I and therefore q ∈ I[x].
Thus p is regular in A[x]/I[x]. Conversely, if p is regular in A[x]/I[x]. Let q ∈ A

such that pq ∈ I. Then pq ∈ I[x], which implies that q ∈ I[x] and thus q ∈ I. So p
is regular in A/I.

Proposition B.3. For any h ∈ A we have (I : h∞)[x] = (I[x]) : h∞.

Proof. Let a ∈ I : h∞. Clearly, we have a ∈ (I[x]) : h∞. Consequently, Proposi-

tion B.1 shows that the ideal generated by I : h∞ in A[x] is contained in the ideal

(I[x]) : h∞. Conversely, let f ∈ (I[x]) : h∞. Then, there exists m ∈ N such that

hm f ∈ I[x], which implies, that every coefficient of f lies in I : h∞. Hence, Proposi-

tion B.1, implies that f ∈ (I : h∞)[x] holds.

In the sequel of this appendix, we denote by f ∈ A[x] a non-constant polynomial

such that its leading coefficient, denoted by h, is not a zero-divisor in A/I. We define

J = 〈I, f〉.

Proposition B.4. We have I = J ∩ A.

Proof. Clearly, we have I ⊆ J ∩ A. Conversely, let p ∈ J ∩ A. Thus p is a constant

polynomial. Let us prove that p belongs to I. Since p ∈ J , there exists q ∈ A[x]

satisfying

p− qf ∈ I[x].

Assume that q 6∈ I[x]. Then qf , and thus p, has a positive degree in I[x]. Indeed,

since h is regular modulo I, we have deg(p) = deg(q) + deg(f). This contradicts the

hypothesis that p is a constant in A[x]. Therefore q ∈ I[x], and thus p ∈ I[x] both
hold. Since p is a constant, the conclusion follows.

Proposition B.5. We have I = (J : h∞) ∩ A.

Proof. We clearly have J ⊆ J : h∞. We deduce J ∩ A ⊆ (J : h∞) ∩ A. Thus,

with Proposition B.4, we have I ⊆ (J : h∞) ∩ A. Conversely, let a ∈ (J : h∞) ∩ A.

There exists n ∈ N such that hna ∈ J ∩ A. Thus, with Proposition B.4 again, we

have hna ∈ I. Since h is not a zero-divisor modulo I, we deduce a ∈ I, concluding
the proof.
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Proposition B.6. Let r ∈ A[x] with r 6= 0 and deg(r) < deg(f). Then, the following

holds:

r ∈ J : h∞ ⇒ r ∈ I[x].

Proof. We assume r ∈ J : h∞ and prove that r ∈ I[x] holds. Let m ∈ N be such

that hmr ∈ J . Then, let q ∈ A[x] satisfying

hmr − qf ∈ I[x]. (B.1)

Assume q 6∈ I[x] holds. Since h = lc(f) is regular modulo I, the degree of qf in I[x]
is at least that of f in A[x]. Equation (B.1) shows this contradicts deg(r) < deg(f).

Therefore, we have q ∈ I[x] which implies r ∈ I[x] as claimed.

Proposition B.7. For all p ∈ A[x], the following conditions are equivalent:

(i) p ∈ J : h∞,

(ii) prem(p, f) ∈ I[x].

Proof. Define r = prem(p, f) and q = pquo(p, f). Let n ∈ N be such that hnp =

qf+r. We assume (i) and prove (ii). Both p and f belong to J : h∞. Thus r belongs

to J : h∞ too. Applying Proposition B.6, we deduce r ∈ I[x] as expected. Now, we
assume (ii) and prove (i). Since I[x] ⊂ J holds, we deduce that both r and f belong

to J . This implies hnp ∈ J , that is, p ∈ J : h∞ as claimed.

Theorem B.1. Let K be an ideal of A and a ∈ A be such that we have I = K : a∞.

Assume that h = lc(f) is regular modulo I. Assume that it is also regular in A.

Then, we have the following identity:

〈K : a∞, f〉 : h∞ = 〈K, f〉 : (ah)∞. (B.2)

Proof. First, we prove that 〈I, f〉 : h∞ is contained in 〈K, f〉 : (ah)∞. Let p ∈
〈I, f〉 : h∞. Proposition B.7 implies prem(p, f) ∈ I[x]. With Proposition B.3, we

deduce prem(p, f) ∈ (K[x]) : a∞. Hence, there exists m ∈ N such that we have

amprem(p, f) ∈ K[x]. Using the fact that the pseudo-division by f in A[x] is uniquely

defined (since h is regular in A) we deduce prem(amp, f) ∈ K[x]. Thus, there exists

n ∈ N such that hnamp ∈ 〈K, f〉, leading to p ∈ 〈K, f〉 : (ah)∞.

Conversely, let p ∈ 〈K, f〉 : (ah)∞. Thus, there exists m ∈ N such that amp ∈
〈K, f〉 : h∞. Observe that we have: 〈K, f〉 ⊆ 〈I, f〉 = J and thus: 〈K, f〉 : h∞ ⊆
〈I, f〉 : h∞ ⊆ J : h∞. Hence amp ∈ J : h∞ holds. Applying Proposition B.7
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we deduce prem(amp, f) ∈ I[x]. Using again the fact that the pseudo-division by

f in A[x] is uniquely defined, we obtain amprem(p, f) ∈ I[x], that is prem(p, f) ∈
(I[x]) : a∞. Since a is regular modulo I, by Proposition B.2, a is regular modulo I[x].
Hence, we deduce prem(p, f) ∈ I[x]. Applying Proposition B.7 again, we conclude

p ∈ 〈I, f〉 : h∞.
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[8] J. Backelin and R. Fröberg. How we proved that there are exactly 924 cyclic

7-roots. In S. M. Watt, editor, Proc. ISSAC’91, pages 103–111. ACM, 1991.

[9] S. Basu, R. Pollack, and M.-F. Roy. Algorithms in real algebraic geometry,

volume 10 of Algorithms and Computations in Mathematics. Springer-Verlag,

2006.

[10] James C. Beaumont, Russell J. Bradford, James H. Davenport, and Nalina

Phisanbut. Testing elementary function identities using CAD. Appl. Algebra

Eng., Commun. Comput., 18:513–543, November 2007.



209

[11] D. J. Bernstein. Factoring into coprimes in essentially linear time. J. Algorithms,

54(1):1–30, 2005.

[12] F. Boulier, C. Chen, F. Lemaire, and M. Moreno Maza. Real root isolation of

regular chains. In Proc. of ASCM’09, 2009.

[13] F. Boulier, D. Lazard, F. Ollivier, and M. Petitot. Representation for the

radical of a finitely generated differential ideal. In proceedings of ISSAC’95,

pages 158–166, Montréal, Canada, 1995.
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[48] X. Dahan, M. Moreno Maza, É. Schost, W. Wu, and Y. Xie. Lifting techniques

for triangular decompositions. In ISSAC’05, pages 108–115. ACM Press, 2005.
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